Electronies Slorid
 SEPTEMBER, 1964 50 CENTS

INNOVATIONS IN RECEIVING TUBES

SELECTING HIGH-FREQUENCY TRANSISTORS
PIANO TUNING-THE ELECTRONIC WAY
SCA BACKGROUND-MUSIC DEMULTIPLEXER

INTEGRATED CIRCUITS:

How These Diffused and Thin-Film Devices are Designed and Fabricated.

Imagine! A three-way speaker for just $\$ 33.00$! Imagine response from 45 to $18,000 \mathrm{cps}$ in a speaker just eight inches in diameter! That's the remarkable value Electro-Voice offers you with the new Wolverine LT8.
This combination of Wolverine leatures assures you that the LT8 is the finest sounding eight-inch three-way speaker you'll hear or buy: heavy diecast frame to keep all moving parts in perfect alignment; ten-ounce ceramic magnet for excellent efficiency and
damping; long-throw, two-inch voice coil for minimum distortion; dual-cone Radax ${ }^{(®)}$ design for smooth mid-range response; ring diaphragm compression tweeter for smooth, extended highs above $5,000 \mathrm{cps}$ and unusually wide dispersion.
The LT8 mounts almost anywherein walls, ceilings, closets, or any suitable cabinet, and its low cost means you can afford high fidelity in every room of your house. Yet, despite its small size and low cost, the sound of
the Wolverine LT8-in the E-V tradition - is rich, full, completely satisfying.

The new LT8 rounds out the unique family of Wolverine low-cost speakers from Electro-Voice. Hear it today at your nearby E-V high fidelity showroom.

ELECTRO-VOICE, INC.

Dept. 945N, Buchanan, Michigan

Protect your future through the new CREI Programs in Space Electronics

CREI

OFFERS YOU

 UP-T0-DATE EDUCATION IN EVERY IMPORTANT ELECTRONIC SPECIALTYElectronic Engineering Technology
Communications
Aeronautical and Navigational
Television
Servomechanisms and Computers
Nuclear Instrumentation
Radar
Nuclear Engineering Technology
Mathematics

PLUS THREE NEW PROGRAMS IN SPACE ELECTRONICS:

SPACE DATA SYSTEMS
SPACECRAFT TRACKING AND CONTROL

AEROSPACE RADAR ENGINEERING

FREE BOOK GIVES COMPLETE INFORMATION. TEAR OUT AND MAIL POSTPAID CARD FOR YOUR COPY TODAY.

Electronies Nlorild CONTENTS

27 Integrated Circuits lestie Solomor
33 Power \& Resistor Charts Robert Jones
34 Noise Figures of V.H.F. Amateur Converters will Connelly, WOQIDThe impertance of this lactor and home it is memenred. Yethorls ofimproring the noise performance of hum chif. systems is inchuled.
36 Recent Developments in Electronics
38 Capacitance Transducer Systems Sidney L. SilverI nusull nows of cmpmitors are usel to mensure the deph of liquid in astornge tumb or the pressure of a lianial flowinge thromgh a miping sastem.
41 Clip-On D.C. Current Probe A. Bergh, G. S. Kon \& C. O. Forge
44 SCA Background-Music Demultiplexer Garland P. Kuntz
46 Designing the I.F. Circuit Joseph TartasThere is marth more to a circuit than the talue of the compenems used.Sometimes resisors lowh like rapucitors. rapuctor, lowh litie coils.and pieces of hook-up wire start to at as if thes nere tuncel circhis.
50 Selecting High-Frequency Transistors Roy Heihall \& Darrell ThorpeTransistor h.f. specificulions are giron in difforont ums in dilforentchtalogues. Ilere are all the partumeters and hour to picti the right ones.
53 Automatic Degausser for Color TV Walter H. Buchsbaum
54 Innovations in Receiving Tubes John R. Collinsmulergeing many design innotations that vastly improbe their performanere.
56 Piano Tuning-The Electronic Way Frederick Van Veen
69 Reducing U.H.F. TV Interference
79 Battery Charger Uses an SCR Robert G. Dale
84 Design of Simple "Q' Meter David H. Sandrock
89 Stabilizing Vertical Height
6 For the Record (Editorial) W. A. Stocklin
Leeking Beyond Our I'roblems
16 EW Lab Tested
Lahti (-2 Sppaher Sirstom
RCC I SN-to Mir rophome
58 Non-Ignition Noise Sources John frye
74 Test Equipment Product Report
10 aters Model $3+3$ Freduency Meter
MONTHLY FEATURES
Coming Next Month 4
Letters from Our Readers 8 Electronic Crosswords 87
Reader Service Page 19
New Products \& Literature 93

SELL AUDIO COMPONENTS SUCCESSFULLY

Who's the Garrard rep in Minnesota? What's the price on Apparatus Development's strap-type stand-offs for holding antenna wire away from a roof-top mast?
You have a technical question about a Pickering cartridge and want to write to the chief field engineer. Who is he?
"Ekkofon" is the trade name for what manufacturer?
All of the answers to these questions - and thousands like them - can be found in one reference book: the Sound Industry Directory.
The Directory is issued by the publishers of HIGH-FIDELITY TRADE NEWS. The 1964 Edition lists over 2,360 products with descriptions, specs and prices. About 200 manufacturers of audio equipment are listed, with addresses, names of key personnel, and, in many cases, their sales reps. There are cross-indexes, storetested merchandising tips, and everything to lead the reader through the complexities of this many.faceted industry.

One more thing. The Directory is printed on heavy stock with a sturdy cover. Limited edition available while supply lasts. Send $\$ 5.95$ (postpaid per copyl to Ken Nelson, Sound Industry Directory, 25 W. 45th St., New York 36, N.Y.

Send to Ken Nelson, Sound Industry Directory 25 W. 45th St., New York 36, N.Y.
NAME

ADDRESS

COMPANY NAME
\$5.95 Enclosed
CIRCLE NO. 220 ON READER SERVICE PAGE

COMING NEXT MONTH

OPTICAL SCANNERS-

MACHINES THAT READ

Ken Gilmore takes a look at the various techniques either in use or under development whereby printed or written words and numbers are translated into the "language" computers "understand." Such scanners generate signals automatically with a speed, accuracy, and economy that humans can't match.

"TRANSISTOR WILLIAMSON" STEREO AMP

Recently developed transistors make it possible to transistorize one of the most popular audio circuits ever designed. Keith H. Sueker of Westinghouse describes a dual 30-watt unit, complete with parts list, which is based on an unusual complementary push-pull emit-ter-follower output circuit.

HELICAL VIDEO RECORDER FOR TV
Details on Ampex' new rotating-head portable TV tape recorder which is finding wide application in educational, medical, and industrial closed-circuit work.

MEASURING THE "SONIC BOOM"
With the development of supersonic aircraft under way, the FAA is conducting extensive research into the effects of
"sonic boom" on residential and commercial structures. Jim Kyle describes the tests currently being run in the Oklahoma City area, equipment being used, and some of the results obtained.

4. AND 5-LAYER SEMICONDUCTOR DIODES

A comprehensive discussion of the circuits and applications for avalanchemode semiconductor switches. Included are high-powered audio amplifiers, d.c. transformers, dimmers, and computers.

LIQUID-TEMPERATURE CONTROLLER

Where critical temperature control is involved, this solid-state unit can be used to maintain a liquid bath to within a few hundredths of a degree for a 24 hour period.

TAPE-WINDING NOMOGRAM

A series of charts make it simple to wind exactly the right amount of $0.5,1$, or $1.5-\mathrm{mil}$ tape on standard reels to yield various recording times.

temperature-Sensitive devices

When the resistance of a circuit component can be changed by temperature, it finds many unusual applications in electronics. Here are a number of these uses.

All these and many more interesting and informative articles will be vour

 in the OCTOBER issue of ELECTRONICS WORLD . . . on sale September 22nI.
ZIFF-DAVIS PUBLISHING COMPANY

William B. Ziff
Chairmun of the Board (1946-1953)

William Ziff

President
W. Bradford Briggs

Executire Vice President
Hershel B. Sarbin
Vice President and General Manager
Philip Sine
Treasurer
Walter 5. Mills, Jr.
Circulation Director
Stanley R. Greenfield
Vice President
Phillip T. Heffernan
Vice President

ZIFF-DAVIS PUBLISHING COMPANY
Editorial and Executive Offices
One Park Avenue, New York, N.Y. 10016
212 ORegon 9-7200
MIDWESTERN and CIRCUIATION OFFICE
434 South Wabash Avenue, Chisago, III. 60605
312 WAbash 2-4911
Midwestern Advertising Manager, Royce Richard WESTERN OFFICE
9025 Wilshire Boulevard, Beverly Hills, Cal. 9021 213 CRestview 4-0265
Western Advertisirg Mariager, Bud Dean
foreign advertising representative
D. A. Goodall Ltd., London, England

Member
Audit Bureau of
Circulations

Radio \& TV News - Radio News - Radio-Electronic Engineering Trademarks Rez. U.S. Pat. Off. SUBSCRIPTION SERVICE: All subscription correspondence should be addressed to Elecrronics World. Circu-
lation Dept. $\ddagger 34$ South Wabash Ave., Chicago, Ill. 60605 . Please allow at least six weeks for change of address. Inciude your old address as well as new-enclosing if possible an address label from a recent issue EDITORIAL CONTRIBUTIONS must be accompanied by return postage and will be handled with reasonable care; however publisher assumes no responsibility for return or safety of art work. photographs. or manuscripts
ELECTRONICS WORLD is published monthly by Ziff-Davis Publishing Company at 434 South wabash Avenuc, Chicago. Ill. 60605 . Ziff-Davis also publishes Popular Photography. Popular Electronics. HiFi/ Stereo Peview. Popular Boating. Car and Driver. Flying. Modern Bride. Amazing. and Fantastic. 1 Subscrip-
tion rates: one year Lnited States and possessions $S 500$: Canada and Pan American Union countries tion rates: one year Lited States and possessions $\$ 5.00$; Canada and Pan American Union countries S5.50; all other foreign countries $\$ 6.00$. Second class postage paid at Chicago. Illinois and at additional payment of postage in cash. September, 1964 . Vol. 72 , No. 3
PAYMENT MAY ALSO BE REMITTED in the following ioreign currencies for a one year subscription: dustralign pounds i2 161: Belgian francs 1310): Danish koner 143): English pounds $12 / 4 / 61$: French rancs 131): Dutch guilders (22): Indian rupees 131): Italian lire 13900 : Japanese yen 12100): Norwegian kroner 145), Philippine pesos (25); South African rands (4.50); Swedish kronor (33); Swiss francs (27): West German marks (25).

WE DARE TO COMPARE

 THE CONCERTONE 800

World's First Fully. Automatic Voice-Operated Portable Tape Recorder! CONCORD 330

You'll find all sorts of "hands-free" uses for Concord's amazing portable 330 - applications not possible with an ordinary recorder. You don't even have to be there. Sound starts it; sound stops it. Just set it and forget it! \square The 330 is packed with features : automatic slide projector advance; automatic Synctrol for home movies; automatic self-threading too! Up to 6 hours playing time on 5" reels; 2 speeds; VU meter/battery life indicator and an optional AC adaptor. \square See your Concord dealer right away for a demonstration. Under \$200.00.* Other Models to $\$ 450.00$.
CONCORD 330

809 N. Cahuenga Blvd., Dept. 24, Los Angeles 38, Calif CIRCLENO. 171 ON READER SERVICE PAGE

LOOKING BEYOND OUR PROBLEMS

MOST everyone in the electronics in-- clustry, and particularly those in defense work, realize that the military cutback in electroric equipment has affected the growth pattern of our industry. How seriously is a matter of opinion. We are still getting reports on this matter through independent surveys taken across the country. Unemployment among engineers and scientists is at an all-time high, particularly in companies along the east and west coasts.

At the same time, financial embarrassment among manufacturers and distributors has reached another peak. During the year ending March 31st, 118 companies failed, leaving a debt of $\$.50$ million (this compares with 88 companies for the previous year). According to EIA, 32 of these companies were in components, 14 in instruments, 9 in research and development, 12 in cntertainment devices, 8 in systems, and 3 in data-processing.

It is a paradox that while business in general is at an all-time high, our own industry is beset by problems. There are many reasons: changes in government expenditures, competition from abroad, falling sales prices on many products, and a generally changing technology.

Our ten years of expansion have come to a halt and, although there are many other reasons, the cutback in military expenditures ignited the fuse. But why all the pessimism-it had to come. No industry has ever had such a growth pattem as ours. This industry, as we know it, was really born in the early 40's and within some 20 years has become one of the country's largest.

We are, without any doubt, going through a re-adjustment period. This does not indicate a catastrophe, but just a leveling-off period. This is a time for company executives to re-orient their thinking and, for many, time to change their product mis to be a little more independent of military funds. Robert C. Sprague, chairman and treasurer of Sprague Electric Co. and former chairman and president of EIA, refers to this period as "roll-over."

He recently predicted that despite reduction in military spencling, total sales for our industry will grow from today's $\$ 15$ billion to a record high of $\$ 25$ billion in 1973. Even eliminating defense funds, dollar sales will double in 10 years, from $\$ 7$ to $\$ 15$ billion. He also predicted the
cmergence of a new technology (unknown at the present time) around 1973. and the astounding rate of technological improvement and innovation over the past decade will continue into the next decade.

The greatest growth potential for the electronics industry lies in sales of electronic equipment and components to industry. Computers and data processing have constituted the most rapidly growing segment of the industrial electronios market for the past 10 years. He preclicted that by 1973 total ammal value of electronic data handling equipment will have reached albout $\$ 3.6$ billionsome $\$ 2.3$ billion more than today.

Even more exciting are the industrial electronic markets other than computers and data processing machines. In the past ten years, total sales of electronic equipment in these other industrial markets have more than tripled, from $\$ 5.3 .5$ million in 1953 to $\$ 1.8$ billion in 1963. Sales of components in this area, which have gone from $\$ 169$ million in 1953 to more than a half-billion in 1963, are likely to reach $\$ 1.3$ billion by 1973.

Other industrial product areas include elcctronic industrial control and processing equipment, test and measuring devices, electronic narigational aids, and medical electronics-all of which should increase substantially.

A second significant growth area for the electronics industry is consumer goods-radios, television, hi-fi, tape recorders. From $\$ 730$ million last year, the volume of components used in the consumer area should reach more than $\$ 1$ billion by 1973; and the volume of all electronic equipment, including components, should grow from $\$ 2.2$ billion last year to $\$ 3.2$ billion in 1973 , at an aunual growth rate of around 4%.

Certainly there are serious problems in selected areas but many of the over-all industry problems are psychological. Military expenditures had been increasing at the rate of almost 10 percent a year from $\$ 3.2$ billion in 1953 to $\$ 7.8$ billion in 1963. What the cutback means is that this growth pattern will not exist in the future. Mr. Sprague estimates that between now and 1968 the growth rate will be 1.1 percent and by 1973 , the total defense billing should actually be around $\$ 10$ billion a year. There will be no major decline and once everyone in the industry realizes this, optimism will prevail. A

you get PROUH P1tis from yous Sylania Dutchlutor

Even our non-customers say they can't do without i-!

Sylvania's Technical Manual is still the most complete data source for up-to-date information on tubes. and has been since 1929. The current 12th Edition, for instance, will provide information on 2,225 tube types to more than 100,000 service men, technicians, dealers, distributors and other specifiers of tubes. (Incidentally, 2,225 is only the figure of the moment.) At periodic intervals, and at no extra charge, Sylvania mails supplementary data sheets to provide you with the latest information and insure that your Tech Manual is current.

Here are some of the other features you'll find in the manual's 700 pages:

- Data on Receiving Tubes, Cathode Ray Tubes, Serriconductor Diodes and Rectifiers, Special Purpose Tubes-all with complete characteristics.
- Picture Tube Interchangeability Guide
- European-American Receiving Tube Substitution Guide
- Serniconductor Diode Interchangeability Chart
- Master Index for quicker reference,

All in a sturdy $91 / 2^{\prime \prime} \times 6^{1 / 2 \prime 2} 6$-ring binder with tabbed dividers.

The cost for the industry's most comprehensive manual is only $\$ 3.00$. See your Sylvania Distributor. And don't forget to mail in the prepaid postcard for the free supplement service.

$$
\begin{aligned}
& \text { SYLVANIA } \\
& \begin{array}{l}
\text { suesidiafy of } \\
\text { GENERAL TELEPHONE \& ELECTRONiCS Gr C } \\
\text { G }
\end{array}
\end{aligned}
$$

NON. FLAMMABLE

Available Only

In 6-0z. Spray Cans
CLEANS, LUBRICATES, RESTORES AND PROTECTS

Volume Controls, Push Button Assemblies, Band Switches, Relays and other electrical contacts.
Conforms rigidly to ALL Federal, State, Municipal Laws and Regulations!
All NO-NOISE Aerosol Products NON-FLAMMABLE, NON-TOXIC, NO CARBON TET

Tuner-Tonic
 with PERMA-FILM WON'T AFFECT PLASTICS

Economical - a little does a lot. Cleans, lubricates, restores all tuners including wafer types. Non-toxic and non-flammable. For TV, Radio and FM.

Buy EC-44 FOR ALL ELECTRICAL CONTACTS IT 6 oz spary can
 NEW 1964 JOBBER PLAN Ask Your Rep. For Details

Only With "NO-NOISE"
FREE 5"
PLASTIC EXTENDER
with push-button assembly
FOR PIN-POINT APPLICATION,
WON'T CAUSE SHORTS

ALL PRODUCTS

FREIGHT PREPAID and SOLD
with MONEY-BACK GUARANTEE
ELECTRONIC CHEMICAL CORP.
813 Communipaw Avenue Jersey Ciry 4. N. J.

LETTERS FROM OUR READERS

ACOUSTIC SUSPENSION SPEAKERS To the Editors:

I go through Electronics World page-by-page and, needless to say, "I etters" is one of the features that I read. As a consequence, I was very interested in Edgar Villehur's letter headed "Loudspeaker Improvements" in the June issue.

I'm not interested in getting into a controversy with Ed one way or the other; however, I do think exception should be taken to the second sentence in the third paragraph of his letter. If he wants to make the statement, "This is why Acoustic Research introduced their acoustic suspension system in 1954," that is fine; but Electro-Voice and $A R$ were involved in lengtly and expensive litigation to establish prior art and this matter has been settled to our satisfaction. This word change may be a very subtle one, but we think it's rather important to make.

Lawrence LeKasinian Electro-Voice, Inc. Buchanan, Mich.

We belice the main point made by Mr. Villchur was not who invented the acoustic suspension speaker but that any lag in woofer development is the result of "a misplaced emphasis on redesign of the speaker driving motor, rather than of the driven mechanical and acoustical system."-Editors.

TRANSISTOR-IGNITION BALLASTING

 To the Editors:Correspondence with many users of our transistor ignition coils indicates that the ballasting of such coils is not clearly understood. This is an important point as too little current will lead to poor performance, but too much current may lead to failure of transistor (s) and diodes. While the coils are usually the most rugged system component, excessive heat can produce deterioration over a period of time.
Our coils are conservatively rated at 10 amperes recurrent peraks. Too frequently they are set up for 10 amperes average at idling engine speed. Battery voltage may be as low as 11 to 12 volts under such conditions, rising to 14 to 15 volts in the normal operation. This volt-
age rise will increase current by as much as 35%. Also, since the average current depends on divell angle, which is usually 60 to 70% of (total) (am angle per cylinder, peak current is often 40 to 66% greater than average.

These two factors are compounded, leading to actual peak currents in the 15 -22 ampere range with $18-20 \mathrm{a}$. being highly probable if these factors are not understood. Considering that heating increases as the square of current and may thus reach 200 to 48.5% of design maximum, it is not suprising that a transistor may occasionally fail, or a coil show some signs of high-temperature operation.

Actually, little is gained in driving efficient coils with extreme current. The T400LR, for example, will deliver 40-4.5 kv. at 10 -amp. peak currents. This is about four times the typical engine requirement. In fact, diode protective circuits may limit output to about 20 kv. (with a 60 v . diode), in which case output would be "saturated" for primary currents exceeding about $5-6 \mathrm{amp}$. At currents above 5-6 amp., no great increase in output results but improved rise time may improve operation somewhat.

We do have the problem of low current when the battery is loaded by the starting motor, especially in sub-zero weather. Under these conditions, battery voltage may be as low as $60-70 \%$ of normal. This suggests that peak coil current should not fall below $\&$ to 6 amp . while cranking, or a somewhat higher figure if allowance for moisture and low fuel volatility is required.

We recommend a $20-30 \%$ increase in current while starting to allow for such factors. This can be obtained: (a) by temporarily bypassing part of the cur-rent-limiting resistance; or (b) by use of a positive temperature coefficient ballast with a suitably low initial resistance. The rumning resistance in each case should limit current to the coil rating at the maximum voltage setting. This should be assumed to be 7.5 and 15 v . for nominal 6- and 12-v. systems.

In the former method for the T400LR coil, 0.30 to 0.35 ohm is a good choice of starting ballast and about 0.65 to 0.70 should be added while rumning for a total of about 1.0 ohm . This gives ap-

I AM YOUR RCA INDUSTRIAL TUBE DISTRIBUTOR

See how I add big value to each RCA type you buy:

The right tube. That's my specialty. RCA tube types that satisfy local requirements. And I keep on top of these needs constantly...continuously refining my inventory to mirror shifts and trends in my customers' requirements.

At the right place. Close-by. I stock RCA industrial tubes in breadth, in depth, and with the latest types. You can fill your needs for small quantities of various products with one purchase order, one supplier to follow-up, and one invoice to process. No wait-ing-out factory production cycles. No excessively long lead times. No drawn-out correspondence with RCA ELECTRONIC COMPONENTS AND CEVICES, HARRISON,N.J

The Most Trusted Name in Electronics
a far-away plant. And fewer of the costs and risks that go with maintaining a massive in-plant inventory.
At the right time. Your order is filled swiftly and accurately...and delivered to you by the most dependable means of transportation.
Like to know more about how I add big value to the already big value of RCA industrial tubes? Want teshnical literature on specific RCA tube types? Have a purchase order in need of fast filling? Here I am...within easy reach... your RCA industrial tube distributor:

FOR NAME AND ADDRESS OF YOUR LOCAL RCA DISTRIBUTOR, WRITE OR CALL: NEW YORK, NEW YORK: 36 W .49 h S $1 . .12121 \mathrm{MU} 9.7200$; NEEDHAM HEIGHTS 94 , MASSACHUSETTS: 80 "A" SI. (E17) HI 4.8480^{\prime}, WASHINGTON 6, D. C.: 1725 "K" SP., N.W.. 12021 FE 7.8500, ATLANTA, GA. 134 Peochlree Si., N.W., (204) JA 4.7703 , CLEVE. LATIO, OHIO: 1621 Euclid Ave, 12161 CH 1.3450 ; CHICAGO, ILL. Merchondise Mori, CITY 14, MO.: 7711 Stote Line. (8161 EM 1.6452; HOLIYWOOD. CALIF. 6363 Sunse Blud., (213) 46 1.9171 ; SAN FRANCISCO 2, CALIF. 420 Toylor St.. (415) PR 5.5135-6.7.

When you pay little or no attention to quality in tubular replacement capacitors, you leave yourself wide open for criticism of your work . . you risk your reputation... you stand to lose customers. It just doesn't pay to take a chance on capacitors with unknown or debatable performance records when it's so easy to get guaranteed dependable tubulars from your Sprague distributor!

There's no "maybe" with these 2 great SPRAGUE DIFILM ${ }^{\circ}$ TUBULARS!

The ultimate in tubular capacitor construction. Dual dielectric . . . polyester film and special capacitor tissue . . . combines the best features of both. Impregnated with HCX^{\circledR}, an exclusive Sprague synthetic hydrocarbon material which fills every void in the paper, every pinhole in the plastic film before it solidifies, resulting in a rock-hard capacitor section . . there's no oil to leak, no wax to drip. Designed for $105^{\circ} \mathrm{C}\left(220^{\circ} \mathrm{F}\right)$ operation without voltage derating.

DIFILM ${ }^{\ominus}$ BLACK BEAUTY ${ }^{\text {® }}$ Molded Tubular Capacitors
The world's most humidity-resistant molded capacitors. Tough, protective outer case of non-flammable molded phenolic . . . cannot be damaged in handling or installation. Black Beauty Capacitors will withstand the hottest temperatures to be found in any TV or radio set, even in the most humid climates.

DIFILM ${ }^{*}$ ORANGE DROP* Dipped Tubular Capacitors

A "must" for applications where only radial-lead capacitors will fit . . . the perfect replacement for dipped capacitors now used in many leading TV sets. Double-dipped in rugged epoxy resin for positive protection against extreme heat and humidity. No other dipped tubular capacitor can match Sprague Orange Drops!

For complete listings, get your copy of Cata\log C-616 from your Sprague distributor, or write to Sprague Products Company, 51 Marshali Street, North Adams, Massachusetts.
proximately 10 -ampere peaks at 1.5 v . in popular one- and two-transistor circuits. Stalled current will be about 8 amp ., which is a good value for setting up.
Illustrating the second method. our B12U8 starts at 0.35 ohm cold and increases to 0.9 to 1.0 olm while operating for the same cffect. A bonus is the continual increase of resistance in case of regulator failure with voltage in excess of 15 v .
It is also worth noting that some ballast action is desirable in 6 -v. systems to aroid coil overheating, unless stray and coil resistance is adequate.

Some transistor coils have ratings which may be less than that of the example above and it is good practice to muderstand them before operating. A good rule is limiting coil dissipation to approximately 25 watts under normal operating conditions, and using r.m.s. current valucs and primary resistance for the calculation.
W. F. Palmer

Palmer Electronics Labs., Inc. Carlisle, Mass.

Thercfore, those readers who have suggested 10 or more amps. of current with the engine not operating, run the risk of coil and semiconductor burnout. -Editors.

high-voltage indicator

To the Editors:
The recent article "Diode Curve-Tracer \& Analyzer" by Jim Kyle (June issue) brought to mind a simple and worthwhile improvement which could also be applied to other types of equipment that use exposed high-voltage terminals.
In order to call attention to the high voltage, I would suggest that a flashing neon lamp be mounted directly between the exposed terminals. The lamp can get its d.c. voltage through a small rectifier. A large series resistor and shunt capacitor can be used to make the lamp flash at al low but conspicuons rate.
A. Wiegert

Winnipeg, Manitoba

COMPUTER LOGIC FUNDAMENTALS

To the Editors:
In the discussion of the logic example in my article "Computer Logic Fundamentals" appearing in the June, 1964 issue, the "NOR" function is correctly written as $A+B+C=\bar{D}$. However, the equivalent of this is $\overline{A+B+C}=$ D, not $\bar{A}+\bar{B}+\bar{C}=D$, as you have shown.
The example of DeMorgin's Theorem near to top of the second column on p. 46 should then read, "Thus, $\overline{A+B+C}=D$ is the same as $\bar{A} \cdot \bar{B} \cdot \bar{C}$ = D."
S. C. Lukexs

Sy:Nanial Electric Products Inc. Woblum, Mass.

GET A FAST START WITH NRI'S ACHIEVEMENT KIT
Delivered to your door-every. thing you need to make a sig nificant start in the Electronics field of your choice! This new starter kit is an outstanding. logical way to introduce you to NRI training kits ... an un paralleled example of the value of NRI home-study training. What's in it? Your first group of lesson texts: a rich vinyl desk folder to hold your study mate. rial; the industry's most complete Radio-TV Electronics dictionary, valuable reference texts; lesson answer sheets: pre-addressed envelopes; pencils; pen; engineer's ruler, and even postage. No other school has anything like it

ELECTRONICS COMES ALIVE WITH CUSTOM TRAINING KITS You get your hands on actual parts and use them to build, experiment, explore, discover NRI pioneered and perfected the "home lab" technique of learning at home in spare time Nothing is as effective as learning by doing. That's why NRI puts emphasis on equipment. and why it invites comparison with equipment offered by ariy other school. Begin now this exciting program of practical learning created by NRI's Re search and Development Laboratories. It's the best way to understand the skills of the finest technicians-and make their techniques your own.

"BITE SIZE" LESSON TEXTS PROGRAM YOUR TRAINING
Certainly, lesson texts are necessary. NRI's programmed text's are as simple, direct and well llustrated as 50 years of teaching experience can make them. They are carefully programmed with NRI training kits to make the trings you read about come alive. You'll experience all the excitement of original discovery.

HOBBY? CAREER? PART-TyME EARNINGS? MAIL COUPON Whatever your reason for want ing to increase your knowledge of Electronics ... whatever your education..there's an NRI instruction plèn to fit your needs. Choose from three major training programs in Radio-TV Servicing, Industrial Electronics and Communications or select one of seven NRI courses in specialized subjects. Mail coupon for NRI catalog. Find out how you can train at home this exciting, rewarding way.

DISCOVER THE EASE AND EXCITEMENT OF LEARNING ELECTRONICS, TV-RADIO THE NRI WAY

Founded 50 years ago-in the days of wirelessNRI pioneered the "learn-by-doing" method of home-study. Today, NRI is the oldest, largest homestudy Electronics school, offering the kind of instruction that makes learning exciting, fast. You build, test, experiment, explore. Whatever your interest, your need, your education, investigate the wide variety of NRI training plans . . . find out about the NRI Achievement Kit. Check and mail the postage free card now. No salesman will call.

Our 50th Year of Leadership in Electronics Training
National Radio Institute, Washington, D.C Electronics Division

BUSINESS REPLY MAIL
 no postage stamp necessary if mailed in the united states

POSTAGE WILL BE PAID BY

NATIONAL RADIO INSTITUTE

3939 Wisconsin Avenue
Washington, D.C. 20016

PICK THE FIELD OF YOUR CHOICE

Now NRI offers you TEN FAST WAYS to train at home for ELECTRONICS, AUTOMATION, TELEVISION-RADIO

Here are 10 choices of training to help you build your knowledge of the fast growing field of Electronics . . . 10 carefully developed instruction plans resulting from 50 years of experience training more Technicians for Electronics, TelevisionRadio than any other school. Whether you're starting from scratch or have some basic knowledge of the field, you will find NRI courses ideally suited to your needs. NRI training guides you every step of the way. You work from "bite-size"

TELEVISION-RADIO SERVICING—Complete train. ing from basic fundamentals of electricity to home entertainment equipment. You learn to fix radios, hi-fi and stereo sets, black-and-white and color TV, etc. A profitable field full or part time.

INDUSTRIAL-MILITARY ELECTRONICS—From basic principles to computers. A comprehensive training plan that teaches you the fundamentals, then takes you into such modern-day miracles as servos, telemetry, multiplexing, pulse circuitry, other important subjects.

COMPLETE COMMUNICATIONS* - Designed to
 teach and provide you with actual practice in opera. tion, service and maintenance of AM, FM and TV broadcasting stations. Also covers marine, aviation, mobile radio, facsimile, microwave, radar.

FCC LICENSE*-Specifically designed short course to prepare you for your First Class FCC Radiotelephone License examinations. You begin with a thorough background in fundamental Electronic principles, advance to required subjects covering equip. ment and procedures.

MATH FOR ELECTRONICS—A brief course for engineers and technicians who need a quick review of the essential mathematics used in industry, communications, in government jobs. Basic arithmetic review, short-cut formulas, modern digital number system, much, much more.
texts written in a style anyone can understand. You build and experiment with special, essential training equipment designed to make the things you read about come alive in an absorbing, exciting, educational manner. Whatever your interest . . . whatever your need . . . whatever your education . . . there's an NRI instruction plan for you. Begin NOW an absorbing adventure in home-study training. Check the fields of your choice on the postage-free card and mail it today.

BASIC ELECTRONICS-A concise course to teach modern Electronics terminology and components. A wealth of practical, useful information to help you better understand the field, to give you some technical knowledge. For anyone who wants basic understanding of Radio-TV Electronics.

ELECTRONICS FOR AUTOMATION-This course is not for beginners. Offered for men with some fundamental knowledge of Electronics who want better understanding of Automation in present day use. Covers process control, ultrasonics, telemetering and remote control, electromechanical measurements, other subjects.

AVIATION COMMUNICATIONS* - This course prepares you to install, maintain, service aircraft communications equipment. Covers direction finders, ranges, markers, Loran, Shoran, Radar, landing systems. Earn your First Class FCC License with Radar Endorsement.

MARINE COMMUNICATIONS* - Covers trans-

mitters, direction finders, depth indicators, radar, sonar, other equipment used on commercial ships and thousands of pleasure boats. Prepares you for a First Class FCC License with Radar Endorsement.

MOBILE COMMUNICATIONS*-Learn to install and maintain mobile equipment and associated base stations. Covers transmitters and receivers used by police and fire departments, public utilities, construction projects, taxis, etc. Prepares you for a First Class FCC License.
*NOTE: You must pass your FCC License exam (any Communications course) or NRI refunds in full the tuition you have paid.

SSee Other Side

National Radio Institute, Electronics Div.
Washington, D.C. 20016
$4 E$
Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call.)
\square TV-Radio Servicing
\square Industrial Electronics
\square Complete Communications
\square FCC License
\square Math for Electronics

Basic Electronics
\square Electronics for Automation
[Aviation Communications
\llcorner Marine Communications
Mobile Communications

Join the men who trained for success with NRI
 "I went into my own business six months after finishing the NRI Radio-TV Servicing Course. It makes my family of six a good living. We repair any TV or Radio. I would not take anything for my training with NRI. It is the finest." DON HOUSE, Lubbock, Texas

- Many thanks to NRI for the Electronics training I received. I hold a first class FCC License and am employed as a studio and master control engineer, technician with KXJB.TV'"

RONALD L. WOOD, Fargo, N.D.

'I am Frequency Coordinator for the 11 th Naval District. The course 1 completed was priceless in my work. I was a blue collar worker, now I am a white collar worker." JOHN J. JENKINS, San Diego, Calif.

Name Age

Address
City State Zip Code
am a Senior Engineering Aide at Litton Systems, in charge of checkout of magnetic recording devices for our computers. Without the help of NRI I would probably still be working in a factory at a lower standard of living.' DAVID F. CONRAD, Reseda, Calif.

UCS-6

CS-4

CSO-6

The Big Plus-Uniline Sound Columns

Performance is the big plus when you install University Uniline Sound Columns. Unlike conventional columns, Uniline employs specially-designed speakers with higher power handling capacity. "AcousticTapering - another University exclusive, prevents excessive high frequency beaming and assures a uniform sound volume within its fan or beam. The
result-higher intelligibility, optimum sound dispersion at all frequencies, greater listening comfort. All individuals hear the same sound! The table below shows complete specifications for all Uniline Sound Columns, including the new weatherproof model CSO-6 for outdoor installation. For complete PA Loudspeaker Catalog, write Desk S-9.

	UCS-6 Full Range Music and Speech	CS-4 Full Range Music and Speech	CS 3 Music and Speech	CSO-6 Full Range Music and Speech
speakers	6 extended range $8^{\prime \prime}$	4 extended range $8^{\prime \prime}$	8 special multi-design	6 extended range $8^{\prime \prime}$
frequency range	55-17,000 cps	70-17,000 cps	$150-0,000 \mathrm{cps}$	55-17,000 cps
power capacity	120 watts 1 PM*	80 watts IPM*	25 wôtts IPM*	120 watts IPM*
impedance	16 ohms	8 ohms	16 ohms	16 ohms
vertical angle	16°	22°	22"	30°
horizontal angle	120°	120°	120°	120°
dimensions	$591 / 4^{\prime \prime} \times 107 / 8^{\prime \prime} \times 91 / 6^{\prime \prime}$	$403 / 8^{\prime \prime} \times 11^{\prime \prime} \times 91 / 16^{\prime \prime}$	$48^{\prime \prime} \times 71 / 2^{\prime \prime} \times 83 / 4^{\prime \prime}$	$601 / 4^{\prime \prime} \times 117 / 8^{\prime \prime} \times 73 / 4^{\prime \prime}$
shipping wt., lbs.	61	46	33	61

Why We Make the Model 211 Available Now

Although there are many stereo test records on the market today, most critical checks on existing test records have to be made with expensive test equipment.
Realizing this. Hifi STEREO REVIEW decided to produce a record that allows you to check your stereo rig, accurately and completely, just by listening! A record that would be precise enough for technicians to use in the laboratory-and versatile enough for you to use in your home.
The result: the HiFi, STEREO REVIEW Model 211 Stereo Test Record!

Stereo Checks That Can Be Made With the Model 211

Frequency response-a direct check of eighteen sections of the frequency spectrum, from 20 to $20,000 \mathrm{cps}$.
Pickup tracking - the most sensitive tests ever available on disc for checking cartridge, stylus, and tone arm.
Hum and rumble-foolproof tests that help you evaluate the actual audible levels of rumble and hum in your system.
Flutter-a test to check whether your turntable's flutter is low, moderate, or high.
Channel balance - two white-noise signals that allow you to match your system's stereo channels for level and tonal characteristics.
Separation-an ingenious means of checking the stereo separation at seven different parts of the musical spectrum-from mid-bass to high treble.

ALSO: $\sqrt{$| Stereo Spread |
| :--- |
| Speaker Phasing |
| Channet Identification |$}$

PLUS SUPER FIDELITY MUSIC!

The non-test side of this record consists of music recorded directly on the master disc, without going through the usual tape process. It's a superb demonstration of flawless recording technique. A demonstration that will amaze and entertain you and your friends.

NOW...GET THE FINEST
 STEREO TEST RECORD ever produced
 for just.... $\$ 4.98$ Featuring Tests Never Before Available Outside Of The Laboratory

unique features of hifi/Stereo review's model 211 Stereo test record

- Warble tones to minimize the distorting effects of room acoustics when making frequency-response checks.
Warble tones used are recorded to the same level within ± 1 db from 40 to $20,000 \mathrm{cps}$, and within $\pm 3 \mathrm{db}$ to 20 cps . For the first time you can measure the frequency response of a system without an anechoic chamber. The frequency limits of each warble are within 5% accuracy.
- White-noise signals to allow the stereo channels to be matched in level and in tonal characteristics.
- Four specially designed tests to check distortion in stereo cartridges.
- Open-air recording of moving snare drums to minimize reverberation when checking stereo spread.

All Tests Can Be Made By Ear

Hifi/STEREO REVIEW's Model 211 Stereo Test Record will give you immediate answers to all of the questions you have about your stereo system. It's the most complete test record of its kind--contains the widest range of check-points ever included on one test disc! And you need no expensive test equipment. All checks can be made by ear!
Note to professionals: The Model 211 can be used as a highly efficient design and measurement tool. Recorded levels, frequencies, etc. have been controlled to very close folerances--affording accurate numerical evaluation when used with test instruments.

DON'T MISS OUT-ORDER NOW

The Model 211 Stereo Test Record is a disc that has set the new standard for stereo test recording. There is an overwhelming demand for this record and orders will be filled by ELECTRONICS WORLD on a first come. first served basis. At the low price of $\$ 4.98$, this is a value you won't want to miss. Make sure you fill in and mail the coupon together with your check ($\$ 4.98$ per record) today.

FILL IN AND MAIL TODAY!

Stereo Test Record

Electronics World--Dept. SD
One Park Ave., New York 16, N.Y.
Please send me \qquad test records at $\$ 4.98$ each. My check for money order) for $\$$ \qquad is enclosed. I understand that you will pay the postage. (Orders from outside the U.S.A. add 50 c to partially defray postage and handling costs.)
Name__ \quad (Please Print)

> Address.

City \qquad Zone \qquad State SORRY--No charges or C.O.D. orders!

NOW! get this BIG BONUS with your purchase of a Photofact Library!

boost your earning power-own and use the world's finest TV-radio service data

Now, more than ever, it pays to own a Photofact Library -the time-saving troubleshooting partner guaranteed to help you earn more daily. Now, you can start or complete your Photofact Library the special Easy-Buy way, and get absolutely free with your purchase, the deluxe 4 -drawer File Cabinet worth $\$ 55.00$, plus valuable extras described below!

own a Photofact library the easy-buy way:

- Only $\$ 10$ down - 30 months to pay
- No interest or carrying charges - Prepaid transportation
- Add-on privilege of a year's advance subscription to current Photofact data, on the same Easy-Buy contract
- Save 30 \& per Set-special $\$ 1.95$ price applies on Easy-Buy (instead of regular $\$ 2.25$ price)
PLUS: In addition to the deluxe File Cabinet, you get a complete Color TV Servicing Course, 2nd Class Radiotelephone License Course, Transistor Radio Servicing Course, and Test Equipment Guide!

4 ways to select your photofact library

1. Complete your present Рhotofact Library
2. Order a Photofact "Starter" Library - 200 Sets (Sets 401-600-coverage from 1958 to 1963 -only $\$ 12.66$ per month).
3. Order by brand name and year-see the handy selection chart at your distributor.
4. Order a complete Photofact Library-get FREE File Cabinets to accommodate the entire library, the Courses listed above, plus an 8 -volume Set of "101 Ways" Test Instrument books worth $\$ 18.50$.

A PHOTOFACT LIBRARY PAYS ITS OWN WAYORDER today and get the free bonus extras

See your Distributor for Рhotofact Easy-Buy details or send coupon today! Ask also about a Standing Order Subscription to current Photofact and Specialized Service SeriesFREE File Cabinet also available!

HOWARD W. SAMS \& CO., ING.	
Howard W. Sams \& Co., Inc. Dept. EWF-9 4300 W. 62nd St., Indianapolis, Ind. 46206	
\square Send full information on Easy-Buy Plan	
My Distributor is:	
Shop Name	
Attn	
Address	
City ___ State___ Z	ip

EVBIEEIED HI-FI PRODUCT REPORT

TESTED BY HIRSCII-IOUCK LABS

Lahti U-2 Speaker System RCA SK-46 Microphone

Lahti U-2 Speaker System

For copy of memufacturer's brochure, circle No. 63 on coupon (pase 19).

THE Lahui speaker mambactured by. Lahti of Amm Arbor, luc:, is a remarkably effective solution to the problem of designing low-cost, ultra-small speaker systems. The firm's smallest mit, the U-2. measures only g!" high ly 113*" wide by $3^{3 / \prime \prime}$ deep, occupying onehalf to one-third the volume of most bookshelf speaher systems. The [-2 should fit any bookshelf with case and. weighing only about 10 pounds, will not moduly strain the most frail supporting structure.

The $[-2$ is a fully enclosed system. msing an $8^{\prime \prime}$ woofer and a $3^{\prime \prime \prime}$ cone tweeter. with a capacitive crossover at 3000
(p)s. The bow is constructed of $3^{\prime \prime}$ (hip)board. with rigid, fully glued construction.
(Editor's Note: We have fust learned that a patent has heen issued on this design. As shown at the right, the woofer is from-loaded by an inverted exponential horn terminating in a 23 " diameter sharp-rodged radiating opening. Although frout-loading has been ussed before, this has often produced undesired resonances or watcorm cancellation. Becuuse of the high pressure on one side, of the hom, currgy is transferned into space in a miform radial pallerm.)
We measured the frequency response of the mit with the speaker momed on a shelf about 4 feet from the floor. areraging the response curves from seven different microphone locations in the room. It has an outstandingly smooth low- and middle-frequency response, within ${ }^{-1}-2.5 \mathrm{db}$ from 100 to 2000 (ps. There is a dip at the 3000 - (pse crossover fregnency, with a relatively smooth and strong response maintaned all the way up to 15.000 (ps. Its over-all response is $=5 \mathrm{db}$ from 95 to 15,000 (ps. which would be considered excellent response for a much larger speaker sustem. It is interesting to mote that Lalliti, unlike most sigeaher mandacturers. publishes

specific frequency response curves on the U-2. The company claims, with ex(mplary accuracy, a response of $=6 \mathrm{dl}$) from 90 to 12.000 (pps in an anechoic environment and a tepical room response of 65 c ps to $12,000 \mathrm{cps}$. It is quite possible that with comer mounting, the lower limit could hase been extended to 6.5 cps .

The harmonic distortion of the speaker was, at a 1 -watt electrical imput level, about 1% at 180 cps , rising slowly to 6%

at 7.5 cpss , and more rapidy to 15% at 50 (ps. However, the outphit falls off rapidly below 90 (ps, so that there is no boominess or muldiness from frecuency components too low for the speaker to reprocluce. Its output is clean throughoit its useful range and drops to inatudible levels at lower froquencies.

The high-frequency tone-burst response of the U-2, typificd by the 10-kc. tone-burst photo, is well-nigh porfect. Lower frequencies, such as the $700-\mathrm{c} p \mathrm{~s}$ example, exhibit some ringing. Throughout most of its range, the speaker has exceptionally good tone-burst response.

The test data indicates that this is a fine little speaker and listening tests confirm this beyond any doubt. It has a superbly balanced somod, not favoring either end of the spectrom, and without any peakiness or the boxy somud which oftell plagues very small speaker systems (and some larger ones as well). Subjectively, it seems to generate an astonishing

New Kind of Zener Diode

Typical shunt overvoltage protection circuit using zener diodes. Output is controlled between V_{1} and V_{2}.

A zener diode, as you're probably aware, is a special kind of semiconductor which has excellent voltage regulating characteristics. It's the solid-state successor to the gas discharge tube. It acts like a rectifier diode, blocking current in the reverse direction, until the "zener voltage" is reached-then it starts to conduct with a capital C . The zener diode can carry appreciable current continuously. So this makes it a fine regulating device. You can use it in power supplies where you need highly accurate output. Or you can use it in clipper or clamper circuits, by biasing the diode negative.

The big news in zener diodes is that you can now get them from Mallory at a price which makes them practical for service work, experimentation, or commercial circuitry. The news-maker is the new Mallory Type ZA molded-case diode. Its electrical properties and reliability record are comparable to those of military grade units. In fact, we use the same silicon cell in the ZA as in the zener diodes we make for military requirements. But the price is only about half that of hermetically sealed diodes.

The ZA is rated 1 watt at $25^{\circ} \mathrm{C}$. If you install it in a hot spot, you can use it at ambients up to $100^{\circ} \mathrm{C}$, derating linearly to 0.5 watt. Voltage ratings go from 6.8 to 200 volts, in small increments so that you can get exactly the regulating voltage you need. Standard tolerances are $20 \%, 10 \%$ and 5%.

You'll like the cold-case design of the ZA. No need for insulating sleeves when you squeeze it into tight layouts. It's so small-only $3 / s^{\prime \prime}$ long by $0.220^{\prime \prime}$ in diameter-that it fits practically anywhere.

Your Mallory distributor has the Type ZA in a range of ratings. He also stochs Mallory silicon rectifiers... including handy packaged doubler, bridge and center-tap circuits. See him soon!

NORTRONICS ANNOUNCES.

 New Line of Tape Heads!For true broadcast quality and maximum enjoyment from your investment in tape equipment. replace worn heads with new Nortronics laminated core replacement heads! Available for more than 500 popular tape recorders, these moderately priced replacement heads have highly polished, all-metal faces, and offer extended high frequency response, even at slower tape speeds. Other features include deposited quartz gaps and low-loss core structures.

ALL TAPE HEADS WEAR OUT!

Check today for head wear-both Nortronies new replacement heads and "Quik-Kit" mounting hardware are correctly matched to your recorder, and are available from your Hi-Fi Dealer, Radio-TV Serviceman or Camera Store!
'Music sounds best on Tope-
tope Sounds Best with Nortronics Heads'

8127 Tenth Ave. N., Minneapolis, Minn. 55427

rolume of clean aconstical output. At moderately high levels, the plastic grille cloth flaps energetically and a brecze can be felt a foot in front of the speaker, yet there is no sensation of straining or distortion.

With its most attractive selling price of
$\$ 39.95$ in oiled-walnut finish, or $\$ 29.9 .5$ in unfinished chipbourd, the Lahtit U-2 (or a pair of them for stereo) can be the heart of an excellent budget-priced music system. Its efficiency is moderate and it can be driven by any amplifier of 10 watts or higher rating

RCA SK-46 Microphone

For coply of mamufacturer's brochure, circle No. 64 on coupon (page 19)

FOR many years, ribbon microphones have been used in broadcast and recording applications where high quality and a directional response characteristic are required. Broadcast-quality ribbon microphones, being both bulky and expensive, have not found wicle acceptance in home-recording and publicaddress installations, which usually use some form of dynamic microphone. The RCA SK-46 velocity microphone, overcoming both size and cost objections, is amed at this market.

Most microphones, whether they are ceramic, dynamic, or capacitor types, respond to the pressure of acoustic waves impinging on a diaphragm. Such microphones are inherently omni-directional, but can be converted to a directional pattern (usually a cardioid) by special design techniques. The ribbon microphone, on the other hand. is inherently responsive to the velocity of the somid waves passing through it from front to
back (or vice versa). An extremely light. corrugated aluminum ribbon is suspencled in the air gap of a powerful magnet. The relocity of the air passing over the ribbon canses it to vibrate in the magnetic field, generating a small voltage in the ribbon itself. A step-up transformer. usually built into the microphone case. matches the very low ribbon impedance (on the order of 0.1 ohm) to a standard impedance level such as 200 ohms, and raises the output voltage to a more useful level.

Velocity microphones are inherently bi-directional, responding equally well to sounds from the front or back, but discriminating against sounds arriving from either side.

The RCA SK-46 is a compact ribbon microphone, with over-all dimensions of $55^{\prime \prime \prime \prime}$ high by $17_{8}^{\prime \prime}$ wide by $1_{8 \prime \prime \prime}^{3 \prime \prime}$ deep, inchuding a swivel-mounting adapter for standard $5 / 8-27$ microphone-stand (onpling threads. The case is finished in dark gray, with satin chrome front and rear screens. The microphone weighs 1:3 ounces, less cable. A 25 -foot, two-wire shielded cable is attached permanently to the microphone. As shipped by the manufacturer, the SK-46 is wired for a 200 -ohm impedance, which will match amplifier or line impedances between 1.50 and 2.50 ohms, as well as high-impedance inputs. To obtain a higher output when driving a high-impedance amplifier input, the transformer within the microphone case may be re-wired for a 15,000 -ohm impedance.

We tested the microphone by momting it about 8 inches in front of a loudspeaker, on its central axis. A calibrated capacitor microphone was taped to the boom so that its diaphragm was in the plane of the SK-46 screen, as close to it as possible. Plotting the response of the speaker with both microphones on a single sheet of graph paper, we were able to determine the response of the test
(Continued on page 61)

READER SERVICE PAGE

Since many products and services mentioned are primarily for professional use only, we are using two different coupons.
Circle the number that corresponds to the number of the product or service in which you are interested.
FOR PROFESSIONAL USE: In requesting information on products and services listed in this coupon it is necessary to fill out the coupon COMPLETELY, stating your company, address, and your function or title. If the coupon is incomplete it cannot be processed.
FOR GENERAL USE: In requesting information on products and services listed in this coupon, please use only your home address.
You can use both coupons, since each contains specific items, if each coupon is filled out completely.

Mail to: ELECTRONICS WORLD P. o. box 7842, Philadelphia 1, Pa.

NEW! LAFAYETTE 70-WATT COMPLETE AM-FM STEREO RECEIVER Model LR-800
 Just Add Speakers and Enjoy FM, FM Stereo and HighQuality AM Reception
 - A powerful 70-Watt Amplifier plus Complete Preamplifier Control Facilities plus a Standard AM Tuner plus a Sensitive FM Tuner plus an FM Stereo Tuner-all on One Compact chassis
 199^{50}
 - Amazing FM "Stereo Search" Circuit Signals Presence of Stereo Broadcasts
 - Tuned Nuvistor "Front End" Provides Greater Sensitivity, Lower Noise, Less Heat
 - Bar-Type Tuning Indicator for AM and FM
 99-0005WX
 - Variable AFC Control - Imported
 NEW! LAFAYETTE © eriterion 1000 -PROFESSIONAL 4-TRACK SELF-CONTAINED STEREO TAPE RECORDER

featuring MAGNIFICENT TEAK CABINETRY

- Plays 2- and 4-Track Stereo and 4-Track Monaural
- Records 4-Track Stereo and Monaural
- 3-Speeds: 17/8, 33/4 and 71/2 ips
- 6 Pushbutton Tape Motión Controls
- Records Sound with Sound
- Automatic Shut-off Electrically and Mechanically Returns Recorder to Stop Position
- Transistorized Stereo Preamplifiers
- Complete with 2 Dynamic Microphones, Cables, 7" Take-up Reel • Imported

LAFAYETTE radio electronics 1965 Catalog No. 650

Over 500 Pages-Featuring Everything in Electronics for HOME • INDUSTRY • LABORATORY
from the
'World's Hi-Fi \& Electronics Center"

- Stereo Hi-Fi-all famous brands plus Lafayette's own top-rated components
- Citizens Band-transceivers, Walkie-Talkies and accessories
- Tape Recorders - Ham Gear
- Test Equipment
- Radios, TV's, and Accessories
- P.A. Equipment; Intercoms
- Cameras; Optical Goods
- Marine Equipment; Auto Accessories
- Musical Instruments; Tools; Books and MUCH MORE

See the Largest Selection in Our 44-Year History
BUY ON TIME-Use Lafayette's famous Easy-Pay Credit plan up to 24 Months to Pay

MAIL THE ATTAGHED CARD OR THE COUPON BELOW FOR YOUR FREE 1965 CATALOG

LAFAYETTE 12-TRANSISTOR

C.B. WALKIE-TALKIE Model HE-100

2-for- 78.88

- Variable Squelch Reduces Background Noise
- Separate Microphone and Speaker for Better Modulation and Increased Range
- Optional Plug-in 117 Volt AC Power Pack
- With Leather Case, Earphone, Telescoping Antenna, Batteries, Crystals for Channel 10 - Imported

99-3022

NEW! LAFAYETTE ALL-TRANSISTOR C.B. "WALKIE-TALKIE" Model HA-70

NEW! LAFAYETTE 6-TRANSISTOR C.B. WALKIE-TALKIE Model HA-85

LAFAYETTE RADIO ELECTRONICS

Mail Order and L.I. Sales Center
111 Jericho Turnpike Syosset, L.l., New York

New York, N.Y. 100 Sixth Ave.

Jamaica, N.Y. 165-08 Liberty Ave.

Brooklyn, N.Y. 2265 Bedford Ave.

Bronx, N.Y.
542 E. Fordham Rd.

Scarsdale, M.Y. 691 Central (Park) Ave. Newark, N.J. 24 Central Ave. Paramus, N.I. 182 Route 17 Plainfield, N.J. 139 W. 2 st.
. Boston, Mass. 584 Commonwealth Ave. Natick, Mass. 1400 Worcester St. NEW!
NEW YORK CITY STORE! WATCH FOR OPENING SOON!
 2-for-42.75

- Transmits and Receives up to 1 Mile
- Crystal-Controlled Transmit and Receive
- 6 Transistors plus 2 Diodes
- Complete with Leather Carrying Case,
Earphone, Telescoping Antenna, Batteries, Pair

of Crystals - Imported

99-3013

「LAFAYETTE RADTO ELECTRONICS Dept., RI4-1 P.O. Box 10 Syosset, L. I., N. Y. 11791
\square

- Send me the FREE 1965 Lafayette Catalog 650
$\square \$$ enclosed; send me
(Prices do not include shipping charges).

NEW! LAFAYETTE 23-CHANNEL CRYSTALCONTROLLED DUAL CONVERSION 5-WATT CB TRANSCEIVER

Efficient, dependable 2-way communications in any fixed or mobile application is assured with this rugged, new 5 -watt CB transceiver. A militarytype frequency synthesizing circuit makes it possithle to transmit and receive over the full range of 23 channels with crystal-controlled accuracy-no extra crystals to buy and install! Advanced RangeBoost circuit can be used to increase sideband power during transmission-lets you get through when noisy conditions make reception of your signal difficult!
Highly efficient circuit design uses 13 tubes (including two nuvistors) and 8 diodes to provide top performance under a wide range of operating conditions. Dual-conversion receiver offers high $.3 \mu \mathrm{v}$ sensitivity and low noise, plus excellent adjacent channel rejection. Includes every needed feature for optimum reception-crystal-controlled "fine tuning" capability on all channels of $\pm 2.5 \mathrm{Kc}$ (Delta Tuning), highefficiency variable noise limiter, variable squelch. and Automatic Volume Control. Also included is an illuminated meter which indicates relative RF power output or received signal strength in " S " units. and plug-in facilities for the Lafayette PRIVACOM selector call mit.

Operates in a fixed or mobile location with equal case . . . has huilt-in power supply for either 117 V AC or 12V DC. Specially designed "Vari-Tilt" mounting bracket simplifies mobile installationpermits fast removal of the transceiver too! And, there's nothing else to buy-you get all crystals and a built-in vibrator for 12 V DC. plus 2 power cables. Measures a compact $12^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{D}$ (in-
eluding controls and plugs at rear). Imported. Model HB- 100.

99-3001wX

$$
169^{50}
$$

WITH
ADVANCED "RANGE-BOOST" CIRCUIT
\checkmark Meets All FCC Requirements

- Precision-Engineered and Ruggedly Built For Reliable 2-Way Radio Communications
- Frequency Synthesized Circuil Provides 23 Crystal-Controlled Transmit \& Receive Channels-No Extra Crystals to Buy! Continuous One-Control Channel Tuning \square Full 5Watt Input Push-To-Talk Microphone \& Electronic Switching ■ Dual Conversion Receiver With $3 / 10 \mu \mathrm{v}$ Sensitivity - Delfa Tuning Offers "Fine Tuning" of $\pm 2.5 \mathrm{Kc}$ on Receive - Variable Squelch, Variable Noise Limiter, AGC Built-in $117 V$ AC \& $12 V$ DC Power Supply E "Vari-Tilt" Mounting Bracket for Easy Mobile Installation E Plug-in Facilities For Lafayeffe Selective Call Unit

ADVANCED "RANGE-BOOST" CIRCUIT

Increases Your Effective Range-Lets You Get Through When Others Fail!

Want to effectively increase your range? You can-with Range-Boost! A simple turn of a switch on the HB-400 increases the average percentage of modulation and lets your voice cut through QRM and noise to reach further ... gives you more "talk-power" when you need it-without overmodulating!

NEW! LAFAYETTE ALL-TRANSISTOR DUAL CONVERSION 5 WATT CB TRANSCEIVER

FEATURING AUTHENTIC MECHANICAL FILTER

Model HB-500

If you're looking for a high-performance CB transceiver in a small, compact size, you'll want the HB-500! Using advanced solid-state circuitry, this transceiver offers full 5 -watt performance, yet is small enough to fit conveniently into the most compact car. And, battery drain is so low as to be negligible-the transceiver draws no more than .35 amps on receive, .85 amps on transmit. As a result, you need neither heavy-duty battery nor generator-an important advantage in mobile applications! The transmitter features full crystal control on any 12 of the 23 CB channels. Dual conversion receiver with better than $.5 \mu \mathrm{v}$ sensitivity offers 12 crystal-controlled channels, plus full 23 channel tuning capability. A 455 Kc mechanical filter provides ultra-sharp receiver selectivity-virtually eliminates adjacent channel interference! Other features include an efficient Automatic Noise Limiter, variable Squelch for silencing the receiver on standby, spotting switch for exact frequency location on tunable receiver, " S " meter and illuminated channel dials. This rugged transceiver offers instantaneous, cool-running operation and features printed circuit, all-transistor design. Efuipped with mobile mounting bracket, push-to-talk dynamic microphone, crystals for operation on channel 12 . Operates on 12 V DC (neg. or pos. ground) or on 117 V AC with optional solid-state power supply. Imported.
Model HB-500.

- 12 Crystal Transmit Positions plus 12 Crystal Receive Positions 23 Channel Tunable Receiver with Precise Vernier Tuning ■ Dual Conversion Super-heterodyne Receiver 15 Transistors, 3 Diodes, 1 Zener Diode plus 1 Thermistor $\begin{aligned} & \text { Zener }\end{aligned}$ Diode Voltage Regulated Receive Oscillator for Superior Frequency Stability Dependable Sealed Relay Switching - Aufomatic Noise Limiter Variable Squelch For 12 Volt DC Mobile Operation (Negative or Positive Ground) or for $117 V$ AC Operation when used with Matching Solid State AC Power Supply (Optional) ■ Meets All FCC Regulations Part 95

139°

99-3027WX

HIGHLY SELECTIVE MECHANICAL FILTER

With CB channels only 10 Kc apart, selectivity is important! In the HB-500, ultra-sharp selectivity is achieved by means of a true mechanical bandpass filter in the 455 Kc IF section. At 10 Kc on either side of the center frequency, the filter provides 60 do of attenuation - an extremely high rejection ratio that assures complete adjacent channel rejection!

Model HB-501 Solid State AC Power Supply

Matching solid state AC power supply

 for HB-500 for fixed station operation (at home, business office). Transceiver rests on power supply to form attractive integrated unit. Size $11 / 16 \times 611 / 16 \times 31 / 32^{\prime \prime}$. Imported.
post-injected markers -do not distort response -are not diminished hy traps

EICO 369 tv -fm sweep \& post injection marker generator
 With the 369 , citcuit response is not affected by markers and markers are not

atfected by circuit response. The 369 feeds only the required sweep signal to the input of the circuit being aligned or tested. At the oufput end a demodalator cable pichs off the signil and feets it to a miner stage inside the generator, where the markers are added. The combined signal is fed to the oscilloscope. Thenal and that circuitry under test or alignment is not atfected by the marker gital thaps in the circuitry will not reduce or ctiminate the marker The EICO 369 has a controllable inductor swe pircuit-all clectronic, with no mechanical parts to wear and give trouble later. The sweep gencrator is inde-$16-40 \mathrm{men}$ of the 16-40 me: 32-85 me and 75-216 me. All five ranges ate fundancentals: tuning To the desired center irequency is simplised by a $6: 1$ vernier dat and a 330 rea pide cut-off ind indirec is cut-otf via bla AGC chin) of the oscillator will a blanking wbe thal conducts during the newalie eversion of the 60 cps sine aweep A threestage ACC circuit heens the level ol the cwept sipnal cons stant over its entire freutency range, even when the widest sweer width of 20 me is being used. A phasing control at the rear of the EICO 369 adjusts permatnently the horizontal sweep signal fed to the scope
The marker generator in the EICO 369 has 4 ranges covering $2-225 \mathrm{mc}$. The highest range, $60-225 \mathrm{mc}$. is the third harmonic of the next lower range. All other ranges arce fundamentals. Freqtency setting is simpliticd by a $6: 1$ vernicr crystal is supplied As a rapid check of marker generator ahgmment at 45 mc crystal is suppled with each gencrator. When plugeed into a front panct me signal produced by this oscillator is mixed with the variable freculuency marker. The 4.5 me crystal is used also for alignment of sound circuitry in Marker. The 4
The demodnated wave form with the post injected marker is fed to the The demodnated wave form with the post injected marker is fed to the
certical imput of the "scope", and the horizontal sweep to the horizontal input of the "scope" through one shictaled two-conductor cable. Scparate through one shiclded two-conductor cable. Scparate
level controls for trace size and marher size on the level controls for trace size and marher size on the
fromt panel can be used independently. Kit $\$ 89.95$;
सानत
HICD
red $\$ 139.95$
EICO ELECTRONIC INSTRUMENT CO., INC., 131
EXPORT: ROBURN AGENGIES INC., 431 GRLENWICH sThCGT, N. Y, i3, N. Y.
EICO ELECTRONIC INSTRUMENT CO., INC., 13

PUT THE BEST ON YOUR BENCH

EICO 667 dynamic conductance tube and transistor tester will earn money for you by catching the bad tubes an emission tester would miss The EICO 667 combines a mutual conductance test with a peak emission test to give a single reading of tube quality. Bad transistors can be spotted easily. Gain and leakage tests will find the defective ones.
TESTS ALMOST EVERY DOMESTIC OR FOREIGN RECEIVING TUBE MAOE. The EICO 667 chciks 5 and 7-pin Nuvistors; 9-pin Novars; 12-pin Compactrons; 7, 9 667 checks 5 and $7-p i n$ Nuvistors; $9-p i n$ Novars; 2 -pin Compactrons; 7 , 9
and the new 10 -pin mintaures: 5. 6. 7 and 8 -pin subminiatures; octals and and the new
loctals. It will atso check many low-power transmitting and special purpose tubes. voltage regulators, cold-cathode regulators, electron ray indicators, and ballast tubes. And by inserting pilot lamps into the special output in the center of the Novar socket you get in instamt good-bad test of these lamps.
IESTS MADE UNDER ACTUAL TUBE OPERATING CONDITIONS. When one section of a multi-purpose tube is being lested, all sections are drawing their full rated current. Pentodes are tested as pentodes rather than combining all the clements for a simple emission check. Leakige berween lube clements is read directly on a $41 / 2$-inch meter in ohms.
TRANSISTORS CHECKED IN TWO STEPS. First for leakage, then for beta or current amplification factor. Both are read directly off the meter dial and both $n-p-n$ and p-n-p tramsistors can be checked. Price. $\$ 79.95$, kit; $\$ 129.95$. wired.
Tests all Color, $\mathrm{B} \& \mathrm{~W}$ CRT's-70, 90 and 110° !
EICO CRU universal Crt test adapter-New CRI :adapter for models 667 and 628 has $12-p i n$ sochet for 70° and carly 90° deflection blach and white lubes. Thrce additional bach-bo-bach plog-sochet adapters for 7 . and 8 -pin Write for Free catalog to Dept.

INTEGRATED CIRCUITS

By LESLIE SOLOMON / Associate Editor

> Electronic circuits are becoming microscopic in size. We can now make multi-transistor units small enough to pass through the eye of a sewing needle. Here are the details of how these devices are made.

|NTEGRATED circuits are the result of reducing the size and weight of active and passive electronic components almost to the vanishing point. In fact, it becomes possible to incorporate a multi-triansistor circuit consisting of 28 active (transistor and diode) and passive (resistors and capacitors) components in an area the same size as the letter " O " in this type face.

It is also a big business, and will be even bigger as time goes by. It has been estimated that by 1973 the dollar volume of integrated circuits may reach between $\$ 500$ million and $\$ 1500$ million. In one forecast made by some memhers of the electronics industry, the figure of $\$ 700$ million volume by 1973 has been mentioned.

Integrated circuits can also save considerable money for the electronics industry. Patrick E. Haggerty, president of Texas Instruments, Inc., recently stated that by 1973 every one-billion dollars worth of conventional circuitry can be replaced by a half-billion worth of integrated circuitry for a potential saving of 50% to Government, industrial, and consumer users. Mr. Haggerty also stated that further economies in hardware, chassis construction, and wiring will save many millions in each of the three markets.

By 1973, Mr. Haggerty estimates that the potential value of conventional circuits that technically conld be replaced by integrated circuits could run to $\$ 2440$ million for Government, $\$ 1330$ million for industrial, and $\$ 650$ million for consumer users.

According to Herman Failkov, vice-president of General Instrument Corp., the estimated usage of miniaturized package assemblies should increase from $\$ 75$ million in 1964 to
about $\$ 250$ million in 1965 . At the same time, the estimated usage of monolithic integrated circuits will go from $\$ 50 \mathrm{mil}$ lion in 1964 to about $\$ 350$ million in 1968.
When will these small circuits see wide use in consumer electronics? Here, all experts agree that the cost of the integrated circuit is the determining factor. Size will not play an important role at this time. The size differential between vacuum-tube devices and the transistor-printed circuit devices was great. The size differential between transistor circuits and integrated circuits will not be as great because the final size is dependent on the size of the other components that go into making up a radio or TV set.
Dr. Robert Noyce of Fairchild Camera and Instrument Corp. claims that the crossover point in the relative price of conventional and integrated circuits has been reached. The price of a certain transistor, as supplied to a military contractor, is between $\$ 3$ and $\$.5$ in small quantities, while in quantities of 50,000 or more, the price goes down to 75 c to $\$ 2$. Dr. Noyce also stated that typical integrated circuit prices are alont $\$ 4$ per transistor in small quantities, but in quantities over 50,000 they have gone down to under $\$ 1$ per transistor, although $\$ 1.50$ to $\$ 1.75$ is average. Dr. Noyce pointed out that savings apply mostly to digital systems where most of the development has taken place. Low-usage integrated circuits, linear circuits in particular, are still more expensive than their conventional counterparts.
Cost per circuit is very important in the use of integrated circuits. A typical monolithic circuit starts with a set of masks costing up to several thousand dollars, depending on the complexity of the circuit. The actual silicon wafer cost is

L
about $\$ 10$ and between 100 and 400 separate chips can be made from a single wafer. Because of the many things that can go wrong during the manufacturing process, the yield of operating chips can be anywhere between 10 and 50 percent of the number available from a wafer. Other manufacturing processes, such as testing and mounting the wafer in its final holder, also add to the cost per unit.

There is another problem with consumer electronics. Where one manufacturer has a desire for a particular circuit, another will want to use his pet circuit. This means that separate integrated circuits would have to be made for each of these manufacturers, thus increasing unit price. Standardization of some circuits such as audio amplifiers may have to be arrived at to reduce the price of these units. Conservative estimates are that integrated circuits will start arriving in the consumer field in quantities some time within the next 4 to 5 years, probably starting with the larger manufacturers who have both integrated circuit facilities already in opera-
tion within their corporate structure and a radio or TV set manufacturing facility

Several steps in introducing integrated circuits to the consumer market have already been taken. Westinghouse Electric Corp., for example, has demonstrated an experimental integrated circuit radio about half the size of a man's finger. Recently, Motorola unveiled a $120-\mathrm{mc}$. transceiver, designed for the Air Force, and shown in Fig. 1. This unit uses 29 separate mountings, some containing monolithic circuits, some with thin-film components, while others mount discrete components.

Examples of monolithic integrated circuits contained within the transmitter-receiver include a 120 -mc. r.f. amplifier and four $12-\mathrm{mc}$. i.f. amplifiers. This prototype mit weighs 15 oz ., has a receiver sensitivity of less than $1 \mu \mathrm{v}$. and a transmitter power output of 50 mw .

A microelectronic i.f. amplifier (shown in Fig. 2) has been developed by Gencral Instrument Corp. with a center frequency of 25 mc , a gain of 70 db , and a bandwidth of 2 mc . This unit can be used with center frequencies to 60 mc . This unit uses several multi-chip circuits, each packaged in a TO-5 can. The amplifier features 70 db of a.g.c. range and several such stages can be cascaded.

Probably the first section of consumer electronics to take advantage of integrated circuits is the hearing-aid manufacturers. Using a 6 -transistor plus passive elements silicon chip fabricated by Texas Instruments, the Zenith hearing-aid monolithic circuit (shown in Fig. 3) is so small that 10 of them can be stacked in the space the size of the head of a conventional kitchen match. The entire hearing aid weighs one-quarter of an ounce with the battery. Of great importance is the fact that the use of an integrated circuit offers as much as 500% greater reliability over previous hearing-aid circuits.
At the present time, the biggest users of integrated circuits are those concerned with the logic elements as used in

digital computers and other data processing devices. This is because the large number of identical circuits needed in these computing devices makes maximum use of a single set of circuit mashs and the associated manufacturing operations, thas reducing the cost of each discrete chip

Cypes ol Inteqrated Circuits

Today's integrated circuit technology involves two basic processes-thin-film techniques, in which passive components (resistors and capacitors) are deposited as lavers of materials on an inert substrate; and a semiconductor technique (monolithic) where both active and passive components are formed on, or in, a tiny chip of semiconductor material

Because of the limitations imposed by each approach (for example, thin-film passive components must be used with ont board semiconductors conpled to the thin filns; and with monolithic circuits ance a resistor or capacitor is formed. it camot be changed for experimental reasons), a third ap-
proach is being used. This method has various mames, but generally the term "hybrid" or "multi-chip" circuit is used. These hybid circuits are often used daring experimental development so various resistors, capacitors, and semiconductors making up the test circuit call be changed. They are also used when parts values that cammot be obtained with monolithic techniques must be used. Each type of circuit, and how they are fabricated, will be discussed.

Monolithic Cirenits

A monolithic integrated circuit is one in which more than one electrical component is fabricated and interconnected as a single, solid circuit element. As previously stated, it is possible, using modem electrochemical techuiques, to fabricate a relatively eomples circuit incorporating several forms of semiconductars and their associated resistors and capacitors on a common substrate that is itself a semiconductor material, such as silicon.

An enlarged photo of such a device, manufactured by Syluania, and containing 28 active and passive components, is shown in Fig. 4. The individual circuit chips shown on the cover will give an idea of the final size of these extremely small devices.

The basis for the creation of a monolithic circuit is the chemical process known as "diffusion." In its simplest terms, diffusion is very similar to ordinary wood staining. If the surface to be stained (diffused) is cleaned, and a suitable mask containing a desired shape cutout is placed over the area to be stained (diffused), then application of a stain (diffusing chemical) to the mask will produce the desired stained (diffused) area.

The monolithic circuit starts with the growth of a highpurity silicon crystal, by placing a seed crystal into molten silicon and slowly withdrawing it under precise control to form a single crystal about six inches long and about one inch in diameter. The crystal can be grown with impurities to make it either a p-or n-type crystal.

Germanium integrated circuits are almost non-existent due to the technical difficulties in producing the necessary later diffusions and passivating layers suitable for supporting the motal film circuit interconnects or thin-film passive elements.

The long silicon crystal is then sliced with a fine diamond saw into many thin wafers, each about 12-thousandths of an inch thick. The wafer is lapped flat and chemically etched to form a smooth, shiny surface. The finished wafer is about .005 of an inch thick and about one inch in diameter.

Masking

The masks, used to cover the desired sections of the silicon chip for the various diffusion processes, are made many thousands of times larger than "real life" by skilled artists. The lead photo shows an artist preparing one such mask that will be reduced 250,000 times in size before it reaches working proportions. Advanced photolithographic techniques are used to reduce each mask down to the size where about 400 of them can be formed in the space the size of the silicon water (about as big as a 25 d piece).

One mask is used to create each layer in the silicon substrate. Depending on the complexity of the circuit, up to 20 masks may be used to create a particular circuit.

Components

By proper arrangement of the various diffusion layers, it becomes possible to create transistors, diodes, resistors, and capacitors, each working because of the differences ex-
isting at the interfaces between the various diffused lavers.
Starting with the silicon wafer, the layers are diffused to the required depth and shape by the desired p - or n-type diffusion. Other masks, used to apply either other diffusions or a silicon-dioxide insulating layer, are then used until the final components are made.

A cross-section view of a conventional planar transistor, such as made by Fairchild Semiconductor, is shown in Fig, 5 A . This transistor consists of a p-type base and an $n+$ emitter diffused into n-type bulk material (wafer). Many transistors can be made on the same wafer, but they will all share a common collector circuit.
An integrated circuit transistor of the same type is shown in Fig. 5B. Here, the collectors are electrically separated from each other by an additional p-type diffusion which results in an additional diode, called the isolation diode, tied to the collector of each transistor. When these isolation diodes are reverse biased, the collectors of the individual transistors are isolated from the other circuit elements. Since the isolation diode anode covers the back surface of the entire wafer, collector contact must be made at the top as shown in Fig. 5B.
Integrated-circuit diodes of three basic types may be obtained from a transistor-type structure. The common-cathode configuration is shown in Fig. 6A. Common-anode arrays can also be fabricated as shown in Fig. 6B. Diodes may also be formed by using a multiple emitter transistor arrangement.

Integrated-circuit resistors are generally obtained in one of two basic ways. One method is to arrange patterns of resistive thin-film material on the surface of a substrate, making intraconnections as required. The other method lies in using the bulk resistivity of one of the diffused areas in a similar manner. In either of these cases, the resistance value obtained is proportional to sheet resistivity and pattern length, and inversely proportional to pattern width.

A cross-section view of a diffused resistor is shown in Fig. 7. The resistor consists of a long, narrow region of j)type base diffusion in what is normally an n-type collector area. The resistor thus formed has distributed diode properties as well as linear resistance characteristics,

When a positive voltage is applied to one end of the resistor, that end of the $p-12$ junction becomes forward biased, allowing just sufficient current to flow to supply reserve leakage current to the back-biased isolation diode. The remainder of the resistor $p-n$ junction remains reverse-biased since all the n-type matcrial is at essentially the same potential. Practical resistance range is 20 to 20,000 ohms.

As with resistors, integrated-circuit capacitors may be ob-

TOP LEFT
Fig. 1. This $\mathbf{1 2 0 - m c . ~ t r a n s c e i v e r ~}$ designed by Motorola, uses a combination of monolithic, thin-film, and discrete devices.

TOP RIGHT
Fig. 2. Microelectronic i.f. amplifier by General Instrument Corp. has center frequency of 25 mc . and bandwidth of 2 mc .

bottom left

Fig. 3. Tiny hearing aid by Zenith uses monolithic circuit made by Texas Instruments. The match shows amplifier size.

BOTTOM RIGHT
Fig. 4. This monolithic circuit is made by Sylvania and contains 28 active and passive electronic components. Size of this device is smaller than the letter " O " of this type.

Fig. 5. (A) Construction of a conventional planar transistor. (B) Construction of an integrated circuit planar transistor.
tained through either thin-film or junction (diffusion) technigues. Generally, these will be an emitter-base junction or metal-oxide silicon (MOS) types.

Several examples of junction types are shown in Fig. 8. Junction capacitors are inherently voltage dependent and must be used in the back-biased, or non-couducting condition. The back-to-lack configuration shown in Fig. 813 insures this bi-polar operation.

A collector-base jumction can be used by itself or in parallel with the base-emitter junction for a capacitor such as shown in Fig. SC. However, due to the high series resistance and the high relative shom isolation capacitance at the collector, this type of capacitor is impractical.
Fig. 8D shows two types of metal-oxide-semiconductor (DIOS) (apacitor structures. The electrodes, separated by the thin oxide layer, are obtained by using a heavily doped diffused region and a surface film of metal. The capacitance value, and voltage breakdown, are determined by the thickness of the SiO), layer separating the two plates.

Once the wafer has been treated so that all the individual circuits are complete, it will contain up to several humdred individual monolithic circuits (chips). A close microscopic inspection of the wafer may show that many chips may have faults due to pinhole imperfections, improper diffusion, or some other flaw that will make the circoit inoperative. These faulty circuits are marked for later removal.

The wafer is then cont into individual chips using a glasscutting technique, A diamond scribe is used to make the fine separation scratches on the wafer between the individual circuits. The wafer is then mechanically separated along these lines into uniform sfuare dice.

The dice are then thoroughly cleaned, dried, and inspected once again for defects. Each die is then mounted to its particular header using a high-temperature alloy. The header connector leads are then spot-welded to their connecting points. Following this lead welding, a final optical inspection is made to gharantee that the circuit has not been damaged. After this inspection, the circuit is then closed up in its mome and tested for electrical characteristics.

I'lin Films

The major difference between thin-film circuits and conventional printed circuits is one of thichness. Athough a printed circuit uses so-called microminiature components soldered to wiring plated on the insulating substrate, this type of circuit is still some large fraction of an inch in thickness.

Thin films, on the other hand, are coatings whose thickness can be measured in microns, making them far thimer than a human hair. These thin-film coatings can be faloricated from varions chemical elements to form resistors and capacitors of various values. Although being produced in laboratory experiments, active elements such as transistors, diodes, and other semiconductors are not presently available in thin films.

When they are to be used, separate, discrete, extremely small active devices can be momed to the thin-film circuit.

A simple analogy of one of the processes commonly used in the manufacture of thin-film components and circuits is the deposition of an extremely thin layer of soot on a glass using the smoke from a candle flame as the source of soot. If some geometric shape is placed on the glass surface facing the candle flame, then this shape will be outlined in soot.

If, instead of a candle, various chemical elements were

Fig. 6. (A) Construction of a common-cathode pair of diades. (B) Construction of a pair of diodes having a common anode.

Fig. 7. How a monolithic circuit diffused resistor is made.
Fig. 8. Junction copacitor structures. (A) Emitter-bose junction. (B) Emitter-base junction, back to back. (C) Emitter-collector-base junctions in parallel. (D) Some monolithic circuits use a metal oxide semiconductor type of capacitor.

Fig. 9. Typical example of a hybrid circuit made by General Instrument Corp. Eight separate chips are used on this unit.
burned so that their "soot" was deposited on the substrate, then the "shadow" of the shielding shape, having the chemical characteristics of the chemical burned, would result. If the deposited chemical "soot" has a certain resistance value per unit area, then the resultant deposited shape would have a resistance dependent on its shape. By varying shape and areas of the deposition, different values of resistance could be obtained. If, on the other hand, a metallic laver were deposited on the insulating substrate, and then this laver were covered by a thin insulating layer, and then another metallic layer were deposited directly over the first one, it becomes possible to create a capacitor having very thin dimensions, whose capacitance value is a function of the mutual area between the metallic lavers. In such cases of thin-film components, the insulating substrate acts only as a mechanical support.
Besides resistance and capacitance, it is also possible to fabricate a thin-film inductor by forming a spiral of conductive material. Because a large number of turns is required to make a significant inductance value, and since the thin-film coating itself has some resistance, a very low " Q " results for inductors with values much over 1 to $\dot{2} \mu \mathrm{hy}$. When large values of inchuctors are required in some applications, special microminiature units are mounted on tiny substrates.

Deposition of thin films is accomplished by the transportation of matter from a heated evaporation sonrce to a condensation surface (substrate) in a vacumm. Because the electrical parameters of thin-film components depend largely on their geometries, the masks used to shape these components are made many times oversize so that they can be made clean and sharp edged. They are then reduced to their final size using high-resolution photo technicues.

At present, only passive conponents are being fabricated using thin-film technigucs. Some transistor-like devices and other semiconductors are being made in the laboratory. Microminiature transistors and diodes, 28-thousandths of an

Fig. 10. The actual circuit of Fig. 9. Two different types of transistors are used so that this circuit must be hybrid.

incli square have been falbricated by $I B M$ for the use in the System/360 data-processing system.

Besides resistors, capacitors, and certain types of inductors, other types of thin-film components are being manufactured. Thermocouples used to monitor temperature rise in a hubricating fluid have been deposited on a paper base for use in narrow spaces; lubricating films have been deposited on fused quartz to evaluate the potential of thin-film lubricants; and thin-film aluminum coatings are being applied to various optical devices such as lenses and mirrors.

Hybrid Circuits

Although the monolithic, or fully integrated microcircuit, in which all the components share and are interconnected on a single common substrate, has revolutionized many areas of circuit design, it is not miversally applicable to all problems under all circumstances. In the present state of the art, the monolithic circoit has certain disadvantages.

One technical limitation to the frecdom of design of there circuits is the problem of either physical or electrical interaction of components sharing the same common substrate. In a monolithic circuit, where a large number of components slaure a common substrate, the substrate material must of necessity be a compromise between the ideal or optimum characteristics for the necessary circuit resistors, capacitors, transistors, diodes, or other semiconductor devices. The substrate material may be ideal for one component but far from ideal for another. It is also possible to have heat-sensitive components sharing the same substrate as a heat-prodiring component. This can compromise circuit operation. Also. in many cases some circuit values may be required that cannot be olbtained with monolithic techniques. For example, practical inchuctors have not been made in monolithic circuits as yet. If a circuit requires an inductor, then either a thin-film one or a tiny lumped inductor must be affixed close to the monolithic circuit (on the same header) and interconnected into the microcircuit.
Because helprid or multi-chip circuits are essentially an assembly of discrete tiny components, they are ideal for small production runs where costs are of great importance. They are also used for circuit evaluation and testing before being made in monolithic form. In the hybrid configuration, it is relatively easy to change components to suit circuit changes.

Although heybrid circuits are composed of an assembly of thin film and possibly tiny discrete components, they are not physically large. In fact, they usually occupy the same size mounting package as a monolithic circuit.

One such hybrid circuit is the NCS-390 complementary Hip-flop made by the Gencral Instrument Corp. and shown in Fig. 9. This basic computer comnting device has the circuit shown in Fig. 10 and is .375 -inch square. Because two different types of transistors were required by this circuit, and under present techniques both cannot be laid down on the same silicon wafer, this flip-flop uses the hybrid construction. It inchudes eight separate microminiature chips inchuding four transistors (2 $n-p-11$ and $2 p-n-p$), two diodes, and two resis-tor-capacitor networks. The smallest chip used is 20 -thousamelths of an inch square. As with all hybrid circuits, various component chips (circuit values) can be changed as clesired.

The eight chips are interconnected on an alumina (ceramic) wafer by pure gold wires, each 10-thousandths of an inch wide (less than one-tenth the diameter of a human hair). Each silicon chip is alloyed to the interconnecting wire in an umbreakable bond. The unit is then hermetically sealed in a nickel alloy case to prevent the entry of moisture. The finished circuit is only three-eighths of an inch square and sixhundredths of an inch thick.

Another example of the use of hybrid circuits is the Motorola two-way radio shown in Fig. 1. An examination of many of the devices shown discloses the use of many hybrids, both as circuits and individual thin-film components.

P0WER \& RESISTOR CHARTS

By ROBERT JONES

The solution to problems based on the common power formulas is simplified by the use of two graphs.

DO you have difficulty with, or find it time consuming, when the maximum current or voltage that can be tolerated by a resistor of given power rating must be found? While most techinicians amed with a slide-rule can find a reasomably quick answer to the formulas $P=E-/ R$ or $P=I^{2} R$, considerable effort and much thought often goes into the longhand method if many values must be calculated. By using the left-hand chart below, the solution of E, R, or P can be readily found when any two of the values are known. Application of the right-hand chart provides the solution to I, R, or P.

Some examples to try on the charts include: 1. Given a resistor of 1000 olms with a voltage across it of 20 volts, find the wattage of this resistor. The answer to this simple

example is 0.4 watt. Use the left-hand chart by first finding the applied voltage on the voltage scale, then following this line upward until it intersects the line representing the given resistance in ohms. Note that the answer shown by the chart is between the $\%$-watt and $\frac{1}{2}$-watt diagonal power lines. The larger of the two wattages is the closer to the higher comventional wattage rating. For safety, this wattage is usually doubled.
2. What is the maximum current that can be safely passed by a 2 -watt, 25,000 -ohm resistor? Using the righthand chart, locate the 2 -watt diagonal line and follow this along to the $9.5,000$-ohm horizontal line. From the point where these lines intersect, follow the vertical line down to the current scale on the chart. The answer is shown to be close to 9 mat.

NOISE FIGURES
 0F V.H.F. AMATEUR CONVERTERS

 By WILL CONNELLY, W6QID

Significance of this factor, techniques of measurement, and methods of improving noise performance of ham v.h.f. systems.

THE selection of a new v.h.f. converter or an appropriate converter design can be a worrisome task. Specifications abound and prices range over a nearly 3 to 1 ratio. The inveterate peruser of converter ads and articles will note that the one technical parameter stressed by all manufacturers and writers is low-noise performance, or low noise figure, and that the lower this number, the better the converter is claimed to be.

There are some complications to this noise figure business which have been inadequately explored in amateur literature. Not too many hams really understand noise figure. Fewer still have access to the sophisticated and costly test equipment required to measure it accurately. And still fewer, including some of the manufacturers of the equipment know how to make an accurate noise-figure measurement, even with the equipment that is required.

Noise Figure

What, exactly, is noise figure? When a noise-figure rating is assigned to a converter (or receiver or amplifier), it implies that the converter is less sensitive than a theoretically perfect, completely noise-free converter-one which cannot be achieved in practice. In essence, the statement of noise figure is a form of comparison between the signal-to-noise power ratio of real and imaginary equipment. (Noise figure may be expressed as a ratio of two powers, but is generally expressed as the logarithm of the ratio, in decibels.) The higher the numerical rating, the more the real converter diverges from the performance of the imaginary perfect standard. Thus a converter with a noise figure of 3 db is half as sensitive (that is, has one-half the signal-to-noise ratio power) as a theoretically perfect converter.

At any temperature above absolute zero, molecules move within any substance and, in the process of moving and colliding with each other, generate electrical power. This generated power is white noise and is evenly distributed across the entire radio spectrum. For any sample band of frequency, say 10 kc ., the amount of noise generated will be the same; i.e., the noise power in a $10-\mathrm{kc}$. wide sample of spectrum near the broadcast band will be the same as the noise power in a $10-\mathrm{kc}$. sample of spectrum taken at a microwave frequency. If the sample band is 100 kc ., the amount of noise power within the sample is ten times greater than it was in the $10-\mathrm{kc}$. sample. The higher the temperature to which the noise-producing object is raised, the higher will be the noise
power developed. Note that the term power is used, for it, unlike voltage, will be constant irrespective of the resistance of the material.

For example, an antenna, even though it is completely shielded from all the cosmic and man-made noises to which it would be subjected in a real situation, will produce noise by virtue of the fact that it is constructed of matter. At resonance, this antenna will act as a pure resistance (the radiation resistance) across which noise power will be developed, and this resistance is the effective shunt resistance to the otherwise noiseless input of the theoretically perfect converter. A finite limitation, the magnitude of white noise, now establishes the absolute power sensitivity of the converter and provides a standard for comparison.

Noise Powers

The comparison standard, the absolute power sensitivity of a theoretically perfect amplifier, has been converted to a graph, Fig. 1. This graph is based on a temperature of about $300^{\circ} \mathrm{K}$ (approximately room temperature), which is the generally accepted reference temperature among engineers. Note that it would be possible (and in the opinion of the author, highly advisable) to express noise figures as a noise temperature instead; $300^{\circ} \mathrm{K}$ is proving to be too high a temperature in an age when parametric amplifiers and cryogenic techniques permit negative noise figures. It is, however, a current reference standard and convention shall be served.

Fig. 1 gives the relationship between noise power and bandwidth at about $300^{\circ} \mathrm{K}$. Bandwidth is the point at which the amplitude of signals passing through the converter has fallen to the half-power, or 3-db-down points, on either side of the center frequency. The power levels are expressed in convenient decibels below one milliwatt, or dbm , to which decibels may be added or subtracted. Zero dbm equals one milliwatt, -10 dbm equals one-tenth (10^{-1}) mw., -20 db is equal to $1 / 100$ th (10^{-2}) mw., -120 dbm equals $10^{-12} \mathrm{mw}$., and so on.

Referring to the graph, it can be seen that for a bandwidth of 1 kc ., the absolute power sensitivity is -144 dbm . This is 4×10^{-18} watt or 4 micromicromicrowatts (or 4 attowatts). If this noise power is developed across a 50 -ohm load, such as a feedline, the noise voltage will be 0.014 microvolt.

When the signal fed to the converter is of the same strength, i.c., the signal and noise powers are equal and
the signal-to-moise ratio is unity, the power output delivered by the converter will rise 3 db over the level for noise alone. It is upon this principle that noise-figure measurement is based.

The observation made earlier to the effect that noise power increases ten times (10 db) for each ten-fold multiplication of bandwidth is shown by the graph. The corollary is that the absolute power sensitivity, or minimum detectalble signal strength, of a receiver increases 10 db for each decade by which bandwidth is reduced. This is system bandwidth. A two-meter comerter may have half-power response of 6 or \& megacroles, but the i.f. of the commmications receiver which follows it may be only 3-kc. wide. The bandwidth at the point from which intelligence is taken, or at which a measurement is made, determines absolute power sensitivity. ln this case, it is the 3 -kc. bandwidth.

Measurement Precamtions

There are several mothods of measuring noise figure. Two of these will be described. Some manufacturers of low-noise equipment are incapable of making accurate measurement. This conclusion is the result of first-hand experience with some of the sources of measurement error. These will be listed in the hope that noise-figure measurement by professionals will eventially be improved.
I. To achieve a measurement accuracy of one dacibel, the signal generators, noise sources, attentators, and power indicators should have individual accuracies at least ten times better. or 0.1 db . Set noise fignes clown to a tenth of a decibel are often seen in print, implying measurement-device accuracies of 0.01 db . Such equipment is remarkably rare.
2. The device which measures the output power of the system must be a true pouer indicator. This means a thermocouple device, usually a bolometer power meter.
3. Signal generators must be thoroughly shielded to prevent leakage signals on the order of millimicrovolts.
4. Measurements must be made in screened rooms.
5. A converter or amplifier just on the verge of oscillation will show a noise figure appreciably better than the true noise figure. It may even show a negative noise figure.
6. If the receiver used in conjunction with a converter, or if the converter itself, has poor image rejection, the comverter noise figure will appear to be several $d b$ better than the true noise figure.
7. For best noise figure, a converter must be critically mismatched to the antema. To avoid the introduction of impedance discontinuities which will distort the measurement, the cable between the signal source and the converter must be made a precise electrical half-wave. This is done with an adjustable line, such as a "trombone," and an impedance or conductance bridge capable of accurate performance at the converter input frequency.
8. All stages in the measurement system must be operated in a linear mode. In practice, this means that no a.v.c. may be used during the measurement process and that measurements at the receiver audio stage, which follows a non-linear detector, are unacceptable.
9. If the gain of the converter is low, the noise figure of the receiver with which it is used can affect the indicated noise figure.
10. If "spot" noise figures, using the c.w. signal generator method, are to be measured, the system bandwidth must be accurately measured first and, for optimum accuracy, the passband must be symmetrical about the center frequency.

Measurement Techniques

Now to the technique of measurement, which will assume that all factors enumerated have been given due consideration. In Fig. 2, an r.f. signal generator is comected through a precision attenuator to the input of the converter. A switch permits the input to be connected to a $50-\mathrm{ohm}$ resistor. The

Fig. 1. Absolute power sensitivity of perfect amplifier for various amounts of bandwidth at about room temperature $\left(300^{\circ} \mathrm{K}\right)$.
detector diode is removed from the receiver and the power meter is connected across the secondary of the last i.f. transformer. The converter input is connected to the resistive source and the receiver gain is adjusted for roughly hall-scale indication on the power meter. Switching the input to the signal generator source, the attenuator is next adjusted for a rise of precisely 3 db on the output indicator, and the attenuator setting noted. Assume that the receiver i.f. bandwidth has been measured at 3 kc . and that the attennator reading is -136 dbm . Referring to the graph of Fig. 1, it can be determined that the absolute power sensitivity of the ideal equipment would be a fraction over -139 dbm . The difference between the actual measurement and the theoretical sensiticit! is the noise figure: slightly over 3 db .

The measurement just made is the spot noise figure at one particular frequency. The noise figure of a properly aligned 2 -meter converter will usually be within a half db or so from one end of the band to the other.

The second system of absolute measurement delivers avcrage noise figure. In place of a signal generator, a noise source is used. One type of noise generator is the "thermionic diode," which permits direct readings from the generator itself. Other precise generators utilize neon, argon, or flnorescent-light gas-discharge sources of noise, and have fixed output. The gas-discharge sources are used in the same manner as the signal generator, while the thermionic diode source requires only that the $3-\mathrm{db}$ rise in output be precisely observed, the bandwidth
(Continued on page 78)
Fig. 2. Test-equipment setup for measuring noise figure.

RECENT DEVELOPMENTS in ELECTRONICS

Rare-Earth Garnet C. W. Laser. (Below) The development of rare-earth aluminum garnet crystals at Bell Labs has made possible a solid-state optical maser which operates continuously at room temperature with only a small fraction of the pumping power previously required. The crystal (rod at left within elliptical housing) is pumped with a standard spiral-filament tungsten lamp that has a life of thousands of hours. This new development is a step in putting solid-state lasers on an equal footing with gas types for c.w. use.

Epoxy Resins in Electronics. (Above) Plastic epoxy resins are finding more applications in the electronics industry as time goes on. For example, they are used ir bonding wrap-around safety-glass panels to TV tubes. Photo shows engineer at Dow Chemical Research Labs using polarimeter to measure stress developed during curing of resin. Another technique to prewent implosion is the use of a metal band, formed under pressure around the TV tube faceplate. Epoxy resins bond the metal band and metal mounting frame to the tube. The resins, because of their gocd electrical properties, are used for laminates (orinted-circuit boards), potting and encapsulation, and in manufacture of a good many electrical and electronic components.

7000-Ib. Outdoor Loudspeaker. (Below) Probably the most powerful loudspeaker ever built is used nightly at the N.Y. World's Fair "Fountain of the Planets" water pattern and fireworks display. Reproducing the music accompanying the display, the speaker rises on a nydraulic lift behind the cascading water curtain. The speaker, designed by RCA Laboratories, is 16 feet in diameter and weighs 7000 lbs. The center section is made up of 3 circular tiers, each containing 16 cast-aluminum folded horns with separate driver speakers. Two huge metal saucers act as a circular terminating horn.

Electronic Blackboard. (Above) An electronic writing machine has replaced the traditional blackboard for a nuclear engineering class at Georgia Tech. Equations written by the instructor in Oak Ridge, Tenn. on a Victor Electrowriter travel 200 miles by telephone lines to be reproduced on a secoind unit at the university. A CCTV camera on the machine relays pictures of the moving pen to students. The main advantage of the system is its low cost because of the use of ordinary telephone lines.

Thermionic Energy Converter. (Above) This module incorporates three series-connected thermionic energy converters which operate in a single vacuum area with a single cesium reservoir. The module was designed by RCA to convert nuclear heat directly into electricity in a liquid metal locp system. During a recent test, stable power output of over one watt/cm. ${ }^{2}$ of emitter area was obtained at an emitter temperature of 1500 degrees K. The power output of this module is 60 watts at 0.84 volt. This development may lead to the design of electrical power systems for use in space vehicles.

Infrared-aimed Laser Radar. (Below) An engineer is shown adjusting a new infrared-aimed laser radar during a recent test. This Sperry-designed system promises a ten-fold increase in on-target precision over microwave radar trackers and has permitted the use of narrower, more intense laser beams for higher signal-to-noise ratios. The passive IR sensor is gimbal-mounted between the trunnions which carry the laser optics. The laser transmitter beams its pulses from the U-shaped aperture atop the trunnion at right (directly below engineer's hand). The reflected laser light beam returns through a similar aperture at the top of the trunnion at left.

Tactical Communications Link. (Below) Rendering of new $5000-\mathrm{mc}$. line-of-sight and over-the-horizon radio communications equipment developed by ITT Federal Labs. The system, designed for the Army, constitutes a complete radio terminal requiring only connection to existing area communications facilities to be operational. The equipment, designated AN/TRC-112, is completely transistorized except for a klystror power tube. The system consists of a radio shelter containing trans-mitting-receiving equipment, two $10-\mathrm{ft}$. parabolic antennas, and two power generators. It can be transported in two $3 / 4$-ton vehicles, each towing a small power-unit trailer. Multi-channel telephone, teleprinter, or data from standard military or commercial sources can be handled.

CAPACITANCE TRANSDUCER SYSTEMS

By SIDNEY L. SILVER

Abstract

Various forms of unusual capacitors are used by industry to determine the level of liquids in a storage tank or the pressure of liquids flowing through hydraulic plumbing.

IN modern instrumentation and control systems, the principle of capacitive variation is frequently emplored in transducer design to sense mechanical changes and convert them to corresponding electrical signals. Capacitance transducers are capable of linear and angular measurement with a high degree of conversion stability, excellent lincarity, and infinite resolution. These devices produce accurate measurement for a wide range of basic physical quantities including pressure, humidity, vibration, thickness, torque, and licuid level. In addition, physical phenomena related to motion such as displacement, velocity, and acceleration may be readily translated into a useful voltage or current output. Since the force requirements of capacitance transducers are very low, cxtremely small changes in electrical capacitance can be detected with negligible distortion.

Principles of Operation

The design of capacitance transducers is based on the inherent property of two or more charged metallic elements which enables them to store electrical energy in an electrostatic field between the conductors. The capacitance so formed is a function of the effective area of the conductors, the distance which separates them, and the dielectric constant of the insulating material between the conductors. A change in any of the three parameters caused by the physical (finatity acting on the transducer will produce variations in electrical capacitance which may then be accurately calibrated.

In its simplest configuration, a capacitance transclucer system consists of a sensing probe, or pickup, containing a fixed plate and a movable plate separated by a suitable dielectric. In other modes of construction, the electrodes are fixed and the dielectric material serves as the variable element. The nomal capacitance between the terminals of a capacitive sensor is the vahue obtained when electrostatic lines of force are uniformly distributed over the inner surface of the clectrode plates, and when the electrostatic field is composed of straight lines exterding directly from one electrode to the other. For the simple parallel-plate transducer shown in Pig. 1A, the capacitance can be computed from the for mula $C=.225 K \mathrm{~K} / D$ where C is the capacitance in pf., K is the dielectric constant of material between plates (for air, K is apporsimately equal to 1), A is the plate area in square inches, and D is the distance between plates in inches.

Fior the cylindrical transducer shown in Fig. 1B, which consists of a rod within a tube, the capacitance is determined by the equation $C=.644 K L /\left[\log _{10}(b / a)\right]$ where L is the length of cylindrical electrodes, b is the imer diameter of the outer electrode, and a is the outer diameter of imer electrode.

In addition to the rectilinear lines of force, a portion of the clectrostatic field is established in the region beyond the
edges of the metal plates and the dielectric material. This is referred to as fringing, or edge effect. Fringing is indicated in Fig. 2A by the curved electrostatic lines of force which bulge outward. This undesirable effect contributes stray capacitance to the measurement and makes the actual capacitance greater than the computed value. For precision measurement involving extremely small capacitance changes (in the order of . 1 pf.), fringe-capacitance error is kept to a negligible value by making the distance between the electrode plates very much less than the plate dimensions. In the design of a capacitive sensor formed be two circular plates, for example, the ratio of plate radius to plate separation must be greater than 200 to 1 , in order that fringe effects contribute less than 1% of the total capacitance.

To further reduce fringing capacitance sufficiently for precise calculation, a guard ring arrangement is sometimes employed to sharply define the edge effects and prevent them from entering into the measurements. As illustrated in Fig. $2 B$, an auviliary guard electrode surrounds one of the plates (center electrode) of a capacitance transducer so that they are insulated from each other by a very narrow gap. The opposite plate (base electrode) is made larger than the center electrocle, so that all of the fringing lines of force are confined to the guard electrode and the base electrode. The guard ring is grounded and the center electrode is maintained at a low potential while the base electrode is comnected to a higher potential with respect to ground. By this means, edge effect does not enter into the direct capacitance between cen-

Fig. 1. (A) Capacitive displacement transducer consists of two parallel metallic plates. (B) Cylindrical configuration is composed of a solid rod centered within a hollow tube.

(A)

(B)

Fig. 2. (A) Effect of fringing lines of force on parallelplate capacitor electrodes. (B) Guard ring reduces fringing.
ter and base electrodes, which permits a precise calculation of capacitance value from the geometry of the capacitive transducer elements and the type of dielectric.

Electrical Systems

Several methods exist for converting variations in transducer capacitance into a useful, readable signal which can be applied to a precision meter, a recording instrument, or a process control system. The most common measuring techniques are the resonance method, the beat-frequency method, and the measuring bridge method (in which the electrode plates are energized by an a.c. source so that changes in capacitance, and hence in capacitive reactance, are detected as voltage or current variations).

A typical example of the resonance method is the fre-quency-modulated system shown in Fig. 3A. In this configuration, the transducing element $\left(C_{X}\right)$ forms part of a tuned resonant circuit ($I \cdot, C 2$), which is loosely coupled to the tank circuit ($L 1, C I$) of a high-frequency oscillator. In Fig. 3B, the tuned resonant circuit is adjusted by varying $C 2$ so that the operating point A lies on a linear portion along one slope of the resonance curve. A variation in translucer capacitance produced by the measured parameter results in a deviation of the operating frequency between points B and C, and consequently a linear output voltage is developed at the output of the detector. The detector output is sufficient to drive a moving coil indicator directly, but a power ampli-

Fig. 3. (A) Measuring system using a capacitive transducer in a resonant circuit. (B) Resonant circuit characteristic.

fier is required when it is necessary to feed a recorcling instrument.
In the beat-frequency method, the transducer element and a calibrated capacitor are part of the total capacitance in the resonant circuit of a variable-frequency oscillator. The v.f.o. is made to "beat" with a fixed oscillator, usually crestalcontrolled, so that a zero-frequency difference exists between them making the output of the sistem zero. Small changes in translucer capacitance cause the resonant frequency of the $v:$ f.o. to shift so that a signal appears at the output of the demodulator. The amount of adjustment of the calibrated capacitor needed to restore the tumable oscillator to a zerobeat condition with the fixed oscillator depends on the capacitive change caused by measured quantity:

Fig. 4 shows a common form of bridge circuit emploved in an amplitude-modulated carrier system. In this circuit, the r.f. voltage from a high-frequency oscillator is inductivels coupled to a center-tapped secondiary which forms two arms of an $L C$ bridge. The bridge also comprises a calibrated capacitor $\left(C_{B}\right)$ and a capacitance transducer $\left(C_{X}\right)$. At balance, when C_{B} is equial to C_{x}, the output of the system is zero. Any change of C_{x} due to the measurable quantity causes the bridge to deviate from balance, so that a control signal is produced whose magnitude and phase depend on the bridge unbalance. Phase discrimination is maintained by re-inserting

Fig. 4. This high-frequency, bridge-fype transducer circuit is commonly used with some types of capacitive instrumentation.
the carrier at the phase-sensitive rectifier producing, for example, a positive output signal when the input is in plase with the reference and a negative signal when the input is out of phase. To restore the bridge to balauce, C_{B} is adjusted (either manually or by means of a servo system) until it equals the measuring electrode (C_{x}).

Applicalions

Capacitance transducers are frequently employed in the precise measurement of fluid pressure of gas, oil, stean, ancl hydraulic materials. In such measuring systems, small displacements (ranging from micro-inches to a few thousandths of an inch) caused by variable pressure are frequently measured by a thin, flexible, metallic diaphragm which forms the movable element of a variable capacitor. A typical electrode assembly is shown in Fig. 5, in which the diaphragm is separated by an air gap from a stationary capacitive plate. As the fluid pressure increases in the pipeline, the pressuresensitive diaphragm is deflected toward the fixed plate, which decreases the thickness of the dielectric and results in an increase in electrical capacitance. Conversely, a decrease in pressure increases the distance hetween the electrodes, and the capacitance decreases. To reduce the response to shock and vibration, the movable diaphragin is made very stiff in order to provide a high natural resonant frequency (10 kc , to 500 kc ., depending on diaphragm dimensions). The diaphragm is rigidly clamped and electrically gromuded to the metal frame while the fixed electrode is mounted on ceramic insulators.

In Fig. 5, the transducer capacitance (C_{x}) formed by the two electrodes is comnected in parallel with a built-in coil ($L 5$) to comprise a tuned resonant circuit. In order to provide mutual coupling between the capacitance transducer assembly and the tuned circuit of the electronic unit ($L 2$, C 2), a low-impedance coaxial line (approximately 50 ohms)
is utilized, with cach end terminated in link coils ($L 3, L 4$). This technique of link coupling eliminates the unclesirable cffects of varying cable capacity (such as caused by vibration) when reflected into a high-impedance load. It also permits the use of very long cable runs with minimum noise and attenuation between the pressure sensor and the electronic converter unit. The converter unit contains a discriminator and associated amplifier circuitry. Any capacitance change in the pressure sensor causes the discriminator to shift its characteristics with respect to the oscillator, resulting in a proportional output voltage as a function of applied pressure.

The electric:al-c:apacitance effect provides a relatively simple means of continuously measuring and controlling the level of fluids inside sealed vessels or open tanks. In this application, the spacing factors of a capacitance transelucer are held rigidly constant so that the variable parameter is the dielectric constant of the material to be measured.

Fig. 6 shows a capacitance system suitable for the level measurement of nonconductive Huids such as liquefied gases and petroleum products (oil and gasoline). The inner probe forms one electrode of a capacitive element which consists of a cylindrical metal rod, usually fabricated of stamess steel. The rod is rigidly supported by Teflon insulators within a

Fig. 5. This capacitance-type liquid pressure transducer is designed to operate with frequency-modulated carrier system.
cylindrical metal tube which forms the other electrode of the electrical capacitance. Finally, the entire electrode assembly is immersed in the electrically grounded storage tank. Portholes are located along the cylindrical tube to allow access of the liquid to the space formed by the concentric cylinders. Since the dielectric constant of the nonconductive fluid is higher than that of the air or vapor above the liquid, the capacitance between the electrodes is a function of the height of the liquid column in the vessel. Thus, as the liquid level rises in the tank and a larger proportion of the electrodes is surrounded by the fluid, the electrical capacitance rises proportionately. Assuming that the electrode structure has a uniform dimension along its vertical axis, the linear capacitance so formed (of the order of 10 to 100 pf .) may be accurately calibrated to give a direct reading in gallons or in feet of depth of the tank.

In Fig. 6, the sensing probe (C_{x}) forms one arm of a capacitance bridge which is energized by an r.f. source. Frequencies ranging from 100 kc . to 1 mc , are generally employed to permit large measurement currents to flow in the bridge, thus making the system extremely sensitive to small capacitance changes. Variations of transducer capacitance result in an unbalance of the bridge which is detected by the phase-sensitive demodulator, whose output is determined by the amplitude and sign of the capacitive umbalance. To put

Fig. 6. Capacitance transducer system used as level measurement for tanks of various types of nonconducting liquids.
the system into operation, the zero adjust control $\left(C_{\%}\right)$ is set to equal the transducer capacitance $\left(C_{X}\right)$ when C_{A} is at minimum value or when a zero indication is required by the measured variable. C_{B} is a fixed capacitor which equals the reference capacitor (C_{R}) when C_{R} is at its minimum value. The span control (C_{s}), which determines the range of the instrument, is adjusted for the necessary amount of C_{X} change to give a full-scale deflection of the indicator.

Another type of capacitance-measuring device is employed for the level determination of Huids which are electrically conductive. In this case, the primary sensing element is a metal rod which forms one
(Continued on pagr. 68)
Fig. 7. Capacitance-type instrument used for the measurement and control of moisture content during processing of paper.

Current probe has long-like jaws which simply clip around wire to measure d.c. current. The Hewlett-Pockard Model 428A clip-on milliammeter shown here has fullscale measuring ranges from 3 ma . to I amp. Probe is also used with the Model 428B, which has a full-scale measuring range from 1 mo. to 10 amperes.

CLIP-ON D.C. CURRENT PROBE

By ARNDT BERGH, GEORGE S. KAN \& CHARLES O. FORGE The Hewlett-Packard Co.

Operating principles of a milliammeter that can measure direct currents without opening the circuit or loading.

Arrow on the probe shows current direction for up-scale reading.

DIRECT current can be measured easily with a clip-on current probe. The probe simply clips around the conductor without requiring that the circuit be opened or disturbed in any way: A ground connection is not even necessiny.

Instrments using such a probe have a number of obvious applications. The prole can be clipped around a conductor at any place in the circuit where there is a half-inch length of wire with enongh room aromed it to accommodate the probe. (On printed-circuit boards, small loops of wire can be placed in series with circuits where current measurements are to be made.) Even the corrent within a carbon resistor can be measured provided that the resistor is small enongh (less than "yn" diameter) to allow the probe jaws to close around it.

An arrow on the probe slows the direction of coment flow (comventional positive to negative) that canses an mp-scale deflection of the meter pointer. The orientation of the wire within the probe is not critical, just as long as the tong-lihe jaws close completely around it.

Current probes of this type ean mahe measurements that were wot possible with previons methots. The insertion of at conventional milliammeter in series with a low-impedancer circuit. for example. often affects the impedance and thens the performance of the circtit. Similar difficulties arise when a small resistor is inserted in a circuit for the purpose of reading the voltage drop from which the enment (an la calculated. This does not happen when a current probe is used since the probe adds no series resistance to the circuit.

The absence of circuit loading thas makes the probe usefal for measurements that used to be difficult or even impossible, such as the detection of circulating gromed currents. A ground lead or strap ean be left undisturbed when a current probe makes a measurement so that the feeble voltages which cause the currents are not affected.

Other uses for current probes arise from their ability to measure the sum total of the eurrents in several conductors that are within the probe jaws all at the same time. In this case, currents which flow in opposite directions sub)tract. This makes it possible to balance the currents in a push-pull stage, for instance, by moning the plate leads in opposite directions through a current probe and then adjusting the circuit for a mull.

Current probes have a wide measurement range; for instance, the range of the Howlell-Packard Model t28B ClipOn D.C. Milliammeter is from 1 mat. full-scale to 10 amps. This instrument responds to currents smaller than $50 \mu \mathrm{a}$. and sensitivity can be increased even further by looping the conductor through the probe several times. The probe is virtually bum-out proof, being able to withstand overloads of hun-

[^0]

Fig. 1. Magnetic flux being gated by spinning "shutter."
dreds of amperes that might occur during a measurement.
The instrument may also be used to measure low-frequency alternating current (up to 400 (ps). The indicating meter itself does not respond to a.c. but the instrument generates an output voltage that is proportional to the measured current. The voltage is available at a front-panel jack for use with a scope, an a.c. voltmeter, or a d.c. chart recorder.

How It Works

The d.c. current probe operates by sensing the weak magnetic field around a current-carrying wire. Unlike a.c. current probes, however, it does not function simply as a transformer that uses the measured wire as a one-turn primary winding.

The d.c. current probe is a refined version of the secondhammonic flux-gate magnetometer, a sensitive detector of magnetic fiekls. Flux-gate magnetometers have been widely used in aircraft compasses and in submarine detection equipment (the MAD or magnetic anomaly detector).

The flux-gate magnetometer principle achieves such sensitivity that it senses easily the 0.0006 -gauss magnetic field around a conductor carrying 1 ma. By contrast, the earth's magnetic field is nearly one thousand times stronger. Careful magnetic shielding of the probe is an obvious requirement.

A magnetic field induces a voltage in a wire only when the field changes with respect to the wire. To enable a d.c. field to induce a voltage in a sensing coil, the current probe uses a form of flux-gating. The flux-gating principle is illustrated in Fig. 1 where the rectangular core represents the probe jaws, with a single current-carrying wire passing through. The semi-circular device is a spinning "shutter" which completes the magnetic path around the core whenever it rotates into the gap.

Even though the current in the wire is a steady d.c., the flux in the core switches from a maximum, when the shutter is in the gap, to a minimum when the shutter is out. The sensing coil therefore is exposed to an alternating flux. The maximum value of this flux is governed by the current in the measured wire so that the a.c. voltage induced in the sensing coil is proportional to the current in the measured wire.

Energy for operation of the flux-gate is supplied by the
shutter, not by the measured circuit. This means that no energy is extracted from the measured circuit and the presence of the probe disturbs the circuit hardly at all.

The mechanically operated probe clescribed here would, of course, be too unwieldy for use in circuit probing. In practical applications of this principle, gating is achieved by saturable magnetic cores which are driven into and out of saturation by a large a.c. drive signal. When the cores are saturated, their permeability is greatly reduced and this results in few flux linkages between the sensing coils and the current in the measured wire. When the cores are out of saturation, permeability is high and the flux linkages are greatly increased. This electrical gating achieves the same effect as the mechanical shutter but a sturdy, more compact, and much simpler probe assembly results.

The actual probe circuitry of the Model 428A/B units (as far as is known the only such instruments available) has a different configuration than that implied here. The drive coils and sensing coils are combined by use of a bridge configuration, as shown in Fig. 2. The bridge is balanced as far as the drive signal is concerned, so the clrive signal is suppressed in the output. Less than 15 mv . of drive signal is coupled into the measured circuit. The connections for two of the coils are reversed, though, so voltages induced by the gated flux from the measured wire generate an output.

Affiliated Circuitry

A simplified block diagram of the probe and metering circuit is shown in Fig. 3. A push-pull LC oscillator supplies the 20 -kc. drive frequency. This frequency is high enough to reduce the necessary size of the cores and coils but not so high that core losses become serious.

Flux gating occurs at a 40 -ke rate since the core satwates twice during each cycle, once during the positivegoing part of the drive waveform, and once during the nega-tive-going part. Hence the name "second harmonic flux-gate magnetometer." The bridge output is, therefore, a $40-\mathrm{kc}$. signal.

The bridge output is amplified in a tuned amplifier and then rectified in a synchronous detector. In the synchronous detector, shown in Fig. 4, capacitor C is charged to a d.c. voltage that is proportional to the bridge output. The synchronous detector preserves the polarity of the bridge signal so that if the signal polarity were reversed (shifted

Fig. 2. Bridge circuit used in d.c. current probe. Plus and minus signs show polarities of voltages induced in sensing coils. Direction of current flow in wire is conventional.

Fig. 3. Simplified block diagram of d.c. current probe circuits.

Fig. 4. Synchronous detector produces either positive or negative d.c. output, depending on phose of probe signal. Large gating signal turns on pairs of diodes alternately. When VI and V2 are on (lower right), point A effectively is at some potential as center-top P. On alternating holf cycles, point B is brought to same patential as P (upper right). This action switches connections belween P and $T 1$ secondary so that C becomes charged to d.c. voltage that is proportional to the probe signal. (Heavy lines show current path on shaded half cycles.) Now if the polarity of the probe signal is reversed with respect to the gating signal, then the polarity of the charge across C is reversed on both half cycles from that shown.

Fig. 5. The feedback circuit employed in the clip-on milliammeter supplies d.c. current in opposition to measured current.

180°), capacitor C would charge to the opposite polarity.
The voltage on the capacitor corresponds to the amplitude of the current being measured. This voltage drives a d.c. amplifier which supplies current for the indicating meter.

The preceding description outlines circuitry for driving a meter in accordance with the current in a wire being measured. Accuracy, however, is affected by the non-linear behavior of the magnetic circuits, as well as by non-linearities and changes of gain in the amplifiers. To insure that the meter indicates accurately what the measured current is, negative feedback is used in an interesting manner. The feedback loop includes the magnetic circuits in the feedback path by bringing the feedback all the way back to the point where the magnetic field is sensed.

In any negative-feedback system, as is well-known, a portion of the output signal is fed back to the input where it opposes the input signal. What actually happens is that the input to the amplifier represents the very small difference between the input signal and a fraction of the output signal. The amplifier therefore minimizes the error that exists between the actual output signal and what the output signal

Fig. 6. Push-pull oscillator has unbypassed cathode which "follows" most positive grid, thereby acting as a doubler.
should be, as indicated by the input signal. Feedback insures that the amplifier output "tracks" the input signal so that a feedback amplifier may be considered as an all-electronic servo system where the input signal is the "control" voltage.

This principle is applied to the d.c. current probe by passing a portion of the d.c. output current back into the sensing coils in the direction that generates ampere-turns which oppose the ampere-turns of the measured current (Fig. $5)$. The probe actually senses the much smaller magnetic field which results from the difference between these two sources of ampere-turns. Core non-linearities now affect only the loop-gain of the system and since the gain of the amplifiers is very high, the effect of non-linearities is negligible. The output current therefore tracks the wire current quite closely and changes in amplifier gain influence the output current hardly at all. As a result of this use of feedback, the Model 428B, in a laboratory environment, is able to read current with an accuracy considerably better than its rated accuracy of $3 \% \pm 0.1 \mathrm{ma}$. (The instrument is specified at 3% to account for a wide (Continued on page 88)

Top view of the demultiplexer. A $3^{\prime \prime} \times 2 \frac{1}{2 \prime \prime} \times 2^{\prime \prime}$ printed board was used by author; conventional wiring can be used instead.

BACKGR0UND-MUSIC DEMULTIPLEXER

By GARLAND P. KUNTZ

Construction of simple transistorized adapter to be used with FM tuners for the home reception of background music.

SUBSIDIARY Communications Authorization (SCA) background music, if transmitted by one or more of your local FM stations, can provide many hours of listening pleasure in your home. The principles of transmission of SCA were explained in an article by Robert W. Winfree in the December, 1963 issuc of this magazine. Therefore, it is not proposed to rediscuss them. However, a completely novel and new method of demultiplexing SCA background music will be discussed. (Note that reception of these signals must be restricted to one's own home and they must not be used for profit, as in a place of business.)

Many circuit designs for SCA music have been discussed ancl printed since its inception, the latest of which appears in the above-mentioned article. Each circuit contained known methods of FM detection. These methods can be classified into two groups, the heterodyning-discriminator, or ratio detector, and decoller-counter detector. While such methods of demodulation functioned satisfactorily, they did not all eliminate the problems that contimue to plague the listener. Some of the maior problems are:

1. Incomplete separation of main chamel and multiplex subcarrier. In other words, inadequate filtering out of the main channel program.
2. Inadegnate muting when the subcarrier signal was reduced or else shut off completely between the records.
3. Complexity of design.
4. Difficult to construct.
5. High cost of construction.

One would think that faithful reproduction of the modulated program would be a problem. Such is not the case ancl has not been a problem with any of the circuits presented.

The merits of each circuit will not be discussed. Instead, the principle of the circuit given here will be outlined.

The circuit in Fig. 2 is mique in design. It consists of three transistors and a diode. The heart of its operation is in $T 1$ and $T 2$.

In order to listen to SCA music, the 67-kc. FM-modulated signal must be demodulated. The simplest method would be to filter out the main program, am-

Fig. 1. Scope paftern that should be seen when T2 and R12 are correctly adjusted.

plify the 67 -ke. subcarrier, and detect it. At first this would appear to be a tall order, but with the principle of oscillators in mind, and knowing that they can be made to lock in with a synchronizing signal, the problem of amplification disappears. This is exactly what Tl and 03 do. This stage oscillates at 67 kc . with sufficient amplitude that minor audio and music leaks from the main-chamel program are too weak to change its frequency or to amplitude modulate it. Thus we have only the subcarrier signal.

The next step is to have the $67-\mathrm{kc}$, oscillator swing with the frequency modulation of the incoming SCA signal. To provide for adequate swing, the " Q " of $T 1$ must be reduced to allow sufficient bandwidth in order that the 10% modulation swing of the SCA $67-\mathrm{kc}$. sulcarrier can be accepted. R9, the 1000 -ohm resistor placed in series in the tmed circuit, accomplishes this.

With the FM-modulated 67 -ke. subcarrier comes the prol)lem of detection. In the circuit of Fig. \mathcal{Q}, detection is accomplished by means of slope detection and negative limiting. The secondary of $T 2$ is tuned above the incoming resonant frequency. Thus, as the subcurrier swings above and below 67 kc ., the amplitude varies in proportion to the amount of the swing and at the audio rate of the swing. Detection is completed by limiting the negative part of the signal with $D 1$ connected to the high side of the secondary coil.

To complete the detector and improve quality of reproduction, the extremely high " Q " of the secondary winding must be lowered. To lower the " Q " of this circuit, R12, a $10,000-$ ohm resistor. Was added as shown in the diagram.

The $67-\mathrm{kc}$. signal is filtered in the output circuit by R13 and C11, leaving a fairly high-level audio. The audio level is far more than enough to drive the auxiliary or phono inputs of any audio amplifier.

Good signal conversion and detection camnot be accomplished without excellent filtering of the main program. Such filtering is done by the circuits of QI and $Q 2$. The bulk of the filtering action occurs in $C 1$ and $L 1$.
$Q 1$ and $Q 2$ are high-gain stages. It
might be thought that one transistor would do the job. However, in order to have a strong enough signal to lock in and control the oscillation of $Q 3$, the larger input signal that would have been required for a one-transistor filter circuit resulted in enough main program material to amplitude-modulate the oscillator stage. As common-emitter stages have fairly low input impedance, additional filtering of the main program can be had as well as the required amplification of the subcarrier by means of low-value capacitance coupling between stages.

Muting is unnecessary as no signal passes when the subcarrier is inactive. Any leakage must occur either at the station, or as a direct result of some multipath signal reception or misalignment of the FM tumer. Should a slight whistle occur when the subcarrier is reduced or cut off, T1 is not aligned properly.

Construction \& Alignment

As far as construction is concerned, the photo shows a suggested layout. The printed board was made from a kit and it is very easy to do. The only recommendation is that the
(Note that the demultiplexer unit must be connected to the multiplex-output jack of the FM tuner. If such a jack is not available, then a tuner connection must be made that is ahead of the de-emphasis network. If this is not done, then the network attenuation will prevent the passage of any of the $67-\mathrm{ke}$. SCA signal.)

The second method is to temporarily short out $R 9$ and adjust $T 1$ for the best sound. This will be poor at best but by listening one can determine a point where it sounds better than at any other. Such action tunes the oscillator to the subcarrier. The poor sound is due to the fact that the " Q " of T1 has been increased and the oscillator will swing only a very little, causing distortion. Afterwards, remove the short on $R 9$.

With $T 1$ aligned, tune $T 2$ for the best sound. Should there be distortion in the program, temporarily replace $R 12$ by a large-value potentiometer. Adjust the pot and retune $T 2$ until the distortion disappears. Then measure the value of the resistance used in the potentiometer and replace it with a fixed resistor of that value.

Such a unit as described here can be installed inside most

Fig. 2. A synchronized oscillator, operating at 67 kc . and swinging with the modulation, is the basis of operation.
connections between $T 1, Q 3$, and $T 2$ be kept as short as possible, for their length will affect the value of R12.

The final step in building this circuit is the alignment. Two methods can be employed, depending on the test equipment on hand. The use of both procedures is preferred.

The first method involves the use of an audio signal generator and oscilloscope. Using a low-capacity probe on the scope, connect the vertical scope input to the collector of Q3 and the audio signal generator to the horizontal input. Set the audio signal generator at 67 kc . and, by use of a Lissajous pattern, adjust $T 1$ to 67 kc .

Now connect the vertical scope input to pin 5 of $T 2$, the center tap of the secondary. By adjusting $T 2$, secure the pattern shown in Fig. 1. Should the desired pattern not be obtained, temporarily replace $R 12$ with a high-resistance potentiometer, then adjust the pot and $T 2$ to obtain the desired pattern. Then replace the potentiometer with a fixed resistor of the same value.

After alignment by the above method, connect the demultiplexer to an FM tuner adjusted to a station transmitting an SCA signal. Make a final adjustment of $T 1$ by the second method described below. The unit is now ready for operation.

FM tumers. It can be left attached to the multiplex output of the tuner as long as stereo reception is not required. If a stereo demultiplexer is also used, suitable switching will be required.
The unit can be powered by a 9 -volt battery. Such a battery will last for a very long time as a little less than 3 ma. is drawn. For this reason, no power switch was used in the author's unit. Such a switch can be installed in one of the battery leads if required. Fig. 3 details of method of obtaining the required power from the filament supply.

Fig. 3. Power supply that can be used in place of a battery.

R1 -470 ohm. $1 / 2$ w. res.
R2- 1000 olim, $1 / 2$ w. res. $\mathrm{C} 1, \mathrm{C} 2-100 \mu \mathrm{f}, 15 \mathrm{v}$. elec. capacitor

C3-2000 μ f., 15 v. elec. capacitor D1. D2-Silicon rectifier (top hat), 1N2483 or equiv.

> When building high-frequency equipment, component placement, shielding, and even the lead lengths of capacitors and resistors play a very important role.

THERE are many considerations in the design of the i.f. portions of a receiver, whether it be a low-frequency communications receiver or a v.l.f. television set. All of these considerations fall into either of two classifications: physical or electrical. Since these are interrelated (capacitance depends on size of plates and separation, and high-frequency inductance depends on lead or path length), it is difficult, if not impossible, to completely divorce one from another.

The first consideration in the physical design should be the placement of the i.f. section with relation to the mixer stage. In order that maximum gain be attained immediately after the mixer to avoid introduction of additional noise (either thermal or hom) to the noise level already present at the mixer output (due to the antenma and r.f. stage), the input of the first i.f. amplifier is usually located physically near the mixer output circuit. The i.f. stages usually proceed in a string, so that the output of one feeds directly into the next; thus wiring capacitances are kept to a minimum. In most cases, the connections are made by means of the component leads only.

Shielding is always required to some degree and is used in

several ways. The most common type of shielding is an aluminum can in which the resonant circuits are enclosed. This can may contain only a coil and its loading resistor, or it might include a bifilar-wound coil (one with two windings with turns adjacent to each other) and a trap, with separate pow-dered-iron cores accessible at each end for tuning the coil and trap individually. A shield in the form of a partition and made from low-resistance sheet metal, such as copper or almmimm, is sometimes used to divide a string of high-gain amplifiers when regeneration due to feedback occurs. The r.f. currents flowing through the chassis can be made to follow separate paths by this method. Regeneration or oscillation occurs when plate currents flow back to the grid and are re-implified in the same way as acoustic feedback in a public-address system. Without an interstage shield, coupling can take place between the circuit input and output coils, or through ground current loops as shown in Fig. 1A. A shield isolates the input and output circuits, prevents direct coupling, and provides separate and low-inductance ground paths for grid and plate r.l. currents as shown in Fig. 1B.

In addition to reducing feedback problems, the shield may also prevent coupling between large coils in succeeding stages. Although the capacitance, or mutual inductance, existing between two successive coils may be extremely small, there still might be sufficient coupling at the high signal levels to produce feedback.

In selecting the proper dimensions for a coil shield, several factors must be taken into account. If a high loaded coil "Q" is to be mantained, the shield must be of sufficient proportions relative to the coil dimension so as not to reduce " Q " below a predetermined mininum. At the same time, the shield will have an effect on the coil inductance such that the inductance measured in the open will be reduced inside of a shield by an amount dependent on many factors. The metal in the shield acts as a shorted turn, or as a shorter path for the magnetic lines, depending upon its proximity to the coil winding. The result is the same as if the coil turns had been spread out, since fewer magnetic lines link the turns of the coil. In essence, the inductance is then reduced. The factors include the relation of coil diameter to coil length, coil diameter to shield diameter, coil length to shield length, and whether the coil shield is square or round.

The " Q," since it is a function of losses, depends upon skin effect (varying with frequency), number of turns in the coil
(and hence degree of magnetic and electrostatic coupling to the shield), resistivity of the shield material, and the relationship between shield length and diameter, coil length and diameter, and the relationship between coil and shield. The effect is that of adding a resistance in series with the coil and its resistance, and since " Q " is a ratio of X_{L} / R, " Q " is reduced as R is increased.
Fig. 2 shows the amount of reduction that may be expected when various shields are placed over an unshielded inductance. The effects on " Q " may be calculated, but since this is rather involved, a good rule of thumb for minimum effect on both inductance and " Q " is to make the shield diameter at least 3 times the coil diameter, and at least one coil diameter longer than the coil length (assuming the bottom end of the coil is at r.f. ground and mounted on the same plane as the bottom of the coil shield). For the worst case, the reduction will only be approximately 10%, and for the best case about 1% for those dimensions. Keep in mind that the maximum power dissipated in a loaded tank circuit should be in the load. The unloaded " Q " should be as high as possible relative to the loaded " Q " for this to take place. If the unloaded " Q " includes the effects of the shield, then a lower unloaded " Q " due to the presence of the shield reduces the power delivered to the load, the rest being dissipated as losses in the shield. This is in agreement with the definition of " Q," the ratio of energy (or power) stored to the energy delivered to the load.

In addition to coil and interstage shields, additional isolation is achieved by the use of tube shields on all i.f. tubes.
This leads to another consideration in the physical placement of components, and a good example of why i.f. stages are usually laid out in a straight line across the chassis. The shortest distance between coils should be such that there is no coupling from coil to coil, except through intentional coupling of the tube circuitry. Under these conditions, the longest distance between coils becomes a straight line.

Components

The choice of components should be carefully considered when working with circuits above a few megacycles. At low frequencies the inductance of wire leads is negligible, but as the frequency increases so does the inductance of these wires. Also, at the higher frequencies the coil inductances become considerably smaller for the same fixed capacitances. Under these conditions, the inductance of the wire leads is a large part of the total inductance and must be considered in all cases. The normally small distributed capacitance of a coil forms a resonant circuit with the coil inductance, and this resonance must also be considered at all times, as in the case of r.f. chokes.

The combination should be regarded as a parallel-resonant circuit, with an impedance of " Q " X where X is the reactance of either element (C or L) at its resonant frequency. The best choke is one that is self-resonant at some frequency slightly higher than the frequency of the circuit in which it is used. Additional stray capacitance usually lowers the choke to the desired frequency. This resonant frequency is not particularly critical, since the normally available r.f. chokes are of reasonably high " Q " and are of reasonably high impedance for considerable frequency deviation from the exact frequency of resonance. Regardless of whether the choke appears inductive or capacitive, it is still quite a high impedance to the r.f. that it is supposed to block. Fig. 3 shows the variation in self-resonance for r.f. chokes made by six different manufacturers.

Fig. 4 shows the relative capacitances related to the individual turns of a coil. As shown in (A), there exists a capacitance between adjacent turns, as well as a smaller capacitance to some other turn, which is resolved into one equivalent capacitance. At (B), the effect of capacitance to ground can be seen. Consider C_{c} as the distributed capacitance of the coil and $C 1$ and C4 as bypass capacitors normally used with an r.f. choke. Any additional capacitance ($C 2$ and $C 3$) to ground

Fig. 2. Curves for determination of decrease in inductance produced by coil shield. $K \times 100 \%$ is amount of inductance reduction. For a square shield, A is, 6 of the length of one side. Coil must be single layer for this graph to apply.
will lower the resonant frequency. This can be more easily seen when redrawn as at (C). The net capacitance consists of the parallel combinations of $C 1$ and $C 4$ in series, $C 2$ and $C 3$ in series, and C_{c}. If there is excessive lead length or internal lead inductance in the bypass capacitors, the net reactance of the bypasses may be cancelled or become inductive, in which case the resonant frequency, or resonant impedance of the entire network, may become inadequate or undesirable. This problem is compounded with a multi-pi r.f. choke.

It is for just the reasons outlined that it is not a good practice to arbitrarily select a large value of inductance for an r.f. choke for use at the higher frequencies. While it is assumed that the reactance increases with the inductance, there is the

Fig. 3. The self-resonant frequencies of some typical values of r.f. chokes as manufactured by six different companies.

Capacitance (in pf.)	Lead Length (in inches)	Approx. Resonant Frequency (in mc.)
100	1/8	230
	$1 / 4$	190
	1/2	150
	3/4	130
	1	120
	$11 / 4$	98
470	1/8	110
	$1 / 4$	92
	1/2	72
	$3 / 4$	60
	1	54
	$11 / 4$	47
1000	1/8	80
	$1 / 4$	67
	1/2	53
	$3 / 4$	44
	1	40
	$11 / 4$	35
1500	1/8	64
	$1 / 4$	53
	1/2	42
	$3 / 4$	35
	1	32
	$11 / 4$	27

Table 1. Resonant frequency of some tubular ceramic capacitors.
limiting factor of the shunt capacitance of the coil, which at some frequency begins to act as a bypass and thereby greatly reduces or cancels the effectiveness of the r.f. choke.

Capacitors

Capacitors exhibit self-resonances also. At higher frequencies the leads appear as inductances and the capacitances normally used vary over a wide range. They can be selected to provide a high or low impedance and can be either capacitive, resistive, or inductive. A capacitor can look like a series tuned circuit at some high frequency and can be represented as a resistor at resonant frequency. At a higher than resonant fre-

Table 2. Resonant frequency of some mica capacitors.

Capacitance (in pf.)	Over-all Length of Body \& Leads (inches)	Approx. Resonant Frequency (in mc.)
100	$\begin{aligned} & 1 / 2 \\ & 1^{3 / 4} \\ & 1^{1 / 2} \end{aligned}$	$\begin{array}{r} 145 \\ 120 \\ 110 \\ 92 \\ 80 \end{array}$
470	$\begin{aligned} & 1 / 2 \\ & 1^{3 / 4} \\ & 2^{1 / 2} \end{aligned}$	$\begin{aligned} & 58 \\ & 52 \\ & 47 \\ & 40 \\ & 35 \end{aligned}$
1000	$\begin{aligned} & 1 / 2 \\ & 1^{3 / 4} \\ & 1^{1 / 2} \\ & 2^{2} \end{aligned}$	$\begin{aligned} & 42 \\ & 38 \\ & 34 \\ & 28 \\ & 24 \end{aligned}$
5000	$\begin{aligned} & 1 / 2 \\ & 1^{3 / 4} \\ & 1^{1 / 2} \\ & 2^{1 / 2} \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 16 \\ & 13 \\ & 11 \end{aligned}$

quency, the net reactance is inductive because $X=X_{L}-X_{c}$ and X_{L} is greater.

Three types of resonances can occur in the more common disc-type capacitors. These are (1) low-frequency resonance due to the length of the external leads; (2) medium highfrequency resonance due to internal connections when two or more clises are comnected in parallel to obtain a high capacitance in a small physical size; and (3) high-frequency resonance due to resonant cavity effects in capacitors with high dielectric constants.

Normally, the low-frequency resonance is the one we are most particularly interested in, as the other types of resonance are not normally encountered at i.f. frequencies. This low- frequency resonance (actually the reference to low frequency is only relative) is invariably a series resonance and is only useful to enhance the effects of a bypass capacitor. This is done in two ways. If it is series resonant at the frequency of interest, the bypass impedance is at a minimum (possibly much less than the capacitive reactance alone), and it sets the upper useful Iimit of capacitance for the frequency range and aids in the selection of the proper bypass capacitor and the lead length.

Because the chassis path is often part of the lead inductance, the resonant frequency of a given capacitor will be lowest when the area enclosed by the leads is a maximmm, and measurement under these conditions is recommended for "worst-case" conditions. Otherwise, a grid-dip meter: can be used for a good approximation where the frequency of resonance is not critical. Fig. 5 shows the variations encountered

Fig. 4. (A) Capacitance between individual turns of a coil. (B) Effect of capacitance between coil and ground (C) and C4 are bypass capacitors). (C) Equivalent circuit of (B) showing effect of capacitors on the resonant frequency of the coil.
by RMC on their "Discaps," using a special test jig and a griddip oscillator, in the "worst-case" condition of leads positioned 90 degrees apart and equal in length.

Typical resonant frequencies for various lead lengths are shown in Tables 1 and 2 and cover the other body styles of capacitors most commonly used in i.f. and r.f. circuits. The tabulation in Table 3 gives an idea of the inductances encountered in a length of typical hook-up wire, values not insignificant at r.f. frequencies.

Resistors

Resistors are not as critical as those components already covered, but their lead lengths and capacitance should be kept in mind. A leads at the body ends, depending upon the particular type, and the inductance of the leads is considered as being in series with this capacitance. In a pinch, a high-value resistor (1 to 10 megohms) may be used as a low-value capacitor, with a leakage resistance equal to the resistance value. Any resistor
so used as a low-value capacitor should have its value picked so as not to influence circuit operation.

Supply Line Filtering

Because of the large amount of signal amplification within the i.f. circuit, there is a good chance of signal currents feeding back from the output stage to earlier stages unless certain precautions are taken.

Filaments may be supplied in three ways: single lead with ground returns (chassis or common bus), series string with no ground connections, and twisted-pair feed with grounded transformer center-tap.

If no filtering is used, r.f. current, as well as line frequency, Hows through all of the filaments. The small capacitance from filament to cathode within the tube prevents the 60 -cps frequency from modulating the cathode because its impedance (reactance) at this frequency is several hundred megohms. At 40 mc , however, the series impedance is only a few hundred ohms, and some means must be taken to prevent these currents from flowing to the cathode and being amplified within the stage to cause regeneration or oscillation. The usual procedure is to use an inductance and a bypass capacitor at each filament. The inductance should be of very low d.c. resistance so that a minimum filament voltage drop occurs, and yet there shonld be enough inductance to provide a fairly high impedance to the r.f. current. The bypass should be large enough to have a reactance that is low compared to the filament resistance. At 40 mc ., a value of 1000 pf . is usually sufficient for tubes commonly used as i.f. amplifiers.
The plate circuits are, of necessity, high-impedance circuits across which considerable signal voltage can develop. It is therefore essential that great care be taken to prevent any of these signal voltages from reaching any tube elements or circuits other than those desired.
Some set manufacturers use resistors in conjunction with proper value bypass capacitors, and others use r.f. chokes either in place of, or with, resistors. Resistors are less expensive than chokes but have several disadvantages. The resistors cause $I R$ losses as voltage drops, and therefore the tolerable value of resistance depends upon the amount of d.c. current flowing in that circuit. The maximum resistance allowable may not provide a high enough impedance to isolate the small r.f. currents which have a lower $I R$ drop. Finally, the resistors are not frequency sensitive (except at very high frequencies) and will not reduce signal currents at the same rate as the d.c.

An r.f. choke, because of its lumped constants, has its own characteristic resonant frequency. At this frequency the resonant impedance is very high while the d.c. resistance remains very low. If the installed self-resonant frequency of the choke is the same as the frequency at which the maximum impedance to the r.f. current in the supply lines is desired, then the maximum attenuation of the signal currents traveling down that line is obtained.

If' sufficient attemuation is not achieved with a single filter section, a double section consisting of two chokes, a resistor, and a choke, or two resistors in conjunction with the appropriate bypass capacitor values, is necessary.

A.G.C. Line Filtering

Under normal operating conditions, the control grids do not draw any current, and the associated a.g.c. circuitry needs only supply a fixed (within small limits) voltage. In this case filtering is easily done with resistance values as high as a megohm, without a voltage clrop. The associated bypass capacitors should not be any higher than necessary since the time constants must be considered. It is also good practice to use resistance values no higher than one megohm, otherwise the resistance would approach the value of leakage resistances within the circuitry.

Recently introduced ferrite beads may be used extensively

Fig. 5. Resonant frequency of some typical capacitors as a function of their lead length (22-gauge wire is assumed).
for filtering in new designs. These are tiny cylindrical beads that may be strung on a wire, and which, because of their magnetic qualities and lossy material, cause an increase in the inductance of the wire with a simultaneous attenuation of signals in the wire. Attennation in this case is due both to the inductive reactance and to the $I R$ losses due to r.f. only, since there is no d.c. current in the core. Four of these beads can increase the inductance of a 2 -inch piece of wire 15 times, and at the same time can cause an attenuation of the signal by 6 db over a very wide frequency range. These beads are particularly useful in the filament leads, as shown in Fig. 6, since they filter without producing any filament voltage drop. They are extremely cheap in production quamtities, and cost less than resistors and chokes.

Another component combines a capacitor and ferrite beads in a single unit to produce a combination of bypass capacitance, increased series inductance, and lossy ferrite, all in one unit. These units are expensive, however careful design of new r.f. and i.f. circuits might allow one of these composite units to replace several components with a worthwhile saving of space and assembly costs.

Wire Size	Length (in inches)	Approx. Inductance (on μ hy.)
20	$y^{1 / 4}$	0.0031
	$1 / 2$	0.0064
	$1^{3 / 4}$	0.0115
	$1^{1 / 2}$	0.019
	$2^{1 / 4}$	0.031
	24	$1 / 2$
	$1^{3 / 4}$	0.04
	$1^{1 / 2}$	0.0037
	$2^{1 / 2}$	0.014
		0.022
		0.036
		0.05

Table 3 The high-frequency inductance of lead wires
Fig. 6. Ferrite beads in the filament circuit are used for decoupling r.f. frequencies without producing voltage drop.

SELECTING
 HIGH-FREQUENCY TRANSISTORS

By ROY HEJHALL \& DARRELL THORPE
Motorola Semiconductor Products Inc.

Abstract

How do you pick the right transistor for high-frequency use? How do you convert from one transistor parameter to another? The answers to these, plus a simple nomogram parameter conversion approach, are given in this article.

IN your sporadic shopping forays through electronic catalogues for a high-frequency transistor, have you become thoroughly confused by the various methods used to specify high-frequency tramsistor characteristics? Well, you are not alone. The usable high-frequency range of operation for transistors is perhaps one of the most perplexing characteristics to evaluate when selecting a device for a particular circuit application, particularly if the only source of information is a mail-order house catalogue which gives a minimum number of transistor specifications.

You have probably noticed that several terms, or parameters, are commonly used by the various manufacturers to describe the high-frequency capabilities of transistors. The three parameters most often encountered are: (1) the maxi-

mum frequency of oscillation $\left(f_{\text {mat }}\right)$ or $\left(f_{\text {osc }}\right)$; (2) the gainbandwidth product (f_{τ}); and (3) the alpha cut-off frequency $\left(f_{\alpha_{1}}\right)$. In addition to these three parameters, a fourth parameter sometimes encountered is the beta cut-off frequency ($f \alpha_{e}$).
There has been considerable confusion concerning the validity and relative merits of these terms which categorize the high-frequency characteristics of transistors. Therefore, it is important to arm yourself with a clear understanding of each of these terms before shopping for a high-frequency transistor. In addition, you may wish to compare two or more transistors which have different parameters specified. To make a meaningful comparison in this case, you must also know something about the interrelationships between these various parameters.

The first part of this article describes these parameters. The interrelationships between them will then be discussed, and, finally, nomograms are given for fast, simple conversions from one parameter to another.

Maximum Oscillation Frequency

The maximum frequency of oscillation ($f_{\text {mar }}$ or $f_{n, x}$) is the most useful specification for the selection of transistors for high-frequency communications circuits because it sets a frequency limit above which the transistor is unable to amplify. Thus, $f_{\text {mas. }}$ is defined as that frequency at which power gain is unity, or 0 db , in a neutralized common-emitter circuit with the transistor input and output impedances matched to the source and load impedances respectively. It derives its name from the fact that $f_{m a r r}$ is the highest frequency at which oscillation is theoretically possible.

Fig. 2 shows the power gain characteristic curve for a Motorola MM11.51 high-frequency transistor. As indicated by the curve, the power gain is 0 db or unity at 2000 mc . which means that this device has an $f_{\text {mar }}$ specification of 2000 mc . Notice that each time the frequency is halved, the power gain increases 6 db . This is a general characteristic of all transistors and the curve is commonly referred to as having a 6 -db-per-octave slope.

The curve in Fig, 2 tells us the maximum power gain available from a transistor at frequencies below $f_{m a}$ in a perfectly matched and neutralized circuit such as those used in receiver r.f. and i.f. amplifiers. This statement refers to the fact that maximum power transfer from a transistor, or for that matter a generator, vacuum tube, or any transducer, occurs when the load impedance is equal to the output impedance of the device. Therefore, to obtain maximum available power gain from a transistor amplifier, the coupling network between stages should match the input impedance of the following stage to the output impedance of the preceding stage. The high power gain obtained in matched circuits sometimes results in sufficient regenerative feedback to cause oscillation; therefore the circuit must be neutralized.

A significant exception to the general practice of impedance matching is the r.f. power amplifier, such as the output stage of a transmitter. Power-amplifier circuits are deliberately mismatched to obtain the desired power output with a given voltage swing. Transistors that are specifically characterized for this type of service have a power gain specified at some power output. For example, the 2 N 2949 has a $12-\mathrm{dl}$, power gain specified at 3.5 watts output at 50 mc .

The power gain in the flat region of the curve is dependent upon the low-frequency current gain of the device. Fig. 2 indicates that the maximum available gain (MAG) from the MM1151 transistor at low frequencies is considerably more than 40 db . However, because of stability problems, it is not practical to operate transistors at their MAG in the flat region. Therefore, it is not usually wise to extend the power gain curve beyond 40 db . This statement holds true for any transistor or vacuum tube circuit. Notice also, that a 6 -db-per-octave slope is equal to 20 db per decade. Then, if 40 db is assumed to be the maximum useful gain, the knee of a power gain curve occurs at $f_{\text {max }} / 100$ (2 decades).

By koowing the $f_{m a r}$ specifications and assuming 40 db as the maximum useful gain, a neutralized power gain curve can easily be constructed for any transistor. Of course, the knce of the curve will be at $f_{m m} / 100$.

Occasionally, $f_{\text {mer }}$ is specified indirectly on high-frequency transistor data sheets. This is done by specifying the power gain $\left(C_{p}\right)$ at some frequency (f). If this is the case, the $f_{\text {max }}$ can be calculated from:

$$
\begin{equation*}
f_{m a r}=f \sqrt{G_{e}} \tag{1}
\end{equation*}
$$

where f is the frequency at which gain is specified, and G_{e} is the power gain in magnitude (not in db). Fig. 1 shows a nomogram of this equation and a conversion of $(\mathrm{db}$ to magnitude.

Although $f_{\text {mar }}$ defines the maximum frequency at which a transistor could oscillate, it is quite obvious that an oscillator operating at this frequency camnot supply power to a load. A good rule of thumb for an oscillator is to choose an $f_{\text {,.,.ur }}$ at least twice the desired operating frequency.

Gain-Bandwidth Product

The gain-bandwidth product (f_{τ}) is a transistor characteristic that expresses the frequency at which the a.c. commonemitter current gain (β or $h_{l .}$) is equal to $1(0 \mathrm{db}$). Fig. 3 shows a plot of current gain es frequency for a typical transistor. As shown in the figure, $h_{f e}$ is unity at 450 mc . which indicates that the f_{τ} is 450 mc . for this transistor. Notice, that like the power-gain curve, the slope of this curve also changes at a 6 -db-per-octave rate. The flat portion of the curve represents the low-frequency current gain of the transistor. This low-frequency current gain is often referred to as $\beta_{\text {, of }} h_{/ \ldots \ldots}$ and is usually measured at 1 ke . (Since current gain varies with frequency, the terms β_{n} or $h_{\text {, }}$, are used to define the low-frequency, usually measured at 1 kc , current gain of a transistor.) The knee of this curve occurs at $f \alpha_{c}$, the beta cut-off frequency, which defines the frequency at which h_{i}, is down 3 db from its low-frequency value.

If $h_{f c o}$ and f_{τ} are known, $f_{\alpha_{c}}$ can be found from:

$$
\begin{equation*}
f_{\alpha_{e}}=f_{\tau} / h_{l e n} . . \tag{2}
\end{equation*}
$$

It is interesting to note from Eq. 2 that transistors having the same f_{τ} but different gains will have considerably different bandwidths ($f_{\alpha_{+}}$). This is an important factor in wide-band amplifiers since gain can be traded for bandwidth either by proper selection of the transistor or with feedback.

The value f_{τ} is sometimes specified indirectly on highfrequency transistor data sheets. This is done by specifying $h_{f e}$ at some frequency above $f_{\alpha_{\rho}}$, thus, f_{τ} is then obtained by multiplying the magnitude of $h_{i e}$ by the frequency of measurement. This relationship arises from the $6-\mathrm{db}$-per-octave characteristic of the $h_{i,}$ vs frequency curve above $f_{\alpha_{p}}$. Since

Fig. 2. Power gain vs frequency for a particular transistor.

Fig. 3. Current gain vs frequency for a typical transistor.

Fig. 4. Common-base current gain for a typical transistor.
6 db represents a current-gain magnitude of $2, h_{\text {ie }}$ is halved each time frequency is doubled, and wice cersa. Therefore, the product of $h_{\text {, }}$ and frequency on the sloping portion of the curve vields f_{τ}.
For example, consider the Motorola 2×2217 silicon transistor. The data sheet gives a typical $h_{i,}$, of 4.0 at 100 mc . Because $f_{\tau}=h_{f e} \times$ frequency, therefore $f_{\tau}=4 \times 100$ $=400 \mathrm{mc}$.

The use of $f \tau$, in general, has its greatest application in switching and wide-band amplifier circuits. However, as discussed later, a high f_{τ} usually indicates a high $f_{\text {mur }}$ and therefore, f_{τ} can be used as a good over-all parameter to indicate frequency limitations.

Alpha Cut-off Frequency

The alpha cut-off frequency $\left(f_{\alpha_{1}}\right)$ is defined as the frequency at which the common-base current gain ($h_{f b_{b}}$ or α_{n}) is down 3 db from its low-frequency value or α has dropped to .707 of its low-frequency value. A plot of common-base current gain for a typical transistor is shown in Fig. 4.

The term $f_{\alpha_{1}}$, is not being used in many instances today to specify tramsistor frequency responses for communications applications. This is because $f_{\alpha_{k}}$, is difficult to measure and, in some cases, may not even exist.

Interrelationships

Now that we have a basic background of the significance

Fig. 5. Nomogram shows the relationship between gainbandwidth product (f T) value of $h_{f e}$ at 1 kc . in db or magnitude, and common-emitter, current-gain cut-off frequency (fae).

Fig. 6. Both power gain and hie of a transistor (2N741) drop very rapidly as the maximum oscillation frequency is neared.

of the three common transistor high-frequency response parameters, let's examine the interrelationship among them and methods of converting from one specification to another.

The gain-bandwidth product f_{τ} is related to $f_{\alpha_{b}}$ by

$$
\begin{equation*}
f_{\tau}=K_{0} \times h_{f b_{o}} \times f_{\alpha b} \tag{3}
\end{equation*}
$$

where $h_{a, k,}$ is the low-frequency value of alpha, the commonbase current gain; and K_{θ} is a function of phase shift in the base region and has a value between 0.5 and 1.0 depending upon the transistor structure, i.e., mesa, MADT, alloy, etc.

In the interest of simplifying Eq. 3, a value of 0.8 for K_{g} may be assumed for most transistors with reasonable accuracy. Using this assumption, a nomogram has been constructed for rapid conversions between f_{τ} and $f_{\alpha_{i}}$ (see Fig. 7). To use this nomogram, simply place a straightedge through known values on any two scales and read the unknown on the third scale.

Note that the $h_{i h_{0}}$ scale also contains a scale for $h_{l_{c o l}}$, the low-frequency value of beta, the common-emitter current gain. Use either $h_{i b, 0}$ or $h_{1 e 0}$, whichever is known. If neither is known, $h_{1, \ldots}$ may be assumed to be 1 without significant error with most modern transistors. Thus, Fig. 7 enables reasonably accurate conversions between f_{τ} and f_{α}, to be made even if nothing else is known. For example, assume that f_{α}, is specified at 1000 mc . for a transistor and it is desired to compare this transistor with one with f_{τ} specified. The $h_{\text {fho }}$ is specified as .98 . From Fig. $7, f_{\tau}$ is just under 800 mc .

As previously stated, f_{α}, is related to f_{τ} by $f_{\tau}=h_{f e o}$ $\times f a_{c}$.
Fig. 5 is a nomogram solution to this equation. As with all nomograms in this article, merely place a straightedge through known values on any two scales and read the unknown on the third.
f_{T} and $f_{m a r}$ do not have a fixed relationship. In most cases, $f_{\text {ma }}$. will be slightly higher than f_{τ}. Both their absolite and relative values vary considerably among different transistor types. However, if no other information is available, $f_{\text {mas. }}$ may be assumed to be slightly greater tham, or about, $1.3 \mathrm{f}_{7}$.

As a general rule of thumb, a transistor which is specified as a switching transistor has an $f_{\text {mut, }}$ slightly lower than f_{τ} because the internal construction (Continued on page 67)

Fig. 7. This shows relationship between gain-bandwidth produet ($f T$) and common-base, current-gain cut-off frequency ($\left\{\alpha_{b}\right.$).

Fig. 1. The steel-laminated ring with associated coil mounts around the color tube to act as a permanent degaussing coil.

ANYONE who has serviced or installed a color-TV receiver is familiar with the problem of obtaining good color purity over the entire soreen. Even after a set has been properly installed and all adjustments have been made, some color contamination remains which the purity coil adjustment camot seem to cure. This is particularly visible on monochrome reception. This effect is clue to stray magnetic fields and generally requires deganssing of the picture tube. Most techniciams wind their own degaussing coil which is then connected to an a.c. outlet, placed in front of the picture tube screcn, withdrawn and then umplugged.

With the picture tube properly degaussed, local screen impurities due to stray magnetic fields are eliminated and it is possible to obtain a pure monochrome raster. Very often a discriminating viewer will complain after a few days that color contamination is again present. Deganssing the CRT will usually clear this trouble. Housewives, however, continue their struggle against dirt and diligently slide the vacumm deaner nuder and around the color-TV set, or else move the set to clean underneath it. Occasionally a youngster Jugs a toy containing a battery motor in front of the color set. Other electrical appliances such as dishwashers, mixers, can openers, etc., are often separated from the color set by only a thin wall and all of these devices create stray magnetic fields which can affect the color screen.

The deganssing assembly used by $R C A$ is momed around the screen of the CRT tube as shovin in Fig. 1. The degauss-

Fig. 2. Current through degaussing coils depends on warm-up resistance of thermistor R1 and voltage-dependent resistor R2.
ing system consists of sheet steel laminations on which four degaussing coils are monnted. After the four coils are in position. the segments are riveted together to form a ring. The reason for bulging the steel ont between the coils is to reduce magnetic impedance and provide maximum flux.

Degaussing action is brief and occurs only during the sets warm-up period. The length of the degaussing period is determined by $R 1$ (Fig. -2), a thermistor connected in sories with one side of the power transformer secondary. When the set is turued on, the tubes draw no current and $R 1$ is cold. As the cold resistance of this device is about 120 ohms, this allows current to flow through the degaussing coils $L 1$ through $L 4$ and through R e. This latter resistor is voltagedependent and limits the current through the coils. The resistance of $R 2$ increases when the voltage across it decreases. The varying field set up in the coils causes a corresponding magnetic field in the laminated metal shield which circles the screen, just as the technician's degaussing coil does.

As the tubes start to draw more current, R1 heats up and its resistance clrops. This reduces the current through the degaussing coils until, when properly hot, $R 1$ is only about t ohms. At that point the current throngh the clegainssing assembly drops to a negligible value since $R 2$ increases until it is much higher than $R 1$. The entire warm-up period takes less than a mimute, but this is sufficient to properly deganss the color picture tube. Actually, the most important features of proper degaussing are the location of the magnetic field, which is factory preset, and the gradual reduction of the strength of the field, which is govemed by the wam-up cycle of R1. Both of these factors are automatic and need no adiustmont. What is more, degaussing takes place every time the set is turned on from a cold start, assuring freedom from strav magnetic fields when the customer wants to use the set.

RCA has found in preliminary field trials that the antomatic degaussing feature sares initial degaussing at most installations and also reduces the number of "nuisance" calls. Because antomatic degaussing is provided, set owners no longer will experience the varying color impurities which seem to change from day to day and which present such a headache to the service technician. Thus a relatively simple device and circuit have solved another of the apparently random bugs which hase plagued color set owners.

By JOHN R. COLLINS

INNOVATIONS IN RECEIVING TUBES

Without much fanfare, a number of changes
are being made in vacuum tubes to improve
their performance while reducing their size.

IF you examine the current literature on electronics, you can hardly fail to come away with the impression that receiving tubes are a forgotten component, being overshadowed by dramatic discoveries in semiconductors, thin films, and the more esoteric microwave tubes. This is unfortunate because receiving tubes are an excellont example of continued product improvement through applied engineering. Compared with those produced a decarde ago, modern receiving tubes give much longer service on the average, are capable of far greater amplification, will operate at much higher frequencies, and are less subject to noise and microphonics. As a result, new radios and television sets give generally superior performance, often with a smaller tube complenent.

Althongh new envelope shapes and sizes are readily apparent by casual inspection, other inmovations insolve new alloys or internal structures, and are evidenced by better performance with less heat, lower noise, and fast warmup.

Design Problems

In its primary mode of operation, a comentional or spacecharge control tube is an amplifying device that depends on the control of a stream of electrons emitted by a cathode and collected by an anode or plate. The electron stream is regulated by one or more grids located between the cathode and plate. With d.c. potentials applied to the plate and grids, a stady-state plate current flows whose magnitude is determined largely by the geometry of the structure and the applied voltages. The plate comrent can be varied as desired by superimposing a signal voltage on the control grid.

A tube is a good amplifier if a small input signal at the control grid produces a much larger output at the plate. The figure of merit, called mutual conductance, is expressed by the relation, $G_{m}, \ldots / R_{p}$ where $G_{, \ldots,}$ is mutual conductance, μ is amplification factor, and R_{n}, is dynamic plate resistance.

A good tube will obviously have high μ and low R_{p}, where μ is determined by the effectiveness of the grid in shielding the cathode from the plate. Closer spacing of grid wires will increase μ, and so will increasing the separation between the grid and the phate. Dymamic plate resistance (R_{p}) depends on the geometry of the tube elements. It can be reduced by using a large cathode and by reducing the spacing between tube clements. The ability of a tube to perform at v.h.f. or u.h.f. depends largely on its transit time and interelectrode capacitances. Transit time must be short and is reduced by close spacing of electrodes. Interelectrocle capacitances, which must also be small. incrase in proportion to the size of the electrodes and their proximity to one another.

Ingemity is necded to assure that measures devised to improve one factor do not adversely affect amother.

Studies show that 50 to 80 percent of all receiving tube failures are accomited for by open heaters, shorts, arcing, and
gas; with open heaters far in front. While it is unlikely they will ever be entirely eliminated, the average life of a vacuum tube has been greatly increased during the past several years by attacking these common causes of failures.

Heaters

Ileaters are made from fine tungsten wire, either coiled or folded, and are usually coated with aluminum oxide for insulation. They burn out in use from recrystallization and embrittlement of the metal due to successive heating and cooling. Recently, a new technique was discovered based on altering the over-all crystalline structure of tungsten through the addition of a small amount of rhenium. Heaters made of this material will give thousands of hours of service withont any deterioration when operating at the high temperature that is necessary.

A second great stride in reliability is the so-called "dark heater." Although each manufacturer has his own process and methods are confidential, dark heaters in general are formed by coating the wire with an overcoating of a substance that will improve heat emissivity. As a result, a dark heater can be operated at a lower temperature while still giving the same performance (i.c', supplying the same amount of heat to the cathode) as an mprocessed heater operated at a much higher temperature.

The reduced temperature made possible by the use of a dark heater retards recrestallization of the tungsten and thus increases heater life. Reliability studies now in progress indicate that heater failures clue to the heater material itself can be virtually eliminated by the techniques described. The failures that still occur in tubes with improved heaters are mostly attributed to faulty workmanship.

Cathodes

Receiving tube cathodes are usually high-purity nickel sleeves in which heaters are encased. Purity is necessary because extraneous elements cause operating difficulties. Copper, for instance, sublimes in a vacum at relatively low temperatures, creating electrical leakage paths between tube elements where resistance should be very high. Sulphur causes poisoning of the cathode coating and is very harmful to electron emission.

Tungsten, on the other hand, is sometimes added to the nickel cathode to improve its heat strength, and to lessen the possibility of shorts caused by the cathode bowing at high temperatures.

Electron emission is provicled by coating the cathode with a mixture, usually of barium and strontium oxides, which gives high efficiency at relatively moderate heat. The coating was traditionally applied by spraying or dipping and thickness was impossible to control with great accuracy. Recently. however, a new film-casting process has been developed
whereby emitting materiaks are produced in the form of selfsupporting films of any desired thickness from about 0.25 to 40 mils, to a tolerance of 0.1 mil. They are wrapped around the nickel sleeves to form so-called "sarong" cathodes.

This techuique provides an extremely accurate and miform chemical and mechanical emitting surface. It has resulted in better control over electrode spacing, contributing to more unifom comrent density over the entire cathode area and thos giving consistent tube characteristics and a lower noise figme. The closer spacing made possible ly the smatl tolerances increases efficiency and allows lower heater power.

An instant-heating cathode to be used in conjunction with transistorized equipment has been developed by the Amperex Electronic Corp. Known as the "harp cathocle" (Fig. 2). it consists of a large number of parallel, closely spaced oxidecoated tungsten wires wound on a rigid frame. This design lends itself to variations of each of the three dimensions. so

Fig. 1. Cutaway view of a typical nuvistor miniature tube.
that it can be made long or short, thin or thick. A typical harp-cathocle tube, the type 8408 , also contains a frame grid and provides power output of 6 watts at 500 mc . Harp cathocles warm up in less than second. They need a current of several amperes at a voltage of 1.1 to 1.6 volts, and this is usually supplied by means of a push-pull transistor oscillator.

Grids

Any relative motion between the various elements making up the tube structure will change the geometry of the system and cause a change in anode current, in the same manner as a fluctuation of the potential on one of the grids. Changes in anode corrent resulting from such mechanical movements (anse undesirable microphonics. If the movement of tube elements is great enough, two elements may touch, producing a temporary short and a spike of impulse noise.

While it is virtually impossible to eliminate all microphonics, notable improvement has resulted from frame-grid

Fig. 2. Because this instant-heating cathode warms up in less than $1 / 2$ second, it is being used with transistorized equipment.
construction techmiques. These structures make use of a rectangular grid frame that is designed for greater stiffness in all directions. The greater rigidity makes it possible to wind grid wires much closer together without danger of shorts. Frame grids also permit notable improvement in amplification factor and mutual conductance. Closer winding of gricl wires (up to 500 wires per inch, with positional accuracy of ± 5 microns) provides greater isolation of the plate from the cathode, thus increasing μ. At the same time, R_{p}, is reduced by closer spacing of tube elements, made possible by greater rigidity.

The use of frame-grid tubes has permitted a striking reduction in the number of amplification stages needed in the i.f. systems of modern television receivers. The function of the i.f. system is to amplify the video signal from the mixer to provide adequate output at a bandwidth great enough to retain picture detail. Linearity is needed to prevent undesirable cross-modulation. Although four or five tubes, such as type 6AU6 ($G_{1 / \prime}=4450$), were needed to achieve the desired result in early sets, it is now practical to reduce the i.f. stages to two. Modem tubes designed for this kind of service include
 15.50()). Another frame-grid tube especially suited for use as a wide-band amplifier is tepe $82: 33\left(G_{\text {an }}=45,000\right)$

Anodes

The anode, or plate of a tube must be a good themal concluctor to permit the dispersion of heat ecenly over the entire surface. If hot spots develop, radiated heat may damage other elements. Hot areas
(Continued on page 90)

Fig. 3. Cross-section of one new tube shows the unique plate construction used to reduce the interelectrode capacitance.

> Even if you lack a trained ear, you can put a piano "on key" with the aid of a test instrument that tunes to correct harmonic and beat note.

By FREDERICK VAN VEEN/General Radio co.

PIAN0 TUNING-THE ELECTRONIC WAY

GOOD piano tuners, it seems, are becoming increasingly scance-so scance, in fact, that it's not unusual to find a tuner "booked solid" for several weeks in advalice, especially just before a holiday. This state of affairs, coupled with the rencwed popularity of the piano, may interest many piano owners in the art of piano tuming. If there is electronics in your background and especially if there are certain types of clectronic instruments that are avalable for your use, piano tuning can be simplified to the point where you need not be afraid to do something about the clinkers coming from that old piano.

Basic Tuning Procodure

Tming a piano, as almost evergone knows, is basically a matter of adiusting the tension of the piano wires so that the notes occur at the frequencies assigned to the equally tempered scale. The tuner, after calibrating one note against a tuming fork or other standard, strikes that note together with a note $2 / 3,3 / 2$, or $3 / 4$ of the reference note's frequenc. $\%$ in such combinations that the second, third, or fourtl harmonic of the second note should nearly equal the second or third harmonic of the reference note. ("Nearly," rather than "exactly," because of the compromises of the equally tempered scale.) The timer adjusts the second note for the proper beat frequency and then uses that note as a reference for another. and so on in a "knight's tour" of a central octave. This octave is then used as the refarence for all other notes on the keybord.

The actual adjustment of wire tension involves use of a special wrench, which fits over the square ends of the pins to which the wires are attached. The long handle on such it wrench provides the necessary leverage and sensitivity of adjustment.

Throughout most of the kerboard, there are three strings per mote. The usual procedure involses tuning the conter string of each note and then setting the adjacent strings to mison. (The idea is to avoid creating stress mbalances that might danage the piano.) While tuming the first string of a two- or three-string note, tuners use rubber wedges to "damp
out" the companion string or strings. Sometimes a long strip of felt is tucked along an octave or so, ribbon-candy style, to damp the "outside" strings of three-string notes.

Wrench, wedges, a strip of felt, and a tuning fork or two are the basic tools of the trade, plas one of the excellent handbooks covering the mechanical aspects of toming and the proper care of a piano (e.g., "Piano Tuning and Allied Arts" by William B. White). The piano is a delicate, expensive instrument, and you should not try to tune a piano for the first time withont reading such a handbook. The results of such an attempt could be catastrophic.

Recognizing the Beats

Assuming that one is familiar with the basic procechure and with the mechanical aspects of toming, the most difficult part for the inexperimed tumer is usually recognition of the beat frequencies in the presence of the much londer fundamentals. To one who has been tuning pianos for years, the beats are as clear as church bells. This ability to recognize the proper beats, even at the high and low ends of

Table 1. Filfer frequencies for the standard tuning sequence. The values are for the central octave, after luning C_{4} with respect to a tuning fork or other standard. A plus sign in the middle column indicates the note should be tuned above zero beat; minus sign indicates tuning to be below zero beat.

the keyboard, is probably the piano tuner's most valuable asset.

Lacking a trained car, one can call on some electronic help to filter out the fundamentals and pass only the desired harmonics. The filter must be tunable, of course, and must cover the audio range. Such a filter is the General Radio Type 1232-A Tuned Amplifier and Null Detector" (see "A Tuned Amplifier and Null Detector with One-Microvolt Sensitivity" by A. E. Sunderson in the General Radio Experimenter, Vol. 35, No. 7, July, 1961), with a tumable frequency range from 20 cps to 20 kc . low noise level, small size ($8^{\prime \prime} \mathrm{x}$ $6^{\prime \prime} \times 7{ }^{\prime \prime}$ "), and battery operation. The only other equipment needed, beyond the usual piano-tuning implements, is a microphone connected to the input of the filter and a pair of high-impedance headphones connected to its output.

For each note pair struck, it is necessary to set the frequency control on the filter to pass the desired harmonics. Table 1 lists these frequency settings for the entire centraloctave tuning sequence. Note that for all pairs except the first, the tumed note is adjusted for a beat frequency on the flat side of zero beat. The octaves on either side of the central octive can easily be tumed to the central octave. $A_{2}(110 \mathrm{cps})$, for instance, can be tuned so that its fourth harmonic is at zero-beat with the second harmonic of A_{3}, with the filter set at 440 cps . Such straight-octave tuning can be used for all but the extremely high and low ends of the keyboard, where one must call on "expanded-third" or other techniques described in the handbooks. By noting the harmonic relation of any prescribed note pair, one can easily determine the frequency at which beats should be heard, and set the filter frequency accordingly:

Lsing a Counter

If one has access to a frequency counter, each note can be tuned directly to its proper fundamental as indicated by the counter, without recourse to harmonic techniques. A tuned filter is once again needed, between the microphone and the counter. Accuracy of direct-frequency measurement is limited to $\pm 1 \mathrm{cps}$, a fairly significant percentage at the low end of the keybourd. With a "universal counter," one can switch to period or multiple-period measurement and thus gain more than enough precision. The period of A_{n} $(27.50 \mathrm{cps})$ for instance, is 0.036364 second. A counter with a 100 -ke. time base indicates this as 3636 for a single-period measurement, $36: 364$ for a 10 -period measurement.

Since period measurements are made in terms of time rather than frequency, a conversion table must be used. Table 2 gives period indications for the entire keyboard. The five digits given are as they appear on a "universal counter" with a 100 -kc. time base, set for single- or multiple-period as noted. The five digits given will be found to offer far more precision than the "settability" or frequency stability of the arerage piano justifies.

The counter can probably best be used as a check on tuning adjustments made by the usual harmonic procedures. The tumed filter is really all that is needed to do a firstclass job, and it is doubted that much time is saved or ac-

Table 2. Frequencies (in cps) and periods for the equally tempered scale. The five digits in the "Period" column are the readings on a "universal" counter with a $100-\mathrm{kc}$. time base, set for single- or multiple-period measurement. These figures may be read as "period in microseconds" for the 10 -period measurements. For 100 -period measurements, period figures are ten times the values in microseconds. For the 1000 -period measurements, figures are 100 fimes the values in microseconds.
curacy gained by a top-to-bottom tuning by period measurement.

Tuning pianos with the aid of a tuned filter offers several obvious advantages: accuracy of tuming, convenience, low cost (assuming one has access to the instrument in the first place). Also, after listening to the beats through the tuned filter, one soon develops the "piano-tuner's ear" and can, if he chooses, do the job in the old-fashioned way.

OHN FRYE
In addition to the ignition system, the modern car has a number of "noise makers" that may require suppression.

NON-IGNITION NOISE SOURCES

BARNEY clumped noisily into the service department carrying a relative signal-strength meter in his left hand and a pair of grass-clippers, very ostentatiously, in his right.
"See these?" he demanded of Mac, waving the sharp points uncomfortably close to his employer's nose. "You'd never guess these clippers were a TV service tool, now would you? But they were all I used to clear that weak-reception complaint."
"Let's hear about it," Mac said resignedly. "I'll get no peace until I do."
"Well, when I put the signal-streugth meter on the antenna, I found signals were away down, especially on the higher chamels. Suspecting a broken lead-in, I went outside to look; and I nearly flipped when I found morning glory vines planted directly beneath the lead-in and the motor control wires and climbing both clear to the top of the tower. The owner explained he thought the bare wires looked ugly running up alongside the house and he had deliberately planted the morning glories there to hide them.
"I had him watch Channel 13 while I climbed the tower and stripped away the rumer twined closely around the leadin. He said every time a chunk of vine came down the picture strength went up; and when I finished, the picture was the best he had ever seen it. That's the sort of odd-ball situation a technician encounters very rarely, but he's gotta realize such things can happen. Say, that reminds me! Remember about a month ago we were talking about suppressing ignition interference without impairing engine performance?"
"Yes, and I've been intending to get back to the subject. What about it?"
"I was browsing through some literature from the Champion Spark Plug Company at Homer's garage the other day, and they made quite a to-do about the bad effects of reversing ignition-coil primary comections. The polarity of the sparkplug terminal should be negative with respect to the block; but if the coil primary connections are hooked up incorrectly, the terminal becomes positive. Under these conditions you need $35-45 \%$ more voltage to fire the phig. Hard starting and rough engine idle often result. It also figures that adding resistor suppression to such a reversed system would aggravate the condition and make you think the car wouldn't tolerate suppression, when all you really needed to do was reverse the coil polarity."
"Is this condition very common?"
"I read an estimate someplace that a third of all the cars on the highway today have reversed primary connections, but Homer and other mechanics with whom I've talked think that's way too high. They say you encounter the condition just rarely enough to make you overlook the possibility when you shouldn't."
"I suppose you could touch the high voltage probe of a v.t.v.m. or v.o.m. to the plug terminal and determine if it were negative by watching which way the meter kicked when the plug fired."
"Yeah, but there's another quick-and-dirty method. You pull
off a plug wire and arrange the connector about a quarter-inch away from the plug terminal. Then you insert the point of a wooden pencil into this gap while the motor is rumning. If the spark flares and turns orange on the plug side of the pencil point, the coil is correctly wired. If the flare and orange tint is toward the connector, reverse the coil primary connections."
"That's good addenda to our discussion of ignition-noise suppression," Mac applauded; "but now let's talk about suppressing other kinds of noise. Ordinarily, ignition interference is strong enough you don't realize the other noise is there until you get rid of the ignition racket; then it comes in annoyingly clear, the way the unnoticed ticking of a clock seems to build in volume as the house quiets down.
"The battery-charging system is usually the worst offender, especially in cars employing a d.c. generator instead of an alternator. Arcing between the brushes and the commatator segments of the generator armature and between the contact points of the voltage-regulator relays produces the interference. The generator produces a high-pitched musical whine that doesn't stop instantly when the ignition is shut off at fast idle. The pitch changes with motor speed. The first thing to do is make sure the commutator is perfectly round with the mica properly undercut, the segments are clean, and the brushes are in good condition. There's no point in creating unnecessary interference to be suppressed.
"The voltage regulator puts out a haphazard, ragged rasping sound that also continues briefly after the ignition is cut off a rapidly turning motor. A . 5 - $\mu \mathrm{f}$. high-current coaxial capacitor (such as $C-D$ NFF-0.558) should be installed right at the generator 'Arm.' terminal. Then 1 or . $2-\mu \mathrm{f}$. high-current coaxial capacitors ($C-D=$ NFF-315D or equivalent) should be connected to the 'Bat.' and 'Arm,' terminals of the voltage regulator. An ordinary capacitor should never be connected to the 'Field' terminal of the voltage regulator. Instead, a special filter, consisting of an .002- $\mu \mathrm{f}$, capacitor in series with a 5 -ohm resistor can be installed between the 'Field' terminal and ground. All wiring between the generator and the regulator should be shielded; and all shielding, inchuding the cases of the coaxial capacitors, should be well grounded. So should the frame of the generator, all generator shields, and the volt-age-regulator case.
"Probably the easiest way out is to use a universal low-voltage suppression kit, such as the Sprague Type SK-1 'Suppresikit ${ }^{12}$,' which includes all the capacitors and the filter I have just mentioned together with the shielded wiring and a coaxial capacitor for the ignition-coil primary. Detailed instructions show you how to install it."
"Isn't a tunable generator filter sometimes a help?"
"Yes, in a few cases a parallel-tuned trap inserted in the generator output lead and tuned to the receiver frequency will take out the last bit of generator noise. For the CB band, this could consist of eight spaced turns of $\# 10$ wire wound on a $1^{\prime \prime}$ form and tuned with a $30-\mathrm{pf}$. compression-type mica capacitor. The capacitor is adjusted for minimum noise in the receiver with the engine running."
"How about alternators on modern cars? Do they give

HOBSON＇S CHOICE？ NEVER AGAIN！

> If，in 1631，you went to rent a horse from Thomas Hobson at Cambridge，England，you took the horse that stood next to the door．And no other．Period．Hence，Hobson＇s Choice means No Choice．

> And，as recently as 1961，if you went to buy a true high fidelity stereo phono cartridge，you bought the Shure M3D Stereo Dynetic．Just as the critics and musicians did．It was ac－ knowledged as the ONLY choice for the critical listener．

> Since then，Shure has developed several models of their Stereo Dynetic cartridges－each designed for optimum performance in specific kinds of systems，each designed for a specific kind of porte－monnaie

> We trust this brief recitation of the significant features covering the various members of the Shure cartridge family will help guide you to the best choice for you．

Add to Your Profits in Radio-TV Repairs with PROFESSIONAL APPLIANCE SERVICING

Learn easily, quickly with NRI's new course

Appliance Servicing is a natural, profitable side-line for Radio-TV Repairmen. The boom in electric appliances means greater profits for you. There are probably hundreds of broken appliances right in your neighborhood.

Free book tells you about profitable opportunities for you to increase your income fast.

NRI, the world-famous home study school, now offers a new, low-cost comse to prepare you quickly for extra profits. Training includes appliance test equipment and covers-

- Small and Large Home Appliances
- Farm and Commercial Equipment
- Small Gasoline Engines
-there is even a special course arrangement to learn air conditioning and refrigeration.

If you are in business for yourself, course costs can be tax deductible.

Send for FREE book describing opportunities and details of course-plus a sample lesson. There's no obligation and no salesman will call. Send coupon below or urite:

Appliance Division, Dept. $302-094$
National Radio Institute
Washington, D.C. 20016

Appliance Division, Dept. 502-094
National Radio Institute
Washington, D.C. 20016
Please send Free Book on Professional Appliance Scrvicing and Sample Lesson.

Name
Address
City \qquad
State
Accredited Member National Home Study Council
much trouble in causing interference?"
"Very little. With brushes riding on smooth copper slip rings, there's no arcing as long as these rings are kept clean and the brushes make good contact. Now and then a defective diode rectifier can cause intermittent moise. Most alternators are factory-equipped with a special capacitor to protect the rectifiers and suppress radio noise. No other capacitor should be sulstituted for it. The alternator voltage regulator contains only one relay instead of the three used in a gen-erator-type regulator, and a $1-\mu \mathrm{f}$. bypass capacitor across the contacts will quiet it."
"I saw a Field Service Bulletin from General Motors saying a few cases of CB radio noise had been encountered with 1-D Series 'Delcotron ${ }^{\text {R' }}$ alternators. The suggested cure was to connect a metalcased . 5 - μ. capacitor between the ' R ' terminal lead and gromed. The capacitor lead was simply spliced to this lead and the splice taped. The case of the capacitor was firmly gromeded to the alternator case. It was suggested you be darmed sure you didn't connect the capacitor to the 'F' terminal lead."
"Fine!" Mace said. "Once you've quieted the charging system dorvo, you may begin to hear sender units for the oil pressure, temperature, and fuel ganges. The oil-sender puts out a low-pitched clicking whose frequency varies with oil pressure. A . $1-\mu \mathrm{f}$. consial capacitor inserted in the lead coming ont of the sender and going to the gange will quiet it. Ganges with rheostat-type senders will give a hissing, crackling somed when they are jarred or the car is rocked with the ignition on. Give them the same treatment as the oil-sender. Incidentally, don't forget new cars may have a miniature voltage regulator tucked away at the rear of the instrument cluster that uses vibrating points to regulate the voltage for thermal-type fuel and temperature galuges to approximately 5 volts. This can be a source of interference, but a $.1-\mu \mathrm{f}$. capacitor cam usually be installed across the output without removing the regulator."
"Accessory motors quite often make noise," Barney offered, "but they're easy to spot and to cure. For example, if you hear a noise only when the heater blower is rumning, you know you can comect a bypass capacitor from the hot wire to gromed right at the motor and stop the racket. The same goes for other motors used in a car."
"About all that's left is wheel and tire static," Mac reflected. "This takes the form of an irregular popping or rushing sound heard only in dry weather at fairly high speeds. When you touch the brakes, the somed disappears. The first thing to do is to install static collectors in the front-wheel hubs or make sure collectors already present are making satisfactory
electrical contact with the spindles."
"I know a case where a collector was really producing noise." Barney interrupted. "The cotter key holding the spindle nut from turning was not properly tucked in, and a split end was touching the static collector once each revolution. It made a rhythmic clicking sound in the radio that varied with the speed."
"That's another of those morning-glory-vines-climbing-the-lead-in cases." Mac said with a grim. "It doesn't happen often, but it can be a headache when it does. If rolling noise persists, the next thing to do is to put graphite anti-static powder in the tires with a special applicator. A final resort is to ground the brake shoes with flexible braid,"

He paused, and Barney could see him raking his mind for any noise-suppressing itleas he had overlooked. Finally the older man continued.
"Practically never will all these measures be needled in one installation. I've deliberately tried to talk about noise sources in their usual order of magnitude: ignition, charging system, gauges and motors, tire static, etc. My thought was that a technician should be able to go right down the list until the receiver was quiet enough to suit him. But I know from experience that individual cars do not always follow this classic pattern.
"The best way is to identify the source of the loudest interference and quict it. Then proceed to the loudest remaining interference and stop that. At each step the over-all noise level will be dropping, and when you are satisfied with the reception, quit. That way you will not be wasting equipment and effort on units that are actually not producing any objectionable noise."
"But how do you know when you've reached the quitting point?"
"Well, when you begin to hear the noise from every passing car much loucler than the normal backgromel noise in the receiver or when a weak FM station temporarily disappears every time you meet another car, you're about there," Mace said. "At that point, noise emanating from your car will seldom be the limiting factor in your reception."

"Is it an Ektachrome or a Kodachrome set?"

EW Lab Tested
(Continued from page 18)

microphone by comparison to our standard, whose response is known over the 20) to 15,000 -cps range. This technicue, althongh subject to some errors with microphones of different directional properties, gives a reasonable approximation of the true response of a microphone, and correlates well with listening tests.
The response curve of the SK-46 velocity microphone proved to be exceptionally smooth and Hat, within $\pm 4 \mathrm{db}$ from 22 to 10,000 eps. The output falls at a $12 \mathrm{db} /$ octave rate above about 9000 cps. The exceptionally good bass response is the result of the close speaker-to-microphone spacing. At greater distances, the low-frequency response starts to fall off at a much higher frequency. This is characteristic of velocity microphones and is shown in the manufacturer's published response curves for the SK-46. Our measurements substantially confirmed the manufacturer's ratings, except that we found the response above 6 kc . to be somewhat better than the published values. The curves accompanying the microphone showed the frec-field response falling off below 1000 cps at a 2 or $3 \mathrm{db} /$ octave rate. Most pub-lic-address and recording applications will result in a response somewhere between the "close-talking" and "freefield" conditions.

We made tape recordings with the microphone, comparing the sound to that from other comparably priced dynamic microphones. It has a pleasingly clean, natural sound, with no detectable coloration as long as the somind source is a foot or more from the microphone. Closer spacing adds noticeably to the bass response, with male voices becoming boomy under close-talking conditions. The output from the SK-46 was sufficient to drive the high-impedance inputs of typical home tape recorders, even when it was wired for 200 ohms impedance.

The rejection of side response was superior to that of any of the carclioid dynamic microphones we have tried. In fact, it was possible to hold the microphone within a foot of the loudspeaker which it was driving without getting acoustic feedback, even at relatively high gain settings, as long as it was carefully oriented to take advantage of its directional properties.

The RCA SK- 46 is an excellent-quality ribbon microphone, with sound quality in all ways comparable to that of any microphone in its price class, as well as to many more expensive microphones. In situations where acoustic feedback is a problem, its outstanding directional properties make it especially valuable. It sells for $\$ 49.50$.

Who says a professional-grade, ribbon-type mike has to cost a small fortune?

Most audio engineers agree that microphones with ribbon-type generating elements give the best acoustic performance obtainable... the smoothest, most distortion-free response over the broadest frequency range.

Most ribbon-type mikes are therefore quite expensive...up in the hundreds of dollars.

But not the RCA SK-46. It gives you a frequency-response of 40 to $15,000 \mathrm{cps}$
... and it costs only $\$ \mathbf{4 9 . 5 0 *}$

What's so special about ribbon-type mikes?

There are 7 basic types of microphone generating elements: ribbon, condenser, magnetic, dynamic, ceramic, crystal and carbon. RCA sells all 7, so we can be relatively impartial about the advantages of the ribbon type.

A typical ribbon element (special aluminum alloy foil $0.0001^{\prime \prime}$ thick) weighs only about 0.25 mil-ligram-hundreds of times lighter than generating elements in, say, dynamic and condenser mikes. The ribbon, in fact, is as light as the air mass that moves it, which accounts for its exceptional sensitivity.

In fact, of all 7 types of generating elements, the ribbon-type element is superior in:
\star Smoothness of response
\star Breadth of frequency range
\star Immunity to shock and vibration
\star Adaptability to various impedances

\star Low hum pickup
\star Immunity to temperature and humidity variations
That's why most of them cost so much.

But now you can get the remarkable RCA SK-46 bi-directional ribbon-type mike at Your Local Authorized RCA Microphone Distributor - For Only $\$ 49.50^{*}$.

For full technical informationor the name and address of your nearest distributor-write: RCA Electronic Components and Devices, Dept. 451, 415 So. 5th St., Harrison, New Jersey.
*Optional Distributor Resale Price

26 Heathkif Values...There Are

Why Do More People Choose Heathkit Electronics Over Any
Other Kit Manufacturer?

1. 8 Great Product Lines To Choose From! Over 250 kits . . the world's largest selection! Stereo hi-fi, a mateur radio, test \& service, marine, laboratory, educational, automotive, home \& hobby kits... something in every line to fit every need and budget.
2. Quality You Can Count On! Name brand components combined with experienced design to insure up-to-date performance and dependability. The world's most experienced kit engineers, using the latest techniques, develop, produce \& test every kit for ease of assembly and highest quality.
3. Factory To You Savings! No distributor markups, no dealer profits . . . just prompt, to-your-door delivery! You put your money in the product, not it's distribution. Add the savings of
"do-it-yourself," and you'll see why Heath is your best buy.
4. Fast \& Simple To Build! Every kit is designed with the kit builder in mind. No special skills or knowledge nceded. And the famous Heathkit manuals leave nothing to question . . . just clear, non-technical language supported by carefully detailed illustrations. You're assured of professional results!
5. Extra Service! An expert staff of technical correspondents to answer any question about selection, construction and use of your kit . . . factory repair service with original parts should you ever need it. . . time payment convenience with liberal terms and easy monthly payments. Get the complete Heath story including descriptions of all 250 Heathkit products . . . use the handy order form, and send for your Free Catalog now!

Stereo/Hi-Fi Kits

Deluxe All-Transistor, AM/FM/FM Stereo Tuner AJ-43 . . . \$119.95-Up to the minute AM, beautifully quiet FM, thrilling natural FM Stereo . . . all reproduced in the exciting new dimension of "transistor sound." Features 25-transistor, 9-diode circuitry, automatic switching to stereo, AFC, stereo phase control, filtered outputs for direct, beat-free stereo recording, and handsome tan vinyl-clad steel cabinet. 19 lbs .

Low-Cost All-Transistor AM/FM/FM Stereo Tuner AJ-33 . . . \$99.95-Features 20-transistor, 10 -diode circuitry for cool, "humfree" operation and longer life, built-in stereo demodulator, A FC for drift-free reception, stereo broadcast indicator light, filtered outputs for direct, beat-free stereo recording, concealed secondary controls to prevent accidental systemchanges, and "Iow-silhouette" walnut cabinet. 17 Ibs .

New FM/FM Stereo "Tube-Ty pe"' Tuner AJ-13 . . . Only \$49.95! Easy to own! Only 3 simple controls to operate. Features built-in FM stereo circuitry, stereo indicator light, automatic frequency control for drift-free reception, flywheel tuning, lighted slide-rule dial, external antenna terminals, preassembled, prealigned "front cnd," and new mocha brown, beige \& black color styling. Matches the AA-32 Anplifier. 16 lbs .

All-Transistor, AM/FM/FM Stereo Receiver AR-13 . . \$195.00 -43 transistor, 18 diode circuitry for cool, instant, hum-free operation, plus the quick, uncompromising beauty of "transistor sound." Compact, yet houses two 20 -watt power amplifiers (33 watts each, lHF music power), two preamplifiers, and a wide-band AM /FM/FM Sterco tuner. Attractive new "Iow-silhouette" walnut cabinet. Just add 2 speakers for a complete stereo system. 34 lbs.

Matching Deluxe All-Transistor 70-Watt Stereo Amplifier AA-21 ... \$139.95-Enjoy the quick, unmodified response of every instrument, each with its characteristic sound realistically reproduced. No compromising! Enjoy 100 watts of IHF music power at $\pm 1 \mathrm{db}$ from 13 to 25,000 cps. Enjoy cool, instant, hum-free operation from its 26 -transistor, 10 -diode circuitry. Simple to assemble. 29 lbs .

Matching All-Transistor 40-Watt Stereo Amplifier AA-22 . . \$99.95-Produces a full 66 watts IHF music power at $\pm 1 \mathrm{db}$ from 15 to $30,000 \mathrm{cps}$. Quick, clean, unmodified "transistor sound." 20-transistor, 10 -diode circuitry for cool, instant, trouble-free operation and long life. 5 stereo inputs for versatile performance. Concealed secondary controls. Handsome "low-silhouette" walnut cabinet. 23 lbs .

New 16-Watt "Tube-Type"' Stereo Amplifier AA-32 . . . \$39.95! An inexpensive way to start a modern stereo system in your home. Operates with magnetic as well as ceramic phono cartridges; delivers full power (20 watts IHF) within $\pm 1 \mathrm{db}$ from 30 to 30,000 cps; has full-range controls, 4 sterco inputs, 2 four-stage preamplifiers, 2 push-pull power output stages; plus new mocha brown, beige \& black color styling. Matches the AJ-13 tuner. 15 lbs.

244 More To Choose From!

5

Home Entertainment Kits

Deluxe All-Channel High Fidelity 21" Color TV Set GR-53A . . $\$ 399.00$ -Compares in features $\&$ performance to sets costing $\$ 800$! Tunes all UHF \& VHF channcls, 2 thru 83, to bring you sharp, true-to-life color and black \& white pictures, plus hi-fi sound. Exelusive built-in selfservicing eenter . . . allows you to adjust and maintain set yourself. Features high definition 21 " color tube with anti-glare bonded safety glass; 24,000 volt regulated picture power; Deluxe Standard-Kollsman VHF tuner with push-to-tune fine tuning \& new transistor UHF tuner; 26tube, 8 -diode circuit. All critical assemblies prebuilt $\&$ tested! Goes from parts to picture in just 25 hours! Can be wall mounted or installed in Heathkit walnut-finished hardboard cabinet. 1 year warranty on picture tube, 90 days on all other parts. You can't buy a better Color TV set yet this is priced with the lowest! GR-53A, chassis, tubes, mask, UHF \& VHF tuners, mounting kit, speaker, $127 \mathrm{Jbs} .$. . S399.00 GRA-53-6, cabinet, 52 lbs. . . $\$ 49.00$.

Deluxe All-Channel Hi-Fidelity 23" Black \& White TV Set GR-22A . . . $\mathbf{\$ 1 9 9 . 0 0 - F e a t u r e s ~ U H F ~ \& ~ V H F ~ i n ~ o n e ~ u n i t ~ f o r ~ a l l - c h a n n e l ~ r e c e p t i o n . ~}$ Exclusive Heathkit advanced TV circuitry for both hi-fi picture \& sound. Incorporates the finest set of parts \& tubes ever designed into a TV set. Simple to build with all critical circuits factory built \& tested . . . assembles in just 12 hours. Can be custom mounted or installed in handsome walnut cabinet (optional). GR-22A, chassis \& tubes, UHF, (no mask), 84 lbs. . . . \$199.00. GRA-22-1, walnut cabinet, 66 lbs. . . . \$89.95. GRA-$22-2$, TV wall mask, 13 lbs. . . . $\$ 25.95$.

1964 Heathkit/Thomas Organ GD-232A . . \$349.95-Provides the whole family with countless hours of fun, relaxation, entertainment, education, and immeasurable satisfaction. Compares in features to organs costing $\$ 700$! Can be built \& played by beginners-no special skills or knowledge required! Features 10 true organ voices; new variable repeat percussion that produces additional banjo, narimba, mandolin, balalaika effects; two 37 -note keyboards, each ranging C thru C; 13 -note heel $\&$ toe bass pedals; expression pedal; keyboard balance control: 20-watt peak power amplifier \& speaker; transistorized plug-in tone generators; hand-crafted walnut cabinet. GD-232A, 156 lbs . GDA-232-1, walnut bench, 19 lbs \$24.95.

New: Heathkit Garage Door Opener System GD-20A . . . \$124.90Automatically opens garage door \& turns on light. Easy one-man installation. Operates overhead track, most jamb \& pivot doors up to 8^{\prime} high. Foolproof. Requires no license. Includes pocket-size VHF transmitter with superhet receiver (both factory assembled) plus simple-to-build mechanism. Units also available separately. 69 lbs.

New! NELI Transistor Ignition System Kit . . . Only \$34.95-Save \$35! Features 4-transistor, zener-diode protected circuitry: built-in conversion plug for switching to conventional ignition. Operates on 6 or 12 V . DC pos. or neg. ground system-installs easily on all cars, foreign \& domestic. Completely sealed against moisture, corrosion, ete. Simple to assemble . . . everything included. 7 Ibs.

New! Motor Speed Control GD-973 . . . \$17.50-Reduces power tool speed without loss of operating efficiency. Ideal for use with drills, saus, mixers . . . any power tool with a universal AC-DC motor with a rating of 10 amperes or less. Prolongs life of drill bits, blades and other attachments. Has Silicon Controlled Rectifier with feedback circuit that slows motor, yet maintains high torque power! Adjustable speed eontrol lets you dial desired motor speed. 3 lbs.

Test Instrument Kits

World's Largest Selling Vacuum Tube Voltmeter IM-11 . . . \$24.95-A versatile performer anywhere in electronics! Features a new single AC/Ohms/DC probe; 7 AC, $7 \mathrm{DC}, \& 7$ Ohms ranges; easy-to-read $41 / 2^{\prime \prime}$ 200 UA meter; 1% precision resistor for high accuracy: and an extended low frequency response of $\pm 1 \mathrm{db}$ from 25 cps to 1 mc . Functions include $A C$ volts (RMS), $A C$ volts (peak-to-peak), DC volts, resistance and db measurements. Easy circuit board assembly. 5 lbs . Assembled 1MW-11 . . . \$39.95.

Deluxe "'Service Bench"' Vacuum Tube Voltmeter IM-13 . . . \$32.95Measures AC volts (RMS), DC volts, resistance \& db. Separate 1.5 \& 5 volt AC scales for high accuracy; "gimbal" mounting bracket for easy bench, shelf or wall mounting; meter tilts to any angle for best viewing; smooth vernier action zero \& ohms adjust controls; large, easy-to-read $6^{\prime \prime} 200$ UA meter; and single AC/Ohms /DC test probe. 7 lbs . Assembled IMW-13 . . . \$49.95.

Extra Duty Wide-Band 5" Oscilloscope IO-12 . . . \$76.95-Boasts professional styling \& features at low cost ! Has 5 mc bandwidth for color TV servicing, famous Heath patented sweep circuit-(10 cps to 500 kc), push-pull vertical \& horizontal amplifiers, and two circuit boards \& wiring harness for quick, easy assembly. Other features include positive trace position controls, peak-to-peak calibration reference, automatic sync circuit, Z-axis input, 5UP1 CR tube, and a husky power supply. Excellent linearity with lock-in characteristics allow stable waveform presentations at upper frequency limits. 24 lbs . Assembled IOW-12 . . . \$126.95.

Professional Sine-Square Wave Generator IG-82 . . . \$51.95-Ideal for any application in service and general laboratory work. Less than $.25 \%$ sine wave distortion. Less than .15 microsecond square wave rise time. Sine \& square wave output available simultaneously. Covers 20 cps to 1 mc in 5 bands. Features exact frequency calibrating system for proper dial tracking. 13 lbs .

Quality Heathkit Tube Checker IT-21 . . . \$44.95-Simplifies servicing eliminates guesswork! Tests all tube types, including new Compactron, Nuvistor, Novar and l0-pin miniatures. Features multicolored "Bad-?-Good" meter scale; and constant tension, free-rolling roll chart mechanism. Individual tube element switches protect against obsolescence. Has color-coded wiring harness for fast, easy assembly. Compact size with handy carrying handle make it ideal for field use. 12 lbs .

New! Heathkit FM Stereo Generator IG-112 . . . \$99.00-Produces all signals required for trouble-shooting \& alignment of multiplex adapters, FM tuners and receivers. Generates mono FM or composite stereo FM signals. Switch selection of $400 \mathrm{cps}, 1000 \mathrm{cps}, 5000 \mathrm{cps}, 19 \mathrm{kc}, 38 \mathrm{kc}$, plus 65 kc or 67 kc SCA test signals for complete alignment capability. Simple to assemble and operate. 10 lbs .

Heathkit Audio Generator Kit IG-72 . . \$41.95-Produces near-perfect sine wave audio signals. Less than .1 of 1% distortion between 20 and $20,000 \mathrm{cps}$. Output level and frequency accurate to within $\pm 5 \%$. Switch selected output frequencies, 10 cps to 100 kc . Large $41 / 2^{\prime \prime} 200$ UA meter calibrated in volts and decibels. Output attenuator operates in steps of 10 db , and is calibrated in 8 full scale meter ranges. 8 lbs .

Citizen's Band Kits

Deluxe "Master Station"' Transceiver GW-42 . . . \$119.95-Operates "nobile" or "fixed" with built-in 3-way power supply. Other deluxe features include 5 crystal-controlled transmit \& receive channels, built-in 4 -tone selective call circuitry, all-channel receiver tuning, tuning meter, adjustable squelch, switchable automatic noise limiter. Complete with AC \& DC power cables, PTT microphone, and crystals for 1 channel (specify). 23 lbs.

New Versatility! 2-Way Citizen's Band Radio MW-34 . . . \$89.95Provides 5 watts of input power for reliable communications fromboat to boat, car to boat, car and home. Features 5 crystal-controlled trans-mit-receive channels (one transmit crystal on front panel); variable receiving tuning with spotting switch; 3 -way power supply (6 or 12 V . DC or $117 \mathrm{~V} . \mathrm{AC}$); RF stage for superb reception; and attractive black, white, \& blue Heathkit marine styled cabinet. 19 lbs.

5-Channel Citizen's Band Transceiver GW-22A . . . \$59.95-Low cost ! Ideal for business or personal communications. 5 crystal-controlled transmit \& receive channels; superheterodyne receiver with RF stage; built-in squelch \& automatic noise limiter; PTT crystal microphone; and crystals for one channel (specify). GW-22A (117 v. AC, less selective call). GW-22D (6 or 12 v . DC, less selective call) . . $\$ 64.95 .14 \mathrm{lbs}$. GW-32A (117v. AC, with selective call) . . \$84.95. GW-32D (6 or 12 v. DC, with selective call) . . . \$89.95. 15 lbs.

Powerful 1-Watt "Walkie-Talkie" GW-52 . . . $\$ 74.95$ each-10transistor, 2-diode circuit; 3-mile inter-unit operation; crystal-controlled transmit \& receive; rechargeable $\$ 20$ battery; built-in 117 VAC battery charger; FCC license pack; crystals for 1 channel (specify). 4 lbs .

Deluxe 9-Transistor "Walkie-Talkie" GW-21 . . $\$ 44.95$ each-1 to 3 mile operation range; portable-battery powered; crystal-controlled transmit/receive; superhet receiver; built-in squelch $\&$ automatic noise limiter; crystals for I channel (specify). 3 lbs .

Low Cost 4-Transistor "Walkie-Talkie"' GW-31 . . . \$19.95 each-1mile operation; crystal-controlled transmitter; super-regenerative receiver; 75 hour operation. Only $\$ 35.00$ a pair! No license, forms, tests or age limit. Less battery. Crystals for 1 channel (specify). 2 lbs .

New! Heathkit "Ham-Scan" Spectrum Monitor HO-13 . . . \$79.00Adds "sight" to sounds of amatcur radio and CB operations. Operates with virtually all receivers in use today. Monitors up to 100 kc of band spectrum- 50 kc on either side of the signal to which you are tuned. Ideal for spotting band openings, checking carrier \& sideband suppression, or identifying AM, CW, or SSB received signals. 12 lbs .

COMPARE PERFORMANCE

Quarter-Track Record/Play Data			
ips	db	cps	s / n
$71 / 2$	± 2	$50-25,000$	54 db
$33 / 4$	± 2	$50-15,000$	45 db
$17 / 8$	± 3	$30-10,000$	45 db

COMPARE VERSATILITY

Incorporates the Crown use-tested solid state control center, featuring plug-in circuitry modules for quick adaptation to a variety of specific uses in home, commercial and laboratory recording. Audio circuitry, $\pm 1 / 4$ db from $10-100,000 \mathrm{cps}$. Third hèad permits playback while recording. Complete pushbutton control. And, many other features.

```
INVEST IN CROWN QUALITY
```

INDIVIDUAL PERFORMANCE RECORD SUPPLIED WITH EACH CROWN

WRITE DEPT. EW-09

INTERNATIONAL 1718 mishawake Rd. • Eikhort, Ind.

A^{T}T the present writing, we are aware of seven different color-TV systems proposed by various countries around the world. Recently, we heard about an eighth. The latest approach comes from Dr. N. Mayer of the Institut fur Rundfunktechnic, Munich, Germany.
This new method came as a result of the delay, until April 1965, in the selection of a color-TV system for use in Europe. During previous discussions, principal criticism of the NTSC system revolved around the susceptibility of the chromatic subcarrier to amplitudedependent phase distortion due to multi-path reception.
In conventional NTSC reception, the reference burst occurs at the black level while the chrominance signal rides up and down dependent on the luminance signal amplitude. If the phase distortion is dependent on the level, then the phase of the chrominance signal will change with respect to the color burst with signal level changes. This will produce color changes on the received picture. If, on the other hand, the reference burst were to ride up and down on the luminance signal, together with the chrominance signal, then the relative phase between burst and the chrominance would not be easily altered.

Dr. Mayer then proposes a system that he calls NTSC + Additional Reference Transmission (ART) that uses a new subcarrier having the same frequency as the color burst but the phase of the I chromatic signal. Although this new system has a somewhat different circuit than conventional NTSC, Dr. Mayer claims that his new method will be compatible with conventional NTSC receivers but that the ART color system will be immune to differential phase distortion (up to 40°) and therefore less susceptible than ordinary NTSC to multipath reception distortions.

This system will be discussed at the next European color TV meeting.

Rare Earth Red

Because of the low efficiency of the red phosphor under cathode-ray excitation, the blue and green phosphors of most present-day color CRT's have to be operated at low brightness levels to
keep the gum ratios at acceptable limits. This has kept the over-all brightness at the screen of the CRT at a reduced level, necessitating viewing in low ambient light.

If the beam current of the three guns were increased in an effort to make the color picture brighter, the red phosphor sometimes exhibited a shift in color towards orange so that true red could not be experienced at high beam currents and other colors containing red would be distorted.

In an effort to make brighter color pictures, Sylvania has introduced a new rare-earth red phosphor (europium) that overcomes the limitations of the older red phosphors so that color CRT's using it are about 40% brighter than those currently used. This new red phosphor does not change color at the higher beam currents, and therefore all three guns can operate at a higher level, producing a higher brightness color picture.

The new phosphor came from an interest in laser experiments and has now sparked the search for rare-earth green and blue phosphors which may lead to even brighter color-TV pictures.

Sensitivity

Have you ever wondered iust how sensitive a detector could be made if someone really made the effort? Well, down at the National Bureau of Standards, someone has done just that.

They are in the midst of a search for an attenuation measurement system having accuracies on the order of .0001 db and for a detector that would not be a degrading factor in the measurement.
The detector that was developed has a sensitivity of 36 picovolts (36×10^{-12} volts, or 36 micromicrovolts) and capable of responding to a signal 210 db below 1 volt. This value, obtained with a 30 -second integration time, is only 17% greater than the theoretically possible 29.9 picovolts attainable with this circuit.

In the old ham days, it was said that a sensitive receiver could hear two wires being rubbed together in AC4-land (Tibet to the uninitiated). Looks like it might happen real soon.

H.F. Transistors
 (Continued from page 52)

of the device has been optimized to mhance its switching characteristics. Howerer a transistor listed as a switching device also makes a good amplifier.

Transistors that are specified as amplifier devices have in $f_{\text {mu }}$ which is higher than f_{T} for like reasons. A comparative chatt of f_{5} and $f_{\text {mar }}$ for a $2 \mathrm{~N}^{7}+1$ amplifier transistor is shown in Fig. 6.

If $f_{\text {mir, }}$ is known, the maximum avalable gain at frequencies between $f_{\text {mas }}$ and f_{c}, may be found using Fig. 1.

An example may be helpful. Suppose a transistor is being considered for an r.f. amplifier at . 50 me. Probably the first and most important consideration is gain at the operating frequency. Assume you locate a high-fremuency transistor that looks attractive price-wise, but the only high-frecpuency parameter given is an fon of 400 mc . First, use Fig. 7 to find f_{T}. Possibly $h_{t h o}$ and h_{r+n} are not known. ©) assume $h_{\text {fho }}=1$. The value obtained for f from Fig. 7 is 320 mc .

Since mothing is given about $f_{\text {mint, }}$ or power gain, assume $f_{\text {min }}$ approximately equals 1.3 ft , or 416 me . Using this value of $f_{\text {max }}$, find the power gain at 50 me. using Fig. 1. The result is 18.5 db , which medus that the transistor is capable of providing about 18.5 db power gatin at 50 mc .

By now some readers may feel that so many approximations have been made that perhaps this cutire article has been a waste of time. However, the approximations have been made in the interest of greatly simplifying the dotemination of expected high-frequency performance when only a limited amome of information about the transistor is available. Further, the assumptions made will often be as accurate as the parameter given since individual transistors may vary as much as 100 grom typical parameters given in some cases.

GLOSSARY OF SYMBOLS	
Symb	bol Definition
hib	Common-base a.c. forward current gain (alpha)
$h_{\text {/lw }}$	Value of $h_{\text {b }}$ af 1 kc .
hie	Common-emitter a.c. forward current gain (beta)
hiee	Value of hi, at 1 kc .
fat	Common-base current-gain cut-off frequency. Frequency at which h_{11}, has decreased to a value 3 db below $h_{(1) 0}\left(h_{(1)}=0.707 h_{\left.h_{14}\right)}\right)$
$f{ }_{6}$	Common-emitter, current-gain cut-off frequency. Frequency at which hit has decreased to a value of 3 db below $\mathbf{h}_{\text {fin }}\left(\mathbf{h}_{\mathrm{fc}}=0.707 \mathrm{~h}_{\mathrm{i}, \ldots}\right)$
${ }^{6} \tau$	Gain-bandwidth product. Frequency ai which $h_{i} .=1(0 \mathrm{db})$
G	Common-emitter power gain
$\mathbf{f}_{\text {max }}$	Maximum frequency of oscillation. Frequency at which $\mathbf{G}_{\text {. }}=1(0 \mathrm{db})$

Announcing the new line of world-famous Scis...........an Kits...

ASSEMBLE YOUR OWN ALL-TRANSISTOR SCHOBER ELECTRONIC ORGAN

All-New, All-Transistor Schober Recital Organ

- 32 voices. 6 couplers delight professional musicians...make learning casy for beginners.
- Standard convole. pedals. hey board correspond exactly to pipe-organ specifications.
- Printed circuit construction and detailed. illustrated instructions make for easy assembly... no previous experience necessary
- Highly accurate church and theatre pipe tone in 5 pitch registers make every kind of organ music sound "right".
- Optional: Combination Action, Schober Reverbatape Unit, Repetitive Theatre Percussions.
- All-transistor circuitry makes possible fall 5-year gutarantee.

Designed by organists for organists. the new Schober Recital Organ actually sounds like a fine pipe organ. The newlyinvented Schober Library of Stops provides you with an infinite number of extra voices so that you can instantly plag in the exact voices you prefer for a particular kind of music. Thirteen-piston, instantly resettable Combination Action makes the

New, All-Transistor
Schober Consolette II Schober Consolette II Heres the most luxurious "home-size" organ available today... with the same circuitry and musical design as the impressive Recial Organ. Full 61-note manuals, 17 pedals, 22 stops and coupler, 3 pitch registers, and authentic theatre voicing leave little to be desired. Musically much langer than ready-made organs selling for $\$ 1800$ and more ... the Consolette 11 , in kit form, cosis only $\$ 850$.

New Schober Spinet

The Schober Spinet is anong the very smallest genuine electronic organs: only $391 / 4$ inches wide, it will fit into the smatlest living room or playroom-even in :l mobile home. Yet it has the same big-organ tone and almost the same varicty of voices as the latger Consolette II. The Schober Spinet far exceeds the musieal specifications of ready-made organs selling for $\$ 1100$ and more. In casy-10-assemble kits... only $\$ 550$.

Recital Organ suitable for the most rigorous church and recital work. The Schober Reverbatape Unit gives you big-atuditorium sound even in the smallest living room. An instrument of this caliber would cost youl $\$ 5000$ to $\$ 6000$ in a store. Direct from Schober, in kit form (without optional percussions, pistons. Reverbatape Unit) costs you only $\mathbf{\$ 1 5 0 0}$.

HERE'S WHY YOU SHOULD
 BUILD A SCHOBER ORGAN!

You cannot buy a finer musical instrument for over twice the price. You get the finest in musical and mechanical quality.
It's easy to assemble a Schober Organ. If you can read and use your hands, you can easily make your own superb organ. Everything you need is fur. nished... including the know how; you supply only simple tools and timeno knowledge or experience is re. quired.
You can buy the organ section by section... so you needn't spend the whole amount at once.
You can begin playing in an hour, even if you've never played beforewith the ingenious Pointer System available from Schober.
Thousands of men and women-teenagers, too-have already assembled Schober Organs. We are proud to say that many who could afford to buy any organ have chosen Schober because they preferred it musically.

43 West 61 st Street, New York, N.Y., 10023
Dealers in Canada, Australia. Hong Kong, Mexico. Puerto Rico and the United Kingdom.

SEND FOR FREE SCHOBER BOOKLET
Describes the exciting Schober Organ and optional accessories in detail; it in-
cludes a FREE 7 -inch "sampler" record cludes a FREE 7 -inch "sample
so you can hear before you buy.

The Schober Organ Corp., Dept. RN-33 43 West 61 st St., New York, N.Y., 10023
\square Please send me, without cost or obligation, the Schober Organ Booklet and free 7 -inch "sampler" record
\square Enclosed find $\$ 2.00$ for 10 inch quality, LP record of Schober Organ music. ($\$ 2.00$ refunded with purchase of first kit.)

Name Address

City

Fob berformance assured with duality come
trolled throushout mamufacture fold or sixer
 mounted and staled under vacuam or filled with inert mas. lery hish frequency stability. \$tav. current vipacity in 10 milliwatts- 5 for orertone tyme Comformity to military specifirations guranterd.
1000 KC to 1600 KC (Fund. Freq.) $\begin{aligned} & \text { Prices on Request }\end{aligned}$ 1601 KC to 2000 KC (Fund. Frices on Request 2001 KC to 2500 KC (Fund. Freq.) --.-. 4.00 ea. 2501 KC to 5000 KC (Fund. Freq.)
500.1 KC to 100000 KC (Fund. Freq.) 7001 KC to $10,000 \mathrm{KC}$ (Fund. Frea.) -.. 3.90 ea 10.001 KC to 15.000 KC (Fund. Freq.) 3.75 ea 15 MC to 20 MC (Fund. Freq.) 5.00 ea.

OVERTONE CRYSTALS

15 MC to 30 MC Third Overtone........ $\$ 3.85 \mathrm{ea}$.
3GMC to 40 MC Third Overtone. 4.10 ea. 4 CMC to 65 MC Third or Fifth Overtone 4.50 ea 65MC to 100 MC Fifth Overtone 6.00 ea

DRAKE 2-B Receiver Crystals .00 ea (All Channels-Order by Freq.) OVEN-TYPE CRYSTALS
For Motorola, GE, Gonset, Bendix, etc. Add $\$ 2.00$ per crystal to above prices SUB-MINIATURE PRICES slightly higher CITIZEN BAND Class "D" Crystals \$2.95 Ower 50,000 (b rrystals in stock for all sets and chanmels. Loth HCt/D and miniature types. Ta itsure proper correlation and correwt frea.
operation, arder ly manufacturer model namber and ibamel.

NOW . . . 48 HOUR SHIPMENT

ALL TEXAS CRYSTALS are made to exacting specititations, quality checked, and unconditionally guaranteed!

> Send for our new Citizen Band Crystal Interchangeability Chart with Texas Crystals Code System.

ORDER FROM CLOSER PLANT

 TEXAS CRYSTALS 4 DFFl'R-Yt 1000 Crystal Drive FORT MYERS FLORDA Phone 813 WE 6-2109

4117 W. Jefferson Blyd.
LOS ANGELES. CALIF.
Phone 213-731-2258

Capacitance Transducers

(Continucd from page 40)
electrode of an electrical capacitance. The electrode is coated with a thin film of insulating material of constant thickness, such as Teflon or polyethylene, to provide a suitable dielectric. When the sensing probe is immersed in the electrically grounded vessel, the conductive fluid within forms the second electrode, or ground plate. Hence, the capacitance increases in direct proportion with an increase in plate volume aromed the insulating layer, which may readily be computed to yield a direct level indication. To obtain accurate readings, the undesirable capacitance effect between the walls of the vessel and the insulated electrode albove the level of the conducting fluid must be negligible compared to the capacitance through the insulated coating to the fluid itself. For this reason, the dielectric material must be kept relatively dry above the liguid level. To further aroid measurement errors, the dielectric constant of the insulating material most be appreciably indepentent of temperature.

The principle of indicating and controlling level by capacitance electrodes may be satisfactorily applied to the measurement of dry granular materials or powdered solids contained in bulk storage bins. One commercially available inventory control sustem consists of a flexible steel probe (insulated with polyvinyl material), signal detector, transmitter, and indicating meter. The capacitance probe is securely mounted in the storage container which serves as the grounded electrode, to sense changes of electrode capacitance as the material being measured rises and falls along the probe. These capacitance variations, which are proportional to the level or volume of the material, are relayed to the detector which converts the information to d.c. where it is displayed on the indicator scale as a percentage of the maximum height of the material. Since the actual level is affected by the density of the material, the reading may be converted into equivalent weight. This system is also suitable for multi-probe galuging of several bins by means of a selector sivitch to provide an accurate, instantaneous determination of the quantity of material contained in each bin.

In the pulp and paper industry, capacitance measuring instruments are widely used in automatic processing systems to continuously measure and control the amount of moisture contained in sheet materials. Since the efficient production of paper requires that a uniform product be maintained with a specified moisture content, it is necessary to avoid over-drying or underdrying cluring the final processing.

A mique arrangement is shown in Fig. 7 , in which the transducing element utilizes the fringing capacitance between two plates and eliminates the direct capacitance. In this configuration, the capacitance translucer consists of two active electrodes (A and B) and a grounded shield electrode, which are enclosed in a suitable metal housing packed with insulating material. The dielectric material is the fast-moving sheet of paper which travels across the stationary transclucer so that the electrodes are placed in close proximity to the surface of the paper sheet. Since the dielectric constant of water is approximately equal to 80 while that for dry paper is close to 2 , the effective dielectric constint for the combined materials will vary between these limits. Thus, very small variations in the moisture content of the paper produce relatively large changes in the measured capacitance of the transducer.

The operation of this device depends on the effect of the dielectric fringe field at the edges of the active electrodes, which produces capacitance changes as the moisture of the paper sheet varies from a wet to a dry condition. To eliminate the effect of the direct electrostatic ficld, a grounded shield electrode is placed between the plates so that any stray capacitance effects have no influence on the active elements. In Fig. 7 , the measuring bridge is driven by an oscillator which also furnishes a reference signal to the phase-detector circnit in the converter unit. As the sheet of paper moves past the electrodes, an error signal is produced which is detected, amplified, and applied to a twophase servometer. Phasing is such that the motor will drive the slide-wire contact (R_{k}) in the proper direction required to reduce the error signal to zero. The displacement of the slide-wire contact is directly proportional to the capacitance of the sensing element, and hence to the moisture content of the paper sheet. To provide a visual representation of amplitude, the input signal is mechanically linked to the indicator scale which is calibrated in percentage of moisture deviation. The control signal also actuates process controllers which regulate the temperature of a drying chamber through which the moving sheet of paper passes. By this means, moisture content is controlled and maintained within reasonably close limits.
Capacitance transducers, by virtue of their small size, weight, and rugged construction, offer a high degree of accuracy and dependability which are recuired for industrial use. Furthermore, the infinite resolution obtained with these devices favors the use of capacitance-measuring equipment in modern process instrumentation and control systems.

REDUCING U.H.F. TV INTERFERENCE

ACOUPLE of minor irritations can be removed from your u.h.f. TV set with some changes suggested by RCA.
For some reason, as yet undeter mined, silicon and other efficient solidstate rectifiers produce a form of oscillation. These oscillations are radiated by circuit wiring and picked up by the u.h.f. input circuits. They appear on the screen as drifting bars of varying shades and widths and, at times, can extend over the lower half of the screen with the top half normal.

At other times, there can be up to four sets of light and dark bars covering the entire screen. This is most noticeable at low modulation levels.

The problem can be alleviated by the upper circuit shown in the sketch. The

feedthrough capacitors at the cathode of each rectifier in the " $B+$ " supply are used to bypass the radiation to ground. These feedthrough capacitors (an also be used as a convenient tic point for the silicon rectifiers.

The second irritation is the so-called "snivet" interference that looks like c.w. interference on the screen. The suppression circuit for this trpe of interference is shown in the lower portion of the sketch. By operating the suppressor grid of the horizontal output tube at a positive voltage, these oscillations either disappear or are moved outside of the TV spectrim.

The level of this bias voltage is critical. Best results are found in the $40-$ to 50 -volt range. Below 30 volts, snivets may still be present while above 70 volts, tube efficiency is impaired. Over 90 volts, both width and high voltage are drastically reduced. In v.h.f.-only sets, the suppressor grid can be grounded.

DOES YOUR BUSINESS SLUMP AS TEMPERATURES SOAR?

dIVERSIFY with 2-way MOBILE-RADIO MAINTENANCE!

Hundreds of progressive radio servicemen are filling the summer slump in entertainment ra-dio-by adding mobile-radio maintenance! Actually, mobile-radio service is business 12 months out of the year-often on contract besis -paid for by going organizations. So rise above competition-and end that summer slumpsend coupon below for "How to Make Money in Mobile-Radio Maintenance". It's free!

THIS BOOKLET IS GASED UPON A CAREFUL SURVEY OF THE ACTUAL OPERATING PRAC TICES OF SUCCESSFUL MOEILE-RADIO EN GINEERS. IT SHOWS TYPICAL CONTRACT GINEERS. stallation charges . . LAbor rates ETC

Lampkin instruments are the most popular mobile-mainfenance mefers.

MAIL COUPON TODAY

LAMPKIN LABORATORIES, inc. BRADENTON, FLA.

LAMPKIN 105-B
RANGE D. 1 TD 175 MC AND UP
PRICE $\$ 260.00$ NET

LAMPKIN LABORATORIES, INC. MFM Division, Bradenton, Florida At no obligation to me, please send \square Free booklet \square Data on Lampkin meters
Name
Address
City \qquad State
CIRCLE NO. 128 ON READER SERVICE PAGE

aUtomatic TRANSISTORIZED BATIERY CHARGER

- CHARGES 6, 8 or 12 V . BATTERIES
- FULL 6 AMP RATE
- heavy guage aluminum case
- BUILT.IN AUTOMATIC RESET CIRCUIT BREAKER

Guaranieed for 5 Years

[5] MODELNO. BC2

MANUFACTURED BY

WOAKMAN

[15 ONTEY COSTIS 1/100 OF L9 MORS PER SOLDER JOCNT TO KNOM TOU ARB USCNO yell WORLDS FMNSTE COR2D SOLDEB

Sold poply py Rowe parts Distribiutios
*Based on cost comparison in current catalogs. MULTICORE SALES CORP., PORT WASHINGTON, N Y. CIRCLE NO. 130 ON READER SERVICE PAGE

No matter what job you have today CIE can help you move ahead ...fast!

Get the job you want in Electronics

LEARN WHAT YOU MUST KNOW ABOUT...

TRANSISTORS
communications
fingustrial electronics MICROMINIATURIzATION

New "Check-Point" Home Study Program offers A COMMERCIAL
 or your money back

Find out how Cleveland Institute Graduates benefit from FREE LIFETIME Job Placement Service

Want a betterjob...with more pay? BEND FOR FREE BOOK "HOW TO succead in ElectRonics"

How to Succeed
in Electronics

This 42-page book was prepared specifically for men with an honest, sincere desire to achieve success in electronics. If you fit that description... fill out this card, tear it off and mail it today. There is no obligation.

To: CLEVELAND INSTITUTE OF ELECTRONICS Please sead me "How to Succeed in Electronics". I am over 17 years of age and interested in (check one):Electronics TechnologyElectronic Communications First Class FCC License \square Industrial Electronics
Broadcast EngineeringAdvanced Engineering
EW93
Your Occupation \qquad
(Print Clearly)
Name \qquad Age \qquad
Address \qquad County \qquad
City \qquad State \qquad Zip \qquad

Accredited Member Mational Home Study Council
Approved for Veteran's Training under Korean Gi Bill

MAIL THIS TODAY!

LEARN HOW

MEN ARE PREPARING FDR HIGH-PAYING JロBS IN...

COMMUNICATIONS 8
INDUSTRIAL ELECTRONICS 8
AERDSPACE INDUSTRY 8
Mabile RADID

BRDADCAST ENGINEERING

It's a fact. The men holding down high-paying, challenging jobs in electronics have one thing in common . . . they know practical electronic theory. And now . . . thanks to Cleveland Institute of Electronics . . . you can join this select group of successful men. First, find "you" in the picture. Second, read about the CIE Program that matches your present occupation. Third, fill out the postage-paid reply card and drop it in the nearest mail box. You'll soon see why modern, effective CIE Home Study has helped thousands move ahead in electronics . . . can do the same for you. But act now. The demand will never be greater for ambitious men who prepare themselves for the top jobs in electronics.
1 Radio-TV Servicemen: Boost your business fast. Get your Commercial FCC License and service mobile radios used by police and fire departments. taxi and truck fleets . . . also maintain marine electronics, broadcast station equipment, CB, etc. CIE’s First Class FCC License program is the quick risk-free way to prepare for the tough FCC exam. Switching to a job in industry'. With our comprehensive Electronics Technology program under your belt . . . you're a cinch to get just the one you want.
(2)"Ham" Operators: Turn that hobby into a profitable profession. Prepare for a rewarding job at one of the country's 5,000 Commercial Radio and TV stations. CIE's Broadcast Engineering program will teach you how to select, use, maintain all types of Radio and TV station broadcasting equipment; also prepares you for the First Class FCC License.
(3) Communications Specialists: Want a top job with a telephone company, a railroad, a pipeline company or any firm with a big stake in communications? CIE*s Electronic Communications program will change that wish to reality. Covers mobile radio, microwave; carrier telephony, too, if you want it. Gets you a Second Class FCC Ticket.

(4) Military Electronic Specialists: Staying in

 ... or getting out, CIE's Electronics Technology program will help nail down your next promotion . . . or land that first high-paying job in civilian life. You'll learn new electronic principles . . . know how to apply them for troubleshooting all types of electronic equipment.5 Electricians: Electronics is here to stay! CIE's Industrial Electronics and Automation program takes the mystery out of "exotic" new industrial control systems, electronic heating and welding, servomechanisms, solid state devices, ultrasonics, X-ray . . . has everything you need to understand your new electronic equipment.
(6)Ambitious Men . . . anywhere: Electronics is the world's fastest-growing industry . . a 17 billion dollar business that's grown 400% in the last 10 years. Right now there are thousands of good steady jobs just waiting for trained men. CIE's Electronics Technology program provides
complete understanding of electronics theory and fundamentals . . . prepares you for the First Class Commercial FCC License. Whether you're in Electronics now . . . or just thinking about changing to this exciting career field; whether you work in industry. business, government, or the military . . .this is the program for you.

CLEVELAND INSTITUTE HOME STUDY IS FAST, ECONOMICAL, EFFECTIVE. HERE'S WHY:

Modern up-to-date material . . . including three exciting new subjects. Every day... the Electronics Industry sees new developments in equipment, design methods, application techniques. CIE lesson material keeps pace. For example . . . our new Troubleshooting lessons give you a fast, systematic method of locating faults on any electronic equipment. New lesson material on Transistors covers this vital subject clearly, concisely . . . shows how they work, where and how you use them. And a new Microminiaturization lesson describes all types of micro components... explains such critical subjects as integrated circuits and microwatt electronics. It's the kind of knowledge you want-the kind of knowledge you'll use !
An FCC license . . . or your money back. All CIE Programs (except Industrial Flectronics and Advanced Engineering) are backed by our famous Commercial FCC License Warranty: "If you fail the FCC cxam for the License specified after completing your program . . . all tuition will he refumded." Compare this to any other FCC License offer. You'll see it's about as close to a sure thing as you'll ever find!
"Check-point" programmed learning . . . plus FCC Progress Reviews. CIE Home Study works! You learn at your best learning speed. All material comes in small, easy-to-understand segments . . . is "locked-in" by examples, diagrams, explanations. You learn thoroughly . . . and remember what you learn! And FCC Licensing Programs include specia! Progress Reviews covering hundreds of questions and answers just like those on the FCC License Exam.
Free nationwide job placement service . . . for life, for every CIE graduate. Every 60 days . . . while you're a student and after graduation CIE will send you an up-to-date list of many highpaying job opportunities with top companies across the country. We`ll also provide you with 200 professionally-prepared resumes to help you land the job you want!
Thirty years of experience . . . highly qualified instructors . . . accredited. Since 1934. Electronics home study has been Cleveland Institute's only business. Our instructors are experts in electronics and are currently training some 15.500 students. We are aceredited by the Accrediting Commission of the National Home Study Council. This Commission has been approved by the U. S. Office of Education as a "nationally recognized accrediting agency" under the terms of Public Laws 82-550 and 85-864.

Now is the time to make your move in Electronics
Mail Reply Card Today
 Cleveland Institute of Electronics

Eico 369 TV/FM Sweep-Marker Generator
For copy of manufacturer's brochure, circle No. 65 on coupon (page 19).

TRIING to re-align a high-quality FM tuner without a sweep signal generator is very time-consuming; realigning a TV set without such an instrument is well-nigh impossible. Such a generator will permit the entire r.f. and i.f. response curve to be viewed on a scope. Hence, the effect of any of the many alignment adjustments can be seen instantly. Not only do we need to know the shape of the curve, but exact frequencies along the curve must also be known. Therefore, a marker generator must be used along with the sweep signal generator that traces out the curve shape. Both sweep and marker functions are combined in a single instrument, the Eico Model 369 generator.

One problem crops up when trying to mark a sweep-response curve of a re-
ceiver. Let's assume we are trying to adjust one of the trap circuits in a TV i.f. amplifier. Since the marker signal is located where response is at a minimum, the marker is attenuated by the trap and it may not be visible at all.

Because of the post-injection-marker technique used in the Model 369, markers are not affected by circuit response. The instrument feeds only the required sweep signal to the input of the circuit being aligned or tested. At the output end of the circuit, a cable picks off the demodulated signal and feeds it to a mixer stage inside the generator. Here, a sample of the sweep signal is combined with the marker-generator and demodulated signals, and the markers are added to the response curve. This combined signal is then fed to the oscilloscope for

viewing (see the block diagram below).
The sweep circuit is completely electronic and uses a controllable inductor for frequency modulation, A sine wave of current applied to the control winding of this inductor results in a sinusoidal change of inductance. As this inductance is in the frequency-determining circuit of the sweep oscillator, the frequency of this oscillator is raried sinusoidally above and below a center frequency. When a sine-wave timing signal is applied to the horizontal input of the scope along with frequency response at the vertical input, a linear clisplay of amplitude es frequency appears on the scope.

The sweep generator has five overlapping ranges from 3.5 to 216 me. All ranges are fundimentals and toming is simplified by a $6: 1$ vernier dial and an expanded scale that occupies nearly all of the entire circular tuning dial.

Retrace blanking is used so that two overlapping response curves are not seen. This is accomplished with a blanking tube that conducts during the negative altermations of the $60-\mathrm{cps}$ sweep. As a result, the sweep oscillator is cut off completely due to a high negative grid bias and the removal of its " $\mathrm{B}+$ " during this period of time. A three-stage a.g.c. circuit keeps the level of the swept signal constant over its entire frequency range. even with maximum sweep width (20 me.).

The independent marker generator, with its own expanded-scale circular dial, covers from 2 to 60 mc . on fundamentals, and 60 to 22.5 mc , on hamonics. As a check of marker-gencrator accuracy, a $4.5-\mathrm{mc}$. crystal is supplied. When plugged into the front-panel socket, it turns on a fixed-frequency marker oscillator that produces crystalcontrolled markers every 4.5 mo. Both crystal marker and variable marker can be used to mark a response curve simultaneously. The crystal is also used for sound-circuit alignment of TV receivers.

The instrument is available either in kit form at $\$ 89.95$ or factory-wired at $\$ 139.95$. A very informative instruction manual accompanies the generator.

C-W Engineering MX-4 Stereo Signal Generator

For copy of manufacturer's brochure, circle No. 66 on coupon (page 19).

TTHE Model MX-4 by C-W Engineering is used to simulate an FM radio station's stereo signals. It can be used to service FM-stereo tuners and receivers from the detector through output stages, as well as stereo multiplex adapters. Its tunable audio oscillator can be used for on-the-spot frequency-response checks. In addition, the generator can be used for new equipment stereo demonstrations on the sales floor.

This battery-operated instrument is fully transistorized, portable, and rugged. It uses a heavg printed-circuit board in an anodized extruded aluminum case. With its leather case it is small and light enough to be carried in a tube caddy, allowing service on home and business custom stereo installations.

The $19-\mathrm{kc}$ p pilot subcarrier is gencrated in a crystal-controlled pilot oscillator (see diagram). This assures pilot subcarrier stability. A front-panel control varies the pilot subcarrier amplitude from 0 to 12% modulation. Technicians can then measure and adjust "trip level" of stereo alam circuits, A 19-ke. "syne" iack will provide oscilloscope synchronization.

The multiplex subcarrier doubler-amplifier is used to generate the $38-\mathrm{kc}$. multiplex subcamiocr. This stage doubles the crystal-controlled 19-ke. signal, assuring multiplex subcarrier stability. Balance of the 38 -ke. subcarrier is obtained with an internal balance control.

Modulation is selected with an "Output Mode"control. The MX-4 can be modulated with $\mathrm{L}+\mathrm{R}, \mathrm{L}-\mathrm{R}, \mathrm{L}-$ only, and li-only internal audio signals, or an extemal stereo signal. When switched to intermal modulation, the andio oscillator provides $100-\mathrm{c} p \mathrm{~s}, 300-\mathrm{cps}, 1-\mathrm{kc}$., 3 -ke., and 10-ke. tones.
"L" and "l" jacks provide audio out-
pout terminals to use the unit as a portable audio oscillator. Since the audio oscillator has a constant output voltage, the generator can be used for frequencyresponse tests from 100 cps to 10 kc . When using external modulation, the " L " and " R " jacks are the iuput terminals for an external stereo source.

A sixth position of the "Modulating Frequency" control produces the 67-ke. signal used to align $67-\mathrm{kc}$. filters in

multiplex circuits and in Subsidiary Communications Authorization Equipment (SCA). SCA-equipped FM stations broadcast "commercial-free" background music on a 67 -kc. subcarrier.

Output from the diode-ring modulator ($\mathrm{L}-\mathrm{R}$ signal on 38 -ke. multiplex subcarrier) is applied to the mixer amplifier, with the 19 kc . pilot subearrier. The miser output is a composite multiplex signal (see oscilloscope photograph). The $L+R$, pilot, or multiplex subcarrier signals can be separately switched out of the composite signal.

Iook to Xeelile tor the best in Diliers \& sining, 100

Same professional quality as famous Xcelite screwdrivers and nutdrivers. Forged alloy steel construction. Precision machined. Scientifically proportioned. Variety of sizes. All available with permanent, plastic coated Cushion Grip handles for extra working comfort (except slip joint models).
write for catalog sheet nges

XCELITE, INC., 12 BANK ST., ORCHARD PARK, N. Y.
Canada: Charles W. Pointon, Ltd., Toronto, Ontario CIRCLE NO. 240 ON READER SERVICE PAGE

A composite amplifier boosts the output signals, and provides a low output impedance. The output level is continuously variable from 0 to $\overline{5} .0$ volts. The output c:an directly modulate an FM r.f. signal generator.

The unit operates from one 9-rolt battery, assuring hum-free, completely portable operation. Minimum battery life is 65 hours. The MX 4 is stable over variations from 7.5 to 13.0 volts.
Technicians and engineers alike will find the 48 -page instruction book clear and concise, yet thorough. The book
covers the theory of multiplex stereo, the operation of the generator itself, measuring techniques that are employed, and maintenance instructions for the generator. In addition, a good many sample receiver, tumer, and adapter schematics are inclucled to acquaint the technician with tepical moultiplex equipment.

The Model MX-4 is compact, measuring $7^{\prime \prime} \times 22_{2 \prime \prime}^{\prime \prime} \times 3^{\prime \prime}$, and weighs just 30 ounces. It is available directly from the manufacturer at a price of $\$ 194.50$. This price includes a leather carrying case for the unit.

Waters Model 343 Frequency Meter
For copy of manufacturer's brochure circle No. 67 on coupon (page 19).

more complete combustion releases full engine power, increases gas mileage by 15%, keeps plugs and points clean beyond 50,000 miles, fires fouled and points clean beyond 50,000 miles, fires fouled speeds, eliminates 4 out of 5 tune-ups, gives you that "tuned-up" performance for thousands, gives you that of miles usage.
Every AEC 77A delivers full voltage at $2,000 \mathrm{rpm}$ as against 18,000 volts of other ignitions. AEC 77A continues to deliver full voltage beyond $7,500 \mathrm{rpm}$, while other ignitions fail to deliver any voltage. At cranking speed, AEC 77A delivers 20,000 volts as against 8,000 volts of other ignitions, guarantees instant starting in any type weather.
Completely waterproof and shockproof - every system tested under actual operational load with 4 fouled and 4 operating spark plugs. Quality components are supplied by General Motors, Delco, Motorola Mallory and others. Installs in only 20 minutes by anyone.
Regular price, $\$ 49.95$ postpaid. Use the coupon below now and save $\$ 10.00$. Or see your local dealer.
COMPLETE FACTORY WIRED SYSTEMS
AEC 77A with $400: 1$ coil, $6 / 12$ volt $\$ 39.95$AEC 77A for Positive ground Britishcars, $6 / 12$ volt$\$ 39.95$
AEC 77A 400:1 Coil only, 6 /12 valt

[^1]nominal to a pair of standard GR banama jacks spaced ${ }^{3}$ inch. Input signal voltage range is 50 millivolts to more than 200 volts r.m.s., a.c. peak plus d.c. not to exceed 600 volts. A d.c. output is provided for operating a high-impedance recorder, the output being 1 volt nominal for full-scale indication on any range of the instrument.

Power for the instrument is supplied by a 6 -volt manganese-alkaline lantern battery. This voltage is internally regulated in the instrument by a 4.05 -volt mercury battery, and a position on the front-panel switch indicates whether the 6 -volt battery is within its useful life period. This life is approximately 1000 hours while the life of the reference battery for the voltage regulator is greater than approximately 10,000 hours of operation.

Input to the unit through a capacitor and 47,000 -ohm resistor is limited by a pair of diodes (see diagram). The output from this limiter is amplified and squared up by a two-transistor amplifier. This signal drives a Schmitt trigger which creates a constant-amplitude square wase. The leading edge of the square wave is differentiated and is used to trigger a monostable multivibrator. The monostable multivibrator creates a standard-area pulse for each cycle of the input signal and these pulses are integrated in the meter movement. The pulses are filtered to provide a d.c. level for the recorder output of the frequency meter.

Dimensions of the unit are $4^{3 \prime \prime}$ wide. $9^{\prime \prime}$ high, $11^{\prime \prime}$ deep, and the weight is 12 Ibs . The device is operable within specifications from $-20^{\circ} \mathrm{C}$ to plas $55^{\circ} \mathrm{C}$. It is priced at \$239.95.

Block diagram of the Model 343 frequency meter which illustrates the operating principles involved. Any repetitive waveform from 20 cps to $50,000 \mathrm{cps}$ is applied to the instrument through an RC circuit. This waveform is highly limifed by a pair of diodes, then it is applied to a 2 -stage amplifier. The output is used to drive a Schmitt trigger which produces a constant-amplitude square wave. The square wave drives a multivibrator whose output is integrated by the meter.

Color-TV servicing is profitable

GET THE MOST OUT OF IT WITH COLOR-TV TEST INSTRUMENTS FROM RCAPIONEER OF COLOR TV

Making last-minute convergence adjustments on a color-TV receiver with an RCA WR-64A Color-Bar/Dot/Crosshatch Generator
(A) RCA WR-6A COLOR-BAR/ DOT/CROSSHATCH
GENERATOR
Low-cost, lightweight, portable instrument that provides all essential Color-TV test patterns: - Color-bar pataern: ten bars of color for checking phase and matrixing, and tor automatic frequency and phase alignment.

- Crosshatch patern: thin sharp lines for adjusting vertical and horizontal linearity, static and dynamic convergence, raster size, and overscan.
- Dot pattern: small dots 10 facilitate accurate color convergence.
\$189.50* with output cables
(B) RCA WR-70A RF/VF/IF MARKER ADDER
For use with a marker generator and a sweep generator. Used for RF. IF, and VF sweep alignment in color and B\&W TV receivers. - Choice of four different marker shapes
- Provides very high-Q markers of high amplitude and narrow bandwidth
$\$ 74.50$ * complete with cables
(C) RCA WO-91A 5-INCH OSCILLOSCOPE
A wideband scope for checking colorburst signals and general troubleshooting.
- Dual bandwidth: 4.5 Mc at 0.053 volt $\mathrm{rms} / \mathrm{in}$. sensitivity; 1.5 Mc at 0.018 volt $\mathrm{rms} / \mathrm{in}$. sensütivity.
- Continuously adjustable sweep frequency range: 10 cps to 100 Kc
$\$ 249.50^{*}$ including direct/low capacitance probe and cable, ground cable, and insulated clip.
(D) RCA WR-69A TELEVISION FM SWEEP GENERATOR
For visual alignment and troubleshooting of color and B\&W TV receivers. and FM receivers.
- $[F / V i d e o$ output frequency continnously tunable from 50 Kc to 50 Mc .
- Sweep-frequency bandwidth continuously adjustable from 50 Kc to 20 Mc on IF/Video and FM: 12 Mc on TV channels $\$ 295.00$: including all necessary cables
(E) RCA WR-99A CRYSTAI CALIBRATED MARKER GENERATOR
Supplies a fundamental frequency RF carricr of crystal accuracy for aligning and troubleshooting color and B\&W TV receivers, FM receivers.
- Most-used IF and RF frequencies indicated on the dial scale - Sound and picture carrier markers available simultaneously
$\$ 256.50$ * complete with output cable and phone tip
(F) RCA WT-115A COI.OR PICTURE TUBE TESTER
Designed specifically to test color-TV picture tubes, either in or out of the set. Tests each gun for emission quality, inter-electrede leakage and shorts.
- Large sensitive meter with separate 3 -color scales
- Provision for accurate adjust-

New RCA Color Pict-O-Guide is now ovail able through Authorized RCA Electron Tube Distributors.
ment of cut-off point for each gun
$\$ 89.50$ * with cable, carrying case and socket assembly
See them all at your Authorized RCA Test Equipment Distributor.
*Optional Disrinintor Resale Price All prices are sulhject to change without notice. Prices mar he higher in Alaska. Hawaii and the West.

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N.J.

The Most Trusted Name in Electronics

Two-Way Mobile Radio Handbook

Newly Revised and Enlarged Edition

by Jack Helmi. Describes and analyzes the latest developments in 2 -way communications the latest The most comprehensive coverage of mobile radio for new buyers, present users, and those interested in servicing this type of equipment. Covers opera tional theory of basic systems; types of receivers available; transmitters, control systems; power; servicing and maintenance (includes pointers on setting up a mobile-radio service shop). Invaluable for practical understanding of 2 -way radio circuitry and equipment. 256 pages; $51 / 2 \times 81 / 2$ Order MRS-2, only.
$\$ 395$

TV Receiver Tube Usage Guide

y the Howard W. Sams Engineering Staff. Available for the first time-a complete guidebook for $T V$ technicians, listing the tubes, fuses, and semicon ductor diodes required to repair individual TV models. Receivers are listed by manufacturer, chassis and model numbers-data provided tells you exactly what to take along to repair a specific set. Covers over 25 different manufacturers of hundreds of TV models (including color receivers). Tubes and functions are listed for each model, along with fuses and diodes used. This real time-saver belongs in every tube caddy and on the workbench. 96 pages; $51 / 2 \times 81 / 2^{\prime \prime}$. Order TUR-1, only.
$\$ 195$

ONLY COURSE OF ITS KIND

Volume howard w. SAMs

Basic

Electricity/Electronics

New, unique positive trainng worth hundreds of dol lars. First completely new course to be published in the latest programmed method for quick, effective learning.
Vol. 1. Basic Principles \& Applications
Vol. 2. How AC \& DC Circuits Work
Vol. 3. Understanding fube \& Iransistor Circuits
Vol. 4. Understanding \& Using I est Instruments
Vol. 5. Motors \& Generators-How Ihey Work
(Complete Set contains over 1300 pages; 1250 illustrations; 51 chapters; in sturdy slipcase)
Order ECY-50, only

Technical Writer's and Editor's Stylebook

by Rufus P. Turner. The first practical and complete guide for technical writers and editors. Describes the fundamentais of technical writing for magazine articles, books, reports, etc. Explains in text and examples the basics of good writing techniques; use of tech symbols, mathematics, technical phraseology, punctuation, capitalization, prefixes and suf fixes, devices for emphasis, etc. Tells how to prepare an outline, how to ready a manuscript for publication. Has appendices showing symbols from various technical fields. An invaluable reference for writers in any technical field. 192 pages; $51 / 2 \times 81 / 2^{\prime \prime} \cdot \$ 395$ Order TWS-1 (softbound), only.
Order IWH-1, (hardbound), only $\$ 4.95$
Handbook of Algebraic \& Trigonometric Functions by Allan Lytel. A complete selection of basic formulas and tables of mathematics at the high school and beginning college level. The first part of the book includes formulas for geometry, algebra, trigonometry, and calculus; the second part is devoted to 24 sections of mathematical tables and conversions. An extremely practical reference for students, technicians, and engineers. 160 pages;
$51 / 2 \times 81 / 2^{\prime \prime}$. Order ALG-1, only.
$\$ 295$
Replacement Guide for TV \& Auto Radio Controls Vol. 6. Bigger and better than ever-covers over mended replacement controls made by Centralab Clarostat, CTS-IRC, and Mallory. 192 pages; $\$ 100$ $81 / 2 \times 11^{\prime \prime}$. Order RGC-6, still only.

Noise Figures
(Continued from page 35)
being unimportant. Generally, average noise figure will be within a half db of spot noise figure in 2 -meter converters, while the variation will be, respectively, larger and smaller in $50-\mathrm{mc}$. and 432 me. units.

Practical Considerations

The minimum noise figure of which a converter is capable is established by its tube line-up. All that is important is that a given converter be adjusted to deliver the best noise figure of which it is capable. This is what manufacturers do during final factory aligmment. If the noise figure of the converter in an actual installation is to approach factory performance, however, it is essential that the source (antema system) into which the comerter looks be the same as the source for which it was adjusted. In other words, a converter fresh out of the shipping carton, in perfect adjustment, call perform poorly if the antema and feed system do not have the same terminal impedance as that of the factory noise sonrce.

Before any adjustments are made to a new low-noise commercial converter, the antema system should be studied. Is the s.w.r. close to unity? Is antemna system loss contributing more to poor noise performance than the converter itself? The author has seen many amateur v.l.f. installations and concludes that most could be dramatically improved by the simple expedient of cleaning up the antenna system.

The quest for good noise performance begins with the antemna which, in most classical designs, will have a moderately high feedline terminal impedance-300 and 450 ohms are quite conmon. It is the ustud practice to make a balun transformation at the antenna and to foed the system with coax. This is an unfortmate approach. The ideal technicule is to mount the converter in a weatherproof enclosure at the antenua (this is the method used in most major space-tracking systems). Next best is to feed the antema with open-wire line. preferably some multiple of an electrical half-wavelength long. The balun transformation (to the usual 50 -ohm converter input impedance) should be made at the converter end of the line. Revising the antemma feed system along these lines will have the same effect as lowering converter noise figure by some number of decibels . . . about 2.5 db if the original 2 -meter feedline was a himndred feet of RC;-8U, more if the line was RG-5S or RC-59. Since this change in system has a beneficial effect on transmitting as well as receiving performance, it is highly recommended.

The final proning of the antenna, feedline, and balun should be done with the transmitter and s.w.r. bridge. Measure the length of the sensing element of the s.w.r. bridge from the input fitting to the output fitting. Now make a cable of RG-8U of sufficient length so that the total of the bridge-sensing element plus cable is $26_{4}^{3 \prime \prime}$ from fitting to fitting, which equals an electrical halfwavelength at 146 mc . Connect a good $50-\mathrm{ohm}$ resistive clummy load to the s.w.r. bridge output and tune up the transmitter for the lowest s.w.r., which should be very, very close to unity. Disconnect the dummy load and comect the anteuna without retuming the transmitter. If the antema proper, feedline, and balun are all properly cut and tuned, the s.w.r. will be no higher than 1.2, any higher value indicating the need for reworking the system.

For any frequency other than two meters, the technique of making halfwavelength tuned lines is to divide 325 by the frequency, which equals the length of $\mathrm{RC}-8$ or RC - -58 cable in feet. For the main open-wire feeders, an electrical half wave, in feet, will be about 470 divided by the operating frequenc:

With the antema system cleaned up, the next step will be to adjust the converter for best noise figure permitted by the particular tube line-up. (At two meters, this will be between 2 and 2.5 (ll) for a converter using 7077, 416B, 6299 , or 7588 tubes and a half db higher for nuvistors, 417 's, and similar triodes. Bearing in mind the difficulties in absolute measurement, these figures are mentioned not for purposes of comparison, but as an indication of the probable performance of a properly adjusted converter.) There are several methods of making the adjustment for best noise figure, all predicated on the use of a shot-noise gencrator to achicve a critical mismatch. It has been obscrved in many tests, however. that optimum noise figure cam be obtained by a rule-ofthumb procedure which requires no test equipment whatsoever

The receiver used with the comserter should be tomed to the frequency at which most operations will take place. The a.s.c. is disabled and the gain is adjusted for quarter-scale " S " meter reading on moise. Peak the r.f. stages of the conserter on antenna noise, then re-tume the receiver to a frequency 2% lower than the first converter freduency; for example, if the converter were tuned to peak at 145 mc ., then the receiver should be adjusted to receive 145 minus 2.9 mc . or 142.1 mc . Re-peak the converter antenna coil or capacitor on noise, but do not re-adjust any other tuning controls; the converter noise figure will now be best at the initial, higher frequency.

ELECTRONICS WORLD

ELECTRONICS WORLD runs a Hot Line into the 201,000 electronics professionals who buy the magazine each month. And, for only $35 ¢$ a word, a personal classified ad will help you make your connection.

ELECTRONICS WORLD has the largest audience of its kind in the world, and this creates an ideal market place for you. Actually, when you get together with your co-professionals, you may find that many are near neighbors. Yet your mutual needs may be met only through the medium of our classified columns.

Take advantage of our special personal rate of 35 a word (including name and address)

NO MINIMUM REQUIRED

BATTERY CHARGER USES AN SCR

By ROBERT G. DALE

TTHE scif battery charger shown in the circoit offers many advantaines wer most present ine velusive elarigers The se:R will autematicathy turn the harerer off when the bittery reactue full ediares. If the battery is left conneected to the charsere for a perioct of time and the laitter? potentiad dertenses. the damser will antennatically turn ma and bring the battery up to full chares The charger also has provisions for se lectable trichle charging during SC:R off time

The SC R is a semicomeluctor device having two onerating conclitions, ()ne is a bechinge or off. comblition and the wher is a comductinge or onf. state. In the bloching state, no current will flow themgh the device, therefore the bittery wonk next be charginge. In the cometheting state. current flows thromgh the device to the battery. The Sc:R must have a small pesitive woltage applied to its Late terminals. with resperet to the cathonde, ill order to turn the devier ont. When the se Re wate and cathode arre at the same potential. the device will not comethect and woukd not change the battery

TI. a biv-voltage, high-ciment trans former, hais its ontput reetificed by $D 1$ and D ? to deliver the d.e. emrrent to the battery thengh the turned-on SC:R. The sc:k is turned on by the sate voltas through $h 1$ prochuced ley the combina tion of D : and Re Zener dionde $D: 3$ per forms the gate-switching action. When the battery reaches the same woltage as the clipping voltage of $D: 3$ and $R 2$. the cate will be at the same potential as the cathode. The SC:R will not conduct minder these conclitions, thus stoppines the charging action.
$R 2$ is used since the zener has a tolcrance on its elamping voltage. $R 3$ is the trichle-charge path when the SC:R is not condncting. It can be set for any desired charging rate and if hower rates wre desired, its value shonk be increased.

FOR THE NEW AGE OF ELECTRONICS SPECIALIZATION?

RCA Institutes Home Training can help protect your future and increase your earning power

Career Security is Today's Problem. Before you finish reading this, another significant step forward will be made in some field of Electronics. A new advance in nuclear instrumentation. A breakthrough in automatic controls. An important development in computer programming. And so on. How will this affect your future? Will your career in Electronics be secure? These are today's vital career questions.

RCA Institutes Specialized Training is the Answer. Whatever field you may now be in, or no matter how advanced your present Electronics training may be, RCA Institutes has a Home Training Course exactly suited to your needs. With

RCA Institutes Specialized Training you can help to secure your present career and be in a better position to advance yourself. It's today's best career insurance.

Advanced Standing Available. If you are a person who works in Electronics, or who has had Electronics Training in the past, you may apply for Advanced Standing in any of the RCA Institutes Home Training Courses. If you are just starting out, you can also be assured of the same opportunities for professional success and security. RCA Institutes has Home Training Courses specifically designed to give you the required fundamental background on which to build a career.

HOME TRAINING
 choose any of these specialized courses

- Automation Electronics
- Automatic Controls
- Industrial Applications

E Nuclear Instrumentation

- Digital Techniques
- Computer Programming

E Transistors
E Mobile Communications

- Communications Electronics
- FCC License Preparation
- Monochrome and Color TV
- Drafting

RCA Institutes Home Training Courses are complete, step-bystep, easy to understand units. You get top quality equipment, and all kits furnished to you are yours to keep and use on the job. Doesn't it make sense to protect the investment you've
already made in your career, and look forward to a future of increased earning power? Send the attached postcard today for complete information. It won't cost you anything, and it may mean a great step forward to you. Act now!

JUST STARTING OUT IN ELECTRONICS? BEST HOME TRAINING TODAY IS RCA!

Full selection of beginning courses to choose from. Master the essentials of Electronics and go on to a profitable career now

Faster, Easier Way to Begin - Exclusive With RCA Institutes. If you are considering a future in electronics, now is the time to start! The RCA "AUTOTEXT" Instruction Method developed by RCA and introduced by RCA Institutes, will help you master the fundamentals of electronics almost automatically. It is a system of programmed instruction, which has been proved with thousands of students.
Even people who have had trouble with conventional home
training methods in the past, are finding it easier and more fun to begin their training this new way.
Liberal Tuition Plan. RCA Institutes liberal tuition plan affords you the most economical possible method of home training. You pay for lessons only as you order them. If, for any reason, you should wish to interrupt your training, you may do so and you will not owe one cent until you resume the course. No long-term obligations.

CLASSROOM TRAINING AVAILABLE

RCA Institutes Resident School in New York City and RCA Technical Institute in Cherry Hill (near Camden) New Jersey offer classroom training that will prepare you to work in rewarding research and production positions in many fields of electronics. No previous technical training required for admission. You are eligible even if you haven't completed high school.

Free Placement Service. RCA Institutes Resident School grad. uates are now employed in important jobs at military installations, with important companies such as IBM, Bell Telephone Labs, General Electric, RCA, in radio and TV stations and in communications systems all over the country. Many other graduates have opened their own businesses. A recent New York Resident School class had 91% of the graduates who used the FREE Placement Service accepted by leading electronics companies, and had their jobs waiting for them on the day they graduated!

Coeducational Day and Evening Classes. You can prepare for a career in electronics while continuing your part-time or fulltime employment. Regular classes start four times a year.

SEND POSTCARD FOR free illustrated BOOK TODAY! SPECIFY HOME STUDY OR CLASSROOM TRAINING.

RCA INSTITUTES, INC. Dept. EW-94
A Service of the Radio Corporation of America, 350 West 4th St., New York, N. Y. 10014

The Most Trusted Name In Electronics

DESIGN OF SIIPLE IETER

By DAVID H. SANDROCK

Requiring only an external r.f. source and a v.t.v.m., this handy little device can be used to determine various values of L, C, and " Q ".

Fig. 1. Current through a series-resonant circuit (A) with zero losses, (B) very low tosses, and (C) with high losses.

BESIDES measuring the " Q " of a resonant circuit or inductor, a " Q " meter may also be used to measure inductance, capacitance, distributed capacitance of a coil, and the reactance of an inductor or capacitor.

The instrument to be described in this article will measwe capacitance between 1 and 450 pf. directly, although its range can be extended to higher vahes. Inductance measurement range is from 1,11 . to 12 mh ., with this range capable of being extended. "Q" (an be determined over a range from approximately 10 to 200 , and the useful frequency range is from 100 kc . to 30 mc .

An extemal r.f. generator and r.t.v.m. are required although a 20.000 -ohms-per-volt multimeter may be used in place of the v.t.rim., but with a loss of about half sensitivity.

Theory of Operation
The shape of the corve of current throngh a series-resonant circuit is determincd by the ratio of the reactance to the series resistance, as shown in Fig. 1 and Fig. 2.A. This ratio is called " $($ ", and the higher the " Q ", the less are the losses in the resonant circuit.

This " Q " meter measures the r.f. voltage across the capacitor of a series-resonant circuit (Fig. 2B). The actual v.t.v.m. used is a diode (V1A in Fig. 3) which will detect any r.f. voltage present. As the shont capacitance of the cliode is in parallel with the main capacitor C3 when it is calibrated, it can be neglected in all measurements.

Differential amplifier $V 2$ has its input isolated from r.f.

External r.f. source and v.t.v.m. complete the " Q " meter.
by Rl. The output of this circuit is proportional to the difference between its two inputs. The contact potential developed by V1A is bucked out by that developed by V1B. As the two diodes are matched, equal contact potentials are developed. and the differential amplifier will indicate zero as long ats no signal rectification takes place in V1A. Power supply variations also have a negligible effect as they are applied equally to each half of the amplifier. Ane small differences that do exist in either the diodes or the amplifier can be balanced out by adjustment of potentiometer $R 8$.

Construction

The instrument is housed in a $4 x 5 x 6$-inch utility cabinet. A sheet metal chassis is formed and bolted to the front panel as shown in the photographs. Placement of parts on this chassis is not critical. and any convenient layout may be used. As it is not necessary to adiust the balance potentiometer ($R 8$) often, it was placed on the rear apron of the chassis. Because the power consumption is so low (less than 5 watts), no power switch was used. In ally (ase, it is a good idea to leave the device turned on for a long period of time for maximum stabilits.

For the device shown, a broadeast-band superhet toming capacitor of approximately 15 to 467 pf. was used for the maill capacitor C:3. Any variable capacitor with this approximate value may be used. If the maximum capacitance is not high enough, two sections may be paralleled. Remove any trimmers to olotain a low minimum capacitance.

A small bracket to hold Vi's socket and associated termi-

Underchassis view showing placement of associated components.

nal strips should be mounted as near to the terminal of the variable capacitor as possible to reduce stray capacitance and lead inductance. Capacitor $C 2$ should be mounted with the shortest leads possible between 22 and $J 5$. This is necessary for proper operation at the higher frequencies. The minimum spacing between the vernier capacitor $C 4$ and the main capacitor should also be used. The vemier capacitor is not absolutely necessary, but its use makes some measurements casier and more accurate. Be sure to leave enough room for a reasonably sized dial. About $2^{\prime \prime}$ radius will give a large enough dial for good accuracy. For the dials, black cardboard marked with a lettering pen using white drawing ink may be used. After calibration, the dial should be sprayed with a plastic protective coating.

If desired, a vernier dial can be used to eliminate the need for the vemicr capacitor, as such a dial can be read to less than 0.5 pf . The use of such a dial would require that a cali-

Fig. 2. (A) Amount of series resistance determines " Q " of series-resonant circuit. (B) Basic circuit of " Q " meter.
bration chart be made for the capacitance and inductance readings. As this is not as convenient as a direct reading dial, it was not incorporated in this particular unit.

The dial pointer for the main capacitor is made from a thin sheet of clear plastic. Scribe a fine line on the reverse side and fill this line witl ink of a color that contrasts with the dial. Glue the pointer to the knob.

The standard coil (L_{X}), used for calibration of the capacitor, consists of 100 turns of "30 enameled wire on a form $3_{4}{ }^{\prime \prime}$ in diameter. The wire is closewound with no overlapping turns.

Chassis of "Q" meter is neat and clean. Jacks for unknown $L(J 2, J 3)$ and $C(J 4, J 5)$ are mounted on top of the cabinet.

R1.R2,R3,R4—3.3 megohm, $1 / 2$ w. res. C7,C8- $30-50 \mu f$., 150 v . elec. cap. R5- 4700 ohm, $1,2 \mathrm{w}$. res. J $-B N C$ panel connector 1 UG-
RS— $\mathbf{7} 000$ ohm, $1 / 2 \mathrm{w}$. res.
R6, R7-220.000 ohm, $1 / 2 \mathrm{w}$. res. $625 / \mathrm{U})$
R8- 50.000 ohm pot
$1 R 9, R 10-100$ ohm, $1 / 2 \mathrm{w}$. res.
R $11-4700$ ohm, 1 w. res.
$\mathrm{Ct}-.01 \mu \mathrm{f}, \mathrm{}$,100 v. capacitor
C2-. $005 \mu \mathrm{fd} ., 500 \mathrm{v}$. disc ceramic
J2,J3,J4, J5-Banana jack
I 130 volated jack/post
DI-130 v. r.m.s., 30 ma. silicon or selenium rectifier
T1-Instrument trans. 6.3 v . a 0.6
C3-15-467 pf. tuning capacitor
C4-3-15 pf. vernier capacitor
C4-3-15 pf. vernier capacitor
C5, C: $)-(0.1 \mu \mathrm{f} ., 100$ v. capacitor
amp, 110 v. ((t) 30 ma .
V1-6:NL5 tuhe
V2-12AX7 tuhe
-3-0B2 tube

Fig. 3. Circuit and parts list for the "Q' meter. To use device, external r.f. source and v.t.v.m. are required.

The finished coil will be about I.I" long. The ends of the wire should be looped through two small holes drilled in each end of the form to hold them in place. A heavier wire should also be looped through these holds, and the coil ends soldered to it. Spray the coil with plastic or varnish to protect the fine wire. For convenience, the coil can be mounted on a double banana plug. Inductance should be about $100 \mu \mathrm{~h}$.

Capacitor Calibration

The frequencies used for calibration must be accurately known. Zero beating the signal against known broadeast-band stations (which must be within 20 crcles of assigned frequency) will yield high accuracy. For required frequencies above the broadcast band, the second harmonic can be used.

Plug in the instrument and allow it to warm up. Connect the v.t.v.m. and signal generator. Comnect the standard coil to "L" terminals $J 2, J 3$. Set main and vernier capacitors to minimum. After the "Q" meter has warmed up, adjust the balance potentiometer $R 8$ for zero indication on the v.t.v.m. Adjust the signal generator for a peak indication and note the frequency. Calculate the minimum capacitance from $C=$ $25,400 /(f=L)$ where C is the capacitance in pf., f is the frequency in mc., and L is the inductance in $\mu \mathrm{h}$.

Fully close the vernier capacitor plates, find the resonant frequency, and again calculate the capacitance. The average of the difference between these two capacitances will be used as the vernier zero capacitance. Calculate the resonant frequency for this capacitance from $f=159 / \sqrt{L C}$ where f is the frequency in mc., L is the inductance in,h., and C is the capacitance in pf.

DO YOU SAVE YOUR COPIES OF Electronics World

Make sure they're kept neat and always handy for instant reference-with a handsome file that's designed to hold a full year's copies!

- washable Kivar cover has a leatherlike appearance

- available in maroon backing with black sides or black with maroon

- 24-karat solid gold leaf embossed lettering for magazine's name

- attractively priced at only $\$ 2.95$ each, 3 for $\$ 8.00,6$ for $\$ 15.00$

- files are shipped to you prepaid and are fully guaranteed

NOTE: these special-quantity prices apply for any combination of titles, so you can have them for all your favorite magazines.

Order several today-for all the Ziff-Davis mag. azines: Popular Photography, Modern Bride, HiFi/ Stereo Review, Electronics World, Popular Electronics, Flying, Car and Driver, Popular Boating, Amazing, and Fantastic, and for your other favorite publications, as well. (Ziff-Davis magazine files available in colors of your choice as noted in coupon. Those for other publications will be shipped in standard colors available.)

Apply this frequency and adjust the vernier for a maximum indication. Mark this point as zero on the vernier dial.

Calculate the resonant frequency for capacitance increments of one pf, to a maximum of plus and minus 3 pf. or higher, resonate as before, and mark these points. The half pf. values can be interpolated with reasonable accuracy.

The same procedure is used to calibrate the main "C" dial with the vemier set to its zero position. Recommended calibration points are every 5 pf. from the minimum capacitance up to 100 pf .; every 10 pf . from 100 to 200 pf .; and every 20 pf . thereafter. The intermediate 5 and 10 pf . points can be interpolated and marked on the dial.

The "L" scale can now be calculated and marked on the dial. For a frequency of 7.9 mc ., the capacitance required to resonate with $1 \mu \mathrm{~h}$. is 406 pf . The " L " scale 1.0 is marked at this capacitance. Using this same frequency, capacitance values required to resonate with inductances from 1 to $12 \mu \mathrm{~h}$. are calculated and marked on the dial. Recommended intervals are in steps of 0.1 from 1 to 2 ; 0.5 from 2 to 10 ; and 1 from 10 to 12 .

This range can be multiplied by use of the proper frequencies, with frequencies and multiplication factors of $7.9 \mathrm{mc} .=\times 1 ; 2.5 \mathrm{mc} .=\times 10 ; 790 \mathrm{kc} .=$ $\times 100$; and $250 \mathrm{kc} .=\times 1000$. A small chart with this information can be attached to the " Q " meter case.

These frequencies were chosen for calibration ease. The 2.50 kc . and 2.5 mc . frequencies can be checked against WWV, while a $790-\mathrm{kc}$. broadcast station can be used to check the 790 kc . and 7.9 mc . frequencies.

Slide-rule accuracy is quite sufficient for all necessary calculations. An easier method is the Allied "R.F. Resonance and Coil Winding Calculator," or reactance charts such as in Allied Radio "Data Handbook" or several other reference books. These methods will also give the required accuatey.

For " Q " readings, the voltmeter scale must be calibrated with known voltages. The "L" terminals are shorted, and a low frequency (10 kc to 100 kc .) is applied to the input. Adjust this input voltage for a convenient voltmeter reading such as 1.0 or full scale. Reduce the input voltage by 3 db or . 707 times its original value. Note the v.t.v.m. reading. This is the value to be used for the -3 db points for " Q " measurements. Each different scale to be used for " Q " measurements must be so calibrated, as the diode rectifier is nonlinear.

To measure capacitance up to 420 pf ., connect the unknown capacitor across the "C" terminals, set the "C" dial to the lowest capacitance reading, and adjust the input frequency for resonance. Remove the unknown capacitor and adjust the "C" dial for resonance. The differ-
ence between the two readings is the umknown capacitance.

To measure capacitance above 420 pf., connect the unknown to the "C" terminals, and resonate with the " C " dial set to its minimum reading. The capacitance is $C_{r}=\left(25,400 / f^{-2} L\right)-C_{m i n}$. The inductance used here can be any convenient, previously measured value, or the standard coil.

To measure inductance, the minown inductance is placed across the " L " terminals, and with r.f. applied, the "C" dial is adjusted for resonance. The intductance is given by $L=25,400 / f^{\circ} C$. If the dial has been calibrated in inductance values and the proper frequency applied for a given range, the inductance will be indicated directly on the "L" dial.

To measure distributed capacitance, resonate the coil at a convenient frequency with the "C" clial. Call this value of capacitance C1. Again resonate at exactly twice the frequency. This capacitance is $C 2$. The distributed capacitance is given by the following: $C_{0}=(C 1-$ $4 C 2) / 3$. This will not work with values of C., below about 1 pf . unless the distributed capacitance of the standard coil (about 1 pf.) has been taken into consideration during the "C" dial calibration.

There are two methods of measuring " Q " with this device: frequency variation and capacitance variation. The frequency variation method requires that the r.f. source be accurately calibrated and flat over the range used. For this method. resonate the coil at a known frequency, $f_{1,}$, then increase the frequency to a value of f_{1}, such that the output drops to .707 times the peak value. Decrease to a frequency f_{2} such that the output again drops to .707 times the peak value. Then " Q " $=f_{\ldots} /\left(f_{1}-f_{2}\right)$.

The capacitance variation method uses a fixed frequency and the capacitance is varied from its original value of C, to obtain the .707 points with capacitances $C 1$ and $C 2$. " Q " $=C_{n} /(C 1-C 2)$.

In both of these methods, use the calibrated values for peak reading and the .707 points as determined under " Q " calibration.

To determine reactance, the following formulas are used after the inductance or capacitance has been determined: $X_{L}=2 \pi f L$ and $X_{t}=1 / 2 \pi f C$ where X_{L} is the inductive reactance in ohms, X_{r} is the capacitive reactance in ohms, f is the frequency in mc., L is the inductance in $\mu \mathrm{h}$., and C is the capacitance in $\mu \mathrm{f}$.

As the ground terminal of the v.t.v.m. is connected to one plate of the differential amplifier $V^{\prime} 2$, the v.t.v.m. case will be about 75 volts above ground. Don't let the two instruments touch, or the signal will be shorted out. As the maximum short circuit current is only 0.6 ma., no shock hazard exists.

ELECTRONIC CROSSWORDS

By DONALD W. MOFFAT

(Ansterar on page IOI)

ACross

1. Shunted.
2. Tube with region of negative resistance.
3. Service a piece of equipment.
4. Describes tuning with no error.
5. We two.
. Straight lines extending from the center of a circle to the circumference.
6. Familiar gas used in some pilot lights
7. Waveform resulting from sudden changes in d.c. level.
8. Common contraction
9. Unit of weight in the metric Reprodu
Reproduces audio faithfully.switch connects radar al ternately to transmitter and receiver.
10. It pays off at 65 (abbr.)
11. Normal adverbial suffix.
12. Voltage gain.
13. Peruvian of measure
14. Long periods of time
15. Water vapor.
16. Universal pronoun.

0 . Resistance to change of velocity.
Its capital is Pierre (abbr.)
In the ntamer shown.
Where young ones get started.
. Equals power iformula)
. Cloudilike mass around nucleus of a comet
49. Covet.
51. Exclamation.
52. Voltage between base and collector.
53. Instruction to the printer
54. Famous English spa.
55. Cover.
57. Atmosphere
58. Move unsteadily
69. Yoll and 1.
60. Daughter of Baptista.
61. Wielders of the blue peneib leollon. 1.
62. Small. hand-propelled missile.
63. Poetic shortening of preposition indicating time.

DOWN

1. Transmits current to armature.

ㄹ. FM center frequency
3. Symbol for plate current
4. Causes each cycle to have lower amplitude than previous cycle.
5. American military man.
6. Corrections.
8. Prepare a manuscript for publication.
9. Mode of conduction in a waveguide.
10. Getting distance to a target.
11. Diameter, taking wall thickness into account.
12. Mr. Duck and others.
13. Unfriendly opponent.
15. Lyric poem characterized by lofty fecling.
9. Bypasses lightning to ground.
20. Add a nolr-conductor.
23. Filament voltage (symbol).
32. Operates without human intervention.
34. Unit of magnetic force
36. Required.
37. Got close to.
38. Unexplainable in scientic terms.
39. Disassociate.
40. Location.
41. Affirmative (esp. naticalarch.).
43. Direet away.
47. Front of truck
48. Residue of fire.
49. Inventor of tumel diode.
50. Symbol for element used in new solid-state filters.
56. Man's name.
59. Associated with mass (abbr.).

September, 1964

SOLDERING TIPS FOR HI-FI KIT BUILDERS

AVOID USING TOO MUCH SOLDER
Apply just enough solder to make a secure connection. Excess solder may fill up tube sockets, freeze switches or cause short circuits.

USE A DUAL HEAT GUN
Use the low heat trigger position to prevent damage when soldering near heat-sensitive components. Switch to high heat only when needed.
Weller Dual Heat Guns are invaluable for making fast, reliable, noise-free soldered connections. They're just as essential to hi-fi kit builders as they are to professional TV and radio service technicians. Two trigger positions permit instant switching to high or low heat. Tip heats instantly and spotlight comes on when trigger is pulled. Long reach tip gets into tight spots.
A Weller Expert Soldering Kit has everything needed for strong, noise-free connections: Gun in plastic utility case, 3 tips, flux brush, soldering aid, solder. Model $8200 \mathrm{PK}-\$ 8.95$ list. Weller Electric Corp., Easton, Pa.
Obeller

WORLD LEADER IN SOLDERING TECHNOLOGY

"Use it

with any 12 volt CB

 transceiver"New Cadre Selective Call encoder-decoder

Put an end to meaningless chatter at the home base and in the mobile units. Contact only the stations you want to talk to. 3 -tone, fool-proof selective call system provides up to 24 different tone codes. Code can be changed in field easily with no special relay needed. Easy connection to any of the famous Cadre 5-watt CB transceivers-works with all 12 volt transceivers, regardless of make. Get the Cadre 524 today. Only $\$ 69.95$.

Transmits voice or signal with power and fidelity to any standard FM tuner or radio. Perfect for use where mike cords are inconvenient. For broadcasting. remote tape recording, communicating or hundreds of other applications in schools, churches, theares, plants, indoors, or out Iunabl88.108 mc band. 88.108 mic band

IMP II-221 Transmitter only... 39^{95}
IMP $\Psi / M-222$ Complete with built- in 49^{95}

CIRCLE NO. 193 ON READER SERVICE PAGE
D.C. Current Probe
(Continued from page 43)
range of environmental conditions.) Incidentally, since the synchronous detector preserves the polarity of the sigmal, the feedback is always negative. This would not be the case if a simple amplitude detector were used.
The feedback technique also provides a convenient means for switching measurement ranges. The actual output current which corresponds to full-scale deflection of the meter is 50 ma ., but the feedback current reguired in the selosing coils to balance out a I-ma. current in the measured wire is only 5 far. By placing a current attenuator on the range switch, the feedback current is reduced enough to match the current to clrive the meter. A voltage attemuator, also on the range switch, reduces the a.c. input proportionately so that the loop gain of the instrument is the same on all ranges.

Another interesting aspect of the circuit design of this instrument concerns the technicque for cloubling the $20-\mathrm{kc}$. drive signal to 40 kc . As shown in Fig. 6. doubling is performed in the unbypassed common-cathode circuit of the twintriode oscillator tube. The cathodes "follow" the most positive grid and, as a result, the cathode circuit pulsates at a $40-\mathrm{kc}$ rate. The cathode signal, after suitable amplification, is used as the synchronous detector gating signal.

The $40-\mathrm{kc}$. signal also is passed through a phase-shift network and then applied to the output circuit of the probe bridge. This sigual bucks out any residual 40 kc . appearing in the bridge output that results from mavoidable small imbalances in the bridge. Control of the network output therefore serves as a zero-set control for the instrument.

Precautions to Observe

As is true of all laboratory instruments, certain precautions mast be observed with the current probe to maintain instrument accuracy. Most important is to guard against actions which could affect the magnetic properties of the probe. The probe should not be subjected to any mechanical shocks which could fracture the cores since fractures introduce air gaps in the magnetic circuits which affect performance. The probe jaws should be kept clean, easily done with an eraser, so that no air gap exists where the jaws close together.

Althongh the jaws are insulated and can withstand voltages up to 300 volts on bare wires, it is recommended that the probe be used on insulated wires.

The instrument readings are little affected by the presence of a.c. with the measured d.c., provided that the a.c. peak value is less than full scale (limit 4 amps peak on 10 -amp range).

One further precaution deserves special comment: if there is any residual magnetism in a conductor, the instrument may read 2 to 3 ma. even when no current flows in the wire. Ferrous wires should, therefore, be aroided during measurement as these are most likely to have residual magnetism. Many transistors use ferrous leads, so measurements in transistor circuits should be performed beyond the point where the transistor leads connect into the circuitry. If this is not possible, re-zeroing the instrument, with the transistor circuit turned off. will buck out the reading from the residual magnetism.

A de-gausser is built into the instrument to demagnetize the probe in the event that it has been exposed to heavy currents or high magnetic fields.

With proper care, a d.c. current probe retains its calibration for long periods and the instrument may be used with confidence for making accurate measurements in a wide variety of situations.

WHITE-BAR BLANKING

PICTURE tube blanking as used in the late model Weatinghomse TV receivers is shown in the accompanying illustration. The circuit was specifically designed to eliminate the white bar sometimes seen on the left of the screen during fringe-area reception. This bar is produced by excessive tramsmitter or receiver high-frequency compensation in the syne circuits, in the interests of syne stability.

During flyback time, a negative pulse is produced at the serondary of the horizontal output transformer. Ordinarily, this pulse conld be used to blank the pieture tube, but becallse of ringing in the flyback transformer, the total signal camot be uned. In the circuit shown, the 15,000 - and 10.000 -ohm resistors in series with the neon lamp and transformers reduce the amplitude of the negative pulse. The neon lamp will then fire only on the peak nequtive excursion and will be coupled to the picture-tube control grid.

Vertical blanking pulses are taken from the secondary of the vertical ontput transformer.

STABILIING VERTICAL HEIGHT

WHEN there is a change in line voltage, many TV sets exhibit an annoying change in vertical height. Many control circuits have been used to stabilize the vertical sweep during these voltage changes. One of the latest, shown in the sketch, is used in the new Westinghouse TV sets.

In a normally operating recciver, the vertical output tube is biased to operate on the linear portion of its characteristic curve. If the bias changes, the picture may appear distorted because of the non-linear operation of the tube. When the line voltage changes, the vertical tube bias will also change.

A simple circuit that automatically adjusts the bias to changing line conditions is shown in the sketch. When the a.c. power is applied to the set, it is also applied to diode $D 1$ through voltage divider $R 1$ and $R 2$. The voltage divider reduces the line voltage to approximately 15 volts. The negative output

from the diode is filtered by $C 1$, and applied to the vertical output tube control grid through the linearity control and its associated resistors.

When the line voltage goes up, the set's "B+" also goes up, causing the vertical output tube to conduct more, thus increasing picture height. Similarly, a decrease in line voltage decreases the picture height.

However, in the new vertical height stabilization circuit introduced by Westinghouse, as the power-line voltage goes up, rectifier $D 1$ produces a greater negative voltage. This voltage is applied to the vertical output tube, increasing the bias and thus reducing the height of the picture.

If the line voltage should go down. then the negative voltage being applied to the vertical output tube is reduced, increasing the picture height.

If the vertical height is properly adjusted at nominal line voltage, then variations around that line voltage will not drastically change picture height. A

FREE! For fun and pride in assembly, for long years of pleasure and performance, for new adventures in creative electronics mail the coupon below and get Conar's brand new catalog of quality do-it-yourself and assembled kits and equipment. Read about items from TV set kits to transistor radios . . . from VTVM's to scopes ... from tube testers to tools. And every item in the Conar catalog is backed by a no-nonsense, no-loopholes, money-back guarantee! See for yourself why Conar, a division of National Radio Institute, is just about the fastest growing entry in the quality kit and equipment business.

send ElECTRONICS World	
	Get Your First Class Comm
EVERY Flatraife homm	
MONTH	QUICKLY!
	Career opportunities in communications electronics are almos
	unlimited. Prepare now. Let Grantham train you - by corre-
	- Grantham train you - by corre-
	laboratory instruction. Get your first class commercial F.C.C. license
	continue in more-advanced elec-
address	sin training if you wish. Di-
city zone	full details. Learn how ou
sta	Learn how our traning can pre-
Check one: $\square{ }^{3}$ years for $\$ 12$$\square 2$ years for $\$ 9 \quad \square 1$ year for $\$ 5$ In the U.S., and possessions. \square Bill me	write or telephone the School at any one of the teaching divisions listed
	below, and ask for "Catalog 46."
	Grantham School of Electronics
Foreign rates: Canada and Pan American Union countries, add 504 per	Estern Av, Los Angeles, Cal. 90027
Yearicllo others foreign countries,	
\square add New \square 1.00 per year Renewal	08 Marion Street, Seattle, Wash. 98104 (Phone: MA 2-7227)
Mail to: \square	
ELECTRONICS WORLD Dept. 1-2407, 434 S. Wabash Ave. Chicago, III. 60605	

NOW-YOU CAN PLAY A VITAL ROLE IN SPACE AGE COMMUNICATIONS

THE 1964

COMMUNICATIONS HANDBOOK

is the only publication that covers the entire specialized field of today's rapidly expanding radio communications. It gives you 148 fact-filled pages-complete with charts, graphs and tables-covering:

- Citizens Band
- Short-Wave Listening
- Ham Radio
- Business Radio Services

plus these special features:

Up-to-the-minute Space Data
Latest US and Canada License Requirements
A Build-it-yourself World Time Calculator
Look for the 1964 COMMUNICATIONS HANDBOOK-it's now on sale at your newsstands or electronics parts store. Or, if you prefer, use this handy coupon for ordering your copy of the 1964 COMMUNICATIONS HANDBOOK.

[^2]Please send me \qquad copies of COMMUNI-
CATIONS HANDBOOK, at $\$ 1.00$ each—plus 15δ mailing and handling charge on each. (Canada and Overseas: $\$ 1.25$ plus $25 \oint$ postage.)

I enclose.

NAME

ADDRESS

CITY

Tube Innovations
(Contimued from page 55)
also give rise to the evolution of gats, causing "gassy" tribes.

The plate, in addition, should have good heat emission qualities to prevent inordinate temperature rise.
These several factors are provided by an alloy called "copper-cored aliron," which consists of a layer of copper sandwiched between two layers of alumi-num-clad steel. The copper provides good thermal conductivity, while the aluminized steel offers a dark surface that is a good heat radiator. Tubes with greater plate dissipation can be constructed in smaller envelopes throngh the use of this material.
A delinite plate area is needed for a given plate dissipation, and thas presents a design problem where v.h.f. or u.h.f. operation is coutemplated. Spacing must be close to reduce transit time, and a large plate tends to increase undesired interelectrode capacitance. Fig. 3 shows one solution to the complex problem of locating elements for optimum performance. The electrodes are kept close together, especially the cathode and grids. The plate is designed so that the beann deflection plates will direct the electron stream to an actise part of the plate which is close to the other electrodes. The remainder of the plate which is needed for the recpuired dissipation is mounted further away. B!: designing the tube in this manner, a rigid construction is obtained with low interelectrode capacitance and good power output at higher efficiencies.

Nuvistor:

The RCA "nuvistor" is a new approach to receiving tube design. Elements are spaced close together, elliploying a type of construction not uncommon in transmitting tubes, in which all the electrodes are supported from: a common base with a minimum of insulating material in between. The elements are mounted on a ceramic hase wafer, and the assembly is enclosed in a metal shell. The use of metal and coramic materials with no glass permits operation at ligher-tham-usual temperature. Plate area is small and the tube is simply allowed to rum hot. Trimsit time and interelectrode capacitances are small, however, and most nuvistors are capable of u.h.f. operation.

Nuvistors are made with mutual conductance of about $15,(300$. They are quite rugged and are capable of good performance under conditions of severe shock, high temperature, and extreme altitudes.

A typical nuvistor (Fig. 1) measures only 0.8 inch over-all in length, from the top of the cap to the bottom of the in-
dexing lugs, with little more than 渻 inch above the chassis. It is only 0.43 .5 inch in diameter at the widest part. Nuvistor heater power requirement is low, being only 135 ma. at 6.3 volts. Plate voltage is typically 110 volts. However, a nuvistor has been designed which operates with only 24 volts on the plate. giving low-noise in the lower n.h.f. region, making it suitable for u.h.f. TV' use.

Compactrons

A different approach is fommel in the G-E line of "compactron" tul)es which have all-glass envelopes and 12 -pin bases. They come in two diameters1.188 inches and 1.563 inches-and range in bulb height from $1 \neq$ inches to $3^{3} \neq$ inches.

Most compactrons are multifunction tubes, ustally designed for specific applications. The 30AClll, for example, contains two high- μ triodes and two diodes, and is intended for FM stereo multiples service. The 330, 3 contains a high-perveance diode and a beampower pentode, and is meant for use as the damping diode and the horizontaldeflection amplifier in television receivers. The GARIl contains two twill pentodes for television i.f. amplifier circuits.

Combining several tubes in a single, large envelope has several advantages. The initial cost is less than the sum of the tubes replaced, numerous jumpers are eliminated, leads cam be shortened, and more compact circuitry is possible. Becaluse of increased bulb size, operating temperature is lower. The extra pins allow greater than usual versatility in design. Two pentodes, for instance. can be combined in a single convelope without sharing common comections. General Electric reports an average life expectancy of $5 \frac{14}{4}$ years for compactron tubes as compared with 23 years for conventional vacumm tubes.

Looking Ahead

A further step, still in the experimental stage, is the "circuitron" developed by Syltamia. These devices combine integrated circuits consisting of both active and passive components in a single envelope. In this way, multivibrators, class-A amplifiers, logic circuits, and similar functions are acailable in a single, self-contained package. A complete flip-flop circuit, for example, has been built into a conventional 9pin miniature envelope-the size of a 12AU7. It inclucles seven resistors, three capacitors, two triodes, and two diodes. The passive circuit elements are built on substrates positioned on the header.

As circuits and functions become more standardized, there is reason to believe that an increasing tendency will prevail to simplify circuitry by placing elements such as resistors and capacitors inside the tube envelope.

WORLD'S LARGEST ELECTRONICS CATALOG

WITH THE BIGGEST SAVINGS IN ALLIED'S HISTORY

send today for your money-saving
 ALLIED 1965 CATALOG

BIGGEST SELECTION • BIGGEST SAVINGS ON:

- Famous Build-Your-Own Knight-Kits ${ }^{\text { }}$

PLUS

SPECIAL PRODUCTS AND EXCLUSIVE VALUES AVAILABLE ONLY FROM ollien

- Our Own Knight Stereo $\mathrm{Hi}-\mathrm{Fi}$
- Other Famous-Make Stereo Components \& Complete Systems
- Tape Recorders and Tape
- Phonographs and Accessories
- FM-AM and AM Radios
- CB Transceiver Values
- PA Systems \& Intercoms
- Ham Station Equipment
- Test and Lab Instruments
- Automotive Electronics Equipment
- TV Tubes, Antennas, Accessories
- Parts, Tubes, Transistors
- Tools and Hardware - Books
satisfaction guaranteed or your money back EASY TERMS: Use the Convenient Allied Credit Fund Plan

For your FREE 1965 ALLIED Catalog, fill in card, detach and mail now. (Please give other card to an interested friend.)

SEND
CARD TODAY

Name
PLEASE PRINT

Address

City \qquad Zone

State \qquad
I.J

LOWEST PRICES ANYWHERE!

Name
PLEASE PRINT

Address

City \qquad Zone

State \qquad

1-J

SIND CARD TODAY for your FREE AILIED 1965 GATALOG

SAVE AS NEVER BEFORE!

WORLD'S LARGEST•BIGGEST SELECTION WIth the biggest savings in allied's history!

NEW STEREO HI-FI-most for your money

NEW
Knight KN. 330 Ster
eo Hi-Fi Receiver-
top performance at a new low price

NEW
Knight KN-990A DeIuxe Hi-FiRecord Changer at tremendous savings

NEW
Knight KN. 2350 Speaker Systemacoustic suspension type at lowest cost

CITIZENS BAND TRANSCEIVERS-top values in CB

NEW

Knight KN-2565 23 Channel
CB Transceiver-a deluxe per
former at big savings

Knight KN-2580 8-Channel CB Transceiver, with transistorized power supply

PLUS: Tape Recorders and Tape • Phonographs \& Accessories • FM-AM and AM Radios . Ham Station Equipment - Test and Lab Instruments - Automotive Electronics Equipment - PA Systems and Intercoms - Top Values in Power Tools, Soldering Guns, Hardware - Biggest Selection of TV Tubes, Antennas, Parts, Tubes, Transistors, Books . . . everything in Electronics for everyone.

FREE

SEND CARD TODAY FOR YOUR 1965 ALLIED CATALOG, and give one card to an interested friend.
satisfaction guaranteed or your money back

EASY TERMS: Use the convenient Allied Credit Fund Plan to make your purchases.

COMPONENTS • TOOLS • TEST EQUIPMENT • HIFFI • AUDIO • CB • HAM • COMMUNICATIONS

DECADE RESISTANCE STANDARD

1General Resistance. lite is mon ofteline new high-precision decarle resistance stand-
 actance (less than 0.1 phase angle at 10 kc .).
The Model ROStibi; comain , in dalable dec. aldes with indiadual comrols : mad mumeric dis.

plays for each decate. The resistance stantard covers the range from 1 ohm to 1.111 .110 ohms. A calibation char moting the acourace of each decade and cath resistor is inchuted with ach RDS-6t5, assuring calibated acconacy of \pm parts per million.

The instrument is a a ailable as a rack-mounted unit measuring ! ! $9^{\prime \prime}$ w. x $7^{\prime \prime}$ (I. x $31 / \underline{2}^{\prime \prime} \mathrm{h}$. or in an optional watmo cale

LAB/INDUSTRIAL TUBE TESTER

2 The Hickok Electrical Instrument Company is now marketing the Moxlel 5×0 tube tever which features a complete tange of tert potendials that permin selling teat conditions directly from the tube handrook withour retemece of the roll chart.

The circuit is completely solid-utate and teatures a transistorized gas test circuil which permits measurememt of gas eflects down to 0.0; pamp. Other featmes include fon mintor ranges. lakage that can be read directly on the meter. sensitivity to mo megohms. pustibuton test of dual thoses, and plate, grid. and cathode jacks which permit acess to these elements ander iset conditions.

AUTOMATIC HEART MONITOR

\} Fisher Beakeley Corporation iv now oflering J the "Ektacom" automatic heant monitor which antomatically monitots the hompital pat tient's heartbeat and, if the rate rises abowe or falls below limits that the doclor hav establishert. vourls an atarm at all norse's bations and orer the paticnt's door.
In addition to its monitoring function. Hac

Hew ststem allow the mone wod biven and talk to the pationt. Ihe watem in denigned pimarily for use with posteperatice patients and cardiac cancs.

LIGHT-CONTROL UNIT
4 Intemational Resistance Compant iv diswibuting a new line of full range lighting controls tor commercial, industriat. or readential appliations
The "Capri" fote tandaddeph wall boxe abd is imatled in the same mather as an ordinaty switch. Vodels are adable for controlling incandercent lampe mind or bohla imandesemt and fluorescent tamp. I buibith whage sum-

Chonimer witch alfow comptere cimont break when the combot is in the "otl" position. I toroidal core filter eliminates radio and it interterence and proted, the semiconductor components.

An atuminum allon moming bather dian. pates leat from the commol though the taceplate. pertecting the rectifier from excensise heal and insuring fonger lite and greater reliabilia.

The Model D-i; iv designed for revidential 600-wat incandescent application- while other

COMPACT INVERTER

5 Comell-Dubilier Electronics Division is now 5 marketing a compaci. modern inveter for powering portable TV sets from a llowh bat-
 rine. homse tailer. and camp application as a ource of ace power independen of power line. In addition to operating portable TV. a spe (i:al switch tap is provided for radio receisers.

dictating machines. phomographes. wheners, and other tansformeroperated equipment with a 7.'; to low power lactor mon whiring mome than 120 wolt

Fer remote instatations. a special remotecontool head is arailable. Other accesories include an inpur fuse for battely protection, dahboard momming hit, and a lead hit.

MULTI-PEN RECORDER

6 Ravtlex Division of Phillips-Echardt Elec 0 tomic Corp. Las introduced the "Polypen. a new matiopen recorder a a alable with as mans as fise perts that ratere the tull paper width the mat feature ball-point perse to oremone the liguid ink hindrance to portable operations. Paper is leaded and untonded at the top of the minit. which alvo oflew a comenicout open witing pace for mating immediate motatoms on the ecording chart.
Derigned lom the in the fiedt. in the lath. or ill pemanemt instatations. it (an be med an a scatour device lor dmatstical reseanch and pas. cos inammembetion. dite teonding of d.e wit age and analog recording (with apponplate
 popertio.

TRANSISTOR U.H.F. CONVERTER

7 JFI Electronics Corporation is nen whering

The Models CR1-J and CRO-J ane completely whid-atate converters having a thater moise figure of mals 115 dt . F rquath drift is not more than 250 ke /sere Both mits hase illominated horiontal side-rule sales and a logatiomic cal ibation sale on the chamet dial to facilitate dammet lacation.

The Noxdel CRI-J is designed for local area and voburban use and has one transistor in the oreillator circtio and a mixer diode. The CRed comerter has two thanisors-onge each in the oreillator buter and i.f. amplifice stage-and is devigned for fringe area applications.

RUDDER-POSITION INDICATOR

8 Heath Company has added a new rudder. penition indicator to ils line ol marime clectronies equipment in hit form.

The MI-11 contimmosty shows rudder position 10 io 49 both pert and starboard and -implifies chose maneosering at the dock. Al though designed to be used on dither single or dratengine boats. it is particulaty wefal on dual-engine cate since it permits compensation for coment and wind by adjusting the engines dather than the rudter to maintain proper heat ing. . We a rentl. rudder diag and eveessive haed consumption are elimbated.

The kit comes complete with ge feed of con necling cable and a 36 " pheoslic linking shat for direa plevical commetion to the ruddet -hath. I he meter mit is honsed in ath alamiman tase with gimbal momang bracket for calse ol installation in any position. The unit will of, wate fom either 6 . a lay wolloge batter with a nominal currm drain of appoximately Sol mal.

NEW CARDIOGRAPH

Samborn Company hav developed a mes lightweight candiograph which is devigned fo mate the reconding of heont action a quick vimplified procelure that can be dome excon in
 sical noise or intertentince
the soll "Viso Cardicte" iodates nowe hom He ieant bignal to a degree never betore achicucl: has aperating omorols logicatly a

Tarzian offers FAST, DEPPENDBBLE TUNER REPAR SERVICE ($\ln (4)$

ALL PARTS
(except tubes) and LABOR

24-HOUR SERVICE 1 YEAR WARRANTY

Sarkes Tarzian, Inc. maintains two complete well-equipped Factory Service Centers-assisted by Enginecring personnel-and staffed by specialized technicians who handle ONLY tuner repairs on ALL makes and models. Tarzian-made tuners received one day will be repaired and shipped out the next. Allow a little more time for other tuners.

Onc year guarantee against defective workmanship and parts failure due to normal usage. Cost - $\$ 9.50$ per unit. $\$ 15$ for UV combinations. Ab solutely no additional, hidden charge for ANY parts, except tubes. You pay shipping costs. Replacements on tuncrs beyond practical repair are available at low cost

When inquiring about repair service, always give I'V make, chassis and Model number. Tuners repaired on approved, open accounts. Check with your local distributor for Sarkes Tarzian replace ment tuners, replacement parts, or repair service. See your distributor, or use the address nearest you for fast factory repair service

SARKES TARZIAN, INC.

537 South Walnut Street Bloomington, Indiana Tel: 332-6055

10554 Magnolia Blyd., North Hollywood, Calif. Tel: 769-2720

CIRCLE NO. 215 ON READER SERVICE PAGE
WUERTH SURGISTOR ${ }^{\text {® }}$
 Use SURGISTORS with your TV, Hi-Fi, Film Projector, or ony device requiring inrush surge current protection. SEE your distributor or
dealer TODAY. Or, send order direct to us for prompt oction.
WUERTH PRODUCTS CORP
931 Moffett St., Hollywood, Florida
ranged by frequency of use; the locations of patient connction points color-coded to a pictorial diagram directly on the instrument's top panel: simplified chart roll reloading without theading or alignment; and modular plug-in clectronic circuits which permit instrument servicing by sulstituting a new section in two minutes or less.
The instrument utilizes all precent-day transistor and solid-state corchiter principles useful in a sensitive chart-recording derice of this type.

STRIP GROMMETS

10 Illumitronic Engincering Corp. now has IV ataitable strip grommets in cout or continwous lengths which are adaptable to any shape or confyaration where gommets are uned. Trade named "Cromstrips." the C'clannel de-

sign feeds around (ut edges. grips surfaces. te duces abravion amd noise, and remains intact untler vibration.
Five si/ce are waid to replace hundreds of stock grommed sifes. reduce intemory and eliminate waste. Standard continuons lenglt packs are 50 , 100 , and 500 feet polyethelenc, nylon, or 1 eflon.

DUAL-VOLTAGE POWER SUPPLY

11 Buckeve Stamping Company has developed \| a low cost, high-stability dual-voltage power supply opecifically for protospe transistor circuit design and experimentation.
 ing into experimental circuit demigns and prowides both postinc and negatise voltages by means of individual controls. L'p to 300 ma. can be drawn from two ouphts simultancously. The outpoll volage bange is hom $1010 \pm 15 \mathrm{v}$. with 10\% adjustability

The regulation againnt lond is $1{ }^{r}$ e change in output voltage for 0 to 300 ma . change in output curcom. The regnation aganst the line is $\pm 1 \%$ change in output woltage for \pm lof change in line voltage. Ripple and noine are less than 5 ms . $1 \because$ volts and 300 mat. nutput
The mit meanates $7^{\prime \prime} \times{ }^{\prime \prime \prime} \times 4^{\prime \prime}$ and woighs !er pounds

INSULATION TESTER

12 Giannini sicmafic Comporation las devel 12 oped a nondextmotive insulation tester. a small-sized, rack-mounted or portable instrument specificalls designed 16 measure insulation or dielectric resitance and leakage values for such small and large electrical and electronic components å capaciors. gencmots. tamomers, relays, motors, wiring, switches, solenoids, and a wide The tenter offers bitit-in protertion for the uperator and ato prevent dambe to the fexted component be incorpomang (itruits which cut off the high voltage when breahdown theatens.

SQUARE-WAVE GENERATOR

13Du Mont Laberatories' Scientific Instrument Departmemt is mow in prothotion on a tramsistorized squate-wate generator with manosecond rise and fall times and extremely wide operationat freptemey tange
Devignated the "Fairchild Type $\overline{9} 91.0$ the new solid-state insubment heeps rise and datl times contant dromghut all focguencies from i cps to 10 mac. inchaire. A coincident trigger output is provided in addition to the sfuare wase out-
put. lts timing may be phased to either the rising or falling edge of the square wate to permit alignonem of video systems having minimum inherent delay. The repetition rate of the trigger output is the same ats the frequency of the square wave.
d from-panel switch provides a choice of cither $600-\mathrm{ohm}$ or 50 -ohm output imperance.

PHOTOELECTRIC KIT

14Edmund Scientific Co. has packaged a low. cost photoclectric control in kit form which can be used to construct 19 separate lighatatuated mechanime

The kit inclutes thace ${ }^{-4}$ - cadmiam-sulfide photnconductors meavoring $1 / 2^{\prime \prime}$ in diancter by t/2" $\mathbf{2}^{\prime \prime}$ long: a monnting backet; a Signa a.c di.c. retay (rated 2 amps resistive load); and a 22.000 olm, l-w. resistor. Accompanying the parts is a is-page booklet explaining in detail the steps for constructing the 19 different circhits. Feat tured are plans for buidding anmunciatons, volume controls, lightmeters, tachometers. comers, and onher light-actuated electronic derices.

A.C. DECADE VOLTAGE SOURCE

5 Idalee Electronics Corp. has ammonnced the 10 avalability of the Model 200 a.c. decarde oltuge source, an eav-io-dial thit which probides digital readont to 999 volts in one-solt incrememes and output accoracy of $\pm 0.5 \%$.
The mit an be wed for the realibration of a.c. meters, tranformer tenting, voltage compariwon, malling, deoign of rectifitation circuits, and other applications requiting an accuate eandy atjumed a.c. whage source. Inpul, at 117 vols, (an be any frefluchcy from 60 through hoot cps. Oupput is adjuted in three decades by fromtpanel retay ewither which proside in-line window dixplay of the voltage sembing in mits, tems, and hundreds of volts.

LIGHT-ACTIVATED PHOTOSWITCHES

harkes Tarrian, Inc.s semiconductor Diwision ammonced a line of lightactivated phowhich are capable of handling subsstantial amonnts of a.c. power without farther amplification. The 200 mat derices ate derigned for card and tape reatont, welay replacment, couming abl worling, sCR trigering. and appliance contsol. Ithey are electrically isobated from the trigger source but can be activated with light intensity as low as 100 footcambles at 5 volt bias and 2.00 K color temperature.
spectal responee is from 3500 to 12.000 ang. Homs whin maximum response at 8000 ansstrons. Voltage ratings are arailable foom 20 to 400 volts un p.i.v. and vib.e.

TRANSISTORIZED INVERTER

17Terado Corporation has recently added the , ilaxy inverter to its line of power supplics. I his new solicl-state mith changes the

 guency and output voltage control is powided. Capacits of this inverter is 150 to 17.5 watts o operate tape recorelers. recod platoce hi-f chapment, portable 'TV sets, lights, and low powered honne appliances
*he unit is housed in a heary gatuge copperclad case with carming latudle. It measures $1034^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ and weighs $101 / 2$ pounds.

SUBMINIATURE CIRCUIT BREAKER

18 lippan Etertronics lmooporated hin devel
 foncet in the umalles possible pachige
(buch ratios anc from so ma. to 20 an

 the theater meander hom the lop of the bat hatulle whe bertom of the heos temmath
 Hish

LINEAR VIDEO VOLTMETER

Batlathine Laboratories iv now olleting bhe

The imblllacol has at fequencs bange of 10

 "idht in ! ghe to ill me. Ilac soltage lathge

I he intrament is atalable in both pertable allid l.ach womoll

HI-FI—AUDIO PRODUCTS

TAPE RECORDER LINE

20 Lmpex Corporation hise recents added the

 Vomelel 203t. a actl-comatined patable reorder/ eppoducen: the Worled gone, a tape deck in a "alnut base: the Xoxed enow momounted tape dech: 1wo peater sutcom, Mondel 2010 and 2011: and the Woted eome microphone
Buth the 1ape dechs and the machine provide for recoming and phatbach al $21,2.33$ and $17 / 8$ ips. (atanamed minimmon pertormate at $71 / 2$

fach moted in the line record, Itack werm * mono and plas tatack stereo and mono. halt wish moms. dild full-nach mono. Recel qapacils inchos.

SOLID-STATE STEREO TUNER

21 herwood Electronics, Inc. hat recomb in - Woxtuced the Moxdel TK 500 wold-state FX sterew bunce which lealumes a mewh dereloped proterion cincuit which amtomatically ghands aцame widenpread mathivor damage due to a tholl circuit
St all-wew fomepane devign inclucte atho matic relay withing to proper mode. showing

inwamts He seception of FM-stere broatcats

Pomer comamplion is 10 naths all intion op

WEATHERPROOF SPEAKERS
22 OVberl Transducer Corporation LL momber the analabilits of two new weathe pow paping and bathback peahers, the ofret
 and mavinum pendataion in high ambient mon fode arcos atconding to the compams.

Itwe min teathe an integral dosetompleal

GREENLEE CHASSIS PUNCHES
Make accurate, finished holes in $1^{1 / 2}$ minutes or less in metal, hard rubber and plastics No tedions sawing or filing - a few turns of the wrench does the job. All standard sizes. round spuare key or "I)" shapes for sockets, switches meters, etc: At your electronic parts dealer. Literature on reguest.

GREENLEE TOOL CO

GREENLEE

GREENLEE TOOL CO. 2027 Columbia Ave., Rockford, llinois CIRCLE NO. 184 ON REÁDER SERVICE PAGE

BUILD this new Dortable MOOG Hi.Fi amplifier Speaker

- NEW MOLDED ENCLOSURE!

Enhances any decor. Rugged enough to meet critical field requirements. Lightweight . . . only 20 Jbs.

- NEW OPTIONAL RE-CHARGEABLE BATTERY! Long-life 10 -volt re-chargeable battery mounted inside for economical, portable operation. A.C. supply and connectors for external 12-volt battery provided as standard equipment.
- NEW TRANSISTOR CIRCUITRY!

15 -watt solid state amplifier with two independent low noise inputs for true "transistor sound'

- JAMES B. LANSING SPEAKER!

Kit Model PMS-15 $\$ 129.95$ less battery Kit Model PMS-15B $\$ 174.95$ with battery

R. A. MOOG CO.		
DEPT. 1001, TRUMANSBURG, N.Y.		
\square Send further information		
\square Send __ Kit(s) without battery @ \$129.95		
\square Send \square Kit(s) with battery @ \$174.95		
Enclosed is \square check \square money order. No C.O.D.s please Prices F.O.B. Trumansburg, N.Y.		
NAME		
STREET		
$\overline{\mathrm{CITY}}$	STATE	Z1P

CIRCLE NO. 241 ONREADERSERVICEFAGE

A Dramatic Improvement

Winegard engineers have used two of the new 6 HA5 ampliframe shielded triode tubes and new circuitry to create the all new Winegard Booster coupler that dramatically increases signal power \& cuts noise to a minimum. This increased power means 8 DB gain to each of 4 outputs, reducing snow, picture smear and interaction between sets.

FM gets a boost in this new circuit as well, because it covers the entire FM Band $88-108 \mathrm{MC}$. The new BC-208 Booster Coupler is another forward-looking product from Winegard
providing better color, black and white and FM reception. Ask your distributor or write today for spec. sheets.

Winegard Co. ANTENNA

3003-1 Kirkwood • Burlington, lowa CIRCLE NO. $\mathbf{2 3 7}$ ON READER SERVICE PAGE

\% ELECTRONICS

V.T.I. training leads to success as technicians. field engineers. specialists in communications, guided missiles. computers, radar and automation. Basic \& advanced courses in theory \& laboratory. Elcetronic Engineering Technology and Electronic Technology curricula both available. Assoc. degree in 29 mos. B. S. also obtainable. G.I. approved. Graduates in all branches of electronics with major companies. Start September. February. Dorms, campus. High school graduate

VALPARAISO TECHNICAL INSTITUTE Dept. RD, Valparaiso, Indiana

B.S. Degree in 36 months

Small protessionally-oriented colle ese. Fonr-quarter vear permits completion of B.S. Degree in three Electrical (clectronics or power option), MechanElectrical (electronics or power option), Mechan-
ical, Civil. Chemical. Acronatical. Buviness ddicab, Civil. Chemical. Acronautical. Buviness Ad-
minisfration: General Business. Acconnting. Motor mamsfonon: General Business. Aeconnting. Motor Design Certilicate program. Craduate placement outstandine. Fombled 1884 . Rich heritage. Excollent faculty, Small classes. 200-acre campas, Well equipped labs. New library, Residence halls. Modest conts. Enter Jan, March. June, Sept. For Catalor and Vicw Book, write J. M. MeCarthy, Director of Armissions.
inner hom and diaphagm that eliminates conremtional plating plags and insures perfect impedance math to the outer betl. Both modets are molded trom "louplex . ${ }^{\text {." which is imper }}$ vious to weather, sat water. sil. ateds. and temperature extremes.
The units are available with built-in 70 or 25-volt constant-voltage tramformers with a B-thm tap. They can also be supplied without tanstomems.

STEREO TAPE RECORDER

23 Tandberg of Ameria. Inc. is now offering
 tained sterco tape recorder/playback unit.
The unit features an FX-mbtiplex filter, pre dision laminated head, built-in mathed speak ers, power amplifiers, premplifiess. pance com-

tool wikh a 4 -pole asyndhronotis motor. two built-in (athode-follower ouputs, speaker selec tion for slide-profector sunchromization, and centerechamel output for language hat use
Frequency response at 7 ! 1 ips is $30-20,060$ cps. wow and Hutter is . 5%, signal-to-noise ratio is at least \therefore (th) while crosstalk rejection is better than bio dib.

100-WATT BOOSTER AMPLIFIER

24 Bogen Communications Division has inter 24 duced a high-performance loo-watt booster amplifier designed for comimuons applications whid require full power at high and low frefucncies.
The Moled Molood provides 100 watts of output from 2 ? 10 \$0.000 cps at less than 5% distortion. It is usable at slightly reduced wattages for an even wider freguency range. The amplifier catn be used as a modular building block in crating inexpensise industrial power sources for mosual volage-frequency-wattage applications. Completely isolated secondary windings of the oupht trantormer make possible series comnection of wo or more of the units. Outputs are 8 - and 70 -volts batanced and center-tapped and 16 -ohn balanced.

P.A./INTERCOM SYSTEM

I5 Harman-Kardon Incorporated's Commercial 25 Sound Kardon Incorporateds Commereial "powrem" series which includes the Model MPC-IO tem-station master consolette, an op tional ten-station switchbank which fits directly into the alle $\mathrm{C}-10$ to expand it to 20 stations; an RI'St remote station with lull facilities for lowlevel paging, tatkback, and call origination; an

swb-l swithbox that prosides call origination lor any loudspeaker in the sound sstem: a trim panel for monnting the MPC-10 into a standard 19" rack or comole: and the fB-It junction box for intereonnection between the maser consolete and the speater lines

UNDERWATER SPEAKER

76 LTV Liniversity, divivion of Ling-Temeo. 20 vought, Inc. has imboduced the Model MAP-2PPS underwather speaker which is comb pletely waterpoofed, hermetically sealed. and impervious to anderwater enviomment. Ithe housing is w dewigncel to make Hosh momting insalation in extintug light niches eas Freguchey repome in 100 to 10.010 cps with a hallange power capacity of : wo wats. Acoording to the compans, the unit will distribute somed haroughout apool up to 30×30 feet.

80-WATT STEREO AMPLIFIER

77 Sherwood Filectronic Laboratories, Itc. is 27 now marketing the S-5500IV, a stereo preamp. Control conter, and power amplifier in onc unit. Dexigned to be ued in trome masic sume with tape wechs, phomographs. and tomers, the new anit features a front-pand stenco heatset jack and speaker dibabling switelt. There is also an integrated pewered center dhannel for the operation of a midde-chamel speaker or mono extension peaker ssatems.
Freguency respence of the amplifier is 90 $20.000 \mathrm{cps} \pm 1 / 2$ db). Each channel prowides 10 watts of masic power or 3 wats comimotes at 1tare IM divortion. ithe so watls of masic power is suited to driving mosdern low-cfficiency peaker systems. Speaker outputs are for 16, 8, and 4 olmas. The mint also includes It db/octave

scratel and rumble filters. tape-deck platsack pramps, and a pair ot low-impedamee ompuls for tipe recording

TRANSISTOR STEREO RECORDER

78 Concord Electronics Corporation has recemty 20 imtoduced the Model $88 \ddagger$, a fully transistorbed stereo tape recorder. Featured in the new wnit is an A / B monitoring switch which combists of fonr separate reoml/playback transistorized preamps, allowing lape to be monitored instantancously while recorling, with a simple panel witch.
In addition. the 884 has a pusti-buton inter focked control and a built-in soumeon-somed switeh. Three tape spects are leathed with up to 24 hours of recording possible at $17 / 8$ ips on a single 8600 -foot reel of tape. Separated 7 " speakers, a lis-watt stereo almplifier, and two illuminated vo meters are also included.
Frequency response at $71 / 2 \mathrm{ips}$ is $40-\mathrm{I}(6.000 \mathrm{cps}$ $\pm 1.5 \mathrm{db}$. signal-to-noise ratio is better than Bi (db .

FM-STEREO GENERATOR KIT

29
Heath Company has recently introdnced a new FM-stereo gencrator, the Model IG.II?, n kit form.
This completely self-contained instrument gencrates an adudio or composite stereo signat for maltiplex adapter adjustments or an r.f. carrier modulated by these same signals to produce an on-the-ate signal similar to those tansmitted by an FiM station. Instant selection is featured for either right or left channels as well ans a special "phase" test for accurate adjustment of stereo subarrier tranformers. No balancing is recpuired for equal right and left channel modulation.
Switch-selected frequencies for modalation or soparate use include $400,1000,5000,19.000$, 38.000 g ps and wo special SC: frequencies at cither 65 kc . or 67 kc . A crysial-controlled 19 kc .

$(\pm$ eqs) pilot signat, adjutatle in level from to 10%, is pronided to chech se lach-in range of stereo receivers.

COMPACT SPEAKER SYSTEMS

30 smotone Corponation's Filectronic Applica OU tions Division bats annomed two new arater systems, the Model SE-Rxil (enclowne

with double 8" speakeri), and the Model SF-80 (enclosure with single $x^{\prime \prime}$ speater). Hensed in hand-rubbed oiled walnut enclosures, the new sybtems are compact in size and designed to be
wed for either bookstielf or floer svitems. Both are constructed of $3 / 4$ " now resonant pancls. The cabincts are lined with "Tuffex" acoustical material.

Response of the SE-880 is 20,000 cps with a power rating of 40 watts, 80 watts pak. Imperlance is 8 to 16 otums. The enclonure is $11^{\prime \prime} \times 94^{\prime \prime} \times$ $171 / 2^{\prime \prime}$. The SE-80 has a system response of $45-20,000 \mathrm{cps}$, a power rating of 20 watts, 40 waths peak, and an impedance of 8 ohms. It measures $111 / 2^{\prime \prime} \times 201 / 2^{\prime \prime} \times 121 / 2^{\prime \prime}$.

TRANSISTORIZED MONO RECORDER

31 Midwestern Instrumems, Inc. has added the 3 Model 1021 to its "Magnecod" line of tape recorders. Desigucd tor any mono recording application, the tape tansporit of the new machine is built on a precisely machined rugged die cavting to guatanter stability of the tape driving elements. Differential-band baking is used to insure gentle tape handling. A unique single solenoid system is used to actuate the brakes to insure that the braking action on the rects is synchronized.

The electronics are solid-state with regulated power supply and buitt-in transformers for im. pedance matching to console or speceh equipment. Connectors ate standard for broadcast and commercial equipment as are the input and output impedances and levels.

Tape speeds are $33 / 4$ and $71 / 2 i_{j}$ s. The head complement is full-trach erase, full-track record, and half-track playback. The thansport will accept reel sizes up to 8 " in diancter.

CB-HAM-COMMUNICATIONS

MOBILE TWO-WAY RADIOS
22 Airstatt Radio Corporation has recently added two mobile radio units to its line of commanications equipmemt

The "Cambridge" is an $1 / 11$ or FM dash
mownted motile mit which operates in the 2 ?
 1. watts on FM. The umit has a fully transistor. ized recciver, modulator, and power supply. The circuit operates on 12 v. d.c. in the AM mode and $6 / 12$ v. d.c. and 12 v. d.c. in the FM mode. The second unit, the "Reporter," is an AM dath momented mobile unit which operates in the $118-136 \mathrm{mc}$. band. Output is 1.5 watts and the unit can be used as a base station if desired. [p to 6 erystal-controlled chandels are available

AUTOMATIC TONE-SIGNAL DEVICE

 32 Utica Communioations Corporation is nom JJ oflering the "Uti-Call," a fully automatic tone signal device. The equipment is always on standly while the microphone remains in it clip. By removing the microphone from the clip, the station is anomatically monitoring the
frequency. Keying of the microphone butom emits a tone which will activate the receiver of the station called.

The unit can be used on most CB, AM and Fl busines radio equipment. It is also available in a model that will activate the hom in at vehicle for 1 second when the opecator of the receiving station has switched to "horn" position upon teaving the car.

[^3]

CATALOG

YOUR 1964 BUYING GUIDE
FOR PRECISION MADE RADIO CRYSTALS AND ELECTRONIC EQUIPMENT 18 North Lee, Oklahoma City, Okla.
Rush 1964 Catalog
Name
Please Print
fddress
City \qquad Zone \qquad State
ARE YOU CASHING-IN ON THE PROFITABLE 2-WAY RADIO SERVICE BUSINESS?
\star Motorola will train you for this rewarding, elite profession
\star Send for our FREE EVALUATION EXAM. Prove to yourself that you are ready to learn FM 2-way radio servicing.
Opportunities in 2 -way radio servicing are virtually unlimited Just one of the hundreds of successful Motorola Service Stations writes, " we would be pleased to interview any graduate of your school that has received some training in 2 -way radio maintenance. We are an established firm. 10 years old, with a promise of expansion governed by our ability to obtain com petent technicians." Get all the facts today. There is no obligation and no salesman will call.
MOTOROLA TRAINING INSTITUTE
4545 West Aususta Divd. - Chicajo 51, lllinois - Dest. aEf436end me FREE entrance exam
Send full details on Home Study Course on FM 2-way Radio Servicing
Send me details on how you can help me prepare for an FCC License.

Name

Occupation

Address

City \square

CIRCLE NO. 201 ON READER SERVICE PAGE

Back Issues Available

Use this coupon to order back issues of ELECTRONICS WORLD

We have a limited supply of back issues that can be ordered on a firstcome, first-served basis. Just fill in the coupon below, enclose your remittance in the amount of 65t each and mail.
(Issues prior to 1963 not available.)

ZIFF-DAVIS SERVICE DIVISION
 Dept, BCEW, 589 Broadway
 New York 12, New York

Please send the following back issues of ELECTRONICS WORLD. I am enclosing ___ to cover the cost of the magazine, shipping and handling.

SCIENGE/ ENGINEERING

Educationally-strang callege courses in the fastest growing professional fields of Physics, Mathe matics, Engineering (Nuclear, Electronic, Electrical); including Engineering Technology (Nuclear, Electronic). Optional four-quarter, all-year schedule permits completion of regular 4 -year B.S. degree courses in three years; and, A.S. degree courses in two years. Electronic Engineering includes computer and space communication systems; and, laser/infrared engineering. Fall Quarter enrollments limited. Write now to Director of Admissions, for Catalog W. 10 .

NORTHRIDGE COLLEGE of SCIENCE \& ENGINEERING

"In The San Fernando Valley"
NORTHRIDGE, CALIFORNIA 91325

convert any television to BIG-SCREEN OSn OSCILLOSCOPE Whit minor, thexien-lve changes.

 NICIANS. HAMS. EXPERIMENT
ERS. BROADCASERS. WN in

retco, Dept. Ew-9, Box 10563, Houston 18 , Tex.

LOW-COST BUSINESS AIDS FOR RADIO-TV SERVICE
Order books, invoice forms, job ticke books, service call books, cash books and statement books for use with your rubber stamp. Customer file systems, book. keeping systems, many others. Write for FREE 32 PAGE CATALOG now.

OELRICH PUBLICATIONS
6556 Higgins Ro., Chicago, III. 60656
through e meters. scparate musistor front ends for both 9 . and 6 -meter bands are complemented by ! cuncd sircuits to insure sharp front-end sensitivity and rejection of tumanted signats.

Sensitivity is $0.3 \mu \mathrm{~s}$. for a $10 \mathrm{db} \mathrm{S} / \mathrm{X}$ ration on 6 and 2 moters, i.f. wiowion on 2 meters is better than in db. The whit is satd to hate ex. cellent eldetrical and mechanical stabitity and expanded vernier tuning.

ULTRA-SLIM MOBILE CB

25 RCA Electronic Components and Devices 30 has amonnced a new two-way (:B rattio teaturing simplified operation and ulta-stim design for sultall car

The "Mark Sine" incorporates a combination meter that imdiates the strengh of both the transmitted and incoming agnats. A new "spot. ting" switch permits precine mantat tuning of

the receiver withont the use of receiver cratals. It also permits ble user to spot quickly the proper crystat-comtrolled wansmit frequency to respond to ath incoming sall.

The unit is housed in a meged metal abinet Which meatures only :31/2" high x $111 / 1^{\prime \prime}$ wide x $\mathbf{3}^{\prime \prime}$ decp. Weight of the emtite unit. inchuting the ceramic microphone is 9 pomods. The unit oper ates on 11% votes ace. separate d.c. power supplies for 6 . or levolt mobile operation are asaitable as optional equipmem.

AUTOMATIC RADIO PAGING

26 cieneral Electric Communication prombets 30 mepartment hav developed a pocker-paging unit "Mewage Mate" which permits the selective calling of a specific individual for whom the message is intemed without other porket units listening in.

Bevigned to work in conjanction with P1BX swithboards. the new sotem permits direct onewaty voice messages Irome any plant telephone to men equipped with the lim porket pagers Once the wice mewage arrives at the PBX electronic reeds cote the trammission and gutide the voice to the desired meceiver. There is no intermediate operator. and mo special egnip. ment is needed at the individuat phone. Ihe person originating the eatl merely diats the radio number of the call's recipient. I beep signat is lowat on the signatled pocken receiver, the wearer pushes a butoln, and then heare the voice message

CB TRANSCEIVER

37 Kegeney Electomies, Lum. hav added the The wnit prosides x crwal-controlled tamsmit and receise frequencies, sewen ol which atre internal. The eighth crutal in phaged into a socket recessed in the front pancl. Thivarangement allows great llexibility because the oper-

ator can insert a cryatil thaned to any of the 23 bowdast frequencies he desires.

The transcriser has a dual power supply opcrating from 117 wolts a.c. of 12 volts d.c. The circuit mes ten tubes and : diodes. Seven dualpurpose tubes provide 17 tube pertormance.
A ceramic clement miorophone with a freguency range of 3.0 to 3.300 eps is included as standard equipment.

AUDIO COMPRESSOR/CLIPPER

38Control Radio Labs is now offering a mansistorized audio compressor-clipper-amplifier lor use with CB, ham, and commercial radiotelephone equipment. Known as the "ItiG:ainer." the unit otlers both comprewion and clipping in a single pachage. No internal connotions to the trammitter are reguired. the device is comphetely self powered by a 9-sole battery, According to the compans, the onit allows bowre modulation with nomal epeech.
The "Hi-G, ainer" is designed tor use with both mobile and batsentation equipment.

AMATEUR STATION KIT

20 Conar Instrument is now offering a low-cost 39 monice package comisting of a $3-1$ band highmain receiver, a and an ARRI. mannal.
I hi spectal combination "station" features tamentore operation in hoth units, cas construction, ghatanted pats and sersice, and attractive styling. The comptele station dath be built in just a few cornings.

The receiver provider coserage of the 810. 10. and 1 it meter bands, vernier thang, two i.f. tages. wo atheto stages. buttin puraher. sepabate b.f.o., ammana trimmer, bariable i.l. gain. headphone jack, and reception of AM. c.w.. and sisb. The trammitter features a pi-network ontput, t" panct metter, crestal control, and coas output.
75.WATT MOBILE UNIT

Industrial Radio Corporation has introduced a 7 i-walt mobile mit ats a companion to its Fi-wath hase station marketed tast veat.

The "Premicre" Model TMf:nil.M mobile provides extended range with a conservative 75 watts omput. Both high- and low-band models

ate in production, The transmitter, receiver, and power supply are assembled on separate chasis trips with special attention being given to coot operation and easy maintenatnce. The chassis is wired for phos-in addition of continuous tome squetch. Standsy drain is 2.5 amps.

KW. LINEAR AMPLIFIER KIT

1] Heath Compant hav recontly added the shbsor hw. limear amplifier to its dehaxe series of amateur gear.
I his completely self-comtained desk-top unit provides 1900 wats p.e.p. SSB, and 1000 wats c.w. in a highediciency grounded-grid input circuit for operation on the so then to meter bands.
Features inchate a prothed cathote input circmil for maximman difiency and low distor tion, sotidstate poser supply designod for op cration on either 190 or s.fo-vole power somecs, circuitheaker power-supply protection, two

55913/T-160-L final amplifier wbes. fan cooling complete shiclding lor stability and IVI pro tection. and builtin sw.r. meter and antema relay.

SQUARE HALO ANTENNA

12 Cush Craft is now offering a square halo 42 antenna for use on the Citizons Band and fi meter amatemr band. Known as the "Squalo," the antenna is a tull half-wase horiontally polarized, ommidirectional wit with 360 cover age without deep muls.

For mobile operation the antemas are equip ped with rubber suction cups for car-top monnt ing. lixed-atation units are also acatable for the 10 through to meter ham bands.

SSB TRANSCEIVER FOR 2-18 MC. 13 Stoner Electronics is now in production on a 43 tancistorired ssis transceiver whist is designed to provide dependable commonications in the $2-18$-me, batd. The SSB-IOO uses only thee tamsistor tepes throughout with four crysal controlled channels selectable throughout the 2-ts me. Irepuency range.

The circuit is fully protected againt overload. Full operational usage is obtained with a mini mum nomber of controls and adjusments. The unit is pewered from a 12 volt d.c. solures. The Hansceiver measures $14^{\prime \prime} \times 51 / 2^{\prime \prime} \times 11^{\prime \prime}$ and weighs 12 pounds.

S.W. CONVERTER FOR CARS

 4 Autovos Corporation of America is now 44 offering an afl-transistor short-wate con verter. Moded oc-tol, which is designed to be ned with amy All gat radio.The comerter operates on all consentional car battery systems and provides recoption of

nine shom-wave bands (13. Ifi. 19. 25, 31, 41. 49 6(0, and 90 meters). It measures $7.1 / 16^{\prime \prime} \times 18 / 8 " \times$ 238" and can be monnted under the dashboand of most standiard cars.

MANUFACTURERS' LITERATURE

SCR RATING CHART

45 Intcrnational Rectifice Corpotation has pub TV lished an 11" $\times 17^{\prime \prime}$ wall chart that provide standard, JFDEC, and cpitaxial silicon commolled rectifiers.

The rectifiers listed span the current range From 3 to 150 amperes and woltage ramge (p.r.s. from so to 1300 volte. an well as those with tiag teminals and duatonerol leads and those ex bibiting fast turn-ofl and higher p.tiv. chatacter istics.

RECORDED CARTRIDGE TAPES

Af 3M Company is offering copies of a new 40 catalogue which lists the mone than bino individual selections how aralable in cartridge alloums for the firms Revere stereo tape cartridge system.
selections listed cowt a broad range of taves

make it easy on yourself See the direct answer-on only the range-scale you want-automatically

No Reading Errors! No Multiplying!

Accuracy $\pm 3 \%$ full scale $A C$ and $D C$ Sensitive 100 microampere meter movement. DC Volts in 7 ranges $0-1500$. (Input resistance 11 megohms). AC Volts (rms) in 7 ranges $0-1500$. AC Volts (peak-topeak) in 7 ranges $0-1500$. DC Current in 3 ranges $0-500$ ma. Ohms in 7 ranges 0.1000 megohms. Single DC-AC ohms probe, Anti-parallax mirror. Swivel stand converts to carry-handle. Includes $11 / 2$ volt battery. Operates on 117 volts 50.60 cycle AC.

Once you set the range switch, you automatically see only the scale you want in the range you want. Individual full-size direct-reading scale for each range. Simplifies true reading of peak-to-peak voltages of complex waveforms in video, sync, and deflection circuits, pulse circuits, radar systems, etc. Includes $D C$ current ranges, too.

Net, \$8995

V O Matic 360

Automatic VOM. See only the full scale you want and read the exact answerdirectly, without multiplying. Burn-out proof meter movement.

Net, \$5995

```
See Your B&K
    Distributor
    or Write for
    Catalog
    AP21-N
```


CIRCLE NO. 121 ON READER SERVICE PAGE

BaK MANUFACTURINGCO OIVISION OF DYNASCAN CORPORATION 1801 W. BELLE PLAINE AVE. + CHICAGO 13, ILL. Canada: Allas Radio Coro. 50 Wingotd, Toronto 19, Ont. Export: Empare Exporters, 253 Browdway, New Yark 7, U.S.A.
ING?

IF YOU'RE A REGULAR SUBSCRIBER TO THIS MAGAZINE, BE SURE TO LET US KNOW YOUR NEW ADDRESS AS SOON AS POSSIBLE.

Solve Electronics Problems Fast With Special New Slide Rule

Professional, high quality instrument . . . specifically designed for electronic engineers and technicians. . . made to our rigid specs by Pickett \& Eckel. Has special scales for solving reactance and resonance frequency problems. Accurately and quickly locates decimal points. Carries widely used formulas and conversion factors not found on any other slide rule. Comes complete with top-grain leather carrying case, illustrated instruction manual, 90 day consultation service - all for just $\$ 14.95$. Carries lifetime guarantee against defects in material and workmanship.

SEND COUPON TODAY

TO: CLEVELAND INSTITUTE OF ELECTRONICS

1776 E. 17 th St., Dept. EW-101 Cleveland, Ohio 44114 \square Please send me your electronics slide rule. 1 am enclosing $\$ 14.95$. (If not fully satisfied after 10 day trial, CIE will refund payment.) \square Please send additional descriptive literature. Name (Please Print)
Address
City State

NIMS

NATIONWIDE IMPROVED
MAIL SERVICE-

A PROGRAM
 FOR REDUCING POSTAL COSTS
 and Improving service
 MAIL EARLY IN THE DAY
 It's the better way!

letters ready? - mall them early!

EARN
 $\underset{\substack{\text { Enectronics } \\ \text { Enginering }}}{\text { DEGREE }}$
 Whool atallable at our (oh:
 American Institute of Engineering \& Technology

TRANSISTOR RADIO HANDBOOK

-simplified circuit theory, plus
practical construction projects
Covers a wide range of communication uses for both amateur radio and commercial applications.

Book \#044 $\$ 5.00$ (Foreign ${ }^{55.50)}$ From your electronic parts distributor or EDITORS and ENGINEERS, Ltd.

Summerland 2, California 93067
from popular, jazz, and classical music to original cast recordings ol Broadway shows from a wide varicty of tabels.

PRECISION FILM RESISTORS

Camphell Industries, Division of Clarostat Maubfacturing Company, Inc. lists com plete pecification on an entire line ol precision metal film and deposited sarbon resistors in at new six.page catalogne just off the press.
Included are eight types of metal film tesistors, inclading two for military applicatoms under MII-R.egtisi and 16 deposited carbon types with ten applicable to military projects under MIL-R-L0.0日G and E.

CAPACITOR ASSORTMENTS

48Corncll-Dubilier Electronics has publi,hed a t-page, awo-color brochure whid dercribes the capacitor asomencot now available to ervice technicians. The following kits are cosered in the brochure: tubular electrolstios. mimiature electolytics, molded Mylar bypass, dijped paper
 Mylar filan wrap. ceramics. and dipped mica capacitors. The ansortments are offered in sixdirawer cabinets.

GLASS CAPACITORS

40 Westinghonse Eletronic Capacitor Depart 4 ment has anmounced publicalion of a new
 rating of alass capacions designed epecifically for circuits refuiring the ultimate in stability, reliability, and low dritt.
In addition. graphs dipplay the operatingrange characteritics of capacitance. insulation resistance, dissipation factor, and "O" factor for the glass capacitors. Also included is a list that cross-indexes military designations with the firm's catalogue numbers.

LABORATORY INSTRUMENTS
50 Ballantine Laboratories has published a new OU I2-page short-torm catalogne which il hustrates and describes the firm's complete line of laboanory vacum-tube volmeters. a.c.d.c. iinear converters, calibrators, wideland amplifiess, didect-reading capacitance meters. and a line of laboratory a.c. voltage standards 0 to 1000 mc.

SILICON RECTIFIER STACKS

51
Tung-Sol Electric Inc. has published a 1 ? page catalogne covering medium-current silicon rectifier stacks in rating from 6.5 to 290 amperes. Detailed epecifications ane gisen on single-phase center tap asemblies, single-phase bridge assemblies. three-phase bitge assemblies, and six-phase star assemblies.
The catalogne comains phoographs. graphs showing output current as a function of ambient temperature, ontline dawings with mechanical dimensions, and a selection clant.

SOLID-STATE DEVICES

57 Smiconductor Specialists, Inc. is offering a 5 2t-page illustrated stock and price list fea luring the newent semiconductor devices for off the-shelf delivery

I his distributor's listing indudes zencr diodes. high-voltage subminiante rectifiers, flangeless package and moltiple-cell rectifiers, silion power semiconductors, low-level integrated (hoppers mathed diode pairs and quads. mionominiature transistors. cte.
The list is intended for design, procurement circtit, and component engineers who requiac prototepe or production lot quantitio.

PC PROCESSING EQUIPMENT

52 Calumet Mannfacturing Company has pre UJ pared a is-page technical catalogue describing nitrogen burs processing equipment for preparing photographic maters in printed circhitry and micromintaturiation work.
The equipment is available for glass plates or film capable of tobling process densitice as close as $=02$ density units on cominuous tore mat
terials and similar consistency on high-contrast materials.

The catalogue also contains descriptions of temperature contrel equipment plus techaical cameras and lenses for precision photograplyy.

INVERTER-TYPE SCR'S

54 Westinghouse Semiconductor Division de54 seribes fast-switching inverter-type silicon controlled rectifices in a four-page bulletin (a) 9 now aralable.

The bulletin covers the characteristios and applications of a line of insertertape SCR's rated 4.7. 16. 55, and 110 amperes r.mos Earh unit is a a a ilable in tomand biasing voltages from 50 to bity volts.

GLASS CAPACITOR DATA

55Coming Glass W'orks, Elcotronic Products 5 bivision has published a four-page bultetin on glass capacitors which prosides electronic devigners with a means of companing elertrical performatace of glass apacitors with remamit. mica. paper. paper plastic. paste electoolye tantalum, and solid electrolyte tantalam abpaciors.

Seren test procedures are covered. with apacitance changes listed for cad capacitor l!pe under cach procedure

MASS SOLDERING TECHNIQUES

If Hollis Enginecring, Inc. is offering copies 50 of a new booklet entilled 'Reliable Mass Soldering I echniques" written by lloward W. Wegener. president of the firm.

The objective is to up-date all lacets of amomatic soldering and discoss factors combilating to gtality assuratuce in soldering primed-cisomit boards. Topics covered include: soldering. antomatic whtering, climinating icicles. oil/wolder mix. the correct solder. Huxes, plating. plateolthrough holes, eyclets and, componemt lead staking.

TWIST-PRONG ELECTROLYTICS
57 Cornell-Dubilier Electronics is oflering 3 copies of a new gepage "Twist-Prong" electrolytic capacitor relerence which has been devigned to solve the major problems facing the service technician with electroltaic replacement -immediate arailability of a poper electrical replacement.
The reference details recommended replacements for coery rating in current use. Items are classified by capactityooltage ratings.

AUDIO PRODUCT CATALOGUE

50 Sonotone's Electronic Appliations Diviaion 50 i now disuributing a new prochot catalogne owering a complete line of OEM, distributor and combumer prodacts in the hi-fi and electronic field.
The 16 page publication (S.1tr-76) ilhtwates in_{n} detal the firmos line of ceramic and cowal cartridges, replacement needes. tomeams. cer amic microphones (inchading low-impetance spes) and learming-tab headot/micophone units. It aloo cosers speakers and new speaker en clowne swhems ats well as rechargeable barhlight bathery cartridges.

ELECTRONIC DIMMING CONTROLS

59 Hemt Electronics Co. has prepared an Sparis $5 \mathcal{b r o c h}$ bre on clectronis dimming controls and swemes which pidures and dercribes an ex temsive linc of dimmer mits for home. office. store, chuch. shool, restamant, fatory. and outdoor installations.

Bosle electomic and mechanical sperificatoms are gison along with a complete product seletion chan for specifying the correct control for the jot).

HI-FI SPEAKER BROCHURE

Jensen Manufacturing Company is distribuOf ring a six-page, two-color brodhure which provides complete specifications and prises on the "Delta Series" of 12 " and 8 " unitary loud¢peakers.

Each speaker is ilhstatace with an actual
photogaph and a chaway drawing to how comstruction.

TAPE CRITERIA

61 The 3n Company is offering copsice of a text 0 nical data sheet cutitled "1ape Combidenatoms for Continuous Loop Recording" which ontines the differences between redeto-red bape recoading tamsports and continuous-loop transports that goverot tape selection.
The bulletin describes a contimous-loop tape catridge and discusses ension and frition and outheses magnetic coatings and lubricant contings to mete the requirements.

Bulletin No. 40 in the companys "Sound Talk scries is the publication in question.

HEAT-SHRINKABLE TUBING

62 ITT Surprenant has ammomed arabability 02 of a leaflet describing its line of heat-shankable tubing.

The "Formtite" tubing in satid to conform to atmost any shope and is sutable for insolating teminals and pigtals. for packeting wires lo form cables. for providing identilatig makers. for vockpoofling tool hamder, and tor leahpoom ing hodraulic fitting, and ptumbing.

Answer to Electronic
Crosswords
(Appearing on page 87)

Par "doctors
IXO SERVICING"

Where there's

 a contact... or a relay...
Service with Contact Shield! Pro-

 tective! Corrective! It not only cleans and safeguards contacts better on TV, radio, and hi-fi sets; on all relay-operated electrical equipment, regular protective maintenance with this versatile cleaner prevents sticky relays-while corrective servicing unsticks them... in seconds. Promotes greater con. ductivity, keeps relays working smoother, longer. Contact Shieldthe professional service man's cleaner.
APPLICATIONS

INCLUDE:

- Bowling Alley Automatic Pin Spotters
- Vending Machines - Pinball Machines
- Slot Machines - Telephone Switchboards
- IBM Computers and other data processing equipment
- Industrial Equipment using relays, such as welding machines, etc.

MoVing?

If you've recently changed your address or plan to in the near future, be sure to notify us at once. Place magazine address label here and print your new address below.

NEW ADDRESS:

NAME \qquad
ADDRESS
CITY \qquad ZONE STATE \qquad
MAIL COPIES TO NEW ADDRESS STARTING WITH \qquad ISSUE.
If you have any questions about your subscription be sure to include your magazine address label when writing us.

Mail to: ELECTRONICS WORLD, 434 So. Wabash Avenue, Chicago 5, Illinois

ELECTRONICS MARKET PLACE

COMMERCIAL RATE: For firms or individuals offering commercial products or services. 606 per word (including name and address). Minimum order $\$ 6.00$. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. READER RATE: For individuals with a personal item to buy or sell. $35 ¢$ per word (including name and address). No Minimum! Payment must accompany copy. GENERAL INFORMATION: First word in all ads set in bold caps at no extra charge. Additional words may be set in bold caps at $10 ¢$ extra per word. All copy subject to publisher's approval. Closing Date: 5th of the 2nd preceding month (for example, March issue closes January 5th). Send order and remittance to: Martin Lincoln, electronics world, One Park Avenue. New York, New York 10016

FOR SALE

TRANSISTOR Ignition coils, components, kits. Advice Free. Anderson Engineering. Wrentham 5, Mass. UUST starting in TV service? Write for free 32 page catalog of service order books, invoices, job tickets, phone message books, statements and file systems. Oelrich Publications, 6556 W . Higgins Rd. Chicago, Ill. 60656.
$\$ 100.00$ WEEKLY Spare Time selling Banshee TS-30 Iransistor Ignition Systems and Coils. Big Demand. Free money making Brochure. Slep Electronics, Drawer. 1782D, Ellenton, Fla. 33532.
GOVERNMENT Surplus Receivers, Transmitters, Snooperscopes, Parabolic Reflectors, Picture Catalog 10 . . Meshna, Nahant, Mass.
IRANSISTORIZED Products importers catalog. $\$ 1.00$. Intercontinental. CPO 1717, Tokyo, Japan.
DIAGRAMS for repairing Radios $\$ 1.00$. Television $\$ 2.50$. Give make model. Diagram Service, Box 1151 E, Manchester, Connecticut 06042.
INVESTIGATORS. free brochure, latest subminiature electronic surveillance equipment. Ace Electronics, 11500-J NW 7th Ave., Miami 50, Fla.
 SIGNAL GENERATOR
 Portable unit designed for testing and adjusting Radar, Beacon, and Communication systems operating in the frequency range of 8500 to
9600 MC Provides 9600 MC. Provides
either F-M or CW test either F-M or CW test
signals of known power level \& frequency. This unit contains a direct-reading freq. meter and a to one Milliwatt (DBM). Used to measure both the freq. and power level of the input and output signals. freq. and power level of the input and output signals. standing wave ratio. Also can be modulated externally 0 perates from 115 V . $50-1600 \mathrm{cy}$.; less cables, plugs, adapter pick up horn. Size: $111 / 4 \times 183 / 4 \times 121 / 4^{\prime \prime}$ IS-147B/UP Test Unit, as Photo - Used: $\$ 99.50$
IS-147A/UP (Similar to TS-147B) - Used: $\$ 75.00$
RT-82/APX-6 RADAR IDENTIFICATION SET -

BC-348 RECEIVER

BC-348R RECEIVER - AM 6 Bands 200-500 KC and 1.5 to 18 MC. Cilitator $\&$ audiogain controls, vernier and speed tuning, output jacks for phones and speaker. With Tubes: $3 / 6 \mathrm{~K} 7,1 / 6 \mathrm{~J} 7,1 / 6 \mathrm{C} 5,1 / 6 \mathrm{~K} 6,1 / 6 \mathrm{~B} 8, \& 1 / 6 \mathrm{~F} 7$. Voltage required: 24 Volts 2 A. \& 220 VDC 70 MA . Size: $18 \times 10^{1 / 2} \times \mathrm{g}^{1 / 2^{\prime \prime}}$. Wt.: 38 lbs. Used . . . $\$ 89.50$ AC POWER SUPPLY - In cabinet with speaker when | purchased with Receiver |
| :--- |
| OM-28 DYNAMOTOR - 24 VDC for Rec. Used |
| 20.95 | $\begin{array}{lll}\text { DM- } 28 & \text { DYNAMOTOR - } 24 \text { VDC for Rec. Used } & 6.95 \\ \text { FT-154 Shockmounting for Rec. Used } & \mathbf{2 . 7 5}\end{array}$ FT-154 Shockmounting for Rec. Used

PL-103 Plug - for Receiver. Used. $\begin{array}{r}2.75 \\ 1.50 \\ \hline\end{array}$ Address Dept. EW W. Prices F.O.B.. Lima. \mathbf{O}.
$\mathbf{2 5 \%}$ Deposit on C.O.D.'s Minimum Order $\mathbf{\$ 5 . 0 0}$ SEND FOR BIG FREE CATALOG:

CIRCLE NO. 181 ON READER SERVICE PAGE

IGNITION! Transistor. Coil, ballast \$7.95. Free Parts Lists. Transfire, Carlisle 2, Mass.
RESISTORS precision carbon-deposit. Guaranteed 1% accuracy. $1 / 2$ watt 8 C . 1 watt 12 C 2 watt 15 C . Rock Distributing Co., 902 Corwin Road, Rochester 10 , N.Y. TRANSISTORS, SCR's, diodes, Nickel Cadmium batteries, meters, crystals, Components. Quality Guaranteed. Send $10 ¢$ for catalog. Electronic Components Co., Send loc for catalog. Electronic Comp
P.O. Box 2902, Baton Rouge, La. 70821.
CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans, $\$ 2.00$. Relco, experience necessary. Ilustrated
Box 10563. Houston 18. Texas.
COMPLETE KNIFE catalog 25 . Hunting, Pocket, Utility. Heartstone, Dept. ZD, Seneca Falls, New York. TV CAMERAS, transmitters, converters, etc. Lowest factory prices. Catalog 10C. Vanguard, 190-48 99th Ave., Hollis, N.Y. 11423.
$\overline{\text { TAPE RECORDER } \& ~ T E L E V I S I O N ~ S A L E . ~ L a t e s t ~ m o d e l s, ~}$ $\$ 10.00$ above cost. Arkay Sales, $22-02$ Riverside Ave., Medford, Mass. 02155.
PUNCHED TAPE PHOTO-ELECTRIC Reader and Transport. Potter Model 907C transistorized perforated photoelectric tape reader, 600 digits per second. Unused. electric tape reader, 600 digits per second. Unused.
Original cost $\$ 8,182.00$. Best Offer. El-Tronics, Beaty BIdg., Warren, Penna.
HAMMARLUND SP600JX14 . 5 to 54 Mc receiver $\$ 400$. Transistorized Heathkit Mohican factory tuned $\$ 85$. Robert Prior, 3911 Tuggle, Memphis, Tenn. 38111.
NEW transistor buried treasure, coin detectors. Kits, assembled models. $\$ 19.95$ up. Free catalog. Relco, A-22, Box 10563, Houston 18, Texas.
CANADIANS-Giant Surplus Bargain Packed Catalogs. Electronics. $\mathrm{Hi}-\mathrm{Fi}$, Shortwave, Amateur, Citizens Radio. Rush $\$ 1.00$ (Refunded). ETCO. Dept. Z, 464 McGill. Montreal, Canada.
WEBBER Labs. Transistorized converter kit \$5.00. Two models using car radio $30-50 \mathrm{Mc}$ or $100-200 \mathrm{Mc}$, one Mc spread. Easily constructed. Webber, 40 Morris, Lynn, Mass.
COPYRIGHTED theory gravitation caused by pushing radiation from stars. Important spaceage implications. $\$ 1.00$ refundable. Carnahan, 4407 Ave. H, Austin, Texas.
RESISTORS metal-oxide film featured Electronics World September 1963. $1 / 8$ watt 12%. $1 / 4$ watt $10 ¢$ precision. $1 / 2$ watt 7 C . 1 watt $9 \mathrm{C} .2 \% 5 \%$. List on request. 0. M. Farnsworth, 88 Berkeley St., Rochester 7, N.Y. CAPACITORS disc ceramic. 50 assorted $\$ 1.00$. Hi-Q, NPO, N-750. O. M. Farnsworth, 88 Berkeley St., Rochester 7, N.Y.
SEMICONDUCTORS-Miniature electronic components. Send for free catalog listing hundreds of surplus bargains. Electronic Control Design Company, P.O. Box 1432 D, Plainfield, N.J. 07061.

ELECTRONICS ENGINEERING AND INSTRUCTION

FCC LICENSE in six weeks. First class radio telephone. Results guaranteed. Elkins Radio School, 2603C, Inwood. Dallas, Texas.
USED Correspondence Courses and Books sold and rented. Money back guarantee. Catalog free. (Courses Bought). Lee Mountain, Pisgah, Alabama.
ELECTRONICS! Associate degree-29 months. Technicians, fietd engineers, specialists in communications, missiles. computers, radar, automation. Start February, September. Valparaiso Iechnical Institute, Dept. N, Valparaiso, Indiana
$\overline{\text { HIGHLY-EFFECTIVE home study review for FCC com- }}$ mercial phone exams. Free Literature! Cook's School of Electronics, Box 10682, Pittsburgh, Pa. 15235 (Established 1945, Jackson, Miss.)

PHOTOGRAPHS

PHOTOGRAPHS and Transparencies wanted-To $\$ 500.00$ each. Valuable information--Free, Write IntraphotoEW, Box 74607, Hollywood 90004

WANTED

QUICKSILVER. Platinum, Silver, Gold. Ores Analyzed. Free Circular. Mercury Terminal, Norwood, Mass. $\overline{\mathrm{C} A S H}$ Paid! Sell your surplus electronic tubes. Want unused. Clean radio and TV receiving, transmitting special purpose. Magnetrons, Klystrons, broadcast types. Want military and commercial lab/test equipment. Want commercial Ham Receivers and Transmitters. For a Fair Deal write: Barry Electronics, 512 Broadway, New York, New York 10012 (Walker 5-7000). $\overline{\text { PAY cash for tubes, test equipment, TS, URM, UPM }}$ prefixes. Commercial lab test equipment, need kly. strons, magnetrons, broadcast \& power \& industrial tubes, ground equipment, PRC, GRC, etc.. For best deal write Bob Sanett, 616 S. Holmby, Los Angeles, Calif. BR 9-1275

RECORDS

DISCOUNT Records, All Labels-Free Details. Write Cliff House, Box 42E, Utica, N.Y.

PRINTING

1000 BUSINESS Cards $\$ 3.90$. Samples. MTL Printing, Box 947, Chicago 90.

SILICON RECTIFIER SALE

IMMEDIATE		DELIVERY	
FULLY GUAR'NT'D american made		NEWEST TYPE FULLY TESTED	
$750 \mathrm{M}$ Low	SILICON	OP-HAT LEAD	$\begin{aligned} & \text { DIODES } \\ & \hline \text { GTH } \end{aligned}$
$\begin{aligned} & \text { PIVRMS } \\ & \text { S0/35 } \\ & .05 \text { ea } \end{aligned}$	$\begin{aligned} & \text { PIV/RMS } \\ & \text { 100 70 } \\ & .09 \text { ea } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PIV/RMS } \\ & 200 / 140 \\ & .12 \mathrm{ca} \end{aligned}$	$\begin{aligned} & \text { PIV RMS } \\ & 300 / 210 \\ & 16 \text { ea } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { PIV RMS } \\ & 400 / 280 \\ & .20 \mathrm{ca} \end{aligned}$	$\begin{aligned} & \text { PIV/RMS } \\ & 500 / 350 \\ & .24 \mathrm{ea} \end{aligned}$	PIV/RMS $600 / 420$.32 ea	$\begin{aligned} & \text { PIVRMS } \\ & 700 / 490 \\ & .40 \mathrm{ea} \\ & \hline \end{aligned}$
$\begin{gathered} \text { PIV RMS } \\ 800 / 560 \\ -48 \mathrm{ea} \end{gathered}$	$\begin{aligned} & \text { PIVRMS } \\ & 900 / 630 \\ & .55 \mathrm{ea} \end{aligned}$	$\begin{gathered} \text { PiV RMS } \\ 1000700 \\ .70 \mathrm{ea} \\ \hline \end{gathered}$	$\begin{aligned} & \text { PIV/RMS } \\ & 1100 / 770 \\ & .755 \mathrm{ca} \\ & \hline \end{aligned}$

ALL TESTS AC \& DC \& FWD \& LOAD D.c. SILICON POWER DIODE STUDS 200 PIV

Money Back guarantee. $\$ 2.00 \mathrm{~min}$. order. Orders Mon NYC Include check or money order. Shpg. charges plus. C.0.D. orders 25% down.

Warren Electronic Components
663-65 BRDADWAY N.Y. 10012 N.Y. OR-3-2620

IMPORTERS-EXPORTERS of ELECTRONIC EQUIPMENT

We specialize in the export of military surplus electronic equipment:

- All at lowest prevailing prices.
- In addition to items shown on this paze. we have in stock or can obtain for export and domestic customers, military electronic equipment made for World War II. Korean War, and later. We maintain one of the largest stocks of Government Electronic

IF YOU DON'T SEE WHAT YOU WANT HERE. WRITE US YOUR NEEDS. WE'LL QUOTE ON ANY GOV'T SURPLUS EQUIP. MENT YOU SEE ADVERTISED ANYWHERE, Write or call today for our low Low
PRICE, and SPEEDY DELIVERY FROM stock

- All packing and shipping is made directly from our own warehouse in NYC to give you substantial savings in handling costs!

AN/ARN-7 RECEIVER

AN/ART-I3 100-WATT XMTR

SCHEMATIC DIAGRAMS $\begin{aligned} & \text { For most equinment } \\ & \text { on this page. cach }\end{aligned} \mathbf{6 F}^{\&}$ please include $2 \overline{5} \%$ Deposit with order-Balance E.O.D.. or Remittance in Full. 50 e Handling Charges on all orders under \$5.00. All shipments F.O.B. Our Warehouse. N.Y.C. All Merchandise subject to Prior
Sale and Price Change.

G \& G RADIO SUPPLY CO. Telephone: CO 7.4605

 77 Leonard Si. New York 13, N. Y.SCR-625 MINE DETECTOR
Complete portable outfit in origi- $\$ 9250$ nal packing, with all accessories. $\$ \mathbf{B} \mathbf{~ B r a n d ~ N e w ~}$

VICTOREEN RADIATION DETECTOR

 $\$ 225$LM FREQUENCY METER

BC. 221 FREQUENCY METER Equipged with originat calineration charts. 125 Kc 10 EXce.
Exce. with crystal check points in. all ranges. nomoluater $\$ 89.50$ Modulated
 CABC-906 FREQ. METER-SPECIAL

LORAN APN-4
FINE QUALITY
Hodicic NAVIGATIONAL EQUIPMENT Determine exact geographic position of your boat or plane. Indicator
INDICATOR ID-6B/APN-4, and RECEIVER R-9B/ APN 4 , complete with tubes, Exc. Used. \$69.50 $\bar{N} \overline{E W}$! APN- $A A$ Receiver-Indicator as above, changed to operate same as APN4-B for improved performShock Mount for above
INVERTER POWER SUPPLY for above APN-4 INPIIT: $24 \vee$ DC. OUTPUT: $115 \vee \mathrm{AC}, 800$ cycles. Like 12-Volf Inverter Power Supply for above APN-4 we carry a complete line of replacement narts abil

LORAN R-65/APN-9 RECEIVER \& INDICATOR Used in ships and aircraft. Deter.
mines position by radio signals from mines position by radio signals from
known xmitters. Accurate to vithin 1% of distance Complete with dition
$\$ 79.50$
 INVERTER POWER SUPPLY for above APN-9. INPUT:
24 V DC OUTPUT: 115 V AC. 800 cy . Like New $\$ 22.50$ $\frac{12 . V . ~ P o w e r ~ S u p p l y ~ f o r ~ A P N-9, ~ l i k e ~ N e w ~ P . U . R . ~}{\text { P }}$ Shock Mount for above Circuit diagram and connecting plugs available

APCessories tor alsove. 12 3-INCH SCOPE

BC-929 3-Inch Scope, with all tube
BC-929 3.InC
BRAND NEW $\$ 69.50$

BRAND NEW
Conversion instructions, with diagram, for 100 V

EE-8 FIELD PHONES

 Checked out. perfect working order. Complete with all parts. Excel lent Condition.
LIFE NEW! Each
\$14.50

TG-34A CODE KEYER

Like New,
Like New,
Tested
$\$ 29.50$

- PRICE WAR
jested
SILICON 'TOP hat' RECTIFIERS

SCRs

PRV	${ }^{7} \mathrm{Amp}$
140	1.40
250	2.60
300	2.25
3500	2.55 2.90
450 500	- ${ }^{3.25}$
600	4.00
800	

VARIACS

$=1504-\mathrm{A}$ VARIAN FOCUS MAGNETS 975.00 Pal

MONTHLY SPECIALS

Solenoid Guardian No. $16 A C 115$ VAC-2 ib. puls

 Switch Dpst Rust proct

ASSORTED RELAYS-QUANTITIES WRITE FOR PRICES.

All Shipments $F O B$ NYC

ADVANCE ELECTRONICS

79 Cortlandt St., New York 7, N.Y. RE 2-0270 CIRCLE NO. 152 ON READER SERVICE PAGE

TUBES

TUBES-TV, Radio, Transmitting And Industrial Types At Sensibly Low Prices. New, Guaranteed, 1st Quality. Top Name Brands Only. Write For Free Catalog or Call Walker $5 \cdot 7000$, Barry Electronics, 512 Broadway, New York N.Y. 10012.
RADIO \& TV Tubes-33c each. Send for free list Cornell, 4215-W University, San Diego, Calif. 92105. BRAND New Tubes, World's lowest prices on Radio TV-industrial-special purpose tubes. Write for free parts catalog. United Radio, Newark, N.J.
BEFORE you buy recelving tubes, test equipment, Hi-f components, kits, parts, etc. ... send for your giant free Zalytron current catalog, featuring Standard brand tubes; RCA, GE, etc.-all brand new premium quality individually boxed. One year guarantee-all at bigges discounts in America! We serve professional servicemen, hobbyists, experimenters, engineers, technicians. Why pay more? Zalytron Tube Corp., 469 -W Jericho Turnpike, Mineola, N. Y.
7" TV test tube- $\$ 6.99$. Tubes-6146-\$2.95; 6211 (12AU7 equiv.) 39 c, 3 for $\$ 1.00$. Germanium diodes tested, equiv. 1N34, 1N60 etc., 30 for $\$ 1.00$. Topha silicon rectifiers, $750 \mathrm{MA}-1000$ piv 75 个. Transistors tubes, resistors, condensers etc., bargain priced. Fre catalog. Arcturus Electronics, Dept. ZD, 502-22nd St. Union City, N.J. 07087
ELECTRONIC TUBES-TOP Brands SOLD at substantia savings! (Minimum Order $\$ 15.00$) Authorized GE Distributor. Send for FREE Buyers' Guide for all your Tube Requirements. TOP CASH PAID for your excess inventory (New ONLY-Commercial Quantities). Metropolitan Supply Corp., 443 Park Avenue South, New York, N.Y. 10016. 212-MU 6-2834.

PHOTOGRAPHY-FILM, EQUIPMENT, SERVICES

MEDICAL FILM—Adults only-"Childbirth" one reel $8 \mathrm{~mm} \$ 7.50 ; 16 \mathrm{~mm} \$ 14.95$. International W, Greenvale Long Island, New York.
SCIENCE Bargains-Request Free Giant Catalog "CJ" - 148 pages-Astronomical Telescopes, Microscopes Lenses, Binoculars, Kits, Parts, War surplus bargains Edmund Scientific Co., Barrington, New Jersey.

CLASSIFIED ADVERTISING ORDER FORM

Please refer to heading on first page of this section for complete data concerning terms, frequency discounts, closing dates, etc.

NAME

ADDRESS
CITY
ZONE
STATE

SIGNATURE

WORD COUNT: Include name and address. Name of city (Des Moines) or of state (New York) counts as one word each. Zone or Zip Code numbers not counted. (Publisher reserves right to omit Zip Code if space does not permit.) Count each abbreviation, initial, single figure or group of figures or letters as a word. Symbols such as 35 mm , COD, PO, AC, etc., count as one word. Hyphenated words count as two words. EW•964

COMMAND SET SUPER SPECIALS!

TELETYPE SPECIALS!
FRX-D TELETYPE TAPE PERFORATOR DISTRIBUTOR

MODEL 14 PERFORATOR:

 RA-62 AC POWER SUPPLY. For SCR-522
110 V. 10

LORAN NAVIGATION EQUIPMENT!

APN-4: Complete installation, Excellent $\$ 99.50$ APN-9: Completi. innt hacket mat....... 99.50
DAS: 110 vac. 60 cyc. Navy model- 149.50
R-444/APR-4Y SURVEILLANCE RECVR.

Abstract

 Cherked out like new. Margain it of ABOVE: WI25. 00RDO-NAVY SMIPBOARD VERSION more controls and .3 metern. Excel. Checked Plug.In Tuners for Above. Checked \& Guaranteed!

WE NEED EQUIP.-HIGHEST \$\$ PAID! We will pay fop dollar if you will write us iMME DIATELY! We urgenty want: BC-610 moders H
 GRC Model
Greight!
flat ALL trelght?

RECEIVER SPECIALS! PRIDE OF THE NAVY!
Checked out! Guar. W/ac power Supplies!
: $15-600 \mathrm{kc}$. Dlrect realing fret. dial $\$ 9.00$
 RBC: ${ }_{4}^{d i a l} \underset{-27}{ } \mathrm{Mc}$. Direct reading freq. dial

COLUMBIA alictroniss

4365 WEST PICO BLYD. LOS ANGELES 19. CALIF.
CIRCLE NO. 167 ON READER SERYICE PAGE

EMPLOYMENT INFORMATION

FOREIGN Employment. Construction, other work projects. Good paying overseas jobs with extras, travel expenses. Write only: Foreign Service Bureau, Dept. D, Bradenton Beach, Florida.

REPAIRS AND SERVICES

TV Tuners Rebuilt and Aligned per manufacturers specification. Only $\$ 9.50$. Any Make UHF or VHF. We ship COD Ninety day written guarantee. Ship complete with tubes or write for free mailing kit and dealer brochure. JW Electronics. Box 51B. Bloomington, Indiana.
METERS-Multimeters Repaired and Calibrated. Free estimates-Catalog. Bigelow Electronics, Box 71-F, Bluffton, Ohio.
RCA Test Equipment, Authorized Repair \& Calibration Center, Nationwide. Edwin Bohr/Electronics, Box 4457, Chattanooga, Tennessee 37415.

GOVERNMENT SURPLUS

[^4]

Covers 300% more width
in each stroke than a $6^{\prime \prime}$ brush or roller ...
Now you can dc 100 Sq . ft. of surface in minutes - because you cover three times as much area on each stroke, with the SloanAshland Rotary Paint Gun. You cover a full foot-and-a-half swath with periect control. Big job or small . . . inside or outside . . . whether you're spraying paint or other fluids - nothing does the work as quickly, as easily as this amazing paint gun!

Typical Oval Pattern of Ordinary Spray Gun.

Oval spray and wide make precise work edficult requires extensive masking.
"Straight Line" Pattern of Sloan-Ashland Paint Gun.

Straight line spray and minimum of feathering gives moumperfect control for the
you ping most precise painting.

AMAZINGLY EASY TO CLEAN OR CHANGE COLORS...
Fill container with water or proper solvent, run gun for a minute or

- CLAMP-ON CAN holds full quart
- PAINT VOLUME CONTROL lets you deliver just the amount of paint-desired to the working surface
- For ll5V AC operation
- Fully guaranteed
- ALUMINUM DIE CAST HOUSING for light weight and rugged durability
- CAN'T EVER CLOG

IN OPERATION
Powerful GE motor and rotary action spin the paint at a steady 17,000 RPM actually makes the Sioan Ashland Paint Gun impossible to clog in operation!

- Reduces misting and overspray to a minimum. Eliminates 90% of usual masking! No more need to cover everything in sight

two. That's all there is to it! No mess, no bother!
 (5B TWO TWUARTS OF
 FREE
 SPRED-SATIN PAINT

American Products Division, 589 Broadway, New York 12, N.Y. Send me your new Sloan.Ashland Rotary Paint Gun. I may use it for seven days free, and return it at your expense if I am not fully satisfied.

Also-send me two free quarts of Spred Satin Paint (worth \$4.30) which I may keep and use whether or not I agree to buy the Sloan-Ashland Rotary Paint Gun.

If I do agree to keep it, I will pay only $\$ 8.50$ a month until l've paid the low price of just $\$ 59.95$ (plus shipping and handling).

Where employed
Home phone number

GREGORY ELECTRONICS Reconditioned FM 2-Way Radio Savings

THIS IS A PARTIAL LI FALL ' 64 EXPANDED CATALOG

$25-50 \mathrm{mc}$ 20F3 Emission. Fully narrow banded (Tx and Rx), 12 volt, 50 watt. Conpplete with all accessories. less crystals and antenna. . $\$ 128$

RCA 148
to
172 mc

CAIC20 6/12 volt, 20 watt, complete with all accessortes less erystals and antenna. wide Same unit fully narrow banded transmitter and

 ER6-4ETG $60 \mathrm{w} 30-40 \mathrm{mc} 40-50 \mathrm{mc} \cdot . \$ 108$
Complete with all accessories except antenna Complete with all accessories except antenna
and crystals. requeney in the $30-50 \mathrm{mc}$ band.
GE 2 -Piece Unit- 6 volt or 12 volt
$4 \mathrm{ER} 6-4 \mathrm{ET} .30 \mathrm{w} 30-50 \mathrm{mc}$
ERG-4ET6 60w $30-50 \mathrm{mc}$. $\$ 168$ Complete with all accessories inciuding antenna and crystals. Fully narrow banded ix \& RX
and tuned to your frequency with in the 30 ome range

We Euy Late Model Equipment for Cash

GREGORY ELECTRONICS CORPORATION
249 Rt. 46 - Phone 773-7550
Saddle Brook, N.J. Area Code 201
CIRCLE NO. 185 ON READER SERVICE PAGE

TAPE AND RECORDERS

RENT Stereo Tapes-over 2.500 Different-all major labels-free brochure. Stereo-Parti, 1616-E. W. Terrace Way, Santa Rosa, California.
SAVE $30-60 \%$ Stereo music on tape. Free bargain catalog/blank tape/recorders/Norelco speakers. Saxitone, 1776 Columbia Road, Washington, D.C.
RENT 4-TRACK STEREO TAPES-When you narrow it down it has to be TRIMOR-Goodbye to partial satis-faction-Service and Dependability our keynote-ALL LABELS and TITLES - No Deposit-Postpaid both ways. Write for FREE BROCHURE and TAPE CATALOG. TRIMOR Company, Dept. IR, P.O. Box 748, Flushing, New York 11352.

TAPEMATES MAKES AVAILABLE TO YOU-ALL 4-TRACK STEREO TAPES-ALL LABELS-POSTPAID TO YOUR DOOR - AT 40% COMBINED SAVINGS. FOR FREE BROCHURE WRITE TAPEMATES CLUB, 5280-E W. PICO BLVD., LOS ANGELES, CALIF. 90019.
WINDSOR Tape Club members HEAR BEFORE THEY BUY. Free "samplers" of new releases. Save on tape pur. chases.-All major labels. Free brochure. Windsor Tape Club, Dept. E, Windsor. Calif.
BEFORE renting Stereo Tapes try us. Postpaid both ways-no deposit-immediate delivery. Quality-De-pendability-Service-Satisfaction-prevail here. If you've been dissatisfied in the past, your initial order will prove this is no idle boast. Free Catalog. Gold Coast Tape Library, Box 2262, Palm Village Station, Hialeah, Fla. 33012
SARKES Tarzian's Galaxie tensilized Mylar: 1800'/. $1.69,2400^{\prime} / 2.79,3600^{\prime} / 3.89$. Postpaid. Free all-components, tape catalog. Pofe, 1716-EW Northfield, Muncie, Indiana.
PROFESSIONAL Crown Imperial tape recorder-101/2 inch reels-full track head- 3 speed- 2 channel pre. amp-A-1 shape- $\$ 200$. TELEFUNKEN M251E Conden. ser microphone with power supply-like new- $\$ 175$ SHURE Studio ribbon microphone-good shape-model 333-\$65. Edward B. Vogt, Apt T.1, Jardine Terrace, Manhattan, Kansas

HIGH FIDELITY

LOW, LOW quotes: all components and recorders. Hi-Fi Roslyn 9, Penna
HI-FI Components, Tape Recorders, at guaranteed "We Will Not Be Undersold" prices. 15-day money-back guarantee. Two-year warranty. No Catalog. Quotations Free. Hi-Fidelity Center, 1797 (L) lst Avenue, N.Y. N.Y. 10028

HI-FI components, tape recorders, sleep learn equipment, tapes. Unusual Values. Free Catalog. Dressner, 1523 Jericho Turnpike, New Hyde Park 10, N.Y.
FREE! Send for money saving stereo catalog $=E 9 W$ and lowest quotations on your individual component tape recorder or system requirements. Electronic Values, Inc. 200 West 20 th Street, N.Y., N.Y. 10011 FREE- $\$ 1.00$ Value "Miracle" Record cleaning cloth with every quotation on HIFI EQUIPMENT. Our "ROCK BOTTOM" prices on NAME BRAND amplifiers-tuners-aperecorders-speakers_-_FRANCHISED--59 YEARS IN BUSINESS. Write for this month's specials-NOW Rabsons 57 th St., Inc., Dept. 569,119 W. 57th St New York, New York 10019.

B00Ks

AUTHORS! Learn how to have your book published promoted, distributed. FREE booklet "ZD," Vantage, 120 West 31 St., New York 1
1,000,000 B00KS! Bargains! Catalog-dime. Treasure Site, 6990 Aberdeen, Upper Darby, Pa. 19082.

AIRCRAFT RADIO

WANTED Aircraft Radio Sets-Collins: 51R3-51X-51Y - $51 \mathrm{~V}-51 \mathrm{Z}$, Bendix: T-21; R21; DFA-70; RA-18C; MK.7; GSA-1, Test Sets: ARC-Boonton-Collins-Hewlett Packard. Highest prices paid. J. Lee, Box 105, New Haven, Conn.

MAGAZINES

AMERICANS-Subscribe to Canada's Hobby and Service Magazine-"Electron". Exciting Ads, Stimulating articles $\$ 5.00$ one year. Box 796, Montreal 3, Canada.

INVENTIONS WANTED

INVENTORS. We will develop, help sell your idea or invention, patented or unpatented. Our national manu facturer clients are urgently seeking new items for out right cash sale or royalties. Financial assistance avail able. 10 years proven performance. For free informa tion, write Dept. 42, Wall Street Invention Brokerage 79 Wall Street, New York 5, N.Y

HELP WANTED

NEW JERSEY Salesmen. Sales Engineers. Accumulate substantial extra income with little effort, performing your usual sales calls. Pengad Travel Agency will show you how. Telephone N.J. 437-3900, N.Y. 964-8133, or write P. 0. Box 86, Bayonne, N.J.

EDUCATIONAL OPPORTUNITIES

LEARN While Asleep, hypnotize with your recorder, phonograph. Astonishing details, sensational catalog free! Sleep-Learning Association, Box 24-2D, Olympia, Washington.
LEARN while asleep. Remarkable, scientific. 92% effective. Details free. ASR Foundation, Box 721, Dept. e.g., Lexington, Kentucky

NoW Amateur Radıo license correspondence classes! Free details, write Valley Schools, Dept. K-11, Box 608, Aurora, III. 60507.

MUSIC

Abstract

FOR continuous music without commercials, build a sub carrier adapter for your FM receiver. Standard parts. Text with schematics $\$ 3.00$. Wired adapters $\$ 75.00$. Music Associated, 65 Glenwood Road, Upper

 Montclair, N.J.

CIRCLE NO. 243 ON READER SERVICE PAGE

USED ELECTRONIC EQUIPMENT

GENERAL RADIO PULSE 1217 A Pulser \&
DWI supply $\$ 95.00$
RUT SUPply
20 nsec RT, to 1 mc prr
ELECTRO PULSE 2140 A Dual Pulser.
20 nsec RT, 10 cps to 100 kc prr....... 20 nsec RT, 10 cps to 100 kc Pri.
ELECTROPULSE 3450 A Pulser,
30 nsec RT, 20 cps to 1.6 mc prr 495.00 275.00 175.00

AMPEX FR400, RECORDERS bps storage 075 in/sec with read-write
amps and controls in 6^{\prime} rack, IBM computer amps and controls in 6' rack. IBM computer
format level heads
BRUSH BL262 and 550 amplifiers, two $\$ 1,500.00$ channel electric or ink oscillograph........ 225.00
BERKELEY 1452 Digital Recorder BERKELEY 1452 Digital Recorder FLUKE 103 VAW meter, ACRS FLUKE 103 VAW meter, AC, $1.5-600$ vems, $\$ 195.00$
 $\begin{aligned} \text { EPSCO DV'813, Digital Meter, } A C / D C / O \text { Onms, } & 49.00 \\ 4 \text { Digit, } 0.10_{0}, & 100 \text { Samples } / \mathrm{sec} \text {. } 195.00\end{aligned}$

oscilloscopes DUMONT 304A DC to 300 kC \$ 95.00 FEDERAL ITT 1770, $17^{\prime \prime}$ display scope mounted in 6 ft . rack HEATH 0.10 AC amplifiers, 5 in. CRT........... 95.00 Representative listing above-we invite your in quiries for test equipment. All reconditioned and sold on 30 day moncy back guarantee. F.O.B. HARLAND LABS DeDt. EW. 1043 Fern. Escondido. Calif. Phone 714-746.1327

PATENTS

INVENTIONS: Ideas developed for Cash Royalty sales. Raymond Lee, 21046 Bush Building, New York City 36 .

EQUIPMENT

HEAR Aircraft, Tower Emergencies, weather. Portable 9 Transistor AM-FM-VHF Aircraft receiver. Beautiful Black with Gold Trim. \$26.50. Free Details. Transco, Box 13482, North County Station, St. Louis 38, Mo.
INFRA Red Receiver, type B, new surplus, made by Eastman Kodak, $\$ 38.50$ each, postpaid, Cash with order. List of surplus panel and portable meters for stamp. Hanchett, Box 1898, Riverside, Calif.
FREE Electronics Catalog. Tremendous bargains. Electrolabs. Department C-106E. Hewlett, N.Y. 11557.

STAMPS

OLYMPICS TOKYO 1964 Stamps, Souvenir albums, first Day Covers. Free list over 150 items. Advance orders insure low prices. The Oriental Interpreter, Home Acres 132, Clyde. N.Y. 14433.
CELEBRATE With Us: Canada centenary offer; 100 Dif ferent $\$ 1.00$. Free with lot valuable foreign errors worth many dollars extra. Bileski, Station B, Winnipeg. Canada.

PERSONALS

BORROW $\$ 1,233$ Airmail! Repay $\$ 54$ for twenty-nine months. State licensed. Postal Finance, Dept. 15-R, Kansas City 1, Kansas.

BUSINESS OPPORTUNITIES

INVESTIGATE Accidents—Earn $\$ 750$ to $\$ 1.000$ monthly. Men urgently needed. Car furnished. Business expenses paid. No selling. No college education necessary. Pick own job location. Investigate full tume. Or earn $\$ 6.44$ hour spare time. Write for Free Literature. No obligation. Universal, CZ-9, 6801 Hillcrest. ture. No obligati
Dallas 5, Texas.
1 Made $\$ 40,000.00$ Year by Mail Order! Helped others make money! Start with $\$ 10.00$-Free Proof. Torrey. Box 3566.N, Oklahoma City 6. Oklahoma.
AMAZING Mail Order Profits using proven methods. Research, $3207 \cdot \mathrm{H}$ Southern Hills, Springfield. Mo. HOW And Where to Rase Capital. Details Free. Finàn. cial, Box 785-H. Springfieid, Mo. 65801.
HIGHLY WEEKLY EARNINGS! Address-mail letters featuring real merchandise. Get $\$ 10$ with every order keep $\$ 8$ profit. Supplies furnished. Free particulars. Modern Merchandising, Box 357. Oceansde, N.Y. FREE REPORT: " 509 Unusual, Successfui Businesses. B0x 122-2DA. Wheeling. III.
FREE Book '990 Successful, Little-Known Businesses." Work home! Plymouth-717], Brooklyn 4, N.Y
"MAILORDER-What makes it tick?" Free Booklet! Methods, 1400 -FD, Lafayette Hill. Penna. 19444.
10C PREPACKED RACK TOYS - 10C Are Easy to leave in stores on consignment-Guaranteed Sale-Free Infor. mation. Write James, Dept. IC/94, 188 Walton St. NW Atlanta, Ga.

MOVIE FILMS

FREE BROCHURE, 8 mm FILMS. COMEDIES. ADVEN TURES, DRAMAS. Laurel and Hardy, Mary Pickford, etc. Art Raymond Co., Dept. 101, Box 194, Centereach. N.Y. 11720 .

MISCELLANEOUS

[^5]0
HI-FI SPECIAL! 4" SQ. ELECTROSTATIC TWEETER
 FREE! FREE! '25 WORTH OF - Transistors

- Diodes
- Retifiers
- Knobs
- Condensers

item
free

Include 25¢ for handling
bOTH free with any $\$ 10.00$ ORDER WORLD's most
porular
M1 PARTS PAKS

50 I. WATT RESISTORS, popular volues, asstd, 5% too. $\$$ 60 CERAMIC CONDENSERS, discs, npo's, to . $05 \mathrm{mf} \ldots$. . SI 40 WORLD'S SMALLEST RESISTORS, 5% too, $1 / 10 \mathrm{~W}$. $\$ 25$ PARTS SURPRISE, wide assortment of parts. 60 HI-Q RESISTORS, 1 RESISTORS, 5% 100.. 10 RCA PHONO PLUG-n-JACK SETS, tuners-amps 50 TERMINAL STRIPS, asst 1-to-10 lug types. 50 COILS \& CHOKES, if-if, osc-peaking, et 10 TRANSISTOR ELECTROLYTICS, 5 mf 'to 100 mf 40 PRECISION RESISTORS, $1 / 2,1,2 W, 1 \%$. 40 DISC CONDENSERS, 27 mmf to 05 mf io 1 k 60 TUBE SOCKETS, receptacles, audio, plugs 30 POWER RESISTORS to 50 W , to 24 K ohms. 50 MICA CAPACITORS to .01 mf , silvers too... 10 TANIALUM ELECTROLYTICS, $\$ 15.00$ value 35 2-WATT RESISTORS, popular asstd. values,

TRANSITRON SCRS

BRAND
NEW
LOWEST
PRICES

3-TRANSISTOR SUBMINIATURE AMPLIFIER - Only $3^{\prime \prime} \times 2^{\prime \prime} x^{3 / /^{\prime \prime}} \quad$ Wired

$\substack{\text { FAccory } \\ \text { TETED }}$ SEMI-KON-DUCTORS

1 2NTIB NPN SILICON PLANAR, IW freq mw........ s
TEXAS 3 N 35 TETRODE 150 MC SILICON transtr, TOS. $\$$
TEXAS 3N35 TETRODE 150MC SILICON transtr, TOS..S
3 2N255 POWER TRANSISTORS or equol, TO3 case...
3 2N25S POWER TRANSISTORS or equol, TO3 case
2OW SILICON MESA, 2NI648, TO10
2 INA29 TYPE ZENER REFERENCES 6 ransistor
2 NN29 TYPE ZENER REFERENCES, 6 volts.
6 UPRITE ZENER DIODES, silican, axsorted voltage
2 TRANSITRON 2N341, 1-wott, npn, silicon, TOB
4 CK721 TRANSISTOR', new aluminum case, pnp
10 NPN SWITCHING TRANSISTORS, 2N440 equals.
6 SYLVANIA 750 MIL 400 V TOP HAT rectifiers.
10 RAYTHEON CK722 TRANSISTORS, pnp.
85W 2N424 TYPE SILICON NPN MESA
15 PNP TRANSISTORS, asst types and cases
15 NPN TRANSISTORS, assi types and cases.
1 2N706 EPITAXIAL PLANAR silicon npn 500 mw 300 m
500-MC MESA TOI8 CASE TRANSISTORS, PIP.
3 20W TRANSISTORS TOS case, 2N1038, 'n heat sink
5 GENERAL ELECTRIC 2N 107 PNP TRANSISTORS.
3 CBS-20-WATT TRANSISTORS, PIP, stud, 2NI 320
4 GENERAL ELECTRIC 2NITO PNP RF TRANSISTORS
15 UPRIGHT SILICON DIODES, warth $\$ 40$.
2 'MESA' 4 -WATT TRANSISTORS, nPR, silicon, TOS
2 25-AMP SILICON STUD RECTIFIERS.
10 PNP SWITCHING TRANSISTORS, TOS COS
25 GERMANIUM DIODES, IN34, I'N48 equals
25 EPOXY RECTIFIERS, axial lead, 750 mil, untested
25 TOP HAT RECTIFIERS, 750 mil, untested.
25 TRANSISTORS, audio, switching, if, untested
10 30-MC TRANSISTORS, TOS case, with shield

FREE! GIANT FALL BARGAIN CATALOG

CIRCLE NO. 206 ON READER SERVICEPAGE

Offers Unlimited versatilityhandles popular sizes of nuts, bolts and screws with slotted, recessed, square or hex heads!
Features fast action speedy 3 -way ratchet handle that operates in either direction or locks; regular and recessed-head screwdrivers; straight and offset adapters; eight hex and square sockets from $1 / 4^{\prime \prime}$ to $7 / 6^{\prime \prime}$. Does the work of 18 tools -8 straight and 8 offset wrenches, plus 2 screwdrivers, yet fits in a $5 \frac{1}{4}$ " $\mathrm{x} 4 \frac{1}{4}$ " case.

only $\$ 295$

complete with case-attractively packed in gift sleeve upon request.

ORDER TODAY!

Consumer Service Company EW-94
589 Broadway
589 Broadway
New York 12, New York
Please send me__SOCKETOOL sets at
$\$ 2.95$ each. (N.Y.C. residents please add 4%
Sales Tax). My check (or money order)
for_ is enclosed.
I understand that you will pay the postage and that each SOCKETOOL is fully guaranteed.
\square Check here for gift sleeve packing.

Name

Address
City Zone_State_ (SORRY-No Charges or C.O.D. Orders)

ELECTRONICS WORLD SEPTEMBER 1964
ADVERTISERS INDEX

READER

SERVICE NO. ADVERTISER PAGE NO. SERVICE NO. ADVERTISER PAGE NO

152	Advance Electronics 104
154	Allied Radio 91, 92
	American Institute of Engineering \& Technology 100
161	Automotive Electronics Co. 76
121	B \& K Manufacturing Co. 99
164	Cadre Industries Corp. 88
	Copitol Radio Engineering Institute, The $1,2$
	Channel Master Corp. 101
	Cleveland Institute of Electronics70, 71, 72, 73, 100
167	Columbia Electronics 104
245	Conar . 89
170	Concertone 5
171	Concord Electronics Corporation .. 6
174	Crown International 66
178	EICO Electronic Instrument Co., Inc.. 26
	Editors and Engineers, Ltd. 100
180	Electro-Voice, Inc. . . SECOND COVER
179	Electranic Chemical Corp. 8
181	Fair Radio Sales 102

183 G \& G Radio Supply Co. 103
243 107
Grantham School of Electronics
184 Greenlee Tool Co. 95
185
Harland Labs107
187 Heath Company $.62,63,64,65$
189 International Crystal Mfg. Co., Inc. 97
193
Kuhn Electronics 101
194 Lafayette Radio
Electronics. $20,21,22,23,24,25$
128
129 Mallory \& Co., Inc., R.R. 17
Milwaukee School of Engineering 101
241 Moog Co., R.A. 95
201 Motorola Training Institute 97
Multicore Sales Corp. 69

READER

National Radio Institute 11, 12, 60
Northridge College of Science \& Engineering 98
242 Nortronics Co. 18

Oelrich Publications 98

206 Poly Poks 107

RCA Electronic Components and Devices ...FOURTH COVER, 9, 61,77 RCA Institutes, Inc. 80, 81, 82, 83 R. W. Electronics 106

Relco 98

212 Sams \& Co., Inc., Howard W. 15
213 Soms \& Co., Inc., Howard W. 78
215 Sarkes Taizion, Inc. 94
216 Schober Organ Corporation, The . . 67
200 Scott, Inc., H. H. 95
217 Shure Brothers, Inc. 59
220 Sound Industry Directory 4
131 Sprague Products Co. 10
Sylvania 7

225 "TAB". 106
225 Technical Apparatus Builders 106
229 Texas Crystals 68
Tri-State College 9ठ
133 Triplett Electrical Instrument Company, The THIRD COVER

231 University Loudspeakers, Inc. 13
232 Utah Electronics Corp. 79

Valparaiso Technical Institute 96

Warren Electronic Components 102
235 Weller Electronics Company 87
237 Winegard Antenna Systems 96
238 Workman Electronics Inc. 69
Wuerth Products Corp. 94

Classified Advertising

102, 104, 106, 107

FACTS MAKE FEATURES
2 200,000 OHMS PER VOLT D.C. for greater accuracy on high resistance circuits. 20,000 OHMS PER VOLT A.C.
5μ a SUSPENSION METER MOVEMENT. No pivots, bearings, hairsprings, or olling friction. Extremely RUGGED. Greater sensitivity and repeatability.
62 Ranges, usable with frequencies through 100 Kc . Temperature compensated. $11 / 2 \%$ D.C. ACCURACY, 3% A.C.
Low voltage ranges and high input impedance make the 630-NS especially usetul in transistor circuit measurement and testing. Input impedance, at 55 volts D.C. and above, is higher than most vacuum tube voltmeters.
The unit is designed to withstand overloads and offers greater reading accuracy. Reads from $0.1 \mu \mathrm{a}$ on $5 \mu \mathrm{a}$ range. Special resistors are rigidly mounted and directly connected to the switch to form a simplified unit. Carrying cases with stands are priced from $\$ 9.90$.

62 RANGES	
D.C. VOLTS	0-0.6-3-12-60-300- 1200 at 100,000 Ohms/Volt. 0-0.3-1.5-6-30-150- 600 at 200,000 Ohms/Volt. $0-0.150$ at 60μ a
A.C. VOLTS	$\begin{aligned} & 0-3-12-60-300-1200 \text { at } \\ & 10,000 \text { Ohms/Volt. } \\ & 0-1.5-6-30-150-600 \text { at } \\ & 20,000 \text { Ohms/Volt. } \end{aligned}$
DB	20 to 77 in 10 ranges.
D.C. MICRO AMPERES	$0-5$ at 300 MV . $0-60-600$ at 150 MV . 0.120 at 300 MV .
D.C. MILLI AMPERES	$\begin{aligned} & 0.6 \cdot 60-600 \text { at } 150 \mathrm{MV} \text {. } \\ & 0-1.2-12-120-1200 \text { at } 300 \mathrm{MV} \text {. } \end{aligned}$
D.C. AMPERES	$0-6$ at 150 MV . $0-12$ at 300 MV .
OHMS	$\begin{aligned} & 0-1 \mathrm{~K} \text {-10K-100K (4.4-44-440 } \\ & \text { at center scale) } \end{aligned}$
MEGOHMS	0-1-10-100 (4400-44,000440,000 Ohms center scale)

OUTPUT: Condenser in series with A.C. Volt . ranges.

630

630-A

E30-APL

630-1

630-NA

630-N5

631

Calibrating portable Standard Cell on the RCA Primary Voltage Standard.

Voltmeter being calibrated on the RCA

RCA ELECTRONTUBERFLABILITVBEGINS HERE
 PERFORMAMGE

 IS THE END RESULT

 IS THE END RESULT}

No reliability program for receiving tubes can be better than the test instruments and equipments it employs.

That's why RCA maintains the extensive Calibration Center in its Harrison, N. J., tube manufacturing plant (see photos above). The Center's responsibility: to assure that all measuring instruments and equipments, used in tube development from initial design through volume production, are accurate within rigidly specified limits. Here is how this is accomplished:

1
The Calibration Center's own equipments are calibrated by standards (voltage, resistance, capacitance, frequency) whose values are regularly checked against standards of the National Bureau of Standards.
2
Measuring instruments used in all research, design, development and application laboratories are calibrated directly from the Center's equipments.

3 Sets of Calibration Tubes, selected to cover every type and family of tubes, are measured in the Calibration Center and used by the Center's personnel to periodically verify the accuracy of all factory tube-testing equipments.

4 Sets of Control Tubes, evaluated under the supervision of the Calibration Center, constantly monitor the repeatability of factory tube-testing equipments.

Our Harrison Calibration Center is another example of the effort we make to assure the specified and dependable performance of every receiving tube that bears the emblem of RCA...performance that benefits you through customer satisfaction.

SEE YOUR

AUTHORIZED RCA DISTRIBUTOR FOR TOP-QUALITY RCA RECEIVING TUBES

rca electronic components and devices, harrison, N.J.

[^0]: Large-aperture probe measures d.c. currents in cable shields,
 waveguide structures, or other large conductors. This probe is especially useful for measuring corrosion currents in pipes.

[^1]: AUTOMOTIVE ELECTRONICS CO. 387 PARK AVE. SO., NEW YORK, N. Y. 10016
 \| NAME
 address
 I CITY
 ZONE........STATE.
 | AEC 77A For Negative ground 6/12 v........... $\$ 39.95$ |
 \square AEC 77AP For Positive ground $6 / 12$ v.......... $\$ 39.95$ I
 \square Kit $\$ 32.95 \square 400: 1$ Coil $\$ 11.95 \square$ Ballast $\$ 1.95$
 FREE BROCHURE ON AEC 77A SYSTEMS. EW-9
 CIRCLE NO. 161 ON READER SERVICE PAGE

[^2]: Ziff-Davis Service Division, Dept. EW 91 589 Broadway, New York 12, New York

[^3]: FULL-COVERAGE HAM RECEIVER
 34 Itammarlund Manufacturing Company has 34 just released an all-new amatom receiver, the HOIFOA-VHF, with built in coverage of 160

[^4]: JEEPS $\$ 64.50$, boats $\$ 6.18$, typewriters $\$ 4.15$, airplanes, electronics equipment, thousands more, in your area, typically at up to 98% savings. Complete directory plus sample Surplus Market-fetter $\$ 1.00$. Surplus Service, Box $820 \cdot \mathrm{~K}$, Holland, Michigan.
 JEEPS - $\$ 62.50$, Transmitters - $\$ 6.18$, Typewriters - \$4.15, Walkie-Talkies, Oscilloscopes, Multimeters. Typical Surplus Prices. Exciting Details Free. Enterprises, Box 402-B7, Jamaica 30, N.Y.
 TECHNICAL manuals for surplus electronics. Stamp for list. Books, Box 184, Riverdale, Maryland.

[^5]: SPANKEE! New Fashoned Shingle! With Old Fashion Results! \$1.00 Postpaid. Spankee! Box 466, Salem, Mass.
 SAVE $\$ 200$ to $\$ 2,000$ on European automobiles delivered at low, low factory tax-free prices by using our direct shipment plan. Delivery guaranteed, references available. Tourist and Military deliveries available in Europe. Information on all models and makes Eurauto. Postbus 333. Rotterdam, Holland.

