Easy to build projecte for everyone and

Be
 'At Home' with this Auto Nightwatch

Extra Ram mis ZX81

ELECTRONIC IONITION KIT

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.
PEAK PERFORMANCE \qquad higher output voltage under.all conditions.
IMPROVED ECONOMY _ no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.

ACCURATE TIMING _ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE _- immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK — $31 / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING full'spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

it provides a top performance electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL JUNE '81 ISSUE and EVERYDAY ELECTRONICS DECEMBER ' 81 ISSUE

FITS ALL NEGATIVE EARTH VEHICLES.
6 or 12 voliz, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS
Some older current impulse types (Smiths pre '74) require an adaptor PRICE £2.95

STANDARD CAR KIT $£ 15.90$ ASSEMBLED AND TESTED $\mathbf{4 2 6 . 7 0}$

TWIN OUTPUT KIT £24.55
For MOTOR CYCLES and CARS with twin ignition systems
ASSEMBLED AND TESTED $£ 36.45$
U.K. P. \& P.

Prices include V.A.T.
PROJECTS . . . THEORY . . . NEWS . . .

COMMENT

ROLL UP! ROLL UP!

It's the greatest show for all enthusiasts

Turn to page 805 for full details and
Your 50p Coupon
Alexandra Pavilion, London
November 18, 19, 20 and 21
Electronics Hobbies Fair is sponsored by Everyday Electronics, Practical Electronics ana Practical Wireless and is organised by IPC Exhibitions Ltd.
(8) IPC Magaxines Limited 1982. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

EXTRA RAM FOR ZX81 by K. Depledge G3 PAN 772 Modifications to $\mathbf{Z X 8 1}$ and 2K Ram Pack
SECURITY VARI-LIGHT by A. R. Winstanley 775
Confuse the would-be prowler
CAR INDICATOR ALARM by A. Robson 782
A novel sound alarm for the motorist
VELOCITY MEASURER 796
by B. Dhanda, M. Finnemore \& M. StolleryUses Doppler effect to compute object speed
ELECTRONIC V/I METER by D. J. Edwards 812
High performance, high input impedance voltmeter 5V REGULATED SUPPLY by F. G. Rayer 815
Simple power unit for logic circuits
SERIES
INTRODUCING ELECTRONICS by George Hylton 784
Part 3: Coils and Inductance
AUTOMOTIVE ELECTRONICS by J. B. Dance M.Sc 790
Developments in microprocessor systems for cars
THE ELECTRONICS OF INFORMATION TECHNOLOGY 808
by T. E. Ivall
Part 2: Energy Converters; Analogue to Digital Conversion
FEATURES
EDITORIAL771
Electronic Hobbies Fair 774
Readers' Hints and Tips
JACK PLUG AND FAMILY 774
Cartoon
COUNTER INTELLIGENCE by Paul Young 781
A retailer comments
PLEASE TAKE NOTE 788
P.A. System, Combination Lock, Sound Splitter
EVERYDAY NEWS 806
What's happening in the world of electronics
SCHOOLS COMPETITION 811
Details of SEDAC 1983
EXAMINATION PROJECTS by C. Bowes 818
Practical aspects of circuit design and construction
FOR YOUR ENTERTAINMENT by Barry Fox 820
Advertorial, The Microcomputer Boom
RADIO WORLD by Pat Hawker G3VA822
Racalex '82, Transglobe Communications, Exit VHF Television SQUARE ONE 825
Beginners Page: The Potentiometer and Variable resistor SHOPTALK by Dave Barrington 826
Product News and components
INDEX VOLUME 11 828
SPECIAL OFFER-MULTIMETER (Mini 20) 789

A EXP 650 For microprocessor chips. $£ 3.75$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 6.00$
C EXP 600.6" centre channel makes this the Microprocessor Breadboard. $£ 6.60$
D EXP 48 An extra 4 bus-bars in one unit. $\mathbb{£ 2 . 4 0}$
E EXP 325 Built in bus-bars accepts 8,14, 16 and up to 22 pin ICS. £1.65
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.30$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.75$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 12.50$ (Not illustrated.)

\& IT'S AS EASY AS $1,2,3$ with THE EXPERIMENTOR SYSTEM

SCRATCHBOARD

-BREADBOARD

- MATCHBCARD

> pre-drilled PCB - $£ 1.20$
> 2. EXP 302 which Includes three itemis. Three 50 -sheet
> 3. Exatchboard workpads - $\mathrm{E1} .50$
> 3. EXP 303 which includes three items. Two matchboards and EXP 304 which includes four trem $-£ 7.60$ EXP 300 breadboard and a scratchboard warkhboards and

The above prices do not include P\&P and 15\% VAT

TOMORROW'S TOOLS TODAY

global specialties corporation G.S.C. (U.K.) Limited, Dept.4H.
 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682.
Telex: 817477.

NAME

ADDRESS

I enclose cheque/PO for $£$
or debit my Barclaycard, Access, American
No.:
Exp.date
or Tel: (0799) 21682 with your card number and your orderl will be in the post immediately.

A EXP 650 ع5.17	Onty. Reqd.	$\begin{gathered} \text { B EXP } 300 \\ \text { ع8.05 } \end{gathered}$	Onty. Reqd.
C EXP 600 E8.74	Qnty. Reqd.	D EXP 48 03.62	Qnty. Reqd.
$\begin{gathered} \text { E EXP } 325 \\ 2.76 \end{gathered}$	Onty. Read.	$\begin{gathered} \text { F EXP } 350 \\ \text { ع4.65 } \end{gathered}$	Qnty Reqd.
$\begin{aligned} & \text { G PB6 } \\ & \text { £12.36 } \end{aligned}$	Oniv. Reqd.	HPB 100 £15.52	Qnty. Read.

Experimentor System

EXP 300 PC £2.25	Onty. Reqd.	2 EXP 302 £2.58	Qnty. Reqd.
EXP 303 E9.40	Onty. Reqd.	4 EXP 304	Onty. Reqd.

FREE catalogũe
tick box \square
Global Specialties Corporation (UK) Limited, Dept. 4H
Unit 1, Shire Hill Industrial Estate, Saffron Walden Essex C811 3AQ

TWO FABULOUS OFFERS FROM

TESTER 20
20k Ω / V a.c. \& d.c.

THE IDEAL INSTRUMENT FOR THE CONSTRUCTOR

With protective diodes and quick-acting 1-25A fuse.

ONLY £29.75

inc. VAT, P\&P, complete with
 carrying case, leads and instructions.
The best instrument for the workshop, school, toolbox, TV shop and anywhere accurate information is needed quickly and simply.
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
40 ranges: \quad d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$, d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1 \cdot 0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \cdot 0 \mathrm{~A}, 10 \mathrm{~A}$.
$\Omega 0-5 \cdot 0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$.
dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

TESTER 50

39 ranges
$50 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c. With protective diodes and quick-acting 1.25A fuse.

THE

PROFESSIONAL SOLUTION TO GENERAL MEASUREMENT PROBLEMS ONLY £36-30
incl. VAT, P\&P, complete with carrying case, leads and instructions. Goods normally by return of post.

The best Instrument for the workshop, school, toolbox, TV shop and anywhere accurate measurement is needed quickly and simply.
Accuracy: $50 \mathrm{k} \Omega / \mathrm{V}$, a.c. and d.c.
39 ranges: d.c. $V 150 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; d.c. $120 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c. $V 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.

Ohms $5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$.
dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

BrनaK AUDO

HIGH QUALITY MODULES FOR STEREO MONO AND OTHER AUDIO EQUIPMENT

 moddes heve been sold－inis is why discer ning amateus enthusiasts end protessionals alite inssit on using Bi Pak modiles in their equiprent
They know that every item is cessaneat and lested to do the jab for whict it is intended betare it ieaves the tacton－ Whatever you ae building there is a bo a module in the BI PAK ramue to suit your every need

AUDIO AMPLIFIERS

510 watts IRMSI
AL20 5 wall Audio Amc Madde 22．30v supaly Eas？ N 30 A 7.10 watt Audio Anp．Module 22．32y sup北
f4．16．

AUDIO AMPLIFIERS
 152535 watt（RWS）

AL60 1525 wall Audio Amp Madule 3050 supply $£ 5.15$. A180 3 wall Audio Amp Modue $£ 8.07$

AUDIO AMPLIFIER
Audio Ampifier，50W RMS ，with integral heat sint and shor cirait prolecion
Introduced to tutill the demand for a fully protected power amp．capabte to diring high quaitry speaker
 Ideal for domestoc use．Discos，PA．，systems，dectionic agens etc The pencousty rated components ensure coninuous operation al high artout levels．AL120 50 watt Audio Amp Madule 50 Jov suppry
f13．14．

AUDIO AMPLIFIER

125 watts（RMS）．AL 250
A power amplifer pronding an output of up to 125 w RMS，into i 4 ohm lood four 115 s uensistors in the aupart slage makes it etremely rugged while damage trom incorrect on shon circuil loads is pevented by： tour transisor crotection circuit．For use in many aspications surth as disco units．sound reinfla cement systems，background music pleres etc． $\mathbf{f 1 9 . 6 0 .}$
Al250 125 walt Audio Amp
Module 5080，
supply

PS12 24y Supply Suit： 2 \＆AL10 2：AL20 2 \＆AL30 5 PA12S453 โ1．65 SPM80 33v Stabilsed sipply Suit： 2 ALIO PA100 to 15 watts 4as SPM12015 45 V Sablised supphy Suit： $2 \times$ Al 60 PA100 to 25 capacitors to complete the power suppty． to 50 Stablised supply Suit： 2 a Al80 PA200 56.38
 5630150.95 Stablised power supply for $2 \times$ GE100 MCHI E3 10.

POWER SUPPLIES
 POWER SUPPLIES

SPMIZO is a fred vohage stabiliser with an output voltage of बithe 45，55v，or efw．Besigned tor use in audio applications．the stabliser which provides output currents up to 2.5 A perates drect from a mains currents up to 2.5 A operales drect from a mains
transtormer requiring only the addition of wo lectraptic Papacitors to 15．38

MONO PRE•AMPLIFIERS

MINIATURE FM
 TRANSMITTER

Freq： 95.106 MHz ．Range：t mlle Size： $45 \times 20 \mathrm{~mm}$ ．Add： 9 v batt． Not licenced in U．K，ONLY KGB－ETC．－
MAGNETIC CARTRIDGE
PRE－AMPLIFIER
Enioy the quality of a magnetic cartidge with your cer amic equipment using the MPA30 which is a quality preamp，enabing magnetic cartindges to be used where facilities exist tor ceramic cantridges only．With a DIN input socke1 6 full，easy to follow instructions nP A30 Stereo Mag Cantudge，Preamp． －input 35 mv Output 100 mm E 327 ．

MM100 suitable for gutar preamp mixer．
The MM100 and MMIOOG mono preampifiers are compatible with the AL 80，ALE AL AL 120 and AL250 power amplfiers and their associated power supples． MMIDO Supph voltage 40－65v inputs．Tape Mag P．U． Microphone Max outpun 500 mv ⒓43 MM1006 Supply volage 40.65 inputs： 2 Guttrs，Micigphones Max autput

STEREO

PRE－AMPLIFIERS
PA12 Supply valtoge 22．32v input sensitvity 300 mv Suit

 PaZocs Supply votage 3 370．inputs Tape Tune Mas

The PA200 is basically our popular PA100，modrications being made to make it compatible with the higher output amplifiers ie．Al 120 o Al 20 the unit boasts six push button selectors giving a choice of 3 inguts．？ fituers．for both hegh and low requencies and a stereo or mono button，all combining to give a top quality stereo preamplifier and tone contrat

Transtormers are not inchdided with
Dower suoples SPM1zo Range
aso require reservoii and output capacitors

TRANSFORMERS

 55v 66．65．2006 150mA 17v Sut PS12 日立 2000
 2012 amp 0．55v 65v Suit SPMI2055
 30 Easo 2003150 mA 150 15v Suir SG30 f1． 50

ACCESSORIES

139 Teak Cabinet Suirt Stereo $30300 \times 23 \mathrm{x}$ BImm 57．00． 140 Teak Cabinet Suir STA15 425 I 290 x
 PA200 f1．80．EP100 Back Panel Iot PA100 \＆ PA200 E1．60 GE10IP From Panet for one GE100M×1：E1．75．TC6E Kit of Parts incuding Teak Cabinet chassis，sockets 8 knobs etc no house STA15 Ampliter） 117.50 PSZ50 Consists－ 1 capacitos 54 tortes for constucting unsuthtised power supply lar AL250 to 125 wats R290

GE100 MKII watull it 10 Channel
 Menogyaratic Equasiser．

BJ－PAK＇S COMPLETELYNEW CATALOGUE

Complelely re designed．Full of the type ol composirents pou tequue．plus somse very interesing ones you will soon be using and of course the la gess lange of semiconductors too the Aruateil and Piolessional youl could hope to frint There are no wasted pare：ol useless intumal on so often micluded in Calalogues pubished nowadays Just solid facts ie price．dexciplion and individual leatures of what we have avalable，But ienlember．BI Pah＇s peticy has always been to sell quality componennts at competitive paices and THAT WE STH DO．
BI．PAK S COMPLIfly MEw catal OCUt is now available to you Yoln will bi

To recerve youf copy send $75 p$ plus $25 p$ p\＆

PUSH

BUTTON
 STEREO FM
 TUNER

Firted with Phase locted loon decoder
5453 Proudes instant programme selection at the touch of a button ersering xccurate uning of 4 preselected stations．any of which may be atered as often as you choose，simply by changing the setfings of the preset contole Features ind
stage．Varictap dode
£1200．

REGULATED

VARIABLE

STABILISED POWER SUPPLY

 Varible from 2.30 vott and 0.2 Amps Kit includes：－ 1－VPS30 Module， 1 － 25 woll 2 amp transtorme． 1－0．50v 2 ＇Pand Meter． 1 － 0.2 amp z^{\prime} Pane Meier． 1－470 ohm wirewound potentiometer， 1 －WY chm wrewound potentiometer Wring Diagram included VPSIO KIT E20．
SIREN ALARM MODULE

Annerican Police type screamer powered from any 12 woh supply into 1 or 8 ohm spasker．Ideal for car bughar larm，lreereer breek down and other security purposes EP1245 wat 12y mar－ Siren Aarm Modute E 3.5 power supply 1×2056 transiormer and necessury wing 1 I SPMS0 power supply 1×2034 bansformer 2 I dayram f1852．STA10 10 watts per channea Stereo couphngy capacitors los 8 ohms 470 motd 50 V and Amplifiet Kit consisting of 2 \＆AL30 amplifers 1 \＆PA12 necessary wining dagrams E 3. ． T ．STAZ5 25 walts p
 Itanslomet and necessery wing dagrans E20．6．

$$
\text { chamel Stereo Arpelfier Kit consisting of } 2 \text { п AL50 }
$$ ADD 15\％vAT AND 75p PER ORDER POSTAGE \＆PACKIMG

 Clas Mal．
Remamber rey must add wit at 15% to pour ode Total．Postage add 75p per Total order
 \title{
Brpak barcains
}
 \title{
Brpak barcains
}

"IRRESIBTABLE

RESISTOR BAROAINS"

st21 SCREWDRIVER SET 6 precision screwdivers in ningeo plastic case. Sizes: -0.8. 1.4. 2. 2.4.
2.9 and 38 mm , £ 1.75

5731 NUT DRIVER SET 5 precision nul orivers in hingeo plastic case. With lurning rod Sizes: - 3.3 5. 4. 4.5 and 5 mm . $£ 1.75$

5541 TOOL SET

5 precision instruments in hinged plastic case Crosspoint (Phillips! screwdivers: H 0 and H 1 Hex key wrenches: 152 and 25 mm \& 1.75

5751 WRENCH SET 5 precision wrenches in minged plastic case Sizes: - 4. 4.5 : 5. 5.5 and 6 mm . 1.75 BUY ALL FOUR SETS: $5721-5751$ and gel HEXKEY SET FREE HEX KEY SET ON RING. Sizes. 1.5. 2. 2.5. 3. 4. 5. 5.5 and 6 mm . Made of hardened steel. HX/1. £1.25

25 pieces of Audio Plugs, Sockets and Con36 Pin. Speakers, Phono, Jack Stereo Inline and Mono etc Valued at well over E3normal Order No. SX25.

> Our Price 1 you money.

X26 3 Prs of 6 pin 240° DIN Plugs and Chassis Sockets
Sx27A 60 Assorted Polystyrene Bead Capacitors Type 9500 Series PPD Sx28A 50 Assorted Silver Mica Caps. 5.6pF-150pF

A 50 Assorted Silver Mica Caps. $180 \mathrm{pF}-4700 \mathrm{pF}$
SX30A 50 High Voltage Disc Ceramics 750 min up to 8 KV Assorted useful values $£ 1.00$ x31A 50 Wirewound 9 watt (avg) Resistors Assorted values 10hm-12

MINI VICE

This small cast ron quality made vice wit clamp on to any bench or table having a max thickness of $11 / \mathrm{s}^{*}$ "The $21 / 8^{*}$ " jaws open
of $1 \% \mathrm{~s}^{\circ}$. Approx size $80 \times 120 \times 66 \mathrm{~mm}$. Br-Pak's Mini Vice al

ORDER NO. SXB2

- TheThird and Fourth Hand...

Out have never got "unill now This helplyil unit with Rod mounted horizontally on Heavy Base. Crocodile ctrps allached to rod enos. Six Dall \& sockel joints give inilinite variation ana positions through 360° also available allached to Rod a $21 / 2$ diam magnitier giving $2.5 \times$ magnification. Helping hand unit available with or without magnitier Our Price with magnitier as illustrated ORDER NO. T402 $£ 5.50$
Withoul magntier OROER NO. T400 \&4.75

BI-PAK SOLDER
 DESOLDERKIT

II comprises ORDER NO. 5×80
Hign Ouahly 40 watt General Purpose Ightweigth Soldenng Iron 240 v mains inc /16" 14.7 mm b bit
1 Oualify Desoideting pump. Hign Suction with aulomatic ejection. Knurled. ant-corrosive casing and tetion nozzle.
1.5 metres of De-soldering brald on plastic dispenser.
2 yas (1.83 m) Resin Cored Solder on Card. 1 Heat Shunt tool tweezer Type. Total Retall value over £ 12.00 OUR SPECIAL KIT PRICE C8.05

BI-PAK PCBETCHANT

AND ORILL KIT

Complete PCA Ku Compisas

1 Expo Mint Drill 10.000 RPM 12v DC incl3 collets \& $1 \times 1 \mathrm{~mm}$ Twist bit.
1 Sheet PCB Pransters. $210 \mathrm{~mm} \times 150 \mathrm{~mm}$. 1 Eich Resist Pen.
$1 / 2 / 10$ pack FERRIC CHLORIDE crystals. 3 sheets copper clad board
2 sheels Fibreglass copper clad board. Full instructions lor making your own PCB. boards.
Relall Value over §15.00
OUR BI-PAK SPECIAL KIT PRICE $£ 9.75$ ORDER NO. SX81

SX38 100 Silicon NPN Transistors-al perfect Coded mixed types wilh Real value. Real
SX39 100 Silicon PNP Transistorsall perfect. Coded mixed types rejects. Fantastic value. Resistors ol mixed values 220 mms 102 ML - $1 / 8$ to 2 Watt. A comprehensive range of capacitors including electrolytic and, polyester types plus disc ceramics etcelera Audio olugs and sockets of various types plus switches. luses. healsinks, wire, nutsibolts. gromets, cable clips and tyes. knobs and P.C. Board. Then add to that 100 Semiconductors to include translistors, diodes, SCR's opto's, all of which are current everyday usable devices. In aH a Fantastic Parcel. No ruobishall identifizble and valued in current catalogues at well over £25.00. Our Fight Against Inflation - Beat the Budgel

- Down with Depression Down with Depressio

JUST £6.50.

Send you orders to oepl EE 12 BI Pax Po BOX 6 ware Men SHOP AT 3 BAL DOCK ST WARE HERIS
ItRMS CASH WITH OROER SAME OAY OESPATCH. ACCESS. BARCLAYCARO ALSO ACCEPIED TEL (0920) 3182 GIRO 3837006 40015% VAI ANO 7SD PER OROER POSTAGE AND PACKING

80312 COMPLIMENIARY PNP POW TRANSISTORS: TO 2 N3055
Equivalent M12955-80312 - 103 SPECIN PRICE E0. 70 eech

10 of E .50

BARGAINS

$5 \times 9120 \times$ Large .2" RED LED

SU42 20 small 125 Red IED's
$5 \times 43-10$ Reclangula Green LED 5×40 Assorted Lener Diodes $250 \mathrm{~mm} \cdot 2 \mathrm{wall}$ mored wol uges all coded. New.
Sx47 4 Blach instivment
Knots-winged with pointer wh Standard screw. Fit sure 29 x 20 mm .
Sx 20 Assorted Slidet Knoos Blach/Chrome, etc.
suso 12 Neons and Fibament Lamps Lo volbere and mairs - varicus types and colours - some panel mountine

NW
6 Blach Healsink will fil TO-3 and 10.220. Ready orilled. Hall price value.
SM53 I Power thned Heatsink. This heatsinh gives the greatest possible heat dissipation in the smallest space owing to tts unique slaggered fin design. pre dulled.
10.3 Sice 45 mm squarex 20 mm high. 40 D $5 \times 54 \quad 10.66$ sue. $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm}$. 35 p SX55 I Heat Eticiency Powei Finned Mealsinh $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ Migh. Dilled to take up to 4 : $i 0.3$ devices
51.50 each

PRDGRAMMABLE UNIJUNCTION TAANSISTO "PUT" case T0105 plastic MEU22 Similar to 2N6027/6028 PNPN Silicon Price: 1-9 10-49 $\quad 50-99 \quad 100+\quad$ Normal Reta Each: 20 p 18p 150 130 Priçe $£ 0.35$ each

SX33A 6 small (min (SDSTISPDTToggle Switches 240 V 5 mp
SX35A 6 small (min) Rocker Switches
SX32A 12,Assorted Jack \& Phono plugs.
sockets and adaptors, 2.5 m
$\begin{array}{ll}5 \times 71 & 50 \text { BC108 "Failouts" Manufac }\end{array}$
£1 00 turers out of $\$$ p
gain You test
Sx72 A mixed bundle of Copper cla Board Fibre glass and paper. Single and double sided. A faniastic bargain
£1.00

CAPABLE

 CAPACITOR PAKS"
BRAND NEW LCD

DISPLAY MULTITESTER.

RE 188 m

LCO 10 MEGOHM INPUT IMPEDANCE

- $31 /$ digl" " 16 ranges plus hFE fest lacility for PNP and NPN transistors "Auto zero. aulo polarity 'Single-handec. pushoutton operation *Over range indication * 12.5 mm ($/ 2$-Inch) large LCD readout "Diove check *Fust circuil protection *Test leads. Daltery and instructions included
Maxindication 1999 or - 1999 Polarily indication Negative only. Postitive readoings appear without + sign
Input impedance 10 Megohms
zeroddjust Atlomatic
Samoling lime 250 milliseconds
Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Power Supply $\quad 1 \times$ PP3 or equivalen! 9 "
Consumption 20 mw
$\begin{array}{ll}\text { SIZe } & 155 \times 88 \times 31 \mathrm{~mm} \\ \text { RANGES } & \square\end{array}$
DC Voltage 0.209 mV
0.2.20-200-1000V. Acc: 0.8\% AC Vollage $0-200-1000 \mathrm{~V}$.
Acc. 1.2\% DC Current 0.200uA 0-2-20-200mA. $0 \cdot 10$ A. Acc: 1.2 Resistance 0.2.20-200k onms.
0.2 Megohms. Acc: 1%

BI. PAK VEAY LOWEST POSS PRICE
£ 35.00 eac
SIMGLE SIDED FIBREGLASS BOARD

Order Mo.	Pioces	Size	Sq. Ins.	Price
FB1	4	$9 \times 2 \%^{\prime \prime}$	100	$£ 1.50$
FB2	3	$11 \times 33^{\prime \prime}$	100	$\$ 1.50$
F83	4	$13 \times 3^{\prime \prime}$	156	52.00

FP4 $\quad 24 \times 4^{\prime \prime} \quad 110 \quad 52.00$ SILICON POWER TRANSISTORS -703
NPN like $2 N 3055$ - but not full spec
100 watts 50 V min.
10 for $£ 1.50$ - Very Good Value
100 s of uses - no duds
Order No. S 590

5 watt (RMS) Audio Amp

High Quality audio amplifies Modve. Ideat lox use
record piarers. une reccaders. sterion amps and record players. Lupe eeciders, stereo amps and cassette players, etc. Full dala and bach up ciagerams with each module
Soecilication

- Max Power Supply 30 v • Power Output 5 watts AMS - Load Impedance 8 - 16 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db} \bullet$ Sensitivity 70 mV for full output - input Impedance 50 k ohms ${ }^{\text {© Size }}$
$85 \times 64 \times 30 \mathrm{~mm} \cdot$ Total Harmonic
distortion less than - 5%
BI-PAK'S give away price
£2.25
You cerid not tsuld ont
tow the price.

MORE BARGAINS!

SX51 60 metres PVC covered Hool-up wire single and stranded. Mixed colours.
SX58 25 Assonted TL Gates 7400
SX59 10 Assorted flip Flops and MSI
$5 \times 60 \quad 20$ Assorted Stider
Sx62 40 Assorted Pre Sets Hor/Veit
Sx7s ${ }^{10} 10$ Reed Switches - glass type
3 Micro Switches - with lever
and

Use rour creat cerd Ring us on Ware 3182 NOW and get rour crace emen laster Gocoss nomimily wet 2nd Cless mais
Remember rou must sad wat at 15: to pouc arder

GREENWELロ

443D MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT-Just add 50p post. Tel (0703) 772501 NEW GOODIES JUST ARRIVED!!!
C12 BOX88A Darlington Power TO3 PNP C13 60V 12 A 117 W He 750 (as 6A 75p. Nixie-Siemes $2 \mathrm{~m} 336 \mathrm{k}, 14 \mathrm{~mm}$ digh C14 BY212.750 power switiching rect, 800 V
 C16 ${ }_{21}^{50}{ }^{2} \mathrm{P}_{5} 50 \mathrm{~V} 20 \mathrm{~A}$ rect, 75 p. C18 BS1 1 A 100V bridge 5 for E .

PREVIOUS MONTHS

 NEW ITEMS
C_{3} 3. 40 DIL 54 MHz Xtal HCBLU case, 50 p .
25 -way screened cable $7 / 10 \cdot 2$; $50 \mathrm{D} /$
metre.
Reed
Reed switches, 20 mm body, SP make,
12y
C8 68A00 CPU, $\Sigma 1.50$
C9 UONB116A display driver, 50p
Speedbloc ribbon cable:
10-way $30 \mathrm{p} / \mathrm{m}$: 20 -way, $60 \mathrm{p} / \mathrm{m}$; 40 -way. ${ }_{8085 A} \mathrm{E} \cdot 20$.
N1 8085A CPU, $\mathrm{E} 3 \cdot 50$
N2 MC14175. 50.
${ }^{1000001} 1685 \mathrm{~V}$ Ax. 15p.
6850, 100 p .
MM5290, 50p.
1982/3 CATALOGUE
Biggerl Betterll Buy onelll
Only 75 ine post-loth what you get!!

* Vouchers worth 60p.
* 1st class reply pald envelope.

K Wholesale list for bulk buyers. Qargai
lines.

* Huge range of components.
\star Low, low prices.
Sent free fo schools, colleges, elc.
80 Solderless
Breadboard
Projects - Book 1

5 mm RED LED SCOOP Another company gone bust-to your red LED's-GI type MV5754, and offer them a follows:
 1k £39-50; 5 k £ 485. Add 30% for 2-part

TIL302 7-SEG DISPLAY 0.27 in red common anode. Only 65p.

1 N4007 1000V 1 A RECTS
 100 £2.95;
10 k
E 220 .

DISC CERAMICS

0.22 uF 12 V 9 mm dia. Ideal for decoupling.
 0.5 uF 12 V 15 mm dia. 100 E1-50; 1000 E $12 \cdot 00$ Pack of disc ceramles, as
voltages-200 for $£ 1.00$.

SWITCH BARGAIN

Push-on, push-off "table lamp"' type, rated

DISPLAYS

8 and 9 diglt 7 -segment bubble type for above chips-most have minor faults dud seament etc. Mirrure of 2 or 3 different types with data. 5 for \& $1-00$.

LIE DETECTOR

Not a toy, this precislon instrument was originally part of an "Open Unlversity" course, used to measure a change in amotional balance, or as a lle detector. Full details of how 10 use it are given, and circult diagram. Supplied complete with probes, leads and conductive jelly.
Needs $24 \vee \mathrm{~V}$ batts. Overall size $155 \times 100 \mathrm{x}$ 100 mm . Only £7.95-worth that for the ase and meter alonell

COMPONENT PACKS

$K 503150$ wirewound reslstors from 1 W ro K2W, with a good range of values. $£ 1 \cdot 75$ including single, ganged, rotary and including
slider. $\mathbf{E f}$
so.
K514 100 sitver mica caps from $5 p F 10$ a few thousand pF. Tolerances from 1% to 10%. £2.00. 520 Swltch pack-20 different rocker, lice, rotary, toggle, push, mlero, etc.

1000 RESISTORS $£ 2 \cdot 50$
We've Just purchased another 5 million preformed resistors, and can make. similar offer to that made two years ago at to $1 \mathrm{~W} 5 \%$ carbon film reststors, preformed for PCB mntg. Enormous range of preferred values. 1000 for $£ 2.50 ; 5000$ £10; 20k £36.

BRAND NEW

 VEROBLOC KITI!! Just published by Babanl, Mr R. A. Penolds new book, 30 SOLDERLESS BREADBOARD PROJECTS -th1s book features 30 different projects for assembly parts necessary to make:Audio Ampliflers
Light \& Dark Activated Swltches \& Alarms
Timers
Metronome
Osclllators \& Tone Generators
Warbling Door Buzzer
Two-Tone Traln Horn
Touch Swltch
Reaction Gam
Sound Actlyated Switch
adio Receivers
The introduction shows all the different components and explains how to use the bread board. The verobloc layout is shown for every project together with the circuit diagram and an explanation of how if
works. Ideal for beginners in electronics, but also sulfable for more advanced stu-
Tents. tive plastic case, which can be divided up Into 15 compariments in which your com
Complete KIt, Including book, Verobloc \& all parts £24.95; Book only $£ 2.25$; Kit wlth out Verobloc $£ 20-45$

ELECTRO-DIAL

Electrical combination lock-for maximum security-pick proof. 1 million comblnations!! Dial Is furned to the right to one number, left to a second number, then right again to a third number. Only when this has been completed in the correct
sequence will the electrical contacts close. These can be used to operate a relay or solenotd. Overalldia. $65 \mathrm{~mm} \times 63 \mathrm{~mm}$ deep. Only £3.95.
STABILIZED PSU PANEL At99 A versatlle stabllized power supply with both voltage ($0-30 \mathrm{~V}$) and current (20mA-2A) fully variable. Many uses Inc. testing. Panel ready bullt, fasted and calibrated. £7-75. Sultable transformer and pots, £6:00. Full data supplied.

HEAT SINKS
Redpoint 4 W type drllled for $2 \times$ TO3. Slze $130 \times 100 \times 32 . £ 2 \cdot 50$.

PLASTIC CASES

This attractive and durable range of small beige plastlc cases offer a cholce of front panels; grey plastic(P), silver metallised plastic(M) and aluminium (A) each secured by four self tapping screws (supplied). The case sides have moulded slots for PCB location and mouldings on two faces tilt the case by 10°. Vertically or desk style.

TYPE	EXTERNAL	PRICE EACH		
	DIMENSIONS	P	M	A
10	$85 \times 60 \times 40$	0.99	1.16	1.22
20	$110 \times 75 \times 50$	1.20	1.49	1.72
30	$155 \times 95 \times 60$	2.10	2.51	2.74

SPECIAL OFFER Dpdt. C/Off, Chrome Dolly only 99p Minlature Toggle Switch
including VAT and P\&P

Malr Order only. All prices Include VAT and P\&.P. Send large SAE for Catalogue of boxes, knobs, power supplies (from 5A to 150A), ACIDC controllers and more.

TITAN TRANSFORMERS AND COMPONENTS CENTRAL HALL CHAMBERS, GRIMSBY DN32 TEG
Mail Order only - Prices include 15% VAT
Inverters-high quality frequency stable $12 / 24$ volts $D C$. to 240 V AC at $100,250,500,1,000 \mathrm{VA}$.
Voltage Stabilisers-Coarse or fine regulation. High speed Null switching $170 / 260 \mathrm{~V} / 50 \mathrm{~Hz}$. I 00 V t to 5 KVA plus other sizes.

Adaptors-Switchable 6-7.5-9V 300MA unregulated.
6-7.5-9V 250 MA regulated.
Batteries Substitute-For Christmas toys
Battery chargers- 2 volts \& 6 volts, power supplies and a full range of transformers

BRIDGES, CAPACITORS ETC.
Send S.A.E. for details of product you are interested in.

Name
Address
Desoldering tools at $£ 4.45$
Spare Teflon noses at 85 p
Postage, packing and Insurance at at 60 per
Posiage, packing and insurance at 60 p per
Sub total
15% VAT
lenclose cheque no.IP.O. no
Alternatively please credlt my VISA/ACCESS/AMERICAN EXPRESS no.
Signature
les to UK only. Please allow 7-10 days delivery, Overseas customers please
CRICKLEWOOD ELECTRONICS LTD.
40 Cricklewood Broadway, London NW2 3ET. Tel: 01-452 0161 Telex 914977

The Jupiter Ace uses FORTH

The Jupiter Ace personal computer runs in FORTH, an easily understood language, typically four times as compact and ten times as fast as BASIC. Before the Ace all personal computers used BASIC and FORTH was only available to a privileged few. The Jupiter Ace also features a full-size moving-key keyboard, high-resolution graphics, sound, floating point arithmetic, a fast and reliable cassette interface and 3 K of RAM.

Available soon

plug-on parallel printer interface.
For around $£ 20.00$ this will connect your Jupiter Ace to anything from high-speed dot mat rix to letter-quality daisy wheel printers.

Plug-on 16K Memory Expansion

For around $£ 30.00$ you will incेrease the memory of your Jupiter Ace to 19 K giving you instant access to enormous amounts of information.

Software

A catalogue will be sent with every machines, and includes, initially, programs for education and entertainment.

A/I inclusive price

For 889.95 you receive your Jupiter Ace. a mains adaptor, all the leads

The Jupiter Ace is backed by a full 12 month warranty.

The Jupiter Ace is available only by mail order
Please allow up to 28 days for dellivery.
Send cheque or postal order with the form to:JUPITER CANTAB, 22 FOXHOLLOW BAR HILL, CAMBRIDGE CB3 8EP

Technical Information

Hardware
280A running al 3.25 MHz .
8 K bites ROM
$3 K$ bytes RAM
Koyboard 40 Moving-key keyboard with auto repeat on every key and Caps Lock.
Screen. Memory mapped 32 column $\times 24$ line flicker-free display with upper and lower case ascii character set.
Graphics Chunky graphics (64×46 pixels) may be plotted, unplotted or over-plotted (XOR operation). Also, the entire character set (128 characters and their video inverses) may be redefined allowing intricate shapes to be drawn with a resolution equivalent to 256×192 pixets. Sound Internal loudspeaker may be programmed to operate over the entire audio spectrum.
Cassette Programs and data in the compact dictionary format may be saved, verified. loaded and merged. Blocks of memory can be saved. verified, loaded and relocated. All tape files are named. Running at 1500 baud, the Ace will connect to most portable lape recorders.
Expansion Port Contains O.C. power rails and full $\mathbf{Z 8 0}$ Address, data and control signals. May be used to connect extra memory and other peripherals. IN and OUT words allow port-based peripherals to be addressed.
Data Structures Integer, Floating point and String data may be held as constants, variables or arrays with multiple dimensions and mixed data types. There are no restrictions on names
Control Structures IF-ELSE-THEN, DO-LOOP DO- + LOOP BEGIN-WHILE-REPEAT, BEGIN-UNTIL, all may be mixed and nested to any depth.
The Jupiter Ace closely follows the FORTH 79 standard with extensions for floating point. sound and cassette. It has a unique and remarkable for floating point. sound and cassette. It has a unique and femarkable compiled into the dictionary. This avoids the need to store screens of source, allowing the dictionary itself to be saved on cassette. Comprehensive error checking removes the worry of accidentally crashing your programs.

Designed by Jupiter Cantab
Computer Designers Steven Vickers and Richard Altwasser played a major role in creating the ZX Spectrum and then formed Jupiter Cantab to develop advanced ideas in personal computing. The Ace is the result, another all-British computer to lead the world.

Q3 ENFIELD ELECTDONICS

WHEN ORDERING, PLEASE ALLOW 12 DAYS FOR DELIVERY.

4
Portable 32 digit compact-sized multitester. Incorporates latest IC and display technology achieves lowest possible component count.
General spec.: operating temperature $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$, storage cemperature $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, input impedance 10 megohms (DC) AC voltage), polarity-autopolarity (-) sign when minus.
Complete with carrier case. $£ 44.50$.
Order No. KD-556.

Migh Velocity Super H-Fidelity with std super thin diaphragm. Incredibly lighe-luxurious comfort. Specs: Sensitivity 103 DB at $1,000 \mathrm{HZ}$, Frequency 200 MW . Ultra light-weight-only 50 z . less chord. Complete with loít coil cord. Only $\mathbf{6 4 . 9 5}$ Order No. LE 720.

This $3 \frac{1}{4}$ inch super norn (Flush Flange) piezo ceramic eweeter converts electrical energy into acoustic energy at an efficiency in excess of 50% a level not possible with any other type of loudspeaker. Economy is added to high efficiency by the elimination of crossover networks, because the unit rejects low
frequency power. It has a high impedance of over 1,000 ohms at 1 kHz and 20 ohms at 40 kHz and it presents no added load to the amplifier.
A Super. Special Offer of $£ 4 \cdot 65$
Order No LO52 Order No LO52

Universal NI-CAD, battery charger. All plastic case with lift up lid. Charge/Test switch. LED indicators at each of the five Charge points.
Charges:- PP3 (9V), U12 (1.5 V penlite).
U11 (1.5V "C" U1I (1.5V "C"), U2 (1.5 V "D"), Power:-
$220-240 \mathrm{~V}$ AC, Dims:- $210 \times 100 \times 50 \mathrm{~mm}$. Knock down price only while stocks lase. only 56.00
Order_No. MW 398

Altai Multitester \& Transistor Tester DC volts $0.1 v-5 v-2 \cdot 5 v-10 v-50 v-250 v-1000 v \pm 3 \%$ 4 AC voles $0-10 \mathrm{v}-50 \mathrm{v}-250 \mathrm{v}-1000 \mathrm{v} \pm 3 \%$ DC current 0-50uA-2.5mA. $25 \mathrm{~mA} \cdot 0.25 \mathrm{~A} \pm 3 \%$ Resistance:
Minimum 0.2-2-200-200k ohms Midscale 20-200-20k-200k ohms Maximum $2 \mathrm{k}-20 \mathrm{k}-2 \mathrm{~m}-20 \mathrm{~m}$ ohms As a transistor.tester
Leakage current $0-150 u A$ at $X 1 k$ range.
$\left.\begin{array}{l}0-15 \mathrm{~mA} \text { at } \times 10 \text { range } \\ 0.150 \mathrm{ma} \text { at } \times 1 \text { range }\end{array}\right\} \pm 5 \%$ 0.150 mA at $X 1$ range

Order No YN $360 T R$

IDEX stereo headphone Sensitivity 98 dB a krequeney requency response
$0.25,000 \mathrm{~Hz}$ $20.25,000 \mathrm{~Hz}$. Impedance 35 ohms. Maximum input 0.4 wasts. 7ft cord with 3.5 stereo phone
plug plug.

Price 67.50
Order No. MHD-3

AS YOU HAVE SEEN FROM OUR PREVIOUS ADVERTISEMENTS, WE STOCK A VAST RANGE OF PRODUCTS-GIVE US A RING FOR YOUR NEEDS-WE STOCK EVERYTHING FOR THE ELECTRONICS ENTHUSIAST AT VERY COMPETITIVE PRICES.

208 Baker Street, Enfield, Middlesex. 01-366 1873.

EUROPA ELECTRONIGS

Mail Order to: 160 High Road, Willesden Green, London NW10: Tel: 01-459-2480

Retall Shop: North Parade Electronics, 12 North Parade, Mollison Way, Edgware, Middlesex.

Send for a free list of our large range of items.
Post \& Packing: Add 50p to all orders under $£ 5$.
VAT: All UK orders add 15% to total cost including p. \& p.
All devices are new, full spec and guaranteed.

ELECTROLYTIC CAPACITORS

(Ax|al \& Radial) Values in uf.

16V: 47014 p ; 1000202 p .
10V: 1000 15p; 220025 p .
POLYESTER CAPACITORS (Radlal Lead) 250 V . $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 33 \mathrm{n}, 47 \mathrm{n} 6 \mathrm{p} ; 68 \mathrm{n}, 100 \mathrm{n} 8 \mathrm{p} ; 150 \mathrm{n}, 220 \mathrm{n}, 330 \mathrm{n}$
$10 \mathrm{p} ; 470 \mathrm{n} 15 \mathrm{p} ; 680 \mathrm{n} 20 \mathrm{p} ; 1000 \mathrm{n} 25 \mathrm{p}$. 10p; 470n 15p; 680n 20p: 1000 n 25p.
MYLAR FILM CAPACITORS (Radiai Lead) 100 V 1n, 1n5, 2n2, 3n3, 4n7, 6n8, 10n $6 \mathrm{p} ; 15 \mathrm{n}, 22 \mathrm{n}, 33 \mathrm{n}, 47 \mathrm{n} 8 \mathrm{p}$.
CERAMIC CAPACITORS 50V. (Radial Lead). $22 p i=47,000$ pi E12 Values $4 p$ each.

POTENTIOMETERS:
Carbon mack, 0.25W log \& IInear $5 K-2 M$ single gang
$5 \mathrm{~K}-2 \mathrm{M}$ single gang D/P swltch $\quad 30 \mathrm{p}$
PRESET POTENTIOMETERS
Horizontal \& Vertical
$\begin{array}{ll}0.1 \mathrm{~W} & \text { 100R-1 Meg } \\ 0.25 \mathrm{~W} & 100 \mathrm{R}-1 \mathrm{Meg}\end{array}$
RESISTORS 5\% Carbon FIIm E12 values.
$\begin{array}{ll}0.25 \mathrm{~W} & 1 \mathrm{R}-5 \mathrm{MI} \\ 0.5 \mathrm{~W} & 1 \mathrm{R}-5 \mathrm{MI}\end{array}$

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily on and one off Der 24 hrs. repeats daily automaticalfy correcting for the lengthen
ing or shortening day. An expensive time ing or shor tening day. An expensive time
twitch but you can have it for only $£ 2.95$. twitch but you can have if for only $£ 2.95$.
These are without case but we can supply a plastic base $£ 1.75$ or metal case $£ 2.95$. a plastic base $£ 1.75$ or metal case $£ 2.9$.
Also available is actaptor kit to convert this into a normal 24 hr . time switch but with the added advantage of up to 12 on/ofis per 24 hrs. This makes an deal controller for the immersion heate eice of adaptor kit is $£ 2.30$.

THERMOSTAT ASSORTMENT

0 difterent thermosiass. 7 bi-metal types and 3 liquid types There are the current stats which will open the switch to protect devices against overload, short circuits, etc., or when fitted say
in front of the element of a blow heater, the heat would trip the stat it the blowert fuses; apoliance stats, one for high temp. eratures, others adjustable over range of temperatures which can be immersed, an oven stat, a calibrated boller stat, finally an ce stat which, fitted to our waterproof heater element, up in the loft could protect your plpes from freezing. Separately, these thermostats could cost around $£ 15.00$ - however, you can have the parcel for $£ 2.50$.

TREMENDOUS OFFER!
 We have 10 clear a big store 100 Chance of a lifetime We have so clear a big store. 100 tons of stock must $9 \mathrm{oc}, 10$ kilo parcel of unused pat ts. Minimum 1,000 items includes panel meters, timers thermal trips, relays, switches. condensers, resistors, et cost in excess of $\varepsilon 100$.
 YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

EXTRACTOR FAN
Mains operated - ex computer
"Woods extractor $E 1.25$. $\times 4$ " Muffin 115

INSTRUMENT BOX WITH KEY
Very strongly made lily wood sides with hard board top and
 appearance. Internal dimensions 12% long, 4% wide, 6 deep.
Ideal for carrying your multi range meter and small tools and for Ideal for carrying your multi range meter and smail oors and ior
keeping them in a safe place. E2.30. Post paid if ordered with other goods, otherwise $£ 1.00$.
COMPUTER DESK
Size approx $4^{\prime} \times 2^{\prime} \times 2^{\prime \prime} 6^{\prime \prime}$ high. These
were made for hard work the tos. were made for hard work, the top
being formica covered. Suitable for housing instruments or for use as office desks. Beautifllly made, these cost over $£ 100$ each, our price only
$£ 11.50$ each, nowever, you must E11.50 each, how
arrange to collect.

MINI MONO AMP on p.c.b., size 4"× $2^{\text {" }}$ approx. Fitted volume control and a ho it. The amplifier has three transistors and we estimate the output to be 3 W rms. More rechnical dara will be included with the amplifier.
Brand new perfect cond Brand new, Derfect condition,
offered at the very low price of offered at the very low price of
E 1.15 arch, or 10 for $£ 10.00$.

TERRIFIC VALUEKITS!

3 CHANNEL SOUNO TO LIGHT KIT

Complete kit of parts for a three channel sound to light unit controlling over 2000 warts of lighting. Use this at home Hy you wish but it is plenty rugged enough for disco work. The unit is
housed in an atractive two tone metal case and has controls for each chennel, and e master on/oft. The sudio input and output are by \%." sockets and thitee panel mounting fuse holdirs provide thyristor protection. A four-pln plug and socket facilitare ease of connecting lamps. Special price is $\mathbb{£ 1 4 . 9 5}$ in kit form or $\mathfrak{E z 5} .00$ assembled and tested
TANGENTIAL BLOW HEATER
2.5 Kw quiet.
efficient instant
heating from
$230 / 240$ volt
230/240 volt
mains. Kit consists
illustrated, 2.5

switch and data all for $£ 4.95$. post $£ 1.50$ CAR STARTER AND CHARGER KIT In an emergency you can start car off mains or bring your battery up to tull charge in a counle of hours. The kit com. battery $u p$ toll charge in a couple of hours. The kit com.
prises: 250 watt malns transtormer, 40 amp bridge rectifier. start/charge switch and fult instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage. 6 WAVEBANO SHORTWAVE RADIO KIT Bandspread covering 13.51032 metres. Based on circuit w
appeared in Radio Constructor. Complete klt includes case appeared in Radio Constructor. Complete kit includes case materials, six tran sist tors and diodes, condensers, resistors, inductors, switches, etc. Nothing else to buy if you have an amplifier to connect it to
Price $£ 11.95$.
MEDIUM \& 2 SHORT WAVE CRYSTAL RADIO All the parts 10 make up the beginners model. Price $£ 2.30$. Crystal
earplece 65 . High resistance headohones (gives best resulis) $£ 3.75$

TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be pleked up with $F M$ radio. Can be made in a marchbox - all electronic parts and circuit. $£ 2.30$, (not licenceable in the U.K.)

RADIO MIKE

Ideal for discos and garden parties, atlows complete treectom of movement. Play through $F M$ radio or tuner amp. $\mathbf{\varepsilon 6 . 9 0}$ comp. kit. (not licenceable in the U.K.).

FM RECEIVER

Made up and working, complete with scele and pointer needs only headphones, ideal for use with our survellance transmitter
or radio mike. 55.85 . or kit of parts $£ 3.95$.
3. 30v VARIABLE VOLTAGE POWER SUPPLY UNIT
With 1 amp DC output, for use on the bench, students, inventors, service engineers, etc. Automatic short circuit
and overload protection, In case with a volt meter on the front panel. Complete kit $£ 13.80$
INTERRUPTED BEAM
This kit enables you to make a switch that will trigger when a steady beam of inifa red or ordinary light is broken. Main co
ponents - relay, photo transistor, resistors and caps, etc. Circult diagram but no case. Price £2.30

IONISER KIT

Refresh your home, office, shop, work room, etc. with a negative ION generator. Makes you feel better and
work harder - complete mains operated kit, case included £11.95 plus E 2.00 post.

RADIO STETHOSCOPE

Easy to fault find start at the aerial and work towards the
speaker - when signal stops you have found the fault. Complete

MUGGER DETERRENT

A high-note bleeper. push latching switch, plastic case and battery
connecror Will scare away any villain and bring help, $£ 2.50$ complete kit.
MORSE TRAINER Complete kit for only $£ 2.99$.
ORILL SPEED CONTROLLER Complete kit for $\mathbf{~ 2 3 . 9 5 .}$ INVISIBLE AND SILENT SENTINEL Ultra sonic beam when broken could warn you of visitor - two complete 9.50.
BURGLAR ALARM
Complete kit incluces $6^{\prime \prime}$ external alarm bell, mains power unit, control box with keyswitch, 10 window/door switches, 100 yards

J. BULL (Electrical) Ltd.

(Dept. EE), 34 - 36 AMERICA LANE, Erubliched
30 YEARS

MAIL ORDER TERMS: Cash, P.O. or cheque with order, Ordars under

 E10. add 60 service charge. Monthly account orders mocepted from schootsand public compenies. Access \& Barc svcard orders phone Hav wer ds theath 10444) 454563 . Buth orders: Wrike for quate. Delivery by relurn.

STEREO HEADPHONES Very good quality, 8 ohm, padded
terminating with standard $\%$. ierminating with slandiard pos

TIME SWITCH BARGAIN
Large clear mains irequency controlled clock, which will always show you the correct time + start and stop switches with dials.
plete with knobs FOR ONLY $\mathrm{Ez.50}$.

ROPE LIGHT
4 se is of coloured lamps in translucent plastic cube arranged to give the appearance of a running or travelling light. With variable

2X81 OWNERS
Make yourself a full
size keyboard! Key
size keyboard Key
switches complete with swithes complete with
plain caps. 6 for $£ 1.15$.

DELAY SWITCH
Mains operated - delay can be
accuratuly set with pointers knot for periods of up to 2% hrs. 2 contacts suitable to swi ten

- second contact
asens - second contact opens a tew

ROTARY WAFER SWITCHES
5 amp silver plated contac is. /4" shatt. 1 " dia. wafer. Single wafer tyDes, 29 peach . as follows:
1 pole 12 way
2 pole 6 way 4 pole 3 way $\quad 6$ pole 2 way Two waler type, 59 p each, as follows 2 pole 12 way 4 pole 5 wa 6 pole 2 way 8 pole 3 way 3 water types 99p each.
9 pole 4 way

$$
6 \text { pole } 5 \text { way }
$$

6 pole 5 way
3 pole 4 way
4 pole 3 way

12 pole 2 way
6 pole 6 way

LEVEL METER

scaled signal and power square,
scaled signal and power bur cover
Sensitivity 200 uA . 60 p
WATERPROOF HEATING WIRE
 60 ohms per vard, this is a heating element wound on a fibre glass pipes, under grow boxes in gloves and socks.

COMPUTER PRINTER FOR ONLY £4.95

Japanese made Epson 310 - has a self storting brushless drive motor Complete with electronics - uses plain paper. 8rand new with dave. ONLY £4.95 plus E1.25 Post
12v MOTOR $8 Y$ SMITHS Made for use in cars, these are series powerful as load increases. Size $31 / 2^{\prime \prime}$ long by $3^{" ~ d i a . ~ T h e s e ~ h a v ~}$
a good length of $\%{ }^{\prime \prime}$ spindle -
price $£ 3.45$.

Ditto, but permanent magnet
STROBE LIGHT
Bright flash ideal for disco, speed variable 1 to 20 flashes per sec
Mains operated - made up ready to work $£ 14.95+£ 1.50$ post

EXTRA POWERFUL $12 v$ MOTOR

develops up to
/ h.p., so it could be used to power a go-kart or to drive a
compressor, etc. etc. $\mathbf{£ 6 . 9 0 + £ 1 . 5 0 \text { post. }}$
GO KART MOTOR
24 Volt operated easily vary speed and reverse - terrific power

SPIT MOTORS
These are pewerful mains operated induction motors with gear box atrached. The final shaft is a $1 /{ }^{\prime \prime}$ rod
with square hole, so you have alternative couplingmethods - final speed is approx. 5 revs $/ \mathrm{min}$, price e5.50. Similar motors with final speeds of
$80,100,160 \& 200 \mathrm{p} . \mathrm{p} . \mathrm{m}$. same price.
REVERSIBLE MOTOR WITH CONTROL GEAR Made by the famous Frameo Company this is a very robust motor size approximately $71 / 2$ " long, 3 K "dia. $3 / 8^{\prime \prime}$ shatt, Tremendously stage curtains, sliding doors, ventilators etc., even garage doors it adequately counter-talanced. We offer the motor complete with control gear as follows
1 Framco motor with gear box 1 manual reversing and
1 push to start switch
ع19.50 plus postage C2.50
FREE
OUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS.

WATFORD ELECTRONICS
 33 CARDIFF ROAD，WATFORD，HERTS．，ENGLAND

 MAIL ORDER，CALLERS WELCOME．Tel．Watford 40588／9

 MAIL ORDER，CALLERS WELCOME．Tel．Watford 40588／9}

ALL DEVICIS ERAND NEW，FULL SPEC．AND FULLY GUARANTEEO DRDERE PO．OR BANKERS DRAFT WITH ORDRR．GOVIRNMENT ANO EOUCATIONAL
INSTITUTIONB OFFICIAL ORDERS ACCEPTED．TRADE AND EXPORTINOUIRY WILCOMI．PAP ADD SOD TO ALL CASH ORDIRS．OVERBEAS ORDIR
AOE AT COST．AIR／BURFACE．（ICCESS ORDERE by Ielephone weleome）
VAT Export ordere no V．A．T．Applicable to U．K．Cuetomere only．Unleas atated other
We atock many more lteme．It paye to vielt us．Wo are altuated bohlnd Watford Football Sturdey 1.00 am－ .00 pm ．Ampl．Free Car PerkIng tpace avaliebie．

 $\frac{11 \mathrm{~V} ; 16,22 \text { 25p；} 33,473 \mathrm{sp} ; 10035 \mathrm{p} .}{\text { MVLAR }}$ 100V： $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, \mathrm{in7}, 10 \mathrm{n} 8 \mathrm{p}$ ；
$16 \mathrm{nF}, 22 \mathrm{n}, 30 \mathrm{n}, 40 \mathrm{n} 47 \mathrm{n} 7 \mathrm{p} ; 56 \mathrm{n}$ ． $100 \mathrm{n}, 200 \mathrm{n}$ ． $470 \mathrm{n} / 50 \mathrm{~V}$ i2p． MINIATURE TYPE TRIMMERS 4－0pF $2-10 \mathrm{pF} 22 \mathrm{p}$
$30 \mathrm{D}: 10-88 \mathrm{pF} 3 \mathrm{p}$.

COMPRESSION TRIMMERS 3－40pF，10－800F 20p；20－250DF 28p； 100．580p F 39p：400－1250DF 48p．					$\begin{aligned} & 0-20 W 10 \\ & 0-26 w 20 \end{aligned}$
POLYBTYRENE CAPACITORS 10pF to inF $1 \mathrm{p}: 1 \cdot 5 \mathrm{nF}$ to 12 nF 10p．					
SILVER MICA： $\mathbf{2 p F}, 3.3,4,4$, $39,47,50,58,88,78,82,85,100$ ． 180，150， $180 \quad 15 \mathrm{p} .200,220,250$,870, 300, 330, 360,390, 470, 800 820 210 1000 $200030 \mathrm{p} .3300,470060 \mathrm{p}$.					
					1
CERAMIC CAPACITORE：SOV 0.8 pF to 10 nF \＆p；22n to 100 n 7 p ．					
IURO BREADBOARO ¢5． 20					
VOLTAGE RECULATOR					
14	TO3	＋ve	－ve		
	7508	145p	7908	220p	
IEV	7818	141p	7912	880p	
10 V	718	1450	7915	200p	
18 V	7818	145 p			Ofier
14	TO22	20 Pla	Cas		
9V	7805	40p	7905	45p	
18	812	40p	7912	$45 p$	
IBV	7815	40p	7915	45p	
18 V	7818	40 p	7918	45p	
34 V	7824	40p	7024		
$\begin{aligned} & 100 \mathrm{~mA} \\ & 5 \mathrm{~V} \\ & 8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { TO } \\ & 78 \mathrm{LOL} \end{aligned}$	$\begin{aligned} & 2 \text { Plas } \\ & 5 \text { 30p } \end{aligned}$	$\begin{gathered} \text { Casing } \\ 70 L 05 \end{gathered}$	cop	

TIL212 Yoll
-2^{*} Red

COMPRESSION TRIMMERS

 POLYBTYRENE CAPACITORS ${ }_{70415}^{790}$

	8
8 LIDE 2	TOGGLE 2A 250
1ADPDT 14p	3P8T 330
1A DP clof．18p	DPDT 44p
\＆APDT 18p	BUD－MIN
	TOeols
PUSH EUTTON	ep ehangeover lsp
Latehing or	PPET on／ont 40
Momentary．	DPOT lage 75
SPST CIOver 99p	DPOT c／oll aio
DPDT C／Over 145	DPDT Blaned 94BP

Punto Make isp Push fo Break 20p
ROCKER：SPST on／ofl 10A 260 V 24p ROCKER：SPST onfof 10 A
ROCKER：Illuminated OPS
LIghte when on：10A g 40 V

LM317K 320 TOA141
2X01 18K RAM paek．
16 K RAM Pack，Fully bullt a tested． Pluge stralght on to your 2×81 ．

 PANCO COILS RDT2

VEROBOAROS ${ }^{\prime \prime}$	
	Flbr
4＂${ }^{\text {\％}}$	
	S．R．B
	8．5 $\times 8.85$
Pht．of 100 ifini 50 Sop	Ferrie Chlo－
Spot Fsca Cutter 135p	ride 1 lb ．
${ }^{178 p}$	$\frac{\text { Dalo Pen 90p }}{}$

DIOOES	zENEMS	Thyristore
AA129 2	Range 2V7 to	
8A100 16	39 V 400 mW	$5 \mathrm{Sa} / 400 \mathrm{~V} 40$
$8 Y 12611$	lpeeoh	A／s00V 48
By127 18	Range sVis to	B／300V e
CRO33 260	33 V .1 .0 W	$8 \mathrm{~A} / 400 \mathrm{~V} 7$
OAE 41	15p eath	$3 \mathrm{~A} / 000 \mathrm{~V}$ is
O447 12		12A／100V 70
OA70 İ	NOISE	12A／400V 38
OAEI 18	Dlade 195	12A／800V 100
OABE If		16A／700V 100
OAso		
OAb1	－RIDOE	$\begin{array}{ll}\text { 2NN502 } \\ \text { 2N5084 } & \text { 82 }\end{array}$
OAEB	RECTIFIER	BT108 18
OAIt00	1AfBOV 18	C1000 10
OAE02	1A／100V 20	Tic44 14
IN814	1A／800V 8	TIC4E 20
INE18	$1 \mathrm{~A} / 400 \mathrm{~V} 28$	TIC47 35
in4003	19／000V 36	
IN4004／5	24／80V 30	TRIACs
IN4008／7	EA／200V 40	$3 \mathrm{~A} / 100 \mathrm{~V}$
IN4148	$84 / 400 \mathrm{~V}$ 4	$3 \mathrm{~L} / 400 \mathrm{~V} 50$
3A／100V 18	EA／000V	CA／100V 80
$3 \mathrm{~A} / 400 \mathrm{~V} 11$	6 6／100V 13	BA／400V \％
3 a／boov 17	SA／400V 3	AA／B00V 115
$34 / 1000 \mathrm{~V} 30$	10A／200V 215	18A／100V 71
8A／400V50p	10A／b00V 298	1ta／400V 32
	25A／200V 215	12a／800V 135
	$25 \mathrm{~A} / 600 \mathrm{~V} 395$	16A／100V 103
	8 BY 164 E6	16 A $25 \mathrm{~A} / 400 \mathrm{~V}$ V 185
wide solection	VMIs DIL 35	$\begin{aligned} & 25 \mathrm{~A} / 400 \mathrm{~V} \\ & 25 \mathrm{l} / 800 \mathrm{~V} \\ & 815 \end{aligned}$
of Eleetronie		25A／1000V 480
Bookt and	OIAC	$30 \mathrm{~A} / 400 \mathrm{~V} 525$

身面等名 8F×29／8

 운운
${ }_{A}^{A F I}$

 3

 बढ क

Editor

F. E. BENNETT

Assistant Editor
B. W. TERRELL B.Sc.

Production and News Editor
D. G. BARRINGTON

Projects Editor
G. P. HODGSON

Art Editor

R. F. PALMER

Assistant Art Editor
P. A. LOATES

Technical Illustrator D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE
Editorial Offices
KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS
Phone: 01-261 6873

Advertisement Manager
R. SMITH

Phone: 01-261 6671
Representative
R. WILLETT

Phone: 01-261 6865
Classified Supervis or
B. BLAKE

Phone: 01-261 5897
Make-Up and Copy Department
Phone: 01-261 6615

Advertisement Offices

KINGS REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

ELECTRONIC HOBBIES FAIR

When this issue of Everyday Electronics appears the Electronics Hobbies Fair will already be in full swing. Even so, there is probably time to alert the new or casual reader to what promises to be the greatest exhibition of its kind ever staged in the UK.

The Electronic Hobbies Fair runs for four days: Thursday 18th through to Sunday 21st November. The venue is Alexandra Pavilion-a unique and remarkable structure first opened in December, 1981. It is set in the midst of beautiful parkland on a high prominence in North London. British Rail are offering special rate return tickets inclusive of admission, and these can be obtained from main line stations throughout the UK. A free bus service operates between the Alexandra Palace BR station and the exhibition complex. The London Underground station Wood Green on the Piccadilly Line is nearby.

Inside the Alexandra Pavilion visitors will have much to explore among the stands occupied by component and equipment suppliers and other traders. There will be names familiar to readers of this magazine, also some perhaps not so well known, but all catering for the needs of the hobbyist, whatever his or her particular field of interest.

Visitors will find the Everyday Electronics stand and those of our fellow sponsors Practical Electronics and Practical Wireless in the rotunda located towards the back of the hall. Don't fail to look us up.

Encircling the rotunda are a score or more stands housing a variety of special attractions. These include displays by well-known amateur organisations devoted to particular aspects or applications of electronics. In contrast to this mix of essentially hobbyist activity the Royal Signals add an impressive and highly professinal display of the modern army's communication equipment (and specialist personnel) while several commercial organisations provide demonstrations of exciting developments, including reception of USSR TV via satellite, electric cars and holography.

A further link between the hobbyist area and the electronics industry is well illustrated at the SEDAC stand, where this year's prizewinning projects designed and built by school pupils are on display. The generosity of our co-sponsor Mullard Ltd., has resulted in doubling the value of prizes for the 1983 Schools Electronic Design Award Competition. In order to allow visiting school children or teachers who might not have been previously aware of this national competition, the closing date for registration has been extended to December 15th, 1982. The absence of school girls from the previous contest finalists has been remarked upon before. May we now urge members of the fair sex to show that electronics is not exclusively for males, by submitting their entries in strength this time!

Readers' Enquiries

We cannot undertake to answer readers' ietters requesting modlfications, designs or information on commercial equlpment or subjects not published by us. All letters requiring a personal reply should be accompanled by a stamped self-addressed envelope.

We cannot undertake to engage in discusslons on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertlsers.

Ali reasonable precautions are taken to ensure that the advice and data given to readers are rellabie. We cannot however guarantee it, and we cannot accept legal responsiblilty for it. Prices quoted are those current as we go to press.

Back Issues
Certain back issues of EVERYDAY ELECTRONICS are available worldwide price $£ 1 \cdot 00$ Inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC MagazInes Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. in the event of non-availabillty remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4.60$ inclusive of postage and packing worid wide. Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: £12.00. Overseas: £13-00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, Kings Reach Tower, Stamford Street, London SE1 9LS.

 BY K. DEPLEDGE (G3 PAN)

as two $1 \mathrm{~K} \times 4$ bit 2114 memory chips. The writers experience is that most kits contain the 2114. However, the p.c.b. is printed and drilled for both.

Now, the 2114s cost about $£ 1$ each retail (if you shop around) and the 4118 about $£ 4$. (Maybe Sinclair were looking after the pennies when they designed in 2114 i.c.s but needed the protection of dual type sourcing and therefore kept the ability to also use the 4118). Now the 6116 cmos ram chip is available. This is a $2 \mathrm{~K} \times 8$ bit device which is pin compatible with the 4118 and can be purchased at around £6. With minor modifications to the ZX81 board, $£ 6$ can give you a 2 K ram computer.

GETTING IT TOGETHER

The 6116 modification had been built into the author's ZX81 for some months, replacing 2114 chips, but the April issue of $E E$ got the cogs mesh-ing-why not 2 K more and use up those redundant 2114 s . Surely it couldn't be too difficult. It wasn't.

The first thing to do was build the $2 K$ Ram Pack and check it was working. This done, after a long wait for the 23 -way connector, power up and RAMTOPS: Print Peek $16388+256^{*}$ Peek 16389 NEWLINE-sure enough the answer came back 19456-it worked first time.

Just a moment though, something amiss, the modified ZX81 had 2048 bytes (actually slightly less but this was a Ramtops test) giving 18432add 2048 bytes from the $2 K$ Ram Pack and the answer should have been 20480 . Some memory had been paralleled!

Re-reading the April project shows the 2 K Ram Pack starting address is 16384 (that's normal enough) and "the decoding is required to enable the Ram Pack to be positioned 1K beyond this address"-we need the position to be 2 K beyond 16384 -so how?

Fig. 1(a). Circuitry around the decoder i.c. in the $2 K$ Ram Pack showing

IT is possible to add a further 3 K of ram to your ZX81 using the $2 K$ Ram Pack published in EE April 82 plus one more chip, two diodes, one resistor, a run of the mill $n p n$ transistor and a 24 -way d.i.1. socket. Conservative cost about $£ 7$ but with, for many, a potential additional saving of two of the 2114 memory chips specified for the $2 K$ Ram Pack.

A quick scan of the April issue and, having long ago given best to the professionals in PCB production, off went the order for a board and 2×2114 RAM Chips. Why only two, read on and all will be revealed.

THE ZX81

The ZX81 internal 1 K of RAM comes in one of two types, one using a $41181 \mathrm{~K} \times 8$ bit ram chip, the other
lines to IC5 to be interrupted.

Fig. 2. Where the additlonal components are to be mounted on the trackside of the p.c.b. of the $2 K$ Ram Pack. Note the breaks made in the tracks.

MODIFYING THE 2K RAM PACK

Reference to the 74LS138 control chip shows Q0 directly controlling RAM $_{\bar{c} \bar{s}}$ to ZX 81 internal memory and Q1 and Q2 controlling input to the two 1K stores in the Ram Pack.

To allow for the expanded internal (6116) memory we need use Q2 and Q3 for the Ram Pack memory and ensure Q0 and Q1 control (inhibit) $\mathrm{RAM}_{\overline{-}}$ in the $16-18 \mathrm{~K}$ address fields.

To reach this end Q2 (pin 13) needs no alteration, but Q3 (pin 12) needs to feed - (pin 8) on IC1 and IC2 and the Q1 (pin 14) disconnected from these $\overline{\text { ex }}$ pins.

This leaves Q1 and Q0. Q0 needs to have direct RAM $\overline{\text { - }}$ control removed and, together with Q1, brought under sequential control, that is, $\mathrm{Q}=1 \mathrm{stK}$,
(internal) Q1 $=2 \mathrm{ndK}$ (internal) $\mathrm{Q} 2=$ 3 rdK and $\mathrm{Q} 3=4 \mathrm{thK}$. This can be effected with two diodes, a resistor and an $n p n$ transistor wired in the emitter follower mode.
The resultant changes can be seen clearly by comparing Fig. la (original circuit) and Fig. 1b (modified) with required track cuts.
To carry out the mod carefully refer to Fig. 2 where, for clarity, IC5 (74LS138) is reproduced with pins 1 to 8 blanked out and pins 12, 13, 14, 15 and 16 identified. Trace pin 15 track and cut where shown. Next trace pin 14 track and likewise cut as shown. Before proceding further check with an ohmmeter that each cut has really open circuited the tracks-don't leave it to an eyesight test.

Fig. 1(b). Decoder circuitry with the additional components added to allow the 2 K Ram Pack to be used with a $2 K$ (internal) ZX81.

Fig. 3. The ZX81 Ram area. The 6116 (2 K $\times 8$ static RAM) is to be fitted in a socket sited at pin locations 1 to 24 (in box shown) with the 2114 s removed.

Next, using a fine tipped soldering iron solder an insulated wire link from pin 12 to the far side of the pin 14 track. Then solder the cathodes of the $1 N 4148$ diodes (banded end) to the tracks of pins 14 and 15 respectively. Now form the leads of the transistor (any of the ZTX108/ BC108 family will do as long as the lead configuration matches the board requirement - the author used BC457). Solder the collector to the +5 volt rail, solder the emitter to the RAM \mathbf{c}^{-8} side of the Q 0 cut track. Now solder in the resistor, one side to the +5 volt rail and the other to join with the commoned anodes of the diodes and the transistor base lead, made above and clear of the

COMPONENTS

For 2K Ram Pack Modifications
R1 $2 \cdot 7 \mathrm{~K} \Omega \frac{1}{6}$ to $\frac{1}{3} \mathrm{~W}$ carbon $\pm 5 \%$
D1, 2 1 N 4148 small signal silicon (2 off)
TR1 ZTX108, BC108, BC457 or similar $n p n$ silicon type

For Modifications to ZX81
IC1 $61162 \mathrm{~K} \times 8$ bit RAM
24 -pin d.i.1. open type i.c. socket or 2×12-way Soldercon pins.
board. Make sure all components are located parallel with the p.c.b. so as not to interefere with the fit of the case. It is also a good idea to insert p.v.c. insulating tape on the board below the main "bridge" of components to prevent accidental shorting to the tracks.

That completes the modification to the Ram Pack and for those who already have the 6116 modified ZX81, all that remains is to plug in, power up, enter Ramtops and read 20480. For others who wish to incorporate the 6116 modification read on.

6116 MOD TO ZX81

First undo the ZX81 case following the instructions given in the May issue of $E E$ (why not add the worthwhile Keyboard Beeper (May 1982, EE) whilst you're at it).

Check the ram chips for type, refer to Fig. 3.

4118 RAM

If the 4118 is soldered directly to your ZX81 p.c.b. we do not advise you to remove it. The on-board 2 K upgrade is unfortunately, not possible for you to implement.
First remove the 4118 chip from its i.c. socket (preferably using an i.c. extractor or with careful, gentle leverage from a thin screwdriver).

Avoid touching the pins or work on an earthed plate ensuring at least one hand is in contact with the platethis is expensive cmos you're handling and it doesn't like bodystatic. Immediately transfer the chip to the piece of conductive foam or conductive plastic tubing-which is what your 6116 and 2114 s should have been packed in.
Now locate both ends of the link marked L1 on the board and cut off. Solder a new link at the position marked L2. Re-assemble into the case, power up, run the Ramtops test to read 18432.

2114 RAM

If your ZX81 is fitted with 2114 s then you have saved the cost of half the 2114s for your 2K Ram Pack. The ZX81 IC4a position has an 18-way d.i.l. holder containing one 2114 inside the drilled and marked 24 -way area that is there to take a 4118. Carefully extract the two 2114 s . Do not attempt to remove the holders. Offer up a skeleton 24 -way d.i.l. socket to position IC4. Some holders only need the centre bar removed to fit around the 2114 18-way socket, others may require cutting into two strips. Solderon pins could be used instead. Locate the holder into the position on the board marked IC4 making sure you are within the 24 -pin
socket area and not the 28 -pin area also marked. The old 2114 holder will now be framed within the 24 -pin socket. Solder the socket, cut the Ll link and solder in the L2 link. Plug in the 6116. Reassemble into the case, power up, run Ramtops test to read 18432.

All that now remains is to bring the modified $2 K$ Ram Pack to the modified ZX81, check RAMTOPS to read 20480.

THE FUTURE

For many who need more than a 4K memory, have another look at the original 2 K Ram Pack control chip (IC5). Q4, Q5, Q6, Q7 are unused. By lifting input A2 from ground and taking' to address line A12 you could control a further 4 K of RAM-or even, with a little flair, inlet/dutlet ports.

NOTE

You will find that these additions to your ZX81 enable you to use many programs written specifically for use when 16 K Rampacks are attached. However some clever games programs use a mixture of BASIC and machine code. In these cases it is as well to remember the machine code will have been allocated to specific addresses which may not fit unmodified to your 4 K machine.

PANEL LAMP COVER

Bearing in mind the cost of commercially made panel lamps, I have devised a simple substitute.
A cap off a Bic disposable razor is the basis of the cover, see diagram. To mount it on a panel or boand it is simply pushed or snapped into a rectangular hole.
This idea has the advantage that the lamps may be mounted vertically or horizontally.
I. Petrie-Brown, Birkdale, Southport

BY A.R.WINSTANLEY

We are constantly reminded that burglaries on private homes seem to be continuously on the increase. Everyone can take obvious precautions like locking doors and windows, but the device to be described here offers a more subtle means of combating casual prowlers and burglars.

It does this by tricking the wouldbe prowler into believing that the house is occupied at night, even though the occupants are out.

The Security Vari-Light is a unit designed for use with floor-standing standard lights or table-top lamps, therefore installation is very simple. The Security Vari-Light operates the
lamp on a random cycle which has been carefully designed to give a realistic effect.
A timer circuit is incorporated so that the system will switch on after a predetermined delay of between two to seven hours. Having lights flashing on and off at four o'clock in the morning could be deemed counterproductive, as this may draw attention to the house. The timer will help to overcome this and can be switched out if it is not required.

REPEATER

The system has been further developed and although this unit is designęd to control just one lamp, by adopting a system of optical links, "repeater" units can be employed to operate lights throughout the house. The object in this respect, is to avoid having to alter any of the house's existing lighting and wiring, in order to make installation an easy matter.
Furthermore, by employing opti-cally-coupled repeater units to drive other lights, mains wiring is avoided. Instead, a light sensitive cell connected to the repeater unit detects when the "main" security light is illuminated, and causes a second lamp to light up. Indeed, by making several photo-resistors "look at" the main Security Vari-Light, almost any number of secondary lamps could be controlled in this manner.

CIRCUIT DESCRIPTION

Fig. 1 is the circuit diagram for the Security Vari-Light and it can be divided into two distinct sections, the Timer/Power Supply section and the Logic Control seotion, the latter to be described first.
IC3 comprises two four-bit shift registers, a смоs 4015 is used, and by' connecting the Q4 output of the first shift register to the D input of the second, a single eight-bit shift register is formed. The clock and RESET pins for both registers are connected in parallel for this application.
IC1 is a simple 555 astable multivibrator which provides a lowfrequency clock signal, approximately one clock pulse every ten minutes is passed to the shift registers. An exclusive-or gate, a cmos 4070 is the only other logic element and this device contains four separate gates, all of them utilised in the circuit.

LOGIC CONTROL

The circuit operation is as follows. Upon initial application of power, a reset pulse is delivered by IC2d to the shift registers, the outputs of which are then cleared to zero.

Fig. 1. Circuit diagram of the Security Vari-Light.

Simultaneously, the first positive clock transition is despatched by IC1 but the effect of this upon the logic circuit is cancelled by the switch-on reset pulse.
Since the inputs of IC2b are at logic zero, the output of IC2b is also zero, remembering that IC2 is an exclusive-or function. How. ever, IC2c is connected as an inverter since one input is permanently wired to logic 1. The logic 0 generated by IC2b, then, is inverted by IC2c to generate a logic 1 which is injected into the data input of IC3a.

In effect, IC2b and IC2c have combined to form an ExCLUSIVE-NOR gate which serves to "start up" the shift registers and prevent them from remaining at logic zero, as detailed earlier. The pseudo-random sequence will then follow on with each successive positive clock pulse.

SHIFT REGISTER

The output from the shift register is taken from the Q1 bit of IC3b (pin 13) and it is here that the pseudo-random pattern will be observed. This is inverted by IC2a and drives a high-gain transistor switch comprising of TR1 and TR2, which
themselves complete the circuit to the mains relay RLA.

Thus when the output of IC3b (Q1) is low, which it is for the first five steps of operation, then this is inverted by IC2a to form a logic one. This high signal activates the relay RLA through the transistor switch, so that the contacts RLAl close and power is applied via the mains socket SK1 to the mains lamp, so the lamp illuminates.

Since the logic 0 output of the shift register (Q1 of IC3b) is ineverted by IC2a to form a logic 1, this means that the lamp will illuminate immediately upon power switch on. It will extinguish when a logic 1 eventually reaches pin 2 input of IC2a.

After ten minutes or so, the clock generator will deliver another posi-tive-going pulse which will advance the shift registers by one step. The logic circuit will now generate the pseudo-random sequence, the lamp switching on and off accordingly.

TIMER CIRCUIT

A timer has been incorporated which will operate the logic section for a predetermined period, between approximately two to seven hours,
and will then disconnect the lamp. Thus the user can set the Security Vari-Light to operate randomly for a suitable period while he is away, the device will then turn off automatically.

The timer is formed by IC4, a cmos 7555 connected as a monostable. Timing is initiated by closing S2 temporarily and the timer can be reset by closing $S 3$, if required.

TIMING PERIOD

The timer period is controlled by resistors $\mathrm{R} 6-12$, and C 5 . By rotating Sl one may adjust the value of the timing resistor network and thus the timer period can be altered as required. One problem with a simple circuit of this type is the leakage current through the timing capacitor C5. The long time constants which are required imply that a large-value capacitor is needed, specifically, an electrolytic type. These have high leakage currents which greatly affect the accuracy of the timer. With C5 at $470 \mu \mathrm{~F}$, each $8 \cdot 2$ megohm timing resistor corresponds to a delay of one hour.

When the timer is initiated, pin 3 of IC4 goes high, and this is buffered by TR1 to drive the reed

relay RLB and the TIMING l.e.d. indicator, D3. The reed contacts RLB1 then close and supply power to the logic section.

This in turn activates the switchon reset circuit (IC2d) and then the logic sequence starts up in the manner described, causing the mains lamp to operate in a pseudo-random fashion.

If the timer is not needed, it can be bypassed by setting S 4 to out which disconnects the timer circuitry and provides power straight through to the logic.

POWER SUPPLY

The power supply is a standard type in which 240 V a.c. is stepped down by Tl to about 9 V a.c., and subsequently full-wave rectified by D5-8 and smoothed by C7 to give about 12 V d.c. at no load. D2 is the power l.e.d. and illuminates when the Security Vari-Light is switched in.

In the security mode, $S 5$ (the mode switch) passes mains current through to Tl primary winding and then the random logic sequence will operate the mains lamp, and this can then be timer-controlled if desired. However, S5 can be moved to
the bypass mode and this will supply power to the lamp continually, bypassing the electronics.

S5 is actually a centre-off type so when in middle position, both the electronics and the lamp will be completely disconnected from the mains supply.

However, the presence of X1 provides a route for mains power when S5 is in the bypass mode, so even though the electronics are disconnected, enough power may be transmitted through X1 to operate the cmos. As a result of this the lightemitting diodes glow very dimly.

MAINS

SUPPRESSOR

Finally, the mains contacts of RLA1 are protected by a suppressor network, X 1 . This reduces contact wear and prevents mains bransients from working through the power supply causing the logic section to malfunction. Protection of this nature is increased by the mains transient suppressor, RV1.

PRINTED CIRCUIT BOARDS

Construction is relatively straightforward, because nearly all components, including the mains relay, are mounted on two specially-designed printed circuit boards.

The first p.c.b., which carries the power supply and timer section. is shown in Fig. 2. This is mounted vertically using metal brackets or plastic vertical p.c.b. guides. Assembly of components is as indicated in the
diagram, noting that Veropins should be used where flying leads are taken off the board. Also an eight-pin d.i.l. holder is used for IC4 to prevent damage occurring to the i.c. when soldering. The reed relay used is a Maplin type FX51F, other makes may not be compatible with the holes in the p.c.b.

The arrangement of components on the second board is illustrated in Fig. 3. The relay for this layout is a Maplin 5A mains relay type YX98G, this will solder directly to the circuit board. FS2 is a 20 mm p.c.b. mounting type, rated at 2A.

The integrated circuits IC2 and IC3 are cmos devices and are particularly sensitive to static electricity. Do not remove the devices from their conductive packing until they can be inserted into their respective holders on the board.

CASE

The case used on the prototype was a plastic Verobox type 202-21311 which has dimensions $138 \times 190 \times$ 91 mm . As mentioned earlier, it is recommended to fix the timer p.c.b. vertically to obtain the most compact arrangement, layout is otherwise not too critical. Keep the lengths of mains wire to a minimum and away from the mains interwiring, this will ensure that no problems are caused by mains interference.

The timing resistors R6-12 are soldered directly to the tags of Sl , in accordance to Fig. 4. This diagram details all necessary interwiring and must be followed closely.
The earth input is connected to the mounting frame of the transformer, and this is accomplished by

using a solder tag fixed under one of the transformer mounting bolts. It is essential that the front panel, which is made of aluminium, is also soundly earthed, remembering that it is anodised, so this must be removed at the earthing point.

It is of prime importance that the three-core mains cable is properly secured so that it will not pull out and for this, a cable retention clip and grommet are utilised.

SK1 is a "Euro-Facility" 6A 250V mains socket and is a clip-in type. A suitable cutout ($28 \times 23 \mathrm{~mm}$) is made in the top half of the case, at the rear. It may be necessary to secure the socket with an adhesive, since the rather thick case wall may prevent the socket from clipping into position properly.

MAINS WIRING

All mains interwiring should be completed using $24 / 0.2 \mathrm{~mm} 6 \mathrm{~A}$ wire. This is thick enough to carry the required current but can be soldered to the small tags on the rear of the mains on/orf switch, S5. Insulate each mains joint with 2 mm bore p.v.c. sleeving for additional safety.

The remainder of the interwiring can be completed with standard $7 / 0.2 \mathrm{~mm}$ wire. Use of several colours assists with checking, later on.

There are two light - emitting diodes to be fixed to the front panel, and this can be achieved with two transparent lens-clips or the standard black bezel clips.

To label the controls on the front panel after the panel has been drilled, use rub-down lettering
(available from stationers and some component suppliers), after which carefully apply several light coats of protective clear lacquer. This will help prevent the letters from lifting off.

CHECKING

Check out very carefully all wiring and soldering, prior to switching on. Ensure that the mains plug is fitted with a 3 A fuse and then plug a lamp (500 W maximum power) into SK1. With S5 at off (centre) and S4 to TIMER in, plug into the mains and switch on by moving $S 5$ to security. This should cause the power l.e.d. to light up. The timing l.e.d. may or may not be alight, but either way, pressing S2 will activate the timer and the mains lamp should also light up. Pressing S3

View inside the finished prototype model clearlyshowing the mounting of the mains socket SK1, and how the mains wiring is separately held together with cable ties.
should extinguish the lamp and the timing indicator. This indicates that the timer functions correctly. Follow on by testing other functions.

Using a stopwatch, check the time
period obtained with the timer set to the two hour delay setting. The result obtained will give a good indication of the accuracy that can be expected on other settings.

If the timer is discovered to be unacceptably inaccurate, the simplest remedy is to change the value of C5 accordingly. With the prototype, the theoretical two hour delay came out actually as more than 50 per cent over this; C5 was reduced to $220 \mu \mathrm{~F}$. The delay then was about one and three-quarter hours, which is more acceptable.

APPLICATION

With the model suitably tested and functioning it can be pressed into service. It is possible to use the device with any mains lamp (or number of lamps) totalling not more than 500 watts.

Floor-standing spotlight units work well as a deterrent if located in the hallway or near to the entrance of a room.

Component Buying

Following on from my October article, I would like to add a few more; I hope helpful, ideas on the subject of buying components for various projects.
Manycustomers comeinto a shop clutching their copy of Everyday Electronics open it at the required page, point to the list of components and say "I would like that lot'". If this happens on a busy Saturday, then the retailer, who is probably understaffed and has a shop full of people to serve, will most likely ask you to leave your list and come back later.
One cannot altogether blame him. because a list of perhaps thirty or forty varied items can take up to twentyfive minutes to assemble, and if he stops to do this, it is quite likely that several customers will walk out. Remember, today is a buyers market and the poor retailer does not wish to lose a single customer.

Let me suggest how you can help him. First of all, take your magazine and write out your desired list again, re-arranging the order. The reason for this is simple enough, if you look at any list you will soon notice that, for example, resistors might be as follows: R1 $1 \mathrm{k} \Omega, \mathrm{R} 210 \mathrm{k} \Omega$, R3 47Ω, R4 $1 \mathrm{M} \Omega$, R5 $1 \mathrm{k} \Omega$, R6 $3 \cdot 9 \mathrm{k} \Omega, R 710 \mathrm{k} \Omega$ and R847 Ω.
It is not difficult to see how time consuming this is, because the assembler has to keep returning to the same box. The list should be set out as follows: (2) 47Ω, (2) $1 \mathrm{k} \Omega$, (1) $3 \cdot 9 \mathrm{k} \Omega$, (2) $10 \mathrm{k} \Omega$, (1) $1 \mathrm{M} \Omega$. The same treatment applies to capacitors and other discrete components.
It is also helpful if the list can be priced, if only approximately. In addition, make sure you have enough moneyl Many is the time I have spent half an hour compiling an order, only to be informed that he or she is short of the required amount by $£ 1 \cdot 62$, and would I please suggest what should be taken out of the parcel to make the amount rightIII Perhaps I am getting
touchy (put it down to age) but this behaviour tends to irritate me.

Lucky Dip

Still on the subject of components, I would like to touch on values, because the average reader is inhibited against altering values even by the smallest amount. Quite understandable, as the designer is pictured as a chap in shirt sleeves with an ice bag on his head, working a slide rule which is red hot, until he finally deduces that a certain capacitor should be $0.02 \mu \mathrm{~F}$.

In practice, Mr. Designer is sitting at his bench lashing the project together and finds he needs a capacitor. He dips his hand into his junk box pulls out a $0.02 \mu \mathrm{~F}$ tries it, and Eureka-it works alright, so a $0.02 \mu \mathrm{~F}$ it shall be.

The Reader than asks his supplier for a $0.02 \mu \mathrm{~F}$, only to be told "I am sorry Sir, the nearest I have is $0.022 \mu \mathrm{~F}^{\prime \prime}$. The reader quickly backs out of the shop, horrified at the idea of altering Mr. X's design.

Don't be worried kind reader, it will not make any difference. If the designer wants you to stick closely to his values he will make them close tolerance.

If you bear this in mind, you will find you can substitute $\frac{1}{d}$ watt resistors for $\frac{1}{2}$ watt and vice versa. With capacitors, you can choose from electrolytics, tantulum, poly. ester, polystyrene, polycarbonate, paper and silver mica. The governing factors here are physical size, and in the case of close tolerance (1 per cent or 2 per cent) you may be limited to polystyrene of silver mica.

With capacitors, a higher voltage can always be used, and I can best illustrate the veracity of my facts by a true story. Several years ago I asked a friend to design a signal tracer and asked him to make the tolerances as large as possible so that I could select a component I had in quantity.

When I recelved the design, the parts list looked like this: C1, anything between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$, any material, voltage no lower than ten. $\mathrm{C} 2,0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$. R1, 10 to 100Ω, any wattage from $\frac{1}{8}$ watt upward. R2, $47 \mathrm{k} \Omega$ to $470 \mathrm{k} \Omega$, again any wattage, and so on through the list.
Obviously, the constructor will pick the nearest value, but there is no need to be worried about small deviations, and this makes it much easier for your retailer to supply your wants.

Computer People

I have been told by many people that-if you sit sipping a coffee outside the Cafe de L'Opera in the Rue de la Paix in Paris, the whole world will pass by. I thought I would try it last year, until I found that the coffee cost over £1 a cupl!
However, I have been helping a friend whose shop is not a million miles from London W2, and I have found that the "all the world" idea applies here. Every nationality seems to pass by the door, many of them would-be customers.
Unfortunately, until recently this shop sold only computers and spares, and computer language is quite unknown to me. If a "floppy disc" walked right up to me and looked me straight in the eye, I wouldn't recognise it. In fact, I picture it as a soggy grey pancake.
Even when asked for items we stock, the language or accent makes for difficulty. This is further compounded by being slightly deaf (a legacy from the last War and after, when I was trundling noisy piston engined aircraft around the sky for some ten years). The other day I was asked for something which sounded like "have you any spacer hooks" asking him to repeat the question he said "No, Data Books, you dummy"-Paul Young sinks slowly to the floor.
All the same, it has been an invigorating experience.

The direction indicator warning buzzer/clicker on some cars is so feint that it cannot always be heard above the engine and road noises. The result is that the indicator is sometimes left on, creating a driving hazard.

The circuit described here uses only a single i.c. (555 timer) in its design to provide an audible signal when the indicators are operated, of sufficient loudness to be heard in most driving conditions.

CIRCUIT DESCRIPTION

The full circuit diagram of the Car Indicator Alarm is shown in Fig. 1. It uses a 555 timer i.c. in a rather unconventional way. There are no timing components in the circuit. The threshold input (pin 6) is strapped to the positive supply line.

When the car indicator is not operating, PCC1 assumes a very high resistance in its dark environment inside the case. PCCl and R1 form a potential divider across the supply lines to feed the trigger input on ICl (pin 2). With the value for R1 as shown, this makes the trigger voltage level low which causes the output, pin 3, of ICl to go to approximately 12 V . The relay is thus not energised.

If the car indicator is now operated, LP1 lights up in sympathy with the indicator dash-mounted pilot lamp. Light from LP1 reaches PCC1 and causes its resistance to substantially reduce removing the trigger
on level from pin 2. IC1 output drops to $0 V$ and so the relay becomes energised; RLA1 opens, the relay becomes de-energised resulting
in RLAl contacts (normally closed type) closing again.
If LP1 is still on, the above cycle repeats, and the relay contacts "chatter". Thus there are bursts of chatter each time LP1 illuminates. The chatter rate is controlled by the value of $\mathbf{C l}$, sometimes called a slugging capacitor.

ASSEMBLY

Full assembly and interwiring details are provided in Fig. 2. Any small plastic box may be used for containing the circuit board and other components. The container for a 35 mm film was found by the author to be ideal for this.

Prepare the case to accept the chosen lampholder and fix in place on the blank end of the case as near to the side as possible. Make a small hole in the same end to allow the four leads from the circuit board to pass through to reach TB2.

Cut the 0.1 in matrix stripboard to size and make the necessary breaks on the underside using a spot face cutter or small drill bit (about 3 mm dia.). Assemble and solder IC1, R1 and the link wires. Attach suitable lengths of flying leads - use insulated stranded wiring. The insulation colours of the wires from the board to TB2 should be of different colours for easy identification when wiring up.

The l.d.r. is secured near to the edge of the lid inside by a terminal

Fig. 1. The circuit diagram for the Car Indicator Alarm. The inset shows circuit modification for use on cars fitted with two (Left and Right) dashboard indicator pilot lights.

block. The leads from the terminal block are threaded through the lid, loop over the outside and pass inside to connect to the circuit board.

Blu-Tak or Plasticene may be used to hold the board in position so that it does not interrupt the optical path between LP1 and PCC1.

Feed the four wires through the case end and gently pull them through while pushing the board into the case. Apply some Blu-Tak to board/case to hold the board firm in the correct position.

Thread the remaining two board wires through the lid of the case and connect to TBl as shown. Screw PCCl to TB 1 and attach this assembly to the lid using glue or Blu-Tak. Clip the lid in position with PCCI aligned with LP1. Plug the holes at either end of the case. Connect the six leads from the case to the terminal strip, TB2.

The other case should be of metallic material to help "amplify" the relay chatter. Some brackets will need to be constructed to securely hold the relay and capacitor. The size, shape and fixing will vary according to the components and box used. Always use shakeproof washers with nuts and bolts for fixings on cars as the vibrations produced could otherwise loosen nuts/ bolts. A rubber grommet must be used fitted in the hole carrying wiring to TB3. The latter should be screwed to its case.

Fit the components and wire up as shown using stranded wiring.

You should now have two units each fitted with terminal blocks, ready for installation in the car.

The metal box containing the relay should be placed (not fixed) close to the driver's seat. The other unit can be mounted anywhere in the car. The steering column was found to be a convenient position in the designers car. Insulating tape was used to hold it secure.
Trace the leads of the indicator pilot light(s) on the dashboard and connect a pair of leads in parallel with the existing lamp. Run these leads to positions 5 and 6 on TB2. If there are two pilot lamps, one for each Left and Right, two diodes will need to be included as shown in the inset in Fig. 1. The diodes are more conveniently attached at TB2. This then requires three wires to connect to TB2, see Fig. 3.

A good earth (chassis) connection is required to connect to TB2/1. This may be found under the dashboard; any metal screw into the metalwork will do, under which a wire, or wire with solder tag may be fitted.

Finally connect the positive supply lead +12 V to $\mathrm{TB} / 2$. This must be made via an in-line fuse or a spare fuse position that may be available in the car fuse box. Fit a lA fuse. The ignition switch is a convenient place to pick up the +12 V using a spade terminal; there is usually a free position to be found on the switch that is "live" only when the ignition switch is turned on.

COMPONENTS

R1 $33 k \Omega \pm W$ carbon $\pm 5 \%$
C1 $\quad 47 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
IC1 555 timer i.c.
PCCI ORP12 light dependent resistor
RLA 180 ohm 12 V relay with at least one set of normally closed contacts
LP1 $12 \mathrm{~V} 2 \cdot 2 \mathrm{~W}$ filament lamp
FS1 1A, to sult holder (see text)
TB1, 2, 3 cut from 12-way 2 A screw terminal strip
Stripboard size 0.1 inch matrix, 10 strips $\times 16$ holes; miniature panel mounting lampholder for LP1; aluminium for brackets; metal box size $70 \times 50 \times 25 \mathrm{~mm}$ approx.; rubber grommet; solder tag; nuts, bolts, shakeproof washers, 6BA; plastic case35 mm film case.

Approx. cost
 Guldance only id
 See page 826

Wire the two units together to almost complete the project. Use lightweight automotive wiring for all long runs of wiring between unit and car/unit and sleeve or wrap any exposed connections.

Operate the indicators with the engine running. A chattering noise burst should be heard to come from the metal box each time the indicator pilot lamp flashes on. Fix the box in a suitable position for loudness and convenience.

Fig. 3. Modified wiring around TB2 for car systems fitted with Left and Right dashboard pllot indicators.

|N 1819 the Danish physicist Dersted discovered that electric cufrents produce magnetic fields. To be precise, he placed a compass near a wire and found that the compass needle moved when a strong current was turned on.

It was soon realised that the mag. netic effect of the current could be multiplied by coiling the wire so that the current passed through many turns. A compass placed at the centre of such a coil could then indicate by its movement how much current was flowing. This provided researchers with a current indicator or galvanometer.

Clearly, electricity and magnetism, two apparently quite different things, meet and interact in such electromagnetic circuits.

The trick of coiling up the wire to intensify the magnetic effect is exploited in a vast range of devices, including dynamos, motors, alternators and of course electromagnets. Loudspeakers and microphones commonly contain both coils and magnets. The "search heads" of metal detectors contain coils; radio and TV sets contain coils and so do electric bells and telephones.

ELECTROMAGNETISM DEMONSTRATED

Let's do some experiments. You'll need a magnet. Any kind will do, but if you have a choice a bar magnet is the most convenient. It should be as powerful as possible

You'll need a tube made of some sort of insulating material, and wide enough to let your magnet, or part of it, pass inside. A cardboard tube will do, or a plastic or glass one. I borrowed a plastic hair roller for my experiments.

You'll also need some iron nails or bolts - about the same length as your tube - and two lengths of insulated wire each about three metres.

The rest of the parts are leftovers from earlier experiments.

Wind one length of wire into a coil at one end of your insulating tube. Leave a few inches of loose wire at each end for connecting up, see photograph. My coil has about thirty turns on it but the exact number is not important. The more the better.

You are going to generate electricity by moving your magnet about
in and around the coil. How do you know that you've succeeded? The simplest way would be to connect an electric lamp to the coil and watch it light.

AMPLIFIER

Unfortunately the amount of energy created by our very inefficient arrangement is much too small. It will result in a few thousandths of a volt at the coil ends. We must amplify it.

To do so we adapt the twotransistor amplifier used last month for our experiments with capacitance. Fig. 3.1 shows the new circuit. One resistance is changed and the polarity of the $1000 \mu \mathrm{~F}$ is reversed.
One l.e.d. in the Indicator will light all the time. Electricity generated in our coil will produce changes in current which will make the l.e.d. flicker.

A home made coil for the experiment in Fig. 3.1 made from 7/0.2 stranded p.v.c. covered wire and a plastic hair roller.

Adding a second coil to the above and an iron core in the form of 4 inch long nails.

Plunging the end of a bar magnet (or one leg of a horseshoe magnet) into the coil quickly should produce this effect. (With weak magnets the flicker is small so watch carefully.) If your magnet won't go into the coil then move it quickly to and fro past the outside, as close as possible.

Note that the flicker goes in step with the movement, and that there is no flicker when the magnet is stationary, however close to the coil it may be.

Now hold the magnet steady in the coil and remove the coil quickly. Again, the l.e.d. flickers. Evidently it doesn't matter what we move coil or magnet - so long as we move something.

Michael Faraday, who discovered this electromagnetic effect, deduced that the key factor was to have an electrical conductor (the coil) in a changing magnetic field. Varying the
distance between coil and magnet produces changes while the movement is going on.

COIL CORES

Magnetic fields can pass through the air but they prefer to pass through iron. To concentrate the field fill the tube with iron nails. It doesn't matter if they are a bit too long and stick out at the ends. Moving the magnet near the coil or the nails will produce an enhanced flicker of the Indicator l.e.d.

ELECTROMAGNETIC COUPLINGS

It would be quite feasible to use an electromagnet instead of the permanent magnet, and wave it around near the coil. However, there is a more interesting possibility. If you wind a second coil round the same tube you can turn it into an
electromagnet by passing a current through it (Fig. 3.2). The iron core which you have given your coil will conduct the magnetism from one coil to the other.

Since the positions of the coils are fixed it is no longer possible to make electricity by movement, but the essential condition - a changing field - can be produced in another way.

At the instant the electromagnet is switched on its field starts to build up and to travel outwards. The second coil feels this sudden build-up of field and produces a little pulse of voltage which can be amplified to make the Indicator flicker. As soon as the field has built up to its steady value with full current flowing in the electromagnet coil - which happens very quickly in the present case - the voltage pulse ceases. Steady fields have no effect.

The easiest way to energise your second coil is to connect a battery to it. If you have an old, but not dead $1 \cdot 5 \mathrm{~V}$ cell you can try it. But don't use your 6 V supply!

Your coil has a resistance of perhaps a tenth of an ohm. Applying 6 volts should produce a current of 60 amperes, in theory. In practice it will damage the battery, which is not designed for such currents.

What's to be done? You could, instead of connecting the coil directly across the battery, interpose a safety resistance big enough to limit the current to a reasonable amount such as 100 mA . But there is a neater way which gives bigger currents.

We know that energy is only transferred from one coil to the other at the instant of switching on.

How to construct a single 9.5 V cell holder with terminal block and paper clips.

It hardly matters for how short a time the coil is switched on.

Let's charge a capacitor (C2) to 6V via a resistance (R4) (Fig. 3.3) and then discharge it through the coil. This way we can apply the

Carrying out the experiment of Fig. 3.2.
full 6V, very briefly, without damaging anything. The resistance can be left connected so that the capacitor recharges every time the coil is disconnected.

If we use a capacitance of $100 \mu \mathrm{~F}$ and a resistance of $1 \mathrm{k} \Omega$ the time constant of the circuit is a tenth of a second so we don't have to hang about waiting for the capacitor to recharge before we can have another go with the coil. Every time you touch the free end of the coil on point A you should see a flicker. Remove the nails and the flickers cease, showing that the iron core of
the coils really does couple them together.

TRANSFORMERS

Our two-coil arrangement is a crude form of electrical transformer. If the "electromagnet" coil is supplied with a changing current, the resulting changing magnetic field induces a voltage (an electromotive force) in the other coil. If the
electromagnet coil were supplied with a current that changed continually, for example, with alternating current, then energy would be transferred to the other coil all the time.

Common sense tells you that the arrangement is reversible. You could change your transformer connections, driving your first coil and taking energy outi of your second one.

This transformer is very inefficient. One reason is that nails are not a good core material. I've been calling them iron but they are really mild steel. Real transformers use special alloys.

Another reason is that our sort of core is the wrong shape to conduct magnetism well. A cylindrical core gives the equivalent of a bar magnet (Fig. 3.4 a and b). The magnetic field flows from North pole to South pole through the air. It would much rather flow through some more iron (Fig. 3.4c).

Magnetism doesn't flow round and round like a current but it is still desirable to have a complete magnetic circuit of iron to couple the coils more effectively.

In transformers the driven winding is called the primary and the pickup winding is called the secondary. The voltage induced in the secondary depends on the number of turns. If the secondary has ten times the turns of the primary it produces ten times the voltage (but only one tenth of the current).

To supply transistor circuits from the mains a step-down transformer is often used. This reduces the voltage from, say the 240 V a.c. of British mains to the 10 V or so needed by a small transistor radio.

inductance

The magnetic field round a coil which is carrying a current is a store of energy. If the current is switched off the field collapses back into the coil. As it does so, the coil itself, being a conductor in a changing field, generates a voltage. The size of this voltage depends on how quickly the current falls: the faster the greater.

In a motor car this fact is exploited (together with a step-up action) to generate the tens of thousands of volts needed for the ignition of the fuel.

Fig. 3.4. Coil cores. In (a) and (b) coil and bar magnet produce similar fields. In (c) the iron core gives an easy path from pole to pole. Little field now goes through the alr.

When the current is turned off the polarity of the self-induced voltage pulse is always in the direction which tends to keep the current flowing. In other words, the coil resists any attempt to alter the current. The effect is seen not just with abrupt switch-offs but also when the current changes more slowly and smoothly. The voltage across the coil always changes in the way needed to keep the current going.
This property of a coil is called self-inductance - usually abbreviated to plain "inductance". To be able to compare inductances, a unit of inductance has been agreed upon. The current is somehow made to change at the rate of one ampere per second. If the coil then generates an opposing voltage of one volt it has one unit of inductance. This unit is called a henry after an American physicist.
The primaries of mains transformers have inductances of several henries. Most other inductances are much smaller. Your coils have inductances of a few millionths of a henry (microhenry, $\mu \mathrm{H}$). Thousandths of a henry are millihenries (mH) and thousand-millionths are nanohenries ($\mathbf{n H}$).

When a.c. flows through a coil the inductance continually opposes the changing current. lt behaves a
bit like a resistance. The effect can be quoted in ohms but is actually called an inductive reactance. The reactance increases both with the inductance and the frequency of the current.

L/R TIME CONSTANT

It takes time for current to build up or fade away in an inductance. The time depends on how much resistance there is in the circuit. Unlike $R C$ circuits, where the resistance increases the charging time of the capacitance, in $L R$ circuits (L is the usual symbol for inductance) the resistance reduces the time constant; that is, more resistance gives faster charging and discharging. The time constant is L / R seconds; for example, 10 H and 50 hms give 2 seconds.

DEVICES

A coil suspended in a magnetic field moves when energised by current. In a loudspeaker the movement is arranged to move a diaphragm. In a moving coil meter it turns the pointer.

The system works in reverse. Moving the diaphragm generates a voltage in the coil. This is the principle of the dynamic or moving-coil microphone. In relays the movement operates switch contacts.

To be continued

PRAGTICAL ONIES
 Our Sister Publication
 Practical Electronics

leatures the following projects in the December issue, now. on sale:

Micrograsp Robot with ZX81 interface. Stylochord Mini Organ.

Microfile 8 page pull-out microprocessor data.
Plus, more than 100 readers' Bazaar advertisements.

PLEASE
 TAKENOTE

PUBLIC ADDRESS SYSTEM

(May to August 1982)
June 1982, page 402. The resistor R23 10 ohm should be rated at 2 watts.

COMBINATION LOCK

(October 1982)
Resistor R3 in Fig. 1 (page 700) should be 820 ohms not as shown. A 1N4001 diode should be inserted between switch S1 and battery positive. Cathode (k) to switch Si and anode (a) to battery positive.

SOUND SPLITTER

(September 1982)
The circuit diagram, Fig 7, for the
Remixer Box shown on page 565 should be replaced with the circuit below.
The wiring diagram Fig. 8 for this unit is correct.

MINI 20
27 Aanges

Specification
and Instrucrions
miselco

INCLUSIVE OF -OET E PAFMA

The Mini 20 Multimeter is an Ideal instrument for the constructor.
In particular, to those just taking up electronics, this Special Offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly £10 on the normal retail price.
The 21 ranges cover all likely requirements. Operation is straight-forward, just turn the 22 -position selection switch to the required range.

Sensitivity: $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $4 k \Omega / V$ a.c.

Ranges extend from:
100 mV to 600 V d.c.
30 mA to 3 A a.c.
15 V to $1,500 \mathrm{~V}$ a.c.
$50 \mu \mathrm{~A}$ to 600 m A d.c
Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

Please allow 14 days (maximum) for delivery (more for overseas orders). OFFER CLOSES—January 151983.

THE widespread use of complex electronics in vehicles has not come about nearly as rapidly as in the case of some other products, such as watches and cameras. Although quite simple circuitry is adequate for vehicle burglar alarms, ignition systems and other useful systems, very rapid developments have taken place within the past year or so involving the use of far more complex electronics in cars. Many manufacturers are already competing with one another for a share of what is already becoming a lucrative market-estimated at $£ 1,500$ million by 1985.

DEDICATED MICRO SYSTEMS

It seems certain that dedicated microcomputer systems designed especially for vehicle use will take over from the general purpose microprocessor chips which are already being employed in some cars.

Microprocessors can be used to provide near-optimum control of the fuelair mixture for maximum economy
and minimum dangerous exhaust emission together with automatic advance and many other functions. Electronically controlled anti-lock braking systems are available, whilst radar controlled monitoring of the distance of the vehicle in front is possible with either the operation of a warning indicator or the automatic application of the brakes under conditions which may cause a collision; external temperature indicators can automatically provide for a greater braking distance when external temperature is below freezing point.

DASHBOARD SYSTEMS

Microprocessors are also used in some advanced dashboard systems which continually inform the driver of the number of miles-per-gallon being achieved by his vehicle in digits (with an alternative display of km per litre), the temperature outside the vehicle, and automatically monitor many functions such as the oil pressure for guidance of the driver.

A microprocessor controlled monitoring system has even been developed which actually tells the driver in electronically generated spoken words if a fault is present (such as a low brake fluid level) or if a potential problem is developing (such as a low fuel level in the petrol tank).

OVERCOMING RESISTANCE

There has been some considerable resistance to the use of complex microelectronic systems in vehicles where traditional systems are not easily changed and where reliability of complex equipment is a vital consideration. Strangely enough much of the incentive for the recent development of microprocessor control systems has come from the controls to be introduced by many countries on exhaust gas emission and on fuel consumption as petrol becomes more precious. Future legislation is most easily met by the microprocessor control of vehicle engines.

COMPUTER, COMMAND, CONTROL

One of the most amazing recent developments was the announcement by General Motors just over a year ago that virtually all of their petrol driven cars built in the USA will be fitted with a small digital computer about the size of a textbook. General Motors produce Chevrolet, Pontiac, Oldsmobile, Buick and Cadillac cars; their Delco Electronics Division has now become the largest manufacturer of computers in the world with a production of over 20,000 electronic vehicle control modules per day at its Kokomo and Milwaukee plants.

The electronic control module or on-board computer is known as the "brain" of the computer, command and control system used by General Motors. It receives inputs from various sensing elements in the system and provides commands to numerous actuator devices which control many operations in the vehicle, such as the ignition timing, the idle speed motor, the electro-mechanical. carburettor and so on. The sensing elements update the computer every 100 milliseconds, while every $12 \cdot 5$ milliseconds the system monitors the vehicle for critical emissions and driveability information.

In addition, the electronic control module has a limited systemdiagnostic capability. If certain system malfunctions occur, the diagnostic

(above) The brain of the General Motors Computer Command Control (CCC) emission system is this Electronic Control Module (ECM).

Slightly larger than a paperback book, this microcomputer receives data from engine mounted sensors at a rate up to 160 times per second. The ECM will perform up to 350,000 calculations per second.
(right) General Motors Computer Command Control System

This is the "heart" of an Electronic Control Module (ECM), or micro-computer, which commands the functions of GM's 1981 emission control system. This chip is programmed to receive input from enginemounted sensors throughout the Computer Command Control (CCC) system.

(Heading Photo) Each 1981 model General Motors automobile equipped with the Computer Command Control system receives a final check at the end of the assembly Ine. The automobile's on-board computer is connected to the assembly plant's computer to check engine function operations in the Computer Command Control system.
The "shape of cars to come" is how Roger B. Smith, GM Chairman, describes the new experimental Aero 2000 four-seater car. The driver need not take his eyes from the road to see car speed, fuel supply and similar readings reflected in the windshield (top left). Road maps can be called up on a television screen (top right). Possible vehicle trouble spots are analysed in a console diagnostic centre (lower right). A 180 degree rearward projection replaces the three rear view mirrors that are on most cars.

"check engine" light in the instrument panel will be illuminated, alerting the driver to the need for a service. The computer also assists the service technician in returning the system to its normal operating condition by isolating the general area of the system where the malfunction has occurred.
However, we shall see that in certain cars the computer, command and control system can carry out many other functions.

EXHAUST-OXYGEN SENSOR

About six years ago General Motors introduced a catalytic converter emission controlling device; this has no moving parts, requires no ownerattention, but is designed to control the amount of oxides of nitrogen in the exhaust gas emissions as well as the carbon monoxide and hydrocarbons. The catalytic converters contain platinum, palladium and rhodium -all precious metals.
An oxygen sensor having a coneshaped zirconia ceramic body, coated inside and outside with platinum, is now mounted in the exhaust manifold ahead of the catalytic converter. The sensor inside surface is open to the atmosphere and the outer surface is exposed to exhaust gases.
The difference in the amount of oxygen on these inner and outer surfaces generates a voltage signal which is related to the engine air/fuel ratio and this voltage is passed to the computer system. The latter produces an output signal which directs the carburettor to deliver a richer or leaner mixture to the engine to optimise the catalytic converter performance.
The computer system also receives information about the cooling system temperature, the crankshaft rotation rate (r.p.m.), the throttle position and the manifold pressure. In some models an electronically controlled exhaust gas recirculation system further reduces the exhaust gas emissions.

ELECTRONIC TIMING

General Motors employ electronic spark timing systems in most of their petrol-driven cars. The microprocessor system is used to optimise the ignition timing and dwell angle which are programmed functions of the engine speed, the mechanical load on the vehicle at the time, the coolant temperature and various other sensor signals.

The electronic ignition timing system is said to improve spark control flexibility and accuracy and this results in improved fuel economy while still maintaining the stringent exhaust emission requirements and providing good driving performance.

The ignition advance weights and the vacuum advance mechanisms
employed in conventional petrol engines are not required in the electronically timed engines. The distributor used in the system contains a new module developed especially for the purpose.

Even the idle speed is electronically controlled to compensate for transient load changes (such as air conditioning, power steering and transmission engagement) which require power under idling conditions. The control system maintains low engine idling speeds so as to minimise fuel consumption under urban driving conditions.

In addition, the idle speed controller will automatically compensate for altitude-sensitive speed changes, and will increase the engine speed when this is needed to compensate for hot engine conditions or too low a battery charging rate.

TORQUE CONVERTER CLUTCH

In 1981 General Motors introduced microcomputer control of their torque converter clutch which receives commands for engagement or disengagement as a function of the gear select, vehicle speed, engine load, coolant temperature, throttle position and brake status.

It is claimed that this system provides the convenience of automatic transmission with the engaged efficiency of manual transmission. It allows more operating regions where the clutch can be engaged so as to reduce fuel consumption.

FOUR, SIX OR EIGHT CYLINDERS?

Perhaps the most remarkable development using the General Motors Computer, Command and Control System is available in a 6 litre Cadillac V8 engine. This can be automatically converted into a 6 cylinder $4 \cdot 5$ litre or into a 4 cylinder 3 litre engine when the full power of the 6 litre engine is not required for the particular driving conditions being encountered at the time. The number of cylinders is selected so as to minimise fuel consumption while providing the performance demanded by the driver.

This type of variable capacity engine is known as a modulated displacement engine and is the first of its type in the world. Digital fuel injection is employed with an electromechanical system of inlet and exhaust valve control under computer command.

The change from one mode of operation to another is stated to be so smooth that the occupants of the car are unaware that it has happened and there is no lag or drag. The change is effected by a valve selector unit which employs a single solenoid to simultaneously deactivate both valves
of a cylinder. Both valves then stay closed so that the piston operates as an almost ideal spring with the resultant losses virtually zero.
Cadillacs fitted with this V8-6-4 engine have a digital mile-per-gallon readout which displays on demand the instantaneous and average fuel consumption accurate to 0.1 mile-per gallon, together with the anticipated range based on the average fuel consumption and the amount of fuel remaining in the tank.
The number of cylinders being actively used at any time is also displayed. This display enables the driver to learn to optimise the fuel economy of the vehicle and to learn to be a more efficient driver, while he is free to use full power when he is in a hurry!

SELF-DIAGNOSIS

The computer, command and con trol system also provides a diagnostic system for monitoring the engine control system sensors and actuators for proper operation. It will memorise any malfunctions (including temporary ones) and alert the driver by means of an instrument panel warning light.
If necessary, the system will substitute nominal values for the signals from critical sensors so as to allow the car to be driven until repairs can be made.
It also enables a service department to "interrogate" the microprocessor and obtain answers from a digital display on the instrument panel. When a serviceman grounds a 'trouble code' test lead terminal under the dashboard, a light will flash a unique code indicating the fault code and the problem area. The serviceman can then use his trouble-shooting chart to find the defective component.

RELIABILITY

Many people think often quite rightly-that the more complex the system, the more there is which is likely to develop a fault. This is especially important in vehicles where a failure is far more of an inconvenience than the failure of, say, a domestic television receiver.

Each completed computer is there fore put through a complex eight hour test extending over a wide temperature range, with sample tests from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The warranty on the computer, command and control system is for 50,000 miles or five years, whichever occurs first.

Each vehicle produced receives its final check at the end of the assembly line with its own "on-board" computer connected to the assembly plant's computer, when many tests are carried out and any necessary adjustments made.

EUROPEAN DEVELOPMENTS

In Europe the use of electronics in cars has been relatively modest when compared to the complex computer, command and control system just discussed. This is not really surprising, since European cars are generadly considerably smaller, more efficient and more eoonomical-apart from the fact that the USA semiconductor industry is more highly developed.
Bayerische Motoren Werke AG (BMW) of Germany has introduced a microprocessor in its 55 series of cars. They claim two unique developments, namely their service interval indicator and the energy control display. The service interval indicator was developed in order to replace the conventional idea of servicing a vehicle at fixed mileage intervals.

Sensors provide information about the engine speed, the engine temperature and the distance travelled since the last service together with the time since the last service. The service indicator remembers the load and operating conditions of the engine since the last service and computes whether it is time for the car to be serviced again.
As an example, one may mention that the time during which the oil is at a temperature of less than $+55^{\circ} \mathrm{C}$ is important, since there is extra wear during this wanm up period and during this time the oil is degraded more quickly than in a fully warmed-up engine. Similarly extra wear occurs at over 4,000r.p.m.

One type of display involves the use of five green l.e.d.s, one yellow l.e.d. and three red l.e.d.s on the instrument display. These indicators advise the driver when an oil change is required and when the vehicle requires servicing.

IMPROVING DRIVING HABITS

The calculation is performed according to a special formula derived through extensive testing and which gives a good indication of the actual demands placed on an engine. It was found that most drivers can expect to have longer intervals between servicing with this system which offers the driver the first opportunity of influencing his car's service times through his own driving habits.

When the car has been serviced, the service interval indicator is reset with a special key. The unit has a back-up battery which will support the indicator for a period of four months, such as when the car is not used and its battery has been removed for charging.

The car uses an electronically controlled injection system in which the amount of fuel entering the cylinders is accurately measured. This is compared with the distance travelled (using pulses derived from the

Fig. 1. The Bosch L-Jetronic system used in the BMW series 5 models.
speedometer system) to give the instantaneous fuel consumption.

FUEL INJECTION SYSTEM

In some of the BMW series, the Bosch L-Jetronic system of fuel injection is used (Fig. 1). Engine speed is detected by a sensor adjacent to the flywheel, the passage of each tooth on the flywheel generating two pulses. Thus the 232 pulses per revolution using 116 teeth enables the crankshaft angle to be determined to within 1.55 degrees. The load on the engine is found by a sensor which measures the volumetric air flow into the cylinders and the required timing angle is calculated accurately. The fuel injection time is calculated from the air intake and engine coolant temperatures, the throttle position and the engine speed.
The control system can modify the engine performance at certain speeds using pre-programmed instructions. For example, the engine speed sensor can be used to shut off the fuel when the engine speed exceeds $1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$.

The system will also provide a mixture enriched by a factor of two
for cold starts, but as soon as the engine fires, the mixture composition is returned to its normal level during warming up. Only when the engine temperature reaches its normal working value is the normal air-to-fuel ratio employed.

The on-board microcomputer: the SAB 80215 is a key device in providing the driver with a variety of information. Such as actual fuel consumption, as well as time and average speed. It can be so programmed that warning signal sounds when a set speed is exceeded.

Fig. 2. A block schematic diagram for the British Leyland reed switch system.

BRITISH LEYLAND

In the UK British Leyland has been developing distributorless ignition systems. One such system is shown in Fig 3 in which pulses from a camshaft synchroniser are fed to a computer which in turn drives two power amplifiers. The primary ourrent flows through the split-primary of the ignition coil in a direction which is dependent on the particular power amplifier which is conducting at the time.

Aocording to the direction of the primary current, two of the diodes in the ignition coil secondary circuit are biased to conduction. Two of the
sparking plugs are fired in series, but ondy the one causes ignition of the mixture. A disadvantage of this system is that energy is wasted in the firing of the second plug. At the next part of the ignition cycle, the other power amplifier conducts and the other two plugs fire.

Fig. 2 shows another system in which high voltage reed switches are employed to control the firing of the sparking plugs. Reed switches which must withstand 30 kV to 50 kV are not cheap and their life is not unlimited. However, only one power amplifier is needed. In this system the ignition coil current is first turned on, the selected reed switoh is then closed
and the spark occurs when the ignition coil current is interrupted. The reed switch opens only after the spark.

SPEAKING CAR

Toyota of Japan has introduced what is said to be the first talking car which contains a speaking monitor system that tells the driver if his seatbelt is unfastened, the lights are left on or if any similar faults or potential faults are present.
The system, developed jointly by Toyota and Matsushita, employs the latter's MN1599 microcomputer together with their MN2332 memory and digital to analogue converter.

CONSION
The examples discussed in this article are only a beginning; some cars are already only as reliable as their electrics and soon they will only be as good' as their electronics!

LOUDSPEAKER AMPLIFIER SYSTEM for Personal Stereo
Cassette Player
When at home you can now enjoy loudspeaker reproduction from your Personal Cassette Player. This 5 -watt stereo amplifier is fed from the headphone outlet socket to provide adequate output for the bedsitter, teenager bedroom or private den. Built-in power source to power the player and save your batteries.

To complement the Security Vari-Light featured in the December issue, this unit enables further lamps to be optically coupled to the main control lamp, thus creating the effect that more than one room is occupied. The whole system is simple to install and requires no complicated mains wiring

VELOCITY MEASURER

THE idea of the designers of this project was to build an accurate, cheap and practical piece of equipment that would repeatedly measure the velocity of a moving object, and store the results in a semiconductor memory to be displayed later on a seven-segment readout. This information would then be useful for plotting velocity-time graphs for many moving objects such as moving trolleys, falling spheres
and so on.
It was decided to use an ultra. sonics beam, and for this to be reflected off the moving object back towards the transmitter. The received ultrasonic signal would be at a slightly different frequency. The faster the object is moving, the greater the difference between transmitted and received frequencies. This phenomenon is known as the Doppler Effect.

TICKER TIMER METHOD

The Velocity Measurer described here was designed to take over the role of Ticker Timer method of determining velocity of moving objects, which is in common use in school laboratories.

The Ticker Timer is a small electromechanical device. A velocity recording can be obtained by threading one end of the paper ribbon through the Ticker Timer, and sticking the other end to the moving object. When the object moves it pulls the paper through the Ticker Timer which is printing 50 dots every second.

When the object moves faster the paper also travels faster, which means the dots are spaced further apart. This ribbon of paper is later cut up into 10 dot segments which are stuck side by side onto a piece of paper to form a velocity-time graph.

Some of the major drawbacks of the Ticker Timer method are:

1. The object which is being measured must be connected to a long strip of ticker-tape which introduces a certain amount of friction. This means that any results obtained may be affected by this friction.
2. Cutting up the Ticker Timer tape and constructing the velocitytime graph takes a long time to produce.

HOW IT WORKS

The Velocity Measurer can be used in the laboratory with greater ease and accuracy than with conventional methods of taking velocity measurements, such as with the electromechanical ticker timer. It is capable of measuring small changes in velocity at selectable sampling rates, and to store this data in a semiconductor memory. After the experiment, the data may be read out in single steps to allow a velocity-time graph for any moving object to be plotted.

The project uses ultrasonics for determining velocity of the object based on the Doppler effect. The unit emits a constant frequency 40 kHz sound wave. This reaches the object and is reflected back to an ultrasonic transducer mounted on the unit. The
3. The Ticker Timer cannot be used to take measurements on oscillatory motion nor movements towards itself.
The main advantage of Measurer is that there is no physical contact with the object, which in turn, means there is no friction to affect the readings. According to the designers the only significant disadvantage of their unit, compared with the more conventional Ticker Timer is that the user has very little idea how the device obtained its velocity readings, though on the other hand, it could be used to demonstrate Doppler shift and ultrasonics in the laboratory.

DOPPLER SHIFT

This project has been designed to make use of an effect known as the "Doppler Shift". Consider a stationary source of radiation at frequency f_{1} being aimed at an object moving directly towards the source at velocity v. The waves rebounding from the object to reach a receiver adjacent to the source will be found to be at a different frequency f_{2} to the transmitted waves. This difference in frequency ($f_{r} f_{1}$) is called the Doppler shift and is given by the formula:

Doppler shift $=\left(f_{2}-f_{1}\right)=\left(\frac{2 \times v}{c}\right) f_{1}$ where c is the velocity of propagation of the transmitted wave.

moving object causes the reflected sound waves to apparently increase in frequency in proportion to its velocity. The circuitry computes the difference in transmitted and reflected frequencies to calculate the speed of the object.

Sixteen spot velocity measurements are made during the motion of the object on release of the START switch, 5 per second, 10 per second or 50 per second depending on the setting of the Speed Selector Control Switch.

Outputs exist on the unit (1) to allow connection to a proprietary memory bank to store the results of many experiments which is able to feed a chart reader to automatically produce velocity-time graphs; (2) for connection to an oscilloscope to display velocity directly.

COMPONENTS

Resistors

R1	$220 \mathrm{k} \Omega$	R11	$10 \mathrm{M} \Omega$
R2	$220 \mathrm{k} \Omega$	R12	$10 \mathrm{k} \Omega$
R3	$10 \mathrm{M} \Omega$	R13	$100 \mathrm{k} \Omega$
R4	$4.7 \mathrm{k} \Omega$	R14	$1 \mathrm{k} \Omega$
R5	$4.7 \mathrm{k} \Omega$	R15	$100 \mathrm{k} \Omega$
R6	$1 \mathrm{M} \Omega$	R16	$2 \cdot 2 \mathrm{k} \Omega$
R7	$100 \mathrm{k} \Omega$	R17	$100 \mathrm{k} \Omega$
R8	100k Ω	R18	$5 \cdot 6 \mathrm{k} \Omega$
R9	$27 \mathrm{k} \Omega$	R19	$12 \mathrm{k} \Omega$
R10	$3 \cdot 3 \mathrm{k} \Omega$	R20	$10 \mathrm{k} \Omega$

R21	$100 \Omega \Omega$
R22	$82 \mathrm{k} \Omega$
R23	$8 \cdot 2 \mathrm{k} \Omega$
R24	$68 \mathrm{k} \Omega$
R25	390Ω
R26	to
R51	220Ω (22 off)
R52	$1.5 \mathrm{kk} \Omega$
R53	$10 \Omega 10 \mathrm{~W} 5 \%$
R54, $55 \quad 4 \cdot 7 \mathrm{k} \Omega$ (2 off)	

All $\frac{1}{3} W$ carbon $\pm 5 \%$ except where stated otherwise

Capacitors

C 1	100 nF ceramic
C 2	22 FF ceramic
C 3	2.2 nF ceramic
C 4	22 pF ceramic
C 5	10 nF ceramic
C 6	10 nF ceramic
C 7	$1 \mu \mathrm{FF} 35 \mathrm{~V}$ tantalum bead
C 8	100 nF ceramic
C 9	$1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead
C 10	$0.47 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead
C 11	$0.22 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead
C 12	100 F ceramic
C 13	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead
C 14	$22 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead
C 15	$47 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead

C 16	100 nF ceramic
C 17	10 nF ceramic
C 18	1 nF ceramic
C 19	4.7 nF ceramic
C 20	10 nF ceramic
$\mathrm{C} 212,2 \mathrm{nF}$ ceramic	
C 22	100 nF ceramic
C 23	$1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead
C 24	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead
C 25	15 FF ceramic
C 26	220 nF polyester type C 280
C 27	220 nF polyester type C 280
C 28	47 nF polyester type C 280
C 29	470 nF polyester type C 280

Potentiometers
VR1, $7,810 \mathrm{k} \Omega$ (3 off)
VR2 $10 \mathrm{k} \Omega$ horizontal mounting preset
VR3, $6 \quad 5 \mathrm{k} \Omega$ (2 off)
VR4 $100 \mathrm{k} \Omega$
VR5 $50 \mathrm{k} \Omega$
VR9 $1 \mathrm{M} \Omega$
All $\frac{3}{4}$ inch long 20 turn cermet types except where stated otherwise

Semiconductors

D1, 2,3	1N4148 small signal silicon (3 off)
D4, 5, 6, 7	TIL209 red l.e.d.s (4 off)
D8	1N4001 1 A 50V rectifier diode
D9	Integral part of S4 of TIL209 red l.e.d.
IC1, 2	NE531 op-amp (2 off) H1
IC3, 4	741 op-amp (2 off) H\|hl excluding
IC5	9400 CT frequency-voltage converter i.c. ${ }^{\text {che.b.s \& c }}$
IC6, 7	555 timer i.c.
IC8	74LS393 TTL low power Schottky dual 4-bit binary counter
IC9	7493 TTL 4-bit binary counter
IC10	74LS42 TTL low power Schottky b.c.d./decimal decoder
IC11	7413 TTL dual 4-input NAND
IC12	7400 TTL quad 2-input NAND
IC13	ZN427E 8-bit analogue-to-digital converter
IC14	7400 T TL quad 2-input NAND
IC15	7493 TTL 4-bit binary counter
IC16, 17	748964 bit bipolar RAM conflgured 16×4 bits (2 off)
IC18, 19	7404 TTL hex inverters (2 off)
$1 \mathrm{C} 20-22$	74185 TTL binary-to-b.c.d. encoder (3 off)
IC23-25	7447 TTL b.c.d./7-segment decoder/driver (3 off)
1 C 26	78055 V 1 A voltage/regulator monolithic (TO-220)
IC27	$7905-5 \mathrm{~V} 1 \mathrm{~A}$ monolithic voltage regulator (TO-220 case)
	MAN72 or other common anode 7 -segment l.e.d. display (3 off)

Miscellaneous

X1 $\quad 40 \mathrm{kHz}$ ultrasonic receiver transducer
X2 $\quad 40 \mathrm{kHz}$ ultrasonic transmitter fransducer
S1 4-pole 3-way rotary switch
S2, 3 1-pole 2-way momentary action push button switch (2 off)
S4 double-pole on/off latching push button switch with integral l.e.d. indicator (D9)
PL1 4 mm plug red
PL2 4 mm plug black
SK1 4 mm socket green
SK2 4 mm socket yellow
The above list contains only a description of the items appearing in the circuit diagrams. Hardware is not itemised as this will vary with requirements and layouts of individual constructors. We recommend the use of di.i.l. sockets for all the i.c.s.

The shift is seen to be proportional to the velocity v of the object and the transmitted frequency, f_{1}. Thus by keeping f_{1} constant, the object velocity may be determined by measurement of the "shift".

When the above equation is applied to a trolley at $10 \mathrm{~cm} / \mathrm{sec}$, and an ultrasonic frequency of 40 kHz aimed at the object, the Doppler shift is found to be quite small, approximately $24 \mathrm{~Hz},(c=33,000 \mathrm{~cm} / \mathrm{sec})$.

CIRCUIT DESCRIPTION

For convenience and clarity, the circuit diagram for the Velocity Measurer has been divided into several sections.

Consider the stages shown in Fig. 1. This contains the ultrasonic transmitter, ultrasonic receiver and other analogue signal processing circuitry and timing signals to provide an 8 -bit wide digital signal of magnitude numerically equal to that of the velocity of the moving object being measured.

The output of IC6, a 555 timer i.c. in an astable configuration, feeds X 2 , an ultrasonic transmitter transducer operating at 40 kHz . The frequency of operation is determined by C18, VR6, R18 and R19. It may be adjusted to the required 40 kHz resonant frequency of X2 by means of VR6.

Some of the radiated ultrasonic beam from X 2 is reflected by the
moving object to reach X1, the ultrasonic receiver transducer. The received signal generates a very small voltage across X1. Amplification of this signal is provided in two stages by high-frequency op-amps IC1 and IC2.

The amplified received signal is mixed with the transmitted signal, taken from IC6 pin 3, across VRl. The mix reaching the following stage is variable by means of VR1 wiper position. The effect of the diode D1 is to act as a demodulator to provide sum and difference frequencies of the transmitted ànd received signals. This will give the low frequency Doppler shift component and a much higher frequency.

Fig. 1. Circuitry of the ultrasonic transmitter and receiver, analogue signal processing and timing stages of the Velocity Measurer.

The latter is removed by the cascaded low filters composed of R7/C5, R8/C6 allowing the low frequency to reach IC3, a further op-amp connected as a high gain ($\times 3000$) voltage amplifier. VR2 is the off-set null control.

SCHMITT TRIGGER

Op-amp IC4 is wired as a Schmitt trigger with reference voltage set by VR3. The action of a Schmitt trigger is to clean up a waveform by producing a well-defined square wave at the same frequency. The square wave produced here is further processed by the differentiator circuitry C8 and R12 to produce negative and
positive going spikes, limited in amplitude by diodes D2 and D3 to keep the input level to IC5 within acceptable limits.

FREQUENCY-VOLTAGE CONVERTER

It can be seen that the spikes are produced by the moving object and are of a frequency equal to the Doppler shift. IC5 is known as a frequency-to-voltage converter i.c. It produces an output voltage, pin 12, which is linearly proportional to the input frequency.

VR4 in conjunction with C9, Cl0, or C11 as selected by Sla forms part of the scaling circuitry required to
cater for the three different sampling periods. R14 with either C13, C14 or Cl 5 as selected by S1b form simple low pass filters to reduce the voltage fluctuations that appear at the output.

To provide an output voltage level that was in direct relationship to the velocity of the moving object, in $\mathrm{cm} / \mathrm{sec}$, the output from the fre-quency-to-voltage needs to be reduced by a factor of 0.41 . This is achieved using a potential divider composed of VR8 and R23. The analogue output between SK1 and SK2 may be connected to an oscilloscope to give a graphical representation of the moving object, or a Harris Data Memory Unit for storage of many results.

ANALOGUE DIGITAL

 CONVERTERThe scaled down analogue voltage reaches pin 6 of IC13 the input of an analogue-to-digital converter. This produces an 8 -bit wide binary number proportional to the magnitude of the input voltage. By suitable scaling the digital output may be made to represent the actual numerical value of the velocity (in cm / s) of the moving object being measured.

IC7 is a 555 timer i.c. connected in the free-running mode adjustable by VR7. It is set to oscillate at $12 \cdot 8 \mathrm{kHz}$ which provides the clock for

IC13. This frequency is also input to IC8, a dual 4-bit binary counter i.c. The two counters have been series connected to provide a divide-by- 256 counter. The resulting 50 Hz clock from IC8 is available at one position of SIC and also feeds the alock input of IC9 connected as a 4-bit binary counter.

IC9 outputs reach the binary inputs of IC10 to yield at outputs " 5 " and " 9 " further division of the clock frequency by factors of 5 and 10 respectively. These are available at Slc. At the end of each timing period, that is $20 \mathrm{~ms}, 100 \mathrm{~ms}$ or 200 ms , a pulse
is generated to reset IC9 to zero output.

IClla, a spare gate connected as an inverter and IC12a and b wired as an R-S bistable, control the periods when IC13 converts the analogue input at pin 6 to digital data, pins 11 to 18.

CONTROL LOGIC AND MEMORY

The next stage of the circuit to be described is shown in Fig. 2. Here we can see the logic circuitry associated with the Start and Step switches which control the data written to and

Fig. 2. Circuitry of the memory control logic and the display stages of the Velocity Measurer.
read from the memory (RAM) chips IC16 and 17.
Mechanical switches such as those specified for Start and Step are liable to produce contact bounce when operated which would severely interfere with the successful function of the unit. To eliminate this possibility, debounce circuitry has been included for these switches. This is provided by cross coupled nand gates, IC14a and 14b for S2, and IC12a and 12b for S 3 .

One output from S2 debounce circuitry controls the memory read/ write pins on IC16 and IC17. The
other output controls the clock pulses. to IC15 whose outputs provide addressing information for the memory. After all 16 memory locations have been addressed by IC15, a low pulse is generated by 1C11b to reset S2 latch.
The delay given by R26 and C24 holds the memories "open" briefly to enable them to take in the last reading.

Single stepping through the mem, ory can be accomplished using S3. This facility allows the user to read and record memory contents displayed on the 7 -segment read-out.

Each time S3 is pressed, a debounced level enables the divided clock pulse to advance the address counter, IC15.

The data to be written into memory when Start is pressed is that at the output of IC13. The least significant 4 -bits are written into $\mathrm{ICl6}$, with the most significant bits into IS17.

BINARY TO B.C.D.

The binary from the memory chips needs to be encoded to allow the information to be displayed on three seven-segment read-outs. The circuitry to accomplish this is shown in Fig. 2. The eight data lines from

Fig. 3. The power supply used in the prototype Velocity Measurer.
memory are buffered and inverted by IC18 and 19 before reaching the various inputs on IC20 to 22. These i.c.s are derived from custom 256 -bit rom i.c.s type 7488 . The 74185 will provide binary-to-b.c.d. conversion as required by the display circuitry.

The binary input forms the address to the cell containing 8 -bits of data. The result is two 4-bit wide digits for the two least significant display digits, and one 2-bit wide digit for the most significant display digit. This information reaches the input of 7 segment decoder i.c.s, IC23 to 25 to appear on l.e.d. displáys LED1-3.

The four lines to the memory address inputs also reach the display panel to light up combinations of four l.e.d.s, D 4 to D 7 , in binary format. This provides the user with the necessary visual indication of the precise memory location being addressed. Position in the memory bank is time related and will, with knowledge of the position of S1 allow velocity-time graphs to be plotted.

POWER SUPPLY CIRCUITRY

The final part of the circuit is the power supply circuitry built into the prototype Velocity Measurer. This appears in Fig. 4.
The circuitry was found to need a smooth and low noise power supply. This was found available in the designers school laboratory and consisted of a Radford Labpack with Smoothing Unit attached and was operated with the Selector set to 14 V .
The basic requirement for the "electronics" is a $+5 \mathrm{~V}, 0 \mathrm{~V},-5 \mathrm{~V}$ split rail at $0 \cdot 5 \mathrm{~A}$, and may be realised in a number of ways, and without the need for the above mentioned or similar equipment.
To produce the required voltages from the mentioned school equipment, fairly conventional circuitry was employed as shown in Fig. 3.

Diode D8 is included for protection should the input supplies be reversed in error. Switch S4 on to supply power to the circuitry. This is indicated by D9 lighting up.

IC26 and 27 are monolithic voltage regulators able to supply a smooth and stabilised voltage of +5 V and -5 V respectively at currents up to 1A. Input voltage may be as high as 35 V , but the devices will need to be mounted on substantial heatsinks for such input voltages. Capacitors C25 to 28 are included for reasons of

The completed prototype with lid removed showing interboard wiring.
stability.
This part of the circuitry gave problems to the designers of the system which have not been fully overcome. The power supply section runs very hot after about 20 minutes use. Constructors are advised to seek or design alternative power supply circuitry.

SETTING-UP CALIBRATION

Transducer Resonance

The running frequency of the trans mitter oscillator, IC6, is adjustable using VR6 and this should be set so that both transducers resonate. To

The p.c.b. containing most of the circuitry shown in Fig. 1.

Top view of the p.c.b. which contains the memory i.c.s and display decoder i.c.s in the prototype.
find this setting, place a hard, flatfaced object about 20 cm in front of the transducers and adjust to find the position resulting in the strongest signal at the output (pin 6) of IC1.

Setting Adder and Schmitt Trigger

Move a flat object, for example a book, to and fro in front of the transducers and adjust the adder, VR1, so that movement of the object results in a strong signal from IC3. Next adjust the Schmitt trigger, using VR3, so that any noise or mains hum in the signal from IC3 is rejected. A clean, square wave should emerge from IC4 when the object is moving, and no signal when the object is stationary.

Zeroing Converter

VR5 gives the zeno adjustment of the Frequency to Voltage Converter (IC5) and this should be set so that with no incoming signal the output (pin 12) is at zero. VR9 gives the zero adjustment of the Analogue to Digital Converter (IC13) and this should now be adjusted, with the Start button held down, so that the seven-segment displays are just reading zero.

Calibrating Converter

Using a signal generator, inject a square wave of frequency 600 Hz and amplitude 5 V at pin 6 of IC4. (Signal generator ground should be connected to some point at 0 V , for example, SK2). Adjust the scaling resistor, VR4, of the Frequency to Voltage Converter so that the output (pin 12) is just 4.0 V . (Check that this falls if the signal generator frequency is slightly reduced).

With the Start button held down and the 600 Hz signal injected, adjust the input scaling of the Analogue to Digital Converter using VR8 so that the seven-segment displays just read 255. Again, check that this figure falls if the signal generator frequency is slightly reduced.

Calibrating Read Rate

The read rate is controlled by the frequency of oscillation of IC7. Adjust VR7 until the frequency is 12.8 kHz .

FEATURES

The Velocity Measurer when started will automatically take 16 readings of velocity at equally spaced intervals (a) 50 times per second
(b) 10 times per second or (c) 5 times per second depending on the setting of the Read Rate switch, Sl.

There are three controls sited on the front panel of the prototype:

START This control is used to reset the system and when released starts the Measurer recording. If this button is held depressed, the device gives a direct reading of the velocity of the moving object:

STEP This control allows the user to step through each of the 16 memorised velocities, the memory location being indicated by one display and the velocity displayed on the seven-segment read-outs.

READ RATE This rotary control sets the rate at which the Measurer takes its spot readings of velocity every 0.02 s , every 0.1 s or every 0.2 s . Also, if the unit is being used as a direct reading velocity meter, Read Rate controls the rate at which the display is updated.

There are two displays. One gives the velocity reading in $\mathrm{cm} /$ second: on a 3 -digit l.e.d. segment display. The second is a row of four discrete l.e.d.s which shows the location of memory

Close-up view of the prototype display board,
The tier arrangement of the p.c.b.s in the prototype unit.

Measuring the oscillatory motion of a swinging aluminium plate.

Using Measurer to determine velocity of a trolley on incline.

being displayed. This read out is in binary.

LIMITS

At about 2 metres from the device reflected sound becomes weak from small objects, and this means at distances further than 2 m , a large sur face (a sheet of aluminium for example) is needed to reflect the sound. The device cannot read velocities higher than 2.55 metres per second.

TYPICAL USES

Some applications in which the device has proved effective are:
(i) Taking the necessary velocity and acceleration measurements of the small trolleys used in school dynamics investigations. (Acceleration is shown by the gradient of the velocity-time graph which emerges)
(ii) Measuring the acceleration of freely-falling objects. For example, using a football falling about 1 metre the resulting figure for acceleration was in close agreement with free-fall theory.
(iii) With the Harris Data Memory attached, recording velocity against time for oscillating objects. For example, reliable readings were obtained using a piece of wood about 20 cm square swinging pendulum-fashion on 0.5 m of string.
(iv) Taking direct measurements of speed in the laboratory where normally the use of a stopwatch and metre rule would prove necessary. For example, it was able to measure the speed of a water wave running along a trough.

OTHER FACILITIES

The Velocity Measurer can be connected to a "Harris Data Memory Unit" by connection at SK1 and SK2. The ability to do this greatly increases the number of velocity readings that can be handled. Then later, by simply connecting the Data Memory to a Chart Recorder, an automatic velocity time graph can be plotted.

Furthermore, if an oscilloscope is connected at SK1 and SK2 then it will display directly the speed being sensed and does so independently of the Start switch.
Three levels of filtering are selected at the output using the Read Rate selector. In the 0.02 s setting, it enables the output to change at up to $100 \mathrm{~cm} / \mathrm{s}^{2}$ at the expense of "bobbling" at low speeds; in the 0.2 s setting, the "bobbling" is sufficiently low that speeds as low as $10 \mathrm{~cm} / \mathrm{s}$ may be accurately measured.

OPERATING INSTRUCTIONS

1. Connect a suitable power supply at PL1 and PL2.
2. Turn on the Velocity Measurer at S 4 .
3. Point the ultrasonic transducers at the object whose velocity is to be measured.
4. Turn the Read Rate control to the appropriate reading rate for the experiment in mind. You are now ready to take measurements.
5. At the appropriate time in the motion of the object, press and release the Start switch. When this switch is pressed the memory is prepared to receive readings. When the switch is released readings will be taken and stored.
6. When all the memory locations

Measuring the speed of a water wave.
have been filled, no more readings will be stored in the system, and the system, will be ready to display its results. To obtain these results press the Step switch. The first reading will then appear. Press again to obtain the next stored reading. This will continue up to a total of 16 readings and will then repeat. The memory location being read will be displayed on the discrete l.e.d. read-out in binary format.
7. Repeat from 4 above for same or next experiment.

Alexandra Pavilion London November 18-211982 The biggest and best event ever to be staged for the electronic hobbies enthusiast!

Walk into a whole world of electronic equipment. - Everything from resistors, IC's to home computers, transmitting and recelving units, citizens band radlo and peripheral equipment, video games musical instruments, radio control models. .. . in fact whatever your particular electronic hobby you'll find this show will be the most interesting and informative way to discover all the latest developments in your particular field.
Other attractions will include radio and TV transmission, electric vehicles, radio controlled models, and demonstrations by focal and national organisations.
This is the age of the train - British Rail are offering a cheap rate rail fare from all major
stations in the country direct to Alexandra Palace-a bus will be walting on your arrival to take you to the show. Ticket price also includes admission to the exhibition - so let the train take the strain to the Electronic Hobbies Fair.
Ticket prices at the door are $£ 2$ for adults, $£ 1$ for chlldren but party rates are avallable for 20 people ormore. To find out more, contact the Exhibition Manager, Electronic Hobbies Fair, IPC Exhibitions, Surrey House, 1 Throwley Way, Sutton, Surrev SM1 400. Tel: 01-6438040.

Electronic Hobbies Fair is sponsored by Practical Electronics, Everday Electronics and Practical Wireless and isorganised by IPC Exhibitions Ltd.

> OPENING TIMES
> Thursday 18 NOV. $-10.00-18.00$
> Friday 19 NOV. $10.00-18.00$
> Saturday 20 NOV. $-10.00-18.00$ Sunday 21 NOV. $-10.00-17.00$

Everyday News

Scimitar

The most advanced radio system in the World

Military necessity can have valuable spin-offs for everyday purposes. The classic modern examples were radar and computers, whose development was accelerated by the needs of the Second World War. It now seems to be the turn of radio.

A new radio system, developed to provide reliable military communications, proof against eavesdropping and jamming, shows promise of helping the users of some civil radio bands.
The new system has been developed in several NATO countries as a result of an American government requirement. In the UK, Marconi and Racal have both developed their versions. A large contract for the Marconi version, which is called Scimitar, has been placed by the Swedish government.

Frequency Hopping

How does it work? Basically, these radio systems, which are known as frequency - hopping or fre-quency-agile radios are just electronic versions of commonsense radio operating techniques.
One traditional way to avoid jamming or eavesdropping is to keep changing frequency. Every time you do so your enemy has to search for your new frequency and retune. Your friends don't have to, because your frequency changes follow a prearranged pattern which they know.
If you have four channels, A, B, C and D, you may change on some apparently random basis, such as B, A, D, C, D, A, B and so on. With manual operation these changes must be
relatively slow, say once every minute. But with modern digital electronics they can be very rapid indeed.

The exact rate of change used in Scimitar is a secret, but it is probably well over 100 times a second. Moreover, the number of channels can be very large. In the v.h.f. version ordered for the Swedish army selections can be made from over 2000 possible channels, spread over the band 30 to 88 MHz .
Each receiver contains an electronic memory into which programs of instrue tions for frequency-tracking can be fed from outside. To enable the next frequency hop to be anticipated each set contains two frequency syñthesisers. The "spare" one is set electronically to the next frequency, ready for

The frequency "hopping" equipment installed in an armoured vehicle.

UNJAMMABLE, SNOOPER-PROOF RADIO

Line-up of some of the Scimitar communications equipment which features built-in digital cryptographic security.
instant changeover, and so on.

Interference

If numerous transmitters operate simultaneously, each hopping from ohannel to channel at random, then from time to time it must happen that two transmissions take place at the same time on the same channel. They interfere with one another-but only for the few milliseconds that the overlap occurs.

To the ear, this is just a tiny bit of noise and has little effect. If more and more transmissions are packed into the band more such short bits of interference occur. It turns out, however, that the ear can tolerate a surprisingly large
number before the intelligibility of speech is seriously impaired.
The consequence is that for the price of a little noise more stations can be packed into a given frequency band than with the normal system of giving each station a fixed fre. quency channel. This would seem to make frequencyhopping attractive to such civil users as the police.
Not only would it make eavesdropping virtually impossible but it would make more channels available, too. But would the price be too high? Apparently not. Marconi say that despite the complexity of frequency hopping it adds only about 10 per cent to the cost of the radio equipment.

Pocket version being used to demon-
strate its usefulness to civilian authorities.

. . . from the World of Electronics

-ANALYSIS

NEW AGE OF LEISURE

The most optimistic of our political leaders touting the most reflationary economic programme promises only to "create" a million new jobs over a five year period. At best this still leaves two million in Britain technically available for work and registered as such.
Forecasts and projections of this type are nowadays made by computer using an economic model rather than employing a small army of statisticians and mathematicians. Similarly, on the industrial front, Ford at Dagenham have just fielded a whole regiment of robots to build car bodies. People are still invaluable but fewer are required for any given task, not a new phenomenon but continuation of a trend which has been accelerating for a century.
Assuming high unemployment to be a catastrophe we lay blame elsewhere, on politicians, organised labour, foreign imports, the welfare state, automation, electronics. Never on ourselves for wanting and grabbing more while giving less, constantly fuelling ourselves on greed and envy.
And yet, viewed correctly and sensibly managed, ours could be the Utopian age of visionaries through the ages. Work sharing alone, albeit swapping income for leisure, could provide employment for all those who want to work while simultaneously providing the extra time for developing those interests which so many now trapped in the rat-race are too exhausted to pursue before retiring age, when it is often too late.
Electronics, positively viewed, is a liberating more than a destructive force. It releases millions from tedious tasks at work and brings instruction and entertainment to even more millions at home.
Electronic hobbyists with time on their hands might well encourage friends or acquaintances to share their enthusiasm. A modest home circle rather than a full-blown club.
Think about it. To wean a youngster from adolescent vice or relieve an oldster's boredom could be the most worthwhile project you have ever started.

Brian G. Peck

New Standards

Direct Broadcasting by Satellite (DBS) ideally should be on one agreed technical standard of TV transmission. National pride, however, will probably lock countries into their existing systems based on PAL, SECAM or NTSC with the problems of standards conversion for international programme exchange remaining.

An entirely new standard would also mean huge investment in new transmis sion and reception equipment which many countries could not afford.

Enough videotape to fill two million T120 cassettes a year is being produced at a new plant at Wrexham, North Wales. The company is Intermagnetics and the tapes are sold under the brand name Zimag.

Computing Cuts

A Department of Health and Social Security scheme for massive expansion of data processing could elimInate more than 20,000 jobs in local DHSS and Unemployment Benefit offices.

But the whole scheme, if implemented, will not be completed until 1994 allow. ing natural wastage rather than staff redundancies.

CAR-PROOF

The new Avo 2000 Series of digital multimeters includes the model 2002 vehicle test set. It has already become standard dealer equipment for Ford cars.

A big feature is its ability to withstand being run over by a car or even a truck!

Breakfast News

BBC TV's breakfast programme will be aided with hot news by $£ 250,000$ worth of Hewlett-Packard electronic office equipment enabling staff to access news agencies and prepare and edit copy on word processors.
The computerised system will need agreement from the unions before the programmes start next Spring.

Abstract

The Ministry of Defence is to install a new communications network for UK air defence compatible with the US Joint Tactical Information Distribution System (JTTDS). Total cost is estimated at $£ 225$ million with Marconi and Plessey having the bulk of the development work.

Euro Scanner

A new medical electronics company, Meditech, founded by a group of ex-EMI employees, has produced a whole-body diagnostic scanner aimed at the European market and at much lower cost than scanners currently available.

MULLARD VISIT FOR SEDAC PRIZEWINNER

Simon Rainey, who came second in the 1982 SEDAC Schools Competition, spent a day as guest of Mullard Magnetic Components Division, Crossen, Southport.
(For details of how to enter the 1983 SEDAC Schools Competition see page 811.)

Colin Smith (Electronic Engineer) dlscusses the PC20 Microprocessor with Simon (right) during his visit to the electronic section of the Mullard Magnetic Components Division, Southport.

Our picture shows left to right, Simon Rainey, Mr. Earnshaw (teacher), Mr. Stone (headmaster) and Jim Stitson (Manufacturing Manager) looking at the Power Plants Mimic Panel.

THE EIECTRONICS Of

H2IWFROMMAIION TIEHNOLOGY

ALthough we may have got used to the idea of self-sufficient apparatus operating under automatic control, and even computers "talking' to each other, we find in fact that all IT systems have some means of connection to the outside world. They receive and put out information as changes in physical quantities as explained in Part 1.
These changes may be phenomena meaningful to human beings, such as sounds and images, or they may be physical changes that are detected or generated only by hardware. An automatic weather station, for example, does both. It receives information directly from the environment as measurements from various sensors but puts out information designed for presentation to human beings.

INFORMATION CONVERTERS

To make these connections with the world an IT system needs converting devices. The converters we use in domestic electronic equipment - pickups, microphones, keyboards, loudspeakers, cathode - ray tubes, alpha-numerical displays and the like - are only a few of the devices that are available.
Many of these devices are transducers.* Some convert mechanical or other energy directly into electrical energy and are called passive transducers, Fig. 2.1(a). One example is the moving-coil microphone, another the photo-voltaic cell as used in camera exposure meters.

Active transducers, on the other hand, use the mechanical or other energy to control electrical energy coming from a separate source, Fig. 1(b). Examples of these are the carbon microphone and the photoconductive cell.

ON/OFF SWITCH

A common type of information converter is the on/off switch or key switch. It uses a mechanical movement to control abruptly the current in a circuit. This allows a

[^0]binary choice - between on and off, or current and no current - which is, in fact, the basic unit in the measurement of all information (Fig. 2.2).
When an array of key switches, each with its own label, is used as a keyboard, the important information at any moment is: which particular switch in the array has been operated. There are various methods of obtaining this information electrically but a common one is shown in Fig. 2.3.

This method is analogous to the principle that any point on a map can be identified by the grid lines which intersect at that point. Closing any one of the six switches makes a circuit between one horizontal and one vertical conductor: this circuit uniquely identifies the key switch because no other switch in the array will connect that pair of conductors.

Fig. 2.4 sums up the process of information conversion. A device either receives some physical quantity from the outside world (a) and converts it into an electrical quan-

Fig. 2.1. Two ways of obtaining information in electrical form from information carried by some other kind of physical energy: (a) passive transducer giving direct conversion of energy; (b) active transducer controlling electrical energy from a separate source.

Fig. 2.2. Because an on/off switch can make or break a circuit carrying currentallowing a binary choice-it can convert mechanically represented information into electrically represented information.
tity, or it receives an electrical quantity (b) and converts this into another physical quantity. The quantities change but the information they carry does not. But this is not the whole story.

ANALOGUE OR DIGITAL

The information in its electrical form may be represented in two ways: analogue or digital.

To illustrate this let us return for a moment to Part I. In the electronic counting system described, the number of objects was represented by that number of pulses of electrical energy. In fact the exact form of their energy-time graph did not matter very much: the pulses could equally well be triangular or some other shape provided their number was correct.
This type of representation, in which the number of electrical events gives the essential information, is a digital representation. (The term itself comes from the Latin digitus for finger - the link with counting is obvious.)

Fig. 2.3. Array of key switches used as a keyboard. Each switch connects a unique pair of conductors, and this provides electrical information on which switches are operated in the keyboard.

Fig. 2.4. Generalization of information conversion: (a) from the outside world into electrical representation; (b) viceversa.

Another type of representation shown in Part 1 was a continuously varying electrical quantity obtained from a microphone responding to a sound wave. The successive values of electrical energy were proportional to the successive values of sound energy. In other words the time graph of electrical energy was similar in form to the variation with time of the sound energy. As such the electrical variation is a model, or analogue, of the sound variation. This, then, is an analogue representation.

ANALOGUE AND DIGITAL METHODS COMPARED

So some information converters are analogue and others digital in the way they work. To illustrate this, Fig. 2.5 compares two transducers, both of which are electrically representing the rotation of a shaft.

At (a) is an analogue transducer giving a proportional electric current (3 mA per degree of rotation), while at (b) is a digital transducer giving a related number of pulses of current (one pulse per 10 degrees).

Both transducers use current as the electrical quantity, but the analogue type does it directly while the digital type uses current merely as a medium for denoting number. In some digital transducers for use on rotating shafts the angular information is translated directly into a binary code, such as the Gray code.

Fig. 2.5. Graphs illustrating the action of (a) an analogue transducer and (b) a digital transducer, both of which respond to the rotation of a shaft and use current, in different ways, to represent shaft rotation in degrees.

STEP-BY-STEP, OR INFORMATION BY NUMBERS

The above heading might suggest a dancing lesson out of a book. In fact what we are discussing is rather similar, in so far as it involves a sequence of steps identified by numbers. The subject is the conversion of analogue signals -- coming from some device which might be anything from a strain gauge to a television camera - into the digital form that many IT systems require. This means that the successive values of the signal (Part 1) have to be represented by numbers.

A practical problem here is that any analogue-to-digital conversion device needs a certain amount of time to produce each number. Electronically each number is represented by a pattern, either in time (for example, a sequence of pulses) or in space (for example an array of electrical states in a memory). Some interval of time, however small, is necessary to allow each pattern to be formed and distinguished from those preceding and following it.

Clearly such a converter cannot operate directly on the whole of an analogue signal, which is a sequence of values infinitely close together in time. The best that can be done, to keep the digital representation as close as possible to the continuously varying quantity, is to convert values of the signal at a very high rate.
In practice engineers use the rate necessary for the job. And this depends on the accuracy of digital

Fig. 2.6. How a continuous electrical signal can be sampled at regular intervals of time (dots on graph) or regular intervals of the value of the electrical quantity (crosses on graph).

This modern telephone, British Telecom's Sceptre 100 , uses both analogue transducers (In the handset) and digital information converters (in the keyboard and the liquid-crystal digital display). It also has a memory for storing telephone numbers-but we come to that subject later in the series.
representation they need for a particular application. (Any clock with an escapement mechanism doesn't indicate time continuously, but it's near enough to continuous for most human purposes.)

SAMPLING

So the continuously varying signal is "sampled" at intervals. The sampling could be at regular intervals of time or at regular intervals of value of the electrical quantity forming the signal, as shown in Fig. 2.6.

This process is the basis of quantization. What was originally varying continuously is now represented as a series of discrete quantities, or quanta.

A simple analogy is a man climb ing up a slope. If the slope is continuous, as in Fig. 2.7(a), then his upward movement is continuous. If the slope is cut into a series of

Fig. 2.7. Simple analogy of the principle of quantization. At (a) the man moves continuously up the slope. At (b) the slope has been cut into a series of steps and the man then moves abruptly from one quantum of height to the next quantum, and so on.

Fig. 2.8. Electronic method for quantizing a continuously varying signal, using a gate and a temporary store (a). The samples obtained from the gate and the steps from the store are shown at (b). Amplitudes of the samples, or levels of the corresponding steps, are the quanta.
steps, as at (b), his upward movement is discontinuous: he moves abruptly from one quantum of height (level) to the next quantum and so on.

One method for quantizing a signal is shown in Fig. 2.8. The signal is passed through an electronic gate which is opened for short periods by very narrow pulses occurring at a regular rate, (a). What emerges from the gate is a train of pulses of different amplitudes - thin "slices" or samples of the original signal. These samples are usually of too short a duration to be usable in IT equipment, so their values have to be prolonged.

SAMPLE AND HOLD

The initial value of each sample is held in a temporary store until the next sample is taken. As a result the information available from the temporary store takes the form of a series of steps roughly following the graph of the original continuous signal, as shown at (b). This is the "sample-and-hold" method.

How accurately the quanta - the samples or steps - follow the original continuous signal depends on the fineness of quantization - that is, the intervals between samples. In general it is more difficult to sample rapidly than to sample slowly, so engineers use the slowest
rate of sampling (longest intervals between samples) that will define the signal to the accuracy needed.

To obtain the highest possible accuracy of signal definition the sampling rate required is given by a simple formula based on mathematical (Fourier) analysis of the waveform.*

ENCODING

The final requirement of analogue-to-digital conversion is that it must represent the quanta by numbers suitable for use in IT systems. This is done by an encoding device. The technique is used, for example, in pulse code modulation (p.c.m.), a transmission system employed for trunk telecommunications throughout the world. Fig. 2.9 shows the general principle.

At (a) is part of an electrical waveform which could be a speech signal. This is sampled at a regular rate, typically 8,000 times per second, to give a sequence of discrete amplitudes, shown as the heights of the vertical lines in (b). Each of these amplitude samples falls within a quantizing interval, identified by a decimal code number on the vertical (signal amplitude) scale.
The quantitizing-interval number in

Fig.2.9 Principle of analogue-to-digital conversion. The continuous electrical signal at (a) is sampled at regular intervals of time and the samples are represented by a sequence of numbers corresponding to the quantizing intervals in which the samples fall (b). At (c) is a binary coded version of the sequence of numbers in the form of high (1) and low (0) voltage values. (Note: in this illustration the least significant digit of each binary number occurs first in time and the most significant digit last.)

(above)
Analogue-todigital
conversion, as described in the article, is at the heart of this Hewlett-P ackard waveform recorder. Incoming signals are sampled at 20 million times a second and are stored in a memory. This digital data can be read out from the memory when required to construct a graph on the cathode-ray tube, as shown.
which the amplitude sample falls is then generated in binary coded form. In this binary coded version the two digits 0 and 1 are generated as a sequence of two voltage values, (c) - here a low voltage for 0 and a higher voltage for 1 . In effect the result is a train of pulses representing binary numbers.

For this simplified explanation we have used decimal code numbers in (b) and directly converted them into the equivalent binary numbers, but other forms of encoding could be used.

To be continued

[^1]
Eleqtronic Desicin Awared

Mullard Ltd-the largest electronic components company in the UK-and Everyday Electronics join forces to present this rewarding challenge to Secondary Schools. ...

DESIGN A PIECE OF ELECTRONIC EQUIPMENT HAVING A DIRECT PRACTICAL APPLICATION IN A SCHOOL'S SCIENCE LABORATORY

This competition is open to any United Kingdom Secondary School, State or Independent. Pupils of either sex in the age group $11-18$ are eligible to participate in a team representing their school.
The competition will be conducted in two stages.

STAGE 1

Submission of Papers describing the proposed project with full circuit details.
Papers will be judged for novelty, ingenuity and viability. Particular attention will be given to origínality and good circuit design technique.
Schools whose designs are adjudged to be the most promising will be asked to produce a working model.

STAGE 2

Models will be examined and prize winners selected on the basis of mechanical design, neatness of wiring and general assembly, plus operational performance.
All models will be exhibited at Mullard House, London, where the official presentation of prizes will be made at the end of June 1983. Representatives of finalists will be invited to stay overnight in London as guests of the SEDAC sponsors.

FIRST PRIZE The SEDAC Trophy and $£ 300^{*}$

SECOND PRIZE THIRD PRIZE £100*
 * Plus a selection of components valued at $£ 200$ NINE RUNNERS UP a selection of components valued at £100

In addition, all twelve finalists will receive a certificate and one year's subscription to Everyday Electronics.

Science teachers of Secondary Schools are invited to apply for a Registration Form which contains full details of this competition.

Write to: Schools Competition, Room 2130, Kings Reach Tower, Stamford Street, London SE1 9LS.

Secondary School Pupils-make sure your school accepts this challenge and enters this contest. So bring this announcement to the attention of your science teacher or the head of your school.

Closing date for Registration:
December 151982
Closing date for submission of Papers:

ELECTRONIC

0NCE it used to be true that it was pointless trying to build your own multimeter. It was difficult to match the price and accuracy of manufactured units. Today, with integrated circuits and close tolerance resistors, it has become easier to match conventional multimeters.

The unit described here has seven voltage ranges with minimum input impedance of one megohm and two low resistance current ranges. Accuracy, simplicity of construction and cheapness are all features of this design.

DESIGN CONSIDERATIONS

The main design feature of a good voltmeter is a high input impedance, this must be placed before accuracy in priority, because impedance directly affects accuracy. Multimeter voltage ranges are usually described as being so many ohms per volt and this ohm/volt figure is known as the meter's sensitivity, the larger this figure, the better the meter.
A typical cheap meter has a sensitivity of 1,000 ohms/volt, that is, on the 10 V range its input resistance is $10 \times 1,000=10$ kilobms. This may sound high, but in practice it means that such a meter cannot accurately measure a voltage across a resistance larger than, say, 1 kilohm.

Here's why. The 1,000 ohm/volt meter on the 10 V range is placed across a 1 kilohm resistor. In effect a 10 kilohm resistor is connected in parallel with the 1 kilohm resistor, causing the in-circuit resistance to drop to 909 ohms (using $1 / R_{T}=$ $1 / R 1+1 / R 2$)

This means that the voltage across the 1 kilohm resistor must also fall (voltage is directly proportional to resistance) so an inaccurate reading is obtained and the performance of the circuit may be affected. Bearing in mind that the majority of resistors in electronic circuits are over 1 kilohm, the problems a user will experience can be envisaged. These meters are suitable for electrical circuits, however, where resistances are usually small.

ELECTRONIC METERS

The next step up is usually a 20 kilohm/volt meter and these are probably the most common. On the same 10 V range, its resistance is 200 kilohms, which is a little more respectable. After this come the 100 kilohms/volt and electronic meters.

This meter has a fixed input impedance of either 1 megohm or 2 megohms, depending on the range selected. This is not an ohm/volt figure and cannot be due to its construction. This is quite impressive
when you realise this gives sensitivities of 10 kilohm/volt on the 100 V and 200 V ranges, $100 \mathrm{kilohm} /$ volt on the 10 V and 20 V ranges, 1 megohm/ volt on the 1 V and 2 V ranges and $10 \mathrm{megohm} / \mathrm{volt}$ on the 0.1 V range. This is a sound arrangement because it gives you the highest sensitivities where you need them, on the lower voltage ranges.

On current ranges, the requirements are exactly the opposite. Because an ammeter is placed in series with a circuit, its resistance should be as low as possible, so as not to affect the reading or the circuit. On both current ranges this meter only drops 0.1 V , an acceptable figure (from Ohm's law $V=I \times R$).

THE CIRCUIT

The circuit diagram of the Electronic V/I Meter is shown in Fig. 1. The heart of the design is a 741 operational amplifier IC1. Normally its open loop gain (the gain measured with no feedback applied) is typically 200,000 times. This tends to be rather large for most applications, but can be reduced by making it closed loop by feeding part of the output back to the inverting input via a resistor. This is negative feedback, which as well as reducing the gain, also improves the performance of the op amp in respect of stability, noise, drift and frequency response.

When the desired closed loop gain is much smaller than the open loop. gain, it can be set accurately using two external resistors, R_{F} and R_{I} (see Fig. 2). In this mode the gain of the op amp is given by:

$$
\text { Closed Loop Gain }=\frac{R_{F}}{R_{I}}
$$

and the input resistance equals R_{1}. In this design, R_{I} is constant and R_{F} can be selected to give gains of $1,0 \cdot 1,0 \cdot 01$, and 0.001 . As the f.s.d. of the meter is 0.1 V , we need inputs of $0.1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}$ and 100 V respectively to obtain this. Now the op amp is not amplifying at all, but attenuating or negatively amplifying.

Now the basic principles of operation of the circuit have been explained, the practical details can be taken into consideration.

The capacitor, C , between input and output ensures that the meter does not respond to any a.c. signals at the input.

DUAL POWER SUPPLY

The 741 is designed to be used with a dual power supply. This has been simulated here by using R13 and R14 as a potential divider across the battery, giving +4.5 V at their junction. This is made the earth, and so we have a $\pm 4.5 \mathrm{~V}$ supply.

Fig. 1. The complete circuit diagram of the Electronic V/I Meter. Note that for current measurement, S 2 must be in the 0.1 V position.

Fig. 2. Theoretical circuit of an op-amp with negative feedback.

In the no input condition, it is arranged for the 741 output to be at earth potential, by earthing the $+v e$, or non-inverting input. If the other side of the meter is connected to earth, there is no reading. As we are using the inverting input as the + ve probe terminal, the output will fall below earth in response to a d.c. voltage and so the -ve terminal of the meter is connected to the output of IC1, and the + ve terminal to earth.

In practice it is difficult to obtain a zero (with respect to earth) output for no input, due to input bias current and input offset voltage. In this case, input offset voltage has negligible effect because the gain of our circuit is too low to amplify it into a significant output offset voltage.

The effects caused by input bias current are increased as the value of the feedback resistor is increased,
which is why the $0.1 V$ range with its 1 megohm feedback resistor is most in need of attention. The effects can be minimised by introducing a resistor between the + (non-inverting) input and earth. Its value is given by:

$$
R=\frac{R_{1} \times R_{\mathrm{F}}}{R_{1}+R_{\mathrm{F}}}
$$

This is catered for in the switch bank of S2b by resistors R5 to R8.

Diode D1 provides some protection to the meter if the voltage being measured is too large for the range selected, and diode D2 provides a similar function in case the input polarity is reversed.

CASE

The construction should begin with the case, drilling details of which are shown in Fig. 3. The meter can be used as a template for its fixing holes, taking care not to damage it. The case used for the prototype meter was a simple aluminium case with lid, measuring $155 \times 80 \times 50$ mm and any enclosure of similar dimensions can be used.

COMPONENTS

Resistors

R1, 2,12	$1 \mathrm{M} \Omega$ (3 off)
R3	10Ω
R4	1Ω
R5	$470 \mathrm{k} \Omega \pm 5 \%$
R6	$100 \mathrm{k} \Omega \pm 5 \%$
R7	$10 \mathrm{k} \Omega \pm 5 \%$
R8	$1 \mathrm{k} \Omega \pm 5 \%$
R9	$1 \mathrm{k} \Omega$
R10	$10 \mathrm{k} \Omega$
R11	$10 \mathrm{k} \Omega$
R12	$1 \mathrm{M} \Omega$
R13, 14	$3 \cdot 3 \mathrm{k} \Omega \pm 5 \%$ (2 off)
R15	See text
Rage 826	
R1	

All $\frac{1}{W}$ W carbon $\pm 1 \%$ unless otherwise stated.

Capacitors
C1 $0 \cdot 1 \mu \mathrm{~F}$ polyester
Semiconductors
D1, 2 1N4148 silicon (2 off)
IC1 741 operational amplifier
Miscellaneous
S1 s.p.d.t. centre off slide switch
S2 2-pole, 4-way rotary
S3 s.p.s.t. miniature toggle
ME1 Moving coil meter, 1 mA f.s.d. 100Ω coil

B1 9V PP3 battery
SK1 4 mm banana socket yellow
SK2 4 mm banana socket red
SK3 4 mm banana socket black
Aluminium case, $155 \times 80 \times$ $50 \mathrm{~mm} ; 0.1 \mathrm{in}$. matrix stripboard, 24 strips $\times 12$ holes; battery connector; knob; 8-pin d.i.l. holder; $7 / 0 \cdot 2 \mathrm{~mm}$ wire; solder tags (2 off); probes on 4 mm banana plugs (2 off, one red, one black).

Fig. 3. Panel drilling details for the Electronic V/I Meter. The slot for slide switch S1 may require two additional mounting holes, one at either end.

Fig. 4. Wiring diagram and stripboard layout. Many components are mounted directly onto the switches and sockets and this must be done with care to avoid leads shorting on the aluminium case. The finished board assembly is mounted onto one side of the case (shown folded flat for clarity) with short spacers.

The circuit board and wiring of the prototype model.

Fig. 4 shows the layout of components on the circuit board and the breaks on the underside. A piece of 0 -lin matrix stripboard is used, size 24 strips by 12 holes. An 8 pin d.i.l. holder is recommended for IC1. When the board assembly is complete, it is fixed to the side of the case and the wiring can be carried out.
When all the case mounted components have been affixed, solder R1 across sockets SK1 and SK2, and R3 and R4 from their respective switch contacts to SK3. Resistors R5 to R12 are mounted directly onto $\mathbf{S} 2$.

SETTING UP

There is no calibration as such required. However, it may be necessary to insert a small value resistor (R15) in series with the meter
movement to give an f.s.d. of 1 V , this being due to meter tolerances. In the prototype, R15 was 10 ohms.

To find the value required insert a 50 ohm preset resistor in series with the meter, select the 10 V range and connect the probes to a 9 V battery (whose exact value has been measured on a multimeter). Adjust the preset until the reading on the Electronic V/I Meter agrees with this. Remove the preset, measure its resistance and replace it with the nearest value fixed resistor. The meter is now ready to use.

IN USE

To measure voltage, put S1 in its central position (v) and select the range required with S 2 . With the probes in SK3 (COMmon) and SK2 (v / I), the input resistance will be

1 megohm. If, on the same range, the $+v e$ probe is placed in SK1 (x 2 V), the input resistance will be 2 megohms and the voltage required for f.s.d. will be doubled. This x2 input cannot be used on the 0.1 V range due to input bias current problems because R5 is calculated for a R_{1} of 1 megohm. For 2 megohms input impedance, it would need to be 666 kilohms, and R5 could be replaced by a 680 kilohm resistor if a 0.2 V range is preferred to a $0.1 V$ range.
To measure current, select the 100 mA range on S 1 and switch S2 to the 0.1 V position. Sockets SK2 and SK3 are used for the current measurement probes.

For all measurements, always start on the highest range and then switch down as necessary. Diodes D1 and D2 will never protect the meter as well as common sense. G

Senolet

 BY F. G.RAYERThis very simple Power Supply Unit provides a 5 V output ideal for TTL logic circuit and other small low voltage projects. It eliminates the need for batteries, an important factor since there is no suitable battery generally available. for tre devices.

The component count has been kept low and the construction is straightforward using chassis mounted tag strips.

CIRCUIT DESCRIPTION

The basic circuit diagram is shown in Fig. 1. The mains transformer, Tl, has a 9 V secondary rated at 0.5 A ,
although a 6 V output would be sufficient provided that it was also rated at 0.5 A .

The a.c. output from the transformer is full wave rectified by the bridge rectifier D1 to D4 and then smoothed by reservoir capacitor Cl . This electrolytic can be any value in the range 1,000 to $2,200 \mu \mathrm{~F}$ at 16 V .

The regulator i.c., a $5 \mathrm{~V}, 0.5 \mathrm{~A}$ device provides the stabilised output and is decoupled by C2. The output at the terminal block is duplicated, but it must be remembered that it is not dual supply and cannot be used as such, for instance to provide a + ve and -ve 5 V supply.

Note that the author has not included a switch in either the mains input or the d.c. output but the constructor can add one if this is thought to be necessary.

CHASSIS PLATE

The general layout of the components is shown in Fig. 2. Please note that the prototype model shown in the photograph was assembled on a flanged chassis plate without a cover. However, as there are potentially lethal mains voltages present on exposed solder tags, it is essential that the project is assembled in a fully enclosed case.

If a metal case is chosen, the point of entry for the mains cable must be protected with a grommet

COMPONENTS

C1	$1,000 \mu \mathrm{~F}$ to $2,200 \mu$
	16 V elect, radial
C2	$0 \cdot 1 \mu \mathrm{~F}$ polyester or polycarbonate
D1-D4	1 N4001 silicon diode (4 off)
IC1	LM341P5 or 78M055V. 0.5 A regulator
T1	mains transformer, 9 V or $6 \mathrm{~V}, 0.5 \mathrm{~A}$ secondary
TB1	4 -way terminal strip

Miscellaneous

Tag strip. 3 -way and 6 -way; grommet (2 off); P.clip; 7/0.2mm interconnecting wire; p.v.c. sleeving; mounting hardware-M2.5 screw (9 off), M2.5 nut (9 off), M2. 5 washer (9 off). spacer; Bcore mains cable; 3 -pin mains plug with 2A or 3A fuse; case to suit, typically $120 \times 60 \times 60 \mathrm{~mm}$.

```
Guidance only
Approx.cost
See page 826
```

and all metalwork must be earthed. Remember that if it is an aluminium case protected with an anodised coating (which has the appearance of a dull sheen), the anodising must be scraped away from the earthing point as it acts as an insulator.

MAINS INPUT

A three core mains lead must be used, fitted with a normal three pin plug with a 2 A or 3 A fuse. The lead is fed through the grommet and securely clamped to the base with a P-clip. The three cores are soldered to a three way tag strip, with the earth core (yellow/green) going to the earthed tag.

The 240 V primary of Tl is then connected to the live and neutral tags as shown. The transformer must be fixed to the base plate with two screws and nuts.

The secondary winding of T1 is taken to a six way piece of tag strip onto which the bridge rectifier is assembled with diodes D1 to D4. Capacitor C1, a radial lead electrolytic, is soldered across the tags as shown, taking care with the polarity. Note that the two end tags of the tag strip are the earthed tags and are securely screwed to the chassis.
The 5 V regulator, IC 1 , is fixed directly to the chassis with a nut and screw and a small spacer to clear the plastic body of the component. In this way, IC1 uses the case as a heatsink. The remainder of the wiring is carried out as shown with the output terminating at the four way terminal block, TB1.

Capacitor C2 is added across the output of IC1. Any component leads that could accidentally short out on

Fig. 1. Circuit diagram of the 5 Volt Regulated Supply. Note that the output is duplicated on TB1.
 that the earth points are secured to the chassis.

an adjacent component or tag should be sleeved with p.v.c.
As has been already stated, the 5 V Power Supply Unit must be mounted inside a case and the case, chassis, front panel (if fitted), cover and negative terminal are all earthed.

It is advisable to mount the terminal block on the outside of the case, and to do this, the output wires must pass through another grommet.

No setting up is required, and after a thorough visual check of all
wiring, solder joints and component polarity and orientation, the unit can be replaced into its case and plugged into a mains output-and the output measured with a voltmeter.

Once again, the dangers of working with mains voltages must be stressed and at no point should the mains be connected to this unit whilst the terminal strips are exposed. Do not take chances and if in doubt, seek the guidance of an experienced constructor or electrician.

HOME LIGHTING KITS

 witch and control up to 300 w . of lighting TDR300K Remote Control $\mathbf{£ 1 4 . 3 0}$ MK 6 $\begin{gathered}\text { Dimmer } \\ \text { Transmitter for above } \\ \mathbf{E} \\ \mathbf{4} .20\end{gathered}$ TD300K Touch dimmer $£ \mathbf{7 . 0 0}$ DEK Extension kit Extension kit for 2-we
switching for TO 300 K LD300K Rotary Controlled $£ 2.00$

DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on the
CLL7126 (a lower power version of the ICLT106 chip) and a $31 / 2$ digit liquid crystal display. This kit will
form the basis of a distal form the basis of a digital multi-
meter sisters end witches are required-d or a sensitive digital thermometer ($\left(-50^{\circ} \mathrm{C}\right.$ supplied) reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a sensitivity of 200 mV for a full scale reading, automatic polarity in. diction and an ultra low power requiremem-giving
a 2 year typical battery lift from a standard gl y a year typical battery life from a stand
when used 8 hours a day, 7 days a week

Price $£ 15.50$

DISCO LIGHTING KITS

 LL 1000K This value-for-money kit features a bi-directlonal sequence, speed of sequence change, being of direction means of potentiometers and master dimming control. $£ 14.60$ A lowerA lower cost version of the above, featuring undirectional channel sequence with speed switched only at mains zero crossing points to reduce radio interference to a minimum. Optional opto input DLA1 Only $\mathbf{E 8 . 0 0}$ Allowing audio ("beat")-light response. $60 p$
OL3000K This 3 channel sound to light kit features zero voltage switching, automatic level control \& built in mic. No connections to speaker or amp required. No knobs to adjust - simply connect to mains supply \& lamps. Only $£ 11.95$

Ada 55p postage \& packing $+15 \%$ VAT to total.

 Add £2.50 (Europe) Gonds by return subject to avail in bility

SHORT FORM CATALOGUE - send SAE ($6^{\prime \prime} \times 9^{\prime \prime}$). We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

FIST SERYIC••TOP OUALITY•LOW LOW PRICES

11 Boston Road
London W7 35J

CHRISTMAS PRESENTS GALORE

CHIME

STOCKING FILLERS

PACK (1) 650 Resistors $\mathbf{4 7}$ ohm to 10 Mohm - $\mathbf{1 0}$ per value $\mathbf{£ 4 . 0 0}$ PACK (2) 40×16 Electrolytic Capacitors $10 u F$ to 1000 fF - 5 per value $£ 3.25$ PACK (3) 60 Polyester Capacitors 0.01 to 1 uF/250V - 5 per value $£ 5.55$ PACK (4) 45 Sub-miniature Presets 100 ohm to 1 Mohm - 5 per value $£ 2.90$ PACK (5) 30 Low Profile IC Sockets 8,14 and 16 - pin - 10 off each $£ 2.40$

EXCLUDE VAT

PACK (6) 25 Red LEEs (5 mm dia.) £1. 25
PACK (7) 20 BC182 NPN General Purpose Transistors $£ 1.20$ PACK (8) 20 BC212 PNP General Purpose Transistors $£ 1.20$ All full spec. branded devices BUY ANY 5 PACKS AND WE WILL SEND YOU 10 RED REDs FREE

Bigger and Better for 1982

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for WiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

$$
\star \text { Lowest prices } \text { - Largest stocks }
$$

* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) \star Ample parking *
Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps-orphone with your credit card number)
\star Access - Visa - American Express accepted *
also Wifi Markets Budget Card.

8
0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders!
Please allow $\mathbf{7}$ days for delivery

SUPER-KIT SERIES!

Basic functions plus a bit more! Self-contained but may be intercoupled. More are coming to ultimately achieve a modular sound synthesis a modification system. All are mono, for stereo use 2. Will run from $9 V$ to $15 V$ DC supplies (batteries not Included), Prices incl. UK P\&P \& 15% VAT. Sets incl, PCB, electronic parts. Instructions. Most also incl. knobs, skis., s w's, wire, solder, box. For more Info send S. A.E. (9 $\times 4$ or blogger) for catalogue. Prices correct at press. E. AO.E. Despatch usually 7 days on most items. Payment. CWO Express accepted. Exports, Sterling payment please. Export catalogue $\mathbf{\varepsilon 1}$-00.
SUPER-BOOST SUPER-MIX
Boost those outside octaves. Each unit has
depth \& range controls.
Super-Boost Bass $\begin{array}{lll}\text { Super-Boost Bass } & \text { SET-138-B } & \text { £8.87 } \\ \text { Super-Boost Treble } & \text { SET- } 138-T & \text { £8.46 }\end{array}$ SUPER-CHORUS
A superb chorus generator giving richer making solos sound like a multitude

SET-162 £28. 14
SUPER-FLANGE
An excellent Flanger with additional enhance Phasing as well. SET-153 £22.49
ing effect. 3 controls Fringing, Balance, Output SET -135 $\mathbf{£ 1 2 . 9 9}$

SUPER-HUM-CUT

Humming badly? This steep notch filter really cuts live or recorded hum. Tunable
for $25-100 \mathrm{~Hz}$.
SUPER MIC-UP
Mic or Guitar pre-amp with gain control \&
$\begin{array}{lll}\text { Bass \& Tret cut sw's. } & \text { SET-144 } 88 \cdot 92 \\ \text { Ditto less tone } s w ' s . & \text { SET-147 } & \text { \&6.13 }\end{array}$
SUPER-NOME
Variable metronome with audio-visual
accented beat marker. SET -143 $£ 13.52$

SUPER-MIX Good general

Goodrols, PFL purpose mixer with tone controls, PFL. Echo-send, Monitor on each
channel. Specially designed so that as many input charnels can be fed in to as many output channels as you need, with modular construction on each.
SET-124-details \& price on application

SUPER-PASS

Variable band-pass niter with gain \&
centre freq. control.
SUPER-STORM
Great automatic \& manual Wind, Rain a Sea generator for fabulous storm effects, SUPER-TONE
SUPER-TONE Tone control for Bass \& Treb cut, gain, \& Tone control for Bass \& Treb cut, gain, \&
range.
SET-139 $£ 13.62$ SUPER-TREM
A powerful tremolo with depth and rate control.

SET-136 $£ 10 \cdot 71$

SUPER-VIBE

Vibrato with extra Phasing \& Reverb concols, plus rate \& depth. An amazing unit
SUPER-WAH
Wah-wah with auto \& manual controls.

VERY POPULAR - STILL AVAILABLE

GUITAR EFFECTS: 8 mode filter $\&$ envelope shaper for most in struments SET. $42 \quad$ £15. 92 GUITAR FREOUENCY DOUBLER: OrIg. \& doubled sIgnals can be mixed SET -98 GUITAR OVERDRIVE: Sophisticated Fuzz with filter \& shape controls SET -56
GUITAR SUSTAIN: Retains natural attack whilst extending note duration SET. 75 PHASER: 6-stage automatic unit with variable speed control
ats of other still popular alts of various types big e small are in our catalogue

Examination Projecess
 C. J. BOWES

PART 2 - PRACTICAL ASPECTS OF CIRCUIT DESIGN AND PROJECT BUILDING

Circuit design is a somewhat circular process, which is best learned by doing it rather than by reading about how to do it. You can however gain an insight into the process by reading through the descriptions of how the projects published in magazines work.

The other attributes needed are patience and a basic ability, aided if necessary by a suitable calculator, to manipulate the basic electronics formulae.

THE CIRCUIT

Ideally the circuit should be drawn so that the action of the circuit (input to output, cause to effect) progresses from left to right across the diagram.
Some of the component values will be dictated by the device data or input/output conditions. Other component values will require the use of standard formulae like Ohm's law. When using formulae it is important to remember the standard units of the various components and where they differ from those used in the formulae (such as capacitance which is expresed in Farads (F) whilst we work in microfarads which are $\mathrm{F} \times 10^{-6}$.

POWER SUPPLY RAILS

A useful starting point is to set a suitable voltage for the power supply rails since this will dictate a number of the resistor values.

When working with time delay or oscillator circuits and some other types of circuits the formulae will require you to select two or more component values (usually a resistance and a capacitance). When faced with this dilemma it is best to start by selecting an economic value for the capacitor and then applying the formulae to set the resistor values.

Some new circuit designers may become alarmed when they find that the calculated values for resistors are not readily available. This is because resistors are manufactured only in a range of standard values. For most purposes the actual value of the resistance is not over critical and there will be one of the standard values within 10 per cent of
the required value which will be adequate.

In the event of your having to substitute a different value it will be necessary to consider the effect of increasing or decreasing the value on the action of the circuit and to choose the correct course.

FIXED AND VARIABLE RESISTORS

If the value of the resistance is critical the problem can be overcome by using one or two fixed value resistors in series with a suitable variable resistor. The values should be chosen so that the total resistance can be adjusted over a range between about 90 per cent and 110 per cent of the calculated value. The variable resistor can then be adjusted when testing out to give the required effect.

This will generally allow for variations in component values including those of associated components such as capacitors which can vary as much as 50 per cent to 200 per cent of the stated value.

Once the design has been completed and the component values calculated the whole lot should be checked over to make sure that there are no omissions. It is particularly important to check that all the pins of any integrated circuits used are connected to the correct points in the circuit including connecting any unused inputs of logic circuits to the correct power rail.

PROTOTYPE CONSTRUCTION

The circuit should be tested out on a prototype board to check that it functions as you intended that it should. If any problems arise it is easy to alter the design by changing the connections or component values on the prototype board, but this will not be so easy when the circuit is made up in a more permanent form.

How you need to approach the final construction of your project will depend on the nature of your circuit and how it is to be housed. If your circuit consists of solely panel mounted components linked together with wires, then the most convenient method of construction is
to simply mount the components on the panel in the appropriate places and link them together with wires.
It will be a great help when testing out the system if the wiring is done with wires of different colours. If the wiring is laid out with care taking the trouble to group the cables together, except where this might cause hum or other interference, they can be laced together neatly after the unit has been tested.

P.C.B. OR STRIPBOARD

If your circuit incorporates a number of small components, these can be mounted either on a printed circuit board or on stripboard. In general the more simple types of project lend themselves to being constructed on stripboard whilst the more complex circuits are best made up onto printed circuit boards, providing that you have access to the necessary materials and tools.

If either of these two methods of construction is used, it will be necessary to literally sit down with pencil and paper to work out how to arrange the components and connections on the boards. If you can obtain a supply of one-tenth inch graph paper this will be a great help since most components are constructed to fit on such a matrix.

Once the p.c.b. design has been finished it can be transferred to the board and the board etched and drilled as normal. After preparation the board can have the components inserted starting with the smallest components.

MOUNTING COMPONENTS

At this stage all the integrated circuits should be catered for by providing sockets into which the i.c.s will be inserted later. This will greatly ease any subsequent fault finding.

Care must be taken to ensure that all polarity sensitive components are correctly oriented since some spectacular faults, such as capacitors exploding, can occur if errors are made in the polarity.

It is also important to ensure that the soldered joints are all correctly made without their failing to make contact or shorting out adjacent
tracks. The most common reasons for projects failing to work are associated with poor soldering.
If the circuit uses a mains driven power supply, it is advisable to check that it is in fact producing the correct output voltage before connecting it to the rest of the circuit. After giving the board a final check over, with the aid of a magnifying glass if necessary, the integrated circuits can be inserted and the unit switched on.

TESTING AND FAULT FINDING

Fault finding is a skill that is improved by practice but there are certain approaches which are valid for most types of project.

If, on switching on, the unit is completely dead it is advisable to check that the required voltage is available across the power supply connections. If this voltage is not present when the power supply is connected to the unit but is produced by the power supply when disconnected then the fault is likely to be caused by a short circuit occurring across the power rails. This might be a faulty connection, faulty component or incorrectly polarised component.

If the correct voltage occurs at the power supply rails, it will be necessary to work steadily through the circuit, preferably from the input to the output, checking with suitable test instruments to see where the circuitry fails to work as it should. This process is aided by fitting the i.c.s into sockets since they can easily be removed and replaced as the testing proceeds.

When the point at which the circuit fails to work is detected it is necessary to think carefully as to what might cause the symptoms to appear.
Before looking for more complex causes it is worthwhile giving the board a close inspection, with the aid of a magnifying glass, to check for board faults such as broken or short circuited tracks. If short circuits are found these can be cut out with a modelling knife. Broken tracks can be repaired by soldering wire connections across the breaks and incorrect tracks can be cut off and the correct connections made with insulated wire soldered to the ends of the tracks.

PACKAGING THE PROJECT

Whilst a beautifully presented but non-working project will not impress an examiner a well presented and correctly functioning unit is bound to impress. It will also be less likely to fail at a critical time than the ball of string assembly that is sometimes presented to examiners.

Ideally your project should look like the sort of thing that you could buy in a shop. Although you are probably not going to be able to produce a specially moulded case just for your project, there is no reason why it cannot be mounted either in one of the cases which can be bought from electronics shops or in a good home made case.

Lettering can be applied to the case by using rub-down lettering protected by several layers of sprayon clear lacquer.

WRITING THE REPORT

If your project is for an examination, it will be necessary to write a comprehensive report describing the design and the construction. This report will be used by the examiner as part of the marking operation and is also used at later stages of the process to check that the marks given by all examiners are consistent.

For this reason the report must give details of all the stages of the project. You must include your specification, details of the alternative solutions considered, details of how the unit was constructed and tested. You will need to be honest about any faults you found since the examiner will expect that you will have had to spend some time finding faults.

If you were lucky enough not to have had any problems when testing out the unit you must say so since this omission could lose you marks.

You must also include a complete circuit diagram and a detailed description of how it works. Here you would be well advised to read the appropriate seotions of any of the projects described in this magazine to see the right approach.

You should also include photographs of your project which should be as clear as possible. It is well worth taking the trouble to present both your project and the report as neatly and professionally as possible since this shows that you are proud of what you have achieved.

DEMONSTRATING

The final hurdle is that you will be expected to give the examiner, who will probably be a teacher of some sort, a demonstration of your project. You need not fear this part of the process since the examiner will almost certainly be a fellow enthusiast and he or she will certainly be interested to hear what you have to say about YOUR INVENTION. You should actually enjoy telling about your work and showing someone else how it works.

[^2] working on her project.

Testing the "breadboard" circuit prior to designing a printed circuit board.

Etching the printed circuit board.

Board ready for insertion into case.

Applying "rub-down" lettering to case.
The completed tuning aid which won Susan the individual project prize in the Yorkshire Regional Final of the "Young Engineer fọ Britain 1981".

Advertorial

I've always had an aversion to "advertorial". That's an article which is sponsored by a manufacturer or retailer for advertising purposes.

Sometimes advertorial is blatant; a page of puff for a new product dressed up to look like an independent appraisal. The manufacturer pays for the page to be published and the magazine preserves its integrity by publishing a note at the top which identifies the page as advertlsing. A more subtle kind of advertorial is a puff article on a firm and its products which a journalist manages to sell to a magazine as editorial copy.

Some Japanese firms have been very successful at this. They take a tame journalist with good connections in Fleet Street to Japan, show him (seldom her) all kinds of exciting new gadgets and impressive factories, provide extravagant entertainment and then wait confidently for a predictably sycophantic piece to appear in print.

In this respect the European electronics press is often a bit of a disappointment to the Japanese. They are duly impressed by what they are shown, because it's always truly impressive, but have a nasty habit of asking awkward questions and writing objectively. That's why some Japanese firms don't waste their time on the European electronics pressl

Booklets

For obvious reasons, advertorial material often isn't worth reading. This is why many journalists won't write it. Perhaps this is also why there has been a trend over recent years towards a new kind of advertorial, that isn't really advertorial at all. It's a free booklet, that's sponsored by an advertiser.

The booklet contains hard technical facts written subjectively, with advertising puff for the sponsoring firm kept clearly separate. As publications of this type are free, and contain useful information, they can be well worth watching out for when you visit exhibitions or specialist shops.

Watch out, for instance, for the Sennheiser brochures. These contain much more than a list of Sennheiser micro. phones and headphones; they also contain some very useful general informa. tion on microphone and headphone technology. Kef, one of the most successful British loudspeaker manufacturers,
produces a series of technical bulletins, called Kef Topics. You can learn a great deal about loudspeaker technology from these.

The tape manufacturer, 3 M , has produced some good information sheets, called Pulse, on audio and video tape technology. British Telecom have some useful publications on a wide range of telecommunication topics.

Bang and Olufsen in Denmark has published a series of White Papers on tape and gramophone design philosophy and technology. Although the emphasis is heavily on B and O products, there is
still a good deal of background information to be gleaned.

The First

One of the first firms to put out a booklet of general information on the whole topic of hi fi, with the company's products referred to only as specific examples, was Pioneer of Japan. It's nearly ten years now since the Pioneer HIFi Handbook "an introduction to the terms and technology of serious sound reproduction" was published.

Although it contained silly errors (like a discussion of tuner specifications under the heading for turntables) it was a brave effort, and good for the company's image. Unfortunately I haven't heard a squeek from Pioneel for nearly two years now.

Almost the same fate has befallen another Japanese company, Teac. Five years ago Teac published two very good free booklets. These explained the technology and techniques of multi-track recording, with special reference to their home four- or eight-track systems.

But Teac has also been hiding its light under a bushel recently. In fact dornestic Teac multitrack recording equipment is now being seriously challenged by Fostex, a new Japanese firm started by ex-Teac engineers.

Fostex multi-track equipment is handled in Britain by Turnkey, of New Barnet, Herts. The Turnkey mail order catalogue advertises a whole range of electronic gadgetry, and has a lot of useful technical information in lay terms, for instance on cables, noise gates, signal processing and special effects like echo.

The Microcomputer Boom

The Laskys "Buyers Guide" contains a very good description by Guy Kewney of how the home microcomputer boom got underway. It's something l've watched with jaundiced interest, because it's exactly like the hi fi boom of a decade ago, and the video boom which began in the late $70^{\circ} \mathrm{s}$ and is still continuing.

In each case the people selling high technology equipment often know as little about it as the first time buyer. Their only advantage over the customer is a vocabulary of buzz words that cow the unfortunate newcomer into puzzled submission.

There are, of course, some genuinely knowledgeable dealers who really know their subject. - But often they can't express themselves in plain English.

Computer Hobbyists

The computer market is still booming and buoyant because there are still enough latent hobbyists around to support sales of "Heath Robinson" hardware, with instruction manuals which are as thick as an encyclopaedia and as readable as a telephone directory. But both here and in America there is a largely untapped reservoir of people who have, neither the time nor the inclination to start another hobby, especially a hobby as demanding as computer technology.

What I, and many other people want, is a memory bank and word processing system, that will make my business life easier. Unfortunately, it's taking a very long time for this message to get through to the
people who are making and selling computer systems.

Frightening Choice

I know of a weekly magazine in London which recently asked a string of large, and small, computer firms to tender for the supply of a word processing and data storage system for the magazine office. The ignorance and incompetence of many of the firms was frightening. Some of them didn't even know enough about their product to be able to put in a coherent tender.

An American journalist told me how he'd been sold a word processor, and immediately been confronted with an utterly incomprehensible manual. I know of two British journalists who have bought expensive microcomputer systems, but not found the time to learn how to program them.

Even if a businessman gets a sound system, and a manual clear enough to let him get it working, there's still the problem of getting the system to do exactly the job it was bought for.

A businessman with no knowledge of computer programs will be completely stymied. As sure as night follows day, someone then says it's the wrong system for the job and the only solution is to start again!

No wonder so many small businesses are doing as I am now doing, and that's hanging on until the computer market has shaken down. I'm waiting until it's as easy to buy, use and maintain a computer system as it is to buy, use and maintain any other electronic leisure or labour-saving device.

SPECIAL OFFER TO NEW SUBSCRIBERS £2.40 OFF REGULAR SUBSCRIPTION RATES SAVE MONEY. . ORDER NOW!

| SUBSCRIPTIONORDERFORM | | |
| :--- | :---: | :---: | :---: |
| UK | $£ 12.00$ | $£ 9.60$ |
| OVERSEAS | $£ 13.00$ | $£ 10.60$ |

Please register my subscription for one year for which I enclose cheque/postal order value
made payable to IPC Magazines Ltd.
Name
Address

OUT

NOW

AUTUMN '82 WR\&E

MORE PAGES

- MORE COMPONENTS

- MORE TOOLS
- MORE TEST GEAR MORE DISCOUNT
VOUCHERS (3x£1) MORE DISCOUNT
VOUCHERS ($3 \times £ 1$)
- MORE BOOKS

Now 128 pages of components, modules, sub assemblies from the leading exponent of components.

By Pat Hawker, gзva

Racalex 82

Radio communications equipments are tending to become ever more complex and more dependent upon advanced technology. The recent exhibition and symposium of the Racal Group of companies underlined this with its impressive assortment of military communications systems and those appendices that threaten to become ever more important.
This includes ECM or electronic counter measures which basically means jamming enemy systems, ECCM or electronic counter-counter measures which involves making your system able to defeat the enemy's ECM; and ESM or electronic support measures than can include the most sophisticated technlques for surveillance, analysis of incoming signals and much else besides.

The search to make communications reliable and secure while denying such facilities to the enemy is reflected in the emphasis placed on digital encryption of speech and telegraph traffic. A further aim is often to conceal the very existence of radio traffic-a classic form of cryptography or more correctly "steganography".
One approach to this is the use of frequency-hopping techniques in the crowded h.f. band using s.s.b. rather than f.m. type signals. It is then very difficult indeed to detect the signals even with a spectrum analyser.

Yet Racalex 82 provided evidence that the oldest mode of radio communication, manual morse transmission, still has a valuable role. Racal for instance were showing a new morse code training system for classroom use-but it was talking to Lady Virginia Fiennes that provided the most convincing proof.

Transglobe communications

Lady Virginia Fiennes was the base radio operator for the three-year Transglobe expedition during which her husband, Sir Ralph Fiennes, and co-explorer Charles Burton successfully completed the first ever circumnavigation of the globe following mostly the Greenwich Meridian and travelling via both South and North Poles.

When the party sailed from Greenwich in September 1979 they carried some $£ 200,000$ of modern radio equipment loaned by Racal Electronics. As communications chief, Lady Fiennes, had two main radio tasks. To keep in touch from a series of base camps, including eight lonely months in a reinforced cardboard hut in the Arctic, with the explorers. Also, to keep in touch with Cove Radio at the Royal Aircraft Establishment, Farnborough, Hampshire or the Portishead Radio long-distance coast station.

Using 400 -watt and 1 kW h.f. single-side equipment she usually spoke directly to the high-power UK stations. But in the extremely difficult radio propagation conditions for which the Arctic and Antarctic
are noted (including severe polar cap absorption and multipath conditions that make even strong signals difficult to copy) the links with the explorers, who were using man-pack type equipment, was often a matter of finding that slow morse will get through when other modes find the going altogether too tough.

Portable power

With portable equipment the main problem, particularly in extremely cold climates, tends to be keeping the batteries charged and in good shape. While petrol-electric generators can be carried In vehicles, for truly portable operation it comes down to a question of batteries and/or hand generators-and neither of these sources of power are exactly lightweight. There is increasing interest in high-energy lithium batteries for such applications.

Unique experience

I asked Lady Fiennes whether she was writing a detailed account of the Transglobe radio communications. She admitted that she had been asked to do this but seemed rather diffident in that her experiences as a radio operator did not mean that she regarded herself as a communications expert.
Personally, I hope she is persuaded to provide us all with a detailed account of this unique experience. Radio operators often provide a more valuable report of the problems-and suggestions on how they
can be overcome-than the engineers and the radio propagation experts who so often wish to justify their designs.
I recall, some 35 years ago, reading a long typescript report of the radio communications of the original Kon-Tiki expedition. The operator was a former Norwegian Resistance clandestine operator and the most successful equipment carried on the raft proved to be the wartime "B2" suitcase set.

Unfortunately, so far as I know, this report was never published, presumably because publishers felt there was little demand for such semi-technical information. Yet it was a fascinating account of the practical problems of communicating from a small balsa-wood raft in the middle of the Pacific Ocean.

Exit v.h.f. television?

The interim report of the Merriman Committee recommends that the British 405 -line v.h.f. television on Bands I and III should end in 1984 rather than 1986 and that no further television broadcasting should be permitted on these bands.

While this recommendation will not surprise many people it does seem remarkable that only in the UK will viewers lose what are in every other country the prime television bands. It would have been very much easier and cheaper to have put new 625 -line channels on v.h.f. than to develop cable or direct satellite broadcasting.

In the end it is the viewer who pays.

Top speed

In the January 1982 Radio World I referred to the claim in the "Guiness Book of World Records" that the highest known speed of sending on a purely manual morse key was the 35 words per minute (w.p.m.) clocked up by Harry Turner, W9YZE in 1942. This has resulted in a most interesting letter from Tom Laidler of Glandore, South Australia, who has been VK5TL since 1937 and who was trained as a Post Office telegraph operator in 1918 by a Mr. Thomas Morris.

Although no written records exist, Mr. Morris once told Tom Laidler that he had been able to get his sending up to 39 w.p.m. and "that it took a lot of hard practice to get the extra five characters in to make it 40 w.p.m." The date when this happened is unknown but the claim rings true as many Post Office operators reached high speeds in the
days before the development of the teleprinter.

Still an active morse enthusiast at the age of 78 years, Tom uses a home-built key he made in 1938 based on the wooden patterns for a standard Post Office type key, but for which he then had several bits cast in a brass foundry. He also owns one of the rare "three paddle Automorse" key designed by a Mr. N. P. O. Thomas, also of the Australian Post Office, about 1922 that makes both dots and dashes automatically.

In the years before the development of electronic keyers some extremely ingenious mechanical keys were developed and marketed in a number of countries. The automorse key was sold for $£ 5$, which at the time was more than a week's pay for a telegraphist. Even today, as my earlier story shows, manual morse is far from obsolete.

AT-80

Electronic Car Security System

- Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape. CB equipment
- Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components to assemble

SX1000

Electronic Ignition

- Inductive Discharge
- Extended coil energy
storage circuit
- Contact breaker driven
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

Electronic Ignition

- The brandleading system on the market today - Unique Reactive Discharge
- Combined Inductive and Capacitive Discharge - Contact breaker driven - Three position changeover switch

TX1002

Electronic Ignition

- Contactless or contac triggered - Extended coil energy storage circuit - Inductive Discharge Three position changeover switch Distributor triggerhead adaptors included - Die cast weatherproof case Clip-to-coil or remote mounting facility Fits majority of 486 cyl . 12 V . neg. earth vehicles Over 145 components to assemble.

Electronic Ignition

- The ultimate system - Switchable contactless. Th ree position switch with Auxiliary back-up inductive circuit - Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Distributor triggerhead adaptors included. - Can also be triggered by existing contact breakers. - Die cast waterproof case with clip-to-coif fitting - Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles - Over 150 components to assemble

All SPARKRITE products and designs are fully covered by one or more Worid Patents

- Over 130 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

SPECIAL OFFER

 "FREE" MAGIDICE KIT WITH ALL ORDERS OVER $£ 45.00$

MAGIDICE

Electronic Dice

- Not an auto item bur great fun - Total random selection - Iriggered by waving of hand - Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds - Auro display of last throw 1 second in 5 - Muing and Off switch on base - Mourt of consinuous use from PP7 battery

	SELF ASSEMBLY KIT
$S \times 1000$	$£ 12.95$
$S \times 2000$	$£ 19.95$
$T \times 1002$	$£ 22.95$
$T \times 2002$	$£ 32.95$
AT 80	$£ 32.95$
VOYAGER	$£ 64.95$
MAGIDICE	$£ 9.95$

NAME
Tel: (0922) 614791 Allow 28 days for delivery

$11-\infty m$

ANNOUNCING THE NEW MAIL ORDER DIVISION OF THE GRENSON GROUP VAST STOCKS AND COMPUTER CONTROLLED OPERATION HAVE ASSURED VERY COMPETITIVE PRICES. SEE FOR YOURSELFI
BENCH POWER SUPPLIES.
As featured in Feb 82 'Practical Electronics'

	KIT	BUILT
Unit (BPU1)	E35	£59
P+P	E 3.35	E 3.35
V.A.T.	$\mathbf{f} 5.75$	£ 9.35

Triple output unit ($1 \pm 15 \mathrm{~V}$ and +5 V) available shortly
The Grenson Group have over twenty years experience designing power supplies. Contact us now and we will try to solve your problem.

LARGE ELECTROLYTICS.

Sprague/General Electric made - computer grade - ideal for power supplies ONLY $\mathrm{E}_{2} .50$ EACHI

185,000@15V.300,000@7V.120,000@15V.100,000@30V. 71,000@40V.60,000@40V. 9,000@50V.
SMALL ALUMINIUM ELECTROLYTICS.

Axial Leads

Axia	ead				Radi	Le				
UF	\checkmark Price	uF	V	Price	UF	V	Price	UF		Price
1000	6.3 15p	470	16	15p	470	16	15p	47	50	10p
22	10 05p	4.7	25	05p	1000	25	25p	4.7	763	05p
100	10 05p	330	25	15p	220	40	25p	100	63	15p
22	16 05p	680	25	25p	470	40	25p	220	63	20p
OLD	MERS SE	ECTION.								
OC44	70p O	OC45	37p	OC71	34p		70	36p	OC42	70p
OC35	90p O	OC25	75p	OC16	200p		170	44p	OC22	150p
25024	200p O	OC139	70p	OC140	75p		307	85p 2	2ST01	80p
OC84	25p O	OC41	60p	2S301	80p			40p	0 C 73	40p
OC83	40p O	OA5	10p	OA7	15p		10	15p	OA47	10p

MIXED BAGS.
Capacitors - 30 assorted values only $£ 1.001$
Transistors -20 small signal plastic $-\frac{1}{2}$ n.p.n. $-\frac{1}{2}$ p.n.p. only $£ 1.50$,
Lists available on request

RESISTORS

We have, amongst others, the following resistors in stock:-
Over $1 \frac{1}{2}$ million I watt carbon film.
Over $\frac{1}{2}$ million $\frac{1}{\frac{1}{2}}$ watt metal oxide.
Over I million wirewound.
Further stock listed in our free catalogue
Typical Prices

> 1 watt carbon
> $1 \frac{1}{1}$ watt metal oxide

$1-9$
$2 p$
$6 p$
$25 p$
$10-99$
$1 \frac{1}{2 p}$
$4 p$
$15 p$
$100+$
$1 p$
$3 p$
$12 p$

SERIES 74 I.C.'s

Comprehensive stocks, competitively priced. Simple gates from only 10p. See our free catalogue for details.
I.C. SOCKETS.

14 way - 10p. 46 way - could be broken to make smaller strips - 25p. 16 way gold pins -20 p.

TRANSISTORS.								
AC107	30p	BC149	7p	BC212L	9p	BC337	13p	BF198
AC126	30p	BC159	12p	BC213L	9p	BC558	14p	BF199
AC188	27p	BC171	10p	BC237	12p	BF115	29p	BFR40
ACY17	66p	BC173	10p	BC308	13p	BF194	13p	BFX29
ACY19	65p	BC212	9p	BC327	18p	BF197	13p	BFY90
2N706		15p	2N2222A	20p	2N3705	10p	2N4061	10p

VOLTAGE REGULATORS AND P.S.U. COMPONENTS.

$+5 \mathrm{~V} 1 \mathrm{AT0220} 50 \mathrm{p}+12 \mathrm{~V} 0.5 \mathrm{~A}$ T0220 50p +15V 1 A T0220 50p

-5 V 1 A T0220 50p +12 V 1.5 A T03 1.50p -15V 1 A T0220 50p
$\begin{array}{llllllll}- & 5 \mathrm{~V} 1.5 \mathrm{~A} \text { T03 } & 2.00 \mathrm{p} & -12 \mathrm{~V} & 1 \mathrm{~A} \text { T0220 } & 50 \mathrm{p} & -18 \mathrm{~V} & 1 \mathrm{~A} \text { T0220 } \\ + & 50 \mathrm{p} \\ +6 \mathrm{~V} 0.5 \mathrm{~A} \text { T0220 } & 50 \mathrm{p} & -12 \mathrm{~V} 1.5 \mathrm{~A} \text { T03 } & 2.00 \mathrm{p} & -24 \mathrm{~V} & 1 \mathrm{~A} \text { T0220 } & 80 \mathrm{p}\end{array}$ 2N3055 35p, 2N4347 (120V) 1.50p, 2N6258 (250W) 1.80p, 400mW Zeners 5p, 723 30p. \star SPECIAL OFFER $* *$ SPECIAL OFFER $* *$ SPECIAL OFFER $*$

For every order received in December 1982 of a value greater than $£ 10.00$, a free bag of assorted components worth at least $£ 2.00$ will be sent with the order.
Please allow 21 days for delivery.

Dept. B1, High March, Daventry, Northants NN11 4HQ. Tel: 032725523 Telex: 311245 GRENEL G.

Please add 50p per order postage and packing plus 15% VAT on total. No VAT on overseas orders, postage at cost. Cheques and postal orders made payable to Emos Limited. Send large SAE for comprehensive catalogue.

BAKER	869
50 WATT	Post 2

outlets 4, 8,16 ohm. AC 240 V (120V available).
BAKER I 50 Watt AMPLIFIER 4 Inputs ≤ 89 Mono Blave 150 W 275. post $£ 2$ Stereo Slave $\varepsilon 125$. Dost $£ 2$ DRILL SPEED CONTROLLER LIGHT DIMMER KIT Eagy to build kit. Controls up to 480 watts AC
DELUXE MODEL Ready Bult. 800 watte. 25
STEREO PRE-AMP KIT. Ali parts to build thls pre-amp. 3 inputs for high, rneeilum or low gaiu per channel, with
volume control nid F.C. Board. Can be ganged to mako mult-way stereo mixers. 22.95

SOUND TO LIGHT CONTROL KIT MK II Complete Eklt of parts, printed circuit. Mains transformer
3 channels. Up to 1.000 watta each. Wll operate from 200 MV 3 channels. Up to 1,000 watts each. Whi operate from 200 M
to 100 watts signal source. Suitable for home $\mathrm{Hi} \cdot \mathrm{Fi} \quad 818$ and all Dlsco Amplifiers. Less cabinet $£ 15 \cdot 00$, OR COMPLETE READY BUILT IN CABINET 227 200 Watt Rear Reflecting White Light Bulbs, Ideal for Dieco Lights. Edison Screw 75p each or 6 for $\& 4$ or 12 for $27 \cdot 50$. MA1NR TRANBFORMERS Primary 240V A.C.

 220 V 60ma $6-3 \mathrm{~V} 2 \mathrm{~A}$ Genersl pur pose tapped outputa voitages avaliable. $2 \mathrm{amp} 3,4,5,6,8,9,10,12,18,18,25$ and $30 \mathrm{~V} . . .26 .00$ 1 amp $6,8,10,12,18,18,20,24,30,36,40,48,60-26 \cdot 00$ $2 \mathrm{amp} 6,8,10,12,16,18,20,24,30,36,40,48,60210-50$ 3 amp $6,8,10.12,16,18,20,24,30,36,40,48,60218 \cdot 50$
5 amp $8,8,10,12,16,18,20,24,30,36,40,48,60$
216.00
 6 V 1. a
$6 \mathrm{~V}-6 \mathrm{~V}$ 1a
6-0-6V 1;
9 g 250
over
9 V 3 m
$9-0-9 \mathrm{~V}$ 50
$9-0.9 \mathrm{~V} 50 \mathrm{ma}$
$10-0-10 \mathrm{~V}$
$10-0-10 \mathrm{~V} 2 \mathrm{~s}$
$10 \cdot 30-40 \mathrm{~V} 2 \mathrm{~s}$
12V 100ma
12 V 750 ma
12 V 3s

TOROIDAL 30-0-30V 4 Amp $+20-0-20 \mathrm{~V}$ - Amp

3 ohm. $6 \times 4 \mathrm{in}, 51 \mathrm{nn}, 7 \times 4 \mathrm{in} .82 .50 .8 \times 81 \mathrm{n} .61 \mathrm{in} . £ 3 \cdot 00$. $\sin .24-50$. 10 in . $85-00.8$ ohm. 24.224 .2 inn .22 .00 . $3 \mathrm{in} .{ }^{3} \times 3 \mathrm{in} ., 5 \mathrm{ln} .22 .50 .3 \mathrm{in} .24 \cdot 50$. $10 \mathrm{in} .45 \cdot 00.121 \mathrm{n} .48 .00$.

R.C.S. LOW VOLTAGE STABILISED

Post $75 p$
$\mathbf{3 . 9 5}$
POWER PACK KITS $90-100 \mathrm{~mA}$
ted elrcult All parta and instructions with Zener diode printed clrcult,
rectiflers and double wound mains transformer input $200-240$ A.c. Output voltages available B or $7 \cdot 5$ or 9 or 12 V d.c. up to 100 mA . State voltage.
PP BATTERY ELIMINATOR. BBITISH MADE 64.50 Mainn Transformer Rectifer 9 rolt 400 ma . Post 75 p stablilsed, with overload eutout. Plastic case size 5×5.
 THE "INGTANT"' BULK TAPE ERASER A.C. mains 200/240V . 5950 reel Ideal all Computer.
Taper, Disca, Cassettex.
HEAD DEMAGNETIBER PROBE $85 \cdot 00$.

Radio Component Specialists 337, WHITEHORSE ROAD, CROYDON

SURREY, U.K. TEL: 01-684 1665 Post 65p MInlmum, Callers Welcome. Closed Wed
Same dey despatch. Accese-Barclay-Vlsa. Lists 31 p

HAving studied the fixed value resistor earlier this year, this month's Square One will take a look at the variable resistor or potentiometer. The resistance value of a variable resistor is measured in ohms, but by means of rotating a shaft or slot on the component, this value can be varied between zero and the predetermined maximum resistance.
Potentiometers (or "pots" as they are sometimes known) are three terminal devices, one terminal at each end of the resistive track and a thind terminal on the wiper. This is the terminal that "wipes" along the resistive track and so varies the resistance at the wiper.
The circuit symbols are shown in Fig. 1. There are two main types of variable resistor, the control potentiometer and the preset potentiometer and as can be seen, the symbol differs for each in the way the wiper is represented.

CONTROL POTENTIOMETERS

The control potentiometer is the type used for volume controls on amplifiers and in other situations where frequent adjustment is required. The adjustments are made by means of a knob attached to the rotating shaft on the component, and the full range of adjustment is made through three-quarters of a turn of the shaft.
Also available are dual ganged (or tandem) potentiometers, this type having two variable resistors meahanically linked on one spindle. The most obvious application for tandem pots is controls for stereo equipment, whereby both channels can be simultaneously adjusted with one control knob.

A further type of control potentiometer is the slide pot, where the resistive track is produced lengthways and the wiper "slides" along it thus varying the resistance. These are most commonly found on graphic equalisers and mixer units and are generally available as both single or dual ganged types.

PRESET POTENTIOMETERS

The preset potentiometer is for the situation where, once set, the value will be left. They are not intended for continuous adjustment. The main use of the preset is therefore in the setting up and calibration of electronic equipment.

A whole range of types and sizes of preset are available, including precision multiturn trimmers (trimmer being another name for a preset) which require anything up to 25 full rotations for the wiper to go from one end of the resistive track to the other, facilitating very accurate settings.

Among the other types are skeleton presets of which there are two sizes, miniature and standard, and both of these can be supplied as either horizontally mounted or vertically mounted components. Almost all preset resistors are intended for direct mounting into a printed circuit board compared to the control potentiometers which are designed for mounting onto a front panel, by means of a threaded bush and nut.

Adjustment of preset potentiometers is usually by a screwdriver slot although some types do have a small integral knob which can also double as an enclosure for the component.

MATERIALS

A number of different materials are used for the resistive tracks of both types of potentiometer. Small presets usually have a carbon or cermet (a conductive plastic) resistive track, the cermet type being of higher quality and more durable.

Fig. 1. Circuit symbols of variable resistors. Note that where the wiper is drawn as a diagonal stroke through the symbol, the component is a two terminal device and adjustment simply varies the resistance between the two terminals.

The multiturn trimmers are of a wirewound construction as are the higher power control potentiometers.
The dual ganged, slider and standard control potentiometers have carbon tracks with the higher quality versions again having the cermet track.

Further to all the different types of variable resistor so far discussed, there is an additional two categories into which they will all fall; that is linear track or logarithmic track. The linear type, abbreviated to lin, has a varying resistance which responds linearly with the rotation of the wiper and includes all wirewound and most carbon or cermet potentiometers.

However, the logarithmic response, abbreviated to log, has a larger proportion of the resistance at one end of the track, so rotation of the wiper at this end of the track causes a greater variation in resistance than at the other end. Log tracks are available on most carbon control potentiometers.

A selection of variable resistors. Clockwise, from bottom left corner: a wirewound control pot; a carbon control pot with integral switch; a dual ganged control pot; three different sizes of control pot. In the foreground, a selection of preset potentiometers including a multi-turn in the bottom right, and finally a cermet control potentiometer.

By Dave Barrington

Heating Controller

Now that the winter months and cold weather are about to hitus, readers may be interested in a new controller unit from Vellerman (UK).

The Vellerman Heating Controller Kit, K2583, is designed to control the temperatures inside buildings enabling central heating systems (oil, gas, electricity) to work more economically and therefore save energy.

The unit is claimed to replace conventional thermometer units and provides four programmes daily controlling the temperature at any given period. These programmes are totally independent and therefore it is possible to select day and night temperatures separately.

The digital display readout also functions as a clock as well as a thermometer. It is also possible to control the unit manually without disturbing any of the pre-selected programmes.

It is claimed that savings are obtained by a more accurate measuring of time and temperature and precise on and off switching, eliminating mechanical tolerances.
The K2583 Heating Controller is available in kit form for $£ 75$ plus VAT or as a ready built and tested unit for $£ 98.90$. More details and speciflcation can be obtained from Vellerman (UK) Ltd., Dept EE, P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL.

Combination Lock

Readers who are constructing the Combination Lock, published in our November issue, and looking for a suitable latching mechanism for this project may care to investigate the device from TK Electronics.

This electrically operated latch mechanism, stock No. 701 150, is specified for use on 12 V a.c. However, we understand that it will work reliably from a 9 V d.c. source. Also, it is claimed, it may be used with any existing Yale or Chubb type lock, replacing the catch or "box" that normally mounts on the door frame.

A 20 -page booklet on Remote Control kits is also available from TK and con-
tains circuits for remote switching of lights, television and model control. The booklet cost 30p plus a stamped addressed envelope.

End of an Era

Finally, on a sad note before we discuss the problems of component buying we must report the demise of Home Radio.

With Sir Freddie Laker's Airways plummeting to earth with a loss of $£ 230$ million, and now old history, it is unlikely that the disappearance of Home Radio (Components) Ltd., caused a tremor in the City.

Even so, it is sad to relate that a firm that had been going for over thirty years, and much appreciated by the a mateur constructor, has had to close. There may not be a single answer as to the cause, but rising costs and diminishing sales, the result of the recession, were probably major factors.
The Managing Director, Alan Sproxton, said that in his opinion the enthusiasm of the amateur constructor was as great as ever, with numbers still growing, but many had not the money to spare for their hobbies. He also said that at one time Home Radio received large orders from schools, colleges, and training centres, but during recent years the orders had dropped drastically.
Home Radio will chiefly be remembered for the large well illustrated catalogue which was produced at yearly Intervals. The first, printed in 1959, set a trend and standards that have been copied ever since.

On a personal note, I should like to thank Alan Sproxton for all the help that he has given whenever we have been searching for elusive components. Readers will never know the amount of re search and time Alan has spent on their behalf. We hope, in fact we are sure, that Alan will always make available to us his vast knowledge of the components industry.

The K2583 Heating Controller from Vellerman.

CONSTRUCTIONAL PROJECTS

Security Vari-Light

Although identically rated components are available for the Security Vari-Light, they may not be compatible with the printed circuit board and could cause purchasing problems.

The mains relay RLA used in our model is the Maplin 5A Mains Relay, stock No. YX98G. If an alternative relay is used it may prove necessary to connect it to the logic board by means of suitably rated flying leads. The coil resistance should be about 100 ohms minimum.
The 9 to 12 V reed relay RLB used in the prototype was the Maplin FX51F. An
alternative is the Electrovalue encapsulated relay type LPS12, but this is not pin-compatible.

Only one of the secondary windings of the mains transformer are used, but a transformer with a single secondary winding could be substituted here. Although the twin winding version is rated at 9 V 500 mA , it is quite in order to use a mains transformer with the secondary rated at 9 V 250 mA .
It should be pointed out that the twin secondary winding version seems to be a more popular item amongst our advertisers.

The mains transient suppressor, Z250D, and the contact suppressor are available from Maplin and should be ordered as: HW13P (Mains Trans Supp) and YR90X (R-C Network).

The R-C or "'snubber" network X1 consists of a resistor and capacitor connected in series across the relay contacts and is used as a contact interference suppressor, when switching reactive loads, for RLA1.

The mains transient suppressor RV1 is used to dissipate any "spikes" on the power supply line when the peak level of the mains is exceeded.

The suppressor components are not absolutely necessary but, particularly in view of the mains supply variations and fluctuations in some areas, it is probably wise to adhere to the design.

5 Volt Regulated Supply

The components list for the 5 Volt Regulated Supply calls for a LM341P5 5V regulator. Any 5 V 500 mA positive regulator may be used here, but check that the pinning details are the same. The 78 M 05 regulator seems to be more readily available from advertisers.

The transformer used in this power supply can be practically any type rated at 240 V primary and 9 V 500 mA secondary.

The final choice and size of case will be determined by the physical size of the mains tran sformer used.

Car Indicator Alarm

The relay for the Car Indicator Alarm can be any 185 ohm coil type with at least one set of normally closed contacts. In fact, any relay with a coil resistance down to about 110 ohms, with suitable contacts. may be used.

Electronic V/I Meter

A suitable meter for the Electronic V/I Meter is available from Ambit, Electrovalue, Greenweld or Magenta Electronics.

Extra Ram

The 6116, $2 \mathrm{~K} \times 8$.bit RAM, called for in the Extra Ram for the Sinclair ZX81 project should be readily available from most semiconductor suppliers, but in case of difficulty it is listed by Ambit and Cricklewood Electronics.

This article is a modification to the $2 K$ Ram Pack published in our April 1982 issue. The printed circuit board for the original design is available from Proto Design, Dept EE, 14 Downham Road, Ramsden Heath, Billericay, Essex CM11 1 PU, price $£ 2 \cdot 21$ (including VAT and p/p).

Velocity Measurer

The ultrasonic transducers for the Velocity Measurer are sold in pairs and we suggest readers purchase the type terminated with pins rather than phono sockets.

Who but the people who made the micro possible could help you understand it?

TheTexas Instruments Electronic Library. An in-depth series in understanding today's world of electronics.

The Understanding Electronics Series was specially developed and written to give you an in-depth knowledge of this world.

Each book is comprehensive, yet easy to understand. As informative for the electronics buff as for someone who's simply interested in what's going on today.

Together the library will give you the most complete range of titles available. Take advantage of our introductory offer and choose the book, or books you want from the titles below. You'll find whole new worlds of advanced technology unfolding before you.
Everything you've always wanted to know about: 1. Understanding Electronic Control of Energy Systems. Ist edition. Ref. LCB 6642. Covers motor, generator, power distribution, heating, air conditioning, internal combustion engine, solar and nuclear systems. Softbound 272 pages. $£ 3.95$.

2. Understanding Electronic Security Systems.

Ist edition. Ref. LCB 7201 A complete guide covering the basics of hard wired, photosensitive, infrared, ultrasonic and microwave systems and their use in different applications. Softbound 128 pages. £3.95.

3. Understanding Solid State Electronics.

3nd edition. Ref. LCC 3361 . The principles of solid state theory. It explains electrical movernent, with intermediate tuition on the applications of solid state devices. Softbound 282 pages. £3.95.
4. Understanding Digital Electronics. Ist edition. Ref. LCB 3311 Describes digital electronics in easy-to-follow stages. It covers the main families of digital integrated circuits and data processing systems. Softbound 260 pages. £3.95.
5. Understanding Microprocessors. Ist edition. Ref. LCB 4023. An in-depth look at the magic of the solid state chip. What they are, what they do. Applications of 8 -bit and 16 -bit microprocessors; and design from idea to hardware. Softbound 288 pages. £3.95.

Enema; Corteralis

WATER RESERVOMA

- POTENTIAL ENEAGYI

6. Understanding Computer Science. Ist edition. Ref. LCB 5471.

This book tells you in everyday English how today's computer has been developed, what goes on inside it, and how you tell it what to do. Softbound 278 pages. £3.95.

7. Understanding Communications Systems.

1st edition. Ref. LCB 4521. An overview of all types of electronic communications systems. Softbound 282 pages. £3.95.
8. Understanding Calculator Maths. ist edition Ref. LCB 332 L . Brings together the basic information-formulae, facts, and mathematical tools-you need to "unlock" the real power of the hand-held calculator. Softbound 230 pages. £3.95.
9. Understanding Optronics. 1st edition. Ref. LCB 5472.

Optronics is the application of light and electronics to perform a wide range of useful tasks. From car headlights to missile guidance systems. Softbound 270 pages. £3.95.

10. Understanding Automotive Electronics.

1st edition. Ref. LCB 577L. Learn how electronics is being applied to automobiles. How the basic mechanical, electrical and electronic functions and the new microprocessors and microcomputers are being applied in innovative ways for vehicle drive train control, motion control and instrumentation. Softbound 288 pages. $£ 3.95$.

How to order

Fill in the coupon below or if someone else has already used it, simply: 1. List reference numbers and quantities required.
2. Calculate total order value. Add $£ 1.50$ for postage and packing.
3. Send the list, plus your cheque payable to Texas Instruments Ltd, POBox 50, Market Harborough, Leicestershire.
Allow 30 days for delivery.

Texas INSTRUMENTS

EEECTRONIKS VOLUME 11 INDEX

JANUARY 1982 TO DECEMBER 1982

Poges	Issue	Poges	Issue
$1-72$	January	$433-496$	July
$73-144$	February	$497-552$	August
$145-216$	March	$553-616$	September
$217-288$	April	$617-688$	October
$289-360$	May	$689-760$	November.
$361-432$	June.	$761-840$	December

CONSTRUCTIONAL PROJECTS

ALARM, CAR INDICATOR
ALARM, CAR OVERHEATING
ALARM, SIREN MODULE
ALERT, LIGHTS ON
AMPLIFIER, PA
AUTOMATIC GARAGE DOOR by P. Horsey
BATTERY CHARGER, CB568
BEAT THE RELAY by S. Dunn 376
BEDSIDE NIGHTLIGHT 376
BIG NINE INDICATOR by F. G. Royer 338
BRAKE LIGHT RELAY by T. R. de Voux-Bolbirnie 470
CALENDAR, MONTHLY PLANNER 581
CAMERA OR FLASHGUN TRIGGER by R. A. Penfold 156
CAPACITANCE/FREQUENCY METER by A. P. Donleavy 228
CAR ICE WARNING178
CAR INDICATOR ALARM by A. Robson 782
CAR LAP COUNTER AND JUDGE 442
CAR L.E.D. VOLTMETER by I. Hickman 306
CAR LIGHTS ON ALERT 662
CAR OVERHEATING ALARM by T. R. de Vaux-Balbirnie 92
CAR POWER SUPPLY 260
CAR PROBE by L. A. Privett 184
CAR SCREEN WASHER DELAY 576
CAR SEAT BELT REMINDER 338
CB BATTERY CHARGER by A. Flind 568
CB POWER SUPPLY by R. A. Penfold 372
CB ROGER BLEEPER by R. A. Penfold 508
CHESS BUZZER, LIGHTNING 330CINE INTERVAL TIMER \& FRAME COUNTERby L. A. Privett122, 163
COMBINATION LOCK by C. Muten 700
COMPARATOR VOLTMETER by N. P. Naughton 48
CONTINUITY TESTER by J. Moulder 604
COUNTER, MODE! CAR LAP 442
DIGITAL FREQUENCY/CAPACITANCE METER 228
DIGITAL METRONOME by S. Ibbs 713
DIGITAL OPTICAL TACHOMETER 648
DOOR, AUTOMATIC GARAGE 12, 112
DOORBELL, TWO-TONEDOOR, GARAGE, MECHANISM517
336
78292
EFFECTS UNIT, SOUND SPLITTER 560
EFFECTS UNIT, V.C.O. 257
EGG TIMER by M. P. Horsey 406
EGG TIMER, MINI
ELECTRONIC PITCH PIPE by J. Hickmon44
ELECTRONIC V/I METER by D. I. Edwards 448
EXPANSION SYSTEM, ZX812
636
EXTRA RAM FOR THE SINCLAIR ZX8I by K. Depledge G3 PAN772
FLASHGUN TRIGGER 156
FRAME COUNTER. CINE INTERCAL TIMER AND 122, 136
FREQUENCY METER, CAPACITANCE/ 228
GAME, BEAT THE RELAY 736
GARAGE DOOR, AUTOMATIC 12. 1.12
GARAGE DOOR MECHANISM by J. Hart 336GENERAL PURPOSE PREAMPLIFIER by R. A. Penfold
GENERATOR, SINE WÄVE 632
GUITAR TUNER by A. P. Donleavy 174
HORN, TWO-TONE TRAIN 300
HOUSE REGISTER by P. Barber 194
ICE WARNING FOR CARS 178
IN-CAR P.S.U. by R. A. Winstanley 260
INDICATOR ALARM, CAR 782
INFRA-RED CAMERA OR FLASHGUN TRIGGER 156
INSTRUMENT PREAMPLIFIER by D. J. Edwards 536
INTERCOM, TWO-WAY464
INTERFACE FOR THE TRS-80, TEMPERATURE 504. 599INTERVAL TIMER \& FRAME COUNTER
KEYBOARD SOUNDER by V. Terrell 409
LAP COUNTER AND JUDGE, MODEL CAR 442
L.E.D. CAR VOLTMETER 306
LIGHT ACTUATED SWITCH by R. A. Penfold 264
LIGHTNING CHESS BUZZER by S. R. Dando 330
LIGHT, SECURITY VARI- 775
LIGHTS ON ALERT by T. R. de Vaux-Balbirnie 662
LOCK, COMBINATIONLOCK, MAGNETIC178
MAGNETIC LOCK by R. A. Penfold 244
MEASURER, VELOCITY 796
MEMORY EXPANSION, ZX8I 2K RAM PACK 234, 380228
METER, ELECTRONIC V/I 812
METRONOME, DIGITAL 713
MINI EGG TIMER by D. G. Clorke 44MODEL CAR LAP COUNTER AND JUDGE
by A. P. Donleavy 442
MODEL TRAIN CHUFFER by R. A. Penfold 18
MONTHLY PLANNER by A. P. Donleavy 581
MULTIMETER PREAMPLIFIER 536
M.W. RADIO by F. G. Rayer 102
NiCAD BATTERY CHARGER 568
NIGHTLIGHT by C. Lare 376
OPTICAL TACHOMETER by P. Leoh 648
OSCILLOSCOPE COMPANION by S. Rainey 723
PHOTO FINISH by A. P. Donleavy 734
PITCH PIPE, ELECTRONIC 448
POCKET TIMER 162
POWER SUPPLY, CB 372
POWER SUPPLY, IN-CAR 260
POWER SUPPLY, SIMPLE STABILISED 31
POWER SUPPLY, 5 VOLT REGULATED 815
PRE-AMP, INSTRUMENT 536
PREAMPLIFIER, GENERAL PURPOSE 632
PROBE, CAR 184
PUBLIC ADDRESS SYSTEM by E. A. Rule $316,396,456,538$
QUIZMASTER by C. J. Bowes 524
RADIO, M.W. 102
RADIO, SIMPLE SW 665
RAM PACK MODIFICATION 772
RANDOM NUMBER SELECTOR 338
RECORD PLAYER, STEREO 84
REFLEX TESTER by D. J. Edwards 484
REGISTER HOUSE 194
REGULATED POWER SUPPLY, 5 VOLT 815
RELAY, BRAKE LIGHT 470
ROGER BLEEPER, CB 508
SANDGLASS, TIMER 706
SCREEN WASHER DELAY by G. L. Stonemon 576
SECURITY VARI-LIGHT by A. R. Winstanley 775
SEAT BELT REMINDER by T. R. de Voux-Balbirnie 388
SIMPLE STABILISED POWER SUPPLY by F. G. Rayer 31
SIMPLE SW RADIO by A. Sproxton 665
SINE WAVE GENERATOR by R. A. Penfold 628
SIREN MODULE by A. R. Winstanley 46
SOUND EFFECTS UNIT, V.C.O. 257
SOUND SPLITTER by J. D. Rogers 560
STABILISED POWER SUPPLY, SIMPLE 31
STEREO RECORD PLAYER by V. Terrell 84
SWITCH, LIGHT ACTUATED 264
TACHOMETER, OPTICAL 648
TAPE CONTROLLER by V. Terrell 704
TEMPERATURE INTERFACE FOR THE TRS-80 by O. N. Bishop 504, 599
TESTER, CONTINUITY 604
TESTER, REFLEX 484
TIMER, EGG 406
TIMER, FRAME COUNTER \& CINE INTERVAL 122
TIMER, MINI EGG 44
TIMER, POCKET 162
TRAIN CHUFFER, MODEL 18
TRAIN HORN, TWO-TONE 300
TUNER, GUITAR 174
TUNING AID 448
TWO-TONE DOORBELL by W. English 517
TWO-TONE TRAIN HORN by R. A. Penfold 300
TWO-WAY INTERCOM by E. M. Terrell 464
V.C.O. SOUND EFFECT UNIT by D. Butler 257
VELOCITY MEASURER by B. Dhando, M. Finnemore, M. Stollery 796
V/I METER, ELECTRONIC 812
VOLTMETER, CAR L.E.D. 306
VOLTMETER COMPARATOR 481
WASHER DELAY, SCREEN 576
TRS-80 TEMPERATURE INTERFACE 504, 599
ZX EXPANSION SYSTEM by M. Lysejko and A. Hudson 636
ZX8I, EXTRA RAM FOR 772
ZX8I KEYBOARD SOUNDER 409
ZX8I TAPE CONTROLLER 704
2K RAM PACK by V. Terrell 234, 380
5 VOLT REGULATED POWER SUPPLY by F. G. Rayer 815
$6 \mathrm{~V}, 7 \cdot 5 \mathrm{~V}$ or 9 V Switched P.S.U. 260
GENERAL FEATURES
AUTOMOTIVE ELECTRONICS by J. B. Dance M.Sc. 790
BOOK REVIEWS $172,309,325,670$
BRIGHT IDEAS $51,269,337,341,375,519,774$
Capacitor Measurement 269
Balancing Amplifier Channels
Balancing Amplifier Channels 51 51
Cheap Aerial Insulator 51
Coil Winder Counter 341
Component Socket 341
I.C. Removal Tool 519
Matrix Board Jig 375
337
Screw Terminal 53 774
Switches for Slider Pots
Switches for Slider Pots
CITIZENS' BAND RADIO IN THE UK by G. Boskerville 188
CONSUMER ELECTRONICS SHOW by Barry Fox 588
COUNTER INTELLIGENCE by Paul Young 33, 94, 172, 269,$315,387,450,534,570,655,707,781$
DOW N TO EARTH by Gearge Hyiton 268, 340
EDITORIAL II, 83, I55, 227, 299, 37I, 44I, 503, 559, 627, 679, 771ELECTROPLATING by R. M. Henderson50
EVERYDAY NEWS 38, $110,182,254,326,404,468,520,577$,
EXAMINATION PROJECTS by C. Bowes 746, 818
FORMING AN ELECTRONICS CLUB by T. R. de Vaux-Balbirnie249
FREE TRANSISTORS 631
JACK PLUG \& FAMILY by Doug Baker 21, 91, 171, 237, 304, $408,466,507,566,635,703,774$
NEW PRODUCTS $54,129,200,273,345,417,478,541$
PHOTONICS by Barry Fox 392
PLEASE TAKE NOTE $163,380,577,788$
Cine Interval Timer \& Frame Counter 163
Circuit Exchange-Invader Landing Game 577
Combination lock 788
Public Address System 788
Invader Landing Game 577
Sound Splitter 788
$0-12 \mathrm{~V}$ Power Supply with Overhead Alarm 380
2K Ram Pack 380
PRESTEL by C. Stringer G3RSK 660

RADIO WORLD by Pat Hawker G3VA 42, 121, 186, 256, 328, $403,467,545,580,656,745,822$
F.M. or SSB, CB Licences, Bass Pounders 42 News Gathering, Slow-Scan TV, Satellite TV, Post-War Contacts121
Gas Radio, Rechargeable Batteries, Picture Quality 186
Empire Broadcasting, Amateur Satellites 256
Radio Regulations, Dutch Plrates, Broadcast Links 328
Licensing Radio Amateurs, Shades of New Technology 463
Home Entertainment, Satellite Broadcasting,545Austrialian UHF CB
580
A Better Picture, The Sting
656
656 745
Made in Britain? TV Across Frontlers
Made in Britain? TV Across Frontlers
Racalex 82, Top Speed 822

READERS LETTERS

106, 267, 380, 589, 738
SCHOOLS COMPETITION
35, 592, 647, 721, 811
SEMICONDUCTOR NEWS
SHOPTALK by Dave Barrington
30, 9S, 171, 233, 30S, 381, 4S5, $523,567,635,722,826$

SOUND EIGHTY-TWO
SPECIAL REPORT 334
Soar Digital Frequency Counter
VOYAGER 2 ENCOUNTERS SATURN by J. B. Dance 40
WALES 4CYMRU 335
SPECIAL SERIES
A.C. MAINS EXPLAINED by A. Kenyon

474, 532, 596, 668
I: Alternating currents and voltages 474
2: Earthing the neutral; Metering electricity 532
3: Phase relationships; Power factor 596
4: Three phase power; A.C. Motors 668
CIRCUIT EXCHANGE $58,130,201,274,346,418,488,543,673$
AM/FM Varicap Radio
58
Aud ible Heads or Rails 274
Burg lar Alarm 488
Chas er Light 673
Coin Flip 130
Cont inuity and Polarity Tester 418
Cycle Lamp Back-up Circuit 418
Darkroom Timer 130
Digital Die
Elect ronic Chickens 58
lectronic Chickens 130
Elect ronic Die 488
Elect ronic Metronome 274
High Voltage Pulser 201
I.C. Invader Landing Game 543

Ligh t Operated Curtains 58
Microprocessor Controlled Music Boxes 130
MiniOrgan
130
201
Ph one Bell Repeater
Si mple Sound Generator
Siren
Touch Alarm 673 488

2
Two-Second-Rule Timer 274
D OWN TO EARTH by George Hylton
268, 340
Designing A Simple A.M. Radio
268
Positive Feedback 340
FOR YOUR ENTERTAINMENT by Barry Fox 34, 107, 270, 324, $413,447,522,578,646,742,820$
Changes at the Post Office, Phone-in
34
Post Office to British Telecom, Call for Amnesty 107
Visit to a Japanese Semiconductor Factory 270
Learning Morse, Ceefax
324
$\begin{array}{ll}\text { Question of Time, Evoluon Museum } & 413\end{array}$
Cable Shock, Music for Pleasure
Telecom Technology Showcase, Outrageous One 522 447

Advertorial, The Microcomputer Boom
Resistance to Space, Domestic Facsimiles, Car Statics 578
Liberalisation of the Telephones, Protected Network 646
Cable Options, The Wharfdale Story

IN MY CLASS by T. R. de, Vaux-Balbirnie Connecting wire

INTRODUCING ELECTRONICS by G. Hylton
642, 708
1: From Electrons to Electronics
2: Enter Capacitance 708
3: Coils and Inductance 784

INTRODUCTION TO LOGIC by J. Crowther 36, 108, 180, 252 9: Boolean Identities 36
10: Truth Tables, Applications of Logic Techniques 108
11: Other gate functions from NAND and NOR 180
12: Flip-flop circuits

SQUARE ONE 52, 126, 198, 272, 342, 414, 476, 535, 607, 674, 825 Transistor Data and Outlines Transformers126

Using Stripboard

Switches
Equipment Wire
Resistors
Tools
Dry Cell Battery Data 535
Ohm's Law 607
Circuit Symbols and Abbreviations
The Potentiometer and Variable Resistor 825

TEACH-IN 82 by O. N. Bishop 22, 96, 164, 238, 310, 382, 451
4: Switching Circuit 512,57

5: Bipolar Transistors 96
6: Capacitors and Pulse Generators 164
7: Amplifiers and Amplifier Module 238
8: Optoelectronics 310
9: Frequency Response 382
10: Oscillators
382
11: Power Supplles
4512
51
12: Computing Circuits 571

THE ELECTRONICS OF INFORMATION TECHNOLOGY
by T. E. Ivoll
1: Fundamental Concepts
2: Energy Converters; analogue to digital 808

SPECIAL INSERTS AND OFFERS

SinclairZX Spect

16K or 48K RAM.... full-size movingkey keyboard... colour and sound.... high-resolution graphics...

 From only £125!First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16 K RAM available, and the ZXPrinter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now- is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 /network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border plus flashing and brightness-intensit control.
- Sound-BEEP command with variab pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution -256 dots horizontally $\times 192$ vertically, each individually addressable for true higl resolution graphics.
- ASCll character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 10 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers $\mathbf{Z X}$ Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch

The ZX Printer connects to the rear of your ZX Spectrum: A roll of paper (65 ft long and 4in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum:

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

Spectrum software on ssettes-available now

The first 21 software cassettes are available directly from Sinclair. Juced by ICL and Psion, subjects ide games, education, and business/ sehold management. Galactic sion ...Flight Simulation...Chess ... ory .. Inventions ...VU-CALC ...VU-3D 7 programs in all. There's something veryone, and they all make full use e Spectrum's colour, sound and hics capabilities. You'll receive a iled catalogue with your Spectrum.

232/network erface board

This interface, available later this ; will enable you to connect your pectrum to a whole host of printers, inals and other computers: The potentlal is enormous. And the nishingly low price of only $£ 20$ is sible only because the operating ems are already designed into the

lair Research Ltd, Stanhope Road, aberley, Surrey GU15 3PS.
Camberley (0276) 685311.

BY-PHONE-Access, Barclaycard or Trustcard holders can call.01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR.
Order

Oty Item	Code	Item Price \&	Total £
Sinclair ZX Spectrum-16K RAM version	100	125.00	
Sinclair ZX Spectrum-48K RAM version	101	175.00	
Sinclair ZX Printer	27	59.95	
Printer paper (pack of 5 rolls)	16	11.95	
Postage and packing: orders under £100	28	2.95	
- orders over £100	29	4.95	
		Total £	
Please tick if you require a VAT receipt \square			
* I enclose a cheque/postal order payable to Sincla	Resear	ch Ltd for \&	
*Please charge to my Access/Barclaycard/Trustca	accou	nt no.	
*Please delete/complete			

Signature
PLEASE PRINT
Name: Mr/Mrs/Miss $|\perp| \perp|1| \perp|\perp| 1|1| 1|1| 1$ Address

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

[^3][^4]MULTI-METER
$7 \mathrm{~N} \quad 360 \mathrm{TR}$
20,000 ohm/volt DC Volts: 0.1 , 0.5, 2.5, 10-150-250-1,000v.
AC Volts: 10-50, 250-1,000
RESISTANCE
RANGES
$\mathrm{X}_{1}, \times 10, \times 1 \mathrm{~K}$,
£14.10
P.\&P. 87p

TRANSFORMERS

$\begin{array}{ccr}240 \mathrm{v} & \\ 3-0-3 \mathrm{v} & 100 \mathrm{~mA} A & 82 \mathrm{p} \\ 6-0-6 \mathrm{v} & 100 \mathrm{~mA} & 87 \mathrm{p} \\ 6-0-6 \mathrm{v} & 250 \mathrm{~mA} & £ 1 \cdot 22 \\ 12-0-12 \mathrm{v} & 50 \mathrm{~mA} & 92 \mathrm{p} \\ 12-0-12 \mathrm{v} & 100 \mathrm{~mA} & £ 1.45\end{array}$
Post on above transformers 48 p .

9-0-9v 1A £1-80
$12-0-12 \mathrm{~V} \quad 1 \mathrm{~A} \quad £ 2 \cdot 40$

$15-0-15 c$	$1 A$	$£ 2 \cdot 60$
$6.3 v$	$1 \frac{1}{2} A$	$£ 1.80$

6-0-6V $\quad 1 \frac{1}{2} \mathrm{~A} \quad £ 2 \cdot 10$

Post on above transformers 87p.

All above prices include V.A.T. Send 80p for new 1982 fully illustrated catalogue, S.A.E. with all enquirles. Special prices for quantity quoted on request.

All goods despatched within 3 days from recelpt of the order.

M. DZIUBAS
 158 Bradshawgate, Bolton Lancs. BL2 1BA

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following
 Build a modern oscilloscope

- Recognise and handle current electronic components
- Read, draw andunderstand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?Getinto Mlectronics Now!

TEST EQUIPMENT CENTRES All oresish

RETAIL • MAIL DRDER • EXPORT • INDUSTRIAL • EDUCATIDNAL
TRIO 20 MHZ DUAL TRACE SCOPES 2 YEAR GUARANTEE CS 1820 Oelayed zweep： 0.2 usec to 0.5 sec Sweep：Modes CHI．CH2．DUAL and $A 00$ Dur Price $\mathbf{£ 4 2 0 . 0 0}$ inc．Vat IUK c／p £4．00） CS1566A NOR．AUTO．vioto： 0.5 usec Sweep： Modes CHI CH2．ALT．CHOP and AOO Our Price £299．00 inc．VAT（UK c／p £4．00）

100 KHZ TO 30 MHZ
6 Band Trio RF Generator．In／exit mod．

\qquad Unce
ag202a matening 20 Hz to $200 \mathrm{KMZ}$.C 78 （nc．VAT

FREQUENCY COUNTERS

aperatad［UKK／P $£ 1$
PFm 200a Pockel 8 digit LE
Max 5050 MHZ 6 digai
LEO Pockel IGSCI
Max 5506 digit
Bi 10 A B digli LED 2 ange 100 mHz
Bench ISABTRONICSI
8610 A 8 digit LED 3 range 600 MHZ

8 digii Bench LEO（GSC）
861089 ditill Leg 3 range 600 MMZ Benchi＇SABTROHICSI
800089 digit LED 3 range 1000 MHZ
Bench ISABTROMICSI
TFO 40 B algilit $C 040$ mhz Jtuandar｜ TF200 8 digill CO 2 range 200 MHz TTMANOARI calers lor any couner up to 200 mHz TP600 600 MHZ 细 TPIDOO Will
OPTIONS

GENERATORS

All models $220 / 240 \mathrm{~V}$ ac
avole 4 band Sire／$\$ 0$ out tout
LAE27 Max durtortion $0.5 .11 / 2$ LLEADER IOHZ． 1 MHZ
Lab1z0a 5 aand 10HZ．1MHz stme $/$ S0 $0.05 .0 .8 \%$ dils
LAEI 25 as Lagizá but $0.0 ?^{?} \%$

OSCILLOSCOPE PROBE KITS
（UKK C／P 50p per 1 to 3）日NC plug Xi

OSCILLOSCOPES
（C／P Dual trace \＆4．00：SC110\＆1．00 Single Trace E3．00）
Wec Plus huill in cramponent $5 \mathrm{mV}: 0.5$ micro
$6 \times 7 \mathrm{~cm}$ display｜HAMEG
Optlonal tase
3030 Single frace $15 \mathrm{MHZ} .5 \mathrm{mV}: 0.5$ micro
sec．Plus built in componen ent tester． 95 mm
tube．Trig to 10 OMHZ［CAOTECH］
Mm 203／3 Dual 20MHZ：Trig 1030 MHZ
$5 \mathrm{mv}: 0.5$ micro sect． $8 \times 10 \mathrm{~cm}$ display
LMAMEG］
hm 203／4．As 子tove bul 2 mV －Algebrale
3131 Oual trace 15 MHZ trig． 1035 MHZ
5 mv V． 0.5 micro sec． 130 mm tube plus
componen lester
HM204 New model with component lesiler
Oual 20 MHZ delayed sweep：trig to 40 MhZ
Siv O．i

301 EDGWARE ROAD．LON
404／406 EDGWARE ROAD．LONDON W2

LOW COST DIGITAL
MULTIMETERS
31／digil LCD Hand Held amm＇s： AS＝Rotary）（Models＝Pust Bunon： UK c／o 65 a all models
＊D25C 13 Range 0．2A 0C 2 megohm｜SW｜ $\mathbf{E 2 6 . 5 0}$ －MO30C 25 hange 1 A AC／OC 200 megohm IAS $\mathbf{5 3 7 . 5 0}$ －KD55C 28 Ranne ICA AC／OC 200 megonm｜RS｜$£ 41.50$ －60126 hange 2 A AC／OC 20 megohm（Pa）$£ 36.50$ 188 m 16 A ange 10 CA OC $\mid \mathrm{mo} \mathrm{AC\mid} 2$ megohm Plus HFE｜transisiorl Tester IRS｜ 189 m 30 Range 10 A AC／OC 20 me gohm Plus hfe Tester［RS］
e69．95
ANALOGUE MULTIMETERS GENERAL RANGE
Low cost relisble meters fall supplited with bans／leads）［UK C／P 55p］
－ansana iv range pocket zow／Volt $£ 205.85$
$£ 217.35$
1445 Dual 15 mHz
Tazo Oual rom Hz £217．35 £228．85
$\begin{array}{cc}\times 10 & \varepsilon 7.95 \\ \times 1 . \times 10 & \varepsilon 9.45 \\ \times 100 & \varepsilon 10.50 \\ \times 16.95\end{array}$
ETIO2 lifrange $2 \mathrm{~K} /$ Voll Pockel
STS 11 range pocket $4 \mathrm{~K} /$ Volt
NH56R 22 range pockel 20K／Voif YM3607R 19 range plus Hetast 20K／Voll Kat 500116 ran
double $50 \mathrm{~K} / \mathrm{Volf}$
double SIN 21 range plus He Teat $20 \mathrm{~K} / \mathrm{Volt}$
ST303TR AT 102018 range Delure 2 KV and Mla Terter TMK500 23 range plus 12A OC plus cont buzzer $30 \mathrm{~K} / \mathrm{Voll}$ 158第 36 rango large scale 10A AC／OC 50K／Volt
large acale 10A
AC／OC Hie lest 50 meg．ohm．IKV
AC／OC $100 \mathrm{k} / \mathrm{Vall}$
Choose from UK＇s largest range
AF［All with int／Ent mod．variable output｜ TE200 100KHZ． 100 MHZ 6 band
LSG17 100KHZ－150MHZ（450 MHZ－harm｜
LEADER
FUNGTION（all sine／SO／Triangle／TTL etc．） 5020 A IH2．200KHZ ISABTROMICSI 849.95 £71．30 c90．00 ¢86． 25 E146．00 E273．00 \＆129．95

DIRECT READ HV PROBE

［UK C／P 65p］0／40 Kv：20／
£ 18.40

£172．50 SCs10A Mew model 10 MHZ batiery portable． 10 mV 0.1 usec $₹$ race an facilitites（thanoab） 10ptions．Carry case Micads
Micher
$-U K$
made
safgan－

07410 Dual 10 mHz
£20．64
$\$ 5.95$
£6．50
£ 10.95
1650 216.95
£23．95
$\mathbf{\varepsilon 2 8 . 5 0}$
c．36．85
£SO． 85
697.75
$ع 113.85$
£253．00
£276．00
\square
\＆T．V．SOUND TUNER

BUILT AND TESTED

In the cut－throat world of consumer electronics，one of the questions designer apparently ponder over we save money by chopp． ing this out？＂In the domestic TV set，one of the first casualties seems to be and no tone controls are common
$£ 22.95+£ 2.00 \mathrm{p} \& \mathrm{p}$ TV companies do their best to transmit the highest quality sound．Given this background a compact and independent TV tuner that connects direct to your $\mathrm{Hi}-\mathrm{Fi}$ is a must for quality reproduction
Iso E．T．I．kit version of above without chassis，case and hardware．$£ 12.95$ plus $\mathbf{£ 1 . 5 0} \mathrm{p} \& \mathrm{p}$

PRACTICAL ELECTRONICS SPECIAL OFFER STEREO CASSETTE

 RECORDER KIT ${ }_{\text {wMPLETE }}$ONLY £31．00 plus $£ 2.75$ p\＆p． －NOISE REDUCTION SYSTEM．• AUTO STOP．－TAPE COUNTER．－SWITCHABLE E．Q．INDEPENDENT LEVEL CONTROLS 1\％．RECORD／PLAYBACK I．C．WITH ELECTRONIC SWITCHING．－FULLY
VARIABLE RECORDING BIAS FOR
ACCURATE MATCHING OF ALL TYPES
Kit includes tape transport mechanism，ready punched and back
printed quality circuit board and all electronic parts．is．semiconductors

P．E．STEREO TUNER KIT

This easy to build 3 band stereo AM／FM tuner kit
is designed in conjunction with Ptactical Electronic （July＇81）．For ease of construction and alignment it incorporates three Mullard modules and an I．C．
FEATURES：VHF．MW，LW Bands，interstation muting and AFC on VHF．Tuning meter．Two back
printed PCB＇s．Ready made chassis and scate．Aerial printed PCB＇s．Ready made chassis and scate．Aerial： AM－ferrite rod，FM－75 or 300 ohms．Stabilised powe
supply with＇C＇core mains transformer．All componen supply with＇C＇core mains transformer．All components diagram and instructions．
$£ 17.95$ Plus £2．50 p\＆p．
Self assembly simulated wood cabinet sleeve

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications－disco units，guitar amplif iers，public address systems and even high power domestic systems．The unit is protected against short circuiting of the load and is safe in an open circuit condition．A large safety margin exists by use of generously rated com ponents，result，a high powered rugged unit The PC board is back prinied，etched and luminium chassis is preformed and ready the Supplied with prearts circuit diad and instructions．

ACCESSORIES：Suitable mains power supply Suitable LS coupling ：$£ 8.50+£ 2.00$ p\＆p．

PECIFICATIONS：
Max．output power（RMS）： 125 W ．Operating voltage（DC）：50－80 max．Loads：4－16 ohm Frequency resp onse measured＠ 100 watts： $5 \mathrm{~Hz}-20 \mathrm{KHz}$ ．Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ 47K．Typical T．H．D．＠ 50 watts， 4 ohms 0.1% ．Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$ Suitable LS coupling electrolvtic．$£ 1+25 p$ p\＆p．
BOR REGODDDECK
Manual single play record
deck with auto return and cueing lever．Fitted with stereo ceramic cart－ idge 2 speeds with 45 rpm spindle adaptor ideally $£ 12.95+£ 1.75 \rho 8 p$

SPECIAL OFFER！Replacement Stereo cass－ atte tape heads－$£ 1.80$ each．Mono：$£ 1.50$ each．Erase： $\mathbf{£ 0 . 7 0}$ each．Add 50p p\＆p to order．

21A HIGH STREET，ACTON，W3 6NG．
Note：Goods despatched to U．K．postal addresses
30／10／B2 and subject to change without notice．
for despatch．ATVC Limited feserve the of order
date their products without notice．All enquiries send
S．A．E．Telephone or mail orders by ACCESS welcome
date their products without notice．All enquiries

BUILT
$£ 10.50$
£14．25 + ＋1．15p\＆p
SPEAKER BARGAINS
2 WAY 10 WATT
SPEAKER KIT
$8^{\prime \prime}$ bass／mid range and $3 \%^{\prime \prime}$ wire，crossover components wire，crossover component cut $=$ no cutting required Finish－chipboard covered wood simulate，size $141_{2^{\prime \prime}}$ $8 y^{\prime \prime} \times 4$＂．PAIR for ONLY £ 12.50 plus E 1.75 p\＆p

ALL CALLERS TO： 323 EDGWARE ROAD． LONDON W2．Telephone：01－723 8432.
$(5$ minutes walk from Edgware Road Tube Sration

E.E. PROJECT KITS I.C.a TOOLS CASES TRANSISTORS RESISTORS KITS CAPACITORS HAROWARE
 MAGENTA

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of parts to enable you to construct EE, prolects. KIIts. Includd ALL
THE ELECTRONICS AND HAROWARE NEEDED. Pyinted circuit boards fully etched THE ELECTRONICS AND HAROWARE NEEED. Psinted circuit boards (fully etched,
drilled and roller tinned) or Veroboard ane, of course, included as specifled in the original artlele, we even include nuts, screws and IC. Sockets. PRICES INCLUDE CASES unless
otherwlse stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the is sue of E.E. which includes the project-you will need to order the instruetion reprint at an extra 45 p each.
Reprinte available separately 45 p each + p. \& p. 45p.

SINE WAVE GEN Oct. 82.
G. P. PRE-AMP Oct. 82.

LIGHTS ON ALERT Oct. 82.
CONTINUITY CHECKER Sept 8 SOUND SPLITTER Sept 82 . C.B. BATTERY CHARGER S 82 .

SCREEN WASH DELAY Sept $82,$| $£ 12 \cdot 65$ |
| :---: |
| $£ 4.48$ | SCREEN WASH DELAY Sept 82. £ TWO TONE DOORBELL ALARM 82, less case and bell transiormer. BRAKELIGHTRELAY JUIY 82 . 2.WAY INTERCOM July 82 . ELEC TRONIC PITCH PIPE July 82 REFLEX TESTER July 82. SEAT BELT REMINDER June EGG TIMER June 82 . REMOTE TRIGGER OPTIOR WITH CAR LED VOLTMETER May 819 . 26 May 82

2k RAM PACK Ar V.C.O. SOUND EFFECTS UNIT Aprl 82 CAMERA OR FLASH GUN TRIGGER Mar 82. $£ 12.41$ less trlo od bushes
POCKETTIMER Mar $82 . ~$ POCKET TIMER Mar 82. £3.71. CAR OVERHEATING ALARM. FEb. 82. c9. 61.
SIMPLE STABILISED POWER SUPPLY. Jan, 82. £24.58
MINIEGG TIMER. Jan. 82. $23 \cdot 94$
ESTREN MODULE. Jan, 82, less speaker,
MODEL TRAIN CHUFFER. Jan, 82. 88.27.

GOUARE SIX. Dec. 81. 24-70.
GUITAR ADAPTOR. Dec. 81. $53 \cdot 76$ REACTION METER. Dec. 81 . $517 \cdot 55$.
ELECTRONIC IGNITION. NOY. E25-98 8IMPLE INFRA RED REMOTE CON. TROL. Nov. 81 E16.98,
PRESSURE MAT TRIGGER ALARM. Nov. 81.26 .27 ess mate.
EXPERIMENTER CRYTAL SET. Nov, 81. Less aerial. 5 -99.
CAPACITA CE METER. Oct. 81. £23.51. SUSTAIN UNIT. Oct. 81. . 12.76 . 'POPULAR DESIGNS'. Oct. 81. TAPE NOISE LIMITOR. $\hat{\text { Lit. }} 5$ MEADSAND TAILS GAME. 2,
CONTINUITY TESTER, $£ 3.95$.
PHOTO FLASH SLAVE, $£ 3.46$. FUZ2 BOX. 87.29.
OPTO ALARM. £6.78.
SOIL MOISTURE UNIT. 15 -81.
CEE ALARM, E7:
0-12YPOWER SUPPLY. Sept. 81. E17.98 CMOS CAR SECURITY ALARM.
CMOS D1E. Sept 89 . E7-. 99
LED SANDGLASS. Aug. 81. E8. 53.
CMOS METRONOME. AUg. 81. E8.23. COMBINATION LOCK. July 81 . Less case. E18-58.
ess bell ALARM SYSTEM. June 81 TAPE AUTO START. June 81. £12-79. LIGHTS REMINDER AND IGNITION LOCATOR E.E. May 81 ES. 66 .
SOIL MOISTURE INOICATOR EE MAY 81. EA. O9. GUDPHONE AMPLIFIER

ALARM E.E. May R1, \&5:-65

 £2.02. Led verslon $£ 2.73$

MORE KITS AND COMPONENTS

 IN OUR LISTS FREE PRICE LIST Prlce list included with orders or send sae (9×4)CONTAINS LOTS MORE KITS, PCBs \&
COMPONENTS
22 2. Lod version 22 \%
MINI SIREN, Mar, 81, £8.04.
LED DICE. Mar, 81, £8-44.
LED FLASHER. Mar. 81, E4. 29
MODULATED TONE DOORBELL
BENCH POWER SUPPLY. Mar. 81.
653.47.

THREE CHANNEL STEREO MIXER. Feb. 81. $618 \cdot 69$.
SIGNAL TRACER. feb. 81 . C8. 17 less probe.
Ni.Cd BATTERY CHARGER. Feb. 81 . £13.61.
ULTRASONIC INTRUDER DETECTOR. Jan, 81 less case, $£ 53.47$
2 NOTE DOOR CHIME. Dec. 80, $£ 10.32$. LIVE WIRE GAME. Dec. 80. E11-70, GUITAR PRACTICE AMPLIFIER. Nov. 80 . $£ 12.82$ less case. Standard case
E3. 88. High qually case E3.88. Hlgh quality case E8.33.
SOUND TO LIGHT. Nov. 80.3 channel. E21. 34.
TRANSISTOR TESTER. Nov. 80 , E11.63 inc. test leads.
AUDIO EFFECTS UNIT FOR WEIRD SOUNDS. Oct. 80. £1311.
BICYCLE ALARM. Oct. 80. Ef0-35 lesa
IRON HEAT CONTROL. Oct, 80, e5.86. TTL LOGIC PROBE, Sept. 80, £5-48. ZENER DIODE TESTER. JUne 80. \&8.66. 4 STATION RADIO. May $80 . £ 16 \cdot 29$ less Lase. LiGHTS WARNING SYSTEM. May bo. E4.68.
BATTERY VOLTAGE MONITOR, MaY 80. $£ 5$. 96 .

CABLE \& PIPE LOCATOR. Mar. 80. CA. 11 less coll former.
KITCHEN TIMER. MAR, 80, $\AA 14 \cdot 65$
STEREO HEADPHONE AMPLIFIER. MICRO MUSIC
MICRO MUSIC BOX. Feb, 80. £16-26, Grey Case es.99 oxtra.
SIMPLE SHORT WAVE RECEIVER. Feb, 80, $225 \cdot 86$. Headphones E2-98.
S0. £12-30.
MORSE PRACTICE OSCILLATOR.
Feb. 80, E4.62.
SPRING LINE REVERB, UNIT. Jan. Bo. c25.86.
UNIBOARD BURGLAR ALARM. Dec. 79. 186.03.

BABY ALARM. Nov, 79, £9.60,
CHASER LIGHTS. Sept. 79, £23-40,
SIMPLE TRANSISTOR TESTER. Sept. 79. E7.30.
DARKROOM TIMER. JUIY 79, E2-89.
ELECTRONIC CANARY. JUNe 79. £5. 86. MICROCHIME DOORBELL. FEB. 79. $815 \cdot 85$.
THYRI
THYRISTOR TESTER. Feb. 70: $£ 3 \cdot 7 \mathrm{FI}$. FUSE CHECKER. Oct. 78. £2.31.
SOUND TO LIGHT. Sept, 78, £8-42.
CAR BATTERY STATE INDICATOR. Sept. 78. Less case. £2-09.
R.F. SIGNAL GENERATOR. Sept. 78. IN SITU TRANSISTOR TESTER. June 78. E6.7]
WEIRD SOUND EFFECTS GENERA. TOR. Mar. 78. E5-59.

E51.98.

ELECTRONIC TOUCH
78. £2.73

RAPIO DIODE CHECK, Jan, 78. £2.74. PHONE/DOORBELL REPEATER. July 77. ©7.46.

1982 ELECTRONICS

CATALOGUE

Hlustrations, product descilptions, elrcults all Inare stock IInes for fast dellvery. Send 80p in stamps or add 80p to order.

MORE E.E. KITS PLUS M.E. and E.T.I, PRO MORE EIE. KITS PLUS M.E. and
JECT KITS IN THE PRICE LIST.

MAGENTA glve you FAST DELIVERY OF QUALITY COMPONENTS \& KITS, quality producto to all our customers-HAVE YOU TRIED US ?

MAGENTA ELECTRONICS LTD. EF46, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS., DE14 2ST. 0283 65435. MON.-FRI. 9.5. MAIL ORDER ONLY. ADD 45p P. \& P. TO ALL ORDERS. PRICESINC. VAT

Normal despatch by return of post.
OFFICIAL ORDERS WELCOME. OVERSEAS. Payment must be in steri IRISH REPUBLIC and BFPO: UK PRICES. EUROPE: UK PRCCES Plus : 0%.
ELSEWHERE: Write for quote.

SOLDERING/TOOLS
 ANTEX X5 SOLDERING IRON

25W £5.48
SOLDERING IRON STAND .. £1.98 SPARE BITS. Small, standard, large, 65p each. For X5 + X25 SOLDER. Handy slze SOLDER CARTON DESOLDER BRAID HEAT SINK TWEEZERS
DESOLDER PUMP
HOW TO SOLDER LEAFEETE LOW COST CUTTERS LOW COST LONG NOSĖ PLIERS STRIPPERS \&

CUTTERS
£2. 69
MULTIMETER TYPE 2. (YN360TR)
HELPING HANDS JIG \&6•30
Heavy base. Six ball and socket joints illuminated mágnifiers allow infinite varlation of clids through Small $2^{\prime \prime}$ dia. ($5 \times \mathrm{mag}$.) ${ }^{\circ}$. has 2 t " dameter ($2.5 \times$ magnifler attached), used and recommended by our staf.
VERO SPOT FACE CUTTER. NEROPINS MULTIMETER TYPE $\{(1,000$ ODV) $\& 5.48$
 RESISTOR COLOUR CODE mall $2^{\prime \prime}$ dia. (5x mag.) CAST IRON VICE SCREWDRIVER SET. $c 1.14$ c2. 40 POCKET TOOL SET DENTISTS INSPECTION MIRROR 238
 PLASTIC TWEEZERS Palr of probés with leads
(cC) ${ }^{69 p}$
CALCULATOR
ED. 11 colours 49p

TEACH IN 82

All top quality components as speclied by Everyday Electronics, Our kit comes
complete with
FREE COMPONENT IDENTIFICATION SHEET Follow thle educational series and learn about electronics-Start Today.
LIST 1 and LIST 2 together $£ 27 \cdot 98$. LIST $3 £ 5 \cdot 98$.
\star USTS SPECIAL OFFER \star * \star
WOODEN CASE KIT also avallable $111 \cdot 98$-wood, formica, glue, screws etc. Cut to slze.
12 part selles, reprints avallable of prevlously published parts. 45p cach. LISTS 1, 2, AND 3 ALL AVAILABLE NOW. ALSO WOODEN CASE KIT.

| BOOK |
| :--- | :--- | :--- |

ADVENTURES WITH ELECTRONIOS घumpom

An easy to follow book sultable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pletures. 16 projects-Including three radlos, siren, metronome, organ, intercom, tlmer, atc. Helps you learn about electronic components and how circults work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics £2-40. Component pack £18.88 less battery.

ADVENTURES WITH DIGITAL ELEGTONIOS

New book by Tom Duncan in the popular 'Adventures' series. This book of entertaining and instructive projects is designed for hobbyists and students. It provides a stepping stone to the microprocessor.
The first part deals with the properties of some basic ICs used in digital electronics.
The second part gives details of how to build eight devicesshooting gallery, 2 -way traffic lights, electronic adder, computer space invaders game, etc.
For each project there is an explanation of 'how it works' and also suggestions for 'things to try'.
No soldering-all circuits built on 2 Bimboard 1 breadboards.
Adventures with Digital Electronics book $\mathbf{£ 3} \mathbf{- 2 5}$. Component pack $£ 42 \cdot 50$, ref. EEDC. All the components needed including 2 breadboards and hexadecimal keyboard. Available less breadboards $£ 29 \cdot 98$, ref. EEDF. Both less battery.

Courses

CONQUER THE CHIP-master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept C3, Reading, Berks RG1 1BR.

Receivers and Components

SUPER KWIKMAIL OFFER. 300 mixed components including IC's, diodes, etc. components including including $P \& P$ or send SAE for list. £1.50 including P\&P or send SAE for ist.
KWIKMAIL ELECTRONICS, 135 Tan's KWIKMAIL ELECT
Dell, Harlow, Essex.

XMAS ELECTRONICS SALE

(Deduet 15% discount on orders of 815 and over) MOeduet 5\% DYNAMIC MOVING COL MICRO. PHONES. 200 ohms Impedance. WIth switch. Fitted with lead and DIN plug. Used but in nice condition.
Only $\varepsilon 2$ each D.D. 50 p. MICROPHONE HEAOPHONE
 EXTENSION. Over 1 metre II Iength, 350 each p.p. 150 p.
HIgh quality.
4 Mlke, Cost over $£ 40$ per palr. Our price $£ 4.50$ per palr p.p. $£ 1.2$ pairs for $£ 9$ post free. Less boom mike $£ 4$ per DETE D.D. E1. 2 pairs $£ 9$ post free. AMPLIVOX HEAD. SETS WITH BOOM MIKE. $84 \cdot 50$ per pair postage $£ 1$. 2 palrs for $£ 9$ post free. Less boom mike $£ 4$ per palr,
p.a. $£ 1.2$ pairs for $£ 8$ post free. Impedance of above p.p. $£ 1.2$ parrs for $£ 8$ post free. Impedance of above Ministry plug. Standard new jack plugs avallable at 25p each. 2 for 40 p . Headphone extenslon sockets only 25 p each. 2 for 40 p . GENUINE AFV TANK HEADSETS and MIKE E3.50, p.p. E1. $^{2} 2$ palrs for 27 post free. HAVE YOU SEEN THE GRE aUdA A Unhelievably low prices. Send 50 , and recelve catalogue and FREE RECORD SPEEDINDICATOR. TrY A JUMBO PACK. Contains transistors, resistors, caps, pots, swliches, radlo and electronle items. Over $\varepsilon 50$ worth for $\varepsilon 11$, carriage $£ 2 \cdot 50$. MINI JUMBO PACK (£20 worth) £5. P.p. $£ 1.50$. BRIOGE RECTIFIERS (Phillips) 400 PIV prlce 90p, p.p. 20p. SEMICONDUCTOR SALE. ITT BC183 transistors. 10 for 30p or 4 D each. ITT IN4002 diodes 3 p each. io for 25 p . OPTRON TYPE OP160 INFRA RED OIODES. High output Po wer. Matched to the OP500 and OP500SL serles photo transistors. Our
RIDICULOUS RESISTOR SALE, I watt carbon film resistors. 5% tolerence. High quality resistors made
under exaeting conditions by automatic machines. E12 under exacting conditions by automatle machines. E12
ranoe IR0 to iomo. In lots of 1000. (25 per value).Only $\varepsilon 8$ per 1000 . Lots of 5000 for $£ 35$.
A fully adlustable highly efficlent BLE AERIALS: A fully adjustable highly efficlent whip aerlal In 5 plated sectlons. As used on Ex Govt. Manpacks. Brand new in makers boxes. $22 \cdot 50$ each, p.p. 75 p. 2 for $£ 5$ post free.
Please add 15% VAT to all orders including post packing and carriage.
MYERS ELECTRONICS. (E.E.), 12/14 Harper Street, Leede LS2 7EA. Leeds 452045. New retail premlses at
above address (opoosite Corals). Callers welcome 9 to 5 Mon, to Sat. (Lunch 2.15 to 3.15 p.m.). Sunday open 10 to 3 p.m.

Reach effectively and economically to-days enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $£ 7.24$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 31 pence per word (minimum 12 words), box number 60p extra. All cheques, postal orders,

BARGAIN COMPONENTS ASSORTED on circuit boards, only $£ 3 \cdot 50 / \mathrm{kg}$. Postage £1.00. S.A.E. for details. (DEE) 35 Galloway Road, Fleetwood, Lancs.

BIG BARGAIN BOX

Our Big Bargain Box contalns over a thousand com-ponents-resistors, capaeltors, pots, switches, dlodes, transistors, panels, blis and pieces, odds and ends. All useful stuff-would cost many times the prlce we are asking if bought separately. Approx welght 4lbs. ONLY E5.00 inc. post-your'e bound to come back for anothert ESP, 1470 Foundry Lane, Southampton, SO1 3LS Lots of surplus bargalns on our latest IIst-send an s.a.e, for your copy now.

300 SMALL COMPONENTS, transistors, diodes. $£ 1.707 \mathrm{lbs}$ assorted components $£ 4.25$ lolbs $£ 5 \cdot 75$. Forty assorted 74 series ICs on panel $£ 1 \cdot 70$. 500 capacitors $£ 3 \cdot 20$. List 20p refundable. Post 60p. Optionable insurance 20p. J. W. B. RADIO, 2 Barnfield Crescent, Sale, Cheshire M33 1NL.

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Hard ing : Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate settlement.

AERIAL BOOSTERS trebles incoming signal, price $£ 7 \cdot 00$. SAE leaflets. VELCO ELECTRONICS, Ramsbottom, Lancashire BL0 9AG.

Service Sheets

ANY PUBLISHED, FULL-SIZE SERVICE SHEET by return $£ 2+$ LSAE. CTV/ music centres £3. Repair data with all circuits, layouts, etc, your named TV or Video $£ 8.50$. Free 50 p mag. All orders, queries-T.I.S. (E.E)., 76 Churches, Larkhall, Lanarkshire.
BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. £l. 25 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

Software

EDGE CONNECTORS, double 39 way. 1 " adaptable ZX 81- spectrum $£ 1$, including postage. HARDING, 42 Woodfield Avenue, Lincoln.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below In the next avallable iseue of Everyday Electronics for. ... insertlons. I enclose Cheque/P.O. for £.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

-			\square

NAME

ADDRESS

EVERYDAY ELECTRONICS

Claesified Advertieomente Dopt., Room 2512
KIng's Reach Tower, Etamiord Etreet, London sé IL
Telephons 11-201 5012
Rate:
31p per word, mindmum 12 words. Box No. 10p extre.

at YOUR SERUICE

etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

For Sale

DUAL-BEAM 10 MHZ oscilloscope, good as new £150. Tel: 0633-857309. Evenings only.

OPITCAL FIBRES for use in communications, electrical isolation, remote sensing, illumination, etc. Introductory package contains five sample lengths of silica, glass and plastic fibres totalling ten metres plus a forty page fibre optics guide. with theory, uses, practical circuits, etc. Send $£ 5.95$ to Quantum Jump Ltd., 53 Marlborough Road, Tuebrook, Liverpool Li3.

Books and Publications

BASIC ELLECTRICITY in 5 volumes, BASIC ELECTRICITY in 6. £8/set. Colchester (0206) 866123.

INDEX TO ADVERTISERS

Alcon762
Ambit 821Audio Electronics836
I.C.S. Intertext 840
Jupiter Cantab 767
Litesold 834
Bi-Pak 764, 765B.K. ElectronicsCov. III
B.N.R. \& E.S. 835
Bull J. 769
Cricklewood Electronics 763, 766
Dziubas M. 834
E.D.A. 823
Electrains 766
Electronize Design Cov. II
Electrovalue 834
Enfield Electronics 768
Europa Electronics 768
G.S.C. 762
Greenweld 766
Grenson 824
Magenta Electronics 837
Maplin ElectronicsCov. IV
Phonosonics 828
Pops Components 840
R \& TVC 836
Radio Components Specialists 824
Rapid Electronics 831
Sinclair Products 832, 833
Texas Inst, 827
Titan Transformers 766
T.K. Electronics 828
Watford Electronics 770
West London Direct Supplies 839
Wilmslow Audio 828

DIGITAL WATCH REPLACEMENT PARTS. Batteries, displays, backlights, etc. Also re ports publications charts. SAE for full list. PROFORDS, Copners Drive, Holmer Green, Bucks HP15 6SGA.
ME
NMES
$10 \times 10 \mathrm{mtr}$ reels 3 amp PVC cable mixed colours 5.00 Prices include P \& P vat. Orders under £2 ada 20p. SAE for list of copper and resistance wire. Dealer en

FREE MULTIMETER (Brand new)! When you order over $£ 25$ worth of our secondhand Test Gear. For details large SAE to: S.H.E., 5 St Joseph's Park, Ballycruttle,

SILVER OXIDE BATTERIES

Save pounds on sifver oxide and alkaline button cells. Fully guaranteed. e.g.: LR44 for Pentax ME Super camera only $42 p$ each post free.

For FREE EQUIVALENTS CHART and price list send s.a.e, to:
H. M. WHEELER \& CO., (Unit I), I5 Hawthorn Crescent, Bewdley, Worcs. DYI2 2JE

PEN WATCE-Slim stainless steel pen, combining quartz 5 function watch, easy battery change, uses 'Parker' refill, guaranteed. ONLY £3.99. TAITS MAIL ORDER, 31 Lime Grove, Addlestone, Surrey

NO BATTERIES NO WIRES only £29.95 PER PAIR
$+\quad$ E6.75 VAT + E6.75 VAT
The modern way of instant 2 -way communications Just plug into power socket. Ready for use. Crysta clear communications from room Volume control, with 'buzzer' call and light indicator Useful as inter-office intercom. between office and warehouse, in surgery and in homes. Also available F. M. model. Per pair for $\mathbf{£ 4 9} 95$ VAT \& P \& P incl

NEW AMERICAN TYPE CRADLE
TELEPHONE AMPLIFIER
学娄
$£ 18.95$
+84.65 VAT
\& P \& P incl.
Latest translstorised Telephone Amplifier. with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can isten at a thop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes. consult fles. No long waiting, saves time with long distance calls. On/off switch, volume control. Conversation recording. model at $£ 20 \cdot 95, £ 4 \cdot 95$ VAT \& P \& P lncl.

DOOR ENTRY SYSTEM

No house / business / surgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety. Talk two pressing a remote control button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. kit with one internal Teiephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock): mains power unit, multicore cable, $50 f t$ and wiring diagram. Price $£ 59.95$ includ ing VAT \& P \& P. E tra phone £9.95.
PLEASE ALLOW 10-15 DAYS FOR DELIVERY
0-day price refund guarantee on all item.
Access and Barclay Visa Card welcome.
Personal Callers Welcome
WEST LONDON DIRECT SUPPLIES (EE12) vé LONDON THE VRALE, ACTON NDON TW 7RO Tel. 017409760 ?

Make the connection with Access

and receive a regular postal delivery of Everyday Electronics. It's easy, it's straightforward and it's quick. Just use the subscription order form to get your Access card account charged with the price of a subscription or order your subscription through Access on the phone: (01) 8866433 . If you pay by cheque or postal order, use the subscription order form in the usual way.

SUBSCRIPTION ORDER FORM

I wish to become a subscriber to Everyday Electronics for one year and enclose cheque/ postal order value.
no... made payable to IPC Magazines Ltd.

Complete this portion if you are using your Access card account. I authorise you to debit my Access card account with the above amount.

My Access no. is \square (Block letters please)

Subscription Rates:
UK, Isle of Man, Channel Islands and Irish
Republic £11
Overseas £12
Unless you are phoning your order, complete and post this order form to:
Everyday Electronics, 2613 King's Reach Tower, Stamford Street, London SE1 9LS.

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

IN YOUR OWN HOME - AT YOUR PACE
ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are stud ying for an examination ICS guarantee coaching until you are successful.

City \& Guilds Cextificates

Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)

$$
\begin{aligned}
& \text { Certificate Courses } \\
& \text { TV and Audio Servicing } \\
& \text { Radio \& Amplfier Construction } \\
& \text { Electronic Engineering* and Maintenance } \\
& \text { Computer Engineering* and Programming } \\
& \text { Microprocessor Engineering* } \\
& \text { TV, Radio and Audio Engineering } \\
& \text { Electrical Engineering,* Installation } \\
& \text { and Contracting *Qualify for IET Assocate Membership }
\end{aligned}
$$

POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus
Subject of Interest
Name
\qquad

Address

Post to:

London SW8 4UJ

WHY USE STRIPBOARD?

Make your own PCB. It's easy:
"GET YOU STARTED" KIT 12V Mini Drill (takes $\frac{1}{2} A$). 1 mm Bit.
25 sq. ins. Copper Clad.
PCB Etchant for $\frac{1}{2}$ Itr.
Tweezers and Dish.
Fine Etch Resist Pen.
Instructions. Only £6.00.
"SUPER" KIT As above with:
3 Pens, Fine-Med.-Thick.
75 sq. ins. Copper Clad.
3 Sheet Transfers-Etch Resist.
Only £8.50.

SIMPLE PCB DRILL 12 V Motor with chuck attached with 3 collets 0.8 to 2.0 mm . £4.50. PCB ETCHANT
Double strength to make $\frac{1}{2}$ Itr. solution. 90p.
ETCH RESIST PENS
Set of 3, Fine-Med.-Thick. £1-80. COPPER CLAD BOARD $6^{\prime \prime} \times 6^{\prime \prime} \times 1 \mathrm{~mm}$ on Pax. 25 p sheet. Prices are inclusive but add 60 p P\& P to each order. Cheques \& P.O.'s payable to POPS Components.

POPS OOMPONENTS ${ }^{38}$ Lowwer Addiscombe Rd. Groydon CRO 6AA

CAN YOU SPOT THE CONNECTION?

If you enjoy the challenge of electronics and the satisfaction of a job well done you should read Practical Woodworking. The wealth of easy-toconstruct projects are designed to be, not only attractive, but useful in and around the home. Our December issue includes a Rocking Motorbike and an ingenious Magic Box - both great ideas for Christmas and a family desk great for the home hobbyist in painting, writing sewing or, of course, electronics. Get connected to

\star PROMPT DELIVERY \star PRICES INCLUDE V.A.T. \star AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

6 piano type keys

STEREO CASSETTE TAPE DECK MODULE Comprising of a top panel and tape mechan ism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontal installation intó cabinet o console of own choice. These units are brand new, ready built and tested. Features: Three digit tape counter. Autostop. Six piano type keys, record, rewind, fast forward, play, stop and eject. Automatic
record level control Main inputs plus record level control. Main inputs plus secondary inputs for stereo microphones input Sensitance. 68 K Output level 400 mV . im pedance: 68 K . Output level: 4 V to both left and right hand channels. Output Im pedance: 10 K . Signal to noise ratio: 45 dB Wow and flutter: 0.1%. Power Supply requirements: $18 V$ DC at 300 mA . Connections The lett and right hand stereo inputs and outputs are via individual screened leads, all terminated with phono plugs fohono sockets provided). Dimensions: Top panel $51 / 2$ in x $11 / / \mathrm{in}$. Clearance required under top panel $21 / 4 i n$. Supplied complete with circuit diagram and connecting diagram. Attractive black and silver finish.
Price $£ 26.70+£ 2.50$ postage and packing.
Supplementary parts for $18 V$ Supplementary pars for 18 V D.C. power supply (transformer, bridge rectifier and smoothing capacitor) $£ 3$.

NEW RANGE QUALITY POWER LOUDSPEAKERS $15^{\prime}-12^{\prime \prime}$ and $8{ }^{\prime \prime}$. These loudspeakers are ideal for both hi-fi and disco applications. Both the 12^{\prime} and $15{ }^{\prime \prime}$ units have heavy duty die-cast chassis and aluminium centre domes. All three fitted with attractive cast aluminium (ground finish) fixing escutcheons. Specification and Price

15' 100 watt R:M.S. Impedance Bohm 59 oz . magnet, $2^{\prime \prime}$ aluminium voice coil. Resonant Frequency 20 Hz . Frequency Price $£ 32$ each. 63.00 Packing and Ca riage each.

12" 100 watt R.M.S. Impedance 8 ohm, 50 oz . magnet. $2^{\prime \prime}$ aluminium voice coll Resonant Frequency 25 Hz . Frequency Response to $\mathbf{4 K H z}$. Sensitivity 95dB. Price £23.70 each. 63.00 Packing and Carriage each
$8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohm .20 oz magnet. $1 \frac{1}{2}{ }^{\prime \prime}$ aluminium voice coil, Resonant Fequency 40 Hz , Frequency Response to 6 KHz , Sensitivity 92 dB . Also available with black cone fitted with black meta protective grill. Price: White cone £8.90 each. Black cone/grill £9-50 each. P. \& P. £1-25.

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) ${ }^{\text {3" }}$ round with protective wire mesh, Ideal for bookshelf and medium ized Mi-Fi speakers. Price £.3.45 each.
TYPE 'B' (KSN1005A) 3年" super horn. For general purpose speakers, disco and P.A. systems, etc. Price £ $4 \cdot 35$ each.
TYPE 'C' (KSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For $\mathrm{Ht}-\mathrm{Fi}$ systems and quality discos etc. Price $£ 5.45$ each.
TYPE 'D'(KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dtspersion horn. Upper frequency response retained extending down to mid range ($2,000 \mathrm{c} / \mathrm{s}$) Suitable for Hi-Fi systems and quality discos.
Price $£ 6.90$ ach.

TYPE 'E' (KSN1038A) 33"' horn tweeter with attractive sllver finish trim. Suitable tor Hi-F monitor systems, etc. Price $\mathbf{£ 4} \mathbf{3 5}$ each.

TYPE 'F' (KSN1057A) Cased verslon of type E^{\prime}. Free standing satellite tweeter. Perfec dd on weeter systems. P
U.K. post free (or SAE for Piezo leaflets).

1 K-WATT SLIDE DIMMER
\star Controls loads up to 1KW.

* Compact Size $4 \frac{3}{7}{ }^{\prime \prime} \times 1 \frac{3}{16}{ }^{\prime \prime} \times 2 \frac{1}{\frac{1}{2}}$.
\star Easy snap in fixing through panel/cabinet cut out. \star Insulated plastic case.
\star Full wave contral using 8 amp triac.
* Conforms to BS800.
* Suitable for both resistance and inductive loads. Innumerable applications in industry, the home, and disco's/theatres, etc.
Price £. $11 \cdot 70$ each +50 p P\&P. (Any quantity.)

1000 MONO DISCO MIXERcompletely built and tested
employing modern I.C. circuitry Can be mounted verticat or horiCan be mounted vertical or horizontal into cabinet, console, etc
 and mic. inputs. Headphone monitor socket. Compatible with OMP100 Power Amp. (500 mV O/P Controls: Microphone talk over switch with separate volume, treble and bass.

Three maln fader (level) controls with master volume, treble and bass. Smart Monitor selector switch with monitor level control. Maing and switch Smart black finish. Size: $535 \times 110 \times 60 \mathrm{~mm}$. Po
Price: $£ 39 \cdot 99+£ 2.25 \mathrm{P}$

MULLARD SPEAKER KITS

12' 80 watt R.M.S. loudspeaker.
A superb general purpose twin cone loudspeaker. 50 oz. magnel. $2^{\prime \prime}$ aluminium quency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB . Impedance 8 ohm Attractive blue cone with aluminium centre dome Price £17. 99 ea $+£ 3.00 \mathrm{P}$ \& P .

TYPE 'E'
TYPE 'F'

B.K. ELECTRONICS

Post this coupon now for your copy of our 1983 catalogue, price $£ 1.25+25 p$ p\&p. If you live outside the UK send $£ 1.90$ or 10 International Reply Coupons. I enclose $£ 1.50$.

Name
Address

Telephone: Southend (0702) 552911/554155
Shops at
159-161 King Street, Hammersmith, London W6 Tel: (01) 7480926 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292 284 London Road, Westcliff-on-Sea, Essex. Tel: (0702) 554000 All shops closed Mondays

[^0]: * One dictionary defines the transducer as a device which receives waves from media or transmission systems and supplies related waves to other media or transmission systems.

[^1]: *For full accuracy of definition the sampling rate must be at least twice the frequency of the highest frequency sinewave component of the signal, as given by Fourier analysis.

[^2]: The photos show a pupil of the authors

[^3]: LIIESTITABEOFEEMNGA COMPLIESODIT: NGTKII farioninamy

 LITESOLD LC18E 240v high performance iron, made to professional standards in our own works, fitted with 3.2 mm bit. 2 alternative bits, 1.6 and 2.4 mm . Reel of 3 metres 18 swg flux-cored solder. Stainless steel tweezer. 3 soldering aids. Reel of 1.5 metres de-soldering braid. Packed in clear PVC presentation/storage wallet. Superb present - ideal for beginner or expert.
 SPECIAL PRICE - £13.95 inc. VAT \& P.P.
 (normal resale value $£ 17.49$ inc.) IRON only- $£ 5.66$ inc.(normally $£ 6.92$).
 Spares, accessories and atter-sales service available from us.
 16-page colour catalogue -60 p. Send cheque/P.0. to LITESOLD or ring for Access/
 Barclaycard
 sales.

 Spencer Place, 97/99 Gloucester Road, Croydon CRO 2DN, Surrey. Tel: 01-689 0574.

[^4]:

 METERS: $110 \times 82 \times 35 \mathrm{~mm}$ $30 \mu \mathrm{~A}, \quad 50 \mu \mathrm{~A}, \quad 100 \mu \mathrm{~A} . \quad$ ع5.90. Post 50p.
 METERS: $45 \times 50 \times 34 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$ $25 \mathrm{v}, 1 \mathrm{~A}, 2 \mathrm{AA}, 5 \mathrm{~A} 25 \mathrm{~V}$.
 £2.90. Post 30p.
 METERS: $60 \times 47 \times 33 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$ $100 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$ $50-0-50 \mu \mathrm{~A}, 100-0-100 \mu \mathrm{~A} . £ 4 \cdot 76$. VU meters. £5•32.
 Post on above meters 30p.
 Silicone grease 50 g £1-32 Post 14 p .
 NI-CAD BATTERY
 CHARGER
 Led indicators charge-test swltch For PP3, HP7, HP11 \& HP2 size batteries.
 Price $£ 5 \cdot 85$ Post 94 p.

