

Finds bugs in PIC sofiwnare

MAGNETIC FIELD DEIECTOR
Investigate static or a_Go ffelds
EPE TEACMON Capacitors

2000 - PARTR 2

Interface o Nevis o Circuit Surgery New Technology Updateonet Morlk http://www.epemag.vvimborno.co.uk

12v 18Ah SEALED LEADACID BATTERIES, new and boxed, unused pack of 4 £ 39.96 ref CYC7 or $£ 15$ each ref CYC6
AUTOMATIC CHARGERFOHTe woweameres erajos

A new range of $12 v$ to $240 v$ INVERTERS
IV400S (400 watt) $£ 89$
IV800S (800 watt) £159
IV1200S (1200 watt) $£ 219$
ECG MACHINESTRV 10AH BATTS/2AV BA TX EI gwornet ECG matinew Nawher $350 \times 3.0 \times 120 \mathrm{~mm}$ on 270 tore are conterat ber scan sweed scas detar. simen mode bues of
 iro Cut rockers tor comsceng tre bois sensurs to Semers rat

 soid os cemp may nove ore or two orovien kectes ete cue to poor Enot $E 1599$ ne Vpl
SODIUM LAMP SYSTEMS $£ 75.70$ complue yytam when 230w or 400 mal SOH-T Agro butb, reffector witer buib hover and romote baliast and stormerfuncasid) at you noed is

PC SUPPORT HANDBOOK the entimbe metricel
 pected whet technical deta and diegrams furt eto rul PCBK. It
 Pactind with dibpnostic programmes to ute with two boot ES rof
D SIZE NICADS Troged, 1200 ma 1.2v pact of 4 for $t 6 \mathrm{rme}$ Crce of as a pect of 24 for 202 a no creio

D SIZE SEALED LEAD ACID BATTERIES

$202 \sin$ rechapease wave wace was tasery mase by cyeton

 soen treve breeres ze paricupy uspes n ver you can mance

HYDROPONICS DO YOU GROW YOUR OWN?

 concmare ets Ring tor your troe copy.
PC COMBINED UPS AND PSU The une rater aty

ALTERNATIVE ENERGY CD PROXEO WITH MUI: EREDS OF A TEPNATME EERGY RELATED ARTICLES PLNH AMO BSORMATION ETC C1450 REF COSO
AERIAL PHOTOGRAPHY KIT Tha rockes comes wen

PROJECT BOXES Anocter writan tor row are vese v.an ASS propa benas s-at ino pece kotew bovere cave meelirg
 base of free bis tase reass metorn enco reastor trisutcos ete poe d 20 E15 is He vO?
TELEPHONES ssen una mextis a hupe derivery dideptonem

 Erux Prones E4.se esch rof PH2 to of eso rof 352
3HP MAINS MOTORS snge crase 2 2iv orand rex 2

 BUILD YOU OWN WINDFARM FROM SCRAP

CHIEFTAN TANK DOUBLE LASERS 9 WATT +3
WATT + LASER OPTICS coucte zarctectoriuser incme.

 basigremerd 7 mienroge ru crout ongams ane to voo, rew price ESO.000 un Esy9 Eact unt las two getum Arende nyecoon
 mec the unts evo concon a recever to oefed :enected worsiss for Ereet E199 Ref LOT4
MAGNETIC CREDIT CARD READERS ANO ENCOONG MANUAL es ss Cerwe wer erpess oesgrec to

SOLAR POWER LAB SPECLAL $2 \times 6.5 \mathrm{E}^{2} 130 \mathrm{~s}$ SM \&LED's wre Dugzer, smeat - rew cermoer c7.99REF SL2? SOLAR NICAD CHARGERS is ti swe co co mo entik $2, C$ eve 99 is tw craiiYOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY conera electronas en El mp/1
AUTO SUNCHARGER ise000 Tm wow purar wen coce and 3 mateleat and coge pho 12v 200 E1250 REF ALGispl.

STEPPER MOTORSernumaw stecpor motor antieo

 rax C15 rel Stepr
200 mpg fromour new Velosolex motorized bikes $£ 695$ inc vat Sales 01273383848

Hydrogen fuel cells

Our new Hydrogen fuet erts are iv at up ti 1A outpul Hydrogen input easily dirven from a small electuolosis as semdly or trom a hydrogen sousce, our demo moded uses a solar panet with the output leads in a glase of sath water to produce the hydrogen! Each cell le designed to be completely tuken apart, putbock toge ther and eapanded to What ever capacity you tike. (up to 10 watis and 12 V per as sembly. Cells cosicTe ref HFC11
We get over 10,000 hits a day.....
http://www.buil-electrical.com
PHILIPS VP406 LASER DISC
PLAYERS, sCART OUTHUT, JUsT MUT YOUR VIDEO DISK IN AND PREESS PLAY, STNNDARD AUONO NND VIOFO OUINTS, FULYY TESTED AND WORKIHO EJA.ES REF VPLOO SMOKE ALARMS vars powart: mede by the trinces

4AH D SIZE NICADS pack of $4 £ 10$ ref 4 AHPK

10 WATT SOLAR PANEL AMOrthareticonamestice the anociero surmum trime paral mesures 3 by I wel seted
 Unframed 4 pack (3° ¹) E58 99 raf SOLX
12V SOLAR POWERED WATER PUMP Perect
 and compeci ye powit wors arect fom or 10 wet bex. pene SOLAR ENERGY BANK KIT 50x $6^{\prime \prime} \times 12^{\prime \prime} 6 \mathrm{v}$ solar panela(amorphour)+50 diodes $\mathbf{c 9 9}$ ref EF112 PINHOLE CAMERA MODULE WTTH AUDIO!

 caste pula natro sorenectors ELS 55 rullock
SOLAR MOTORS Thy mators mion na qute hacoip on rativer toms 12 vec Worid on ar er amornous of pareve 270
 WALKE TALKIES 1 MLE RNWE ESYPUR REF MNOS LIQUID CRYSTAL DISPLAYS Bargain prices. 16 character 4 line. 62025 mm E3 99 rel SMC16soA 40 character 1 line $15 \mathrm{~s} \times 16 \mathrm{~mm}$ \{600 ref SMC4011A YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Corprenersive dems wer lasas of ros on onegron sstems zaveta poriod etectroict er E7 red PVI AUTOSUNCHARGER 158.000 men wiv gaw wer 3006 and 3 nete lied mectace phy 12v 2w 212.59 REF AUGiom SOLAR POWER LAB SPECIAL 280750
 SOLAR NICAD CHARGERS 4 IA epaid 2 : C ske co se re erart
MINATURE TOGGLE SWITCHES Theseboquir

 VOICE CHANGERS Hod one af these unts ave jou phone mover jeve an you can ad; si pur wice uring the contots on the une excer, operted C 15 tol OCD

REGISTER FOR OUR
 Electronic newsletters BULL-ELECTRICAL.COM BULL ELECTRICAL

 2 SO PORTLAND ROAD, hove, sussex BN3SQT. (ESTABLISHED SO YEARS. MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS 54.00 P\&P PLUS VAT. 2f HOLR SERVICE 66.50 PLUS VAT. OVERSEA GRDERS AT COST PINSSASA (ACCESSVISL, SWITCH. AMERICAN EXPRESS) 'phone orders : 01273203500 FAX 01273323077 Sales@bull-electrical.com30 WATTS OF SOLAR POWER for just $£ 69,4$ panels each one $3^{\circ} \times 1^{\prime}$ and producing $8 \mathrm{w}, 13 \mathrm{v}$. PACK OF FOUR 669 ref SOLX
200 WATT INVERTERS seos sescre reso yaur car

 genor inter woce arcery opersect mans ingenere' convintion sad on tre prone ond TV oss winl $E 4249$ rw 703

33 KILO LIFT MAGNET Fiocornim 32 anm dr veter wen
 mapres non 0 MeG33 Pact of 4 Mr 839 roy uta334
HYDROGEN FUELCELL PLANS Loocnd mommion

STIRLING ENGINE PLANS ireveviontormatongect

 ENERGY SAVER PLUGS sives wit 15% eeatiery
 69 ea Ier tot7t, 10 cack ces tel Lom?
12V OPERATED SMOKE BOMBS Trpe 3 in a 12 v

 HIPOWER ZENON VARLABLE STROBESUn屈
 specc cored nucertampeor pertea for remeung proces ec:
 NEW LASER POINTERS 45 me is muce reve nene
 HOWTO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES COmpremerve 270 aspe bock covers as asects of sork prowition hom vrerysy
 NEW HIGH POWER MINI BUG WEn srove dinem

 IR LAMP KIT Suresois to ccet carmerat ersbien the camera

INFRA RED POWERBEAM Hincreio weery powerd

SUPERWIDEBANDRADAR DETECTORDences
 aperd detection syetems. 350 ocgree coverage montar

WANT TO MAKE SOME MONEY? STUCK
 gre vou rotroxion o: section wo aterer: wanesces, vou perse

 nen as vou lat its wems
HIGH POWER DC MOTORS, PERMANENT MAGNET 12.2 Ar cpewition wrocsel, wewe $1 / 4$ norve gomer.
 exactices art one Frong en kitio cing the tro prowcec bois pro rong trom tre fore CZI we sOT:

ELECTRONIC SPEED CONTROLLER KITFO the asove moter is Ci9 rid Mall Sive 558 y you ouy been bot
 worza
INFRA RED REMOTE CONTROLS mase bo ivi
 RCB UNITS Inline IEC lead with fitted RC breaker. Installed in seconds. Pack of $3 \mathbf{5 9 . 9 8}$ ref LOT6A
On our web sites you can

1. Order online.
2. Check your premium bonds.
3. Enter our auction or build your own.
4. Add E-commerce to your own site.
5. Discover our software site, optical site, hydroponics site, holiday home exchange site, inkjet site, hotels site.
6. View our we b camera.
7. Invest in our future.
http://www.bulinet.co.uk

ISSN 02623617
PROJECTS . . . THEORY . . NEWS COMMENT . . POPULAR FEATURES . .

VOL. 28 No. 12 DECEMBER 1999
Cover iltustration by Jonathan Rebarisen

http://www.epemag.wimborne.co.uk

The No. 1 Magazine for Electronics Technology and Computer Projects

- Wimborne Publishing Ltd 1999. Copyright in all dravings, photographs and articles published In EVERYDAY PRACTICAL ELECTRONICS/ETI IS fully protoctod, and roproductlon or Imitations in whole or In part are expressly forbididen.

Our January 2000 issue will be publlshed on Fridays 3 Docomber 1999. Soo pago 859 for detalls.

THE AMAZING TELEEOX

 ane tred whi a composte vido ar SCARI ral The corcoste viso atse

 sion townans VFF and UFF ncluding the HYPERBNWD ss used by

 prowiod as seriatd Brand new - Hily guazreed
TELEBOX ST for composso vidoo inpul tpo montors
TELEBOX SHL as ST tui fintod wh riogrel spealet For overseas PAL wirsions statis 85 or 6 mbl s sund For cable Ihypriand sigha recepion Telebox MA should te con-

Stule of the ant PAI IUK spec) UHF TV tuner modul
Sise of the art PAL (UK spec) UHF TV funer module
wis composite IV po video \& NICAM His storeo sound I 53 mpl erublis thal ectionics al on cone smas PCB only 73 a 160 IBM DC t,pe computer. Suppled complete with simple worting proBRANO NEW. Order as $4 Y 00$. Only \&49.95

FLOPPY DISK DRIVES 21/2

A units (uniess steted) are BRAND NEW or removed fiom ofen you with a lull go day guarentee. Call of so our weto site mww. cistel. ca ut for over 2000 unlisted dives for savies or repar. $3 \mathrm{~K}^{\circ}$. Milsubish MF355C-L 1.4 Mog Laptops onty $\mathrm{E25} .95$ (B) 5% - Teac FD-S5GFA 1.2 Ming (lor ISM pc's) RFE
 Table too case with integral PSU For MH 5W" Floppy 1 HD - Shugar $800^{\circ} \mathrm{BO} \mathrm{g}^{\circ}$ SS refurbished 4 tesied 8^{-}Shugart 8105°. SS HH Brand Now

- Shugart 8518° doutlo sised rehuroc
- Shugut 8518° doutio sijsed refurbeshed as te seed - Missubiahl M2895-63-02U OS simin NEW Ouat 8° cased dives when bingral powner supply 2 No

HARD DISK DRIVES 21/2

2K' TOSH1BA MKIGOCMAV 1.1Gb laptop $(12.5 \mathrm{~mm} \mathrm{H}$ How 59.95 24' TOSHIBA MK2 101 MAN 216 GO taptop (19 mm H) Now cs 9.50
 $2 \mathrm{H}^{\circ}$ to $3 \mathrm{H}^{\prime}$ conversion ki her Pe's. complete with connectors
 33° CONNER CP3024 20 mb IDE UF (or equiv.) RFE
$3 \%^{\circ}$ CONNER CP 3044 to mb IDE UF (or equn. RFE 34. OUANTUM $40 S$ Prodrl ve 42 mb SCSI VF, Now RFE 5W- MINISCRIEE 342520 mD MFI, UF (O EQuTv.) RFE SW. SEACATE ST- $238 R 30 \mathrm{mb}$ RLL UF Relurb
$5 \% \cdot$ CDC $94205-5140 \mathrm{mb}$ HH MFM VF RFE sosied 5W. CDC $94205-5140 \mathrm{mb} \mathrm{HH} \mathrm{MFM} \mathrm{VF} \mathrm{RF}$
54. HP 97548850 MO SCSI RFE losto$54^{\circ} \mathrm{HP}$ C3010 2 GVyle SCSt oitrerantial RFE lested PUEC D2246 85 mo SMO intertaca. Hiow
 siany other drives in stock. Snipping on all drives is coode (CII

IC'S -TRANSISTORS - DIODES

10,000,000 items EX STOCK

 CALL OR SEE OUR WEB STEE www.distel.co.uk VIDEO MONITOR SPECIALSOne of the highest specification monitors you will ever see Ahat this price - Don't miss it!!

Mesubishi FA3H15ETKL $14{ }^{\circ}$ SVGA Mundsync cotour moriar woh fin

 used carition
 Gitema cantion for char tupeed

Ex demo 17"0.28 SVGA Milsublshi Dismond Pro monltors, Full mulusync efc. Full 90 day guarantee. Only E199.00 (E) fo most cofour csmeras High quatity with many testures such as used condion - fuly tested Guarantead Only $£ 99.00$
PHILIPS HCS31 Ulta comgad ξ° colour vibeo monitor wen sun dord composhe 15.625 Khz video input we SCART sockel loeal for al moniering / security applications. Migh quafiy, es-equpront tive square black claste caso masurng $W 10^{\circ}$ 上 410° I $13 \mathrm{M}^{\circ} \mathrm{D}$ KME 10. 15 MM 10039 nigh oofiniton colbur monters men 028° da
 source. with RGB anilog and cemposite syn
such is Atari. Commodore Amiga, Acorn
Acthmedes \& BBC. Mousures 11. Good used condtion. Only £125 (E)

$20^{\circ} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

Supertyy made UK manulacture PAL al sold sate coivur monizces.

$20^{\prime \prime} . .$. . 135 22"....£155 $26^{\prime \prime} £ 185$ (ค) We protably have the largest range of video monliors in
Europe, All sizes and iypes from 4° to 42° call for infa.

DC POWER SUPPLIES
Virfuallyovery ypo if
suppower
o, oop ou ou can magine.ovvor
10,000 power Supplios Ex Stock

TEST EQUIPMENT \& SPECIAL INTEREST ITEMS

FARNELL $0-6 O V$ OC O 50 Amps. Bench Power Suaplios FARAELL AP3000 O. 3 OV DC O 80 ATPS Dench SLPDY $18 M 8230$ TYo 1. Token mopase unh drner

HP6030A O-200V DC © 17 Amps bench pcwer supoly
Intel SBC $486 / 125 \mathrm{COS}$ Enhanced Mut ous (MSA) New Intal SBC 48E/125CO8 Enhanced Mut ous (MSA) Now
Nikon MFX-11 (Ephiphoi) taposure control unit Nikon HFX-11 (Ephiphoi) typosure control uni
PHRLIPS PMSSis pro. IV sigral genoratar
Tro o-se vol ineas, meterec to amp bench PSU. Niew Fufissu MJO41R 600 LPM high sjeed bend grinter
Fujitsu MJ0 10600 LPM printer wen networs hte Porthin Elimer 2998 infrared spectraphotometes
Porkin Elmer 597 Infrared spectroghotome!er
YG Electronics 1035 TELEIEXT Decothg Margin Mater UghiBand 60 outpul high spect 2u raci mount Video VDA Sekonic SO 150 H 18 channai dig al hyorid
B\&K 2633 Mrerophone pre amp
Teyior Houson Tallysul amplier / recorder
Teytor Hobs on Tallysurl amplier I recorder
iDC SS200 Carbon dioside gas setector / mons
BDC SS200 Carbon diaside gas setector / monio
 ANRTTSU ML93A cptical DOWer meter
ANRITSU Fore optic characterstic les: sei
R\&S FTOZ Dual sound unit
RAS SBUF.E1 Vision moduiato
WILTROR $6630 \mathrm{~B} 124 / 26 \mathrm{~Hz}$ RF sweep penerator
TEK 2445 i50 MHz t tiace osciloscope

TEK TDS524A 50014 hz digial reerne - colour dispiay etc
PHILIPS PWi730'10 60KV XRAY generalor z axcessores
CLAUDE LYONS $12 \mathrm{~A} 2 \$ 0 \mathrm{~V}$ single phase ave Voll regs

19" RACK CABINETS Superb qualiny 6 loot 400 Virtually New, Ultra Smart Less than Half Price! Top quaty 19° nack cabnots mabe ne UX oy
 and louvered semovable side panels. Fult adustastis ediernal faing struts. pasdy punched phus ready mounted infegral 12 way i3 ang soctiet switched mans oistribulion strip mala tasve ever sald. Racis may be slached siop oy side and theretore require only two sive paneis to stand singly of in mulfiple bass OPT Rect i Conciete wat removabie sise panets. $\mathbf{C 3 4 5 . 0 0}$ (G) Opt Ruck 2 Rick. Less side oanets

$$
19^{\prime \prime}
$$

32U - High Quality - All steel RakCab Maco by Eurocran Enclosuras Lid to mo highos possible spac. rack fortacess all stiool construclion with removabio hinged for ox yy cecose and as aro botesio with iso socure 5 lover bastrel locks

sconsrucied

m

 mon
[245.00 (G) quipment foke the heaviest of $19{ }^{\circ}$ raci (oneras svaikabt) are pre punched for stancard capo nuts". A mains distribution panel imernalITMounted to the botsom reas, provides a y IEC 3 uttitiy sockel. Ovaral ventilation is provided ully licivered back door and ocuen sinned lop section i, of inlegrel fans to the swo plate oase Othar ta fures ind for toing castors and floor leveliers. prepunctid utbyy panel al lower rear tor condition

Sold at LESS than a third of makers price II
A superb buy at only 2245.00 (G) $42 U$ version of the above only $£ 345$ - CALL

12V BATTERY SCOOP
 60\% ofi It

a specal tuik purchase from a cancelied export order brogos you rechurgsabit banaries thde by Hawher Energy Lidi, type SBS15 ood 85 year senvice te Fully BT z BS6290 epproved Suppliad BRANO NEW and boldd Dmensions 200 wiot, 137 figh, 77 blep -ach Our Price $£ 35$ each (c) or 4 for $£ 99_{\text {(b) }}$ RELAYS - 200.000 FROM STOCK Save Elers oy choorng your nait resy from our Massive Srocks coverng ippes such as Siato. Prniod Circuat Mouning atc. CALl or sco our wed sle mwordistel.co.uk

COLOUR CCD CAMERAS

Undoubledy a miracia
our spocial buyng power

use h low ight o high light
spollications. A 10 mm find to
wide
wide angte iens gives xeellent focus range Thy composthe video outhur mil (ria SCART sockels and most video
recorders. Unit runs from 12 V OC
iopal for security in

Overdi dinensions 66 mum wide $a 117$ deep 143 high Supole
 Weoret $=$ LK33 ONLY $£ 99.00$ or 2 for $£ 180.00$ (a)

SOFTWARE SPECTALS

NT4 WorkStation. compiele with service pack 3 and licence - OEM packaged. ONLY 889.00 (e) ENCARTA 95 - COROM, Not the lalest - but at inds price I $\mathrm{C7.95}$
DOS 5.0 on 34° dishs with concise books chw OBasif. 514.95 $\begin{array}{ll}\text { DOS } 5.0 \text { on } 34^{\circ} \text { diks wath concise books ctw OBasi": } & \text { C14.95 } \\ \text { Windows for Workgroups } 3.11 \text {. Dos } 6.22 \text { on } 3.5^{\circ} \text { disks } & 555.00\end{array}$ Wordperteci 6 lor OOS eoplen 34 2.95

DISTEL on the web !!-Over 16,000,000 items from stock - WWW.distel.co.uk

Open Mon. Fri 9.00-5:30
F)DISTELC

Visit our web site whv.distel.co.uk

ALL © ENQUIRIES 02086533333

FAX 02086538888

NEXT MONTH

SCRATCH BLANKER

It seems that reports of the death of vinyl discs have been somewhat exaggerated. While it is true that new vinyl records are not made in significant numbers any more, there is a thriving second-hand market. In fact many types of record are now hotly collected, including some that were manufactured quite recently. Interest in vinyl records may still be quite strong, but the drawbacks that resulted in compact discs taking over have not gone away.

Noise caused by dust getting into the grooves is one problem, but with proper care and handling this can be minimised. Physical damage to this very vulnerable form of recording is probably the main problem, and there is no easy solution to this one. Most new vinyl recordings were supplied complete with a few "clicks" and "pops", and even when handled with due care they tend to gain some more over the years.

This stereo circuit provides a delay of less than one millisecond to the audio signal so that "clicks" can be detected and removed before the listener hears them. Make listening to your old vinyl a pleasure again.

FLASHING SNOWMAN

 If you wish to make an electronic project popular you give it some flashing l.e.d.s. or you do if you believe the in-joke that was popular in the electronic magazine publishing business some years ago. This joke came about because one of the magazines now incorporated into EPE published a project that was basically just a soap dish fitted with some l.e.d.s that flashed. Apart from looking pretty, It did not actually do anything, but that did not stop it from being by far the most popular project ever published by that magazine!This project is very much in the flashing soap dish tradition, \hbar is just a polystyrene ceiling tile fitted with some I.e.d.s that flash. It is a simple but amusing Christmas decoration that should raise a smile or tro.

[^0]
PLUS: EPE TEACH-IN 2000 PART 3 AND ALL THE REGULAR FEATURES

NOONEDOES TT BETTER

DONT MISS AN ISSUE - PLACE YOUR ORDER NOW!
Demand is bound to be high

T E L N E T

SURVBIILANCE PBOFBSEIDNAL, OUADITY FITS

1

Whether your requirement for surveillance equipment is amateur, professional or you are just lascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 20 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless othewwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genulne SUMA kits avallable only direct from Suma Designs. Beware Inferlor Imitations!

UTX Ulitra-miniature Room Transmitter
Smalest room transmmeer bit in the wortd incredide $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ incuoing ricic. 3 V . 12V operation. 500 m range
MTX Alicro-miniature Room Transmitter
Best-seling micromintaure Room Transminiec: lust $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ incuding mic 3 V . 12V operation 1000m range
STX High-performance Room Transmilter
High pencormance varsmiter with a butiered ovpout stage tor quater stabify and range Measures $22 \mathrm{~mm} \times 22 \mathrm{~m}$, inctuong mic. $6 \mathrm{~K} \cdot 12 \mathrm{~V}$ operation, 1500 m range $£ 15.45$ VT500 High-power Room Transmitter
Powertui 250 min output providing ercelent range and perbormance.
Size $20 \mathrm{~mm} \times 40 \mathrm{~mm} .9 \mathrm{~V}-12 \mathrm{~V}$ operation. 3000 m range
$\mathbf{C 1 6 . 4 5}$
VXT Voice-Activated Transmitter
Tingers only when sounds are detected. Very low standoy current Variable senstivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. GV operation. 1000 m rarge $£ 19.45$ HVX400 Malns Powered Room Transmitter
Cornects ofrecty to 240 V A.C. suppty for long tom monioring.
Sise $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range
£19.45
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from inis transmitter camor be monitored without the SCOM decoder comected to the recever. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m rarge $£ 22.95$ SCLX Subcarrier Telephone Transmitter
Cornects to telephone the anywhare, requeres no batrenes Output scrambled so requires SCOM cornecied to recever. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m rarge $£ 23.95$ SCOM Subcarrier Decoder Unit for SCRX
Connects to receiver earphone socket and provides desoded audo outul to headphones Size $32 \mathrm{~mm} \times 70 \mathrm{~mm} .9 \mathrm{~V} .12 \mathrm{~V}$ operation. $£ 22.95$
ATR2 Mlcro-Size Telephone Recording Interlace
Consects between seiephore ine (eryinhere) and cassene recorder. Swiches tape aultmaticaly as phone is used. Al conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from ine
§13.45

$\star \star \star$ Specials $\star \star \star$

DLTX/DLRX Radlo Control Switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and recelver unit with decoder and relay output momentary or alternate, 8 -way d.I.I. switches on both boards set your own unique securty code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size 35 mmx 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kts)
$£ 50.95$
Individual Transmitter DLTX
250.95
individual Recelver DLRX
ع37.95

MBX. 1 Hh-F Micro Brondcastor

Not technically a survellance device but a great Idea! Connects to the headphone output of your HI-FI, tape or CD and transmits Hi-FI quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath of in the garage and you don't have to put up with the DJ's choice and boring wallle.
Slize $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range
$£ 20.95$

UTLX Ulira-miniature Telephone Transmititer
Srablest telephone transmater kit araiabie inoredble size of $10 \mathrm{~mm} \times 20 \mathrm{mml}$ Connects to ine (argwhere) and switches on and oft with phone use. Alconversaton transmited fowered trom line. 500 m range
TLX 700 Micro-miniature Telephone Transmitter
Best-scting teiephone transmiter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ is easier to assemble than UTLX Connects to ine (aryonere) and snithes on and oft with phone use At conversatens transmited. Powered from fiac. 1000 m range $\$ 13.45$
STLX High-performance Telephone Transmitter
High performance transmiter with bumered outpul stage providing ercelent stablity and pertormance Connects to ine (anjithere) and switches on and oft with phone use. Al cormersations transmitad. Fowered from ine. Sze $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range
TKX900 Signalling Tracking Transmitter
Trassmis a consouous stream of audio pulses with variabie tone and rate ideat bor sionating or tracing purposes High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation
CD400 Pocket Bug Detector/Locator
LED and piezo bieepen putse sionit, rite of pulse and pich of tone increase as you approach signal. Gan control alows pinpointing of source.
Size $45 \mathrm{~mm} \times 5 \mathrm{~mm}$. 9 V operation
CD600 Professional Bug Detectorilocator
Muticolour readoul ol signal strenget with varabie rate bleeper and vanable sens tivly used to detect and locate hidden transmiters. Sintch io AUDIO CONFORM mode io osstinguish between localised bug tarsmission and normal legimate signa's such as pagers, cefula, taxis etc. Suze $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9V operation
£50.95
OTXI80 Crystal Controlled Room Transmitter
Harrow band FM transmiter for the utmate in primacy. Operates on 180.1 H a and requires the use of a scavrer cecenter or cur OAX $\times 160$ hi (sse cataicgur). Sue $20 \mathrm{~mm} \times 67 \mathrm{~mm} .9 \mathrm{~V}$ operation 1000 m range
QLXi80 Crystal Controlled Telephone Transmitter
As per OTXI 80 but comects to teieprone line to moritor both sides of conversations $20 \mathrm{~m} \times \mathrm{m} \times 77 \mathrm{~mm}$. 9 V operation. 1000 m renge
OSX180 LIne Powered Crystal Controlled Phone Transmilter
As per OLX180 but draas power requisements from line. No batieries required. See $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m
ORX 180 Crystal Controlled FM Receiver
For montoring aty of ive O range transmeters. High sensility unit Al RF section syppled as prebunt and aigned mooute ready to cornect on boasd so no dittivity seting up Ospout to headphones. $60 \mathrm{~m} \pi \times 75 \mathrm{~mm}$. 9 V operation
860.95

A bulld-up service is avallable on all our ktts if required.

UK customers please send cheques, POs or registered cash. Please add $£ 2.00$ per order for P\&P. Goods despatched ASAP alloving for cheque clearance. Overseas customers send Sterling Bank Draft and add $£ 5.00$ per order for shipment. Credin card orders welcomed on 01827714476.
our latest catalogue containing
VISA MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

E1 BARGAIN PACKS List No. 3

1 item per pack unless otherwise stated.
SOLAR CELL, we owe loorn of trow diecricay. OBSer ADer
 12 Orcer hat. 638
PC GAMES in cases for remalong, pach of 6 O.der Ret G45. PIEZO NOISE MAKERS, brandind wee. prek of 2. Orser Rot 647.
Diti

DITIODA mini, anly 23 mm weross. cact of 2 Orser Ret: 648 COVERS. Et Pero sounders, ot, neod 22rm hole, pack of 6. Order Aat. 658.
 Cice of 2 OUder Rot: 662
lacts Order Ret. 655
COHTROLLED AROCK
on unias st Order Ant. 656
33uf iocov Caps, 33uF 1000 V CAPS, dod to pur in series wel $115 \mathrm{~V} 2-4 \mathrm{~W}$ mplors paxt of 4 Croer hel 872
In Sis. approwimately mat your own PCB of ife seong enough io act as a chassis

D.C. MOTOA. ntra effiere noeds lexe curtert so wil work

SUB MIN PUSN SWIT CMEs, puti ol 2 Oreve Rat: ESs
CERANAC BEADS, deay in ulation where heal of lame. pact of 100 . Orow Ret: 690
Sin. LENGTHS OF WIM DUMETER PAXOLIM TUBING. Mod usour tost prods. ict, pack of 1 Order Ret. 691.
Quto the Trese, pote of 2 Orger Ret: 635
POWER SUPPLY UNTT, autol IV 100 mA ice Order Rot 733.
aMFM TUNING CAPActTO日, air sasced wen Mh. spincte. Order Rat 743.
JA PLUG BARGAN OFFER. You got 3 tar [1. Order Rot:
PPIDI ROCKEA SWITCMES lor mowe reveming. we. pach of 2. Order Alt: 74s.

HOHE THANSPARENT SPEAKER MESM, 1 In I I Iin, pach A A. Order Ret. 74.
LGHTEST TOUCH CHANGEOVEA MICAOSWTTCHES, fant votepe. gack of 2 Orser Rot: 748
AIA PORCELAIK INSULATORS, pack of \& sueabi cubin serals, ese Order Plet 748.
CASED PSU, AC atout ISV 150 mA and 95 V gomd oree
CHANGEOVER CONTACT RELAY men col sumet lo IVAC. or GV D.C Orear Ret: 753.
EVER-OPERATED MICROSWTTCMES, ar-nquipreme Datien eried. ary tauly would to roplaced. pack of 10 . Order Ret 35.

PROJECT BDX, Lise approimrayy 100 mm a 75 mm e 24 mm , es lo ed mery heat sink Order Alt 750
EX-BT UNSTRUMENT in plaste case win carring rance. has ran usem parts. Orger for 760
PICK-UP ARM win damond biflus. new and unused Oroen RUBBER FEET, te cervers of equare chaseit. pach of 20 . Order Rec 769
2HV BAKELTVE ENCASED AC. OA D.C. BUZZER. Ordor let 774.
COMPONERT MOUNTNO TAO STRIP. 32 tmgs each vice. MEO POTS
3 NEO POTS each feed double-poly rentich, pech of 2 Order at 7 C
CO MICAOSWTTCMES COArated by a whe control to spande rrough aide, pack of to Order Ree i86
MULILTAO MANS PANEL, has 12 Ligs to taid Nith pughon connectors Order Rot: 792
REED SWTTCK. eat matead of round eo many more cas bo Lueved in a smal area Orcer Ret igs.
VERY THIN DRILLS (03 mm), pack of 12 Order Red: 797
ROCKER SWTTCHES, somg-londed wim Chanoovir 1aA 33 V conesets, post ei 2 . Orserf Rot. B00
AIINS CIRCUIT BREAKER. 7A, pustouson cperated Orsee Ret. 602
IN-LINE SWTTCN intanded lor eiestec barset to crob varade hate tui covioualy has other utes Orser Ret: 805
LUG FOR CAR LIGMTER SOCKETS, ath hiving inearnas
Lute pach or 2 . Order Ret: 809
INHS TRANSFORMEA, $12 \mathrm{~V} \cdot 0 \mathrm{~V}-12 \mathrm{~V}, 5 \mathrm{~W}$. Oder Rat: as1. OLI OF MAINS VOLTAGE FLEX win screen and ouse PVC aptors Aet 515
70 ADApIORS o oach take 2 plugs pach of 2 . Order Ret: OIUF 250 V MAIFS WORKIMO SUPPRESSOR CAPACIT OR. pack of 5. Order Ret: 836.
RINO MAN JUNCTION BOXES. I3A z3OV, pack of 3 Order let 801 .
FLUSM PLATE LIGHT SWTTCHES, SA whos. pagh of 2
OCTAL VALVE BASED, Pasolin, pack of \& Order Rot 12
GERMANAUM TRANSISTORS. OCES ise pech ol 52 alwired Orser Rot: 15 LRANSISTORS. Iel OCPTO. pack of 2
LOUDSPEAKER CROSSOVER. for rwover mid-renge and SUBM. TOGOLE
, - used he will onicrt. pede ol 3 Order Re! 1056

TV REMOTE CONTROLS. I dows nox gul your TV, you could use in for omer propicts. FM bug. eiz, pact of 2 Ordor
 ory chager. pexic of 2 Order Rot: 1070
CCLE OVKMO BULBS. GY O-5A pach of 10. Order Ret. 072
Yin. 12W SPEAKER, wawrprod so suenbie lor indoors or WTERSTAGE TRANSFORMEA for transitor operation Droen Ret 8inciz.

12V 18AH RECHARGEABLE BATTERY

It is Yuasa made Jelly type so maintenance-free and usable in any position. Brand new and guaranteed 12 months. The regular price of these is $£ 40$ but you can buy at $£ 15$.

Order Ref: 15P78.
12V 8A D.C. POWER SUPPLY. Totally enclosed with its own cooling fan. Norma mains operation. Price £i1. Order Ref: 11 P6. D.C. MOTOR WITH GEARBOX. Size 60 mm long, 30 mm diameter. Very powerful, operates off any voltage between 6 V and 24 V d.c. Speed at $6 V$ is 200 rpm , speed controller available. Special price $£ 3$ each. Order Ref $3 P 108$.
MOST USEFUL POWER SUPPLY. Rated a 9 V 1A, this plugs into a 13A socket. is really nicely boxed. £1. Order Ref: 2P733. GROWERS PLEASE NOTE: We now have a very useful 100W soil heater. This is essen tialty 5 V 20A power supply, completely en cased and with built-in cooling fan. We supply with it 10 m of cable with instructions on how to couple it to give the recommended 10 W per sq. fl. or 5 W per sq. h . or a very low 2.5 W per sq. H . Price for complete l.c.u. §15. Order Ref: 15P79.
BIG 12 V TRANSFORMER. It is 55VA so over 4A. Beautitully made and well insulated. Live parts are in a plastic frame so cannot be accidentally touched, $£ 3.50$. Order Ref: 3.5P20. BIKE RADIO. In fact, it's more than a radio, it's an alarm and a spotlight. The radio is battery operated, of course, and needs 3 AA cells. Only one band but this is the FM band so will receive Radio 1 and 2. Comes complete with handlebar fixing clips. Price \&4. Order Rel: 4P72.
INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges ACNDC volts. 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. Ex-British Telecom but in very good condition. tested and guaranteed, probably cost at least $\Sigma 50$ each, yours for only $£ 7.50$ with leads, carrying case $£ 2$ each. Order Ref: 7.5P4.
REPAIRABLE METERS. We have some of the above testers but faulty, not working on all ranges, should be repairable. we supply diagrams. £3. Order Ref: 3P176.
FOR QUICK HOOK. UPS. You can't beat leads with a croc clip each end. You can have a set of 10 leads. 2 each of 5 assorted colours with Insulated crocodile clips on each
 end. Lead length 36 cm , £2 per sel. Order Rel: 2 P459. RECHARGEABLE NICAD AA BATTERIES. You can have these at a bargain price of 50 p each, but you have to buy a pack of 10 which would give you a 12 V rechargeable battery. However, it is quite easy to divide into $2 \times 6 \mathrm{~V}$ rechargeables or $10 \times 1.2 \mathrm{~V}$ rechargeables. Order Ref: 5P287. Made by Varta.
1.5 V .6 V MOTOR WITH

GEARBOX Motor is mounted on the gearbox which has interchangeable gears giving a range of speeds and motor torques. Comes with full instructions for changing gears and calculating speeds, $\varepsilon 6$. Order Rel: 7P26.

SMART HIGH OUALITY ELECTRONIC KITS
CAT. HO. DESCRIPTION PRICE

$\begin{aligned} & 1005 \\ & 1010 \end{aligned}$	Touch Switch	287
	5 -npul stereo muer with monior ${ }^{2}$	
	Output	1931
1016	Loudspesker protection then	322
1023	Dyname head preamp	250
1024	Microphon preamotier	207
1025	7 wats h -fi poner amplifer	253
1026	Rumning tghts	460
1027	NGC end battery charger	191
1030	Light ormmer	253
1039	Stereo MU meter	2.60
10.4	AF generatce $250 \mathrm{~Hz} \cdot 16 \mathrm{hHz}$	1,70
1043	Loudness steroc und	322
1047	Sound swich	529
1048	Eloctronic uemostat	368
1050	3 -mput in-il sterco preampliter	12.12
1052	3 -mput mono mater	621
1053	Electronic metronome	3.22
1054	4-1pout instument mater	275
1057	Cassette head preamplitier	322
1059	Telephone amolfier	$\div 60$
1062	5 V O-5A siavtised supply tor.Th.	230
1058	+ 12V 0.5A ctabilised supply	322
1067	Stereo VU rreter wen loads	9.20
1088	18V 05A stabased power supot;	253
1070	H-6i preamplfier	7.17
1071	s-mput seiector	690
1080	Coqud level senscr, rain atarm	230
1082	Ca voltmeter with lads	736
1083	Voseo sgral amotier	276
1085	DC corverter 12 V to 6 V or 7.5 V or 5V	2.53
1005	Musse to tight fer your car	-60
1093	Windscreen wicer controler	3.68
1094	Horre atarm sjstem	12.52
4098	Digited thermomoter with Lesi desplay	11.50
1101	Dolar fester	$+60$
1102	Stereo VU meter wih it Leds	657
1106	Thermometer with Le d.s	695
1107	Electronics to hotp win the pools	358
1112	Louaspeaker protecfion with dedsy	4.60
1115	Countesy light delay	207
1118	Tire sitich with trac o 10 mms	4.14
1122	Telaphone cal relay	368
1123	Miorse code gemerator	134
1826	Microphon preampleter	460
1127	Alicrophone tone control	450
11283	Power flasher 12Y de	253
1133	Stereo sound to tigm	526

BUY ONE GET ONE FREE

ULTRASONIC MOVEMENT DETECTOR NKCH cased, tree sianding. has irtermal alarm which ean be sienced. Also has commecions for filtema speaber of lipht. Price 810 . Order Ret: 10P15: CASEO POWER SUPPLIES wich, whth a for sma eitra components and a bi of modtring, would give 12 V al 10 A Orininaly 59.50 each. now 2 to $£ 950$ Oroer Ael: 9 5P:
3-OCTAVE KEYBOARD wht piano size hers, brand new, privious prioe 59.50. now 2 for the price of one. Onder Rel: 9 SP5.

TOROIDAL MAINS
 TRANSFORMERS

winden
$224 \mathrm{~V}-24 \mathrm{~V} 25 \mathrm{VA}$ price Es Orser Aef: $3 P 245$
$30 \mathrm{~V}, 30 \mathrm{~V}$ Rel: \&PG2. $110 \mathrm{~V}+110 \mathrm{~V}$
Orser Ret: $8 P G 3$
$35 \mathrm{~V}=35 \mathrm{~V}$ at 15 Order Ret: GPGg.
$35 \mathrm{~V}+35 \mathrm{~V} 220 \mathrm{~V}$, price \&9. Order Ret: 9PGU.
$50 \mathrm{~V}+50 \mathrm{~V}$, price $\& 4$ Order Reh 4 P1 12
$110 \mathrm{~V}-110 \mathrm{~V}$ a 220 V would ove 110 V at 2 A or 220 V af 1 A. price £ 10 . Orser Ret 10 PG5 $110 \mathrm{~V}+110 \mathrm{~V}$ at 500 VA woutd give 110 V at 5 A or 220 V at neary 3 A price E25. Order Rete 25PG8

SUPER WOOFERS

 E13 O. agan by Chasenger, price
E1B. Order Pet: 1 日Pg.
Ooduct 10% from these prices í you order in pars or can colect. These are all brand new in maker s packing.

TERMS

Send cash. PO. cheque or quote credt card number -orders under 225 add $£ 30$ service charge.

> J \& N FAGTORS
> Pilgrim Works (Dept. E.E.) Stairbridge Lane, Bolney, Sussex RH17 5PA Telephone: 01444881965

!! New from FED - PIC 16F877 Chips and Support !! PIC \& AVR Programmers, Development kits and C Compiler

PIC 16F877 20 MHz - £6
Microchip's latest EEPROM device - 40 pin, 10 bit AD converters, master/slave IIC bus, full duplex USART, 8K ROM, 352 bytes file registers, 256 bytes internal EEPROM, upwardly compatible with 16C74/16C77, but instant erase and rewrite. Supported by our programmers, PICDESIM and our new C Compiler. PIC 16 FB77 devices, 40 pin DIP device, 4 MHz - $£ 5.50,20 \mathrm{MHz}$ - $£ £ 6.00$

Supports all PIC 16Cxx, 12C6xx devices Integrated Compiler Environment includes FED's PICDE for simulation and debugging Ring/Write for details or visit our Web Site: £100 CD-ROM, £120 with printed manuals http://dspace.dial.plpex.com/robin.abbottFED

Forest Electronic Developments

60 Walkford Road. Christchurch. Dorset, BH23 SQG. E.mail - "robin abbortadial. pipex.com"

Web Site - "hup://4apace dial.pipex.com/robin abbotuFED" 01425-274068 (Voice/Fax)

PIC, \& AVR Programmers
PIC Serial . Handes seriaty programmed PIC dences in a 40 pin mutiowath Zlf socket. 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, PIC 14090 e \bar{X} Also in-Circuit programming Price: $£ \$ 5$ kit, $£ 50$ built $\&$ tested.
PIC introductory - Piograms 8 \& is pin dences: 16C505, 16C55X, 16C61. 16C62X, 16C71, 16C71X, 16CaX, 16F8X, 12C5089. 12C671/2 etc. E25ki AVR $\mathbf{- 1 2 0 0 . 2 3 1 3 . 5 1 \$ 4 . 8 5 1 5 ~ i n ~ Z F F . ~ P r i c e : ~} £ 40$ kit $£ 45$ built \& tested.

Programmers operate on PC serial intertase. No hard to handie paraliel cable swapong \& Procrammers supplied with instuctions. \& Widows $3.1 / 95 / 98$ NT sctware. Upgrade Programmers from our web site !

AVR, PIC, Scenix - Windows Development

Assembersinutator allows development of your AVR, PiC or Sceniz projects in one Windows program. Incorporate muthpte fies, vew heep fite intormation ofrecty trom cede. edit within project. biditrat errors directy in source, then simuate Mary breakpoin fopes. folow cote in source se! treakpons in source. Run. stingle step or step over. Logic Analy ser Displayy Input stimuli includes clocks. direct values and serial date. Profiet - examine and ime trequenty catiod rourthes use the intormation to apormise out pottie nedss PIC Version Simulates up 10 50 imes taster than MPSIM !
COSI E20.00. Specily PICDESIM (includes Scenix) or AVRDESIM version

PIC BASIC Products - See our web site for detalls 16 C 74 version (8 K byte EEPROM) - 20 MHz £30.00 Klt, $£ 35.00$ Built \& Tested,
 Compiler Available - runs identical code

Prices are fully inclusive. Add $£ 3.00$ for P\&P and handling to each order. Chequew Mos payabic to Fores Electronk Developments. or phone

VISA with credit card details.

IT MASTER - EDUCATIONAL - KIT					
		Rustat		sawis	
		Too un			
		Sofa			
		SEND F			
		DETA			
		Cosk			
		析			

makE POSTAL ORDERSCHECUES PAYABLE TO DAVID JOHNS AND SEND TO: 37 GOSBECKS ROAD, COLCHESTER, ESSEX CO2 9JR FAX: 01206 369226، http://www.davidjohns.f9.co.uk

WWW.epemag.com

> Get your magazine "instantly" anywhere in the world buy from the web.

TAKE A LOOK, A FREE ISSUE IS AVAILABLE

A one year subscription (12
issues) costs just $\$ 9.99$ (US)

VARIABLE VOLTAGE TRANSFORMERS

WPUT 220V 2 HeV AC SO COVE OUTPUT OV-2FOV

 PANEL HOURTING oseva as anomas Price invas mommin ses. 25 gMROUOEDserva 25 smomea 83.00
ixva samomas $\$ 4625$ orva to anpmer cesco
3rva is amomar E36so

(282 57 mes vial)

SOCVA ISOLATION TRANSFOAUEA

TOMOOAL LET TAANSFORMER

COLPREMENSNE RUWIE OF TRANSFORUERS.
LT-SOLATON \& MTTO

 apivar;

As SNEVA ISOLATION TRANSFORMER

 heom. Whore 42 bite Prik
Prop jThiICO2 DC SIEMENS COITACTOA

 TR2 M.a 2 LV AC WESTOOL SOLEMONOS

axLal cociots far

 - WSTRLWETT CASE

 OECAST ALUMOUSA sOX
 of 117 SO LIES

 SOLDC STAYE EMT UNT
 Eusy recoultrome xy ere seruxa prycs und mazencs en so

 Duce of a fan EDROM ERASUQE or a bacion ure

Transform your PC.... Into an oscilloscope, spectrum analyser and multimeter...

The ADC-200 range of PC based oscilloscopes offer performance only previously available on the most expensive ‘benchtop' scopes. By intergrating several instruments into one unit, the ADC-200 is both flexible and cost effective.

Connection to a PC gives the ADC-200 the edge over traditional oscilloscopes: the ability to print and save waveforms is just one example. Units are supplied with PicoScope for Windows which is powerful, yet simple to use, with comprehensive on line help.

Applications

∇ Video
\checkmark Automotive
∇ Electronics design
∇ Production line tests
∇ Fault finding
∇ Education
All units are supplied with software, cables and power supply. Prices exclude VAT.

Features

\checkmark A fraction of the cost of comparable benchtop oscilloscopes
∇ Up to $100 \mathrm{MS} / \mathrm{s}$ sampling
\checkmark Advanced tigger modes- capture one off events.

- Up to 50 MHz spectrum analyser
\checkmark Large buffer memory
ADE-2001100 ADe-200150 \&De-200/20
£499
£399
£299

A scope at your fingertios...

Once oscilloscopes were heavy and olumsy to handle, but over the years they have become smallitr andsmaller. The latest devellapment in this field has just arrivedta digital storage oscilloseope in a handy stim housing, scarcely longer than a pencil and about as thiok as your thumb. Despite its small size jits performance canmatch that of a service oscilloseons,

Applications
∇ On-the-spot measurements
∇ Hobby electronics
∇ Measurements in amplifiers
∇ Production line tests

$\rightarrow \frac{1}{2}$

MAIL ORDER ONLY • CALLERS BY APPOINTMENT

 microcontroller pulse generation.

- Full kit with headphones \& all hardware
KIT 847
….....................
. 63.95

PORTABLE ULTRASONIC

 PEsT SCARERA powrerful 23kthe utrasound generator in compact hand-held case. MOSFET outpu drives a speciol sealed zransducer with in rense pulses via apecial cuned transformer. sweeping frequency outpu: is designed to give maximum output without any special sotting up.
KIT 842.
£22.56
MK. II ACOUSTIC PROBE

- NEW DESIGN
- HIGH SENSITIVITY \& POWER
picks up vibrations amplfies. and drives headphones. Sounds from engines, watches pipes and speech through walls can be heard clearty. Useful for mechanics, instrument engineers and noser parkersl Very effective device.
KIT 876.
£29.95

DC Motor/Gearboxes

Our Popular and Versarite DC motor Gearbox sers. Ideal for Models, Robots Buggies etc. 1.5 to 4.5V Multi ratio gearbox

gives wide range of speeds.
LARGE TYPE - MGL $\mathbf{\varepsilon 6 . 9 5}$
SBALL - BGS - 54.77

Stepping Motors MO38...Mini 48 step... 58.65 MD35...Std 48 step...c9.99 MD200... 200 step... 112.99 MD24...Large 200 step... $£ 22.95$

PIC PIPE DESCALER

- simple to bulld - Swept
- HIGH POWER OUTPUT FREQUENCY
- audio g visual monitoring

An affordable circuit which sweeps the incoming water supply with variable fsequency electromagnetic signals. May reduce scale formation dissolve existing scale and improve lathering ability by altering the way salts in the water behave.
Kit includes case. P.C.B, coupling coil and all components.
High coil current ensures maximum
effech L.E.D. moniror effect L.E.D. monitor
KIT 868
.......
.£22.95 POWER UNIT.. \qquad 3.99

MICRO PEsT
 SCARER

Our latest design - The ultimate scarer for the garden. Uses special microchip to give random delay and pulse tume. Easy to build reliable circum. Keeps pets pests away from newly sown areas. play areas, etc. Uses power source from 9 to 24 volts.

- RANDOM PULSES

- HIGH POWER
- DUAL OPTION

KIT 867 \qquad
KIT+SLAVE UNIT
WINDICATOR
A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mains power unit £5.99 extra
KIT 856.
.£28.00

\star TENS UNIT t
 \section*{}

DUAL OUTPUT TENS UNIT

As featured in March '97 issue.

Magenta have prepared a FULL KIT for this etectrodes excellent new project. All components, PCB, ${ }^{26.50}$ hardware and electrodes are included.
Designed for simple assembly and testing and providing high level dual output drive.
KIT 866.... Full kit including four electrodes $£ 32.90$

Plug-in power supply $£ 4.99$
.£19.99
. £32.50

1000 V \& 500V INSULATION

TESTER

Superb new design. Regulated output, efficient circuit. Dual. scale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil. cut-out case, meter scale, PCB of ALL components.
KIT 848.
£32.95

EPE TEACH-IN 2000

Full set of top quallty NEW components for this educational series. All parts as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments, as listed in Introduction to Part 1.
-Batteries and tools not incuded

TEACH-IN 2000 -

Kाт $879 £ 44.95$ MULTIMETER £14.45

I'SPACEWMRITER
I An innovative and exciting
Iproject. Wove the wand through
The atr and your message appears.
up to 16 dipits bong. Comes pre-bassed with "MERAY XMAK's". Ki includes 1 PCB all components 6 tube plus
instructions for mes sage louding
IKIT 849.
K- 84......................モ16.991
12 V EPROM ERASER
A sale low coss eraser for up to 4 EPROMS at o finse in less than 20 minutes Operates from a 1200 V swpply (100 mal Used extensively for mobile work - upfionsl siturtions where mains supoles in not ab tional situlbons where mains supples irs not al oned. Saiefy interiach prevtriss contact wat Un
KIT 790
$£ 29.90$

SUPER BAT DETECTOR

1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE 20kHz-140kHz

NEW DESIGN WITH 40kHz MIC.
A new circuit using a "full bridge" audio amplifier i.c., internal speaker, and headphonetape socket. The latest sensitive transducer, and "double balanced mixer" give a stable, high peformance superheterodyne design.
KIT 861 \qquad £24.99
ALSO AVALLABLE Built \& Tested 539.99

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0.25V 2.5A.

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters Indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

Kit No. 845..................£64.95

EPE PROJECT PICs

Programmed PICs for all EPE Projects 16C84/16F84/16C7t

All $£ 5.90$ each PIC16F877 now in stock $\mathcal{E} 10$ inc. VAT \& postage ('some projects are copyright)

\qquad

SIMPLE PIC PROGRAMMER

INCREDIBLE LOW PRICE! Kit $857 £ 12.99$

INCLUDES 1-PIC 16F84 CHIP SOFTWARE DISK, LEAD CONNECTOR, PROFESSIONAL PC BOARD \& INSTRUCTIONS

Power Supply $£ 3.99$
EXTRA CHIPS:
PIC 16 F84 £4.84

Based on February '96 EPE. Magenta designed PCB and kit. PCB with 'Reser' switch, Program switch, 5 V regulator and test L.E.D.s, and connection points for access to all A and B port pins.

PIC16C84 LCD DISPLAY DRIVER

INCLUDES 1-PIC16F84 WITH DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND 16-CHARACTER 2-LINE LCD DISPLAY

Kit $860 £ 19.99$

Power Supply £3.99 FULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATIONI

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE x 16-character display, data, all components, and software to include in your own programs. tdeal develpment base for meters, terminals, calculators, counters, timers - Just waiting for your application!
PIC 16 F84 MAINS POWER 4-CHANNEL CONTROLLER \& LIGHT CHASER

- WITH PROGRAMMED $16 F 84$ AND DISK WITH SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING MULTIPLE CHASE PATTERNS
- OPTO ISOLATED 5 AMP OUTPUTS
- 12 KEYPAD CONTROL
- SPEED/DIMMING POT.
- HARD FIRED TRIACS

Kit $855 £ 39.95$
Now features full s-channe! chaser software on DISK and pre-programmed PIC16F84 chip. Easily re-programmed for your own applicavions. Software source code is fully 'commented' so that it can be followed easily.
LOTS OF OTHER APPUCATIONS

PIC TOOLKIT V1

- PROGRAMS PICI6C8s and $16 F 84$ - ACCEPTS TASM AND MIPASM CODE Full kit includes PIC16F84 chip, top quality p.c.b. primted with component layout, turned pin PIC socket, all components and sothware*
- Needs OBASIC or QUICKBASIC

KIT $871 \ldots £ 13.99$. Built and tested $£ 21.99$

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach-In 7. All parts
are supplied by Magenta. Teach-In 7 is $\mathbf{E 3 . 9 5}$ from us or EPE
Full Mini Lab Kit - £119.95 Power supply extra - $£ 22.55$ Full Micro Lab Kit - £155.95 Built Micro Lab - £ 189.95

EPE PIC Tutorial
At Last! A Real, Practical, Hands-On Series - Learn Programming from scratch using PIC16F84

- Start by lighting I.e.d.s and do 30 tutorials to Sound Generation, Data Display, and a Security System
- PIC TUTOR Board with Switches, Le.e.d.s, and on board proarammer

PIC TUTOR BOARD KIT

Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components ${ }^{\text {© }}$ ('not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.
KIT 870 £27.95, Built \& Tested £42.95 Optional: Power Supply - £3.99, ZIF Socket - $£ 9.99$ LCD Display
£7.99 tED Display
. $£ 6.99$

PIC TOOLKIT V2

- SUPER UPGRADE FROM VI • 18, 28 ÅND 40 -PIN CHIPS
- READ, WRITE. ASSEMBLE $\%$ DISASSEMBLE PICS
- SIMPLE POWER SUPPLY OPTIONS 5-20V
- ALL SWITCHING UNDER SOFTWARE CONTROL
- MAGENTA dESIGNED PCB has terminal pins and oscillator CONNECTIONS FOR ALL CHIPS
- INCLUDES SOFTWARE AND PIC CHIP

KIT 878 . . . £22.99 with 16F84 . . . e29.99 with $16 F 877$

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS SOFTWARE
- PIC16C6X, 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP - HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED PIN SOCKETS FOR 18, 28, AND 40 PIN ICs.

- SEND FOR DETAILED

 INFORMATION - A SUPERB PRODUCT AT AN UNBEATABLE LOW PRICE.Kit 862 £29.99
Power Supply $£ 3.99$
DISASSEMBLER SOFTWARE £11.75

PIC STEPPING MOTOR DRIVER

INCLUDES: PCB
PIC16F84 WITH DEMO PROGRAM. SOFTWARE DISK, INSTRUCTIONS AND MOTOR.

Kit 863 £18.99

FULL SOURCE CODE SUPPLIED. ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS.

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor - up to 24 V and 1 A . Kit includes all components and 48 step motos Chip is pre-programmed with demo software, then write your own, and re-program the same chipl Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

8-CHANNEL DATA LOGGER

As featured in Aug JSept. '99 EPE. Full kit with Magenta redesigned PCB - LCD fits directly on board. Use as Data Logger or as a test bed for many other $16 F 877$ projects. Kit includes programmed chip, 8 EEPROMs, PCB, case and all components.

$$
\text { KIT } 877 £ 49.95 \text { inc. } 8 \times 256 \mathrm{~K} \text { EEPROMS }
$$

All pricesinclude VAT. Add $£ 3.00$ pEp. Next Dày $£ 6.99$

Tols 0191 2514363

Editorial Offices:
EVERYDAY PRACTICAL ELÉCTRONICSETI EDITORIAL
ALLEN HOUSE, EAST BOROUGH. WIMBORNE
ALLEN HOUSE, EA
DORSET 日H2 PF
Phone: Wirnborne (01202) 881749
Fax: (01202) $8 \div 1692$. Due to the co
overseas orders or queries by Fax.
E-mail: editorial epemag wimborne.co. uk
Web Site: htip\%/winw epermag.ncmborne.co. uk
Online Edition www.epemag.com
See notes on Readers' Enquiries below - we regret iengaty technical enquiries cannot be answered over the telephone. Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICSIETI ADVERTISEMENTS
MILL LODGE, MIL LANE
THORPE.LE-SOKEN, ESSEX CO 16 OED
Phone Fax: (01255) 861161

TIME LINE

With the millennium fast approaching (or maybe you feel we should be accurate and wait for the end of 2000 to celebrate?) we have decided to produce a series of articles describing the development of electronics over the last 100 years. Our friends and Editors of EPE Online, Max and Alvin in the USA, are producing it for us and they asked a number of people to suggest significant developments they thought worthy of inclusion. We passed this request on to some regular contributors in the UK and their responses just about covered everything we could think of. It should make a fascinating series and it should expose one or two myths about who invented what first.
We are also planning to produce a "Time Line" wall chart, showing all the significant events/developments etc., which will be given away with one of the spring issues of EPE. This series should start in the Feb ' 00 issue (on sale Jan. 7).
Max and Alvin have already secured a fascinating article from Horst Ruse about his father. Konrad, who invented the first large-scale digital computer in Germany in 1941. You can read all about it and see some fascinating, never previously published, photos of the computer on our Online edition web site at www.epemag.com.

ON-LINE CONTACT

As many readers will know, we have a Chat Zone on our UK EPE website at www.epemag.wimborne.co.uk. This is so that readers can "chat" to each other, and help each other with information, advice, ese. However, we have noticed one or two readers asking questions that would be better put to us at the editorial department. Whilst we keep an eye on what is happening on the Chat Zone, you should not be trying to ask us editorial questions on it. If you want to ask when something was published, if we can supply a back issue, or to direct a question at one of the editorial staff, you should do this via our E-mail address: editorial@epemag.wimborne.co.uk.
We do try to respond to both letters and emails within a few days but if something needs researching and we are tied up with getting the magazine out it may take a little longer.

aVAILABILITY
Copies of EPEETI are available on subscription amwhare in the world (see right), from all UK newsagents (distributed by COMAG and from the following electronic component retailers: Omni Electronics and Maplin in S. Africa. EPE can also be purchased from retail magazine outlets around the world. An Internet on-ine version can be purchased from www.epemag.com

SUBSCRIPTIONS

Annual subscriptions for delivery direct 10 any address in the UK: £26.50. Overseas: £32.50 stancard air service, $£ 50$ express airmail. Cheques of bank drafts (in E sterling only) payable to Everyday Practical Electronics and sent to EPE Sub. Dept. Allen House, East Borough. Wimborne Dorset BH2i 1PF. Tel: 01202 88i749. Fax: 01202841692. E-mall: subs@epemag.wmborne.co.uk. Also via the Web at ntip/iwwwepemag.wimborne.co.uk Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the Bact issues page.)

BINDERS

Binders to hod one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $\mathbf{2 5 . 9 5}$ pus 23.50 psp (tor overseas readers the postage is $£ 5000$ to everywhere except Australia and Papua New Guinea which cost E10.50). Normally sent within seven days but please allow 28 days for delivery - more for overseas.
payment in \mathcal{L} sterling only please. Visa and MasterCard accepted, minimum credit card order $£ 5$. Send, lax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our web site. Overseas customers - your credit card will be charged by the card provider in your local currency at the existing exchange rate.

Editor: MIKE KENWARD
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
On-Line Editor: ALAN WINSTANLEY,
Business Manager: DAVID J. LEAVER
Subscriptions: MARLIYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:

PETER J. MEW, Frinton (01255) 861161
Advertisement Copy Controller: PETER SHERIDAN, Wimborne (01202) 882299

READERS' ENQUIRIES

E-mall: techdept@epemag.wimborne.co.uk We are unable to offer any advice on the use. purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and International reply coupons. Due to the cost we cannot reply to overseas queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see Shoptalk). We advise readers to check that all parts are still available before commencing any project In a back-dated issue.

ADVERTISEMENTS

E-mall: adverts@epemag.wimborne.co.uk Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICSETI take reasonable precautions to protect the interests of readers by ensuring as tar as practicable that advertisements are bona fire. the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, of in inserts.
The Publishers regret that under no circumstances wilt the magazine accepl liability for nonreceipt of goods ordered, or for tate delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSAITTERS/BUGSTELEPHONE

 EQUIPMENTWe advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legality used in the UK. Readers should check the law before buying any transmitting of telephone equipment as a fine, confiscation of equipment and/or Imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws.

Constructional Project

PIC
 MICRO-PROBE

A neat little tool to help debug your PIC microcontroller code!

IF there's one thing which irks most when developing PIC microcontroller software, it's that sinking feeling when you apply power for the first time and the thing just sits there smugly doing (apparently) nothing.

In fact. your PIC chip is probably whizzing away inside some loop or other. or resetting itself several thousand tines a second. You'll be none the wiser.

BUGS AND OPTIONS

There are various solutions to debugging your code and indicating what's going on inside your chip. You could be using a software simulator. such as MPSIM. You might have some l.c.d.s attached to a spare port and be lighting them up at various stages of your code to see how far you're getting. You might. perhaps, have a serial port in your project and be sending the odd character to indicate position - you might even be fortunate enough to have an in circuit emulator (you wish . . .).
All these debugging methods are well and good. but suffer from disadvantages. MPSIM requires time and effort to set up. and if you're running on-chip peripherals such as serial ports, PWM. I2C. SPI etc.. then its use becomes very limited.

Using I.c.d.s attached to a spare port is an excellent idea. and the author always try to incorporate a bank of them on a printed circuit board wherever possible. This gives you an on-board debugger straight away - but only if you have the port pins to spare. This is chip-dependant, and remember some of the smaller 8 -pin PICs only have one or two input/output pins to begin with.

SINGLE PIN SOLUTION

An answer to this situation is to use an existing output pin to output a very short duration Debug word (of around $64 / \mathrm{s}$). There are two advantages to this:

1. The code is held-up outputting the Debug word for a minimum amount of time.
2. It may be possible to use a pin that is currently being used for other output duties.

Advantage 2 needs sone further explanation. Ideally. this output pin will be something like a processor status l.e.d. pin - or at least a pin where a short duration word isn't going to upset whatever is connetted to it (a relay. for instance. should ignore a word of less than 100 microseconds or so). In this way, the debug word is transparently output on the pin.

The Micro-Probe described here is connetted to the target output pin and "listens" for any valid debug words coming from that pin. There are eight possible Flag codes. It does not matter whether the output pin is held high or low before the word is output - the probe will pick up the pattern in each case.

Note that because the PIC is to be operated at $10 . \mathrm{MHz}$, it must be configured for the HS crystal option prior to it being programmed.

The $\boldsymbol{\$} \mathbf{V}$ power supply for the PIC is connected to the circuit by means of two flying leads with test clips on the ends. The clips allow the power to be obtained from the supply of the circuit under test. Since it would be very easy to mix up the polarity when connecting into a target circuit. diode D! is included to protect the PIC.

A power-on l.e.d.. D3. is taken across the supply in series with ballast resistor R1. You can then tell straight away if one of the power clips has fallen off!

The signal from the target circuit comes in via diode D2. This drops the incoming signal voltage level by the same amount as DI (so that you are not over-volting the PIC with respect to the supply). R2 is a pulldown resistor for the PIC's input pin RA4. All other Port A pins are configured as outthe bi-colour l.e.d.s with eight individual l.e.d.s, remembering to add a ballast resistor to each.

When a valid word is received by the Micro-Probe. one or more of the l.e.d.s will light.

SOFTWARE

The software for the Micro-Probe is split into two-parts - the code run by the MicroProbe itself, and the Target code you have to add to the target application to output the debug words.
It should be noted that the Target program has been written specifically for use within programs that are intended to be assembled through MPASM (Microchip's own assembler software).
The Target code cannot be used with programs written in TASM (the Shareware assembler language used in many EPE projects). Nor can the EPE PIC Toolkit (both MXI and MK2) interpret the Include instruction embodied in the Target

CIRCUIT

DESCRIPTION

The Micro-Probe has a very simple circrit and uses the ever-popular PIC 16F84 in its 10 MHz version. It is such a simple circult, in fact, that it does not really warrant a printed circuit board. Consequently. it has been designed onto a piece of stripboard.

With reference to the circuit diagram in Fig. I. the PIC. ICI. is set up in a crystaltimed configuration with a 10 MHz crystal. XI. and two 15pF capacitors, C3 and C4.
puts in the software and can be left unconnected.

Four bi-colour leeds are connected to Port B via ballast resistors R3 to R6. These l.e.d.s are actually two l.e.d.s in one package. connected back-to-back across each other. Depending on the direction of the current. the l.e.d. illuminates either red or green, so with four le.d.s. eight signal indications can be displayed.

If you prefer. you can replace

Fig. 1. Complete circuil diagram for the PIC Micro-Probe.
program. Experienced programmers, howcler, should have no difficulty in re-writing the small amount of code involved to suit the TASM/Toolkir structures.

TARGET MACROS

Looking at the Target code first. this allows you to add macro-routines to your program. Macros are very powerful and flexible batch-iype commands which consist of instructions to the compiler to generate code at compilation time. An example of using the macros to generate the debug words is shown in program file YOURPROG.ASM.

First of all. it is inportant to be able to generate the correct duration of pulse for a number of target clock frequencies. The macros generate the correct duration of pulse for an integer numiber of megabertz frequency (1, 2. 3 etc.). It is necessary to point out that your target processor should be crystal or ceramic resonator clocked - RC (resistor-capacitor) clock generation is not really accurate or stable enough for the Micro-Probe.

In YOURPROG.ASM it will be seen that the clock speed (CLK) is defined for $16 \mathrm{MHz}:$

\#DEFINE CIK . 16 ;SPEED IN MHz

Note that a decimal point is placed in front of the 16. which signifies to the compiler (MPASM or compatible), that the value is in decimal. The appropriate value for the speed of your target circuit should be substituted in place of the 16.

The pin of the target circuit which the Micro-Probe is 10 monitor is defined in YOURPROGASM as Pon C pin 7:

\#DEFINE DEBUGPIN PORTC 7

Any Port and any pin can be substituted in place of PORTC. 7 as required.

MACRO ROUTINES

There are three distinct Macros: PIN X. SYNCWORD and DEBUG X.

At the lowest level is the macro PIN X.
This takes an argument of 0 or 1 and sets or
clears the selected output pin accordingly. It then loops for a number of times according to the clock frequency (defined by CLK) to time the length of the pulse.

The macro SYNCWORD starts with a 0 for the start bit. followed by binary 101 to uniquely identify that this is a debug word. It does this by calling PIN X four times (c.g. PIN O, PIN I, PIN O. PIN I).

Macro DEBUG X is the one you call from the body of your code with tive relevant argument, where you want to signal that the code has reached that particular point. DEBUG first calls SYNCWORD, and then adds the 3-bit code for the relevant Flag poinl. Finally; a stop bit 0 is added to the end.

USING MICRO-PROBE

Where you want to signal a point having been reached in your code (say entering a subroutine). then add the line:

DEBUG X (where $X=1$ to 8)

For example:

DEBUG 1 lights the first l.e.d. green
DEBUG 2 lights the first l.e.d. red DEBUG 7 lights the fourth l.e.d. green If your target application makes use of internupts, then make sure that you disable the global intemupt enable bit (INTCON,GIE) before calling the Macro. This is to ensure that an interrupt does not happen halfway through a debug word. destroying its timing. Re-enable it as required afterwards (see अOURPROGASM).

When you want to reset and tum off all the l.e.d.s. just remove one of the power leads temporarily (or fit a Reset switch if you like).

INCLUDE FILES

Keep things tidy by putting the body of all the aforementioned macros into an Include file. To do this, open up a blank page within MPLAB, type in the Macros. and save as:
DEBUG.INC
into C:|PROGRAM FILESUMPLAB\}

When you want to add debug code to an application, just put the command:

INCLUDE DEBUG.INC

below your processor-specific Include line. and then add the CLK and DEBUGPIN definitions.

When you want to take out or disable the debug code generation, then just "com-ment-out", with a semicolon as usual, the Include line (as well as commenting out the various invocations of $D E B U G$ in your code).

The CLK and DEBUGPIN definitions can safely stay in your application.

BIT-BANGING

The Micro-Probe works by what is known as "Bit-Banging" - that is. it constantly samples an input pin (RA4) and looks for changes in its logic states. To do this. you have to time the instructions carefully so that you are always sampling in the correct part of the incoming bit (interrupts are of no use here because of the short duration of the incoming pulse train).

When the level is unchanging. then a sample loop occurs every ten instruction cycles (1 cycle $=0.4 \mu \mathrm{~s}$ at 10 MHz). or every 4is. It compares this level with the previous sampled level by XORing them together. If the result $=1$. then a change in level has occurred.

Assuming that the output started off low. then the first sample will occur somewhere inside the first " 1 " of " 101 " (the Syncword). The pin is resampled six cycles later $(2-4 / \mathrm{s})$ to make sure that the sample point is not too near the leading edge of the first pulse. Thereafter. the pin is sampled every 8,us to sample each pulse in the same place.

If the Syncword is wrong. then the process is abandoned and the sampling process starts from the top.

Once the three bits of data have been oblained, we have a number between 0 and 7. This is multiplied by four (by performing
the RLF instruction (wice) before being added to the program counter (a computed GOTO).
Using as an example the situation where the data is $0.4 \times 0=0$, which is then added to the program counter (PCL). The program counter always points to the next instruction that is to be performed, so adding $\mathbf{0}$ to it just results in the next instruction being performed as normal. In this case that means that bit 0 of LED_REG is set, and bit ! is cleared before jumping forward to the Port writing section.
In the Port writing section (LED_EXIT). the shadow register LED_REG is written to Port B and lights the relevant l.e.d. before looping back to the top.

CONSTRUCTION

Stripboard is used for the Micro-Probe construction. The type used in the prototype is that specifically designed for mounting integrated circuits and which has a break running up the middle. If using ordinary stripboard, cut the tracks appropriately to keep the two sides of the PIC isolated from each other.
The component layout and underside track view are shown in Fig.2.
It is likely that the stripboard will be larger than you need. If so, use a sharp knife to score the striphoard where you want to cut it (on the copper side). It should crack cleanly over the score when you bend it with a pair of pliers. File down the rough edges.
Drill two 3 mm mounting holes in the positions indicated. and make the various breaks in the copper using the same drill bit.

Use an 18 -pin di.i.l. socket (turned-pin is best) for the PIC.

Fig.2. Component layout and stripboard track details for the PIC Micro-Probe.

Preferably use insulating slecve on all the wire links to prevent shorts and then solder in all the components. observing polarity for the diodes and the electrolytic capacitor. The bi-colour l.e.d.s have the red anode denoted by the longer lead. so make sure the shor lead goes to the position marked as Rk on the layout diagram.
You can't damage these l.e.d.s by getting them the wrong way round. but your colours will be reversed.

At first, only solder in one lead of each 1.e.d., so that you can adjust the height to fit the box before soldering in the other one.

ENCLOSURE

Use a small plastic case for housing the MicroProbe. Drill two holes in the bottom of the case for the stripboard's mounting screws. Use a countersink tool so that the countersunk bolts will sit flush with the surface.

Drill a 2 mm hole in one end for the signal wire. and a 5 mm hole in the other end for the power leads to pass through via a clamping grommet. (When you mount the stripboard. you may need to file its top end to clear the grommet.)

Solder the leads directly into the bolard at the positions indicated. Pass the leads through the case and tighten the grommet to clamp them.
The lid of the case is drilled with 3 mm holes to line up with the l.e.d.s coming up from underneath. If you gauge the height of the l.e.d.s correctly, then with the lid on the box, they will protrude slightly above the surface. Make a paper template with the positions of the l.e.d.s on it and tape this to the lid prior to drilling.

Put both bolts through the bottom of the box and slip on the 5 mm spacers, followed by the stripboard. Thread 3 mm nuts onto the bolts and tighten. Put the lid on the box. guiding the 1.e.d.s through the holes and
fasten using the screws supplied with the box.

Solder spring loaded test clips onto the ends of the wires now protruding from the box and you have yourself a completed Micro-Probe!

TESTING

Power the unit from the target board using the power clips and attach the signal probe to the required pin. The power-on

l.e.d. should be illuminated, if not check your connections and circuit.

With the Debug Include file in your default directory. put the clock and pin definitions into your code, as discussed earlier. Enter a Debug comnland (e.g. DEBUG I into your code.

When you run the target processor, the first l.e.d. (D4) should light green on the Micro-Probe. Check operation for the other seven Debug states.

Finally. label the front panel and your Micro-Probe is ready for action!

RESOURCES

Software for the Micro-Probe is available on 3.5 -inch disk from the EPE PCB Service. code EPE Disk 2 (there is a nominal handling charge). It is also availabic free from the EPE FTP site. See Shoptalk for more details of both options.

PIC BASIC

Write your PICmicro programs in BASIC!

Quicker and easler than " C " or assembler Expanded BASIC Stamp I compatible Instruction set. True compiler provides laster program execution and longer programs than BASIC Interpreters. 12 CIN and 121 COUT Instructions to access external serial EEPROMs. More user variables Peek and Poke Instructions to access any PICmicro register from BASIC. Serlal speeds to $115 k$ baud. In tine assembler and Call support (call your assembly routines). Supports PIC12C67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, $92 x$ and PIC16FBx/PIC16FBxx microcontrollers. Use In DOS or Windows Compatible with most PICmicro programmers.
The low-cost PicBasic Compiler (PBC) makes it easy to write programs for the fast Microchip PICmicros. PBC converts these programs into hex or binary files that can be programmed directly into a PICmicro microcontroller. The easy-to-use BASIC language makes PICmicro programming avallable to everyone with its English-like instruction set. No more scary assembly language!
With Support for 16F877 and Smart Memory Card
The PicBasic Pro Compiler runs on PC compatibles. It can create programs for the PIC12C67x. PIC12CE67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, 9xx, PIC16CE62x and PIC16F8x and 16F8xx microcontrollers. The PicBasic Pro Compller Instruction set is upward compatible with the BASIC Stamp II and Pro uses BS2 syntax. Programs can be compiled and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster than their Stamp equivalents. They may also be protected so no one can copy your code!

Pic Basic - $£ 49.95$
Pic Basic Pro - £149.95 Supplied with full 168-page manual

Free PIC MACRO compiler Free program Editor Free Windows Front End and sample basic programs including code to support 1 M Smart memory card

PIC PROGRAMMER KIT Now with WINDOWS SOFTWARE DRIVER!

Programs the Popular PIC 16C84, 16F84, 24xx series serial memory devices. Connects to the serial port of a PC and requires NO EXTERNAL power supply. The kit includes instructions for assembly, circulf diagram and component lay: out.
This handy litte programmer is easy to build, taking no more than 30 minutes to assemble and test. The Protessional quality PCB is double-sided, throughplated wth sotder resist and screen printing to aid efficient assembly. It is supplied with driver software to run in DOS on a 386 PC upwards and under Windows 95 on 486 or Pentium and a Disk full of interesting projects. tips and data sheets lor PIC devices, including FREE Assembler and Simutator. Only £15.00 including Delivery and VAT (recuires 9pin D-ype to 9 -pin 0 -rype cable to connect to serial port of PC). CABLE $\Sigma 5$ INC. VAT AND DELIVERY

PIC Micro CD ROMs NOW TWO CD ROMS!

Packed with information. PIC MICRO data sheets, Programs and Dlagrams, Application notes, PDF Viewer Includes PING-PONG and TETRIS with video and sound out of a PIC'84. BASIC language ASSEMBLY routines! Data sheets on thousands of Bilcro-controllers and support parts categorised by manufacturer. This must be the best value for money.
£10 Inc P\&P \& VAT - a "MUST BUYI"

Crownhill Associates Limited

The Old Bakery, New Barns Road, Ely, Cambridge, CB7 4PW Tel: 01353666709

Fax:01353 666710
www.crownhill.co.uk
E-mail: sales@crownhill.co.uk

EPIC ${ }^{\text {TM }}$

- Low cost programmer for PIC12Cxxx, PIC12CExxx. PIC14Cxxx PIC16C505, 55x, 6xx, 7xx, 84, 9xx, PIC16CE62x and PIC16F8xx microcontrollers
- ZIF adapters available for $8 / 18$ - and $40 / 28$-pin DIP, 8-18- and 28-pin SOIC, 44-pin MOFP and 44 - and 68 -pin PLCC PICmicros
- Runs off two $9 \cdot$ volt batieries or optional AC adapter
- Connects to PC parallel printer port
- Sofware upgradeable for future PICmicros - Includes "8051" style PICmicro macro assembler
- Avallable assembled and tested or as bare board with diskette

EPIC Programmer $£ 49.95$
or $£ 35$ if purchased with PIC BASIC or PIC BASIC Pro 25-pin Parallel Cable $£ 5.95$ PIC16F84 £1.90 each PIC $16 F 8774 \mathrm{MHz} £ 5.75$ each PIC 16 F 877 20MHz $£ 6.75$ each PIC 16F876 4MHz £5.20 each PIC 16F874 4MHz $£ 5.35$ each PIC 16F873 4MHz £4.75 each PIC 12C508/509 £0.65 each 24LC116 10.75 each 24LC32 £0.75 each 25LC65 £1.50 each PIC 16C622 £2.50 each Call for other PIC devices All PICs stocked!

LCD DISPLAYS £7.50 each
(2×16-line) Ideal for use with PIC Basic \& Pro

Unless shown as in VAT and P\&P, all prices are exclusive of $£ 5$ P\&P and 17.5% VAT Pay via:
ACCESS, VISA or SWITCH Secure On-line ordering www.crownhlll.co.uk

MEME
 Aroundide of the latest Everyday News from the worlit of - $\quad \square$ alectronios

PIRATE-PROOF CDs

Long hoped for by the music industry, uncopyable CDs are now a reality. Barry Fox reports.

NIEV technology spells bad news for people who use a PC to copy music CDs or send them over the Internet. British company C-Dilla has found a way to let a music CD play on a home hi-fi, but not on a PC's CD-ROM drive.
Computer software companies, including Microsoft and Lotus, already use CDilla's SafeDise system to stop people copying ROM data discs.
SafeDisc puts the program material in an encrypled wrapper which can only be unwrapped when a digital key code on the disc matches an authorisation code entered into the PC. The key code is pressed into the dise so that a ROM drive can read it but a CD-secorder cannot copy it. So only the original dise will run the program.

UNREPEATABLE DREAMS

The record industry has been dreaming of just such an anticopy system for 30 years, since the Beatles claimed that their LP Sergeant Pepper could be played but not copied. Like the many systems that followed, Pepper was as easily copied as played.
Peter Newman, who founded C-Dilla in 1991 and invented SafeDisc, has finally found the answer. AudioLok takes advanlage of the fact that the sandard for music CDs. known as the Red Book, was set before the standard for CD-ROMs, known as the Yellow Book.
The ROM standard provides more powerful error correction for data than is needed for music. ROM drives are designed to handle either music or data dises. AudioLok adds false error correction code to a music disc. An ordinary music CD player simply ignores this extra code and plays the disc as normal. But a ROM drive reads the false code and rejects the dise as unplayable. This stops the owner sending the music over the lnternet or copying it onto a blank disc.
A prototype Audiolok disc duly played on a CD music player but refused to play or copy on a PC. Peter Newman says he is confident that he can also stop a consumer music CD-recorder making a copy. because these devices are already designed not to copy CD-ROMs. He expects AudioLok to be ready for commercial launch in a year.
Macrovision of the US has now bought C-Dilla for around $\$ 18 \mathrm{~m}$. Macrovision developed the systems which film and TV companies already use to stop people copying videos. Now the company can offer the same option to the music industry.

NOTABLE PARADOX

Paradoxically C-Dilla's breakthrough and Macrovision takeover come just as the music industry's Secure Digital Music Initiative group has agreed with the electronic companies to allow owners of CDs to "rip" copies into a PC (www.sdmi.org). There had previously seemed no foolproof way to stop copying allogether.
Says Paul Jessop. Director of Technology at the music industry's world trade body the International Federation of the Phonographic Industry:
"Although in general the recording industry welcomes people listening to CDs on computers, the ability to make dises that cannot be copied on computers may be of considerable interest to some record companies." ${ }^{\text {" }}$

Chinese and Chips

NEC Corporation and spartner Shanghai Hua Hong (Group) Co. Lid., have officially opened their joint-veniure semiconductor plant, the largest in China. Concentrating production on Dynamic Random Access Memories (DRAM): production capacity is expected to expand to 20.000 waters per month by the end of year 2000 . Currently supplying their home market, the company proposes to eventually manufacture for world markets.
NEC pioneered the concept of C\&C, the integration of Computers and communications. They employ in excess of 150,000 people around the globe.
For information, browse:
http://wwsw.nec-global.com.

GET STUFFED AT CYNTHIA'S

The worldly pleasures of this planet's First Robotic Bar and Restaurant are sampled by John Becker.

NOt that we'd ever suggest you stop chatting up your favourite local bar wench, but from behind her bar Cynthia's really got what it takes to get you drooling! Ah. Earthlings, we have a tale to tell of sensuous cosmic delights and entertainment that you'll enjoy when Cynthia responds to every finger-tip's request! She's well programmed to serve you!
"And who is Cynthia?". we hear the cry from our valiant readers, thrusting hot soldering irons hard into their holders. Gather round - Cynthia's the most amazing anthrobot you're likely to meet this side of the galaxy and, together with cyberpartner Rastus, is the star feature of a new theme bar and restaurant that's just opened in London.

CYBER CHAT

Cynthia and Rastus are two 2 metre high robots, each with their own cavemous and glittering bar area from which they serve the cocktails and other drinks you've ordered through their 75-option keypads. Rastus is a bit of a DJ as well. As with any Earthly (or even Earthyl) bar tender. these two cyberoids respond to your orders with varying degrees of good or bad grace (depending on their mood, and the state of their program cycle - which in tum reflects the state of mind of their original designers and programmers!).
Accepting your order (they do obey at least one of Asimov's Laws of Robotics, paraphrased as - Thou shall not harm or through inactiviry cause harm to occur to a human - and it would harm you to do without your beverage, wouldn't it?), Cynthia and Rastus pivot round to the vast array of drinks on optic behind them, and fill your glass to the correct measure.
While you're at the bar, it's you who are likely to be chatted up by Cynthia and Rastus. We'd like to say that the tone of chat respects all Laws of Polite Conversation - but we can't lie to you, can we? You just have to accept that the occasional "questionable phraseology" might occur! But it's all in good fun and humour, and has nothing that would not be heard in a Carry On film.

CULINARY CALLING

After you've been cajoled by others of human persuasion to vacate your place at the bar, you have yet more delights to pursue - culinary ones. In other words, it's along the glittering corridor to Cynthia's restaurant.
The centrally-illuminated dining tables have call-buttons inset. offering choice of the service required: drinks, food. general, and bill. Hi-lech is a keyword even in the way you are attended at table. Attired in fetching Millennial black and silver togas, reassuringly human staff use handheld electronic order pads. Your

Richard Becker (Cynthia's Conceptual Parent) requests Roger Gay (Cynthia's Behaviourist) to hand over the declaration that Cynthia will always converse in a polite and socially acceptable manner. At the time that this reviewer departed, no such undertaking had been received (but Cynthia had sweetly growled "B"."r-ofl Human"!)
order is keyed in and transmitted by short range radio through to the wellequipped kitchens. All "plastic" financial transactions are via a commercial networked EPOS system.
Described as "Multi-national". the selection, quality and competitive pricing of the food is comparable to that served in many good restaurants around the planet. and there's a special menu for "minidroids"!

ORBITAL SPACE-WAYS

Being in the comfort zone of a vast orbiting space station, Arthur C. Clarke 2001 style: that's the futuristic atmosphere at Cynthia's Cyberbar and Restaurant. You forget that it's all more down to Earth, set below London Bridge, in the mass of broad tunnels and brick-built caverns that pervade that area of London.

Genesis in various forms as publlshed in PE, Nov '81. Rumour has it that the white-coated android was a working facsimile of Mike Kenward.

The walls, floots and ceilings are covered in a silvered metal skin and well interlaced with great expanses of mirtors. Any camera flash ltas a half-life of a thousand years (or so it seems). So does the image of the drinkers and diners - echoing down to the ends of the universe.
Myriads of light emitting diodes enhance the entire lengths of the "populated" areas. Those in the bar stools appear to be in constant twinkling and ascending orbit through the transparent stems. Cynthia's and Rastus' dominarke at the end of their respective supra-spacial cavems enhances the feeling of outer-wordliness; and hints at their possible "genetic" origins. There is the profound feeling that Cynthia is a distant relative of Marvin, the robot who, reluctantly, was involved in "Hitch-Hiling Through The Galaxy".

EVOLUTIONARY RELATIVITY

As to whether Cynthia is an ancestor of Marvin, or his descendent, will probably never be ascertained. the space-time chronosynclasticparafundibulum of the polyverse is far 100 multitemporal to ever establish who's whose relative and in what order from the Event Horizon, but there's a family likeness there somewhere (relatively speaking)! To drop back out of warp-time(l), "family" is involved in this Cyber-venture in another way. this commentator's family. in the shape of his brother, Richard Becker.
Those of you who recall earlier days of electronic hobbying will probably remember that Practical Electronics, in November 1981, published a robotic arm. Genesis, designed by Richard. This was very much a "first" not only for Dick but also for $P E$, which at that time was edited by Mike Kenward (now our Owner. MD and Ed-in-Chief).
Through his company Powertran Cybemetics. Dick built up a worldwide market for his educational and light industrial robotics products, which became increasing more sophisticated at each generation. To cut short a length of history. Dick went on 10 found Cybernetic Instruments Lid, of which Cynthia's Cyberbar is a division.

CHARTING SPACE-TIME

Cynthia herself (though we're not really sure of her/his gender!) became a twinkle in Dick's imaginative eye a good ten years back. Sworn to secrecy, this author has seen great wall lengths in one of Dick's large factory units increasingly covered by hundreds of mechanical drawings. Each represented a part of Cynthia Mk 1, manufactured and assembled when time permitted between other commitments.
Genesis and many more of Dick's earlier robotic arms ranges were
hydraulically controlled (water for blood!). Cynthia's motion, though, is generated by precision stepper motors operated under tight closed-loop control. They are operated with varying degrees of resolution, from a basic 200 steps up to around 12800 when in micro-step mode. The various limb motions are on a double axis, horizontal and vertical movement.
The sophistication of the control software ensures that movement is smooth. with different rates of acceleration and deceleration being applied depending on the position of motion. There was no need to give Cynthia third-axis (rotational) limb and wrist movement.

INNER SPACE

One might expect that the entire system would be governed by the latest in microcontrollers. Not at all - that well-proved
and time-honoured favourite the 8051 is the microprocessor used (well, a modern 16-bit derivative of it anyway). "Why change a working system?", says Dick, having long ago optimised software-hardware interfaces for all his automation products.
In fact there are 12 slave microprocessors, one for each of the motors. all under control of a master processor. A PC-compatible computer is in overall charge of the system. including the drinks ordering keypads and Cynthia's speech generation.
Cynthia's inner organs are a sight to behold! Her body is packed with thoroughly populated printed circuit boards and stacked in awe-inspiring regimentation. The scene behind the drinks array leaves one almost dumb with admiration at how complex a system is required to select and serve the correct drink on
demand. Mechanical and electronic interfaces abound, thick neural-like cable hamesses snaking their way amongst them.

PLANETARY CO-ORDINATES

Undoubtedily, all of you within suborbital distance of Cynthia and Rastus will by now be utterly consumed with desire to drink with them. and to dine with their human entourage.
Here's how: the address is Cynthia's Cyberbar. 4 Tooley Sireet, London SEI 2SY. Tel: 0171403 6777. Fax: 0171 378 1918.

E-mail: cynthia@ cynbar.co.uk.
Web: http://www.cynbar.co.uk.
Children are welcome (there's even a dance floor, and soon there'll be ant amazingly fascinating technology-orientated gift shop).

Young Amateur Awards

SIXTEEN-YEAR-OLD Mark Haynes from Harlow, Essex was recently announced as the winner of the Radio Communications Agency's Young Amateur of the Year Award 1999. Mark received first prize of $£ 500$, a certificate from Stephen Byers. Trade and Industry Secretary, and will be invited to a conducted tour of the RA's Monitoring Station in Baldock, Herts.
Mark gained his Novice Licence at the age of 12 and became the youngest radio amateur of his home town. In July he organised and ran a special event station commemorating the 175th anniversary of the RNLI.
If you would like to become involved in Amateur Radio, contact The Radio Society of Great Britain. Lambda House. Cranbourne Road. Potters Bar, Herts EN6 3JE. Tel: 01707659015.

Micromouse Grand Prix

ASTONISHING - July next year will see the action of an exciting new challenge for enterprising 11 to 18 year olds. The Micromouse Grand Prix 2000 is being organised by the UK's key engineering association Young Engineers, in collaboration with the IEE (Institution of Electrical Engineers), Europe's largest professional enginecring society.
Teams of up to four are being invited to build and race their own robot, i.e. a small vehicle capable of finding its own way round a course at high speed. Entrants to this challenge will have specialised support through the Young Engineers website www.youngeng.org for chassis design. electronics, stecring control. digital and programmable technology. There are several classes in which you can compete.
Preliminary race days take place around the UK in March 2000, with the Grand Prix itself in July.
For more information contact Fiona Hunt at Young Engineers' Press Office on 01718233799 or Christina Dagnall of IEE Media Relations on 01713445445. Mention EPE when phoning.

WECANFIXIT4U

RECENTLY faxed through to us is information about an interesting website. wecanfixit4u.com. The site offers a free directory of fixers, repairers, restorers and conservators. The company invites readers to not only use the site to search out the services they need, but also to have their own skills listed as well. They aim to provide a global directory searchable by item and hope to bring together both Fixers and those needing a Fixer.

They say: "In our proper work we build websites and publish on CD-ROM, and offer consultancy on the matching of Content to End User".
For more information contact David Hall, Chameleon HH Publishing Lid. Dept EPE. The Quarry House. East End, Witney, Oxon OX8 6QA. Tel: 01993 880223. Fax: 01993880236.

E-mail: data@wecanfixitdu.com.
Web: http://www.wecanfixit4u.com.

THE NEW FORCE IN EDA

The brief was clear. To create a next generation CAD system for electronic engineers that used state of the art desktop integration and customisability togethens with unrivaled ease of use
 Siudig (EDS) is an entirely new program designed for Lotay's EDA porformande needs. Integrating schegnaflo and PCB design into a powerful design siudlo, EDS Ifts you view and edit all the files in your projects, and through OLE2, EDS integrates with your dasktop letting you drag and arop documents into and from your favorite Office applications.

- State of the art multiple-document user interface offering unrivalled ease of use and customisabilith
- OLE 2 support including drag and drop, allows integration with your favorite Office applications.
- Project Wizard and Project Manager make creating and navigating all the documents in your projects easy.
- New heiracial symbol browser, makes creating, edting and managing symbols a breezel
- High resolution (lum) and large design size (up to $2 \mathrm{~m} \times 2 \mathrm{~m}$) combined with intelliSNAP makes metricfimperial design mixing easy!
- Unlimited schematic sheets, with full support for data busses, power rails, etc
- CADCheck automatically syncronises schematic and PCB designs. No more capture worriesI
- Unlimited Undo/Redo, print preview and a wide range of import/export options Including CAD-CAM.
- Up to 32 layers can be assigned to be copper, silk, gold, mask, drill, mechanical, or annotation layers.
- New CADObjects engine supports a wide range of graphic objects including professional True Type fonts, object shaping and property support, in situ editing of symbols, high resolution and arbitrary rotation/scaling of objects.
- Unlimited range of pad and track sizes supported.
- Create flood fills and power planes quickly with the new polyfill tool.
- Fast fully customisable poly-algorithmic autorouter

Electronic Design Studio
Electronic Design Studio Cross Grade
Electronic Design Studio LITE
PLUS Your first double-sided Eurosize PCB produced FREE by BETA.LAYOUT
£199 $\$ 319$
£149 $\$ 239$
£49 $\$ 79$
CB 3: की

TRY AND BUY TODAY ONLINE AT wanaraickroute.co.us

Prices exclude PGP and VAT where applicable. 30 DAY MONEY BACK GUARANTEE

WORK FASTER

WORK BETTER WORK EASIER

88-108MHz FM Sfereo

 Radio Tramsmiffers and kitsFully enclosed and guaranteed PLL FM transmitters from 1 to 150 Watts power, prices start at under $£ 129.95$. Low cost FM kits: PLL, crystal controlled stereo encoders, audio limiter compressors: all avallable as kits, or fully built and tested: kits from as little as £13.95. Professional link systems avallable, the lowest prices ANYWHERE! RF power amplifiers from 5 to $\mathbf{2 2 0}$-Watts power. Aerials to suit all applications and budgets. Check out the HUGE range of products on the VeronicaFM website: HTTP://www.veronicafm.co.uk E-mail VeronicaFM: info@VeronicaFM.co.uk or sales@VeronicaFM.co.uk

To celebrate the runaway success of our PLL Pro II 1-Watt transmitter kit, we are offering ALL our customers this stunning deal:
 quality PLL Pro II transmitter Kit or Built kit : you will receive a Pro II crystal controlled stereo encodel

Total cost for both items build it yourself kit: $£ 67.95$ ready built kit: $\mathbf{£ 9 9 . 9 5}$
We offer you stereo PLL cheaper than many of our competitors offer mono PLL!!!

(0) $\mathrm{D}=$ Buy our NEW 1 to 100 Watt power amplifier $5290-95$

 and our proven PLL Pro II transmitter kit to drive it together for this amazing price:
That's a 100-Watt transmitter for UNDER £300!!!

The high quality 100-Watt amplifier is mains powered, so you don't need to spend a fortune on a power supply. The Amp also incorporates SWR protection and many other features normally reserved for equipment costing more than TWICE as much: see website for full spec

ROBERT PENFOLD

You will find the attraction with this novel, low cost, starter project.

Tarus very simple project can detect fixed magnetic fields or fields that are varying at an audio frequency. Fixed or slowly changing field strengths are reg. istered on a centre-zero meter, which indicates the polarity in addition to the relative field strength. Audio frequency fields. such as those produced around mains and audio transformers. are detected via a crystal eapphone that can be used to monitor the output signal.
The unit is not intended to provide accurate measurement of magnetic field strength. and is aimed at those who like to experiment with something a bit different. Although quite simple the unit is reasonably sensitive. A small and not very powerful bar magnet can be detected by the protorype at about 100 mm from the sensor, and drives the reading to full scale at a range of about 30 mm .
current is passed through the silicon. and this produces a potential gradient in the silicon. There is zero volts at the bottom of the slice, the full supply potential at the top. and a certain portion of the supply voltage at intermediate points. The two electrodes are half way up the slice, and consequently there is half the supply voltage at each one. This gives zero output voltage across the two electrodes.

Applying a suitable magnetic field to the device "skews" the current flow and the potential gradient, producing an imbalance in the output potentials. The stronger the magnetic field, the greater the difference in the output voltages.

Applying a magnetic field of the opposite polarity skews the current flow in the opposite direction, giving an output signal of the opposite polarity. The output signal therefore indicates the strength of the magnetic field and its polarity.

It is important to realise that a Hall effect sensor only works if the magnetic field is applied to one side or the other of the silicon slice. Applying the field to the front. back. top. or bottom of the sensor does not affect the current flow in a manner that will produce any imbalance at the electrodes. Consequently it will not produce any output voltage. . . .
Fig. 1. A Hall effect sensor is Ittle more than a slice of sillicon. (a) normal and (b) with magnetic field influence.

hall effect

Detecting varying magnetic fields is quite easy. and requires nothing more than an inductor to act as the sensor. Unfortunately, static fields do not produce any output from an inductor and require a totally different approach.

The only common form of magnetic sensor that "fits the bill" is a linear Hall effect device. A Hall effect sensor is a form of semiconductor, and is actually a very simple type of component. Fig. 1 helps to explain the way in which a Hall effect device works.

The sensor is just a slice of silicon having electrodes on opposite surfaces. A

SENSOR

Practical Hall effect sensors are more than just the sensing element itself, and they are invariably in the form of and integrated circuit containing the sensor plus some additional circuitry. Some sensors provide a switching action. and others provide an output voltage that is proportional to the applied field strength.

In this application it is only devices in the second category that are of any use, and the device chosen for this design is the UGM3503U. This is an inexpensive device but it has a very useful level of performance and is very easy to use.

It has just three terminals, which are the supply and output terminals. An internal differential amplifier boosts the output signal from the sensing element and produces a single output that is at about half the supply potential under standby conditions.

Placing a north pole of a magnet close to the surface of the sensor that carries the type number produces a reduction in the output voltage, and placing a south pole close to this surface gives an increase in the output potential (Fig.2). The frequency response of the device is flat from d.c. to 23 kHz . which means that it encompasses the full audio range.

Fig.2. A Hall sensor indicates the polarity of the field as well as its strength.

CIRCUIT OPERATION

The full circuit diagram for the Magnetic Field Detector appears in Fig.3. ICl is the Hall effect sensor and IC2, a precision op.amp, is used to provide some additional amplification. The amplifier is an operational amplifier inverting mode circuit. which has resistors R1 and R4 as the negative feedback network.
The innate voltage gain of IC2, or the "open loop" gain as it is termed, is extrentely high at d.c. and low frequencies. In fact, it is over 100,000 times for a typical operational amplifier.

Using negative feedback reduces the voltage gain of the circuit as a whole to a more usable figure, and this "closed loop" gain is equal to resistor R4 divided by RI. This works out at a little over 300 in this case. Higher voltage gain would obviously give better sensitivity, but it would also give problems with noise and drifl.
Op.amp IC2 amplifies the voltage difference between the input voltage to resistor R1 and the voltage at its non-inverting
input (pin 3). This second voltage can be adjusted via potentiometer VRI, and in practice it is adjusted to produce a voltage that matches the normal output potential from ICl. This produces half the supply potential at the output of IC2.

The potential divider formed by resistors R5 and R6 also produces an output of half the supply potential. Meter MEl is connected berween the output of IC2 and this potential divider, and it therefore responds to the voltage difference between the two.

Under standby conditions both points will be at the same potential, giving zero voltage across the meter. An increase in the output voltage from ICl produces a decrease in the output from IC2, and a negative deflection on the meter. A decrease in the output potential from IC1 has the opposite effect, producing a positive indication from the meter.

STRENGTH OF CHANGE

In both cases the greater the change in the output voltage from ICI, the higher the reading from the meter. The meter therefore indicates the relative field strength and the polarity of the magnetic field.

Applying a north pole close to the surface of the sensor that carries the type number produces a positive reading, and applying a south pole to it generates a negative reading. This may seem to be at odds with Fig.2, but bear in mind that IC2 inverts the signal.

The value used for resistors R5 and R6 controls the sensitivity of the meter circuit. The specified values permit MEI to be driven to full scale in both directions provided the battery is reasonably fresh, but their value is high enough to prevent the meter from suffering anything more than very minor overloads.

Capacitor C2 couples the output of IC2 to earphone socket SKI. This enables the output signal to be monitored using a crystal earphone, but satisfactory results are unlikely to be obtained using any other type of earphone or with headphones.

A 6 V battery supplies power to the circuit, and the current consumption is only about 9 mA . Do not use a 9 V battery as this would result in the maximum supply voltage rating of IC1 being exceeded.

GOOD
 PERFORMANCE

In order to produce good results in this circuit it is necessary for the operational amplifier to have good d.c. performance. Otherwise there could be major problems with drift, and d.c. offsets could make it impossible to zero the meter under standby conditions.

The op.amp also needs to be able to work properly with a supply potential of just 6 V . The OP077GP is reasonably priced and gives good d.c. performance in this circuit. On the other hand, its open loop bandwidth of 600 kHz equates to a closed loop bandwidth of only about 2 kHz in this design.

If audio rather than d.c. performance is of most importance it would be advisable to use a TL071CP for IC2. This will give quite good d.c. performance plus a more respectable audio bandwidth of around 10 kHz . To compensate for a lack of symmetry in the TL071CP's output stage resisstor R6 should be reduced from 33kilohn to 27 kilohm.

CONSTRUCTION

The stripboard layout for the Magnetic Field Detector is based on a piece that measures 19 holes by 20 copper strips. The component layout and interwiring. together with the positions of the breaks in the copper strips, are shown in Fig. 4.

A board of the required size must be cut down from one of the standard sizes in which it is sold. The holes are very close together so use a hacksaw to cut along rows of holes rather than trying to cut between them. This inevitably produces quite rough edges but they are easily filed to a neat finish.

Next, drill the two 3 mm diameter mounting holes and make the four breaks in the copper strips. A special tool for cutting the strips is avaitable, but a handheld twist drill bit of about 5 mm in dia. does the job just as well. Make sure that the strips are cut across their full width.

The circuit board is now ready for the components and link-wires to be added. With a small board such as this the order in which the components are fitted is not

Fig.3. Complete circuit diagram for the Magnetic Field Detector.

Magnetic Field Delector front panel layout. The Hall effect sensor is mounted externally in a probe arrangement. such as an old pen case, and connected to the circuit board via the screened cable.

Resistors	
R1	1 k 5 ($)^{(8) 2}$
A2,R3	10k (2 ofi) S
R4	470k
R5, R6	33k (2 ofi) TAL
110.25W 5\%	bon film page
Potentiometer	
VR1	1k rotary carbon, lin
Capacitors	
C1	100\% radial elect 10 V
C2	100 n polyester, 5 mm lead spacing

Semiconductors

IC1	UGN3503U Hall effect sensor
IC2	OP77GP precision
Op.amp (see text)	

Miscelianeous

S1	S.p.s.i. min loggle
B1	6 V battery pack ($4 \times \mathrm{AA}$
size cells in tolder)	
SK1	3.5 mm jack sockel ME1$100 \mu \mathrm{~A}-0-100 \mu \mathrm{~A}$ moving coil panel meter

Medium size plastic or metal box; 0.1 inch matrix stripboard, size 19 holes by 20 copper strips; 8-pin di.i.l. holder; battery connector (PP3 type): control knob: crystal earphone, with lead and plug; twin-screened cable, about 0.5 metres; multistrand wire; solder pins; solder eic.

Approx, Cost
Guldance Only
excl. earphone, case \& batis.

Magnetic Field Detector

Completed Detector showing earphone socket on one side panel.

Fig.5. Connection details for the UGN3503U Hall effect sensor.
really important, but it is best to work methodically across the board so that nothing is overlooked.

Neither the OP077GP or TLO71CP is static-sensitive. but it is a good idea to use a holder for any d.i.l. integrated circuit. Be careful to fit IC2 and electrolytic capacitor Cl the right way round.

Fit single-sided solder pins at the points where connections will be made to potentiometer VR1, meter ME1, etc. it is onemillimetre diameter pins that are required for stripboard. "Tin" the pins with plenty of solder so that it is easy to make reliable connections to them.

CASING-UP

Virually any medium size plastic or metal case should be able to accommodate this project. However, be careful to choose one that has sufficient depth to take the meter and the battery pack. The latter consists of four AA size cells in a plastic holder. Connections to the holder are made using an ordinary PP3 style battery clip. Although the circuit has a fairly high voltage gain the layout is not critical, and it is just a matter of designing a layout that is easy to use.

One slighty awkward aspect of construction is filting the meter onto the case. because this requires a large cutout to be

Fig.4. Stripboard component layout interwiring and details for breaks required in the underside copper tracks.

Layout of components Inside the two halves of the case. Note the space for the battery pack.

Completed circuit board showing the four link wires and the op.amp C2 mounted in its.holder.
made in the case. Most moving coil meters require a 38 mm round mounting hole and the easiest way of making this is to use an adjustable hole cutter (also known as a "tank" cutter). and these are available from many DIY superstores.
Alternatively, it can be cut using a fretsaw. coping saw, or minialure round file such as an "Abrafile". Another method would be to mark out the cutout, drill a series of small holes just inside this mark and then "join-up" the holes to form the
required cutout. With any of these methods it is advisable to cut just inside the perimeter of the required cutout, and then enlarge it to precisely the required size using a large round file.
Four smaller (3 mm dia.) nouming holes are also required. The positions of these are easily located as they are at the conners of a 32 millimetre square having the same centre as the nuain cutout.

INTERWIRING

The hard wiring is reasonably straightforward. SKI is a 3.5 mm jack socket, and most sockets of this type have a built-in switch that is not required in this application. Accordingly one tag of SK। is left unconnected.
The Hall sensor (IC1) is mounted externally and connected to the main unit by way of a piece of twin-screened cable about 0.5 metres or so in length: An entrance hole for the cable must be drilled at a strategic point in the case, and if a metal case is used the hole should be fitted with a grommet to protect the cable. The screen is used to carry the ground $(0 \mathrm{~V})$ connection.

Rather confusingly, the plastic encapsulation of the UGN3503U Hall effect sensor chip seems to be completely symmetrical. The only way of identifying the three leads is to use the type number on the body of the device as a reference point. see Fig. 5 .

Connect the sensor to the screened lead and use insulation tape or sleeving to
ensure that the soldered joints cannot shoncircuit logether. The sensor will be neater if it is built into a probe. based on an old pen for example, but this is not essential.

TESTING

When the unit is first switched on it is likely that the meter will be driven fully positive or negative. With careful adjustment of Balance control VRI it should be possible to zero the meter. and placing the probe near any magnetised object should then produce a suitable response from the meter.
The meter movement itself contains a permanent magnet, and placing the probe near this should produce full-scale deflection of the meter. Placing the upposite face of the probe near the meter should then produce full-scale deflection in the opposite direction.

As explained previously, applying the pole of a magnet to one of the four smaller surfaces of the sensor will not produce a significant output signal. In use the orientation of "the sensor should therefore be adjusted to maximise the meter reading.

Placing the probe against the power cable of virtually any mains powered device that is switched on should produce a 50 Hz . "hum" from the earphone. Alternating fields will not produce an indication from the meter because the meter will register the average field strength. This will nomnally be zero due to the opposite poles in the signal cancelling out one another.

The circuit is reasonably stable. but occasional readjustment of VRI will be required.

SHOP GMTALK with David Barrington

PIC Micro-Probe

The comporent listing for the PIC Micro-Probe calls for a piece of tc. holder" type stripboard, with a central channel, devoid of cocper, running across the copoar tracks. This will cost you apound 55 , but for fust under $£ 2$ you can use a prece of standard stripboard and cul away the copper tracks as necessary. The res! of the components should be readity available

The PIC used in this profect should be the $101 / 1 \mathrm{~Hz}$ version. For those who want a "plug-in and go" preprogrammed PIC16F84, one is avalable from Magenta Electronics (sis 01283565435 or https/magenta2000.co.uk) for the inctusive price of $£ 5.90$ (overseas readers add ε t for postage). For those who wish to program thetr own PICs, the software is available from the Editorial Offices on a $3-5 \mathrm{in}$. PC-compatiole disk, see EPE PCB Service page 937. It you are an Interne! user, it can be downloaded Froe from our FTP site: tep/itip.epemag.wimborne.co.uk/pubeiPICS. microprobe.

Magnetic Field Detector - Starter Project

dust a couple of pointers regarding purchasing of components for the Rlagnetic Frebd Detector, this month's starter project. The first concerns the 100, A "centre zero" meter, some readers may have ditficulty in locating one. The meter used in the prototype came from Maplin (5 01702 551000). code RivgeG
If you have trouble trackurig down the UGN3503U Hall effect sensor, the above company list one as order code GX09K. The; also supplied the OP77G precision oparmp, code UL05F. The ahernative TL071CP low-noise opamp should be stocked by most of our component advertisers.

Ginormous Stopwatch - Giant Display

This month we complete the Stopwatch pro,ect with the construction of a Grant Digial Display module. Most of the component supply bugs were ironed out las! month

The high volage 4N25 opto-coupler, code AY44, and the ULN2003 Darlington aray, code AD938, are lisied by Maplin. The 8D581 Dartington transistor may be hard to find, but the suggested ahernative TIP141 and TIP142 should be readiy avalable. Note the diflering pinouts for the TIP devices (Fig. 2 las: month)

Ready programmed PICs are available from the author for the sum of $\Sigma 10$ each (for erither the Display module or Stopwatch) or $£ 50$ for six in any combinabion, with free postages to anywhere in the vorld. Parments should be made out to Mr. N Siojadnovic. His E.mat address is: vladimlr@u030.aone.net.au or write to: Mr. N. Stojadinovic, PO Box 320, Woden ACT, 2606, Australia
A programmed PIC16C56 is also avalable from Magenta Electronics (8 01283565435 or httpsimagenta2000. co. uh for the inclusibe price of 55.50 (owerseas readers add EI for postage). For those who wish to program their
own PICs. the software is avaitable Irom the Edrorial Offices on a 3.5in. PC. compatible disk, see EPE PCB Service page. It you ase an internet user, it can be downioaded Free from our FTP she:
itp:ifip.epemag.wimborne.co.ukjpubsiPICS slopwatch.
The two prinied circur boards are available from the EPE PCB Service. code 247 (Digit) and 258 (Port Conv.

Loft Guard

Most of the components called-up for the Loft Guard project should be readly available from yous usual supplier. The only prodems that are likely to crop up may be firding the high value resistors.

The singte 100 megohm resistor (R7) was only found listed under the cermet film" range stocked by Electromall fo 01536204555 or RS hitps/fswhw.com), quole code 158-222. As the artide points out, you could use three 33 megohm resistors (in series): the ach is also designed to accept these. This resistor (33M) came from the Bapltn "high voltage" metal film range, order code V33M.

Note that to make up the 20 megohm resistor (R10) you will need two 10 meg types. Once again. the series pads have teen included on the pc.b.
The last mentioned company atso supplied the miniature fight- cependen! resistor (ld.r.), code AZ83E, and the high power warning buzzer, code FKB4F. Athough most of our cormponents acvertisers should be able to offer something smitar. You could, of course, use the good old standard OFP 12 L.dr. if you with

Even though the semiconduciors are specific versions, they should be in plentitul supply. The p.c.b. is available from the EPE PCB Service, code 249.

Teach-In 2000

It you have only fust picked up on our new Teach-In 2000 series with this issue, and being a nevicomer to electronics, you may feel a bl aporehensive about ordering ite various parts tor the demonstraton "exercises". Fear not. some of adverisers have pun togetier component and hardware padks spe. cially for the new series A tew more will be added as the series progresses. but we do not expect that to be unui al least part seven.
To date, participating activetisers are as follows and readers are ativised to contact them for more detaits

ESR Etectrontc Components (01912514363 or web htips/hwww.est.co.uk) Mardware/Tools and Components Pack
Magenta Electronics (01283565435 or hilp $/ / \mathbf{W w w}$.magenta2000. co.uk) - Multimeter and Components Kit 879.
FML Electronics (S 01677 425840) - Basic Components Sets.
N. R. Bardwell (0 O14 255288G) - Dxytal Multimeter specal offer

PLEASE TAKE NOTE

Demister One-Shot
Nov '99
Page 844 Fig. 4 . On the pcla component layour dagram, the bodr outines ot capactors $\mathrm{C1}$ and C 2 shoutd be transposed - see photograph al lop of page 845 The etectrotyce. shown as a orcie, showid comect to the ICl pin 8 sopper track (ϕ) and the common GND track (-1 . The actual annotasons are correct

CIRCUIT SURGERY

ALAN WINSTANLEY and IAN BELL

This month our team of surgeons commences an op.amp extravaganza, lifting the lid off these indispensable amplifying circuits. Also, fusible resistors come under their beady eyes too!

WElcome to the very last Circuit Surgery column of the 1990's, and we hope there is something of interest to everybody in our monthly round-up of readers' queries and questions.

Op.Amps 101

We have had a couple of questions about op.amps and tuink that many readers will find a discussion of this subject useful. Mohab Refaat writes by E-mail: "EPE publishes many circuits that imolve audio effects or amplification. Some use "low noise" op.amps, such as the LF351 or the TL07I. My firsi question is, how can you select an op.amp for a particular application out of a large number of candidates?
1 found the use of a "Volume" control in simple amplifier circuits to be another aspect I found a bit baffling. Sometimes it is achieved using a pot. (potentiometer) as the input resistance to the op.amp, sometimes it is used in the feedback nenwork to control the gain. Are there any rules related to the use of either method? Thanks for opening up the world of electronic circuit design to we non-electronic engineers in a simple way!"
Also Tony Soueid from Lebanon writes: "Almost every design imolving analogue electronics contains an op.amp. I know how an op amp behaves and the equations that rule its behaviour but what I don't know is what's inside that black bor.
All that we have been taught is that it is based on a differential pair of transistors. but it's far from being that simple. Can you please supply me with some information?"

It's best to start with the second part of the first question, because it deals with something very specific which follows on neatly from our recent discussion on the 22-position volume control (Circuil Surgery. Oct '99) and volume power outputs from amplifiers (Sept '99). We will then move on to a more general discussion on op.amps over the next month or so.

Volume Control

Both methods of volune control obviously work, in that they both provide control over
the loudness of the sound produced by the amplifier. I cannot say that I have seen a formal sule for which method to use. However, we can make a distinction between the two approaches in that the input resistance approach is an attenuator whereas the feedback resistance is a gain control.

Both controls can be used together, in some applications. I therefore suggest that the "input resistance control" is suitable when the maximum input signal is at a known reasonably fixed level. The amplifier can then be designed to give full volume for this signal level, and the input is attenuated for lower volumes.
When the range of possible input levels is very large though. it will be necessary to be able to change the gain of the amplifier to a level appropriate for the input being used at any one time. Ideally, the Gain
control would be set to give maximum undistorted (non-overloaded) output with the maximum Input in the current situation and then left alone, with a separate control for volume.
However, as gain also affects volume. the gain can be set to give the desired volume at any instance and this, of course. reduces the number of controls needed. The representative circuit in Fig. 1 illustrates both types of volume control, the input signal shown on the diagram may be from an extemal source or an carlier slage in a larger circuit.

Making a Choice

To select an op.amp you need to know what the circuit and hence the op.amp needs to achieve, this will give you a minimum specification for the device. Then purchase the cheapest op.amp which meets all the specs!
It may not always be all that simple to calculate an op.amp spec. in great detail.
but you can use a bit of common sense too. If your application is an audio amplifier it would be sensible to use a low noise op.amp and pay a bit more for a better spec., on the other hand if you are using it as a comparator to, say, switch on a heater when the output of a temperature sensor falls below a certain point, then an ultra low noise "audio spec" device is not really needed.
The range of circuits one can design using op.amps is so vast that we cannot

Fig. 1. Circuit to illustrate the two types of volume control.

Inperfections

Having given the impression that op.amp choice is sometimes somewhat arbitrary, it is worth pointing out that in some cases it can make the difference between a circuit functioning or not. I remember working on a partly developed prototype power control system for a CO_{2} laser, the existing output circuit used a general purpose op.amp which was simply not up to the job.
The power measurement worked fine some of the time. but on other occasions would not do anything. The problem was due to the high offset voltages, and more specifically the drift in offset with time and emperature. The circuit was replaced with one using special high precision peak measurement chips, which did a great job.
The above example illustrates a couple of points. First, it is the imperfections in "real" op.amps (as opposed to "ideal" ones) that cause problems, so understanding these and their impact will help you avoid devices that are unsuitable. Understanding op.amp imperfections will also help you understand the internal circuitry (with reference to the second reader's question) because much of the design effort arises in reducing these imperfections.
Second, there are occasions where specialist chips other than op.amps are the best option. The above case was one example, another good one would be a sample and hold circuit - you can build one using an op.amp, but you will get better performance from a sample and hold chip. and, of course, some extra bits of circuitry are already included. Comparators are another case - all op.amps can be used as comparators but it is often better to use chips optimised for this purpose.

On Spec

It is worth looking at some of the specifications found on op.amp data sheets and in suppliers' catalogues and discussing how these may effect your choice of op.amp for particular applications. We will also refer to some of these specifications when we move on to look at the internal circuitry. But, before we start, we need to define some basic things about the op.amp, so let's explore them in greater detail.
The op.amp is a high-gain, direct-coupled amplifier, its symbol is shown in Fig.2. The term "direct-coupled" means that the inputs and internal stages are connected directly, not via coupling capacitors. This enables the op.amp to amplify d.c. and very low frequency signals.
The op.amp has two inputs - the inverting (-) and non-inverting (+) inputs and an output. The inputs and outputs are usually referenced (applied or measured with respect 10) ground or 0 V .
Op.amps usually have two power supplies, one at a positive voltage with respect to ground and the other at the same magnitude negative with respect to ground; however many "single supply" op.amps are also available. Suppliers' catalogues usually indicate whether an op.amp is intended for single or dual

Fig.2. Op.amp circuit symbol.

Fig.3. Graph showing the relationship behveen op.amp differential input voltage and its output voltage. Saturation occurs when any increases in the magnitude of the differential input do not result in further increases in output voltage. The values shown are an example for an op.amp with a gain of 100,000 and a maximum output voltage of $\pm 15 \mathrm{~V}$. The gain of the op.amp is equal to the slope of the graph between the saturation points.
supply operation, otherwise check the data sheet. The power supply connections are not always shown on schematics.
The output voltage of an op amp is given by $V_{\mathrm{OUT}}=A_{1}\left(V_{2}-V_{1}\right)$ where A_{V} is the apen loop voltage gain, V_{2} is the noninverting input voltage and V_{1} is the inverting input voltage. This "open loop" gain refers to the gain of the op.amp itself withoul any feedback circuirry. Op.amps are atmost always used with some form of feedback though. which results in a gain for the circuit that is different from that of the op.amp itself.
Note that the op.amp amplifies the dif. ference in voltage between its two inputs. It is a differential amplifier. The equation $V_{\text {out }}=A_{v}\left(V_{2}-V_{1}\right)$ always holds for totally ideal device, but in reality is only valid for a small range of $\left(V_{2}-V_{1}\right)$ and there are limits on the individual values of V_{2} and V_{1} too. The op.amp's input-output relationship is illustrated in Fig. 3.
Some manufacturers group their op.amps into types suited to different kinds of application. Typical descriptions may include:

- general-purpose - suitable for a wide range of applications requiring moderate amplifier performance
- low noise - guaraniced very low noise for applications such as sensitive measurement and signal processing where noise from the op.amp must be within known bounds
- low-power/micropower - suitable for use in systems such as moblle equipment, where power consumption is critical
- wideband/high speed - for applications such as pulse circuits and video where accurate reproduction of complex high frequency signals is required
- high-powerlhigh current - op.amps with high current output stages capable of driving low impedance loads
- law drifthigh precision - amplifiers with minimal offset voltage, and where accuracy is preserved over a wide temperature range
- low bias/high impedance - f.e.t. input op.amps with very low input bias currents for use in buffer circuits or with large extemal resistors.
Some op.amps may arguably belong to more than one of these eategories. The specifications given on Op.amp data sheets can be divided into: electrical ratings (maximum voltages etc.); signal handling (noise ctc.) and offsets (which particularly effect d.c. accuracy). We'll discuss these and other practical matters in the next Surgery. IMB.

Fusible Resistors

Mark Lee asks: "I would appreciate on explanation of fusible resistors and how to use them. They seem to be mainty low resistance and law power ratings. How da I use them in a circuit?"

Fusible resistors are inserted into a circuit as an ordinary resistor would be, except that they have the special propery that if they are overloaded for any reason (a circuit fault elsewhere downstream). then instead of burning out they are guaranteed to go open-circuit within a certain range of conditions.
This means that they will disconnect the circuit, rather than buming out or setting fire to the board. They are only produced in a limited range of values (low ohms to a few kilohms) and would be used in e.g. power supply or monitoring circuits. where a combination of resistance and overload protection is required. The main thing is that they are a fault-tolerant, failsafe fireproof device.
Paradoxically there is even a zero ohm resistor available! These are used by manufacturers using automated p.c.b. equipment. to apply a link between two pads - it means that a machine which handles resistors is, therefore, also able to insert the equivalent of a wire link instead. ARW.

CIRCUIT THERAPY

Circuit Surgery is your column. It you have any queries or comments, please write to: Alan Winstanley. Circuit Surgery. Wimborne Publishing Lid., Allen House. East Borough, Wimborne, Dorsel, BH21 1PF. United Kingdom. E-mail atan@epemag.demon.co.uk. Please indicate if your query is not lor pubfication. A personal reply cannot always be guaranteed but we will try to publish
representa.
tive answers in this column.

ENTER THE CHAT ZONE

The EPE Chat Zone on our web site is now open as a way for readers to exchange information, views, hints and tips in virtually real time.
http://www.epemag.wlmborne.co.uld wwwboard

INTER RAGE Robert Penfold

A SERIAL APPROACH TO PC ADD-ONS

N THE previous Interface (Oct '99) darticle we considered the subject of serial port interfacing, and using a standard RS232C serial port to send data to a user add-on. In this month's Interface we will look at using a serial port to receive serial data.

Much of the background information provided in the previous article also applies to using a serial port to receive data. Refer to the earlier article if you require information on the UART registers, setting the word format and baud rate, elc.

With things reduced to the simplest level it is not difficult to read data from a serial port. Using the methods outlined in the previous interface article it is possible to set the required baud rate and word format, and is then just a matter of reading data from the base address of the port. The base addresses for serial ports one and two are respectively \&H3F8 (1016 decimal) and \&:H2F8 (760 decimal).

Mouse Experiment

If your PC has a serial port mouse it is easy to experiment with serial port reading, and the raw data from the mouse can be read from the appropriate mouse port. Using Delphi 1, this code could be applied to a timer component set with an interval of about 50 miliseconds:

Readlng: $=$ Port[760];
Str(Reading, S);
Labell.caption $:=S$;
The value of " 760 " in the first line is correct if the mouse is on serial port two, but must be changed to $1016^{\prime \prime}$ if it is on port one. The two variables must be declared in the appropriate part of the program by adding the following two lines in the section headed "var":

Reading : Byte
S:String;

A label component must be added to the form, and its default caption should be erased. This gives the program somewhere to display the data read from the serial port. When the program is run, the data displayed on the label should change as the mouse is moved around and the buttons are operated.

Synchronisation

For many applications it is perfectly all right to take this simplistic approach, and simply read the port periodically to obtain the latest data available. For example, suppose that a Thermometer is connected to the port. By reading the port the latest temperature will always be read and displayed. The fact that each new piece of data may be read several times or the odd reading may be missed here and there will be of no practical consequence.

This is not the case in all applications though, and in some cases it may be necessary to operate on the basis of sending a trigger signal to the interface, and then reading in x number of bytes. it then becomes essential to properly synchronise the sending device and the program reading the data. Othervise there is a risk of (say) reading four bytes of data twenty-five times each instead of reading 100 bytes of data once each.
There is no need for an external handshake line to control the flow of data, and a status bit of the Line Status register can be used instead, Bit 0 of this reg. ister is set to one when pa,complete byte has been receivediand transferngd to the receiver Register. Writing a'zero to this bit will reset it, but this is not normally necessary as it is automatically cleared when the data in the receiver register is read.
To ensure that each byte of data is read only once it is just a matter of using a soft-
ware loop to monitor the recelved data bit, and provide a hold-off until it is set to one. This prevents the Receiver Register from being read until a new byte of data is ready.
The Delphi 1 program described previously is easily modified to provide this hold-off. In addition to the hold-off, this listing also implements a counter that shows the number of readings that have been taken. A second label component must be added to the form to accommodate the counter.

Port $[1019]:=128$
$\operatorname{Port}(1016):=12 ;$
$\operatorname{Port}[1017]:=0 ;$
$\operatorname{Port}[1019]:=3 ;$
$\operatorname{Port}(1017]:=0 ;$
Repeat until $(\operatorname{Port}(1021)$ and 1$)=1$;
Reading := Port[1016];
Str(Reading, S);
Labell.caption: $=\mathbf{S}$;
Counter: $=$ Counter +1 ;
Str(Counter, S);
Label2.caption:= S;
The port addresses used here are for port one. For serial port two use these addresses:

760 instead of 1016

761 instead of 1017
763 instead of 1019
765 instead of 1021
In addition to applying this programto a timer component these three lines must be used to declare the variables.

- Reading jidytus ensilquue tus thece Counter : Byte; S: String;
A further line must be added to the listing for the form, and this sets the Counter variable at an initial value of zero.

Counter: $=0$;

Fig.1. Circuit diagram for the Simple Serial Inferiace add-on. It operates all 9600 baud.

Operation

In the original test program we relied on the operating system to set up the serial port correctly, but in real world applications the program must do this. The first four lines of the listing set the port for 9600 baud operation with a word format of eight data bits, one stop bit, and no parity checking.

Using the control registers to set the baud rate and word format was covered in the previous Interface article, and will not be discussed again here. The fifth line switches off interrupts, and should ensure that the operating system does not upset things by reading bytes of received data.
The hold-off is provided by the Repeat...Until loop in the next line. This line repeatedly reads the Line Status register, and bitwise ANDs the result with one. This effectively strips off bits 1 to 7 , and reads only bit 0 .
The program loops until the returned value is one, which means that there is a fresh byte of data to be read. The port is then read and the result is displayed on Labell. Then the Counter variable is incremented by one and the new value is displayed on Label2.

Hardware

The Simple Serial Interface of Fig. 1 can be used to test this program. The 6402 UART has been covered in previous articles and will not be discussed in detail here.
Transistor TR1 generates a 2.4576 MHz clock signal that is divided by 16 through IC1. UART IC2 requires a clock signal at 16 times the required baud rate, and this gives an output signal at 9600 baud.
The control inputs at pins 34 to 39 of IC2 are hard-wired to produce the required word format of 8 data blts, one stop bit, with no parity checking. Transistor TR2 acts as a simple line driver and inverter, but it does not provide proper RS232C output levels.

Good results should still be obtained provided the cable used to connect the interface to the computer is no more than a few metres long. The output (SK1) connects to the Ground and Receiver Data input of the RS232C interface. These are at pins 7 and 3 respectively for a 25 -pin port, or 5 and 2 for a 9 -pin port (see Fig.2).

In Control

A serial interface requires some form of control logic circuit to trigger the UART at the appropriate times and send a stream of data. At its most basic the control logic can consist of nothing more than an oscillator, which is all that is used in this case.
A low power 555 timer, IC3, is used in the standard oscillator configuration. The values of timing components resistors R8, R9 and capacitor C5 set a low operating frequency of roughly 1 Hz . Therefore, about once per second the output of IC3 (pin 3) goes through a high to low transition and causes 1 C 2 to send the eight-bit value on its inputs.
Although the test program is assigned to a timer component that tries to take a reading every 50 milliseconds, which works out at 20 readings per second, it will only take about one reading per second. This is due to the software hold-off looping the program for about a second until a new byte of data has been received. If everything is working properly, the counter should therefore increment at about one and not 20 per second.
A slightly beaulified version of the program after 30 seconds of taking readings is shown in Fig 3, the count has reached 31. Of course, data can be transferred at a greater rate by increasing the operating frequency of IC3 and reducing the time interval of the timer component (or simply having a routine that continuously tests the serial port).

Fig.3. The counter of the test program should increment each time fresh data is received.

However, bear in mind that there are ten bits per serial byte and with a baud rate of 9600 this works out at an absolute maximum transfer rate of 960 bytes per second. In practice the maximum achievable transier rate would probably be slightly less than this.
Although the routines provided here are written in Delphi 1, using the methods described in previous Interface articles it should be possible to use other versions of Delph!, Visual BASIC 6, or even GW BASIC. It is just a matter of outputting the correct values to the serial port registers, and then reading the base address. If a software hold-off is needed it might be necessary to use a different loop structure with some languages, but it should not be too difficult to apply the same bitwise ANDing and looping technique to provide the hold-off.

Extra Outputs

One or two readers have asked whether it is possible to use some of a serial port's handshake lines as general purpose outputs. The UART data sheet would seem to suggest that the Data Terminal Ready (DTR) and Request To Send (RTS) handshake outputs are respectively controlled by bits 0 and 1 of the Modem Control register. This is at address 764 for port tivo and 1020 for port one. It would also seem to suggest that certain handshake inputs could be read at the Modem Status register.
However, initial attempts at writing to and reading from handshake lines failed totally. Possibly these lines are implemented via some other means, but using them direct-
Fig.2. Interface connection details for 25-pin and 9-pin serial ports. ly seems to be something less than straightforvard.

EPE BINDERS KEEP YOUR TEACH-INs SAFE - RING US NOW!

This ring binder uses a special system to allow the issues to be easily removed and re-inserted without any damage. A myton strip slips over each issue and this passes over the four rings in the binder, thus hoiding the magazine in place.

The binders are finished in hard-wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and bidy but allow you to remove them for use easily.
The price is $£ 5.95$ plus $£ 3.50$ post and packing. If you order more than one binder add $£ 1$ postage for each binder ather the initial $\mathbb{\Sigma 3 . 5 0}$ postage charge (overseas readers the postage is $£ 6.00$ each to everywhere except Australia and Papua New Guinea which costs $£ 10.50$ each).

Send your payment in £'s sterling cheque or PO (Overseas readers send \& sterling bank draft, or cheque drawn on a UK bank or pay by credit card), to Everyday Pracllcal Electronles, Allen House, East Borough, Wimborno, Dorse1 BH21 IPF. Tel: 01202 881749. Fax: 01202 841692. E-mall: editorlal@epernag.wimborne.co.uk.
Web site: hitp $/$ www.epernag.wimborne.co.uk
(We cannot reply to queries or confirm orders by Fax due to the cost.)
We also accept credit card payments. Mastercard (Access) or Visa (minimum credit card ordes ع5). Send your card number and card expiry date plus caroholder's address (if ditterent to the delivery address)

PROTE . SPICE 3F5

Simulation

- Berkeley SPICE3F5 analogue simulation kemel
- True mixed mode simulation.
- New analysis types include multi-plof sweeps, transier curves, distortion and impedance plots.
- Active Components: Switches, Pots eic.
- Over 1000 new library parts with SPICE models?
- Greater ease of use.

"a constant
 high level of capability throughour"
 EWW'CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematios like in the magazines.
- Netlist. Parts List \& ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive componenU/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement.
- Rip-Up \& Retry Autorouter with tidy pass
- Pinswap/Gateswap Optimizer \& Back-Annotationı
- 32 bit high resolution database.
- Full DRC and Connectivily Checking,
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from $£ 295$ to $£ 1625+$ VAT.

Call now for further information \& upgrade prices.

[^1]
New Technology
 Transistor technology is poised for some major advances in the near future, reports lan Poole.

ITT is just over fifty years since the first transistor was made at Bell Labs. Since then many advances have been made. enabling the performance to be improved beyond all recognition.
Bipolar lechnology has improved from the early transistors that had cut-off frequencies of only a few kilohertz and low gains to the state where r.f. transistors are available that can operate to frequencies of many Gigahertz and with much higher levels of gain than were previously possible. Not only this, but field effect transistors (f.c.t.s) are now widely available.

It is interesting to note that the develop. ment work to devise a semiconductor amplifying device was initially focussed towards the development of a field effect device. However, they were unable to make the effect work, and they changed the line of the investigations which resulted in the development of the bipolar transistor.
It took a few years before the field effect transistor was widely available. F.E.T.s also had a major impact on integrated circuit technology, enabling the degree of integration to be considerably increased.
With transistor technology now very mature it might be thought that the rate of development would slacken as fewer developments were possible. However, nothing could be further from the truth. Many new ideas are surfacing, and these will enable transistor technology to surge forward and meet the demands to tomorrow's technology. both in performance and size.

Nano-curls

The idea of nanotubes has been covered previousty within this column (December 1998 EPE), but only in the application for producing very low resistance and high current carrying capacity conductors. The nanoubes used for the transistors that are being developed are subily different, forming a semiconductor rather than an ordinary conductor. Although the concept has been known for several years, the technology is revolutionary and until recently it has not been possible to realise it in a physical form.
Nanotubes used for transistors have carbon walls made up from hexagonal shaped matrices. Essentially they are vaporised carbon that has been condensed into a series of hexagons. To give a better view of what they are, they can be considered as a very thin strip cut out of a graphite carbon plane which has been rolled up and sealed at either end. The dimensions are naturally very small, and the dimensions are measured in atomic proportions.
The carbon hexagons that are used to make the tubes have a natural tendency to curl. The way in which they curl determines their electrical characteristics.

Fortunately, it is possible to control the way in which this curling takes place. By rolling it in a way that gives a straight molecular alignment the nanotube behaves like an ordinary conductor. However if the curl is arranged so that molecular structure is twisted then the nanotube behaves like a semiconductor.

A considerable amount of experimentation was required to enable the right properties to be obtained. It was necessary 10 have the right amount of curl. In fact, the early nanotubes consisted of multiple concentric layers. However, the nanotubes that are used now consist of just a single wall comprising of a single atomic thickness.

Transistors

Having developed the basic semiconductor the next major hurdle was to develop a useful device. Surprisingly, two organisations announced they had succeeded. In 1998 the IBM Thomas Watson Research Laboratories and the Delft University in Holland both claimed they had managed to fabricate a transistor using this revolutionary new lechnology.
The device consisted of a single nanotube having a thickness of one atom. Once rolled the tube was about one nanometre in diameter. This was connected between two electrodes that were about 400 nanometres apart. and the whole structure was mounted on a silicon substrate onto which a layer of silicon dioxide had been set down to act as insulation. The nanotube then acted as the channel whose conductivity could be controlled in the normal way.

Although the channel length of the carly development model was relatively large it could be made very much smaller. In fact. some working lab models have been made with lengths of around 40 mm and it is estimated that in future channel lengths of only 20 nm should be achievable.

As the speed of operation is primarily controlled by the length of the channel this will result in a considerable increase in the speed of operation. This means that considerable improvements will be possible over the latest production f.e.t.s fabricated using the latest 0.18 micron process which have channel lengths of around 120 mm .

Future

This technology is very new and still very much in its experimental stages and much basic work is being undertaken 10 ensure that the process can be reliably introduced into production apart from developing the basic technology. As a result it is likely 10 be several years before nanotube transistors are available. Nevertheless, work is progressing apace.

One of the problems results from the ninute dimensions used in these devices. It makes them less robust and more open to problems arising from impurities. The gate insulation area is one where this is particularly apparent. The very thin gate insulation has to.be completely free from impurities as a result of its extremely small dimensions.

Atom leakage is also a problem and interconnection resistances also have to be irnvestigated. The experimental devices produced so far have had problems arising from the very high resistance between the nanotube used for the chanre! and the contacts.
In current experimental devices the resistance has been of the order of one megohm. Clearly there will be many advantages to be galned from reducing this value. By comparison the discreet f.e.t.s that are widely used in today's circuits have channel resistances of only a few hundred ohms. The higher values currently being obtained in the new devices will reduce the high frequency performance of the whole circuit in which they are used.

Wafer Thin

Another area that is being investigated is that of producing suitable wafers. Those that can be produced at the moment, on an industrial scale. do not have a sufficienty fine surface to enable the minute nanometre sizes required for the new transistors to be fabricated sufficiently accurately. A rapid thermal oxidation process is being developed but even when this has been perfected it is not expected that it will support the sizes below about 50 nm for comntercial production, and this will mean that the full capability of the new technology will not be realised.

Whilst no obvious solution is even on the horizon, development work is still progressing. It is quite possible that developments in other areas of semiconductor technology may enable the requirement to be met by the time the development of the nanotube transistor technology has reached a sufficiently advanced stage.

In order to introduce this new techuology onto the markel new fabrication lechniques are required. This results from the fact that the extremely small sizes mean that "quantum well effects" become an issuc.
To overcome this, new materials are needed and in turn this leads to the fact that new processes and lines will be required. However with other technologies nearing the end of their roadmaps, the need for new technologies like these nanotube transistors will be required to ensure that semiconductor iechnology can keep up with developments in other areas and possibly stay one step ahead.

UNIYERSAL PIC PROGRAMAMER
849.95

SERIAL, and PARALLEEL, Programming modes (unlike cheap programmers). Universal Z.IF socket, no more damagedibroken pins. Inferior products can ruln expensive chips!
Susports. P1C12C5XX, 12C6XX, 1sXXX. 16C5XX. I6C50X, 16C6X. I6C7X. $16 C 9 \mathrm{XX}$. 16C55X. 16C6XX, 16C8X. 16F8X Memory 2ALCXXX, 85CXX. 93CXX Includes CD with PIC-HASIC, DataSheets and Progranaming software. Downloud latest Whadows $95 / 98$ software from our website now.
PIC12C50RYICE and PROGRAMMER
159.95

Io-Circuir Emulator and Programmer. Supplied with Software. Data sheets. Manual, leads. 10 breadbourd circuits which include DVM, Stopwatch. Smoke Alam. Sound and Light. Includes FREE PIC BASIC COMPILER.

PICICEII

In-Circuit Emulator for $58 / 55 / 56 / 57 / 7184$ PICs AD emulated for $16 C 71$. I. Supplied with keds, manual, software and handware projects. Includes FREE PIC BASIC COMPILER.
DELIXE SMARTCCARD PROGRAMMER
Read and Write to all types of Smartiand ISO. Memory. PIC. GSM. VideoCrypt. Satellize. D2Alac, CashCards, Petrol Station, StoreCards etc.
Supplied with a large amount interesting smartcard information, commands. encryption methods and operating software.

All products manufactured in Salis and carry 12 months Parts and Labour guarantere.

LEADING EDGE TECHNOLOGY LTD

WHITE ROSE HOUSE, XINTILL STR, TARKIEN PLAII, MALTA.
ORDER DIRECT: Tel: $(00356) 678509$ Fax $(00356) 667484$.
SAME DAY DESPATCH
P/P UK. EEC \&s mo. NO VAT PAYABLE
ALLL MANOR CREDIT CARDS ACCEPTED

MEGAPROM EPROM PROGRAMMER
SFGAPROM EPROM PROGR AMMER 869.95
Programs up to 8 Meg deviwes (32 -pin), including 27xx, 28xx, 29ax, EEPROM, FLASH and $24 X$ series. Buils-in RAM tester. Universel qualisy ZIF woclet, free software updates.

GAL PROCIRANMER

\& 49.95
Resd/Write/Copy SGS/NSCllarice etc. $16 \mathrm{~V} 8 \mathrm{AB/D} / \mathrm{Z}$, 20V8AB/D/Z and $22 V 10$ standard IEDEC files. Smant case with ZIF. Supplict whath PSU, Manual and Compiler software. One GAL can replace up in 21 different PALs and they are re-programmable!
P89CSUS5 PROGRA MMEER
E.59.95

ReadWrite/Copy and Edit all $8751 / 2$ including ATMEL. 89 Flath types. Supplied with Assembler and BASIC compiler (produces 805I M/Code). Smant Cax. 40 - pin ZIF
ERROMEMILATOR
128 K by 8 -bit or $2 \times 68 \mathrm{~K}^{\circ}$ by 8 -bit Software ω Read/Write when connected to target hoard. Suiuble for CPU development and Car EM Systems.

EREE PIC BASIC COMPILER FOC Windows 9598
Supports PIC 16 CS4-57, 71. 84, 508 produces stand-alooe machine code mo nutime modiles)
Sundard BASIC syntax includes Peek/Pole. Input. Output, etc., eu.
Why pay $£ 50+$ when ours is FREE? Downhoad is from our Webeite now!
ALL PRODLCTS REOUIRE AN IUM FCC TO OPERATE UNLESS OTHERWISE STATER ALE FROOLCTS REOUIRE AN IGM NC TO OPERATE UNLESS OTBERWNE: SAKEA WEBSITE: hitp/h.ET.cambsnet' johnmorr@keyworld.net
Always in stocl - Working D2Max 27-Channel Wher Cards $£ 19.95$

coNniol \& ioBOHGS Mifford Instruments

BASIC Stamp Microcontrollers

Still the simplest and easiest woy ta get your project or development work done. BASIC Stamps ore small computers that run BASIC progrommes. With either 8 or 16 Input-Output pins they may be connected directly to push•buttons. LEDs, speakers porentiometers and integrated circuits such as digital
thermometers, real-time clocks and analog-digitol converters. BASIC Stamps are programmed using an ordinary PC running DOS or Windows. The language has familiar, easy-to-read instructions such as FOR. . NEXT, IF...THEN and GOTO. Build-in syntax make it easy to measure and generole pulses, read push. buttons, send/receive serial dato etc Stamps from $£ 25$ (single quanfities), Full development kits from $\mathbf{5 7 9}$

Full information on using BASIC Stomps plus lots of worked projects and practical electronics help. CD.ROM also includes $30+$ past magazine articles and Stamp sofiwore. $£ 29.95$

Now to PICs or just wanting to learn more tricks? We stock the excellent PIC primer books from David Bensonsuitable for the complete beginner to the advanced user.

SERIAL LCDs

Bannish the hassle of interfocing to LCD disploys. We stock a comprehensive ronge of alphanumeric and Graphic LCDs all with an easy-to-use standard RS232 serial interface. Sizes from 2×16 10 4×40 plus 128×64 graphic panels. Prices start of $£ 25$ (single quantity)

Stamp2 based 3 -axis machine
Stepper drive so X, Y and Z ares with 0.1 mm (sthou) resolution.
Kit conains pre mochined frome components Complete with Windows sofinare for drilling pcos.
Full kit at £249, Part kit at $£ 189$

TecArm4

New range of robotic orms For educational and habbyist use with super, powerful servos. Controled from PC (Windows freeware provided or from optional keypad Stands about 450 mm high when fully extended. Kis includes all pre-cut body parts, servo controiler board
serros and software Requires q Dc. Kits stort al $£ 189$

On Screen Display Superimpose text ons standard CCTV from simple RS232 serial line. Ready builh/rested af $\mathbf{£ 5 9}$

IR Decader Board

Control your project using a standard domestic IR remole.
7 Output lines (5v a 20 mA) may be set to mementary or toggle action.
Simple reoching reutine. Requires 9.12.DC Supplied built and resved.
$£ 29$ single quantity

Milford Instruments

120 High Street, South Milford, LEEDS LS25 5AQ Tel: 01977683665 Fax: 01977681465

StampBug

Stampl based walling insect
Forwards, bockwords and lefl/right turn when feelers defect object in path. Up so 2 hours roving from $4 x A A$ Nicads Chips pre
programmed but programme may be changed (software supplied). Body parts pre cut. Full kit £68

Bigfoot

Stampl based walking
humanoid
Walks forwards/bochwards with left and right turn when denects obstodes. Electronics pcb pre-buith and rested Programme predooded but may be changed with supplied sofwore Full kit $\mathbf{E B B}_{8}$

Alex- Animated Head

Stamp2 based controller with voice record-ploybock capobility, PIR input and/or random playbock. 4 -seno actions are recorded/edived one track at a firpe. May olso be controlled from PC.
Head kits start of £29. Controllers from $£ 29$

Servo Driver Board

Control up to 8 sandard hobby servos from an RS232 serial deto line using this controller board. Simple command structure holds servos in position until update is recened. fully built and resed requires 9.OC and semos. Supplied with Windows freeware.
£29 single quantity. Optional heypad ovailable

All prices exclude VAT and shipping.

BASIC Stamp is the registered trademark of Porallax Inc. For further details an the obove and other interesting products, please see our web silewww.milinstideman.co.uk

PRACTICAL OSCILLATOR DESIGNS

RAYMOND HAIGH

Most text books deal with oscillators in a theoretical way. This series, prepared with the electronics enthusiast and experimenter very much in mind, is intensely practical. Tried and tested circuits are fleshed out with component values, and their vices and virtues are exposed.

PART SIX- RESISTOR/CAPACITOR OSCILLATORS

SO FAR we have covered oscillators which rely on quartz crystals or inductors and capacitors to determine the operating frequency. In this final part of the series, circuits in which resistors and capacitors perform this function will be considered.
Resistor/capacitor (R/C) oscillators are widely used for the generation of specific waveforms (e.g.. sine, square. sawtooth) over the 5 Hz to 50 KHz range. Circuits of this kind will oscillate from well below 1 Hz to above 2 MHz , but a high degree of frequency stability and waveform purity becomes increasingly difficult to achieve above 100 kHz or so.

Resistors and capacitors fix the frequency of oscillation by controlling the phase of feedback, or by timing the action of switching circuits.

PHASE SHIFTING

The signal at the base (input) of a common emitter transistor stage is 180 degrees out of phase with the amplified signal at the collector (output). For oscillation to take place, feedback from collector to base must be in phase, and the output signal must, therefore, be shifted through 180 degrees.

This can be achieved by inserting a network of resistors and capacitors in the feedback path, the component values determining the frequency at which the desired phase shift takes place. In this way. the R/C network fixes the frequency of oscillation.
If care is taken with the associated circuitry. phase shifting R/C oscillators can generate sinewaves of high purity. The Wien bridge oscillator is the classic example of circuits of this kind. Here, the R/C network is configured to give zero phase shift at the frequency of oscillation.

RELAXATION OSCILLATORS

Capacitors take time to become charged when a d.c. voltage is applied across them via a resistor. The larger the values of resistance and capacitance in the series circuit. the longer the charging time.
The rising voltage across the capacitor. as it is being charged. can be used to trigger a change of state in a transistor switching stage. If this also results in the capacitor being discharged, the cycle will start again, and we have a circuit which oscillates at a frequency determined by the amount of resistance and capacitance.

PHASE SHIFTERS

A simple phase shitting oscillator suitable for generating spot frequencies is given In Fig. 1. The usual formula relating frequency to resistance and capacitance in circuits of this kind is:

$$
I=\frac{65000}{R C}
$$

when f is in Hertz, R is in ohms, and C is in $\mu \mathrm{F}$.
With this particular arrangement, the frequency of oscittation is usually about 20 per cent lower than the figure derived by calculation.

Arrangements of this kind are known as relaration oscillators. They produce saw tooth or square waveforms which are rich in harmonics. Unijunction transistor and multivibrator oscillators operate in this way.

PHASE SHIFT OSCILLATOR

A simple oscillator in which a network of resistors and capacitors are used to shifi the phase of the feedback is shown in Fig.1. Here, transistor TRI is configured as a common emitter amplifier with the oulput developed across the collector (c) load resistor R2. Bias is applied via resistor R1.

In theory, a single resistor and capacitor combination can shift the phase of a signal through 90 degrees. This capability cannot be utilised in practice, however, because the signal is excessively attenuated.
Accordingly, three R/C elements. each shifting the phase by 60 degrees, are cascaded to produce the required 180 degrees phase inversion. Signal attenuation is reduced to acceptable limits, but the amplifier must still provide a gain of at least 29 times for oscillation to be maintained.
In Fig.I the combinations of R3/C1, R4/C2, and the inpul resistance of TR1 (in parallel with R1) combined with capacitor C3, form the three stage phase shifting network. It should be noted that the capacitors and resistors in the network have the same value. Increasing the amount of resistance and/or capacitance will lower the frequency of oscillation: a reduction will raise it.

Fig. 1. Circuit for a simple spot frequency sinewave oscillator.

Fig.2. Circuit diagram for an adjustable spot frequency sinewave oscillator with an outpul buffer stage.

R/C OSCILLATORS
can bo used to fix the trequency of an oscy. lator. They do this in two ways:
(1) By determining the phase of signals in a positive feedback loop. Circuits of this kind can generate high quality sinewaves.
(2) By timing the switching of the mainlaining devices between on and off states. Arrangements of this kind are known as relaxation oscillators. They generate square. sawtooth or pulse waveforms.
which imparts zero phase shift at one frequency.

Because there is no phase shifting within the R/C network at the frequency of oscillation, maintaining amplifiers for Wien tridge oscillators must have two stages. (Each stage imparts a shift of 180 degrees and this results in the output being back in phase with the input). Provided the gain of the amplifier is three times or greater. oscillation will be maintained. With such a modest gain requirement it is not difficult to apply heavy negative leedback in order to stabilise sig.

COMPONENTS

Capacitors used for phase shitting or timing should be polystyrene, polyester, or Niylar film types. When identical capacitors are required (see Figs.1, 2 and 3) they should be of 10 per cent tolerance or better.

Note that this only applies to the circuits given here. Some phase shitt oscillators require 1 per cent tolerance components before they will operate reliably.

The circuit is essentialty a spot frequency signal generator which can operate from below 50 Hz up to more than 50 kHz . Its output waveform is of tolerable quality, but the impedance of the accepting circuit must be high or oscillation miay be inhibited. An impedance of 47 kilohms . which halves the signal output, should be regarded as the acceptable lower limit for reliable oscillation.

IMPROVED PHASE SHIFT OSCILLATOR

With the addition of two pre-set resistors (porentiometers) and an output buffer stage, TR2, the performance of the circuit is consider, ably-improved. The modified version of the circuit becomes an adjustable spot frequency oscillator and is shown in Fig.2. The upper frequency limit is around 60 kHz , and the amplifier must have a gain of at least 29 times in order to maintain oscillation.

Negative feedback developed across the unbypassed emitter "resistor". preset VR1, reduces the gain of transistor TR1. Serting this resistor so that the circuit will only just oscillate results in the generation of a sinewave of high quality.

Replacing part of one of the resistors (R3) in the phase shifting network with pre-set VR2 enables the frequency of oscillation to be adjusted slighty. (At 10 kHz it can be shifted by plus or minus 1.5 kHz).

The f.e.t. (field effect transistor) source follower stage TR2 presents a very high impedance to the oscillator and a suitably low impedance to the accepting circuit. Gate resistor R5 is connected to a tapping on the source resistor formed by R6 and R7, rather than to the negative rail.

By this means, correct gate biasing can be maintained with TR2 source (s) held at about 4 V . and this greatly improves the signal handling capability of the stage. Moreover, the gate resistor R5 is partially bootstrapped and this increases input impedance to almost 10 megohms.
Decoupling eapacitor C 5 will not be needed in all cases. Variable potentioneter VR3, connected to the source of TR2 by d.c. blocking capacitor C6. enables the output level to be adjusted.

WIDE RANGE A.F. GENERATOR

The frequency selective network at the hean of most audio signal generators was devised by Wilhelm Wien, a German physicist. about a century agot Originally used as a measuring bridge, the combination of series and paralfel Rre clemenis produces a new work
nal amplitude and improve waveform quality.

Wien bridge osciflators vary in complexity. and a simple, inexpensive, yet very effective version of the classic circuit is given in Fig.3: a low distortion A.F. Signal Generator. Here, the Wien network is placed in a positive feedback loop around a 781 operational amplifier i.c. (The feedback must be in phase, so the non-inverting input at pin 3 is used.)

A low current filament lamp LPI shunts a negative feedback path (between output pin 6. and inverting input pin 2) in order to stabilise the amplitude of oscillation. Bridge capacitors; Cl to $\mathrm{C8}$, are selected by ganged rotary switch Sla and Sib. The specified values more than cover the entire audio frequency spectrum.

Ganged potentiometers, VR I a and VR Ib. form the resistive arms of the bridge and set the frequency. Range limiter resistors R1 and R2 ensure consistent operation over the full sweep of the potentiometers.

AMPLITUDE CONTROL

In order to obtain a high quality sinewave, signal amplitude must be kept below the level at which the maintaining amplifier begins to overload. (Overload causes clipping or flattening of the waveform peaks).

Automatic controt of signal amplitude in Wien bridge oscillators is usually effected'by an RSI type thermistor (temperature dependant resistor). These devices are sensitive but expensive, and here an ordinary low-current filament lamp is used in its place.

The resistance of a lamp filament rises dramatically when current flows through it and raises its temperature. If the output at pin 6 increases, more current flows and its resistance rises. Lamp LPI is connected as the lower arm of a potential divider, VR2/R3 forming the upper section. An increase in the resistance of the lamp will, therefore, increase the amount of gain-reducing negative feedback and hold the signal amplitude constant.
In practice, preset VR2 is adjusted to give the higbest possible output consistent with a perfect sinusoidal waveform. If an oscilloscope is not available to display a trace, good results ean be ensured by setting VR2 so that oscillation is only just maintained. A 47 ohm pre-set should be substituted for VR2 and R3 if a supplier can be found.
There is some' amplitude "boance" when the frequency is changed rapidly, and this is a feature of all Wien oscillators which incorporate a temperature dependant resistor as a control element (the resistance heats and cools comparatively slowly). Circuits using f.e.t.s as voltage-variable control resistors, or diodes as amplitude limiters, have been devised to overcome this "bouncing". However, unless the design is complex, they usually exhibit higher distortion.

OUTPUT LEVELS

The simple control circuitry places a rather low resistance across the amplifier output, and the signal voltage available before the onset of distortion is limited to around iV r.m.s. A larger outpu is gfien desirable, and the buffer stage iransistor TRI, in Pig.3. pibtides a modest-amount of signal-amplification.

RELAXATION OSCILLATORS

Charging a capacitor, via a resislor, is the most common means of fixing the Irequency of relaxation oscillators. The larger the capacilance and/or resistance in the series circuit, the longer the charging time and the lower the frequency of oscillation.

A widely used circuit of this kind is the astable multivibrator, and a version which permits some adjustment of the operating frequency is given in Fig.4.

The frequency determining networks comprise R3/C2 and R5/C1. For an equal mark/space ratio (off pulses and on pulses of equal duration), R3 and C2 must be identical to R5 and C1.

A very approximate formula relating frequency to resistance and capacitance is:

$$
f=\frac{700000}{R C}
$$

when f is in Hertz, \boldsymbol{R} is in ohms, and C is in μF.
The frequency of oscillation is very dependant upon supply voltage and, to a lesser extent, transistor types, and the formula is inevitably approximate. The output is a square wave with a rounded leading edge.

Emitter (c) resistor R5 is unbypassed, and the resulting negative feedback reduces gain to the required level and improves linearity. In theory, the gain of this stage is approximately VR3 divided by R5 (i.e., four times), but, in practice, it is rather less than this. Base bias is provided by resistor R4, C10 is a decoupling capacitor, and C1t blocks the flow of d.c. into the accepting circuit.

PERFORMANCE

Although simple and inexpensive, the A.F. Signal Generator circuit performs well when preset VR2 has been correctly adjusied. Distortion figures as low as 0.1 per cent are claimed for circuits of this kind, and a check with an oscilloscope will reveal that the sinewave is of high quality.

Output level remains constant over fairly wide shifts in supply voltage, and across the switched ranges. Oscillation is maintained up to 70 kHz , but performance begins to fall off a little after 30 kHz or so.

Constructors would have to commit themselves to considerably more expense and effort in order to realise any significant improvement on this circuit. Note that the oscillator will not function correctly if a lamp with a higher wattage rating, or a lower working voltage than 6 V , is fitted.

RELAXATION OSCILLATORS

The most common form of relaxation oscillator is the astable (i.e. non-stable) variant of \mathbf{H}. Abraham and \mathbf{E}. Bloch's multivibrator. Conceived by the two Frenchmen In 1918, the name "multivibrator" was given to this type of circuit because the output is rich in luarmonics (they can extend

WIEN BRIDGE

A network of resistors and capacitors, known as a Wien bridge, is used to determine frequency in most prolessional audio oscillators. With this network, phase shift is zero at one particular frequency. A typical circuit is given in Fig. 3.

The resistors and capacitors in each arm of the bridge (VR1a/VR1b and C1/C5, C2/C6, etc..) are of equal value, and the standard lormula relating frequency to resistance and capacitance is:

$$
f=\frac{160000}{R C}
$$

when f is in Hertz, R is in ohms, and C is in $\mu \mathrm{F}$. The actual frequency of oscillation is around 10 per cent lower than the figure indicated by calculation, and the ranges quoted in Fig. 3 are based on aclual measurements.

The amplifier need only have a gain of three times for oscillation to be maintained. This modest requirement permits the use of heavy, amplitude controlling negative teedback, and the quality of the generated sinewave can be extremely high.

Fig.4. Circuit for an astable multivibrator, with frequency shilting arrangement.
beyond the thousandth). A typical circuit arrangement, with the addition of frequency adjusting refinements, is given in Fig. 4.

Two common emitter transistor stages, TR1 and TR2, act as switches, and their bases and collectors are cross coupled by capacitors C1 and C2. Base biasing is supplied by R3 and R5. These resistor and capacitor combinations, R3/C2 and R5/Cl, act as the timing networks which determine the frequency of oscillation.

The coupling capacitors alternately charge, via the bias resistors, and discharge, via the transistors, and the rising and falling voltages on the capacitors switch the transistors on and off, thereby maintaining the circuit action. The frequency at which the switching, or oscillation, takes place is, of course, determined by the tine constants of the R/C combinations.

Collector loads are formed by resistors R2 and R7. Capacitor C5 decouples the circuit from the supply line and C4 blocks the flow of d.c. into the accepting circuit.

Fig.3. Circult diagram for a low distortion a.f. signal generator.

ADJUSTING THE FREQUENCY

The operating frequency of simple astable multivibrators is very dependant upon supply voltage. Their frequency can also be shifted by applying a variable bias to the base (b) of the transistors in order to modify the triggering action.

Potentiometer VR1, connected across the supply via range limiting' resistor RI, varies the voltage on the bases of the transistors. Resistors R4 and R6 isolate the signal paths and capacitor C3 decouples the bias supply. This arrangement permits a fairly wide adjustment of the nominal operating frequency, typically plus or minus 20 per cent.
If a basic multivibrator is all that is required, omit VR1, R1, R4. R6 and C3.

OPERATING FREOUENCY

The timing (bias) resistors R3 and R5 can range in value from 47k to 470 k , and the capacitors, Cl and C . from 47 pF to several microfarads. This gives an operating range extending from subaudio frequencies to $\mathbf{2 M H z}$.
Small signal a.f. transistors can be used up to 100 kHz , but r.f. devices will ensure reliable oscillation at higher frequencies. Suitable transistor types are also included in the circuit of Fig.4.

OUTPUT

The output waveform is rectangular with a rounded leading edge. This rounding can be eliminated by connecting 1 N 4148 diodes between the transistor collectors and the coupling capacitors, Cl and C 2 (cathode (k) to collector (c)). Additional one kilohm resistors must be connected between the diode anodes and the positive supply rail to maintain the circuit action.

If the timing networks, R3/C2 and R5/C1, are identical, the mark/space ratio of the output waveform will be equal. They do not, of course, have to be the same, and by tailoring the component values, pulses of shon duration separated by comparatively long time intervals can be generated.

CMOS SOUARE WAVE GENERATOR

A CMOS (complimentary metal oxide semiconductor) digital i.c. can be used as an excellent square wave generator. A typical circuit is given in Fig.5, where the inputs to three of the NOR gates in a 4001 B i.c. are wired together to form inverting amplifiers. A resistor/capacitor timing network is connected in the feedback path between gates IC1a and IC1b. The third gate, IClc, is used as a buffer stage.

Capacitors Cl to C6, selected by rotary switch SI, enable the unit to cover from 10 Hz to above 250 kHz . Potentiometer, VRI, acts as the frequency control by varying the charging and discharging time of the capacitors. Range limiting resistor R2 ensures consistent performance over its full sweep.

OUTPUT

The loading effect of the output control VR2 reduces the available signal level, which is equal to the supply voltage when the oscillator is fed into a high impedance.

Frequency is affected by changes in supply voliage, but to a much lesser extent than the multivibrator circuit given in Fig.4. The mark/space ratio is almost exactly equal, and the square wave is of excellent quality. Output is constant over the entire operating range.

Reducing the timing resistor R2 below 10k pushes the operating frequency up to 2 MHz and more on the highest frequency range. but performance becomes erratic.

Most inverting CMOS gates should work well in this oscillator, and the $4011 B$ (quad two-input NAND gate) has the same pinout connections as the 4001B.

SIMPLE PULSE GENERATOR

In many cases the nature of the waveform is not important: all that is required is a signal to test or trouble-shoot a piece of equipment, or to generate an audible tone.

A very simple and inexpensive oscillator circuit, suitable for tasks of this kind, is shown in Fig.6. Here a 555 timer, connecied as an astable multivibrator, generates a pulsed waveform. Various ranges are selected by switch S1 and potentiometer VR1 sets the frequency of oscillation.

Fig.6. Using the renowned 555 timer I.c. to produce a 50 Hz to 200 kHz pulse generator.

The timing capacitors. C1 to C4, are charged via R1, VRI and R2, but they discharge more rapidly through resistor R1. The output at IC1 pin 3 is, therefore, a chain of pulses, and adjustment of VRI will alter both the frequency and the mark/space ratio of the output. Increasing the value of VRI to one megohm will maximise the frequency sweep with a single capacitor. A sawtooth waveform is available, at high impedance, across the timing capacitor.

Fig.5. Circuit diagram for a wide range, square wave generator using a 40018 quad 2-input NOR gate i.c.

CMOS SQUARE WAVE GENERATOR

CMOS digital i.c.s can be configured as relaxation oscillators in order to generate square waves of excellent quality. A typical circuit is given in Fig.5, where R2 and VR1, logether with a capacitor, C1 to C6, determine the frequency of oscillation.

The usual formula relating frequency to resistance and capacitance for this circuit is:

$$
f=\frac{450000}{R C}
$$

when f is in Hertz, R is in ohms, and C is in μF.
The formula gives tolerabiy accurate results at low frequencies but, above 1 kHz or so, the frequency of oscillation is lower than the figure given by calculation. The ranges quoted in Fig. 5 are based on actual measurements.

The circuit delivers a square wave of excellent quality with an equal mark/space ratia

SIMPLE PULSE GENERATOR

The ubiquitous 555 timer i.c., when connected as an astable multivibrator, forms a very simple pulse generator. A typical circuit is given in Fig. 6.

An approximate formula for the calculation of frequency, with this particular circuit, is:

$$
f=\frac{2800000}{(R+2000) C}
$$

where f is in Hertz, R is the total value of VR1 and R2 in ohms, and C is in μF.

The formula is reasonably accurate up to 5 kHz or so, then the frequency of oscillation is lower than the figure indicated by calculation. Again, the ranges quoted in Fig. 6 are based on measurement, not calculation.
When a very simple and inexpensive means of trouble shooting audio equipment is required, this circutt is hard to beat. The upper trequency limit extends a little beyond 200 kHz .

The device acts as a voltage triggered switch. A typical sawtooth generator circuit is given in Fig.7, where resistor R1 and capacitor $\mathbf{C l}$ determine the frequency of oscillation and $\mathbf{R 2}$ and $\mathbf{R} 3$ stabilise the transistor against temperature variations.

Emiter (e) inypedance is high when the device is off (not conducting) and low when it is on. When the supply is first connected, capacitor Cl is discharged. the emitter is at zero potential and presents a high impedance to the capacitor, enabling it to be charged via resistor RI.

When a critical voltage (known as the "peak" point) has been developed across the capacitor, the unijunction triggers to the on state and the capacitor discharges through the now low impedance emitter circuit. The voltage falls to zero, the process is repeated, and oscillation is maintained.

A positive going pulse is available at base 1, a negative going pulse at hase 2, and a sawtooth (strictly speaking a "shark's fin") waveform at the emitter. The impedance of any accepting circuit presented to the emitter must be high or the unjunction action will be impaired.

Fig.7. Simple sawtooth generator. With the values specified for R1 and C1 the circuir wil oscillate at 1 kHz approx.

If the simplest possible spor-frequency signal generator is required. VR1 and R2 can be replaced by a single fixed value resistor. A capacitor can be permanently wired between IC1 pin 2 and the negative supply rail, and VR2 can be deleted. A 100 k resistor and a 100 nF capacitor in the timing network should make the circuit oscillate at around $1 \mathrm{k} / \mathrm{Hz}$.

Provided the supply voltage is held between 8 V and 12 V , variations have a minimal effect on the frequency of oscillation. Wider excursions cause significant shifts.

SIMPLE SAWTOOTH GENERATOR

A device known as a unijunction transistor can form the basis of a simple sawtooth generator. Used almost exclusively in relaxation oscillator circuits, it comprises a tiny strip of n-type silicon material with non-rectifying junctions (base 1 and base 2) located at either end. A rectifying junction (emitter) is formed in a region of p-type material along its length.

SAWTOOTH GENERATORS

A unijunction transistor can form the basis of a very simple relaxation oscillator, and a typical circuit is given in Fig.7.

The following formula, which relates frequency to resistance and capacitance in the timing circuit (R1 and C 1), produces tolerably accurate results:

$$
f=\frac{800000}{R C}
$$

when f is in Hertz, R is in ohms, and C is in μF. A sawtooth waveform with a peak-10-peak value equal to halt the supply volts is developed across the timing capacitor.

The output of this simple, single transistor oscillator is non-linear and at a high impedance, and an improved version is given in Fig.8. This more complicated circuit generates an extremely linear savrooth wave and has a low impedance output.

Because of the way the timing capacitor is charged, it is not possible to quote a simple formula for the calculation of frequency. The measured ranges quoted in Fig. 8 should, however, form a useful guide to component values for spot-frequency versions of the circuit.

Fig.8. Circuit for a linear sawtooth generator.
The value of resistor RI can range from 10 kilohm to one megohm (1 M), and capacitor Cl from laF or more down to 100 pF . Connecting a one megotum potentioniter in the R1 position will provide a wide frequency coverage with a single capacitos. The peak-to-peak signal output at the emiter is approximately equal to half the supply voltage.

LINEAR SAWTOOTH GENERATOR

Whilst the sheer simplicity of the circuit arrangement shown in Fig. 7 makes it attractive for some applications, the high output impedance and non-linear waveform limit its usefulness.

In the circuit diagram shown in Fig. 8 , the timing capacitor (C1 to C5) is charged via a constant current generator stage, transistor TR1. A f.c.1. source follower buffer stage. TR3, presents a high impedance to the unijunction's emitter and a suitably low impedance to the accepting circuit. By these means, the limitations of the basic circuit are overcome.
When a capacitor is charged via a resistor, the initial voltage rise is rapid. gradually tailing off as it approaches a fully charged state. Because of this. the waveform developed across the capacitor is not linear.
in Fig.8, current flow through transistor TR1 to capacitors C 1 to C5 (via switch S 1) is controlled solely by the setting of VR1, and the charging rate of the timing capacitor is, therefore, constant. This results in a linear voltage rise and a more perfect sawtooth waveform.

The buffer stage. TR3. is identical to the one adopted for the sine wave generator shown in Fig.2, and its operation has already been described. Frequency of oscillation is paricularly dependant upon supply voltage, and a well regulated power supply is essential for the correct operation of this circuit. Stray capacitance acts as the

WHETHER your interest is in domestic radio and TV or in amateur radio, in military, aeronautical or marine communications, in radar and radio navigation, in instruments, in broadcasting, in audio and recording, or in professional radio systems fixed or mobile. RADIO BYGONES is the magazine for you.
ARTICLES on restoration and repair, history, circuit techniques, personalities, reminiscences and just plain nostalgia - you'll find them all. Plus features on museums and private collections and a full-colour photofeature in every issue.
ITS MOSTLY about valves, of course, but 'solid-state' - whether of the coherer and spark-gap variety or early transistors - also has a place.
From the days of Maxwell, Hertz, Lodge and Marconi to what was the state-of-the-art just a few short years ago...
There is also a selection of free readers' advertisements in every issue.

Radio Bygones covers it all!

Themagazine is published six times a year, and is available by postal subscription. It is not available at newsagents.
To take out a subscription, or to request a sample copy, please complete the form below and return it to: Radio Bygones, Allen House, East Borough, Wimborne, Dorset BH21 1PF.
Tel: 01202881749 . Fax 01202841692.

Radio BYgones ORDER FORM

A Sample Copy of Radio Bygones (Add 50p for overseas airmail)		3.25
Surscriptions (post paid):	1 YEAR	2 YEAR
United Kingdom	$£ 18.50$	£35.00
Rest of Europe (Airmail)	£19.50	£37.00
Rest of the World (Airmall)	£23.75	£44.25
Yes. I would like a sample copy of Radio Bygones		
] Yes, I would like to take out a subscription for:		
\square One year (6 issues) \square Two years (12 issues)		
$\square 1$ enclose a cheque/Eurocheque/PO for £		
payable to Wimborne Publishing Letd		
\square Please debit my Visa/Mastercard		
NOTE Minimum credit card p	vment is	

My credit card number is:

Please print elcarly, and cherk that you hate the number currect The Card is valid from:to:
My name is
My address

Post Code/Zip
Signed

Circuit Selection Special

INGENUITY UNLIMITED

Our regular round-up of readers' own circuits. We pay between $£ 10$ and $£ 50$ for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuily Unlimited is open to ALL abilities, but items for conslderation in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values. Please draw all circult schematics as clearly as possible. Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BS21 1PF. (We do not accept $I U$ submission via E -mail.)
They could earn you some real cash and a prize!

WIN A PICO PC BASED OSCILLOSCOPE

- 50M MSPS Dual Channel Storage Osolloscope - 25MHz Spectrum Anayser
- Mutimeter - Frequency Neter
- Signal Generator

If you have a novel circuit idea which would be of use to other readers then a Piod Technology PC based oscilloscope could be yours. Every six months, Pico Technoiogy will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel $A D C-40$ s will be presented to the runners-up.

Serial Port Splitter - Uime Sharin

WMies you run out of spare serial ports on your PC, the circuil shown in Fig. 1 may be used to effectively add another por. The idea is to share the PC serial port between two extemal RS232 devices (device X and device Y in Fig. 1) and the PC communicates with them one at a time.
In the circuit diagram shown in Fig.I. ICI and IC2 are the familiar MAX232 voltage level translators which convert the RS232 signal levels from the serial port of the PC (and also from devices X and Y) to

TTL/CMOS levels for manipulating by IC3. a data selector/multiplexer. Signals on the two sets of inputs (AO to A3 and BO to B3) are selected and routed to the output (YO to Y3) by the Seleet input (pin 1 of IC3).

When Seleet is at logic 0 , signals on IC3 port A are routed to the output port (YOY3). In this casc, the Tx of the PC serial port is connected to RxI: Rx to TxI and Rx2 is held logic I (idie condition). The PC therefore communicates with device X. and
device Y is effectively disconnected from the PC.
When Select is at logic 1. signals on port B are routed to the output port instead. In this case. Tx is connected to Rx2, Rx to Tx2 and Rx1 is held at logic 1 so the PC communicates with device Y .

Switching between device X and device Y is controlled by the RTS signal from the PC serial port. RTS can be toggled by a piece of simple software which configures the control registers of the UART chip in the PC.
W. Ip, Belfast.

Fig.1. Circuit diagram for the Serial Port Splitter. Note that pin 6 of IC1 and IC2 is at -10 V with respect to the OV line.

Elderly Person Monitor - Toure Care

Fig.2. Circuit diagram for an Elderly Person Monitor.

An E.derly relative who resides with us occasionally falls accidentally, and has laid there for some time in a distressed state without being able to summon help. Consequently, a simple independent alam was designed and the resulting circuit is shown in Fig. 2.

Uniess a "reset" operation is applied before a certain time period has elapsed the alarm will automatically sound. The principle of operation can be adapted as required and may inspire other ideas.
While the person is in bed a pressure pad (SI) under the mattress is held in the closed circult condition. This maintains the 404012 Stage Ripple Counter IC2 in its reset state via transistor TR1 and so the piezo sounder WD! is disabled.
Clock pulses of approximately 1 Hz fre. quency are fed continually from the 555 timer IC1 (pin 3) to the counter input of IC2 at pin 10 (CL.K). but have no effect until the person gets out of bed (in our case, to use a commode but it could be adapted to be reset by. say, a bathroom door) at which point the counter is enabled and begins counting.

If the time taken to get from the bed to the
commode or bathroom (where a seat or dooractivated microswitch, S2, automatically resets the counter again) is long enough for counter output Q6 (or Q7 perhaps) to go high. the alarm WDI sounds in a neighbouring room so that one can investigate and check that the person is all right.

A delay of between one and two minutes was selected to allow the elderly person sufficient time and also because in practice the microswitch $\$ 2$ wasn't always operated. In our case the switch opens when the person leaves the commode. and so IC2 begins counting.
If the time taken for the person returning to bed (which resets the counter) is again long enough for the alarm to sound, then that person is standing up, or retuming to bed or has fallen. Since an elderly person is unlikely to remain standing for more than (say) two minutes and is also unlikely to take more than two minutes to return to bed. it is probable that the person has fallen.
The prototype operated from a safe 6 V battery, which could be rechargeable.
C. Embleton,

Northallerton, N. Yorks.

Rechargeable PP9 Battery - 風四ergy saver

F you discard exhausted PP9 layertype batteries this can become an expensive process as these batteries cost about three pounds each. It was decided to provide an alternative using Nickel Cadmium cells logether with an extremely simple charging circuit which is built within the housing of an exhausted PP9 battery. The circuit diagram is shown in Fig. 3.
The power for the charging circult is provided by an extemal 12 V to 15 V d.c. power supply capable of providing 50 mA or so. This is hooked up via a d.c. power socket SKI which is also fitted into the battery housing.
In this circuit ICl is configured as a con-stant-current (not voltage) regulator, and the cument flowing is limited by the series resistor R1. The current / is $1-25 / R 1$, hence for a 50 mA cursent R) is about 24 ohms (220 ohms in parallel with 27 ohms will do).

Fig.3. Rechargeable PP9 circuit. Note all components are housed inside the discarded PP9 casing.

Six 1.2 V NiCad cells are placed in series and wired across the PP9 battery terminals and they will be charged by the constant current of ICl . The on-load voltage of a fully charged set of six cells was measured at just under 10 V with an average current of 25 mA being drawn.
A sicel-cased PP9 should be prised apart and its contents carefully disposed of as chemical waste, then the circuit built inside and the case folded back together again. My present rechargeable PP9 has undergone about 40 charging cycles during its existence and anticipate many more - what a saving!
D. Allen, Cheltenham.

Class-D 30W Audio Amplifier - Power Piag

Audio amplifiers arwiypically class-AB in operation. and whilst these produce good quality amplification they are also quite inefficient at 50 to 60 per cent or so. A class-D amplifier is much more efficient, with efficiencies of between 90 per cent to almost 100 per cent being possible as it is essentially a swirching circuil.

A suggested circuil diagram for a 30 W Class-D Audio Amplifier is shown in Fig.4. The incoming audio signal is amplified by the inverting operational amplifier ICI, with adjustable volume contrulled by potentioneter VR1. A PWM (pulse width modulation) signal is produced by comparing the audio signal with a 100 kHz triangle wave.
This is achieved using the comparator 1C6. Resistor R13 is used to provide posilive feedback and C6 is a speed-up capacitor which improves comparator response time. The comparator output swings between $\pm 7.5 \mathrm{~V}$. The pull-up resistor R12 provides +7.5 V whilst -7.5 V is provided by the open emitter input of the comparator (pin 1 of IC6).
When this signal swings positive transistor TRI acts as a current sink, which increases the voltage drop across resistor R16; this voltage drop is enough to tum MOSFET TR3 on. When the signal swings negative. TR2 acts as a current source causing the voltage drop across R17 to increase sufficienily to tum TR4 on. Essentially. MOSFETs TR3 and TR4 are activated altemately, producing a PWM signal which swings between plus and minus 15 V .
It is now necessary to restore this amplified PWM signal back into a reproduction of the incoming audio signal. This is achieved by averaging out the PWM signal using a 3 ru order Butterworh low-pass filter with its cutoff frequency $(25 k \mathrm{~Hz})$ much lower than the triangle wave frequency. ensuring large attenuation at 100 kHz . The resulting output is an amplified reproduction of the input audio signal.
The triangle wave generator is based around IC2 and IC5, whereby IC2 is effectively a square wave generator with positive feedback provided by R7 and RII. Diodes D1 to D5 acts as a bi-directional clamp (D3 being a Zener diode). clamping the voltage to about 16 V .

An ideal integrator is formed by preset VR2, capacitor C5 and IC5 which converts a square wave into a triangle wave. Preset control VR2 allows the frequency to be altered.
The output of IC5 (pin 6) provides feedback to IC2. and resistor R14 and preset VR3 form an adjustable attenuator allowing the magnitude of the triangle wave to be adjusted. After construction. VR2 and VR3 should be adjusted in order to provide the best quality output. A pair of ordinary 741 opamps (IC4 and 1C3) are used as unity gain buffers to provide the plus and minus 7.5 V supplics.

Capacitors C3. C4. C11. and C12 act as. charge reservoirs, and the remaining capacitors are for decoupling. The circuit requires a plus and minus 15 V supply rail, and it will drive a 30 W 8 ohm loudspeaker from the $L C$ network at capacitor C13 and inductor L2. Note that smali heatsinks maybe required for MOSFET transistors TR3 and TR4.
L.ee Matthews,

Kirkby-in-Ashfield, Notts.

Fig.4. Complete circuit diagram for the Class-D 30W Audio Amplifier.

Circuit Speciel

National Lottery Predictor

- If Comid $\mathbb{B e} \mathbb{U s}$

SIMPLE form of random counter is illuslerated in Fig. 5 which may help with the mentally-exhausting process of selecting six entirely random numbers for the weekly National Lottery. The circuit consists of tivo CMOS 4017 decade counters each driven by a 555 -based clock.

Counter IC2 will display tens (0-4) whilst IC4 will display units. Therefore, a number between 0 and 49 will be displayed on a series of tight-emitting diodes upon the operation of pushswitch S2 which enables both counters. Separate switches for tens and units could be used instead.
Note that sometimes, numbers may repeat and zero may also be displayed.

Edward Bibby, Woolston, Warrington.

Tumble Dryer Alarm - 跰 $\mathbb{B C O}$ Crease Sou

Fig.6. Circuit diagram for a simple Tumble Dryer Alarm.

Thie need for the simple Tumble Dryer Alarm circuit of Fig. 6 arose because our new rumble drier did not have a buzzer to indicate that it had finished. My wife needed a solution but vetoed absolutely any idea of digging into the back of the machine and "fiddling with the mains"!

As the machine works by sensing how dry the clothes are, the only way of knowing that $i t$ is nearing the end of its cycle is when one of the neon indicators on the machine extinguishes. This indicates the stan of a short "crease care" cycle after which the machine stops. Some kind of optically-isolated switels followed by a delay seemed to be the answer.
In the cireuil diagram of Fig.6, when the machinc neon indicator goes out, the ORP12 light-dependent resistor, R1. ensures that the voltage on pin 12 (Reset) of

IC1, a 4060 oscillator/counter, goes low which starts the counter. Output 14 at pin 3. which goes high at the end of the delay period, is fed along with the output of pin 7 into one of the AND gates of the 4081. This provides a pulsed input to transistor TR I which activates the sounder WDI. Pin 5 of ICI flashes the l.e.d. DI when the crease care cycle has started.
With the values shown. the delay is about six minutes which can be varied by adjusting the values of capacitor and/or resistor R4. A suitably powerful sounder would be the Maplin. order code FK84F, or the Squires, code $80-015$ (takes more curtent -35 mA). which can be heard in all parts of the house to wam that the cycle has nearly finished. My wife has cerainly found it usefull

Glyn Shaw; Staines, Middr.

Fig.5. National Lottery Predictor "random number" generator circuit dlagram.

Narrow Band Vision - Nepirok Discooocry

TPie system shown in Fig. 7 illustrates a simple but fascinating electromechanical technique for transmitting a small video image over amateur radio bands. It consists of a simple modulator based on a Nipkow disc. a mechanical scanning device used in early television systems. The Nipkow dise has a single-revolution spiral of small holes (25 in this case) which if rotated can be used to provide raster scanning of an object.
With the circuit shown, a basic. 25 -line monochrome video image may be sent using amateur radio equipment over a good quality clear voice channel. This resolution is high enough for facial recognition of a person in close-up. It should not be compared to a slow-scan system which can only send still images. Readers inay also wish to experiment with other transmission medla (e.g. wire based audio, intercoms etc.).
The transmitter section, which also shows the relative placement of the mechanical parts, is shown in Fig.7a. A Niplow dise may be made from stiff card, using a plate to draw a circle 180 mm diameter or \mathbf{s}.

Fig. 7a. Circuilmechanical arrangement of the Nipkow 25.line Transmitter section.

Fig.7b. Circuivmechanical set-up for Receiver section.

The object to be pictured must be brightly lit, and it is captured through a lens and converred into a narrow-band vision waveform by TRI, a phototransistor placed in a plastic box behind the scanning dise. The phototransistor (e.g. a PN202, but other types may work equally well) requires a 9 V supply. A good-quality d.c. motor (say. 12 V d.c.) is powered from a single D-cell and potentiometer VRI (rated at 2 W) controls its speed. The signal is decoupled by capacitor CI and applied to the microphone input socket SK 1 of the radio transmitter.

Receiver

In Fig.7b, the loudspeaker/ headphone output is fed to a single transistor stage consisting of TR2 and surrounding components. The L.e.d. DI is a high-brightness green device placed in a flashlight reflector, and a piece of greaseproof or tracing paper is placed over it to obtain a more uniform spread of light.

With this placed underneath the "receiver" disc, a reasonably uniform raster is obtained. Note that the picture requires the room to be in near darkness if it is to be discemible by looking through the spinning disc.
The Receiver disc is rotated slighuly faster than the Transmitter dise and the image will then be visible, although it may be "rolling" or swirling. By applying very light pressure to the receiver disc, it can be synchronised to the point where you can get a reasonably stable image.

A flywheel. formed from an old loudspeaker magnet, was placed on top of the prototype receiver disc to add some momentum

Fig.7c. Improved Receiver add-on with ScanSync control (VR3).
and help with synchronisation. None of the parts are critical and substitutes may be made.

An experimental but worthwhile modification to the receiver is shown in Fig. Tc, which offers a form of sync. control. This provides some pulse advancement on the recciver disc's rotation which is now controlled by a transistor Darlington pair (TR3, TR4).

It is important that a good quality smooth d.c. motor is used, and the two motors should have reasonably matched characteristics. Although the circuit is not perfect, it is well worth the extra effort.

Afichael Robertson, Chasetown, Staffs.

Squash/Badminton
 Scorer - Fivonl Conl

-HE circuit diagram in Fig. 8 will keep the score in both badminton and squash games and should end all those arguments about what the score is or whose tum it is to serve!

The two pushbutton switches S1 and S2 are for Player A and Player B. The umpire simply presses the button corresponding to the player who won the rally. The circuit then calculates the new score and who should be serving next.

When a typical switch button is pressed or released. its contacts do not make a clean connection. instead they might open and close (swith bounce) several times before stabilising. A typical period of time before a switch becomes steady (bounce time) is 5 ms , which in this case might add 2 or $\mathbf{3}$ points to a player's score!

One solution to get around this problem is to check the state of the switches say every 50 ms . Hence the 555 timer 1 Cl is an astable multivibrator which produces a square wave of approximately 20 Hz . This clocks the Dtype flip-flops IC2a and IC2b.
The output from IC2a is the dehounced output from button A, and the output from IC2b is that from button B. These debounced signals feed a JK nip-flop IC3 as well as the clock inputs to two decade counters (IC4 and IC6).
The counters keep track of the points that each player has scored, and their outputs will drive 7 -segment common cathode displays directly. The other two counters ICS and IC7 are for the tens of points for each player.
In both squash and badminton a player may only gain a point if he/she was serving. If they were not serving but win a rally. they then serve for the next point. In this circuit when a player's button is pressed the corresponding counter for that player receives a clock pulse: the counter will only increment if the clock inhibit input is low (i.e. the player was serving).
The JK flip-flops will latch to "remember" who was serving. In this circuit one can imagine a JK flip-flop as a simple Set-Reset bistable which is updated when a positive clock pulse appears on the clock input.
The first flip-flop (IC3a) is updated with every clock pulse from the 555 timer and it remembers who won the last rally. The second flip-flop (IC3b) is updated once all the buttons have been released. It copies what is stored in the preceding nip-flop, and its output feeds the clock inhibit inputs (pin 2) of the counters.
For example, if player B is serving, the clock inhibit input (pin 2) for counter B (IC6) will be low and for counter A (IC5) high. If player A wins the rally a clock pulse goes to counter A. but. because its clock inhibit is high the counter does not incremem. The first flip-flop now "remembers" that player A should be serving next.
Once button A is released the second flipflop is updated. The circuit is then ready - if player A wins the next point hisher score will increase. If player B wins the next shot however, the scores will not change but the serve will go back to player 8 .

The scores for both players are displayed on dual 7 -segment displays. Note that the person who is serving is indicated by the decimal point of their display being illuminated. Pressing both buttons at the same time resets the unit.

David Liddament,
Caversham, Readling.

Time-lapse Unit for Camcorder

- fro The Rowne

MANy camcorder owners would like to produce more creative videos, such as time lapse films which condense slowmoving sequences into a shori period. Unfortunately. time-lapse facilities are only found on more expensive video cameras.

All camcorders, however, have a REM (remote) socket, for use with a manual stop/stan lead. The REM socket on camcorders however is not the same as the REM socket on a cassette recorder, which is basically a simple n.o./n.c. (normal open/normal closed) switch.
Manual control of a camcorder via the REM socket requires "pulse operation". i.e. a shon pulse to stant and a second shon pulse to stop. This overrides the "pause control". and places the camera in its pause mode during a break in filming.

The circuit diagram shown in Fig. 9 uses a

556 timer. (twin 555 timers in a 14 -pin package), whereby each timer is configured as a one-shot monostable. The output from each timer is used to triggar the input of the other timer via an $R C$ network.
This arrangement is commonly known as a cascade timer. The result is a dual timer with varying on/off times and a brief negativegoing pulse at either one of the trigger inputs (pins 6 and 8) every time each monostable times out.
During each cycle, pin 6 and pin 8 are held at logic 1 by pull-up resistors R2 and R3. A pair of bach-to-back l.e.d.s. D1 and D2 indicate whether the circuit is paused or filming. When the output from one timer is high, the other will be low.

The trigger inputs A and B are connected to pin I and pin 2 of a dual NAND peripheral driver 40107 (IC3). The output is then taken

Fig.8. Circuit diagram for the Squash/Badminton Scorer.

Fig.9. Circuit diagram for the Time-lapse Unit for Camcorder.:
from pin 3 and connected to pins 6 and 7 of the second driver. This produces a strong negative pulse whenever either of the monostables changes state.

The resulting pulse can be used to power the l.e.d. emitter in a preferred opto-isolator (not shown) or a solid-state relay. The use of an opto-isolator ensures that no voltage or current from the timer unit can interfere with the camcorder circuitry.

The whole circuit can be powered from a 9 V battery. A 6 V regulator ICl ensures that set times do not drift due to decreasing battery voltage.

Timing components VRI with C3. and VR2 with C6 should give a maximum time of 270 seconds. There is no point in increasing this time period. as camcorders automatically shut down if left in pause mode for more than 5 minutes. The on-time can be very short. i.e.. enough to çapture two or three frames.

Philip Male,
Drake's Broughton, Pershore.

Audio Limiter - Jons . Tate Rdmit

As audio limiter circult was required which would accept a wide input voltage range without introducing too much distortion when limiting. The circuit of Fig. 10 achieves this as well as allowing a variable limit level and output level. The circuit could be used in many areas, particularly in limiting the signal applied to an audio power amplifier, protecting those valuable tweeters!

The design uses the MC3340P electronic attenuator chip (ICl). Resistors R1 and R2 attenuate the input signal to a level suitable for the MC3340. The maximum level applied to the device should be 500 mV r.m.s.

The input signal is also applied to IC2a via capacitor C2. which together with diode DI acts as a precision rectifier. The voltage across capacitor $C 4$ sits at the wiper level of Limit control VRI until the audio level exceeds this value.

At this point diode D1 begins to conduct so
the voltage actoss $\mathbf{C 4}$ rises. The voltage on the output of IC2b (pin 7) then falls. This voltage is inverted and attenuated by IC2c and its associated resistors. Audio Level control VR2 adds an offset to the output of IC2c which configures the attenuator in its linear region. The output of 1 C 2 C is then applied to the attenuation control pin of the MC3340. The op.amp IC2d forms a simple comparator which drives an I.e.d. D2 during limiting.

To set up the Audio Limiter, adjust VR2 so that the output of IC2c is at least 4 V to set the attenuator in its linear region. A higher level can be applied to vary the relative output level. Next. apply the maximum level of audio and adjust VRI until the l.c.d. illuminates. Back off VRI until the l.e.d. just extinguisties. Any increase in the audio level will now be limited to the level selected.

Duncan Boyd,
Blackburn ${ }^{2}$ Scotland.

Circuit Special

Pulse Modulated Inverter
 - Natn Miotor Controller

AsSNGGLe-pulse Modulated Inverter circuit diagram is shown in Fig. 1 la which can be used to operate a series-wound motor up to 1 hp in variable speed mode, from a 12 V leadacid car battery. The series motor may be an electric drill or the drive motor of a small electric vehicle or buggy for example. The circuit waveforms of various outputs are shown in Fig.11b.
In Fig. lla ICl (a 4047B) is working as a 100 Hz astable which triggers an adjustable monostable (IC2). The period of the monostable can be varied using VRI the timing capacior C2 should be InF minimum ARW).
The NAND gates of IC3 (4011B) are used to separate positive cycle signals for the power MOS transistor TRI and the negative cycle signal for TR2. The two Zener diodes

D1 and D2 provide protection for the transistors whilst diode D3 and capacitor C3 help provide isolation between the driver and the output stage.
Transformer T1 steps up the input voltage to a maximum 200 V a.c. The potentiometer VRI can be used for varying the output vollage in the range of 50 V to 220 V a.c., suitable for many applications.
Both power MOSFETs must be mounted on heatsinks and the main On/Off switch SI should also be capable of carrying the full load current. The winding details of the transformer are also given. II was unable to trace the power MOSFETs used by the writer and a substitute may be needed. e.g. the IRFPGSO or similar, offered as a suggestion only .ARW)
M.T. Iqbal,

Rawalpindi, Pakistan

Fig.11b. Output waveforms at varlous stages of the circuit.

PICO PRIZE WINNERS

lis time to decide the winners of superb PICO Technology PC-6ased oscilloscopes. once again generously donated by PICO (www.picotech.com) for three lucky entrants whom in our judgment submitted the best ideas published in the past six months. As always. every entry was judged on a number of criteria including the extent of "lateral thinking" or novelty. technical merit, resourcefulness. appropriateness, and overall completeness. Presentation was used as a tie-breaker.

The final-choice was difficult and, after careful consideration, EPE Editor Mike Kenward and Ingenuiny Unlimited host Alan Winstanley Jointly selected the following winners from the June-November issues:
WINNER - receives an impressive PICO ADC200-50 Digital Storage Oscllioscope, worth over $E \$ 50$ \&
L.ee Archer - TV Test Pattern Generator (September 1999) - illustrating the adaptation of a teletext timing chip. this circuit was considered to be thoroughly developed and complete.
RUNNERS-UP - both are lucky recipients of PICO ADC-40 Single Channel PC-based Oscilloscopes.
Rev. Thos Scarborough - Loop Acrial MW Radio (August 1999). This was a novel radio receiver design using some traditional techniques. and we are also happy to acknowledge the contributions made by our most ingenious Reverend.
2. Kaparnik - One Volt L.E.D. (November 1999). A number of intriguing and professionally presented micropower circuits optimised to operate an l.e.d. from a single cell.

Constructional Project

Loft GUARD

TERRY de VAUX-BALBIRNIE

Has the light been left switched on?

HAVINg a permanently-wired mains light in the roof space is handy. especially if you keep a lot of useful material up there. Unfortunately, it is all too easy to leave it switched on as any user will lestify.
Once the hatch is closed, there is no external sign that the fight is on. It could then remain like that until the next visit possibly several weeks or even months later. In the meantime, a significant amount of electricity would have been wasted.

SELF-CONTAINED

The Loft Guard is buift as a small, bas-tery-powered unit which is left in some suitable position inside the loft. It protects against leaving the light switched on by sounding a loud waming after 8 minutes or other preset time. This can be heard through the ceiling even with the loft hatch closed and alerts the next person passing by undemeath it.

In the prototype model. the specified operating time was found to be sufficient. If you happen to be working for a long time in the loft. a Reset pushbutton switch on top of the unit may be operated every so often to reset the circuit and hold the sounder off for a further set time interval. This switch may also be used after it has begun to sound to stop it.

If you habitually spend long periods up there, it would be possible to increase the operating time and details for doing this are given later. Similarly. you could shorten it if required.

CHECKOUT

Before beginning construction work. check that the loft space is reasonably dark when the light is switched off. Make sure you will be able to site the unit where light from the lamp will reach it and. at the same time, above some place where the sound will readily attract attention - for example. near the top of the stairs.

Of course, the unit could be used in other similar situations. For example, to guard against a cupboard light being left switched on inadvertently. You could even site the buzzer renotely if required.

The standby current requirement of the prototype unit is less than $100 \mu \mathrm{~A}$. Using the specified 9 V battery pack. consisting of six AA alkaline cells. a life of at least one year may be expected.

However, this will depend on how many limes and for how long the buzzer sounds. While actually operating. the current rises to some 10 mA . You could use a PP3 battery but the life would be correspondingly shorter.

CIRCUIT DESCRIPTION

The Loft Guard circuit works by sensing the change in illumination as the loft light is operated. Switching it on triggers a timer which holds the sounder off for the preset delay period. If the light is switched off during that time. the circuit will automatically reset ready for the next time.

The complete circuit diagram for the Loft Guard is shown in Fig.1. It will be seen that operation depends on the action of two integrated circuits. The first of these, ICI. is an operational amplifier (op.amp) responsible for the light-sensing aspect while the other. IC2. carries out the timing.

Looking at ICI first. the inverting input (pin 2) is maintained at one-half of supply voltage (nominally 4.5 V) due to the potential divider action of equal-value resistors R1 and R2. The non-inverting input (pin 3) has a voltage applied to it dependent on the values of the resistors in another porential divider.

In this case, its top arm consists of preset potentiometer. VRI. connected in series with fixed resistor R3 and the lower ore, light-dependent resistor (l.d.r.) R4.

As the illumination of the l.d.r. sensitive "window" is reduced. the resistance of the device increases. In total darkness the specified I.d.r. will have a resistance in excess of $5 \mathrm{M} \Omega$. Even when there is a small amount of light. it will exceed IMS.

In tests on the prototype in the author's loft, the "light" resistance was found to be

Fig. 1. Complete circuil diagram for the Loft Guard.
some $100 \mathrm{k} \Omega$. Of course, in any particular situation this value will depend on the relative positions of the unit and loft light, plus also the power rating of the bulb and other factors. The point is that there is a wide difference between the l.d.r. "dark" and "light" resistance.

MORE OR LESS

Suppose preset VRI is set to a value of $300 k \Omega$. This is added to resistor R3 to give the resistance of the top arm of the potential divider - that is, 770 kilohms.
Under standby ("dark") conditions the resistance of the 1.d.r. will exceed this value. This will result in a voltage greater than 4.5 V appearing across it and hence at ICI pin 3. When the loft light is on, the resistance of the 1.d.r. will be less than 770 kilohms and the voltage at pin 3 will fall bclow 4.5 V .
When the voltage at the op.amp noninverting input (ICI pin 3) exceeds that at the inverting one (that is, under "dark" conditions), the op.amp output, pin 6 , will be high. When it is less ("light" conditions), it will be low. At the end of construction, preset VRI will be adjusted so that this happens under the actual conditions prevailing in the loft.
Note that both op.amp invering and noninverting voltages are derived from potential dividers connected across the power supply. As the battery ages and the available voltage falls, the relative state of the inputs will remain unchanged. The circuit will therefore still work correctly. Of course, the battery pack will eventually develop insufficient terminal voltage to operate the buzzer satisfactorily and it will then need to be replaced.

Now look at IC2. This is an i.c. timer configured as a monostable. It may be activated by a low puise applied to the trigger input (pin 2) - while high there is no effect.
Once triggered. the output (pin 3) goes high and remains like that until tie circuit times out. The operating period depends on the value of capacitor(s) C3 and resistor, R7. The higher the value of either or both of these components, the greater the timing will be in proportion.

HIGH VALUES

Resistor R7 has a very high resistance (100 meg.) and the specified component may not be available to ail readers. It could be made up from lower values connected in series and more will be said about this later.
Capacitor C3 will probably consist of two separate components connected in parallel (as shown in the Fig.I.) to provide the required capacitance. The suggested value $(2 \cdot 2 \mu F)$ will give a combined effect of 4.4/2F.

Of course, you could use a single $4-7 \mu \mathrm{~F}$. two $4.7 \mu \mathrm{~F}$ or even one or two $10 \mu \mathrm{~F}$ capacitors providing they were small enough to fit the circuit board layout. Such an arrangement would give a correspondingly longer time period.

Using the values shown in the circuit diagram, the timing will be about 8 min utes. It could be reduced by using a single capacitor having a lower value if required.

When the 1.d.r. is dark - that is, under standby conditions, the op.amp output at pin 6 will be high and there will be no effect on IC2. However, when the output

goes low (i.e. when the light is switched on), a low pulse is transferred, via capacitor C1, to IC2 trigger input (pin 2). The monostable then begins a timing cycle.

The purpose of capacitor Cl is 10 allow only a shor pulse to pass. This is because if IC2 pin 2 was maintained in a low state continuously, the monostable would never time out since it would remain triggered. While on standby, resistor R5 maintains the trigger input in a high condition and this prevents possible false operation.

KEEP IT UP

The reset pin of IC2 (pin 4) needs to be kept high to enable operation of the monostable and this is the purpose of resistor R6. However, to allow the circuit to settle down when switched on and to prevent possible false triggering, it is held low for a short time using capacitor C2.

During this time the monostable is disabled and nothing can happen. The capacitor soon charges through resistor R6 and allows pin 4 to go high.

Pushbution (Resel) switch S1 may be operated momentarily at any time to begin a new timing cycle and so hold the waming buzzer off. This works by taking the trigger input low for an instant.

While IC2 output is high (that is, during the course of timing), the base (b) of Darlington transistor TRI will also be made high (close to positive supply voltage) via resistor R9 and diode D2. Under standby conditions, the 1.d.r. R4 will be in near-darkness and ICI pin 6 will be high. This also provides a high state at TRI base through resistor R8 and diode D1.

Since TRI is a pnp transistor rather than the more usual npn type, such a high state will maintain the base at near emitter voltage and so hold it off. No current will flow in the collector circuit and buzzer, WDI. will remain silent.

Suppose some light reaches the I.d.r. R4, IC2 will be triggered and a timing cycle will begin. Op.amp IC1 pin 6 will go low but this will have no effect on transistor TRI because this state is blocked by diode D1 which is now reverse-biased. However, TRI base will be kept high by the high condition of IC2 pin 3 and the buzzer will remain off.

When the monostable has timed out. IC2 pin 3 will go low and this state will be blocked by diode D2. Assuming light is still falling on the I.d.r. TR I base will no longer be made high by either path R8/DI or R9/D2. This allows it to go low via resistor R1O and the device is turned on

COMPONENTS

Resistors
R1, R2 10 M
R3, R8, R9 470
R3, R8, R9 470 k (3 off)
iminiature
dependent
resistor, $5 \mathrm{M} \Omega$ dark
resistance. (5 mm dia. - see text)

R5, R6 1 M (2 off)
R7 100 M cermet film (or 3 ' off 33M-see text) 10M (2 off - see text)
All 0.25W 5\% carbon film. except R4 and R7

See
Potentiometer
VR1 1 M sub-min preset, vert. SHOP

Capacitors
C1, C2
47n min. metallised polyester, 5 mm pin spacing (2 off)
C3 $\quad 2,2 \mathrm{~min}$ metallised polyester, 5 mm pin spacing (2 off or as required - see text)
Test capacitor 100 n min. melallised (see lext) polyester, 5 mm ptn spacing
Semiconductors
D1, D2 iN4148 signal diode (2 off).
TRI MPSA65 pnp Darlingion transistor
IC1 ICL7611 micropower op.amp.
IC2 7555IPA low-power timer

Miscellaneous

Si
miniature pushbutton switch, push-10-make
WD1 Audible warning device
103 dB output at 1 m
minimum. 10 mA d.c. operation maximum
B1
9 V battery pack
($6 \times$ AA cells), with holder
Printed circuil board available from the EPE PCB Service, code 249; plastic box size $138 \mathrm{~mm} \times 76 \mathrm{~mm} \times 38 \mathrm{~mm}$ internal; 8 pin di.i.l. I.c. socket (2 off); plastic stand-off insulators (3 off); PP3-type battery connector; small fixings; multistrand connecting wire; solder, etc.
Approx. Cost
Guldance Only
(remember, it is pnp (ransistor!). Collector current then flows and the buzzer operates.

The fact that TR1 is a Darlington transistor results in it having an exceptionally high current gain. Only a very small base current (a fraction of a microamp) is therefore sufficient to operate the buzzer hence the very high value of resistor R 10 . Remember, the flow of current is in the opposite sense for a pnp transistor compared with npn.

KEEPING IT DOWN

It is essential that the continuous current requirement of the circuit is kept very low to minimise battery drain. This is achieved by choosing very low power integrated circuits.

Also, the resistors in the potential divider chains are made very high. If the loft is reasonably dark under standby conditions, the resistance of the l.d.r. will also be high and this reduces still further the current flowing through the series arrangement of VRI, R3 and R4.

To be effective, the buzzer must be of a very loud type yet have a current requirement of 10 mA maximum. The specified unit (103 db at 1 m) was found to work very well.

CONSTRUCTION

The Loft Guard circuit is constructed on a small printed circuit board (p.c.b.) and the topside component layout and underside track master details are shown in Fig. 2. This board is available from the EPE PCB Service. code 249. All components are mounted on this except the battery holder, buzzer and pushbutton reset switch.

Commence board construction by drilling the three mounting holes in the positions indicated. Follow by soldering the i.c. sockets in position (do not insert the i.c.s at this stage) then all other components except capacitor(s) C3. light-dependent resistor R4, the diodes and transistor. On no account solder the i.c.s direct to the board - it would be very easy to damage them.

Note, resistor R10 ($20 \mathrm{M} \Omega$) consists of two individual $10 \mathrm{M} \Omega$ units connected in series using the pads indicated (both positions are labelled R10). If the $100 \mathrm{M} \Omega$ cermet film type resistor specified for R7 is not available, connect three $33 \mathrm{M} \Omega$ resistors in series instead using the pads provided on the p.c.b. - the three positions are labelled R7.

The photographs show the single specified resistor being used. This is soldered directly between the pads connecting IC2 pins 6, 7 and 8 - they are labelled " x " in Fig.2. If you can find no other way of doing it, you can connect ten 10M Ω resistors in series, zig-zag fashion, and connect the ends of the "chain" to the " x " pads.

Connect a 100 nF "test" capacitor to either C3 position. This will provide an operating period of around len seconds which will be more convenient for testing purposes than the full operating time.

Solder the I.d.r. in position using the full length of its end leads for the moment. If the specified miniature type of l.d.r. is not available the larger ORP12 type could be used. However, it would take up more space and would need a certain amount of adjustment to its position.

Fig.2. Printed circuit board component layout and full size copper foil master pattern.

Components mounted on the completed circuit board. Note that a single cermet fllm resistor has been used for R7 (see text).

POLARITIES

Now solder the polarity-sensitive components in place. These are the two diodes and Darlington transistor TR1. When soldering the diodes note that the cathode (k) end has a black band. When mounting the transistor, take care to place it as shown in the photographs with the flat face to the left.

Solder the battery connector wires to the p.c.b. If the battery holder has tag conneccions instead of being the more usual PP3 type, use short pieces of stranded wire instead. Connect pieces of light-duty stranded connecting wise for the Reset switch SI and solder the buzzer leads to the WD1 pads - the red one is the positive lead.

Insen the i.c.s in their holders. with the correct orientation. These are both CMOS devices and could possibly be damaged by static charge which may exist on the body. To avoid possible problems, touch something which is earthed (such as a metal water tap) before unpacking them and handling their pins.

TESTING

Most readers will wish to carry out a basic test before mounting the circuit board in its box. This will allow any errors to be corrected more easily. It would be a good
idea to tape over the hole in the buzzer for the moment to reduce the sound output because it is very loud!

Cover the l.d.r. with a piece of black p.v.c. tape to simulate placing it in darkness (or be ready to work in darkness). Adjust preset VR1 to approximately mid-track position and connect the batteries. Keep the switch wires separated so that the bared ends cannot touch.

Working on an insulating surface (such as wood or plastic) to prevent shon circuits at the p.c.b. tracks, place the AA cells in the holder and connect it up. Peel back some of the p.v.c. tape to allow some light to reach the l.d.r. - the buzzer may give a momentary "chirp" which may be ignored.

After about ten seconds or thereabouts (remember, the timing has been reduced) the buzzer should sound. If you re-cover the l.d.r., it should stop immediately. Similarly, if you touch together the switch wires, it should stop.

If you have problems making it work. make sure the L.d.r. window really is covered to exclude almost all light - some types of black tape are far from opaque. If necessary, carry out the test in a dark cupboard. It is not satisfactory to cover the 1.d.r. window with a finger!

If all is well．disconnect the battery hold－ er and remove the i．c．s，again observing the anti－static precautions mentioned earlier． De－solder the buzzer wires and lest capaci－ tor C3．
With the required timing in mind，decide on the value of the capacitor，or capacitors needed for C3 and solder them in place． Note that an electrolytic capacitor would not be satisfactory here due to its inherent high leakage current．

BOXING UP

You are now ready to mount the circuit board in its box．This must be large enough to accommodate the p．c．b．，battery pack， buzzer and pushbutton switch．You could use a more compact case if you used a smaller type of battery but，remember，this will give a shorter life．
Arrange the internal components on the bottom of the box and mark through the p．c．b．and sounder mounting holes． Remove everything again and drill these holes．Drill a further hole rather larger than that in the centre of the buzzer itself for the sound to pass through．Note that the buzzer will be mounted so that the sound is direct－ ed downwards（see photograph）．This will allow the maximum amount of sound to pass through the ceiling．

Mount the p．c．b．temporarily on plastic stand－off insulators．You may wish to mark the position of presel VRI on the side of the box so that a hole may be drilled to allow it to be adjusted more easily．

Measure the position of the 1．d．r．＂win－ dow＂（top surface）and mark this on the lid of the box．Drill a clearance hole for it． With the lid in place，and the l．d．r．protrud－ ing，measure how much the end leads need to be shonened so that the window will be level with the face of the box．
Remove the p．c．b．and adjust the I．d．r． soldered joints to give the correct clear－ ance．It would be a good idea to leave the leads a little on the long side because they can be bent slightly at the end to make smalt adjustments to the height．

Positioning of components and circuit board inside the prototype case．Note the I．d．r．Window＂hole and Reset switch position in the lid．The space to the right of the p．c．b．is for the battery holder．

Drill a hole in the lid for the Reset switch and attach it．Solder the switch wires lead－ ing from the p．c．b．to its terminals．Drill the hole for VRI adjustment if this is needed． Shorlening the buzzer wires as necessary． solder them back to the p．c．b．pads．Insert the i．c．s again taking precautions against static charge build－up．
Mount the p．c．b．and attach the buzzer using a pair of long，thin bolts．Do not for－ get to remove any tape which was used to reduce the sound output，during testing． before altaching it．Insert the AA cells and secure the battery holder to the base of the box using a small bracket if necessary．
Place the lid temporarily in position but do not secure it yel．Adjust the I．d．r．end leads as necessary so that the window is level with the top face of the box（see pho－ tograph）．Take care that they cannot touch one another and cause a shor－circuit．

FINAL CHECKS

Test the circuit under real conditions．Try the unit in different positions in the loft to find the best one．Leave preset VRI adjust－ ed as far clockwise as you can（as viewed from the top edge of the p．c．b．）consistent with correct operation．When satisfied with the performance．secure the lid．

Cheek that the sound can be heard below the unit when the loft hatch is closed．You could remove a small amount of roof insulation from around the case to allow the sound to pass through more effi－ ciently but this was not found necessary with the prototype．

It is suggested that the unit be allowed to sound every now and again to check the efficiency．When the buzzer can no longer be heard as it should，the batteries should be replaced．

DON＇T BE FROZEN OUT－ORDER YOUR COPY NOW！溇 FLASHING SNOWMAN 溇 FROST ALERT 深 PLUS－SCRATCH BLANKER－A＂Spin Doctor＂for your Vinyls

\qquad
Name and Address

NEWSAGENTS ORDER FORM
 Please reserve／deliver a copy of Everyday Practical Electronics／ETI for me each month

Post Code

Everyday Practical Electronics／ETI is published on the first Friday of each month and distributed S．O．R．by COMAG Make sure of your copy of EPE each month－cut out or photostat this form，fill it in and hand it to your newsagent．

READOUT
 John Backer addresses some of the general polnte readers have ralsed. Have you anything Intoresting to say? Drop us a llne!

WIN A DIGITAL MULTIMETER

A $31 / 2$ digit pockel-sized I.c.d. multimeter which measures a.c. and d.c. voltage, d.c. current and resistance. It can also test diodes and bipolar transistors.

Every month we will give a Digital Multimeter to the author of the best Readout leter.

\star LETTER OF THE MONTH \star

TELE BYGONES

Dear EPE.
Whulst looking for a computer magazine, I cante ucross EPE, glanced through. then decided to purchase it. It brought hack a lot of memories. Many moons ago (mid 1960s). I did a Government training course, to beconse a Television and Radio Engineer, with the promise of a job at the end.

About half way through. our instructor had to go on a three-day course. He retumed, with the biggest TV receiver imaginable. the first colour TV any of us had seen. When it was switched on if worked for jutt a shon rime. when all at once, a bang then snioke. The cause was something to do with HT.

I remember seeing what seemed to be three of four very large wistwound resistors burm out. These were the days when the transistor was first hrought about (acrually invented in 1948. Ed); we had litele if any training on there. We were told "Not to bother checking these they don't go faultyl" (l've heard that one before). "Anyhow, they will never replace the good old valve."
I did manage to finish the course and get a joh working for Cranads Television, not to be mistaken with Granada Broadcasting station. I was literally working on econveyor bell. We had to pick up the sets (Murphly model 5?) from onc end atnd refurbish them. This neant changing the ondoff switch (the one being replaced was operated by lifting the lid). replacing the frame output value and frame bias, clean the rotating channel switch. replacing the two valves (I think these were EC80 and ECC8 y)
A.C power was rectified with a valve. This we replaced by a half-wave rectifier, using two diodes. and then replaced the smoothing capacitors. If any other valves had to be replaced. we had to gently ease the CRT forwand in order to do so. Part of the IIT was enclosed in an oil container. if the HT arced
ower then you had to inject nore oill Never try to align anything one small tum - this could lead to replacing of i.f. can, of whatever it was you were furning. This happened due to the age of the set.
When you had done all the work that needed to be done, it was time to auk the quality controllers to inspet the sel. The first thing they did was to lift the set up three to four inclies off the bench then drop it back on. apparently to see the effect, if any, on the screen! Then each of the valves was given a good tap with the thick end of a screwdriver (is this where the term boltle bashers came from?). This was to see if the value was on the verge of death, or noisy! There were many more such monsense aets of violence

We were on piecework as well. We did have a much better set to work on, namely the KB, I don't know the model number, but this was a hard-wired set. i.e. no p.c.b. The KB had a frame output transfomier at the top left-hand side looking from behind. The quality controller thought this was the best place to tie his Label. to tell the world that this set had passod his inspection. All was well until the team responsible for re-casing got their hands on it and, yes you've guessed it. pulled the tag off along with the transformer wires. Oht the good old days!

I left this type of clectronics to word with hearing aids. This was sub-sub-miniature work. and very rewarding. A resistor was just bigger than a pinhead. Now 1 believe they use i.c.s.

1 have now ordered a two-year subscription to EPE, and also twelve months bock issues. 1 shall also be sesding for three CDs to lielp me. I have a lot of catching up to do!

Keith Barlow, Bury, I.anes
Isn't history fascinatingt Helcome to the madern warld of electronics. N'eith. Good luck with vour "catching up". It's goed" to hear from iou

LEAPING CALENDARS (AGAIN)

In several recent Readout colwms, we have discussed calendars in relation to the Millennium. We "ant to say a really Big Thank You to MIF WF. Rirchic. of Fraserburgh, Aberdeenshire, who went to a lot of trouble to send us a great deal of information on the subject. including tables of data. Sadly, it is 100 lengthy to reproduce here.

One of the many interesting points made is that, whereas the changeover to a Gregorian calendar (in honour of Pope Gregory XIII) began in 1582. Britain did not adopt is untll 1752, which caused considerable controversy because, in that year. It days had to vanish (-Glve us back our II days!"). Greece was even later - it was the last modern nation to mate the change, in 1923.
Mr Ritchie also says that "As the age of 78 years I make do with my Hewlest Packard 48GX calculator, which . . . has a built-in clock and calendar covering a period from the start of the Gregorian calendar to 3/st December 9999. Astonishing!

DOS ERROR 76

Dear EPE,

I have built PIC Toolkit M/k2 (May-Jun '99) and the first part of the Setup, where the voltages and parallel port are checked is OK. However. when I press enter to carry on with the Setup. 1 get the message: "Setup program unforeseen MS DOS ERROR 76°. Can you please heip me?

Anthony Marshall, ria the Net
The ERROR 76 message ("path not found") is that generated by MTS DOS when it cannot find a particular file or dinectory named by the user. In Toolkit's Setup shis could occur if an attempt is made to Install the progrum with its sipped files being in the wrong directory: When the program is Installed from our 3.5 -inch dist as available from the Editorial Office, it scems unlitely that this can happen.

However. readers who have downloaded the program from our FTP site may inadverferuly find that their unsipped fites are in the wrong dinectorp. The files need to be installed in diressory C:VIC. as expecred by various file acressing commands within the suise of programs.

There is normully a sexs file on the FTPToolkis ME? path that explains this (pic_toolkis_instal.fxs). although there was a brief perind during which the file "went missing". It should be there now - follow its insiructions fif it's not, advise the Webmaster for that site).

The ASMCNV directory (folder) referred so must be created as CiHSMCNV. Ift should not be created in the PIC director: where is will nos be found.)

Incidentally. readers with QBasic or QuickBASIC can find ous whate a particular DOS Error number means by entering the program. writing area of these programs and fyping in the command. for example. ERROR 76. Then run this one-line program, upon which the prograin will halt and display a test bax containing the relevant error message.

LOGGING EXCELS

Dear EPE.

I've juss read Pant 2 of the 8-Chunnel Analogue Data Logger (Aug-Sep 99) and have wo say I like it. I have always wanted to build one using a good old 780 CPU and a ZNxxx bus even when I had the chips I never got around to it! Your design is made so easy with the PIC16I877.

Being able to upload the data to a PC is really essential, and your comments on using Excel to view the dals are very good.

I have also downloaded version V2,3 of Tooltis Aft: 2 - 1 have used the dissemble function to recover a program from a PICI6C84 that I had lost the ASM text for, it will make rewriting a lot easier!

Mel Saunders, via the Net
It's good to know that a design which took me so much time to research and implement is providing you and many other readers with a useful tool. There were four "learning curves" Involved - getting to know the PIC'16F877. the serial memorics. serial communication between PIC and PC, plus Ercel fo which I had previously ondy had brief erposure when we produced she CD-ROM for PICtutor).

A WAVE FOR OSCILLATORS

Dear EPE.
This is the first letuer i have ever written to an electronics magazine. To establish, very briefly. my background. I was brought up with the vacuum tube starting in the early thirties. Although I was keen to build receivers, money was scarce, and I could only read about their construction. Then came WWII and I tried to get into Signals, but it was not to be. I served in the infantry. Then came family responsibilities, and the necessity to cam a living, and a move to Canada in 1954.
Only now, in fetirement. have 1 the time to "convert" myself from the valve to solid state. What a fuscinating subject it is! 1 find my main interests are receivers and test instruments and have recently built a number of them. including some from EPE. Now 1 have subscriptions to five electronics mayazines from the USA, and two from England. and of the seven your magazine stands head and shoulders above them all. I can only say it is simply the BEST!
The series of articles on oscillators by Raymond thaigh is excellent, the subject is dealt with in depith and gives down to earth schematics. The articles give one confidence to go ahead and build each type of oscillator, and indeed I have already built some of them. and I intend to construct many more.
I also have another request, and perhaps some of your columnisis or readers. better versed in electronics than I. could provide a method and a circuit, fot the testing and evaluation of torolds. This component, as is well known. exists on the surplus.market in a vast array of sizes and material composition, and they can be bought very cheaply. But not knowing its composition. i.c. imn dust or ferrite, and what frequency it was designed for, one would hesitate to incorporate it in any project.
Perhaps the circuit would take the form of a BH curve tracer, where. Instead of a 50 Hz or 60 Hz input, a standard signal generator could activate the circuit, and the output displayed on the scope.

I fealize that a full and complete evaluation of any magnetic material is a complex subject, full of mind boggling maths! But it seems to me that if we know its composition and designed frequency, this would give confidence to incorporate the item in a project with reasonable chance of success.

I look forward to perhaps seeing an anicle on the above! Please keep the practical projects and informational aricles coming.
B.J. Maloney, Alberton, Canada

We know that many readers have responded favourably to Raymond's ascillator discussions. Toroids-wise, though. we suspect that an arricle relating to them would be $t 00$ esoteric to appeal to most readers. llowever, perhaps readers might care to tell us we're wrong!
We appreciate your praising words. With our internubional readership consinuing to grow, in a large part due to our EPE Online editions on the Internet, it's good to learn what readers worldwide thint of us.

TRANSISTOR PROBLEM

Dear EPE.
I'm having some trouble getting my PIC Toolkit M/L2 (May-Jun 99) to work and hope you can be of some help.
1 am not getuing the correct voltage measurements and I believe it has to do with two of the components: the power supply and TR1.
First, when the parallel port bit DA4 is high. the voltage on PIC pin 4 (MCLR) should be 12 V . but I am only getting 8.2V. Now the 781.C0S power converter 1 used is only rated to supply 100 mA and the l.e.d. 1 chose draws 20 mA . Could there not be enough current going to the MAX665 Flash memory programmer for it to supply 12 V ? Should I replace both the power converter to get more juice and the l.e.d. to consume less?

Second, when the parallel pun bits DA3 and DA4 are high, the voltage on MCLR should be OV, but I still get 8.6 V . When DA3 is high alone, I get 4.5 V on MCLR. so something is working. I used a different npn transistor for the reset instead of the BC549 specified because I could not find that listed in any of my catalogues here in the USA. Instead I used a generic npn with a maximum collector current of 600 mA .

1 have just started working with PIC micros and 1 really enjoy your magazine because of your concentration on them. I purchased your PIC Toolkit p.c.b. and put together this programmer to see what I could leam and save a few bucks. I appreciate your work. Thanks very much.

Fred Ramsing,
University of Nevada, Reno. USA
The l.e.d. is unllkely to be the cause of the pmolem since its current is limited by resistor RJ3 and does not depend on the l.e.dis actual rating (which states the maximum current at which the device can be safely operated, not the current at which it alinays works).
It seems probable that the transistor is to blame, perhaps because its pins are not orientat. ed correctly. Check the duta sheet (or supplier) for the pinout of the device and ensure that the pin designations correspond with those shown in Fig. 4 of the published article (you may need to "Iwist" the device if they are in a different order).
One alternative to the BC549 (a device which is part of my regular design stock) is the BC109. Another is the $2 N 3704$, tut note that this device has a pinout of ECB whereas the BCS 49 and BCIO9 hove CBE. In reality. practically any general purpose npn transistor should work if correctly orientated, it's only being asked to swisch a very small current on and off.

Having sent the above info direct to Fred. he subsequently E-muiled back: "Thanks a ion, it works finet!"

PICKING UP ON ED

Dear EPE.
In your Editorial of Nov 99, you say "it seems that some of our readers are definitely not interested in PICs". It's not the PICs they're not interested in it's the endless discussions on code that put them off?. I feel the same.

Why not steer clear of code and talk in terms of Basic programming with which a vast number of your readers must be familiar? I notice that some companies offer PIC Basic compilers. Why bother with the grief of leaming code? Please enlighten me.

Murray Cameron. via the Net

Ah, Alurray, you've misunderstood Editor Mike's statement! By "some" is meant that "a few" - a minority in fact - of our readers are not interested. The vast majoring mast definitely ane interested in PICs at the programming as well as the applicarions levels.

A couple of years (or so) back. I ran an exper. iment with one of my published PIC projects. l discussed at length one aspect of the program that contnsied the project, in order to see what reader response would be to that extended discussion.
The result was astonishing - many roaders expressed their gratitude for the discussion. So inuch so. that Ifell justified in suggesting to Afite the PIC Tutorial series, which we subscquently ran froun Alarch to May 98. It was one of the most successful series that EPE has ever run. Demand for back issues (photocoples only now) of the series still conrinues. The success of the series also prompted us to further develop the concept and produce the PICTutor CD-ROM and associaled hardware (see page 912).

But as to actually induiging in "endless discussions of code". We don'l do so as a regular part of PIC projects. By-and-large, the only discussion of code is when it is persinent to explaining hon a parricular design should be operated. Otherwise, extended discussions about code from a programmer's point of vies have been confined to such educationul features as the PIC

Tutorial and PIC16F877 Mini Tutorial (and Readout!). Even my 8-Channel Analogue Data Logger of Aug/Sep 99 (which for the first time introduced the PICI6F877 as part of a project) did not significantly discuss code, that being left to the Minl Tutorial
Regarding PIC Hasic compilers, I am sure that for short lengths of code writing they are probobly an excellent asset for sowne readers who do not have the inclination to delve into writing PIC code directly. For myself, though, the type of designs I create are not suited to compilation from one language to another in this contexsd There is usually a large overhead of exra code that is generated when such transformations tate place. accompanied by a relative reduction in processing speed.
For my purposes, I need the compactness and optimum speed of sub-routine processing that writing in "machine-code" can achieve. Writing in PIC is as second-nature to me as writing in any of the other several computer-type languages thus I know and use. There are a lot of reuders who are similarly adept and who delight in PICs in parricular. Projects hased on PICs have turned out to be amongst the most success. ful projects we have published in our 28 (nearly 29) years of existence!

CHILD GUARD QUERY

Dear EPE

In Child Guard (Sep 99). ICS and IC6 both have their address pins connected the same way. However, pin 10 on IC6 is connected to ground, whilst on ICS it is left floating. Is this a mistake. or is the diagram correct?

Martin Male, via the Net
We referred Alartin's question to the author. Tom Web. who replied:

There is no problern with pin 10 on IC6 being connected to ground. This is required to make IC6 continuously transmit a signal. On ICS the same pin should be left floating as shown in the diagrams. since the pin is carrying information which is not required in this design. In other words the diagrams in the article are correct.

Tons Web and Alax Horsey, via the Net

OVERCAST SUNDIALS

Dear EPE.
John Becker's Afusical Sundial (R.A. Evans. Readout Nov '99) could well have its uses. Sun time differs from clock time by up to a quarter of an hour. It nay be of interest to know the difference. Human beings can'I read a sundial when the sly is overcast (hence the well known sundial motio "I count only the sunny hours"), but electronies might. Even when the sun is hidden, more light must on average arrive from its direction than from other parts of the sky. An integrating light detector might show where it is.

An electronic sundial could be nemote-indicating, allowing lazy people like me to monitor it without going out. If it measures light intensity it might wam you to use sun lotion Naturally, any such device stould be solar powered! Perhaps readers could suggest an appropriate high tech motto.
P.S. Interested to see that Radio Bygones now emanates from Wimborne Publishing. If you go on absorbing other mags, your ahbreviated titie will be as long as the original name!

George Short, Brighton, East Sussex
Good to hear from you again Grorge. Yes, Tive thoughs abous Sundials for Dull Days and thint that it is feasible, allhough precautions would need to be taten to ensure that onty the sun's light (ohscured or clear) would be responded to and not other, brighter, sources. Should 1 get the croving to do Sundia! Mk2, I might iry this approuch, and attempt the use of just three sensors and a bit (?) of triangulation through the PIC sofmare - probably more of a probien than I appreciate at the monnent . . Srill. where's the fun without the chat lenge?! Radio Bygones will, of course. comtinue to be published in lis own right.

Advertisement

Introductory 20\% discount offer for the NEW:-

pc based 20 MHz oscilloscope, spectrum analyser, data logger \& voltmeter
1 channel version, normally - £183.83 Introductory price $£ 149.00$ inc vat, del \& 1yr guarantee
2 channel version, normally - £233.83 Introductory price £185.00 inc vat, del \& 1 yr guarantee

Signal registrator/data logger

- 1 or 2 channels
- Time window from 1 sec to 999 hours
- 8 k sample buffer
- Readout and cursors

Voltmeter

- 1 or 2 channels
- Auto/manual ranging from 800 mV to 200 V
- $\quad A C$ or $D C$ ranges

General

- Paste waveforms/data to other packages

1 Save waveforms for comparison

- Save instrument set ups/configurations

System requirements
16-bit, $\min 386,1 \mathrm{Mb}$ ram (oscilloscope only)
32 -bit, \min Pentium $200 \mathrm{MHz}, 32 \mathrm{Mb}$ ram
One free ISA expansion card
Windows $3.1,95,98$ or NT

Cheques payable to Vann Draper Electronics Lid, or debit my Visa, Mastercard or Switch:

Everyday Practical Electronics are pleased to be able to offer all readers these

 ELECTRONICS CD-ROMS
ANALOGUE ELECTRONICS by Mike Tooley

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations. diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits.

FUNCTIONS

The component values on all circuits can be edited and the user can use the simulation engine to see how the value of each component affect circuit performance. You cor for ins os. ater trequency anc, ise an and plot outputs on = al oscilloscope or show k? graphs etc.

COVERAGE

Sections on the CD-ROM include Fundamentals - Analog Signals (5 sections), Trar sections), Waveshaping Cira sections): Op.Amps - 17 sections covering everything from Symbols and Signal Connections to Differentiators; Ampliflers - Single Stage Amplifiers (8 sections). Multi-stage Amplifiers (3 sections): Fitters - Passive Fiters (10 sections), Phase Shitting Networks (4 sections), Active Filters (6 sections); Osclllators -6 sections from Positive Feedoack to Crystal Oscillators; Systems - 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

- Includes SPICE circuil simulator with over 50 circuits
- Unique virtuai laboratories
- Editable assignmenis
- Design parameters for circults included
- Complete ni-fl ampllfier case study

rompilimentary output stage.

Twin-T phase shifting network

Gallery - Wideband Amplifler

DIGITAL ELECTRỌNICS by Mike Tooley

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits \& Components (below), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen.

VIrtual laboratory - Flip-Flops

Virtual laboratory - Traffic Lights

Microprocessor

FUNDAMENTALS

Fundamentais introduces the basics of digital electronics including binary and hexadecimal numbering systems, ASCII, basic logic gates and their operation, monostable action and circuits, and bistables inciuding JK and D.type flip-flops.

COMBINATIONAL

LOGIC
Multiple gate circuits, equivalent logic functions and specialised logic functions such as majority vole, parity checker, scrambler, half and full adders. Includes tulty interactive virtual laboratories for all circuits,
SEQUENTIAL LOGIC
Introduces sequential logic Including clocks and clock circuitry. counters, binary coded decimal and shift registers.

DIGITAL SYSTEMS

AD and D/A converters and their parameters, traffic light controllers, memories and microprocessors - architecture. bus systems and their arithmetic logic units.

GALLERY

A catalogue of commonly used IC schematics taken from the $74 x x$ and $40 x \times$ series. Also includes photographs of common dgital integrated circuits and circunt technology.

Prices for each of the two CD-ROMs above are:
HobbylstStudent ... 545 Inc VAT
Institutional (Schools/HE/FE/ndustry)...............99 plus VAT
Institutional 10 user (Network Licence)£199 plus VAT (UK and EU customers add VAT at 17.5% to "plus VAT" prices)

ELECTRONIC CIRCUITS \& COMPONENTS + THE PARTS GALLERY by Mike Tooley

Electronic Circuits \& Components provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and. pre-designed drouits allow students to learn, experiment and ched their understanding as they proceed through the sections on the CD-ROM. Sections on the disk inctude: Fundamentals: units \& muttiples, electricity, electric circuits, atternating circuits. Passive Components: resistors, capacitors, inductors, transformers.
Semiconductors: diodes, transistors. op amps. logic gates. Passive Circults. Active Circuits
The Parts Gailery - many students have a good understanding of electronic theory but still have difficulty in recognising the vast number of difterent types of electronic components and symbols.
The Parts Gallery heips overcome this problem: in will halp students to recognise common electronic components and their corresponding symbo's in circuit diagrams. Selections on the disk inctude: Components ,Components Qulz, Symbols, Symbols Quiz, Circuil Technology HobbyistStudent. . 234 inc VAT
Institutional (Schools/HE/FEIndustry) .$\Sigma 89$ plus VaT
Institutional 10 user (Network Licence) 169 plus VAT
Virtual laboratory - sInusoids
(UK and EU customers add VAT at 17.5\% to "plus VAT" prices)

Circult technology screen

Interested in programming PIC microcontrollers? Learn with PICtutor by John Becker

The Virtual PIC

Deluxe PICtutor Hardware

This highly acclaimed CD-ROM, together with the PICtutor experimental and development board, will teach you how to use PIC microcontrollers with special emphasis on the PIC16x84 devices. The board will also act as a development test bed and programmer for future projects as your programming skills develop. This interactive presentation uses the specially developed Virtuat PIC Simulator to show exactly what is happening as you run, or step through, a program. in this way the CD providest the easiest and best ever introduction to the subject.
Nearly 40 Tutorials cover virtually every aspect of PIC programming in an easy to follow logical sequence.

HARDWARE

Whilst the CD.ROM can be used on its own, the physical demonstration provided by the PICtutor Development Kit, plus the ability to program and test your own PIC16x84s, really reinforces the lessons learned. The hardware will also be an invaluable development and programming tool for future work once you have mastered PIC software writing.
Two levels of PICtutor hardware are available - Standard and Deluxe. The Slandard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials.
The Deluxe Development Kft is supplied with a plug-top power supply (the Export Version has a battery hoider), all switches for both PIC ports plus i.c.d. and 4-digit 7 -segment l.e.d. displays. It allows u'sers to program and control all functions and both ports of the PIC and to lollow the 39 Tutorials on the CD-ROM. All hardware is supplied fully built and tested and includes a PIC16F84 electrically erasable programmable microcontroller.

PICtutor CD-ROM

HobbyisUStudent.. inc. VATInstlutional (Schools/HEFE Industry)
HARDWARE
Standard PICtutor Development KIt 547 inc. VAT
Deluxe PIClutor Development Kil 999 plus VAT
Deluxe Export Version... 996 plus VAT

MODULAR CIRCUIT DESIGN by Max Horsey and Philip Clayton

This CD-ROM contains a range of tried and tested analogue and digital circuit modules. together with the knowledge to use and intertace them. Thus allowing anyone with a basic understanding of circuit symbols to design and build their own projects.
Essential information for anyone undertaking GCSE or " A " level electronics or technology and for hobbyists who want to get to grips with project design. Over seventy different Input, Processor and Output modules are illustrated and fully described, logether with detailed information on construction, fault finding and components, including circuit symbots, pinouts. power supplies, decoupling etc.

Single User Version £19.95 inc. VAT Multiple User Version £34 plus VAT
 (UK and EU customers add VAT at 17.5\% 10 "plus VAT" prices)

designing your circult

simply seioct you modules from the wide choice avalable. lead how they work and join them up to make you circuit

I fond that I coutd design a crats without ny thacher's help And ill vorbed! Everyting was 20 hand o- which crips to use and which piis did what: Andeed Prestion (GCSE student)

A Web Browser is required for Modular Circuit Design - one is provided on the EPE CD.ROM No. 1 (see below) but most modern computers are supplied with one.
Minimum system requirements for these CD-ROMs: PC with $486 / 33 \mathrm{MHz}$, VGA +256 colours, CD-ROM drive, 8 LIB RAM, 8 MB hard disk space. Windows $3.1 / 95 / 98 /$ NT $^{\text {, mouse, sound card (not required for PICtutor or Modular Circuit Design). }}$

CD-ROM ORDER FORM

Please send me:
Deluxe Export

Note: The PICtutor CO-RON is not included in the Kir prices.

 HobbylsuStuden

 Institutiona! Institutional 10 userNote: The sotware on each version is the satre, onty the licence for use varies.

PICtutor Development KIt - Standard
PICtutor Development Kit - DeluxeModular Circult Design - Single User
Modular Circuit Design - Mutliple User
I Full name:
Address:
Elecironic Circuils \& Components *The Parts Gallery Analogue Electronics
Digital Electronics
PICtutor
.Tel. No:
Signature:
I enclose cheque/PO in $\&$ sterling payable to WIMBORNE PUBLISHING LTD for $£$
\square Please charge my VisaMastercard: £
Card No:
Please supply name and address of cardholder if different to the delivery address.

ORDERING
 ALL PRICES INCLUDE UK POSTAGE
 StudentSingle User Standard Version price includes poslage to most countries in the world
 EU residents outslde the UK add 85 to airmall postage per order

Instlitional, Mullipie User and Deluxe Verslons - overseas readers add $£ 5$ to the basic price of each order for airmail postage (do not add VAT untess you five in an EU country, then add $17 \% \%$ VAT or provide your offical VAT registration number).

Send your order to:
Direct Book Service
33 Gravel Hill, Merley, Wimborne Dorset BH21 1RW
(Mall Order Only)
Direct Book Service is a division of Wimborne Publishing Lid. To ordef by phone ring
01202881749 . Fax: 01202841692 We cannot reply to overseas orders by Fax Goods are normatiy sont within seven dirys

EPE/ETI Tutorial Series

TEACH-IN 2000

Part Two - Capacitors

Abstract

What we are doing during this 10 -part Teach-In 2000 series is to lead you through the fascinating maze of what electronics is all about! We are assuming that you know nothing about the subject, and are taking individual components and concepts in simple steps and showing you, with lots of examples, what you can achieve, and without it taxing your brain too much!

Through these simple steps we hope to prove to you that using electronic components need not be a complex task and that, providing you think about each stage of what you are trying to create, you can actually design and build something that works!

Last month we introduced colour codes and resistors. We now look at capacitors and show you some of the things they can achieve when used with resistors.

N that fascinating bag of parts that you bought, you will see a number of blue (or black) tube-like components with two wires sticking out of one end (see Photo 2.1). They are sonie rather remarkable components called electrolytic capacitors. Find the one whose value says $100,1 \mathrm{~F}$. For this experiment consider the capacitor to be called Cl.

One wire of Cl is usually longer than the other and has a large arrow pointing at it from the case. This wire is called the negative (-ve) wire. often shown with a "-" (minus) symbol. The other is called the positive (+ve) wire, for which a " + " (plus) symbol may be used. This is illustrated schematicaliy in Fig.2.1a. This type of construction is called radial.
A variant of electrolytic capacitor casc style is also manufactured, as in Fig.2.1b, which is called axial construction and whose twe and -ve connections are at either end as illustrated.

Fig.2.1. Typical case styles for electrolytic capacitors.

a curvature in time

Referring to Fig.2.2. plug Cl into the breadboard with its ieads orientated as indicated by the + symbol in the diagram (the symbol. although marked on the capacitor. is often not shown in layout diagrams). Now fit a $100 \mathrm{k} \Omega$ resistor (call it RI) as

Photo 2.1. A selection of electrolytic capacitors (radial construction).

Fig.2.2 and Photo 2.2, breadboard lay out for the first resistor/capactior timing experiment.
shown. Insert terminal pins for the power supply connections (see Photo 2.2).
Clip one power supply lead to the battery's negative $(-)$ terminal and to the board
as shown in Fig.2.2. Clip the other power supply lead to the board as well. but don't conntet the other end to the battery's positive $1+$ t terminal yer.

It is conventional to use a red lead for the positive power supply connection. For the negative power supply connection it is the author's preference to use a green lead. although the use of black is also common.

Nore that in many circuits (including those discussed in this Teach./n), the battery's negative connection is taken as the common reference point against which voltage readings are taken. As such. it is regarded as being at zero volts (0 V).
Consequently, throughout this series (unless you are told specifically otherwise) the meter's COM lead should always be connected to the battery negative connection when taking voltage readings.

Clip your muttimeter's leads at shown and set the meter to the first volts dec. range above 6 V . Note the reading. OV at this moment. While you
 watch the meter, get a friend to clip the red wire to the hattery's positive (+) terminal. noting the position of the seconds hand on his watch as he does so.
(Girls, Iadies. forgive the use of "he" and "his" forms of reference - it would be tedious to this author's typing finger to keep giving the feminine form as well the masculine. he/she. lis/hers and so on. We know that females of the species are also interested in electronics!)
Watch your meter and yell "NOW" as soon as it shows a reading of 2 V . At which point your friend should tell you the number of seconds that have passed since clip. ping the red lead to the battery.

Continue watching and timing and yell again when the meter reaches 4 V and again at 6 V (assuming you haven't run down your battery since last month's Teach•/n if you have. get a new one!). Leave the battery fully connected while you consider your results.
What timings have you got for the 2 V . 4 V and 6 V marks? Hopefully, about 4 seconds for the 2 V .10 secs for 4 V . and. oh about 40 to 50 seconds? And what do you make of these timings? The voltage steps have been at 2 V intervals, yet the limings have become progressively slower-for each step.
Let's now do things backwards. Watch the meter and tell your friend to note the seconds hand again as he unclips the red lead from battery positive and clips it (do it quickly) to the battery negative. You now yell out when the meter shows teadings of $4 \mathrm{~V}, 2 \mathrm{~V}$ and 0 V .
This time you should have found that 4 V is reached after about 4 secs. 2 V at 10 secs and (almost) $0 V$ at about 40 to 50 secs. You will see, too. that timings have again become progressively slower for each 2 V step.

Don't worry if the actual timings you get are somewhat different to ours. for a start you are not using an accurate timer, secondly, the actual values of a capacitor compared to its stated value can differ by even as much as $\mathbf{5 0 \%}$ (more about this in due course).

Additionally, your battery is probably not supplying exactly 6 V . Furihermore, the resistance of your meter (which you established last month) is forming a potential divider with resistor R1, so fractionally "pulling down" the voltage at the junction of C1 and R!.

What you have just demonstrated is that. when a voltage is applied to a capacitor via a resistor, the capacitor starts to charge up with the voltage. commencing at quite a fast rate, but then more slowly as its charge increases, until near the end of when the voltage on the capacitor is close to that of the battery, the charging rate becomes almost imperceptible. You have also shown that the opposite is true as well (i.e. during discharge).

The charge/discharge property of a capacitance-resistance combination has the most profound effect upon the whole realm of electronics technology.

But, before we examine the results of your timed yelling. let's first have a look at the basic nature of a capacitor.

WHAT IS A CAPACITOR?

A eapacitor is a component which has the capacity to store eleetrical energy (hence its name). In this sense. capacitors can be thought of as a type of battery, but. unlike a battery, they do not depend on a chemical reaction for this function to occur. Rather, they take advantage of a convenient fact of nature that prevails when two metal plates are placed close to each other, but not touching, and a voltage source is connected across them (see Fig.2.3).

At the monent that the voltage is applied. an electrical charge is transferred to the plates at a rate depending on the voltage level applied, the material from which the plates are made, their total area, distance apart, the substance which lies between them (called

PANEL 2.1 - A.C. AND D.C. VOLTAGES

Alternating (a.c.) voltages are those that repeatedly change their magnitude above and below a midway reference volage level (often taken as $\mathbf{0 V}$, as in mains electricity supplies. but may be other voltages). Direct (d.c.) voltages are those that remain at any fixed voltage level, either above OV or below it.
Strictly speaking. a.c. and d.c. actually mean alternating current and direet current and, as such. to use the terms a.c. voltage and d.c. voltage is incorrect. However, for some unknown reason. the terms a.v. and d.v. (which would be more appropriate when referring to alternating and direct voltages) do not seem to exist.
the dielectric). and the amount of resistance existing in the connection path (including the capacitor's intemal resistaske). If the voltage is applied for sufficient length of time. even. tually there will be virtually the same voltage across the plates as available from the source.

When the voltage source is removed. the plates will retain their charge umil a conductor of some sort is connected across thern. As soon as there is a conducting path between the two plates, the charge begins to flow from one to the other, trying to retum to the previously uncharged state. The discharging rate is governed by the same factors as controlled the charging rate.

Fig.2.3. Basic construction of a simple capacitor.

Given enough time. all of the electrical charge stored across the plates will reduce to zero. But, you may ask, what hagpens to the electrical charge itself? Principally, it is convented into heat in the discharging conductor and capacitor's intemal resistance. although in extrene circumstances some could be converted into light or radio energy. In normal use. you won't notice any temperature change in the capacitor or the conductor.

A capacitor's ability to be charged by a voltage and to hold the claarge (almost) indefinitely allows it to be

It can be argued. however, that it is not the voltage that flows, but the current. Indeed the term vollage merely represents a concept rather than something that actually fows. As an ancient (1962) copy of the Penguin Dictronary of Electronics puts it: "Voltage. Strictly. a difference of clec. tric potential expressed in volts. However, the term is used more generally as a synonym for electrical potential".
Voltage is certainly a more convenient term and ties in with the fact that the unit of measurement for potential difference (p.d.) is the volt, for which the symbol is V.

Note that you may encounter another term instead of voltage or potential difference. electromotive force (e.m.f.).
used in electrical and electronic circuits in a variety of ways:

- To simply store a voltage until it is needed
- To smooth out fluctuations in voltage levels
- In conjunction with other components. such as resistors for example, to determine the rate at which voltage changes occur at a particular point in a circuit

- To shorten or extend pulse lengths

- To transfer changíng differences in voltage levels between one side of the capacitor and the other. in other words, to allow altermating (a.c.) voltages to be transferred whilst preventing direct (d.c.) voltages from flowing from one part of a circuit to another (see also Panel 2.1)

CAPACITANCE VALUE

The amount of electrical charge that a capacitor can hold is known as its capacitance value (surprise, surprise!). and the unit which is used to define it is the Farad. It is named after another electrical pioneer in the nineteenth century, Michael Faraday. He was a Londoner, born 22-9-1791, died 25-8-1867.

More intimate information about Farad values is given in Panel 2.2.

There are several symbols that can be used to represent a capacitor, as shown in Fig.24. Sone represent the type of capacitor, but there are also differences of international standard used in some cases. Those used in EPE are the ones to the left of each pair.
The circuit diagram for what you have just been doing on your breadboard is showsi in Fig.2.5. (We didn't comment on the battery symbol in Pan 1. make a mental note of it now!)
We'll say more about capacitors later, so back to your timing results...

Fig.2.4. Commonly used symbols for capacitors.

Photo 2.3. Capacitor charging graph displayed on the interactive computer screen.

DISPLAY GRAPH

We can illustrate a capacitor's rate of charge and discharge using another of our software demos. From the main menu select Resistor-Capacitor Charging Graph.
On entry to this display you will see a rising graph on a grid. similar to that in Photo 2.3. This particular graph is that for a $1 \mu \mathrm{~F}$ capacitor and $1 \mathrm{M} \Omega$ resistor, a combination whose timings would be far to fast for you and friend to keep pace witht

As with the resistor display examples last month, you can change the values associated with this demo. At the top right you should see \mathbf{C} highlighted and its value as $1 \mu \mathrm{~F}$. Press the $<*>$ key (multiply) twice. On each press the graph will redraw to suit the changed value. You should see $\mathbf{C}=$ $100 \mu \mathrm{~F}$ after the second <*> press.

Press the down arrow key once to select factor R. Press \rangle (divide) once to set $R=$ 100 kilohms. Press the down arrow once to select V, then press $<>$ (minus) four times to set $V=6$ volts. Again press the down anrow to select T, and press $\left.<^{*}\right\rangle$ once to set $\mathrm{T}=10$ secs.

TIME CONSTANT

In front of you now is the graph that illustrates how an ideal (and "empty" uncharged) $100 \mu \mathrm{~F}$ capacitor charges via a $100 \mathrm{k} \Omega$ resistor when a voltage of 6 V is instantaneously applied to it. The vertical axis of the graph represents volts, and the horizontal axis shows elapsed time in seconds. The time between each horizontal step is the value shown times 10 . because T has been set to 10 seconds per division.

Look closely at the graph. Where it reaches the 2V grid line, you can just about estimate that the time taken so far is about 4 secs. li's clear to see that 4 V is reached at about 10 secs, and that it has just about reached 6 V at around 50 secs. You can select a "magnified" view of the 2 V mark by pressing \leftrightarrow to make $T=1$ secs (excuse the mismatch of singular and plurall).

Why the blue horizontal line just below $4 V$? you must be wondering. By convention. the line represents the 63% level of the power supply voltage across the resistor/capacitor series. The rate at which the capacitor charges

Fig.2.5. Circuit diagram for the capaclfor charge/discharge experiment.
to that 63% voltage is termed its fime-constant. which is the value obtained when the capacitance (C) and resistance (R) values are multiplied. It is generally referred to as the $C R($ or $R C)$ value.

It is important to note that the units for \mathbf{C} and \mathbf{R} must be expressed with the correct orders of magnitude. In the example shown. C ($100, \mathrm{IF}$) is expressed in microfarads (100) and $R(100 k \Omega)$ is expressed in megohms ($0-1$). resulting in a CR value of 10 seconds (100×0.1), as shown to the right of the display.

With a 6 V supply. the 63% volage is $3.78 \mathrm{~V}(6 \times 0.63)$, shown alongside the CR_{-} value.

DISCHARGE GRAPH

So. we have illustrated the charging up of your R-C combination. The discharge illustration is similar, but in reverse. Recum the time scale value to $T=10$ secs. then Press $\langle\mathrm{C}\rangle$.

The curve now starts high, at 6 V and smoothly descends to 0 V . If crosses 4 V at about 4 secs. 2 V at close to 10 sees, and reaches 0 V round about 50 secs - just as we predicted earlier, and you were probably close to it with your experiment.

The blue line has changed its position though. The reason is simple, again by convention, it now represents the 63% level below the starting voltage or 37% aboie the termination voltage. in this case 6 V and OV respectively.

The rate of change is said to be exponential. and in its calculation you ideally need a scientific calculator (and the knowledge of how to use it). because the formula is a bit complex:
$V_{c}=V_{s} \times(1-\operatorname{EXP}(\rightarrow / C R))$
for the charging rate, and:
$\left.\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{s}} \times\left(\mathrm{EXP}_{\mathrm{P}} \rightarrow / \mathrm{CR}\right)\right)$
for the discharging rate
where:
$\mathrm{V} \mathrm{c}=$ voltage across the capacitor
$\mathrm{V}_{\mathrm{s}}=$ voltage across the capacitor/resistor series
$t=$ elapsed time
CR $=$ time constant
EXP $=$ exponent
You will see these formulac shown as appropriate, at the top of the graph display.

We are not going to ask you to memorise the formulac or test your knowledge of how to use them. Since you now have a computer program that does it for you. let it do the brain-teasers! The answers for any values not included in the C-R-V-T ranges provided can be estimated from the nearest selected values.
(What you can do more simply, however. is calculate the RC time constant, by multiplying the values of C and R. Do

PANEL 2.2 - CAPACITANCE UNITS

A capacitance value of one Farad is a unit of charge which, in practical terms, is far too large to be useful in everyday electrical and electronic circuits. For, convenience, the unit is usually divided and expressed in sub-units, such as:

- Microfarads, being one millionth of one Farad. and usually written as $\mu \mathrm{F}$ (Greek "mu" followed by a capital F). although it is common for it to be written as "uF" or "mF". since many keyboards do not have the Greek symbol readily available. (The use of " mF " is to be deplored because it really means millifarad rather than microfarad.) It is also common. where the meaning of the term is implied. for it to be written simply as " μ ". in component lists for instance. Verbally, these abbreviations are often
pronounced as "mew" or "muff". For example, a 100 F capacitor might be referred as having a value of "ten-mew" or "ten-muff".
- Nonofarads, being 1000 -millionth of a Farad and usually written as "nF". although the "F" may be dropped where it is implied in the context. Verbally, the abbreviation might be pronounced "eneff" or just "en". i.e. a value of 10 nF might be pronounced as "ten-en". The use of the term "nuff" is unlikely.
- Picofarads, being one million-millionth of a Farad and usually written as "pF". though again the "F" might be dropped when it is implied. Pronunciation is usually "puff" (as in "stairs puff him out!"). although it might sometimes be heard as "pee". i.e. "ten-pee" for 10 pF .

Table 2.1: Capacitor varieties and their typical characteristics

Capacitor	Ceramic	Electrolytic	Metal flm	Mica	Polyester	Polycarbonate	Polystyrene	Tantalum	Polypropylene
Capacitance range (F)	$\begin{gathered} 2 \cdot 2 p \text { to } \\ 100 n \end{gathered}$	$\begin{aligned} & 100 \mathrm{n} \text { to } \\ & 47000 \mathrm{u} \end{aligned}$	$\begin{aligned} & i / \mu \text { to } \\ & 16 \mu \end{aligned}$	$\begin{aligned} & 2 \cdot 2 p \\ & \text { to } 10 n \end{aligned}$	$\begin{gathered} \text { In } 10 \\ 10 \mu \end{gathered}$	$\begin{gathered} 10 \mathrm{n} \text { to } \\ 10 \mathrm{kf} \end{gathered}$	$\begin{aligned} & \text { 10p to } \\ & 10 n \end{aligned}$	$\begin{aligned} & 100 \mathrm{n} \text { to } \\ & 100 \pi \end{aligned}$	$\begin{aligned} & 100 \mathrm{p} \text { to } \\ & 470 \mathrm{n} \end{aligned}$
Typical tolerance (\%)	$\begin{gathered} \pm 2 \text { to } \\ \pm 80 \end{gathered}$	$\begin{gathered} -10 \text { to } \\ +50 \end{gathered}$	± 20	± 1	$\begin{array}{r} \pm 5 \\ \pm 20 \end{array}$	± 20	$\begin{aligned} & \pm 1 . \pm 2.5 \\ & \text { and } \pm 5 \end{aligned}$	± 20	$\begin{aligned} & \pm 5 \text { to } \\ & \pm 20 \end{aligned}$
Typical voltage rating (d.c.)	$\begin{aligned} & 50 \mathrm{~V} \text { to } \\ & 15 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 6.3 \mathrm{~V} \text { to } \\ & 450 \mathrm{~V} \end{aligned}$	250 V to 600 V	$\begin{gathered} 350 \mathrm{~V} \\ \text { typical } \end{gathered}$	63 V to 400 V	$63 \vee \text { to }$ $630 \mathrm{~V}$	$\begin{aligned} & 50 \mathrm{~V} \text { to } \\ & 630 \mathrm{~V} \end{aligned}$	6*3V to 35 V	$\begin{aligned} & 100 \mathrm{~V} \text { to } \\ & 1.5 \mathrm{kV} \end{aligned}$
Temperature coetficient (pprw ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & +100 \text { to } \\ & -4700 \end{aligned}$	$\begin{gathered} +1000 \\ \text { (typical) } \end{gathered}$	$\begin{aligned} & +10010 \\ & +200 \end{aligned}$	$\begin{aligned} & +35 \text { to } \\ & +70 \end{aligned}$	-200	+60	$\begin{gathered} -150 \text { to } \\ -80 \end{gathered}$	$\begin{aligned} & +100 \text { io } \\ & +1000 \end{aligned}$	$\begin{gathered} -200 \\ \text { (typical) } \end{gathered}$
Stability	Fair	Poor	Fair	Excellent	Fair	Good	Good	Fair	Fair/Good
Ambient Temperature range (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} -35 \text { to } \\ +85 \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +85 \end{gathered}$	$\begin{gathered} -25 \text { to } \\ +85 \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +80 \end{gathered}$	$\begin{aligned} & -40 \text { to } \\ & +100 \end{aligned}$	$\begin{gathered} -55 \text { to } \\ +100 \end{gathered}$	$\begin{gathered} -40 \text { to } \\ \$ 70 \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +85 \end{gathered}$	$\begin{gathered} -5510 \\ +100 \end{gathered}$

note that the values must be expressed in units of the correct magnitude to achieve a valid answer, as we said a few paragraphs earlicr.)

Just for a bit of idle illustration. the circuit diagram for the R-C series is shown at bottom right of the screen. Note how the arrow changes direction and value depending on the charge/discharge mode. The capacitor symbol shown is that for a nonpolarised type (see later, plus Fig.2.4). but in reality the symbol should more reasonably be that for an electrolytic when high values of capacitance are used.

We suggest you experiment with different range values on the screen, and if you think you can actually time some of the graphs using your hreadboard assembly. set R1 and C1 to the same values as displayed. (Be sure to read Panel 2.3. however!)

In the accompanying Experimental article, we shall tell you about how to combine two or more capacitors to achieve different values. In this Tutorial section, though, it's time to discuss some more facts about capacitors - first have a read of Pancls 2.4 and 2.5. and then read on from here:

CAPACITOR SELECTION

Some concepts referred to in this section are likely to be alien to you. Where they are not further discussed here, they will be covered in later parts of Teach-In. We have to mention them now as they are relevant to this section - you should re-read it once you have read the future parts. Should we not cover something that you are puzzled by, you can always ask us to clarify it through Circuit Surgery or Readou' pages.

There are several factors to be considered when selecting a capacitor for a parlicular application, which include:

- Capacitance value

Working voltage

- Tolerance

- Leakage current

- Temperature coefficient
- Stability

Unless you are involved with a particularly demanding design, it is principally the first two which will concern you, but you should be aware of the following:

When substituting capacitors, either because they have failed in an existing circuit, or because the precise type specified in the components list of a constructional project is not readily available from your normal supplier, it is important to ensure that the replacement performs to a specification which is at least as good as that of the specified component.

PANEL 2.3 - BEWARE THE FORCE!

Do be warned that you should NEVER insert or remove components from a circuit hoard when the power is switched on.

Whilst this (anguably) is not so necessary to observe with passive components such as resistors and capacitors in a low voltage circuit, active composents (to be nel later) such as integrated circuits (i.c.s) and transistors can die in such circumstances.

It also important to note that capaciors can hold their charge for a while even after the power is switched off. Ideally. you should allow a few seconds for them is discharge before handling them. With a low voliage supply. such as 6 V . this is perhaps not critical. However. with higher
voltages, of greater than 30 V for exiviple, it is ESSENTIAL that you should allow for the discharge time. To really ensure that a capacitor is fully discharged. CAREFULLY rouch a $10 \mathrm{k} \Omega$ resistor across its +ve and $-v e$ connections for a few seconds - taking great care that YOU do not touch the wires.

We also have to caution you (not as the "Oid Bill" but as friendly voices across the page!) - DO NOT use a metal tool (e.g. screwdriver) to short out capacitor terminals for instantancous dischange. It can be damaging to both the capacitor and the screwdriver (although it does make a nice spark and mini-thunder crack!).

PANEL 2.4 - CAPACITOR TYPES

Capacitors are manufactured as having two very basic characteristics, they are either:

Polarised. or

- Non-polarised
the latter being manufactured as fixed and variable capacitance types.
In circuit diagrams and constructional charts, a fixed eapacitor"s numerical identity is usually prefixed by "C". e.g. C21. A variable capacitor may have its number also prefixed by "C". although it is more likely to be prefixed by "VC" (Varisble Capacitor), or perhaps "CV" (Capacitor Variable).

Polarised capacitors, as their name implies, are very particular about which side of them is connected to a (relatively) positive voltage. Connecting them the wrong way round can have dire results. a matter which is discussed in the mpin text. It is polarised capacitors that you have been using so far. sub-type "electrolytic" this is why we stressed carlier that you should only connect their +ve and $\rightarrow \mathrm{ve}$ leads as shown.

Non-polarised capacitors can normally be connected into a circuit either way round, although there are some circumstances where the relative position of the output electrode foil is placed in relation to other parts of a circuit. The coloured ends of some polystyrene capacitors. for example, can indicate this type of polarity. although it is not a trive polarity as referred $t 0$ with regard to polarised electrolytic or tantalum capacitors. (The author has never
had occasion be concerned about this detail. over several decades of doing electronics.)

Capacitors are atso manufactured in a seemingly-bewildering array of sub-types. basically named in respect of the nature of the dielectric material used between the plates:

- Electrolytic (polarised)
- Tantalum (polarised)
- Polypropylene (non-polarised)
- Polycarbonate (thon-polarised)
- Polyester (non-polarised)
- Polystyrenc (non-polarised)
- Metallised film (non-polarised)
- Ceramic (non-polarised)
- Mica (non-polarised) - sometimes called silver-mica
- Trimmers - variable capaciors (nonpolarised)
Air-spaced - variable capacitors (nonpolarised)
Paper - now rare (non-polarised)
Oil-filled - now rare (non-polarised)
There are also sub-types of the subtypes! Have a look at a major component supplier's catalogue and prepare to be astonished . . Fortunately, until you are much more into the depths of serious electronics design. the subtle differences between some types need be of liftic concern.
Typical plyysical shapes for six capacitor types are shown in Fig.2.6. A summary of the characteristics for the most commonly available types of fixed capacitor is given in Table 2.1.

Fig.2.6. Examples of capacitor body styles. Other styles exist.

However, it is quite permissible to replace a capacitor which has a working voltage rating of 15 V by one rated at 25 V . for instance. The nyorking voltage rating simply states the maximum voltage at which a component should be operated in normal service. Generally speaking, a higher working voltage rating is nearly always acceptable electronically (physical size permitting, of course). Sinilarly a capacitor with a tolerance of 20% can always be replaced by a similar one having a tolerance of 10%. A better tolerance rating is always acceptable electrically.

WORKING TO RULE

It is also important to note that working voltages are related to operating temperatures and at high temperatures (well above "normal" room temperatures) all capacitors should be significantly derated (assumed to
should be significantly derated (assumed to
have a lower working voltage than that stated). In normal everyday applications. however, this factor is usually irrelevant.
Capacitors should always be operated at well below their nominal maximum working voltages. If a circuit is designed for operation at 9 V . for example, a capacitor rated at a working voltage of 9 V or 10 V should not be used. rather, one rated at 16 V or greater should be chosen. Even one rated at 63 V , for instance, would be acceptable, provided that its size (which is likely to be greater with increased voltage ratings) is suitable for the circuit board on which it may need to be mounted.
As a rule of thumb, the quoted working voltage rating should be at least 50% greater than the voltage at which the component is required to work in the circuit. although there are occasions, such as in power supply circuits. where a much greater margin should be allowed. possibly even as much as four times the nominal supply voltage.
Where an a.c. voltage rating is specified, this is normally for sinusoidal operation (sine waves) at either 50 Hz or 60 Hz (Hz , or Herts, is a unit of frequency in cycles per second). Performance will not usually be significantly affected at low frequencies (up to 100 kHz . or so). but above this. or when non-sinusoidal (e.g. pulsed) waveforms are involved, the capacitor must be derated in

PANEL 2.5 - IDENTITY CODING

The majority of capacitors now have their values printed on them. although colourcoded varieties are still to be found. Examples of the colour codes which might be encountered are shown in Table 2.2 plus Fig.2.7. As with resistors, the colours allocated to each numeral from 0 to 9 conform to the standard colour code system.

Where capacitors have their values printed on them. the information may well be abbreviated or allocated a letter coding. Ceramic capacitors. for example, may have their tolerance and voltage ratings coded as in Table 2.3.

A 3 -digit coding is commonly used to mark some ceramic capacitors. The first two digits correspond to the first two dig. its of the value, whilst the third digit is a
multiplier which gives the number of zeroes to be added to give the value in PF . e.g. $103=10000 \mathrm{pF}=0.01 \mu \mathrm{~F}$.

Which brings us to the sometimes misunderstood use of pF, nF and $\mu \mathrm{F}$. An nF value is 1000 times greater than pF , and 1000 times less than $\mu \mathrm{F}$. Therefore, the following typical conversions apply to values seen on some capacitors:
$\operatorname{lnF}($ or $\ln)=1000 \mathrm{pF}$
$10 \mathrm{mF}($ or 10 n$)=10000 \mathrm{pF}=0.01 \mu \mathrm{~F}$ $100 \mathrm{nF}($ or 100 n$)=100000 \mathrm{pF}=0 \cdot 1 \mu \mathrm{~F}$ However, despite all this passible coding; with many modern capacitors. their values are normally obvious from the uncoded information printed on them (although you may need a magnifying glass in order to read them).

Table 2.2. Tantalum capacitor colour coding.
Reading from the top, Bands 1 and 2 = Capacity, Spot = Multipller, Band 3 = Voltage

Colour	Flgure	Multipller		Voltage
Black	0	1	$\mu \mathrm{~F}$	10 V
Brown	1	10	$\mu \mathrm{~F}$	-
Red	2	100	$\mu \mathrm{~F}$	-
Orange	3	-	-	-
Yellow	4	-	-	6.3 V
Green	5	-	-	16 V
Blue	6	-	-	20 V
Violet	7	-	-	
Grey	8	0.01	$\mu \mathrm{~F}$	25 V
White	9	0.1	$\mu \mathrm{~F}$	30 V
Pink	-	-	-	35 V

order to minimise losses in Its dielectric material which can produce internal heating and lack of stability.

You should also be aware that a sinusoidal waveform normally has is voltage quoted as an r.m.s. (root of the mean square) value, whereas in fact its peak value is nearly 50% higher ($\times 1-41$), thus the chosen capacitor's voltage rating must take this into account.

RIPPLE FACTOR

Capacitors used for smoothing and reservoir (substantial storage) applications in d.c. power supplies must have an adequate ripple current rating. This rating refers to the a.c. characteristic of the current (at the ripple frequency, e.g. 50 Hz for UK mains operated power supplies) which remains after the principal altemating (a.c.) voltage has been rectified to a d.c. voltage.

Without a capacitor following the rectifier. the ripple voltage will be approximately half that of the original a.c. peak-to-peak

Table 2.3. Ceramic capacitor letter coding.

1st Suffix	Tolerance $C=<10 \mathrm{pF}$	Tolerance $C>=10 p F$	2nd Suffix	Rated Voltage
8	$\pm 0.1 \mathrm{pF}$	-	A	50 V d.c.
C	$\pm 0.25 \mathrm{pF}$	-	B	125 V d.c.
D	$\pm 0.5 \mathrm{pF}$	$\pm 0.5 \%$	C	160 V d.c.
F	$\pm 1.0 \mathrm{pF}$	$\pm 1.0 \%$	D	250 V d.c.
G	$\pm 2 \cdot 0 \mathrm{pF}$	$\pm 2.0 \%$	E	350 V d.c.
H		$\pm 2.5 \%$	G	700 V d.c.
J	-	$\pm 5.0 \%$	H	1000 V d.c.
K	-	$\pm 10 \%$	U	250 V a.c.
M	-	$\pm 20 \%$	V	350 V ac.
p	-	+100\%	W	500 V a.c.
R	-	+30/-20\%		-
S		+50/-20\%		
Z	-	+80/-20\%		
e.g. $n 47 \mathrm{KD}=0.47 \mathrm{nF} \pm 10 \% 250 \mathrm{~V}$ d.c. ($\mathrm{n}=$ = nanotarads)				

being used to couple a.c. signals between different parts of a circuit. If in doubt, think about what d.c. levels are likely to exist if the a.c. signal ceases, and face the capacitor accordingly.
There are instances, though. when the polarity of the voltage across an electrolytic might keep reversing (as in some types of oscillator, for example), adversely affecting both the capacitor and the correct operation of the circuit. In this case, two equal value electrolytic capacitors can be used in series, both negative ends connected together, both positive ends facing outwards. The value for each capacitor should be twice the total capacitance required.

If a polarised capacitor is connected the wrong way round, in extreme circumstances it can over-heat, causing danlage to itself and other components, and in a really severe case the capacitor may even explode. At the very least. the circuit may not operate as intended.

POLARITY MARKINGS

Polarity is usually clearly manked. but there are several ways in which it might be done. The ends from which the connecting wires come out may be marked with "+" or "-" signs, or there might be a large arrow pointing to the negative end or to a particular wire (as we discussed at the beginning of this Tutorial). With electrolytic capacitors having a wire at each end (axial construction), the positive end is likely to have a crimp around the casing and the circular face at that end is likely to be a plastic material, often black.
Also, where the lead connections to the capacitor are obvious, the negative lead will be seen to be attached to the outer metal casing of the body. (The "opposite" term to axial construction is radial, in which both capacitor wires come out from the same end - shown earlier in Fig.2.1.)
Non-polarised capacitors can generally be connected either way round, although
there are specialised situations where the orientation in relation to the capacitor's outer foil may be significant (as we comment about polystyrene capacitors in Panel 2.4).

Be aware that with very small polystyrene capacitors, an occasional fault can be experienced in that the leads can become detached intemally. It is very unusual, but it can cause the capacitor to develop an open circuit, or a shon circuil

LIGHTLY CHARGED

We suggest you now move on to the Experimental article and just generally play around as suggested there. You can even "lighten" up the experience as well.

Next month we look at components whose values are not rigidly fixed - variable resistors (variable capacitors will be discussed in a later part). and sensor resistors. Hert Georg Ohm and his famous Law also cone under scrutiny.

TEACH-IN 2000 - Experimental 2

MEASURING AND CALCULATING CAPACITANCE

IN the Tutorial of Part 2, while using different R1 and C1 values on your breadboard to mimic the screen display, you might have come up against a bit of a snag! The screen has specified a C-R combination for which you don't have the component values. Well, actually, you know you can make up the resistor value using serial or parallel combinations, as discussed in Part 1. I's the capucitor values that are the problem.
Fret not! Capacitors too can be combined in series or parallel to achieve other capacitance values. The rules are as simple as those for resistors, except that they are the opposite way round.

CAPACITOR COMBINATIONS

When capacitors are in series, as are the three shown in Fig.2.8a, the total capacitance value $\left(C_{T}\right)$ is calculated as:
$\mathrm{C}_{\mathrm{T}}=1 /((1 / \mathrm{Cl})+(1 / \mathrm{C} 2)+(1 / \mathrm{C} 3)+$ (etc))
which is, of course, identical to the resistors in parallel formula, except for the letter change.

Fig.2.8. Capacitor in series (A), and parallel (B).

For capacitors in parallel (as for the three in Fig.2.8b) the formula is simply:
$\mathrm{Cl}+\mathrm{Cl}_{2}+\mathrm{C}_{3}+$ (etc).
Computer program Capacitors in Series and Parallel, accessible from the main menu, allows you to set the values for two and three capacitors and have the computer calculate the resulting total series and parallel values (see Photo 2.4). There is also a Self-test option allowing you to check your understanding of the two formulae involved.

PARALLEL TEST

Set up your breadboard as shown in Fig.2.9 (and Photo 2.5), in which three capacitors are shown in parallel (as in Fig. 2.8b). where $\mathrm{Cl}=100 \mu \mathrm{~F}, \mathrm{C} 2=47 \mu \mathrm{~F}$ and $\mathrm{C} 3=2 \cdot 2 \mu \mathrm{~F}$. This combination is being used in place of the single capacitor (Cl) in your Tutorial Part 2 charge/discharge experiment (Fig.2.2 and Fig.2.5). Resistor R1 is given a value of $100 \mathrm{k} \Omega$.
Do the charge/discharge experiment. noting the time at the $\mathbf{6 3 \%}$ and 37% voltage levels, i.e. 4 V and 2 V respectively. (You will find it easier to do this experiment if you make up and use another short lead with two crocodile clips on it.)

Photo 2.4. Interactive computer screen for calculating serial and parallel capacitor combinations.

Photo 2.5. Breadboard layout for -examining capacitors in parallel.

Fig.2.9. Breadboard layout for capacifors in parallel experiment.
Did you achieve timings of about 15 secs at the voltage points? That's the time constant associated with R1 $=100 \mathrm{k} \Omega$ and $\mathrm{Cl}=$ $150 \mu \mathrm{~F}$. the latter being very close to the answer of $149.2 \mu \mathrm{~F}$ for $\mathrm{Cl}, \mathrm{C} 2$ and C 3 in parallel.

SERIES TEST

Retum to your screen graph and set C and R to $150 \mu \mathrm{~F}$ and $100 \mathrm{k} \Omega$, where you can see the 15 seconds timing when the graph slope crosses the percentage line.
Now calculate the total capacitance if the same three capacitors are connected in series. as shown in Fig.2.8a. If you don't get an answer of approximately $2.06 \% \mathrm{~F}$, try again.

You won't be able to do the breadboard check with this value, the time-constant is too fast in this instance, but you can use the display to show the graph for the nearest available value of 2.24 F , i.e. 0.22 secs with R1 at $100 \mathrm{k} \Omega$. (Later on. you could set up your own experiment using three capacitors in series for which a time constant significantly longer than $0-22$ seconds is expected.)
The time constant for 2.060 F (call it $2 \mu \mathrm{~F}$) and $\mathrm{R}=100 \mathrm{k} \Omega$ is actually 0.2 secs. Use your graph display to find out what value of R is needed to achieve that value when $\mathrm{C}=2.2 \mu \mathrm{~F}$. We trust you'll find it to be $91 \mathrm{k} \Omega$.

SLOWER TEST

On your breadboard, now use just one capacitor, with a value of $220 \mu \mathrm{~F}$ (100 times the value of the above $2.2 \mu \mathrm{~F}$, and with the breadboard assembly of Fig. 2.2 modified to suit. Testing your knowledge of resistor combinations, replace RI with a made up valuc of $91 k \Omega$. Two resistors will do it (within 100 ohnis) - what are they and how are they connected? (Refer back to Part If in doubl.)

Now do your time check routine - the time constant should be (ideally) 100 times the above 0.2 secs. i.e. 20 secs.
This now brings us to an interesting point: how do you set an exact time constant without using multiple values of capacitors and resistors? The answer's simple, and there are two ready-made components that help in this, the variable capacitor, and the variable resistor (more commonly known as the potentiometer). The latter we shall investigate next month.

LIGHTING UP TIME

We are again going ask you to use a light emitting diode (l.e.d.), as we did in Par 1. We are also asking you to use an inverting logic gate (also known as a NOT gate). You'll be told more about both devices on another occasion, but you don't need to fully understand them if you use them as we now tell you.

The l.e.d, as you discovered in Part 1. is a neat little device that glows when a voltage is connected across it in a specific direction via a suitable resistor.

It is important that the resistor should be used since the l.e.d. cannot survive if more than about 2 V is connected across it. You are about to use it with a 6 V supply, and the resistor has to drop the voltage to an acceptable level. In this instance we want you to use a 470Ω resistor, as we did previously.

What we want to do is use the l.e.d. (call it DI) to indicate when a certain voltage has been reached on a charging or discharging capacitor. The problem is, though, that the time constant when a 470Ω resistor is used is too shor for the capacitance val. ues you can realistically select.

We need. therefore, to use a technique which allows a reasonably long time constant to be set, and still to provide enough power to drive the l.e.d. via a 470Ω resistor (call it R2).

This is where the logic gate (call it ICla) is used - as a type of amplifier. Amonyst your bag of pars you'll find some black "caterpillars" with 14 legs, seven-a-side. Find one marked 74HC04. There are likely to be lots of other forms of marking as well. but somewhere you should be able to discem the 74 HCO identity.
The $74 \mathrm{HCO4}$ and the l.e.d. are examples of components that belong to the general class known as active devices (as opposed to the general class called passives, of which resistors and capacitors are examples). Like the l.e.d., the 74 HCO is another member of that enormous family of components referred to as semiconductors. It also belongs to a sub-group of that family. generally known as integrated circuits (often abbreviated to i.e.s). More particularly, it is a digital logic i.c.

SEMICONDUCTOR HANDLING

As with electrolytic capacitors. by far the vast majority of semiconductors can only be connected to a power supply in one direction. Many can die if connected the wrong way round. Even if they don't die, they will not work correctly. This is equally true for a 74 HCO .

Always connect semiconductors and other active devices into a circuil in the manner specified in circuir diagrams. consiructional layouts or data sheets. Always ensure that the circuit's power supply is switched off before inserting or removing them.

One further cautionary note: You will be aware that you can sometimes generate sparks when combing your hair or taking off a sweater. This is caused by the discharge of static electricity which can build up on some substances. including your body and that of animals, frequently by the action of friction in a dry amosphere. Such discharges, if they occur when you touch some semiconductors can kill the devices the level of voltage discharge being greater than the device is designed to handle.

To avoid this happening. it is advisable to touch an earthed bare metal object immediately prior to handling integrated circuits. A water pipe is a suitable object, as is the exposed bare metal work of an item of earthed mains powered equipment. When i.c.s have been supplied in a black plastic foam, or bag marked as being "static sensitive". leave devices where they are until needed. Then keep the handling of their legs to a minimum.
The author reassures you, however, that for all the years he has been handling i.c.s, he cannot remember killing one with static electricity. They are very nobust, especially those manufactured over the last decade or so.

We shall discuss static electricity further in a future part of Teach-In.

INVERTER GATE

The 74 HCO 4 device is known as a her (six) inverter gate - in other words it has six inverter gates within it, all usable separate1y. It's pinouts are shown in Fig.2.10, where the symbols within the outline are those for inverter gates. .

Fig.2.10. Pinouts and typical case style for 74HC04 hex inverter gate. Note the inversion gate symbols within the pinout drawing.

An inverter gate, as you will be fold when we discuss digital electronics in a later part. has an output that is at a level called logic High when its input is at a level called Logic Low, and vice versa.
So what's Logic High and Logic Low? Well. in this instance. High refers to +6 V (the power supply voltage level) and Low is simply 0 V . The iwo terms are respectively also known as Logic I and Logic 0 .
The logic gate, though. does not have to have exactly OV or +6 V on its input for the output to respond. There is a range of voltage levels below which the gate thinks it's being provided with Logic 0 . and there's range of voltage levels above which the gate thinks it's being provided with Logic 1. In a region somewhere between those two levels, the gate tends to get a bit confused and may keep changing its mind about what logic level it's being offered.

Although this dithering would be a problens in a digital circuit, it's of no great importance for what we are going to do here, which is to connect the gate's input to the resistor-capacitor series you have been charging and discharging.

Fig.2.11 and Photo 2.6, breadboard layout for the first timing experiment using an inverter gate.

INITIAL ASSEMBLY

Connect up your breadboard as shown in Fig. 2.11 (sec also Photo 2.6). Note two things in parricular: the position of the flat side on the l.e.d., and the position of the "notch" (or dot/dimple, on some devices) of the $74 \mathrm{HCO4}$. (See also Pracsically Speaking on page 834 last month - Nov 99.) The circuit diagram for this component configuration is shown in Fig.2.12.

Now perform some more capacitor charge/discharge experiments. You will see that the l.e.d. is on when the capacitor voltage is fairly low, and off when the voltage is fairly high. You may find that the l.e.d. blinks a bit between the two levels - this is due to IC1 not being sure of its input logic level. The effect is more likely to be seen when the time constant is really slow.

See if you can establish what the capacitor voltage is when the l.e.d. on-offness fully changes from one state to the other.

MORE L.E.D.S

Just for fun, connect up another inverter gate (ICIb) and five more l.c.d.s (D2 to D6)

Fig.2.12. Circuit diagram for the experiment in Fig.2.11, plus (left) pinouts for a typical l.e.d (light emitting diode).
plus the extra resistors (R3 to R7 - also of 4702) as shown in Fig.2.13.

Now you will find that D1 and D2 alternate in their on-off states. This is due to D2 being connected to the +6 V power supply. whereas D1 is connected to the OV line.

The action of D3 and D4 will be seen to be the opposite of D1 and D2 (as will D5 and D6). Which brings us to an interesting point about inverter gates. When two are used in

Fig.2.13. Breadboard assembly of Fig.2.11 modified to include five more l.e.d.s.
series, as done here, a double inversion occurs and so the final output logic level is the same as seen by the input to the first gate.

What we'd also like you to do is to make a note of the voltage that actually occurs at the junctions of the l.e.d.s and their respective resistors. Also note the voltages at the outputs of the two gates - do they actually reach OV and +6 V ?

What affiect do two l.e.d.s have on the output voltages of the gates? Compare with the voltages produced without I.e.d.s connected. We shall discuss this in another Tutorial. Also see if you can draw the circuit diagram for Fig.2.13.

FLASHY

We wonder if you realise how easy it is now to put the capacitor charging/discharging under automatic control for perpetual repetition of the cycles? Ore way to do it , using an additional inverter gate. ICIc, is shown in the circuit diagram of Fig. 2.15 (we'll discuss the change of ic. type number from 74 HCO to 74 HCl 4 in a noment).

Using the values shown. reconstruct your breadboard assembly as illustrated in Fig.2.14 (deleting D5. D6, R6, R7), and still using the 74 HCO 4 device. Note that a crocodile-clipped link is made between point Vout 3 and Vin. See also Photo 2.7.

Connect up the power. What you should see now is that all four l.e.d.s appear to be glowing. but at a reduced brilliance level. In fact, they are all rapidly switching on and off, but too fast to differentiate between

Fig.2.14 and Photo 2.7. layoüt for the oscillator experiment, (Fig.2.15). Note the new link between IC1 pins 4 and 5.
them. In the author's test model, the rate was in excess of one million cycles per second (1 MHz)!

The elever thing we/you have done is to use ICle to invert the output of ICIb, and then to use the output of ICIE as the power supply for the resistor-capacitor chain.

With the correct combination of R1 and Cl values, this has the effect of repeatedly switching the voltage feeding into RI between +ve and OV. Here's why:

When power is first switched on, the voltage at the input to ICla and the output of ICIb will be low (double inversion), and the output of ICle will be high (another inversion). This output is now supplying +ve to R1. and Cl starts to charge up (as it did when you connected it directly to the + ve voltage linc).
We said earlier that inverter gates have a threshold voltage above which an input level of Logic 0 is assumed. Eventually, as Cl continues to charge, the voltage at the input of ICla will rise above the threshold, and ICla's output will fall to Logic 0. As a result, the output at ICIb will immediately go high, and the output of ICIc go low.

This action, in an instant. causes Cl to start discharging through RI. Eventually. there comes the point when the discharging voltage falls to the Logic 0 level as seen by the input to ICla. It now once more switches its output back to Logic I. ICIb output switches back to Logic 0 , and ICIc switches to Logic I again.
The cycle has now been completed, and starts all over again. Thus it continues, adinfinitum, until something stops it, such as you disconnecting the power!

What you have created with this simple component arrangement, is an oscillator.

For interest, try to take a voltage reading at ICle pin 6 . You will find that is probably extremely erratic, although it may indicate a vollage at around the 3 V mark (half-way between the 6 V battery supply and OV).

SCHMITT TRIGGER

As the circuit stands. its frequency of oscillation is somewhat unpredictable. We said earlier that the 74 HCO has a midway input voltage level range in which the inverter is not too sure which logic level is being applied to it. It is at this midway level that the circuit is

Fig.2.15. Circuit diagram for the oscillator experiment.
rapidly switching over from one state to another. What we ideally need is for the circuit to switch over only at the input levels which are guaranteed to be Logic 1 and Logic 0 .
To achieve this exactitude with an ordinary inventer gate such as the 74 HCO 4 would require the use of additional circuitry. However, there is a similar inventer type which automatically responds only to those input voltages which are at the guaranteed logic levels, ignoring those input voltages which lie between the two thresholds. Such an inverter is known as a Schmilt trigger inverter.
One type of Schmitt trigger inverter is the 74 HCl 4 which. like the 74 HCO 4 , has six inverters within it and its pins are arranged in the same order. Note the symbol within each of the inverter outlines in Fig. 2.15 that indicate its Schmitt trigger status.
With power disconnected, find a 74 HCl 4 device from your bag of components and substitute it into the 74 HCO position on your breadboard.

When power is re-applied, you will see a considerable difference in the rate at which the l.e.d.s now flash. Indeed. you should be able to count the flashes quite readily. This dramatic change in the flash rate is entirely due to the switchover occurring only at the guaranteed Schmitt trigger logic levels.
Using your meter you can now track the voltage level at the R1/Cl junction at which the logic changes occur. Also meter the output of ICIc (pin 6 - Vout3). You will see that it is repeatedly switching between Logic 1 and Logic 0 .

TIME OUT

Before Part 3. think up some timing and capacitor value situations and see if you can solve them using the various software options and a calculator. Also see if you can get the oscillator to run so that its output at ICIc changes at exact intervals of your choosing. say once per second or once per 10 seconds. Until next month, bye for now.

DISTANCE

LEARNING COURSES in:
Analogue and Digital Electronics Circuits, Fibres \& Opto-Electronics Electronic Testing \& Fault Diagnosis Programmable Logic Controllers Mechanics and Mechanisms GCSE and BTEC Mathematics

11 Courses to suit beginners and those wishing to update their knowledge and practical skills
til Courses are delivered
as self-contajned kits
te No travelling or college attendance
IIL Learning is at your own pace

- Courses may have

BTEC Certification and Tutoring
For information contact:
NCT Lid., P.O. Box 11
Wendover, Bucks HP22 6XA
Telephone 01296 624270; Fax 01296625299 Web: htipJ/www.nct.Itd.uk

SQUIRES

MODEL AND CRAFT TOOLS

A comprehensive range of Miniature Hand and Power Tools and now an extensive range of
ELECTRONIC COMPONENTS featured in a fully illustrated
336-page Mail Order Catalogue 1999 Issue SAME DAY DESPATCH FREE POST \& PACKING

Catalogue free of charge to addresses in United Kingdom. For overseas send 6 International Reply Coupons to:

Squires, $\mathbf{1 0 0}$ London Road, Bognor Regis, West Sussex PO21 1DD
Tel: 01243842424
Fax: 01243842525

Our quality range of thermally balanced irons is now even better than ever. Easier to handle, cooler to use, each iron is, manufactured in the UK and meets CE conformiry. There's an 'In Handle' adjustable temperature model and burn proof lead option and a wide selection of soldering bits.

That's the good news. The even better news is that all our irons are still very competitively priced

Tel: 01822613565 Fax: 01822617598
www.antex.co.uk

NOTJUSTANYOLDIRON

WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELIHOOD . . . YOU NEED THE MODERN ELEGTRONICS MANUAL and the FLECTRONICS SERVIGE MANUAL

THE MODERN ELECTRONICS MANUAL

The essential reference work for everyone studying electronics

- Easy-to-use format
- Clear and simple layout
- Comprehensive subject range
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Detailed supply information
- Professionally written
- Regular Supplements
- Sturdy ring-binder

EVERYTHING YOU NEED TO GET STARTED AND GO FURTHER IN ELECTRONICS!

The revised edition of the Modern Electronics Base Manual contains practical, easy-fo-follow information on the following subjects:

BASIC PRINCIPLES: Electronic Components and their Characteristics (16 sections from Resistors and Potentiometers to Crystals, Crystal Modules and Resonators). Circuits Using Passive Components (9 sections), Power Supplies. The Amateur Electronics Workshop, The Uses of Semiconductors, Digital Electronics (6 sections), Operational Amplifiers, introduction to Physics. Semiconductors (6 sections) and Digital Instruments (5 sections).

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own project. From basic principles. like soldering and making printed circuit boards, to circult-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers.
amplifiers, car projects, computer interlaces. measuring instruments, workshop equipment, security systems, etc. The Base Manual describes 13 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors. thyristors and triacs. digital and linear i.c.s.
EXTENSIVE GLOSSARY: Should you come across a techrical word, phrase or abbreviation you're not tamiliar with. simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.

The Manual atso covers Satety and Suppliers The most comprehensive relerence work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL

Revised Edition of Basic Work: Contains over 900 pages of information. Edited by John Becker.
Regular Suppiements: Approximately 160 -page Supplements of additional information which, if requested, are forwarded to you Immediately on publication (four times a year). These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format
Price of the Basic Work: $£ 39.95$ (to include a recent Supplement FREE)

Guaranter

Our 30 day money back guarantec gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition. together with the Digital Multimeter, within 30 days and we will make a full refund of your payment - no small print and no questions asked.
(Overseas buyers do have to pay the overseas postage charge)

ELIEGTRONICS SERVICE MANUAL

EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT

SAFETY: Be knowledgeable about Salety Regulations, Electrical Salety and First Aid. UNDERPINNING KNOWLEDGE: Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Clicuit Diagrams, Circuit Measurements, Radio, Computers, Valves and manulacturers' Data, etc.
PRACTICAL SKILLS: Learn how to identity Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring. Remove and Replace Components.
TEST EQUIPMENT: How to Choose and Use Test Equipment, Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc.
SERVICING TECHNIQUES: The regular Supplements include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, VIdeo Recorders, Personal Computers, etc.
TECHNICAL NOTES: Commencing with the IBM PC, PC-XT, PC•AT, this section and the regular Supplements deal with a very wide range of specific types of equipment.
REFERENCE DATA: Detailing vital parameters for Diodes, Small-Signal Transistors,
Power Transistors, Thyristors. Triacs and Field Effect Transistors. Supplements include
Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

ELECTRONICS SERVICE MANUAL

Basic Work: Conlains around 900 pages of information. Edited by Mike Tooley BA
Regular Supplements: Approximately 160 -page Supplements of additional information which, if requested, are forwarded to you immediately on publication (four times a year). These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format
Price of the Basic Work: $£ 39.95$ (to include a recent Supplement FREE)

ORDER BOTH MANUALS TOGETHER AND SAVE OVER \&10!
 A mass of well-organlsed and cleariy explatned informatlonits brought to you by expert edlioriat, leams whose combined experlence ensures the widest coverage
 Regular supplements to these untque pubttcattons, each around 160 pages, keep you abreast of the fatest technology and techniques if required

REGULAR SUPPIEMENTS

Unike a book or encyctopedia. these Manuals are living works - continuously extended with new material It requested, Supplements ase sent 10 you approximately every three months. Each Supplement contains around 160 pages - all for onfy $\sum 23.50+\sum 2.50 \mathrm{p} 8 \mathrm{p}$. You can, of course. return any Supplement (within ten days) which
you feel is superfluous to your needs. You can also purchase a range of past Supplements to also purchase a range of past Supplemen extend your Base Manual

RESPONDING TO YOUR NEEDS

We are able to provide you with the most important and populas, up to date, features in our

The essential work for servicing and repairing electronic equipment

- Easy-fo-use format
- Clear and simple layout
- Vital safety precautions
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Prolessionally written
- Regular Supplements
- Sturdy ring-binder

[^2]
THE MODERN ELECTRONICS MANUAL plus a FREE SUPPLEMENT

ELECTRONICS SERVICE MANUAL plus a FREE SUPPLEMENT
I enclose payment of $£ 39.95$ (for one Manual) or $\mathbf{5 6 9 . 7 5}$ for both Manuals (saving over | $£ 10$ by ordering both together) plus postage if applicable.
l also require the appropriate Supplements four times a year. These are billed separately and can be discontinued at any time. (Please delete 11 not required.) Should I decide not to keep the Manual/s I will return itthem and the Digltal Multimeter to you within 30 days for a full refund.

FULL NAME

ORDER FORM

Simpy comptere and return the order form wikn jou: paymont to the following address Wimborne Publishing LId, Depl. D12, Allen House. East Borough, Wimborne. Dorset BH21 IPF We ofter a 30 doy money back GUARANTEE - Al you are nor heppy with the Minual smphy return 410 us in good condtion logether with the Murineter with 30 clast lor a hil retund

POSTAGE CHARGES
Price PER MARUAL
Postal Region
Surface Alt

[^3]SIGNATURE
Please allow fou working days for UK delivery.
NOTE: Surtice mat can tate over 10 weens to some carts of the wortd Esch Manul meighs about \&kg inter: ancind

Constructional Project

ginormous STOPWATCH

NED STOJADINOVIC 를 Part 2

Now you're "up and running", why not add some Giant Displays to your events Stopwatch.

Tmis Large Digit Display unit was originally designed for use with the Ginormous Stopwarch module presented last month. It has 178 mm (7 -inch) characters and can use high brightness l.e.d.s for dazzling daylight performance.

It can also be driven from a standard computer serial port with the optional adapter. allowing it to be used as a scoreboard. bingo number display, clock, etc.

GIRCUIT OVERVIEW

The heart of the circuit is a PICI6C54 microcontroller and this has two relatively simple tasks. The first is to receive serial data from the Stopwatch module or computer serial port. The data reaches the micro via an optoisolator (IC4). as discussed in Part 1, and the individual digit modules can be daisy chained logether up to a maximum of 16 modules.
The software responds to all 16 addresses but the Stopwatch module only uses seven of them. However, when driven from a computer using the Serial Port Converter. the Large Digit Display units will respond 10 all 16 addresses.
The second task is to switch on the various segments on the display to form the digits 0 to 9 .

SOFTWARE

In keeping with the author's stated objective of designing without designing, he used two pieces of software from the Parallax web site at www.parallaxinc.com. These were from application notes concerning receiving scrial data and utilising a jump table to display digits on a 7 -segment display. Readers are roferred to these notes.
It is interesting to note that it was casiest to choose the same crystal frequency as the Stopwatch module $(3.2768 \mathrm{MHz})$. This allowed the author to play with the software's "bit_k" constant without worrying about serial link compatibility between the Sropwarch and Large Digit modules.

Of course, large display modules that are to be driven by a computer must comply with the standard computer baud rates and everything has been standardised at 9600 bits/sec.

It was necessary, though. to come up
with a protocol to address the correct module and tell that module what number to display. This tumed out to be quite easy. and it can be done in one byte.

First, consider the number to be displayed. In binary you need four bits to display the digits 0 to9, like this:

Completed "7-segment" Giant Display module. The figures measure 178 mm by 100 mm approx.

Actually, four bits will allow you to count front 0 to is (binary 1111). but we only need to count up to 9 . Let's call these bits " n ", as in "nnnn". Similarly, four bits will allow μ_{5}^{5} to have modules numbered from 0 to 15 , call these bits " d ".
Computers and PIC micros like to deal in bytes. which are cight bits, so the software makes the "nnnn" and "dddd" bits into artificial bytes:
dddd becomes dddd0000, which is one byle
nnnn becomes 0000 nnnn , which is another byte

The two bytes are ORed together (inclusive-OR) bit by bit to form a single byie which looks like ddddnnnn. This single byle contains both the module number and the digit to be displayed.

For example, to make module 1 display the number 1. the output byte would be 00010001 . To make module 2 display the number 1 it would be 00100001 .

CIRCUIT DIAGRAM

Referring to the circuit diagram in Fig. 1 . data is received via the optocoupler IC4. The driving device (e.g. the Stopwatch) switches an l.e.d. inside the optocoupler on and off and the light from its l.e.d ashines onto an optotransistor, switching it on and off in unison.
Resistor R1 holds the output of IC4, pin 5 , at 5 V until the transistor switches on and shorts pin 5 to ground. Pin 5 is connected directly to the PIC microcontroller IC2 at its pin RB7, which is set up as an input pin.

When output pin 5 of IC4 is at 0 V . it switches on transistor TR1 and, via current limiting resistor R3, causes current to flow through optocoupler IC4 of the next digit module. In this way the modules are daisychained one to the next.

Dual-in-line switch St to S4 is used to set the digit's module address number by placing the relevant code on the PIC's RAO to RA3 data pins. Pins RAO and RA1 are normally held at OV via resistors R4 and R5; pins RA2 and RA3 are normally held at 5 V via resistors R6 and R7. This method of biasing was done simply to make the board design easier and the software takes it into account. When the appropriate switch is closed, the logic level seen by pins RA0 to RA3 is inverted

The status of the switches is read whenever a serial data byte is received by the

PIC via its RB7 inpur. The 4 -bit status code forms the "dddd" bits referred to earlier.

DISPLAY

Pins RB0 to RB6 of the PIC are used as the 7 -bit output to the seven sets of 10 l.e.d.s that make up the seven segments of the display. The PIC16C54 cannot by itself handle the current required by the l.e.d.s and so IC3 acts as an intermediary buffer.
This device is a rugged little chip intended as a solenoid driver and can handle almost 50 V and 500 mA , and is nice and cheap as well. It is essentially seven opencollector Darlington transistors that can be turned on and off by the 5V and OV logic level voltages from the PIC.
The l.e.d.s are arranged in pairs in a series/parallel arrangement, meaning that one pair is connected in series with the next pair. There is a voltage drop of nearly 2 V across each l.e.d. or pair of l.e.d.s in a parallel arrangement and the five pairs are arranged in series.
Thus the five pairs will drop the 12 V supply by $5 \times 2 \mathrm{~V}$, or about 10 V , leaving the ballast resistor with $2 \mathrm{~V}(12 \mathrm{~V}-10 \mathrm{~V})$ to reduce to zero. The l.e.d.s run well at about 20 mA and so a simple application of $E=I R$ gives a value of 100 ohms for the ballast resistors.
The value of the ballast resistor is not

Fig.2. Circuit diagram for a simple Serial Port Converter Interlace add-on. The values of resistors R18 and R19 should be 330 ohms for 9 V and 560 ohms for 12 V .
critical and the Le.d.s will put out good light from about 10 mA to some 30 mA . which is the maximum for most l.e.d.s. If you need to save power, try putting in 220

Fig. 1. Circuit diagram for the Giant Digital Display module.
ohms ballast resistors and see how the light output looks.
The decimal point and colon l.e.d.s are done the same way except that the l.e.d.s are all in series as there are not as many of them. These l.e.d.s are not controlled in any way and are simply connected across the 12 V power supply. via limit resistors R15 and R16, constantly remaining on while the power is on.

SERIAL PORT CONVERTER

The digit modules can also be driven from a computer serial port with the aid of a converter module interface (see Fig.2). This is simply a Darlington transistor switch (TR2) which convers the $\pm 15 \mathrm{~V}$ signals from the serial port to voltages of the correct polarity to drive the optocouplers.
The transistor also provides the reasonably heavy current required by optocouplers connected in "star" configuration (see the last section of this article).
The converter has its own power supply because it has to provide power to the internal l.e.d.s of the optocouplers. The battery used can be 9 V or 12 V merely by changing resistors R18 and R19. The values should be $330 \Omega 2$ for 9 V and 560Ω for 12 V .
The converter also has an I.e.d. on board (D79) to indicate serial port activity and is a great help for trouble shooting.

CONSTRUCTION

The printed circuit boards for the Large Digit Display and optional computer Serial Port Converter Interface board are available from the EPE PCB Service page. codes 247 and 248. respectively. The component assembly and track layout details for the boards are shown in Fig. 3 and Fig. 4.

There is nothing difficult about the construction but the l.e.d.s are, as may be expected, rather tedious. It is suggested that you test each segment as it is finished.

Start assembly of the Large Display board (Fig.3) with the top right segment Insert all the l.e.d.s and make sure that they are all the correct way around, noting that some high brightress l.e.d.s have different orientations to those of ordinary l.e.d.s. If

in doubt, you can check by temporarily connecting the l.e.d. in series with a $1 \mathrm{k} \Omega$ resistor across a 12 V power supply.
Flip the board over and solder only one lead of each l.e.d. When you have done that. go back and grasp both leads of each 1.e.d. and re-melt the solder while gently pulling upwards on the leads. This will seat each l.e.d. onto the circuit board and generally make sure it is pointing straight out from the board. This is important as high brightness l.e.d.s only appear bright when you look directly onto them, if they are tilted they look dull and this makes the display look patchy.
Go back and solder each second lead and give the first soldered lead a touch up with fresh solder if necessary. Now solder in all of the ballast resistors (R8 to R16) and some power leads for the 12 V supply.

COMPONENIS

Semiconductors

D1 to 078 red l.e.d., 5 mm , normal or high brightness
TR1 BC558 pnp transistor
IC1 . $78 \mathrm{LO5}+5 \mathrm{~V} 100 \mathrm{~mA}$
IC2 voltage regulator
IC2 PIC16C54 microcontroller, preprogrammed
IC3 ULN2003 $7 \times$ Darlington driver, common emitter IC4 4 N 25 or 4 N 28 optoisolator

Miscellaneous

Printed circuit board, available from the EPE PCB Service, code 247; 6-pin d.i.l. socket; 16 -pin d.II. socket: 18 -pin d.i.l. sockel; connecting wire; solder, etc.

SERIAL PORT CONVERTER

Resistors
R17
1k2
R18. R19 330Ω for $9 \mathrm{~V}, 560 \Omega$ for 12 V
Semiconductors
TR2 BD681 (or equivalent. e.g. TiP 141 or TiP142) non Darlington transistor
D79 red l.e.d., 5 mm
D80 1N4148 signal diode

Miscellaneous

Printed circuit board, available from the EPE PCB Service, code 248; connector to suit serial port lead used.

Approx. Cost Guidance Only

(Standard l.e.d.s)

Table 1: Module Selection Switches

DISPLAY TEST

To test the segment, connect the 12 V supply and connect a flying lead to ground (0V). Touch the flying lead to the end of resistor R13 that is nearest to the bottom of the board. The segment should light up nice and bright.

If it does not. look for 1.c.d.s the wrong way around, broken tracks, or the wrong ballast resistor value. in that order.

If all is well, continue insenting l.e.d.s, testing, inserting, testing...

If any l.e.d.s are a tight fit at their skirts, gently file down their sides until there is

Completed control and power supply area of the Display p.c.b.

room for them to sit without colliding with their neighbours.
Because the colon and decinal point l.e.d.s are intended to be permanently tumed on, they (and/or their ballast resistor) should be omitted if those functions are not required on any of the boards.

Put in all the other components and sockets for IC2 to IC4, but do not install the i.c.s yet.

TESTING

Power up the board and at the IC2 socket test for 5 V and 0 V at pins 5 and 14. This will test the power supply regulator ICl . and will also show up any solder splashes or broken tracks to these pins.

Switch off the power and insert IC3. the l.e.d. driver device. To now test the operation of the various segments, take a flying lead and connect one end to 5 V . say to the link wire immediately below ICl . Touch the other end of the flying lead in turn to pins 1 to 7 of IC3's socket and you should see each of the segments light accordingly.

If you have connected the colon or decimal point l.e.d.s, they should have tumed on when you applied the power.

Now power down and carefully put the PIC (preprogrammed, of course) into its socket, being very careiul about orientation. Remember that it is a CMOS chip and so be sure to briefly ground yourself to discharge static electricity before handling it. Also insert IC4.
Turning on the power should now give you a nice big figure " 0 " and if not, immediately power down and start looking for causes. The Stopwarch article last month has some tips on troubleshooting this type of circuit.

If you are using the Stopwatch module. connect it to one digit board via a handy length pair of leads, being careful to connect signal and ground wires the correct way around. Select the module address number via the d.i.l. switch ($\mathrm{S} \mid$ to $\mathrm{S4}$) as per Table 1. Note that the software "knows" that switches S3 and S4 are connected in order of RA3 and RA2 (instead of RA2 and RA3 as might be expected).

Power up both boards and start the Stopwatch. This should immediately stant the digit board displaying the selected time unit. If it just sits on "0", use a logic probe or similar to test for a fast changing signal on pin 5 of the optocoupler, IC4.

PORT INTERFACE

If using the Serial Port Converter. connect up the digit board and power as above. Now run the QBASIC demo program, making sure that the module di.i.l. switches are all off. Put in a different switch setting from the list each time you run the program and the module should immediately display the cortect number.

You will know if the converter is working by observing its i.e.d. Whenever serial data is being transmitted it will flash quite noticeably.

STAR CONNECTION

The digit modules are designed to be hooked up in "daisy chain" configuration. see Fig.5a, and this should work well in most cases. It is possible, especially when many modules are used for the signal to get a bit lost in its trip down the chain; remember the design allows up to 16 digit modules to be used.
In this case, use the "star" configuration in Fig.5b where the driver transistor in the Stopwatch or Serial Port Converter switches all of the optocouplers directly. Note that this will put quite a strain on the battery of the Serial Port Converter or Stopwatch module as it now has to power all of the optocouplers at the same time.

To select a battery size, assume that each module uses about 15 mA when running and plan accordingly. For example. 10 modules times 15 mA is 150 mA and so a battery of 1.2 Ah (amp hour) capacity will drive the display for eight hours.

COMPUTER
 SERIAL PORTS

While developing this project the author came across a strange fact: not all compuler serial ports operate at quite the same speed and the modules will consequently malfunction on some computers.

For those programming their own PIC and wanting to drive the modules from a computer port, try varying the value of "bit_k" in the software for the PIC. The

Fig.5. Suggested method of connecting the Giant Display modules to the Stopwatch (Part 1) or Serial Port Converter. (a) In "daisy chaln" fashion or (b) "star" configuration.
comments section in the source code tells you how to do it.

If you only want to drive the modules from a computer, a slightly different source code for the PIC has been included (called serin4.5re) which requires the use of a 4 MHz crystal instead of the $3-2768 \mathrm{MHz}$ one, and operates at 2400 baud. The slower baud rate is unnoticeable to our slow human senses and results in a design which is forgiving of long serial cables and bit rate errors in the computer or micro.

SOFTWARE

The software for the Large Digit module. including the QBASIC demo program. is available on a 3.5 -inch disk from the Editorial office (see EPE PCBISofnsare Senvice page for delails and cost), and free via the EPE web site.

Preprogrammed PICs for this module are available as discussed in Shoptalk.

Note that since publicaton of Part I the software has been revised by the author. The new version is on the EPE disk and website

One Display module being driven by last month's Stopwatch.

EVERYDAY

We can supply back issues of EPE and ETI (see panel) by post, most EPE issues from the past five years are available. An EPE index for the last five years is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

DID

JULY 983

PROJECTS • PIC 16×84 Toolkit - Noise Cancelling Unit - Low Battery Indicator - Greenhouse Computer - 1.
FEATURES : Using the L200CV Vollage Regulator © TEACH-IN '98-9 - Ingenuity Unlimited • Circuit Surgery • Net Work.

AUG'98

PROJECTS - Lightbulb Saver - Float Charger - PC Transistor Tester - Greenhouse Com. puter - 2- Time Machine Update.
FEATURES - TEACH-IN ' $98-10$ - Circuit Surgery - Techniques - Aclually Doing is \bullet Ingenuity Unlimited.

SEPT'98

PROJECTS - Mains Socket Tester - Personal Siereo Amplifier - Greenhouse Radio Link PIC Ahimeter.
FEATURES TEACH-IN '98 - 11 - Ingenuity Unlimited - Circuit Surgery - Interlace - Net Work - Crocodile Clips Review.

OCT'98

PROJECTS - Voice Processor - Digiserv RUC Channel Expander - Reliable Infra.Red Remote Conirol - PC Capacitance Meter.
FEATURES - Easy PCB Making • Using LM335 and LM35 Temperature Sensors - Circuit Surgery \bullet ingenuity Unlimited © Nel Work.

NOV'98 Photostats Only

PROJECTS - PIC Tape Measure - T-Stat Electronic Thermostat - 1 . Phizry 8 Computers - 1 - 15 -way Infra-Red Remote Control.

FEATURES - Circuit Surgery • Ingenuity Unlimited - New Technology Update - Net Work - The Internet E Easy PC for Windows 95 Review - FREE EPE CD-ROM No.1.

DEC'98 Photostats Only

PROJECTS - EPE Mind PICkler-1 - Fading Christmas Lights - Handheld Function Generator - Damp Stat Electronic Thermostat PhizzyB Computers-2.
FEATURES Phiuzy Computers-2 Understanding Computers - Circuit Surgery - Ingenuity Unlimited 0 index - FREE 48-page Understanding Passive Components booklet.

JAN '99

PROJECTS - Alternative Courtesy Light Controller - Twinkle Twinkle Reaction Game Volume Compressor - PhiszyB Computers-3 EPE Mind PICkler-2.
FEATURES - New Technology Update - From Russia With Love - Circuit Surgery - Phizzy Computers-3 - Net Work.

FE: '99

PROJECTS - PIC MIDI Sustain Pedal - Light Alarm - Wireless Monitoring System-1 Phizzy Computers-4.
FEATURES - Ingenuity Unlimited - Scolar Project - PhizzyB Computers-4.

MAR '99

PROJECTS • Smoke Absorber - Auto Cuptoard Light - PhizyB Computers-5 Time and Date Generator - Wireless Monitoring System-2 FEATURES - Ingenuity Unlimited - UTSEC Show Report - Phizry8 Computers-5 Practically Speaking • Circuit Surgery • Net Work.

YOU MISS THESE?

APRIL'99

PROJECTS • Mechanical Radio • Voice Record/ Playback Module - Versatile Event Counter Phizzy 8 Computers-6 \bullet Ironing Board Saver. FEATURES - Ingenuity Unlimited - PIC 16 F 87 x Microcontrollers - Phizzy Computers-6 MAX761 D.C. to D.C. Converter interlace Circuit Surgery - Net Work - FREE 48 -page Basic Soldering Guide booklet.

MAY' 99

PROJECTS - MIDI Handbelis • A.M.J.M. Radio Remote Control - Phizzy8 Computers-7 - PIC Toolkit Mk2-1
FEATURES - PC Engines - From 4004 to Pentium III - Ingenuity Unlimited - Practically Speaking - Phizzy8 Computers-7 - Circuit Surgery - New Technology Update - Net Work - FREE pull-out 7400 series Pinout Data Chart.

JUNE '99

PROJECTS - Clipping Video Fader (Starter Project) - PC Audio Frequency Meter Musical Sundial - PIC Toolkit Mk2-2.
Musical Sundial - PIC Toolkit Mk2-2.
FEATURES Alan Dower Blumiein - Circuit Surgery - Interlace - PhizryB Computers-8 Ingenuity Unlimited - Edison 3 Review - Net Work - The Internet.

JULY 99

PROJECTS - 12 V Lead-acid Battery Tester LE.D. Stroboscope - EPE Mood Picker intruder Deterrent.
FEATURES - Practical Oscillator Designs-1 - Practically Speaking - Circuit Surgery Ingenuity Unlimited • New Technology Update - Net Work - The Internet.

AUG 199
PROJECTS - Ulirasonic Puncture Finder Magnetic Field Detective - Freezer Alarm -8-Channel Analogue Data Logger-i - Sound Activated Switch.
FEATURES - Practical Oscillator Designs-2 • Power Generation from Pipelines to Pulons-1 Ingenuity Unlimited - Circuit Surgery * New Technology Update - Interface - Net Work the internet.

|SEPT 99
 PROJECTS - Loop Aerial SW Receiver - Child

 Guard - 8.Channel Analogue Data Logger-2 Variable Dual Power Supply.FEATURES - Pracrical Oscillator Designs-3 Power Generation from Pipelines to Pylons-2 - Practically Speaking - Circuit Surgery Ingenuity Unlimited - New Technology Update - Net Work - The Internet.

[OCT'99

PROJECTS - Interior Lamp Delay - Mains Cable Detector - OWL Loudspeaker Sysiem Micro Power Supply.
FEATURES - PIC16F87x Mini Tutorial - Practical Oscillator Designs-4. - Circuit Surgery - Interlace - New Technology Update Ingenuity Unlimited - Net Work - The Internet.

NOV'99

PROJECTS - Acoustic Probe - Vibralarm Ginormous Stopwatch-1 - Demister One-Shot. FEATURES - Teach-In 2000-Part 1 - Ingenuity Unlimited - Practically Speaking - Practical Oscillator Designs-5 - Circuit Surgery - New Technology Update - Nei Work - The Internet.

BACK ISSUES ONLY £2.75 each inc. UK p\&p.

Overseas prices $£ 3.35$ each surface mail, $£ 4.35$ each alrmail.

 Niv. Aug. Nows. 1997, 1998 lexcees Lin, Merch to Mosk. Dec
We can also supply bscti issues of Eth fprior to the merger of the two msgazines) for $1993 / 9-\mathrm{Vol} .27 \mathrm{Nos} 1$ to it and Vel.
 require ETl issuen.
Where we do ne: have an issue e photortin of any, one article or one part of a sevies can be provided al the same price.
1
1
1
1
ORDER FORM - BACK ISSUES - PHOTOSTATS - INDEXES
7

I Name.
1 Address
1I enclose cheque/Po. Jonk draft to the value of E.
Please charge my Visa Mastercard \mathcal{E}.
Card No. \qquad
I Fiote: Minimum order lor cerdir cards ES, Plesse surply rame and wadess of corchatier I diferens from tise shown woove
SEND TO: Everyday Proctical Eloctronics. Atten House, East Borough, Wimborne. Dorset BH21 IPF.

QuASAA ELECTMONICS	Etauss
Tist 01279 306504 FAX: 087077064222 	Produci data FAX back 01270

- SURVEILLANCE O

 onnoe 保
ROOM SUPVEILLANCE

- ITY - Murga ju thursarte

 Wing is is 4 SN: til tis

43x ruth

 - Forsi. Tape meconotn rou sartor

TELEPHONE SURVEILLANCE

- yrti- unarar trapmá tencutte

 - nine tha

 GDVE1:51KT cust

\times FACTOR

THE EXPERTS IN RARE A UNUSUAL INFORMATIONI
 man Cow RU5mbis

- surerear listerne pence condice daja lo

- revenoir lug ruis dic no onearame

 you Mros atros fo vil - The Emen ici cul intictio

 fis
- PROJECT KITS OUR RANGE OF PRONECT KTTS COME HIGHE HIGH QUALUT PCBE, DETALED INSTRUCTIONS INSTRUCTION
- I I 25H CAA BOOSTER AMPLAER COTVETS 10 tearat of an rubing cai semo cassece pipy
 - IW-IW STEREO AMPLFIEA MOOULE URES someng kuzap9 IC iosuwert to The foaserai

 - SCW-10W STEREO AMPLELER MOCULE

 ${ }^{K 1} 18150$ - 3 -CNANAEL MRELESS LIGHI NOOULATOR no on creca councuan wo
 ninang socw chame WiskT Cisis
- 12 mul povight EFFET Emseng 12 LED
 dLeDs on brov suat by whe 3 TRuCe
 comation) mex-kT 5 siso
- Desco STAOBE LaMT Moondy Te mon

 czaso ciease an encet vilite rarety of
 - ROBOI VOCE EFFECT Min Mou sedas io a mopes or Derien Grave Ln bo dacos. yonou pept Fente orsouctore nos stacons is prong pen on you thicia whe sh

 volusto mencry. no suser? bechico nepoid

3131-KT 511.05

- TMWH soundos i wenctasie sindar: anie
 - Arivil scumos cue dag diden so com 1450
- II a diar led parel metea us tor base

 min orat in af revom sssvDC Eus provend 2087-K7 1085

 one, I ooverion riges

O FC COHTHOLLED AELAY BOARO

Conert ary 256 wonel FC rese a sodeseo ins

nomicicize wocratry of extory wive

 - 2 CMANMEL UMF RELAY SWTICH COTHON 2 CHANREL UMF RELAY SWTCH Corban dee too componeres and PC8 so corted two

Cssing TRAMSMTIER qECETVEA PNA z-voon

- TELEPHONE LHE RESAY SWHEM En onve

 Cl2os
- DC OATA ACOUISITON COHTROL UNTT LIE
 movemerk reapl ecil. procevs twi intornuion maver tr chat reatipl now is stapow motor \$1 kwogi pasice caso win presec troxifos

- me lCCT FOUM SERNO wOIOA DATVEM

 SVOC PCB SO1TOOA HO2 AT SII MS
- PC SERAL PORT ISOLATED 10 BORRD
 coresi s senting sopicasord ag lowd swuing

 UKIPOUA STEPPER MOTOR OANEA E
 ras Drecton corrod 8 onol fist wave. 2

- HC COMTHOLED STEPPER MOTOR ORL. -n Cores two uripies esecow moters (u)

KT t13 95 PC ATL ACCU:SmON CORTROL

raloge muscrense Rescs o unge Ardes oter nale or a shervece rave or mutare at boe. Ansogn nows ras oux fous Itlach cinaribie dotul inoldiavia $A O C$ converion sme
 provar 3118 KT C4A.SS occiee hoolvis or tring se presence of 1 now aves o cortrol s purng to notrmot - USMERSAL nuer semen crnteal controida mong coeracons in steal of oin tom a. 559368 of 1 wacond liwat for 0.1 65S363

 Komponefts provide PCB SS a q7men 3084 STEREON UITER LTOW jwse vic pow omp by depley a 300t soed ki cicos

 Ca.95 ORUL SPEED CONTHOLLEA AQUA TE Loces of yos Eec CONTROLLEA Aquat

 CAR ASARM SYSTEM CICS CAR alary susten pritce por de tom De votuon opg morso wo bormithor ans
 - ELECTHONCC SAREN \& WRI Moreseve 5W
 1003-KT CS SS

 viest ony of 2 ope ores. Elycsu rances pote Supped wiv. PCA y comorema hes Tri7e

- Mouletre leo ker son ruro Ele meod
 ONKL LED DICE PIC leCSe oraul pertm

 Oa 品
CEO FLASHER IS LTA Orge red LEOB PAgh

 - IECSA PIC PROGRAMNER RNECA LTOMIT wriot Lies ay PC pariet port AL racbase
 8182840 pin DIP serlas programmed

PICs 3rd pany sotware suppled expres tref 28 day lcosis USS23 wo revisiet

'PICALL' SER

PROGRARGMER \& PARALLEL PIC DIP pusall AND serua P1Cs incluon utily functonal \& regrsiered soltware (DOS. W3.1. WgS.) 3117 KT ES4.95
ATMEL 89C 051 PROGRAKIMER ATMEL 89CIOS1 PROGRAMIMER ampleto use yot powertu progamnner ASCS051 UCK. Programiter dces POT requere soecial cotiware cener vien a terminal emulator program foul urto puter operating sjuem. 3121 -KT E24.95 St beares ic tatis
 - STA dow tor rockyes a primetwors wocrasy wor

 STABILISED POWER SUPPLY 2 . 20 V SA As ha 1007 above buthated a:

5 ATp Requires a 24VACi5A vanstormer 096-KT £29.95. Custom Designed Bos 2096 C34.95 supply Desyec zo pown AF

- MOTORBEXE ALARU USNE a rukcio venson
 o vidn seren beas nom roicios or orever.
 - limt alarm preaci pour raions ol iom

 alt ras fier oun rewayl cavt lin is is COMBINATIOH LOCK Versa: elec. wonc bock comprang man ciral s sepRe'3 Eupa ed 3029-KT EB.95 OETEC - ULTRLSONLC MOUVEMENT DETEC ron Crstal lodred Setector freauoncy bor at compretaony FCE range. Adustatio sensirmponents A -7m range Aburtyio Claplows 9VOC. 3089 KT $£ 11.95$ Ha zendimm as Litc h cormeros burde

- INTRARED SECURITY BEAAS bimen ine invidie iA beam is brohen a relay is roped thas can be used to scund a bel o dum 25 metre range, liens rated refays provided 12VOC CDermon. JIJON
 ones wrus iols poty, trong 1 jee.00 un -LOCNC PROBE lesta CUOS 4 TL croves arecy last phes Vewis sudo rocieon a
 do

Souat wave oscallatoh Gererares

 Ho io zv ogev over perods bur mow wond to mone cin ase bu sod as a smpe ograc 112 kT F1 55

- 20 MHE FUNCNON GENEAATOR SONFE.

 Th ourern abo provie oupre comecon orst arrcy fete usen wura3s re plasic case en

ELECTRONICS TEACH-ITA RO. 7. ARALOGUE ARD DIGITAL
ELECTRONICS COURSE

FREE
publighed by Everydey Proctions Elestron
Alan Winstanley and Keinh Dye B.EngTt :hlAMIEE This highly accioimed EPE Tescmin in series. which instuded the construction and ues of the Mani Lab and Micro LSO test and devolopment units, hat been pus together in boot form, Addriondly, EPT Educational Software have developed a GCSE Eloctionics sotwaze program to com pliment the course and a FREE OISK cevering
parts of ine courso is included whith the book fically st the novice or comptete begimner in electronics The series is designed to support those underating oither GCSE Electronics of GCE Advanced Levels. and starts with fundarnental principles
or you are tsting eiectronics or rechnology at school or college, this book is for you it you just want to lesth the basics of electronics or iechnology you mus make sure vou see it. Teach-fn Na. 7 will be invaluable you are considering a cereer in electronics or even if yow sre already training in one. The Mini Lab and demonstration and development circuits. Thest learning aids bring electronics to life in on enfoyable and interesting way you will both see and hear the electron In actionl The Micro Lab microprocessor edd-on sretem will appeal to higher leval students and those developing microprocessor projects. 160 pages

Order code IT?
$\$ 3.95$

ELECTRORICS PROJECTS
USING ELECTRONICS YORKBENCH plus free CD-ROM M. P Horsey

This book offers s wide range of tested circuis mod ules which can bo used as electronics projects, pars of an electronics course, or as a hands-on way of geth circuits ranging from buibs and batteries' to complex systems using integrated circuits, the projects will apped novices. students and proctioners alke
Electronics Viocibench is a highir versalie computer and modity theirge which enatles the user to degign, sest and modily their circuiss before bulding them, and to plan provided as runnable Etectronic Worlboneh fites on the enclosed CD-ROM. and a selecuon of 15 representative circuits can be explored using the freo demo wertion of no spplication.
Confonts Some basic concepts: Proiecss with switches. LEDs. relsys and dodet: Trandigtors. Power supplies Op amp proyets: Further cparnp circuits: Logic gases. Aeal foochops couners and shit reposters. Adden compurator. and mutiopereers: Field effect transustors: Thrievors triacs 227 fices: Constructing your cincutc inder

A BEGINHERS GUIDE TO MODERY ELECTRORIC COBPONENTS

R. A. Pentold

The purpose of thas book is to provide practical informa tion to hetp the resder sor out the bevildering array of of the sheory of electronies is not needed, ind shis book is not intended to be a course in electromie theory. the main atm is to exptain the differences botween components of the same tasic type le.e. carbon, corbon film. metal film. and wire-wound resistors) so that the ight component for a given application can be selected. A wide renge of components ore included. with the emphesis firmty on those components that are used a great deal in projects for the home contlructor.
170 pages
Order code BP2.3

The books listed have been selected by Everyday Practical
 Electronics/ET/editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book page.

FOOR ANOTHER SELECTION OF BOOKS SEE THE NEXT TWO MONTH'S ISSUES.

Note our UK postage costs just $£ 1.50$ no matter how many books you order!

Compuiting

WMNDOWS 95 EXPLAI:TED

R M Oiver and M Kantaris

- you woud the so ges up and ruming as soon as posside. with the new windows is operating orstem, then this is the boot for yous.
The book
The boot was writren with the noin-apert, busy person in Find hif emplains the hardinare thas vou need in order to nan Windons os sucresachoty and how to inseal and opimite dons 95 ernironmene
Latec chapters cover how to work wikh programs fotders and docurrents: how to control Windows is and use the many occessories trst comp with it: hUN to use DOS programs and. I nesestins DOS commends and how to com.

E5.95

EASYPC INTERFACING

Athough the internal erpansion stots of a PC provide full access so the computer's buses. and are suitable for user add-ons. melting your own ernansion cards te quires a fir amount of expertise and equipment. The buitr-in ports provide what is often a much easier and hassletsee way of intertating your own circuits to : $P C$ in particlar. PC printer port plus a small amouns of esterna! hartware provides a surprisingh versatile inpulioutput port. The PC "games" port is less usoful fo general interfacing purposes. but can be useful in This boot prond
circuits inclding the toll number of useful PC add-on arcuis including the following: Digital inpusfontput porth: verter. Voltage and Currens meesurement circuits:

Resistanie meser: Capacitance meter; Temperature nessuzememt inkerface: Giof fedback mionitor, Conszans volege model train controller; Pulsed model train controllers: Position sensar (aotical. Hall eftect, efe): Stepper motor inserface: Relay and LED drivers: Thac mans miching interface. 79 pages 1499 IRTRODUCTIOH TO MICROPROCESSORS
John Crisp. or scon will be. involved in the use of you are. of scon will be. involved in the use of recting This book provibes a thoroughty resdable introducon to microprocessort. sssuming no previous thoviedge of the eubject ans sechnical or mathemteical bach. ground. If is sumable for studemts. techricians, engineers and hootryits, and covers the ful range of modern nicroprocessors.
Ater a thorough introduction to the subject ideas are dectoped progresswely in a web-ssuciured format AB achnicel terms are carrefory introduced and subitcts which cleaty proved incuined fohs Criep complers the complete range of incrocrocessors from the popular obit and \&-bs desugns to loda $\sqrt{\text { s superfast } 32 \text {-bit and } 64 \text {-bit rurrions thel power PCs }}$ and engine maragement systems etc.
Contents: The world changed in 1971; Microprosessons dort have ten fingers: More counting: Mothematicel mieros: hs al a matrer of logic: Regsters and memoner: A microprocessor based system: A npical 8-bil microprocessor: Programming. Moph lwel languagear Meros are getung 2116: taut finding $\$ 1609$

Bebop To The Boolean Boogle
By Clive (call me Max) Maxield
ORDER CODE BEB1 £24.95
470 pages. Large format Specially imported by EPE Excellent value An Unconventional Guide to Electronics Fundamentals, Components and Processes
This book gives the "blg pictute" of digital electronics. This in-depth, highly readable, up-to-the-minute guide shows you how electronic devices work and how
they're made. You'll discover how transistors operate, how printed circuit boards ate fabricated, and what the innards of memory ICs look like. You'll also gain a working knowledge of Boolean algebra and Karnaugh maps, and understand what Reed.Muller logic is and how it's used. And there's much, MUCH more (including a recipe for a truly great seafood gumbol). Hundseds of carefully drawn illustrations cleariy show the important points of each topic. The author's tongue-in-cheek British humor makes it a delight to read, but this is a REAL technical book, extremety detailed and accurate. A great ceference for your own shelf, and also an ideal gith for a friend or family member who wants to understand what it is you do all day....
470 pages - large format Ordel corle EEB1]
£24.95
DIGITAL ELECTRONICS - A PRACTICAL APPROACH
Wrth FREE Sofiware: Number One Systems - EASY.PC
Professional XPs and Pulsar (Limited Functionality)

Richard Monk

Covers binary arithmetic, Boolean algebra and logic gates, combination logic. sequential logic including the design and constiuction of asynchronous and synchronous circuits and register circuits. Together with a considerable practical content plus the additional atrraction of its close association with computeraided design including the FREE software.
There is a "blow-by-blow guide to the use of EASY.PC Professional XM (a schematic drawing and printed circun board design computer package). The guide also conducts the reader through logic circuit simulation using Pulsar software. Chapters on p.c.b. physics and p.c.b. production techniques make the book unique, and with hs host of project ideas make it an ideal companion for the integrative assignment and common skills components requited by BTEC and the key stills demanded by GNVQ. The principal aim of the boak is to provide a straightforvard approach to the understanding of digital electronics.
Those who prefer the Teach-Irs approash or would rather experiment with some simple circuins should find the book's final chapters on printed circuit board production and project ideas espectally useful.
250 pages
Order code Nezz
£16.99

DIGITAL GATES AND FLIP.FLOPS

lan R. SInclair
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughty and from the beginning.
Topics such as Boolean algebra and Karnaugh mapping are explained. demonstrated and used extensively, and more attention is paid to the subject of synchronous counters than to the simple but less important ripple counsers.
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working practices. The book concludes with an explanation of microprocessor techniques as applied to digital logic.
200 pages
Order corde PC.106
c8.95

By Clive "Max" Maxfield and Alvin Brown ORDER CODE BEB2 £29.95
 Over 500 pages. Large format Specially imported by EPE - Excellent value

An Unconventional Guide To Computers

Plus FREE CD.ROM which includes:
Fully Functional Internet-Ready Virtual Computer with Interactive Labs
This follow-on to Bebop To The Boolean Boogie is a multimedia ex. travaganza of information about, how

Bebop BYTES Back An Unconventional Guide to
 computers work. It picks up where "Bebop I" leh off, guiding you through the fascinating world of computer design . . . and you'll have a fow chuckles, if not belly laughs, along the way, in addition to over 200 megabytes of mega-cool multimedia, the eccompanying CD.ROM for Windows 95 machines only) contains a virtual microcomputer, simulaing the motherboard and standard computer peripherais in an extremely realistic manner. In addition to a weath of rechnical information, myriad nuggets of trivia, and hundreds of carefulty drawn illustrations, the book contains a set of lab experiments for the virtual microcomputer that lel you recreate the experiences of earty computer pioneers. If you're the slightest bit interested in the inner workings of computars, then don't dare to miss this onel
Over 500 pages - large format \quad Order coderibe82. $\mathbf{E 2 9 . 9 5}$

NEWNES INTERACTIVE ELECTRONIC CIRCUITS CD.ROM

Edited by Owen Bishop

An expert adviser, an encyclopedia, an analytical tool and a source of real design data, all in one CD-ROM. Written by feading electronics experts, the collected wisdom of the electronics world is at your fingenips. The simple and atractive Circuits Environment man designed to allow you to find the circuit or advice notes of your choice quickly and easily using the search facility. The text is written by leading experts as if they were explaining the points to you face to face. Ovet 1,000 circuit diagrams are presented in a standardised form, and you are given the option to analyse them by clicking on the Action icon. The circuit groups covered are: Amplifiers, Oscillators, Power, Sensing. Signal Processing. Filters, Measurement, Timing, Logic Circuits, Telecommunications.

The analysis tool chosen is SpiceAge for Windows, a powertul and intuitive application, a simple version of which automatically bursts into action when selected.
Newnes Interactive Electronic Circuits allows you to: analyse circuits using top simulation program SpiceAge; test your design skills on a selection of problem circuhs; clip comments to any page and define bookmarks; modity component values within the circuits; call up and display useful formulae which remain on screen; look up over 100 electronic terms in the glossary; print and export netlists.
System fequirements: PC running Windows 3.x. 95 or NT on a 386 or better processor. 4MB RAM, 8MB disk space.
CD.ROM

Order gode Ne.CDII

Andio and Music

AnINTRODUCTION TOLOUDSPEAKERS AND

ENCLOSURE DESIGN
K Capel
This book enplares the various lestures. good points and snags of spesber designs. It enamines the whys and wherefores so that the reader can understand the principles invalved and so make an limformed chotes of design, or meven dewign loudspesker enclotures for mim or hersoth Crossover uniss are also eaplained. the yarious types, how they work the distertions they produce and how to avoid them. Finally thare is a step-by-step description of the construction of the Kapellmeigter loudspenter enclosure.
is8 puges [Order code BP2S5 63.99

PREAMPLIFIER AND FILTER CIRCUTTS

A. A. Penfold

This book provides circuhts and bactground information os a range of preamplifiers. plus tone controls, fiters. mixers. elc. The use of modern low noise operationsl amplifiers and specietist high performance audio preampifier i.c. results in circuits that heve excellent
performance, but which e:0 seill quite simple. All the circuits featured san be buit at quike tow cost liust - few pounds in most casestl. The presmpifier circuls festured include. Microphone preamplifigrs flow impedance, ligh impadance, and ervital). Magnetic csrtridge pict-up preamplfiers with R.IAA equlisation. Crystat'ceramic pict-up preamplifier. Guiter pici-up preamplifier. Tape thad presmptifier fiop use with compaet cassette systems).
Other circuits include: Audio timizes to prevent ovef. loading of power amplifiers. Passive tone consrols. Astive tone conitole. PA fitters thighpass and lowpass). Scratich and rumbla fiters Loudness filser. Audio mizers. Volume and balance consels.
92 pages Order code BP309 $\mathbf{8 3 . 9 9}$

HIGH POWER AUDIO AMPLIFIER CORSTRUCTION

A. A. Penfold

Practicat construction details of how to build a numbe: of sudio powef amplitiers isnging from about 50 to 300رs00 watts ems. includes MOSFET and bipolar uransistor dersigns. 96 aeges

Order code bP27]
E 3.99

ACOUSTIC FEEDBACK - HOW TO AVOID IT

V. Capel

Feedbect is the tone of it pubic. usdress onterms thie feedbect cannot be completely eliminued, murry things can co done to rectuce it to lover it which it is no longer probiem
thuch of the trouble is oken the had thetit nor the equipmemt, but there is a smple and practical wity of creath mproving teoustics Some microphonas ste prone to feed. buct whil others sre not Cortin loudspuster nssems are much better than others. and the way the unis ase posidoned can procuce e reduced feedoect an these marters we fuly enplored as wal os electronc tits such as equifeers frequency-shiters end notch fiters.
The special requirements of five group cancerts are con idered. and also the pelated probien of ingentiry than is sometimes encourtered with large set-ups Wo even thite e 0ot at sorre unsuccesshul attempts to cure fendbact so as to seve readers wasted time and efton dapleating then.
Aso inctuded is the circuit and layerr of an inezpensive but highly successfut win-notch fitier, and despits on how to ocerate in
92 anges

Testimg Theory, Dett amd Reference

SCAOGGIES FOUNDATIONS OF WAELESS
ANO ELECTRONICS - ELEVENTH EDITION
S. W Ampos and Aoget Amos

Scroppio's Foundations is astonsic seap for anyone warting wish efectronics. Who needs to know the ars and crath of the subiecte it corvers both the theory and practied a spects of a huge range of topics from valve and rube to rader, to digited tepe nstems and optieal recording techiniques. 60 vears a00. I has helped mamy thoutsinds of readers to become famular winh sine principles of radio and olec. tronics the on insal author Sowerby was succeected by Serogope in the lotos, whose name became oynommous with this classic primer for practitioners and studenis ante. Stan Amos, one of the lathers of modern electronics took of er the revesion of the book in the 1990 sind it is toot oref the reverion of hid boot in the 1980 and is Se0 puges \quad Orider code ME27] 1999
ELECTRONICS MADE SMPLE
lan Sinctajr
Alsuming no prior inowledge. Electronices Sesde Simple prosents on outiont of modern electronics with in emphasis on undentinnding how systems work rather than on detaits of circuir diagrams and colculations a is ideal ing GCSE. CGG And Giva and for sectronical. inctud. Winge. Cog and Giva. snd for students of other meinode.
Consents: waves and pulses, passive components astive componentis and ics, lineser circuta, block and circuif diggrams. how radio wortes. dise and tape pecored ing eternemts of N and radar, digitel wignals. gating and topic cramst counting and correcting. mistopiocessors caiculators and computers. Page 899 llarge format) Order coatalifith 512.99 transistor data tables
Hans-Günther Stoidie
The tabies in the book contsin information about the proctroge ahapt. pin connections and basic electriced cat data includes masumum reverse varenge formard currem and power dissipasion, currens gein and forward trarised mimsince and resistance. cut-of trequency snd detaits of mplichion:
A book of this sirs is of necescity restricted in is scope and the imdindual ifansition topes cannot theratcre te deser.bed in the sori of detm thar majot lound in some pree, the lise of mandxciurars addresses wits mete. easier for the prospective user to cerein further informe vion, it necessery Lifs over 8.000 diterent tramsizors, inctuding lete 200 pages 65

MORE ADVAPCEO USES OF THE MULTMMETER the boot
This boot is primarity insended as a follow up to shoutd asso be of value to amone who alresty undersiands the bssics of veltange theting and simplo componens lesting By using the tectrigue desernbed in Chapier vou can rest and angevse the performunce of lange of comporents mint jusp a mutimeter (plus a conents in wire cases. some useful musct checi mertiods are aliso covered
Wihle a mulumeter is supremely yemenile it doest ha is limisucons. The simpie asd-ons described in Chapte: antented the capabilities of a murtimeter to mate it even more usporul.

ELECTRONIC TEST EOUIPMENT HANOBOOX
Steve sioney
the principles of operation of the various sypes of test instrumert are onplaned in simple terms with 3 minimum digizal meters, bridpos. oscithoscooes. eignal ofonerator counters. Emers and trequency mpasuremens. The presticat weses of the intrruments are atso examined.
Everything from Oncilletors, through A. C i L measure ments (and much morel) to Wrueform Ganerators and exang zener

GETTING THE MOST FROM YOUR BULTIMETER
This book is primerily aimed as beginners and those of inited experience of efectronics Chapier 1 conter the besics of aratogue and digith muthimaters. discussing the relstive merts and the imizsions of the two types. In Chapter 2 verious mathoos of component checting are described, inchuding iesis for fransistors. thmiteors. resis ors, apacitors and doodes Circur lesting is covered in Chapter 3, with subjocis such as vorage, current and con innty checkis being diecussed
In the min lime or no previous knowiedge or on. circuit toscing fechniques the reader should be abs and confidenty thetle servicing of most electronic projectit $\$ 5$ poges \quad Orist code BP239? 295
NEWRES ELECTRONICS TOOLXIT- SECONO EDITON Groff Phillips
The author tas used his 30 vears enperience in industry $i 0$ drow together ine basc incormation that is constonty
to help the engineer when dexigning develcping evalutit ing fauh finding and ropesing electronic circults The resut is this handy wortmate volumer: mamoor ald, ivior and reference source which is recommended to ath elactoonics engineers. students and technicians.
Here you over withed for a concise and comprehen sive guide to electionics concepts and rules of thumb? choose between two ungele to source a component © von? How much ho aherrios for parnectar appice. faces a mansfacturer's specificetions? This boot is the answer, theorers resistor cepuchors induetors sticonduetors. lopic circuiss. EMC, audio. electronics and musie olephones. electronic in inghing inermal considertions connections, reforence dern. 158 auges Order codenters
$\{1299$

PRACTICAL ELECTROANIC FAULT FINDING ANO
TROUBLESHOOTING
Aobin Pain
This is not a book of theory. it is a book of practical pips. hints, and rules of thumb, of ci which will equip the escien to laside aty joo. You may be an angineer or ract nician in search of information and quidance. a college fudent. hoobyist buiding a proiect from a magazine of lectran Efeen som-kught amatew who is merested mathernstical or specielized
The book covert: Basics - Voitage, current and resisance: Capaciance, inductance and impedance: Diodes and trarswitors; Op-amps and negatere ferdoack; Fauh inding - Andogue foult finding. Digisel fiut finding:

Memory; Binary and heradecimal; Addressing: Diecrete ogic: hicroprocessor action: WO control, CRT controf: 278 cugces il replacement

AN INTRODUCTION TO LGHT IN ELECTRONICS

 A WilsonThis boot in not for the expert but neither is it for he comple:ety uninhiated t is assumed the reader has ome basic incwiedge of Cectronics. Aher dealing with cubjects lie Fundarrentels, ivoves and Partietes and The Displute of Light such thingt as Emitsers. Detectors and apes of Lasers before concluding with a chapier on fibre ptics
161 arges Ordercodebpess tiss

UNDERSTANDIRG DIGITAL TECHROLOGY
A. Wison C.G1A. C.Eno. FIEE, FI. ingr

This book examines what digital technology has to offer and then considers las sistmetic and how has be as. anged for maling decisions in so many prosesses it then cola at the pant degrisi has to play in the ever expanding information Technology. especially in modern inenemistion systems and selevision. i avoids getting deeptr inolved in mather.stica.
Verious chapters cover. Digisal Avithmetic. Electronic Lopic. Cormorions between Analogue and Oigtal Stncsome of the concep:s more fully and a clossany of rerms R83 anges Oiver cork BP376 $£ 495$ 183 poges 4495

Project Build dine

ELECTRONIC PROJECT BUILOIHG FOR EEGINNERS

R. A. Penfold

This book it for compleso beginners to elactonic projecs uing. th provides a complete introduction to the procticone of this fascinaking hoboy, including.
Componam identricaton, and buring the righs parts: esistor colour codes. capecitor value marlonea. etc: atrice on buying the right tools for the job: soldering: naling esty wort of the herd wiring, construction meinods. including stnpboard, custom prinsed circuit wire-wrapping: finishing off, surface mouns boserds and esting probiemi projecis 80 wort incholing simple mathods of fauth-finding.
In fact evemthing you need to know in order to ges

45 SIMPLE ELECTROAIIC TERMINAL BLOCK
PAOUECTS
A Bobsington
Contains 25 easy-to-build electronic projects trat can be sing only. by en ebsolute bepinmer. on terminal blocks oldering is needed. coldering is needed.

Most of the projects can be simply screved together by following the leyous disgrams. in a matrer of minutes and readity unscrewed il desired to make reen eircuits a theoretical circue diagram is also included with each project to theip browden the constructor's knowtedge. The projects inchuded in this book cever I nuce range of interesss under the cheptap headings: Connections snd Comporemes. Sound and Music, Eniertainment Security 163 poses Commuriction. Test and Miessuring 495

30 SIMPLE IC TERMIRIAL BLOCX PROUECTS

R. Bebbington

717 peges Oriler code 8 P378
1499

HOW TO DESIGM AND MAKE YOUR OWF P.C B S

R. A Penfold

Deals with the simple methods of copring printed circull bourd designs from magasines and bools and covers all aspects of smple p.e.b. construction including photoGraphic methods and designing your own peben curcude EPI21

1399

BOOK ORDERING DETAILS

Our postage price is the same no matter how many books you order, just add $£ 1.50$ to your fotal order for postage and packing (overseas readers add $£ 3$ for countries in the EEC, or add $£ 6$ for all countries outside the EEC, surface mail postage) and send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or credit card details, Visa or Mastercard - minimum credit card order is 'E5 to: DIRECT BOOK SERVICE, ALLEN HOUSE, EAST BOROUGH, WIMBORNE, DORSET BH21 1PF (mall order only).

Books are normally sent within seven days of receipt of order but please allow a maximum of 28 days for delivery - more for overseas orders. Please check price and avallability (see latest issue of Everyday Practical Electronics/ETI) before ordering from old lists.

For a further selection of books see the next two issues of EPE/ETI.
DIRECT BOOK SERVICE IS A DIVISION OF WIMBOANE PUBLISHING LTD. Tel 01202881749
Fax 01202 841692. Due to the cost we cannot reply to overseas orders or queries by Fax.
E-mail:dbs@epemag.wimborne.co.uk
BOOK.ORDER FORM
Full name:
Address:
I
\qquad
\qquad
Signature:
I enclose cheque/PO payable to DIRECT BOOK SERVICE for 5
Please charge my Visa/Mastercard $£$ \qquad Card expiry dare

Card Number

Please send book order codes:

PCB SERVICE

Printed circut boards for centain EPE constructional projects are avalabe from the PCB Senvice，see fist．These are fabricated in glass fiore，and are futy driled and roder tinned．An prices inctude VAT and postage and packing．Add It per board lor aumal outside of Europa．Remitances should be sent to The PCB Service， BH21 1PF．Tel： 01202 日81749；Fax 01202 B 41692 （NOTE，we cannot reply to overseas orders or querles by Fax）；E－mall：orders＠epemag．wimborne．co．uk ． Cheques should be crossed and riade payable to Evenday Practical Electronics （Payment in $£$ sterling only）．
HOTE：Whlle 95\％of our boards are heid in slock and are dispatched within seven days of recelpt of order，please allow a maximum of 28 days for detlvery－overseas readers allow extra Il ordered by surface mall．
Beck numbers or photostats of articles aro available if required－see the Back issues page for detalls
Please check prlce and avallabllify in the latest issue．
Boards can only be supplled on a payment wilh order basis．

PRONECT TITLE	Order Code	Cost
Micropower PIR Detector－ 1 JULY 97	152	£6．69
Infra－Red Remote Control Repeater （Mulu－project P．C．B．）	932	$\Sigma 3.00$
Karaoke Echo Unit－Echo Board	159	£6．40
－Aher Board	160	£6．75
Computer Dual Usef Interface	161	£6．70
APEST Scarer	162	£6．60
Variable Bench rower Supply EEAUG97	932	$\underline{23.00}$
Universal Input Amplifier	146	£6．55
Bicropower PIR Detector－ 2 Controller	163	¢6．72
＊PIC－OLO	164	£7．02
Acive Receiving Antenna ESFPIgy	140	$\underline{85} 59$
Soldering lion Controller	157	$\underline{¢ 6.63}$
－PIC Noughts 8 Crosses Game	165	£7．82
Micropower PIR Detector－ 3		
Alarm Disarm Rese：Swich	165	$£ 5.72$
Ironing Salety Device	167	$\Sigma 512$
Femote Contros Finder OCT 97	168	$\underline{56.32}$
Rechargeabio Handlamp	169	¢6． 23
＊PIC Vater Descaler	170	¢6．90
AEPE Time machine 1 Nov97	171	¢8．34
Auto－Dim Bedight	172	86.63
Portable 12V PSU Charger	173	£6．61
Car immobirser LIEC＇97	175	87.00
Sale and Sound（Security Bleeper）	179	¢7．32
Surface thermometer JaN98	174	$\underline{57.64}$
D．sco Lights Flasher	178	\＄8．30
Waa－Waa Peda！（dulu－project PCB）FEB98	932	\＄3．00
－Virtual Scope－Digital Board	176	£14．49
Analogue Board（per board）	177	$\underline{57.34}$
－Water Wizard	180	$\Sigma 7.69$
Kissomeler	181	$\Sigma 7.67$
WEFEPIC Tutorial L MAR 98	182	E7． 99
The Handy Thing（Double－Sided）	183	£658
Lighting－Up Remindet	184	$\Sigma 5.90$
＊Audio System Pemote Contrǫler－PSU	185	$£ 7.05$
－Main Board	186	¢8．29
Simple bretal Detector APR 98		
（Mutti－project PCB	932	£3．00
Single or Dual．Tracking Power Supply	187	$£ 7.90$
＊RC－Meter	188	$\underline{27.65}$
Security kuio－Lght A May 98	169	8.70
Siereo Tone Contsol plus 20W Siereo Amparier		
Tone Control	190	$\underline{57.78}$
20w Amplfier	191	¢8． 58
＊Dice Lofl	192	88.05
EPENood Changer JUNE98	193	$£ 7.75$
＊AT89C2051／1051 Programmer		
Main Board	194	¢8．50
Test Board Soltware onty	195	$\Sigma 8.69$
＊Reaction Timer Sottware only	－	－
由PlCi6x84 Tookut JULY＇g8	19%	16．95
＊Greenhouse Computer		
Control Board	197	59.08
PSU Board	198	$\underline{88.10}$
Floal Charger ．Aug 98	199	26．59
Lohthuto Saver	202	83.00
Personal Stereo Ampliver （Sutz－project PCB SEPI 98	932	23.00
＊Greenhouse Radio Link	200	¢8．32
＊PIC Altimater	201	¢8．15
Voice Processor CCT 38	203	27.18
＊Dgiserv RJC Expander	204	$£ 7.69$
IR Remote Control		
Transmitter	205	$£ 3.00$
Recenver	206	¢3．50
辠PIC Tape Measure NOV 98	207	£682
Electronic Thermostat		
T－Stal	208	£4．00
		£14．95
A－PCB B－CD－ROS C－Prog．Microcontroder	$\mathrm{Bee}(\mathrm{A})(\mathrm{B})(\mathrm{C})$	－ach
15－Way IR Remole Control		
Switch Mlatrix	211	£3．00
15－Way Rec Decoder	212	§ 4.00
Damp Stat DEC ${ }^{\text {d }}$	209	£4．50
Hanoheid Function Generator	213	\＄4．00
＊Fading Chnstmas Lights	215	¢5．16
Phizzy 10 Board（4－section）	216	¢3．95

PRONECT TILE	Order Code	Cos！
Iwintle Twinkle Reaction Game JAN＇98	210	¢7．55
＊EPE Mind PICkjer	214	£6．30
Phizzy日 lVO Board（4－section）	216	£3．95
Aternative Courtesy Light Controller	217	86.72
Light Alarm｜ler 99	218	¢6．78
＊Wreless Monitoring System－Transmiter	219－a	¢9 92
Recerver	220＊a	¢856
＊PIC MIDI Sustain Peda！Software only	－	－
＊Wreless llonitoning Systert－2 WAR99		See
F．M．Trans／Rec Adaptors	219a 220a	Feb 99
＊Trmo and Date Generator	221	¢ 937
Auto Cupboard Light	222	£6．36
Smoke Absorter	223	£594
Ironing Board Saver ApR＇99	224	£5．15
Volce Record／Playback Module	225	£5．12
Mechanical Radio（pair）	22648 B	£7．40 pr
＊Versatio Event Counter	207	£682
＊PIC Toolut Me 2 Ener	227	¢8．95
AM．F．M．Radio Remote Control		
Transmitter	228	£3．00
Receiver	229	£320
＊Musical Sundial JUNE 99	231	¢9．51
PC Audio Frequency iteter	232	¢8．79
＊EPE Mood PlCker JuL Y 99	233	¢6．76
12V Battery Tester	234	£6．72
Intuder Detertent	235	£7， 10
LE．D．Stroboscope	932	§3．00
Uitrasonic Puncture Finder AUG99	236	£5．00
＊8－Channel Analogue Data Logge：	237	¢888
Butler Amplifier（Oscilators P1 2）	238	£696
Magnotic Field Detective	239	£6．77
Sound Activated Switch	240	£653
Freezes Alarm（Mutioproject PCB）	932	£3．00
Chid Guard SEPT ${ }^{\text {S9 }}$	241	87.51
Variable Dual Power Supply	242	$\underline{87.84}$
Mains Cable Locator L OCr 99	932	£3．00
（Muli－project PCB）		
Micro Power Suppty	243	£3．50
＊Interior Lamp Delay	244	£7．88
Vibrajarm N Novig9	230	56.93
Demister One－Shot	245	$£ 6.78$
\＃Ginormous Stognatch－Part 1	246	¢7．82
＊Ginormous Stopwaten－Pant 2 DEC＇99		
Giani Display	247	£7．85
Serial Port Converter	248	§3．96
Loh Guard	249	¢4 44

EPESOFIWARE

Sottware programs for EPE projects marked with an asterisk t are avail－ able on 3.5 inch PC－compafible disks or free from our Intemet site．Five disks ate available：PIC Tutorial（Mar－May 98 issues）；PIC Toolkit Ak2 （May－Jun＇99 issues）；PIC Disk 1 （Apr＇95－Dec＇98 issues）；EPE Disk 2 （Jan 99 issue to current cover date）：EPE Teach－In 2000．The disks are obtainable from the EPE PCB Service at $£ .75$ each（UK） 10 cover our admin costs（the software tiself is freet．Overseas（each）：$£ 3.35$ surlace mail，$£ 4.35$ each aimail．All files can be downioaded free from oup Imtemet FTP site：ftpi／ftpepemag．wimborne．co．uk．

EPE PRINTED CIRCUIT BOARD SERVICE

Order Code Project Quantity Price

Name．

lenciose payment of \＆．．．．．．．．．．．．．．．．．．．．．．．．．．．．chequerPO in $£$ slerling ondy）to：
Everyday
Practical Electronics
MasterCard or Visa No．
Minimum order for credit cards $\varepsilon 5$

Everyday

JET SCREAM

SEVERAL examples have arisen recently which illustrate how useful the Internet can be, as well as how it can also be the bane of my life. Recently a friend asked me if I could help with a problem with his HP Laserlet, an old but very sturdy Laserlet 3 which was displaying the dreaded message on its l.c.d. Call Service Error 50.

I own an LJ 3P as well. but my own experiences of out-of-warranty service had left a distinctly bad taste. My Scandet 4C scanner suddenly broke down at quite a critical time, so my first port of call was the HP web site. It had a list of dealers who could (reportedly) repair scanners, and the site also had a map feature which displayed a zoomable road map of the UK showing my nearest dealer.

I printed that off, threw everything in the car and went off in search of a scanner saviour. Two weeks later the HP dealer charged the equivalent of nearly $£ 100$ not to mend it. because after putting in about a day's work it transpired that they can't be fixed anyway: ("There is no repair path." the official jargon explained.)

The replacement scanner. an HP 6250, has had more than its fair share of installation difficulties, and again the Intemet proved vital in finding the patches and fixes from the HP web site. Their slow but moderately useful scanner forum also helped explain why. when I tried to share the scanner on my network, the host PC would try to dial the Intemet instead (it still does, by the way).

Remember readers, that if you ever have hardware or software problems, there's a chance you're not alone, and often all you need to do is search for the answer on the Internet. The problem is usually where to stant. Have a look at the brand new Help web site operated by CNET at www.help.com.

So to help my friend with his LaserJet 3, I started by typing "laserjet" into Deja News (www.deja.com) to see what other folks have said in the past. After reading through many of the newsgroup messages archived there, several web sites caught my eye.

It was not that long before I turned up Parts Now Inc. (www.partsnowinc.com) and also All Laser Service in Califomia (www.all-laser.com) and - bingo - there was a page devoted to Call Service Error 50! The problem could be a fuser, triac, thermistor or halogen lamp, they say. Using an ohmmeter we can now hopefully pinpoint the fault and fix this one ourselves, if we can get the spares.

HELP US TO HELP YOU

I was once quite amused by a quip made by a reader in relation to our Chas Zone service, or more specifically, my own contributions therein. The reader wondered if my mood could be gauged from the way 1 signed off my messages: perhaps a curt "ARW" signature signified a certain amount of grumpiness (never) whilst the futl moniker - usually bashed out in some haste 1 must say - meant that I was feeling a tad more affable that day. Who, me?

One thing that does admittedly test my patience at times is when I'm on the receiving end of some intemperate E-mails from users of our web or FTP site. However. acknowledging the principle that customers are always right, even when they are completely wrong. and no-one ever won an argument with a customer anyway, your scribe bites his tongue and sallies forth with an ever-helpful reply.

Following the launch of Teach-In 2000. my E.mail has been alive with requests for help from readers who are new to electronics. new to computing, or new to the Intemet (or new to all three). Although I'm happy to oblige. surprisingly there has been more than one unfavourable comment about the FTP site, some users having apparently been foiled by the process of File Transfer Protocol.

As one reader put it, "ours is the one web site in the wodd which has defeated me." actually referring to the FTP file server, which I
must say is extremely reliable and has tons of bandwidth at its disposal. The problem is that Intemet users, especially newcomers, are progressively being spoiled by world wide web sites, to the total exclusion of the other ways of making information readily available over the lnteme.

So when Teach-In 2000 is launched and I receive several complaints about the hopelessness of our ETP site. the weary writer starts to feel rather exasperated. I have described the processes of FTP several times in the past. The first problem is that FTP is FTP. not the hypertext transfer protocol associated with web servers.

BROW-BEATEN

Web browsers have varying degrees of success or tolerance when accessing FTP sitcs. and in my own experience. Microsoft Intemet Explorer 5 is far more obliging with the process of anonymous FTP than version 4.0 ever was. Furthermore, every instance of "extended response" server error messages (generated for whatever reason) arose. in my experience. due to the use of MSIE 4.0. never anyone's favourite browser. As I state on the EPE web site, such error messages are browser issues. not related to our server.

All such problems seem to have gone after adopting MSIE 5.0. which deals with anonymous FTP in an orderly fashion. If some readers are nervous about upgrading their Microsoft browser they have every reason to be so. Sometimes it goes smoothly. at other times a wheel might fall off in the process. causing major headaches for the user who has usually done nothing wrong at all.

For evidence of this. one only has to read the Microsoft or W95/98 newsgroups. Never-the-less, it should be accepted that a browser upgrade will be required sooner or later - maybe every 12 to 18 months or so.

Presently the ideal answer is really to use proper FTP software. which will be second nature to seasoned users. I regret it when users take umbrage at the suggestion that an upgrade is required. or that we are trying to bar MSIE 4.0 users from the FTP site. Try to upgrade from the obsolete browser if possible. Intemet Explorer 5 has the honour of being the first Microsoft browser I could actually recommend.

HELP-LINE

Here at EPE HQ we want all readers to enjoy such splendid series as Teach.In 2000 so we try to lend a hand where we can. often going well beyond the call of nomal duty as many readers will confirm. When things don't seem to go right. It is very easy to dash off an urgent or intolerant E-mail on the spur of the noment, just because a user has experienced some frustration or other.

It's also very easy now to send an impatient "chaser" the next day, which merely adds to our volume of work. It isn't our fault if a user's browser is flakey. or if a beginner is frustrated with the complex techniques of operating a personal computer, or has never heard of FTP before now.

You don't need to fetch a hefty browser upgrade from the Intemet either (another reader complaint), as browser upgrades are regularly included in computer magazine cover-mounted CD ROMs. and furthermore, the upgrade is there on an indestructible CD for future backup. You could altematively tave a took at EPE Online's web site (www.epemag.com) and fetch files from our web server hosted in the USA.

Occasionally. readers are so stuck that they ask that I send files to them by E-mail instead, and I will of course try to oblige, although it is always more encouraging to know that users have tried to help themselves to begin with.

If you have any queries, comments or (whisper) complaints, please feel free 10 share them with other readers in the EPE Chat Zone, or E-mail them to alan@epemag.demon.co.sk.

VOLUME 28 INDEX
 JANUARY 1999 TO DECEMBER 1999

Pages	Issue	Pages	Issue
1.72	January	473.544	July
$73-144$	February	$545-624$	August
145.224	March	625.704	Seplember
$225-312$	April	$705-776$	October
313.392	May	$777-856$	November
$393-472$	June	$857-944$	December

CONSTRUCTIONAL PROJECTS

AMJFM. RADIO REMOTE CONTROL by Max Horsey
344
ACOUSTIC PROBE by Reberi Penfold
AERIAL. SW RECEIVER LOOP
ALARM, FREEZER
ALARPA. LIGHT
812
636

ALARM VIBRATION
ALTERNATIVE COURTESY LIGMT CONTROLLER by Pauf Brigham 12
ANALOGUE DATA LOGGEA 8-CHANNEL 585,688
AUDIO FREOUENCY METER PC
585,688
AUTO CUPBOARD LIGHT by ferry de Vaux-Babimie 166
BATTERY TESTER. 12 V
BELLS, MDI MAND
324. 575

CABLE DETECTOR. MAINS
CAR COURTESY LIGHT CONTROLLER, ALTERNATIVE 12
CAR INTERIOR LAMP DEI AY 716
CAR REARSCREEN DEMISTER ONE-SHOT 16
CHILD GUARD by fom Webo 842
CLIPPING VIDEO FADER by Roberf Peniold 62
CLIPPING VIDEO FADER by Roberf Penfold 404
COMPRESSOR, VOLUME
COURTESY LIGHT CONTROLLER. ALTERNATIVE
CUPBOARD LIGMT, AUTO
260

DATA LOGGER. 8-CHANNEL ANALOGUE
166

DATE AND TMAE GENERATOR, PIC
585,688
DEMASTER ONE-SHOT by Terry de Vaux-Balbirnie 198 198
842

DETECTOR MUAGNETIC FIELD 842
565
DEIECTOR, MAGNETIC FIELD 879
DETECTOR, MAINS CABLE
DETERRENT. IN
DISPLAY, GIANT
726
788, 926
DUAL POWER SUPPLY, VARIABLE 646
EPE MIND PICKLER - 2 by Andy Flind
EPE MOOD PICKER by Andy Fhind 58

EVENT COUNTER. VERSATILE 507
F.MJA.M. FADIO RENOTE CONTROL 260

FADER YIDEO CLIPPING
344
FREEZER ALARII by Robery Pentold 404
FREQUENCY METER. AUDIO, PC 420

GAME, TWINKLE TWINKLE REACTION
GENERATOR, TIBAE AND DATE, PIC
GIANT DISPLAY
GINORMOUS STOPWATCH by Ned Stojadinovic'
788, 926
GUARD, CHILD
788, 926
GUARD, LOFT
662
HANDEELLS. MIDI
324575
INFRA.RED CHILO GUARD 662
INTERIOR LAAAP DELAY by Stewe Challis 716 INTRUDER DETERRENT by Bart Trepak 512 IRONING BOARD SAVER by Robert Munt 512
294

LE. STROBOSCOPE by Robert Pentold LABAP DELAY, INTERIOA 294

LIGHT ALAPM by Gavin Creeseman LIGHT. AUTO CUPEOARD
LIGHT SWTTCHING INTRUDER DETERRENT
LIGHT, COURTESY CONTROLLER, ALTERNATIVE
LOFT GUARD by Terry de Vaux - Balbirnie
LOGGER. 8-CHANNEL ANALOGUE DATA
LOOP AERIAL SW RECEIVER by Robert Penfold LOUDSPEAKER SYSTEM, OWI 498

RAGNETIC FIELO DETECTIVE by Andy Flind
MAGNETIC FIELD DETECTOR by Pobert Pentold
MAINS CABLE DETECTOR by Robert Pentald
MECHANICAL PADIO by Bari Trepak
METER, AUDIO FREQUENCY, PC
AAICAO POWNER SUPPLY by Andy Flind
micro probe. pic by Jim main
MIDI HANDBELLS by kobert Penfold
MIDI SUSTAIN PEDAL. PIC
MIND PICKLEA. EPE - 2
MONTTORING SYSTEM, WIRELESS
MOOD PICKER. EPE
MUSICAL SUNDIAL oy John Becker
PC AUDIO FAEOUENCY METER by RObert Penloid
Phiezy 8 COMPUTERS by Cive Max Marfied. Avn Brown and Alan Wristaniey
3-L.C.D. Intertace
4-8-bit Switch and Lalch
5 - PhizzyBot - Mobile Buggy
6 - PhizzyB0! - Feelers
7-PhizzyBot - Eyes
PIC MICRO PROBE by fim Main
放 Robent Pentold
PIC TIME AND DATE GENERATOR by Tony Hart
PIC TOOLKIT MK2 Dy John Becker
PICKI A.
PICKLEA, MIND. EPE-2
POWER SUPPLY VARIABLE DUAL
PROEE, ACOUSTIC
PROBE. PIC MICAO
PUNCTURE FINDER, ULTRASONIC
OWL LOUDSPEAKER SYSTEM by John Dix
RADIO REMOTE CONTROL. AIAJFM.
RADIO, MECHANICAL
REARSCEEEN DEMISTER ONE-SHOT
RECEIVER, SW LOOP AERIAL
RECORDPPLAYBACK MODULE, VOICE
REMOTE CONTROL A.M.FM. RADIO
SAVER. IRONING BOARD
SMOKE ABSORBER by Bdl Amoney
SOLDER FUMIES EXTRACTOR
SOUND ACTIVATED SWITCH by Bart Treoak
Clipping Video Fader
Freezer Alarm
LED Stroboscope
Loop Aerial SW Recever
Magneuc Fiald Detectior
Mann Cable Detector
STOPWATCH, GINORMOUS
STROBOSCOPE, LED.
SUNDIAL, MUSICAL
SUSTAIN PEDAL. MIDI, PIC
SWICH, SOUND ACTIVATED
SW RECEIVER. LOOP AERIAL
TESTER, 12 V BATTERY
THEE AND DATE GENERATOR, PIC
TOOLKIT MIK2, PIC
$\begin{array}{r}369,459 \\ \hline\end{array}$
Koushapoas
ULTRASONIC PUNCTURE FINDER by BII Mconey
VERSATILE EVENT COUNTER by John Becker $\quad 6-46$
VIBPALARP by Terry de Vaur. Balbirnia
VIDEO FADER, CLIPPING
VOICE RECORD PLAYPACK MODULE by Rcbers Pentold
VOLUME COMPRESSOR by Robert Penlold
6. 879

8-CHANNEL ANALOGUE DATA LOGGER by John Bedker 585,688
12V BATTERY TESTER by Terry de Vaux-Balbirnte
484

369, 458
870
324,575
$8-4$
22. 210.298

298
507
431
431
126. 184

280, 360
54
126
126
184
280
360 $\begin{array}{r}870 \\ 84 \\ \hline\end{array}$ 198 507 762 646 812
870 870
555 556 36 42 0 -
 ,

GENERAL FEATURES

ALAN DOWER ELUMLEIN oy Barrie Blaie-Coieman 414
DATA.NET REVIEW by Robert Pentold 286
EDISON 3 REVIEW by Robert Penfold 447
FROM RUSSIA WITH LOVE? by Barry Fax 24
UTSEC SHOW REPORT by Clive "Rax* Marfield 171
MAX761 O.C. TO D.C. CONVERIER by Andy Find 269
MODULAR CIRCUIT DESIGN CD-ROM, REVIEW by Rocert Penford 253
PC ENGINES - FROIs soos TO PENTIUM ill by Einest Fint 338
PIC16F87x MICROCONTROLLERS by John Becier 742
please take note
34, 298, 335, 575, 882
Demister One-Shoi (Nor 9
Foghorn Timing Swith (IU, Dec 98)
Greenthouse Computer (Jul 98)
Logic Gate Tester (IU, Nov 98)
MBI Mandoells (May 99)
PC Capacitance Mever (Oct 98)
PIC16C84 Toolot (Jut 98)
PIC16C84 Tookut (Jul '98)
Rewable IR Remote Control (Oct Nov 98)
Teach-in 98 P:6 (Apr 98)
Wreless Monitoring Syslem (Feb 99)
POWER GENERATION FROM PIPELINES TO PYLONS
by Alan Winstanley
570. 652

SCOLAR POWER by Terry de Vaur-Balbirnie
114

SPECIAL SERIES

. .iorse Practice Oscillator
Motor Controller with Centre Oft
Narrow Band Vision
Nationas Lottery Predictor
NiCad Discharge Unit
One-Voit LE.D.
Photo Slave Flash Unit
Pico Prize Winners
Pulse Modulated Irverter
Rechargeable PP9 Battery
Recharge Polarity Indicalor
Reverse Polanty th
Shoestring MW Rado
Shoestring MW
Space Case Alarm
Squast/Badminton Scorer
Superior Heads-Tails Indicator
Theatrical Cue Light
Time-Lapse Unit for Camcorder
Tumble Dryer Alarm
IV Test Patien Generator
Using Solenoid Valves in Place of Motorised Valves 3670
Using Solenow Vaives in Piace of motorised Valves Video Amplifier
Zener Diode Tester

NTERFACE by Robert Penfold 288, 428,590, 756, 885
AD8300 serial digital to analogue converter - PC controlled
More on serial inlertacing to your PC
Using Delphi to visually program your PC as a virtual meter Visual programming for PC add-ons
PhizzyB COMPUTERS by Clive "Max' Maxfield. Avin Brown and Alan Winstanley
$48,120,177,274,356,450$
3 - Shits, rotates, stacks and I.c.d.s
4 - Polting and Latching techniques
5 - Contro ing the Phizzybot wheeled robot
6 - Routines or PhizzyB01 impact guidance
7 - Giving vision to PhizzyBo!
8 - Aandom routines
PRACTICALLY SPEAKING - TECHNIOUES by Robert Penfold $98,190$.
Casing your projects more easily
Getting it working when it doesn'll
Guide to capacitor types and choices
Guide to identitying integrated circuits
How to achieve larger case hotes more easily
Making better connections with sockets and switches
PRACTICAL OSCILLATOR DESIGNS by Raymond Haigh 521.598,

1. Hartey and is variants
2. Colpitts and its variants
3. Armstrong, Meissner, Franklin and Butier. plus R.F. probes
4. Negalive resistance oscillators
5. Crystal and crystal-controlled osciltators
6. Resistor/Capacitor Oscilators

L-

1. Colour Codes and Resistors
2. Capacitors and Timing

REGULAR FEATURES

EDITORIAL $\quad 11,83,155,233,323,403,483,555,635,715,787,869$
NET WORK - THE INTERNET PAGE surted by Alan Winstantey $69,141,219,307,387,468,539,619,699.772,851,938$ NEW TECHNOLOGY UPDATE by lan Poove 19, 130, 163. 247, 334, 411. $488,560,640.720,792$. 888

NEWS - purs reports by Barry Fox

READOUT addressed by John Becker
SHOPTALK with David Barrington

15, 91, 164, 242, 331, 407 491, 563,643, 723, 795, 874

29, 132, 175, 271, 367, 426,
$533,577,649,753,831,909$
34. 131, 189, 298, 335, 430, 501.
$575,672,726,826,882$

SPECIAL OFFERS AND SERVICES

ADVERTISERS INDEX 72.144, 224, 312, 392, 472, 544, 624,
BACK ISSUES
BASIC SOLDERING GUIDE FREE COT 594, 686, 764, 802, 932 CAILOGUE (HANLINE FLYEA UK Oniy) CD-POMS (MAINLINE FLYER - UK Only) between 900901 CD-ROMS FOR ELECTRONICS $46,118,196,290,364,444,518$,

DIRECT BOOK SERVICE
$64,137,216,304,382,464,536,616,696$.
'ELECTRONICS MANUALS
$760,840,924$

ELECTRONICS VIDEOS $67,101,218,266,386,467.516,607,675$, IDENTIFYING ELECTRONIC COMPONENTS INGENUITY UNLIMITED SPECIAL FREE Cover mounted booklot (Nov '99) PRINTED CIRCUIT BOARD AND SOFTWARE SEFVICE $68,140,220$, $308,388,469,540,620,700,773,852,937$

SPECIAL OFFER A.S.A. Profile Security Camera kit	419,528
SPECIAL OFFER B.K. Electronies	
Save E100 on an $80 W$ + $80 W$ Hi-f Stereo Amp	109,208

[^4]
VIDEOS ON ELECTRONICS

A range of videos selected by EPE and designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They have proved particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, H required.
VT201 54 minutes. Part One: D.C. Clircults. This video is an absolute must for the begin. ner. Series circuits. parallel circuits, Ohms law, how to use the digtial multimeter and much more. Order Code VT201 VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You wifl learn about how coils. transformers. capaciors, etc are used in common dircults.

Ordes Code VT202 VT203 57 minutes. Part Three: Semicon. ductors. Gives you an exciting look into the world of semiconductors. With baste semiconductor theory. Plus 15 different semiconductor detices explained.

Order Code VT203

VT204 56 minutes. Part Four: Power Supplies. Guides you step-by-step through different sections of a power supply.

Order Code VT204 VT205 57 minutes. Part Five: Amplifters. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C. op.amps. etc. Order Code VT205 VT206 54 minutes. Part Six; Oscillators. Osciltators are found in both linear and digital clrcults. Gives a good basic background in oscillator circuits.

Order Code VT206

$£ 34.95$
 each

inc. VAT \& postage
Order 8 or more gel one extra FREE
Order 16 get two extrs FREE

VCE MAINTENANCE

VT102 84 minutes: Introduction to VCR
Repair. Warning. not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

Order Code VT102
V1103 35 minutes: A step-by-step easy to follow procedure for professionally clean. ing the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found In the tape path.

Order Code VT103

DIGITAL

Now for the digital sertes of six videos. This series is designed to prowide a good groundIng In digtial and computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circult, plus Binary notation.

Order Code VT301
VT302 55 minutes. Digital Two; Flip Flops will further enhance your knouledge of digital basics. You wilt leam about Octal and Hexadecimal notation groups. flip-flops. counters. etc. Order Code VT302 VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303
VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will tearn about digital-to-analogue and ana-logue-to-digital converter ctrcults.

Order Code VT304
VT305 56 minutes. Digital Flve; Memory Devices Introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM. EPROM. EEPROM. SRAM, DRAM, and MBM detices.

Order Code VT305 VT306 56 minutes. Digital Six: The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT30

ORDERING: Price Includes postage to anywhere in the worid.
OVERSEAS ORDERS: We use the VAT portion of the price to pay for airmatl postage and packing, wherever you live in the world. Just send £34.95 per tape. All payments In £ sterling only (send cheque or money order drawn on a UK bank).
Visa and Mastercard orders accepted - please give card number, card expiry date and cardholder's address if different from the delivery address.
Orders are normally sent within seven days but please allow a maximum of 28 days, longer for overseas orders.
Send your order to: Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Lid., Publishers of EPE
Tel: 01202881749 . Fax: 01202841692
Due to the cost we cannot reply to overseas orders or queries by Fax. E-mall: editorial@epemag.wimborne.co.uk

RADIO

$V T 40161$ minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception Learn how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system.

Order Code VT401 VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oseillator, I.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver. Order Code VT402

VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. lechnology from Part 1. Begins with the detector stage output, proceeds to the 19 kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS dightal data encoding and decoding.

Order Code VT403

MISCELIANEOUS

VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors. transmitters and receivers.

Order Code VT501
VT502 57 minutes. Laser Technology A basic introduction covering some of the common uses of taser devices, plus the operation of the Ruby Rod laser. HeNe laser, CO_{2} gas laser and semiconductor laser devices. Also covers the basics of CD and bar code scanning. Otder Code VT502

Each video uses a mbture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co_{o}, an American supplier. We are the worldulde distributors of the PAL and SECAM versions of these tapes. (All videos are to the UK PAL standard on VHS tapes unless you specifically request SECAM versions.)

Everyday Practical Electronlcs/ETI reaches twice as many UK readers as any other independent monthly hobby electronics magazine, our audlted sales flgures prove It. We have been the leading Independent monthly magazine In this market for the last fourteen years.

Abstract

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+VAT) per word (minimum 12 words). All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics/ETI Advertisements, Mill Lodge, Mill Lane, Thorpe-le-Soken, Essex CO16 0ED. Phone/Fax (01255) 861161. For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

RCS VARIABLE VOLTAGE D.C. EENCH POWER SUPPLY	
Up to 20 woits de. at i arpo continuous. 1-5 angs peak. Nuty variabie from 1 to 20 volts. Twin	
Usiage and E 45 vaT	
Current meters tor easy read.	
out. 240 voltac. inpue Fuly smoothed, size Z3erulitomidom.	
RADIO COMPONENT SPECIALSTS	
337 WMITEMORSE ROAD, CROYDON SURREY, CRO 2HS. TEL Oíb1-834 168S	

TZEE NOV AVAILABLE MITH
 ALSO SPECTRUM AND QL PARTS W. N. AICHARDSON \& Co. PHONE FAX 014948713195 FAVENSMEAD, CHALFONT ST PETER. EUCKS. SL9 ONB

$\mathrm{X}-10^{\circ}$ Home Automation We put you in control ${ }^{\text {TM }}$

Why tolerate when you can automate? An extensive range of $230 \mathrm{~V} \times 10$ products and starater kits available.
Uses prove Power Line Carrier technology. no wires required.
Products Catalogue available Online. Worldwide delisery.

Laser Business Systens Lid.
E-Mail: info@laser.com hutp://www.laserciom VIF Tel: (0181) 44! 9788 Fax: (0181) 4490430

BTEC ELECTRONICS TECHNICIAN TRAINING GNVO ADVANCED ENGINEERING (ELECTRONIC) - PART-TIME HND ELECTRONICS - FULL.TINE B.Eng FOUNDATION - FULL-TIME

Next course commences
Monday 10th January 2000
FULL PROSPECTUS FROM

LONDON ELECTRONICS COLLEGE

 (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SUTEL: 0171-3738721

THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:
Mr. M. P. Aloses,
5 Park View, Cwmaman, Aberdare CF 44 6PP space donsted by
Everyday Practical Electronlcs

Miscellaneous

PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and Production. Artwork raised from magazines or draft designs at low cost. PCBs also designed from schematics. Production assembly also underiaken. For details send to P. Agar, Unit S. East Belfast Enterprise Park. 308 Albertbridge Road. Belfast. BT5 4GX, or phone/iax 01232738897.
VALVE ENTHUSIASTS: Capacitors and other parts in stock. For free advicenists please ring. Geoff Davies (Radio). Tel. 01788574774.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities. for details send s.a.e. to B. M. Ansbro, 38 Poynings Drive. Hove, Sussex BN3 8GR, or phone Brighton 883871 . fax 01273706670.
WANTED: A copy of Stripboard Magic by Ambyt. Tel/Fax Dave Lamer. 01493721879.

GOLDEN GOOSE SERIAL EEPROM COPIERS, copies to/from 24C16. 24LC16B, 25C166. 24C32, 24LC32A, ctc. Call (01245) 358209 after 6 mm . or visit www.goldengoose.co.uk for details.
PIC16F877-04, 86.00 each. s.ae. plus cheque to R. Boarfinan, 4 Chapel Close, Ellesmere Port. South Wirral. CH65 2HP. Tel. 01513564588.
SECOND USER TEST EQUIPAIENT for sale: Scopes. generators, dmms. etc. H.P. Tektronix, Datron, Hameg. Marconi. Fluke, etc. Low prices. Also some non-working equipment for parts, experiments, etc. Ring or E-mail for list. 07930 144803 or bford@mitectelcom.com. PROTOTYPE P.C.B. PRODUCTION from CAD designs. Send printout of copper track layout and NC drill file on disk to: Mr Bels. 5 Velden Way. Mill Road. Market Rasen. Lines LN8 3HD. For prices and information send s.a.e. FLAT C.R.T., only Kiin. thick. For handheld oscilloscope probe? £38 with sockel. 01455 613588.

AMPLIFIER BARGAINS: 50 wath, ruged module plus heatsink. 68: 30 watl, stereo and controls, 29. K.I.A. 1 Regent Road, Ilkley LS29 9EA. Leaflet s.a.e.
G.C.S.E. ELECTRONIC KITS, at pocket money prices. S.A.E for FREE catalogue. SIRKIT Electronics. 52 Severn Road. Clacton. COIS 3RB.

FPI MIT ADDRESSES

EPE FTP site: ftp://ftp.epemag.wimborne.co.uk

Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP soltware, then go into quoted sub-directories:
PIC-project source code files:/pub/PICS
PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!

EPE text files: /pub/docs
Basic Soldering Guide: solder.txt
EPE TENS Unit user advice: tens.doc and tens.txt
Ingenuity Unlimited submission guidance: ing_unlt.txt
New readers and subscribers info: epe_Info.txt Newsgroups or Usenet users advice: usenet.ixt Ni-Cad discussion: nlcadfaq.zlp and nicad2.zip UK Sources FAQ: uksource.zlp Writing for EPE advice: write4us.txt

On-IIne readersI Try the new EPE Chat Zone-a virtually real-tlme Internet "discusslon board" In a simple to use web-based foruml http:/iwww.epemag.wimborne.co.uk'wwwboard Or buy EPE Onllne: www.epemag.com

Ensure you set your FTP software to ASCII transler when fetching text files, or they may be unreadable. Note that any file which ends in zip needs unzipping belore use. Unzip utirir ties can be downloaded from:
hitp://www.winzlp.com or
http://www.pkware.com

Professional $88-108 \mathrm{MHz}$ FM Broadcasting Kits

HALF PRICE CCTV CAMERAS!

 Camera PSU and Cable Kit

LASER POINTERS
Prosessional model fres a small red laser dot over 250 metres. Buin into erecutive ballpoint pen with case and batts.
$£ 10.00$
Gold-plated Keytob model
LIST E29.95 NOW 86,00 Mutti Keytoo with 5 tips fires a dol, horizontal line, star, arrows and circle
LIST £41.25 NOW 89.00
Add $£_{3} \mathrm{p} \& \mathrm{p}$ any quantity.

SONY COLOUR CCTV

 BOARD CAMERASThe bess colour car enas wo hare ener seen - the nen colours and cystel clear mages arazed our buyen Migh orace Sony inape sensor ctip has two firis and 290.000 prebs. 330 W int resolvion and LUX tevel 2 Standard UK PAL works on any TV OR mortor. Use wht our catera PSU and cade he free atovel.
NEW LOWER PRICE 556.00 (audio add E5)
 ALL GOOOS ARE BRANO REN
AND PERFECT BUK BUVERS PLEASE ASK FOR JOH:
PRICES ACL WOE VII PRICES WCLVOE VIT
g PR NYY SUZE CRDER

A.S.A. Ene 197n

Order hotline
01642851256 Midolestrough Fax:
01642823173

ELECTRONIC SURPLUS CLEARANCE SALE

MAGNETIC CAEDIT CARD READER: Korboard and lap lop displey system, part of poirtof sale unt Cost over £150, our price £7.50. carrage 56.50 ; two unts $\mathbf{E 2 5}$ ind carrage. To be used to eapenmental purposes onk Alo inta
SECURITY ALARM SYSTEM: Consisting of whe loca pressure pac, pero alarm sounder, hey sutch, plasic case 84.50. pSp 2.50
COMPONENTS - YiVI METALCARBON FILM RESISTORS: Mired vatues, 250 for It. psp 75p REGULATORS: 7805 1A 5 V pos. 5 for I 1 post tree
MODULAR OUAL PSU: Hains inpt imo 12 V de oupuis a: 300 mA or single 12 V d. .
 SCOOP PURCHASE - An essential book: PRIHCIPLES OF ELECTPOMICS, AMALOGUE ANO DIGITAL: A complete electronics course for the studem or engineer. A settostudy relerence book contaning a tread range of material. 632 pages fuly ilustrased Put at ove: 550 , our price E1750. p\&p \& 4.50
FREE: A ksing of new frst ciass components and electronc leens at beiow trade prices incudes manutacturers' suptus and overstocks. Also vaties and high ictiage eaps (Dept E) CHEVET SUPPLIES LTD

157 Dickson Rosd, BLACKPOOL FYI 2EU V参

COVERT VIDEO CAMERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receiver (Wireless). Cameras as above with colour.
Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

A.L_ ELECTRONICS
 Please phone 01812036008 for free catalogue. Fax 01812015359 www.uspy.com
 New OTI spproved Video Transmitters and Receivers (Wireless) Major credil cards now taken

SHERWOOD ELECTRONICS

FREE COMPONENTS

Buy $10 \times$ \&1 Special Packs and choose another one FREE

SP1		SP133	$20 \times 1 \mathrm{ncous}$ dodes
SP2	$12 \times 5 \mathrm{~mm}$ Green LEDs	SP138	15×114007 dodes
SP3	$12 \times 5 \mathrm{~mm}$ Yetow LEDS	SP135	6 I Mir. side satuthes
SP6	$15 \pi 3 \mathrm{~mm}$ Red LEDS	SP135	$3 \times 8 F Y 50$ vansistars
587	$12 \times 3 \mathrm{~mm}$ Green LEDs	SP137	\& 1 W\%OS ish tride rectiors
SP10	100 ± 17.2148 duodes	SP138	20×2.2634 radal eiect caps
SP:1	$30 \times 11+5001$ dodes	SP140	3 I V/OH 1-5A tridge rections
SP12	$30 \times 1+4002$ diodes	SP142	$2 \times$ CMOS 4017
SP18	$20=\mathrm{EC} 182$ tramestors $20 \times$ BCies yansistors	SP143	5 Pairs min. crocodie cips
SP21	$20-8 C 212$ transiors	SP145	$6 \times 21 \times 300$ transators
SP23	$20 \times$ EC549 transistors	SP146	$10 \times 2 \mathrm{pa} 70$ transisiors
5P24	$i 8 C N O S$-1555 timers	SP1:7	5 x Stripboard 9 sripe x
SP25			25 hot
SP26	- $\times 711$ OpAmps	SP151	4 a 8 mm Red LEDs
SP28	4 ECMOS 4011	SP152	$4 \times 8 \mathrm{~mm}$ Green LEDs
SP29	$3 \times C \operatorname{LoS} 4013$	SP953	$4 \pi 8 \mathrm{~mm}$ Yellow LEDS
SP31	$25 \times 1025 \mathrm{~V}$ radas elect caps	SP154	15 : EC5 88 transisters
SP36		SP156	3 = Sripoard. li st
SP37	$15 \times 10035 \mathrm{~V}$ radal elect caps		27 noies
SP39	$10 \times 47016 \mathrm{~V}$ fadial elect cass	SP160	$10 \times 2 \mathrm{~N} 350 \mathrm{~s}$ transistors
Spat	$15 \times 8 C 237$ transistors	SP161	10 \& 2 N 3906 transistors
SP:1	$20 \times$ ifloed transsistors	SP165	2 x LF351 Op Amps
SP42	200 x Mined 0.25W C.F. resstors	SP167	$6 \times \mathrm{BCl} 107$ transistors
SP47	$5=\mathrm{MEn}$ PB switcres	SP168	$6 \times 8 C 108$ trarsistors
SPICR	2018 pan Dit sockets	SP175	20 = 1/63V racia eject capa
SP103		SP177	10×1220
SP104	15×16-pin DM sodue:s		luses
SP105	5 - 1 744 500	SP182	20.4 .783 V radal enct ca
SP109	15 I BC557 transistors 15 a Assorted poljester caps	SP183	$20 \times 8 C 547$ vansistors
SP111		SP187	$15 \times 8 \mathrm{BC239}$ tansistors
SP112	24 CMOS 4093	SP191	$3 \times$ CMOS 4023
SP115	53810 mm Red LEDs	SP192	$3 \times$ CNOS 4066
SP116	$\begin{aligned} & 3 \text { y } 16 \mathrm{~mm} \text { Geen LEDs } \\ & \text { is } \\ & 2 \text { a } \mathrm{CMOS} \text { soil } \end{aligned}$	SP193	20 - BC213 yansistors
SPP18		SP194	8 E OASO dodes
SP120	- $3 \times 74 \mathrm{LS} 93$	SP195	$3 \times 10 \mathrm{~mm}$ Yolow LEDs
$\begin{aligned} & \text { SPi24 } \\ & \text { SPi30 } \end{aligned}$		SP197	$6 \times 20 \mathrm{pin} \mathrm{OfL}$ sockets
	100 g humd 0.5 W C.F. resistors	SP193	$5 \times 24 \mathrm{Din}$ Dil sockets
$5 \mathrm{SP} 131$		1999 Catalogue now available Et	
	RESISTOR PACKS - C.Film	linc. P\&P or FREE with Itrst order, PEP E1.25 per order. NO VAT	
APs	5 esch rave - bea $3650-25 \mathrm{~W}$ 10 esch vate - yotal 730 o-25W		E1,25 per order. NO VAT Orders to:
AP10			
PPs		Sherwood Electronles,	
98		Nolts. NG196TO.	
AP?	$\begin{array}{ll}10 \text { eacien valer-2ay } 730 \\ 1000 \text { popular vales } 0.5 \mathrm{~W} & 5635 \\ & 1810\end{array}$		

> Millions of quality components at lowest ever prices!
> Plus anything from bankruptcy - theft recovery - frustrated orders - over productions etc. Send 50 p stamped self-addressed label or envelope for clearance lists.

> Brlan J Reed 6 Queensmead Avenue, East Ewell, Epsom, Surrey KT17 3EQ Tel: 07775945386 Mall Order UK only.

Lists are updated and only 40 are sent oul every 2 weeks. This normally ensures that orders can be fulfiled where only a few thousands of an item is available. (Payment is returned if sold out, I do not deal in credit notes). This will sometimes entail a delay of up to eight weeks - but the prices will be worth the wail!

ADVERTISÉRŠ INDEX

A.L. ELECTRONICS 944
ANTEX 923
A.S.A. 943
N. R. BARDWELL 943
B.K. ELECTRONICS Cover (iii)
BRIAN J. REED 944
BULL ELECTRICAL Cover (ii)
CHEVET SUPPLIES 943
COOKE INTERNATIONAL 943
CROWNHILL ASSOCIATES 873
DAVID JOHNS 864
DISPLAY ELECTRONICS 858
ELECTROMAIL 889
EPT EDUCATIONAL SOFTWARE Cover (iv)
ESR ELECTRONIC COMPONENTS 868
FML ELECTRONICS 944
FOREST ELECTRONIC DEVELOPMENTS 863
ICS 943
J\&N FACTORS 862
JPG ELECTRONICS 864
LABCENTER ELECTRONICS 887
LEADING EDGE TECHNOLOGY 889
MAGENTA ELECTRONICS 866/867
MILFORD INSTRUMENTS 890
NATIONAL COLLEGE OF TECHNOLOGY 923
PICO TECHNOLOGY 865
QUASAR ELECTRONICS 933
QUICKROUTE SYSTEMS 877
SERVICE TRADING CO 864
SHERWOOD ELECTRONICS 944
SQUIRES 923
STEWART OF READING 863
SUMA DESIGNS 861
TELNET 860
VANN DRAPER ELECTRONICS 911
VERONICA FM 878
VERONICA KITS 943

ADVERTISEMENT MANAGER: PETER J. MEW
ADVERTISEMENT OFFICES:
EVERYDAY PRACTICAL ELECTRONICS, ADVERTISEMENTS,
MILL LODGE, MILL LANE, THORPE-LE-SOKEN.
ESSEX CO16 OED.
PhoneFax: (01255) 861161
For Editorial address and phone numbers see page 869

BASS MAD TOP BASSIMID TOP GASS WIDITOP COAFIGURED 3 WAY
 2 WAY BASSIMID COMBINED
 2 WAY MIDITOP COWEINED

 FEATURES:

PRICE:- £117.44 + £5.00 P\& P

Sound LAB SPM 12 AND 16 CH.MIXERSS
The 12 and 16 Channel SPM Series OI Studio Quality Mixers Are Ideal For Fixed Installation Stage And Mobile Use.

- 48V PHANTOM POWER
BUILT IN POWER SUPPLY
- 230V AC/50Hz
- PEAK INPUT LEVEL LEDS
- PAE FADE LISTEN (PFL)
* SUB MASTER OUTPUT
- 60 mm FADERS © CHMUTE
- 2 STEREO AUX.SEND/RETURNS
- CONSTANT PAN CONTROL
- 3 BAND EO WITH MID SWEEP
- HEADPNONE/CONTROL ROON O/P
- BALANCED INPUTS \& OUTPUTS
- BUS ASSIGN SWITCH
- monitor send

PRICES:-
SPUI202 4 NONO MICILINE. ASTEREO INPUTS $£ 299.00$ FREE SPWI602 BMONO WICILINE. 4 STEREO INPUTS £ 395.00 UX PSP

SIIEIEO DISCO MIXER WPX-7700

4 STEREO INPUT CHANNELS - 2 DJ MIC INPUT CHANNELS - 2×7 BAND GRAPHIC EOUALISERS - hEADPHONE MONITOR WITH PFL - assignable CAOSSFADE DIGITAL ECHO
STEREO DISCO MIXER WITM:-2 2×7 GRAPHC EOUALISERS -2 MOHÖ MUC HPUTS •DJ MC WITH FADER. TALKOVER AND VDICE CHANGER -A STEREO CHARINELS WITH INDIVDUAL FADEAS AND ASSIGHAELE CROSSFADE - CMAHMELS SWITCMABLE. TUAMTABLE MAG CARTAIDGE, CO. LIPE. TAPE. ETC. ECHO WITH 8ALANCE, REPEAT APID DELAY - HEADPHONE MONITOA WITH PAEFADE LISTEN - CHOICE OF 5 SOUND EFFECTS - STEREO MONO SWITCH $2 \times$ LED VULETERS -HASTER FADER - OUTPUT 775 mV

RFDOTO YICFO PHONE CYBERWAVE FMM 1000

* DEAL FOR LIVE BANOS, PUBLIC ADDRESS \& KARAOKE ETC - ONUSTANDRY/OFF SWITCH UOUNTED ON WIC BARREL FOA EASE OF USE - 100 HOURS BATTERY RUNNING TIME. IPP3 (NOT SUPPLIED) - SINGLE CHANNEL RF MICROPHONE 174.23 OR 174.56 MHIz - NAINS ADAPIOR FOR RECEIVER SUPPLIED - FM LOCK INDICATOR a VOL CONTROL ON RECEIVER. PAICE:- £ 119.99 FREE UK P\&P

FICHTCASED A new renge of quality louaspeakers. designed to take FLIGHTCASED advantage of the talest loudspoaker locinology and LOUDSPEAKERS advantage of the lalest loudspoakef locinnology cass aluminium loudspeakers with factory fltied grilles. wido disporsion constant diroctivity horns, extruded aluminium cornor protoction and stoel ball corners, complimented with heavy duty black covering. The enclosures are fitted as standard with top hats for optional loudspeaker stands. The FC15-300 incorporatos a large 16×6 inch horn. All cabinets are fitted with the latest Speakonconnectors for your convenience and safety.

Flve models to choose from.

PLEASE NOTE. POWER RATINOS OUOTED ARE IN WATTS RM.S. FOR EACH INDIVIOUAL CABINET. ALL ENCLOSURES ARE B OHM $\sqrt{-15015 \text { inen speaker }}$
 ibl FC15 300 Watts Freq Range $35 \mathrm{~Hz}-20 \mathrm{KHz}$. Sens 1010 B . Size H 695 Wiso2 0415 mm ibl FCi2.300 WATTS Freq Range 45 Hz -20KHz. Sens 9608 , Size H1600 W 405 K 6300 mm

 PRICE:- $\mathbb{1} 79.00$ per palr

SPECIALIST CARRIER DEL:- $£ 12.50$ per pair, Wedgo Monisor $£ 7.00$ oach Oplional Metal Stands PRICE: £ 49.00 per pair Delivery:- $£ 6.00$

COLOSSUS POWER

THE COLOSSUS RANGE OF LOUDSPEAKERS
ARE DESIGNED FOR USE IN SUPERIOR HIGH POWEA OUTPUT SYSTEMS. ML MOOELS AAE O OHY COLOSSUS 12M8:- 12 INCH \# 450WATT RM.S. - 900 WAT TS PEAK. Sens 93 cB. ARes Freq 55 Hz . - Frequency Range $10 \mathrm{~Hz}-35 \mathrm{KHz}$ PRICE E129.00 COLOSSUS 15×8 B: 15 INCH * G00WATTS A.M.S - 1200 WAITS PEAK. Sens 99 oB. Aes Fteq 35 Hz - Frequency Range $30 \mathrm{~Hz}-10 \mathrm{KHz}$ PRICE E 159.00 COLOSSUS $18 \times 8:-18 \mathrm{INCH}$ • 600 WATTS RH.S. - 1200 WATTS PEAK ${ }^{2}$ Sens 100 cB . A Res Freg 30 Hz

OMP MOS-FEU POWER AMPLIFISR MODULES SUPPLIED AEADY BULT AND TESTED

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS OMPIMF 100 Moe-Fot Output power 10 walts RMS into 20 Nm . Trequency response Hz .20 KHz . $30 B$. Damping Factor >300. Slow Rate $45 \mathrm{~V} / \mathrm{LS}$. THO iypical 0.002%. Input Sensitivity 500 mV . SNR 11008. Size $300 \mathrm{E} 123 \times 60 \mathrm{~mm}$

PRICE:- $£ 42.85+\varepsilon 4.00$ PAP
OMP/MF 200 Mos-Fot Oulput power 200 watis AMS . into 4 otms. trequency response $\mathrm{HZ} \cdot 200 \mathrm{KHz}$ -3 CB . Damping Factor 3300 . Slow Rate $50 \mathrm{~V} / \mathrm{uS}$. THD. typical 000 年, Input Sensitivity 500 mV , SNR. 110 cB Size $300 \times 155 \times 100 \mathrm{~mm}$

PRICE:- £66.35 + £4.00 PAP

OMP/MF 300 Moe.Fo! Outpul power 300 watts RMS into 4 ohms. frequency response 31 z - 200 KHz -30B. Damping Factor >300, Stew Rate 60V/uS. TH0. typical 0.00 s\% Input Sensitivily 500 mV . SNR 120 BR . Size $330 \times 175 \times 100 \mathrm{~mm}$

PRICE:- ع83.75 + ع5.00 P\&P

OMP/MF 450 Mos.Fol Outpul power 450 watts RMS, into 4 ohms. trequency response Hz - 100 KHz -34日, Dampang Factot >300. Slew Rate $75 \mathrm{~V} / \mathrm{US}$. THD typical 0001%. Input Sensitivity 500 mV . SNR WWOR, Fan Ccolec. D.C. Loudspe aker Protection. 2 Second Ansi- Thump Delay. Size 385×2 10 $x \times 05 \mathrm{~mm}$

PRICE:- $1135.85+\varepsilon 6.00 \mathrm{P} \mathrm{\&}$ P
OMP/MF 1000 Moe-Fol Outpui power 1000 watis RMS inco 2 ohms, 725 watts RMS. into 4 ohms. trequency response $\mathrm{Hz}, 100 \mathrm{KHz}-308$, Dariping Factor >300. Slew Rate $75 \mathrm{~V} / \mathrm{US}$. THD. typical 0002%. Input Sensitivity 500 mV , S PAR - 11008 . Fan Conied D.C Loudspeake: Prolection 2 second Antl Thump Delay Size $422 \times 300 \times 125 \mathrm{~mm}$

PRICE:- $£ 281.00+£ 12.00$ PAP
wore vos per wodules ane avallabie im iwo versions

B.K. ELECTRONICS

UNIT 1 COMET WAY, SOUTHEND-ON-SEA, ESSEX, SS2 6TR.
TEL.: 01702 527572 FAX.: 01702-420243 Webs- http://www.bkelec.com E-mail:- Salesebkelec.com

'Electronics, Electrical \& Mathematics Principles V6'

If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics and maths then this is the software for you.

CD-ROM for Windows '95,' 98 \& NT.
£99.95
\#VAT
Postage FREE

From Ohm's law and simple DC through AC theory to the latest PIC16F84 and PIC16C71 micro controllers where the architecture and complete instruction set can be explored through the interactive graphics. Approved by Microchip. Mathematics are developed from simple number systems to solving linear equations and applying statistics.

$$
\begin{aligned}
& \text { Over gua main menu selections. Phease teleptio } \\
& \text { or visit our webs ste for a complete list. }
\end{aligned}
$$

"Electronics Principles is a well thought out and comprehensive program that is also easy to install and stable in operation. It can be wholeheartedly recommended." Robert Penfold. Everyday Practical Electronics magazine October 1998.

EPT Electronics Lab. Www.optsoft.demon.co.uk An additional Serial Port hardware interface for all those practical plugboard experiments and circuit

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376 514008. sales@episoft.demon.co.uk www.eptsoft.demon.co.uk Switch, (Delta, Visa and MasterCard payments accepted - please give card number and expiry date Cheques \& Postal Orders shoulld be made payable to EPTI Educational software.

[^0]: The tile is fashioned and painted to look like a snowman (or snowperson?), and it has the l.e.d.s to form the eyes, nose and mouth. The idea is to
 arrange the l.e.d.s so that the snownan's
 xpression alternates between an internet style smile
 frown. This is just a suggestion, and there is plenty
 for doing your own thing. You could obviously use a
 coter such as Father Christmas as the basis of the
 could be made to wink, for example. to form the eyes, nose and mouth. The idea is to
 arrange the l.e.d.s so that the snownan's
 xpression alternates between an internet style smile
 frown. This is just a suggestion, and there is plenty
 for doing your own thing. You could obviously use a
 coter such as Father Christmas as the basis of the
 could be made to wink, for example. to form the eyes, nose and mouth. The idea is to
 arrange the l.e.d.s so that the snownan's
 expression alternates between an internet style smile
 d frown. This is just a suggestion, and there is plenty
 pe for doing your own thing. You could obviously use a
 aracter such as Father Christmas as the basis of the
 he could be made to wink, for example. to form the eyes, nose and mouth. The idea is to
 arrange the l.e.d.s so that the snownan's
 expression alternates between an internet style smile
 and frown. This is just a suggestion, and there is plenty
 scope for doing your own thing. You could obviously use a
 character such as Father Christmas as the basis of the
 and he could be made to wink, for example. to form the eyes, nose and mouth. The idea is to
 arrange the l.e.d.s so that the snownan's
 expression alternates between an internet style smile
 and frown. This is just a suggestion, and there is plenty
 of scope for doing your own thing. You could obviously use a
 ent character such as Father Christmas as the basis of the to form the eyes, nose and mouth. The idea is to
 arrange the l.e.d.s so that the snownan's
 and frown. This is just a suggeen an internet style smile and there is plenty
 of scope for doing your own thing. You could obviouly use a
 different character such as Father Christmas as the basis of the
 project, and he could be made to wink, for example. project, and he could be made to wink, for example.

[^1]: EWW CAD Revlew Round Up September 1998

[^2]: Supplements. Qur unique system is augmented by readers' requesis for new Information. Through this service you are able to let us know exactly what information you require in your exactiy wh
 Manuals.
 You can also contact the editors directly in wrting it you have a specific lechnical request or query relating to the Manuals.

[^3]: I enclose cheque/PO payable to Wimborne Publishing Lid. Please charge my VisalMastercard
 | Card No.
 Card Exp. Date

[^4]: 7400-SERIES LOGIC GATE PINOUTS. FREE GIANT PULL-OUT DATA CHART
 between pages 352/353

