Easy to build projects for everyone

FDITHATHE TIITHR

GRILISPANEL BAFFUE BGARD
carichse
carichse BACN BACN RAME Bacha RAME Bacha
FRONT EEANEx.
 LeDNOMI LIUISPEARER

Ideal for Beginners

Come to the Great British Electronics Bazaar

(AND WAIT TILLYOU SEE OUR SEMINAR PROGRAMME)

The Great Big 'Bazaar' for the hobbyist, amateur, and small buyer.

There's never been an event like this before.
First, the very scale of the exhibition is huge. Virtually all the companies you're used to hearing about (and buying from) will be there. Companies like Fluke and Gould showing off their low cost multimeters; smaller but important manufacturers like Lektrokit and Chromasonics; and even the R.S.G.B. who will have a station'on the air' throughout the 'Bazaar.'

Then there are the suppliers of low-cost components and equipment. Plus almost all the journals in the business. Plus, oh, so many more interesting people catering for your needs (including computer kits!!.
And you get in FREE if you send an s.a.e. (see alongside).

Our Symbol.
We think it tells you just what the Bazaar is all about.

The Seminars.

If you would like to hear just what the experts have to tell you, a season ticket for three whole days can be yours for only $£ 1.50$.

Sendan s.a.e. andwe'llgive you all the information (just use the

Our home for three days - Alexandra Palace, where it all began. (Our seminars are sited alongside the organ-for those who know this unique hall.)

SEMINAR TICKETS

 £1.50.I'd like to sit in at your seminars. (And like a free ticket to the exhibition.) Send me full details, please, and I enclose a large-ish s.a.e.
Name: ..
Address:

When?

Between Thursday to Saturday 28th-30th June.
You'll be in very good company; some ten thousand enthusiastsand over a hundred stands displaying all that you want to see.

You'll come?

Eyes down for the appropriate coupon.

ADMISSION FREE

(or 50p on the door).
I'd like to see The Bazaar' FREE. I enclose a large-ish s.a.e. and will receive by return a ticket and full information.
Name:
Address:
\qquad

Post to: 'The Bazaar,' 34-36 High Street,SaffronWalden, Essex. Ifyou'd rather just pay 50 p, go to Wood Green Tube Station and take a bus (every 3 minutes) to Alexandra Palace. We're open 10 am- 6 pm daily, Thursday to Saturday, 28th-30th June.

WATFORD ELECTRONICS
 35 CARDIFF ROAD，WATFORD，HERTS．，ENGLAND
 MAIL ORDER，CALLERS WELCOME．Tel．Watford 40588／9

Abstract

ALL D DESPA PO．S O WSTIT WELCO POSTA VAT We stock many more items．It pays to visit us．We are situated behind Watford Foothall Ground．Nearest Underground／BR Station：Watford High Street．Open Monday to

 Ground．Nearest Underground／BR Station：Watford High Street．Saturday 9.00 am－ 6.00 pm ．Ample Free Car Parking space available．
 160V： $0.039,0.15,0.22,11 \mathrm{p} ; 0.33,0.4719 \mathrm{p} ; 1 \cdot 68 ; 1.022 \mathrm{p} ; 1.529 \mathrm{p} ; 2.232 \mathrm{p} ; 4-736 \mathrm{p}$.
DUBILIER： $1000 \mathrm{~V}: 0.01,0.01520 \mathrm{p} ; 0.02222 \mathrm{p} ; 0.04728 \mathrm{p} ; 0.138 \mathrm{p} ; 0.4753 \mathrm{p} ; 1.0175 \mathrm{p}$ ． POLYESTER RADIAL LEAD（Values in μ F）250V：
$0.04,0-015,0-022,0-0275 \mathrm{p}: 0-033,0-047,0-068,0-17 \mathrm{p}: 0-1510 \mathrm{p}$ ： \square FEED THROUGH
CAPACITORS
100μ F 350 V 0－22，0－33 13p：0－47．17p：0－88 49p；1－0 22p；1－5 30p；2－2 34p． $100 \mu \mathrm{~F}$ ． 350 V 8p $250 \mathrm{~V}: 10065 \mathrm{p} ; 63 \mathrm{p} ; 47732 \mathrm{p} ; 100030 \mathrm{p} ; 40 \mathrm{~V}: 22,33,9 \mathrm{p} ; 10012 \mathrm{p} ; 220068 \mathrm{p} ; 330068 \mathrm{p} ; 470085 \mathrm{p} ;$
$50 \mathrm{~V} 50,100,22025 \mathrm{p}$
$35 \mathrm{~V}: 10,337 \mathrm{p} ; 330,47032 \mathrm{p} ; 100049 \mathrm{p} ; 25 \mathrm{~V}: 10,22,47 \mathrm{p} ; 80,100,1608 \mathrm{p} ; 220,25013 \mathrm{p} ; 470,640$
25 p 25p；1000 $27 \mathrm{p} ; 150030 \mathrm{p} ; 220045 \mathrm{p} ; 330068 \mathrm{p} ; 470035 \mathrm{p} ; 18 \mathrm{~V} ; 10,40,47,68$
$33014 \mathrm{p} ; 47016 \mathrm{p} ; 1000,10020 \mathrm{p} ; 220034 \mathrm{p} ; 10 \mathrm{~V}=1006 \mathrm{p} ; 64012 \mathrm{p} ; 100014 \mathrm{p}$.
TAG END TYPE：70V： $200089 \mathrm{p} ; 4700435 \mathrm{p} ; 50 \mathrm{~V}=10,000255 \mathrm{p} ; 40 \mathrm{~V}=2500$ TAG－END TYPE： $70 \mathrm{~V}: 200039 \mathrm{p} ; 4700$ 135p； $50 \mathrm{~V} ; 10,000255 \mathrm{p} ; 40 \mathrm{~V}: 250065 \mathrm{p} ; 33$
$15,000299 \mathrm{p} ; 25 \mathrm{~V}: 470070 \mathrm{p} 220048 \mathrm{p} ; 325 \mathrm{~V}: 200+100+50+100590 \mathrm{p} ; 32+32 \mathrm{TI5p}$.

| TANTALUM BEAD CAPACI－ | POTENTIOMETERS：（ROTARY） | OPTO |
| :--- | :--- | :--- | :--- |
| TORS $35 V: 0.1 \mu F, 0.22,033,0.47$, | Carbon Track． 0.25 W Log \＆ 0.5 W | ELECTRONICS | $\begin{array}{ll}\text { TORS } 35 \mathrm{~V}=0.1 \mu \mathrm{~F}, 0.22,0.33,0.47 \text { ，} & \text { Carbon Track．} 0.25 \mathrm{~W} \text { Log \＆} 0.5 \mathrm{~W} \\ 0.68,1.0,2.2 \mu \mathrm{~F}, 3.3,4.7,6.825 \mathrm{~V} \text { ：} & \text { Linear Value．} \\ \text { LEDS plus clips }\end{array}$

$1.5,1020 \mathrm{~V}: 1.516 \mathrm{~V}: 10 \mu \mathrm{~F} 13 \mathrm{p}$ each
$47,10040 \mathrm{p} .10 \mathrm{~V}: 22 \mu \mathrm{~F}, 3320 \mathrm{p} .6 \mathrm{~V}$ ：
$47,68,100,30 \mathrm{p} 3 \mathrm{~V}: 68,100 \mu \mathrm{~F} .20 \mathrm{p}$

MYLAR FILM CAPACITORS 100V：0．001， $0.002,0.005,0.01$

 $100 \mathrm{~V}: 0.001,0.002,0.005,0.01 \mu \mathrm{~F} 6 \mathrm{p}$$0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F}$
$0.1 \mu \mathrm{~F}, 0.29 \mathrm{p}$

MINIATURE TYPE TRIMMERS

 $2-5-6 \mathrm{pF}, 3-10 \mathrm{pF}, 10-40 \mathrm{pF}$$5-25 \mathrm{pF}, 5-45 \mathrm{pF}, 60 \mathrm{pF}, 88 \mathrm{pF}$

COMPRESSION TRIMMERS

$3-40 \mathrm{pF}, 10-80 \mathrm{pF} 30 \mathrm{p} ; 25-190$ $100-500 \mathrm{pF} 45 \mathrm{p}$ ； 1250 pF 60 p

POLYSTYRENE CAPACITORS
10 pF to $1 \mathrm{nF} 8 \mathrm{p}: 1 \cdot 5 \mathrm{nF}$ to 10 nF 10p． SILVER MICA（Values in pF）3－3，
$4-7,8-8,10,12,18,22,33,47,50,68$, $4-7,8-8,10,12,18,22,33,47,50,68$ ，
$75,82,85,100,120,150,1809 \mathrm{p}$ each
$220,250,300,330,360,390,16 \mathrm{p}$ each
600,820 $1000,1200,1800,2000 \quad$ 20p each
SOLDERCON PINS \star E．E．INTRUDER ALARM
All parts now available
All parts now availug

All	D availab		Complete kit of parts inc．instruc－ tions． E4－95 inc．VAT		
JACK PLUGS			SOCKETS		S－DEC 250p ${ }^{\text {t }}$
	Screened	Plastic	open	moulded	T－DEC 400pt
2.5 mm	$\begin{aligned} & \text { chrome } \\ & \text { 13p } \end{aligned}$	body	metal	with	U－DEC＇A＇
3.5 mm	15p	10p	\％p	contacls	p＊
MONO	25p	14 p	13p	20p	U－DEC＇B＇
STEREO	32 p	18p	15p	24p	699p $*$

 Carbon Miniature High Stability Yellow Green SLIDER POTENTIOMETER \begin{tabular}{lr|lr}
 $0-25 W$ log and linear values 60 mm \& ORP12 \& 63

$5 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$ single gang \& 70 p \& 2N5771 \& 45

$10 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$ dual gang \& 800 p \& 7 Seg Displays

Self Stick Graduated Bezels \& 25 p \& LS400 \& 255
\end{tabular} PRESET POTENTIOMETERS

RESISTORS－Erie make 5%
Carbon Miniature High Stability，
M

$100+$ grice applles to．Resistors of
each type not mixed values．
LW to MW Converter for Radio 4
 STEREO
 4pole on
SUB－MIN
TOGGIE SUB－MIN
TOGGLE
SP changeover 53p
SPST on／off 54p SP changloover 59p
SPST on／off $54 p$
DPDT 6 tags
DPDT cloff
D9p DPDT Blased 115p
SLIDE 250V：
1ADPDT
14 SLIDE 250V
1A DPDT
1A DP cloff．

DIN

$\begin{aligned} & \text { Puges } \\ & \text { 130p } \end{aligned}$	$\begin{gathered} \text { Socket } \\ \text { Sot } \\ \text { 10p } \end{gathered}$

CO－AXIAL

PHONO

PHONO
assorted colours
Metal Screened
BANANA 4 mm

coiction	$\begin{aligned} & \text { Tin ine } \\ & \substack{200 \\ 200} \end{aligned}$	
	${ }_{22 p}^{12 p}$	So
	（150	
		Rotarit

Odes	，	
AA119 AA129	5e $2 \mathrm{2V7}$	
	P	
	1．3W	
12	${ }_{\text {15p each }}$	
	NOISE	
OAS ${ }^{75}$	150	
12	太	
A7\％		
	（plastic case）	
OAA5 ${ }^{14}$	${ }_{1}$	榇106
OA909		
OA95	1A／400V 29	$\mathrm{THC45}^{\text {TH }}$
	1 A	
1 1N94	${ }_{2} 2$ A	
1 N916 $12+5$	2 A	3A4
1 N400	2A／600	Aabovy
	4 A	仡
	$4 \mathrm{~A} / 200 \mathrm{~V} 75$	
	4 A 4000 V $4 \mathrm{~A} / 600 \mathrm{~V}$ 105	
	$4 \mathrm{~A} / 800 \mathrm{~V}{ }^{120}$	
		${ }^{25 A 1000 \%}$
	6A／400V 85	
6A／600V	56	DIAC＊

A COMPLETE
 KIT FOR THE E місғо CHIME

This easy to build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!

$$
\text { only } £ 8.95+55 \text { p p\&p }
$$

TMS 1000 N -mpoo27A Micro-

computer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only $\& 4.95$ inc. p\&p

(Only present 24 tune repertoire currently available.)
New price for the original
CHROMA-CHIME 24 tune model!
Due to the fantastic success of this product right across the World we are able to offer it at

only $89.95+75 p$ p\&p

 Comes complete with:* TMS1000 Micro * Fully prepared PCB
* Superb cabinet * All semiconductors
* AllR's \& C's * Loudspeaker
* Switches \& pots * Socket\& Hardware
* Fully detailed kit manual

ALL CHROMATRONICS PRODUCTS
SUPPLIED WITH MONEY BACK REFUND CHROMATRONICS River Way. Harlow Essex.

TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK. NAME
ADDRESS

I enclose cheque/PO value $£$
or debit my ACCESS/BARCLAYCARD account no.

Signature
CHROMATRONICS

TANTALUM BEAD CAPACITORS 4.7 uf 16v.w. 저 9p, $10 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$. . © 9 g , 33 uf 10v.w. © 9 gp , 100 uf 10v.w. © 25 p .
LED'S TIL. 209 (6) 6 for $50 \mathrm{p}, 2^{\prime \prime}$ Red © 6 for $70 p_{i} \cdot 2^{\prime \prime}$ Green (33 15p.
 PLASTIC BC 108 TRANSISTORS wlth House Numbera © 10 for 60p. VARIABLE CAPACITORS. $25+25+25$ pf © 75 p .
MINIATURE ELECTROLYTICS $8 u f 300 \mathrm{v} . \mathrm{w} ., 10 \mathrm{ut} 250 \mathrm{v} . \mathrm{w}$. Both at 10 for 60 p . 50. OC 71 TRANSISTORS untested © 75p.

VERNITRON FM4 $10 \cdot 7 \mathrm{MHz}$ CERAMIC FILTERS B $50 \mathrm{p}, 3$ for Ef .
I00 MULLARD C 230 CAPACITORS assorted (2) 57p.
WIRE WOUND POTENTIOMETERS 2 watt 2 K , 4 watt 100 K . Both 30 p each. 10 AMP S.C.R's 100 PIV © $25 p_{i} 400$ PIV (3) 50p, 800 PIV © 60p.
COIL FORMERS. $3 / 16^{\prime \prime}$ Dia, with core at 6 for 25 p .
CRYSTALS, 10X type. 7010, 7038-88, 7040, 7070, 7080, 7090, 7100, 7500, 7900, 8000 $8007 \cdot 69,8018 \cdot 82,8021 \cdot 54,8035 \cdot 38,8038 \cdot 25,8061-18,8068,8076 \cdot 92,8089 \cdot 09,8090,8092$, $8082 \cdot 5,8510,9720 \mathrm{KHz}$. All at 20 p each. 6 for $£ 1$.
WIRE ENDED CRYSTALS. $28,28-5,29-75,29-76,31,83-997 \mathrm{KH}$. All at 50 p each. 50. BC 107-3-9 TRANSISTORS untested ® 57 p .

200 RESISTORS $\frac{1}{4}, ~+$ watt assorted values for 75 p .
VARIABLE CAPACITORS. Direct Drive, 5 pf fis 75 p , 10pf © 75 p , 30 pi , 85 p , $125+125 \mathrm{pf}$ @ $55 \mathrm{p}, 100+200 \mathrm{pf}$ @ $55 \mathrm{p}, 200+200+17+17 \mathrm{pf}$ @ $35 \mathrm{p}, 25+25+25 \mathrm{pf}$ © 28 p .
S.M. DRIVE, $500+500+25+25 \mathrm{pf}$, $55 \mathrm{p}, 250+250+20+20+20 \mathrm{pf}$, S.M. DRIVE, $500+500+25+25$ pf G 55 p, $250+250+20+20+20$ pf B 75 p .

SEML-AIRSPACED TRI胃MERS 2 To $9 \mathrm{pf}, 7$ To $35 \mathrm{pf}, 6$ To 45pf, 8 To 125pf, 8 To 140pf. All at isp each.
R.F. YHF FETS $2 N$, 28104 10p, BF 362 (i) 25 p.
E112 F 10p, DUAL GATE TYPE 40673 31 33p.
S00 ASSORTED DISC CERAMICS for 57p.
MINIATURE POLYESTER CAPACITORS • 1 Uf $125 \mathrm{v.w}$. © 20 p doz.
50. 1 AMP S.C.R's TO5 Can untested for $\mathbf{\Sigma}$.
25. 5 AMP STUD MOUNTING S.C.R's untested for 75p.
20. 10 AMP STUD DIODES untested $\& 57 \mathrm{p}$.

S PIN PLUG AND SOCKET tike R.S. European 2 M Cable (3) 75 p pair.
AUDIO AMP I.C'S TCA 940 © 21 , TBA $820 @ 55 \mathrm{p}$, TBA 810 © 61 , TBA 800 @ 80 p , SN 76001N @ 60p.
10 ASSORTED PUSH BUTTON BANKS less knobs ©is ei-30.
MULLARD TRANSISTORS, BC 549 © $10 \mathrm{p}, 8$ for 50 p .
400 mW 2ENERS unmarked g00d. $3.8 \mathrm{v}, 8 \cdot 8 \mathrm{v}, 10$. $11 \mathrm{v}, 12 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 38 \mathrm{v}$. All at 10 for 40 p .
MAINS TRANSFORMERS 240 volt input. Type 1.24 volf Tapped at 14 volt 1 amp
 @ A4-50 (PGP 95p), Type 4. 20 volt 1 amp Twice 10 volt 1 amp Twice ê E4-50 (PAP 95p) (PAP 25p). Type 7.24 volt $1 \cdot 75 \mathrm{amp}$ \& $\& 1-60$ ($\mathrm{P} \mathrm{\& P}$ 25p), Type 8.30 volt lamp © $£ 1.60$ (P\&P 25p).
MINIATURE NON POLARISED CAPACITORS 1ut 63v.w. ©8. 5p, 4-7uf 63 v.w. (a) 10 p , 10 uf 6 $2 \mathrm{v}, \mathrm{w}$. 8) 15p.

MIDGET AIRSPACED TRIMMERS 3 To 20pf (if 15p each. Please add $20 p$ for post and packing, unless otherwise stated, on U.K. orders under $£ 2$. Overseas orders postage at cost.

J. BIRKETT

RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF Tel. 20767

DASHBOARD INSTALLATION	
BAT TERY CONDITION DISPLAY	
\& CHARGE RATE MONITOR	
TAKES ONLYA FEW MINUTES TO FIT.	
ONLY 6.20	
INCLUDING VAT \& P\&P	
Tho CWoro muats eally on hatah with	
	Battery is Poo Yollow when Bat
2 YEAR GUARANTEE is Overcharging	
Harverce	
harvelec (Dept. EE), 1 Formby Avenue, St. Helens, Merseyside, WA10 3HW. (Registered no. 21212	
1 Plesese send. C.Merese ats	
-	

QUARTZ LCD 5 Function

Hours, mins, secs.,
month, date, auto
calendar, back-light,
quality metal
bracelet.
E6.65
Guaranteed same
day despatch.
Very slim, only
6mm thick.

QUARTZ LCD
ALARM 7 Function

HANIMEX

Electronic
LED Alarm Clock

Features and Specification: Hour/minute display, Large LED display with p.m. and alarm on indicator. 24 Hours alarm with
on//ff control. Display flashing for power loss indication. Repeatable 9 -minute snooze. Display bright/dim modes control. Size: $5,15^{\prime \prime} \times 3.93^{\prime \prime} \times$ $236^{-1}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$ Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$. AC power 220 V . £9.65 Thousands sold!

Guaranteed same day despatch.

M13

M1
QUARTZ LCD 7 Function

Hours, mins., secs. month, date, auto calendar, back light, seconds STOP WATCH

£9.65

Guaranteed same day despatch. Very slim, only 6 mm thick.

M2
QUARTZ LCD Alarm Chronograph with Dual Time Zone Facility Conitsn LCD distay of
hourt and minutec Dus court and minutec,
cate dusplay. Dlus or
Cay cate deplay. plus day
of the week and an $/ \mathrm{pm}$ of the week
indiction
Perpetual catendar, day.
date mont ind vas. cist, month und year.
24 hour alarm with on oftinditation. 1/ropecond chrono-
groph meazuring net.
 place timet

Dual time zone focility | night fiopt |
| :--- |
| Only 9 mm |

$£ 22.65$

SEIKO Alarm Chrono

LCD, hours, mins, secs., day of week, month, day and date, 24 hour Alarm, 12 hour chronograph 1/10th secs, and lap time. Back light stainless steel, HARDLEX glass. List Price $£ 130.00$ METAC PRICE
£105.00

M14

QUARTZ LCD
11 Function sum chrono
6 digit, 11 functions. Hours, mins., secs., day date, day of week. 10X secs, mins. Split and lap mod Split and lap modes Back-light, auto thick.
Stainless steel bracelet and back.
Adjustable bracelet
Metac Price
$£ 12.65$ Thousands sold!
Guaranteed same day despatch. M3
SOLAR QUARTZ LCD
Chronograph with Alarm Time Zone Facility

SEIKO Chronograph

LCD, hours, mins. secs. day of week month, day, date, 12 hour chironograph, $1 / 10$ th secs. and lap-time. Back light, stainless steel water resistant, HARDLEX glass. List Price $£ 85.00$ METAC PRICE £68.00

M11
QUARTZ LCD Ladies 5 Function

HOW TO ORDER
Payment can be made by sending cheque, postal order, Barclay. Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30 p for post and packing or the amount stated. We do not wait to clear your cheque before sending the goods so this will not delay delivery. All products carry 1 year guaranteee and full money

Trade enquiries: Send for a complete list of trade prices - minimum order value $£ 100$ Telephone Orders: Credit card customers can telaphone orders direct to Daventry or Edgware Rd. 24 hour phone service at both shops: $01-723475303272.76545$.
CALLERS WELCOME Shops open 9.30-6.00.

QUARTZ LCD
ALARM 6 Function
Hours, mins., secs. month, date, back light, 24 hour ALARM. Adjustable stainless steel bracelet. Only 9 mm thick.
£12.65

Guaranteed same
day despatch.

QUARTZ LCD Alarm Chrono
22 function, 6 digit Hours, mins., secs. date, day of week, stopwatch, split time alarm, second watch (dual time), backlight. FRONT BUTTON OPERATION.
£22.65
Guaranteed same
day despatco
METAC $)$ PRICE
M8

SOLAR QUARTZ LCD

 5 Function

Guaranteed same day despatch M12

DIGITAL LED CLOCK

Automatic brightness control. Weekend alarm cancel.

Features and Specification: Hour/minute display, Large LEO display with p.m. and alarm on indicator. 24 Hours slarm with on-off control. Display flashing for power loss indicator. Repeatable 9 -minute snooze. Auto-
£10.95

Guaranteed same day
despatch.

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enable you to take advantage of the many opportunities pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY EOR FREE BOOKLET

目星
To: International Correspondence Schools

Dept J268 Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address

EEEGTROTALIE

Your leading direct suppliers for

RESISTORS

Carbon FIIm 0

ELECTROALIUE LTD

Dept. EE7, 28 St, Judes Road, Englefold Green, Egham, Surrey, TW20 OHB,
Phone Egham 3603. Telex 264475
Northern Branch (Personal shoppers only), 680 Burnage Lane, Burnage, Manchester M19 1NA. Phone (061) 4324945.

YOUR COMPLETE RANEE OF ELECTRONIC HARDWARE...

ALL METAL BIMCASES Orong to and bottom covers. 18 swg łack mild steel chassis with fixing support brackets.

81M 14.58

Orank BlMCO Grey ABS body incorporates 1.8 mm pcb guides, stand-off bosses in base with 4 BimFeet panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad £ 2.18$
BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.05$

ALL METAL BIMCONSOLES
either 15° or 30° sloping fronts, sit on self-adhesive non-slip rubber feet. Ventilation slots in base and rear 30° Sloping Pane BIM 7151 ($102 \times 140 \times 51[28] \mathrm{mm}$) BIM 7301 ($102 \times 140 \times 76[28] \mathrm{mm})$ BIM7152 ($165 \times 140 \times 51$ [28] mm) BIM 7302 ($165 \times 140 \times 76[28] \mathrm{mm}$) BIM7153 ($165 \times 216 \times 51[28] \mathrm{mm}$) BIM 7303 ($165 \times 183 \times 102[28] \mathrm{mm}$) MM7155 ($25 \times 211 \times 76(33) \mathrm{mm})$ BiM $7304(254 \times 140 \times 16[28] \mathrm{mm})$ E 13.82 BIM $7156(254 \times 287 \times 76[331 \mathrm{~mm})$ BIM $7306(254 \times 259 \times 102(281 \mathrm{~mm}) ~ £ 16.67$ BIM $7157(356 \times 211 \times 76[33] \mathrm{mm})$ BIM7307 ($356 \times 183 \times 102[28] \mathrm{mm}$) $£ 17.58$ BIM7158 ($356 \times 287 \times 76[33] \mathrm{mm}$) BIM7308 ($356 \times 259 \times 102[28] \mathrm{mm}) £ 18.55$

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, boxes incorporate 1.8 mm pcb guides, stand-off supports in base and hav lose fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast)
$(50 \times 50 \times 31 \mathrm{~mm})$
$112 \times 62 \times 31 \mathrm{~mm}$ $120 \times 65 \times 40 \mathrm{~mm}$) $150 \times 80 \times 50 \mathrm{~mm}$) (190×110×60mm)

BIM2002/1 BIM2004/14 $£ 1.13$ BIM2005/15 £1.52 BIM2006/16

Diecast BIM5001/11 BIM5002/12 BIM5004/14 IM5005/15 BIM5006/ 16
£3. 94
Also available in Grey Polystyrene with no slots and self-tapping screws BIM 2007/17 ($112 \times 61 \times 31 \mathrm{~mm}$) £1.00

MULTI PURPOSE BIMBOXES
Orange, Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into integral brass bushes. 1.8 mm pcb guides incorpora ted and 4 BIMFEET supplied.

SIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) £ 1.18$ BIM 4004 ($111 \times 71 \times 41.5 \mathrm{~mm}$) E1.62 BIM 4005 ($161 \times 96 \times 52.5 \mathrm{~mm}$)
£2.19
LOW PROFILE BIMCONSOLES
Orange, Blue, Biack or Grey ABS body has ventilation slots as well as 1.8 mm pob guides and stand-off bosses in base. Double angle recessed front panal with 4 fixing screws into integral brass bushes. 4 BIMFEET supplied.
BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) \quad £ 2.37$ BIM $6006(143 \times 170 \times 55.5[31.5] \mathrm{mm}) £ 3.08$ BIM $6007(214 \times 170 \times 82.0[31.5] \mathrm{mm}) \quad \mathrm{f} 4.12$

EUROCARD BIMCONSOLES
 Orange, Blue, Black or Grey ABS 2. body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated
 and 4 BIMFEET supplied. 1 mm
 Grey aluminium lid sits flush with body top and held by 4 screws into integral brass bushes,

BIM $8005(169 \times 127 \times 70[45] \mathrm{mm}) \quad £ 4.12$
BIM $8007(243 \times 187 \times 103[66] \mathrm{mm}) € 6.10$

BIMTODLS + BIMACCESSORIES

MAINS BIMDRILLS

Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed 7500 rom . Oranqe ABS. high impact, fully insulated body with integral on/off switch $£ 10.53$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm collet $£ 2.48$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$ collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm}$ £22.14

BIMDAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place. 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length. $£ 1.08$ per pack of 25 .

BIMFEET
 11 mm dia. 3 mm high, grey rubber self-adhesive enclosure feet £0.77 per pack of 24

12 VOLT BIMDRILLS

2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia. $£ 8.10$ Major BIMDRILL with 4 collets up to 3 mm dia. f13.60
Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit 1 - $£ 15.12$, Major Kit 1 - $£ 19.44$. Accessory Kits 2 have appro priate drills, collets plus 40 tools and mains-12V dc adaptor. Mini Kit 2 - £34.02, Major Kit 2 - £39.42. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - £45.36, Major Kit 3 - £50.76.

Type 30 General Purpose 27 watt iron with long life, rapid change element, screw on tip, stainless steel shaft and clip on hook. Styled handle with neon. £4.05
Type M3 Precision 17 watt iron, quick change tip. long life
element, styled handle with clip on hook. $£ 4.43$
BIMPUMP Minor (150 mm long) $£ 6.80$

BIMBOARDS

DIL COMPATIBLE BIMBOARDS

Accept all sizes (4.50 pin) of DIL IC packages as well as resistors, diodes, capacitors and LEDs. Integral Bus Strips up each side for power lines and Component Support Bracket for holding lamps, switches and fuses etc. Available as single or multiple units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.
BIMBOARD 1 has 550 sockets, multiple units utilising 2,3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm (0.1") matrix.

BIMBOARD 1 £ 8.83

BIMBOARD 2 £21.01
BIMBOARD 3 £29.84
BIMBOARD 4 £ 38.79
DESIGNER PROTOTYPING SYSTEM
1, 2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply (± 5 to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A}$) All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 1 £55.62
DESIGNER 2 E61.02
DESIGNER 3 f66.42

FROM

LGML(A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD) PO Box 290 8 Hampton Street

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

- ACCESS - BARCLAYCARD - CASH - CHEQUE

ELELTRDIT:KITT

"EDUCATIONAL KITS OF EXCEPTIONAL QUALITY?
(AUDIO magarins)

THIS IS A POWERFUL RADIO RECEIVER!

The same kit is also 150 other different actual working projects e.g.:

```
Computer & Logic Clrcuits,
Electronic Organ, Tlmer, Light
control, Agility Tester, Lle
Bird, Metronome.
Cds cell light a sound control,
Photogun, LIght Oscillator,
Light Swlich, Light and Sound
Morse Code.
Fleld Strength Meter,
Hygrometer, Sphygometer, Etc.,
```

The above is just a selection of the circuits avallableyou can also design your own circuits with these superb new Denshi-Gakken "EX" construction kits,
No previous experience of electronics is required but you learn as you construct and have a great deal of fun too. The kits are completely safe for anyone to use.
Kits are complete with very extensive construction manuals PLUS Hamlyn's "All-Colour" 160 page book "Electronics" (free of charge whilst stocks last).

ALL KITS ARE FULLY GUARANTEED. Addon sets (to increase the scope of each kit) are avaliable, plus spares and accessories as required. 150 PROJECT KIT £39.75 60 PROJECT KIT $£ 25.75$ 120 PROJECT KIT $£ 33.7530$ PROJECT KIT $£ 18.95$ 100 PROJECT KIT £29.25 15 PROJECT KIT £16.75 Prices include educational manuals, free book, VAT, p \& p (in the U.K.). Free introduction to the British Amateur Electronics Club. Free list of low price electronics books.
Trade and Educational enquirles invited.
Cheque/P.O./Barclaycard/Access No. (or 14 p for illustrated literature) to DEPT. EE.

Great British
 Great British
 Bazoor:"

STAND Nor 205/207

ELECTRONI-KIT LTD.
20 BRIDE LANE, LUDGATE CIRCUS, LONDON ECAY 8DX (01-353 6430)

ELECTRONIC BOOKS

Ref. No. Title
126 Boys Book of Crystal Sets
How to Make Aerials for TV (Band 1-2-3) Coil Design and Construction Manual AF-RF Reactance-Frequency Chart for Constructors
Handbook of Practical Electronic Musical Novelties Practical Transistorised Novelties for Hi-Fi Enthusiasts 25p
25p Handbook of Integrated Circuits (IC's) Equivalents and Substitutes

C's and Transistor Gadgets Construction Handbook First Book on Hi-Fi Loudspeaker Enclosures
Practical Transistor Circuits for Modern Test Equipment Practical Electronic Science Projects
Practical Stereo and Quadrophony Handbook
The Complete Car Radio Manual Raiways (Reprinting) Audio Enthusiasts Handbook
Shortwave Circuits and Gear for Experimenters and Radio Hams Electronic Gadgets and Games

85p Solid State Power Supply Handbook
Build Your Own Electronic Experimenters Laboratory Solid State Novelty Projects Build Your Own Solid State Hi-Fi and Audio Accessories 28 Tested Transistor Projects
Solid State Short Wave Receivers for Beginners 50 Projects Using IC CA 3130 50 CMOS IC Projects
A Practical Introduction to Digital IC's How to Build Advanced Short Wave Receivers Beginners Guide to Building Electronic Projects Essential Theory for the Electronics Hobbyist Resistor Colour Code Disc Calculator Resistor Colour Code Disc Calculator
First Book of Transistor Equivalents an First Book of Transistor Equivalents and Substitutes Handbook of Radio, TV \& Industrial \& Transmitting Tube \& Valve Equivalents
BP6 Engineers and Machinists Reference Tables
Radio and Electronic Colour Codes and Data Chart (Reprinting) 25p
Practical Transistor Novelty Circuits
BP14 Second Book of Transistor Equivalents and Substitutes
BP22 79 Electronic Novelty Circuits
First Book of Practical Electronic Projects
52 Projects Using IC741
How to Build Your Own Electronic and Quartz Controlled
Watches \& Clocks Own Electronic and Quartz Controlled 85p
Radio Antenna Handbook for Long Distance Reception and Transmission
BP26 Radio Ancenna Handbook for Long Distance Reception and
Giant Chart of Radio Electronic Semiconductor and Logic Symbor
BP28 Resistor Selection Handbook (International Edition)
Major Solid State Audio Hi-Fi Construction Projects
BP30 Two Transistor Electronic Projects
BP31 Practical Electrical Re-Wiring and Repairs
BP32 How to Build Your Own Metal and Treasure Locators
BP33 Electronic Calculator Users Handbook
BP34 Practical Repair and Renovation of Colour TVs (Reprinting) Handbook of IC Audio Preamplifier and Power Amplifier Construction (Reprinting)
BP36 50 Circuits Using Germanium Silicon and Zener Diodes
BP37 50 Projects Using Relays, SCR's and TRIACS
BP38 Fun and Games with your Electronic Calculator
BP39 50 (FET) Field Effect Transistor Projects
BP40 Digital IC Equivalents and Pin Connections
BP4I Linear IC Equivalents and Pin Connections
BP42 50 Simple L.E.D. Circuits
BP43 How to Make Walkie-Talkies
BP44 IC555 Projects
BP45 Project in Opto-Electronics
BP46 Radio Circuits Using IC's
BP47 Mobile Discotheque Handbook
BP48 Electronic Projects for Beginners
BP49 Popular Electronic Projects
BP50 IC LM3900 Projects
BP5I Electronic Music and Creative Tape Recording
BP52 Long Distance Television Reception (TV-DX) For The Enthusiast
Practical Electronic Calculations and Formulae
BP54 Your Electronic Calculator and Your Money
BP55 Radio Stations Guide
Piease add 20p p. \& p. per book
Send SAE for our large range of Components

TECHNOMATIC LTD

17 BURNLEY ROAD, LONDON NWIO IED
(2 minutes from Dollis Hill Tube station)

- VALVE MAIL ORDER CO. (EEG) CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED
 SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA119	0.11	ASY26		8 BC	0.
AAYY32	0.29 0.45	ASY27	${ }^{0.435}$	3C167	0.14 0.12
AAZ13	0.19	ASZ16	1.35	8 BC	0.11
AAZ15	0.37	AsZ1	1.35		
AAZ17	0.29	ASZ20	1.62	BC173	0.13
AC107	0.65	Asz21	2.18	BC177	0.16
AC125	0.22	AU110	1.84	${ }^{8 C 178}$	0.15
AC126	0.22	AU113	1.84	${ }_{8 C 182}$	
AC	0.22	AUY10	1.84	${ }_{8 C 183}$	0.11
AC141	0.27	BA145	0.15 0.15	BC184	0.12
AC141	0.38	BA15	0.10	${ }^{8 C 212}$	0.14
${ }^{\text {ACl }}$ ACl 42 K	0.22	${ }^{84155}$	0.11	8 BC 14	
${ }_{\text {ACl }}{ }^{\text {c }} 6$	0.22	${ }^{\text {BA158 }}$ BAW62	0.10 0.06	${ }_{8 C 237}$	0.10
AC187	0.22	BAX 13	0.07	BC238	0.14
Ac188	0.22	Bax16	0.10	BC301	0.27
${ }_{\text {ACY }}$	0.86	${ }^{\text {BCLO7 }}$	0.13	8C303	0.26
ACY19	0.81	BC109	0.14	BC308	0.11
${ }_{\text {ACY }}$	0.78 0.81	BA113	0.13	$8{ }^{8} 827$	0.23
AcY39	1.62	${ }^{\text {BCC114 }}$	0.14 0.15	BC328 $8 C 337$	${ }_{0}^{0.21}$
AD149	0.76	BC1	0.17	8 8338	0.15
AD161	0.49	BC117	0.19	8 CY 30	1-08
AD162	0.49	BC118	0.11	8ç31	1.08
AF106	0.48	BC125	0.18	BCH^{8}	${ }^{1.08}$
AF115	${ }^{0.81}$		O.16	${ }^{\text {BCr }} 34$	0.97 3.24
AF117	0.81	BC137	0.17	BCY40	1.08
AF139	0.43	$8 \mathrm{BC147}$	0.10	8 BCY 42	0.27
AF186	1.30	BC148	0.09	SCY ${ }^{\text {SCry }}$	0.27 0.17
AF211	2.97	BC157	0.10	8cr7	0.16
AFZ12	2.97	BC158	0.09	вCY71	0.18

nimm

VALVES

				EL34 [Thorn]	2.48
A731	1.24	ECC83	0.99	EL34 ${ }^{\text {iMu }}$	lard
CBL31	1.69	ECC84	1.34		$2 \cdot 52$
CL33	2.25	ECC85	1.35	EL41	1.41
CY31	1.13	ECC88	2.03	EL42	1.97
DAF91	0.45	ECC91	7.45	EL81	1.24
DAF96	1.13	ECC189	1.87	EL84	1.13
DF91	0.45	ECF80	1.22	EL86	2.43
DF96	1.13	ECF82	$1 \cdot 35$	EL91	6.92
DK91	1.18	ECH35	2.25	EL95	1.49
DK92	1.41	ECH42	1.29	EL360	5.98
DK96	1.24	ECH81.	1.35	EM80	1.24
DL92	1.24	ECH83	1.41	EM81	1.13
DL94	1-35	ECH84	1.44	EM84	1.13
DL96	1.24	ECL82	1.13	EM85	1.41
DY86/7	0.72	ECL83	1.69	EM87	1.69
DY802	0.95	ECL88	1.35	EN91	2.76
E80CC	$8 \cdot 22$	Ef37A	3.94	EY51	1.97
EABC80	$1 \cdot 35$	EF39	3.09	EY86	0.95
EAF42	1.41	EF40	1.29	E240	1.41
EAF801	1.97	EF41	1.35	E241	1.41
EB41	2.25	EF42	2.25	E280	0.95
E891	0.95	EF50	1.69	E281	0.95
E8C33	1.97	EF80	0.90	E290	1-35
EBC4	1.41	EF83	1.97	GZ32	1.41
E8C81	1.24	EF85	0.90	GZ33	4.50
EBC90	0.96	EF86	1.71	GZ34	2.14
EBF80	0.57	EF89	1.80	KT81	3.94
EBF83	1.41	EF91	2.03	KT66	7.03
E8F89	0.96	EF92	5.63	KT88	9.00
E8L31	2.81	EF98	1.41	KTWE1	1.97
ECC4O	1.41	EF183.	0.90	KTW62	1.97
ECC81	0.99	EF184	0.95	KTW63	1.97
ECCB2	0.81	EH90	1.58	MU14	1.13

> 을 $U C$
$U F$
$U F$
$U F$
$U F$
$U L$
$U L$
$U M$
$U Y$
$U Y$
28
$1 B$
$1 R$
15
$1 T$
$2 A$
$2 D$
$3 A$
30
$3 S$
3

6807

$\begin{aligned} & \text { 6BO7A } \\ & 68 R 7 \end{aligned}$	4.05 4.50
68R8	
6857	
68W	
${ }_{6 B \times 7}{ }^{\text {c/ }}$	1.
682	2.57
	70
6	10
6 CH 6	7.31
${ }_{6 C L} 6$	4.03
6CW	8.15
602	
60k	
$6{ }^{6}$	24
A8	3.
888	2
6	1.9
$6{ }^{6} 23$	1.8
8 F 28	1.3
${ }^{6} \mathrm{H} 2 \mathrm{~N}$	
${ }^{6} \mathrm{H} 3 \mathrm{~N}$	1.
$6 \mathrm{H6}$	
8.4	
636	
6 6	8.84 1.41
666	
6 K 7	
6 K 8	1.9
$6 \mathrm{KD6}$	6.93
${ }^{6.6 G}$	2.81

4.05
4.50
1.97
4.50
4.50
1.71
5.58
2.57
0.99
2.70
5.51
2.60
7.31
4.03
8.15
0.99
2.93
4.39
3.24
2.39
1.69
1.99
1.80
1.31
1018
1.18
1.69
5.96
3.61
8.84
1.41
1.46
1.69
1.97
6.93
2.81
1.69

12 AU7
$12 A V 6$

INTEGRATED CIRCUITS

7400	0.17	7412	0.28	7432	0.32
7401	0.17	7413	0.35	7433	0.39
7402	0.17	7446	0.35	7437	0.35
7403	0.17	7417	0.35	7438	0.35
7404	0.18	7420	0.18	7440	0.19
7405	0.17	7422	0.22	$7441 A N$	0.92
7406	0.43	7423	0.35	7442	0.78
7407	0.43	7425	0.32	$7447 A N$	0.97
7408	0.22	7427	0.32	7450	0.19
7409	0.22	7428	0.46	7451	0.19
7410	0.17	7430	0.18	7453	0.19

 $\begin{array}{ll}74118 & \\ 74119 & \\ 74120 & 0 \\ 74121 & 0 \\ 74122 & 0 \\ 74123 & 1 \\ 74125 & 0 \\ 74126 & 0 \\ 74128 & 0 \\ 74132 & 0 \\ 74136 & 0 \\ 74141 & 0 \\ 74142 & 2 \\ 74143 & 2\end{array}$ $\begin{array}{ll}1.08 \\ 1.62 \\ 0.90 \\ 0.43 \\ 0.65 \\ 0.68 \\ 1.08 \\ 0.59 \\ 0.69 \\ 0.65 \\ 0.76 \\ 2 & 0.59 \\ 10.86 \\ 2 & 2.48 \\ 3 & 2.70\end{array}$

 AN NO OO AO | 0 | 74173 | 1.51 |
| :--- | :--- | :--- |
| 7 | 74174 | 1.62 |
| 6 | 74175 | 0.97 |
| $\mathbf{3}$ | 74176 | |
| 74178 | 1.19 | |
| 2 | 74179 | 1.35 |
| 9 | 74180 | 1.25 |
| 2 | 74190 | 1.62 |
| 2 | 74191 | 1.62 |
| 1 | 74192 | 1.46 |
| 7 | 74193 | 1.46 |
| 8 | 74194 | 1.35 |
| 5 | 74195 | 1.08 |$|$

$\left|\begin{array}{lll}74196 & 1.30 \\ 74197 & 1.19 \\ 74198 & 2.43 \\ 7499 & 2.43 \\ 76013 N & 1.97 \\ \text { LM309K } & 1.62 \\ \text { TAAF70 } & 2.59 \\ \text { TAAB30S } & 3.94 \\ \text { TAA700 } & 4.22 \\ \text { T8A4800 } & 2.07 \\ \text { TBA200 } & 2.59\end{array}\right|$

TBA530 $_{\text {TBA5400 }}{ }^{2.23}$

TBA5400 2 -5 TBA5500 ${ }_{3.62}$ TBA560CO | T8A673 |
| :--- | :--- | :--- |
| | TBA700 1 TBA7200 TBA7500 $\begin{array}{ll}\text { TBABODO } & 2.33 \\ 1.30\end{array}$

TBA920 3-13 $\begin{array}{ll}\text { TBA9200 } & 3-36 \\ \text { TBA9900 } & 3-36 \\ \text { TAA2700 } & 3-35\end{array}$ $\begin{array}{ll}\text { TBA9900 } & 3.36 \\ \text { TCAA700 } & 3.36 \\ \text { TCA760A } & 1.55\end{array}$

DIL

Sockets
$\begin{array}{cc}8 \text { PIN } & 0.16 \\ 14 \text { PIN } & 0.16\end{array}$

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUB-EDITOR
T. J. JOHNSON G8MGS

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

 P. A. LOATES
TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

N. BELLWOOD

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKE-UP AND COPY
 DEPARTMENT

Phone 01-261 6618
ADVERTISEMENT OFFICES
Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects... Theory ...

and Popular Features ...

Loudspeaker systems have not received much attention in our pages in the past. But when we planned the EE2020 Tuner Amplifier it seemed sensible to offer the constructor a loudspeaker system design also, so that he would be independent of commercial enclosures if he so wished.

Our investigations into this fringe area of electronics convinced us that the possibilities are as wide and varied in range as the size of audiophile pockets-to say nothing of space considerations. This lead us to the view that the differing needs of our readers could best be served producing two loudspeaker systems. The first, the EE20 published this month, is a low cost design which seems likely to meet the needs of the greater number of constructors. We shall follow this (in September) with a threeway upmarket design to satisfy the most fastidious and affluent audio enthusiasts.
These loudspeakers have been designed with the EE2020 in mind but they can be used with any hi fi amplifier of similar output power.

When considering loudspeakers and acoustics we move from the strictly objective field of electronics, into one where much is subjective. Measurements can be made on loudspeaker systems in laboratories and echo-free chambers but the real world where the loudspeaker has to perform is a furnished room. This itself is a delightfully ambiguous term. One man's room may be a modest 10 ft by 9 ft
parlour, another's a commodious $30 f t$ by 15 ft lounge. The nature of the furnishings will give the room its own peculiar acoustic properties. But over and above these concrete factors is the great imponderable-the auditory equipment of the listener. This is a very personal thing and ears cannot be equalised or otherwise modified in their response characteristics as with a piece of inanimate equipment.

So at the end of the day it is what we actually hear that counts. Hence it is a highly subjective matter and one should not make dogmatic assertions about the excellence or otherwise of particular loudspeakers. The best "measurement" one can get is a general consensus from a number of people who have listened to the equipment in the same environment.
Here we must be fair. You can't go into a showroom and hear our EE20. What we can tell you is that both EE loudspeaker systems have been specially designed for us by a well-known specialist, long experienced in this field. We believe these loudspeaker systems will be a credit to their constructor and to the amplifying equipment with which they are used.

Our August lssue will be published on Friday, July 20. See page 413 for detalls.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.
All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

GONSTRUGTIONAL PROJECTS

CONFERENCE TIMER For controlling a speaker's "floor" time by A. J. Bassett 404
MINI MODULE: 10-VOLTAGE SPLITTER Provides a three-rail supply by George Hylton 410
SOLDERING IRON BIT SAVER Reduces power to "iron" when replaced in stand by R. A. Penfold 414
DARKROOM TIMER An l.e.d. flashing once per second by A. R. Winstanley 422
DOLLS HOUSE LIGHTS ECONOMISER Automatically disconnects battery after five minutes by H . Clough 424
EE20 LOUDSPEAKER An economy design, for amplifier outputs up to 30 watts by R. F. Stephens 427
WATER LEVEL INDICATOR Audible tone produced when moisture bridges probe by H. W. Gleaves and
S. F. Gregory

GENERAL FEATURES

EDITORIAL 402
FOR YOUR ENTERTAINMENT Armstrong's Radio Patents by Adrian Hope 412
DOING IT DIGITALLY Part 10: Interfacing to Alarm Systems by O. N. Bishop 418
SHOP TALK Retail news, products and component buying by D. G. Barrington 426
JACK PLUG AND FAMILY Cartoon by Doug Baker 431
EVERYDAY NEWS What's happening in the world of electronics 432
RADIO WORLD A commentary by Pat Hawker 434
MICROPROCESSOR BASICS Part 5: Programming a microprocessor by R. W. Coles 436
PLEASE TAKE NOTE Electronic Dice, EE 2020 Tuner Amplifier 439
WORKSHOP MATTERS Choosing a Multimeter by Harry T. Kitchen 441
CROSSWORD NO. 17 By D. P. Newton 444
RUMMAGING AROUND Money saving ideas for the constructor by Keith Cadbury 446
SQUARE ONE Beginners Page. Guide to circuit symbols 449
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 450
COUNTER INTELLIGENCE A retailer comments by Paul Young 453

Back Issues
Certain back issues of EVERYDAY ELECTRONICS are available worldwide price 70 p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 2 \cdot 85$ (U.K.), $£ 3.45$ (overseas) Inclusive of postage and packing. Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: $£ 8.50$, overseas: £9.50. Cheques should be made payable to IPC Magazines Lid., and sent to Room 2613 KIngs Reach Tower, Stamford Street, London SE1 9LS.
© IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.

By A. J. Bassett

THIS DEVICE is intended for the timing of speeches at conferences etc, by means of coloured light signals.

Such a device will be a boon to speakers' clubs, discussion groups, debating societies, schools and universities. It might also have applications in offices, factories, the home and for various hobby interests.

The unit contains five indicators which operate as follows:

1. A light emitting diode. This shows that the unit is ready for use.
2. A green lamp which comes
on, and stays on, at the commencement of the speech.
3. An amber lamp which comes on shortly prior to the full time allocated, as a signal to warn the performer that time is nearly up.
4. A red lamp lights signifying that the allotted time has expired.
5. A blue lamp to signal that an interruption is being made. The chairman can switch on the blue light in order to make an urgent announcement, and the timing function is suspended until the blue light is switched off again, thus the speaker does not lose time as a result of interruptions.

CIRCUIT DESCRIPTION

The circuit diagram for the Conference Timer, excluding its power supply section is shown in Fig. 1.

When switch S1 is placed in the RESET position as shown in the diagram, the timing capacitor, formed by the parallel combination of $\mathrm{C1}, \mathrm{C} 2$ and C 3 , is rapidly discharged via R2 to bring the output voltages of IC1 and IC2 to a value of almost 12 volts.

At the same time, the positive supply voltage to the indicator lamps, LP2, LP3 and LP4 is removed, except for the light emitting diode, D1, which now receives current through R1 and lights up to indicate when the unit is connected to the supply, and switched on ready to use.

When S1 is switched over to the start position the timing commences as C1, C2 and C3 begin to charge by way of VR1 and R3, causing the voltage at pin 3, ICI to slowly fall towards the 0 V rail. At the same time, the l.e.d. extinguishes and the green lamp, LP2 comes on as it receives current by way of power transistors TRI and TR2 which are biased on by current from the output of IC1. This bias is applied to the base of TR1 by way of resistor R7.

AMBER ON

When the voltage at pin 3 of IC1 reaches the same level as VR2 wiper, the integrated circuit IC1 responds and its output voltage falls rapidly towards the negative supply rail. This removes the bias from TR1 and TR2 and the green lamp goes out as these transistors cease to conduct. The output voltages of IC2 remains near the positive supply and a voltage thus develops across the potential divider R9 and R10 sufficient to cause TR3 to conduct. This also enables TR4 and TR5 to conduct as the collector current of TR3 passes through R13 to the base of TR4, and the amber lamp lights up.

As the voltage at pin 3 continues to fall it eventually reaches the same level as the voltage at the junction of R5 and R6. Thus we have the situation where the voltages at pin 2 and 3 of IC2 are the same, the output voltage thus falls rapidly towards the negative supply rail. This lowers the voltage across the potential divider R9 and R10 so that TR3 is no longer biased on and ceases to conduct. Tran-

Fig. 1. The circuit diagram of the Conference Timer, (excluding power supply).
sistors, TR4 and TR5 then also stop conducting and the amber lamp goes out.

Now, because the output of IC2 is low, the voltage across potential divider R11 and R12 is sufficient to bias TR6 into conduction. Current is now supplied to the base of TR7 via R15; TR7 and TR8 begin to conduct and the red light comes on, signifying that the allotted time has come to an end.
If during the period when the amber or the green lamp is lit the chairman decides to make an interruption, he switches S2 to the interrupt position. This switches on the blue lamp to signify that
an interruption is being made, and at the same time stops the charging of the timing capacitors by interrupting the flow of current through VR1 and R3.

Although in this condition the voltage on these capacitors will in fact fall, it does so very slowly and, for short-term interruptions the timing is affected very little. When the interruption is over, S2 is returned to the continue position and the timing proceeds as before.

POWER SUPPLY

The circuit of Fig. 1 requires a power supply of 12 volts; the current taken varying between 250 mA and 1.5 amps according to whether the extension indicators are fitted.
Batteries or the 12 volt mains derived power unit shown in Fig. 2 may be used.
Mains voltage is stepped down by transformer Tl and the voltage appearing across Tl secondary is full-wave rectified by D2 and D3
and smoothed by C4. A 16 volt d.c. level is developed across C4.
Transistors TR11 and TR12 are arranged to form a constant current source, control voltage being derived from the output. The volt-

Interior view of the completed prototype unit.
age at R17/R18 is derived from the potential divider chain composed of R17/R18 and TR11 collector/ emitter resistance.

For an output voltage of 12 volts, TR12 base is clamped at 1 volt which causes the voltage at R17/R18 to be about 13.2 volts. This biases on TR9 and TR10 and allows current to be drawn through TR10. A drop of 0.6 volts across each of TR9 and TR10 base emitter junctions produces 12 volts at TR10 emitter completing the loop to the output.

If there is a tendency for the output voltage to rise, TR11 and TR12 are caused to conduct more since voltage drop across R20 increases) producing a larger current in the divider chain. Hence R17/R18 voltage decreases thereby reducing the output voltage to 12 volts.

Any tendency for the output voltage to decrease would cause TR11 and TR12 to conduct less resulting in the voltage at R17/18 rising to restore the output level to 12 volts similar to above.

The output is thus stabilised at 12 volts and appears across C6.

The circuit features current limiting which is achieved by the inclusion of R21. If the voltage drop across this resistor reaches 0.6 volts, TR10 stops conducting since its base and emitter terminals will be at the same potential. This happens when the output current reaches about 2 amps .

CONSTRUCTIOH starts hare

CIRCUIT BOARDS

The prototype unit used two circuit boards in its construction, one for the main timing and lighting circuitry (board A) and a smaller one for the power supply section (board B).
Component layout details for board A are shown in Fig. 3 together with the breaks to be made on the underside. Veropins are used for all wiring to the board. Transistors TR1, 4, and 7 are fitted with heatsinks.

COMPONENTS

Resistors

R1	470Ω
R2	10Ω
R3	$330 \mathrm{k} \Omega$
R4	$15 \mathrm{k} \Omega$
R5	330Ω
R6	$10 \mathrm{k} \Omega$
R7	$4 \cdot 7 \mathrm{k} \Omega$
R8	$2 \cdot 2 \mathrm{k} \Omega$

R9	$4 \cdot 7 \mathrm{k} \Omega$
R10	$1 \mathrm{k} \Omega$
R11	$1 \mathrm{k} \Omega$
R12	$4 \cdot 7 \mathrm{k} \Omega$
R13	$4 \cdot 7 \mathrm{k} \Omega$
R14	$2 \cdot 2 \mathrm{k} \Omega$
R15	$4 \cdot 7 \mathrm{k} \Omega$
R16	$2.2 \mathrm{k} \Omega$

R17	$1 \mathrm{k} \Omega$
R18	470Ω
R19	$4 \cdot 7 \mathrm{k} \Omega$
R20	$1 \mathrm{k} \Omega$
R21	$0 \cdot 33 \Omega$
R22	$2 \cdot 2 \cdot 2 \mathrm{~W} \Omega$
All $\frac{1}{2} \mathrm{~W}$ carbon $\pm 5 \%$	
except R21	

Potentiometers

VR1 $2 \cdot 2 \mathrm{M} \Omega$ carbon lin.
VR2 $4.7 \mathrm{k} \Omega$ carbon lin.
Capacitors
$\mathrm{C} 1,2,3 \quad 100 \mu \mathrm{~F} 12 \mathrm{~V}$ tantalum (3 off)
$\begin{array}{ll}\mathrm{C} 4 & 1000 \mu \mathrm{~F} 25 \mathrm{~V} \text { elect. } \\ \mathrm{C} 5 & 100 \mu \mathrm{~F} 25 \mathrm{~V} \text { elect. }\end{array}$
C6 $\quad 1000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
page 426
Semiconductors

D1	TIL209 red light emitting diode
D2, 3	1N4001 1A silicon rectifier (2 off)
D4, 5, 6	1N4148 small signal silicon diode
D7	BZY88C11V 11V 400 mW Zener diode
TR1, 4, 7,9	BFY52 silicon $n p n$ (4 off)
TR2, 5, 8, 10	TIP41A silicon npn (4 off)
TR11, 12	BC108 silicon npn (2 off)
IC1,2	741. operational amplifier 8-pin d.i.l. (2 off)

Miscellaneous
T1 mains primary/ 12-0-12 V 2A secondary
S1, 2 d.p.d.t. toggle
S3 single-pole on/off mains toggle
LP1 to $4 \quad 12 \mathrm{~V} 2 \cdot 2 \mathrm{~W}$ m.e.s. bulb (4 off)
LP5 to $8 \quad 12 \mathrm{~V} 6 \mathrm{~W}$ car sidelamp bulb (4 off)
SK1 six-pin panel mounting socket
PL1 plug to suit SK1
FS1 $\quad 150 \mathrm{~mA}$ with chassis holder to suit
Stripboard: 0.1 inch matrix 24 strips $\times 37$ holes, 10 strips $\times 24$ holes; insulating kits for power transistors (4 off); TO-5 heatsinks (4 off); Veropins (18 off); panel mounting m.e.s. bulb holders with domed cap (4 off); control knobs (2 off); 8 -pin d.i.l. sockets; capacitor clips to suit C4 and C6;4BA and 6BA fixings; insulated connecting wire; mains cable 3 -core; 6 -way tagstrip (2 off); 6-core cable; cable clips (2 off); cases (2 off).

Fig. 4. The layout of the components on the power supply board, board B and the breaks to be made on the underside.

The prototype main circuit board removed from its case.

Fig. 3. The layout of the components on the topside of board A, the main circuit board and the breaks to be made along the copper strips on the underside.

2UOV A.C.
MAINS
Fig. 5. The positioning of all base panel mounted components and boards and full interwiring details. All power transistors must be mounted using mica washers and insulating bushes.

A close-up of the power supply board.

Fig. 6. The positions of the lamps and controls mounted on the top panel showing wiring up details. Note the polarity of D1.

CONFERENCE TIMER

The completed unit ready for final assembly.

Having made the breaks and fixing holes, solder in the Veropins, link wires, resistors and capacitors paying attention to the polarity of the latter. Dual-in-line sockets for ICl and 2 were not used in the author's model but are recommended. Finally solder in the transistors using a heatshunt on their leads to avoid thermal damage from the soldering iron. Do not attach any flying leads at this stage.
Similar details for board B are shown in Fig. 4 and should be assembled in a similar manner as board A. Note that a heatsink is required for TR9. Do not connect flying leads or TR10 just yet.

Before proceeding, inspect the boards for any solder bridges or wire whiskers between tracks. A bradawl or fine-blade screwdriver run between the tracks should dislodge such items.
The prototype used an aluminium box with a removable flat base size $227 \times 190 \mathrm{~mm}$, and most of the components are mounted on this panel as shown in Fig. 5. The power supply smoothing capacitors are mounted by means of vertical type capacitor clips.

All power transistors are bolted to the case for cooling purposes but must be insulated from the base by using mica washers and insulating bushes. Silicon grease or other heatsink compound is advised for good thermal contact.

Fix all the base mounted components in position and then make all the interwiring connections as shown in Fig. 5.

EXTENSION INDICATORS

The six-way socket SK1 mounted on the rear panel is to connect the unit to four more indicator lamps in an extension indicator unit. This uses more powerful bulbs, and 6 watt car sidelamp bulbs were found to be suitable. The unit described will power up to three of these extensions, and extra six-way sockets, wired in parallel with SK1 may be fitted if required.

The circuit arrangement for such an extension indicator is shown in Fig. 7. A point to notice here is that the blue lamp receives its positive supply separate from the other three lamps.

Although there is obviously scope for imagination in the positioning and arrangement for the

Fig. 7. The circuit diagram for the extension indicators. Note that the supply for the blue interrupt lamp is separate from the rest.

extension indicator lamps, the following suggestions may be helpful.

1. Use a box with four separate compartments. Line each compartment with reflecting metal foil and place a different coloured filter in front of each bulb. Suitable filters may be made by coating pieces of transparent glass or Perspex with an even layer of transparent coloured varnish such as Winsor and Newton Vitrina transparent glass painting colours, or transparent "lens marking colours" available at many art stores.
2. Use a box with only one compartment, and install coloured bulbs. Ordinary bulbs may be coloured using Deka transparent heat-resisting paint, available from art stores. With this method, it is a good idea to colour a few extra bulbs as spares.

The prototype used this method with a sheet of embossed Perspex fitted to disperse the light. Details for construction are given in Fig. 8.

TESTING THE TIMER

When construction has been completed and the unit checked and visually inspected, it may be switched on. The l.e.d. should light up when S1 is at reset. Turn the timing control VR1 to give minimum time and switch S1 to the start position. The green lamp should light up, and the l.e.d. extinguish.
Check the interrupt switch S2. When this is operated the blue lamp should light and the green extinguish, then back to green when S 3 is set to continue.
After a timing period of just over 1 minute the green lamp

Fig. 8. The layout of the bulbs and wiring up detalis for the extension indicator box used in the prototype.
should extinguish and the amber lamp should light, and after about 2 minutes the amber lamp should go out and the red lamp should light. By changing the value of R3 the minimum timing period may be adjusted if necessary to suit individual requirements.

CALIBRATION

By setting VR1 to maximum resistance a time period of just over 20 minutes should be obtained. Adjust VR1 so that the total time period is 20 minutes and mark this point. Then turn it down until a time of 15 minutes is obtained.

By small adjustments of VR1, in succession, it is possible to obtain accurate positioning of the calibration marks, and the author found that timing could be made accurate to within a few seconds even for the longer periods of 20 minutes.

However, due to the time taken by these successive adjustments and tests a considerable amount of time should be allocated for the purpose and it is a good idea to settle down with a book, or some
small assembly job, which can be done adjacent to the indicator lights.
Set VRI to give a timing period of 10 minutes and place a small calibration mark in this position.
Leaving VRI at the 10 minute position, set VR2 fully clockwise; the amber light will then come on quite early in the timing cycle, probably after 55 per cent or 60 per cent of the time has elapsed. The time remaining will then be 45 or 40 per cent of the total, so that a 45 per cent calibration mark can be placed after $5^{1}{ }_{2}$ minutes have elapsed, and the amber lamp just lights, then after 6 minutes a 40 per cent mark can be placed.

Prepare to make a number of calibration marks in quick succession, at intervals of 30 seconds around the VR2 control. With VR1 still set at 10 minutes switch S2 to the start position, timing this as accurately as possible. Set VR2 fully clockwise, and when the amber lamp lights, you will find that by adjusting VR2 very slightly back and forth, the green and amber lamps will light alternately.

The position at which this alter-
nation can be observed changes slowly due to the operation of the timing circuit, and calibration marks may be placed at 30 second intervals each corresponding to 5 per cent of the total time, so that marks may be placed from 40 per cent down to 5 per cent corresponding to 4 minutes remaining down to 30 seconds remaining when VR1 is set at 10 minutes.

Because the calibration of VR2 is expressed as a percentage of the total time set by VR1, VR2 cannot be calibrated in minutes for every setting of VR1; this would require a more complex circuit than the one presented in this article. This is not a major drawback as such percentages can be very readily worked out, especially so with the aid of a calculator!
The calibration points may now be labelled using Letraset or any similar method to give a presentable finish to the Conference Timer.

The user should find that functions may be timed electronically, effectively, tactfully, easily and fairly with the assistance of this device.

THIS month's Mini Module is a simple but effective circuit for turning a single-ended d.c. voltage supply into a centre-tapped supply. Such a supply is needed for powering operational amplifier circuits and other circuits which call for a threerail supply with positive, zero-voltage and negative lines.
Normally the zeno voltage rail is earthed or commoned but this is not obligatory and any one output terminal may be earthed. The circuit in the form given here (Fig. 1) can deliver enough output current for most lowpower circuits. Higher outputs are

minl~mOBUES.

Handy "Beginner" projects based on simple circuits and featuring a variety of building methods.
9 VOLTAGE SPLITTETR
obtainable by adding a power transistor output stage.
The input voltage is, however, limited to 30 V by the ratings of the $741 \mathrm{op}-\mathrm{amp}$, which is used. This gives a maximum output of $15-0-15 \mathrm{~V}$.
If what is needed is not a centretapped supply but one divided unequally, for example, $20-0-10 \mathrm{~V}$, this is easily arranged by a simple change of resistances. The low-voltage limit of useful input voltage is about 6 V , to give outputs of $3-0-3 \mathrm{~V}$.

A 741 op -amp, IC1, is used to compare the output voltage with half the
input voltage, as set by the voltage divider R1 + R2 2 . Any error is amplified and used to adjust the output voltage to the correct value. In other words the circuit acts as a negative feedback stabiliser but the reference voltage is not a fixed value but is half the input voltage, whatever that may be.
The BFY51 output transistor, TRI, is able to deliver more current than the 741 alone. It acts as an emitterfollower buffer amplifier and the maximum output current is as shown in the chart in Fig. 1.

Fig. 1. Circuit diagram of the Voltage Splitter and input voltage/output current chart.

Fig. 2. The addition of a power transistor (TR2) for higher output currents.

CONSTRUCTION

A small piece of $0 \cdot 1$-inch matrix stripboard (such as given free with the March, 1979 issue of this magazine) forms a convenient baseboard. Four breaks in the conductor strips are required, below the 741 integrated circuit, which is in the 8 -pin DIL format. Otherwise no preparation is needed.
The finished board can be mounted inside an existing power supply unit or (as here) put in a small plastics box such as the Norman Type PBI. No special mounting arrangements are required: the board can be hung on the input and output terminals by its own leads so long as these are of reasonably thick wire. (See Fig. 3.)

Compoments

Resistors

R1 $10 \mathrm{k} \Omega$
R2 $10 \mathrm{k} \Omega$
All carbon film, 5% tol. $\frac{1}{4} \mathrm{~W}$

Capacitors

C1 $4 \cdot 7 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2 $2 \cdot 2$ or $3 \cdot 3 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C3 $0.1 \mu \mathrm{~F}$ met, polyester
Semiconductors
IC1 741 operational amplifier in 8 -pin DIL package
TR1 BFY51 non transistor

Miscellaneous

Stripboard (10 strips $\times 17$ holes). Plastic case (Norman PB1). Five screw terminals. Five earth tags. Heat sink for TR1 (TO-5 cooler).

OPERATION

Connect the input and outputs. Take care not to exceed the maximum output currents shown on Fig. 1. Remember that only one terminal at a time may be earthed; if for instance the centre-tap is earthed it is not permissible to earth also the negative or positive terminal.

Fig. 3. The completed stripboard assembly mounted inside the plastics box.

OUTPUT OPTIONS

The maximum output current is limited by the permissible collector power dissipation of the BFY51. This is 600 mW and gives the currents shown on the chart. A small increase (50 per cent) is obtainable by fitting a good cooling cap to the BFY51 (a useful thing to do anyway).
For larger currents a proper power transistor must be added, on an adequate heat sink (Fig. 2). The collector dissipation, with a centretapped output arrangement, is half the input voltage times the whole of the output current. Thus a 20 V input arranged for $10-0-10 \mathrm{~V}$ out at 1 ampere gives a dissipation of 10 W .

The power transistor (a 2 N 3055 or similar TO-3 device) must then be mounted on a heat sink whose thermal resistance is low enough to prevent the transistor temperature from rising to a dangerous level when dissipating 10W. (Articles on the choice of heat
sinks appear from time to time in magazines like this one.)
Another common requirement is for a stabilised negative rail, between output terminals " 0 " and "-". This can be arranged by exchanging R2 for a Zener diode, D1, whose operating voltage is the required stabilised negative output voltage.
If, instead of a centre-tap, some unequal division of the input voltage is required this is easily arranged by changing the relative values of RI and R2.

For example, if the input is 18 V and an output of $12-0-6 \mathrm{~V}$ is required, R2 should be half R1 since it will then drop one third of the input voltage. In other words the usual voltagedivider rule applies:

$$
R 1 / R 2=\left(V_{\text {in }} / V_{\text {out }}\right)-1
$$

where Vout is the tap voltage.

Next month: Electronic Swanee Whistler.

By ADRIAN HOPE

Master Inventor

I was in the USA recently researching the story of a millionaire inventor by the name of Armstrong who committed suicide twenty-five years ago. He killed himself because he could no longer face the burden of literally a score of legal actions which involved his patents.
Who?, said most peopla, when I told them I was visiting New York's Columbia University Library to scratch the surface of nearly a quarter of a million Armstrong documents archived there. It's a predictable query because the world of electronics owes more to Major Edwin Howard Armstrong than many people will ever realise.

It was Armstrong who in 1912, and while still a student at Columbia University, discovered how to turn the primitive triode or audion valve invented six years earlier by Lee de Forest into an amplifier and oscillator. It was Armstrong who in 1918, while serving in the Signal Corp in France, devised the super heterodyne solution to receiving radio waves of much higher frequency than had previously been feasible.

It was Armstrong in 1921 who invented a super-simple amplifying principle which made him a millionaire but has never been fully exploited and is today forgotten by all but the most avid radio enthusiast. It was Armstrong who in 1933 proved the mathematicians wrong and succeeded with the theoretically impossible by achieving static free transmission and reception using frequency rather than amplitude modulation.

Feedback

There is no doubt that it was Lee de Forest who in 1906 first came up with the idea of adding a third electrode to the diode rectifying
valve which had been invented two years earlier by John Ambrose Flemming of University College London. But there is also little doubt that de Forest saw the triode or audion simply as a glorified rectifier or detector. De Forest was also very hazy over how the audion actually worked, talking in his patents only vaguely of "molecular activity" and "hot gas detection" and admitting that "the action and theory" of the extra grid electrode was "merely hypothetical".
The young student Armstrong had the classic enquiring mind and was dissatisfied with Lee de Forest's explanations because they actually explained nothing. It was while looking for a fuller answer to why the triode grid improved detection that Armstrong hit on the idea of feeding back some of the anode output into the grid input via a tuned inductance.

Thus was the idea of feedback or regeneration born, and with it the phenomena of amplification and oscillation as we know them today.

Heterodyne

In the meantime, Armstrong had joined the army and during the First World War set his enquiring mind to the problem of detecting and amplifying high frequency radio signals with feedback valve circuits intrinsically unsuitable for the purpose.
His solution was brilliantly simple. He heterodyned or "beat" the incoming high frequency signal with a locally generated high frequency signal of fairly close frequency. This produced a difference or "intermediate frequency" signal which could easily be handled by conventional feedback amplifiers. Thus was the concept of super heterodyning and i.f. amplification conceived.

It made Armstrong even more rich and famous and nobody ever seriously disputed his rights on the idea. Virtually every radio receiver in use today relies on both the feedback and superhet ideas originally conceived by Armstrong.

Super Regeneration

In 1921 Armstrong devised a way of taming the wild oscillation of a feedback circuit so that it operated as an enormously efficient amplifier. He did this by continuously varying the relationship between the feedback and damping factors to establish a new and artificially high state of amplifying equilibrium without oscillation. It seemed as if 'super-regeneration', as Armstrong christened the system, would offer the world ridiculously cheap amplifiers and radio receivers.

Frequency Modulation

The fourth, final and most famous Armstrong invention, frequency modulation (f.m.), was made in 1933. Here he succeeded by researching the problem of static interference on radio in exactly the opposite direction to that which everyone else had taken.

With a.m. transmission it was established practice to use a receiver with a wide bandwidth tuning "window" which accepted as much wanted signal as possible to swamp unwanted a.m. static noise. But attempts at using the same technique with f.m. showed that there was f.m. static as well, albeit at a fairly low level.

As a stroke of genius Armstrong narrowed the reception tuning window, heavily modulated the f.m. carrier with the programme and used drastic a.m. limiting at the front end. The a.m. limiting eliminated static noise due to a.m. and the narrow reception window allowed in only a little f.m. static noise. This was swamped by the wanted programme on the heavily modulated f.m. carrier.

By 1934 Armstrong was transmitting static free f.m. radio on an experimental basis from the top of the Empire State Building in New York. By 1939 he had built his own f.m. station at Alpine Heights, seventeen miles from New York and this broadcast commercial-free f.m. radio, at Armstrong's expense, until his death in 1954.

He killed himself because f.m. became a commercial success after the Second World War and it galled him to see some of the largest radio manufacturers in the USA cocking a snoot at his f.m. patents while others paid royaltios.

TRAILER FLASHER UIIIT

This simple unit drives the flasher indicator lights of a trailer or caravan and monitors their operation.

WARELINE TIMER

Can be set for periods ranging from a few minutes, or periods as long as two or three hours. Emits a loud and distinctive tone. It is suitable for many applications in the home.

TOUCH-On PILOT LICHT

The touch pad is easier to locate in darkness than a conventional switch. Runs from 4.5 V battery so is quite safe. An ideal project for the beginner.

QUIZ REFEREE

This unit displays which individual is first to press their button. A pre-settable timer rejects replies after selected period. Simple and low cost to construct.

ELETTROMII TUnIITG FORK

For quick and accurate tuning of a guitar or other musical instrument. A l.e.d. indicator enables guitar to be tuned to within 1 Hz of the reference tone.

(5) 0 :

An invaluable piece of equipment for the experimenter. Also suitable to power a radio, cassette recorder, or calculator. Provides a continuously variable output from 0 to 9 volts.

Acommon problem with soldering irons which do not have thermostatic control is that of a surprisingly short bit life. One soldering iron used by the author, admittedly for frequent and prolonged periods, has an average bit life of only about six weeks!

The main reason for this is that most soldering irons are designed to be able to carry out almost constant, heavy duty soldering jobs. They therefore have a fairly high power output as otherwise the soldering iron bit would soon drastically fall in temperature when undertaking demanding soldering jobs, with the bit tending to "freeze" to the joint in consequence.

Normal amateur requirements do not require a powerful iron, with the majority of joints being quite small and intricate, and requiring little power. The excess
power tends to cause overheating, and a reduction in bit and element life.

Another cause of overheating is that even when switched on, the soldering iron probably spends a good deal of time in its stand, particularly when troubleshooting or undertaking experimental work. Most soldering iron stands are

Fig.1. A simple method of enabling a soldering Iron to run at reduced power is to switch in a silicon rectifier. In normal operation the rectifier is short circuited by the switch, and only comes into operation when the iron is in the stand.
designed to have a heatsinking effect, but this is unlikely to be enough to prevent overheating.
There are probably other contributory factors, such as many irons having a nominal supply voltage of 220 V , whereas the standard UK mains voltage is 240 . And in many areas it is usually a little higher than this in actual fact. It is also very easy to leave a soldering iron left on after a soldering session.

REDUCED POWER

One way of overcoming this problem is to run the iron at reduced power while it is in its stand, and the usual method of achieving this is shown in Fig .1. This merely consists of a switch and a rectifier connected in parallel with one another, and wired in series with one input lead of the iron.

Full power will obviously be applied to the iron when the switch is closed. When the switch is open, some power will still be supplied to the iron since the rectifier will conduct on one set of mains half cycles. However, the other set will be blocked, and the iron will be run at half power. This is enough to bring the bit up to soldering temperature while the iron is in its stand. When out of its stand and in use, the switch is closed and the power needed for normal useage will be available.
The switch could be operated manually, but it is more convenient to have automatic operation by either using a micro switch, or, as in this case, a simple electronic switching circuit.

CIRCUIT DESCRIPTION

The circuit diagram of the Bit Saver appears in Fig. 2.
Mains transformer T1 isolates the circuit from the mains and provides a low voltage output which is full wave rectified by D2 and D3 and smoothed to a steady d.c. voltage by Cl . This produces a nominal supply voltage of about 9 volts.

Diode D5 is a panel mounted light emitting diode and is fed from the supply rails through current limiting resistor R2. This is merely a pilot light and reduces the likelihood of the soldering iron being accidentally left switched on.

Transistor TR1 is an emitter follower amplifier and it has a relay coil as its emitter load. A set of normally closed relay contacts are used and they are connected in series with the live power lead to the soldering iron. Thus, full power is applied to the soldering iron when the relay is not activated.

As the circuit stands, TR1 will receive no base current, only leakage currents will flow through its emitter circuit, and the relay will therefore be switched off. The base of TRI is connected to the soldering iron stand via R1 and a connecting cable.

RELAY SWITCHING

It is assumed that the soldering iron is a type which has an earthed bit (any normal iron for use in electronic applications will be of this type), and so when the iron is in its stand the left hand side of R1 will be connected to earth.

As the positive supply rail of the circuit is earthed, this will result in the left hand side of R1 being connected to the positive supply rail. This results in a large base current being fed to TRI, and so an emitter current of sufficient level to switch on the relay is produced.

When the relay switches on, the two relay contacts open and power is supplied to the soldering iron through D1. This removes one set of mains half cycles and so only half power is applied to the iron. In this way the soldering iron is switched on normally when out of its stand, and is only driven at half power when in its stand.

HOW IT WORKS

By supplying half power to the soldering iron when it is not being used, an increase in bit life is obtained. In this circuit a silicon rectifier is caused to be switched in and out by an electronic switch. When the iron is inserted in its stand, a circuit is made between the earth lead of the iron and the stand. This turns on the switch activator which then turns on the electronic switch, which opens to allow the rectifier to come into operation. Thus half power is being applied to the iron. When the iron is removed, the circuit is broken, the electronic switch closes and removes the rectifier. The iron thus quickly heats up to its normal temperature ready for use.

The iron is powered through a rectifier nather than a dropper resistor when driven at reduced power as a rectifier is cheaper, smaller, and does not generate any significant heat.
The relay is operated via an amplifier so that only a small switching current is needed, and even a fairly poor connection is good enough to produce proper operation from the equipment.
Capacitor C2 prevents rapid switching of the relay as the iron is placed in, and removed from its stand. This could otherwise result in reduced relay contact life and the radiation of radio interference.

Resistor R1 is a current limiting resistor and prevents a high surge current flowing as C2 initially charges up. This surge would
be undesirable as it could cause a small spark as the iron touched the stand, with reduced bit life occuring in consequence.
Diode D4 is a protective diode, and this suppresses the high reverse voltage that would otherwise be generated across the relay coil as it de-energised. If not suppressed, this could be of high enough amplitude to damage the semiconductor devices in the circuit.

CIRCUIT BOARD

The prototype circuit was built on a piece of $0 \cdot 15$-inch matrix stripboard having 14 strips by 27 holes, and it is housed in a small metal instrument type case which has approximate outside dimensions of $112 \times 42 \times 55 \mathrm{~mm}$. Any similar case should also be suitable, but it is recomended that a metal case should be employed and that it should be earthed.
The component layout of the stripboard panel is shown in Fig. 3. Start by cutting the board to size and then drill the two mounting holes plus the mounting holes for T1. These are all drilled 6BA,

nic $B I_{\text {SAVER }}$

The completed circuit board for the soldering iron bit saver.

Fig. 3. Wiring details for the unit. The front and rear panels of the case have been opened out for clarity. There are no breaks to be made on the stripboard. Note that the transformer does not need to be of the same type as specified. If a different type is used then there is a possibility that it will not fit on the board, if this is the case then mounting it on the case will be the best idea.
clear, about 3.2 mm in diameter. No breaks in the copper strips are required.

Next Tl is bolted into position and the relay is mounted on the board. The latter is glued into place, and a couple of single strand wire loops, about 22 s.w.g., are used to hold it firmly in position. It is not essential to use the specified relay, and any type having a nominal coil voltage of about 6 to 12 V , a coil resistance of about 150 ohms or more, and at least one set of normally closed contacts capable of switching mains voltages, is electrically suitable. Other types may necessitate some alterations to the physical construction of the unit though.

The various components are then soldered into the appropriate positions on the board, except DI which is mounted on the two relay contacts that are utilized. Also connect the solder tag, this being used to provide the earth connection for the case when the component panel is bolted to the case

FRONT PANEL

A hole for SKI is drilled in the centre of the front panel of the case and D5 is mounted just above this in a plastic panel holder. A hole for the mains input lead is drilled on the left-hand side of the front panel, and a hole for the soldering iron lead is drilled opposite this. Both these holes are fitted with grommets. The component panel will be mounted on the rear panel of the case, and suitable mounting holes must be made here.
Before mounting the component panel, wire it up to D5 and SK1 using ordinary multistrand p.v.c. covered connecting wire. Also thread the mains input lead and the soldering iron lead through the front panel holes, and then wire them to the relay and component panel. One tag of the unused set
of relay contacts is used as a suitable junction point for neutral connections of the mains lead, soldering iron lead and T1.

Do not use the spare tag of the relay contacts that are used, for this would short circuit the mains supply.

FITTING THE IRON

If a separate soldering iron is not available it will obviously not be possible to solder the lead from the iron direct into circuit. One way around this is to use a three way connector block so that the soldering iron lead can be connected into circuit using screw terminals.

Connector blocks are usually sold in twelve-way strips, and a

COMPONENTS

 Resistors

R1 $3.9 \mathrm{k} \Omega$
R2 680Ω
Both $\frac{1}{4} W$ carbon $\pm 5 \%$

Capacitors
C1 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C2 $2 \cdot 2 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.

Miscellaneous

T1 mains primary $6-0-6 \mathrm{~V}$ at 100 mA secondary RLA 6 to 12 V , coil resistance 185Ω, with one set of normally closed contacts.

Semiconductors

TR1 BC108 silicon npn
D1 1N4007 silicon
D2, D3 1 N4001 silicon (2 off)
D4 1N4148 silicon
D5 TIL209 red light emitting diode

SK1 wander socket
PL1 wander plug
Stripboard, 0.15 inch matrix 14 strips by 27 holes; small metal case $112 \times$ $55 \times 42 \mathrm{~mm}$ or similar; crocodile clip; two rubber grommets; mounting clip for D5; solder tag; standard connecting wire; length of mains cable as required.

Interior view of the U-shaped chassis showing the method of mounting the circuit board on spacers. Care must be taken to ensure that SK1 solder tag does not short on the transformer.
block of the required length is simply cut off using a sharp knife.
An alternative method is to use a larger case so that a mains socket can be mounted on it. The three output leads would then connect to this socket and the soldering iron would plug into the socket. In some ways this is the best form of construction, although it would be more expensive and difficult to build.
Finally, the component panel is mounted on the rear panel of the case using countersunk 6BA screws, and spacers about 6 mm or so long are used to keep the connections on the rear of the com-
ponent panel clear of the metal casing.

USING THE UNIT

A connection is made to a metal part of the soldering iron stand via an insulated lead terminated in a wander plug (which fits into SK1) at one end, and a crocodile clip which clips onto the stand at the other end.
If the crocodile clip is a type having a plastic cover, this should be removed as it is likely that the clip will become quite warm in use. The prototype equipment was tested and used with an Antex
type ST3 soldering iron stand, and as this has a spring-like metal part which actually holds the iron, there is no problem in making the connection to the stand.
When the iron is placed in its stand, the relay should be heard switching on almost immediately. When the iron is removed from the stand there will be a delay of about one second before the relay is heard switching off.
The equipment has been noticed to work properly even when the stand is quite dirty with flux, and the soldering iron bit is quite dirty and corroded. However, if either of them are excessively dirty it is likely that the electrical connection between the two will be inadequate for correct operation to occur.

TOME II IDGITALIIIT

By O. N. Bishop

PARTII

THIS MONTH we look at some digital circuits for making noises and ways of interfacing these to the outside world to produce alarm systems and others that give audible output.

TTL OSCILLATOR

The simplest form of sound generator is the circuit shown in Fig. 10.1a, ignoring the connection to clock. You may recall that this is the circuit used for the Test-Bed built-in clock. The way it works was described in Part 3. The values of the capacitors Cl and C2 have been chosen to give an audible output.

The output is fed to the speaker via capacitor C3. This can have any value over the range $1 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$, but if its capacitance is smaller than about $0.47 \mu \mathrm{~F}$ there is a reduction in the volume of sound produced by the speaker. When wiring and testing this circuit on the Test-Bed, the unused inputs of the gates may be left floating (effectively high inputs), but if you are building this circuit as a permanent device, such as a door buzzer, or morse code practice set, the unused inputs should be joined together and

Fig. 10.1a. Circuit for an intermittently sounding audible tone generator.
connected to V_{∞} through a 1 kilohm resistor.

Since this circuit is identical to that of the Test-Bed clock, you can use the clock itself as the sound generator for most of the other circuits described this month. It should be switched to its highest frequency $(450 \mathrm{~Hz})$, but you have the advantage of being able to run it at low frequency if you want to follow the stages of operation of a circuit.

INTERMITTENT TONES

An intermittently sounding note catches the attention much more readily than a continuously sounding note, especially in a noisy environment. We use a second oscillator, running at low frequency (say 1 Hz) to achieve this. The low-frequency oscillator consists of two nand gates connected as in Fig. 10.1a but the values of Cl and C 2 are in the range $220 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$.

The output of this oscillator is taken to one of the unused inputs of the a.f. oscillator. When the low - frequency oscillator output is high, the a.f. oscillator can operate and sound is produced. When the low - frequency oscillator output is low, the output of the gate to which it is connected is continuously high, whatever the state of the other input to that gate. The a.f. oscillator is inhibited, and no sound is produced. The result of this action is
an intermittent tone
By varying the values of the capacitors of the low-frequency oscillator, making one, say, $250 \mu \mathrm{~F}$ and the other $1000 \mu \mathrm{~F}$, you can alter the duty cycle and so vary the effect, obtaining a series of short "pips" with a relatively long time-interval between them, or a series of longer bursts with short periods of silence.

Wire up this oscillator on the TestBed as shown in Fig. 10.1b. As shown, the clock output (at low or medium frequency) is being used to provide the low-frequency output required for the intermittent note. Having used the clock as shown disconnect it and wire up a complete low-frequency oscillator, using the two remaining NAND gates of ICl.

As a door alarm, this circuit is based on only a single 7400 i.c. producing a cheap and effective system. As such, the wire ending A is connected through a 1 kilohm resistor to $V_{\text {co. }}$. The note is made to sound

Fig. 10.1b. The circuit of Fig. 10.1a wired up on the Test-Bed
by switching on the power, for example, by pressing a bell-button.

Although we use a 5 V supply on the Test Bed, a 6 V dry cell with series "dropper diode" can more conveniently be used to power a dooralarm system. Please note that a doorbell transformer supplying 6 V alternating current output should definitely not be used.

If you touch wire A to ground, the action of the a.f. oscillator is inhibited and no note is heard. The only sound is a series of very soft "ticks" as the low-frequency oscillator changes state. This is an indication that the system is working though not triggered to emit the intermittent sound. When A is removed from ground, the note is heard. This gives us a clue as to how the sounding of the note can be controlled by logic circuits.

If A is connected to the output of a logic gate, the alarm is silent as long as the logic gate output is low, but sounds as soon as the logic gate output goes high.
We will next investigate how various events can be made to trigger a gate to give a high output, and so sound the alarm. In other words, we are going to interface the alarm system to various kinds of happening in the outside world.

LIGHT DETECTOR

The light sensor and the high speed light sensor, described in Part 7 can both be interfaced to an alarm system. As explained in Part 7, these sensors give a high output either when light level falls or when it rises, depending on how they are constructed. Thus the output from either type of light sensor is suitable for controlling the action of the simple TTL a.f. oscillator of Fig. 10.1a, in place of clock, or the more complicated intermittent tone generator.

A light-triggered alarm system has many uses. As an intruder alarm it can be made to operate when a light beam is broken. If we use daylight, a room lamp, or a distant street lamp as the light source, the alarm sounds when the shadow of the intruder falls on the photosensitive device. The alarm can be triggered by the headlights of an arriving car, or by the light of the rising sun.

If you intend to use the latter as an early morning wakener, be prepared for a late awakening on dull cloudy mornings!

If connected as described, the alarm sounds only while the light sensor is responding to changed lighting conditions. This may be suitable in many applications, but if you wish the alarm to continue to sound indefinitely after it has been triggered, connect a bistable between light sensor and alarm as shown in Fig. 10.2.

TRIGGER LEVEL

The variable resistor VR1 allows the triggering level to be set. You may find that you can dispense with this resistor altogether if your system is intended for working at fairly high light levels. The required bistable consists of one gate that is already part of the high-speed light sensor circuit, and the other unused gate of the 7413 i.c., a Schmitt trigger.
If you have already built the high speed light sensor as a separate module, it is a simple matter to amend the connections to the 7413 . The whole triggered alarm circuit requires only two i.c.s and is a good illustration of the way one can design and build digital circuits from very simple units.
If you wire up this circuit on the Test-Bed, you will find that it is triggered by an increase of light falling on the phototransistor. It could be
triggered by a flash from the headlamps of an approaching car, or from the torch of an intruder. It could also be used to detect fire.
If you need the opposite function, connect the input of the a.f. oscillator to point B instead of to point A. In either mode you will find that when the circuit is correctly adjusted its speed of operation is extremely high. If the beam is broken for an instant (or the briefest flash of light occurs) the alarm is triggered. You will find it difficult to "beat the system." If you do not need response to such brief events, you can use the other light sensor, based on a lightdependent resistor. This can be modified and coupled to the alarm circuit in a manner similar to that already described.

OTHER INTERFACES

The circuits for a number of other interfaces are shown in Fig. 10.3 to Fig. 10.5. The thermistor RTH1 in Fig. 10.3 is a bar, disc or bead of semiconductor material. As temperature increases the resistance of the thermistor decreases. As a result of this, the voltage at point A falls. When it has fallen to approximately 0.8 V , the input to the Nand Schmitt gate reaches its lower threshold. At

Fig. 10.3. Thermistor interface circuit; RTH1 has a resistance of 470 ohms at 25 degrees C.

Fig. 10.2. A light triggered alarm with intermittent

this stage the output of the gate changes from low to high. If connected to the alarm circuit, this high output allows the a.f. oscillator to operate and an alarm sounds. The level at which triggering occurs can be set by adjusting the variable resistor VR1.
The reverse operation, causing the warning to be sounded when temperature drops below a given level, can be obtained by interchanging the thermistor and the variable resistor. This could have applications as a frost warning device, or to indicate that the greenhouse temperature is lower than it should be.
Note that the thermistor can be connected to the remainder of the circuit by leads several metres in length, so that the thermistor can be situated outdoors and the power supply and alarin circuit to any convenient location indoors. By choosing a thermistor with an appropriate resistance value at 25 degrees Centigrade, and choosing a corresponding value for VR1, the interface can be designed to operate at any required temperature over a very wide range.

MOISTURE SENSOR

The moisture-detecting interface (Fig. 10.4) depends on the eleotrical conductivity of water. The probe can consist of a piece of stripboard with alternate strips wired together. Placed outdoors where it is exposed to rain, the probe becomes conductive when a raindrop bridges the gap between two adjacent strips. This allows base current to flow to TR1. When the transistor switches on, its collector potential falls, giving a low input to the NAND gate. The resulting high output from the gate is fed to the a.f. oscillator of the alarm circuit.

Another form of probe consists of two bare wires, mounted a few millimetres apart. These can be used to detect a rising water level in a tank or bath, giving warning when the water has reached a certain level. The reverse action can also be obtained by simply omitting the NaND gate and connecting the collector terminal (point A) directly to the a.f. oscillator.

This interface is able to detect water, even when it is present as a thin film, as you can demonstrate by pressing a moist finger-tip on the probe plate.
To make a soil moisture probe, two parallel wires about 3 cm long and about 0.5 cm apart are thrust into the soil. Conduction through the soil from one wire to the other is sufficient to supply adequate base current to TR1.
In normal use, the collector of TR1 is connected directly to the a.f. oscillator. If the soil becomes dry, conduction is reduced, TR1 switches off and its collector potential rises. This allows the alarm to sound. This inter-

Fig. 10.4. Moisture detecting interface with probe for detecting rain.
face has several applications in the home, garden or greenhouse.

SUPER-SENSITIVE INTERFACE

The interface shown in Fig. 10.5 detects currents even smaller than those detected by the interface of Fig. 10.4. When using this interface you may find that the small current flowing between the probe wires or plates is sufficient to switch TRI on. In these applications, VRI may be
skin is enough to operate the interface.

If this interface is connected directly to the alarm circuit, the alarm sounds for as long as the touch-plate is contacted.

This combination of circuits has applications as a door-alarm, or as a bedside alarm system for an invalid incapable of operating an ordinary push-button.

The circuit of Fig. 10.5 is not restricted to moisture detection. The

Fig. 10.5. A more sensitive conductivity interface; VR1 is optional, see text.
omitted. If the interface is required to operate under conditions of very low moisture content, VRI is required.
After adjusting the setting of VR1 so that base current is not quite enough to turn TRI on, we rely on the small additional current flowing between the probe wires to supply the deficiency; TR1 turns on and the output of the device is low. The alarm is silent. When conditions become drier, the flow between probe wires is reduced and that flowing through VRI is insufficient to supply TR1 which turns off and the interface output goes high. The alarm sounds.
This interface can be connected to a touch-plate consisting of two metal strips or plates mounted on a nonconductive material, with a narrow gap between them. For this purpose you can use a small piece of stripboard, wired as in Fig. 10.4, or make a touch plate by etching a design on copper-clad board. Suitable designs are illustrated in Fig. 10.6.

When the gap is bridged by a finger-tip, conduction through the
reader may like to investigate the use of this circuit with a light-dependent resistor, a phototransistor or a thermistor connected in place of the probe wires, in parallel with VR1. It should be possible to build a sensor that responds to very small changes in incident light, or in temperature.

Yet another modification of the previous circuit is shown in Fig. 10.7a. Here we use the small current generated by a crystal microphone when sound waves make it vibrate. A sound-operated interface has several applications, including detecting intruders, listening for the telephone bell, or sounding an alarm when baby

Fig. 10.6. Two simple designs for touch plates on p.c.b.

Fig. 10.7a. A sound triggered interface operating a simple audio generator and loudspeaker.
cries. The circuit incorporates a bistable, for it is assumed that we require that the noise which is of relatively short duration will trigger the alarm to sound for a longer period, until the reset button is pressed.

When sound is received by the microphone a brief, irregularly alternating current is produced. The high peaks of this current add to the steady current flowing through VRI. The current through VRI is just insufficient to turn on TR1, but when the additional current flows, TR1 is
turned on for very brief periods of time. The first time that the interface output falls low, the bistable changes state, even though the output may be low for only a very short period. From then on, until it is reset, the bistable output is high and the alarm sounds.

SOUND OPERATED ALARM

In Fig. 10.7b we see how the soundoperated alarm system is set up on the Test-Bed. In this version the note is continuous, though an intermittent note can be obtained if the clock
output is connected to Test-Bed location P4 and the 1 kilohm resistor is omitted.

In a permanently wired unit, the low-frequency oscillator could be built around the other two gates of the 7400. The emitters of the transistors are not to be connected directly to ground so the transistor socket of the Test-Bed cannot be used. Instead the transistors are mounted on the "free" strips at the lower edge of the board. Resistors R2 and R5 cannot be connected directly to $V_{c c}$ or ground, as their leads are not long enough;

Fig. 10.7b. The circuit of Fig. 10.7a wired up on the Test-Bed. instead, use is made of the connections between pins DD17 and DD19 and between pins EE21 and EE23, since the corresponding i.c. socket is unoccupied.

When setting up the circuit it is not necessary to use the oscillator for testing purposes; this spares neighbours a certain amount of noise. The interface circuit is first connected to two l.e.d.s (dotted lines), which indicate the state of the bistable. In a reasonably quiet environment the setting of VR1 is first adjusted to a position in which the interface is just not triggered. The easiest way to do this is to turn VR1 to minimum value and then repeatedly press the reset button. The bistable remains permanently set, but if VRI is then turned slowly toward its maximum value, and reset is pressed repeatedly, a point is eventually reached at which resetting occurs.

Leave VR1 in this position. Now, when a noise is made beside the microphone, the bistable should set. Further slight adjustment of VR1 can then be made to find the most sensitive setting.

At this stage the reader may find it worthwhile to remove VR1 from the circuit without altering its setting, and use a testmeter to measure its resistance. When the circuit was under trial on the Test-Bed it was found that the effective resistance of VR1 at this stage was a little over 60 kilohms; VRI was then replaced by a fixed carbon resistor of 56 kilohms in series with a 10 kilohm preset. This arrangement made it easier to adjust the circuit for greatest sensitivity.

When adjusting is complete, the connections to the l.e.d.s are removed and the oscillator is assembled and connected to the bistable output at S34.
Before leaving the subject of interfaces we should mention the simplest interface of all-a pair of metal contacts forcibly brought together or parted.

For burglar alarm systems a number of pairs of contacts can be positioned on windows and doors, so as to be in contact when the window or door is shut, but parted when it is opened. Parting the contacts, one of
which is connected to ground and the other to the a.f. oscillator, causes the alarm to sound.

Pressure mats are available for use beneath carpets and make contact when they are trodden on. These too can be used as interfaces to alarm circuits.

TTL VERSATILITY

This part of the series has been almost entirely concerned with alarm circuits, but many of the units described have applications in other fields. The sound-triggered interface can be used with the digital dice (April 1979) to make a novel voiceoperated dice that displays a random number when a play shouts "Stop".
The temperature-sensitive interface can be connected to a timing circuit so that we can measure for how many hours of the day or night the temperature of a room (or greenhouse) exceeds a given level. We can build a circuit that switches on an electric fan when the room becomes too hot. With a little more ingenuity we can cause an electric train to stop, or start, or reverse in sequence each time a whistle is blown. By blowing the appropriate number of blasts on the whistle the motion of the train can be remotely and realistically controlled. Such a controller would need
only the sound-operated interface, a number of flip-flops, a few power switches and some relays.

Most of these have all been described in previous articles in this series, and all that needs to be done is to work out the logical way of connecting them together so as to perform the required function.

There seems to be virtually no limit to the number of ways of connecting together the relatively few basic units that we have examined so far. Whatever you want to do electronically, the great versatility of TTL makes it highly likely that you will succeed in doing it digitally.

To be continued

Operation of this configuration is as follows.

When power is initially applied, one of the transistors must turn on before the other, this is due to inherent component tolerances. For simplicity, let us assume that TR1 will switch on first. The positive plate of Cl is therefore grounded, and this negative pulse is transmitted to TR2 base, which effectively biases TR2 off. With TR1 on and TR2 held off, Cl charges up via VR1 and R2 until the potential at

Fig. 1. Circuit diagram of the Darkroom Timer.

The reader will no doubt find other uses, besides its intended use a timer in the darkroom. It should be possible to use the unit for both colour and black/white printing and enlarging, although one must be aware of its accuracy.

CIRCUIT DESCRIPTION

The circuit diagram appears in Fig. 1. The transistor arrangement illustrated will be familiar to many readers and is called an astable multivibrator.

There must be many instances when a simple visual indication of elapsed time could prove to be just as effective as the most sophisticated of electronic timepieces. The unit described here is a small portable device which illuminates a light emitting diode once per second.

The circuit itself is very simple and so phenomenal accuracies cannot be expected from it. It is possible however to obtain an accuracy of about $\pm 1 / 60$ th of a second.

TR2 base equals some 600 mV .
When this point is attained, TR2 is now able to switch on, as its base is now correctly biased. As TR2 switches on, D1 is able to illuminate, R4 serving to limit the current to a safe level; also, a negative pulse is transmitted via C2 and TR1 base and effectively switches TR1 off.
With TR2 on and TR1 off, C2 can charge through R3 until 600 mV is present at TR1 base, this permitting TR1 to switch on again, and so causing TR2, via C1, to be forced off.
It can be seen that the whole circuit is oscillating, the charging cycles repeating themselves, and this will continue until the power supply is removed. By adjusting the timing components, VR1, R2, R3, C1 and C2 we can adjust the frequency of operation of the circuit, and in fact VR1 is included so that a near perfect one hertz frequency (one cycle per second) is achievable.

The circuit, with the exception of the l.e.d., is built on a piece of 0.1 inch stripboard measuring 9 strips by 23 holes.

Fig. 2. Complete wiring details for the unit. Take particular care when soldering heat sensitive components, and observe polarity.

The completed prototype with base panel removed.

These dimensions permit the retention of the circuit by the p.c.b. guides moulded within the case. The plastic box used is a Bimbox type BIM2003/13 and it measures $112 \times 62 \times 31 \mathrm{~mm}$, although any similar size can be used.

The component layout on the stripboard.
Construction of the unit will be quite straightforward as seen from Fig. 2, and there should be no problems. Note that ${ }^{1} 4$ watt resistors are used throughout; these can be quite heat sensitive (as are the transistors) so take care to use a heatshunt during soldering. Take care to orientate the transistor leadouts correctly and similarly note the connections to the l.e.d.-the cathode is indicated by the "flat" on the case.
Drill the case to take the l.e.d. mounting clip and the switch. Letter

COMPONENTS

Resistors
R1 $1 \mathrm{k} \Omega$
R2 $10 \mathrm{k} \Omega$
R3 $22 \mathrm{k} \Omega$
R4 680Ω
All 1 W carbon $+5 \%$
page 426
Potentiometer
VR1 $220 \mathrm{k} \Omega$ miniature horizontal preset

Capacitors
C1 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C2 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.

Semiconductors

TR1, 2 BC108 silicon npn (2 off) D1 TIL209 red light emitting diode

Miscellaneous

B1 9 V PP3 battery
S1 s.p.s.t. "Hekla" rocker switch (Maplin)
Stripboard: 0.1 inch matrix 23 holes $\times 9$ strips; plastic case: Bimbox type BIM2003/13 orange or similar $112 \times 62 \times 31 \mathrm{~mm}$; battery clip to suit B1; mounting clip for D1; lettering as required; connecting wire.

Approx cost Guidance only 21.50 excluding case

the case as required using proprietary rub-down lettering and then spray the case with a coat or two of clear aerosol lacquer to protect the lettering.

Check the wiring carefully, set VR1 to its midway position and then switch the unit on. The l.e.d. should be flashing at an arbitrary frequency. Unfortunately setting up is rather a trial and error affair, and consists of trimming VRI until the l.e.d. is illuminating once per second at the desired accuracy.

One method of monitoring the accuracy is to count the number of flashes in 60 seconds, and divide this answer by 60 to obtain the interval between flashes.

The simple project to be described here was originally designed by the author as an automatic time switch for a dolls house lighting system, which will switch off the lights after a preset delay, thus reducing battery drain caused by forgetful children.

The circuit is very easily constructed and should be ideal for the beginner to tackle. There is wide tolerence on the components which can be used, thus the constructor can use components already to hand, thus saving cost.

The circuit can also be used for a variety of uses other than that originally intended, such as a predetermined timer, a games timer, possible uses in the photographic darkroom etc. No doubt other uses will come to mind. It should be remembered however, that the circuit can only control external devices which operate within the voltage and current capabilities of the battery used.

This problem can be overcome by using a relay with an additional set of contacts, which can then be wired into the supply of the external device.

CIRCUIT DESCRIPTION

The complete circuit for the unit appears in Fig. 1 and operates as follows.

Upon closing the on/off switch S1, capacitor C1 is discharged via Sla to earth. The second half of the switch, Slb applies power to the circuit. Current flows through R2 thus switching transistor TR2
on. As TR2 is now turned on current is able to flow thus energising the relay.

The contacts close and apply power to the lights. At the same time, the contacts also provide a hold facility. That is, when S1 is released, the relay is held on via its own contact. Because S1 is a momentary action switch, if the contact was not in circuit, the relay would just switch on and release each time the switch was pressed, and would not maintain power to the circuit. Hence the very simple hold arrangement.

SWITCHING

With the release of S1 the short circuit across the capacitor is removed, C1 thus starts to charge up via R1. When 0.6 V is reached, transistor TRI turns on, and as it does so the collector voltage falls to very nearly zero volts. The normal base bias on TR2 is cut off, and so this transistor turns off. In turning off, the collector voltage rises towards the positive supply.

This action causes the relay to de-energise, the relay contacts open, removing all power from the circuit, including the lights in the dolls house.
The entire cycle may be repeated by a further depression of SI.

The timing components, R1 and Cl have been chosen to give a delay of approximately five to seven minutes, which seems a reasonable time for this particular application. Diode D1 is included to prevent damage to the transistor from back e.m.f. due to the relay de-energising.

Fig. 1. Complete circuit diagram of the Dolls House Timer.

The battery B1 is the normal supply used in the dolls house, and in most instances will be 4.5 V . No ratings for the lamps have been given as these should already be existing in the dolls house.

The entire circuit excluding the switch and relay are mounted on a piece of $0 \cdot 1$ inch matrix stripboard, having 13 strips by 16 holes, and is shown in Fig. 2. There is nothing critical about the layout and could be altered as desired. Remember to observe polarity of the electrolytic capacitor and the correct orientation of the transistors.
The diagram also shows the remainder of the wiring to the relay, the on/off switch, and the battery. A connector block is used to wire the lights to the unit. In some cases very many wires will probably be wired, so it is best to get a large block which will accommodate them easily.

COMPONENTS

Resistors
R1 $4 \cdot 7 \mathrm{M} \Omega$
R2 $47 \mathrm{k} \Omega$
Both $\frac{1}{4} \mathrm{~W}$
carbon $\pm 10 \%$

Capacitor
C1 $470 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors
TR1 BC107 npn silicon
TR2 BC107 npn silicon
D1 1N914 silicon or similar
Miscellaneous
S1 push switch with two normally open contacts
RLA miniature open relay, 410Ω coil, one make contact (RS 349 125)
B1 See text
SK1, 2 two terminal connector block
Stripboard, 0.1 inch matrix 13 strips by 16 holes; connectors to suit battery; connecting wire.

Fig. 2. Complete wiring details. No breaks are made on the underside.

MOUNTING

The overall constructional design of the dolls house will eventually decide where to mount the unit. In the author's arrangement, the unit was mounted under the stairs with the on/off switch projecting through the outer wall.
It is assumed that the dolls house will already have a suitable lighting system, if this is the case then all that is needed is to disconnect the battery and wire the unit between that and the lights. If the existing system has a master on/off switch this should be retained.

If, as might be the case, the dolls house does not have a lighting system, then this will have to be designed by the constructor. A typical system would possibly have three lights upstairs, and four downstairs, possibly with a few small wall lights here and there. Telephone cable can be used for the circuit, running it in the loft space and under carpets.

Each light should have its own on/off switch, with possibly a master controlling all the lights. No doubt the constructor will have his/her own ideas.

IN USE

With the components specified, the delay is about seven minutes.

If it is desired to alter this time then there are two ways of doing so. The first is to change both the values of C1 and R1, the higher the values the longer the delay and vice versa. The second is to use a potentiometer in series with R1. The value can be $2 \cdot 2$ megohms, or some other value as desired. This will then give a fairly wide range of times.

To turn on the lights, SI is momentarily pressed, this will cause the unit to switch on and apply power to the lights. Individual lights can then be turned on as required. After the predetermined time the relay will deenergise and thus switch off all the lights. If further time is required, then once again S1 is momentarily pressed, whereupon a further time period is started.
In terms of the expense of rundown batteries this small unit will most certainly pay for itself in the course of time.

By Dave Barrington

Mini Drill

We have been pleasantly surprised by the popularity of the EE 2020 Tuner Amplifier project, which, for us was an ambitious undertaking and necessitated the use of printed circuit boards to ease construction for our readers. Also, after reading the special feature on making your own printed circuit boards (January ' 79 issue) many readers are now attempting to make their own boards.
Due to the large size and component density of the boards the most time consuming item is the drilling of the wiring and component locating holes. To this end, we should like to recommend the miniature Bimdrill from Boss Industrial Mouldings.

The Bimdrill is mains powered and housed in a fully insulated bright orange $A B S$ body. The drill weighs only 250 grams and has an off-load speed of approximately 7500 r.p.m.

The drill is fitted with 2 metres of two core mains cable terminated in a moulded 2-pin DIN plug. The on/off rocker switch is neatly recessed at the top of the body. A tommy bar and three collets are supplied which enable drill bits with shanks of $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and 0.125 inch diameter to be used and is ideal for work on s.r.b.p. and Fibre-
glass p.c.b.s., as well as steel, aluminium and brass.

The Bimdrill can be obtained direct from the manufacturers, Boss Industrial Mouldings Ltd., Dept. EE, Higgins Industrial Estate, 2 Herne Hill Road, London SE24 OAU. The cost including VAT and post and packing is $£ 10 \cdot 53$.

Also, the more comprehensive Bimdrill Mk2, having four collets and twenty other tools (drills, grinders, polishers, etc.), and housed in a carrying/presentation case is available for $£ 22 \cdot 14$ inclusive.

New Premises

With the need to keep updating and adding to their already large range of "off-the-shelf" components and equipment, Marshall's have just moved their Bristol branch to new premises.

The new retail shop is larger than their old shop and is situated only five minutes walk from the main shopping centre of Bristol at: 108A Stoke's Croft, Bristol.
Readers presently engaged in teletext experiments may be interested to learn that Marshall's have been appointed sole distributor for the amateur market for the new Mullard series SAA 5000 teletext "chips".

Mainline Amplifiers

The entire stock of Mainline Electronics Ltd., previously of Windsor and Slough, has been acquired by Arrow Electronics.

The Mainline audio equipment spares will also be available from Arrow and it is contemplated that production of the Mainline amplifier will be continued, as it is proposed to merge this production with their existing "Leader" range of kits.

CONSTRUCTIONAL PROJECTS

Soldering Iron Bit Saver

All components for the Soldering Iron Bit Saver should be readily available but two components require special mention.

The first is the transformer. The type used in the prototype allowed fixing directly onto the circuit board. This is by no means an essential requirement, but if preferred, care must be exercised in choosing this component. The type used in the prototype was obtained from Maplin and specified in their catalogue as MIN TR6V, Cat. No. WB06G.

The relay is the other component. The circuit requires one with one normally closed set of contacts capaable of handling mains voltages. The prototype used a type having two sets of changeover contacts and one of the spare contact tags used as an anchor point for flying leads. This anchor point could be transposed to a spare
strip on the circuit board if a single contact relay is obtained.

Darkroom Timer

No problem's should be encountered in obtaining the components for our very simple project this month the Darkroom Timer. An attractive low profile single nut fixing rocker switch was employed in the prototype to enhance the appearance and is available from Maplin. This can be replaced by any other switch available. The case is available from the manufacturers, Boss Industrial Mouldings, address, elsewhere in this page.

Conference Timer

The Conference Timer has the largest component count of all the projects appearing this month and most should be readily obtainable.

Six-core cable is required for connecting to the extension indicators. This may be difficult to locate and 8 core cable may have to be used. In fact 8 -core screened was used by the author. A cheaper alternative may be to use a double length of 3-core mains cable or even a triple length of twincore bell wire.

There are many multipin plugs/ sockets available from the numerous component suppliers. The types used in the prototype were from RS Components under QM multipole connectors. You cannot buy direct from them but your local electronic or T.V. service shop will be able to obtain them for you. Alternatively, screw fixing terminal blocks are suitable and will certainly be much cheaper.

OBITUARY

DAVID COHEN

David Cohen, proprietor of Radio and TV Components (Acton), died in April after a short illness, age 64 .
One of the longest in the retail component trade and one of its colourful characters, David Cohen started his first business during the 'thirties when only 16 years old in a Birmingham shop, charging accumulators and supplying receiver kits and components.
During the 1939-1945 war he was employed on Government work at EMI Hayes. In 1945 he started up again on his own, dealing in the then prolific war surplus market of electronic equipment. His success, based on long experience in the radio field and an acute business flair, lead to the establishment of Radio and TV Components at Acton, West London, in 1958.
The business, which includes a retail shop in Edgware Road, London, is now managed by David's son, Leslie Cohen.
We offer our condolence to Mrs. Cohen and family at their sad and unexpected loss.

THIS article describes the construction of an inexpensive two-way loudspeaker system. Whilst primarily intended for use with the Everyday Electronics 2020 Tuner Amplifier, this speaker will give good results with any amplifier delivering an output of $15-20$ watts (into 8 ohms) per channel.

Surprisingly good results can be obtained with quite inexpensive speaker drive units if sufficient care is devoted to such things as enclosure and crossover network design.

DESIGN CONSIDERATIONS

The first decisions to be made in designing a loudspeaker system are fairly obvious: power handling? price? size?

The power handling decision was already made-at least 20 watts r.m.s. to suit the 2020 Tuner Amplifier. Price?-well as this loudspeaker design puts the accent on economy, £25 or so seemed a reasonable target for the drive units and crossover components (for a stereo pair).

Size? Every loudspeaker design is the sum of many compromises. A small cabinet may be economical in its material requirements, but it does impose two restrictions (which are inter-related): poor sensitivity and restricted bass response. On the plus side, a compact cabinet has small and rigid panels which give little trouble from panel resonances and subsequent colouration.

SPECIFICATION

Infinite baffle speaker enclosure: Dimensions: $508 \times 305 \times 228 \mathrm{~mm}$ Drive units: 8 inch bass, 3 inch tweeter
Frequency range: $\pm 3 \mathrm{~dB} 50 \mathrm{~Hz}$ to 19 kHz
Crossover frequency: $4,000 \mathrm{~Hz}$ Impedance: 8 ohms Amplifier output: up to 30 W

* This is strictly an "optimum-value-for-money" design. Later we shall describe an up-market three - way system in the $£ 150$ bracket.

An 8-inch bass drive unit seemed to offer the best compromise of bass response, power handling and cost, and this in turn goes a long way towards determining the compromises of cabinet size and type of cabinet loading.

Reflex loading ("vented" or "ported" enclosure) has its attractions as a means of extending the bass response from a given size of cabinet, but as it was desired to give some flexibility in the method of construction (more of that later) it seemed prudent to opt for a simple infinite baffle, that is, a completely sealed enclosure.

THE DRIVE UNIT

In practice, finding a suitable bass drive unit was easier said than done-most 8 -inch bass units
seemed to fit into one of two categories: "hi-fi and expensive" on the one hand, and "low-fi and nasty" on the other.

Eventually Electro Acoustic Industries Limited agreed to make a unit specifically for this design at a very reasonable price. This, known as model 8NC367, is a paper-coned unit with a roll surround and a hefty 12,000 gauss magnet.

This bass unit matches the Elac 3 -inch cone tweeter for sensitivity and whilst a dome type may have given a slight improvement in quality, the extra cost of the dome tweeter would have increased the cost of the system by some 50 per cent.

THE ENCLOSURE

The cabinet dimensions chosen were $508 \times 305 \times 228 \mathrm{~mm}$ (external). The enclosure may therefore be described as large bookshelf/small floorstanding. This would give acceptable bass response with a suitable bass unit and is a domestically convenient size.

The prototype cabinets were constructed from 18 mm chipboard and lined with laminated bituminous felt panels of 13 mm thickness.

The object of the felt panels is to stiffen the cabinet panels so making it less likely that these resonances will be excited by the frequencies produced by the bass unit.

The home constructor who has wood offcuts lying about his workshop can use these to obtain much the same results as are achieved with the felt panels. The cabinet should be lined with the offcuts of plywood or chipboard securely glued and screwed to all the inside surfaces of the cabinet (except the baffle board). In the diagrams the dimensions given for the cabinet assume the 13 mm felt panels are used to line 18 mm chipboard or plywood.

The case dimensions should be adjusted accordingly if material of a different thickness is used to line the cabinets.
Conventional loudspeakers which have large cabinet panels which are undamped and unbraced can actually generate more sound from the cabinet panels (cabinet sides and back, generally) at certain frequencies than is generated by the speaker drive units themselves. This is obviously an unsatisfactory state of affairs as it adds a high level of undesirable colouration to the sound produced.

Rigid, well constructed cabinets are therefore essential for anything approaching "hi fi" results.

CABINET CONSTRUCTION

Full details of the enclosure appear in Fig. 1.

The front and back frame external dimensions correspond with internal dimensions of the case. These frames are fitted flush with edges of case and glued and pinned, or screwed, in position.

If speaker grille fabric is to be used for the frontal trim, a grille panel of 10 or 12 mm plywood is necessary. The grille fabric is glued or stapled to the back of the panel (see drawing). Velcro hook-and-loop tape provides a simple method of fixing the grill panel to the cabinet.

An alternative trim is possible with "acoustically transparent" (reticulated) foam. This does not require a supporting frame and can be fixed with "single-sided"

COMPONENTS and MATERIALS

Resistors

R1 $10 \Omega 5 \mathrm{~W}$ wirewound, ceramic insulated

Capacitors
C1 $4 \mu \mathrm{~F}$
C2 $4 \mu \mathrm{~F}$ reversible electroly-
C3 $10 \mu \mathrm{~F}$
Inductors
L1, 2 (2 off) $0.6 \mu \mathrm{H}$ ferrite cored
Loudspeakers
LS1 3 inch tweeter unit Elac TW3/04
LS2 8 inch drive unit Elac 8NC367

Miscellaneous

Stripboard or p.c.b. Two tyraps (for L1, 2). 1 sq. yd. 10 oz Acoustilux BAF wadding. 8 "T" nuts and bolts. 8 laminated bituminous felt panels (or offcuts of plywood or chipboard). Chipboard and plywood for cabinet-see Fig. 1.
All the above items (except wood) are obtainable from Wilmslow Audio Limited, Swan Works, Bank Square, Wilmslow, Cheshire, who also offer a Kit for two enclosures, comprising:

2 Elac 8NC367, 2 Elac TW3/04, and 2 crossover kits (with p.c.b's). Price $£ 26-50$ inclusive of VAT, but plus $£ 2.50$ carriage.
or including the laminated bituminous felt panels, Acoustilux BAF wadding and "T" nuts and boits for $£ 35$ plus $£ 5$ carriage.

The three photographs on the right show (top) the completed EE20 Loudspeaker, (centre) before grille panel fitted and (bottom) speaker units and crossover unit wired up before being secured to enclosure; the Acoustilux wadding lining can also be seen.

Velcro. This is similar to the hook half of the familiar hook-and-loop type, but with larger hooks which fit directly into the holes in the reticulated foam.

Both drive units are fitted from the front of the baffle board so that both baffle board and cabinet back can be fixed permanently in place after the cabinet has been lined with the felt panels (or wood offcuts) and the crossover network fastened in the bottom of the cabinet. The cabinet is then lined
with BAF wadding which can be inserted through the bass unit aperture in the baffle board. The drive units are fixed with " T " nuts and bolts.
Sufficient glue should be used in all joints to ensure an airtight seal. Remember that no one is likely to see the surplus glue that squeezes

Fig. 2. Circuit of the EE20 crossover network. + LS2

Fig. 5. Crossover network characteristics.

Fig. 6. Impedance/Frequency curve showing effect of equalising network.

Fig. 7. Frequency response of EE20 Speaker System.

CONNECTING THE SPEAKERS

There are several types of connectors on the market suitable for use on loudspeaker cabinets. Screw terminals, recessed panels fitted with DIN or 4 mm sockets, and spring-loaded connectors are three popular alternatives. Mark the terminals " + " and "-" to correspond with the connections made to the crossover unit.
The speaker leads should be of reasonable conductor size, particularly if the amplifier is sited some distance from the speakers-say 0.75 sq mm . Two-core 6A flexible mains cable, with $24 / 0 \cdot 2 \mathrm{~mm}$ conductors, will meet this requirement.

USING THE SPEAKERS

The EE2020 loudspeaker system produces 90 dB for 1 watt at 1 metre. This means that under normal domestic conditions it will be possible to achieve whatever sound pressure level is required well within the amplifiers rated output.

Best results will be obtained, generally, with the base of the enclosures about 330 to 500 mm from the ground. Using the speakers placed directly on the floor will increase the apparent bass output, as also will placing a speaker near to a side wall.

As with any stereo loudspeakers it is worthwhile spending some time and trouble in siting the pair of enclosures to give:

1. The best stereo image.
2. The best (not the boomiest!) bass response.
3. The least interference from room resonances.

Everyday News

MICROS FOR THE HANDICAPPED

ONCE AGAIN another area where microprocessors are improving the well being of todays society, without creating any redundancies, is highlighted by a new aid for speech-handicapped persons,

Combining the words "speech" and "link", "Splink" is the name of a new electronic system designed to bridge the communication gap between the speechhandicapped, the deaf and their families and friends.

Activated by a microprocessor, it consists of a keyboard alphabetically printed with 950 of our most commonly used words. The user has merely to depress the required words on a keyboard and build them into sentences which immediately appear on an ordinary domestic television screen linked to the unit by the aerial socket.

Initial letters on the keyboard make it possible to build any word or name desired and some of the keys short-circuit the process by automatically printing out such basic phrases as "I want a", "Can you tell me?" and "What did you say?"

Invented by a Woking doctor, Splink has been developed with a view to commercial production by the Queen's Award-winning firm, Medelec Ltd, of Woking, who manufacture highly specialised electronic medical equipment.

Clinical trials have proved the practical usefulness of Splink and families which have had pilot systems on loan for experimental purposes have confessed to feeling lost after returning them.

QUEEN'S AWARD

Among the winners of this year's Queen's Awards for Export Achievement and Technological Achievement is a joint award to BDH Chemicals Ltd, the Solid State Physics \& Devices Dept, of the Royal Signals and Radar Establishment and the Department of Chemistry of Hull University.

The award is for outstanding work in research, development and now large scale commercial production of liquid crystals for digital displays in calculators, watches, etc. BDH Chemicals is currently exporting 98 per cent of production, almost all to Japan and the US.

Britain is now claimed to be the world leader in liquid crystal technology.

A $£ 100,000$ order for a computerised print composing system has been placed by Waterlow (Dunstable) Ltd., with Ferranti for the C570-20 system.

The system is based on an Argus 700G minicomputer and will be linked to a Linotron 404 phototypesetter.

MPU car seat

For the motorist who has nearly everything, a programmed seat-adjuster should have appeal. A system developed by National Semiconductor and Recaro allows driving seat rake, height, backrest and other parameters to be motor driven to suit the physique of the driver.

Once the best position is programmed in, it is held in a memory. Positions for two different drivers can also be stored.

STOP THIEF!

Electronic tagging of merchandise is expected to reduce the $£ 650$ million worth of goods per year lost to British retailers through shoplifting. A system developed by Parmeko of Leicester raises an alarm if the electronic tag has not been removed by the shop assistant using a special tool at the time of purchase.

All customers leave the store through concealed detection zones and a shoplifter carrying a tagged item is immediately detected. The special tags which re-radiate a signal in the detection zones are, of course, reusable.

A system to protect, say, 6,000 garments would cost the store some $£ 7,000$ but could quickly repay its initial cost.

CRIME DETECTION BREAKTHROUGH

The latest crime detection aid is searching for fingerprints undetectable by present methods by using a laser beam. The new technique, developed by Control Laser Corporation of Orlando, Florida, is said to be so sensitive that it can detect fingerprints on human skin, thus opening up the possibility of discovering a murderer in a case of strangulation or other bodily assault.

MULTI-SCOPE

A new oscilloscope from Tektronix has a built-in autoranging digital multimeter. The scope is dual-trace with 5 MHz bandwidth and the DMM has 12 ranges of d.c., a.c. and resistance measurement. It is fully portable, batteryoperated and designed for the field service engineer.

Export to Japan

IIT Semiconductors, Footscray, expects to sell more than $£ 5$ million worth of devices to the Far East this year with 80 per cent going to Japan. Products in demand are ITY's range of i.c.s for TV applications and 4K and 16 K random access memories.

GIGA VALVES

The thermionic valve is not dead though severely maimed by its modern semiconductor successor. The Mullard Valve factory, recently celebrating its 40th anniversary, claimed that over the period of its history in Blackburn it has produced 1,000 million of them.

IRISH MPU

The US Mostek Corporation is setting up a manufacturing unit for i.c., memories and MPUs, at Blanchardstown, near Dublin. Eventually about 1,100 jobs will be created. It is expected that most of the output of the new plant will be exported to Europe.

ANALYSIS

WIND OF CHANGE

Once upon a time the electronic hobbyist was a true home constructor, winding his own coils and transformers and wire-wound resistors, fabricating his breadboards and panels out of plywood or ebonite, perhaps even making his own wet-cell batteries although, of course, the thermionic valve was beyond his capabilities.

In the modern world of specialisation we have all become assemblers, even buying in our matrix board and readymade panels and enclosures. There is nothing wrong in this. Mass production has provided us with a rich supply of components better and cheaper than we could make ourselves and our home projects today have a professional touch.
The same pattern can be seen in the electronics industry. The equipment manufacturer may also be a circuit designer but basically he is still an assembler of components bought from specialist component firms. So, traditionally, there has always been a fairly well-defined demarcation between firms supplying the end-user with completed equipment and firms supplying the equipment people with components. Altogether a nice business relationship with each depending on the other to make a living.

Over the past few years there has been a wind of change, at first a gentle breeze but now approaching gale force, which is threatening to destroy the once-happy balance in the industry structure.

It all started with the integrated circuit and the wind of change has accelerated with VLSI and, most notably, the microprocessor. The equipment firm used to design the circuit and wire up all the components. Today, quite a few semiconductor manufacturers (i.e. component companies) have MPUs emerging from their factories which are as operationally powerful as some of the mid-range minicomputers built by equipment companies.
There is, of course, no law determining who sells what to whom in an open market and so it is quite logical for the MPU manufacturer to sell his systems direct to the end user rather than through an intermediate manufacturer and this is now happening.
But another important factor also comes into play and this is that the pace-setters in the technology are the semiconductor manufacturers themselves so they have the advantage of technical edge, at least for the time being. The computer manufacturers are fighting back by setting up their own semiconductor research units in an attempt to gain technical independence.
It is difficult to foresee how the new pattern of trade will evolve over the next year or two. Fortunately the data processing market is still expanding at a rate sufficient to absorb new entrants and the "war" is more a matter of reconnaissance and small-scale infiltration by the MPU makers rather than full frontal assault. Brian G. Peck.

A fold-away 50 -inch screen and a colour picture said to be viewable in ordinary daylight by up to 100 people at a time, is the latest TV set offering from Mitsubishi. The UK selling price is to be about $£ 3,500$.

Britain's first electronic telephone exchange to be produced on a commercial scale, the TXE2, celebrated its thousandth installation in
the UK at Fagley, West Midlands. The TXE2, built by Plessey, has also enjoyed export successes.

Citizen's Band Radio is still big business. South Korea is now the world's largest manufacturer of $C B$ sets after the USA and Japan despite the fact that $C B$ is illegal in South Korea. This disproves the theory that a strong home market is essential for business success.

SOLAR POWER

The instrumentation for an experimental vehicle powered by solar energy is provided by the new 440 series of meters from Ernest Turner Instruments.

The car (above), capable of $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. was designed and built as a private research project by Mr. Alan Freeman of Rugby and is driven by a 120W permanent magnet motor with power derived from a canopy of Solar cells.

CLUB NEWS

BAEC

The next get together of the British Amateur Electronics Club will be at their 14th annual Exhibition, at the Shelter, The Esplanade, Penarth, South Glamorgan, from July 21 to 28.
On show will be members constructional projects and all proceeds from the exhibition will be donated to the Cancer Research Campaign.

SYPCG

News this month of a computer club in South Yorkshire formed to cater for the growing interest in do-ityourself home computing.
Known as the South Yorkshire Personal Computing Group (SYPCG), the initial programme of events is to meet on the second Wednesday in every month at The Central Engineering Lecture Theatre, Floor D, St George's Building, University of Sheffield, St George's Square, Sheffield 1.
At each meeting a person will take along and give a profile of some computing equipment; there will also be a short talk on a specialist topic followed by an open
forum / discussion, part of which will be a computing problem solving session.
Readers who would like further information on the SYPCG should write to: Mr. T. Rycroft, SYPCG Secretary, 88 Spinneyfield, Moorgate, Rotherham, S. Yorks.

COURSES

Two one-day courses on microprocessors are being held at the University of Salford this month. They are "Industry and the Microprocessor" on June 28 (cost £35) and "Fundamentals of Microprocessors" on June 29 (cost £55).
The first course is a general awareness teach-in for non-technical managers and the second is a review of the basic principles of digital systems and microprocessor architecture, including "hands-on" sessions.
The two courses together can be attended for a reduced fee of $£ 80$ and further information is obtainable from the Administrative Assistant (Short Courses), Room 110, University of Salford, Salford M5 4WT.

By Pat Hawker, gзva

Broadcasting and Short Waves

 REGULAR listening to world-wide broadcast stations on "short waves" (h.f.) between 3 and 30 MHz is something which appeals in the main (at least in the UK) to a rather special type of enthusiast whose numbers have never been large by broadcasting standards. Many of these listeners are far more interested in identifying and "logging" distant or unusual or lowpower stations than in the information or entertainment content of the programmes.One could quote a variety of reasons why this should be the case: the great difficulty on h.f. of tuning the run-of-the-mill "all-band" domestic receiver to a specific frequency; the impossibility of remembering all the many frequencies; the loss of interest among most radio amateurs due to their use of "amateur-bands-only" communications receivers; receiver-performance problems of "image" and other spurious responses, as well as oscillator drift; the need for an effective outdoor aerial to achieve good results; the deep fading and consequent distortion; above all, the complexity and difficulty of understanding the constantly changing propagation conditions and the need to change bands at different times of the day and night which the average listener finds quite baffling.

Finding and holding a programme you want on short-waves has undoubtedly always needed a degree of skill and expertise and the cultivation of "safecracker's fingers" for tuning.

On the other hand, there are of course the expatriates who are prepared to learn the tricks of h.f. in order to keep in touch with their home countries, and the many listeners in tropical countries where static ruins medium-wave reception and distances are often too great for v.h.f.ff.m.

H.F. Stations

There are now thousands of h.f. broadcasting stations hopefully spraying powerful signals to all parts of the world, largely funded by governments and religious organisations and motivated by the wish to achieve national prestige, to convert listeners to particular ideologies or religions, or occasionally for commercial purposes (how many listeners recall the "commercials" on American short-wave
broadcast stations for a period before the "Voice of America"?). Some provide excellent programmes but at the same time they have helped to reduce large portions of the h.f. spectrum to a shambles, due to attracting the "jammers".

Will it always be so? There is an increasing range of general-coverage receivers now available, including a number with ingenious "triple-mix" tuning systems and some with digital frequency readout that make it easy to tune to any required frequency and provide the necessary sensitivity and selectivity, although mostly at a cost appreciably higher than what the average listener has been used to paying for a broadcast set. In effect these are virtually "communications receivers" and have already led to something approaching a boom in shortwave listening in Japan.
Clearly someone who feels there is an increasing interest in short-wave listening is Mitch Murray who has recently brought out a long-playing disc Long Live Short Wavel (TransIsland Productions Ltd, P.O. Box 24, Douglas, Isle of Man). One side of this record is devoted to useful advice on short-wave listening as a hobby, including a short section by Henry Hatch, G2CBB whom many enthusiasts will know from his regular participation in the BBC's World Radio Club programmes (0745 G.M.T. Sundays, 1115 G.M.T. Mondays, 2100 G.M.T. Tuesdays and 2315 G.M.T. Wednesdays on BBC World Service).

The other side of this record consists of tapes explaining and helping to identify a number of the h.f. broadcast services. In my view the most useful items are those which cannot be effectively described in print, such as the identification not only of broadcast stations but of various types of communications signals such as radio teleprinter and facsimile signals, and how to tune stations using singlesideband.
But here again one feels that Mitch Murray is aiming his record at those who have already caught the bug and may only confirm to the majority of broadcast listeners that this is a hobby of undoubted fascination to the initiated but something quite apart from normal entertainment radio.
I must admit to having rather jaundiced views about the large demands which are being put forward, with an
eye to the World Administrative Radio Conference this September, for a vast increase in frequencies for h.f. broadcasting, including the use by European stations of the bands normally reserved for "tropical" use only.

As I have written elsewhere: "Broadcasters and governments must come to grips with one simple, overwhelming fact of life-much of the present mess in radio allocations is due to expanding external broadcasting, while pretending this does not affect domestic broadcasting and other services: such a policy is possible only by allotting more and more of the precious frequencies to broadcasting at the expense of other services."

The Museum Amateur Stations

For many people, the first time they ever see an "amateur radio station" is the impressive GB2SM installation at the Science Museum in Kensington, London where the number of visitors exceeds a million a year. Sometimes, I must admit, I do wonder whether the very elaborate set-up may tend to suggest to some of the visitors that amateur radio must be an excessively expensive hobby. This in fact need not be the case (my own present equipment on which I can work the world cost me well under £100). But GB2SM has undoubtedly for many years set an example for other museums to follow.
1 occasionally hear, for example, NN3SI, the amateur station established a few years ago at the Smithsonian Institution's National Museum of Technology in Washington, DC, USA. When I visited this station a couple of years ago, it included a pretty full complement of the latest American and Japanese h.f. and v.h.f. equipment. The station is manned by volunteer operators from the Washington area. There are two operating consoles, one for h.f. and the other for v.h.f.f, with an impressive h.f. rotary beam on the roof.

The latest museum station is VK2BQK at the Museum of Applied Arts and Sciences, Sydney, Australia. This has a number of Yaesu h.f. and v.h.f. transceivers and an FRG7 general purpose h.f. receiver donated by the Dick Smith Electronics Group. Over 300,000 people visit the museum annually and the Australian amateurs believe that the new station will help recruit more enthusiasts to the hobby as well as educating the public generally about radio communication.

ELECTRONICS BY NUMBERS
LED BAR GRAPH UNIVERSAL INDICATOR
Now using EXPERIMENTOR BREADBOARDS and following the instructions in "Electronics by numbers" ANYBODY can build electronic projects.
Look at the diagram and select R1, this is a resistor with a value between 120 to 270 ohm. Plug it into holes X20 and D20, now take LED 1 and plug it into holes E20 and F20. Do the same with the Diodes e.g. plug D7 into holes G7 and G10.

YOU WILL NEED
EXP-ANY EXPERIMENTOR BREAD30ARD
D1 to D15 - Silicon Diodes (such as 1N914) R1 to R6 - From 120-270 ohm resistors $1 / 4$ watt.
LED1 to LED6 - Light emitting diodes.
LED BAR GRAPHS are replacing analogue meters as voltage-level indicators in many instances.
This circuit uses the forward voltage drop of diodes to determine how many LEDs light up. Any type of diode can be used but you must use all the same type. For full working details of this circuit fill in the coupon.
If you have already built the Two-transistor Radio and the Fish'n'cliks projects you will find that you can reuse the components from these projects to build other projects in the series.

FILL IN THE COUPON AND WE WILL SEND YOU FREE OF CHARGE FULL COPIES OF "ELECTRONICS BY NUMBERS" PROJECTS No 1 , No 2 and No 3.

PROTO-CLIP TEST CLIPS.
Brings IC leads up from crowded PC boards. Available plain or with cable with clips at one or both ends.
$P C-16$ pin. $£ 2.75$.
PC - 16 pin with cable. €6.00.
PC -16 with cable and 16 pin clips at both ends. £10.25.

Europe, Africa, Mid-East: CSC UK LTD. Dept 4T, Unit 1, Shire Hill Industrial Estate, Saffron Waldon, Essex CB11 3AQ. Telephone: SAFFRON WALDEN 21682.

EXPERIMENTOR BREADBOARDS.
No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts 8,14,16 and up to 22 pin IC's. ONLY £1.60.

EXP. 350.
£3.15.
270 contact points with two 20 -point bus-bars.

EXP. 300. 550 contacts with two 40-point bus-bars. £5.75.

EXP. 650 for Microprocessors. £3.60.

EXP 4B.
More busbars. £2.30.

ALL EXP. 300 Breadboards mix and match with 600 series. series.

HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT, FISH'N'CLIKS AND LED BAR GRAPH.
CSC UK LTD. Dept 4T, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or credit card number and expiry date. OR telephone 079921682 and give us your Access. American Express or Barclaycard number and your order will be in the post that night.
EXPERIMENTOR. CONTACT HOLES. IC CAPACITY 14 PIN.DIP.

EXP. 325	130
EXP. 350	270
EXP. 300	550
EXP. 650	270
EXP. 4B.	Four 40 Point
Bus-Bars	
TEST CLIPS	
PC. 16.	
PC. 16-18.	
PROTO-BOARD Clip.	
PB. 6 .	
PB. 100.	760

UNIT PRICE
INCLUDING POSTAGE AND V.A.T.

f	2.53
f	4.21
f	7.29

£ 7.29
£ 4.69
$£ 3.29$
£ 3.78
£ 7.56
$£ 12.15$
£11.01
NAME

「N part 2 we saw how the microprocessor chip is able to FETCH instructions from memory and then EXECUTE them. In Parts 3 and 4 we examined the rom and ram chips in which the instructions can be stored. It is now time to consider the sort of instructions which are available to the programmer, and how these can be strung together to form a useful program.

It is the "programmability" of the microprocessor chip which gives it the power and flexibility to do almost any kind of control job which we need done.

With one program, a microprocessor system could be used to control motorway signals. With a different program, it could be carrying out scientific calculations, playing children's games, or winging its way to the outer planets on board a space probe. In each case, the same microprocessor could be used. All that changes is the program and the peripheral hardware.

MACHINE CODE

The instructions which the microprocessor needs in its ROM or RAM are called "Machine Code" instructions, because they directly modify the operation of microprocessor chip facilities such as registers and the Arithmetic \& Logic Unit (ALU). These instructions are stored in binary form in the rom or ram chips, and binary is really the only language a micro' chip understands.

HEXADECIMAL CODE

To make life a little easier for us humans, who find binary a clumsy and difficult coding system, a useful shorthand code called "Hexadecimal" (hex) has been developed. Hexadecimal code is just another way of writing binary but it is much easier to use. It relies for its success on the fact that
microprocessor word lengths are usually multiples of four bits (such as $4,8,12,16$).

To convert a binary number into its hex equivalent, just chop up the binary into four-bit chunks, starting at the righthand, or least significant, end. With four bits there are 16 possible combinations (i.e. 2^{4}), and the next step is to replace each group of bits with a single character from the set $0-9$ and A-F. In this way 0000 Bin . becomes 0 Hex, 1111 Bin . becomes F Hex, and 1010 becomes A Hex. To convert Hex to Bin you simply reverse the process, using a table like Fig. 5.1.

Eight-bit words now reduce to two hex digits and are therefore much easier to use and remember. We can't use decimal numbers in the same way of course, because there is no grouping of bits which gives us exactly ten combinations. Three bits have eight combinations and four bits have 16 and so on.

After a little practice hex code is quite easy to use, and most small hobby microprocessor systems are supplied with a resident program called a monitor, which allows you to enter your own programs in Hex rather than in binary.

DIFFICULT

Let's not kid ourselves, writing machine language programs for a microprocessor is a difficult and at first frustrating, business. Why then do people bother to do it at all? Well, I think, it's true to say that there is no better way to appreciate and learn about the exciting field of microprocessing than by learning how to make that hobby system actually do something useful under the control of your own machine code program. Once you have taken the plunge, it all seems to get much easier, and before you know where you are, you will be a dedicated micro'-nut!

Machine language programming is quite difficult because you have to understand the hardware of the system and what it can do before you can write a list of instructions to make it do it. You may have done some programming on a large computer which runs one of the so-called high-level languages like BASIC, and if you have, you may be thinking that "big" computers are much easier to program because they let you say things like:

$$
\text { LET } \mathrm{X}=\mathrm{A}+\mathrm{B}
$$

in your program.

Programming a microprocessor in machine code to carry out the same task would mean keying in a string of hexadecimal characters, so obviously there's a big difference, or is there?
Well, no actually. The big computer has a primitive machine "language" just like the micro's only with a larger repertoire of instructions. To get it to accept English statements like:

IF $\mathrm{X}=5$ THEN GO TO 20 someone has had to spend long hours writing a large program in machine code which then interprets the "High-level" instructions which you write in say, BASIC or FORTRAN.

Just the same thing can be done for a microprocessor, and the new microprocessor-based home computers have BASIC interpreters available which are themselves written in machine code. Trouble is, systems with these facilities are very expensive, and they may not be the best way to start out anyway.

BASIC is great for programs to solve mathematics problems and to balance business accounts, but try and cook up a program to control a model train layout or your central heating system and things can get a bit tricky. To do these jobs you really need to write your programs in machine code, and
you'll also have to put together some simple electronic interface circuits to handle your points, signals, or gas boiler controls.

If you are an electronics enthusiast, which I expect you are then this sort of thing could be just what you are looking for, and it has the big advantage of being cheap-you can buy a micro' system for machine code programming for less than $£ 50$.

So there you are, machine code programming is a real challenge, but it's well worth the effort of learning how to do it, and as an electronics enthusiast you'll appreciate the close association with hardware which machine code programming gives you.

INSTRUCTION SET

One problem with machine code programming is that each machine (microprocessor) has its own unique instruction set, and you'll have to study the internal architecture and associated instructions of the micro' you decide to buy. There are lots to choose from. Some you may have already heard of are the National SC/MP, the Intel 8080, the Motorola 6800 and perhaps the RCA 1802 COSMAC.

All have different instruction sets and are quite different in so far as the number and types of
internal registers and control bus signals are concerned.

The SC/MP has about 50 instructions available, which means that it is quite a simple microprocessor and fairly easy to use. Other microprocessors have much longer instruction sets which makes them more powerful, but in some cases a bit more confusing for the beginner.

You can take a look at the SC/ MP instruction set in Fig. 5.2. Confusing, isn't it? One reason the action of some of the instructions is not immediately obvious, is because you need to appreciate the internal facilities of the SC/MP chip first (Part 2 of Microprocessor Basics could help here). Don't hope to understand all of the instructions at once though. Start with a few obvious ones like ADD or load. The significance of the others will come slowly once you start to try out sample programs.

Notice that Fig. 5.2 describes an instruction in three ways. The Opcode column shows the hex code which converts directly into binary when you load it into memory. The Mnemonic column contains a short "name" for the instruction to make it easy to remember and quite compact when written down as a program. The Operation column gives a brief description of the effect of the instruction, and
this is sufficient information for only the experienced programmer.

To appreciate what "Pulse Hflag" really means, we need to refer to a more detailed description, and this can be found in the SC/MP manual.

The other thing the manual will tell us is that the entries in the Opcode column don't tell the whole story. As listed in Fig. 5.2, all the opcodes consist of a single byte (eight bits) but many SC/MP instructions use two bytes. The extra byte is actually data or address information which may be needed to make the instruction make sense, and this will be different every time the instruction is used.

INSTRUCTION TYPES

To make more sense of an instruction set it is useful to divide it up into various "classes" of instruction. Some manufacturers do this for you in their manuals, and they don't all agree about what classes to use. I have chosen a fairly typical selection of titles, so let's have a look at them one by one.

DATA TRANSFER GROUP

Apart from the automatic in-struction-fetch operation a micro' chip performs, it also needs to

Fig. 5.2. Opcode index of instructions for the National SC/MP.
 of a logical "AND" instruction.

MICROPROFILE: PRACTICAL PROGRAMMING

Let's assume that you have taken the plunge and bought one of the simple micro' kits now available. You have great fun wiring it up, but now comes the tricky bit-what do you do next?
READ THE MANUAL. It looks daunting at first, but it has to be done. You need a familiarity with the hardware, the instruction set of the micro-processor chip, and with the basic monitor program supplied by the manufacturers which allows you to enter your own programs.
After studying the manual you can try out some of the example programs which are usually given. You may find it difficult at first to see just how some of these programs operate, but by persevering and making sure you understand each line before moving on, the use of instructions and addressing modes should eventually become clearer.
Now what? At this point the manual can let you down, you are on your own, and you begin to realise that writing and running your own programs is very different from running the example programs in the manual!
The best way to get started is to follow some sort of method, and until you work out a better method of your own, you may like to try mine.

STEP ONE

The flow chart. I always find a flow chart a very useful program design aid because it can be drawn up very quickly, and it helps you to visualise the sequence of program steps required. You can modify flow charts easily, and you can make successive generations of them, each more detailed than the last, as you zero in on the desired program.
There's no need for lots of fancy shaped boxes, you don't even need a stencil. I use three shapes-circles for the beginnings and endings of programs, square boxes for activities, and diamonds for decision points.

The first flow chart should be very general in nature, you can write things in the boxes like "turn light on" or "set up count register." The final flow chart should take into account the actual instructions and hardware available. You can even write the mnemonics you intend to use in the program, in the boxes if it helps.

STEP TWO

The listing. With a good idea of how the program will work derived from the flow charts, you can now start to list the sequence of mnemonics which will eventually become the program proper. For this step a pad of machine code programming sheets can be useful, but these are not easy to come by, so you can make up your own as shown in Fig. 5.4.

Each line on the sheet corresponds to one location in memory, so for two-byte instructions you will have to use two lines of hex code. To start with you should list your program in mnemonic form only, multi-byte instructions should have the mnemonic on one line followed by an appropriate number of blank lines for the address or data which can be entered later.
Locations which will be destinations for jumps can be given names, and these can be listed in the label column. Instructions which are jumps can use the appropriate label in their mnemonic column.

The comment column is there for you to write in as much plain English as possible to explain the action of your own program-ignore it at your perill

Always fill out these sheets in pencil. You will need to modify them at some stage, and writing it all out again is a pain.

STEP THREE

The coding. With all the mnemonics and labels now listed, the time has come to translate the listing into its equivalent hexadecimal form, ready for use.
To do this you need the opcode listings in the manual, you will also need to code any immediate data into hex, and look up the label destination addresses on your sheets before entering them in the proper place in the hex column.

STEP FOUR

Try it out. It probably won't work at first, (they hardly ever dol) but using the monitor program in conjunction with your listings you should be able to pinpoint the problems fairly quickly. Modifications, if they are required, can be difficult to implement due to the need to move whole blocks of instructions around if an extra line is needed. There are two things you can do to ease matters.
(i) Start with short programs.
(ii) Sprinkle NOP instructions around in your program. These can be replaced by the extra instructions required without a substantial rewriting job.
If you feel that there must be a better way, well, there is a better way. On larger, more expensive systems, a program known as an "assembler" can be used to take the difficulty out of programming in machine language. With an assembler you don't have to worry about absolute addresses or hex code, and the machine code is replaced with what is known as assembly language-but that's another story!

MACHINE CODE PROGRAMMING SHEET				
TITLE	SWITCHCHECK			
PAGE No	6	DATE OS O 79 IN		NITIALS RWC
$\begin{gathered} \text { ADDRESS } \\ \text { (HEX) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CODE } \\ & (\mathrm{HEX}) \end{aligned}$	LABEL	$\begin{aligned} & \text { OPCODE/ } \\ & \text { OPERAND } \end{aligned}$	COMMENTS
O1A8	BA	BACK	DLD	CHECK IF DONE
01A9	09		COUNT	
O1AA	9 C		JNZ	NO IF JUMP
01AB	ED		LOOP	
OTAC	C2		$\angle D$	
OIAD	OA		PUSHED	CHECK IF KEY
OTAE	98		JZ	PRESSED
OIAF			CK	

Fig. 5.4. An example of a listing of instructions, which will eventually constitute the program. Sheets like the one shown should be drawn up by the individual for his own use. Fill in entries in pencil to permit alterations.
"fetch" data from memory or "put" data to the memory under the control of the instructions themselves. This is done during the execute portion of an instruction cycle. Instructions which move data around, whether to and from memory or between internal registers, can be called "data transfer instructions."

Examples from the SC/MP instruction set include:
XAE Exchange the contents of the accumulator register and the extension register.
LD Load data from memory into the accumulator.
ST Store data from the accumulator into memory.

ARITHMETIC \& LOGIC GROUP

We all know that microprocessors can do sums, but it comes as a bit of a surprise to find out that they aren't very good at them! It's not that they get the wrong answers, it's just that they can only do very simple sums when
you buy them, the sort of sums you could do when you were six.

With most microprocessors arithmetic precision is limited to eight bits, and there are no multiply or divide instructions at all, so really they are pretty dumb. Their strength lies in the speed with which they operate.

By stringing together a series of eight-bit addition operations to form a program segment or "routine", it is possible to make your pet micro' carry out arithmetic to any desired precision. Similarly, by using a different "routine" it is possible to perform multiplication and division.

If you have to, it is also possible to write programs to generate SIN, COS, TAN, LOG and other functions, but notice the operative word program, you don't get these goodies as part of the instruction set! Examples of arithmetic instructions from the SC/MP set include:
ADE Add the contents of the extension register to accumulator.

ADD Add the contents of a memory location to the accumulator.
CAD Complement the contents of a memory location and add it to the accumulator. (Performs subtraction.)
Logical instructions work just like gates, only since the micro' works with eight bits at a time, one instruction is similar to a collection of eight gates. The logical instructions work on a pair of words at a time, so using the gate analogy they are actually twoinput gates (Fig. 5.3). Examples from the SC/MP set include:
ane Carry out a logical and function between the contents of the accumulator and the contents of the extension register.
or Carry out a logical or function between the contents of a memory location and the accumulator.
xrI Carry out an exclusive-or function between the contents of the memory location following this instruction, and the accumulator. To be continued

EE2020 TUNER AMPLIFIER (December 1978 to May 1979)

ELECTRONIC DICE (May 1979)
We apologise for the following errors that occurred in this article: Components List, page 274 R4 should read 100k 2
1C1, 4 should read 74C193 CMOS 4-bit \therefore counter The p.c.b. (page 274) should be amended as shown below.

We apologise to readers for some errors that have occurred in the course of this 6 Part Series. They are not serious, and constructors will probably have already detected and rectified these mistakes.

Page 878 (Dec. 78)
FIXED RESISTORS
should read:
1 k 2.24
4.7ks 15
$330 \mathrm{k} \Omega-12$

CAPACITORS Polyester, Mullard type C280 add: 250 V
first item should read: $0.01 \mu \mathrm{~F} 2$
Electrolytic, Printed Circuit type
delete the entry: $22 \mu \mathrm{~F}$ 63V 1

Page 879 (Dec. 78)
Fig. 1.2b Circuit Diagram, Power Amplifier and Power Supply,
The lower end of R101 should be disconnected from the line to "TD3" and taken instead to the TD2a line, as correctly shown on the practical layout diagram Fig. 3.2.
(Already covered in NOT E to caption for Fig. 3.2).

Page 102 (Feb. 79)
Fig. 3.3 Printed Circuit Board B. Unforiunately, two holes have become obllterated during printing.
(i) Immediately above the central bus bar, about pad requires a second hole, just below existing one. This is for the wire link (see Fig. 3.4),
(ii) One hole for C38a may not be clear, this is the mid one of three on the long
"vertical" pad, about 1 inch to the right of "TB3a".
Capacitors, should read: C35a,b 0.047 1 F
Page 242 (April 79)
Fig. 5.5. Pushbutton switches.
The letters "c" and "d" on switch $\$ 2$ should be transposed. Connection is made to S2c, at the underside (p.c.b.) only.
S2d is not used at all. (Already covered by Exratum on page 309).

Stereo Decoder IC2

Motorola MC1310 is a pin-for-pin replacement for the type specified, and may be more readily available.
(Already covered in Part 6, page 309).

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

OTHER UNITS IN THE RANGE

Of all the purpose-built power amplifer modules by ILL.P., the HY50 is understandably the most popular with those wanting to build or up-grade a hi-fi system, run a small high quality P.A. system, ampllify a musical instrument (say for practise or small range use) or use it for lab work. Its useful 30 watts RMS output into 8 ohms, its rugged construction and freedom from heatsink worries make HY50 the ldeal all-purpose quality power amp-and it is unconditionally guaranteed for five years. Ten of thousands are in use throughout the world

. . . and a spec that means what it says!

Encapsulated power amp with integral full-rated heatsink. Input500 mV .
Output 30 watts RMS $/ 8 \Omega$.
Load Impedance- 4 to 16Ω.
Distortion- 0.04% from 100 mW to 25 watts at $1 \mathrm{KHz} / 8 \Omega$.
Supply Voltage $\pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$.
Inc. V.A.T. and postage in U.K.
$e^{28 \cdot 15}$
Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heatsinks, encapsulated circuitry, no-compromlse production standards and true professlonal finigh ensures world leadership for 1.L.P. Now we have upgraded output ratings and down-gradad prices to bring I,L.P, within easier reach of all who want the best.

Now production techniques enable us to roduce prices by an average of 20%, making I.L.P. a better buy than ever.
USE OUR FREE POST SERVICE for sending your orders, requests for information sheets etc. Simply address envelope. No stamps required.

©-r ELECTRONICS LTD.

FREEPOST 3
Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP Phone (0227) 54778

OTHER UNITS IN THE RANGE
All prices inc. V.A.T. \& Postage in the U.K.

HY5 PRE-AMPLIFIER

Compatible with all I.L.P. power amps and P.S.U.'s in a single pack, needs external pots and switches. Multi-function equalization. 5 inputs, High overload margin. Active tone controls. 500 mV out. Distortion at $1 \mathrm{KHz}=0.01 \%$. Two connect easily
for $\mathbf{~} \mathrm{K}^{2} \cdot 22$

THE POWER AMPS

With heatsinks, full load line and thermal protection. Distortion fypically 0.05% at 1 KHz
HY120 60 Watts RMS $/ 8 \Omega \quad 114 \times 50 \times 85 \mathrm{~mm} \quad £ 16.42$ HY200 120 Watts RMS $/ 8 \Omega \quad 114 \times 50 \times 85 \mathrm{~mm} \quad \mathbf{\Sigma 1 9} \cdot 92$ HY400 240 Watts RMS $/ 4 \Omega \quad 114 \times 100 \times 85 \mathrm{~mm} \quad 529.89$

THE POWER SUPPLY UNITS
(Spllt line outputs to suit I,L.P. power amps and HY5) PSU50 for 1 or $2 \times$ HY50 $£ 9.11$ PSU70 for 1 or $2 \times$ HY120 $\mathbf{E 1 4 . 7 0}$ PSU90 for one HY200 $\mathbf{\Sigma 1 4 . 7 0}$ PSU180 for one HY400 or $2 \times$ HY200s $824 \cdot 50$

NOW-PRICES DOWN BY 20\%

Please supply
Total Purchase Price.
1 Enclose Cheque Postal Orders \square Money Order \square
Please debit my Access account/Barclaycard Account number....................................
Name
\qquad

FP3
Signature..
Signature
宜
Reg. Bus No. 1032630 Eng.

UORHSHOP

MATTERS

By Harry T. Kitchen

Choosing a Multimeter

For the beginner undoubtedly the biggest single cash outlay involves the purchase of a multimeter. This is essentially a moving coil meter movement with a number of resistors, rectifiers and batteries, which by suitable selection will enable you to measure d.c. and a.c. voltage, d.c. current certainly, and possibly a.c. current also, and resistance. A few instruments permit the measurement of capacitance as well.
Basic multimeters start at around £10, whilst the more comprehensive, accurate, and reliable instruments cost around $£ 100$. How do you select a suitable multimeter? There is, in my view, no simple, categorical answer; it all depends on your bank balance, ambitions and your priorities.

Draw up a list somewhat as follows: cost; d.c. and a.c. voltage; d.c. and a.c. current; resistance; possibly capacitance; d.c. and a.c. input resistances. Shuffle it around, try to arrive at a balanced compromise. Then look at brochures.

Sensitivity

Still unsure? Be of good cheerl It's not too difficult. Let us look first at input resistance, which invariably is quoted as an "OPV" figure. This stands for Ohms Per Volt, and denotes the sensitivity of the instrument, its goodness factor if you like.

The higher the OPV factor the more useful the instrument for electronics workshop use. The norm now is $20 \mathrm{k} \Omega / \mathrm{V}$, though $10 \mathrm{k} \Omega / \mathrm{V}$ is acceptable. A few instruments offer $100 \mathrm{k} \Omega / \mathrm{V}$.
This method is in my view illogical. What ought to be quoted is the meter sensitivity, the current it consumes for full-scale deflection or f.s.d. Ohm's law shows that for the above cases this will be $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, and $10 \mu \mathrm{~A}$ respectively.

These figures apply to the measurement of d.c. voltages only. Measurement of a.c. voltages requires the use of a rectifier interposed between the range resistors and the meter. Due to the characteristics of the rectifiers, the a.c. input resistance is less than the d.c. input resistance. A factor of $x 4$ to x 10 is usual; thus a $20 \mathrm{k} \Omega / \mathrm{V}$ meter may have an a.c. rating of between $5 \mathrm{k} \Omega / \mathrm{V}$ and $1 \mathrm{k} \Omega / \mathrm{V}$.
The f.s.d. rating is for full-scale deflection. This can have two meanings: the current required for full-scale
deflection of the meter movement, or the voltage or current that has to be applied to the terminals for meter f.s.d. The first is the basic figure; the second takes into account series or shunt resistors. A basic $50 \mu \mathrm{~A}$ movement could thus measure virtually any voltage or current; the limiting factor would be the series (voltage) or shunt (current) resistors.

Measurement of Resistance

Measurement of resistance is effected simply by connecting a battery in the circuit, in one of two ways; series or shunt.

In the series mode the battery, meter, and resistance to be measured are connected in series; the current to the meter being limited by the unknown resistance. Since the current is dependent on the resistance, the meter can be scaled directly in ohms. Zero ohms corresponds to maximum meter deflection, Maximum (open circuit) ohms corresponds to zero meter deflection.

In the shunt mode the unknown resistor is connected directly across the meter, and the opposite conditions apply. Generally, the series mode is used for high resistances, shunt for low. It is usual for the better class instrument to be provided with several ranges, accompanied by a change in battery voltage.

Current is measured by connecting resistors in parallel with the meter for d.c., and these shunt excess current away from the meter. For a.c. work it is usual to employ a transformer, the primary being tapped to suit the ranges required. The secondary then feeds into a rectifier as for voltage measurements.

Capacitance measurements usually invoke the use of the mains. In effect the reactance of the capacitor is measured, but the meter is scaled in terms of capacity. Since the frequency is fixed the range is small, and the facility is of very limited use.

Important Features

We agreed, earlier, that a multimeter should have as high an input resistance as possible; $10 \mathrm{k} \Omega / \mathrm{V}$ minimum, $20 \mathrm{k} \Omega / \mathrm{V}$ desirable. $100 \mathrm{k} \Omega / \mathrm{V}$ instruments are available, but are more fragile; incorporating a lighter movement for increased sensitivity.

The advantage of the $20 \mathrm{k} \Omega / \mathrm{V}$ instrument is that the majority of circuit diagrams are annotated with voltages
obtained by such an instrument. Meaningful comparisons can therefore be drawn whilst trouble shooting.

The upper voltage limit of most instruments is 1 kV d.c. and a.c. Some allow voltages up to 5 kV to be measured, some are limited to 500 V . Apart from the mains, there will be little necessity to measure above 250 volts. Thus 500 volts f.s.d. is quite adequate. Lower down, base/emitter voltages or diode voltage drops may have to be measured; 150 mV for germanium, 700 mV for silicon. Thus a meter minimum f.s.d. of 1 volt is essential.

Transistor currents can be very minute, in the microamp or nano amp region. For these a $50 \mu \mathrm{~A}$ f.s.d. scale is essential. Power amplifiers can consume several amps, so a 2.5 A or 5 A f.s.d. scale is essential, though 1A f.s.d. may serve at a pinch.

Resistance ranges should enable low value resistors to be accurately measured, and should enable reasonable accuracy to be obtained in the megohm region. A maximum of $10 \mathrm{M} \Omega$ is typical for a $20 \mathrm{k} \Omega / \mathrm{V}$ instrument, though at this extreme, faith is required, since calibration marks are very cramped.

Scales and Accuracy

Scales should be clear and totally unambiguous. A plethora of scales may look impressive, but closely spaced, multitudinous scales, aid and abet inaccuracy. Clear, widely - spaced scales, are infinitely superior.

Limits of accuracy, more accurately inaccuracy, should be specifled. Thus d.c. voltages can be $\pm 2 \frac{1}{2}$ per cent, d.c. currents ± 3 per cent, resistance ± 5 per cent and so on. Note, however, that this is the f.s.d. accuracy, and as the pointer drops down-scale so accuracy is degraded accordingly. At one-tenth f.s.d. our 3 per cent accuracy is now ± 30 per cent, a not-insignificant degradation. This is why multimeters have multiple scales so that the pointer can be kept as far up the scale as possible.

Crossword No. 17-Solution

due to component tolerances either TR2 or TR4 will begin to turn on faster than the other.

Assume that TR4 turns on the faster. As it does so the collector voltage will tend to fall in value. This negative signal is fed via C2 to the base of TR1. This has the effect of turning TR2 off, hence its collector voltage will rise. This positive signal is applied via Cl to the base of TR4 which will conduct even harder.

Eventually TR4 will saturate, thus its collector voltage will fall to near the negative supply, and the negative signal being fed back C2 via to TR2 base will cease.

Capacitor C2 will now commence to charge via R4 until about 0.6 V is present on the base of TR2, whereupon TR2 will now begin to turn on. As this happens a negative signal will be applied via Cl to the base of TR4 which will now tend to turn off. The collector will now go positive and this positive signal will be applied via C2 to the base of TR2 thus turning it on even harder.

Transistor TR2 will eventually saturate whereupon Cl will begin to charge via R3 until about 0.6 V is present at the base of TR4. This transistor will now commence to turn on again. This regenerative action will continue as long as the supply voltage is present.

The project to be described here is a very simple device, which indicates when the water in a bath reaches a certain level. Although the device was designed initially for use in one of the author's bathroom it can have many other uses such as a rain or snow alarm with an appropriate probe plugged in.

CIRCUIT CONSTRUCTION

The circuit of the Water Level Indicator is shown in Fig. 1, and consists of an astable multivibrator connected in series with a Darlington pair, the input to the latter being connected to the probe.

When the probe is dry, i.e., open circuit, the base of TR1 will also be open circuit and the Darlington pair will have a very high resistance between collector and emitter. In this state the multivibrator will be inoperative as it is effectively disconnected from the negative side of the battery.

However, when the probe is bridged by water, TRI will have a small base current flowing which will be amplified to an extent equal to the product of the individual gains of TR1 and TR3. The result is that TR3 will be turned hard on and 9 volts will appear across the multivibrator. Transistors TR2 and TR4 will now begin to turn on, but

Fig. 1. Complete circuit diagram of the Water Level Indicator.

COMPONENTS

Resistors

R1	$56 \mathrm{k} \Omega$	R5	$4 \cdot 7 \mathrm{k} \Omega$
R2	$4 \cdot 7 \mathrm{k} \Omega$	R6	$1 \mathrm{k} \Omega$
R3	$47 \mathrm{k} \Omega$	R7	100Ω
R4 $47 \mathrm{k} \Omega$			
All $\pm \mathrm{W} \pm 10 \%$		See	

Capacitors

$\mathrm{C} 1,2 \quad 0.02 \mu \mathrm{~F}$ disc
C3 $\quad 4 \cdot 7 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. page 426
Semiconductors
TR1, 2, 4, 5, 6 BC108 silicon npn (5 off)
TR3 BC107 silicon npn

Miscellaneous

SK1 3.5 mm jack plug
LS1 $80 \Omega 50 \mathrm{~mm}$ loudspeaker
S1 s.p.s.t. miniature toggle B1 9V PP3 battery
Stripboard, 0.1 inch matrix 24 holes by 12 strips; plastic case, size $110 \times 60 \times 30 \mathrm{~mm}$ or similar; connector to suit battery; 4BA hardware; materials for probe; connecting wire.

Fig. 2. (above) Stripboard layout also showing the breaks to be made. (Below right) The remainder of the wiring is completed as shown here.

Fig. 3. Probe construction details. Only one needs to be made depending on application invisaged.

This type of multivibrator is said to have quasi-stable states, i.e., there are two states which the circuit may be in at any instant: TR2 saturated and TR4 off, or TR4 saturated and TR2 off.

The output from the multivibrator is amplified by transistors TR5 and TR6 and is heard in the loudspeaker.

Most of the components are mounted on a piece of 0.1 inch matrix stripboard, having 12 strips by 24 holes. The first step is to make the required breaks on the underside of the board. The component assembly and general wiring can now be made according to Fig. 2.

The resistors should be soldered first, followed by the capacitors, care being taken to ensure that C3, which is an electrolytic type, is inserted correctly.
Finally, the six transistors can be soldered in. It is advisable to use a heatshunt on the lead-out wires since semiconductors are
easily damaged by excess heat. The loudspeaker, battery and other flying leads can now be soldered on to the board. For neatness the wires to the loudspeaker and jack socket can be twisted together.

CASE

The case used in the prototype was made of plastic and has overall dimensions of $110 \times 60 \times 30 \mathrm{~mm}$, although any larger size case can be used. A 4BA bolt and two nuts were used in the prototype to secure the stripboard to the case, one of the nuts acting as a spacer.
Suitable holes should then be drilled for the jack socket and on/ off switch.

TESTING

Before fitting the board into the case it should be thoroughly checked for dry joints etc. If all is well the battery may be connected and the unit switched on. At this stage there should be no sound from the speaker, however as soon as the probe is bridged, say, by inserting it into a liquid, a tone should be heard.
The frequency of the tone is approximately 760 Hz .

PROBES

The unit as described is really very versatile in that it can be
used for a variety of purposes. For example, a rain alarm, a snow alarm, a steam alarm, ete, simply by plugging in an appropriate probe. Three probes which could be used with the unit are shown in Fig. 3.
The first (a) is the "standard" probe used for detecting the level of water in a bath, and is simply a 3.5 mm jack plug. The second type of probe (b) may be used with the unit as a soil moisture monitor. The last probe (c) shown can be considered as a "universal" or all purpose probe, consisting of a piece of stripboard with alternate tracks joined together. This one can be used for detecting rain etc.

IN USE

The finished unit can be fitted to a bath in a number of ways, the exact method is left to the reader. For example, with a metal bath the unit can be attached to the side near the top by means of a small magnet.

For a non-metallic bath, fibreglass for example, providing the surface is reasonably smooth and flat, a rubber sucker could be the means of fixing the unit. Another possibility is to use a long strip of aluminium bolted to the unit and bent to suit the edge of bath used.

EE CROSSWORD No 17
 BY D. P. NEWTON

ACROSS
1 Loopy household wiring.
7 A bird that was Benjamin's aerial.
8 Makes contact.
9 Get going to switch $(4,2)$.
10 The ready battery is always there.
11 Concerning.
12 Washed high and dry in an earthy sort of way.
13 Rotate the pins (Anag.).
15 Currently a measurer.
16 Parcel of items, sometimes a deal.
19 A neat, little variable capacitor.
21 Battery unit having gaseous electrolyte? $(3,4)$.

23 Large electrical stress.
24 Call before out.
25 Electrical charging rate.

27 A gate ditched in the beginning. makes disturbed (Anag.).
28 Dalton was happy with it!
29 Pulsing to and fro.

DOWN

1 A switch, to be really hep or off it.
2 Bringing electricity into existence.
3 The controller, not unlike accu. mulator refuelling (2,6).
4 Iron of high carbon content.
5 If two fast-breeder reactors got together, would this be their closely related offspring?
6 Losing strength.
7 Devices for facilitating rotation of variable components.
11 Mountainous area from the latter part of a pick-up.
14 Clever or quick-witted.
17 Dislike another tale.
18416 A at 240 V .
19 Mike might be at it.
20 I might not chance it $(2,3)$.
21 Once thought to be a kind of electricity, in a faunal way.
22 Wind treads about in the tropics (Anag.).
26 A front on an inter basis giving access.

Solution on page 441

with Keith Cadbury

else would have dreamt of touching anyway.
(At the time I refer to, dear younger readers, Vandals were people that we had read about in our history books, who destroyed works-of-art, just as the Crusaders did, if they were not clearly, "Christian". Damage to other people's property was unthinkable, just after the Second World War, and all the damage that had caused.)

There was an inevitable argument with the driver of the bus. He didn't like us taking up all the luggage-rack space, and half of the gangway with stuff that took ten minutes to load and as long to unload at the other end. Sometimes the driver refused us entry, and we would sit on the equipment and wait an hour for the next bus, hoping that it would be a driver who lived in our village. He would have heard about dad's "machine", and would be looking forward to calling on us to see it working.
When dad finally got the contraption working, we would quite often have to turn it on during the day, when there were no transmissionsjust so that some visitor could see the 405-line raster, all green and blank (like me on January 1, every year).

THE GREEN-EYED MONSTER

The "Machine" took pride of place in our tiny living-room. About twelve cubic feet, it was encased in three-ply, and painted ex-War Department battleship grey, with rows and rows of black knobs of various sizes and designs. With an oil-filled glass magnifier strapped to the front of the miniscule green screen and dad mostly round the back of it, making adjustments with screwdriver and torch, it was nevertheless the first television in our village (excluding the squire's, whose splendid pre-war device, with a mirror inside the lid, had been described by a neighbour who cleaned for him).

The total cost of this (just) post-war example of ingenuity was something like eight pounds-a good week's wages in those days. And forever more there were boxes of valves, rackhandles, condensers (now called capacitors), rotary switches, etc, everywhere.

TODAY

What, in this day and age, would draw a whole "village", to wonder and admire? Perhaps, if I could afford it, I could be the first in my small town to construct a chess computer that plugs into the television receiver. There would be some callers, but only to ask where they could buy such a device (with a credit card), and can you get one that works in colour, as if chessmen have ever been anything but black and white.

The pioneering spirit has not disappeared completely, perhaps, but the days of a little man-in-the-street impressing those around him have gone, I fear. It's not what you have done, or what you can do, that impresses nowadays, but how much money you have made out of it.

GOODY BAGS

The surplus stores have gone, but there is a seventies-equivalent. Firms often seem to go into liquidation these days, and the vast amounts of stock they held are auctioned-off. Electronic components from such sources often end up in "Goody Bags" that can be bought from many electronics shops. A good source of cheap components.
A couple of weeks ago I walked down Tottenham Court Road, calling into various electronics shops. I visited Proops Bros' shop, and told the Irish manager of my childhood visits to Kingston-Upon-Thames, to which he laughed, and said it was before his time.
Although mass-production and modern marketing methods have given us (relatively-speaking) fantastic bargains, I think back, and feel that it must have been exciting to buy the complete electronic innards of a Halifax bomber for a pound (get it out yourself).

SELF SERVICE

Our local Tesco store recently got a new manager, who had ideas on shop-layout quite different from his predecessor. Whilst my wife, along with a thousand other housewives, complained bitterly at being unable to find things in their new positions, her old man was gleefully scrabbling about inside a skip at the back of the store.

Having obtained permission from the new man, I found and took away assorted sheets of white-enamelled aluminium (once used as shelves), a couple of double eight-foot fluorescent tube fittings, two eight-by-four laminated bench-tops, and an assortment of chromium-plated grills.

The grills can be used to protect loudspeaker apertures on cabinets that are lugged-about a lot, by groups or discos, for example. Sheet aluminium is always useful to electronics workers. The fluorescent tube fittings would be useful to me in my workshop, if seeing what I am doing would help me understand. (I swear that I could make half of my experimental circuits blindfolded, and my hands are guided from above, by that great Designer of infinite PCB's.) Anyway, a lot of useful stuff from just one skip of "rubbish."

ROOM THERMOSTAT

Famous Satchwell, elegant design. Intended for wall mounting. Will switch up to 20 amps a
mains voltage, covers the range 0.30 C . Special mains voltage, covers the range
snip this month $£ 3-25$,
ROD THERMOSTAT- $E 3 \cdot 00$.

WINDSCREEN

 WIPER CONTROL Vary speed of your wiper to suitconditions. All parts and instruc

MICRO SWITCH BARGAINS Rated at 5 amps 250 V . Ideal to make a
switch panelfor a calcuator and for 10 ozens
of other applications. Parcel of 10 (two RADIO STETHOSCOPE
types) for applications. Parcel of 10 (two
RAS Easiest way to fault find, traces,
signal from aerial to speaker, when signal from aerial to speaker, when Use it on Radio. TV, amplifile,
anything. Kit comprises transistors ane thing. Kit comprises transistors'
and parts including probe tube and and parts including pr.
twin stetho-set $£ 3-95$.

MULTISPEED MOTORS

 Six speeds are, available 500,800 and 1,000r.p.m. and $7,000,9,000$ and 11,0000 .p.m. Shaft is $\frac{z}{2}$ in. diameter and approximately 1 in. Iong Is
2301240 V . Its
Inpeed may bet futther controlled 230.240V. Its speed may be further controiled
with the use of our Thytitor controler. Very
powerful and useful motor size approx. 2 in. dia. $\times 5$ in. long. Price $£ 2$

12V MINIATURE RELAY

sets of change over contacts. The unlauted wath two this relay is its heavy lead out wires; these provide
adequate support and therefore the rolay neods no adequate support and therefore the rolay needs no
fixing; on the other hand there Is flxing bolt protruding through one side so if you wish you can fix the relay
and use its very strong lead outs to secure circuit comand use its very strong lead outs to secure circuit com-
ponents-an expensive relay; but we are offering it for ponents-an expensive relay; but we are offering
only 37p each. Don't miss this exceptional bargain!

EXTRACTOR FAN

Ex computers-made by Woods
of Colchester. Ideal for fixing through pane--reasonably quite Chice of two sizes $5^{\prime \prime}$ or $6 \mathrm{~F}^{\prime \prime}$ dia.
$E 5$, $E 6$.

MAIN RELAYS
With triple 10 amp changeover contacts-
operating coll wound for 230 V a.c. Chassis operating coll wound for 230 V a.c. Chassls
mounting one screw fixing. Price $£ 1.25$.
BURGLAR ALARM ITEMS
Circuit free on applicat
Trigger mats $24^{\prime \prime} \times 11^{\prime \prime}$
Relay 24 volt
Alarm Beil 24 volt $9-12$ vo
Mains
Reset, Switch, ordinary
Sirecret type with
24v Power unit mains operated
 Being in a plastic tube it is very easy to
break up the battery into separate cells and use these for rado control and
similar equipment. Carton similar
$81: 60$.

PP3/PP9 REPLACEMENT

leads size madine in plastic container with leads size $2 i n, \times 11$ in. $\times 11$ inn, this is ideal
to power a calculator or radio. It has a full wave rectifier and smoothed output of 9 V
suitable for loading of up to 100 mA . $£ 2.53$.
SWITCH TRIGGER MATS
So thin is undetectable under carpet but wurgiar alarms, shop doors, etc. 24 inn . burgiar alarms, sho
$13 i n . \times 10 \mathrm{in}, .61 \cdot 95$.

E5, $\mathbf{E 6}$.

DELAY SWITCH
Mains operated-delay can be ac-
curately set with pointers knob for periods of up to $2 \frac{1}{2}$ hrs, 2 contacts
sultable to switch 10 amps-second suitact
contact opens few minutes after 1 st contact 95 p.

25A ELECTRIC PROGRAMMER Learn in your sleep. Have radio playing and kettle boiling
 lights to ward off intruders-have
awarm house to come home to. a warm house to come home to. you can do if you invest in an
electrical programmer Clock by
fent famous maker with 15 amp on/off
switch. Switch-on time can be
set anywhere to stay on up to 6 hours independent 60 minute mem. ary jogger. A beautiful unit. $23 \cdot 50$.

MULLARD AUDIO AMPLIFIERS

Alt in module form, each ready bult complete with heat
sinks and connection tags, data supplied Model 1153500 mW . power, output 15 . 69.
Model 1172-10 watts power output ES-94 Model 11721 W , power output $£ 2 \cdot 25$. EP 9.901 twin channel or stereo pre-amp
$\& 2 \cdot 9$.
G.P.O. HIGH GAIN AMP/SIGNAL TRACER
 In case measures 5in $\times 3 \div \times 1 \div$
extremely high gain (70 DB) extremely high gain (70 DB$)$
solid state amplifier designed
or use as a signal tracer on or use as a signal tracer on
GPO cables etc. Functions very well as a signal tracer for fault
finding in radios etc. otc. By connecting a simple coll to the
input it becomes a useful mains input it becomes a useful mains
cable tracer. Uses standard 4 kv cable tracer. Uses standard 4fiv sockets and on-of volume
control mounted flush on the
top top. Many other uses include
general purpose amp, cuing amp etc. An absolute bargain
at only ± 2.25. Sultable 80 olim at only $\pm 2 \cdot 25$. Sult
THERMOSTATS
Refrigeration as illustrated with $36^{\prime \prime}$
capiliary $\Sigma 1.62$. Capmpet Stat must be mounted in close
cime contact callbrated $90^{\circ}-190^{\circ} \mathrm{F} 15$ amp con-
tacts. 11.62
Appliance Stat fix like a volume controlAppliance Stat fix like a volum
15 mp contact $30^{\circ}-80^{\circ} \mathrm{F} 55 \mathrm{~F}$. 15 amp contact $30^{\circ}-80^{\circ} \mathrm{F}$ 35.
ditto but for high temps Ex . 25 .
 SOUND TO LIGHT UNIT Add colour or white light to your
amplifier. Will operate 1,2 or 3 lamps (maximum 4sow). Unit in box all reedy

MINI-MULTI TESTER

 Amazing, deluxe pocket sizeprecision moving coll instrument jewelled bearings-1000 opv-mirrored scale. DC voits 10, 50, 250, 1000 AC volts $10,50,250,1000$ DC amps $0-1 \mathrm{~mA}$ and $0-100 \mathrm{~mA}$
Continuity and resistance $0-150 \mathrm{~K}$ chms.
Complete with insulated probes, eads, battery, clicult dlagram Unbelievable value only $£ 6-50+50 \mathrm{p}$ post and Insurance. FREE Amps ranges kit enable you to read DC current irom
$0-10$ amps, directly on the 0-10 scale. It's free if you purchase 0-10 amps, directly on the 0 -10 scale. Its sree , quickly but if you already own a mini tester and would like one send $51-50 \mathrm{p}$.
TERMS: Cash with order-but orders under $£ 6$ must add 50_{p}
to offiset paching, etc.
BUIK ENQURIS NIVITED. PHONE: $01-688$
ACCESS \& BARCLA YCARD ACCEPTED.

J. BULL (ELECRRCLIL) LTD

(Dept. E.E.), 103 TAMWORTH RD., CROYDON CR9 1SG

IT'S FREE
Our monthly Advance Advertising Bargains List gives details or bargains arriving or just arrived -often bargains an Interesting ilist and it's free-just send S.A.E. Below an interesting list and it's free-just send S.A.E. Below TELEPHONE ANSWERING MACHINES To be broken up or at least not used for their original purpose. Secondhand In good working order. We do not test them but guarantee to opllowas very good condition $£ 16.75+£ 1-24$, and top grade
olt machines, ourvery best almost perfect $£ 2 \cdot 60+£ 2 \cdot 50$ carriage NOTE model.
NOTE The items listed under SPARES FOR TELEPHONE
ANSWERING MACHINES ANSV machines, FOR TELEPHONE ANSWERING MACHINES Mostiy available ex stack.
EAD CASSETTE Which giveo first message to caller. Price E4-35. MICROPHONE With inbuilt pre-amp for recording cassette. Price z5 90
THIS MONTH'S SNIP is a brand new two piece Intercom. Far East manufacture complete with 50 ft plug ended inter
connecting lead. Master station and sub station can call each ther. Set In neat cream coloured case that are very suitable or office or home or as a baby alarm etc. new stock but some may need aftention, a bit of re-soldering perhaps. Offered at PORTABLEFLUORESCENT LAMP Ideal
really a must for the motorist. You never know when you need light and unlike the average torch the Ilght from this lamp Another point, this has a lead which you can olug into the ar lighter socket thus its saving internal batteries. A the argain complete with $9^{\text {t }}$ tube ready to operate. Price $£ 7-95$. oniy professional Anemometers. Quite complete i.e, the generator with its rotating cups, weather proofed for mounting on a mast, and the main intrument which directiy indicates wind speeds of up to 100 mph . Furthermore there
is a facillty for setting off an alarm shouid the wind speed is a facility for setting off an alarm shouid the wind speed are brand new and complete with handbook. Price $£ 189$.
ENAMELLED COPPER WIRE Avallable on one pound reels ut will also get odd numbered sizes to order. Price for 10 , $2,14,16,18$ SWG $£ 2-70$ per pound, $81 p$ per quarter pound. $30,32,34,23-24$ per pound, $£ 1 \cdot$-es per quarter pound. 36,38 and 40 §3.78 per pound, $£ 1-25$ per quarter pound. Thinner sizes also available to order price on request.
SOLENOIDS WITH SLUG We have a
rom 12 volts to malns volts. A new one arrived the of these onily $1 t^{\prime \prime}$ long \times Coi. or 10 volts $A . C$. very compact size crews for fuxing and the slug is also threaded. Price 81 p . WANT A CHEAP ELECTRIC FAN We cen offer the $\dot{q}^{\prime \prime}$ stack motortion motor with a 6 bladed tan, mount this on a stiff wire frame or a plece of handy angle and you will be able Renty of extractor fans and blowers in stock please let wis hav. WA enquiries. WANT A MILLION RESISTORS These are $\frac{1}{2}$ watt, 1 watt and 2 watt carbon types, all neatly packed in boxes with value
dearly marked. Resistors themselves are colour coded and are perfectly standard, not every value of the range is included but perfectiy standard, not every value of the range is included quantity of any one value. Ideal stock for retail shop or service SERVICE ENGINEERS ASSORTMENT I.F.'s AND OSC COILS Standard for many Jap and Hong and cassettes etc. 100 assorted price $85-60$
HEATING PAD $11^{\prime \prime} \times 81^{\prime \prime}$, wafer thin 250 watt. Price $\AA 1 \cdot 16$. fuorescent tube, ideal for paint drying also for radlant heating in workshops and stores where overall heating is too costiy. RADIOMO Comple with mounting clip and connector. Price z3-75. AbIIM OBILE CAF CAR RADIO L EM make, 12 volts. Price £22)25.
MAINS TRANSFORMER 30 volts 2 amp secondary upright mounting, primary and secondary would on separate bobbins or addional
REL.AY Plug in, 3 changeover in clear plastic case 12 volt
D.C. or 25 volt A.C. Price $£ 1=08$ each. 11 pin bases to suit 39 p D.C. or 25 v MERCURY OPERATED SWITCH Glass
5 amp with $12^{\text {en }}$ yery flexible leads. Price £f-62. SPECIAL MULTI CORE CABLES Heavy duty types 140076 cores. PVC insulated and colourcoded and each core with metal braided screen, all cores laid logether and PVC covered. The following types in stock, 4 core 25p, 6 core 30p.
7 core $35 \mathrm{p}, 12$ core 50 p . All prices are per foot and sublect to 8% Vat. Cut to any Iength, carriage extra if order under E6. -1 IMA PANEL METER Flush mounting and in a waterproo case made for American equipment, scale divided into zones but not numbered. Price f2 o reel machine, special fluid (Isoproypl alcohol) in felt tipped dispenser. Price 35p.
UNISELECTOR Base moun

Tamsa 9 pole 12 way 50 voit PLUG IN UNISELECTOR Ref. No: AP 212958 definitely a piece of precision equipment, it measures approximately $5^{\prime \prime}$ could be used as solder tags. Probable cost would be at least $£ 20$ each. We have only a few. Price $£ 5 \cdot 40$.
REDOING YOUR LIVING ROOM? If you are thinking of maiking a log effect fire place, we have the fibre glass tops, which when lit up give the full log effect. Size approximately UP TO 5 MIN TIMER mains motorised, the dis
In TO 5 MIN TIMER mains motorised, the dial calibrated in $1 / 10$ th of a minuta up to 5 mins-its motor is a slipplng time to travel to its stop, then it slips until the motor is switched off. A micro switch operated at the end of its travel. This micro switch could be used to operate auxiltary switched to make the time repeat, switch off etc etc. American madeex equipment-belfeved unused. Price $23-20$.
MAINS STOPPER 24 way stud switch two main First ratchets the switch arm around one stud per impulse second solenoid returns the switch arm to position 1 on metal chassis size approx. $41^{\prime \prime} \times 3^{\prime \prime}$ on which is also mounted a
double changeover mains relay. Price $£ 4$ - 86 double changeover mains relay. Price $24-85$ MINIATURE MAGNETIC CIRCUIT BREAKERS trips faster than fuse can blow, use it to control your service bench your fuse box with a line of these. Avallable as follows:
1 amp- 5 amp $10 \mathrm{amp}-15 \mathrm{amp}-25 \mathrm{amp}$. All same price $£ 2 \cdot 26$
each.

EVERY constructional article (and many other articles) appearing in Everyday Electronics contains a circuit diagram. This shows how the components must be interconnected to achieve the required function. The components themselves are for clarity, simplicity and standardisation, represented by "circuit symbols".

This month's beginners page is devoted to the basic and most common types of circuit symbols used in EE.

RESISTORS AND POTENTIOMETERS

Fixed value resistor

CAPACITORS

MISCELLANEOUS

The Extra ordinar Experí ments of Proiessor Eversure

by Anthony John Bassett

Bob has asked the Prof. to tell him more about possible uses for electronically produced beams in space. They are inside the Prof.'s giant experimental vacuum chamber where, dressed in "space suits", they can carry out experiments in a simulated space environment.
"Before you can begin to comprehend the vast range of possibilities and uses for these beams in the vacuum of space, and other environments such as may be encountered on and near the planets, asteroids, comets and clouds of gas and dust in some regions, it is best to learn something of the properties of the beams themselves, and of their sources."

ENERGY CARRYING BEAMS

"One of the fundamental properties of these beams is that they carry energy. The energy is carried in various forms according to the nature of the beam. Each type of beam emanates from a source which must have an adequate supply of energy with which to produce the beam.

Because the beam takes energy away from the source, it may be necessary to replenish the source with energy where a continuous beam is required. For instance,
where an electron-gun is used as the source of an electron beam, it must be fed with electrical energy from a power supply in order to maintain the beam."

SOURCE EFFICIENCY

"Prof., we learned a little about electron-guns at school, and some electron-guns are better than others. Early electron-guns were not very powerful, then by using a heated cathode, it was found that a more powerful electron beam could be produced. By coating the cathode with chemicals, electron emission was improved further.

But even with the most modern electron guns, some of the power is wasted and does not go into the electron beam. Some of it goes in heat lost by radiation from the hot cathode, some is wasted when electrons are absorbed by the beam-forming electrodes of the electron-gun instead of joining the main beam. There are a number of sources of inefficiency in the system which produces the elec-tron-beam.

Prof., "what I want to know is, how important is the source efficiency of the various types of beam producing apparatus?"
"This is a very important consideration, Bob. Many types of
beam producing apparatus are inefficient and only a very small percentage of energy supplied actually goes into the beam."

LASER SURGEON

But the properties of the beam itself may be so highly important that it is worth while. An example of this may be given in the use of laser-beams in eye-surgery and many other delicate operations. Here it is obviously more important that the laser surgeon should have available a finely focused and controllable beam, and the fact that a few joules of energy are wanted in its production is a lesser consideration in this case.

HIGH POWER BEAMS

It is in the production of highpower beams that efficiency becomes a major consideration. Here even a small change in efficiency means a large loss or gain in power, and the design of high efficiency beam-producing apparatus will be more and more at a premium.

ENERGY CRISIS IN SPACE?

Also, the "wasted" energy which does not go into the beam does not simply disappear. It is

EQUIPMENT AT INCOMPARABLE PRICES

STANDARD CENTAUR 100 W
 Dopocit $£ 57.12$
12 months @ £21.94 or 24 months © £12.54
SUPER CENTAUR 200W
 Deposit $£ 68.12$
12 months @ £26.19 or 24 months (G) £14.90

GXL 200W

£389 Deposit $£ 87.32$
12 months @ $£ 33.64$ or 24 months @ $£ 14.90$

GXL WITH PDF BINS

£417 ${ }_{8}^{+6 a r t y}$
 Dsposit $£ 93.56$

CUSTOM CENTAUR 400/600W

 WITH FOUR PDF 100A BINS 12 monts © 860.54 or 24 momint $@$ E34.66

Individual Sirens $\mathbf{£ 8 . 5 0}+$ VAT 68p

AMPLIFIER MODULES

- $30 \mathrm{~Hz}-20 \mathrm{kHz}$
- Short/open circuit proo
- Top grade components
\square Suit most mixers

CENTAUR STEREO DISCOS
C/W LIGHT SHOW \& DISPLAY WINIOUDSPEAKERS \& LEADS 00W-600W

SXL + PDF BINS

* 2 Year warranty
* Full Mixinǵ+Crossfade + Mic/Tape Inputs
* Headphone \& Cue Light Monitoring
* Full Range Bass/Treble Controls + Mic Tone * 4 Channel Soundlight + Display

JUST PLUG IN AND GO!!
SEND TODAY FOR YOUR FREE BROCHURE

MINI DISCO 100 WATT

 MONO SYSTEM WITH LOUDSPEAKERS 12 months © 816.22 or 24 month $@ 89.24$

P.A. SYSTEMS

2 YEAR GUARANTEE
${ }^{100}$ WAT $£ 159.90$
\& VAT £13.99 14.77 or Deposit
12 months @ £14.77 or £37.89 * Four Mixing Inputs * Bass $\&$ Treble Controls 200 WATT C240 + Carr $£ 152249.00$
12 months@ $£ 22.23$ or Deposit 24 months @ £12.73 \&57.12

AMPLIFIER UNITS ONLY

AP100 AMPLIFIER AP200 AMPLIFIER
£ 49.50 +Corr $£ 1.50$ \& VAT $£ 3.96$
$\star 4$ Mixed Inputs

* Bass/Treble Controls
\star Vynide Cose
* 100 Watts Output

£89.50 + Corr $£ 1.50$ \& VAT £7.16 \star Six Mixed Inputs *Three Sers Bass/Treble * 200 Watts Output * Slove Socket

MOTOROLA PIEZO HORNS $£ 4.99$ YES!!

NEW

UK Police Hawaii 50
our Sirens in $£ 18.75$

Insert between mic \& amp $\mathbf{8 8 . 5 0}+$ VAT 680°

DISCO MIXERS - COMPLETE OR MODULAR

000000000000

MONO OR STEREO WITH AUTOFADE

 Availoble complete and ready to plug in or as an eosy to connect module with all controls except monitor switch already fitted- full instructions supplied. - full instructions supplied.

FEATURES INCLUDE:
Twin Deck - Mic \& Tape Inputs - Wide range monitoring - Crassfade - Profl headphone dard performance.

COMPLETE
MIXERS
(with casel Mono mains $£ 45.75+£ 3.66$ Stereo moins £63.75 + £ 5.10

MODULES
Mono module $£ 27.50+£ 2.20$
Stereo module $£ 37.50+£ 3.00$
Ponel $£ 3.95+32 \mathrm{p}$
sockets etc $£ 5.50+44 \mathrm{p}$

LOUDSPEAKER CABINETS -
COMPLETE WITH LEADS
\square Fitted with 100W 17,000 Gauss drivers \square Rugged cabinets with aluminium trim - black vynide etc \square Lifetime guarantee on main drive unit Standard $100 \mathrm{~W} 1 \times 12(48 \times 41 \times 24)$ Large $100 \mathrm{~W} 1 \times 12(65 \times 48 \times 24)$
P.A. $1 \times 12(+2$ Piezos $)(80 \times 38 \times 24)$
P.A. $2 \times 12200 \mathrm{~W}(100 \times 38 \times 24)$

Disco $2 \times 12200 \mathrm{~W}(80 \times 63 \times 24)$
PDF Teflex bin $(80 \times 40 \times 41)$
DF100 Reflex Bin - Twin Horns
Amplifier - Accepts mono or stereo -integrated Slave
■Use with all types of mixe
apan and volume controls
£130 Carr £3 Deposit $£ 28.40$

I00w Chassis loudspeaker 625.75

All prices subject to 8% VAT except where asterisked $(12 \% \%)$ Shop premises open Tues to Sat 9 am 5 pm Lunch $12.30 \quad 1.30 \mathrm{pm}$ Mail order dept open Mon to Fri 10 am 4 pm Ring 01-684 6385

TO ORDER

By Post Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or just send your Access or Barclaycard Number NOT THE CARD
By Phone You may order COD. Access or Barciaycard. Post 8 Packing 50 p on all orders except where stated

SAXON ENTERTAINMENTS
327 Whitehorse Road, Croydon, Surrey
All Enquiries Large SAE Piease; Brochures on request

ICI Vynide $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}+$ VAT 28 p Kick-res grille $50^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}$ + VAf 28 p Netion kick proof $24^{\prime \prime}$ wide $£ 3.50 \mathrm{~m}+$ VAT 28 p Corners/feet/recess plates 15 p ed . + VAT 1 p Recess handle $45 p$ +VAT 3ρ Bor handles $£ 2.50+$ VAT 20 p Jack plugs/sockets $25 p+$ VAT $2 p$

The eleploys Colour Programagame now back in stock at reduced prices
 ELEPLAY

have produced a new product of easy to assemble cartridge games, for you and all your family, that will not go out of date. Just ADD each new cartridge, as it becomes available, and your colour video centre will be up to date the Teleplay way. You will save pounds in the long run. Works OK on Blackm and White TV. The Teleplay Kit consists of a Professional Finished Inject Mounted Box Joystick Hand Controls - one cartridge which consists of 10 games Football, Tennis, Solo Squash (1 \& 2 players), Shoot etc. Mains Adaptor. All holes are pre-drilled - No Special equipment required. You'll be surprised how easy it is to assemble this professional kit! Instruction Manual supplied separately at $0.45 p$. TELEPLAY GIVES YOU TWICE THE FUN BUHLDING AND PLAYING THE MOST PROFESSIONAL TV GAME KIT EVER OFFERED. Electrical knowledge is not a necessity to assemble this project - just simple soldering.
Every 3 months a NEW game will become available to you and those already under production include Submarines, Space War, Wipe Out and many more. the price of these will vary from $£ 12$ to $£ 19$ depending upon the complexity of the game. All Cartridges fully assembled.

STUNT CYCLE 4 games - Cartridges and Hand Controls - $£ 12.90$ WIPE OUT -6 games - $£ 11.90$

TANK BATLLE - Catridge and Hand Controls - $\mathbf{~} 18.90$
ROAD RACE -2 games - Cartridge - Controls already with basic kit $-\AA 10.90$)
EUROPE'S LARGEST STOCKIST OF TV GAME COMPONENTS.
COMP IS AN APPOINTED DEALER FOR COMMODORE, EXIDY, APPLE, NASCOM, OHIO, GI, ATARI, TELEPLAY \& ITHACA.
n
ㅍ. 5
位
COMPIITER 14 STATION ROAD, NEW BARNET, HERTFORDSHIRE TEL: 01.4412922 (Sales) 01.4496596 COMPONENTS CLOSE TO NEW BARNET BR STATION - MOORGATE LINE TELEX: 298755 OPEN - 10am to 7pm - Monday to Saturday CONTINUOUS DEMONSTRATIONS

(1) Heathkit electronic test equipment course.

Section 1. Analogue and digital meters. Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments.
Heathkit car electrical

systems course.

Section 1. Electrical principles of the car.
Section 2. Starting system fundamentals.
Section 3. Car charging systems.
Section 4. Accessories and body electrical.
Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you leam at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learm.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself-computers, oscilloscopes, transceivers etc. ...Send for your copy now.

Registered in England, Mo, 606177.
usually produced as heat, and consequently some part of the apparatus gets hotter. In high-power equipment some arrangement must be made to remove this surplus energy, and cooling systems are very important means of doing so.
High power lasers on Earth are often cooled by feeding in cold water from the nearest tap. Hot water comes out and goes down the drain.
In a spacecraft this would not usually be possible, as the entire water supply might be heated up. The problem then becomes: How to dissipate this surplus energy from the craft.
Suppose for example that a spacecraft carries a microwave beam generator of 95 per cent efficiency, and that the maximum beam power is limited by the ability of the heat dissipators to remove the 5 per cent of the
power used, in the form of heat waste.
If the equipment develops a fault which reduces the efficiency to 80 per cent, this would mean that the same full beam power would give a waste heat dissipation nearly five times greater than the permissible level. To keep waste heat dissipation within tolerable levels, it would be necessary to reduce beam power to less than a quarter of its normal strength at maximum. Otherwise, the spacecraft might heat up-or some components burn out.

EFFICIENCY

Changes in efficiency of such apparatus could cause a real energy crisis in space, as such a small change in efficiency as 15 per cent would result, in the example, in a need to reduce full power in a ratio quite out of pro-
portion to safe operation. Maintenance of the efficiency of apparatus in space will obviously be an important task for space-maintenance engineers!

With the expansion of the various space programmes, the design of spacecraft and equipment of higher and higher efficiency will also be an important task for design engineers here on earth."
"Prof. I find this function of beams as carriers of energy in various forms fascinating, I think I'll try to find out more about all the various forms of energy which can be carried by beams!

But do these energy beams have many other interesting properties?"
"Yes Bob, there are lots of interesting things which are really worth knowing about, for instance. ..."

To be continued

Casting Your Vote

As I write we have just elected a lady Prime Minister, the remarkable Mrs. Thatcher, and whileanyone in business must not openly express their political persuasions, I naturally wish her every success in the formidable task ahead.

As I cast my vote on May 3rd, I could not help thinking what a cumbersome process it all is. I believe in some parts of the world, including the United States, this is already being done electronically. In other words, the voter goes into the polling booth and is confronted with the names of the candidates and alongside each one is a button. He simply presses the button, against his choice. It must save a few thousand man (sorry) person, hours, and in addition if the last vote is cast at 10 p.m., the result would be known by 10.05 p.m.

But no, cynic that I am, I can just imagine that there would be a couple of dry joints or a burnt-up chip somewhere in the machine and bingo, we would find we had elected the National Front or the Communist Party!

If you think that is far fetched, only last week a chap was drawing some
money out from one of these money dispensers; he tapped out £15 on the keys and out came £195!! I understand that the queue that formed up behind him was nearly a mile long. Needless to say, by the time I reached the offending apparatus it had been switched off!

In The Picture

The other day as I was locking up my establishment, a last minute customer rushed up and as usual I asked him what he required, because if it was something simple I would go back and get it. He said he wanted all the parts to build a colour television. I had to break it to him that not only would I not have them all, but doubted whether any supplier could.
He sighed and said "I am wanting to make this by following a series of articles in the magazine Television. Wouldn't it be wonderful if there was just one supplier to whom I could send $£ 250$ and he would send me all the bits needed?" I agreed with him, and then gently told him the facts of life.
I told him that due to inflation, everyone had to carry smaller and smaller stocks, and therefore tended to con-
centrate on a smaller and smaller segment of the whole electronic range. It therefore follows, that in order to obtain his requirements he would have to deal with five or six suppliers. What it boils down to is this, knowing where to find suppliers is basic to the successful pursuit of any hobby and this applies particularly to electronics.

Unwritten Law

Most of you are familar with Ohm's law and similar laws governing electronics but do you know Murphy's law? Murphy's law states that if anything can go wrong it probably will, and the more serious the consequences, the more likely it is to happen.

I was witness to a splendid example of this when I went to watch my friends at Home Radio move, and give them moral support. The office they were moving into had a peculiar door which was only twenty inches wide. They therefore decided that the only way to get their desks into the building, was to haul them up one flight on ropes and take them through the kitchen window. After partially dismantling the window they managed to do this, only to find the desk was too wide to go up the next flight of stairs. "Ah" they said, we will have to dismantle it.
Now all their desks had specially made formica tops. In the case of this particular desk, the carpenter had screwed on the top and then stuck the formica over the screw heads! They went back to their former premises examined another desk, and found to their astonishment that it all came to bits. They had nine desks in total, out of the nine, only one would not come to pieces and that was the one they tried to move! Murphy strikes again!

Newnes

(More books in our series for the electronics enthusiast.

\# There are now eight titles available at $£ 2.25$ each (US \$5.25)

Electronic Projects in the Workshop R.A. Penfold Electronic Projects in Music A.J. Flind
Electronic Projects in Audio R.A. Penfold
Electronic Projects in Hobbies F.G. Rayer

Electronic Projects in the Car M. George
Electronic Game Projects F.G. Rayer
Electronic Projects in the Home Owen Bishop
Projects in Radio and Electronics Ian R. Sinclair

Each book contains a collection of constructional projects, giving details of how the circuit works, how it may be assembled and how setting-up and trouble-shooting problems may be solved. The skilful use of colour in the text helps to clarify circuit operation, and circuit board layouts are suggested. Shopping lists of components are included.

Write for a free colour brochure about all our hobby books to

Clef Kits

Designer approved quality kits for Electronic Musical Instrument Construction.
JOANNA 72 \& 88 PIANOS
Six and $7 \ddagger$ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates plano key inertia - a feature not available in any other design. A new physical layout has been adopted to simplify construction.
P.E. STRING ENSEMBLE

The only kit avallable to the proven A. J. Boothman Design for this versatile String Machine.
Sent S.A.E. to:
Clef Products (Dept E.E.)
16 Mayfield Road, Bramhall, Cheshire SK7 1JU.

SINCLAIR PRODUCTS PFM200 449 - 48 case $£ 3 \cdot 24$, adaptor $£ 3 \cdot 24$, connector kit
$£ 10 \cdot 58$. Microvision TV UK model $£ 89 \cdot 95$, malns adaptoris6-73. PDM35 £28.95, mains
 DM 350 E58.95, DM450 E97.35, DM235 E49.45, rechargeable batt5, $£ 7 \cdot 50$, mains adaptor $£ 3 \cdot 70$, case $£ 8 \cdot 45$. Enterprise prog
calculator with accessories 222.95 . Carmbridge prog calculator E12-13, prog library 24-45, mains adaptor $23 \cdot 20$. 15 .
CSCMAX100 freq meter $275 \cdot 40$.
CALSCOPE oscllloscopes send sae for CALSCOPE oscllloscopes send sae for data or see the Calscope advert in this
magazine. Super $6 \AA 174$. Super 10 £235. COMPUTER GAMES Star chess $£ 59$. Chess challenger $7 £ 79$. Checker challenger 4 E84. Chocker challenger 2250 . Atarl Video computer $E 138$, Cartridges $£ 13.45$. COMPONENTS 1 N4148 1.4p. 1 N 4002
2.9 p .741 15p. bc182b, bci83b, bc184b. 2.9p. 741
bc212b, bc213b, bc214c $4.5 p$ p. Resistors $~ i W ~$ 5% E12 10R to $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value, 16 V electrolytics $-5 / 1 / 2 / 5 / 10 / 22 \mathrm{uf} 5 \mathrm{p}$. 100 uf (pp, 1000 uf 10 p . 11 b FeC1 21 - 13 . Daio pen 79p. 40 sq Ins peb 60p. TV GAMES AY-3-8500 + kit E8. 85 . Rifle
kit $24 \cdot 95$. AY $-3-8610+$ kit $\Sigma 15 \cdot 70$. Stunt cyole chip + kit E15.70. AY-3-8803 chlp TRANSFORMERS $6-0-8 \mathrm{~V}$ 100ma 74 p ,
T8.90.

11a 22-35, 6-3V 121 £1-89.9-0-9V 75ma 74p, 1a $£ 2$, 2a $£ 2 \cdot 60.12-0-12 \mathrm{~V}$ 100ma 90 p , 1a 2.49. IC AUDIO AMPS with pcb. JC12 6W 51-60. JC20 10W \&2.95.
3ATTERY ELIMINATORS 3 -way type /7igy $300 \mathrm{ma} £ 2 \cdot 95.100 \mathrm{ma}$ radio type with press-studs 9 V £3.35. $9 \mathrm{~V}+9 \mathrm{~V}$ £ $5 \cdot 50$. Car convertor 12 V input, output $41 / 6 / 71 / 9 \mathrm{~V}$ 800 ma E2. 50 .
BATTERY ELIMINATOR KITS 100 ma radlo types with press-studs $41 \mathrm{~V} £ 1 \cdot 40$, $5 \mathrm{~V} £ 1 \cdot 40,9 \mathrm{~V}$ £1-40, $4 \mathrm{VV}+4 \mathrm{jV} \mathrm{V} 1 \cdot 80,6+6 \mathrm{~V}$ $3 / 4 \ddagger / 6 / 71 / 9 / 12 / 15 / 18 \mathrm{~V}$ 100ma $22 \cdot 80,1$ Amp $58-40$. Stabilized power klts $2-18 \mathrm{~V} ~ 100 \mathrm{mb}$ $22 \cdot 30,2-30 \mathrm{~V} 1 \mathrm{~A} 26 \cdot 95,2-30 \mathrm{~V} 2 \mathrm{~A}$ $510 \cdot 85$. 12 V car converter $6 / 71 / \mathrm{VY}$ 1A \&1.35. T-DEC AND CSC BREADBOARDS
 exp350 $23 \cdot 40$, exp 325 §1.73.
B1-PAK AUDIO MODULES $3450223-31$. AL60 E4.86. PA100 £16-95, spm80 E4.47.
 SWANLEY ELECTRONICS Dept. EE, 32 Goldsel Rd., Swanley, Kent Post 30 p extra. Prices Include VAT. officlal and overseas orders welcome. Lists 20p post free.

a digitizer adds another dimension

The Bit Pad computer digitizer converts graphic information into digital form for direct entry into a computer. By touching a pen like stylus or a cursor, to any position on a drawing, diagram, photograph, or other graphic presentation, the position co-ordinates are converted to digital equivalents.

- Bit Pad interfaces with almost any micro computer.
- Bit Pad consists of a 15 " sq. digitizer tablet (11" sq. active area), a stylus, and a controller cabinet.
- Bit Pad costs only f 450 (excluding VAT). Fill in the coupon and we will send you full information and details.

Terminal Display Systems Ltd., Hillside. Whitebirk Industrial Estate, Blackburn BB1 5SM, Lancs, England Send to: Department CPED,Terminal Display Systems Ltdu, Hillside, Whitebirk Industrial Estate Blackburn B81 5SM, Lancs, England.
Name.
Address:

TMarsal lasgow: 85 Wondon: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2 also 325 Edgware Road, W2. Tel: 01-723 4242. A. Marshall (London) Ltd. Kingsgate House, Kingsgate Place, London NW6 4TA Tel: 0f-624-0805 Telex 21492

 Glasgow: 85 West Regent Street, G2 2QD Tel: 041-332 4133 and Bristoi: 108A Stoke's Croft, Bristol. Tel: 0272 426801/2.ZENER DIODES (Full range in cat.)

CMOS (see catalogue for full range)

TTL (See catalogue for full range)
 74 LS 243 N
74 LS 244 N
74 LS 245 N

74LS247N 7LS248N
4LS249N 74LS249N
74 LS 251 N
74 LS 253 N 74 LS 251 N
74 LS 255 N
74 S 257 N 74 LS 258 N
74 LS 259 N 74 LS 259 N
741 S 261 N 44LS261N
74 LS 266 N 74 LS 273 N
74 LS 275 N $742527 N$
$74 L S 279 N$
$74 L S 200 N$ 741528
142
52891 4LSS290N
4L S2S3N
 $74 L$ S323
$74 L S 324$

742
742
7432
74

$741 \$_{35}$

745_{353} | 742 |
| :--- |
| 7415353 |
| 742 |
| 5386 | 742 S

74 LS

TRANSISTORS (See catalogue for full range)

MAGENTA ELECTRONICS LTD.

E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER of KITS and COMPONENTS for E.E. ProlectsWe supply carofully selectad sets of parta to anable you to construct E.E. projects. Appropriate hardware-nuts, serows, 1.C. sockets are includedi EAch project kit. eomes complote with its own FREE Com. Wo supply-You conatruct. UNLESS OTHERWISE STATED. BATTERIES NOT INCLUDED. INSTRUCTIONS ONLY SUPPLIED AS EXTRA 39p EACH"

INTRUDER ALARM. May 1979. $213 \cdot 65$,
Less Ext. Buzzer \& Lamp and Loop ComBonents. WAVE CONVERTER. May 79. E12.98inc, caser. 'PHOTO' SOLUTHERHOSTAT. 'PHOTO' SOLU.
TIONS, May 79, $\mathbf{2} 12 \cdot 75$; Less socket, tube and grense
SHAVER iNVERTER, April 79, 210.99 . TRANSISTOR TESTER. AprIl 79, TOUCH BLEEPER. April 79, \#2.99. ONE TRANSISTOR RADIO. Mar, 79.
with Amplifler \& Headset. Loss case. WIME Ampliffer \& RELAY INDICATOR. Mar. 79. GEVB, YERSTILE POWER SUPPLY. Mar. 79. E7. 36 . WARNING DEVICE. Apr. 79 .
CHOKE Ef:05 case T1p
AUDIO MOBUTOR. Feb, 79. $\mathbf{2 1 . 4 4}$ less case and pins. Feb, 79. $\mathbf{2 3} \cdot \mathbf{9 8}$, case
 THYRISTOR TESTER. Feb, 79, E21.98.
ADJUSTABLE PSU, Feb. 79.19 .
Case (horizontal layout) $£ 3.54$ extra. Case (horizontal layout) 123.54 extra, LIGHT'S REMINDER, Jan, 79 , ₹4.16.
CONTINUTY TESTER. Jan, $79, ~ £ 2 \cdot 9$ lass case.
FUZZBOX, Dec, 78, 24.35.
VEHICLE IMMOBILISER, Inc. PCB Dec. 76, 63.77 caae extra 71p.
WATER LEVEL ALERT. Nov, 78. 24.82. WATER LEVEL ALERT, NOV, 78, $24 \cdot 82$.
"HOT LINE' GAME. NOV, 78, e4.23 less cate \& rod. $78 . \operatorname{Ez} 75 \mathrm{inc}$ board.
SUBSCRIBERS TELE TEL METER. Nov. 78 , 815.55 case extra 83.75 .
FUSE CHECKER. Oct. 78.21 .51 .
FUSE CHECKER. Oct. 78. 27.7.
C.MOS RADIO. Oct. 78, 27.79.
C.MOS RADIO. Oct. 78, £7.79.
TREASURE HUNTER. Oct. $78 . ~ £ 14 \cdot 44$

TREASURE HUNTER. Oct. 78. 214.44
less hande a coll former.
GUITAR TONE BOOSTER. Sept. 78 .
GUITAR TONE
ZU-13 ine. p.c.b.
SOUND TO LIGHT. Sept. 78. §5.99.
FILTER. \&I 25.

SLAVE FLASH. Aug. 78. E2-66 less SK1. IOGIC PROBE. July 18. E2. 29, June 78 , e4-73.
VISUAL CONTINUITY CHECKER. June 78, E2.95.Inc, probes,
FLASHMETER. May 76, £11-29 less cale
and diffuser, WEIRD SOUND EFFECTS GENERATOR. Mar, 78, E3-64. DISPLAY, Feb. 78. CHASER LIGHT DISPLAY. Feb. 78.
e19.78inc, D.c.b. case extra 23.54 .
AUDIO YISUAL. METRONOME. Jan, 78 AUDIO VISUAL METRONOME, Jan. 78
24.22.
RAPID DIODE CHECK. Jan, 78, £1-97. RAPID DIODE CHECK. Jan, 78, £1-97.
AUTOMATIC PHASE BOX. Dec. 77 . AUTIMA
V. 45 Inc. p.c.b.
VHF RADIO. Nov, 77, E11-46.
VHF RADIO. NOV, T7. E11-46.
ULTRASONIC REMOTE CONTROL.
Nov, Dec. 77, S13.75. case extra. $£ 2 \cdot 32$, Less handle, etc.
ELECTRONIC DICE, March $77,{ }_{2} 4-20$. ELECTRONIC DICE. March 77. \& $4-20$.
SOIL MOISTURE INDICATOR. June 77 , s. 3.09 ine, probe.
PHONE/DOORBELL REPEATER. July PHONE/DOORBELL REPEATER. July
77. $25-27$. SHORT, WAVE RECEIVER. Aug. 77 E10. 98 case extra $£ 1.49$. CAR BATTERY STATE INDICAT
Sept. 78.51 .54 legs case Inc. PCB. R.F. SIGNAL GENERATOR. Sopt. 78. E15. 30 less case.
TRANSISTOR TESTER. Oct. 77. 25.34 case extra 23.55 , 78, E1.44. CAPACITANCE UNIT. Sept ADD-ON CAPACITAMCE UNIT. Sept. A.F. SIGNAL GENERATOR. Aug, 78 less dial. \&10.99.
QUAGMIRE. July 78. E7-51 less case pins \& counters. CAR SYSTEM ALARM, Feb. 78. £4-74. HEADPHONE ENHANCER, Jan. 79 E2. 24.
PASSIVE MIXER. Oct 78 , e22-63. MIC AMP, Dec, $78, \mathrm{E}_{2} \cdot 19$.
AUDIBLE FLASHER, Dec, 78, $£ 1 \cdot 08$.

LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

1979 ELECTRONICS CONSTRUCTORS CATALOGUE

MAGENTA'S CATALOGUEHAS BEEN
CAREFULLY DESGGND FOR E. CAREFULIY DESSIGNLD FOR EE. ILLUSTRATIONS MAKE THE MAGENTA CATALOGUE AND INDIS-
PENSABLE GUDE FOR THE CON-
STRUCTOR CATALOGUE INCLUDES CIRCUIT IDEAS FOR YOU TO BUILD.

NO MINIMUM ORDER-ALL PRODUCTS ARE STOCK LINES. FIRST CLASS DELIVERY OF FIRST CLASS
COMPONENTS. SEND FOR YOUR COMP AND SEE HOW EASY YT IS COPY AND THE MAGENTA CATALOGUEI WRITE TODAY ENCLOSING
4×90 STAMPS.

MAGENTA gives you FAST DELIVERY BY FIRST CLASS POST OF QUALITY COMPONENTS a KITS. All products are stock lines and are new \& full specification,
We olve personal service \& quality products to all our customers-HAVE YOU TRIED
US?

DOING IT DIGITALLY

Complete Kit IN STOCK NOW for FAST DELIVERY by FIRST CLASS POST. All top quality components as specified by EVERYDAY ELECTRONICS. Our kit comes complete with FREE TTL AND COMPONENT IDENTIFICATION CHART.
E22. 95 for the TTL TEST BED. E3. 75 for ADDITIONAL COMPONENTS for first $£ 22 \cdot 95$ for
6 months.

NEXT 6 MONTHS PARTS :-BPX25, £1-29. ORP12, 69p, 555,45 p. 80 ohm Speaker £1. 16.

MULTIMETER TYPE 1. 1,000 o.p.v. with robes, $2^{\prime \prime} \times 3 y^{\prime \prime} \times 1^{\prime \prime}, \mathbf{8 5} \cdot 99$.
MULTIMETER TYPE $2,20,000$ 0., $0 . \mathrm{y}$, with ase and probes. $5^{\prime \prime} \times 31^{\prime \prime} \times 1 \frac{1}{}_{\prime \prime}$, E12.95. ANTEX X25 SOLDERING IRON $25 W$.
deal for electronlcs, $23-98$.
SOLDERINGIRON STAND. Antex ST3. 1-84.
SPARE BITS. $2.3 \mathrm{~mm}, 3 \mathrm{~mm}, 4.7 \mathrm{~mm} .59 \mathrm{p}$. DESOLDER BRAID. 82p.
HEAT SINK TWEEZERS, 13p.
DESOLDER PUMP. Easy to use, $£ 5,98$, F.M. INDOOR AERIAL. 49p.

TELESCOPIC AERIAL. 120 c.m. e21.89. TELEPHONE PICK-UP COIL, 65p. GRYSTAL MICROPHONE INSERT. 57p.
SPEAKERS MINIATURE, 8 ohm 79 p . 54 ohm 89 p . 80 ohm E1-16.
PILLOW SPEAKER. $8 \mathrm{ohm} \mathrm{98p}$,
3" ROUND SPEAKER. $80 \mathrm{hm}, 5 \mathrm{~W}, \mathrm{E1}-98$. CABINET SPEAKER. $80 \mathrm{hm}, 5 \mathrm{~W} .5^{\prime \prime}$ speaker. Cabinet $10^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}, \sum 8 \cdot 75$. RE-ENTRANT HORN SPEAKER. ohm S.W. Horn dia. $5 \mathrm{~J}^{\prime \prime}$, , S^{-79}.
EARPIECES. Crystal 38p. Magnetic 15p. STETHOSCOPE ATTACHMENT. Fits our earoieces 58p.
BUZZER. 6V 74p. 12V 77p.
MONO HEADPHONES. 2K. Padded. Superior, Sensitive. $22 \cdot 98$.
STEREO HEADPHONES. \& ohm. Padded, 23 -85.
NTERCOM. 2 Station. Desk. \&5-45. MICROPHONE DYNAMIC. 600 ohm Cassette type, $\mathbf{2 1} \cdot 25$.
DENTISTS MIRROR. Adjustable, 22 - 15 JEWELLERS EYEGLASS. 98p. TRIPLE MAGNIFIER. $£ 1 \cdot 48$. HAND MAGNIFIER. $3^{\prime \prime}$ Lens. E2.98.

SPECTACLE MAQNIFIER. CIIDS on to spectacle frame, 领 38.
LLUMINATED MAGNIFIERS. $1 \psi^{\prime \prime}$ lens $99 \mathrm{p} .3^{\text {IN }}$ lens $22-79$.
SIGNAL INJECTOR. E4-98.
POCKET TOOL SET. 20 plece, 23-72. SCREWDRIVER SET. Six plece. £1-98. O MAX PUNCH. $\mathbf{1}^{\prime \prime}$ £1-94. $1^{\prime \prime} £ 2 \cdot 17$. O. MAX PUNCH.

DRILL 12 V . Hand or stand use, $\Sigma 10-38$. Stand 25.88 .
CAPACITANCE SUBSTITUTION BOX. NIne values, $100 \mathrm{pF}-0 \cdot 22 \mathrm{uF}$, $22-75$. QUICKTEST. Mains connector. $25 \cdot 30$. PLUG IN POWER SUPPLY, 6, 7-5-9V d.c. 300 mA . $23 \cdot 68$.

SPRINGS-SMALL. 100 Asstd. 98 p.
CROC CLIP TEST LEAD SET, 10 leads with 20 clips. 96p.
DIMMER SWITCH. $240 \mathrm{~V}, 800 \mathrm{~W}$. . $23-75$. TRADITIONAL STYLE BELL. $3-8 V$. 70 mm chrome gong. $\$ 1.45$.
UNDERDOME BELL. 4-10V. Smart. Dla. 70 mm . Et-79.
TOWERS INTERNATIONAL TRANSISTOR SELECTOR New edition
F.M. TUNER CHASSIS. $88-108 \mathrm{MHz} .9 \mathrm{~V}$ d,c. $£ 8 \cdot 35$.
MORSE KEY. High speed. ©3-40.
PANEL METERS. $60 \times 45 \mathrm{~mm}$. Modern style. $50 \mathrm{uA}, 100 \mathrm{uA}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 25 \mathrm{~V}$ d.c. NIGHT LIGHT, Plug type. 98p.
CONNECTING WIRE PACK. 5×5
VERO SPOT FACE CUTTER. 96p.
VERO PIN INSERTION TOOL. 0.1 E4-33. 0.15" E1-32.
RESISTOR COLOUR CODE CALCULATOR. 19 p .

```
    TEACH-IN-78
    COMPLETE KIT &14-98
INCLUDES FREE COMPONENT IDEN-
TIFICATION CHART. TEACH-IN
REPRINTS EXTRA 39P EACH PART,
ALL 12 PARTS AVAILABLE.
```

EVERYDAY ELECTRONICS FEB 79 G.P, POWER SUPPLY

VARIABLE 0-20V 0-1A
WITH CALIBRATED VOLTMETER AND AMMETER ALL COMPONENTS AND AMMENGWE E21.54, CASE

MAGENTA ELECTRONICS LTD.
EG6, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS.,
DE13 OUL. 0283-65435, 9-12, 2-5 MON.-FRI.

OFFICIAL ORDERS FROM SCHOOLS, universities etc. welcome. MAIL ORDER ONLY.

ALL PRICES INCLUDE VAT AND IRST CLASS POST. ADD 25PTO MUST INGLUDE S.A.E.

TUPS TIT: RAGI

COMPONENTS - Now over 1,000 types in stock!
KITS
SERVICE
QUALITY PRICES MAGAZINE PROJECTS S.A.E. for list of EE projects

I enciose 30p*, please send catalogue.

EVERYBODY'S DOING IT!

Doing what? Sending for the latest Home Radio Catalogue. It's the most comprehensive components catalogue you can get. 128 pages, about 2,500 items listed, and profusely illustrated. Now only $£ 1.25$ with a free bargain list. Send your cheque or postal order now.

HOME RADIO
COMPONENTS LTD. Dept. EE, 234 London Road Mitcham, Surrey CR4, 3HD

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer. All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.
 As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but al so later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.
 2. Read, draw and understand circuit diagrams.
 In a short time you will be able to read and draw

 circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.
3. Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

4. FreeGift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

GREENWVELD

 443D Millbrook Road, Southampton SO1 OHX Tel: (0703) 772501All prices quoted Include VAT. Add 25 p UK/aFPO Poslage. Most orders des. patched on day of recelpt. SAE with encuirios please. Minvoco charge .55). Exporth Wholesalo encuiries welcome. Wholesate ilist now avallable for bona-fide traders. Surplus components always wanted.

THE NEW 1978-9 GREENWELD

 CATALOGUEFEATURES INCLUDE:

- 50p Discount Vouchers - Quantity prices for bulk buyers - Bargain List Supplement - Reply Paid Envelope - Priority Order Form - VAT inclusive prices PRICE $30 \mathrm{p}+15$ p POST

KITS OF BITS FOR THIS MONTH'S EE PROJEGTS

JUNE 1979

QUADROPHONIC SIMULATOR TREMOLO UNIT METAL LOCATOR ELECTRONIC CANARY

MAY 1979

 ELECTRONIC DICE S.W. CONVERTER INTRUDER ALARM
APRIL 1979

SHAVER INVERTER TOUCH BLEEPER TRANSISTOR TESTER TOUCH BLEEPER

MARCH 1979

 LABCENTREA portable "Instant" electronic workshop with tools, power supplies and test and CMOS), audlo, r.f. etc.

CAR DIRECTION

INDICATOR
ONE-TRANSISTOR

RADIO

Prices not avallable at time of going to pricess. Please send S.A.E. for full detalls.
E.E. $20+20$ TUNER

AMPLIFIER

We can supply all parta required except the component for detalled list.
240. Send SAE for betalled NOTE: A more detailed list of parts supplied in these and other kits is avallabie
on recelpt of a SAE.
Most E.E. Projects back to SEPTEMBER 1978 available.

"DOING IT DIGITALLY"

This new series which started October 1978 Is bound to be a big succesc. We qupplya year's Teach-In series) for Just E19-75 + \&1 post for the Electronic Test Bed, and 62.75 for additional parto required for firat 6 parts.

The GREENWELD

Amplifier Kit

Ideal for the beginner to make, thls kit is complete right down to the last screwil Easily constructed on the PCB provided, the 4 transistor circuit will give $2 W$ output
from a crystal cartridge. Battery version E1-75, or with transformer for mains operation $\sum 3-95$

PC ETCHING KIT MK III
Now contains 200 sq. ins. copper clad board, 1 lb . Ferric Chioride, DALO etchdrill bits, etching dish and instructions.

20 $1-50$

COMPONENT CABINET IDEAL FOR THE NEWCOMER TO ELECTRONICS

Contains hundreds of brand new resistors, capacitors,
transistors diodes and I.C.'s All useful values, carefully chosen to help the new constructor pursue his hobby without finding himself short of some vital parts!
All parts contained in clearly marked bags in a plastic storage cabinet $232 \times 121 \times 165 \mathrm{~mm}$ with 9 drawers into which all parts can be neatly located. If bought individually parts plus case would cost over £45 but we are offering this for
ONLY £29-95 + £1 p \& p.
Simply send a cheque or P/O for $£ 30.95$ for immediate despatch.
CONTENTS:
$200 \frac{1}{4}$ watt resistors
20 Wire wound resistors 70 Ceramic Capacitors
70 Mylar Capacitors
50 Polyester Capacitors
56 Electrolytic Capacitors
61 Transistors
12 I.C.'s
20 L.E.D.'s
55 Diodes and rectifiers Altogether 614 components. Price includes current catalogue and Greenweld pen for reordering supplies. Plus FREE surprise gift. TRANSFORMERS
All malns primary: $12-0-12 \mathrm{~V} 50 \mathrm{~mA}$ aspi 100 mA . $95 \mathrm{p} ; 1 \mathrm{~A}$ E2. 50 . $8-0-3 \mathrm{BV} \quad 100 \mathrm{~mA}$

 20 V (9) 300 mA twice $52.50 ; 12 \mathrm{~V}$ (3) 250 mA twice $£ 2 \cdot 00$

RELAYS

W817 Low profile PC mnto $10 \times 33 \times 20 \mathrm{~mm}$ 6V coil, SPCO 3 A contacts. 93 s , 24 V ac, Wsil in pin plug in relay, rated 24 V ac,
but works well on BV DC. Contacts 3 pole W/ rated 10A, 95 s . 3 sets 10 A c/0 contacts. $61 \cdot 20$
WIT7 675 R
$12-27 \mathrm{~V}$ DPCO
WIT7 675R $12-27 \mathrm{~V}$. DPCO 23×20
10 mm sealed can 88 p .
DPCO 10A contacte,
Whlose case
W-12V.
OPP
10 mm , sealed can sip.
Send SAE for our relay ilst-94 types lleted and lilutrated.
HEAT SINK OFFER
Copper TO5 sink 17 mm dia $\times 20 \mathrm{~mm}$. 10 for 40p; 100 for $E 3 ; 1000$ for $E 25$
POLYTHENE SHEET
Size $36 \times 18^{\prime \prime} 2009$, Hundreds of uses around the home. 100 shests for $£ 1 \cdot 50$. Box of 1500 for $£ 19$

1, ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22. 4SJ. PHONE $01-8883206$

Push button heads or tails. Complete kit and full instructions supplied.
A pocket game.
obuild and great to play. Kit price- $\mathbf{5 5} \cdot 25+8 \%$ VAT. Post free.

4 OHM DOOR MOUNTING
CAR LOUDSPEAKERS

High performance, door mounting$5 \frac{1}{2}$ inch units with smart front grill. 10 oz magnet, 12 watts, 4 ohms. In attractive see-chrough carton. £ $12.60+12 \frac{1}{2} \%$ VAT. per pair.

HEAVY DUTY XOVER
2 WAY 8 OHM A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 wate.
Fitted with screw terminals for input and a three position 'RF LEVEL' switch whichselects either Flat, -3 dB or -6 dB . ONLY $£ 3.00+8 \%$ VAT

A CRESCENT 'SUPERBUY'
Goodmans $5^{\prime \prime} 8$ ohm long throw H/D loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres

$$
\begin{aligned}
& \text { spaced at } 5 \frac{1^{\prime \prime}}{2} \text { (diagonally) } \\
& \text { ONLY } £ 5 \cdot 00+12 \frac{1}{1} \% \text { VAT }
\end{aligned}
$$

LOUDSPEAKERS
$2 \frac{1}{\prime \prime}^{\prime \prime}(57 \mathrm{~mm}) 8$ or 75 ohm $+12 \frac{1}{4} \%$ VAT (please state impedance req'd)

Thutiat in

MORSE KEY CR. 38 All matal, cast base, professional high speed key. Fine adjustment. Mounted on bakerlite base.
Dimensions: (Base) $120 \times 75 \mathrm{~mm}$
£ $\mathbf{~} 3.90+8 \%$ VAT

ONLY $\mathbf{1 6}+8 \%$ VAT

High suction pump with automatic ejection. Knurled, anti corrosive casing. Tefion nozzle.

3 KILOWATT PSYCHEDELIC
LIGHT CONTROL UNIT
LIGHT CONTROL UNIT 1000W lighting per channel, max. This 3 channel sound to light unit is housed in a robust metal case, with a i.e. Bass, middle and treble. Full i.e. Bass, middie and treble. sull instructions supplied. S.A.E. for spec.
sheet. ONLY $£ 20 \cdot 00+8 \%$ VAT $\frac{\text { sheet. ONLY E20.00 }+8 \% \text { VAT }}{\text { CR LVI } 12 \mathrm{v} \text { DRILL }}$

f12.00 pubes 8% VAT BRITISH MADE "Versadrill", 12 voles DC. Compact battery operated power tool, sufficiently powerful to perform all the operations associated with 240 y drilis. Dimensions:$150 \times 50 \mathrm{~mm}$ (dia.)

IISA ORDERS $\mathrm{E5}-\in 10$, Add 50p All orders over $£ 10$ post free!
Please add VAT as shown. S.A.E. with all enquiries please

 Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - BAKER O BOWERS & WIL- KINS CASTLE CELESTION CHARTWELL COLES - DALESFORD DECCA EMI EAGLE ELAC FANE GOODMANS O HELME I.M.F. - ISOPHON - JR O JORDAN WATTS - KEF O LEAK O LOWTHER MCKENZIE - MONITOR AUDIO P PEERLESS RADFORD © RAM O RICHARD ALLAN - SEAS TANNOY - VIDEOTONE WHARFEDALE
```

[^0]
STEVENSON Electronic Components
 REGULATORS
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">78 LO</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">30 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7805</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">60 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$79 \mathrm{LO5}$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">70 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7912</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">80 p</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">78 L 12</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">30 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7812</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">60 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">79 L 12</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">70 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7915</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">80 p</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">78 L 15</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">30 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7815</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">60 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7905</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">80 p</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">LM72335p</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 78 LO | 30 p | 7805 | 60 p | $79 \mathrm{LO5}$ | 70 p | 7912 | 80 p |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 78 L 12 | 30 p | 7812 | 60 p | 79 L 12 | 70 p | 7915 | 80 p |
| 78 L 15 | 30 p | 7815 | 60 p | 7905 | 80 p | LM72335p | |</table-markdown></div>

HARDWARE MINIATURE TRANSFORMERS

240 Volt Primary
Secondary rated at 100 mA . Available with secondaries of
6.0.6,9.0.9 and
12. 0-12.

92p. each.

LOUDSPEAKERS

56 mm dia. 8 ohms
64 mm dia. 8 ohms
64 mm dia. 64 ohms
70 mm dia. 8 ohms
70 mm dia. 80 ohms

TERMINALS

Rated at 10A. Accepts 4 mm plug, black, blue, green, brown and red . . . 22p

SWITCHES

Subminiature toggle. Rated at 3A 250V SPDT 70p SPDT centre off 75p DPDT 80p DPDT centre off 95p
 Standard toggle SPST 34p DPDT 48p
Wavechange switches:
1P12W, 2P6W, 3P4W or 4P3W all 43p ea.
Miniature switches (non-locking)
Push to make 15 p Push to break 20p
Slide switches (DPDT)
Miniature $14 p$ Standard 15p

CONTROL KNOBS

Ideal for use on mixers etc. Push on type

available in red, blue, green, grey, yellow and black. 14p

Quantity discounts on any mix TTL, CMOS 74LS and Linear circuits: $100+10 \%, 1000+$ 15%. Prices VAT inclusive. Please add 30 p for carriage. All prices valid to April 1980.
Official orders welcome BARCLAYCARD

\section*{}

CAPACITORS

TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$
1 \& 2.2 uF © 35 V
22@16V, 47@6V, 100 @ 3 V
MYLAR FILM
$0.001,0.01,0.022,0.033,0.047$ $0.068,0.1$

POLYESTER

Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1,5 p$
$0.15,0.22,022,0.033,0.047,0.068,0.1 . \frac{5}{7}$ $0.33,0.47$

70
10 p
0.68

14 p
CERAMIC
Plate type 50 V . Available in E12 series from 220 F to 1000 pF and $\mathrm{E6}$ series from 1500pF to

RADIAL LEAD ELECTROLYTIC

63 V	0.47	1.0	2.2	4.7	10
		22	33	47	$7 p$

VERO

Size in.	0.1 in.	0.15 in .	Vercoins-
2.5×1	14 p	13 p	single sided
2.5×3.75	42 p	40 p	per 100
2.5×5	52 p	50 p	0.17 in 35 p
3.75×5	60 p	60 p	0.15 in 40 p
3.75×17	195 p	180 p	

Aluminium boxes with lid and screws

	Length	width	height	
AL1	3	2	1	48p
AL2	4	3	1/2/	58p
AL3	4	3	2	$65 p$
AL4	6	4	2	70 p
AL5	6	4	3	850
AL6	8	6	2	116p
			Plast Thyri	cased
			Texas	

SKTS

Low protile by Texas

8 pin $\quad 8 p \quad 16$ pin 11p $\quad 28$ pin $22 p$ 14 pin 10p 24 pin 18p 40 pin 32 p Soldercon pins: 100:50p. 1000:370p

OPTO

The leicestint innoration： from Sparkhrite Eparknte－Bubs the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM
 Smoother running
 Instant all－weather starting
 Continual peak performance
 Longer coil／battery／plug life
 Improved acceleration／top speeds Optimum fuel consumption
 Sparkrite X 4 is a high performance，high quality capacitive discharge，electronic

 ignition system in kit form．Tried，tested，proven，reliable and complete．It can be assembled in two or three hours and fitted in $1 / 3$ mins．Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker．There is no mistire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R．P．M．Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm．It will perform equally well with new，old，or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and，therefore，eliminates the possibility of blowing the transistors or the SCR．Most capacitive discharge ignitions are not completely foolproof in this respect）．The circuit incorporates a voltage regulated output for greatly improved cold starting．The circuit includes built in static timing light， systerms function light，and security changeover switch．All kits fit vehicles with coil／distributor ignition up to 8 cylinders．
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case．Ready drilled，aluminium extruded base and heat sink，coil mounting clips，and accessories．Top quality 5 year guaranteed transformer and components，cables，connectors，P．C．B．，nuts，bolts and silicon grease．Full instructions to assemble kit neg，or pos．earth and fully illustrated instaliation instructions．
Instaliation instructions． will require a tachometer pulse slave unit．Price es．8s inc．VAT．post \＆packing． Electronics Design Associates，Dept，EE 5
82 Bath Streot，Walsall，WS1 3DE，Phone：（9） 614791

Electronics Design Associates， Dept．EE 7 82 Bath Street．Walsall，WS1 3DE．Phone：（9） 614791

Name

Address

Phone your order with Access or Barclaycard
Serd SAE if brochure only required．
Iendose chequa PO＇s for

S．\＆R．BREWSTER
LIMITED

WHY PAY MORE？

for Miniature Soldering Irons \＆Accessories

5．R－． 1.18 watt Soldering Iron available in 12， $110 \& 240$ Volts，fitted with No 20 bit
$£ 3.78+22 p$
No． 19 size 1.5 mm or No． 20 size 3 mm or No． 21 size 4.5 mm or No． 22 size 6 mm
No．78．IC Desoldering Bit No． 1920 L Long Life Bit
SAFETY STAND SOLDER

Savbit 20

Savbit 10°
Lowmelt 10
NDUSTRIAL／RETAIL ENOUIRIES WELCOME FOR THE ABOVE今且•会
We also Offer \＆Recommend for Mail Order \＆ Personal Callers Only

```
Oryx 50 Temperature Controlled Soldering Iron
Spare tips for above
Spare tips for above chargechargeable Soldering Iron
Spare tips for above.
Cable 7/0.211 Colours 100 meter reel
lol
Copper Clad board single sided
Watchmakers Side Cutters
Watchmakers Pliers
Watchmakers Pliera _ 2 < 12V 4.1A
Copper Clad board single sid
```

10.5

OTHER ITEMS ALSO AVAILABLE ASK FOR LIST S．A．E： MAIL ORDER DEPT． 86－88 Union Street，Plymouth

Pum Please Quote yo PL1 3HG Tel：（0752） 65011

Bean
 개3 CH:ONIC
 MCHMA:

Do something PRACTICAL about your future．
Firms all over Britain are crying out for qualified people．With the right training，you could take your pick of these jobs． Now，the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer．

You risk nothing！We prom－ ise to get you through your chosen course－or，refund your fee！

So，join the thousands who have built a new future through home study Engineering courses．

Courses in

C \＆G Elect．Technicians C \＆G Elect．Installations Telecomms．Technicians Exams Television Servicing Radio Maint．\＆Repairs（BIET） Pract．Radio \＆Electronics Plus over 60 other home study courses．

POST COUPON FOR FREE 44 PAGE GUIDE BRITIS：INSTTIUTE OF ENGINEERING TECHNOLOGY

Aldermaston Court，Dept．TEEA5 Reading RG7 4PF．
NAME（Block capitals please）
ADDRESS
POSTCODE

Accredited by CACC
AGE
E－
Member of ABCC

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 28 PAGE ILLUSTRATED CATALOGUE. SEND STAMP PLEASE

For Sale

EVERYDAY ELEETRONICS, Number One, November 1971 to August 1977, £17. Norwich 502504.
EVERYDAY ELECTRONICS-March 72 to December '78 complete. Offers: R. Shorto, 53 Victoria Road, Warminster, Wilts. NEW BACK ISSUES of "EVERYDAY ELECTRONICS". Available 60p each Post Free, open PO/Cheque returned if not in stock. BELL'S TELEVISION SERVICES 190 Kings Road, Harrogate, Yorkshire. Tel: (0425) 55885.

Books and Publications

INTRODUCTION TO MICROPROCESSORS and Computing. 50 pages of diagrams and explanation to get you started. Price $£ 2 \cdot 30$ plus 45 p postage. EDUCATIONAL DATA AND TECHNICAL SERVICES, 59 Station Road, Cogenhoe, Northampton NN7 ILU.

Complete repair information any requested T.V. 25 (with diagrams $£ 5 \cdot 50$). Any requested service sheet for E1 plus SAE. SAE brings newsletter \& special offersservice sheets from 50 p, bargain vouchers, unique publications

AUS (EE)
76 Church St. Larkhall, Lanakkshire.

WHY NOT START YOUR OWN BUSINESS REWINDING ELEGTRIC MOTORS

A genuine opportunity to success. LARGE PROFITS. You can't heip but make money if you follow the easy,
step by step, instructions in our fully illustrated Manual showing how to rewind Electric Motora, Armatures and Field colls as uasd in Vacuum Cleanars, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS
REQUIRED, as the Manual covars in 13 Chapters, where REQUIRED, as the Manual covars in 13 Chapters, where
to obtain all the work you need, materials required, all instructions rewind charts and how to talke data, otc. A goldimine of Information. How to set up your home workshop and how to cost anch lob to your customer.

INDUSTRIAL SUPPLIES

102 Parrswood Road, Withington, Manchester 20, Dept. EE

[^1]
SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 4.40$ per single column centimetre (minimum $2 \cdot 5 \mathrm{~cm}$). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

CONDITIONS OF ACCEPTANCE

 OF CLASSIFIED ADVERTISEMENTS1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Cade of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

Receivers and Components

DISCOVER ELECTRONICS. Build forty easy projects including: Metal Detector; Wireless Transmitter; Breathalyser; Radios; Stethoscope; Lie Detector; Touch timeswitches; Burglar Alarms, etc. Circuits, plans all for $£ 1 \cdot 29$ including FREE circuit board. Mail only. RIDLEY PHOTO/ELEC TRONICS, Box 62, 111 Rockspark Road, Uckfield, Sussex.
TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO Electronics, Grenfell Place, Maidenhead, Berks.
ELECTRONIC CAR BATTERY VOLTMETER, IC, PCB, full instructions, $£ 2 \cdot 75$ inc. SAE for details. Tritech Electronics, 190 Roding Road, Loughton, Essex.
CONSTRUCTOR PARCELS, over 200 parts, $£ 4$ lists. SAE. Sole, 37 Stanley Street, Ormskirk, Lancs L39 2DH.
ICs $7400 / 10 \mathrm{p}$ 7448/56p $\quad 7476 / 28 \mathrm{p}$ 74123/40p 74LS10/18p 74LS74/29p 7905/90p 7805/60p LM380/70p LM709/22p LM741/18p LM747/ 50p LM324/65p NE555/25p 4001/15p 4017/55p 4025/15p MANY MORE! SAE FULL LIST CP ICs 22 Oakfield Road, Croydon, Surrey.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $£ 10-25$ plus 25p P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning flashes' vari-speed, for discos and parties. A mere $£ 4-50$ plus 25 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 25 p P. \& P.

LOTS MORE! Send $25 p$ for lists.
Prices include VAT

BOFFIN PROJECTS
 4 CUNLIFFE ROAD, STONELEIGH EWELL, SURREY. (E.E.)

ELECTRONIC COMPONENTS and E.B. project kits 1973 -now. Catalogue SAE, plus 30 p Jadebond Ltd., Middridge Drift Ind. Est., Middridge, Shildon, Co. Durham. Tel: Shildon (038 884) 3845.
COMPONENT LEDS, 0.2 in any colour 9 p . IN4148 10 for 12 p ; 100 for £1 IN4005 3.5 p each LM723 25p. NE555 22p LM3900 40p. Resistors $\mathrm{I}_{2} \mathrm{p}$ each. Ceramic Disc. 27 pF to 8 n 2 lp each any mix. $74006 \mathrm{p} .4002 / 11 / 12$ 12p, 14PIN. Sockets. Ex equip. 6.5p each. 11 b Ferric Chloride 45p (25p P\&P) 101b. Post Free. Send for Free Catalogue, P\&P 12p M.E.C.A, 14 Hopetoun Street, Bathgate, West Lothian.
SMALL AUDIO AMIPLIFIERS. 3 transistors equivalent to AC128, OC72 with circuit 3 for $£ 1.300$ small components, transistors, diodes. $£ 1 \cdot 60$. Wire ended neons, 20 for £1. Panel with 4074 series ICs, £1.50. 100 assorted C280 polyester capacitors $£ 1-20$ no Postage. List 15p refundable. Insurance add 15 p. J.W.B. RADIO, 2 Barnfield Crescent. Sale, Cheshire M3s 1NL.

Record Accessories

STYLI, CARTRIDGES FOR MUSIC CEENTRES \&c. FREE List No. 29. For S.A.E. includes Leads, Mikes, Phones, etc. FELSTEAD ELECTRONICS (EE), LONGLEY LANE, GATLEY, CHEADLE, CHES SK8 4EE.

Miscellaneous

THE SCIENTIFIC WIRE COMPANY

PO Box 30 , London E.4. Reg. Office, 22 Coningsby Gardens.

SWG	ENAME	8 CO		
S0-19	$2 \cdot 65$	8 cz	- 4.75	2.80
20-29	$2 \cdot 85$	1.65	-90	- 70
50-34	3.05	1-75	1.00	-75
35-40	3.40	1.95	1.15	-84
41-43	4.55	$2 \cdot 55$	1.85	$1-30$
44-46	5. 05	3.05	2-15	1-70
47	8.00	5.00	3.00	$1 \cdot 80$
48	15.00	9-00	6-00	3-30

SILVER PLATED COPPER WIRE				
$14,16,18$	4.50	2.25	1.44	-90
$20 \& 22$	5.00	2.85	1.74	$1-06$
$24 \& 26$	5.70	3.31	2.00	$1 \cdot-22$
$23 \& 30$	6.57	3.86	2.35	1.44

Prices include P \& P and VAT.
SAE brings ilst of copper a resistance Wires. Dealer enquiries invited.

AERIAL BOOSTERS

Improves weak VHF radio \& television reception.
B45-UHF TV, BH-VHF RADIO.
For next to the set fitting.
PRICE \&5. S.A.E. FOR LEAFLETS.
ELECTRONIC MAILORDER LTD.
Ramsbottom, Bury, Lancs, BLO SAG.
BUILD 25 PROJECTS with our Multi-purpose kits, details supplied. Send $£ 19.00$ to Major Oak Services, 33 Lillian Avenue, London, W3.

NO SIG. GEN.P

LOW COST $10 \mathrm{~Hz}-200 \mathrm{KHz}$, logic and variable sine or square waves, so useful, only $£ 10 \cdot 80$.
RADIO 4 GONE? 200 KHz to Medium Wave Converter, built-in antenna, 1000 km range, Inductive and coax (for FRG7 etc) outputs, $89 \cdot 70$.
PROGRAM YOUR OWN tunes on a MUSICAL DOOR-日ELL, new tuns each day, just needis bell transformer and speaker, $519-50$.
LOST THE TIME? MSF 60 KHz Recelver, built in antenna, data output, case, pcb, © $13 \cdot 70$. Sequential year, month, date, day, hours, minutes, seconds dilsplay parts (no case or pcb, Veroboard okay) for recelver $£ 10.70$.
Giro 2t-923-4000. Each easy-assembly kit includes all parts, printed, circult, case, postage etc, money back assurance so SEND off NOW.

CAMBRIDGE KITS

45 (VU) Old School Lane, Milton, Cambridge
TUNBRIDGE WELLS COMPONENTS, ballard's, 108 Camden Road, Tunbridge Wells, Phone 31803 . No lists, enquiries S.A.E.

BUILD A SYNTHESISER!

NO special skills SPECIAL EQUIPMENT REQUIRED

Using Devtron (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOWI

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

Codespeed Electronics PO Box 23, 34 Seafield Rd, Copnor, Portsmouth, PO3 5BJ

 ELECTRONIC MAIL ORDER SPECIALISTS
New, Full Spec. Devices

MM5314 CLOCK CHIP SNIP. A bulk purchase allows us to offer these digital clock chips at the unbellevable price of only $81 \cdot 99$ each. With data. Cat. Number
4 DIGIT LIOUID CRYSTAL DISPLAYY. A super, high contrast 4 digit nonmultiplexed display. Digit height is 0.5 " and the dispiay is suoplied with data and DIGPeciTAL ALAR ARM CLOCK MODULE, A digital alarm clock mod with $0.8^{\prime \prime}$ LED display. Just add mini transiormer and time setting switches for fully functional clock. With data and instructions, only $\mathbf{2 6} \cdot \mathbf{5 0}$. Catalogue 9 number 205
9 DIGIT DISPLAY. A 9 digit, 7 segment gas discharge display. Super, bright $0.25^{\prime \prime}$ high digits. With data, only 75 p Cat. Number 310
bulld a high accuracy d.v.m. or panel meter. Has auto polarity and over-range indication. Supplied with data and circuilt Requires some additional circuitry. only $£ 3.95$. Cat. number 404 5 DIGIT MICRO L.E.D. DISPLAY. Built on top of a 16 pin dual in line package this 7 segment display has 5 bright $0.09^{\prime \prime}$ high digits. Terrific value for only 75 p . 10 HYBRID CIRCUITS. Now miniaturise your home produced PCB's with these 10 hybrid circuits, each containing 8 resistors and 8 capacitors. Useful values. 10 hybrids 6 DIGIT L.E.D. DISPLAY. A common cathode 6 digit 7 segment L.E.D. display from Toxas instruments. Mustilexed with built in bubble magniffers. Dig POLARISING FILTER MATERIAL, A lightly tinted polarising, filter materiai, manufactured by 'Polaroid', in 0 -006" plastic film. Any size cut, from 1 sq. Inch to a maximum size on ty 250 leel. Our price-oly 10 per CALCULAATOR KEYBOARDS. Two multifunction c 25 MIIATURE DIODES 25 min
$35 v$). All brand new. What a bargain (at lust 2 D each) 1125 diodes (600 mA , Catalogue number 401
P.U.T.'s. Four MEU21 Programmable Unijunction Transistors (electrically similar to 2 2 N6027). Lots of uses, long delay timers, oscillators, phase controllers and many more. With data and usage sheet. 4 for 50 p. Cat. number 402 HIGH SPEED SWITCHING DIODES. $10 \times$ iN4151 high speed diodes. Same CALCULIATOR CHIP. An Mustas calculiter chip offer for CALCULATOR (not compatible with calculator keyboards offered as cat. no. 101) only $£ 1.00$ number 103 .

Untested or Used Items.
DEFECTIVE CALCULATORS. A production line reject calculator with lots of accesssible goodies inside. Detachable keyboard, display, case and PCB with approx. 25 transistors and calculator chio. Not much wrong with some we tested. A bargain at only $£ 2 \cdot 50$. Cat. number 104
A full refund quarantee on all items.
Post and Packing please add 25 p (Overseas orders add 60p)
Lots more goodies in our catalogue. Send a medium sized SAE for your free copy.

ELECTRONICS SUPPLIERS SHOPS, IMPORTERS, MANUFACTURERS

HONG KONG

 IS CHEAPEROwing to the rising value of the Japanese Yen, products from Japan are becoming very expensive.

We have equivalent quality products at far better prices from Hong Kong, Taiwan and Korea.

We can supply in both large and small quantities with proven quality.

Even if you have never imported goods before, we can show you how!

86 pages, comprehensive, fully priced catalogue available: specialising in products for the electronics hobbyist.

Catalogue SUS4.00 to cover
airmail postage.

Tlx. 64398
Call in when you're next
in Hong Kong!

TAMTRONIK LTD (${ }^{\text {perer }}$)

217, Toll End Road, TIPTON, West Midiands DY4 OHW TEL:021-557-9144

Printed Circuit Boards \& KITS for EE projects

Mag Issue	PROJECT	$\begin{gathered} \text { KIT } \\ \text { Ref } \\ \hline \end{gathered}$	PRICES		KIT CONTENTS (see kay)	
			P.C.B.	KIT		
Jan 78	Audio Visual Metronome Touch Switch Rapid Dlode Check Car Alarm Lead Tester Chaser Light Display A.C. Meter Converter Audio Test ($2 \times$ Pcb's) C.R. Substitution Box Catch-2-Light Weird Sound	$\begin{aligned} & E 001 \\ & E 002 \\ & E 004 \end{aligned}$	+ 85 \|	6.40		$\begin{aligned} & \text { B.E.H.L. } \\ & \text { B.E. } \\ & \text { B.E.H.L. } \end{aligned}$
Feb		$\begin{aligned} & \text { E00 } \\ & \text { E004 } \\ & \text { E005 } \end{aligned}$	+ 85 +1.15	2.80 6.55	B.E.G.H.L.	
		$\begin{aligned} & E 005 \\ & \text { E006 } \end{aligned}$	+180	5-10	B.E.H.L	
		E007	2.70	23.95	B.E.H.L.	
Mar		$\begin{aligned} & \text { E008 } \\ & \text { E0010 } \\ & \text { E011 } \end{aligned}$	+1.05 +2.65	8.70 18.75	B.E.H.L.	
			+2.65	18.75 9.95	E.H,L.	
			+1.40	10.00	B.E.H.L	
		$\begin{aligned} & \text { E012 } \\ & \text { E013 } \end{aligned}$	$+1.00$	6-45	B.E.H.L.	
Apr	Roof Rack Alarm,		+1.00 +1.25	14-25		
	Mains Delay Switch Pocket Timer......	E014	+1.25 $+\quad 95$	$14 \cdot 25$ $4 \cdot 40$	B.E.J.L.	
May	Flash Meter.	E016	+	13.20	B.E.H.L	
	Malns Tester	E17	+ 85	1-90	B.E.H.	
	Teach \ln-Power Amp	$E 18$	-	1.95		
	Power Pack	E18	$+1.20$	$7 \cdot 10$	B.E.H.L.	
Jun		E20	+1.35	12.80	B.E.H.L.	
	Insitu-Trantistor Tester Teach $\operatorname{In} \mathrm{S} . \mathrm{W}$. Recelver	E21	+ 95	$\begin{aligned} & 6 \cdot 15 \\ & 2.20 \end{aligned}$	B.E.G.H.L. E.	
	Power Slave	E23	2.45	-		
	Visual ContInuity Te	E24		4.95	E.H.L.	
July	Auto Night Light	E025	+1.30	11.25	B.E.G.H.L.	
	Short Wave Radlo	E028	-	10.25	E.E.G.H.	
	Logic Probe	E028	+1.95 $+\quad 80$	8.80 3.45	B.E.G.H.L.	
Aug	Slave Flash	E029	+ 90	3.55	B.E.	
	M.W.	E30	+ 80	6.35	B.E.J.L.	
	Audio Freq. Signal Generator	E031	+1.45	14.85	B.E.J.L.	
	Chronostop R.F. Signal Generator	E032	+2.95	33-95	C.E.G.K.M.P	
Sept		E034	-	18.25 6.20	E.H.L.	
	Guiter Tone Booster	E035	1.05	$5 \cdot 00$	B.E.H.L.	
	Car Battery State Indicator	E036	90	2.20	B.E.	
Oct	C.M.O.S. Radio	E037	+1.85	12.75	B.E.G.H.L.	
	Fuse Chscker	E038		$2 \cdot 15$	E,H,L	
	Treasure Hunter	E039	1.80	18.20	B.E.G.H.L.	
NovDec	Audio Effects Oscillator	E042	-	3.05	E.H.L	
	Water Level Alert	E043	+ 90	4.65	B,E.G.H.L.	
Nov	Subscribers Tele-Tel. Meter Subs. Tele Tel-3rd Diglt	E044 E044A	$+3.50$	24.50 3.50	C.E.G.K.M.P	
		E044A	+ $\overline{3} \cdot 45$	3.50 24.95	E.E.H.L.	
	Hotiine Game	E046	+1.00	5.50	B.E.H	
OctDec	Minl Module-Passive Mixer	c047	-	3.10	E.H.	
	Audible Flasher	E048		3.00		
	Vehicle Immoblliser Minl Module-Microphone	E050	1-25	5.50	B.E.H.L D.E.H.	
Jan 79	Mini Module Continuity Tester	E052	± 1.05	$4 \cdot 65$	B.E.H.	
	Lights Reminder	E053	$+1.15$	6.90	B.E.G.H.L.	
		E054		2.20	E.H.	
	Roulette (2 p,c.b.'s)	E055	$+4 \cdot 10$	20.45 2.60	B.E.H.	
$\begin{aligned} & \text { Dec } 78 \\ & \text { To } 79 \\ & \text { Feb } 79 \end{aligned}$	EE 2020 Tuner Amp A (inc. R . unii)	E057	$\overline{3.65}$	28.60 58	B.E.G.H.	
	EE 2020 Tuner Amp B	E056	3.80	25-95	B.E.H.	
	EE 2020 Tuner Amp C	E059	$1 \cdot 45$	4,70	B,E.R.	
	EE 2020 Tuner Amp D	E080	$2 \cdot 30$	18.45	B.E.H.	
	EE 2020 Tuner Amp E	E061	1.40	24-95	K.E.G.H.	
	EE2020 Hardware $\frac{1}{}$ wire EE 2020 Kit excl. Case.	E062	$\overline{10.90}$	13.50 135.00	K.EGKK,	
Feb	Long Wave Convertor	EDE4	10.90 +1.20	13.40	B.E.H.L.	
	Mini Module Audio Modulator	E065	-1.00	$2 \cdot 00$	E.H.	
	Power Supply	E066	$+1.00$	25.45	B.E.H.	
	Thyristor Tester ...	E067	+ 30	4.85	B.E.H.L	
Mar	Saund Adaptor.................0.	E068	$+1.20$	6.95	B.F.H.	
	Car Direction Indicator (Neg. 12v)	E069	$+1 \cdot 25$ $+\quad 00$	8.45 4.05	B.E.G.H.L	
	ONE Transistor Radio (inc. Amp)	E071A	+1.00	8.50	B.E.H.	
	ONE Transistor Radio (excl. Amp)	E071B	+85	7.35	B.E.H.	
	Mini Module-Versatile Power Supply	E072		$5 \cdot 35$	E.H.L.	
Apr	Shaver Inverter	E073	$+1.00$	12.75	B.E.H.L.	
	Touch Bleep	E074	+1.15	4.70	B.E.H.L	
	Mini Module Transistor Test	E077	+ +1.00	4.25	B.E.G.	
May	Choke Warning	E079	$+1.00$	2.00	B.L	
	intruder Alarm	E078	+1.35	25.45 14.45	B.E.H.L.	
	Shoctronic Dice	E080		17.45 17.95	E.J.L	
	Thermostat	E081	+1.25	$12 \cdot 65$	B.E.H.L.	

```
A Vero-board(s) KEY TO KIT CONTENTS
A Vero-board(s)
B Printed Circuit Board(s)
C Wlth screen printed component layout
D Tag strip
As Resisiors, potentiometers, capacitors, Semi-conductors
F. As E but with exclusions-Please ask for details
H Hardware includes Switches, Knobs, Lamps & Holders, Fuses &
    Holders, Plugs & Sockets, Microphones, Transformars,'Speakers,
    Meters, Relays, Termlnal Blocks, Battery Connectors, etc., BUT
    excludes nuts, bolts, washers, connecting wire, Batteries and
    special miscellaneous items.
| As H but with exciusions-Please ask for detalls
K As H but Including connecting wire
M Suitable Case w
N Full kit to magazine specified standards
P Kit with professlonal finish incorporating all prime features includ-
    Ing screen printed PCB and case where appropriate
```


Doing-it-Digitally TTL ELECTRONIC TEST BED

Complete kit E040

£24.00
Components for
first 6 parts E041 £4-50 (including additional components)
BOTH KITS
(special price) $\quad \AA 26.90$

TELE-TEL

Nov. 78
Ref. E044
Subscribers phone call charge
Alter with a professional finish CASE with screen printed facia similar to magazine provision for 3 rd diglt An aluminlum subfacla pane! is also proided with screen printed hole centres to alfow access to preset potenPCB 3rd digit facillty and is screen printed for ease of sasembly
$(2 \mathrm{digits}) \pm 24 \cdot 50$
$(3 \mathrm{digits}) \pm 28.00$

BARGAIN CORNER

$100 \times \frac{1}{1 w} 1 \mathrm{k}$ carbon resistors 30p $10 \times 1 \mathrm{w} 5 \% 1 \mathrm{k} 5$ resistors 10 p $10 \times 1 \mathrm{w} 5 \% 7 \mathrm{k} 5$ resistors $\quad 12 \mathrm{p}$ $10 \times 1 w 5 \% 100 \mathrm{R}$ resistors 12 p $10 \times 6 \mathrm{w} 5 \% 390 \mathrm{R}$ wirewound 50p $10 \times 47 \mathrm{u} 10 \mathrm{v}$ Axial Elec. Caps
$4 \times$ NES5 Timer \&f.00
Plug in mains PSU
$3 \mathrm{v} / 6 \mathrm{v} / 3 \mathrm{v} / 12 \mathrm{v}$ DC
300 mA sultable for
aiculators \& T.V. Games $£ 2.99$

CHRONOSTOP

Aug. 78 Ref. E032

SPLIT 6 TAYLOR fap timing modes plus normal start/stop operation.

Ait with a professional finish including
CASE with screen printed facia

PCB with screen printed component layout
Full Assembly Instructions PRICE INC. VAT £33-95

Kits can be supplied excluding P.C.B's and/or case. Send SAE for details naming kit and kit reference and free catalogue.
TRADE \& EDUCATIONAL
PRICES INCLUDE
ENQUIRIES WELCOME
VAT \& P\&P

Tamtronik Ltd. reserves the right to change kit content without notice, where necessary to incorporate current modifications or to make valid subsiltution for temporarily unevaliable components. The malority of the kito we advertise can be supplied from siock or component stocks held, but when ordering you should be prepared to allow at least ten days, and up to one month, for us to complete your order

INDEX TO ADVERTISERS

Ace Mailtronix	\ldots	\ldots	
Bi-Pak	\ldots	\ldots	\ldots
Birkett J.	\ldots	\ldots	\ldots
B.N.R.E.S.	\ldots	\ldots	\ldots
Boss Industrial	\ldots	\ldots	
Brewster S. R.	\ldots	\ldots	
Bull J.	\ldots	\ldots	\ldots
Chromatronics	\ldots	\ldots	
Clef Projects	\ldots	\ldots	
Codespeed	\ldots	\ldots	
Collier McMillan (B.I.E.T.)			
Colour Print Express	\ldots		
C. N. Stevenson	\ldots	\ldots	
Crescent Radio	\ldots	\ldots	
C.S.C.	\ldots	\ldots	\ldots

VISIT OUR SHOP AT 32 Market Place,
Great Bridge, Tipton,
West Midlands.

Telephone or Letter

Reliability at less cost

Photography can cost you a lot less these days. If you know how to go about it. Like the hundreds of thousands of magazine readers who are delighted with this reliable Colour Print Service -and the replacement films that come FREE to every customer! So why don't you give it a try? Here's what you do. Send us any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your film in a strong envelope to: The Everyday Electronics Colour Print Service, Freepost, Teddington, Middlesex, TW11 8BR. No stamp is required.

Send no money

But don't send any money until you see the colour of your prints. We're so confident in the reliability of the service and the quality of our prints, every one of which is checked by professionals at our laboratories. Luxury colour prints
You'll be amazed at the crisp, sharp, high-definition sheen finish of the prints we supply . . . borderless to give you maximum picture area. And coming with the prints will be your FREE Kodak colour film, worth around 61 , the same size as the one you sent us for processing.

Unbeatable value

What about prices? Ours are certainly much less than those you would pay in most shops - quite apart from the free film you get every time we develop and print for you.
Our Colour Print Service charges you only 15p for each print, plus 85 p towards developing, postage and packing. The minimum charge is 85 p inc. VAT (that is, if no prints can be made). The offer is limited to the UK, Eire, CI and BFPO.

More benefits to you

You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get-with no credit vouchers as with many other companies. An invoice comes with your prints so it's a straight business transaction.

This superb organ-build the first working section for just over $£ 100$. Full specification in our catalogue.

Add-on wass peda grat rorborgans. fras excenent bass quitar stop for guitarists accompaniment. Specification in our catalogue.

Mohite amateur ratio. TV and FM aerials plus tots of有 ate doschbed oun calaiogue.

ELECTRONICSUPPLIES LTD All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155
Shop: 284 London Road,
Westcliff-on-Sea, Essex.
(Closed on Monday).
Telephone: Southend (0702) 554155

Amassivenew catalogue trom Maplin 1hats eve bpget and better than
before il you ever buy efectronic components Chectisthe one
thatiogue youmust catilogue youmus
notbe w thout notbe m thout
0.e- 280 proges iome intull colour
-itsacomicrenensivo quisecomprenensiva guseloeccitiontic hundredrot: ohotographs anid Alustratonsand pop atter page
ofinwaluate dara

Our hemonthiy
newsiefter contains newsierter contains
guaranteed prices: guaranteed prices
special otters and alt the latest
news trom Mani.n news trom Mapi.n

The 3800 synthesiser build it yourselfat a fraction o the cost of one ready-made with this specification. Fuil cetails in our catalogue

A rarge of thighty attractve knobs is tescribed in our catalogue. Our prices are very attrative foot

$-\Delta \Delta \Delta \Delta \Delta \Delta \Delta$ $\Delta \Delta A \Delta \Delta \Delta \Delta \Delta$

Touich operated fiythm generator; the 'Dumsette Construction details 25 p. (Leaflet MES49). Specifica tion in our catalogue:

[^0]: MTHMBM IM AT1 1 (Dept. EE)
 SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
 Discount Hifi Etc. at 5 Swan Street and 10 Swan Street Speakers, Mall Order \& Export 0625529599 Hi-Fi 0625526213

[^1]: Service Sheets
 SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and e.a.e. Catalogue 25 p and s.a.e. Hamilton Radio, 47 Bohemia Road, St, Leonards, Sussex.
 BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. EI plus SAB. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Hoad, Harrogate, N. Yorkshire. Tel: 0425 55885.

