ELECTRONIC DESIGN VOL. 14, NO. APRIL 19, 1966 # power supplies by the thousands are available on the market today. Save time and effort the next time you buy one by first consulting this special reference issue. Here are up-to-date specifications, prices and technical articles to simplify your next selection. # Let SOLA custom-build your "tough spec" power supplies... - HI-VOLTAGE TRANSISTORIZED POWER SUPPLIES - LOW-VOLTAGE TRANSISTORIZED POWER SUPPLIES - HI-VOLTAGE FERRORESONANT POWER SUPPLIES - CVDC POWER SUPPLIES - INVERTERS CONVERTERS No specs are too tough for SOLA design engineers. Proof? SOLA has custom-designed power supplies for the most sophisticated applications. Electron probe microanalysis equipment, nucleonic liquid gages for supersonic aircraft, precipitators, CRT devices, for instance. The SOLA power supply used in liquid gages, for example, contains 120 parts, four etched circuit boards, yet measures only 1.86" in diameter, and .9" high. What's more, it provides regulation of $\pm 0.25\%$ for all conditions of line, load, and temperature. It operates in a temperature range of -55°C to 72°C, at thirty times the pull of gravity. This is one of the many "tough spec" custom power supplies SOLA has engineered over the years. Whatever your requirements might be . . . extreme temperatures, tight regulation, low ripple, compactness, stability . . . remember, SOLA can custom-build your power supplies in OEM quantities. And at a price that's realistic. Try us. We haven't been stumped yet. Send us your specifications, or a description of the end result required. Write Sola Electric, Division of Sola Basic Industries, 1717 Busse Road, Elk Grove Village, Illinois 60007. Or call (312) 439-2800. ### **Contents** | Introduction | |---| | Master Cross Index 4 | | Technical Articles | | Use a systematic approach the next time you buy a power supply | | Do you know when to consider a custom power supply? | | New trends are emerging in power supply design 24 | | Tables of Power Supply Specifications | | High-current dc supplies | | Constant-current dc supplies | | Laboratory-type dc supplies | | High-voltage dc supplies 84 | | Special-purpose dc supplies | | Regulated ac supplies | | Modular dc supplies114 | | Last-minute entries | | Cover: Sorensen's all-silicon DCR series with output capability to 20 kw. | ### **Table locator** High-current dc Constant-current dc Laboratory-type dc High-voltage dc Special-purpose dc Regulated ac Modular dc ELECTRONIC DESIGN is published bi-weekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York, N. Y., 10022. James S. Mulholland, Jr., President. Printed at Poole Bros., Inc., Chicago, Ill. Controlled-circulation postage paid at Chicago, Ill., and New York, N. Y. Copyright © 1966, Hayden Publishing Company, Inc. 60,237 copies this Issue. (photographed by S. H. Benham) # in eters look for this **CUSHION-BACKED** **FIXED** ### watch out for this SPRING-BACKED JEWELS (left above) dissipate much of the shock energy on a movement's moving part. This prevents damage to the jewel and avoids subsequent "stickiness" or inaccuracy. In contrast are the two constructions shown above right...so-called cushion-backed and fixed jewels. The fixed absorbs no shock at all. The cushion-backed protects a little, but still won't do the job under the rugged use to which most of us put meters and test equipment. ■ On the other hand, a spring-backed jewel permits full deflection with less than 20% increase in pivot pressure. Simpson makes a complete selection of spring-backed meter movements as well as fixed. The spring-backed type costs only about 20¢ more than a cushion-back, and 40¢ more than a fixed jewel. Is the spring-backed jewel worth the small extra amount? You bet it is, say most of our customers. ■ Write for Stock Catalog No. 2073 which lists 1400 sizes and types. It may well be the cure for meter headaches and complaints in your equipment. SIMPSON ELECTRIC COMPANY 5202 W. Kinzie Street, Chicago, III. 60644 • Phone: (312) EStebrook 9-1121 Representatives in Principal Cities See Telephone Yellow Pages Export Dept.: 400 W. Madison St., Chicago, III. 60606 Cable, Simelco In Canada: Bach-Simpson Ltd., London, Ontario In India: Ruttonsha-Simpson Private Ltd., Vikhroli, Bombay WORLD'S LARGEST MANUFACTURERS OF ELECTRONIC TEST EQUIPMENT # ELECTRONIC DESIGN'S Power Supply Reference Issue 1966 Frank Egan Technical Editor Here is your comprehensive, applications-oriented guide to power supplies and their selection. Specifications, prices and other pertinent data are all included to help simplify your next purchase. In addition, three technical articles bring you up-to-date on power supply technology and the factors to consider when selecting a power supply. Specifications for approximately 5000 power supplies made by 145 manufacturers are presented in convenient tabular form. The data for the tables was supplied by Technical Information Corporation, of Smithtown, N. Y., from its two-volume directory of power supply specifications. T.I.C. also publishes a six-volume directory of equipment specifications, whose contents are as shown. Two volumes of this directory were published in Electronic Design's 1965 Test Equipment Reference Issue (May 3, 1965). To expedite the location of a power supply having particular characteristics, the power supplies listed in this issue are divided into seven categories: - High-current dc power supplies - (output currents greater than 3 amperes) - Constant-current dc power supplies - Laboratory-type dc power supplies (output voltages up to 1000 volts and output currents up to 3 amperes) - High-voltage dc power supplies (output voltages greater than 1000 volts) - Special-purpose dc power supplies (voltage reference, klystron and microwave) - Regulated ac power suppliesModular dc power supplies - All of the supplies listed incorporate both line and load regulation, and are available from the manufacturer as standard off-the-shelf units. ### Technical Information Corp. directory Volume 1. Power supplies Volume 2. Signal generators Volume 3. Amplifiers and filters Volume 4. Passive components Volume 5. Test instruments (part I) Volume 6. Test instruments (part II) (for information circle Reader Service number 399). # **Master Cross Index** Types of power supplies listed in the issue for each manufacturer are indicated by stars. For supplementary literature from a manufacturer, circle the appropriate number on the Reader Service Card. | Manufacturer | S | High- | Constant- | Lab- | High- | Special- | Regulated | Modula | |---|---------------|---------|-----------------|----------|---------------|---------------|-----------|-------------------| | Addresses | Abbreviations | Current | Current
DC | Type | Voltage
DC | Purpose
DC | AC | DC | | Abbey Electronics Corp
2 Sixth St
New Hyde Park, NY | Abbey | | | | | ★ 100 | | | | Abbott Transistor Laboratories, Inc
3055 Buckingham Rd
Los Angeles 16, Calif | Abbott | | | | | | | 4 ≭
101 | | ACDC Electronics, Inc
2979 North Ontario St
Burbank, Calif 91504 | ACDC | | | | | | | ★
102 | | Acme Electric Corp
Cuba, NY | Acme | 103 | | 104 | | | | 105 | | Acopian Corp
Easton, Pa | Acopian | | | | | | | ≠ 106 | | Advanced Electronics Corp
2 Commercial St
Hicksville, NY | Advanced | | | | | | * 107 | | | Alfred Electronics Corp
3176 Porter Drive
Palo Alto, Calif | Alfred | | ★
108 | #
109 | * 110 | *
111 | | | | Allison Laboratories, Inc
P.O. Box 515
La Habra, Calif | Allison | | | | | | | ¥
112 | | Alpha Scientific Labs, Inc
940 Dwight Way
Berkeley, Calif | Alpha | | ★
113 | | | | | | | Altair Corp
Behlman-Invar Electronics Corp
1723 Cloverfield Blvd
Santa Monica, Calif | Altair | | * | | | | | | | Arnold Magnetics Corp
6050 West Jefferson Blvd
Los Angeles 16, Calif | Amold | | | | | | | *
115 | | Associated Specialties Co
1751 Main St
Orefield, Pa | Assoc Spec | | | *
116 | | | | *
117 | | Atlas Controls, Inc
10 Cheney St
Dorchester, Mass | Atlas | | | | | | | * | | Manufacture | rs | High- | Constant
Current | Lab- | High- | Special-
Purpose | Regulated | Modular | |--|---------------|----------|---------------------|-----------------|---------------|---------------------|-----------|-----------------| | Addresses | Abbreviations | Current | DC | Type
DC | Voltage
DC | DC | AC | DC | | Avtel Corp
1130 East Cyprus St
Covina, Calif | Avtel | *
119 | | | | | | | | Ballantine Laboratories, Inc
Box 97
Boonton, NJ | Ballantine | | | | | #
121 | | | | Basler Electric Co
Highland, III | Basler | 122 | | | | | | | | Behlman-Invar Electronics Corp
1723 Cloverfield Blvd
Santa Monica, Calif | Behl-Invar | 123 | | ★
124 | | | * 125 | ★
126 | | F. W. Bell Inc
1356 Norton Ave
Columbus, Ohio | F. W. Bell | | * | | | | | | | Bogue Electric Mfg Co
100 Pennsylvania Ave
Paterson, NJ | Bogue | 128 | | | | | | | | Buchler Instruments, Inc
1327 16th St
Fort Lee, NJ | Buchler | | ★
129 | ★
130 | | | | | | Burr-Brown Research Corp
P.O. Box 6444
Tuscon, Ariz 85706 | В-В | | | *
131 | | | | 132 | | Burton Manufacturing Co
Electronics Div
7922 Haskell Ave
Van Nuys, Calif 91406 | Burton | | | | | | | * | | CEA, Div of
Berkleonics Corp
1221 South Shamrock
Monrovia, Calif | CEA | | | * | | | | * | | CML, Inc
350 Leland Ave
Plainfield, NJ | CML | | | | | | #
136 | | | Calibration Standards Now: Electro Instruments, Inc 8611 Balboa Ave San Diego, Calif | Cali Stand | | | | | 137 |
| | | Calmag Division
California Magnetic Controls Corp
11922 Valerio St
North Hollywood, Calif | Calmag | | | | * | | | | | Chalco Engineering Corp
15126 South Broadway
Gardena, Calif | Chalco | 139 | | ≠
140 | | | | *
141 | | Manufacture | ers | High- | Constant- | Lab- | High- | Special-
Purpose | Regulated | Modular | |---|---------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------|-----------------| | Addresses | Abbreviations | Current | Current | Type
DC | Voltage
DC | DC | AC | DC | | Chatham Electronics
630 West Mt Pleasant Ave
Livingston, NJ | Chatham | * 142 | | | | | | | | Christie Electric Corp
3410 West 67th St
Los Angeles, Calif | Christie | 143 | | | | | | | | Cohu Electronics
P.O. Box 623
San Diego, Calif | Cohu | | * 144 | ★
145 | | 146 | | | | Consolidated Avionics Corp
800 Shames Drive
Westbury, NY | Con Av | 147 | | | | | | 148 | | Control Circuits, Inc
Portland, Conn 06480 | Con Cir | | | | | | | * | | Cubic Corp
9233 Balboa Ave
San Diego, Calif | Cubic | | | | | * | | | | Del Electronics Corp
250 East Sandford Blvd
Mount Vernon, NY | Del | | | | *
151 | | ¥
152 | ¥
153 | | Deltron Inc
Wissahickon Ave
North Wales, Pa | Deltron | ★
154 | ★
155 | ★
156 | | | | ★
157 | | Dressen-Barnes Electronics Corp
250 North Vinedo Ave
Pasadena, Calif | D-B | | | | | | | ≠
158 | | Duffers Associates, Inc
P.O. Box 296
Troy, NY | Duffers | | | ★
159 | | | | | | Dynage, Inc
390 Capital Ave
Hartford, Conn | Dynage | | | * | | | | * | | Dynamic Controls Co
2229 Massachusetts Ave
Cambridge, Mass 02140 | Dy Con | ★ 162 | ★
163 | | | | | | | Elasco, Inc
33 Simmons St
Boston, Mass 02120 | Elasco | | | | | | | *
164 | | Elcor
Div of Halliburton Co
2431 Linden Lane
Silver Spring, Md 20910 | Elcor | | | | | | | * | | Electro Products Laboratories Inc
6125 West Howard St
Chicago, III | El Prod | | | ≠
166 | | | | | | Electronic Development Corp
423 West Broadway
Boston, Mass | El Dev | | | | | ★ 167 | | | | Manufacturer | | High-
Current | Constant- | Lab- | High-
Voltage | Special-
Purpose | Regulated | Modula | |---|---------------|------------------|-----------------|-----------------|------------------|---------------------|-----------------|-----------------| | Addresses | Abbreviations | DC | Current
DC | Type
DC | DC | DC | AC | DC | | Electronic Measurements Co
Div of Rowan Controller Corp
Lewis St & Maple Ave
Eatontown, NJ | El Meas | ≠
168 | 169 | ≠
170 | *
171 | | ★
172 | | | Electronic Modules Corp
1949 Greespring Drive
Timonium, Md | El Mod | * | | | | | | | | Electronic Research Associates, Inc
67 Sand Park Rd
Cedar Grove, NJ | ERA | ★
174 | ★
175 | *
176 | | *
177 | | ★
178 | | Empire Products
Singer Metrics Div
915 Pembroke St
Bridgeport, Conn | Singer/Empire | | | | | | * | | | Endevco Corp
161 East California Blvd
Pasadena, Calif | Endevco | | | ¥
180 | | | | ≭
181 | | Engineered Electronics Co
1441 East Chestnut Ave
Santa Ana, Calif | Eng Elect | ★
182 | | #
183 | | | | ≠
184 | | Epsco, Inc
411 Providence Hgwy
Westwood, Mass | Epsco | | | | | 185 | | | | Fairlane Electronics
P.O. Box 443
Orange, NJ | Fairlane | ★ 186 | | ≠
187 | | Luci | | | | Ferrotran Electronics Co, Inc
693 Broadway
New York, NY 10012 | Ferro | | | | | | | 188 | | John Fluke Mfg Co, Inc
P.O. Box 7428
Seattle, Wash | Fluke | | ★
189 | *
190 | #
191 | 192 | | | | Freed Transformer Co
1718 Weirfield St
Brooklyn, NY | Freed | | | * | | | | | | General Electric Co
Specialty Transformer Dept
Fort Wayne, Ind | GE | | | | | | 194 | #
195 | | General Radio Co
22 Baker Ave
West Concord, Mass | Gen Radio | ¥
196 | ¥
197 | ¥
198 | | | 199 | | | Geo Space Corp
5803 Glenmont Drive
Houston, Texas | Geo Space | ¥
288 | | | | | | | | Glentronics, Inc
748 East Alosta Ave
Glendora, Calif | Glentron | ¥
201 | | ¥
202 | | | | ★ 203 | | Manufacturers | | High-
Current | Constant- | Lab- | High- | Special- | Regulated | Modula | |--|---------------|------------------|--------------|--------------|---------------|---------------|--------------|--------------| | Addresses | Abbreviations | Current | Current | Type | Voltage
DC | Purpose
DC | AC | DC | | Grafix, Inc
P.O. Box 3296
Albuquerque, NM 87110 | Grafix | | | | | | | 204 | | Grundig
150 Nassau St
New York, NY | Grundig | | | * | | | | | | Gyra Electronics Corp
P.O. Box 184
La Grange, III | Gyra | | | | 4 206 | | | | | Hamner Electronics Co, Inc
P.O. Box 531
Princeton, NJ | Hamner | | | | * | | | | | Harrison Division
Hewlett-Packard Co
100 Locust Ave
Berkeley Heights, NJ | Harrison | 208 | ¥
209 | ¥
210 | ¥
211 | * 212 | | ¥
213 | | Heath Co
Hilltop Rd
Benton Harbor, Mich | Heath | 214 | | ¥
215 | | | | | | Hevi-Duty Electric Co
Division Sola Basic Industries
P.O. Box 563
Milwaukee, Wisc | Hevi-Duty | 216 | | | | ¥
217 | | | | Hipotronics
P.O. Box 1
Brewster, NY | Hipotron | | | | ★ 218 | | | | | Holt Instrument Laboratories
P.O. Box 230
Oconto, Wisc | Holt | | * 219 | | | | | | | William I. Horlick Co, Inc
266 Summer St
Boston 10, Mass | Horlick | | | | | | * | | | Hyperion Industries Corp
134 Coolidge Ave
Watertown, Mass | Hyperion | * | * | * | | | | | | ITI Electronics, Inc
369 Lexington Ave
Clifton, NJ | ITI | ★ 224 | ★ 225 | | | | | ★ 226 | | Industrial Test Equipment Co
20 Beechwood Ave
Port Washington, NY | Ind Test | | | | | | * | | | International Electronic Research Corp
135 West Magnolia Blvd
Burbank, Calif | IERC | | | |) | | ★ 228 | | | Keithley Instruments, Inc
12415 Euclid Ave
Cleveland, Ohio | Keithley | | | ★ 229 | 230 | *
231 | | | | Manufactu | rers | High- | Constant- | Lab- | High- | Special- | Regulated | Modulai | |--|---------------|----------------|---------------|------------|---------------|-----------------|-----------|-----------------| | Addresses | Abbreviations | Current
.DC | Current
DC | Type
DC | Voltage
DC | Purpose
DC | AC | DC | | Kepco, Inc
131-38 Sanford Ave
Flushing 52, NY | Керсо | 232 | 233 | 234 | 235 | | | 236 | | Key Instrument Co
1110 West Magnolia Blvd
Burbank, Calif | Key Inst | | | | | * | | | | Kilovolt Corp
238 High St
Hackensack, NJ | Kilovolt | | | | 238 | | | | | Krohn-Hite Corp
580 Massachusetts Ave
Cambridge, Mass | Krohn-Hite | | | 239 | | | | | | Lambda Electronics Corp
515 Broad Hollow Rd
Melville, NY | Lambda | * | * | * | | | | * | | Lear Siegler
Data and Control Div
34-01 38th Ave
Long Island City, NY | L-S | 244 | | | | | | | | Litton Industries
Electron Tube Div
960 Industrial Rd
San Carlos, Calif | Litton | | | | | ¥
245 | | | | Magnetic Research Corp
3160 West El Segundo Blvd
Hawthorne, Calif | Mag Res | * | | | | | | * | | Micro-Power, Inc
20-21 Steinway St
Long Island City, NY | Micro-Power | | | | | ₩
248 | | | | Microdot Magnetics, Inc
5960 Bowcroft St
Los Angeles, Calif | Microdot | | | | | | * 249 | ★ 250 | | Mid-Eastern Electronics, Inc
32 Commerce St
Springfield, NJ | Mid-East | ¥
251 | | 252 | | | | ≯
253 | | Monroe Electronics, Inc
5 Vernon St
Middleport, NY | Monroe | | | | * 254 | | | | | Moran Instrument Corp
170 East Orange Grove Ave
Pasadena, Calif | Moran | | | | * 255 | | | | | NJE Corp
20 Boright Ave
Kenilworth, NJ | NJE | * | * | 44 | * | | * | | | Narda Microwave Corp
Commercial St
Plainview, NY | Narda | | | | | * 261 | | | | Manufacture | rs | High-
Current | Constant-
Current | Lab- | High- | Special- | Regulated | Modular | |---|---------------|------------------|----------------------|-----------------|---------------|---------------|-----------------|-----------------| | Addresses | Abbreviations | DC | DC | Type | Voltage
DC | Purpose
DC | AC | DC | | Neutronic Associates
4 Hawthorne St
Farmingdale, NY | Neutronic | | | | * | | | | | North Hills Electronics, Inc
Glen Cove, NY | North Hills | | ★ 263 | | | ★ 264 | ★
265 | * | | Nuclear Corp of America
Nuclear Div
2 Richwood Pl
Denville, NJ | Nucor | | | | | | | ★ 266 | | Numec Instruments & Controls Corp
300 Seco Road
Monroeville, Pa | Numec | | | | | | | ★ 267 | | Oregon Electronics Corp
2105 Southeast 6th Ave
Portland 15, Oregon | Oregon | | | * | | | | | | Owen Laboratories
55 Beacon Place
Pasadena, Calif | Owen | | * | * | | | | | | PRD Electronics, Inc
1200 Prospect Ave
Westbury, LI | PRD Elec | | | | | * 271 | | | | Peerless Electrical Products Div of Altec Lansing Corp 1515 South Manchester Ave Anaheim, Calif | Peerless | | | | | | | 272 | | Perkin Electronics Corp
345 Kansas St
El Segundo, Calif | Perkin | * 273 | ★
274 | ★
275 | | | ★
276 | ★
277 | | Philbrick Researches, Inc
Allied Drive at Route 128
Nedham, Mass | Philbrick | | | | + | | | ≭
278 | | Pioneer Magnetics, Inc
1745 Berkeley St
Santa Monica, Calif | Pioneer | *
279 | | ★ 280 | | | | | | Plastic Capacitors
2620 North Clybourn Ave
Chicago, III | PI Capac | | = 1 | | * | | | | | Plug-In Instruments, Inc
1416 Lebanon Road
Nashville, Tenn | Plug-In | | | | | | | 282 | | Power Designs, Inc
1700 Shames Drive
Westbury, NY | Pwr Des | 283 | ¥
284 | ≠
285 | | | | ₩ 286 | | Power Designs Pacific, Inc
3381 Junipero Serro
Palo Alto, Calif | Power Designs | | | | | * | | | | Manufacturers | | High- | Constant- | Lab- | High- | Special- | Regulated | Modulai | |---|------------------|---------------|-----------------|-----------------|-----------------|---------------|-----------------|-----------------| | Addresses | Abbreviations | Current
DC | Current
DC | Type
DC | Voltage
DC | Purpose
DC | AC | DC | | Power Instruments Corp
140 Kansas St
El Segundo, Calif | Pwr Inst | * | | * | | | | | | Power Mate Corp
22 Walter St
Pearl River, NY | PMC | | | | | | | ★
291 | | Power Sources, Inc
South Ave
Burlington, Mass | Pwr Srcs | * | | * | | | * | | | Precise Electronics & Development
Div of Designatronics, Inc
76 East 2nd St
Mineola, NY | Precise | | | ★ 295 | | | | | | Precise Measurements Div Now: Beckman Instruments, Inc Cedar Grove Operation 89 Commerce Rd Cedar Grove, NJ | Precise M | | | | ★
296 | | | | | Princeton Applied Research Corp
P.O. Box 565
Princeton, NJ | Princeton | | ★
297 | ★ 298 | | ★ 299 | | | | Radiation Instrument Development Labs
4501 West North Ave
Melrose Park, III | RIDL | | | | * | | | | | Radio Frequency Laboratories, Inc
Powerville Rd
Boonton, NJ | RFL | | | | | | ★
301 | | | Rapid Electric Co
2881 Middletown Rd
Bronx, NY | Rapid | * | | | | | | | | Ratelco, Inc
610 Pontius Ave North
Seattle 9, Wash 98109 | Ratelco | ★ 303 | | | | | | | | Rohde & Schwarz Sales Co, Inc
111 Lexington Ave
Passaic, NJ | R&S | | | ★
304 | | | | | | Sames USA, Inc
269 Commercial Ave
Palisades Park, NJ | Sames | | | | * | | | | | Scintillonics, Inc
221 North College Ave
Fort Collins, Colo | Scint | ★ 306 | | | | | | ★ 307 | | Semiconductor Circuits
15 Williams Road
North Reading, Mass | Semi Cir | | | ★ 308 | | | | | | Sensitive Research Instruments Dept
Singer-Metrics Div
915 Pembroke St
Bridgeport, Conn | Singer/Sensitive | | ★
309 | | | | | | April 19, 1966 | Manufactur | ers | High- | Constant- | Lab- | High- | Special- | Regulated | Modula | |---|--|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------| | Addresses | Abbreviations | Current | Current
DC | Type
DC | Voltage
DC | Purpose
DC | AC | DC | | Servodynamics, Inc
111 New South Rd
Hicksville, NY | Servodynamics | | | | | * | | | | | Singer/Empire
(See Empire Products) | | | | | | | | | Sola Electric Co
Div of Basic Products Corp
1717 Busse Rd
Elk Grove Village, III | Sola | ★ 311 | ★
312 | ★ 313 | | | ★ 314 | | | Sorensen
A Unit of Raytheon Co
Richards Ave
South Norwalk, Conn | Sorensen | ★
315 | ★ 316 | ★ 317 | ★
318 | | ★
319 | ★ 320 | | Specific Products
21051 Constanso St
Woodland Hills, Calif | Specific | | | ★ 321 | | | | | | Spectromagnetic Industries
25377 Huntwood Ave
Hayward, Calif | Spec Ind | ★ 322 | ★ 323 | | | | | | | Spellman High Voltage Co
1930 Adee Ave
Bronx 69, NY | Spellman | | | | * | | | | | Superior Electric Co
383 Middle St
Bristol, Conn | Superior | | | | | | ★
325 | | | TRG, Inc
Route 110
Melville, NY | TRG | | | | | ★
326 | | | | Technical Apparatus Builders
109 Liberty St
New York, NY | Tabtron | *
327 | | | | | | ★ 328 | | Technical Associates
140 West Providencia Ave
Burbank, Calif | Tech Assoc | | | | * | | | | | Technipower, Inc
Subsidiary Benrus Watch Co
18 Marshall St
Norwalk, Conn | Tech Pwr | ★ 330 | | ★
331 | | | | ★ 332 | | Tel-Instrument Electronics Corp
728 Garden St
Carlstadt, NJ | Tel-Inst | | | | | | ★
333 | | | Topaz, Inc
3802 Houston St
San Diego, Calif | Topaz | | | ★ 334 | | | | | | Transistor Devices, Inc
Route 53
Mt. Tabor, NJ 07878 | Trans Dev | ★
335 | | ★ 336 | | | | ★ 337 | | Manufact | turers | High- | Constant- | Lab- | High- | Special- | Regulated | Modula | |--|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------|-----------------| | Addresses | Abbreviations | Current | Current
DC | Type
DC | Voltage
DC | Purpose
DC | AC | DC | | Trygon Electronics, Inc
111 Pleasant Ave
Roosevelt, NY | Trygon | 338 | ₩
339 | ★
340 | | | | ★
341 | | Twinco, Inc
9 Erie Drive
Natick, Mass | Twinco | | | | | | * 342 | | | Universal Electronics
1720 22nd St
Santa Monica, Calif | Un Elect | ★ 343 | ★
344 | ★
345 | | | | 346 | | Universal Voltronics Corp
17 South Lexington Ave
White Plains, NY | Un Volt | | | | ★ 347 | | | ★ 348 | | Utronics, Inc
805 Court St
Utica, NY | Utronics | * | | | | | | | | Valor Instruments, Inc
13214 Chrenshaw Blvd
Gardena, Calif | Valor | ★
350 | | | | | | | | Vector Engineering
58 Brown Ave
Springfield, NJ | Vector | * | * | * | * | | | | | Veritron Corp
P.O. Box 517
Ardsley, NY | Veritron | | | | ★
355 | | | | | Voltex Co, Inc
115 Marine St
Farmingdale, NY | Voltex | ★ 356 | ★
357 | ★
358 | | | | | | Wabash Magnetics, Inc
Hi-Voltage Div
1375 Swan St
Huntington, Ind | Wab Mag | | | | | | | ★
359 | | Walden Electronics Corp
223 Crescent St
Waltham, Mass | Walden | | | | ★ 360 | | | | | Weston Instruments
Div of Rotek
11 Galen St
Watertown, Mass | Weston-Rotek | | | | | ★
361 | | | | Carl Zeiss, Inc
144 Fifth Ave
New York, NY | Zeiss | | | | ★ 362 | | | | April 19, 1966 # **Buying a power supply?** Don't make your choice haphazardly. Use a three-step approach to get the maximum in performance at the minimum price. If you are buying a power supply and want to get the most for your dollar, use a systematic approach. Three elements are involved: Specifying the required characteristics. • Selecting a supply with these characteristics. • Evaluating, or testing, the supply. ### **Determine specifications first** The first step is to analyze the requirements of the application and, from these, draw up a list of specifications that the supply must meet. Specifications to be considered include the following: - 1. Input voltage and frequency: This is, of course, the voltage that will be available to operate the power supply. In some cases input frequency stability is not guaranteed, and this must then be taken into account. - 2. Output voltage and current: This is what the system requires. Both voltage and current may be either fixed or variable, depending on system requirements. - 3. Line and load regulation: Line regulation is the variation in load voltage due to a variation in input voltage when the load impedance is held constant. It is generally specified as a load-voltage variation for a given change in line voltage—for example, 50 mv for a ± 10 v line variation. It can also be specified as a percentage-voltage variation of the load voltage—for example, $\pm 0.01\%$ or 10 mv, whichever is greater. Load regulation is the change in load voltage caused by a change in load impedance, with the line voltage held constant. It is normally specified as a percentage or a maximum voltage variation—such as 0.05% or 2 mv, whichever is greater. - 4. Stability: This is specified as a percentage of load-voltage variation during a given period of time at constant temperature and under constant line and load conditions. To be meaningful, a stability rating should include a warm-up time—for example, $\pm 0.25\%$ for 8 hours, after a 15-minute warm-up. - 5. Ambient temperature variation: This indicates the temperature range over which the power supply may be either operated or stored—for example, operation from 0 to 75° C, storage from -55 to $+75^{\circ}$ C. 6. **Temperature coefficient:** This is given as a percentage of load-voltage variation per degree of temperature variation, with constant line and load conditions—for example, 0.01% per degree C. 7. Ripple: This is generally given as an rms voltage at the load, such as 35 mv. The rms value includes filter ripple and all unclassified noise and is not a sine-wave quantity. It therefore cannot be used to calculate the peak ripple. If the peak ripple is a critical value for the system, this should be made known to the vendor. 8. Recovery time: This is the time required for a load-voltage variation, due to an abrupt load-current variation, to return to the regulation band —for example, less than $100~\mu sec$ for a 50% load transient. When specifying recovery time for a vendor, it is important to give the rise time of the load transient rather than merely specifying a step-load change. A step change is a
variation that occurs in zero time. This is not as useful as stating the permissible rise time. 9. **Response time:** This is similar to, but not the same as, recovery time. Response time is the time required for a voltage, or current transient due to ### Basic regulation methods An analog voltage regulator operates by sampling a portion of the load voltage. This sample voltage is compared with a fixed reference voltage, and the difference is used to control the bias of a series-pass element, usually a transistor, operating in its linear region. An SCR pre-regulator operates by varying the firing angle of SCR rectifiers. Regulation is accomplished by sensing a portion of the load voltage and using this to control the firing angle of the SCRs. Because of the rapid firing time of the SCRs, generation of RFI may be a problem. A switching, or chopper, regulator operates by controlling the ON-OFF time of a pass-element in series with the source voltage. The ratio of ON to OFF time is controlled by sampling a portion of the output voltage. A constant-voltage transformer regulator operates by resonating a secondary winding of the transformer, so that the transformer core remains in saturation over the range of input-voltage variation. Load regulation depends on the transformer impedance. Pat Milone, Manager of Power Supply Engineering, Consolidated Avionics Corp., Westbury, N. Y. a load change, to return to 37% of its maximum overshoot. It is important to remember the distinction between recovery time and response time when comparing data from different vendors. - 10. Output impedance: This is generally specified over frequency bands—for example: Z_o (dc-1 Kc) = 0.02 ohm, or Z_o (1 Kc-100 Mc) = 0.05 ohm. - 11. Military specifications: If the power supply is to be used in a military system, certain MIL Specs will have to be adhered to. - 12. Remote sensing and programing: Remote sensing is required if tight voltage regulation is needed and the load is a considerable distance from the power supply. Data on the length and the size of the wire used to connect the power supply to the load should be furnished to the vendor. Remote programing allows the load voltage to be controlled from the load rather than from the power supply. The recovery time then depends on other factors in addition to the power supply itself. If remote programing is required, data on the range and volt/ohm requirements should be furnished to the vendor. - 13. Series and parallel operation: In the event that either series or parallel use of power supplies is planned, tell the vendor. Both series and parallel operation place constraints on power supplies, and these must be allowed for in the design. - 14. Mean time between failure (MTBF): This is determined according to conditions established by the Government (Mil Handbook 217). It is an indication of the frequency of maintenance. MTBF is specified in continuous hours of operation between failures—for example, MTBF = 30,000 hours (one year = 8740 hours). - 15. Size and weight: Packaging requirements can be of critical importance and must be considered with the other specifications. #### Selection comes next Once the power-supply specifications have been compiled, they can form the basis for a checklist, like that shown in Table 1. Such a checklist makes it easy to compare the established requirements with the performance of available supplies. Very often the specifications dictate the type of power supply to be selected, since various types can meet different ranges of regulation, temperature coefficient, etc., with various amounts of circuit complexity. A comparison of the performance capabilities of the basic types of regulated supplies is given in Table 2. These types include analog series- or shunt-regulated supplies, SCR pre-regulated supplies, switching or chopper type supplies and ferro-resonant supplies. For each type, representative capabilities are given for three levels of design complexity. You can see from the table that the more complex the design, the more exacting the specifications that can be expected. However, increased complexity is accompanied not only by increased cost but usually also by a lowered MTBF. This brings up an important point: There are factors besides specifications that should be considered before a power supply is finally selected. These factors include custom vs off-the-shelf supplies, reliability vs cost and the tendency to overspecify. The problem of an off-the-shelf vs a customdesigned power supply involves per-unit costs, delivery date and required characteristics. (This subject is covered in detail in the next article). Table 1. Checklist for comparing power supply specifications | Significant | System | | Power Supplies Being Considered | | | | | | | | | |-------------------------|--------------------------|--------------------------|---------------------------------|--------------------------|--------------------------|--|--|--|--|--|--| | Characteristics | Requirements | А | В | С | D | | | | | | | | Input voltage | 115 v ±10 v
57-63 cps | 115 v ±10 v
47-63 cps | 115 v ±10 v
57-63 cps | 115 v ±10 v
47-63 cps | 115 v ±10 v
47-63 cps | | | | | | | | Load voltage/current | 20-30 v/20-25 amps | 20-40 v/10-50 amps | 20-50 v/10-30 amps | 20-40 v/15-40 amps | 20-30 v/10-35 amps | | | | | | | | Line regulation | 20 mv | 20 mv | 20 mv | 15 mv | 20 mv | | | | | | | | Load regulation | 10 mv | 10 mv | 10 mv | 5 mv | 10 mv | | | | | | | | Temperature variation | 10°C-60°C | 0-70°C | 0-70°C | 0-70°C | 0-70°C | | | | | | | | Temperature coefficient | 0.05%/°C | 0.01%/°C | 0.05%/°C | 0.5%/°C | 0.001%/°C | | | | | | | | Ripple* | 5 mv peak spikes | 2 mv rms | 2 mv rms | 1 mv rms | 1 mv rms | | | | | | | | Response time | 10 μsec | 10 μsec | 5 μsec | 10 μsec | $10~\mu { m sec}$ | | | | | | | | MTBF | 30,000 hrs | 30,000 hrs | not given | 40,000 hrs | not given | | | | | | | ^{*} Ripple requirements cannot be related to vendor specifications. Vendors should be contacted. April 19, 1966 1. Load regulation is measured by adjusting the supply output voltage to produce a zero reading on the voltmeter. The load is then varied to full-load change, and the voltmeter reading is the load regulation. The matter of reliability vs cost involves the weighing of two often-conflicting requirements. However, a trade-off in one does not always result in an enhancement of the other. For example, it may appear in a particular instance that a power supply with a lower cost and lower MTBF is preferable to a more expensive unit with a higher MTBF. But it is possible that the initial lower-cost unit may become the more expensive one, since lower MTBF means more frequent maintenance. The tendency to overspecify involves asking for unnecessary options and tighter limits than a system requires. Although this is intended to insure that the required specifications will be met, it is a poor policy. Not only does overspecifying needlessly increase the cost of a supply, but it can also actually decrease reliability. This is because tighter specifications may require the use of additional circuits, and this can decrease MTBF. 2. Transient-response measurements are made by switching a signal with the required rise-time into the load. The effect on the power supply is then observed on the oscilloscope. ### Testing requires care Final evaluation of any power supply requires that it be tested under use. However, testing the chracteristics of high-performance power supplies can cause difficulties and certain precautions must be observed. Regulation: Line-regulation measurements should usually be made first, since these are easier than load-regulation measurements. To measure line regulation, the load impedance is held constant while the line voltage is varied. If the line regulation is within specification, the load regulation should then be measured. In measuring load regulation, the line voltage is held constant while the load impedance is varied. The resistance of load leads and alligator clips is often sufficient to negate completely the load-regulation measurements, unless proper precautions Table 2. Typical specifications of average regulated power supplies | Type of
Regulation | 1 | Load
Regulat | | F | Line
Regulati
% | on | | Response
Time | 9 | Ef | fficiend
% | су | | Ripple
mv rm:
or % | | |-----------------------------|------|-----------------|-------|-----|-----------------------|-------|-------------|------------------|-------------|----|---------------|----|----|--------------------------|------| | | А | В | С | А | В | С | Α | В | С | A | В | С | Α | В | С | | Analog
(series or shunt) | 0.5 | 0.05 | 0.001 | 0.5 | 0.01 | 0.001 | 100
μsec | 10
μsec | l
μsec | 30 | 35 | 50 | 10 | 1.0 | 0.1 | | SCR | 5.0 | 2.5 | 1.0 | 2.5 | 1.0 | 0.5 | 50
msec | 25
msec | 10
msec | 60 | 70 | 80 | 2% | 1% | 0.5% | | Switching | 5.0 | 1.0 | 0.5 | 2.5 | 1.0 | 0.5 | 50
msec | 25
msec | 2
msec | 60 | 70 | 80 | 2% | 1% | 0.5% | | Ferro-resonant | 10.0 | 5.0 | 2.0 | 5.0 | 1.0 | 0.5 | 100
msec | 100
msec | 100
msec | 70 | 70 | 70 | 2% | 1% | 0.5% | A = Simple, least costly design C = Complex, very costly design B = Moderately complex, moderately costly design 3. Output impedance is determined by measuring the change in output voltage produced by a change in output current. When making output impedance measurements, the output voltage is measured at the sense terminals. are observed. For example, consider a 25-v, 10-amp power supply with 0.01% load regulation. The maximum permissible load voltage variation is 2.5 mv. This is 40 times greater than the permissible load regulation, and it completely masks the desired measurement. Accurate load regulation measurements should be made at the sense terminals of a supply, with the use of either a differential voltmeter or a precision voltmeter and an accurate reference voltage source, such as a
mercury battery. A test set-up for such measurements that cancels the effects of the load leads is shown in Fig. 1. Ripple: In ripple measurements a major problem is that of stray current paths caused by multiple grounds. These can be avoided by using a single ground point. If peak-to-peak measurements are required, they should be made with an oscilloscope rather than a voltmeter. Temperature coefficient: Measurements of temperature coefficient are made by sequentially allowing the power supply to stabilize at two or more controlled temperatures, which can be provided by an environmental chamber. Voltage measurements at these temperatures are then used to calculate the temperature coefficient. Transient response: Transient response measurements are made by switching a pulse having the desired rise time into the load from an external source. The response is then viewed on an oscilloscope. A test set-up for measuring transient response is shown in Fig. 2. Output impedance: The output impedance of a power supply is the ratio of the change in output voltage to the change in output current. Output current can be determined by measuring the voltage across a small resistance placed in series with the load. The output voltage is measured at the sense terminals. By modulating the supply output with a signal from an external source, the power-supply impedance as a function of frequency can be determined. A set-up for measuring output impedance is shown in Fig. 3. WE CUT THE SIZE ... WE CUT THE COST ... WE KEPT THE PERFORMANCE to give you the best value in LAB POWER SUPPLIES ### Deltron ED SERIES (12 automatic crossover models) EA SERIES (12 current limiting models) You won't find a better value in lab power supplies (voltage ratings up to 100 V . . . current ratings up to 2 A) . . . with these important features. - 0.01% regulation - ED units feature DUET twin amplifier system for continuous voltage or current control with automatic electronic crossover. - EA units have continuously adjustable current limiting - Completely protected and automatic recovery from overload and short circuit conditions. - PLUS floating output . . . no overshoot . . . remote sensing . . . remote programming . . . automatic series and parallel operation . . . and many other advanced features. FOR COMPLETE INFORMATION WRITE TO . . . WISSAHICKON AVE., NORTH WALES, PA. 19454 PHONE: (215) 699-9261 TWX: (510) 661-8061 # Regatran® "PVC" Power Supplies Model PVC36-60M - All Silicon - Constant Voltage/Constant Current - Two Independent Regulating Systems - Automatic E/I Crossover with Mode Indicators - SCR Input - Long Line Remote Sensing - Master-Slave Series and Parallel Operation - Programmable - Mhogrammable® No Voltage Overshoot - at Turn-On or Turn-Off Instant Start-Up ## Regatran® "PV" Power Supplies Model PV36-15MB **Automatic Crossover Characteristics** - Constant Voltage/Constant Current - Automatic E/I Crossover - · Solid-State, SCR Input - Long Line Remote Sensing - Programmable - Mhogrammable® ## Regatran® "HV" Power Supplies Model HV150-3M - Constant Voltage/Current Control - Automatic E/I Crossover - All Solid-State - Programmable - Mhogrammable - \bullet 3½" and 5¼" Panel Heights - Up to 400 V at 1 A - Instant Start-Up Regatran HV Power Supplies are extremely compact. The 330 V, 1A model and the 150 V, 2A model (shown at left) take only $3\frac{1}{2}$ " of panel height. # Regatron® "200" Power Supplies - Programmable - Mhogrammable® - Remote Sensing - Available with Chopper Stabilization - Vernier Voltage Control ### Operation Above Maximum Rating When the output voltage of a Regatron Programmable Power Supply is controlled by means of an external resistor, it is possible to obtain greater voltages than the listed maximum. For example, in a Model such as the 212A, rated at 0–100 V, voltages approaching 300 V may be obtained. At these above-rating outputs, the available maximum current will be less than listed. # Regatron® Precision-Calibrated Power Supplies ### ELECTRICAL SPECIFICATIONS REGULATION: REGULATION: Load: Voltage regulation measured for a no-load to full-load or full-load to no-load step change anywhere within range. Line: Voltage regulation measured for an input voltage step change of 105 to 125 V ac or 198 to 242 RIPPLE: Maximum rms value with either positive or negative ground. TRANSIENT RESPONSE: (See table.) For a step change from no-load to full-load or full-load to no-load, output recovers within regulation limits within specified time. AC INPUT: Either 105 to 125 V or 198 to 242 V, 50 to 63 cps, single phase. Unless specified, the 105 to 125 V version is supplied. ### SCR Series Power Supplies - . All Silicon/Solid State - New concept of electronic filtering - Totally new panel design - Ranges of 10, 20, 40, 80, 120, 160 and 500 Volts - 21 Models from 10 volts at 1000 amps to 500 volts at 5 amps - Constant Current/Constant Voltage - Automatic Crossover - Remotely Programmable Oceanport, New Jersey 07757 CONTROLLER COMPANY ELECTRONIC MEASUREMENTS ### Regatran® Half-Rack "TR" and "PR" Power Supplies - Constant Voltage/Current Control - Automatic E/I Crossover - All Solid-State - Programmable - Compact Half-Rack Design # Regatran ®"TO" Power Supplies - Super-Regulated - All Solid-State - Remote Sensing - Programmable - Electronic Circuit Breaker ### Regatron® Constant-Current "C600" Power Supplies Model C612A - Constant Current/Voltage Control - Constant Current From Less Than O.5 Microampere Up To 3 A. - Vacuum Tube Circuitry For Voltage Compliances Up To 2100 V - Programmable DCP-800 Power Series - All Silicon/Solid State - Automatic Crossover - Printed Circuit Plug-in Boards - Programmable by computer - Voltage range—0.001 volt to 100 VDC in 1 millivolt increments - Current range—0.001 milliamps to 1000 milliamps in 1 microamp increments - Constant voltage with current limiting - Constant current with voltage limiting ### KL-Series Klystron Power System Standard features include a single, sequential, 3-position switch for logical turn-on; a 60-second thermal time delay relay for klystron circuit protection; internal current limiting adjustments on beam and reflector supplies and individual fuses on all supplies for input/output circuit protection; front panel test-jacks; indicator lights on each supply; and 10-turn calibrated voltage controls on the beam and reflector supplies. A wide variety of Electronic Measurements' new Klystron Power Supply Systems is available to meet most any klystron power requirements. # AC Line-Voltage Regulator 5 V or 230 V operation . . . 6 kva capacity 115 V or 230 V operation ... 6 kva capacity ### **ELECTRICAL SPECIFICATIONS** NOMINAL INPUT: 115 or 230 V, 47 to 63 cps, single phase. Swinging links used to set unit for desired input. OUTPUT: 110 to 120 V when connected for 115 V input. 220 to 240 V when connected for 230 V input. POWER RATING: 6 kva for either input voltage and at any power factor. For 115 V use, unit can be re-connected to provide correction over input range of 90 to 140 V. In this case, power rating is 3 kva. ### CONTROL RANGE: 115 V operation: Corrects for input varying ±15 V. 230 V operation: Corrects for input varying ± 30 V. Oceanport, New Jersey 07757 ### Custom vs off-the-shelf unit -Which will be best for the job? Consider these cost and spec guidelines before you make up your mind. Thousands of off-the-shelf power supplies are available today. Yet there are times when not one is completely suitable for a particular application. In such cases a custom power supply, tailored to the engineer's requirements, should be considered. From the standpoint of technical considerations, a custom-built unit is often attractive when the specifications are beyond the state of the art of off-the-shelf supplies. However, the custom development of such advanced supplies is costly. At other times a custom power supply is often attractive for the simple reason that it can do the job cheaper than any available off-the-shelf model. This may occur when the off-the-shelf units have extra features that are not needed for your application; they increase the cost but serve no useful purpose. But, in any case, it should be emphasized that the cost of custom supplies is largely dependent on the number of units required. When the number is small, off-the-shelf supplies—even with extra nonessential features—are often cheaper. It may seem self-evident, but engineers frequently overlook the fact that the degree of modification also has a marked effect on the cost of a custom power supply. If the modification is relatively simply, so that standard units can be removed from stock and reworked, the cost is generally little more than that of the standard supply. But as the modifications become extensive, it becomes impractical to rework standards, and a clean start has to be made. This involves considerable engineering and drafting time, and therefore relatively high cost, even though the end product may look like a standard unit. Frequently the size or configuration requirements of a system dictate the choice of a custom supply. In these cases cost considerations are secondary. Somewhat the same situation exists when a supply must meet certain combinations of MIL specs. If no off-the-shelf supply can meet them satisfactorily, a custom unit is required. ### Specifications should be realistic If you decide to use a custom power supply, you must set up the required specifications and give them to the power-supply manufacturer. Axiom No. 1 is: Don't overspecify. If an off-the-shelf sup- James S. Comins, Engineering Manager, Custom Products, and Donald V. Frandsen, Chief Applications Engineer, Sorensen, div of Raytheon Co., South Norwalk Conn. ply has characteristics that approximate those desired in the custom unit, the specifications of the off-the-shelf model can be used as a guide. However, even this approach can result in overspecification, if the custom application does not require the
full capability of the off-the-shelf model. Probably the best way to avoid overspecification is to consult with the power-supply manufacturer at this time. Not only can he help you establish a reasonable set of specifications but he also can offer advice on the types of circuits that can meet the specifications. This is particularly important for regulating circuits, since the specifications largely determine the type of regulation to be used, which in turn greatly affects the cost. The accompanying table shows the specification-regulation-cost relationship for several common methods of regulation. The values shown are based on nominal voltage and current ranges. Cost figures for the types of regulation are relative and are given in dollars/watt. The cost per watt decreases as wattage increases; so for meaningful comparisons the relative cost figures must be applied within the output power range shown. For example, a 5-watt transistor series regulator unit cannot be compared with any other system, since the cost/watt figures of the others are for outputs greater than 5 watts. Actually the cost of a 5-watt SCR design would exceed the \$10 per watt of the series transistor unit. ### Minor modifications may suffice Frequently a custom requirement may be satisfied by making minor modifications to an off-the-shelf power supply. Examples of this are: • Special output voltages. Very high or very low voltages may present major problems. • Special current ratings. Very high currents may present major design problems. • Finer resolution of output voltage control. Resolution to 0.05% is practical by ten-turn potentiometers. ■ Low-temperature coefficient. On transistorized supplies, values to 0.005%/°C are feasible with minor modifications. Over-voltage and over-current protection. Addition of locking controls or relocation of panel controls to rear, etc. Special paint or special metering. ### Which approach for multiple outputs? For applications requiring two, three or four # If your power supply requirement is not here, don't pass up finding out what Chatham can do for you! Weatherproof communications trailer power supply. Output: 28 VDC @ 45A. Conduction cooled, high voltage regulated power supply. Output: 10 KV. Regulation: 1%. Weight: 7.5 lbs. Meets MIL-E-16400. Three phase line regulator and power supply. Multiple AC-DC regulated outputs at 13.5 and 25A. Meets MIL-T-21200C. High voltage, remotely programable, Output; 500 VDC @ 1A. Meets MIL-T-21200, Laser exciter power supply. 250 Joule energy output @ 1500 VDC. Input: 19.2 to 28.8 VDC. Meets MIL-E-16400. Transmitter-receiver power supply. Eleven different outputs, remotely controllable. Meets MIL-E-16400. Highly regulated, multiple output: $-24~\rm VDC$ @ 10A; $-10~\rm VDC$ @ 10A and $+10~\rm VDC$ @ 6A. Meets MIL-E-16400. Dual output, regulated power supply. Outputs: +11 to 13 VDC @ 1.5A and -11 VDC @ 0.1A. Meets MIL-T-21200. Convection cooled, high voltage regulated airborne power supply. Output: 200A at 28 VDC. Regulation: 8% at 200V. There's never any need to settle for an off-the-shelf power supply that only generally meets the requirements of your application. Intensive experience with the varied circuit concepts and competent production techniques have enabled Chatham to produce custom-performance designs at less than custom prices. Describe your requirements. We'll take it from there and give you our recommendations. ### CHATHAM ELECTRONICS Livingston, N.J. 07039 TWX: 710-737-4421. A Division of Tung-Sol Electric Inc. Typical specifications and cost of some regulation methods | Specifications | Unregulated | Ferro-Resonant
Regulation | SCR
Regulation | Transistor
Series-Regulation | Transistor -
Pre-Regulation | |--|------------------------------------|------------------------------|-------------------------------------|--|--------------------------------| | Input Voltage Tolerance (%) | Fixed | ± 20 | ± 20 | ± 10 | ± 20 | | Input Phase (1 or 3) ¹ | 1 or 3 | 1 preferred | 1 or 3 | 1 or 3 | 1 or 3 | | Input Frequency Range (cps) | 47 - 440 ² | 50 or 60, ± ½% | 47 - 63, or
360 - 440 | 47 - 440 ² | 47 - 63, or
360 - 440 | | Output Voltage (volts) | 0-1000 | 5-1000 | 5-1000 | 3 - 300 | 3 - 300 | | Output Power (watts) | 50 w - 2 kw (1φ)
2 - 30 kw (3φ) | 200 - 900 | 400 w - 2 kw (1φ)
2 - 30 kw (3φ) | 5 - 400 | 400 - 1500 | | Output Ripple (%) | 1-10 | 0.5 - 5 | 0.5 - 2 | 0.01 - 0.1 | 0.01 - 0.1 | | Output Adjustable Range (%) | 0-100 (Variac) | Fixed | ± 20 | ± 10 | ± 20 | | Line Regulation (±%) | - | ±1 | 0.1 - 0.5 | 0.01 - 0.1 | 0.01 - 0.1 | | Load Regulation (±%) | 5-20 | 5-15 | 0.1 - 0.5 | 0.01 - 0.1 | 0.01 - 0.1 | | Temperature Coeff (%/°C) | _ | 0.05 | 0.03 | 0.015 | 0.015 | | Typical Efficiency (%) | 70 - 90 | 65 - 85 | 60-80 | 30 - 50 | 50 - 65 | | Response Time | _ | 30 msec | 30 msec | 20-50 μsec | 50 μsec | | Current Limiting | Fuse or circuit breaker | Self-limited,
125 - 200% | Electronic | Fuse or electronic (added cost for electronic) | Electronic
(added cost) | | Adaptable for Constant -
Current Regulation | No | No | Yes
(added cost) | Yes
(added cost) | Yes
(added cost) | | Relative Cost,Single Output
Unit (\$/watt) | 0.15 - 0.75 | 0.40-2.00 | 0.20-0.75 | 1.20 - 10.00 ³ | 0.65 - 1.40 | $^{^{1}3\}phi$ for power above 2 kw. separate power supply outputs, individual off-theshelf supplies can often be grouped together to satisfy the requirement. This approach is excellent when available space permits and is generally recommended when quantities are low. However, when space or configuration problems arise, a custom supply is often mandatory. The custom-designed multiple-output supply not only offers a size reduction but frequently can yield a cost savings as well. This results from the fact that certain parts can be made common to more than one circuit. Such parts include the power transformer, meters and fan. ### The problem of narrow-range supplies Suppose you need a power supply with a nar- row, adjustable output-voltage range but all that is available off-the-shelf are wide-range supplies, with outputs adjustable from zero to full-rated voltage? Will a custom supply be cheaper? Ordinarily a narrow-range supply is always cheaper than a wide-range unit. But since the narrow-range supply is a custom design, the cost will be influenced by the number of units required. The fewer the units, the more economical the off-the-shelf supply is. Another factor to consider, though, is the output voltage at which the off-the-shelf unit is to be used. If this is less than 75% of its maximum output rating, the economic position of the custom unit improves. In essence, this is because a great deal of the capability of the off-the-shelf unit would not be used, although it nevertheless had to be paid for. ² May be restricted if fan-cooling is used. ³ High cost based on 5-watt output. # Does your present custom power supply give you... 70% to 90% efficiency? Instant fault repair by plug-in module replacement? ? Add-on power capability by using more modules? ? Ability to handle full load steps while maintaining out put in regulation band? ? # New Omnimod does! Omnimod power control module. Omnimod control amplifier. OMNIMOD gives you all these features—and more—and at a lower price! Want to know more? OMNIMOD is a dc to dc converter using transistors in a CONSTANT PULSE WIDTH, variable repetition rate switching mode to regulate output voltage or current. Two small plug-in units make-up the OMNIMOD concept—a power control module and a control amplifier. Output can be regulated between \pm 2 and \pm 60 dc at up to 20 amperes using the OMNIMOD family of modules WITHOUT MODIFICATION OR ADJUSTMENT. Higher current ratings are obtained by paralleling power control modules. Any number of power controller modules can be controlled by one amplifier. OMNIMOD has a current limiting parameter, over voltage protection, voltage sequencing, and remote sensing. To design a custom power supply, one must simply 1. design one input power converter to change unregulated line ac power to unregulated dc power 2. select the number of plug-in OMNIMOD power control modules to supply the power needed for each output 3. package these elements with filter capacitors and a plug-in amplifier module for each output All the power used by every element in a typical data processing system could be supplied by custom power supplies constructed with interchangeable OMNIMOD modules. Isn't this enough to consider OMNIMOD for your custom requirement? We will design an OMNIMOD custom power supply to your specs, or will help you design your own system using our plug-in OMNIMOD modules. Write for the complete story. We'll have it to you within 48 hours. EXTRA SERVICE TO THE DATA PROCESSING INDUSTRY 128 North Jackson, Hopkins, Minn. 55343 Telephone 935-8481—Area Code 612 April 19, 1966 23 # **Emerging dc power supplies** are a far cry from pioneering units, but their designers aren't resting. Here's a rundown of interest to all users. Today's dc power supplies have capabilities that would have satisfied even the most demanding users not too many years ago. But these capabilities are constantly under challenge. Equipment and systems designers are generating new demands almost as fast as power-supply designers can satisfy the old ones. Where do we stand in power-supply design? How far have we progressed since the battery was the mainstay of dc power? And, more important, where are we headed? Among the emerging trends are these: - Power supplies with faster ON-OFF programing times. - Power units that give both constant voltage and constant current. - Digital-controlled power supplies. - Power units that use silicon-controlled rectifiers (SCRs). - Modular power packages, with an almost limitless number of sizes and shapes and with a wide variety of electrical
characteristics. And with improvements beyond these stages already envisioned, it's apparent that we've come a long way along the expressway to greater, more refined dc power. Let's look at some of the milestones. ### Early improvements made The earliest dc power supplies consisted of batteries, or transformers and vacuum-tube rectifiers. In the case of the batteries, the users were at the mercy of battery life, which at best was rarely satisfactory. The transformer and rectifier supplies, on the other hand, were subject to both line fluctuations and load-induced output voltage fluctuations. Eventually the regulated supply was developed. The first was crude by today's standards, but as a result of improvements, a wide variety of regulation methods came into being. Of all, the one that has become the most popular makes use of series regulation. Early series-regulated supplies looked like the circuit of Fig. 1. These units worked quite well, and are still in extensive use today when it is not necessary for the output of the supply to go to zero. In time, improvements were made in the errordetector portion of the circuit. These included, as shown in Fig. 2, the use of a difference amplifier for error detection and, sometimes, the addition of a mechanical chopper to improve the stability and regulation. Other improvements were made in the reference voltage portion of the circuit. Some of these are shown in Fig. 3. ### Bridge circuits allowed programing A major improvement in the series-regulated supply was the introduction of the bridge type of circuit (Fig. 4). With this configuration, the supply output voltage became a direct function of the control resistor, and the supply output could be made to go to zero. Another advantage was that the bridge arrangement was adaptable to programing. This is important when several different voltages are required in sequence. Without programing, it is necessary to have a power supply for each required voltage. With a programmable supply, though, different output voltages can be produced merely by switching programing resistors (Fig. 5). The programing capability of power supplies is probably the most important development in the power-supply field since the introduction of the regulated supply. Another significant development was the introduction of constant-current power supplies. Two general philosophies used to accomplish this are shown in Fig. 6. In both the voltage across sample resistor R_s is constant, and so is the current through it. Therefore the load current is also constant. ### Programing improvements being made Turning to the emerging trends, we note that John Baugher, Chief Engineer, Electronic Measurements, Div. of Rowan Controller Co., Eatontown, N. J. 1. Early series-regulated supplies like this are still in widespread use, although the tubes have been replaced to a large extent by solid-state devices. 2. **Difference amplifier and chopper** provide the series-regulated supply with better error detection and improved stability and regulation. 3. Reference-voltage circuits have undergone progressive improvement from a simple, single stage of pre-regulation (a) to a reference diode pre-regulated with a feedback amplifier (d), which is actually a full-scale power supply. 4. Bridge-type series-regulated supply was a major development in the progression of power supply design. 5. Programing of a power-supply output became possible with the development of bridge-type supplies. April 19, 1966 6. Constant-current supplies became increasingly important with the advent of transistor circuits. Two types of constant-current configurations are shown here. In both, the current through $R_{\rm s}$ is constant. much development work is being done today to decrease the programing times of programmable supplies. This includes both the turn-on time for going from zero to normal output voltage, and the turn-off time required for the output to drop to zero. The curves of Fig. 7 show how ON programing times have constantly been improved. The speed represented by the steepest curve is being worked on, and further improvements in circuitry and components are expected to make speeds of 1 microsecond/volt possible. Present efforts at improving the OFF programing time are centered on the capacitor used across the output of most constant-voltage supplies. For the cutput voltage to drop quickly, this capacitor must discharge rapidly. So for quick turn-off time, the value of the capacitor must be reduced to a bare minimum-zero, if possible. However, elimination of the capacitor can produce undesirable results, one being an increase in the magnitude of the transients that occur during loading and unloading. In addition, without the capacitor, the loop stability of the amplifier/power supply circuit would be impaired. This is because the capacitor acts as a large damper on any oscillations that occur. One of the major aims, therefore, of present high-speed programmable power-supply development is to reduce the value of the output capacitor without at the same time causing other undesirable effects. ### Constant-voltage/constant-current is desirable Another fairly new design development is the power supply that provides both constant voltage and constant current. Most of such types now available consist of a basic power supply and two amplifier chains. One amplifier senses voltage and the other current. The load resistance determines which amplifier is in control. For example, if the constant-current amplifier is set to limit the output current to 1 ma and the constant-voltage amplifier to hold the voltage at 10—and there is no load on the supply—the output voltage will rise to 10 v and be held at that level by the voltage amplifier. Then, if a load is applied, the load resistance will decrease and the current will rise. Eventually the current will approach the setting of the current amplifier, and it will take over control of the supply from the voltage amplifier. As the load resistance decreases towards zero, the output 7. **Turn-on time** for programmable supplies has been continually improved, as shown by these typical curves. 8. Digital-controlled power supply bears little physical resemblance to traditional power supplies. voltage of the supply will drop to hold the current constant. The constant-voltage/constant-current supply can take various forms, depending on the desired characteristics. One is to have a good constant-voltage amplifier and a poor constant-current amplifier. The current regulation is then much poorer than the voltage regulation, with the current-control section effectively functioning as an adjustable fuse. The opposite arrangement is also possible. A third type of constant-voltage/constant-current supply, in which there are two quality amplifiers, is also possible. This type is of necessity much more complicated than the two others and is therefore much more expensive. 9. SCR-controlled power supply uses firing-point control of the SCRs as a means of controlling the output voltage. 10. SCR-regulated power supply uses SCRs to maintain a constant voltage across a series-regulating element. ### Digital control is growing Digital-controlled power supplies (Fig. 8) have been discussed for some time but are just now becoming available commercially. Essentially they are digital-to-analog converters with power-output capabilities. Digital supplies were developed for computercontrolled test facilities, where a single powersupply type of test set was designed to make many tests. The computer was programed to sense the type of device being tested and then, by means of digital signals, to set up the test set for that particular device. In this way several different devices could be tested automatically by the same test set. A further application for these supplies is where one test determines what the parameters for the next test will be. In these cases each time a test is performed, the results are fed into a computer. The computer than resets the test set, based on the results of the previous test. ### SCRs are widely used A whole new class of power supplies has been brought about by the introduction and subsequent improvement of the silicon-controlled rectifier (SCR). Two distinct types have so far become popular. In one the SCRs control the supply output voltage. A typical such supply is shown in Fig. 9, where the SCRs act as rectifiers and controllers. Any variation of the output voltage is sensed by the error detector, amplified, and used to adjust the firing point of the SCRs. In the other type of SCR power supply (Fig. # HIGH VOLTAGE MODEL TR-135 Complete with HV and Current Meters \$575. Net ### TRANSISTORIZED COMPLETELY SOLID STATE Continuously variable 5-35KV regulated DC power supply with regulated focus voltage tap 4-9 KV. A continuous duty DC supply with highly filtered outputs and regulated against line and load better than 0.05% at 1 ma. Ripple less than 0.05%. Input: 117V 60 cycles. Dimensions: 19" W x 83/4" H x ### 0-35 KV REGULATED DC POWER SUPPLY Continuously variable 0-35 KV regulated RF type DC power supply. Current output 4 ma. @ 35 KV. Regulations against line and load better than 0.5%. Ripple less than 0.25%. Dimensions in cabinet: 197/8" H x 213/4" W x 18" D. MODEL LAB-35 — Complete with HV and Current meters \$775 net ### TRANSISTORIZED HIGH VOLTAGE RF STEP-UP COIL OUTPUT 15KV @ 2 ma. - Coil driven by pair of transistors in push-pull - Coil Height-41/4" • Diameter-25/8" - Secondary Output Voltage-15 KV - Secondary Current -5 milliamperes - Approx. Frequency with Single Rectifier —120 KC In tripler circuit-78 KC MODEL TRF-15 Complete with operational circuit diagram and data \$15.00 net Dept. ED HIGH VOLTAGE CO.. INC. (212) KI 7-0306 1930 Adee Ave., Bronx, N.Y. 10469 ON READER-SERVICE CARD CIRCLE 8 10), the SCRs are used to rectify, as well as to maintain a constant voltage drop across the series regulating element. The output voltage is
controlled by the series element. This arrangement allows the use of considerably fewer series-regulating transistors than do other types of seriessubsequent widespread acceptance of modular power supplies. ### Modular supplies treated as components For many years power supplies were made in a relatively few standard sizes, as dictated by available equipment racks. Special sizes and shapes could be obtained, but usually only at a considerable increase in cost. This size roadblock was to a great extent removed with the introduction and subsequent widespread acceptance of modular power supplies. The sizes and shapes of modular supplies are now virtually limitless, and they can be obtained with an extensive variety of electrical characteristics. They are available as plug-in devices, with terminal blocks or built on printed-circuit boards. The characteristic common to all of the many types, though, is that they can be treated as components (which is difficult to do with a 19-inch rack model). Although the modular philosophy is highly suitable for low-power supplies, weight problems arise when the power requirements begin to exceed 200 to 300 watts. Above this power level, the modular supply becomes so heavy that the most convenient mounting is a rack. Hence, one of the most important advantages of the modular supply is lost. ### What about the future? Although a far cry from earlier types, today's power supplies are not the end of the road. One area of improvement that is constantly being requested by users is the reduction of transients. It can be expected, therefore, that future designs will have better and better transient characteristics, both in terms of amplitude and duration. Tighter regulation is another area where future improvement will be made. However, in this case the improvement will come not so much from changes in the design of the power supplies themselves as from better methods of using them. For example, even today supplies with open-loop gains of 100,000 to 500,000 are not uncommon. These values can theoretically result in regulations on the order of 0.0001%. However, the presence of line drops and improper sensing connections can reduce the usable regulation to just 0.1% at the Improved long-term stability can also be expected in the future. This will probably be the result of improvements in circuits and components for the three sections of power supplies that contribute most to stability (or a lack of it): voltage reference, the input amplifier and the sensing resistors. ### PERFORMANCE UNDER TEST | Allowable Change | Our Average Change | |--|----------------------| | \triangle I $_{RI} = -90\% + 100\%$ or 50 nanoamps | -10% + 65% | | \triangle V ₂₁ = \pm 50 mV | $-34+19~\mathrm{mV}$ | | \triangle Z _z $=$ \pm 2 ohms | -1.1 ohms | ## ENVIRONMENTAL Mechanical Shock 2000 g 3 shocks in 3 axes Constant Acceleration 20,000 g 1 minutes in each of 6 axes ### PERFORMANCE UNDER TEST | Our Average Change | |---------------------| | $-4+15~\mathrm{mV}$ | | -6 + 22 mV | | < 0.1 μA | | | ### PHYSICAL Maximum length - .160" Maximum diameter - .075" Weight - .2618 grams # Hoffman Microglass Zeners Types 1N4460-1N4496 ACTUAL SIZE These 1.5 watt silicon zeners are designed for application wherever high performance electrical requirements are a necessity and for maximum packaging density. The hard glass sleeve construction hermetically seals the passivated silicon wafer. This means there is no large cavity to trap and contain contaminants that adversely affect the performance and reliability of the device. A unique method of bonding the silicon wafer between the heat sinking terminal pins provides low thermal resistance and eliminates the troublesome "S" spring as well as solder or epoxy pastes. The reduction of piece part components means a higher degree of reliability than previously obtainable and a diode highly resistant to extreme levels of mechanical shock and vibration. Most major military and aerospace programs depend on its continuous reliability. For additional information regarding Hoffman products write Hoffman Electronics, Dept. A, El Monte, California. # SEMICONDUCTORS # **High-Current DC Power Supplies** | | | | | OUTPUT | | | RE | GULATION | | | | | | |-----|------------|------------|---------------|---------------|--------------|-----------|-----------|---|--------------|--------|----------|-------------|-------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Geo Space | 1.5/15 | 1.1 | 1.8 | 10 | ina | 0.2 | ina | 0.1% | yes | C or R | ina | | | | Керсо | Ck2-8M | 0 | 2 | 8 | 0.01 | 0.01 | 50 | 0.5 | yes | C | 345 | a,b,d,e,h,i | | - 1 | Utronics | BR3/5 | 0 | 3 | 5 | ±0.01 | ±0.01 | 50 | 1 | yes | R | 339 | b,d,e,g | | - 1 | Trans Dev | RS 3-10 | 3 | 3 | 10 | 3 mv | 5 mv | 50 | 0.2 | yes | R | ina | b,h | | C | Bogue 5 | A-4-10 | 0 | 0 | (T) | ±0.05 | ±0.05 | 50 | 1 | yes | R | ina | e,g | | | Bogue | A-4-20 | 0 | 7)4 | 20 | ±0.05 | ±0.05 | 50 | 1 | yes | R | ina | e,g | | | Behl-Invar | QS-5 | 0 | 5 | 6.5 | ±0.01 | ±0.01 | 25 | 1 | yes | ¼R | 214 | a,b,d,e,h | | | Hyperion | Hy-Si-5-50 | 0 | 5 | 50 | 0.01 | 0.01 | 50 | 2 | yes | R | 499 | a,b,d,e,g | | | Con Av | HSS-205 | 0 | 5.5 | 20.5 | 0.025 | 0.025 | 25 | 1 | yes | R | 380 | a,b,e,g | | | Con Av | FS5-400 | 0 | 5.5 | 40 | 0.025 | 0.025 | 25 | 1 | yes | R | 555 | a,b,e,g | | | Sola | 281513-1 | 6 | 6 | 10 | ±1 | ±1 | ina | 1% | none | R | 150 | | | | Trans Dev | RS 6-10 | 6 | 6 | 10 | 1.5 mv | 1.5 mv | 50 | 0.15 | yes | R | ina | b,h | The table in this section lists the specifications for high-current dc power supplies. These supplies have maximum output currents greater than 3 amperes, and they cover the voltage range from 0 to 450 volts. Unless otherwise noted in the table, the following conditions apply to all of the supplies listed: - Input voltage: 105 vac, 60 cps, 1 phase. - Polarity: positive or negative. - Rated current may be drawn at any setting of the output voltage. Prices indicated in the table are subject to change by the manufacturer. An index of manufacturers and models is included at the end of the table. The index is alphabetical, by manufacturer, and it lists the various high-current dc power supplies of each manufacturer. A location key is included after each model. This permits easy spotting in the table of the specifications for that supply, by means of the location-key column (1 above). ### How the table is arranged Specifications for the high-current dc power supplies are given in separate, appropriately headed columns. The complete specifications for any one supply can thus be read across the page. Within the table, the supplies are listed in ascending order of maximum output voltage (2 above). Where the maximum output voltage of several supplies is the same, the units are listed in order of increasing maximum output current (3 above). If both of these characteristics are identical for several supplies, they are then listed in order of increasing output voltage swing (4 above). This arrangement allows for a rapid across-the-market comparison of all the high- current dc power supplies with similar application capability. Manufacturers are identified in the *Mfr* column by an abbreviation (5 above). The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master index at the front of the issue. All notes and symbols used in the table are defined at the end of the section. At the top of each page of the table, reference is made to the output voltage range covered by the supplies on that page. This is to expedite the location of a supply with particular characteristics. ### Additional entries A supplementary table is included at the end of the basic table. It lists additional high-current dc power supplies that could not be fitted into the basic table because of editorial make-up limitations. The arrangement of this supplementary table is identical with that of the basic table. ### How to use the table - Note how the supplies are listed. They are in ascending order of maximum output voltage. Where this is the same, they are in order of increasing maximum output current. - 2. Select the most likely candidates. - 3. Obtain supplementary data from the manufac- Manufacturers' addresses, together with Reader Service numbers for specific power supply types, are given in the master crossindex at the front of the issue. | | | | | OUTPUT | | | RE | GULATION | | | | | | |----|----------------------|--------------------------------|---------------|---------------|--------------|----------------|-----------------|---|--------------|------------|------------------|-------------|--------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Geo Space | 1.5/15 | 1.1 | 1.8 | 10 | ina | 0.2 | ina | 0.1% | yes | C or R | ina | | | | Керсо | Ck2-8M | 0 | 2 | 8 | 0.01 | 0.01 | 50 | 0.5 | yes | C | 345 | a,b,d,e,h,i | | | Utronics | BR3/5 | 0 | 3 | 5 | ±0.01 | ±0.01 | 50 | 1 | yes | R | 339 | b,d,e,g | | | Trans Dev | RS 3-10 | 3 | 3 | 10 | 3 mv | 5 mv | 50 | 0,2 | yes | R | ina | b,h | | С | Bogue | A-4-10 | 0 | 4 | 10 | ±0.05 | ±0.05 | 50 | 1 | yes | R | ina | e,g | | 1 | Bogue | A-4-20 | 0 | 4 | 20 | ±0.05 | ±0.05 | 50 | 1 | yes | R | ina | e,g | | | Behl-Invar | QS-5 | 0 | 5 | 6.5 | ±0.01 | ±0.01 | 25 | 1 | yes | ¼R | 214 | a,b,d,e,h | | | Hyperion | Hy-Si-5-50 | 0 | 5 | 50 | 0.01 | 0.01 | 50 | 2 | yes | R | 499 | a,b,d,e,g | | | Con Av | HSS-205
FS5-400 | 0 | 5.5
5.5 |
20.5
40 | 0.025
0.025 | 0.025
0.025 | 25
25 | 1 | yes | R
R | 380
555 | a,b,e,g
a,b,e,g | | | Sola | 281513-1 | 6 | 6 | 10 | ±1 | ±1 | ina | 1% | none | R | 150 | | | | Trans Dev | RS 6-10 | 6 | 6 | 10 | 1.5 mv | 1.5 mv | 50 | 0.15 | yes | R | ina | b,h | | | Heath | IP-12 | 0 | 6 | 10 | ina | ina | ina | 0.3% | yes | C | 60 | d | | | Sorensen | MD6.3-15.9 | 6.3 | 6.3 | 15.9 | ±1 | 10 | ina | 1% | none | R | 130 | | | IC | Trygon | FT-FTR6-25 | 6.3 | 6.3 | 25 | ±1 | 0.6 | ina | 500 | none | ¼R | 149 | | | 2 | Sorensen | MD6.3-31.8 | 6.3 | 6.3 | 31.8 | <u>±1</u> | 10 | ina | 1% | none | R | 160 | | | | Valor | AV6.3-60 | 5.7 | 6.3 | 60 | 6 mv | 10 mv | ina | 3 | none | R | ina | a,b | | | Sorensen | MD6.3-63.5 | 6.3 | 6.3 | 63.5 | ±1 | 10 | ina | 1% | none | R | 200 | | | | Deltron | DP6-411 | 5.5 | 6.5 | 4-50 | <u>+1</u> | ±1 | 100 ms | 0.8% | yes | R | 165 | a,b,d,g | | | NJE | SR-6-20M | 5.5 | 6.5 | 20 | 0.005 | 0.01 | 30 | 1 | yes | R | 380 | a,b,d,e,g | | | Con Av | HS6-24.5
FS6-46.0 | 5.5
5.5 | 6.5
6.5 | 24.5
46 | 0.025 | 0.025 | 25
25 | 1 | yes
yes | R
R | 340
515 | a,b,e,g
a,b,e,g | | | Rapid | 6AMA | 5.4 | 6.6 | 5 | ±1 | ±1 | ina | 1% | yes | C | 325 | a,u,e,g | | | Rapid | 15AMA | 5.4 | 6.6 | 15 | ±1 | ±l | ina | 1% | yes | C | 350 | d | | IC | Rapid | 40AMA | 5,4 | 6.6 | 40 | ±1 | ±l | ina | 1% | yes | C | 500 | d | | 3 | Trygon | HH7-4 | 0 | 7 | 4 | 0.01 | 0.01 | 25 | 0.5 | yes | %R | 189 | a,b,d,e,h,i | | | Scint | 56F2 | 5 | 7 | 5 | ±10 mv | ±20 mv | 50 | 1 | yes | R | 215 | b,d,g | | | Chalco | 7V-5A | 3 | 7 | 5 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 165 | a,b,e,g | | | Deltron | RS6-6M ¹ 1 | 5 | 7 | 6-50 | 0.01 | 0.01 | 50 | 0.512 | yes | ½R ¹³ | 260 | a,b,d,e,h | | | Chalco | 7V-10A | 3 | 7 | 10 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 235 | a,b,e,g | | | Chalco | 7V-15A | 3 | 7 | 15 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 265 | a,b,e,g | | | Chalco | 7V-20A | 3 | 7 | 20 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 300 | a,b,e,g | | | Voltex | 82-192
7V-25A | 5 | 7 | 25 | 0.2 | 0.2 | 50 | ina | none | R | ina | e | | 10 | Chalco
Chalco | 7V-25A
7V-40A | 3 | 7 7 | 25
40 | ±0.1
±0.1 | ±0.1
±0.1 | 25
25 | 1 | yes
yes | R10 | 330
435 | a,b,e,g
a,b,e,g | | 4 | Chalco | 7V-50A | 3 | 7 | 50 | ±0,1 | ±0.1 | 25 | 1 | yes | R10 | 490 | a,b,e,g | | | Chalco | 7V-75A | 3 | 7 | 75 | ±0.1 | ±0.1 | 25 | i | yes | R ¹⁰ | 565 | a,b,e,g | | | Chalco | 7V-100A | 3 | 7 | 100 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 725 | a,b,e,g | | | Deltron | L Series | 0.55 | 7.55 | 4-7211 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 220 | a,b,d,e,h | | | Hevi-Duty | LR7.5-5M | 4.5 | 7.5 | 5 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 510 | a,b,d,e,g | | | Harrison | 6251A | 0 | 7.5 | 5 | 0.01 | 0.01 | 50 | 0.2 | yes | С | 395 | a,b,c,d,e,h,i | | | Harrison | 6281 A | 0 | 7.5 | 5 | 0.01 | 5 mv | 50 | 0.2 | yes | C | 210 | a,b,c,d,e,h,i | | | Hevi-Duty | LR7.5-10M | 4.5 | 7.5 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 510 | a,b,d,e,g | | | Hevi-Duty | LR7.5-15M | 4.5 | 7.5 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 580 | a,b,d,e,g | | 10 | Hevi-Duty | LR7.5-20M | 4.5 | 7.5 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 825 | a,b,d,e,g | | 5 | Hevi-Duty | LR7,5-30M | 4.5 | 7.5 | 30 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 920 | a,b,d,e,g | | | Geo Space | 6/300 | 4.5 | 7.5 | 50 | ina | 0.2 | ina | 0.1% | yes | C or R | ina | | | | Un Elect | Q-5-8-4A
LH84 ¹¹ | 5 | 8 | 4 20 | 5 mv | 5 mv | 50 | 1 | yes | R | 290 | b,d,e,g | | | Deltron
Kepco | Ck8-5M | 0 | 8 | 4-20 | ±0.114
0.01 | ±0.1 14
0.01 | 50 | 1
0,5 | yes | R | 223 | b,e,h 15,16 | | | | | | | | | | 50 | | yes | | 345 | a,b,d,e,h,i | | | Un Elect
Un Elect | Q5-8-6A
Q5-8-10A | 5 5 | 8 | 6 | 5 mv
5 mv | 5 mv
5 mv | 50
50 | 1 1 | yes
yes | R
R | 325
425 | b,d,e,g | | | Un Elect | Q5-8-15A | 5 | 8 | 15 | 5 mv | 5 mv | 50 | 1 | | R | 425 | b,d,e,g | | | Kepco | KS8-15M | 0 | 8 | 15 | 0.01 | 0.01 | 50 | 1 | yes | R | 625 | b,d,e,g | | IC | Mag Res | DMR6-20 | 4 | 8 | 20 | 30 mv | 30 mv | 100 ms | 30 | yes | R | ina | a,b,d,e,h,i
e,g | | ; | Un Elect | Q5-8-25A | 5 | 8 | 25 | 5 mv | 5 mv | 50 | 1 | yes | R | 625 | b,d,e,g | | | Керсо | KS8-25M | 0 | 8 | 25 | 0.01 | 0.01 | 50 | 1 | yes | R | 760 | a,b,d,e,h,i | | | Керсо | KS8-50M | 0 | 8 | 50 | 0.01 | 0.01 | 50 | 1 | yes | R | 1050 | a,b,d,e,h,i | | | Mag Res | DMR6-100 | 4 | 8 | 100 | 0.2 | 0.2 | 100 ms | 30 | yes | R | ina | e,g | | | Керсо | KS8-100M | 0 | 8 | 100 | 0.01 | 0.01 | 50 | 1 | yes | R | 1450 | b,d,e,h,i | | | | | | OUTPUT | | | RE | GULATION | | | | | | |----|---|---|-------------------------|-----------------------------|----------------------------------|---|--|---|----------------------------------|----------------------------------|---|--|---| | | Mfr. | Model | Min,
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | нс | NJE
Sorensen
Sorensen
Lambda
Sorensen | SR8-20M
QB6-4
QB6-8
LE109FM
QB6-15 | 7.5
5
5
0
5 | 8.5
9
9
9 | 20
4
8
10
15 | 0.005
±0.02 ⁴
±0.02 ⁴
0.05
±0.02 ⁴ | 0.01
±0.02 ⁴
±0.02 ⁴
0.05
±0.02 ⁴ | 30
25
25
50
35 | 1
0.3
0.3
0.5
0.3 | yes
none
yes
yes
yes | R
C ²⁴
R
R
C or R | 380
108
190
480
245 | a,b,d,e,g
a,b,e,g,i
a,b,d,e,g,i
a,b,d,e,g,i
a,b,d,e,g,i | | 7 | Lambda
Con Av
Sorensen
Con Av
Lambda | LE110FM
HS8-22.5
QB6-30
FS8-43.0
LH118FM | 0
7
5
7
0 | 9
9
9
9 | 20
22.5
30
43
4 | 0.05
0.025
±0.02 ⁴
0.025
0.015 | 0.05
0.025
±0.02 ⁴
0.025
0.015 | 50
25
50
25
ina | 0.5
1
0.3
1
0.25 | yes
yes
yes
yes | R
R
C or R
R
¼R | 725
340
315
515
200 | a,b,d,e,g,i
a,b,e,g
a,b,d,e,g,i
a,b,e,g
a,b,d,e,i | | нс | Behl-Invar
Scint
Bogue
Deltron
Pioneer | QS-10
59F2
A-10-5
SP10-5 ¹¹
RR10-5-A | 0
8
0
0
0 | 10
10
10
10 | 4,2
5
5
5-100
5 | ±0.01
±10 mv
±0.05
0.01 ¹⁷ | ±0.01
±20 mv
±0.05
0.01 ¹⁷ | 25
50
50
50
50 | 1
1
1
0.5 ¹⁸ | yes
yes
yes
yes
yes | ¼R
R
R
½R ¹³
R | 200
245
ina
220
request | a,b,d,e,h
b,d,g
e,g
a,b,d,e,h,i
b,e,h,i | | 8 | Pioneer
Utronics
Lambda
Bogue
Harrison | RR10-5-B
BR10/5
LH119FM
.A-10-10
6282A | 0
0
0
0 | 10
10
10
10
10 | 5
5
9
10
10 | 0.01
±0.01
0.015
±0.05
0.01 | 0.01
±0.01
0.015
±0.05
0.01 | 50
50
ina
50
50 | 1
1
0.25
1
0.5 | yes
yes
yes
yes
yes | R
R
½R
R
C | request
359
314
ina
350 | b,e,h,i
b,d,e,g
a,b,d,e,i
e,g
a,b,c,d,e,h,i | | нс | Hevi-Duty
Hyperion
NJE
Pioneer
Pioneer | HC15-10M
HY-Z\$-10-10
QR-10-10
RR10-10A
RR10-10B | 0
0
0
0 | 10
10
10
10
10 | 10
10
10
10
10 | ±0.03
0.01
±0.02
0.01
0.01 | ±0.03
0.01
±0.005
0.01
0.01 | 100
50
50
50
50 | 1
0.5
3
1 | yes
yes
yes
yes
yes | R
½R
C or R
R | 595
279
380
request
request | a,b,d,e,g
a,b,c,d,e,g,i
a,b,d,e,h
b,e,h,i
b,e,h,i | | 9 | Tech Pwr
Hyperion
Glentron
Hyperion
Pioneer | L10-12.0M
HY-Si-10-12.5
20588-1
HY-T1-10-15
RR10-20A | 0
0
10
0 | 10
10
10
10 | 12
12.5
15
15
20 | ±0.1
0.01
0.1 ⁴
0.02
0.1 | ±0.3
0.01
0.1
0.02
0.1 | ina
50
ina
50
50 | 0.5%
0.5
1
1 | yes
yes
ina
yes
yes | C or R
½R
C
R
R | 245
299
ina
440
request | a,b,d,e
a,b,d,e,g
a,b,d,g,i
b,e,h,i | | нс | Pioneer
Tech Pwr
Hyperion
Tech Pwr
Tech Pwr | RR10-20-B
LS-10.0-12.0M
HY-Si-10-25
L10-25.0M
LS-10.0-25.0M | 0
0
0
0 | 10
10
10
10
10 | 20
20
25
25
25
25 | 0.01
±0.01
0.01
±0.1
±0.01 | 0.01
±0.03
0.01
±0.3
±0.03 | 50
ina
50
ina
ina | 1
0.5
0.5
0.5%
0.5% | yes
yes
yes
yes | R
C or R
R
C or R
C or R | request
450
499
310
595 | b,e,h,i
a,b,d,e
a,b,d,e,g
a,b,d,e
a,b,d,e | | 10 | Pioneer
Pioneer
Hyperion
Hyperion
El Meas | RR10-30-A
RR10-30-B
HY-T1-10-40
HY-T1-10-60
T010-100M | 0
0
0
0 | 10
10
10
10
10 | 30
30
40
60
100 | 0.1
0.01
0.02
0.02
10 mv | 0.1
0.01
0.02
0.02
10 mv | 50
50
50
50
ina | 1
1
1
1
2 | yes
yes
yes
yes | R
R
R
R | request
request
695
975
1175 | t,e,h,i
b,e,h,i
a,b,d,g,i
a,b,d,g,i
a,b,d | | нс | Harrison
Hyperion
Chalco
NJE
Chalco | 6260A
HY-Si-10-100
11V-5A
SR-10-7.5M
11V-10A | 0
0
5
9
5 | 10
10
11
11
11 | 100
100
5
7,5 | 0.01
0.01
±0.1
0.005
±0.1 | 0.01
0.01
±0.1
0.01
±0,1 | 50
50
25
15
25 | 0.5
0.5
1
1 | yes
yes
yes
yes | R
R
R ¹⁰
R | 775
1240
205
285
250 | a,b,d,e,h,i
a,b,d,e,g
a,b,e,g
a,b,d,e,g
a,b,e,g | | 11 | NJE
Chalco
Chalco
Con Av
Chalco |
SR-10-15M
11V-15A
11V-20A
HS10-21.0
11V-25A | 9
5
5
9
5 | 11
11
11
11
11 | 15
15
20
21,5
25 | 0.005
±0.1
±0.1
0.025
±0.1 | 0.01
±0.1
±0.1
0.025
±0.1 | 30
25
25
25
25
25 | 1
1
1
1 | yes
yes
yes
yes
yes | R
R ¹⁰
R
R
R ¹⁰ | 360
275
325
340
405 | a,b,d,e,g
a,b,e,g
a,b,e,g
a,b,e,g
a,b,e,g | | нс | Chalco
Con Av
Chalco
Chalco
Chalco | 11V-40A
FS10-41.0
11V-50A
11V-75A
11V-100A | 5
9
5
5
5 | 11
11
11
11
11 | 40
41
50
75
100 | ±0.1
0.025
±0.1
±0.1
±0.1 | ±0.1
0.025
±0.1
±0.1
±0.1 | 25
25
25
25
25
25 | 1
1
1
1 | yes
yes
yes
yes
yes | R ¹⁰ R R ¹⁰ R ¹⁰ R ¹⁰ | 515
515
560
630
885 | a,b,e,g
a,b,e,g
a,b,e,g
a,b,e,g
a,b,e,g | | 12 | El Mod
Sola
Hevi-Duty
Heath
Engr Elect | PS031.57
281514-1
LR12-5M
IP12
ZA742 | -12
12
7.5
0 | -12
12
12
12
12 | 3
5
5
5
6 | ±0.03
±1
±0.03
ina
0.5 | ina
5
±0.03
ina
0.1 | 40
ina
50
ina
ina | 1
1%
1
0.3%
1.5 | yes
none
yes
yes
yes | R
R
R
C
R | ina
115
430
59.95
ina | d,e,g
a,b,d,e,g
d
e,f | | | | | | OUTPUT | | | REI | GULATION | | | | | | |----------|-----------------------|------------------------|---------------|---------------|--------------|--------------|-----------------|---|--------------|--------|----------|------------|----------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price \$ | Notes | | | E1 Mod | PS0631,5 | -12 | -12 | 6 | ±0.03 | ina | 40 | 1 | yes | R | 619 | d,e,g | | | Sorensen | MD12.0-8.4 | 12 | 12 | 8.4 | ±1 | 5 | ina | 1% | none | R | 125 | -1-18 | | | Glentron | 20588-2 | 12 | 12 | 10 | 0.14 | 0.14 | ina | 1 | ina | С | ina | | | | Hevi-Duty | LR12-10M | 7.5 | 12 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 510 | a,b,d,e,g | | | Pwr Des | 1210S | 0 | 12 | 10 | 0.054 | 0.054 | 50 | 1 | yes | C | 329 | c,d,e,g | | HC | | | | | | | | | | , | | | 0,0,0 | | 13 | Deltron | HP12-10 ¹¹ | 0 | 12 | 10 | 0.0520 | 0.0520 | 50 | 1 | yes | С | 310 | e,h | | | El Mod | PS1263 | -12 | -12 | 12 | ±0.03 | ina | 40 | 1 | yes | R | 790 | d,e,g | | | Trygon | FT-FTR-12-15 | 12 | 12 | 15 | ±l | 1 v | ina | 400 | none | ¼R | 149 | -1-19 | | | Hevi-Duty | LR12-15M | 7.5 | 12 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 580 | a,b,d,e,g | | | Tabtron | T12V15ARM | 0 | 12 | 15 | ±5 | ±5 | ina | 1% | yes | С | 198 | d | | - | | | | | | | | | | | | | | | | Sorensen
Trans Dev | MD12.0-16.7
RS12-20 | 12 | 12
12 | 16.7 | ±1
1.5 mv | 5
2 mv | ina
50 | 1% | none | R | 150 | | | | | | | | | | | | 0.15 | y es | R | ina | b,h | | | Hevi-Duty | LR12-20M | 7.5 | 12 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 890 | a,b,d,e,g | | | Hevi-Duty | LR12-30M | 7.5 | 12 | 30 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 940 | a,b,d,e,g | | нс | Sorensen | MD12,0-33.4 | 12 | 12 | 33.4 | ±1 | 5 | ina | 1% | none | R | 190 | | | 14 | Керсо | KO12-100M | 0 | 12 | 100 | 1 | 1 | 500 ms | 30 | yes | R | 1095 | b,d,e,h,i | | | Deltron | L Series | 6,55 | 135 | 3.5-63 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 220 | a,b,d,e,h | | | Deltron | DP12-411 | 11 | 13 | 4-60 | ±} 20 | ±) 20 | 100 ms ²¹ | 0.8%18 | yes | R | 165 | a,b,d,h | | | Engr Elect | ZA 720 | 11 | 13 | 5 | 0.1 | 0.1 | ina | 1 | yes | C or R | ina | e,f | | | NJE | SR-12-7.5M | 11 | 13 | 7.5 | 0.005 | 0.01 | 15 | 1 | yes | R | 285 | a,b,d,e,g | | | NIE | CD 10 15: | 11 | 10 | 15 | 0.005 | 0.01 | 20 | , | | | 200 | | | | NJE
Con Av | SR-12-15M
HS12-20.5 | 11
11 | 13
13 | 15
20.5 | 0.005 | 0.01 | 30
25 | 1 | yes | R
R | 360
340 | a,b,d,e,g
a,b,e,g | | | Voltex | 82-193 | 11 | 13 | 25 | 0.023 | 0.023 | 50 | ina | none | R | ina | ee | | | Dy Con | 20V | 11 | 13 | 50 | 5 mv | 5 mv | 100 | 2 | | CorR | 1430 | | | | Dy Con | 19V | 11 | 13 | 100 | 15 mv | 15 mv | 100 | 2 | yes | | | d,e,g | | нС | by con | 134 | 11 | 13 | 100 | 13 1114 | 12 1114 | 100 | 2 | yes | C or R | 1950 | d,e,g | | 15 | Mid-East | MS12-12 | 10.8 | 13.2 | 12 | ±1 | ±1 | ina | 0.5% | yes | R | 750 | b | | | Rapid | 15BMA | 10.8 | 13,2 | 15 | ±1 | ±1 | ina | 1% | yes | C | 430 | d | | | Mid-East | MS12-40 | 10.8 | 13.2 | 40 | ±1 | ±1 | ina | 0.5% | yes | R | 750 | ь | | | Mid-East | MS12-60 | 10.8 | 13,2 | 60 | ±1 | ±1 | ina | 0.5% | yes | R | 1175 | ь | | | Mid-East | MS12-100 | 10.8 | 13.2 | 100 | ±1 | <u>+1</u> | ina | 0.5% | yes | R | 1400 | b | | | Mag Res | 63-103-0 | 12 | 13.5 | 4.5 | 0.2 | 0.2 | ina | 1% | | С | 327 | do | | | Deltron | RS12-4M ¹¹ | 10 | 14 | 4-16 | 0.01 | | 50 | | yes | | | d,e | | | | | | | | | 0.01 | | 0.5 | yes | ⅓R | 230 | a,b,d,e,h | | | Un Elect
Scint | Q10-14-4A | 10
12 | 14 | 5 | 5 mv | 5 mv | 50 | 1 | yes | R | 325 | b,d,e,g | | | El Meas | 514F2
T014-5M | 0 | 14 | 5 | ±10 mv | ±20 mv
10 mv | 50
80 | 1 | yes | R
R | 325
390 | b,d,g | | HC | LI Meds | 1014-3111 | 0 | 1 | , | 10 III A | 10 1114 | 80 | 1 | yes | n | 220 | a,b,d,e,h | | 16 | Un Elect | Q10-14-6A | 10 | 14 | 6 | 5 mv | 5 mv | 50 | 1 | yes | R | 405 | b,d,e,g | | | Керсо | SM14-7M | 0 | 14 | 7 | 0.01 | 0.05 | 50 | 1 | yes | R | 405 | b,d,e,h,i | | | El Meas | T014-7.5M | 0 | 14 | 7.5 | 10 mv | 10 mv | 100 | 1 | yes | R | 420 | a,b,d,e,h | | | Un Elect | Q10-14-10A | 10 | 14 | 10 | 5 mv | 5 mv | 50 | 1 | yes | R | 455 | b,d,e,g | | | El Meas | T014-10M | 0 | 14 | 10 | 10 mv | 10 mv | 80 | 1 | yes | R | 475 | a,b,e,h | | | Un Elect | Q10-14-15A | 10 | 14 | 15 | 5 mv | 5 mv | 50 | 1 | yes | R | 545 | b,d,e,g | | | NJE | TC-14-15 | 5 | 14 | 15 | 0.5 | 0.5 | 30 ms | 1% | yes | R | 330 | a,b,d,e,h | | | Керсо | SM14-15M | 0 | 14 | 15 | 0.01 | 0.05 | 50 | 1 | yes | R | 525 | b,d,e,h,i | | | Un Elect | Q10-14-25A | 10 | 14 | 25 | 5 mv | 5 mv | 100 | 1 | yes | R | 655 | b,d,e,g | | | NJE | TC-14-30 | 5 | 14 | 30 | ±0.5 | ±0.25 | 30 ms | 1% | yes | CorR | 450 | a,b,d,e,h | | HC
17 | | | | | | | | | | , | 2, ,, | | -1-1010111 | | 1/ | Kepco | SM14-30M | 0 | 14 | 30 | 0.01 | 0.05 | 50 | 1 | yes | R | 725 | b,d,e,h,i | | | Tabtron | T14V30ARM | 0 | 14 | 30 | ±5 | ±5 | ina | 1% | yes | С | 354 | d | | | Valor | AV14-50 | 11 | 14 | 50 | 6 mv | 10 mv | ina | 3 | none | R | ina | a,b | | | Geo Space | Type BE-1 | 10 | 14 | 50 | ina | 0.1 | ina | 1 | yes | C or R | ina | | | | Hevi-Duty | HC15-5M | 0 | 15 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 465 | a,b,d,e,g | | | Mid-East | ST150-5 | 0 | 15 | 5 | 0.01 | 0.01 | 50 | 3 | yes | R | 1595 | a,b,d,e,h | | | Deltron | HP15-8 ¹¹ | 0 | 15 | 8 | 0.0520 | 0.05 20 | 50 | 1 | yes | C or R | 305 | d,h 22 | | | Trygon | FT-FTR15-10 | 15 | 15 | 10 | ±1% | 0.9 v | ina | 400 | none | ⅓R | 149 | | | | Mag Res | DMR12-10 | 9 | 15 | 10 | 0.2 | 0.2 | 100 ms | 2% | yes | R | ina | e,g | | | Hyperion | HY-Si-15-10 | 0 | 15 | 10 | 0.01 | 0.01 | 50 | 0.5 | yes | ½R | 299 | a,b,d,e,g | | HC | | | | -74 | | | | | | | | | 1-1-1-15 | | 18 | Керсо | PR15-10M | 0 | 15 | 10 | ±1 | 5 | ina | 2% | yes | R | 360 | d,i | | | Utronics | QCR15/10 | 0 | 15 | 10 | ±0.01 | ±0.01 | 50 | 1 | yes | R | 495 | a,b,d,e,g | | | Mid-East | MS13.5-12 | 12 | 15 | 12 | ±l | ±1 | ina | 0.5% | yes | R | 750 | b | | | Hevi-Duty | HC15-15 M | 0 | 15 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 695 | a,b,d,e,g | | | Utronics | QCR15/15 | 0 | 15 | 15 | ±0.01 | ±0.01 | 50 | 1 | yes | R | 610 | a,b,d,e,g | | | | | | OUTPUT | | | REC | GULATION | | | | | | |----------|---------------------|-------------------------|---------------|---------------|--------------|---------------|---------------|---|--------------|------------|-------------|-------------|------------------------| | | Mfr. | Model | Min.
Valts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Hevi-Duty | HC15-20M | 0 | 15 | 20 | ±0,03 | ±0.03 | 100 | 1 | yes | R | 1005 | a,b,d,e,g | | | NJE | QR-15-20 | 0 | 15 | 20 | ±0.02 | ±0.01 | 50 | 3 | yes | C or R | 490 | a,b,d,e,h | | | Керсо | PR15-30M | 0 | 15 | 30 | ±1 | 5 | ina | 5% | yes | R | 525 | d,i | | | Rateico | PS-3 | 0 | 15 | 30 | 2v4 | 2v4 | ina | 0.7% | yes | C | 195 | d | | нс | Trygon | M15-30A | 0 | 15 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 695 | a,b,d,e,h,i | | 19 | | | | | | | | | | | | *** | | | | Mid-East | MS13,5-40 | 12
9 | 15 | 40 | ±l | ±1 | ina | 0.5% | yes | R
C or R | 750 | р | | | Geo Space
Trygon | 12/600
M15-50A | 0 | 15
15 | 50
50 | ina
0.01 | 0.1 | ina
50 | 0.1% | yes
yes | R | ina
945 | a,b,d,e,h,i | | | Mid-East | MS13,5-60 | 12 | 15 | 60 . | ±1 | ±1 | ina | 0.5% | yes | R | 1175 | a,u,u,e,n, | | | Trygon | C15-80 | 0 | 15 | 80 | 0.01 | 0.01 | 100 | 1 | yes | R | 1250 | a,b,d,e,h,i | | - | | | | | | | | | | - | | | | | | Mid-East | MS13.5-100 | 12 | 15 | 100 | ±l | ±1 | ina | 0.5% | yes | R | 1400 | Ь | | | Hevi-Duty | LR16-5M | 12 | 16 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R
R10 | 450 | a,b,d,e,g | | | Chalco
NJE | 16V-5A
SR-5-6M | 8 | 16
16 | 5 | ±0.1
0.005 | ±0,1
0.01 | 25
15 | 1 | yes | R | 230
285 | a,b,e,g | | | Hevi-Duty | LR16-10M | 12 | 16 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 530 | a,b,d,e,g
a,b,d,e,g | | нС | TICYT Duty | EN10-10M | 12 | 10 | 10 | 20.00 | 20,00 | 100 | • | 763 | " | 550 | 2,0,0,0,8 | | 20 | Chalco | 16V-10A | 8 | 16 | 10 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 305 | a,b,e,g | | | NJE | SR-15-12M | 14 | 16 | 12 | 0.005 | 0.01 | 15 | 1 | yes | R | 360 | a,b,d,e,g | | | Hevi-Duty | LR16-15M | 12 | 16 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 595 | a,b,d,e,g | | | Chalco | 16V-15A | 8 | 16 | 15 | ±0.1 |
±0.1 | 25 | 1 | yes | R 10 | 350
340 | a,b,e,g | | | Con Av | HS15-17.5 | 14 | 16 | 17.5 | 0.025 | 0.025 | 25 | 1 | yes | ĸ | 340 | a,b,e,g | | | Hevi-Duty | LR16-20M | 12 | 16 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 905 | a,b,d,e,g | | | Chalco | 16V-20A | 8 | 16 | 20 | ±0.1 | ±0,1 | 25 | 1 | yes | R 10 | 395 | a,b,e,g | | | Chalco | 16V-25A | 8 | 16 | 25 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 430 | a,b,e,g | | | Hevi-Duty | LR16-30M | 12 | 16 | 30 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 960 | a,b,d,e,g | | нс | Con Av | FS15-35.0 | 14 | 16 | 35 | 0.025 | 0.025 | 25 | 1 | yes | R | 515 | a,b,e,g | | 21 | Chalco | 16V-40A | 8 | 16 | 40 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 525 | a,b,e,g | | | Chalco | 16V-50A | 8 | 16 | 50 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 600 | a,b,e,g | | | El Meas | T016-6M | 0 | 16 | 60 | 10 mv | 10 mv | ina | 2 | yes | R | 1175 | a,b,d,e | | | Chalco | 16V-75A | 8 | 16 | 75 | ±0.1 | ±0,1 | 25 | 1 | yes | R10 | 690 | a,b,e,g | | | Chalco | 16V-100A | 8 | 16 | 100 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 975 | a,b,e,g | | | Vector | ST-01-3A | 0 | 18 | 3.5 | ±0.03 | 0.05 | 25 | 1 | yes | С | 215 | a,b,c,d,e,h,i | | | Sorensen | QB12-4 | 9 | 18 | 4 | ±0.014 | ±0.014 | 25 | 0.3 | yes | R | 190 | a,b,d,e,g,i | | | Sola | 281515-1 | 18 | 18 | 5 | ±l | 4 | ina | 1% | none | R | 120 | | | | Voltex | 18-5 | 0 | 18 | 5 | ±0.02 | ±0.005 | 25 | 3 | yes | R | 545 | a,b,e,h,i | | нс | Sorensen | MD18.0-5.55 | 18 | 18 | 5.55 | ±1 | 5 | ina | 1% | none | R | 120 | | | 22 | Mid-East | ME18-6 | 0 | 18 | 6 | 0.01 | 0.05 | 50 | 1 | yes | R | 495 | b,d,e,g | | | Mid-East | SS18-6 | 0 | 18 | 6 | ±0.01 | 0.05 | ina | 1 | yes | R | 397 | b,d,e | | | Mid-East | ST18-6S | 0 | 18 | 6 | 0.01 | 0.05 | 50 | 1 | yes | R | 495 | a,b,d,e,h | | | NJE | QR-18-6 | 0 | 18 | 6 | ±0.02 | ±0.005 | 50 | 3 | yes | C or R | 375 | a,b,d,e,h | | | Trans Dev | RS 18-7 | 18 | 18 | 7 | 3 mv | 3 mv | 50 | 0.25 | yes | R | ina | b,h | | | Glentron | 20588-3 | 18 | 18 | 7.5 | 0.11 | 0.11 | ina | 1 | ina | С | ina | | | | Sorensen | QB12-8 | 9 | 18 | 8 | ±0.014 | ±0.014 | 25 | 0.3 | yes | CorR | 245 | a,b,d,e,g,i | | | Lambda | LE105FM | 0 | 18 | 8 | 0.05 | 0.05 | 50 | 0.5 | yes | R | 475 | a,b,d,e,g,i | | | Vector | CM-01-8A | 0 | 18 | 8 | ±0.01 | ±0.01 | 25 | 1 | yes | R | 475 | a,b,d,e,h,i | | HC | Mid-East | SS18-9 | 0 | 18 | 9 | ±0.01 | 0.05 | ina | 1 | yes | R | 495 | b,d,e | | HC
23 | ACA Foot | CTIO | | 10 | 0 | 0.01 | 0.05 | 60 | 1 | wee. | D | 595 | 2 h d a h | | | Mid-East | ST18-9
FT-FTR18-10 | 0 | 18
18 | 9 | 0.01
±1 | 0.05
0.9 v | 50
ina | 1 400 | yes | R
%R | 149 | a,b,d,e,h | | | Trygon
Voltex | 18-10 | 0 | 18 | 10 | ±0,02 | ± 0.01 | 25 | 3 | yes | R | 620 | a,b,e,h,i | | | Harrison | 6363A | 0 | 18 | 10 | 0.01 | 0.01 | 50 | 0.5 | none | R | 359 | a,b,e,h | | | Harrison | 6263A | 0 | 18 | 10 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 435 | a,b,d,e,h,i | | - | ., | W010 10:: | | 10 | 10 | 0.01 | 0.01 | 50 | , | | D | 636 | | | | Kepco
Sorensen | KS18-10M
MD18.0-11.1 | 0 18 | 18
18 | 10
11,1 | 0.01
±1 | 0.01 | 50
ina | 1 1% | yes | R
R | 575
145 | a,b,d,e,h,i | | | Mid-East | SS18-12 | 0 | 18 | 12 | ±0.01 | 0.05 | ina | 176 | yes | R | 539 | b,d,e | | | Mid-East | ST18-12S | 0 | 18 | 12 | 0.01 | 0.05 | 100 | 1 | yes | R | 695 | a,b,d,e,h | | | Vector | CM-01-1L | 0 | 18 | 12 | ±0.01 | 0.01 | 25 | 1 | yes | R | 464 | a,b,d,e,h,i | | HC | | | | | | | | | | | | | | | 24 | Sorensen | QB12-15 | 9 | 18 | 15 | ±0.014 | ±0.014 | 25 | 0.3 | yes | C or R | 315 | a,b,d,e,g,i | | | Lambda | LE106FM | 0 | 18 | 15 | 0.05 | 0.06 | 50 | 0.5 | yes | R | 640 | a,b,d,e,g,i | | | Mid-East | SS18-15
ST18-15S | 0 | 18
18 | 15
15 | ±0.01
0.01 | ±0.01
0.5 | 100 | 1 | yes | R
R | 569
795 | b,d,e
a,b,d,e,h | | | Mid-East
Voltex | 18-15 | 0 | 18 | 15 | ±0.02 | ±0.01 | 25 | 1 3 | yes
yes | R | 695 | a,b,e,h,i | | | TOREA | 10-10 | 0 | 40 | 10 | _0.01 | _0,01 | | , | 763 | " | 030 | 210101111 | | | | | | OUTPUT | | | REC | GULATION | | | | | | |----|----------------------|-------------------------|---------------|---------------|--------------|-----------|-----------|---|--------------|--------|----------|-------------|--------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (μ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Trans Dev | RS18-20 | 18 | 18 | 20 | 5 mv | 5 mv | 50 | 0.3 | yes | R | ina | b,h | | | Harrison | 6264A | 0 | 18 | 20 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 525 | a,b,d,e,h,i | | | Harrison | 6364A | 0 | 18 | 20 | 0.01 | 0.01 | 50 | 0.5 | none | R | 450 | a,b,e,h | | | Lambda | LE107FM | 0 | 18 | 22 | 0.05 | 0.05 | 50 | 0.5 | yes | R | 745 | a,b,d,e,g,i | | нс | Sorensen | MD18.0-22.4 | 18 | 18 | 22.4 | ±l | 5 | ina | 1% | none | R | 185 | | | 25 | Керсо | KS18-25M | 0 | 18 | 25 | 0.01 | 0.01 | 50 | 1 | yes | R | 970 | ahdahi | | | NJE | Sy-18-30M | 5 | 18 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 555 | a,b,d,e,h,i
a,b,d,e,g | | | NJE | CR-18-30 | 0 | 18 | 30 | ±0.02 | ±0,01 | 100 | 1 | yes | CorR | 610 | a,b,d,e,h | | | Mid-East | SS18-35 | 0 | 18 | 35 | ±0.01 | 0.05 | ina | 1 | yes | R | 795 | b,d,e | | | Mid-East | ST18-35 | 0 | 18 | 35 | 0.01 | 0.05 | 50 | 1 | yes | R | 995 | a,b,d,e,h | | | Harrison | 6428A | 0 | 18 | 45 | 18 mv | 18 mv | 300 | 0,2 | yes | R | 550 | a,b,d,e,f,h,i | | | Kepco | KS18-50M | 0 | 18 | 50 | 0.01 | 0,01 | 50 | 1 | yes | R | 1360 | b,d,e,h,i | | | Mid-East | MS17-10 | 15.4 | 19 | 10 | ±1 | ±l | ina | 0.5% | yes | R | 750 | b | | | Con Av | HS18-16.5 | 17 | 19 | 16.5 | 0.025 | 0.025 | 25 | 1 | yes | R | 340 | a,b,e,g | | нс | Mid-East | MS 17-30 | 15.4 | 19 | 30 | ±l | ±l | ina | 9.5% | yes | R | 750 | b | | 26 | Con Av | FS18-32.0 | 17 | 19 | 32 | 0.025 | 0.025 | 25 | 1 | yes | R | 515 | a,b,e,g | | | Mid-East | MS17-45 | 15.4 | 19 | 45 | ±1 | ±1 | ina | 0.5% | yes | R | 1175 | p p | | | Mid-East | MS17-80 | 15.4 | 19 | 80 | ±1 | ±l | ina | 0.5% | yes | R | 1400 | b | | | Deltron | DP18-411 | 16 | 20 | 4-75 | ±l | ±l | 100 ms | 0.8% | yes | R | 170 | a,b,d,h | | | El Meas | PRO20-4M | 0 | 20 | 4 | 0.04 | 0.04 | 150 | 1 | yes | ½R | 250 | a,b,d,e,g,i | | | Sorensen | QRB20-4 | 0 | 20 | 4 | 0.014 | 0.014 | 50 | 0,2 | yes | R | 255 | a,b,d,e,g,i | | | Hevi-Duty | LR20-5M | 16 | 20 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 450 | a,b,d,e,g | | | Chalco | 20V-5A | 10 | 20 | 5 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 230 | a,b,e,g | | | Fairlane | 205 | 1 | 20 | 5 | 20 mv | 10 mv | 50 | 500 | yes | R | 325 | b,d,e,h | | нС | Fairlane | 206 | 0.1 | 20 | 5 | 20 mv | 10 mv | 50 | 500 | yes | R | 420 | b,d,e,h | | 27 | Deltron | HP20-5 11 | 0 | 20 | 5-50 | 0.0520 | 0.0520 | 50 | 123 | yes | C 13,24 | 255 | d,h 15,22,25,2 | | | Harrison | 6285A | 0 | 20 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | C | 350 | a,b,c,d,e,h,i | | | Pioneer | R R20-5-A | 0 | 20 | 5 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | | Pioneer | R R20-5-B | 0 | 20 | 5 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | | Trygon | HR20-5B | 0 | 20 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | С | 299 | a,b,d,e,h,i | | | Lambda | LH122FM | 0 | 20 | 5.7 | 0.015 | 0.015 | ina | 0,25 | yes | ½R | 260 | a,b,d,e,i | | | Hyperion | HY-Si-20-6 | 0 | 20 | 6 | 0.01 | 0.01 | 50 | 0.5 | yes | ½R | 249 | a,b,d,e,g | | | Tech Pwi | L20-6.0M | 0 | 20 | 6 | ±0,1 | ±0.3 | ina | 0.5% | yes | C or R | 215 | a,b,d,e | | | Tech Pwr | LS20.0-6.0M | 0 | 20 | 6 | ±0.01 | ±0.03 | ina | 0.5 | yes | C or R | 395 | a,b,d,e | | нс | Hyperion | HY-ZS-20-7.5 | 0 | 20 | 7.5 | 0.01 | 0.01 | 50 | 0.5 | yes | ⅓R | 279 | a,b,c,d,e,g,i | | 28 | Sorensen | QRC20-8 | 0 | 20 | 8 | ±0.0054 | ±0.0054 | 50 | 1 | yes | C or R | 410 | a,b,d,f,g,i | | | Mid-East | MS20-10 | 18 | 20 | 10 | ±l | ±l | ina | 0.5% | yes | R | 750 | b | | | Hevi-Duty | LR20-10M | 16 | 20 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 560 | a,b,d,e,g | | | Chalco | 20V-10A | 10 | 20 | 10 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 305 | a,b,e,g | | | Harrison | 6286A | 0 | 20 | 10 | 0.01 | 0.01 | 50 | 0.5 | yes | С | 395 | a,b,c,d,e,h,i | | | Hyperion | HY-Si-20-10 | 0 | 20 | 10 | 0.01 | 0.01 | 50 | 0.5 | yes | ⅓R | 349 | a,b,d,e,g | | | Hyperion | HY-T1-20-10 | 0 | 20 | 10 | 0.02 | 0.02 | 50 | 1 | yes | R | 440 | a,b,d,g,i | | | Pioneer | RR20-10A | 0 | 20 | 10 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | | Pioneer | RR20-10-B | 0 | 20 | 10 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | нС | Trygon | HR20-10B | 0 | 20 | 10 | 0.01 | 0.01 | 50 | 0.5 | yes | С | 369 | a,b,d,e,h,i | | 29 | Voitex | 82-197-2M | 0 | 20 | 10 | 0.14 | 0.14 | ina | 1 | yes | R | ina | е | | | Tech Pwr | LS20.0-12.0M | 0 | 20 | 12 | ±0.01 | ±0.03 | ina | 0,5 | yes | C or R | 485 | a,b,d,e | | | Hevi-Duty | LR20-15M | 16 | 20 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 630 | a,b,d,e,g | | | Chalco | 20V-15A | 10 | 20 | 15 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 335 | a,b,e,g | | | Sorensen | QRC20-15 | 0 | 20 | 15 | ±0.0054 | ±0.005 4 | 50 | 1 | yes | C or R | 525 | a,b,d,f,g,i | | | Hevi-Duty | LR20-20M | 16 | 20 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 920 | a,b,d,e,g | | | Chalco | 20V-20A | 10 | 20 | 20 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 395 | a,b,e,g | | | Hyperion | HY-Si-20-20 | 0 | 20 | 20 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 449 | a,b,d,e,g | | | Pioneer
Pioneer | RR20-20-A
RR20-20-B | 0 | 20 | 20 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | HC | rulleer | N NZU-ZU-B | 0 | 20 | 20 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | 30 | Chalco | 20V-25A | 10 | 20 | 25 | ±0.1 | ±0.1 | 25 | 1 | yes | R | 430 | a,b,e,g | | | Tech Pwr | L20-25.0M | 0 | 20 | 25 | ±0.1 | ±0.3 | ina | 0.5% | yes | C or R | 350 | a,b,d,e | | | | 1 1 V/D D.75 DM | 0 | 20 | 25 | ±0.01 | ±0.03 | ina | 0.5 | yes | CorR | 690 | a,b,d,e | | | Tech Pwr
Mid-East | LS20,0-25,0M
MS20-30 | 18 | 20 | 30 | ±1 | ±l
 ina | 0.5% | yes | R | 750 | b | | | 4-11 | | | OUTPUT | | | REC | SULATION | | | | | | |----------|----------------------|--------------------------------------|---------------|-----------------|---------------|-----------------------------|-----------------------------|---|--------------|------------|---------------------------|--------------|--------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | E1 Meas | PVC20-30M | 0 | 20 | 30 | 0.01 | 0.01 | ina | 0.5 | yes | R | 875 | a,b,d,e | | | Hyperion | HY-T1-20-30 | 0 | 20 | 30 | 0.02 | 0.02 | 50 | 1 | yes | R | 645 | a,b,d,g,i | | | Pioneer | RR20-30-A | 0 | 20 | 30 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | | Pioneer | RR20-30-B | 0 | 20 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | нс | Sorensen | QRC-20-30 | 0 | 20 | 30 | ±0.0054 | ±0.0054 | 50 | 1 | yes | C or R | 700 | a,b,d,f,g,i | | 31 | Chalco | 20V-40A | 10 | 20 | 40 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 525 | a,b,e,g | | | Trygon | SR20-40 | 2 | 20 | 40 | 0.15 | 0.3 | 10 ms | 100 | yes | R | 745 | a,b,d,e,h | | | Mid-East | MS20-45 | 18 | 20 | 45 | ±1 | ±l | ina | 0.5% | yes | R | 1175 | b | | | Hyperion | HY-T1-20-45 | 0 | 20 | 45 | 0.02 | 0,02 | 50 | 1 | yes | R | 1095 | a,b,d,g,i | | | Chalco | 20V-5QA | 10 | 20 | 50 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 640 | a,b,e,g | | | Hyperion | HY-Si-20-50 | 0 | 20 | 50 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 1249 | a,b,d,e,g | | | Trygon | SR20-70 | 2 | 20 | 70 | 0.15 | 0.3 | 10 ms | 100 | yes | R | 995 | a,b,d,e,h | | | Deltron | DP18-75 | 16 | 20 | 75 | 0.5 | 0.5 | 50 | 1% | yes | R | 595 | a,b,d,h | | | Chalco | 20V-75A | 10 | 20 | 75 | ±0.1 | ±0.1 | 25 | 1 | yes | R 10 | 745 | a,b,e,g | | 4C | Mid-East | MS20-80 | 18 | 20 | 80 | ±1 | ±1 | ina | 0.5% | yes | R | 1400 | b | | 32 | Chalco | 20V-100A | 10 | 20 | 100 | ±0.1
±0.075 ⁴ | ±0.1
±0.075 ⁴ | 25
30 ms | 1 0.4% | yes | R ¹⁰
C or R | 1080
1055 | a,b,e,g | | | Sorensen | DCR20-125
RS18-4.5M ¹¹ | 0
15 | 20
21 | 125
4,5-12 | ±0.075*
0.01 | ±0.075*
0.01 | 30 ms
50 | 0.4% | yes | ₩R | 310 | a,b,d,f,g,i
a,b,d,e,h | | | Deltron
Con Av | HS20-15.5 | 19 | 21 | 15.5 | 0.01 | 0.01 | 25 | 1 | yes
yes | r ₂ rc
R | 340 | a,b,e,g | | | NJE | SR-20-5.5M | 18 | 22 | 5.5 | 0.025 | 0.023 | 15 | 1 | yes | R | 285 | a,b,d,e,g | | | | | | | | | | | | | | | | | | NJE
Con Av | SR-20-11M
FS20-30.0 | 18
19 | 22 | 11
30 | 0.005
0.025 | 0.01 | 15
25 | 1 | yes
yes | R
R | 360
515 | a,b,d,e,g
a,b,e,g | | - 1 | Geo Space | 18/180 | 13 | 22.5 | 10 | ina | 0.2 | ina | 0.1% | yes | C or R | ina | | | | Deltron | LH244 11 | 7 | 24 | 4-20 | ±0.1 14 | ±0.1 14 | 50 | 1 | yes | R | 241 | b,e,h 15,16 | | нс | Sorensen | MD24.0-4.2 | 24 | 24 | 4.2 | ±l | 5 | ina | 1% | none | R | 115 | | | 33 | Glentron | 20588-4 | 24 | 24 | 5 | 0.14 | 0.14 | ina | 1 | ina | С | ina | | | | Hevi-Duty | LR24-5M | 20 | 24 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 470 | a,b,d,e,g | | | Sola | 281024-1 | 24 | 24 | 6 | ±1 | 4 | ina | 1% | none | R | 145 | | | | Acme | PS-41423 | 24 | 24 | 6.25 | ±1 | ±1 | ina | 1% | none | R | 143 | | | | Trygon | FT-FTR24-8 | 24 | 24 | 8 | ±l | 1 v | ina | 400 | none | ¼R | 149 | | | | Sorensen | MD24.0-8.32 | 24 | 24 | 8.32 | ±1 | 5 | ina | 1% | попе | R | 145 | | | | Hevi-Duty | LR24-10M | 20 | 24 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 565 | a,b,d,e,g | | | Trans Dev | RS 24-14 | 24 | 24 | 14 | 5 mv | 5 mv | 50 | 0.3 | yes | R | ina | b,h | | | Sola
Hevi-Duty | 281203
LR24-15M | 24 20 | 24 | 15
15 | ±1
±0.03 | 4
±0,03 | ina
100 | 1%
1 | none | R
R | 250
630 | a,b,d,e,g | | HC
34 | | | | | | | | | | | | | 1-17118 | | | Soren sen | MD24.0-16.64 | 24 | 24 | 16.64 | <u>+l</u> | 5 | ina
100 | 1%
1 | none | R
R | 185
935 | 2 h d 2 a | | | Hevi-Duty | LR24-20M
LR24-30M | 20 | 24 | 20
30 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1005 | a,b,d,e,g
a,b,d,e,g | | | Hevi-Duty
Deltron | DP24-4 11 | 20
21 | 24
25 | 4-16 | ±0.03
±1 | ±0.03
±1 | 100 ms | 0.8% | yes | R | 165 | a,b,d,h | | | Deltron | L Series | 126 | 25 ⁶ | 5-45 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 273 | a,b,d,e,h | | | | KO 25-50M | 0 | 25 | 50 | 1 | 1 | 500 ms | 40 | 200 | R | 995 | b,d,e,h,i | | | Kepco
NJE | SR-24-5M | 22 | 26 | 5 | 0.005 | 0.01 | 15 | 1 | yes
yes | R | 285 | a,b,d,e,g | | | Sorensen | QB18-6 | 13 | 26 | 6 | ±0.014 | ± 0.014 | 25 | 0.3 | yes | C or R | 245 | a,b,d,e,g,i | | | NJE | SR-24-10M | 22 | 26 | 10 | 0.005 | 0.005 | 15 | 1 | yes | R | 360 | a,b,d,e,g | | нС | Sorensen | QB18-12 | 13 | 26 | 12 | ±0.014 | ±0.014 | 35 | 0.3 | yes | C or R | 315 | a,b,d,e,g,i | | 35 | Con Av | HS24-13,5 | 22 | 26 | 13.5 | 0.025 | 0.025 | 25 | 1 | yes | R | 340 | a,b,e,g | | | Con Av | FS24-25.0 | 22 | 26 | 25 | 0.025 | 0.025 | 25 | 1 | yes | R | 515 | a,b,e,g | | | Valor | A V26-40 | 22 | 26 | 40 | 6 mv | 10 mv | ina | 3 | none | R | ina | a,b | | | Mag Res | 63-105-0 | 26.5 | 26.5 | 15 | 1 | 1 | ina | 1% | yes | R | 1295 | d,e | | | Mag Res | 63-106-0 | 26.5 | 26,5 | 23 | 1 | 1 | ina | 1% | yes | R | 733 | d,e | | | Mid-East | MS25-8
MS25-25 | 22.5
22.5 | 27.5 | 8
25 | ±1 | <u>+1</u> | ina | 0.5%
0.5% | yes | R
R | 750
750 | b
b | | | Mid-East
Mid-East | MS25-25
MS25-37 | 22.5 | 27.5
27.5 | 37 | ±1
±1 | ±1
±1 | ina
ina | 0.5% | yes | R | 1175 | b | | | Mid-East
Mid-East | MS25-37
MS25-60 | 22.5 | 27.5 | 60 | ±1
±1 | ±1 | ina | 0.5% | yes | R | 1400 | b | | | Sorensen | MD28.0-3.6 | 28 | 28 | 3.6 | ±1
±1 | 5 | ina | 1% | none | R | 115 | u u | | HC
36 | an chach | MD20,0-3,0 | 20 | 20 | | | | Tied | | IIUITE | | | | | 30 | Deltron | RS24-3.6M11 | 20 | 28 | 3.6-9.6 | 0.01
0.1 ⁴ | 0.01
0.1 ⁴ | 50 | 0.5
1 | yes | ½R
C | 310 | a,b,d,e,h | | | Glentron | 20588-5
528F2 | 28
26 | 28
28 | 5 5 | ±10 mv | ±20 mv | ina
50 | 1 | ina | C
R | ina
325 | hda | | | Scint | | 1 | | 7 | ±10 mv
±1 | _ | | 400 | yes | | 149 | b,d,g | | | Trygon
Sorensen | FT-FTR28-7
MD28.0-7.2 | 28
28 | 28 | 7.2 | ±1
±1 | 0.9 v
5 | ina
ina | 1% | none | ¼R
R | 149 | | | | anie liaeli | mozo,07,2 | 20 | 20 | 1.6 | | , | 1140 | a 70 | HOHE | " | . 10 | | 37 | | | | | ОИТРЦТ | | | RE | GULATION | | | | | | |-----|-----------------|----------------------|---------------|---------------|--------------|---------------|----------------|---|--------------|--------|----------|-------------|------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Sola | 28626 | 28 | 28 | 8 | ±l | 4 | ina | 1% | none | R | 180 | | | | Trans Dev | RS28-14 | 28 | 28 | 14 | 5 mv | 5 mv | 50 | 0.3 | yes | R | ina | b,h | | | Sorensen | MD28.0-14.3 | 28 | 28 | 14,3 | ±l | 5 | ina | 1% | yes | R | 180 | J | | | Christie | M32-15RF | 28 | 28 | 15 | 34 | 34 | ina | 2% | | CorR | ina | | | - 1 | | | | | | 34 | 34 | 1 | | yes | | | d | | С | Christie | M32-50RF | 28 | 28 | 50 | 37 | 3, | ina | 3% | yes | C or R | ina | d | | 1 | Perkin | 28-5WX | 27.5 | 28.5 | 5 | ±0.54 | ±0.54 | 200 ms | 1% | yes | R | 320 | b,h | | _ | Un Elect | Q26-30-4A | 26 | 30 | 4 | 5 mv | 5 mv | 50 | 1 | yes | R | 378 | b,d,e,g | | | NJE | SR-28-5M | 26 | 30 | 5 | 0.005 | 0.01 | 15 | 1 | yes | R | 285 | a,b,d,e,g | | П | Hevi-Duty | LR30-5M | 24 | 30 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 480 | a,b,d,e,g | | 1 | Hevi-Duty | HC30-5M | 0 | 30 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 555 | a,b,d,e,g | | 1 | Un Elect | Q26-30-6A | 26 | 30 | 6 | 5 | 6 | 50 | 1 | | | 420 | | | | NJE | SR-28-10M | 26 | 30 | 10 | 5 mv
0.005 | 5 mv
0.01 | 15 | 1 | yes | R
R | 430
360 | b,d,e,g
a,b,d,e,g | | -1 | Un Elect | Q26-30-10A | 26 | 30 | 10 | 5 mv | 5 mv | 50 | 1 | 1 ' | R | | 1 | | | | - | | | | | | | | ye s | | 480 | b,d,e,g | | | Hevi-Duty | LR30-10M | 24 | 30 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 580 | a,b,d,e,g | | | Hevi-Duty | HC30-10M | 0 | 30 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 625 | a,b,d,e,g | | | Un Elect | Q26-30-15A | 26 | 30 | 15 | 5 mv | 5 mv | 50 | 1 | yes | R | 580 | b,d,e,g | | | Hevi-Duty | LR30-15M | 24 | 30 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 680 | a,b,d,e,g | | | Hevi-Duty | HC30-15M | 0 | 30 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 750 | | | | Hevi-Duty | LR30-20M | 24 | 30 | 20 | ±0.03 | ±0.03 | 100 | 1 | | R | | a,b,d,e,g | | | | | | | | | | | | yes | | 970 | a,b,d,e,g | | | Hevi-Duty | HC30-20M | 0 | 30 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1020 | a,b,d,e,g | | | Un Elect | Q26-30-25 A | 26 | 30 | 25 | 5 mv | 5 mv | 100 | 1 | yes | R | 705 | b,d,e,g | | | Hevi-Duty | LR30-30M | 24 | 30 | 30 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1020 | a,b,d,e,g | | | Hevi-Duty | HC30-30M | 0 | 30 | 30 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1020 | a,b,d,e,g | | | Valor | A V30-40 | 26 | 30 | 40 | 6 mv | 10 mv | ina | 3 | none | R | ina | a,b | | | Christie | BC030-50 | 1 | 30 | 50 | ±0.54 | ±0.54 | 25-50 ms | 100 | yes | C or R | ina | b,d,g | | 9 | Dy Con | 27V | 23 | 31 | 4 | note 2 | note 2 | 50 | 5 | yes | C or R | 320 | e,g | | | Con Av | HS29-12,0 | 27 | 31 | 12 | 0.025 | 0,025 | 25 | 1 | yes | R | 340 | | | | Con Av | | | | | | | | | | | - | a,b,e,g | | | | FS29-23.0 | 27 | 31 | 23 | 0.025 | 0.025 | 25 | 1 | yes | R | 515 | a,b,e,g | | | Deltron | HP32-4 ¹¹ | 0 | 32 | 4-6 | 0.0518 | 0.0518 | 50 | 1 | yes | C or R | 310 | d,h | | | Perkin | MTR28-5A | 24 | 32 | 5 | ±0.1 | ±0.1 | i na | 5 | yes | R | 425 | d,e ²² | | | El Meas | PV32-5M | 0 | 32 | 5 | 0.01 | 0.01 | 200 | 0.5 | yes | R | 420 | a,b,d,g | | | Hyperion | HY-ZS-32-5 | 0 | 32 | 5 | 0.01 | 0.01 |
50 | 0.5 | yes | ⅓R | 269 | a,b,c,d,e,g, | | | Mid-East | MS29-8 | 26.1 | 32 | 8 | ±1 | ±1 | ina | 0.5% | yes | R | 750 | b | | 81 | El Meas | PV32-10M | 0 | 32 | 10 | 0.01 | 0.01 | 200 | 0.5 | yes | R | 550 | | | | Harrison | 6433A | 0 | 32 | 10 | 0.05 | 0.01 | 300 ms | 1% | yes | R | 370 | a,b,d,g
a,b,d,e,h,i | | C | | 5. 4 20 1000 | | | 10 | | | | | | | | | | | NJE | ELA-32-10CM | 0 | 32 | 10 | ±0.5 | ±2 | ina | 1% | yes | C | 485 | d,e | | | NJE | ELB-32-10CM | 0 | 32 | 10 | ±0.5 | ±5 | ina | 1% | yes | C | 445 | d,e | | | Perkin | 28-10WXA | 24 | 32 | 10 | ±0.54 | ±0.54 | 200 ms | 1% | yes | R | 375 | b,h | | | Perkin | MTR28-10A | 24 | 32 | 10 | ±0.1 | ±0.1 | ina | 2 | yes | R | 556 | d,e | | | Rapid | 2432A | 24 | 32 | 10 | ±0.5 | ±0.5 | ina | 1% | yes | С | 430 | d | | | NJE | TC-32-10 | 10 | 32 | 10 | ±0,5 | ±0.5 | 30 | 1% | yes | C or R | 320 | a,b,d,e,h | | | Pwr Inst | 2815 | 22 | 32 | 15 | ±l | ±1 | 200 ms | 100 | yes | C or R | ina | b,d,e,g | | | El Meas | PV32-15M | 0 | 32 | 15 | 0.01 | 0.01 | 200 | 0.5 | yes | R | 685 | a,b,d,g | | | Glentron | 20805-0 | 0 | 32 | 15 | 10 mv | 10 mv | ina | 0.5 | ina | CorR | ina | -101018 | | | Tabtron | T32V15ARM | 0 | 32 | 15 | ±5 | ±5 | ina | 0.5% | yes | C | 225 | d | | C | 0 1 | CD 22 22 | 10 | 20 | 00 | | 100 | | 25 | | | | | | | Con Av
NJE | SP-32-20
TC-32-20 | 10
10 | 32
32 | 20 | 50 mv
±0.5 | 100 mv
±0.5 | ina
30 | 35
1% | yes | R | 525 | a,b,e,g | | | | | | | | | | | | yes | C or R | 450 | a,b,d,e,g | | | NJE | ELA-32-20RM | 0 | 32 . | 20 | ±0.5 | ±2 | ina | 1% | yes | R | 685 | d,e | | | NJE | ELB-32-20RM | 0 | 32 | 20 | ±0.5 | 5 | ina | 1% | yes | R | 595 | d,e | | | Mid-East | MS29-25 | 26.1 | 32 | 25 | ±1 | ±l | ina | 0.5% | yes | R | 750 | b | | | Perkin | M60V | 0 | 32 | 25 | ±l | ±1 | 200 ms | 1% | yes | C or R | 609 | d,h | | | Rapid | 3225 R | 0 | 32 | 25 | ±l | ±1 | ina | 1% | yes | C | ina | | | | Tabtron | MRT 32 V25A | 0 | 32 | 25 | ±5 | ±5 | ina | 1% | yes | C | 423 | d | | | Deltron | XR28-30M | 24 | 32 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 794 | a,d,h | | | NJE | TRM-28-30 | 24 | 32 | 30 | 0.01 | 0.01 | | 1% | | CorR | 895 | | | | Hac | 111/11-20-30 | 27 | J.L | 30 | 0,1 | 0.1 | ina | 1 /0 | yes | Curk | 933 | b,d,e | | - 1 | | 28-3 OW X | 24 | 32 | 30 | ±0.05 | ±0.05 | 200 ms | 1% | yes | R | 723 | b,d,h | | - 1 | Perkin | | | 22 | 30 | ±0.5 | ±0.5 | ina | 1% | yes | C | ina | 1 | | C 2 | Perkin
Rapid | 2432EMA | 24 | 32 | | | | 1116 | | yes . | | 1110 | | | - 1 | | 2432EMA
3230R | 24 | 32 | 30 | ±0.5 | ±0.5 | ina | 1% | yes | R | ina | | | - 1 | Rapid | | | | | | | | | 1 ' | | | a,b,e,g | Notes, abbreviations and manufacturers' index at end of this section. April 19, 1966 | | | | 4,1 | OUTPUT | | | REC | GULATION | | | | | | |----|----------------------|----------------------|---------------|---------------|--------------|---------------|--------------|---|--------------|------------|-----------------|-------------|--------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (μ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | El Meas | PV32-30M | 0 | 32 | 30 | 0.01 | 0.01 | ina | 0.5 | yes | R | 855 | a,b,d | | | NJE | ELA-32-30RM | 0 | 32 | 30 | ±0.5 | <u>+2</u> | ina | 1% | yes | R | 980 | d,e | | | NJE | E LB-32-30RM | 0 | 32 | 30 | ±0.5 | ±5 | ina | 1% | yes | R | 925 | d,e | | | Tabtron | T32V30ARM | 0 | 32 | 30 | ±5 | ±5 | ina | 1% | yes | C | 369 | d | | С | Mid-East | MS29-27 | 26.1 | 32 | 37 | ±l | ±1 | ina | 0.5% | yes | R | 1175 | b | | 3 | Pwr Inst | 2840 | 22 | 32 | 40 | ±1 | ±1 | 200 ms | 100 | yes | C or R | ina | b,d,e,g | | | Hyperion | HY-T1-32-40 | 0 | 32 | 40 | 0.02 | 0.02 | 50 | 1 | yes | R | 1095 | a,b,d,g,i | | | Con Av | SP-32-50 | 10 | 32 | 50 | 50 mv | 100 mv | ina | 35 | yes | R | 705 | a,b,e,g | | | NJE | TC-32-50 | 10 | 32 | 50 . | ±0.5 | ±0.5 | 30 ms | 1% | yes | C or R | 750 | a,b,d,e,g | | | Mid-East | MS29-60 | 26,1 | 32 | 60 | ±l | ±1 | ina | 0.5% | yes | R | 1400 | b | | 1 | NJE | TRM-28-60 | 24 | 32 | 60 | 0,1 | 0.1 | ina | 1% | yes | C or R | 1330 | d,e | | | Con Av | SP-32-100 | 10 | 32 | 100 | 50 mv | 100 mv | ina | 35 | yes | R | 1195 | a,b,e,g | | | Chalco | 33V-5A | 15 | 33 | 5 | ±0.1 | ±0.1 | 25 | 1 | yes | R | 235 | a,b,e,g | | - | Chalco | 33 V-10A | 15 | 33 | 10 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 320 | a,b,e,g | | С | Chalco | 33V-15A | 15 | 33 | 15 | ±0.1 | ±0,1 | 25 | 1 | yes | R ¹⁰ | 375 | a,b,e,g | | 4 | Chalco | 33V-20A | 15 | 33 | 20 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 435 | a,b,e,g | | | Chalco | 33V-25A | 15 | 33 | 25 | ±0.1 | ±0,1 | 25 | 1 | yes | R ¹⁰ | 505 | a,b,e,g | | | Chalco | 33V-40A | 15 | 33 | 40 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 575 . | a,b,e,g | | | Chalco | 33V-50A | 15 | 33 | 50 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 670 | a,b,e,g | | | Chalco | 33V-75A | 15 | 33 | 75 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 950 | a,b,e,g | | | Chalco | 33 V-100A | 15 | 33 | 100 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 1250 | a,b,e,g | | | Lambda | LA50-03BM | 0 | 34 | 5 | 0.05 | 0.1 | 50 | 1 | yes | R | 388 | a,b,d,e,g | | | Lambda | LA100-03BM | 0 | 34 | 10 | 0.05 | 0.1 | 50 | 1 | yes | R | 495 | a,b,d,e,g | | | Lambda | LA200-03BM | 0 | 34 | 20 | 0.05 | 0.1 | 50 | 1 | yes | R | 715 | a,b,d,e,g | | С | Deltron | RS30-4M ¹ | 25 | 35 | 4-8 | 0.01 | 0.01 | 50 | 0.5 | yes | ⅓R | 355 | a,b,d,e,h | | 5 | Trans Dev | VS 201 | 0 | 35 | 5 | ±0.05 | ±0.1 | 50 | 1 | yes | R | ina | d,e,h | | | Sola | 285110 | 5 | 35 | 7 | ±1 | ina | ina | 0.1% | yes | R | 325 | d | | | Dy Con | TT2/35-10 | 2 | 35 | 10 | note 2 | note 2 | 50 | 3 | yes | C or R | 640 | b,d,e,g | | | Un Elect
Un Elect | L3510
LQ35-10A | 0 | 35
35 | 10 | 3 mv
2 mv | 3 mv
5 mv | 50 | 0.6 | yes
yes | C
R | 425
585 | b,d,e,g
b,d,e,g | | | Con Av | HS33-11.0 | 31 | 35 | 11 | 0.025 | 0,025 | 25 | 1 | yes | R | 340 | a,b,e,g | | | Un Elect | L3515 | 0 | 35 | 15 | 3 mv | 3 mv | 50 | 1 | yes | C | 525 | b,d,e,g | | | Un Elect | LQ35-15A | 0 | 35 | 15 | 2 mv | 5 mv | 50 | 0.6 | yes | R | 625 | b,d,e,g | | | Con Av | F\$33-21.0 | 31 | 35 | 21 | 0.025 | 0,025 | 25 | 1 | yes | R | 515 | a,b,e,g | | 1C | Un Elect | LQ35-25 | 0 | 35 | 25 | 2 mv | 5 mv | 100 | 2 | yes | R | 760 | b,d,e,g | | 46 | Sorensen | QB28-4 | 18 | 36 | 4 | ±0,014 | ±0.014 | 25 | 0.3 | yes | C or R | 245 | a,b,d,e,g,i | | | ERA | SL36-4M | 0 | 36 | 4 | 0,01 | 0,05 | 50 | 1 | yes | R | 290 | a,b,d,e,g | | | ERA | TR36-4 | 0 | 36 | 4 | ±0.02 | ±0,05 | 50 | 1 | yes | R | 370 | b,d,e,g | | | NJE | QR-36-4 | 0 | 36 | 4 | ±0.02 | ±0.005 | 50 | 3 | yes | C or R | 420 | a,b,d,e,h | | | Scint | 536F2 | 34 | 36 | 5 | ±10 mv | ±20 mv | 50 | 1 | yes | R | 345 | b,d,g | | | Hevi-Duty | LR36-5M | 30 | 36 | 5 | ±0.03 | ±0,03 | 50 | 1 | yes | R | 495 | a,b,d,e,g | | | Mag Res | DMR28-5 | 18 | 36 | 5 | ±0.2 | ±0.5 | 100 ms | 0,2% | yes | C or R | 625 | e,g | | | Behl Invar | TPA-5 | 0 | 36 | 5 | 10 mv | 5 mv | 30 | 0.5 | yes | R | 520 | b,d,e,h | | | El Meas | PV36-5M | 0 | 36 | 5 | 0.01 | 0.01 | 200 | 0.5 | yes | R | 450 | a,b,d,g | | IC | El Meas | T036-5M | 0 | 36 | 5 | 10 mv | 10 mv | 80 | 1 | yes | R | 435 | b,d,e,g | | 7 | Harrison | 6266A | 0 | 36 | 5 | 0.01 | 0,01 | 50 | 0.5 | yes | R | 435 | a,b,d,e,h,i | | | Harrison | 6366A | 0 | 36 | 5 | 0.01 | 0.01 | 50 | 0.5 | none | R | 359 | a,b,e,h | | | Керсо | KS36-5M | 0 | 36 | 5 | 0.01 | 0.01 | 50 | 1 | yes | R | 525 | a,b,d,e,h,i | | | Lambda | LE101FM | 0 | 36 | 5 | 0.05 | 0.05 | 50 | 0.5 | yes | R | 470 | a,b,d,e,g,i | | | Керсо | SM36-5M | 0 | 36 | 5 | 0.01 | 0.05 | 50 | 1 | yes | R | 395 | b,d,e,h,i | | | NJE | RVC-36-5M | 0 | 36 | 5 | ±0.01 | ±0.005 | 50 | 1 | yes | C or R | 345 | a,b,d,e,g,i | | | Perkin | MTR036-5A | 0 | 36 | 5 | ±10 mv | ±10 mv | ina | 1 | yes | R | 468 | | | | Pioneer | RR36-5A | 0 | 36 | 5 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | | Pioneer | RR36-5B | 0 | 36 | 5 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | C | Pwr Des | 3650\$ | 0 | 36 | 5 | 0.05 | 0.05 | 50 | 0.5 | yes | С | 299 | d,e,g,i | | 8 | Pwr Des | 3650R | 0 | 36 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 350 | a,b,g,i | | | Pwr Inst | 3605 | 0 | 36 | 5 | ±0,1 | ±0.1 | 50 | 1 | yes | C or R | ina | b,d,e,g | | | Pwr Srcs | PS4305 | 0 | 36 | 5 | 0.01 | 0.01 | 100 ms
50 | 1 | yes | R | 445 | d,e,g | | | Utronics
Vector | QCR36/5
CM-03-5A | 0 | 36
36 | 5 | ±0.1
±0.01 | ±0.1
0.01 | 25 | 1 | yes | R
R | 445
398 | a,b,d,e,g
a,b,d,e,h,i | | | ACCIO | OIII-W-3M | 1 | 00 | , | 20.01 | 0.01 | 50 | • | yes | " | 530 | 0,0,0,0,11,1 | | | | | | OUTPUT | | | REG | ULATION | | | | | | |----------|---|--|--------------------------|----------------------------------|----------------------------------|--|--|---|-----------------------------|----------------------------------|---------------------------------|---|---| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | нс | Deltron
Mid-East
Mid-East
Voltex
Un Elect | HP36-6 ¹¹
SS36-6
ST36-6S
36-6
LQ35-6A | 0
0
0
0 | 36
36
36
36
36 | 6-30
6
6
6 | 0.05 17,20
±0.01
0.01
±0.02
2 mv | 0.05 ^{17,20} 0.03 0.03 ±0.005 5 mv | 50
ina
50
25
50 | 1
1
1
3
0.25 | yes
yes
yes
yes
yes | C or R
R
R
R | 390
429
495
620
425 | d,h,15,22
b,d,e,h
a,b,d,e,h
a,b,e,h,i
a,b,d,e,g
| | 49 | Sorensen
ERA
ERA
NJE
Vector | QB28-8
SL36-8M
TR36-8
CR-36-8
CM-03-8A | 18
0
0
0
0 | 36
36
36
36
36 | 8
8
8
8 | ±0.01 ⁴ 0.01 ±0.02 ±0.02 ±0.01 | ±0.01 ⁴ 0.05 ±0.05 ±0.01 0.01 | 35
50
50
100
25 | 0.3
1
1
1 | yes
yes
yes
yes | C or R
R
R
C or R
R | 315
355
475
410
425 | a,b,d,e,g,i
a,b,d,e,g
b,d,e,g
a,b,d,e,h
a,b,d,e,h,i | | ıc | Hevi-Duty
NJE
Behl-Invar
El Meas
El Meas | LR36-10M
SY36-10M
TPA-10
PV36-10M
T036-10M | 30
10
0
0 | 36
36
36
36
36 | 10
10
10
10
10 | ±0.03
±0.01
10 mv
0.01
0.01 v | ±0.03
±0.01
5 mv
0.01
0.01 v | 50
75
50
200
100 | 1
1
0.5
0.5 | yes
yes
yes
yes | R
C or R
R
R | 605
385
585
575
520 | a,b,d,e,g
a,b,d,e,g
b,d,e,h
a,b,d,g
b,d,e,h | | 0 | Harrison
Harrison
Harrison
Kepco
Kepco | 510A
6267A
6367A
KS36-10M
SM36-10M | 0
0
0
0 | 36
36
36
36
36 | 10
10
10
10
10 | 0.5 ⁴
0.01
0.01
0.01
0.01 | 0.5 ⁴
0.01
0.01
0.01
0.05 | 50 ms
50
50
50
50 | 1%
0.5
0.5
1 | yes
yes
none
yes
yes | R
R
R
R | 450
525
450
625
525 | a,b,d,e,h
a,b,d,e,h,i
a,b,e,h
a,b,d,e,h,i
b,d,e,h,i | | ıc | Lambda
Mid-East
Mid-East
NJE
Pioneer | LE102FM
SS36-10
ST36-10S
QR-36-10
RR36-10A | 0
0
0
0 | 36
36
36
36
36 | 10
10
10
10
10 | 0.05
±0.01
0.01
±0.02
0.1 | 0.05
0.03
0.03
±0.01
0.1 | 50
ina
50
50
50 | 0.5
1
1
3
1 | yes
yes
yes
yes
yes | R
R
R
C or R
R | 575
510
695
465
request | a,b,d,e,g,i
b,d,e,h
a,b,d,e,h
a,b,d,e,h
b,e,h,i | | 51 | Pioneer
Utronics
Vector
Voltex
ERA | RR36-10B
QCR36/10
CM-03-10A
36-10
SL36-12M | 0
0
0
0 | 36
36
36
36
36 | 10
10
10
10
10 | 0.01
±0.01
±0.01
±0.02
0.01 | 0.01
±0.01
0.01
±0.01
0.05 | 50
50
25
25
50 | 1
1
1
3 | yes
yes
yes
yes | R
R
R
R | request
565
550
620
455 | b,e,h,i
a,b,d,e,g
a,b,e,h,i
a,b,e,h,i
a,b,d,e,g | | 10 | ERA
Hevi-Duty
Perkin
Rapid
Mag Res | TR36-12
LR36-15M
MR532-15A
236BMA
DMR136-15 | 0
30
2
2
0.5 | 36
36
36
36
36 | 12
15
15
15
15 | ±0.02
±0.03
±0.05
±0.5
±0.2 | ±0.05
±0.03
±0.05
±0.5
±0.2 | 50
100
200
ina
100 ms | 1
1
1%
1%
20 | yes
yes
yes
yes | R
R
C or R
C
C or R | 525
730
598
595
2219 | b,d,e,g
a,b,d,e,g
b,d,h
e,g | | HC
52 | Basier
Behl-Invar
Deltron
El Meas
El Meas | HLR-15M
TPA-15
HP36-15
PV36-15M
PVC36-15M | 0
0
0
0 | 36
36
36
36
36 | 15
15
15
15
15 | ±5 mv
10 mv
0.25
0.01
0.01 | ±5 mv
5 mv
0.25
0.01
0.01 | 50
75
50
200
100 | 2
0.5
1
0.5
0.5 | yes
yes
yes
yes | R
R
C
R | ina
750
550
715
835 | a,b, h
b,d,e,h
d,e,h
a,b,d,g
a,b,d,e,g | | 1C | El Meas
Kepco
Kepco
Lambda
Mid-East | T 036-15M
KS36-15M
SM36-15M
LE103FM
SS36-15 | 0
0
0
0 | 36
36
36
36
36 | 15
15
15
15
15 | 10 mv
0.01
0.01
0.05
0.01 | 10 mv
0.01
0.05
0.05
0.03 | 80
50
50
50
50
ina | 1
1
1
0.5 | yes
yes
yes
yes | R
R
R
4 | 650
730
625
645
595 | b,e,g
a,b,d,e,h,i
b,d,e,h,i
a,b,d,e,g,i
b,d,e,h | | 53 | Mid-East
NJE
NJE
Perkin
Pwr Inst | ST36-15S
CR-36-15
RVC-36-15M
MTRO-36-15
3615 | 0
0
0
0 | 36
36
36
36
36
36 | 15
15
15
15
15 | 0.01
±0.02
0.01
±10 mv
±0.1 | 0.03
±0.01
0.01
±10 mv
±0.1 | 50
100
50
ina
50 | 1
1
1
1 | yes
yes
yes
yes | R
C or R
R
R
C or R | 795
540
545
850
ina | a,b,d,e,h
a,b,d,e,h
a,b,d,e,g,i
d,e
b,d,e,g | | IC | Pwr Srcs
Trygon
Utronics
Vector
Hevi-Duty | PS4315
M36-15A
QCR36/15
CM-03-1L
LR36-20M | 0
0
0
0
30 | 36
36
36
36
36
36 | 15
15
15
15
20 | 0.01
0.01
±0.01
±0.01
±0.03 | 0.05
0.01
±0.01
0.01
±0.03 | 100 ms
50
50
25
100 | 1
1
1
1 | yes
yes
yes
yes | R
R
R
R | 590
575
635
670
1055 | d,e,g
a,b,d,e,h,i
a,b,d,e,g
a,b,e,h,i
a,b,d,e,g | | 54 | NJE
ERA
NJE
Pioneer
Pioneer | SY-36-20M
TR36-20
CR-36-20
RR36-20A
RR36-20B | 10
0
0
0
0 | 36
36
36
36
36 | 20
20
20
20
20
20 | ±0.01
±0.05
±0.02
0.1
0.01 | ±0.01
0.1
±0.01
0.1
0.01 | 75
50
100
50 | 1
1
1
1 | yes
yes
yes
yes | C or R
R
C or R
R | 480
705
600
request
request | a,b,d,e,h
b,d,e,g
a,b,d,e,h
b,e,h,i
b,e,h,i | | | | | | OUTPUT | | | REC | GULATION | | | , | | | |----|-----------------|----------------------|---------------|---------------|--------------|---------------|---------------|---|--------------|------------|-----------------|-------------|--------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (μ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Vector | CM-03-2L | 0 | 36 | 20 | ±0.01 | 0,01 | 25 | 1 | yes | R | 765 | a,b,e,h,i | | | Trygon | SR36-25 | 2 | 36 | 25 | 0.1 | 0.2 | 10 ms | 100 | yes | R | 745 | a,b,d,e,h | | | ERA | SL36-25M | 0 | 36 | 25 | 0.01 | 0.05 | 50 | 1 | yes | R | 650 | a,b,d,e,g | | | Harrison | 520A | 0 | 36 | 25 | 0.54 | 0.54 | 50 ms | 1% | yes | R | 375 | a,b,d,e,h,i | | 1C | Hyperion | HY-CRI-36-25 | 0 | 36 | 25 | 0.5 | 0.5 | ina | 360 | yes | R | 565 | d,i | | 55 | Lambda | LE104FM | 0 | 36 | 25 | 0.05 | 0.05 | 50 | 0.5 | yes | R | 825 | a,b,d,e,g,i | | | Mid-East | SS36-25 | 0 | 36 | 25 | ±0.01 | 0.03 | ina | 1 | yes | R | 795 | b,d,e,h | | | Mid-East | ST36-25S | 0 | 36 | 25 | 0.01 | 0.03 | 50 | 1 | yes | R | 995 | a,b,d,e,h | | | NJE
Pwi Des | RVC-36-25M
36250A | 0 | 36
36 | 25 .
25 | 0.01 | 0.01 | 50
50 | 1
0.5 | yes
yes | R
4 | 695
875 | a,b,d,e,g,i
a,b,g,i | | - | . * | | | | | | | | - | | | | | | | Trygon
NJE | M36-25A
SY-36-30M | 0
10 | 36
36 | 25
30 | 0.01
±0.01 | 0.01
±0.01 | 50
75 | 1 | yes | R
C or R | 725
645 | a,b,d,e,h,i
a,b,d,e,g | | | Basler | HLR-30M | 0 | 36 | 30 | ±5 mv | ±5 mv | 50 | 2 | yes | R | ina | a,b,h | | | Behl-Invar | TPA-30 | 0 | 36 | 30 | 10 mv | 5 mv | 100 | 0,5 | yes | R | 1100 | b,d,e,h | | нс | El Meas | PV36-30M | 0 | 36 | 30 | 0.01 | 0,01 | ina | 0.5 | yes | R | 875 | a,b,d | | 56 | El Meas | PVC36-30M | 0 | 363 | 30 | 0.01 | 0,01 | ina | 0.5 | yes | R | 975 | a,b,d | | | El Meas | T 036-30M | 0 | 36 | 30 | 0.01 v | 0.01 v | 100 | 1 | yes | R | 995 | b,e,g | | | ERA | TR36-30 | 0 | 36 | 30 | ±0.05 | ±0.01 | ina | 5 | yes | R | 915 | b,d,e,g | | | Hyperion | HY-T1-36-30 | 0 | 36 | 30 | 0.02 | 0.02 | 50 | 1 | yes | R | 790 | a,b,d,g,i | | | Kepco | KS36-30M | 0 | 36 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 1150 | b,d,e,h,i | | - | | DH3C 30 | | | | | | | 1 | | R | 697 | | | | Mid-East
NJE | RH36-30
CR-36-30 | 0 | 36
36 | 30
30 | 0.02
±0.02 | 0.02
±0.01 | ina
100 | 1 | yes | C or R | 740 | b,e
a,b,d,e,h | | | Pioneer | RR36-30A | 0 | 36 | 30 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | | Pioneer | RR36-30B | 0 | 36 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | 1C | Pwr Inst | 3630 | 0 | 36 | 30 | ±0.1 | ±0.1 | 50 | 1 | yes | C or R | ina | b,d,e,g | | 57 | Pwr Srcs | PS4330 | 0 | 36 | 30 | 0.01 | 0.01 | 100 ms | 1 | yes | R | 1300 | d,e,g | | | Trygon | M36-30A | 0 | 36 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 795 | a,b,d,e,h,i | | | Utronics | QCR36/30 | 0 | 36 | 30 | ±0.01 | ±0.01 | 50 | 1 | yes | R | 910 | a,b,d,e,g | | | Vector | CM-03-3L | 0 | 36 | 30 | ±0.01 | 0.01 | 25 | 1 | yes | R | 890 | a,b,e,h,i | | | Trygon | SR36-40 | 2 | 36 | 40 | 0.1 | 0.2 | 10 ms | 100 | yes | R | 895 | a,b,d,e,g | | | Christie | BC 036-40 | 1 | 36 | 40 | ±0.54 | ±0.54 | 25-50 ms | 100 | yes | C or R | ina | b,d,g | | | Mag Res | DMR28-50 | 18 | 36 | 50 | ±0.2 | ±0.5 | 100 ms | 0.2% | yes | C or R | 1095 | e,g | | | Christie | MH36-50 | 15 | 36 | 50 | 0.014 | 0.014 | 50 ms | 1 | yes | C or R | ina | b,d,e,h | | | ERA | TR36-50 | 0 | 36 | 50 | ±0.05 | ±0.1 | ina | 5 | yes | R | 1665 | b,d,e,g | | нС | Hyperion | HY-T1-36-50 | 0 | 36 | 50 | 0.02 | 0.02 | 50 | 1 | yes | R | 1425 | a,b,d,g,i | | 58 | NJE | CR-36-50 | 0 | 36 | 50 | ±0.02 | ±0.01 | 100 | 1 | yes | C or R | 1460 | a,b,d,e,g | | | Trygon | C36-50 | 0 | 36 | 50 | 0.01 | 0.01 | 100 | 1 | yes | R | 1425 | a,b,d,e,h,i | | | Vector | CM-03-5L | 0 | 36 | 50 | 0.01 | 0.01 | 25 | 1 | yes | R | 1645 | a,b,e,h,i | | | E1 Meas | PVC36-60M | 0 | 36 | 60 | 0.01 | 0.01 | ina | 1 | yes | R | 1625 | a,b,d,e,f | | | Christie | MH36-100 | 15 | 36 | 100 | 0.014 | 0,014 | 75 ms | 1 | yes | C or R | ina | b,d,e,h | | | El Meas | PVC36-100M | 0 | 36 | 100 | 0.01 | 0.01 | ina | 1 | yes | R | 2525 | a,b,d,e,f | | | Christie | MH36-200 | 15 | 36 | 200 | 0.024 | 0.024 | 100 ms | 2 | yes | C or R | ina | b,d,e,h | | | Christie | MH36-250 | 26 | 36 | 250 | 0.024 | 0.024 | 100 | 2 | yes | C or R | ina | b,d,e,h | | | Christie | 2036-400 | 26 | 36 | 400 | 0.024 | 0.024 | 100 | 2 | yes | C or R | ina | b,d,e,h | | нс | Christie | 2C36-600 | 26 | 36 | 600 | 0.024 | 0.024 | 100 ms | 2 | yes | C or R | ina | b,d,e,h | | 59 | Mid-East |
MS34-6 | 30.6 | 37.4 | 6 | ±l | ±1 | ina | 0.5% | yes | R | 750 | ь | | | Mid-East | MS34-20 | 30.6 | 37.4 | 20 | ±1 | ±l | ina | 0.5% | yes | R | 750 | р | | | Mid-East | MS34-30 | 30.6 | 37.4 | 30 | ±l | ±1 | ina | 0.5% | yes | R | 1175 | b | | | Mid-East | MS34-50 | 30.6 | 37.4 | 50 | ±1 | ±1 | ina | 0.5% | yes | R | 1400 | Ь | | | Geo Space | 30/150 | 22.5 | 37.5 | 5 | ina | 0.2 | ina | 0.1% | yes | C or R | ina | | | | Geo Space | 30/600 | 22.5 | 37.5 | 20 | ina | 0.2 | ina | 0.1% | yes | C or R | ina | 4: | | | Керсо | PR38-5M | 0 | 38 | 5 | ±1 | 2 | ina | 1% | yes | R | 340 | d,i | | | Керсо | PR38-15M | 0 | 38 | 15 | ±1 | 2 | ina
100 | 1% | yes | R | 495 | d,i | | | Deltron | DP36-4 ¹¹ | 33 | 39 | 4-12 | ±1 | ±1 | 100 ms | 0.8% | yes | R | 175 | a,b,d,h | | нС | Con Av | HS37-10.0 | 35 | 39 | 10 | 0.025 | 0.025 | 25 | 1 | yes | R | 340 | a,b,e,g | | 60 | Con Av | FS37-19.0 | 35 | 39 | 19 | 0.025 | 0.025 | 25 | 1 | yes | R 074 | 515 | a,b,e,g | | | Sorensen | QRC40-4 | 0 | 40 | 4 | ±0.0054 | ±0.0054 | 50 | 1 | yes | C24 | 315 | a,b,d,f,g,i | | | Pwr Inst | 4005 | 5 | 40 | 5 | ±l | ±1 | 200 ms | 100 | yes | C or R | ina | b,d,e,g | | | Deltron | RP40-5 ¹¹ | 0 | 40 | 5-30 | 0.01 | 0.01 | 50 | 0,227 | yes | R ²⁴ | 349 | a,b,d,e,h,i | | | Harrison | 6291A | 0 | 40 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | C | 395 | a,b,c,d,e,h, | #### High-current dc supplies 40-45 v | | | | | OUTPUT | | | REC | GULATION | | | | | | |----------|-----------------------|---------------------------|---------------|---------------|--------------|-----------------|---------------|---|--------------|------------|------------------|-------------|--------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (μ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Hevi-Duty | HC40-5M | 0 | 40 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 570 | a,b,d,e,g | | | Hyperion | HY-Si-40-5 | 0 | 40 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | ½R | 299 | a,b,d,e,g | | | ITI | LS40-5 | 0 | 40 | 5 | ±0,005 | ±0,005 | 25 | 0.5 | yes | R | 425 | a,e,g | | | Perkin | TVR040-5 | 0 | 40 | 5 | ±0.01 | ±0.02 | 50 | 1 | yes | R | 444 | a,b,d,e,g | | нс | Perkin | TVCRO40-5 | 0 | 40 | 5 | 0.01 | 0.02 | 50 | 1 | yes | С | 595 | a,b,d,e,g,i | | 61 | Trygon | HR40-5B | 0 | 40 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | С | 329 | a,b,d,e,g | | | ERA | SPL40-6 | 0 | 40 | 6 | 0.01 | 0.02 | 50 | 0.5 | yes | R | 485 | a,b,d,e,g | | | Tech Pwr | L40-6.0M | 0 | 40 | 6 | ±0.1 | ±0.3 | ina | 0.5% | yes | C or R | 260 | a,b,d,e | | | Tech Pwr | LS40.0-6.0M | 0 | 40 | 6 | ±0.01 | ±0.03 | ina | 0.5 | yes | C or R | 465 | a,b,d,e | | | Hyperion | HY-T1-40-7.5 | 0 | 40 | 7.5 | 0.02 | 0.02 | 50 | 1 | yes | R | 430 | a,b,d,g,i | | | Trygon | HR40-7.5B | 0 | 40 | 7.5 | 0.01 | 0.01 | 50 | 0.5 | yes | С | 399 | a,b,d,e,h,i | | | Sorensen | QRC40-8 | 0 | 40 | 8 | ±0.0054 | ±0.0054 | 50 | 1 | yes | C or R | 450 | a,b,d,f,g,i | | | ERA | SPL40-10 | 0 | 40 | 10 | 0.01 | 0.02 | 50 | 0.5 | yes | R | 525 | a,b,d,e,g | | | Hevi-Duty | HC40-10M | 0 | 40 | 10 | ±0.03 | ±0.03 | 100
50 | 1
0,5 | yes | R
R | 680 | a,b,d,e,g | | HC
62 | Hyperion | HY-Si-40-10 | 0 | 40 | 10 | 0.01 | 0.01 | 20 | 0.5 | yes | ĸ | 399 | a,b,d,e,g | | bZ | Sorensen
Took Pour | DCR40-10 | 0 | 40 | 10 | ±0.0754 | ±0.0754 | 30 ms | 0.4% | yes | C or R | 325 | a,b,d,f,g,i | | | Tech Pwr
Tech Pwr | L40-12,0M
LS40.0-12,0M | 0 | 40 | 12
12 | ±0.1
±0.01 | ±0.3
±0.03 | ina
ina | 0.5% | yes | C or R | 340 | a,b,d,e | | | NJE
NJE | TRM-40-15 | 5 | 40 | 15 | ±0.01 | ±0.03
0.1 | ina | 1% | yes
yes | C or R
C or R | 620
900 | a,b,d,e
d,e | | | Pwr Inst | 4015 | 5 | 40 | 15 | ±1 | ±1 | 200 ms | 100 | yes | CorR | ina | b,d,e,g | | | ERA | SPL40-15 | 0 | 40 | 15 | 0,01 | 0.02 | 50 | 0.5 | yes | R | 720 | a,b,d,e,g | | | Hevi-Duty | HC40-15M | 0 | 40 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 815 | a,b,d,e,g | | | Hyperion | HY-T1-40-15 | 0 | 40 | 15 | 0.02 | 0.02 | 50 | 1 | yes | R | 590 | a,b,d,g,i | | | Perkin | TVR040-15 | 0 | 40 | 15 | ±0.01 | ±0.02 | 50 | 1 | yes | R | 644 | a,b,d,e,f,g | | нс | Perkin | TVCRO40-15 | 0 | 40 | 15 | ±0.01 | ±0.02 | 50 | 1 | yes | R | 995 | a,b,d,e,f,g, | | 63 | Ratelco | PS-5 | 0 | 40 | 15 | 4v ⁴ | 4v4 | ina | 0.7% | yes | С | 190 | d | | | Sorensen | QRC40-15 | 0 | 40 | 15 | ±0.0054 | ±0.0054 | 50 | 1 | yes | C or R | 575 | a,b,d,f,g,i | | | Hevi-Duty | HC40-20M | 0 | 40 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1225 | a,b,d,e,g | | | Sorensen | DCR40-20 | 0 | 40 | 20 | ±0.0754 | ±0.0754 | 30 ms | 0.5% | yes | C or R | 525 | a,b,d,f,g,i | | | ERA | SPL40-25 | 0 | 40 | 25 | 0.01 | 0.02 | 50 | 0.5 | yes | R | 925 | a,b,d,e,g | | | Tech Pwr | L40-25.0M | 0 | 40 | 25 | ±0.1 | ±0.3 | ina | 0.5% | yes | C or R | 460 | a,b,d,e | | | Tech Pwr | LS40.0-25.0M | 0 | 40 | 25 | ±0.01 | ±0.03 | ina | 0.5 | yes | C or R | 820 | a,b,d,e | | | NJE | TRM-40-30 | 5 | 40 | 30 | ±0.1 | ±0.1 | ina | 1% | yes | C or R | 1190 | d,e | | | Pwr Inst | 4030 | 5 | 40 | 30 | ±1 | ±1 | 200 ms | 100 | yes | C or R | ina | b,d,e,g | | НС | Rapid | 540EMA | 5 | 40 | 30 | ±l | ±l | ina | 1% | yes | С | 945 | | | 64 | Harrison | 6268A | 0 | 40 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 695 | a,b,d,e,h,i | | | Hyperion | HY-T1-40-30 | 0 | 40 | 30 | 0.02 | 0.02 | 50 | 1 | yes | R | 845 | a,b,d,g,i | | | Perkin | TVR040-30 | 0 | 40 | 30 | ±0.01 | ±0.02 | 50 | 1 | yes | R | 866 | a,b,d,e,f,g | | | Perkin | TVCR040-30 | 0 | 40 | 30 | ±0.01 | ±0.02 | 50 | 1 | yes | C | 1295 | a,b,d,e,f,g, | | | Sorensen | QRC40-30 | 0 | 40 | 30 | ±0.0054 | ±0.0054 | 50 | 1 | yes | C or R | 775 | a,b,d,f,g,i | | | Sorensen | DCR40-35 | 0 | 40 | 35 | ± 0.0754 | ±0.0754 | 30 ms | 0.4% | yes | C or R | 710 | a,b,d,f,g,i | | | ERA | SPL40-50 | 0 | 40 | 50 | 0.01 | 0.02 | 50 | 0.5 | yes | R | 1780 | a,b,d,e,g | | | Harrison
NJE | 6269A | 0 5 | 40 | 50
60 | 0.01
±0.1 | 0.01
0.1 | 50
ina | 0.5 | yes | R
C or R | 875 | a,b,d,e,h,i | | ис | Sorensen | TRM-40-60
DCR40-60 | 0 | 40 | 60 | ±0.1
±0.0754 | ±0.0754 | 30 ms | 1%
0.4% | yes | CorR | 1515
925 | d,e
a,b,d,f,g,i | | HC
65 | Christic | 1RO40-75 | 0 | 40 | 75 | 0.14 | 0.14 | 25 ms | 30 | W00 | Carp | ina | | | | Christie
Deltron | RS36-3,2M ¹ 1 | 30 | 40 | 3,2-6.4 | | 0.01 | 50 ms | 0.5 | yes
yes | C or R
½R | ina
355 | b,h
a,b,d,e,h | | | Hevi-Duty | LR 42-5M | 36 | 42 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 510 | a,b,d,e,g | | | Mid-East | MS38-6 | 34.2 | 42 | 6 | ±1 | ±0.05 | ina | 0.5% | yes | R | 750 | b b | | | Hevi-Duty | LR42-10M | 36 | 42 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 625 | a,b,d,e,g | | | Hevi-Duty | LR42-15M | 36 | 42 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 770 | a,b,d,e,g | | | Hevi-Duty | LR42-20M | 36 | 42 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1105 | a,b,d,e,g | | | Mid-East | MS38-20 | 34.2 | 42 | 20 | ±1 | ±1 | ina | 0.5% | yes | R | 750 | b | | | Mid-East | MS38-30 | 34.2 | 42 | 30 | ±1 | ±1 | ina | 0.5% | yes | R | 1175 | b | | нС | Mid-East | MS38-50 | 34.2 | 42 | 50 | ±1 | ±l | ina | 0.5% | yes | R | 1400 | b | | 66 | Chalco | 45V-5A | 22 | 45 | 5 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 260 | a,b,e,g | | | Con Av | HS43-9.0 | 41 | 45 | 9 | 0.025 | 0.025 | 25 | 1 | yes | R | 340 | a,b,e,g | | | Chalco | 45V-10A | 22 | 45 | 10 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 345 | a,b,e,g | | | Chalco | 45V-15A | 22 | 45 | 15 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 460 | a,b,e,g | | | Con Av | FS43-17.0 | 41 | 45 | 17 | 0.025 | 0.025 | 25 | 1 | yes | R | 515 | a,b,e,g | Notes, abbreviations and manufacturers' index at end of this section. April 19, 1966 41 | | | | | OUTPUT | | | REC | SULATION | | | | | | |----|-----------|-------------------------|---------------|-----------------|--------------|-----------|-----------|---|--------------|--------|-----------------|-------------|-------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Chalco | 45 V-20A | 22 | 45 | 20 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 555 | a,b,e,g | | | Chalco | 45V-25A | 22 | 45 | 25 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 575 | a,b,e,g | | | Kepco | KO45-30M | 0 | 45 | 30 | 1 | 1 | 500 ms | 20 mv | yes | R | 895 | b,d,e,h,i | | | Chaico | 45V-40A | 22 | 45 | 40 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 615 | a,b,e,g | | нс | Chalco | 45V-50A | 22 | 45 | 50 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 710 | a,b,e,g | | 67 | Chalco | 45V-75A | 22 | 45 | 75 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 970 | a,b,e,g | | | Sola | 281048 | 48 | 48 | 4 | ±l | 2.5 | ina | 1% | none | R | 135 | | | | Trygon | FT-FTR-48-4 | 48 | 48 | 4 | 1 | 1.4 v | ina | 400 | none | ¼R | 149 | | | | Асте | PS-41424 | 48 | 48 | 4.15 | ±1 | ±1 | 0.1 | 1% | none | R | 133 | h | | | Sorensen | MD48.0-4.2 | 48 | 48 | 4.2 | ±l | 2 | ina | 1% | none | R | 135 | | | | Hevi-Duty | LR48-5M | 42 | 48 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 540 | a,b,d,e,g | | | Sorensen | MD48.0-8.4 | 48 | 48 | 8.4 | ±1 | 2 | ina | 1% | none | R | 170 | | | | Sola | 281561 | 48 | 48 | 10 | ±1 | 2 | ina | 1% | none | R | 185 | | | | Hevi-Duty | LR48-10M | 42 | 48 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 645 | a,b,d,e,g | | нс | Tabtron | T48V1CARM | 0 | 48 | 10 | ±5 | ±5 | ina | 1% | yes | С | 333 | d | | 68 | Hevi-Duty | LR48-15M | 42 | 48 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 795 | a,b,d,e,g | | | Hevi-Duty | LR48-20M | 42 | 48 | 20 | ±0.03 | ±0,03 | 100 | 1 | yes | R | 1140 | a,b,d,e,g | | | Deltron | RS42-3.5M11 | 35 | 49 | 3.5-5.6 | 0.01 | 0.01 | 50 | 0.5 | yes | ½R | 390 | a,b,d,e,h | | | Deltron | L Series | 247 | 50 ⁷ | 3.5-31 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 273 | a,b,d,e,h | | | Deitron | DP48-411 | 42 | 50 | 4-30 | ±l | ±1 | 100 ms | 0.8% | yes | R | 175 | a,b,d,h
| | | Deltron | LH504 ¹¹ | 23 | 50 | 4-12 | ±0.1 | ±0.1 | 50 | 1 | yes | R | 305 | b,e,h | | | Deltron | H50-4 ¹¹ | 0 | 50 | 4-8 | 0.214,20 | 0.214,20 | 50 | 1 | yes | R | 355 | d,h15,22,26 | | | Acme | PS-39600 | 0 | 50 | 5 | ±1 | 3 | ina | 1% | yes | R | 168 | | | | Un Elect | LQ50-6A | 0 | 50 | 6 | 0.005 | 0.02 | 50 | 0.25 | yes | R | 525 | b,d,e,g | | нС | Glentron | 0-50-8 | 0 | 50 | 8 | 1 mv | 0.2 | ina | 2 | yes | R | ina | b,e | | 69 | Un Elect | L5010 | 0 | 50 | 10 | 3 mv | 3 mv | 50 | 1 | yes | С | 495 | b,d,e,g | | | Un Elect | L5015 | 0 | 50 | 15 | 3 mv | 3 mv | 50 | 1 | yes | C | 625 | b,d,e,g | | | El Meas | T 050-20M | 0 | 50 | 20 | 10 mv | 10 mv | 100 | 1 | yes | R | 995 | a,b,d,g | | | Glentron | 0-50-20 | 0 | 50 | 20 | 1 mv | 0.2 | ina | 2 | yes | R | ina | b,e | | | Christie | BC 050-30 | 1 | 50 | 30 | ±0.54 | ±0.54 | 25-50 ms | 150 | yes | C or R | ina | b,d,g | | | Perkin | MR550-50 | 5 | 50 | 50 | ±1 | ±1 | 200 ms | 1% | yes | R | ina | b,d,g | | | Con Av | HS48-8.0 | 45 | 51 | 8 | 0.025 | 0.025 | 25 | 1 | yes | R | 365 | a,b,e,g | | | Con Av | FS48-16.0 | 45 | 51 | 16 | 0.025 | 0.025 | 25 | 1 | yes | R | 565 | a,b,e,g | | | Un Elect | Q50-4A | 48 | 52 | 4 | 5 mv | 5 mv | 50 | 1 | yes | R | 405 | b,d,e,g | | нс | Hevi-Duty | LR52-5M | 48 | 52 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 590 | a,b,d,e,g | | 70 | NJE | SR-48-6M | 44 | 52 | 6 | 0.005 | 0.01 | 15 | 3 | yes | R | 370 | a,b,d,e,g | | | NJE | TC-52-6 | 20 | 52 | 6 | ±0.5 | ±0.5 | 30 | 1% | yes | C or R | 360 | a,b,d,e,g | | | Hevi-Duty | LR52-10M | 48 | 52 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 685 | a,b,d,e,g | | | NJE | TC-52-12 | 20 | 52 | 12 | ±0.5 | 0.5 | 30 | 1% | yes | C or R | 450 | a,b,d,e,h | | | Hevi-Duty | LR52-15M | 48 | 52 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 850 | a,b,d,e,g | | | Hevi-Duty | LR52-20M | 48 | 52 | 20 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1180 | a,b,d,e,g | | | Con Av | SP-41-20 | 30 | 52 | 20 | 50 m v | 100 mv | ina | 35 | yes | R | 720 | a,b,e,g | | | Con Av | SP-41-30 | 30 | 52 | 30 | 50 mv | 100 mv | ina | 35 | yes | R | 850 | a,b,e,g | | | NJE | T C-52-30 | 20 | 52 | 30 | ±0.5 | 0.5 | 30 ms | 1% | yes | C or R | 650 | a,b,d,e,g | | HC | Con Av | SP-41-50 | 30 | 52 | 50 | 50 mv | 100 mv | ina | 35 | yes | R | 1150 | a,b,e,g | | 71 | Mid-East | MS46-5 | 41.4 | 53 | 5 | ±1 | ±1 | ina | 0.5% | yes | R | 750 | b | | | Mid-East | MS46-15 | 41.4 | 53 | 15 | ±1 | ±1 | ina | 0.5% | yes | R | 750 | b | | | Mid-East | MS46-22 | 41.4 | 53 | 22 | ±1 | ±1 | ina | 0.5% | yes | R | 1175 | b | | | Mid-East | MS46-40 | 41.4 | 53 | 40 | ±1 | ±1 | ina | 0.5% | yes | R | 1400 | b | | | Deltron | RS48-3.6M ¹¹ | 40 | 56 | 3.6-4.8 | 0.01 | 0.01 | 50 | 0,5 | yes | ½R | 430 | a,b,d,e,h | | | Hevi-Duty | LR56-5M | 52 | 56 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 630 | a,b,d,e,g | | | Hevi-Duty | LR56-10M | 52 | 56 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1005 | a,b,d,e,g | | | Hevi-Duty | LR56-15M | 52 | 56 | 15 | ±0.03 | ±0,03 | 100 | 1 | yes | R | 1320 | a,b,d,e,g | | | Sorensen | QB50-4 | 40 | 60 | 4 | ±0.014 | ±0.013 | 25 | 0.3 | yes | C or R | 315 | a,b,d,e,g,i | | нС | Mid-East | \$\$60-4 | 0 | 60 | 4 | ±0.01 | 0.02 | ina | 1 | yes | R | 495 | b,d,e | | 72 | Mid-East | ST 60-4 | 0 | 60 | 4 | 0.01 | 0.02 | 50 | 1 | yes | R | 595 | a,b,d,e,h | | | Voltex | 60-4 | 0 | 60 | 4 | ±0.02 | ±0.005 | 25 | 3 | yes | R | 620 | a,b,e,h,i | | | Hevi-Duty | LR60-5M | 56 | 60 | 5 | +0.03 | +0.03 | 50 | 1 | yes | R | 650 | a,b,d,e,g | | | Chalco | 60V-5A | 30 | 60 | 5 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 295 | a,b,e,g | | | Deltron | SP60-511 | 0 | 60 | 5-20 | 0.01 | 0.01 | 50 | 0.5 | yes | 15R13 | 445 | a,b,d,e,h,i | | | 55.11.011 | 0.000 | 1 | | 0.20 | 0.0. | 0.01 | | 0.0 | ,55 | 211 | | -1010101111 | | | | | | OUTPUT | | | REC | GULATION | | | | | | |----------|--------------------|-------------------------|---------------|---------------|--------------|----------------|---------------|---|--------------|------------|---------------------------|-------------|--------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | El Meas | PV60-5M | 0 | 60 | 5 | 0.01 | 0.01 | 200 | 0.5 | yes | R | 600 | a,b,d,g | | | El Meas | T060-5M | 0 | 60 | 5 | 10 mv | 10 mv | 100 | 1 | yes | R | 475 | b,h | | | Harrison | 6438A | 0 | 60 | 5 | 0.05 | 0.1 | 300 ms | 0.2% | yes | R | 360 | a,b,d,e,h,i | | | Hevi-Duty | HC60-5M | 0 | 60 | 5 | ±0.03 | ±0.03 | 50 | 1 | yes | R | 680 | a,b,d,e,g | | ıc | Hyperion | HY-Si-60-5 | 0 | 60 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | ½R | 349 | a,b,d,e,g | | 3 | Hyperion | HY-T1-60-5 | 0 | 60 | 5 | 0.02 | 0.02 | 50 | 1 | yes | R | 519 | a,b,d,g,i | | | Керсо | KS60-5M | 0 | 60 | 5 | 0.01 | 0.01 | 50 | 1 | yes | R | 645 | a,b,d,e,h,i | | | Pioneer | RR60-5A | 0 | 60 | 5 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | | Pioneer | RR60-5B | 0 | 60 | 5 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | | Trygon | HR60-5B | 0 | 60 | 5 | 0.01 | 0.01 | 50 | 0.5 | yes | С | 369 | a,b,d,e,g | | | Vector | CM-06-5A | 0 | 60 | 5 | ±0.01 | 0.01 | 25 | 1 | yes | R | 474 | a,b,d,e,h,i | | | Sola | 285120 | 25 | 60 | 6 | ±1 | ina | ina | 0.05% | yes | R | 325 | d | | | NJE | SY-60-6M | 10 | 60 | 6 | ±0.01 | ±0.01 | 75 | 1 | yes | C or R | 415 | a,b,d,e,g | | | NJE | QR60-6 | 0 | 60 | 6 | ±0.02 | ±0.005 | 25 | 3 | yes | C or R | 520 | a,b,d,e,h | | ıc | Mid-East | 9-0922 | 0 | 60 | 6 | ±0.01 | 0.02 | ina | 1 | yes | R | 595 | b,d,e | | 4 | Mid-East | 9-091S | 0 | 60 | 6 | 0.01 | 0.02 | 50 | 1 | yes | R | 825 | a,b,d,e,h | | | Voltex | 69-6 | 0 | 60 | 6 | ±0.02 | ±0.005 | 25 | 3 | yes | R | 695 | a,b,e,h,i | | | El Meas | PV60-7.5M | 0 | 60 | 7.5 | 0.01 | 0.01 | 200 | 0.5 | yes | R | 745 | a,b,d,g | | | El Meas | PVC60-7.5M | 0 | 60 | 7.5 | 0.01 | 0.01 | 100 | 0.5 | yes | R | 845 | a,b,d,e,g | | | El Meas | T060-7.5M | 0 | 60 | 7.5 | 10 mv | 10 mv | 80 | 1 | yes | R | 675 | b,d,e,h | | | Deltron | H60-7.511 | 0 | 60 | 7.5-15 | 0,2 | 0.2 | 50 | 1 | yes | C or R | 599 | d,h | | | Glentron | 20805-1
HY-Si-60-7.5 | 0 | 60 | 7.5 | 10 mv | 10 mv | ina | 0.5 | ina | CorR | ina | | | | Hyperion
NJE | CR-60-9 | 0 | 60 | 7.5 | 0.01
±0.02 | 0.01
±0,01 | 50
100 | 1 | yes | R
C or R | 499
600 | a,b,d,e,g | | | Hevi-Duty | LR60-10M | 56 | 60 | 10 | ±0,02
±0,03 | ±0.03 | 100 | 1 | yes
yes | R | 1125 | a,b,d,e,g
a,b,d,e,g | | C 5 | | | | | | | | | | 100 | | | | | • | Chalco | 60V-10A | 30 | 60 | 10 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 340 | a,b,e,g | | | Deltron | DPV60-10 | 0 | 60 | 10 | ±1 | ±1 | 100 ms | 0.8% | yes | R | 505 | a,b,d,h | | | Hevi-Duty | HC60-10M
HY-T1-60-10 | 0 | 60 | 10 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 955 | a,b,d,e,g | | d | Hyperion
Kepco | KS60-10M | 0 | 60
60 | 10 | 0.02 | 0.02 | 50
50 | 1 | yes
yes | R
R | 655
895 | a,b,d,g,i
a,b,d,e,h,i | | | Mid-East | \$\$60-10 | 0 | 60 | 10 | ±0.01 | 0.02 | ina | 1 | yes | R | 795 | b,d,e | | | Mid-East | ST60-10S | 0 | 60 | 10 | 0.005 | 0.02 | 100 | i | yes | R | 1095 | a,b,d,e,h | | | Pioneer | RR60-10A | 0 | 60 | 10 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | | Pioneer | RR60-10B | 0 | 60 | 10 | 0.01 | 0,01 | 50 | 1 | yes | R | request | b,e,h,i | | 10 | Tabtron | T60V10ARM | 0 | 60 | 10 | ±5 | ±5 | ina | 1% | yes | С | 342 | d | | 76 | Trygon | M60-10A | 0 | 60 | 10 | 0.01 | 0.01 | 50 | 1 | yes | R | 725 | a,b,d,e,h,i | | | NJE | SY-60-12M | 10 | 60 | 12 | ±0.01 | ±0.01 | 75 | 1 | yes | C or R | 505 | a,b,d,e,g | | | Sorensen | D CR60-13 | 0 | 60 | 13 | ±0,075 | ±0,075 | 30 ms | 0.4% | yes | C or R | 525 | a,b,d,f,g,i | | | Hevi-Duty | LR60-15M | 56 | 60 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1405 | a,b,d,e,g | | | Chalco | 60V-15A | 30 | 60 | 15 | ±0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 385 | a,b,e,g | | | El Meas | PV60-15M | 0 | 60 | 15 | 0.01 | 0.01 | 200 | 0.5 | yes | R | 895 | a,b,d,g | | | El Meas | PVC60-15M | 0 | 603 | 15 | 0.01 | 0.01 | ina | 0.5 | yes | R | 995 | a,b,d | | | E1 Meas | T O60-15M | 0 | 60 | 15 | 10 mv | 10 mv | 100 | 1 | yes | R | 995 | b,d,e,h | | | Harrison | 6274A | 0 | 60 | 15 | 0.01 | 0.01 | 50 | 0,5 | yes | R | 695 | a,b,d,e,h,i | | 1C | Harrison | 6439A | 0 | 60 | 15 | 60 mv | 120 mv | 300 ms | 0.1% | yes | R | 550 | a,b,d,e,f,h,i | | 77 | Hevi-Duty | HC60-15M | 0 | 60 | 15 | ±0.03 | ±0.03 | 100 | 1 | yes | R | 1220 | a,b,d,e,g | | | Mid-East | \$260-15 | 0 | 60 | 15 | ±0.01 | 0.02 | ina | 1 | yes | R | 795 | b,d,e | | | Mid-East | ST-60-15S | 0 | 60 | 15 | 0.01 | 0.02 | 50 | 1 | yes | R | 995 | a,b,d,e,h | | | Trygon | M60-15 A | 0 | 60 | 15 | 0.01 | 0.01 | 50 | 1 | yes | R | 825 | a,b,d,e,h,i | | | NJE | SY-60-18M | 10 | 60 | 18 | ±0.01 | ±0.01 | 75 | 1 | yes | C or R | 660 | a,b,d,e,g | | | NJE | CR60-18 | 0 | 60 | 18 | ±0.02 | ±0.01 | 100 | 1 | yes | C or R | 850 | a,b,d,e,g | | | Chalco | 60V-20A | 30 | 60 | 20 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 440 | a,b,e,g | | | Hevi-Duty | HC60-20M | 0 | 60 | 20 | ±0.03 | ±0.03 | 100 | | yes | R | 1480 | a,b,d,e,g | | | Hyperion | HY-T1-60-20 | 0 | 60 | 20 | 0.02 | 0.02 | 50 | 1 | yes | R | 945 | a,b,d,g,i | | 1C
78 | Керсо | KS60-20M | 0 | 60 | 20 | 0.01 | 0.01 | 50 | 1 | yes | R | 1350 | a,b,d,e,h,i | | 150 | Pioneer | RR60-20A
RR60-20B | 0 | 60
60 | 20 | 0.1 | 0.1 | 50 | 1 | yes | R | request | b,e,h,i | | 0 | | * REBUZIE | | n nii | 20 | 0.01 | 0.01 | 50 | 1 | yes | R | request | b,e,h,i | | /0 | Pioneer | 1 | | | | | | | 1 | | | | | | 0 | Chalco
Christie | 60V-25A
BC060-25 | 30 | 60 | 25
25 | ±0.1
±0.54 | ±0.1
±0.54 | 25
25-50 ms | 1
150 | yes
yes | R ¹⁰
C or R | 510
ina | a,b,e,g
b,d,g | April 19, 1966 43 | | | | | OUTPUT | | | RE | GULATION | | | | | | |----------|--
---|---|--|---|---|---|--|---|---|--|---|--| | | M1r. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | нс | Trygon
El Meas
Pioneer
Pioneer
Chalco | C60-25
PVC60-30M
RR60-30A
RR60-30B
60V-40A | 0
0
0
0
0
30 | 60
60
60
60 | 25
30
30
30
40 | 0.01
0.01
0.1
0.01
±0.1 | 0.01
0.01
0.1
0.01
±0.1 | 100
ina
50
50
25 | 1
1
1
1 | yes
yes
yes
yes
yes | R
R
R
R | 1395
1725
request
request
895 | a,b,d,e,h,i
a,b,d,e,f
b,e,h,i
b,e,h,i
a,b,e,g | | 79 | Sorensen
Chalco
Hevi-Duty
Hevi-Duty
Hevi-Duty | DCR60-40
60V-50A
LR64-5M
LR64-10M
LR68-5M | 0
30
60
60
64 | 60
60
64
64
68 | 40
50
5
10
5 | ±0.075 ⁴
±0.1
±0.03
±0.03
±0.03 | ±0.075 ⁴
±0.1
±0.03
±0.03
±0.03 | 30 ms
25
50
100
50 | 0.4%
1
1
1 | yes
yes
yes
yes | C of R
R ¹⁰
R
R | 900
1150
725
1190
760 | a,b,d,f,g,i
a,b,e,g
a,b,d,e,g
a,b,d,e,g
a,b,d,e,g | | нс | Hevi-Duty
Deltron
Kepco
Mid-East
Mid-East | LR68-10M
RS60-3.5M ¹¹
KO70-20M
MS65-10
MS65-15 | 64
50
0
58.8
58.8 | 68
70
70
71.5
71.5 | 10
3.5,4
20
10
15 | ±0.03
0.01
1
±1
±1 | ±0.03
0.01
1
±1
±1 | 100
50
500 ms
ina
ina | 1
0.5
30
0.5%
0.5% | yes
yes
yes
yes
yes | R
½R
R
R | 1240
460,495
995
750
1175 | a,b,d,e,g
a,b,d,e,h
b,d,e,h,i
b | | 80 | Mid-East
Hevi-Duty
Harrison
Hevi-Duty
Deltron | MS65-25
LR72-5M
505A
LR72-10M
LH754 ¹¹ | 58.8
68
0
68
49 | 71.5
72
72
72
72
75 | 25
5
5
10
4-12 | ±1
±0.03
0.54
±0.03
±0.1 | ±1
±0.03
0.5 ⁴
±0.03
±0.1 | ina
50
50 ms
100
50 | 0.5%
1
1%
1 | yes
yes
yes
yes | R
R
R
R | 1175
820
475
1325
378 | b
a,b,d,e,g
a,b,d,e,h
a,b,d,e,g
b,e,h | | HC
81 | Kepco Kepco Hevi-Duty Hevi-Duty NJE NJE NJE Hevi-Duty Hevi-Duty Sorensen | SM75-5M
SM75-8M
LR76-5M
LR76-10M
TC-80-4
ELA-80-4RM
ELB-80-4M
LR80-5M
DCR80-5 | 0
0
72
72
72
25
0
0
76
0 | 75
75
76
76
80
80
80
80
80 | 5
8
5
10
4
4
4
5
5
5 | 0.01
0.01
± 0.03
± 0.03
± 0.5
± 0.5
± 0.5
± 0.03
± 0.03
± 0.03 | 0.05
0.05
±0.03
±0.03
0.5
±2
±5
±0.03
±0.03
±0.075 | 50
50
50
100
30
ina
ina
50
50
30 ms | 1
1
1
1
0.75%
1%
1%
1
1
0.4% | yes | R
R
R
C or R
R
R
R
C or R | 525
625
865
1390
320
440
415
940
980
325 | b,d,e,h,i
b,d,e,h,i
a,b,d,e,g
a,b,d,e,g
a,b,d,e,h
d,e
a,b,d,e,g
a,b,d,e,g
a,b,d,e,g
a,b,d,e,g | | нс | Tech Pwr
Tech Pwr
NJE
NJE
Kepco | L80-6.0M
LS80.0-6.0M
TRM-80-7.5
TC-80-8
PR80-8M | 0
0
10
25
0 | 80
80
80
80
80 | 6
6
7.5
8
8 | ±0.1
±0.01
±0.1
±0.5
±1 | ± 0.3
± 0.03
± 0.1
0.5
2 | ina
ina
ina
30
ina | 0.5%
0.5
1%
0.75%
0.7% | yes
yes
yes
yes
yes | C or R
C or R
C or R
C or R | 340
595
906
450
475 | a,b,d,e
a,b,d,e
d,e
a,b,d,e,h | | 82 | NJE
NJE
Hevi-Duty
Hevi-Duty
Sorensen | E LA-80-8RM
E LB-80-8RM
LR80-10M
HC80-10M
DCR80-10 | 0
0
76
0 | 80
80
80
80 | 8
8
10
10
10 | ±0.5
±0.5
±0.03
±0.03
±0.0754 | ±2
±5
±0.03
±0.03
±0.075 ⁴ | ina
ina
100
100
30 ms | 1%
1%
1
1
0.4% | yes
yes
yes
yes
yes | R
R
R
C or R | 620
605
1455
1525
525 | d,e
d,e
a,b,d,e,g
a,b,d,e,g
a,b,d,f,g,i | | нс | Tech Pwr
Tech Pwr
NJE
Hevi-Duly
NJE | L80-12.0M
L580.0-12.0M
TRM-80-15
HC80-15M
ELA-80-15RM | 0
0
10
0 | 80
80
80
80 | 12
12
15
15
15 | ±0.1
±0.01
±0.1
±0.03
±0.5 | ± 0,3
± 0,03
0,1
± 0,03
± 2 | ina
ina
ina
100
ina | 0.5%
0.5
1%
1 | yes
yes
yes
yes
yes | C or R
C or R
C or R
R | 460
790
1225
1780
920 | a,b,d,e
a,b,d,e
d,e
a,b,d,e,g
d,e | | 83 | NJE
Sorensen
NJE
Tech Pwr
Tech Pwr | ELB-80-15RM
DCR80-18
TC-80-20
L80-25.0M
LS80.0-25.0M | 0
0
25
0 | 80
80
80
80
80 | 15
18
20
25
25 | ±0.5
±0.0754
±0.5
±0.1
±0.01 | ±5
±0.075 ⁴
0.5
±0.3
±0.03 | ina
30 ms
30 ms
ina
ina | 1%
0.4%
0.75%
0.5% | yes
yes
yes
yes
yes | R
C or R
C or R
C or R
C or R | 810
710
660
620
995 | d,e
a,b,d,f,g,i
a,b,d,e,g
a,b,d,e
a,b,d,e | | нс | NJE
Sorensen
Deltron
Deltron
Mid-East | TRM-80-30
DCR80-30
DP75-4 ³¹
RS72-3,36M
MS77-10 | 10
0
68
60
69.3 | 80
80
82
84
84 | 30
30
4,6
3,36
10 | ±0.1
±0.075 ⁴
±1
0.01
±1 | 0.1
±0.075 ⁴
±1
0.01
±1 | ina
30 ms
100 ms
50
ina | 1%
0.4%
0.8%
0.5
0.5% | yes
yes
yes
yes
yes | C or R
C or R
R
½R
R | 1640
875
240,300
495
750 | d,e
a,b,d,f,g,i
a,b,d,h
a,b,d,e,h
b | | 84 | Mid-East
Mid-East
Sola
Chalco
Chalco | MS77-15
MS77-25
285130
90V-5A
90V-10A | 69.3
69.3
30
44
44 | 84
84
90
90
90 | 15
25
4
5 | ±1
±1
±1
±0.1
±0.1 | ±1
±1
ina
±0.1
±0.1 | ina
ina
ina
25
25 | 0.5%
0.5%
0.04%
1 | yes
yes
yes
yes
yes | R
R
R
R ¹⁰ | 1175
1175
295
430
530 | b
b
d
a,b,e,g
a,b,e,g | | | | | | OUTPUT | | | RE | GULATION | | | | | | |-----------|--|--|--|--|--|---|---|--|---|---|--|--|--| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | нс | Tabtron
Chalco
Chalco
Chalco
Chalco | T90V10ARM
90V-15A
90V-20A
90V-25A
90V-40A | 0
44
44
44
44 | 90
90
90
90
90 | 10
15
20
25
40 | ±5
±0.1
±0.1
±0.1
±0.1 | ±5
±0.1
±0.1
±0.1
±0.1 | ina
25
25
25
25
25 | 1%
1
1
1 | yes
yes
yes
yes | C
R ¹⁰
R ¹⁰
R ¹⁰ | 444
600
630
650
945 | d
a,b,e,g
a,b,e,g
a,b,e,g
a,b,e,g | | 85 | Deltron
Deltron
Deltron
Voltex
Trans Dev | LH1004 ¹¹
L Series
SH100-4 ¹¹
100-4
RS100-5 | 74
48 ⁸
0
0
100 | 100
100 ⁸
100
100 | 4-12
4-18
4-12
4
5 | ±0.1
0.01
0.01
±0.02
0.1 | ±0.1
0.01
0.01
±0.005
0.1 | 50
50
50
25
50 | 1
0.5
1 ²⁷
3
1.5 | yes
yes
yes
yes | R
R
R ²⁴
R | 466
366
796
695
ina | b,e,h
a,b,d,e,h
a,b,d,h ^{25,26}
a,b,e,h,i
b,h | | нС | Mid-East
Mid-East
NJE
EI Meas
Mid-East | ST100-5
SS100-5
TC-100-6
T0100-10M
ST100-10 | 5
0
40
0 | 100
100
100
100
100 | 5
5
6
10 | 0.01
±0.01
±0.5
10 mv
0.01 | 0.01
0.01
0.5
10 mv
0.01 | 100
ina
30 ms
100 | 1
3
0.75
1
3 | yes
yes
yes
yes
yes | R
R
C or R
R | 795
697
570
1175
1595 | a,b,d,e,h
b,d,e
a,b,d,e,g
b,d,h
a,b,d,e,h | | 86 | Christie
Behl-Invar
Lambda
Sorensen
Perkin | BC0100-15
TCR-30-100
LA40-05BM
MD115.0-3.5
115-5WX | 3
0
20
115
115 | 100
100
105
115
115 | 15
30
4
3.5
5 | ±0.54
0.001
0.05
±1
±0.05 | ±0.54
0.01
0.1
2
±0.05 | 25-50 ms
100
50
ina
200 ms | 350
5
1
1%
1 |
yes
yes
yes
none
yes | C or R
R
R
R | ina
1950
525
170
689 | b,d,g
a,b,d,e,h,i
a,b,d,g,i
d,h | | нс | Deltron
Mid-East
Mid-East
Deltron
NJE | H120-5
MS109-6
MS109-10
DPV120-10
ELA-120-10RM | 0
98
98
0
0 | 120
120
120
120
120 | 5
6
10
10 | 0.2
±1
±1
±1
±1
±0.5 | 0.2
±1
±1
±1
±2 | 50
ina
ina
100 ms
ina | 1
0.5%
0.5%
0.8%
1% | yes
yes
yes
yes
yes | R
R
R
R | 835
750
1175
820
1025 | d,h
b
b
a,b,d,h
d,e | | 87 | NJE
Mid-East
Christie
Rapid
Rapid | ELB-120-10RM
MS109-15
M120-15F
5CYMA
5XMA | 0
98
60
15
103.5 | 120
120
120
125
126.5 | 10
15
15
5
5 | ±0.5
±1
44
±2
±0.5 | ±5
±1
4 ⁴
±2
±0.5 | ina
ina
ina
ina
ina | 1%
0.5%
2%
4%
1% | yes
yes
yes
yes | R
R
C or R
C | 960
1400
ina
940
725 | d,e
b
d,g | | HC 888 | Deltron Mid-East Mid-East Mid-East Trans Dev Deltron Chalco Sorensen Chalco Christie | DP125-4
MS128-6
MS128-10
MS128-15
RS150-5
DP150-511
150V-5A
DCR150-5
150V-10A
BC0150-10 | 112
115
115
115
115
150
120
74
0
74 | 136
140
140
140
150
150
150
150
150 | 4
6
10
15
5
5,7
5
5
10 | ±1
±1
±1
0.1
±1
±0.1
±0.075 ⁴
±0.1
±0.5 ⁴ | ±1
±1
±1
±1
0.1
±1
±0.1
±0.0754
±0.1
±0.54 | 100 ms
ina
ina
ina
50
100 ms
25
30 ms
25
25-50 ms | 0.8%
0.5%
0.5%
0.5%
1.5
0.8%
1
0.4%
1 | yes | R
R
R
R
R10
C or R
R10
C or R | 310
750
1175
1400
ina
415,505
450
525
540
ina | a,b,d,h
b
b,b,h
a,b,e,g
a,b,d,f,g,i
a,b,e,g
b,d,g | | 1C
89 | Sorensen
Chalco
Sorensen
Chalco
Kepco
NJE
NJE
Kepco
Hyperion
Trygon | DCR150-10
150V-15A
DCR150-15
500V-20A
PR155-4M
ELA-160-4RM
ELB-160-4RM
SM160-4M
HY-T1-160-5
M160-5A | 0
74
0
74
0
0
0
0
0 | 150
150
150
150
150
155
160
160
160
160 | 10
15
15
20
4
4
4
4
5
5 | ± 0.075 ⁴
± 0.1
± 0.075 ⁴
± 0.1
± 1
± 0.5
± 0.5
0.01
0.02
0.01 | ±0.075 ⁴
±0.1
±0.075 ⁴
±0.1
2
±2
±5
0.05
0.02
0.01 | 30 ms
25
30 ms
25
ina
ina
ina
50
50 | 0.4%
1
0.4%
1
0.6% | yes | C or R
R ¹⁰
C or R
R ¹⁰
R
R
R
R | 710
690
825
825
450
580
560
625
845
925 | a,b,d,f,g,i
a,b,e,g
a,b,d,f,g,i
a,b,e,g
d,i
d,e
d,e
b,d,e,h,i
a,b,d,g,i
a,b,d,e,h,i | | H C
90 | Tech Pwr
Tech Pwr
NJE
Hyperion
NJE
NJE
Trygon | L160-6.0M
LS160.0-6.0M
TRM-160-7.5
HY-T1-160-B
ELA-160-8RM
ELB-160-8RM
C160-8C | 0
0
20
0
0 | 160
160
160
160
160 | 6
6
7.5
8
8 | ± 0.1
± 0.01
± 0.1
0.02
± 0.5
± 0.5
0.01 | ±0,3
±0,03
0.1
0.02
±2
±5
0.01 | ina ina ina 50 ina ina | 0.5%
0.5
1%
1
1% | yes yes yes yes yes yes | C or R
C or R
R
R | 460
820
1225
1195
1025
960
1350 | a,b,d,e
a,b,d,e
d,e
a,b,d,g,i
d,e
d,e
a,b,d,e,h,i | | | Tech Pwr
Tech Pwr
NJE | L160-12.0M
LS160.0-12.0M
TRM-160-15 | 0
0
20 | 160
160
160 | 12
12
15 | ±0.1
±0.01
±0.1 | ± 0.3
± 0.03
0.1 | ina
ina
ina | 0.5%
0.5
1% | yes
yes
yes | C or R
C or R
C or R | 620
995
1470 | a,b,d,e
a,b,d,e
d,e | #### High-current dc supplies | | | | 1 | OUTPUT | | | RE | GULATION | | | | | | |----|-----------|-------------|---------------|---------------|--------------|-----------|-----------|---|--------------|--------|-----------------|-------------|-------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Trygon | C160-16C | 0 | 160 | 16 | 0.01 | 0.01 | 100 | 1 | yes | R | 1995 | a,b,d,e,h,i | | | Deltron | L Series | 969 | 2009 | 4-9 | 0,01 | 0,01 | 50 | 0.5 | yes | R | 599 | a,b,d,e,h | | | Chalco | 200V-5A | 99 | 200 | 5 | ±0.1 | ±0.1 | 25 | 1 | yes | R10 | 550 | a,b,e,g | | | Chalco | 200V-10A | 99 | 200 | 10 | ±0.1 | ± 0.1 | 25 | 1 | yes | R10 | 645 | a,b,e,g | | нс | Chalco | 200V-15A | 99 | 200 | 15 | ± 0.1 | ±0.1 | 25 | 1 | yes | R ¹⁰ | 785 | a,b,e,g | | 91 | Spec Ind | TC200-15 | 0 | 200 | 15 | 0.1 | 0.1 | ina | ina | yes | С | 1895 | d,i | | | Trans Dev | VS231 | 0 | 250 | 4 | ± 0.05 | ±0.1 | 50 | 3 | yes | R | ina | d,e,h | | | NJE | ELA-250-5RM | 0 | 250 | 5 | ±0.5 | ±2 | ina | 1% | yes | R | 980 | d,e | | | NJE | ELB-250-5RM | 0 | 250 | 5 | ±0.5 | ±5 | ina | 1% | yes | R | 925 | d,e | | | Deltron | DP250-11 | 200 | 250 | 11 | ±1 | ±1 | 100 ms | 0.8% | yes | R | 720 | a,b,d,h | | | Mid-East | MS240-5 | 210 | 264 | 5 | ±1 | ±1 | ina | 0.5% | yes | R | 1175 | b | | | Mid-East | MS240-7 | 210 | 264 | 7 | ±1 | ±1 | ina | 0.5% | yes | R | 1400 | b | | | Deltron | DP300-4 | 250 | 300 | 4 | ±1 | ±1 | 100 ms | 0.8% | yes | R | 510 | a,b,d,h | | | Mid-East | MS273-5 | 245 | 300 | 5 | ±1 | ±1 | ina | 0.5% | yes | R | 1175 | b | | нс | Sorensen | DCR300-5 | 0 | 300 | 5 | ± 0.0754 | ± 0.0754 | 30 ms | 0.4% | yes | C or R | 710 | a,b,d,f,g,i | | 92 | Vector | CF-30-6A | 2 | 300 | 6 | ±0.1 | 0.1 | ina | 0.5% | yes | С | 3075 | d | | | Mid-East | MS273-7 | 245 | 300 | 7 | ±1 | ±1 | ina | 0.5% | yes | R | 1400 | b | | | Sorensen | DCR300-8 | 0 | 300 | 8 | ± 0.0754 | ±0.0754 | 30 ms | 0.4% | yes | C or R | 825 | a,b,d,f,g,i | | | Trans Dev | RS300-10 | 300 | 300 | 10 | 0.05 | 0.05 | 50 | 5 | yes | R | ina | b,h | | | Hyperion | HY-T1-330-4 | 0 | 330 | 4 | 0.02 | 0.02 | 50 | 1 | yes | R | 1795 | a,b,d,g,i | | | Mid-East | MS350-5 | 315 | 385 | 5 | ±1 | ±1 | ina | 0.5% | yes | R | 1400 | b | | HC | Gen Radio | 1265-A | 0 | 400 | 5 | 0.2 | 1 | 0.1 sec | ina | yes | C or R | 1050 | d,g | | 93 | Vector | CF-40-6A | 2 | 400 | 6 | ±0.1 | 0.1 | ina | 0.5% | yes | C | 3225 | d | | | Mid-East | MS410-5 | 370 | 450 | 5 | ±1 | ±1 | ina | 0.5% | yes | R | 1400 | b | Notes, abbreviations and manufacturers' index at end of this section. #### **Notes** - a. Remote programing provided. - b. Remote sensing provided. - c. One meter reads voltage and current. - d. Price includes meters. - e. Solid state. - f. Input: barrier strip. - g. Response time given in listing. - h. Recoverytime given in listing. - i. Also constant current supply. - 1. Adjustable over any 2 v within range. - 2. Total regulation 0.25%. - 3. Ambient range—40 to 75°C. - 4. Total regulation. - 5. Any 0.5 volt nominal available within this range. - 6. Any 1 volt nominal available within this range. - 7. Any 2 volts nominal available within this range. - 8. Any 4 volts nominal available within this range. - 9. Any 6 volts nominal available within this range. - 10. ¼, ¼, ½ & full rack-mount available. - Model number is for basic specifications or lowest value of ranges shown. Consult manufacturer's catalog for model number and price of optional characteristics. - 12. 1% also available. - 13. Full rack-mount also available. - 14. 0.05% also available. - 15. Remote programing available. - 16. Non-solid state units available. - 17. 0.2% also available. - 18. 1 mv also available. - 19. 2 mv also available. - 20. 0.01% also available. - 21. 50 msec also available. - 22. Remote sensing available. - 23. 0.02 and 0.5 mv also available. - 24. ½ rack-mount also available. - 25. Constant-current supplies also available in this series. - 26. Solid-state also available. - 27. 0.5 mv also available. - 28. Dual-output unit. #### **Abbreviations** - C Cabinet - R Rack - ina Information not available wig Whichever is greater #### Additional high-current dc supplies | | | | | OUTPUT | | | RE | GULATION | | | | | | |-----|-----------|------------------------|---------------|---------------|--------------|-----------|-----------|---|--------------|--------|----------|-------------|-------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Response or
Recovery
Time (µ sec) | Ripple
mv | Meters | Mounting | Price
\$ | Notes | | | Trans Dev | RS3-10 | 1 | 3 | 10 | ±5 mv | ±5 mv | 50 | 0.2 | none | R | request | | | - 1 | Trans Dev | RS3-25 | 1 | 3 | 25 | ±5 mv | ±5 mv | 50 | 0.2 | none | R | request | | | | Trans Dev | R\$3-50 | 1 | 3 | 50 | ±5 mv | ±5 mv | 50 | 0,2 | none | R | request | | | | Trygon | LR5-40 | 4 | 5.5 | 40 | 0.01 | 0.01 | 50 | 1 | yes | R | request | | | | Trans Dev | RS6-10 | 3 | 6 | 10 | ±0.05 | ±0.1 | 50 | 0.2 | none | R | request | | | | Trans Dev | RS6-25 | 3 | 6 | 25 | ±0.05 | ±0.1 | 50 | 0.2 | none | R | request | | | 1 | Trans Dev | RS6-50 | 3 | 6 | 50 | ±0.05 | ±0.1 | 50 | 0.2 | none | R | request | | | | Trygon | LR6-40 | 5 | 7 | 40 | 0.01 | 0.01 | 50 | 1 | yes | R | 475 | a,b,d,e,h | | - | Acme | PS-57350 | 0 | | 15 | ±1 | 4 | ina | 2% | 1 ' | R | ina | e e | | - 1 | | | | 7 | | | | | | yes | | | | | 4 | Trygon | LR8-35 | 6.5 | 9 | 35 | 0.01 | 0.01 | 50 | 1 | yes | R | 475 | a,b,d,e,h | | | Acme | PS-47509 | 10 | 10 | 4 | ±1 | ±2 | ina | 1% | yes | R | ina | e,f | | | Trygon | LR10-30 | 8.5 | 11.5 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 475 | a,b,d,e,h | | - 1 | Trans Dev | RS12-10 | 12 | 12 | 20 | 1.5 mv | 2 mv | 50 | 0.15 | none | R | request | | | - 1 | Acme | PS-57351 | 12,16,24 | 12,16,24 | 66,50,33 | ±1 | ±2 | ina | 1% | yes | R | ina | e,f | | | Trygon | LR12-30 | 11 | 14 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 475 | a,b,d,e,h | | 5 | Glentron | 20588-0 | 15 | 15 | 10 | 0.14 | 0.14 | ina | 1 |
ina | С | ina | | | _ | Trygon | LR14-30 | 13.5 | 16.5 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 475 | a,b,d,e,h | | | Trans Dev | RS18-10 | 18 | 18 | 10 | 3 mv | 3 mv | 50 | 0.25 | none | R | request | | | | Trygon | LR17-30 | 16 | 19 | 30 | 0.01 | 0.01 | 50 | 1 | yes | R | 475 | a,b,d,e,h | | | Trygon | R\$20-7.5A | 0 | 20 | 7.5 | 0.01 | 0.01 | 25 | 0.5 | yes | R | 375 | a,b,d,e,h,i | | | Trygon | R\$20-15A | 0 | 20 | 15 | 0.01 | 0.01 | 25 | 0.5 | yes | R | 495 | a,b,d,e,h,i | | | Acme | PS-57352 | 22 | 22 | 25 | ±1 | ±2 | ina | 1% | yes | R | ina | e,f | | | Acme | PS-47125 ¹¹ | 24 | 24 | 10-100 | ±1 | ±2 | ina | 1% | yes | R | ina | e,f | | | Acme | PS-47202 | 26 | 26 | 4 | ±1 | ±2 | ina | 1% | yes | R | ina | e,f | | | | LR21-20 | 17 | | | 0.01 | | 50 | 1 | | R | 475 | | | C 6 | Trygon | LK21-20 | 17 | 26 | 20 | 0.01 | 0.01 | 20 | 1 | yes | К | 4/3 | a,b,d,e,h | | ٥ | Chatham | R28-45 | 28 | 28 | 45 | 1 | 1 | 50 ms | 700 | yes | C | ina | d,e,h | | | Tabtron | B28V50ARM | 28 | 28 | 50 | ±5 | ±5 | ina | 1% | yes | C | 423 | | | | Trygon | L R28-20 | 24 | 32 | 20 | 0.01 | 0.01 | 50 | 1 | yes | R | 475 | a,b,d,e,h | | | Trans Dev | VS201 | 0 | 35 | 5 | ±0.05 | ±0.1 | 50 | 1 | yes | R | request | | | | Trans Dev | RS35-14 | 35 | 35 | 14 | 5 mv | 5 mv | 50 | 0.3 | none | R | request | | | | L-S | SVR-680045 | 0 | 35 | 30 | 0.5 | 0.1 | ina | 60 | yes | R | request | e | | | Avtel | 200 | 20 | 35 | 70 | ±1 | ±1 | 8 | 100 | yes | CorR | ina | b | | | Pwr Des | 36 100 | 0 | 36 | 10 | 0.01 | 0.01 | 50 | 0.5 | yes | R | 463 | a,b,d,h,i | | | Trygon | RS40-5A | 0 | 40 | 5 | 0.01 | 0.01 | 25 | 0.5 | yes | R | 375 | a,b,d,e,h,i | | | Trygon | RS40-10A | 0 | 40 | 10 | 0.01 | 0.01 | 25 | 0.5 | yes | R | 449 | a,b,d,e,h,i | | | Acme | PS-57357 ¹¹ | 48 | 48 | 6, 10, 15 | | ±2 | ina | 1% | yes | R | ina | e,f | | С | Tomo | , 00,007 | ~ | 10 | 0, .0, 10 | | - | 1110 | | ,00 | | | -,- | | 7 | Acme | PS-57362 | 48 | 54 | 4 | ±1 | 2 | ina | 1% | yes | R | ina | e | | | Trygon | RS60-7.5A | 0 | 60 | 7.5 | 0.01 | 0.01 | 25 | 0.5 | yes | R | 595 | a,b,d,e,h,i | | | Acme | PS-47718 ¹¹ | 100 | 100 | 4, 25 | ±1 | ±2 | ina | 1% | yes | R | ina | e,f | | | Lambda | LA80-05BM | 20 | 105 | 8 | 0.05 | 0.1 | ina | 1 | yes | R | 810 | a,d,e | | | Acme | PS-47457 | 125 | 125 | 6 | ±1 | ±2 | ina | 1% | yes | R | ina | e,f | | | Trans Dev | V\$231 | 0 | 250 | 4 | ±0.05 | ±0.1 | 50 | 3 | yes | R | request | | | | | | | | | | | | | 1 ' | | | | Notes, abbreviations and manufacturers' index at end of this section. April 19, 1966 47 # Lambda offers the BROADEST LINE of all silicon modular power supplies Up to 150 volts/Up to 90 amps 7 power packages Prices starting at \$6900 Features and Data Meet Mil. Environment Specs. RFI—MIL-I-16910: Vibration: MIL-T-4807A: Shock: MIL-E-4970A • Proc. 1 & 2: Humidity: MIL-STD-810 • Meth. 507: Temp. Shock: MIL-E-5272C • (ASG) Proc. 1: Altitude: MIL-E-4970A • (ASG) Proc. 1: Marking: MIL-STD-130: Quality: MIL-Q-9858: Fungus Proofing (optional) all models available with MIL-V-173 varnish for all nutrient components. Convection cooled—no heat sinking or forced air required Wide input voltage and frequency range—105-132 VAC, (200-250 VAC, optional at no extra charge) 45-440 cps Regulation (line) 0.05% plus 4MV (load) 0.03% plus 3MV: Ripple and Noise—1 MV rms, 3MV p to p Overvoltage protection available for all models up to 70 VDC High Performance Option—All models available with these specifications for \$25.00 extra: Line regulation— .01% + 1MV; Load regulation—.02% + 2MV: Ripple and Noise— $\frac{1}{2}$ MV rms; $\frac{1}{2}$ MV p to p: Temp. Coef.— .01%°C #### RACK ADAPTERS LRA-3-51/4" height by 21/16" depth. Mounts up to 4 A, B or C package sizes; 2 D or 2 E packages sizes; or 2 A, B or C and 1 D or 1 E package sizes. Price \$35.00 LRA-4-3½" height by 14" depth. (For use with chassis slides) Mounts up to 4 A package sizes; 3 B or C package sizes; or 2 A and 1 B or C package sizes. Price \$55.00 LRA-6-54" height by 14" depth. (For use with chassis slides) Mounts up to 4 A, B or C package sizes; 2 D or 2 E packages sizes; or 2 A, B or C and 1 D or 1 E package sizes. Price \$60.00 LRA-5-3½" height by 2½6 depth. Mounts up to 4 A package sizes; 3 B or C package sizes; or 2 A and 1 B or C package sizes. Price \$35.00 Send for complete information on LM series and accessories. #### **LAMBDA LM Series** ## Package A 33/16" x 33/4" x 63/2" MP-3 Accessory Metered Panels: \$40.00 #### **Ordering Information** METERS $-3\frac{1}{2}^{\prime\prime}$ Metered panel MP-3 is used with rack adapters LRA-4, LRA-5 and packages A, B and C. 5¼" Metered panel MP-5 is used with rack adapters LRA-6, LRA-3 and packages A, B, C, D and E. To order these accessory metered panels, specify panel number which MUST BE FOL-LOWED BY the MODEL NUMBER of the power supply with which it will be used. Note—F and G LM Packages are full rack power supplies available metered or non-metered. For metered models, add suffix M to the Model No. and \$30 to the non-metered price. | | ADJ. VOLT. | | I MAX. | AMPS | | | | ADJ. VOLT. | | IMAX | AMPS | | | | ADJ. VOLT. | | IMAX | . AMPS | | | |--------|------------|------|--------|------|------|-------|--------|------------|------|------|------|-------|-------|--------|------------|------|------|--------|------|-------| | Model | RANGE VDC | 40°C | 50°C | 60°C | 71°C | Price | Model | RANGE VDC | 40°C | 50°C | 60°C | 71 °C | Price | Model | RANGE VDC | 40°C | 50°C | 60 C | 71°C | Price | | LM 251 | 0-7 | 0 35 | 0.31 | 0.29 | 0.27 | \$ 69 | LM 257 | 0.14 | 0.27 | 0.24 | 0.23 | 0.22 | 69 | LM 263 | 0 32 | 0.14 | 0 12 | 0 11 | 0.10 | 69 | | LM 201 | 0.7 | 0.85 | 0.75 | 0.70 | 0.55 | 79 | LM 203 | 0 14 | 0.45 | 0.40 | 0.38 | 0.28 | 79 | LM 205 | 0.32 | 0.25 | 0.23 | 0.20 | 0.15 | 79 | | LM 202 | 0.7 | 1.7 | 1.5 | 1.4 | 1.1 | 89 | LM 204 | 0 14 | 0.90 | 0.80 | 0.75 | 0.55 | 89 | LM 206 | 0.32 | 0.50 | 0.45 | 0.40 | 0.30 | 89 | | LM 252 | 0.7 | 2.0 | 1.8 | 1.4 | 1.1 | 99 | LM 258 | 0.14 | 1.2 | 1.1 | 10 | 0.80 | 99 | LM 264 | 0.32 | 0.66 | 0 60 | 0.50 | 0.32 | 99 | | LM 253 | 0.10 | 0 31 | 0 27 | 0.26 | 0.25 | 69 | LM 259 | 0 24 | 0.18 | 0.16 | 0.15 | 0.14 | 69 | LM 265 | 0 60 | 0.08 | 0.07 | 0.07 | 0.06 | 79 | | LM 254 | 0 10 | 0.65 | 0.55 | 0.50 | 0.45 | 79 | LM 260 | 0 24 | 0.35 | 0.30 | 0.25 | 0.20 | 79 | LM 207 | 0 60 | 0.13 | 0.12 | 0.11 | 0.08 | 89 | | LM 255 | 0-10 | 1.20 | 1.10 | 1 00 | 0.75 | 89 | LM 261 | 0 24 | 0.70 | 0.65 | 0.60 | 0.45 | 89 | LM 208 | 0.60 | 0.25 | 0.23 | 0.21 | 0.16 | 99 | | LM 256 | 0.10 | 1.5 | 1.4 | 1.2 | 0.90 | 99 | LM 262 | 0.24 | 0.80 | 0.75 | 0.70 | 0.60 | 99 | LM 266 | 0.60 | 0.35 | 0.31 | 0.28 | 0.25 | 109 | | | MIN | | MP-3 | | MP5 | | |---------|------------|------|--------|------|------------|-------| | | ADJ. VOLT. | A | I MAN. | | Panels: \$ | 40.00 | | Model | RANGE VDC | 40°C | 50°C | 60°C | 71°C | Price | | LM 217 | 8.5-14 | 2.1 | 1.9 | 1.7 | 1.3 | \$119 | | LM-218 | 13 -23 | 1.5 | 1.3 | 1.2 | 1.0 | 119 | | LM 219 | 22 -32 | 1.2 | 1.1 | 1.0 | 0.80 | 119 | | LM 220 | 30 -60 | 0.70 | 0.65 | 0.60 | 0.45 | 129 | | LM B2 | 2 ±5% | 3.8 | 3.3 | 2.6 | 1.6 | 119 | | LM B3 | 3 ±5% | 3.8 | 3.3 | 2.6 | 16 | 119 | | LM B3P3 | 3.3 + 5% | 3.8 | 3.3 | 2.6 | 16 | 119 | | LM 83P6 | 3.6+5% | 3.8 | 3.3 | 2.6 | 1.6 | 119 | | LM B4 | 4 ±5% | 3.8 | 3.3 | 2.6 | 1.6 | 115 | | LM B4P5 | 4 5 - 5% | 3.7 | 3.2 | 2.5 | 1.5 | 119 | | LM B5 | 5 ±5% | 3.7 | 3.2 | 2.5 | 1.5 | 119 | | LM B6 | 6 +5% | 3.2 | 2.9 | 2.4 | 1.4 | 119 | | LM B8 | 8 ±5% | 3.2 | 2.9 | 2.4 | 1.4 | 119 | | LM 89 | 9 ±5% | 3.0 | 2.8 | 2.4 | 1.4 | 119 | | LM B10 | 10 ±5% | 2.7 | 2.5 | 2.2 | 1.4 | 119 | | LM B12 | 12 ±5% | 2.5 | 2.3 | 2.1 | 1.3 | 119 | | LM 815 | 15 ±5% | 2.2 | 2.0 | 1.8 | 1.3 | 119 | | LM 818 | 18 ±5% | 2.0 | 1.8 | 1.7 | 1.3 | 115 | | LM 820 | 20 ±5% | 1.8 | 1.6 | 1.5 | 1.2 | 119 | | LM B24 | 24 ±5% | 1.4 | 1.3 | 1.2 | 1.1 | 119 | | LM B2B | 28 ±5% | 1.3 | 1.2 | 1.1 | 1.0 | 115 | | LM B36 | 36 ±5% | 1.1 | 1.0 | 0.90 | 0.85 | 1 29 | | LM 848 | 48 ±5% | 0.9 | 0.85 | 0.80 | 0.75 | 129 | | LM 860 | 60 ±5% | 0.7 | 0 65 | 0.60 | 0.54 | 129 | | LM 8100 | 100 ±5% | 0.37 | 0.34 | 0.30 | 0.28 | 139 | | LM 8120 | 120 ±5% | 0.30 | 0.28 | 0.25 | 0.23 | 139 | | LM B150 | 150 ±5% | 0.25 | 0.23 | 0.20 | 0.19 | 149 | Package B 3V." - 41V." - 51/" Package E 415/16" x 71/2" x 11%" Package F 31/2" x 19" x 161/4" Package G 514" x 19" x 1614" Current rating applies for input voltage 105-132 VAC 55-65 cps. For operation at 45-55 cps and 360-440 cps derate current rating 10%. ¹ Current rating is from zero to I max. Current rating applies over entire output voltage range. #### **Index of Manufacturers and Model Numbers** (keyed to table locator symbols) | 60V 15A [HC-76]
60V 20A [HC 78]
60V 25A [HC 78]
60V 40A [HC-79]
60V 50A [HC-79]
90V-5A [HC-84]
90V-10A [HC-84] | 90V-15A [HC-85] 90V-20A [HC-85] 90V-20A [HC-85] 90V-25A [HC-85] 90V-20A [HC-88] 150V-15A [HC-88] 150V-15A [HC-89] 150V-20A [HC 89] 200V-5A [HC-91] 200V-15A [HC-9] 2036-400 [HC-59] 2036-600 [HC-58] 2036-600 [HC-58] 2036-600 [HC-58] 2036-600 [HC-58] 2036-700 [HC-37] 2036-700 [HC-37] 2036-700 [HC-37] 2036-700 [HC-37] 2036-700 [HC-38] 2036-700 [HC-59] 2037-700 [HC-60] 2038-700 [HC-7] 2038-700 [HC-7] 2038-700 [HC-7] 2048-700 [HC-7] 2048-700 [HC-7] 2058-700 [HC-7] 2058-700 [HC-7] 2068-700 [H | RS6-6M [HC-16] RS18-4-5M [HC-16] RS18-4-5M [HC-32] RS24-3-6M [HC-32] RS30-4-3-6M [HC-45] RS36-3-2M [HC-68] RS36-3-5M [HC-68] RS48-3-5M [HC-68] RS48-3-5M [HC-80] RS72-3-3-6M [HC-84] SP10-5 [HC-8] SP60-5 [HC-72] XR28-30M [HC-42] Dynamic Controls Co. (Dy Con) 19V [HC-15] 20V [HC-15] 27V [HC-39] TT2/35-10 [HC-45] Electronic Measurement (EI Meas) PR020-4M [HC-26] PV30-30M [HC-40] PV32-15M [HC-40] PV32-15M [HC-41] PV32-10M [HC-40] PV32-15M [HC-41] PV32-30M [HC-47] PV36-15M [HC-77] PV36-15M [HC-77] PV36-15M [HC-77] PV20-30M [HC-73] PV60-7-5M [HC-77] PVC20-30M [HC-56] PVC36-30M [HC-56] PVC36-30M [HC-56] PVC36-30M [HC-56] PVC36-30M [HC-56] PVC36-30M [HC-56] PVC36-30M [HC-74] PVC60-7-5M
PVC60-7-7M [HC-76] PVC60-7-7M [HC-76] PVC60-7-7M [HC-76] PVC60-7M | 12/600 [HC-19] 18/180 [HC-33] 30/150 [HC-59] 30/600 [HC-60] Glentronics, Inc. (Glentron) 0-50-8 [HC-69] 0-50-20 [HC-69] 20588-0 [HC-95] 20588-1 [HC-9] 20588-1 [HC-9] 20588-2 [HC-13] 20588-3 [HC-23] 20588-3 [HC-23] 20588-5 [HC-36] 20805-0 [HC-47] Harrison Division Hewlett-Packard Co (Harrison) 505A [HC-80] 510A [HC-55] 6261A [HC-55] 6266A [HC-55] 6266A [HC-13] 6266A [HC-5] 6266A [HC-65] [HC-7] 6281A [HC-5] 6282A [HC-65] 6284A [HC-65] 6284A [HC-28] 6285A [HC-28] 6286A [HC-28] 6286A [HC-28] 6286A [HC-28] 6286A [HC-28] 6366A [HC-27] 6367A [HC-50] 6438A [HC-28] 6439A [HC-77] Heath Co (Heath) IP-12 [HC-2, 12] Hevi-Duty Electric Co (Hevi Duty) HC15-10M [HC-17] HC15-10M [HC-17] HC15-10M [HC-17] HC15-10M [HC-17] HC30-10M [HC-18] HC30-20M [HC-38] HC30-30M [HC-38] HC30-30M [HC-38] HC30-30M [HC-38] HC30-15M [HC-31] HC30-10M [HC-63] HC60-5M [HC-73] HC80-5M [HC-61] HC40-15M [HC-75] HC80-5M [HC-81] HC80-5M [HC-81] HC80-5M [HC-81] HC80-5M [HC-83] LR75-510M [HC-18] HC80-5M [HC-17] HC80-5M [HC-18] HC80-15M [HC-20] LR16-10M [HC-34] LR20-10M [HC-34] LR20-10M [HC-38] LR20-10M [HC-38] LR20-10M [HC-39] LR20-20M [HC-34] [HC-36] LR30-20M | LR36-15M [HC-52] LR36-20M [HC-54] LR42-50M [HC-65] LR42-10M [HC-66] LR42-10M [HC-66] LR42-10M [HC-66] LR42-10M [HC-66] LR42-10M [HC-68] LR48-15M [HC-68] LR48-15M [HC-68] LR48-15M [HC-70] LR52-10M [HC-70] LR52-10M [HC-70] LR52-10M [HC-70] LR52-15M [HC-72] LR56-10M [HC-72] LR56-10M [HC-72] LR56-10M [HC-72] LR56-10M [HC-72] LR56-10M [HC-73] LR60-10M [HC-75] LR60-10M [HC-75] LR60-10M [HC-79] LR68-10M [HC-80] LR72-10M [HC-80] LR72-10M [HC-80] LR72-10M [HC-80] LR72-10M [HC-80] LR76-10M [HC-81] LR80-10M [HC-81] LR80-10M [HC-82] Hyperion Industries Corp (Hyperion) HY-CRI-36-25 [HY-T1-10-15 [HC-9] HY-T1-10-15 [HC-9] HY-T1-10-40 [HC-10] HY-T1-10-60 [HC-10] HY-T1-20-45 [HC-31] HY-T1-36-50 [HC-31] HY-T1-36-50 [HC-58] HY-T1-40-15 [HC-63] HY-T1-40-15 [HC-63] HY-T1-60-5 [HC-73] HY-T1-160-5 [HC-75] HY-T1-160-5 [HC-75] HY-T1-160-5 [HC-73] HY-T1-10-25 [HC-10] HY-SI-10-10 [HC-62] HY-SI-20-10 [HC-62] HY-SI-20-10 [HC-62] HY-SI-20-5 [HC-73] [HC-61] Kepco, Inc (Kepco) CK2-8M [HC-5] | K012-100M [HC.14] K025-50M [HC.35] K045-30M [HC.67] K070-20M [HC.80] KS8-15M [HC.6] KS8-15M [HC.6] KS8-15M [HC.6] KS8-10M [HC.6] KS8-10M [HC.6] KS8-10M [HC.26] KS18-25M [HC.26] KS18-25M [HC.26] KS36-5M [HC.26] KS36-5M [HC.53] KS36-10M [HC.53] KS36-10M [HC.53] KS36-10M [HC.53] KS60-10M [HC.73] [HC.6] PR38-15M [HC.60] PR38-15M [HC.60] PR38-15M [HC.60] PR38-15M [HC.82] PR155-4M [HC.82] PR155-4M [HC.82] PR155-4M [HC.82] PR15-5M [HC.81] SM14-15M [HC.7] SM36-15M [HC.7] SM36-15M [HC.7] SM36-15M [HC.53] SM75-5M [HC.81] [HC.8] LA80-03BM [HC.8] LA80-03BM [HC.8] LA80-03BM [HC.8] LA80-03BM [HC.8] LA80-03BM [HC.97] LA1100-03BM [HC.53] LE104FM [HC.23] LE104FM [HC.23] LE104FM [HC.23] LE104FM [HC.23] LE104FM [HC.23] LE104FM [HC.28] MS13-5-100 [HC.16] MS12-100 [HC.16] MS12-100 [HC.15] MS12-100 [HC.16] MS13-5-100 [HC.26] MS17-10 [HC.26] MS17-10 [HC.26] MS17-10 [HC.26] MS17-10 [HC.28] MS20-30 [HC.30] [HC.3 | |--|--|--|--
--|--| |--|--|--|--
--|--| Manufacturers' addresses and literature offerings in master cross index at front of issue. ## now you see it ## now you don't #### THE PANEL INSTRUMENT WITH BUILT-IN FLEXIBILITY New Triplett G-Series Panel Instruments offer a modern design that features a greater degree of flexibility and interchangeability. Two types of mounting are available—conventional flush type or behind-the-panel with a bezel for modern picture window appearance. The insert shield on the front of the meter can be custom painted or printed to meet customer's requirements. Triplett's famous self-shielded Bar-Ring magnet, with one-piece die-cast frame, all DC and DC suspension type instruments. Available in three popular sizes: $2\frac{1}{2}$, $3\frac{1}{2}$ and $4\frac{1}{2}$ models with black molded dustproof cases and clear molded plastic fronts. You name the shape, we have it-or we'll make it for you: ## For everything in meters you can count on Idea Ideal is a specialist's specialist-a complete facility with 100% concentration on meter development and design exclusively. Ideal meters are used by every branch of the Military and by leaders in defense and industry. Whatever you need in meters-ruggedized or commercial, custom and stock, 1/2" to 7" -call Ideal, the proven leader. Write for free 52-pg, handbook and catalog, Ideal Precision Meter Co., Inc., 218 Franklin St., Brooklyn, N.Y. 11222. (212) EVergreen 3-6904. ON READER-SERVICE CARD CIRCLE 13 Also 200 other Models of Power Supplies & Battery Chargers . Write for Catalog CHRISTIE ELECTRIC CORP. 3414A West 67th Street, Los Angeles 43, Calif. MS34-20 MS34-30 MS34-50 MS38-50 [HC-65] MS38-20 [HC-66] MS38-30 [HC-66] MS38-30 [HC-66] MS38-50 [HC-66] MS38-50 [HC-66] MS46-5 [HC-71] MS46-15 [HC-71] MS46-15 [HC-71] MS46-15 [HC-71] MS46-15 [HC-71] MS65-10 [HC-80] MS65-15 [HC-80] MS65-15 [HC-80] MS77-10 [HC-84] MS77-15 [HC-84] MS77-15 [HC-84] MS77-15 [HC-84] MS109-10 [HC-87] MS109-10 [HC-87] MS109-10 [HC-87] MS109-10 [HC-87] MS109-10 [HC-87] MS128-15 [HC-8] MS128-15 [HC-8] MS128-15 [HC-92] MS273-7 [HC-92] MS273-5 [HC-92] MS273-5 [HC-92] MS273-5 [HC-92] MS273-5 [HC-92] MS273-7 [HC-92] MS273-7 [HC-92] MS273-7 [HC-92] MS273-7 [HC-92] MS273-7 [HC-92] MS260-15 [HC-73] SS18-16 [HC-24] SS18-18 [HC-24] SS18-19 [HC-24] SS18-19 [HC-24] SS18-19 [HC-74] SS36-10 [HC-74] SS36-10 [HC-74] SS60-15 [HC-77] SS18-15 [HC-24] ST18-15 [HC-24] ST18-15 [HC-24] ST18-15 [HC-24] ST18-15 [HC-24] ST18-15 [HC-25] ST36-10S [HC-77] ST100-5 [HC-77] ST100-5 [HC-77] ST100-5 [HC-76] ST100-10 [HC-86] ST100-10 [HC-86] ST100-10 [HC-86] NJE Corp (NJE) CR-18-30 [HC-25] CR-36-8 [HC-49] CR-36-15 [HC-53] CR-36-30 [HC-57] CR-36-30 [HC-57] CR-36-50 [HC-57] CR-60-18 [HC-78] ELA-32-10CM [HC-40] ELA-32-20RM [HC-41] ELA-32-30RM [HC-41] ELA-80-4RM ELA-32-30RM [HC-43] ELA-80-4RM [HC-81] ELA-80-8RM [HC-82] ELA-80-15RM [HR-83] ELA-120-10RM [HC-87] ELA-160-4RM [HC-93] ELA-160-8RM [HC-93] ELB-32-10CM [HC-40] ELB-32-20RM [HC-41] ELB-32-30RM [HC-43] ELB-80-4M [HC-43] [HC-81] ELB-80-8RM [HC-82] ELB-80-15RM ELB-80-15RM [HC-83] ELB-120-10RM [HC-87] ELB-160-4RM [HC-90] ELB-250-5RM [HC-91] QR-10-10 [HC-9] QR-15-20 [HC-19] QR-15-20 [HC-19] QR-36-4 [HC-46] QR-36-10 [HC-51] QR-36-5M [HC-48] RVC-36-15M [HC-53] RVC-36-15M [HC-53] [HC.55] SR.6.20M [HC.2] SR.8.20M [HC.7] SR.10.7.5M [HC.1] SR.10.7.5M [HC.1] SR.10.7.5M [HC.11] SR.10.7.5M [HC.11] SR.12.7.5M [HC.14] SR.12.7.5M [HC.14] SR.12.15M [HC.20] SR.15.12M [HC.20] SR.20.5.5M [HC.32] SR.20.11M [HC.33] SR.24.5M [HC.33] SR.24.5M [HC.33] SR.24.5M [HC.37] SR.28.10M [HC.38] SR.24.10M [HC.38] SR.24.10M [HC.38] SR.28.5M [HC.70] SY.36.20M [HC.54] SY.36.20M [HC.54] SY.36.20M [HC.54] SY.36.20M [HC.77] TC.14.15 [HC.77] TC.14.15 [HC.77] TC.14.15 [HC.77] TC.14.15 [HC.77] TC.32.30 [HC.42] [HC.43] TC.32.30 [HC.42] TC.32.30 [HC.43] TC.32.30 [HC.42] TC.32.30 [HC.42] TC.32.30 [HC.42] TC.32.30 [HC.42] TC.32.30 [HC.42] TRM.28.30 [HC.42] TRM.28.30 [HC.42] TRM.28.30 [HC.42] TRM.28.30 [HC.42] TRM.28.30 [HC.42] TRM.28.30 [HC.42] TRM.40.60 [HC.65] TRM.40.60 [HC.64] TRM.40.60 [HC.64] TRM.40.60 [HC.64] TRM.40.15 [HC.62] TRM.80.15 [HC.83] TRM.80.15 [HC.83] TRM.80.15 [HC.84] TRM.80.15 [HC.84] [HC-90] Perkin-Electronics Perkin-Electronics Corp (Perkin) M60V [HC-42] MR532-15A [HC-52] MR550-50 [HC-70] MTR28-10A [HC-40] MTR036-5A [HC-48] MTR036-15 [HC-63] TVCR040-5 [HC-61] TVCR040-15 [HC-6] TVCR040-30 [HC-64] TVCRO40.30 [HC.64] TVRO40.5 [HC.61] TVRO40.15 [HC.63] TVRO40.30 [HC.64] 28.5WX [HC.49] 28.10WXA [HC.40] 28.30WX [HC.42] 115.5WX [HC.86] Prioneer Magnetics, Inc (Pioneer) RR10-5-A [HC-8] RR10-10-B [HC-8] RR10-10-B [HC-9] RR10-10-B [HC-9] RR10-20-B [HC-10] RR10-30-A [HC-10] RR10-30-A [HC-10] RR10-30-B [HC-10] RR20-20-A [HC-27] RR20-10-B [HC-27] RR20-10-B [HC-30] RR20-30-B [HC-30] RR20-30-B [HC-30] RR20-30-B [HC-30] RR20-30-B [HC-30] RR36-5-A [HC-48] RR36-5-B [HC-48] RR36-10-B [HC-51] RR36-20-B [HC-51] RR36-20-B [HC-51] RR36-30-B [HC-51] RR36-30-B [HC-51] RR36-30-B [HC-51] RR36-30-B [HC-51] RR36-30-B [HC-73] RR60-5-B [HC-73] RR60-10-B [HC-73] RR60-10-B [HC-76] RR60-10-B [HC-76] RR60-20-B [HC-78] RR60-20-B [HC-78] RR60-30-B [HC-79] RR60 Pioneer Magnetics, Power Designs, Inc (Pwr Des) 1210S [HC-13] 3650S [HC-48] 3650R [HC-48] 36100 HC-97] 36250A [HC-55] Power Instruments Corp (Pwr Inst) 2815 [HC-41] 2840 [HC-43] 3605 [HC-48] 3615 [HC-53] 3630 [HC-57] 4005 [HC-60] 4015 [HC-62] 4030 [HC-64] Power Sources, Inc (Pwr Srcs) PS4305 [HC-48] PS4315 [HC-54] PS4330 [HC-57] Rapid Electric Co (Rapid) 5CYMA [HC-87] 5CYMA [HC-87] 5XMA [HC-87] 5XMA [HC-3] 15AMA [HC-3] 15BMA [HC-15] 40AMA [HC-15] 40AMA [HC-52] 540EMA [HC-64] 2432EMA [HC-40] 2432EMA [HC-42] 3230R [HC-42] Rateleo, Inc. (Ratelco) PS-3 [HC-19] PS-5 [HC-63] Scintillonics, Inc Scintillonics, Inc (Scint) 56F2 [HC-3] 59F2 [HC-8] 514F2 [HC-16] 528F2 [HC-36] 536F2 [HC-46] Sola Electric Co (Sola) 28626 [HC-37] 281024-1 [HC-33] 281048 [HC-67] 281513-1 [HC-2] 281513-1 [HC-12] 281515-1 [HC-12] 281561 [HC-68] 285110 [HC-45] 285120 [HC-74] 285130 [HC-84] Sorensen (Sorensen) DCR20-125 [HC-32] DCR40-10 [HC-62] DCR40-20 [HC-63] DCR40-35 [HC-65] DCR60-13 [HC-65] DCR60-13 [HC-78] DCR60-25 [HC-81] DCR80-16 [HC-81] DCR80-18 [HC-81] DCR80-19 [HC-84] DCR80-19 [HC-84] DCR150-10 [HC-84] DCR150-10 [HC-89] DCR150-15 [HC-88] DCR150-15 [HC-88] DCR150-15 [HC-89] DCR150-15 [HC-92] MD6.3-15.9 [HC-2] MD6.3-15.9 [HC-2] MD6.3-63.5 [HC-2] MD12-0-8.4 [HC-13] MD12-0-16.7 Sorensen [HC·14] MD12.0-33.4 [HC-14] MD18.0-5.55 [HC-22] MD18.0-11.1 [HC-24] MD18.0-22.4
[HC-25] MD24.0-4.2 [HC-33] MD24.0-8.32 [HC-34] MD24 0-16 64 [HC-34] MD28 0-3.6 [HC-36] MD28.0-7.2 [HC-36] MD28.0-14.3 [HC-37] MD48.0-4.2 [HC-67] MD48.0-8.4 [HC-68] MD115.0-3.5 MD115.0-3.5 [HC-86] O18-12 [HC-35] O86-4 [HC-7] O86-8 [HC-7] O86-15 [HC-7] O86-30 [HC-7] O812-4 [HC-22] O812-8 [HC-23] O812-15 [HC-24] O818-6 [HC-35] O828-4 [HC-46] O828-8 [HC-47] O850-4 [HC-72] ORB20-4 [HC-72] QRC20-8 [HC-28] QRC20-15 [HC-29] QRC20-30 [HC-31] QRC40-4 [HC-60] QRC40-8 [HC-62] QRC40-15 [HC-63] QRC40-30 [HC-64] Spectromagnetic Industries (Spec Ind) TC200-15 [HC-91] **Technical Apparatus** Builders (Tabtron) B28V50ARM [HC-96] T12V15ARM [HC-13] T14V30ARM 114430ARM [HC-17] T32V15ARM [HC-41] T32V30ARM [HC-43] T48V10ARM [HC-68] T60V10ARM [HC-76] T90V10ARM [HC-85] MRT32V25A [HC-42] Technipower Inc (Tech Pwr) L10-12.0M [HC9] L10-25.0M [HC10] L10-25.0M [HC:10] L20-6.0M [HC:30] L20-25.0M [HC:61] L40-12.0M [HC:62] L40-12.0M [HC:62] L40-12.0M [HC:62] L40-12.0M [HC:63] L80-6.0M [HC:83] L80-6.0M [HC:90] L10-12.0M [HC:90] L10-12.0M [HC:90] L10-12.0M [HC:10] L10-12.0M [HC:10] L10-12.0M [HC:10] L10-12.0M [HC:10] L10-12.0M [HC:10] L10-12.0M [HC:10] LS10.0-12.0M [HC-10] LS10.0-25.0M [HC-10] LS20.0-6.0M [HC-28] LS20.0-12.0M [HC-29] LS-10.0-25.OM [HC-30] LS40.0-6.0M L\$40 0.6.0M [HC.61] L\$40.0-12.0M [HC.62] L\$40.0-25.0M [HC.64] L\$80.0-6.0M [HC.82] L\$80.0-12.0M [HC.83] L\$80.0-25.0M [HC.83] [HC-83] LS160.0-6.0M [HC-90] LS160.0-12.0M Transistor Devices. Inc (Trans Dev) RS3-10 [HC-1, 94] RS3-25 [HC-94] RS3-50 [HC-94] RS6-10 [HC-2, 94] RS6-25 [HC-94] RS6-20 [HC-14] RS12-10 [HC-95] RS12-20 [HC-14] RS18-7 [HC-22] RS18-10 [HC-95] RS19-10 [HC-95] RS19-10 [HC-95] RS19-10 [HC-95] RS19-10 [HC-95] [HC-92, 97] VS201 [HC-45, 96] VS231 [HC-91, 97] Trygon Electronics, Trygon Electronics, Inc. (Trygon) (15-80 [HC-58] (26-50 [HC-58] (260-25 [HC-79] (2160-8C [HC-91] (2160-8C [HC-91] (2160-8C [HC-91] (2160-8C [HC-13] (2160-8C [HC-13] (2160-8C [HC-18] [H [HC-18] Manufacturers' addresses and literature offerings in master cross index at front of issue. FT-FTR18-10 | HC 23| FT-FTR24-8 | HC 33| FT-FTR24-8 | HC 36| FT-FTR28-7 | HC 36| FT-FTR48-4 | HC 67| HH7-4 | HC 3] HR20-10B | HC 29| HR40-5B | HC 61| HR40-7.5B | HC 62| HR60-5B | HC 62| HR60-5B | HC 94| LR5-40 | HC 94| LR8-35 | HC 94| LR10-30 | HC 95| LR12-30 | HC 95| LR14-30 | HC 95| LR17-30 | HC 95| LR17-30 | HC 96| LR21-20 | HC 96| LR21-20 | HC 96| LR21-20 | HC 96| M15-30A | HC 19| M36-15A | HC 57| M36-15A | HC 56| M36-30A | HC 56| M36-30A | HC 57| M50-15A | HC 57| M50-15A | HC 76| M60-15A M RS40-10.4 [HC-97] Universal Electronics (Un Elect) L3510 [HC-45] L3515 [HC-46] L5010 [HC-69] L035-6A [HC-49] L035-6A [HC-49] L035-10A [HC-45] L035-15A [HC-46] L035-25 [HC-46] L035-25 [HC-46] L035-25 [HC-46] L050-6A [HC-49] O-5-8-4A [HC-4] O-5-8-10A [HC-6] O-5-8-10A [HC-6] O-5-8-10A [HC-6] O-5-8-10A [HC-6] O-14-4-6A [HC-16] O10-14-4-6A [HC-16] O10-14-15A [HC-17] O10-14-15A [HC-17] O26-30-4A [HC-38] O26-30-10A [HC-38] O26-30-15A [HC-38] O26-30-15A [HC-38] O26-30-15A [HC-38] O26-30-25A [HC-39] O25-4A [HC-70] Utronics, Inc Utronics, Inc Utronics, Inc (Utronics) BR3/5 [HC-1] BR10/5 [HC-8] QCR15/10 [HC-18] QCR36/10 [HC-18] QCR36/5 [HC-48] QCR36/10 [HC-51] QCR36/15 [HC-54] QCR36/30 [HC-57] AV6-3-60 [HC-27] AV14-50 [HC-17] AV30-40 [HC-39] Valor Instruments, Inc (Valor) AV6.3-60 [HC-2] AV14-50 [HC-17] AV26-40 [HC-35] AV30-40 [HC-39] Vector Engineering (Vector) CF-30-6A [HC-92] CF-40-6A [HC-93] CM-01-1L [HC-24] CM-01-8A [HC-23] CM-03-2L [HC-55] CM-03-2L [HC-55] CM-03-3L [HC-57] CM-03-5A [HC-48] CM-03-5A [HC-48] CM-03-10A [HC-51] CM-06-5A [HC-74] ST-01-3A [HC-22] Voltex Co. Inc (Voltex) 18.5 [HC.22] 18.10 [HC.23] 18.15 [HC.24] 36.6 [HC.49] 36.10 [HC.51] 60.4 [HC.72] 69.6 [HC.74] 82.192 [HC.4] 82.193 HC.15] 82.197.2M [HC.29] 100.4 [HC.85] Voltex Co. Inc ## WHAT'S INSIDE COUNTS **DESIGNED IN** AND BUILT IN TRANSISTOR DEVICES COMPARE THESE FEATURES: - MANY VERSATILE DESIGNS AVAILABLE FOR ADAPTATION TO SPECIAL REQUIREMENTS - ALL SILICON 70°C AMBIENT - MIL GRADE COMPONENTS AND WORKMANSHIP, EVEN ON INDUSTRIAL EQUIPMENT - 80,000 HRS. M.T.B.F. - COMPLETELY SERVICEABLE - MAXIMUM HEAT TRANSFER - RUGGEDIZED CONSTRUCTION Write for our NEW Catalog. Incorporated **ROUTE 53, MT. TABOR, N. J. 07878** ON READER-SERVICE CARD CIRCLE 15 ## Constant-Current DC Power Supplies | | | | | OUTPUT | | | REGULATION | | Internal | | //- | | | |---|-------------|------------|---------|-----------|-------|----------------------|---------------------|--------|-----------------------|--------|----------|----------|-------| | | Mfr. | Model | Cur | rent | Max. | Line | Load | Ripple | Internal
Impedance | Meters | Mounting | Price \$ | Notes | | | | | Min, ma | Max. Amps | Volts | 5 | % | * | Ω | | | | | | | Керсо | ABC2500M | 1 | 0.002 | 2500 | 0.11,3 | 0.1 | 1 mv | 28 | yes | С | 365 | a,b,e | | | Alpha | AL50-5A | 0 | 0.005 | 50 | ±3x 10-71 | ±3x10 ⁻⁷ | 0.001 | ina | yes | R | 1390 | a,b,e | | | Alpha | AL50-5B | 0 | 0.005 2 | 50 | ±0.00051 | +0.0005 | 0.1 | ina | yes | R | 1181 | d,e | | | Alpha | AL 100-5A | 0 | 0.005 | 100 _ | ±3x 10-71 | ±3x 10-7 | 0.001 | ina | yes | R | 1745 | a,b,e | | C | Alpha | AL 100-5B | 0 | 0.005 | 1003 | +0.00051 | ±0.0005 | 0.1 | ina | yes | R | 1483 | d,e | | 1 | Alpha | AL50-10B | 0 | 0.01 | 5 | ±0.00051 | ±0.0005 | 0.1 | ina | yes | R | 1492 | d,e | | | North Hills | CS-151 | 0 | 0.01 | ±10 | 5 ppm | ina | 0.005 | ina | ina | R | 2495 | a | | | Alpha | AL 50-10 A | J | 0.01 | 50 | ±3x 10-71 | ±3x 10-7 | 0.001 | ina | yes | R | 1755 | a,b,e | | | Alpha | AL 100-10A | 0 | 0.01 | 100 | ±3x 10-71 | +3×10 ⁻⁷ | 0.001 | ina | yes | R | 1845 | a,b,e | | | Alpha | AL 100-10B | 0 | 0.01 | 100 | ±0.00051 | ± 0.0005 | 0.1 | ina, | yes | R | 1568 | d,e | | | North Hills | CS-120 | 100 na | 0.01 | 2250 | 0.05 | 0.05 | 0.15 | ina | none | R | 695 | a | | | Alpha | AL50-20A | 0 | 0.02 | 50 | ±3x 10-72 | ±3 x 10-7 | 0.001 | ina | yes | R | 2185 | a,b,e | | | Alpha | AL50-20B | 0 | 0.02 | 50 | ±0.0005 ² | ±0.0005 | 0.1 | ina | yes | R | 1857 | d,e | | | Alpha | AL 100-20A | 0 | 0.02 | 100 | ±3x 10-72 | ±3x10-7 | 0.001 | ina | yes | R | 2285 | a,b,e | | С | Alpha | AL 100-20B | 0 | 0.02 | 100 | ±0.0005 ² | ±0.0005 | 0.1 | ina | yes | R | 1942 | d,e | | C | Керсо | ABC 1000M | 1 | 0.02 | 1000 | 0.11,3 | 0.1 | 1 mv | 28 | yes | c | 295 | a,b,e | | | Керсо | ABC1500M | 1 | 0.02 | 1500 | 0.11.3 | 0.1 | 1 mv | 28 | yes | C | 295 | a,b,e | The table in this section lists the specifications for constant-current dc power supplies. These supplies cover the current range from 0 to 125 amperes. Unless otherwise noted in the table, all have input-voltage requirements of 95-130 vac, 1 phase. Prices indicated in the table are subject to change by the manufacturer. An index of manufacturers and models is included at the end of the table. The index is alphabetical, by manufacturer, and it lists the various constant-current dc power supplies of each manufacturer. A location key is included after each model. This permits easy spotting in the table of the specifications for that supply, by means of the location-key column (1 above). #### How the table is arranged Specifications for the constant-current dc power supplies are given in separate, appropriately headed columns. The complete specifications for any one supply can thus be read across the page. Within the table, the supplies are listed in ascending order of maximum output current (2 above). Where the maximum output current of several supplies is the same, the units are listed in order of increasing maximum output voltage (3 above). If both of these characteristics are identical for several supplies, they are then listed in order of increasing output current swing (4 above). This arrangement allows for a rapid across-the-market comparison of all the constant-current dc power supplies with similar application capability. Manufacturers are identified in the Mfr column by an abbreviation (5 above). The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master index at the front of the issue. All notes and symbols used in the table are defined at the end of the section. At the top of each page of the table, reference is made to the output current range covered by the supplies on that page. This is to expedite the location of a supply with particular characteristics. #### How to use the table - 1. Note how the supplies are listed. - They are in ascending order of maximum output current. Where this is the same, they are in order of increasing maximum output voltage. - 2. Select the most likely candidates. - 3. Obtain supplementary data from the manufacturer. Manufacturers' addresses, together with Reader Service numbers for specific power supply types, are given in the master cross index at the front of the issue. #### **Constant-current dc supplies** 0.002-0.24 amp | | | | | OUTPUT | | | REGULATION | | Laterral | | H 1 | | | |--------|------------------------|-------------------------|----------------|----------------|-------------|--|--|---------------|-------------------------|--------------|----------|--------------|---------------------| | | Mfr. | Model | Curi | rent | Max. | Line | Load | Ripple | Internal
Impedance | Meters | Mounting | Price
\$ | Notes | | | | | Min. ma | Max, Amps | Volts | % | % | % | Ω | | | 2 | | | | Керсо | ABC2500M | 1 | 0.002 | 2500 | 0.11,3 | 0.1 | 1 mv | 28 | yes | С | 365 | a,b,e | | | Alpha | AL50-5A | 0 | 0.005 | 50 | ±3 x 10 → 7 1 | ±3x 10 ⁻⁷ | 0.001 | ina | yes | R | 1390 | a,b,e | | | Alpha | AL50-5B | 0 | 0.005 | 50 | ±0.0005 ¹
±3x10 ⁻⁷¹ | ±0.0005 | 0.1 | ina | yes | R | 1181 | d,e | | | Alpha
Alpha | AL 100-5A
AL 100-5B | 0 | 0.005
0.005 | 100
100 | ±0.00051 | ±3x 10 ⁻⁷
±0.0005 | 0.001 | ina
ina | yes
yes | R
R | 1745
1483 | a,b,e
d,e
| | С | 7.4.5.10 | NE 100 SB | · · | 0.003 | 100 | 20.0003 | 10.0003 | 0.1 | 1110 | yes | " | 1403 | u,e | | 1 | Alpha | AL50-10B | 0 | 0.01 | 5 | ±0.00051 | ±0.0005 | 0.1 | ina | yes | R | 1492 | d,e | | | North Hills | CS-151
AL50-10A | 0 | 0.01 | ±10 | 5 ppm
± 3 x 10 ⁻⁷¹ | ina | 0.005 | ina | ına | R | 2495 | a | | | Alpha
Alpha | AL 100-10A | 0 | 0.01
0.01 | 50
100 | ±3x 10-71 | ±3x10 ⁻⁷
±3x10 ⁻⁷ | 0.001 | ina
ina | yes
yes | R
R | 1755
1845 | a,b,e
a,b,e | | | Alpha | AL 100-10B | 0 | 0.01 | 100 | ±0.00051 | ±0.0005 | 0.1 | ina | yes | R | 1568 | d,e | | | North Hills | CS-120 | 100 na | 0.01 | 2250 | 0.05 | 0.05 | 0.15 | ina | none | R | 695 | а | | | Alpha | AL50-20A | 0 | 0.02 | 50 | ±3x10-72 | ±3 x 10-7 | 0.001 | ina | yes | R | 2185 | a,b,e | | | Alpha | AL50-20B | 0 | 0.02 | 50 | ±0.0005 ² | ±0.0005 | 0.1 | ina | yes | R | 1857 | d,e | | | Alpha | AL100-20A | 0 | 0.02 | 100 | ±3x 10-72 | ±3x 10 ⁻⁷ | 0.001 | ina | yes | R | 2285 | a,b,e | | С | Alpha | AL 100-20B | 0 | 0.02 | 100 | ±0.0005 ² | ±0.0005 | 0.1 | ina | yes | R | 1942 | d,e | |) | Керсо | ABC1000M | 1 | 0.02 | 1000 | 0.11,3 | 0.1 | l mv | 28 | yes | C | 295 | a,b,e | | | Kepco
Alpha | ABC1500M
AL50-50B | 1 | 0.02 | 1500
50 | 0.1 ^{1,3}
±0.0005 ² | 0.1
±0.0005 | 1 mv | 28 | yes | C
R | 295 | a,b,e | | | Alpha | AL50-50B | 0 | 0.05
0.05 | 50 | ±0,00052
±3x10-72 | ±3x 10 ⁻⁷ | 0.1 | ina
ina | yes
yes | R | 3018
3550 | d,e
a,b,e | | | Altair | C2B | 0.01 | 0.05 | 300 | 1 | ina | 0.05 | ina | none | C or R | 230 | 2,5,0 | | | Керсо | ABC425M | 1 | 0.05 | 425 | 0.11,3 | 0.1 | 500μν | 28 | yes | С | 210 | a,b,e | | | Deltron | 2753 | 0 | 0.05 | 425 | 0.013 | 0.01 | 500μν | 205 | yes | С | 199 | a,c,d,e | | | Harrison | 6525A | 0 | 0.05 | 4000 | ina | ina | 500 μv | ina | yes | R | 750 | c,d,e | | | Vector | CP-1959-CC | 10 | 0.1 | 20 | 0.0057 | 0.0057 | ina | ina | yes | ina | ina
1427 | | | C
3 | Singer/Sensitive | 9770A | 10 | 0.1 | 35 | ±0.0001 | ±0.0001 | 1 mv | ina | yes | С | 1437 | e | | 3 | Vector | CP-1863-CC | 70 | 0.1 | 50 | 0.001 | 0.005 | 2µа | ina | ina | R | ina | | | | North Hills
El Meas | CS-11
C612A | 1μa
1μa | 0.1 | 50
100 | 0.0025
0.15 | 0.002 | 0.02 | ina
ina | none
yes | R
R | 995
289 | a
a,e | | | Fluke | 351A | lμa | 0.1 | 100 | 0.01 | 0.01 | 0.05 + 1µa | ina | yes | R | 845 | e | | | Cohu | M10A-10 | 0 | 0.1 | 100 | ±0.01 | ±0.01 | 2 mv | ina | none | R | 1495 | | | | Princeton | TC-100.2AR | 0 | 0.1 | 100 | 100 na | 0.005 | 100 na | ina | yes | R | 1800 | c,e | | | Princeton | TC-100.2BR | 0 | 0.1 | 100 | 100 na | 0.005 | 100 na | ina | yes | R | 2200 | a,b,e | | | Princeton | TC-100.2R | 0 | 0.1 | 100 | 100 na
0.1 ¹ .3 | 0.005 | 100 na | ina
28 | yes | R | 1500 | c,e | | | Kepco
El Meas | ABC200M
C613CM | 0
1μa | 0.1 | 200
300 | 0.15 | 0.1 | 500μv
0.04 | ina | yes
yes | C
R | 210
409 | a,b,e
a,e | | C 4 | | | | | | | | | | , | | | | | | Harrison | 6209A | 0 | 0.1 | 320 | 200µa | 200 µa | 200µa | 35 | yes | C | 194 | a,b,c,d,e | | | Deltron
El Meas | 2753A
C638CM | 0
500 na | 0.1 | 425
1500 | 0.01
0.15 | 0.01 | 500μv
0.04 | 20 ⁵
ina | yes
yes | C
R | 230
1120 | a,c,d,e
a,e | | | Deltron | CC100200S | 10 | 0.1 | 2000 | ±0.1 | ±0.5 | 0.02 | ina | yes | R | 669 | 6 | | | Harrison | 6522A | 0 | 0.1 | 2000 | 1 ma | 1 ma | 1 ma | ina | yes | R | 750 | c,d,e | | | Deltron | EA10012 | 0 | 0.12 | 100 | 0.01 | 0.01 | ina | ina | yes | ½R | 133 | a,b,c,e | | | Deltron | ED10012 | 0 | 0.12 | 100 | 0.01 | 0.01 | ina | ina | yes | ½R | 145 | a,b,c,d, | | | North Hills | CS-152 | 0 | 0.15 | ± 25 | 5 ppm | ina | 0.005 | ina | none | R | 2995 | | | | Deltron
Deltron | EA8015
ED8015 | 0 | 0.15
0.15 | 80
80 | 0.01 | 0.01 | ina
ina | ina
ina | yes
yes | ½R
½R | 133
145 | a,b,c,e
a,b,c,d, | | C | Somon | 2000-,10 | | 0.13 | 00 | 0.01 | 0.01 | | | , 03 | 72.1 | . 70 | 0,0,0,0,0 | | | North Hills | CS-140 | 0.1 | 0.15 | ± 100 | 0.0025 | 0.0025 | 0.02 | ina | none | R | 3250 | a | | | Hyperion
Deltron | HY-W1-100-0.15
EA602 | 0 | 0.15
0.2 | 100 | 0.05 ^{3,7}
0.01 | 0.05 ⁷
0.01 | 1 mv
ina | ina
ina | y es
y es | ½R
½R | 159
133 | a,b,c,d,
a,b,c,e | | | Deltron | ED602 | 0 | 0.2 | 60 | 0.01 | 0.01 | ina | ina | yes | ½R | 145 | a,b,c,d, | | | Керсо | ABC100-0.2M | 1 | 0.2 | 100 | 0.11,3 | 0,5 | 0.25 | 0.058 | yes | R | 188 | a,b,c,e | | | Owen | 500 | 0 | 0.2 | 100 | ±0.002 | ±0.002 | ina | ina | yes | C or R | ina | | | | Owen | 505 | 0 | 0.2 | 100 | ±0.002. | ±0.002 | ina | ina | попе | C or R | ina | | | | Harrison | 6207 A | 0 | 0.2 | 160 | 200μa ¹ | 200µa | 200 µa | 35 | yes | ½R
P | 194 | a,b,c,d,e | | | Kepco
Buchler | 3-1014A | 10
0 | 0.2 | 325
1000 | 0.01 ¹ ,3 | 0.01
±1 | 0.01 | 0.2 ⁸
ina | yes
yes | R
C | 295
486 | a,b,e
d,e | | C | Deciret | | | | | | | | 1110 | ,63 | | | u,c | | | Harrison
El Meas | 6521A
C624A | 0 2 22 | 0.2 | 1000
100 | 1 ma
0.15 | 1 ma
0.1 | 2 ma
0.04 | ina | yes | R
R | 750
364 | c,d,e | | | El Meas
El Meas | C632CM | 2.2µa
2.2µa | 0.22 | 300 | 0.15 | 0.1 | 0.04 | ina
ina | yes
yes | R | 424 | a,e
a,e | | | El Meas | C636CM | 2.2μα | 0.22 | 600 | 0.15 | 0.1 | 0.04 | ina | yes | R | 540 | a,e | | | Deltron | EA10024 | 0 | 0.24 | 100 | 0.01 | 0.01 | ina | ina | yes | 14R | 164 | a,b,c,e | | | | | | OUTPUT | | | REGULATION | | | | | | | |---|---------------------|-----------------------|---------|-----------|-----------|-----------------------------|---------------------------|---------------|-----------------------|--------|------------|------------|-------------------| | | Mfr. | Model | Cur | rent | Max. | Line | Load | Ripple | Internal
Impedance | Meters | Mounting | Price \$ | Note | | | | | Min, ma | Max. Amps | Volts | % | % | % | Ω | | | | | | | Deltron | ED100-,24 | 0 | 0.24 | 100 | 0.01 | 0.01 | ina | ina | yes | ½R | 175 | a,b,c,d,e | | | F W Bell | RS-1 | 10 | 0.25 | 3 | +0.31 | 0.3 | 0.1 | ina | none | C | 89 | C | | | Deitron | CC25100S | 2,5 | 0.25 | 1000 | ±0.1 | ±0.5 | 0.02 | ina | yes | R | 320 | e | | | Керсо | ABC30-0,3M | 1 | 0.3 | 30 | 0.11,3 | 0.5 | 0.25 | 0.18 | yes | С | 125 | a,b,c,e | | | Deltron | EA403 | 0 | 0.3 | 40 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 129 | a,b,c,e | | С | Delition | LAW.5 | | 0.5 | 40 | 0.01 | 0.01 | """ | 1110 | ,cs | 711 | 123 | 0,0,0,0 | | 7 | Deltron | ED403 | 0 | 0.3 | 40 | 0.01 | 0.01 | ina | ina | yes | ½R | 139 | a,b,c,d, | | | Hyperion | HY-W1-60-0.3 | 0 | 0.3 | 60 | 0.053,7 | 0.053.7 | 350 µv | ina | yes | ⅓R | 149 | a,b,c,d, | | | Deltron | EA803 | 0 | 0.3 | 80 | 0.01 | 0.01 | ina | ina | yes | ½R | 164 | a,b,c,e | | | Deltron | ED803 | 0 | 0.3 | 80 | 0.01 | 0.01 | ina | ina
35 | yes | ½R
⊬P | 175 | a,b,c,d, | | _ | Deltron | RP100-0.3 | 0 | 0.34 | 100 | 0.05 ³ | 0.05 | 250 μα | 30 | yes | ½R | 199 | a,b,c,d, | | | El Meas | C629CM | 2.2 µa | 0.3 | 150 | 0.151 | 0.1 | 0.04 | ina | yes | R | 409 | a,e | | | El Meas | C633C | 2.2 µа | 0.3 | 300 | 0.151 | 0.1 | 0.4 | ina | yes | R | 464 | a,e | | | Deltron | EA604 | 0 | 0.4 | 60 | 0.01 | 0.01 | ina | ina | yes | ½R | 164 | a,b,c,e | | | Deltron | ED604 | 0 | 0.4 | 60 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 175 | a,b,c,d, | | 0 | Керсо | HB4AM | 10 | 0.4 | 325 | 0.011,3 | 0.01 | 0.01 | 0.2 | yes | R | 330 | a,b,e | | | Керсо | ABC18-0.5M | 1 | 0.5 | 18 | 0.11,3 | 0.5 | 0.25 | 0.18 | yes | С | 125 | a,b,c,e | | | Deltron | EA205 | 0 | 0.5 | 20 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 129 | a,b,c,e | | | Deltron | ED205 | 0 | 0.5 | 20 | 0.01 | 0.01 | ina | ina | yes | ½R | 139 | a,b,c,d, | | | Sorensen | QB285 | 0 | 0.5 | 36 | ±0.01 ^{1,3,7} | ±0.01 ⁷ | 13 µa | 0.005 | none | ½R | 98 | a,b,c | | | Pwr Des | 4005 | 25 | 0.5 | 40 | 0.02 | 0.02 | 0.005 | ina | yes | С | 143 | a,c,d,e | | | Pwr Des | TW-4005 | 25 | 0.56 | 406 | 0.027 | 0.027 | 0.005 | ina | yes | С | 297 | c,d,e | | | Керсо | ABC40-0.5M | 1 | 0.5 | 40 | 0.11,3 | 0.5 | 0.25 | 0.048 | yes | C | 167 | a,b,c,e | | | ERA | TRO 40M | 0 | 0.5 | 40 | 0.015 | 0.03 | ina | ina | yes | ½R | 130 | a,b,c,e | | | Harrison | 865C | 0 | 0.5 | 40 | 0.021,3 | 0.02 | 200 µa | 35 | yes | С | 191 | a,b,c,d, | | С | Hyperion | HY-W1-40-0,5 | 0 | 0.5 | 40 | 0.013 | 0.01 | ina | ina | yes | ½R | 124 | a,b,c,d, | | 1 | Perkin | TVCRO40-05 | 0 | 0.5 | 40 | ±0.02 | ±0.02 | 500 μa | ina | yes | С | 219 | a,b,c,e | | | El Meas | C620CM | 5 µa | 0.5 | 50 | 0.15 | 0.1 | 0.4 | ina | yes | R | 474 | a,e | | | Pwr Des | 5005R | 0 | 0.5 | 50 | 0.05 | 0.05 | ina | ina | yes | ½R | 149 | a,b,d,e | | | Керсо | CK60-0.5M | 1 | 0.5 | 60 | 0.011,3 | 0.01 | 0.05 | 0.088 | yes | C | 305 | a,b,c,d, | | | Hyperion | HY-WS-60-0.5 | 0 | 0.5 | 60 | 0.013 | 0.01 | ina | ina | yes | ⅓R | 144 | a,b,c,d, | | | Sorensen | QB50-,5 | 0 | 0.5 | 60 | ±0.011,3,7 | ±0.017 | 13 µа | 0.01 | none | ½R | 108 | a,b,c | | | Deltron | RP60-0.5 | 0 | 0.54 | 64 | 0.053 | 0.05 | 250 µa | 25 | y es | ½R | 176 | a,b,c,d, | | | Sola | 81-80-0500 | 0 | 0.5 | 80 | ±0.13 | ±0.1 | 50 μa | ina | yes | ½R | 210 | a,b,c,e | | | El Meas | C621CM | 5 µa | 0.5 | 100 | 0.15 | 0.1 | 0.04 | ina | yes | R | 504 | a,e | | С | Lambda | LH130FM | 0 | 0.5 | 120 | 0.015 | 0.015 | ina | ina | yes | ½R | 250 | a,c,d,e | | 0 | T | CHBICO FOOD | 0 | 0.5 | 100 | 0.5 | 0.5 | 0.25 | 0.02 | was | ½R | 295 | a,b,c,d, | | | Trygon | SHR160-500B | 0 | 0.5 | 160 | 0.5 | 0.5 | | 0.02 | yes | R | 995 | | | | North Hills | CS-111 | 10 μa | 0.5 | 200 | 0.05
0.01 ^{1,3} | 0.01 | 0.02 | 0.2 ⁸ | none | R | 435 | a | | | Керсо | HB525M | 10 | 0.5 | 525
30 | 0.053,7 | 0.01
0.05 ⁷ | 0.01 | | yes | ½R | 129 | a,b,e
a,b,c,d, | | | Hyperion
Deltron | HY-W1-30-0.6
EA406 | 0 | 0.6 | 40 | 0.05 | 0.03 | 350 μv
ina | ina
ina | yes | ½R | 159 | a,b,c,e | | _ | Dettroil | LA40-,0 | 0 | 0.0 | 40 | 0.01 | 0.01 | IIIa | 1110 | yes | | 100 |
0,0,0,0 | | | Deltron | ED406 | 0 | 0.6 | 40 | 0.01 | 0.01 | ina
250 o | ina
1.65 | yes | ½R
14 P | 169 | a,b,c,d, | | | Deltron | RP50-0.6 | 0 | 0.64 | 50 | 0.053 | 0.05 | 250 µa | 1.55 | yes | ½R
1/₽ | 176 | a,b,c,d, | | | Deltron | RP100-0.3 | 0 | 0.64 | 50 | 0.053 | 0.05 | 250 µа | 35 | yes | ½R | 199 | a,b,c,d, | | | Behl-Invar | QS-100 | 0 | 0.6 | 100 | ±0.01 | ±0.01 | ina
2502 | ina
2 ⁵ | yes | ¼R
¼R | 229
278 | a,b,c,d, | | С | Deltron | RP0100-0.6 | 0 | 0.6 | 100 | 0.053 | 0.05 | 250 μα | 2 | yes | ⅓R | 2/6 | a,b,c,d, | | 1 | Керсо | H B6 AM | 10 | 0.6 | 325 | 0.011,3 | 0.01 | 0.01 | 0.28 | yes | R | 365 | a,b,e | | | Sola | 81-60-0666 | 0 | 0.67 | 60 | +0.063 | ±0.06 | 50 μa | ina | yes | ⅓R | 210 | a,b,c,e | | | Керсо | ABC10-0.75M | 1 | 0.75 | 10 | 0.11,3 | 0.5 | 0.1 | 0.18 | yes | С | 125 | a,b,c,e | | | Sorensen | QB1875 | 0 | 0.75 | 26 | +0.011,3,7 | +0.017 | 19 μα | 0.0015 | none | ½R
₩R | 98 | a,b,c | | | Trygon | HR40-750 | 5 | 0.75 | 40 | 0.51,3,7 | 0.57 | 0.25 | 400 M ^B | yes | ⅓R | 159 | a,b,c,e | | | Deltron | RP40-0.75 | 0 | 0.754 | 40 | 0.053 | 0.05 | 250 μα | 15 | yes | ⅓R | 168 | a,b,c,d, | | | Harrison | 6200A | 0 | 0.754 | 404 | 0.011,3 | 0.03 | 500 μa | 35 | yes | С | 210 | a,b,c,d | | | Harrison | 6202A | 0 | 0.75 | 40 | 0.011,3 | 0.03 | 500 μa | 35 | yes | С | 179 | a,b,c,d, | | | Trygon | T50-750 | 30 | 0.75 | 50 | 0.057 | 0.057 | 0.01 | ina | yes | С | 199 | a,b,c,e | | С | Harrison | 6258A | 0 | 0.756 | 1006 | 0.011,3 | 0.01 | 500 μa | 25 | yes | С | 425 | a,b,c,d | | 2 | Harrison | 6299 A | 0 | 0.75 | 1001,3 | 0.01 | 0.01 | 500 μa | 25 | yes | С | 225 | a,b,c,d | | | Керсо | CK 40-0.8M | 1 | 0.8 | 40 | 0.011 | 0.01 | 0.05 | 0.088 | yes | С | 267 | a,b,c,d | | | Sorensen | QRB4075 | 0.1 | 0.8 | 40 | ±0.151,3,7 | ±0.157 | 10 µа | ina | yes | C or R | 160 | a,b,c,d, | | | Hyperion | HY-W1-40-0.8 | 0 | 0.8 | 40 | 0.053,7 | 0.057 | 350 μν | ina | yes | ½R | 159 | a,b,c,d, | | | | | | | | | | | | | | 144 | | | | | | | OUTPUT | | | REGULATION | | | | - | | | |---|------------------------|----------------------------|----------|-----------|-----------|---|-------------------------------|---------------|--------------------------|-------------|------------|------------|--------------------| | | Mfr. | Model | Curi | ent | Max. | Line | Load | Ripple | Internal
Impedance | Meters | Mounting | Price | Note | | | | | Min. ma | Max. Amps | Volts | % | % | % | Ω | | | | | | ī | Керсо | HB8AM | 10 | 0.8 | 325 | 0.011,3 | 0.01 | 0.01 | 0.28 | yes | R | 395 | a,b,e | | | Lambda | LH119FM | 0 | 0.9 | 10 | 0.015 | 0.015 | ina | ina | yes | ½R | 314 | a,c,d,e | | | Lambda | LH127FM | 0 | 0.9 | 60 | 0.015 | 0.015 | ina | ina | yes | ¼R | 209 | a,c,d,e | | | Behl-Invar | QS-60 | 0 | 0.96 | 60 | ±0.01 | ±0.01 | ina | ina | yes | ¼R | 209 | a,b,c,d, | | 0 | Керсо | ABC2-1M | 1 | 1 | 2 | 0.11,3 | 0.5 | 0.1 | 0.18 | yes | С | 125 | a,b,c,e | | 3 | Deitron | EA10-1 | 0 | 1 | 10 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 129 | a,b,c,e | | | Deltron | ED10-1 | 0 | 1 | 10 | 0.01 | 0.01 | ina | ina | yes | ½R | 129 | a,b,c,d | | | North Hills | CS-12 | 10 µa | 1 | 12.5 | 0.005 | 0.002 | 0.05 | ina | none | R | 995 | а | | | Kepco
Hyperion | ABC 15- 1M
HY-W1-16-1,0 | 1 0 | 1 | 15
16 | 0.1 ^{1,3}
0.05 ^{3,7} | 0.5
0.05 ⁷ | 0.1
350 μν | 0.02 ⁸
ina | yes
yes | C
½R | 167
139 | a,b,c,e
a,b,c,d | | | | | | | | | | - | | | | | | | | Sorensen
Deltron | QB12-1
EA20-1 | 0 | 1 | 18
20 | ±0.01 ^{1,3,7} | ±0.01 ⁷ | 25 μa
ina | 0.001
ina | none
yes | ½R
½R | 98
159 | a,b,c
a,b,c,e | | | Deltron | ED20-1 | 0 | 1 | 20 | 0.01 | 0.01 | ina | ina | yes | ½R | 169 | a,b,c,d | | | Deltron | RP30-1 | 0 | 14 | 32 | 0.053 | 0.05 | 250 μν | 0.85 | yes | ½R | 168 | a,b,c,d | | | Deltron | RP060-0.5 | 0 | 14 | 32 | 0.053 | 0.05 | 250 µа | 25 | yes | ½R | 176 | a,b,c,d | | ' | Hyperion | HY-WS-32-1 | 0 | 1 | 32 | 0.013 | 0.01 | ina | ina | yes | ⅓R | 144 | a,b,c,d | | | Sorensen | QB28-1 | 0 | 1 | 36 | ±0.011,3,7 | ±0.017 | 25 µа | 0.002 | none | ½R | 108 | a,b,c | | | Sola | 81-40-1100 | 0 | 1 | 40 | ±0.043 | ±0.04 | 50 μa | ina | yes | ⅓R | 210 | a,b,c,e | | | El Meas | C613CM | 10 µa | 1 | 50 | 0.15 | 0.1 | 0.04 | ina | yes | R | 520 | a,e | | | Deltron | SP60-1 | 0 | 1 | 60 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ⅓R | 230 | a,b,c,d | | | ERA | SL60-1M | 0 | 1 | 60 | ±0.01 | ±0.02 | ina | ina | yes | ⅓R | 215 | a,b,c,e | | | ERA | SL60-2M | 0 | 16 | 606 | ±0.01 | ±0.02 | ina | ina | yes | ½R | 415 | a,b,c,e | | | Harrison | 6257 A | 0 | 16 | 606 | 0.011.3 | 0.01 | 500 μa | 25 | yes | С | 395 | a,b,c,c | | | Harrison
Hyperion | 6294A
HY-ZS-60-1 | 0 | 1 | 60
60 | 0.01 ^{1,3} | 0.01 | 500 μa
ina | 25
ina | yes
yes | C
½R | 210
229 | a,b,c,c | | | Sorensen | OB50-1 | 0 | 1 | 60 | +0.011,3,7 | ±0.01 ⁷ | 25 µa | 0.005 | | R | 160 | | | | Trygon | SHR60-1A | 0 | 1 | 60 | 0.5 | 0.5 | 0.25 | 0.003 | yes | ½R | 235 | a,b,c,c | | | Harrison | 6242A | 0 | 14 | 644 | 0.11,3 | 0.1 | 2 ma | 25 | yes | R | 435 | a,b,c,c | | | Deltron | RP60-1 | 0 | 1 | 64 | 0.053 | 0.05 | 250 µa | 1.55 | yes | ½R | 242 | a,b,c,c | | | North Hills | CS-128 | 100 | 1 | 100 | 0.0025 | 0.0025 | 0.005 | ina | none | R | 3975 | а | | Ī | El Meas | C614CM | 10 µa | 1 | 100 | 0.15 | 0.1 | 0.04 | ina | yes | R | 554 | a,e | | | North Hills | CS-141 | 100 na | 1 | ± 100 | 0.0025 | 0.0025 | 0.02 | ina | none | R | 4500 | a | | | Deitron | SP100-1 | 0 | 1 | 100 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 345 | a,b,c,c | | | Harrison | 881A | 0 | 1 | 100 | 0.02 | 0.02 | 100 μa | 25 | yes | R | 475 | a,b,c,d | | ; | El Meas | C628CM | 10 µа | 1 | 150 | 0.15 | 0.1 | 0.04 | ina | yes | R | 670 | a,e | | | Hyperion | HY-Si-160-1 | 0 | 1 | 160 | 0.01 | 0.01 | ina | ina | yes | ½R | 349 | a,b,c,c | | | Trygon | RS160-1A | 0 | 1 | 160 | 0.5 | 0.5 | 0.25 | 0.008 | yes | R | 425 | a,b,c,d | | | El Meas | C630CM | 10 да | 1 | 200 | 0.15 | 0.1 | 0.04 | ina | yes | R | 770 | a,e | | | Керсо | HB250AM | 10 | 1 | 250 | 0.011,3 | 0.01 | 0.01 | 0.28 | yes | R | 495 | a,b,e | | | Trygon | RS320-1A | 0 | 1 | 320 | 0.5 | 0.5 | 0.25 | 0.016 | yes | R | 425 | a,b,c,c | | | Hyperion | HY-T1-330-1 | 0 | 1 | 330 | 0.057 | 0.057 | 1 mv | ina | yes | R | 615 | a,b,c, | | | Sorensen | QRB30-1 | 0.1 | 1.15 | 30 | ±0.151,3,7 | ±0.15 ⁷ | 10 μa | 0.029 | yes | C or ½R | 145 | a,b,c, | | | Deltron | RP50-0.6 | 0 | 1.24 | 25 | 0.053 | 0.05 | 250 μa | 1.55 | yes | ½R | 176 | a,b,c,c | | | Deltron
Lambda | RP50-1.2
LH131FM | 0 | 1.2 | 50
120 | 0.05 ³
0.015 | 0.05 | 250 μa
ina | 15
ina | yes | ½R
½R | 242
345 | a,b,c,d,e | | ; | Lambua | E11311 M | | | | 0.013 | 0.013 | ina | nia . | lea | | | a,c,u,t | | | Lambda | LH124FM
DCR300-1.25 | 0
125 | 1.3 | 40
300 | 0.015 | 0.015
± 15 ma ⁷ | ina
0.5 | ina | yes | ¼R
CorR | 179 | a,c,d,e | | | Sorensen
Behl-Invar | QS-40 | 0 | 1.37 | 300
40 | ± 15 ma ⁷
± 0.01 | ±15 ma'
±0.01 | ina | ina
ina | yes | ₩R | 325
179 | a,b,d,e
a,b,c,e | | | Harrison | 855C | 0 | 1.4 | 18 | 0.021,3 | 0.02 | 200 µa | 35 | yes
yes | C C | 191 | a,b,c,c | | | Trygon | HR20-1.5 | 5 | 1.5 | 20 | 0.0257 | 0.02 | 0.025 | ina | yes | ½R | 164 | a,b,c,6 | | | Deltron | RP20-1.5 | 0 | 1.54 | 20 | 0.053 | 0.05 | 250 µa | 0.55 | yes | ½R | 168 | a,b,d,e | | | Deitron | RP40-0.75 | 0 | 1.54 | 20 | 0.053 | 0.05 | 250 µa | 15 | yes | ½R | 168 | a,b,c,c | | | Harrison | 6200A | 0 | 1.54 | 204 | 0.011,3 | 0.03 | 500 µa | 35 | yes | C | 210 | a,b,c,c | | | Harrison | 6201A | 0 | 1.5 | 20 | 0.011,3 | 0.03 | 500 μa | 35 | yes | C | 179 | a,b,c,c | | | Hyperion | HY-W1-20-15 | 0 | 1.5 | 20 | 0.053,7 | 0.057 | 350 μν | ina | yes | ½R | 159 | a,b,c,c | | | Hyperion | HY-WS-20-1.5 | 0 | 1.5 | 20 | 0.013 | 0.01 | ina | ina | yes | ½R | 144 | a,b,c,d | | | Pwr Des | 2015R | 0 | 1.5 | 20 | 0.027 | 0.027 | 0.1 | ina | yes | С | 175 | a,c,d,e | | | Sorensen | QB18-1.5 | 0 | 1.5 | 26 | ±0.011,3,7 | ±0.01 ⁷ | 38 µa | 0.001 | none | ½R | 108 | a,b,c | | | Trygon | HH 32-1.5 | 0 | 1.5 | 32 | 0.5 | 0.5 | ina | 0.002 | yes | ¼R | 177 | a,b,c,c | | | Керсо | CK36-1.5M | 1 | 1.5 | 36 | 0.01 | 0.01 | 0.05 | 0.08 | yes | C | 305 | a,b,c,d | | | | | | OUTPUT | | | REGULATION | | Internal | | | | | |--------|----------------------|------------------------------|------------|------------|------------|--|---------------------|-----------------|---------------------------|------------|-----------|-------------|--------------------| | | Mfr. | Model | Cuti | rent | Max. | Line | Load | Ripple | Impedance | Meters | Mounting | Price \$ | Note | | | | | Min, ma | Max. Amps | Volts | % | % | % | Ω | | | | | | | Harrison | 6226A | 0 | 1.5 | 36 | 0.031 | 0.05 | 200 μa | 35 | yes | С | 325 | a,b,c,d, | | | Deltron | RP40-1.5 | 0 | 1.5 | 40 | 0.053 | 0.05 | 250 µa | 0.85 | yes | ½R | 230 | a,b,c,d, | | | Deltron | SP40-1.5 | 0 | 1.5 | 40 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 195 | a,b,c,d, | | | Harrison | 6255A | 0 | 1.56 | 406 | 0.011,3 | 0.01 | 500 μa | 25 | yes | C | 395 | a,b,c,d | | С | Harrison | 6289A | 0 | 1.5 | 40 | 0.011,3 | 0.01 | 500 μa | 25 | yes | С | 210 | a,b,c,d | | 9 | Hyperion | HY-ZS-40-1.5 | 0 | 1.5 | 40 | 0.01 | 0.01 | ina | ina | yes | ½R | 198 | a,b,c,d | | | Trygon | SHR40-1.5A | 0 | 1.5 | 40 | 0.5 | 0.5 | 0.25 | 0.012 | yes | ½R | 199 | a,b,c,d | | | NJE | RB-50-1.5M | 0 | 1.5 | 50 | ±500 μa | ±750 μa | ina | ina | yes | C | 230 | a,b,c,d | | | Hyperion
Trygon | HY-Si-160-1.5
RS320-1.5A | 0 | 1.5 | 160
320 | 0.01 | 0.01 | ina
0.25 | 0.02 | yes
yes | ½R
R | 399
550 | a,b,c,d
a,b,c,d | | | | | 0 | | | | 15 ma ⁷ | - | ine | | R | 550 | | | | Harrison
Sorensen | 6448A
QRB20-1.5 | 200 | 1.5
1.6 | 600
20 | 15 ma ⁷
±0.151,3,7 | ±0.15 ⁷ | 0.1
50 μa | ina
0.053 | yes
yes | CorR | 145 | a,b,c,d
a,b,c,d | | | Керсо |
ABC7.5-2M | 1_ | 2 | 7.5 | 0.11,3 | 0.5 | 0.1 | 0.058 | yes | С | 167 | a,b,c,e | | | Sorensen | QB6-2 | 0 | 2 | 9 | ±0.011,3,7 | ±0.017 | 50 μa | 0.0005 | none | ½R | 98 | a,b,c | | С | Deitron | EA10-2 | 0 | 2 | 10 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 159 | a,b,c,e | | 0 | Deitron | E010-2 | 0 | 2 | 10 | 0.01 | 0.01 | ina | ina | yes | ½R | 169 | a,b,c,d, | | | Hyperion | HY-WS-15-2 | 0 | 2 | 15 | 0.013 | 0.01 | ina | ina | yes | ½R | 144 | a,b,c,d | | | Deltron | RP30-1 | 0 | 24 | 16 | 0.053 | 0.05 | 250 μa | 0.85 | yes | ½R | 168 | a,b,c,d | | | Sorensen | QB12-2 | 0 | 2 | 18 | ±0.011,3,7 | ±0.01 ⁷ | 50 μa | 0.0005 | none | ½R
C | 108 | a,b,c | | | Trygon | T20-2 | 30 | 2 | 20 | 0.057 | 0.057 | 0.01 | ina | yes | С | 199 | a,b,c,e | | | Sola
Un Elect | 81-20-1200
LQ35-2A | 0 10 | 2 | 20
30 | ±0.02 ³
2 ma | ±0.02
2 ma | 50 μa
250 μv | ina
ina | yes | ½R
R | 210
375 | a,b,c,e | | | Un Elect | 1030-2A | 1 | 2 2 | 30 | 2 ma
2 ma | 1 ma | 250 μν | ina | yes
yes | R | 375 | a,b,c,e
a,c,e | | | Deltron | RP30-2 | 0 | 2 | 32 | 0.053 | 0.05 | 250 µv | 0.55 | yes | ½R | 230 | a,b,c,d | | С | Harrison | 6242A | 0 | 24 | 324 | 0.11,3 | 0.1 | 2 ma | 25 | yes | R | 435 | a,b,c,d | | l | NJE | RB-36-2-M | 0 | 2 | 36 | ±500 μa | ±1 ma | ina | ina | yes | С | 215 | a,b,c,d | | | Sorensen | QB28-2 | 0 | 2 | 36 | ±0.011,3,7 | ±0.017 | 50 µa | 0.001 | yes | R | 160 | a,b,c | | | Perkin | TVCRO40-2 | 0 | 2 | 40 | ±0.02 | ±0.05 | 1 ma | ina | yes | С | 495 | a,b,c,e | | | Fluke | 382A | 0 | 2 | 50 | 0.0005 | 0.0005 | 0.002 | 1000 M | yes | R | 1595 | е | | | Fluke | 383B | 0 | 2 | 50 | 0.0005 | 0.0005 | 0.005 | 1000 M | yes | R | 1995 | е | | | Trygon | T50-2 | 0 | 2 | 50 | 0.05 | 0.05 | 0.01 | 0.01 | yes | С | 249 | a,b,c,e | | | Керсо | KS60-2M | 10 | 2 | 60 | 0.011 | 0.01 | 0.05 | 0.18 | yes | R | 525 | a,b,c,d | | | Princeton | TC-602CR | 0 | 2 | 60 | 100 na | 0.005 | 1 μα | 0.00001 | yes | R | 1750
215 | e | | | Sorensen
El Meas | QB50-2
C625CM | 0
22 μa | 2 2 | 60
75 | ±0.01 ¹ ,3,7
0.15 | ±0.01 ⁷ | 50 μa
0.04 | 0.0025
ina | yes
yes | R
R | 740 | a,b,c
a,e | | C
2 | El Mana | C626CM | 22 - | 2 | 100 | 0.15 | 0.1 | 0.04 | ina | 400 | R | 740 | 2.0 | | | El Meas
Deltron | SP100-2 | 22 μa
0 | 2 2 | 100 | 0.15 | 0.1 | 0.04 | ina
0,04 ⁵ | yes
yes | ½R | 490 | a,e
a,b,c,d | | | Hyperion | HY-T1-160-2 | 0 | 2 | 160 | 0.057 | 0.057 | 1 mv | ina | yes | R | 560 | a,b,c,d | | | Trygon | HR160-2B | 0 | 2 | 160 | 0.5 | 0.5 | 0.25 | 0.008 | yes | ⅓R | 475 | a,b,c,d | | | ERA | CC2000 | 25 | 2 | 180 | ±0.25 | ±0.25 | 400 μa | ina | yes | R | 755 | c,e | | | Sorensen | QRB15-2 | 0.25 | 2.25 | 15 | ±0.151,3,7 | ±0.15 ⁷ | 50 μa | 0.053 | yes | C or ½R | 145 | a,b,c,d | | | Sorensen | QRB40-2 | 0.25 | 2.25 | 40 | +0.151,3,7 | ±0.15 ⁷ | 30 µa | 0.2 | yes | C or ½R | 255 | a,b,c,d | | | Lambda | LH121FM | 0 | 2.4 | 20 | 0.015 | 0.015 | ina | ina | yes | ¼R
V P | 184 | a,c,d,e | | | Lambda
Behl-Invar | LH128FM
QS-20 | 0 | 2.4 | 60
20 | 0.015
±0.01 | 0.015
±0.01 | ina
ina | ina
ina | yes
yes | ½R
¼R | 340
184 | a,c,d,e
a,b,c,d | | C 3 | Delli-ilival | 42-50 | U | | 20 | | | 1110 | | 1 62 | | | 0,0,0,0 | | J | Deltron | RP40-2.5 | 0 | 2.5
2.5 | 40
40 | 0.053 | 0.05 | 250 μa
0.05 | 0.55
0.04 ⁵ | yes | ½R
⊬P | 299
295 | a,b,c,d | | | Deltron
Trygon | SP40-2.5
HR60-2.5B | 25 | 2.5 | 60 | 0.05
0.5 ¹ ,3 | 0.05 | 0.05 | 8 M | yes
yes | ½R
½R | 329 | a,b,c,d
a,b,c,e | | | Deltron | RP60-2.5 | 0 | 2.5 | 60 | 0.05 | 0.05 | 250 µa | 0.65 | yes | ½R | 379 | a,b,c,d | | | Deltron | SP60-2,5 | 0 | 2.5 | 60 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 375 | a,b,c,d | | Ī | El Meas | PV60-2.5M | 0 | 2.5 | 60 | 0.06 | 0.25 | 2 ma | ina | yes | R | 460 | a,b,c,d | | | Hyperion | HY-ZS-60-2.5 | 0 | 2.5 | 60 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 299 | a,b,c,d | | | Harrison | 6443A | 0 | 2.5 | 120 | 17 | 17 | 2 | ina | yes | С | 360 | a,b,c,d | | | Hyperion | HY-T1-330-2.5 | 0 | 2.5 | 330 | 0.057 | 0.057 | 1 mv | ina | yes | R | 895 | a,b,c,d | | С | Sorensen | DCR150-2.5 | 250 | 2.75 | 150 | ± 15 ma' | ±15 ma ⁷ | 0.5 | ina | yes | C or R | 325 | a,b,d,e | | 4 | Sorensen | DCR300-2.5 | 250 | 2.75 | 300 | ± 15 ma ⁷ | ±15 ma ⁷ | 0.5 | ina | yes | C or R | 525 | a,b,d,e | | | Harrison | 6203A | 0 | 3 | 7.5 | 0.011,3 | 0.03 | 500 μa | 35 | yes | ½R
⊬P | 179 | a,b,c,d | | | Hyperion | HY-W1-7.5-3.0
HY-WS-7.5-3 | 0 | 3 | 7.5
7.5 | 0.05 ^{3,7}
0.01 ³ | 0.05 | 350 μv
ina | ina
ina | yes
yes | ½R
½R | 159
144 | a,b,c,d
a,b,c,d | | | Hyperion
Deltron | RP20-1,5 | 0 | 34 | 10 | 0.013 | 0.01 | 250 µa | 0.55 | yes | ½R | 168 | a,b,c,d | | | Dettiall | 111 20-1,5 | , | , | 10 | 0.00 | 0.00 | 200 110 | 0.0 | , | 14.11 | | 2,0,0,0 | | | | | | OUTPUT | | | REGULATION | | | | | | | |----|----------------------|----------------------|------------|-----------|------------|------------------------|-----------------------------|----------------|--------------------------|------------|----------|------------|------------------------| | | Mfr. | Model | Cur | rent | Max. | Line | Load | Ripple | Internal
Impedance | Meters | Mounting | Price \$ | Notes | | | | | Min, ma | Max. Amps | Volts | % | % | % | Ω | | | , | | | | Trygon | HH14-3 | 0 | 3 | 14 | 0.5 | 0.5 | ina | 0.002 | yes | ¼R | 182 | a,b,c,d,e | | | Керсо | CK18-3M | 1 | 3 | 18 | 0.011 | 0.01 | 0.05 | 0.058 | yes | С | 305 | a,b,c,d,e | | | Harrison | 6224A | 0 | 3 | 18 | 0.031,3 | 0.05 | 200 µa | 35 | yes | С | 340 | a,b,c,d,e | | | NJE | RB-18-3-M | 0 | 3 | 18 | ±500 μa | ±2 ma | ina | ina | yes | С | 215 | a,b,c,d,e | | CC | Deltron | RP20-3 | 0 | 3 | 20 | 0.053 | 0.05 | 250 μa | 0.35 | yes | ⅓R | 230 | a,b,c,d,e | | 25 | Deltron | SP20-3 | 0 | 3 | 20 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 220 | a,b,c,d,e | | | Harrison | 6253A | 0 | 36 | 206 | 0.011,3 | 0.01 | 2 ma | 25 | yes | С | 395 | a,b,c,d,e | | | Harrison
Trygon | 6284A
SHR20-3A | 0 | 3 | 20 | 0.01 ^{1,3} | 0.01 | 2 ma | 25 | yes | C | 210 | a,b,c,d,e | | | Sorensen | QB18-3 | 0 | 3 | 20
26 | ±0.011,3,7 | 0.5
±0.01 ⁷ | 0.25
75 μa | 0.006
0.0005 | yes
yes | ½R
R | 225
160 | a,b,c,d,e
a,b,c | | | Harrison | 6265A | 0 | 3 | 36 | 0.021 | 0.02 | 3 ma | 25 | | R | 350 | | | | ERA | SPL 40-3M | 500 | 3 | 40 | 0.52 | 0.02 | 0.1 | ina | yes
yes | ½R | 425 | a,b,c,d,e
a,b,c,e | | | ERA | SPL 40-3/2M | 500 | 36 | 406 | 0.5 | 0.5 | 0.1 | ina | yes | ½R | 765 | a,b,c,e | | | Harrison | 6290A | 0 | 3 | 40 | 0.05 | 0.05 | 3 ma | 25 | yes | C | 350 | a,b,c,d,e | | CC | Hyperion | HY-Si-40-3 | 0 | 3 | 40 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 249 | a,b,c,d | | 26 | Hyperion | HY-ZS-40-3 | 0 | 3 | 40 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 249 | a,b,c,d,e | | | Lambda | LH125FM | 0 | 3 | 40 | 0.015 | 0.015 | ina | ina | yes | ⅓R | 294 | a,c,d,e | | | El Meas | C615CM | 22 µa | 3 | 50 | 0.15 | 0.1 | 0.04 | ina | yes | R | 890 | a,e | | | Harrison
Harrison | 6271A | 0 | 3 | 60 | 0.021 | 0.02 | 3 ma | 25 | yes | R | 435 | a,b,c,d,e | | _ | namson | 6296A | 0 | 3 | 60 | 0.05 | 0.05 | 3 ma | 25 | yes | С | 395 | a,b,c,d,e | | | Hyperion
El Meas | HY-Si-60-3
C618CM | 0 | 3 | 60 | 0.01 | 0.01 | ina | ina | yes | ½R | 299 | a,b,c,d | | | Deltron | SP100-3 | 22 μa
0 | 3 | 100
100 | 0.15
0.05 | 0.1 | 0.04 | ina
0.04 ⁵ | yes
yes | R
½R | 940
645 | a,e | | | Hyperion | HY-Si-160-3.0 | 0 | 3 | 160 | 0.03 | 0.03 | ina | ina | yes | R | 529 | a,b,c,d,e
a,b,c,d | | | Trygon | RS160-3A | 0 | 3 | 160 | 0.5 | 0.5 | 0.25 | 0.005 | yes | R | 615 | a,b,c,d,e | | CC | | | | | | | | | | , | | | 0,0,0,0,0 | | 27 | Trygon | HH7-4 | 0 | 4 | 7 | 0.5 | 0.5 | 0.25 | 0.002 | yes | ⅓R | 189 | a,b,c,d,c | | | Sorensen | QB6-4 | 0 | 4 | 9 | ±0.01 ^{1,3,7} | ±0.017 | 100 μα | 0.0003 | none | ½R | 108 | a,b,c | | | Lambda
Sorensen | LH118FM
QB12-4 | 0 | 4 | 10
18 | 0.015 | 0.015
±0.01 ⁷ | ina
100 μa | 0.0002 | yes | ¼R
R | 200 | a,c,d,e | | | Sorensen | QB28-4 | 0 | 4 | 36 | ±0.01 ^{1,3,7} | ±0.01 ⁷ | 100 µa | 0.0002 | yes
yes | R | 160
215 | a,b,c
a,b,c | | | Sorensen | QRC40-4 | 0 | 4 | 40 | ±0.05 ^{1,3,7} | ±0.057 | 1 ma | ina | yes | C or R | 315 | a,b,d,e | | | Sorensen | QB50-4 | 0 | 4 | 60 | +0.011,7 | ±0.01 ⁷ | 100 μα | 0.0013 | yes | R | 285 | a,b,c | | | Deltron | SP100-4 | 0 | 4 | 100 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 795 | a,b,c,d,e | | | Hyperion | HY-T1-330-4 | 0 | 4 | 330 | 0.057 | 0.057 | 1 mv | ina | yes | R | 1795 | a,b,c,d,e | | CC | Behl-Invar | QS-10 | 0 | 4.2 | 10 | ±0.01 | ±0.01 | ina | ina | yes | %R | 200 | a,b,c,d,e | | 28 | Sorensen | QRB20-4 | 0.5 | 4.5 | 20 | ±0.151,3,7 | ±0.15 ⁷ | 150 . | 0.00 | | C D | 255 | | | | Harrison | 6251A | 0.5 | 5 | 20
7.5 | 0.01 | 0.01 | 150 μa
4 ma | 0.02
25 | yes
yes | C or R | 255
395 | a,b,c,d,e | | | Harrison | 6281A | 0 | 5 | 7.5 | 0.011.3 | 0.01 | 4 ma | 25 | yes | C | 210 | a,b,c,d,e
a,b,c,d,e | | | Керсо | CK8-5M | 1 | 5 | 8 | 0.011 | 0.01 | 0.05 | 0.058 | yes | C | 345 | a,b,c,d,e | | | Deltron | SP10-5 | 0 | 5 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 220 | a,b,c,d,e | | | Voltex | 82-194/195 | 0 | 5 | 18 | 0.2 | 0.2 | ina | ina | none | R | ina | | | | Trygon | HR20-5B | 25 | 5 | 20 | 0.51,3 | 0.5 | 0.25 | 4 M | yes | %R | 299 | a,b,c,e | | | Dettron | RP20-5 | 0 | 5 | 20 | 0.053 | 0.05 | 250 µa | 0.25 | yes | ½R | 299 | a,b,c,d,e | | | Deltron | SP 20-5 | 0 | 5 | 20 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ⅓R | 295 | a,b,c,d,e | | CC | Harrison | 6285A | 0 | 5 | 20 | 0.05 | 0.05 | 3 ma | 25 | yes | С | 350 | a,b,c,d,e | | 29 | El Meas | PV32-5M | 0 | 5 | 32 | 0.06 | 0.25 | 2 ma | ina | yes | R | 420 | a,b,c,d,e | | | Hyperion | HY-ZS-32-5 | 0 | 5 | 32 | 0.01 | 0.01 | ina | ina | yes | ½R | 269 | a,b,c,d,e | | | Trygon | M36-5C | 50 | 5 | 36 | 0.057 | 0.057 | 0.01 | ina | yes | R | 470 | a,b,c,e | | | Kepco | KS36-5M | 10 | 5 | 36 |
0.011 | 0.01 | 0.05 | 0.18 | yes | R | 525 | a,b,c,d,e | | | El Meas | PV36-5M | 0 | 5 | 36 | 0.06 | 0.25 | 2 ma | ina | yes | R | 450 | a,b,c,d,e | | | Harrison | 6266A | 0 | 5 | 36 | 0.021 | 0.02 | 3 ma | 25 | yes | R | 435 | a,b,c,d,e | | | NJE | LE101FM | 0 | 5 | 36 | 0.05 | 0.05 | ina | ina | yes | R | 470 | a,c,d,e | | | Pwr Des | RVC-36-5M
3650R | 0 | 5 | 36
36 | ± 1 ma
0.02 | ±1 ma
0.02 | ina
0.1 | ina
ina | yes
ina | R
R | 345
349 | a,b,c,e | | CC | Trygon | HR40-5B | 25 | 5 | 40 | 0.51,3 | 0.02 | 0.1 | 4 M | yes | ĸ
½R | 329 | a,b
a,b,c,e | | 30 | Deltron | RP40-5 | 0 | 5 | 40 | 0.053 | 0.05 | 250 да | 0,35 | yes | ⅓R | 349 | a,b,c,d,e | | | Deltron | SP40-5 | 0 | 5 | 40 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 345 | a,b,c,d,e | | | Harrison | 6291A | 0 | 5 | 40 | 0.05 | 0.05 | 3 ma | 25 | yes | C | 395 | a,b,c,d,e | | | Hyperion | HY-Si-40-5 | 0 | 5 | 40 | 0.01 | 0.01 | 500 μν | ina | yes | ½R | 299 | a,b,c,d,e | | | ITI | LS40-5 | 0 | 5 | 40 | ±0.005 | ±0.005 | 500 μν | 0.0005 | yes | C or R | 425 | a,b,c,d,e | | | | | | OUTPUT | | | REGULATION | | latera (| | | - | | |--------|-------------|--------------|----------|-----------|-------|------------------------|----------------------|--------|-----------------------|--------|----------|----------|----------| | | Mfr. | Model | Cur | rent | Max. | Line | Load | Ripple | Internal
Impedance | Meters | Mounting | Price \$ | Note | | | | | Min, ma | Max. Amps | Volts | % | % | % | Ω | | | | | | | Perkin | TVCRO40-5 | 0 | 5 | 40 | ±0.02 | ±0.05 | 3 ma | ina | yes | С | 550 | a,b,c,e | | | Trygon | HR40-3B | 0 | 5 | 40 | 0.5 | 0.5 | 0.25 | 0.008 | yes | ½R | 295 | a,b,c,d, | | | Trygon | RS40-5A | 0 | 5 | 40 | 0.5 | 0.5 | 0.25 | 0.004 | yes | R | 375 | a,b,c,d, | | | Trygon | HR60-5B | 25 | 5 | 60 | 0.51,3 | 0.5 | 0.25 | 4 M | yes | ½R | 369 | a,b,c,e | | | Керсо | KS60-5M | 10 | 5 | 60 | 0.011 | 0.01 | 0.05 | 0.18 | yes | R | 645 | a,b,c,d, | | С | Nepco | 11000 0111 | | | 00 | 0.01 | 0.01 | 0.00 | 0 | , | | 0.0 | 0,0,0,0, | | 1 | Deltron | SP60-5 | 0 | 5 | 60 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 445 | a,b,c,d, | | | El Meas | PV60-5M | 0 | 5 | 60 | 0.06 | 0.25 | 2 ma | ina | yes | R | 600 | a,b,c,d, | | | Harrison | 6438A | 0 | 5 | 60 | 17 | 17 | 0.2 | ina | yes | R | 360 | | | | Hyperion | HY-Si-60-5 | 0 | 5 | 60 | 0.01 | 0.01 | ina | ina | yes | ½R | 349 | a,b,c,d | | | Hyperion | HY-T1-60-5 | 0 | 5 | 60 | 0.057 | 0.057 | 1 mv | ina | yes | R | 519 | a,b,c,d, | | ī | Harrison | 505A | 0 | 5 | 72 | 0.57 | 0.57 | 1 | ina | yes | R | 475 | a,b,c,e | | | Trygon | M160-5A | 50 | 5 | 160 | 0.05 | 0.05 | 0.5 | 30 M | yes | R | 925 | a,b,c,e | | | Hyperion | HY-T1-160-5 | 0 | 5 | 160 | 0.057 | 0.057 | 1 mv | ina | yes | R | 845 | a,b,c,d | | | Gen Radio | 1265-A | 0 | 5 | 400 | 0.21 | 1 | ina | ina | yes | C or R | 1050 | a,b,d,e | | _ | Sorensen | DCR80-5 | 500 | 5,5 | 80 | ± 15 ma ⁷ | ± 15 ma ⁷ | 0.5 | ina | yes | C or R | 325 | a,b,d,e | | C
2 | Sorensen | DCR150-5 | 500 | 5,5 | 150 | ± 15 ma ⁷ | ± 15 ma ⁷ | 0.5 | ina | yes | C or R | 525 | a,b,d,e | | | Sorensen | DCR300-5 | 500 | 5.5 | 300 | ± 15 ma ⁷ | ±15 ma ⁷ | 0.5 | ina | yes | CorR | 710 | a,b,d,e | | | Lambda | LH122FM | 0 | 5.7 | 20 | 0.015 | 0.015 | ina | ina | yes | ½R | 260 | a,c,o,e | | | Un Elect | 1Q15-6A | 10 | 6 | 15 | 6 ma | 6 ma | 600 μv | ina | yes | R | 475 | a,c,e | | | Hyperion | HY-Si-20-6 | 0 | 6 | 20 | 0.01 | 0.01 | ina | ina | yes | ½R | 249 | a,b,c,d | | | Sorensen | QB18-6 | 0 | 6 | 26 | ±0.01 ^{1,3,7} | ±0.01 ⁷ | 150 µa | 0.0003 | yes | R | 215 | a,b,c | | | ERA | SPL 40-6M | 500 | 6 | 40 | 0.5 | 0.5 | 0.1 | ina | yes | R | 485 | a,b,c,e | | | Vector | CF-30-6A | 600 | 6 | 300 | ±0.1 | 0.1 | 0.5 | ina | yes | С | 3075 | e | | | North Hills | CVS-150 | 100 | 6 | 300 | 0.1 | 0.1 | ina | ina | none | C | 2495 | d | | | Vector | CF-40-6A | 600 | 6 | 400 | ±0.1 | 0.1 | 0.5 | ina | yes | C | 3225 | е | | С | 100101 | | 1 000 | | | 0 | " | " | | , | | | | | 13 | Behl-Invar | QS-5 | 0 | 6.5 | 5 | ±0.01 | ±0.01 | ina | ina | yes | ¼R | 214 | a,b,c,d | | | Hyperion | HY-ZS-20-7,5 | 0 | 7.5 | 20 | 0.01 | 0.01 | ina | ina | yes | 1/2 R | 279 | a,b,c,d, | | | Trygon | RS20-7.5A | 0 | 7.5 | 20 | 0.5 | 0.5 | 0.25 | 0.002 | yes | R | 375 | a,b,c,d | | | Hyperion | HY-T1-40-7.5 | 0 | 7.5 | 40 | 0.057 | 0.057 | 1 mv | ina | yes | R | 430 | a,b,c,d | | | Trygon | HR40-7.5B | 0 | 7.5 | 40 | 0.5 | 0.5 | 0.25 | 0.004 | yes | ½R | 399 | a,b,c,d, | | 1 | El Meas | PV60-7.5M | 0 | 7.5 | 60 | 0.06 | 0.25 | 2 ma | ina | yes | R | 745 | a,b,c,d, | | | El Meas | PVC60-7.5M | 0 | 7.5 | 60 | 0.05 | 0.05 | 2 ma | ina | yes | R | 845 | a,b,c,d | | | Hyperion | HY-Si-60-7.5 | 0 | 7.5 | 60 | 0.01 | 0.01 | ina | ina | yes | R | 499 | a,b,c,d | | | Trygon | RS60-7.5A | 0 | 7.5 | 60 | 0.5 | 0.5 | 0.25 | 0.004 | yes | R | 595 | a,b,c,d | | | Alfred | 254 | 1.5 amps | 7.5 | 105 | 1 | 1 | 0.5 | ina | yes | R | 490 | е | | C | | | | | 1 | 1 | | | 0.00 | | | | | | ,,, | Керсо | CK2-8M | 1 | 8 | 2 | 0.011 | 0.01 | 0.01 | 0.058 | yes | C | 345 | a,b,c,d | | | Trygon | C160-8C | 300 | 8 | 8 | 0.05 | 0.1 | ina | 2 M | yes | R | 1350 | a,b,c,d | | | Sorensen | QB6-8 | 0 | 8 | 9 | ±0.011,3,7 | ± 0.01 7 | 200 μa | 0.0001 | yes | R | 160 | a,b,c | | | Lambda | LE105FM | 0 | 8 | 18 | 0.05 | 0.05 | ina | ina | yes | R | 475 | a,c,d,e | | | Sorensen | QB12-8 | 0 | 8 | 18 | +0.011.3,7 | ±0.017 | 200 μa | 0.0001 | yes | R | 215 | a,b,c | | | Sorensen | QRC20-8 | 0 | 8 | 20 | ±0.051,3,7 | ±0.05 ⁷ | 1 ma | ina | yes | C or R | 410 | a,b,d,e | | | Sorensen | QB28-8 | 0 | 8 | 36 | ±0.01 ^{1,3,7} | ±0.01 ⁷ | 200 μa | 0.00025 | yes | R | 285 | a,b,c | | | Sorensen | QRC40-8 | 0 | 8 | 40 | ±0.051,3,7 | ±0.057 | 1 ma | ina | yes | C or R | 450 | a,b,d,e | | | Deltron | SP100-8 | 0 | 8 | 100 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 1030 | a,b,c,d | | C | Hyperion | HY-T1-160-8 | 0 | 8 | 160 | 0.057 | 0.057 | 1 mv | ina | yes | R | 1195 | a,b,c,d | | 35 | Sorensen | DCR300-8 | 800 | 8.8 | 300 | ± 20 ma ^{7,9} | +20 ma ⁷ | 0.05 | ina | yes | C or R | 825 | a,b,d,e | | | Lambda | LE109FM | 0 | 10 | 9 | 0.05 | 0.05 | ina | ina - | yes | R | 480 | a,c,d,e | | | Deltron | SP-10-10 | 0 | 10 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ⅓R | 295 | a,b,c,d | | | Harrison | 6282A | 0 | 10 | 10 | 0.05 | 0.05 | 5 ma | 25 | yes | С | 350 | a,b,c,d | | | Hyperion | HY-ZS-10-10 | 0 | 10 | 10 | 0.01 | 0.01 | ina | ina | yes | ⅓R | 279 | a,b,c,d | | | Holt | 275 | 500 | 10 | 15 | 0.057 | 0.057 | 0.01 | īna | yes | R | 2060 | е | | | Un Elect | IQ15-10A | 10 | 10 | 15 | 10 ma | 10 ma | 600µv | ina | yes | R | 585 | a,c,e | | | Hyperion | HY-Si- 15-10 | 0 | 10 | 15 | 0.01 | 0.01 | ina | ina | yes | ½R | 299 | a,b,c,d | | | Керсо | KS18-10M | 10 | 10 | 18 | 0.011 | 0.01 | 0.05 | 0.048 | yes | R | 575 | a,b,c,d | | С | Harrison | 6263A | 0 | 10 | 18 | 0.021 | 0.02 | 3 ma | 25 | yes | R | 435 | a,b,c,d | | 6 | Trygon | HR20-10B | 25 | 10 | 20 | 0.51,3 | 0.5 | 0.25 | 2 M | yes | C or R | 389 | a,b,c,e | | | Deltron | SP20-10 | 0 | 10 | 20 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ⅓R | 375 | a,b,c,d | | | Harrison | 6286A | 0 | 10 | 20 | 0.05 | 0.05 | 5 ma | 25 | yes | С | 395 | a,b,c,d | | | Hyperion | HY-Si-20-10 | 0 | 10 | 20 | 0.01 | 0.01 | ina | ina | yes | ₩R | 349 | a,b,c,d | | | | HY-T1-20-10 | 0 | 10 | 20 | 0.05 | 0.05 | 1 mv | ina | yes | R | 440 | a,b,c,d | | | | | | OUTPUT | | | REGULATION | | Internal | | | | | |---|-------------------|-------------------------|----------|-----------|----------|--|---------------------------|--------------|-------------------|------------|----------|------------|---------------------| | | Mfr. | Model | Curr | ent | Max. | Line | Load | Ripple | Impedance | Meters | Mounting | Price | Note | | | | | Min, ma | Max. Amps | Volts | % | % | % | Ω | | | | | | | El Meas | PV32-10M | 0 | 10 | 32 | 0.06 | 0.25 | 2 ma | ina | yes | R | 550 | a,b,c,d, | | | Harrison | 6433A | 0 | 10 | 32 | 17 | 17 | 0.1 | ina | yes | R | 370 | a,b,c,d, | | | Керсо | K\$36-10M | 10 | 10 | 36 | 0.011 | 0.01 | 0.05 | 0.18 | yes | R | 625 | a,b,c,d, | | | El Meas | PV36-10M | 0 | 10 | 36 | 0.06 | 0.25 | 2 ma | ina | y es | R | 575 | a,b,c,d, | | C | Harrison | 510A | 0 | 10 | 36 | 0.57 | 0.57 | 1 | ina | yes | R | 450 | a,b,c,e | | 7 | Harrison | 6267A | 0 | 10 | 36 | 0.021 | 0.02 | 3 ma | 25 | yes | R | 525 | a,b,c,d, | | | Lambda | LE102FM | 0 | 10 | 36 | 0.05 | 0.05 | ina | ina | yes | R | 575 | a,c,d,e | | | Pwr Des | 36100 | 0 | 106 | 366 | 0.01 | 0.01 | ina | ina | yes | R | 463 | a,b,d,e | | | ERA | SPL 40-10M | 500 | 10 | 40 | 0.5 | 0.5 | 0.1 | ina | yes | R | 625 | a,b,c,e | | | Deltron | SP 40-10 | 0 | 10 | 40 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 545 | a,b,c,d | | | Hyperion | HY-Si-40-10 | 0 | 10 | 40 | 0.01 | 0.01 | ina | ina | yes | R | 399 | | | | Trygon | RS40-10A | 0 | 10 | 40 | 0.5 | 0.5 | 0.25 | 0.002 | yes | R | 449 | a,b,c,d | | | Trygon | M60-10A | 50 | 10 | 60 | 0.57 | 0.57 | 0.5 | 4 M | yes | R | 795 | a,b,c.e | | | Керсо | K\$60-10M | 10 | 10 | 60 | 0.011 | 0.01 | 0.05 | 0.18 | yes | R | 895 | a,b,c,d | | | Deltron | SP60-10 | 0 | 10 | 60 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 755 | a,b,c,d | | 3 | Hyperion | HY-T1-60-10 | 0 | 10 | 60 | 0.057 | 0.057 | 1 mv | ina | yes | R | 655 | a,b,c,d, | | | Hyperion | HY-Si-10-100 | 0 | 10 | 100 | 0.01 | 0.01 | ina | ina | yes | R | 1240 | a,b,c,d | | | Sorensen | DCR40-10 | l amp | 11 | 40 | ± 20 ma ⁷ | ± 20 m a ⁷ | 0.5 | ina | yes | C or R | 325 | a,b,d,e | | | Sorensen | DCR80-10 | l amp | 11 | 80 | ± 20 ma ⁷ | +20 ma ⁷ | 0.5 | ina | yes | C or R | 525 | a,b,d,e | | | Sorensen | DCR150-10 | 1 amp | 11 | 150 | ± 20 ma ⁷ | +20 ma ⁷ | 0.5 | ina | yes | C or R | 710 | a,b,d,e | | | Sorensen | QB18-12 | 0 | 12 | 26 | ±0.11,7 | ±0.017 | 300 µa | 0.00015 | yes | R | 285 | a,b,c | | | Deltron | SP100-12 | 0 | 12 | 100 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 1290 | a,b,c,d | | | Hyperion | HY-Si-10-12.5 | 0 |
12.5 | 10 | 0.01 | 0.01 | ina | ina | yes | ½R | 299 | a,b,c,d | | | Sorensen | DCR60-13 | 1.3amps | 14.3 | 60 | ±20 ma ^{7,9} | ± 20 ma ⁷ | 0.5 | ina | yes | C or R | 525 | a,b,d,e | | 3 | Керсо | KS8-5M | 10 | 15 | 8 | 0.011 | 0.01 | 0.05 | 0.048 | yes | R | 625 | a,b,c,d, | |) | Sorensen | QB6-15 | 0 | 15 | 9 | ±0.01 ^{1,3,7} | ±0.01 ⁷ | 375 µa | 0.00005 | yes | R | 215 | a,b,c | | | Un Elect | IQ10-15A | 10 | 15 | 10 | 15 ma | 15 ma | 600 μν | ina | y es | R | 695 | a,c,e | | | Deltron | SP-10-15 | 0 | 15 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 395 | a,b,c,d | | | Hyperion
Kepco | HY-T1-10-15
KS18-15M | 10 | 15
15 | 10
18 | 0.05 ⁷
0.01 ¹ | 0.05 ⁷
0.01 | 1 mv
0.05 | 0.04 ⁸ | yes
yes | R | 440
725 | a,b,c,d
a,b,c,d | | | Harrison | 6427A | 0 | 15 | 18 | 17 | 17 | 0.2 | ina | yes | R | 380 | ahad | | | Lambda | LE106FM | 0 | 15 | 18 | 0.05 | 0.05 | ina | ina | yes | R | 640 | a,b,c,d,
a,c,d,e | | | Sorensen | QB12-15 | 0 | 15 | 18 | ±0.011.7 | ±0.017 | 375 µa | 0.00005 | yes | R | 285 | a,b,c | | | Deltron | SP20-15 | ŋ | 15 | 20 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 535 | a,b,c,d, | | С | Sorensen | QRC20-15 | 0 | 15 | 20 | ±0.05 ^{1,3,7} | ±0.05 ⁷ | 2 ma | ina | yes | C or R | 525 | a,b,d,e | | 0 | Trygon | RS20-15A | 0 | 15 | 20 | 0,5 | 0.5 | 0.25 | 0.001 | yes | R | 495 | a,b,c,d | | | El Meas | PV32-15M | 0 | 15 | 32 | 0.06 | 0.25 | 2 ma | ina | yes | R | 685 | a,b,c,d | | | Trygon | M36-15A | 50 | 15 | 36 | 0.51,7 | 0.57 | 0.5 | 2 M | yes | R | 575 | a,b,c,e | | | Керсо | K\$36-15M | 10 | 15 | 36 | 0.011 | 0.01 | 0.05 | 0.18 | yes | R | 730 | a,b,c,d | | | El Meas | PV36-15M | 0 | 15 | 36 | 0.06 | 0.25 | 2 ma | ina | yes | R | 715 | a,b,c,d | | Ī | El Meas | PVC36-15M | 0 | 15 | 36 | 0.05 | 0.05 | 2 ma | ina | yes | R | 835 | a,b,c,d | | | Lambda | LE103FM | 0 | 15 | 36 | 0.05 | 0.05 | ina | ina | yes | R | 645 | a,c,d,e | | | NJE | RVC-36-15M | 0 | 15 | 36 | 3 ma | 3 na | ina | ina | y es | R | 545 | a,b,c,e | | | ERA | SPL 40-15M | 500 | 15 | 40 | 0.5 | 0.5 | 0.1 | ina | yes | R | 720 | a,b,c,e | | C | Deltron | SP40-15 | 0 | 15 | 40 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 625 | a,b,c,d | | 1 | Hyperion | HY-T1-40-15 | 0 | 15 | 40 | 0.057 | 0.057 | 1 mv | ina | yes | R | 625 | a,b,c,d | | | Perkin | TVCRO40-15 | 0 | 15 | 40 | ±0.02 | ±0.05 | 0.2 | ina | yes | С | 850 | a,b,c,e | | | Sorensen | QRC40-15 | 0 | 15 | 40 | ±0.051,3,7 | ±0.05 ⁷ | 2 ma | ina | yes | C or R | 575 | a,b,d,e | | | Trygon | M60-15A | 50 | 15 | 60 | 0.57 | 0.57 | 0.5 | 2 M | yes | R | 825 | a,b,c,e | | | El Meas | PV60-15M | 0 | 15 | 60 | 0.06 | 0,25 | 2 ma | ina | yes | R | 895 | a,b,c,d | | | El Meas | PVC60-15M | 0 | 15 | 60 | 0.05 | 0.05 | 2 ma | ina | yes | R | 995 | a,b,c,d | | | Deitron | SP60-15 | 0 | 15 | 60 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 950 | a,b,c,d | | | Harrison | 6274A | 0 | 15 | 60 | 0.021 | 0.02 | 5 ma | 25 | yes | R | 695 | a,b,c,d | | | Harrison | 6439A | 0 | 15 | 60 | 17 | 17 | 0.1 | ina | yes | R | 530 | a,b,c,d | | C | Trygon | C160-16C | 300 | 16 | 16 | 0.05 | 0.1 | ina | 1 M | yes | R | 1995 | a,b,c,d | | | Sorensen | DCR150-15 | 1.5 amps | 16.5 | 150 | ±25 ma 7,9 | ±25 ma ⁷ | 0.5 | ina | yes | C or R | 825 | a,b,d,e | | | Sorensen | DCR80-18 | 1.8 amps | 19.8 | 80 | ± 25 ma ⁷ | ± 25 ma ⁷ | 0.5 | ina | yes | C or R | 710 | a,b,d,e | | | Lambda | LE110FM | 0 | 20 | 9 | 0.05 | 0.05 | ina | ina | yes | R | 725 | a,c,d,e | | | Deltron | SP-10-20 | 0 | 20 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | ½R | 460 | a,b,c,d | | | Harrison | 6264A | 0 | 20 | 18 | 0.21 | 0.2 | 5 ma | 25 | yes | R | 525 | a,b,c,d | April 19, 1966 61 | | | | OUTPUT | | | | Internal | | | 0 | | | | |------|----------------------|------------------------|----------|-----------|----------|---|--------------------------------------|--------------|------------|------------|----------|-------------|---------------------| | | Mfr. | Model | Current | | Max. | Line | Load | Ripple | Impedance | Meters | Mounting | Price
\$ | Note | | | | | Min. ma | Max. Amps | Volts | % | % | % | Ω | | | • | | | | Deltron | SP 20-20 | 0 | 20 | 20 | 0.05 | 0,05 | 0.05 | 0.045 | ves | R | 695 | a,b,c,d,e | | | Hyperion | HY-Si-20-20 | 0 | 20 | 20 | 0.01 | 0.01 | ina | ina | yes | R | 449 | a,b,c,d | | | Deltron | SP40-20 | 0 | 20 | 40 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 715 | a,b,c,d,i | | | Deltron | SP60-20 | 0 | 20 | 60 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 1145 | a,b,c,d, | | | Hyperion | HY-T1-60-20 | 0 | 20 | 60 | 0.05 | 0.05 | 1 mv | ina | yes | R | 945 | a,b,c,d, | | 0 | ,,, | | | | | | | | | | | | -,-,-,-, | | 3 | Керсо | KS60-20M | 10 | 20 | 60 | 0.011 | 0.01 | 0.05 | 0.018 | yes | R | 1350 | a,b,c,d, | | | Harrison | 6483A | 0 | 20 | 500 | 17 | 17 | 0.1 | ina | yes | R | 2900 | a,b,c,d, | | | Lambda | LE107FM | 0 | 22 | 18 | 0.05 | 0.05 | ina | ina | yes | R | 745 | a,c,d,e | | | Sorensen | DCR40-20 | 2 amps | 22 | 40 | ± 25 ma ^{7,9} | ± 25 ma ⁷ | 500 ma | ina | yes | C or R | 525 | a,b,d,e | | | Керсо | KS8-25M | 10 | 25 | 8 | 0.011 | 0.01 | 0.05 | 0.048 | yes | R | 760 | a,b,c,d, | | | Deltron | SP10-25 | 0 | 25 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 525 | a,b,c,d, | | | Hyperion | HY-Si-10-25 | 0 | 25 | 10 | 0.01 | 0.01 | ina | ina | yes | R | 499 | a,b,c,d | | | Керсо | KS18-25M | 10 | 25 | 18 | 0.011 | 0.01 | 0.05 | 0.048 | yes | R | 970 | a,b,c,d, | | | Deltron | SP20-25 | 0 | 25 | 20 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 865 | a,b,c,d, | | | Trygon | SR36-25 | 5 amps | 25 | 36 | 0.3 | 0.3 | ina | 5 M | yes | R | 745 | a,b,c,e | | | _ | | - | | | | | | | | | 205 | | | | Trygon
Harrison | M36-25A
520A | 50 | 25 | 36 | 0.5 ⁷
0.5 ⁷ | 0.5 ⁷
0.5 ⁷ | 0.5 | 1 M | yes | R
R | 725
575 | a,b,c,e | | | Hyperion | HY-CR1-36-25 | 0 | 25
25 | 36
36 | 0.57 | 0.57 | 1 1 | ina
ina | yes
yes | R | 565 | a,b,c,e
a,b,d,e | | | Lambda | LE104FM | 0 | 25 | 36 | 0.05 | 0.05 | ina | ina | yes | R | 825 | a,c,d,e | | | NJE | RVC-36-25M | 0 | 25 | 36 | 5 ma | 5 ma | ina | ina | yes | C | 695 | a,b,c,e | | | NO. | 11.40-30-5311 | , | 25 | 30 | 3 1116 | 5 1110 | | 1110 | ,,,, | Ů | 030 | 0,0,0,0 | | | Pwr Des | 36250A | 0 | 25 | 36 | 0.04 | 0.03 | 0.03 | ina | ina | R | 875 | a,b | | | Deitron | SP40-25 | 0 | 25 | 40 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 825 | a,b,c,d, | | | ERA | SPL 40-25M | 0 | 25 | 40 | 0.5 | 0.5 | 0.1 | ina | yes | R | 925 | a,b,c,e | | | Trygon | C60-25 | 300 | 25 | 60 | 0.05 | 0.1 | ina | ina | yes | R | 1395 | a,b,c,d, | | | Sorensen | DCR60-25 | 2.5 amps | 27.5 | 60 | ± 25 m a ⁷ | ±25 ma ⁷ | 625 ma | ina | yes | C or R | 710 | a,b,d,e | | 5 | Sorensen | QB6-30 | 0 | 30 | 9 | ±0.011,7 | ±0.017 | 750 µa | 25 μ | yes | R | 285 | a,b,c | | | Deltron | SP10-30 | 0 | 30 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 645 | a,b,c,d, | | | Trygon | M15-30A | 50 | 30 | 15 | 0.57 | 0.57 | 0.5 | 1 M | yes | R | 645 | a,b,c,e | | | Deltron | SP20-30 | 0 | 30 | 20 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 1040 | a,b,c,d, | | | El Meas | PVC20-30M | 0 | 30 | 20 | 0.05 | 0.05 | 4 ma | ina | yes | R | 875 | a,b,c,d,e | | | Hyperion | HY-T1-20-30 | 0 | 30 | 20 | 0.057 | 0.057 | 1 mv | ina | yes | R | 645 | a,b,c,d,e | | | Sorensen | QRC20-30 | 0 | 30 | 20 | ±0.051,3,7 | +0.057 | 8 ma | ina | yes | C or R | 700 | a,b,d,e | | | Spec Ind | 6001 | 100 | 30 | 30 | ±0.00011 | ±0,0001 | 10 ma | ina | yes | C or R | 895 | a,b,e | | | El Meas | PV32-30M | 0 | 30 | 32 | 0.06 | 0.2 | 3 ma | ina | yes | R | 855 | a,b,c,d, | | | Trygon | M36-30A | 50 | 30 | 36 | 0.57 | 0.57 | 0.5 | 1 M | yes | R | 795 | a,b,c,e | | C 16 | | | | | | , | | | | | | | | | | Керсо | K236-30M | 10 | 30 | 36 | 0.011 | 0.01 | 0.05 | 0.048 | yes | R | 1150 | a,b,c,d, | | | El Meas | PV36-30M | 0 | 30 | 36 | 0.06 | 0.25 | 3 ma | ina | yes | R | 875 | a,b,c,d, | | | El Meas | PVC36-30M | 0 | 30 | 36 | 0.05 | 0.05 | 4 ma | ina | yes | R | 975 | a,b,c,d, | | | Hyperion
Deltron | HY-T1-36-30
SP40-30 | 0 | 30
30 | 36
40 | 0.01
0.05 | 0.01 | 0.05 | 0.045 | yes | R
R | 790
1055 | a,b,d
a,b,c,d, | | | Dettron | 3140-30 | U | 30 | 40 | 0.03 | 0.05 | 0.03 | 0.045 | yes | IV. | 1033 | a, u, c, u, | | | Harrison | 6268A | 0 | 30 | 401 | 0.02 | 0.02 | 10 ma | 25 | yes | R | 695 | a,b,c,d, | | | Hyperion | HY-T1-40-30 | 0 | 30 | 40 | 0.057 | 0.057 | 1 mv | ina | yes | R | 845 | a,b,c,d, | | | Perkin | TVCRO40-30 | 0 | 30 | 40 | ±0.02 | ±0.05 | 0.2 | ina | yes | C | 1150 | a,b,c,e | | | Sorensen | QRC40-30 | 0 | 30 | 40 | ±0.05 ¹ ,3,7
2 ¹ | ±0.057 | 8 ma | ina | yes | C or R | 775 | a,b,d,e | | С | Керсо | KO45-30M | 3amps | 30 | 45 | 2. | 2 | 0.5 | 0.048 | yes | R | 895 | a,b,c,d, | | 7 | El Meas | PVC60-30M | 0 | 30 | 60 | 0.05 | 0.05 | 12 ma | ina | yes | R | 1825 | a,b,c,d, | | | Керсо | KO70-20M | 2 amps | 30 | 70 | 21 | 2 | 0.5 | 0.048 | yes | R | 995 | a,b,c,d, | | | Behl-Invar | TCR-30-100 | 0 | 30 | 100 | 0.021 | 0.05 | 0.03 | 0.018 | yes | R | ina | a,b,c,d | | | Sorensen | DCR80-30 | 3 | 33 | 80 | ± 30 ma ⁷ | ±30 ma ⁷ | 750 ma | ina | yes | C or R | 875 | a,b,d,e | | | Dy Con | 12C | 1.5 amps | 35 | 70 | 0.05 | 0.05 | 0.01 | ina | yes | C or R | 875 | c,e | | | El Meas | PVC36-60M | 0 | 36 | 60 | 0.05 | 0.05 | 12 ma | ina | yes | R | 1725 | a,b,c,d, | | | Sorensen | DCR40-35 | 3.5 amps | 38.5 | 40 | ±35 ma ⁷ | ±35 ma ⁷ | 875 ma | ina | yes | C or R | 710 | a,b,d,e | | | Deltron | SP10-40 | 0 | 40 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 765 | a,b,c,d, | | | Hyperion | HY-T1-10-40 | 0 | 40 | 10 | 0.057 | 0.057 | 1 mv | ina | yes | R | 695 | a,b,c,d, | | С | Trygon | SR20-40 | 5 amps | 40 | 20 | 0.3 | 0.3 | ina | 5 M | yes | С | 745 | a,b,c,e | | 8 | Umanina | UV T1 22 40 | | 40 | 22 | 0.05 | 0.05 | | ina | was. | D | 1005 | 264 | | | Hyperion | HY-T1-32-40 | 0 | 40 | 32 | 0.05 | 0.05 | ina | ina | yes | R | 1095 | a,b,d | | | | SR36-40 | 10 amps | 40 | 36 | 0.3 | 0.3 | ina | 5 M | yes | R | 895 | a,b,c,e | | | Trygon | | Annes | AA
| 60 | 4 AD = -7 | 4.407 | 1 2000 | ina | Mac | Corp | 900 | ahda | | | Sorensen
Harrison | DCR60-40
6428A | 4 amps | 44
45 | 60
18 | ± 40 m a ⁷ | ± 40 ma ⁷ | 1 amp
0.5 | ina
ina | yes
yes | C or R | 900
550 | a,b,d,e
a,b,c,d, | ## new disciplines in DC #### take the models with magnified meter ranges Multiple Range Meter provides increased resolution and accuracy at low output | | DC OUTPUT | SIZE* | MODEL | PRIC | |------|---------------------------------------|------------|-------|-------| | | 0-7.5V,0-3A | 31/2"HxHRW | 6203B | \$169 | | | 0-7.5V,0-5A | 31/2"HxHRW | 6281A | 210 | | TWIN | 0-7.5V,0-5A | 31/2"HxFRW | 6251A | 445 | | | 0-10V,0-10A | 51/4"HxHRW | 6282A | 350 | | | 0-20V.06A/0-40V,03A
DUAL RANGE | 31/2"HxHRW | 6204B | 144 | | TWIN | 0-20V,06A/0-40V,03A
DUAL RANGE | 31/2"HxHRW | 6205B | 235 | | | 0-20V,0-1.5A | 31/2"HxHRW | 6201B | 169 | | | 0-20V,0-1.5A/0-40V,075A
DUAL RANGE | 3½"HxHRW | 6200B | 189 | | | 0-20V,0-3A | 31/2"HxHRW | 6284A | 210 | | TWIN | 0-20V,0-3A | 31/2"HxFRW | 6253A | 445 | | | 0-20V,0-5A | 51/4"HxHRW | 6285A | 350 | | | 0-20V,0-10A | 51/4"HxHRW | 6286A | 395 | | 100 | 0-40V,075A | 31/2"HxHRW | 6202B | 169 | | | 0-30V,0-1A/0-60V,05A
DUAL RANGE | 31/2"HxHRW | 6206B | 169 | | | 0-40V,0-1.5A | 31/2"HxHRW | 6289A | 210 | | TWIN | 0-40V,0-1.5A | 31/2"HxFRW | 6255A | 445 | | | 0-40V,0-3A | 51/4"HxHRW | 6290A | 350 | | | 0-40V,0-5A | 51/4"HxHRW | 6291A | 395 | | | 0-60V,0-1A | 31/2"HxHRW | 6294A | 210 | | TWIN | 0-60V,0-1A | 31/2"HxFRW | 6257A | 445 | | | 0-60V,0-3A | 51/4"HxHRW | 6296A | 395 | | | 0-100V,075A | 31/2"HxHRW | 6299A | 225 | | TWIN | 0-100V,075A | 31/2"HxFRW | 6258A | 445 | | | 0-160V,O2A | 31/2"HxHRW | 6207B | 194 | | | 0-320V,01A | 31/2"HxHRW | 6209B | 194 | A four-position meter range switch sets the full scale voltmeter and ammeter values at either 100% or 10% of the nominal output rating (approximately). Meter and associated circuitry are foolproof—no danger of burnout for any DC output combined with any meter range. Chart lists 25 low and medium power models from LAB, MPB, and DPR series — all have multiple range meters at no extra price — all are recently updated or added instruments featuring all-silicon circuitry. Typical specs include: Regulation, Load or Line, 0.01%; Ripple, 200 $_{\mu}$ V Constant Voltage, 500 $_{\mu}$ A Constant Current; Transient Recovery Time less than 50 microseconds. All units are designed for both bench and rack use. Frant and Rear Output Terminals • No Overshoot on Turn-On, Turn-Off, or Power Removal Canstant Voltage/Constant Current Operation with Automatic Crossover, Except Constant Voltage/ Current Limiting on Same Dual Range Madels • Remate Programming • Remote Error Sensing Special High Speed Programming Circuitry on Madels 6200B, 6201B, 6202B, and 6203B Auto-Series, Auto-Parallel, and Auto-Tracking Operation • Floating Output, Ground Either Side Full Output Rating to 50 °C • Convection Cooling, No Moving Parts Options Include Overvoltage Protection "Crowbar" and 10-Turn Front Panel Output Controls Contact your nearest Hewlett-Packard Sales Office for full specifications. | | | | | OUTPUT | | | REGULATION | | | | | | | |----|----------|-------------|---------|-----------|-------|-------------------------|-----------------------|--------|-----------------------|--------|----------|----------|-----------| | | Mfr. | Model | Current | | Max. | Line | Load | Ripple | Internal
Impedance | Meters | Mounting | Price \$ | Notes | | | | | Min. ma | Max. Amps | Volts | % | % | % | Ω | | | | | | | Hyperion | HY-Si-5-50 | 0 | 50 | 5 | 0.01 | 0.01 | ina | ina | yes | R | 499 | a,b,c,d | | | Керсо | KS8-50M | 10 | 50 | 8 | 0.011 | 0.01 | 0.05 | 0.028 | yes | R | 1050 | a,b,c,d,e | | | Dettron | SP10-50 | 0 | 50 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 895 | a,b,c,d,e | | | Trygon | M15-50A | 50 | 50 | 15 | 0.57 | 0.57 | 0.5 | 1 M | yes | R | 945 | a,b,c,e | | CC | Керсо | KS18-50M | 10 | 50 | 18 | 0.011 | 0.01 | 0.05 | 0.028 | yes | R | 1360 | a,b,c,d,e | | 49 | Deltron | SP20-50 | 0 | 50 | 20 | 0.05 | 0.05 | 0,05 | 0.045 | yes | R | 1215 | | | | Hyperion | HY-Si-20-50 | 0 | 50 | 20 | 0.01 | 0.01 | ina | ina | yes | R | 1240 | a,b,c,d | | | Керсо | KO25-50M | 5 amps | 50 | 25 | 21 | 2 | 0.5 | 0.048 | yes | R | 995 | a,b,c,d,e | | | Trygon | C36-50 | 300 | 50 | 36 | 0.05 | 0.1 | ina | ina | yes | R | 1425 | a,b,c,d,e | | | Hyperion | HY-T1-36-50 | 0 | 50 | 36 | 0.01 | 0.01 | ina | ina | yes | R | 1425 | a,b,d | | | ERA | SPL40-50M | 0 | 50 | 40 | 0.5 | 0.5 | 0.1 | ina | yes | R | 1780 | a,b,c,e | | | Harrison | 6269A | 0 | 50 | 40 | 0.021 | 0.02 | 15 ma | 25 | yes | R | 875 | a,b,c,d,e | | | Hyperion | HY-T1-10-60 | 0 | 60 | 10 | 0.057 | 0.057 | 1 mv | ina | yes | R | 975 | a,b,c,d,e | | | Sorensen | DCR40-60 | 6 amps | 66 | 40 | +60 ma ⁷ | ±60 ma ⁷ | 0.5 | ina | yes | C or R | 925 | a,b,d,e | | | Trygon | SR20-70 | 20 amps | 70 | 20 | 0.3 | 0.3 | ina | 5 M | yes | R | 995 | a,b,c,d | | CC | Spec Ind | 6002-1 | 200 | 75 | 28 | +0.00003 ⁹ | ±0.00003 | 2 ma | ina | yes | R | 1395 | a,b,e | | 50 | Trygon | C15-80 | 300 | 80 | 15 | 0.05 | 0.1 | ina | ina | yes | R | 1250 | a,b,c,d,e | | 50 | Керсо | KS8-100M | 10 | 100 | 8 | 0.011 | 0.01 | 0.05 | 0.028 | yes | R | 1450 | a,b,c,d,e | | | Deltron | SP10-100 | 0 | 100 | 10 | 0.05 | 0.05 | 0.05 | 0.045 | yes | R | 1250 | a,b,c,d,e | | | Harrison | 6260A | 0 | 100 | 10 | 0.02 | 0.02 | 30 ma | ina | yes | R | 775 | a,b,c,d,e | | | Керсо | KO12-100M | 10 amps | 100 | 12 | 21 | 2 | 0.5 | 0.048 | yes | R | 1095 | a,b,c,d,e | | | El Meas | PV36-100M | 0 | 100 | 36 | 0.05 | 0.05 | 12 ma | ina | yes | R | 2625 | a,b,c,d,e | | | Sorensen | DCR20-125 | 12.5 | 137.5 | 20 | ± 125 ma ^{7,9} | ± 125 ma ⁷ | 0.5 | ina | yes | CorR | 1055 | a,b,d,e | #### **Notes** a. Remote programing provided. - .b. Remote sensing provided. - c. Solid state. - d. Automatic crossover from constant current to constant voltage. - e. Price includes meters. - 1. Input: 115/230 v. 2. Input: 230 v. - 3. Input: 50-490 cps. - 4. Dual range unit. - 5. 100 kc to 1 Mc. - 6. Dual output. - 7. Total regulation. - 8. 1 to 100 kc. 9. Input: 189-229/207-253 v. #### **Abbreviations** - C Cabinet - R Rack ina Information not available ## Con Avionics' new silicon power supply has an M.T.B.F. of 100,000 hours and a 5 year guarantee. It costs \$65. These dc regulated power supplies are available in nearly 200 different voltage-current combinations. Silicon transistors are used throughout and the units operate in ambients as high as $75\,^{\circ}$ C, with a small external heat sink. The Mean Time Between Failure of the modules is 100,000 hours, calculated according to Mil Handbook 217. They are certified to meet the environmental tests of Mil-E-5272, and most of the requirements of three other mil specs. In addition, they meet the RFI requirements of Mil-I-6181. Prices start at \$65. Every time you specify one of these supplies, instead of a comparable germanium unit, you save considerable money. If you're using commercial supplies, typical savings-per-unit are about \$40. For military supplies it's much more. The fastest way to get complete technical information and prices is to write, call, TWX or wire Gerry Albers at Con Avionics. | | | SPECIF | ICATIONS | | |-----------------------------|-------------------|------------------|----------------|---| | | STANDARD
MODEL | "A" MODEL | Input | ALL MODELS
105-125 v ac. 47 to 440 cps | | Total Regula-
tion (Line | | 0.050/ | Temperature | 75°C ambient max.
95°C base plate max. | | and Load) | ±0.5% | ±0.05% | Response Time | 10 microseconds | | Ripple | | | Military | Certified to meet the en- | | (rms. max.) | 10 mv | 1 my or
.003% | Specifications | vironmental requirements
of MIL-E-5272 and the | | Temperature | | | | RFI requirements of MIL- | | Coefficient | 0.07%/°C | 0.015% °C | | 1-6181 | #### **CONSOLIDATED AVIONICS** 800 Shames Drive · Westbury, L. I., New York · (516) ED 4-8400 CORPORATION A DIVISION OF ### let us feed your ampeater ... #### New half-rack DC supplies Half-rack size with full-rack power... plenty of DC amps to satisfy your hungry ampeater: up to 19.5 amps in the 0-5 VDC Model HS-5, for instance. And 6 VOLTAGE RANGES: from 0-5 to 0-100 VDC 6 CURRENT RANGES: from 0-19.5 to 0-2.4 AMP LIFETIME WARRANTY Many more advantages, too: silicon reliability . . . liberally derated circuit elements...load regulation of 0.01% stability ±10mV/8hrs . . . remote voltage and current programming and sensing...constant voltage, constant current, with automatic crossover... provision for external modulation. Choose from six models: | | Nom. | | eres | Ripple | |--------|-------|--------|--------|--------| | Model | Valts | 30°C | 71°C | P-P | | HS-5 | 0.5 | 0-19.5 | 0.14.0 | 1.0mV | | HS-10 | 0-10 | 0-14.0 | 0-9.5 | 1.0mV | | HS-20 | 0-20 | 0-9.0 | 0-6.0 | 1.0mV | | HS-40 | 0-40 | 0-5.4 | 0-3.8 | 1.0mV | | HS-60 | 0-60 | 0-3.8 | 0-2.7 | 1.0mV | | HS-100 | 0.100 | 0-2.4 | 0-1.6 | 1.0mV | And rememberonly B-I has exclusive With B-I's optional rack adapter, you can mix or match two HS's, or one HS and up to two quarter-rack units, such as the QS DC Conditioner or the QA AC Amplifier/Supply. Blank panel inserts available. Want the full specifications on the HS DC power condiditioners? Just send us your name and whereabouts. > "POWER TO MATCH #### BEHLMAN-INVAR **ELECTRONICS CORP.** 1723 Cloverfield Blvd., Santa Monica, Calif. 90404 Representatives in principal U.S. Cities & Canada ON READER-SERVICE CARD CIRCLE 17 #### Index of Manufacturers and Model Numbers (keyed to table locator symbols) | | (Reyed to table | locator symbols) | | |--------------------------------------|--
--|--| | Alfred Electronics (Alfred) | SP20-15 [CC-40]
SP20-20 [CC-43] | 6201A [CC.18] 6202A [CC.12] 6203A [CC.24] 6207A [CC.6] 6209A [CC.4] 6207A [CC.6] 6209A [CC.4] 6224A [CC.25] 6224A [CC.15, 21] 6251A [CC.28] 6253A [CC.25] 6253A [CC.25] 6255A [CC.26] 6263A [CC.36] 6263A [CC.36] 6263A [CC.36] 6263A [CC.36] 6263A [CC.37] 6263A [CC.37] 6263A [CC.37] 6263A [CC.37] 6263A [CC.26] 62674A [CC.26] 6274A [CC.26] 6274A [CC.26] 6274A [CC.26] 6274A [CC.26] 6274A [CC.26] 6284A [CC.25] 6284A [CC.25] 6284A [CC.25] 6284A [CC.26] 6284A [CC.26] 6284A [CC.26] 6284A [CC.26] 6284A [CC.26] 6284A [CC.26] 6289A [CC.19] 6290A [CC.19] 6409A [CC.10] 6409A [CC.10] 6409A [CC.40] 6 | [CC-41]
HY-TI-40-30 | | 254 [CC-34] | SP20-25 [CC-44]
SP20-30 [CC-45] | 6203A [CC-24]
6207A [CC-6] | [CC-47]
HY-TI-60-5 | | Inc | SP20-50 [CC-49]
SP40-1.5 [CC-19] | 6209A [CC-4]
6224A [CC-25] | [CC-31]
HY-TI-60-10 | | (Alpha)
AL50-5A [CC-1] | SP40 2.5 [CC-23]
SP40-5 [CC-30] | 6226A [CC-19]
6242A [CC-15 21] | [CC-38]
HY-TI-60-20 | | AL50-5B [CC-1] | SP40-10 [CC-37] | 6251A CC-28] | [CC-43] | | AL50-10B [CC-1] | SP40-20 [CC-43] | 6255A [CC-19] | [CC-22] | | AL50-20B [CC-2] | SP40-25 [CC-45]
SP40-30 [CC-46] | 625/A [CC-15]
6258A [CC-12] | [CC-31] | | AL50-50A [CC-2]
AL50-50B [CC-2] | SP60-1 [CC-14]
SP60-2.5 [CC-23] | 6260A [CC-50]
6263A [CC-36] | HY-TI-160-8
[CC-35] | | AL100-5A [CC-1] | SP60-5 [CC-31] | 6264A [CC-42] | HY-TI-330-1
[CC-17] | | AL100-10A [CC-1] | SP60-15 CC-42 | 6266A [CC-30] | HY-TI-330-2.5 | | AL100-10B [CC-1] | SP100-1 [CC-16 | 6268A [CC-47] | HY-TI-330-4 | | AL100-20B [CC-2] | SP100-2 CC-27 | 6271A [CC-26] | HY-WI-7.5-3.0 | | (Altair) | SP100 4 [CC 28]
SP100-8 [CC-35] | 6281A (CC-28) | HY-WI-16-1.0 | | C2B [CC-2] | SP100-12 [CC-39]
2753 [CC-3] | 6282A [CC-35]
6284A [CC-25] | [CC-13]
HY-WI-20-15 | | tronics Corp | 2753A [CC-4] | 6285A [CC-29]
6286A [CC-36] | [CC·18]
HY·WI·30-0.6 | | (Behl-Invar)
QS-5 [CC-33] | Dynamic Controls Co
(Dy Con) | 6289A CC-19 | [CC-10] | | OS-10 [CC-28]
OS-20 [CC-23] | 12C [CC-47] | 6291A CC-30 | [CC-9] | | 0S-40 CC-17 | Electronic Measure-
ments | 6296A CC-26 | [CC-12] | | QS-100 [CC-11] | (El Meas)
C612A (CC-3) | 6427A [CC-40] | [CC-7] | | F W Rell Inc | C613CM [CC-4, 14] | 6433A [CC-37] | [CC-5] | | (F. W. Bell) | C615CM [CC-26] | 6438A [CC-31]
6439A [CC-42] | [CC-24] | | Ruchler Instruments | C620CM [CC-9] | 6443A [CC-24]
6448A [CC-20] | HY-WS-15-2
[CC-20] | | Inc
(Buchler) | C621CM [CC-10] | 6483A [CC-43]
6521A [CC-6] | HY-WS-20-1.5
[CC-18] | | 3-1014A [CC-6] | C625CM [CC-22] | 6522A CC-4
6525A CC-3 | HY-WS-32-1
[CC-14] | | Cohu Electronics, Inc | C628CM [CC-16]
C629C [CC-8] | Holt Instrument Labs | HY-WS-40-0.8
[CC-12] | | M10A-10 [CC-3] | C630CM [CC-16]
C632CM [CC-6] | (Holt) | HY-WS-60-0.5 | | Deltron, Inc | C633CM [CC-8] | Munacian Industria | HY-ZS-10-10 | | CC25100S [CC-7] | C638CM [CC-4]
PV32-5M [CC-29] | (Hyperion) | HY-ZS-20-7.5 | | EA10-1 [CC-13] | PV32-10M [CC-37] | HY-CRI-36-25
[CC-44] | HY-ZS-32-5 | | EA20.5 [CC-8] | PV32-30M [CC-46] | HY-SI-5-50
[CC-49] | HY-ZS-40-1.5 | | EA20-1 [CC-14]
EA403 [CC-7] | PV36-10M [CC-37] | HY-Si-10-12.5
[CC-39] | HY-ZS-40-3 | | EA406 [CC-10]
EA602 [CC-5] | PV36-15M [CC-40] | HY-Si-10-25
[CC-44] | HY-ZS-60-1 | | EA604 [CC-8]
EA803 [CC-7] | PV36-30M [CC-46]
PV36-100M [CC-50] | HY-Si-10-100
[CC-38] | HY-ZS-60-2.5 | | EA8015 [CC-5] | PV60-2.5M [CC-24]
PV60-5M [CC-31] | HY-Si-15-10 | [CC-24] | | EA100 .24 [CC-6] | PV60-7.5M [CC-34]
PV60-15M [CC-41] | HY-Si-20 6 | ITI Electronics, Inc | | ED10-2 [CC-20] | PVC20-30M [CC-45] | HY-Si-20-10 | LS40-5 [CC-30] | | ED20-1 [CC-14] | PVC36-30M [CC-46] | HY-Si-20-20 | Kepco, Inc | | ED403 [CC-7]
ED406 [CC-11] | PVC60-7.5M | HY-Si-20 50 | ABC2-1M [CC-13 | | ED602 [CC-5]
ED604 [CC-8] | PVC60-15M [CC-42] | HY-Si-40-3 | ABC10-0.75M | | ED803 [CC-7]
ED8015 [CC-5] | PVC60-30M [CC-47]
Electronic Research | HY-Si-40-5 | ABC15-1M [CC-1 | | ED10012 [CC-5]
ED10024 [CC-7] | Associates, Inc | [CC-30]
HY-Si-40-10 | ABC18-0.5M [CC
ABC30-0.3M [CC | | RP20-1.5 [CC-18,
24] | CC2000 [CC-22] | HY-Si-60-3 | ABC40-0.5M [CC
ABC100-0.2M | | RP20-3 [CC-25] | SL60-2M [CC-15] | [CC-27]
HY-Si-60-5 | [CC-5]
ABC200M [CC-4] | | RP20-5 [CC-29]
RP30-1 [CC-14, 20] | SPL40-3M [CC-26]
SPL40-3 / 2M | [CC-31]
HY-Si-60-7.5 | ABC425M [CC-3] | | RP30-2 [CC-21]
RP40 0.75 [CC-12, | [CC-26]
SPL40-6M [CC-33] | [CC-34]
HY-Si-160-1 | ABC1000M [CC-2
ABC1500M [CC-2
ABC2500M [CC-1 | | 18]
RP40-1.5 [CC-19] | SPL40-10M [CC-37]
SPL40-15M [CC-41] | [CC-16]
HY-Si-160-1.5 | CK2-8M [CC-34]
CK8-5M [CC-28] | | RP40-2.5 [CC-23]
RP40-5 [CC-30] | SPL40-25M [CC-45]
SPL40-50M [CC-50] | [CC-19]
HY-Si-160-3.0 | CK18-3M [CC-25] | | RP50-0.6 [CC-11,
17] | TRO40M [CC-9] | [CC-27]
HY-TI-10-15 | CK36-1.5M [CC-1
CK40-0.8M [CC-1 | | RP50-1.2 [CC-17]
RP60-0.5 [CC-10] | John Fluke Manufac-
turing Co | [CC-39]
HY-TI-10-40 | CK60-0.5M [CC-9
HB2AM [CC-6] | | RP60-1 [CC-15] | (Fluke)
351A [CC-3] | [CC-48]
HY-TI-10-60 | HB4AM [CC-8]
HB6AM [CC-11] | | RP60-2.5 [CC-23]
RP100-0.3 [CC-7, | 382A [CC-21]
383B [CC-21] | [CC-50]
HY-TI-20-10 | HB8AM [CC-13]
HB250AM [CC-16 | | 11]
RPO60-0.5 [CC-14] | General Radio Co | [CC-36] | HB525M [CC-10]
KO12-100M [CC-5 | | RPO100 0.6 [CC-11]
SP10-5 [CC-28] | (Gen Radio)
1265-A [CC-32] | HY-TI-20-30
[CC-46] | KO25-50M [CC-4 | | SP10-10 [CC-35]
SP10-15 [CC-39] | Harrison Division | HY-TI-20-45
[CC-48] | KO45-30M [CC-4]
KO70-20M [CC-4] | | SP10-20 [CC-42] | Hewlett-Packard Co | HY-TI-32-40 | KS8-5M [CC-39] | Harrison Division Hewlett-Packard Co (Harrison) 505A [CC-32] 510A [CC-37] 520A [CC-44] 855C [CC-17] 865C [CC-9] 881A [CC-16] 6200A [CC-12 18] 6200A [CC-12, 18] Manufacturers' addresses and literature offerings in master cross index at front of issue. HY-TI-32-40 [CC-48] HY-TI-36-30 [CC-46] HY-TI-36-50 [CC-49] HY-TI-40-7.5 [CC-33] HY-TI-40-15 RP060-0.5 [CC-14] RP0100-0.6 [CC-11] SP10.5 [CC-28] SP10-10 [CC-35] SP10-10 [CC-35] SP10-10 [CC-35] SP10-20 [CC-42] SP10-20 [CC-44] SP10-30 [CC-45] SP10-40 [CC-48] SP10-50 [CC-49] SP10-50 [CC-50] SP20-3 [CC-25] SP20-3 [CC-25] SP20-10 [CC-36] | LS40-5 [CC-30] | |---| | Kepco, Inc
(Kepco) | | ABC2-1M [CC-13]
ABC7.5-2M [CC-20] | | ABC10-0.75M
[CC-11] | | ABC15-1M [CC-13]
ABC18-0.5M [CC-8] | | ABC30-0.3M [CC-7]
ABC40-0.5M [CC-9]
ABC100-0.2M | | [CC-5] | | ABC200M [CC-4]
ABC425M [CC-3]
ABC1000M [CC-2] | | ABC1000M [CC-2]
ABC1500M [CC-2]
ABC2500M [CC-1] | | CK2-8M [CC-34]
CK8-5M [CC-28] | | CK18-3M [CC-25]
CK36-1.5M [CC-18]
CK40-0.8M [CC-12] | | CK60-0.5 M TCC-91 | | HB2AM [CC-6]
HB4AM [CC-8]
HB6AM [CC-11] | | HB8AM [CC-13]
HB250AM [CC-16]
HB525M [CC-10]
KO12-100M [CC-50] | | KO12-100M [CC-50]
KO25-50M [CC-49] | | KO45-30M [CC-47]
KO70-20M [CC-47]
KS8-5M [CC-39] | | KS8-25M [CC-43] | | KS8-50M [CC-49]
KS8-100M [CC-50]
KS18-10M [CC-36] | | KS18-15M [CC-39] | | KS18-25M [CC-44]
KS18-50M [CC-49] | ## Customized Batteries SILVER-ZINC NICKEL-CADMIUM SILVER-CADMIUM THERMAL WATER ACTIVATED A complete line of PRIMARY and RECHARGEABLE batteries for all consumer, industrial and military applications. Full technical information and design assistance based on 50 years battery experience and research. Contact: #### THE **EAGLE-PICHER** COMPANY **ELECTRONICS DIVISION Department ED-419** American Building Cincinnati, Ohio 45201 ON READER-SERVICE CARD CIRCLE 18 KS36-10M KS36-15M KS36-30M [CC-37] [CC-40] [CC-46] KS60-2M [CC-22] KS60-5M [CC-31] KS60-10M [CC-38] KS60-20M [CC-43] Corp (Lambda) Corp. NJE Corp (NJE) RB-18-3-M [CC-25] RB-36-2-M [CC-21] RB-50-1-5M [CC-19]
RVC-36-5M [CC-30] RVC-36-15M [CC-41] RVC-36-25M [CC-44] North Hills Electron- ics, Inc (North Hills) North Hills) CS-11 [CC-3] CS-12 [CC-13] CS-12 [CC-13] CS-120 [CC-2] CS-128 [CC-15] CS-140 [CC-5] CS-141 [C-16] CS-151 [CC-1] CS-152 [CC-5] CVS-150 [CC-33] Owen Laboratories (Owen) 500 [CC-6] 505 [CC-6] **Perkin Electronics** Corp (Perkin) TVCRO40-05 [CC-9 TVCRO40-2 [CC-21] TVCRO40-5 [CC-31] TVCRO40-15 [CC-41] TVCRO40-30 [CC-47] Power Designs, Inc (Pwr Des) TW-4005 [CC-9] 2015R [CC-18] 3650R [CC-30] 4005 [CC-8] 5005R [CC-9] 36100 [CC-37] 36250A [CC-45] Princeton Applled Research Corp (Princeton) TC-100.2AR [CC-4] TC-100.2BR [CC-4] TC-100.2R [CC-4] TC-602CR [CC-22] Sensitive Instruments (Singer/Sensitive) 9770A [CC-3] Sola Electric Co Sola Electric Co (Sola) 81-20-100 [CC-21] 81-40-1100 [CC-14] 81-60-0666 [CC-11] 81-80-0500 [CC-10] (Sorensen) | Sorensen | DCR20-125 | [CC-50] DCR40-10 | [CC-38] DCR40-10 | [CC-38] DCR40-20 | [CC-43] DCR40-35 | [CC-48] DCR40-60 | [CC-50] DCR60-13 | [CC-39] DCR60-140 | [CC-45] DCR80-15 | [CC-38] DCR80-16 | [CC-38] DCR80-18 | [CC-47] DCR150-25 | [CC-32] DCR150-5 | [CC-32] DCR150-5 | [CC-32] DCR150-10 | [CC-38] DCR150-10 | [CC-38] DCR150-10 | [CC-38] DCR150-10 | [CC-38] DCR150-15 | [CC-42] DCR300-1.25 [CC-17] DCR300-2.5 [CC-24] DCR300-5 [CC-32] DCR300-8 [CC-35] QB6-2 [CC-20] QB6-4 [CC-27] QB6-8 [CC-34] QB6-15 [CC-39] QB6-8 [CC-34] QB12-1 [CC-14] QB12-2 [CC-20] QB12-4 [CC-27] QB12-8 [CC-34] QB12-15 [CC-18] QB12-15 [CC-40] QB18-1-5 [CC-18] QB18-1 [CC-18] QB18-1 [CC-18] QB18-1 [CC-39] QB28-5 [CC-39] QB28-6 [CC-39] QB28-7 [CC-20] QB28-8 [CC-37] QB28-8 [CC-37] QB28-8 [CC-37] QB28-9 [CC-20] QB30-1 [CC-10] QB50-1 [CC-10] QB50-1 [CC-20] [CC-40] QB50-1 [CC-40] QB50-1 [CC-40] QB50-1 [CC-40] QB50-1 [CC-41] QB50-1 [CC-41] QB50-1 [CC-41] Spectromagnetic In-(Spec Ind) 6001 [CC-46] 6002-1 [CC-50] Trygon Electronics, C15-80 [CC-50] C36-50 [CC-49] C36-50 [CC-49] C60-25 [CC-49] C60-25 [CC-49] C160-8C [CC-34] H7-4 [CC-27] HH14-3 [CC-25] HH32-1.5 [CC-18] HR20-15 [CC-17] HR20-15 [CC-17] HR20-16 [CC-30] HR40-75B [CC-30] HR40-75B [CC-30] HR40-75B [CC-31] HR60-25B [CC-31] HR60-25B [CC-23] HR160-25B [CC-23] M15-50A [CC-49] M36-5C [CC-29] M36-5C [CC-29] M36-5C [CC-29] M36-5C [CC-40] [CC-31] HR160-5A [CC-40] M36-5A [CC-32] RS20-7-5A [CC-33] RS20-1-5A [CC-33] RS20-1-5A [CC-34] RS160-1A [CC-16] RS320-1-5A [CC-19] RS320-1-5A [CC-19] SR20-40 [CC-48] SHR40-1-5A [CC-19] SR20-1-5A SHR60-1A [CC-1 SHR160-500B [CC-10] SR20-70 [CC-40] SR36-25 [CC-44] SR36-40 [CC-48] T20-2 [CC-20] T50-2 [CC-22] T50-750 [CC-12] Universal Electronics (Un Elect) IQ10-15A [CC-39] IQ15-6A [CC-36] IQ15-10A [CC-36] IQ30-2A [CC-21] LQ35-2A [CC-21] Vector Engineering (Vector Engineering CF-30-6A [CC-33] CF-40-6A [CC-33] CP-1863-CC [CC-3] CP-1959-CC [CC-3] Voltex Co, Inc (Voltex) 82-194/195 [CC-29] ## **Power supplies** #### portable high-voltage DC power supplies Widely used for powering electronic equipment and for routine breakdown and insula-tion testing. Output voltage is well filtered DC which is adjustable with convenient front panel control. Input is 115 VAC, 60 CPS. Larger 6" precision 1% mirror scale movement available on order. Regulated models provide closely stabi-lized output voltage regardless of line or load changes. #### heavy-duty power supplies Employing husky components selected for power handling capacity these industrial type power supplies are built for service and efficiency. Output is continuously variable from 0 to full rated values. Standard ripple is 5% or less. Ripple of 0.01% to 1%, and regulated supplies available on special order. All units feature automatic overload cutout control circuits. #### 3ϕ heavy-duty power supplies For use in applications where high voltages at extra high currents are required. Fixed or fully variable types available. Automatic circuits protect against over-current conditions. Widely used in plasma research, electron beam furnaces, plate power and condenser charging applications. Voltage or current regulated types available. #### constant-current power supplies Designed for applications where output current must remain constant regardless of loading resistance changes. Used for magnet fields, plating applications, gaseous lamps. Magnetic current stabilizer has no moving parts, no tubes, no transistors to replace. No balancing or adjustment needed, simply set current to desired level. Standard hum level 5%, lower hum levels available on order. Beckman* INSTRUMENTS, INC. CEDAR GROVE OPERATIONS 89 Commerce Road Cedar Grove, New Jersey 07009 Formerly Industrial Instruments, Inc. ON READER-SERVICE CARD CIRCLE 19 ## Laboratory-Type DC Power Supplies | | | | | OUTPUT | | | REGI | | | | | | | |----|----------|-------------|---------------|---------------|--------------|-----------|-----------|--------------|---|--------|----------|-------------|-----------| | | Mifr. | Model | Min.
Volts | Max.
Voits | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | | Керсо | ABC2-1M | 0 | 2 | 1 | 0.05 | 0.05 | 0.25 | 50 | yes | С | 125 | a,b,c,e,f | | | Dynage | 702-5 | ±5 | ±5 | 0.2 | ± 0.003 | ±0.003 | 0.5 | ina | yes | C | request | | | | CEA | PT215 | 5 | 5 | 0.2 | 0.03 | 0.08 | 0.4 | ina | none | R | 137 | С | | | Duffers | 620 | 0 | 5 2 | 2 3 | 0.5 | 0.5 | 1 | ina | yes | C | 345 | 1 | | LS | ERA | TD6M | 0 | 6 | 0.1 | 0.05 | 0.05 | 1 | ina | yes | С | 195 | c,I | | 1 | Engr El | ZA-740 | 6 | 60 | 0.63 | 0.1 | 0.1 | 1 | ina | yes | R | 950 | 1,0 | | | Trygon | SHR60-1A | 0 | 6 | 1 | 0.01 | 0.01 | 0.5 | 25 | yes | ⅓R | 235 | a,b,c,e,f | | | Deltron | RS6-3M | 5 | 7 | 3 | 0.01 | 0.01 | 0.5 | 50 | yes | ½R | 195 | a,b,c,e,f | | | Керсо | ABC7.5-2M | 0 | 7.5 | 2 | 0.05 | 0.05 | 0.25 | 50 | yes | C | 167 | a,b,c,e,f | | | Harrison | 6203A | 0 | 7.5 | 3 | 3 mv | 5 mv | 0.2 | 50 | yes | С | 179 | a,b,c,e,f | | | Hyperion | HY-W1-7.5-3 | 0 | 7,5 | 3 | 0.05 | 0.05 | 0.35 | 50 | yes | С | 159 | a,b,d,f | | | Hyperion | HY-WS-7,5-3 | 0 | 7.5 | 3 | 0.01 | 0.01 | ina | 50 | yes | C | 144 | a,b,c,d,f | | | Un Elect | Q5-8-2AM | 5 | 8 | 2 | 5 mv | 5 mv | 1 | 50 | yes | 5R | 235 | c,d,f | The table in this section lists the specifications for laboratory-type dc power supplies. These supplies have output voltages up to and including 1000 volts, and output currents up to and including 3 amperes. Although voltage-reference dc power supplies may fall within these specifications, they are listed separately under "Special Purpose" Unless otherwise noted in the table, the inputvoltage requirements for all of the supplies are 95-130 vac, 1 phase. Prices indicated in the table are subject to change by the manufacturer. An index of manufacturers and models is included at the end of the table. The index is alphabetical, by manufacturer, and it lists the various laboratory-type dc power supplies of each manufacturer. A location key is included after each model. This permits easy spotting in the table of the specifications for that supply, by means of the location-key column (1 above). #### How the table is arranged Specifications for the laboratory-type dc power supplies are given in separate, appropriately headed columns. The complete specifications for any one supply can thus be read across the page. Within the table, the supplies are listed in ascending order of maximum output voltage (2 above). Where the maximum output voltage of several supplies is the same, the units are listed in order of increasing maximum output current (3 above). If both of these characteristics are identical for several supplies, they are then listed in order of increasing output voltage swing (4 above). This arrangement allows for a rapid across-the-market comparison of all the laboratory-type dc power supplies with similar application capability. Manufacturers are identified in the Mfr column by an abbreviation (5 above). The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master index at the front of the issue. All notes and symbols used in the table are defined at the end of the section. At the top of each page of the table, reference is made to the output voltage range covered by the supplies on that page. This is to expedite the location of a supply with particular characteristics. #### Additional entries A supplementary table is included at the end of the basic table. It lists additional laboratory-type dc power supplies that could not be fitted into the basic table because of editorial make-up limitations. The arrangement of this supplementary table is identical with that of the basic table. #### How to use the table - 1. Note how the supplies are listed. They are in ascending order of maximum output voltage. Where this is the same, they are in order of increasing maximum output current. - Select the most likely candidates. Obtain supplementary data from the manufac- Manufacturers' addresses, together with Reader Service numbers for specific power supply types, are given in the master cross index at the front of the issue. | | | | | OUTPUT | - | | REGU | LATION | | | | | | |-----|--|---|-------------------------------|---|-------------------------------|---|---|-----------------------------------|---|------------------------------------|----------------------------------|-------------------------------------|---| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response
or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | LS | Kepco
Dynage
CEA
Duffers
ERA | ABC2-1M
702-5
PT215
620
TD6M | 0
±5
5
0 | 2
±5
5
5
6 | 1
0.2
0.2
2
0.1 | 0.05
± 0.003
0.03
0.5
0.05 | 0.05
±0.003
0.08
0.5
0.05 | 0.25
0.5
0.4
1 | 50
ina
ina
ina
ina | yes
yes
none
yes
yes | C
C
R
C | 125
request
137
345
195 | a,b,c,e,f
c
f
c,f | | 1 | Engr El
Trygon
Deltron
Kepco
Harrison | ZA-740
SHR60-1A
RS6-3M
ABC7.5-2M
6203A | 6
0
5
0 | 6
6
7
7.5
7.5 | 0.63
1
3
2
3 | 0.1
0.01
0.01
0.05
3 mv | 0.1
0.01
0.01
0.05
5 mv | 1
0.5
0.5
0.25
0.25 | ina
25
50
50
50 | yes
yes
yes
yes
yes | R
½R
½R
C | 950
235
195
167
179 | c,f a,b,c,e,f a,b,c,e,f a,b,c,e,f a,b,c,e,f | | LS | Hyperion
Hyperion
Un Elect
Deltron | HY-W1-7.5-3
HY-WS-7.5-3
Q5-8-2AM
LH82M
ULH82M | 0
0
5
0 | 7.5
7.5
8
8 | 3
3
2
2
2
2 | 0.05
0.01
5 mv
0.05
0.01 | 0.05
0.01
5 mv
0.05
0.01 | 0.35
ina
1
1 | 50
50
50
50
50 | yes
yes
yes
yes | C
C
½R
R
R | 159
144
235
229
269 | a,b,d,f
a,b,c,d,f
c,d,f
a,b,c,e,f
a,b,c,e,f | | 2 | Deitron
Sorenson
Dynage
CEA
CEA | SH8-3
QB6-2
702-10
PT216
PT214 | 0
5
±10
10
51 | 8.
9
±10
10
10 ¹ | 3
2
0.2
0.2
0.2 | 0.01
±0.02 ⁷
±0.003
0.03
0.03 | 0.01
±0.02 ⁷
±0.003
0.08
0.08 | 1
0.3
0.5
0.4
0.4 | 50
25
ina
ina
ina | yes
none
yes
none
none | R
C
C
R
R | 310
98
request
137
147 | a,b,c,e,f
a,b,c,d
c
c | | LS | Kepco
Duffers
Pioneer
Pioneer
Deltron | ABC10-0.75M
620
RR10-2.5A
RR10-2.5B
RP20-1.5 | 0
0
0
0 | 10
10
10
10
10 | 0.75
2
2.5
2.5
3 | 0.05
0.5
0.1
0.01
0.01 | 0.05
0.5
0.1
0.01
0.01 | 0.25
1
1
1
0.2 | 50
ina
50
50
50 | yes
yes
yes
yes | C
C
R
R | 125
345
ina
ina
168 | a,b,c,e,f
f,h
a,b,c,e
a,b,c,e
a,b,c,e,f,h | | 3 | Acme
Un Elect
Deltron
Un Elect
Trygon | PS-47623
Q10-14-1AM
RS12-2M
Q10-14-2AM
HH14-3 | 12
10
10
10 | 12
14
14
14
14 | 3
1
2
2
2
3 | ±1 5 mv 0.01 5 mv 0.01 | ±2
5 mv
0.01
5 mv
0.01 | 1%
1
0.5
1
0.5 | ina
50
50
50
50
25 | yes
yes
yes
yes | R
%R
%R
%R
%R | 102
235
195
260
182 | c,d,f
a,b,c,e,f
c,d,f
a,b,c,e,f | | ZJ. | El Meas
Dynage
CEA
Kepco
Pwr Des | T014-3M
702-15
PT316
ABC15-1M
1515B | 0
±15
0
0 | 14
± 15
15
15
15 | 3
0.2
0.2
1
1.5 | 10 mv
± 0.003
0.03
0.05
0.05 | 10 mv
± 0,003
0.08
0.05
0.05 | 0.5
0.5
0.4
0.25
0.25 | ina
ina
ina
50
ina | yes
yes
none
yes
yes | R
C
R
C | 335
request
157
167
175 | a,b,c,f
c
a,b,c,e,f
c,f | | 4 | Acme
Sorensen
Hyperion
Deltron
B-B | PS-47508
QRB15-2
HY-WS-15-2
H15-2 ¹⁸
502 | 15
0
0
0
0
-15 | 15
15
15
15
15
+15 | 2
2
2
2
2
2 | ±1
±0.01 ⁷
0.01
0.05 ¹³
0.1 | ±2
±0.01 ⁷
0.01
0.05 ¹³
0.1 | 1%
0.25
ina
1
0.25 | ina
50
50
50
50
ina | yes
yes
yes
yes
none | R
C
C
C or R
R | 100
145
144
190
480 | a,b,c,d,f
a,b,c,d,f
b,e,f
a,b,c,g | | LS | Hyperion
Hyperion
Deltron
Grundig
Topaz | HY-W1-16-1
HY-Z1-16-1.5
RP30-1
TN1
91PQ | 0
0
0
0.5
5 | 16
16
16
16
16 | 1
1.5
2
3
0.5 | 0.05 ⁷ 0.05 0.01 ±0.05 ±0.05 | 0.05 ⁷
0.05
0.01
± 0.05
5 mv | 1
1
0.2
0.1
1 | 50
50
50
ina
ina | yes
yes
yes
yes | C or R
C or R
½R
C
C | 150
190
168
ina
150 | a,b,d,f
b,d,f
a,b,c,e,f,h
c | | 5 | Kepco
Harrison
Sorensen
El Meas
Harrison | ABC18-0.5M
6204AM
QB12-1
TRO18-1M
855C | 0
0
9
0 | 18
18
18
18
18 | 0.5
0.6
1
1
1.5 | 0.05
0.01
±0.01 ⁷
0.04
0.01 | 0.05
0.01
±0.01 ⁷
0.04
0.01 | 0.25
0.2
0.3
0.25
0.2 | 50
50
25
ina
50 | yes
yes
none
yes
yes | C
C
C
½R
C | 125
144
98
154
179 | a,b,c,e,f
a,b,c,e,f,h
a,b,c,d
a,b,c,f
a,b,c,d,f | | LS | Sorensen
Harrison
NJE
Behl-Invar
Kepco | QB12-2
6224A
RB-18-3-M
TPA-36/18
CK18-3M | 9
0
0
0 | 18
18
18
18
18 | 2
3
3
3
3 | ±0.01 ⁷ 0.02 ±0.01 10 mv 0.01 | ± 0.017
0.03
± 0.01
5 mv
0.01 | 0.3
0.5
0.25
0.3
0.5 | 25
50
50
50
50 | none
yes
yes
yes
yes | C C C C | 108
340
215
275
305 | a,b,c,d
a,b,c,e,f
a,b,c,e,f
c,e,f
a,b,c,e,f | | 6 | NJE
Dynage
B-B
Pwr Des
Harrison | TR-18-3
702-20
500
2005
6823A | 0
±20
10
0
-20 | 18
±20
20
20
+20 | 3
0.2
0.2
0.5
0.5 | ±0.03
±0.003
±0.2
100 μν
0.02 | ± 0.02
± 0.003
± 0.2
100 μv
0.02 | 2
0.5
0.15
100 μν
2 | 50
ina
ina
10
100 | yes
yes
yes
yes
yes | C
C
C
C | 190
request
365
325
194 | a,b,c,e,f
c,g
a,b,c,d,f
a,c,e,f | April 19, 1966 69 | | Mfr. | | | OUTPUT | | | REGI | ILATION | | | | | Notes | |----|---|---|--|--|-------------------------------------|--|--|--|---|-------------------------------------|---|-------------------------------------|---| | | mil. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | LS | Harrison
Trygon
Trygon
Deltron
Pwr Des | 6205A
DL40-700
DL40-700
RP20-15
2015R | 0
0
0
0 | 20
20 ⁸
20 ⁸
20
20 | 0.6
0.7
1.4
1.5
1.5 | 0.01
0.01
0.1
0.01
0.5 | 0.01
0.01
0.1
0.01
0.5 | 0.2
0.5
0.5
0.2
0.15 | 50
25
25
50
ina | yes
yes
yes
yes
yes | C
C
C
½R
C | 195
249
249
168
175 | a,b,c,e,f
a,b,c,e,f
a,b,c,e,f
a,b,c,e,f,h
a,c,f | | 7 | Hyperion
Harrison
Harrison
Trygon
Hyperion | HY-W1-20-1.5
6201A
6200A
HR20-1.5
HY-WS-20-1.5 | 0
0
0
0 | 20
20
20
20
20
20 | 1.5
1.5
1.5
1.5
1.5 | 0.05
0.01
0.01
0.01
0.01 | 0.05
0.01
0.01
0.05
0.01 | 0.35
0.2
0.2
0.25
ina | 50
50
50
50
50 | yes
yes
yes
yes
yes | C
C
C
½R
C | 159
179
210
164
144 | a,b,d,f
a,b,c,e,f
a,b,c,e,f,h
a,b,c,e,f
a,b,c,d,f | | LS | Sorensen
Trygon
Lambda
Pioneer
Pioneer | QRB20-1.5
T20-2
LH121FM
RR-20-2.5A
RR20-2.5A | 0
0
0
0 | 20
20
20
20
20
20 | 1.5
2
2.4
2.5
2.5 | ±0.01 ⁷ 0.05 0.015 0.1 0.01 | ±0.01 ⁷ 0.05 0.015 0.1 0.01 | 0.2
0.5
0.25
1 | 50
50
ina
50
50 | yes
yes
yes
yes
yes | C or ½R
C
½R
R | 145
199
184
ina
ina | a,b,c,d,f
a,b,c,e
a,c,f
a,b,c,e
a,b,c,e | | 8 | Behl-Invar
NJE
Deltron
Trygon
Harrison | QS-20
XR-18-3
RP20-3 ¹⁸
SHR-20-3A
6284A | 0
10
0
0 | 20
20
20
20
20
20 | 2.5
3
3
3
3 | 0.01
±0.005
0.01
0.01
0.01 | 0.01
±0.01
0.01
0.01
0.01 | 1
0.25
0.214
0.5
0.2 | 25
50
50
25
50 | yes
none
yes
yes
yes | ¼R
C
½R ¹⁵
½R
½R | 184
170
230
225
210 | a,b,c,d,f
a,b,c,e
a,b,c,e,f
a,b,c,e,f
a,b,c,e,f | | LS | Harrison Deltron Deltron Acme Deltron | 6253A
HP20-3
RS18-3M
PS41422
LH242M | 0
0
15
24
9 ² | 20
20
21
24
24 ² | 3
3
3
2
2 | 0.01
0.05 ¹³
0.01
±1
0.05 ¹³ | 0.01
0.05 ¹³
0.01
±2
0.05 ¹³ | 0.2
1
0.5
1% | 50
50
50
ina
50 | yes
yes
yes
yes | ½R
C or R
½R
R | 395
230
260
105
249 | a,b,c,e,f,g
e,f, ^{16,17}
a,b,c,e,f | | 9 | Dynage Princeton E1 Prod Deltron Deltron | 702-25
SF-25,2R
PS-3A
RP50-0.6
L Series | ±25
256
0
0
12 ¹⁰ | ±25
256
25
25
25
25 | 0.2
0.2
0.2
1.2
2.5 | ±0.003
0.0001
±0.02
0.01
0.01 | ±0.003
0.0001
0.02
0.01
0.01 | 0.5
0.2
0.2
0.2
0.2
0.5 | ina
25
ina
50
50 | yes
yes
yes
yes | C
R
C
½R
R | request
ina
99
176
192 | b,c,d,f
c
a,b,c,e,f,h
a,b,c,e | | LS | Sorensen
Sorensen
Sorensen
Deltron
Harrison | QB1875
QB18-1,5
QB18-3
RS24-1.2M ¹⁸
721A | 13
13
13
20
0 | 26
26
26
28
30 | 0.75
1.5
3
1.2,2.4
0.15 | ±0.01 ⁷
±0.01 ⁷
±0.01 ⁷
0.01
±15 mv | ±0.017
±0.017
±0.017
0.01
±30 mv | 0.3
0.3
0.3
0.5
0.15 | 25
25
25
50
50 | none
none
yes
yes
yes | C or ½R
C or
½R
R
½R
C | 98
108
190
195
145 | a,b,c,d
a,b,c,d
a,b,c,d,f
a,b,c,e,f
e,f | | 10 | Dynage
Un Elect
CEA
Kepco
Topaz | 702-30
200B
PT314
ABC30-0.3M | ±30
0
0
0 | ±30
30
30
30
30 | 0.2
0.2
0.2
0.3
0.5 | ±0.003
0.07
0.03
0.05
±0.02 | ±0.003
0.07
0.04
0.05
5 mv | 0.5
1
1
0.25 | ina
100
ina
50
ina | yes
yes
none
yes
yes | C
R
R
C | request
325
167
125
ina | d,f
c
a,b,c,e,f | | LS | Hyperion
Un Elect
Un Elect
Specific
CEA | HY-W1-30-0.6
Q26-30-1AM
Q26-30-2AM
BP-30B
PT321 | 0
26
26
0 | 30
30
30
30
30 | 0.6
1
1
1 | 0.05
5 mv
5 mv
1
±0.01 | 0.05
5 mv
5 mv
1
±0.01 | 1
1
1
5
0.003% | 50
50
50
ina
ina | yes
yes
yes
yes
none | C or R ½R ½R C 1/3R | 140
260
280
145
425 | a,b,d,f
c,d,f
d
c,f | | 11 | Endevco
Endevco
Sorensen
Un Elect
R & S | SR5000EP
SR1000EP
QRB30-1
IQ30-2A
NGN BN95143 | 0
0
0
0 | 30
30
30
30
30
30 | 1
1
1
2
2.5 | 0.01
0.01
±0.01 ⁷
1 ma
±0.5 | 0.01
0.01
±0.01 ⁷
1 ma
ina | 0.03
0.03
0.15
0.25 | ina
ina
50
50
ina | non e
non e
yes
yes
yes | R
½R
C or ½R
R | 795
395
145
350
580 | b
b
a,b,c,d,f
a,c,d,f
f | | LS | Pwr Inst
Pwr Inst
Semi Cir
Oregon
Vector | 3210
3225
370
BT-3-50
TM-03-1A | 0
0
0
0
5 | 31
32
32
32
32
32 | 1
0.25
0.3
0.5
1 | ±0.1
±0.1
10 mv
0.15
±0.01 | ±0.1
±0.1
10 mv
0.1
0.2 | 1
1
3
1 | 50
50
50
ina
ina | yes
yes
yes
yes
yes | C C C C | 295
125
70
135
100 | a,c,d,f
a,c,d,f
d,f
c,f
c,f | | 12 | Dellron
Pwr Inst
Harrison
Hyperion
Hyperion | RP30-1
3201
6206AM
HY-Z1-32-1
HY-WS-32-1 | 0
0
0
0 | 32
32
32
32
32
32 | 1,2
1
1
1
1 | 0.01
±0.2
0.01
0.05
0.01 | 0.01
±0.2
0.01
0.05
0.01 | 0.2
1
0.2
1
ina | 50
50
50
50
50 | yes
yes
yes
yes
yes | ½R
R
C
C or R | 168
ina
184
200
144 | a,b,c,e,f,h
a,b,c,d
a,b,c,e,f,h
b,d,f
a,b,c,d,f | | | | | | OUTPUT | | | REGI | JLATION | | | | | | |----------|--|---|-------------------------|---|------------------------------------|---|---|-------------------------------------|---|----------------------------------|-------------------------------|--------------------------------------|---| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | _\$ | Trygon
Cohu
Harrison
Hyperion
Glentron | HH32-1.5
3F-200
6242A
HY-Z1-32-2.5
20588-6 | 0
2
0
0 | 32
32
32
32
32
32 | 1.5
2
2
2.5
3 | 0.01
±0.002
0.03
0.05
0.1 | 0.01
±0.01
0.02
0.05
0.1 | 0.5
0.5
0.2
1 | 25
200
50
50
ina | yes
none
yes
yes
yes | ¼R
R
R
C or R | 177
1250
435
240
request | a,b,c,e,f
d
a,b,c,e,f
b,d,f | | 13 | Pwr Inst
Deltron
Un Elect
Un Elect
Un Elect | 3230
RS30-1M ¹⁸
TQ35-1
L3501
TQ35-2 | 0
25
0
0 | 32
35
35
35
35
35 | 3
119
1
1
2 | ±0.1
0.01
7 mv
5 mv
7 mv | ±0.1
0.01
7 mv
5 mv
7 mv | 1
0.5
0.25
0.25
0.25 | 50
50
50
50
50 | yes
yes
yes
yes
yes | C
½R
R
C | 485
195
475
199
575 | a,c,d,f
a,b,c,e,f
c,d,f,g
a,c,d,f
c,d,f,g | | _S_ | Un Elect
Trans Dev
El Meas
Vector
Harrison | LQ35-2A
VS101
TR 036-0.2M
TM-03-20
6204AM | 0
0
0
5 | 35
35
36
36
36 | 2
3
0.2
0.25
0.3 | 2 mv
±0.05
0.04
±0.01
0.01 | 5 mv
±0.1
0.04
0.2
0.01 | 0.25
1
0,15
1
0.2 | 50
50
50
ina
50 | yes
yes
yes
yes | R
R
½R
C | 375
ina
149
120
164 | a,b,c,d,f
a,b,c,d
a,b,c,d,f
c,f
a,b,c,e,f,h | | 14 | Sorensen
El Meas
Vector
Sorensen
Vector | QB285
TR036-0.5M
TM-03-50
QB28-1
ST-03-1A | 18
0
0
18
0 | 36
36
36
36
36 | 0.5
0.5
0.5
1 | ±0.01 ⁷ 0.04 ±0.1 ±0.01 ⁷ ±0.03 | ±0.01 ⁷ 0.04 0.2 ±0.01 ⁷ 0.05 | 0.3
0.25
1
0.3 | 25
50
ina
25
25 | none yes yes none yes | C or ½R
½R
C
C or ½R | 98
160
ina
108
202 | a,b,c,d
a,b,c,d,f
a,b,c,d
a,b,c,e,f | | LS | Krohn-Hite
Behl-Invar
Kepco
Harrison
Deltron | RS-361
TPA-36/18
CK36-1.5M
6226A
HP36-1.5 ¹⁸ | 0
0
0
0 | 36
36
36
36
36 | 1
1.5
1.5
1.5
1.5 | 0.0002
10 mv
0.01
0.02
0.05 ¹³ | 0.0 005
5 mv
0.01
0.01
0.05 13 | 0.05
0.3
0.5
0.5 | 25
50
50
50
50 | yes
yes
yes
yes
yes | C or R C C C C C or R | 850
275
305
325
230 | d,f _
c,e,f
a,b,c,e,f
a,b,c,e,f
b,e,f | | 15 | Sorensen
NJE
ERA
Vector
NJE | QB28-2
XR-36-2
SL-36-2/2M
ST-03-2A
RB-36-2-M | 18
10
0
0 | 36
36
36
36
36 | 2
2
2
2
2
2 | ±0.017
±0.005
±0.025
±0.03
±0.01 | ±0.017
±0.01
0.05
0.05
±0.01 | 0.3
0.25
1
1
0.25 | 25
50
50
25
50 | yes
none
yes
yes
yes | R
C
R
C | 190
170
465
210
215 | a,b,c,d,f
a,b,c,e
a,b,c,d,f,g
a,b,c,e,f
a,b,c,e,f | | LS | NJE
ERA
Pioneer
Pioneer
Glentron | TR-36-2
SL-36-2M
RR36-2.5A
RR36-2.5B
20588-7 | 0
0
0
0 | 36
36
36
36
36 | 2
2
2.5
2.5
3 | ±0.03
±0.025
0.1
0.01
0.1 | ±0.02
0.05
0.1
0.01
0.1 | 2
1
1
1
1 | 50
50
50
50
ina | yes
yes
yes
yes
yes | C
½R
R
R | 190
235
ina
ina
request | a,b,c,e,f
a,b,c,d,f
a,b,c,e
a,b,c,e | | 16 | Voltex
Harrison
Harrison
El Meas
Deltron | 36-3
6365A
6265A
TO36-3M
HP36-3 ¹⁸ | 0 0 0 0 0 | 36
36
36
36
36 | 3
3
3
3
3 | ±0.02
0.01
0.01
10 mv
0.05 ¹³ | ±0.005
0.01
0.01
10 mv
0.05 ¹³ | 3
0.5
0.5
0.5
1 | 25
50
50
ina
50 | yes
none
yes
yes
yes | R
R
R
C or R | 575
279
350
355
280 | a,b,c,e,f
a,b,c,e
a,b,c,e,f
a,b,c,f
e,f16,17,20 | | LS
17 | Mid-Eastern
Mid-Eastern
Vector
Harrison
Trygon | SS36-3
ST36-3S
CM-03-3A
6205A
DL40-700 | 0
0
0
0 | 36
36
36
40
40 ⁸ | 3
3
0.3
0.35 | 0.01
0.005
±0.01
0.01
0.01 | 0.03
0.03
0.01
0.01
0.01 | 1
0.5
1
0.2
0.5 | 50
50
ina
50
25 | yes
yes
yes
yes
yes | R
R
C
C | 395
495
338
195
249 | a,b,c,d,f
a,b,c,e,f
a,b,c,e,f
a,b,c,e,f,g
a,b,c,e,f | | 17 | Pwr Des
Pwr Des
Mid-Eastern
ERA
Harrison | 4005
TW4005
MP40-0.5
TRO40M
865C | 0
0
0
0 | 40
40
40
40
40 | 0.5
0.5
0.5
0.5
0.5 | 0.05
0.05
0.1
±0.015
0.01 | 0.05
0.05
0.1
0.03
0.01 | 0.25
0.25
1
1
0.2 | ina
50
ina
ina
50 | yes
yes
yes
yes
yes | C
C
C
½R
C | 144
297
176
130
179 | a,c,f
a,c,e,f,g
a,c,f
a,b,c,f
a,b,c,e,f | | LS | Harrison
Perkin
Harrison
Harrison
Harrison | 6112A
TVCRO40-05
6102A
723A
6294A | 0
0
0
0 | 40
40
40
40
40 | 0.5
0.5
0.5
0.5
0.5 | 0.001
±0.01
0.001
10 mv | 0.001
±0.01
0.001
20 mv
20 mv | 0.04
100
0.04
0.15
0.15 | 50
25
50
ina
ina | yes
yes
yes
yes
yes | C C C C | 375
239
265
240
240 | a,b,c,e,f
a,b,c,d,f
a,b,c,e,f | | 18 | Kepco
Trygon
Deltron
Trygon
Sorensen | ABC40-0.5M
DL40-700
RP40-0.75
HR40-750
QRB4075 | 0
0
0
0 | 40
40 ⁸
40
40
40 | 0.5
0.7
0.75
0.75
0.75 | 0.05
0.01
0.01
0.01
±0.01 ⁷ | 0.05
0.01
0.01
0.05
±0.01 ⁷ | 0.25
0.5
0.2
0.15
0.15 | 50
25
50
50
50 | yes
yes
yes
yes
yes | C
C
½R
½R
C or ½R | 167
249
168
159
145 | a,b,c,e,f
a,b,c,e,f
a,b,c,e,f,h
a,b,c,e,f
a,b,c,d,f | | | | | | OUTPUT | | | REGI | ILATION | | | | | | |-----|----------------------|--|---------------|-----------------|-------------------|--------------------|--------------------|--------------|---|------------|------------------|----------------|--------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | | Harrison | 6200A | 0 | 40 | 0,75 | 0.01 | 0.01 | 0.2 | 50 | yes | С | 210 | a,b,c,e,f,h | | | Harrison | 6202A | 0 | 40 | 0.75 | 0.01 | 0.01 | 0.2 | 50 | yes | C | 179 | a,b,c,e,f | | | Hyperion | HY-W1-40-0.8 | 0 | 40 | 0.8 | 0.05 | 0.05 | 0.35 | 50 | yes | С | 159 | a,b,d,f | | | Hyperion | HY-WS-40-0.8 | 0 | 40 | 0.8 | 0.01 | 0.01 | ina | 50 | yes | С | 144 | a,b,c,d,f | | LS | Керсо | CK40-0.8M | 0 | 40 | 0.8 |
0.01 | 0.01 | 0.5 | 50 | yes | С | 267 | a,b,c,e,f | | 19 | Perkin | MTVR040-1 | 0 | 40 | 1 | ±0.01 | ±0.01 | 0.2 | 50 | yes | С | 215 | a,b,c,e,f | | | Lambda | LH124FM | 0 | 40 | 1.3 | 0.015 | 0.015 | 0.25 | ina | yes | ¼R | 179 | a,c,f | | | Behl-Invar | QS-40 | 0 | 40 | 1.4 | 0.01 | 0.01 | 1 | 25 | yes | ¼R | 179 | a,b,c,d,f | | | Hyperion
Deltron | HY-ZS-40-1.5
RP40-1.5 ¹⁸ | 0 | 40 | 1.5 | 0.01 | 0.01 | ina
0.214 | 50
50 | yes
yes | C
½R15 | 198
230 | a,b,c,d,f
a,b,c,e,f | | 1 | Trucan | SHR40-1,5A | 0 | 40 | 1.5 | 0.01 | 0.01 | 0,5 | 25 | u00 | ½R | 199 | | | - 1 | Trygon
Harrison | 6255A | 0 | 40 | 1.5 | 0.01 | 0.01 | 0.3 | 50 | yes
yes | C | 395 | a,b,c,e,f | | - 1 | Harrison | 6289A | 0 | 40 | 1.5 | 0.01 | 0.01 | 0.2 | 50 | yes | C | 210 | a,b,c,e,f,g
a,b,c,e,f | | | El Meas | PRO40-2M | 0 | 40 | 2 | 0.04 | 0.04 | 1 | 125 | yes | ½R | 250 | a,b,c,d,f | | S | Perkin | TVR060-2 | 0 | 40 | 2 | ±0.01 | ±0.02 | 2 | 50 | yes | C or R | 495 | a,b,c,d,f | | 20 | Sorensen | QRB40-2 | 0 | 40 | 2 | ±0.01 ⁷ | ±0.017 | 0.15 | 50 | yes | С | 255 | a,b,c,d,f | | | Perkin | TVCRO40-2 | 0 | 40 | 2 | ±0.01 | ±0.01 | 0.5 | 25 | yes | С | 450 | a,b,c,d,f | | | Fairlane | 403 | 1 | 40 | 2.5 | 20 mv | 10 mv | 0.5 | 50 | yes | R | 375 | c,e,f | | | Fairlane | 404 | 0.1 | 40 | 2.5 | 20 mv | 10 mv | 0.5 | 50 | yes | R | 480 | c,e,f | | | Deltron | RP40-2.5 ¹⁸ | 0 | 40 | 2.5 | 0.01 | 0.01 | 0.214 | 50 | yes | ½R ¹⁵ | 299 | a,b,c,e,f | | | Lambda
Tach Dur | LH125FM | 0 | 40 | 3 | 0.015 | 0.015 | 0.25 | ina | yes | ½R
⊬P | 294 | a,c,f | | | Tech Pwr | LS-40.0-3.0M | 0 | 40 | 3 | ±0.01 | ±0.03 | 0.5 | ina | yes | ½R | 320 | a,b,c,f | | | Tech Pwr | L-40.0-3.0M
HY-Si-40-3 | 0 | 40 | 3 | ±0.1
0.01 | ±0,3
0,01 | 0.5% | ina | yes | ½R | 200
249 | a,b,c,f | | LS | Hyperion
Trygon | HR40-3B | 0 | 40 | 3 | 0.01 | 0.01 | 0.5 | 50
50 | yes
yes | ½R
½R | 295 | a,b,c,d,f
a,b,c,e,f | | 21 | ERA | SPL40-3M | 0 | 40 | 3 | ±0.01 | 0.02 | 0.5 | 50 | yes | ½R | 425 | a,b,c,d,f | | | ERA | SPL-40-3/2M | 0 | 40 | 3 | ±0.01 | 0.02 | 0.5 | 50 | yes | R | 755 | a,b,c,d,f,g | | | Harrison | 6290A | 0 | 40 | 3 | 0.01 | 0.01 | 0.5 | 50 | yes | С | 350 | a,b,c,e,f | | | Hyperion | HY-ZS-40-8 | 0 | 40 | 3 | 0.01 | 0.01 | ina | 50 | yes | С | 249 | a,b,c,d,f | | | Deltron | RS36-0.8M ¹⁸ | 32 | 42 | 0.8,2.4 | 0.01 | 0.01 | 0.5 | 50 | yes | ½R | 195 | a,b,c,e,f | | | Behl-Invar | TPR2.5-45 | 0 | 45 | 2.5 | ±0.0025 | 0.008 | 0.3 | ina | yes | R | 495 | a,c,f | | | Acme | PS-1-6757 | 0 | 45 | 2.5 | ina | 5 | ina | ina | none | R | 145 | | | | Sorensen | MD48.0-2.1 | 48 | 48 | 2.1 | ±1 | 2 | 1% | ina | none | R | 115 | | | | Deltron | RS42-2.8M ¹⁸ | 35 | 49 | 2.8 ²¹ | 0.01 | 0.01 | 0.5 | 50 | yes | ⅓R | 355 | a,b,c,e,f | | LS | Deltron | RP100-0.3 | 0 | 50 | 0.06 | 0.01 | 0.01 | 0.2 | 50 | yes | ⅓R | 199 | a,b,c,e,f,h | | 22 | Pwr Des | 5005 | 0 | 50 | 0.5 | 0.05 | 0.05 | 250 | 50 | yes | С | 149 | a,c,f | | | El Meas | 220AM | 0 | 50 | 0.5 | 0.06 | 0.06 | 1 | ina | yes | R | 324 | a,b,f | | | Deltron | RP50-0.6 | 0 | 50 | 0.6 | 0.01 | 0.01 | 0.2 | 50 | yes | ⅓R | 176 | a,b,c,e,f,h | | | Trygon | T50-750 | 0 | 50 | 0.75 | 0.05 | 0.05 | 0.5 | 50 | yes | С | 199 | a,b,c,e,f | | | Pwi Des | 5010P | 0,2 | 50 | 1 | 0.05 | 0.05 | 0.25 | 60 | yes | R | 299 | a,f | | | El Meas
Deltron | 213A
RP59-1.2 | 0 | 50
50 | 1 1.2 | 0.06
0.01 | 0.01 | 1 0.2 | 1 ms
50 | yes
yes | R
½R | 370
242 | a,b,d,f
a,b,c,e,f | | | Heath | IP-20 | 0.5 | 50 | 1.5 | 0.005 | ±15 mv | 0.2 | 25 | yes | C | 115 | c,d,f | | | Pwr Des | 5015AS | 0.5 | 50 | 1.5 | 0.05 | 0.05 | 0.5 | 50 | yes | C | 234 | c,f | | LS | Deltron | HP50-1.5 ¹⁸ | 0 | 50 | 1.5 | 0.0513 | 0.05 ¹³ | 0.522 | 50 | yes | C or R | 234 | e,f | | 23 | NJE | RB-50-1.5-M | 0 | 50 | 1.5 | ±0,01 | ±0.01 | 0,25 | 50 | yes | С | 230 | a,b,c,e,f | | | Hyperion | HY-Z1-50-1.5 | 0 | 50 | 1.5 | 0.05 | 0.05 | 1 | 50 | yes | С | 225 | b,d,f | | | Deltron | L Series | 242 | 50 ² | 1.7 | 0.01 | 0.01 | 0.5 | 50 | yes | R | 192 | a,b,c,e | | | Deltron | DP48-2M | 42 | 50 | 2 | 0.5 | 0.5 | 0.8% | 100 | yes | R | 175 | a,b,e,f | | | Deltron | LH502M ¹⁸ | 25 | 50 | 2 | 0.05 ¹³ | 0.05 | 1 | 50 | yes | R | 301 | a,b,c,e,f | | | Un Elect
Glentron | LQ50-2A
0-50-2 | 0 | 50
50 | 2 2 | 5 mv
1 mv | 5 mv
1 mv | 0.25 | 50
ina | yes
yes | R
R | 425
request | b,c,d,f
b | | | Trygon | T50-2 | 0 | 50 | 2 | 0.05 | 0.05 | 0.5 | 50 | yes | C | 249 | a,b,c,e,f | | | Deltron | SH50-3 | 0 | 50 | 3 | 0.03 | 0.01 | 1 | 50 | yes | R | 446 | a,b,e,f | | LS | Deitron | HP50-3 ¹⁸ | 0 | 50 | 3 | 0.0513 | 0.0513 | 1 | 50 | yes | C | 330 | e,f | | 24 | Deltron | H50-3 | 0 | 50 | 3 | 0.2 | 0.2 | 1 | 50 | yes | R | 335 | b,e,f | | | El Meas | 215A | 0 | 50 | 3 | 0.06 | 0.01 | 1 | 1 ms | yes | R | 695 | a,b,d,f | | | Un Elect | Q50-2AM | 48 | 52 | 2 | 5 mv | 5 mv | 1 | 50 | yes | R | 325 | d | | | NJE | SR-48-3M | 44 | 52 | 3 | 0.005 | 0.01 | 0.2 | 15 | yes | R | 295 | a,b,c,d,f | | | Deltron | RS48-0.6M ¹⁸ | 40 | 56 | 0,6-3 | 0.01 | 0.01 | 0,5 | 50 | yes | ½R | 195 | a,b,c,e,f | 73 | | | | | OUTPUT | | | REGI | ILATION | | | | | | |----------|------------------------|----------------------------------|----------------------|-----------------------|--------------|-----------------------------|----------------------------|--------------|---|-------------|----------------|-------------|------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | | Hyperion | HY-W1-60-0.3 | 0 | 60 | 0.3 | 0.05 | 0.05 | 1 | 50 | yes | CorR | 160 | a,b,d,f | | | Un Elect | L6005 | 0 | 60 | 0.5 | 5 mv | 5 mv | 0.5 | 50 | yes | С | 215 | a,c,d,f | | | Керсо | CK60-0.5M | 0 | 60 | 0.5 | 0.01 | 0.01 | 0.5 | 50 | yes - | С | 305 | a,b,c,e,f | | | Hyperion | HY-WS-60-0.5 | 0 | 60 | 0.5 | 0.01 | 0.01 | ina | 50 | yes | С | 144 | a,b,c,d,f | | 2_ | Hyperion | HY-Z1-60-0.5 | 0 | 60 | 0.5 | 0.05 | 0.05 | 1 | 50 | yes | C or R | 210 | b,d,f | | 25 | Lambda | LH127FM | 0 | 60 | 0.9 | 0.015 | 0.015 | 0.25 | ina | yes | 1/4R | 209 | a,c,f | | | Behl-Invar | QS-60 | 0 | 60 | 0.96 | 0.01 | 0.01 | 1 | 25 | yes | ¼R | 209 | a,b,c,d,f | | | Fairlane | 601 | 1 | 60 | 1 | 20 mv | 10 mv | 0.5 | 50 | yes | R | 395 | c,e,f | | | Fairlane | 602 | 0.1 | 60 | 1 | 20 mv | 10 mv | 0.5 | 50 | yes | R | 495 | c,e,f | | | Deltron | SP60-1 | 0 | 60 | 1 | 0.01 | 0.01 | 0.5 | 50 | yes | R | 230 | a,b,c,e,f | | | Vector | ST-06-1A | 0 | 60 | 1 | ±0.03 | 0.05 | 1 | 25 | yes | С | 265 | a,b,c,e,f | | | Mid-Eastern | ME60-1M | 0 | 60 | 1 | 0.1 | 0.1 | 1 | 50 | yes | R | 595 | a,b,c,d,f | | | ERA | SL601-2M | 0 | 60 | 1 | ±0.01 | 0.02 | 1 | ina | yes | ½R | 415 | b,c,f,g | | | ERA
Deltron | SL60-1M
HP60-1 ¹⁸ | 0 | 60 | 1 1-3 | ±0.01
0.05 ¹³ | 0.02
0.05 ¹³ | 1 | ina | yes | ½R | 215 | b,c,f
e_f16,17,20 | | .S
26 | Dettron | HP00-1-0 | 0 | 60 | 1-3 | 0.05 | 0,05 | 1 | 50 | yes | C or R | 232 | e,1,0,1,10 | | .0 | Behl-Invar | TPA-1-60 | 0 | 60 | 1 | 20 mv | 6 mv | 0.5 | 20 | yes | R | 480 | b,c,e,f | | | Hyperion | HY-ZS-60-1
HY-Z1-60-1.0 | 0 | 60 | 1 | 0.01 | 0.01 | ina | 50 | yes | C | 229 | a,b,c,d,f | | | Hyperion
Harrison | 6257A | 0 | 60 | 1 | 0.05 | 0.05 | 1 | 50 | yes | CorR | 250 | b,d,f | | | E Meas | PR060-1.5M | 0 | 60 | 1 1.5 | 0.01 | 0.01 | 0.2 | 50
100 | yes | C
½R | 395
250 | a,b,c,e,f,g | | - | | | + | | | | - | | | yes | | 230 | a,b,c,d,f | | | Mid-Eastern
El Meas | ST60-1.5
T060-1.5M | 0 | 60 | 1.5 | 0.005
10 mv | 0.02
10 mv | 0.5 | 50
ina | yes
yes | R
R | 495
394 | a,b,c,e,f
a,b,c,f | | | Mid-Eastern | \$\$60-1.5 | 0 | 60 | 1.5 | 0.01 | 0.02 | 1 | 50 | yes | R | 395 | a,b,c,d,f,g | | | Princeton | TC-602R | 0 | 60 | 2 | 0,0001 | 0.0001 | 0.05 | 25 | yes | R | 1185 | a,b,c,d,f | | LS | Voltex | 60-2 | 0 | 60 | 2 | ±0.02 | ±0.005 | 3 | 25 | yes | R | 575 | a,b,c,e,f | | 27 | Керсо | KS60-2M | 0 | 60 | 2 | 0.01 | 0.01 | 1- | 50 | yes | R | 525 | a,b,c,e,f | | | Hyperion | HY-Z1-60-2.0 | 0 | 60 | 1 | 0.05 | 0.05 | 2 | 50 | yes | CorR | 310 | t b,d | | | Harrison | 726AR | 0 | 60 | 2 | 2.5 mv | 5 mv | 0.25 | 200 | yes | R | 545 | a,b,c,d,e,f | | | Lambda | LH128FM | 0 | 60 | 2.4 | 0.015 | 0.015 | 0.25 | ina | yes | ½R | 340 | a,c,f | | | Trygon | HR60-2.5B | 0 | 60 | 2.5 | 0.01 | 0.01 | 0.5 | 50 | yes | *½R | 329 | a,b,c,e,f | | | NJE | QR-60-2.5 | 0 | 60 | 2.5 | ±0,02 | ±0.005 | 3 | 50 | yes | R | 420 | a,b,c,d,f | | | Pioneer | RR60-2.58 | 0 | 60 | 2.5 | 0.01 | 0.01 | 1 | 50 | yes | R | ina | a,b,c,e | | | Pioneer | RR60-2.5A | 0 | 60 | 2.5 | 0.1 | 0.1 | 1 | 50 | yes | R | ina | a,b,c,e | | | El Meas | PV60-2.5M | 0 | 60 | 2.5 | 0.01 | 0.01 | 0.5 | ina | yes | R | 495 | a,b,c,f | | LS | El Meas | TP60-2.5M | 0 | 60 | 2.5 | 10 mv | 10 mv | 1 | ina | yes | R | 515 | a,b,c,f | | 28 | Hyperion | HY-ZS-60-2.5 | 0 | 60 | 2.5 | 0.01 | 0.01 | ina | 50 | yes | C | 299 | a,b,c,d,f | | | Chalco | 60V-3A | 30 | 60 | 3 | ±0.1 | ±0.1 | 1 | 25 | yes | R ⁹ | 275 | a,b,c,d | | | Hyperion | HY-Si-60-3 | 0 | 60 | 3 | 0.01 | 0.01 | 0.5 | 50 | yes | ½R | 299 | a,b,c,d,f | | | Harrison | 6371A | 0 | 60 | 3 | 0.01 | 0.01 | 0.5 | 50 | none | R | 435 | a,b,c,e | | | Harrison | 6296A | 0 | 60 | 3 | 0.01 | 0.01 | 0.5 | 50 | yes | С | 395 | a,b,c,e,f | | | Harrison | 6271A | 0 | 60 | 3 | 0.01 | 0.01 | 0.5 | 50 | yes | R | 435 | a,b,c,e,f | | | Deltron
Harrison | RP60-0.5 ¹⁸
6206AM | 0 | 64
64 | 0.5-2.5 | 0.01 | 0.01 | 0.2 | 50 | yes | ½R | 176 | a,b,c,e,f | | | Harrison | 6242A | 0 | 64 | 1 | 0.01 | 0.01 | 0.2 | 50 | yes | C
R | 184 | a,b,c,e,f,h | | 2 | Deltron | RS60-0.5M ¹⁸ | 50 | 70 | 0.5-3 | 0.01 | 0.01 | 0.5 | 50 | yes
yes | ½R | 195 | a,b,c,e,f
a,b,c,e,f | | _S
29 | | | | | | | | | | | | | | | | Trans Dev | V\$102 | 0 | 70 | 2 | ±0.05 | ±0.1 | 1 | 50 | yes
 R | ina | a,b,c,d | | | Trans Dev
Deltron | VS202
ULH752M ¹⁸ | 0
51 ² | 70
75 ² | 3 2 | ±0.05
0.0113 | ±0.1
0.01 ¹³ | 1 | 50
50 | yes | R | ina | a,b,c,d | | | Behl-Invar | TPA-2-75 | 0 | 75 | 2 | 20 mv | 10 mv | 1 1 | 20 | yes | R | 403
650 | a,b,c,e,f | | | El Meas | 225AM | 0 | 75 | 2 | 0.06 | 0.06 | 1 | ina | yes
yes | R | 545 | b,c,e,f
a,b,f | | _ | | | - | | | | | | | | | | | | | Kepco | SM75-2M
DL40-700 | 0 | 75
80 ⁸ | 0.35 | 0.01 | 0.05 | 0,5 | 50 | yes | R | 425 | b,c,e,f | | | Trygon
Tech Pwr | LS-80.0-1.5M | 0 | 80 | 1.5 | ±0.01 | 0.01
±0.03 | 0.5 | 25
ina | yes | C | 249
320 | a,b,c,e,f | | | Tech Pwr | L-80.0-1.5M | 0 | 80 | 1.5 | ±0.01 | ±0.03 | 0.5% | ina
ina | yes | ½R
½R | 200 | a,b,c,f | | S | Kepco | PR80-2.5M | 0 | 80 | 2.5 | ±1 | 2 | 0.5% | ina | ye s
yes | R | 340 | a,b,c,f | | 30 | Tech Pwr | LS-80,0-3,0M | 0 | 80 | 3 | ±0.01 | ±0.03 | 0,5 | ina | 204 | ½R | 450 | ahcf | | | Tech Pwr | L-80.0-3.0M | 0 | 80 | 3 | ±0.01 | ±0.03 | 0.5% | ina
ina | yes | ½R
%R | 260 | a,b,c,f
a,b,c,f | | | Deltron | DP75-2M | 68 | 82 | 2 | 0.5 | 0.5 | 1% | 50 | yes | R | 195 | a,b,e,f | | | | R\$72.0-42M18 | 60 | 84 | 0.42-2.94 | | 0.01 | 0.5 | 50 | yes | ½R | 195 | a,b,c,e,f | | | Deltron | | | - 47 | TOTA COUNT | 4.4. | U V V | 410 | 30 | 1 7-0 | R9 | - 00 | -1-1-1-1-1 | | | | | | OUTPUT | | | REGI | ILATION | | | | | | |----------|-------------------------------|------------------------------------|---------------|---------------------------|--------------------|----------------------------|----------------------|------------------------|---|-------------------|--------------|-------------------|------------------------------------| | | Mfr. | Model | Min.
Volts | Max.
Voits | Max.
Amps | Line
% | Load % | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price \$ | Notes | | | Chalco
Deltron | 90V-3A
RS84:0.35M ¹⁸ | 44
70 | 90
98 | 3
0.35 | ±0.1
0.01 | ±0.1
0.01 | 1
0.5 | 25
50 | yes
yes | R9
⅓R | 315
195 | a,b,c,d
a,b,c,e,f | | | Deltron
El Meas
El Meas | RP100-0.3
212AM
2-212AM | 0 0 | 100
100
100 | 0.03
0.1
0.1 | 0.01
0.1
0.1 | 0.01
0.05
0.05 | 0.2
0.5
1 | 50
ina
ina | yes
yes
yes | ½R
R
R | 199
154
308 | a,b,c,e,f,h
a,b,f
a,b,f,g | | S
1 | El Meas | TR212A | 0 | 100 | 0.1 | 0.04 | 0.04 | 0.25 | 50 | yes | ½R | 184 | a,b,c,d,f | | | Hyperion
Owen | HY-W1-100-0.15
505 | 0 0.01 | 100 | 0.15 | 0.05
±0.002 | 0.05 | 1 2 | 50
ina | yes
yes | C | 159
ina | a,b,d,f | | | Owen | 500 | 0 | 100 | 0.2 | ±0.002 | 0.05 | 2 | ina | yes | C | ina | b | | | Harrison | 6106A | 0 | 100 | 0.2 | 0.001 | 0.001 | 0.04 | 50 | yes | С | 265 | a,b,c,e,f | | | Harrison
El Meas | 6116A
224AM | 0 | 100
100 | 0.2 | 0.001 | 0.001
0.05 | 0.04 | 50
ina | yes
yes | C
R | 375
214 | a,b,c,e,f
a,b,f | | | Princeton | TC-100.2AR | 0 | 100 | 0,2 | 0.0001 | 0.0001 | 0.2 | 25 | yes | R | 1800 | a,b,c,d,f | | | Керсо | ABC100-0.2M | 0 | 100 | 0,2 | 0.05 | 0.05 | 0.25 | 50 | yes | С | 188 | a,b,c,e,f | | S
2 | Princeton | TC-100,2R | 0 | 100 | 0.2 | 0.0001 | 0.0001 | 0.2 | 25 | yes | R | 1500 | a,b,c,d,f | | - | Pwr Des
El Meas | 105TA
221AM | 1 0 | 100 | 0.5
0.5 | 0.05
0.04 | 0.05 | 1 1 | 50
ina | yes
yes | C
R | 239
354 | d,f
a,b,f | | | Deltron | RP100-0.6 | 0 | 100 | 0.6 | 0.01 | 0.01 | 0.2 | 50 | yes | ₩R | 278 | a,b,c,e,f | | | Behl-Invar
Harrison | QS-100
6258A | 0 | 100
100 | 0.6
0.75 | 0.01 | 0.01 | 0.2 | 25
50 | yes
yes | %R
C | 229
425 | a,b,c,d,f
a,b,c,e,f,g | | - | | | 0 | | 114 | | | | | | | | | | | Harrison
Deltron | 6299A
L Series | 4811 | 100
100 ¹ 1 | 0.75 | 0.01
0.01 | 0.01 | 0.2 | 50
50 | yes
yes | C
R | 395
197 | a,b,c,e,f
a,b,c,e | | | Pwr Des
Voltex | 1010T
100-1 | 1 0 | 10 0
1 00 | 1 | 0.05
±0.02 | 0.05
±0.005 | 1 3 | 50
25 | yes | C
R | 339
575 | c,d,f | | s | Harrison | 881A | 0 | 100 | 1 | 0.02 | 0.02 | 0.2 | 50 | yes
yes | R | 475 | a,b,c,e,f
a,b,c,e,f | | 3 | Harrison | 881AX | 0 | 100 | 1 | 2 mv | 2 mv | 0.2 | 50 | yes | R | 600 | a,b,c,e,f | | | El Meas | 214AM
HP100-1 ¹⁸ | 0 | 100
100 | 1 1-3 | 0.05
0.05 ¹³ | 0.05
0.0513 | 1 114 | 1 ms | yes | R
C or R | 404
325 | a,b,d,f
e_f 16,17,20 | | | Deltron
Mid-Eastern | ST100-1 | 0 | 100 | 1-3 | 0.005 | 0.0313 | 0.5 | 50
50 | yes
yes | R | 495 | a,b,c,e,f | | | El Meas | PR0100-1M | 0 | 100 | 1 | 0.04 | 0.04 | 1 | 100 | yes | ⅓R | 250 | a,b,c,d,f | | | Mid-Eastern | \$\$100-1 | 0 | 100 | 1 | 0.01 | 0.01 | 1 | 50 | yes | R | 395 | a,b,c,d,f | | | Voltex
El Meas | 100-2
226AM | 0 | 100 | 2 2 | ±0.02
0.05 | ±0.005
0.04 | 3 | 25
ina | yes
yes | R
R | 650
575 | a,b,c,e,f
a,b,f | | | Deltron | HP100-2 | 024 | 100 | 2 | 0.05 ¹³ | 0.0513 | 114 | 50 | yes | C or R | 415 | e,f16,17,20 | | .S | E! Meas | 218AM | 0 | 100 | 3 | 0.06 | 0.04 | 1 | 1 ms | yes | R | 745 | a,b,f | | ,, | Deltron
Mid-Eastern | SH100-3
ST100-3 | 0 | 100
100 | 3 | 0.01
0.005 | 0.01 | 1 ¹⁴
0.5 | 50
50 | yes
yes | R
R | 683
795 | a,b,e,f ²⁰
a,b,c,e,f | | | Lambda | LA20-05BM | 20 | 105 | 2 | 0.05 | 0.01 | 1 | ina | yes | R | 380 | a,c,f | | | NJE | SR-100-1.5M | 92 | 108
108 | 1.5 | 0.005 | 0.01 | 1 1 | 15
15 | yes | C | 310
420 | a,b,c,d,f | | - | NJE | SR-100-3M | 92 | | | 0.005 | 0.01 | | | ye s | | | a,b,c,d,f | | | Sorensen
Sorensen | MD11587
MD115-1.8 | 115
115 | 115 | 0.87 | ±1
±1 | 2 2 | 1%
1% | ina
ina | none | R
R | 115
135 | | | | Lambda | LH130FM | 0 | 120 | 0.5 | 0.015 | 0.015 | 0.25 | ina | yes | ½R | 250 | a,c,f | | | Lambda
Harrison | LH131FM
6443A | 0 | 120
120 | 1.2 | 0.015
0.05 | 0.015 | 0.25
0.2% | ina
300 ms | yes
yes | ½R
R | 345
360 | a,c,f
a,b,c,e,f | | .S
35 | | | | | | | | | 11 11 | | | | | | | Sola
Acme | 281125
PS-41425 | 125
125 | 125
125 | 2 2 | ±1
±1 | 1.5
±1 | 1%
1% | ina
100 ms | none | R
R | 145
143 | е | | | Acme | PS-47201 | 125 | 125 | 3 | ±l | <u>+2</u> | 1% | ina | yes | R | 210 | | | | NJE | SR-120-1.3M
SR-120-2.6M | 110
110 | 130
130 | 1.3
2.6 | 0.005
0.005 | 0.01 | 1 | 15
15 | yes
yes | C | 310
420 | a,b,c,d,f
a,b,c,d,f | | | Deltron | DP125-1M18 | 112 | 136 | 1-3 | ±0.5 | 0.5 | 1% | 50 ms | yes | R | 215 | a,b,e,f | | | El Meas | 229AM | 0 | 150 | 0.3 | 0.05 | 0.04 | 1 | ina | yes | R | 259 | a,b;f | | | Trygon
Deltron | FT-FTR-150-1
DP150-1M | 150
120 | 150
150 | 1 1 | ±1
±0.5 | 5 v
0.5 | 500
1% | 25
50 ms | none
yes | ¼R
R | 149
220 | e
a,b,e,f | | _S | Chalco | 150V-1A | 74 | 150 | 1 | ±0.1 | ±0,1 | 1 | 25 | yes | R9 | 340 | a,b,c,d | | 36 | Pwr Des | 1510TC | 50 | 150 | 1 | 0.05 | 0.05 | 1 | ina | yes | R | 425 | f | | | El Meas
Mid-Eastern | 228AM
ST150-1.5S | 0 | 150
150 | 1 1.5 | 0.05
0.01 | 0.04 | 1 1 | ina
50 | yes
yes | R
R | 475
695 | a,b,f
b,c,e,f | | | Sola Sola | 281150M | 150 | 150 | 2 | ±1 | 1,5 | 1 | ina | yes | R | 175 | -141-14 | | | Асте | PS-41426 | 150 | 150 | 2 | ±l | ±1 | 1% | 100 ms | none | R | 143 | е | | | | | | OUTPUT | | | REG | JLATION | | | | | | |-----|--|---|----------------------------------|--|--|---|--|--------------------------------|---|-----------------------------------|-------------------------------|----------------------------------|---| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | LS | Deltron
E1 Meas
Sorensen
Deltron
Chalco | DP150-2M
HV150-2M
DCR150-2.5
DP150-3M
150V-3A | 120
0
0
120
74 | 150
150
150
150
150 | 2
2
2.5
3
3 | ±0.5
0.03
±0.1 ⁷
±0.5
±0.1 | 0.5
0.03
±0.17
0.5
±0.1 | 1%
1
±30
1% | 50 ms
100
30 ms
50 ms
25 | yes
yes
yes
yes | R
R
C
R | 250
590
325
310
390 | a,b,e,f
a,b,d,f
a,b,c,d,f
a,b,e,f
a,b,c,d | | 37 | El Meas
Deltron
Deltron
Pwr Des
Kepco | HV150-3M
H150-3
HP150-3 ¹⁸
1510TA
PR155-1M | 0
0
0
145 | 150
150
150
155
155 | 3
3
1 | 0.03
0.05
0.05 ¹³
0.05
±1 | 0.03
0.05
0.05 ¹³
0.05 | 1
1
1
1
0.6% | 100
50
50
ina
ina | yes
yes
yes
yes
yes | R
R
C
R | 620
760
755
375
340 | a,b,d,f
b,e,f
e,f
f | | _\$ | Harrison
Trygon
Tech Pwr
Tech Pwr
Hyperion | 6207A
SHR160-500B
L-160.0-0.750M
LS-160.0-0.750M
HY-T1-160-8 | 0
0
0
0 | 160
160
160
160
160 | 0.2
0.5
0.75
0.75
0.8 | 0.02
0.01
±0.1
±0.01
0.025 | 0.02
0.01
±0.3
±0.03
0.025 | 0.5
0.5
0.5%
0.5
1 | 50
25
ina
ina
50 | yes
yes
yes
yes
yes | C
½R
½R
½R
%R | 194
295
200
345
1195 | a,b,c,e,f,g
a,b,c,e,f
a,b,c,f
a,b,c,f
a,b,d,f | | 38 | NJE
Hyperion
Kepco
Hyperion
Trygon | SR-150-1M
HY-Si-16 0-1
SM160-1M
HY-Z1-160-1
RS16 0-1A | 140
0
0
0
0 | 160
160
160
160
160 | 1
1
1
1 | 0.005
0.01
0.01
0.05
0.01 | 0.01
0.01
0.05
0.05
0.01 | 1
1
1
2
0.5 |
15
50
50
50
25 | yes
yes
yes | C
½R
R
C | 310
349
425
319
425 | a,b,c,d,f
a,b,c,d,f
b,c,e,f
b,d,f
a,b,c,e,f | | LS | NJE
Tech Pwr
Hyperion
Tech Pwr
NJE | QR-160-1.2
L-160.0-1.5M
HY-Si-160-1.5
LS-160.0-1.5M
SR-150-2M | 0
0
0
0
140 | 160
160
160
160
160 | 1.2
1.5
1.5
1.5
2 | ±0.02
±0.1
0.01
±0.01
0.005 | ±0.005
±0.3
0.01
±0.03
0.01 | 3
0.5%
1
0.5 | 50
ina
50
ina
15 | yes
yes
yes
yes
yes | R
½R
½R
½R
C | 620
260
399
495
420 | a,b,c,d,f
a,b,c,f
a,b,c,d,f
a,b,c,f
a,b,c,d,f | | 39 | Kepco
Hyperion
Trygon
Harrison
Tech Pwr | SM160-2M
HY-T1-160-2
HR160-2B
896A
L-160.0-3.0M | 0
0
0
75
0 | 160
160
160
160
160 | 2
2
2
2.5
3 | 0.01
0.025
0.01
0.007
±0.1 | 0.05
0.025
0.01
0.007
±0.3 | 1
1
0.5
1
0.5% | 50
50
25
100
ina | yes
yes
yes
yes
yes | R
R
½R
R
½R | 525
560
475
675
340 | b,c,e,f
a,b,d,f
a,b,c,e,f
a,b,c,e,f
a,b,c,f | | _\$ | Hyperion
Tech Pwr
NJE
Trygon
Sola | HY-Si-160-3
LS-160.0-3.0M
QR P-160-3
RS160-3
285140 | 0
0
50
0
60 | 160
160
160
160
180 | 3
3
3
3
2 | 0.01
±0.01
±0.02
0.01
±1 | 0.01
±0.03
±0.005
0.01
ina | 1
0.5
3
0.5
0.02 | 50
ina
50
25
ina | yes
yes
yes
yes | R
½R
R
R | 529
820
720
615
295 | a,b,c,d,f
a,b,c,f
a,b,c,d,f
a,b,c,e,f
f | | 40 | Lambda
Assoc Spec
Assoc Spec
Kepco
Lambda | 29M
13
11
ABC200M
C280M | 100
75
75
75
0 | 200
200
200
200
200
200 | 0.1
0.1
0.1
0.1
0.1
0.2 | 1
1
1
0.05
0.15 | 1
1
1
0.06
0.25 | 10
5
5
0.5
3 | ina
ina
ina
50
ina | yes
yes
none
yes
yes | R
C
R :
C | 120
80
70
210
235 | f
f
a,b,e,f
f | | S | Deltron
Lambda
Pwr Des
Lambda
Chalco | K P2020 ¹⁸ 33M 203M C480M 200V-0.5A | 0
100
100
0
99 | 200
200
200
200
200
200 | 0.2-3
0.3
0.3
0.4
0.5 | 0.05
1
0.05
0.15
±0.1 | 0.05
1
0.05
0.25
±0.1 | 2
10
0.5
3
1 | 50
ina
50
ina
25 | none,
yes
yes
yes
yes | R
R
R
R | 185
215
226
320
330 | a,b,c,e
f
d,f
f
a,b,c,d | | 41 | Deitron
Lambda
Chalco
El Meas
Acme | L Series 18
C880M
200V-1A
230AM
PS-41427 | 96 ¹²
0
99
0 | 200 ¹²
200
200
200
200
200 | 0.5-3
0.8
1
1 | 0.01
0.15
±0.1
0.05
±1 | 0.01
0.25
±0.1
0.04
±1 | 0.5
3
1
1 | 50
ina
25
ina
100 ms | yes
yes
yes
yes
none | R
R
R ⁹
R | 217
410
410
575
135 | a,b,c,e
f
a,b,c,d
a,b
e | | .s | Lambda
Chalco
Oregon
Oregon
Pwr Srcs | C1580M
200V-2.5A
E120-10
EL20-30
PS4222M | 0
99
95
95
35 | 200
200
210
210
215 | 1.5
2.5
0.1
0.3
1.5 | 0.15
±0.1
0.75
0.75
0.1 | 0.25
±0.1
0.75
0.75
0.1 | 3
1
5
5
3 | ina
25
ina
ina
ina | yes
yes
yes
yes | R
R ⁹
R
R | 655
480
95
175
619 | f
a,b,c,d
f
t
b,f,g | | 42 | Deltron
Kepco
Deltron
Kepco
Acme | DP200-1M
PR220-3M
DP250-1M
HB250M
PS41428 | 180
0
200
0 | 220
220
250
250
250
250 | 1
3
1
1 | ±1
±1
±1
0.01
±1 | 1
2
1
0.01
±1 | 0.8%
0.5%
0.8%
1 | 100
ina
100
50
100 ms | yes
yes
yes
yes
none | R
R
R
R | 175
450
180
495
147 | a,b,e,f
c,e,f
a,b,e,f
a,b,c,e,f
e | April 19, 1966 | | | | | OUTPUT | | | REGL | ILATION | | | | | | |----------|----------------------|-------------------------|------------------|---------------|--------------|-----------------|-----------------|--------------|---|-------------|----------|-------------|----------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (μ sec) | Meters | Mounting | Price
\$ | Notes | | | Sola | 285150 | 150 | 250 | 1.5 | ±1 | 0.5-8 | 0.03% | ina | yes | R | 295 | f | | | Deltron | DP250-2M | 200 | 250 | 2 | ±1 | 1 | 0.8% | 100 | yes | R | 305 | a,b,e,f | | | Freed | 1170-A | 25 | 270 | 1 | ±1.5 | ina | ina | ina | yes | C | 350 | f | | | Gen Radio | 1264-A | 200 | 300 | 0.05 | 0.5 v | ina | 1 | ina | none | C or R | 285 | | | 2. | Gen Radio | 1201-C | 300 ⁴ | 3004 | 0.07 | ±0,25 | ±0.25 | 1 | ina | none | CorR | 95 | | | 13 | Gen Radio | 1267-A | 3005 | 3005 | 0.07 | ±0,25 | ±0,25 | 1 | ina | none | C or R | 170 | | | | Heath
R & S | E VW-15
NGU BN95140 | 200
100 | 300 | 0.1 | ina
. 200 | 1 | 10 | ina | none | C | 75 | | | | El Meas | 2601AK | 0 | 300
300 | 0.1 | ±200 mv
0.01 | ina
0,01 | 0.2 | ina
ina | none
yes | C
R | 360
429 | | | | El Meas | 231AM | 0 | 300 | 0.1 | 0.08 | 0.02 | 0 | 500 | yes | R | 239 | b,d,f | | | Un Elect | 200AT | 0 | 300 | 0.2 | 0.07 | 0.07 | 1 | 100 | yes | R | 595 | d,f,h | | | Gen Radio | 1205-B | 0 | 300 | 0.2 | 750 mv | 100 my | 1 | ina | yes | C or R | 365 | 4,1,11 | | | El Meas | 232AM | 0 | 300 | 0.2 | 0.08 | 0.02 | 1 | 500 | yes | R | 259 | b,d,f | | | El Meas | 2602AK | 0 | 300 | 0.2 | 0.01 | 0.01 | 1 | ina | yes | R | 449 | | | LS | El Meas | 2603AK | 0 | 300 | 0.3 | 0.01 | 0.01 | 1 | ina | none | R | 469 | | | 44 | El Meas | 233AM | 0 | 300 | 0.3 | 0.08 | 0.02 | 1 | 500 | yes | R | 279 | b,d,f | | | Pwr Des | 304M | 250 | 300 | 0.4 | 0.05 | 0.05 | 0.5 | 50 | yes | R | 264 | 1,6 | | | Trygon | FT-FTR-300-500 | 300 | 300 | 0.5 | ±l | 10 v | 700 | 25 | none | ⅓R | 149 | e | | | El Neas | 234AM | 0 | 300 | 0.5 | 0.08 | 0.02 | 500 | 500 | yes | R | 394 | a,b,d,f | | | Un Elect | G3050M | 0 | 300 | 0,5 | 0,05 | 0.05 | 2 | 100 | yes | R | 350 | l,b | | | Deltron | DP300-1M
DCR300-1.25 | 250
0 | 300 | 1 | ±1
±0,17 | 1 | 0.8% | 100 | yes | R | 190 | a,b,e,f | | | Sorensen
Pwr Srcs | PS4000C | 260 | 300
300 | 1.25 | ±0.17 | ±0.17
200 mv | ±60
2 | 30 ms
ina | yes
yes | C | 325
621 | a,b,c,d,f | | | Pwr Srcs | PS4230M | 90 | 300 | 1.5 | 0.1 | 0.1 | 3 | ina | yes | R | 642 | f,g
b,f,g | | | El Meas | HV300-1.5M | 0 | 300 | 1.5 | 0.03 | 0.03 | 1 | 100 | yes | R | 620 | a,b,d,f | | _S
45 | | | | | | | | | | | | | | | 43 | Sorensen | DCR300-2.5 | 0 | 300 | 2.5 | ±0.17 | ±0.17 | ±60 | 30 ms | yes | C | 525 | a,b,c,d,f | | | Cohu
Kepco | 30F-1
PR310-2M | 2 | 302
310 | 0.02 | ±0,002
±1 | ±0.01 | 0.5 | 200
ina | none | R
R | 575
450 | d
f | | | Керсо | PR310-0.6M | 0 | 310 | 0.6 | ±l | 2 | 0.5 | ina | yes
yes | R | 360 | 1 | | | Harrison | 890A | 0 | 320 | 0.6 | 0.007 | 0.007 | 1 | 100 | yes | R | 445 | a,b,c,e,f | | | Trygon | RS320-1A | 0 | 320 | 1 | 0.01 | 0.01 | 0.5 | 25 | yes | R | 425 | a,b,c,e,f | | | Harrison | 895 A | 0 | 320 | 1.5 | 0.007 | 0.007 | 1 | 100 | yes | R | 625 | a,b,c,e,f | | | Trygon | R\$320-1.5 | 0 | 320 | 1.5 | 0.01 | 0.01 | 0.5 | 25 | yes | R | 550 | a,b,c,e,f | | | Assoc Spec | 3 | 200 | 325 | 0.1 | 1 | 1 | 10 | ina | yes | С | 70 | 1 | | LS | Assoc Spec | 1 | 200 | 325 | 0.1 | 1 | 1 | 10 | ina | none | R | 53 | | | 46 | Lambda | 28M | 200 | 325 | 0.1 | 1 | 1 | 5 | ina | yes | R | 110 | f | | | Oregon | EL32-10 | 200 | 325 | 0.1 | 0.75 | 0.75 | 5 | ina | yes | R | 88 | f | | | El Meas | 200B | 0 | 325 | 0.125 | 1 | 1 | 5 | ina | yes | R | 185 | f | | | Oregon | GP32-20 | 195 | 325 | 0.2 | 0.05 | 0,05 | 1 | ina | yes | R | 178 | f | | | Un Elect | 32A | 1 60 | 325 | 0,2 | 0,25 | 0,25 | 1 | 100 | yes | R | 225 | d,f | | | Lambda | C281 M | 125 | 325 | 0.2 | 0.15 | 0,25 | 3 | ina | yes | R | 210 | f | | | Deltron | KP3020 | 125 | 325 | 0.2 | 0.05 | 0.05 | 2 | 50 | none | R | 160 | a,b,c,e | | | Kepco
Lambda | HB-2AM
32M | 0
200 | 325
325 | 0.2 | 0.01 | 0.01 | 1 10 | 50
ina | yes
yes | R
R | 295
200 | a,b,c,e,f | | | Pwr Des | 323M | 200 | 325 | 0.3 | 0.05 | 0.05 | 3 | 50 | yes | R | 216 | d,f | | LS
47 | | | | | | | | | | | | | | | 9/ | Lambda | C481M | 125 | 325 | 0.4 | 0.15 | 0.25 | 3 | ina | yes | - R | 300 | f | | | Deltron | LP3040 | 125 | 325 | 0.4 | 0.05 | 0.05 | 2 | 50 | none | R | 245 | a,b,c,e | | | Kepco | HB4AM
SM325-0.5M | 0 | 325
325 | 0.4 | 0.01 | 0.01 | 1 | 50 | yes | R | 330 | a,c,e,f | | | Керсо | HB6AM | 0 | 325 | 0.5 | 0.01 | 0.05 | 1 | 50
50 | yes
yes | R
R | 440
365 | b,c,e,f
a,b,c,e,f | | | | | | | | | | | | | | | | | | Lambda | C881M | 125
125 | 325
325 | 0.8 | 0.15 | 0.25 | 3 2 | ina
50 | yes | R | 380 | f | | | Deltron
Kepco | KP3080
HB8AM | 0 | 325 | 0.8 | 0.05 | 0.05
0.01 | 1 | 50
50 | none
yes | R
R | 320
395 | a,b,c,e
a,b,c,e,f | | | Керсо | SM325-1M | 0 | 325 | 1 | 0.01 | 0.05 | 1 | 50 | yes | R | 555 | b,c,e,f | | LS | Lambda | C1581M | 125 | 325 | 1.5 | 0.15 | 0.25 | 3 | ina | yes | R | 680 | f | | _5
48 | Deltron | KP30150 | 125 | 325 | 1.5 | 0.05 | 0.05 | 2 | 50 | none | R | 585 | a,b,c,e | | | Pwr Srcs | PS4232M | 115 | 325 | 1.5 | 0.1 | 0.1 | 3 | ina | yes | C | 678 | b,f,g | | | Керсо | SM325-2M | 0 | 325 | 2 | 0.01 | 0.05 | 1 | 50 | yes | R | 675 | b,c,e,f | | | Hyperion | HY-Z1-330-0.35 | 0 | 330 | 0.35 | 0.05 | 0.05 | 2 | 50 | yes | С | 319 | b,d,f | | | Lambda | LA8-08AM | 75 | 330 | 0.8 | 0.05 | 0.1 | 1 | ina | yes | R | 425 | a,c,f | | | | | | OUTPUT | | | REGL | LATION | | | | | | |----|--|--|--------------------------------
--|---------------------------------------|--|--|--------------------------------|---|----------------------------------|--------------------------------------|-----------------------------------|---| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | LS | El Meas
Hyperion
Lambda
Hyperion
Lambda | HV330-1M
HY-T1-330-1
LA15-08BM
HY-T1-330-2.5
LA30-08BM | 0
0
75
0
75 | 330
330
330
330
330
330 | 1
1
1.5
2.5
3 | 0.03
0.025
0.05
0.025
0.025 | 0.03
0.025
0.1
0.025
0.1 | 1
1
1
1 | 100
50
ina
50
ina | yes
yes
yes
yes
yes | R
R
R
R | 590
615
590
895
890 | a,b,d,f
a,b,d,f
a,c,f
a,b,d,f
a,c,f | | 49 | Oregon
Oregon
Oregon
Grundig
Grundig | D4
A3
A3A
6007
SN3 | 0
0
0
50 | 350
350
350
350
350
350 | 0.075
0.075
0.075
0.1
0.1 | 0.5
0.5
0.5
±0.5
±0.15 | 0.5
0.5
0.5
±0.5
±0.45 | 10
10
10
0.05% | ina
ina
ina
ina
ina | yes
yes
yes
yes
yes | C or R
C or R
C or R
C | 350
175
185
979
319 | f,g
f | | LS | Oregon
Oregon
Oregon
Pwr Des
Pwr Des | B3
B3 Dual
BF35-20
353AM
305M | 0
0
0
150
250 | 350
350
350
350
350
350 | 0.2
0.2
0.2
0.3
0.5 | 0.3
0.3
0.1
0.05
0.05 | 0.15
0.15
0.1
0.05
0.05 | 5
5
2
0.5
0.5 | ina
ina
ina
50
50 | yes
yes
yes
yes | C or R
C or R
C or R
R | 2 00
425
185
253
330 | f
f,g
f
d,f
d,f | | 50 | Oregon
Heath
Kepco
Precise
Kepco | RL37-25M
IP-32
2400B
780
400B | 195
0
0
0
0 | 375
400
400
400
400 | 0.25
0.1
0.15
0.15
0.15 | 0.05
±0.5 v
0.1
0.4
0.1 | 0.05
1 v
0.25
0.33
0.25 | 1
10
3
3
3 | ina
ina
50
ina
50 | yes
yes
yes
yes
yes | R
C
R
C | 193
85
595
100
295 | f
f
d,f,g
f,h
d | | LS | Un Elect
Un Elect
Sola
El Meas
Deltron | 425A
425AT
285160
HV400-1M
2753 ¹⁸ | 0
0
250
0 | 400
400
400
400
400
425 | 0.25
0.25
0.75
1
0.05,0.1 | 0.5
0.5
±1
0.03
0.01 | 0.5
0.5
0.5-8
0.03
0.01 | 5
5
0.02%
1
0.5 | 1 ms
1 ms
ina
100
50 | yes
yes
yes
yes | R
R
R
R | 250
460
295
720
199 | d,f
d,f,h
f
a,b,d,f
a,b,c,e,f | | 51 | Kepco
Kepco
Deltron
Alfred
Harrison | ABC425M
430D
DP450-1M
262
711 | 0
0
360
20
0 | 425
450
450
500
500 | 0.05
0.3
1
0.1
0.1 | 0.05
0.1
±1
0.01
0.5 | 0.05
0.025
1
0.02
0.5 | 0.5
3
0.8%
5 | 50
50
100
ina
ina | yes
yes
yes
yes | ½R
R
R
R
C | 210
725
315
850
275 | a,b,c,e,f
d,f,h
a,b,e,f | | LS | Oregon
Pwr Des
Pwr Des
Krohn-Hite
Krohn-Hite | D6
351M
502M
UHR-225
UHR-220 | 0
150
300
140 | 500
500
500
500
500 | 0.125
0.15
0.2
0.2
0.2 | 0.5
0.05
0.05
0.08
0.003 | 0.5
0.05
0.05
0.002
0.001 | 10
0.5
0.5
0.1
0.1 | ina
50
50
1 | yes
yes
yes
yes
yes | C or R
R
C
C or R
C or R | 325
183
216
395
495 | f,g
d,f
d,f
d,f | | 52 | Harrison
Un Elect
Oregon
Un Elect
Lambda | 712B
UP520B
5-2V
520AT
71M | 0
0
0
0 | 500
500
500
500
500 | 0.2
0.2
0.2
0.2
0.2 | 100 mv
0.003
0.3
0.5
0.15 | 50 mv
0.003
0.15
0.5
0.15 | 0.5
1
5
5 | 100
100
ina
1 ms
ina | yes
yes
yes
yes
yes | C or R
R
C or R
R
C | 490
375
240
525
380 | d,f
d,f
f,g
d,f | | LS | Un Elect
Cohu
El Prod
Un Elect
El Meas | 520A
50F-25
RB-500
530A
204A | 0
1.02
0
0 | 500
500
500
500
500 | 0.2
0.25
0.25
0.3
0.3 | 0.5
±0.002
0.03
0.05
0.5 | 0.5
±0.01
0.03
0.05 | 5
0.002
5
5
5 | 1 ms
200
ina
50
ina | yes
none
yes
yes
yes | R
R
C
R | 295
1395
395
350
360 | d,f
d | | 53 | Un Elect
Pwr Des
Oregon
Krohn-Hite
Lambda | 300B
504M
5-4V
UHR-245
50RM | 0
400
0
140
0 | 500
500
500
500
500 | 0.3
0.4
0.4
0.5
0.5 | 0.04
0.05
0.3
0.08
0.15 | 0.04
0.05
0.15
0.002
0.5 | 2
0.5
5
0.1
5 | 100
50
ina
1 | yes
yes
yes
yes
yes | R
R
C or R
C or R
R | 410
272
370
575
506 | d,f
d,f
f
d,f | | LS | Lambda
Krohn-Hite
Oregon
Cohu
Cohu | 50M
UHR-240
BV50-50
50F-100
50B-25 | 0
0
0
1.02
1.02 | 500
500
500
500
500 | 0.5
0.5
0.5
1 | 0.15
0.003
0.1
±0.002
±0.002 | 0.5
0.001
0.1
±0.01
±0.01 | 5
0.1
2
2
0.002 | ina
1
ina
200
200 | yes
yes
yes
none | C C or R C or R R | 525
750
385
2175
1575 | f
d,f
f
d | | 54 | Cohu
Cohu
Oregon
Oregon
Oregon | 301
50B-100
RW51-20M
R L51-50M
R L51-150M | 1
1.02
195
325
325 | 501
502
510
510
510 | 0.02
1
0.2
0.5
1.5 | 0.002
±0.002
0.05
0.05
0.05 | 0.002
±0.01
0.05
0.05
0.05 | 0.1
2
1
1 | ina
200
ina
ina
ina | yes
none
yes
yes | C
R
R
R | 995
2375
225
278
678 | f
d
f
f | April 19, 1966 | | | | | OUTPUT | | | REGI | ILATION | | | | | | |-----|-------------|----------------------|---------------|---------------|--------------|-----------|-----------|--------------|---|--------|----------|-------------|------------------| | | Mfr. | Model | Min.
Volts | Max.
Voits | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time (µ sec) | Meters | Mounting | Price
\$ | Notes | | | Fluke | 301 E | 1.02 | 512 | 0.3 | 0.005 | 0.005 | 2 | 200 | yes | R | 695 | 1-1- | | | Lambda | C282 M | 325 | 525 | 0.2 | 0.15 | 0.25 | 3 | ina | yes | R | 220 | f | | | Deitron | KP5020 ¹⁸ | 325 | 525 | 0.2-1.5 | 0.05 | 0.05 | 2 | 50 | none | R | 170 | a,b,c,e | | | Lambda | C482M | 325 | 525 | 0.4 | 0.15 | 0.25 | 3 | ina | yes | R | 315 | f | | _s | Керсо | HB525M | 0 | 525 | 0.5 | 0.01 | 0.01 | 1 | 50 | yes | R | 435 | a,b,c,e,f | | 5 | Lambda | C882M | 325 | 525 | 0.8 | 0.15 | 0.25 | 3 | ina | yes | R | 425 | 1 | | - 1 | Lambda | C1582M | 325 | 525 | 1,5 | 0.15 | 0.25 | 3 | ina | yes | R | 755 | f | | | Fluke | 407D | 0 | 555 | 0.3 | 0.005 | 0.01 | 0.5 | ina | yes | С | 360 | | | | Fluke | 407D | 0 | 555 | 0,3 | 0.005 | 0.01 | 0.5 | ina | yes | R | 380 | | | | Un Elect | 620A | 0 | 600 | 0,2 | 0.5 | 0.5 | 5 | 1 ms | yes | R | 325 | d,f | | 1 | El Meas | 236AM | 0 | 600 | 0.2 | 0.025 | 0.02 | 1 | ina | yes | R | 350 | a,b,f | | | Керсо | 800B | 0 | 600 | 0,2 | 0.1 | 0.02 | 3 | 50 | yes | R | 575 | d,f,g | | | Керсо | 615B | 0 | 600 | 0.3 | 0.1 | 0.02 | 3 | 50 | yes | R | 375 | d,f | | | El Meas | 235AM | 0 | 600 | 0.5 | 0.025 | 0.02 | 1 | ina | yes | R | 650 | a,b,f | | .s | Керсо | 605 | 0 | 600 | 0.5 | 0.1 | 0.02 | 3 | 50 | yes | R | 450 | d,f | | 56 | El Meas | 209B | 0 | 600 | 0.6 | 0.02 | 0.01 | 0.5 | 200 ms | yes | R | 525 | d,f | | | El Meas | 219B | 0 | 600 | 1 | 0.02 | 0.01 | 0.5 | 200 ms | yes | R | 675 | d,f | | | Harrison | 6448A | 1 | 600 | 1,5 | 300 mv | 600 mv | 1.2 v | 200 ms | yes | R | 550 | a,c,e,f | | | Mid-Eastern | JP600-3 | 423 | 600 | 3 | ±17 | ±17 | 0.5% | ina | yes | R | 1450 | b,f | | | Pwr Des | 701M | 500 | 800 | 0.15 | 0.05 | 0.05 | 0.5 | 50 | yes | С | 257 | d,I | | T | Керсо | ABC1000M | 0 | 1000 | 0.02 | 0.05 | 0.05 | 1 | 50 | yes | R | 295 | a,e,f | | | Buchler | 3-1014A | 0 | 1000 | 0,2 | ±1 | ±l | 1% | ina | yes | C | 486 | c,f | | | Harrison | 6521A | 0 | 1000 | 0.2 | 0.005 | 0.005 | 1 | 50 | yes | R | 750 | c,e,f | | | Керсо | 12508 | 0 | 1000 | 0.5 | 0.05 | 0.01 | 3 | 50 | yes | R | 650 | d,f | | .s | El Meas | 222-A | 0 | 1000 | 0,5 | 0.02 | 0.01 | 1. | 200 ms | yes | R | 675 | d _i f | | 7 | Keithley | 240 | 0 | 1000 | 10 | ±0.05 | 0.05 | 3 | 15 ms | none | R | 345 | d | | | Keithley | 241 | 0 | 1000 | 20 | 0.005 | 0.005 | 1 | 1 sec | none | R | 800 | d | #### **Notes** - a. Remote programing provided. - b. Remote sensing provided. - c. Solid state. - d. Response time given in listing. - e. Recovery time given in listing. - f. Price includes meters. - g. Dual power supply with two identical sections. - h. Dual power supply with common meters. - 1. 5 or 10 volt output. - 2. Any 2 volts nominal available within this range. - 3. Three outputs: 6 amp, 6 amp & 0.6 amp. - 4. Heater output: 6.3 volt at 4 amp. - 5. Heater output: 6.3 volt at 1 amp. - 6. Adjustable, ±50 mv. - 7. Total regulation. - 8. Dual output, dual range unit. - 9. 1/3, 1/4, 1/2 and full rack-mount available. - 10. Any 1 volt nominal available within this range.11. Any 4 volts nominal available within this range. - 12. Any 8 volts nominal available within this range. - 13. 0.01 also available. - 14. 0.5 also available. - 15. Full rack-mount available. - 16. Remote programing available. - 17. Remote sensing available. - 18. Model number is for basic specifications or lowest value of ranges shown. See manufacturer's catalog for model number and price when options are specified. - 19. 2 or 3 ampere
output also available. - 20. Solid-state also available. - 21. 0.7, 1.4 and 2.1 amp outputs also available. - 22. 1 mv also available. - 23. Higher output currents available. - 24. 48 and 76 also available. - 25. 0.1 also available. #### **Abbreviations** - C Cabinet - R Rack ina Information not available #### Additional laboratory-type dc supplies | | | | | OUTPUT | | | REGU | LATION | | | | | | |----|---------|---------|---------------|---------------|--------------|-----------|-----------|--------------|--|--------|----------|-------------|-------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Line
% | Load
% | Ripple
mv | Response or
Recovery
Time. (µ sec) | Meters | Mounting | Price
\$ | Notes | | | Deltron | ED10-1 | 0 | 10 | 1 | 0.01 | 0.01 | ina | ina | yes | С | 139 | | | | Deltron | ED10-2 | 0 | 10 | 2 | 0.01 | 0.01 | ina | ina | yes | С | 169 | | | | Deltron | ED20-5 | 0 | 20 | 0.5 | 0.01 | 0.01 | ina | ina | yes | С | 139 | | | | Dettron | ED20-1 | 0 | 20 | 1 | 0.01 | 0.01 | ina | ina | yes | С | 169 | | | | Deltron | ED403 | 0 | 40 | 0.3 | 0.01 | 0.01 | ina | ina | yes | C | 139 | | | LS | Deltron | ED406 | 0 | 40 | 0.6 | 0.01 | 0.01 | ina | ina | yes | С | 169 | | | 58 | Deltron | ED602 | 0 | 60 | 0.2 | 0.01 | 0.01 | ina | ina | yes | С | 145 | | | | Deitron | ED604 | 0 | 60 | 0.4 | 0.01 | 0.01 | ina | ina | yes | С | 175 | | | | Deltron | ED8015 | 0 | 80 | 0.15 | 0.01 | 0.01 | ina | ina | yes | С | 145 | | | | Deltron | ED803 | 0 | 80 | 0.3 | 0.01 | 0.01 | ina | ina | yes | С | 175 | | | | Dettron | ED10012 | 0 | 100 | 0.12 | 0.01 | 0.01 | ina | ina | yes | С | 145 | | | | Deltron | ED10024 | 0 | 100 | 0.24 | 0.01 | 0.01 | ina | ina | yes | C | 175 | | #### **Index of Manufacturers and Model Numbers** (keyed to table locator symbols) | Acme Electric Corp | 90V-3A [LS-31] | |---|------------------------------------| | (Acme) | 150V-1A [LS-36] | | PS 1-6757 [LS-22] | 150V-3A [LS-37] | | PS-41422 [LS-9] | 200V-0.5A [LS-41] | | PS-41425 [LS-35] | 200V-1A [LS-41 | | PS-41426 [LS-36] | 200V-2.5A [LS-42] | | PS-41427 [LS-41] | | | PS-41428 [LS-42] | Cohu Electronics | | PS-47201 [LS-35] | (Cohu) | | PS-47508 [LS-4] | 3F-200 [LS-13] | | PS-47623 [LS-3] | 30F-1 [LS-45] | | Alford Florence les | 50B-25 [LS-54] | | Alfred Electronics | 50B-100 [LS-54] | | Corp
(Alfred) | 50F-25 [LS-53]
50F-100 [LS-54] | | 262 [LS-51] | 301 [LS-54] | | 202 [23.31] | 301 [E3.54] | | Associated Special- | | | ties Co | Deltron, Inc | | (Assoc Spec) | (Deltron) | | 1 [LS-46]
3 [LS-46] | 2753 [LS-51]
DP48-2M [LS-23] | | 3 [LS-46] | DP75-2M [LS-23] | | 11 [LS-40] | DP125-1M [LS-36] | | 13 [LS-40] | DP150 1M [LS-36] | | D.11 | DP150-2M (LS-37) | | Behiman-Invar Elec | DP150-3M [LS-37] | | tronics Corp
(Behl-Invar) | DP200-1M [LS-42] | | 05.20 [15.8] | DP250-1M [LS-42] | | QS-20 [LS-8]
QS-40 [LS-19] | DP250-2M [LS-43] | | OS-60 [LS-25] | DP300-1M [LS-45] | | QS-100 [LS-32] | DP450-1M [LS-51]
ED10-1 [LS-58] | | TPA-1-60 [LS-26] | ED10-1 [E3-56] | | TPA-2-75 [LS-29] | ED20-5 [LS-58] | | TPA-36/18 [LS-6] | ED20-1 [LS-58] | | TPA-36/18 [LS-15]
TPR-2.5-45 [LS-22] | ED403 [LS-58] | | TFR-2.5-45 [L3-22] | ED406 [LS-58] | | Buchler Instruments. | ED60.2 [LS-58] | | Inc | ED604 [LS-58] | | (Buchler) | ED8015 [LS-58] | | 3-1014A [LS-57] | ED803 [LS-58]
ED10012 [LS-58] | | | ED10024 [LS-58] | | Burr-Brown Research | H15-2 [LS-4] | | Corp | H50-3 [LS-24] | | (B-B) | H150-3 [LS-37] | | 500 [LS-6] | HP20-3 [LS-9] | | 502 [LS-4] | HP36-1.5 [LS-15] | | CEA A Division of | HP36-3 [LS-16] | | CEA, A Division of
Berkleonics Corp | HP50 1.5 [LS-23] | | (CEA) | HP50-3 [LS-24]
HP60-1 [LS-26] | | PT214 [LS-2] | HP100-1 [LS-26] | | PT215 [LS-1] | HP100-2 [LS-34] | | PT216 [LS-2] | HP150-3 [LS-37] | | PT314 [LS-10] | KP2020 [LS-41] | | PT316 [LS-4] | KP3020 [LS-47] | | PT321 [LS-11] | KP3080 [LS-48] | | | | | ohu Electronics
(Cohu)
3F-200 [LS-13]
30F-1 [LS-45]
50B-25 [LS-54]
50B-100 [LS-54]
50F-25 [LS-53]
50F-100 [LS-54]
301 [LS-54] | |--| | eltron, Inc (Deltron) 2753 [LS-51] DP48-2M [LS-23] DP75-2M [LS-30] DP125-1M [LS-36] DP150-1M [LS-36] DP150-1M [LS-36] DP150-2M [LS-37] DP200-1M [LS-42] DP250-1M [LS-42] DP250-1M [LS-42] DP250-1M [LS-43] DP300-1M [LS-45] DP450-1M [LS-45] DP450-1M [LS-58] ED10-1 [LS-58] ED20-5 [LS-58] ED20-5 [LS-58] ED20-5 [LS-58] ED40-3 [LS-58] ED40-3 [LS-58] ED40-3 [LS-58] ED60-4 [LS-58] ED60-2 [LS-58] ED60-2 [LS-58] ED80-3 [LS-58] ED100-12 [LS-58] ED100-12 [LS-58] ED100-24 [LS-58] H15-2 [LS-4] H50-3 [LS-24] H50-3 [LS-24] H50-3 [LS-24] HF00-1 [LS-25] HP36-1-5 [LS-4] KP3020 [LS-47] KP3020 [LS-47] KP3020 [LS-48] KP30150 [LS | | | |) | table | loc | ator | syr | |---|---
--|---|-----------------------------------| | | LH502
LP304
RP200
RP200
RP200
RP300
RP300
RP400
RP400
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500
RP500 | 1.5 [L] 3 [LS] 5 [LS] 6 [LS] 6 [LS] 6 [LS] 7 | S.3]
S.7]
S.7]
[LS.18]
S.519]
S.520]
S.52]
S.523
S.523
S.523
S.523
[LS.22
[LS.22
[LS.22]
[LS.22]
[LS.23
[LS.24]
S.24]
S.24]
S.24]
S.24]
S.24]
S.24]
S.24]
S.24]
S.24]
S.24] | 2]
1]
2]
4]
9]
80] | | (| offers A
nc
Duffer
620 [L
620 [L | s)
.S-1] | iates, | | | | nage,
Dynage
702-5 | e)
[LS-1 | 1] | | | Inc
(Duffers)
620 [LS-1]
620 [LS-3] | |---| | Dynage, Inc
(Dynage)
702-5 [LS-1]
702-10 [LS-2]
702-15 [LS-4]
702-20 [LS-6]
702-25 [LS-9]
702-30 [LS-10] | | Electro Products
Labs, Inc
(El Prod)
PS-3A [LS-9]
RB-500 [LS-53] | | Electronic Measure-
ments Co, Div Row- | ``` Ele A: (E En ments Co, Div Row- an Controller Corp (El Meas) HV150.2M [LS-37] HV300-1.5M [LS-45] HV300-1.5M [LS-45] HV400-1M [LS-51] PRO40-2M [LS-20] SR 1000EP [LS-11] SR 5000EP [LS-11] Fairlane Electronics (Fairlane) 403 [LS-20] ``` | RO60-1.5M [LS-26]
RO100-1M [LS-33]
V60-2.5M [LS-28]
O14-3M [LS-16]
O36-3M [LS-16]
O60-1.5M [LS-27]
P60-2.5M [LS-28]
R-212A [LS-31]
RO18-1M [LS-5]
RO36-0.2M [LS-14]
O0B [LS-46]
O4A [LS-53]
O4A [LS-53]
O4A [LS-53]
12AM [LS-31]
1212AM [LS-31]
13A [LS-23]
14AM [LS-34]
19B [LS-26]
20AM [LS-34]
19B [LS-56]
20AM [LS-22]
21AM [LS-32]
22A [LS-57]
24AM [LS-34]
19B [LS-56]
30AM [LS-24]
21AM [LS-34]
31AM [LS-34]
32AM [LS-34]
31AM [LS-34]
31AM [LS-34]
31AM [LS-34]
32AM [LS-36]
30AM [LS-44]
33AM [LS-44]
33AM [LS-44]
33AM [LS-44]
33AM [LS-44]
34AM [LS-44]
36AM [LS-44] | |---| | | | 2601AK [LS-43]
2602AK [LS-44]
2603AK [LS-44] | |---| | ectronic Research
ssociates, Inc
ERA) | | SL-36-2M [LS-16]
SL-36-2/2M [LS-15]
SL60-1M [LS-26]
SL601-2M [LS-26]
SPL40-3M [LS-21] | | SPL40-3/2M
[LS-21]
TD6M [LS-1]
TRO40M [LS-17] | | gineered Electron-
incs
Eng Elect)
ZA-740 [LS-1] | | devco Corp
Endevco) | | Grundig
(Grundig)
SN3 [LS-49]
6007 [LS-49]
TN1 [LS-5] | |--| | Harrison Division Hewlitt-Packard (Co (Harrison) 711 [LS-51] 712B [LS-52] 721A [LS-10] 723A [LS-10] 855C [LS-17] 855C [LS-17] 865C [LS-17] 861A [LS-33] 881AX [LS-33] 881AX [LS-33] 6102A [LS-18] 6106A [LS-32] 6106A [LS-18] 6116A [LS-32] 6200A [LS-7] 6200A [LS-7] 6200A [LS-7] 6200A [LS-7] 6204AM [LS-18] 6205A [LS-7] 6205A [LS-7] 6205A [LS-7] 6205A [LS-17] 6206AM [LS-14] 6205A [LS-17] 6206AM [LS-14] 6205A [LS-17] 6206AM [LS-12] 6206AM [LS-12] 6206AM [LS-12] 6206AM [LS-29] 6207A [LS-38] 6224A [LS-6] 6226A [LS-15] | 404 [LS-20] 601 [LS-25] 622 [LS-25] John Fluke Mfg Co, Inc (Fluke) 301E [LS-55] 407D [LS-55] Freed Transformer (Freed) 1170-A [LS-43] General Radio Co (Gen Radio) 1201 C [LS-43] 1205 B [LS-44] 1264 A [LS-43] 1267 A [LS-43] Glentronics (Glentron) 0-50-2 [LS-24] 20588-6 [LS-13] 20588-7 [LS-16] Manufacturers' addresses a
rings in master cross index at front of issue. Chalco Engineering Corp (Chalco) 60V-3A [LS-28] 90V-1A [LS-30] ## 6 MOPE... **Independent Studies** Rank # Electronic Design ## First in Readership What greater value can a publication offer than to be read by an audience of your best customers and prospects? To date, 55 readership studies have been conducted on an independent basis by electronics manufacturers. Electronic Design has won 51 out of 55! Of the 22 new studies tabulated from February '65 to February '66, Electronic Design has won 21 out of 22! And more studies are on the way. The first six of these wins are summarized at right—the complete studies are available for your inspection. Media experts agree "one or two readership studies can be of little valuebut when a magazine wins study after study, year after year, the results are overwhelming." Electronic Design is read because it tells engineers how to design . . . how to select, how to get started, how to specify. It is filled with the essential in-depth news, products, and technical information that engineers can deal with at once, use immediately, apply today to today's projects. When you buy Electronic Design, you buy Readership! - ADVERTISING PAGES - PLANT COVERAGE - CIRCULATION - READERSHIP - RESPONSE SERVES BY COMMUNICATING a HAYDEN publication, 850 Third Avenue, New York, N.Y. 10022 • (212) 751-5530 | SPONSOR | BOUR | NS, INC. | | | | |--|---|---|--|--|--| | QUESTION | "List the train publications ularly, and publication 2, 3, etc.) tance and vyour work of tion." | de or technical you read reg- rank each by number (1, on its impor- alue to you in r for informa- | | | | | METHOD | Mail, unaide | d recall. | | | | | LIST
SURVEYED | Bourns' (Trii
list of custon
pects. | mpot Division)
ners and pros- | | | | | QUESTIONNAIRES
MAILED | 19, | ,500 | | | | | RESPONSE (in numbers and %) | 3,000 (15%) | | | | | | PRODUCTS
OF SPONSOR
COMPANY | Potentiometers, trans-
ducers. | | | | | | DATE | October 1965 | | | | | | PUBLICATION | Rank | Mentions | | | | | ELECTRONIC
DESIGN | 1 | 993 | | | | | ELECTRONIC
INDUSTRIES | 5 | 605 | | | | | ELECTRONICS | 3 | 716 | | | | | ELECTRICAL
DESIGN NEWS | 2 | 859 | | | | | IEEE
SPECTRUM | | n in readout
magazines. | | | | | ELECTRONIC
EQUIPMENT
ENGINEERING | 4 | 609 | | | | | ELECTRO-
TECHNOLOGY | 6 | 567 | | | | | ELECTRO-
MECHANICAL DESIGN | | n in readout
magazines. | | | | | ELECTRONIC
PRODUCTS | 7 | 563 | | | | | ELECTRONIC
NEWS | | n in readout
magazines. | | | | OUR READERSHIP CHALLENGE IS STILL IN EFFECT. If 51 studies don't have you convinced, conduct your own—and we'll share the cost. If you know of EOEM readership studies other than those published by Electronic Design, please bring them to our attention. | COHU ELECTRONICS, INC., KIN-TEL DIVISION | | | ANTINE
DRIES, INC. | MAGNET | ICS, INC. | McCOY EL
COMPA
OAK M | NEXUS RESEARCH
Laboratory, Inc. | | | | | |---|-------------------------------------|--|--|---|-------------------------|---|--|--|--------------|-------------|-----------------| | "Number in order (1, 2, 3) the three magazines most helpful to you in your job." | | "Rank from 1 to 11, in
order of their importance,
the publications you read
regularly." | | "List trade or technical publications you read regularly and rank each publication by its importance and value to you in your work or for information." | | "List, in ord
importance three busines
you read for
about quartz
ters, and
devices." | (1) "Which publication do
you read?"
(2) "Which publication do
you prefer?" | | | | | | Mail, partially aided recall, check-off list. In tabulating responses, scoring was weighted (1st, 3 points, 2nd, 2 and 3rd, 1). | | were weight | recall. Scores
ed (1st place,
2nd place,
.). | Mail, unaided recall. | | Mail, unaided | l recall. | Mail, partially aided re-
call, check-off list. | | | | | | supplied by
gineering rep-
i. | | pple of Ballan-
tomers and | Magnetics' lis
holders. | t of catalog | McCoy's list (
who inquired
products. | Engineers employed b
companies who purchase
Nexus' amplifiers. | | | | | | 35,000 | | 49 | 98 | 800 | | 111 | | 1000 | | | | | 3119 (8.9%) | | 299 (| (63%) | 104 (| 13%) | 32 (2 | Not stated. | | | | | | Components, instruments, test equipment. | | ohmmeters, de
calibrators, cap | ers, DC/AC volt/
cade amplifiers,
acitance meters,
nverters, labora-
ndards. | RF-IF amplifiers, magnet-
ic amplifiers, control
equipment, cores, instru-
ments, power supplies. | | Filters, crystals, and accessories. | | Operational amplifiers. | | | | | February 1965 | | Decemb | per 1965 | Februar | y 1965 | April 1965 | | May-June 1965 | | | 5 | | Rank among electronics magazines | Point
Total | Rank | Read
Regularly | Rank | Read
Regularly | Rank | Mentions | Ra
Read | nk
Preter | Men
Read | tions
Prefer | | 1 | 1725 | 1 | 640 | 1 | 57 | 1 | 18 | | 1 | 317 | 111 | | 9 | 602 | 7 | 266 | 4 (Tie) | 39 | 5 | 7 | 7 | 7 | 191 | 24 | | 2 | 1519 | 2 | 477 | 4 (Tie) | 39 | 6 | 6 | 2 | 3 | 270 | 104 | | 3 | 1092 | 3 | 421 | 3 | 47 | 3 (Tie) | 9 | 3 | 5 | 248 | 64 | | 6 (Tie) | 735 | 5 | 324 | Not shown i
of top m | | 7 | 2 | | Not in | cluded. | | | 5 | 895 | 4 | 369 | 6 | 24 | 3 (Tie) | 9 | 4 | 4 | 238 | 86 | | 4 | 1000 | 6 | 318 | 2 | 48 | 2 | 10 | 6 | 2 | 214 | 107 | | 6 (Tie) | 735 | Not i | ncluded. | Not shown i
of top m | | Not included. | | | Not in | cluded. | | | 10 | 581 | 8 | 260 | Not shown i
of top m | | Not included. | | 5 | 6 | 218 | 34 | | 8 | 708 | 9 | 129 | Not shown i | n readout
nagazines. | Not inc | luded. | Not included. | | | | ## NEW HOY'S CUSTOM SERIES Models 2060 D.C., 2061 A.C. Model 2045/B (with bezel) ## . . . a family of Fine Instruments, designer's choice for good looks . . . and reliability Prize winners in every sense, these matching Ammeters and Voltmeters offer rugged dependability. They take top rating, too, for ease in reading, either for front of panel or with bezel for behind-panel mounting. 1½" (not shown), 2½", 3½", 4½", and 6" models in all standard Ammeter and Voltmeter ranges . . accuracy within 2%. Add all the sales winning extras to your products and panels with these new HOYT Meters. Write for "short form" catalog and prices, today! #### Hoyt Electrical Instrument Works, Inc. Burton-Rogers Company, Sales Division 42 Carleton St., Cambridge, Mass. 02142 Phone (617) 491-7400 | Burton-Rogers Com
Sales Division, Dep
42 Carleton St., Can | | |--|---| | Please send me cata
ulars on Hoyt Custo | log with full partice
m Series Meters. | | Name | | | Company | | | Address | | | City | State | ON READER-SERVICE CARD CIRCLE 21 | 6242A [LS-13,29] 6253A [LS-9] 6255A [LS-20] 6257A [LS-26] 6258A [LS-32] 6265A [LS-16] 6271A [LS-29] 6284A [LS-8] 6289A [LS-20] 6290A [LS-21] 6294A [LS-8] 6296A [LS-16] 6371A [LS-35] 6443A [LS-35] 6443A [LS-56] 6521A [LS-57] | |---| | eath Co
Heath)
IP-20 [LS-23]
IP-32 [LS-50]
EVW-15 [LS-43] | | yperion Industries,
Inc | | Hyperion) HY-Si-40-3 [LS-21] HY-Si-60-3 [LS-28] HY-Si-160-1 [LS-38] HY-Si-160-1.5 [LS-39] HY-Si-160-3 [LS-44] HY-TI-160-8 [LS-38] | | HY-TI-330-1 [LS-49 | Hyperion Industries, inc (Hyperion) HY-Si-40-3 [LS-21] HY-Si-60-3 [LS-28] HY-Si-160-1 [LS-38] HY-Si-160-1 [LS-38] HY-Si-160-1 [LS-38] HY-Si-160-1 [LS-39] HY-TI-160-2 [LS-39] HY-TI-160-8 [LS-39] HY-TI-1330-1 [LS-49] HY-TI-330-1 [LS-49] HY-TI-330-2-5 [LS-7] HY-WI-7-5/3 [LS-2] HY-WI-7-5/3 [LS-2] HY-WI-16-1 [LS-5] HY-WI-20-1-5 [LS-7] HY-WI-40-0-8 [LS-19] HY-WI-60-0-3 [LS-25] HY-WI-15-2 [LS-7] HY-WS-15-2 [LS-1] HY-WS-15-2 [LS-1] HY-WS-20-1-5 [LS-1] HY-WS-32-1 [LS-12] HY-WS-32-1 [LS-12] HY-WS-32-1 [LS-12] HY-WS-32-1 [LS-12] HY-WS-32-1 [LS-12] HY-ZI-32-2-5 [LS-13] HY-ZI-32-2-5 [LS-23] HY-ZI-160-1-0 [LS-26] HY-ZI-30-0-5 [LS-27] HY-ZI-60-0-1 [LS-38] HY-ZI-160-1 [LS-38] HY-ZI-160-1 [LS-38] HY-ZI-30-0-3 [LS-48] HY-ZI-30-0-3 [LS-26] HY-ZI-30-0-3 [LS-26] HY-ZI-30-0-3 [LS-38] HY-ZI-160-1 [LS-38] HY-ZI-30-0-3 [LS-26] HY-ZS-60-2-5 #### Kelthley Instruments, Inc (Keithley) 240 [LS:57] 241 [LS:57] [LS-28] Kepco, Inc (Kepco) ABC2:1M [LS:1] ABC7:5:2M [LS:1] ABC10-0.75M [LS:4] ABC16:1M [LS:4] ABC18:0.5M [LS:4] ABC18:0.5M [LS:5] ABC.30:0.3M [LS:10] ABC.40:0.5M [LS:32] ABC100:0.2M [LS:32] ABC200M [LS:40] ABC200M [LS:40] ABC425M [LS:51] ABC1000M [LS:57] CK18:3M [LS:6] CK36:1.5M [LS:6] CK36:1.5M [LS:15] CK40:0.5M [LS:15] CK40:0.5M [LS:47] HB4AM [LS:47] HB4AM [LS:47] HB6AM [LS:47] HB6AM [LS:47] HB8AM [LS:48] HB250M [LS:48] HB250M [LS:42] HB525M [LS:55] KS60:2M [LS:27] PR80-2.5M (LS-30) PR155-1M [LS-37] PR220-3M [LS-42] PR310-0.6M [LS-45] PR310-2M
[LS-45] PR310-2M [LS-45] SM160-1M [L-38] SM160-1M [L-38] SM25-0.5M [LS-47] SM325-1M [LS-48] SM325-2M [L-48] 400B [LS-50] 430D [LS-50] 615B [LS-56] 615B [LS-56] 615B [LS-56] 7400B [LS-57] FORD-Hite Corp Krohn-Hite Corp (Krohn-Hite) RS-361 [LS-15] UHR-220 [LS-52] UHR-225 [LS-52] UHR-240 [LS-54] UHR-245 [LS-53] Lambda Electronics Lambda Electronics (Lambda) (C280M [LS-40] (C281M [LS-47] (C282M [LS-47] (C480M [LS-41] (C481M [LS-41] (C481M [LS-41] (C481M [LS-45] (C881M [LS-45] (C881M [LS-45] (C1580M [LS-45] (C1580M [LS-45] (C1580M [LS-45] (C1582M [LS-55] (C1580M [LS-45] (C1582M [LS-55] (C1580M [LS-45] (C1582M [LS-55] [LS 50RM (LS-53) Mid-Eastern Electronics, Inc (Mid East) JP600-3 [LS-56] ME60-1M [LS-26] MP40-0.5 [LS-17] SS36-3 [LS-17] SS60-1.5 [LS-27] SS100-1 [LS-34] ST36-3S [LS-17] ST60-1.5 [LS-27] ST100-1 [LS-27] ST100-3 [LS-34] ST150-1.55 [LS-36] NJE Corp (NJE) QR-60-2.5 [LS-28] QR-160-1.2 [LS-39] QR-160-1.2 [LS-39] QRP-160-3 [LS-40] RB-18-3-M [LS-6] RB-36-2-M [LS-15] RB-50-1.5-M [LS-23] SR-48-3M [LS-24] SR-100-1.5-M [LS-34] SR-100-3-M [LS-34] SR-120-1.3-M [LS-35] SR-120-1.3-M [LS-35] SR-150-1-M [LS-38] SR-150-1-M [LS-39] TR-18-3 [LS-6] XR-18-3 [LS-6] XR-18-3 [LS-6] XR-18-3 [LS-8] XR-36-2 [LS-15] XR-36-2 [LS-15] Oregon Electronics Corp (Oregon) A3 [LS-49] A3A [LS-49] B3 [LS-50] B3 Dual [LS-50] B73-50 [LS-50] B7-3-50 [LS-12] BV50-50 [LS-54] D4 [LS-49] D6 [LS-52] E120-10 [LS-42] E120-30 [LS-46] RL37-25M [LS-50] Manufacturers' addresses and literature offerings in master cross index at front of issue. RL51-50M [LS-54] RL51-150M [LS-54] RV51-120M [LS-54] 5-2V [LS-52] 5-4V [LS-53] Owen Laboratories (Owen) 500 [LS-31] 505 [LS-31] Perkin Electronics Corp (Perkin) MTVRO40-1 [LS-19] TVCRO40-05 [LS-18] TVCRO40-2 [LS-20] TVRO60-2 [LS-20] Pioneer Magnetics, Inc (Ploneer) RR10-2-5A [LS-3] RR10-2-5B [LS-3] RR20-2-5A [LS-8] RR20-2-5B [LS-16] RR36-2-5A [LS-16] RR36-2-5A [LS-28] RR60-2-5B [LS-28] RR60 2.5A [LS:28 RR60 2.5B [LS:28 RR60 2.5B [LS:28] Power Designs, Inc (Pwr Des) 105TA [LS:32] 203M [LS:41] 305M [LS:41] 305M [LS:41] 305M [LS:50] 323M [LS:50] 353AM [LS:50] 502M [LS:52] 353AM [LS:53] 701M [LS:56] 1010T [LS:33] 1510TA [LS:37] 1510TA [LS:37] 1510TC [LS:36] 1515B [LS:4] 2005 [LS:6] 2015R [LS:7] 4005 [LS:7] 4005 [LS:7] 5005 [LS:22] 5010P [LS:22] 5010P [LS:22] 50105 [LS-22] 50115AS [LS-23] TW4005 [LS-17] Power Instruments Corp (Pwr Inst) 3201 [LS-12] 3210 [LS-12] 3225 [LS-12] 3230 [LS-13] Power Sources (Pwr Srcs) PS4000C [LS-45] PS4222M [LS-42] PS4230M [LS-45] PS4232M [LS-48] Precise Electronics & Development Div Designatronics, Inc (Precise) 780 [LS-50] Princeton Applied Research Corp (Princeton) SF-25.2R [LS-9] TC-100.2AR [LS-32] TC-100-2R [LS-32] TC-602R [LS-27] Rohde & Schwarz Sales Co (R & S) NGN BN95143 [LS-11] NGU BN95140 [LS-43] Semiconductor Circuits (Semi Cir) 370 [LS-12] Sola Electric Co (Sola) 281125 [LS-35] 281150M [LS-36] 285140 [LS-40] 285150 [LS-43] 285160 [LS-51] Sorensen Sorensen (Sorensen) DCR150·2.5 [LS·37] DCR300·1.25 [LS·45] DCR300·2.5 [LS·45] MD115·.87 [LS·35] MD115·.18 [LS·35] OB6-2 [LS·2] QB12-1 [LS·5] OB12-2 [LS·6] QB18-75 [LS·10] QB18-3 [LS·10] QB28-5 [LS-14] QB28-1 [LS-14] QB28-2 [LS-15] QRB15-2 [LS-4] QRB20-1.5 [LS-8] QRB30-1 [LS-11] QRB40-75 [LS-18] QRB40-2 [LS-20] Specific Products (Specific) BP-30B [LS-11] Technipower, Inc (Tech Pwr) L-40.0-3.0M [LS-21] L-80.0-1.5M [LS-30] L-80.0-3.0M [LS-30] L-160.0-0.750M [LS-38] L-160.0-1.5M [LS-38] L-160.0-3.0M [LS-39] LS-40.0-3.0M [LS-21] LS-80.0-1.5M [LS-30] LS-80.0-3.0M [LS-30] [LS-30] [LS-160.0-0.750M [LS-38] LS-160.0-1.5M [LS-39] LS-160.0-3.0M [LS-40] Topaz, Inc (Topaz) 91PO [LS-5] 151 [LS-10] Transistor Devices, (Trans Dev) VS101 [LS-14] VS102 [LS-29] VS202 [LS-29] Trygon Electronics, rygon Electronics, Inc. (Trans Dev) DL40-700 [LS-7,17. 18,30] FT-FTR150-1 [LS-36] FT-FTR300-500 [LS-44] HH14-3 [LS-3] HH32-1.5 [LS-13] HH32-1.5 [LS-7] HR40-750 [LS-18] HR60-25B [LS-27] HR40-750 [LS-18] HR60-25B [LS-27] HR160-2B [LS-39] RS160-1A [LS-38] RS160-3 [LS-46] RS320-1A [LS-46] RS320-1A [LS-46] SHR20-3A [LS-8] SHR40-1.5A [LS-20] SHR60-1A [LS-1] SHR160-500B [LS-38] T20-2 [LS-8] T50-750 [LS-24] T50-750 [LS-24] Universal Electronics Juniversal Electronics (Un Elect) 32A [LS-46] 200B [LS-46] 200B [LS-10] 300B [LS-53] 425A [LS-51] 425AT [LS-51] 425AT [LS-51] 520AT [LS-53] 520AT [LS-53] 520AT [LS-53] 620A [LS-55] G3050M [LS-44] 1030-2A [LS-11] L3501 [LS-13] L6005 [LS-25] L035-2A [LS-14] L050-2A [LS-2] Q10-14-1AM [LS-3] Q26-30-2AM [LS-11] 026-30-2AM [LS-11] 026-30-2AM [LS-11] 026-30-2AM [LS-11] 050-2AM [LS-13] UP520-B [LS-52] ector Engineering Vector Engineering Vector Engineering (Vector) CM-03-3A [LS-17] ST-03-1A [LS-14] ST-03-2A [LS-15] ST-06-1A [LS-26] TM-03-1A [LS-26] TM-03-20 [LS-14] TM-03-50 [LS-14] Voltex Co, Inc (Voltex) 36-3 [LS-16] 60-2 [LS-27] 100-1 [LS-33] 100-2 [LS-34] # ANNOUNCING 65° #### VARIABLE HIGH-CURRENT POWER SUPPLIES - All-Silicon DesignLow Cost for all Systems Applications - Long Term Stability Less Than 8 MV - Current Ranges up to 25 Amps - Continuously Adjustable 0 to 36 VDC - Operating Temperature to +65°C - Temperature Coefficient Less Than 0.01%/°C - Closely Regulated - Low Ripple Content - Automatic Short Circuit Protection - No Fuses or Circuit Breakers to Reset - Automatic Overload Protection - Series or Parallel Operation - Remote Sensing - Ungrounded Outputs - Convection Cooled - Functional Design—Easily Serviceable - Minimum Size and Weight - Front and Rear Terminals - Relay Rack or Bench Mounting - Removable Panel Mounts - Removable Power Cord - Extended Warranty #### GENERAL SPECIFICATIONS Input Voltage Range: 105-125 VAC Input Frequency Range: 50-400 cps Regulation Line: ±0.01% or 5 mv Regulation Load: 0.05% or 8 mv Long Term Stability: Less than 8 mv, constant line, load and temperature Ripple: Less than 1 mv, RMS Transient Response: Less than 50 µsec Operating Temperature: -20°C to +65°C Temperature Coefficient: 0.01%/°C or 3 mv **Automatic Overload Recovery** **Short Circuit Protection with** automatic recovery **Remote Sensing** Parallel and Series Operation Vernier Voltage Control **Output Terminals (Ungrounded):** Location, front and rear **Reverse Voltage Protection Cooling:** Convection Metering: Separate Current and **Voltage Meters** #### STANDARD MODELS | Model | Voltage | Current | Price | |-----------|---------------|---------------|----------| | SL36-2M | 0-36 VDC | 0-2 amps | \$235.00 | | SL36-2/2M | 0-36 VDC Dual | 0-2 amps Dual | 465.00 | | SL36-4M | 0-36 VDC | 0-4 amps | 290.00 | | SL36-8M | 0-36 VDC | 0-8 amps | 355.00 | | SL36-12M | 0-36 VDC | 0-12 amps | 455.00 | | SL36-25M | 0-36 VDC | 0-25 amps | 650.00 | For complete information write for Catalog Supplement #133a. #### ELECTRONIC RESEARCH ASSOCIATES, INC. Dept. ED-4, 67 Sand Park Road, Cedar Grove, N. J. • (201) CEnter 9-3000 SUBSIDIARIES: ERA Electric Co. • Advanced Acoustics Co. • ERA Dynamics Corp. • ERA Pacific, Inc. ## **High-Voltage DC Power Supplies** | | Mfr. | | OUTPUT | | | | | REGULATION | | | | | | |-----|----------|----------|---------------|------------|--------------|----------------|-----------|------------|-------------|--------|----------|-------------|-------| | | | Model | Min,
Volts | Max.
kv | Max.
Amps | Impedance
Ω | Line
% | Load
% | Ripple
% | Meters | Mounting | Price
\$ | Notes | | | Veritron | M-1200 | 0 | 1 | 0.2 | ina | 0.1 | 0.1 | 10 mv | yes | С | 455 | a | | | Керсо | 1220C | 0 | 1.2 | 0.5 | 2.4 | 0.05 | 0.01 | 3 mv | yes | R | 495 | a | | | RIDL | 40-8C | 595 | 1.36 | 0.001 | 100 k | 0.0052 | ina | 40 mv | ina | С | 390 | d | | | RIDL | 40-12B | 595 | 1.445 | 0.001 _ | 100 k | 0.0052 | ina | 40 m v | ina | С | 485 | d | | HY) | Moran | 1.5K-2G | 500 | 1.52 | 0.002 | ina | 0.001 | 0.005 | 2 | none | С | 385 | | | 1 | Kenco F | ABC1500M | 0 | 1.5)4 | 0.01 | 75 | 0.05 | 0.05 | 1 mv | yes | С | 295 | a | | | Kepco 5 | 238AMK | 0 | 1.5 | 0.01 | 0.1 | | 0.03 | 1 my | yes | R | 950 | 1 | | | ET Meas | 238 AM | 0 | 1.5 | 0.1 | 0.1 | 0.01 | 0.01 | 1 mv | yes | R | 855 | 1 | | | Veritron | M-1515 | 0 | 1.5 | 0.15 | | 0.04 | 0.04 | 15 mv | ' | C | 1650 | a | | | | | | | 0 | ina | 0.1 | | | yes | | 990 | | | | Alfred | 265 | 0 | 1.5 | 0.15 | ina | 0.01 | 0.02 | 10 mv | yes | R | 330 | a | | | Керсо | 1520B | 0 | 1.5 | 0.2 | 0.75 | 0.05 | 0.01 | 3 mv | yes | R | 750 | a | | | Fluke | 409A | 170 | 1.53 | 0.003 | ina | 0.01 | 0.04 | 0.002 | yes | R | 350 | a | | | Harrison | 6515A | 0 | 1.6 | 0.005 | 32 | 0.01 | 0.01 | 2 mv | yes | C | 235 | a | | | Hamner | N-401 | 500 | 1.8 | 0.005 | ina | 3 ppm/v | 2.5 ppm | 3 ppm | yes | R | 565 | a | | HV | Vector | PM-1K-01 | 300 | 1.8 | 0.01 | ina | ± 0.005 | 0.002 | 1 mv | yes | R | 350 | a | | 2 | Gyra | V-201 | 200 | 2 | 0.005 | ina | 0.0012 | 0.004 | 5 mv | none | R | 295 | | | | Gyra | V-200 | 0 | -2 | 0.005 | ina | 0.00012 | 0.001 | 5 mv | ves | R | 350 | a | The table in this section lists the specifications for high-voltage dc power supplies. These supplies cover the voltage range from 1 to 1000 kv. Unless otherwise noted in the table, the input-voltage requirements for all the supplies are 95-130 vac, 1 phase. Prices indicated in the table are subject to change by the manufacturer. An index of manufacturers and models is included at the end of the table. The index is alphabetical, by manufacturer, and it lists the various high-voltage dc power supplies of each manufacturer. A location key is included after each model. This permits easy spotting in the table of the specifications for that supply, by means of the location-key column (1 above). #### How the tables are arranged Specifications for the high-voltage dc power supplies are given in separate, appropriately headed columns. The complete specifications for any one supply can thus be read across the page. Within the table, the supplies are listed in ascending order of maximum output voltage (2 above). Where the maximum output voltage of several supplies is the same, the units are listed in order of increasing
maximum output current (3 above). If both of these characteristics are identical for several supplies, they are then listed in order of increasing output-voltage swing (4 above). This arrangement allows for a rapid across-the-market comparison of all the high-voltage dc power supplies with similar application capability. Manufacturers are identified in the Mfr column by an abbreviation (5 above). The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master cross-index at the front of the issue. All notes and symbols used in the table are defined at the end of the section. At the top of each page of the table, reference is made to the output voltage range covered by the supplies on that page. This is to expedite the location of a supply with particular characteristics. #### How to use the table - Note how the supplies are listed. They are in ascending order of maximum output voltage. Where this is the same, they are in order of increasing maximum output current. - 2. Select the most likely candidates. - Obtain supplementary data from the manufacturer. Manufacturers' addresses, together with Reader Service numbers for specific power supply types, are given in the master cross index at the front of the issue. | | | | | 01 | TPUT | | | REGULATION | | | Mounting | Price
\$ | Notes | |----|----------------|---------------|---------------|-------------|--------------|--------------------|--------------|------------|---------------|------------|----------|-------------|-------| | | Mfr. | Model | Min.
Valts | Max.
kv | Max.
Amps | Impedance Ω | Line
% | Load
% | Ripple
% | Melers | | | | | | Veritron | M-1200 | 0 | 1 | 0.2 | ina | 0.1 | 0.1 | 10 mv | yes | С | 455 | a | | | Керсо | 1220C | 0 | 1.2 | 0.5 | 2.4 | 0.05 | 0.01 | 3 mv | yes | R | 495 | a | | | RIDL | 40-8C | 595 | 1.36 | 0.001 | 100 k | 0.0052 | ina | 40 mv | ina | C | 390 | d | | | RIDL | 40-12B | 595 | 1.445 | 0.001 | 100 k | 0.0052 | ina | 40 m v | ina | C | 485 | d | | | Moran | 1.5K-2G | | | | 1 | | | 1 | | | | 1 " | | ۱۷ | MOTAII | 1,5K-2G | 500 | 1,5 | 0.002 | ina | 0.001 | 0.005 | 2 | none | С | 385 | | | 1 | Керсо | ABC1500M | 0 | 1.5 | 0.01 | 75 | 0.05 | 0.05 | 1 mv | yes | С | 295 | a | | | El Meas | 238AMK | 0 | 1.5 | 0.1 | 0.1 | 0.01 | 0.01 | 1 mv | yes | R | 950 | a | | | El Meas | 238 AM | 0 | 1.5 | 0.1 | 0.1 | 0.04 | 0.04 | 1 mv | yes | R | 855 | a | | | Veritron | M-1515 | 0 | 1.5 | 0.15 | ina | 0.1 | 0.1 | 15 mv | yes | С | 1650 | a | | | Alfred | 265 | 0 | 1.5 | 0.15 | ina | 0.01 | 0.02 | 10 mv | yes | R | 990 | а | | | V | 15200 | | 1.0 | 0.0 | 0.75 | 0.05 | 0.01 | 2 | | 0 | 760 | | | | Kepco
Fluke | 1520B
409A | 170 | 1.5
1.53 | 0.2 | 0.75
ina | 0.05
0.01 | 0.01 | 3 mv
0.002 | yes
yes | R
R | 750
350 | a | | | Harrison | 6515A | 0 | 1.6 | 0.005 | 32 | 0.01 | 0.01 | 2 mv | yes | C | 235 | a | | | Hamner | N-401 | 500 | 1.8 | 0.005 | ina | 3 ppm/v | 2.5 ppm | 3 ppm | yes | R | 565 | | | | Vector | PM-1K-01 | 300 | 1.8 | 0.003 | ina | ± 0.005 | 0.002 | 1 mv | yes | R | 350 | a | | ٧ | Vector | T M TK OT | 300 | 1.0 | 0.01 | 1110 | 10.000 | 0.002 | 1 1114 | yes | , , | 330 | 1 " | | 2 | Gyra | V-201 | 200 | 2 | 0.005 | ina | 0.0012 | 0.004 | 5 mv | none | R | 295 | | | | Gyra | V-200 | 0 | -2 | 0.005 | ina | 0.00012 | 0.001 | 5 mv | yes | R | 350 | a | | | Veritron | M-101 | 0 | 2 | 0.01 | ina | 1 | 1 | 100 mv | yes | C | 455 | а | | | Harrison | 6522A - | 0 | 2 | 0.01 | ina | 0.005 | 0.005 | 1 mv | yes | R | 750 | a, | | | Del | PSCR2-50-1 | 0 | 2 | 0.05 | ina | ±0.51 | ±0.51 | 0.025 | yes | R | request | a, | | | Dei | PSCR2-120-1 | 0 | 2 | 0.12 | ina | ±0.51 | ±0.51 | 0.025 | yes | R | request | a, | | | Un Volt | BRE2-200 | 500 | 2 | 0.2 | ina | ±0.1 | ±0.1 | 0.01 | yes | C | request | a, | | | Un Volt | BRE2-400 | 500 | 2 | 0.4 | ina | ±0.1 | ±0.1 | 0.01 | yes | C | request | a, | | | Kepco | HB2050 | 0 | 2 | 0.5 | 0.2 | 0.01 | 0.005 | 3 mv | yes | C | 1650 | a | | | Un Volt | BRE2-700 | 500 | 2 | 0.7 | ina | ±0.1 | ±0.1 | 0.01 | yes | C | request | a, | | ٧ | | 5.1.2.7.00 | | | 0.7 | | | 2011 | 0.01 | , | | . squar | - | | 3 | Fluke | 412B | 0 | 2.1 | 0.03 | 0.7 | ±0.001 | ±0.001 | 0.5 v | yes | R | 410 | а | | | Precise M | RF6000 | 2000 | 2.5 | 0.0001 | ina | .11 | 11 | 5 | yes | С | 145 | | | | Керсо | ABC2500M | 0 | 2.5 | 0.002 | 625 | 0.05 | 0.05 | 1 mv | yes | С | 365 | а | | | NJE | S-325 | 500 | 2.5 | 0.01 | ina | ±0.01 | ± 100 mv | 5 mv | yes | R | 340 | a | | | Vector | PM-2K-01 | 500 | 2.5 | 0.01 | ina | ± 0.005 | 0.002 | l mv | yes | R | 340
365 | а | | | NJE | H-2.5-50 | 0 | 2.5 | 0.05 | ina | ±1 | 15-25 | 2 | yes | С | 770 | a | | | Kepco | HB2500 | 0 | 2.5 | 0.05 | 2.5 | 0.01 | 0.005 | 5 mv | yes | R | 975 | a | | | NJE | H-2.5-100 | 0 | 2.5 | 0.1 | ina | ±1 | 15-25 | 2 | yes | C | 825 | a | | | Kilovolt | KVR2.5-200 | 400 | 2.5 | 0.2 | ina | 0.025 | 0.05 | 0.025 | yes | C | request | b, | | | NJE | S-326 | 500 | 2.5 | 0.5 | ina | ±0.01 | ± 100 mv | 5 mv | yes | R | 380 | a a | | ٧ | | | 000 | 2.0 | 0.0 | | | | 0 | 700 | | | " | | 4 | Kilovolt | KVR2.5-500 | 400 | 2.5 | 0.5 | ina | 0.025 | 0.05 | 0.025 | yes | С | request | b, | | | Kilovolt | KVR2.5-1000 | 400 | 2.5 | 1 | ina | 0.025 | 0.05 | 0.025 | yes | С | request | b, | | | NJE | HH-2.5-1000 | 0 | 2.5 | 1 | ina | ±1 | 10 | 1 | yes | С | 2400 | а | | | Tech Assoc | RHV-1B | 300 | 3 | 0.001 | ina | 0.01 | 0.02 | 10 mv | yes | R | 375 | а | | | RIDL | 40-9B | 50 | 3 | 0.004 | 100 | 0.022 | ina | 35 mv | ina | С | 445 | | | | Gyra | V-301 | 500 | 3 | 0.005 | ina | 0.00012 | 0.001 | 7 mv | none | R | 595 | | | | Hipotron | 103D | 0 | 3 | 0.005 | ina | 15-206 | 15-206 | 2 | yes | C | 200 | a, | | | Harrison | 6110A | 0 | 3 | 0.005 | ina | 0.001 | 0.001 | 0.04 mv | yes | C | 495 | a, | | | Gyra | V-300 | 0 | -3 | 0.005 | ina | 0.00012 | 0.001 | 5 mv | ina | R | 535 | " | | | Harrison | 6516A | 0 | 3 | 0.006 | 32 | 0.01 | 0.01 | 4 mv | yes | C | 295 | a, | | ۷ | | | | | | | | | | | | | | | • | Veritron | M-3100 | 0 | 3 | 0.1 | ina | 0.1 | 0.1 | 30 mv | yes | C | 1650 | a | | | El Meas | 243AM | 0 | 3 | 0.1 | 0.1 | 0.04 | 0.04 | 1 mv | yes | R | 1695 | a | | | Hipotron | 803-1 | 0 | 3 | 0.1 | ina | 15-206 | 15-206 | 2 | yes | C | 700 | a, | | | El Meas | 243AMK | 0 | 3 | 0.1 | 0.1 | 0.01 | 0.01 | 1 mv | yes | R | 1770 | а | | | Sorensen | 1003-200C2 | 0 | 3 | 0.2 | 0.002 | 0.21 | ina | 2 | yes | R | 1130 | a | | | Kilovalt | KV3-200 | 0 | 3 | 0.3 | ina | note 4 | 15-25 | 2 | yes | С | request | b, | | | Hipotron | 803-5 | 0 | 3 | 0.5 | ina | 15-206 | 15-206 | 2 | yes | С | 1200 | a, | | | Kilovolt | KV3-1000 | 0 | 3 | 1 | ina | note 4 | 15-25 | 2 | yes | С | request | b, | | | Sorensen | 2003-1000C2 | 0 | 3 | 1 | 0.002 | 0.21 | ina | 2 | yes | С | 2550 | a, | | | Kilovalt | KV3-2000 | 0 | 3 | 2 | ina | note 4 | 15-25 | 2 | yes | С | request | b. | | ٧ | | | | 1 - 1 - 1 | | | | | | | | | | | 6 | Fluke | 405B | 0 | 3.1 | 0.03 | 1 | ±0.001 | ±0.001 | 1 mv | yes | R | 595 | a | | | Fluke | 413C | 0 | 3.111 | 0.02 | 1.5 | ±0.001 | ±0.001 | 0.15 v | yes | R | 695 | а | | | Vector | PM-3K-01 | 1000 | 3.5 | 0.005 | ina | ±0.005 | 0.002 | 1 mv | yes | R | 415 | a | | | Keithley | 242 | 300 | 3.5 | 0.025 | ina | ±0.005 | ±0.005 | 2 mv | none | R | 850 | | | | Hamner | N-4035 | 750 | 3.55 | 0.025 | ina | 0.005 | 0.005 | 1 mv | none | R | 650 | | April 19, 1966 85 | | | | | 01 | JTPUT | | | REGULATION | | 1 | | | | |----------|------------------------|--------------------|---------------|------------|--------------|----------------|--------------------|--------------------|-------------|--------|----------|-----------------|------------| | | Mfr. | Model | Min.
Volts | Max.
kv | Max.
Amps | Impedance
Ω | Line
% | Load
% | Ripple
% | Meters | Mounting | Price
\$ | Notes | | | Del | PSCR4-25-1 | 0 | 4 | 0.025 | ina | ±0.51 | ±0.51 | 0.035 | yes | R | request | a,d | | | Harrison | 6525A | 0 | 4 | 0.05 | ina | 0.005 | 0.005 | 1 mv | yes | R | 750 | a,e | | | Del | PSCR4-75-1 | 0 | 4 | 0.075 | ina | ±0.51 | ±0.51 | 0.035 | yes | R | request | a,d | | | Un Volt | BRE4-100 | 500 | 4 | 0.1 | ina | ±0.1 | ±0.1 | 0.01 | yes | С | request | a,d | | | Un Volt | BRE4-200 | 500 | 4 | 0.2 | ina | ±0.1 | ±0.1 | 0.01 | yes | С | request | a,d | | ١٧ | | | | | | | | | | | | | | | 7 | Un Volt | BRE4-350 | 500 | 4 | 0.35 | ina | ±0.1 | ±0.1 | 0.01 | yes | С | request | a,d | | | Kilovolt | KVR4-500 | 600 | 4 | 0.5 | ina | 0.025 | 0.05 | 0.025 | yes | С | request | b,d | | | Kilovolt | KVR4-1000 | 600 | 4 | 1 | ina | 0.025 | 0.05 | 0.025 | yes | С | request | b,d | | | Precise M | RF6005 | 4000 | 5 | 0.0001 | ina | 11 | 11 | 5 | yes | C | 150 | | | | Vector | PM-5K-01 | 500 | 5 | 0.001 | ina | ±0.005 | 0.002 | 5 mv | yes | R | 450 | a | | | Spellman | RG-5 | 2000 | 5 | 0.002 | ina | 1 | 1 | ina | yes | R | 250 | a | | | Hamner | N-4050 | 500 | 5 | 0.002 | ina | 0.01 | 0.01 | 5 mv | yes | R | 595 | | | | Hipotron | 105D | 0 | 5 | 0.005 | ina | 15-20 ⁶ | 15-20 ⁶ | 2 | yes | С | 220 | a,b,d | | | NJE | S-327 | 500 | 5 | 0.01 | ina | ±0.01 | ± 100 mv | 5 mv | yes | R | 490 | a | | н٧ | Vector | PMA-5K-01 | 500 | 5 | 0.01 | ina | ±0.005 | 0.002 | 5 mv | yes | R | 550 | a | | 8 | Gyra | V-501 | 0 | 5 | 0.01 | ina | 0.00012 | 0.001 | 10 mv | ina | R | request | | | | Gyra | V-500 | 0 | -5 | 0.01 | ina | 0.0001 | 0.001 | 10 mv | ina | R | request | | | | Keithley | 243 | 300 | 5 | 0.015 | ina | ±0.005 | ±0.005 | 2 mv | none | R | 990 | | | | Alfred | 271 | 0 | 5 | 0.15 | ina | 0.005 | 0.001 | 30 m v | yes | R | 1550 | a | | | Del | PSCR5-20-2 | 0 | 5 | 0.02 | ina | ±0.51 | ±0.51 | 0.05 | yes | R | request | a,d | | | NJE | H-5-25 | 0 | 5 | 0.025 | ina | ±1 | 15-25 | 1 | yes | С | 770 | a | | | Veritron | M-5250 | 0 | 5 | 0.25 | ina | 0.1 | 0.1 | 45 mv | yes | C | 2150 | " | | | NJE | H-5-50 | 0 | 5 | 0.05 | ina |
±1 | 15-25 | 2 | yes | C | 825 | a | | | Del | PSCR5-50-1 | 0 | 5 | 0.05 | ina | ±0.51 | ±0.51 | 0.05 | yes | R | request | a,d | | | Hipotron | 805-1 | 0 | 5 | 0.1 | ina | 15-20 ⁶ | 15-206 | 2 | yes | С | 800 | a,b,d | | ١٧ | | | | | | | | | | | | | | | 9 | Kilovolt | KV5-100 | 0 | 5 | 0.1 | ina | note 4 | 10-15 | 2 | yes | С | request | b,d | | | NJE | H-5-100 | 0 | 5 | 0.1 | ina | ±1 | 15-25 | 3.5 | yes | С | 1015 | a | | | NJE | H-5-200 | 0 | 5 | 0.2 | ina | ±1 | 15-25 | 3.5 | yes | С | 1510 | a | | | NJE | H-5-500 | 0 | 5 | 0.5 | ina | note 4 | 10 | 1 | yes | С | 1850 | a | | | Veritron | M-5500 | 0 | 5 | 0.5 | ina | 0.1 | 0,1 | 45 mv | yes | С | 2850 | а | | | Kitovolt | KV5-500 | 0 | 5 | 0.5 | ina | note 4 | 10-15 | 2 | yes | С | request | b,d | | | Hipotron | 805-5 | 0 | 5 | 0.5 | ina | 15-20 ⁶ | 15-20 ⁶ | 2 | yes | С | 1700 | a,b,d | | | Kilovolt | KV5-1000 | 0 | 5 | 1 | ina | note 4 | 10-15 | 2 | yes | C | request | b,d | | | Fluke | 408B | 0 | 6 | 0.02 | 3 | ±0.001 | ±0.001 | 1 mv | yes | R | 525 | a | | 111 | Un Volt | BRE6-65 | 500 | 6 | 0.065 | ina | ±0.1 | ±0.1 | 0.01 | yes | С | request | a,d | | HV
10 | | | | | | | | | | | | | | | 10 | Sorensen | 1006-100C2 | 0 | 6 | 0.1 | 0.01 M | ±0.2 | ina | 2 | yes | R | 1130 | a | | | Un Volt | BRE6-125 | 500 | 6 | 0.125 | ina | ±0.1 | ±0.1 | 0.01 | yes | C | request | a,d | | | Un Volt | BRE6-225 | 500 | 6 | 0.225 | ina | ±0.1 | ±0.1 | 0.01 | yes | C | request
2550 | a,d | | | Sorensen
Neutronics | 2006-500C2
75BR | 2000 | 6
7.5 | 0.5
0.001 | 0.008 M
ina | ±0.2
ina | ina
1 | 1.5 | yes | C | 150 | a,c | | | Meditonics | 7361 | 2000 | 7,3 | 0.001 | 1110 | IIId | 1 | • | ,,,, | 0 | 750 | | | | Kilovolt | KVR8-500 | 600 | 8 | 0.5 | ina | 0.025 | 0.05 | 0.025 | yes | C | request | b,d | | | Precise M | RF6010 | 8000 | 10 | 0.0001 | ina | 11 | 11 | 5 | yes | С | 155 | | | | Walden | 568 | 2000 | 10 | 0.001 | 2.5 k | 0.05 | 0.05 | 0.05 | yes | R | 1100 | a,e | | | Walden | 569 | 2000 | 10 | 0.001 | 2.5 k | 0.05 | 0.05 | 0.05 | yes | R
R | 1100
260 | a,e
a | | нν | Spellman | RG-10 | 5000 | 10 | 0.002 | ina | 1 | 1 | ina | yes | , n | 200 | 4 | | 11 | Hipotron | 110D | 0 | 10 | 0.005 | ina | 15-20 ⁶ | 15-206 | 2 | yes | С | 290 | a,d | | | NJE | H-10-5 | 0 | 10 | 0.005 | ina | ±1 | 15-25 | 1 | yes | С | 830 | a | | | Kilovolt | KV 10-5 | 0 | 10 | 0.005 | ina | note 4 | 15-25 | 1 | yes | С | request | b,d | | | Sorensen | 5010-8 | 1000 | 10 | 0.008 | ina | ± 0.05 | ±0.05 | 0.003 | yes | R | 675 | a | | | NJE | S-328 | 1000 | 10 | 0.01 | ina | ±0.01 | ± 150 mv | 15 mv | yes | R | 1530 | a | | | Neutronic | R-21KR | 1000 | 10 | 0.01 | ina | ina | 0.5 | ina | yes | С | 827 | a | | | Neutronic | 21KR | 1000 | 10 | 0.01 | ina | ina | 0.5 | ina | yes | C | 662 | a | | | Del | PSCR10-10-1 | 0 | 10 | 0.01 | ina | ±0.001 | ±0.001 | 5 mv | yes | R | request | a,d | | | Fluke | 410B | 0 | 10 | 0.01 | 25 | ± 0.001 | ±0.001 | 1 mv | yes | R | 665 | a | | ш | Veritron | M-10010 | 0 | 10 | 0.01 | ina | 0.1 | 0.1 | 100 m v | yes | С | 1350 | a | | HV
12 | | | | | 100 | | | | | | | | | | 46 | Del | PSCR10-12-1 | 0 | 10 | 0.012 | ina | ± 0.51 | ±0.51 | 0.25 | yes | R | request | a,d | | | Monroe | 116B | ± 500 | ± 10 | 0.025 | ina | ±1 | ±1 | 0.1 | yes | C or R | 1250 | a | | | NJE | H-10-25 | 0 | 10 | 0.025 | ina | ±1 | 15-25 | 1 | yes | C | 910 | a | | | Un Volt | BRE 10-40 | 500 | 10 | 0.04 | ina | ±0.1 | ±0.1 | 0.01 | yes | C | request
850 | a,d
a,d | | | Hipotron | 810-05 | 0 | 10 | 0.05 | ina | 15-206 | 15-206 | 4 | yes | | 030 | 0,0 | | | | | | 01 | ITPUT | | | REGULATION | | 1 | | | | |----------|--|---|------------------------------------|----------------------------------|---|--|---|--|--|----------------------------------|------------------|--|---------------------------------| | | Mfr. | Model | Min,
Volts | Max,
kv | Max.
Amps | Impedance
Ω | Line
% | Load
% | Ripple
% | Meters | Mounting | Price
\$ | Note | | | Kitovolt
NJE
Un Volt
NJE | KV10-50
H-10-50
BRE 10-80
H-10-100 | 0
0
500
0 | 10
10
10
10 | 0.05
0.05
0.08
0.1 | ina
ina
ina | note 4
±1
±0.1
±1 | 10-15
15-25
±0.1
15-25 | 2.5
2
0.01
3.5 | yes
yes
yes | 0 0 0 | request
1065
request
1585 | b,d
a
a,d
a | | HV
13 | Veritron Hipotron Un Volt Kilovolt NJE Hipotron | M-10100
810-1
BRE 10-140
KV 10-250
HH-10-250
810-5 | 0
500
0
0 | 10
10
10
10
10
10 | 0.1
0.14
0.25
0.25
0.5 | ina
ina
ina
ina
ina
ina | 0.1
15-20 ⁶
±0.1
note 4
±1
15-20 ⁶ | 0.1
15-20 ⁶
±0.1
15-25
10
15-20 ⁶ | 100 mv 2 0.01 2.5 1 2 | yes
yes
yes
yes
yes | C C C C | 2850
1250
request
request
2435
2600 | a,d
a,d
b,d
a
a,d | | ну | Kilovolt
Veritron
Neutronic
Neutronic
Sorensen | KV10-500
M-11000
21MR
R-21MR
1012-50C2 | 0
0
1000
1000
0 | 10
10
12
12
12 | 0.5
1
0.006
0.006
0.005 | ina
ina
ina
ina
0.05 M | note 4
0.1
ina
ina
±0.2 | 10-15
0.1
0.5
0.5
ina | 2.5
100 mv
ina
ina
2 | yes
yes
yes
yes
yes | C
C
C
C | request
4675
662
827
1155 | b,d
a
a,d
a | | 14 | Sorensen
Precise M
Neutronic
Spellman
NJE | 2012-250C2
RF6015
15BR
RG-15
S-330 | 0
12 kv
2
8000
5000 | 12
15
15
15
15 | 0.25
0.0001
0.001
0.002
0.002 | 0.015 M
ina
ina
ina
ina | ±0.2
1 ¹
ina
1
±0.01 | ina
1 ¹
1
1
±0.01 | 2
5
1
ina
15 mv | yes
yes
yes
yes
none | C
C
C
R | 2550
160
198
275
1980 | a,c
a
a | | HV | Spellman
Spellman
Hipotron
Del
Moran | LAB-10
LAB-10PH
115D
PSCR15-6-1
15K-10C | 1000
1000
0
0 | 15
15
15
15
15 | 0.002
0.002
0.005
0.006
0.01 | ina
ina
ina
ina
10 | 0.5
0.5
15-20 ⁶
±0.5 ¹
±0.01 | 0.5
0.5
15-20 ⁶
±0.5 ¹
±0.01 | ina
ina
2
0.4
100 mv | yes
yes
yes
yes
none | R
R
C
R | 275
375
320
request
2985 | a
a,d
a,d
a,d | | 15 | NJE
NJE
Hipotron
NJE
Hipotron | H-15-10
H-15-20
815-05
HH-15-150
815-25 | 0
0
0
0 | 15
15
15
15
15 | 0.01
0.02
0.05
0.15
0.25 | ina
ina
ina
ina
ina | ±1
±1
15-20 ⁶
±0.5
15-20 ⁶ | 15-25
15-25
15-20 ⁶
10
15-20 ⁶ | 0.5
1
2
1
2 | yes
yes
yes
yes
yes | C
C
C
C | 925
1115
900
2925
2200 | a
a,d
a
a,d | | ну | Kilovolt
Kilovolt
Walden
Moran
Walden | KVR16-8
KVR16-120
562A
20K-1CZ
574 | 1000
1000
16 k
2
10 kv | 16
16
18
20
20 | 0.008
0.12
0.001
0.0008
0.001 | ina
ina
17 k
10
10 k | 0.01
0.025
0.1
0.005
0.1 | 0.025
0.05
0.02
0.01
0.1 | 0.01
0.025
10 v
100 mv
0.1 | yes
yes
yes
yes
yes | C
C
R
R | request
request
1700
2890
1492 | b,d
b,d
a
a,e | | 16 | Walden
Spellman
Hipotron
NJE
Un Volt | 560
LAB-20
120D
H-20-5
BRE20-10 | 10 kv
0
0
0
500 | 20
20
20
20
20
20 | 0.001
0.004
0.005
0.005
0.01 | 1 k
ina
ina
ina
ina | 0.01 ¹ 1 15-20 ⁶ ±1 ±0.1 | 0.01 ¹ 1 15-20 ⁶ 15-25 ±0.1 | 0.01
ina
2
1
0.01 | yes
yes
yes
yes
yes | R
R
C
C | 2087
525
350
860
request | a,e
a
a,d
a
a,d | | HV | NJE
Kilovolt
NJE
Un Volt
Sorensen | H-20-10
KV20-10
H-20-20
BRE20-25
1020-30C2 | 0
0
0
500
0 | 20
20
20
20
20
20 | 0.01
0.01
0.02
0.025
0.03 | ina
ina
ina
ina
0.133 M | ±1 note 4 ±1 ±0.1 ±0.2 | 15-25
15-25
15-25
±0.1
ina | 1
2.5
1
0.01
2 | yes
yes
yes
yes
yes | C
C
C
C | 950
request
1240
request
1205 | b,d
a
a,d
a | | 17 | NJE
Kilovolt
Hipotron
Un Volt
Sorensen | H-20-50
KV20-50
820-05
BRE20-75
2020-150C2 | 0
0
0
500 | 20
20
20
20
20
20 | 0.05
0.05
0.05
0.075
0.15 | ina
ina
ina
ina
0.025 M | ± 1
note 4
15-20 ⁶
±0.1
±0.2 | 15-25
15-25
15-20 ⁶
±0.1 | 2
2.5
2
0.01
2.5 | yes
yes
yes
yes
yes | C C C | 1585
request
950
request
2765 | a
b,d
a,d
a,d
a,c | | ٩٧ | Kilovolt
Hipotron
Kilovolt
Kilovolt
Kilovolt | KV20-150
820-25
KV20-300
KVR24-8
KVR24-40 | 0
0
0
1000
1000 | 20
20
20
24
24 | 0.15
0.25
0.3
0.008
0.04 | ina
ina
ina
ina
ina | note 4
15-20 ⁶
note 4
0.01
0.025 | 15-25
15-20 ⁶
15-25
0.025
0.05 | 1.5
2
2.5
0.01
0.025 | yes
yes
yes
yes
yes | C
C
C
C | request
2500
request
request
request | b,d
a,d
b,d
b,d
b,d | | 18 | Kilovolt
Precise M
Moran
NJE
Kilovolt | KVR24-80
RF6025
25K8CZ
HH-25-100
KV25-200 | 1000
20 kv
10
0 | 24
25
25
25
25
25 | 0.08
0.0001
0.0008
0.1
0.2 | ina
ina
10
ina
ina | 0.025
1 ¹
0.005
±0.5
note 4 | 0.05
1 ¹
0.01
10
15-25 | 0.025
5
100 m v
1
2.5 | yes
yes
yes
yes
yes |
C
C
R
C | request
215
2985
2850
request | b,d
a
b,d | April 19, 1966 87 | | | | | 00 | TPUT | | | REGULATION | | | | Drive | | |----|---|--|--|----------------------------------|---|-------------------------------------|--|---|---------------------------------------|------------------------------------|---------------------------------|--|---------------------------------| | | Mtr. | Model | Min.
Volts | Max.
kv | Max.
Amps | Impedance Ω | Line
% | Load
% | Ripple
% | Meters | Mounting | Price
\$ | Note | | ну | Neutronic
Neutronic
Walden
Spellman
Neutronic | 22CR
R-22CR
538A
RG-30
30BR | 5000
2000
10 kv
15 kv
5000 | 26
26
30
30
30 | 0.002
0.002
0.0005
0.001
0.001 | ina
ina
20 k
ina
ina | ina
ina
0.1 ¹
0.5
ina | 0.5
0.5
0.1 ¹
0.5 | ina
ina
0.1
0.05 | yes
yes
yes
yes
yes | C
C
R
R | 606
771
1492
375
298 | a
a,d
a,e
a
a | | 19 | Veritron
Spellman
Neutronic
Spellman
Spellman | M-3000-1
TR301
R-22SR
LAB-30PN
LAB-30 | 0
15 kv
5000
1000 | 30
30
30
30
30 | 0.001
0.0015
0.002
0.002
0.002 | ina
ina
ina
ina
ina | 0.1
0.05
ina
0.5
0.5 | 0.1
0.05
0.5
0.5
0.5 | 30 mv
0.05
ina
ina
0.05 | yes
yes
yes
yes
yes | C
R
C
C or R
C or R | 2120
475
request
645
545 | a
a,e
a
a,d
a | | HV | Un Volt
Neutronic
Neutronic
Sorensen
Un Volt | BRE 30-2
22MR
R-22MR
5030-4
BRE 30-4 | 500
5000
5000
5000
5000 | 30
30
30
30
30 | 0.002
0.003
0.003
0.004
0.004 | ina
ina
ina
ina
ina | ±0.1 ina ina 0.005 ±0.1 | ±0.1
0.5
0.5
0.025
±0.1 | 0.01
ina
ina
0.015
0.01 | yes
yes
yes
yes
yes | C
C
C
R | request
634
799
950
request | a,d
a
a,d
a
a,d | | 20 | Walden
Hipotron
Veritron
NJE
NJE | 545A
130D
M-3005-1
H-30-5
H-30-10 | 10 kv
0
0
0
0 | 30
30
30
30
30 | 0.005
0.005
0.005
0.005
0.005
0.01 | 2 k
ina
ina
ina
ina | 0.01 ¹
15-20 ⁶
0.1
±1
±1 | 0.01 ¹
15-20 ⁶
0.1
15-25
15-25 | 0.01
2
300 mv
0.5
1 | yes
yes
yes
yes
yes | R
C
C
C | 2087
400
2450
975
1140 | a,e
a,d
a
a
a | | HV | Un Volt
Sorensen
Kilovolt
Pl Capac
Un Volt | BRE30-12
1030-20C2
KV30-20
HVA300-303
BRE30-35 | 500
0
0
0
0
500 | 30
30
30
30
30 | 0.012
0.02
0.02
0.03
0.035 | ina
0,3 M
ina
ina
ina | ±0.1
±0.2
note 4
5-50
±0.1 | ±0.1
ina
15-25
5-50
±0.1 | 0.01
2
2.5
0.01
0.01 | yes
yes
yes
yes
yes | C
C
C
C | request
1235
request
request
request | a,d
a
b,d
c
a,d | | 21 | NJE
Kilovolt
Hipotron
Sorensen
Kilovolt | H-30-35
KV30-50
830-05
2030-100C2
KV30-100 | 0
0
0
0 | 30
30
30
30
30
30 | 0.035
0.05
0.05
0.1
0.1 | ina
ina
ina
0.075 M
ina | ± 1
note 4
15-20 ⁶
± 0.2
note 4 | 15-25
15-25
15-20 ⁶
ina
15-25 | 2
2.5
2
2
2.5 | yes
yes
yes
yes
yes | C
C
C
C | 1760
request
1550
2945
request | a
b,d
a,d
a,b
b,d | | HV | Kilovolt
Fluke
Fluke
Neutronic
Neutronic | KV30-200
430B
430A
23SR
23CR | 0
10
10
5000
5000 | 30
30.22
30.22
35
40 | 0.2
0.05
0.05
0.003
0.0013 | ina
120
50
ina
ina | note 4
±0.005
±0.005
ina
ina | 15-25
±0.02
±0.1
0.5
0.5 | 2.5
5 mv
5 mv
ina
ina | yes
yes
yes
yes
yes | C
C
C | request
4900
3900
1056
617 | b,d
a
a
a
a | | 22 | Walden
Kilovolt
Kilovolt
Neutronic
Calmag | 566
KVR40-40
KVR40-80
23MR
6VT8 | 13 kv
1000
1000
5000 | 40
40
40
45
-50 | 0.003
0.04
0.08
0.0015
0.0005 | 3.3 k
ina
ina
ina
1 k | 0.1
0.025
0.025
ina
0.001 ¹ | 0.1
0.05
0.05
0.5
0.001 | 0.1
0.025
0.025
ina
50 mv | yes
yes
yes
yes
yes | R
C
C
C | 3028
request
request
674
6150 | a,e
b,d
b,d
a
a | | HV | Calmag
Sames
Neutronic
Neutronic
Kilovolt | 6VT6C
Samtron A50
24CR
24MR
KVR50-5 | 0
0
5000
5000
1000 | 50
~50
50
50
50 | 0.0005
0.0005
0.001
0.002
0.005 | 1 k
ina
ina
ina
ina | 0.001 ¹ 0.01 ina ina 0.01 | 0.001 ¹
0.001
0.5
0.5
0.5 | 50 mv
0.001
ina
ina
0.01 | y es
yes
yes
y es
y es | C
C
C
C | 5750
4200
707
725
request | a
a
a
a
b,d | | 23 | NJE
Hipotron
NJE
NJE
Hipotron | HO-50-5
150D
HO-50-10
HO-50-15
850-05 | 0
0
0
0 | 50
50
50
50
50 | 0.005
0.005
0.01
0.015
0.05 | ina
ina
ina
ina
ina | ±1
15-20 ⁶
±1
±1
15-20 ⁶ | 15-25
15-20 ⁶
15-25
15-25
15-20 ⁶ | 2
2
3.5
3.5
2 | yes
yes
yes
yes
yes | C C C C | 1370
800
1560
2030
2400 | a,c
a,d
a,c
a,c
a,d | | н۷ | Kilovolt
NJE
Kilovolt
Veritron
Neutronic | KV50-50
HHO-50-50
KV50-100
M-50106-1
60DR | 0
0
0
0
5000 | 50
50
50
50
50 | 0.05
0.05
0.1
0.1
0.001 | ina
ina
ina
ina
ina | note 4
±0.5
note 4
0.1
ina | 15-25
15-25
15-25
0.1
0.1 | 2.5
3.5
2.5
450 mv
0.3 | yes
yes
yes
yes
ina | C
C
C
C | request
3090
request
4250
1535 | c,d
a,c
c,d
a | | 24 | Spellman
Spellman
Zeiss
NJE
Kilovolt | LAB-60PN
LAB-60
HA60RE
HO-60-10
KV60-10 | 1000
1000
5000
0 | 60
60
60
60 | 0.001
0.001
0.003
0.01
0.01 | ina
ina
150 k
ina
ina | 1
1
0.001
±1
note 4 | 1
1
15
15-25
15-25 | ina
ina
0.6
3.5 | yes
yes
yes
yes
yes | C
C
C
C | 820
765
2812
1750
request | a,d
a
a
a,c
c,d | ## High-voltage dc supplies 60-1000 kv 89 | | | | | 00 | TPUT | | | REGULATION | | | | | | |----------|----------------------|------------------------|---------------|------------------|--------------|----------------|--------------------|--------------------|-------------|------------|----------|--------------------|----------| | | Mfr. | Model | Min.
Volts | Max.
kv | Max.
Amps | Impedance
Ω | Line
% | Load
% | Ripple
% | Meters | Mounting | Price
\$ | Not | | | Sorensen | 106 1C2 | 0 | 60 | 0.01 | 1.2 M | .0.2 | | 1.5 | | | 1505 | | | | Sorensen | 2060-50C2 | 0 | 60 | 0.01 | 0.45 M | ± 0.2
± 0.2 | ina | 1.5
1 | yes | C | 1535 | a,0 | | | Zeiss | HA60R | -5 kv | -66 | 0.003 | ina | 0.006 | ina
15 | 1 v | yes | | 3050 | a, | | | Sames | AC751 | -2 44 | | | | 1 | | | yes | C | ina | | | | | 1 | | -75 | 0.0008 | ina | _ | 3 | ±1 | yes | C | 2600 | a | | 4V
25 | Sames | AB80-02 | 0 | -80 | 0.0002 | ina | 0.5 | 1 | ±1 | yes | С | 1200 | a | | 23 | Sames | Samtron A80 | 0 | -80 | 0.0008 | ina | 0.001 | 0.002 | 0.001 | yes | С | 5500 | a | | | Sames | AKS80 | 0 | 80 | 0.0008 | ina | 0.001 | 0.001 | 0.004 | yes | С | 8700 | a, | | | Veritron | M-80010-1 | 0 | -80 | 0.01 | ina | 0.1 | 0.1 | 700 mv | yes | С | 5630 | a | | | Spellman | LAB-90 | 1000 | ±90 ³ | 700 MA | 1 | 1 | 1 | ina | yes | С | 900 | a | | | Sames | A100 | 0 | -100 | _0.0003 | ina | 0.001 | 0.001 | 0.001 | yes | С | 6500 | a | | | Sames | AK\$100 | 0 | 100 | 0.0003 | ina | 0.001 | 0.001 | 0.006 | yes | С | 9100 | a, | | | Sorensen | 1101C2 | 0 | 100 | 0.0015 | 7 M | ±0.2 | ina | 4 | yes | С | 1485 | a, | | | Kilovolt | KVR100-5 | 5000 | 100 | 0.005 | ina | 0.025 | 0.05 | 0.02 | yes | С | request | b, | | | Veritron | M-100005 | 0 | 100 | 0.005 | ina | 0.1 | 0.1 | 1 v | yes | С | 6600 | a | | ۱V | Hipotron | 1100D | 0 | 100 | 0.005 | ina | 15-20 ⁶ | 15-20 ⁶ | 2 | yes | С | 1650 | a | | 26 | Hipotron | 8100-02 | 0 | 100 | 0.02 | ina | 15-20 ⁶ | 15-20 ⁶ | 2 | 1400 | С | 2600 | | | | Kilovolt | KVR120-5 | 5000 | 120 | 0.005 | ina | 0.025 | 0.05 | 0.02 | yes
yes | C | request | a,
b, | | | NJE | HO-120-5 | 0 | 120 | 0.005 | ina | ±1 | 15-25 | 2 | yes | C | 2010 | a | | | Kilovolt | KV120-5 | 0 | 120 | 0.005 | ina | note 4 | 15-25 | 1.5 | yes | C | request | c | | | Sorensen | 1121C2 | 0 | 120 | 0.005 | 5 M | ±0.2 | ina | 2 | yes | С | 1810 | a | | | Kilovolt | KV120-10 | 0 | 120 | 0.01 | ina | note 4 | 15-25 | 2.5 | 1100 | С | request | | | | Kilovolt | KV120-30 | 0 | 120 | 0.03 | ina | note 4 | 15-25 | 2 | yes | C | | C | | | Sorensen | 2120-30C2 | 0 | 120 | 0.03 | 2 M | ± 0.2 | | 1 | yes | C | request
3485 | C | | | Zeiss | HA150R | 25 kv | 150 | | | | ina | 5 v | yes | | | a | | | Hipotron | 1500D2 | 0 | 150 | 0.0008 | ina | 0.001 | 0.001 | | yes | C | request | a | | ۱V | ripation | 150002 | U | 120 | 0.002 | ina | 15-20 ⁶ | 15-20 ⁶ | 2 | yes | С | 2000 | a | | 27 | Kilovolt | KVR150-5 | 5000 | 150 | 0.005 | ina | 0.025 | 0.05 | 0.02 | yes | С | request | b, | | | Hipotron | 1500D | 0 | 150 | 0.005 | ina | 15-20 ⁶ | 15-20 ⁶ | 2 | yes | C | 2150 | a, | | | Kilovolt | KV150-5 | 0 | 150 | 0.005 | ina | note 4 | 15-25 | 2,5 | yes | C | request | | | | Sorensen | 1151C2 | 0 | 150 | 0.005 | 2 M
| ±0.2 | ina | 2.3 | | C | 2230 | C, | | | NJE | HO-150-5 | 0 | 150 | 0.005 | ina | ± 1 | 15-25 | 2 | yes
yes | C | 2335 | a, | | | NJE | HO-150-10 | 0 | 150 | 0.01 | ina | .05 | 16.25 | 4 | | С | 2200 | | | | Kilovolt | KV150-10 | 0 | 150 | 0.01 | ina
ina | ± 0.5
note 4 | 15-25
20-35 | 3 | yes | C | 3200 | a, | | - 14 | NJE | HHO-150-20 | 0 | 150 | 0.01 | ina | ± 0.55 | 15-25 | 3.5 | yes | C | request
2790 | C | | | Sorensen | 2150-20C2 | 0 | | | | | 1 | | yes | | | a | | | | | 0 | 150 | 0.02 | 1.8 M | ±0.2 | ina | 1 | yes | C | 3485 | a | | V | Kilovolt | KV150-30 | U | 150 | 0.03 | ina | Note 4 | 20-35 | 3 | yes | С | request | C | | 28 | Kilovolt | KVR200-2 | 10 kv | 200 | 0.002 | ina | 0.025 | 0.05 | 0.02 | y es | С | request | Ь | | | Hipotron | 1200D2 | 0 | 200 | 0.002 | ina | 15-20 ⁶ | 15-206 | 2 | yes | C | 3500 | a | | | Hipotron | 1200 D | 0 | 200 | 0.005 | ina | 15-20 ⁶ | 15-206 | 2 | yes | C | 3800 | a | | | Kilovolt | KV200-5 | 0 | 200 | 0.005 | ina | note 4 | 20-35 | 3 | yes | C | request | C | | | NJE | HO-200-5 | 0 | 200 | 0.005 | ina | ±0.5 | 15-25 | 3.5 | yes | C | 4290 | a | | | Kilovolt | KV200-10 | 0 | 200 | 0.01 | ina | note 4 | 20-35 | 3 | yac | С | taguest | | | | Kilovolt | KVR250-2 | 10 kv | 250 | 0.01 | ina | 0.025 | 0.05 | 0.02 | yes
yes | C | request | C | | | Kilovolt | KV250-2 | 0 | 250 | 0.002 | ina | note 4 | 20-35 | 2.5 | yes | C | request
request | b | | | Kilovolt | KV250-5 | 0 | 250 | 0.002 | ina | note 4 | 20-35 | 3 | yes | C | | 0 | | ., | NJE | HHO-250-5 | 0 | 250 | 0.005 | ina | ± 1 | 15-25 | 3.5 | yes | C | request
5525 | a | | V
9 | | | | | 0.000 | | | | 0.0 | ,,,,,, | | 0020 | " | | | Sorensen | 2250-10C2 | 0 | 250 | 0.01 | 7.5 M | ±0.2 | ina | 5 | yes | С | request | С | | | Kilovolt | KV250-10 | 0 | 250 | 0.01 | ina | note 4 | 20-35 | 3 | y es | C | request | С | | | Zeiss | H A300 | 50 kv | 300 | 0.001 | ina | 0.0001 | ina | ina | yes | С | 12,000 | а | | | Kilovolt | KVR300-2 | 10 kv | 300 | 0.002 | ina | 0.025 | 0.05 | 0.02 | yes | C | request | b | | | Hipotron | 1300D2 | 0 | 300 | 0.002 | ina | 15-20 ⁶ | 15-206 | 2 | yes | С | 6000 | a | | | Hipotron | 8300-02 | 0 | 300 | 0.02 | ina | 15-20 ⁶ | 15-20 ⁶ | 2 | yes | С | 9000 | a | | | Kilovalt | KV350-2 | 0 | 350 | 0.002 | ina | note 4 | 20-35 | 2.5 | yes | С | request | c | | | Kilovolt | KV350-5 | 0 | 350 | 0.005 | ina | note 4 | 20-35 | 3 | yes | С | request | С | | | Sorensen | 2350-8C2 | 0 | 350 | 0.008 | 12 M | ±0.2 | ina | 2 | yes | С | request | c | | ٧ | Kilovolt | KV600-2 | 0 | 600 | 0.002 | ina | note 4 | 20-35 | 1.5 | yes | С | request | c | | 10 | Kilouelt | KNC00 E | 0 | 600 | 0.005 | ina | note 4 | 20.25 | 2 | 400 | С | teauest | | | | Kilovolt
Pl Capac | KV600-5
HVA1000-102 | 0 | 600
1000 | 0.005 | ina
ina | note 4
ina | 20-35
5-60 | 3 2 | yes
yes | C | request
request | C | | | Kilovolt | KV1000-102 | 0 | 1000 | 0.0013 | ina | note 4 | 20-35 | 3 | yes | C | request | c | | | *********** | 117 2000 0 | | .500 | 0.000 | | 11010 7 | 20.00 | | , 00 | | indnest | 1 | Notes, abbreviations and manufacturers' index at end of this section. April 19, 1966 #### Additional high-voltage dc supplies | | | | | 01 | JTPUT | | | REGULATION | | | | | | |----------|--|--|------------------|---------------------------|---|---------------------------------|----------------------------|----------------------------------|-------------------------------|------------------------------|------------------|--------------------------------|-------| | | Mfr. | Model | Min.
Volts | Max.
kv | Max.
Amps | Impedance
Ω | Line
% | Load
% | Ripple
% | Meters | Mounting | Price
\$ | Notes | | нv
31 | Sorensen
Sorensen
Sorensen
Sorensen | 9005-5
9010-5
9020-5
9030-5
9061 | 0
0
0
0 | 5
10
20
30
60 | 0.005
0.005
0.005
0.005
0.005 | ina
ina
ina
ina
ina | 23
19
25
25
20 | 23
19
25
25
25
20 | 1.8
2
1.9
1.5
1.5 | none
none
none
none | C
C
C
C | 95
115
225
375
785 | | #### **Notes** - a. Price includes meters. - Control section and high voltage tank enclosed in one cabinet. - c. Control section and high voltage tank in separate sections. - d. Reversible polarity. - e. Solid state. - 1. Total regulation. - 2. Per volt change. - 3. Specify polarity. - 4. $\pm 0.01\%$, 0.1% or 1% available at extra cost. - 5. Available at extra cost. - 6. $\frac{1}{2}\%$ regulation, line or load, available at extra cost. #### **Abbreviations** - C Cabinet - R Rack - ina Information not available #### **Index of Manufacturers and Model Numbers** (keyed to table locator symbols) | | | (keyed to table | locator symbols) | | | |--|---|--
--|--|--| | Alfred Electronics (Alfred) 265 [HV·1] 271 [HV·8] Calmag Division California Magnetic Controls Corp. (Calmag) 6VT8 [HV·23] 6VT8 [HV·22] Del Electronics Corp (Del) PSCR2-50-1 [HV·2] PSCR2-120-1 [HV·2] PSCR2-120-1 [HV·7] PSCR4-75-1 [HV·7] PSCR5-20-2 [HV·8] PSCR5-20-2 [HV·8] PSCR5-20-1 [HV·9] PSCR10-10-1 [HV·12] PSCR10-10-1 [HV·12] PSCR10-12-1 [HV·12] PSCR16-6-1 [HV·15] Electronic Measurements Div of Rowan Controller Corp (El Meas) 238AM [HV·1] 238AM [HV·1] 243AM [HV·5] 243AMK [HV·5] John Fluke Manuf Co (Fluke) 405B [HV·6] 408B [HV·10] 409A [HV·2] 410B [HV·12] 412B [HV·3] 413C [HV·6] 430A [HV·2] 410B [HV·12] 412B [HV·3] 413C [HV·6] 430A [HV·2] 410B [HV·12] [HV·13] 410B [HV·14] 410B [HV·12] 410B [HV·12] 410B [HV·12] 410B [HV·13] 410B [HV·14] 410B [HV·14] 410B [HV·14] 410B [HV·16] 410 | 6516A [HV-5] 6522A [HV-2] 6525A [HV-7] Hipotronics (Hipotron) 103D [HV-5] 105D [HV-8] 110D [HV-11] 115D [HV-15] 120D [HV-16] 130D [HV-20] 150D [HV-23] 803-1 [HV-5] 803-1 [HV-6] 805-1 [HV-10] 810-1 [HV-13] 810-5 [HV-10] 810-1 [HV-13] 810-05 [HV-12] 815-05 [HV-15] 820-05 [HV-17] 820-05 [HV-17] 820-05 [HV-18] 830-05 [HV-21] 850-05 [HV-23] 1100D [HV-28] 1200D [HV-28] 1300D2 [HV-29] 1500D2 [HV-27] 1500D2 [HV-27] 1500D2 [HV-27] 1500D2 [HV-27] 8100-02 [HV-28] 1300D2 [HV-28] 1300D2 [HV-28] 1300D2 [HV-28] 1300D2 [HV-28] 1400D2 [HV-28] 1500D2 [HV-28] 1500D2 [HV-27] 1500D2 [HV-28] 1500D4 [HV-28] 1500D6 [HV-28] 1500D6 [HV-28] 1500D7 [HV-28] 1500D7 [HV-28] 1500D7 [HV-28] 1500D7 [HV-28] 1500D7 [HV-28] 1500D7 [HV-1] | (keyed to table KV30-100 [HV-21] KV30-200 [HV-22] KV50-50 [HV-24] KV50-100 [HV-24] KV50-100 [HV-24] KV60-10 [HV-26] KV120-15 [HV-26] KV120-16 [HV-27] KV150-5 [HV-27] KV150-5 [HV-27] KV150-10 [HV-28] KV200-10 [HV-28] KV200-10 [HV-29] KV250-10 [HV-29] KV250-10 [HV-29] KV250-10 [HV-29] KV250-10 [HV-29] KV350-2 [HV-30] KV350-2 [HV-30] KV600-2 [HV-30] KV600-5 [HV-30] KV600-5 [HV-30] KV600-5 [HV-30] KV825-1000 [HV-4] KVR2-5-200 [HV-4] KVR2-5-200 [HV-4] KVR2-5-1000 [HV-7] KVR8-500 [HV-1] KVR4-1000 [HV-7] KVR8-500 [HV-11] KVR4-800 [HV-12] KVR4-80 [HV-18] KVR24-80 KVR20-10 [HV-29] Monroe Electronics, Inc. (Monroe) 116B [HV-12] Moran Instrument Corp (Moran) 1.5K-2G [HV-29] Moran Instrument Corp (Moran) 1.5K-2G [HV-1] 15K-10C [HV-18] NJE Corp (NJE) H-2-5-100 [HV-4] H-2-5-100 [HV-4] H-2-5-100 [HV-4] H-2-5-100 [HV-4] H-5-50 [HV-9] H-5-500 [HV-9] H-5-500 [HV-9] H-5-500 [HV-9] H-5-500 [HV-9] H-5-500 [HV-9] H-5-500 [HV-9] H-10-5 [HV-12] | Neutronic Neut | Radiation Instrument Development Labs (RIDL) 40-8C [HV-1] 40-9B [HV-4] 40-12B [HV-1] Sames USA, Inc (Sames) A100 [HV-25] AC751 [HV-25] AC751 [HV-25] AKS80 [HV-25] AKS80 [HV-25] AKS100 [HV-26] Samtron A50 [HV-23] Samtron A80 [HV-23] Somethon (Sorensen) 1003-200C2 [HV-10] 1012-500C2 [HV-11] 1020-300C2 [HV-17] 1030-200C2 [HV-18] 11510C2 [HV-26] 11510C2 [HV-27] 2003-1000C2 [HV-10] 2012-2500C2 [HV-14] 2020-1500C2 [HV-17] 2030-1000C2 [HV-18] 2020-1500C2 [HV-27] 2150-200C2 [HV-27] 2150-200C2 [HV-28] 2250-100C2 [HV-27] 2350-80C2 [HV-27] 2350-80C2 [HV-27] 2350-80C2 [HV-27] 2350-80C2 [HV-27] 2350-80C2 [HV-28] 2250-100C2 [HV-11] 5030-4 [HV-20] 9005-5 [HV-31] 9005-5 [HV-31] 90061 [HV-31] Spellman High Voltage Co (Spellman) LAB-10 [HV-15] LAB-10PH [HV-15] LAB-30PN [HV-19] LAB-30PN [HV-19] LAB-30PN [HV-19] LAB-60PN [HV-24] LAB-60PN [HV-24] LAB-60 [HV-25] RG-5 [HV-8] RG-10 [HV-11] RG-15 [HV-11] RG-15 [HV-11] RG-15 [HV-19] Technical Associates | Universal Voltronics Corp (Un Volt) BRE2-200 [HV-3] BRE2-400 [HV-3] BRE2-400 [HV-3] BRE2-400 [HV-7] BRE4-100 [HV-7] BRE4-200 [HV-7] BRE4-200 [HV-7] BRE4-200 [HV-7] BRE6-65 [HV-10] BRE6-125 [HV-10] BRE6-125 [HV-10] BRE10-40 [HV-12] BRE10-40 [HV-13] BRE10-40 [HV-13] BRE20-10 [HV-16] BRE20-25 [HV-17] BRE30-2 [HV-20] BRE30-12 [HV-20] BRE30-12 [HV-21] BRE30-35 [HV-21] Vector Engineering (Vector) PM-1K-01 [HV-2] PM-2K-01 [HV-3] PM-3K-01 [HV-3] PM-3K-01 [HV-7] PMA-5K-01 [HV-8] Veritron Corp (Veritron) M-101 [HV-1] M-1500 [HV-1] M-1500 [HV-1] M-3000-1 [HV-19] M-3000-1 [HV-19] M-3000-1 [HV-19] M-5500 [HV-9] M-10010 [HV-12] M-10100 [HV-14] M-50106-1 [HV-26] Walden Electronics Corp (Walden) 538A [HV-19] 545A [HV-16] 566 [HV-16] 566 [HV-16] 566 [HV-16] 566 [HV-16] 567 [HV-16] 568 [HV-11] 569 [HV-16] 567 [HV-16] Carl Zeiss, Inc (Zeiss) HA60RE [HV-24] | | 6110A [HV-5]
6515A [HV-2] | KV30-20 [HV-21]
KV30-50 [HV-21] | H-10-50 [HV-13]
H-10-100 [HV-13] | RF6015 [HV-14]
RF6025 [HV-18] | (Tech Assoc)
RHV-1B [HV-4] | HA150R [HV 27]
HA300 [HV 29] | | | | | | | | Manufacturers' addresses and literature offerings in master cross index at front of issue. ## Regulate output voltage to within ±1% D-c output voltage will remain accurate despite line fluctuations when you install General Electric d-c power supplies in your electronic equipment. For example, within an a-c input range of 97 to 130 volts, the d-c output varies no more than ± 1 percent when all other variables remain constant. The table shows the close tolerance maintained by G-E power supplies. | Variable | Excursion | DC Output
Voltage Change | |--------------|-------------------|-----------------------------| | Line Voltage | 97-130 volts | 2% | | Load | 0-100% rated load | 3% | | Ambient Temp | 40C temp change | 1% | Whatever your application—computers, process control, or electronic measuring devices—chances are there's a General Electric regulated d-c power supply designed to meet your requirements. Units are available for either 50- or 60-cycle power sources. Many models are available for immediate shipment from factory stock. Give your equipment the benefits of using a power supply backed by experience and technological research—General Electric d-c power supplies. For complete descriptive and application data, write to General Electric Co., Section 413-28, Schenectady, N. Y. 12305. ## Specify General Electric for all your voltage regulation and control needs ## volt-pac #### VARIABLE TRANSFORMERS Get continuously adjustable voltage levels with these variable transformers. Three types of Volt-Pac transformers are
available—manual, motor operated, and automatic. Write for publication GEA-8110. #### Stabiltron #### AC VOLTAGE STABILIZERS Maintain precise voltage output despite wide fluctuations of line voltage, frequency, load, load power factor and ambient temperature. Stabiltron is available in 0.5, 1, 2, 5, and 10 KVA ratings. Write for publication GEA-7358. ## Special-Purpose DC Power Supplies (Voltage reference, Klystron, Microwave) #### Voltage reference supplies | | Mfr. | N. A. | | 0! | UTPUT | | | | CALIBRATIO | N | Stability | | Maretta | Price | | |---|----------|-----------------|---------------|--------------------------|---------------|---------------|------------|----------------------------------|-----------------|--------------|------------------|-------------|----------|------------|----------| | | | Model | Min.
Volts | Max.
Volts | Current
ma | Imper
Ω dc | Ω ac | Volts | Accuracy
% | Resolution | short
term | Meters | Mounting | \$ | Notes | | 0 | El Dev 3 | MV50R
MV100N | 0 | €51,110 my
±111,110mv | | 1
20 M | ina
ina | 5 ⁵
5 ⁵ | ±0.015
±0.01 | 1 μν
1 μν | 0.001%
0.001% | none
yes | R
C | 750
745 | f
f,g | #### Klystron supplies | | | | | 001 | TPUT | | | REGULAT | ION | | MOCULATION | V | HEA | TERS | | | | | |---|-------------|-------|--------------|---------------|---------------|----------------------------|-----------|-----------|--------------|-------------------|------------------|----------|-------|------|--------|----------|----------|-------| | | Mfr. | Model | Supply | Min.
Volts | Max.
Volts | Current
ma | Line
% | Load
% | Ripple
mv | Square | Other
cps | External | Volts | Amps | Meters | Mounting | Price \$ | Notes | | C | (Harrison)3 | 715A | Beam
Refi | -250
0 | -400
-900 | 30-50
10 _µ a | 1 | 1
ina | 7
10 | 1 kc ·
100 cps | 60 at
0-350 v | yes | 6.3 | 1.5 | yes | С | 325 | g | The tables in this section list the specifications for three types of special-purpose dc power supplies: - Voltage-reference supplies. - Klystron supplies. - Microwave supplies. Unless otherwise noted, all supplies have inputvoltage requirements of 95-130 vac, 1 phase. The last two tables in this section list modular units designed for powering microwave tubes. A number of these units can be used to provide independently controllable voltages for a single tube. The first of these tables lists filament supplies, and the second lists modular supplies that can be used for various microwave-tube elements. The prices in all of the tables are subject to change by the manufacturer. An index of manufacturers and models is given on page 94. The index is alphabetical, by manufacturer, and it lists the various special-purpose dc supplies of each manufacturer. A location key is included after each model. This permits easy spotting in the table of the specifications for that supply, by means of the location-key column (1 above). #### How the tables are arranged Specifications for all special-purpose dc power supplies are given in separate, appropriately headed columns. The complete specifications for any one supply can thus be read across the page. In the table covering voltage reference supplies the units are listed in ascending order of maximum output voltage (2 above). In all other tables the units are listed by manufacturer. Manufacturers are identified in the *Mfr* column by an abbreviation (3 above). The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master index at the front of the issue. All notes and symbols used in the tables are defined at the end of the section. #### How to use the tables - Note how the supplies are listed. The voltage reference supply table is in - ascending order of increasing output voltage. In all other tables the supplies are listed by manufacturer. - 2. Select the most likely candidates. - Obtain supplementary data from the manufacturer. Manufacturers' addresses, together with Reader Service numbers for specific power supply types, are given in the master cross index at the front of the issue. ### **Voltage reference supplies** #### 51.110 mv-1111.110 v | | | | | OL | TPUT | | | | CALIBRATIO | N | Stability | | | Price | | |---------|---|---|------------------------------------|--|--|--|--|---|--|---|--|---|--|--|------------------------------------| | | Mfr. | Model | Min,
Valts | Max.
Volts | Current
ma | Impec
Ω dc | ance
Ω ac | Voits | Accuracy
% | Resolution | short
term | Meters | Mounting | \$ | Note | | SP
1 | EI Dev EI Dev Abbey Hevi-Duty Hevi-Duty | MV50R
MV100N
SM-4
MC-1011
MC-1111 | 0 0 0 0 0 | ±51.110 mv
±111.110mv
10, 1
10, 1
10, 1 | ina
1
25
10, 1
10, 1 | 1
20 M
ina
ina
ina | ina
ina
ina
ina
ina | 55
55
10 ³
58
58 | ±0.015
±0.01
0.25
±0.05
±0.05 | 1 μν
1 μν
5 mν
ina
ina | 0.001%
0.001%
ina
ina
ina | none yes yes none none | R
C
C or R
C or R | 750
745
295
2275
3950 | f
f,g
g | | | Ballantine El Dev El Dev | 420
VS11P
MV100NR | 10 μv
0
0
0 | 10
10
±11.110
±11.1110 | 10 vinto
10 k
ina
20
10 | 15
ina
50 M
50 M | ina
ina
ina | 10 µ8 41 ina 55 | ±0.25
±0.01
±0.01 | 200 ppm
1 mv
100 µv | 0.0005%
±0.05%
0.001%
0.001% | none
none
none
yes | R
C
R | 495
395
1019
770 | f
f,g | | SP | El Dev
El Dev
Epsco
El Dev
North Hills | MV100N
VS11N
VRS611
CEA11
VS-36 | 0
0
-11.112
0 | ±11.1110
±11.1110
+11.112
±12.110
21.1 | 10
20
10
20
1000 | 50 M
50 M
50 M
50 M
0.025 | ina
ina
ina
ina
0.025 | 55
55
45
45
100 µ8 | ±0.01
±0.01
±0.025
±0.02
0.02 | 100 μν
100 μν
0.0001%
1 mv
100 <u>μ</u> ν | 0.001%
0.001%
ina
0.001%
25 ppm | yes
yes
none
none | C
C or R
C or R
R | 745
645
645
719
995 | f,g
f,g | | 2 | Weston-Rotek
Fluke
Fluke
Fluke
Princeton | 410
383B
313A
382A
TC-602R | 0
0
0
0 | ± 21.111
50
50
50
60 | 50
0-2 a
0-2 a
0-2 a
2 a | 10 M
500 μ
100 μ
100 μ
100 μ | ina
5 M
1 M
1 M
100 M | 3 range
note 6
6 ⁴
6 ⁴
33.4 | ±0.01
0.025
±0.01
±0.01
±0.1 | 20 μν
100 μν
100 μν
100 μν
100 μν | 10 ppm
± 0.005%
± 0.002%
± 0.002%
10 ppm | yes
yes
yes
yes
yes | C or R
R
R
R | 2375
1950
1295
1595
1185 | g
a,b,f,g
a,b,f,g
a,b,f,g | | SP | Princeton
Cohu
Hevi-Duty
Hevi-Duty
Princeton
Princeton | TC-602CR
M10A-10
MC-0100
MC-0101
TC-100.2AR
TC-100.2BR | 0
0
0
0
0 | 60
100, 10, 1
100, 10, 1
100, 10, 1
100
100 | 2 a
100
100,10,1
100,10,1
200
200 | 10 μ
10 M
ina
ina
10 μ
10 μ | ina
ina
ina
ina
100 M
100 M | 2 ranges
ina
58
58
note 9 | 0.01
5 mv
±0.05
±0.05
±0.005
±0.005 | 1 μν
ina
ina
ina
10 μν
100 mν | ±0.001% ina ina ina ±0.001% ±0.001% | yes
none
none
none
yes
yes | R
R
C or R
C or R
R | 1750
1495
1350
1950
1800
2200 | g
g
g | | 3 | Princeton Ballantine North Hills El Dev El Dev | TC-100.2R
421
VS-35
VS111P
MV100NR | 0
0
0
0 | 100
111
111.1
±111.10
±111.110 | 200
ina
100
10 | 10 μ
ina
0.025
0.1
20 M | 100 M
ina
0.025
ina
ina | note 9
6 ¹
10 µv ⁸
ina
5 ⁵ | 0.01
±0.15
0.02
±0.01
±0.01 | 1 mv
100 mv
100 mv
10 mv
1 µv | 0.001%
±0.01%
25 ppm
0.001%
0.001% | yes
none
none
none
yes | R
CarR
R
R | 1500
620
995
1195
770 | g
f
f,g | | SP | El Dev
Epsco
Epsco
Hevi-Duty
Hevi-Duty | VS111N
VR-607
VR-608
L C025-100M
L C025-025M | 0
0
0
0 | ±111.110
±111.112
±111.112
250
250 | 10
15
100
1 a
250 | 0.1
0
0
ina
ina | ina
ina
ina
ina
ina | 55
1 mv
1 mv
ina
ina | ±0.01%
±0.01%
±0.01%
ina
ina | 1 mv
10 μv
10 μv
ina
ina | 0.001%
0.005%
0.005%
0.1% | yes
yes
yes
yes
yes | C or R
C
R
C or R
C or R | 835
1995
2275
675
235 | 1,g
g
g
b,g
b,g | | 4 | Hevi-Duty
Hevi-Duty
Hevi-Duty
Hevi-Duty
Hevi-Duty | L C025-050M
L C050-100M
L C050-050M
L C050-025M
L C050-010M | 0
0
0
0 | 250
500
500
500
500 | 500
1 a
500
250
100 | ina
ina
ina
ina
ina | ina
ina
ina
ina
ina | ina
ina
ina
ina
ina | ina
ina
ina
ina
ina | ina
ina
ina
ina
ina | 0.1%
0.1%
0.1%
0.1%
0.1% | yes
yes
yes
yes | C or R
C or R
C or R
C or R
C or R | 435
640
565
350
265 | b,g
b,g
b,g
b,g
b,g | | SP | Cohu
Cohu
Cohu
Cohu
Fluke | 301
50B-100
50B-25
302
301E | 1
1.02
1.02
1.000
1.02 |
501
502
502
502,110
512 | 20
1 a
250
20
300 | 10 M
10 M
10 M
10 M
10 M | 0.2
0.5
0.5
ina
1 | nate 5
2 ²
2 ²
6 ⁸
note 5 | ±0.02%
+0.02%
±0.02%
0.01%
0.1% | ina
ina
ina
ina
500 μν | ±50 ppm
±50 ppm
±50 ppm
±25 ppm
0.005% | yes
none
none
yes
yes | C or R
R
R
C
R | 995
2375
1595
1830
695 | 8 8 | | 5 | Fluke
Hevi-Duty
Hevi-Duty
Hevi-Duty
Hevi-Duty | 407 D
MC-1011
MC-1111
LC100-050M
LC100-100M | 0
0
0
0 | 555
1000, 100
1000, 100
1000
1000 | 300
1000,100
1000,100
500
1 a | | 500 M
ina
ina
ina
ina | note 5
58
58
ina
ina | 0.5%
± 0.05
± 0.05
ina
ina | 2 mv
ina
ina
ina
ina | 0.01%
ina
ina
0.1%
0.1% | yes
none
none
yes
yes | C or R
C or R
C or R
C or R
C or R | 380
2275
3950
765
1190 | b,g
b,g | | SP | Hevi-Duty
Hevi-Duty
Hevi-Duty
Keithley
Keithley | LC100-025M
LC100-010M
LC100-005M
241
240 | 0
0
0
0 | 1000
1000
1000
± 1000
± 1000 | 250
100
50
20
10 | ina
ina
ina
50 M | ina
ina
ina
ina
ina | ina
ina
ina
52
32 | ina
ina
ina
0.05 | ina
ina
ina
100 μν
ina | 0.1%
0.1%
0.1%
0.005%
0.005 v | yes
yes
yes
none
none | C or R
C or R
C or R
C or R
C or R | 640
520
440
815
360 | b,g
b,g
b,g | | 6 | Fluke
Abbey
Cal Stand
Key Inst
El Dev | 301C
MC-10
VS-100BR
MCS 6420
VS 1000NR | 1.02
0
0
0
0 | 1012
1099
1111
±1111.1
±1111.110 | 400
10
50
11
10 | 50 M
ina
250 M
ina
0.1 | ina
ina
250 M
ina
ina | 45
62
52
58
65 | ±0.1
±0.1
±0.05
ina
±0.01 | 500 μν
1 mv
100 μν
ina
1 mv | 0.005%
ina
0.005%
0.005%
0.001% | yes
yes
yes
yes | C
R
R
C or R | 985
1500
690
1950
995 | g
g
g | Notes and abbreviations at end of this section, manufacturers' index on page 94. | | | | | 0 | UTPUT | | | | CALIBRATIO | N | Stability | | | | | |---------|-----------|-------------|-------|-----------|---------|------|-------|--------|------------|---------------------|-----------|--------|----------|-------|-------| | | Mfr. | Model | Min. | Max. | Current | Impe | dance | Volts | Accuracy | Resolution | short | Meters | Mounting | Price | Notes | | | | | Volts | Volts | ma | Ω dc | Ω ac | Volta | % | West and the second | term | | | | | | | Cohu | 321/323 | 0 | 1111.110 | 25 | 1 M | ina | 62 | 0.01 | ina | 0.0025% | yes | CorR | 2145 | g | | | Fluke | 332A | 0 | 1111.111 | 50 | 5 M | іпа | 72 | 0.003 | 0.1% | ±0.0015% | yes | R | 2490 | g | | | Cohu | 313 | 0 | 1111.1110 | 25 | 1 M | ina | 72 | 0.01 | ina | 0.0025% | none | CorR | 3995 | | | | Cohu | 303B | 0 | 1111.1110 | 25 | ina | ina | 72 | 0.01 | ina | 0.0025% | none | R | 2695 | | | SP | Cohu | 304 | 0 | 1222.2221 | 50 | 1 M | ina | 72 | 0.003 | ina | 0.0015% | none | R | 3995 | | | 7 | PDP | 1565 | 0 | 2012 | 15 | ina | ina | 35 | 0.25 | 10 mv | 0.005% | yes | R | 415 | g | | | Cal Stand | 120B | 0 | 2111 | 20 | 1 | 1 | 42 | ±0.25 | 5 mv | 0.005% | yes | R | 495 | g | | | Cal Stand | 127 | 500 | 3000 | 2 | ina | ina | ina | 0.5 | 100 mv | 0.02% | ina | R | ina | 6 | | | PDP | 1547 | 0 | 3012 | 40 | ina | ina | 35 | 0.25 | 10 my | 0.005% | yes | R | 575 | g | | | PDP | 1544 | 0 | 3012 | 20 | ina | ina | 35 | 0.25 | 10 mv | 0.005% | yes | R | 520 | g | | | Fluke | 405B | 0 | 3100 | 30 | ina | ina | 37 | 0.25 | 5 mv | 0.005% | yes | | 525 | g,h | | | Fluke | 413C | 0 | 3111 | 20 | ina | ina | note 5 | ±0.25 | 2 mv | ±0.005% | yes | R | 695 | g | | | Fluke | 334B | 0 | 3111 | 400 | ina | іпа | 65 | 0.03 | 50 μv | 10.005% | yes | C | 2650 | g | | | Cal Stand | 122E | 0 | 3111 | 20 | 1 | 1 | 42 | ±0.25 | 5 mv | 0.005% | yes | R | 540 | g | | | Keithley | 242 | 300 | 3500 | 25 | ina | ina | 42 | ±0.23 | 15 mv | 0.01% | none | " | 850 | h | | SP
8 | | | | | | 100 | | | | | | | | | | | ō | Keithley | 243 | 300 | 3500 | 15 | ina | ina | 42 | ±0.1 | 15 mv | ±0.01% | none | | 990 | h | | | ERA | TH5K-15L | 10 | 5000 | 15 | ina | ina | ina | ina | ina | ina | yes | C or R | 295 | g | | | ERA | TH5K-15LM | 0 | ±5000 | 15 | ina | ina | 35 | ina | ina | ina | yes | C or R | 350 | g | | | PDP | 1545 | 0 | 5021 | 20 | ina | ina | 35 | 0.25 | 10 mv | 0.005% | yes | R | 625 | g | | | Cal Stand | 1335 | 0 | 6000 | 20 | ina | ina | 42 | ±0.25 | 10 mv | 0.005% | yes | R | 675 | g | | | Fluke | 408B | 0 | 6000 | 20 | ina | ina | note 8 | 0.25 | 10 mv | 0.005% | yes | | 665 | g,h | | | PDP | 1556 | 0 | 6021 | 20 | ina | ina | 35 | 0.25 | 5 mv | 0.005% | yes | R | 650 | g | | | ERA | TH 10K-10LM | 0 | ± 10,000 | 10 | ina | ina | 35 | ina | ina | ina | yes | C or R | 600 | g | | | ERA | TH10K-10L | 100 | 10,000 | 10 | ina | ina | ina | ina | ina | ina | yes | C or R | 395 | g | | SP | Fluke | 410B | 0 | 10,000 | 10 | ina | ina | note 8 | 0.25 | 5 mv | 0.005% | yes | | 975 | g,h | | 9 | Cal Stand | 134 | 0 | 10,010 | 15 | ina | ina | 42 | ±0.25 | 10 mv | 0.005% | yes | R | 1075 | g | | | Cal Stand | 134B | 0 | 10,010 | 10 | ina | ina | 42 | ±0.25 | 10 mv | 0.005% | yes | R | 975 | g | | | PDP | 1543 | 0 | 10,021 | 10 | ina | ina | 35 | 0.25 | 10 mv | 0.005% | yes | R | 975 | g | | | Cal Stand | 170 | 0 | 20,000 | 5 | ina | ina | 52 | ±0.25 | 50 mv | 0.02% | yes | R | 3500 | g | | | Fluke | 430A | 10 | 30,220 | 10 | ina | ina | 20008 | ±0.25 | 100 mv | ±0.005% | yes | C | 3900 | g | Notes and abbreviations at end of this section, manufacturers' index below. #### **Index of Manufacturers and Model Numbers** (keyed to table locator symbols) | Abbey Electronics
Corp
(Abbey)
Voltage Reference
MC-10 [SP-6]
SM-4 [SP-1] | 127 [SP-7]
133S [SP-8]
134 [SP-9]
134B [SP-9]
170 [SP-9] | CEA11 [SP-2]
MV50R [SP-1]
MV100N [SP-1, 2]
MV100NR [SP-1,3]
VS11N [SP-2]
VS11N [SP-4]
VS11P [SP-1] | Voltage Reference
301C SP 6
301E SP 5
313A SP-2
332A SP-7
334B SP-8
382A SP-2 | |--|--|--|--| | Alfred Electronics (Alfred) Microwave | Cohu Electronics, Inc
(Cohu)
Voltage Reference
301 (SP-5) | VS111P [SP-3]
VS1000NR [SP-6] | 383B [SP-2]
405B [SP-8]
407D [SP-5] | | 250 [SP-14]
252 [SP-14] | 302 [SP-5]
303B [SP-7]
304 [SP-7] | Electronic Research
Assoc, Inc
(ERA) | 408B [SP 9]
410B [SP 9]
413C [SP 8] | | Ballantine Laborato-
ries, Inc
(Ballantine)
Voltage Reference | 313 [SP-7]
321/323 [SP-7]
50B-25 [SP-5]
50B-100 [SP-5] | Voltage Reference
TH5K-15L [SP-8]
TH5K-15LM [SP-8]
TH10K-10L [SP-9] | 430A [SP-9] Hevi-Duty Electric Co (Hevi-Duty) | | 420 [SP-1]
421 [SP-3] | M10A-10 [SP-3] Cubic Corp | TH10K-10LM [SP-9] Epsco Inc | Voltage Reference
LCO25-025M [SP-4]
LCO25-050M [SP-4] | | Calibration Stand-
ards, now Electro
Instruments, Inc
(Cal Stand) | (Cubic)
Klystron
701B [SP-10] | (Epsco)
Voltage Reference
VR-607 [SP-4]
VR-608 [SP-4] | LC025-100M [SP-4]
LC050-010M [SP-4]
LC050-025M [SP-4]
LC050-050M [SP-4] | | Voltage Reference
VS-100BR [SP-6]
120B [SP-7]
122B [SP-8] | Electronic Develop-
ment Corp
(El Dev)
Voltage Reference | VRS-611 [SP-2]
John Fluke Mfg Co
(Fluke) | LC050-100M [SP-4]
LC100-005M [SP-6]
LC100-010M [SP-6]
LC100-025M [SP-6] | Manufacturers' addresses and literature offerings in master cross index at front of issue. LC100-050M [SP-5] LC100-100M [SP-5] MC-0100 [SP-3] MC-0101 [SP-3] MC-1011 [SP-1, 5] MC-1111 [SP-1, 5] Harrison Divis Hewlett-Packard (Harrison) Klystron 715A [SP-10] 716B [SP-11] Keithley Inst ments, Inc (Keithley) Voltage Reference 240 [SP-6] 241 [SP-6] 242 [SP-8] 243 [SP-8] Key Instrument Co (Key Inst) Voltage Reference MCS 6420 [SP-6] Industries (Litton) Klystron 242 [SP-13] 242A [SP-13] 261 [SP-13] 261 [SP-13] Micro-Power (Micro-Power) Modular AS [SP-18] AV [SP-18] BV [SP-18] BV [SP-18] CS [SP-17] CV [SP-17] CV [SP-17] DX1 [SP-17] DX2 [SP-17] DX3 [SP-17] DX4 [SP-17] EM [SP-16] FB [SP-16] FC [SP-16] FC [SP-16] FF [SP-16] FF [SP-16] FF [SP-16] FF [SP-16] FF [SP-16] Narda Microwave Corp (Narda) Klystron 438 [SP-11] 62A1 (Microline) [SP-12] Microwave 15101 [SP-15] 15551 [SP-15] HIIIs Elec-North tronics, Inc (North Hills) Voltage Reference VS-10 [SP-1] VS-35 [SP-3] VS-36 [SP-2] PRD Electronics, Inc (PRD Elec) Klystron 809 A [SP 10] 812 [SP 12] 815 [SP 11] Microwave 816 [SP-15] Power Designs Pacif-Power Designs Pac Ic, Inc (PDP) Voltage Reference 1543 [SP-9] 1544 [SP-7] 1545 [SP-8] 1547 [SP-7] 1556 [SP-9] Princeton Applied Corp Princeton Applled Research (Princeton) Voltage Reference TC-100.2AR [SP-3] TC-100.2BR [SP-3] TC-100.2R [SP-3] TC-602CR [SP-3] TC-602CR [SP-2] Servodynamics, (Servodynamics) Microwave 812 [SP-15] Klystron 940 [SP-12] Weston Instruments Div of Rotek (Weston-Rotek) Voltage Reference 410 [SP-2] ## **150 db Common Mode Rejection** SHIELDED TRANSFORMERS by JAMISS ## SIGNAL-GUARD TRANSFORMERS Low and Medium Frequency (DC to 100 KC) response Designed for use in analog acquisition and computation equipment use. Signal Guard provides isolation, voltage comparison, impedance matching, and common mode rejection. ## DATA-GUARD TRANSFORMERS High Frequency Signal (1 kc-20 mc) Designed and shielded to isolate and terminate high frequency signal data in the form of pulses, AM and FM modulated carriers, multiplexed signals, and other low to high
frequency data. ## **ELECTRO-GUARD** TRANSFORMERS Power (1 watt to 100 VA) Electrostatically shielded for use in signal conditioners, bridge supplies, and Zener reference supplies to isolate circuits from noise transients and undesirable common mode voltages commonly carried on electrical power lines. Write for complete technical details and specifications. KEY SUPPLIER OF COMPUTER CONTROLS 4050 North Rockwell · Chicago, Illinois 60618 · 312 - 463 - 6500 · TWX 312 - 222 - 0745 ON READER-SERVICE CARD CIRCLE 24 #### Klystron supplies | | | | | OU. | TPUT | | | REGULAT | TION | | MODULATIO | N | HEA | TERS | | | | | |----------|----------------------|-------|----------------------|---------------------|---------------------------|---------------------|----------------------------|-----------------------|-------------------------|------------------|------------------|----------|-------|------|--------|----------|-------------|-----------| | | Mfr. | Model | Supply | Min.
Volts | Max.
Volts | Current
ma | Line
% | Load
% | Ripple
mv | Square | Other
cps | External | Volts | Amps | Meters | Mounting | Price
\$ | Notes | | | Harrison | 715A | Beam
Refi | -250
0 | -400
-900 | 30-50
10 μa | 1 1 | 1
ina | 7
10 | 1 kc ± 100 cps | 60 at
0-350 v | yes | 6.3 | 1.5 | yes | С | 325 | g | | SP
10 | PRD Elec | 809-A | Beam
Refi | 250
0 | 600
-900 | 65
50 μa | ±1 v
0.1 | ina
0.1 | 5 | 0.4 -
2 kc | 60 at
0-125 v | yes | 6.3 | 2 | yes | С | 395 | g | | | Cubic | 701B | Beam
Refl | 250
0 | 600
900 | 70
1 | 1 | 5
ina | 5 7 | 0.35 -
3.5 kc | 60 at
0-350 v | | 6.3 | 1.75 | yes | С | 450 | d,e,g | | | Narda | 438 | Beam
Refi | 250
0 | 700
1000 | 65
50 μa | ±1 v
0.1 | ±3 v
ina | 5 | 0.3 -
3 kc | 30 -
180 | yes | 6.3 | 2 | yes | C or R | 510 | c,d,g | | SP
11 | Harrison | 716B | Beam
Refi | -250
0 | -800
-800 | 100 | 0.1
0.05 | 0.05
ina | 1
500 μν | 0.4 -
2.5 kc | 75 | 200 v | 6.3 | 2 | yes | C or R | 875 | c,e,g | | | PRD Elec | 815 | Beam
Refl
Grid | 200
0
note 10 | 2200
1000
note 10 | 45-65
50 μa
5 | ±0.05
±0.02
±0.02 | ±0.01
ina
ina | 5
1
3 | 0.4 -
4 kc | pulse | 2 cps - | 6.3 | 3 | yes | | 1050 | c,d,g,h | | | TRG | 940 | Beam
Refl
Grid | -300
-25
0 | -3600
-650
-300 | 70
ina
ina | ±0.002
±0.002
±0.002 | ina
ina
ina | 10
5
5 | 1 kc | ina | yes | 6.6 | 3 | yes | С | 2150 | e,f,g | | SP
12 | PRD Elec | 812 | Beam
Refl
Grid | 200
0
note 10 | 3600
- 1000
note 10 | 125
50 μa | ±0.015
±0.001
±0.001 | 0.1 v
+0.05
ina | 5 rms
1 rms
3 rms | 400 -
400 cps | pulse | yes | 6.3 | 3 | yes | С | 2395 | c,d,e,g,h | | | Narda
(Microline) | 62A1 | Beam
Refl
Grid | -200
0
-300 | -4000
1000
+150 | 150
ina
5 | 0.01 | ina | 3 rms
3 rms
5 | 0.2 ·
2 kc | 40 -
400 | yes | 6.3 | 4 | yes | С | 1300 | c,d,e,f,g | | | Litton | 242 | Beam
Refl | 0 | 5000
1000 | 150
10 | ina | ina | 1 rms
0.05 rms | ina | ina | ina | 0-10 | 5 | yes | C or R | ina | | | SP
13 | Litton | 261 | Beam
Refi | 0
500 | 6500
1500 | 250 | ina | īna | 0.005 rms
0.005 rms | ina | ina | ina | 6-6.5 | 2.2 | yes | C or R | ina | | | | Litton | 242A | Beam
Refi | 0 | 7000
1500 | 250
10 | ina | ina | 1 rms
0.05 rms | ina | ina | ina | 0-10 | 5 | yes | C or R | ina | | Notes and abbreviations at end of this section, manufacturers' index on page 94. ### **Microwave supplies** | | | | | 00 | TPUT | | | REGULATIO | ON | HEA | TERS | | | | | |----------|---------------|-------|-------------------------------|------------------|---------------------------|----------------------------|-------------------------|---------------------|----------------------|----------|------|------------|----------|-------------|-------| | | Mfr. | Model | Supply | Min.
Volts | Max.
Volts | Current
ma | Line
% | Load
% | Ripple
mv | Valts | Amps | Meters | Mounting | Price
\$ | Notes | | | Alfred | 250 | Anode 1
Anode 2
Anode 3 | 0 0 0 | + 450
+ 300
+ 750 | 20
1
1 | 0.5
0.5
0.5 | 0.5
0.5
0.5 | 0.5%
0.5%
0.5% | 0-10 | 20 v | yes | С | 1990 | g | | | Alfred | 250 | Anode 4
Helix
Coll | 0
90
0 | + 2500
+ 3500
+ 250 | 1
5
60 | 1
0.05
1 | 1
ina
ina | 2%
0.02%
0.5% | 0-10 | 20 v | yes | С | 1990 | g | | SP
14 | Alfred | 250 | Grid | 0 | -150 | 100 μa | 0.1 | ina | 0.1% | 0-10 | 20 v | yes | С | 1990 | g | | | Alfred | 252 | Helix
Coll
Anode A | 75
40
-100 | 1400
300
+ 100 | 500 μa
1500 μa
1 | ±0.03
±2
±0.2 | ina
ina
ina | 20
1 v
25 | 10
10 | 1 1 | yes
yes | R | 890 | g | | | Alfred | 252 | Anode B
Anode C
Anode D | -100
0
0 | + 100
450
900 | 100 μa
100 μa
100 μa | ± 0.1
± 0.2
± 0.2 | ina
ina
ina | 25
25
50 | 10 | 1 | yes | R | 890 | g | | | Narda | 15101 | Beam
Bias
Grid | -2
0
50 | -12,000
250
600 | 2.5 a
25
ina | 0.1 | 0.1 | ina | 0-10 | 5 | yes | С | 9925 | e,g | | SP | Narda | 15551 | Beam
Bias
Grid | 0
0
100 | -15,000
-150
500 | 2.5 a
25
ina | ina | ina | ina | 0-10 | 5 | yes | С | 5725 | e,g | | 15 | PRD Elec | 816 | Anode
Grid | 30
0 | 500
300 | 15
2 | ± 0.1
± 0.05 | ±0.1 | 10 rms
7 rms | 6.3 | 3 | yes | | 2300 | g,h | | | Servodynamics | 812 | Anode
Line
Grid | 100
3000
0 | 3000
10,000
200 | 5
100
10 | ±0.05
±0.005
±0.5 | 0.05
0.05
ina | ina
ina
ina | 10 | 5 | yes | С | 8800 | | Notes and abbreviations at end of this section, manufacturers' index on page 94. ## More power to you, from AMP When it comes to power, your specifications reign supreme. That's why AMP specializes in the custom engineering of pulse system packages and pulse networks to the customer's requirements. We make packaged pulse modulators for high-power radar systems with weight and cube reductions of 50% or more compared to standard systems. We've developed over 2,500 different types of pulse forming networks, covering all combinations of pulse widths, impedances, and charging voltages. These units are designed with exact compliance to pulse shape, rise time, and ripple tolerances. All A-MP* power packages are characterized by light weight, rugged construction and extreme reliability. Here, for example, are specifications for a typical high power pulse modulator shown above: Magnetron Filament Voltages: 13.75 volts-standby 7.8 volts-operate Peak Pulse Amplitude: 22.0 kilovolts ± 4% Rate of Rise: 140 \pm 20 KV/ μ sec. Pulse Width (current): $0.7 \pm 0.05 \mu$ sec. Positive Backswing: 20% max. Fall Time (current): max. 30% of pulse width Ripple Detected RF: 14% max. on 711 magnetron Overload Protection: 200% of protective diode current Trigger Amplitude: 110 volts ± 10% Trigger Pulse Width: 1 ± 5% µ sec. Trigger Rise Time: 0.2 ± 10% μ sec. Programming: 2 sec. delay Inputs: DC voltage, system triggers, and AC filament Additional features—overload protection current, average magnetron current output, thyratron filament and mounting, line filters and RF bypass. Our facilities and engineering staff have the capability to provide many other items for land, sea, and aerospace applications. Why not get in touch with us today. Custom pre-engineered high voltage power supplies. low voltage power supplies . high voltage lead assemblies & connectors . high voltage capacitors CAPITRON products and engineering assistance are available in Canada through Aircraft-Marine Products Ltd., Toronto, Ontario, Canada **\DataTrademark of AMP Incorporated #### (modular filaments) | | | | Max. | | REGULA | ATION | | |----|-------------|-------|-------------|--------------|------------------|--------------|----------| | | Mfr. | Model | Volts
dc | Max.
Amps | Line & Load
% | Ripple
mv | Price \$ | | | Micro Power | FB | 2.5 | 3.5 | 0.1 | 1 rms | 305 | | | Micro Power | FC | 4.0 | 1.0 | 0.1 | 1 rms | 305 | | SP | Micro Power | FD | 6.3 | 2.0 | 0.1 | 1 rms | 305 | | 16 | Micro Power | FA | 6.3 ac | 4.8 | unreg. | ina | 125 | | | Micro Power | FE | 9.0 | 1.1 | 0.1 | 1 rms | 305 | | | Micro Power | FF | 11.0 | 1.2 | 0.1 | 1 rms | 305 | | | Micro Power | FG | 15.0 | 1.0 | 0.1 | 1 rms | 305 | manufacturers' index on page 94. #### (modular elements) | | | | | CKWARD-W | | VOLTAGE 1 | | | KLYSTRO | N | 1 | AVELING-WA
BE AMPLIFII | | | ОИТРИТ | | Price | |----|-------------|-------|------|----------|---------------|------------------------|------------------|------|------------------|------------------|------------------|---------------------------|------------------|---------------|---------------|---------------|-------| | | Mfr. | Model | Grid | Anode | Delay
Line | Injection
Electrode | Anode | Grid | Reflector | Resonator | Grid or
Anode | Collector | Helix | Min.
Volts | Max,
Volts | Current
ma | \$ | | | Micro Power | EM | yesk | yesk | | yesk | | yesk | yesk | yesk | yesk | yesk | | 0 | 400 | 60 | 375 | | | Micro Power | DX1 | | | | | | | | yes ^m | | | | 400 | 500 | 100 | 490 | | SP | Micro Power | DX2 | | | | | | | | yes ^m | | | | 500 | 600 | 100 | 490 | | 17 | Micro Power | DX3 | | | | | | | | yes ^m | | | | 600 | 700 | 100 | 490 | | | Micro Power | DX4 | 1 | | | | | | | yesm | | | | 700 | 800 | 100 | 490 | | | Micro Power | CS | 1 | | | | | | yesi | | | | | 50 | 1000 | 15 | 570 | | | Micro Power | cv | | yesk | | yesk | | | yes ^j | | yesk | | | 50 | 1000 | 15 | 570 | | | Micro Power | BS | | 1 | yes | | yesi | | | | | | 1003 | 75 | 1500 | 50 | 875 | | SP | Micro Power | BV | | | yesi | | yesi | | | yes ^k | | | yesk | 75 | 1500 | 50 | 875 | | 18 | Micro Power | BW | | | | | | | | yesk | | | yesk | 50 | 1700 | 50 | 875 | | | Micro Power | AS | | | yes | | yesi | | | | | | | 125 | 2500 | 25 | 860 |
 | Micro Power | AV | | | yesi | | yes ^j | | | yesk | | | yes ^k | 125 | 2500 | 25 | 860 | manufacturers' index on page 94. #### **Notes** - a. Remote programing provided. - b. Remote sensing provided. - c. Sawtooth modulation. - d. Sinewave modulation. - e. Provision made for external sync. - f. Transistorized. - g. Price includes meters. - h. Will fit rack when removed from cabinet. - i. Direct-coupled electronic control: responds to step input control signal @ rate 20kv/sec/Ma of load current. Input: 30v minimum. Input impedance: 10k. Rise time: 100 μs minimum. - j. Same as i, except response is 200v/sec/ma of load current. - k. Manual voltage control: 10 turn pot, 0.02% resolution. - m. Manual voltage control: 1-turn pot. - 1. Decade, pot & vernier. - 2. Decade. - 3. Turn pot. - 4. Digital dial. - 5. Decade and vernier. - 6. Binary. - 7. Decade and pot. - 8. Step switch. - 9. Thumb-wheel switch. - 10. 0 to +150 v; 0 to -300 v. - 11. -0.5 amp to +0.5 amp. #### **Abbreviations** - C Cabinet - R Rack - ina Information not available **Kidde Ballscrews** #### FOR LIGHTWEIGHT, COMPACT TRANSFER OF MOTION AND POWER. Design engineers anxious to hold down weight and size of power transfer units turn to Kidde. Highest precision and compact construction make Kidde Ballscrews ideal for use in computers, potentiometers, capacitors, scientific instruments, nuclear reactors, and inertial guidance packages in missiles and satellites. Units feature almost complete frictionless action, and can be custom-made to any configuration to suit a particular application. Stock items in sizes from 3/16" to 1/2" are immediately available. For complete information on com- pact Kidde Ballscrews, write for your free copy of "Ballscrews and Mechanical Actuator Assemblies." Walter Kidde & Company, Inc., 374 Main Street, Belleville, New Jersey 07109; Northolt, England; Luneburg, Germany. ## Regulated AC Power Supplies #### (Amplitude regulated and frequency regulated) #### Ac supplies (amplitude-regulated) | Г | | | | 001 | PUT | | IN | PUT | | REGULAT | ION | | | | | |---|--------------------|--------------------|---------------|---------------|--------------|----------------|---------------|---------------|------------|-------------------------|------------------|------------|----------|-------------|------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Power
K VA | Min.
Volts | Max.
Volts | Line
% | Load
% | Response
Time | Meters | Mounting | Price
\$ | Notes | | 0 | Microdot
Sola 6 | 2R510
23-90-150 | 115
115 | 115 | 4.4
7.5 | (0.5)
(0.5) | 103
100 | 127
130 | 0.1
±12 | 0.1
1.5 ² | ina
25µs | yes
yes | C
C | ina
275 | d,j
d,k | #### Ac supplies (fixed-frequency) | Г | | | | FRE | QUENCY | | | | | OUTPU | Т | | | | | | | |----|-----------------|-------------------------|----------|------|----------|---------------------|---------|-------------------------|-------------------|------------|-----------|--------------|--------------|------------|----------|----------------|-------| | | Mfr. | Model | Mins, | Max, | Accuracy | Stabil- | Min. | Max. | Power | REGU | LATION | Dis- | Response | Meters | Mounting | Price | Notes | | | | | cps | cps | % | ity – % | | Volts | VA | Line
% | Load
% | tortion
% | Time | | | • | | | 10 | CML
Tel Inst | SG31A-T30A
4010A-1-A | 50
50 | 50 4 | ina
1 | ± 0.25 ⁸ | 0
50 | 217 ¹⁰
75 | 30 ⁵ 5 | 0.5
0.5 | 0.5
0 | 3 | 50 μs
ina | yes
yes | R
C | request
510 | k | The tables in this section list the specifications for regulated ac power supplies. Three separate tables are included: - Amplitude-regulated ac supplies. - Frequency-regulared (fixed-frequency) ac supplies. - Frequency-regulated (adjustable-frequency), ac supplies. Unless otherwise noted in the table, all supplies have input-voltage requirements of 60 cps, 1 phase. Prices indicated in the table are subject to change by the manufacturer. An index of manufacturers and models is included at the end of the section. The index is alphabetical, by manufacturer, and it lists the various ac power supplies of each manufacturer. A location key is included after each model. This permits easy spotting in the tables of the specifications for that supply, by means of the location-key (1 above). #### How the tables are arranged Specifications for the regulated ac supplies are given in separate, appropriately headed, columns. The complete specifications for any one supply can thus be read across the page. Within the three tables, the power supplies are arranged as follows: Amplitude regulated supplies are listed in ascending order of maximum output voltage (2 above). Where this is the same for several supplies, they are listed in order of increasing output power (3 above). Frequency-regulated, fixed-frequency supplies are listed in ascending order of maximum output frequency (4 above). Where this is the same for several supplies, they are then listed in order of increasing power output (5 above). Frequency-regulated, adjustable-frequency supplies are listed in the same order as the fixed-frequency supplies: first by maximum output frequency and then by power output. In all tables, manufacturers are identified in the Mfr column by an abbreviation (6 above). The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master index at the front of the issue. All notes and symbols used in the table are defined at the end of the section. At the top of each page of the tables, reference is made to the voltage or frequency range covered by the supplies on that page. This is to expedite the location of a supply with particular characteristics. #### How to use the tables - 1. Note how the supplies are listed. - Amplitude regulated supplies are in order of maximum output voltage. Where this is the same, they are in order of increasing power output - Frequency-regulated supplies (both fixed and adjustable) are in order of maximum frequency. Where this is the same, they are in order of increasing power output. - 2. Select the most likely candidates. - Obtain supplementary data from the manufacturer. Manufacturers' addresses, together with Reader Service numbers for specific power supply types, are given in the master cross index at the front of the issue. | | | | | OUT | PUT | | INF | PUT | | REGULAT | TION | | | | | |---------|--|---|---|--|--|--|--|---|---|--|---|--|--|--|---------------------------------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Power
K VA | Min,
Volts | Max.
Volts | Line
% | Load
% | Response
Time | Meters | Mounting | Price
\$ | Notes | | AC. | Microdot
Sola
Microdot
Microdot
Microdot | 2R510
23-90-150
2R1010
2R2010
2R3010 | 115
115
115
115
115 | 115
115
115
115
115 | 4.4
7.5
8.7
17.4
26 | 0.5
0.5
1
2 | 103
100
103
103
103 | 127
130
127
127
127 | 0.1
±1 ²
0.1
0.1
0.1 | 0.1
1.5 ²
0.1
0.1 | ina
25µs
ina
ina
ina | yes
yes
yes
yes | 00000 | ina
275
ina
ina
ina | d,j
d,k
d,j
d,j | | 1 | Tel Inst
Microdot
Gen Radio
Gen Radio
Sola | 601
2R5010
1571-A
1581-A
59-13-260 | 1156
115
1156
1156
1156 | 1156
115
1156
1156
1156 | 30
43.4
50
50
50 | 3.6
5
5.8
5.8
6 | 1156
103
1156
6
105 | 1156
125
1156
6
135 | 0.1
0.25
0.25
±0.2 ² | ina
0.1
0.25
0.25
± 0.2 ² | 100 ms/v
ina
25 ms/v
25 ms/v
100 ms/v | yes
yes
none
none | C or R
C
R
C or R
R | 390
ina
650
530
385 | d,j
c
c | | NC
2 | Tel Inst Gen Radio Tel Inst Tel Inst Per Srcs | 603
1582-A
605
607
120A-251FM
24A-251FM
48A-501FM
24A-501FM
120A-501M
120A-102FM | 1156
1156
1156
1156
117
117
117
117
117 | 1156
1156
1156
1156
117
117
117
117 | 50
85
100
250
3.5
18
16
32
7 | 6
9.8
12
30
0.25
0.25
0.5
0.5 | 1156
1156
1156
1156
105
23.5
44
23.5
105 | 1156
1156
1156
1156
125
28.5
52
28.5
125
125 | ina 0.25 ina ina ±3 ² ±3 ² ±3 ±3 ² ±3 ±3 ² | ina
0.25
ina
ina
±3 ²
±3 ²
±3
±3
±3 ² | 100 ms/v
50 ms/v
200 ms/v
800 ms/v
ina
ina
ina
ina | yes
none
yes
yes
yes
yes
yes | Corr
Corr
Corr
Corr
R
R
R | 425
590
525
705
1305
1230
1995
1820
2290
2525 | c
k
k
k
k | | С | Pwr Srcs Pwr Srcs Pwr Srcs Pwr Srcs GE GE | 48A-102FM
24A-102FM
120B-202FM
48B-202FM
9T91Y3021
9T91Y3022 | 117
117
117
117
117
118
118 |
117
117
117
117
117
118
118 | 32
65
26
65
ina
ina | 1
2
2
0.5 | 23.5
105
44
95 ¹⁴
95 ¹⁴ | 52
28.5
125
52
130 ^{1,4}
130 ^{1,4} | ±3 ² ±3 ² ±3 ² ±3 ² ±3 ² 0.2 0.2 | ±3 ² ±3 ² ±3 ² ±3 ² ±3 ² 0.1 | ina ina ina ina ina 3 cycles 3 cycles | yes
yes
yes
yes
none | R
R
R
R
R | 2320
2320
2320
2930
2930
390
460 | k
k
k
a
a | | 3 | Sorensen Superior Superior Twinco Sorensen | 150S
 E51002
 ET51002
ACR6-250M
500S | 110
110
110
110
110 | 120
120
120
120
120 | ina
2.2
2.2
ina
ina | 0.15 ¹
0.25
0.25
0.25
0.25 | 95
95
95
95
95 | 130
135
135
135
135 | ±0.1
±0.1
500 mv
ina
±0.1 | ±0.1
±0.15
500 mv
ina
±0.1 | 50 ms
3-10 cycles
3-10 cycles
200 ms
50 ms | none
none
none
yes
yes | C or R
C or R
C or R
C or R
C or R | 245
345
410
470
297 | a,b
b
j
a,d,k
a,b,k | | С | Sorensen
Superior
Superior
Superior
Twinco | ACR500
IE51005
IEL51005
IET51005
ACR6-500M | 110
110
110
110
110 | 120
120
120
120
120 | ina
4.5
4.5
4.5
ina | 0.5
0.5
0.5
0.5
0.5 | 95
95
95 ¹²
95
95 | 130
135
135 ¹²
135
135 | ±0.1
±0.1
±0.1
250 mv | ±0.1
±0.15
±0.15
250 mv | 30 ms
50 ms
50 ms
50 ms
200 ms | yes
none
none
none
yes | C or R
C or R
C or R
C or R | 312
370
450
430
560 | k
b
j
a,d,k | | 4 | Sorensen
IERC
Perkin
Sorensen
Sorensen | FRLD750
LC-1000B
MTLR1000
1000S
ACR1000 | 110
110
110
110
110 | 120
120
120
120
120 | ina
ina
8.5
ina
ina | 0.75
1
1 ¹
1 ¹ | 105
95
95
95
95 | 125
135
135
130
130 | ±0.25 ²
±0.05
±0.02
±0.1
±0.1 | ± 0.25 ²
0.05
+ 0.02
± 0.1
± 0.1 | 20 ms
50 μs
100 ms
100 ms
30 ms | yes
yes
yes
yes
yes | C or R
C
C or R
R | 990
1425
372
327
362 | b,k
k
d,j,k
a,b,k
k | | C | Sorensen
Superior
Superior
Superior
Superior | 1001
IE5101
IEL5101
IET5101
IEH5101R | 110
110
110
110
110 | 120
120
120
120
120 | 8.5
8.5
8.5
8.5 | 1 [†] 1 1 1 1 1 | 95
95
95 ¹²
95
95 ¹³ | 130
135
135 ¹²
135
130 ¹³ | ±0.01
±0.1
±0.1
250 mv
±0.1 | ± 0.01
± 0.15
± 0.15
250 mv
± 0.15 | 100 ms
100 ms
100 ms
100 ms
100 ms | none
none
none
none | C or R
C or R
C or R
C | 570
430
485
510
535 | b,k
b
b
j | | 5 | Twinco
Sorensen
Sorensen
Superior | ACR6-1000M
2000S
ACR2000
EMT4102 | 110
110
110
110 | 120
120
120
120 | ina
ina
ina
17.5 | 1
2 ¹
2
2 | 95
95
95
95 | 135
130
130
135 | ina
±0.1
±0.1
±1 ² | ina
±0.1
±0.1
±1 ² | 200 ms
200 ms
30 ms
75 ms/v | yes
yes
yes
yes | C or R
R
R
C or R | 740
412
457
475 | a,d,k
a,b
k
c,j,k | | С | Twinco
Sorensen
Superior
Superior
Perkin | ACR6-2000M
2501
EMK4105
IE5102
MLR3000 | 110
110
110
110
110 | 120
120
120
120
120 | ina
ina
21,5
22
25,5 | 2
2.5 ¹
2.5
2.5
3 | 95
95
95
95
95 | 135
130
135
135
135 | ina
±0.01
±1 ²
±0.1
±0.5 | ina
±0.01
±1 ²
±0.15
±0.5 | 200 ms
200 ms
20 ms /v
200 ms
0.4 sec | yes
none
yes
none
yes | C or R
C or R
C
C or R
R | 1040
785
520
660
669 | a,d,k
b
c,k
b
d,j,k | | 6 | Sorensen
Sorensen
Twinco
Superior
Perkin | ACR3000
3000S
ACR6-3000
EMT4104
MLR5000 | 110
110
110
110
110°
110 | 120
120
120
120
120 ⁹
120 | ina
ina
ina
35
43.5 | 3
3 ¹
3
4.2
5 | 95
95
95
108
95 | 130
130
135
137
135 | ± 0.1 ± 0.1 ina $\pm 1^{2}$ ± 0.5 | ± 0.1 ± 0.1 ina $\pm 1^{2}$ ± 0.5 | 30 ms
200 ms
200 ms
100 ms /v
0.2 sec | yes
yes
yes
yes
yes | R
R
C or R
C
R | 577
512
1525
550
747 | k
a,b,k
a,d,k
c,j,k
d,j,k | April 19, 1966 | | | | | OUT | PUT | | INI | PUT | | REGULAT | TION | | | | | |---|----------------------|-----------------------|--------------------------------------|-------------------------|--------------|----------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------|--------------------|------------|------------------|--------------|--------------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Power
K VA | Min.
Volts | Max.
Volts | Line
% | Load
% | Response
Time | Meters | Mounting | Price
\$ | Note | | | Sorensen | 5000\$ | 110 | 120 | ina | 51 | 95 | 130 | ±0.1 | ±0,1 | 200 ms | yes | R | 677 | a,b,k | | | Sorensen | ACR5000 | 110 | 120 | ina | 5 | 95 | 130 | ± 0.1 | ±0.1 | 30 ms | yes | R | 737 | k | | | Superior | IE5105 | 110 | 120 | 43.5 | 5 | 95 | 135 | ±0.1 | ± 0.15 | 200 ms | none | C or R | 770 | b | | | Superior | IEL5105 | 110 | 120 | 43.5 | 5 | 9512 | 13512 | ± 0.1 | ±0.15 | ina | none | С | 760 | b | | С | Superior | EMK4105R | 110 | 120 | 43 | 5 | 105 | 125 | ±12 | ± 12 | 40 ms /v | yes | R | 490 | a,c,k | | 7 | Twinco | ACR6-5000 | 110 | 120 | ina | 5 | 95 | 135 | ina | ina | 200 ms | yes | C or R | 1965 | d,k | | | El Meas | 260A | 110 | 1207 | ina | 6 | 115 | 115 | ina | ina | 6.6 ms/v | yes | R | 445 | k. | | | Superior | EMT4106B | 110 | 120 | 52 | 6 | 95 | 135 | ± 12 | ± 12 | 75 ms/v | yes | C or R | 550 | c,j,k | | | Superior
Sorensen | EMT4112B
ACR7500 | 110°
110 | 120 ⁹
120 | 52
ina | 6
7.5 | 95
95 | 135
130 | ±12
±0.1 | ±12
±0.1 | 75 ms/v
30 ms | yes
yes | C or R | 550
872 | c,j,k | | | | - | | | | | | - | | | | | | | | | | Sorensen
Sorensen | 10000S
ACR10000 | 110 | 120
120 | ina
ina | 10 ¹
10 | 95
95 | 130
130 | ±0.1
±0.1 | ± 0.1
± 0.1 | 300 ms
30 ms | yes | C
R | 1272
1222 | a,b,k | | | Superior | IE5110 | 110 | 120 | 87 | 10 | 95 | 135 | ± 0,1 | ± 0,15 | 300 ms /v | none | C | 1640 | b | | | Superior | IEL5110 | 110 | 120 | 87 | 10 | 9512 | 13512 | ±0.1 | ±0.15 | 300 ms/v | none | C | 1720 | Ь | | ^ | Sorensen | ACR15000 | 110 | 120 | ina | 15 | 95 | 130 | ±0.1 | ± 0.1 | 30 ms | yes | R | 1522 | k | | C | | 150000 | | | | | | | | | *** | | | | | | | Sorensen | 15000S | 110 | 120 | 120 | 151 | 95 | 130 | ±0.1 | ±0.1 | 300 ms
150 ms/v | yes | C | 22 42 | a,b,k | | | Superior
Superior | EMT4115
EMS41100 | 110 | 120
120 | 130
833 | 15
100 | 95
103.5 | 135
126.5 | ±12
±12 | ± 12
± 12 | 650 ms/v | yes | R
C | 700
2055 | C,k | | | Superior | EMS41100
EMS142110 | 110 | 120 | 417 | 100 | 114 | 126.5 | ±12
±12 | ± 12 | 100 ms/v | ina
ina | C | 1990 | c,j
a,c,j | | | Tel Inst | 650 | 105 | 123 | 10 | ina | 105 | 125 | ina | ina | 33 ms/v | yes | CorR | 240 | c,k | | | Sugarian | IEE101MD | 1,5 | 125 | 0.2 | , | 105 | 126 | 250 | 250 | 100 | | D | 715 | | | | Superior
Superior | IE5101MR
IEH5101MR | 115 | 125
125 | 8.3
8.3 | 1 1 | 105
105 ¹³ | 135
13513 | 250 mv
250 mv | 350 mv
350 mv | 100 ms
100 ms | none | R
R | 715
715 | | | | Superior | EM4108MCR | 115 | 125 | 66.6 | 8 | 105 | 135 | ± 12 | ± 12 | 100 ms/v | none | R | 630 | C | | | Superior | EMS14225 | 115 | 1257 | 104 | 25 | 102 | 138 | ± 12 | ±12 | 30 ms/v | yes | C | 1945 | a,c,j,k | | С | Superior | EMS14260 | 115 | 1257 | 250 | 60 | 204 | 276 | ±12 | ± 12 | 30 ms/v | yes | С | 2745 | c,j,k | |) | Superior | EMSI6290Y | 115 | 1257 | 250 | 905 | 102 | 138 | ±12 | ±12 | 140 ms/v | yes | С | 3510 | a,c,j,l | | | Superior | EMS162190Y | 115 | 1257 | 525 | 1905 | 95 | 135 | ±12 | ±12 | 370 ms/v | yes | С | 8510 | c,j,k | | | Sorensen | FR1000 | 104 | 126 | ina | 17 | 95 | 135 | ±0.052 | ± 0.052 | 50 μs | yes | R | 1425 | k | | | Sorensen | FR1010 | 104 | 126 | ina | 11 | 190 | 270 | ±0.05 ² | ± 0.052 | 50 μs | yes | R
R | 1650 | k | | _ | Sorensen | FR1020 | 104 | 126 | ina | | 95 | 135 | ±0.05 ² | ± 0.052 | 50 μs | yes | K | 1525 | k | | | Sorensen | FR1030 | 104 | 126 | ina | 11 | 190 | 270 | ±0.052 | ± 0.052 | 50 μs | yes | R | 1650 | k | | | Behl-Invar | 503A | 0 | 130 | ina | 0.02 | 115 | 115 | ± 0.5 | 1 | 100 μs | yes | R | 1390 | k | | | Sola | ARV-50T | 0 | 135 | 50 | ina
5 | 105
1875,10 | 125 2295,13 | ±0.25
±1 ² | ±0.25
±1 ² | 74 ms/v | yes | R
R | 750
1210 | c,k | | | Superior
Superior | EM10009
EMS16290Y | 203 | 213
217 ⁷ | 14
250 | 905 | 177 | 239 | ±12 | ±12 | ina
80 ms/v | yes
yes | C | 3510 | a,c,j,k | | C | | 5 | | | | | | | | | | | | -510 | | | | Superior | EMSI62190Y | 191 | 217 | 525 | 1905 | 165 | 233 | ± 12 | ±12 | 220 ms/v | yes | C | 8510 | c,j,k | | | Tel Inst | 602
604 | 208 ⁶
208 ⁶ | 230 ⁶ | 10
20 | 2.4 | 2086
2086 | 230 ⁶
230 ⁶ | ina
ina | ina
ina | 50 ms/v
50 ms/v | yes | C or R
C or R | 405
450 | | | | Tel Inst | 606 | 2086 | 2306 | 40 | 10 | 2086 | 2306 | ina | ina | 100 ms/v | yes
yes | CorR | 555 | | | | Tel inst | 608 | 2086 | 2306 | 125 | 30 | 2086 | 2306 | ina | ina | 800 ms/v | yes | C or R | 740 | | | | Tel Inst | 651 | 200 | 234 | 4 | ina | 200 | 236 | ina | ina | 16 ms/v | yes | C or R | 264 | c,k | | | GE | 9T91Y3023 | 118 | 236 | ina | 2 | 95 | 13514 | 0.2 | 0.1 | 3 cycles | none | R | 615 | a | | | GE | 9T91Y3027 | 118 | 236 | ina | 5 | 95 | 260 | 0.2 | 0.1 | 3 cycles | none | R | 1320 | а | | | GE | 9T91Y3030 | 118 | 236 | ina | 10 | 190 | 520 | 0.2 | 0.1 | 3 cycles | none | R | 2040 | a | | С | Superior |
IE52002 | 220 | 240 | 1.1 | 0.25 | 195 | 225 | ± 0.1 | ± 0.15 | 50 ms | none | C or R | 345 | Ь | | 1 | Superior | 1E52005 | 220 | 240 | 2.2 | 0.5 | 195 | 225 | ±0.1 | ±0.15 | 100 ms | none | C or R | 370 | b | | | Superior | IEL52005 | 220 | 240 | 2.2 | 0.5 | 19512 | 22512 | ± 0.1 | ± 0.15 | 100 ms | none | C or R | 450 | b | | | Superior | 1E5201 | 220 | 240 | 4.5 | 1 | 195 | 255 | ±0.1 | ±0.15 | 100 ms | none | C or R | 430 | b | | | Superior | IEL5201 | 220 | 240 | 4.5 | 1 | 19512 | 22512 | ±0.1 | ± 0.15 | 100 ms | none | C or R | 485 | b | | | Superior | 1E5202 | 220 | 240 | 11 | 2.5 | 195 | 255 | ± 0.1 | ± 0.15 | 200 ms | none | C or R | 625 | Ь | | | Superior | IEL5202 | 220 | 240 | 11 | 2.5 | 19512 | 22512 | ±0.1 | ± 0.15 | 200 ms | none | C or R | 665 | b | | | Sorensen | 3000-2S
5000-2S | 220
220 | 240 | ina | 3 ¹
5 ¹ | 190
190 | 260
260 | ±0.1 | ±0.1 | 200 ms
200 ms | yes | R
R | 602
792 | k | | | Superior Superior | 1E5205 | 220 | 240
240 | ina
22 | 2. | 190 | 255 | ±0.1
±0.1 | ± 0.1
± 0.15 | 200 ms | yes | C or R | 792 | b | | | Superior | IEL5205 | 220 | 240 | 22 | 5 | 19512 | 25512 | ±0.1 | ± 0.15 | 200 ms | none | CorR | 765 | b | | C | | | | | | | | | | - | | | | | | | 2 | El Meas | 260A | 220 | 2407 | ina | 6 | 230 | 230 | ina | ina | 6.6 ms/v | yes | R | 445 | k | | | Superior | EMT4207 | 220 | 240 | 32.5 | 7.5 | 195 | 255 | ± 12 | ± 12 | 83 ms/v | yes | C | 600 | c,j,k | | | Sorensen | 10000-25 | 220 | 240 | ina | 101 | 190 | 260 | ±0.1 | ±0.1 | 300 ms | yes | C | 1850 | k | | | Superior | IE5210 | 220 | 240 | 43.5 | 10 | 195
195 ¹² | 255 | ±0.1 | ±0.15 | 300 ms | none | C | 1640 | b | | | Superior | IEL5210 | 220 | 240 | 43.5 | 10 | 132 | 25512 | ± 0.1 | ± 0.15 | 300 ms | none | C | 1720 | b | ## Ac supplies (amplitude-regulated) 240-480 v | | | | | OUT | PUT | | INF | PUT | | REGULAT | ION | | | | | |-----|----------|-----------|---------------|------------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|----------|-------------|---------| | | Mfr. | Model | Min.
Volts | Max.
Volts | Max.
Amps | Power
K VA | Min.
Volts | Max.
Volts | Line
% | Load
% | Response
Time | Meters | Mounting | Price
\$ | Notes | | | Superior | EMT6210Y | 220 | 240 | 25 | 10 | 195 ⁵ | 225 ⁵ | ±12 | ±12 | 83 ms/v | yes | С | 1055 | c,j,k | | | Sorensen | 15000-2S | 220 | 240 | ina | 15 ¹ | 190 | 260 | ±0.1 | ±0.1 | 300 ms | yes | C | 2850 | k | | | Superior | EMT6215Y | 220 | 240 | 38 | 15 | 1955 | 2255 | ±12 | ±12 | 83 ms /v | yes | C | 1100 | c,j,k | | - 1 | Superior | EMT6220Y | 220 | 240 | 50 | 20 | 1955 | 2255 | ±12 | ±12 | 83 ms/v | yes | C | 1200 | c,j,k | | c | Superior | EMT10138 | 220 | 240 | 87 | 20 | 195 | 255 | ±12 | ±12 | 83 ms/v | yes | С | 750 | a,c,j,k | | 3 | Superior | EMT4228B | 220 | 240 | 120 | 27.5 | 205 | 250 | ±12 | ±12 | 111 ms/v | yes | С | 700 | c,j,k | | | Superior | EMT6245Y | 220 | 240 | 113 | 45 | 195 | 255 | ±12 | ±12 | 320 ms/v | yes | c | 1620 | c,j,k | | - 1 | Superior | EMS14260 | 220 | 2407 | 250 | 60 | 204 | 276 | ±12 | ±12 | 60 ms/v | yes | c | 2745 | c,j,k | | | Superior | EMT6270D | 220 | 240 | 175 | 70 | 195 | 255 | ±12 | ±12 | 320 ms/v | yes | c | 2000 | c,j,k | | | Superior | EMS42100 | 220 | 240 | 435 | 100 | 218.5 | 241.5 | ±12 | ± 12 | 220 ms/v | yes | c | 1350 | c,j,k | | | Superior | EMS142100 | 220 | 240 | 417 | 100 | 228 | 252 | ±1 ² | +12 | 210 ms/v | yes | С | 1990 | a,c,j,k | | | Superior | EMS62135Y | 220 | 240 | 339 | 1355 | 203 | 257 | ± 12 | ±12 | 220 ms/v | yes | c | 3250 | a,c,j,k | | | Superior | EMS14225 | 230 | 250 ⁷ | 104 | 25 | 204 | 276 | ±12 | ±12 | 60 ms/v | yes | C | 1945 | a,c,j,k | | | Superior | EMT4407 | 440 | 480 | 15 | 6.6 | 400 | 520 | ± 1 ² | ±12 | 41 ms/v | yes | c | 715 | c,j,k | | c | Superior | EMT6412Y | 440 | 480 | 16 | 12.55 | 4005 | 520 ⁵ | ±12 | ±12 | 41 ms/v | yes | c | 1140 | c,j,k | | 4 | | | | | | | | | | | | | | | | | 1 | Superior | EMT6417Y | 440 | 480 | 22 | 17.55 | 405 | 5205 | ± 12 | ± 12 | 41 ms/v | yes | С | 1225 | a,c,j,k | | | Superior | EMT4418 | 440 | 480 | 40 | 17.6 | 400 | 520 | ±12 | ± l ² | 41 ms/v | yes | C | 800 | a,c,j,k | | | Superior | EMT6425Y | 440 | 480 | 33 | 255 | 4005 | 5205 | ±12 | ±12 | 41 ms/v | yes | C | 1245 | a,c,j,k | | | Superior | EMT6450Y | 440 | 480 | 66 | 50 ⁵ | 4005 | 520 ⁵ | ±12 | ±12 | 125 ms/v | yes | С | 1760 | a,c,j,k | | | Superior | EMT6475Y | 440 | 480 | 100 | 75 ⁵ | 400 ⁵ | 520 ⁵ | ±12 | ± l ² | 125 ms/v | yes | С | 1900 | a,c,j,k | | , | Superior | EMT64100Y | 440 | 480 | 131 | 100 ⁵ | 420 ⁵ | 500 ⁵ | ±12 | ±12 | 188 ms/v | yes | С | 2000 | a,c,j,k | | C | Superior | EMS64180Y | 440 | 480 | 230 | 180 ⁵ | 4455 | 4955 | ± 12 | ±12 | 300 ms/v | yes | С | 3310 | a,c,j,k | | 5 | Superior | EMS64275Y | 440 | 480 | 347 | 275 ⁵ | 4455 | 495 ⁵ | ±12 | ±12 | 300 ms /v | yes | С | 3400 | a,c,j,k | Notes, abbreviations and manufacturers' index at end of this section. #### Ac supplies (frequency-regulated, fixed-frequency) **50** cps | | | | | FRE | QUENCY | | | | | OUTPU | Т | | | | | | | |----------|------------|----------------------|------|------|----------|----------------|-------|---------------------------|-------------------------|-----------|-----------|--------------|--------------|--------|----------|-----------------|-------| | | Mfr. | Model | Min. | Max. | Accuracy | Stabil- | Min. | Max. | Power | REGU | LATION | Dis- | Response | Meters | Mounting | Price | Notes | | | | | cps | cps | % | ity – % | Volts | Volts | VA | Line
% | Load
% | tortion
% | Time | | | | | | | CML | SG31A-T30A | 50 | 50 | ina | ± 0.258 | 0 | 21710 | 305 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Tel Inst | 4010A-1-A | 50 | 50 | 1 | 1 | 50 | 75 | 1005 | 0.5 | 0 | 1 | ina | yes | C | 510 | | | | RFL
CML | 2120A
SG31A-T150A | 50 | 50 | ina | 0.06
±0.258 | 0 | 1500
217 ¹⁰ | 100
150 ⁵ | 0.05 | 0.1 | 0.5 | ina
50 μs | none | C or R | 3250
request | k | | AC | Tel Inst | 4025B-1-A | 50 | 50 | 1 | 1 | 90 | 130 | 2505 | 0.5 | 0.5 | 1 | ina ina | yes | c | 830 | | | 16 | CML | SG31A-T300A | 50 | 50 | ina | ±0,258 | 0 | 21710 | 3005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | CML | SG31A-T500A | 50 | 50 | ina | ±0.258 | 0 | 21710 | 5005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Tel Inst | 4050-1-A | 50 | 50 | 1 | 1 | 100 | 150 | 5005 | 0.5 | 0 | 1 | ina | yes | C | 1515 | | | | Tel Inst | 4100-1-A | 50 | 50 | 1 | 1 | 100 | 150 | 10005 | 0.5 | 0 | 1 | ina | yes | C | 22 15 | | | | CML | SG31A-T1200 A | 50 | 50 | ina | ±0.258 | 0 | 21710 | 12005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG31A-T1750A | 50 | 50 | ina | ±0.258 | 0 | 21710 | 1750 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG31A-T2500A | 50 | 50 | ina | ±0.258 | 0 | 21710 | 2500 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | AC
17 | Tel Inst | 4250-1-A | 50 | 50 | 1 | 1 | 100 | 150 | 25005 | 0.5 | 0 | 1 | ina | yes | C | 3465 | g | | 17 | CML | SG31A-T5000A | 50 | 50 | ina | ±0.258 | 0 | 21710 | 5000 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Tel Inst | 4500-1-A | 50 | 50 | 1 | 1 | 100 | 150 | 50005 | 0.5 | 0 | 1 | ina | yes | C | 5365 | h | Notes, abbreviations and manufacturers' index at end of this section. April 19, 1966 | | | | | FRE | QUENCY | | | | _ | OUTPU | _ | | | | | | | |----------|--------------------------|--------------------------|------------|------------|-------------|-----------------------------|-------|--------------------------|--|----------------|---------------|-----------------|--------------|--------------|----------|-----------------|----------| | | Mfr. | Model | Min | Max, | Ассыгасу | Stabil- | Min. | Max. | Power | | LATION | Dis-
tortion | Response | Meters | Mounting | Price
\$ | Notes | | | | | cps | cps | % | ity – % | Volts | Volts | VA | Line
% | Load
% | % | Time | | | -8 | | | | CML | SG31A-T10000A | 50 | 50 | ina | ±0.25 ⁸ | 0 | 21710 | 10,0005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG31A-T15000A | 50 | 50 | ina | ±0.25 | 0 | 21710 | 15,000 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h, i, k | | | CML | SG32A-T30A | 60 | 60 | ina | ±0.25 ⁸ | 0 | 21710 | 305 | 0.5 | 0.5 | 3 | 50 μς | yes | R | request | k | | | Tel Inst | 4010A-1-B | 60 | 60 | 1 | 1 | 50 | 75 | 1005 | 0.5 | 0 | 1 | ina | yes | C | 510 | | | C | RFL | 2120A | 60 | 60 | ina | 0.06 | 0 | 1500 | 100 | 0.05 | 0.1 | 0.5 | ina | попе | C or R | 3250 | 1 | | 18 | Behl-Invar | 123A | 45 | 60 | 0.1 | 0.05 | 0 | 130 | 120 | ±0.5 | 1 | 1 | ina | yes | R | ina | f | | | CML | SG32A-T1150A | 60 | 60 | ina | ±0.258 | 0 | 21710 | 1505 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Behl-Invar
Tel Inst | 161A
4025B-1-B | 45
60 | 60 | 0.1 | 0.05 | 90 | 130
130 | 160
250 ⁵ | ±0.5
0.5 | 0 | 1 1 | ina
ina | yes | R | ina
830 | f | | | CML | SG32A-T300A | 60 | 60 | ina | ±0.258 | 0 | 21710 | 3005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | . k | | | Behl-Invar | 351A | 45 | 60 | 0.1 | 0.05 | 0 | 130 | 350 | ±0.5 | 1 | 1 | ina | yes | R | ina | 1 | | | Behl-Invar | 503A | 45 | 60 | 0.1 | 0.05 | 0 | 130 | 500 | ± 0.5 | 1 | 1 | ina | yes | R | ina | f | | | CML | SG32A-T500A | 60 | 60 | ina | ± 0.25 | 0 | 21710 | 5005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Tel Inst | 4050- 1-B | 60 | 60 | 1 | 1 | 100 | 150 | 5005 | 0.5 | 0 | 1 | ina | yes | C | 1515 | | | AC | Behl-Invar | 751A | 45 | 60 | 0.1 | 0.05 | 0 | 130 | 750 | ±0.5 | 1 | 1 | ina | y es | R | ina | f,g | | 19 | CML | SG32A-T750A | 60 | 60 | ina | ± 0.258 | 0 | 21710 | 750 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Tel Inst | 4100-1-B | 60 | 60 | 1 | 1 | 100 | 150 | 10005 | 0.5 | 0 | 1 | ina | yes | С | 2215 | | | | CML • | SG32A-T1200A | 60 | 60 | ina | ±0.258 | 0 | 21710
 12005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Behl-Invar | 1501A | 45 | 60 | 0.1 | 0.05 | 0 | 130 | 1500 | ±0.5 | 1 | 1 | ina | yes | R | ina | f,h | | | CML | SG32A-T1750A | 60 | 60 | ina | ±0.25 ⁸ | 0 | 21710 | 1750 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Tel Inst | 4250- 1- B
350 1 A | 60
45 | 60 | 1 | 1 0.05 | 100 | 150
130 | 2500 ⁵
3500 | 0.5
±0.5 | 0 | 1 1 | in a
in a | yes | C | 3465
ina | g
f,h | | | Behl-Invar
Behl-Invar | 5001A | 45 | 60 | 0.1 | 0.05 | 0 | 130 | 5000 | ±0.5 | 1 | 1 | ina | yes
yes | C | ina | f,h | | | CML | SG32A-T2500A | 60 | 60 | ina | ±0.258 | 0 | 21710 | 50005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | \C | Tel Inst | 4500-1-B | 60 | 60 | 1 | 1 | 100 | 150 | 5000 ⁵ | 0.5 | 0 | 1 | ina | yes | С | 5365 | h | | 20 | CML | SG32A-T10000A | 60 | 60 | ina | ±0.258 | 0 | 21710 | 10,0005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG32A-T15000A | 60 | 60 | ina | ±0.25 ⁸ | 0 | 21710 | 15,0005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | ħ,i,k | | | Ind Test | 20-SF | 45 | 400 | 0.1 | 0.2 | 0 | 120 | 20 | 0.5 | 10 | 0.5 | ina | none | R | 314 | e | | | North Hills
CML | VS-60
SG34A-T30A | 400
400 | 400
400 | ina
ina | ±0.01
±0.258 | 0 | 125
217 ¹⁰ | 25
30 ⁵ | ± 0.005
0.5 | ±0.005
0.5 | 0.1 | ina
50 μs | yes
yes | R
R | 2195
request | j,k
k | | - | | | AE. | 400 | 0.1 | 0.3 | 0 | 120 | 00 | 3.0 | 0.5 | 0.5 | ina | | R | 490 | e | | | Ind Test
RFL | 80-SF
2120A | 45
400 | 400
400 | 0.1
ina | 0.2 | 0 | 130
1500 | 80
100 | 0.5 | 0.5 | 0.5 | ina
ina | none | CorR | 3250 | f | | | Tel Inst | 4010A-1-C | 400 | 400 | 0.25 | 0.1 | 50 | 75 | 1005 | 0.5 | 0 | 1 | ina | yes | С | 470 | | | | Behl-Invat | 123A | 45 | 400 | ±0.1 | ± 0.05 | 0 | 130 | 120 | ±0.5 | 1 | 1 | ina | yes | R | ina | f | | AC | Behl-Invar | 151-C-1E | 400 | 400 | 0.5 | ina | 0 | 130 | 150 | ina | 1 | 1 | ina | yes | С | 485 | k | | 21 | CML | SG34A-T150A | 400 | 400 | ina | ±0.258 | 0 | 21710 | 1505 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Behl-Invar | 161A | 45 | 400 | ±0.1 | ±0.05 | 0 | 130 | 160 | ±0.5 | 1 | 1 | ina | yes | R | ina | f | | | Ind Test | 150-SF | 400 | 400 | 0.1 | 0.2 | 0 | 130 | 160 | ±0.5 | 1 | 1 | ina | none | R | 525 | | | | Ind Test | 160 | 400 | 400 | 0.1 | 0.2 | 0 | 130 | 160 | ±0.5 | ±0.5 | 0.5 | ina | none | С | 560 | | | | Ind Test | 160-SF | 45 | 400 | 0.1 | 0.2 | 0 | 130 | 160 | 0.5 | 0.5 | 0.5 | ina | none | R | 575 | е | | | ind Test | 250-SF | 45 | 400 | 0.1 | 0.2 | 0 | 130 | 250 | 0.5 | 0.5 | 0.5 | ina | none | R
C | 765
795 | е | | | Tel Inst | 4025B-1-C
SG34A-T300A | 400
400 | 400
400 | 0.25
ina | 0.1
±0.25 ⁸ | 90 | 130
217 ¹⁰ | 250 ⁵
300 ⁵ | 0.5
0.5 | 0 | 1 3 | ina
50 µs | yes
yes | R | request | k | | | Behl-Invar | 351A | 45 | 400 | ±0.1 | ±0.25 | 0 | 130 | 350 | ±0.5 | 1 | 1 | ina | yes | R | ina | f | | AC | Behl-Invar | 503A | 45 | 400 | ±0.1 | ±0.05 | 0 | 130 | 500 | ±0.5 | 1 | 1 | ina | yes | R | ina | 1 | | 22 | CML | SG34A-T500A | 400 | 400 | ina | ±0.258 | 0 | 21710 | 500 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Ind Test | 500-SF | 45 | 400 | 0.1 | 0.2 | 0 | 130 | 500 | 0.5 | 0.5 | 1 | ina | yes | С | 1500 | e,k | | | Tel Inst | 4050-1-C | 400 | 400 | 1 | 1 | 100 | 150 | 5005 | 0.5 | 0 | 1 | ina | yes | С | 1365 | | | | Behl-Invar | 751A | 45 | 400 | ±0.1 | ±0.05 | 0 | 130 | 750 | ±0.5 | 1 | 1 | ina | yes | R | ina | f,g | | | CML | SG34A-T750A | 400 | 400 | ina | ±0.258 | 0 | 21710 | 7505 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Ind Inst | 1000-SF | 45 | 400 | 0.1 | 0.2 | 0 | 130 | 1000 | 0.5 | 0.5 | 1 | ina | yes | C | 2000
1915 | e,i,k | | | Tel Inst | 4100-1-C | 400 | 400 | 1 | 1
±0.25 ⁸ | 100 | 150
217 ¹⁰ | 1000 ⁵
1200 ⁵ | 0.5 | 0 | 1 3 | ina
50 μs | yes | C
R | request | h,i,k | | | CML
Behl-Invar | SG34A-T1200A
1501A | 400
45 | 400 | ina
±0.1 | ±0.25°
±0.05 | 0 | 130 | 1500 | ± 0.5 | 1 | 1 | ina | y es
y es | R | ina | f,h | | A.C. | CML CML | SG34A-T1750A | 400 | 400 | ina | ±0.03
±0.25 ⁸ | 0 | 21710 | 1750 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | AC
23 | CML | SG34A-T2500A | 400 | 400 | ina | ±0.25 ⁸ | 0 | 21710 | 2500 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Tel Inst | 4250-1-C | 400 | 400 | 1 | 1 | 100 | 150 | 25005 | 0.5 | 0.0 | 1 | ina | yes | C | 3315 | g | | | Ind Test | 3000-SF | 45 | 400 | 0.1 | 0.2 | 0 | 130 | 3000 | 0.5 | 0.5 | 1 | ina | yes | С | 3700 | e,i,k | | | Behl-Invar | 3501A | 45 | 400 | ±0.1 | ±0.05 | 0 | 130 | 3500 | ± 0.5 | 1 | 1 | іпа | yes | С | ina | f,h | | | Behl-Invar | 5001A | 45 | 400 | ±0.1 | ±0.05 | 0 | 130 | 5000 | ±0.5 | 1 | 1 | ina | yes | C | ina | f,h | | | | | | FRE | DUENCY | | | | | OUTPU | T | | | | | | | |----------|--------------------------|------------------------|-------------|------------------|---------------|--------------------|-----------|------------|--------------------------------------|-----------|-----------|--------------|------------------|-------------|----------|-------------|--------| | | Mfr. | Model | Min | Max, | Accusacy | Stabil- | Min, | Max. | Power | REGU | LATION | Dis- | Pananan | Meters | Mounting | Price | Notes | | | | | cps | cps | Accuracy
% | ity - % | Volts | Volts | VA | Line
% | Load
% | tortion
% | Response
Time | | | \$ | | | 7 | CML | SG34A-T5000A | 400 | 400 | ina | ±0.258 | 0 | 21710 | 50005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Tel Inst | 4500-1-C | 400 | 400 | 1 | 1 | 100 | 150 | 50005 | 0.5 | 0 | 1 | ina | yes | C | 5265 | h | | | CML
CML | SG34A-T10000A | 400 | 400 | ina | ±0.258 | 0 | 21710 | 10,0005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | North Hills | SG34A-T15000A
VS-64 | 400
800 | 400 | ina
. 20 | ±0.25 ⁸ | 0 | 21710 | 15,0005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | AC | MOI (II IIIIIS | 43-04 | 000 | 800 | ± 20 cps | ±0.1 | 10 | 15 | 30 | 0.1 | 0.1 | 1 | ina | ina | R | request | | | 24 | RFL | 2120A | 800 | 800 | ina | 0.06 | 0 | 1500 | 100 | 0.05 | 0.1 | 0.5 | ina | none | C or R | 3250 | 1 | | | RFL | 2120A | 1000 | 1000 | ina | 0.06 | 0 | 1500 | 100 | 0.05 | 0.1 | 0.5 | ina | none | CorR | 3250 | 1 | | | Tel Inst | 4010A-1-D | 1600 | 1600 | 0.25 | 0.1 | 50 | 75 | 1005 | 0.5 | 0 | 1 | ina | yes | С | 470 | | | | Tel Inst | 4025B-1-D | 1600 | 1600 | 0.25 | 0.1 | 90 | 130 | 2505 | 0.5 | 0 | 1 | ina | yes | C | 795 | | | | Tel Inst | 4050-1-D | 1600 | 1600 | 1 | 1 | 100 | 150 | 5005 | 0.5 | 0 | 1 | ina | yes | С | 1445 | | | | Tel Inst | 4100-1-D | 1600 | 1600 | 1 | 1 | 100 | 150 | 10005 | 0.5 | 0 | 1 | ina | yes | С | 1915 | g | | | Tel Inst | 4250-1-D | 1600 | 1600 | 1 | 1 | 100 | 150 | 25005 | 0.5 | 0 | 1 | ina | yes | C | 3315 | B | | | IERC | 4500-1-D
MA-150 | 1600
200 | 1600
2400 | 0.1 | 0.1 | 100
18 | 150
500 | 5000 ⁵
50 ⁵ | 0.5 | 0 0,1 | 0.2 | ina
ina | yes
none | C
R | 5265 | h | | | RFL | 2120A | 2400 | 2400 | ina | 0.06 | 0 | 1500 | 100 | 0.05 | 0.1 | 0.2 | ina | none | CorR | ina
3250 | e
1 | | AC
25 | IERC | MA-1150 | 200 | 2400 | 0.1 | 0.1 | 18 | 500 | 1505 | 0.1 | 0.1 | 0.2 | | | | | | | | Ind Test | 1040-SF | 100 | 3000 | 0.1 | 0.1 | 0 | 500
120 | 3 | 0.1 | 0.1 | 0.2 | ina
ina | none | R
C | ina
129 | e | | | Ind Test | 1040A-SF | 100 | 3000 | 0.1 | 0.2 | 0 | 120 | 8 | 1 | 10 | 1 | ina | none | c | 199 | e | | | RFL | 250 | 40 | 3000 | ina | 0.05 | 105 | 130 | 250 | 0.2 | 0.2 | 0.5 | 50 μs | yes | CorR | 1340 | k | | | North Hills | VS-61 | 4800 | 4800 | ±50 cps | ±0.01 | 5 | 107 | 5 | 0.01 | 0.01 | 0.5 | ina | ina | R | request | | | | Ind Test | 20-SF | 45 | 5000 | 0.1 | 0.2 | 0 | 120 | 20 | 0.5 | 10 | 0.5 | ina | попе | R | 299 | е | | | Ind Test | 80-SF | 45 | 5000 | 0.1 | 0.2 | 0 | 130 | 80 | 0.5 | 0.5 | 0.5 | ina | none | R | 475 | е | | | Behl-Invar | 123A | 45 | 5000 | 0.01 | 0.05 | 0 | 130 | 120 | 0.5 | 1 | 1 | ina | yes | R | ina | e,f | | | Behl-Invar | 161A | 45 | 5000 | 0.01 | 0.05 | 0 | 130 | 160 | 0.5 | 1 | 1 | ina | yes | R | ina | e,f | | AC | Ind Test | 160-SF | 45 | 5000 | 0.1 | 0.2 | 0 | 130 | 160 | 0.5 | 0.5 | 0.5 | ina | none | R | 560 | е | | 26 | Ind Test | 250-SF | 45 | 5000 | 0.1 | 0.2 | 0 | 130 | 250 | 0.5 | 0.5 | 1 | ina | yes | R | 750 | e,k | | | Behi-Invar | 351A | 45 | 5000 | 0.01 | 0.05 | 0 | 130 | 350 | 0.5 | 1 | 1 | ina | yes | R | ina | e,f | | | Behl-Invar | 503A | 45 | 5000 | 0.01 | 0.05 | 0 | 130 | 500 | 0.5 | 1 | 1 | ina | yes | R | ina | e,f | | | Ind Test | 500-SF | 45 | 5000 | 0.1 | 0.2 | 0 | 130 | 500 | 0.5 | 0.5 | 1 | ina | yes | R | 1450 | e,k | | | Behi-Invar | 751A | 45 | 5000 | 0.01 | 0.05 | 0 | 130 | 750 | 0.5 | 1 | 1 | ina | yes | R | ina | e,f,g | | | Ind Test | 1000-SF | 45 | 5000 | 0.1 | 0.2 | 0 | 130 | 1000 | 0.5 | 0.5 | 1 | ina | yes | R | 1950 | e,h,k | | | Behl-Invar | 1501A | 45 | 5000 | 0.01 | 0.05 | 0 | 130 | 1500 | 0.5 | 1 | 1 | ina | yes | R | ina | e,f,h | | | Ind Test | 3000-SF | 45 | 5000 | 0.1 | 0.2 | 0 | 130 | 3000 | 0.5 | 0.5 | 1 | ina | yes | R | 3650 | e,h,k | | | Behl-Invar
Behl-Invar | 3501A
5001A | 45
45 | 5000
5000 | 0.01 | 0.05 | 0 | 130
130 | 3500
5000 | 0.5 | 1 | 1 1 | ina
ina | yes | C | ina
ina | e,f,h | | AC | Don't HIVE | JOUIN | 10 | 3000 | 0.01 | 0.03 | Ü | 150 | 3000 | 0.3 | • | 1 | IIId | yes | C | IIId | e,f,h | | 27 | IERC | GK1-102 | 200 | 10,000 | 0.1 | 0.1 | 10 | 300 | 2 | 0.1 | 0.1 | 0.15 | 200 μs | none | R | ina | е | | | IERC | RK-102 | 200 | 10,000 | 0.1 | 0.1 | 10 | 300 | 2 | 0.1 | 0.1 | 0.1 | 200 µs | none | R | 395 | е | | | IERC | GK1-106 | 200 | 10,000 | 0.1 | 0.1 | 10 | 300 | 6 | 0.1 | 0.1 | 0.2 | 200 μs | none | R | 395 | e | | | IERC | RK-106 | 200 | 10,000 | 0.1 | 0.1 | 10 | 300 | 6 | 0.1 | 0.1 | 0.15 | 200 μs | none | R | 495 | е | | | IERC | RK-115 | 200 | 10,000 | 0.1 | 0.1 | 10 |
300 | 15 | 0.1 | 0.1 | 0.2 | 200 μs | попе | R | 675 | е | | | IERC
IERC | RK-125 | 200 | 10,000 | 0.1 | 0.1 | 10 | 300 | 25 | 0.1 | 0.1 | 0.2 | 200 µs | none | R | ina | е | | | Behl-Invar | RK-135
QAP-41 | 200
45 | 10,000
10,000 | 0.1 | 0.1 | 10 | 300
130 | 35
40 | 0.1 | 0.1 | 0.2 | 200 μs | none | R
%R | 845
ina | e | | | IERC | MK-150 | 200 | 10,000 | 0.1 | 0.05 | 0 | 130 | 50 | 0.1 | 0.5 | 0.5 | 50 μs
200 μs | yes
none | R R | ina
1950 | e | | | IERC | RK-150 | 200 | 10,000 | 0.1 | 0.1 | 10 | 300 | 50 | 0.1 | 0.1 | 0.2 | 200 μs | none | R | 875 | e | | AC
28 | | | | | | | | | | 1 | | | | | | | | | | Ind Test | 160-SF | 45 | 20,000 | 0.1 | 0.2 | 0 | 130 | 160 | 0.5 | 0.5 | 0.5 | ina | none | R | 760 | е | | | Ind Test | 250-SF | 45 | 20,000 | 0.1 | 0.2 | 0 | 130 | 250 | 0.5 | 0.5 | 0.5 | ina | none | R | 950 | | April 19, 1966 | | | | | FRE | DUENCY | | | | | OUTPU | | | | | | | | |----------|----------------------|---------------------------|------------|------------|-------------|------------------------------|-----------|--|-------------------------------------|---------------|-------------|-----------------|-----------------|--------------|----------|-----------------|------------| | | Mfr. | Model | Min | Max. | Ассигасу | Stabil- | Min. | Max. | Power | | LATION | Dis-
tortion | Response | Meters | Mounting | Price \$ | Notes | | | | | cps | cps | % | ity – % | Volts | Volts | VA | Line
% | Load
% | % | Time | | | | | | | Twinco | ACR5-250M | 47 | 53 | ina | ina | 110 | 120 | 250 | ±1 | ±1 | 3 | 200 ms | yes | C or R | 450 | k | | | Twinco | ACR5-500M | 47 | 53 | ina | ina | 110 | 120 | 500 | ±1 | ±1 | 3 | 200 ms | yes | C or R | 530 | k | | | Twinco | ACR5-1000M | 47 | 53 | ina | ina | 110 | 120 | 1000 | ± 1 | +1 | 3 | 200 ms | yes | C or R | 760 | k | | | Twinco | ACR5-2000M | 47 | 53 | ina | ina | 110 | 120 | 2000 | ±1 | +1 | 3 | 200 ms | y es | C or R | 1070 | k | | AC | Ind Test | 80-VP | 55 | 65 | 0.2 | 0.2 | 0 | 130 | 80 | 0.5 | 0.5 | 0.5 | ina | none | R | 525 | | | 29 | Ind Test | 160-VP | 55 | 65 | 0.2 | 0.2 | 0 | 130 | 160 | 0.5 | 0.5 | 0.5 | ina | none | R | 610 | | | | Ind Test | 250-VP | 55 | 65 | 0.2 | 0.2 | 0 | 130 | 250 | 0.5 | 0.5 | 0.5 | ina | none | R | 800 | | | | Ind Test | 500-VP | 55 | 65 | 0.2 | 0.2 | 0 | 130 | 500 | 0.5 | 0.5 | 1 | ina | yes | C | 1700 | k | | | Ind Test
Ind Test | 1000-VP
3000-VP | 55
55 | 65
65 | 0.2 | 0.2 | 0 | 130
130 | 1000
3000 | 0.5
0.5 | 0.5 | 1 1 | ina
ina | yes
yes | C | 2200
3900 | h,k
h,k | CML
Tel Inst | SG33A-T30A
4010A-1-J | 45
50 | 70 | ina
3 | ±0.25 ¹¹ | 50 | 217 ¹⁰
75 | 30 ⁵
100 ⁵ | 0.5
0.5 | 0.5 | 3 | 50 μs
ina | y es
y es | R | request
620 | k | | | CML | SG33A-T150A | 45 | 70 | ina | ±0.2511 | | 21710 | 1505 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Tel Inst | 4025B-1-J | 50 | 70 | 3 | 1 | 90 | 130 | 250 | 0.5 | 0 | 1 | ina | yeş | C | 940 | | | AC | CML | SG33A-T300A | 45 | 70 | ina | ±0.2511 | | 21710 | 3005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | 30 | CML | SG33A-T500A | 45 | 70 | ina | ±0.2511 | 0 | 21710 | 500 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Tel Inst | 4050-1-J | 50 | 70 | 3 | 1 | 100 | 150 | 5005 | 0.5 | 0 | 1 | ina | yes | C | 1595 | g | | | CML | SG33A-T750A | 45 | 70 | ina | ±0.2511 | 0 | 21710 | 750 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Tel Inst | 4100-1-J | 50 | 70 | 3 | 1 | 100 | 150 | 10005 | 0.5 | 0 | 1 | ina | yes | C | 2295 | g | | | CML | SG33A-T1200A | 45 | 70 | ina | ±0.2511 | 0 | 21710 | 12005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG33A-T1750A | 45 | 70 | ina | ±0.2511 | 0 | 217 ¹⁰
217 ¹⁰ | 17505 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG33A-T2500A | 45 | 70 | ina | ±0.2511 | 0 | | 2500 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Tel Inst | 4250-1-J | 50 | 70 | 3 | 1
±0.25 ¹¹ | 100 | 150
217 ¹⁰ | 25005 | 0.5 | 0 | 1 3 | ina | yes | C
R | 3545 | g
b:t | | AC | CML
Tel Inst | SG33A-T5000A
4500-1-J | 45
50 | 70
70 | ina
3 | 1 | 100 | 150 | 5000 ⁵
5000 | 0.5 | 0.5 | 1 | 50 μs
ina | y es
yes | C | request
5445 | h,i,k
h | | 31 | CML | SG33A-T10000A | 45 | 70 | ina | ±0.2511 | 0 | 21710 | 10.0005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG33A-T15000A | 45 | 70 | ina | ±0.2511 | 0 | 21710 | 15,000 | 0.5 | 0.5 | 3 | 50 μs | y es | R | request | h,i,k | | | Behl-Invar | 123A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 120 | +0.5 | 1 | 1 | ina | yes | R | ina | f | | | Behl-Invar | 161A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 160 | ±0.5 | 1 | 1 | ina | yes | R | ina | f | | | Behl-Invar | 351A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 350 | +0.5 | 1 | 1 | ina | yes | R | ina | f | | | Behl-Invar | 503A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 500 | ±0.5 | 1 | 1 | ina | y es | R | ina | f | | | Behl-Invar | 751A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 750 | ±0.5 | 1 | 1 | ina | yes | R | ina | f,g | | | Behl-Invar | 1501A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 1500 | ±0.5 | 1 | 1 | ina | yes | R | ina | f,h | | | Behl-Invar | 3501A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 3500 | +0.5 | 1 | 1 1 | ina | yes | C | ina | f,h | | AC | Behl-Invar | 5001A | 45 | 75 | 0.1 | 0.05 | 0 | 130 | 5000 | +0.5 | 1 | 1 | ina | yes | С | ina | f,h | | 32 | NJE | TFC-26-100 | 380 | 420 | ±0.5 | 0.2 | 24 | 30 | 100 | ±0.5 | ±4 | 5 | 30 ms | yes | R | 390 | j,k | | | NJE | TFC-115-100 | 380 | 420 | ±0.5 | 0.2 | 105 | 130 | 100 | ±0.5 | ±1 | 5 | 30 ms | yes | R | 370 | j,k | | | NJE | TFC-26-200 | 380 | 420 | ±0.5 | 0.2 | 24 | 30 | 200 | ±0.5 | ±4 | 5 | 30 ms | yes | R | 590 | j,k | | | NJE | TFC-115-200 | 380 | 420 | ±0.5 | 0.2 | 105 | 130 | 200 | ±0.5 | ±1 | 5 | 30 ms | yes | R | 570 | j,k | | | NJE | FC-26-500 | 380 | 420 | ± 0.25 | 0.2 | 24 | 30 | 500 | ±0.5 | ± 4 | 5 | 100 ms | yes | R | 1150 | j,k | | | NJE | FC-115-500 | 380 | 420 | ±0.25 | 0.2 | 95 | 135 | 500 | ±0.5 | ±1 | 5 | 100 ms | yes | R | 1120 | j,k | | | NJE | FC-115-1000
ACR4-1000M | 380 | 420 | ±0.25 | 0.2 | 95
110 | 135 | 1000 | +0.5
±0.25 | ±1 | 5 | 100 ms
50 ms | yes | R | 1920
575 | j,k | | | Twinco
Sorensen | FCD500 | 380
360 | 420 | ina
ina | ina
±1 | 105 | 120
125 | 500 | ±0.25 | ±0.25
±1 | 5 | 200 ms | y es
none | C | 1460 | | | | Sorensen | FCD3P1000 | 360 | 440 | ina | ±1 | 115 | 200 | 1000 | ±1 | ±l | 5 | 100 ms | none | C | 4900 | g | | AC | | | | | | | | | | | | | | | | | | | 33 | Sorensen | FCD3P2000 | 360 | 440 | ina | ±1 | 115 | 200 | 2000 | ±1 | ±1 | 5 | 500 ms | none | C | 3275 | g | | | CML | SG35A-T30A | 350 | 450 | ina | ±0.2511 | | 21710 | 30 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | Ind Test | 80 | 350 | 450 | 0.3 | 0.2 | 0 | 130 | 80 | 0.5 | 0.5 | ina | ina | none | R | 475 | | | | Tel Inst | 4010A-1-E | 350 | 450 | 3 | 1 0.05 | 50 | 75 | 1005 | 0.5 | 0 | 1 | ina | yes | C | 580 | f | | | Behl-Invar | 123A | 45 | 450 | ±0.1 | ±0.05 | 0 | 130 | 120 | ±0.5 | 1 | 1 | ina | yes | R | ina | | | | CML
Behl-Invar | SG35A-T150A | 350 | 450 | ina
±0.1 | ±0.25 ¹¹
+0.05 | | 21710 | 1505 | 0.5
+0.5 | 0.5 | 3 | 50 μs | yes | R
R | request | k | | | Ind Test | 161A
150 | 45
350 | 450
450 | 0.3 | 0.2 | 0 | 130 | 160
160 | 0.5 | 1 | l
ina | ina
ina | yes
none | R | ina
525 | | | | Ind Test | 160 | 350 | 450 | 0.3 | 0.2 | 0 | 130 | 160 | 0.5 | 1
0.5 | ina | ina | none | R | 560 | | | | Ind Test | 250 | 350 | 450 | 0.3 | 0.2 | 0 | 130 | 250 | 0.5 | 0.5 | ina | ina | none | C | 750 | | | AC
34 | | - | | 1 1 | | | | | | | | | | | | | | | J-4 | Tel Inst | 4025B-1-E | 350 | 450 | 3 | 1 2511 | 90 | 130 | 2505 | 0.5 | 0 | 1 2 | ina
50 ue | yes | C | 905 | þ | | | CML
Behl-Invar | SG35A-T300A | 350 | 450 | ina | ±0.2511 | | 21710 | 3005 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | | DEUI-INVAC | 351A | 45 | 450 | ±0.1 | ±0.05 | 0 | 130 | 350 | ±0.5 | 1 | 1 | ina | yes | R | ina | | | | Behl-Invar | 503A | 45 | 450 | ±0.1 | ±0.05 | 0 | 130 | 500 | ±0.5 | 1 | 1 | ina | yes | R | ina | 1 | #### Ac supplies (frequency-regulated, adjustable-frequency) 450-1800 cps | | | | | FRE | DUENCY | | | | | OUTPU | | | | | | Deine | | |----|--|---|------------------------------------|--------------------------------------|---------------------------------|---|-----------------------------|---|--|--------------------------------------|---------------------------------|-------------------------|---------------------------------------|------------------------------------|----------------------------|--|-------------------------------------| | | Mfr. | Model | Min .
cps | Max.
cps | Accuracy
% | Stabil-
ity – % | Min.
Volts | Max.
Voits | Power
VA | Line | LATION
Load | Dis-
tortion | Response
Time | Meters | Mounting | Price
\$ | Notes | | AC | Ind Test
Tel Inst
Behl-Invar
CML
Ind Test | 500-VN
4050-1-E
751A
SG35A-T750A
1000-VN | 350
350
45
350
350 | 450
450
450
450
450 | 0.3
3
±0.1
ina
0.3 | 0.2
1
±0.05
±0.25 ¹ 1
0.2 | 0
100
0
0 | 130
150
130
217 ¹⁰
130 | 500
500 ⁵
750
750 ⁵
1000 | %
0.5
0.5
±0.5
0.5 | %
1
0
1
0.5
1 | ina 1 1 3 ina | ina
ina
ina
50 µs
ina | yes
yes
yes
yes
yes | C
C
R
R | 1600
1445
ina
request
2100 |
k
g
f,g
h,i,k
i,k | | 35 | Tel Inst
CML
Behl-invar
CML
CML | 4100-1-E
SG35A-T1200A
1501A
SG35A-T1750A
SG35A-T2500A | 350
350
45
350
350 | 450
450
450
450
450 | 3
ina
±0.1
ina
ina | 1
±0.25 ¹¹
±0.05
±0.25 ¹¹
±0.25 ¹¹ | 0 | 150
217 ¹⁰
130
217 ¹⁰
217 ¹⁰ | 1000 ⁵
1200 ⁵
1500
1750 ⁵
2500 ⁵ | 0.5
0.5
±0.5
0.5
0.5 | 0
0.5
1
0.5
0.5 | 1
3
1
3
3 | ina
50 μs
ina
50 μs
50 μs | yes
yes
yes
yes
yes | C
R
R
R | 1995
request
ina
request
request | g
h,i,k
f,h
h,i,k
h,i,k | | AC | Tel Inst
Ind Test
Behl-Invar
Behl-Invar
CML | 4250-1-E
3000-VN
3501A
5001A
SG35A-T5000A | 350
350
45
45
350 | 450
450
450
450
450 | 3
0.3
±0.1
±0.1
ina | 1
0.2
±0.05
±0.05
±0.25 | 100
0
0
0 | 150
130
130
130
217 ¹⁰ | 2500 ⁵
3000
3500
5000
5000 ⁵ | 0.5
0.5
±0.5
±0.5
0.5 | 0
1
1
1
0.5 | 1
ina
1
1
3 | ina
ina
ina
ina
50 µs | yes
yes
yes
yes
yes | C
C
C
C
R | 3395
3800
ina
ina
request | g
i,k
f,h
f,h
h,i,k | | 36 | Tel Inst CML CML Ind Test Behl-Invar | 4500-1-E
SG35A-T10000A
SG35A-T15000A
80-VM
123A | 350
350
350
300
300 | 450
450
450
500
500 | 3
ina
ina
0.4
0.1 | 1
±0.25 ¹ 1
±0.25 ¹ 1
0.2
0.05 | | 150
217 ¹⁰
217 ¹⁰
130
130 | 5000 ⁵
10,000 ⁵
15,000 ⁵
80
120 | 0.5
0.5
0.5
0.5
±0.5 | 0
0.5
0.5
0.5
1 | 1
3
3
0.5
1 | ina
50 μs
50 μs
ina
ina | yes
yes
yes
none
yes | C
R
R
R | 5345
request
request
525
ina | h
h,i,k
h,i,k | | AC | Behl-Invar
Ind Test
Ind Test
Behl-Invar
Behl-Invar | 161A
160-VM
250-VM
351A
503A | 300
300
300
300
300 | 500
500
500
500
500 | 0.1
0.4
0.4
0.1
0.1 | 0.05
0.2
0.2
0.05
0.05 | 0 0 0 0 0 | 130
130
130
130
130 | 160
160
250
350
500 | ±0.5
0.5
0.5
±0.5
±0.5 | 1
0.5
0.5
1 | 1
0.5
0.5
1 | ina
ina
ina
ina
ina | yes
none
none
yes
yes | R
R
R
R | ina
610
800
ina
ina | f
f
f | | 37 | Ind Test
Behl-Invar
Ind Test
Behl-Invar
Ind Test | 500-VM
751A
1000-VM
1501A
3000-VM | 300
300
300
300
300 | 500
500
500
500
500 | 0.4
0.1
0.4
0.1
0.4 | 0.2
0.05
0.2
0.05
0.2 | 0 0 0 0 0 | 130
130
130
130
130 | 500
750
1000
1500
3000 | 0.5
±0.5
0.5
±0.5
0.5 | 0.5
1
0.5
1
0.5 | 1
1
1
1 | ina
ina
ina
ina
ina | yes
yes
yes
yes | C
R
C
R
C | 1700
ina
2200
ina
3900 | k
f,g
i,k
f,h
i,k | | AC | Behl-Invar
Behl-Invar
Horlick
Sorensen
Behl-Invar | 3501A
5001A
281-B
FCR250
123A | 300
300
150
320
150 | 500
500
1000
1000
1350 | 0.1
0.1
0.5
ina
0.1 | 0.05
0.05
ina
±1
0.05 | 0
0
105
105 | 130
130
125
125
130 | 3500
5000
100
250
120 | ±0.5
±0.5
ina
±1
±0.5 | 1
1
3
±1
1 | 1
1
5
5 | ina
ina
ina
100 ms
ina | yes
yes
none
none
yes | C
C
C
C or R
R | ina
ina
275
1300
ina | f,h
f,h | | 38 | Behl-Invar
Behl-Invar
Behl-Invar
Behl-Invar
Behl-Invar | 123A
161A
161A
351A
351A | 50
150
50
150
50 | 1350
1350
1350
1350
1350 | 0.1
0.1
0.1
0.1
0.1 | 0.05
0.05
0.05
0.05
0.05 | 0 0 0 0 0 | 130
130
130
130
130 | 120
160
160
350
350 | ±0.5
±0.5
±0.5
±0.5
±0.5 | 1
1
1
1 | 1
1
1
1 | ina
ina
ina
ina
ina | yes
yes
yes
yes
yes | R
R
R
R | ina
ina
ina
ina
ina | f
f
f
f | | AC | Behi-Invar
Behi-Invar
Behi-Invar
Behi-Invar
Behi-Invar | 503A
503A
751A
751A
1501A | 150
50
150
50
150 | 1350
1350
1350
1350
1350 | 0.1
0.1
0.1
0.1
0.1 | 0.05
0.05
0.05
0.05
0.05 | 0 0 0 0 0 | 130
130
130
130
130 | 500
500
750
750
1500 | ±0.5
±0.5
±0.5
±0.5
±0.5 | 1
1
1
1 | 1
1
1
1 | ina
ina
ina
ina
ina | yes
yes
yes
yes | R
R
R
R | ina
ina
ina
ina
ina | f
f
f,g
f,g
f,h | | 39 | Behl-Invar
Behl-Invar
Behl-Invar
Behl-Invar
Behl-Invar | 1501A
3501A
3501A
5001A
5001A | 50
150
50
150
50 | 1350
1350
1350
1350
1350 | 0.1
0.1
0.1
0.1
0.1 | 0.05
0.05
0.05
0.05
0.05 | 0 0 0 0 0 | 130
130
130
130
130 | 1500
3500
3500
5000
5000 | ±0.5
±0.5
±0.5
±0.5
±0.5 | 1
1
1
1 | 1
1
1
1 | ina
ina
ina
ina
ina | yes
yes
yes
yes
yes | R
C
C
C | ina
ina
ina
ina
ina | f,h
f,h
f,h
f,h
f,h | | AC | Ind Test Ind Test Ind Test Ind Test Ind Test Ind Test | 80-VH
160-VH
250-VH
500-VH
1000-VH | 45
45
45
45
45 | 1500
1500
1500
1500
1500 | 1
1
1
1
1 | 0.5
0.5
0.5
0.5
0.5 | 0
0
0
0 | 130
130
130
130
130 | 80
160
250
500
1000 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
1 | ina
ina
ina
ina
ina | none
none
none
yes
yes | R
R
C
C | 545
630
820
1850
2350 | k
i,k | | 40 | Ind Test Tel Inst Tel Inst Tel Inst Tel Inst Tel Inst | 3000-VH
4010A-1-F
4025B-1-F
4050-1-F
4100-1-F | 45
1400
1400
1400
1400 | 1500
1800
1800
1800
1800 | 1
3
3
3
3 | 0.5
1
1
1 | 0
50
90
100
100 | 130
75
130
150 | 3000
100 ⁵
250 ⁵
500 ⁵
1000 ⁵ | 0.5
0.5
0.5
0.5
0.5 | 0.5
0
0
0 | 1
1
1
1 | ina
ina
ina
ina
ina | yes
yes
yes
yes | C C C C | 4350
580
905
1445
1995 | i,k
g | #### Ac supplies (frequency-regulated, adjustable-frequency) 1800-5000 cps | | | | | FRE | QUENCY | | | | | OUTPU | | | | | | Price | | |----------|---|---|---------------------------------------|--|---------------------------------|--|-----------------------------|---|--|---|-----------------------------------|-----------------------------|---------------------------------------|------------------------------------|----------------------------|--|-------------------------------------| | | Mfr. | Model | Min.
cps | Max.
cps | Accuracy
% | Stabil-
ity – % | Min.
Volts | Max.
Volts | Power
VA | Line | Load | Dis-
tortion
% | Response
Time | Meters | Mounting | \$ | Notes | | | Tel Inst
Tel Inst
CML | 4250-1-F
4500-1-F
SG36A-T30A | 1400
1400
300 | 1800
1800
2000 | 3
3
ina | 1
1
±0.25 | 100
100
0 | 150
150
217 ¹⁰ | 2500 ⁵
5000 ⁵
30 ⁵ | 0.5
0.5
0.5 | %
0
0
0.5 | 1 1 3 | ina
ina
50 μs | yes
yes
yes | C
C
R | 3395
5345
request | g
h
k | | AC
41 | Ind Test
Sorensen
Tel Inst
Behl-Invar
CML
Behl-Invar | 80-VW
FCR100
4010A-1-G
123A
SG36A-T150A
161A | 45
45
350
300
300
300 | 2000
2000
2000
2000
2000
2000
2000 | 3
0.1
ina
0.1 | 0.5
±1
1
0.05
±0.25
0.05 | 0
0
50
0
0 | 130
130
75
130
217 ¹⁰
130 | 100
1005
120
1505
160 | 0.5
±1
0.5
±0.5
0.5
±0.5 | 0.5
±1
0
1
0.5 | 0.5
1
1
1
3 | ina 100 ms ina ina 50 µs ina | none none yes yes yes yes | R
C or R
C
R
R | 545
690
580
ina
request
ina | f
k
f | | AC | Ind Test Ind Test Tel Inst CML Sorensen Behl-Invar | 250-VW
4025B-1-G
\$G36A-T300A
FCR3P300
351A | 45
350
300
45
300 | 2000
2000
2000
2000
2000
2000 | 1
3
ina
ina
0.1 | 0.5
1
±0.25
±1
0.05 | 0
90
0
115
0 | 130
130
130
217 ¹⁰
200
130 | 250
250 ⁵
300 ⁵
300
350 | 0.5
0.5
0.5
0.5
±1
±0.5 | 0.5
0
0.5
0
0.5
±1 | 0.5
0.5
1
3
2 | ina ina ina 50 µs 100 ms ina | none none yes yes none yes | R
C
R
C | 820
940
request
2260
ina | k | | 42 | Behl-Invar
CML
Ind Test
Tel Inst
Behl-Invar | 503A
SG36A-T500A
500-VW
4050-1-G
751A | 300
300
45
350
300 | 2000
2000
2000
2000
2000
2000 | 0.1
ina
1
3
0.1 | 0.05
±0.25
0.5
1
0.05 | 0
0
0
100 | 130
217 ¹⁰
130
150
130 | 500
500 ⁵
500
500 ⁵
750 | ±0.5
0.5
0.5
0.5
±0.5 | 1
0.5
0.5
0 | 1
3
1
1 | ina
50 µs
ina
ina
ina | yes
yes
yes
yes | R
R
C
C | ina
request
1800
1795
ina | f
k
k
g | | AC
43 | CML
Ind Test
Tel Inst
CML
Behl-Invar
CML
CML | SG36A-T750A
1000-VW
4100-1-G
SG36A-T1200A
1501A
SG36A-T1750A
SG36A-T2500A |
300
45
350
300
300
300 | 2000
2000
2000
2000
2000
2000
2000 | ina 1 3 ina 0.1 ina ina | ±0.25
0.5
1
±0.25
0.05
±0.25
±0.25 | 0
0
100
0
0 | 217 ¹⁰ 130 150 217 ¹⁰ 130 217 ¹⁰ 217 ¹⁰ | 750 ⁵
1000
1000 ⁵
1200 ⁵
1500
1750 ⁵
2500 ⁵ | 0.5
0.5
0.5
0.5
±0.5 | 0.5
0.5
0
0.5
1 | 3
1
1
3
1 | 50 μs
ina
ina
50 μs
ina | yes
yes
yes
yes
yes | R
C
C
R
R | request
2300
2545
request
ina | h,i,k i,k g h,i,k f,h | | | Tel Inst
Ind Test
Behl-Invar | 4250-1-G
3000-VW
3501A | 350
45
300 | 2000
2000
2000
2000 | 3
1
0.1 | 1
0.5
0.05 | 100
0
0 | 150
130
130 | 2500 ⁵
3000
3500 | 0.5
0.5
±0.5 | 0
0.5
1 | 1 1 1 | 50 μs
ina
ina
ina | yes
yes
yes
yes | C
C | request
3945
4300
ina | h,i,k
g
i,k
f,h | | AC | Behl-Invar
CML
Tel Inst
CML
CML | 5001A
SG36A-T5000A
4500-1-G
SG36A-T10000A
SG36A-T15000A | 300
300
350
300
300 | 2000
2000
2000
2000
2000
2000 | 0.1
ina
3
ina
ina | 0.05
±0.25
1
±0.25
±0.25 | 0
0
100
0
0 | 130
217 ¹⁰
150
217 ¹⁰
217 ¹⁰ | 5000
5000 ⁵
5000 ⁵
10,000 ⁵
15,000 ⁵ | ±0.5
0.5
0.5
0.5
0.5 | 1
0.5
0
0.5
0.5 | 1
3
1
3
3 | ina
50 μs
ina
50 μs
50 μs | yes
yes
yes
yes
yes | C
R
C
R | request
5995
request
request | f,h
h,i,k
h
h,i,k
h,i,k | | 44 | Ind Test Ind Test Ind Test Ind Test Ind Test Ind Test | 80-VL
160-VL
250-VL
500-VL
1000-VL | 300
300
300
300
300 | 3000
3000
3000
3000
3000 | 1
1
1
1 | 0.5
0.5
0.5
0.5
0.5 | 0
0
0
0 | 130
130
130
130
130 | 80
160
250
500
1000 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
1 | ina
ina
ina
ina
ina | none
none
none
yes
yes | R
R
C
C | 575
660
850
1850
2350 | k
i,k | | AC | Ind Test Tel Inst Tel Inst Tel Inst Tel Inst | 3000-VL
4010A-1-h
4025B-1-h
4050-1-h
4100-1-h | 300
350
350
350
350 | 3000
4000
4000
4000
4000 | 1
3
3
3
3 | 0.5
1
1
1
1 | 0
50
90
100
100 | 130
75
130
150
150 | 3000
100 ⁵
250 ⁵
500 ⁵
1000 ⁵ | 0.5
0.5
0.5
0.5 | 0.5
0
0
0 | 1
2
2
2
2 | ina
ina
ina
ina
ina | yes
yes
yes
yes | C C C C | 4350
580
940
1795
2545 | i,k
g
g | | 45 | Tel Inst Tel Inst Ind Test Ind Test Ind Test | 4250-1-h
4500-1-h
80-VG
160-VG
250-VG | 350
350
45
45
45 | 4000
4000
4500
4500
4500 | 3
3
1
1 | 1
0.5
0.5
0.5 | 100
100
0
0 | 150
150
130
130
130 | 2500 ⁵
5000 ⁵
80
160
250 | 0.5
0.5
0.5
0.5
0.5 | 0
0
0.5
0.5
0.5 | 2
2
0.5
0.5
0.5 | ina
ina
ina
ina
ina | yes
yes
none
none | C
C
R
R | 3945
5995
675
710
900 | g
h | | AC
46 | Ind Test Ind Test Ind Test IERC Behl-Invar | 500-VG
1000-VG
3000-VG
RA-1100
123A | 45
45
45
45
45
45 | 4500
4500
4500
5000
5000 | 1
1
1
ina
0.1 | 0.5
0.5
0.5
ina
0.05 | 0
0
0
100
0 | 130
130
130
130
130 | 500
1000
3000
100
120 | 0.5
0.5
0.5
±0.1
0.5 | 0.5
0.5
0.5
0.25
1 | 1
1
0.25
1 | ina
ina
ina
ina
ina | yes
yes
yes
none
yes | C C R R | 1950
2550
4650
645
in a | k
h,k
h,k
f | | | IERC
Behl-Invar
Behl-Invar
IERC | 1160A
351A
503A
1500 | 45
45
45
45 | 5000
5000
5000
5000 | 0.1
ina
0.1
0.1
ina | ina
0.05
0.05
ina | 105
0
0
105 | 125
130
130
130 | 160
350
500
500 | ±0.5
0.5
0.5
±0.2 | 1
1
1
0.75 | 1
1
1
0.75 | ina
ina
ina
ina | none
yes
yes
ina | R
R
R | 475
ina
ina
1450 | f
f | # ACDC POWER SUPPLIES ARE GUARANTEED FOREYER. #### WE SHOULD CLARIFY THIS: Your catalog ACDC silicon power supply is guaranteed forever. Against power surges, spikes, breakage, abuse, civil disobedience, anything. If it is in need of service or calibration at any time, return it directly to the factory and we'll adjust it to meet its original specifications, free of charge. And that means we'll pay the freight, too. Both ways. acdc electronics inc., 2979 North Ontario Street, Burbank, California 91504 | | | | | FRE | QUENCY | | | | | OUTPU | T | | | | | | | |----|----------------|---------------|------|--------|----------|---------|-------|-------|---------------------|-----------|-----------|--------------|----------|--------|----------|---------|-------| | | Mfr. | Model | Min. | Max. | Accuracy | Stabil- | Min. | Max. | Power | REGU | LATION | Dis- | Response | Meters | Mounting | Price | Notes | | | | | cps | cps | % | ity – % | Volts | Vaits | VA | Line
% | Load
% | tortion
% | Time | | | • | | | | Behl-Invar | 751A | 45 | 5000 | 0.1 | 0.05 | 0 | 130 | 750 | 0.5 | 1 | 1 | ina | yes | R | ina | f,g | | | Behl-Invar | 1501A | 45 | 5000 | 0.1 | 0.05 | 0 | 130 | 1500 | 0.5 | 1 | 1 | ina | yes | R | ina | f,h | | | Behl-Invar | 3501A | 45 | 5000 | 0.1 | 0.05 | 0 | 130 | 3500 | 0.5 | 1 | 1 | ina | yes | R | ina | f,h | | | Behl-Invar | 5001A | 45 | 5000 | 0.1 | 0.05 | 0 | 130 | 5000 | 0.5 | 1 | 1 | ina | yes | R | ina | f,h | | AC | CML | SG37A-T30A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 305 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | k | | 47 | CML | SG37A-T150A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 1505 | 0.5 | 0.5 | 3 | 50 µs | ves | R | request | k | | | CML | SG37A-T300A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 3005 | 0.5 | 0.5 | 3 | 50 us | yes | R | request | k | | | Singer Metrics | VP-410 | 47 | 6000 | ±l | ±0.5 | 75 | 150 | 400 | ina | 2 | ±1 | 10 ms | yes | c | 1440 | g,k | | | CML | SG37A-T500A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 500s | 0.5 | 0.5 | 3 | 50 μs | ves | R | request | k | | | CML | SG37A-T750A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 750 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | Singer Metrics | VP-1000 | 47 | 6000 | ±1 | ±0.5 | 75 | 300 | 1000 | ina | 2 | ±1 | 10 ms | ves | С | 2435 | g,k | | | CML | SG37A-T1200A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 1200 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG37A-T1750A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 17505 | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | | CML | SG37A-T2500A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 2500 ⁵ | 0.5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | AC | CML | SG37A-T5000A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 5000 ⁵ | 0,5 | 0.5 | 3 | 50 μs | yes | R | request | h,i,k | | 48 | CML | SG37A-T10000A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 10,000 ⁵ | 0.5 | 0.5 | 3 | 50 μs | ves | R | request | h,i,k | | | CML | SG37A-T15000A | 45 | 6000 | ina | ±0.25 | 0 | 21710 | 15,000 ⁵ | 0.5 | 0.5 | 3 | 50 µs | yes | R | request | h,i,k | | | RFL | 2120A | 50 | 40,000 | ina | 0.06 | 0 | 1500 | 100 | 0.05 | 0.1 | 0.5 | ina | none | CorR | 3250 | ,.,. | #### Additional ac supplies (frequency-regulated, fixed-frequency) | | | | | FRE | QUENCY | | | | | OUTPUT | | , | | | | | | |----------|----------|------------------|-----|------|----------|---------|-------|---------------|------------------|-----------|-----------|--------------|------------------|--------|----------|-------------|------| | | Mfr, | Model | Min | Max. | Accuracy | Stabil- | Min. | | Power | REGUI | LATION | Dis- | Deerse | Meters | Mounting | Price
\$ | Note | | | | | cps | cps | % | ity – % | Volts | Max.
Volts | VA | Line
% | Load
% | tortion
% | Response
Time | | | | | | | CML | N300A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 300 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | | CML | N500A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 500 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k | | | CML | N750A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 750 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N1000A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 1000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | AC
49 | CML | N1500 A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 1500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | 49 | CML | N2000A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 2000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N5000A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 5000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N 15000 A-SG11A | 50 | 50 | ina | ±0.258 | 0 | 125 | 15 K | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | LRS-200 | 60 | 60 | 0.515 | ina | 105 | 125 | 200 ¹ | ±0.5 | 0.5 | 3 | ina | yes | R | request | | | | Advanced | FLD-5A | 60 | 60 | ina | 0.01 | 115 | 115 | 250 | ±3 | ±3 | 8 | ina | none | С | request | | | | CML | N300A-SG12A | 60 | 60 | ina | ±0.258 | 0 | 125 | 300 | ±0.5 | 0.5 | - | 50 μs | yes | С | request | k | | | CML | N500A-SG12A | 60 | 60 | ina | ±0.258 | 0 | 125 | 500 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k | | | CML | LRS-500 | 60 | 60 | 0.515 | ina | 105 | 125 | 500 ¹ | ±0.5 | 0.5 | 3 | ina | yes | R | request | | | | CML | N750A-SG12A | 60 | 60 | ina | ±0.258 | 0 | 125 | 750 | ±0.5 | 0.5 | 3 | 50 us | yes | C | request | k,m | | AC | CML | N1000A-SG12A | 60 | 60 | ina | ±0.258 | 0 | 125 | 1000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | 50 | CML | L RS-1000 | 60 | 60 | 0.515 | ina | 105 | 125 | 10001 | ±0.5 | 0.5 | 3 | ina | yes | R | request | | | | CML | N1500A-SG12A | 60 | 60 | ina | ±0.258 | 0 | 125 | 1500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request
 k,m | | | CML | L RS-2000 | 60 | 60 | 0.515 | ina | 105 | 125 | 20001 | ±0.5 | 0.5 | 3 | ina | yes _ | R | request | | | | CML | N 2000 A-SG 12 A | 60 | 60 | ina | ±0.258 | 0 | 125 | 2000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N5000A-SG12A | 60 | 60 | ina | ±0.258 | 0 | 125 | 5000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N 15000 A-SG12A | 60 | 60 | ina | ±0.258 | 0 | 125 | 15 K | ±0.5 | 0.5 | 3 | 50 μs | yes | С | reouest | k,m | | | CML | CR-50 | 400 | 400 | 0.515 | ina | 105 | 125 | 501 | ±0.5 | 0.5 | 1 | ina | yes | R | request | | | | CML | CRS-100 | 400 | 400 | 0.515 | ina | 105 | 125 | 1001 | ±0.5 | 0.5 | 1 | ina | yes | R | request | | | | CML | CRS-250 | 400 | 400 | 0.515 | ina | 105 | 125 | 250 ¹ | ±0.5 | 0.5 | 1 | ina | yes | R | request | | | AC | CML | N300A-SG14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 300 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | 51 | Advanced | UTL-411 | 400 | 400 | ina | 0.01 | 115 | 115 | 500 | ±3 | ±3 | 5 | ina | none | С | request | | | | CML | CRS-500 | 400 | 400 | 0.515 | ina | 105 | 125 | 500 ¹ | ±0.5 | 0.5 | 1 | ina | yes | R | request | | | | CML | N500A-SG14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | | CML | N750A-SG14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 750 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | CRS-1000 | 400 | 400 | 0.515 | ina | 105 | 125 | 10001 | ±0.5 | 0.5 | 1 | ina | yes | R | request | | | | CML | N 1000 A-SG 14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 1000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N1500A-SG14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 1500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | AC | CML | CRS-2000 | 400 | 400 | 0.515 | ina | 105 | 125 | 20001 | ±0.5 | 0.5 | 1 | ina | yes | R | request | | | 52 | CML | N2000A-SG14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 2000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N5000A-SG14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 5000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N15000A-SG14A | 400 | 400 | ina | ±0.258 | 0 | 125 | 15 K | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | #### Additional ac supplies (frequency-regulated, adjustable-frequency) | | | | | FRE | QUENCY | | | | | OUTPUT | | | | | | | | |----|------|-------------------|-----|-------------|---------------|---------------------|---------------|---------------|-------------|-----------|-----------|-----------|------------------|--------|----------|---------|------| | | Mfr. | Model | | | 7 | | | | | REGU | LATION | Dis- | | Meters | Mounting | Price | Note | | | | 110501 | Min | Max.
cps | Accuracy
% | Stabil-
ity – % | Min.
Volts | Max.
Volts | Power
VA | Line
% | Load
% | tartion % | Response
Time | Micror | mounting | 2 | | | | CML | N300A-SG13A | 45 | 70 | ina | ±0.25 ¹¹ | 0 | 125 | 300 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | | CML | N500A-SG13A | 45 | 70 | ina | ±0.2511 | 0 | 125 | 500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | | CML | N750A-SG13A | 45 | 70 | ina | ±0.25 ¹¹ | 0 | 125 | 750 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | reouest | k,m | | | CML | N1000A-SG13A | 45 | 70 | ina | ±0.2511 | 0 | 125 | 1000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | AC | CML | N1500A-SG13A | 45 | 70 | ina | ±0.25 ¹¹ | 0 | 125 | 1500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | reouest | k,m | | 53 | CML | N2000A-SG13A | 45 | 70 | ina | ±0.25 ¹¹ | 0 | 125 | 2000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N5000A-SG13A | 45 | 70 | ina | ±0.2511 | 0 | 125 | 5000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N15000A-SG13A | 45 | 70 | ina | ±0.2511 | 0 | 125 | 15 K | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | Del | ATA400RS-100 | 398 | 402 | ina | ina | 105 | 125 | 100 | ±0.5 | 0.5 | 0.8 | ina | yes | R | renuest | | | | Del | ATA400RS-500 | 398 | 402 | ina | ina | 105 | 125 | 500 | ±0.5 | 0.5 | 0.8 | ina | yes | R | request | | | | Del | ATA400RS-1000 | 398 | 402 | ina | ina | 105 | 125 | 1000 | ±0.5 | 0.5 | 0.8 | ina | yes | R | request | | | | CML | N300A-SG15A | 350 | 450 | ina | ±0.25 ¹¹ | 0 | 125 | 300 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k | | | CML | N500A-SG15A | 350 | 450 | ina | ±0.25 ¹¹ | 0 | 125 | 500 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k | | AC | CML | N750A-SG15A | 350 | 450 | ina | ±0.2511 | 0 | 125 | 750 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | K,m | | | CML | N 1000A-SG 15 A | 350 | 450 | ina | ±0.25 ¹¹ | 0 | 125 | 1000 | ±0.5 | 0,5 | 3 | 50 μs | yes | С | request | k,m | | 54 | CML | N1500A-SG15A | 350 | 450 | ina | ±0.25 ¹¹ | 0 | 125 | 1500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N2000A-SG15A | 350 | 450 | ina | ±0.2511 | 0 | 125 | 2000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N5000 A-SG15A | 350 | 450 | ina | ±0.2511 | 0 | 125 | 5000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N15000A-SG15A | 350 | 450 | ina | ±0.2511 | 0 | 125 | 15 K | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N300A-SG16A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 300 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | | CML | N500A-SG16A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | | CML | N750A-SG16A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 750 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N1000A-SG16A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 1000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N 1500A-SG16 A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 1500 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | AC | CML | N2000A-SG16A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 2000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | 55 | CML | N5000A-SG16A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 5000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N 15000 A-SG 16 A | 300 | 2000 | ina | ±0.25 | 0 | 125 | 15 K | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N300A-SG17A | 45 | 6000 | ina | ±0.25 | 0 | 125 | 300 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k | | | CML | N500A-SG17A | 45 | 6000 | ina | ± 0.25 | 0 | 125 | 500 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N750A-SG17A | 45 | 6000 | ina | ±0.25 | 0 | 125 | 750 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N1000A-SG17A | 45 | 6000 | ina | ±0.25 | 0 | 125 | 1000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | AC | CML | N1500A-SG17A | 45 | 6000 | ina | ±0.25 | 0 | 125 | 1500 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | 56 | CML | N2000A-SG17A | 45 | 6000 | ina | ±0.25 | 0 | 125 | 2000 | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | | | CML | N5000A-SG17A | 45 | 6000 | ina | ±0.25 | 0 | 125 | 5000 | ±0.5 | 0.5 | 3 | 50 μs | yes | С | request | k,m | | | CML | N15000A-SG17A | 45 | 6000 | ina | ±0.25 | 0 | 125 | 15 K | ±0.5 | 0.5 | 3 | 50 μs | yes | C | request | k,m | Notes, abbreviations and manufacturers' index at end of this section. #### **Notes** - a. 50 or 60 cps, $\pm 10\%$. - b. Electronic: uses vacuum tubes, dc reference and feedback to saturable reactor. - Electro-mechanical: uses servo-driven transformer. - d. Magnetic: uses tuned self-saturating transformer. - e. Any 1 fixed-frequency within this range. - f. This model available in a variety of standard frequencies which appear elsewhere in this section. - g. Input: 230 v, 50/60 cps, single phase. - h. Input: 230 v, 50/60 cps, three phase. - i. Input: 208 v, 50/60 cps, three phase. - j. Solid state. - k. Price includes meters. - 1. Power factor: Lagging 0.7. - 2. Total regulation. - 3. Single or 3 phase output. - 4. 2 phase. - 5. 3 phase. - 6. $\pm 10\%$. - 7. Dual range output. - 8. $\pm 0.1\%$, $\pm 0.01\%$ & $\pm 0.001\%$ stability available. - 9. Series or parallel. - 10. Also 0 125 v output. - 11. $\pm 0.1\%$ stability available. - 12. 50 cps. - 13. 400 cps. - 14. Also 190 230 v. - 15. Frequency regulation and stability to $\pm 0.001\%$ available. #### **Abbreviations** - C Cabinet - R Rack - ina Information not available #### **Index of Manufacturers and Model Numbers** (keyed to table locator symbols) **Advanced Electronics** Advanced Electronic Corp (Advanced) Fixed Frequency FLD-5A [AC-49] UTL-411 [AC-51] Behlman-Invar (Behl-Invar) Amplitude Regulated 503A [AC-10] Fixed Frequency 123A [AC-18,21,26] 161A [AC-18,21,26] 351A [AC-19,22,26] 503A [AC-19,22,26] 751A [AC-19,22,26] 1501A [AC-19,23,27] [AC-19,23,27] 3501A [AC-20,23,27] 5001A [AC-20,23,27] 151C-IE [AC-21] QAP-41 [AC-28] Adjustable Frequency 123A [AC-31,33, 36,38,41,46] 161A [AC-31,34, 37,38,42,46] 37,38,42,46] 351A [AC-31,34, 37,38,41,46] 503A [AC-32,34, 37,39,42,46] 751A [AC-32,35, 37,39,42,47] 37,39,42,47] 1501A [AC-32,35, 37,39,43,47] 3501A [AC-32,36, 38,39,43,47] 5001A [AC-32,36, 38,39,44,47] CML, Inc (CML) Fixed Frequency CR-50 (AC-51) CRS-100 (AC-51) CRS-250 (AC-51) CRS-500 (AC-51) CRS-1000 [AC-51] CRS-2000 [AC-52] LRS-200 [AC-49] LRS-500 [AC-50] LRS-1000 [AC-50] LRS-2000 [AC-50] N300A-SG11A [AC-49] N300A-SG12A [AC-50] N500A-SG14A [AC-51] N500A-SG12A [AC-49] N500A-SG12A [AC-50] N500A-SG13A [AC-51] N500A-SG13A [AC-51] N500A-SG14A [AC-51] N750A-SG11A [AC-49] N750A-SG12A [AC-50] N750A-SG14A [AC-51] N1000A-SG11A [AC-49] N1000A-SG12A [AC-50] N1000A-SG14A [AC-52] N1500A-SG11A [AC-49] N1500A-SG12A [AC-50] N1500A-SG14A N1500A-SG14A [AC-52] N2000A-SG11A [AC-49] N2000A-SG12A [AC-50] N2000A-SG14A [AC-52] N5000A-SG11A [AC-49] N5000A-SG12A [AC-50] N5000A-SG14A [AC-52] N15000A-SG11A [AC-49] N15000A-SG12A N15000A-SG12A [AC-51] N15000A-SG14A [AC-52] SG31A-T30A [AC-16] SG31A-T150A SG31A-T300A [AC-16] SG31A-T500A [AC-16] SG31A-T1200A [AC-16] SG31A-T1750A [AC-17] SG31A-T2500A [AC-17] [AC-17] SG31A-T5000A [AC-17] SG31A-T10000A SG31A-T10000A [AC-18] SG31A-T15000A [AC-18] SG32A-T30A [AC-18] SG32A-T300A [AC-18] SG32A-T500A [AC-19]
SG32A-T750A [AC-18] SG32A-T150A [AC-18] [AC:19] SG32A-T1150A [AC:18] SG32A-T1200A [AC:19] SG32A-T1750A [AC:19] SG32A-T12500A [AC:20] SG32A-T15000A [AC:20] SG32A-T15000A [AC:20] SG34A-T30A [AC:20] SG34A-T30A [AC:21] SG34A-T30A [AC:22] SG34A-T500A [AC:22] SG34A-T500A [AC:22] SG34A-T500A [AC:22] SG34A-T500A [AC:23] SG34A-T1200A [AC:23] [AC-23] SG34A-T1750A [AC-23] SG34A-T2500A [AC-23] SG34A-T5000A [AC-24] SG34A-T10000A SG34A-T15000A [AC-24] Adjustable Frequen-N300A SG13A [AC-53] N300A-SG15A [AC-54] N300A-SG16A [AC-54] N300A-SG17A N300A-SG17A [AC-55] N500A-SG13A [AC-53] N500A-SG15A [AC-54] N500A-SG16A [AC-55] N500A-SG17A N500A: SG17A [AC-55] N750A: SG13A [AC-53] N750A: SG15A [AC-54] N750A: SG16A [AC-55] N750A: SG17A [AC-55] N1000A-SG13A [AC-53] N1000A-SG15A [AC-54] N1000A-SG16A [AC-55] N1000A-SG17A [AC-56] N1500A-SG13A [AC-53] N1500A-SG15A [AC-54] N1500A-SG16A [AC-55] N1500A-SG17A [AC-56] N2000A-SG13A N2000A-SG13A [AC-53] N2000A-SG15A [AC-54] N2000A-SG16A [AC-55] N2000A-SG17A [AC-56] N5000A-SG13A [AC-53] N5000A-SG15A [AC-54] N5000A-SG16A [AC-55] N5000A-SG17A [AC-56] N15000A-SG13A [AC-53] N15000A-SG15A [AC-54] N15000A-S16A [AC-55] N15000A-SG17A [AC-56] SG33A-T30A [AC-30] SG33A-T150A SG33A-T150A [AC-30] SG33A-T300A [AC-30] SG33A-T500A [AC-30] SG33A-T750A [AC-30] SG33A-T1200A [AC.30] SG33A-T1200A [AC.31] SG33A-T2500A [AC.31] SG33A-T2500A [AC.31] SG33A-T15000A [AC.31] SG33A-T15000A [AC.31] SG35A-T300A [AC.34] SG35A-T300A [AC.34] SG35A-T500A [AC.34] SG35A-T500A [AC.34] SG35A-T500A [AC.34] SG35A-T500A [AC.34] SG35A-T500A [AC.34] [AC-36] [AC-35] SG35A-T1750A [AC-35] SG35A-T2500A [AC-35] SG35A-T5000A [AC-36] SG35A-T10000A SG35A-T15000A [AC-36] SG36A-T30A [AC-41] SG36A-T150A [AC-41] SG36A-T300A [AC-42] SG36A-T500A [AC-42] SG36A-T750A [AC-42] SG36A-T1200A [AC-43] SG36A-T1200A [AC-43] SG36A-T2500A [AC-43] SG36A-T2500A [AC-44] SG36A-T15000A [AC-44] SG37A-T300A [AC-47] SG37A-T30A [AC-47] SG37A-T300A [AC-47] SG37A-T50A [AC-47] SG37A-T50A [AC-47] SG37A-T50A [AC-47] SG37A-T50A [AC-47] SG37A-T750A [AC-47] SG37A-T750A SG37A-T1200A [AC-48] SG37A-T1750A [AC-48] SG37A-T2500A [AC-48] SG37A-T5000A [AC-48] SG37A-T10000A [AC-48] SG37A-T15000A [AC-48] Del Electronics (Del) Adjustable Frequency ATA400RS-100 [AC-53] ATA400RS-500 [AC-53] ATA400RS-1000 [AC-54] Electronic Measure-ment Co Div Rowan Controller Corp (El Meas) Amplitude Regulated 260A [AC-7, 12] Empire Products Singer Metrics Div (Singer/Empire) Adjustable Frequency VP-410 [AC-47] VP-1000 [AC-48] General Electric Co General Electric Co Specialty Trans-former Dept (GE) Amplitude Regulated 9T91Y3021 [AC-3] 9T91Y3022 [AC-3] 9T91Y3023 [AC-11] 9T91Y3027 [AC-11] 9T91Y3030 [AC-11] General Radio General Radio (Gen Radio) Amplitude Regulated 1571-A [AC-1] 1581-A [AC-1] 1582-A [AC-2] William I. Horlick Co, Inc (Horlick) Adjustable Frequency 281-B [AC-38] Industrial Test Equip-Industrial Test Equipment Co (Ind Test) Fixed Frequency 20-SF [AC-20,26] 80-SF [AC-21,26] 150-SF [AC-21] 160-SF [AC-21,26,28] 250-SF 250-SF [AC-22,26,28] 500-SF [AC-22-26] 1000-SF (AC-23,27] 1040-SF [AC-25] 1040A-SF [AC-25] 3000-SF [AC-23,27] Adjustable Frequency 80 [AC-33] 150 [AC-34] 160 [AC-34] 250 [AC-34] 250 [AC-45] 160-VG [AC-45] 160-VG [AC-45] 160-VG [AC-45] 160-VG [AC-46] 1000-VG [AC-46] 1000-VG [AC-46] 1000-VH [AC-40] 1000-VH [AC-40] 1000-VH [AC-40] 1000-VH [AC-40] 1000-VH [AC-40] 1000-VH [AC-40] 1000-VH [AC-44] 160-VL [AC-44] 160-VL [AC-44] 160-VL [AC-44] 1000-VL [AC-45] 1000-VL [AC-45] 1000-VL [AC-37] 1000-VM [AC-36] 1000-VM [AC-37] 1000-VM [AC-36] 1000-VM [AC-37] 1000-VM [AC-36] 1000VW [AC-43] 3000VW [AC-43] International Electronic Research Corp (IERC) Fixed Frequency LC-1000B [AC-4] MA-150 [AC-25] MA-1150 [AC-25] GK1-102 [AC-27] GK1-106 [AC-27] GK1-106 [AC-27] RK-105 [AC-27] RK-125 [AC-28] MK-125 [AC-28] MK-150 [AC-28] Adjustable Frequency RA 1100 [AC 46] 1160A [AC-46] 1500 [AC-46] Microdot Magnetics, Amplitude Regul 2R510 [AC-1] 2R1010 [AC-1] 2R2010 [AC-1] 2R3010 [AC-1] 2R5010 [AC-1] Regulated NJE Corp NJE Corp (NJE) Adjustable Frequency FC-26-500 [AC-32] FC-115-500 [AC-33] FC-115-1000 [AC-33] TFC-26-100 [AC-32] TFC-26-200 [AC-32] TFC-115-100 [AC-32] TFC-115-200 [AC-32] North Hills Electronics, Inc (North Hills) Fixed Frequency VS-60 [AC-20] VS-61 [AC-251 VS-64 [AC-24] Perkin Electronics Corp (Perkin) Amplitude Regulated MLR3000 [AC-6] MLR5000 [AC-6] MTLR1000 [AC-4] #### **Smallest 3-Phase Electronic Frequency Converters Ever Made!** Now, from CML, comes a series of the smallest 3-phase Electronic Frequency Converters ever made . . . featuring fixed or adjustable plug-in oscillators at frequencies ranging from 45 to 6,000 cycles. Write today for details on Models T500A through T2500A! | Model | 3 Ø
Output VA | Dimensions
(For standard 19" relay rack mounting) | |--------|------------------|--| | T500A | 500 | 8¾" h x 21" d | | T750A | 750 | 14" h x 21" d | | T1200A | 1200 | 14" h x 21" d | | T1750A | 1750 | 14" h x 21" d | | T2500A | 2500 | 14" h x 21" d | A Subsidiary of Tenney Engineering, Inc. 350 Leland Avenue • Plainfield, New Jersey Telephone (201) 754-5502 • TWX: 201-756-2064 ON READER-SERVICE CARD CIRCLE 28 Manufacturers' addresses and literature offerings in master cross index at front of issue. ### Power Sources (Pwr Srcs) Amplitude Regulated 120A-251FM [AC-2] 24A-251FM [AC-2] 48A-501FM [AC-2] 120A-501FM [AC-2] 120A-102FM [AC-2] 48A-102FM [AC-2] 24A-102FM [AC-3] 120B-202FM [AC-3] 120B-202FM [AC-3] 48B-202FM [AC-3] Radio Frequency Laboratories, Inc. (RFL) Fixed Frequency 2120A [AC-16,18, 21,24,25] 250 [AC-25] Adjustable Frequency 2120A [AC-48] Sola Electric Co Div of Basic Products Corp. (Sola) (Sola) Amplitude Regulated 23-90-150 [AC-1] 59-13-260 [AC-1] ARV-50T [AC-10] Sorensen Company, Sorensen Company, Inc (Sorensen) Amplitude Regulated 1508 [AC.3] 5008 [AC.3] 5008 [AC.3] 10008 [AC.4] 1001 [AC.5] 20008 [AC.6] 30008 [AC.6] 30008 [AC.6] 50008 [AC.6] 50008 [AC.7] 100008 [AC.8] 150008 [AC.12] 15000.28 [AC.12] 15000.28 [AC.12] 15000.28 [AC.12] 15000.28 [AC.12] 15000.28 [AC.12] ACR1000 [AC.4] ACR2000 [AC.4] ACR2000 [AC.4] ACR2000 [AC.4] ACR2000 [AC.7] ACR7500 [AC.7] ACR7500 [AC.7] ACR7500 [AC.7] ACR15000 [AC.8] FR1000 [AC.8] FR1000 [AC.8] FR1000 [AC.9] FR1010 FRLD750 [AC-4] Adjustable Frequency FCD500 [AC-33] FCD3P1000 [AC-33] FCD3P2000 [AC-33] FCR1000 [AC-41] FCR250 [AC-38] FCR3P300 [AC-42] Superior Electric Co Superior Electric Co (Superior) Amplitude Regulated EM10009 [AC-10] EM4108MCR [AC-9] EMK4105 [AC-6] EMK4105R [AC-7] EMK4105R [AC-7] EMS41100 [AC-8] EMS42100 [AC-13] EMS62135Y [AC-14] EMS64180Y [AC-15] EMS64275Y [AC-15] EMS14225 [AC-9,14] EMS14260 [AC-9,13] EMS142100 [AC-14] EMS142100 [AC-8] EMS142100 [AC-8] EMS142100 [AC-8] EMS16290Y [AC-9.10] EMS162190Y [AC-9.10] EMT10138 [AC-13] EMT4102 [AC-5] EMT4104 [AC-6] EMT4106B [AC-7] EMT4112B [AC-7] EMT4115 [AC-8] EMT4207 [AC-12] EMT4208 [AC-13] EMT4408 [AC-14] EMT4418 [AC-14] EMT4418 FAC 141 EMT6210Y [AC 13] EMT6215Y [AC 13] EMT6225Y [AC 13] EMT6245Y [AC 13] EMT6245Y [AC 13] EMT6270D [AC 13] EMT6412Y [AC 14] EMT6417Y [AC 14] EMT6450Y [AC 14] EMT6450Y [AC 14] EMT6450Y [AC 14] EMT64100Y [AC 15] IE5101MR [AC 9] IE5102 [AC-6] IE5105 [AC-7] IE5110 [AC-8] | IE5110 | AC-7| | IE5110 | AC-8| | IE5110 | AC-8| | IE51002 | AC-3| | IE51005 | AC-4| | IE5201 | AC-11| | IE5202 | AC-11| | IE5202 | AC-12| | IE52005 | AC-12| | IE52005 | AC-11| | IE52005 | AC-11| | IE5101 | AC-6| | IE5101 | AC-6| | IEL5101 | AC-6| | IEL5105 | AC-7| | IEL5101 | AC-6| | IEL52005 | AC-12| | IEL52005 | AC-12| | IEL52005 | AC-12| | IEL5210 | AC-12| | IEL5210 | AC-6| | IET51005 A Tel-Instrument Elec- Tel-Instrument Elec-tronics Corp (Tel-Inst) Amplitude Regulated 601 [AC-10] 602 [AC-10] 603 [AC-2] 604 [AC-10] 605 [AC-2] 606 [AC-10] 607 [AC-2] 608 [AC-10] 650 [AC-8] 651 [AC-11] 651 [AC-11] Fixed Frequency 4010A-1-A [AC-16] 4010A-1-B [AC-18] 4025B-1-A [AC-16] 4100-1-A [AC-16] 4100-1-A [AC-16] 4250-1-A [AC-17] 4500-1-A [AC-17] 4025B-1-B [AC-18] 4050-1-B [AC-19] 4100-1-B [AC-19] 4250-1-B [AC-20] 4010A-1-C [AC-21] 4025B-1-C [AC-22] 4050-1-C [AC-22] 4050-1-C [AC-23] 4500-1-C [AC-24] 4010A-1-D [AC-24] 4010A-1-D [AC-24] 4050-1-D [AC-24] 4050-1-D [AC-25] 4250-1-D [AC-25] 4250-1-D [AC-25] A500-1-D [AC-25] Adjustable Frequency 4010A-1-E [AC-34] 4050-1-E [AC-35] 4250-1-E [AC-36] 4500-1-E [AC-36] 4500-1-E [AC-36] 4010A-1-F [AC-40] 4050-1-F [AC-40] 4050-1-F [AC-40] 4100-1-F [AC-41] 4500-1-F [AC-41] 4010A-1-G [AC-41] 4010A-1-G [AC-42] 400-1-G [AC-42] 400-1-G [AC-43] 4500-1-G [AC-43] 4500-1-G [AC-43] 4010A-1-J [AC-30] 4025B-1-J [AC-45] 4025B-1-J [AC-30 4050-1-h [AC-45] 4100-1-h [AC-45] 4250-1-h [AC-45] 4500-1-J [AC-30] 4100-1-J [AC-30] 4250-1-J [AC-31] 4500-1-J [AC-31] Twinco, Inc (Twinco) Amplitude Regulated mplitude Regulated ACR6-250M [AC-3] ACR6-500M [AC-4] ACR6-1000M [AC-5] ACR6-2000M [AC-6] ACR6-3000 [AC-6] ACR6-5000 [AC-7] Adjustable Frequency ACR4-1000M [AC-33] ACR5-250M [AC-29] ACR5-500M [AC-29] ACR5-1000M [AC-29] ACR5-2000M ### **NEW TORQUE MOTOR DRIVER** #### Cut costs and time with off-the-shelf **HYBAND DC Servo Power Amplifiers by INLAND** Inland Controls specializes in the design and manufacture of reversible polarity, wide bandwidth DC servo power amplifiers that help you: - ELIMINATE design and development costs - ACCELERATE delivery schedules - AVOID motor/amplifier interface problems Ranging from 50 watts to 3000 watts, these amplifiers, designed specifically for driving Inland Motor* DC torque motors, are available in either compact modular design or standard rack-mounted design. Current-limiting, short-circuit protection, multiple summing inputs, high gain preamplifier, and provisions for servo compensation networks are built-in standard features of the HYBAND amplifiers. To avoid your interface problem entirely, why not let Inland Controls supply guaranteed matching amplifiers, or complete amplifier and torque motor blocks? We can do this and satisfy your most demanding needs. Don't let interface and transfer function
problems get you down . . . call on the INLAND team and relax . . . our amplifiers offer proven and outstanding compatability, reliability, and availability. A Condensed Selection guide offering detailed information on the HYBAND amplifiers is available immediately and we will be happy to send you a This Demonstrator Kit, designed to illustrate exactly how these amplifiers operate in a closed-loop servo, can be shown in your plant at your convenience. All it takes is a call or letter from you. *Inland Motor Corporation is also a subsidiary of Kollmorgen A SUBSIDIARY OF KOLLMORGEN 342 WESTERN AVENUE . BOSTON, MASSACHUSETTS 02135 Telephone: 617 254-Q442 TWX: 710 330-0143 ### Modular DC Power Supplies | | | | OL | JTPUT | REGL | ILATION | D : | | |------|---|--|---|--|--|---|--|-----------------------------| | W. | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO 1 | Acopian
Tech Pwr
Elcor
Ferro
Acopian
Elcor 4
Lambda
Lambda | 1B10
M-65 Series
AQC1-200
M-1.5
1.5B Series
AQC1.34-200
LMB2
LMC2 | 1
0.5-1.1
0.8-1.2
1.5 2
1.1-1.6
2 | 0.1
0.375-25
0.2
0.04
0.2-0.7
0.2
3.4
4.9 | 0.05
±0.5
0.02
3
0.05-1.5
0.02
0.05
0.05 | 0.25
±0.5
0.02
3
0.5-2
0.02
0.03
0.03 | 70
135–380
184
35
70–85
184
119
139 | c
a,b,h.i
b
c | | MO 2 | Lambda Lambda Lambda Lambda Tech Pwr Acopian Elcor Tech Pwr | LMD2
LME2
LMF2
LMG2
M-65 Series
2.5B Series
AQC2-200
M-65 Series | 2
2
2
2
1.1-2
2.5 ²
1.5-2.5
2-2.8 | 13.1
18
44
90
0.375-25
0.2-0.7
0.2
0.375-25 | 0.05
0.05
0.05
0.05
±0.5
0.05-0.1
0.02
±0.5 | 0.03
0.03
0.03
0.03
±0.5
0.5-1
0.02
±0.5 | 199
269
425
575
135–380
70–85
184
130–375 | b
b
b
a,b,h,i
c | | | Ferro
Ferro | M-3
MA-3 | 3
31 | 0.05
0.05 | 3 | 3 | 35
50 | b
b | The table in this section lists the specifications for modular dc power supplies. These supplies cover the voltage range from 0v to 30 kv. Unless otherwise noted in the table, all have input-voltage requirements of 95-130 vac, 1 phase. Because of the great number of modular units available, it was impossible to list every supply separately. So in many cases a series of supplies having only moderately different characteristics are listed as a single entry in the table. Prices indicated in the table are subject to change by the manufacturer. An index of manufacturers and models is included at the end of the table. The index is alphabetical, by manufacturer, and it lists the various modular dc power supplies of each manufacturer. A location key is included after each model. This permits easy spotting in the table of the specifications for that supply, by means of the location-key column (1 above). #### How the table is arranged Specifications for the modular dc power supplies are given in separate, appropriately headed, columns. The complete specifications for any one supply can thus be read across the page. Within the table, the supplies are listed in ascending order of maximum output voltage (2 above). Where the maximum output voltage of several supplies is the same, the units are listed in order of increasing output-voltage swing (3 above). Manufacturers are identified in the *Mfr* column by an abbreviation (4 above). The complete name of each manufacturer can be found in the index at the end of the section. For manufacturers' addresses and Reader Service literature offerings, see the master cross index at the front of the issue. All notes and symbols used in the table are defined at the end of the section. At the top of each page of the table, reference is made to the output voltage range covered by the supplies on that page. This is to expedite the location of a supply with particular characteristics. #### How to use the tables - 1. Note how the supplies are listed. - They are in ascending order of maximum output voltage. Where this is the same, they are in order of increasing output voltage swing. - 2. Select the most likely candidates. - 3. Obtain supplementary data from the manufacturer. Manufacturers' addresses, together with Reader Service numbers for specific supply types, are given in the master cross index at the front of the issue. | | | | OU | TPUT | REGU | LATION | | | |---------|---|--|--|--|--|---|--|-----------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
1 | Acopian
Tech Pwr
Elcor
Ferro
Acopian
Elcor
Lambda
Lambda | 1B10
M-65 Series
AQC1-200
M-1.5
1.5B Series
AQC1.34-200
LMB2
LMC2 | 1
0.5-1.1
0.8-1.2
1.5
1.5 ²
1.1-1.6
2 | 0.1
0.375-25
0.2
0.04
0.2-0.7
0.2
3.4
4.9 | 0.05
±0.5
0.02
3
0.05–1.5
0.02
0.05
0.05 | 0.25
±0.5
0.02
3
0.5-2
0.02
0.03
0.03 | 70
135–380
184
35
70–85
184
119
139 | c
a,b,h,i
b
c
b | | MO
2 | Lambda Lambda Lambda Lambda Tech Pwr Acopian Elcor Tech Pwr | LMD2
LME2
LMF2
LMG2
M-65 Series
2.5B Series
AQC2-200
M-65 Series | 2
2
2
2
1.1-2
2.5 ²
1.5-2.5
2-2.8 | 13.1
18
44
90
0.375-25
0.2-0.7
0.2
0.375-25 | 0.05
0.05
0.05
0.05
±0.5
0.05-0.1
0.02
±0.5 | 0.03
0.03
0.03
0.03
±0.5
0.5-1
0.02
±0.5 | 199
269
425
575
135–380
70–85
184
130–375 | b
b
b
a,b,h,i
c | | MO
3 | Ferro
Ferro
PMC
PMC
Acopian
D-B
PMC
PMC | M-3
MA-3
SRA-3
SR-3
3B Series
15-3S
SRA-3-1
SR-3-1 | 3
31
3
3
3
32
3
3
3
3 | 0.05
0.05
0.5
0.5
0.2–0.7
0.75 | 3
3
30 mv
50 mv
0.05~0.1
5 mv
50 mv
50 mv | 3
3
100 mv
180 mv
0.5–1
5 mv
100 mv
350 mv | 35
50
60
50
70–85
90
60
50 | b b c b | | MO
4 | D-B
Glentron
Pwr Des
D-B
Lambda
Lambda
D-B
Perkin | 20-3S
30101
UPM-3 Series
30-3S
LMB3
LMC3
41-3S
MS3 Series | 3
3
3
3
3
3
3
3
3 | 1.4
2
2
3
3.4
4.9
6
0.75–9 | 5 mv
1
0.04
5 mv
0.05
0.05
5 mv
±0.025 | 5 mv
1
0.04
5 mv
0.03
0.03
5 mv
±0.025 | 105
149
147
140
119
139
160 | b
b
b
b | | MO
5 | D-B Lambda Lambda D-B Lambda Lambda Lambda Trans Dev Trans Dev | 51-3S
LMD3
LME3
61-3S
LMF3
LMG3
GM-2
STR Series | 3
3
3
3
3
3
2-3
1-3 | 12.9
13.1
18
24
44
85
3
0.25–5 | 5 mv
0.05
0.05
5 mv
0.05
0.05
0.25
±5 mv | 5 mv
0.03
0.03
5 mv
0.03
0.03
0.03
0.25 | 225
199
269
290
425
575
ina
ina | b
b
b
e | | | | | OU | TPUT | REGU | LATION | Daire | | |----------|--|--|---|--|--|--|---|------------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
6 | ERA ACDC ACDC PMC Tech Pwr Tech Pwr Tech Pwr PMC | SR Series
BX2N1,2
BC2N1,2
RB Series
M-65 Series
M-65 Series
M-65A Series
R Series | 1-3
0-3
0-3
0-3
2.8-3.2
3.2-3.5
3.2-3.5
3-3.5 | 15, 25, 40
1.2
1.2
0.375-25
0.375-25
0.375-25
0.375-25
0.5, 1 | ±0.01
0.01
0.5
±0.5
±0.5
±0.5
±0.5
0.05 | ±0.05
0.01
0.5
±0.5
±0.5
±0.5
±0.5
0.15,0.5 | 430-635
158
130
94-360
50-295
50-300
60-320
88, 97 | b
a,b,h,i
a,b,h,i
a,b,h,i | | MO
7 | Sorensen
Elasco
Elcor
Trygon
Sorensen
Tech Pwr
Tech Pwr
Ferro | QMA3-3.3
M3 Series
AQC3-200
PS3-1.5F
QMA3-1
M-65 Series
M-65A Series
MA-4 | 2.8-3.5
2.8-3.5
2.5-3.5
2.5-3.5
2.8-3.7
3.5-3.9
3.5-3.9
41 | 3.3
0.1-0.5
0.2
1.5
1
0.375-25
0.375-25
0.05 | ±0.05
0.05
0.02
0.01
±0.05
±0.5
±0.05
2.5 | $\begin{array}{l} \pm0.05 \\ 0.05 \\ 0.02 \\ 0.02 \\ \pm0.05 \\ \pm0.05 \\ \pm0.05 \\ 2.5 \end{array}$ | 165
ina
184
90
85
50-305
60-325
50 | b
b
b
a,b,h,i
a,b,h,i | | MO
8 | Ferro
Acopian
Lambda
Lambda
Lambda
Lambda
Lambda
Lambda | M-4 4B Series LMB4
LMC4 LMD4 LMB4 LME4 LMF4 LMG4 | 4
4 ²
4
4
4
4
4 | 0.05
0.2-0.7
3.4
4.9
13.1
17
44
77 | 3
0.05-0.1
0.05
0.05
0.05
0.05
0.05
0.05 | 3
0.04-1
0.03
0.03
0.03
0.03
0.03
0.03 | 35
70-80
119
139
199
269
425
575 | b c b b b b b b | | MO
9 | Trans Dev
Behl-Invar
Trygon
Tech Pwr
Tech Pwr
Lambda
Lambda
Con Cir | GM Series
W Series
PHR Series
M-65 Series
M-65A Series
LMB4P5
LMC4P5
4.5A Series | 3-4
1-4
0-4
3.9-4.3
3.9-4.3
4.5
4.5 | 0.375-3
1.8-25
3, 5, 7.5
0.375-25
0.375-25
3.3
4.9
0.375-6 | 0.25
15 mv
0.01
±0.5
±0.05
0.05
0.05
±0.05 | 0.25
10 mv
0.01
±0.5
±0.05
0.03
0.03
±0.05 | ina
175-440
255-349
50-310
60-330
119
139
85-260 | e
a,b,h,i
a,b,h,i
b
b | | MO
10 | Con Cir
Lambda
Lambda
Lambda
Lambda
Elasco
Elcor
Tech Pwr | 4.5B Series
LMD4P5
LME4P5
LMF4P5
LMF4P5
LMG4P5
M4 Series
AQC4-200
M-65 Series | 4.5
4.5
4.5
4.5
4.5
3.5–4.5
3.4–4.6
4.3–4.7 | 0.375-6
13.1
16
44
72
0.1-0.75
0.2
0.375-25 | ±0.5
0.05
0.05
0.05
0.05
0.05
0.05
0.02
±0.5 | ±0.5
0.03
0.03
0.03
0.03
0.05
0.02
±0.5 | 75–240
199
269
425
575
ina
184
55–315 | g
b
b
b
h | | | | | OU | TPUT | REGU | LATION | 0. | | |----------|--|---|--|---|--|---|--|---------------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
11 | Tech Pwr Ferro Ferro Ferro Ferro Ferro Ferro Ferro ERA | M-65A Series
SM-5
MA-515
MSM-5
MA-5
HM-5
CV5 | 4.3-4.7
5
1.5, 5 ¹
5
5 ¹
5
5 | 0.375-25
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.0 | ±0.05
2
2
1.5
2
2
3
±1 | ±0.05
2
2
1.5
2
2
3
1 | 65-335
40
55
60
50
42
35
45 | a,b,h,i
b
b
b
b
b
b | | MO
12 | ERA PMC PMC Acopian Acopian Lambda Lambda Con Cir | SV5
SR-5
SRA-5
5A210
5B Series
LMB5
LMC5
5A Series | 5
5
5
5 ²
5 ²
5
5 | 0.015
0.5
1
2.1
0.2-1
3.3
4.8
0.375-6 | ±0.5
60 mv
50 mv
0.5
0.05-0.1
0.05
0.05
±0.05 | 0.5
340 mv
120 mv
0.5
0.3-1
0.03
0.03
±0.05 | 65
50
60
145
70–95
119
139
85–260 | b b c c b b | | MO
13 | Con Cir
Lambda
Lambda
Lambda
Lambda
Sorensen
Sorensen
Elasco | 5B Series
LMD5
LME5
LMF5
LMG5
QMA4.4-0.9
QMA4.4-3.5
SV4 Series | 5
5
5
5
5
3.7–5
3.5–5
3–5 | 0.375-6
12.6
16
44
68
0.9
3.5
1-10 | ±0.5
0.05
0.05
0.05
0.05
±0.05
±0.05
0.05 | ±0.5
0.03
0.03
0.03
0.03
±0.05
±0.05
0.05 | 75-240
199
269
425
575
75
135 | g
b
b
b
b
b | | MO
14 | PMC
PMC
ERA
Trans Dev
Trans Dev
Trans Dev
Trans Dev
Trans Dev | RA Series
RB Series
SR Series
AM3
EM-5
SM-5
STR Series
TMA-5 | 3-5 ² 3-5 ² 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 | 0.375-25
0.375-25
15, 25, 40
3
0.5
0.5
0.25-2
0.25 | ±0.05
±0.5
±0.01
±6 mv
±5 mv
±5 mv
±5 mv | ±0.05
±0.5
±0.05
±6 mv
±7 mv
±15 mv
±5 mv
±10 mv | 60-300
50-280
430-635
ina
ina
ina
ina | b b c b b b b b b | | MO
15 | ITI ITI ERA ITI ITI ERA ERA ITI | 231A
331A
ME Series
431A
531A
TR Series
SR Series
631A | 0-5
0-5
0-5
0-5
0-5
0-5
0-5
0-5 | 0.75
1.5
0.2-2
3.5
7
0.2-8
0.2-8
12 | ±0.02
±0.02
±0.01
±0.02
±0.02
±0.05
±0.01
±0.02 | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ 0.05 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.05 \\ \pm 0.05 \\ \pm 0.05 \\ \pm 0.02 \end{array}$ | 139
146
135–240
155
168
155–325
175–390
188 | b b b b b b b b | | | | | ou | TPUT | REGU | LATION | 0. | | |----------|--|---|--|--|---|--|---|-----------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
16 | Dynage Dynage Abbott Tech Pwr Tech Pwr Con Cir Con Cir Elasco | D-5A Series
D-5 Series
V Series
M-65 Series
M-65A Series
5.5A Series
5.5B Series
M5 Series | 4.7-5.2
4.7-5.2
4.7-5.3
4.7-5.3
5.5
5.5
4.5-5.5 | 0.2-5
0.2-5
1,2,4,6,12
0.375-25
0.375-25
0.375-6
0.375-6
0.1-0.75 | 0.05
0.5
±0.2
±0.5
±0.05
±0.05
±0.05
0.05 | 0.05
0.5
±0.5
±0.5
±0.05
±0.05
±0.05
0.05 | 65-215
55-205
175-260
55-315
65-335
85-260
75-240
ina | a
a,b,h,i
a,b,h,i
g
g | | MO
17 | Nucor
Con Av
Dynage
Dynage
Tech Pwr
Tech Pwr
Abbott
Ferro | NP Series
HT5A Series
D5.5 Series
D-5.5A Series
M-65 Series
M-65A Series
V Series
MSM-6 | 3.5-5.5
0-5.5
5.3-5.8
5.3-5.8
5.3-5.8
5.3-5.8
5.3-5.9
6 | 1, 4
0.75-8
0.2-5
0.2-5
0.375-25
0.375-25
0.9-10.8
0.05 | 0.02
0.025
0.5
0.05
±0.5
±0.05
±0.2
1.5 | 0.05
0.025
0.5
0.05
±0.5
±0.05
±0.05
1.5 | 145, 285
97-237
55-205
65-220
55-325
65-345
210-310
60 | a,b,h,i
a,b,h,i
a
b | | MO
18 | Ferro
Ferro
Ferro
Eng Elect
D-B
Plug-In
D-B | HM-6
M-6
MA-6
MM-6
ZA-741
15-6S
SPS-2029-P
20-6S | 6
6
6
6
6
6
6
6 | 0.05
0.05
0.055
0.055
0.25
0.7
0-0.9
1.4 | 1.5
2
2
1.5
0.1
5 mv
±0.1
5 mv | 1.5
2
2
1.5
0.1
5 mv
±0.15
5 mv | 42
35
50
60
295
90
71
105 | b
b
b | | MO
19 | Acopian
Glentron
Pwr Des
Acopian
D-B
Lambda
Mid-East
Lambda | 6B Series
30102
UPM-3 Series
6A Series
30-6S
LMB6
SC6-4
LMC6 | 6 ²
6
6
6 ²
6
6
6 | 0.1-1.5
2
2
0.05-2.1
2.8
3.2
4
4.6 | 0.05
1
0.04
0.5
5 mv
0.05
0.05
0.05 | 0.05-0.3
1
0.04
0.5
5 mv
0.03
0.05
0.05 | 60-115
149
147
45-145
140
119
198
139 | c
b
c
c | | MO
20 | Trans Dev
D-B
Con Cir
Con Cir
D-B
Perkin
Lambda
Lambda | RP-6
41-6S
6.0B Series
6.0A Series
51-6S
MS6 Series
LMD6
LME6 | 6
6
6
6
6 | 5
5.8
0.375-6
0.375-6
10.5
0.65-11.2
12.4
15 | 5 mv
5 mv
±0.5
±0.05
5 mv
±0.025
0.05
0.05 | 12 mv
5 mv
±0.5
±0.05
5 mv
±0.025
0.03
0.03 | ina
160
75–240
85–260
225
ina
199
269 | g
g
b,d
b | | | | | OU | TPUT | REGUI | LATION | | | |----------|---|--|---|---|---|---|---|----------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
21 | Burton
D-B
Lambda
Lambda
ERA
ERA
Elcor
Elcor | TPS Series
61-6S
LMF6
LMG6
TR Series
SR Series
AQC5-150
ATM5-150 | 6
6
6
5–6
5–6
4–6
4–6 | 0.8-16
21
43
60
4,8
4,8
0.15
0.15 | 5 mv
5 mv
0.05
0.05
±0.05
±0.01
0.02 | 5 mv
5 mv
0.03
0.03
0.05
0.05
0.05
0.02 | 105-315
290
425
525
255, 295
290, 390
184
109 | b
b
b
b,f | | MO
22 | Elasco
Trans Dev
Trans Dev
Trans Dev
Kepco
Trygon
Atlas
Tech Pwr | V4 Series
STR Series
AM6
GSM6.3-7
PRM Series
FT-FTR6-25
TB 1047
M-65 Series | 3-6
3-6
6.3
6.3
6.3
6.3
6.3
5.8-6.3 | 0.1-0.75
0.25-4
3
7
15,25
25
30
0.375-25 | 0.05
±0.05
±6 mv
±10 mv
±1
±1
±1
±1 | $\begin{array}{c} 0.05 \\ \pm 0.1 \\ \pm 6 \text{ mv} \\ \pm 10 \text{ mv} \\ 0.7, 0.6 \text{ v} \\ 600 \text{ mv} \\ \pm 2 \\ \pm 0.5 \end{array}$ | ina
ina
ina
ina
99, 119
119-149
ina
55-335 | h
b
e
b | | MO
23 | Tech Pwr
Dynage
Dynage
Con Av
Con
Av
Numec
Numec
Nucor | M-65A Series
D6.1 Series
D6.1A Series
HT6 Series
HT6A Series
A6
AS6
NP Series | 5.8-6.3
5.8-6.4
5.8-6.4
5.5-6.5
5.5-6.5
5-6.5
5-6.5
3.5-6.5 | 0.375-25
0.2-5
0.2-5
0.5-8
0.5-8
1.3
2.5
2,8 | ±0.05
0.5
0.05
0.25
0.025
±0.01
±0.01
0.02 | ±0.05
0.5
0.05
0.25
0.025
ina
ina
0.05 | 65–355
55–215
65–225
65–200
75–215
92
154
175, 375 | a,b,h,i
b | | MO
24 | Glentron
Glentron
Con Cir
Con Cir
Abbott
Ferro
Tech Pwr
Tech Pwr | 40103
70101
6.6A Series
6.6B Series
V Series
HCV-6
M-65 Series
M-65A Series | 0-6.5
0-6.5
6.6
6.6
5.9-6.6
4.9-6.8
6.3-6.9 | 2
3
0.1-4
0.1-4
0.8-9.6
1
0.2-25
0.2-25 | 0.5
0.1
±0.05
±0.5
±0.2
0.4
±0.5
±0.05 | 0.5
0.1
±0.05
±0.5
±0.5
0.4
±0.5
±0.5 | 227
265
75–260
70–250
210–305
95
50–395
60–415 | b
b
g
a
b
a,b,h,i | | MO
25 | Arnold
Ferro
Ferro
Ferro
Ferro
Acopian
Acopian | SCH-6.3
MA-712
M-7
MA-7
MC-7
MCH-7
7B Series
7A Series | 4-6.9
7, 12 ¹
7
71
7
7
7
7
7
7 ²
7 ² | 3
0.05
0.05
0.055
0.175
0.3
0.1-1.5
0.05-2.1 | 1
2
2
1.5
1.3
1.7
0.05
0.5 | 1
2
2
1.5
1.3
1.7
0.05-0.3 | 159
55
35
50
55
60
60–115
45–145 | b
b
b
b
c | | | | | 00 | TPUT | REGU | LATION | Daine | | |----------|--|--|---|--|--|---|---|------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
26 | Dynage Dynage ERA ERA Elcor Elcor Trans Dev Trans Dev | D6.7 Series
D6.7A Series
TR Series
SR Series
AQC6-150
ATM6-150
TMA-7
EM-7 | 6.4-7
6.4-7
6-7
6-7
5-7
5-7
5-7
5-7 | 0.2-3
0.2-3
4,8
4,8
0.15
0.15
0.25
0.5 | 0.5
0.05
±0.05
±0.01
0.02
0.2
5 mv
±5 mv | 0.5
0.05
0.05
0.05
0.02
0.2
±10 mv
±7 mv | 55–185
65–195
270, 310
310, 405
184
109
ina
ina | b
b | | MO
27 | Elasco
Trans Dev
ERA
ERA
ERA
Elasco
PMC
PMC | M6 Series
STR Series
SR Series
ME Series
TR Series
SV6 Series
RA Series
RB Series | 5-7
5-7
5-7
5-7
5-7
5-7
5-7
5-7 ²
5-7 ² | 0.1-0.75
0.25-2
0.05, 1, 2
0.5, 1, 2
0.5, 1, 2
1-10
0.2-25
0.375-25 | 0.05
±5 mv
±0.01
±0.01
±0.05
0.05
±0.05
±0.05 | 0.05
±5 mv
0.05
0.05
0.05
0.05
±0.05
±0.05
±0.05 | ina
ina
115–195
150–205
90–165
ina
60–326
50–316 | h b,i b b h b | | MO
28 | ERA Behl-Invar Chalco Chalco Lambda Kepco Lambda Kepco | SR Series
W Series
7V Series
7V Series
LM201
PAX7-1
LM202
PBX7-2 | 5-7
4-7
3-7
3-7
0-7
0-7
0-7
0-7 | 15, 25, 40
1.8-25
5-75
5-75
0.85
1
1.7 | ±0.01
15 mv
±1
±0.1
0.05
0.05
0.05
0.05 | ±0.05
10 mv
±1
±0.1
0.03
0.05
0.03
0.01 | 430-645
175-440
150-520
165-565
79
89
79
105 | b
b,d
b | | MO
29 | Lambda
ERA
Nucor
Lambda
Sorensen
Con Cir
Con Cir
Abbott | LM225
MS Series
NP Series
LM234
QMA6.38
7.3A Series
7.3B Series
V Series | 0-7
0-7
0-7
0-7
5-7.1
7.3
7.3
6.6-7.4 | 4
0.5-8
1, 2, 4, 8
8, 3
0.8
0.1-3
0.1-3
0.7-8.4 | 0.05
±0.01
0.02
0.05
±0.05 ⁵
±0.05
±0.5
±0.2 | 0.03
0.05
0.05
0.03
±0.05 ⁵
±0.05
±0.5
±0.5 | 139
315-595
155-375
199
75
75-225
70-215
205-305 | b
b,f
b
b
g
g | | MO
30 | Con Av
Con Av
Sorensen
ITI
ITI
Sorensen
ITI | HT7 Series
HT7A Series
QMA6.3-4.8
231B
331B
431B
QMA6.3-2.8
531B | 6.5-7.5
6.5-7.5
5.5-7.5
5-7.5
5-7.5
5-7.5
5-7.5
5-7.5 | 0.5-8
0.5-8
4.8
0.5
1
2.5
2.8
5 | 0.25
0.025
±0.055
±0.02
±0.02
±0.02
±0.055
±0.02 | 0.25
0.025
±0.055
±0.02
±0.02
±0.02
±0.055
±0.02 | 65-200
75-215
185
139
146
155
135
168 | b
b
b
b | #### Modular dc supplies | | | | OU | TPUT | REGUI | LATION | Price | | |----------|--|---|--|--|---|--|---|-----------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | \$ | Notes | | MO
31 | ITI Tech Pwr Tech Pwr Dynage Dynage Ferro Acopian Acopian | 631B
M-65 Series
M-65A Series
D7.3 Series
D7.3A Series
M-8
8B Series
8A Series | 5-7.5
6.9-7.6
6.9-7.6
7-7.7
7-7.7
8
8 ²
8 ² | 10
0.2-25
0.2-25
0.15-3
0.15-3
0.05
0.2-1.5
0.1-2.1 | ±0.02
±0.5
±0.05
0.5
0.05
2
0.05
0.5 | ±0.02
±0.5
±0.05
0.5
0.05
2
0.05-0.3
0.5 | 188
50-400
60-420
50-185
60-195
35
60-125
45-150 | b
a,b,h,i
a,b,h,i
b
c | | MO
32 | Lambda Lambda Perkin Lambda Lambda Lambda Lambda Lambda ERA | LMB8 LMC8 MS8 Series LMD8 LME8 LMF8 LMG8 TR Series | 8
8
8
8
8
8
8
7–8 | 3
4.4
0.6–10
12.2
14
40
59
4,8 | 0.05
0.05
±0.025
0.05
0.05
0.05
0.05
±0.05 | 0.03
0.03
±0.025
0.03
0.03
0.03
0.03
0.05 | 119
139
ina
199
269
425
525
270, 310 | b
b,d
b
b
b | | MO
33 | ERA Elcor Elcor Trygon Nucor Con Cir Con Cir Abbott | SR Series
AQC7-150
ATM7-150
PS Series
NP Series
8.1A Series
8.1B Series
V Series | 7-8
6-8
6-8
4-8
4-8
8.1
8.1
7.4-8.3 | 4, 8
0.15
0.15
0.5, 1
1, 2
0.1-3
0.1-3
0.63-7.56 | ±0.01
0.02
0.2
0.01
0.02
±0.05
±0.5
±0.2 | ±0.05
0.02
0.2
0.01
0.05
±0.05
±0.5
±0.5 | 310, 405
184
109
84, 89
145, 170
75–225
70–215
205–300 | b
b
g
g | | MO
34 | Dynage Dynage Tech Pwr Tech Pwr Con Av Con Av Nucor Con Cir | D8.1 Series D8.1A Series M-65 Series M-65A Series HT8 Series HT8A Series NP Series 8.9A Series | 7.7–8.5
7.7–8.5
7.6–8.5
7.6–8.5
7.5–8.5
7.5–8.5
5.5–8.5
8.9 | 0.15-3
0.15-3
0.2-25
0.2-25
0.5-8
0.5-8
1,2,4,8
0.1-3 | 0.5
0.05
±0.5
±0.05
0.25
0.025
0.02
±0.05 | 0.5
0.05
±0.5
±0.05
0.25
0.025
0.05
±0.05 | 50-185
60-195
50-405
60-425
65-200
75-215
145-355
75-225 | a,b,h,i
a,b,h,i
b | | MO
35 | Con Cir
Ferro
Plug-In
Scint
Scint
Scint
Acopian
Acopian | 8.9B Series
M-9
SPS-2017-P
RW4.0-9
PC6-9
RS-5-6-9
9A Series
9B Series | 8.9
9
9
9
9
9
92
92 | 0.1-3
0.05
0-0.175
0.4
0.6
0.6
0.1-2.1
0.2-2.1 | ±0.5
1.6
±0.05
0.05
2 mv
0.05
0.5
0.5 | ±0.5
1.6
±0.1
0.05
5 mv
0.05
0.5
0.05–0.3 | 70-215
35
48
89
49
59
45-150
60-125 | g
b
b
b | | | | | 01 | ITPUT | REGU | LATION | D : | | |----------|--|--|--|---|---|--|--|------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
36 | Lambda
Lambda
Lambda
Lambda
Lambda
ERA
ERA | LMB9
LMC9
LMD9
LME9
LMF9
LMG9
TR Series
SR Series | 9
9
9
9
9
9
8–9
8–9 | 2.7
4.2
11.3
13.5
38
58
4,8
4,8 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05
±0.05
±0.05 | 0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.05
0.05 | 119
139
199
269
425
525
270, 310
310, 405 | b b b b b b b b b | | MO
37 | Elcor
Elcor
Elasco
ERA
Elasco
PMC
PMC
ERA | ATM8-150
AQC8-150
M8 Series
TR Series
SV8 Series
RA Series
RB Series
SR Series | 7-9
7-9
7-9
7-9
7-9
7-9 ²
7-9 ²
7-9 | 0.15
0.15
0.1-0.75
0.5, 1, 2
1-10
0.2-25
0.2-25
0.5, 1, 2 | 0.2
0.02
0.05
±0.05
0.05
±0.05
±0.05
±0.5
±0.01 | 0.2
0.02
0.05
0.05
0.05
±0.05
±0.5
0.05 | 100
184
ina
105,
180
ina
60–397
50–377
130–210 | h
b
b
b | | MO
38 | ERA Tech Pwr Tech Pwr Abbott Dynage Dynage Con Av Con Av | SR Series
M-65 Series
M-65A Series
V Series
D8.9 Series
D8.9A Series
HT9 Series
HT9A Series | 7-9
8.5-9.3
8.5-9.3
8.3-9.3
8.5-9.4
8.5-9.4
8.5-9.5
8.5-9.5 | 15, 25, 40
0.2-25
0.2-25
0.57-6.48
0.15-3
0.15-3
0.5-8
0.5-8 | ±0.01
±0.5
±0.05
±0.2
0.5
0.05
0.25
0.025 | ±0.05
±0.5
±0.05
±0.5
0.5
0.05
0.25
0.025 | 430-645
50-405
60-425
205-300
50-185
60-195
65-200
75-215 | b
a,b,h,i
a,b,h,i
a | | MO
39 | Nucor
Con Cir
Con Cir
ERA
ERA
Ferro
Ferro
Ferro | NP Series
9.8A Series
9.8B Series
CV10
SV10
SM-10
M-10
MSM-10 | 6.5–9.5
9.8
9.8
10
10
10
10 | 1, 2, 4, 8
0.1-3
0.1-3
0.015
0.015
0.04
0.05
0.05 | 0.02
±0.05
±0.5
±1
±0.5
2
1.6 | 0.05
±0.05
±0.5
1
0.5
2
1.6 | 145-355
75-230
70-220
45
65
40
35
60 | g
g
b
b
b | | MO
40 | Ferro Ferro Glentron Ferro Ferro Plug-in Ferro | HM-10
MA-10
MM-10
21060
HMC-10
MC-10
SPS-2048-P
HMJ-10 | 10
10 ¹
10 ¹
10
10 ¹
10
10 | 0.055
0.055
0.06
0.1
0.15
0.175
0-0.175
0.05, 0.025 | 1
1.5
1.3
±0.001
1.5
1.5
±0.02
1.5, 2 | 1
1.5
1.3
±0.001
1.5
1.5
±0.05
1.5, 2 | 42
50
60
375
90
55
50
85 | b b a b b b b b | | | | | OU | TPUT | REGU | LATION | Deiter | | |----------|---|---|--|---|---|--|--|------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
41 | Atlas
Ferro
PMC
PMC
D-B
PMC
PMC
PMC
D-B | TB 1062
MCH-10
SR-10
SRA-10
15-10S
SRA-10-1
SR-10-1
20-10S | 10
10
10
10
10
10
10
10 | 0.25
0.3
0.5
0.5
0.5
1
1 | ±0.01
1.5
50 mv
80 mv
5 mv
30 mv
60 mv
5 mv | ±0.01
1.5
180 mv
100 mv
5 mv
100 mv
200 mv
5 mv | 140
60
50
60
90
60
50
105 | b
b
b | | MO
42 | Acopian
Glentron
Acopian
D-B
Lambda
Lambda
Mid-East
D-B | 10B Series
30103
10A Series
30-10S
LMB10
LMC10
SC10-4
41-10S | 10 ² 10 10 ² 10 10 10 10 10 10 | 0.2-1.5
2
0.1-2.1
2.25
2.6
4
4
4.8 | 0.05
1
0.5
5 mv
0.05
0.05
0.05
0.05 | 0.05-0.3
1
0.5
5 mv
0.03
0.03
0.05
5 mv | 50-125
149
45-150
140
119
139
198
160 | c
b
c
b | | MO
43 | Trans Dev
D-B
Perkin
Lambda
Lambda
D-B
Lambda
Lambda | GSM10-6
51-10S
MS10 Series
LMD10
LME10
61-10S
LMF10
LMG10 | 10
10
10
10
10
10
10
10 | 6
8.6
0.5–9
10.8
13
16
36
56 | ±5 mv
5 mv
±0.025
0.05
0.05
5 mv
0.05
0.05 | ±10 mv
5 mv
±0.025
0.03
0.03
5 mv
0.03
0.03 | ina
225
ina
199
269
290
425
525 | b,d
b
b | | MO
44 | Trans Dev
ERA
ERA
Elcor
Trans Dev
Trans Dev
Trans Dev
Trans Dev
Trans Dev | GM Series
TR Series
SR Series
ATM9-150
GS-10
STR 10
TMA-10
STR 105 | 9-10
9-10
9-10
8-10
7-10
7-10
7-10
7-10 | 0.375-3
4, 8
4, 8
0.15
0.25
0.25
0.25
0.25 | 0.25
±0.05
±0.01
0.2
±0.05
±0.02
±0.025
±0.025 | 0.25
0.05
0.05
0.2
±0.1
±0.05
±0.05
±0.1 | ina
270, 310
310, 405
100
ina
ina
ina | e
b
b
b
b
b,i | | MO
45 | Trans Dev
Numec
Trans Dev
Numec
Behl-Invar
Trans Dev
Trans Dev
Nucor | EM-10
A9
STR Series
AS9
W Series
SCR-10-3
SCR-10-5
NP Series | 7-10
7-10
7-10
7-10
7-10
6-10
6-10
6-10 | 0.5
1.0
1, 2
2
1.5-25
2.5
5
6-10 | ±0.025
±0.01
±0.05
±0.01
15 m v
±100 m v
±100 m v
0.02 | ±0.05
ina
±0.05
ina
10 mv
±100 mv
0.05 | ina
92
ina
154
175–440
ina
ina
285, 355 | b
b,i | | | | | ou | TPUT | REGU | LATION | D : | | |----------|---|--|--|---|--|--|---|----------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
46 | ERA ERA ERA ERA Elasco Trans Dev PMC Tech Pwr | TR5A
ME5P2
SR5P2
SR5P2R
V8 Series
SM-10
R Series
SCR-80 Series | 5-10
5-10
5-10
5-10
5-10
5-10
5-10
5-10 | 0.2
0.2
0.2
0.2
0.1-0.5
0.5
0.5, 1
12, 25, 50 | ±0.5
±0.01
±0.1
±0.01
0.05
±5 mv
0.05
±0.5 | 0.5
0.05
0.1
0.05
0.05
±15 mv
0.1, 0.3
±0.5 | 60
130
90
145
ina
ina
88, 113
180–330 | b
b
b
h
b
b | | MO
47 | ERA ERA Lambda Lambda Con Av Tech Pwr Tech Pwr | MS Series
ME Series
SR Series
LH118S
LH119S
XR5-14
R-80 Series
SWR-80 Series | 0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10 | 0.05, 0.25
0.05, 0.25
0.05, 0.25
4
9
14
12, 25
12, 25 | ±0.01
±0.01
±0.01
0.015
0.015
0.02
±0.1
±0.01 | 0.05
0.05
0.05
0.015
0.015
0.05
±0.3
±0.03 | 220, 285
130, 145
135, 195
175
289
315
175, 225
340, 470 | b,f b b b b b | | MO
48 | Dynage Dynage Tech Pwr Tech Pwr Abbott Endevco Con Av Con Av | D9.8 Series D9.8A Series M-65 Series M-65A Series V Series 4201 HT10 Series HT10A Series | 9.4-10.3
9.4-10.3
9.3-10.3
9.3-10.3
9.3-10.4
9.5-10.5
9.5-10.5
9.5-10.5 | 0.15-3
0.15-3
0.2-25
0.2-25
0.52-12.60
0.1
0.5-8
0.5-8 | 0.5
0.05
±0.5
±0.05
±0.2
0.01
0.25
0.025 | 0.5
0.05
±0.5
±0.05
±0.5
0.02
0.25
0.025 | 50-185
60-200
50-410
60-430
195-395
125
65-200
75-215 | a,b,h,i
a,b,h,i
a | | MO
49 | Nucor
Sorensen
Con Cir
Con Cir
Acopian
Acopian
ERA
ERA | NP Series
QMA9-0.55
10.8A Series
10.8B Series
11B Series
11A210
TR Series
SR Series | 7.5-10.5
7.1-10.7
10.8
10.8
11 ²
11 ²
10-11
10-11 | 1, 2, 4, 8
0.55
0.1-3
0.1-3
0.2-1.5
2.1
4, 8
4, 8 | 0.02
±0.05 ⁵
±0.05
±0.5
0.05
0.5
±0.05
±0.05 | 0.05
±0.05 ⁵
±0.05
±0.5
0.05-0.3
0.5
0.05
0.05 | 145–375
70
75–230
70–220
60–125
150
270, 310
310, 405 | b
g
g
c
c
b | | MO
50 | Elcor
Elcor
Elasco
ERA
ERA
Elasco
PMC
PMC | AQC10-150
ATM10-150
M10 Series
SR Series
TR Series
SV10 Series
RA Series
RB Series | 9-11
9-11
9-11
9-11
9-11
9-11
9-11 ²
9-11 ² | 0.15
0.15
0.1-1).75
0.5, 1, 2
0.5, 1, 2
1-10
0.2-25
0.2-25 | 0.02
0.2
0.05
±0.01
±0.05
0.05
±0.05
±0.05 | 0.02
0.2
0.05
0.05
0.05
0.05
±0.05
±0.05 | 184
100
ina
130, 210
105–180
ina
60–397
50–377 | h
b
b
h
b | #### Modular dc supplies | | | | ou | TPUT | REGU | LATION | D : | | |----------|---|--|---|--|---|---|--|------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
51 | ERA ITI ITI ITI ITI ITI Chalco Chalco | SR Series
231C
331C
431C
531C
631C
11V Series
11V Series | 9-11
7.5-11
7.5-11
7.5-11
7.5-11
7.5-11
5-11
5-11 | 15, 25, 40
0.4
0.75
1.8
3.7
7
5-75
5-75 | ±0.01
±0.02
±0.02
±0.02
±0.02
±0.02
±1
±0.1 | ±0.05
±0.02
±0.02
±0.02
±0.02
±0.02
±1
±0.1 | 445–660
139
146
155
168
188
180–590
205–630 | b
b
b
b | | MO
52 | Sorensen Sorensen Dynage Dynage Tech Pwr Tech Pwr Con Av Con Av | QMA9-2.0
QMA9-3.85
D10.8 Series
D10.8A Series
M-65 Series
M-65A Series
HT11 Series
HT11A Series | 7.5-11.2
7.5-11.2
10.3-11.4
10.3-11.4
10.3-11.4
10.3-11.5
10.5-11.5 | 2
3.85
0.1-3
0.1-3
0.2-25
0.2-25
0.5-8
0.5-8 | ±0.055
±0.055
0.5
0.05
±0.5
±0.05
0.25
0.025 |
±0.05 ⁵
±0.05 ⁵
0.5
0.05
±0.5
±0.05
0.25
0.025 | 120
180
50–185
60–200
50–415
60–435
65–200
75–215 | b
b
a,b,h,i
a,b,h,i | | MO
53 | Nucor
Abbott
Ferro
Ferro
Ferro
Ferro
Ferro | NP Series
V Series
HCV-10
MA-122
MA-122
SM-12
M-12
MSM-12 | 8.5-11.5
10.4-11.6
8.5-11.8
12, 24 ¹
12, 24 ¹
12 | 1, 2, 4, 8
0.45–10.92
1
0.04
0.04
0.04
0.045
0.05 | 0.02
±0.2
0.4
1.5
1.5
2
1.3 | 0.05
±0.5
0.4
1.5
1.5
2
1.3 | 145-375
200-395
95
60
60
40
35
60 | b a b b b b b b | | MO
54 | Ferro Ferro Ferro Ferro Plug-In Ferro Ferro | MA-12
HM-12
MM-12
HMC-12
MC-12
SPS-2010-P
HMJ-12
MCH-12 | 12 ¹ 12 12 ¹ 12 ¹ 12 ¹ 12 12 12 12 12 12 12 | 0.055
0.055
0.06
0.14
0.150
0-0.175
0.05, 0.25
0.28 | 1.5
1
1.2
1.5
1.3
±0.05
1.5, 2
1.5 | 1.5
1
1.2
1.5
1.3
±0.1
1.5, 2
1.5 | 50
42
60
90
55
48
85
60 | b b b b b b b b b | | MO
55 | Trygon
Acopian
Eng Elect
Scint
Plug-In
Scint
Scint
D-B | PSD12-300
12C30
ZA-723
RW3.0-12
SPS-2025-P
PC5-12
RS-5-5-12
15-12S | 12
12 ²
12
12
12
12
12
12
12 | 0.3
0.3
0.3
0.3
0-0.45
0.5
0.5 | 0.1
0.05
0.1
0.05
±0.05
2 mv
0.05
5 mv | 0.1
0.05
0.1
0.05
±0.1
5 mv
0.05
5 mv | 115
75
140
89
67
49
59
90 | b
c
b
b | Notes, abbreviations and manufacturers' index at end of this section. | | | | 00 | TPUT | REGU | LATION | | | |----------|---|--|---|---|---|--|--|--------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
56 | Ferro Eng Elect Eng Elect Eng Elect Eng Elect Eng Elect D-B Acopian | MA-712
PR-101
PR-102
PR-103
ZA721A
ZA-735
20-12S
12B Series | 12, 7 ¹ 12, 6 12 12 12 12 12 12 12 12 12 | 0.05
0.1-1
0.1-1
1
1
1
1
0.2-1.5 | 2
±3
±3
±3
0.16
0.05
5 my
0.05 | 2
±3
±3
0.16
0.1
5 mv
0.05–0.3 | 55
107
99
95
120
130
105
60–125 | b | | MO
57 | Pwr Des
D-B
Atlas
Acopian
Lambda
Eng Elect
Trans Dev
Con Cir | UPM-3 Series
30-12S
TB 1057
12A Series
LMB12
ZA-724
AM12
12.0A Series | 12
12
12
12
12 ²
12
12
12 | 2
2
2
0.1–2.1
2.4
3
3
0.1–3 | 0.04
5 mv
±0.5
0.5
0.05
0.1
±0.02
±0.05 | 0.04
5 mv
±0.5
0.5
0.03
0.1
±0.05
±0.05 | 147
140
ina
45–150
119
216
ina
75–235 | c
b | | MO
58 | Con Cir
Lambda
Mid-East
D-B
GE
Trans Dev
D-B
Perkin | 12.0B Series
LMC12
SC12-4
41-12S
9T66Y51
GSM12-5
51-12S
MS12 Series | 12
12
12
12
12
12
12
12
12 | 0.1-3
3.8
4
4.5
5
5
7.8
0.45-8 | ±0.5
0.05
0.05
5 mv
±1
±0.02
5 mv
±0.025 | ±0.5
0.03
0.05
5 mv
6
±0.05
5 mv
±0.025 | 70-220
139
198
160
135
ina
225
ina | g
b
b | | MO
59 | Lambda Lambda Trans Dev Burton D-B GE Kepco Trygon | LMD12
LME12
RP-5
TPS Series
61-12S
9T66Y53
PRM Series
FT-FTR12-15 | 12
12
12
12
12
12
12
12
12 | 10
12
12
0.6–12
14.5
15
10, 15 | 0.05
0.05
±0.02
5 mv
5 mv
±1
±1 | 0.03
0.03
±0.05
5 mv
7
1,0.8 v | 199
269
ina
105–315
290
162
99, 119
119~149 | b
b
b | | MO
60 | Tabtron
Lambda
Lambda
ERA
ERA
EICOT
EICOT | B12V15ACM
LMF12
LMG12
TR Series
SR Series
MS Series
AQC11-150
ATM11-150 | 12
12
12
11–12
11–12
11–12
10–12 | 15
30
48
4,8
4,8
4,6,8
0.15
0.15 | ±2
0.05
0.05
±0.05
±0.01
±0.01
0.02
0.2 | ±2
0.03
0.03
0.05
0.05
0.05
0.02
0.2 | 190
425
525
255, 295
295, 390
455–595
184
100 | b
b
b
b,f | 11-12 v | 1 | | | OU | TPUT | REGU | LATION | D | | |----------|---|---|--|--|---|--|---|--| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
61 | Pwr Des
Kepco
Con Av
Con Av
Tech Pwr
Tech Pwr
Nucor
Trygon | UPM-1
PWR12-7
HT12A Series
HT12 Series
M-65 Series
M-65A Series
NP Series
PS Series | 3-12 ³
0-12
11.5-12.5
11.5-12.5
11.4-12.5
9.5-12.5
0-12.5 | 1
7
0.5-8
0.5-8
0.2-25
0.2-25
1, 2,4,8
2, 4 | 0.03
0.005
0.025
0.25
±0.5
±0.05
0.02 | 0.03
0.05
0.025
0.25
±0.5
±0.05
0.05 | 199
209
75–215
65–200
50–420
60–440
145–375
160, 175 | a,b,h,i
a,b,h,i
b
a | | MO
62 | Dynage
Dynage
Acopian
Acopian
ERA
ERA
Abbott
Elcor | D12 Series
D12A Series
13B Series
13A Series
TR Series
SR Series
V Series
AQC12-150 | 11.4-12.6
11.4-12.6
13 ²
13 ²
12-13
12-13
11.6-1.3
11-13 | 0.1-3
0.1-3
0.2-1
0.1-2.1
4,8
4,8
0.4-19.44
0.15 | 0.5
0.05
0.05
0.5
±0.05
±0.01
±0.2
0.02 | 0.5
0.05
0.05-0.2
0.5
0.05
0.05
±0.5
0.02 | 50-190
85-200
65-95
45-150
275, 320
315, 410
190-480
184 | c
c
b
b | | MO
63 | Elcor
Elasco
ERA
ERA
ERA
ERA
Elasco
Con Av | ATM12-150
M12 Series
TR Series
MS Series
ME Series
SR Series
SV12 Series
XR12-11 | 11-13
11-13
11-13
11-13
11-13
11-13
11-13 | 0.15
0.1-0.75
0.5, 1, 2
0.5, 1, 2
0.5, 1, 2
0.5, 1, 2
1-10
11 | 0.2
0.05
±0.05
±0.01
±0.01
±0.01
0.05
0.02 | 0.2
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 100
ina
90–165
315–395
150–205
115–195
ina
295 | h
b,f
b
h | | MO
64 | PMC
PMC
ERA
Plug-In
Plug-In
Con Cir
Con Cir | RA Series
RB Series
SR Series
SPS-2052P
SPS-2052-S
13.1A Series
13.1B Series
HT13 Series | 11-13 ²
11-13 ²
11-13
9-13
9-13
13.1
13.1
12.5-13.5 | 0.1-25
0.1-25
15, 25, 40
0-0.2
0-0.2
0.1-3
0.1-3
0.45-6.5 | ±0.05
±0.5
±0.01
2 mv
2 mv
±0.05
±0.5
0.25 | ±0.05
±0.5
±0.05
5 mv
5 mv
±0.05
±0.5
0.25 | 55-412
50-392
445-660
62
63
75-245
70-225
65-200 | b
b
b
b
g | | MO
65 | Con Av
Tech Pwr
Tech Pwr
Dynage
Dynage
Acopian
Acopian
ERA | HT13A Series
M-65 Series
M-65A Series
D13.2 Series
D13.2A Series
14B Series
14A Series
TR Series | 12.5-13.5
12.5-13.7
12.5-13.7
12.6-13.9
12.6-13.9
14 ²
14 ²
13-14 | 0.45-6.5
0.1-25
0.1-25
0.075-2
0.075-2
0.2-1
0.05-2.1
4,8 | 0.025
±0.5
±0.05
0.5
0.05
0.05
0.5
±0.05 | 0.025
±0.5
±0.05
0.5
0.05
0.05-0.2
0.5
0.05 | 75-215
50-420
55-445
50-190
55-195
65-95
45-150
275, 320 | a,b,h,i
a,b,h,i
c
c
c
b | | | | | OU | TPUT | REGU | LATION | | | |----------|---|---|--|---|--|--|--|-----------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
66 | ERA Trygon Nucor Behl-Invar Lambda Lambda Lambda Lambda | SR Series
PS Series
NP Series
W Series
LM217
LM226
LM235
LM203 | 13-14
10-14
10-14
10-14
8.5-14
8.5-14
8.5-14
0-14 | 4, 8
0.5, 0.9
1, 2, 4, 8
1.4–25
2.1
3.3
7.7
0.45 | ±0.01
0.01
0.02
15 mv
0.05
0.05
0.05 | 0.05
0.01
0.05
10 mv
0.03
0.03
0.03 | 315, 410
79, 89
145–375
175–440
119
139
199
79 | b b b b b b | | MO
67 | Lambda Con Cir Con Cir Con Av Con Av Nucor Ferro Abbott | LM204
14.5B Series
14.5A Series
HT14 Series
HT14A Series
NP Series
HCV-12
V Series | 0-14
14.5
14.5
13.5-14.5
13.5-14.5
11.5-14.5
11-14.5
13-14.8 | 0.9
0.1-3
0.05-3
0.45-6.5
0.45-6.5
1, 2, 4,
8
1
0.36-17.28 | 0.05
±0.5
±0.05
0.25
0.025
0.02
0.4
±0.2 | 0.03
±0.5
±0.05
0.25
0.025
0.05
0.4
±0.5 | 79
70-225
70-245
65-200
75-215
145-375
95
190-480 | b
g
g
b
b | | MO
68 | ERA ERA Philbrick Ferro Ferro Ferro Ferro Ferro Ferro | CV15
SV15
PR-30
SM-15
MSM-15
M-15
MA-515
MA-15 | 15
15
15 ¹
15
15
15
5, 15 ¹
15 ¹ | 0.015
0.015
0.03
0.04
0.045
0.045
0.05
0.05 | ±1
±0.5
0.03
2
1.5
1.8
2 | 1
0.5
0.03
2
1.5
1.8
2
1.5 | 45
65
98
40
60
38
55 | b b b b b b | | MO
69 | Ferro
Ferro
B-B
Plug-In
Ferro
Ferro
Acopian
Ferro | HM-15
MM-15
501
SPS-2018-P
HMC-15
MC-15
15C15
HMJ-15 | 15
15 ¹
15
15
15 ¹
15
15 ²
15 ¹ | 0.05
0.055
0.1
0-0.125
0.125
0.14
0.15
0.05, 0.2 | 1
1
0.1
±0.04
1.5
1.3
0.01
1.5, 2 | 1
1
0.1
±0.08
1.5
1.3
0.05
1.5, 2 | 42
60
148
48
90
55
70
85 | b
b
b
c | | MO
70 | Scint
Ferro
Trygon
Philbrick
Plug-In
B-B
Scint
Scint | RW2.5-15
MCH-15
PSD15-300
PR-300
SPS-2039-P
503
PC4-15
RS-5-4-15 | 15
15
15
15
15
15
15
15
15 | 0.25
0.28
0.3
0.3
0-0.35
0.4
0.4 | $\begin{array}{c} 0.05 \\ 1.5 \\ 0.1 \\ 250 \mu \text{v} \\ \pm 0.05 \\ 0.1 \\ 2 \text{mv} \\ 0.05 \\ \end{array}$ | $\begin{array}{c} 0.05 \\ 1.5 \\ 0.1 \\ 250 \mu \mathrm{v} \\ \pm 0.1 \\ 0.1 \\ 5 \mathrm{m} \mathrm{v} \\ 0.05 \end{array}$ | 89
60
115
285
67
246
49
59 | b
b
b | #### 15-16.9 v #### Modular dc supplies | | | | OU | TPUT | REGU | LATION | | | |----------|---|--|--|--|--|--|---|-------------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
71 | D-B D-B Pwr Des D-B Acopian Lambda Acopian Mid-East | 15-15S
20-15S
UPM-X6
30-15S
15B Series
LMB15
15A Series
SC15-3 | 15
15
15 ¹
15
15 ²
15
15 ²
15 | 0.4
0.8
1
1.7
0.1-2
2.1
0.05-2.1
3 | 5 mv
5 mv
0.04
5 mv
0.05
0.05
0.5
0.5 | 5 mv
5 mv
0.04
5 mv
0.05-0.4
0.03
0.5
0.05 | 90
105
230
140
60–160
119
45–150 | b
c
b
c | | MO
72 | Lambda
D-B
Perkin
D-B
Lambda
Trygon
Lambda
Burton | LMC15
41-15S
MS15 Series
51-15S
LMD15
FT-FTR15-10
LME15
TPS Series | 15
15
15
15
15
15
15
15 | 3.4
4
0.4–6.8
7.1
9
10
11
0.575–11 | 0.05
5 mv
±0.025
5 mv
0.05
1
0.05
5 mv | 0.03
5 mv
±0.025
5 mv
0.03
900 mv
0.03
5 mv | 139
160
ina
225
209
119–149
269
105–315 | b
b,d
b | | MO
73 | D-B
Lambda
Lambda
ERA
ERA
Elasco
ERA
ERA | 61-15S
LMF15
LMG15
TR Series
SR Series
M14 Series
TR Series
SR Series | 15
15
15
14-15
14-15
13-15
13-15
13-15 | 14.5
25
39
4,8
4,8
0.1-0.75
0.5, 1, 2
0.5, 1, 2 | 5 mv
0.05
0.05
±0.05
±0.01
0.05
±0.05
±0.05 | 5 mv
0.03
0.03
0.05
0.05
0.05
0.05
0.05 | 290
425
525
275, 320
315–410
ina
110–185
135–215 | b
b
b
h
b | | MO
74 | Elasco
PMC
PMC
ERA
Numec
Numec
Trans Dev | SV14 Series
RA Series
RB Series
SR Series
A12
AS12
TMA-15
231D | 13-15
13-15 ²
13-15 ²
13-15
12-15
12-15
10-15
10-15 | 1-10
0.1-25
0.1-25
15, 25, 40
0.7
1.5
0.25
0.3 | 0.05
±0.05
±0.5
±0.01
±0.01
±0.01
±0.025
±0.025 | 0.05
±0.05
±0.5
±0.05
ina
ina
±0.05
±0.02 | ina
55-425
50-405
445-675
92
154
ina
139 | h b b b b | | MO
75 | Trans Dev
Trans Dev
Trans Dev
ITI
Elasco
Trans Dev
PMC
ITI | STR Series
EM-15
SM-15
331D
V12 Series
STR15-1
R Series
431D | 10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15 | 0.25, 0.5
0.5
0.5
0.6
0.5-0.75
1
0.5, 1
1.5 | ±0.02
±0.025
±5 mv
±0.02
0.05
±0.02
0.05
±0.02 | ±0.05
±0.05
±15 m v
±0.02
0.05
±0.05
0.1, 0.2
±0.02 | ina
ina
ina
146
ina
ina
88, 114 | b,i
b
b
b
h
b,i
b | | | | | OU | TPUT | REGU | LATION | D : | | |----------|---|---|--|--|--|--|---|-----------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
76 | Trans Dev
Trans Dev
ITI
Trans Dev
ITI
Grafix
Endevco
Endevco | STR15-2
SCR-15-3
531D
SCR-15-5
631D
488
4203
SR200EP | 10-15 ⁶
10-15
10-15
10-15
10-15
6-15
1-15
0-15 | 2
2.5
3
5
6
1.2
0.2
0.2 | ±0.02
±100 mv
±0.02
±100 mv
±0.02
0.1
0.01 | ±0.05
±100 mv
±0.02
±100 mv
±0.02
0.2
0.01 | ina
ina
168
ina
188
487
155 | b,i
b | | MO
77 | Kepco
Kepco
Tech Pwr
Tech Pwr
Dynage
Dynage
Con Av | PAX15-0.75
PBX15-1.5
PWR15-6
M-65 Series
M-65A Series
D14.6 Series
D14.6A Series
HT15 Series | 0-15
0-15
0-15
13.7-15.2
13.7-15.2
13.9-15.3
14.5-15.5 | 0.75
1.5
6
0.1–25
0.1–25
0.075–2
0.075–2
0.45–6.5 | 0.05
0.01
0.005
±0.5
±0.05
0.5
0.05
0.25 | 0.05
0.01
0.05
±0.5
±0.05
0.5
0.05
0.25 | 89
105
209
50–420
55–445
45–185
55–195
65–200 | b,d
b,d
a,b,h,i
a,b,h,i | | MO
78 | Con Av
Nucor
Con Cir
Con Cir
Acopian
Acopian
ERA
ERA | HT15A Series
NP Series
15.8A Series
15.8B Series
16B Series
16A Series
TR Series
SR Series | 14.5-15.5
12.5-15.5
15.8
15.8
16 ²
16 ²
15-16
15-16 | 0.45-6.5
1, 2, 4, 8
0.05-2
0.1-2
0.1-1
0.05-2.1
4, 8
4, 8 | 0.025
0.02
±0.05
±0.5
0.05
0.5
±0.05
±0.05 | 0.025
0.05
±0.05
±0.5
0.05–0.2
0.5
0.05
0.05 | 75-215
145-375
70-245
70-225
60-100
45-150
275, 320
315, 410 | b g g c c b b | | MO
79 | Elcor
Elcor
Con Av
Sorensen
Chalco
Chalco
Con Av
Con Av | AQC15-120
ATM15-120
XR15-10
QMA12-0.41
16V Series
16V Series
HT16 Series
HT16A Series | 14-16
14-16
14-16
10.7-16
8-16
8-16
15.5-16.5
15.5-16.5 | 0.12
0.12
10
0.41
5-75
5-75
0.4-6
0.4-6 | 0.02
0.2
0.02
±0.05 ⁵
±1
±0.1
0.25
0.025 | 0.02
0.2
0.05
±0.05 ⁵
±1
±0.1
0.25
0.025 | 184
100
295
65
215–610
230–690
65–200
75–215 | b | | MO
80 | Tech Pwr
Tech Pwr
Nucor
Abbott
Sorensen
Sorensen
Dynage
Dynage | M-65 Series
M-65A Series
NP Series
V Series
QMA12-1.5
QMA12-2.9
D16.1 Series
D16.1A Series | 15.2-16.5
15.2-16.5
13.5-16.5
14.8-16.6
11.2-16.7
11.2-16.7
15.3-16.9
15.3-16.9 | 0.1-25
0.1-25
1, 2, 4, 8
0.32-15.36
1.5
2.9
0.075-2
0.075-2 | ±0.5
±0.05
0.02
±0.2
±0.055
±0.055
0.5
0.05 | ±0.5
±0.05
0.05
±0.5
±0.055
±0.055
0.5
0.05 | 50-420
55-445
145-375
185-470
120
165
45-185
55-195 | a,b,h,i
a,b,h,i
b
a
b | | | | | OU | TPUT | REGU | LATION | 0. | | |----------|---|---|--|--|---|---|--|----------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
81 | Acopian
Acopian
ERA
ERA
Elasco
ERA
ERA
Elasco | 17B Series
17A Series
TR Series
SR Series
M16 Series
TR Series
SR Series
SV16 Series | 17 ² 17 ² 16–17 16–17 15–17 15–17 15–17 15–17 | 0.2-2
0.1-2.1
4, 8
4, 8
0.1-0.75
0.5, 1, 2
0.5, 1, 2
1-10 | 0.05
0.5
±0.05
±0.01
0.05
±0.05
±0.01
0.05 | 0.05-0.4
0.5
0.05
0.05
0.05
0.05
0.05
0.05 | 65–160
50–150
275, 320
315, 410
ina
110–185
135–215
ina | c
c
b
b
h
b
 | MO
82 | PMC
PMC
ERA
Plug-In
Plug-In
Trygon
Con Cir
Con Cir | RA Series
RB Series
SR Series
SPS-2053-P
SPS-2053-S
PS15-800 F
17.5B Series
17.5A Series | 15-17 ²
15-17 ²
15-17
13-17
13-17
13-17
17.5
17.5 | 0.1-25
0.1-25
15, 25, 40
0-0.175
0-0.175
0.8
0.1-2
0.5-2 | ±0.05
±0.5
±0.01
2 mv
2 mv
0.01
±0.5
±0.05 | ±0.05
±0.5
±0.05
5 mv
5 mv
0.01
±0.5
±0.05 | 55-425
50-405
445-675
62
63
92
70-225
70-245 | b
b
b
b
b | | MO
83 | Con Av Con Av Nucor Ferro Ferro Ferro Ferro Plug-In | HT17 Series
HT17A Series
NP Series
M-18
MM-18
MA-18
HM-18
SPS-2019-P | 16.5–17.5
16.5–17.5
14.5–17.5
18
18 ¹
18 ¹
18 | 0.4-6
0.4-6
1, 2, 4, 8
0.045
0.05
0.05
0.05
0-0.1 | 0.25
0.025
0.02
1.5
1.2
1.5
1.3
±0.04 | 0.25
0.025
0.05
1.5
1.2
1.5
1.3
±0.08 | 65-200
75-215
145-375
40
65
58
45
48 | b
b
b
b | | MO
84 | Ferro
Scint
Ferro
Scint
Scint
Acopian
Trans Dev
Lambda | MC-18
RW2.0-18
MCH-18
PC3-18
RS-5-3-18
18B Series
RP-7
LMB18 | 18
18
18
18
18
18 ²
18 | 0.14
0.2
0.25
0.3
0.3
0.1-1
1.2
1.8 | 1.3
0.05
1.5
2 mv
0.05
0.5
±0.5
0.05 | 1.3
0.05
1.5
5 mv
0.05
0.05-0.2
±0.5
0.03 | 55
89
60
49
59
60–100
ina
119 | b b b c c b b | | MO
85 | Acopian
Trans Dev
Mid-East
Lambda
GE
Perkin
Lambda
Kepco | 18A Series
AM18
SC18-2.9
LMC18
9T66Y61
MS18 Series
LMD18
PRM Series | 18 ² 18 18 18 18 18 18 18 18 | 0.05-2.1
2.5
2.9
3
5
0.3-5.8
7.9
6.7, 10 | 0.5
±0.02
0.05
0.05
±1
±0.025
0.05
±1 | 0.5
±0.05
0.05
0.03
5
±0.025
0.03
1.3, 0.9 v | 50-150
ina
198
139
ina
ina
209
99,119 | c
e
b
b | | | | | ОП | TPUT | REGU | LATION | | | |----------|--|---|--|--|--|---|--|------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
86 | Trygon
Lambda
Burton
Trans Dev
Lambda
Lambda
ERA
ERA | FT-FTR18-10
LME18
TPS Series
RP-1
LMF18
LMG18
MS Series
TR Series | 18
18
18
18
18
18
17–18 | 10
10.5
0.55–11
12
23
32
4,6,8
4,8 | 1
0.05
5 mv
±0.02
0.05
0.05
±0.01
±0.05 | 900 mv
0.03
5 mv
±0.05
0.03
0.03
0.05
0.05 | 119-149
269
105-315
ina
395
525
455-595
260, 305 | b
b
b
b,f | | MO
87 | ERA
Numec
Numec
Ferro
Behl-Invar
D-B
Harrison
Con Av | SR Series
A18
AS18
HCV-15
W Series
110-18
MOD Series
HT18 Series | 17-18
15-18
15-18
14-18
14-18
0-18
0-18
17.5-18.5 | 4, 8
0.62
1.4
0.8
1-25
1
0.3, 1, 2.5
0.4-6 | ±0.01
±0.01
±0.01
0.4
15 mv
5 mv
0.03
0.25 | 0.05
ina
ina
0.4
10 mv
5 mv
0.03
0.25 | 300, 395
92
154
95
175–440
175
120–225
65–200 | b
b,d | | МО
88 | Con Av
Tech Pwr
Tech Pwr
Nucor
Abbott
Dynage
Dynage
Acopian | HT18A Series
M-65 Series
M-65A Series
NP Series
V Series
D17.8 Series
D17.8A Series
19B Series | 17.5-18.5
16.5-18.5
16.5-18.5
15.5-18.5
16.6-18.6
16.9-18.7
16.9-18.7
19 ² | 0.4-6
0.1-25
0.1-25
1, 2, 4, 8
0.28-13.68
0.075-2
0.075-2
0.2-2 | 0.025
±0.5
±0.05
0.02
±0.2
0.5
0.05
0.05 | 0.025
±0.5
±0.05
0.05
0.05
0.5
0.05
0.05 | 75–215
50–420
55–450
145–375
185–470
45–185
55–195
70–160 | a,b,h,i
a,b,h,i
b
a | | MO
89 | ERA ERA Elasco ERA ERA ERA ERA ERA EIASCO | TR Series
SR Series
M18 Series
TR Series
ME Series
MS Series
SR Series
SV18 Series | 18-19
18-19
17-19
17-19
17-19
17-19
17-19
17-19 | 4, 8
4, 8
0.1-0.75
0.5, 1, 2
0.5, 1, 2
0.5, 1, 2
1-10 | ±0.05
±0.01
0.05
±0.05
±0.01
±0.01
±0.01
0.05 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 275, 320
315, 410
ina
95–170
155–210
315–395
120–200
ina | b
h
b
b,f
b | | MO
90 | PMC
PMC
ERA
Con Cir
Con Cir
ERA
Ferro
Ferro | RA Series
RB Series
SR Series
19.2B Series
19.2A Series
CV20
SM-20
M-20 | 17-19 ² 17-19 ² 17-19 19.2 19.2 20 20 | 0.1-25
0.1-25
15, 25, 40
0.1-2
0.05-2
0.015
0.04
0.045 | ±0.05
±0.5
±0.01
±0.5
±0.05
±1
1.7 | ±0.05
±0.5
±0.05
±0.05
±0.05
1
1.7
1.5 | 55-430
50-410
430-675
70-225
70-245
45
45 | b
b
g
g
b
b | #### Modular dc supplies | | | | OU | TPUT | REGU | LATION | | | |----------|---|--|---|---|---|---|---|--------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
91 | Ferro
Ferro
Ferro
ERA
Ferro
Plug-In
Ferro | MA-20
MM-20
HM-20
MC-20
SV20P
HMC-20
SPS-2047-P
MCH-20 | 20 ¹
20 ¹
20
20
20
20
20 ¹
20
20 | 0.05
0.05
0.05
0.14
0.015
0.1
0-0.105
0.25 | 1.5
1.2
1.5
1.3
±0.1
1.5
±0.03
1.5 | 1.5
1.2
1.5
1.3
0.1
1.5
±0.06
1.5 | 58
65
45
55
65
90
48
60 | b b b b b b | | MO
92 | D-B
PMC
PMC
D-B
Glentron
D-B
Lambda
Acopian | 15-20S
SR-20
SRA-20
20-20S
30104
30-20S
LMB20
20B Series | 20
20
20
20
20
20
20
20
20
20 | 0.35
0.5
0.5
0.65
1
1.45
1.6
0.1–2 | 5 mv
150 mv
80 mv
5 mv
1
5 mv
0.05 | 5 mv
180 mv
100 mv
5 mv
1
5 mv
0.03
0.05-0.4 | 90
50
60
105
149
140
119
60–160 | . b
b | | MO
93 | Acopian
Trans Dev
Lambda
Trans Dev
D-B
Trans Dev
Trans Dev
Trans Dev | 20A Series
AM20
LMC20
RP-3
41-20S
RP-12
RP-8
GSM20-5 | 20 ²
20
20
20
20
20
20
20
20 | 0.05-2.1
2.5
2.9
3
3.4
4.5
5 | 0.5
±0.02
0.05
±0.02
5 mv
±0.1
±0.02
±0.02 | 0.5
±0.05
0.03
±0.05
5 mv
±0.1
±0.05
±0.05 | 50-150
ina
139
ina
160
ina
ina | c e b b b b b | | MO
94 | Trans Dev
D-B
Lambda
Lambda
D-B
Lambda
Lambda
ERA | RP-13
51-20S
LMD20
LME20
61-20S
LMF20
LMG20
TR Series | 20
20
20
20
20
20
20
20
20
19–20 | 6
6.1
7.4
10
12.5
21
30
4,8 | ±0.1
5 mv
0.05
0.05
5 mv
0.05
0.05
±0.05 | ±0.1
5 mv
0.03
0.03
5 mv
0.03
0.03 | ina
225
209
269
290
395
525
275, 320 | b b b b b | | MO
95 | ERA Numec Numec Con Av Trygon Nucor Trans Dev Trans Dev | SR Series
A20
AS20
XR18-8.5
PS18-800F
NP Series
TMA-20
STR Series | 19-20
18-20
18-20
17-20
16-20
16-20
15-20
15-20 | 4,8
0.58
1.3
8.5
0.8
1,2,4,8
0.25
0.25,0.5 | ±0.01
±0.01
±0.01
0.02
0.01
0.02
±0.025
±0.025 | 0.05
ina
ina
0.05
0.01
0.05
±0.05
±0.05 | 315, 410
92
154
295
92
145–375
ina
ina | b
b
b
b,i | | | | | OU | TPUT | REGU | LATION | | | |-----------|---|--|--|--|--|--|---|--| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
96 | Elasco
Trans Dev
PMC
Trans Dev
Trans Dev
Trans Dev
Trans Dev
ERA | V18-500
EM-20
R Series
STR20-1
STR20-2
SCR-20-3
SCR-20-5
SR10P2 | 15-20
15-20
15-20
15-20 ⁶
15-20 ⁶
15-20
15-20
10-20 | 0.5
0.5
0.5, 1
1
2
2.5
5 | 0.05
±0.025
0.05
±0.02
±0.02
±100 mv
±100 mv
±0.1 | 0.05
±0.05
0.1, 0.2
±0.05
±0.05
±100 mv
±100 mv
0.1 | ina
ina
94, 114
ina
ina
ina
ina
90 | h
b
b,i
b,i | | MO
97 | ERA
ERA Elasco ERA Tech Pwr Chalco Chalco | TR10A
ME Series
MS Series
V15 Series
SR Series
SCR-80 Series
20V Series
20V Series | 10-20
10-20
10-20
10-20
10-20
10-20
10-20
10-20 | 0.2
0.05-0.25
0.05, 0.25
0.1-0.25
0.05, 0.25
6-50
5-75
5-75 | ±0.5
±0.01
±0.01
0.05
±0.01
±0.5
±1
±0.1 | 0.5
0.05
0.05
0.05
0.05
±0.5
±1
±0.1 | 65
120-140
220, 285
ina
130, 145
180-440
215-695
230-745 | b
b,f
h
b | | MO
98 | Glentron
Glentron
PMC
Trygon
Lambda
Trygon
Lambda | 40101
40104
70102
R Series
P20-2
LH121S
PS Series
LH122S | 6.5-20
6.5-20
6.5-20
5-20
0-20
0-20
0-20
0-20 | 1
2
2
0.2, 0.3, 0.4
0.2
2.4
0.4-3
5.7 | 0.5
0.5
0.1
0.05
0.05
0.015
0.010
0.015 | 0.5
0.5
0.1
0.5–0.7
0.05
0.015
0.01 | 207
239
265
80–89
184
159
90–153
260 | b b b b b a,b b | | MO
99 | Trygon Trygon Tech Pwr Tech Pwr Tech Pwr Tech Pwr Nucor Dynage | PHR Series
PHR Series
R-80 Series
SWR-80 Series
M-65 Series
M-65A Series
NP Series
D19.6 Series | 0-20
0-20
0-20
0-20
18.5-20.2
18.5-20.2
17.5-20.5
18.7-20.6 | 5, 10
5, 10
6, 12, 25
6-25
0.1-25
0.1-25
1, 2, 4, 8
0.075-2 | 0.01
0.01
±0.1
±0.01
±0.5
±0.05
0.02
0.5 | 0.01
0.01
±0.3
±0.03
±0.05
±0.05
0.05
0.5 | 255, 325
255, 325
140–280
325–540
50–425
55–450
145–375
45–185 | a
b
b
a,b,h,i
a,b,h,i
b | | MO
100 | Dynage
Abbott
Ferro
Acopian
Acopian
ERA
ERA | D19.6A Series V Series M-21 21B Series 21A Series TR Series SR Series M20 Series | 18.7-20.6
18.6-20.8
21
21 ²
21 ²
20-21
20-21
19-21 | 0.075-2
0.255-12.24
0.045
0.2-1
0.1-2.1
4,8
4,8
0.1-0.75 | 0.05
±0.2
1.5
0.05
0.5
±0.05
±0.01 | 0.05
±0.5
1.5
0.05–0.2
0.5
0.05
0.05 | 55-195
185-470
40
70-100
55-150
275, 320
315, 410 | a
b
c
c
b | # Here's a Great New Way to Buy Silicon DC Power Modules ### Introducing ERA's All-New, Wide-Range Variable, 71°C, All-Silicon, Fully Repairable DC Power Modules at Exceptionally Low Prices ERA's new Value-Engineered DC Transpac® power modules provide, for the first time, all-silicon, high performance DC power in a wide range, variable, low cost module. All units can be set to desired voltages by a simple external tap change and users will find that a single model can serve many voltage requirements. Stocking problems are reduced to a minimum and power module obsolescence is practically eliminated. | Output
Voltage (DC) | Current
71°C | Size WxDxH
(inches) | Weight
(lbs.) | Model | Price | |------------------------|-----------------|------------------------|------------------|--------|----------| | 4-32 | 0-750 MA | 4 x 4 x 6½ | 6.2 | LC32P7 | \$ 89.00 | | 4-32 | 0-2 amps | 5 x 5 x 7 | 8.5 | LC322 | \$115.00 | | 4-32 | 0-5 amps | 63/4 x 81/2 x 71/4 | 16.8 | LC325 | \$179.00 | | 4-32 | 0-10 amps | 8¾ x 9½ x 7½ | 29.0 | LC3210 | \$215.00 | | 30-60 | 0-1 amp | 5 x 5 x 7 | 8.5 | LC601 | \$145.00 | Over-Voltage Protector Option: Add \$35.00 to above prices and Suffix V to Model No. (i.e. LC325V, etc.). #### SPECIFICATIONS Input: 105-125 VAC. 50-400 cps Ripple: Less than 800 microvolts RMS or .005%, whichever is greater Line Regulation: Better than ±0.01% or 5 mv for full input change Load Regulation: Better than 0.05% or 8 my for 0-100% load change Voltage Adjustment: Taps and screw driver adjustment Short Circuit Protected: Automatic recovery Vernier Voltage: External provision Transient Response: Less than 50 microseconds Operating Temperature: -20°C to +71°C free air, full ratings Maximum Case Temperature: 130°C Temperature Coefficient: Less than 0.01% per degrees C or 3 millivolts Long-Term Stability: Within 8 millivolts (8 hours reference) WRITE TODAY FOR CATALOG #147 #### ELECTRONIC RESEARCH ASSOCIATES, INC. Dept.ED-4, 67 Sand Park Road • Cedar Grove, N. J. 07009 • (201) CEnter 9-3000 SUBSIDIARIES: ERA Electric Co. Advanced Acoustics Co. ERA Dynamics Corp. ERA Pacific, Inc. ON READER-SERVICE CARD CIRCLE 30 #### 21-24 v #### Modular dc supplies | | | | OU | TPUT | REGU | LATION | 0. | | |-----------|--|---|--|--|--|--|--|-----------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
101 | ERA ERA Con Av Con Av Elasco ERA Plug-In Plug-In | TR Series
SR Series
HT20 Series
HT20A Series
SV20 Series
SR Series
SPS-2054-P
SPS-2054-S | 19-21
19-21
19-21
19-21
19-21
19-21
17-21 | 0.5, 1, 2
0.5, 1, 2
0.35–5.6
0.35–5.6
1–10
15, 25, 40
0–0.15
0–0.15 | ±0.05
±0.01
0.25
0.025
0.05
±0.01
2 mv
2 mv | 0.05
0.05
0.25
0.025
0.05
±0.05
5 mv | 110-185
135-215
65-200
75-215
ina
445-675
62
63 | b
b
h
b
b | | MO
102 | ITI ITI ITI ITI ITI ITI Kepco Kepco Con Cir | 231E
331E
431E
531E
631E
PAX21-0.5
PBX21-1
21.2A Series | 15-21
15-21
15-21
15-21
15-21
0-21
0-21
21.2 | 0.25
0.5
1.1
2.2
5
0.5
1
0.05–2 | ±0.02
±0.02
±0.02
±0.02
±0.02
0.05
0.01
±0.05 | ±0.02
±0.02
±0.02
±0.02
±0.02
0.05
0.01
±0.05 | 139
146
155
168
188
89
105
70–245 | b
b
b
b
b,d
b,d | | MO
103 | Con Cir
Nucor
Ferro
Ferro
Ferro
Ferro
Acopian | 21.2B Series
NP Series
MA-22
M-22
B-224
MC-22
MCH-22
22B Series | 21.2
18.5–21.5
22 ¹
22
22, 45 ¹
22
22
22
22 ² | 0.1-2
1, 2, 4, 8
0.045
0.045
0.05
0.13
0.25
0.1-2 | ±0.5
0.02
1.5
1.5
1.5
1.3
1.5
0.05 | ±0.5
0.05
1.5
1.5
1.5
1.3
1.5
0.05-0.4 | 70-225
145-395
58
40
65
55
60
60-160 | g b b b b b c c | | MO
104 | Acopian
ERA
ERA
Con Av
PMC
PMC
Elcor | 22A Series
SR Series
TR Series
HT22 Series
RA Series
RB Series
ATM20-90
AQC20-90 | 22 ²
21–22
21–22
21–22
19–22 ²
19–22 ²
18–22
18–22 | 0.05-2.1
4, 8
4, 8
0.3-5
0.1-25
0.1-25
0.09
0.09 | 0.5
±0.01
±0.05
0.25
±0.05
±0.5
0.2 | 0.5
0.05
0.05
0.25
±0.05
±0.5
0.2
0.02 | 50-150
315, 410
275, 320
65-200
55-430
50-410
100
184 | c
b
b | | MO
105 | Behf-Invar
Trans Dev
Endevco
Tech Pwr
Tech Pwr
Plug-In
Nucor
Dynage | W Series
SM-22
4251
M-65 Series
M-65A Series
SPS-2020-P
NP Series
D21.6 Series | 18-22
15-22
0-22
20.2-22.3
20.2-22.3
22.5
19.5-22.5
20.6-22.7 | 1-22
0.375
0.025
0.1-25
0.1-25
0-0.09
1, 2, 4, 8
0.05-2 | 15 mv
±5 mv
0.02
±0.5
±0.05
±0.02
0.02 | 10 mv
±15 mv
ina
±0.5
±0.05
±0.05
0.05
0.5 | 175-440
ina
175
50-435
55-460
48
150-395
45-185 | b
a,b,h,i
a,b,h,i
b
b | | | | | OU | TPUT | REGU | LATION | D : | | |-----------|---|--|--|---|--|--|---|---------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
106 | Dynage
Ferro
Ferro
Acopian
Acopian
ERA
ERA
Elasco | D21.6A Series
M-23
MC-23
23B Series
23A Series
TR Series
SR Series
M22 Series | 20.6–22.7
23
23
23 ²
23 ²
22–23
22–23
21–23 | 0.05-2
0.04
0.13
0.2-1
0.1-2.1
4,8
4,8
0.1-0.75 | 0.05
1.5
1.3
0.05
0.5
±0.05
±0.01
0.05 | 0.05
1.5
1.3
0.05-0.2
0.5
0.05
0.05
0.05 | 55–195
40
55
70–100
55–150
275, 320
315, 410
ina | b
b
c
c
b
b | | MO
107 | ERA ERA Con Av Elasco ERA Lambda Lambda Lambda | TR Series
SR Series
HT22B Series
SV22 Series
SR Series
LM218
LM227
LM236 | 21-23
21-23
21-23
21-23
21-23
13-23
13-23
13-23 | 0.5, 1, 2
0.5, 1, 2
0.3–5
1–10
15, 25, 40
1.5
2.3
5.8 | ±0.05
±0.01
0.025
0.05
±0.01
0.05
0.05
0.05 | 0.05
0.05
0.025
0.05
±0.05
0.03
0.03 | 110-185
135-215
75-215
ina
445-675
119
139
209 | b b b b b b b | | MO
108 | Con Cir
Con Cir
Abbott
Nucor
Ferro
Ferro
Ferro
Ferro | 23.3A Series
23.3B Series
V Series
NP Series
MA-24
M-24
MM-24
HM-24 | 23.3
23.3
20.8–23.3
20.5–23.5
24 ¹
24
24 ¹
24 | 0.05-2
0.1-2
0.23-11.02
1, 2, 4, 8
0.04
0.04
0.045
0.045 |
±0.05
±0.5
±0.2
0.02
1.3
1.5
1.2 | ±0.05
±0.5
±0.5
0.05
1.3
1.5
1.2 | 70-255
70-235
180-460
150-395
58
40
65
45 | g
g
a
b
b
b
b | | MO
109 | Plug-In
Ferro
Allison
Ferro
Scint
Ferro
Plug-In
Sorensen | SPS-2011-P
HMC-24
666
MC-24
RW1.5-24
MCH-24
SPS-2026-P
QMA21-0.24 | 24
24 ¹
24
24
24
24
24
24
16, 24 | 0-0.09
0.1
0.1
0.125
0.15
0.225
0-0.225
0.24 | ±0.02
1.5
±1
1.3
0.05
2
±0.02
±0.05 | ±0.05
1.5
2
1.3
0.05
2
±0.05
±0.055 | 48
90
55
55
89
60
67
65 | b b b b b b b | | MO
110 | Scint
D-B
D-B
Pwr Des
D-B
Lambda
Pwr Des
Scint | RS-5-2.5-24
15-24S
20-24S
UPM-4 Series
30-24S
LMB24
UPM-X2
PC2-24 | 24
24
24
24
24
24
24
24
24 | 0.25
0.3
0.6
1
1.25
1.3
1.5 | 0.05
5 mv
5 mv
0.04
5 mv
0.05
0.04
2 mv | 0.05
5 m v
5 m v
0.04
5 m v
0.03
0.04
5 m v | 59
90
105
147
140
119
157
49 | b
b
b | | | | | OU | TPUT | REGU | LATION | | | |-----------|---|---|--|--|---|--|--|--------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
111 | Acopian
Acopian
Mid-East
GE
Lambda
Trans Dev
D-B
Trans Dev | 24B Series
24A Series
SC24-2.3
9T66Y 987
LMC24
AM24
41-24S
GSM24-5 | 24 ² 24 ² 24 24 24 24 24 24 24 | 0.05-2
0.05-2.1
2.3
2.5
2.5
2.5
3.1
5 | 0.05
0.5
0.05
±1
0.05
±0.02
5 mv
±0.02 | 0.05-0.3
0.5
0.05
6
0.03
±0.05
5 mv
±0.05 | 60-160
50-150
198
117
139
ina
160 | c c b b e b | | MO
112 | Perkin D-B GE Lambda Trygon Kepco Lambda Burton | MS24 Series
51-24S
9T66Y988
LMD24
FT-FTR24-8
PRM Series
LME24
TPS Series | 24
24
24
24
24
24
24
24 | 0.25-5
5.4
6
6.7
8
5,8
9
0.45-9 | ±0.025
5 mv
±1
0.05
1
±1
0.05
5 mv | ±0.025
5 mv
5
0.03
1 v
1.7, 0.9 v
0.03
5 mv | ina
225
138
219
119–149
99, 119
269
105–315 | b,d
b | | MO
113 | GE D-B Lambda GE Lambda GE ERA ERA | 9T66Y989
61-24S
LMF24
9T66Y990
LMG24
9T66Y991
MS Series
TR Series | 24
24
24
24
24
24
23–24
23–24 | 10
10.5
18
20
27
50
4, 6, 8
4, 8 | ±1 5 mv 0.05 ±1 0.05 ±1 ±0.01 ±0.01 | 5
5 mv
0.03
5
0.03
5
0.05
0.05 | 161
290
380
210
480
360
455–595
260, 305 | b
b
b,f
b | | MO
114 | ERA Ferro Ferro Ferro Endevco Kepco Tech Pwr Tech Pwr | SR Series
HCV-20
MS-242
MS-248
SR200EHM
PWR24-4
M-65 Series
M-65A Series | 23-24
18-24
12-24
6.2-24
0-24
0-24
22.3-24.4
22.3-24.4 | 4, 8
0.7
0.08
0.03
0.2
4
0.1–25
0.1–25 | ±0.01
0.4
2
2
0.1
0.005
±0.5
±0.05 | 0.05
0.4
2
2
0.1
0.05
±0.5
±0.05 | 300, 395
110
150
150
125
209
50-460
60-470 | b
b
b
b | | MO
115 | Nucor
ERA
ERA
Ferro
Ferro
Acopian
Acopian | NP Series
SV25
CV25
M-25
MA-25
MC-25
25A Series
25B Series | 21.5-24.5
25
25
25
25
25 ¹
25
25 ²
25 ² | 1, 2, 4, 8
0.015
0.015
0.04
0.04
0.125
0.05-0.7
0.1-1 | 0.02
±0.1
±1
1.5
1.5
1.3
0.5
0.05 | 0.05
0.1
1
1.5
1.5
1.3
0.5
0.05–0.2\$ | 150-395
70
45
40
58
55
55-80
65-155 | b b b c c | | | | | Ol | JTPUT | REGI | JLATION | 0. | | |-----------|---|--|---|--|---|--|--|-----------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
116 | ERA
ERA
Elasco
ERA
ERA
ERA
Con Av | TR Series
SR Series
M24 Series
TR Series
ME Series
MS Series
SR Series
HT24A Series | 24-25
24-25
23-25
23-25
23-25
23-25
23-25
23-25
23-25 | 4,8
4,8
0.1-0.75
0.5,1,2
0.5,1,2
0.5,1,2
0.5,1,2
0.5,1,2
0.3-5 | ±0.05
±0.01
0.05
±0.05
±0.01
±0.01
±0.01
0.025 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 280, 330
320, 410
ina
95–170
155–210
315–395
120–200
75–215 | b
b
h
b
b | | MO
117 | Con Av
Elasco
ERA
Dynage
Dynage
PMC
PMC
Trans Dev | HT24 Series
SV24 Series
SR Series
D23.8 Series
D23.8A Series
RA Series
RB Series
TMA-25 | 23-25
23-25
23-25
227-25
22.7-25
22-25 ²
22-25 ²
20-25 | 0.3-5
1-10
15, 25, 40
0.05-2
0.05-2
0.1-25
0.1-25
0.25 | 0.25
0.05
±0.01
0.5
0.05
±0.05
±0.5
±0.5 | 0.25
0.05
±0.05
0.5
0.05
±0.05
±0.05
±0.05 | 65-200
ina
445-685
45-190
55-200
55-440
50-420
ina | h
b
b
b | | MO
118 | Elasco
PMC
Trans Dev
Trans Dev
Trans Dev
Trans Dev
Trans Dev
Trans Dev | V22-500
R2025-500
STR Series
EM-25
STR25-1
STR25-2
SCR-25-3
SCR-25-5 | 20-25
20-25
20-25
20-25
20-25
20-25 ⁶
20-25
20-25 | 0.5
0.5
0.25-0.5
0.5
1
2
2.5
5 | 0.05
0.05
±0.02
±0.025
±0.02
±0.02
±0.5
±0.5 | 0.05
0.05
±0.05
±0.05
±0.05
±0.05
±0.05
±0.5 | ina
103
ina
ina
ina
ina
ina | h
b,i
b
b,i
b,i | | | Sorensen
Sorensen
Acopian
Acopian
Harrison
Con Cir
Con Cir
Ferro | QMA21-0.86
QMA21-1.7
C-525
C-125
801C
25.7A Series
25.7B Series
M-26 | 16.7–25
16.7–25
5–25 ²
1–25 ²
0–25
25.7
26 | 0.86
1.7
0.1
0.1
0.2
0.05-2
0.1-2
0.04 | ±0.05 ⁵
±0.05 ⁵
0.05
0.5
2 mv
±0.05
±0.5
1.5 | ±0.05 ⁵
±0.05 ⁵
0.1
0.5
2 mv
±0.05
±0.5
1.5 | 90
145
75
60
149
70–255
70–235
40 | b
b | | MO
120 | Ferro Ferro D-B D-B Acopian Acopian D-B | MC-26
MCH-26
15-26S
20-26S
30-26S
26A Series
26B Series
41-26S | 26
26
26
26
26
26
26 ²
26 ²
26 ² | 0.125
0.225
0.275
0.555
1.1
0.05-2
0.1-2
2.9 | 1.3
2
5 mv
5 mv
5 mv
0.5
0.05
5 mv | 1.3
2
5 m v
5 m v
5 m v
0.5
0.05-0.3
5 m v | 55
60
90
105
140
55–165
65–175
160 | c
c | #### Modular dc supplies | | | | 01 | JTPUT | REGL | ILATION | | | |-----------|---|--|---|---|--|--|--|---| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
121 | D-B
D-B
ERA
ERA
Numec
Numec
Trygon
Con Av | 51-26S
61-26S
TR Series
SR Series
A25
AS25
PS24-700 F
XR24-7 | 26
26
25–26
25–26
24–26
24–26
22–26
22–26 | 5
10
4,8
4,8
0.48
1.2
0.7
7 | 5 mv
5 mv
±0.05
±0.01
±0.01
±0.01
0.01
0.02 | 5 mv
5 mv
0.05
0.05
ina
ina
0.01
0.05 | 245
315
280, 330
320, 410
92
154
92
295 | b
b | | MO
122 | Nucor
Abbott
Nucor
Tech Pwr
Tech Pwr
Ferro
Ferro
Ferro | NP Series
V Series
NP Series
M-65 Series
M-65A Series
M-27
MM-27
HMC-27 | 22-26
23.3-26.1
23.5-26.5
24.4-26.8
24.4-26.8
27
271
271 | 1, 2, 4, 8
0.205-9.84
1, 2, 4, 8
0.1-25
0.1-25
0.04
0.045
0.1 | 0.02
±0.2
0.02
±0.5
±0.05
1.5
1 | 0.05
±0.5
0.05
±0.5
±0.05
1.5
1 | 150-395
180-460
150-395
50-460
60-485
40
65
90 | b
a
b
a,b,h,i
a,b,h,i
b
b | | MO
123 | Ferro
Ferro
Acopian
Acopian
ERA
ERA
ERA
Elasco | MC-27
MCH-27
27A Series
27B Series
TR Series
SR Series
SR Series
M26 Series | 27
27
27 ²
27 ²
26–27
26–27
25, 27
25–27 | 0.125
0.2
0.1-0.7
0.2-1.5
4,8
4,8
0.5,1,2
0.1-0.75 | 1.3
2
0.5
0.05
±0.05
±0.01
±0.01
0.05 |
1.3
2
0.5
0.05–0.25
0.05
0.05
0.05
0.05 | 55
60
60–80
70–150
280, 330
320, 410
135, 220
ina | b b c c c b b b h | | MO
124 | ERA Con Av Con Av Elasco ERA Elcor Elcor Behl-Invar | TR Series
HT26 Series
HT26A Series
SV26 Series
SR Series
AQC25-75
ATM25-75
W Series | 25–27
25–27
25–27
25–27
25–27
23–27
23–27
22–27 | 0.5, 1, 2
0.25-4.4
0.25-4.4
1-10
15, 25, 40
0.075
0.075
0.8-21 | ±0.05
0.25
0.025
0.05
±0.01
0.02
0.2
15 mv | 0.05
0.25
0.025
0.05
±0.05
0.02
0.2
10 mv | 110-190
65-200
75-215
ina
445-685
184
100
175-440 | h
b | | MO
125 | Nucor
Dynage
Dynage
Ferro
Ferro
Plug-In
Ferro | NP Series
D26.2 Series
D26.2A Series
M-28
MM-28
HM-28
SPS-2021-P
HMC-28 | 24.5–27.5
25–27.6
25–27.6
28
28
28
28
28
28 | 1, 2, 4, 8
0.05-2
0.05-2
0.04
0.045
0.045
0-0.075 | 0.02
0.5
0.05
1.5
1.4
1.5
±0.02
1.5 | 0.05
0.5
0.05
1.5
1.4
1.5
±0.05
1.5 | 150-395
45-190
55-200
40
65
45
48
90 | b b b b b b b | Notes, abbreviations and manufacturers' index at end of this section. | | | | OU | TPUT | REGU | LATION | | | |-----------|--|---|--|---|--|---|---|------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
126 | Ferro
Ferro
D-B
D-B
D-B
Lambda
Acopian
Acopian | MC-28
MCH-28
15-28S
20-28S
30-28S
LMB28
28A Series
28B Series | 28
28
28
28
28
28
28
28
28 ² | 0.125
0.2
0.275
0.55
1.1
1.2
0.05-2
0.1-2 | 1.3
2
5 mv
5 mv
0.05
0.5
0.05 | 1.3
2
5 mv
5 mv
5 mv
0.03
0.5
0.05–0.3 | 55
60
90
105
140
119
55–165
65–175 | b
b
c
c | | MO
127 | Mid-East
Trans Dev
Microdot
Mid-East
Lambda
Lambda
D-B
Mid-East | SM28-2
AM28
ACPS-1
SC28-2.1
LMC28
LMD28
41-28S
SM28-4 | 28
28
28
28
28
28
28
28
28 | 2
2
2
2.1
2.3
6
2.8
4 | 0.5
±0.02
ina
0.05
0.05
0.05
5 m v
0.5 | 0.5
±0.05
±1
0.05
0.03
0.03
5 mv
0.5 | 88
ina
ina
198
139
219
160
250 | e
b
b | | MO
128 | Perkin D-B Trans Dev Grafix Trygon Kepco GE Trans Dev | MS28 Series
51-28S
GSM28-5
271
FT-FTR28-7
PRM Series
9T66Y83
RP-10 | 28
28
28
28
28
28
28
28
28 | 0.23-4.4
4.9
5
6
7
4.3, 7
8 | ±0.025
5 mv
±0.02
0.05
1
±1
±1
±0.02 | ±0.025
5 mv
±0.05
5
900 mv
2,0.9 v
5
±0.05 | ina
225
ina
280
119-149
99, 119
153
ina | b,d
b
b | | MO
129 | Burton Lambda D-B Tabtron Lambda Lambda Tabtron ERA | TPS Series LME28 61-28S B28V15ARM LMF28 LMG28 B28V30ARM MS Series | 28
28
28
28
28
28
28
27, 28 | 0.4-8
8.5
9.5
15
17
25
30
4,6,8 | 5 mv
0.05
5 mv
±5
0.05
0.05
±5
±0.01 | 5 mv
0.03
5 mv
±5
0.03
0.03
±5
0.05 | 105-315
269
290
189
380
480
333
455-595 | b
b
b | | MO
130 | ERA ERA PMC PMC Acopian Kepco Con Cir Con Cir | TR Series
SR Series
RA Series
RB Series
M-2028
PWR28-3.3
28.8A Series
28.8B Series | 27-28
27-28
25-28 ²
25-28 ²
20-28 ²
0-28
28.8
28.8 | 4, 8
4, 8
0.1-2
0.1-2
0.5
3.3
0.05-2
0.1-2 | ±0.05
±0.01
±0.05
±0.5
0.05
0.005
±0.05
±0.05 | 0.05
0.05
±0.05
±0.5
0.1
0.05
±0.05
±0.5 | 265, 315
305, 395
60–330
55–315
80
209
70–255
70–235 | b
b
b | 26-28.8 v | | | | 01 | JTPUT | REGL | ILATION | 0. | | |-----------|--|---|--|---|--|--|--|---------------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
131 | Acopian
Acopian
ERA
ERA
Elasco
ERA
ERA | 29A Series
29B Series
TR Series
SR Series
M28 Series
TR Series
ME Series
MS Series | 29 ²
29 ²
28–29
28–29
27–29
27–29
27–29
27–29 | 0.1-0.4
0.2-1
4,8
4,8
0.1-0.75
0.5,1,2
0.5,1,2
0.5,1,2 | 0.5
0.05
±0.05
±0.01
0.05
±0.05
±0.05
±0.01 | 0.5
0.05-0.15
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 60-70
70-105
280, 330
320, 480
ina
95-175
155-215
315-395 | c
c
b
b
h
b | | MO
132 | ERA Con Av Con Av Elasco ERA Acopian Acopian Tech Pwr | SR Series
HT28A Series
HT28 Series
SV28 Series
SR Series
C-1529
M-1529
M-65 Series | 27-29
27-29
27-29
27-29
27-29
15-29 ²
15-29 ²
26.8-29.2 | 0.5, 1, 2
0.25-4.4
0.25-4.4
1-10
15, 25, 40
0.2
0.3
0.1-25 | ±0.01
0.025
0.25
0.05
±0.01
0.05
0.05
±0.5 | 0.05
0.025
0.25
0.05
±0.05
0.1
0.1
±0.5 | 120-205
75-215
65-200
ina
445-685
75
80
50-470 | h
b | | MO
133 | Tech Pwr
Abbott
Nucor
Nucor
ERA
ERA
Ferro
Ferro | M-65A Series
V Series
NP Series
NP 288
SV30
CV30
SM-30
M-30 | 26.8-29.2
26.1-29.2
26.5-29.5
26.5-29.5
30
30
30
30 | 0.1–25
0.18–8.64
1, 2, 4, 8
8
0.015
0.015
0.03
0.04 | ±0.05
±0.2
0.02
0.02
±0.5
±1
2.5
1.5 | ±0.05
±0.5
0.05
0.05
0.5
1
2.5 | 60-495
175-445
150-395
395
70
45
45
40 | a,b,h,i
a
b
b
b
b
b | | MO
134 | Ferro
Ferro
Scint
Scint
Ferro
Scint
D-B | MM-30
HM-30
MC-30
PCI-30
RW1.0-30
MCH-30
RS-5-2-30
15-30S | 30 ¹
30
30
30
30
30
30
30
30
30
30 | 0.045
0.045
0.1
0.1
0.1
0.175
0.2
0.225 | 1.4
1.5
1.5
2 mv
0.05
2
0.05
5 mv | 1.4
1.5
1.5
5 m v
0.05
2
0.05
5 mv | 65
45
55
49
89
60
59
90 | b
b
b
b | | MO
135 | Acopian
Glentron
Trygon
D-B
PMC
PMC
D-B
Pwr Des | 30A Series
30105
FT-FTR300-500
20-30S
SR-30
SRA-30
30-30S
UPM-X1 | 30 ²
30
30
30
30
30
30
30
30
30
30 | 0.1-0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.975 | 0.5
1
1
5 m v
200 mv
90 mv
5 mv
0.04 | 0.5
1
10 v
5 mv
180 mv
60 mv
5 mv
0.04 | 60-70
149
119-149
105
50
60
140 | b
b | | | | | ou | TPUT | REGU | LATION | 0. | | |-----------|--|---|---|---|--|--|--|-------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
136 | Acopian
Trans Dev
D-B
Trans Dev
D-B
D-B
ERA
ERA | 30B Series
AM30
41-30S
GSM30-4
51-30S
61-30S
TR Series
SR Series | 30 ²
30
30
30
30
30
30
29–30
29–30 | 0.05-2
2
2.6
4
4.6
9
4,8
4,8 | 0.05
±0.02
5 mv
±0.02
5 mv
5 mv
±0.05
±0.01 | 0.05-0.3
±0.05
5 mv
±0.05
5 mv
5 mv
0.05
0.05 | 60-175
ina
175
ina
245
315
280, 330
320-410 | c
e
b | | MO
137 | Ferro Elcor Nucor Con Av Trygon Trans Dev Elasco Trans Dev | HCV-28
AQC28-70
NP Series
XR28-7
PS28-600F
TMA-30
V28-500
STR Series | 26-30
26-30
26-30
26-30
26-30
25-30
25-30
25-30 | 0.6
0.07
1, 2, 4
7
0.6
0.25
0.5
0.25–0.5 | 0.25
0.02
0.02
0.02
0.01
±0.025
0.05
±0.02 | 0.25
0.02
0.05
0.05
0.01
±0.05
0.05
±0.05 | 110
184
150-295
295
85
ina
ina
ina | b
b
b
h
b,i | | MO
138 | Acopian
PMC
Trans Dev
Trans Dev
Trans Dev
Trans Dev
Trans Dev
ITI | M-2530
R2530-500
EM-30
STR30-1
STR30-2
SCR-30-3
SCR-30-5
231F | 25-30 ²
25-30
25-30
25-30 ⁶
25-30 ⁶
25-30
25-30
21-30 | 0.5
0.5
0.5
1
2
2.5
5
0.15 | 0.05
0.05
±0.025
±0.02
±0.02
±0.5
±0.5
±0.5 | 0.1
0.03
±0.05
±0.05
±0.05
±0.05
±0.5
±0.5 |
80
103
ina
ina
ina
ina
ina
139 | b
b,i
b,i | | MO
139 | ITI ITI ITI ITI ERA ERA Elasco ERA | 331F
431F
531F
631F
TR20A
SR20P1
V25 Series
ME Series | 21-30
21-30
21-30
21-30
20-30
20-30
20-30
20-30 | 0.3
0.75
1.5
3
0.15
0.15
0.05-0.25
0.05-0.25 | ±0.02
±0.02
±0.02
±0.02
±0.05
±0.1
0.05
±0.01 | ±0.02
±0.02
±0.02
±0.02
0.5
0.1
0.05
0.05 | 146
155
168
188
70
90
ina
120–140 | b b b b b h b | | MO
140 | ERA ERA Acopian Endevco Endevco Trans Dev ERA | MS Series
SR Series
C-130
4204
SR1000EP
VSTR30-2
SR Series | 20-30
20-30
1-30 ²
1-30
0-30
0-30
0-30 | 0.05, 0.25
0.05-0.25
0.05
0.1
1
2
0.5-8 | ±0.01
±0.01
0.5
0.01
0.01
±0.02
±0.01 | 0.05
0.05
0.5
0.01
0.01
±0.05
±0.02 | 220, 285
130-145
60
160
395
ina
150-410 | b,f
b | | | | | OU | TPUT | REGU | LATION | 0. | | |-----------|--|---|---|--|---|---|--|-------------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
141 | Dynage
Dynage
Nucor
Acopian
Acopian
ERA
ERA
Endevco | D29 Series
D29A Series
NP Series
31A20
31B Series
SR Series
TR Series
4202 | 27.6-30.4
27.6-30.4
27.5-30.5
31 ²
31
30-31
30-31
29-31 | 0.05-2
0.05-2
1, 2, 4, 8
0.2
0.1-0.9
4, 8
4, 8
0.1 | 0.5
0.05
0.02
0.5
0.05
±0.01
±0.05
0.01 | 0.5
0.05
0.05
0.5
0.05–0.15
0.05
0.05
0.05 | 45-190
55-200
150-395
65
65-105
320, 410
280, 330
125 | b
c
c
b | | MO
142 | Elasco
ERA
ERA
Con Av
Con Av
Elasco
ERA
Con Cir | M30 Series
SR Series
TR Series
HT30 Series
HT30A Series
SV30 Series
SR Series
31.5A Series | 29-31
29-31
29-31
29-31
29-31
29-31
29-31
31.5 | 0.1-0.75
0.5, 1, 2
0.5, 1, 2
0.2-4
0.2-4
1-10
15, 25, 40
0.05-2 | 0.05
±0.01
±0.05
0.25
0.025
0.05
±0.01
±0.05 | 0.05
0.05
0.05
0.25
0.025
0.05
±0.05
±0.05 | ina
135–220
110–190
65–200
75–215
ina
445–685
70–255 | h
b
b | | MO
143 | Con Cir
Nucor
Acopian
Acopian
Mid-East
Perkin
ERA | 31.5B Series
NP Series
32A10
32B Series
SC32-1.9
MS32 Series
MS324
SR Series | 31.5
28.5–31.5
32 ²
32 ²
32
32
31–32
31–32 | 0.1-2
1, 2, 4, 8
0.1
0.1-1.5
1.9
0.18-4
4
4, 8 | ±0.5
0.02
0.5
0.05
0.05
±0.025
±0.01
±0.01 | ±0.5
0.05
0.5
0.05-0.3
0.05
±0.025
0.05
0.05 | 70-235
155-395
60
65-175
198
ina
455
305, 395 | g
b
c
c
b
b,d
b,f | | MO
144 | ERA Con Av Con Av Numec Elcor Elcor Numec PMC | TR Series
HT31 Series
HT31A Series
A30
ATM30-65
AQC30-65
AS30
RA Series | 31-32
30-32
30-32
28-32
28-32
28-32
28-32
28-32 | 4, 8
0.2-4
0.2-4
0.4
0.065
0.065
1.0
0.05-12 | ±0.05
0.25
0.025
±0.01
0.2
0.02
±0.01
±0.05 | 0.05
0.25
0.025
ina
0.2
0.02
ina
±0.05 | 265, 315
65-200
75-215
92
100
184
154
55-340 | b | | MO
145 | PMC Tech Pwr Behl-Invar Lambda Lambda Lambda Trans Dev Lambda | RB Series
M-65A Series
W Series
LM219
LM228
LM237
SM-32
LM205 | 28-32 ²
28-32
27-32
22-32
22-32
22-32
22-32
0-32 | 0.05-12
0.375-25
0.8-20
1.2
2
5
0.25
0.25 | ±0.5
±0.05
15 m v
0.05
0.05
0.05
±5 m v
0.05 | ±0.5
±0.05
10 mv
0.03
0.03
0.03
±15 mv
0.03 | 50-325
50-295
175-440
119
139
219
ina
79 | b
a,b,h,i
b
b
b
b | | | | | OU | TPUT | REGU | LATION | | | |-----------|---|---|---|--|---|---|--|---| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
146 | Lambda
Trygon
Trygon
Nucor
Abbott
Tech Pwr
Tech Pwr
ERA | LM206
P32-1.5
PS Series
NP Series
V Series
M-65 Series
M-65A Series
SR334 | 0-32
0-32
0-32
29.5-32.5
29.2-32.6
29.2-32.7
29.2-32.7
32-33 | 0.5
1.5
1.25, 2.5
1, 2, 4, 8
0.16-7.68
0.05-12
0.05-12
4 | 0.05
0.05
0.01
0.02
±0.2
±0.5
±0.05
±0.01 | 0.03
0.05
0.01
0.05
±0.5
±0.5
±0.05
0.05 | 79
184
165, 180
155–399
190–470
50–365
55–390
360 | b
b
a,b
b
a
a,b,h,i
a,b,h,i | | MO
147 | Elasco
ERA
ERA
ERA
Elasco
Arnold
Chalco | M32 Series
ME Series
MS Series
SR Series
TR Series
SV32 Series
SCH-30
33V Series | 31-33
31-33
31-33
31-33
31-33
31-33
15-33 | 0.1-0.75
0.5, 1, 2
0.5, 1, 2
0.5, 1, 2
0.5, 1, 2
1-10
0.65
5-50 | 0.05
±0.01
±0.01
±0.01
±0.05
0.05
1
±1 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05
1
±1 | ina
155, 215
315–395
120–205
95–175
ina
159
220–625 | h
b,f
b
b | | MO
148 | Chalco
Dynage
Dynage
Acopian
Acopian
ERA
Nucor
Acopian | 33V Series
D32 Series
D32A Series
34A10
34B Series
SR344
NP Series
G-2734 | 15-33
30.4-33.6
30.4-33.6
34 ²
34 ²
33-34
30-34
27-34 ² | 5-50
0.05-1.5
0.05-1.5
0.1
0.1-1.5
4
30-34
0.7 | ±0.1
0.5
0.05
0.5
0.05
±0.01
0.02
0.05 | ±0.1
0.5
0.05
0.5
0.05–0.3
0.05
0.05
0.05 | 235–670
50–155
60–165
60
65–175
360
155–399
98 | c
c
b | | MO
149 | Con Cir
Con Cir
Nucor
Ferro
Acopian
Acopian
Trans Dev
ERA | 34.5A Series
34.5B Series
NP Series
M-35
35AIO
35B Series
RP-14
SR354 | 34.5
34.5
31.5–34.5
35
35 ²
35 ²
35
34–35 | 0.05-2
0.1-2
1, 2, 4
0.035
0.1
0.1
0.8
4 | ±0.05
±0.5
0.02
1.5
0.5
0.05
±0.1
±0.01 | ±0.05
±0.5
0.05
1.5
0.5
0.05-0.15
±0.1
0.05 | 70-255
70-235
155-305
42
60
65-105
ina
360 | g
b
c
c | | MO
150 | Elasco
ERA
Elasco
Trans Dev
Elasco
Trans Dev
PMC
Trans Dev | M34 Series
SR Series
SV34 Series
TMA-35
V32-250
EM-35
R3035-500
RP-2 | 33-35
33-35
33-35
30-35
30-35
30-35
30-35
30-35 | 0.1-0.75
0.5, 1, 2
1-5
0.2
0.25
0.35
0.5
0.6 | 0.05
±0.01
0.05
±0.025
0.05
±0.025
0.05
±0.025 | 0.05
0.05
0.05
±0.05
0.05
±0.05
0.025
±0.025 | ina
165-255
ina
ina
ina
ina
116
ina | h b h b b b b | | | | | OU | TPUT | REGU | LATION | D : | | |-----------|---|--|--|--|--|--|---|---------------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
151 | Acopian
Acopian
PMC
Nucor
Acopian
Pwr Des
Lambda
Acopian | L-2535
G-2535
R2035-300
NP Series
36A10
UPM-4 Series
LMB36
36B Series | 25-35 ²
25-35 ²
20-35
32.5-35.5
36 ²
36
36
36
36 ² | 0.1
0.6
0.3
1,2,4
0.1
0.5
1.1
0.1–1.5 | 0.05
0.05
0.05
0.02
0.5
0.04
0.05
0.05 | 0.05
0.02
0.05
0.05
0.5
0.04
0.03
0.05–0.3 | 75
98
87
185–305
60
147
129
65–175 | b
c
b
c | | MO
152 | Mid-East
Lambda
Perkin
Kepco
Lambda
Burton
Lambda
Lambda | SC36-1.7
LMC36
MS36 Series
PRM Series
LMD36
TPS Series
LME36
LMF36 | 36
36
36
36
36
36
36
36
36 | 1.7
2
0.15-3.6
3.3, 5
5.4
0.3-6
6.8
13 | 0.05
0.05
±0.025
±1
0.05
5 mv
0.05
0.05 | 0.05
0.03
±0.025
2.4, 1.3 v
0.03
5 mv
0.03
0.03 | 198
149
ina
99, 119
239
105–315
279
395 | b
b
b,d
b | | MO
153 | Lambda
ERA
Numec
Numec
Con Av
PMC
PMC
Sorensen |
LMG36
SR364
A36
AS36
XR34-5.5
RA Series
RB Series
QMA28-0.18 | 36
35-36
32-36
32-36
32-36
32-36 ²
32-36 ²
24-36 | 22
4
0.33
0.8
5.5
0.05–12
0.05–12
0.18 | 0.05
±0.01
±0.01
±0.01
0.02
±0.05
±0.5
±0.05 ⁵ | 0.03
0.05
ina
ina
0.05
±0.05
±0.5
±0.05 | 525
360
92
154
295
55–365
50–345
60 | b b b b | | MO
154 | Glentron
Glentron
Pwr Des
D-B
Harrison
Kepco
Tech Pwr | 40102
70103
40105
UPM-5
110-36
Mod Series
PAX36-0.3
M-65 Series | 20-36
20-36
20-36
0-36
0-36
0-36
0-36
32.7-36.2 | 1
1
2
0.5
0.5
0.15–1.5
0.3
0.05–12 | 0.5
0.1
0.5
0.04
5 mv
0.02
0.05
±0.5 | 0.5
0.1
0.5
0.04
5 mv
0.02
0.05
±0.5 | 212
265
245
147
175
120–225
89
50–375 | b
b
b
b,d
b,d
a,b,h,i | | MO
155 | Tech Pwr
Nucor
Abbott
Acopian
Acopian
ERA
Elasco
ERA | M-65A Series
NP Series
V Series
37A10
37B Series
SR374
M36 Series
SR Series | 32.7-36.2
33.5-36.5
32.6-36.5
37 ²
37 ²
36-37
35-37
35-37 | 0.05-12
1, 2, 4
0.145-6.96
0.1
0.1-0.8
4
0.1-0.75
0.5, 1, 2 | ±0.05
0.02
±0.2
0.5
0.05
±0.01
0.05
±0.01 | ±0.05
0.05
±0.5
0.5
0.05-0.15
0.05
0.05 | 55–400
185–310
210–490
60
65–105
360
ina
165–255 | a,b,h,i
b
a
c
c
b
h | | | 143 | | . 00 | ITPUT | REGI | JLATION | | | |-----------|---|---|--|--|--|--|---|--------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
156 | Elasco
Dynage
Dynage
Elcor
Con Av
Con Av
Behl-Invar
Sorensen | SV36 Series
D35.2 Series
D35.2A Series
ATM35-55
HT35 Series
HT35A Series
W Series
QMA28-0.64 | 35-37
33.6-37
33.6-37
33-37
33-37
33-37
32-37
25-37 | 1-5
0.05-1.5
0.05-1.5
0.055
0.28-3.6
0.28-3.6
0.7-18
0.64 | 0.05
0.5
0.05
0.2
0.25
0.025
15 my
±0.055 | 0.05
0.5
0.05
0.2
0.25
0.025
10 mv
±0.05 ⁵ | ina
50–160
60–170
100
77–215
87–230
175–440
90 | h | | MO
157 | Sorensen
Nucor
Acopian
Acopian
Con Cir
Con Cir
ERA
Elcor | QMA28-1.25
NP Series
38A10
38B Series
38.0A Series
38.0B Series
SR384
AQC36-55 | 25-37
34.5-37.5
38 ²
38
38
38
37-38
34-38 | 1.25
1, 2, 4
0.1
0.1–0.7
0.05–2
0.1–2
4
0.055 | ±0.05 ⁵ 0.02 0.5 0.05 ±0.05 ±0.05 ±0.05 ±0.05 0.02 | ±0.05 ⁵
0.05
0.5
0.05-0.1
±0.05
±0.5
0.05
0.05 | 120
185-310
60
65-105
70-255
70-235
360
184 | b
c
c
g
g | | MO
158 | Nucor
Acopian
Acopian
ERA
Elasco
ERA
Elasco
Nucor | NP Series
39 A 10
39 B Series
SR 39 4
M38 Series
SR Series
SV38 Series
NP Series | 35.5-38.5
39 ²
39 ²
38-39
37-39
37-39
37-39
36.5-39.5 | 1, 2, 4
0.1
0.1–0.6
4
0.1–0.75
0.5, 1, 2
1–5
1, 2, 4 | 0.02
0.5
0.05
±0.01
0.05
±0.01
0.05
0.05 | 0.05
0.5
0.05–0.1
0.05
0.05
0.05
0.05
0.05 | 185-310
60
65-105
360
ina
165-255
ina
185-310 | b c c b h b b h b | | MO
159 | Ferro
Acopian
D-B
D-B
PMC
PMC
D-B
Mid-East | M-40
40A10
15-40S
20-40S
SR-40
SRA-40
30-40S
SC40-1.5 | 40
40 ²
40
40
40
40
40
40
40 | 0.035
0.1
0.175
0.375
0.5
0.5
0.8
1.5 | 1.5
0.5
5 mv
5 mv
250 mv
100 mv
5 mv
0.05 | 1.5
0.5
5 m v
5 m v
180 m v
70 m v
5 m v
0.05 | 42
60
100
105
50
60
140
198 | b
c
b
b | | MO
160 | D-B Perkin D-B Burton D-B Acopian ERA Tech Pwr | 41-40S
MS40 Series
51-40S
TPS Series
61-40S
40B Series
SR404
M-65 Series | 40
40
40
40
40
40
40 ²
39–40
36.2–40 | 2.1
0.13-3.2
3.6
0.3-6
7
0.1-0.5
4
0.05-12 | 5 m v
±0.025
5 m v
5 m v
0.05
±0.01
±0.5 | 5 mv
±0.025
5 mv
5 mv
5 mv
0.05-0.1
0.05
±0.5 | 175
ina
245
105-315
315
65-95
360
50-385 | b,d
c
b
a,b,h,i | #### Modular dc supplies | | | | OU | TPUT | REGU | LATION | D | | |-----------|--|---|--|--|--|---|--|---------------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
161 | Tech Pwr
PMC
PMC
Trans Dev
Elasco
Trans Dev
PMC
Elasco | M-65A Series
RA Series
RB Series
TMA-40
V38-250
EM-40
R3540-500
V35 Series | 36.2-40
36-40 ²
36-40 ²
35-40
35-40
35-40
35-40
30-40 | 0.05-12
0.05-12
0.05-12
0.2
0.25
0.3
0.5
0.05-0.1 | ±0.05
±0.05
±0.5
±0.025
0.05
±0.025
0.05
0.05 | ±0.05
±0.05
±0.5
±0.05
0.05
±0.05
0.02
0.05 | 55-410
55-365
50-345
ina
ina
ina
116
ina | a,b,h,i
b
b
b
h
b | | MO
162 | ERA Trans Dev ERA ERA ERA ERA Tech Pwr Lambda | SR30P1
STR-40
TR30A
MS Series
SR Series
ME Series
SCR-80 Series
LH124S | 30-40
30-40
30-40
30-40
30-40
30-40
20-40
0-40 | 0.15
0.15
0.15
0.05, 0.25
0.05–0.25
0.05, 1, 2
3–50
1.3 | ±0.1
±0.02
±0.5
±0.01
±0.01
±0.01
±0.5
0.015 | 0.1
±0.05
0.5
0.05
0.05
0.05
±0.5
0.015 | 95
ina
70
235, 295
135–145
120, 140
160–550
154 | b
b,i
b
b,f
b
b,d
b | | MO
163 | Kepco
Lambda
Trygon
Tech Pwr
Tech Pwr
Nucor
Dynage
Dynage | PBX40-0.5
LH125S
PHR Series
R-80 Series
SWR-80 Series
NP Series
D38.8 Series
D38.8A Series | 0-40
0-40
0-40
0-40
0-40
37.5-40.5
37-40.8
37-40.8 | 0.5
3
3, 5, 7.5
3-25
3-25
1, 2, 4
0.05-1.5
0.05-1.5 | 0.01
0.015
0.01
±0.1
±0.01
0.02
0.5
0.05 | 0.01
0.015
0.01
±0.3
±0.03
0.05
0.5 | 105
269
255-325
140-355
245-590
185-340
50-170
60-180 | b,d
b
b | | MO
164 | Abbott
Acopian
Acopian
ERA
Elasco
Mag Res
ERA
Elasco | V Series
41A10
41B Series
SR414
M40 Series
63-121-0
SR Series
SV40 Series | 36.5-40.9
412
412
40-41
39-41
39-41
39-41
39-41 | 0.13-6.24
0.1
0.1-0.4
4
0.1-0.5
2
4
1-5 | ±0.2
0.5
0.05
±0.01
0.05
0.05
±0.01
0.05 | ±0.5
0.5
0.05-0.1
0.05
0.05
0.05
0.05
0.05 | 220-530
60
70-95
360
ina
295
360
ina | a
c
c
b
h | | MO
165 | Con Av
Con Av
Nucor
Con Cir
Con Cir
Acopian
Acopian
ERA | HT39 Series
HT39A Series
NP Series
42.0A Series
42.0B Series
42A10
42B Series
SR424 | 37-41
37-41
38.5-41.5
42
42
42 ²
42 ²
41-42 | 0.26-3.5
0.26-3.5
1, 2, 4
0.05-2
0.1-2
0.1
0.1-0.4 | 0.25
0.025
0.02
±0.05
±0.5
0.5
0.05
±0.01 | 0.25
0.025
0.05
±0.05
±0.5
0.5
0.05-0.1
0.05 | 77-220
87-235
185-340
75-255
70-235
60
70-95
360 | b
g
g
c
c | Notes, abbreviations and manufacturers' index at end of this section. | | | | OU | TPUT | REGU | LATION | D : | | |-----------|---|---|--|--|--|--|---|---| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
166 | Elcor
Elcor
Nucor
Acopian
Acopian
ERA
Elasco
ERA | AQC40-50
ATM40-50
NP Series
43A10
43B Series
SR434
M42 Series
SR Series | 38-42
38-42
39.5-42.5
43 ²
42-43
41-43
41-43 | 0.05
0,05
1,2,4
0.1
0.1–0.3
4
0.1–0.5
0.5, 1, 2 | 0.02
0.2
0.02
0.5
0.05
±0.01
0.05
±0.01 | 0.02
0.2
0.05
0.5
0.05–0.1
0.05
0.05 | 184
100
185-340
60
70-95
360
ina
165-255 | b
c
c
b | | MO
167 | Elasco
Nucor
Acopian
Acopian
ERA
Tech Pwr
Tech
Pwr
Nucor | SV42 Series
NP Series
44A10
44B Series
SR444
M-65 Series
M-65A Series
NP Series | 41-43
40.5-43.5
44 ²
43-44
40-44
40-44
41.5-44.5 | 1-5
1, 2, 4
0.1
0.1-0.3
4
0.05-12
0.05-12
1, 2, 4 | 0.05
0.02
0.5
0.05
±0.01
±0.5
±0.05
0.02 | 0.05
0.05
0.5
0.05-0.1
0.05
±0.5
±0.05
0.05 | ina
185-340
60
70-95
360
50-400
60-425
185-340 | h
b
c
c
b
a,b,h,i
a,b,h,i | | MO
168 | Ferro
Ferro
Ferro
Ferro
Acopian
Ferro
Ferro | HV-45
HHV-45
B-456
B-224
MC-45
45A10
MSM-45
MCH-45 | 45
451
45, 671
45, 221
45
452
45
45 | 0.04
0.04
0.04
0.05
0.09
0.1
0.1 | 1.5
1.5
1.5
1.5
1.5
0.5
1.5
2 | 1.5
1.5
1.5
1.5
1.5
1.5
2 | 55
75
70
65
55
60
75
60 | b b b c b b | | MO
169 | Acopian
ERA
ERA
Elasco
ERA
Elasco
Con Av
Con Av | 45B Series
MS454
SR454
M44 Series
SR Series
SV44 Series
HT43 Series
HT43A Series | 45 ² 44-45 44-45 43-45 43-45 43-45 41-45 41-45 | 0.1-0.3
4
0.1-0.5
0.5, 1, 2
1-5
0.24-3.3
0.24-3.3 | 0.05
±0.01
±0.01
0.05
±0.01
0.05
0.25
0.025 | 0.05-0.1
0.05
0.05
0.05
0.05
0.05
0.05
0.25
0.25 | 70-95
575
345
ina
165-255
ina
77-225
87-240 | c
b,f
b
h
b | | MO
170 | Dynage
Dynage
Trans Dev
Elasco
PMC
PMC
PMC
ITI | D42.8 Series
D42.8A Series
TMA-45
V42-250
R4045-500
RA Series
RB Series
231G | 40.8-45
40.8-45
40-45
40-45
40-45
40-45 ²
40-45 ²
30-45 | 0.025-1
0.025-1
0.15
0.25
0.5
0.05-12
0.05-12
0.1 | 0.5
0.05
±0.025
0.05
0.05
±0.05
±0.5
±0.02 | 0.5
0.05
±0.05
0.05
0.015
±0.05
±0.05
±0.5
±0.02 | 45–160
55–170
ina
ina
116
60–375
55–355
139 | b
h
b
b | 40-45 v | | | | OU | ITPUT | REGU | LATION | D : | | |-----------|---|--|--|--|--|---|--|-----------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
171 | ITI ITI ITI Chalco Chalco Acme Nucor | 331G
431G
531G
631G
45V Series
45V Series
PS-6757
NP Series | 30-45
30-45
30-45
30-45
22-45
22-45
0-45
42.5-45.5 | 0.2
0.55
1.1
2.2
5-40
5-40
2.5
1,2,4 | ±0.02
±0.02
±0.02
±0.02
±0.10
±1
ina
0.02 | ±0.02
±0.02
±0.02
±0.02
±0.02
±1
5 | 146
155
168
188
260–615
235–595
123
190–340 | b
b
b | | MO
172 | Abbott
Acopian
Acopian
Con Cir
Con Cir
ERA
ERA
ERA | V Series
46A10
46B Series
46.0A Series
46.0B Series
ME Series
MS Series
SR Series | 40.9-45.8
46 ²
46 ²
46
46
44-46
44-46
44-46 | 0.115-5.52
0.1
0.1-0.3
0.05-2
0.05-2
0.5, 1
0.5, 1, 2
0.5, 1, 2 | ±0.2
0.5
0.05
±0.05
±0.5
±0.01
±0.01 | ±0.5
0.5
0.05-0.1
±0.05
±0.5
0.05
0.05
0.05 | 235-540
60
70-95
75-255
70-235
160, 205
390-430
150-240 | a
c
c
g
g
b
b,f | | MO
173 | Con Av
Nucor
Acopian
Acopian
Elasco
Elasco
Nucor
Acopian | XR44-4.5
NP Series
47A10
47B Series
M46 Series
SV46 Series
NP Series
48A10 | 42-46
43.5-46.5
47 ²
47 ²
45-47
45-47
44.5-47.5
48 ² | 4.5
1, 2, 4
0.1
0.1–0.3
0.1–0.5
1–5
1, 2, 4
0.1 | 0.02
0.02
0.5
0.05
0.05
0.05
0.05
0.05 | 0.05
0.05
0.5
0.05–0.3
0.05
0.05
0.05
0.05 | 295
190–345
60
70–95
ina
ina
190–345
60 | b
c
c
h
h
b | | MO
174 | PMC
PMC
Pwr Des
Acopian
Lambda
Lambda
GE
Trygon | SR-48
SRA-48
UPM-4 Series
48B Series
LMB48
LMC48
9T66Y93
FT-FTR48-4 | 48
48
48 ²
48
48
48
48 | 0.5
0.5
0.5
0.1–0.6
0.9
1.6
4 | 350 mv
120 mv
0.04
0.05
0.05
0.05
±1 | 180 mv
80 mv
0.04
0.05–0.2
0.03
0.03
5
1.4 v | 50
60
147
70–130
129
149
122
119–149 | b
b
c
b
b | | MO
175 | Kepco
Lambda
Lambda
GE
Lambda
Trans Dev
Lambda
ERA | PRM Series
LMD48
LME48
9T66Y94
LMF48
RP-9
LMG48
SR Series | 48
48
48
48
48
48
48
46-48 | 2.5, 4
4.1
5
10
10
12
17
0.5, 1 | ±1
0.05
0.05
±1
0.05
±1
0.05
±0.01 | 3.1, 1.8 v
0.03
0.03
4
0.03
±1
0.03
0.05 | 99, 119
239
299
180
425
ina
575
185, 240 | b
b
b | | | | | OU | ITPUT | REGL | JLATION | | | |-----------|--|---|--|---|--|--|---|-------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
176 | Tech Pwr Tech Pwr Elcor Elcor Pwr Des Kepco Nucor Acopian | M-65 Series
M-65A Series
AQC45-45
ATM45-45
UPM-2
PWR48-2
NP Series
49A10 | 44-48
44-48
42-48
42-48
24-48 ⁴
0-48
45.5-48.5
49 ² | 0.05-12
0.05-12
0.045
0.045
0.25-0.5
2
1, 2, 4
0.1 | ±0.5
±0.05
0.02
0.2
0.03
0.005
0.02
0.5 | ±0.5
±0.05
0.02
0.2
0.03
0.05
0.05
0.5 | 50-420
60-445
184
100
199
209
190-345
60 | a,b,h,i
a,b,h,i
b | | MO
177 | Acopian
Elasco
Elasco
Nucor
Dynage
Dynage
Ferro
Ferro | 49B Series
M48 Series
SV48 Series
NP Series
D47.2 Series
D47.2A Series
HV-5
HHV-50 | 49 ²
47-49
47-49
46.5-49.5
45-49.5
45-49.5
50
50 ¹ | 0.1-0.3
0.1-0.5
1-5
2, 4
0.025-1
0.025-1
0.04
0.04 | 0.05
0.05
0.05
0.02
0.5
0.05
1.5 | 0.05-0.1
0.05
0.05
0.05
0.5
0.05
0.05
1.5 | 70-95
ina
ina
235, 345
45-160
55-170
55
75 | c
h
h
b | | MO
178 | Acopian
D-B
ERA
ERA
D-B
Glentron
Acopian
D-B | 50 A 10
15-50S
C V 50
S V 50
20-50S
30106
50B Series
30-50S | 50 ²
50
50
50
50
50
50
50
50 ²
50 | 0.1
0.15
0.015
0.015
0.3
0.5
0.1–0.5
0.6 | 0.5
5 mv
±1
±0.5
5 mv
1
0.05
5 mv | 0.5
5 mv
1
0.5
5 mv
1
0.05–0.1
5 mv | 60
100
45
70
105
149
70–135
140 | c
b
b | | MO
179 | D-B
Con Cir
Con Cir
Perkin
D-B
Trans Dev
Burton
D-B | 41-50S
50.0A Series
50.0B Series
MS50 Series
51-50S
GSM50-3
TPS Series
61-50S | 50
50
50
50
50
50
50
50
50 | 1.6
0.05-2
0.05-2
0.1-2.4
2.8
3
0.25-5
5.5 | 5 mv
±0.05
±0.5
±0.025
5 mv
±0.02
5 mv
5 mv | 5 mv
±0.05
±0.5
±0.025
5 mv
±0.05
5 mv
5 mv | 175
75–260
70–240
ina
245
ina
105–315
315 | g
g
b,d | | MO
180 | ERA Trygon Nucor Con Av Trans Dev Numec Elasco PMC | SR Series
PS48-400F
NP 481
XR48-4.5
TMA-50
A50
V48-250
R4550-500 | 48-50
46-50
46-50
46-50
45-50
45-50
45-50 | 0.5, 1
0.4
1
4.5
0.15
0.24
0.25
0.5 | ±0.01
0.01
0.02
0.02
±0.025
±0.01
0.05
0.05 | 0.05
0.01
0.05
0.05
±0.05
ina
0.05
0.007 | 185-240
87
190
295
ina
101
ina
116 | b
b
b | | | | | 00 | TPUT | REGI | JLATION | | | |-----------|--|--|--|---|--|---|--|--| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
181 | Numec
PMC
PMC
Elasco
ERA
ERA
Trans Dev
ERA | AS50
RA Series
RB Series
V45 Series
SR40P I
TR40A
STR-50
ME Series | 45-50
45-50 ²
45-50 ²
40-50
40-50
40-50
40-50
40-50 | 0.6
0.05-12
0.05-12
0.05-0.1
0.15
0.15
0.15
0.05-0.25 | ±0.01
±0.05
±0.5
0.05
±0.1
±0.5
±0.02
±0.01 | ina
±0.05
±0.5
0.05
0.1
0.5
±0.05
0.05 | 154
60-270
55-370
ina
95
70
ina
120, 140 | b
b
h
b
b,i | |
MO
182 | ERA ERA PMC Trans Dev Trans Dev PMC Un Elect CEA | MS Series
SR Series
R3550-300
SCR-50-2
SCR-50-4
R1550-200
M Series
500D Series | 40-50
40-50
35-50
30-50
30-50
15-50
5-50 ⁶
0.5-50 | 0.05, 0.25
0.05–0.25
0.3
1.6
4
0.2
0.25–3
0.1–1 | ±0.01
±0.01
0.05
±0.5
±0.5
0.05
±0.05
0.005 | 0.05
0.05
0.05
±0.5
±0.5
0.05
±0.05
0.0005 | 235, 295
145–165
94
ina
ina
94
105–195
190–1160 | b,f
b
b | | MO
183 | CEA Trygon ACDC Trygon Nucor Elasco ACDC ACDC | 600D Series
P50-750
BX50P1.2
PS Series
NP Series
M50 Series
BC50N1.2
BX50N1.2 | 0.5-50
0-50
0-50
0-50
47.5-50.5
49-51
49-51 | 0.1-1
0.75
1.2
0.15-1.5
1, 2, 4
0.1-0.5
1.2 | 0.0005
0.05
0.01
0.01
0.02
0.05
0.5
0.01 | 0.0005
0.05
0.01
0.01
0.05
0.05
0.5
0.05 | 195-1410
184
216
89-185
190-375
ina
130
158 | b
a,b
b | | MO
184 | Elasco
Con Av
Con Av
Abbott
Nucor
ERA
Tech Pwr
Tech Pwr | SV50 Series
HT48 Series
HT48A Series
V Series
NP Series
SR Series
M-65 Series
M-65A | 49-51
45-51
45-51
45.8-51.4
48.5-51.5
50-52
48-52
48-52 | 1-5
0.21-2.9
0.21-2.9
0.103-4.56
1, 2
0.5, 1
0.05-12
0.05-12 | 0.05
0.25
0.025
±0.2
0.02
±0.01
±0.5
±0.05 | 0.05
0.25
0.025
±0.5
0.05
0.05
±0.5
±0.05 | ina
77–225
87–240
245–565
190, 250
185, 240
50–440
60–465 | h
a
b
b
a,b,h,i
a,b,h,i | | MO
185 | Elasco
Elcor
Elcor
Sorensen
ERA
Dynage
Dynage
Ferro | M52 Series
AQC50-40
ATM50-40
QMA48-0.1
SR Series
D52 Series
D52A Series
HV-55 | 51-53
47-53
47-53
36-53
52-54
49.5-54.5
49.5-54.5 | 0.1-0.25
0.04
0.04
0.1
0.5, 1
0.025-1
0.025-1
0.04 | 0.05
0.02
0.2
±0.05 ⁵
±0.01
0.5
0.05
1.5 | 0.05
0.02
0.2
±0.05 ⁵
0.05
0.5
0.05
1.5 | ina
184
100
60
185–240
45–165
55–175
55 | h
b
b | Notes, abbreviations and manufacturers' index at end of this section. #### 50-60 v | | | | OU | TPUT | REGU | LATION | D : | | |-----------|---|--|---|---|---|--|--|---------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
186 | Ferro
Acopian
Elasco
ERA
Elasco
Sorensen
Sorensen
PMC | HHV-55
55B Series
M54 Series
TR50A
V52-250
QMA48-0.37
QMA48-0.75
RA Series | 55 ¹
55 ²
53–55
50–55
50–55
37–55
37–55
50–56 ² | 0.04
0.05-0.5
0.05-0.25
0.15
0.25
0.37
0.75
0.05-6 | 1.5
0.05
0.05
±0.5
0.05
±0.055
±0.055
±0.055 | 1.5
0.05-0.1
0.05
0.5
0.05
±0.05 ⁵
±0.05 ⁵
±0.05 ⁵ | 75
65–140
ina
70
ina
80
120
60–270 | b c h b h b b b | | MO
187 | PMC Con Cir Con Cir ERA Elasco ERA Elasco Tech Pwr | RB Series
56.0A Series
56.0B Series
SR Series
M56 Series
SR Series
M58 Series
M-65 Series | 50-56 ²
56
56
54-56
55-57
56-58
57-59
52-59 | 0.05-6
0.05-1
0.05-1
0.5, 1
0.05-0.25
0.5, 1
0.05-0.25
0.05-12 | ±0.5
±0.05
±0.5
±0.01
0.05
±0.01
0.05
±0.05 | ±0.5
±0.05
±0.5
0.05
0.05
0.05
0.05
±0.5 | 55–250
80–245
75–235
185, 240
ina
185, 240
ina
55–465 | b
g
g
b
h
b
h | | MO
188 | Tech Pwr
Abbott
Ferro
Ferro
Ferro
Acopian
Mid-East
Kepco | M-65A Series
V Series
HV-60
HHV-60
HVA-60
60B Series
SM60-1
PRM Series | 52-59
51.4-59
60
60 ¹
60
60 ²
60
60 | 0.05-12
0.091-4.4
0.04
0.04
0.09
0.05-0.4
1
2, 3 | ±0.05
±0.2
1.5
1.5
1.5
0.05
0.5
±1 | ±0.05
±0.5
1.5
1.5
1.5
0.05-0.1
0.5
3.8, 1.8 v | 65-490
260-565
55
75
75
75-140
87.50
99,119 | a,b,h,i
a
b
b
c | | MO
189 | Mid-East
Burton
ERA
ERA
Elasco
Dynage
Dynage
Elasco | SM60-4
TPS Series
MS604
SR Series
V58-250
D57.2 Series
D57.2A Series
V55 Series | 60
60
59–60
58–60
55–60
54.5–60
54.5–60
50–60 | 4
0.2-4
4
0.5, 1
0.25
0.025-1
0.025-1
0.05-0.1 | 0.5
5 inv
±0.01
±0.01
0.05
0.5
0.05
0.05 | 0.5
5 mv
0.05
0.05
0.05
0.5
0.05
0.05 | 250
105–315
575
185, 240
ina
60–200
70–215
ina | b,f
b
h | | MO
190 | ERA
ERA
ERA
Glentron
Lambda
Lambda | SR50P1
MS Series
ME Series
SR Series
70104
LM220
LM229
LM238 | 50-60
50-60
50-60
50-60
36-60
30-60
30-60
30-60 | 0.15
0.05, 0.25
0.05–0.25
0.5–0.25
0.5
0.7
1.1
2.6 | ±0.1
±0.01
±0.01
±0.01
0.1
0.05
0.05
0.05 | 0.1
0.05
0.05
0.05
0.1
0.03
0.03
0.03 | 95
235, 350
120-140
155-175
265
129
149
239 | b b,f b b b b b b | | | | | 01 | ITPUT | REGL | LATION | D : | | |-----------|---|--|---|--|--|---|--|---| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
191 | Chalco
Chalco
Lambda
Lambda
Lambda
Kepco
Lambda
Trygon | 60V Series
60V Series
LM207
LM208
LH127S
PWR60-1.5
LH128S
PHR Series | 30-60
30-60
0-60
0-60
0-60
0-60
0-60
0-6 | 3-25
3-25
0.13
0.25
0.9
1.5
2.4
2.5,5 | ±1
±0.1
0.05
0.05
0.015
0.005
0.015
0.015 | ±1
±0.1
0.03
0.03
0.015
0.05
0.015 | 260-470
275-510
79
79
184
209
315
295, 329 | b
b
b | | MO
192 | Trygon
ERA
Elasco
ERA
ERA
ERA
Con Cir | PHR Series
SR Series
M60 Series
M560P5
ME Series
SR Series
MS Series
62.0A Series | 0-60
0-60
59-61
59-61
59-61
59-61
59-61
62 | 2.5, 5
0.5–8
0.05–0.25
0.5
0.5, 1
0.5, 1
1, 2
0.05–1 | 0.01
±0.01
0.05
±0.01
±0.01
±0.01
±0.01
±0.05 | 0.01
±0.02
0.05
0.05
0.05
0.05
0.05
0.05 | 295–329
215–495
ina
305
175, 235
170, 225
405, 430
95–300 | a b h b b b g | | MO
193 | Con Cir
PMC
PMC
Elasco
Elcor
Ferro
Acopian
Elasco | 62.0B Series
RA Series
RB Series
M62 Series
AQC60-30
HHV-65
65B Series
M64 Series | 62
56-62 ²
56-62 ²
61-63
57-63
65 ¹
65 ²
63-65 | 0.05-1
0.05-6
0.05-6
0.05-0.25
0.03
0.04
0.05-0.3
0.05-0.25 | ±0.5
±0.05
±0.5
0.05
0.02
1.5
0.05
0.05 | ±0.5
±0.05
±0.5
0.05
0.02
1.5
0.05-0.1
0.05 | 85–275
65–355
60–355
ina
184
75
75–125
ina | g
b
b
h | | MO
194 | Elasco
Tech Pwr
Tech Pwr
Abbott
Abbott
Ferro
Ferro
Ferro | V62-250
M-65 Series
M-65A Series
HA Series
HCL24D-63A
HV-67
HHV-67
B-456 | 60-65
59-65
59-65
59-66
59-66
67
671
67, 451 | 0.25
0.05-12
0.05-12
0.082-1.97
3.94
0.04
0.04
0.04 | 0.05
±0.5
±0.05
±0.2
±0.2
1.5
1.5 | 0.05
±0.5
±0.05
±1.5
±2.5
1.5
1.5 | ina
65–495
75–520
260–465
565
55
75 | h
a,b,h,i
a,b,h,i
a
a
b
b | | MO
195 | Acopian
Elasco
ITI
ITI
ITI
ITI
Con Cir | 67B Series
M66 Series
231H
331H
431H
531H
631H
68.0A Series | 67 ²
65–67
45–67
45–67
45–67
45–67
45–67
68 | 0.05-0.3
0.05-0.25
0.07
0.15
0.25
0.5
1
0.05-0.75 | 0.05
0.05
±0.02
±0.02
±0.02
±0.02
±0.02
±0.02 | 0.05-0.1
0.05
±0.02
±0.02
±0.02
±0.02
±0.02
±0.02
±0.05 | 75–125
ina
139
146
155
168
188
105–280 | c
h
b
b
b | | | | | OL | JTPUT | REGU | JLATION | Deite | | |-----------|--|--|--|---|--|---|---
--| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
196 | Con Cir
Elasco
PMC
PMC
Ferro
Ferro
Acopian
Elasco | 68.0B Series
M68 Series
RA Series
RB Series
HHV-70
HV-70
70B Series
V68-250 | 68
67–69
62–69 ²
62–69 ²
70 ¹
70
70 ²
65–70 | 0.05-0.75
0.05-0.25
0.05-6
0.05-6
0.04
0.04
0.05-0.3
0.25 | ±0.5
0.05
±0.05
±0.5
1.5
0.05
0.05 | ±0.5
0.05
±0.05
±0.5
1.5
1.5
0.05-0.1 | 95–265
ina
75–365
ina
75
55
75–125
ina | g
h
b
b
c | | MO
197 | ERA ERA ERA Elasco Trans Dev Elasco Tech Pwr | ME60P1
MS60P1
SR60P1
SR60P1R
V65 Series
STR-70
M70 Series
M-65 Series | 60-70
60-70
60-70
60-70
60-70
50-70
69-71
65-72 | 0.1
0.1
0.1
0.1
0.05-0.1
0.075
0.05-0.25
0.05-12 | ±0.01
±0.01
±0.1
±0.01
0.05
±0.02
0.05
±0.5 | 0.05
0.05
0.1
0.05
0.05
±0.05
0.05
±0.05 | 175
315
105
155
ina
ina
ina
75–395 | b
b,f
b
b
h
b,i
h
a,b,h,i | | MO
198 | Tech Pwr
Kepco
Kepco
Elasco
Abbott
Abbott
ERA
ERA | M-65A Series
PAX72-0.15
PBX72-0.3
M72 Series
HA Series
HCL24D-70A
CV75
SV75 | 65-72
0-72
0-72
71-73
66-74
66-74
75 | 0.05-12
0.15
0.3
0.05-0.25
0.071-1.72
3.44
0.02
0.02 | ±0.05
0.05
0.01
0.05
±0.2
±0.2
±2
±1.5 | ±0.05
0.05
0.01
0.05
±1.5
±2.5
2
1.5 | 85-420
89
105
ina
260-465
565
45 | a,b,h,i
b,d
b,d
h
a
a
b | | MO
199 | Ferro
Acopian
Elasco
Elasco
Numec
Numec
PMC
Trans Dev | HV-75
75B Series
M74 Series
V72-250
A75
AS75
HR Series
SCR-75-1 | 75
75 ²
73–75
70–75
60–75
60–75
50–75
50–75 | 0.06
0.05-0.2
0.05-0.25
0.25
0.16
0.4
0.1, 0.3
1.2 | 1.3
0.05
0.05
0.05
±0.01
±0.01
0.005
±0.5 | 1.3
0.05
0.05
0.05
ina
ina
0.3, 0.5
±0.5 | 65
85–125
ina
ina
154
228
90, 115
ina | b
c
h
h | | MO
200 | Trans Dev
Con Cir
Con Cir
PMC
PMC
Elasco
Elasco
Acopian | SCR-75-3
76.0A Series
76.0B Series
RA Series
RB Series
M76 Series
M78 Series
80B Series | 50-75
76
76
69-76 ²
69-76 ²
75-77
77-79
80 ² | 2.5
0.05-0.75
0.05-0.75
0.05-6
0.05-6
0.05-0.1
0.05-0.1
0.05-0.2 | ±0.5
±0.05
±0.5
±0.05
±0.5
0.05
0.05
0.0 | ±0.5
±0.05
±0.5
±0.05
±0.5
0.05
0.05
0.0 | ina
115-295
105-280
80-385
70-365
ina
ina
85-125 | g
g
b
h
h | #### Modular dc supplies | | | | OUTPUT | | REGULATION | | D : | | |-----------|--|---|---|--|---|---|--|---| | | Mfr. | Model | Volts | Max.
Amps | Line | Load
% | Price
\$ | Notes | | MO
201 | Elasco
Tech Pwr
Tech Pwr
ERA
ERA
ERA
ERA
Elasco | V78-250
M-65 Series
M-65A Series
ME70P1
MS70P1
SR70P1
SR70P1R
V75 Series | 75–80
72–80
72–80
70–80
70–80
70–80
70–80
70–80 | 0.25
0.05-12
0.05-12
0.1
0.1
0.1
0.1
0.1
0.05-0.1 | 0.05
±0.5
±0.05
±0.01
±0.01
±0.1
±0.01
0.05 | 0.05
±0.5
±0.05
0.05
0.05
0.1
0.05
0.05 | ina
80-425
90-450
175
315
105
155
ina | h a,b,h,i a,b,h,i b b,f b | | MO
202 | Tech Pwr
Tech Pwr
Tech Pwr
Elasco
Elasco
Abbott
Abbott
Sorensen | SCR-80 Series
R-80 Series
SWR-80 Series
M80 Series
M82 Series
HA Series
HCL24D-79A
QMHV754 | 40-80
0-80
0-80
79-81
81-83
74-83
74-83
53-83 | 1.5-25
1.5-25
1.5-25
0.05-0.1
0.05-0.1
0.063-1.52
3.04
0.4 | ±0.5
±0.1
±0.01
0.05
0.05
±0.2
±0.2
±0.05 ⁵ | ±0.5
±0.3
±0.03
0.05
0.05
±1.5
±2.5
±0.05 ⁵ | 180-570
140-515
220-845
ina
ina
260-465
565
115 | b,d
b
b
h
h
a
a | | MO
203 | Con Cir
Con Cir
Elcor
PMC
PMC
Acopian
Elasco
Elasco | 84.0A Series
84.0B Series
AQC80-20
RA Series
RB Series
85B Series
M84 Series
V82-250 | 84
84
76-84
76-84
76-84
85 ²
83-85
80-85 | 0.05-0.75
0.05-0.75
0.02
0.05-6
0.05-6
0.05-0.2
0.05-0.1
0.25 | ±0.05
±0.5
0.02
±0.05
±0.5
0.05
0.05
0.05 | ±0.05
±0.5
0.02
±0.05
±0.5
0.05
0.05
0.05 | 125-310
110-290
184
85-420
75-400
90-135 | g
g
b
c
h | | MO
204 | Elasco
Tech Pwr
Tech Pwr
Elasco
Ferro
Acopian
Elasco
ERA | M86 Series
M-65 Series
M-65A Series
M88 Series
HV-90
90B Series
V88-250
ME80P1 | 85-87
80-88
80-88
87-89
90
90 ²
85-90
80-90 | 0.05-0.1
0.05-6
0.05-6
0.05-0.1
0.06
0.05-0.2
0.25
0.1 | 0.05
±0.5
±0.05
0.05
1.2
0.05
0.05
±0.01 | 0.05
±0.5
±0.05
0.05
1.2
0.05
0.05
0.05 | ina
85–455
95–480
ina
65
95–135
ina
185 | h
a,b,h,i
a,b,h,i
h
b
c
h | | MO
205 | ERA
ERA
Elasco
Trans Dev
Chalco
Chalco
Elasco | MS80P1
SR80P1
SR80P1R
V85 Series
STR-90
90V Series
90V Series
M90 Series | 80-90
80-90
80-90
80-90
70-90
44-90
44-90
89-91 | 0.1
0.1
0.1
0.05-0.1
0.075
1-20
1-20
0.05-0.1 | ±0.01
±0.1
±0.01
0.05
±0.02
±1
±0.1
0.05 | 0.05
0.1
0.05
0.05
±0.05
±1
±0.1
0.05 | 315
105
155
ina
ina
220–575
240–630
ina | b,f
b
b
h
b,i | Notes, abbreviations and manufacturers' index at end of this section. #### Price Mfr. Model Notes Max. Line Load Volts Amps Con Cir 92.0A Series 0.05-0.75 ±0.05 ±0.05 130-320 Con Cir 92.0B Series 92 0.05-0.75 ±0.5 ±0.5 120-300 0.05-0.1 M92 Series Elasco 91-93 0.05 0.05 ina PMC RA Series 84-93 0.05-6 ±0.05 ±0.05 87-455 206 PMC RB Series 84-93 0.05-6 ±0.5 ±0.5 77-430 HA Series Abbott 83-93 0.057-1.38 ±0.2 ±1.5 260-465 HCL24D-88A Abbott 83-93 2.76 ±0.2 ±2.5 565 Acopian 95B Series 952 0.02-0.2 0.05 0.05 95-135 С Elasco M94 Series 93-95 0.05-0.1 0.05 0.05 ina Tech Pwr M-65 Series 88-96 0.05-6 ±0.5 ±0.5 90-485 a,b,h,i M-65A Series Tech Pwr 88-96 0.05-6 ± 0.05 ±0.05 100-510 a,b,h,i Elasco M96 Series 95-97 0.05-0.1 0.05 0.05 207 Elasco M98 Series 97-99 0.05-0.1 0.05 0.05 ina Ferro MSV-100 100 0.05 1.5 90 1.5 HV-100 100 Ferro 0.06 1.5 65 D-B 15-100S 100 0.065 5 mv 100 5 mv Ferro HVA-100 100 0.1 1.5 1.5 90 D-B 20-1008 100 0.15 5 mv 5 mv 135 Acopian 100B Series 1002 0.02-0.2 0.02 0.02 95-145 D-B 30-100\$ 100 0.3 5 mv 140 5 my 208 Con Cir 100A Series 100 0.05-0.75 ±0.05 ±0.05 135-335 Con Cir 100B Series 100 0.05-0.75 ±0.5 ±0.5 125-315 g D-B 41-1005 100 8 mv 8 mv 175 Perkin MS100 Series 100 0.1-1.2 ± 0.025 ±0.025 ina b,d D-B 51-100\$ 100 1.5 8 mv 8 mv 245 D-B 61-1005 100 8 mv 8 mv 315 ERA 90-100 ME90P1 0.1 ±0.01 0.05 195 MO ERA MS90P1 90-100 0.1 ± 0.01 0.05 315 b,f 209 ERA SR90P1 90-100 0.1 ±0.1 0.1 115 ERA 0.05 SR90P1R 90-100 0.1 ±0.01 155 Elasco V95 Series 90-100 0.05-0.1 0.05 0.05 ina PMC HR Series 75-100 0.1, 0.3 0.005 0.03, 0.05 90, 115 Numec Numec MO Trans Dev 210 ITI Trans Dev A100 AS100 2311 3311 4311 5311 SCR-100-2 SCR-100-2 75-100 75-100 75-100 75-100 67-100 67-100 67-100 67-100 0.12 0.25 0.8 2 0.05 0.1 0.15 0.33 ±0.01 ±0.01 ±0.5 ±0.5 ±0.02 ±0.02 ± 0.02 ± 0.02 ina ina ±0.5 ±0.5 ±0.02 ±0.02 ±0.02 ± 0.02 154 228 ina ina 139 146 155 168 b b OUTPUT REGULATION 80-100 v | | | | ou | TPUT | REGU | LATION | 0: | | |-----------|--|--|---|---|--|--|--|---| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price \$ | Notes | | MO
211 | ITI PMC CEA CEA Kepco Kepco Trygon Elasco | 6311
HR50100-150
500C Series
600C Series
PAX100-0.1
PBX100-0.2
PS100-750
M100 Series | 67-100
50-100
1-100
1-100
0-100
0-100
0-100
99-103 | 0.65
0.15
0.1-10
0.1-10
0.1
0.2
0.75
0.05-0.1 | ±0.02
0.005
0.0025
0.0025
0.005
0.01
0.01 | ±0.02
0.05
0.0025
0.0025
0.005
0.01
0.01 | 188
115
95–980
100–1190
89
105
195
ina | b,db,da | | MO
212 | PMC
PMC
Abbott
Abbott
ERA
ERA
Acopian
Tech Pwr | RA Series
RB Series
HA Series
HCL24D-99A
CV105
SV105
105B Series
M-65 Series | 93-103
93-104
93-104
105
105
1052
96-105 | 0.05-6
0.05-6
0.05-1.2
2.4
0.02
0.02
0.1-0.2
0.05-6 |
±0.05
±0.5
±0.2
±0.2
±1.5
0.05
±0.5 | ±0.05
±0.5
±1.5
±2.5
2
1.5
0.05
±0.5 | 92-475
82-450
260-465
565
45
80
130-145
95-515 | b
b
a
a
b
b
c
a,b,h,i | | MO
213 | Tech Pwr
Elcor
Elasco
Acopian
Con Cir
Con Cir
ERA
ERA | M-65A Series
AQC100-16
M105 Series
110B Series
110A Series
110B Series
ME100P1
MS100P1 | 96-105
95-105
103-108
110 ²
110
110
100-110
100-110 | 0.05-6
0.016
0.05-0.1
0.1-0.2
0.05-0.75
0.05-0.75
0.1 | ±0.05
0.02
0.05
0.05
±0.05
±0.5
±0.01
±0.01 | ±0.05
0.02
0.05
0.05
±0.05
±0.5
0.05
0.05 | 105-540
184
ina
135-145
140-345
130-325
195
315 | a,b,h,i h c g g b b,f | | MO
214 | ERA ERA Elasco Trygon ACDC Elasco PMC | SR100P1
SR100P1R
TR100A
V105 Series
PS-100-200F
BX100N0.4
M110 Series
RA Series | 100-110
100-110
100-110
100-110
90-110
90-110
108-113
103-114 | 0.1
0.1
0.05-0.1
0.2
0.4
0.05-0.1
0.05-6 | ±0.1
±0.01
±0.5
0.05
0.01
0.01
0.05
±0.05 | 0.1
0.05
0.5
0.05
0.01
0.01
0.05
±0.05 | 115
155
90
ina
119
ina
ina
95–110 | b b h b | | MO
215 | PMC Tech Pwr Tech Pwr Abbott Abbott Elasco Ferro Acopian | RB Series
M-65 Series
M-65A Series
HA Series
HCL24D-110A
M115 Series
HV-120
120B Series | 103-114
105-115
105-115
104-116
104-116
113-118
120
120 ² | 0.05-6
0.05-6
0.05-6
0.045-1.092
2.184
0.05-0.1
0.055
0.05-0.1 | ±0.5
±0.5
±0.05
±0.2
±0.2
0.05
1.3
0.05 | ±0.5
±0.5
±0.05
±1.5
±2.5
0.05
1.3
0.05 | 85-485
100-550
110-575
260-465
565
ina
70
135-145 | b
a,b,h,i
a,b,h,i
a
a
h
b | | | | | ou | TPUT | REGULATION | | D: | | |-----------|--|---|--|--|--|--|--|--| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
216 | Con Cir
Con Cir
Trans Dev
Kepco
Elasco
Lambda
Lambda
Sorensen | 120A Series
120B Series
GSM120-1.2
PRM Series
V115 Series
LH130S
LH131S
QMHV1003 | 120
120
120
120
110–120
0–120
0–120
81–122 | 0.05-0.5
0.05-0.5
1.2
1, 1.5
0.05-0.1
0.5
1.2
0.3 | ±0.05
±0.5
±0.02
±1
0.05
0.015
0.015
±0.05 ⁵ | ±0.05
±0.5
±0.05
7.3, 3.6 v
0.05
0.015
0.015
±0.05 ⁵ | 150-320
140-300
ina
99, 119
ina
225
320
130 | g
g
b
h
b | | MO
217 | Elasco
Acopian
GE
Tech Pwr
Tech Pwr
PMC
PMC
Deltron | M120 Series
125B Series
9T66Y980
M-65 Series
M-65A Series
HR Series
HR100125-200
MP12 Series | 118-123
125 ²
125
115-125
115-125
100-125
100-125
75-125 | 0.05-0.1
0.05-0.1
2
0.05-6
0.05-6
0.1, 0.2
0.2
0.05-0.8 | 0.05
0.05
±1
±0.5
±0.05
0.005
0.005 | 0.05
0.05
3
±0.5
±0.05
0.05
0.05
0.05 | ina
135–145
134
105–590
115–615
125, 145
145
86–274 | h
c
a,b,h,i
a,b,h,i
b | | MO
218 | PMC
PMC
PMC
Elasco
Elasco
Abbott
Abbott
Elasco | HR50125-500
RA Series
RB Series
M125 Series
V125 Series
HA Series
HCL 24D-123A
M130 Series | 50-125
114-126
114-126
123-128
120-130
116-130
116-130
128-133 | 0.1
0.05-6
0.05-6
0.05-0.1
0.05-0.1
0.04-0.972
1.944
0.05-0.1 | 0.005
±0.05
±0.5
0.05
0.05
±0.2
±0.2
0.05 | 0.04
±0.05
±0.5
0.05
0.05
±1.5
±2.5
0.05 | 145
110-580
87-530
ina
ina
260-465
565
ina | b
b
h
h
a
a | | MO
219 | Con Cir
Con Cir
Elasco
PMC
PMC
Elasco
Elasco
Tech Pwr | 135A Series
135B Series
M135 Series
RA Series
RB Series
V135 Series
M140 Series
M-65 Series | 135
135
133–138
126–139
126–139
130–140
138–143
125–144 | 0.05-0.5
0.05-0.5
0.05-0.1
0.05-6
0.05-6
0.05-0.1
0.05-0.1
0.05-3 | ±0.05
±0.5
0.05
±0.05
±0.05
0.05
0.05
±0.5 | ±0.05
±0.5
0.05
±0.05
±0.05
0.05
0.05
±0.5 | 155-350
140-330
ina
110-580
100-550
ina
ina
110-405 | g
g
h
b
h
h
a,b,h,i | | MO
220 | Tech Pwr
Elasco
Abbott
Abbott
ERA
ERA
Ferro
Acopian | M-65A Series
M145 Series
HA Series
HCL24D-138A
CV150
SV150
HV-150
150B Series | 125-144
143-148
130-148
130-148
150
150
150
150 | 0.05-3
0.05-0.1
0.036-0.864
1.728
0.02
0.02
0.045
0.05-0.1 | ±0.05
0.05
±0.2
±0.2
±1.5
1
0.05 | ±0.05
0.05
±1.5
±2.5
2
1.5
1
0.05 | 120-430
ina
260-455
550
45
85
75
145-155 | a,b,h,i
h
a
a
b
b
b
c | #### Modular dc supplies | | | | 00 | TPUT | REGULATION | | D : | | |-----------|--|---|---|---|---|---|--|---| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
221 | Ferro
Trans Dev
Trans Dev
Trygon
GE
Elasco
PMC
ITI | HVA-150
STR-150
GSM150-1
FT-FTR150-1
9T66Y981
V145 Series
HR Series
231J | 150
150
150
150
150
150
140–150
125–150
100–150 | 0.12
0.2
1
1
2
0.05-0.1
0.1, 0.2
0.035 | 1.5
±0.1
±0.02
1
±1
0.05
0.005
±0.02 | 1.5
±0.1
±0.05
5 v
3
0.05
0.03,0.05
±0.02 | 100
ina
ina
119–149
144
ina
125, 145
139 | b
b
b | | MO
222 | ITI ITI PMC ITI ITI Chalco Chalco D-B | 331J
431J
HR100150-150
531J
631J
150V Series
150V Series
110-150 | 100-150
100-150
100-150
100-150
100-150
74-150
74-150
0-150 | 0.065
0.1
0.15
0.2
0.4
1-10
1-10
0.2 | $\begin{array}{l} \pm 0.02 \\ \pm 0.02 \\ 0.005 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.1 \\ \pm 1 \\ 5 \; \text{m v} \end{array}$ | ±0.02
±0.02
0.05
±0.02
±0.02
±0.1
±1
20 mv | 146
155
145
168
188
340–540
320–495
235 | b
b
b
b | | MO
223 | Con Cir
Con Cir
Elasco
PMC
PMC
Elasco
ERA
ERA | 152A Series
152B Series
M150 Series
RA Series
RB Series
M155 Series
ME150P1
MS150P1 | 152
152
148-153
139-153
139-153
153-158
150-160
150-160 | 0.05-0.375
0.05-0.375
0.05-0.1
0.05-3
0.05-3
0.05-0.1
0.1 | ±0.05
±0.5
0.05
±0.05
±0.05
0.05
±0.01
±0.01 | ±0.05
±0.5
0.05
±0.05
±0.05
0.05
0.05
0. | 160-360
150-340
ina
110-400
100-375
ina
235
395 | g
g
h
b
h
b | | MO
224 | ERA Elasco Tech Pwr Tech Pwr Trygon Tech Pwr Harrison | SR150P1R
TR Series
V155 Series
M-65 Series
M-65A Series
PS150-120F
SCR-80 Series
6354A | 150-160
150-160
150-160
144-160
144-160
140-160
80-160
0-160 | 0.1
0.1
0.05-0.1
0.05-3
0.05-3
0.12
0.75-12
0.4 | ±0.01
±0.05
0.05
±0.5
±0.05
0.01
±0.5
0.005 | 0.05
0.05
0.05
±0.5
±0.05
0.01
±0.5
0.005 | 175
130
ina
115–425
125–450
135
210–550
259 | b
a
h
a,b,h,i
a,b,h,i
b
b,d | | MO
225 | Trygon
Trygon
Trygon
Tech Pwr
Tech Pwr
Elasco
Abbott
Abbott | PS160-500
PHR Series
PHR160-2B
R-80 Series
SWR-80 Series
M160 Series
HA Series
HCL24D-157A | 0-160
0-160
0-160
0-160
0-160
158-163
148-166
148-166 | 0.5
2
2
0.75-12
0.75-12
0.05-0.1
0.032-0.768
1.536 | 0.01
0.01
0.01
±0.1
±0.01
0.05
±0.2
±0.2 | 0.01
0.01
0.01
±0.3
±0.03
0.05
±1.5
±2.5 | 200
425
425
140-515
295-875
ina
260-445
540 | a
b
b
h
a
a | | | | | OUTPUT | | REGULATION | | 0. | | |-----------|---|--|--|---|---|--|--|--| | | Mfr. |
Model | Volts | Max.
Amps | Line
% | Load
% | Price \$ | Notes | | MO
226 | Con Cir
Con Cir
Elasco
PMC
PMC
Elasco
Elasco
Ferro | 168A Series
168B Series
M165 Series
RA Series
RB Series
V165 Series
M170 Series
HV-175 | 168
168
163-168
153-168
153-168
160-170
168-173
175 | 0.05-0.375
0.05-0.375
0.05-0.1
0.05-3
0.05-3
0.05-0.1
0.05-0.1 | ±0.05
±0.5
0.05
±0.05
±0.05
0.05
0.05
1.2 | ±0.05
±0.5
0.05
±0.05
±0.5
0.05
0.05
1.2 | 180-375
155-355
ina
115-430
105-405
ina
ina
80 | g
h
b
h
h | | MO
227 | PMC Deltron Tech Pwr Tech Pwr Elasco ERA ERA Elasco | HR150175-50
MP17 Series
M-65 Series
M-65A Series
M175 Series
CV180
SV180
V175 Series | 150-175
125-175
160-176
160-176
173-178
180
180
170-180 | 0.05
0.05-0.8
0.05-3
0.05-3
0.05-0.1
0.02
0.02
0.05-0.1 | 0.005
0.05
±0.5
±0.05
0.05
±2
±1.5
0.05 | 0.03
0.05
±0.5
±0.05
0.05
2
1.5
0.05 | 125
86-274
125-450
135-480
ina
55
85
ina | b
a,b,h,i
a,b,h,i
h
b
b | | MO
228 | Sorensen Elasco Con Cir Con Cir PMC PMC Abbott Abbott | QMHV1502
M180 Series
184A Series
184B Series
RA Series
RB Series
HA Series
HCL24D-176A | 120-181
178-183
184
184
168-185
168-185
166-186 | 0.2
0.05-0.1
0.05-0.375
0.05-0.375
0.05-3
0.05-3
0.028-0.684
1.368 | ±0.055
0.05
±0.05
±0.5
±0.5
±0.05
±0.5
±0. | ±0.055
0.05
±0.05
±0.5
±0.05
±0.5
±1.5
±2.5 | 145
ina
185-405
170-385
125-450
115-425
260-430
530 | h
g
g
b
b | | MO
229 | Elasco Elasco Tech Pwr Tech Pwr Elasco Elasco Ferro Ferro | M185 Series
V185 Series
M-65 Series
M-65A Series
M190 Series
M195 Series
HV-200
HVA-200 | 183-188
180-190
176-192
176-192
188-193
193-198
200
200 | 0.05-0.1
0.05-0.1
0.05-3
0.05-3
0.05-0.1
0.05-0.1
0.04
0.1 | 0.05
0.05
±0.05
±0.5
0.05
0.05
1.3 | 0.05
0.05
±0.05
±0.5
0.05
0.05
1,3
1.5 | ina
ina
140-510
130-480
ina
ina
80
100 | h
h
a,b,h,i
a,b,h,i
h
b | | MO
230 | Trans Dev
Con Cir
Con Cir
GE
Elasco
PMC
PMC
ITI | STR-200
200A Series
200B Series
9T66Y982
V195 Series
HR Series
HR150200-150
ACV-121-L | 200
200
200
200
190-200
175-200
135-200 | 0.2
0.05-0.375
0.05-0.375
1
0.05-0.1
0.05-0.15
0.15
0.05 | ±0.1
±0.05
±0.5
±1
0.05
0.005
0.005
0.005 | ±0.1
±0.05
±0.5
3
0.05
0.03–0.05
0.05
0.05 | ina
190–425
180–410
124
ina
145–165
165
75 | b g g g h b b b b | #### Ken Stockman, Iron Worker, Survived His Heart Attack Like most heart attack victims, Ken Stockman survived his first attack and went back to his job. Three out of four now do! Heart Fund dollars invested in research have helped make such progress possible through advances in diagnosis, treatment and rehabilitation. But heart attack still kills 550,000 in the U.S. annually. Fight this Number 1 killer with the best weapon you have — a generous gift to your Heart Fund volunteer. GIVE... so more will live **HEART FUND** Contributed by the Publisher April 19, 1966 #### PROVEN RELIABILITY-SOLID-STATE POWER INVERTERS. over 260,000 logged operational hoursvoltage-regulated, frequency-controlled, for missile, telemeter, ground support, Interelectronics all-silicon thyratron-like gating elements and cubic-grain toroidal magnetic components convert DC to any desired number of AC or DC outputs from 1 to 10,000 watts. Ultra-reliable in operation (over 260,000 lagged hours), no moving parts, unharmed by shorting output or reversing input polarity. High conversion efficiency (to 92%, including voltage regulation by Interelectronics patented reflex high-efficiency magnetic amplifier cir- Light weight (to 6 watts/oz.), compact (to 8 watts/cu. in.), low ripple (to 0.01 mv. p-p), excellent voltage regulation (to 0.1%), precise frequency control (to 0.2% with Interelectronics extreme environment magnetostrictive standards or to 0.0001% with fork or piezoelectric standards.) Complies with MIL specs. for shock (100G 11 mlsc.), acceleration (100G 15 min.), vibration (100G 5 to 5,000 cps.), temperature (to 150 degrees C), RF noise (I-26600). AC single and polyphase units supply sine waveform output (to 2% harmonics), will deliver up to ten times rated line current into a short circuit or actuate MIL type magnetic circuit breakers or fuses, will start gyros and motors with starting current surges up to ten times normal operating line current. Now in use in major missiles, powering telemeter transmitters, radar beacons, electronic equipment. Single and polyphase units now power airborne and marine missile gyros, synchros, servos, magnetic amplifiers. Interelectronics—first and most experienced in the solid-state power supply field produces its own all-silicon solid-state gating elements, all high flux density magnetic components, high temperature ultra-reliable film capacitors and components, has complete facilities and know how-has designed and delivered more working KVA than any other firm! INTERELECTRONICS CORPORATION 550 U. S. Route 303, Congers, N. Y. Telephone: 914 ELmwood 8-8000 #### Modular dc supplies | | | | OUTPUT | | REGULATION | | | | |-----------|--|--|---|--|---|---|--|--| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
231 | PMC Chalco Chalco Assoc Spec Grafix Elasco PMC PMC | HR125200-100
200V Series
200V Series
12
459
M200 Series
RA Series
RB Series | 125-200
99-200
99-200
75-200
12-200
198-203
185-204
185-204 | 0.1
0.5-5
0.5-5
0.1
0.35
0.05-0.1
0.05-3
0.05-3 | 0.005
±0.1
±1
1
0.05
0.05
±0.05
±0.05 | 0.04
±0.1
±1
1
0.25
0.05
±0.05
±0.5 | 145
330-550
310-520
66
195
ina
130-490
120-465 | b
h
b | | MO
232 | Abbott
Abbott
ERA
ERA
ERA
ERA
ERA
ERA | HA Series
HCL24D-197A
CV210
SV210
MS200P1
ME200P1
SR200P1
TR Series | 186-208
186-208
210
210
200-210
200-210
200-210
200-210
200-210 | 0.025-0.612
1.224
0.02
0.02
0.1
0.1
0.1 | ±0.2
±0.2
±2
±1.5
±0.01
±0.01
±0.01
±0.05 | ±1.5
±2.5
2
1.5
0.05
0.05
0.05
0.05 | 260-420
515
55
95
395
235
195
140 | a b b b,f b b a | | MO
233 | Tech Pwr
Tech Pwr
ACDC
Trygon
Con Cir
Con Cir
PMC
PMC | M-65 Series
M-65A Series
BX200N0.1
PS200-100F
220A Series
220B Series
RA Series
RB Series | 192-210
192-210
190-210
190-210
220
220
204-225
204-225 | 0.05-3
0.05-3
0.1
0.1
0.05-0.375
0.05-0.375
0.05-3
0.05-3 | ±0.5
±0.05
0.01
0.01
±0.05
±0.5
±0.05
±0.5 | ±0.5
±0.05
0.01
0.01
±0.05
±0.5
±0.05
±0.5 | 135-510
145-540
ina
135
205-445
190-425
135-510
125-485 | a,b,h,i
a,b,h,i
b
g
g
b
b | | MO
234 | Deltron Tech Pwr Tech Pwr Abbott Abbott Con Cir Con Cir ERA | MP22 Series
M-65 Series
M-65A Series
HA Series
HCL 24D-220A
240A Series
240B Series
CV250 | 175-225
210-230
210-230
208-233
208-233
240
240
250 | 0.05-0.8
0.05-3
0.05-3
0.023-0.552
1.104
0.05-0.375
0.05-0.375 | 0.05
±0.5
±0.05
±0.2
±0.2
±0.05
±0.5
±2 | 0.05
±0.5
±0.05
±1.5
±2.5
±0.05
±0.5
2 | 86-274
145-540
155-570
260-405
505
210-400
195-440
60 | a,b,h,i
a,b,h,i
a
a
g
g
g
b | | MO
235 | ERA
Ferro
Ferro
Trans Dev
Tech Pwr
Tech Pwr
PMC
PMC | SV250
HV-250
HVA-250
STR-250
M-65 Series
M-65A Series
RA Series
RB Series | 250
250
250
250
250
230–250
230–250
225–250
225–250 | 0.02
0.04
0.08
0.2
0.05-3
0.05-3
0.05-3
0.05-3 | ±1.5
1.5
1.5
±0.1
±0.5
±0.05
±0.05
±0.05 | 1.5
1.5
1.5
±0.1
±0.5
±0.05
±0.05
±0.05 | 95
85
120
ina
150–570
160–600
145–540
135–515 | b
b
b
a,b,h,i
a,b,h,i
b | Notes, abbreviations and manufacturers' index at end of this section. #### 200-330 v | | | | OU | TPUT | REGULATION | | Dite | | |-----------|---|---|--|---|---|--|---|---| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ |
Notes | | MO
236 | ERA
ERA
ERA
Abbott
Abbott
Con Cir | ME 250P1
MS250P1
SR250P1
TR Series
HA Series
HCL 24D-247A
265A Series
265B Series | 250-260
250-260
250-260
250-260
233-261
233-261
265
265 | 0.1
0.1
0.1
0.1
0.02-0.492
0.984
0.05-0.375
0.05-0.375 | ±0.01
±0.01
±0.01
±0.05
±0.2
±0.2
±0.05
±0.5 | 0.05
0.05
0.05
0.05
±1.5
±2.5
±0.05
±0.5 | 255
395
225
160
260–405
505
215–475
205–460 | b
b,f
b
a
a
a
g | | MO
237 | Tech Pwr
PMC
PMC
Tech Pwr
Deltron
1TI
Sorensen
Con Cir | M-65 Series
RA Series
RB Series
M-65A Series
MP27 Series
ACV-121-M
QMHV20015
290A Series | 250-275
250-275
250-275
250-275
225-275
200-275
178-275
290 | 0.05-3
0.05-3
0.05-3
0.05-3
0.05-0.8
0.05
0.15
0.05-0.25 | ±0.5
±0.05
±0.5
±0.05
0.05
0.02
±0.05 ⁵
±0.05 | ±0.5
±0.05
±0.5
±0.05
0.05
0.05
±0.055
±0.055 | 155–605
155–590
145–565
165–635
89–280
75
16
225–440 | a,b,h,i
b
b
a,b,h,i
b | | MO
238 | Con Cir
Abbott
Abbott
ERA
ERA
Ferro
Trans Dev
Trans Dev | 290B Series
HA Series
HCL 24D-276A
CV300
SV300
HV-300
STR-300
GSM3006 | 290
261-292
261-292
300
300
300
300
300
300 | 0.05-0.25
0.018-0.432
0.864
0.02
0.02
0.035
0.2
0.6 | ±0.5
±0.2
±0.2
±1.5
1.5
±0.1
±0.02 | ±0.5
±1.5
±2.5
2
1.5
1.5
±0.1
±0.05 | 210-420
265-420
515
65
105
90
ina
ina | g
a
a
b
b
b
b | | MO
239 | ERA
ERA
ERA
ACDC
PMC
PMC
Tech Pwr | ME300P1
MS300P1
SR300P1
TR Series
BX300N0.2
RA Series
RB Series
M-65 Series | 300-310
300-310
300-310
300-310
290-310
275-315
275-315
275-315 | 0.1
0.1
0.1
0.1
0.2
0.05-1.5
0.05-1.5
0.05-1.5 | ±0.01
±0.01
±0.01
±0.05
0.01
±0.05
±0.05
±0.5
±0.5 | 0.05
0.05
0.05
0.05
0.01
±0.05
±0.5
±0.5 | 255
395
235
175
ina
160–500
150–475
160–505 | b
b,f
b
a
b
b
a,b,h,i | | MO
240 | Tech Pwr
Tech Pwr
Harrison
Deltron
Assoc Spec
Abbott
Abbott
Sorensen | M-65A Series
SCR-80 Series
6357A
MP32 Series
2
HA Series
HCL24D-310A
QMHV3001 | 275-315
160-320
0-320
275-325
200-325
292-326
292-326
272-330 | 0.05-1.5
0.375-6
0.2
0.05-0.8
0.1
0.016-0.384
0.768
0.1 | ±0.05
±0.5
0.005
0.05
1
±0.2
±0.2
±0.2
±0.055 | ±0.05
±0.5
0.005
0.05
1
±1.5
±2.5
±0.055 | 170-525
230-595
259
89-280
50
270-430
530
175 | a,b,h,i
b,d
d | | | | | 01 | JTPUT | REGULATION | | | | |-----------|---|--|--|--|--|---|---|--| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price
\$ | Notes | | MO
241 | Arnold
PMC
PMC
Tech Pwr
Tech Pwr
Grafix
ITI
Abbott | SCH-300
RA Series
RB Series
M-65 Series
376
ACV-121-N
HA Series | 150-330
315-340
315-340
315-340
315-340
300-350
275-350
326-365 | 0.065
0.05-1.5
0.05-1.5
0.05-1.5
0.05-1.5
0.2
0.05
0.014-0.348 | 1
±0.05
±0.5
±0.5
±0.05
0.05
0.02
±0.2 | 1
±0.05
±0.5
±0.5
±0.05
0.05
0.05
±1.5 | 162
165–510
155–485
165–520
175–540
455
75
275–440 | b
b
a,b,h,i
a,b,h,i
b
b | | MO
242 | Abbott PMC PMC Deltron Ferro PMC PMC Abbott | HCL24D-346A
RA Series
RB Series
MP37 Series
HV-400
RA Series
RB Series
HA Series | 326-365
340-370
340-370
325-375
400
370-400
370-400
365-409 | 0.696
0.05-1.5
0.05-1.5
0.05-0.8
0.02
0.05-1.5
0.05-1.5
0.013-0.312 | ±0.2
±0.05
±0.5
0.05
1.5
±0.05
±0.05
±0.5
±0.2 | ±2.5
±0.05
±0.5
0.05
1.5
±0.05
±0.5
±0.5
±1.5 | 550
170-530
160-505
89-280
120
185-550
170-525
280-455 | a b b b b b a | | MO
243 | Abbott
ACDC
Deltron
Abbott
Abbott
Ferro
CEA
CEA | HCL24D-387A
BX400N0.4
MP42 Series
HA Series
HC24D-433A
HV-500
500A Series
500B Series | 365-409
390-410
375-425
409-458
409-458
500
1-500
1-500 | 0.624
0.4
0.05-0.8
0.011-0.276
0.552
0.015
0.1-25
0.1-25 | ±0.2
0.01
0.05
±0.2
±0.2
1.5
0.25 | ±2.5
0.01
0.05
±1.5
±2.5
1.5
0.25
0.025 | 550
ina
89-280
290-465
565
120
40-600
50-650 | a
a
a
b | | MO
244 | CEA
CEA
Abbott
Abbott
Abbott
ERA
Harrison | 600A Series
600B Series
HA Series
HC24D-486A
HA Series
HC24D-552A
SV600
6358A | 1-500
1-500
458-514
458-514
514-590
514-590
600
0-600 | 0.1-25
0.1-25
0.01-0.228
0.456
0.009-0.22
0.44
0.005
0.2 | 0.25
0.025
±0.2
±0.2
±0.2
±0.2
±1.5
0.01 | 0.25
0.025
±1.5
±2.5
±1.5
±2.5
1.5
0.01 | 50-725
60-790
305-485
580
315-505
600
145
450 | a
a
a
a
b | | MO
245 | Abbott
Abbott
Abbott
Abbott
Ferro
Tech Pwr
Arnold
Abbott | HA Series
HC24D-630A
HA Series
HC24D-700A
HV-750
SCR-80 Series
SCH-750
HA Series | 590–660
590–660
660–740
660–740
750
400–800
375–820
740–830 | 0.008-0.197
0.394
0.007-0.172
0.344
0.0085
0.1-1.5
0.75
0.006-0.152 | ±0.2
±0.2
±0.2
±0.2
1.2
±0.5
1
±0.2 | ±1.5
±2.5
±1.5
±2.5
1.2
±0.5
1
±1.5 | 330-520
620
340-540
635
175
250-640
177
350-555 | a
a
a
b
b,d | OUTPUT REGULATION Price Mfr. Model Notes Max. Line Load Volts Amps Abbott HC24D-790A 740-830 0.304 ±0.2 ±2.5 660 1.5 155 ERA SV900 900 0.005 ±1.5 Abbott **HA Series** 830-930 0.005-0.138 ±0.2 ±1.5 365-575 Abbott HC24D-880A 830-930 0.276 ±0.2 ±2.5 685 а 246 ERA 165 SAR1K/.1 1000 0.0001 ±0.5 0.5 b Del TRA 1-1-1 1000 0.001 ± 0.05 ±0.05 request ERA SAR1K/2 1000 0.002 ±0.2 0.3 295 Del IRP-I 1000 0.005 0.25 0.25 request Ferro HV-1000 1000 0.005 1.3 1.3 180 Abbott **HA Series** 930-1040 0.005-0.138 ±0.2 ±1.5 385-610 Abbott HC24D-990A 930-1040 0.276 ±0.2 ±2.5 730 а Arnold SCH-1000 500-1100 0.02 198 1040-1160 390-630 247 Abbott **HAk Series** 0.004-0.109 ±0.2 ±2.5 Abbott HCk24D-1100A 1040-1160 0.218 ±0.2 ±2.5 755 **HAk Series** 1160-1300 0.004-0.097 ±2.5 400-640 ±0.2 Abbott HCk24D-1230A Abbott 1160-1300 0.194 ± 0.2 ±2.5 780 ±2.5 **HAk Series** 1300-1480 0.003-0.086 ±0.2 415-670 Abbott Abbott HCk24D-1380A 1300-1480 0.172 ±0.2 ±2.5 815 TRA 1.5-1-1 1500 ±0.05 ±0.05 0.001 request Tech Pwr SCR-80 Series 800-1600 0.05-0.75 ±0.5 ±0.5 290-690 b.d 248 Arnold SCH-1500 750-1650 0.013 220 Abbott **HAk Series** 1480-1660 0.003-0.076 ±0.2 ±2.5 425-690 HCk24D-1570A 1480-1660 0.152 ±0.2 ±2.5 840 Abbott Abbott **HAk Series** 1660-1860 0.002-0.068 ±0.2 ±2.5 435-710 a HCk24D-1760A 1660-1860 0.136 ±0.2 ±2.5 860 Abbott Del TRA 2-1-1 2000 0.001 ±0.05 ±0.05 request 1860-2080 0.002-0.061 ±0.2 Abbott **HAk Series** ±2.5 450-725 MO Abbott HCk24D-1970A 1860-2080 0.122 ±2.5 890 ±0.2 249 550-740 Abbott **HAk Series** 2080-2330 0.027-0.055 ±0.2 ±2.5 Abbott HCk24D-2200A 2080-2330 ±0.2 ±2.5 910 0.11 ±0.05 ±0.05 TRA 2.5-1-1 2500 0.001 request Del 2.5RP4-1 2500 0.004 0.25 0.25 request 2.3 Peerless 6648 2600 1.5 2.3 ina Abbott HAk Series 2330-2610 0.024-0.049 ±0.2 ±2.5 570-760 Abbott HCk24D-2470A 2330-2610 0.098 ±0.2 ±2.5 985 MO Arnold SCH-2500 1250-2750 0.008 294 250 ERA SAR3K/.1 3000 0.0001 ±0.5 0.5 230 Del TRA 3-1-1 3000 0.001 ±0.05 ±0.05 request ERA SAR3K/2 3000 0.002 ±0.2 0.3 345 2920-3260 0.019-0.032 ±0.2 ±2.5 595-810 Abbott **HAk Series** ### Modular dc supplies ### 3260-30,000 v | | | | 00 | OUTPUT REG | | JLATION | 0: | | |-----------|---|---|---|--|--|--|---|---------------------------------| | | Mfr. | Model | Volts | Max.
Amps | Line
% | Load
% | Price \$ | Notes | | M0
251 | Abbott Del Peerless Abbott Abbott Abbott Abbott Abbott Abbott Abbott | HCk24D-3100A
TRA 3.5-1-1
6596
HAk Series
HCk24D-3460A
HN2D-3870A
HN4D-3870A
HN4D-4330A
HN4D-4330A | 2920-3260
3500
3500
3260-3650
3260-3650
3650-4090
4090-4580
4090-4580 | 0.076
0.001
0.002
0.017-0.034
0.068
0.005
0.01
0.004
0.008 | ±0.2
±0.05
1
±0.2
±0.2
±0.5
±0.5
±0.5
±0.5 | ±2.5
±0.05
1
±2.5
±2.5
±2.5
±2.5
±2.5
±2.5
±2.5 |
1020
request
ina
605-835
1040
520
860
680
915 | a e a a a a a a a a a | | MO
252 | ERA ERA Del Un Volt Abbott Abbott Arnold Abbott | SAR5K/.1
SAR5K/2
5RP2-1
BPER Series
HN2D-4860A
HN4D-4860A
SCH-5000
HN2D-5520A | 5000
5000
5000
1-5000
4580-5140
4580-5140
2500-5500
5140-5900 | 0.0001
0.002
0.002
1,3
0.004
0.008
0.004
0.003 | ±0.5
±0.2
0.25
±0.25
±0.5
±0.5
1
±0.5 | 0.5
0.3
0.25
±0.25
±2.5
±2.5
1
±2.5 | 270
395
request
ina
740
970
378
800 | b
b
a
a
a | | MO
253 | Abbott
Abbott
Abbott
Abbott
Abbott
Del
Peerless
Abbott
Abbott | HN4D-5520A
HN2D-6300A
HN4D-6300A
HN2D-7000A
HN4D-7000A
7.5RP1.5-1
6578
HN2D-7900A
HN4D-7900A | 5140-5900
5900-6600
5900-6600
6600-7400
6600-7400
7500
8000
7400-8300
7400-8300 | 0.006
0.003
0.006
0.002
0.004
0.0015
0.002
0.002 | ±0.5
±0.5
±0.5
±0.5
±0.5
0.25
2
±0.5
±0.5 | ±2.5
±2.5
±2.5
±2.5
±2.5
0.25
2
±2.5
±2.5
±2.5 | 1025
860
1090
920
1140
request
ina
980
1190 | a
a
a
a
a
e
a | | MO
254 | Abbott
Abbott
Del
ERA
Del
Un Volt
Abbott
Abbott | HN2D-8800A
HN4D-8800A
10RP1-1
SAR10K/1
10RP2-1
BPER Series
HN2D-9900A
HN4D-9900A | 8300-9300
8300-9300
10 kv
10 kv
6-10 kv
9.3-10.4 kv
9.3-10.4 kv | 0.002
0.004
0.001
0.001
0.002
1,3
0.002
0.004 | ±0.5
±0.5
0.25
±0.2
0.25
±0.25
±0.25
±0.5
±0.5 | ±2.5
±2.5
0.25
0.3
0.25
±0.25
±2.5
±2.5 | 1040
1250
request
475
request
ina
1105
1315 | a
a
b
b
a
a | | MO
255 | Wab Mag
Wab Mag
Del
Wab Mag
Un Volt
Del
Un Volt
Del
Del | M-810 Series
M-845 Series
15RP1.5-1
HR-1 Series
BPER Series
20RP1-1
BPER Series
25RP.5-1
30RP.5-1 | 15 kv
15 kv
15 kv
15 kv
12–16 kv
20 kv
18–22 kv
25 kv
30 kv | ina
ina
0.0015
0.03
1,3
0.001
1,3
0.0005
0.0005 | ±5
±5
0.25
±1
±0.25
0.25
±0.25
0.25
0.25 | ina
ina
0.25
±1
±0.25
0.25
±0.25
0.25
0.25 | ina ina request ina ina request ina request ina request request | b | Notes, abbreviations and manufacturers' index at end of this section. ### **Notes** - a. Models with 400 cps input available. - b. 50 440 cps input. - Wide-temperature all-silicon power supplies available. - d. 115/220 v input. - e. 400 cps input. - f. All silicon, germanium models available. - g. Standard or miniature sizes available. - h. All germanium, silicon and wide temperature models available. - i. Mil spec. models available. - 1. Dual supply. - 2. Dual outputs available. - 3. Dual outputs of any combination of 3, 6 or 12 v. - 4. Dual outputs of any combination of 24, 36 or 48 v. - 5. Total regulation. - 6. Specify any voltage within range. - 7. This model designation covers a series of modular supplies. These supplies are listed in the table according to their output voltages. ### **Abbreviations** ina Information not available. ### NEW LOW COST # ELAPSED TIME INDICATORS Now, at low cost, you can get an indication of the operating time of any electronic or electrical equipment. Here are rugged, accurate, elapsed time indicators that tell you when lubrication, overhaul, adjustment or replacement of components is due on machine tools, computers, industrial machinery and test equipment or complete processing systems. Six-digit displays read either "hours and tenths", "minutes and tenths", or "seconds". Three different types of mounting are available as shown. All models have synchronous motors; nominal power requirement is 2.5 watts. Both bezel mountings are to standard NEMA dimensions. SEND FOR DATA & PRICES AYDON GOMPANY 232 North Elm Street Waterbury, Conn. 06720 4060 Ince Boulevard Culver City, Calif. ON READER-SERVICE CARD CIRCLE 32 ON READER-SERVICE CARD CIRCLE 33 # DEL ELECTRONICS Foremost Manufacturer of High Voltage Power Supplies from COMPACT 5°unce MODULES GIANT 30,000 LB. **POWER SUPPLIES** From 10VA to 300,000VA for Literature or mail your specifications. HIGH VOLTAGE POWER SUPPLIES FREQUENCY CONVERTERS SOLID STATE DC/AC POWER INVERTERS 143 # AC to DC PLUG-IN OWER with this catalog you can choose from 62,000 different power supplies... all available for shipment 3 DAYS! Write for your copy today to Acopian Corp. Easton, Pennsylvania or telephone (215) 258-6149. ### Index of Manufacturers and Model Nu (keyed to table locator symbols) | | (keyed to table | locator symbols) | |--------------------------|---|---| | bbott Transistor | [MO-253]
HN4D-8800A
[MO-254]
HN4D-9900A
[MO-254]
V Series [Note 7] | 30A Series | | (Abbott) | [MO-254] | 30B Series | | HA Series [note 7] | HN4D-9900A | [MO-136] | | HC24D-433A | V Series [Note 7] | 31B Series | | [MO-243] | ACDC Flectronics | [MO-141]
32A10 [MO-143] | | [MO-244] | Inc | 32B Series | | HC24D-552A | (ACDC)
BC2N1 2 [MO-6] | [MO-143]
34A10 [MO-148] | | HC24D-630A | BC50N1.2 | 34B Series | | [MO-245]
HC24D.7004 | BX2N1.2 [MO-6] | 35A10 [MO-149] | | [MO-245] | BX50N1.2 | 35B Series | | [MO-246] | BX50P1.2 | 36A10 [MO-151] | | HC24D-880A | [MO-183]
BX100N0 4 | MO-151 | | HC24D-990A | [MO-214] | 37A10 [MO-155] | | [MO-247] | EX200N0.1
[MO-233] | [MO-155] | | [MO-247] | BX300N0.2 | 38A10 [MO-157] | | HCK24D-1230A
[MO-247] | BX400N0.4 | [MO-157] | | HCK24D-1380A | [MO-243] | 39A10 [MO-158]
39B Series | | HCK24D-1570A | MO-254] V Series [Note 7] ACDC Electronics, Inc (ACDC) BC2N1.2 [MO-6] BC50N1.2 [MO-183] BX2N1.2 [MO-6] BX50N1.2 [MO-183] BX50P1.2 [MO-183] BX100N0.4 [MO-214] BX200N0.1 [MO-233] BX300N0.2 [MO-239] BX400N0.4 [MO-243] Acme Electric Corp (Acme) | [MO-158]
40A10 [MO-159] | | [MO-248]
HCK24D-1760A | (Acme)
PS-6757 [MO-171] | 40B Series | | [MO-249] | | [MO-160]
41410 [MO-164] | | HCK24D-1970A
[MO-249] | (Acopian) | 41B Series | | HCK24D-2200A | 1B10 [MO-1] | 42A10 [MO-165] | | HCK24D-2470A | 2.5B Series [MO-2] | 42B Series | | [MO-250] | 3B Series [MO-3]
4B Series [MO-8] | 43A10 [MO-166] | | [MO-251] | 5A210 [MO-12] | 43B Series
[MO-166] | | HCK24D-3460A | 6A Series [MO-12] | 44A10 [MO-167] | | HCL24D-63A | 6B Series [MO-19] | [MO-167] | | [MO-194]
HCL24D-70A | 7B Series [MO-25] | 45A10 [MO-168] | | [MO-198] | 8A Series [MO-31]
8B Series [MO-31] | [MO-169] | | [MO-202] | 9A Series [MO-35] | 46A10 [MO-1/2]
46B Series | | HCL24D-88A | 10A Series [MO-42] | [MO-172] | | HCL24D-99A | 10B Series [MO-42]
11A210 [MO-49] | 47B Series | | HCL24D 110A | 11B Series [MO-49] | 48A10 [MO-173] | | [MO-215]
HCI 24D-123A | (Acme) PS-6757 [MO-171] Acopian Corp (Acopian) 1B10 [MO-1] 1.5B Series [MO-2] 3B Series [MO-2] 3B Series [MO-8] 5A210 [MO-12] 5B Series [MO-19] 6B Series [MO-19] 6B Series [MO-19] 7A Series [MO-25] 7B Series [MO-25] 7B Series [MO-31] 8B Series [MO-31] 9A Series [MO-31] 9A Series [MO-35] 10A Series [MO-35] 10A Series [MO-49] 11B Series [MO-49] 11B Series [MO-49] 12A Series [MO-57] 12B Series [MO-55] 13A Series [MO-62] 13A Series [MO-65] 14A Series [MO-65] 14B Series [MO-65] 15A Series [MO-65] 15B Series [MO-65] 15B Series [MO-78] 16C Series [MO-78] 17B Series [MO-78] 17B Series [MO-78] 17B Series [MO-81] [MO-83] 20B Series [MO-92] 21A Series [MO-92] 21A Series [MO-93] 21B Series [MO-92] | 48B Series | | [MO-218] | 12C30 [MO-55]
13A Series [MO-62] | 49A10 [MO 176] | | [MO-220] | 13B Series [MO-62] | [MO-177] | | HCL24D-157A
[MO-225] | 14B Series [MO-65] | 50A10 [MO-178]
50B Series | | HCL240D-176A | 15B Series [MO-71] | [MO-178] | | HCL24D-197A | 15C15 [MO-69]
16A Series [MO-78] | [MO 186] | | HCL24D-220A | 16B Series [MO-78] | [MO 188] | | [MO-234] | 17B Series [MO-81] | 65B Series | | [MO-236] | 18A Series [MO-85]
18B Series [MO-84] | 67B Series | | HCL24D-276A
[MO-238] | 19B Series [MO 88] | 70B Series | | HLC24D-310A | 20B Series [MO-93] | [MO-196] | | HCL24D-346A | 21A Series
[MO·100] | [MO-199] | | [MO-242]
HCL24D-387A | | 80B Series
[MO-200] | | [MO-243] | [MO-100]
22A Series | 85B Series
[MO-203] | | HN2D-3870A
[MO-251] | [MO-104]
22B Series | 90B Series | | HN2D-4330A
[MO-251] | [MO-103] | [MO·204]
95B Series | | HN2D-4860A | 23A Series
[MO 106] | [MO·206] | | [MO-252]
HN2D-5520A | 23B Series
[MO-106] | 100B Series
[MO-208] | | [MO-252]
HN2D-6300A | 24A Series | 105B Series
[MO-212] | | [MO-253] | [MO-111]
24B Series | 110B
Series
[MO-213] | | HN2D-7000A
[MO-253] | [MO-111]
25A Series | 120B Series | | HN2D-7900A
[MO-253] | [MO-115]
25B Series | [MO-215]
125B Series | | HN2D-8800A | [MO-115] | [MO-217]
150B Series | | [MO-254]
HN2D-9900A | 26A Series
[MO 120] | [MO-220] | | [MO-254]
HN4D-3870A | 26B Series
[MO-120] | C-125 [MO-119]
C-130 [MO-140] | | [MO-251] | 27A Series | C-525 [MO-119]
C-1529 [MO-132] | | HN4D-4330A
[MO-251] | [MO-123]
27B Series | C-1529 [MO-132]
G-2535 [MO-151]
G-2734 [MO-148] | | HN4D-4860A
[MO-242] | [MO-123]
28A Series | L-2535 [MO-151] | | HN4D-5520A | [MO-126] | M 1529 [MO 132
M 2028 [MO 130 | | [MO-253]
HN4D-6300A | 28B Series
[MO-126] | M-2530 [MO-138 | | [MO·253]
HN4D·7000A | 29A Series
[MO·131] | Allison Labs, Inc | | [MO-253] | 29B Series | (Allison) | | HN4D-7900A | [MO-131] | 666 [MO-109] | [MO-131] Manufacturers' addreses and literature offerings in | lumbers | |---| | Arnold Magnetics
Corp
(Arnold)
SCH-6.3 [MO-25]
SCH-30 [MO-147]
SCH-300 [MO-241]
SCH-750 [MO-245]
SCH-1000
[MO-247]
SCH-1500
[MO-248]
SCH-2500
[MO-250]
SCH-5000
[MO-252] | | Associated Special- ties Co (Assoc Spec) 2 [MO-240] 12 [MO-231] Atlas Controls, Inc (Atlas) TB1047 [MO-22] TB1057 [MO-57] TB1062 [MO-41] | | Behlman-Invar Electronics Corp (Behl-Invar) W Series [note 7] Burr-Brown Research Corp (B-B) 501 [MO-69] 503 [MO-70] | | Burton Manufactur- ing Co Electronics Div (Burton) TPS Series [note 7] CEA Div of Berkleon- incs, Inc | | 500 A Series [MO.243] 500B Series [MO.243] 500C Series [MO.211] 500D Series [MO.182] 600A Series [MO.244] 600B Series [MO.244] 600C Series [MO.211] 600D Series [MO.213] | | Chalco Engineering (Chalco) 7V Series [M0-28] 11V Series [M0-28] 11V Series [M0-91] 20V Series [M0-97] 33V Series [M0-97] 345V Series [M0-147, 148] 45V Series [M0-171] 60V Series [M0-191] 90V Series [M0-205] 150V Series [M0-222] 200V Series [M0-231] | | Consolidated Avionics Div Condex Corp (ConAv) HT5A Series [MO-17] HT6 Series [MO-23] HT6A Series [MO-23] HT7 Series [MO-30] HT7A Series [MO-30] HT7A Series [MO-34] HT8A Series [MO-34] HT8A Series [MO-34] HT9 Series [MO-38] | HT10 Series [MO-48] HT10A Series [MO-48] HT11 Series [MO-52] HT11A Series [MO-52] HT12 Series [MO-61] HT12A Series [MO-61] HT13 Series [MO-65] HT14 Series [MO-65] HT14A Series [MO-67] HT15A Series [MO-67] HT15A Series [MO-77] HT15 Series [MO-78] HT16A Series [MO-79] HT17A Series [MO-79] HT17A Series [MO-83] HT18 Series [MO-83] HT18 Series [MO-87] HT28 Series [MO-101] HT20A Series [MO-101] HT22 Series [MO-101] HT22 Series [MO-107] HT24 Series [MO-107] HT25 Series [MO-107] HT26A Series [MO-107] HT26A Series [MO-116] HT26A Series [MO-116] HT26A Series [MO-124] HT28 Series [MO-124] HT28 Series [MO-124] HT28 Series [MO-132] HT28A Series [MO-132] HT28A Series [MO-132] [MO 132] HT30 Series [MO 142] [MO·142] HT30A Series [MO·142] HT31 Series [MO·144] HT31A Series [MO·144] HT35 Series [MO·156] [MO-156] HT35A Series [MO-156] HT39 Series [MO-165] HT39A Series [MO-165] MO-165] HT43 Series [MO-169] HT43A Series [MO-169] HT48A Series [MO-184] HT48A Series [MO-184] XR5-14 [MO-47] XR12-11 [MO-63] XR12-15 [MO-79] XR18-85 [MO-95] XR24-7 [MO-121] XR28-7 [MO-137] XR34-5.5 [MO-173] XR44-4.5 [MO-173] XR48-4.5 [MO-173] Ontrol Circuits, Inc Control Circuits, Inc (Con Cir) 4.5A Series [MO-9] 4.5B Series [MO-10] 5A Series [MO-12] 5B Series [MO-13] 5 Series [MO-13] 5.5A Series 5.5A Series [MO-16] 5.5B Series [MO-16] 6.0A Series [MO-20] 6.0B Series [MO-20] 6.6A Series [MO-24] 6.6B Series [MO-24] 7.3A Series [MO-29] 7.3B Series [MO-29] 8.1A Series [MO-33] 8.1B Series [MO-33] 8.9A Series [MO-34] # NEW from TECHNIPOWER! PC-80 SERIES ULTRA COMPACT POWER MODULES **ALL SILICON** 25% SMALLER! 25% LIGHTER! **ECONOMICALLY** PRICED! ### **SPECIFICATIONS:** Input voltage range 105-125 volts. Input frequency range 50-400 Hz. Regulation accuracy ±0.05% **Ripple** Less than 0.002% or 1 mv RMS, whichever is greater. Output adjustment range 10% (20% at 80% of rated load). Temperature rating 80°C base temperature permissible. State-of-the-art circuitry, silicon transistors throughout, packaging and manufacturing savvy - these are some of the ingredients that go into this altogether new line of modules. You get more for less than you would expect to pay for bulkier, heavier, less efficient power supplies! - *Outputs ranging from 4.1VDC to 152VDC, and up to 60 watts. - *Not damaged by output shorts or overloads. - *Little or no external heat sinking required. - High density packaging. - *Temperature coefficient 0.015%/°C typical. - *Designed to meet MIL Environmental Specifications. WRITE OR CALL for full information, including your copy of the new Technipower catalog, giving complete data and prices for more than 4000 power modules and lab supplies! ECHNIPOWER A BENRUS SUBSIDIARY 18 MARSHALL STREET, NORWALK, CONNECTICUT 06854 ON READER-SERVICE CARD CIRCLE 36 ### RO SYSTEMS BUILDING BLOCKS # **DELIVERY NOW** **Integrated Circuit Power Supplies** 3-6 VDC...5 and 10 Amp. ### Module 505 & 507 - Compact Excellent Regulation - Completely Protected Module 505 10 Amp. \$199.00 Module 507 5 Amp. \$190.00 ### Module 506. Dual Power Supply ... Plug-in Flexibility for **Analog Systems** ±12 to ±24 VDC Adjustable • 150 MA Each Channel • Short Circuit **Proof** • Excellent Regulation Module 506 - \$95.00 Please write for complete specifications, and/or information on other RO power Supplies and Modular Systems Building Blocks. RO Associates, Inc., 917 Terminal Way, San Carlos, California 94070 (415) 591-9443 RO SYSTEMS BUILDING BLOCKS 8.9B Series [MO-35] 9.8A Series [MO-39] 9.8B Series [MO 39] 10.8A Series [MO 49] [MO-49] 10.8B Sereis [MO-49] 12.0A Series [MO-57] 12.0B Series [MO-58] 13.1A Series 13.1A Series [MO-64] 13.1B Series [MO-64] 14.5A Series [MO-67] 14.5B Series 14.5B Series [MO-67] 15.8A Series [MO-78] 15.8B Series [MO-78] 17.5A Series [MO-82] 17.5B Series [MO-82] 19.2A Series [MO-90] [MO-90] 19.2B Series [MO-90] 21.2A Series [MO-102] 21.2B Series [MO-103] 23.3A Series [MO-108] [MO-108] 23.3B Series [MO-108] 25.7A Series [MO-119] 25.7B Series [MO-119] 28.8A Series 28.8A Series [MO.130] 28.8B Series [MO.130] 31.5A Series [MO.142] 31.5B Series [MO.143] 34.5A Series [MO.149] 34.5B Series [MO.149] 38.0A Series [MO.157] 38.0B Series [MO-157] 38.0B Series [MO-157] 42.0A Series [MO-165] 42.0B Series [MO-172] 46.0A Series [MO-172] 50.0A Series [MO-179] 50.0B Series [MO-179] 56.0A Series [MO-179] 56.0A Series [MO-187] 62.0A Series [MO-187] 62.0B Series [MO-193] 68.0B Series [MO-193] 68.0A Series [MO-200] 76.0A Series [MO-200] 84.0A Series [MO-200] 84.0A Series [MO-203] 84.0B [MO-208] 100A Series [MO-208] 100A Series [MO-208] 110B Series [MO-213] 120A Series [MO-216] 120B Series [MO-216] 135A Series [MO-219] 135B Series [MO-219] 152A Series [MO-223] 152B Series [MO-223] [MO-223] 168A Series [MO-226] 168B Series [MO-226] 184A Series [MO-228] 200A Series [MO-230] 200B Series [MO-230] 220A Series [MO-230] 220A Series [MO-230] 220A Series [MO-233] 220B Series [MO-233] 240A Series [MO-234] 240B Series [MO-236] 265B Series [MO-236] 290A Series 290A Series [MO-237] 290B Series [MO-238] Del Electronics Corp (Del) 1RP-1 [MO-246] 2-5RP4-1 [MO-249] 5RP2-1 [MO-252] 7-5RP1.5-1 [MO-253] 10RP1-1 [MO-254] 15RP1.5-1 [MO-255] 20RP1-1 [MO-255] 25RP5-5-1 [MO-255] [MO·254] [MO·254] 1 [MO·255] [MO·255] [MO·255] [MO·255] 25RP.5 30RP.5 [MO-246] TRA1-1-TRA1.5-[MO-248] TRA2-1-1 [MO-249] TRA2-5-1-1 [MO-251] Deltron, Inc. [MO-249] TRA3-1-1 [MO-250] TRA3.5-1-1 Deltron, Inc (Deltron) MP12 Series [MO-217] MP17 Series [MO-227] MP22 Series [MO-234] MP27 Series [MO-237] MP32 Series [MO-240] MP37 Series [MO-243] MP42 Series [MO-243] Dressen-Barnes Elec- tronics Corp (D-B) 15.3S [MO-3] 15.6S [MO-18] 15.10S [MO-41] 15.12S MO-55] 15.15S MO-71] 15.24S MO-120] 15.24S MO-120] 15.28S [MO-126] 15.30S [MO-126] 15.30S [MO-126] 15.30S [MO-18] 20.10S [MO-41] 20.6S [MO-18] 20.10S [MO-41] 20.10S [MO-41] 20.12S [MO-41] 20.12S [MO-66] 20.13S [MO-18] 20.10S [MO-18] 20.10S [MO-18] 20.10S [MO-10] 20.24S [MO-10] 20.24S [MO-110] 20.24S [MO-120] 20.24S [MO-120] 30.30S [MO-120] 30.30S [MO-120] 30.30S [MO-120] 30.30S [MO-18] 30.10S [MO-42] 30.12S [MO-19] 30.10S [MO-42] 30.12S [MO-110] 30.26S [MO-120] 30.28S [MO-126] 30.30S [MO-135] 30.40S [MO-126] 30.30S [MO-126] 30.30S [MO-126] 30.40S [MO-126] 30.50S [MO-178] 30.100S [MO-208] 41.3S [MO-42] 41.10S [MO-42] 41.10S [MO-42] 41.10S [MO-42] [MO-72] [MO-93] [MO-111] [MO-120] [MO-127] [MO-136] [MO-160] [MO-179] 41-15S [MO-72] 41-20S [MO-93] 41-24S [MO-111] 41-26S [MO-120] 41-26S [MO-127] 41-30S [MO-136] 41-40S [MO-160] 41-50S [MO-179] 41-100S [MO-208] 51-3S [MO-5] 51-10S [MO-43] 51-12S [MO-43] 51:35 [MO·5] 51:65 [MO·20] 51:105 [MO·43] 51:125 [MO·72] 51:205 [MO·94] 51:245 [MO·121] 51:265 [MO·121] 51:265 [MO·128] 51:305 [MO·136] 51:405 [MO·136] 51:405 [MO·136] 61:105 [MO·43] 61:125 [MO·43] 61:125 [MO·73] 61:125 [MO·73] 61:25 [MO·113] 61:265 [MO·113] 61:265 [MO·121] 61:27 [MO·136] 61:285 [MO·12] 61:285 [MO·12] 61:285 [MO·12] 61:285 [MO·12] 61:285 [MO·12] 61:405 [MO·136] 61:405 [MO·136] 61:405 [MO·136] 61:505 [MO·179] 61:1005 [MO·209] 110:150 [MO·222] Dynage, Inc (Dynage) D5 Series [MO·16] D5A Series [MO·16] D5A Series [MO·16] D5.5 Series [MO·17] D5.5A Series [MO·17] D6.1 Series [MO·23] D6.1 Series [MO·23] D6.7 Series [MO·26] D7.3 Series [MO·26] D7.3 Series [MO·31] D7.3A Series [MO·31] D8.1 Series [MO·31] D8.1 Series [MO·34] D8.1A Series [MO·34] D8.9 Series [MO·34] D8.9 Series [MO·34] D8.9 Series [MO·38] D8.9 Series [MO-38] D8.9A Series [MO-38] D9.8 Series D9.8 Series [MO-48] D9.8A Series [MO-48] D10.8 Series [MO-52] D10.8A Series [MO-52] D12 Series [MO-62]
D12A Series [MO-62] D13.2 Series [MO-65] D13.2A Series [MO-65] D14.6 Series [MO-77] D14.6A Series [MO-77] D16.1 Series [MO-80] [MO-80] D16.1A Series [MO-80] D17.8 Series [MO-88] D17.8A Series [MO-88] D19.6 Series [MO 99] D19.6A Series [MO 100] D21.6 Series [MO 105] D21.6A Series [MO·106] D23.8 Series [MO-117] D23.8A Series [MO-117] D26.2 Series [MO-125] D26.2A Series [MO-125] D29 Series [MO-141] [MO-141] D29A Series [MO-141] D32 Series [MO-117] [MO-148] D32A Series [MO-148] D35.2 Series [MO-156] D35.2A Series [MO-156] D38.8 Series D38.8 Series [MO-163] D38.8A Series [MO-163] D42.8 Series [MO-170] D42.8A Series [MO-170] D47.2 Series [MO-177] D47.2A Series [MO-177] [MO-177] [MO·17/] D52 Series [MO·185] D52A Series [MO·185] D57.2 Series [MO·189] [MO-189] Elasco, Inc (Elasco) M3 Series [MO-7] M4 Series [MO-10] M5 Series [MO-16] M6 Series [MO-37] M8 Series [MO-37] M10 Series [MO-50] M12 Series [MO-63] M14 Series [MO-73] M16 Series [MO-73] M16 Series [MO-78] M18 Series Elasco, Inc [MO-89] M20 Series [MO-100] M22 Series M22 Series [MO-106] M24 Series [MO-116] M26 Series [MO-123] M28 Series [MO-131] M30 Series [MO-142] M32 Series [MO-147] M34 Series [MO-150] M36 Series [MO-155] M38 Series [MO-158] M40 Series M40 Series [MO-164] M42 Series [MO-166] M44 Series [MO-169] M46 Series [MO-173] M48 Series [MO-177] M50 Series [MO-183] M52 Series [MO-185] M54 Series [MO-186] M56 Series [MO-187] M58 Series M58 Series [MO-187] M60 Series [MO-192] M62 Series [MO-193] M64 Series **IMO-1937** M66 Series [MO-195] M68 Series [MO-196] M70 Series [MO-197] M72 Series [MO-198] M74 Series [MO-199] M76 Series [MO-200] M78 Series [MO-200] M80 Series [MO-202] M82 Series [MO-202] M84 Series [MO-203] M86 Series Manufacturers' addreses and literature offerings in master cross index at front of issue. [MO-204] M88 Series [MO-204] M90 Series [MO-205] M92 Series [MO-206] M94 Series [MO-207] M96 Series M96 Series [MO-207] M98 Series [MO-207] M100 Series [MO-213] M100 Series [MO-213] M110 Series [MO-213] M110 Series [MO-214] M115 Series [MO-215] M120 Series [MO-217] M125 Series [MO-217] M125 Series [MO-218] M130 Series [MO-218] M130 Series [MO-219] M140 Series [MO-219] M140 Series [MO-220] M150 Series [MO-223] M160 Series [MO-223] M160 Series [MO-223] M160 Series [MO-226] M170 Series [MO-226] M170 Series [MO-226] M170 Series [MO-227] M180 Series [MO-228] M185 Series [MO-229] M190 Series [MO-229] M190 Series [MO-229] M190 Series [MO-229] M190 Series [MO-27] SV8 Series [MO-37] SV4 Series [MO-37] SV4 Series [MO-37] SV6 Series [MO-37] SV6 Series [MO-27] SV8 Series [MO-13] SV6 Series [MO-13] SV6 Series [MO-13] SV6 Series [MO-13] SV6 Series [MO-13] SV7 Series [MO-13] SV8 Series [MO-13] SV8 Series [MO-14] SV18 Series [MO-14] SV18 Series [MO-16] SV20 Series [MO-17] SV20 Series [MO-17] SV34 Series [MO-164] SV32 Series [MO-167] SV34 Series [MO-173] SV35 Series [MO-167] SV44 Series [MO-173] SV36 Series [MO-167] SV47 Series [MO-173] SV37 Series [MO-173] SV38 Series [MO-173] SV48 Series [MO-173] SV49 Series [MO-173] SV40 Series [MO-173] SV40 Series [MO-184] V40 Series [MO-187] V35 Series [MO-187] V35 Series [MO-187] V36 Series [MO-187] V37 Series [MO-187] V38 Series [MO-187] V39 Series [MO-187] V48 Series [MO-187] V49 # 1JLV RESOLUTION MICRO/MILLIVOLT STANDARD EDC's dc Millivolt Standard — with 1 microvolt resolution — is an all-solid-state 5-decade precision source with . . . COMPARE performance price | ADSOIUTE Accuracy | (NBS traceability) | |-------------------|---| | Outputs (2) | $\begin{cases} 111.110mv \\ (\mu v \text{ steps}) \\ 11.1110v \\ (100 \ \mu v \text{ steps}) \end{cases}$ | | Stability | ±0.001% | | ■ Output current | 10 ma | | ■ Delivery | from stock | | ■ Price | \$745 | Model MV-100-N a direct reading standard has: automatic recovery . . . short circuit and overload proof . . . warm-up time of 30 sec. Designed as a portable standard for production and laboratory applications, it may be used in: thermocouple simulation; simulation of thermal emf; and in calibration of strip chart recorders, oven controllers, furnace controllers, millivolt meters, strain gauge indicators . . . Weighs only 8 pounds. Traceable certification supplied. *Other models to 1000 vdc. Literature available on request. ELECTRONIC DEVELOPMENT CORPORATION 423 WEST BROADWAY • BOSTON, MASS. 02127 Tel: 617 268-9696 ON READER-SERVICE CARD CIRCLE 38 ### 160 PAGE POWER SUPPLY HANDBOOK KEYNOTES KEPCO'S CONTINUING EDUCATIONAL PROGRAM The Kepco Power Supply Handbook, written by Paul Birman, Kepco's Application Engineer, covers the subject of regulated DC Power Supplies in detail. Particular emphasis is placed on the programming concept and its myriad applications to complex systems control problems. The Handbook starts with a basic treatment of the AC-DC rectification process and quickly works up to regulating circuits both open and closed loop. The concept of the bridge regulator is treated in considerable detail and is approached from several directions, including an unusual operational analysis. Such treatment of basic power supply regulators in general terms permits ready extension to more complex external loop control systems with ready understanding. A comprehensive chapter on Power Supply testing will be of value to the test engineer. Profusely illustrated with innumberable circuit diagrams, block diagrams and photographs, the Kepco Power Supply Handbook is a valuable addition to any engineering library. FOR COMPLIMENTARY COPIES, WRITE ON COMPANY LETTERHEAD TO: HANDBOOK, Dept. B G.P.O. BOX 67 · FLUSHING, N.Y. 11352 ON READER-SERVICE CARD CIRCLE 39 48 PAGE CATALOG CONTAINING COMPLETE SPECIFICATIONS AND APPLICATIONS NOTES ON MORE THAN 275 STANDARD MODELS IS ALSO AVAILABLE | [MO·197]
V68-250 [MO·196] | CV150 [MO:220]
CV180 [MO:227] | PR-102 [MO-56]
PR-103 [MO-56] | |--|---|--| | V72-250 [MO-196]
V72-250 [MO-199]
V75 Series | 04300 140 3391 | ZA721A [MO-56]
ZA723 [MO-55] | | [MO-201]
V78-250 [MO-201]
V82-250 [MO-203] | CV300 [MO·238]
ME Series (note 7]
MF5P2 (MO.46) | ZA724 [MO-57]
ZA735 [MO-56]
ZA741 [MO-18] | | V85 Series
[MO-205] | ME5P2 [MO·46]
ME60P1 [MO·197]
ME70P1 [MO·201] | errotran Electronics | | V88-250 [MO-204]
V95 Series | ME70P1 (MO-201) ME80P1 [MO-204) ME90P1 [MO-204) ME100P1 [MO-204) ME100P1 [MO-223] ME150P1 [MO-223] ME200P1 [MO-232] ME250P1 [MO-236] ME300P1 [MO-236] ME300P1 [MO-239] MS Series [note 7] MS60P5 [MO-197] MS60P5 [MO-197] MS60P5 [MO-197] MS70P1 [MO-205] MS90P1 [MO-205] MS90P1 [MO-205] MS90P1 [MO-223] MS150P1 [MO-223] MS150P1 [MO-232] MS250P1 [MO-236] MS300P1 [MO-239] MS300P1 [MO-239] MS300P1 [MO-239] MS300P1 [MO-236] MS30P1 | (Ferro)
B-224 [MO-103, 168 | | [MO-209] | ME100P1 [MO-213]
ME150P1 [MO-223] | B-456
[MO-168, 194] | | [MO-214]
V115 Series | ME150P1 [MO-223]
ME200P1 [MO-232]
ME250P1 [MO-236] | HCV-6 [MO-24]
HCV-10 [MO-53] | | [MO·216]
V125 Series
[MO·218] | ME300P1 [MO-239]
MS Series [note 7] | HCV-12 [MO-67]
HCV-15 [MO-87] | | V135 Series | MS60P1 [MO.197]
MS60P5 [MO.192] | HCV-20 [MO-114]
HCV-28 [MO-137] | | V145 Series | MS80P1 [MO-205]
MS90P1 [MO-209] | HHV-45 [MO-168]
HHV-50 [MO-177] | | [MO-221]
V155 Series
[MO-224] | MS100P1 [MO-213]
MS150P1 [MO-223] | HHV-60 [MO-188] | | V165 Series
[MO-226] | MS200P1 [MO-232]
MS250P1 [MO-236] | HHV-67 [MO-194]
HHV-70 [MO-196] | | V175 Series
[MO-227] | MS300P1 [MO-239]
MS324 [MO-143] | HM-5 [MO-11]
HM-6 [MO-18] | | V185 Series
[MO-229] | MS454 [MO-169]
MS604 [MO-189] | HM 10 [MO-40]
HM 12 [MO-54] | | V195 Series
[MO-230] | MS604 [MO-189]
SAR1K/.1 [MO-246]
SAR1K/2 [MO-246]
SAR3K/1 [MO-250] | HM-15 [MO-64]
HM-18 [MO-83] | | Elcor | 3AK3K/.1 [MO-250] | HM-20 IMO-91 | | Div Halliburton Co
(Elcor) | | HM-28 [MO-125]
HM-30 [MO-134] | | AQC1-200 [MO-1]
AQC1. 34-200
[MO-1] | [MO·254]
SR Series (note 7) | HMC-10 [MO-40] | | AQC2-200 [MO-2]
AQC3-200 [MO-7] | SAR10K/1
SAR10K/1
[MO-254]
SR Series [note 7]
SR5P2 [MO-46]
SR5P2R [MO-46]
SR10P2 [MO-96]
SR20P1 [MO-139] | HMC-20 [MO-91] | | AQC4-200 [MO-10]
AQC5-150 [MO-21] | SR5P2 [MO-46]
SR5P2R [MO-46]
SR10P2 [MO-96]
SR20P1 [MO-139]
SR30P1 [MO-162] | HMC-27 [MO-122]
HMC28 [MO-125] | | AQC6 150 [MO 26]
AQC7 150 [MO 33] | SR30P1 [MO-182]
SR40P1 [MO-181] | HMJ-10 [MO-40]
HMJ-12 [MO-54] | | AQC8-150 [MO-37]
AQC10-150 | SR50P1 [MO-190]
SR60P1 [MO-197] | HMJ-15 [MO-69]
HV-5 [MO-177] | | [MO-50]
AQC11-150 | SR70P1 [MO-197]
SR70P1 [MO-201] | HV-45 [MO-168]
HV-55 [MO-185] | | [MO-60]
AQC12-150
[MO-62] | SR5P2 [MO-46] SR5P2R [MO-46] SR10P2 [MO-96] SR20P1 [MO-196] SR20P1 [MO-162] SR40P1 [MO-181] SR50P1 [MO-190] SR60P1 [MO-197] SR60P1R [MO-197] SR70P1 [MO-201] SR70P1R [MO-205] SR80P1R [MO-205] SR80P1R [MO-209] | HV-67 [MO-188]
HV-67 [MO-194] | | AQC15-120
[MO-79] | SR90P1 [MO-209]
SR90PIR [MO-209] | HV-75 [MO-199]
HV-90 [MO-204] | | AQC20-90
[MO-104] | SR50P1 [MO·190]
SR60P1 [MO·197]
SR60P1R [MO·201]
SR70P1 [MO·201]
SR70P1 [MO·201]
SR80P1
[MO·205]
SR80P1 [MO·205]
SR90P1R [MO·209]
SR90P1R [MO·209]
SR100P1 [MO·214]
SR100P1R
[MO·214]
SR150P1R
[MO·224]
SR200P1 [MO·232] | HV 100 [MO-207]
HV 120 [MO-215] | | AQC25-75
[MO-124] | [MO-214]
SR150PIR | HV-150 [MO-220]
HV-175 [MO-226] | | AQC28-70
[MO-137] | [MO-224]
SR200P1 [MO-232]
SR250P1 [MO-236]
SR300P1 [MO-239]
SR334 [MO-146] | HV-230 [MU-233] | | AQC30-65
[MO-144] | SR300P1 [MO-239]
SR334 [MO-146] | HV-300 [MO-238]
HV-400 [MO-242] | | AQC36-55
[MO-157]
AQC40-50 | SR300P1 [MO-239]
SR334 [MO-146]
SR344 [MO-148]
SR354 [MO-149] | HV-500 [MO-243]
HV-750 [MO-245]
HV-1000 [MO-247] | | [MO-166]
AQC45-45 | SR364 [MO-153]
SR374 [MO-155] | HVA 60 [MO 188]
HVA 100 [MO 208] | | [MO-176]
AQC50-40 | SR384 [MO-157]
SR394 [MO-158] | HVA-150 [MO-221]
HVA-200 [MO-229] | | [MO·185]
AQC60-30 | SR404 [MO-160]
SR414 [MO-164] | HVA-250 [MO-235]
M-1.5 [MO-1] | | [MO-193]
AQC80-20 | SR424 [MO-165]
SR434 [MO-166]
SR444 [MO-167] | M·3 [MO·3]
M·4 [MO·8] | | [MO·203]
AQC100-16 | SR454 [MO 169]
SV5 [MO 12] | M-5 [MO-11]
M-6 [MO-18]
M-7 [MO-25] | | [MO-213]
ATM5-150 [MO-22]
ATM6-150 [MO-26] | SV10 [MO-39]
SV15 [MO-68] | M-7 [MO-25]
M-8 [MO-31]
M-9 [MO-35] | | ATM7 150 [MO 33]
ATM8 150 [MO 37] | SV20P [MO-91]
SV25 [MO-115] | M 10 [MO 39]
M 12 [MO 53] | | ATM9-150 [MO-44]
ATM10-150 | SV30 [MO-133]
SV50 [MO-178] | M 15 [MO 68]
M 18 [MO 83] | | [MO·50]
ATM11·150 | SV75 [MO-198]
SV105 [MO-212]
SV150 [MO-220] | M·20 [MO-90]
M·21 [MO-100] | | [MO-60]
ATM12-150 | SV180 [MO-227]
SV210 [MO-232] | M-22 [MO-103]
M-23 [MO-106] | | [MO-63]
ATM15-120
[MO-79] | SV250 [MO-235]
SV300 [MO-238] | M-24 [MO-108]
M-25 [MO-115]
M-26 [MO-119] | | ATM20-90
[MO-104] | SV600 [MO-244]
SV900 [MO-246] | M·27 [MO·122]
M·28 [MO·125] | | ATM25-75
[MO-124] | TR Series [note 7]
TR5A [MO-46] | M-30 [MO-133]
M-5 [MO-149] | | ATM30-65
[MO-144] | TR10A [MO·97]
TR20A [MO·139]
TR30A [MO·162] | M-40 [MO-159]
MA-3 [MO-3] | | ATM35-55
[MO-156] | TR30A [MO-162]
TR40A [MO-181]
TR50A [MO-186] | MA-4 [MO-7]
MA-5 [MO-11] | | ATM40-50
[MO-166] | TR100A [MO-214] | MA-6 [MO-18]
MA-7 [MO-25]
MA-10 [MO-40] | | ATM45-45
[MO-176]
ATM50-40 | Endevco Corp
(Endevco) | MA-12 [MO-54]
MA-15 [MO-68] | | [MO-185] | 4201 [MO·48]
4202 [MO·141]
4203 [MO·76] | MA-18 [MO-83]
MA-20 [MO-91] | | Electronic Research Assoc., Inc | 4204 [MO-140]
4251 [MO-105] | MA-22 [MO-103]
MA-24 [MO-108] | | (ERA)
CV5 [MO-11] | SR200EHM
[MO-114] | MA-25 [MO-115]
MA-122 [MO-53] | | CV10 [MO-39]
CV15 [MO-68] | SR200EP [MO-76]
SR1000EP | MA-515 [MO-11, 68]
MA-712 [MO-25, 56] | | CV20 [MO-90]
CV25 [MO-115] | [MO-140] | MC-7 [MO-25]
MC-10 [MO-40]
MC-12 [MO-54] | | CV30 [MO·133]
CV50 [MO·178]
CV75 [MO·198] | Engineered Electron-
ics Co
(Eng Elect) | MC-12 [MO-54]
MC-15 [MO-69]
MC-18 [MO-84] | | CV75 [MO·198]
CV105 [MO·212] | PR-101 [MO-56] | MC-20 [MO-91] | | | dresses and literature offerings in
ax at front of issue. | | master cross index at front of issue. CV150 [MO-220] PR-102 [MO-56] MC-22 [MO-103] MC-23 [MO-106] MC-24 [MO-109] MC-25 [MO-115] MC-26 [MO-120] MC-27 [MO-123] MC-28 [MO-126] MC-30 [MO-134] MC-45 [MO-168] MCH-7 [MO-55] MCH-10 [MO-41] MCH-12 [MO-54] MCH-18 [MO-84] MCH-18 [MO-84] MCH-19 [MO-108] MCH-27 [MO-103] MCH-28 [MO-120] MCH-26 [MO-120] MCH-27 [MO-123] MCH-28 [MO-126] MCH-30 [MO-134] MCH-30 [MO-18] MM-10 [MO-40] MCH-30 [MO-18] MM-10 [MO-40] MCH-30 [MO-18] MM-10 [MO-40] MCH-30 [MO-18] MM-10 [MO-40] MM-15 [MO-68, 69] MM-18 [MO-18] MM-20 [MO-91] MM-24 [MO-108] MM-27 [MO-122] MM-28 [MO-122] MM-28 [MO-122] MM-29 [MO-108] MM-20 [MO-91] MSM-10 [MO-39] MSM-15 [MO-68] MSW-100 [MO-207] MSM-10 [MO-207] MSM-10 [MO-207] SM-10 [MO-33] MSM-15 [MO-68] MSW-100 [MO-207] SM-10 [MO-39] MSM-15 [MO-68] MSW-100 [MO-207] SM-10 [MO-39] SM-12 [MO-53] SM-15 [MO-68] SM-20 [MO-90] SM-30 [MO-133] ### General Electric General Electric (GE) 9T66Y51 [MO-58] 9T66Y53 [MO-59] 9T66Y61 [MO-85] 9T66Y83 [MO-128] 9T66Y93 [MO-174] 9T66Y94 [MO-175] 9T66Y980 [MO-217] 9T66Y981 [MO-221] 9T66Y982 [MO-230] 9T66Y987 [MO-111] 9T66Y988 [MO-113] 9T66Y989 [MO-113] 9T66Y990 [MO-113] (MO-113) Glentrons, Inc (Glentron) 21060 [MO-40] 30101 [MO-4] 30102 [MO-19] 30103 [MO-125] 30105 [MO-135] 40101 [MO-98] 40102 [MO-184] 40103 [MO-184] 40104 [MO-98] 40105 [MO-154] 70101 [MO-24] 70102 [MO-98] 70103 [MO-154] 70104 [MO-190] rafix, Inc Grafix, Inc (Grafix) 271 [MO·128] 376 [MO·241] 459 [MO·231] 488 [MO·76] # Harrison Division Hewlett-Packard Hewlett-Packard (Harrison) MOD Series [MO-87, 154] 6354A [MO-224] 6357A [MO-240] 6358A [MO-244] 801C [MO-119] ### ITI Electronics, Inc TI Electronics, (ITI) ACV-121-L [MO-230] ACV-121-M [MO-237] ACV-121-N [MO-241] 231A [MO-15] 231B [MO-30] 231C [MO-51] ### MIL. SPEC. POWER MODULES POWER SUPPLIES NEW! **Technical** data and price BROCHURE. Send for vours today! **CERTIFIED...** your assurance that NUCOR MIL, spec power modules meet or exceed the Military **Environment of:** > MIL-T-21200F MIL-E-16400E MIL-E-5272E MIL-E-5400E MIL-STD-242 MIL-STD-701 MIL-S-19500 featuring • HIGHEST MTBF Over 150,000 Hours Minimum Volume Sizes **Custom Designs for Specific Needs** ### NUCLEAR CORPORATION OF AMERICA 2 RICHWOOD PLACE DENVILLE, NEW JERSEY (201) OAKWOOD 7-4200 ON READER-SERVICE CARD CIRCLE 40 Send for complete literature nents leads; cross-connect, and a finished plug in circuit card is ready for operation. VECTOR ELECTRONIC CO., Inc. 1100 Flower Street, Glendale 1, California Phone: CHapman 5-8971 ON READER-SERVICE CARD CIRCLE 41 ### IN COMPUTER POWER SUPPLIES... NOBRUSH® Motor Generator Model No. 30-085 "Nobrush" power units - the simple, economical method of providing line isolation in computer and numerical control power supplies. This is the essential reason why computer designers are looking now to "Nobrush" units. But it's not the only reason. "Nobrush" units are also far simpler than conventional power supplies, smaller and of such rugged design that they bring new meaning to the word "reliability." In addition, they have functional versatility-a single "Nobrush" unit can provide isolated windings for different output voltages (this feature eliminates transformer problems immediately in many cases). Then there's the unique Georator ability to tailor-make to your specific ... But what you don't expect is that the "Nobrush" unit fits right inside the computer cabinet - no special provisions required. Take advantage of this in your design, call... 315 Tudor Lane • Manassas, Virginia (703) 368-2104 | Kepco, Inc | |------------------------| | (Kepco) | | PAX7-1 [MO-28] | | PAX15-0.75 | | [MO-77] | | PAX21-0.5 | | [MO-102] | | PAX36-0.3 | | [MO-154] | | PAX72-0.15 | | [MO-198] | | PAX100-0.1 | | [MO-211] | | PBX7-2 [MO-28] | | PBX15-1.5 [MO-77] | | PBX21-1 [MO-102] | | PBX40-0.5 | | [MO-163] | | PBX72-0.3 | | [MO-198] | | PBX100-0.2 | | [MO-211]
PRM Series | | [Note 7] | | PWR12-7 [MO-61] | | PWR15-6 [MO-77] | | PWR24-4 [MO-114] | | PWR28-3.3 | | [MO-130] | | PWR48-2 [MO-176] | | PWR60-1.5 | | [MO 101] | | [MO-19 | | |--|---| | Lambda El
Corp
(Lambda) | | | LH118S
LH119S
LH121S | [MO-47]
[MO-47]
[MO-98] | | LH122S
LH124S
LH125S | [MO-98]
[MO-162]
[MO-163] | | LH124S
LH125S
LH127S
LH128S
LH130S
LH131S | [MO-191]
[MO-191]
[MO-216] | | LM202 | [MO-216]
[MO-28]
[MO-28]
[MO-66] | | LM204 | [MO-67]
[MO-145]
[MO-146] | | LM207
LM208
LM217 | [MO-191]
MO-191]
MO-66] | | LM219
LM220 | MO·107]
MO·145]
MO·190] | | LM226 [
LM227 [| [MO-29]
[MO-66]
[MO-107] | | LM234 | MO-145]
MO-190]
MO-29] | | LM236 [
LM237 [| MO-66]
MO-107]
[MO-145]
MO-190] | | 1 14 50 (| 100 | | LMC19 [MO-42] LMC10 [MO-58] LMC10 [MO-72] LMC18 [MO-72] LMC18 [MO-12] LMC20 [MO-93] LMC24 [MO-111] LMC28 [MO-152] LMC36 [MO-152] LMC36 [MO-152] LMC36 [MO-152] LMC36 [MO-152] LMC38 [MO-5] LMD4 [MO-8] LMD4 [MO-8] LMD5 [MO-10] LMD5 [MO-13] LMD6 [MO-20] LMD8 [MO-32] LMD9 [MO-36] LMD10 [MO-43] LMD12 [MO-59] LMD18 [MO-175] LME2 [MO-12] LME3 [MO-175] LME4 [MO-8] LME5 [MO-10] LME5 [MO-10] LME5 [MO-13] LME6 [MO-20] LME8 [MO-32] LME9 [MO-175] LME9 [MO-32] LME9 [MO-175] LME15 [MO-2] LME9 [MO-175] LME15 [MO-10] LME5 [MO-10] LME5 [MO-10] LME5 [MO-175] LME18 [MO-8] LME10 [MO-43] LME10 [MO-43] LME10 [MO-43] LME10 [MO-43] LME15 [MO-12] LME8 [MO-32] LME9 [MO-175] LME18 [MO-86] LME10 [MO-175] LME18 [MO-175] LME48 [MO-175] LME48 [MO-175] LME58 [MO-175] LMF4P5 [MO-10] LMF5 [MO-13] LMF18 [MO-60] LMF15 [MO-13] LMF18 [MO-60] LMF15 [MO-13] LMF18 [MO-86] LMF10 [MO-43] LMF18 [MO-86] LMF10 [MO-43] LMF18 [MO-32] LMF19 [MO-60] LMF15 [MO-13] LMF18 [MO-86] LMF10 [MO-43] LMF18 [MO-175] LMG2 [MO-12] LMG3 [MO-51] LMG4 [MO-113] LMG6 [MO-12] LMG8 [MO-175] LMG9 [MO-10] LMG5 [MO-10] LMG5 [MO-10] LMG5 [MO-10] LMG6 [MO-12] LMG8 [MO-175] LMG8 [MO-175] LMG9 [MO-10] LMG1 [MO-60] LMG1 [MO-60] LMG1 [MO-60] LMG1 [MO-60] LMG1 [MO-60] LMG1 [MO-60] LMG1 [MO-10] LMG3 [MO-175] LMG4 [MO-113] LMG6 [MO-129] LMG8 [MO-175] LMG8 [MO-175] LMG8 [MO-175] LMG9 [MO-164] LMG28 [MO-175] LMG9 [MO-164] LMG1 [MO-164] LMG28 [MO-175] LMG8 [MO-175] LMG8 [MO-175] LMG9 [MO-164] LMG1 [MO-164] LMG1 [MO-164] LMG28 [MO-175] LMG8 [MO-175] LMG8 [MO-175] LMG8 [MO-175] LMG9 [MO-164] LMG1 [MO-164] LMG1 [MO-164] LMG28 [MO-175] LMG8 [MO-175] LMG8 [MO-175] LMG9 [MO-164] LMG1 [M |
--| | Corp | | LMB6 [MO-19]
LMB8 [MO-32]
LMB9 [MO-36]
LMB10 [MO-42]
LMB12 [MO-57] | | |--|--| | LMB18 [MO-84]
LMB20 [MO-92]
LMB24 [MO-110]
LMB28 [MO-126]
LMB36 [MO-151]
LMB48 [MO-174] | | | LMC2 [MO-1]
LMC3 [MO-4]
LMC4 [MO-8]
LMC4P5 [MO-9]
LMC5 [MO-12]
LMC6 [MO-19] | | | LMC8 [MO-32]
LMC9 [MO-36]
LMC10 [MO-42]
LMC12 [MO-58]
LMC15 [MO-72]
LMC18 [MO-85] | | | LMC20 [MO·93]
LMC24 [MO·111]
LMC28 [MO·152]
LMC36 [MO·152]
LMC48 [MO·174]
LMD-2 [MO·2] | | | LMD3 [MO·5]
LMD4 [MO·8]
LMD4P5 [MO·10]
LMD5 [MO·13]
LMD6 [MO·20]
LMD8 [MO·32] | | | LMD9 [MO·36]
LMD10 [MO·43]
LMD12 [MO·59]
LMD15 [MO·72]
LMD18 [MO·85]
LMD20 [MO·94] | | | LMD24 [MO·112]
LMD28 [MO·127]
LMD36 [MO·152]
LMD48 [MO·175]
LME2 [MO·2]
LME3 [MO·5] | | | LME4P5 [MO-10]
LME5 [MO-13]
LME6 [MO-20]
LME8 [MO-32]
LME9 [MO-36] | | | LME12 [MO-59]
LME15 [MO72]
LME18 [MO-86]
LME20 [MO-94]
LME24 [MO-112]
LME28 [MO-129] | | | LME36 [MO-152]
LME48 [MO-175]
LMF2 [MO-2]
LMF3 [MO-5]
LMF4 [MO-8]
LMF4P5 [MO-10] | | | LMB6 [MO-19] LMB8 [MO-36] LMB10 [MO-42] LMB10 [MO-42] LMB12 [MO-57] LMB15 [MO-71] LMB18 [MO-84] LMB20 [MO-92] LMB24 [MO-106] LMB28 [MO-126] LMB36 [MO-151] LMC3 [MO-4] LMC4 [MO-8] LMC4 [MO-8] LMC4 [MO-8] LMC5 [MO-12] LMC6 [MO-19] LMC5 [MO-19] LMC6 [MO-19] LMC6 [MO-19] LMC6 [MO-19] LMC9 [MO-36] LMC10 [MO-42] LMC10 [MO-58] LMC10 [MO-58] LMC10 [MO-58] LMC10 [MO-58] LMC10 [MO-10] [MO-20] LM | | | LMF24 [MO-113]
LMF28 [MO-129]
LMF36 [MO-152] | | | LMG3 [MO-5]
LMG4 [MO-8]
LMG4P5 [MO-10]
LMG5 [MO-13] | | | LMG6 [MO-21]
LMG8 [MO-32]
LMG9 [MO-36]
LMG10 [MO-43]
LMG12 [MO-60]
LMG15 [MO-73] | | 75 [MO·9] [MO·12] [MO·19] [MO·32] [MO·36] Microdot, Inc. (Microdot) ACPS-1 [MO-127] Mid-Eastern Elec-Mid-Eastern Elec-tronics, Inc. (Mid-East) SC6-4 [MO-19] SC12-4 [MO-58] SC15-3 [MO-71] SC18-2.9 [MO-85] SC24-2.3 [MO-111] SC28-2.1 [MO-127 SC32-1.9 [MO-127 SC32-1.9 [MO-153] SC36-1.7 [MO-151] SC40-1.5 [MO-159] # AVALANCHE HIGH VOLTAGE SILICON RECTIFIERS HERMETIC SEAL **GLASS CONSTRUCTION** (NO POTTED CHIPS) 5 - 25 - 50 MA TYPES 3 KV to 50 KV AS LOW AS 15c PER KV SUB-MINIATURE (00 7) 5 - 25 - 50 - 100 MA 1000 V to 5000 V AS LOW AS 25c PER KV ALSO IN 3282 - IN 3283 - IN 3284 IN 3285 - IN 3286 - IN 3992 Types > ALL ASI RECTIFIERS ARE HERMETIC SEAL GLASS **AVALANCHE TYPES** (NO POTTED CHIPS) > > ası 150 MA (3 - 24 KV) HIGH FREQUENCY 80% MIN. RECT. EFFICIENCY AT 100 KC AVAILABLE IN ALL THREE TYPES SHOWN ABOVE ALSO AT TERRIFIC COST SAVINGS! # Atlantic Semiconductor Div. of Aerological Research, Inc. 905 Mattison Ave., Asbury Park, N.J. (201) 775-1827 ASI . . . now in its 4th year as the leader in high quality high voltage rectifiers ON READER-SERVICE CARD CIRCLE 43 ELECTRONIC DESIGN SM28-2 [MO-127] SM28-4 [MO-127] SM60-1 [MO-188] SM60-4 [M-189] Nuclear Corp of America (Nucor) NP Series [note 7] NP288 [MO-133] NP481 [MO-180] Numec Instruments and Controls Corp (Numec) A6 [MO-23] A9 [MO-45] A12 [MO-74] A18 [MO-85] A20 [MO-95] A25 [MO-121] A30 [MO-144] A36 [MO-153] A50 [MO-180] A75 [MO-199] A100 [MO-210] AS6 [MO-23] AS9 [MO-85] AS12 [MO-74] AS18 [MO-87] AS20 [MO-125] AS30 [MO-144] AS36 [MO-125] AS30 [MO-144] AS36 [MO-153] AS50 [MO-181] AS50 [MO-181] AS50 [MO-199] AS100 [MO-210] Peerless Electrical Products Div Alter Lansing Corp (Peerless) 6578 [MO·253] 6596 [MO·251] 6648 [MO·250] AS100 [MO-210] **Perkin Electronics** Perkin Electron Corp (Perkin) MS3 Series [MO-4] MS6 Series [MO-20] MS8 Series [MO-20] MSB Series [MO-32] MS10 Series [MO-43] MS12 Series [MO-58] MS15 Series [MO-72] MS18 Series [MO-128] MS24 Series [MO-128] MS28 Series [MO-143] MS36 Series [MO-152] MS40 Series [MO-160] MS50 Series [MO-179] MS100 Series [MO-208] Philbrick Researches, Inc (Philbrick) PR-30 [MO-68] PR-300 [MO-70] Plug-In Instruments, Inc. (Plug-In) SPS-2010-P [MO-54] SPS-2011-P [MO-109] SPS-2017-P [MO-35] SPS-2018-P [MO-69] SPS-2019-P [MO-83] SPS-2020 P [MO-105] SPS-2021 P SPS-2021-P [MO-125] SPS-2025-P [MO-55] SPS-2026-P [MO-109] SPS-2029-P [MO-18] SPS-2039-P [MO-70] SPS-2047-P [MO-91] SPS-2048-P [MO-40] SPS-2052-P [MO-64] SPS-2052-S # PIGGYBACK tach torquer DRIVES NEW N/C MEASURING MACHINE **Inland Motor Direct-Drive Servo DC** Components Simplify Design and **Lower Cost of Three-Axis System** In a bold new design, a standard Inland Motor tach/torquer combination is used on each of the three axes of a new N/C Measuring Machine designed and built by The Sheffield Corporation, a subsidiary of The Bendix Corporation. The compact design of Inland's torque motors allowed the unique modular packaging concept developed for the application. All three slides are positioned by precision recirculating ball screws, powered by a unique Inland Motor drive coupled directly to a precision leadscrew. Maximum positioning speed is 120 inches per minute with a final positioning accomplished within 4 seconds. Resolution of the measuring system is 0.0001 inch on all three axes with the ability of the drive system to move the slides 0.000030 inch or less. The inherent smoothness and accuracy of Inland Motor torque motors was a major consideration when Sheffield engineers developed the drive system for this high-precision measuring machine. The simplified direct-drive DC design produced results economically not possible with hydraulic or pneumatic methods of positioning. This is the second series of ultraprecise Sheffield N/C Measuring Machines to utilize Inland Motor torque motors. Another example of how Inland components have solved many unique and exacting servo design problems. TORQY SAYS: If your problems are those of servo design, investigate the advantages of DC direct drive by calling on Inland Motor. Our engineers will help keep you up to date on current advances in servo design technology. CORPORATION RADFORD, VIRGINIA
703-NEB-3973 SUBSIDIARY OF KOLLMORGEN ON READER-SERVICE CARD CIRCLE 44 # **10 PARTS** PER MILLION AT 100 KW D.C. ### **Regulation and Stability Better** Than 0.001% Achieved By 100 KW Spectromagnetic D.C. **Power Supply** Three switching magnets, operating in series at 500 amps, 217 V, in Stanford's W. W. Hansen Laboratories, are controlled by this all transistorized, water cooled, current regulated power supply. For over two years, the only service has been replacement of a transistor. This special purpose device embodies many features of the standard line of Spectromagnetic power supplies in service throughout the world. - Zener diode reference circuits - Silicon transistors and diodes - Coarse and fine ten-turn pots and taut band metering - Freedom from RFI problems - Polarity reversal and negative current for degaussing - Full two-year Warranty We can produce precise, high power, current regulated power supplies to meet your requirements and show you economies in the doing. Please write describing your project. ### SPECTROMAGNETIC INDUSTRIES ON READER-SERVICE CARD CIRCLE 45 25377 Huntwood Ave. Hayward 3, California (415) 782-1300 [MO-64] SPS-2053-P [MO-82] SPS-2053-S [MO-82] SPS-2054-P [MO-101] SPS 2054-S [MO-101] Power Designs, Inc. (Pwr Des) UPM-1 [MO-61] UPM-2 [MO-176] UPM-3 Series UPM-3 Series [MO-4, 19, 57] UPM-4 Series [MO-110,151,174] UPM-5 [MO-154] UPM-X1 [MO-135] UPM-X2 [MO-110] UPM-X6 [MO-71] Power Mate Corp (PMC) HR Series [Note 7] HR50100-150 [M0-211] HR100125-200 [MO-217] HR100150-150 [MO-222] HR125200-100 [MO-231] HR150175-50 [MO-227] HR150200-150 [MO-230] HR50125-500 [MO-218] R Series [MO-6, 46, 75, 96, 98] R1550-200 R1550-200 [MO-182] R2025-500 [MO-118] R2035-300 [MO-151] R2530-500 [MO-138] R3035-500 [MO-150] R3540-500 [MO-161] R3550-300 [MO-182] R4045-500 [MO-182] R4045-500 [MO-170] R4550-500 [MO-180] RA Series [Note 7] RB Series [Note 7] SR-3 [MO-3] SR-3-1 [MO-3] SR-5 [MO-12] SR-10 [MO-41] SR-20 [MO-92] SR-30 [MO-155] SR-40 [MO-174] SRA-3 [MO-3] SRA-3-1 [MO-3] SRA-3-1 [MO-3] SRA-5 [MO-12] SRA-10 [MO-41] [MO-159] SRA-40 [MO-159] SRA-48 [MO-174] Scintillonics, Inc Scintillonics, Inc (Scint) PC1:30 [MO-134] PC2:24 [MO-110] PC3:18 [MO-84] PC4:15 [MO-70] PC5:12 [MO-55] PC6-9 [MO-35] RS-5:2-30 [MO-134] RS-5:2-524 [MO-110] RS-5:3-18 [MO-84] RS-5:4-15 [MO-70] RS-5:5-12 [MO-55] RS-5:6-9 [MO-35] RS-5:6-9 [MO-35] RS-5:6-9 [MO-35] RS-5:6-9 [MO-35] RS-5:6-9 [MO-35] RW1.0-30 [MO-134] RW1.5-26 [MO-109] RW2.0-18 [MO-84] RW2.5-15 [MO-70] RW3.0-12 [MO-85] RW4.0-9 [MO-35] Sorensen (Sorensen) QMA3-1 [MO-7] QMA3-3.3 [MO-7] QMA4-4-0.9 [MO·13] QMA4.4-3.5 [MO·13] QMA6.3-.8 [MO-29] QMA6.3-2.8 [MO-30] QMA6.3-4.8 [MO-30] QMA9-0.55 [MO-49] QMA9-2.0 [MO-52] QMA9-3.85 [MO-52] QMA12-0.41 [MO-79] QMA12-1.5 [MO-80] QMA12-2.9 [MO-80] QMA21-0.24 QMA21-0.24 [MO-109] QMA21-0.86 [MO-119] QMA21-1.7 [MO-119] QMA28-0.18 QMA28-0.18 [MO-153] QMA28-0.64 [MO-156] QMA28-1.25 [MO-157] QMA48-0.1 [MO-185] QMA48-0.37 [MO-186] QMA48-0.75 [MO-186] QMHV75-.4 [MO-202] QMHV100-.3 QMHV100-.3 [MO-216] QMHV150-.2 [MO-228] QMHV200-.15 [MO-237] QMHV300-.1 [MO-240] **Technical Apparatus** Builders (Tabton) B12V15ACM [MO-60] B28V15ARM [MO-129] B28V30ARM [MO-129] Technipower (Tech Pwr) M-65 Series [note 7] M-65A Series [note 7] R-80 Series [note 7] SCR-80 Series [note 7] SWR-80 Series Transistor Devices, (note 7) Transistor Device Inc. (Trans Dev) AM3 [MO-14] AM6 [MO-22] AM12 [MO-85] AM18 [MO-85] AM20 [MO-93] AM24 [MO-114] AM28 [MO-127] AM30 [MO-136] EM-5 [MO-14] EM-7 [MO-26] EM-10 [MO-45] EM-10 [MO-96] EM-20 [MO-96] EM-25 [MO-118] EM. 7 (MO-26) EM. 10 (MO-45) EM. 15 (MO-75) EM. 15 (MO-75) EM. 25 (MO-118) EM. 30 (MO-138) EM. 30 (MO-138) EM. 35 (MO-150) EM. 40 (MO-161) GM Series [MO-9, 44] GS. 10 (MO-44) GSM6.3-7 (MO-22) GSM10-6 (MO-43) GSM12-5 (MO-93) GSM12-5 (MO-93) GSM24-5 (MO-111) GSM28-5 (MO-112) GSM300-6 [MO-216] GSM50-3 (MO-179) GSM120-1 (MO-221) GSM300-6 [MO-238] RP-1 (MO-86) RP-2 (MO-150) RP-7 (MO-84) RP-8 (MO-93) RP-1 (MO-93) RP-1 (MO-175) RP-10 (MO-128) RP-10 (MO-128) RP-12 (MO-149) SCR-10-3 (MO-45) SCR-10-5 (MO-45) SCR-10-5 (MO-45) SCR-10-5 (MO-76) SCR-10-5 (MO-76) SCR-10-5 (MO-76) SCR-10-5 (MO-76) SCR-10-5 (MO-76) SCR-20-3 [MO-96 # HIGH VOLTAGE **POWER SUPPLIES** 1,000 to 1,000,000 Volts Regulated or Unregulated Features Available - · Reversible Polarity Output - Continuously Variable Output Control - · Adjustable Overload Shut-off - · Adjustable Overvoltage Shut-off - Provisions for External Interlock - · Safety Interlock on HV Cabinet Door - · Zero-start Interlock - · Dual Range Voltage and Current Meters - Fail-safe Output Shorting Mechanism - **Functional Pilot Lamps** - Circuit Breaker **Uperation** Write for Catalog ### SPECIAL lwo-in-one power supply Spectroscopy 0-20 KV/5 ma 0-20 KV/5 ma positive negative CORPORATI 07602 Hackensack, N. J. 238 High St. 201 HUbbard 8-7373 ON READER-SERVICE CARD CIRCLE 46 ELECTRONIC DESIGN SCR-20-5 [MO-96] SCR-25-3 [MO-118] SCR-25-5 [MO-118] SCR-30-5 [MO-138] SCR-30-5 [MO-138] SCR-30-5 [MO-138] SCR-50-4 [MO-182] SCR-50-4 [MO-182] SCR-75-1 [MO-199] SM-5 [MO-14] SM-10 [MO-46] SM-15 [MO-75] SM-22 [MO-105] STR-32 [MO-145] STR-10-5 [MO-44] STR-10-5 [MO-44] STR-10-5 [MO-44] STR-10-5 [MO-44] STR-10-5 [MO-44] STR-10-5 [MO-18] STR-10-5 [MO-18] STR-10-5 [MO-18] STR-10-5 [MO-18] STR-10-5 [MO-18] STR-10-1 [MO-96] STR-10-1 [MO-96] STR-10-1 [MO-96] STR-10-1 [MO-18] [MO-205] [MO-10-1 [MO-10-1] [MO-10 Trygon Electronics, Inc (Trygon) FT-FTR6-25 [MO-22] FT-FTR16-15 [MO-59] FT-FTR15-10 [MO-72] FT-FTR18-10 [MO-72] FT-FTR18-10 [MO-121] FT-FTR24-8 [MO-112] FT-FTR28-7 [MO-128] FT-FTR48-4 [MO-174] FT-FTR300-500 [MO-135] P20-2 [MO-98] P32-1.5 [MO-183] PHR Series [note 7] PHR160-2B [MO-225] PS Series (6) [note 7] PS18-800F [MO-82] PS18-800F [MO-95] PS24-700F [MO-121] PS28-600F [MO-121] PS28-600F [MO-121] PS48-400F [MO-121] PS18-00-200F [MO-121] PS18-100-200F [MO-121] PS18-100-200F [MO-121] PS150-120F [MO-224] PS100-750 [MO-225] PS00-100F [MO-223] PS012-300 [MO-55] PS012-300 [MO-55] PS015-300 [MO-55] PSD15-300 [MO-55] PSD15-300 [MO-55] Universal Electronics Co (UnElect) M Series [MO-182] Universal Voltronics Corp (Un Volt) BPER Series [MO-252-254, 255] Wabash Magnetics, Inc. (Wab Mag) HR:1 Series [MO:255] M:810 Series [MO:255] M:845 Series [MO:255] # Design Data from Manufacturers Advertisements of booklets, brochures, catalogs and data sheets. To order use Reader-Service Card. ### Off-The-Shelf Module Power Supplies Thousands of models to select from • All silicon regulated • Outputs from zero to 400V • output currents to 25Å • Rated for continuous duty at —20 to $+71^{\circ}$ C • Short circuit proof, automatic recovery • All components accessible and replaceable for maintenance • No selected components • Top quality components and construction • All units rigorously inspected and operated full load at 71°C for 24 hrs. prior to shipping • 3 year warranty • As low as \$49.95 for single units, even lower for quantities over ten. Prototype or production, you need this free catalog. Power/Mate Corporation 22 Walter Street Pearl River, New York 71 ### Glass-to-Metal Sealing Alloy Tubing Data Sheet 1064 describes glass-to-metal sealing alloys available in small-diameter, seamless tubing drawn to close tolerances for the fabrication of leads, terminals and other electronic parts which must form hermetically tight seals with glass or ceramics. Properties of 52 Alloy, 42 Alloy, Rodar, Therlo, 1010 low-carbon steel, 446 stainless steel and OFHC copper are described in detail for seamless tubing with O.D.'s from 0.001" to 0.625". Ultra-smooth surfaces of tubing and fabricated parts are absolutely free of scratches and imperfections. Uniform Tubes, Inc. Collegeville, Pa. 19426 72 ### Test Equipment Reference Data ELECTRONIC DESIGN'S Test Equipment Reference Issue covers 12 important classes of test instruments. Included are complete up-to-date specifications for approximately 2500 off-the-shelf test instruments, arranged for quick and easy reference and comparison, and cross indexed by product category and manufacturer's name. Technical data prepared from the Directory of Technical Specification/Electronic Test Instruments, by Technical Information Corporation. Twelve application-oriented articles by industry experts complete the package. Price \$5; check or money order must accompany order. ### Hayden Publishing Company, Inc. 850 Third Avenue New York, New York 10022 ## **Last-Minute Entries** | Туре | | | Output | Output | REGUL | ATION | Price | |------------|-------------|----------|----------------------|------------|-------------------|-------------------|-------| | of Supply | Mfr. | Model | Volts | Amps | Line
% | Load
% | \$ | | Constant | North Hills | CS-151 | 0+10 | 0.1-10 ma | 5 ppm | 5 ppm | ina | | Current | North Hills | CS-152 | 0-25 | 0.1-150 ma | 5 ppm | 5 ppm | ina | | DC Voltage | North Hills | VS-35 | 0-111.D ¹ | 0-100 ma | 25 ppm | 25 ppm | ina | | Reference | North Hills | VS-36 | 0-21.1 | 0-1 | 25 ppm | 25 ppm | ina | | Modular | Litton | 5410-2-3 | 3 | 0.1-2 | 0.5 | 0.5 | ina | | | Litton | 5410-5-3 | 3 | 0.25-5 | 0.5 | 0.5 | ina | | | Lambda | LM B3P3 | 3.3 | 3.8 | 0.05 ¹ | 0.03 ² | 119 | | | Lambda | LM C3P3 | 3.3 | 5.2 | 0.05 ¹ | 0.03 ² | 139 | | | Lambda | LM D3P3 | 3.3 | 13.1 | 0.05 ¹ | 0.03 ² | 199 | | | Lambda | LM E3P3 | 3.3 | 21 | 0.05 ¹ | 0.03 ² | 269 | | | Lambda | LM F3P3 | 3.3 | 44 | 0.05 ¹ | 0.03 ² | 425 | | | Lambda | LM G3P3 | 3.3 | 77 | 0.05 ¹ | 0.03 ² | 575 | | | Lambda | LM B3P6 | 3.6 | 3.8 | 0.05 ¹ | 0.03 ² | 119 | | | Lambda | LM C3P6 | 3.6 | 5.2 | 0.05 ¹ | 0.03 ² | 139 | A variety of power supplies were introduced by manufacturers either for or at this year's IEEE Show in New York. These units were announced too late to be included in the basic tables. This special section has therefore been added so that the new power supplies can be considered along with all the rest. The table in this section lists capsule specifications for three types of power supplies: constant-current dc, dc
voltage reference, and modular. Within the table the supplies are listed in ascending order of maximum output voltage (see 1 above). Manufacturers are identified in the Mfr. column. Abbreviations and symbols used in the table are as follows: - 1. 0.01 also available. - 2. 0.02 also available. ina. information not available. ### New special-purpose supplies In addition to those supplies listed in the table, several new special-purpose power supplies have been introduced by Cober Electronics, Inc. of Stamford, Conn. One of these, the Model 859, is for use with Carcinotrons and other backward-wave oscil- lators. It provides a heater output of 0-10 volts dc at 0-5 amps; a grid output of 0-200 volts dc at 0-10 ma; and an anode output of 300-3000 volts dc at 0-5 ma. Another of the Cober special-purpose supplies is the Model 694, which is used to supply power for microwave tubes. It consists of a beam supply having a 0-40-kv dc output at 0-8 amps, and a heater supply having a 0-20-volt dc output at 0-30 amps. For more information on the new Cober special-purpose supplies, circle Reader-Service number 365. ### How to use the table - Note how the supplies are listed. Within each group they are in ascending order of maximum output voltage. - Select the most likely candidates. These supplies should be considered together with those given in the basic tables. - 3. Obtain supplementary data from the manufacturer. Manufacturers' addresses, together with Reader-Service numbers for specific power supply types, are given in the master cross index at the front of the issue. | Туре | | | Output | Output | REGULATION | | Price | |------------|---|--|--|---|---|--|---| | of Supply | Mfr, | Model | Volts | Amps | Line
% | Load
% | \$ | | Constant | North Hills | CS-151 | 0-10 | 0.1-10 ma | 5 ppm | 5 ppm | ina | | Current | North Hills | CS-152 | 0-25 | 0.1-150 ma | 5 ppm | 5 ppm | ina | | DC Voltage | North Hills | VS-35 | 0-111.1 | 0-100 ma | 25 ppm | 25 ppm | ina | | Reference | North Hills | VS-36 | 0-21.1 | 0-1 | 25 ppm | 25 ppm | ina | | Modular | Litton | 5410-2-3 | 3 | 0.1-2 | 0.5 | 0.5 | ina | | | Litton | 5410-5-3 | 3 | 0.25-5 | 0.5 | 0.5 | ina | | | Lambda | LM B3P3 | 3.3 | 3.8 | 0.05 ¹ | 0.03 ² | 119 | | | Lambda | LM C3P3 | 3.3 | 5.2 | 0.05 ¹ | 0.03 ² | 139 | | | Lambda | LM D3P3 | 3.3 | 13.1 | 0.05 ¹ | 0.03 ² | 199 | | | Lambda | LM E3P3 | 3.3 | 21 | 0.05 ¹ | 0.03 ² | 269 | | | Lambda | LM F3P3 | 3.3 | 44 | 0.05 ¹ | 0.03 ² | 425 | | | Lambda | LM G3P3 | 3.3 | 77 | 0.05 ¹ | 0.03 ² | 575 | | | Lambda | LM B3P6 | 3.6 | 3.8 | 0.05 ¹ | 0.03 ² | 119 | | | Lambda | LM C3P6 | 3.6 | 5.2 | 0.05 ¹ | 0.03 ² | 139 | | | Lambda | LM D3P6 | 3.6 | 13.1 | 0.05 ¹ | 0.03 ² | 199 | | | Lambda | LM E3P6 | 3.6 | 21 | 0.05 ¹ | 0.03 ² | 269 | | | Lambda | LM F3P6 | 3.6 | 44 | 0.05 ¹ | 0.03 ² | 425 | | | Lambda | LM G3P6 | 3.6 | 77 | 0.05 ¹ | 0.03 ² | 575 | | | Litton | 5410-2-6 | 6 | 0.1–2 | 0.3 | 0.3 | ina | | | Litton | 5410-5-6 | 6 | 0.25-5 | 0.3 | 0.3 | ina | | | Lambda | LM 251 | 0-7 | 0.35 | 0.05 ¹ | 0.03 ² | 69 | | | Lambda | LM 252 | 0-7 | 2 | 0.05 ¹ | 0.03 ² | 99 | | | Lambda | LM 253 | 0-10 | 0.31 | 0.05 ¹ | 0.03 ² | 69 | | | Lambda | LM 254 | 0-10 | 0.65 | 0.05 ¹ | 0.03 ² | 79 | | | Lambda | LM 255 | 0-10 | 1.2 | 0.05 ¹ | 0.03 ² | 89 | | | Lambda | LM 256 | 0-10 | 1.5 | 0.05 ¹ | 0.03 ² | 99 | | | Litton | 5410-2-12 | 12 | 0.1-2 | 0.1 | 0.1 | ina | | | Litton | 5410-5-12 | 12 | 0.25-5 | 0.1 | 0.1 | ina | | | Lambda | LM 257 | 0-14 | 0.27 | 0.05 ¹ | 0.03 ² | 69 | | | Lambda Lambda Lambda Lambda Lambda ERA ERA ERA ERA Lambda | LM 258
LM 259
LM 260
LM 261
LM 262
LC 32P7
LC 322
LC 325
LC 3210
LM 263 | 0-14
0-24
0-24
0-24
0-24
4-32
4-32
4-32
4-32
0-32 | 1.2
0.18
0.35
0.7
0.8
0.75
2
5
10 | 0.05 1
0.05 1
0.05 1
0.05 1
0.05 1
ina
ina
ina
ina
0.05 1 | 0.03 ²
0.03 ²
0.03 ²
0.03 ²
0.03 ²
ina
ina
ina
ina
0.03 ² | 99
69
79
89
99
89
115
145
215
69 | | | Lambda | LM 264 | 0-32 | 0.66 | 0.05 ¹ | 0.03 ² | 99 | | | Lambda | LM B60 | 60 | 0.7 | 0.05 ¹ | 0.03 ² | 129 | | | Lambda | LM C60 | 60 | 1.1 | 0.05 ¹ | 0.03 ² | 149 | | | Lambda | LM D60 | 60 | 2.8 | 0.05 ¹ | 0.03 ² | 239 | | | ERA | LC 60P7 | 30-60 | 0.75 | ina | ina | 145 | | | Lambda
Lambda
Lambda
Lambda
Lambda | LM 265
LM 266
LM B100
LM C100
LM D100 | 0-60
0-60
100
100 | 0.08
0.35
0.37
0.55
1.7 | 0.05 ¹
0.05 ¹
0.05 ¹
0.05 ¹
0.05 ¹ | 0.03 ²
0.03 ²
0.03 ²
0.03 ²
0.03 ² | 79
109
139
164
249 | | | Lambda | LM E100 | 100 | 2 | 0.05 ¹ | 0.03 ² | 299 | | | Lambda | LM G100 | 100 | 6.2 | 0.05 ¹ | 0.03 ² | 650 | | | Lambda | LM E120 | 120 | 1.7 | 0.05 ¹ | 0.03 ² | 299 | | | Lambda | LM G120 | 120 | 4.8 | 0.05 ¹ | 0.03 ² | 650 | | | Del | 1.2HRM5P1 | 0.8-1.2kv | 0.005 | 0.03 | 0.03 | ina | | | Del | 1.7HRM5P1 | 1.2-1.7 kv | 0.005 | 0.03 | 0.03 | ina | | | Del | 2.5HRM4P1 | 1.7-2.5 kv | 0.004 | 0.03 | 0.03 | ina | | | Del | 3.5HRM3P1 | 2.5-3.5 kv | 0.003 | 0.03 | 0.03 | ina | | | Del | 5HRM2P1 | 3.5-5 kv | 0.002 | 0.03 | 0.03 | ina | | | Del | 7HRM1.5P1 | 5-7 kv | 0.0015 | 0.03 | 0.03 | ina | | | Del
Del
Del
Del
Del | 10HRM1P1
15HRM1.5P1
20HRM1P1
30HRM.75P1
40HRM.5P1
50HRM.5P1 | 7-10 kv
10-15 kv
15-20 kv
20-30 kv
30-40 kv
40-50 kv | 0.001
0.0015
0.001
0.00075
0.0005
0.0005 | 0.03
0.03
0.03
0.03
0.03
0.03 | 0.03
0.03
0.03
0.03
0.03
0.03 | ina
ina
ina
ina
ina
ina | ### NEW CTS KNIGHTS OSCILLATOR PROVIDES FREQUENCY STA-BILITY BETTER THAN 2 x 10-9 PER DAY 1mc TO 5mc RANGE. Model JKTO-47 uses a proportionally controlled oven with maximum thermal efficiency resulting in low input power demand. Ideally suited for Airborne, mobile or fixed ground applications where ultra precision and low cost are important factors. WRITE FOR DATA SHEET JKTO-47. # **Advertisers'** Index 100 ACDC Electronics. Inc. | AMP, Incorporated | | 97 | |---|-------|-------| | Acopian Corporation | | 144 | | Atlantic Semiconductor Inc | | 150 | | Beckman Instruments, Inc. | | 67 | | Behlman-Invar Electronics Corp. | | 66 | | Burton-Rogers Company | | 82 | | CML. Inc. | | 112 | | Beckman Instruments, Inc. Behlman-Invar Electronics Corp. Burton-Rogers Company CML, Inc. CTS Knights Inc. | | 156 | | Chatham Electronics, A Division of Tung-Sol Electric, Inc. | | | | Tung-Sol Electric Inc | | 21 | | Christie Electric Corn | | 52 | | Christie Electric Corp | | 02 | | Condec Corporation | | 65 | | | | | | Del Flectronics Cornoration | | 17 | | Deltron Inc | | 10 | | Del Electronics Corporation Deltron, Inc. Eagle-Picher Company, The Electronic Design Electronic Development Corporation Electronic Research Associates, Inc. | | 67 | | Flortronic Design | 80 | 91 | | Floritonic Design | au, | 147 | | Floatronic Development Corporation . | 02 | 196 | | Conoral Floring Comment | 00, | 01 | | Coarster Company | | 15/ | | General Electric Company Georater Corporation Hayden Book Company, Inc. Haydon Company, A. W. Haydon Company, A. W. | | 150 | | Hayden Company, A. W. | | 143 | | Howlett Dockard | | 145 | | Hewlett-Packard Hoffman Semiconductor Division Ideal Precision Meter Co. Inc. | | 0.0 | | Horiman Semiconductor Division | | 25 | | ideal Precision Meter Co. Inc | | 52 | | Inland Controls. A Subsidiary | | 111 | | of Kollmorgen | | 113 | | mand Motor Corporation | | 101 | | Interelectronics Corporation | | 139 | | James Electronics, Inc. Kepco, Inc. Kepco, Inc. Kidde & Company, Inc., Walter Kilovolt Corporation | | 95 | | Kepco, Inc. | | 148 | | Kidde & Company, Inc., Walter | | 99 | | Kilovolt Corporation | | 152 | | Lamoda Electronics Corp | . 40 | , 492 | | Littelfuse | ::: | 28 | | NJE Corporation | . 164 | 4-2 | | Nuclear Corporation of America Plastic Capacitors, Inc Co | | 149 | | Plastic Capacitors, IncCo | ver | III | | Power/Mate Corp | | 153 | | RO Associates | | 146 | | RO Associates Rogan Brothers, Inc. Rowan Controller Co., The | | 14: | | Rowan Controller Co., The | .18 | , 19 | | Simpson Riectric Company | | | | Sola Electric, Division of | | _ | | Sola Electric, Division of Sola Basic Industries | ove | r I | | Sorensen, A Unit of | | | | Raytheon Company | ver | . 17 | | Spectra Magnetic Industries | | 152 | | Spellman High Voltage Co., Inc | | 28 | | Technipower, A Benrus Subsidiary | | 14: | | Technipower A Benrus Subsidiary
Transistor Devices, Inc.
Triplett Electrical Instrument Company
Trygon Electronics, Inc. | | 53 | | Triplett Electrical Instrument Company | | 5 | | Trygon Electronics, Inc | | 155 | | Uniform Tubes, Inc | | 195 | | Vector Electronic Co. Inc | | 149 | | | | | ### **Subscription Policy** ELECTRONIC DESIGN is circulated free of charge to qualified design engineers in the U.S., Western free Europe and England. To establish your qualifications, send ELECTRON-IC DESIGN the following information on your company's letterhead: Your name, engineering title, description of your design duties and a list of your company's major products. The letter must be signed by you personally. Subscription rates for nonquali- fied
subscribers—\$25.00 per year in U.S.A., \$35.00 in all other countries. Single copy, \$1.50. ### Change of Address An address change for a subscriber requires a restatement of his qualifications. To expedite the change, and to avoid missing any issues, send along a label from a backcopy. Microfilm copies of all 1961, 1962, 1963 and 1964 issues of ELECTRONIC DESIGN are available through University Microfilms, Inc., 313 N. First Street, Ann Arbor, Mich. POWER...Midgets In Size! PORCKS...Giants In Performance! - Compact Size - . Hermetically Sealed - Adjustable Output Voltage - Wide Input Voltage Frequency Range - · Long Life - Low Ripple Characteristics - Easily Changed Polarity - Shock and Vibration Resistant - Lower Iron Losses Laboratory and Industry tested H V-M Power Packs are your best ally to the increasing demand for electronic miniaturization. Standard line input voltages of 118, 220, 230 and 240 volts at frequencies of 50 to 500 cycles per second are stock items in the H V-M series of compact power packs. Modification for other input voltages available. Small size is not the only outstanding feature of the H V-M power pack line. Substantially improved performance has been built into the line with grain oriented iron; small, high voltage capacitors; wafer-thin selenium rectifiers; solder sealed terminals and hot tinned or lead coated containers finished with a primer coat and a finish coat of synthetic enamel. | | | | | | | | | APPROX. | | |--|------------|-------------|------|----------------------|---------|---------|-----------------------|---------|--| | THOUSANDS OF | PART | KV
RANGE | MAX. | CONTAINER DIMENSIONS | | | APPROX.
REGULATION | WT. | | | | NUMBER | | MA. | LENGTH | WIDTH | HEIGHT | VOLTS/MIL | LBS. | | | SATISFIED USERS! | HV10-152M | 0-1 | 1.5 | 3 3/4 | 1 3/4 | 3 3/8 | 105 | 1 | | | Universities
Almost any Research | HV20-152M | 0-2 | 1.5 | 3 3/4 | 1 3/4 | 3 3/8 | 140 | 1 | | | Co. in any field | HV50-152M | 0-5 | 1.5 | 3 3/4 | 21/4 | 3 3/8 | 400 | 2 | | | Military Systems | HV100-152M | 0-10 | 1.5 | 3 3/4 | 3 3/16 | 4 1/2 | 1500 | 4 | | | Photo Copy Equipment
X-Ray Machines | HV150-152M | 0-15 | 1.5 | 3 3/4 | 3 3/16 | 5 1/2 | 1600 | 5 | | | Sonic Cleaners | HV200-152M | 0-20 | 1.5 | 3 3/4 | 4 9/16 | 5 7/8 | 1740 | 9 | | | Air Frame Manufacturing | HV300-152M | 0-30 | 1.5 | 3 3/4 | 4 9/16 | 7 1/2 | 2100 | 11 | | | Transmitters | HV500-152M | 0.50 | 1.5 | 4 11/16 | 6 | 8 1/2 | 6000 | 18 | | | Aircraft & Missile
Ignitions Systems | HV750-152M | 0.75 | 1.5 | 5 5/8 | 7 5/8 | 12 3/16 | 4700 | 26 | | | Electronic Dust | HV20-502M | 0-73 | 5 | 3 3/4 | 2 1/4 | 3 3/8 | 120 | 2 | | | Precipitators | HV50-502M | 0-2 | 5 | 3 3/4 | 2 1/4 | 3 3/4 | 280 | 3 | | | Capacitor Discharge
Welding | | | | | | | | 8 | | | Oscilloscopes | HV100-502M | 0-10 | 5 | 3 3/4 | 4 9/16 | 5 7/8 | 500 | 9 | | | Nuclear Reactors | HV150-502M | 0-15 | 5 | 3 3/4 | 4 9/16 | 6 1/8 | 520 | _ | | | Ground Support Equip. | HV200-502M | 0-20 | 5 | 3 3/4 | 4 9/16 | 8 | 860 | 12 | | | Missile Guidance Equip.
Missile Tracking Equip. | HV300-502M | 0-30 | -5 | 4 11/16 | 6 | 8 1/2 | 1000 | 18 | | | Radiation Detection Equip. | HV500-502M | 0.50 | 5 | 5 5/8 | 7 3/8 | 12 3/16 | 1200 | 26 | | | Electronic Timing | HV750-502M | 0-75 | 5 | 11 1/8 | 14 1/16 | 16 1/4 | 2200 | 124 | | | Equipment | HV10-103M | 0-1 | 10 | 3 3/4 | 2 1/4 | 3 3/8 | 36 | 2 | | | Electronic Measuring Equipment | HV25-103M | 0-2.5 | 10 | 3 3/4 | 2 1/4 | 3 3 / 4 | 76 | 3 | | | Oil Survey Equipment | HV50-103M | 0-5 | 10 | 3 3/4 | 4 9/16 | 5 7/8 | 137 | 8 | | | Spectroscopic Equipment | HV100-103M | 0-10 | 10 | 3 3/4 | 4 9/16 | 8 | 265 | 12 | | | X-Ray Analyzers | HV150-103M | 0.15 | 10 | 4 11/16 | 6 | 8 1/2 | 285 | 18 | | | Testing Laboratories Electrostatic Painting | HV250-103M | 0.25 | 10 | 5 5/8 | 7 3/8 | 12 3/16 | 300 | 26 | | | or Flocking Equipment | HV375-103M | 0.37.5 | 10 | 11 1/8 | 14 1/16 | 16 1/4 | 1300 | 124 | | # Plastic Capacitors, Inc. 2620 N. CLYBOURN AVENUE • CHICAGO 14, ILLINOIS Area Code 312, DI 8-3735 • Cable Address: PLASCAPINC, Chicago # orensen PORRE Junules DC POWER SUPPLIES HIGH VOLTAGE DC POWER SUPPLIES AC LINE REGULATORS FREQUENCY CHANGERS Short Form Catalog No. 661 A Get your 1966 Short Form Catalog-No. 661A Write: Sorensen, A Unit of Raytheon Company, Richards Ave., South Norwalk, Connecticut 06856 ON READER-SERVICE CARD CIRCLE 200