

MSc Biological Sciences

Limnology & Oceanography

MSc Research Project

Changing benthic communities on Saba Bank Is Saba Bank becoming a 'Sponge reef'?

by

Mirthe Wiltink 10199179

August, 2016 42 ECTS Credits January 4th – September 27 th 2016

Supervisor / Assessor: dr. L. E. Becking dr. H. W. G. Meesters Examiner:

dr. ir. J. M. de Goeij

Wageningen University

Imares

1

Abstract - Due to multiple stressors, many coral reefs are degrading. Shifts from a coral dominated system to an alternate phase are observed. For coral reefs, the shift described most in the scientific literature is a shift to an algae dominated system. However, shifts to other dominant species are observed as well, including sponge or cyanobacteria dominance. It is thought that sponges may become dominant when macroalgae or turf algae cover increases. Algae are producers of dissolved organic matter (DOM), a food source for sponges. Cyanobacteria are producers of DOM as well, although it remains unclear whether sponges can use this. Furthermore, the decrease in spongivore fish due to overfishing, and the increase in picoplankton can result in increasing sponge cover. In this study, benthic cover of eleven sites at Saba Bank in 2013 and 2015 is assessed. Corals and sponges were identified to species level, to get insight into assemblages. Using the program CPCe, photo quadrats (N=10) of two transects per site were analyzed. The same photo quadrats were used for analysis of sponge diversity, all sponges larger than 4 cm were identified to species level. Last, in 2015 92 specimens of sponges were sampled and identified using DNA barcoding and morphological analysis. Close-up photos of these specimens were made, so that sponge identification guide of Saba Bank can be developed. A shift from turf algae dominance to cyanobacterial dominance among the years 2013 and 2015 was observed. Possibly, Saba Bank experiences some influence from the nearby islands Saba, St. Eustatius, and St. Kitts and Nevis. Macroalgae cover was found to be higher in the northern and northeastern parts of the bank (closer to the islands), whereas coral cover was lower in these parts. The coral with highest cover in the benthic survey was Montastraea faveolata (34.7% and 45.5% of total coral cover in 2013 and 2015). Using multivariate analysis, year and water depth had a significant effect on coral composition, position of the site had no significant effect suggesting connectivity between sites for corals. The species Xestospongia muta and Agelas sventres contributed most to total sponge cover (X. muta: 11% and 12.9%; A. sventres: 10.4% and 15.4% of total sponge cover in 2013 and 2015). Water depth, northing and non living cover had a significant effect on sponge composition. Altogether, sponge cover was not high on Saba Bank and therefore it is not (yet) becoming a sponge reef. In 2015, Saba Bank was dominated by cyanobacteria, this may be beneficial to sponges, since cyanobacteria are producers of DOM.

INTRODUCTION

Degradation of coral reefs

Coral reefs all over the world are degrading, due to climate change, and natural and anthropogenic stressors. It is estimated that already 19% of the global reef area is lost, 15% of the reefs are critically endangered and are at risk of extinction between 10 and 20 years when no measures are taken (Wilkinson, 2008). As a result of climate change, sea surface temperature is increasing and the pH in the water is reduced, which is negatively affecting calcifying reef-building organisms, including several coral species (Baker *et al.*, 2008). Besides, more extreme weather events, such as hurricanes will occur more frequently, which can damage corals. Over the past few years, coral diseases have been documented more often, and the impacts of these diseases could be devastating to coral reefs as well (Harvell *et al.*, 2007; Gouezo *et al.*, 2015). Due to the increase of human populations inhabiting coastal areas, the environmental pressure on coral reefs is rising (Wilkinson, 1996; Oigman-Pszczol & Creed, 2011). The major local anthropogenic stressors on coral reefs are nutrients, runoff, and overfishing (Ferrier-Pagès *et al.*, 2000; Hughes *et al.*, 2007).

Scenarios for degrading reefs

Increasing stress, may reduce coral growth and a system becomes more susceptible to become dominated by a different species (Anthony *et al.*, 2011). However, susceptibility to an alternative stable state depends on the resilience of coral reefs (Folke *et al.*, 2004; Mumby *et al.*, 2015). After a shift to another dominant species, community structure has changed and returning to the original state becomes challenging (Mumby, 2009). The phase-shift on coral reefs most described in literature is a shift from a coral dominated system to a macroalgae dominated system (Hughes, 1994; Nyström *et al.*, 2000). However, shifts to other alternative states are observed as well, including shifts to reefs that are dominated by corallimorpharia, soft corals, sea urchins, and sponges (Norström *et al.*, 2009). In one study a shift to a cyanobacteria dominated system was observed (de Bakker *et al.*, 2016). This long-term study of benthic community uses a dataset of permanent quadrants at Bonaire and Curacao over a time span of 40 years.

Algae dominated reefs

Reefs dominated by macroalgae are mostly described, however it is expected that turf algae will become one of the most abundant benthic groups (Sandin *et al.*, 2008). Algae benefit from eutrophication and decreased numbers of herbivorous fish due to overfishing (Hughes *et al.*, 2007; Littler *et al.*, 2006). An increased algal cover may lead to decreased coral recruitment, and increased coral mortality due to shading, toxic metabolites or pathogens (Nugues *et al.*, 2004; Kuffner *et al.*, 2006; Titlyanov *et al.*, 2007). Algae facilitate bacterial growth by producing dissolved organic matter (DOM), among these bacteria are coral pathogens that can cause coral disease (Kuntz *et al.*, 2005; Haas *et al.*, 2011). By producing DOM, algae are indirectly influencing oxygen availability in reef communities (Wild *et al.*, 2010; Haas *et al.*, 2011), because microbial activity is stimulated by DOM and consequently O_2 is depleted. This also is affecting corals, since their energy production in anaerobic conditions is less efficient (Murphy & Richmond, 2016).

Sponge reef hypothesis

In the Caribbean basin, sponges are now equally abundant as corals, however, they were relatively under-investigated in the past (Loh *et al.*, 2015). Sponges may become dominant on some coral reefs, since they are expected to be better competitors than corals for space under certain environmental conditions (Bell *et al.*, 2013). Sponges are able to use DOM, and transform it into particulate detritus (de Goeij *et al.*, 2013). An increase in algal densities may be beneficial to sponges, since more DOM is released (Pawlik *et al.*, 2016). Cyanobacteria are able to produce DOM too, although it remains unclear whether sponges can use this as a food source (Brocke *et al.*, 2015).

There are more factors concerning chances in food chain dynamics that may initiate sponge dominance. The availability of picoplankton, the major food source for sponges, is important to the structure of sponge communities on Caribbean reefs (Lesser, 2006). Sponge growth was correlated with higher picoplankton availability on reefs (Lesser, 2006; Trussel *et al.*, 2006). Besides, top-down processes may also play a role in the structure of sponge communities. Predatory fish prefer to feed on sponges that lack a chemical defense over sponges that produce secondary metabolites (Loh & Pawlik, 2014). When excluded from grazing, sponges without a chemical defense grew faster than defended sponges (Leong & Pawlik, 2010). It is predicted that overfished reefs, lacking spongivores, become dominated by undefended sponge species (Pawlik *et al.*, 2013).

A decrease in pH of seawater and an increase in temperature may be beneficial to boring sponges. Under predicted scenarios for acidification, calcification of corals was reduced, whereas bioerosion rates for sponges increased (Stubler *et al.*, 2014). Also, coral calcification was reduced when sea water temperatures increased, this was combined with increased bioerosion of sponges (Stubler *et al.*, 2015). It is thought that bioerosion depends on coral skeleton density, which in some species is lower at a lower pH (Hernández-Ballesteros *et al.*, 2013). A coral skeleton that is less dense is easier to erode. Besides, reduced sea water pH is metabolically less costly for boring sponges, since less acidic compounds has to be excreted by the sponges to create a low pH at the site of erosion (Nava & Carballo, 2008; Wisshak *et al.*, 2012).

Sponges have dominated marine areas in the past. 200 million years ago, the end of the Triassic, a mass extinction took place which also affected calcifying marine invertebrates. The decrease in calcifying marine invertebrates, probably caused by ocean acidification, was followed by an increase of siliceous sponges (Delecat *et al.*, 2010). Nowadays, shifts to sponge dominated systems are observed in the reefs surrounding La Parguera (Puerto Rico), the Florida Keys National Marine Sanctuary (USA), and the Channel Cay reef complex (Belize) (Aronson *et al.*, 2002; Ward-Paige *et al.*, 2005; Williams *et al.*, 1999). The sponges that became dominant in these shifts were coral-excavating sponges from the genera *Cliona* and *Chondrilla* (Norström *et al.*, 2009). It is thought that coral-excavating sponges will benefit from shifts to algae dominated systems, since they rely on dissolved organic carbon (DOC) to meet their carbon demand (Mueller *et al.*, 2014). Besides, new substrate will become available to these sponges as a result of coral decline (Ward-Paige *et al.*, 2005).

The main factors that may result in sponge dominance on reefs are:

- Increased DOM production by algae will result in increased food availability and facilitates sponge growth;
- Increased picoplankton availability by high nutrient input will result in increased food availability and facilitates sponge growth;
- Decrease in spongivore densities will result in reduced predation of undefended sponges that grow faster than sponges that produce secondary metabolites;
- Decreasing pH and increasing sea water temperatures will lead to decreased coral calcification and increased bioerosion of boring sponges.

Saba Bank

Saba Bank is part of the Caribbean Netherlands and Exclusive Economic Zone of the Netherlands. Saba Bank is a large coral bank with a total surface area of 2.200 km² shallower than 200 m, somewhat similar to an atoll. Most surface area of the bank is between 20 m and 30 m depth, which is deeper compared to most other Caribbean reefs. The coral reef community is highly divers and the sponge community is considered to be representative of the whole Caribbean Ocean (Thacker *et al.*, 2010). Saba Bank is removed from large landmasses, and therefore it appears that the reefs have suffered little from anthropogenic disturbances (de Bakker *et al.*, 2016). This makes Saba Bank an excellent case to study general processes that occur at coral reefs in the Caribbean. The bank is positioned upstream from Puerto Rico and the Meso-American Barrier Reef. Hypothetically, Saba Bank can serve as a reservoir for these surrounding reefs (Etnoyer *et al.*, 2010). Therefore, it is important to test connectivity of populations on Saba Bank first.

In this study, benthic cover and species diversity of corals and sponges on Saba Bank are assessed. Furthermore, I propose to test the sponge-reef hypothesis on the Saba Bank. Based on photographs of twenty-two transects of 50 m on 11 sites that were taken in 2013 and 2015, the changes in benthic cover will be examined. I want to find out whether benthic cover of Saba Bank changed within a timeframe from 2013 to 2015, and whether cover varies among sites on Saba Bank. Next, I look with more detail into coral and sponge cover in 2013 and 2015, and among the different sites. The assessment of cover among sites can give insight into connectivity on Saba Bank. An assessment of sponge diversity is performed to test whether diversity changed over time, diversity will be compared with data from previous studies in 1972, 1986, and 2006. If Saba Bank is becoming a sponge reef, then it is expected that sponge cover is increasing and coral cover is decreasing over the past years. In addition, the genera *Cliona* and *Chondrilla* would become more dominant, as is the case in reefs where a shift to a system dominated by sponges was observed (Norström *et al.*, 2009).

Research questions:

- What is the variation in benthic cover (i.e. corals, sponges, turf algae, macroalgae, cyanobacteria, and crustose coraline algae) among the years 2013 and 2015 and among sites along Saba Bank?
- Have sponge and coral cover changed over the past few years?

- What is the variation in benthic cover and species composition of sponges and corals among the years 2013 and 2015, and among sites along the bank?
- How is the variation in composition related to the years, presence of certain species, location of the sites or water depth?
- Which sponge species are dominant?
- Differs the sponge assemblage in 2013 and 2015 with sponge assemblages in 1972, 1986, and 2006?

MATERIALS & METHODS

The Saba Bank research program 2011-2016 was conducted by IMARES to get insight into key ecological processes and determining the health status on Saba Bank. Data on benthic community was collected during expeditions to Saba Bank in 2011, 2013, and 2015. During the expedition in October 2015, 92 samples of sponges were collected from 12 different locations. Later on, samples were used for DNA analysis and morphological analysis. High definition photographs of sampled sponges were made, for visual identification. For each sample that was collected a photograph was made. Of these samples a DNA barcode was amplified, and a morphological slide and a spicule prep was made. After all analyzes were performed, a reference database for the identification of sponges on the Saba Bank was composed.

Transect data was collected on 11 different locations on Saba Bank in 2013, and 2015 (Figure 1; Table 1). On each location three 50 m transects were placed. All transects on a location started from the same point, the angle between the transects was 45° covering a large area, to minimize the effects of possible habitat heterogeneity. The transects were photographed from above, so that at least a square meter was visible. 50 photos per transect were made for identification of benthic cover. Since there are 3 transects per site, 150 photographs of quadrats per site were made. The photos were used to identify sponge abundance and cover benthic organisms.

Sponge abundance was compared with data from 1972 and 2010. In 1972, sponges were collected during a survey conducted by the Royal Dutch Navy for the Investigations of the Caribbean and Adjacent Regions Program (CICAR). The sponges collected during this survey were retained in Naturalis. In January 2010, a new survey was conducted to examine the sponge species composition on Saba Bank (Thacker *et al.*, 2010). A member of the dive team documented the presence of the sponges and photographed them. Samples were taken from specimens that represented a subset of the observed species for morphological analysis.

Figure 1. Map of Saba Bank, with the sites where samples and photo transects were taken.

Site Site		Location (UTM)	Position	Depth	Depth
	code		on Bank	2013	2015
Dutch Plains	DP	20 Q 452566 1905596	South East	27	21.5
Scottish Hills	SH	20 Q 456551 1909291	South East	17	17
Gorgonian Delight	GD	20 Q 463403 1908565	South East	29	19.5
Paul's Cathedral	PC	20 Q 470180 1909614	South East	26	24.5
Coral Garden	CG	20 Q 473320 1917831	East	23	23
Tetre de Fleur	TdF	20 Q 469207 1922078	East	16	18
Erik's Point	EP	20 Q 479140 1923479	East	30	25.75
Twelve Monkeys	TM	20 Q 476404 1930273	East	23	21.75
Devils Corner	DC	20 Q 473049 1935532	North East	33	23
La Colline aux Gorgones	lCaG	20 Q 471312 1937717	North East	25	23.5
Rebecca's Garden	RG	20 Q 469609 1941467	North East	25	24

Table 1. Sites that are sampled during the expeditions of 2013 and 2015.

Photo analysis

The sponges on the photographs, taken during the survey in 2015, were identified to species level using the website <u>www.spongeguide.org</u> (Zea *et al.*, 2014). This website was consulted over a period of 8 months from January 2016 to August 2016. On spongeguide.org, more than

230 species morphs of Caribbean sponges are cataloged. It is possible to search on the physical characteristics of the sponges to find matching species. The identification of the photographed sponges was mainly to get to know the different sponge species present on Saba Bank, so that the sponges in the photo transects could be identified to species level. The identification of sponges by sight is considered to be difficult due to their high diversity and morphological variability, therefore DNA-barcoding was also performed on the sampled specimens (Diaz & Rützler, 2001; Erpenbeck *et al.*, 2016).

DNA-Barcoding

Sponge samples were collected from 12 different locations during the 2015 Saba Bank survey. Samples were stored in 98% ethanol and kept in a -20°C freezer. DNA was extracted from the samples with the Qiagen DNeasy 96 kit using the animal tissue protocol (extraction protocol in Appendix; Qiagen, Hilden, Germany). This method was found to be successful in another study (Pöppe *et al.*, 2010). Subsequently, the amount of DNA in the samples was quantified by using a spectrophotometer (TECAN, Männedorf, Switzerland). The quality of DNA was estimated by agarose gel electrophoresis (0.5% TBE buffer; 1.5% agarose; SERVA DNA stain G, SERVA, Heidelberg, Germany). Using a pipetting robot (TECAN Freedom EVO, Männedorf, Switzerland), new 96-well plates containing 50 μ L DNA extract were prepared with DNA concentrations of 10 ng/ μ L. Samples that exceeded this concentration were diluted with MiliQ water by the TECAN robot.

Different PCR protocols were performed to find the method that allowed optimal amplification of the standard barcoding partition on the mitochondrial cytochrome oxidase subunit 1 (CO I) of the samples. In the end, a protocol using degenerate primers dgLCO1490 (5'-GGTCAACAAATCATAAAGAYATYGG-3') and dgHCO2198 (5'-TAAACTTCAGGGTGACCAAARAAYCA-3') was found to be the most suitable method (Meyer *et al.*, 2005; Eurogentech, the Netherlands). The primers are general CO I primers, which were used in barcoding of sponges before (Pöppe *et al.*, 2010; Vargas *et al.*, 2012).

Prior to PCR, a PCR cocktail was made containing 12.5 μ L Master mix (OneTaq 2x Master Mix with Standard Buffer; New England BioLabs Inc., USA, MA), 0.5 μ L (10 μ M) dgLCO1490, 0.5 μ L (10 μ M) dgHCO2198, 1.25 μ L BSA (Bovine Serum Albumin; 10 mg/mL, Thermo Scientific, Maastricht, the Netherlands), 5.25 μ L MilliQ, and 5 μ L DNA template.

A standard three-step PCR program was used (thermocycler, Biometra, Göttingen, Germany), consisting of 3 minutes initial denaturation of 94°C, 34 cycles that consisted of 30 seconds denaturation of 94°C, 30 seconds annealing of 43°C, and 1 minute extension of 72°C. This was followed by a final extension step of 72°C for 5 minutes. During the PCR program, lid temperature was 105°C to prevent the formation of vapor on the lids of the PCR-tubes. After the program was finished, the PCR-machine switched to pause and the temperature was lowered to 4°C.

Amplification of DNA seemed to be difficult in some samples. For these samples, a PCR was performed with PCR-beads (illustra PuReTaq Ready-To-Go PCR Beads, GE Healthcare Life Sciences, Eindhoven, the Netherlands). These solid beads contain, polymerase, nucleotides, stabilizers, BSA, and reaction buffer. Only 20 μ L MilliQ and 5 μ L DNA template have to be added. A three-step PCR program as mentioned before was used. When amplification failed after this, a new DNA extraction was performed using the QIAmp DNA mini kit (Qiagen, Hilden, Germany).

To see whether the PCR had succeeded and DNA was amplified, PCR products were visualized on a 1.5% agarose gel using electrophoresis. PCR products were stored in -20°C fridge prior to sequencing. Purification and sequencing was outsourced to Macrogen. A 96well plate with 20 µL PCR product and primers were send to Macrogen, hereafter, results were send back via email. Sequences were analyzed in Geneious (trial version R9), first sequences were checked and if necessary, chromatograms were edited. Next, for each sequence a BLAST search in Genbank was performed to find similar sequences. Only matches with a similarity of at least 98% were used for identification of species, when similarity was lower the matches were used for identification of genus. For each sample, the 5 best matches were listed. Classification of species in Genbank is sometimes outdated, therefore species were checked in World Porifera Database (www.marinespecies.org/porifera/), this is a database where the most recent classification of sponges is incorporated.

Morphological analysis

Slides of the sponge samples were made, in case that PCR would fail. Coupes were made of the sponge's ectosome and the choanosome. Tissue was placed on an object glass and covered with another object glass with some weight on it, so that the tissue stayed flat when the ethanol evaporated. Subsequently the sample was covered with a layer of Durcupan.

Durcupan is an epoxy for conserving tissues in microscopical slides, and should be prepared shortly before use (Sigma-Aldrich, Saint Louis, MO, USA). Multiple components are combined in order to get the embedding mixture (Supplementary). The object glass was placed on a heater on 50 C for at least 15 minutes, so that the Durcupan could spread through the tissue. Hereafter, a cover slip was placed over the sponge tissue. A little weight was placed on the cover slip, so that all of the sponge tissue was covered in Durcupan. Analysis of the slides was done after this master's thesis was finished.

Morphological analysis of sponge tissue is not often preformed on its own, but is carried out in combination with spicule analysis. Preparation of the spicules was performed after this master's thesis was finished. Sponge tissue (ectosome and choanosome) was placed in eppendorf tube and undiluted domestic bleach was added. After 60 min, as much bleach as possible was pipetted off. Demi water was added, and pipetted off after 15 min to let the spicules settle. Last ethanol was added, and spicules were stored until further identification later on.

Cover identification

Using the program CPCe, the cover of different benthic groups (i.e. corals, sponges, turf algae, macro algae, cyanobacteria, crustose coralline algae) was analyzed. Corals and Sponges were identified up to species level. CPCe (Coral Point Count with Excel extensions) is software that is developed for determination of coral cover of transect photos. The program can distribute a number of random points on the image, species present under these points will be identified. Subsequently, species cover can be derived. In this study, two transects per site were analyzed. On these transects, every 5 m a quadrat was analyzed (i.e. on 5 m; 10 m; 15 m; 20 m; 25 m; 30 m; 35 m; 40 m; 45 m; 50 m). So 10 photos per transect were analyzed. In every quadrat 49 random points were analyzed.

The number of random points that was analyzed in each quadrat was 49 and thus 490 points per transect were identified, which is a sufficient number of points to get a good overview of the benthic cover. When the number of random points per plot increases, the number of species will increase following a saturation curve. Increasing the number of random points does not necessarily means that more species are found.

Sponge abundance

The same photos as in the cover identification were used. Thus, in the transects every 5 m a quadrat was analyzed. Presence and absence of all the Caribbean sponge species were assessed. Only sponges larger than 4 cm were scored, because it is very challenging to identify smaller specimens (de Voogd & Cleary, 2008). The website spongeguide.org was used to identify the sponges.

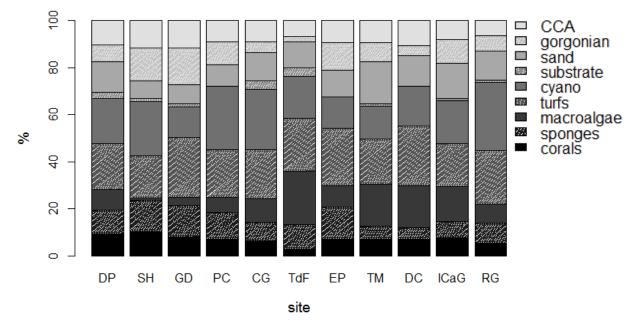
Data analysis

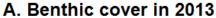
Prior to data analysis, data was square root transformed, because data was not normally distributed. To visualize benthic community composition stacked bar graphs and bubble plots were made. Cover of benthic groups and cover of sponge and coral species was analyzed in R using multivariate analysis. Both constrained and unconstrained ordination methods were used, because unconstrained ordination is a good method to show variation in the data, constrained ordination is a method to display only the variation that can be explained with the constraining variables. Multivariate analysis based on Bray-Curtis similarity index was used, this is mostly used for datasets that contain species and site data. Since the benthic cover data includes null values, a Bray-Curtis similarity index is a suitable index to use (Legendre & Anderson, 1999). The best methods that meet the requirements for analysis of the data were non metric multidimensional scaling (NMDS) and distance based redundancy analysis (dbRDA). First, NMDS, is an unconstrained ordination method that handles non-linear species responses. NMDS is used to find compositional variation and to relate this variation to the observed environmental variation. dbRDA, on the other hand, is a constrained ordination method based on eigenvalue analysis, which can use continuous variables as explanatory variables. Results of dbRDA can reveal whether the explanatory variables have significant impact on the dissimilarities found in the data and shows to which extent these explanatory variables influence the ordination of the data. Significance of the total analysis is tested with ANOVA. In addition, significance of axis, and effects of the explanatory variables are tested with a structured ANOVA model (Legendre & Anderson, 1999).

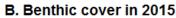
Linear regression analysis is used to find direct effect of explanatory variables on particular benthic groups. The measure to which the explanatory variable contributes to the variation of a benthic group is indicated with adjusted R^2 (R^2 adj). This is used because R^2 adj corrects for the number of parameters in the model, and gives an estimate of the degree of the relationship in the underlying population. Significance is tested with an F-test.

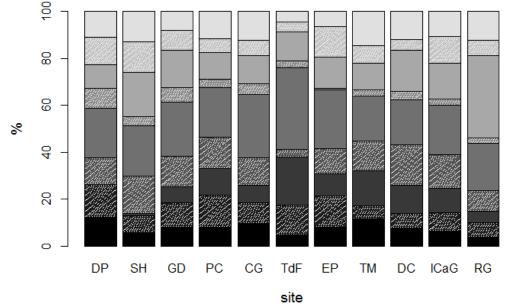
RESULTS

In this section the cover of benthic groups, and coral and sponges species on the transects at different sites in 2013 and 2015 will be assessed using multivariate analysis. To find out which factors influence the species assembly, non-metric multidimensional scaling (nMDS), linear regression analysis and distance based redundancy analysis (dbRDA) were performed. nMDS and dbRDA were used to find out how coral or sponge species influenced the distribution of sites. Last, the species that were present in the surveys of 2013 and 2015 were compared with the species observed by Thacker *et al.* (2010).


Cover of benthic species


Cover of the benthic community (i.e. sponges, corals, turf algae, macroalgae, CCA, cyanobacteria) in 2013 and 2015 on the sites was analyzed using CPCe. The proportion of the species present on each site was calculated by averaging the species proportions of transect A and B of each site (Table 2 ; Figure 2).


Sponge cover ranged from 4.96% to 13.62% in 2013 and from 5.60% to 13.88% in 2015. Average sponge cover was 9.67% \pm 1.40 (95% confidence interval) in 2013 and 9.62% \pm 1.48 in 2015. The live coral cover ranged from 2.77% to 9.45% in 2013 and from 3.85% to 12.37% in 2015. Average coral cover was 7.11% \pm 0.92 in 2013 and 7.82% \pm 1.26 in 2015. The site with the lowest coral cover in both 2013 and 2015 was Tetre de Fleur. In contrast with the other sites, Tetre de Fleur is located in the middle of Saba Bank, whereas other sites are near the reef drop off. On average, coral cover was lower than sponge cover. Only, some sites (i.e. Devils Corner and Twelve Monkeys) had a higher cover in corals than sponges Macroalgal cover ranged from 0.91% to 22.59% in 2013 and from 0% to 20.44% in 2015. On average the macro algae cover decreased from 10.89% \pm 2.88 in 2013 to 9.01% \pm 2.64 in 2015. The highest cover in 2013 and 2015 was observed at Tetre de Fleur. Focusing on Figure 2, Tetre de Fleur seems to be different in species composition, compared to the other sites.


On all sites the cover of turf algae decreased from 2013 to 2015. Cover ranged from 17.97% to 25.40% in 2013 and from 3.29% to 17.40% in 2015. Turf algae cover decreased from 21.45% \pm 1.32 in 2013 to 12.02% \pm 1.78 in 2015. At Rebecca's Garden and Tetre de Fleur the turf algae cover decreased even with 14.00% and 19.34% respectively. On most sites, there was an increase in the cyanobacteria cover, except for Scottish Hills, Paul's Cathedral, and Rebecca's Garden. Overall the cover increased with 3.22%, with a cover of 19.80% \pm 2.49 in 2013 to 23.02% \pm 2.22 in 2015. Cyanobacteria cover ranged from 13.12%

to 29.01% in 2013 and from 19.21% to 34.60% in 2015. Sand cover ranged from 7.48% to 18.01% in 2013 and from 10.26% to 35.36% in 2015. Highest sand cover was observed in Rebecca's Garden, the site nearest to Saba.

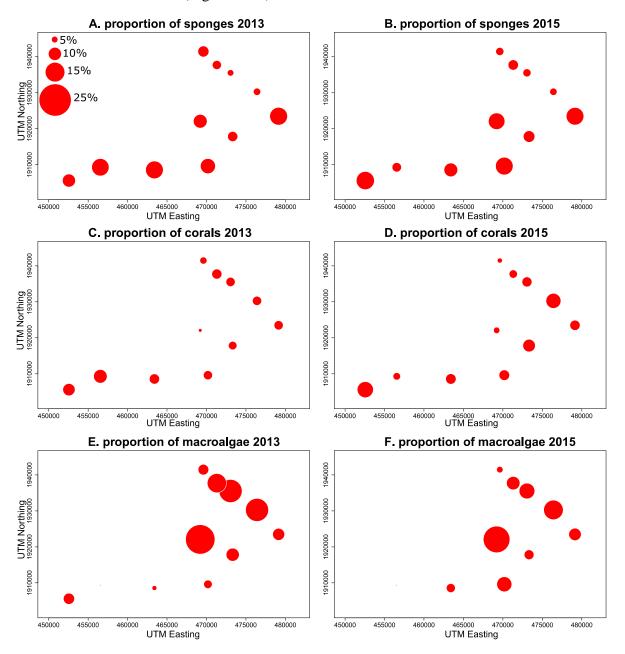


Figure 2. Proportions of groups present on different sites on Saba Bank, data is square root transformed. Sites are sorted from South to East; DP (Dutch Plains) is the most Southern site and RG (Rebecca's Garden) is located in the North East of Saba Bank, which is the site closest to Saba. A) Composition in 2013, a high turf algae cover is observed on all sites, macroalgal cover is high at TdF. B) Turf algal cover has decreased and cyanobacteria have become more abundant on all sites. A high sand cover is observed at RG

Site	Site code	Year	Coral (%)	Sponge (%)	Macro algae (%)	Crustose coralline algae (%)	Turf algae (%)	Cyano bacteria (%)	Gorgonian (%)	Sand (%)	Substrate (%)
Dutch Diaina	DP	2013	9.45	10.02	8.57	10.46	19.68	19.20	6.98	13.09	2.54
Dutch Plains	DP	2015	12.37	13.88	0	11.06	11.31	21.35	11.49	10.26	8.29
Scottish Hills	SH	2013	10.39	13.33	0.91	11.64	17.97	22.96	14.03	7.48	1.30
Scottish Hills	эп	2015	5.76	7.22	0.89	12.90	15.82	21.61	13.16	18.75	3.90
Gorgonian	GD	2013	7.84	13.53	3.69	11.70	25.20	13.12	15.50	8.20	1.22
Delight	GD	2015	8.03	10.48	6.88	7.95	12.91	22.95	8.73	15.81	6.26
Doul's Cathadral	PC	2013	6.98	11.58	6.50	8.97	19.96	27.17	9.86	8.97	0
Paul's Cathedral	PC	2015	8.09	13.51	11.54	11.74	13.37	20.89	5.80	11.25	3.80
Corol Cordon	CG	2013	6.50	7.78	10.05	8.97	20.68	25.76	4.77	12.07	3.47
Coral Garden	CG	2015	9.64	8.82	7.52	12.24	11.52	27.15	6.52	12.21	4.37
Tetre de Fleur	TdF	2013	2.77	10.53	22.59	6.66	22.63	17.93	2.23	11.28	3.38
Tetre de Fleur	IUL	2015	4.89	12.66	20.44	4.52	3.29	34.60	4.04	12.40	3.16
Enile's Doint	EP	2013	7.07	13.62	9.23	9.43	24.23	13.45	11.49	11.48	0
Erik's Point	EP	2015	7.85	13.48	9.53	6.39	10.77	24.77	12.92	13.41	0.88
Trustus Maglary	ТМ	2013	7.07	5.60	17.65	9.47	19.21	14.21	7.92	18.01	0.85
Twelve Monkeys	1 1/1	2015	11.49	5.60	14.99	14.63	12.66	19.36	7.31	11.46	2.51
Devile Comer	DC	2013	7.08	4.96	17.69	10.73	25.40	16.90	4.11	13.13	0
Devils Corner	DC	2015	7.64	6.17	12.04	11.84	17.40	19.21	4.76	17.65	3.29
La Colline aux	lCaG	2013	7.68	6.98	14.75	8.18	18.33	18.07	10.04	14.81	1.17
Gorgones	ICaG	2015	6.40	7.89	10.29	10.65	14.46	20.94	11.35	15.49	2.52
Rebecca's	RG	2013	5.42	8.46	8.18	6.38	22.66	29.01	6.71	12.26	0.92
Garden	КU	2015	3.85	6.15	4.93	12.31	8.66	20.36	6.34	35.36	2.05
Maar + 050/ CI		2013	7.11±0.92	9.67±1.40	10.89±2.88	9.32±0.84	21.45±1.32	19.80±2.49	8.51±1.86	11.89±1.49	1.35±0.67
Mean ± 95% CI		2015	7.82±1.26	$9.62{\pm}1.48$	9.01±2.64	10.57 ± 1.37	12.02 ± 1.78	23.02±2.22	8.40±1.55	15.82 ± 3.12	3.73 ± 1.10

Table 2. Percentages of cover of benthic groups that were present on the different sites in 2013 and 2015, data was square root transformed. Cover of each benthic group per site is calculated by the average of two transects. Total mean is the average of all transects that were analyzed (n=22).

Bubble plots show the same square root transformed benthic cover data as represented in Table 2. No large changes between coral cover in 2013 and 2015 are observed. However, sites in the northern parts seem to have a lower cover compared to sites that are more situated in the southern parts (Figure 3A+B). Also, sponge cover did not show large changes between 2013 and 2015 (Figure 3C+D). Macroalgae cover showed some changes over the years, the cover became lower in 2015. Besides, it seemed that the northern sites had a higher macroalgae cover (Figure 3E+F). Differences between years were clearly visible in turf algae cover and cyanobacteria cover. Turf algae cover decreased over time, whereas cyanobacteria cover increased over time (Figure 3G-J).

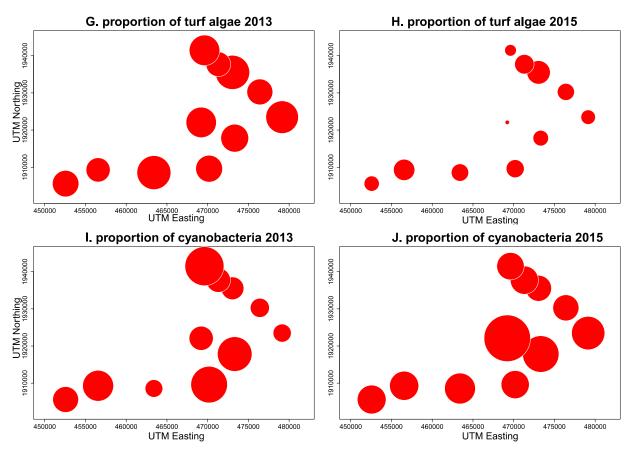
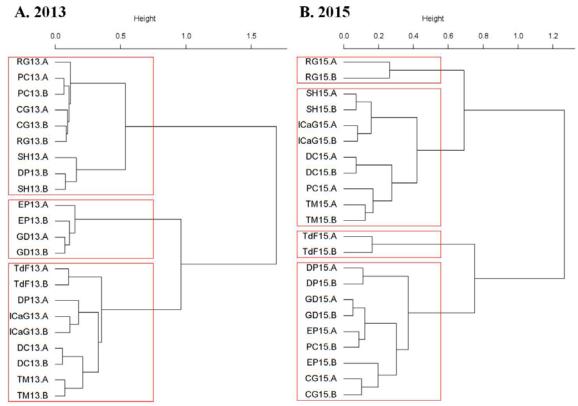
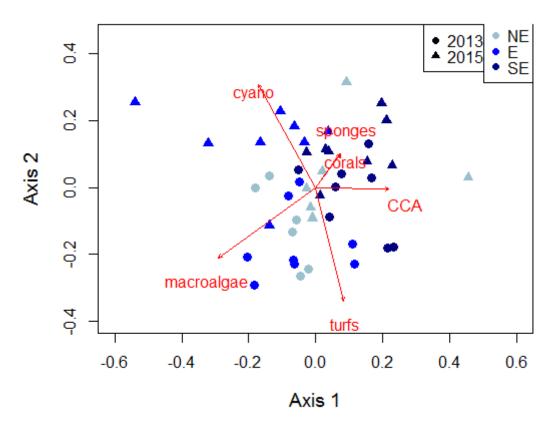



Figure 3. Percentages of benthic groups in 2013 and 2015, data was square root transformed. All plots were scaled in the same way, so that benthic groups and and years can be compared.


Multivariate analysis benthic cover

Sites are placed in a two-dimensional plane based on the benthic community that was present by using NMDS. Sites that are more similar in community composition are oriented closer to each other, while sites that differ are placed apart (Supplementary, Figure 15). To get a better visual overview, a cluster dendrogram was made of the same data used for the NMDS plot (x=0.6; Figure 4). In 2013 the transects were grouped into three clusters. Of the 2013 transect data, all transects from the same site were grouped in the same cluster, except for Dutch Plains (DP13.A and DP13.B). This means that DP13.A is more similar to Tetre de Fleur, la Colline aux Gorgones, Devils Corner, and Twelve Monkeys. Instead, DP13.B is more similar to Rebecca's Garden, Paul's Cathedral, Coral Garden, and Scottish Hills. In 2015 the transects were grouped in the same cluster. PC15.A was more similar to Scottish Hills, la Colline aux Gorgones, Devils Corner, and Twelve Monkeys. PC15.B, however, was more similar to Dutch Plains, Gorgonian Delight, Erik's Point, and Coral Garden.

Figure 4. Cluster dendrograms were based on Bray-Curtis distances (x=0.6). **A**) In 2013, sites are clustered in three groups, both transects of each site are clustered together in the groups, except for DP13.A and DP13.B (transects at Dutch Plains) **B**) In 2015, sites are clustered in four groups, transects from the same site are clustered into the same group, except for the transects PC15.A and PC15.B (transects at Paul's Cathedral)

When 2013 and 2015 benthic community data is combined, transects in 2013 are centered in the lower part of the graph and transects in 2015 are placed in the upper parts of the graph (Figure 5). This indicates that there is a distinction in community composition between the two years. The vectors of benthic groups give an indication how the distribution of sites is based on the presence of these groups. Sites that are centered in the lower parts of the graph are likely to have more macroalgae and turf algae, whereas sites that are in the higher parts of the graph contain more cyanobacteria (scores in supplementary, Table 5). To test which benthic groups are significantly important in the distribution of sites dbRDA is performed.

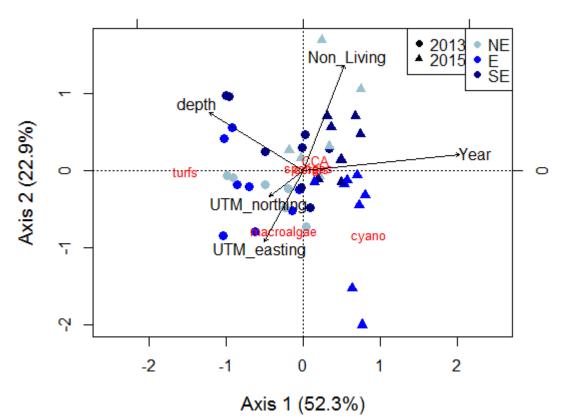


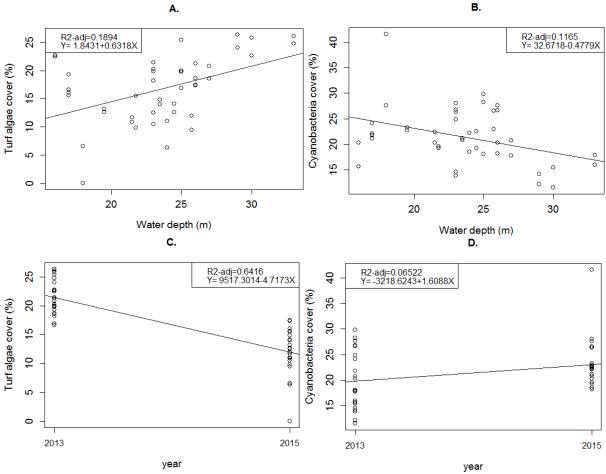
Figure 5. NMDS plot benthic community at sites in 2013 (circles) and 2015 (triangles). Transects in 2013 are centered in the lower part of the graph, whereas transects in 2015 are in the higher part of the graph (stress: 0.181). Vectors give an indication of which species could be important in the distribution of the sites.

Distance based redundancy analysis was performed in order to see how the environmental factors influenced the distribution of the sites in a two dimensional plot. The first two axis explain 75.2% of the cumulative variation in benthic community, the first axis explained 52.3% of this variation, and the second axis 22.9% (F=6.807, p=0.001). The third axis in the model was also significant and explained 18.9% of the variation in benthic community. Almost all environmental factors showed significant effect in the distribution of the sites, except for UTM_northing (depth: F=4.4386, p=0.002; UTM_northing: F=2.4080, p=0.038;

non living: F=4.7495, p=0.002; Year: F=11.2250, p=0.001). Depth and year were important in the distribution over the horizontal axis and UTM_easting and non living organisms played a significant role for the second axis.

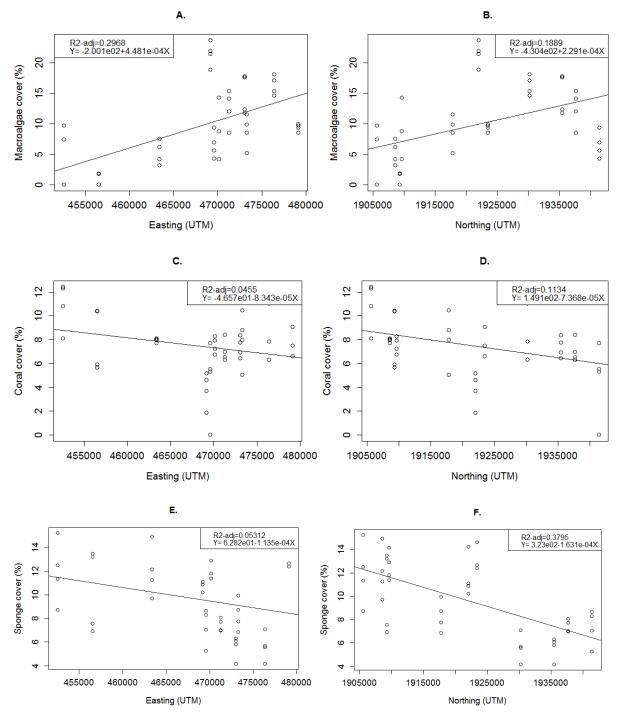
Sites in 2015 are more clustered on the left side of the graph, whereas sites in 2013 are more clustered of the right side of the graph (Figure 6). The transects that were taken in 2013 were at a slightly greater depth than the sites in 2015. The sites on the right side of the diagram are associated with a relatively higher turf algae cover than the sites that are clustered on the left side of the diagram. Sites that are positioned in the east are more centered in the top part of the diagram, these sites are associated with a relatively higher turf algae cover part of the diagram.

Figure 6. Distance-based redundancy analysis of benthic cover of sites at Saba Bank in 2013 (circles) and 2015 (triangles). CAP1 explains 52.3% of the variation in benthic community between sites and CAP2 explains 22.9% of the variation. The clustering of sites is based on benthic community, the different benthic groups are showed i n red. Arrows in black indicate the contribution of environmental variables to the distributions of the site based on their benthic community. All environmental variables had a significant effect, except for UTM_Northing.


Linear regressions benthic cover

Linear regression analysis in R was performed to test for correlation between different benthic groups (i.e. sponges, corals, macroalgae, turf algae, cyanobacteria or CCA) and environmental factors (i.e. depth, easting, northing, and year). Using the function lm, a linear model is fitted to the data, significance of the model is tested with F-statistics and a p-value. Four significance levels were distinguished; $p \le 0.001$ (***), $p \le 0.01$ (**), $p \le 0.05$ (*), and $p \le 0.1$ ('). R²adj indicates the proportion of variation in benthic groups that is explained by the independent variable (Table 3).

A significant positive correlation was found between depth and cover of turf algae, an increase in depth led to a higher cover of turf algae (Figure 7.A). Contrary, a weak negative correlation was found between cyanobacteria cover and the depth of the sites (Figure 7.B). A strong negative correlation was found between presence of turf algae and the year in which the benthic cover was assessed (Figure 7.C). The cover of turf algae significantly decreased over the years. In contrast to turf algae cover, cyanobacteria cover correlated positive with years, cover increased over time (Figure 7.D). However this correlation is not as strong as the correlation between turf algae and years. Thereby, it has to be taken into account that, on some sites, the transects were placed at different depths in 2013 and 2015. The depth of Gorgonian Delight and Devils Corner was 10 m deeper in 2013 compared to 2015. When these sites are excluded from analysis, the regressions of turf algae and depth and cyanobacteria and depth were not significant anymore (R²adj: 0.0343; F= 2.243 & R²adj: 0.01893; F=1.675, p>0.1). Also no significance was found for the regression analysis of cyanobacteria and year (R²adj:0.02729; F=1.982, p>0.1). On the other hand, the regression analysis of turf algae and year, still turned out to be significant (R²adj: 0.6596; F=68.83, p≤0.001).


Table 3. Results of the regression analysis between the environmental factors (i.e. depth, year, easting, and northing) and cover of benthic groups present on Saba Bank. R^2adj indicates the measure to which the environmental variable contributes to the variation of a benthic group. F-statistics were preformed to test for significance, significance level is indicated by asterisks.

	Depth		Year		Easting		Northing		
	R ² adj	F	R²adj	F	R ² adj	F	R ² adj	F	
Sponges	Ns		Ns		0.05312	3.412'	0.3795	27.29***	
Corals	Ns		Ns		0.0455	3.05	0.1134	6.501*	
Macroalgae	Ns		Ns		0.2968	19.15***	0.1889	11.02**	
Turf	0.1894	11.05**	0.6416	77.98***	Ns		Ns		
Cyanobacteria	0.1165	6.672*	0.06522	4'	Ns		Ns		
Cca	Ns		Ns		Ns		Ns		
*** p≤0.001; ** p≤0.01; * p≤0.05; ' p≤0.1; Ns=not significant									

Figure 7. Linear regressions between water depth and turf algae (A), and cyanobacteria (B), together with linear regressions between year and turf algae (C), and cyanobacteria (D). For these plots, the sites Devils Corner and Gorgonian Delight were included. A) A positive regression between water depth and turf algae is observed. B) Regression between water depth and cyanobacteria cover was negative. C) Turf algae cover decreased significantly over the years, a negative regression was observed. D) Regression between cyanobacteria cover and year was positive, cover increased over time.

The location of the sites on the bank influenced the presence of some benthic groups. A positive correlation was found between macroalgae cover and easting of the site (Table 3; Figure 8.A). Thus when a site was located in the eastern part of the bank, the cover of macroalgae was higher. Also a significant positive correlation was found for northing and macroalgae cover, sites located in the northern parts of the bank had a higher macroalgae cover (Figure 8.B). Weak influences were found for easting in combination with coral or sponge cover, and northing with coral or sponge cover (Figures 8.C-F). When sites were more situated in the northern parts of the bank, coral and sponge cover were lower.

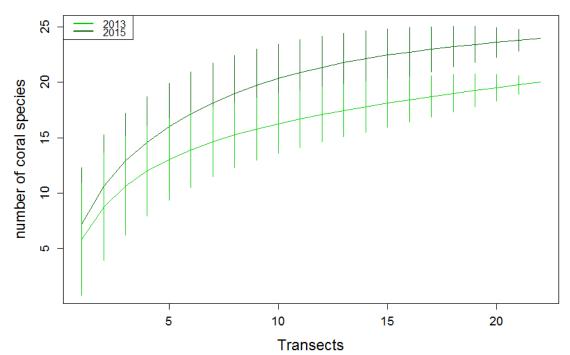
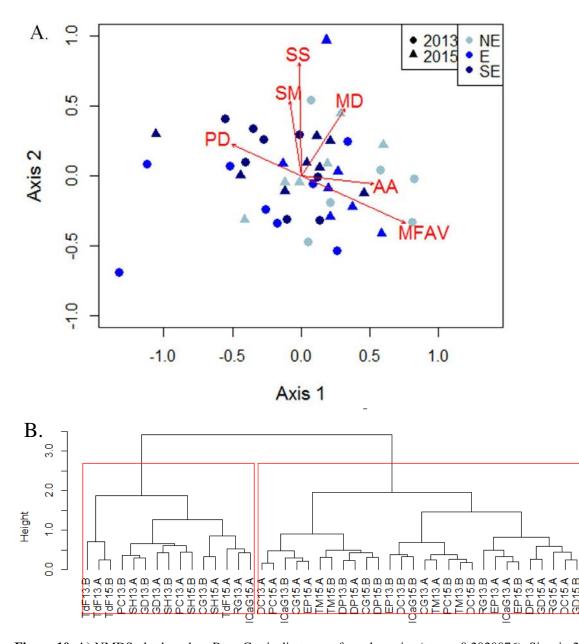


Figure 8. Linear regression analysis for location of the sites on Saba Bank and cover of macroalgae, corals, and sponges. **A**) Macroalgae cover increased at sites that were positioned in the eastern parts of the bank, a positive regression was found. **B**) Also, a positive regression was observed for northing and macroalgae cover. **C**) A negative regression was found for coral cover and easting, cover was lower at sites located in the east, compared to sites more situated in the western parts of the bank. **D**) Regression between northing and coral cover was tested to be negative as well. **E**) A significant negative regression was found between sponge cover and easting **F**) Last, a negative regression between sponge cover and northing was found, sponge cover in the northern parts of the bank was low and increased at sites more in the south.


Multivariate analysis coral assemblages

Species with highest cover in 2013 were *Montastraea faveolata* (34.7% of total coral cover) and *Porites asteroides* (14.6% of total coral cover). In total, 20 different coral species were observed in the quadrats. In 2015, *Montastraea faveolata* had the highest cover (45.5% of total coral cover), and a total of 24 species was found (Figure 9). Using NMDS, sites were grouped in a two dimensional plot based on Bray-Curtis similarities (Figure 10). For displaying species in the graph a cutoff point of r^2 >0.200 was used. Species that contributed to distribution of sites were *Montastrea faveolata* (MFAV; r^2 =0.5018), *Siderastrea siderea* (SS; r^2 =0.4716), *Madracis decactis* (MD; r^2 =0.2411), *Porities divaricata* (PD; r^2 =0.2210), *Stephanocoenia michelinii* (SM; r^2 =0.2109), and *Agaricia agaricites* (AA; r^2 =0.2066). All species scores are showed in the supplementary (Table 6). Sites were clustered into two groups (x=2), however no patterns could be observed. Transects at the same site that were analysed in the same year were not nescessary clustered into the same group.

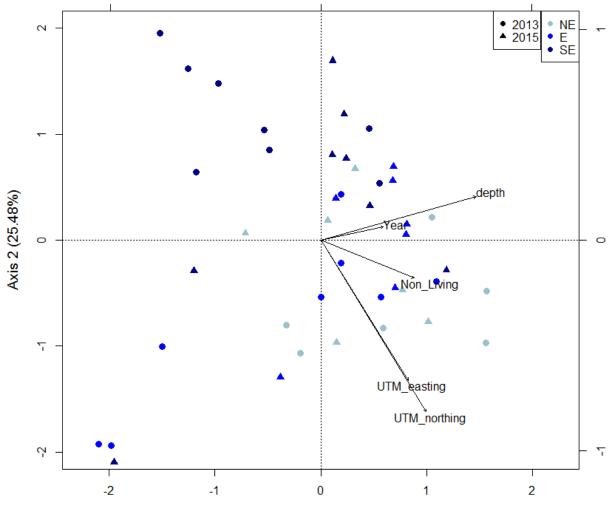
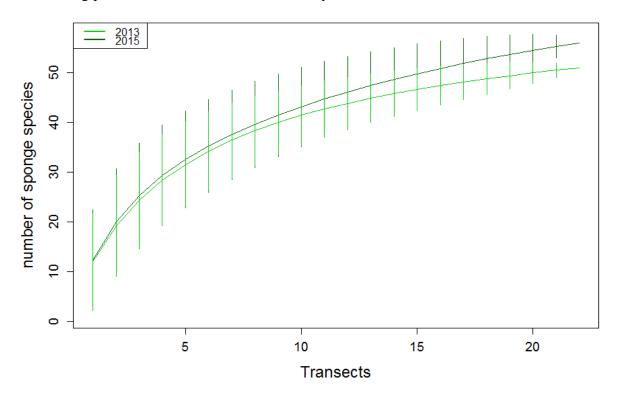
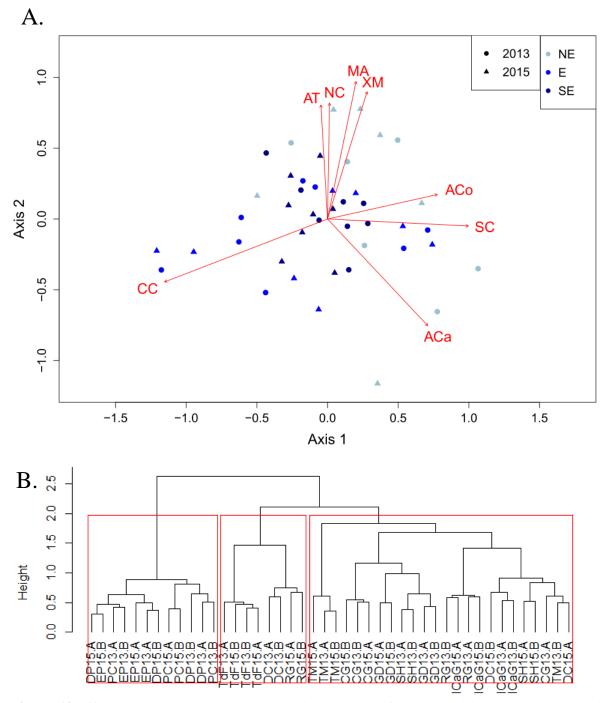

To get insight into the extent to which environmental factors (i.e. depth, year, easting, and northing) contributed to the distribution of sites, dbRDA was performed (Figure 11). The horizontal axis explained 52.62% of the variation between sites, and the vertical axis 25.48% (F=2.3774, p=0.001). Only year (F=2.0895; p<0.05) and depth (F=4.1348; p≤0.001) had a significant effect on the coral assemblage of the sites. One of the species that was influenced by depth was *Montastraea faveolata* (MFAV), sites at a greater depth were associated with this species (Supplementary, Figure 16.A)

Figure 9. Species accumulation curves for coral species in 2013 and 2015 found in the CPCe benthic cover photo analysis. In 2013, a total of 20 species was found. In 2015, 24 different species were found.

Figure 10. A) NMDS plot based on Bray-Curtis distances of coral species (stress=0.2020076). Sites in 2013 are represented as circles, sites in 2015 as triangles. A subdivision of sites in the Northeast (light blue), East (blue), and Southeast (dark blue) was made. The cutoff point for representing species was r²>0.200. *Montastraea faveolata* (MFAV), *Siderastrea siderea* (SS), *Madracis decactis* (MD), *Porities divaricata* (PD), *Stephanocoenia michelinii* (SM), and *Agaricia agaricites* (AA) seemed to play a role in the clustering of sites. **B**) Sites are clustered into two groups (x=2) based on their Bray-Curtis distances. A and B are indicating transect A and transect B, and 13 and 15 are indicatin the years 2013 and 2015 in which the transect photos are taken.



Axis 1 (52.62%)


Figure 11. dbRDA of coral species on sites at Saba Bank in 2013 (circles) and 2015 (triangles). A division of the sites was made base on position on the bank (northeast = light blue; east = blue; southeast = dark blue). Axis 1 explains 52.62% of the variation in coral assemblage between sites and Axis 2 explains 25.48% of the variation. Environmental variables that had a significant effect on the coral assemblage of the sites were year and depth.

Multivariate analysis sponge assemblages

In 2013, highest sponge cover was observed by Xestospongia muta (11% of total sponge cover) and Agelas sventres (10.4%). The total number of sponge species found in the CPCe photo analysis in 2013 was 51 (Figure 12). Highest sponge cover in 2015 was again reached by Agelas sventres (15.4% of total sponge cover) and Xestospongia muta (12.9% of total sponge cover). Total number of sponge species counted in the CPCe photo analysis in 2015 was 56 (Figure 12). Sites were ordered using NMDS based on Bray-Curtis distances (Figure 13). For representing the most important sponge species a cutoff point of $r^2 > 0.200$ is used, otherwise the graph would be unclear. The species that contribute to the ordination of sites were Cliona caribbea (CC; r²=0.4984), Aplysina cauliformis (ACa; r²=0.3476), Spirastrella coccinea (SC; r²=0.3234), Monanchora arbuscula (MA; r²=0.3229), Xestospongia muta (XM; r²=0.2893), Niphates caribica (NC; r²=0.2191), Agelas tubulata (AT; r²=0.2130), and Amphimedon compressa (ACo; r²=0.2070). All species scores are showed in Table 7, supplementary. After clustering the sites based on their Bray-Curtis similarity (x=2), 3 clusters were formed. Transects at the same sites in both years were grouped together in a cluster. DC13 and DC15 (Devils Corner in 2013 and 2015) were not grouped in the same cluster as well as RG13 and RG15 (Rebecca's Garden 2013 and 2015). No patterns concerning position of the sites on the Bank or year are found.

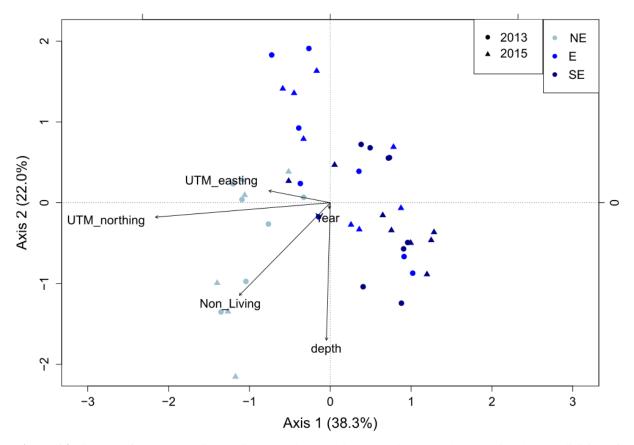


Figure 12. Species accumulation curves for sponge species in 2013 and 2015 found in the CPCe benthic cover photo analysis. In 2013, a total of 51 species was found. In 2015, 56 different species were found.

Figure 13. A) NMDS plot based on Bray-Curtis distances of sponge species present on the sites (stress=0.2136637). Sites in 2013 are represented as circles, sites in 2015 as triangles. A subdivision of sites in Northeast (lightblue), East (blue), and Southeast (darkblue) was made. The cutoff point for displaying species was r²>0.200. *Cliona caribbea* (CC), *Aplysina cauliformis* (ACa), *Spirastrella coccinea* (SC), *Monanchora arbuscula* (MA), *Xestospongia muta* (XM), *Niphates caribica* (NC), *Agelas tubulata* (AT), and *Amphimedon compressa* (ACo) seemed to play a role in clustering of the sites. **B**) Sites are clustered into three groups (x=2) based on their Bray-Curtis distances. A and B are indicating transect A and transect B, and 13 and 15 are indicatin the years 2013 and 2015 in which the transect photos are taken.

Influence of environmental factors was tested using dbRDA (Figure 14). 60.3% of the variation between sites was explained by the axis, the horizontal axis explained 38.3% and the vertical axis 22.0% (F=2.0769; p=0.001). Environmental factors that had a significant effect on sponge assemblage at Saba Bank were depth (F=2.1149; p<0.005), UTM_northing (F=2.9554; p=0.001), and non-living (F=1.6205; p<0.05). No differences in sponge assemblage in 2013 and 2015 were found. The sites situated in the northeastern part of the bank are clustered in the bottom left part of the graph, this is associated with a higher cover of non-living things such as sand, rubble or bare substrate. The species *Spirastrella coccinea* seemed to be dependent of depth, sites at a shallower depth were associated with this species (Supplementary figure 16.B)

Figure 14. dbRDA of sponge species on sites at Saba Bank in 2013 (circles) and 2015 (triangles). A division of the sites was made base on position on the bank (northeast = light blue; east = blue; southeast = dark blue). Axis 1 explains 38.3% of the variation in sponge assemblage between sites and Axis 2 explains 22.0% of the variation. Environmental variables that had a significant effect on the sponge assemblage of the sites were depth, UTM_northing, and Non_Living.

DNA barcoding

DNA extraction succeeded for most of the 92 samples, average concentration was 29,15 ng/ μ L and ranged from 0.07 to 158.42 ng/ μ L. The DNA concentration of 11 samples was below 5 ng/ μ L, nevertheless PCR was performed on these samples. In 78 samples DNA was amplified after PCR, and after a second attempt with PCR-beads, DNA was amplified in two more samples. After sequencing, in 67 of the samples sponge DNA was amplified and a match was found in GenBank (Supplementary, Table 8). In 11 other samples, other DNA was amplified, including that of bacteria, annelids, crane-fly, diatoms, and cnidarians. Three of these samples were lionfish, it turned out that these specimens were collected during the expedition.

Sponge assemblages

Data on sponge abundance at Saba Bank was already collected prior to the most recent expeditions of the Saba Bank Research Program 2011-2016. In 1972 during the CICAR program, 57 different species were collected. In 1986, J. J. Vermeulen collected 29 different species from Saba Bank. During the expedition of Thacker et al. in 2006, 45 different species were observed (Thacker et al. 2010). Here, surveys of 20 to 45 min were done at six different sites during eight dives in the eastern part of the bank. In 2013 and 2015, benthic cover surveys were done for transects at 11 sites. At each site, 20 photos of a square meter were analyzed in CPCe for benthic cover with 49 random points, sponges were scored up to species level. In 2013, 49 different species were observed and in 2015 54 species. The photos of 2015 that were analyzed in CPCe were also used for analysis of total sponge abundance. Here, all species bigger than 4 cm were scored, here 79 different species were counted. There were 98 specimens that could not be identified using reference photos. Specimens were grouped based upon appearance, 57 groups were formed of sponges that looked the same. The sponges that were not identified were not included in Table 4. The species will be included after identification by a sponge-expert. Due to the morphological variability in a species, it is possible that some species are already included in table 4.

Table 4. Species observed during surveys on Saba Bank (edited from Thacker et al. 2010). Table is ordered by order, family, genus. For each expedition it is indicated which species were present (in green). <u>1972</u> indicates CICAR program; <u>1986</u> is the collection of J. J. Vermeulen; <u>2006</u> indicates the survey of Thacker *et al.*; <u>2013</u> <u>CPCe</u> indicates sponge species that are found in benthic community survey 2013; <u>2015 CPCe</u> indicates sponge species that are found in benthic survey 2015; <u>2015 abundance</u> shows the species that were found in the total sponge abundance survey.

Order	Family	Genus-species	Year of Expedition					
			<u>1972</u>	<u>1986</u>	2006	<u>2013</u>	<u>2015</u>	<u>2015</u>
						CPCe	CPCe	abundance
Total number of sponge species observed			72	29	45	49	54	79
Calcarea								
Clathrinida	Leucettidae	Leucetta floridana						
Demospongiae								
Agelasida	Agelasidae	Agelas cervicornis						
		Agelas cerebrum						
		Agelas citrina						
		Agelas clathrodes						
		Agelas conifera						
		Agelas dispar						
		Agelas sceptrum						
		Agelas sventres						
		Agelas tubulata						
Astrophorida	Ancorinidae	Ancorina sp.						
		Stelletta stenospiculata						
Astrophorida	Geodiidae	Erylus formosus						
		Geodia gibberosa						
		Geodia neptuni						

Chondrosida	Chondrillidae	Chondrilla caribensis			
Dendroceratida	Dictyodendrillida e	Igernella notabilis			
Dictyoceratida	e Dysideidae	Dysidea etheria			
Dietysteranda	Djorderade	Dysidea fragilis			
	Irciniidae	Ircinia sp.			
		Ircinia campana			
		Ircinia Felix			
		Ircinia strobilina			
	Spongiidae				
	Spongheue	Spongia "obscura" Spongia (Spongia) pertusa			
	Thorectidae	Hyrtios proteus			
	moreendue	Hyrtios violaceus			
		Smenospongia aurea			
		Smenospongia conulosa			
Hadromerida	Clionaidae	Cervicornia cuspidifera			
		Cliona caribbaea			
		Cliona delitrix			
		Cliona varians			
		Cliona sp. "amber papillae"			
		Spheciospongia vesparium			
		Spheciospongia sp.			
	Spirastrellidae	Spirastrella coccinea			
	Suberitidae	Prosuberites laughlini			
		Terpios fugx			
	Tethyidae	Tectitethya crypta			
	Timeidae	Timea unistellata			
Halichondrida	Axinellidae	Axinella morchella			
		Dragmacidon explicatum			
		Dragmacidon lunaecharta			
		Dragmacidon reticulatum			
		Phakellia folium			
		Ptilocaulis walpersi			
	Dictyonellidae	Dictyonella funicularis			
		Scopalina ruetzleri			
		Svenzea zeai			
	Halichondriidae	Halichondria			
		Halichondria (Halichondria)			
		magniconulosa Halichondria (Halichondria)			
		melanodocia			
		Topsentia bahamensis			
	Heteroxyidae	Myrmekioderma gyroderma			
		Myrmekioderma rea			
Haplosclerida	Callyspongiidae	Callyspongia (Callyspongia)			
Improserviten	Campspongnade	fallax	 		
		Callyspongia (Cladochalina) armigera			
		Callyspongia (Cladochalina)			
		plicifera			
		Callyspongia (Cladochalina)			
	Niphatidae	vaginalis Amphimedon caribica			
	1 upnatione	•			
		Amphimedon complenata			
		Amphimedon compressa Amphimedon erina			
Į				1	1

Ì				1	1	
		Amphimedon viridis				
		Cribrochalina dura				
		Niphates amorpha				
		Niphates caribica				
		Niphates digitalis				
		Niphates erecta				
	Petrosiidae	Neopetrosia carbonaria				
		<u>Neopetrosia proxima</u> Neopetrosia rosariensis				
		Neopetrosia subtriangularis				
		Petrosia (Petrosia) weinbergi				
		Xestospongia muta				
	Phloeodictyidae	Aka xamaycaensis				
	2	Calyx podatypa				
		Oceanapia bartschi				
	Phloeodictyidae	Oceanapia peltata				
Homosclerophorid	-					
a	Plakinidae	Plakortis angulospiculatus				
		Plakortis halichondrioides				
		Plakortis sp.				
Lithistida	Desmanthidae	Petromica (Chaladesma)				
		ciocalyptoides				
Poecilosclerida	Chondropsidae	Batzella rubra				
		Batzella sp. "creamy salmon"				
	Crambeidae	Monanchora arbuscula				
	Desmacididae	Desmapsamma anchorata				
	Desmacellidae	Neofibularia nolitangere				
	Hymedesmiidae	Phorbas amaranthus				
	Iotrochotidae	Iotrochota birotulata				
	Microcionidae	Artemisina melana				
		Clathria bulbotoxa				
		Clathria calla				
		Clathria curacaoensis				
		Clathria faviformis				
		Clathria (Thalysias)				
		juniperina				
		Clathria spinosa				
		Clathria virgultosa				
		Clathria sp.				
		Pandaros acanthifolium				
	Mycalidae	Mycale (Arenochalina)				
	Wycandae	laxissima				
		Mycale (Mycale) laevis				
	Raspailiidae	Ectyoplasia ferox				
	Tedaniidae	Tedania (Tedania) ignis				
	T (11: 1	Tedania (Tedania) klausi				
Spirophorida	Tetillidae	Cinachyrella alloclada				
		Cinachyrella arenosa				
		Cinachyrella kuekenthali Suberea sp. "soft Aplysina				
Verongida	Aplysinellidae	suberea sp. soft Apiysina lacunosa"				
	Aplysinidae	Aiolochroia crassa				
		Aplysina archeri				
		Aplysina cauliformis				
I		nprysma campornus				

A	plysina fistularis
_ <u></u>	plysina fulva
<u>A</u>	plysina insularis
A	plysina lacunosa
	plysina sp. "long ranchelets"
<u>V</u>	erongula gigantea
V	erongula reiswigi
<u>V</u>	erongula rigida
V	erongula sp.

DISCUSSION

In this study, benthic community was assessed using CPCe in order to find out whether community structure was changing from 2013 to 2015. Benthic community on Saba Bank gives insight into its health status. Using multivariate analysis, the effects of environmental factors such as water depth, year, easting, northing, and non living cover, were tested for their influence on community structure. Besides, this study was focusing on coral and sponge community structure in particular. Both, corals and sponges were identified to species level in CPCe, and drivers for their assemblages were examined. Total sponge abundance was compared with surveys preformed in 1972, 1986, and 2006. Since visual identification of sponges is considered to be difficult, DNA barcoding was preformed for 92 specimens sampled in 2015. High resolution photos of the same specimens were used, in combination with morphological analysis, to make a reference guide for identifying sponges present at Saba Bank.

Changes in benthic cover among 2013 and 2015

There is variation between sites and between the years 2013 and 2015. Part of the variation in benthic cover between sites can be explained by the spatial variation on the sites. However, depth was varying between the sites and also between years, this may also result in differences in benthic cover. In future, there should be aimed to place all the transects at the same depth.

For sponge cover and coral cover, no changes were found among the years 2013 and 2015. Strikingly, a strong decrease for turf algae cover was observed, whereas cyanobacteria cover increased. dbRDA and regression analysis both showed that the changes in turf algae cover en cyanobacteria cover were significant. Only when the sites Gorgonian Delight and Devils Corner were excluded, due to their great difference (10 m) in water depth in 2013 and 2015, regression of year and cyanobacterial cover was not significant anymore. Depth is known to be a driver for reef organisms including corals, this is caused by decreasing in irradiance with increasing water depth (Huston, 1985; Roberts *et al.*, 2015). However, a study showed that low light availability is not affecting cyanobacteria (Bell *et al.*, 2005). It seems more likely that the loss of eight data points influenced significance after excluding these sites.

Coral cover at Saba Bank is low compared to the mean Caribbean cover of 16% (Schutte *et al.*, 2010). In the study of Schutte *et al.* (2010), data is used from 3777 coral cover

studies at different reefs in the Caribbean. Average water depth of the combined studies was 8.2 m, whereas water depth in this study was 23.4 m on average. Corals are limited by decreasing irradiance when depth increases, however, disturbances including storms or bleaching are less severe in deeper waters (Roberts *et al.*, 2015). This results in changes in communities along depth gradients.

Also, sponge cover was not considered to be high, although it was higher than coral cover. Aronson *et al.* (2002) found a strong increase in sponge cover to 43% after a bleaching event in Belize. In this case the reef was shifting to a sponge dominated system. The average cover of 7% in this study seems nowhere near a shift to a sponge dominated reef.

On the other hand, cyanobacteria cover of 26% in 2013 and 36% in 2015 is high compared to other studies in the Caribbean basin. In Grenada, a cover up to 8.8% was found, and in the Florida Keys cover was even lower than 3% (Kuffner *et al.*, 2006; Anderson *et al.*, 2014). Even in the study of de Bakker *et al.* (unpublished), where cyanobacteria were observed to be the most dominant benthic component in 2013, cover reached only 22%. Turf algal cover on other reefs at Bonaire and Curacao ranged from 22% to 45% (Sandin *et al.*, 2008; de Bakker *et al.*, unpublished). Turf algal cover observed in 2013 is in line with these other studies, however, the 11% cover observed in 2015 is rather low.

Shifts to high algal cover and decreasing coral cover are observed throughout the whole Caribbean basin (Hughes, 1994; Gardner *et al.*, 2003). Increasing nutrient conditions, reduced grazing in combination with disturbances, and other perturbations such as coral diseases or bleaching events are drivers for shifts from coral dominated systems to another dominant species like macroalgae or turf algae (McManus & Polsenberg, 2004; Vermeij *et al.*, 2010). Shifts towards cyanobacteria on coral reefs are not extensively described in literature yet, but there is a study that describes cyanobacterial dominance in the Caribbean. De Bakker *et al.* (unpublished) found in their long term study a shift from stony coral to turf algae and fleshy macroalgae to cyanobacterial dominance now. Besides, periodic blooms of cyanobacteria are observed on reefs (Albert *et al.*, 2005; Paul *et al.*, 2005).

A shift from turf algae to cyanobacteria can be initiated by several drivers. Turf algae consist of multiple species, including chlorphyta, phaeophyta, and rhodophyta species, but also cyanobacteria (Connel *et al.*, 2014). Cyanobacteria become dominant in late stages of succession of algal turfs (Fricke *et al.*, 2011). Due to their high content of secondary metabolites, cyanobacteria experience less grazing and are protected against potential competitors (Thacker *et al.*, 2001; Paul *et al.*, 2005). Under elevated temperatures and ocean acidification the cyanobacteria species, *Lyngbya*, started to dominate in turf communities and

had the potential to outcompete the turf algae (Bender *et al.*, 2014). Last, increasing input of nutrients can play a role in flourishing of cyanobacteria. Normally, cyanobacteria limited by low levels of phosphorus, iron, and DOM. Increase of these nutrients can lead to proliferation of cyanobacteria (Albert *et al.*, 2005, Brocke *et al.*, 2015). The nutrient input from nearby islands is considered to be low at Saba Bank, therefore it seems more likely that increase in cyanobacteria cover is caused by increasing water temperatures or grazers that are avoiding the cyanobacteria present in turf algae. However, this could not be tested in this study, since no data was available.

Position of sites on Saba Bank influencing benthic community

Significant regressions were found for position of the site on the bank and macroalgae, corals and sponges. A positive correlation was found for macroalgae and easting and northing, the other way around, a negative correlation was found for coral cover and easting and northing. For sponges, only a significant linear regression was found for northing. The gradients in macroalgae, sponge, and coral cover may be caused by influences of nearby islands. Saba is located north of the Saba Bank and St. Eustatius and Saint Kitts and Nevis are located east of Saba Bank. Potentially, nutrient runoff will cause an increased algal growth at sites that are situated closer to this islands. The effects of nutrient runoff are mostly described to reefs immediately adjacent to islands (Reopanichkul et al. 2010; Brocke et al. 2015). Saba is less than 10 km away from the nearest site, whereas the distance between St. Eustatius and St. Kitts and Nevis and the nearest site on Saba Bank are 25 km or more apart. Because the distances from landmasses are large, it was always thought that Saba Bank was relatively free of problems concerning sedimentary and nutrient runoff (Littler et al. 2010). However, it would be interesting, whether there is a connection between the islands and the bank caused by oceanic currents. If this is the case, there is a possibility that the currents transport nutrients towards Saba Bank. McLaughlin et al. (2003) suggested that at some reefs a long-range connection between runoff and reef habitat exist.

Coral assemblages

In 2013, a total of 20 different species was found on Saba Bank. Two years later, in 2015, 24 species were found. In a previous assessments of stony corals on Saba Bank a total of 33 species was documented, combined with other studies a total of 43 species was found (McKenna & Etnoyer, 2010). In the study of McKenna & Etnoyer, species abundance of stony corals on 18 sites was reported using rapid assessment techniques. The main difference

between both studies is the sampling method. Two roving scuba divers identified corals during a dive in the study of McKenna & Etnoyer (2010), whereas in this study, photo transects were analyzed after the dives. It is expected that more coral species are present at Saba Bank, common species are likely to be found, to find rare species, more sites should be examined and more effort in searching has to be taken. The number of species found on Saba Bank is low compared to other Caribbean reefs. This is cause by the average depth of Saba Bank, which is deeper than in most studies. Besides, the sites that are studied on Saba Bank are not all located on a slope, whereas most Caribbean reefs are situated on a slope from shallow to deep, resulting in higher species abundance.

In this study, *Montastraea faveolata* contributed most to the total coral cover of Saba Bank. *M. faveolata* is the most abundant reef-building coral throughout the Caribbean (Aronson *et al.*, 2008). Abundance of this species was associated with depth, at a greater depth the cover of *M. faveolata* is higher (Supplementary, Figure 14.A). This species is the most abundant coral between 10 m and 20 m and its lower depth limit is considered to be 40 m (Aronsen *et al.*, 2008).

Coral assemblage was driven by year and water depth. Positioning of the sites on Saba Bank was not a driver, since no differences in coral assemblages between sites was found. This shows that there is a possibility of connectivity between sites on Saba Bank, a connection between sites can exist through movement of water masses (Mumby, 1999). De Bakker *et al.* (2016) already showed that there was genetic connectivity between populations on Saba Bank, for *Xestospongia muta* and *Montastraea cavernosa*.

Sponge assemblages

Sponge assemblage was influenced by water depth, easting and non living cover. In 2013, 51 different sponge species were observed in the cover analysis in CPCe, in 2015, this were 56 species. Assessment of all sponges in 2015, resulted in 79 different sponge species that were observed. In 2006, Thacker *et al.* found 45 different species during their surveys. The species data was combined with historical collections from 1972 and 1986, a total of 81 different sponge species was found. This was low in comparison with other biodiversity surveys for sponges (Rützler *et al.*, 2000; Alcolado, 2002; Diaz, 2005). However, these studies were executed in different habitat types, namely mangrove cays (Rützler *et al.*, 2000), and at shallow reefs (Diaz, 2005), whereas this study was done at deeper sites on a reef flat. In the period from 1972 to 2015, 122 different species were counted on Saba Bank. This is more in

line with the survey of Diaz in the Bocas del Toro region, Panama, where 120 species were counted.

Another reason for the difference in sponge biodiversity in the Caribbean can be explained by the sampling methods that were used. Thacker *et al.* (2010) documented sponges for 20 to 45 min at six sites, the survey was carried out by only one person. In the study of Rützler *et al.* (2000), sponges were collected from seven sites by six collectors. Diaz (2005) collected the sponges on his own from 14 sites for approximately one hour per site. The study of, Alcolado (2002) consists of multiple studies of the past 140 years that were executed by multiple researchers. More effort is needed to find rare species (i.e. longer searching time, more people that are performing the surveys, more sites.

The species contributing most to the total sponge cover were Xestospongia muta and Agelas sventres. X. muta is the largest sponge species in the Caribbean, when a specimen is found in a CPCe photo quadrat, it often contributes to a considerable amount of the cover. In other studies, where reefs were dominated by sponges, cover which mainly consisted of Chondrilla cf. nucula, an encrusting species. In Puerto Rico, were a shift to a sponge dominated system was observed, the boring sponge Cliona langue covered 10.8% of the total transect area (Williams et al., 1999). In this study, mainly Cliona delitrix and Cliona caribbaea were present, however their cover was not very high. This may indicate that Saba Bank is healthier than the reefs where boring sponges became dominant, since boring sponges profit from increased ocean acidification and increased sea water temperature (Stubler et al., 2014; Stubler et al., 2015). Also, boring sponges grow on bare substratum as a result of coral decline, this is probably not the case on Saba Bank. The assessment of sponge cover using CPCe is not the best method. Sponges often have multidimensional structures (i.e. branching or tubes), and thus have a larger surface area than is visible on a photo. Using species specific models for estimating sponge cover would be a better method, however these models are not extensively developed yet.

High cover of turf algae could be beneficial to sponges. DOM, produced by corals, macroalgae and turf algae are a food source for sponges (Rix *et al.*, 2016). Sponges possibly can profit from increased algal densities, since more DOM is released (Pawlik *et al.*, 2016). Thus the shifts to algal dominance, which occurred throughout the whole Caribbean, are beneficial to sponges. Cyanobacteria are able to produce DOM as well, although it remains unclear whether sponges can use this as a food source (Brocke *et al.*, 2015). If sponges are able to use DOM produced by cyanobacteria, it would be possible that sponges on Saba Bank benefit from the increased food availability and increase in cover or abundance. The sponge

reef hypothesis mostly applies to reefs in the Atlantic ocean, sponge cover in the Atlantic ocean is higher than the cover in Pacific reefs (Loh & Pawlik, 2014). Besides, Atlantic sponges are heterotrophic and are able to use DOM, whereas most Pacific sponges are foliose phototrophic and cannot use DOM (Pawlik *et al.*, 2016). If DOM is an important driver for sponge dominance, it is not likely that this will occur on Pacific reefs.

Difficulties during this research and future directions

Visual sponge identification is often difficult, especially for the encrusting species (Diaz & Rützler). It is only possible to identify species bigger than 4 cm, otherwise structures of the sponges and osculi are not visible properly (de Voogd & Cleary, 2008). It is very important to extent the current reference databases based on photos of sponges. Now, some species lack photos or are underrepresented, therefore, sponge identification by the use of photo databases may be biased towards species that have more photos in the database. During this research, a reference guide of sponges on Saba Bank is created. Specimens that were photographed were identified using DNA barcoding, and morphological analysis, so that there is a higher certainty that the photos are referring to the correct species.

Water depth on Saba Bank was a driver in benthic composition, however some sites differed 10 m in their water depth in 2013 and 2015. Therefore, it is important to collect transect data from the same depth, in order to compare the sites in different years. It is difficult to collect transect data from the exact same location every year. Divers go into the water at the right position that is set by GPS-coordinates. However, due to currents, divers will not always reach the exact same location on reefs as before and the transect will be placed on a other part of the reef. Maybe it is inevitable to reach the exact same site every year, at least, divers should try to place the transects at a fixed depth in subsequent surveys.

This study only covers benthic community data of a period of 2 years, so it is impossible to study long term effects and long term benthic community changes. However, in this short period of time, significant differences were found in benthic community. Turf algae and cyanobacteria are fast growing, opportunistic species, that can colonize reefs rapidly especially during nutrient surges (Russell & Connell, 2007; Palinska et al. 2012). For corals and sponges, it is possible that a two year timescale is too short, since they grow slower. It is important to continue benthic surveys on the Saba Bank, because there is little knowledge of reefs dominated by cyanobacteria. Also it would be good to find out how coral and sponge cover will react on a high cyanobacterial cover, and if this cyanobacteria dominance is indeed beneficial to sponges.

Conclusion

To conclude, a shift from a turf algae dominated system to a cyanobacteria dominated system was observed on Saba Bank. In 2015, cyanobacteria were the most dominant benthic species, whereas turf algae were most dominant two years earlier. Small influences of Saba, St. Eustatius, and possibly Saint Kitts and Nevis are observed. Sites closer by these islands had higher macroalgae cover and lower sponge and coral cover. It is unclear how the cyanobacteria will develop in the future, since cyanobacteria dominated systems are scarcely described in literature. Possibly, Saba Bank is shifting to a cyanobacteria reef rather than a sponge reef. Since only one year of cyanobacteria dominance is observed, further research has to prove whether this is really a phase shift. Last, sponges may profit from the cyanobacteria dominance on Saba Bank, and increase in abundance.

ACKNOWLEDGEMENTS

I want to thank Christiaan de Leeuw, Bert Dibbits, and Kimberly Laport for helping me out in the lab when I was doing my DNA-analysis. Thanks to Didier de Bakker for explaining how to use the program CPCe. Also, thanks to dr. Jasper de Goeij for being the examiner of this master's thesis. Last, special thanks to my supervisors/assessors dr. Erik Meesters, who helped me mastering the program R, and dr. Lisa Becking, for teaching me everything about sponges and giving me this great opportunity for doing my thesis at the Marine Animal Ecology group at Wageningen University

REFERENCES

- Albert, S., O'Neil, J. M., Udy, J. W., Ahern, K. S., O'Sullivan, C. M. & Dennison, W. C. (2005). Blooms of the cyanobacterium *Lyngbya majuscula* in coastal Queensland, Australia, disparate sites, common factors
- Alcolado, P. M. (2002). Catálogo de las esponjas de Cuba. Avicennia, 15: 53-72
- Anderson, R., Morrall, C., Jossart, J., Nimrod, S., Bolda, E., Musser, K., et al. (2014). Marine protected area monitoring in the nearshore waters of Grenada, eastern Caribbean: benthic cover and fish populations. *Revista de Biología Tropical*, 62: 273-286
- Anthony, K. R. N., Maynard, J. A., Diaz-Pullido, G., Mumby, P. J. Marshall, P. A., Cao, L. et al. (2011). Ocean acidification and warming will lower reef resilience. *Global Change Biology*, 17: 1798-1808
- Aronson, R., Bruckner, A., Moore, J., Precht, B. & Weil, E. (2008). *Montastraea faveolata*.
 The IUCN Red List of Threatened Species 2008: e.T133373A3712432. Consulted:
 September 1st 2016
- Aronson, R. B., Precht, W. F., Toscano, M. A. & Koltes, K. H. (2002). The 1998 bleaching event and its aftermath on a coral reef in Belize. *Marine Biology*, 141: 435-447
- Baker, A. C., Glynn, P. W. & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. *Estuarine, Coastal and Shelf Science*, 80: 435-471
- Bell, J.J. (2008). The functional roles of marine sponges. *Estuarine, Coastal and Shelf Science*, 79: 341-353
- Bell, J. J., Davy, S. K., Jones, T., Taylor, M. W. & Webster, N. S. (2013). Could some coral reefs become sponge reefs as our climate changes? *Global Change Biology*, 19, 2613-2624
- Bell, P. R. F., Uwins, P. J. R., Elmetri, I., Phillips, J. A., Fu, F. & Yago, A. J. E. (2005).
 Laboratory culture studies of *Trichodesmium*, isolated from Great Barrier Reef Lagoon, Australia. *Hydrobiologia*, 532: 9-21
- Bender, D., Diaz-Pulido, G., & Dove, S. (2014). Warming and acidification promote cyanobacterial dominance in turf algal assemblages. *Marine Ecology Progress Series*, 517: 271-284
- Brocke, H. J., Polerecky, L., de Beer, D., Weber, M., Claudet, J. & Nugues, M. M. (2015). Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs. *PLoS ONE*, 10(5): e0125445. doi:10.1371/journal.pone.0125445

- Connell, S. D., Foster, M. S. & Airoldi, L. (2014). What are algal turfs? Towards a better description of turfs. *Marine Ecology Progress Series*, 495: 299-307
- De Bakker, D. M., Meesters, E. H. W. G., van Bleijswijk, J. D. L., Luttikhuizen, P. C., Breeuwer, H. J. A. J. & Becking, L. E. (2016). Population genetic structure, abundance and health status of two dominant benthic species in the Saba Bank National Park, Caribbean Netherlands: *Montastraea cavernosa* and *Xestospongia muta*. *PLoS ONE*, 11(5): e0155969. doi:110.1371/jounal.pone.0155969
- De Bakker, D. M., van Duyl, F. C., Bak, R. P. M., Nugues, M. M., Nieuwland, G. & Meesters, E. H. W. G. (2016). 40 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats, *Unpublished Manuscript*, Institute for Marin Resources and Ecosystem Studies (Imares), Wageningen University
- De Goeij, J. M., van Oevelen, D., Vermeij, M. J. A., Osinga, R., Middelburg, J. J., de Goeij,A. F. P. M., & Admiraal, W. (2013). Surviving in a marine desert: The sponge loop retains resources within coral reefs. *Science*, 324: 108-110
- Delecat, S., Arp, G. & Reitner, J. (2010). Aftermath of the Triassic–Jurassic boundary crisis: spiculite formation on drowned Triassic Steinplatte reef-slope by communities of hexactinellid sponges (Northern Calcareous Alps, Austria). Advances in Stromatolite Geobiology, Lecture Notes in Earth Sciences, 131: 355-390
- De Voogd, N. J. & Cleary, D. F. R. (2008). An analysis of sponge diversity and distribution at three taxonomic levels in Thousand Islands/ Jakarta Bay reef complex, West-Java, Indonesia. *Marine Ecology*, 29: 205-215
- Diaz, M. C. (2005). Common sponges from shallow marine habitats from Bocas del Toro region, Panama. *Caribbean Journal of Science*, 41: 465-475
- Diaz, M. C. & Rützler, K. (2001). Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Sciences, 69: 535-546
- Erpenbeck, D., Ekins, M., Enghuber, N., Hooper, J. N. A., Lehnert, H., Poliseno, A., et al. (2016). Nothing in (sponge) biology makes sense except whe base don holotypes. *Journal of the Marine Biological Association of the United Kingdom*, 96: 305-311
- Etnoyer, P. J., Wirshing, H. H. & Sánchez, J. A. (2010). Rapid assessment of octocoral diversity and habitat on Saba Bank, Netherlands Antilles. *PLoS ONE*, 5(5): e10668
- Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. (2000). Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral *Stylophora pistillata*. *Coral Reefs*, 19: 103-113

- Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., et al. (2004).
 Regime shifts, resilience and biodiversity in ecosystem management. *Annual Review of Ecology, Evolution, and Systematics*, 35: 557-581
- Fricke, A., Teichberg, M., Beilfuss, S. & Bischof, K. (2011). Succession patterns in algal turf vegetation on a Caribbean coral reef. *Botanica Marina*, 54: 111-126
- Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals, *Science*, 301: 958-960
- Haas, A. F., Nelson, C. E., Wegley Kelly, L., Carlson, C. A., Rohwer, F., Leichter, J. J., et al. (2011). Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. *PLoS ONE* 6(11): e27973
- Harvell, D., Jordan-Dahlgren, E., Merkel, S., Merkel, S., Rosenberg, E., Raymundo, L., et al. (2007). Coral disease, environmental drivers, and the balance between coral and microbial associates. *Oceanography*, 20(1): 172-195
- Hernández-Bellesteros, L. M., Elizalde-Rendón, E. M, Carballo, J. L. & Carricart-Ganivet, J.
 P. (2013). Sponge bioerosion on reef-building corals: Dependent on the environment or on skeletal density? *Journal of Experimental Marine Biology and Ecology*, 441: 23-27
- Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. *Science*, 265: 1547-1551
- Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O.,
 McCook, L., et al. (2007). Phase shifts, herbivory and the resilience of coral reefs to
 climate change. *Current Biology*, 17: 360-365
- Huston, M. A. (1985). Patterns of species diversity on coral reefs. *Annual Review of Ecology* and Systematics, 16: 149-177
- Kuffner, I. B., Walters, L. J., Becerro, M. A., Paul, V. J., Ritson-Williams, R. & Beach, K. S. (2006). Inhibition of coral recruitment by macroalgae and cyanobacteria. *Marine Ecology Progress Series*, 323: 107-117
- Leong, W., and Pawlik, J. R. (2010). Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. *Marine Ecology Progress Series*, 406: 71-78
- Lesser, M. P. (2006). Benthic-pelagic coupling on coral reefs: Feeding and growth of Caribbean sponges. *Journal of Experimental Marine Biology and Ecology*, 328: 277-288
- Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. *Ecological Monographs*, 69, 1-24

- Littler, M. M., Littler, D. S. & Brooks, B. L. (2006). Harmful algae on tropical coral reefs: Bottom-up eutrophication and top-down herbivory. *Harmful Algae*, 5: 565-585
- Littler, M. M., Littler, D. S. & Brooks, B. L. (2010). Marine macroalgal diversity assessment of Saba Bank, Netherlands Antilles. *PLoS ONE* 5(5): e10677
- Loh, T. L., McMurray, S. E., Henkel, T. P. Vicente, J. & Pawlik, J. R. (2015). Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. *PeerJ*, 3, e901
- McKenna, S. A. & Etnoyer, P. (2010). Rapid assessment of stony coral richness and condition on Saba Bank, Netherlands Antilles. *PLoS ONE*, 5(5): e10749
- McLaughlin, C. J., Smith, C. A., Buddemeier, R. W., Bartley, J. D. & Maxwell, B. A. (2003). Rivers, runoff and reefs. *Global and Planetary Change*, 39: 191-199
- McManus, J. W. & Polsenberg, J. F. (2004). Coral-algal phase shifts on coral reefs: Ecological and environmental aspects. *Progress in Oceanography*, 60: 263-279
- Meyer, C. P., Geller, J. B. and Paulay, G. (2005). Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. *Evolution*, 59: 113-125
- Mumby, P. J. (1999). Can Caribbean coaral population be modeled at metapopulation scale? *Marine Ecology Progress Series*, 180: 275-288
- Mumby, P. J. (2009). Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. *Coral Reefs*, 28: 761-773
- Mumby, P. J., Steneck, R. S., Adjeroud, M. and Arnold, S. N. (2015). High resilience masks underlying sensitivity to algal phase shifts of Pacific coral reefs. *Oikos*, 125: 644-655
- Murphy, J. W. A. & Richmond, R. H. (2016). Changes to coral health and metabolic activity under oxygen deprivation. *PeerJ*, 4: e1956
- Nava, H. & Carballo, J. L. (2008). Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. *Journal of Experimental Biology*, 211: 2827-2831
- Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. (2009). Alternative states on coral reefs: beyond coral-macroalgal phase shifts. *Marine Ecology Progress Series*, 376: 295-306
- Nugues, M. M., Smith, G. W., van Hooidonk, R. J., Seabra, M. I. & Bak, R. P. M. (2004). Algal contact as a trigger for coral disease. *Ecology Letters*, 7: 919-923
- Nyström, M., Folke, C. & Moberg, F. (2000). Coral reef disturbance and resilience in a human-dominated environment. *Trends in Ecology & Evolution*, 15: 413-417
- Oigman-Pszczol, S. S. & Creed, J. J. (2011). Can patterns in benthic communities be explained by environmental pressure index? *Marine Pollution Bulletin*, 62: 2181-2189

- Palinska, K., Abed, R. M. M., Wendt, K., Charpy, L., Lotocka, M. & Golubic, S. (2012).
 Opportunistic cyanobacteria in benthic microbial mats of a tropical lagoon, Tikehau Atoll,
 Tuamotu Archipelago: minor in natural populations, major in cultures. *Fottea*, 12: 127-140
- Paul, V. J., Thacker, R. W., Banks, K. & Golubic, S. (2005). Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). *Coral Reefs*, 24: 693-697
- Pöppe, J., Sutcliffe, P., Hooper, J. N. A., Wörheide, G. and Erpenbeck, D. (2010). CO I barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Desmospongiae: Dictyoceratida). *PLoS ONE*, 5 (4): e9950. doi:10.1371/journal.pone.0009950
- Reopanichkul, P., Carter, R. W., Worachananant, S. & Crossland, C. J. (2010). Wastewater discharge degrades coastal waters and reef communities in southern Thailand. *Marine Environmental Research*, 69: 287-296
- Roberts, T. E., Moloney, J. M., Sweatman, H. P. A. & Bridge, T. C. L. (2015). Benthic community composition on submerged reefs in the central Great Barrier Reef. *Coral Reefs*, 34: 569-580
- Russell, B. D. & Connell, S. D. (2007). Response of grazers to sudden nutrient pulses in oligotrophic versus euthrophic conditions. *Marine Ecology Progress Series*, 349: 73-80
- Rützler, K., Diaz, M. C., van Soest, R. W. M., Zea, S., Smith, K. P., Alvarez, B., et al. (2000).
 Diversity of sponge fauna in mangrove ponds, Pelican Cays, Belize. *Atoll Research Bulletin*, 476: 229-251
- Sale, P. F., Agardy, T., Ainsworth, C. H., Feist, B. E., Bell, J. D., Christie, P., et al. (2014). Transforming management of tropical coastal seas to cope with challenges of the 21st century. *Marine Pollution Bulletin*, 85: 8-23.
- Sandin, S. A., Sampayo, E. M. & Vermeij, M. J. A. (2008). Coral reef fish and benthic community structure of Bonaire and Curaçao, Netherlands Antilles. *Caribbean Journal of Science*, 44:137-144
- Sandin, S. A., Smith, J. E., DeMartini, E. E., Dinsdale, E. A. Donner, S. D., Friedlander, A.
 M., et al. (2008). Baselines and degradation of coral reefs in the northern Line Islands. *PLoS ONE*, 3(2): e1548
- Schutte, V. G. W., Selig, E. R. & Bruno, J. F. (2010). Regional spatio-temporal trends in Caribbean coral reef benthic communities. *Marine Ecology Progress Series*, 402: 115-122
- Stubler, A. D., Furman, B. T. & Peterson, B. J. (2014). Effects of pCO₂ on the interaction between an excavating sponge, *Cliona varians*, and a hermatypic coral, *Porites furcata*. *Marine Biology*, 161:1851-1859

- Stubler, A. D., Furman, B. T. & Peterson, B. J. (2015). Sponge erosion under acidification and warming scenario: differential impacts on living and dead coral. *Global Change Biology*, 21: 4006-4020
- Thacker, R. W., Diaz, M. C., de Voogd, N. J., van Soest, R. W. M., Freeman C. J., Mobley,
 A. S., et al. (2010). Preliminary assessment of sponge biodiversity on Saba Bank,
 Netherlands Antilles. *PLoS ONE*, 5 (5): e9622. doi:10.1371/journal.pone.0009622
- Thacker, R. W., Ginsburg, D. W. & Paul, V. J. (2001). Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria. *Coral Reefs*, 19: 318-329
- Titlyanov, E. A., Yakovleva, I. M. & Titlyanova, T. V. (2007). Interaction between benthic algae (*Lyngbya bouillonii*, *Dictyota dichotoma*) and scleractinian coral *Porites lutea* in direct contact. *Journal of Experimental Marine Biology and Ecology*, 342: 282-291
- Trussell, G. C., Lesser, M. P., Patterson, M. P. and Genovese, S. J. (2006). Depth-specific differences in growthe of the reef sponge *Callyspongia vaginalis*: role of bottom-up effects. *Marine Ecology Progress Series*, 323: 149-158
- Vargas, S., Schuster, A., Sacher, K., Büttner, G., Schätzle, S., Läuchli B., et al. (2012).
 Barcoding sponges: An overview based on comprehensive sampling. *PLoS ONE*, 7 (7): e39345. doi:10.1371/jounal.pone0039345
- Vermeij, M. J. A., van Moorselaar, I., Engelhard, S., Hörnlein, C., Vonk, S. M., & Visser, P. M. (2010). The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS ONE, 5 (12): e14312. doi:10.1371/journal.pone.0014312
- Ward-Paige, C. A., Risk, M. J., Sherwood, O. A. and Jaap, W. C. (2005). Clionid sponge surveys on the Florida reef tract suggest land-based nutrient inputs. *Marine Pollution Bulletin*, 51: 570-579
- Wild, C., Niggl, W., Naumann, M. S. & Haas, A. F. (2010). Organic matter release by Red Sea coral reef organisms – potential effects on microbial activity and *in situ* O₂ availability. *Marine Ecology Progress Series*, 411:61-71
- Wilkinson, C. R. (1996). Global change and coral reefs: impacts on reefs, economies and human cultures. *Global Change Biology*, 2: 547-558.
- Wilkinson, C. (2008). Status of coral reefs of the world: 2008. *Global Coral Reef Monitoring Network*
- Williams, E. H., Bartels, P. J. & Bunkley-Williams, L. (1999). Predicted disappearance of coral-reef ramparts: a directed result of major ecological disturbances. *Global Change Biology*, 5: 839-845

- Wisshak, M., Schönberg, C. H. L., Form, A. & Freiwald, A. (2012). Ocean acidification accelerates reef bioerosion. *PLoS ONE*, 7(9): e45124
- Zea, S., Henkel, T. P. and Pawlik, J. R. (2014). The sponge guide: a picture guide to Caribbean sponges. 3rd Edition. Available online at www.spongeguide.org

SUPLEMENTERY

Qiagen DNeasy 96 blood & tissue kit extraction protocol

- Add 180 µL Buffer ATL to microtubes
- 20 mg of sponge tissue in each well (sample has to be cut into small pieces)
- ! It took more than a day to cut all samples, samples were stored in a fridge at 4°C
- Add 20 µL proteinase K, triturate to mix, seal microtubes with caps
- Centrifuge at 3000 rpm, samples has to be submerged in working solution
- Incubate at 56°C overnight, after two hours samples were mixed by shaking the tubes
- ! After incubation, it seemed that samples were not fully lysed
- Shake tubes and centrifuge at 3400 rcf for 1 minute
- Add 410 µL Buffer AL and shake tubes
- Transfer lysate to DNeasy 96 plate on top of S-Block
- Seal DNeasy 96 plate with AirPore Tape and centrifuge at 3800 rcf for 10 min
- Add 500 µL Buffer AW1, seal with AirPore Tape, centrifuge at 3800 rcf for 5 min
- Add 500 µL Buffer AW2 and centrifuge at 3800 rcf for 15 min
- Place DNeasy 96 plate on top of a rack of elution microtube RS
- Add 150 µL Buffer AE and seal with AirPore tape sheet
- Incubate 1 min at room temperature, and centrifuge at 3800 rcf for 2 min
- Add 150 μ L Buffer AE and seal with AirPore tape sheet
- Incubate 1 min at room temperature, and centrifuge at 3800 rcf for 2 min

Qiagen QIAamp DNA mini and blood mini kit

- Add 180 µL Buffer ATL to 1.5 mL microcentrifuge tube
- 20 mg of sponge tissue in each well (sample has to be cut into small pieces)
- Add 20 µL proteinase K, mix by vortexing
- Incubate overnight at 56°C, centrifuge tubes briefly after incubation
- Add 200 µL Buffer AL, mix by pulse-vortexing
- Incubate at 70°C for 10 min, centrifuge tubes briefly after incubation
- Add 200 µL ethanol (98%), mix by vortexing, centrifuge briefly
- Transfer from microcentrifuge tubes to Mini spin column with collection tube
- Centrifuge at 8000 rpm for 1 min and place spin column in new collection tube
- Add 500 µL Buffer AW1 and centrifuge at 8000 rpm for 1 min
- Place spin column in new collection tube and add 500 µL Buffer AW2
- Centrifuge at 14000 rpm for 3 min
- Place spin column in 2 mL eppendorf with push cap
- Add 150 µL Buffer AE
- Incubate 1 min at room temperature and centrifuge at 8000 rpm for 1 min
- Add 150 µL Buffer AE
- Incubate 1 min at room temperature and centrifuge at 8000 rpm for 1 min

Preparation Durcupan

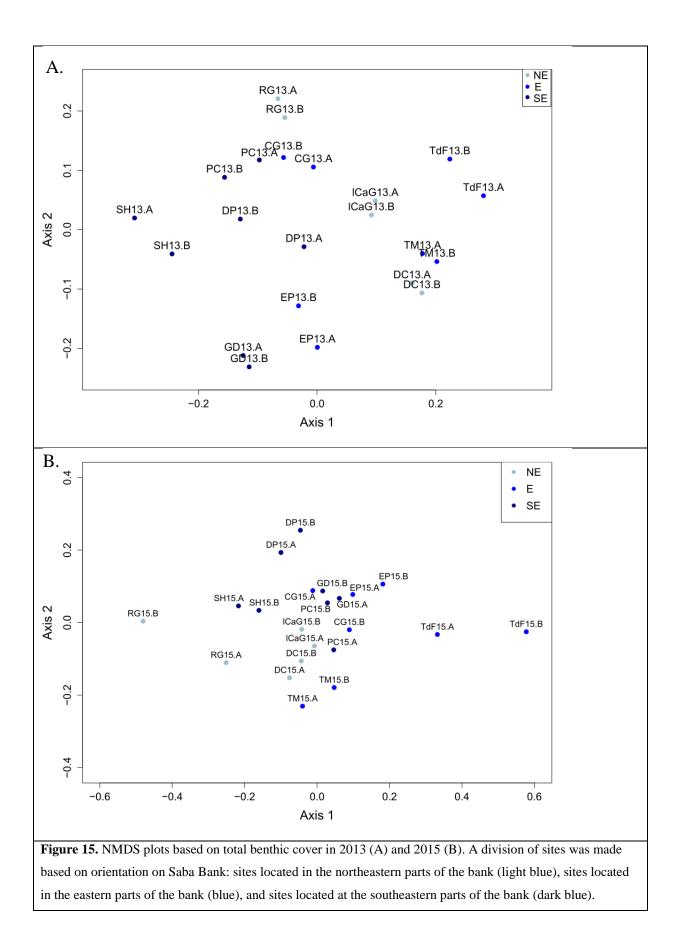
Component A: Epoxy resin 5 mL Component B: 964 hardener 11 mL Component C: 964 accelerator 1 mL Component D: Dibutyl phthalate 0.2 mL (reducing brittleness)

All components were mixed using a glass Pasteur pipette. A total volume of 17 mL was made. However, I would recommend to prepare 4.25 mL. Durcupan can be stored in a freezer, but after defrosting, it is more viscous, contains some small bubbles, and it harder to use to prepare tissue slides.

R^2 values in NMDS for groups or species

Table 5. R² values for benthic groups observed in 2013 and 2015 used in NMDS for analysis total benthic community

	NMDS1	NMDS2	R2
Corals	0.42154	0.9068115	0.1016
Sponges	0.30381	0.9527317	0.1084
Macroalgae	-0.77448	-0.6326039	0.7717
Turf algae	0.22807	-0.9736444	0.6874
Cyanobacteria	-0.50718	0.8618410	0.8067
CCA	0.99997	0.0083216	0.2896


Table 6. R² values for observed coral species in 2013 and 2015 used in NMDS for coral assemblages

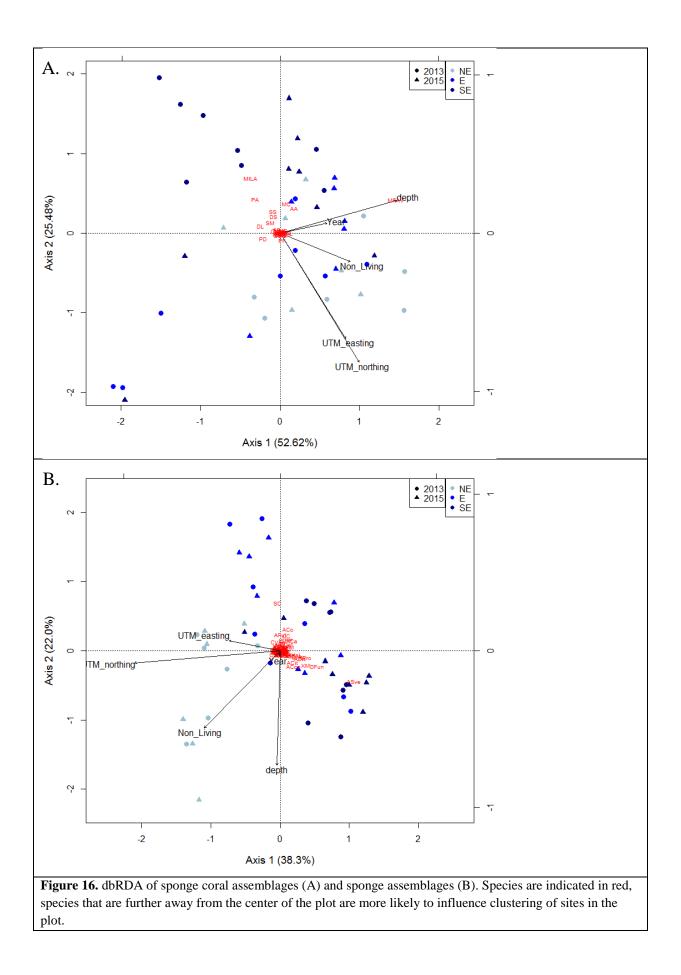

	NMDS1	NMDS2	R2
MFAV	0.91627	-0.400561	0.5018
SS	-0.01908	0.999818	0.4761
MD	0.54955	0.835459	0.2411
PD	-0.9126	0.408864	0.221
SM	-0.15024	0.988649	0.2109
AA	0.99492	-0.100695	0.2066
MC	0.86705	-0.498217	0.1581
MILA	-0.99568	0.092833	0.1147
ML	0.85493	-0.518744	0.1121
DS	-0.74903	0.662531	0.1042
CORAL	0.93207	-0.36229	0.0913
PP	-0.14686	0.989158	0.0896
DL	-0.16599	0.986127	0.089
MFRN	0.83804	-0.545614	0.0619
CN	0.5171	0.855925	0.0618
SR	-0.53335	-0.845894	0.0605
DSO	0.18137	-0.983416	0.0594
PF	0.79152	0.611142	0.0521
MM	0.91722	-0.398392	0.0413
DC	0.32811	0.944638	0.0235
MILC	0.45471	-0.890642	0.0143
EF	-0.48719	-0.873297	0.0132
MME	0.15298	0.988229	0.01
PA	-0.98786	-0.155359	0.0084
AL	0.97566	0.219302	0.0083
SB	-0.54368	0.839296	0.0038

Table 7. R² values for observed sponge species in 2013 and 2015 used in NMDS for sponge assemblages.

	NMDS1	NMDS2	r2
CCar	-0.93922	-0.343317	0.4984
ACau	0.68587	-0.727723	0.3476
SCoc	0.99886	-0.047687	0.3234
MArb	0.20437	0.978893	0.3229
XMut	0.29528	0.95541	0.2893
NiCar	0.01769	0.999844	0.2191
ATub	-0.05796	0.998319	0.213
ACom	0.97588	0.218308	0.207
ADis	-0.59711	0.802159	0.1984
ASve	-0.69282	0.721108	0.1742
ACon	-0.26608	0.96395	0.1447

CVag	0.99634	0.085528	0.1413
CFal	0.89203	-0.45198	0.1313
NRos	0.89203	-0.45198	0.1313
AFul	0.95724	-0.289284	0.131
NEre	-0.00362	-0.999993	0.1234
EFer	0.0543	0.998525	0.1182
NPro	0.97563	0.219429	0.1018
CKue	0.86504	0.501701	0.0917
ACit	-0.68636	0.727259	0.0898
AIns	0.95998	-0.280059	0.0884
ASce	-0.13374	0.991016	0.0834
DFun	-0.08339	-0.996517	0.074
IFel	0.94296	-0.332912	0.0729
PAng	0.06354	0.997979	0.0671
AArc	0.93071	-0.365762	0.0652
AMel	-0.99648	-0.08383	0.063
PWal	-0.47548	0.879728	0.0613
VRei	-0.47629	-0.879286	0.0604
SPNG	-0.11959	0.992823	0.0603
HPro	0.00333	0.9999994	0.0584
CCur	0.66998	0.742382	0.0583
SSPP	-0.41477	0.909927	0.0544
NDig	0.61097	0.791652	0.0521
PHal	-0.4397	0.898147	0.0321
CSpi	-0.6385	0.769623	0.0462
CFav	-0.36317	0.931724	0.0402
ISPP	0.77981	-0.626013	0.0429
NNol	-0.98322	0.182444	0.0335
ACer	-0.07309	0.997325	0.0308
VGig	-0.07309	0.997325	0.0308
BRub	-0.45991	0.887964	0.0252
MRea	-0.56787	-0.823117	0.0232
ACra	0.50482	0.863224	0.0243
ACla	-0.47394	0.880557	0.024
AMor	-0.47394	0.880557	0.0217
CPod			
	-0.47394	0.880557	0.0217
COCar	-0.3861	0.922456	0.0188
SZea CPli	-0.93378	-0.357845	0.0177
	-0.0057	0.999984	0.0158
PAma CDal	0.88942	-0.457091	0.0149
CDel	0.98477	0.173845	0.0147
SRue	0.1882	-0.982131	0.0145
NCar	-0.1934	-0.98112	0.0115
AFis	-0.51521	0.857066	0.0113
SAur	0.99683	0.079569	0.0104
ICam	-0.24138	0.97043	0.0089
VSPP	-0.88846	0.458957	0.0088
CISPP	0.76797	-0.640483	0.0076
BSPP	0.86191	0.507056	0.0048
NAmo	0.504	0.863705	0.0035
IBir	-0.99536	-0.096183	0.0028
CBul	-0.87747	0.479632	0.0013
CSPP	-0.87747	0.479632	0.0013
IStr	0.09328	0.99564	0.0003

Table 8. Results from DNA barcoding, best 5 matches found in GenBank are represented. The species that were found in GenBank were verified for their most recent name and classification in World Porifera Database. Samples highlighted in yellow were not sequenced, sequencing failed or, other DNA than sponge DNA was amplified during PCR. In blue are species that are not accepted in World Porifera Database. Sample SB_124, SB_125, and SB_126 turned out to be lionfish, these were actually sampled during the survey in 2015.

-	Identified on	Top 5 result		a -		
name	photo	genbank	Accesion	Grade	Order	Family
SB_60		Aplysina lacunosa	AM076985	99,60%	Verongiida	Aplysinidae
		Aplysina sp.	KX034570	99,50%	Verongiida	Aplysinidae
		Aplysina sp.	KX034569	99,50%	Verongiida	Aplysinidae
		Aplysina sp.	KX034568	99,50%	Verongiida	Aplysinidae
		Aplysina sp.	KX034567	99,50%	Verongiida	Aplysinidae
SB_61	Agelas dispar	Agelas schmidti	EU237475	97,70%	Agelasida	Agelasidae
	0 1	Agelas dispar	DQ075707	96,80%	Agelasida	Agelasidae
		Agelas dispar	DQ075736	96,70%	Agelasida	Agelasidae
		Agelas cervicornis	DQ075753	96,60%	Agelasida	Agelasidae
		Agelas dispar	DQ075715	96,60%	Agelasida	Agelasidae
	Ectyoplasia		2 2010110	>0,0070	1.1801001000	1.18010010000
SB_62	ferox	Not sequenced				
<u>58_02</u>	leion	Ceratoporella				
SB_63		nicholsoni	DQ075775	71,10%	Agelasida	Astroscleridae
50_05		Epipolasis	JQ034572	71,00%	Suberitida	Halichondriidae
		Saprolegnia delica	HQ709018	23,10%	Protozoan	Hanchondriddae
		Saprolegnia delica	HQ709018 HQ709017	23,10%	Protozoan	
		Saprolegina denca	10/09017	25,10%		
		A	110709106	22 100/	Oomycetes	
CD (4		Aphanomyces sp.	HQ708196	23,10%	(mould)	T
SB_64		Ircina oros	JN655186	96,40%	Dictyoceratida	Irciniidae
		Ircinia sp.	KC510274	96,30%	Dictyoceratida	Irciniidae
		Ircinia fasciculata	JN655174	96,30%	Dictyoceratida	Irciniidae
		Ircinia sp.	HE591459	96,30%	Dictyoceratida	Irciniidae
		Ircinia strobilina	GQ337013	96,30%	Dictyoceratida	Irciniidae
		Plakortis				
SB_65		halichondrioides	HQ269359	98,30%	Homosclerophorida	Plakinidae
		Plakortis				
		angulospiculatus	EF519536	93,30%	Homosclerophorida	
		Plakortis simplex	HQ269362	96,40%	Homosclerophorida	Plakinidae
		Plakinastrella cf.				
		onkodes	EU237487	94,60%	Homosclerophorida	Plakinidae
		Plakortis			_	
		halichondrioides	KP972554	88,20%	Homosclerophorida	Plakinidae
SB_66	Agelas sventres	Agelas sventres	DQ075735	93,10%	Agelasida	Agelasidae
_	C	Agelas clathrodes	DQ075743	93,00%	Agelasida	Agelasidae
		Agelas sventres	DQ075696	93,00%	Agelasida	Agelasidae
		Agelas sventres	DQ075758	92,90%	Agelasida	Agelasidae
		Agelas clathrodes	DQ075740	92,90%	Agelasida	Agelasidae
SB_67		Hyrtios proteus	JQ082820	92,60%	Dictyoceratida	Thorectidae
22_07		Sarcotragus		/_,0070	,	
		spinosulus	HE591460	96,00%	Dictyoceratida	Irciniidae
		Sarcotragus	112371400	20,0070	Dieryocoration	nonniuu
		spinosulus	HE797930	95,20%	Dictyoceratida	Irciniidae
		Ircinia oros	JN655186	95,20% 95,60%	Dictyoceratida	Irciniidae
		Hippospongia lachne	EU237484	95,00% 95,40%	Dictyoceratida	Spongiidae
	Ninhatas	ruppospoligia lacille	EU237404	7J,4U%	Diciyoceratiua	spoligiluae
SB_68	Niphates	Ninhotes areate	EE510660	94,50%	Hanlasalarida	Ninhatidaa
	amorpha	Niphates erecta	EF519660	,	Haplosclerida	Niphatidae
3D_00		Niphates alba	EF519654	93,90% 91,20%	Haplosclerida	Niphatidae
3 D _00		Minhatan J' 't 1'		91.70%	Haplosclerida	Niphatidae
3 D _00		Niphates digitalis	EF519655			Minhadide
3 D_ 08		Niphates digitalis	EF519656	91,10%	Haplosclerida	Niphatidae
50_08						Niphatidae Niphatidae
SB_69	Amphimedon compressa	Niphates digitalis	EF519656	91,10%	Haplosclerida	

SB_70		Cinachyrella kuekenthali	EU237479	00 80%	Tetractinellida	Tetillidae
SD_70		Cinachyrella	EU237479	99,00%	Tetractifientua	Tetimuae
		kuekenthali	FJ711646	99 50%	Tetractinellida	Tetillidae
		Cinachyrella	13/11040	<i>))</i> ,5070	Tetractificifida	Tetillidae
		kuekenthali	HM032743	99.10%	Tetractinellida	Tetillidae
		Cinachyrella	1111002,10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10000000000000	1000000
		kuekenthali	JX177902	99,00%	Tetractinellida	Tetillidae
		Amphitethya cf.				
		microsigma	JX177910	98,30%	Tetractinellida	Tetillidae
	Niphates					
SB_71	amorpha	Niphates erecta	EF519660		Haplosclerida	Niphatidae
		Niphates alba	EF519654		Haplosclerida	Niphatidae
		Niphates digitalis	EF519655		Haplosclerida	Niphatidae
		Niphates digitalis	EF519656	91,90%	1	Niphatidae
		Niphates digitalis	EF519657	91,80%	Haplosclerida	Niphatidae
SB_72		Fail				
CD 72	Neopetrosia	Amphimedon	FU 1007 47 4	02 (00)	TT 1 1 1	NT 1 / 1
SB_73	proxima	compressa	EU237474	93,60%	Haplosclerida	Niphatidae
	Amphimedon	Petrosia ficiformis	VD011962	01 700/	Hanlagalarida	Petrosiidae
	compressa	Halicnemia sp.	KR911863 HQ379423		Haplosclerida Axinellida	Stelligeridae
		Halicnemia patera	HQ379423 HQ379422	89,20% 89,10%		Stelligeridae
		Paratimea constellata	HQ379422 HQ379419		Axinellida	Stelligeridae
	Spirastrella	T dratified constellata	11Q377417	07,0070	TAmemda	Stelligendde
SB_74	coccinea	Clionaopsis platei	HM999042	94,80%	Clionaida	Clionaidae
55_/	Cliona sp.	Clionaopsis platei	HM999043	94,80%		Clionaidae
		Cliona chilensis	HM999018	94,60%		Clionaidae
		Cliona chilensis	HM999014	94,60%	Clionaida	Clionaidae
		Placospongia sp.	AY094604	94,60%	Clionaida	Placospongiida
SB_75		Crambe crambe	JX999091	95,70%	Poecilosclerida	Crambeidae
		Monanchora				
		arbuscula	EF519645		Poecilosclerida	Crambeidae
		Monanchora clathrata			Poecilosclerida	Crambeidae
		Monanchora clathrata			Poecilosclerida	Crambeidae
		Monanchora sp.	HE611610		Poecilosclerida	Crambeidae
SB_76		Aplysina fistularis	AY561987		Verongiida	Aplysinidae
		Aplysina lacunosa	AM076985		Verongiida	Aplysinidae
		Aplysina sp.	KX034570		Verongiida	Aplysinidae
		Aplysina sp.	KX034569		Verongiida Verongiida	Aplysinidae
SB_77		Aplysina sp.	KX034568		Verongiida	Aplysinidae
3D_//		Verongula gigantea Verongula reiswigi	AM076984 KT921334		Verongiida Verongiida	Aplysinidae Aplysinidae
		Amphimedon	N1721334	91,10%	verongnua	Apryshiluae
		compressa	EF519560	93 60%	Haplosclerida	Niphatidae
		Verongula reiswigi	EF519691		Verongiida	Aplysinidae
		Amphimedon	LI 517071	23,0070	verongneu	ripiysiinduo
		compressa	EF519558	93.60%	Haplosclerida	Niphatidae
		Plakinastrella cf.		, , , , , , , , , , , , , , , , , , , ,		
SB_78		onkodes	EU237487	96,10%	Homosclerophorida	Plakinidae
		Plakortis albicans	KJ162931		Homosclerophorida	
		Plakortis simplex	HQ269362		Homosclerophorida	
		Plakina trilopha	HQ269356	94,50%	Homosclerophorida	Plakinidae
		Plakinastrella sp.	KU674380	91,00%	Homosclerophorida	Plakinidae
	Callyspongia					
SB_79	vaginalis	fail				
SB_80	Agelas conifera	Agelas dilatata	DQ075693		Agelasida	Agelasidae
	Agelas tubulata	Agelas repens	DQ075757		Agelasida	Agelasidae
		Agelas repens	DQ075756	97,20%	Agelasida	Agelasidae
		Agelas sceptrum	DQ075744		Agelasida	Agelasidae

		Agelas sceptrum	DQ075739	97,20%	Agelasida	Agelasidae
SB_81		Agelas sventres	DQ075735	82,20%	Agelasida	Agelasidae
		Agelas sventres	DQ075696	80,30%	Agelasida	Agelasidae
		Agelas clathrodes	DQ075743	82,10%	Agelasida	Agelasidae
		Agelas clathrodes	EF519540	80,20%	Agelasida	Agelasidae
		Agelas clathrodes	EF519538	80,20%	Agelasida	Agelasidae
SB 82		fail	LI 517558	00,2070	Ageiasida	Agenasidae
SB_83		1411				
		Plakortis				
SB_84		halichondrioides Plakortis	HQ269359	98,30%	Homosclerophorida	Plakinidae
		angulospiculatus	EF519536	92,70%	Homosclerophorida	Plakinidae
		Plakortis simplex Plakinastrella cf.	HQ269362	96,20%	Homosclerophorida	Plakinidae
		onkodes Plokortis	EU237487	93,20%	Homosclerophorida	Plakinidae
		halichondrioides	KP972554	88,10%	Homosclerophorida	Plakinidae
GD 5 -	Oceanapia	Paracornulum		0.5.5	N 11 4 1 1	
SB_85	bartschi	dubium	HE611605	· ·	Poecilosclerida	Acarnidae
		Paracornulum sp.	HE611606	96,10%	Poecilosclerida	Acarnidae
		Acantheurypon				
		pilosella	JF440337	,	Axinellida	Raspailiidae
		Clathria rugosa	HE611604	92,50%	Poecilosclerida	Microcionidae
		Negombata				
		magnifica	AM420314	94,00%	Poecilosclerida	Podospongiidae
SB_86		Aiolochroia crassa	KT921333	97,80%	Verongiida	Aplysinidae
		Aiolochroia crassa	AJ843885	97,70%	Verongiida	Aplysinidae
		Aiolochroia crassa	KX034574	95,90%	Verongiida	Aplysinidae
		Aiolochroia crassa	KX034573	95,90%	Verongiida	Aplysinidae
		Aiolochroia crassa	KX034572	95,90%	Verongiida	Aplysinidae
SB_87		Scopalina ruetzleri	AY561976	94,20%	Scopalinida	Scopalinidae
		Scopalina ruetzleri	AM498648	92,90%	Scopalinida	Scopalinidae
		Scopalina ruetzleri	JX999075	90,90%	Scopalinida	Scopalinidae
		Scopalina ruetzleri	EF519669	90,40%	Scopalinida	Scopalinidae
		Halicnemia sp.	HQ379423	84,00%	Axinellida	Stelligeridae
	Callyspongia					
SB_88	plicifera	Annelida sp.	KP254496	91,80%	Segmented worms Hymenoptera	
		Rhysipolinae	KX058578	83,30%	(wasps) Hymenoptera	
		Rhysipolis sp.	KX058590	82,60%	(wasps)	
		Lispe orientalis	EU627716	86,30%	Diptera	
					Hymenoptera	
		Aphidiinae sp.	KR418568	82,40%	(wasps)	
		Chelonaplysilla				
SB_89		erecta	EF519582	94,30%	Dendroceratida	Darwinellidae
		Chelonaplysilla sp.	KU060584	89,30%	Dendroceratida	Darwinellidae
		Dictyodendrilla				Dicyodendrillida
		cavernosa	JQ082807	91,80%	Dendroceratida	e
		Dictyodendrilla		,	Not in World	
		elegans	JQ082808	91,70%	Porifera Database	
		Chelonaplysilla				
		delicta	JQ082800	89,90%	Dendroceratida	Darwinellidae
	Xestospongia	Xestospongia		,- 0,0		
SB_90	muta	testudinaria Xestospongia	HQ452961	98,60%	Haplosclerida	Petrosiidae
		testudinaria	HQ452959	98,60%	Haplosclerida	Petrosiidae
		Xestospongia muta	HQ452958	98,60%	Haplosclerida	Petrosiidae
		Xestospongia muta	HQ452957	98,60% 98,60%	Haplosclerida	Petrosiidae
		Xestospongia muta				
		Xestosnongia muta	EU237490	98,60%	Haplosclerida	Petrosiidae

SB_91		Geodia vosmaeri	HM592711	97,80%	Tetractinellida	Geodiidae
		Geodia neptuni	AY320032	98,10%	Tetractinellida	Geodiidae
		Geodia vosmaeri	HM592722	97,30%	Tetractinellida	Geodiidae
		Geodia gibberosa	EU44209	96,70%	Tetractinellida	Geodiidae
		Sidonops neptuni	EF519673	93,30%	Tetractinellida	Geodiidae
	Amphimedon			, , , , , , , , , , , ,		
SB_92	compressa	Timea sp.	AY561968	80,70%	Tethyida	Timeidae
	eompressu	Geodia media	AY561962	81,50%	Tetractinellida	Geodiidae
		Scorpio maurus	KF997866	72,60%	Scorpion	
		Scorpio fuscus	KT188287	73,60%	Scorpion	
		Scorpio fuscus	KT188219	73,70%	Scorpion	
SB_93		Crambe crambe	JX999091	94,30%	Poecilosclerida	Crambeidae
		Monanchora		. ,		
		arbuscula	EF519645	92,60%	Poecilosclerida	Crambeidae
		Monanchora clathrata		94,70%	Poecilosclerida	Crambeidae
		Monanchora clathrata		94,60%	Poecilosclerida	Crambeidae
		Monanchora sp.	HE611610	,	Poecilosclerida	Crambeidae
SB 94		Aplysina fistularis	AY561987	98,90%	Verongiida	Aplysinidae
~~_/ '		Aplysina lacunosa	AM076985	98,90%	Verongiida	Aplysinidae
		Aplysina sp.	KX034570	98,80%	Verongiida	Aplysinidae
		Aplysina sp.	KX034569	98,80%	Verongiida	Aplysinidae
		Aplysina sp.	KX034568	98,80%	Verongiida	Aplysinidae
SB_95		Clathria armata	KC869418	96,20%	Poecilosclerida	Microcionidae
55_75		Microciona prolifera	DQ087475		Poecilosclerida	Microcionidae
		Ophlitaspongia	2 2001 110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 00011030101100	1.1.0.0010111000
		papilla	KF225485	95,50%	Poecilosclerida	Microcionidae
		Ophlitaspongia				
		papilla	KF225484	95,50%	Poecilosclerida	Microcionidae
		Ophlitaspongia	111 220 10 1	20,0070	1 occiloscicitat	1, ner oeromaae
		papilla	KF225483	95,60%	Poecilosclerida	Microcionidae
SB_96		Cf. Hippospongia sp.	JQ082792	93,00%	Dictyoceratida	Spongiidae
50_70		Dactylospongia	32002192	,0070	Dietyseeradaa	Spongnade
		elegans	JQ082802	92,90%	Dictyoceratida	Thorectidae
		Hippospongia lachne	EU237484	96,30%	Dictyoceratida	Spongiidae
		Ircinia oros	JN655186	96,30%	Dictyoceratida	Irciniidae
		Hyattella sinuosa	JX535019	96,20%	Dictyoceratida	Spongiidae
SB 97		fail	J <u>X</u> JJJJ	70,2070	Dietyoeeratida	Spongneae
		Tull				
	Polymastia					
SB 98	Polymastia tenax	Polymastia littoralis	KJ129611	96.80%	Polymastiida	Polymastidae
SB_98	Polymastia tenax	Polymastia littoralis Sphaerotylus borealis	KJ129611 HG423725		Polymastiida Polymastiida	Polymastidae Polymastidae
SB_98	-	Sphaerotylus borealis	KJ129611 HG423725		Polymastiida Polymastiida	Polymastidae Polymastidae
SB_98	-	Sphaerotylus borealis Polymastia	HG423725	96,00%	Polymastiida	Polymastidae
SB_98	-	Sphaerotylus borealis Polymastia euplectella	HG423725 HG423710	96,00% 96,00%	Polymastiida Polymastiida	Polymastidae Polymastidae
SB_98	-	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus	HG423725 HG423710 KF225486	96,00% 96,00% 96,00%	Polymastiida Polymastiida Polymastiida	Polymastidae Polymastidae Polymastidae
	-	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus	HG423725 HG423710 KF225486 LN606464	96,00% 96,00% 96,00% 95,90%	Polymastiida Polymastiida Polymastiida Polymastiida	Polymastidae Polymastidae Polymastidae Polymastidae
	-	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini	HG423725 HG423710 KF225486 LN606464 AY561960	96,00% 96,00% 95,90% 97,40%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida	Polymastidae Polymastidae Polymastidae <u>Polymastidae</u> Hymerhabdiidae
	-	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp.	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786	96,00% 96,00% 96,00% 95,90% 97,40% 97,40%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae
	-	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp.	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097	96,00% 96,00% 96,00% 95,90% 97,40% 97,40% 97,30%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae
	-	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp.	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787	96,00% 96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Axinellidae
	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097	96,00% 96,00% 96,00% 95,90% 97,40% 97,40% 97,30%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90%	Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787	96,00% 96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae Callyspongiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10%	Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae Callyspongiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis Callyspongia	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579 GQ304704	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10% 87,50%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Haplosclerida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae Callyspongiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10% 87,50%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae Callyspongiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579 GQ304704 LK026376	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10% 87,50% 87,40%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Axinellida Haplosclerida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae Callyspongiidae Callyspongiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579 GQ304704	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10% 87,50%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Haplosclerida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Axinellidae Callyspongiidae Callyspongiidae
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579 GQ304704 LK026376 GQ304697	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 97,30% 95,90% 88,10% 87,50% 87,40% 87,40%	Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Axinellida Haplosclerida Haplosclerida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Raspailiidae Callyspongiidae Callyspongiidae Callyspongiidae
SB_98 SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893	96,00% 96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30%	Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Axinellida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdii Axinellidae Axinellidae Raspailiidae
	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579 GQ304704 LK026376	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10% 87,50% 87,40%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Axinellida Haplosclerida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiida Axinellidae Axinellidae Axinellidae Callyspongiida Callyspongiida
SB_100	tenax	Sphaerotylus borealis Polymastia euplectella Polymastia penicillus Polymastia penicillus Prosuberites laughlini Axinella sp. Axinella sp. Axinella sp. Eurypon cf. clavatum Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis Callyspongia vaginalis	HG423725 HG423710 KF225486 LN606464 AY561960 JX915786 KJ008097 JX915787 AJ843893 EF519579 GQ304704 LK026376	96,00% 96,00% 95,90% 97,40% 97,40% 97,30% 97,30% 95,90% 88,10% 87,50% 87,40%	Polymastiida Polymastiida Polymastiida Polymastiida Agelasida Axinellida Axinellida Axinellida Axinellida Haplosclerida Haplosclerida	Polymastidae Polymastidae Polymastidae Polymastidae Hymerhabdiidae Axinellidae Axinellidae Axinellidae Callyspongiidae Callyspongiidae

1		Phorbas fictitius	LT160715	97,00%	Poecilosclerida	Hymedesmiidae
		Phorbas fictitius	LT160716	96,80%	Poecilosclerida	Hymedesmiidae
		Phorbas fictitius	LT160723	96,40%	Poecilosclerida	Hymedesmiidae
		Phorbas fictitius	LT160722	96,40%	Poecilosclerida	Hymedesmiidae
SB_103		Predicted: Pantholops hodgsionii Sinorhizobium	XM_005964	85,80%	Tibetan antelope	
		meliloti	CP009144	80,90%	Bacteria	
		Sinorhizobium meliloti	CP004140	80,90%	Bacteria	
		Sinorhizobium meliloti	CP002740	80,90%	Bacteria	
		Sinorhizobium meliloti	AL591688	80,90%	Bacteria	
SB_104	Callyspongia fallax	Haliclona amboinensis	KR707689	97,00%	Haplosclerida	Chalinidae
		Haliclona amboinensis	KR707686	96,50%	Haplosclerida	Chalinidae
		Haliclona amboinensis	KR707688	96,90%	Haplosclerida	Chalinidae
		Haliclona amboinensis	KR707687	96,90%	Haplosclerida	Chalinidae
		Haliclona amboinensis	KR707685	96,30%	Haplosclerida	Chalinidae
SB_105		Ircinia oros	JN655186	99,50%	Dictyoceratida	Irciniidae
		Ircinia fasciculata	JN655174	99,20%	Dictyoceratida	Irciniidae
		Ircinia sp.	HE591459	99,20%	Dictyoceratida	Irciniidae
		Ircinia sp.	KC510274	99,10%	Dictyoceratida	Irciniidae
		Ircinia strobilina	GQ337013	99,10%	Dictyoceratida	Irciniidae
SB_106		Ptilocaulis walpersi	EU237488	99,00%	Axinellida	Axinellidae
52_100		Ptilocaulis marquezi	EF519668	94,90%	Axinellida	Axinellidae
		Hymeraphia breeni Thrinacophora	KC869421	93,00%	Axinellida	Raspailiidae
		cervicornis Thrinacophora	JQ034586	89,60%	Axinellida	Raspailiidae
		cervicornis	JQ034585	89,60%	Axinellida	Raspailiidae
SB_107		Not sequenced				
	Callyspongia	Callyspongia				
SB_108	plicifera	plicifera	EU237477	99,40%	Haplosclerida	Callysponiidae
		Haliclona elegans	JX999087	95,00%	Haplosclerida	Chalinidae
		Haliclona sp.	JN242203	92,90%	Haplosclerida	Chalinidae
		Haliclona implexiformis	EF519623	93,00%	Haplosclerida	Chalinidae
		Haliclona oculata	HQ379430	93,00% 94,80%	Haplosclerida	Chalinidae
		Stenotrophomonas	120177100	> 1,0070	Impiosononium	
SB_109	??	maltophilia Stenotrophomonas	CP011306	75,70%	Bacteria	
		maltophilia Stenotrophomonas	CP011305	75,70%	Bacteria	
		maltophilia Stenotrophomonas	CP011010	75,50%	Bacteria	
		maltophilia Xanthomonas	HE798556	75,20%	Bacteria	
		translucens	CP008714	76,50%	Bacteria	
					Poecilosclerida	Crearchaidea
SB_110		Crambe crambe	JX999091	95,30%	Poechoscierida	Crambeidae
SB_110		Crambe crambe Monanchora	JX999091	,		Crambeldae
SB_110		Monanchora arbuscula	EF519645	,	Poecilosclerida	Crambeidae
SB_110		Monanchora	EF519645	,		
SB_110		Monanchora arbuscula	EF519645 HE611612	93,30%	Poecilosclerida	Crambeidae

SB_111		Aplysina fistularis	AY561987	99,50%	Verongiida	Aplysinidae
		Aplysina lancunosa	AM076985	98,90%	Verongiida	Aplysinidae
		Aplysina sp.	KX034570	98,80%	Verongiida	Aplysinidae
		Aplysina sp.	KX034569	98,80%	Verongiida	Aplysinidae
		Aplysina sp.	KX034568	98,80%	Verongiida	Aplysinidae
SB_112		Dercitus bucklandi	HM592674	95,30%	Tetractinellida	Ancorinidae
_		Stryphnus fortis	HM592697	94,40%	Tetractinellida	Ancorinidae
		Stryphnus		- ,		
		ponderosus	HM592685	94,40%	Tetractinellida	Ancorinidae
		Stelletta normani	EU442193	94,00%	Tetractinellida	Ancorinidae
		Stelletta clarella	HM592736	93,70%	Tetractinellida	Ancorinidae
		Lysobacter	1101392130	23,1070	Tettaetinentaa	Incomidue
SB_113		gummosus	CP011131	89,30%	Bacteria	
5 D _115		Pseudoxanthomonas	CI 011151	07,5070	Dacteria	
		suwonensis	CP011144	84,30%	Bacteria	
		Lysobacter capsici	CP011130		Bacteria	
		Lysobacter	Cr011150	88,00%	Daciena	
		antibioticus	CP013141	80.000/	Bacteria	
			CF013141	89,00%	Dacterra	
		Lysobacter	CD012140	85.000	Pastoria	
CD 114		enzymogenes	CP013140	85,90%	Bacteria	
SB_114			137521005	00.0001	X7 ··· 1	A 1 · · 1
SB_115		Aplysina fistularis	AY561987	99,80%	Verongiida	Aplysinidae
		Aplysina cauliformis	EU518938	99,60%	Verongiida	Aplysinidae
		Aplysina fulva	EU237476	99,60%	Verongiida	Aplysinidae
		Aplysina lacunosa	AM076985	99,50%	Verongiida	Aplysinidae
		Aplysina sp.	KX034570	99,20%	Verongiida	Aplysinidae
SB_116		Not sequenced				
		Amphimedon				
SB_117		compressa	EU237474	95,70%	Haplosclerida	Niphatidae
		Eunapius fragilis	DQ176779	90,50%	Spongillida	Spongillidae
		Hemiasterella sp.	AY561977	90,60%	Tethyida	Hemiasterellidae
		Haliclona amphioxa	AJ843892	88,90%	Haplosclerida	Chalinidae
		Haliclona				
		amboinensis	KR707688	90,30%	Haplosclerida	Chalinidae
SB_118		Analges sp.				
SB_119	Agelas citrina	Agelas clathrodes	DQ075703	95,50%	Agelasida	Agelasidae
_	U	Agelas citrina	DQ075741	95,40%	Agelasida	Agelasidae
		Agelas clathrodes	DQ075726	95,40%	Agelasida	Agelasidae
		Agelas citrina	DQ075701	95,40%	Agelasida	Agelasidae
		Agelas cf. clathrodes	DQ075729	95,30%	Agelasida	Agelasidae
SB 120	Niphates erecta	Niphates alba	EF519654	94,00%	Haplosclerida	Niphatidae
50_120	1 (ipilates creeta	Niphates erecta	EF519660	93,40%	Haplosclerida	Niphatidae
		Niphates digitalis	EF519655	90,80%	Haplosclerida	Niphatidae
		Niphates digitalis	EF519656	90,80 <i>%</i> 90,70%	Haplosclerida	Niphatidae
		Niphates digitalis	EF519657	90,70% 90,60%	Haplosclerida	Niphatidae
	Nacmatrazia	Nipliales digitalis	EF319037	90,00%	Tiapioscienua	Nipilatidae
SB 100	Neopetrosia	Goodia californica	EU142200	85 500/	Tatractinallida	Geodiidae
SB_122	carbonaria	Geodia californica	EU442200	85,50%	Tetractinellida	Geodifidae
	Amphimedon		A VE (10 (2	07.000	Trata and 11'1	
	compressa	Geodia media	AY561962	87,00%	Tetractinellida	Geodiidae
		Stelletta clarella	HM592736	84,90%	Tetractinellida	Ancorinidae
		Geodia gibberosa	EU442209	85,40%	Tetractinellida	Ancorinidae
		Geodia gibberosa	HM592723	84,50%	Tetractinellida	Ancorinidae
	Neopetrosia	Plakinastrella cf.				
SB_123	carbonaria	onkodes	EU237487	96,00%	Homosclerophorida	Plakinidae
	Plakortis					
	halichondrioides	Plakortis albicans	KJ162931	91,60%	Homosclerophorida	
		Plakortis simplex	HQ269362	94,80%	Homosclerophorida	
		Plakina trilopha	HQ269356	94,50%	Homosclerophorida	Plakinidae
		Plakinastrella sp.	KU674380	90,60%	Homosclerophorida	Plakinidae
SB_124		Pterois volitans	KJ739816	99,20%	Red lionfish	
		•				

		D. 11	W) (400 c22	00.000/		
		Pteriois volitans Actinopterygii	KM488633 JQ843265	99,00% 97,90%		
		Actinopterygii	JQ843263 JQ843273	97,90% 97,70%		
		Actinopterygii	JQ843273 JQ843149	97,70% 97,80%		
SB_125		Pterois volitans	KJ739816	98,90%	Red lionfish	
5D _125		Pterois volitans	KM488633	98,90% 98,70%	Keu holinish	
		Actinopterygii	JQ843265	96,90%		
		Actinopterygii	JQ843203 JQ843273	96,70%		
		Actinopterygii	JQ843149	96,90%		
SB_126		Pterois volitans	KJ739816	98,70%	Red lionfish	
D _120		Pterois volitans	KM488633	98,70% 98,60%	Keu holinish	
		Actinopterygii	JQ843265	98,00% 97,40%		
		Actinopterygii	JQ843203 JQ843273	97,40% 97,30%		
		Actinopterygii	JQ843273 JQ843149	97,30% 97,40%		
		Plakortis	JQ043149	97,40%		
D 107		halichondrioides	HO260250	07 2004	Homosolaronhorida	Diatrinidaa
SB_127			HQ269359		Homosclerophorida	
		Plakortis simplex Plakortis	HQ269362	90,30%	Homosclerophorida	гакшиае
			EF519536	01 200/	Homosolaronhorida	Dlakinidaa
		angulospiculatus			Homosclerophorida	Plakinidae
		Plakina jani Plakina trilopha	HQ269360	95,10%	Homosclerophorida Homosclerophorida	
D 100		Plakina trilopha	HQ269356	,	1	
SB_128		Cliona chilensis	HM999018	75,30%	Clionaida	Clionaidae
		Cliona chilensis	HM999014	75,30%	Clionaida	Clionaidae
		Clionaopsis platei	HM999042	74,50%	Clionaida	Clionaidae
		Clionaopsis sp.	LC126251	73,60%	Clionaida	Clionaidae
DD 100		Cliona celata	HM999029	75,10%	Clionaida	Clionaidae
SB_129		Iotrochota acerata	HE611625	86,80%	Poecilosclerida	Iotrochotidae
		Iotrochota birotulata	EU237486	86,80%	Poecilosclerida	Iotrochotidae
		Iotrochota coccinea	HE611623	86,70%	Poecilosclerida	Iotrochotidae
		Iotrochota baculifera	HE611621	86,70%	Poecilosclerida	Iotrochotidae
	F (1)	Iotrochota birotulata	AY561963	84,20%	Poecilosclerida	Iotrochotidae
SB_130	Ectyoplasia ferox	Ectyoplasia ferox	HE591462	98,60%	Axinellida	Raspailiidae
5D _150	ICIOX	Ectyoplasia ferox	EU237480	98,60% 98,60%	Axinellida	Raspailiidae
		Ectyoplasia ferox	EF519612	93,90%	Axinellida	Raspailiidae
		Ectyoplasia sp.	KU060764	93,90% 88,70%	Axinellida	Raspailiidae
		Ectyoplasia sp.	KU060627	88,70% 88,50%	Axinellida	Raspailiidae
	Vastosmongia		KU000027	88,30%	Axiiieiiida	Kaspannuae
SB_131	Xestospongia	Xestospongia testudinaria	KC763778	08 /00/	Haplosclerida	Petrosiidae
10_101	muta		NC/03//0	70,40%	riapioscientua	i cu osnuae
		Xestospongia testudinaria	HQ452961	98,40%	Haplosclerida	Petrosiidae
		Xestospongia	11Q4J2901	70,40%	riapioscientua	i cu osnuae
		testudinaria	HQ452960	98,40%	Haplosclerida	Petrosiidae
		Xestospongia	110+32300	70 , 40%	rapioscienua	i cu osnuae
		testudinaria	HQ452959	98,40%	Haplosclerida	Petrosiidae
		Xestospongia muta	HQ452959 HQ452958	98,40% 98,40%	Haplosclerida	Petrosiidae
	Niphates		11Q+J2930	70 , 1 070	napioscienua	i cu osnuac
SB_132	caribica	Tipula coloradensis	KR441661	25,50%	Crane-fly	
<u>152</u>	Carloica	Tipula coloradensis	KR441001 KR440460	23,30% 33,90%	Crane-rry	
		Tipula coloradensis	KM570688	25,00%		
		Pascula darrosensis	HE584057	23,00%		
		Diplopoda sp.	KP421790	24,30%		
SB_133		Crambe crambe	JX999091	95,30%	Poecilosclerida	Crambeidae
נכו_עי		Monanchora	JAJJJU71	10,0070	i occitoscicitua	Cramocidae
		arbuscula	EF519645	93,60%	Poecilosclerida	Crambeidae
		Monanchora clathrata	HE611612	93,60% 95,70%	Poecilosclerida	Crambeidae
		Monanchora clathrata	HE611612	95,70% 95,60%	Poecilosclerida	Crambeidae
				95,60% 95,10%	Poecilosclerida	Crambeidae
		Monanchora sp.	HE611610	95,10%	roechoscientia	Crambeldae
SD 124	Unlinhand-in?	Stellettinopsis	AV561000	00 500/	Tatractinallida	Ancorinidae
D_134	Halichondria?	megastylifera	AY561980	99,50%	Tetractinellida	Ancomidae

megastylfera Geodia mucandrewi Geodia megastrella FI 142199 FI 1442199 95,00% Terractinellida Geodiidae Accornidae SB_135 Clionaopsis sp. Clionaopsis sp. Clionaopsis platci LC126252 90,20% Clionaida Clionaidae SB_136 Verongula reiswigi Pseudoceratina sp. Siphenodictyon Psinov Clionaida Clionaidae Clionaidae SB_136 Verongula reiswigi Pseudoceratina sp. KT92134 85,20% Verongiida Aplysinidae SB_136 Verongula reiswigi Pseudoceratina sp. KT546361 83,00% Verongiida Aplysinidae Siphenodictyon Verongula reiswigi Pseudoceratina sp. KT546361 92,00% Verongiida Aplysinidae Verongula reiswigi Pseudoceratina sp. FF043378 95,00% Verongiida Aplysinidae Verongula reiswigi Pseudoceratina sp. FF04378 93,00% Verongiida Aplysinidae SB_140 Plicifera Annelida sp. KX254496 91,30% Segmented worms Rysipiolina gen. KX058570 83,00% Verongiida Aplysinidae SB_142 Gait			Stellettinopsis				I
Geodia macandrewi EU442198 99.00% Teractinellidia Geoditiaue Geodia cydonium HM592741 95.70% Terractinellidia Geoditiaue SB_135 Clionaopsis sp. LC126252 90.20% Clionaida Clionaida SB_100 Clionaopsis sp. LC126252 90.20% Clionaida Clionaida Clionaopsis platei HM99042 94.10% Clionaida Clionaida Clionaida SB_136 Verongula gigunte AM076984 85.20% Verongiida Aplysinidae Verongula reiswigi KT921334 85.20% Verongiida Aplysinidae Siphonodicyon Verongula reiswigi KT921334 83.00% Verongiida Aplysinidae Siphonodicyon Verongula reiswigi KT921334 96.10% Verongiida Aplysinidae Siphonodicyon EF043378 83.00% Verongiida Aplysinidae Siphonodicyon Krost6361 95.00% Verongiida Aplysinidae Siphonodicyon Ef04378 84.30% Pseudocertinidae				FJ711642	98.50%	Tetractinellida	Ancorinidae
Geodia cydonium EU42199 99.90% Teractinellida Geodiidae SB_135 Clionaopsis sp. LC126251 94,10% Clionaida Clionaidae SB_135 Clionaopsis sp. LC126252 90,20% Clionaida Clionaidae Clionaopsis platei HM999043 94,20% Clionaida Clionaidae SB_136 Verongula reiswigi KT92134 85,20% Verongiida Aplysinidae SB_000000000000000000000000000000000000					,		
Geodia megastrella HM592741 95,70% Terractnellida Gelionidae SB_135 Clionaopsis sp. LC126252 90,20% Clionaida Clionaidae SB_136 Clionaopsis sp. LC126252 90,20% Clionaida Clionaidae Clionaopsis platei HM099042 94,10% Clionaida Clionaidae SB_136 Verongula gigantea AM076984 85,20% Veronguida Aplysinidae Verongula reiswigi KT921334 85,30% Veronguida Pseudocerrininate Pseudocerratina sp. KJ546361 83,60% Veronguida Aplysinidae Siphonodictyon Verongula reiswigi KT921334 96,10% Veronguida Aplysinidae SB_137 coralliphagum Verongula reiswigi KT921334 96,10% Veronguida Aplysinidae Sbphonodictyon Siphonodictyon Field3378 95,70% Veronguida Aplysinidae SB_142 Callyspogina Fieldasp. Fieldasp. Fieldasp. Fieldasp. SB_142 fail							
SB_135 Clionaopsis sp. LC126251 94,10% Clionaida Clionaidae Clionaopsis platei HM999043 94,20% Clionaidae Clionaidae SB_136 Verongula gigantea HM099043 94,20% Clionaidae Clionaidae SB_136 Verongula gigantea HM099042 94,10% Clionaidae Clionaidae SB_137 Coronaligantea MM070844 85,20% Verongulia disviji (K1921334 85,20% Verongulia disviji (K1921337 Pseudocertinindae SB_137 coralliphagum Verongula gigantea AM076984 96,90% Verongulia Aplysinidae Pseudoceratina sp. KJ546361 95,30% Verongulia Aplysinidae Pseudoceratina sp. KJ546361 95,30% Verongulia Aplysinidae Pseudoceratina sp. KJ546361 95,30% Verongulia Aplysinidae SB_140 plicifera Amelida sp. KZ54496 91,30% Segmented worms SB_142 fail Aplysina fstularis AY861987 99,50% Verongida Aplysinidae SB_142 fail Aplysina fstularis							
Clionaopsis p. LC12625 90,20% Clionaida Clionaidae Clionaopsis platci HM990043 94,10% Clionaida Clionaidae SB_136 Verongula giguntea AM076984 85,20% Veronguida Aplysinidae SB_136 Verongula reiswigi K17921334 85,20% Veronguida Aplysinidae Peeudoceratina sp. EF043378 83,50% Veronguida Aplysinidae Sbphonodictyon Verongula gigantea AM076984 96,90% Veronguida Aplysinidae Verongula reiswigi KT921334 96,10% Veronguida Aplysinidae Sbphonodictyon Verongula gigantea AM076984 96,90% Veronguida Aplysinidae Peeudoceratina sp. EF04378 85,70% Veronguida Aplysinidae Sbphonodictyon Ripsipolina cgen. K2546361 95,30% Veronguida Aplysinidae Sbphonodictyon Ripsipolina cgen. K254960 91,30% Segmented worms Sequocertiniade Sbplata Amphimedon KV254300	SB 135						
Demospagia sp. KU060720 87,90% Clionaopsis platei HM999042 94,10% Clionaida Clionaidae SB_136 Verongula grastva AM076984 85,20% Veronguida Aplysinidae SB_137 Verongula resivgi KT921334 85,20% Veronguida Aplysinidae Pseudoceratina sp. KJ546361 83,60% Veronguida Pseudoceratinia sp. SB_137 coralliphagum Verongula grastvaji KT921334 96,00% Veronguida Aplysinidae Pseudoceratina sp. KJ546361 95,30% Veronguida Aplysinidae Pseudoceratina sp. KJ546361 95,50% Veronguida Aplysinidae Pseudoceratina sp. KJ546361 95,30% Veronguida Aplysinidae SB_140 plicitera Annelida sp. KP254496 91,30% Segmented worms SB_142 fail Sagmented worms Sagmented worms Sagmented worms SB_142 fail Aplysina facunosa AM076985 98,80% Verongiida Aplysinidae	50_155						
Clionagisis platiciHM09904294,20%ClionaidaClionaidaeSB_136Verongula giganteaAM07698485.20%VerongilaAplysinidaeSB_137Verongula reiswigiK792133485.20%VerongilaPseudocertinidaePseudoceratina sp.K754636183.60%VerongilaPseudocertinidaeSiphonodictyonSiphonodictyonVerongula reiswigiK792133496.10%VerongilaPseudocertinidaeSB_137coralliphagumVerongula reiswigiK792133496.10%VerongilaAplysinidaeAurphinedonreiswigiK792133495.30%VerongilaApleudocertinidaePseudoceratina sp.EF04337895.70%VerongilaApleudocertinidaePseudoceratina sp.EF04337895.70%VerongilaPseudocertinidaeSB_140CallyspongiaAnnelida sp.K725449691.30%Segmented wormsSB_142failTitTitSiphonadictyAplysinidaeSB_143Aplysina fistularisAY56198784.80%VerongilaAplysinidaeSB_143Aplysina sp.KX03457098.80%VerongilaAplysinidaeAplysina sp.KX034570898.80%VerongilaAplysinidaeAplysina sp.KX03456998.80%VerongilaAplysinidaeAplysina sp.KX03456998.80%VerongilaAplysinidaeAplysina sp.KX03457098.80%VerongilaAplysinidaeAplysina sp.KX03457098.80% <td></td> <td></td> <td></td> <td></td> <td></td> <td>Chonaida</td> <td>Chonaidae</td>						Chonaida	Chonaidae
Cliomagins platei HM999042 94,10% Cliomaida Cliomaidae SB_136 Verongula gigantea AM076984 85,20% Verongida Aplysinidae SB_137 Siphonodictyon Pseudoceratina sp. K7546361 83,60% Verongida Pseudocertinidae SB_137 coralliphagum Verongula reiswigi K7921334 96,90% Verongida Aplysinidae SB_137 coralliphagum Verongula gigantea AM076984 96,90% Verongida Aplysinidae Pseudoceratina sp. KJ546361 95,30% Verongida Pseudocertinidae SB_140 Pseudoceratina sp. FK194378 95,70% Verongida Pseudocertinidae SB_140 plicifera Annelida sp. KP254496 91,30% Segmented worms Kiphysioniae SB_142 fail Annelida sp. KV254496 91,30% Segmented worms Kiphysindiae SB_142 fail Annelida sp. KX058578 84,30% Verongida Aplysinidae SB_143 Aplysina fistularis <td></td> <td></td> <td></td> <td></td> <td></td> <td>Clionaida</td> <td>Clionaidae</td>						Clionaida	Clionaidae
SB_136 Verongula gigantea AM076984 85,20% Verongida Aplysinidae Pseudoceratina sp. EF043378 85,20% Verongida Pseudocertinidae Siphonodictyon Siphonodictyon Verongula gigantea AM076984 96,90% Verongida Pseudocertinidae Sbphonodictyon Verongula gigantea AM076984 96,90% Verongida Aplysinidae SB_137 coralliphagum Verongula gigantea AM076984 96,90% Verongida Aplysinidae Pseudoceratina sp. EF043378 95,70% Verongida Apleudocertinidae Pseudoceratina sp. EF043378 95,70% Verongida Pseudocertinidae SB_140 Picitera Annelida sp. KP254496 91,30% Segmented worms Rhysipolinae SB_142 fail Annelida sp. KX058570 84,40% Pseudocertinidae SB_143 Aplysina fistularis AY561987 99,50% Verongida Aplysinidae Aplysina sp. KX034569 98,80% Verongida Aplysinidae							
Verongula reisvigiKT92133485.20%VerongulaAplysinidaePseudoceratina sp.LFJ04337885.20%VerongulaPseudocertinidaeSiphonodictyonVerongula giganteaAM07698496.90%VerongulaPseudocertinidaeSB_137coralliphagumVerongula giganteaAM07698496.90%VerongulaPseudocertinidaePseudoceratina sp.KJ54636195.30%VerongulaPseudocertinidaePseudoceratina sp.EF04337895.70%VerongulaPseudocertinidaePseudoceratina sp.EF51956092.10%HaploscleridaNiphatidaeCallyspongiaAnnetida sp.KP25449691.30%Segmented wormsFreedocertinidaeSB_140pliciferaAnnetida sp.KV25449691.30%Segmented wormsFreedocertinidaeSB_142failAnnetida sp.KV25449691.30%Segmented wormsFreedocertinidaeSB_143Aplysina fistularisAY56198799.50%VerongidaAplysinidaeSB_144Haplisana fistularisAY56198799.50%VerongidaAplysinidaeAplysina sp.KX03457098.80%VerongidaAplysinidaeAplysina sp.KX03456898.80%VerongidaAplysinidaeArtemisinaIotrochota acerataHE61162596.30%PoeciloscleridaIotrochotidaeIotrochota ta cortaeHE61162596.30%PoeciloscleridaIotrochotidaeIotrochota ta cortaeHE61162596.30%PoeciloscleridaIotro	SB 136						
Pseudoceratina sp. EF043378 83,60% Verongiida Pseudocertinidae Siphonodictyon Siphonodictyon Secudoceratina sp. EF043378 82,50% Verongiida Pseudocertinidae SB_137 coralliphagun Verongula reiswigi KT921334 96,10% Verongiida Aplysinidae Pseudoceratina sp. EF043378 95,70% Verongiida Aplysinidae Pseudoceratina sp. EF043378 95,70% Verongiida Aplysinidae Amphimedon compressa EF519560 92,10% Haplosclerida Niphatidae SB_142 Callyspongia Annelida sp. KP254496 91,30% Segmented worms F SB_142 Annelida sp. KP254496 91,30% Segmented worms F SB_142 fail	50_150						
Seudoceratina sp. EF043378 83.50% Verongiida Pseudocertinidae Siphonodictyon coralliphagum Verongula gigantea AM076984 96.90% Verongiida Aplysinidae SB_137 coralliphagum Verongula reiswigi KT546361 95.30% Verongiida Aplysinidae SB_140 Pseudoceratina sp. EF043378 95.70% Verongiida Pseudocertinidae SB_140 plicifera Annelida sp. KT254496 91.30% Segmented worms Pseudocertinidae SB_140 plicifera Annelida sp. KT254496 91.30% Segmented worms Pseudocertinidae SB_142 Tati Annelida sp. KT254496 91.30% Segmented worms Pseudocertinidae SB_143 Aplysina fistularis AY561987 99.50% Verongiida Aplysinidae SB_144 melana fail AY561987 99.50% Verongiida Aplysinidae SB_144 melana fortochota birotulata EU237486 97.00% Poecilosclerida Aplysinidae <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td>						6	
Pseudoceratina sp. KJ546363 82,50% Verongiida Pseudocertinidae Siphonodictyon Siphonodictyon AM076984 96,90% Verongiida Aplysinidae SB_137 coralliphagum Verongula reiswigi KT921334 96,10% Verongiida Aplysinidae Pseudoceratina sp. KJ546361 95,70% Verongiida Pseudocertinidae SB_140 Plicifera Annelida sp. KY254496 91,30% Segmented worms Rivelocertinidae SB_141 Plicifera Annelida sp. KY254496 91,30% Segmented worms Kite sp. SB_142 Callyspongia Rhysipolinae gen. KX058578 84,30% Kite sp. KY51915 Sp. Kite sp. KY51915 Sp. Kite sp. KY51916 Sp. Kite sp. KY51916 Sp. Kite sp. KY51916 Sp. Kite sp. Kite sp. KY51916 Sp. Sp. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Siphonodictyon Siphonodictyon Verongula gigantea verongula reiswigi AM076984 KT921334 96,90% Verongilda Aplysinidae Aplysinidae SB_137 coralliphagum Verongula reiswigi KT921334 96,10% Verongilda Aplysinidae Pseudoccartina sp. EF043378 95,30% Verongilda Pseudoccartinidae Amphimedon compressa EF519560 92,10% Haplosclerida Niphatidae SB_140 plicifera Annelida sp. KP254496 91,30% Segmented worms Rhysipolina gen. KX058578 84,30% Diroterma sp. Fl4144051 83,60% SB_142 fail Aplysina fistularis AY561987 99,50% Verongilda Aplysinidae Aplysina sp. KX034570 98,80% Verongilda Aplysinidae Aplysinidae Aplysina sp. KX034569 98,80% Verongilda Aplysinidae Aplysinidae SB_144 melana Iotrochota birotulata EU237486 97,00% Poecilosclerida Iotrochotidae Iotrochota baculifera							
SB_137 coralliphagum Verongula gigantea AM076984 96,09% Verongiida Aplysinidae Verongula reiswigi K1546361 95,30% Verongiida Aplysinidae Pseudoceratina sp. EF043378 95,70% Verongiida Niphatidae SB_140 Callyspongia Annelida sp. KP254496 91,30% Segmented worms SB_141 Annelida sp. KP254496 91,30% Segmented worms Niphatidae SB_142 Annelida sp. KX058578 84,30% Segmented worms Niphatidae SB_142 fail Aplysina fistularis AY561987 99,50% Verongiida Aplysinidae SB_143 Aplysina fistularis AY561987 99,50% Verongiida Aplysinidae Aplysina ps. KX034570 98,80% Verongiida Aplysinidae Aplysina ps. KX034570 98,80% Verongiida Aplysinidae B144 melana fotrochota birotulata EU237486 97,00% Poecilosclerida fotrochotidae Iotrochota birotulata EU237486 96,30% Poecilosclerida fotrochotid		Sinhonodictyon	i seudoceratina sp.	KJ J 4 0303	02,5070	Veroligiida	1 seudocertinidae
Verongula reiswigi KT921334 96,10% Verongula Appsinidae Pseudoceratina sp. Amphimedon KJ546361 95,30% Verongiida Pseudocertinidae SB_140 plicifera Annelida sp. KJ546361 95,70% Verongiida Pseudocertinidae SB_140 plicifera Annelida sp. KV558578 84,30% Segmented worms Kite Rhysipolina gen. KX058578 84,30% Segmented worms Kite Kite SB_142 fail Annelida sp. F1414051 83,90% Verongiida Aplysinidae SB_143 Aplysina fistularis AY561987 98,90% Verongiida Aplysinidae Aplysina sp. KX034569 98,80%	SB 137		Verongula gigantea	AM076084	06.00%	Verongiida	Anlycinidae
Pseudoceratina sp.KJ54636195,30%VerongiidaPseudocertinidaePseudoceratina sp.EF04337895,70%VerongiidaPseudocertinidaeCallyspongia	SD_157	corampnagum					
Pseudoceratina sp.EF04337895,70%VerongiidaPseudocertinidaeAmphimedonEF51956092,10%HaploscleridaNiphatidaeSB_140pliciferaAnnelida sp.KP25449691,30%Segmented wormsKRhysipolinae gen.KX05857884,30%Segmented wormsKRhysipolinae gen.KX05857083,60%KKDrosophila bockiAB66973084,80%KKDrosophila bockiAB66973084,80%KKSB_142failKX03457098,50%VerongiidaAplysinidaeAplysina fistularisAY56198799,50%VerongiidaAplysinidaeAplysina fistularisAV5317098,80%VerongiidaAplysinidaeAplysina sp.KX03457098,80%VerongiidaAplysinidaeAplysina sp.KX03456898,80%VerongiidaAplysinidaeAplysina sp.KX03456896,30%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162596,30%PoeciloscleridaIotrochotidaeIotrochota coccineaHE61162596,30%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162395,00%PoeciloscleridaIotrochotidaeIotrochota birotulataAY56196395,00%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162396,30%PoociloscleridaIotrochotidaeIotrochota birotulataAY56196395,00%ChondrillidaChondrillaR							
Amphimedon compressa EF519560 92,10% Haplosclerida Niphatidae SB_140 plicifera Annelida sp. KP254496 91,30% Segmented worms Segmented worms SB_142 fail Rhysipolis sp. KX058570 84,30% Segmented worms Segmented worms SB_142 fail Segmented worms Verongiida Aplysinidae SB_143 Aplysina fistularis AY561987 99,50% Verongiida Aplysinidae Aplysina sp. KX034570 98,80% Verongiida Aplysinidae Aplysinidae Aplysina sp. KX034576 98,80% Verongiida Aplysinidae Aplysinidae B144 melana Iotrochota birotulata EU237486 97,00% Poecilosclerida Iotrochotidae Iotrochota coccinea HE611621 96,30% Poecilosclerida Iotrochotidae Iotrochota baculirera HE611621 96,30% Poecilosclerida Iotrochotidae Iotrochota coccinea HE611621 96,30% Chondrillida Iotrochotidae					,		
compressaEF51956092,10%HaploscleridaNiphatidaeSB_140pliciferaAnnelida sp. Rhysipolina gen.KX205857884,30%Segmented worms S3,60%BDisopothia bockiAB66973084,80%Segmented worms S4,80%Segmented worms S4,80%BDisopothia bockiAB66973084,80%Segmented wormsB12failSegmented wormsAplysina fistularis Aplysina fistularisAY56198799,50%VerongiidaSB_143Aplysina fistularisAY56198799,50%VerongiidaAplysinidae Aplysinia ap. KX03457098,80%VerongiidaAplysina sp.KX03457098,80%VerongiidaAplysinidae Aplysinia ap.KX03456898,80%VerongiidaSB_144melanaIotrochota birotulataEU23748697,00%PoeciloscleridaIotrochotidae Iotrochota coccineaSB_144melanaIotrochota coccineaHE61162196,30%PoeciloscleridaIotrochotidae IotrochotidaeSB_146Halisarci as p. Chondrilla aff. NuculaEU23747894,50%ChondrillidaChondrillidae Chondrilla aff. NuculaEU23748794,50%ChondrillidaChondrillidae ChondrillaSB_147Niphates erectaNiculaFR81968294,40%ChondrillidaChondrillidae Chondrilla aff. NuculaAl84388792,50%ChondrillidaChondrillidae ChondrillaSB_147Niphates erectaInkatrile pl. Plakinastrella ef.JX99906491,60%Chondrillida <td< td=""><td></td><td></td><td></td><td>EF0433/8</td><td>75,70%</td><td>verongnua</td><td>i seudocertillidae</td></td<>				EF0433/8	75,70%	verongnua	i seudocertillidae
Callyspongia Annelida sp. KP254496 91,30% Segmented worms SB_140 plicifera Annelida sp. KN258578 84,30% SB_142 fail Status Status Status SB_143 Aplysina fistularis AY561987 99,50% Verongiida Aplysinidae Aplysina lacunosa AM076985 98,90% Verongiida Aplysinidae Aplysina sp. KX034570 98,80% Verongiida Aplysinidae Aplysina sp. KX034569 98,80% Verongiida Aplysinidae Aplysina sp. KX034569 98,80% Verongiida Aplysinidae Aplysina sp. KX034569 98,80% Verongiida Aplysinidae Astermisina Iotrochota birotulata EU237486 97,00% Poecilosclerida Iotrochotidae Iotrochota birotulata EU237486 96,30% Poecilosclerida Iotrochotidae Iotrochota birotulata FE611625 96,30% Poecilosclerida Iotrochotidae Iotrochota birotulata AY561963				EE510560	02 1004	Hanlagalarida	Ninhatidaa
SB_140 plicifera Annelida sp. KP254496 91,30% Segmented worms Rhysipolinae gen. KX058578 84,30% KX058570 84,30% B Physipolins sp. FX414051 83,90% KX058570 SB_142 fail Standard		Callyononcia	compressa	EF319300	72,10%	napioscienua	raphatuae
Rhysipolinae gen. Rhysipolis sp.KX058578 KX058590 84,80% Dinotrema sp.84,30% KX058590 84,80% B3,60% B3,60% B3,60%SB_142failSB_143Aplysina fistularis Aplysina fistularis Aplysina lacunosa Aplysina sp.AV561987 KX034570 98,80% KX034570 98,80% Verongiida Verongiida Aplysinidae Aplysinia sp. KX034570 Aplysina sp. KX034570 98,80% Verongiida Aplysinidae Aplysinia sp. KX034568 98,80% Verongiida Aplysinidae Aplysina sp. KX034569 98,80% Verongiida Aplysinidae Aplysina sp. KX034568 98,80% Verongiida Aplysinidae HE611625 96,30% Poecilosclerida Iotrochotidae Iotrochota accrata Iotrochota acculifera HE611621 Iotrochota baculifera HE611621 96,30% Poecilosclerida Iotrochotidae Iotrochotidae Iotrochotidae Iotrochotidae Iotrochota baculifera HE611621 96,30% Poecilosclerida Iotrochotidae Chondrilla aff. Nucula Chondrilla aff. Nucula Ruscula Istaliscas Plakinastrella cf.Plakinastrolla Plakinastrella cf. Plakinastrella cf.Chondrillidae Plakinastrella cf.SB_147Niphates erecta Plakinastrella cf. Plakinastrella cf. Plakinastrella cf. Plakinastrella cf.Place3936 Plakinastrella cf. Plakinastrella cf.Place3936 Plakinastrella cf. Plakinastrella cf. Plakinastrella cf. Plakinastrella cf. Plakinastrella cf. <br< td=""><td>SB 140</td><td></td><td>Annolida an</td><td>KD254406</td><td>01 200/</td><td>Sagmanted man</td><td></td></br<>	SB 140		Annolida an	KD254406	01 200/	Sagmanted man	
Rhysipolis sp.KX05859083,60% Drosophila bockiDinotrema sp.FJ41405184,80%Dinotrema sp.FJ41405183,90%SB_142failSB_143Aplysina fistularisAY56198799,50%VerongiidaAplysinidaeAplysina lacunosaAM07698598,90%VerongiidaAplysinidaeAplysina sp.KX03457098,80%VerongiidaAplysinidaeAplysina sp.KX03456998,80%VerongiidaAplysinidaeAplysina sp.KX03456898,80%VerongiidaAplysinidaeSB_144melanaIotrochota birotulataEU23748697,00%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162596,30%PoeciloscleridaIotrochotidaeIotrochotidaeIotrochota baculíferaHE61162196,20%PoeciloscleridaIotrochotidaeIotrochota baculíferaHE61162196,30%PoeciloscleridaIotrochotidaeIotrochota baculíferaHE61162196,30%PoeciloscleridaIotrochotidaeIotrochota baculíferaHE61162196,30%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%ChondrillidaChondrillidaeNuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaeNuculaSB_147Niphates erectaPlakiniatrella cf.NiculanikodesEU23748791,60%Homosclerophorida <t< td=""><td>3D_140</td><td>plicitera</td><td></td><td></td><td>1</td><td>Segmented worms</td><td></td></t<>	3D _140	plicitera			1	Segmented worms	
Drosophila bocki Dinotrema sp.AB669730 FJ41405184,80% 83,90%SB_142fail					· · · · · · · · · · · · · · · · · · ·		
Dinorema sp.FJ41405183,90%SB_142failSB_143Aplysina fistularisAY56198799,50%VerongiidaAplysinidaeAplysina lacunosaAM07698598,90%VerongiidaAplysinidaeAplysina sp.KX03457098,80%VerongiidaAplysinidaeAplysina sp.KX03456998,80%VerongiidaAplysinidaeAplysina sp.KX03456998,80%VerongiidaAplysinidaeAplysina sp.KX03456898,80%VerongiidaAplysinidaeSB_144melanaIotrochota birotulataEU23748697.00%PoeciloscleridaIotrochotidaeIotrochota accerataHE61162596,30%PoeciloscleridaIotrochotidaeIotrochota birotulataAY56196395.00%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%ChondrillidaHalisarcidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaChondrillidaeNuculaFR81968294,60%ChondrillidaChondrillidaeChondrilla aff.NuculaFR81968294,60%ChondrillidaChondrillidaeSB_147Niphates erectaOnkodesEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella cf.OnkodesEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella cf.OnkodesEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%							
SB_142 fail SB_143 Aplysina fistularis AY561987 99,50% Verongiida Aplysinidae Aplysina sp. KX034570 98,80% Verongiida Aplysinidae Aplysina sp. KX034570 98,80% Verongiida Aplysinidae Aplysina sp. KX034568 98,80% Verongiida Aplysinidae Aplysina sp. KX034568 98,80% Verongiida Aplysinidae Astemisina Iotrochota birotulata EU237486 97,00% Poecilosclerida Iotrochotidae Iotrochota accerata HE611625 96,30% Poecilosclerida Iotrochotidae Iotrochota baculifera HE611621 96,20% Poecilosclerida Iotrochotidae Iotrochota birotulata AY561963 95,00% Poecilosclerida Iotrochotidae SB_146 Halisarca sp. HQ606142 96,30% Chondrillida Halisarciae Nucula EU237478 94,50% Chondrillida Chondrillidae Chondrilla aff. Nucula SU237478 94,60% Chondrillidae Chondrillidae Nucula FR819682 </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>			-				
SB_143 Aplysina fistularis AY561987 99,50% Verongiida Aplysinidae Aplysina sp. AM076985 98,00% Verongiida Aplysinidae Aplysina sp. KX034570 98,80% Verongiida Aplysinidae Aplysina sp. KX034569 98,80% Verongiida Aplysinidae Aplysina sp. KX034568 98,80% Verongiida Aplysinidae Artemisina Iotrochota birotulata EU237486 97,00% Poecilosclerida Iotrochotidae Iotrochota acerata HE611625 96,30% Poecilosclerida Iotrochotidae Iotrochota baculifera HE611621 96,20% Poecilosclerida Iotrochotidae Iotrochota birotulata AY561963 95,00% Poecilosclerida Iotrochotidae SB_146 Halisarca sp. HQ606142 96,30% Chondrillida Chondrillidae Chondrilla aff. Nucula EU237478 94,50% Chondrillidae Chondrillidae Nucula JX999064 91,60% Chondrillida Chondrillidae Chondrillidae SB_147 Niphates erecta onkodes <td>CD 142</td> <td></td> <td></td> <td>FJ414031</td> <td>83,90%</td> <td></td> <td></td>	CD 142			FJ414031	83,90%		
Aplysina lacunosaAM07698598,90%VerongiidaAplysinidaeAplysina sp.KX03457098,80%VerongiidaAplysinidaeAplysina sp.KX03456998,80%VerongiidaAplysinidaeAplysina sp.KX03456898,80%VerongiidaAplysinidaeB144melanaIotrochota birotulataEU23748697,00%PoeciloscleridaIotrochotidaeIotrochota coccineaHE61162596,30%PoeciloscleridaIotrochotidaeIotrochota coccineaHE61162396,30%PoeciloscleridaIotrochotidaeIotrochota baculiferaHE61162196,30%PoeciloscleridaIotrochotidaeIotrochota baculiferaHE61162396,30%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%PoeciloscleridaIotrochotidaeKuculaEU23747894,50%ChondrillidaHalisarcidaeChondrilla aff.NuculaEU23747894,50%ChondrillidaeNuculaAI84388792,50%ChondrillidaeChondrillidaeChondrilla aff.australiensisJX99906491,60%ChondrillidaeSB_147Niphates erectaonkodesEU23748791,60%HomosclerophoridaPlakinastrella cf.Plakinastrella cf.PlakinidaePlakinidaePlakinisti albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinisti simplexHQ				AV5(1007	00 500/	Vananalida	Autoriaidea
Aplysina sp.KX03457098,80%VerongiidaAplysinidaeAplysina sp.KX03456998,80%VerongiidaAplysinidaeAplysina sp.KX03456898,80%VerongiidaAplysinidaeAplysina sp.KX03456898,80%VerongiidaAplysinidaeSB_144melanaIotrochota birotulataEU23748697,00%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162596,30%PoeciloscleridaIotrochotidaeIotrochotidaeIotrochota baculiferaHE61162196,20%PoeciloscleridaIotrochotidaeIotrochota baculiferaHE61162196,00%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%ChondrillidaHalisarcidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaChondrillidaeNuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla aff.NuculaJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaonkodesEU23747791,60%HomosclerophoridaPlakinidaePlakinastrella cf.onkodesEU23748791,60%HomosclerophoridaPlakinidaePlakiniat arilophaHQ26935689,30%HomosclerophoridaPlakinidaePlakortis simplexHQ26935689,30%HomosclerophoridaPlakinidaePlakortis simplexHQ26935689,50%DictyoceratidaIrciniidaeIrcinia sp.JK5518699,5	SB_145						
Aplysina sp. Aplysina sp.KX034569 KX03456898,80%VerongiidaAplysinidae AplysinidaeArtemisinaArtemisinaSB_144melanaIotrochota birotulata Iotrochota acerata Iotrochota acerataEU237486 HE61162597,00% 96,30%Poecilosclerida PoeciloscleridaIotrochotidae IotrochotidaeIotrochota baculifera Iotrochota birotulataHE611623 IOtrochota baculifera HE61162196,30% 96,20%Poecilosclerida PoeciloscleridaIotrochotidae IotrochotidaeSB_146Halisarca sp. Chondrilla aff. NuculaHQ606142 EU23747896,30% 94,50%Chondrillida ChondrillidaeSB_147Niphates erecta Plakinastrella cf. OnkodesFR819682 EU23748794,60% 91,60%Chondrillida ChondrillidaeSB_147Niphates erecta Plakinastrella cf. OnkodesEU237487 Plakinastrella cf. 91,60%91,60% Homosclerophorida PlakinidaePlakinidae Plakinidae PlakinidaeSB_148Ircinia orosJN655186 Plakinat rilopha Plakinidae99,50% PlakinaterPlakinidae Plakinidae PlakinidaeSB_148Ircinia sp. Rcinia sp. Rcinia sp. Rcistis albicansJN655186 Play.50%99,10% Dictyoceratida Dictyoceratida Irciniidae							
Aplysina sp.KX03456898,80%VerongiidaAplysinidaeArtemisinaSB_144melanaIotrochota birotulataEU23748697,00%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162596,30%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162396,30%PoeciloscleridaIotrochotidaeIotrochota baculiferaHE61162196,30%PoeciloscleridaIotrochotidaeIotrochota birotulataAY56196395,00%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%ChondrillidaHalisarcidaeKuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff.NuculaEU23748794,40%ChondrillidaChondrillidaeNuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla aff.NuculaAJ84388792,50%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf.IntervisionIntervisionIntervisionSB_147Niphates erectaPlakiniastrella cf.Plakiniastrella cf.Plakiniastrella cf.SB_148Ircinia fasciculataJN65518699,50%HomosclerophoridaPlakinidaePlakortis simplexHQ26936290,50%HomosclerophoridaPlakinidaeSB_148Ircinia ap.KC51027499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidae <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
ArtemisinaInternet internetInternetSB_144melanaIotrochota birotulataEU23748697,00%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162396,30%PoeciloscleridaIotrochotidaeIotrochota coccineaHE61162396,30%PoeciloscleridaIotrochotidaeIotrochota baculiferaHE61162396,20%PoeciloscleridaIotrochotidaeIotrochota baculiferaHE61162396,30%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%ChondrillidaHalisarcidaeNuculaEU23747894,50%ChondrillidaChondrillidaeNuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaNuculaEU23748791,60%ChondrillidaChondrillidaeChondrillaaustraliensisJX99906491,60%ChondrillidaSB_147Niphates erectaonkodesEU23748791,60%HomosclerophoridaPlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.HE5187499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%Dict							
SB_144melanaIotrochota birotulataEU23748697,00%PoeciloscleridaIotrochotidaeIotrochota acerataHE61162596,30%PoeciloscleridaIotrochotidaeIotrochota coccineaHE61162196,30%PoeciloscleridaIotrochotidaeIotrochota birotulataAY56196395,00%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%PoeciloscleridaIotrochotidaeNuculaEU23747894,50%ChondrillidaChondrillidaeNuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaChondrillidaeNuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla nuculaAJ84388792,50%ChondrillidaChondrillidaeSB_147Niphates erectaonkodesEU23747891,60%HomosclerophoridaPlakinidaePlakinastrella cf.statisarcella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia sp.HC50127499,10%DictyoceratidaIrciniidaeIrcinia sp.HC51127499,10%DictyoceratidaIrciniidaeIrcinia sp.HC51027499,10%Di		Automicino	Aprysma sp.	KA034308	98,80%	verongnua	Aprysinidae
Iotrochota acerata Iotrochota acerata Iotrochota coccinea Iotrochota baculifera Iotrochota baculifera Iotrochota baculifera HE611623 HE611621 HE611621 96,30% Poecilosclerida Poecilosclerida Iotrochotidae Iotrochota Iotrochota birotulata AY561963 95,00% Poecilosclerida Poecilosclerida Iotrochotidae Iotrochotidae Iotrochota Iotrochota birotulata AY561963 Poecilosclerida Poecilosclerida Iotrochotidae Iotrochotidae IotrochotidaeSB_146Halisarca sp. HQ606142 Nucula Chondrilla aff. Nucula Chondrilla aff. Nucula Chondrilla aff. Nucula Chondrilla aff. Nucula Chondrilla aff. Nucula Chondrilla aff. Nucula AI843887 Poeciosclerida Plakinastrella cf.Chondrillida Chondrillida Chondrillida Chondrillidae Chondrilla Chondrilla Chondrilla AI843887 Plakortis albicans Plakinastrella cf.Chondrillida Chondrillidae Chondrillidae ChondrillidaeSB_147Niphates erecta Plakinastrella cf.Nicula Plakinastrella cf.Styp9064 Plakortis albicans Plakinastrella sp. KU674380 Res8064Placow Plakortis albicans Plakinastrella sp. Plakortis simplex Plakortis simplex Plakortis simplex Plakortis simplex Plakortis simplex Plakortis simplex Plakortis simplex Plakortis platies Plakortis simplex Plakortis simplex Plakortis platies Plakortis platies Plakortis platies Plakortis platies Plakortis platies Plakortis simplex Plakortis platies Plakortis platies Plak	CD 144		Tatus altata himatalata	EU227496	07.000/	Dessilessie	Lature also sticks a
Iotrochota coccinea Iotrochota baculifera Iotrochota baculifera Iotrochota baculifera MuculaHE611621 HE611621 96,20%96,30% Poecilosclerida PoeciloscleridaIotrochotidaeSB_146Halisarca sp. Chondrilla aff. NuculaHQ606142 EU23747896,30% 94,50%ChondrillidaHalisarcidaeNucula Chondrilla aff. NuculaEU237478 FR81968294,50% 94,50%ChondrillidaChondrillidaeNucula Chondrilla aff. NuculaFR819682 Poeciosclerida94,00% ChondrillidaChondrillidaeChondrilla aff. NuculaFR819682 Poeciosclerida94,00% ChondrillidaChondrillidaeChondrilla nucula ChondrillaAJ843887 Poeciosclerida92,50% ChondrillidaChondrillidaeSB_147Niphates erecta Plakinastrella cf.J160% Plakinastrella cf.Hakinastrella cf.PlakinidaePlakinastrella sp. Plakinastrella sp. Plakinastrella sp.KU674380 VE074380 S6,80%Homosclerophorida HomosclerophoridaPlakinidaeSB_148Ircinia fasciculata Ircinia sp.JN655174 HC51027499,10% 9,10%Dictyoceratida DictyoceratidaIrciniidaeIrcinia sp. Ircinia strobilinaGQ337013 99,10%DictyoceratidaIrciniidae	3D_144	merana					
Iotrochota baculifera Iotrochota birotulataHE611621 AY56196396,20% 95,00%PoeciloscleridaIotrochotidaeSB_146Halisarca sp. Chondrilla aff.HQ60614296,30%ChondrillidaHalisarcidaeNuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaChondrillidaeNuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla neculaAJ84388792,50%ChondrillidaChondrillidaeChondrilla neculaAJ84388792,50%ChondrillidaChondrillidaeChondrillaJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaOnkodesEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella cf.onkodesEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935699,50%DictyoceratidaIrciniidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae							
Iotrochota birotulataAY56196395,00%PoeciloscleridaIotrochotidaeSB_146Halisarca sp.HQ60614296,30%ChondrillidaHalisarcidaeChondrilla aff.NuculaEU23747894,50%ChondrillidaChondrillidaeNuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla nuculaAJ84388792,50%ChondrillidaChondrillidaeChondrillaAJ84388792,50%ChondrillidaChondrillidaeChondrillaNuculaJX99906491,60%ChondrillidaChondrillidaeChondrillaNightastrella cf.FR81968291,60%HomosclerophoridaPlakinidaeSB_147Niphates erectaonkodesEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella cf.StatistalbicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidae							
SB_146Halisarca sp. Chondrilla aff. NuculaHQ60614296,30%ChondrillidaHalisarcidaeNuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff. NuculaFR81968294,40%ChondrillidaChondrillidaeNuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla nuculaAJ84388792,50%ChondrillidaChondrillidaeChondrillanuculaAJ84388792,50%ChondrillidaChondrillidaeChondrillanuculaAJ84388792,50%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf.Flakinastrella cf.Flakinastrella cf.SB_147Niphates erectaPlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinat trilophaHQ26935689,30%HomosclerophoridaPlakinidaeSB_148Ircinia fasciculataJN65518699,50%DictyoceratidaIrciniidaeSB_148Ircinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidae							
Chondrilla aff. NuculaEU23747894,50%ChondrillidaChondrillidaeNuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla aff. NuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla nuculaAJ84388792,50%ChondrillidaChondrillidaeChondrilla australiensisJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf. onkodesFU23748791,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeSB_148Ircinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae	CD 146						
NuculaEU23747894,50%ChondrillidaChondrillidaeChondrilla aff.NuculaFR81968294,40%ChondrillidaChondrillidaeNuculaAJ84388792,50%ChondrillidaChondrillidaeChondrillaAJ84388792,50%ChondrillidaChondrillidaeChondrillaJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf.ChondrisPlakinidaePlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae	SB_146			HQ606142	96,30%	Chondrillida	Halisarcidae
Chondrilla aff. NuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla nucula australiensisAJ84388792,50%ChondrillidaChondrillidaeaustraliensisJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf.ChondsesEU23748791,60%HomosclerophoridaPlakinidaePlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae				EU222470	04 500/	C 1	C1
NuculaFR81968294,40%ChondrillidaChondrillidaeChondrilla nuculaAJ84388792,50%ChondrillidaChondrillidaeaustraliensisJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf.FEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella cf.enkodesEU23748791,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae				EU23/4/8	94,50%	Chondrillida	Chondrillidae
Chondrilla nucula Chondrilla australiensisAJ843887 JX99906492,50%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf. onkodesEU23748791,60%HomosclerophoridaPlakinidaePlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae				ED010602	04 400/	C 1	C1
Chondrilla australiensisJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf. onkodesEU23748791,60%HomosclerophoridaPlakinidaePlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaePlakortis simplexHQ26936290,50%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae							
australiensisJX99906491,60%ChondrillidaChondrillidaeSB_147Niphates erectaPlakinastrella cf.91,60%HomosclerophoridaPlakinidaePlakortis albicansEU23748791,60%HomosclerophoridaPlakinidaePlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaePlakortis simplexHQ26936290,50%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae				AJ843887	92,50%	Chondrillida	Chondrillidae
SB_147Niphates erectaPlakinastrella cf. onkodesEU23748791,60%HomosclerophoridaPlakinidaePlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaePlakortis simplexHQ26936290,50%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae					0.1 60.04	a 1 1 1 1	<i>a</i> , ,,,,,,,,
SB_147Niphates erectaonkodesEU23748791,60%HomosclerophoridaPlakinidaePlakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaePlakortis simplexHQ26936290,50%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae				JX999064	91,60%	Chondrillida	Chondrillidae
Plakortis albicansKJ16293187,60%HomosclerophoridaPlakinidaePlakinastrella sp.KU67438086,80%HomosclerophoridaPlakinidaePlakina trilophaHQ26935689,30%HomosclerophoridaPlakinidaePlakortis simplexHQ26936290,50%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae	CD 147	NT also		EU002402	01 (00)	TT	D1.11.11
Plakinastrella sp.KU674380 HQ26935686,80% 89,30%Homosclerophorida PlakinidaePlakinidae PlakinidaePlakortis simplexHQ269356 HQ26936290,50%Homosclerophorida PlakinidaePlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae	SB_14/	mipnates erecta					
Plakina trilopha Plakortis simplexHQ269356 HQ26936289,30% 90,50%Homosclerophorida PlakinidaePlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae							
Plakortis simplexHQ26936290,50%HomosclerophoridaPlakinidaeSB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae							
SB_148Ircinia orosJN65518699,50%DictyoceratidaIrciniidaeIrcinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae						-	
Ircinia fasciculataJN65517499,10%DictyoceratidaIrciniidaeIrcinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae	00.140						
Ircinia sp.HE59145999,10%DictyoceratidaIrciniidaeIrcinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae	SB_148						
Ircinia sp.KC51027499,10%DictyoceratidaIrciniidaeIrcinia strobilinaGQ33701399,10%DictyoceratidaIrciniidae							
Ircinia strobilina GQ337013 99,10% Dictyoceratida Irciniidae			-				
SB_149 Verongula Verongula gigantea AM076984 99,50% Verongiida Aplysinidae	ab + : :			-			
	SB_149	Verongula	Verongula gigantea	AM076984	99,50%	Verongiida	Aplysinidae

		VE001001	00.000	**	
	Verongula reiswigi	KT921334	98,90%	Verongiida	Aplysinidae
	Verongula reiswigi Amphimedon	EF519691	94,40%	Verongiida	Aplysinidae
	compressa Amphimedon	EF519560	94,30%	Haplosclerida	Niphatidae
	compressa	EF519558	94,20%	Haplosclerida	Niphatidae
	Topsentia		,	1	1
SB_150	ophiraphidites	EU237482	99,00%	Suberitida	Halichondriidae
	Petromica pacifica	LN624193	88,80%	Bubarida	Desmanthidae
	Petromica sp.	LN624195		Bubarida	Desmanthidae
	Petromica pacifica	LN624194	85,70%	Bubarida	Desmanthidae
	Ciocalypta sp.	JQ034562		Suberitida	Halichondriidae
SB_152	<u> </u>		/		
SB_153					
	Invertebrate				
	environmental				
SB_162	sample	GU071901	53,10%		
	Sellaphora pupula	KC911839	· · · · · · · · · · · · · · · · · · ·	Diatoms	
	Sellaphora pupula	HQ317106	53,20%		
	Thalassionema		00,2070		
	nitzschioides	AB020228	52,50%		
	Pseudo-nitzschia	112020220	02,0070		
	hasleana	JN050310	53,10%		
SB_163	Cliona delitrix	HM999041	96,10%	Clionaida	Clionaidae
	Clionaopsis platei	HM999042	97,30%		Clionaidae
	Clionaopsis platei	HM999043	97,30%		Clionaidae
	Cliona delitrix	EF519609	93,50%	Clionaida	Clionaidae
	Cliona delitrix	EF519610	93,40%	Clionaida	Clionaidae
	Geryonia		,,.		
SB_166	proboscidalis	KT809331	22,50%	Cnidaria	
	Geryonia	11100/001	,0070	Cinduina	
	proboscidalis	GQ120078	22,50%		
Neopetrosia	Haliclona		,		
SB_167 carbonaria	amboinensis	KR707689	94.80%	Haplosclerida	Chalinidae
	Haliclona		,,	.1	
	amboinensis	KR707688	94.80%	Haplosclerida	Chalinidae
	Haliclona		,,		
	amboinensis	KR707687	94.80%	Haplosclerida	Chalinidae
	Haliclona	meroroor	91,0070	maproserentau	enumidae
	amboinensis	KR707686	94,80%	Haplosclerida	Chalinidae
	Petrosia sp.	JN242216	90,90%	Haplosclerida	Petrosiidae
SB_168	Ircinia oros	JN655186	94,50%	Dictyoceratida	Irciniidae
	Ircinia sp.	KC510274	94,10%	Dictyoceratida	Irciniidae
	Ircinia fasciculata	JN655174	94,10%	Dictyoceratida	Irciniidae
	Ircinia sp.	HE591459	94,10%	Dictyoceratida	Irciniidae
	Ircinia strobilina	GQ337013	94,10%	Dictyoceratida	Irciniidae
	nenna suoonna	0037013	77,1070	Dictyocciation	nennuae