ir
Рноtofact

INDEX

Jan. • Feb. • 1952
 including INDEX Ne。 30

COVERING PHOTOFACT FOLDER SETS 1 THRU 158

CONTENTS

Shop Talk

Milton S. Kiver
U.H.F.
. Merle E. Chaney
The Value of Waveform Analysis
W. William Hensler and Glen E. Slutz
Insurance Protection in the Service Field

George E. Home
Examining Design Features
Merle E. Chaney
In the Interest of Quicker Servicing Glen E. Slutz
Audio Facts

Robert B. Dunham 41

Dollar and Sense Servicing
John Markus 43
PHOTOFACT CUMULATIVE INDEX

No. 30 Covering Photofact
Folder Sets Nos. 1-158 Inclusive. . 45

+ More or Less -

HOW TO ORGANZE YOUR RESISTOR STOCK FOR SPAGE ECONOMY AND EASY USE WITH IRC ALL-METAL KITS AND CABIETS

Improve Your Shop Appearance and Efficiency-End Cigar Box Confusion
Tired of taking time out to go and buy parts? Want a neater, better looking, more efficient shop? Then buy your resistors, chokes and controls in convenient, all-metal IRC kits and cabinets. At no extra cost, these compact units put the parts you use most right at your finger tips! And at the same time, you get a neat stocking arrangement that saves space and gives your shop an attractive, businesslike appearance.

Pay Only the Price of the Parts

Get Kits and Cabinets at No Extra Cost?
It costs nothing extra to buy the resistors, chokes and controls you need in these handy Resisr-O-Kits and Resist-O.Cabinets. You actually pay only the standard net price of the parts. IRC provides the complete selection of assortments tailor-made to your requirements. And prices begin as low as $\$ 4.50$.

IRC supplies the popular Resist-O-Cabinets in three wanted assorments- $1 / 2$ watt, 1 watt, and Combination, including ranges most widely used in television. The Combination assortment also includes IRC deposited carbon, close-tolerance PRECISTORS. Fourdrawer cabinets have 28 separate compart-ments-each with range identification. Drawers have special non-spill feature and cabinets are designed for handy stacking. Beautifully lithographed in blue, yellow and silver. Dimensions $53 / 8^{\prime \prime} \times 515 / 16^{\prime \prime} \times 107 / 8^{\prime \prime}$. Dealer Prices: $1 / 2$ watt Assortment No. 4, $\$ 10.00$. 1 watt Assortment No. 5, $\$ 12.45$. Combination Assortment No. 6 ($1 / 2$ to 2 watts), $\$ 14.95$.

Flat, Pocket-Size Resist-O-Kits for Service Calls and Small Bench Stocks
This handy, allmetal kit slides
 easily into your pockettakes up scant room on your bench. A real convenience for service calls! Ten compartments keep ranges from mixing and lid snaps securely shut. Each resistor in kit has range clearly marked on body. Resist-O-Kits measure " $11^{\prime \prime} \times 37 / \mathrm{s}^{\prime \prime} \times 65 / 8^{\prime \prime}$. Price:- $\$ 4.50$. Your Choice of Two Assortments- $1 / 2$ watt (Assortment No. 7) or 1 watt (Assortment No. 8) -in No-Extra-Cost Resist-O-Kits.

Get the Types of Resistors You'll Need for Most Radio and Television Servicing

IRC Advanced

Type BT Fixed Composition Resistors,
used in all assortments, easily meet the stiff requirements of television. Compact, lightweight, fully insulated BT's combine extremely low operating temperature and superior power dissipation-actually beat ArmyNavy specs in most characteristics.

IRC Type BW

Insulated-Wire Wound Resistors,
used in Resist-O-Kits and Resist-O-Cabinets, are unusually stable and inexpensive units for low-range requirements. They have an excellent record in TV circuits and high stability attenuators. Molded bakelite housing seals out moisture and eliminates any possibility of grounding.

IRC Deposited

Carbon PRECISTORS,

included in the Combination Resist-O-Cabinet Assorment, combine accuracy and low cost in close-tolerance applications. They are ideally suited to critical television circuits and other applications where stability over long periods of time is important. Low voltage coefficient and low capacitive and inductive impedance make them outstanding in high frequency applications.

New Convenience in Volume Control Stocks with IRC's Volume Control Cabinet
What Resist-O-Cabinet does for your resistors, IRC's Volume Control Cabinet does for your Type Q Controls. Each IRC Volume Control Cabinet is stocked with 18 new Type Q Controls plus switches and special shafts. With this stock, you can handle
over 90% of all AM, FM and TV Single Carbon Control replacements. Individually marked compartments contain controls- 3 special drawers hold shafts, switches and spare parrs. The Volume Control Cabinet costs you nothing extra; you pay only for its contents. Cabinet measures $41 / 2^{\prime \prime} \times 73 / 8^{\prime \prime} \times 141 / 2^{\prime \prime}$. Price: $-\$ 18.54$.

Type Q Radio Technician's Volume Control Covers More than 90% of Replacement Needs. Special Knob Master Fixed Shaft Feature and Interchangeable Fixed Shafts give you the widest possible coverage of replacement needs with a nominal control stock. The Knob Master Fixed Shaft handles most knob requirements-gives all the adaptability of a Tap-in shaft with the security of a permanent or fixed shaft. Interchangeable Fixed Shafts convert the Type Q Control to a "special" in just a few moments. Type Q Control, itself, fearures small ${ }^{15} / 16^{\prime \prime}$ size, short $1 / 4^{\prime \prime}$ bushing, rugged construction. It fits smaller sets easily-yet handles the requirements of large receivers without trouble.

tains 140 IRC Chokes-s
each of 28 different units, in two sizes from 0.47 to 10 microhenries. Each value is in a separate, identified compartment. Cabiners are compact, all-metal, handsomely litho-graphed-and may be stacked with IRC Resist-O-Cabinets. Price:- $\$ 29.40$-the cost of the Chokes alone. No extra charge for the Cabinet.
IRC Insulated
Chokes Make

Accurate Replacement Easy

Available in a wide range of size-and-characteristic combinations, IRC Chokes make it easy to meet space and electrical requirements. You can get them in two sizes-both types fully insulated in molded phenolic housings for protection against high humidity, abrasion or physical damage, and possibility of shorting to chassis.

GET NEW CATALOG BULLETIN

OF IRC ALL-METAL CABINETS AND KITS
Your name and address on a post card brings you our new Catalog Bulletin DC2A - with details of Resist-O-Kits, ResistO.Cabinets, Volume Control Cabinets and Choke Cabinets. If you want to make your servicing more efficient and more profitable, get the full story today. There's no obligation.

Pick of the Trade

Use of the gyro compass in World War II was limited because of the size and weight of the unit. It weighed 550 pounds. Now a lightweight gyro that weighs only 67 pounds has been developed. Standardization is expected within two years.

End of TV Freeze

Here's the way the timetable looks to Curtis B. Plummer, chief of FCC's Broadcasting Bureau:

Sometime between February 1 and March 1, 1952, the freeze probably will be lifted.

Somewhere around April 1, 1952, FCC will begin granting new station permits.

By July, 1952, some 80 stations will probably have been authorized.

By mid 1953, these 80 stations should be on the air.
Regarding the 80 new stations Plummer said, "As a wild guess, the division of VHF and UHF stations might run about 50-50."

In giving his forecast Plummer added a few cautions. For one thing, the timetable will be thrown off if any serious legal entanglements develop during the hearings. Also, these first new outlets will go into small communities-mainly in areas with populations of 50,000 and under-where there are apt to be few or no contests for permits.

\star *

The Crystal Ball For 1952

Directors and alternates attending the Nov. 16 meeting of the RTMA Board of Directors in Chicago conducted their customary informal poll of individual "guess-estimates" of 1952 set production and tabulations of their unofficial predictions produced the following "crystal ball" opinions:

TV-The average of all estimates was $4,440,000$. The highest guess was $5,000,000$ and the lowest $3,000,000$.

Radio-(home sets, portables, and auto sets)-The average guess was $10,900,000$ while the highest estimate was $12,500,000$ and the lowest $7,500,000$.

Electronic Markets-November, 1951
$\star \star \star$
Transistor development will be worth watching, because this little device could, in the years to come, spell the demise of the vacuum tube and transformation of the multi-billion dollar industry which has been built up around electrons in vacuum.

Tele-Tech
Dec., 1951

UHE

Commercial UHF-TV will bring tube and converter/receiver manufacturers new headaches when it comes. One of the principal problems will be to obtain low-cost receiving tubes having high gain and low noise performance characteristics at these frequencies. This accounts for many of the current converter designs having the RF input feed directly into a crystal mixer. Lack of an RF amplifier stage is also not desirable from the standpoint of oscillator radiation, since any sizable amount of this will in turn raise interference problems.

The Radarscope, Tele-Tech December, 1951

According to a survey recently completed by Tung-Sol, servicing, today, represents a $\$ 887$-million market.

Home radios account for $\$ 385$-million-worth of service work, spread over 77 -million home receivers, with a $\$ 5.00$ annual billing cited as the charge allowed for each set. In the car-radio category, with over 17 -million sets in use, and about $\$ 6.00$ spent annually for repair of each of the sets, the income possibilities lead to the staggering figure of $\$ 102$-million. Television receivers were classified as substantial with $\$ 150$-million as the repair-income bill and $\$ 250$-million as the amount to be spent for installations. A distribution of 10 -million TV sets, with a $\$ 15.00$ annual service charge, was used as the basis of calculating the service income, while a market of 5 -million sets was included in the installation picture, with a $\$ 50$ per set charge indicated for each installation.

Servicing during checkup calls can not only contribute to the plus side of the ledger, but also serve as a profitable reference for other calls, since a satisfied customer is always anxious to adver tise that fact and tell the neighbors that you're the man to call for that TV set repair or checkup.

Lewis Winner, Editor Service, Noy., 1951

AND TECHNICAL DIGEST

VOL. $2 \cdot$. NO. 1
JAN. -FEB., 1952

JAMES R. RONK, Edifor

Editorial Staff: Merle E. Chaney - Robert B. Dunham W. William Hensler - Ann W. Jones • Arthur Kozik Glenna M. McRoan • Glen E. Slutz

Art Directors: Anthony M. Andreone - Thomas Culver
Production: Archie E. Cutshall
Printed by: The WALDEMAR Press; Joseph C. Collins, Mgr.

CONTENTS

Shop TalkMilton S. Kiver4
U.H.F
Merle E. Chaney 7
The Value of Waveform Analysis
W. William Hensler and Glen E. Slutz 15
Insurance Protection in the Service Field George E. Home 21
Examining Design Features
Merle E. Chaney. 25
In the Inferest of Quicker Servicing Glen E. Slutz 37
Audio Facts
Robert B. Dunham 41
Dollar and Sense Servicing John Markus 43
PHOTOFACT CUMULATIVE INDEXNo. 30 Covering Photofact FolderSets Nos. 1-158 Inclusive45

+ More or Less - 62

HOWARD W. SAMS, Publisher
COPYRIGHT 1952• Howard W. Sams \& Co., Inc

2201 East 46 th Street - Indianapolis 5, Indiana
The PF (PHOTOFACT) INDEX and Technical Digest is published every other month by Howard W. Sams \& Co., Inc. at 2201 East 46th Street, Indianapolis 5, Indiana-and s included as a part of PMOTOFACT folders tram PHOTOFACT Distributors without additional cost.
For those desiring the convenience of delivery to their homes or shops, MOW ARD W. SAMS \& CO., INC. will mail each issue of the Index direct promptly upon publication. The charge for this special service is $\$ 2.00$ for 8 issues in the United States and U.S. Possessions.

ABOUT THE COVER: The photographs are of Dale Miller's Associated Television Service, Long Beach, California. In the top photo, left to right, are Dale Miller, his two sons, and technician Jack Andreasen. Mr. Miller writes: "Sams' Рнотоfact Manuals are great, and we mean it. The editorial material contained in the Index has proved to be the most interesting, constructive and well assembled we have ever found."

In the last issue of the Photofact Index we discussed the reasons why servicemen encounter difficulty in aligning television receiver circuits by the visual method. For these men, suggestions were listed and certain precautions outlined. This month, as a further aid toward the mastery of this operation, a group of typically distorted or incorrect curves are shown; curves such as the serviceman is likely to encounter when he has committed some error in his preparation for the alignment. The analysis of each curve is designed to help the technician avoid making the same mistake in any future alignment or, at least, if a mistake is made, to realize what has caused it.

Figure 1A shows a typical desired response. Specific frequency values are included to identify various points on the curves, such information being determined with a marker generator, one point at a time.

Figures 1B, 1C, and 1D show the effect of too little bias on the stages to be aligned. The correct bias should be -3 volts. At -2.5 volts the curve is not appreciably affected although there is a definite change in the contour of the curve along the top. The overall amplitude of the curve has increased, including that of the two smaller side peaks. The greater amplitude, of course, is a direct consequence of the bias reduction. With -2 volts bias, the curve has become distorted due to a certain amount of overdriving or saturation in the video IF amplifiers. This condition becomes progressively worse as the bias is reduced still further, (as in Figure 1D) and now the artificial flattening of both the main curve and its secondary side peaks is quite pronounced.

The next set of related curves are Figures 2A, 2B, and 2C and they show what can happen when the set oscillator is permitted to function during the alignment operation. Each of these curves was obtained by tuning the set to a different channel. Within any one channel, rotation of the fine-tuning control will cause the pattern shape to change.

Some injurious effects which can be caused by the marker generator are shown in Figures 3A, 3B, and 3C. In Figure 3A the marker generator is connected directly to the grid of the first video IF amplifier and the output of this generator has been turned up high. Result is a complete swamping of the response curve.

In Figure 3B the marker generator is still connected to the grid of the first video IF amplifier but its signal output has been considerably reduced. Now, some semblance of the video IF response curve can be seen, although the marker generator loading is still quite evident. The loading is due to the very low input impedance of the marker generator. In

Figure 1. (A) Ideal Response Curve. (B) Bias at -2.5 Volts. (C) Bias at -2.0 Volts. (D) Bias at -1.5 Volts.

Figure 2. Curves Obtained by Tuning the Set to Various Channels.
this respect it is important to keep in mind that if the marker generator is connected into the circuit at a point which is closer to the video second detector than the sweep generator, that the impedance the marker generator shunts across the circuit will have a direct effect on the sweep generator signal passing through the system.

On the other hand, if the marker generator is placed ahead of the sweep generator (nearer to, or in, the mixer stage), its impedance will have no effect on any response curve seen on the scope screen. This would happen, for example, if we connected the sweep generator to the grid of the first video IF amplifier tube and the marker generator to the mixer

Figure 3. (A) Marker Generator Connected Directly to Grid of the 1st Video IF Amplifier. Strong Signal Output. (B) Marker Generator Connected Same as " A"' but with 'Neak Signal Cutput. (C) Marker Generator Coupled to Grid of 1st Video IF Amplifier Through 75,000 Ohm Fiesistor. Strong Signal Output.

Figure 4. Sweep Generator Phasing Control not Properly Adjusted.
grid. Now, the only way that the marker can affect the response curve is by injecting too strong a signal.

In Figure 3C the marker generator is coupled to the grid of the first video IF amplifier through a $75,000-\mathrm{ohm}$ resistor, thereby effectively isolating its low internal impedance from the video circuit. The big pip in the center of the response curve is now due to a strong output. If the marker generator output is reduced, the pip will attain its proper perspective and the response curve will be unaffected. All connecting leads should be kept as short as possible to minimize the effect of the inevitable shunting capacitance.

In Figure 4 the shape of the response curve is correct but due to an improperly adjusted phase control (on the sweep generator), two curves are seen. The control should be adjusted until the two curves blend into one. In Figure 5 we have the same situation except that it is not possible to produce one curve at any setting of the phase control. Reason: The sweep width or sweeping range is too small. Increase the sweep width (to at least 6 mc) and then a position on the phase control will be found where the curves will blend.

Incidentally, it should be noted that perfect blending is not always achievable. At some points the two curves will be discernible. This can be disregarded, being due to an unbalance in the generator circuit.

Figure 5. Insufficient Sweep Width for Phasing.

Figure 6. Curve Caused by too Great Sweep Range.

REVOLUTIONARY NEW TURNOVER CARTRIDGE DESIGN MAKES POSSIBLE NEW PERFECTION OF REPRODUCTION QUALITY

THE ASTATIC
 "TWIN CAC" TURNOVER CARTRIDGE

clarity, fidelity and brilliance of tone. Astatic's famous single needle cartridge, the CAC.J, is widely credited as the finest cartridge made . . and the new 'Twin CAC" is its equal for utmost quality of reproduction. The accompanying list of features explains why. Check them and see if you, too, don't agree that this is the turnover cartridge the industry has been waiting for.
LIST PRICE \$10.50 Code ASXDJ

NEW ASTATIC TURNOVER PICKUP ARM MODELS WITH "TWIN CAC" CARTRIDGE

MODEL 9-D.PICKUP
(V-M Style 950 Tone Arm with Turnover Assembly and "Twin CAC" Cartridge)

3 Needles are, of course, entirely independent of each other, free of interaction. Needle pressure, 10 grams.
4 Unique but simple switching device in turnover mechanism connects only the cartridge or side being used to amplitier phonograph input.

5 Furnished complete with turnover bracket and knob assembly, with standard $1 / 2^{\prime \prime}$ mounting holes. Wiring terminating in pin connectors, graduated for two dimensions now standard on lead wire connectors. Easily installed without soldering.
6 Equipped with Type Q (3-mil) and Type Q-33 (1-mil), sapphire tipped needles.

For speed and ease on V-M changers, replace the entire tone arm with Astatic's 9-D. using only a screwdriver. Costs negligible amount more than cartridge alone-pays for itself in speed of installation. Simple instructions with each osmium on 78 RPM side.

List Price $\$ 11.50$-Code ASXHX

MODEL 7-CAC-D PICKUP

New Astatic curved arm design in cast aluminum, affording reduced tracking error and balanced groove sidewall pressure. Light brown Hammerlin finish.
Sapphire needle on slow-speed side, osmium on 78 RPM side. List Price $\$ 16.40$-Code ASXHT

MODEL 400-CAC-D TRANSCRIPTION PICKUP

Famous Astatic Studio Master " 400 " with improved base mounting assembly that eliminates arm resonances and assures perfect tracking. An incomparable pertormer with the new "Twin CAC" cartridge. Die-cast arm in grey Hammerlin finish. Sap-
phire needle on slow.
speed side, osmium on
78 RPM side.
List Price $\$ 25.50$-Code ASBCU

EXPORT DEPARTMENT

401 Broadway, New York 13, N. Y. CABLE ADDRESS: ASTATIC, New York

Larger, more detailed illustrations of the "Twin CAC" cartridge and now pickup models, plus complete descriptions, are available in a new printed page produced by Astatic. Write, asking for quantity of these pages desired, refer to Form No. S-174.

A description of circuits and equipment for Ulira High Frequency reception.

by MERLE E. CHANEY

To meet the demand for additional television outlets the F. C. C. has assigned a band in the ultrahigh frequency spectrum between 470 and 890 megacycles for commercial television broadcasting. This adds a total of 70 new UHF channels to the existing 12 VHF channels. UHF channels are numbered 14 through 83 with each channel occupying 6 megacycles. Eventually, it is expected that a total of around 2000 TV stations may be permitted to operate with the majority of stations on UHF channels.

The TV technicians approach to UHF in the main is chiefly concerned with gaining a working knowledge of methods, techniques and devices associated with UHF television reception. Experiments and research in the field of UHF have resulted in some practical solutions to the problems. Data is now being made available on UHF receiving devices and this article is offered to further acquaint the television technician with this new field.

To a large extent efforts are being concentrated upon the development of UHF converter units employing a double conversion system. These converters are designed to operate in conjunction with standard TV receivers and are connected to the TV receiver similarly to the way boosters are connected. Their function is to change the incoming UHF signal to a lower frequency that can be accepted by the VHF tuner in the TV receiver.

Other manufacturers have tuners so designed that VHF tuning strips may be replaced by UHF strips.

Information is available showing that one manufacturer has developed a tuner that covers the 12 channel VHF band and has additional switch positions for UHF. In UHF position the tuner becomes a two stage IF amplifier and an additional UHF tuner positioned above the VHF tuner tunes in the desired UHF signal. Specific information on this system will be described in further detail later.

Before going into a detailed description of individual UHF converters and tuning devices it
might be well to discuss a few of the pertinent facts relative to UHF circuitry.

The following list of circuits employed indicates the present trend in UHF converter design.

1. Preselector circuits.
2. Crystal mixer.
3. Local oscillator.
4. Low noise IF amplifier
5. Self-contained power supply.
6. UHF and VHF selector switch.

In Figure 1 is shown a block diagram illustrating a basic UHF converter unit. Note that a crystal mixer followed by an intermediate frequency amplifier is employed plus a local oscillator and power supply.

Preselector circuits are for the purpose of providing a maximum of selectivity consistent with required bandwidth. RF amplification is not employed for the reason that no relatively low priced RF tubes are available as yet which can provide gain with a low enough noise figure that can be adapted for this purpose.

Crystal mixers are used primarily because of their simplicity, low cost, and good noise figure. A crystal commonly employed is type 1 N72. Performance of a crystal mixer is influenced by the uniformity and amplitude of the oscillator injection voltage. In addition the impedance presented by the RF tuned circuits must be correctly matched to the crystal input impedance, and the IF circuit impedance correctly matched to the crystal output impedance. Impedances presented by the crystal mixer also is a function of oscillator injection voltages. Conversion loss of a crystal mixer is about 8 or 9 db . Factors influencing crystal conversion loss and crystal noise are the selection of the IF frequency and the amplitude of the oscillator injection voltage.

A type 6AF4 tube, a miniature version of the 6 F 4 , is generally employed as the local oscillator. Normally the oscillator is designed to operate below

Figure 1. Block Diagram of a Typical UHF Converter.

the frequency of the incoming signal in order to provide the correct relationship between the video and sound frequencies to the VHF tuner. Oscillator injection voltages to the crystal mixer can be maintained at a low level. This reduces radiation through the antenna and enables adequate shielding to minimize direct oscillator radiation.

An important condition that must be met by the local oscillator in UHF converters is that of stability. This condition is of particular importance when the converter is used in conjunction with a TV receiver employing separate sound IF. Drifting of the converter oscillator frequency would necessitate continual touching up of the receiver tuning, which would defeat the purpose. A small latitude of oscillator drift would be permissible when an intercarrier receiver is used. Since many of the converters are designed for all standard TV receivers, converter oscillators are designed for a maximum of stability.

Compensation for conversion loss resulting from the use of a crystal mixer and the absence of an RF stage is provided by an intermediate frequency amplifier. A common IF amplifier employs a type 6BQ7 tube with triode sections cascode-coupled with the first triode neutralized. This circuit when used is selected because of its good noise figure.

A self-contained power supply in the converter unit adds to its utility and simplifies the detail of installation. Power supplies may employ a tube such as a 6 X 4 or selenium rectifiers connected as a full wave or half wave, rectifier. Power transformers are used to prevent hum difficulties and to provide filament voltages for the converter tubes. High voltage to the rectifier $\mathrm{B}+$ filtering is obtained by conventional RC filter networks.

Another factor influencing UHF converter design is the choice of the intermediate frequency. An optimum intermediate frequency is the result of a compromise. Converters designed for use with all TV receivers generally have an output frequency on the low VHF channels, usually on channels 5 and 6. Other converters have output frequencies selected for specific applications.

It should be understood that since afreeze exists on UHF installations that a market for UHF units is quite restricted, and at the best, production is limited. However, a knowledge of current trends in the field of UHF should aid the television technician to readily bridge the gap between VHF and the ultra high band.

Figure 2. Crosley UHF Converter.

Figure 3. Chassis View of Crosley UHF Converter.
The following description of UHF devices was made from data provided by the manufacturers of the units.

CROSLEY ULTRATUNER

The Crosley Ultratuner is a UHF converter continuously tunable from 470 to 890 megacycles. When used with Crosley receivers signals may be received in the UHF band. The cabinet shown in Figure 2 measures $8-1 / 8^{\prime \prime}$ wide, $6-3 / 4^{\prime \prime}$ high, and $6-1 / 2^{\prime \prime}$ deep. Two operating controls are employed on the front of the cabinet. The tuning control operates a vernier drive of about $15 / 1$ ratio with tuning indicated by a slide rule type dial and the other control functioning as a combination "OFF, VHF, UHF" switch. A chassis view of the converter is shown in Figure 3.

The tuning unit itself consists of a three-gang resonant line type with each line shaped for correct tracking.

Three tubes are employed, a type 6AF4 oscillator, a type 6 BQ 7 IF amplifier and a type 6 X 4 rectifier.

A schematic for the crosley Ultratuner is shown in Figure 4. The input system consists of a double tuned bandpass preselector circuit for maximum selectivity.

Excitation of the germanium crystal mixer is provided by coupling an oscillator injection voltage from the high side of the oscillator tube filament through a 2.2 mmf . capacitor. Maintaining the high side of the oscillator filament above ground for RF is accomplished by the use of a parallel combination of an inductance and a resistor inserted in series with the filament lead. Oscillator radiation is minimized by shielding both the oscillator resonant line section and the oscillator tube and circuits.

From the crystal mixer an intermediate frequency signal is fed to the input of a low noise cascode amplifier stage employing a type 6BQ7 tube. The first triode section functions as a conventional grid driven circuit employing neutralization. The second triode section operates as a grounded grid amplifier.

Both the input and output circuits of the cascode IF amplifier are designed to maintain desired

New phono pickup cartridges to help simplify cartridge replacement

A high quality extended range "Vertical Drive" Cartridge complete with positive turnover mechanism. Has sapphire tipped fine-groove and osmium tipped standard-groove needle.

Offers greatly improved performance when used as replacement for singleneedle all purpose cartridge. Also recommended for replacement of other types of turnover and dual-needle cartridges. Replaces not only cartridge but turnover mechanisnı as well.

1. Extended frequency response to 10,000 e. p. s.
2. Tracks at low needle point pressure -only 8 grams.
3. Sturdy construction guarantees long life of turnover mechanism.
4. Standard $1 / 2^{\prime \prime}$ bracket mount has elongated holes for versatility and quick easy installation.
MODEL W22AB-T - CODE: RUVUR LIST PRICE $\$ 10.00$

WHAT IT
IS:
What IT
IS:

WHAT IT DOES:

> A low cost "Lever Type" Cartridge for 78 RPM records. Equipped with unique "slip on" condenser-harness for dual-vottage output. 1.5 volts or or 3.75 volts obtainable in one cartridge.

Gives servicemen an ideal replacement for old style 78 RPM cartridges. A "leader" value - it modernizes the equipment at an extremely low price -only $\$ 4.95$ list. It guarantees inmproved reproduction. Minimizes inventory problem. One cartridge with choice of two output voltages covers bulk of requirements.

1. "Lever Type" construction assures improved tracking.
2. Specially designed needle guard which protects crystal from breakage.
3. Equipped with pin jacks and, pin terminals.
4. If used for high output, the condenser may be used separately by the serviceman for other purposes. MODEL W42BH - CODE: RUVUS LIST PRICE $\$ 4.95$

Contains over 1500 Phonographs-Radio-TV Phono Combinations
equipped with or which can effectively use Shure crystal or ceramic cartridges. These sets are made by 123 manufacturers and date from 1938 to 1951

Patented by Shure Brolhers and licensed under the Patents of the Brush Development Company

SHURE BROTHERS, Inc.
225 W. Huron St., Chicago lo, Illinois

Figure 4. Schematic of Crosley UHF Converter.
bandwidth at a frequency of 127.5 ± 6 megacycles. Transformer coupling of the cascode amplifier to the converter output terminals through appropriate switching provides a balanced 300Ω output impedance. The balanced output eliminates picking up interference on the lead to the TV receiver.

The power supply consists of a power transformer and a type 6X4 tube operating as a half-wave rectifier. Conventional RC filtering is used in the rectifier output.

When the Crosley Ultratuner is installed, a UHF antenna is connected to terminals on the unit marked "UHF Ant." The VHF antenna leads are removed from the TV receiver and connected to the converter terminals marked "VHF Ant." A balanced 300 ohm line is then connected from the antenna terminals of the VHF receiver to the converter terminals marked "output." In order to utilize a single control to turn power on and off for both the converter and TV receiver, the receiver's power cord is plugged into the $A C$ power receptacle on the converter chassis.

The combination "OFF-VHF-UHF" switch functions in the following manner:

In "OFF" position power to both converter and TV receiver is off.

In "VHF" position power is applied to the TV receiver, and the VHF antenna is connected to the receiver.

In "UHF" position power is applied to both converter and receiver and the converter output is now connected to the input terminals of the TV receiver.

One feature of the Crosley Ultratuner is that the converter output is not limited by the frequency of the VHF channels on the TV receiver. In other words it was thought possible to approach nearer optimum operating characteristics by employing an
intermediate frequency of about 127 megacycles, which is higher than channel 6 (88 megacycles), and lower than channel 7 frequency (174 megacycles). This tuner therefore will operate with Crosley TV receivers since the VHF tuner is tunable through the entire frequency spectrum from channel 2 through channel 13.

We wish to acknowledge the cooperation of the Crosley Division of the Avco Corporation in Supplying us with technical data which was used in this presentation.

DUMONT UHF CONVERTER

The DuMont UHF converter is designed to operate over the full UHF television band in conjunction

Figure 5. Dumont UHF Converter.

ALL RANGES WITH THIS

Just one knob-extra large-easy to turn-flush with the panel, controls all ranges. This one knob saves your timeminimizes the chances of "burn-outs" because you don't have to remember to set another control. You can work fast with Model 630 with your eyes as well as your hands. Look at that scale-wide open-easy to read, accurately. Yes, this is a smooth TV tester. Fast, safe, no projecting knobs, or jacks, or meter case. Get your hand on that single control and you'll see why thousands of "Model 630's" are already in use in almost every kind of electrical testing

©NLY 8.37.历D AT YOUR DINTHEHUTOR

In Canada: Triplell Instruments of Canada, Georgetown, Ontario.

taiplett electrical instrument company - bluffton, ohio, U.S.A.

The Value of

Waveform Analysis

by W. WILLIAM HENSLER and GLEN E. SLUTZ

Waveforms are becoming increasingly important aids to service technicians engaged in troubleshooting TV receivers. These waveforms should not be confused with response patterns which are used in alignment procedures and depend upon a signal generated by a sweep frequency oscillator. The waveforms considered in this article are those actually present at selected points in the receiver when a standard television signal is being received. The practical value of waveforms lies in proper interpretation of these characteristics:

1. Amplitude
2. Shape
3. Frequency
4. Phase

All of these characteristics are illustrated in Figure 1. A description of the significance and usefulness of each is presented in the following text.

Amplitude

The amplitude of a wave pattern represents the peak-to-peak AC voltage at the test point. (See Figure 1.) This voltage, compared with voltages at other selected points, is a means of determining voltage gain. For example, a voltage at the output of the video detector of 2 volts peak-to-peak when compared with a 40 volt peak-to-peak signal at the output of the first video amplifier would mean that the voltage gain in the video amplifier stage was:
$\mathrm{G}=\frac{\mathrm{E} \text { out }}{\mathrm{E} \text { in }}=\frac{40}{2}=20$

Eigure 1. Waveform Showing Amplitude, Shape, Frequency, and Phase Separation of Pulses. (Horizontal Sweep - 30 cps .)

Amplitude may also be checked against the normal values given in service literature covering the receiver under test.

Shape

The shape of the waveforms is another important feature. This is especially true in the sync control circuits where pulse shape exerts a major influence on the smooth operation of the deflection system. As an example, the adjustment of the Synchroguide circuit requires an oscilloscope waveform of a definite waveshape as shown in Figure 2. If the broad and sharp peaks are not of equal height, poor noise immunity, slow synchronization when changing stations, and general sync instability may result.

Frequency

In Figure 1 the horizontal sweep frequency of the scope is set at 30 cycles per second. Thus the vertical field information, which reoccurs at the 60 cycle frequency established by the transmitter, is seen as a two-cycle pattern. The two-cycle pattern is selected because it permits one complete cycle to be visible, part of the other cycle being lost during retrace time. For the same reason, 7875 cycles per second or one-half horizontal line frequency is selected for patterns where horizontal information is desired. In synchronized receivers, the two scanning frequencies, vertical and horizontal, are established by the transmitter. If synchronization is not obtainable in the receiver, and it is desired, for example, to investigate the free-running frequency of the

Figure 2. Waveform in Synchroguide Circuit Showing Broad and Sharp Peaks of Equal Height. (Horizontal Sweep - 7875 cps.)

"Well, CBS-Hytron's Plan helps me sell TV picture tubes and service to many a customer who just doesn't have $\$ 50$ cash. My customer now pays for the job painlessly a few dollars a month. Yet I get my cash right away."

"Simple. I introduce my customer to the finance company authorized by CBS-Hytron. The finance company does the rest . . . acts as my credit department . . . arranges all details. My customer gets his tube and I get my cash - at once."
"That's swell, Sam! I've sure been losing sales I shouldn't. I need that CBS-Hytron Easy Budget Plan. CBS-Hytron tubes are tops, too. Thanks for the tip. I'll see my CBSHytron distributor today."

ANOTHER
 HELPFUL SERVICE FOR YOU FROM. . .

MAIN OFFICE: SALEM, MASSACHUSETTS

Figure 6. Chassis View of Dumont UHF Converter.
with any standard VHF television receiver. This is accomplished by making the converter output fall between 76 and 88 megacycles or on channels 5 and 6 of a television receiver.

Figure 5 is a cabinet view of the DuMont UHF converter employing two controls. On the right is the coarse and fine tuning control. The tuner drive reduction ratio is $6.6 / 1$ on coarse tuning and $20 / 1$ on fine tuning. The tuning dial is marked 14 to 83 for indicating UHF channels. On the left is employed a combination "ON-OFF, VHF and UHF" switch. When the VHF and UHF antennas are connected to appropriate terminals on the converter chassis, turning this switch to VHF position turns the converter power off and automatically connects the VHF antenna to the VHF receiver input terminals. With the switch in UHF position the VHF antenna is grounded, the power to the converter is turned on, and the converter output is connected to the VHF receiver input terminals.

Figure 6 is a top chassis photo of the Dumont Converter.

A schematic of the DuMont converter is shown in Figure 7. The UHF antenna is connected to a high pass input filter composed of an initial M -derived $1 / 2$ section, two constant K T -sections, and a terminating M-derived $1 / 2$ section. The input filter is designed to attenuate VHF signals. Cut-off frequency is 400 megacycles, with infinite attenuation by the M -derived section at 320 megacycles.

A double tuned preselector circuit follows the input filter. This circuit is designed to provide a maximum of UHF selectivity.

The output of the preselector is fed to a crystal mixer. An oscillator injection voltage obtained by a metal strip loosely coupled to the oscillator tank circuit is also fed to the mixer. The crystal mixer converts the UHF signal to an intermediate frequency which is fed to a low noise cascode IF amplifier. Neutralization of the first triode section of the IF amplifier is provided by feeding a signal from the first triode output back to the grid. The second triode section forms a cathode coupled grounded grid amplifier with the output tuned by an IF transformer L16. From the IF transformer the signal goes to the "UHF-VHF" switch and to a terminal board. The converter output impedance is designed for either 75 ohm coaxial or 300 ohm balanced output to correctly match any TV receiver.

A type 6AF4 is used as the local oscillator. This circuit is designed to provide a high degree of oscillator stability and to minimize oscillator radiation.

The power supply consists of a power transformer, a full wave voltage rectifier tube type 6 X 4 , an RC filter network and two 6.3'VAC filament windings.

We wish to acknowledge the cooperation of the Allen B. DuMont Laboratories, Inc., in supplying us with data which was used in this presentation.

- Please turn to page 29 .

Figure 7. Schematic of Dumont UHF Converter.
FOR
GREARST
TVICTURE Quality
CMPIITOD
TVINE-
TV ANTENNAS
OUTSTANDING MECHANIGAL SPECIFICATIONS

Por	Material	Yield Strength	Sise	
		Ps.	o.d.	Wall
Mast Igolv.)	$Y^{\text {" }}$ Thinwall Steel Conduis	32.000	0.922"	.04**
targe Folded Dipole	3s $1 / 2 \mathrm{H}$ Al.	19.000	500'	.04\%
Smoll Folded Dipole	35 \% H A.	19.000	.375*	.049*
Refiector	$35 \mathrm{l} / \mathrm{HAN}$.	19.000	500\%	049*
Crossarm	35 H Al.	26.000	.77****	.065*
Center support \& I Costing	Al. Alloy $45,000 \mathrm{pai}$ tonsile strength			

for All the factors determining BETTER TV PICTURE QUALITY

Write for this book containing the charac= feristics and test performance data of various types of antennas.

EXCELLENT RADIATION PATTERNS
These are the radiation patterns of the AMPHENOL Inline antenna at $58 \mathrm{mc} ., 66$ me., and 88 mc ., in the low band, and $174 \mathrm{mc} ., 194 \mathrm{mc}$., and 215 mc . in the high band. Notice the uniformity of these lobes at all frequencies. The lack of lobes off the sides and negligible ones off the back maintains high front-to-back and front-to-side ratios necessary for the rejection of various interferences. The

Herizontal cadiotion potte.n of Amphenol
IV Antenna Model No. 114-00S.

presence of a single forward lobe is us ually a very desirable feature, especially when it is wide enough to provide adequate interception area for some differences in transmitter location, changes in the wave front's direction of travel, or physical movement of the antenna in high winds. Furthermore, it is not too critical of orientation. It is necessary only to aim it and forget it.

HIGHER GAIN
These gain curves of the AMPHENOL Inline antenna represent the intercepted voltage of the AMPHENOL Inline Antenna as plotted against the intercepted voltage of a reference folded dipole cut to the frequency being compared. There is no channel in either the low band or high band where there is more than a three decible change within the channel that can cause picture modulation or "fuzziness." Gain of the AMPHENOL Inline antenna is quite flat over all channels.

You will find more gain designed into the high band because of greater need for it, due to higher losses at these frequencies. Also, notice the drop-off on channel six. This is at the edge of the FM band and is subject to FM inter. ference, so the Inline's gain is purposely held down at that frequency.
The excellent broadband character. istics, impedance match, single forward lobe radiation patterns on all channels, maximum gain, lightning protection, and superior mechanical features of the AMPHENOL Inline Antenna make it the antenna for greatest IV picture quality!

Figure 3. Lissajous Figure for Determining Frequency of Vertical Oscillator.
vertical oscillator, Lissajous figures may be employed. Connect the vertical amplifier of the scope to the grid of the vertical output tube and the horizontal amplifier of the scope to a frequency-calibrated audio oscillator. The audio oscillator frequency is varied in the region of 60 cycles until a figure similar to Figure 3 is seen. The audio oscillator is then operating at the same frequency as the vertical oscillator in the set.

Phase

Phase is important where more than one pulse of approximately the same frequency exists at a test point. Figure 1 shows the phase separation between two such pulses. This phase separation or phase difference is ordinarily expressed in degrees of phase shift. As an example, if the phase separation of Figure 1 were one-half of a cycle, the pulses would be "180 degrees out of phase."

The importance of phase in television can be illustrated in a horizontal phase discriminator. The phase relationship between the sync pulse and the horizontal oscillator wave controls the operation of the sync system. A slight drift in frequency of the horizontal oscillator results in a phase shift between its output and the sync pulse, and this in turn is detected by the discriminator which acts to bring the oscillator back in step with the sync pulse. This

Figure 4. Sample Waveform from Photofact Folder. whole operation can be revealed through waveform investigation with an oscilloscope.

A sample waveform taken from a Photofact Folder is shown in Figure 4. It is a reproduction of an actual photograph obtained with an oscilloscope and a camera attachment. Note that the sweep frequency is given as 7875 cycles per second, providing a two-cycle pattern. The peak-to-peak voltage is designated at the right of the waveform. A "W" (waveform) number is provided as a means of reference for any remarks or notes which may be made concerning the wave pattern at that point.

By connecting the oscilloscope to the point indicated in Figure 4, and adjusting the horizontal sweep frequency of the scope to the indicated frequency (7875 cycles), a waveform similar to W13 should be obtained. The shape of the waveform can then be studied. By means of a voltage calibrator the peak amplitude of the waveform can be measured. If the waveshape is essentially correct and the peak-topeak voltage is within tolerance ($\pm 20 \%$), it can be assumed that the signal at that point is normal. The next step in a trouble-shooting procedure would be the observance of the waveform present in an adjacent stage.

Figure 5. Composite Video Signal at Video Detector Load. (Horizontal Sweep - 7875 cps .) (A) On NarrowBand Scope. (B) On Wide-Band Scope.

The Oscilloscope

Obviously an oscilloscope is the principal piece of equipment in waveform signal tracing. There are three practical considerations which should be kept in mind when using the oscilloscope to check waveforms.

1. Frequency Response
2. Clipping of Peaks (Overload)
3. Loading Effects

Frequency Response

A uniform response over a wide band of frequencies is desirable in the vertical amplifier section of the scope. However, many oscilloscopes sacrifice bandwidth for greater gain per stage. With these scopes, allowances must be made when viewing waveforms in which high frequencies are present (as in the case of square waves and short-duration pulses). Figure 5A shows the horizontal line information at the video detector load of a test receiver as it appeared on an oscilloscope having high sensitivity but limited frequency response. Figure $5 B$ is the same waveform as it appeared on a wide band oscilloscope. Note the appearance of distortion in Figure 5B which might have passed undetected on the narrow band scope. The "front porch" of the blanking pedestal, shaped by the higher frequency components of the signal, is more evident on the wide band scope than on the other.

Overload

The clipping or flattening of either negative or positive pulse peaks is sometimes encountered when checking waveforms. (See Figure 6.) This is caused by an overload condition in the scope or in the test receiver. Increase the vertical input attenuation on the scope or decrease the vertical gain control; if the clipping persists, the fault probably lies in the receiver under test and not in the oscilloscope. Ordinarily, overloading occurs in oscilloscopes because the vertical gain control and the vertical attenuation switch are improperly set.

Since the majority of the current model oscilloscopes employ a cathode follower at the vertical input, care must be taken to guard against overload in this stage. If it is necessary to decrease the vertical gain control too low, overloading may occur.

Figure 6. Video Signal Showing Results of Overloading. (Horizontal Sweep - 7875 cps .)

Figure 7. Typical Vertical input to Oscilloscope Employing Cathode Follower Stage.

Figure 7 is a schematic of the cathode follower input of a typical oscilloscope. Note that the vertical gain control is in the cathode circuit of the cathode follower. The adjustment of this control does not affect the amount of signal applied to the grid. If it is necessary to set the vertical gain control to a setting less than $1 / 4$ of its full rotation in order to obtain a useable pattern, the signal at the grid is probably great enough to cause overload. The attenuator switch should be turned to provide greater attenuation of the signal before it reaches the stage. The gain control can then be increased to provide a pattern of the desired size.

This precaution should always be followed on scopes having a cathode follower input. On any scope it is advisable to set the attenuator switch so that the gain control can be used in its middle range whenever possible.

Loading Effects

Another problem which frequently arises is the loading effect of the capacitance in the oscilloscope lead. This lead is usually shielded; and although the input capacitance at the scope terminals may be very low, the capacitance in the lead to the terminals is sufficient in many instances to vary the normal operation of the circuit under test. This is particularly true when the lead is connected across a high impedance network. A frequent example of this nay be observed in checking horizontal sync control stages; the loading is often enough to "pull" the picture out of horizontal synchronization. Under such circumstances the patiern on the oscilloscope screen may not be a true picture of the normal waveform.

In addition to this loading effect, the lead capacitance may cause considerable loss of high frequencies in the waveform itself and thereby offset the advantages which might be gained through the use of a wide-band scope.

A Cathode Follower Attachment

A low-capacity probe provides one method of lessening the loading effect of the oscilloscope. Another method, and one which does not feature the rather high attenuation of the capacity probe, calls for the use of the cathode follower attachment similar to that described immediately following.

The characteristics of a cathode follower are such that it has an excellent high-frequency response

The new RCA WV-87A

Measures... (Full-scale ranges)
DC VOLTAGE: 0 to $1.5,5,15,50,150,500,1500$ volts PEAK-TO-PEAK VOLTAGE: 0 to 4, 14, 42, 140, 420, 1400,4200 volts RMS VOLTAGE: 0 to $1.5,5,15,50,150,500,1500$ volts RESISTANCE: 0 to 1000 megohms in seven overlapping ranges DC CURRENT: 0 to $0.5,1.5,5,15,50,150,500$ milliamperes; 0 to $1.5,15$ amperes

Sold Complete - with the following Probes and Cables

- Direct Probe and Cable
- DC Probe
- Ohms Cable and Probe
- + Current Cable (Red)
- Current Cable (Black)
- Ground (Case) Cable

Accessory Probes Available on Separate Order
\checkmark WG-264 Crystal-Diode Probe for measuring ac voltages at frequencies up to 250 Mc .
\checkmark WG-289 High-Voltage Probe, with WG-206 Multiplier Resistor, for increasing de-voltage range to 50,000 volts and input resistance to 1100 megohms.

Featuring an $81 / 2^{\prime \prime}$ meter, the new WV-87A Master Voltohmyst is really the master of every testing application. Its peak-to-peak scales are particularly useful for television, radar, and other types of pulse work.

The WV-87A measures dc voltages accurately in high-impedance circuits, even with ac present. It also reads rms values of sine waves and the peak-to-peak values of complex waves or recurrent pulses, even in the presence of dc.

Like all RCA VoltOhmysts, the WV-87A features $\pm 1 \%$ multiplier and shunt resistors, a $\pm 2 \%$ meter movement, high-input resistance, zero-center scale adjustment for discriminator alignment, dc polarity-reversing switch, and a sturdy metal case for good rf shielding.

On direct-current measurements, extremely low-
meter resistance gives an average voltage drop of only 0.3 volt for full-scale readings on all ranges. Nine overlapping ranges provide dc readings from 10 microamperes to 15 amperes.

An outstanding feature is its usefulness as a television signal tracer . . . made possible by its high ac input resistance, wide frequency range, and direct reading of peak-to-peak voltages.

The RCA WV-87A Master VoltOhmyst has the accuracy and stability for laboratory work. Its large, easy-to-read meter also makes it especially desirable as a permanently mounted instrument in the factory and repair shop.

For complete information on the WV-87A, see your RCA Test Equipment Distributor or write RCA, Commercial Engineering, Section AX67, Harrison, New Jersey.

Get complète details today from your RCA Test Equipment Distributor.

RADIO CORPORATION OF AMERICA
TEST EQUIPMENT
HARRISON. N. J.

Insurance Protection in the Service Field

by GEORGE E. HOME

This article is not intended to cover the entire insurance requirements of a dealer or service shop; nor does it go into detail of the protection afforded by each class of insurance enumerated. It simply highlights the essential insurance coverages that a dealer or service shop should consider.

Workmen's Compensation and Occupational Diseases Insurance

All of the states in the United States and most of the provinces of Canada have enacted Workmen's Compensation Laws, and a majority have enacted Occupational Diseases Laws under which an employer of labor becomes liable for injuries to, or illness (including death resulting therefrom) of employees where such injuries, illness or death arise out of and happen in the course of employment.

The acts or laws of the various states differ as to the number of persons employed before the laws are effective, and as to whether the laws are elective or compulsory on the part of the employer, for example:

1. Florida - Elective on part of the employer employing three or more persons.
2. California - Compulsory on part of employer regardiess of the number of persons emplayed.
3. Indiana - Elective on part of the employer regardless of the number of persons employed.

An elective Compensation or Occupational Diseases Act is one where the employer can elect to be bound thereby, or reject the act. An employer in most states who rejects the Act loses his common law defenses of:

1. Injury caused by acts of fellow servants.
2. Injury caused by negligence on the part of the employee.
3. The employee assumes the risk of employment,

The states of Washington, Oregon, Nevada, Wyoming, North Dakota, and Ohio have monopolistic state funds. No insurance can be provided the employer by private insurance companies; it must be purchased from the state.

The State Compensation Fund of the State of West Virginia is semi-monopolistic. Compensation insurance must be purchased from this fund unless the employer assumes his own risk upon permit granted by the industrial board of that state upon showing of sufficient financial responsibility.

Suggestion

If an employer is not automatically bound by the State Compensation or Occupational Diseases Act in the state in which he resides, it would probably be wise for him to elect to accept the acts and automatically bring his employee or employees within the provisions of the Acts as the election limits his liability to the benefits prescribed in the Acts. He can then insure his Compensation and Occupational Diseases liability as provided by the Acts.

The Compensation Acts are presumed to be conclusive as to liability. That is to say, the injured employee cannot go beyond the Acts for the recovery of damages. There is, however, that most infrequent case where the employee elects to sue for damages at common law. This liability is protected in the Stardard Workmen's policy in use in all states under Section "B" of the policy.

Liability for Injury of Employees Under Common Law

Employers who are not automatically bound by the Compensation Act of the various states are in the same position as they would have been if the Compensation Acts had not been passed. That is to say, they can be sued for damages arising out of injury to employees, but the employer retains all of his common law defenses recited above; and insurance protecting the legal liability of the distributor, dealer or service shop can be written on this basis.

This type of insurance is known as 'Employer's Liability" and provides defense without limit, and also provides for judgment payments that are legally assessed against the employer. Limits of liability should not be less than $\$ 25,000$.

Liability for Injury to Persons Other Than Employees

The television or radio dealer or service shop is always open to claims and demands made by persons alleging injury caused by a negligent act on the part of the dealer or shop owner or their employees.

MERIT

HQ for TV Service Aids
MERIT'S new 1952 Catalog \#5211 is now available introducing MERIT IF-RF Coils and giving complete MERIT Coil and Transformer data and listings. Other MERIT service aids for TV improvement, replacement and conversion problems: TV Replacement Guide \#404, September 1951 issue - covers 3000 models and chassis of 82 manufacturers; Cross Reference Data on IF-RF Coils, Form \#14. Write: Merit Coil and Transformer Corporation, 4425 North Clark Street, Chicago 40, Illinois.

These three MERIT extras help you:

Exclusive: Tapemarked with specifications and hook-up data

- Full technical data packed with every item
- Listed in Howard Sam's Photofacts

[^0] demand with a line as complete as our advance information warrantsl

The injury may be alleged to have taken place in the shop or place of business (commonly termed "premises'), or in the home where an installation or repair work is being performed, or caused by automotive equipment used in the service, or by the work that the employee has performed in an alleged negligent manner, or by an employee in alleged assault.

In a recent case, a television installation was being made in a home, and it was alleged that the employee making the installation failed to ground the lightning arrestor; and, as a result, the home burned to the ground and two of the occupants were seriously burned and demanded damages in excess of $\$ 50,000$.

Insurance should be purchased to protect the dealer or shop owner against such claims and demands. The insurance coverage should provide:

1. Defense without limit.
2. An agreement to pay damages arising out of such demands which are legally assessed against the distributor, dealer or shop owner.

Generally speaking, insurance companies write this type of insurance coverage with a limit of liability per person, and an over-all limit of liability for all injuries arising out of one accident, and these limits are available for each accident. It is impossible to standardize the limits of liability that should be carried; but from the size of many judgments that have been rendered by courts in recent years, a minimum limit of $\$ 25,000$ per person and $\$ 25,000$ as an over-all limit is indicated.

The Comprehensive Public Liability form of policy offers the greatest protection, and should include all hazards to which the dealer or service shop is even remotely exposed. Liability for injury to persons caused by automotive equipment can be included or written under a separate Automobile policy.

Products Liability

Products Liability should definitely be included in the Comprehensive Public Liability form to make absolutely certain that injuries alleged to have been caused by faulty workmanship or material are covered. The Products Liability coverage should extend to cover all completed work or installation, and as a precaution the Completed Operations Endorsement should be attached to the policy.

Liability for Damage to, or
Destruction of, or Loss of Property
not in the Care, Custody or Control
of the Dealer or Service Shop
When employees are sent to the premises of others to make an installation or repair at the customer's request, they are permitees; but, never theless, the emiployer as a dealer or service shop may
be held liable if the employee damages the customer's premises or equipment as the result of a negligent act on the part of the employee, or if the employee makes away with property of the customer.

In a recent case, an employee of a service shop entered a residence as a licensee and it was alleged that while there, he appropriated to his own use certain money that he found on the premises. A case of this type will be covered under the crime section of this article.

Liability for damage to, or destruction of property can be included in the Comprehensive Public Liability policy form and should include Products Liability.

Liability for Damage to, or
Destruction of, or Loss of Property
of Others in the Care, Custody or Control of the Dealer or Service Shop

When the employees of a dealer or service shop enter the premises of a customer and with the permission of the customer remove property therefrom, such as radios and television sets, for the purpose of taking them to his shop for repair, or accepts in his shop such articles for repair or sale, he automatically becomes a bailee for the property under most state laws as it is presumed that the property will be returned to the customer in as good condition as it was when accepted by the dealer, or shop owner and that he will return the property upon demand.

Failure of the dealer or service shop to deliver the property makes the dealer or service shop liable for damages for recovery; and insurance should be procured under a Bailee Form which is practically all risk in scope.

This form of insurance is usually written on a Reporting Form of values taken in for repair or upon the gross receipts derived from such work.

Fire and Extended Coverage

Fire and Extended Coverage insurance should be carried on the dealer's or service shop's buildings and stock of merchandise.

Under this form of insurance, the insurance companies generally become liable for damage to or destruction of property of others provided the insured is legally liable therefor.

If a Coinsurance Clause is used in the form of the insurance, then the dealer or service shop may find himself a contributor unless the values of property of others in his care, custody or control, is taken into consideration. This contingency is, of course, practically eliminated if the dealer or service shop carries the proper form of Bailee insurance.

If Fire and Extended Coverage insurance is carried by the dealer or shop owner on his buildings

DESIGN FEATURES

by MERLE E. CHANEY

During the preparation of material for Photofact Folders, the actual observation and analysis of each unit brings to light many unusual or novel design features. The following is a description of some of the features used in RCA Chassis KCS66 and KCS66A, and Sylvania 1-260 Chassis.

RCA CHASSIS KCS66, KCS66A

Noise Suppression Circuit

A noise suppressor circuit is employed in the RCA KCS66A chassis to reduce vertical jitter on the screen of the picture tube in weak signal areas. This circuit is dubbed a "noise suicide" circuit because noise pulses are effectively eliminated at the grid of the vertical sync separator. A schematic of the noise suppressor circuit is shown in Figure 1. Following is a brief description of how the circuit operates.

The design of the 4th video IF stage is such that under normal conditions the received signal will not drive the 4 th video IF control grid positive. Strong noise pulses, however, will drive the grid positive resulting in a large negative pulse across the screen dropping resistor. This pulse develops across the screen load because of the poor regulation of the screen circuit. The negative voltage pulse across R5 is applied through C4, R6 and R25 to the grid of the vertical sync separator tube.

At the same time the noise signal produces a negative going pulse in the plate circuit of the 4th
video IF amplifier. The signal passes through the video detector diode and the video amplifier tube which results in a positive polarity pulse across the output load. This positive pulse is now applied through R22 and R25 to the grid of the vertical sync separator.

Since both a positive and a negative pulse voltage are applied to the vertical sync separator grid, the net result is zero. Thus the action of this circuit suppresses noise pulses which might otherwise cause erratic operation of the vertical oscillator.

Input Circuit to KRK11 Tuner

The input circuit to the KRK11 Tuner is contained in an antenna natching unit sub-assembly. (See Figure 2.) This sub-assembly contains an antenna matching transformer, for accommodating either 72Ω or 300Ω lead-in, an FM trap for rejecting signals from FM stations, and in addition, contains an input filter network for attenuating all signals whose frequencies are below 47 megacycles.

Figure 3 is a schematic of the antenna matching transformer or elevator coil. The input filter consists of $\mathrm{L} 2, \mathrm{C} 1, \mathrm{~L} 3, \mathrm{C} 2, \mathrm{~L} 4, \mathrm{C} 3$ and $\mathrm{L} 5 . \mathrm{L} 3, \mathrm{C} 2$ and L5 form an intermediate pi section, while L2 and C1 form one M-derived end section, and L4 and C3 the other end section.

Alignment of the input filter is very critical and requires the use of accurate equipment since slight misadjustment could cause attenuation of a

Figure 1. RCA Noise Suppression Circuit

Photofact folder SE Photofact rolder

 listed for all Phonograph Equipment
by Howard W. Sams

 Neelles IH IS CORONLDO, HOFFMAN, SECHIL CAI\section*{\title{

Replacement Nystem of

\title{ Replacement Nystem of

 the only system of

 the only system of}PHONO NEEDLE

FOR REPLACEMENT IN ORIGINAL EQUIPMENT

Servicemen Everywhere are Switching

to [1] ED Exclusively!

BECAUSE - by selling Walco replacement needles exclussively, they CENTRALIZE their needle buying. Walco manufactures replacement needles for every popular-type phonograph. Most often, Walco replacement needles are made at the same time and on the same equipment as the originals.

BECAUSE - by selling Walco they SYSTEMATIZE their needle sales with the only method that enables them to identify the right needle for every phonograph and pick-up cartridge.

BECAUSE - Walco provides them with a perpetual cross index, kept up to date with free information and replacement data mailed to them every few months.

BECAUSE - they SIMPLIFY their inventory and increase their profits with inventory control aids supplied FREE with every order.

Get in on the WALCO SYSTEM of inventory control. Get service and increase YOUR profits! Write for details NOW!

Figure 2. Antenna Matching Unit Sub-assembly
channel 2 signal. Coils L2 and L4 are tuned to 41.25 megacycles and 45.75 megacycles respectively for achieving maximum rejection of an incoming signal at the sound and video intermediate frequencies. L3 and L5 are adjusted to obtain the required response curve. Adjustment of the FM trap, L6, does not require the use of test equipment and may be adjusted for maximum rejection of an interfering FM signal.

Signals such as those from police transmitters which occur below 47 megacycles will be attenuated by the input filter. However, it should be understood that harmonics of these signals might fall within the television band in which case the input filter would not reject them.

B+ Power Supply

A full wave voltage doubler circuit is used in the $B+$ power supply. The power supply consists of a line isolation transformer with three 6.3 volt filament windings, two selenium. rectifiers, two 150 mfd . voltage doubler capacitors, a filter choke and a 100 mfd. filter capacitor.

Figure 4 is a schematic of the power supply. On one alternation of the voltage in the transformer secondary winding, SR1 conducts, charging C1 to the peak AC voltage of the winding. The next alternation charges C2 when SR2 conducts. Since C1 and C2 are in series across the rectifier output, the two capacitor voltages are additive, achieving voltage doubling.

Focus Supply

The picture tube employed is a type 17 GP 4. This tube is designed for electrostatic focusing. A potential of about 3000 volts required by the focus anode is obtained by rectifying the voltage pulses present at the plate of the horizontal output tube.

SYLVANIA 1-260 CHASSIS

Packaged High Voltage

The Sylvania chassis 1-260 employs a unique package type high voltage and horizontal output

Figure 3. Schematic of Antenna Matching Unit

Figure 4. Full Wave Voltage Doubler Supply assembly. This assembly is mounted on a molded plastic form and contained in a metal shield aboye the chassis which also forms the mounting support for the focus unit and deflection yoke brackets. (See Figure 5.) The plastic form is held in place in the metal shield by four ears which clip into slots stamped into the sides of the shield. On the back of the unit is an insulated cover for reducing shock hazard and which is easily removed for checking the high voltage rectifier tubes. Figure 6 shows these tubes mounted in recesses in the plastic form. Two subminiature type 5642 HV rectifier tubes are employed.

These tubes, measuring about $3 / 8^{\prime \prime}$ diameter and 2 " long, operate as voltage doublers to provide about 13,000 volts to the picture tube anode. Corona and arcing difficulties are minimized through the use of these tubes since short leads directly from the glass envelope to the appropriate circuits are employed.

Figure 5. Packaged High Voltage Assembly

No fuss No cuss

When you use Centralab Exact Replacement Controls

Why waste time "tinkering" with kits . . .

when you can get exact, quickest-for-servicing,

custom replacement controls for TV-AM-FM...

There's a Centralab Custom Control-or Standard Blue Shaft unit that's Quickest-for-Service

Service Engineers! Centralab's famous Blue Shaft and Custom Controls are exclusive service items. You'll find Blue Shafts available in a complete line of plain and switch types with resistance ranges from 500 ohms to 10 megs. in a wide variety of tapers and tapped units! All Centralab controls are packaged singly. Blue Shafts are also available in handy plastic boxes of 12 and in a special metal cabinet containing 22 controls. NO EXTRA charge for the cabinet.

Blue Shaft Controls with attached switches are your smartest service buy! Why? Because they save you valuable benchworking time - by being truly your quickest-for-servicing replacements. These factory attached and tested switches are high amperage, universal units. That means they can be used as SPST - DPST or 3 wire.

For quickest servicing, standardize on Centralab Blue Shaft and Custom Controls.

Check These LOW LIST PRICES on Popular Blue Shaft.Controls!

Cat. No.	Ohms Max. Resistance	Taper	Circuit Location	List Price
B-60	500,000	C-2 (audio)	Volume or Tone	$\$ 1.00$
B-60-S*	500,000	C-2 (audio)	Volume or Tone	$\$ 1.50$
B-70	1 megohm	C-2 (audio)	Volume or Tone	$\$ 1.00$
B-70-S*	1 megohm	C-2 (audio)	Volume or Tone	$\$ 1.50$
*Switch Type				

Centealab

Division of GLOBE-UNION Inc.
900 E. Keefe Avenue - Milwaukee 1, Wisconsin
*Switch Type

Figure 8. G. E. Model UHF-101 Translator.

G. E. MODEL UHF-101 TRANSLATOR

The Model UHF-101 Translator developed by General Electric is a UHF converter and provides full coverage for all UHF channels. It is designed to operate with any standard TV receiver switched to channel 5 or 6 .

The Translator (shown in Figure 8) measures $7-1 / 2^{\prime \prime}$ high, $6-7 / 8^{\prime \prime}$ wide and $13-3 / 8^{\prime \prime}$ deep, and has a power consumption of 20 watts. Two operating
controls are provided on the front of the panel. On the right is the tuning control. Tuning is indicated on a dial scale calibrated in frequency with a logging scale for added tuning convenience. On the left is a combination "OFF-VHF-UHF-Light" switch.

Since the converter operates in conjunction with a TV receiver there are three ways in which power may be applied to both units. The TV receiver line cord may be plugged into an AC receptacle on the back of the converter (provided the receiver power requirement is less than 300 watts); the converter line cord may be plugged into an AC receptacle on the TV chassis if this outlet is available; or the line cords from each unit may be plugged into a wall socket - in which case both units must be turned on and off individually. In the first instance, power to both units is controlled by the converter. If the converter is plugged into the TV set then the television receiver "ON-OFF" switch controls both units.

Additional requirements of the converter necessitate the use of a UHF antenna connected to appropriate terminals, and the connecting of the VHF antenna to terminals on the converter. A 300 ohm lead is connected between the TV receiver antenna terminals and the converter output terminals. This completes installation of the unit.

With the converter installed, normal reception of VHF signals by the TV receiver is provided by turning the function switch to VHF position. In this position the VHF antenna is connected to the receiver antenna terminals, and the receiver power is turned on if the receiver line cord has been installed in the $A C$ receptacle on the converter.

UHF signals are received when the function switch is turned to UHF position. In this instance the converter power is turned on and the converter output is connected to the receiver antenna input terminals. The TV receiver channel selector is turned to channel 5 or 6 position. Two factors de-

Figure 9. Schematic of G. E. Model UHF-101 Translator.

Rauband the Oiginal LOW FOCUS VOLTAEE ELEETROSTAIC TUBE

Perfected in Rauland Electronics Laboratories, this tube that gives edge-to-edge sharpness of focus
without coils and magnets is proved and ready as the materials pinch becomes painful

BETTER in all ways! Gives better over-all focus-hair-line sharpness from edge-to-edge -with NO critical materials for focusing ... and STAYS SHARP under considerable variation in line voltages.

REQUIRES NO re-engineering of present television chassis... NO added high voltage focus circuit . . . NO added receiver tubes . . . NO additional components except an inexpensive potentiometer or resistor.

FOCUSES by using D.C. voltage already available in the receiver.

ELIMINATES focusing coils and magnets . . . saves critically scarce copper and cobalt.

This new Rauland development is now available in substantial quantities in 17 and 20 inch rectangular tubes. For further information, address. . .

THE RAULAND CORPORATION

Perfection Through Research 4245 N. KNOX AVENUE. CHICAGO 4I. ILLINOIS

termine to which channel the receiver should be tuned for accommodating the converter output. The channel to which the converter output is tuned is stamped on the back of the converter chassis. In instances where a strong VHF signal is received by the TV receiver on the channel to which the converter output is set the other channel should be employed. Shifting the tuner output 6 megacycles to fall on the unused channel is accomplished by adjusting L7 located on the back of the converter chassis for best picture.

A schematic for the General Electric Model UHF-101 Translator is shown in Figure 9. A high pass input filter for rejection of VHF signals is incorporated. Following this is an RF preselector circuit for achieving a high degree of selectivity consistent with passband requirements. Preselection aids in image rejection, and reduction of cross modulation in the mixer caused by strong UHF signals. The output of the RF tuned circuits is fed to a crystal mixer type 1 N72.

A low level injection voltage obtained from a type 6AF4 oscillator tube provides crystal excitation to effect frequency conversion. The local oscillator is designed to operate below that of the incoming signal, thus providing the correct relationship between video and sound carriers to the VHF receiver.

From the crystal mixer the converted signal is applied to an IF amplifier circuit designed for low noise characteristics and employing a type 12AT7 dual triode tube. The input triode section is a cathode driven grounded amplifier. An inductance in the first triode output is adjustable for shifting the signal 6 megacycles to cover either channel 5 or channel 6. The second triode section functions as a grid driven amplifier supplying balanced push-pull output to a coupling transformer. The secondary of the coupling transformer is connected through appropriate switching for providing an IF signal to a VHF receiver.

The power supply consists of a power transformer for providing converter filament voltage and higher voltages to a voltage doubler type rectifying circuit. A switch in series with the primary of the power transformer applies power to the converter power transformer and to the AC receptacle on the converter chassis. This switch is closed when the function switch is in "VHF, UHF and Light" position.

Figure 10. Sarkes Tarzian Type TT16 Tuner.

Therefore, in VHF position the converter filaments are lit. A warm-up period then is not required when switching from VHF to UHF position.

Another switch operated by the function control is in series with the high voltage secondary winding and remains open on VHF position, removing voltage from B+ circuits in the converter. In "VHF, UHF and Light" position the switch is closed, thus applying $B+$ to appropriate circuits.

We wish to acknowledge the cooperation of the General Electric Company in supplying us with data which was used in this presentation.

SARKES TARZIAN UHF TUNER UNITS

A method for the inclusion of UHF in the tuner without sacrificing any of the VHF channels now required has been developed by Sarkes Tarzian. This new tuner type TT16 shown in Figure 10 is essentially a VHF tuner that has three additional positions for UHF reception.

The input circuit of the TT16 tuner is very similar to that used in Tarzian's latest VHF tuner.A 6AK5 is used as the RF amplifier and a 6X8 as the mixer-oscillator tube. The 6X8 is a combination triode-pentode tube and was especially designed for this application. Through the use of this tube a high conversion gain can be obtained with a low noise figure. In order to provide the additional switch positions for UHF, a 16 position switch is used instead of the 12 position switch. This provides for service on the twelve VHF channels and three UHF positions, while the sixteenth position has no tuning significance and is not used. The reason for the three UHF positions will be explained later

For operation in conjunction with the TT16 tuner a separate UHF tuner is employed. The UHF tuner itself is continuofisk tunable over the entire UHF range from 470 to 890 megacycles. A threesection tuning element is employed, two sections for bandpass input and the other for oscillator tuning. A type 6AF4 is used as a local oscillator. This tube is a triode which was specifically designed for use as an oscillator in UHF receivers. A crystal is used as a mixer, the output of which is fed to the proper terminal in the TT16 tuner. This system is not of the double conversion type. Therefore the output of the mixer is an intermediate frequency signal for a 41 megacycle IF system.

The versatility of the TT16 tuner is illustrated by the fact that switching to one of the two UHF positions located between channel 2 and channel 13 position changes the TT16 tuner to a low noise 41 megacycle amplifier. Compensation, therefore, is provided by the IF amplifier for conversion loss of about 9 db , resulting from the use of crystal mixer in the UHF tuner. A signal, then, is provided to the receiver's IF stages of a level that is comparable to that normally available during VHF reception.

Physically the UHF tuner is designed to mount on the television receiver usually above the TT16 tuner by means of brackets. B+ and filament supply voltages for the UHF tuner are available from terminals on the TT16 tuner.

If the TV receiver conies equipped with a TT16 tuner, it is possible to install a UHF tuner in the field.

Additional controls are not required to operate the UHF tuner. A pulley arrangement between the fine tuning shaft of the TT16 tuner and the UHF tuning shaft permits tuning of either unit from a conmmon control.

The TT16 is supplied for either 21 or 41 megacycle IF systems. For 21 megacycle $1 F$ systems double conversion is employed. The UHF tuner then provides a 130 megacycle output to the TT16 tuner. Switching the TT16 to the UHF position located between channel 6 and channel 7 changes the TT16 tuner to a 130 megacycle amplifier. In this position a double superheterodyne system is used for providing a tuner output at 21 megacycles for receiver IFs operating at this frequency.

There are several reasons why a double conversion system is used when a 21 mc IF system is employed. One is the fact that considerable "pulling" is exerted upon the oscillator since it is operating so near the incoming signal. If the oscillator "locks in" with the incoming signal, no output is obtained.

Another very important disadvantage to the use of a 21 mc IF in a UHF receiver is the loss of selectivity. By providing a 130 mc IF signal out of the UHF tuner, both of these disadvantages are overcome. This signal is then accepted by the VHF tuner and converted to the $21 \mathrm{mc} I F$.

Another UHF approach taken by Sarkes Tarzian was the development of a single channel pretunable tuner unit. Designed for installation in receivers employing a TT16 tuner in areas where only a single UHF station is available, its particular merit lies in its simplicity and moderate cost. It may be connected on the back of the receiver with supply voltages provided from terminals on the TT16 tuner. A photograph of this UHF unit is shown in Figure 11. The output of this UHF unit is accommodated by turning the TT16 channel switch to one of the UHF positions between channel 2 and channel 13 . With the unit pretuned at the time of installation, operation is automatic and is governed by the TT16 channel selector switch. The two UHF positions between channel 2 and channel 13 make it possible to accommodate the output of two pretunable UHF units should it be desired to receive either of two available UHF stations. This unit, designed for full UHF performance, is offered in two models. One model is available for receiving signals in the lower half of the UHF band,

Figure 12. Sarkes Tarzian Single Channel UHF Tuner Unit with Self Contained Power Supply.
while the other model provides reception from stations lying in the upper half of the band.

Another version of the pretunable UHF tuner unit is one containing its own power supply. This unit is shown in Figure 12. It is designed to have equal performance to the above described units.

It is claimed that a number of variations are possible with the tuning devices described. It is further understood that the TT16 tuner and associated UHF unit are adaptable for specific requirements. In these instances simplification of the TT16 tuner is possible for providing the desired service by limiting the channel selector switch to twelve VHF positions and only one UHF position.

We wish to acknowledge the cooperation of the Sarkes Tarzian organization in supplying us with data which was used in this presentation.

STROMBERG-CARLSON UHF CONVERTER

A UHF converter developed by the StrombergCarlson Company provides full 70 channel UHF tuning. This converter is designed to operate on all Stromberg-Carlson television receivers as well as the modern designs of other manufacture.

Physically, the unit shown in Figure 13 is contained in a cabinet styled in green leatherette and measures $8^{\prime \prime}$ wide, $4^{\prime \prime}$ high and $6^{\prime \prime}$ deep. Figure 14 shows a top chassis view of the converter unit. The weight of the unit is $5-1 / 2$ pounds and the power consumption is about 10 watts.

Figure 13. Stromberg Carlson UHF Converter.

Figure 14. Chassis View of Stromberg UHF Converter.
Setting up the converter for operation is performed by a few simple procedures. The AC plug to the VHF receiver is inserted in an AC receptacle at the back of the converter unit. Then the AC cord to the UHF unit is plugged into an AC wall socket. The lead from the UHF converter marked "TV Input" is connected to the VHF receiver antenna input terminals, after first disconnecting the VHF antenna. The VHF antenna is connected to the UHF converter terminals marked "TV Antenna." During the converter installation it should be determined whether channel 5 or 6 on the VHF receiver will be used to receive the converter output. Since adjacent channels in any one metropolitan area will not be occupied by TV stations the non-used channel should be employed to pick up the converter output. If signals are normally obtained on both channels, select the channel with the weakest signal. A switch at the rear of the
converter is used to shift the IF output 6 megacycles to accommodate either channel 5 or channel 6 . This is accomplished without loss of tracking since the preselector circuits are designed for a bandwidth of 12 megacycles.

With the converter set up for operation the power switch on the TV receiver may be left in "ON" position and power to both converter and receiver is controlled by the converter "OFF-ON" switch.

The following combinations are then provided by the three position function switch on the front of the converter unit:

In "OFF" position power to both converter and TV receiver is turned off.

In "VHF" position power to the TV receiver is turned on, the VHF antenna is connected to VHF receiver and filament voltage to the converter tubes is provided.

In "UHF" position power is turned on for both TV receiver and converter with a choice of either UHF antenna, VHF antenna, or built-in cabinet antenna, depending upon signal conditions.

A schematic of the Stromberg-Carlson UHF converter is shown in Figure 15. The UHF signal, from a balanced 300 ohm line connected to the converter input terminals, is capacitively coupled to a double tuned preselector circuit.

Inductive padding is employed in both the antenna and mixer circuits to provide the desired tuning range. Required bandwidth of 12 mc in the preselector is provided by a combination of high-side capacitive and inductive coupling between the antenna and mixer tuned circuits. Grounding of the low fre-

Figure 15. Schematic of Stromberg Carlson UHF Converter.
quency ends of the antenna and mixer tuned lines and grounding of the rotor contacts in the antenna section eliminate spurious suckouts within the band.

A crystal mixer type 1 N 72 is capacitively coupled to the mixer tuned circuit. The oscillator injection voltage is also fed to the crystal mixer.

The local oscillator is a type 6AF4 designed especially for UHF duty. A fixed series trimmer capacitor effectively establishes the low frequency end of the tuning range, while the total range and high frequency limit is controlled by a series inductance consisting of the plate and grid leads. Adjustment of this inductance is performed by varying the spacing between the two leads. Dissimilar chokes are employed in the cathode and ungrounded heater leads while resistors are used in the plate and grid return circuits. Grid-plate socket capacity is minimized through the use of a special UHF low capacity socket, thus preventing bypassing of the tuned circuit.

It is said that warm-up drift which depends somewhat upon individual tubes is nearly complete after about one minute of operation. Using the lowest possible plate voltage consistent with reliable performance also aids in minimizing warm-up drift. Shielding of the oscillator and tuned circuit, plus the low oscillator plate voltage reduces oscillator radiation.

The conversion loss of the crystal mixer is compensated for by the use of a low noise cascodecoupled amplifier. The cascode, amplifier circuit employing a type 6 BQ 7 consists of a cathode-grounded, grid-driven, neutralized triode section followed by a
grounded grid triode amplifier stage. Full 12 megacycle bandwidth is provided by the cascode amplifier input and interstage circuits. In the output triode however the plate circuit is designed for 6 megacycle bandwidth.

Shifting of the 6 megacycle bandwidth IF signal to fall on either channel 5 or channel 6 is accomplished by a slide switch. Actuating this switch connects a small capacitor from the $\mathrm{B}+$ end of the output plate coil to ground. Setting this switch for the desired channel is made at the time of installation and should not require fur ther attention.

Balanced output of the converter eliminates the pickup of interference in the lead from the converter to the television receiver.

The use of a self-contained power supply adds to the utility of the converter. The power supply consists of a selenium rectifier connected in a halfwave rectifier circuit, a surge limiter resistor and an RC filter network. A filament winding supplies 6.3 volts to the pilot light and tubes.

The low side of the power transformer secondary winding is connected to a wafer on the range switch. Thus with the range switch in VHF position the filaments in the converter receive power while the $B+$ is disconnected. Switching to $U H F$ position connects the $B+$ circuit making UHF reception available immediately without a time lag to allow for tube warmup.

We wish to acknowledge the cooperation of the Stromberg-Carlson Company in supplying us with technical data which was used in this presentation.

HOME RECEIVERS -
AUTO RECEIVERS - T.V. SEIS
INTER-GOM. SYSTEMS
OUTDOOR THEATRES
Engineered for the replacement and public address fields, Quam Adjust-A-Cone Speakers are offered in a complete line of EM and P.M. Speakers in the following sizes: $31 / 2^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, 5 \frac{1}{4} 4^{\prime \prime}, 6 \frac{1}{2 \prime}, 7^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}, 4^{\prime \prime} \times 6^{\prime \prime}, 5^{\prime \prime} \times 7^{\prime \prime}$ and $6^{\prime \prime} x 9^{\prime \prime}$. Public Address P. M. Speakers in $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ sizes with 6-8 Ohm Voice Coil Impedance. Coaxial Speakers in $12^{\prime \prime}$ and $15^{\prime \prime}$ sizes. Television Speakers in $5^{\prime \prime}$, $4^{\prime \prime} \times 6^{\prime \prime}$ and $6 \frac{1}{2} 2^{\prime \prime}$ sizes with 62 and 95 Ohm Field Resistance, and 3.2 Ohm Voice Coil Impedance. Special Field Resistances supplied promptly when T.V. circuits demand it.

FOCDMUR

trade mark

FOR REPLACEMENT OF WIRE WOUND FOCUS COILS

The perfect units for replacement or rebuilding television sets for larger tubes, now used as original equipment in many leading sets. The Quam Focalizer* Unit provides sharper focus of the television picture and is unaffected by temperature and voltage fluctuations. No wiring required. Kits are available for anode voltages up to 12 KV and for 12 KV and up, and are furnished complete with centering handle and mounting plate for easy and simple installation.

In the Interest of... Quicker Servicing

by GLEN E. SLUTZ

Alignment Tools and Gadgets

Here are a few simple aids which make alignment work a little easier. Some of these aids can be purchased ready-made and others can be very easily constructed from available material.

The local oscillator is always a problem in IF alignment procedures, since it is usually best to have it inoperative. In the case of a separate oscillator tube, this can be accomplished simply by removing the tube. Many present day sets however, employ a double triode tube as mixer and oscillator together, the type 6 J 6 being a very common tube for this purpose. Figure 1 shows a 6 J 6 that has had pin No. 1 removed; this pin is the plate connection to the triode section which is most frequently used as the oscillator. Its removal stops the oscillator without interfering with the normal operation of the mixer. When using this tube, care must be taken to align the remaining pins with their corresponding socket openings, because with a pin missing, a miniature tube can be inserted incorrectly. Still another way to interrupt the oscillator without actually removing a pin and thus permanently damaging a tube is to paint the pin with a little nail polish which will act as an insulator. However, when the tube is to be used very often in different sets, the nail polish will wear away quickly and have to be replaced, so it is advisable for service work to remove the pin entirely.

Figure 1. Dummy Converter.

Figure 2. Ungrounded Shield for Dummy Converter.
Another handy article, for use with the dummy converter tube described above, is a metal shield for the tube which will not contact the chassis and to which a signal generator lead can be easily connected. The shield will take on the qualities of a capacitor and act to couple any signal placed upon it to the electrodes within the tube. Such a shield is shown in Figure 2. The shield should be one which will fit snugly in place about the tube so there is no problem of it sliding down and making contact with the chassis.

The pictured shield was made from a standard shield of ribbed, over-lapping construction commonly found in many receivers. It was shortened to approximately $15 / 16$ inch in length by snipping the excess off the bottom of the shield. Then a small length of stranded, bared wire was doubled over, twisted, and soldered to the shield near its top. This wire served as a connecting post for the signal generator clip lead. The use of this shield simplifies the capacitive coupling of a signal directly into the mixer without the introduction of loading problems which might affect the frequency response of the mixer plate circuit.

A third item, shown in Figure 3, is useful in some alignment procedures where a dummy antenna is called for. This dummy antenna usually consists of a capacitor placed in series with the signal generator lead and the test point in the receiver under investigation. It serves to isolate the generator from any DC voltages which might be present at the test point. Its value is not particularly critical; a mica or a ceramic of some value between 0.001 and 0.01
 ceiver, due to use. Hickok tube testers are the only instruments to contain the dependable completeness of test necessary to accurately pick out below normal tubes. All tubes that the Hickok testers reject should be replaced to bring the receiver back to its manufacturer's standards.
We have continued to stand on the accuracy of our Hickok 533 and 534 A shop testers for any tube test, so we decided to invest in another Hickok to build our income with increased "house-call" business. We chose the Hickok 605 tube tester because of its multimeter. For $\$ 12.70$ more than the standard Hickok we got a built-in multimeter with a vacuum tube recti-
fier which is better than any other V.O.M. we could buy separately; even up to $\$ 50.00$ as it will also measure capacitance The complete Hickok 605 cost $\$ 167.70$. With it we replaced 235 tubes in the first week of part time use. The profit on these tubes alone covered the cost of the 605 and gave us an additional small income on top of it. Our new, fast and accurate service has added many customers by way of recommendation, as well as a healthy increase in our shop service on more complete jobs.

As a special note, we have been averaging over 200 tubes a week ever since."

THE HICKOK ELECTRICAL INSTRUMENT COMPANY

Figure 3. Dummy Antenna.
mfd. is suitable. An alligator clip is soldered to one side of the capacitor as shown. In use, the alligator clip connects to the test point and the signal generator lead connects to the other side of the capacitor.

The gadget shown in Figure 4 is simply a mica capacitor with alligator clips on its two terminals. Its value can be anywhere between 500 and 5000 mmfd . When the capacitor is connected across the input to the oscilloscope, the marker pips used with response patterns show up much more clearly and sharply. That is because a marker pip is produced by the beat between the marker frequency and the varying frequency of the sweep generator. The point of special interest to the viewer is where the sweep frequency is equal to or very close to the marker frequency. The beat then will be a null or at least a very low frequency. The beat becomes progressively higher in frequency the further away the sweep is from the marker. These higher beat frequencies are of no interest and may be shunted from the oscilloscope by the mica capacitor while the null and lower beat frequencies remain visible as a sharp pip on the screen.

Figure 4. Capacitor for Sharpening Marker Pips.

Figure 5. Tuning wand for Touch-up Adjustments.

A tuning wand, shown in Figure 5, is useful when touching up alignment adjustments to obtain a desired shape in the response pattern. The wand consists of a molded plastic rod with a small brass tip on one end and a powdered iron tip on the other. The insertion of the iron tip into the core space of an IF transformer has the same effect as turning the adjustment slug clockwise into the transformer; it increases the inductance of the tuned circuit, thereby decreasing the resonant frequency of the transformer. The opposite effect is produced when the brass end of the wand is moved into the transformer. The inductance decreases and the resonant frequency goes higher. This is equivalent to actually turning the adjustment slug out of the transformer. The wand provides the serviceman with a means of determining which adjustment will shape the pattern correctly, and he can do this without disturbing the existing alignment of the receiver.

In addition to these articles there are, of course, the standard alignment tools with which most servicemen are familiar. These consist principally of a wide variety of insulated screwdrivers. The serviceman would be wise to have on hand a representative selection of these screwdrivers.

Vertical Deflection Troubles or No?

Some trouble-makers are hard to locate in a television receiver, as we all well know. The indication in one particular set was that the vertical deflection section was not operating properly. Soon after the set was turned on, broad, white, horizontal bars flashed intermittently over the picture. What appeared to be a vertical fold-over at the bottom half of the picture showed at intervals. The vertical sweep circuits were checked thoroughly. Nothing seemed to be wrong there. Still the picture gave every indication of trouble in the vertical sweep somewhere; in fact, the picture appeared to partially collapse at times. The trouble was finally located in a video IF amplifier as shown in Figure 6. The 6AG5 had a heater-to-cathode short. The 60 cycle hum voltage was impressed between cathode and ground and modulated the tube. If the cathode of the tube had been grounded, the effect of the heater-tocathode short would have been much less pronounced and might not have bothered the vertical sweep section. But the trap and the cathode resistor provided a load for the hum voltage, causing a greatly amplified hum output to the picture tube and to the sync circuits.

MILLIONS OF "SAFE CENTER" SELETRON RECTIFIERS IN USE IN RADIO AND TV!

- |Seletront-
 SELENIUM RECTIFIERS

When you specify Seletron "Safe Center" Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center contact point. Assembly pressure, or pressure applied in mounting the rectifier cannot affect its performance-a Seletron feature accomplished by deactivating the area of the plate under the contact washer.
The millions of Seletron Selenium Rectifiers in satisfactory service as original equipment in the products of leading manufacturers are millions of reasons why you can specify Seletron and be safe!

Consult your local jobber!

(\dagger) This rectifier is rated at 25 Mounted ${ }^{\prime \prime}$,overall: $2^{\prime \prime}$ when used with a 47 ohm series resistor

RR seletron division RR BADIO BECEPTOR COMPANY, Inc. Salos Deparimont: 251 Wost 15th Slop Now York II, W. Y. Factory: 84 Morth 9th Sh, Brooklyn II, M. Y.

PORTABLE PRECISION TV TESTING INSTRUMENTS by OAK RIDGE

Q(2)

New OAK RIDGE "CATHETTE",

 MODEL 106
CATHODE RAY TUBE TESTER

An exclusive OAK RIDGE development. the "Cathette" is designed to check Cathode Ray Tube in Set, under actual operating conditions - Checks all magnetic focus and deflection type Cathode Ray Tubes. - Clieckr electron gun and hi-voltage anode.

- Checks leakage in gun or anode.
- Special inter-electrode conductance tube circuit.
- Easy to read callbrated D.C. Voltage scales ($0-500 \mathrm{~V}, 0.15 \mathrm{KV}$)
- Easy to read tube test scales
- Supplifed with duo-decal plug and socket. (Special adajtors available as accessorles)
- Pocket size ($51 /{ }^{\prime \prime} \times 37 /{ }^{\prime \prime} \times 21 /{ }^{\prime \prime}$). Net Cost $\$ 29.95$

"SYNCHRO SWEEP" MODEL 104

A NEW INVENTION FOR TELEVISION TESTING. widely en dorsed by leading Service organizations, jobbers, technical schools, etc. It's the only instrument to supply own sync pulses and sweep saw tooth voltages for signal tracing sync and sweep circuits. right on the spot. with or without test pattern, scope. or bench equipment! Also provides bar pattern or $5 \% \times 4 \times 21 /$ "

"DYN-A-TUBE'"

Model 107 DYNAMIC TYPE
TUBE TESTER
"Smallest in the
Net Cost
$\$ 4.5$

A Dynainic,
A Dynainic, not emission, type tester. Tests tubes under actual operating conditions. Versatile switching permits check of all types of radio. TV, etc., recelving tubes. Accommodates all octal, loktal 7 pin and 9 pin miniature tubes. Adaptors available for other bases. Pocket size: ($51 / 2{ }^{\prime \prime}$ x $37 /$ " $^{\prime \prime} \times$ $21 / 6^{\prime \prime}$). Complete with tube chart.

Net Cost

COMPLETE PORTABLE TV TEST LABORATORIES

MODEL A-100 - Rusger! mobile testing outht. Sturdily constructet, complete witli table brackets. Conlains Molel 101 Substitution Tester, Morkel 102 Vigh Voltave
Tester, Morlel 103 Sirnal GenerTester, Model 103 Sianal Gemerator, and Model 104 "SyncroSwepp." Each ['nit individually Net \$122.40
MODEL B-100 Similar to ahove but contains Morlel 101 Sulostitution Tester, Model 103 Sirnal Generator, Moslel 104 "SyneroSweep," and Model 105 Multitester. Nef \$143.50

20,000 OHMS PER VOLT MULTITESTER
 MODEL
26,0 MV
Vits.
105
Hi-VoltaLe

MODEL 102 HIGH VOLTAGE METER (not illustrated) has 3

SUBSTITUTION TESTER
MODEL 101
Indispensable for speedy
on-the - job testing. Has
test speaker with volce
coil and transformer connections; range of resis-
tors, papers, ceramicon, electrolytic condensers,
variable potentiometer. Can also be used as audio
signal tracer for Television and Radio! Bakelite
Case, $5 \% \times 4 \times 21 / 4$.
Net Cost

Minlature and rug ged, with separate lation output control and extreme dial accuracy. Lorates trouble in minutes, from antenna to Ceth ode Ray Tube, and speaker. This marvelously compact instrument is packed with features to make Television servicing easier, faster and more proftable. It's a "must" for successful servicing of TV sets in the home. Bakellte Case, $5 \% \times 4 \times 2 \mathbb{K}^{\circ}$ Not Cost

Audio-Facts

by Robert B. Dunham

Figure 1. Top View of Completed Units.

The Williamson Amplifier has become one of the most popular and well-known audio amplifier circuits since its introduction by D. T. N. Williamson in the April and May 1947 issues of Wireless World. The complete commercially built amplifier is available as well as kits and basic components especially designed by major manufacturers for this circuit. Since it is so popular, it no doubt would be worth while to become familiar with its adjustment and operation, as most of us will encounter it sooner or later in installation, repair, construction, or just plain or fancy discussion.

The circuit is basically simple (Figure 2) using triode connected beam power output tubes, an output transformer built to rigid specifications, negative feed-back, push-pull "driver" stage with the first voltage amplifier stage direct-coupled to the "cathodyne" or "kangaroo" phase inverter.

The original circuit used British type KT66 beam power output tubes. Various type tubes have been used to replace the KT66's with, in some cases, a resulting loss in power and increase in distortion, just how much or how little depending upon the type used. The 807 seems to be the most popular with the 1614, 5881, and various other types also employed.

One of the first and best known adaptations of the circuit is the "Musician's Amplifier" as constructed and described by David Sarser and Melvin C. Sprinkle in the November, 1949 is sue of Audio Engineering. Their amplifier uses 807 output tubes and American made transformers.

The Radio Craftsman C500 Ultra-Fidelity Audio Amplifier (Figure 3) is an excellent example of a commercially available high quality amplifier based on the Williamson Circuit. Two British made type KT66 tubes are used in the output stage with two - Please turn to page 71

Figure 2. Schematic Diagram of Basic Williamson Amplifier.

Sts... KESTER

FLUX-CORE SOLDER

IN DEMAND and used by the manufacturers of original equipment Best for you, what could be better . . . Kester Rosin-Core, "ResinFive" and "Specialized" Solders! KESTER SOLDER COMPANY 4201 Wrightwood Ave., Chicago 39 Newark 5, N, J. - Branlford, Can.

Keste:
SOLDER

SERVICE-TECHNICIANS...

Here's the answer to TVI complaints

A Drake High Pass
Television Interference Filter

. . suppresses
low frequency signals, disrupting video and audio receplion, originating from:

Amateur Radio Transmitters Shortwave Broadcast Stations Shortwave Police Xmbrs X-roy and Diathermy Industrial R. F. Heating Neon Lights, Appliances, etc.

M-derived, 2 -section filter, Each side of lead-in is filtered separately. Easily installed in the Antenna Lead-in, the R. L. Drake High Pass Filter protects the I. F. and Video circuits by attenuating all signals from zero to 50 MC . entering the TV set through the antenna system. No tuning required.

TV-300-50HP for 20 Mc |F- 300 ohm. . . $\$ 5.95$ List TV-300-54HP for 44 Me IF- 300 ohm. . . 6.95 List TV. 72-50HP for 20 Mc IF- 72 ohm . . 5.95 List

A Drake LN- 5 INDUCTUBE

Not a capacitance-inductance type filter. Due to special R. L. Drake "Inductube" elements used in LN-5, no resonant-frequency exists which could limit filtering action, even in new UHF TV band. Simply plugs into power outlet at receiver. Attenuates interference over wide range of frequencies. 115 volts- 5 amps.-In enameled, copper-clad steel case with UL approved cord. \& plug attached.

Stocked by more than 700 distributors in U.S.A.
Write R. L. Drake today for free literature on any or all of the above filters.

R. L. Drake Company
 11 Longworth Street - Dayton 2, Ohio

See page 24, Nov-Dec PF Index for additional information on Drake filters.

Dollar and Sense Servicing

J ABBERS. When you see a factory photo showing a lady holding her soldering iron the way a serviceman holds it, chances are 100 to 1 the shot was posed to look pretty. Soon as the photographer gets out of her hair, the gal will grab her iron like a potato niasher and jab down at the joints the way she was trained by modern methods engineers. It's nothing for these girls to solder half a dozen complete joints and hook in a few wires to boot in less than a minute on a moving-belt assembly line.

BELLS. Emerson's three-way portable assembly line is both a revelation and a nightmare to an engineer seeing it for the first time. Every twenty seconds a loud bell clangs and the head girl starts a new empty chassis down the line. At the sound of the bell, eachgirl on the line is theoretically supposed to pass her set on to the next, though there is a spare chassis or two between operators to take care of contingencies. This is probably the shortest time cycle in the business, yet each girl does her assigned number of joints efficientiy and happily, unmindful of the clangs. How many men could stand the gaff of working on some 1,400 different sets a day?

BURBLES. A public-address system fed by an audio oscillator that is rapidly varied between about 9,000 and $11,000 \mathrm{cps}$ is highly effective in discouraging flocks of starlings from roosting on buildings or on trees where they are a nuisance, according to Audubon Society of Detroit. Strategically located speakers and a substantial power output level keep the birds on the wing. For more information on this ultrasonic scarecrow, see the item on page 52 of November Radio-Electronics.

ILLEGAL. Though it's quite all right to cut your own records or make tape recordings off the air, selling them is another matter. In a recent decision, the New York Supreme Court ruled against a record dealer who cut master plates of every Saturday afternoon Metropolitan Opera broadcast, stamped out a lot of records and sold them cheap. The Opera Association didn't like this because the records were poor and made the music sound bad. Columbia Records didn't like it either, because they had contracted for exclusive record rights.

THOUGHT. The man who trusts men will make fewer mistakes than he who distrusts them. - Cavour

PRISON TV. In the Houston jailhouse, police are testing an industrial TV setup which allows them to watch on a desk television receiver the prisoners in their cells. Since there's a mike alongside each camera, no prisoner can even swat a fly without being seen or heard.

UNDERSEA TV. Identifying sunken ships is TV's newest job. In searching for the sunken submarine Affray, lost during a practice dive, and using underwater sounding equipment, the British Navy located many ocean-bottom wrecks. At each site, a portable water-tight TV camera having remote controls and powerful floodlights was lowered over the wreck. Several weeks of searching brought success, as viewers on board the rescue ship read the name "Affray" on wreckage 250 feet below them.

FORECAST. For 1952, not over 4 million more TV sets, according to NPA Electronics Division director E. T. Morris, Jr. For 1951, actual production was about 5 million, and for 1950 about 7.4 million.

UNFREEZE. Legal machinery for granting TV station permits is now expected to start grinding sometime in February 1952. First to get go-aheads will be small communities where there is relatively no competition for available VHF channels. In major markets like Portland, Denver and El Paso, decisions are a long way off because competition for available channels will mean long-drawn-out hearings. Alert service organizations with experience, trained personnel and business know-how are now planning establishment of branches in communities that'll soon be getting their first TV.

LICENSING. New York city council passed TV service licensing bill November 13th, setting fees ranging from $\$ 5$ to $\$ 25$ per year for technicians, service dealers and contractors. Commission of 8 members will administer bill and regulate licensing qualifications. Date for initiating license examinations for technicians is November 1952, according

SPRBAGUE TELECAPS ${ }^{\text {t }}$ outperform and outlast other molded tubulars

Actual, on-the-job performance proves the superiority of Sprague "Black Beauties" beyond question. To find the secret that explains just why they're so much better, however, you've got to see inside of a Telecap itself.

The big feature is that every Sprague Telecap is molded into its sturdy Bakelite phenolic shell while its windings are still $d r y$. Any chance of contamination by moisture or dust during manufacture is avoided. After molding, the capacitor is vacuum-impregnated with mineral oil through a tiny eyelet. The lead is then inserted, the terminal is solder-sealed-and you have a capacitor that has maximum resistance to heat and moisture...extra high insulation resistance and superior capacitance stability. In short, a capacitor that brings you preminm quality at no extra cost!

And that's the secret behind the fact that Sprague Telecaps are more widely used by leading television set makers... and why they're first choice of service technicians who value their reputations for good work! Write for "Telecap" Bulletin. It's free!

SPRAGUE PRODUCTS CO.
000 Marshall Sireet
NORTH ADAMS MASSACHUSEITS

BLACK BEAUTY

CILECMO
TELEVISION'S MOST WIDELY USED MOLDEDTUBULARS

...still way out in front of 'em all!

The Sprague Type TVL TWIST. LOK was the first electrolytic con. denser to be built especially for TV applications.
Imitated but not equalled, it still has not been approached in quality and dependability.
Made to stand up under the tough. est conditions, the Twist-Lok Capacitor is the one electrolytic you can count on under sizzling $85^{\circ} \mathrm{C}$. heat, surges, and high ripple currents.
More Twist-Loks are used in original equipment than those of any other brand. And servicemen prefer Twist-Loks by a wide margin, too!

Insist on getting genuine Sprague Twist-Lok Capacitors from your jobber. They insure profitable, callback free service!
For the complete TV set by TV set listing of Twist-Loks, get the new brown-covered 4th Edition of the Sprague TV Replacement Manual FREE at your jobber. Or send 10 to Sprague to cover mailing costs.
SPRAGUE PRODUCTS COMPANY
00 Marshall St.
North Adams, Mass.

TWIST-LOK ${ }^{\circ}$ LYTICS
KEEP TV SETS WORKING RIGHT

admiral-Cont.	ADMIRAL-Cont.
Models $26 \times 55,26 \times 56$,	Models $221 \mathrm{K16}$, 221 Kl 16 A
26×57 Tel. Rec. 103 (See Ch. 2401)	Tel. Rec. (See Ch. 2\|F1)
Models $26 \times 554,26 \times 564$,	Models $221 \mathrm{~K} 26,221 \mathrm{~K} 28$
$26 \times 57 \mathrm{~A}$ Tel. Rec.	Tel. Rec. ISee 2
	Ch. 21 F11, 221 k 36135
26×67 Tel. Rec.	Tel. Rec. ISee
15ee Ch. $24011 \ldots \ldots 103$	Ch .21811 , 2.13135
$26 \times 67 \mathrm{~T}$ Tel. Rec.	
(5ee Ch. 2181) . . . 1118	Ch. 1 18i)
orets 26x75, $26 \times 776 \mathrm{Tal}$.	Model 320 R 25 (Ch. 21ii)
lseec	Tel. Rec. ISee
Tol. Rec.	
(See Ch. 2181)...... 1118	Tel. Rec. (See
Models 27 K 12 Telil Rec.	Ch. 2181
(See Ch. $21 \mathrm{Fl1)}$...... 135	Models 321 FIS 32 IF 16.
	321518 Tol. Rec.
B Tel Rec.	(See Ch. 21 F1 Set 135
(See Ch. 21F1)...... 135	Models 321 F27 Sel. Rec.
Models 27K23, A, ${ }^{\text {a }}$,	(50e Ch. 21Fl Set 135
${ }^{27 \mathrm{k} 28,4, ~ 8, ~ 27 k 27 .}$	ond Ch. 502 Set 1181
As B Tel. Rec.	odels 321F35, 321 F 36
15ee Ch. $21711 . \ldots \ldots .135$	d,
odels $27 \mathrm{~K} 35 \mathrm{~S}, \mathrm{~A}, \mathrm{~B}$	(See Ch. 21F1 Set 135
	and Ch. 502 Sel 118)
(See Ch, 21 Fl)	Models 321F46, 321F47,
	3215
Rec. (See Ch. $2171 . .135$	(See Ch. 21F1 Set 135
	and Ch. 502 Sel 118)
$29 \times 17 \mathrm{Yel}$. Rec.	321F65, 321F66, 321F67
Modeo ${ }^{\text {che }} 29 \times 25.29 \times 26.103$	(Ch. 21N1 ond Rodid
Models 29×27 Tol. Rec. 29	Ch .5021 (for TV
(See Ch. 2401 1). 103	Chassis see Ch. 2151 ond
odel 29×254 Tail. Rec.	156-2; for Rodio Chossis
(See Ch. 2181),	see Ch. 2181, Sel [18]
(See Ch, 2181)..... 118	
Models 30A12, 30A13	(See Ch. 21Fl Set 135
(5 or SN) Tel Rec.	and Ch .3 Cl Set 117)
(See Ch. 30A1)..... 57	odel 321 K 27 Tel. Rec.
-odels 30A14, 30415.	(See Ch. 21 Fl Set 13
	and $\mathrm{Ch} .3 \mathrm{3Cl}$ Sel
ceivers (see Ch. 3041). 57	Models $321 \mathrm{~K} 35,321 \mathrm{~K} 36$
(edels 30815,30816 ,	Tel.
Tel. Rec. (See Ch, 3081) 71	(See Ch. 21 Fl Sel 135
Models 30C15, 30C16,	Models $321 \mathrm{~K} 46,321 \mathrm{K47}$,
30 C 17 (S or 5 N)	321 K 49 Tol . Rec.
Tel. Rec. (See Ch. 30	15 ee Ch. 21 F1 Set Set 13
dels 30 F 15 ,	and Ch. 3C1 Set 177
	aermotive
Models $32 \times 15,32 \times 16$ Tel.	181.AD 12
Rec. (See Ch. 20x	airadio
Models $32 \times 26,32 \times 27$ Tel.	SU.410 .a......... 11-1
Rec. Stee Ch. 20×1	SU-52A, B, C (Recelver)... 13-2
and SB2] 100	TRA.14, B, C (Transmither) 13-1
Models $32 \times 35,32 \times 36$ Tel.	3100 37-1
Rec. See Ch, 20xt	AJRCASTLE
Models $34 \mathrm{R15}$, A, 34R16,	C. 300 136
A Tel. Rec.	OM. ${ }_{\text {O }}^{\text {EY }} \mathbf{7 6 0}$
(See Ch, 20r1)......	
	Q.516, 6.518 48
Models 36R45, 36 R46 Tel.	
Rec. Isee Ch. $21811 . . .118$	
Models 36×35, 36x36,	
${ }^{36 \times 38} \mathrm{Ch}$. 2401 Rel (5 et 1031	
and Rodio Ch. SE2	
[Set 1001]	PC. 8 , PC-358 99ー1
Models $36 \times 354,36 \times 364$,	PM.78 ${ }^{\text {P }}$ (.......... 100
36×374 Tel. Rec. (See	PM. 358
Ch. 2401 (Set 1031 ond	PX 3 . $\ldots \ldots \ldots \ldots \ldots \ldots$. ${ }^{\text {13-35 }}$
Models $37 \mathrm{FL} 5, \mathrm{~A}, \mathrm{~B}_{\text {, }}$	
37 Fl 6 , A B Tel. Rec.	${ }_{\text {REVV249] }}$......... 127
(See Ch. 21F1 Set 135	SC-448
and Ch, 5D2 Set 118)	T0.6 …........... 103 -3
Models, 37F27, $\mathrm{A}_{\text {a }} \mathrm{B}$	WEU-262 91-1
$37 \mathrm{F28}$, A ${ }^{\text {B F Tol. Reci. }}$	WRA1-A W.......... 47-1
(See Ch. 21 Fl Set S 135	WRA-4M
and Ch. SD2 Set 118)	
Models 37F35, A, B,	XI750, xp775 Tel. Rec... 93A-1
37 F36, A, 8, Toll Ree.	
(See Ch. 21F) Sel 135	
37F55, 37F56, $37 \mathrm{F67}$ (Ch.	78 52
$21 \mathrm{G1,2101}$, ond Radio	${ }^{\circ}$ - 0
Ch, SD2) Teil Rec. (For	10C, 10 T Tol. Rec.
Ch . 21 FIT for TV ${ }^{\text {chee }}$	12 C , 12 T Tel. Rec.
Chasis 2101 see Ch .	(See Model 14C) 140
21P1, for Rodio Ch.	${ }_{14} \mathrm{C}$, 14 T Tel. Rec...... 140
	${ }_{16 \mathrm{C}, 16 \mathrm{t} \text { Tel, Rac. }}$. . . 67
37 Kl 16 , A, B Tel. Rec	(See Model 14C) 140
(See Ch. 21 Fl 1 Set 135	17C, 17 T Tal. Rec.
and $\mathrm{Ch} .3 \mathrm{3C1}$ Sef 117)	${ }^{\text {(Seo Model 1 14C) } 140}$
(See Ch. $21 / 15$ Set 135	101 ….............. 88
and Ch. 3 Cl Set 117)	
(See Ch. 21F Seet 135	$198{ }^{\text {1 }}$. ${ }^{83}$ 8-1
Models 39x16A, $39 \times 17 \mathrm{~A}$	200139-3
Tel. Rect 15 ee	201 81-1
Ch. 2801 (Set 103) and	${ }_{212}^{211}$ …................. ${ }^{65801}$
	${ }_{213}^{212} \cdots$.
Model) Rec. Ssee ${ }_{\text {Tel }}$	2271, 227w
Ch. 2401 (Set 103) and Rodio	312 Tel. Rec. (See Model 14) M......... 140
Model $39 \times 17 \mathrm{C}$ Tet. Rec.	316 Tel. Rec. ISee
(See Ch. 2181)....... 118	Model 14C) 140
Models 39x25, 39x26	350 136
Tel. Rec. ${ }^{\text {l }}$ See	358 Vm .a.o....... 127
Ch. 2401 (5et 103) and Rodlo Ch. SD2 (Set 118)]	$\begin{aligned} & 412 \text { Tel. Rec. (See } \\ & \text { Model } 14 \mathrm{C} \text {) } \end{aligned}$
Models $39 \times 25 \mathrm{~A}$, $39 \times 26 \mathrm{~A}$	416 Tel. Rec, (See
Tel. Rec. (See Ch. 21B1)....... 118	Model 14C)
Models $39 \times 35,39 \times 36$,	568.205 …..........141
39×37 Tel. Rec. (See Ch. 21 B1)........ 118	$\begin{aligned} & 568.205-1 \text { iSee } \\ & \text { Model } 2001 \end{aligned}$

AIRCASTLE-CONI.	
568.2051	
594.935 (See Model 935). 1	128
602.182144	114-2
603.PR.8.1 133-2	
604	
606.400 WB . 3119	
607.314, 607.315	122
${ }_{610.2200}$ - ${ }^{\text {a }}$	
$610 . F 100$621(Ch. FJ-9i)	
	18
041 17	
9151.	
935	
${ }^{9651, ~ W, ~ 965 K 1, ~ W ~}{ }^{\text {W }}$	
1400C, 1400t Tel. Rec.	
(See Model 14C)...... 1	
1700C, 1700 T Tel. Rec	
(See Model 14C).	140
2000 C Tel. Rec.	
(See Model 14C	
3170 Tel. Rec. (ISee	
14 C Set 140 and	
Model 130 Set 126)	
14 C Set 140 andModel 350 Set 136)	
5000, 5001	
5002.	
5008, 5009	
5010, 5011, ${ }^{\text {chiol }} 112$	
${ }_{5022}$ …................ 123	
$\begin{aligned} & 5024 \\ & 5025 \end{aligned}$	
${ }_{5027}$................. ${ }^{24} 4$	
5028 ${ }^{44}$	
50355036	
5044 121	
${ }_{5056 \cdot \mathrm{~A}}^{5052} \cdots \cdots \cdots \cdots \cdots \cdots 120 \cdot 1{ }^{45-2}$	
${ }^{6050} \times 1 . .$. 74	
${ }_{6514}^{8053}$................... 18	
6541 .a.......... 17-2	
6544,6547 \{See Model65411	
${ }_{6611,5612,6613,6630, ~}^{6631}, 6632,6634,663515-2$	
7004 19-2	
7014, 7015 Eorly 57	
${ }_{7553} 7015$ Eorly 47	
90081, 9008w 99	
90091,$90121,9009 \mathrm{~W}$9012 W	
${ }_{10003.1}^{10002}$. 56	
${ }_{10005}^{10021.1,10022.1} 1$	
10023 58	
10024.1 -	
121124 $61-2$	
127084 55	
${ }_{138104}^{138124}$.............. 54	
139144 59.4	
149654, 150084 711591447 (See Model	
139144)	

AIRLINE-Cont.

74WG-2504B, 74WG2504 C (See Model	
WG-2505	18-7
W	
27008	
74WG-2704A, 74WG.	
ee Mode	
$74 W \mathrm{C}-2705 \mathrm{~A}, 74 \mathrm{WG}$.	
7058	
WGG. 2	
G. 27	
74WG. 2711 A (see Mo	
Br.1065A	
848 R -1503D 848 B - 1	
BR.15154, 848	
848R-1517A, 848R.1518A	
848RR-18158. 848R.1816B.55-	
8488 R 27268	
${ }^{84600}$-9638 \ldots......... $51-3$	
84G0C.987A	
84 CSE -2	
HA. $1527 \mathrm{~A}, 84 \mathrm{HA}$	
(See Mode	
84 HA 1529 A	
HA 3002	
el. Rec.	
${ }^{84 \mathrm{HA}} \mathrm{Tel}$. Rec. Rel. C	
Rec. Prod. Chge.Bul. 11	
84WG-1060C (See	
${ }^{84 W G .2015 A ~ ~ 38-1 ~}$	
${ }_{84 W G-2500}$ [See Model	
${ }_{84 W G-2714 F, ~ G, ~ H, ~}^{88}$, ${ }^{\text {a }}$ 56-5	
Model B4WG.27184) ..	
84WG-2728A (See Models 84WG-2718A, B	
$84 W \mathrm{~W}-2732 \mathrm{~A}, \mathrm{~B}$ 1500	
84WG-2734A (See models	
84 WG -2720A	
3008, 84WG.3009,	
(See Model 94WG	
948 R .1525A.	
948 152 c	
硡 7750	
88-2740A,27414,B	
${ }_{9}^{948 R 3004 .} 94 \mathrm{Br3005}, \mathrm{C}$ C Tel. Rec.. 91a-3	
94 GCB.3023A, B, е	
Tel. $05(8.3019 A)$	
94GSE-2735A, Q4GSE.	
$946 S E-3011,0$ ISee Model	
84GSE 3011 A	
- 4 GSE-301BA Tel.	
$94 \mathrm{GSE-3033A}$ Toi. Rec.....	
$94 \mathrm{HA} .1527 \mathrm{C}, 9$ 9HA-1528C 67	
9WG.1804D 86	
94 WG .1811 A ……... 99	
94WG-2745A	
WG.2744, B	
Model 9 WWG.2742	
$9 \mathrm{PWG.2748A}, \mathrm{94WG}$.	
4WG. 2748 C isee Model	
94WG-3006A Tel. Rec... 72-4	
94WG.3008A, 94 WG.	
Model 94WG. 30064)	
4 WG-3009B TeI. Rec. (See Model 94WG-30068) 85	
4WG. 3016 A , B, C Tril. Rec.	
Set 72 and Model OSWG.	
Modal $94 W \mathrm{WG} . j 006 \mathrm{~B}$). .	

AMERICAN COMMUNICATIONS
 (5ee Liberty)

AMPLIFIER COR OF AMERICA

ACA.100DC, ACA.100GE. 63-2 AMPLIPHON
10 .
20.
ANDREA
BT.VK12 Tel. Rec......... 76-5
CO-U15
CO.VK15, COVK16 ich... 27-3
VKisib, Tel. Rec. (Als
see Prod. Chge. Bul. 8
Set 112 -1)
COVK. 125 Tel. Rec.........
COVK. 125 Tel. Rec
(See Model BT-VK12).. 76
covL. 16 (Ch, V(16)
Tel:Rec. R...V.....125-3
Co.vilg (Ch. Vily)
CO.VLI9 (Ch. VII9)
Tel. Rec.
C.VKIG Tol. Rec. (5upp. io
C.VK19 Tol. Rec. (Supp.
Co-VK16) (Also see
Prod. Chge, Bul. 8-

Set i12-1). Bul. 8- 103
CVK-120 Yel. Rec...... 103
(See Model BT-VK12). . 76
(See Model BT-V
$\mathrm{CVL-18}(\mathrm{Ch} . \mathrm{VLIO})$
Tel. Rec. $(5 \mathrm{ee}$
Tel. Rec. (See
$\begin{aligned} & \text { Model COVL-16) } \\ & \text { C.V(17 (Ch. VLI7) }\end{aligned} \quad 12$
Tel.
Pp. 163
T16
T. 115
T. 416
.
T.VK12 Tel. Rec.
(See Model BT-Vk12). . 76

TVK-127B, M Tel. Rec.
(See Mol
BT.VK12)

TVI.16 (Ch. VL.16)
Tel. Rec. (See
Model COVL.16)
Mel. Rec. (See
Model covi-1b)
T. VLIT (Ch, V(17)
Tel. Rec. (See
Model C-VLI7)
Model C-VILee
VJI 12, VJ-12-2 Tel. Rec.... 15
VJ-12, VJ-12-2 Tel. R
VJ-15 Tol Rec..ī,
$2 \mathrm{C}-\mathrm{V} 117$ (Ch. Vili)
Tel. Rer. (See
Mode1 C.V17)
Ch. VK1516 (See Model
CO-VK15)
Ch.VLIS (See Model
COVL-16)
$\mathrm{Ch}_{\mathrm{V}} \mathrm{VL17}(\mathrm{Se日}$
Mode1 CV(17)
Model C.V(17)
Ch. VLI9 (See
Model Co-V19)

ANSLEY	
	5-27
41 (Paneltone)	4-38,
53	24-8
701 Tel. Rec.	71-6
APEX	
485	37-2
1924	17-6
APPROVED ELECTRONIC INSTRUMENT CORP	
FM Tuner	41-2
ARC	
801	25-5
ARCADIA	
37014.600	$9-3$
ARIA	
554.1.61A	7-2

ARVIN-Cont.
2126CM (Ch. TE289.2,
TE289-3) Tel. Rec.
(See Model 2120 CM)
(Also See Prod Che
(Also See Prod. Chgo.
Bu1. 20. Set $134.111,120$
$2160,2161,2162,2164$
$2160,2161,2162,2164$
$1 \mathrm{Ch}, \mathrm{TE}, 2901$ Teif. Rec.
$3100 \mathrm{~TB}, 3100 \mathrm{TM} 3101 \mathrm{CM}$ $3100 \mathrm{~TB}, 3100 \mathrm{TM}, 3101 \mathrm{~cm}$.
$3120 \mathrm{TM}, 3121 \mathrm{TM} / \mathrm{Ch}$. 3120 TM,
TE.272.1, 3121 TE.272
(Ch.

Rec
4081
TSo

4081 T Tel. Rec.
(See Model 4080 T)
4162 CM (Ch. TE-286)
Tel. Rec.
$\$ 170 \mathrm{CB}, \mathrm{CM}$, SiliTM,
$5172 \mathrm{CB}, \mathrm{CM}$ (Ch.
S172CB, CM (Ch.
TE302) Tel. Rec.......142-5
5204,5206 (Ch. TE 300)
5204, 5206 (Ch. TE300)
Tel. Rec.
S210, $5211, \$ 212$ (Ch.
149-3
TE3151 Tel. Rec. $151-5$
Ch. RE.9. See Model 442) 34
Ch. RE. 200 (See Model
Ch. RE- 200 (See Model
Ch. RE-200M (See Model
Ch. RE-201 (See Model
Ch. RE-202 (See Model
Ch. RE.204 \{See Model
Ch. RE-206 (See Model
Ch. RE-206-1, 200.2
(Seo Model 664 Late).
Ch. REP)
Ch. RE. 228 (See Mo......
Ch. RE-228.

Ch. RE-228.1 1 See
Model

$C_{\text {Model }}^{\text {M. }} 150 \mathrm{TC}$ Lote).
Ch. RE-231 isee Model
S52AN)
Ch. RE-232 (See Model
is0T)
Ch. RE-233 (See Model
Ch. RE-237 isee Model
182TFM)
Ch. RE-242
(See Model
Ch. RE-243 iSee Model
Ch. ${ }^{24 E P}$. 244 (See Model
Ch. RE-248 (See Model
$\mathrm{Ch}_{\text {240P }}^{\text {25E-25i }}$ (See Model
$\mathrm{Ch}_{\substack{242 T) \\ \text { RE-252 } \\ 253 T)}}$ (See Model
Ch. RE-253 (See Model
Ch. RE-254, 255,256 ,
Ch. RE-260 (See Model
Ch. RE-265 (See Model
264T) RE-267 (See Model
Ch. RE
Ch. RE. 267-1, RE-267-2
$C h$ Re- Model 350 -PB).
(Sh. RE-273 (See Model J56T
Ch, RE
341

$$
\begin{aligned}
& \text { Ch. RE-274 (See Model } \\
& \text { 341T) }
\end{aligned}
$$

Ch (SE-277, RE-277-1
Ch. RE-278
Ch. RE. 280 (See
Ch. RE-281 (See
.. .143
.. .106
Ch. RE-281 (See
Model 450T)........... 110
Chode 284 (Sne
Model 460TJ................. 107
Ch (SE-287.1 Model 462-CB) . . 116
Ch. RE-288-1
(Soe Model
482CFB)
(Soe Model 482CFB) ... 117
Ch. RE-297
(See Model 551T)..... 154

Ch. RE-310
isee Model
582CFB)... 156
Ch RE. 313 (See
Model 580TFM) 152
Ch. TE-272.1, 2

Ch. TE282 (See Modal $\begin{gathered}\text { 3160.... } \\ \text { 4080T) }\end{gathered}$
Ch. TE. 286
(See Model 4162 CM)... 130
Ch. TE.289 (See Model
$\mathrm{Ch}^{2122 T M}$ TE-289.2, TE. $289.3{ }^{2}$
Ch. TE. 290 (See
Model 2160 .
Ch. TE300 (See Model
Ch. TE302

Ch. TE315 (See Model
5210) 142

ASTRASONIC

ATLAS
(Also see Prod. Chge.
Bul. 20-Set 134-1) . 120 -3 104-2 4 -3

23
1 13

3

(Ch. RE-200M)

(Ch. RE-277, RE-277-1) 107-4
$482 \mathrm{CFB}, 482 \mathrm{CFM}$
(Ch RE-288.1)
540 T (Ch. RE-278).......117-143-4

S51T (Ch. Re-297)......154-2
552AN, 552 N (Ch.

382CFB, 582CFM
(Ch. RE-310).....156-4
664, $664 A$ (Ch. RE-206).. 3-23
664, 664A (Ch. RE-206).
664, 664 A (Ch. RE-206-1).
6640 (Ch. RE. 206-2).... 29-2
665 (Ch. RE-229)....... 18-10
TE289-3) Tel. Rec. (Also
See Prod. Chgo. Bul. 20
-Set 134-1) 2121 TM (Ch . TE289-2,
TE289-3) Tel. Rec.
[See Model 2120 CM]
(Also See Prod. Chge.
Bul. 20 .Set 134.1).... 120
2122 Tel. Rec. 97 A .1
$2123 T M$ CC. CE-289-21,
TE289.31 Tel
TE289-3) Tel. Roc.
(See Model 2120 CM)
(Also See Prod. Chge.
Bul. 20 - Set 1 J4.1) 120
2124 CCM (Ch. TE289.2
TE289-3) Tol. Rec.
TE289-3) Tal. Rec.
(See Model 2120 CM)

bendix-Cont.	BrUnswick-cont.
C200 Tel. Rec.	6165 Tel. Rec
	8125 8165 81501. Tel. Rec. Rec.
(See Model 2051)111	Buick
See Model	0900 9807
${ }^{\text {ISee Model }}$	980090, 980733
(See Model 2051)111	${ }_{980782}^{9807440980745}$........ 19
T190 Tel. Rec.	980797, 980798 59
(See Model 2051).....111	980868
0526A, 0526B, 0526C, $05260,0526 \mathrm{E}, 0526 \mathrm{~F}$. 1-22	980979 (See Model 980868) 104
PAP	
5512, 5513, 55P2, 55P3. . $51-4$	BUTLER BROS. ${ }^{\text {(See Air Knight or Sky Rover) }}$
${ }_{55 \times 4}^{5584}$	(See Air Knight or Sky Rover)
6988 69M8. 69 м9 63	cadillac
7585, $759 \mathrm{M5} 5,75 \mathrm{MB}, \ldots . .63-3$	7241938
75P6, 75W5 59	7253207
M7	7250609 60
9583, 95M3, 95M9	7258155
110, 110W, 11, 111w, 41	7258755 i........... 109
23581, 235m1 1Ch. Code	72587551 109
MA, MB, MC, MD)	726045 ….......... 152
Rec. 301 302... ${ }^{69-4}$	${ }^{7260905}$ (See Model
300. 300w	$7260405)$........... 152
	Callmaster (See tyman)
613 40-3	
626.A 10626 A) 12	capehart
	8.504-P16 Tel.
${ }^{6360}$ (See Model (364 A).. 15	Model 461 Pet Set 87
	TC-20 (Ch. C-297)
6708, 678 C , 67605^{5-23}	T.30 141
6874 61-3	$19 \mathrm{N4}, 21 \mathrm{P} 4,24 \mathrm{N4}$, 24P4,
7368 10	31N4. 318
$847-1.1$	3299, $33 \mathrm{P9}$
847 -5 'FFacto Meter' . . . ${ }^{28}$	34 Pl 10 (See Mo
$951,951 \mathrm{~W} . . .1{ }^{\text {a }}$..... 136	$35 \mathrm{P7}$ (Ch.
1217, 12178, 12170.... 29	114N4, 116N4, 116
12170 (late) 46	$118 \mathrm{P}^{1}$ (See Model
1518, 1519, 1524, 1525.. 37-3	${ }_{582} 19 \mathrm{4}$) .a........ 65
S3	320.8
$1{ }^{\text {a }}$	
2001, 2002 Tel	See Model 323
2020,2021 Tel. R	See Prod. Chae.
23 Tol. Rec..	24
2051 Tel. Rec. (Also	-Set 142.11 $\ldots 2 . \ldots .112$
Prod. Chge. Bul	$321 \cdot \mathrm{~B}, 321$
126-1	322.M (Ch. Cx-33)
Te	Rec. (See Model 323 M)
mode	
	Bul. 24—Set 142-1). . 112
70 Tel. Re	
See Model 2051].... 111	$325 \mathrm{~F}, 325 . \mathrm{M}$ (Ch. Cx
1 Tel.	Pel. Rec. (Also seo
Prod. Chge. Bul. 16	
	$142-1)^{1}$
See Model 20011.	326.M (Ch. CX.33L) Tel.
(30, 3031 Tel. Rec,	(Also See Prod. Chge.
(See Model 2001)..... 84	
3033 Tel. Rec. 2509	${ }_{332}{ }^{24}$ Set ${ }^{\text {a }}$
(See Model 2025)..... 99	(Ch. CX. 33 F) Tel. R
M	(See Model 323M) (Also
Prod. Chge, Bul. 16	ee Pro
$\begin{aligned} & \text { Set } 126.1) \\ & 8001 \text { Tel. Rec. } \end{aligned}$	
(See Model 2051]	$413 \mathrm{P}, 414 \mathrm{P}$
See Prod. Chige. B	(See Model 1
Sel	
See Model 2025)...... 99	
3 Tel Rec.	${ }_{\text {et }} 87$ and 35P7 Set
Prod. Chge. Bul. 16	
See Prod. Chge. Bul. ${ }^{16} 1111$	
Tel	${ }_{\text {(Ch, P. }}^{3} \mathbf{8}$) (See Model
P Model 2051) (Also	${ }^{35571}$.
1	005B, M, W (Ch. C-296), 1006 B, M, W
01 Tel. Rec.	
(See Model 2051) (Also	1007 AM (Ch. C. 318), . . 150
BOGEN (See David Bogen)	
brewster	$3004 . \mathrm{M}$ Ch. Cx-31, Prod.
9.1084, 9.1085, \%.1086.. $2-13$	C.268 Tel. Rec. 93A-
brook	(e-279) Tel. Rec...... 93a-5
10 c 41-4	$3008 . \mathrm{M}$ (CCh. CX-31, prod.
	(-274) Tel. Rec. (See
	Model 3004.M) .a... 93A
12A 89-3	3007 (ch. Cx-30, Prod.
BROWNING ${ }_{\text {PF.12 }}$	3008 (Ch. CX. 32, Prod. C.278 Tel. Rec. (See
	Model jo05) 93A
	$3011 \mathrm{~B}, \mathrm{M}, 3012 \mathrm{~B}, \mathrm{M}$
RJJ.14A	
(See Model RJ-12A) ... 56 RJ. 20	
RJ. 20 RJ 20 A 132	C-288) Tel. Rec. (See
RJ-22 (5ee Model R120). 67	
	C.274) Tel. Rec, (See
${ }_{\text {RV-11 }}$ (See Model RV-10), 46	el 3004-M1 \ldots.... 93A
Brunswick	Model 1007 AM
$8 \mathrm{BJ-6838}$ "Tuscony!"	, Cx -33, CX -33F
c-3300 "Darby" 28-4	See Model 323M1.... 112
0-1000, 0.1100 56-7	CX33Dx Tel. Rec........ 152-1A
	CAPITOL
T.4000, T.4000 $1 / 2$ "Buck." ${ }^{\text {a }}$	0.17 30-4
ingham '. ${ }^{\text {a }}$. 29-5	${ }_{\mathrm{T}-13}^{0.17}$................... ${ }^{\text {28-4 }}$ 28-5
	U.24 29-6
T.60000 \% T-6000ss,	CARDWELL, ALLEN D.
$\begin{aligned} & \text { T. } 60000 \mathrm{X} \text {, "Glascow'" } \\ & \text { See Model T-4000). } 29 \end{aligned}$	CE-26 14-6
T.9000 (Seee Model 0.1000) 56	
	Industrial Television)
816 Tel. Re	226.326 (Ch. 1T-26R,
911 Tel. Rec.	IT.35R, (T-39R, (T-46R)
	721, 821, 921,1021 (Ch. If. 2 IRí Tel.' Rec.

$$
\begin{aligned}
& \text { B } \\
& \begin{array}{l}
5 \\
5 \\
6 \\
\hline \\
\hline \\
3 \\
4 \\
4 \\
7 \\
7 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CONTINENTAL ELECTRONICS } \\
& \text { (See Skyweight) }
\end{aligned}
$$

CONVERSA-FONE

MS. 5 (Moster Station) SS.5 (Sub-Station) . .	16-7
CO-OP	
GAWC2, $\triangle A W C 3$, 6A47WCR, 6A47WT,	
CORONADO	
FA43.8965 43.8965 (See Model Tel Mec. 86	
TV43-8908 Tel. Rec.	
TV43-8960 Tel. Rec.	
43.7755B	
OSRA1.43-7901A	115
OSRA2.43-8515A 110	
05RA4-43-8935A Tel.	
05RA4.43.9876A	103
05RA33-43-81204 110	
05RA37-43-8360A 102	
05 TV -43.8945A Tel, Rec. 145	
05TV1.43.9005A05 TV .43 .9006 ARec. (See Model	
05TV1.43.8945A)	
05 tvi-43.9014A Tel. Rec. 05TV2-43.8950A Tel. Rec.	
(See Model OSTV2.43. 9010A)	
05TV2.43.90104 Tel. Rec.	
05TV2-43-90108 Tel. Rec. 153-2	
05TV6-43-8935A Tel. Rec.	
15RA1-43-7654A 147-	
15RA1.43-7902A$15 \mathrm{TV1.43.8957A}$ Tei. Rec. 134	
15TVI-43-8958A Tel. Rec.	
15TVI-43.9008A Tel. Rec.	
Tel. Rec.	
15TV1.43.9020A, 15TV1. 43.9021A Tel. Rec.	
15TV2.43.9012A, 157 Vz .	
43-901 3A Tel.' Res....	
$15 \mathrm{TV} 2.43 .9025 \mathrm{~A}, \mathrm{~B}$,15 TV 2.43 .9028 A,	
Tel. Rec.	144
15TV2-43-9101A, 15 TV2.	
43.9102 A Tel	52-4
15TV4-43-8948A,	
15TV4.43.8949A	
${ }_{43.2027}{ }^{\text {Rec. }}$. 11	
43-5005 28	
43-6301 7	
43.6485	
43-6730 (See Model	
Madel 43-7601 B) 10	
43-76018 $\quad10 \cdot 11$	
43.7851	
43.7652 (See Model	
43.7651)	
43.7851	
43.8101 (See Model	
94RA31-43.8115A)	81
43.8130C, 43.8131C	
(See Madel 94Ra33.	
43.8130C)	
43.8180	
43-8177 (See Model	
43-8178) 21	
$43-8178$	21
$43.8180$$10$	

EMERSON-Cont.	
514 (Ch. 120007)	27-8
515,516	12
515,516 (Ch, 120056)	
Ch. 120056)	26
517 (Ch. 120010) (See	
Model 541)	16
518 (See Model 507	8
519 (Ch, 120030)	0
520 (Ch. 120000, 120029) (See Models 501, 502).	2
521 (Ch. 120013, 120031)	7
522 (See Model 507)	
523 5	
524	17-12
525	
${ }_{528} 27$ (Ch. 120019) Tel. Rec. 21-13	
528 (Ch. 120038)	21-13
529.529 .9 (Ch. 12002B). 18-15530 (Ch. 120006.	
Ch. 120056)	
531, 532,533	
534 (Ch. 120007) (See models 514 Ch. 120007)	
535	20
536 (Ch. 120036)	21-14
536A	24-17
53	
538 (Ch. 120051) (See	
Model 549 Ch .1200511	26
539	- 13
540A (Ch. 120042)	20-10
	16-13
542 (See Model 521)	
543, 544 (Ch. 120046)	19-30
545 (Ch. 120047) Tel. Rec.	
Photofact Service	82
546 (Ch. 120049)	21-15
547 A (Ch. 120050)	25-13
548 (Ch. 120051).	30
549 (Ch. 120051)	26-12
550 (Ch. 120006) (See	
Model $512 \mathrm{Ch}, 120006$)	
550 (Ch. 120056) (S	
Modal 512 Ch (120056)	26
5514 (See Model 536	24
552 (Soo Model 525)	
553A (See Model 538 A)	
556, 557 (Ch. 120018 B). . 70	
5578 (Ch. 1200488)	43-10
558 (Ch. 120058)....... 31-11	
559 A (Ch. 120059)...... 31-12	
560 (Ch. 120016)....... 25-14	
561 (Ch. 1200018)	63
563 (Ch. 1200638)...... 73	
564 (Ch. 120027) (See	
Model 540A Ch. 120042)	20
565 (Ch. 1200188)	
(See Model 556)	70
566 (Ch. 120051) (See	
Model 549 Ch .1200	26
567 (Ch. 120016) (See	
Model 560 Ch .120016$)$	25
567 (Ch. 120042) (See	
Model 540A)568A (Ch, 120	
569A (Ch. 120062A) 42-10	
570 (Ch. 120064).571 (Ch. 120066)	
Telovision Receiver 46-25	
571 (Ch. 120066B)	
571 (Ch. 120086B)	
Tel. Rec.	76-11
Model 540A Ch. 120042) 20	
5738 (Ch, 1200398)..... 42-	
574 (Ch. 120064)	

IMPORTANT

Рhotofact Publications are available from:

YOUR PHOTOFACT DISTRIBUTOR

The easiest way to own the world's finest Radio-TV Service Data is to subscribe to PHOTOFACT Folder Sets with your distributor, who will see to it that you receive each Set as published (issued 2 to 4 Sets per month).
PHOTOFACT Folder Sets, Each Only.
Deluxe Binders for filing PHOTOFACT Sets, Each Only 3.39
Complete PHOTOFACT Volumes, Each Only
(Each Volume includes 10 Sels of PHOTOFACT Folders in Deluxe Binder. Vol. 1 contains Sets 1-10; Vol. 2 contains Sets 11-20, etc.)
PHOTOFACT EASY-PAY PLAN. You can own a library of PHOTOFACT Volumes for a down payment of only 18.39 Easy monthly payments-no interest or carrying charges. For full Easy-Pay details, see your distributor or write to Howard W. Sams \& Co., Inc.

EMERSON-Cont.		Emerson-
5 1C. 120068 A,		${ }^{645}$ (Ch 120115
120068B) (Ch. 20069 A)	85-6	02
7 B (Ch. 120012 B).	41	B, BC, C (Ch, 120113.
8 (Ch. 120050) (See		$\mathrm{C}_{4} \mathrm{C}^{\text {c }}$
Model 547 A Ch. 120		(14) 97
570 A (Ch. 120034 A). 580 (Ch. 120064)	$61-6$	${ }^{6488 \text { (chec. (See Model (14).. } 97}$
15 e Model 57		1
581 (Ch. 120014	68	
582 (See Model 548).	30	650 (Ch .120113 C
583 (Seo Model 5738)	42	Rec. (Seo Model 614)
584 (See Model 558)	31	6508 (${ }^{\text {a }}$....... 97
585 (Ch. 1200258)	61-7	1201188) Tei, Rec.113-2
585 ich		6500 (Ch. 120123-6)
1200908,12009		(c)
Tel.		Tol. Rec. ${ }_{\text {cosen }}$
$\begin{gathered} 36 \text { (Ch. } 120023 \mathrm{~B}, \\ 120083 \mathrm{~B}) \ldots . \end{gathered}$	72-9	6518 (Ch. 120120) Tol. ${ }^{\text {cos }}$
357 ($\mathrm{Ch} .120033 \mathrm{~A}, \mathrm{~B}$)	71-10	Rec. (See Model 6298) 119
588 (See Model 547A)		651 C ((Ch. 120109) Tel.
590 (Ch. 120101A,	87	Rec. (Sae Mode)
591 (C. 1200554)		65ec. (See Model $\delta 290$) 116
573 (Chass2ls 1200638)		6510 ($\mathrm{Ch} .120124, \mathrm{~B}$) Tel.
els	73	Rec. (See Model 62901
${ }^{\text {lch. }}$		652 (Ch. 120032 ${ }^{\text {a }}$)
(see Model 5817	68	(See Model 1047) 98
597 (Ch. 1200738 B).		(Ch. 1200808)
599 (Ch. 1200758)	69-8	
0 IChossis		$\left.{ }^{654}\right)^{6548}$ (Ch. 1201188)
Tel. Rec. (Also		(See Model 650) 113
Chge. Bul. 9 -Sel	$87-6$	6540 (Ch. 120123.8)
1 (Chassis 120075B)		
${ }^{\text {a }}$ Model	69	500
2A,	56-10	654 F (Ch. 120138.8$)$ Tel.
603 (Ghosssis 1200638)		Rec. (See Model 650F). 133-1
(See Model 563]...	73	
$4 \mathrm{~A} / \mathrm{See}$ Model ${ }^{\text {S }}$		Model 6500) 109
605 ICh. 1200768 B).		
06 (Ch. 120066) Tol. Rec. (See Model 571	46	Rec. (See Model Osof). 133-1A
(1Ch, 1200668)		6568, 6588 Ch (Ch. ${ }^{\text {che }} 120$
		,
(Ch, 1200878.0)		${ }_{658 C}(\mathrm{Ch}, 120124)$ Tel
Rec. 1208888	76	D) 116
${ }^{\text {ch }}$ Ch 12		6580 (Ch .120124 B)
1	76	Tel. Rec
(Ch. 120074A)		(bich, $1201348, \mathrm{G}, \mathrm{H})^{131-6}$
(See Model 597)	90	Tel. Rec. \qquad
Roc.	84	$\text { 662B, 663B (Ch. } 120127-1$
Chasis 120084		Also Seo
Tel. Res.		Bul. 18 -Set 130-1) \ldots. 125
(See Model 587)	11	6648 Ch .120133 - $\mathrm{Bl}^{\text {Tel. }}$
(612 (Ch. 1200878-D)		Rec. (See Model 660B)
(See Model 571 Ch. 12008681		1201
3 C (Ch. 120085 A , B)	79	Tel. Rec. 146
4, B, BC, CICh. 120110 ,		$68 \mathrm{Ch}, 1201358, \mathrm{O}, \mathrm{H}$
	97-4	
${ }^{\text {del }}$	55	Chge. Bul. 27 .Set
(Ch. 1200018)		148.1)133-
See Model 5611	63	6678, 6688 ICh .120134 B ,
(Chassis 120100A, B)		
(See Model S87).	\%	
9 ich 1200920] Tel.		(See Model 6018) 137
Rec. ISee Model 571		${ }^{6698}$ ($\left.{ }^{\text {ch. }} 120129.8\right)$
Ch 12008881	76	Tel. Rec. (Also Soe
Tel. Rec. (See Model		142.11 . 121.126
571 Ch. 120086B).	76	6698 (Ch. 120148-8)
621 (Ch. 1200988)		
Tel. Rec.	108	$\begin{aligned} & 671 \mathrm{~B}(\mathrm{Ch}, 120137-\mathrm{B}) . \\ & 6710(\mathrm{Ch}, 120137 \mathrm{D}) \end{aligned}$
Tel. Rec. (See		(See Model 6718).... 118
Model 6211	108	6728 (Ch. 120097.-8)131-7
33 (Ch. 120101		${ }^{6738}$ (${ }^{\text {Ch. }} 120133.8$) Tel
Soe Model 5 Sh).	87	
1 Rec. (5 ee Model		${ }_{\text {Tel. }}$ Rec.
571 (Ch. 1200868)	76	(See Model 6618) . . . 137
25 (Ch. 120105B)	103-8	6^{6758} ($\mathrm{Ch} .120129-\mathrm{B}$)
26 (Ch. 1201048,		Tal. Rec. (See
(201048J) Tet, Rec. (See Madel 608A)	84	
(Ch. 1201078)		Tel. Rec.
Tel. Rec. (See Model	76	6760 ($\mathrm{Ch} .120144-\mathrm{B}$)
8 (Ch, 200988)	76	Tol Rece
Tel. Rec. (See		
Model 6211....... 1	108	6778, 6788 ICh. 1201348 ,
9 (Ch. 120114 BI Tel		G, H1 Tel.
1201201 Tol. Rec.	119	${ }_{6808} 8798(\mathrm{Ch} .120144 \cdot \mathrm{~B})$ Tel. ${ }^{\text {a }}$
$6290 \text { (Ch. } 120124 \mathrm{~B} \text {) }$		R80. (Seo Model 6750 () 138
${ }_{630}$ (Cl). Cl . 200999 B)		
Tel. Rec. (See	108	(See Model 6780) . . . 138
1 (Ch. 120109)		8800 (Ch. 1201408) Tel.
(1)	93 A	Rec. (See Model 6708). 128
32 ich 1200988)	934.7	8818 (Ch. 1201408$)$ Tel. Rec. (See Model 676B). 128
3 ich. 1201		6810 (Ch. 120144.8) Tel.
Rec, (See Model 631).	93 A	(Rec. (Seo Modol 6780) 138
834 B (Ch .120097 B) 1	111-4	$681 \mathrm{~F}(\mathrm{Ch} .120143 \mathrm{~B}, \mathrm{H})$
635 (Ch. 120108)	$92-1$	rel.
636 AlCh .120106 A)		
637, 8, BC, C ICh. 120110,		
B, BC, C) eeli koc.	97	
637 A (Ch. 120095-8) Tel.		G, H) Tel
Rec. (Soe Model 6140)	954	(See Model 6618) 137
	76	
839 (Ch. 1201038) Tel.		(Soe Modol 6780). . . . 138
Rec. (See Model 6001		${ }^{6860}(\mathrm{Ch} .120140 \mathrm{~B})$ Tel.
(Also See Prod. Chige.	87	Rec. (See Model 676B). 128 686 F (Ch. $120143 \mathrm{~B}, \mathrm{H}$)
640 (Ch .120112	93-5	Tel. Rec. (See Model
8418 (Ch .1201258)	120-5	676F) $12012.1 . .148$
	98-3	6861 (Ch. 120142-B)
843A $\mathrm{Ch}, 120111 \mathrm{~A})$ $644, \mathrm{~B}, \mathrm{BC}, \mathrm{C}(\mathrm{Ch}, 120113$,	91 -4	Tel. Rec. (See Model 670f)
B, BC, C) Tel. Rec. (See Model 614)	97	6878 (Ch. $120144 \cdot$ B) Tel. Rec. (See Model 6760), 138

EMERSON-Cont. 687 C (Ch. $120140 \cdot \mathrm{Bl}$ Tel.	FADA-COnt. 799 Tel. Rec. (See
Rec. (See Model ${ }^{\text {a }}$ 768, 128	Model TV30)
7F (Ch. $1201438, \mathrm{H}$) Tel. Rec. (See Model	
148	855
687 L (Ch.	${ }^{880}$ Tel
Tell. Rec. (See Model 148	899 Tol. Rec.
676F)	${ }_{925}{ }^{\text {model }}$ (See Modal G-925).. 89
120129-8)	930,940 Mel. Rec. ${ }^{\text {en }}$
(Sea Model 6698) (Also	odel TV301.
See Prod. Chme. But	
9928, $6938,694 \mathrm{~B}$	1001 Se............... 17-
(Ch. 1201298)	FAIRMONT
ISee Modol	30 T 14 A .056 Tol
	(Similar to Chasis) . . . 119-3
B (Ch. 120144G, H)	T12A-058 Tol. Rec.
Tol. Rec.	Similar to Chassis) ... 109
	Similar to Ch
el. Rec. (Soo Model	
676 F)	(Stmilar to Chassis).... 85-3
(Ch. 120142-8)	318 T 4 S Tol. Rec.
Tol. Rec. (Seo	(S1
	${ }^{31814}$
978 (Ch. 1201298) Tel.	(Stimliar fo Chassis).... 85-
Rec. (Seeo Model ${ }^{\text {s6988 }}$	
(also Sos Prod. Cha\% 126	(similar to Chassis) 318 T A.950 Tol. Rec.
88 (Ch .120127 B) Tel.	(Similar to Chossis) ... 85
Rec. (Seo Model 8628). 125	31899 A 900 Tel . Rec.
OB, 701 BlCh	(Similar to Chassis) ... 78
120153-8) Tel. Rec....157-1A	stoa tel. Rec.
38 (Ch. 1200978) (See	(Simitar to Chass
	9A-918 Tel. Rec.
1002 16	Similar io Chassis).
1003 (See Model 1002)... 16	$518110 \mathrm{~A}-916$ Tel. Roc.
Empress	Similar to Chasis)...78
55, 56 7-14	(Similar to Chassis).... 85-3
ESPEY (Also see Philharmonic)	${ }^{2318994.912 ~ T e l .1 . ~ R e c . ~}$
RR13, RR13L 13-17	(Similar to Chassis)... 78
${ }^{78}$................ 47	FARNSWORTH
	EC.260 7-15
${ }^{188}$ [............ $90-7$	EK.081, EK-082, EK-083. . 26-13
103	EK. 262 2, EK. 2638
68	E-263WL, E-2
${ }_{524}^{513}$ (Ses Model I8B).... ${ }_{90}$	EK.264WL, EK. 265
581 14	${ }_{\text {EK- }}$ Model (SC-280) Model EK-08i] ${ }^{7}$
621 10	Ex-681 (Soe Model Ek-081). 26
641.042	
851 …............. 9-14	GK. 1000 GK.
652, 653 (Soe Modal 651)	103, GK.104 ... 23-8
751 (See Model 188) ... 90	GK.111, GK. 11
, $6511-2,6511-5$	GK.114, GK
6514. ${ }^{6516,0517}$	GK-140, GK-141, GK-14
(Ch) Fi97) See	
651.	GT
6540, 6541	
6542 iCh FJ9	GV220, GV240, GV260
${ }^{15} 58$. Model 6	Tel. Rec.
${ }_{6} 5546$ (Ch. FJ97)	K.267, K. 6
- (See Model 651)	
6547 (Seo Models	Ch. 150 (5 Soe Mo
8540, 6541)	Ch, 152, 153 ISee Model
6560 (Ch. F.597)	Ch. ${ }^{\text {c-260) }}$
(Soe Model 651]	Ch. 156,1571500 Model
(11, 6612 2, 6013	EK-081)
6615, $6630,6631,6632$,	Ch 158, 159 (See
$7541{ }^{\text {(Ch). Fl97) }}$	L 162
${ }_{7}$ (See Model 551)	$\mathrm{Ch}_{\text {EC-260) }}$ (
7552 (See Model 18B)... 90	Ch. 170 ISee Model
ESQUIRE	GK. 1001
60-10, 65.4 14-11	Ch. 19315
511 …….......... 157-3	
FAD	isee Model GK-100)... 23
G.925 Tel.	
P80 27	FEDERAL MFG. CO.
	104 (Select-A-Cali) 18-17
	135 (Şolect-A. Call)
R7C15, ṘC23 Tel, Rec. 158	FEDERAL TEL. \& R
R-1025 Tel. Rec........ 114	${ }_{1021}$ (See Modet 1030T).. ${ }_{8}^{8} 8$
	1031, 1032 15ee Model
S4C20 Tel. Rec.142-8	10307)
S4C40 Tel. Rec.	1540T' (See Model 1030 T).
$54 \mathrm{Tl} 5 \mathrm{Tol}$. Rec.	
(Seee Model S4C20) . . . 142	c.81-8 \ldots............. 17-16
54730 Tel . Rece.	T.618............... 315-4
S6CSS Tol. Rec........134-7	15-10
$56 C 70$ Tel. Rec	firestone (alr chief)
(See Model S6C55).... 134	4. A. 2 (Code
${ }^{56165}$ Tel. Rec.	No. 297-6-1MMU.143) - 14
C20, 57 C 30 Tel. Rec.	${ }_{\text {4. A- }}^{\text {297.6.1MFU-134) }}$..... 31-13
(Soe Model S6C55) 134	4. $\mathrm{A} \cdot 10 \mathrm{rc}$
57870 Tol. Rec.	No. ${ }^{297.7-7}$
S7Tiss Tel. Rec.	No. 188-8-4A11)
(SSe Model S6C55).... 134	4-A.12 (Coode No.
S9C10 Tol. Rec. (Seeg Model SbC5s) . . . 134	
S20T20 Tel. Rec. (See	4-A.17 (Code No.
	${ }^{213-777270)}$, 917
S1015 Tol 51020 Tol. Rec. Rec. See	
Model S1015)	5.5 .9001
S1030 Tel. Rec. ISeo	(Code No. 5-5.90018) - 11-19
Model S1015) 109	4.A.23 (5-5.9003.A) ${ }^{\text {a }}$, ${ }^{2-29}$
S 1006 Tel. Rec.	4.A-26 (Code
(Soe Model S6CS5) . . . 134	307.6.9030.4) \ldots.... ${ }^{33-5}$
$51065 \mathrm{Tel} . \mathrm{Rec}$ c	
1Seo Model SoCss).... ${ }^{34}$	${ }_{4-A .31}$ (Cod
602^{60}.............. 14-12	No. 177.5.4A31) , 11-20
	4.A.37 (Code 177-5.4A37)
6333^{63}................ 17-13	4-A.41 (Code 291-7.576). 52
637 ……........... 17-14	4.A. 42 (Code
11, 740 28-10	307.8.9047A1 38-6
$5{ }_{5}$ …............. ${ }^{646-6}$	

FIRESTONE-CONT.

FIRESTONE-Cont	
4.A.62, 4.A.63	10
4.A.64, 4.A. 65	68
4.A. 66 (Code No. 177.84A66)	$74-4$
4.A-68 (Code No.	
332.8.143653)	53-11
4-A.69 (Codo No.	
155.8-851	61 -8
4-A.70 136-8	
4-A-71 (Cod 291-8-628).	59
4-A.78, 4-A-79 117-5	
4.4.85	118
4-A.86 129	
4.A.86 (late) 144	
4.A.87	119
4.A.88	
4.A. 89	
(See.Model 4-A.85)	
4.A-92	
4.A.95 (See Model	
4-A-86 Lote)	144
4.A.96 (Seo Model 4-A-87) 119	
4.A.97, 4.A.98	147-5
4-B.1 (Code 7.6-PM15) .. 7-1	
4-B-2 (Code 7-6-PM14)	18-1
4.8.6 lCode	
No. 177-7-PM18)	29-8
4.8-31	
4-8-56 133	
4-8-57 124	
4.8.58 135	
4-8.61 155	
4-8.60 153	
4-8.62 152	
4-C.1	
4-C-3 19-17	
4.C. 13 (Code	
332-8.140623) 66	
4.C-16, 4-C.17	120
4.C.18 1110	
13-G-3 Tel. Rec........ 86	
Tel. Rec..............	73-5
13-G-5 (Code 291-9-651)	
Tel. Rec.	83-3
13.G.33 Tel. Rec........ 108-6	
13-G-44, I3-G.45 Tel. Re	
Tel. Rec. ${ }^{\text {a }}$. . . 140	
13-6.49, 13-6.50 Tol. Rec.	
13.G.53, 13.G.54,	
13 -G.56 Tel, Rec.	
${ }^{13-\mathrm{G} .57}$ Tol. Rec....... 158 -4	
Tel. Rec.13 -6.79 Tol.	

FLU5H WALL

grantline	
300 (Sariar ${ }^{\text {b }}$)	$9-16$
${ }^{500}, 501$ (Series A)	5
	35
510.4	
605.	
641	
S	
5610	
hallicrafters (Also See Echophone)	
CA. 2	
S.38	
5.38B	121
S.416, S.41w	
5.76, 5.784	
5.77 …............. 146	
5x.43	
5x.62 61	
T. 54 Yol. Receiver...... ${ }^{48}$ - ${ }^{10}$	
(Also seo Prod.	
Bul. 32-Set 158.	65
. 68 (Tol. Rec	
T-69 Tel. Rec............ ${ }^{\text {ct }}$	
SR10A	50
5R11, 5R12, 5R13, 5 R	
${ }_{400}^{400} 406,409,410,411,52-9$	
${ }_{\text {(SEe Mo Model T-54) }}$. . . 48	
S05, 500 (late) (See	
09,510 Tel. Rec. (See Model Tol)	
(Also see Prod. ChgeBul. 32-Set is8.1)	
${ }_{512 C}{ }^{\text {c }}$ S13 Teli. Roc...... 80-7	
Model T. 54 Lote)..... 91	
S20E Tel. Rec.Ssee ModelS	
521ModelModec5181	
521 ETel Rec] (SeeModel 512 C$)$	
524 Tel. Rec. (SeeModai 512 C$)$	
$00,601,602,603,604$ Tel. Rec. (See Madel	
${ }^{690}$ Teel. Race Model 680) 113	
730, 731 (Run 1) Tel. Rec. (See Model 680)	
732, 733 Tel. Ree	
740,741 (Run 11 Tel. Rec. 113(See Model 680)....il	
745 Tol. Rec......	105
750, 751, Tel. Rec. Is	
760 Model 745) 761 Tol Rec. 15.105	
${ }^{760,761 ~ T r i l . ~ R e c . ~(S e e ~}{ }_{\text {Model }} 745$) 105	
${ }_{810}^{805, ~} 800$ Tel. Rel. Rec....... 136-9	
(See Model 805)..... 136	
$810 \mathrm{~A}, 811$ Tel. Rec. 124 810 C Tel. Rec.	
815 Tel . Rec. iSee Model 810A1 124	
$818,820,822$ Tel. Rec. (S'ee Model 810A) 124	
832, 833 Tel. Rec. $\ldots . . .121-1 A$	
$\begin{gathered}860,861 ~ T e l(~ R e c . ~ \\ \text { (See model } \\ 810 A)\end{gathered} . . .124$	
$\begin{gathered}870,871 \text { Tel. Rec. } \\ \text { (See Model } \\ \text { 810A) }\end{gathered} . . .124$	
80 Tel. Rec.	
(Sose Model 810a) ... 124	
17810 C Tel. Rec...	
17810M Tol. Rec. 152-9 ${ }^{\text {156-6 }}$	
17812, 17813, 17814,	
17816, 17817 Tel. Rec.(See Modellig11-H). 156	
17819 Tel. Rec. (See Model 17804C). 155	
17824-A Tel. Rec, 17838 Tel. Rec.	
17838 Tel. Rec. (See Model 17804C).. 155	

KNIGHT-Cont.	magnavox
607, 5 SH .608	AMP.101B 43-12
	Chassis AMP.108A, 41-10
(Similar to Chassis) . . . 109	Chossls AMP. 10
-700	Chassis AMP. 11
	AMP.111A, B, C. 68-10
	Chossis AMP. 188 (15s
68.122 (See Modal	ncy Symphony) ... 18-22
6A.1221	Chossis CR1904, CRA1908. 46-14
68-127 (See Model	Chassis CR.192A, CR-1928 41-11
${ }^{64.127)}$	
${ }_{6}^{6 C-225,60.225, ~ 60.226 ~, ~} 30$	Chassis CR-1
	(tyopplewhits, Modern (17-20
${ }_{6 G .400}($ See Model 449). 83	Chassis CR.199 63-13
	Chassis CR-200A, B, C, D.
105 ${ }^{39}$	Chossis CR-202
${ }^{88.210}$.............. 20	Chassis CR-203
	Chassls CR-204
86.200, 8G.201 128	Chassis CR.206
$116.3000 . .$. ${ }^{29-12}$	Chassis CR-2
110302 -140. 10.00^{57}	Chassis Models CR-210A, 52-11 CR.2108
$15 \mathrm{HCOO}($ (See Modol 5118$) 125$	Chassis CR-2 $114, \mathrm{~B}$,
19F492, 19F497, 19F498. 58	(See Ch. AMP.111A)... 68
${ }_{9}^{93.017}$ 93. ${ }^{\text {a }}$......... 31-15	Chossis CR.213
${ }_{93.103}^{93.024} \cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{32} \times 13$	Chassis $\begin{aligned} & \text { CR-215 } \\ & \text { Chassis } \\ & \text { CR.216 }\end{aligned}$
93.146 ….......... 36-15	Chassis CR-217
	Chassis CR. 223
93.191 …........... ${ }^{38}$	Chassis CR. 229
	Chassls Tel Rec.214, C1.218, 62-13
${ }_{93.350}^{93.330}$ ….............. ${ }^{\text {76-13 }}$	
${ }_{93-360}$............ ${ }^{\text {79-9 }}$	Tel. Rec. ${ }^{\text {a }}$, 82
93.370 ${ }^{75-10}$	Chassis CT. 22
	(See Ch. ${ }^{\text {cT. 214)... } 62}$
${ }_{96.354}^{98.328}$............. 137	Chashis (Soe Ch. (T-219). ${ }^{\text {a }}$
\|Similar to Chassist...139-15	lassis CT. 224 Tel. Rec. . 974.8
	Chastic Cr. 232 Tel. Rec.. . 93A.9
	Chassis CI-2
S11B 125	
LAFAYETTE	A
	Restis $\mathrm{Cr}^{\text {Rec }} 237$
mсiob, mсior 14-16	Set ${ }^{\text {Rec. }}$ (i)
MC11 28-18	Chassis C1239 Tel. Rec
MC12 ${ }^{27} \mathbf{1 5}^{15}$	(See Ch CT232).... 93
MCl^{3}	Chassis ${ }^{\text {ct } 244,}$, CT24
mC16	C1246 rel. Rec
IN434, iN435, IN436	(Seee Ch, CT232)
INS49 (Similar to Chassis) 38-5	Chassis Cr250, CT25i
IN55t (Similar to Chassis) 38-	Tel. Rec.
INS54, iN555	Chassls C1252, C1253
Similar 10 Chassis).... 55-10	Rec.
(Similar to Chassis). . . 109	Chassis CT257, CT258,
1 N559 (Similar to Chassis) 90-7	C1259, CT200 Tel. Rec. 119-1A
INS60 (Similar to Chassis) 109—7	Chassis ct ${ }^{\text {ch }}$ 22, CT263.
INS61, INS62	CT264. CT265 Tel. Rec. 155-10
(similar to Chassis) ${ }^{\text {a }}$, 97	
IN819 (Similar to Chassis) 69	
LAMCO	$\begin{aligned} & \text { CT-272, CT-273, CT+274, } \\ & \text { CT-275, CT-276, CT-277, } \end{aligned}$
learadio	CT- $278, \mathrm{CT} .279, \mathrm{CT}-280$
Chassis R.971 51-11	Tel. Rec. ${ }^{\text {cter }}$
RM.402C (learavian) ... 42-15	
	(See Chostis CT1262)... 155
	${ }^{\text {crassis }}$ C1284, ${ }^{\text {c }}$ C ${ }^{\text {c }}$
$6610 \mathrm{PC}, 6611 \mathrm{PC}$ 6612PC. ${ }^{\text {a }}$	
6614, 6615, 6616, 6619 .. 3-18	
6617 PC 16-22	Chassis CT289, CT291,
LEE TON	$\mathrm{CT} 293^{\text {Tel. Rec. }}$
AP.100 16-23	Csee Chasis ${ }^{\text {chers }}$
Lewy	(See Ch. CT268).
605	Chossis CT295, CT296
${ }_{6154}^{615}$............... $11-13$	
711 42-16	Chassis CT297 Tel. Rec. (See Ch. CT2621....... 155
lexington	Chastis CT301, Cr303.
6545 13-20	Ст305. Ст307, Ст309
LIEERTY	CT311, ${ }^{\text {ctiol3 Tel. Rec }}$
A6K. A6P, OK 20-18	
5074 20-19	CT337 Tel. Rec.....
Lincoln (Auto Radio)	Chassis MCT228 Tel. Rec. 954.9
ICH748 (H) $^{\text {(18805) }}$	
(See Ford Madel CF7431	500BI, 500BW, 500D
1 CH 748.1 (1н-18805)	5000w
(See Ford Model	${ }_{56181}^{5610618 W}$
	571 510........... 44 -10 ${ }^{6}$
7M108) (15EH-18805-8). 66-11	${ }^{6611,0614 ~ ~}{ }^{12}$-18
8 ML 882 (81-118805-4).	7004.
8 Ll [8822 (8H-18805.A)	15
	MAJESTIC
	G-414 Tel. Rec. 133
8 ml 985 z (8H.18805-A).	G.614 Tel. Rec
8ML9852E (8H-18805). 83-4	(Soe Model G.414) ... 133
LINCOLN	isoe Model
513L-B............. 2-10	G. 914 Tol. Rec
	(See Model (G.414)
(ALLIED RADIO CORP.)	
54.110) 5-34	
LINDEX CORP. (See Swank)	SAK711 .1...... 27-17
LIPAN (See Supreme)	
LULLABY (Seo Mitchell)	SLAS. SLAG ….......130-9
IYMAN	${ }_{5147}$ SLAT SLAB
CM10. Сm20 44-8	
LYRIC (Also See Rauland)	$78 \mathrm{K758}$ (150e Model
546T, 546TY, 546TW 7-17	
MAGIC TONE	$7{ }^{\text {C44 }}$
	, $7 \times M 888$
508 (Kes Rodio). ${ }^{\text {38-9 }}$	

\begin{tabular}{|c|c|}
\hline MAJESTIC-Cont. \& MAJESTIC-Cont. \\
\hline \begin{tabular}{l}
75433, 75450, 75470 \\
(Ch. 4702, 4703) 22-19
\end{tabular} \& 2042T, 2043T Tel. Rec. (See Model 12C4). \\
\hline 7TV850, 7TV852 1 Ch \& 2546T, 2547T, 2548T, \\
\hline \(8 \mathrm{C90}\), 18c911 Tel \& 2549 T Tel. Rec. (Se \\
\hline \({ }_{7} 7 \mathrm{RR752}\) (Ch. 78004 A) 29 \& 14 \\
\hline 7 7YR772 (Ch. 7809 A\()\).. 42 \& isee Model SAK711)... 27 \\
\hline 8 M 774 (Ch .88060) 30 \& 58054 \\
\hline \(8 \mathrm{Mm775}\) (Ch , 88080) \& Model SAK731)... 28 \\
\hline \& Chisione \\
\hline \({ }_{814885}(\mathrm{Ch} .48108)\).... 47-11 \& Ch. 68110 \\
\hline 85452,85473 (Ch. 4810) - 8-19 \& (See Model 6 ¢m77 \\
\hline 10FM899 (See model \& Ch. 7804 A \\
\hline 10 FM981] 65 \& ISee Model \\
\hline \(10 \mathrm{PM981}\) (\(\mathrm{Ch}, 10 \mathrm{C} 23 \mathrm{E}\))... \(65-8\) \& 7809A \\
\hline \(12 \mathrm{C4}, 12 \mathrm{Cs}\) Tel. Rec..... 108-7 12FM475, 12 FM778. \& \\
\hline \(12 \mathrm{Fm} 7 \mathrm{l}^{\text {(}}\) (Ch. 41201) 28-20 \& isee Model \\
\hline 12 FM895 (Ch. 12C22E)... 59-11 \& Ch. \(\mathrm{TCl}^{\text {cio }}\) \\
\hline \(1212,12 T 3\) Tel. Rec. (See \& See Mod

$7 C 234$

\hline 1216 Tel. Rec. See \& isee Model

\hline Model 1212) \& Ch. 8806 D

\hline Cas Tel. Rec. \& ee Mod

\hline \& ${ }^{\text {Chi }}$ (See Model 8 PM776).

\hline (See Model G-414)... 133 \& Ch. 88080

\hline \& Ch. ${ }_{\text {(See Mod }}$

\hline (See Model 12C4). 108 \& is ee Model

\hline Model 12C4) 108 \& Ch .10 C 23 E

\hline | 16CT4, 16CT5 Tel. Rec. |
| :--- |
| (See Model G.414) ... 133 | \& ${ }_{\text {c }}^{\text {(}}$ See Model

\hline 16T2, 16 T 3 Tel. Rec. (See \&

\hline Model 12C4)......... 108 \&

\hline 17C62, 17C04., ${ }^{17 \mathrm{C} 65}$ \& (See Model 12FM895).. 59

\hline es 100) Tol. Rec \& $\mathrm{Ch} .18 \mathrm{C90}$, 18C91

\hline (See Model \&

\hline OAA (Ch. 1011 Tel. Rec. 127-7 \& $\mathrm{Ch}, 4501$

\hline 17FA Tol, Recillail 135-1A \& (See M

\hline 17GA, 17 THA (Ch. 101) \& Ch. ${ }^{4504}$

\hline (See Model 17DA) 127 \& $\mathrm{Ch}^{\text {cee }} 506$

\hline IA, 17X Tel. Rec. \& ${ }_{\text {iSee }}$

\hline (See Model 17FA).... 135-IA \& Ch. 4702, 4703

\hline T6A1, 171681, 17762 \& See Model 7S

\hline (Series 100] \& 470

\hline (Seo Model 701 \& ISee

\hline $19 \mathrm{Cb}, 19 \mathrm{C7}$ Tel. Re \& Ch. 4706

\hline 20¢82, 20<83, 200684 \& $\mathrm{Ch}^{\text {S }}$ S 4707

\hline (Series 108) Tel. \& isee Mol

\hline (See Model 701 \& 47

\hline F82. 20F83, 20F85, \& ISee Model 7

\hline \& $\mathrm{Ch}_{\text {isee }}^{4810}$ Model

\hline (See Model 70) . . 153 \& Ch. 4810 B

\hline 20 F 811 (Series 108) Tel. \& (See Model 8 d88

\hline Rec. (See Model 701... 153 \&

\hline (See \& 15 em Mo

\hline 2078A1, 20782, 20783 \& MANTOLA (B. F. Goadrich Ca.)

\hline (Series 108) Yel. Rec. \& R630-RP

\hline (5ee Model 70) \& ${ }^{\text {R6A3-PM }}$ (SAS

\hline F86, 21 F87 (Ser \& R643W)

\hline 1081 rel . Rec. \&

\hline \& R652. R 652 Nl.e. ${ }^{\text {a }}$

\hline Tel. Rec. \& R654.PM, R854.

\hline FMP2 137 \& R655W (Ch. No. S01APH)

\hline 120, 121. 121 B (Ch. 99) \& R062, R662N

\hline I. Rec. (See \& ${ }_{\text {R604.PM, }}^{\text {R664.W }}$ R 664

\hline 1418 (Ch. 1001). 127 \& R.743.W ISee Model

\hline 141 C (Ch. 101), 142. \& R.643.W)

\hline 1428 (Ch. 100) Tel. \& R.7343

\hline Rec. (See Madel 17DA) \& R.75143

\hline O. 1808, 162, 163 \& R.75152

\hline (Ch. 101) Tel. Rec. 127 \& R.75343 (See modoi ${ }^{\text {R }} 76143$ (See Model 24866) 25

\hline 170 (Ch. 101) Yel. Rec. ${ }^{\text {(Se model }}$ \&

\hline (See Model 170A) ... 127 \& R. 76262 (foct. No.

\hline 700, 701 (Series 108) Tel. \& $7160 \cdot 171$........... 51

\hline Rec. (See Model 70).153 \& R-78162

\hline 12, 715. $717,718,719$ \& ${ }_{21}^{11.701}$

\hline (Series 106) Tel. Rec. \& ${ }_{92}^{24.502}$ ISee Model

\hline (3, 801, 802, 803, 804 \& R643W1

\hline (Series 108) Tel. Rec. \& 92-503, 92.5

\hline (See Model 701157 \& Models RSS

\hline 2. 903 (Ch. 1031 \& -505,

\hline Tet. Rec. ISee
Model
ITDA) \& ${ }_{\text {PW) }}$ Models R664 PM, PV, 23

\hline 910.911 (Ch. 103) \& 92-516, 92.517

\hline Tel. Rect ISee 127 \& 92.520, 92.521, 92.522

\hline Model 17DA) 127 \& $$
\begin{aligned}
& 92.529 \\
& 92.752
\end{aligned}
$$

\hline 1042. G. GU, T, 1043, \& MARK SIMPSON (See Mascol

\hline (See Model 12C4).... 108 \& MARK SIMPSON (See masco)

\hline 1142, 1143 Tel. Rec. 108 \& Mars

\hline 1244 (see Model \& \$30K Tel. Re

\hline 1244, G, GU, T. TX, 1245 , \& ${ }^{630 \mathrm{~K}-2}$ Tel. R

\hline G, GU, T, TX Tel. Rec. (See Model 12C4) 108 \& 630 K .33 Tel . Re

\hline 1348 Tel. Rec. (See \& masco

\hline Model 12C41 108 \& 1M.5 41-13

\hline 1400, 14008 (Ch. 100). \& JMR

\hline 1401 (Ch. 105) \& Jm. 5 ima

\hline \& JR IS

\hline \& Jmp.

\hline 150, Gu. T, '1548, G, Gu. \&

\hline 549, G, GU, T Tel. \& MA. 3 NO

\hline Rec. (See Model 12C4). 108 \& MA-8N. . .n. 119

\hline 1600, 16008 (Ch. 101) \& MA.10HE 1112

\hline \& ${ }_{\text {MA.10EX }}^{\text {MA.12HF }}$.

\hline 1605, 16058 (ch. 102) \& MA.17.............. 14-32

\hline Tei. Rec. (See \& MA. 17 N

\hline Model 17DA1127. \& MA.17P (See Model MA-17)

\hline \& MA.17PN (Seo Model

\hline Tel. Rec. (See \& MA-2OHF \ldots.......... ${ }^{\text {S }}$ 28-21

\hline 1646, 1647, 1648, 1849 \& MA-25 16-24

\hline Tei. Rec. 'tsee \&

\hline Model 12C4) 108 \&

\hline 1671, 1672, 1673, 1674, \& MA-25NR $\ldots \ldots . \ldots \ldots . .1{ }^{\text {a }}$ 49-12

\hline 1675 Tel. Rec.
(See Model G-414). . . 133 \& MA-25P ISee Model MA

\hline 170 (Ch. 1011 Tel. Rec. \&

\hline (Seo Model I7DA) 127 \&

\hline 1900 Tel. Rec........... 95A. 10 \& MA.35N

\hline | 1974,1975 Tel. Rec. |
| :--- |
| (See Model G-414).... 133 | \& MA.35RC (See Model ${ }_{\text {MA-35) }} \mathbf{1}$

\hline
\end{tabular}

$\begin{aligned} & \text { MASCO Cont. } \\ & \text { MA.50 } \\ & \text { MA.50N iSee Model } \end{aligned}$	MECK-Cont. $\mathrm{X} \times 900$ Tel. Rec. (See Model MMSIOT)	MINERVA-CORt. W. 728 (See Model (.728). 11 410,411 41-14	MOTOROLA-CONT OE6 (Oldsmobile) (See Model CTS)	MOTOROLA-COnt. 7F11, 7f118 (Ch. H5.265) ….....113-5
		${ }^{702 \mathrm{H}, 702 \mathrm{H}}$		
A. 50		729 (Porlopai) …e... 23-14		
		MIRRORTONE (Also See Meck)		8GMT (See Ch. 8A) 46
52-27		MC, 14MT Tel. Rec.	A)	i ${ }_{\text {GFPM218 }} \mathbf{2 4 7 1}$.......121-9
		,		Ch. H5.246) 114 -8
MA.808	(See Mod	$16 \mathrm{MxC5}$, 16 MxT ,	SROB (Ch. O8)........ 105	Is
	A			
MAP-105 . \ldots....... 25	Set $120.1 \mid$	17 MC - 17 MT 17MXC		
AP. 105 N . ${ }^{\text {a }}$		$17 \mathrm{ML} \times \mathrm{CS}$, 17 MxT .	SR9A (See	7Vil) .
	(1) 148	17 mxis 'el Rec		${ }_{\text {OT2 }}(\mathrm{Ch}, \mathrm{TS14}, \mathrm{~A}, 8)$
	16C, T(Ch, 9018) Tel.		(See Moder Vk101)...is	
	Rec. ISee Model MMobl4C) Also	MITCHELL	Vfloj, 'Vflosm (Ch. Ts-8)	
	Prod. Chge. Bul. 12.	M	\checkmark kiol	TS14
47	Set 120.11 1117		106	${ }_{T}$
C. 25	7C, 617 TL (Ch. 9022)	T178, M Tel	-	
C.25N	Tel. Rec. (See Model j m717C)	50, 1251	Rec. (See Model	10Vk22
126. MC. 126 P 111	$19 \mathrm{C}, \mathrm{T}$ (Ch. 9018)	1253	67	
	Rec. (See Mode MMS ac) (Also	1267		$10 \mathrm{VT3}$ (Ch . TS. 9 Pe , is.9Ei)
18, ME-18P	Prod. Chge. Bul. 12 ,	1268R 127	. V T7) (Ch . TS.48 Thru j)	Seo Mode
ME-27,	20.1)	ED INSULATION		Vk106)
ME.36, ME.36R		(Also see Vix)		Tel. Re
	medco (See Telesonic)	MR. 6 (Wiretone)	VTIO1 Tolevision Receiver 51	${ }^{1072)}$. 92
MHP.110X 115	ME	MONITOR	VTlOS (Ch. TS.90) Te	${ }^{10 \mathrm{VI} 24}$
		M. 403 (Foct. No. 470-2) - 22-20	Rec. Phoiotoct Servicer.	1012
	${ }^{54}$ (See Moguire Model 44		IS.9A, TS-98, TS.9C)	12 kl 1
	OH (See Moguire Mndol			1012
	(A)		Rec. Phototoct Servicer. 82	12 k 210
		TAS6M, TWS6M 6-18	107, vilo7m Tol. Rec.	
		MONTGOMERY		
TP-16	9.109	(See Airline)		Tell Rec.
				${ }_{211}(\mathrm{Ch}$
		onial Model	od	Tol. Rec. (Seo Model 92
MASON	24 TV Tel.	71	${ }^{\text {R } 6) ~}$	$2 \mathrm{~T} 3 \mathrm{Ch} .$
45.14 .19.e. 14	See Mod	10	1c1s 170	,
45-5 (See Model $45-14{ }^{\text {a }}$	574 (See Moguiro M	133		12 V
		${ }^{802}$ (Philco C.4608) 18-	HS. 15	1072\}..... 92
Mattison	1 (See Masuir		SA7A (Ch. H5.	$12 \mathrm{Vk11}$ (ch. TS.23, A, B)
$630 \cdot 2,-5,-55$ Tel. Rec.	2961 series …….... 27	${ }_{803}($ Philco PD-4908) 66		Tel. Rec.
mayfair	ERCU	805	(5ee Model 5C1)..... 116	$2 \mathrm{VK15}(\mathrm{Ch}$.
$510,510 \mathrm{~W}$	ICM747 (1iM. 18805	${ }_{808}^{806,807(S e e ~ M o d e l ~} 803$) 66		Chae. Bul. 5.5 Ser 106.1193 M 7
		${ }_{809}^{808}$ (See Model B05) ... 71	${ }_{5 C 4}(\mathrm{Ch} . \mathrm{HS}$-270)	Vkise, 2 Vk (
550, 550W 24-22	CF7431		116	TS 158 TS 1
megrade	(See Ford			${ }^{\text {ee }}$
M-100 16	$1 \mathrm{CF7} 73-11$ 1 158	810.		${ }^{2} \mathrm{VTI} 3$ (Ch. TS - $23, \mathrm{~A}$, 日)
MECK (Trail Blarer-Plymauth)	Model 6MF7801	ee model	(Seo Model ${ }^{\text {c }}$ (1) . 116	
CD-500 (PX.SC5.EW-19) - 33	$8 \mathrm{Mm890}$ (Ch. $8 \mathrm{EP90}$)		H12	12 VFT
CE-500 (SC5-P 12) .-.... 33-10				
.500 (SD7.W18) ${ }^{34}$		${ }_{\text {BK. }}^{\text {BRO.A (Buick) Ch. }}$	HU(Ch. HS.224) 100	
CW. 5	8ММ991-E (8M-18805) . 83-4	BK8, BK8× (5ee Ch. 8A).. 46	512 (Ch. H5-250), o 512U	
Cx-500 ${ }^{48-13}$		CR. ${ }^{\text {C }}$ (Chrysler) \ldots..... 25	Ch.	K1, 8 ch
DA601, $086021 \ldots . . .{ }^{81-10}$	M6B …............. 2-30		sil (Ch. HS. 250), 5ilu	,
	mbe 2 -so	Cio (See Model Cl9).... ${ }^{132}$	57	K1br,
EFFI30 Ch i i 00031	$\mathrm{P}_{\text {P-\%, PB.6 }}^{\text {MIDWEST }}$	CT1M		Ts. 11
Ev.760 104 104			$512 \mathrm{Ch},$	(${ }^{\text {en }}$
Jm777c, Cu ,	${ }^{\text {R- }}$ Ch, RGL -i2)		See Model 5 Sl	
	RG.12	(see Ch. 0 A)		
Tulch. 0221 Tol, Rec. 148-	PG	FD. 6 (ford)	Ch. HS-249, HS-223) . 101-	
Mmsioc, m		FD7 (Ford) (See Model	$5 \mathrm{R114}, 5 \mathrm{5R12A}, 5 \mathrm{SR1}$	
	$58 \text { ST. } 8 \text { TM-8 }$			
mmoldC. T (Ch. 9018) Tel. Rec. (Also See Prod.	$\begin{aligned} & \text { (Ch. STM. } \\ & \text { 2, SG.12), ST-12 } \end{aligned}$		Model 5R11U) 115	
		GMPT (Soe Ch, 8A)... ${ }^{46}$	5R11U, 5R12U, 5R13	
120-11) .1. 117 -8		GM9T, (SEee Ch. 10A). 106	SR14U, 5R15U, 5R1	Radio
16C, T (Ch. 9018)	SGT.iol ...			
I.	716, 7154 (See Model S-16)		$5 \times 11 \mathrm{U}, 5 \times 12 \mathrm{~L}, 5 \times 13 \mathrm{U}$ (Ch. HS-243)	16×2 (Ch. TS.52) Tel. Rec. $93 \mathrm{~A} \cdot 10$ 16 K 2 Ch. TS.74) Tel Rec.
lalso		${ }_{\text {KRI }}$ (See Ch. (A)..... 134	(Ch. HS-243) $5 \times 21 \mathrm{U}, 5 \times 22 \mathrm{U}, 5 \times 23 \mathrm{U}$	
Bul. 12. Sef 120.1) . . 117	m	KR8, KR9 (See ${ }^{\text {ch. }}{ }^{84}$)	${ }_{\text {(Ch. Hs-259) }}$ (C.....120-9	
	2 (See W. 702			94)
Tel. Rec.	L-728, W.728 .			del 14 K 18 BH$)$
(See Model		NH8 (Soee Ch. BA) \ldots...... 46		16 TI (Ch . TS-60) Tel.
(Also See Prod.		OEO (See Ch. 10 A) ... 106	6x114. 6×120	
M616C. TICh. 90	W710, W710A (W119)	OE2 (See Ch. 8A) 46		
Tel. Rec. ${ }^{\text {See }}$ Model Jm717C). 148				(See Model 141418H) . 121
620C, T(Ch. 9023)				
				(See Model 12vk15)
PM.SC5.DW10.	How to obtain a sample PHOTOFACT Folder Service Technicians who have not yet enjoyed the advantages of the world's finest Radio-TV service data, may obtain a Free Sample PHOTOFACT Folder and see for themselves how they can save time and earn more. To get your free sample, simply state the PHOTOFACT Set Number and the Folder Number (not applicable to listings bearing suffix letter "A" or an asterisk "). Mail your request on your business letterhead (or enclose your business card) to: HOWARD W. SAMS \& CO:, INC. Department P 2201 East 46th Street Indianapolis, Indiana This offer is limited to one sample Folder. (PHOTOFACT Distributors do not stock sample Folders.) Rec. (See Model 12VK15) (Also Prod. Chge. Bul. 5.Set 106.1) 93 17F1 (Ch. TS-1 188 Rodio Ch. HS-253) Tel. Rec. (See Model 14 KiBH)... 121 17FIA (Ch. TS.89 \& Radio Ch. HS-253) Tel. Rec. (See Model 14 K 1 BH) .. 121 17F1B (Ch. TS-118 \& Radio Ch. HS.253) Tel. Rec. (See Model 14 Ki BH). . 121 17FIBA (Ch. TS-89 8 Rodio Ch. HS.253) Tel. Rec. (See Model 14K1BH) 121 Rodio Ch. HS-253) Tel. Rec. (See Model 14 K 1 BH) 121 Rodio Ch. HS-253) Tel. Rec. (See Model 14 K 1 BH) 17F3B (Ch. TS. 1188 Radio Ch. HS-253) Tel. Rec. (See Model 14K1BH) 121 17F38A (Ch. TS-89 \& Radjo Ch. HS-253) Tel. Rec. (See Model (4KiBH)			
PM-SC5-PW10				
SA.10, SA.20101-4				
701 Tel. Rec.... .705 ISee Model				
$\text { XA. } 7011$				
101				
xOB Tel. Rac. (See 110				
XP.775, XQ.776, XQA.776 Tel Rec. ISee Model				
XF-7771 …........... 101				
XQA, XOR Tel, Rec. ISee Model MMSIOTI. 110				
XRA, XRPT Tel. Rec. (See ${ }^{\text {a }}$				
Tel Rec. (See Model 101				
XSB [Ch, 9018] Tel. Rec (See Model MM614C)				
Also See Prod. Chge. Bul. 12-Set 120.11. 1				
XSC [Ch. 9018) Tel. Rec. 117				
(See Model MM614C). . 117 $\times 5 D$ [Ch. 9018 T Tel. Rec.				
(Ch. 9018) Tel. Rec. ee Model MM614Cl. . 117				
(See Model MMS10T). . . 110 ta, Xtr Tel. Rec. (See				
Tha, XTR Tel. Rec. (See Model MM510T). 110				

MOTOROLA-NATIONAL CO

MOTOROLA-C	motorola-con
, HS 1611 (See Model	TS-115
	See
(Sees Model 59R11)... 79	Ch. TSS-188 (Model 14 K 18 HH)... 121
Ch. HS-168 (See Model 79XM21] 85	Ch. TS-119, CYS
Ch. H5-170	Ch. TS. 172 (See
(See Model 99FM21 R). . 80	Model 14 K 1 BH)
	Ch. TS. 174 ((See
Model 79Fm21) 88	model 14T4)
Ch. HS .180	Ch. TS-220 (5e
	Ch. ${ }_{\text {Model }}$ (S.228 ${ }^{\text {(1791) }}$
(See Model $89 \times 111 . . .88$	iSee Model 17F1
Chiss. ${ }^{\text {isee }}$ Model 49110177	Ch. 1 IS -236 (See Mod
S8R11A) 69	
Ch. H5-187	Ch. $84 . \ldots$. 46
(See Model 59111 Q)... 78	10 A
	MUNTE
(See Model S9X21U)... 98	M30 (Ch. TV-16A)
Ch. HS -210	
Ch. H5. 223 (See Model ${ }^{\text {(Se }}$ M ${ }^{\text {a }}$	Tel. Rec. (See
SM11 101	
HS-224	Tel. Rec.
[See Model 5J1)....	
Ch. HS-226 (See Model	Rec. (See Model M 31). 116
Ch. H5-228	M31R, M32 (Ch. TV.16A3)
See Model 5C1)..... 116	
230 (See Model 19F1). 111	m 32 (Ch. TVITAZ) Tel.
Ch. HS-234 (See Model	Rec. (See Model M31). 116
Ch. HS - $242 \ldots$	32, M322 (Ch. TV17A3)
(See Model 5R11U).... 115	(See Model M31].... 116
Ch. HS -243	M33 (Ch, TV17A4) Te
Ch (Se8 Model 5×1 (10) ... 114	Rec. (See Model M31).
(Sees model 5H11U)... 117	(Ch. TV-17AA) Tel.
Ch. HS-245	Rec. (For Tel. Rec
(See Model 6x1lu)....112	
HS. 246	Tel. Rec.
(See model 9FM21)... 114	(See Model M31) 116
Model 8 PM211	M46 (Ch. TV17A7)
Ch. HS-249 (See Model	
5M1, 350	M49 (Ch. TVITAT)
(See Model 5J1) . 100	Tel. Rec. ISee
Hs-253 (See 100	M. Modol ${ }^{\text {M }}$ M11) 116
Model 17FI	M.159 Teli, Rec......... 97A.10
Ch. HS -258	M-159A. ${ }^{\text {E Tel. Rec...... } 97 \mathrm{~A}-10}$
(See Model 5C1) 116	M.168 Tel. Rec
${ }_{\text {HSe }}$	1750, 1751, 1752
H5-261 (See	
Model 17F5) 121	2053, 2055, 2056
HS-262	Tel. Rec
(See Model 5C1)..... 116	murpay
H5. H . 264	
iSee Model 7F11).... 113	122 (See Model 112).
Ch. H5-270	musitron
(Seee Model 5C1)	
Ch. HS.27I, HS. 272 (See Model 5C1) 116	
Ch. H5-283 (See Model	SRC-3 (Seo Madol 101) .. 13
S1M1U) 149	101 "Piscol0". 13-21
h. M. 5 (See Model	103 "Piccolo" 15-21
AR96.231 11	
Ch. OB (See Model SROB) 105	202 21-27
TS-3 (See Model	Nash
Ch. TS.48 Thru ${ }^{\text {J }}$	OMN082 9-
(See Model VT.71).... 55	Ch. ${ }^{\text {6 C } 282}$ (See Model
	6MN082)
Model VT.73).	national co.
	HFS62-14
T. TS-7 (See model	HRO.7R. HRO-7t
vkiol) 51	HRO-50
Chassia IS.8 15 ee Model VFlO3]	
	C-TV-10C, T, W Tel.
${ }^{\text {TS -9 C }}$ (See Model ${ }^{\text {MTIO5] }}$	
Ch. TS-90 $^{\text {VTloe Model }}$ (67	
${ }_{\text {V }}^{\text {VT105) Photofact }}$ Servicer	NC-TV.12C, w Tel. Rec. (See Model NC.TV.10C)
Servicer Ch. TS-9DI	(See Model NC.TV.10C) (Also Seep Prod. Chge.
Ch. TS.9E, TS 9E1	
	NC.TV. 1001 Tee Model NC . TV-10C)
	(Also See Prod. Chge.
Chis ${ }^{\text {S }} 15$	8ul. 1 Sel 103.191... 94
	(See model ${ }^{\text {a }}$ NC.TV-100)
Ch. TS. 158	(Also See Prod
Ch. TS-15C, TS-15Cl	cul 1. Set 103.19) $\ldots 94$
(see Model 12Vkis	1201, NC.TV-1202
TS.	Tel. Rec.
(See Model 12VK15)..	(See Model NC.TV-10C)
${ }^{C h}$ TVS-18, A (See Model 83	(Also See Prod. Chge. ${ }^{\text {l }}$
Ch. TS-23,	C-TV.1225. NC-TV. 1226
(See Model 1012).... 92	Tel. Rec.
$\mathrm{Ch}^{\text {H TS-30, A }} 12 \mathrm{VK151} 93$	(See Model NC.TV.10C)
	(Also See Prod. Chge.
${ }^{\text {Ch. }}$ (See Model 16K2]..... 93A	NC-2.40DR, $\mathrm{NC}-2-400 \mathrm{~T}$
Chis 5 S 53	
[See. Model 12k2].	NC.46 ${ }^{\text {9 - }}$ 26
$\mathrm{Ch}_{\text {itifl }}$ TS:60 (See model	
$\mathrm{Ch}^{16+1)} \mathrm{TS} .67 \times \cdots \ldots$	NC-108R, NC.1089 ${ }^{137}$
(isee Modal 19F1).	NC.173R, NC.1731 40
Ch. TS. 74 (See Model	
Ch. 1651 TS. $88 . \cdots \cdots \cdots \cdots \ldots .102$	
(See Model 14K1).... 112	TV.1226 Tel. Rec.
TS Modol 1ak	[See Model TV.1201]. 119
See Model 16F1BH)... 121	TV. 15001 Tel . Rec.
	TV.1625 Tel. Rec.
Ts.95 (see	(5ee Mo
Hodel 17K1A) 121	TV-1701, TV-1702
Ch. TS-101 (See Model 19K2)	TV.1725, Rec. TV.i727 Tol.
Ch. TS-114 (See Model 14T3)	Rec. (See Model

PHILCO-COnt
51.71634 (Codes 121, 122)

Tol. Rec. (See Model
$50 . \mathrm{Tl} 100$ Code 1221
Bul. 20 . Set 134.11, 110
1.T1634 (Codes 123, 124)

Mel. Rec. (See
Model 51.71601$) ~ ~$
138
Model $51 . \mathrm{T1} 6011, \ldots 138$
51 -T1800 1 Code 121, 122)
Tel Rec
51.T1830 (Code 121)

51 -T1800) …......... 148
51-T1832 (Code 121)
TTe. Rec. (See Model

51-T1834 (Code 121)
Tel. Rec. (See Model
51 TT1800)....)..... 148
51 -T1835 (Code 1211)
Tel. Rec.

S1-T1836 (Code
Tel Rec. FF Madel
S1-Ti800)
$\begin{array}{lll}51-T 18001 \\ 51 . T 1838(\mathrm{Cun} & 124)\end{array} 148$
Tel. Rec.
(See Model 51.T1833). . 135
51.71870 (Code 121)

Tel. Rec.
(See Model 51.71833). 135
51-T1871, 51.1872 (Codes
TSee Model Tel. Rec. 51833). . 135
(Se)
(See Model 51-T1833).
51-T1874, (L), $51-T 1875$,
51.71876 (Code 121 Tel.
51.T1876 (Code 121] Tel.
Rec. 1 See Model
51 T1833) $\ldots \ldots \ldots .135$

S1.T1833)135
51.T2102 (Code 122)
Tel. Rec................132-10
$51-T 2130$ (Code i 21)
Tel. Rec. (See Model
51.T2102). S .T2132,5133 (Code 132
121) Tiel. Rec. (See
(Model 51-T2102)..... 132

51-T2134 (Code 124)
Tel. Rec.
(See Model 51. T2102) . 132
(1.T2136 (Code 124)
$\begin{array}{lll}\text { Tel. Rec. } \\ \text { (See Model 51.T2102) } & 132\end{array}$
$51-12138$ (Code 124)
Tel. Res.
(See Model 51.T2102) . 132
1 -T2170 (Code 121)
51-T2170 Rec.
Tel. Ree
(See Model 51.T2102) . 132
(See Model $51 . \mathrm{T} 210$
$51 . \mathrm{T} 2175,51 . \mathrm{T} 2178$

51.530
51.532
$51-530$ (siee Model
$5 . ~$

51.632 (See Model
51.6291
$51.930,51.931,51.932$.

$\mathbf{5 1 . 9 3 4}$ $51-1330$

$\begin{array}{ll}51-1330, & 1.1730(1) . . .130-140-8 \\ 51.1730, \\ 51.1731, & 51.1732 \\ 51.1734\end{array}$
$51.1731,51.1732$ (i).
51.1733,
51.1733
51.1734 (Code 122, 123) 137-9
52.71810

52-T1812 (Code 122, 123)
Tel. Rec. (See Model
51. T1800) \ldots (Code 122, 123)
52.71840

Tel. Rec. (See Model 148
$51-\mathrm{T} 1800$)
$2 . \mathrm{T1842}$ (Code 1222 , 123)
52.T1842 (Code 122, 123)
Tel. Rec. (See Model
51.T1800)
51.71800)
$52.71844(\text { Code } 122,123)^{148}$

Tel. Rec. (See Model
$51 . \mathrm{T} 1800$)

Tel. Rec. (See Model
$51-\mathrm{T} 2102$)
51-T2102)
52 T210 (Code 121)
Tel. Rec. Cod. i22]
52.T2110 (Col
Tol. Rec. (See Model
51.721021 .
52. T2142 (Code 122)
Tel. Rer. (See Model

S1. T2102).
2-T2144 (Code 121) Tel 132
52-T2144 (Code i2i) Tel.
Rec, (See Model
52 (Sin
Rec, (See Model
$52-\mathrm{T} 21101$
52-T2145 $\times(\operatorname{Cod}$ 125)
Tel. Rec. CCo.le i2il
$52 . \mathrm{T} 182, \mathrm{C}$
Tel. Res.
$52.540,52.5401,52.541$,
$52.540,52.540-1,52.541$,
$52.541 .1,52.542 .1 \ldots 154-10$
$52.640, \quad 52.641, \quad 52.942 .153-12$
$52.940,52.941,52.942$
PhILHARMONIC

PHONOLA-RCA VICTOR

RCA VICTOR-CONF. Ch. RC. 1059	RADIO DEVELOPMENT \& RESEARCH CO.	RAYTHEON-Cont. C-1602, A, B, C (Ch.	RAYTHEON-Cont. M-1601 (Ch. 16AX23, 25,	RAYTHEON-Cont. $100 \times 21,100 \times 22$ Tel. Rec.
Chee Model 88x5].... 46	(See Magic-Ione)	$164 \times 23,25,26$ C-1602, ${ }^{\text {eries }} 2$	261 Tel . Rec.	(See Model A.100×24)
(See Model 98×5).... 46	radioette	154×291 Tel. Rec	M. 1611 A (Ch, 16AY2il	3 -Set 105.11..... 75
RC. 1060	PR-2 50-15	See Prod. Chge. Bul.	M-16118 (Ch. 16AY28)	0×24 Tel. Rec
(See. Model 8R71) 53	RADIONIC (See Chancellor)	26.11 $18.17{ }^{\text {20, }}$ 99-14		(Soe Modal A-100 24). 75
isee Model 8R72) 53	Y62W, Y728 26-22	C. Tel Rec. See	M.1612A (Ch. 16 AYY iij,	
Ch. RC-1061		Model C-1615A) . ${ }^{\text {a }} 124$	M-16128 (Ch. 16AY28)	104×22 lseo Model
Ch (See Model 8×611) ... 6.65	118 28-27	C-16148 (Ch, 16AY28)	${ }_{\text {Tel }}^{\text {Tel. Rec. }}$ (1015A) (See Model	M7011
(See Model 8x53) 39		Model C.1615A) 124	M.1613A ich. 16AY2Vi),	C1102) 12×22 (See Model
Ch. RC-1064	RADIO MFG. ENGINEERS (Soe RME)	C. 1615 A (Ch. 16AY211),	M-1613B (Ch. 16AY28)	$12 \mathrm{~A} \times 26,12 \mathrm{~A}$
Ch. RC-1065, RC-1065A		Tol. Rec.124-8	C.1s15A) 124	
(See Model 8×541)... 59	(See Lafayette)	C-1616A (Ch. 16AY211).	M.17114 ${ }^{\text {ch }}$	Model (-140i)...... 123
Ch. RC-1056 1085		16168	M. 17118 Ch.	164
	RAULAND	Tel. Rec. (See Model c. 16154)	C. 161515 Caj .	$\mathrm{Ch}^{\text {iSoe Model }} 16428$ (See Model
(S5ee Model 8x522) ... 52		C-17148 (Ch. 17AY21)	M-1712A [Ch. 17AY24)	C. 16
${ }_{\text {isea Model }}{ }^{\text {Rec-1068 }}$ 98561... 79	1814 ${ }^{99}$-13	Model C-1615A) 124	Tel. Rec. (See Model	${ }_{\text {Prod. }}$
Ch. RC. $1069 \mathrm{~A}, \mathrm{~B}$		C.1715A (Ch 17AY24),	C.1615A)	Ch. 16 AY210 Tel
Model 8841).... 76	1825 97-14	C-17158 (Ch. 17 AY 21)	m. M-173B (Ch. 17AY2i)	
	${ }_{1835}^{1835}$............... ${ }_{58}^{60-17}$		Tel. Rec. (See model	Prod. Cha
$\mathrm{Ch} . \mathrm{RC}$-1070A		C. 1716 (Ch 17AY74) ${ }^{\text {a }}$	C.1815A ${ }^{\text {a }}$ (17) 124	Sot 132-1) 124
${ }^{\text {(See Model }}$ (7111).... 133	1932148-14	C-17168 (Ch. 17AY21)	M-1/14A Tel Rec. See Model	h. 17 AY 21 (See Model
	$2100-5$ (Sub station)		C-1615A) 124	C-1615A) (Also See Prod. Chge. Bul. 19
Ch. RC1077A, ${ }^{\text {B }}$	2101.4 (Master Stotion).. 39-20	.1718A C. 171719 A (Ch .	M-2007A, M. 2008 A (Ch.	-Set 132.1)
(S5ee Model 9Y510)....131	2105 (Master Station). ... 36-21	(See Model (-1615A) 124	ISee Model C. 2001 A	Ch. 17 AY 24 (See Model
Model $\mathrm{RC.79}$, A1 ${ }^{\text {See }}$	2206, 2206H, 2212,	C.1724A (Ch. 17AY21) ${ }^{\text {a }}$	P-301 (See Model 70×211]	Crod. Chat Bul. 19
Ch. RC-10798, RC. 1079 C	${ }_{2224}^{22124,2218,22184,} 8$	${ }_{\text {Tel. }}$ Rec. (Seo	Tel. Rec. . ., \%.i..., 81	${ }_{\text {Ser }}$ (32.1)
(See Model '9X561) ... 101		Model C.1615A) 124	RC-1405 (Ch, 14AX21)	Ch. 17 AY 27
Ch. RC.1082 (See Model 103	(See Model BA21)..... 87	C-2001A, C-2002A (Ch.		See Model RC-1720A) 147
	2400 Saries 33-22	20aY21) Tel. Rec.		Ch. 20AY21 (See Model C-2001A)
(See model 9x651).... 104	ray energy	C.2000A TCh. 20ar	Tel	
	AD 7-24	(See Model C.2001A). 149		RECORDIO (Wilcos-Gay)
		M701 (Ch. 10Ax22) Tel.	RC. 16198 (Ch. 16AY28)	
(Seo Model 8×35).... 102		Rec. See Model Cl1102	Tel. Rac. (Seo Model	1110 (Ch. 111)......... 128-12
Ch. RC10898,	RAYthion (Also See Belmant)	(Also See Prod. Chge. 9		
(${ }^{\text {See Model }}$ M 531).... 129	A.7DX22P Tel. Rec	M1101. M1103. M1 105	i 7 AY2i) Tel. Rec. (See	
isea Model 471011.. 139	(See Model 70×2	(Ch. 12Ax22) Tol. Rec	Model C.1615A) 124	
, RC. 1092 (See . . . 139		(See Model Clilit) (Also	RC.1720A (Ch. 17AY27)	8110. 8150 …........ 62-17
Model 9757 122	so	See Prod. Chge. Bul. 3	Tel. Rec.	9610 91-10
RC	$1-$ Set 103.19)			9 G 40 M .
(See Model A RC1096	C1 102 (Ch. 12Ax22)	MRec. (Soe Model (1102) 94	(See Model C.20014) 149	
(See Model A.108) . . . 141	1ei. Rac. (1) Sos See Prod.	Ml105 (Ch. 12A 222 I Tel.	$70 \times 21,70 \times 22 \mathrm{P}$ Tel. Rec. $81-13$	Ch. 6A (See model 6AlO). 10
Ch. RC1096A		Rec. (See Model Cl 102) 94	10 AXF 43 Tel	Ch. 701 (See Model 7D42) 52
(See Mod	(See Modol Cl102)	${ }^{\text {M11058, M-1106. M-1107 }}$	(See Model A.100 ${ }^{\text {a }}$	REGAL (TOK-FONE)
Ch. RClO98	(Also See Prod. Chgo. ${ }^{\text {a }}$	(Ch. 12AX26, 12AX27) rel. Rec.	(Also Ses Prod. Chge. 75	Tok.Fone (20-watt Amp.) . 13-27
RC1098A	C-1104B (ch. 12Ax26, 94	(See Model C-11048) , 141	Bu. ${ }^{\text {a }}$	AP40, ARP400, ARPA 50 .. 15-26
(See Model B-411) 132	12A×27] Tel. Rec......141-11	M-1402, M-1403, M-1404	Model C. 1102 (Ser 94]	
$\mathrm{Ch}_{\text {is }} \mathrm{RC}$ el Model	C. 11401 (Ch. 14A×21)	[Ch. 14A $\times 211$ Tel. Rec	and Model A-100 ${ }_{\text {(Set }}$	(See Model 16131)... 80
$\mathrm{Ch}^{\text {Pr RK-117 }}$	Tel. Rec.123-12	(See Model C-1401) ..		
(See Model 71 IV 2$) \ldots 22$				
Chisee Model BTV41).				
Ch. RK-121				W700 (See Model W800). ${ }^{\text {W800 }}$ W80) ${ }^{14}$ (14-26
Chisee Model 8PCS41)... 90				16T31' Tel. Rec......... 80-14
Ch. RK-121C ${ }_{\text {(See Molel }}^{\text {RV151) }}$				
Ch. RK-135, RK-135A				Tel. Rec.
(SSee Model ${ }^{\text {(}}$ (KK29).... 88	CS		110	17922, 177220x Tel. Rec. 143-13
				15 ee Model 17 HD 3
Ch. RK1 35 C				19031. 19036 Tel. ${ }^{\text {R }}$
				$20 \mathrm{C} 22,20 \mathrm{C} 220 \times \mathrm{Tlel}$.
${ }^{\text {chen mot TA159\% } 108}$	Your Photoract	ider Sets come to you in	nvenient envelopes	Tsee Model 177221
$\mathrm{Ch}_{\text {(See }}^{\text {RS-123 Model }} \mathbf{6 1 2 \mathrm { V } 1 \text {) } \ldots . . 1 7}$	hen you remove	from its envelope	lind the Folder	${ }^{(5021}$
	already arranged in	per filing order, and prec	ed by an Index Sepa-	20022, 200220x Tal. Rec.
(Soe Model BPCS41)... 90	rator. This Separato	ts each receiver covered	the Set, and has an	(See Model I7T22) 20031 20036 Tel.
Chi RSee Model RV151).... 61	index tab showing t	Set number. To file, her	all you do:	(See Model 17HD31)
Ch. RS-126 (See Model 66E)				2OHD31, 20H36 Tel (See Model 17HD3
Ch. R5. 127				20722, 20T220x Tel
${ }^{\text {(See Model }}$ (3E).... 28		e		(See Model 17122) 22017 220170x 22
Ch. RS. 132 (See Model gEY3). 158		1. Remove the Inde	eparator and the	220190X Tel. Rec.
Ch. RS-132F, H (See Model 45EYI). ... 135		Folders from the enve	pe. The Folders and	(See Model 17T22) 205
	yom N.	la TV Jackets	ly arranged in	${ }_{747}^{208}$ (See Model W800)... ${ }^{14}$
RME		ckets	eady arrange	
		proper numerical fili	order except the	1007 Tel, Rec......... 83-9
		TV folders, which are		1030. 1031 Tel. Rec.
		TV folders, which are	aced last in the Set.	
				1101 - 10
Padiola				(See Model 1007)
${ }_{61-1}$, 61.2, 01.3	3			1230 Tel. Rec. (See Model Iot31).... $B 0$
${ }_{\text {Ch. RC. }}$ (CC. RC.11) 1023 14-25		pen your bind	d place the entire	
61-10 ${ }^{\text {Ch. }}$ RC-10238) . $12-25$	\%	contents, taken from	e envelope, behind	${ }^{1607}$ (See Mol. Recifi007)...... 83
61-8. 61.9 (Ch. RC-1034) 27—21 $62-2$ (See RCA Madel				
-2 (See RCA Model $65 \mathrm{U}-11$ 14		receding Set of	lders, laying asid	1749e Model 17T22)..... 143 28-29
	- 5-i	e TV folders.		2217, 22170X, 22219.
RC.1058, RC.1058A) ... 36-20				(15ee Model 17 T
iseer Model (1-11)				${ }_{7152}^{152}$............. 70-8
Ch. RC. 1023, RC. 10238				${ }_{7163}$ ……......... 66-14
		sert	ers	7251 …............. 40 -16
(See Model 61-8) 27				rembrandt
Ch. RC-1058, RC.1058A ${ }_{\text {a }}$	E=\%	tive manila	and your filing is	${ }^{80}$ Tel. Rec.
[See Model 767Y11]... 36 h. RC-1063A				130 Tel . Re
[See Model 752U) 36		omplete		721 ig50 Tel. Rec.......... 65
Radio craftsma				remler
RC. 11				
				${ }_{5310}^{53008,530081,53001 ~: ~ . ~}{ }^{23}$-180-17
				5400,5410 $44-19$
110-12		first page of this index		5500 ".Scottie Pup "...... 27-2
	AL'WAYS REF	TO THE PHO	OFACT INDEX	
$\mathrm{RClOI}^{\text {Pel. Roc........ 142-10 }}$	ALWAYS REF			5520, 5530 Scotio Jun-
RC200 Tel. Rec. 140-9 RC201 Tel. Rec. 151 - 10				$\begin{gathered} \text { ior" (See Model 5500) } 27 \\ 6000 \text {.................... } 77 \text { - } \end{gathered}$

IMPORTANT

Quick, Easy PHOTOFACT Filing Method

The preferred 30-Second method for filing PHOTOFACT folders
Your PHOTOFACT Folder Sets come to you in convenient envelopes. When you remove a Set from its envelope, you will find the Folders aready arranged in proper filing order, and preceded by an Index Sepa index tab showing the Set number. To file, here's all you do:

1. Remove the Index Separator and the Folders from the envelope. The Folders and manila TV Jackets are already arranged in proper numerical filing order except the TV folders, which are placed last in the Set.
2. Open your binder and place the entire contents, taken from the envelope, behind the preceding Set of folders, laying aside the TV folders.
3. Now, insert the TV folders in their respective manila jackets and your filing is complete.

To locate the folder, you want, refer to instructions
on the first page of this index listing.
ALWAYS REFER TO THE PHOTOFACT INDEX

4

335PG, PI, PM, PW
Mode $338-1,338-\mathrm{R} 338$) $\ldots 105$ Model 1U3388) 122
(See Model IU339-K). . 111
340-C (See Model
1 U340-C) $\ldots .$.
342 K (See Model ….... 129 400TVTel. Rec........... 155 405 TVM Tel. Rec
(See Model 4OOIV).... 73
406 Series Tel. Rec.
406 Series Tel. Rec.
(See Model 401 Series). 70
(See Model 40 I Series). 70
407 Series Tel. Rec......
407 Series Tel. Rec.
409 Series Tel. Rec.
411 Series Tel.
(See Model 401 Series) 70
12, $413,414,415$ (Seriel
YA, YB, YC, YD, YE, YF)
Tel. Rec. IAlso See
Prod. Chge. But. 4 .
105.21 .
416 Tel. Ree

416 Tel. Rec. 14416)..... 117
(See Model 1 U419). . 115
420 T Tel. Rec. (See Model $1 \cup 42081$
421, 422 Tei. Rec
(See Model 4) 2) (Also See Prod. Chge. Bul. 16
Sset 126.11 423, 424 Tel . Rec. (Seo
Model UU420B) (Also
See Prod. Chge. Bul.
19 .Set 132-11, 124 19. Sel $132-1$. 124
$4238,423.17$ Tel. Rec.
(See Model $14420-8$). 124 (See Model 1U420-B) ... 124
424.17 Tol. Rec.
(See Modol IU420-B) . . 124 (See Model IU420-B) ... 124
425 Tel. Rec. (See
Model lU425) 127.127
428 Tel. Rec. (Seo Model 144251
$429,430,431$ Tel Rec.... 127 429, 430,431 Tel. Rec.
(5ee Model 1U420B)

Prod. Chge. Bul. 21... 136-
435 Tel. Rec.
(See Modal $1 \mathrm{U}_{4} 5$)
(See Model 1U425)
(Also See Prod. Chge 8ul. 21-Set 136-11,
$438,439,440,441,443$, 444 (Series: XD, XXD,
$2 \times 0 \cdot$ Tel. Rec. (See Model IU438)... 15 SETCHEIL-CARLSON
150 Tel. Rec............144-9
$151-A 17,151-A 17.1$.
$151-$ B17. $151-817-1 R$ 151-B17, 151-817-LR $151.820,151.820-1 R$,
$151-C 20,151-C 20-L R$

How to obtain Service Data on Pre-War Models

Photo copies of schematics covering pre-war (prior to 1946) receivers can be obtained by regular PHOTOFACT subscribers at 50ϕ each (our cost). Additional data can be supplied at a nominal cost per page. When requesting pre-war data, please mention the name of the Parts Distributor who supplies you with your PHO'TOFACT Folder Sets.

SPARTON-Cont.
5010, 5011 (Ch. 97510
A) Tel. Rec..........104-11
A) Tel. Rec.
See Model 5010) 10 ${ }_{5025}(\mathrm{Ch}$
265 SI 160) Tel. Rec.128-13
5025 BA Tel. Rec. (See Model 5025) (Also (See Model S025) (Also
See Prod. Chge. Bul. 22 Set 138.11
5026 Tel. Re
(See Model 5025)..... 128
5029
5030 26501601 Te 1. (Sse Madel SO25). 128 5035,5036 is 5037 (Ch.
2655160) Tel Rec. (See Modal 5025),
5052 (Ch. 24 TR10, 3TR10) 128 5056, 5057 ích. 19tsio, 97A-13 A) Tel. Rec.
(See Model $50101010 . .104$ 5064, 5065 (Ch. 23 TB10
Tel. Rec.
(5ee Model 4964) 5068, 5069 (Ch. 24 TViCl)
Tel. Rec. (See Model 49007 V$)$
71 5071 , 5072 (Ch. 197510,
A) Tel. Rec.
(See Model $50101 \ldots \ldots$ (See Model 50101104
s075BA Tel. Rec. (See Model 5025) (Also See Prod. Chge. Bul. 22
-Set 138.1) 128 5078 (Ch. 2855180. B) Tel. Rec. (See
Model 5025)......... 128 50768A Tel. Rec.
(See Model 5025) (Also See Prod. Chge. Bul. 22 Sef 138-1) 128
S076BB Tel. Rec.
(See Model 5025) 5077, 507784 Tel. Rec (See Model 5025) (Also (See Model S025) (Also
See Prod. Chse. Bul. 22
-Set 138.1) -Set $138.11 . .$.
5077 BB Tel. Rec
5077BB Tel. Rec.
(See Model 5025) 128
$5079,5079 \mathrm{~B}$ Tel. Rec. (See Model 5025) (Also
See Prod. Chge. Bul. 22128
Set 138.1) -Set 13 B .1).......
$5080,5080 \mathrm{C}$ Tel. Rec.
(See Model 5025) (Also See Prod. Chge. Bul. 22
Set 138-1) 5082, 5083 (Ch.
26SD160, $265 \mathrm{SD1701}$ Tel. Rec. (See Model 5025 Set 128 and
Model 141XX Set 126) (Also See Prod. Chge.
Bul. 22 -Set 138.1) 5085, 5086 (Ch. 2RDI90.
2SRD 190) Tel. Rec. . . . 139-14 5088, 5089, 5090 (265D160, 2650170) (2'SSD160, 2650170)
Tel. Rec. (See Model Tel. Rec. (See Model
5025 Sel 1288 ond
Mon
5101,5102, 5103, 5104, 5105 Tel.' Rec.
(See Model 5025) (Also
See Prod. Chge. Bul. 2 See Prod. Chse. Bul. 22
-Set $138-1$)........ 128 $5152,5153,5154$ Tel. Rec
(See Model 5025) (Also (See Model 5025) (Also
See Prod. Chge. Bul. 22
Set 138-1) Sef 138 -1)
5158 Tel. Rec.
(See Madel 5025) (Also See Prod. Chae. Bul. 22
S. 128 5170, 5171 ICh. 2550201,147 -11
250201) Tel. Rec.147-1 5182, 5183 Tel. Rec (See Model S025) (Also
See Prod. Chse. Bul. 22 .Set 138.1) 128
5188,5189 Tel. Rec.
(See Model S025) (Also
 5191,5192 (Ch
25SO201A, 2SD201)
(See Model 5170).... 147
Ch. PC. 5.6 .26
(See Modal 6AW26PA). 37 Ch. 2 RDI90
(See Model 5085) 139 $\begin{array}{rr}\text { (See Model 5085) } & 139 \\ \text { Ch. } 250201 \text { (See Model } \\ 51701 & 147\end{array}$ Ch. 3 TB10
(See Model 4944].
Ch. 3TR1O (See Model
eh. JTV9, 3 TVQC
(See Model 400TV). 64
Ch. 4 E10 (See Model IS0) 91
Ch. SA7 (See Model 100). 38 Ch .547
Ch .506
Ch is 5.06
Ch. 5410 (See Model 130) 94
Ch. 5-16
Ch. 5-26PS ${ }^{\text {(See Model 5AM26PS); } 5}$
(See Model SAM26PS) 5
Ch^{689} (See Model 1051) 58
Ch . 618 (See Model 1030) 37 Ch. 6.06
$\begin{array}{ll}\text { (See Model 6AMO6)... } & 34 \\ 717 \text { (See Model 1010) } 35\end{array}$ (See Model 7AM46).
Ch. 819 (See Model 121 .
57
57 $\begin{array}{lll}\text { Ch. } 819 \text { (See Model 121). } & 57 \\ \text { h. } 8110 \text { (See Model 141A) } 92 \\ \text { h. } 8510 \text { (See Model 141A) } 92\end{array}$ 8Wio (See Model

SPARTO
Ch. 8.46
isee

SPIEGEL (See Aircastle)

STARK

StARK	
410	40-22
1010	$88-2$
1020	89

StARREII

IE-KING-Cont.	TELE-TONE-Cont.	TELE-TONE-Cont.
162 Tel. Rec. 172	328, TV329 (Ch. TAP,	Series R
172 (Ch. TVG) Tel. Rec.	TAP-1, TAP-2) Tel.	(See Model
(See Model 201) 174 (Ch. TVG) Tel Rec.	Rec. (See Model ${ }^{\text {R }}$ (V324) Mo.l.a. 127	(Seemodel 148)..... 24
(See Model 201) 131	V.331, TV.332,	Ch. Series T (
	TV.333 (Ch. TAO) ${ }_{\text {Tel. Rec. }}$	(See Model
(See model 201) 131	335, TV	Model ' TV -315)
210 Tel. Rec.		Ch. TAC (Sees ${ }_{\text {Modal TV. } 3081109}$
410 Tel. Rec.,......... 88-12	TV340 (Ch. TAP, TAP	Ch . TAH
416 Tol. Rec. *	TAP. 2) Tel. Rec. (Seos	(See Model TV-316)
510 Tel. Rec.	Model TV3244,	Ch. TA) (See Model
${ }_{512}{ }^{\text {See Mel. Mec. }}$ Rel $4101 \ldots . . .88$	TAP.2) Tell Rec. (See	Ch. TAM (See Model
See Model 410)..... 88	Model TV3241 127	TV318)
${ }^{1} \mathrm{Sel}$ I. Re	i32 Tel. Rec.	TAO ISoe
(See Model 114)	(SVee Model TV. 324.100127	Model TV.3301
(See Model 410)..... 88	8002, 8003) Tel. Rec.	Chisee Model TV324) .. 127
10 Tel. Rec.	(See Model TV. 330)... 145	Ch . $\mathrm{TS}^{\text {S }}$
(See Model 410)..... 88	TV.358, ${ }^{\text {S See Model }}$ TV	[5e.
15 eo Model $4101 \ldots . .88$	TV. 360 , TV. 365 (Ch. 800 i ,	Model TV.300) 107
16 Tel. Rec.	${ }^{8002, ~ 8003) ~ T e l . ~ R e c . ~}$	Ch. TY, TZ
ISee Model	(See Model TV.330).	(See Mod
T		
	Al. 39-26	$\mathrm{Ch}^{\text {S }}$ See Mode M Serion ${ }^{\text {a }}$
${ }_{9}$ SOCAF Mel. Ree	110 (See Model lili-A).	(See Model 160)...... 36
(For TV Ch. oniy,	111. 113 (Sve Model 100) 39	Ch. $8001,8002,8003$
see Model 1621.		(See Model TV-330)... 145
(See Model 114) 141	II7.A)	televox
19CAF Tel. Rec.	122, 123 (See Model 100	
(For TV Ch.	124 (See Model 117-A)...	
see Model 114).	125 (See Model 100).... 39	${ }^{27 \mathrm{~K}-\mathrm{W}} \ldots \ldots \ldots \ldots \ldots \ldots .{ }^{\text {20 }}$ 20-33
920 (Ch. TVG) Tel. R	126 (See Model 117-A)... 1	
(See Model 2011	127,	tel-var (See Audar)
1014 (Ch. TVG) Tel. Rec.		
1016 Ch. TVG) Tel.	133 11-25	temple
(See Model 201). . 131	134 13-32	
Ch. TVG Tel. Rec.	135 14-29	
(See Model 201) 131	${ }_{138}^{138}$ (Ch. Series N) (140 141 (Ch Series ${ }^{\text {23-27 }}$	E.S12, E-514 (See Model
teleguip	${ }_{\text {Hi) }}$ (See Model l 35) . 14	E.519 (50) Model E-5io
Ch. 12TR, 14T, 14 TR ,	142. 143, 144	F.301 …........... 12-26
16 TR, 19T, 19TR	Model 1451.... ${ }^{23}$	F.611 9-32
Tel.		F.616
316 MF Tel	148 (Ch. Series 51 ${ }^{24}$	F.817 12
C317	149 (Ch. Series H)	G-410 27-28
C320MF Tol		
CS5160 Tol. Rec		G-418, G-419 26 25-25
C5170 Tel. Rec	${ }^{\text {15 (Sh. Series S }}$ (See Model 148)	G-513 \ldots.......... ${ }^{23}$
C5190 Tel. Rec	152 (Ch. Series R)	
	(5ee Model 145) 23	
C6200 Tel. Rec	158 (Ch. Series U) 35-23	G_{521} (................ ${ }^{\text {28-33 }}$
C7200 Tel.		
C8200 Tel. R	157 (Ch. Series AE) 49	
T21si Tel. Rec	158 (Ch. Series AT)..... 59-20	
T217 Tel. Rec	159 (Ch. Series AA) 38-26	$\mathrm{G}_{\mathrm{G}}^{7.722}$ (Seo Model G-722). 24
	160 (Ch. Series Y)	G.723 (See Model C.722). 24
TAITMF Tel. Rec.	161, 162 (Ch. Series \dagger)	
5135, 5136, 5140A 11-24	163 , 164 (Ch. Serios H) 38	G-725 \ldots.......... 34-23
telesonic (medeo)	(See Model 135) 14	
	165 (Ch. Series AG)..... 50-20	
1636 21-33	166 ($\mathrm{Ch} . \mathrm{ME})$	G. 7205 (See Models
1642 $20-23$	$10^{\text {(See Model }}$ M7) ...i., 49	G-721, G-722, G-723) . 24
! 543 21-34	167, 168, (7) (ch. Series	
tele-tone	172 (Che Series U)	H. 521 (See Model G.521) 28
TV149 Television Rec.... 36-22	(See Model 156) 35	${ }_{\text {H. }} \mathbf{7 2 7}$ (See Model G-725) 34
TV.170 Tel. Rec........ 83-12	174 (Ch. Series T)	TV-1776, TV-17
TV.208 Tel. Rec......... 90-11		TV. 1778. TV-1779
TV.209 Tol. Rec. ${ }^{\text {TV }}$	See Model 158).... 35	Tel. Rec. 60-16
(See Model TV. 249)	182 51-22	TEMPOTONE
1 (Also See Prod.	${ }_{185}^{183}$ (ch. Serias AH) ${ }_{5}^{53}$ 52-24	500 E Series 2
	190 (Ch. Series AZ) 61	TEMPLETONE (See Temple)
(See Model TV-249)		
(Also See Prod. Chge	198 (See Model 158)..... 59	THORDARSON
Bul. 21 Sot 136.1) $\ldots 57$	200 (Ch. Series AZ)	
. 220 Tel. Rec.		T.31w10-AX …....... 57-22
	${ }_{205} 205$ (Ch. Series BD)..... 73-12	T-31w254 $\ldots \ldots \ldots \ldots \ldots$ 9-33
TV.249, Television Re	206 206	${ }_{\text {T. }}$
(Also See Prod. Chge. ${ }^{\text {and }}$		r.32W00, r.32wio 76-18
	215 (Ch. Series BD)	TONE PAK
TV-254 Tel. Rec.	(See Model 205)..... ${ }^{73}$	AC8HF 24-28
(See Model TV	232 (Ch. Series BP)144-	TRAD
	23 (See Model 205)	T-20, A Tel. Rec........133-14
TV259 Tel. Rec. Rec. . . . 1010	235 (Ch. BQ)141-14	
(See Model TV249)... 57	Ch. Series A ${ }_{\text {a }}$	TRANSVISION
.282 Tel. Rec......... 71-14	Ch. Series AA	Chassis Model A Tel. Rec. 107011
isoe Model TV-285).... 87	- isee Model 159)..... 38	WRS-3 Tel. Rec. \ldots.......112-10
TV.284 Tel. Rec......... 93-10		TRANSVUE
TV-285 Tel., Rec........ 87-13		TRANSVUE
		17xC, 17xt Tel. Rec. (Similar to Chassis). . . 132-8
300, TV. 301 1Ch. TAA. ${ }^{\text {a }}$	Ch. Serites AH	$20 \times \mathrm{C}, 20 \times \mathrm{T}$ Tel. Rec.
TAB) Tel. Rec.......... 99A.12 -300, TV. 301	(Seo Model 183) 52	
(Ch, 'TW) Tel. Rec. ... 107-10	${ }_{\text {i }}$ See Model 158) 59	Tel. Rec.
TV-304. TV- 305 (Ch. TAA,		
	201) 74	Tet. Roc.
	Ch. Serles AZ (See Model 190) 61	(Similar to Chassis) ... 132
Tel. Rec. (See Model TV. 300) 107	Chassis Serias BD (See Model 205)	1700C, T Tel. Rec. (Similar to Chassis). . . . 132
$\begin{aligned} & \text { TV. } 306 . \mathrm{TV}-307 \\ & \text { (Ch. TY, TZ] } \end{aligned}$	Chassis Series BH.	2000 C Tol. Rec. ISimilar to chass)
Toi. Rece.	(See Model 195)..... 71	ISimilar to Chassis)....132-
V^{308} (Ch, TAC)	${ }^{\text {Ch. }}$ (See Model ${ }^{\text {8L }}$	trav-ler
	Ch. $\mathrm{CQ}^{\text {(Soen Moder 228)..... } 144}$	${ }^{101}$ Tel. Rec. ${ }^{86-1}$
Tel. Rec. Al. .l. . 125-12	isee Model 235) 141	12 T Toil. Rec. (See Model
	Ch iseries C	10T)7s........ 86
		14850, A, 14C50, A
	isee Model 133)_.... 11	Model liliso)..
TV318 (Ch. TAM)	Ch Series ${ }^{\text {d }}$	
		R50A 16 IS5A
TV322, TV323 (Ch. TAM) Tel. Rec. (See Model	Ch. Series H (See Model 135)	
TV3181 Rec.	Series k	${ }^{16 T}$ Tel. Rec. See Model
TV324, TV325, TV326	(See Model 1091...	10T) (Aiso see Prod.
TAP.2) Tol. Rec. 127-12	Ch. Series N (See Model 138)...... 23	Chge. Bul. 31, Set 156.3)

Trav-LER-Cont.	TRUETONE-Cont
20 aso Tel. Rec........ 146-11	02718 (Factory No.
${ }^{62 R 50} 50.63 \mathrm{SFO} \mathrm{Tel}$ Rec. . 150-13	227014.6381 U 23-32
64R50, 64R50-1,	02743 25-29
SG50, 65G50.1.	D2806. D2807 (factory
65G50-2 Tel. Rec. 146	$\left.{ }_{0}^{\text {Model }} 181\right)$....... 44
(See Model 20as0)... 146	
75A50-2 Tel. Re	
(See Model 20 ASO) ... 146	02819 ifactory No.
$14.14, .2$ Tel, Rec. (See	26A82.738) 35-24
Model 62 R 50$)$...... 150	02851 …......... 38-28
17-3, -4 Tel. Rec	D2906 (Factory No. 189). . 69-14
odel 62R50) 150	
. 5 Tel. Rec.	D2919 (Fact. No. 60F21). 59-22
Model 62R50) 150	D^{2963} ….......... 73-13
219.8, 219.88 Tel. Rec. . 156-1A	D2982 Tel. Rec.......... * ${ }^{\text {a }}$
220.9, 220.98 Tel	02983 Tel. Rec....... 68-18
5000 (See Model 50001). . 11	D2983 Tol. Rec....... 70-11
50001 11-27	02987 (See Model 1990)
${ }_{5002}$ Serios (Ch. 109) 12-28	Tel.
5007, 5008, 3009	02988, 02989
(Ch. 104) $017 \ldots$.... 1-3	D2990 Tel. Rec. ${ }^{\text {a }}$
5010, 5011, 5012	D3615 (Foctory 25802.606) 18-32
(Ch. 105) 2-5	03619 (Factory 5P1 10) ... 10-33
5015 36-25	D3630, 03630 N 19-33
5018 ${ }^{23}$	D3720 $24-29$
5020 (Ch. 800$)_{\text {........ }} 11-28$	03721 (Factory 1108X] .. ${ }^{32-28}$
5021 ${ }^{43}$	03722 (Foct. No. 472) \ldots. 51-24
5022 101-14	${ }_{0} 3809$ (Factory No. 178) . 43-22
${ }_{5027} \ldots \ldots \ldots \ldots \ldots \ldots$. $31-30$	03810 (\ldots........... 39-27
5028 ${ }^{34-24}$	03811 (fact. No.
${ }_{5029} \ldots . .1$. 33-29	$148 \mathrm{XH1}$. \ldots. \ldots... 47-24
5030, 3031 32-25	03840 .l. 49-26
5036 …............ 54-19	O3910 (Fact. Model
5049 ${ }^{\text {45-24 }}$	1406111 ${ }^{74-10}$
	D4142A142-14
5054 ${ }^{36}$-26	D4620 (Factory No. SCl2) ${ }^{26-28}$
${ }_{5056 . A}$	04630 (factory 20CC19.01) $7-28$
5060, 5061 116	D4818 (Fact. No. 134DX) 45-26
5066 ${ }^{42}$	D4832 (FFa)
6040 …............ 49-25	25C22:82) 47-25
	D4842 (Foct.
7000, 7001 59-21	
7003 (Ch. 501) 7 O.... 12-29	201088 A Tel. Rec. . . . $105-111$
${ }_{7014}^{7014}$ (See Model 70001... 59	201088 B Tel. Rec......... 145-1A
${ }_{7016} 7016,7017$........... 84-11	221089 A Tel. Rec...... 113-10
${ }_{7023} \ldots \ldots \ldots \ldots \ldots \ldots{ }^{83} 1^{13}$	${ }^{2010898}$ Tel. Rec.......136-14
7036112-11	201093A, 201094A
Chassis 104	
${ }_{\text {chem }}$ (See Model	
Chassis (See Model (5010)	2011904 , B Tel ${ }^{\text {el Rec......147-12 }}$
Chassis 109	201194A Tel. Rec...... 151-11
(See Model 5002]	202052 Tel. Rec.
	(See Model 201095
(See Model 7003).... 12	2 D 2053 Tel. Rec. 120-11
Chossis ${ }^{\text {(See Model }} 5$	ultradyme
trela	1.46 4-21
HW301 14-28	
truetone	(See Delco or mick
	Chevralet, Oldsmobi
(See Model D1046A). 102	and Pontiac)
D1046C, D	u. S. television
(See Model DIO46A).. 102	
	C16030 Tel. Rec......... 99A-12
01612 …............ 28-34	C19031 Tol. Rec.
D1645 (Factory 26476.650) ${ }^{6-33}$	
D1747, D1748 32-27	CFM.
D1752 (Factory 7901-14) 34-25	CFM. 16928 Tel. Rec
D1835 (factory Model	
	KFM.25-P1C
D1836, D18364 (Factory	
D1840 (Fact. No. ${ }^{\text {do...... 45-25 }}$	KFM. 30836 Tol.
	KRFF 15933 Tol. Rec
01845 31-31	KRV-12931P Tel. Re
D1846A, B, C 40-23	KRV-15831P
D1850 (Series A)........ 51-33.	${ }_{\text {T }}^{\text {T-3 }}$
D1949 60	${ }^{1502 \mathrm{M}, \mathrm{T}} 502 \mathrm{P}$
D1950, Dl 1951 (See	${ }_{\text {T. } 525 i 5}^{\text {T Tel }}$ Rec.
M1952el	T621M, To21P Teli.
	T-10823 Tel, Rec......... 89
7AF22) Tel. Rec..... 69-13	T. 10295 Tel . Rec
D1991, B, D1993, 8, D1994 Tel. Reci...... 77-	T-12823 Tel. Rec..
01996 Tel. Rec. Rec....... 77-	T-15823 Tel. Rec.
(See Model D2983).... 68	T-15925 Tel. Rec
D1997A Tel. Rec.	Tr 15030 Tel Rec.
D2017, D2018101-15	T19031 Tel. Rec.
D2020 …........... 106 -15	(See Modal C16030)... 99A
D2025A FFoct	${ }^{5 A 16,5816,5 C 16}$
26A95-906] …	(1see Model Sc.00 Ear
${ }_{\text {D2050 }}^{\text {D20 A A Mil Rec........ }}$ 97-18	
D2603 (Factory No. 461). 13-33	3C66 Early 17-9
02604 13-34	8-16m (Dumbarton) 26-29
D2605 (F)	UNITONE
	88 5-28
D2612 (Code SW.9022-G) 3-9	-M
	150
Model 60110) 2-18	
D2616 (Factory	1001-A 10-34
	Van-camp
02619 (Factory No. 2701) 27-29	576-1.8A 7-29
	VIDEO CORP. OF AMERICA
02622 …............ 14-30	
${ }_{02623}$.............. $11-29$	(See Videola)
D2624 (Factory 27014.600) ${ }^{2}$	VIDEODYNE
02626 (foct. No. 457-2).. 52-22	$10 \mathrm{FM}, 10 \mathrm{TV}, 12 \mathrm{FM}, 12 \mathrm{TV}$
${ }^{0} 2630$ (factory ${ }^{27014.602}$ (ssue A) ... 1-10	Tel. Rec. 69-15.
${ }_{0} 2634$ a......... 12-31	videola
	Vs.160, Vs. 161 Tet. Rec.. 92--9
D2644 (Factory No. 101C) 11-30	VS-165, V5.160, VS-167,
${ }_{0}^{2645}$	(See Model vs.iso)... 92
D2665 (foctory 48114	VIDEO PRODUC, ${ }^{\text {S }}$
	630FM3B, 630K3B Tel. Rec.
${ }_{02709}$ (factory No. 470) . 27-30	
24D22-630BR) 23-31	RC-201A, RRC-201 11-32

Ch. V-2102.1
(See Model H.138) $\ldots .$.
Ch. V-2103 Ch. V-2103
iSee Model H-153).... 35
Chassis V-2103-3 Chassiis V-2103-3
(See Model H-214) ... 75 (Sse Model H-133).... 14 Ch. V.2118
(See Model H.161).... 34
V.2119.1
(See Model H-164\}.... 36 Ch.V-2120 $\begin{gathered}\text { (See Model H-165).... } 32\end{gathered}$ $C h . V-2122$
(See Model H-157).... 33 Ch. V. 2123
(See Model H-178).... 35
Ch V.2124-1
iSee Model H-169).... 37
Ch. V-2127
(See Model H-183).... 48
(See Model H-183).... 48
$C h, ~ V-2128, V-2128.1$
(See Model H-1821)
$\begin{array}{cc}\text { (See Model H-182).... } 53 \\ \text { Ch. V-2128-2 } \\ \text { isen Modal } & H-2021 \ldots . . \\ 50\end{array}$
(See Model H-202].... 50
Chassis V-2130.1
(Seo Model H-196) 65 (See Model H-190)
Ch. $V .2130 .11 \mathrm{DX}$ V. $2130-120 \mathrm{X}$ (See Model H198A
Ch. $\mathrm{V} .2130-210 \mathrm{O}$
V. $2130-210 \mathrm{~S}$
V.2130-22DX $\{$ Śee

Model H196A $[D X]\} . . .84$ Ch. V. 2130.31 DX | Model H196A [DXX]) |
| :---: |
| Ch. Y .2131 | $C h$ V.2131, V-2131.1

(See Model H-185)... 54 Ch. V. 2132 Model H.186M)... 80 Ch. See Model H.188).... 51
Ch. 2134 (See Model H.190).... 59

Ch. V.2136 (See Model | Ch. V. 2136 (See Mode! |
| :---: |
| H. 30777 ! $100 ~$ | Ch. V-2136.i

(See Model H-316C7) . 112 Ch.V-2136-2 $\begin{gathered}\text { (See Model H-324T7). } 213\end{gathered}$ Ch. V.2136.4 H-328C7). . 137 Ch. V.2136-5R (See
Model $H-334$ IVUR) 149 Ch, V-2136.5U
(See Model H-334T7U). 142 (See Model H-203).... 62 (See Model H-199) 69
Chassis V.2137.2 Chastis V.2137-2
(See Model H-198) 73 (See Model H-1
Ch. V. 2137.3 ,
V.2137-3S (See
Model H-231\}

h. $V-2144, V-2144.1$	(See Model H-210).... 81
Ch. V-2146.05 (See Model	

 Ch. V.2146-210x.
V. 2148.25 DXX
(See Model H.2178).... 91
Ch. $\mathrm{V}-2146-350 \mathrm{PX}$ Ch. V-2146-350X
(See Model $\mathrm{H}-2178$).... 91 Ch V-2146-45
(See Model H-216) 97 A Ch V-ee Model H300T5) ... 88 Ch. (S.2 Model H-217B) 91
Ch. V.2149.1 (See Model M-216)..... 97A (Soe Model H. $603(12) .1$
Ch.
V - $2150.01, \mathrm{~V}-2150-02$ (See Model $\mathrm{H}-223$) 78
$\mathrm{Ch}_{\mathrm{i}} \mathrm{V}$-2150-31 (See Model H.242) ... 97A Ch. (See Model H-600T16) . 98 $\mathrm{Ch} . \mathrm{V}-2150-51$
Model $\mathrm{H}-2315$
Ch. V-2150.61, A, B 994
Ch.
(5ee Model
M- $600 \% 16)$.
(See Model H251)...... 99A
Ch. V-2150.91A
(See Model H-604T10). 99A
Model H.604T10, A) .. 99A
Ch. V. 2150.94 C (See
Model H. 6097101.
95
Ch. V. 2150.101 (See
Model H-605T12)
Ch. V-2150-111, A 97
Ch V. 2150.136
Ch. V. $2150-146$ (See 107
Ch. V-2150.176.U
(See Model H.617T12). . 103

Ch. V. $2150-186$. A. C, CA
(See Model H. 6 ITT12). 103
Ch. V.2150.197
(See Model H-625T12). . 114
Ch. V-2151.1
(See Model H-302P5) ... 91
Ch. V.2152.01 (See
Model H603(12) 100
Ch . V. V 152.16
(See Model H-611C12). 112
Ch. V-2153
(See Model H303P4)...
Ch. V-2153-1 (See Model
$H-312 P 41$
Ch. $V-2156$
Ch. V-2156 $\begin{gathered}\text { (See Model H-309P5). } 101\end{gathered}$
(See Model H.309PS) . 101
Ch. V.2156.! U
(See Model H-342P5U). 138

WESTINGHOUSE-CONF.
Ch. V-2157, U, $-1,-1 U$

Ch. V.2I57.3U (See
Ch. V-2157.4U
(See Model H-33875U). 14
(See Model H-310T5) ... 99
Ch. V.2171
(See Model H-626T16) . . 116
Ch. (See Model H-633(17). 122
(5ee Modal'H-639Ti7). . 133

Model H-638k20) 129
Ch. V.2180-1 $\begin{gathered}\text { (See Model H350T7a) . . } 154\end{gathered}$
iSee Model M-354C7) . 158

Ch. V.2192, 1 (See

Ch. V.2194, V-2194A,
V. 2194.1
Model H-642K20A)
(Ch. V-2194.2,
(See Model H-6.38K20). 129 (See Model H.638K20). 129
Ch. V.2200.1
(See Model M648T20). 15 Ch. Y-2201.1 (See Model
H. 6487201 Ch. V- 2202.2 (See Model
H- $653 \mathrm{K24}$)
V..........152-7A Ch. V-2203-1 (See Model
H. 660 C 17)
Ch. V-2204.1
(See Model H.648T20) (See Model 154
$C h$ V.2206.1 (See Model H. $665 T 16$)
$\mathrm{H}-653 \mathrm{~K} 24 \mathrm{I})$

WILCOX-GAY

(Also 5ee Majestic)

(Also See Recordio
G. 306 , G-402, G.403
G. 04 Tel. Rec. (See
Moiostic Model 12 T 2). . 108
G. 414 Tel. Rec. (See G.414 Tel. Rec. (See
Mojestic Model (G.414) 133 Mojestric Model (G.414)
G-426, G.427 Tel. Rec.
12T2)
$\mathrm{G}-614, \mathrm{G}, 624$ Tel. Rec.
G-614, G.624 Tel. Rec.
(See Maiestle Model
G.414)
G. 914 Tel. Rec. (S....

Molostle Model G.414) 133 OD.446M (OD Series)
Tel. Rec.
101-17........... Tel. Rec.
OF $439.1 . C$ Ch. OF Serles $)^{101-17}$
Tel. Rec.
OD Series ${ }^{\text {(See Madel OD-446M]. . } 10}$
Ol Serles Tel. Rec..

WILLYS-OVERLAND

WILMAK
W-446 '"DENchum". 2.1-11

woolaroc

$\begin{aligned} & \text { 3.1A (Ch. } \mathrm{C}-9022 . \mathrm{J}), \\ & 3.2 \mathrm{~A}(\mathrm{Ch} .6-9022 . \mathrm{K}) \end{aligned}$	
3-3A (Code 7-9003-D) ...	
3.5 A	22-32
$3-64 / 5$	
$3.9 \mathrm{~A}, 3.10 \mathrm{~A}$	
3.114 (Ch. 56A76)	
$3.12 \mathrm{~A} / 3$	3
3.13A, 3.14A, 3-15A,	
3.16 A	
3.17A, 3.18A	34-28
3.20A	24-33
3.29A	
3-61A (See Model 3.71A)	36
3-70A	31
3.71 A	36
ZENITH	
G500 (Ch. SG40)	83-16
G503 (Ch. 5G41)	99
G510, G510Y (Ch. 5G02).	84
G511, G511w, G511r	
(Ch. 5G01)	85
G516 (Ch. 5G03)	
G615, G615W, G615Y	
	86
G660, G663, G665	
G723 (Ch 7GO4)	
G724 (Ch. 7G02)	03-18
G725 (Ch. 7G01)	
G881, G882, G883,	
G885 (Ch. 8G20)	98
G-2322 (Ch. 23G22)	
Tel. Rec.	98-1
G23222 (Ch. 23G24)	
Tel. Rec.	91 A
G.232271 (Ch. 23G2421)	
Tel. Rec.	
G23272 (Ch. 23G24)	
Tel. Rec.	
(See Model G2322Z)	91 A
G.2340, R (Ch. 23G22)	
Tel. Rec. (See Model	
G2322)	98
G2340RZ, 2 (Ch. 23G24)	
Tel. Rec.	
(See Model G2	
234021, RZ1 (Ch	
23G24Ź1) Tel. Rec.	

ZENITH-Cont. G2346R (Ch. 23G22)	
G2353E (Ch. 23G22)	914
G2353E (Ch. 23 G 22)	
G2322) (98
G2353E2 (Ch. 23G24)	
Tel. Rec. (See Madel G2322Z).	914
$2353 \mathrm{EZ1}$ (Ch. 23G24Z1)	
Tel. Rec.	
G2356EZ (Ch. 23G24)	
Tel. Rec.	
(See Model G2322Z)	1 A
G2420E (Ch. 24G20)	
420-EOX (Ch.	
24G20-OXI Tel. Rec. (See Model G2420E)	93
G2420R (Ch. 24G20) ${ }^{\text {a }}$	
Tel. Rec.	
(See Model G2420E)... 93	
G2420-ROX (Ch.	
(See Model G2420E).	
G2437RZ, G2438RZ $\mathrm{z}_{\text {。 }}$	
G2439R2 (Ch. 24 C 26)	
G2441 (Ch. 24G24) Tel.	
Rec. (See Model G2322) 98	
G2441R (Ch. 24G22/24) Tel. Rec.	
G2441R2, Z (Ch. 24G26)	98
G244121, RZ1 1 Ch .	
$24 \mathrm{G26211}$ Tel. Rec....	
G2442E, R (Ch. $24 \mathrm{G} 22 / 24$) Tel. Rec, (See Model	
	98
2442RZ (Ch. 24G26)	
(Sel. Rec. Model G2437Rz).. 91A	
G2442E21, RZ1 1Ch.	
G2448R (Ch $24 \mathrm{Cl} 22 / 24$)	
G2448R (Ch. 24G22/24)	
Te1. Rec. (See Model	
G2448RZ (Ch, 24G26)	
(See Model G2437RZ). 91A	
G2448R21 (Ch. 24G26Z1)	
Tel Rec.(See Model G2420E) ... 93	
G-2454-ROX (Ch.	
(See Model G2420E) . . 93	
G2951, R, OX, ROX,	
Radio Ch. 6 (20) Tel.	
Rec. (See Model G2322) 98G2958R (Ch. 23 G 23 \&	
Rodio Ch. ${ }^{\text {dG20) Tel. }}$ Rec. (See Model G2322)	
G3509R (Ch. 24G23/258	
Radio Ch. 6G201 Tel. ${ }^{\text {a }}$	
Radio Ch. 6G20) Tel.	
Rec. (Soe Model G2322) 98	
G3157RZ, 7 I ICh. 23G24,	
G315721, R21 Ch.	
G3158R2 (Ch. 23 G 24.	
$8 \mathrm{G} 20 / 22 \mathrm{l}$ Tel. Rec.	
G3158RZ1 (Ch. $23 \mathrm{G} 242 \mathrm{ij}{ }^{\text {(See Model }}$	
Tel. Rec,	
G3173R2, Z ((Ch. 23G24,	
(See Modol G3157RZ). . 91 A	
G3174RZ (Ch, 23G24,	
$8 \mathrm{C} 20 / 22)$ Tel. Rec.(See Model G3157RZ)..	
G3259RZ (Ch. 24 G 26.	
G32622 (Ch. 2iG2o,$8620 / 22$ Tel. Rec.	
(See Model G3259RZ). 914	
G328221 (Ch. 24G2621)	
(See Model G3259RZ) - 91A	
G3276Z ICh. 24 G26, 8G20/22) Tel Rec	
(See Model G3259RZ) . 91A	
H^{401}, G (Ch. 4 H40) 156-15	
H511, H5ilw, H51 IY	
(Ch. 5H01) 147-13	
H615 (Ch. $6 \mathrm{GO5}$)...... 140-14H661E, H661R Ch.	
(See Módel H661E) ... 12	

RECORD CHANGERS
(CM-1) indicates service data also available in Howard W. Sams 1947 Record Changer Manual. (CM-2) indicates service data available in Howard W. Sams 1948 Record Changer Manual. (CM-3) indicates service data available in Howard W. Sams 1949 , 1950 Record Changer Manual.
admiral.
RC. 150
RC. 160 ,
RC. 160 RC.......(CM-1) 26-31 RC-161A RC-160A, RC-161, RC-161A (Supplement to
RC-200)
RC-170, RC-170A. (CM-1) 21 (CM-1) 31 37
 RC. 182 '
RC. 200
RC210,

C200 200, RC211, RC212 $(\mathrm{CM}-1)$

CRESCENT	
C. 200	(CM-1) 20-37
6 Series	(CM-3) 89-4
250 Series	($\mathrm{CM}-2) 78$
350 Series	(CM -2) 80-3
FARNSWORTH	
P.51, P56	(CM-1) 13-36
P-72, P73	(CM-2) 75

GARRARD		
RC-60 RC. 80(CM-2)	$81-7$ $157-5$
GENERAL ELECTRIC		
P6	. (Cm-2)	79
GENERAL RC130L	INDUSTRIES (CM-1)	22-3
GENERAL INSTRUMENT		
204	(CM-1]	23

RECORD CHANGERS AND RECORDERS

Lear	Prilco	Sparton	v.M-Cont.	TENITH
PC-200A		C48(Cm-2) 87-11		
maguire		phorens	802 …......... $(\mathrm{cm}-3){ }^{75}-12$	\$16001 ….......(cm.2) 75-17
			910 890	
	M-126 …... icm.3) 109-9	trav.ler.	950 Supplemant.131-17	
70, 71 Mal(CM-2) 84.-8	M.20 …......(CM 3) 103011	Af(cm.3] 72-13		514012, $514014.1 \mathrm{Cm}-3)^{110} 14$
		universal camera	WEESTER	${ }_{514022}$
74, 75 Supplement131-11	RCA	universal camera	50 (Cm-1) 24-33	$514023 \cdots(\mathrm{~cm} 3)^{(105-14}$
		1001Cm.1) 36-30		
milwauker erwood		UTAM		S14026 (Ste model ${ }^{\text {max }}$
	RPP178icm.2) 79 - 12		${ }_{100}^{77-1}$.....................13135-14	S14023)
118000 …......)(CM-3] 73-7	RP.190 Serien144-7		106 ……........... 146	\$14027 (seo Model
12300138-5	setaurg		133 …......... 4 Cm .2$)^{82-13}$	S14022] [CM-31 112
	(CM-1) 11-36			$14028,5.14029$
motoroia	(CM.1] $24-34$	v-m	${ }_{256}^{246}$ …	$5.14030,5.140$
B24RC, 82 5RC.	s, sa	200.8(cm.1) 15-36		
	SILVERTONE - SM-2,	100 …....... $(\mathrm{cm} .1)^{26-33}$	356, 357 (cm.3) 106-16	
	SILVERIONE	${ }_{400}^{400}$ (Lotiol		iscillaneous
RC37 ….......... 141-8	${ }^{101.701-762.2}$.....\|cm.21 77-10		Westinghouse	Series 700F …..(CM-2) ${ }^{\text {as - }}$-9
	101.781 .3,	404 (seomodet 405)	V4914(CM.2) 47-28	
OAK	101.782-3(cm-2) 83		V4944 (CM-2) ${ }^{\text {86-13 }}$	Suries 700flP ... (CM-2) 101-6
666d\{CM.1\} 19-35	101.762.		v6235 134-13	
9201 [CM-3] 111-10	101.763\|cm 21 88-11		v 6676136-15	Series 7ooricm
		RECORDERS		
ampro	CRESCENT-Cant.	general industries	pentron	St. grorge
130 133-4	H-2A) Sorientcm-3] 118-4		153	1100 Sories $\mathrm{CM}-1)^{\text {40-24 }}$
			nea	
BRUSH SOUND MIRROR	M. 2000 , M. 3000 Serien. . . 120 -	PT3 N.........(Cm-2) 88-4	MJ-12875 1 CM -21 85-12	webster.chicago
BK.401 (CM.1) 42-25	1000 Serie. (CMM^{2}) 71	knight		
	1000 Series Rovired (Cm 3177	$96.144,96.499 \ldots . . .158=0$	Retiest	79.80 178
	erestwood	lear dynaport	123	228 …...............156-13
H MAIL-A-VOIGE	CP-201) (Cm.3) 118-4	WC.311.0(Cm-2) 80-8	revere	
	sicor	magnicord audiad AD.1R $\quad[\mathrm{CM}$.2] $84-7$	8.100 149-11	Stel Electe
CONCERTONE	1000 (cm.3) 90-4	masco	SHVERTONE	(See Ekotape)
401 1 ss-4	EKOTAPE	OC37R (Soo Model 037R), 148	70 (Ch, 567.230,	
	Ekotapt		771.2391 …e. 1cM.11 26-32	Wire recording corp.
crescent	${ }^{101.4,5,102.4 .5}$, (CM3-4'116-12		101.774.2, 101.77ict	WP (CM-2) 76-19
M-14 130 - ${ }^{\text {S }}$	109. 110, 111, 112.....152-5	375 …......Cm. 31117 -7	(cm.3) 114-10	

ADDITIONAL PHOTOFACT BENEFITS

From time to time, PHOTOFACT Folder Sets include valuable "bonus" aids, as well as useful data of a special nature. The fol-

Figure 6. Video IF Amplifier.
On another occasion, a set was on the bench and a defective bypass capacitor had been replaced in the tuner. The set was turned on and worked per-
fectly until a slight adjustment of the horizontal frequency control was made, at which time the set suddenly lost vertical synchronization and would not "lock-in" despite adjustment of the vertical hold control. It was then discovered that this occurred only at one particular setting of the horizontal frequency slug. An oscilloscope was connected to the output of the vertical integrator network. With the horizontal frequency control turned away from the above-mentioned setting and the vertical hold properly set, the picture "locked-in" normally and an oscilloscope pattern as shown in Figure 7-A was obtained. In order to see clearly the vertical sync pulses, the picture was thrown out of vertical synchronization by means of the vertical hold control. Then the pattern shown in Figure 7-B was on the oscilloscope screen. When the horizontal frequency adjustment was turned to the particular setting under investigation, the sync pulse was found to disappear (Figure $7-\mathrm{C}$). Obviously this was the reason for the loss of vertical synchronization.

The question now was, what caused this apparent cancellation of the vertical sync pulse? Some spurious feedback from the vertical sweep output was first suspected. With the brightness control turned to a minimum, the vertical oscillator and vertical output tubes were removed and the waveform at the integrator output showed only the sync pulse. However, it disappeared again with adjustment of the horizontal frequency slug, so that was not the answer. Next the capacitive coupling between the horizontal AFC circuit and the sync clipper was opened. This move stopped the cancellation of the vertical sync pulse but, of course, left the horizontal sweep without

Figure 7A. Waveform at Output of Vertical Integrator Network - Picture "Locked-in."

Figure 7B. Waveform at Output of Vertical Integrator Network - Picture not "Locked-in."
sync control. Much time was spent checking the components and voltages in the horizontal AFC circuit without success.

Finally the vertical sync pulse was traced back through the sync amplifiers and video amplifiers to the output of the video detector by means of the oscilloscope. It was found that the sync pulse was being destroyed by feedback occurring in the set before the video detector. The energy fed back was at horizontal sweep frequency and was adding to the composite video signal in such a way that the broad vertical sync pulses were "masked" by sharp, shortduration pulses of greater amplitude. The high voltage cage which had been removed from the set was replaced; this did not correct the trouble. The problem was solved only when the cover to the tuner, which had been removed for servicing, was put back. The feedback had been taking place between the metal picture tube surface and the unshielded tuner. The moral of the tale: replace tuner covers before testing TV receivers.

Figure 7C. Waveform at Output of Vertical Integrator Network - Picture not "Locked-in" Due to Loss of Sync Pulse.
"DOLLAR and SENSE" (Continued from page 43)
to present planning. New York State is considering same type of bill, which would then apply to all communities in state. Los Angeles is expected to adopt much the same licensing bill as New York city.

TAPED TV. First step in realization of magnetic tape recording for entire TV programs is demonstration, by Bing Crosby Enterprises, of picture played back from standard quarter-inch wide magnetic tape running at 100 inches per second. Definition was only $1 / 2 \mathrm{mc}$, as contrasted to 4 mc for standard TV picture, hence images were blurred and crude. Crosby engineers hope in 6 months to get pictures up to acceptable quality, using tape approximately one inch wide. Goal is to surpass kinescope recordings on movie film, Advantage of magnetic tape is that it can be erased and re-used.

CLOTHESPIN. Neatest new-product idea seen in a long time is Industrial Television's twin-lead connector clip for attaching twin-lead instantly to standard screw-type antenna terminals of TV receiver being serviced or demonstrated. They've put a metal jaw on each side of an ordinary springtype wood clothespin and soldered one lead of the line to each jaw.

PRUNING. Annual routine for one fringe-area TV installation is pruning out new growth at top of tree on which antenna is mounted. Tree was topped at about 60 -foot level and mast attached to trunk. Large spikes driven into trunk facilitate climbing to small wood platform built at top. Twin-lead is run through air diagonally down to house, but rotator
line is supported by steel cable to minimize flapping in wind.

IN MEMORIAM. Alertness to take advantage of a news story resulted in the highly effective penny-postcard promotion shown below, which speaks for itself.

```
DEATHS
```



```
Died suddenly, Octuber 20rh, of narural causes. Premature birth-incompatability - overprice. Beloved infant of Columbia Broadrast System. Survived solely by Black and White television who will carry on for your pleasure for ever. Niemortal services daily \(9: 00\) a.m. to \(0: 00 \mathrm{p} . \mathrm{m}\)., and
Fridays until \(9: 00 \mathrm{p}\). m., to be held at the Commonwealth Appliance Co.
To you who awated the birth of Color may we extend our sympathy, and invite you to buy one of the wonderful hareains we have in proven \(T\)
made by famous manafacturers. Trade that 10 or 12 inch \(T\). V . NOW. Relutives and friends invited.
```


ommonwealth
 136 harvard ave.. alision 34. mass. radium 2.7930

BUZZ SAW. Cutting deflection yoke supports out of 2×6 's for conversion jobs is the way one service shop cuts costs and speeds changeover to bigger picture tubes. Circular saw is used to cut required length and split it down middle. Power band saw is then used to cut semi-circle out of each half for yoke, so that yoke is held tightly when 2×6 is bolted together again around it. Bolt is easily loosened to adjust yoke. A few wood screws through chassis from bottom hold 2×6 upright. Focus coil is removed from set and $\mathrm{p}-\mathrm{m}$ focus used instead.

EIDOPHOR. Use of an electric arc as the source of light for projection color television, a

For Replacements

Get the CORRECT
Temperature Compensating Ceramic Capacitor

use ERIE

I_{N} addition to the standard re. placement line of ERIE Ceramicons, a complete line of temperature compensating ceramic capacitors is available in the following ranges.

Temp. Coeff.	Range			Temp. Coeff.	Range	
P100	1 MMF-212	MMF	N220	1 MMF-600	MMF	
PO30	1	MMF-226	MMF	N330	1 MMF-665	MMF
NPO	1	MMF-400	MMF	N470	1 MMF-800	MMF
N030	1	MMF-420	MMF	N750	1 MMF-1100	MMF
N080	1	MMF-480	MMF	N1400	1 MMF-1380	MMF
N150	1	MMF-545	MMF	Hi-K	100 MMF-. 016	MFD

Be sure ... order CORRECT parts when replacements are necessary. Erie Temperature Compensating Ceramic Capacitors have wide application for Front End, IF, Oscillator and other Critical Circuits.

Your local distributor can order all the above capacitors for you from one source . . . ERIE.

Electrantes Division

Designed for YOU! the VM tri-o-matic ${ }^{\text {® }}$ 950 record changer

This one compact unit is the "heart" of the V-M tri-o-matic the complete basic mechanism! Simplest to operate - and service - of any 3 -speed changer on the market, the V.M tri-o.matic 950 is the ideal unit to replace obsolete one and two-speed changers.

- Original Equipment in Mast Top-Brand Combinations - Nationally Adver. tised - Exclusive Features - Easy Installation (precut mounting boards available)
- Minimum Mounting Space $-13 \% 6^{\prime \prime}$ wide $\times 117 / 8^{\prime \prime}$ deep, over-all height $7 \mathrm{~K}^{\prime \prime}$

For a demonsfration and full details about the amazing V-M tri-o-matic, contact your V-M distributor.
long-sought goal, was successfully demonstrated in Zurich, Switzerland. For this Eidophor-CBS system, sponsored by 20th Century-Fox, GE is scheduled to make at least part of the equipment. There is no limit to amount of light that can be beamed through the system, hence pictures can be made to fill any existing theater screen with any length of throw. First U. S. demonstration is scheduled in New York, year-end. Pictures so far shown are wide-band, and would lose some definition when reduced to U.S. network standards.

TVI. Amateur radio operators having har-monic-free stations are urged to stay on the air all through best TV viewing hours, to stimulate viewer complaints in the hope that manufacturers and servicemen will fix sets having inadequate selectivity, in article by W5MA and W5IT in June 1951 QST. Describing the Dallas plan for TVI, article tells how amateurs there organized to investigate why their transmitters interferred with reception of channel 5 programs from Fort worth 35 miles away. Tests showed that fundariental signals of legally operating amateur stations were getting into certain makes of receivers up to half a mile away. FCC engineers, investigating viewer complaints, likewise found that poor selectivity in TV set front-end was the basic cause of trouble in most cases. Properly installed high-pass filters on receivers usually eliminated all traces of interference, but not all TV owners were willing to buy such filters. FCC engineering division chief George Turner has encouraged other amateurs to form similar troubleshooting groups when confronted with such fringe-area TVI.

TRANSMITTERLESS TV. Latest trick for bringing TV into towns stranded by freeze is tapping the newly completed transcontinental microwave link to get closed-circuit signals for distribution over coax lines to restaurants, hotels and even homes. Technique was used in Denver by Eugene O' Fallon, operator of TV station applicant KFEL. In meantime, community antenna service is expanding. One Poplar Bluff, Missouri, organization seeks FCC permission to use microwave network for bringing signals to cable distribution systems of TV-stranded towns way out beyond fringe areas.

WAR. In military electronic gear, tubes cause 80 percent of the failures in the field, and paper condensers another 15 percent.

WORLD AVERAGES. In the United States, the average serviceman has to work 2 hours and 10 minutes to pay an average home telephone bill, according to figures in the October 1951 Bell Laboratories Record. In Stockholm the corresponding figure is 3.33 hours; London 4.5 hours; Zurich 5 hours; Amsterdam 7 hours; Paris 11.5 hours; Santiago 15 hours.

MOVIES. Latest Sears Roebuck catalog shows a $16-\mathrm{mm}$ sound projector with built-in oscillator. Description says: "Plays sound through your own radio with no connecting wires! Tune radio on a silent zone and there's your sound." Here's more business for servicemen.

'WAVEFORM ANALYSIS" (Continued from page 19)

because of its low equivalent plate resistance. At the same time it presents a very low input capacitance and a high impedance to the circuit under investigation. This makes the loading effects negligible. Compare Figure 8A and 8B, partial photographs of a test pattern on the picture tube of a receiver. Figure 8A was taken with the oscilloscope test lead connected directly to the picture tube grid in the receiver; the cathode follower attachment was used when Figure 8B was taken. The difference in detail in the two pictures is quite apparent, showing that the capacity of the scope lead can cause considerable loss at high frequencies.

It follows, therefore, that in order for the cathode follower attachment to be effective, it should be located close to the test point in the receiver. In that way the connection between the test point and the cathode follower input terminal can be made short with a minimum lead loss. The cathode follower pictured in Figure 9 was constructed so that it may be clipped directly to the chassis of the receiver under test as shown. The voltages necessary for its operation can be obtained from the receiver circuit in nearly every case. There are two leads, terminating in alligator clips, which connect to a source of 6.3 AC volts for the heater of the 6 C 4 tube. In the case of a receiver with series filaments, an external source must be used; in most receivers, however, there is a 6.3 volt filament line which will furnish this voltage. Another clip lead goes to a source of $\mathrm{B}+$ voltage in the receiver. This voltage must be taken from points where no signal voltages are present, for example, the supply side of a plate or screen load impedance. The B+ potential should be between 175 and 250 volts for satisfactory operation

Figure 8. Partial Test Pattern Showing Effect of Cathode Follower in Reducing High Frequency Losses. (a) Oscilloscope Lead Connected Directly to Picture Tube Grid. (b) Oscilloscope Lead Connected Through Cathode Follower to Picture Tube Grid.

EXCLUSIVE - Contains Magic Eye circuit for calibrating to crystal accuracy.

FEATURES

- Provides accurate alignment of RF and overall sections of a TV receiver. 53-89 $M C$ and 173-217 MC on fundamentals.
- Harmonic oufput on UHF and VHF

Will calibrate any other generator to crystal accuracy by means of a builtin magic eye zero-beat indicator.

- 2.5 MC crystal supplied - 2 other crystal holders provided.
- Permits adjusiment of frequency of TV local oscillators to crystal accuracy.
- Moderately priced - the 680 will prove to be a valuable investment in modorn TV equipment.

See the 680 at your jobber's today, or write for full details.

THE HICKOK ELECTRICAL INSTRUMENT CO. 10566 Dupont Ave. Cleveland 8, Ohio
 OF TV AND RADIO SERVICE NEEDS

80 pages crammed with everything the serviceman needs in the way of radio and TV chemicals, service
aids, tools, hardware, antennas, and parts. See your distributor for a free copy or write direct to company.

SPEEDEX AUTOMATIC WIRE STRIPPER MODEL 744-I
A heavy duty wire stripper that features a delayed action release which prevents wires from being crushed or bent.

television tube KOAT NO. 49-2
For recoating peeling or scratched picture tubes. Coat inside of TV cabinets to prevent high voltage leaks.

903 Taylor Avenue
Rockford, Illinois

Figure 9. Cathode Follower Attachment Ready For Use.
of the cathode follower. Most all receivers have voltages within this range at easily accessible terminals. The B- return is made by means of the clip which is used to support the unit.

The complete assembly contains only a few parts and is fairly simple to construct. The schematic is shown in Figure 10 and a parts list appears at the end of this article. A second unit, mounted on a vector socket and open to view, is pictured in Figure 11. Although the physical construction of these two units is slightly different, the circuits are identical.

The cathode follower should prove very helpful, especially when connected to high impedance, fre-quency-determining circuits. Care must be taken, however, to insure against overload. Normally all signals of 75 volts or less peak-to-peak can be applied to the cathode follower. Voltages of greater amplitude should be applied directly to the vertical input terminals of the scope. The signal can then be attenuated with the proper controls in the scope. Normally, signals of high amplitude are not aff ected by the loading of the scope lead, making the use of the cathode:follower unit unnecessary.

Voltage Calibrator

A typical voltage calibrator, which may be used to measure peak-to-peak voltages in waveform analysis, is pictured in Figure 11. The output of this calibrator is a 60-cycle, square-topped, symmetrical wave, accurately calibrated and fully adjustable in amplitude. The controls consist of direct-reading

Figure 10. Schematic of Cathode Follower Attachment.

Figure 11. Cathode Follower Attachment on Vector Socket with Parts Indicated.
"volts" and "multiplier" dials, indicating peak-topeak voltage outputs from zero to 100 volts, and an "off-direct-calibrate" switch. This switch enables the operator to connect the oscilloscope to the calibrator output and to the test signal alternately without changing connections. In the "direct" position, the signal is connected to the "signal-in" terminals. In the "calibrate" position, the calibrator's square wave is connected to the oscilloscope. Small amounts of capacitance are introduced in the signal feed-through circuit, and as a result, high frequency signals may suffer some loss. In such cases, it might be best to obtain the signal by connecting the test leads directly to the receiver test point.

As for the calibration process itself, a very convenient method is to set the scope's attenuator and gain control so that the test signal is a suitable size on the screen, then shift to the calibrator and adjust its output to equal the amplitude of the test signal. In some applications, test signals of more than 100 volts peak-to-peak are encountered. When this happens, set up the test signal on the screen at a suitable size as before; then, when viewing the calibrator's square wave, change the position of the scope attenuator switch to get a square wave of the required size. Multiply the calibrator's output voltage by whatever change was made in the scope's attenuator position. For example, if the scope's attenuator was altered from $100: 1$ to $10: 1$, multiply the calibrating voltage by a factor of 10 to get the true amplitude of the test signal.

If the oscilloscope has no attenuator switch, the oscilloscope's cross-hatched screen may be calibrated directly in volts by adjusting the scope gain control so that a 100 volt square wave occupies an

PARTS LIST FOR CATHODE FOLLOWER ATTACHMENT

Item Description

V1	Sylvania type 6C4 tube C1 $.05 ~ m f d . ~ 600 V D C ~$	Sprague 6TM-S5 Aerovox P688-05 Cornell-Dubilier
		PTE6S5
R1	470,000 ohm $1 / 2$ watt	IRC BTS .47 meg. R21500 ohm 1/2 watt R3 10,000 ohm 1 watt
IRC BTS 1500		
IRC BTA 10,000		

INDISPENSABLE! Photofact books

Photofact Television Course. Covers TV principles, operation and practice. 216 pages; profusely illustrated; $81 / 2$ x $11^{\prime \prime}$. Order TV-1 . Only $\$ 3.00$
Television Antennas. New 2 nd edition. Describes all TV antenna types; teils how to select, install, solve troubles. Saves time; helps you carn more. 200 pages, illustrated.

Television Tube Location Guide. Volume 2. Accurate diagrams show position and function of all tubes in hundreds of TV sets; helps you diagnose trouble without removing chassis. 224 pages; pocket-size. Order TGL-2 . Only $\$ 2.00$
Television Tube Location Guide. Vol. 1. Over 200 pages of TV receiver tube position diagrams on hundreds
of models. Order TGL-1 Only $\$ 1.50$

Only $\$ 1.50$
Moking Money in TV Servicing. Tested proved methods of operating a profitable TV service business. Covers all
important phases. Authoritative, valuable guide to success. Over 130 poges. Order MM-1 Onfy $\$ 1.25$
Servicing TV in the Customer's Home. Shows how to diagnose trouble using capocitor probe and VTVM. Shortcut methods help save time, earn more on outside service calls. Order TC- 1

1949-1950 Record Changer Manual. Vol. 3. Covers and wire and to in 1949, including multi-speed chongers anolysis of equipment. 286 pages; $81 / 2 \times 11^{\prime \prime}$; poperbound. Order CM-3..................... Only $\$ 3.00$
1948-1949 Changer Manual. Vol 2. Covers 45 models mode in 1948-49. Poper bound. Order CM-2. Only $\$ 4.95$

1947-1948 Changer Manual. Vol. 1. Covers 40 pastwar models up to 1948. Order CM-1 Only $\$ 3.95$

Recording a Reproduction of Sound. A complete outhoritotive ireaiment of all phoses of recording and amplificotion. $6 \times 9^{\prime \prime}$. Order RR-1.................. Only $\$ \mathbf{5 . 0 0}$

Audio Amplifers. Vol. 3. Clear, uniform, accurate doto on 50 importont audio amplifiers, plus full coverage of 22 FM and AM tuners, produced during 1950. 362. pages, $81 / 2$
$\times 11^{\prime \prime}$. Order AA-3........................ Only $\$ 3.95$ Audio Amplifiers. Vol. 2. A complete onalysis of 104 well-known oudio amplifiers and 12 tuners mode 1949-50. 368 pages, $81 / 2 \times 11^{\prime \prime}$. Order AA-2........ Only $\$ 3.95$ mode through 1948. 352 p. Order AA-1.... Only $\$ 3.95$

Auto Radio Manual. Complete service dota on more thon 100 post-wor auto radio models. Covers over 24 mfrs. 350 pages, $81 / 2 \times 11^{\prime \prime}$. Order AR-1........ Only $\$ 4.95$
Communications Receiver Manual. Complete analysis

Radio Receiver Tube Placement Guide. Accurate diograms show where to reploce each tube in 5500 radio models, covering 1938-1947 receivers. 192 pages, pocketsize. Order TP-1 . Only $\$ 1.25$
Dial Cord Stringing Guide. Vol. 2. Covers receivers made from 1947 through 1949. Shows you the one right way to string a dial cord in thousands of models. Pocket-size. Order
DC-2 . Only $\$ 1.00$ Dial Cord Guide. Vol. 1. Covers sets produced 1938 through 1946. Order DC-1................. Only $\$ 1.00$

Figure 12. Typical Voltage Calibrator for Use with Oscilloscopes. (Courtesy Sylvania)
arbitrary number of divisions, thereby assigning acertain number of volts to each division.

If the cathode follower attachment is used in obtaining a certain waveform, it should be used in the calibration process also. Thus the slight loss which is a characteristic of the cathode follower will not introduce error in the calibration.

In the average television receiver there are points having pulse voltages of very high amplitude. Cscilloscope measurement should not be attempted at these points without special equipment. The plate of the horizontal output tube and the terminals of the horizontal deflection coils are examples of such points.

The photographs of the WFBMTV test pattern which appear in the preceding article are reproduced with permission of the station management. The quality of test pattern reproductions in no way reflects upon the quality of t he transmitted signal of WFBM-TV.

Girls, take heed; marriage begins when you sink in his arms, and ends with your arms in the sink.

Caller - Madame, I'm the piano tuner.
Pianiste - I didn't send for a tuner. Caller - I know it, lady; the neighbors did.

\author{

- Pica Chatter
}

New Low Cost "BJ" JUNIOR Saves Time, Money Servicing DC Equipment

Demonstrate and test car and marine

 radios . . . relays, phone circuits, instruments, other low voltage devices. End costly storage battery failures with Electro's dependable filtered Power supply. Exclusive conduction cooling doubles rectifier power rating, assures lowest cost per ampere output over other types and dissipates over 3 times the heat. Quality components withstand high overloads. 6 Volts, 1 to 12.5 amps . continuous.Model "B" 6 Volt DC Power Supply 1 to 20 Amps. for Heavy Duty

Convert Battery Radios to AC ALL-ELECTRIC

BATTERY ELIMINATOR with SELENIUM RECTIFIER Converts any 1.4 volt, 4 to 6 tube battery radio to an efficient AC radio. Plugs into 115 volt 50/60 cycle outlet. Gives years of dependable hum-free reception at lowest cost.

Send for Bulletin today!

ELECTRO PRODUCTS LABORATORIES,
4501-F Ravenswood Ave., Chicago 40, III.
IN CANADA: ATLAS RADIO CORP. LTD., TORONTO --

-

-

Figure 3. The Radio Craftsman Model C500 Amplifier.
American made 6SN7GTA and one 5V4G in the remaining stages. Constructed on a single chassis with no gain or tone controls the amplifier can be mounted in a convenient, sufficiently ventilated location and controlled from the associated tuner or preamplifier.

The published specifications for the Radio Craftsman Model C500 are:

Response: at 2 watts $\pm 0.1 \mathrm{Db} 20-20,000 \mathrm{cps}$
and $\pm 2 \mathrm{Db} \mathrm{5-100,000} \mathrm{cps}$

$$
\text { at } 12 \text { watts } \pm 2 \mathrm{Db} 10-50,000 \mathrm{cps}
$$

Harmonic Content: Less than 0.1% at 10 watts.
Intermodulation Content: (With 7 KC and 60 cycle tone, $4: 1$ ratio). Less than 0.5% at 10 watts.

Hum and Noise: 90 Db down from 15 watt nominal output.

Figure 4. Stancor Components Used in the Williamson Circuit.
Gain: 1.5 volts (rms) required for driving to full output.

Damping Factor: 32:1.
Speaker Outputs: 8 and 16 ohms.
Wishing to construct a Williamson Amplifier for experimental and checking purposes, we obtained the following basic component parts (see Figure 4) furnished by the Standard Transformer Corporation for this circuit:

1 - A8054 Output Transformer.
1 - PC-8412 Power Transformer.
1 - C-1411 Filter Choke.
1-WM8 Set of Two prefabricated Chassis.
With these and other components appearing in the parts list, and by following the schematic fur-

Figure 5. Schematic Diagram of the Stancor-Williamson Amplifier.

Use this big Clarastat TV Control Replacement Manual! Almost 3000 control listings of all the popular IV set models and chassis. You can spot the correst replacement for any wornout or defective TV control.
Best of all, your Clarostat jobber has that right replatement in stock. No delay. And it fits - electrically and mechanically - whout fussing or cussing. Stays put, too, for a profitable job.
GET THAT TV CONTROL REPLACEMENT MANUAL NOW!
Supply is running out. Send your dollar bill and start saving time, trouble, money, in TV servicing. Or get your sopy from your Clarostat jobber.

CLAROSTAT MFG. CO., INC. - DOVER, NEW HAMPSHIRE

HEY, DOC! MAYBE THAT SABOTAGING "KREMLIN GREMLN"*
HAS THE PARTS YOU'RE LOOKING FOR! HOW MANY TIMES BEFORE HAS THIS HAPPENED TO YOU? CONFESS, FELLA!! DO YOUR INSTALLATIONS TAKE HOURS INSTEAD OF MINUTES???
few if so, it's costing you quite a T-V det. Exterminate those "Kremlin Gremlins" that are sabotaging you or your business
The NEW, exclustive T-V Products Company line of Yagl's, stralght and folded dipoles, in-a-line, and Superto the regular have of Conical Anten nas regular dine of conigal Anten nas
mind.
Just
Just remove the completely preassembled antenna from the carton, AS-A-WINK," you're all set up. No loose nuts or bolts to plague you, and no thumb-screws or wing-nuts to tighten. REMEMBER, time is money! And,
YOU NEED OUR

OPEN - SNAP——IT'S LOCKED

ASSEMBLY
FEATURED IN OUR NEW LINES OF YAGI OURUPEW AN IN A LINE STRAIGHT (

PRODUCTS 152 SANDFORD STREET BROOKLYN 5, N. Y.

Jackson 5" Oscilloscope gives you "dual service"
This high-quality, laboratory-grade instrument provides the "dual service" of both high sensitivity and wide band width.

Vertical Amplifier - Video-type frequency compensation provides flat response within 1.5 db from 20 cycles thru 4.5 Mc , dropping smoothly to a still useful value at 6 Mc
Sensifivity Ranges - With a band width of 20 cycles thru 100 Kc , the sensitivity ranges are 018, 18, 1.8 RMS volts-per-inch. The wide band position 20 cycles thru 4.5 Mc has sensitivity ranges of $25,2.5,25$ RMS volts-per-inch.
Horizontal Amplifier - Push-pull with sensitivity of . 55 RMS volts-per-inch.
Input Impedances-Vertical: 1.5 megohms shunted by 20 mmfd . Direct to plates, balanced $\hat{0}$ megohms shunted by 11 mmid. Horizontal: 1.1 megohms.
Linear Sweep Oscillator-Saw tooth wave, 20 cycles to 50 Kc in 5 steps. 60 cycle sine wave also available, as well as provision for using external sweep.
Input Voltage Calibration-Provides a standard voltage against which to measure voltages of signal applied to vertical input.
Vertical Polarity Reversai-For reversing polarity of voltage being checked or for choosing either positive or negative sync. voltages.
Return Trace Blanking-Electronic blanking provides clear, sharp trace to prevent confusion in waveform analysis
Synchronizing Inpui Control-To choose among INTERNAL, EXTERNAL, 60 CYCLE, or 120 CYCLE positions.
Intensity Modulation-60 cycle internal or provision for external voltage for intensity modulation uses
Additional Fealures-Removable calibration screen-Accessory Model CR-P Demodulation Probe for Signal Tracing-Allsteel, gray Ham-R-Tex cabinet. Total net weight only 26 pounds. Same height as other Jackson TV instruments: 13" H x $101 / 4^{\prime \prime} \mathrm{W} \times 151 / 8^{\prime \prime} \mathrm{D}$
Prices: Model CRO-2, Users' Net \$197.50. Model CR-P Probe, Users' Net $\$ 9.95$.

See your distributor or write
JACKSON ELECTRICAL INSTRUMENT CO. DAYTON 2, OHIO
"Service Engineered" Test Equipment IN CANADA: IHE CANADIAN MARCONI CO.
nished by Stancor (Figure 5), the amplifier as shown in Figures 1 and 6 was completed.

The circuit is not complicated, which simplifies assembly and wiring, but as is true with any high quality amplifier such as this, some requirements must be met when selecting parts and tubes. This is also true when replacing any parts or tubes in servicing this equipment. The two 22 K phase inverter load resistors should be a matched pair as should the two 47 K driver load resistors.

These resistors should be of high enough wattage so use will not tend to change their characteristics to too great a degree. The 6SN7GT driver tube should have matched triode sections so the drive on each 807 output tube is equal. The 807 tubes should also be a matched pair to make it possible to balance the output stage easily.

Balancing of the output stage is important and is easily accomplished by means of the 100 ohm, 2 watt potentiometer, and the closed circuit jacks in the 807 cathode circuit. Plugging a DC milliammeter into one of the jacks, by means of a standard telephone plug, and then into the other, an identical current drain for each output tube can be obtained by adjusting the 100 ohm potentiometer. A current reading of 56 ma. with no signal for each 807 was normal for the amplifier constructed here.

Figure 6. Bottom Chassis - Stancor-Williamson Amp.

Figure 7. Frequency Response, Percentage Intermodulation, and Harmonic Distortion Curves of Stancor-Williamson Amplifier.

The data on response and distortion, published by Stancor in their bulletin 382, describing their Williamson Amplifier, is shown in Figure 7. The frequency response is excellent and does not change from the curve recorded at 8 watts output when the output is reduced to 0.5 watts. The intermodulation distortion measures only 3% at 8 watts output and the total harmonic distortion at 1000 cycles per second is very low and practically does not exist at a power output of 10 watts or less. The "listening" quality using a good sound source and speaker system is remarkable. (For Parts List - see Page 74.)

STANC OR KIT OF COMPONENTS

1-A -8054-Stancor Output Transformer
1 - PC -8412-Stancor Power Transformer
1-C -1411 - Stancor Filter Choke
1-WM-8 - Set of 2 Stancor Prefabricated Chassis or, 2-7"' X 9"' X 2"' Chassis

WILLIAMSON AMPLIFIER PARTS LIST

Hardware
Two types-clear and non-conducting aluminum. Both have exactly the same qualities. Packed in 12 oz . aerosol spray cans. List prices: $\$ 1.95$ clear, $\$ 2.25$ aluminum. Also available in gallons for application by brushing or dipping. See your jobber or write direct.

[^1]

Figure 6. High Voltage Rectifier Tubes

"DESIGN FEATURES" (Continued from page 27)

To get to the horizontal output transformer, it is necessary to remove two screws holding the deflection yoke and focus unit, and two screws holding the metal shield to the chassis. At this time the plastic form containing the transformer and associated components (see Figure 7) may be tilted out for inspection and testing. Complete removal of the plastic form may then be accomplished by unsoldering lour leads extending from the assenibly through the chassis, and lifting out the unit.

The Sylvania 1-260 Chassis employs a damper circuit that is connected in a manner different from that commonly employed. Looking at the schematic in Figure 8 it may be seen that the damper tube is effectively connected across the horizontal coils of the deflection yoke, but in this instance the plate of the damper is at RF ground. During retrace, there-

Figure 7. Horizọntal Output Transformer
fore, a positive pulse of about 2000 volts peak to peak exists on the damper cathode, which will not let the damper conduct. At the completion of retrace the oscillatory tendency of the horizontal deflection circuit starts damper conduction which delivers a large current to the yoke, thus initiating the first half of the active trace period.

In effect this damper circuit accomplishes the same purpose as the more commonly used methods. Note that a special isolation filament transformer is required for the damper tube because of the high amplitude pulse which is applied to the damper cathode. If the filament were connected to the conventional filament supply, one side of which is grounded, arcover would occur between cathode and filament in the damper tube.

Figure 8. Schematic Diagram of Sylvania Ch. 1-260 Horizontal Deflection Circuit.

"INSURANCE PROTECTION"
(Continued from page 23)
and merchandise on a form that in cludes a Rate Reduction, Contribution Clause, a Coinsurance Clause or other similar clause, the dealer or shop owner should periodically examine the values of his property to keep them current with present day fluctuations so as to avoid Coinsurance penalty.

Automobile Insurance

In addition to the Bodily Injury and Property Damage insurance recited previously in this article, the dealer or service shop should also insure his own automobiles against loss arising from collision, fire or other damage or destruction of the automobile.

Crime Insurance

The dealer or service shop should carry insurance against loss arising from the infidelity of employees, forgery, loss of money or securities from inside or outside the premises, and burglary and robbery on stock of merchandise held for sale and held as a bailee. The Bailee Form of insurance can be written to include burglary and robbery on stock of merchandise held for sale and held as a bailee. The Bailee Form of insurance can be written to include burglary and robbery insofar as customer's goods are concerned.

The Choice of an Agent

It is suggested that a dealer or service shop owner avail himself of the services of a recognized insur ance agency representing stock insurance companies in his community and place all of his insurance with the agency and then take the agency's complete advice in main taining his insurance program. In dividing his insurance among several agents, he is defeating his own purpose in obtaining sound insurance at a reasonable cost.

Note: If further study of individual requirements is desired, it may be obtained from Marsh \& McLennan, 1505 Merchants Bank Bldg., Indianapolis, Indiana.

COYNE
 SHOP-TESTED TECHNICAL BOOKS

Radio • Television - Electronics

Distributed by
HOWARD W. SAMS \& CO., Inc., Indianapolis 5, Ind. APPLIED PRACTICAL RADIO-TELEVISION Brand new! Over 1500 pages on the latest in Radio and TV-EVEN COLOR TV and UHF. Over 5,000 subjects, 1,000 illustrations. Shows how to install. align, balance all Radio and TV sets ... how to use test instruments for TV service ... latest data on adaptors, convertors, much more. Get this 5 -Volume Library now.

No. CTB-11—Vol. $1 \ldots \ldots . \$_{3} .25$ 5 VLUME SET | No. CTB-12—Vol. $2 \ldots3 .25$ |
| :--- |
| No. CTB-13-Vol. $3 \ldots . . .$. | No. CTB-13-Vol.

No. CTB-14—Vol. $4 . \ldots . . .3 .25$
No. CTB-50 $\mathbf{3} 500$ No. CTB-15-Vol. 5

CYCLOPEDIA OF TELEVISION

 Complete, Up-to-Date Reference Manual Fact-packed reference book that covers every phase of Television. including COLOR TV and UHF. Gives you complete unders how to repair and receivers work, how to repalr anekeep complete section on picture patrern servicing (dozens of actual pho450 photos, diagrams, charts, drawtos). 750 pages. over 450 photos, diagrams, charts, draw ings, test patterns. InNo. CTB- 1
\$5.95

PRACTICAL

TELEVISION SERVICING, TROUBLE-SHOOTING MANUAL SHOWS YOU HOW TO: align: service; install, adjust and tune every part of the audio and video sections; handle all problems. Covers sweep oscillators, frequency control, FM, amplifiers, tuners, etc. Latest data on COLOR TV and UHF! 18 big chapters. 300 illustrations (many in 4 colors) 1500 . IV Complete, practical. up-to-date.
No. CTB-4

$\$ 4.25$

ELECTRONICS

Electricians will find this book a "gold mine" of easy-to-follow "on-the-job" electronic data. Starts right at the begin ning-explains in stectronics. Fully illusbasic principles or electonis. Fuly diatrated with tables Endorsed by leading grams, and rables, union officials and educators. 400 pages.
No. СTB-2
\$3.75

MODERN RADIO INSTRUMENTS

AND TESTING METHODS

This up-to-the-minute book tells all about modern radio and electrical testing equipment and how to use it. Packed with mon-ey-making shortcuts on trouble-shooting, servicing, construction and other jobs. Over 350 pages, 220 photos and diagrams. Covers Multipliers, Resistors, Ohmmeters, All data has been pre-tested and checked in the Coyne radio shops.

No. CTB-3
$\$ 3.25$

RADIOMAN'S HANDBOOK
Here is a remarkable radio "answer" book. 3,000 facts packed into 350 pages give you complete instructions to speed dreds of charts. diagrams, tables, circuits and short-cuts. Fully indexed.

No. CTB-5

$$
\$ 2.75
$$

Order These COYNE Publications From Your PHOTOFACT Distributor
"SHOP TALK" (Continued from page 5)

Figure 7. Improper Centering of Sweep Range. (Too low).

As the sweeping range is increased, the area that the response curve occupies on the screen becomes progressively less. See Figure 6. A curve which is too narrow is difficult to work with. 6 to 8 mc sweeping range for a 4 mc bandpass is sufficient. There is no need to go beyond this.

In some instruments, however, it is not unusual to find that a 6 to 8 mc sweeping range is obtained only when the range indicator is turned to its extreme clockwise position.

When the sweep generator is being set up, its dial should be turned to the center frequency of the band being swept over. Thus, if the bandpass from 22 to 27 mc is to be observed, the generator should be set at (or near) 24.5 mc . If the center of sweep fre ${ }^{-}$ quency is too low, Figure 7 will result. If the center of sweep frequency is too high, Figure 8 will be obtained. Whenever both ends of a response curve are not at the base or lowest point on the observed pattern, you can be sure that the full band is not being swept over.

A common error made by many servicemen results in the pattern shown in Figure 9. Everything has been properly connected here, except that the oscilloscope is still using its saw-tooth deflection voltage to sweep the beam across the face of the screen. To obtain the proper beam motion correctly synchronized to the sweep of the frequencies across the band, the internal sweep of the scope should be turned off and 60 -cycle sweep voltage obtained from the generator itself.

Sometimes the mistake is made of using a 60cycle sinusoidal voltage developed in the scope itself

Figure 8. Wrong Centering of Sweep Range. (Too High)

Figure 9. Curve with Incorrect Scope Deflection.

Figure 10. Curve Obtained with 60 Cycle Sinusoidal Sweep.
for the driving voltage and under these conditions the pattern shown in Figure 10 will be obtained. This can be even more confusing than the pattern of Figure 9 since not only will it give two patterns but the phase relationship of the two will vary with respect to each other.

The foregoing patterns are representative of those most frequently encountered by serviceman in their failure to obtain the proper response curve. If you study each one carefully and learn why it occurred, your chances of making the same error will be materially lessened.

The ideal video IF response curve is the one shown in Figure 1A. This curve has the proper slope on the video carrier side, has a full 4.0 mc bandwidth, and decreases to the proper level at the trap frequencies. There are a number of sets on the market from which such response curves will be obtainable. But the longer you work with television receivers, the more you come to find that there are also many sets from which you will not be able to obtain this shape curve. Thus, Motorola (to cite but one example) shows the overall response curve of Figure 11 from mixer to video second detector. Note that the bandpass here is 3.5 mc (which isn't bad at all), and the curve is quite symmetrical. Admiral, to cite another case, indicates in its service manual that the video IF response has a pronounced dip in the center of the curve. (See Figure 12.) They recommend that this dip should not extend more than 30 per cent of the overall height of the curve. Other manufacturers state that the dip should not exceed 10 per cent.

Here you have but a few of the variations that you will find among different sets when checking their IF response. For their particular circuits, under the policies of their designs, these curves are "normal" and there is little the serviceman can do to change

Figure 11. Overall Video IF Response for Motorola Chassis TS-172.

Professional Service-Dealers! Your Profits and Professional Prestige depend on giving your customers more TV and AM enjoyment-fast, and at low cost! GRAYBURNE service-engineered SPECIFICS improve set performance so amazingly, your customers will call you their ELECTRONICS WIZARD!
For full technical data and name of your local Grayburne Distributor, write NOW for Catalog.

> Grayburne Means Quality Electronic Components

"Servicing TV

 in theCustomer's Home"

SAVES THME SAVES WORE Earns More for You on Outside Service Calls

shows how

to diagnose trouble using capacitor probe and VTVM
Here's the book you've been asking for-practical, proved help to make your outside TV servicing really effective and profitable. Saves time, work and chassis hauling. . . shows you how to make successful repairs on the spot. You learn the following: 1. A simple, effective method for tracing down trouble, using your VTVM and a simple capacitor probe. 2. Methods for finding your way around a strange circuitshows you how to "pull tubes" and diagnose trouble by observing audio and picture effects. 3. How to judge TV set performance by analysis of the test pattern. 4. Methods for making adjustments in the field. You'll want this essential, profitbuilding book. Handy pocket size; sturdy cover.
$\$ 150$
Pays for itself on the very first job.
HOWARD W. SAMS \& CO., IMC.

Order this
PROFITABLE NEW BOOK
from your
Parts Jobber Today

Figure 12. Overall Video IF Response for Admiral 24 D, E, F, G, and H Series TV Receivers.
them - even if he should be so inclined. Try to strike the best medium between amplification and bandwidth, emphasizing amplification in weak signal areas and bandwidth in strong signal areas.

REVIEW: An important aspect of television receiver installation is whether or not to ground the antenna structure. The review this month concerns two well written articles on this subject.
"Lightning Protection for TV Installation"
by Rufus P. Turner
Radio and Television Maintenance, December 1950 Published by
International Publishing Corporation
16 Union Street, Somerville, N. J.
Subscription Price $\$ 4.00$ per Year, U. S. A. and Possessions. $\$ 5.00$ per Year in Canada

"TV Antenna Grounds"

by C. H. Jensen - Service, April 1951 Copyright 1951 Bryan Davis Publishing Co., Inc.
52 Vanderbilt Avenue, New York 17, N. Y. Subscription Price $\$ 2.00$ per. Year, U. S. A. and Canada
"To ground or not to ground, that is the question." And in the installation of television antennas, that is indeed a very important question. For whenever an outside television antenna is erected, it is frequently the highest point in the immediate vicinity. And, as such, it is an excellent target for lightning flashes, streamers from a direct hit on an adjacent object, or induced high voltage charges. The slender, pointed rods from which television antennas are constructed are especially enticing to the high potentials packed by thunderclouds.

In view of the vulnerable position of the television antenna, it is surprising to find that many installation men consider the grounding of an antenna mast or the use of a lightning arrestor where the transmission line enters the house as unnecessary and a complete waste of time and money. This negligence on the part of the installation crew places the television set, the antenna, and most important of all, the building (and its occupants) in serious jeopardy.

Figure 13. Approved Grounding Method.
The proper procedure for grounding a TV antenna system is illustrated in Figure 13. A grounding lead should be securely connected to the antenna metal supporting mast and then extended down on the outside of the building to the ground. For maximum safety, the lead should be of heavy insulated wire, No. 10 or larger. The lead should be kept as short and direct as possible, avoiding sharp bends or loops where the lightning might arc or jump across. Since the grounding lead might have to carry a considerable discharge current, it should be insulated from and supported away from the building throughout its length. For this, stand-off insulators are employed.

While there are a number of methods whereby the grounding lead is actually grounded, the simplest and most effective method is the use of a rod driven into the ground. To insure long effective usefulness, the rod should be of a non-ferrous, non-rusting type. A rod diameter of $1 / 2$ inch and a length of 4 to 6 feet will, in most instances, serve to provide the proper low resistance grounding connection if driven well into the earth. When installing a ground rod, it should be driven at a point well out from the building foundation. This affords better protection because rods driven too close to the foundation will often have a high resistance. Where the rod has to be driven in the lawn several feet from the house, the following procedure (illustrated in Figure 14) should be followed.

Figure 14. Procedure for Use when Driving Ground Rod in Lawn Several Feet From House.

STANDARD TRANSFORMER CORPORATION

3580 ELSTON AVENUE CHICAGO 18, ILLINOIS

OPS INTERPRETATION OF EXTENDED WARRANTIES

The RTMA has just issued a report on the OPS regulation concerning parts warranty by manufacturers of television receivers.

It was pointed out that some manufacturers asked to substitute a compulsory longer warranty period at additional cost than the previous $90-$ day period included in the selling price of the television receiver during the base period.

This, the report states, constitutes a tie-in sale in violation of Section 18 of the ceiling price regulation and similar provisions in other regulations, since the purchaser would have to buy something which was not included with the television receiver during the base period.

The report also stated that increasing the base period warranty charge and reducing the price of the television set a like amount also constitutes a violation of the ceiling price regulation.

The seller, it was noted, is not prohibited from offering something additional over that which was offered during the base period, provided full option is extended to the purchaser to either take or leave the additional item.

Mr. Serviceman!

get a

with every Du Mont Teletron!

* The advance version of the old "Cheater-Cord."
- The Tele-Lead gives you a power connection plus a probing light to see into the back of the receiver.
- A double plus value because: With each replacement Du Mont Teletron you purchase from January 1 through February 29, you will receive free α Tele-Lead, and the assurance of a satisfied customer.

CATHODE-RAY tUbe division, allen b. du mont laboratories, inc., clifton, n. J.

'SHOP TALK' (Continued from page 79)
The sod should be cut with a sharp spade on three sides of the point where the rod is to be driven in and carefully rolled back toward the fourth side. The dirt should then be removed to a depth of approximately a foot and the rod driven into this hole as far as it will go.

To connect the grounding wire to the rod, a trench should be dug on a straight line from the point where the grounding wire reaches the ground to the rod. The wire is now connected to the rod, either by soldering or by the use of suitable clamp. The hole and the trench are then filled in and the sod rolled back into place and patted down so as to leave the lawn in its original condition.

In order to obtain an effective ground in an extremely dry, rocky, or sandy area, it may be necessary to dig a deep pit, and bury a sheet of wire screen, a metal plate or large interconnected pieces of scrap metal. The ground lead is then attached to the buried metal. In arid sections, a good ground can be constructed by running long wires in deep trenches, especially if the trenches are irrigated from time to time. Moist earth provides the best low-resistance grounding path and this should be sought out whenever possible.

In apartment buildings it is seldom practical to run grounding leads from the roof of the structure to the ground. In these instances a cold water pipe, if available, will generally provide a low-resistance grounding path. Many installation men use the plumbing vent pipe which sticks through the roof top not only for grounding, but for support as well. Whether or not this will serve for grounding depends upon the resistance of this particular path to ground. It is not uncommon to find an insulating type of sealing compound used on the pipe joints and in these instances the resistance of this path to ground may be so high as to render it useless for static discharge. Again, metal plumbing pipes are frequently connected to terra-cotta or non-metallic sewer pipes under ground, in which case the resistance to ground would also be quite high.

Probably the chief reason why grounding to the vent pipe is not the most desirable method is because this pipe not only passes through the interior of the building, but also connects to all or most of the other plumbing wires located within the building. A lightning discharge striking the antenna will thus pass down one or all pipes and if a lower resistance path is offered by water or gas pipes closely adjacent to the plumbing, the high voltage may jump or arc across to these other pipes with the possible hazard of fire or explosion.

LIGHTNING ARRESTORS. In addition to the protection afforded the antenna mast, similar protection, in the form of a lightning arrestor, should be given the lead-in line and the receiver. The most common (and the best) point to install the arrestor is at the point where the lead-in line enters the house. See Figure 13. The ground lead from the arrestor may be run directly to its own earth ground or it may be connected to the antenna mast grounding lead, whichever is most convenient.

The lightning arrestor consists of two tiny spark gaps. Each gap is connected between one conductor of the twin-lead transmission line and a good ground. A heavy static charge, such as would accumulate on the antenna during or just before a thunderstorm will jump the gaps and flow to earth. Some arrestors accomplish the same effect with static-draining resistors, others with neon lamps. A fourth variety employs a combination of spark gaps and resistors.

There are a number of lightning arrestors on the market, all designed only for the balanced or ungrounded twin-lead type of lead-in line. Most are designed so that the line is laid across the arrestor and held in place by contact screws which, when fastened down securely, force their teeth through the lead insulation to make contact with the conductors. A few types require that the line be stripped for contact to the arrestor terminals.

Coaxial transmission lines do not require special lightning arrestors as long as the precaution is taken to ground securely their outer shield. Doing this will afford adequate lightning protection and is sanctioned by the electrical code.

For best results use the yoke that's failored to the tube

Check these features . . .

```
Dlstributed windings of modifled "cosine" design for sharp corner focus
\(\sqrt{ }\) Negligible pattern distortion
\(\sqrt{ }\) Freedom from insulation breakdown
Terminals securely mounted
Sturdy molded housing
```

Why take chances with "compromise" yokes when RCA "originals" cost no more?

Remember-RCA deflecting yokes set the engineering standards of the field. That's because RCA deflecting yokes and RCA picture tubes are designed to work as a team. Mechanically and electrically, RCA yokes "fit like a glove". . . work best with the picture tubes they're specifically designed for.

Always the leader-RCA deflecting yokes were the first to use Ferrite cores . . . first to use distributed windings
providing negligible barrel and pincushion distortion. And . . . RCA yokes were the first to be constructed with a molded housing of solid plastic that affords increased insulation between windings and core, insures high resistance to humidity, and holds terminal lugs firmly.
RCA yokes are best fitted to restore original performance in the many makes of TV receivers you service. When a replacement is called for, play safe . . . use the yoke that "fits the tube." That's RCA!

See your local RCA Parts Distributor for "Original" RCA TV Components.

aEROVOX CORPORATION, MEW BEOFORD. MASS., U. S. A. I Sales Olfices in Al Princlpal clities

Windex

AND TECHNICAL DIGEST

INDEX TO ADVERTISERS
 January - February 1952 Issue

Advertiser Page No.
Aerovox Corporation 84
American Phenolic Corp. 14
Astatic Corp., The 6
Centralab (Div. Globe-
Union, Inc.) 28
Clarostat Mfg. Co., Inc. 72
Coyne Electrical and Tele- vision-Radio School 76
Drake Co., R. L 42
DuMont Labs., Allen B. 81
Electro Products Labs. 70
Electro-Voice, Inc. 18
Electrovox Co., Inc. 26
Electronic Measurements Corp. 82
Erie Resistor Corp. 66
General Cement Mig. Co 68
Grayburne Corp 78
Hickok Elec. Instr. Co.38, 68Hytron Radio \& ElectronicsCorp.16
Insuline Corp. of Am 82
International ResistanceCompany2nd Cover
Jackson Elec. Instr. Co 72
Jensen Industries, Inc 32
JFD Mfg. Co., Inc. 42, 76
Kester Solder Co. 42
Krylon, Inc. 74
Littelfuse, Inc 4th cover
Merit Trans. Corp. 22
Oak Ridge Pro. Co. 40
Precision Appartus Co., Inc. 34
Quam-Nichols Co. 36
Radio Corp. of Am. 20, 83
Radio Electronics. 42
Radio Receptor Co., Inc. 40
Rauland Corp., The 30
Regency Div., I.D.E.A., Inc. 8
Sams \& Co., Inc., H. W.. . . .70, 78Shure Bros.10
Simpson Elec. Co. 24
Sprague Products Co 44
Standard Trans. Corp. 80
Sylvania Elec. Pro. Inc. 3rd cover
Technical Appliance Corp 84
Thomas Electronics, Inc. 85
Triplett Elec. Instrm. Co 12
TV Products Co. 72
United Cat. Pub.'s 80
V-M Corporation 66
Ward Pro. Corp. 86
Xcelite, Inc. 66

While every precaution is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or omission in the preparation of this Index.

It means you're replacing a picture tube with the exact original equipment...chosen by these 20 manufacturers (and many more!) because of proved superior performance.
This means less time-killing fube call-backs: more profit
for you in each replacement! So, insist on this label... and get the best - THOMAS!
*Every THOMAS Photofron picture fube is guaranfeed for 6 months from the actual date of installation: regardless of how long the fube remains on your shelf.

Contat your jobber or distributor for the completo JHOMAS Phototron line... or write THOOMAS direct.
Dhototron picture tube

SINGLE

SOURCE SERVICE with

Antennas for TV ... one for every job

Antennas for Autos . . . world's fastest selling line

Regardless of your antenna requirement, there's a WARD Antenna for you. You can always rely on any WARD antenna. Specify WARD for every antenna need. . . found at radio distributors everywhere . . . for when you demand WARD you get the best.

Write for catalog. Ward is now featuring TV Kits which contain every item needed for complete installation.

+ More or Less -

Portions of a conversation overheard during a recent visit to a local service shop should furnish quite a bit of food for thought. The conversation was evidently between an experienced television technician and a man breaking in on television service requirements.

The primary purpose was that of individual instruction, but several points covered were so applicable to efficient service operation that they are repeated here - possibly not verbatim but, at least, in essence:
"First - don't be afraid of the TV set. The television set is big; it employs a lot of tubes and associated components. Some of its circuits may be new, or, at least, unfamiliar. Just remember, however, that the basic operations of these circuits are extensions of similar circuit performance in radio applications. If you truly understand the principles of amplification, detection, and oscillation in radio work, you can certainly apply them in television service and study out the refinements as necessary.
"Second - use your radio knowledge and experience. The causes of nonoperation in television receivers very closely parallel causes of the same troubles in radio receivers. Component failure, with resultant stage or voltage failure, accounts for the same percentage of television difficulties as they did in radio applications. As in radio work, the highest percentage of nonoperation is caused by tube failure - the second spot being occupied by defective capacitors, and the third ranking assigned to either transformers or resistors.
"Make your general service procedure correspond to these facts. In other words, satisfy yourself first that the tubes are good; then check to see that voltages are normal in the stages diagnosed as possibly contributing to the nonoperation.
"Don't rush to attribute nonoperation, or failure, to circuits which you don't understand, simply on the basis that they aren't understood.
"Third - don't try to employ all the test equipment available in the modern service shop on every job that comes into the shop. In setting up test equipment for a given operation, make sure that your setup is consistent with the description of symptoms furnished you or those which you have observed. Classification here would roughly correspond to the idea of nonperformance versus degree of performance.
"You don't need to have signal generators, scopes, etc., connected to find a simple tube failure. You would need such equipment, for example, to find out why a receiver is luw in sensitivity or has less than normal sound or picture operation.
"Fourth - accumulate your TV service experience. In your radio work, you gradually accumulated knowledge of common failures and their causes. Similarly, remember, or jot down if necessary, your experiences in servicing television receivers. This isn't meant in the nature of a casehistory proposition - it is intended to provide logical procedure in servicing where commonly recurring troubles are indicated by similar sound or picture deficiency. It is often helpful, in this connection, to think of the equipment in block diagram form and tentatively isolate the function, or stage, most likely to create the particular difficulty."

Summing up, his advice amounts to: For efficient service operation use your head and your experience before you use your hands.

Talk about an exciting, sales-building Radio-TV Service Dealer campaign! Mister, this is it!
Featuring personal endorsements of some of the most glamorous and newsworthy people in the entire country, this campaign ties you in with big-space ads in Life, The Saturday Evening Post, Collier's and Better Homes and Gardens.

Just see what you get: . . . brilliant life-like cut-outs of the celebrated stars ...counter cards, streamers, appealing mailers also radio spot announcements, and reminder stickers. You pay only two cents per prospect per month for the mailers. The rest is FREE. Don't delay! Call your Sylvania distributor or mail coupon N-O-W!

Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y. television picture tubes; electronic test equipment; electronic devices; radio tubes; fluorescent tubes; flixures, sien tubing, wirng deyices; light buibs; photolamps; television setis

Servicemen can cover 94% of fuse replacements with this kit

One-Call Kit Contains 45 TI fuses
(6 most in demand types) and 6 TJ
snap on fuse holders in a clear
plastic hinged-cozer bench box.
Another LITTELFL'SE first.
Call your jobber today. Litelfuse. Inc.,
4757 Ravensuood, Chicago 40.
LOngbeach 1-4970.

[^0]: Merit is meeting the TV improvement, replacement and conversion

[^1]: 4 Prong Connector
 4 Prong Connector Input Connector 4 Prong Plug Octal Socket
 5 Prong Socket
 4 Prong Socket
 Amphenol 78-PF4
 Amphenol 86-PM4
 Amphenol 75-PC1M
 Amphenol 86-CP4
 Amphenol 78-S8
 Amphenol 78-S5
 Amphenol 77-M1P4

 ## Closed Circuit Jacks

 Plate Caps 3/8''
 Toggle Switch, Single Pole Single Throw Fuse Extractor Post Littlefuse 341001 2 amp. 3AG Fuse Littlefuse 312002 Output Terminal Strip, AC Line Cord, Terminal Tie Lug Strips, 4 Wire Cable, etc.

