19.02.2013 Views

A guide to the deep-water sponges of - NMFS Scientific Publications ...

A guide to the deep-water sponges of - NMFS Scientific Publications ...

A guide to the deep-water sponges of - NMFS Scientific Publications ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NOAA Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

A <strong>guide</strong> <strong>to</strong> <strong>the</strong> <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong><br />

<strong>of</strong> <strong>the</strong> Aleutian Island Archipelago<br />

Robert P. S<strong>to</strong>ne<br />

Helmut Lehnert<br />

Henry Reiswig<br />

U.S. Department <strong>of</strong> Commerce<br />

September 2011


U.S. Department<br />

<strong>of</strong> Commerce<br />

Rebecca Blank<br />

Acting Secretary <strong>of</strong> Commerce<br />

National Oceanic<br />

and Atmospheric<br />

Administration<br />

Jane Lubchenco, Ph.D.<br />

Administra<strong>to</strong>r <strong>of</strong> NOAA<br />

National Marine<br />

Fisheries Service<br />

Eric C. Schwaab<br />

Assistant Administra<strong>to</strong>r<br />

for Fisheries<br />

The NOAA Pr<strong>of</strong>essional Paper <strong>NMFS</strong><br />

(ISSN 1931-4590) series is published<br />

by <strong>the</strong> <strong>Scientific</strong> <strong>Publications</strong> Office,<br />

National Marine Fisheries Service,<br />

NOAA, 7600 Sand Point Way NE,<br />

Seattle, WA 98115.<br />

The Secretary <strong>of</strong> Commerce has<br />

determined that <strong>the</strong> publication <strong>of</strong><br />

this series is necessary in <strong>the</strong> transaction<br />

<strong>of</strong> <strong>the</strong> public business required by<br />

law <strong>of</strong> this Department. Use <strong>of</strong> funds<br />

for printing <strong>of</strong> this series has been approved<br />

by <strong>the</strong> Direc<strong>to</strong>r <strong>of</strong> <strong>the</strong> Office<br />

<strong>of</strong> Management and Budget.<br />

NOAA Pr<strong>of</strong>essional<br />

Papers <strong>NMFS</strong><br />

<strong>Scientific</strong> Edi<strong>to</strong>r<br />

Richard D. Brodeur, Ph.D.<br />

Associate Edi<strong>to</strong>r<br />

Julie Scheurer<br />

National Marine Fisheries Service<br />

Northwest Fisheries Science Center<br />

2030 S. Marine Science Dr.<br />

Newport, Oregon 97365-5296<br />

Managing Edi<strong>to</strong>r<br />

Shelley Arenas<br />

National Marine Fisheries Service<br />

<strong>Scientific</strong> <strong>Publications</strong> Office<br />

7600 Sand Point Way NE<br />

Seattle, Washing<strong>to</strong>n 98115<br />

Edi<strong>to</strong>rial Committee<br />

Ann C. Matarese, Ph.D. National Marine Fisheries Service<br />

James W. Orr, Ph.D. National Marine Fisheries Service<br />

Bruce L. Wing, Ph.D. National Marine Fisheries Service<br />

The NOAA Pr<strong>of</strong>essional Paper <strong>NMFS</strong> series carries peer-reviewed, lengthy original<br />

research reports, taxonomic keys, species synopses, flora and fauna studies, and data-intensive<br />

reports on investigations in fishery science, engineering, and economics. Copies<br />

<strong>of</strong> <strong>the</strong> NOAA Pr<strong>of</strong>essional Paper <strong>NMFS</strong> series are available free in limited numbers <strong>to</strong><br />

government agencies, both federal and state. They are also available in exchange for<br />

o<strong>the</strong>r scientific and technical publications in <strong>the</strong> marine sciences. Pr<strong>of</strong>essional Papers<br />

are published online in PDF format at http://spo.nmfs.noaa.gov<br />

NOTICE: This series was established in 2003 <strong>to</strong> replace <strong>the</strong> NOAA Technical Report<br />

<strong>NMFS</strong> series.


NOAA Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

A <strong>guide</strong> <strong>to</strong> <strong>the</strong> <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong><br />

<strong>of</strong> <strong>the</strong> Aleutian Island Archipelago<br />

Robert P. S<strong>to</strong>ne<br />

Helmut Lehnert<br />

Henry Reiswig<br />

September 2011<br />

U.S. Department <strong>of</strong> Commerce<br />

Seattle, Washing<strong>to</strong>n


Suggested reference<br />

S<strong>to</strong>ne, Robert P., Helmut Lehnert, and Henry Reiswig. 2011. A <strong>guide</strong> <strong>to</strong> <strong>the</strong> <strong>deep</strong><strong>water</strong><br />

<strong>sponges</strong> <strong>of</strong> <strong>the</strong> Aleutian Island Archipelago. NOAA Pr<strong>of</strong>essional Paper<br />

<strong>NMFS</strong> 12, 187 p.<br />

Online dissemination<br />

This report is posted online in PDF format at http://spo.nmfs.noaa.gov (click on<br />

Pr<strong>of</strong>essional Papers link).<br />

Copyright law<br />

Although <strong>the</strong> contents <strong>of</strong> <strong>the</strong> Pr<strong>of</strong>essional Papers have not been copyrighted and<br />

may be reprinted entirely, reference <strong>to</strong> source is appreciated.<br />

Proprietary products<br />

The National Marine Fisheries Service (<strong>NMFS</strong>) does not approve, recommend,<br />

or endorse any proprietary product or proprietary material mentioned in this<br />

publication. No reference shall be made <strong>to</strong> <strong>NMFS</strong>, or <strong>to</strong> this publication furnished<br />

by <strong>NMFS</strong>, in any advertising or sales promotion which would indicate or<br />

imply that <strong>NMFS</strong> approves, recommends, or endorses any proprietary product<br />

or proprietary material mentioned herein, or which has as its purpose an intent<br />

<strong>to</strong> cause directly or indirectly <strong>the</strong> advertised product <strong>to</strong> be used or purchased<br />

because <strong>of</strong> this <strong>NMFS</strong> publication.


CONTENTS<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

About this <strong>guide</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

Zoogeography <strong>of</strong> <strong>sponges</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Biology <strong>of</strong> <strong>sponges</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Ecology <strong>of</strong> <strong>sponges</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Importance as fish habitat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Vulnerability <strong>to</strong> disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Moni<strong>to</strong>ring bycatch <strong>of</strong> <strong>sponges</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

Collection and preservation <strong>of</strong> sponge specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Labora<strong>to</strong>ry identification <strong>of</strong> sponge specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Calcareous <strong>sponges</strong> and demo<strong>sponges</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Hexactinellid <strong>sponges</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Class Calcarea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

1 . Clathrina sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

2 . Leucandra poculiformis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

3 . Leucandra tuba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Class Hexactinellida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

4 . Farrea kurilensis ssp . nov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

5 . Farrea occa occa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

6 . Farrea sp . nov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

7 . Family Euretidae; Genus nov ., sp . nov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

8 . Tre<strong>to</strong>dictyum sp . nov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

9 . Aphrocallistes vastus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

10 . Heterochone calyx calyx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

11 . Regadrella okinoseana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

12 . Acanthascus (Acanthascus) pr<strong>of</strong>undum ssp . nov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

13 . Acanthascus (Rhabdocalyptus) dawsoni dawsoni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

14 . Acanthascus (Rhabdocalyptus) mirabilis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

15 . Acanthascus (Staurocalyptus) solidus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

16 . Acanthascus (Staurocalyptus) sp . nov . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

17 . Acanthascus (Staurocalyptus) sp . nov . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

18 . Aulosaccus pinularis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

19 . Aulosaccus schulzei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

20 . Bathydoris sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

21 . Caulophacus (Caulophacus) sp . nov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

Class Demospongiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

22 . Plakina atka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

23 . Plakina tanaga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

24 . Craniella arb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

25 . Craniella sigmoancoratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

26 . Craniella spinosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

27 . Craniella sputnika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

28 . Erylus aleuticus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

29 . Geodia lendenfeldi nomen novum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

30 . Poecillastra tenuilaminaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

iii


CONTENTS (continued)<br />

31. Polymastia fluegeli .......................................................................... 47<br />

32. Polymastia pacifica ......................................................................... 48<br />

33. Stylocordyla borealis eous ..................................................................... 49<br />

34. Aap<strong>to</strong>s kanuux ............................................................................ 50<br />

35. Rhizaxinella clavata ........................................................................ 51<br />

36. Suberites excellens .......................................................................... 52<br />

37. Suberites simplex ........................................................................... 53<br />

38. Suberites sp. .............................................................................. 54<br />

39. Hemigellius porosus ......................................................................... 55<br />

40. Cornulum clathriata ........................................................................ 56<br />

41. Iophon piceum ............................................................................. 57<br />

42. Iophon piceum abipocillus .................................................................... 58<br />

43. Megaciella anisochela ....................................................................... 59<br />

44. Megaciella spirinae ......................................................................... 60<br />

45. Clathria (Clathria) barleei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

46. Clathria (Clathria) laevigata ................................................................. 62<br />

47. Clathira (Axosuberites) lambei ................................................................. 63<br />

48. Echinoclathria vasa ......................................................................... 64<br />

49. Artemisina amlia .......................................................................... 65<br />

50. Artemisina arcigera ......................................................................... 66<br />

51. Artemisina stipitata ......................................................................... 67<br />

52. Artemisina sp.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

53. Coelosphaera oglalai ........................................................................ 69<br />

54. Inflatella globosa ........................................................................... 70<br />

55. Lissodendoryx (Lissodendoryx) behringi .......................................................... 71<br />

56. Lissodendoryx (Ectyodoryx) olgae ............................................................... 72<br />

57. Lissodendoryx (Lissodendoryx) oxeota ........................................................... 73<br />

58. Lissodendoryx (Lissodendoryx) papillosa ......................................................... 74<br />

59. Monanchora alaskensis ...................................................................... 75<br />

60. Monanchora laminachela .................................................................... 76<br />

61. Monanchora pulchra ........................................................................ 77<br />

62. Crella brunnea ............................................................................ 78<br />

63. Hymedesmia (Stylopus) dermata ............................................................... 79<br />

64. Hymedesmia (Hymedesmia) irregularis .......................................................... 80<br />

65. Kirkpatrickia borealis ........................................................................ 81<br />

66. Phorbas paucistylifer ........................................................................ 82<br />

67. Melonanchora globogilva ..................................................................... 83<br />

68. Myxilla (Myxilla) behringensis ................................................................ 84<br />

69. Myxilla (Ectyomyxilla) parasitica .............................................................. 85<br />

70. Myxilla (Bur<strong>to</strong>nanchora) pedunculata .......................................................... 86<br />

71. Stelodoryx oxeata ........................................................................... 87<br />

72. Stelodoryx <strong>to</strong>poroki .......................................................................... 88<br />

73. Stelodoryx vitiazi ........................................................................... 89<br />

74. Echinostylinos hirsutus ...................................................................... 90<br />

iv


CONTENTS (continued)<br />

75. Tedania (Tedania) dirhaphis ................................................................ 91<br />

76. Tedania kagalaskai ........................................................................ 92<br />

77. Asbes<strong>to</strong>pluma ramosa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

78. Cladorhiza bathycrinoides ................................................................... 95<br />

79. Cladorhiza corona ......................................................................... 96<br />

80. Chondrocladia (Chondrocladia) concrescens ...................................................... 97<br />

81. Biemna variantia ......................................................................... 98<br />

82. Euchelipluma elongata ..................................................................... 99<br />

83. Guitarra abbotti .......................................................................... 100<br />

84. Guitarra fimbriata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

85. Amphilectus digitatus ...................................................................... 102<br />

86. Esperiopsis flagrum ........................................................................ 103<br />

87. Semisuberites cribrosa ....................................................................... 104<br />

88. Mycale (Aegogropila) adhaerens .............................................................. 106<br />

89. Mycale (Carmia) carlilei .................................................................... 107<br />

90. Mycale (Mycale) jasoniae ................................................................... 108<br />

91. Mycale (Mycale) loveni ..................................................................... 109<br />

92. Mycale (Mycale) tylota ..................................................................... 112<br />

93. Latrunculia (Biannulata) oparinae ........................................................... 113<br />

94. Latrunculia velera ......................................................................... 114<br />

95. Latrunculia sp. (undescribed) .............................................................. 115<br />

96. Axinella blanca ........................................................................... 116<br />

97. Axinella rugosa ........................................................................... 117<br />

98. Bubaris vermiculata ....................................................................... 118<br />

99. Halichondria (Halichondria) colossea .......................................................... 119<br />

100. Halichondria (Halichondria) oblonga .......................................................... 120<br />

101. Halichondria (Eumastia) sitiens .............................................................. 121<br />

102. Halichondria sp. .......................................................................... 122<br />

103. Hymeniacidon assimilis ..................................................................... 124<br />

104. Topsentia disparilis ........................................................................ 125<br />

105. Cladocroce ventilabrum ..................................................................... 126<br />

106. Haliclona bucina ......................................................................... 127<br />

107. Haliclona (Gellius) digitata ................................................................. 128<br />

108. Haliclona (Gellius) primitiva ................................................................ 129<br />

109. Haliclona tenuiderma ...................................................................... 130<br />

110. Haliclona (Haliclona) urceolus ............................................................... 131<br />

111. Haliclona sp. 1 ........................................................................... 132<br />

112. Haliclona sp. 2 ........................................................................... 133<br />

Acknowledgments ............................................................................. 134<br />

Literature cited ............................................................................... 134<br />

Appendix I. Sponge species reported from Alaskan <strong>water</strong>s ............................................ 137<br />

Appendix II. Priorities for bycatch moni<strong>to</strong>ring ...................................................... 143<br />

Appendix III. Glossary <strong>of</strong> terms .................................................................. 146<br />

Appendix IV. Spicule types ...................................................................... 147<br />

v


Abstract—The first dedicated collections<br />

<strong>of</strong> <strong>deep</strong>-<strong>water</strong> (>80 m) <strong>sponges</strong> from<br />

<strong>the</strong> central Aleutian Islands revealed a<br />

rich fauna including 28 novel species and<br />

geographical range extensions for 53 o<strong>the</strong>rs.<br />

Based on <strong>the</strong>se collections and <strong>the</strong><br />

published literature, we now confirm <strong>the</strong><br />

presence <strong>of</strong> 125 species (or subspecies)<br />

<strong>of</strong> <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong> in <strong>the</strong> Aleutian<br />

Islands. Clearly <strong>the</strong> <strong>deep</strong>-<strong>water</strong> sponge<br />

fauna <strong>of</strong> <strong>the</strong> Aleutian Islands is extraordinarily<br />

rich and largely understudied.<br />

Submersible observations revealed that<br />

<strong>sponges</strong>, ra<strong>the</strong>r than <strong>deep</strong>-<strong>water</strong> corals,<br />

are <strong>the</strong> dominant feature shaping benthic<br />

habitats in <strong>the</strong> region and that <strong>the</strong>y provide<br />

important refuge habitat for many<br />

species <strong>of</strong> fish and invertebrates including<br />

juvenile rockfish (Sebastes spp.) and king<br />

crabs (Lithodes sp). Examination <strong>of</strong> video<br />

footage collected along 127 km <strong>of</strong> <strong>the</strong><br />

seafloor fur<strong>the</strong>r indicate that <strong>the</strong>re are<br />

likely hundreds <strong>of</strong> species still uncollected<br />

from <strong>the</strong> region, and many unknown<br />

<strong>to</strong> science. Fur<strong>the</strong>rmore, <strong>sponges</strong> are<br />

extremely fragile and easily damaged by<br />

contact with fishing gear. High rates <strong>of</strong><br />

fishery bycatch clearly indicate a strong<br />

interaction between existing fisheries and<br />

sponge habitat. Bycatch in fisheries and<br />

fisheries-independent surveys can be a major<br />

source <strong>of</strong> information on <strong>the</strong> location<br />

<strong>of</strong> <strong>the</strong> sponge fauna, but current moni<strong>to</strong>ring<br />

programs are greatly hampered by <strong>the</strong><br />

inability <strong>of</strong> deck personnel <strong>to</strong> identify bycatch.<br />

This <strong>guide</strong> contains detailed species<br />

descriptions for 112 <strong>sponges</strong> collected in<br />

Alaska, principally in <strong>the</strong> central Aleutian<br />

Islands. It addresses bycatch identification<br />

challenges by providing fisheries observers<br />

and scientists with <strong>the</strong> information<br />

necessary <strong>to</strong> adequately identify sponge<br />

fauna.Using that identification data, areas<br />

<strong>of</strong> high abundance can be mapped<br />

and <strong>the</strong> locations <strong>of</strong> indica<strong>to</strong>r species<br />

<strong>of</strong> vulnerable marine ecosystems can be<br />

determined. The <strong>guide</strong> is also designed<br />

for use by scientists making observations<br />

<strong>of</strong> <strong>the</strong> fauna in situ with submersibles,<br />

including remotely operated vehicles and<br />

au<strong>to</strong>nomous under<strong>water</strong> vehicles.<br />

A <strong>guide</strong> <strong>to</strong> <strong>the</strong> <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong><br />

<strong>of</strong> <strong>the</strong> Aleutian Island Archipelago<br />

Robert P. S<strong>to</strong>ne (contact author) 1<br />

Helmut Lehnert 2<br />

Henry Reiswig 3<br />

1 Alaska Fisheries Science Center<br />

National Marine Fisheries Service<br />

National Oceanic and Atmospheric Administration<br />

17109 Point Lena Loop Road<br />

Juneau, Alaska 99801<br />

Email address for contact author: Bob.S<strong>to</strong>ne@noaa.gov<br />

2 Freelance Sponge Taxonomy<br />

Eichenstr. 14, D-86507<br />

Oberottmarshausen, Germany<br />

3 Royal British Columbia Museum and University <strong>of</strong> Vic<strong>to</strong>ria (Biology)<br />

675 Belleville Street<br />

Vic<strong>to</strong>ria, British Columbia, Canada V8W 3N5<br />

Introduction<br />

The first dedicated collections <strong>of</strong><br />

<strong>deep</strong>-<strong>water</strong> (>80 m) <strong>sponges</strong> from<br />

<strong>the</strong> central Aleutian Islands revealed<br />

a rich fauna comprising 102 species,<br />

including 28 species new <strong>to</strong> science<br />

and range extensions for 53 species.<br />

Based on <strong>the</strong>se collections and <strong>the</strong><br />

published literature, we now confirm<br />

<strong>the</strong> presence <strong>of</strong> 125 species (or<br />

subspecies) <strong>of</strong> <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong><br />

in <strong>the</strong> central Aleutian Islands. The<br />

inven<strong>to</strong>ry includes 10 species <strong>of</strong> calcareous<br />

<strong>sponges</strong>, 20 species <strong>of</strong> hexactinellid<br />

<strong>sponges</strong>, and 95 species <strong>of</strong><br />

demo<strong>sponges</strong>. Despite <strong>the</strong> initial collection<br />

efforts, <strong>the</strong> sponge fauna <strong>of</strong><br />

this region <strong>of</strong> <strong>the</strong> North Pacific is still<br />

poorly known. Based on our extensive<br />

submersible observations, we estimate<br />

that <strong>the</strong>re are several hundred sponge<br />

species yet <strong>to</strong> be inven<strong>to</strong>ried or described<br />

from <strong>the</strong> region. This regional<br />

estimate (i.e., <strong>to</strong>tal percent known)<br />

is consistent with those made for all<br />

<strong>sponges</strong> worldwide (Hooper and Lévi,<br />

1994; Hooper and Van Soest, 2002).<br />

The main purpose <strong>of</strong> this <strong>guide</strong> is <strong>to</strong><br />

promote an awareness and appreciation<br />

<strong>of</strong> <strong>the</strong> importance <strong>of</strong> <strong>the</strong> sponge<br />

fauna in <strong>the</strong> North Pacific Ocean,<br />

particularly in <strong>the</strong> Aleutian Islands<br />

1<br />

where <strong>the</strong> diversity and abundance <strong>of</strong><br />

<strong>sponges</strong> appears <strong>to</strong> be extraordinary<br />

and bycatch in existing fisheries continues<br />

<strong>to</strong> be a major concern for resource<br />

managers. Bycatch in fisheries<br />

and fisheries-independent surveys is<br />

a major source <strong>of</strong> information on <strong>the</strong><br />

location <strong>of</strong> <strong>the</strong> sponge fauna and also<br />

a source <strong>of</strong> specimens for study. This<br />

<strong>guide</strong> serves <strong>the</strong> additional purpose <strong>of</strong><br />

providing fisheries observers and scientists<br />

with <strong>the</strong> information necessary<br />

<strong>to</strong> adequately identify sponge fauna<br />

so that <strong>the</strong> data can be included in<br />

existing databases. These data can be<br />

used <strong>to</strong> map areas <strong>of</strong> high abundance<br />

and <strong>the</strong> locations <strong>of</strong> indica<strong>to</strong>r species<br />

<strong>of</strong> vulnerable marine ecosystems. The<br />

<strong>guide</strong> is also designed for use by scientists<br />

making observations <strong>of</strong> <strong>the</strong> fauna<br />

in situ with submersibles, including<br />

remotely operated vehicles (ROVs)<br />

and au<strong>to</strong>nomous under<strong>water</strong> vehicles<br />

(AUVs).<br />

The pro<strong>to</strong>cols used <strong>to</strong> identify bycatch<br />

<strong>of</strong> <strong>sponges</strong>, both in commercial<br />

fishing operations and in fisheries surveys,<br />

have major shortcomings. They<br />

are largely restricted by <strong>the</strong> limited<br />

number <strong>of</strong> personnel dedicated <strong>to</strong><br />

this task, a general lack <strong>of</strong> knowledge<br />

<strong>of</strong> <strong>the</strong> taxonomy <strong>of</strong> <strong>the</strong> sponge fauna,<br />

and <strong>the</strong> fact that <strong>sponges</strong> are particu-


2 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

larly fragile and are <strong>of</strong>ten highly fragmented at <strong>the</strong> time<br />

<strong>of</strong> collection.<br />

Current practice aboard commercial fishing vessels<br />

in Alaska (note that not all vessels are required <strong>to</strong> have<br />

fishery observers onboard) calls for tasked personnel<br />

<strong>to</strong> identify sponge bycatch <strong>to</strong> <strong>the</strong> lowest practical taxa<br />

– essentially <strong>to</strong> Phylum Porifera. The Alaska Fisheries<br />

Science Center’s Fisheries Moni<strong>to</strong>ring and Analysis<br />

Division (FMA) maintains all records, including depth<br />

and location data, through its North Pacific Groundfish<br />

Observer Program. The accuracy <strong>of</strong> those data depends<br />

foremost on <strong>the</strong> type <strong>of</strong> fishing gear, but also varies due<br />

<strong>to</strong> <strong>the</strong> spatial coverage <strong>of</strong> <strong>the</strong> gear (i.e., only start and<br />

end positions and depths are recorded). Specimens are<br />

typically not retained for specific scientific purposes.<br />

Current practice aboard NOAA survey vessels differs<br />

between <strong>the</strong> two principal surveys. Specimens are<br />

retained for fur<strong>the</strong>r study upon request, but no formal<br />

program for <strong>the</strong> collection and preservation <strong>of</strong> specimens<br />

exists o<strong>the</strong>rwise. The emphasis <strong>of</strong> both surveys<br />

is <strong>to</strong> ga<strong>the</strong>r information necessary for <strong>the</strong> sustainable<br />

management <strong>of</strong> groundfish species. Moni<strong>to</strong>ring <strong>the</strong><br />

bycatch <strong>of</strong> structure-forming invertebrates, such as<br />

<strong>sponges</strong>, has become more <strong>of</strong> a priority with recent<br />

emphasis on managing fisheries with an ecosystem approach.<br />

For <strong>the</strong> <strong>NMFS</strong> sablefish longline survey, <strong>sponges</strong><br />

are only identified <strong>to</strong> <strong>the</strong> general level <strong>of</strong> “unidentified<br />

sponge.” For <strong>the</strong> <strong>NMFS</strong> groundfish trawl survey, wet<br />

weight <strong>of</strong> <strong>sponges</strong> is recorded ei<strong>the</strong>r completely or by<br />

subsampling. Collection data are <strong>the</strong>n coded (<strong>NMFS</strong><br />

RACE Species Code Book – maintained by <strong>the</strong> Resource<br />

Assessment and Conservation Engineering Division’s<br />

Groundfish Assessment Program) and entered in<strong>to</strong> a<br />

database. Sponges are identified from a <strong>guide</strong> that was<br />

developed specifically for <strong>the</strong> identification <strong>of</strong> benthic<br />

marine invertebrates collected along Alaska’s upper<br />

continental slope and shelf (Clark 1 ). This <strong>guide</strong> has<br />

been an important first step <strong>to</strong>ward more adequately<br />

moni<strong>to</strong>ring sponge bycatch, but it is largely incomplete,<br />

contains species that have never been confirmed<br />

<strong>to</strong> occur in Alaskan <strong>water</strong>s, and lists some species with<br />

inaccurate taxonomic nomenclature. Clearly <strong>the</strong>re is a<br />

strong need for a <strong>guide</strong> dedicated <strong>to</strong> <strong>the</strong> identification<br />

<strong>of</strong> Alaskan <strong>sponges</strong> and a continued effort <strong>to</strong> properly<br />

identify <strong>the</strong> sponge fauna collected from <strong>the</strong> region.<br />

The <strong>sponges</strong> contained in this <strong>guide</strong> were collected<br />

principally during two expeditions <strong>to</strong> <strong>the</strong> central Aleutian<br />

Islands in 2004: one aboard <strong>the</strong> RV Velero IV and<br />

<strong>the</strong> o<strong>the</strong>r aboard <strong>the</strong> RV Roger Revelle. A few additional<br />

sponge specimens were collected during <strong>the</strong> pioneering<br />

work in <strong>the</strong> region aboard <strong>the</strong> RV Velero IV in 2002 and<br />

1 Clark, R. N. 2006. Unpubl. manuscript. Field <strong>guide</strong> <strong>to</strong> <strong>the</strong><br />

benthic marine invertebrates <strong>of</strong> Alaska’s shelf and upper slope taken<br />

by NOAA/<strong>NMFS</strong>/AFSC/RACE Division trawl surveys. 302 p.<br />

2003. The focus <strong>of</strong> <strong>the</strong> research supporting <strong>the</strong> cruises<br />

was on <strong>deep</strong>-<strong>water</strong> coral habitat; <strong>the</strong>re was a dedicated<br />

effort <strong>to</strong> collect sponge fauna for formal identification<br />

only during <strong>the</strong> RV Velero IV cruise in 2004 and even <strong>the</strong>n<br />

it was <strong>of</strong> secondary importance. We also include collections<br />

made in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska aboard <strong>the</strong> RV<br />

Velero IV in 2005 and in <strong>the</strong> Bering Sea Canyons (Pribil<strong>of</strong><br />

and Zhemchug) aboard <strong>the</strong> RV Esperanza in 2007.<br />

We reviewed video footage <strong>of</strong> <strong>the</strong> seafloor collected<br />

during 31 dives with <strong>the</strong> submersible Delta and 13 dives<br />

with <strong>the</strong> ROV Jason II. A <strong>to</strong>tal <strong>of</strong> approximately 127 km<br />

<strong>of</strong> seafloor habitat was examined (35 km and 92 km,<br />

respectively) from that video footage for <strong>the</strong> presence<br />

<strong>of</strong> sponge fauna, with particular focus on taxa included<br />

in this <strong>guide</strong>. Habitat information including depth,<br />

substrate, and associated fauna were recorded for<br />

sponge observations, <strong>of</strong>ten made from multiple camera<br />

perspectives.<br />

About this <strong>guide</strong><br />

This <strong>guide</strong> contains detailed species descriptions for 112<br />

<strong>sponges</strong> collected in Alaska, principally in <strong>the</strong> central<br />

Aleutian Islands. Each species description begins with<br />

<strong>the</strong> scientific name using classical binominal nomenclature.<br />

The first name (always capitalized) is <strong>the</strong> genus.<br />

The second name (never capitalized) is <strong>the</strong> species.<br />

Some species may have a third name (never capitalized)<br />

for designated subspecies. And for some species<br />

a subgenus may have been designated and is placed in<br />

paren<strong>the</strong>ses after <strong>the</strong> current genus. The name(s) <strong>of</strong> <strong>the</strong><br />

author(s) <strong>of</strong> <strong>the</strong> species description (i.e., <strong>the</strong> person(s)<br />

who described <strong>the</strong> species) and year <strong>of</strong> description<br />

follow <strong>the</strong> scientific name. Paren<strong>the</strong>ses placed around<br />

<strong>the</strong> author(s) name(s) indicates that <strong>the</strong>re has been an<br />

accepted modification <strong>to</strong> genus assignment since <strong>the</strong><br />

original description. For example, Acanthascus (Rhabdocalyptus)<br />

dawsoni dawsoni (Lambe, 1893) is represented<br />

as Genus (subgenus) species subspecies (Author, year).<br />

Each species description provides information on<br />

1) typical growth form(s), 2) surface morphology, including<br />

<strong>the</strong> presence and description <strong>of</strong> oscula, 3) consistency<br />

and texture, 4) known size range or dimensions,<br />

and 5) color in life and under various preservation<br />

methods. These characteristics, when used in conjunction<br />

with a confirmed pho<strong>to</strong>graph, can <strong>of</strong>ten provide<br />

a fairly accurate identification in <strong>the</strong> field. Definitive<br />

identification <strong>of</strong> most species, however, requires careful<br />

examination <strong>of</strong> <strong>the</strong> arrangement <strong>of</strong> microscopic skeletal<br />

structures, particularly <strong>the</strong> types, sizes, and location <strong>of</strong><br />

spicules. Note that <strong>the</strong> identification <strong>of</strong> each species<br />

detailed in this <strong>guide</strong> has been confirmed by examination<br />

<strong>of</strong> microscopic features. We provide detailed information<br />

on <strong>the</strong> skeletal structure <strong>of</strong> each species so


that readers can definitively confirm specimen identification.<br />

For most species, we provide pho<strong>to</strong>graphs <strong>of</strong><br />

specimens on deck (shortly after collection) or archived<br />

specimens and pho<strong>to</strong>graphs <strong>of</strong> specimens in situ. The<br />

former will be most useful <strong>to</strong> fisheries observers and<br />

fishers <strong>to</strong> identify specimens on fishing and survey vessel<br />

decks shortly after collection. The latter will be useful<br />

<strong>to</strong> scientists attempting <strong>to</strong> identify and quantify sponge<br />

fauna in situ, with submersibles and remotely operated<br />

cameras. We provide <strong>the</strong> known zoogeographic<br />

range and information about <strong>the</strong> physical habitat and<br />

oceanographic habitat (i.e., temperature and salinity),<br />

if available (Koltun, 1959), <strong>of</strong> each species both within<br />

Alaskan <strong>water</strong>s and throughout its known range. Finally,<br />

we include for each species special remarks with regard<br />

<strong>to</strong> taxonomic his<strong>to</strong>ry, biology, and ecology.<br />

We used <strong>the</strong> following literature <strong>to</strong> construct <strong>the</strong> species<br />

lists and determine <strong>the</strong> zoogeography and o<strong>the</strong>r<br />

published information for each species: Austin (1985),<br />

Blake and Lissner (1994), Boury-Esnault and Rützler<br />

(1997), Brøndsted (1993), Bur<strong>to</strong>n (1934), Dickinson<br />

(1945), Hooper and Van Soest (2002), Koltun (1958,<br />

1959, 1970), Lamb and Hanby (2005), Lambe (1900),<br />

Laubenfels (1953), Sim and Kim (1988), Van Soest<br />

et al. (2008), and de Weerdt (1986a, 1986b).<br />

Appendix I provides a current and comprehensive<br />

taxonomic list <strong>of</strong> all <strong>sponges</strong> now known <strong>to</strong> occur in <strong>the</strong><br />

<strong>deep</strong> <strong>water</strong>s (>80 m) <strong>of</strong> Alaska. Appendix II provides<br />

a ranking for all <strong>the</strong> species included in this <strong>guide</strong> in<br />

terms <strong>of</strong> <strong>the</strong>ir importance as fish habitat and vulnerability<br />

<strong>to</strong> disturbance from fishing activities. The average<br />

score for <strong>the</strong>se two fac<strong>to</strong>rs is used <strong>to</strong> prioritize species for<br />

moni<strong>to</strong>ring as bycatch in commercial fisheries and s<strong>to</strong>ck<br />

assessment surveys. Appendix III includes a glossary <strong>of</strong><br />

terms commonly used in <strong>the</strong> species descriptions. The<br />

terminology used in <strong>the</strong> section on skeletal structure is<br />

not included in Appendix III. We refer <strong>the</strong> reader <strong>to</strong> <strong>the</strong><br />

Thesaurus <strong>of</strong> Sponge Morphology (Boury-Esnault and<br />

Rützler, 1997) for a comprehensive glossary <strong>of</strong> skeletal<br />

structure terminology. Appendix IV includes scanning<br />

electron microscopy (SEM) images <strong>of</strong> spicules from select<br />

calcareous, hexactinellid, and demo<strong>sponges</strong> found<br />

in Alaskan <strong>water</strong>s. The purpose <strong>of</strong> Appendix IV is <strong>to</strong><br />

provide readers with a representative collection <strong>of</strong> spicule<br />

images so that <strong>the</strong>y may gain an understanding <strong>of</strong><br />

<strong>the</strong> terms used in <strong>the</strong> <strong>guide</strong> and an appreciation for <strong>the</strong><br />

variation between species and among spicule types. This<br />

collection also serves as a source <strong>of</strong> reference material<br />

for those who wish <strong>to</strong> microscopically examine <strong>sponges</strong>.<br />

Zoogeography <strong>of</strong> <strong>sponges</strong><br />

All three major groups <strong>of</strong> <strong>sponges</strong>—Class Calcarea<br />

(calcareous <strong>sponges</strong>), Class Hexactinellida (hexacti-<br />

nellid or glass <strong>sponges</strong>), and Class Demospongiae (demo<strong>sponges</strong>)—are<br />

well represented in Alaska. Only 12<br />

(6.1%) <strong>of</strong> <strong>the</strong> 196 species <strong>of</strong> <strong>sponges</strong> now known from<br />

Alaskan <strong>water</strong>s are calcareous <strong>sponges</strong>. They have skele<strong>to</strong>ns<br />

composed entirely <strong>of</strong> calcium carbonate laid down<br />

as calcite and are consequently one <strong>of</strong> <strong>the</strong> faunal groups<br />

at high risk from increased acidification <strong>of</strong> North Pacific<br />

Ocean <strong>water</strong>s. They are principally found in shallow<br />

<strong>water</strong> and are very rare at depths below 250 m.<br />

Glass <strong>sponges</strong> are represented by 52 species (26.5%<br />

<strong>of</strong> <strong>the</strong> <strong>to</strong>tal) in Alaskan <strong>water</strong>s. Glass <strong>sponges</strong> have a siliceous<br />

skele<strong>to</strong>n consisting <strong>of</strong> spicules with a hexactinal<br />

or 6-rayed pattern. They are generally more abundant<br />

in <strong>deep</strong>er <strong>water</strong> but have a very broad depth distribution<br />

in Alaska, ranging from 20 m in <strong>the</strong> fjords <strong>of</strong> Sou<strong>the</strong>ast<br />

Alaska <strong>to</strong> more than 2800 m on <strong>the</strong> Aleutian Island<br />

slope. Hexactinellid <strong>sponges</strong> are common throughout<br />

Alaska but form different habitats depending on geographical<br />

region. In <strong>the</strong> <strong>deep</strong>er slope habitats <strong>of</strong> <strong>the</strong><br />

Aleutian Islands, we have observed large debris fields<br />

comprised mainly <strong>of</strong> glass sponge skele<strong>to</strong>ns that provide<br />

attachment substrate for o<strong>the</strong>r invertebrates, including<br />

gorgonians and hydrocorals. In <strong>the</strong> Gulf <strong>of</strong> Alaska, glass<br />

<strong>sponges</strong> are generally solitary but do form low-diversity<br />

dense patches in areas <strong>of</strong> exposed hard substrate (S<strong>to</strong>ne,<br />

unpubl. data, 2005). In sou<strong>the</strong>rn Sou<strong>the</strong>ast Alaska, in<br />

Portland Canal along <strong>the</strong> border <strong>of</strong> Alaska and British<br />

Columbia, we have found small sponge reefs, similar in<br />

species composition <strong>to</strong>, but much smaller in size than,<br />

<strong>the</strong> massive bioherms reported far<strong>the</strong>r south in British<br />

Columbia (Conway et al., 1991, 2001, 2005; Krautter et<br />

al., 2001). Small patches <strong>of</strong> hexactinellid reef, believed<br />

<strong>to</strong> be biohermal, have also been observed in nor<strong>the</strong>rn<br />

Sou<strong>the</strong>ast Alaska near Juneau, possibly indicating that<br />

<strong>the</strong>se structures are more common than originally<br />

hypo<strong>the</strong>sized and may extend up through <strong>the</strong> inside<br />

<strong>water</strong>s <strong>of</strong> <strong>the</strong> Alexander Archipelago in areas where<br />

favorable conditions exist for reef formation.<br />

Demo<strong>sponges</strong> are by far <strong>the</strong> dominant group <strong>of</strong><br />

<strong>sponges</strong> in Alaskan <strong>water</strong>s, with 132 documented species.<br />

Demo<strong>sponges</strong> also have a siliceous skele<strong>to</strong>n but <strong>the</strong><br />

spicules are not hexactinal in pattern and <strong>the</strong> skele<strong>to</strong>n<br />

may be replaced or largely supplemented with an organic<br />

collagenous network <strong>of</strong> spongin. They are found<br />

throughout Alaskan <strong>water</strong>s and over a very broad depth<br />

range (intertidal <strong>to</strong> more than 2800 m). High diversity<br />

sponge “gardens” recently discovered in <strong>the</strong> Aleutian<br />

Islands (Fig. 1) are dominated by demo<strong>sponges</strong> but<br />

also include some hexactinellid and calcareous <strong>sponges</strong>.<br />

A few <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong> (e.g., Guitarra fimbriata,<br />

Halichondria sitiens, and Hymeniacidon assimilis) are cosmopolitan<br />

in distribution (Dickinson, 1945), but recent<br />

research indicates that <strong>the</strong> occurrence <strong>of</strong> sibling species<br />

worldwide might also be common. Deep-<strong>water</strong> <strong>sponges</strong><br />

are found throughout Alaska and have been reported<br />

3


4 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Figure 1<br />

A study area in <strong>the</strong> central Aleutian Islands showing 15 sites where sponge gardens have been observed. Sponge gardens are areas <strong>of</strong> high<br />

species diversity and abundance and were located from detailed analysis <strong>of</strong> video footage collected with <strong>the</strong> Delta submersible in 2002–04<br />

and and ROV Jason II in 2004. Depth con<strong>to</strong>urs are in meters.


as far north as <strong>the</strong> Beaufort Sea (de Laubenfels, 1953).<br />

Sponges inhabit a broad depth range and occur from<br />

<strong>the</strong> intertidal zone <strong>to</strong> <strong>the</strong> <strong>deep</strong>-ocean trenches. About<br />

24% (30 <strong>of</strong> 125 species) <strong>of</strong> <strong>the</strong> <strong>sponges</strong> known from <strong>the</strong><br />

Aleutian Islands appear <strong>to</strong> be endemic <strong>to</strong> <strong>the</strong> region.<br />

Deep-<strong>water</strong> <strong>sponges</strong>, like <strong>deep</strong>-<strong>water</strong> corals, are exceptionally<br />

abundant and diverse in <strong>the</strong> Aleutian<br />

Islands (S<strong>to</strong>ne, 2006) and not surprisingly, since both<br />

faunal groups have similar habitat requirements. Both<br />

groups require stable <strong>water</strong> currents for feeding and<br />

o<strong>the</strong>r metabolic processes and most require hard,<br />

exposed substrate for attachment. The geology and<br />

oceanography <strong>of</strong> <strong>the</strong> Aleutian Island Archipelago provide<br />

unique conditions <strong>to</strong> fulfill both requirements.<br />

The Archipelago contains more than 300 islands and<br />

extends over 1900 km from <strong>the</strong> Alaska Peninsula <strong>to</strong> <strong>the</strong><br />

Kamchatka Peninsula in Russia. The Archipelago is supported<br />

by <strong>the</strong> Aleutian Ridge that forms a semi-porous<br />

boundary between <strong>the</strong> <strong>deep</strong> North Pacific Ocean <strong>to</strong> <strong>the</strong><br />

south and <strong>the</strong> shallower Bering Sea in <strong>the</strong> north. The<br />

Aleutian Ridge is a volcanic arc, with more than 20 active<br />

volcanoes and frequent earthquake activity that was<br />

formed along zones <strong>of</strong> convergence between <strong>the</strong> North<br />

American Plate and o<strong>the</strong>r oceanic plates (Vallier et al.,<br />

1994). The island arc shelf is very narrow in <strong>the</strong> Aleutian<br />

Islands and drops precipi<strong>to</strong>usly on <strong>the</strong> Pacific side <strong>to</strong><br />

depths greater than 6000 m in some areas, such as <strong>the</strong><br />

Aleutian Trench. Deep <strong>water</strong> flowing northward in <strong>the</strong><br />

Pacific Ocean encounters <strong>the</strong> Aleutian Trench where it<br />

is forced up on<strong>to</strong> <strong>the</strong> Aleutian Ridge and in<strong>to</strong> <strong>the</strong> Bering<br />

Sea through <strong>the</strong> many island passes (Johnson, 2003).<br />

Additionally, coastal <strong>water</strong> from <strong>the</strong> Alaska Stream enters<br />

through Unimak Pass in <strong>the</strong> eastern Aleutians and<br />

slowly flows nor<strong>the</strong>astward along <strong>the</strong> Alaska Peninsula.<br />

The Aleutian North Slope Current flows eastward on<br />

<strong>the</strong> north side <strong>of</strong> <strong>the</strong> Aleutian Islands <strong>to</strong>wards <strong>the</strong> inner<br />

continental shelf <strong>of</strong> <strong>the</strong> Bering Sea. This is a swift current<br />

and <strong>the</strong> steep continental slope forces much <strong>of</strong> <strong>the</strong><br />

flow in<strong>to</strong> <strong>the</strong> northwest-flowing Bering Slope Current<br />

(Johnson, 2003).<br />

The collections made by Lambe (1900), de Laubenfels<br />

(1953), and Koltun (1958, 1959) provide a firm<br />

basis <strong>to</strong> closely examine <strong>the</strong> zoography <strong>of</strong> <strong>sponges</strong> from<br />

<strong>the</strong> region. The sponge fauna <strong>of</strong> <strong>the</strong> Aleutian Island<br />

Archipelago has strong taxonomic affinities with <strong>the</strong><br />

sponge fauna <strong>of</strong> <strong>the</strong> Sea <strong>of</strong> Okhotsk (30% <strong>of</strong> species in<br />

common), seas <strong>of</strong> <strong>the</strong> Arctic Ocean (22% <strong>of</strong> species in<br />

common), <strong>the</strong> eastern (18% <strong>of</strong> species in common) and<br />

western Bering Sea (10% <strong>of</strong> species in common), and<br />

<strong>the</strong> Sea <strong>of</strong> Japan (17% <strong>of</strong> species in common). By comparison,<br />

only 12% <strong>of</strong> <strong>the</strong> sponge fauna from <strong>the</strong> Gulf <strong>of</strong><br />

Alaska is common with that <strong>of</strong> <strong>the</strong> Aleutian Islands. This<br />

zoogeographic pattern has undoubtedly been influenced<br />

<strong>to</strong> some degree by his<strong>to</strong>rical sampling effort, but<br />

<strong>the</strong> taxonomic affinities <strong>of</strong> <strong>the</strong> Aleutian Island sponge<br />

fauna are clearly much greater with <strong>the</strong> sponge fauna<br />

<strong>to</strong> <strong>the</strong> west and north than <strong>the</strong>y are with <strong>the</strong> eastern<br />

fauna. Bur<strong>to</strong>n (1934) suggested that earlier work by<br />

both Lambe and de Laubenfels indicated that <strong>the</strong> Arctic<br />

influence was apparent as far south as Vancouver Island.<br />

Several species are known from areas immediately adjacent<br />

<strong>to</strong> <strong>the</strong> Aleutian Island Archipelago and, although<br />

not yet reported from <strong>the</strong> region, likely occur <strong>the</strong>re<br />

based on geographical proximity. These include species<br />

from <strong>the</strong> eastern Bering Sea (e.g., Aap<strong>to</strong>s kanuux) and<br />

<strong>the</strong> Commander Islands (Russia) in <strong>the</strong> western Bering<br />

Sea (e.g., Grantia monstruosa, Polymastia laganoides,<br />

Asbes<strong>to</strong>pluma gracilis, and Axinella hispida).<br />

Biology <strong>of</strong> <strong>sponges</strong><br />

Basic diagrams <strong>of</strong> sponge morphology, spicule types<br />

and skeletal structures, and a comprehensive glossary <strong>of</strong><br />

terminology are available in <strong>the</strong> Thesaurus <strong>of</strong> Sponge<br />

Morphology by Boury-Esnault and Rützler (1997) and<br />

can be accessed via <strong>the</strong> World Porifera Database (Van<br />

Soest et al., 2008). 2<br />

Sponges are a primitive group <strong>of</strong> metazoans. They are<br />

sedentary animals, but a few species (e.g., Craniella spp.)<br />

may be free-living (unattached) during part <strong>of</strong> <strong>the</strong>ir life<br />

cycle (Lehnert and S<strong>to</strong>ne, 2011). The dominant feature<br />

<strong>of</strong> <strong>the</strong> typical sponge body plan is <strong>the</strong> aquiferous system<br />

through which massive amounts <strong>of</strong> <strong>water</strong> are pumped<br />

(e.g., some large <strong>sponges</strong> are capable <strong>of</strong> filtering <strong>the</strong>ir<br />

own volume <strong>of</strong> <strong>water</strong> every 20 seconds). Water flow is<br />

unidirectional and maintained by flagellated cells (choanocytes)<br />

that are usually contained within chambers<br />

where oxygen and food particles are taken up by various<br />

cell types. Water flows in through inhalent pores or ostia<br />

and out through one or more larger exhalent openings<br />

or oscula. The oscula may open in<strong>to</strong> a large cavity called<br />

an atrium or spongocoel (i.e., <strong>the</strong> large opening in tube-<br />

or vase-shaped <strong>sponges</strong>).<br />

The sponge body consists <strong>of</strong> two distinct regions:<br />

<strong>the</strong> outer region (ec<strong>to</strong>some) and <strong>the</strong> central or inner<br />

region (choanosome) where <strong>the</strong> choanocyte chambers<br />

are located. Each region typically has distinct skeletal<br />

structures with a diagnostic complement <strong>of</strong> spicules.<br />

Spicules are grouped in<strong>to</strong> two main categories: megascleres<br />

and microscleres. Megascleres are typically larger<br />

and provide <strong>the</strong> primary skeletal support. Microscleres<br />

are smaller (i.e., a microscope is required <strong>to</strong> see <strong>the</strong>m)<br />

and generally function as packing and reinforcing<br />

2 The database can be found online at http://www.marinespecies.<br />

org/porifera/. Click on “Sources”; type “Boury-Esnault” in “Sourcename”;<br />

type “publication” in “Sourcetype”; check <strong>the</strong> box <strong>to</strong><br />

“Limit <strong>to</strong> sources with full text”; and click on “Search” in lower right<br />

corner.<br />

5


6 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

structures. Many sponge cells are highly mobile and can<br />

move freely within <strong>the</strong> extracellular matrix. Some cells<br />

are also extremely pluripotent (i.e., capable <strong>of</strong> differentiating<br />

in<strong>to</strong> o<strong>the</strong>r cell types) and <strong>sponges</strong> are capable<br />

<strong>of</strong> easily remodeling cell-cell junctions. These features<br />

probably allow <strong>sponges</strong> <strong>to</strong> adapt <strong>to</strong> diverse and extreme<br />

habitats and are largely responsible for <strong>the</strong> extreme phenotypic<br />

plasticity displayed by some <strong>sponges</strong> that makes<br />

identification from pho<strong>to</strong>graphs alone so problematic.<br />

Sponges are generally nonselective filter feeders,<br />

feeding principally on bacteria, fungi, dia<strong>to</strong>ms, din<strong>of</strong>lagellates,<br />

and detritus (Bergquist, 1978; Pile et al.,<br />

1996). A recent study, however, has shown that some<br />

hexactinellid species do exhibit size independent selective<br />

filtration <strong>of</strong> ultraplank<strong>to</strong>n (Yahel et al., 2006).<br />

Carnivorous <strong>sponges</strong> were recently discovered that lack<br />

an aquiferous system al<strong>to</strong>ge<strong>the</strong>r and possess structures<br />

modified <strong>to</strong> ensnare and capture larger prey such as<br />

zooplank<strong>to</strong>n (Vacelet and Boury-Esnault, 1995; Watling,<br />

2007). Carnivorous species in Alaska are <strong>deep</strong>-<strong>water</strong> inhabitants<br />

and include Cladorhiza corona (Lehnert et al.,<br />

2005), Cladorhiza bathycrinoides, Chondrocladia concrescens,<br />

and possibly Abes<strong>to</strong>pluma ramosa.<br />

Few studies have been conducted on <strong>the</strong> growth rate<br />

and longevity <strong>of</strong> <strong>sponges</strong>, particularly those found in<br />

<strong>deep</strong>-<strong>water</strong> habitats and high-latitude ecosystems. No<br />

studies have been conducted on <strong>the</strong> growth <strong>of</strong> <strong>sponges</strong><br />

in Alaska. In general, <strong>the</strong> growth rate <strong>of</strong> temperate<strong>water</strong><br />

<strong>sponges</strong> appears <strong>to</strong> be seasonal and relatively<br />

slow, occurring at rates comparable <strong>to</strong> those <strong>of</strong> <strong>deep</strong><strong>water</strong><br />

corals (Ayling, 1983; Thomassen and Riisgård,<br />

1995; Fallon et al., 2010). Studies on <strong>the</strong> hexactinellid<br />

sponge Acanthascus (Rhabdocalyptus) dawsoni in British<br />

Columbia indicate a growth rate <strong>of</strong> 1.98 cm/yr and a life<br />

span <strong>of</strong> more than 200 years (Leys and Lauzon, 1998).<br />

Studies on <strong>the</strong> hexactinellid sponge Aphrocallistes vastus<br />

in British Columbia indicate that it may grow considerably<br />

faster (10 cm/yr) but still live in excess <strong>of</strong> a century<br />

(Austin et al., 2007). We hypo<strong>the</strong>size that growth rates<br />

for <strong>sponges</strong> in Alaska are similar <strong>to</strong> those for British<br />

Columbia <strong>sponges</strong> but note that growth studies, particularly<br />

on demo<strong>sponges</strong>, should be a high research priority<br />

in Alaska so that recovery rates from disturbance for<br />

sponge habitats can be estimated.<br />

Deep-<strong>water</strong> <strong>sponges</strong> in <strong>the</strong> Aleutian Islands appear<br />

<strong>to</strong> have few preda<strong>to</strong>rs. We have observed blood stars<br />

(Henricia spp.) displaying a typical feeding posture on<br />

several demo<strong>sponges</strong> (e.g., Artemisina sp., Monanchora<br />

pulchra, Semisuberites cribrosa, and Haliclona sp.) at shallower<br />

depths (80 <strong>to</strong> 300 m). An earlier interpretation<br />

<strong>of</strong> this behavior, however, was that <strong>the</strong> sea stars were<br />

simply taking advantage <strong>of</strong> <strong>the</strong> <strong>sponges</strong>’ feeding currents<br />

(Anderson, 1960). Henricia were generally accepted<br />

as suspension feeders (Anderson, 1960), but<br />

our additional observation <strong>of</strong> large numbers <strong>of</strong> <strong>the</strong>se<br />

sea stars present on dead <strong>sponges</strong> and decaying sponge<br />

fragments in debris “windrows” fur<strong>the</strong>r implicate predation<br />

(or scavenging). In <strong>deep</strong>er <strong>water</strong> Hippasteria spp.<br />

sea stars appear <strong>to</strong> prey on several species <strong>of</strong> <strong>sponges</strong>. In<br />

<strong>the</strong> eastern Gulf <strong>of</strong> Alaska several sea stars (Hippasteria<br />

spp., Henricia longispina, and Poraniopsis inflata) prey on<br />

glass <strong>sponges</strong> (including Acanthascus dawsoni dawsoni,<br />

A. solidus, Aphrocallistes vastus, and Heterchone calyx) and<br />

several sea stars (Hippasteria spp., H. longispina, P. inflata,<br />

Pteraster tesselatus, and Ceramaster patagonicus) prey<br />

on demo<strong>sponges</strong> (including Poecillastra tenuilaminaris,<br />

Halichondria sp., and Mycale loveni). The incidence <strong>of</strong><br />

predation on <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong> in Alaska, however,<br />

appears <strong>to</strong> be relatively low and limited <strong>to</strong> only a few<br />

species <strong>of</strong> sea stars.<br />

Advances are now being made in <strong>the</strong> study <strong>of</strong> <strong>the</strong><br />

reproductive biology <strong>of</strong> <strong>sponges</strong>, but our current<br />

knowledge is based on studies <strong>of</strong> a small fraction <strong>of</strong> <strong>the</strong><br />

species described <strong>to</strong> date worldwide; none from Alaska<br />

(Maldonado and Berquist, 2002). Sponges display<br />

highly diverse mechanisms <strong>of</strong> embryogenesis, larval<br />

differentiation, and reproduction that include both<br />

sexual and asexual processes (Berquist, 1978; Leys and<br />

Ereskovsky, 2006; Ereskovsky, 2010). Sexes are ei<strong>the</strong>r<br />

temporarily or permanently separate and some species<br />

are hermaphroditic (Blake and Lissner, 1994). Many<br />

species are capable <strong>of</strong> regenerating viable adults from<br />

fragments, and additional asexual processes include<br />

<strong>the</strong> formation <strong>of</strong> gemmules and reduction bodies,<br />

budding, and possibly formation <strong>of</strong> asexual larvae<br />

(Maldonado and Berquist, 2002). Some species are<br />

oviparous while o<strong>the</strong>rs are viviparous and brood larvae.<br />

Release <strong>of</strong> propagules (gametes, zygotes, or early embryos)<br />

is highly synchronous in oviparous species, but<br />

asynchronous in viviparous species that release fully<br />

brooded flagellated larvae (Maldonado and Berquist,<br />

2002). Several species <strong>of</strong> Geodiidae are gonochoristic<br />

and oviparous and this is assumed <strong>to</strong> be <strong>the</strong> general<br />

condition for <strong>the</strong> family (Cárdenas et al., 2009). Some<br />

species are viviparous, such as Stylocordyla, which has <strong>the</strong><br />

added peculiarity that larvae are retained alive in <strong>the</strong><br />

body until <strong>the</strong>y have fully developed (Bergquist, 1972).<br />

Gemmules, reproductive structures that can survive<br />

adverse conditions such as desiccation or extreme cold,<br />

are not typically produced by marine <strong>sponges</strong>. Their<br />

common occurrence in hermit crab <strong>sponges</strong> may represent<br />

an adaptation <strong>to</strong> help counter <strong>the</strong> consequences<br />

<strong>of</strong> stranding on shore.<br />

Many sessile marine fauna, including <strong>sponges</strong>, have<br />

evolved <strong>the</strong> ability <strong>to</strong> produce or accumulate from associated<br />

microorganisms a diversity <strong>of</strong> unique chemical<br />

compounds or secondary metabolites that <strong>the</strong>y utilize<br />

in preda<strong>to</strong>r defense, competition for resources, and<br />

as physiological adaptations <strong>to</strong> living in extreme environments<br />

(Haefner, 2003). More than 12,000 novel


compounds have been isolated from sessile marine<br />

invertebrates, algae, and microorganisms worldwide<br />

(Faulkner, 2002). Many <strong>of</strong> <strong>the</strong> compounds are currently<br />

in early clinical or late preclinical development for use<br />

as treatments for cancer, tuberculosis, HIV, asthma, and<br />

many o<strong>the</strong>r diseases and ailments (Newman and Cragg,<br />

2004). Deep-<strong>water</strong> <strong>sponges</strong> show particular promise in<br />

this emerging research area, and several species collected<br />

from <strong>the</strong> Aleutian Islands as part <strong>of</strong> a pilot program<br />

in 2004 exhibited near 100% inhibition during primary<br />

screening for M. tuberculosis (Hamann 3 ). Only a handful<br />

<strong>of</strong> sponge species from <strong>the</strong> Aleutian Islands have been<br />

examined for <strong>the</strong> presence <strong>of</strong> secondary metabolites<br />

(e.g., Na et al., 2010), but so far “hit rates” for biomedically<br />

active compounds are on <strong>the</strong> order <strong>of</strong> 10%, ra<strong>the</strong>r<br />

than 1% which is typical for samples collected elsewhere<br />

(Hamann 3 ).<br />

Ecology <strong>of</strong> <strong>sponges</strong><br />

Importance as fish habitat<br />

Deep-<strong>water</strong> <strong>sponges</strong> provide important habitat <strong>to</strong> many<br />

species <strong>of</strong> fish and invertebrates, mostly as a source <strong>of</strong><br />

refuge from predation and adverse conditions (e.g.,<br />

strong currents) and as focal sites for foraging on prey<br />

species that aggregate in sponge habitat. Some fish<br />

use <strong>sponges</strong> (e.g., Aphrocallistes vastus and Acanthascus<br />

dawsoni dawsoni) as spawning substrate (Busby 4 ) and<br />

o<strong>the</strong>rs likely use sponge habitat as breeding sites. In<br />

Alaska, many commercial and non-commercial fisheries<br />

species are associated with <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong>. Most<br />

associations are believed <strong>to</strong> be facultative ra<strong>the</strong>r than<br />

obliga<strong>to</strong>ry. Sponges provide important refuge habitat<br />

for juvenile rockfish (Sebastes spp.) in <strong>the</strong> Gulf <strong>of</strong> Alaska<br />

(Freese and Wing, 2003) and juvenile golden king crabs<br />

(Lithodes aequispina) in <strong>the</strong> central Aleutian Islands<br />

(S<strong>to</strong>ne, 2006). Sponges also contribute <strong>to</strong> <strong>the</strong> biodiversity<br />

<strong>of</strong> <strong>deep</strong>-<strong>water</strong> habitats by providing spawning substrate<br />

for many species that are important trophic links<br />

<strong>to</strong> larger consumers (Fiore and Jutte, 2010).<br />

Deep-<strong>water</strong> <strong>sponges</strong> are really no different than<br />

<strong>deep</strong>-<strong>water</strong> corals in <strong>the</strong> degree <strong>to</strong> which <strong>the</strong>y provide<br />

structure; it depends on <strong>the</strong>ir maximum size, growth<br />

form, abundance, intraspecific fine-scale distribution<br />

(i.e., patch size and density), and interaction with<br />

o<strong>the</strong>r structure-forming invertebrates. In general,<br />

large arborescent species (e.g., Axinella blanca) and<br />

3 Hamann, M. 2009. Personal commun. Unpubl. data. University<br />

<strong>of</strong> Mississippi, P.O. Box 1848, University, MS 38677.<br />

4 Busby, M. 2010. Personal commun. Alaska Fisheries Science<br />

Center, NOAA, <strong>NMFS</strong>, 7600 Sand Point Way N.E., Seattle, WA<br />

98115.<br />

those with vase-like or barrel-like morphologies (e.g.,<br />

Acanthascus dawsoni dawsoni and Mycale loveni) provide<br />

much surface area and consequently refuge space.<br />

Large <strong>sponges</strong> such as Mycale loveni have high value as<br />

fish habitat due <strong>to</strong> <strong>the</strong>ir size (up <strong>to</strong> 1 m high and wide)<br />

and abundance (up <strong>to</strong> 11 <strong>sponges</strong> per m 2 in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska). Adult sharpchin rockfish (Sebastes<br />

zacentrus) and juvenile Sebastes spp. frequently use <strong>the</strong><br />

cone-shaped <strong>sponges</strong> as perches in <strong>the</strong> eastern Gulf<br />

<strong>of</strong> Alaska. Smaller <strong>sponges</strong> at high densities may also<br />

provide important habitat. For example, finger <strong>sponges</strong><br />

(Axinella rugosa) are small (maximum dimensions only<br />

2 cm wide by 17 cm high), but are used as perches<br />

by juvenile rockfish (Sebastes spp.) when present at<br />

high densities (up <strong>to</strong> 63 individuals per m 2 ) in steep<br />

bedrock habitats (S<strong>to</strong>ne, unpubl. data, 2005). Species<br />

such as Artemisina stipitata have several attributes that<br />

make <strong>the</strong>m important as fish habitat, including large<br />

size, tendency <strong>to</strong> occur in dense patches (contagious<br />

distribution), and interaction with o<strong>the</strong>r emergent<br />

epifuana. Encrusting species such as Plakina tanaga,<br />

P. atka, and Bubaris vermiculata have little value as fish<br />

habitat. The degree <strong>to</strong> which <strong>sponges</strong> provide fish<br />

habitat also depends greatly on <strong>the</strong>ir depth distribution<br />

relative <strong>to</strong> that <strong>of</strong> shelter-seeking fishes. In <strong>the</strong> Aleutian<br />

Islands, for example, <strong>sponges</strong> found at depths greater<br />

than about 1200 m are less important as refuge habitat<br />

because most <strong>of</strong> <strong>the</strong> fish species at those depths appear<br />

<strong>to</strong> be less structure-oriented.<br />

In general, calcareous <strong>sponges</strong> are not <strong>of</strong> sufficient<br />

size or adequately abundant <strong>to</strong> provide important fish<br />

habitat. Leucandra tuba may be important for juvenile<br />

fish that use <strong>the</strong> easily accessible cavernous interior <strong>of</strong><br />

this species <strong>to</strong> escape from larger preda<strong>to</strong>rs. In contrast,<br />

demo<strong>sponges</strong> are <strong>of</strong>ten quite large and form dense<br />

“gardens” in some areas <strong>of</strong> <strong>the</strong> Aleutian Islands (Fig. 1).<br />

Hexactinellid <strong>sponges</strong> are extremely important as fish<br />

habitat. Their skele<strong>to</strong>ns are persistent after death and<br />

consequently provide <strong>the</strong> framework for <strong>the</strong> building<br />

<strong>of</strong> reefs or bioherms. Intact skele<strong>to</strong>ns, and <strong>to</strong> some degree<br />

detached and fragmented skele<strong>to</strong>ns, also provide<br />

attachment substrate for o<strong>the</strong>r sedentary structureproviding<br />

fauna, including hydrocorals, oc<strong>to</strong>corals, and<br />

demo<strong>sponges</strong> (S<strong>to</strong>ne, unpubl. data, 2004).<br />

Vulnerability <strong>to</strong> disturbance<br />

Bycatch observations in <strong>the</strong> Aleutian Islands and o<strong>the</strong>r<br />

regions <strong>of</strong> Alaska clearly support our submersible observations,<br />

indicating that <strong>sponges</strong> are far more abundant<br />

than corals in <strong>deep</strong>-<strong>water</strong> habitats. Sponges, particularly<br />

demo<strong>sponges</strong>, appear <strong>to</strong> be <strong>the</strong> most abundant emergent<br />

epifauna in <strong>the</strong> Aleutian Islands. Approximately<br />

352 metric <strong>to</strong>ns (t) <strong>of</strong> <strong>sponges</strong> are removed from <strong>the</strong> seafloor<br />

by commercial fishing in <strong>the</strong> Aleutian Islands and<br />

7


8 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Bering Sea each year – more than four times <strong>the</strong> weight<br />

<strong>of</strong> corals landed <strong>the</strong>re as fisheries bycatch (<strong>NMFS</strong> 5 ).<br />

All emergent epifauna are susceptible <strong>to</strong> disturbance<br />

from fishing gear (S<strong>to</strong>ne, 2006) and most species <strong>of</strong><br />

<strong>deep</strong>-<strong>water</strong> <strong>sponges</strong> are <strong>to</strong> some degree vulnerable <strong>to</strong><br />

disturbance (also see Hogg et al., 2010, for a recent<br />

review). Fishing operations affect <strong>the</strong> seafloor from<br />

depths <strong>of</strong> 27 m <strong>to</strong> about 1200 m in <strong>the</strong> Aleutian Islands,<br />

with most effort at depths shallower than 200 m (S<strong>to</strong>ne,<br />

2006). The degree <strong>to</strong> which a particular gear type affects<br />

sponge habitat depends on its configuration (i.e.,<br />

physical area <strong>of</strong> contact), operation (i.e., physical forces<br />

on <strong>the</strong> seafloor), spatial and temporal intensity <strong>of</strong> operation,<br />

seafloor bathymetry and substratum type, and<br />

<strong>the</strong> resiliency <strong>of</strong> <strong>sponges</strong> <strong>to</strong> disturbance. Both direct<br />

and indirect effects from fishing activities on <strong>sponges</strong><br />

likely occur. Direct effects include removal as bycatch,<br />

damage caused by physical contact, or detachment<br />

from <strong>the</strong> seafloor and translocation <strong>to</strong> unsuitable habitat.<br />

Indirect effects include increased vulnerability <strong>to</strong><br />

predation, especially for <strong>sponges</strong> detached from <strong>the</strong><br />

seafloor, and habitat alteration. Fur<strong>the</strong>rmore, <strong>the</strong>re<br />

is some evidence that reproduction is suppressed in<br />

damaged shallow-<strong>water</strong> scleractinian corals due <strong>to</strong> a<br />

reallocation <strong>of</strong> energy reserves <strong>to</strong> tissue repair and<br />

regeneration (Wahle, 1983), and similar effects may<br />

occur in <strong>sponges</strong>.<br />

Most <strong>of</strong> <strong>the</strong> fac<strong>to</strong>rs that control <strong>the</strong> degree <strong>to</strong> which<br />

<strong>sponges</strong> provide habitat structure are <strong>the</strong> same fac<strong>to</strong>rs<br />

that control <strong>the</strong> degree <strong>to</strong> which <strong>the</strong>y are vulnerable <strong>to</strong><br />

disturbance. For example, large species with arborescent<br />

growth forms are more likely <strong>to</strong> be contacted by<br />

passing fishing gear. Species such as Plakina tanaga have<br />

low vulnerability <strong>to</strong> disturbance due <strong>to</strong> <strong>the</strong>ir encrusting<br />

habitus and absence in areas where bot<strong>to</strong>m trawling is<br />

known <strong>to</strong> occur. Some species such as Poecillastra tenuilaminaris<br />

are highly vulnerable <strong>to</strong> disturbance due <strong>to</strong><br />

<strong>the</strong>ir large size and high relative abundance. Artemisina<br />

stipitata is moderately vulnerable <strong>to</strong> disturbance due <strong>to</strong><br />

its large size, erect form, and presence in areas where<br />

bot<strong>to</strong>m trawling and longline fishing are known <strong>to</strong> occur.<br />

Some <strong>sponges</strong>, for example those with holdfast<br />

structures ra<strong>the</strong>r than root-like attachment systems, may<br />

be more vulnerable <strong>to</strong> detachment, and it is unknown<br />

if intact but o<strong>the</strong>rwise undamaged <strong>sponges</strong> detached<br />

from <strong>the</strong> substrate (e.g., roller <strong>sponges</strong>; Reiswig, unpubl.<br />

data, 2010) can survive.<br />

The recovery rate <strong>of</strong> disturbed benthic ecosystems in<br />

Alaskan <strong>water</strong>s is <strong>of</strong> keen interest <strong>to</strong> fisheries managers<br />

but is still little more than conjecture due <strong>to</strong> limited<br />

5 National Marine Fisheries Service. 2004. Final programmatic<br />

supplemental groundfish environmental impact statement for Alaska<br />

groundfish fisheries. Alaska Region, NOAA, <strong>NMFS</strong>, P.O. Box<br />

21668, Juneau, AK 99802-1668.<br />

knowledge <strong>of</strong> species distribution and basic life his<strong>to</strong>ry<br />

processes. Rates <strong>of</strong> recovery will depend on growth rates<br />

and rates <strong>of</strong> sexual and asexual reproduction or speed <strong>of</strong><br />

regeneration, which are unknown for most species. Two<br />

key components <strong>of</strong> ecosystem persistence are resistance<br />

(i.e., <strong>the</strong> ability <strong>to</strong> resist changes from disturbance) and<br />

resiliency (i.e., <strong>the</strong> ability <strong>to</strong> absorb changes and <strong>the</strong><br />

speed with which it returns <strong>to</strong> its original condition)<br />

(Holling, 1973). In <strong>the</strong> case <strong>of</strong> <strong>sponges</strong>, resistance <strong>to</strong><br />

disturbance depends largely on <strong>the</strong>ir physical size, morphology,<br />

and distribution relative <strong>to</strong> <strong>the</strong> disturbance.<br />

We know from studies in <strong>the</strong> Aleutian Islands and Gulf<br />

<strong>of</strong> Alaska that benthic emergent epifauna, especially<br />

<strong>sponges</strong>, have low resistance <strong>to</strong> fishing gear disturbance<br />

(Freese et al., 1999; S<strong>to</strong>ne, 2006; Heifetz et al., 2009;<br />

S<strong>to</strong>ne, unpubl. data, 2004–2005). We know little about<br />

<strong>the</strong> resiliency <strong>of</strong> emergent epifauna, however.<br />

Resiliency depends on several fac<strong>to</strong>rs, including<br />

growth rate, recruitment rate, and reproductive ecology.<br />

Like <strong>deep</strong>-<strong>water</strong> corals, <strong>sponges</strong> have life his<strong>to</strong>ry<br />

attributes such as slow growth rates and high longevity<br />

(Day<strong>to</strong>n, 1979), indicating that long periods <strong>of</strong> time<br />

would be necessary for habitats dominated by <strong>sponges</strong><br />

<strong>to</strong> recover from disturbance (Freese, 2001). Growth<br />

rates for <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong> are generally slow (see<br />

above) and <strong>the</strong>refore inherently difficult <strong>to</strong> study.<br />

Reference sites, such as undersea cables that provide<br />

a known time-line for recruitment and subsequent<br />

growth, show promise in studies <strong>of</strong> sponge habitat recovery<br />

(Levings and McDaniel, 1974) but have not yet<br />

been identified or targeted for such study in Alaska.<br />

The only known study <strong>to</strong> address <strong>the</strong> recovery dynamics<br />

<strong>of</strong> <strong>sponges</strong> in Alaska reported no visually detectable<br />

growth or regeneration one year post-disturbance with<br />

a bot<strong>to</strong>m trawl (Freese, 2001). Due <strong>to</strong> <strong>the</strong> opportunistic<br />

nature <strong>of</strong> that study (observations were subjective, not<br />

quantifiable; not repeatable since specimens were not<br />

georeferenced; and made in an area subjected <strong>to</strong> high<br />

background disturbance), <strong>the</strong> findings are questioned.<br />

Contrastingly, a study conducted <strong>of</strong>f <strong>the</strong> sou<strong>the</strong>astern<br />

coast <strong>of</strong> <strong>the</strong> U.S. indicated that some <strong>sponges</strong> were<br />

capable <strong>of</strong> recovering completely within one year from<br />

damage caused by a research trawl (Van Dolah et al.,<br />

1987).<br />

Moni<strong>to</strong>ring bycatch <strong>of</strong> <strong>sponges</strong><br />

Appendix II provides a list <strong>of</strong> all <strong>sponges</strong> for which we<br />

have provided species descriptions in this <strong>guide</strong>. For<br />

each species, <strong>the</strong> importance as fish habitat and <strong>the</strong> vulnerability<br />

<strong>to</strong> disturbance from fishing activities is ranked<br />

from low (1) <strong>to</strong> high (3). Ranks for <strong>the</strong> two measures<br />

are averaged <strong>to</strong> provide a score. We recommend that<br />

species with scores greater than 2.0 be considered a


high priority for moni<strong>to</strong>ring as bycatch in commercial<br />

fisheries and s<strong>to</strong>ck assessment surveys and that species<br />

lists used <strong>to</strong> record bycatch in fisheries and s<strong>to</strong>ck assessment<br />

surveys be appropriately updated <strong>to</strong> include<br />

<strong>the</strong>se taxa. Subsequent mapping <strong>of</strong> <strong>the</strong>se taxa should<br />

be undertaken in an effort <strong>to</strong> identify <strong>the</strong> location <strong>of</strong><br />

vulnerable marine ecosystems. The actual or estimated<br />

weight <strong>of</strong> sponge bycatch should also be recorded since<br />

it is also a valuable indica<strong>to</strong>r <strong>of</strong> rich sponge habitat.<br />

Collection and preservation<br />

<strong>of</strong> sponge specimens<br />

The collection pro<strong>to</strong>cols outlined by Etnoyer et al.<br />

(2006) for <strong>deep</strong>-<strong>water</strong> corals are generally appropriate<br />

for <strong>the</strong> collection <strong>of</strong> <strong>deep</strong>-<strong>water</strong> <strong>sponges</strong>. Shortly after<br />

collection, specimens should be pho<strong>to</strong>graphed with<br />

an appropriate scale and <strong>the</strong> following information<br />

should be recorded: 1) growth form, 2) general surface<br />

information (roughness, presence, and description<br />

<strong>of</strong> oscula), 3) consistency, 4) size (dimensions), and<br />

5) color. Color should preferably be recorded immediately<br />

after collection since <strong>the</strong> color <strong>of</strong> some specimens<br />

may change shortly after removal from sea<strong>water</strong> and<br />

exposure <strong>to</strong> ambient light. Observations made in situ<br />

should pay particular attention <strong>to</strong> <strong>the</strong> presence and description<br />

<strong>of</strong> oscula, color, type <strong>of</strong> attachment (i.e., holdfast<br />

or root-like system), substrate type, <strong>the</strong> presence <strong>of</strong><br />

associated fauna, and if collected, whe<strong>the</strong>r <strong>the</strong> specimen<br />

appears <strong>to</strong> be whole or only a fragment <strong>of</strong> <strong>the</strong> whole<br />

specimen. The specimen should be pho<strong>to</strong>graphed or<br />

recorded on video prior <strong>to</strong> collection. Collection data<br />

should be written with pencil on <strong>water</strong>pro<strong>of</strong> paper that<br />

will be packaged with <strong>the</strong> specimen, and include date,<br />

location <strong>of</strong> collection (station number and GPS coordinates),<br />

name <strong>of</strong> collec<strong>to</strong>r, cruise number or vessel<br />

name, depth <strong>of</strong> collection, and gear type. Sponge specimens<br />

may be frozen (preferably at temperatures below<br />

–10°C) or s<strong>to</strong>red in an 80–90% ethanol solution. Demo<strong>sponges</strong><br />

and hexactinellid <strong>sponges</strong> (but never calcareous<br />

<strong>sponges</strong>) <strong>to</strong> be used for his<strong>to</strong>logical purposes may<br />

be fixed in a buffered 5% formaldehyde solution for 24<br />

hours prior <strong>to</strong> s<strong>to</strong>rage in ethanol solution. Specimens<br />

<strong>to</strong> be used for biomedical research or molecular genetic<br />

analyses should preferably be frozen <strong>to</strong> –10°C or colder<br />

unless <strong>the</strong>y will be processed o<strong>the</strong>rwise immediately.<br />

For museum archiving, specimens should preferably<br />

be s<strong>to</strong>red in an 80–90% ethanol solution. Very large<br />

specimens may be dried but a fragment <strong>of</strong> <strong>the</strong> specimen<br />

should be s<strong>to</strong>red in ethanol solution.<br />

Labora<strong>to</strong>ry identification <strong>of</strong> sponge specimens<br />

Calcareous <strong>sponges</strong> and demo<strong>sponges</strong><br />

For light microscopy and scanning electron microscopy<br />

(SEM) investigations <strong>of</strong> <strong>the</strong> spicules, small fragments <strong>of</strong><br />

<strong>sponges</strong> (containing both ec<strong>to</strong>some and choanosome)<br />

are boiled in nitric acid or hypochlorite, and in several<br />

steps <strong>the</strong> spicules are sequentially transferred through<br />

distilled <strong>water</strong> <strong>to</strong> 95% ethanol with <strong>the</strong> aid <strong>of</strong> a centrifuge<br />

(Rützler, 1978; Lehnert and Van Soest, 1998). For<br />

light microscopy, small drops <strong>of</strong> <strong>the</strong> spicule-ethanol<br />

suspension are transferred on<strong>to</strong> glass slides and, after<br />

evaporation <strong>of</strong> <strong>the</strong> ethanol, embedded in Canada balsam.<br />

Semi-thin sections obtained with a razor blade are<br />

also embedded in balsam. For SEM studies, <strong>the</strong> spiculeethanol<br />

suspension is transferred directly on<strong>to</strong> stubs<br />

and coated with gold-palladium after ethanol evaporation<br />

(Lehnert and Van Soest, 1998). Finally, data <strong>of</strong><br />

spicule types and <strong>the</strong>ir dimensions are compared <strong>to</strong> <strong>the</strong><br />

literature descriptions <strong>to</strong> assign <strong>the</strong> specimens <strong>to</strong> <strong>the</strong>ir<br />

proper genus and species.<br />

Hexactinellid <strong>sponges</strong><br />

Individual specimens are first triaged <strong>to</strong> assign <strong>the</strong>m<br />

<strong>to</strong> order and family by making temporary microscope<br />

preparations <strong>of</strong> surface spicules with commercial bleach.<br />

Specimens are <strong>the</strong>n processed by family groups. Permanent<br />

picks or peels <strong>of</strong> surface spicules are mounted in<br />

Canada balsam and pieces (about 1 cm diameter) <strong>of</strong><br />

body wall are digested in hot nitric acid <strong>to</strong> obtain a suspension<br />

<strong>of</strong> cleaned spicules. Smaller spicules are filtered<br />

on<strong>to</strong> 0.2 µm pore-size membrane filters and mounted<br />

in Canada balsam for microscopic examination. Very<br />

large spicules are picked from <strong>the</strong> suspension with<br />

forceps, cleaned, and mounted in balsam. Remaining<br />

medium-size spicules are washed, spread on slides, and<br />

mounted in balsam. Samples <strong>of</strong> individual spicule types<br />

are pho<strong>to</strong>graphed by digital camera and, when necessary,<br />

dimensions (e.g., length, diameter) are measured<br />

by digitizer-interfaced microscopy. Data <strong>of</strong> spicule types<br />

and <strong>the</strong>ir dimensions are finally compared <strong>to</strong> <strong>the</strong> literature<br />

descriptions <strong>to</strong> assign <strong>the</strong> specimens <strong>to</strong> <strong>the</strong>ir proper<br />

genus and species.<br />

9


11<br />

CLASS CALCAREA


12 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

1. Clathrina sp.<br />

Description. Conical tubes have thin walls laid in<br />

folds. Viewed with a hand-lens, <strong>the</strong> walls consist <strong>of</strong> a<br />

mesh <strong>of</strong> tissue with many open inhalant pores, round<br />

<strong>to</strong> oval, 300–600 µm in diameter. The osculum at <strong>the</strong><br />

<strong>to</strong>p <strong>of</strong> <strong>the</strong> cone has no spicule crown. Consistency is<br />

s<strong>of</strong>t and elastic. Height <strong>of</strong> cones is <strong>to</strong> 3–5 cm; several<br />

basally fused cones may cover larger areas. Color in life<br />

is creamy white <strong>to</strong> pale yellow.<br />

Skeletal structure. Triactines are arranged tangentially;<br />

large triactines (50–150 × 7–10 µm/ray), small<br />

triactines (20–30 × 3–6 µm/ray).<br />

Zoogeographic distribution. Cosmopolitan. In Alaska<br />

– central Aleutian Islands. Elsewhere – <strong>the</strong> genus Clathrina<br />

presently contains 87 nominal species and has a<br />

worldwide distribution.<br />

Habitat. In Alaska – sometimes grows around and partially<br />

encrusts <strong>the</strong> gorgonian Muriceides nigra at depths<br />

near 119 m.<br />

Remarks. The genus Clathrina was erected by Gray<br />

(1867) and is in desperate need <strong>of</strong> revision at <strong>the</strong> species<br />

level.<br />

Pho<strong>to</strong>s. Fragment <strong>of</strong> Clathrina sp. collected in <strong>the</strong> central<br />

Aleutian Islands at a depth <strong>of</strong> 119 m. Grid marks are<br />

1 cm 2 . 2) The same specimen as in pho<strong>to</strong> 1 (center) in<br />

situ encrusting <strong>the</strong> gorgonian Muriceides nigra.


2. Leucandra poculiformis Hozawa, 1918<br />

Description. Sponge is thickly encrusting. The surface<br />

is smooth <strong>to</strong> <strong>the</strong> unaided eye but rough <strong>to</strong> <strong>the</strong> <strong>to</strong>uch due<br />

<strong>to</strong> large protruding spicules. Consistency is stiff, slightly<br />

compressible, and elastic. Individuals may reach a size<br />

<strong>of</strong> approximately 6 × 2 × 1 cm. Color in life is white <strong>to</strong><br />

creamy white.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. There are large triactines (50–170 ×<br />

5–15 µm/ray) and occasionally tetractines <strong>of</strong> <strong>the</strong> same<br />

dimensions. Small oxeas (60–85 × 3–6 µm) have unequal<br />

ends, most with a characteristic bend near one<br />

end. Small oxeas are only at <strong>the</strong> surface <strong>of</strong> inner and<br />

outer walls, equiangular and sagittal triactines are inbetween.<br />

Outer surfaces are covered by a mesh <strong>of</strong> small<br />

diactines, mesh-size approximately 25 µm in diameter;<br />

tracts form <strong>the</strong> mesh 20–40 µm in diameter.<br />

Zoogeographic distribution. Rare. In Alaska – central<br />

Aleutian Islands. Elsewhere – previously known only<br />

from <strong>the</strong> Sea <strong>of</strong> Japan.<br />

Habitat. Grows around and encrusts Stylaster hydrocorals<br />

at depths near 175 m. Species <strong>of</strong> Craniella may be<br />

attached <strong>to</strong> it (see pho<strong>to</strong> 1).<br />

Pho<strong>to</strong>s. 1) Whole specimen collected at a depth <strong>of</strong><br />

175 m in <strong>the</strong> central Aleutian Islands. Grid marks are 1<br />

cm 2 . 2) The same specimen as in pho<strong>to</strong> 1 in situ encrusting<br />

a Stylaster hydrocoral.<br />

13


14 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

3. Leucandra tuba Hozawa, 1918<br />

Description. Sponge has thin-walled (0.5 mm) tubes.<br />

Up <strong>to</strong> 17 individual tubes surround large internal<br />

areas. Surface is smooth <strong>to</strong> <strong>the</strong> unaided eye, irregularly<br />

undulating (i.e., wavy or sinuous) oxeas, and rough <strong>to</strong><br />

<strong>the</strong> <strong>to</strong>uch due <strong>to</strong> large protruding spicules. Walls are<br />

compressible and only slightly elastic. Diameter is <strong>to</strong> 30<br />

cm. Color in life is light grey <strong>to</strong> creamy white.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Walls consist <strong>of</strong> giant tri- and tetractines<br />

(200–1200 × 20–100 µm/ray), one ray usually shorter<br />

than <strong>the</strong> o<strong>the</strong>rs. Irregularly distributed and undulating<br />

oxeas (95–140 × 3–5 µm) are very abundant and<br />

are scattered in between <strong>the</strong> giant tri- and tetractines<br />

without obvious orientation. Ec<strong>to</strong>somal areas with inhalant<br />

pores have an outer layer <strong>of</strong> special spicules called<br />

pugioles (18–35 µm long) which form meshes, leaving<br />

open pores <strong>of</strong> about 50 µm diameter, with pugiole-tracts<br />

<strong>of</strong> approximately 25 µm in diameter. The mesh <strong>of</strong> <strong>the</strong><br />

pugioles is underlain by a mesh <strong>of</strong> microdiactines <strong>of</strong> <strong>the</strong><br />

same dimensions.<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – Aleutian Islands and Bering Sea canyons. Elsewhere<br />

– previously known only from <strong>the</strong> Sea <strong>of</strong> Japan.<br />

Habitat. In <strong>the</strong> Aleutians Islands – depths between<br />

112 and 250 m on exposed bedrock, boulders, cobbles,<br />

and pebbles in generally low-relief (i.e., flat-bot<strong>to</strong>med)<br />

habitats. In <strong>the</strong> Bering Sea – known from Pribil<strong>of</strong> Canyon<br />

at depths between 203 <strong>to</strong> 220 m on pebbles and<br />

cobbles. Elsewhere – <strong>the</strong> holotype was described from<br />

<strong>the</strong> Sea <strong>of</strong> Japan near Okinoshima and collected at a<br />

depth <strong>of</strong> 106 m.<br />

Pho<strong>to</strong>s. 1) Whole specimen collected at a depth <strong>of</strong><br />

145 m in <strong>the</strong> central Aleutian Islands. Grid marks are<br />

1 cm 2 . 2) The same specimen as in pho<strong>to</strong> 1 in situ.<br />

3) Specimen (center, <strong>to</strong>p) at a depth <strong>of</strong> 120 m in <strong>the</strong><br />

central Aleutian Islands.


15<br />

CLASS HEXACTINELLIDA


16 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

4. Farrea kurilensis ssp. nov. Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. Lace-like mass has large-caliber (2-cm<br />

diameter), short, branching, and anas<strong>to</strong>mosing tubes<br />

increasing in size (<strong>of</strong> <strong>the</strong> mass) by lateral growth, conforming,<br />

and attaching at multiple sites <strong>to</strong> <strong>the</strong> hard<br />

substrate and not growing erect. Surface <strong>of</strong> <strong>the</strong> mass<br />

is labyrinthic, but that <strong>of</strong> individual tube elements is<br />

smooth. Open terminal ends <strong>of</strong> tubes are effectively<br />

oscula. Consistency is flexible but brittle due <strong>to</strong> fusion<br />

<strong>of</strong> <strong>the</strong> very thin primary skele<strong>to</strong>n. Individuals observed<br />

in situ have a diameter <strong>of</strong> 170 cm. Color in life is translucent<br />

light blue <strong>to</strong> white.<br />

Skeletal structure. The primary framework is a fused<br />

farreoid lattice <strong>of</strong> hexactins forming a network <strong>of</strong> square<br />

meshes with sides 439–750 µm long; it is continuous<br />

throughout <strong>the</strong> specimen. Loose megascleres include<br />

dermal and atrial pentactins, <strong>of</strong>ten with knobs or very<br />

short distal rays (170–375 µm tangential ray length,<br />

211–422 µm proximal ray length); very large anchorate<br />

clavules with completely smooth shafts (302–1243<br />

µm length); moderate-sized uncinates (1.03–2.99 mm<br />

length); very rare choanosomal hexactins (208–239<br />

µm ray length). Microscleres consist <strong>of</strong> two size classes<br />

<strong>of</strong> stellate discohexasters (30–89 µm and 91–293 µm in<br />

diameter).<br />

Zoogeographic distribution. Locally common and<br />

abundant in some areas. In Alaska – central Aleutian<br />

Islands. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> bedrock, muds<strong>to</strong>ne, boulders,<br />

cobbles, and hexactinellid sponge skele<strong>to</strong>ns at depths<br />

between 300 and 2249 m.<br />

Remarks. Farrea kurilensis presently has two subspecies:<br />

F. k. kurilensis, which occurs near <strong>the</strong> Kuril Islands<br />

and in <strong>the</strong> Sea <strong>of</strong> Okhotsk, has smooth pileate clavules,<br />

while F. k. beringiana, which also occurs near <strong>the</strong> Kuril<br />

Islands, has all clavules with spines. The new Aleutian<br />

subspecies differs from <strong>the</strong>se in having anchorate clavules<br />

with smooth shafts and an alternate microsclere<br />

combination.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen <strong>the</strong>n dried) fragment <strong>of</strong><br />

a specimen collected at a depth <strong>of</strong> 2105 m in <strong>the</strong> central<br />

Aleutian Islands. Grid marks are 1 cm 2 . 2) The same<br />

specimen as in pho<strong>to</strong> 1 in situ.


5. Farrea occa occa Bowerbank, 1862<br />

Description. Lace-like hemispheric mass has largecaliber<br />

(1.5 <strong>to</strong> 2-cm diameter), short, branching and<br />

anas<strong>to</strong>mosing tubes increasing in size (<strong>of</strong> <strong>the</strong> mass)<br />

by lateral growth, attached <strong>to</strong> hard substrate at central<br />

origin and at multiple lateral contact sites. Surface <strong>of</strong><br />

<strong>the</strong> mass is labyrinthic with open ends <strong>of</strong> tubes functioning<br />

as oscula, but external and internal surfaces<br />

<strong>of</strong> individual tube elements are smooth. Consistency is<br />

flexible but brittle and fragile due <strong>to</strong> breakage <strong>of</strong> <strong>the</strong><br />

very thin fused primary skele<strong>to</strong>n. An individual mass<br />

from a single settled larva may reach 3 m in diameter<br />

and over 1 m in height. Color in life is translucent white<br />

<strong>to</strong> pale yellow.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The primary framework is a fused farreoid<br />

lattice <strong>of</strong> hexactins forming a network <strong>of</strong> square<br />

meshes with sides 79–494 µm long; it is continuous<br />

throughout <strong>the</strong> specimen. Loose megascleres include<br />

dermal and atrial pentactins (190–305 µm tangential ray<br />

length, 78–280 µm proximal ray length); pileate and anchorate<br />

clavules usually with smooth shafts, rarely with<br />

one or two large spines (196–308 µm length); moderatesized<br />

uncinates (0.89–2.64 mm length). Microscleres<br />

are mainly oxyhexasters with relatively long primary<br />

rays (57–111 µm in diameter). There may be a very few<br />

discohexasters or onychohexasters.<br />

Zoogeographic distribution. Locally common and<br />

abundant in some areas. In Alaska – eastern Gulf <strong>of</strong><br />

Alaska. Elsewhere – cosmopolitan, but <strong>the</strong> previous<br />

known nor<strong>the</strong>rn limit <strong>of</strong> <strong>the</strong> subspecies was 55.4°N in<br />

nor<strong>the</strong>rn British Columbia; <strong>the</strong> new Alaska collections<br />

extend <strong>the</strong> nor<strong>the</strong>rn limit <strong>to</strong> 58.2°N.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, boulder, and<br />

cobbles at depths between 91 and 238 m. Elsewhere<br />

– attached <strong>to</strong> cobbles, bedrock, shell, coral skele<strong>to</strong>ns,<br />

and hexactinellid sponge skele<strong>to</strong>ns at depths between<br />

86 and 1360 m.<br />

Remarks. This may be <strong>the</strong> largest species <strong>of</strong> sponge in<br />

<strong>the</strong> North Pacific Ocean, with a diameter reaching 3 m.<br />

This sponge provides much refuge habitat for small fish<br />

and micro-invertebrates that may be forage species for<br />

larger fish and crabs.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> a specimen collected at a<br />

depth <strong>of</strong> 168 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Grid marks<br />

are 1 cm 2 . 2) Specimen at a depth <strong>of</strong> 165 m in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska.<br />

17


18 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

6. Farrea sp. nov. Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. Erect bush <strong>of</strong> small-caliber (8-mm diameter),<br />

relatively long, branching tubes increasing in<br />

size (<strong>of</strong> <strong>the</strong> entire specimen, not <strong>the</strong> tube elements) by<br />

terminal growth <strong>of</strong> <strong>the</strong> constituent tubes; attached <strong>to</strong><br />

hard substrate at a small original base. Surface <strong>of</strong> <strong>the</strong><br />

mass consists <strong>of</strong> <strong>the</strong> terminal tube apertures as oscula,<br />

but both inner and outer surfaces <strong>of</strong> individual tube<br />

elements are smooth. Consistency is stiff and brittle<br />

due <strong>to</strong> fusion <strong>of</strong> <strong>the</strong> thin primary skele<strong>to</strong>n. Size <strong>of</strong> <strong>the</strong><br />

original specimen from which <strong>the</strong> fragments were collected<br />

was not recorded, but it must have been at least<br />

10 cm tall. Color in life is white; preserved fragments<br />

are light brown.<br />

Skeletal structure. The primary framework is a fused<br />

farreoid lattice <strong>of</strong> hexactins forming a network <strong>of</strong> rectangular<br />

meshes with longitudinal sides 269–720 µm<br />

long and lateral sides 534–778 µm long; it is continuous<br />

throughout <strong>the</strong> specimen. Loose megascleres include<br />

dermal and atrial pentactins, <strong>of</strong>ten with knobs as rudiments<br />

<strong>of</strong> <strong>the</strong> sixth distal rays (159–361 µm tangential<br />

ray length, 206–452 µm proximal ray length); pileate<br />

clavules without shaft thorns (333–490 µm length);<br />

moderate-size uncinates (1.02–2.98 mm length). Microscleres<br />

include oxyhexasters and hemioxyhexasters<br />

(62–117 µm in diameter); oxyhexactins (83–130 µm<br />

in diameter); discohexasters and hemidiscohexasters<br />

(48–76 µm in diameter); discohexactins (58–98 µm in<br />

diameter).<br />

Zoogeographic distribution. In Alaska – a rare species,<br />

known only from a few locations in sou<strong>the</strong>rn<br />

Amchitka Pass and near Bobr<strong>of</strong> Island in <strong>the</strong> central<br />

Aleutian Islands. Elsewhere – not reported.<br />

Habitat. In Alaska – attached <strong>to</strong> small boulders,<br />

cobbles, and pebbles at depths between 529 and 905 m.<br />

Remarks. Our Aleutian specimen was compared with<br />

<strong>the</strong> four o<strong>the</strong>r species <strong>of</strong> Farrea that lack anchorate<br />

clavules. It differs from each <strong>of</strong> <strong>the</strong>m in its microsclere<br />

complement. Its description as a new species <strong>of</strong> Farrea<br />

is now in progress.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen <strong>the</strong>n dried) fragments <strong>of</strong><br />

a specimen collected at 887 m in <strong>the</strong> central Aleutian<br />

Islands. 2) The same specimen as in pho<strong>to</strong> 1 (indicated<br />

by <strong>the</strong> white arrow) in situ. The separation between <strong>the</strong><br />

red laser marks is 10 cm.


7. Family Euretidae; Genus nov., sp. nov. Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. Tall, circular, rigid funnel is attached<br />

<strong>to</strong> hard substrate, with small hollow digitate processes<br />

projecting from all lateral surfaces. In life <strong>the</strong> lateral<br />

processes are closed distally by tissues and loose spicules,<br />

but <strong>the</strong> fused skeletal framework is open at <strong>the</strong> ends.<br />

The single large circular osculum at <strong>the</strong> distal end has a<br />

crenulate margin. All surfaces are smooth <strong>to</strong> <strong>the</strong> naked<br />

eye, but under low magnification <strong>the</strong>y are seen <strong>to</strong> be<br />

ornamented with fine hairs <strong>of</strong> projecting uncinate spicules.<br />

Consistency is hard and rigid. Height is <strong>to</strong> 29.2 cm<br />

and diameter <strong>to</strong> 13.7 cm; lateral processes 6–12 mm in<br />

diameter and up <strong>to</strong> 24 mm long are distributed ra<strong>the</strong>r<br />

evenly without pattern and commonly divide in<strong>to</strong> two<br />

or three short branches in larger specimens. Color in<br />

life is yellow-orange <strong>to</strong> light orange.<br />

Skeletal structure. The primary rigid skele<strong>to</strong>n <strong>of</strong><br />

fused hexactine spicules has elongate meshes with<br />

longitudinal strands and radial septa, similar <strong>to</strong> <strong>the</strong><br />

primary framework <strong>of</strong> Chonelasma. That framework<br />

curves smoothly out in<strong>to</strong> and continues through <strong>the</strong><br />

digitate processes. Slight indications <strong>of</strong> irregular dermal<br />

and atrial cortices are present, but <strong>the</strong>y are usually<br />

only one dictyonalium in thickness. There are several<br />

types <strong>of</strong> loose megascleres: pinular hexactins on inner<br />

and outer surfaces <strong>of</strong> wall and processes, with thorned<br />

pinulus (67–287 µm long); tangential rays spined at <strong>the</strong><br />

tips (88–196 µm long); proximal ray (79–954 µm long);<br />

simple hexactins and pentactins in subatrial position <strong>of</strong><br />

wall and processes (106–518 µm ray length); tauactins<br />

only in spicule pads at tips <strong>of</strong> processes (158–479 µm ray<br />

length); diactins in atrial surface <strong>of</strong> wall and processes<br />

(88–196 µm ray length); discoscopules on both surfaces<br />

<strong>of</strong> wall and processes (234–480 µm long); tyloscopules<br />

only echinating atrial surface <strong>of</strong> processes (619–952<br />

µm long); uncinates echinating both surfaces <strong>of</strong> wall<br />

and processes (656–2785 µm long). Microscleres are<br />

mainly discohexactins (76%; 52–98 µm in diameter),<br />

moderately common oxyhexactins (20%; 34–94 µm<br />

in diameter), and few hemidiscohexasters (4%; 46–<br />

100 µm in diameter).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

19<br />

Habitat. Occurs singly or in small patches on exposed<br />

bedrock, muds<strong>to</strong>ne, boulders, and cobbles at depths<br />

between 773 and 2084 m.<br />

Remarks. Juvenile Verrill’s Paralomis crabs (Paralomis<br />

verrilli) use <strong>the</strong> spongocoel as refuge habitat (S<strong>to</strong>ne,<br />

unpubl. data, 2004).<br />

Pho<strong>to</strong>s. 1) Whole specimen collected at a depth <strong>of</strong><br />

1256 m in <strong>the</strong> central Aleutian Islands. Grid marks are<br />

1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ.


20 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

8. Tre<strong>to</strong>dictyum sp. nov. Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. This sponge has a thin-walled flaring<br />

funnel or trumpet that attaches <strong>to</strong> hard substrate by<br />

a short narrow stalk ending in a small basal disc. The<br />

outer dermal surface is smooth with a thin transparent<br />

spicule lattice covering a system <strong>of</strong> radiating ridges (average<br />

1.1 mm wide) and grooves (average 0.8 mm wide)<br />

visible <strong>to</strong> <strong>the</strong> naked eye. The internal atrial surface, also<br />

smooth, is thoroughly and evenly pocked by openings<br />

<strong>of</strong> small exhalant canals (average 1.5 mm diameter).<br />

Under low magnification all surfaces appear furry due<br />

<strong>to</strong> projecting ends <strong>of</strong> uncinate and scopule spicules.<br />

Consistency is s<strong>to</strong>ny hard but crumbly and quite brittle.<br />

Only a single partial specimen was collected and measured<br />

25.4 cm tall by 20.6 cm wide at <strong>the</strong> margin; wall<br />

thickness was 5–6 mm. Color in life is white; specimens<br />

dried or preserved in ethanol are brownish orange.<br />

Skeletal structure. The main skele<strong>to</strong>n is a rigid framework<br />

<strong>of</strong> fused hexactins with grooves and septa typical <strong>of</strong><br />

<strong>the</strong> genus. Loose megascleres include rough pentactins<br />

<strong>to</strong> hexactins with short distal ray (19–164 µm long), tapered<br />

tangential rays (106–473 µm long), and proximal<br />

rays (94–896 µm long); small rough regular hexactins<br />

(84–177 µm long rays); scopules with rounded tine tips<br />

(294–965 µm <strong>to</strong>tal length); uncinates (437–1480 µm<br />

long). Microscleres are mostly oxyhexasters and hemioxyhexasters<br />

(93%) with 1–4 nearly smooth, robust terminal<br />

rays (53–73 µm diameter); stellate discohexasters<br />

(7%) with 4–10 finely rough terminal rays (50–75 µm<br />

diameter); a very few oxyhexactins (>1%) similar in size<br />

<strong>to</strong> oxyhexasters.<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Occurs singly on bedrock, muds<strong>to</strong>ne, boulders,<br />

and cobbles at depths between 704 and 1264 m.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen) specimen collected at<br />

a depth <strong>of</strong> 866 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ.<br />

The separation between <strong>the</strong> red laser marks is 10 cm.


9. Aphrocallistes vastus Schulze, 1886<br />

Description. Basic form is a hollow, thin-walled cone,<br />

but larger, older specimens add lateral mitten-like outgrowths<br />

becoming highly variable; overall it is similar <strong>to</strong><br />

Heterochone calyx with which it is <strong>of</strong>ten confused. Surface<br />

is smooth, usually with a single large terminal osculum.<br />

Consistency is rigid and brittle. Size is up <strong>to</strong> 2 m high<br />

and 3 m laterally. Color in life varies from white <strong>to</strong> light<br />

yellow and orange.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Rigid skele<strong>to</strong>n <strong>of</strong> fused hexactinal spicules<br />

has distinctive honeycomb pattern <strong>of</strong> 1 mm wide<br />

channels. Several types <strong>of</strong> loose megascleres include<br />

dermal pinular hexactins with pinulus (109–185 µm<br />

long), tangential rays (38–142 µm long), proximal ray<br />

(53–232 µm long); small hexactins (85–201 µm/ray);<br />

scopules on both surfaces (262–497 µm long); atrial<br />

spiny diactins (262–722 µm long); uncinates (890–3440<br />

µm long). Microscleres are oxyhexasters (126–252 µm<br />

in diameter) and two types <strong>of</strong> discohexasters (16–25 and<br />

30–56 µm in diameter).<br />

Zoogeographic distribution. North Pacific Ocean;<br />

locally common and abundant in some areas. Alaska –<br />

Bering Sea <strong>to</strong> Sou<strong>the</strong>ast Alaska. Elsewhere – Japan <strong>to</strong><br />

Baja Mexico.<br />

Habitat. Aleutian Islands – attached <strong>to</strong> cobbles and<br />

pebbles (low-relief habitat) and sometimes bedrock<br />

(high-relief habitat) at depths between about 100 and<br />

756 m. Bering Sea – attached <strong>to</strong> cobbles and pebbles at<br />

depths between 373 and 522 m. Gulf <strong>of</strong> Alaska – principally<br />

on bedrock, but also boulders and cobbles on <strong>the</strong><br />

continental shelf and upper slope at depths between<br />

140 and at least 228 m. Observed in <strong>the</strong> glacial fiords<br />

21<br />

<strong>of</strong> Sou<strong>the</strong>ast Alaska growing on bedrock at depths as<br />

shallow as 20 m. Elsewhere – Lamb and Hanby (2005)<br />

provide a worldwide depth range <strong>of</strong> 10 and 1600 m.<br />

Remarks. This is one <strong>of</strong> <strong>the</strong> most ecologically important<br />

<strong>sponges</strong> in Alaska and perhaps <strong>the</strong> most thoroughly<br />

studied sponge species in <strong>the</strong> North Pacific Ocean. Due<br />

<strong>to</strong> its rigid skele<strong>to</strong>n, this species is an important structural<br />

component <strong>of</strong> <strong>the</strong> sponge reefs reported along<br />

<strong>the</strong> Pacific Coast <strong>of</strong> Canada (Conway et al., 1991, 2005;<br />

Krautter et al., 2001) and more recently in sou<strong>the</strong>rn<br />

Sou<strong>the</strong>ast Alaska. Juvenile golden king crabs (Lithodes<br />

aequispina) use <strong>the</strong> spongocoel as refuge habitat in<br />

<strong>the</strong> Aleutian Islands (S<strong>to</strong>ne, 2006) and in <strong>the</strong> Bering<br />

Sea Canyons (S<strong>to</strong>ne, unpubl. data, 2007). The bigmouth<br />

sculpin (Hemitripterus bolini) deposits its eggs in<br />

<strong>the</strong> spongocoel in <strong>the</strong> Bering Sea and Gulf <strong>of</strong> Alaska<br />

(Busby 3 ). This species is preyed upon by <strong>the</strong> sea stars<br />

Hippasteria spp. and Poraniopsis inflata in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska. Aphrocallistes vastus can be distinguished<br />

from <strong>the</strong> very similar Heterochone calyx calyx by <strong>the</strong> lack<br />

<strong>of</strong> pinular hexactins on <strong>the</strong> inner (atrial) surface and by<br />

<strong>the</strong> possession <strong>of</strong> very robust oxyhexasters with primary<br />

rays subsumed in <strong>the</strong> swollen centrum.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 168 m<br />

in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Grid marks are 1 cm 2 . 2)<br />

Specimen with a juvenile golden king crab (Lithodes<br />

aequispina) in pre-molt condition at a depth <strong>of</strong> 190<br />

m in <strong>the</strong> central Aleutian Islands. 3) Specimen with a<br />

swarm <strong>of</strong> euphasiids at a depth <strong>of</strong> 170 m in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska. Pho<strong>to</strong> by J. Lincoln Freese (AFSC). 4)<br />

Specimen at a depth <strong>of</strong> 190 m in <strong>the</strong> central Aleutian<br />

Islands. 5) Specimen at a depth <strong>of</strong> 20 m with Eualas sp.<br />

shrimp in Glacier Bay National Park, Sou<strong>the</strong>ast Alaska.


22 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

9. Aphrocallistes vastus Schulze, 1886 (continued)


10. Heterochone calyx calyx Schulze, 1886<br />

Description. This sponge is polymorphic and similar<br />

<strong>to</strong> Aphrocallistes vastus, with which it is <strong>of</strong>ten confused.<br />

Sponge is cup or funnel shaped, and is up <strong>to</strong> at least 30<br />

cm in height and 40 cm in diameter. It forms bowls or<br />

plates in areas <strong>of</strong> low current. Lateral walls are <strong>of</strong>ten with<br />

hollow finger-shaped processes. Color is bright gold or<br />

pale yellow in <strong>the</strong> Aleutian Islands and Bering Sea. It<br />

displays two typical color morphs in <strong>the</strong> Gulf <strong>of</strong> Alaska<br />

– white and golden yellow.<br />

Skeletal structure. It has a rigid skele<strong>to</strong>n <strong>of</strong> fused<br />

hexactinal spicules with a poorly delineated honeycomb<br />

pattern <strong>of</strong> 1 mm wide channels passing vertically<br />

through <strong>the</strong> walls. Several types <strong>of</strong> loose megascleres<br />

include pinular hexactins on inner and outer surfaces,<br />

with thorned pinulus (48–150 µm long), tangential rays<br />

spined at <strong>the</strong> tips (100–302 µm long), and proximal ray<br />

(69–1265 µm long); scopules on both surfaces (242–630<br />

µm long); spined hexactins (80–204 µm/ray); uncinates<br />

(500–1540 × 14–54 µm); rough centrotylote diactins<br />

(308–786 µm/ray) are apparently absent in some specimens.<br />

Microscleres are discohexactins and discohexasters<br />

(44–100 µm in diameter) with 1–4 secondaries and<br />

terminal discs; oxyhexactins and oxyhexasters (53–100<br />

µm in diameter).<br />

Zoogeographic distribution. North Pacific Ocean; locally<br />

common and abundant in some areas. In Alaska –<br />

Bering Sea <strong>to</strong> Sou<strong>the</strong>ast Alaska. Elsewhere – Japan, Kuril<br />

Islands, Sea <strong>of</strong> Okhotsk, British Columbia <strong>to</strong> Panama.<br />

Habitat. Aleutian Islands – attached <strong>to</strong> bedrock,<br />

cobbles, and pebbles, usually in low-relief habitats, at<br />

depths between 112 <strong>to</strong> 740 m. Bering Sea – attached <strong>to</strong><br />

pebbles and hexactinellid skele<strong>to</strong>ns at depths between<br />

375 and 522 m. Gulf <strong>of</strong> Alaska – on <strong>the</strong> continental shelf<br />

23<br />

and upper slope at depths between 70 and at least 259<br />

m. Observed in <strong>the</strong> glacial fjords <strong>of</strong> Sou<strong>the</strong>ast Alaska<br />

growing on bedrock at depths as shallow as 21 m. Elsewhere<br />

– reported at depths between 23 and 1103 m.<br />

Remarks. This is one <strong>of</strong> <strong>the</strong> most ecologically important<br />

<strong>sponges</strong> in Alaska. Juvenile golden king crabs<br />

(Lithodes aequispina) use <strong>the</strong> spongocoel as refuge habitat<br />

in <strong>the</strong> Aleutian Islands (S<strong>to</strong>ne, 2006). Due <strong>to</strong> its rigid<br />

skele<strong>to</strong>n, this species is an important structural component<br />

<strong>of</strong> <strong>the</strong> sponge reefs reported along <strong>the</strong> Pacific<br />

coast <strong>of</strong> Canada (Conway et al., 1991, 2005; Krautter et<br />

al., 2001) and recently in sou<strong>the</strong>rn Sou<strong>the</strong>ast Alaska.<br />

We have not been able <strong>to</strong> confirm <strong>the</strong> presence <strong>of</strong> <strong>the</strong><br />

o<strong>the</strong>r subspecies (H. calyx schulzei) in Alaskan <strong>water</strong>s.<br />

This species may be preyed upon by <strong>the</strong> sea star Henricia<br />

longispina in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Heterochone calyx<br />

calyx can be distinguished from <strong>the</strong> very similar Aphrocallistes<br />

vastus by <strong>the</strong> presence <strong>of</strong> pinular hexactins on <strong>the</strong><br />

inner (atrial) surface and by <strong>the</strong> lack <strong>of</strong> robust oxyhexasters<br />

with primary rays subsumed in a swollen centrum.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 172<br />

m in <strong>the</strong> central Aleutian Islands. A small stalked demosponge<br />

grows from inside <strong>the</strong> specimen. Grid marks<br />

are 1 cm 2 . 2) Specimen collected at a depth <strong>of</strong> 520 m<br />

in Zhemchug Canyon, Bering Sea. Grid marks are 1<br />

cm 2 . 3) Specimen at a depth <strong>of</strong> 180 m with a juvenile<br />

rosethorn rockfish (Sebastes helvomaculatus) and juvenile<br />

brown box crab (Lopholithodes foraminatus) in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska. 4) Specimen at a depth <strong>of</strong> 181 m in<br />

<strong>the</strong> eastern Gulf <strong>of</strong> Alaska. 5) Specimen at a depth <strong>of</strong><br />

190 m with a sharpchin rockfish (Sebastes zacentrus) and<br />

squat lobsters (Munida quadrispina) in <strong>the</strong> eastern Gulf<br />

<strong>of</strong> Alaska. Pho<strong>to</strong> by J. Lincoln Freese (AFSC).


24 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

10. Heterochone calyx calyx Schulze, 1886 (continued)


11. Regadrella okinoseana Ijima, 1896<br />

Description. This tube or sac sponge attaches basally<br />

<strong>to</strong> hard substrate. Lateral walls bear distinctive smooth<br />

depressions, each with a small (1–3 mm diameter) central<br />

hole (parietal osculum) connecting <strong>to</strong> <strong>the</strong> atrial cavity;<br />

edges around depressions <strong>of</strong>ten project several millimeters<br />

as parietal ledges; <strong>the</strong> large terminal osculum<br />

is normally covered by a coarse sieve plate and bordered<br />

by a flaring marginal cuff. Consistency is slightly compressible<br />

and rubbery. The partially collected Alaskan<br />

specimen lacked an oscular sieve plate, marginal cuff,<br />

and parietal ledges. Its atrial cavity was subdivided by<br />

longitudinal wall fusions. It is estimated <strong>to</strong> have been 25<br />

cm long by 13 cm diameter, but elsewhere incomplete<br />

specimens 48 cm long have been reported. Color in life<br />

is white; drab when dried or preserved in ethanol.<br />

Skeletal structure. While <strong>the</strong> Aleutian specimen may<br />

have unusual morphology, its spiculation is typical for<br />

<strong>the</strong> species. Its skele<strong>to</strong>n consists mainly <strong>of</strong> loose spicules;<br />

spicule fusion is present only in <strong>the</strong> lower parts collected<br />

and is assumed <strong>to</strong> have been extensive in <strong>the</strong> basal part<br />

left on <strong>the</strong> attachment site. Megascleres include thick<br />

principal diactins with rounded tips (5–16 mm long);<br />

thin diactins with pointed tips (1.3–7.5 mm long);<br />

sword-shaped dermal hexactins with short, tapered,<br />

pointed distal rays (89–369 µm length), tapered and<br />

pointed tangential rays (156–318 µm length), and long<br />

tapered proximal rays (232–807 µm length); regular<br />

hexactins (134–292 µm ray length); atrial pentactins<br />

with sharp tapered tangential rays (122–295 µm ray<br />

length) and longer proximal rays (137–563 µm ray<br />

length); a few atrial triactins and stauractins <strong>of</strong> similar<br />

shape and size; short, thick atrial diactins (347–1047 µm<br />

length); small diactins around parietal oscula (42–197<br />

µm length). Microscleres include mainly oxystaurasters<br />

(61–107 µm diameter); a few oxyhexasters (70–129 µm<br />

diameter); dermal floricomes (78–113 µm diameter)<br />

with 10–14 terminal rays ending in heads with 2–3 teeth;<br />

remnants <strong>of</strong> graphiocomes are common, with central<br />

(25–43 µm diameter) and terminal rays as dispersed<br />

thin raphides (141–237 µm long).<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – central Aleutian Islands. Elsewhere<br />

– reported from Indo-West Pacific Region including<br />

from near India, Northwest and South Australia, New<br />

Zealand, New Caledonia, Indonesia, Japan.<br />

25<br />

Habitat. In Alaska – occurs singly on muds<strong>to</strong>ne, bedrock,<br />

and possibly hexactinellid skele<strong>to</strong>ns at depths between<br />

1071 and 1395 m. Elsewhere – reported at depths<br />

between 390 and 1264 m.<br />

Remarks. The new record <strong>of</strong> this species in <strong>the</strong> Aleutian<br />

Islands represents a range extension <strong>of</strong> over 3700<br />

km from <strong>the</strong> nearest previous known site near Japan.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> preserved (frozen) specimen<br />

collected at a depth <strong>of</strong> 1386 m in <strong>the</strong> central Aleutian<br />

Islands. Grid marks are 1 cm 2 . 2) Same specimen as in<br />

pho<strong>to</strong> 1 in situ. The separation between <strong>the</strong> red laser<br />

marks is 10 cm.


26 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

12. Acanthascus (Acanthascus) pr<strong>of</strong>undum ssp. nov. Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. This s<strong>of</strong>t barrel sponge, attached basally,<br />

has very large surface conules lacking prostal spicules.<br />

Occasionally two tubes are attached near <strong>the</strong> base. The<br />

outer surface is smooth, its large canals covered by a<br />

very delicate spicule lattice. The large atrial canals are<br />

uncovered and <strong>the</strong> atrial surface is reflected out <strong>of</strong> <strong>the</strong><br />

large terminal osculum; <strong>the</strong>re are no marginal spicules.<br />

Height and diameter is <strong>to</strong> 25 cm. Color in life is white<br />

<strong>to</strong> creamy white.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely <strong>of</strong><br />

loose spicules. Megascleres are thin diactins with rough<br />

tips (0.94–19.8 mm); dermal finely rough pentactins<br />

with cylindric rays ending in rounded tips (113–271<br />

µm ray length); similar but hexactine atrial spicules<br />

(125–239 µm ray length). Microscleres are discoctasters<br />

(119–234 µm diameter), each primary ray bearing 5–10<br />

slightly curved terminals; oxyhexactins, hemioxyhexasters,<br />

and oxyhexasters (98–199 µm diameter). Microdiscohexasters<br />

are absent.<br />

Zoogeographic distribution. In Alaska – central Aleutian<br />

Islands. Known with certainty only from <strong>the</strong> single<br />

specimen collected southwest <strong>of</strong> Adak Island, but analysis<br />

<strong>of</strong> video records indicate that it is a relatively rare<br />

species in this area. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> bedrock, muds<strong>to</strong>ne, and large<br />

boulders at depths between 1446 and 2245 m.<br />

Remarks. This specimen is in <strong>the</strong> process <strong>of</strong> being<br />

described so data are incomplete; it differs from all<br />

named species <strong>of</strong> <strong>the</strong> genus in several characters, and<br />

from A. platei in particular, in lack <strong>of</strong> both prostalia and<br />

microdiscohexasters, and lack <strong>of</strong> loose spicule lattice<br />

over atrial canal apertures.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> preserved (frozen) specimen<br />

collected at a depth <strong>of</strong> 2105 m in <strong>the</strong> central Aleutian<br />

Islands. Grid marks are 1 cm 2 . 2) Same specimen as in<br />

pho<strong>to</strong> 1 in situ growing just behind Farrea kurilenis ssp.<br />

nov.


13. Acanthascus (Rhabdocalyptus) dawsoni dawsoni (Lambe, 1893)<br />

Description. S<strong>of</strong>t straight or curved tube or barrellike<br />

sac, occasionally partially divided in<strong>to</strong> two or three<br />

conjoined tubes, is attached basally <strong>to</strong> hard substrate.<br />

Surface is smooth but usually bearing a 1-cm tall veil <strong>of</strong><br />

pentactins and diactins which may be clean but usually<br />

covered with small epizoans and sediment; large single<br />

terminal osculum has marginal fringe. Consistency is<br />

s<strong>of</strong>t and compressible. Height is <strong>to</strong> 1 m and diameter <strong>to</strong><br />

30 cm. Color in life is white but <strong>of</strong>ten coated with sediment,<br />

epizoic organisms, and flocculent material, giving<br />

it a brown <strong>to</strong> greenish brown appearance.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely <strong>of</strong><br />

loose spicules. Megascleres are thick prostal diactins <strong>to</strong><br />

6 cm long; hypodermal pentactins with some smooth<br />

and some thorned tangential rays (0.9–4.1 mm long)<br />

and smooth proximal rays (0.9–4.1 mm long); principal<br />

diactins (4.2–11.4 mm long); thin short diactins<br />

(0.35–1.62 mm long); dermal stauractins (50–101 mm<br />

ray length), dermal pentactins with tangential rays<br />

(54–99 mm long) and proximal rays (44–100 mm long);<br />

atrial hexactins (55–177 mm ray length). Microscleres<br />

are oxyhemihexasters (48–104 mm in diameter); small<br />

discoctasters with straight terminals (56–82 mm in diameter);<br />

microdiscohexasters (17–28 mm in diameter).<br />

Zoogeographic distribution. Locally common and<br />

abundant. In Alaska – eastern Gulf <strong>of</strong> Alaska. Elsewhere<br />

– British Columbia <strong>to</strong> sou<strong>the</strong>rn California.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, cobbles, and<br />

pebbles at depths between 82 and 255 m. Elsewhere<br />

– attached <strong>to</strong> bedrock, cobbles, and pebbles on flat,<br />

inclined, or vertical surfaces (e.g., fjord walls), and following<br />

detachment may survive loose as roller <strong>sponges</strong><br />

(Reiswig, unpubl. data, 2010) at depths between 10 and<br />

437 m.<br />

Remarks. The species presently contains three subspecies:<br />

A. (R.) d. dawsoni (reviewed here); A. (R.) d. alascensis<br />

Wilson and Penney, 1930 (known only from Cape<br />

Spencer, Gulf <strong>of</strong> Alaska); and A. (R.) d. horridus Koltun,<br />

1967 (from <strong>the</strong> Bering Sea). A. (R.) d. dawsoni can be<br />

distinguished from A. solidus by <strong>the</strong> presence <strong>of</strong> at least<br />

some heavily thorned hypodermal pentactins; <strong>the</strong> latter<br />

species possesses only smooth hypodermal pentactins.<br />

27<br />

A. (R.) d. dawsoni is similar in appearance <strong>to</strong> A. mirabilis<br />

but likely differs in depth distribution and can be<br />

distinguished by its much smaller discoctasters (56–82<br />

vs. 144–180 µm diameter). We have observed a very<br />

similar species in <strong>the</strong> central Aleutian Islands at depths<br />

between about 400 and 1238 m attached <strong>to</strong> cobbles and<br />

hexactinellid skele<strong>to</strong>ns. This species is preyed upon by<br />

<strong>the</strong> sea star Poraniopsis inflata and possibly by <strong>the</strong> sea star<br />

Henricia longispina in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska.<br />

Pho<strong>to</strong>s. 1) Whole specimen collected at a depth <strong>of</strong><br />

168 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Grid marks are 1<br />

cm 2 . 2) Specimen (indicated by <strong>the</strong> white arrow) at a<br />

depth <strong>of</strong> 165 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska.


28 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

14. Acanthascus (Rhabdocalyptus) mirabilis (Schulze, 1899)<br />

Description. This species was known previously only<br />

from <strong>the</strong> holotype, which was <strong>the</strong> distal portion (about<br />

1/3 <strong>of</strong> <strong>to</strong>tal specimen) <strong>of</strong> a s<strong>of</strong>t saccate sponge. Surface<br />

is overtly smooth but evenly covered with small<br />

conic protuberances and bears a veil <strong>of</strong> pentactins and<br />

diactins; large single terminal osculum with marginal<br />

fringe. Consistency is s<strong>of</strong>t and compressible. From <strong>the</strong><br />

holotype fragment, <strong>the</strong> original specimen was thought<br />

<strong>to</strong> be ca. 30 cm in length and 15 cm in diameter with a<br />

1-cm thick wall; a new Aleutian specimen is 15.5 cm in<br />

length and 10.1 cm in diameter. Color in life is white;<br />

light brown when preserved in ethanol.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely <strong>of</strong><br />

loose spicules. Megascleres are thick prostal diactins <strong>to</strong><br />

2 cm long; hypodermal pentactins with mostly thorned<br />

paratropal tangential rays <strong>to</strong> 1 cm long; principal diactins<br />

(11.7–21.0 mm long); dermal diactins (plus a few<br />

stauractins and hexactins) (204–462 mm long); atrial<br />

hexactins (free ray 249–447 µm long, tangentials and<br />

parenchymal rays 153–316 mm long). Microscleres are<br />

oxyhexactins and a few oxyhexasters and hemioxyhexasters<br />

(72–232 mm in diameter with 33–87 mm long<br />

terminal rays); discoctasters (144–180 mm in diameter)<br />

with very short primary rays (20–28 mm long),<br />

each bearing 8–12 straight or s-curved, divergent terminal<br />

rays; microdiscohexasters mainly near or in <strong>the</strong><br />

dermal surface (21–40 mm in diameter).<br />

Zoogeographic distribution. Rare. Known only from<br />

Alaska – central Aleutian Islands and Gulf <strong>of</strong> Alaska.<br />

Elsewhere – not reported.<br />

Habitat. Central Aleutian Islands – occurs singly on<br />

bedrock at depths between 1984 and 2790 m. Sou<strong>the</strong>rn<br />

Alaska – attached <strong>to</strong> cobbles at depths near 1143 m.<br />

Remarks. Our specimen recently collected in <strong>the</strong><br />

Aleutian Islands is only <strong>the</strong> second known verified<br />

specimen <strong>of</strong> this species. It is very likely that A. (R.)<br />

unguiculatus Ijima, 1904 is a junior synonym <strong>of</strong> A. (R.)<br />

mirabilis. This species is similar in appearance <strong>to</strong> A.<br />

dawsoni but likely differs in depth distribution and<br />

can be distinguished by its much larger discoctasters<br />

(144–180 vs 56–82 µm diameter).<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> preserved (frozen) specimen<br />

collected at a depth <strong>of</strong> 2311 m in <strong>the</strong> central Aleutian<br />

Islands. Grid marks are 1 cm 2 . 2) Same specimen as in<br />

pho<strong>to</strong> 1 in situ. The separation between <strong>the</strong> red laser<br />

marks is 10 cm.


15. Acanthascus (Staurocalyptus) solidus (Schulze, 1899)<br />

Description. This compressible but very spiny sac<br />

or vasiform sponge attaches basally <strong>to</strong> hard substrate.<br />

External surface is covered by a dense veil <strong>of</strong> projecting<br />

pentactins in amongst <strong>the</strong> long prostal diactin needles,<br />

with a single large terminal osculum bordered by a<br />

marginal fringe <strong>of</strong> diactins. Consistency is s<strong>of</strong>t but spiky.<br />

Height is <strong>to</strong> 24 cm, diameter <strong>to</strong> 15 cm, and 23 mm in<br />

wall thickness. It may be found in clusters <strong>of</strong> up <strong>to</strong> nine<br />

individuals. Color in life is white but sometimes coated<br />

with sediment, epizoic organisms, and flocculent material,<br />

giving it a brown <strong>to</strong> greenish brown appearance;<br />

drab when preserved.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely <strong>of</strong><br />

loose spicules. Megascleres are thick prostal diactins <strong>to</strong><br />

4 cm long; hypodermal pentactins all have smooth or<br />

shagreened (never thorned) tangential rays (1.8–6.6<br />

mm long) and smooth proximal rays (5.5–9.6 mm<br />

long); principal diactins (2.0–8.4 mm long); dermal<br />

stauractins (75–180 mm ray length), dermal pentactins<br />

with tangential rays (88–193 mm long) and proximal<br />

rays (88–163 mm long); atrial hexactins (89–134 mm<br />

ray length). Microscleres are oxyhexasters and oxyhemihexasters<br />

(113–179 mm in diameter); discoctasters with<br />

straight terminals (134–225 mm in diameter); microdiscohexasters<br />

(16–22 mm in diameter).<br />

Zoogeographic distribution. North Pacific Ocean.<br />

Locally abundant. In Alaska – eastern Gulf <strong>of</strong> Alaska.<br />

Elsewhere – British Columbia <strong>to</strong> sou<strong>the</strong>rn California<br />

(Santa Maria Basin).<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, cobbles, and<br />

pebbles at depths between 82 and 255 m. Elsewhere –<br />

reported at depths between 91 and 1373 m.<br />

Remarks. Acanthascus solidus can be distinguished<br />

from <strong>the</strong> sometimes similar A. (R.) dawsoni dawsoni by<br />

its complete lack <strong>of</strong> thorned hypodermal pentactins<br />

that are always present and heavily thorned in <strong>the</strong> latter<br />

species. In <strong>the</strong> central Aleutian Islands a very similar<br />

species (possibly Acanthascus solidus but not confirmed)<br />

occurs at depths between 399 and 463 m. This species is<br />

preyed upon by <strong>the</strong> sea stars Hippasteria spp., Poraniopsis<br />

inflata, and possibly Henricia longispina in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska.<br />

Pho<strong>to</strong>s. 1) Mostly intact specimen collected at a depth<br />

<strong>of</strong> 167 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Grid marks are<br />

1 cm 2 . 2) Specimen (indicated by <strong>the</strong> white arrow) at a<br />

depth <strong>of</strong> 165 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska.<br />

29


30 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

16. Acanthascus (Staurocalyptus) sp. nov. 1 Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. This species grows from a narrow attached<br />

base <strong>to</strong> ei<strong>the</strong>r a thick massive or thick funnelshaped<br />

form. External surface has small rounded<br />

protuberances from each <strong>of</strong> which project several short<br />

diactin prostalia; <strong>the</strong>re is a single large terminal osculum.<br />

Consistency is s<strong>of</strong>t and easily <strong>to</strong>rn. Height is up <strong>to</strong><br />

24 cm and diameter <strong>to</strong> 17 cm. Color in life is brown <strong>to</strong><br />

golden brown.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely <strong>of</strong><br />

loose spicules. Megascleres are thick prostal diactins<br />

(4.3–10.1 mm long), a few rough, but not thorned,<br />

hypodermal pentactins (0.21–1.09 mm tangential ray<br />

length); principal diactins (1.11–6.84 mm long); dermal<br />

hexactins with some pentactins and stauractins<br />

(40–139 mm ray length); atrial hexactins (43–218 mm<br />

ray length). Microscleres are oxyhexactins and a few<br />

hemioxyhexasters (86–175 mm in diameter); very small<br />

discoctasters with terminals strongly curved outward<br />

(56–87 mm in diameter); microdiscohexasters are<br />

absent.<br />

Zoogeographic distribution. Locally abundant.<br />

In Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Attached <strong>to</strong> cobbles and pebbles at depths<br />

between 139 and 183 m.<br />

Remarks. This species is distinguished from all o<strong>the</strong>r<br />

species <strong>of</strong> Acanthascus (Staurcalyptus) by <strong>the</strong> small size<br />

and shape <strong>of</strong> its discoctasters. A complete description<br />

is in preparation.<br />

Pho<strong>to</strong>s. 1) Partially fragmented specimen collected<br />

with a trawl at a depth <strong>of</strong> 155 m in <strong>the</strong> central Aleutian<br />

Islands. Grid marks are 1 cm 2 . 2) Specimen at a depth<br />

<strong>of</strong> 165 m in <strong>the</strong> central Aleutian Islands.


17. Acanthascus (Staurocalyptus) sp. nov. 2 Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. S<strong>of</strong>t tube or sac sponge attaches basally<br />

<strong>to</strong> hard substrate. Lateral surface has low conules 15<br />

mm apart and 3–5 mm high from which small groups<br />

<strong>of</strong> thin, short, prostal diactin spicules project; <strong>the</strong>re is<br />

no veil <strong>of</strong> pentactins. The single terminal osculum is<br />

sharp-edged and without a marginal fringe. Both external<br />

and internal surfaces (and thus canal openings) are<br />

covered by tight spicule lattices. Consistency is s<strong>of</strong>t and<br />

pliable; internal aspect is wooly. The type specimen is 30<br />

cm tall by 20 cm diameter (at <strong>the</strong> widest point). Color<br />

in life is white.<br />

Skeletal structure. It is composed entirely <strong>of</strong> loose<br />

spicules excepting a small fused basal attachment<br />

structure. Megascleres are prostal diactins 9.3–16.2<br />

mm long; principal diactins 1.8–10.4 mm long; dermal<br />

pentactins with spiny tangential rays (72–201 µm<br />

long) and proximal rays (65–172 µm long); atrial spiny<br />

hexactins (65–172 µm ray length). Microscleres include<br />

two classes <strong>of</strong> discoctasters (124–382 and 112–167 µm<br />

diameter); s<strong>to</strong>ut oxyhexactins (94–139 µm diameter);<br />

oxy- and hemioxyhexasters (88–133 µm diameter); microdiscohexasters<br />

(13–22 µm diameter).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – known only from <strong>the</strong> central Aleutian Islands.<br />

Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> cobbles in low-relief habitat at a<br />

depth <strong>of</strong> 711 m. Video records suggest it is also locally<br />

common on bedrock, muds<strong>to</strong>ne, and cobbles in moderate-relief<br />

habitat at depths between 190 and 1556 m.<br />

Pho<strong>to</strong>s. 1) Whole specimen collected at a depth <strong>of</strong><br />

711 m in <strong>the</strong> central Aleutian Islands. Grid marks are 1<br />

cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 showing <strong>the</strong> detail<br />

<strong>of</strong> <strong>the</strong> osculum. 3) Same specimen as in pho<strong>to</strong>s 1 and<br />

2 in situ. The separation between <strong>the</strong> red laser marks<br />

is 10 cm.<br />

31


32 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

18. Aulosaccus pinularis Okada, 1932<br />

Description. Vase-shaped sponge attaches basally <strong>to</strong><br />

solid substrate, thickest near its upper end. External surface<br />

is smooth and completely lacking large projecting<br />

spicules; both external and internal surfaces are lined by<br />

a lattice <strong>of</strong> loose spicules; <strong>the</strong>re is a single large terminal<br />

osculum without a marginal spicule fringe. Consistency<br />

is very s<strong>of</strong>t and easily <strong>to</strong>rn. Height is <strong>to</strong> 24 cm, diameter<br />

<strong>to</strong> 15 cm, and 23 mm in wall thickness. Color in life is<br />

white; drab when preserved.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely <strong>of</strong><br />

loose spicules. Megascleres are thick diactins (4.4–5.6<br />

mm long); thin diactins (1.3–5.5 mm long); pinular dermal<br />

hexactins with projecting pinular ray (109–175 mm<br />

long), tangential rays (103–150 mm long) and proximal<br />

ray (86–140 mm long); pinular atrial hexactins with projecting<br />

pinular ray (93–300 mm long), tangential rays<br />

(109–214 mm long), and proximal rays (83–192 mm<br />

long). Microscleres include very large discasters, <strong>of</strong>ten<br />

called ”solasters” (193–438 mm in diameter) with fused<br />

primary rays recognizable as six hemispherical bosses;<br />

oxyhexasters and hemioxyhexasters (99–140 mm in diameter);<br />

oxyhexactins (83–166 mm in diameter); small<br />

spherical discohexasters (26–36 mm in diameter).<br />

Zoogeographic distribution. Rare. In Alaska – central<br />

Aleutian Islands. Elsewhere – western Bering Sea,<br />

Kuril Islands and <strong>of</strong>f <strong>the</strong> sou<strong>the</strong>rn tip <strong>of</strong> <strong>the</strong> Kamchatka<br />

Peninsula.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, muds<strong>to</strong>ne,<br />

or boulders at depths between 843 and 1715 m. Elsewhere<br />

– reported at a depth <strong>of</strong> 117 m but most collections<br />

do not report depth.<br />

Pho<strong>to</strong>s. 1) Mostly intact specimen collected at a depth<br />

<strong>of</strong> 843 m in <strong>the</strong> central Aleutian Islands. Grid marks<br />

are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ. Note<br />

that <strong>the</strong> specimen has been <strong>to</strong>rn on <strong>the</strong> left side (prior<br />

<strong>to</strong> collection) and <strong>the</strong> osculum is directed <strong>to</strong> <strong>the</strong> right.


19. Aulosaccus schulzei Ijima, 1896<br />

Description. Vase-shaped sponge attaches basally <strong>to</strong><br />

solid substrate, thickest near its upper end. External<br />

surface is smooth, completely lacking large projecting<br />

spicules, and lined by a lattice <strong>of</strong> loose spicules. The<br />

internal atrial surface has a network <strong>of</strong> diactin bundles<br />

crossing <strong>the</strong> exhalant apertures, but a lattice <strong>of</strong> atrialia<br />

is absent. There is a single large terminal osculum lacking<br />

a marginal spicule fringe. Consistency is very s<strong>of</strong>t<br />

and easily <strong>to</strong>rn. Height is up <strong>to</strong> 45 cm, diameter <strong>to</strong> 22.5<br />

cm, and 34 mm in wall thickness. Color in life is creamy<br />

white; drab when preserved.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely <strong>of</strong><br />

loose spicules. Megascleres are hypodermal pentactins<br />

and a few triactins and tetractins (0.6–3.4 mm long<br />

tangential rays; 0.9–4.4 mm long proximal rays); thick<br />

diactins (3.3–17.7 mm long); thin diactins (1.4–6.7 mm<br />

long); short atrial diactins (0.4–1.5 mm long); dermalia<br />

are a mixture <strong>of</strong> stauractins, pentactins, and hexactins<br />

(89–181 mm ray length); atrialia are mainly very large<br />

hexactins with some pentactins (224–1186 mm ray<br />

length). Microscleres include very large discasters, <strong>of</strong>ten<br />

called “solasters” (513–1389 mm in diameter), with<br />

primary rays fused in<strong>to</strong> a slightly irregular sphere; very<br />

thin oxyhexactins, with irregular variants, and hemioxyhexasters<br />

(87–165 mm in diameter); small spherical<br />

discohexasters (20–39 mm in diameter).<br />

Zoogeographic distribution. Apparently a rare species.<br />

In Alaska – central Aleutian Islands and Bering<br />

Sea (Pribil<strong>of</strong> Canyon). Elsewhere – Japan, Kuril Islands,<br />

Okhotsk Sea, and <strong>of</strong>f sou<strong>the</strong>rn California.<br />

Habitat. In Alaska – in <strong>the</strong> central Aleutian Islands<br />

it occurs on bedrock, boulders, and cobbles at depths<br />

between 1270 and 1350 m. In Pribil<strong>of</strong> Canyon it occurs<br />

at a depth <strong>of</strong> 300 m. Elsewhere – reported at depths<br />

between 117 and 419 m.<br />

Remarks. Associated fauna include juvenile lithodid<br />

crabs (Paralomis verrilli and Lithodes couesi), panda-<br />

lid shrimps, and <strong>the</strong> large ophiuroid Gorgonocephalus<br />

eucnemis.<br />

Pho<strong>to</strong>s. 1) Whole specimen collected at a depth <strong>of</strong><br />

300 m in Pribil<strong>of</strong> Canyon, Bering Sea. Grid marks are 1<br />

cm 2 . 2) Specimen collected at a depth <strong>of</strong> 1320 m in <strong>the</strong><br />

central Aleutian Islands. 3) Same specimen as in pho<strong>to</strong><br />

2 in situ. Two pairs <strong>of</strong> red lasers each separated by 10 cm.<br />

33


34 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

20. Bathydorus sp., description by Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. Very small flattened ovoid sponge attaches<br />

<strong>to</strong> a cobble. External surface is smooth and covered<br />

by a lattice <strong>of</strong> mainly stauractin dermalia; about one-half<br />

<strong>of</strong> <strong>the</strong> surface is pr<strong>of</strong>usely spined by long diactins and<br />

sports a veil <strong>of</strong> raised pentactins. An osculum and atrial<br />

cavity could not be distinguished. Consistency is s<strong>of</strong>t and<br />

delicate. The specimen is 11 by 8 by 2 mm. It is transparent<br />

and colorless.<br />

Skeletal structure. Skele<strong>to</strong>n is composed entirely<br />

<strong>of</strong> loose spicules, but parts <strong>of</strong> <strong>the</strong> fused basidictyonal<br />

skele<strong>to</strong>n remain attached. Megascleres are hypodermal<br />

pentactins (0.26–1.4 mm long tangential rays; 0.47–1.55<br />

mm long proximal rays); thick prostal diactins (3.2–16.8<br />

mm long); thin diactins (0.96–6.82 mm long); dermal<br />

stauractins and diactins (81–381 mm ray length). Microscleres<br />

consist only <strong>of</strong> hemioxyhexasters (112–181<br />

mm in diameter) and oxyhexactins (124–204 mm in<br />

diameter).<br />

Zoogeographic distribution. Rare. In Alaska – central<br />

Aleutian Islands. Elsewhere – small incompletely<br />

identifiable Bathydorus spp. have been reported worldwide.<br />

Habitat. In Alaska – occurs on cobble but probably<br />

also on boulders and bedrock; collected from 494 m but<br />

may have a broad depth range. Elsewhere – small Bathydorus<br />

spp. are reported from depths <strong>of</strong> 446 <strong>to</strong> 1625 m.<br />

Pho<strong>to</strong>. 1) Whole specimen collected at a depth <strong>of</strong> 494<br />

m in <strong>the</strong> central Aleutian Islands.


21. Caulophacus (Caulophacus) sp. nov. Reiswig and S<strong>to</strong>ne, in preparation<br />

Description. A very large mushroom-shaped body<br />

on a long cylindrical stalk attaches basally <strong>to</strong> hard substrate.<br />

The inhalant surface occupies <strong>the</strong> upper stalk<br />

and underside <strong>of</strong> <strong>the</strong> body; <strong>the</strong> exhalant surface on <strong>the</strong><br />

upper body is reflected around <strong>the</strong> edges <strong>to</strong> <strong>the</strong> sharp<br />

margin on <strong>the</strong> under edges <strong>of</strong> <strong>the</strong> body; <strong>the</strong>re is no distinct<br />

osculum. All surfaces are macroscopically smooth<br />

with large canals covered by lattices <strong>of</strong> loose spicules.<br />

Consistency <strong>of</strong> <strong>the</strong> body is compressible but firm; <strong>the</strong><br />

stalk is s<strong>to</strong>ny hard due <strong>to</strong> fusion <strong>of</strong> <strong>the</strong> internal spicules<br />

and is hollow, with two main internal longitudinal<br />

canals. The specimen, measured dry, is 75 cm in <strong>to</strong>tal<br />

height, <strong>the</strong> body is 31 by 40 cm transversely, and <strong>the</strong><br />

stalk is 68 cm long and 2.1 cm in diameter (narrowest<br />

point, 1.8 cm). Color in life is white <strong>to</strong> creamy white;<br />

drab when preserved.<br />

Skeletal structure. Spicules in <strong>the</strong> main body remain<br />

loose, but <strong>the</strong> principal diactins in <strong>the</strong> stalk are fused<br />

<strong>to</strong> form a hard, rigid, and long-lasting structure. Megascleres<br />

include pinular hexactine dermalia (132–337<br />

µm pinular ray length, 90–163 µm tangential ray length,<br />

102–158 µm proximal ray length); supported by hypodermal<br />

pentactins (315–862 µm tangential ray length,<br />

312–1054 µm proximal ray length); atrialia are slightly<br />

thinner pinular hexactins (131–379 µm pinular ray<br />

length, 80–167 µm tangential ray length, 88–142 µm<br />

proximal ray length); supported by hypoatrial pentactins<br />

similar <strong>to</strong> those <strong>of</strong> <strong>the</strong> dermal side; choanosomal<br />

diactins are mainly in loose bundles (1.65–4.06 mm<br />

long); large choanosomal oxyhexactins are common<br />

(678–1579 µm ray length). Microscleres are all coarsely<br />

spined, including hemidiscohexasters and discohexasters<br />

(82–177 µm diameter) and discohexactins (90–185<br />

µm diameter).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Occurs singly on bedrock and large boulders<br />

at depths between 1326 and 2680 m.<br />

Remarks. The Aleutian Caulophacus (Caulophacus)<br />

specimen has been compared <strong>to</strong> <strong>the</strong> 18 known species<br />

<strong>of</strong> <strong>the</strong> subgenus and found <strong>to</strong> be unassignable <strong>to</strong> any <strong>of</strong><br />

<strong>the</strong>m. Its description as a new species is in progress. It<br />

is used as a perch by several species <strong>of</strong> lithodid crabs,<br />

including Paralomis verrilli.<br />

Pho<strong>to</strong>s. 1) Whole specimen collected at a depth <strong>of</strong><br />

1806 m in <strong>the</strong> central Aleutian Islands. 2) Same specimen<br />

as in pho<strong>to</strong> 1. 3) Same specimen as in pho<strong>to</strong>s 1<br />

and 2 in situ with Paralomis verrilli crabs. The separation<br />

between <strong>the</strong> red laser marks is 10 cm.<br />

35


37<br />

CLASS DEMOSPONGIAE


38 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

22. Plakina atka Lehnert, S<strong>to</strong>ne and Heimler, 2005<br />

Description. Sponge is encrusting. Surface is convoluted<br />

but less distinctively so than Plakina tanaga. Single<br />

strands have a smooth surface, not microtuberculate.<br />

This sponge may cover large areas (up <strong>to</strong> 30 cm 2 ) with<br />

a thickness <strong>of</strong> approximately 0.3 <strong>to</strong> 0.8 cm. The ec<strong>to</strong>some<br />

is reddish brown (Aleutian Islands), beige, or light<br />

brown (eastern Gulf <strong>of</strong> Alaska).<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Ec<strong>to</strong>somal dense spicule crust averages<br />

100 µm in thickness. Choanosome is somewhat<br />

less densely packed with spicules, roughly arranged in<br />

tracts <strong>of</strong> varying orientation and with many spicules in<br />

between. Characteristic plakinid oxeas are slightly bent<br />

and thickest in <strong>the</strong> center (70–108 × 3–6 µm). A thicker<br />

category <strong>of</strong> diods, always with relatively long spines at<br />

<strong>the</strong> center, is probably derived from <strong>the</strong> spined category<br />

<strong>of</strong> triods (82–95 × 8–10 µm). Triods also occur in two<br />

distinct types: relatively rare simple triaxons (28–33 µm/<br />

ray) and much more abundant, robust triaxons with a<br />

row <strong>of</strong> large spines on each ray close <strong>to</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong><br />

spicule (23–40 × 3–6 µm/ray). Calthrops are rare and<br />

have a reduced fourth ray only. Tetralophose calthrops<br />

have tetrafurcate, occasionally pentafurcate rays, with<br />

micr<strong>of</strong>urcate ends (18–23 µm in <strong>to</strong>tal length).<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – central Aleutian Islands, eastern Gulf <strong>of</strong> Alaska<br />

(continental shelf <strong>of</strong>f Cape Ommaney, Baran<strong>of</strong> Island),<br />

and sou<strong>the</strong>rn Sou<strong>the</strong>ast Alaska (Portland Canal). Elsewhere<br />

– nor<strong>the</strong>rn British Columbia (Portland Canal).<br />

Habitat. Encrusts bedrock, boulders, cobbles, pebbles,<br />

and hexactinellid skele<strong>to</strong>ns at depths between 82–180 m<br />

(Aleutian Islands) and 95–253 m in <strong>the</strong> eastern Gulf <strong>of</strong><br />

Alaska. May cover relatively large areas (up <strong>to</strong> 30 cm 2 ).<br />

Remarks. Plakina atka can be distinguished from<br />

<strong>the</strong> similar P. tanaga by its relatively smooth surface<br />

compared <strong>to</strong> <strong>the</strong> strongly convoluted and microtuberculated<br />

surface <strong>of</strong> <strong>the</strong> latter species, and by <strong>the</strong> presence<br />

<strong>of</strong> tetralophate lophocalthrops compared <strong>to</strong> <strong>the</strong><br />

trilophose lophocalthrops <strong>of</strong> P. tanaga.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 118 m in<br />

<strong>the</strong> central Alautian Islands. Grid marks are 1 cm 2 . 2)<br />

Specimen collected at a depth <strong>of</strong> 167 m in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska. 3) Specimen at a depth <strong>of</strong> 118 m in <strong>the</strong><br />

central Aleutian Islands.


23. Plakina tanaga Lehnert, S<strong>to</strong>ne and Heimler, 2005<br />

Description. Sponge is encrusting. Convoluted surface<br />

has <strong>deep</strong> grooves between strands with a microtuberculated<br />

surface. Consistency is cheese-like. Circular<br />

oscula flush with <strong>the</strong> surface are visible in situ. This<br />

sponge may cover large areas (up <strong>to</strong> 1 m 2 ) with a thickness<br />

<strong>of</strong> approximately 1 <strong>to</strong> 1.5 cm. Color in life is beige<br />

<strong>to</strong> light brown.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some is packed with lophocalthrops<br />

with a layer 20–250 µm thick. Spicules are<br />

characteristically bent diods, <strong>of</strong>ten centrotylote or with<br />

a reduced third ray in <strong>the</strong> form <strong>of</strong> a spine (85–97 ×<br />

2–4 µm); two categories <strong>of</strong> triaxons, smooth, thinner<br />

triods (24–50 × 2–5 µm/ray) and thicker triods, <strong>of</strong>ten<br />

with one short, slender spine near <strong>the</strong> base <strong>of</strong> each ray<br />

(22–38 × 7–9 µm). Rare smooth calthrops have rays <strong>of</strong><br />

<strong>the</strong> same dimensions as those <strong>of</strong> <strong>the</strong> triods. There are<br />

abundant trilophose calthrops with each ray tetrafurcate<br />

and, again micr<strong>of</strong>urcate at <strong>the</strong> points, somewhat smaller<br />

than <strong>the</strong> triods and concentrated in <strong>the</strong> ec<strong>to</strong>some. Total<br />

length <strong>of</strong> lophocalthrops is 28–42 µm. Non-lophose rays<br />

are sometimes bifurcate.<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

known only from <strong>the</strong> type locality in Little Tanaga Strait,<br />

central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Encrusts vertical and overhanging surfaces <strong>of</strong><br />

bedrock and boulders at depths between 140 and 383 m.<br />

May cover relatively large areas (up <strong>to</strong> 1 m 2 ).<br />

39<br />

Remarks. Plakina tanaga can be distinguished from<br />

<strong>the</strong> similar P. atka by its strongly convoluted and microtuberculated<br />

surface compared <strong>to</strong> <strong>the</strong> relatively smooth<br />

surface <strong>of</strong> <strong>the</strong> latter species, and by <strong>the</strong> presence <strong>of</strong> trilophose<br />

lophocalthrops compared <strong>to</strong> <strong>the</strong> tetralophate<br />

lophocalthrops <strong>of</strong> P. atka.<br />

Pho<strong>to</strong>. 1) P. tanaga encrusting a bedrock scarp at a<br />

depth <strong>of</strong> 146 m in <strong>the</strong> central Aleutian Islands.


40 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

24. Craniella arb (de Laubenfels, 1930)<br />

Description. Sponge is globular <strong>to</strong> subglobular. Oscula<br />

are occasionally present but not obvious. Spicules<br />

radiate from <strong>the</strong> center <strong>to</strong> <strong>the</strong> surface and protrude<br />

above it. Consistency is hard, cartilaginous, and only<br />

slightly elastic due <strong>to</strong> <strong>the</strong> high spicule density. With a<br />

diameter <strong>of</strong> 8 <strong>to</strong> 10 cm, this is one <strong>of</strong> <strong>the</strong> largest species<br />

<strong>of</strong> Craniella. The cortex is white; <strong>the</strong> interior <strong>of</strong> <strong>the</strong><br />

sponge is orange-gold.<br />

Skeletal structure. Protriaenes may reach a length <strong>of</strong><br />

more than 3 cm. Protriaenes and anatriaenes have relatively<br />

small clads; protriaenes, rhabd greater than 3 cm<br />

× 3–11 µm, clad 20–30 µm; anatriaenes, rhabd up <strong>to</strong> 10<br />

mm × 3–11 µm, clads, 40–85 µm, oxeas, up <strong>to</strong> 3 cm ×<br />

10–40 µm, commata, 7–10 µm.<br />

Zoogeographic distribution. Uncommon, but locally<br />

patchy. In Alaska – Aleutian Islands. Elsewhere – central<br />

California <strong>to</strong> <strong>the</strong> Gulf <strong>of</strong> California.<br />

Habitat. In Alaska – found at depths between 88 and<br />

272 m in boulder and cobble habitats. Typically epizoic<br />

on calcareous <strong>sponges</strong> (e.g., Leucandra poculiformis) and<br />

various demo<strong>sponges</strong>, including Tedania dirhaphis,<br />

Mycale jasoniae, and M. loveni. Elsewhere – reported at<br />

depths between 11 and 214 m.<br />

Remarks. Reproduction in this group <strong>of</strong> <strong>sponges</strong> is<br />

oviparous without a larval stage, or viviparous with production<br />

<strong>of</strong> young adults within <strong>the</strong> parent (Van Soest<br />

and Rützler, 2002).<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 100 m<br />

in <strong>the</strong> central Aleutian Islands. Specimen is attached<br />

<strong>to</strong> <strong>the</strong> demosponge Tedania dirhapsis. Grid marks are<br />

1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 showing radial<br />

arrangement <strong>of</strong> large spicules in <strong>the</strong> interior and <strong>the</strong><br />

presence <strong>of</strong> orange-colored eggs or young adults.<br />

3) Specimen at a depth <strong>of</strong> 170 m in <strong>the</strong> central Aleutian<br />

Islands.


25. Craniella sigmoancoratum (Koltun, 1966)<br />

Description. Body is globular with very long tracts<br />

<strong>of</strong> protruding spicules. Typically is attached <strong>to</strong> o<strong>the</strong>r<br />

<strong>sponges</strong> via <strong>the</strong>se tracts which terminate in anchorlike,<br />

long-shafted triaenes. Internal bundles <strong>of</strong> spicules<br />

radiate from <strong>the</strong> center <strong>of</strong> <strong>the</strong> globular body <strong>to</strong> well<br />

beyond <strong>the</strong> surface <strong>of</strong> <strong>the</strong> sponge. The surface consists<br />

<strong>of</strong> a layer <strong>of</strong> dermal oxeas occurring only <strong>the</strong>re and<br />

oriented perpendicular <strong>to</strong> <strong>the</strong> surface. The diameter<br />

<strong>of</strong> <strong>the</strong> body is 7 <strong>to</strong> 8 mm (without protruding spicules).<br />

Spicule tracts protrude 6–8 mm above <strong>the</strong> surface, giving<br />

<strong>the</strong> sponge a spiny appearance. Color in life is white<br />

or creamy white.<br />

Skeletal structure. Large oxeas have unequal ends<br />

(3000–8000 × 45–72 µm), cortical oxeas (460–1340<br />

× 26–76 µm), protriaenes (1600–7300 µm long with<br />

clads 13–34 µm), anatriaenes have rhabds (2300–8700<br />

µm with clads 19–40 µm). The sigmaspires are unique<br />

among <strong>the</strong> known species <strong>of</strong> Craniella in that <strong>the</strong>y are<br />

relatively large and resemble isochelae (22–34 µm).<br />

These sigmaspires are abundant and densely present in<br />

<strong>the</strong> cortical layer.<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

central Aleutian Islands, Bering Sea (Pribil<strong>of</strong> Canyon).<br />

Elsewhere – previously known only from <strong>the</strong> original<br />

description in <strong>the</strong> Kuril Islands, Russia.<br />

41<br />

Habitat. In Alaska – a cryptic species; epizoic on<br />

hexactinellid <strong>sponges</strong> and o<strong>the</strong>r demo<strong>sponges</strong>, including<br />

Erylus aleuticus, at depths between 190 and 275 m.<br />

Elsewhere – no information available.<br />

Remarks. Previously known as Tetilla sigmoancoratum<br />

Koltun, 1966, but recently transferred <strong>to</strong> <strong>the</strong> genus<br />

Craniella since it possesses both a cortex and <strong>the</strong> special<br />

cortical oxeas that are lacking in <strong>the</strong> genus Tetilla.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 208 m in<br />

Pribil<strong>of</strong> Canyon, Bering Sea. Specimen is growing on<br />

an unidentified hexactinellid sponge.


42 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

26. Craniella spinosa Lambe, 1893<br />

Description. Sponge is globular with many short,<br />

sharp spines. It typically attaches <strong>to</strong> o<strong>the</strong>r <strong>sponges</strong> via<br />

<strong>the</strong> spines. Characteristic <strong>of</strong> <strong>the</strong> genus, <strong>the</strong> internal arrangement<br />

<strong>of</strong> spicule bundles is strictly radial with bundles<br />

supporting <strong>the</strong> ec<strong>to</strong>somal conules, which are less<br />

than 1 mm in height. The surface is formed by a special<br />

cortex. Dermal oxeas form a palisade perpendicular<br />

<strong>to</strong> <strong>the</strong> surface. Spicule bundles protrude through <strong>the</strong><br />

conules and diverge. Diameter is <strong>to</strong> 16–18 mm. Color<br />

in life is white or creamy white.<br />

Skeletal structure. There are large oxeas (2300–4800<br />

× 23–42 µm) with unequal ends, both ends acute but<br />

one end filiform, cortical oxeas (685–1230 × 35–47<br />

µm), protriaenes (3400–5700 µm long), anatriaenes<br />

(up <strong>to</strong> 8000 µm long rhabdomes). Microscleres are<br />

c- and s-shaped sigmaspires with a maximum diameter<br />

<strong>of</strong> 11–14 µm.<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

Bering Sea (Pribil<strong>of</strong> Canyon). Elsewhere – originally described<br />

from Vancouver Island. Reportedly occurs from<br />

<strong>the</strong> Aleutian Islands <strong>to</strong> British Columbia (Austin, 1985).<br />

Habitat. In Alaska – a cryptic species; epizoic on<br />

Myxilla pedunculata and probably o<strong>the</strong>r <strong>sponges</strong> at a<br />

depth <strong>of</strong> 236 m. Elsewhere – depths ranging from 36 <strong>to</strong><br />

76 m (Vancouver Island).<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 236 m in<br />

Pribil<strong>of</strong> Canyon, Bering Sea. Specimen is attached <strong>to</strong><br />

<strong>the</strong> demosponge Myxilla pedunculata.


27. Craniella sputnika Lehnert and S<strong>to</strong>ne, 2011<br />

Description. Sponge is globular with numerous acute<br />

spines distributed over <strong>the</strong> surface. The surface between<br />

<strong>the</strong> spines is smooth, without any visible apertures.<br />

Characteristic <strong>of</strong> <strong>the</strong> genus, <strong>the</strong> internal arrangement <strong>of</strong><br />

spicule bundles is strictly radial with bundles supporting<br />

<strong>the</strong> ec<strong>to</strong>somal conules. The sponge is ra<strong>the</strong>r hard, only<br />

slightly elastic. Diameter including <strong>the</strong> spines is <strong>to</strong> 30<br />

mm (16 mm without <strong>the</strong> spines). Color in life is white<br />

<strong>to</strong> creamy white.<br />

Skeletal structure. Spicules are anatriaenes (3430–<br />

8820 × 12–21 µm), clads (48–154 × 17–22 µm per ray),<br />

and protriaenes (4520–8960 × 12–40 µm). There are<br />

clads (50–250 × 5–17 µm per ray); choanosomal oxeas<br />

(4530–5425 × 50–75 µm); two categories <strong>of</strong> cortical oxeas:<br />

small, centrotylote oxeas (97–372 × 8–17 µm), tyle<br />

in <strong>the</strong> center more like a ring than a tyle, and larger<br />

ones (540-987 × 28–63 µm). Sigmaspires or similar sigmoid<br />

spicules are absent.<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– known only from <strong>the</strong> type locality in Amchitka Pass,<br />

central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Patchy distribution. A cryptic species; epizoic<br />

on demo<strong>sponges</strong>, including Myxilla sp., and occasionally<br />

gorgonian corals (Primnoidae) in boulder, cobble,<br />

and sand habitats at depths between 115 and 199 m.<br />

Pho<strong>to</strong>s. 1) Specimens collected at a depth <strong>of</strong> 115 m<br />

in <strong>the</strong> central Aleutian Islands. 2) Two specimens (indicated<br />

by <strong>the</strong> white arrows) at a depth <strong>of</strong> 191 m in <strong>the</strong><br />

central Aleutian Islands.<br />

43


44 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

28. Erylus aleuticus Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. Lobate sponge consists <strong>of</strong> several flattened<br />

lobes (oval <strong>to</strong> circular). The surface is hard due<br />

<strong>to</strong> an ec<strong>to</strong>somal crust <strong>of</strong> aspidasters about 0.5 mm in<br />

thickness. Numerous uniporal orifices are scattered<br />

over <strong>the</strong> surface at intervals <strong>of</strong> 0.5–1.0 mm. The orifices<br />

are circular, 0.5–1.0 mm in diameter, and slightly (


29. Geodia lendenfeldi nomen novum<br />

Description. Small, cylindrical sponge has an ec<strong>to</strong>somal<br />

hard cortex <strong>of</strong> sterrasters and a s<strong>of</strong>ter choanosome.<br />

Lendenfeld (1910) described <strong>the</strong> species as encrusting,<br />

cushion-shaped, or irregularly finger-shaped. The specimen<br />

collected in <strong>the</strong> Aleutian Islands was a single cylinder<br />

approximately 5 cm in height and 1 cm in width.<br />

Color in life is white <strong>to</strong> creamy white.<br />

Skeletal structure. There are sterrasters (170–200 ×<br />

130-140 µm), choanosomal styles and oxeas (1200–1760<br />

× 30–40 µm), diaenes <strong>of</strong> <strong>the</strong> same size as oxeas, and<br />

tylasters (10 µm). Triaenes are absent.<br />

Zoogeographic distribution. Rare. In Alaska – Aleutian<br />

Islands and Sou<strong>the</strong>ast Alaska. Elsewhere – previously<br />

known from <strong>the</strong> west coast <strong>of</strong> North America from<br />

Sou<strong>the</strong>ast Alaska <strong>to</strong> sou<strong>the</strong>rn California.<br />

Habitat. In Alaska – found in cobble, pebble, and sand<br />

habitat at a depth <strong>of</strong> 190 m. Epizoic on <strong>the</strong> demosponge<br />

Erylus aleuticus. Elsewhere – no information available.<br />

Remarks. Triaenes are absent in G. robusta, which<br />

prompted Lendenfeld (1910) <strong>to</strong> erect <strong>the</strong> genus Geod-<br />

45<br />

inella that is now regarded as synonymous with Geodia.<br />

This specimen is <strong>the</strong> same as Geodia robusta (Lendenfeld,<br />

1910). G. robusta (Lendenfeld, 1910) is a junior homonym<br />

<strong>of</strong> G. robusta (Lendenfeld, 1907) however, and<br />

according <strong>to</strong> <strong>the</strong> World Porifera Database (Van Soest et<br />

al., 2008) it has no valid name. Thus, we suggest renaming<br />

G. robusta (Lendenfeld, 1910) as Geodia lendenfeldi.<br />

Pho<strong>to</strong>. 1) Fragments <strong>of</strong> specimen collected at a depth<br />

<strong>of</strong> 190 m in <strong>the</strong> central Aleutian Islands. Grid marks are<br />

1 cm 2 .


46 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

30. Poecillastra tenuilaminaris (Sollas, 1886)<br />

Description. This sponge is polymorphic but typically<br />

has a plate-like or lamellar growth form. The surface <strong>of</strong><br />

<strong>the</strong> sponge is smooth <strong>to</strong> <strong>the</strong> unaided eye but microscopically<br />

hispid. Small oscula occur on one side only. The<br />

consistency is firm, incompressible, and fragile. Size is<br />

highly variable but attains a length and height exceeding<br />

more than 1 m. Color in life is whitish <strong>to</strong> light brown,<br />

<strong>of</strong>ten with a dark fringe at <strong>the</strong> distal edge.<br />

Skeletal structure. The choanosome consists <strong>of</strong> an<br />

unorganized mix <strong>of</strong> calthrops and oxeas: calthrops<br />

(320–540 × 35–48 µm per ray), occasionally triods with<br />

rays <strong>of</strong> <strong>the</strong> same size, oxeas (1240–2650 × 32–47 µm).<br />

Microscleres are streptasters (14–28 µm) and acanthose<br />

microxeas (117–157 × 3–5 µm) that are always bent in<br />

<strong>the</strong> middle.<br />

Zoogeographic distribution. Common. In Alaska –<br />

Bering Sea (Zhemchug Canyon) and eastern Gulf <strong>of</strong><br />

Alaska. May reach densities up <strong>to</strong> 19 per m 2 in eastern<br />

Gulf <strong>of</strong> Alaska habitats. Elsewhere – holotype described<br />

from Sea <strong>of</strong> Japan, also reported from along <strong>the</strong> California<br />

Coast and <strong>the</strong> Gulf <strong>of</strong> California. Present records<br />

strongly suggest a circumboreal distribution in <strong>the</strong><br />

North Pacific. However, morphological differences do<br />

exist between populations, suggesting some genetic<br />

isolation (see Remarks).<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock at depths<br />

between 149 and 486 m in <strong>the</strong> Bering Sea and attached<br />

<strong>to</strong> bedrock, boulders, and cobbles at depths between<br />

71 and 255 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Elsewhere<br />

– reported at depths <strong>to</strong> 74 m.<br />

Remarks. Previously known as Normania tenuilaminaris<br />

Sollas 1886, P. tenuilaminaris was originally described as<br />

having straight acanthose microxeas. The microxeas we<br />

examined from <strong>the</strong> Bering Sea specimens were consistently<br />

bent but this is <strong>the</strong> only difference between <strong>the</strong><br />

specimens and in our opinion not sufficient <strong>to</strong> separate<br />

<strong>the</strong> specimens at <strong>the</strong> species level. However, it is probable<br />

that <strong>the</strong> Bering Sea population is genetically isolated<br />

and may have developed different morphological<br />

characters, such as <strong>the</strong> bent microxeas. This species is<br />

preyed upon by <strong>the</strong> sea stars Hippasteria spp., Poraniopsis<br />

inflata, Pteraster tesselatus, Ceramaster patagonicus, and<br />

possibly Henricia longispina. We have observed a very<br />

similar sponge in <strong>the</strong> central Aleutian Islands at depths<br />

between 142 and 1386 m but we would need <strong>to</strong> collect<br />

a specimen <strong>to</strong> confirm conspecificity.<br />

Pho<strong>to</strong>s. 1) Fragments <strong>of</strong> specimen collected at a depth<br />

<strong>of</strong> 175 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Note <strong>the</strong> hydroids<br />

growing on <strong>the</strong> fringe. Grid marks are 1 cm 2 . 2) Same<br />

specimen as in pho<strong>to</strong> 1 in situ. 3) Specimen collected<br />

at a depth <strong>of</strong> 486 m in Zhemchug Canyon, Bering Sea.<br />

Grid marks are 1 cm 2 .


31. Polymastia fluegeli Lehnert, S<strong>to</strong>ne and Heimler, 2005<br />

Description. This sponge is endopsammic and discshaped<br />

with numerous fistules on <strong>the</strong> upper surface.<br />

The surface is smooth with long protruding spicules<br />

scattered about. The cortical layer is cartilaginous and<br />

more resilient than <strong>the</strong> relatively s<strong>of</strong>t choanosome. The<br />

bot<strong>to</strong>m side <strong>of</strong> <strong>the</strong> sponge is very firm and slightly elastic<br />

and consists <strong>of</strong> a layer <strong>of</strong> spongin-cemented sediment.<br />

In situ <strong>the</strong> plate is buried in <strong>the</strong> sediment; only <strong>the</strong><br />

fistules protrude. The fistules are cone-shaped with no<br />

obvious opening. The disc is up <strong>to</strong> 52 cm in diameter<br />

and about 1 cm in thickness (3–4 mm <strong>of</strong> <strong>the</strong> thickness<br />

is due <strong>to</strong> <strong>the</strong> basal sediment layer). Color in life is light<br />

yellow with bright yellow fistules; disc is light brown<br />

after freezing.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Polyspicular tracts arise from <strong>the</strong> basal<br />

sediment layer <strong>the</strong>n widen, branch <strong>to</strong>wards <strong>the</strong> surface,<br />

and fan out in <strong>the</strong> cortical layer. Polyspicular tracts are<br />

350–500 µm in diameter. The cortical layer is 500–700<br />

µm in thickness and, except for <strong>the</strong> ends <strong>of</strong> <strong>the</strong> ascending<br />

polyspicular tracts, consists <strong>of</strong> a mass <strong>of</strong> spicules<br />

without orientation. The outermost layer is a palisade<br />

<strong>of</strong> small tylostyles, oriented outward creating <strong>the</strong> microscopically<br />

hispid surface. The papillae also show <strong>the</strong><br />

outermost palisade and <strong>the</strong> unorganized spicule mass<br />

below, but differ ins<strong>of</strong>ar as <strong>the</strong> polyspicular tracts run <strong>to</strong><br />

<strong>the</strong> tip <strong>of</strong> <strong>the</strong> papillum. A central canal is visible in <strong>the</strong><br />

center <strong>of</strong> <strong>the</strong> papillae but <strong>the</strong>re is no opening visible.<br />

There are large fusiform tylostyles, in a wide size-range,<br />

longest ones <strong>of</strong>ten with one or several subterminal<br />

rings (180–1750 × 8–22 µm), and a small category <strong>of</strong><br />

tylostyles (65–110 × 3–6 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Patchily distributed at depths between 81 and<br />

338 m in generally low-relief (i.e., flat-bot<strong>to</strong>med) habitats<br />

<strong>of</strong> small pebbles and coarse sand with moderate <strong>to</strong><br />

high current. Found at maximum densities up <strong>to</strong> eight<br />

individuals per m 2 in coarse sand habitats at 82 m depth.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 82 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 . 2)<br />

Same specimen as in pho<strong>to</strong> 1 in situ during collection.<br />

3) Specimen observed at a depth <strong>of</strong> 142 m in <strong>the</strong> central<br />

Aleutian Islands. A prowfish (Zapora silenus) lies in a den<br />

just below <strong>the</strong> specimen.<br />

47


48 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

32. Polymastia pacifica Lambe, 1893<br />

Description. This sponge is subglobular <strong>to</strong> cushionshaped.<br />

Surface is smooth <strong>to</strong> <strong>the</strong> unaided eye but<br />

microhispid with several papillae. Consistency is firm.<br />

Diameter is <strong>to</strong> at least 15 cm. Externally it is brownish orange<br />

in color; internally it is bright orange with lighter<br />

polyspicular tracts visible <strong>to</strong> <strong>the</strong> unaided eye.<br />

Skeletal structure. Ec<strong>to</strong>somal palisade <strong>of</strong> small tylostyles<br />

are supported by intermediate tylostyles. Large<br />

tylostyles radiate in polyspicular tracts <strong>to</strong> <strong>the</strong> surface.<br />

There are large tylostyles (up <strong>to</strong> 4400 × 20 µm), intermediate<br />

tylostyles (200–600 × 12–16 µm), and small<br />

tylostyles (120–160 × 5–7 µm).<br />

Zoogeographic distribution. Uncommon. North<br />

Pacific Ocean. In Alaska – central Aleutian Islands.<br />

Elsewhere – previously reported from Vancouver Island<br />

<strong>to</strong> California.<br />

Habitat. In Alaska – attached <strong>to</strong> pebbles at depths<br />

between 150 and 160 m. Elsewhere – 73 m depth (Vancouver<br />

Island). Lamb and Hanby (2005) report that<br />

this species occurs from Alaska <strong>to</strong> California at depths<br />

between <strong>the</strong> intertidal zone and 183 m.<br />

Pho<strong>to</strong>. 1) Fragment <strong>of</strong> a specimen collected at a depth<br />

<strong>of</strong> 155 m in <strong>the</strong> central Aleutian Islands. Grid marks are<br />

1 cm 2 .


33. Stylocordyla borealis eous Koltun, 1966<br />

Description. Thin stalk terminates in a globular or<br />

oval body with a smooth surface. Stalk is <strong>to</strong> 9 cm; body<br />

<strong>to</strong> approximately 2 cm 3 . Color in life is golden brown.<br />

Skeletal structure. Skele<strong>to</strong>n <strong>of</strong> <strong>the</strong> stalk is a tight mass<br />

<strong>of</strong> parallel spicules running in<strong>to</strong> <strong>the</strong> body and radiating<br />

<strong>to</strong> <strong>the</strong> sides in tracts. Smaller oxeas form a palisade at<br />

<strong>the</strong> surface <strong>of</strong> <strong>the</strong> body. Microxeas form a tangential<br />

crust at <strong>the</strong> surface. Oxeas are exclusively centrotylote,<br />

sometimes with blunt ends. Oxeas occur in a wide<br />

size-range, possibly in three categories: 790–2460 ×<br />

10–37 µm, 400–700 × 10–12 µm, and microxeas 70–110 ×<br />

2–3 µm.<br />

Zoogeographic distribution. Locally abundant in<br />

<strong>the</strong> North Pacific Ocean. In Alaska – central Aleutian<br />

Islands and Bering Sea (Pribil<strong>of</strong> Canyon). Elsewhere –<br />

Sea <strong>of</strong> Okhotsk.<br />

Habitat. In Alaska – attached <strong>to</strong> pebbles and emergent<br />

epifauna at depths between 125 and 307 m and generally<br />

in low-relief (i.e., flat-bot<strong>to</strong>med) habitats (central<br />

Aleutian Islands). Sponges with very similar morphology<br />

have been observed in <strong>the</strong> Aleutian Islands at depths<br />

near 1100 m, but we would need <strong>to</strong> collect a specimen<br />

<strong>to</strong> confirm conspecificity. Elsewhere – reported at a<br />

depth <strong>of</strong> 200 m.<br />

Remarks. Stylocordyla borealis eous can be distinguished<br />

from <strong>the</strong> similar Rhizaxinella clavata by its thinner stalk<br />

and smooth oval body. Also, S. borealis eous has exclusively<br />

centrolyte oxeas while R. clavata has tylostyles and<br />

subtylostyles.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 127 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 (indicated by <strong>the</strong> white<br />

arrow) in situ. 3) Specimen collected at a depth <strong>of</strong> 208<br />

m in Pribil<strong>of</strong> Canyon, Bering Sea. Specimen is attached<br />

<strong>to</strong> an unknown hexactinellid sponge.<br />

49


50 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

34. Aap<strong>to</strong>s kanuux Lehnert, Hocevar, and S<strong>to</strong>ne 2008<br />

Description. Species is irregularly globular. Surface<br />

is almost smooth, microscopically slightly uneven. No<br />

oscula are visible. Consistency is firm, only slightly<br />

elastic. Diameter ranges from 9 <strong>to</strong> 19 mm. Color in life<br />

is mustard yellow.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Spicules are strictly radially arranged<br />

in <strong>the</strong> choanosome; spicule density is very high. Special<br />

dermal oxeas are densely arranged perpendicular <strong>to</strong><br />

<strong>the</strong> surface and form a palisade. There are fusiform<br />

strongyloxeas (1795–2132 × 15–22 µm), subtylostyles<br />

(500–770 × 8–10 µm), and ec<strong>to</strong>somal tylostyles (104–215<br />

× 4–8 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – known only from <strong>the</strong> type locality in Pribil<strong>of</strong><br />

Canyon, Bering Sea. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> pebbles in low-relief (i.e., flatbot<strong>to</strong>med)<br />

silt and sand habitat at depths between 203<br />

and 240 m. Often found in association with several<br />

unknown species <strong>of</strong> hydroids, zoanthids, and <strong>the</strong> demosponge<br />

Stylocordyla borealis eous.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 219 m in<br />

Pribil<strong>of</strong> Canyon, Bering Sea. 2) Same specimen as in<br />

pho<strong>to</strong> 1 showing close-up detail <strong>of</strong> <strong>the</strong> radial arrangement<br />

<strong>of</strong> <strong>the</strong> choanosome. 3) Same specimen as in<br />

pho<strong>to</strong>s 1 and 2 in situ. The separation between <strong>the</strong> red<br />

laser marks is 10 cm.


35. Rhizaxinella clavata (Thiele, 1898)<br />

Description. Thin stalk terminates in a globular or<br />

oval body. Species is similar <strong>to</strong> Stylocordyla borealis eous.<br />

This species has a slightly thicker stalk which widens <strong>to</strong>wards<br />

<strong>the</strong> body and a strongly hispid surface <strong>of</strong> <strong>the</strong> body<br />

compared <strong>to</strong> <strong>the</strong> smooth surface <strong>of</strong> S. borealis eous. Spicules<br />

are arranged radially in <strong>the</strong> interior <strong>of</strong> <strong>the</strong> sponge<br />

with dense spicule brushes at <strong>the</strong> surface. Length is up<br />

<strong>to</strong> 5.5 cm. Color in life is golden brown.<br />

Skeletal structure. There are tylostyles <strong>to</strong> subtylostyles<br />

(1050–1780 × 15–32 µm) and smaller tylostyles<br />

(180–370 × 6–10 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– Bering Sea (Zhemchug Canyon). Elsewhere – <strong>the</strong><br />

holotype was recorded from <strong>the</strong> Sea <strong>of</strong> Japan.<br />

Habitat. In Alaska – attached <strong>to</strong> hexactinellid sponge<br />

skele<strong>to</strong>ns at a depth <strong>of</strong> 915 m. Elsewhere – reported on<br />

mud bot<strong>to</strong>ms at a depth <strong>of</strong> 183 m.<br />

Remarks. Rhizaxinella clavata can be distinguished<br />

from <strong>the</strong> similar Stylocordyla borealis eous by its thicker<br />

51<br />

stalk and hispid oval body. Also, R. clavata has tylostyles<br />

and subtylostyles while S. borealis eous has exclusively<br />

centrolyte oxeas.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 915 m in<br />

Zhemchug Canyon, Bering Sea. Specimen is attached <strong>to</strong><br />

an unidentified hexactinellid sponge skele<strong>to</strong>n.


52 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

36. Suberites excellens (Thiele, 1898)<br />

Description. This massively lobate sponge has irregularly<br />

cylindrical lobes. Surface is smooth <strong>to</strong> <strong>the</strong> unaided<br />

eye but microscopically hispid. Circular oscula are near<br />

tips <strong>of</strong> lobes and slightly elevated above <strong>the</strong> surface.<br />

Consistency is firm but elastic. Height is <strong>to</strong> 14 cm. Color<br />

in life is yellowish brown.<br />

Skeletal structure. Skeletal architecture is more or<br />

less confused in <strong>the</strong> interior but becomes radial <strong>to</strong>wards<br />

<strong>the</strong> surface. The surface consists <strong>of</strong> a palisade <strong>of</strong> smaller<br />

tylostyles. There are thick tylostrongyles with round<br />

tyles at one end and only slightly tapering at <strong>the</strong> o<strong>the</strong>r<br />

(640–1890 × 17–46 µm), somewhat thinner and flexuous<br />

tylostrongyles (1140–2100 × 17–26 µm), and small<br />

tylostyles forming <strong>the</strong> palisade at <strong>the</strong> surface (175–520<br />

× 8–12 µm).<br />

Zoogeographic distribution. Rare. In Alaska – Bering<br />

Sea (Zhemchug Canyon) and eastern Gulf <strong>of</strong> Alaska.<br />

Elsewhere – Holotype described from Sagami Bay, Japan;<br />

also recorded along Korean Coast (Sim and Kim,<br />

1988).<br />

Habitat. In Alaska – attached <strong>to</strong> boulders and cobbles<br />

at depths between 390 and 601 m. Elsewhere – no information<br />

available.<br />

Remarks. This was previously known as Rhizaxinella<br />

excellens Thiele, 1898. It typically harbors an abundant<br />

and diverse complement <strong>of</strong> ophiuroid associates.<br />

Pho<strong>to</strong>s. 1) Fragments <strong>of</strong> specimen with ophiuroid<br />

associates collected at a depth <strong>of</strong> 390 m in Zhemchug<br />

Canyon, Bering Sea. 2) Close-up view <strong>of</strong> oscula a<strong>to</strong>p<br />

<strong>the</strong> lobes.


37. Suberites simplex Lambe, 1893<br />

Description. This small sponge has a subglobular <strong>to</strong><br />

globular growth form. Surface is smooth <strong>to</strong> <strong>the</strong> unaided<br />

eye but microscopically hispid. Consistency is firm but<br />

elastic. Diameter is at least 5 cm. Color in life is golden<br />

brown <strong>to</strong> brown.<br />

Skeletal structure. Ec<strong>to</strong>somal skele<strong>to</strong>n consists <strong>of</strong> bouquets<br />

<strong>of</strong> small tylostyles at <strong>the</strong> surface. Densely packed<br />

larger tylostyles in <strong>the</strong> interior are arranged without<br />

orientation. Tylostyles are large (620–1170 × 10–20 µm)<br />

and small (120–230 × 3–5 µm).<br />

Zoogeographic distribution. Uncommon in <strong>the</strong><br />

North Pacific Ocean. In Alaska – central Aleutian Islands.<br />

Elsewhere – Vancouver Island.<br />

Habitat. In Alaska – attached <strong>to</strong> pebbles at depths between<br />

150 and 160 m. Elsewhere – reported at a depth<br />

<strong>of</strong> 73 m.<br />

53<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


54 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

38. Suberites sp.<br />

Description. This “mobile” sponge lives as an irregularly<br />

globular encrustation on empty gastropod shells.<br />

Frequently lives in symbiosis with hermit crabs including<br />

Pagurus dalli. Surface is smooth <strong>to</strong> <strong>the</strong> unaided eye<br />

but microscopically hispid due <strong>to</strong> dense spicule brushes<br />

that leave open numerous small pores (50–100 µm diameter).<br />

Irregular short tracts in <strong>the</strong> choanosome form<br />

a vague reticulation. Diameter is at least 10 cm. Color in<br />

life is red, orange, or tan; pale yellow in ethanol.<br />

Skeletal structure. Viewed under high magnification,<br />

<strong>the</strong> spicules are relatively dense without particular orientation.<br />

There are tylostyles <strong>to</strong> tylostrongyles (123–350<br />

× 7–12 µm).<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – Bering Sea <strong>to</strong> Sou<strong>the</strong>ast Alaska.<br />

Habitat. In Alaska – typically encrusts gastropod shells<br />

at depths between 20 and 165 m.<br />

Remarks. This species is indistinguishable from Suberites<br />

domuncula that is common <strong>to</strong> <strong>the</strong> Mediterranean Sea<br />

and Atlantic Ocean along <strong>the</strong> west coast <strong>of</strong> North Africa.<br />

However, we doubt conspecificity based on <strong>the</strong> disjunct<br />

zoogeography and leave <strong>the</strong> species assignment for this<br />

specimen as undecided. The species complex is in desperate<br />

need <strong>of</strong> taxonomic revision. There are probably<br />

several sibling species that live in symbiosis with hermit<br />

crabs (more than a dozen species reported worldwide).<br />

S. domuncula contains suberitine, a neuro<strong>to</strong>xin that can<br />

cause fatal hemolytic hemorrhaging in some animals<br />

including some reef fish. However, <strong>the</strong> hawksbill turtle<br />

(Eretmochelys imbricata) does prey upon it in tropical <strong>water</strong>s<br />

(Meylan, 1988). No studies have been conducted<br />

on Alaskan specimens.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 84 m in<br />

<strong>the</strong> central Aleutian Islands. This is <strong>the</strong> ventral side <strong>of</strong><br />

<strong>the</strong> sponge showing <strong>the</strong> cavity in which a hermit crab<br />

Pagurus dalli (completely retracted) is living. Grid marks<br />

are 1 cm 2 .


39. Hemigellius porosus (Fristedt, 1887)<br />

Description. This sponge is massively encrusting and<br />

very fragile. Surface is smooth <strong>to</strong> <strong>the</strong> unaided eye but<br />

microscopically hispid. No oscula are visible. Fristedt<br />

(1887) described this species as forming irregular<br />

knolls, 9 cm in longest dimension. Color in life is whitish<br />

yellow <strong>to</strong> creamy white.<br />

Skeletal structure. It has an irregular unispicular or<br />

paucispicular mesh <strong>of</strong> oxeas (250–340 × 9–11 µm) and<br />

stigmata (40–60 µm).<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – Bering Sea (Zhemchug Canyon). Elsewhere<br />

– North Pacific Ocean (Sea <strong>of</strong> Okhotsk and Sea<br />

<strong>of</strong> Japan), Arctic Ocean (Barents Sea, Kara Sea, Laptev<br />

Sea), North Atlantic Ocean (West <strong>of</strong> Spitzbergen, East<br />

<strong>of</strong> Greenland, Denmark Strait, Davis Strait, Gulf <strong>of</strong> St.<br />

Lawrence, between Iceland and <strong>the</strong> Faroe Islands).<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles at a depth <strong>of</strong><br />

909 m. Elsewhere – reported at depths between 68 and<br />

256 m.<br />

55<br />

Pho<strong>to</strong>. 1) Fragments <strong>of</strong> specimen collected at a depth<br />

<strong>of</strong> 909 m in Zhemchug Canyon, Bering Sea.


56 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

40. Cornulum clathriata (Koltun, 1955)<br />

Description. This stalked fan-shaped sponge consists<br />

<strong>of</strong> a meshwork or net; not flat but slightly concave.<br />

Consistency is wiry due <strong>to</strong> <strong>the</strong> mesh <strong>of</strong> spicule tracts. It<br />

is relatively small; height <strong>to</strong> 11 cm. Color in life is light<br />

yellow.<br />

Skeletal structure. Structure includes ec<strong>to</strong>somal<br />

tylotes with acanthaceous ends (280–420 × 6–8 µm);<br />

choanosomal styles with slightly acanthaceous blunt<br />

ends in a wide size range (215–2000 × 18–33 µm); and<br />

spherical isochelae (17–25 µm) and <strong>to</strong>xa in two size<br />

categories – large (55–220 µm) and small (10–18 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

central Aleutian Islands. Elsewhere – previously known<br />

from only two records near <strong>the</strong> Commander Islands<br />

(Russia) in <strong>the</strong> western Bering Sea.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock or muds<strong>to</strong>ne<br />

at depths between 843 and 1720 m. Elsewhere – reported<br />

at a depth <strong>of</strong> 2440 m.<br />

Remarks. Previously known as Melonchela clathriata<br />

Koltun, 1955.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 1720 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ.


41. Iophon piceum (Vosmaer, 1882)<br />

Description. This sponge is massively encrusting.<br />

According <strong>to</strong> Koltun (1959), growth form may also<br />

be massive-lobate, tabular, dactylate, ramified, or irregularly<br />

lobate. Oscula are on short elevations or flush<br />

with <strong>the</strong> surface. Dermal membrane is thin and pellicular.<br />

Consistency is s<strong>of</strong>t and easily <strong>to</strong>rn. It may reach a<br />

height <strong>of</strong> 15 cm. Color in life is golden brown <strong>to</strong> brown.<br />

Skeletal structure. Ec<strong>to</strong>somal <strong>to</strong>rnotes (150–270 ×<br />

6–10 µm) with micro-spined heads, are arranged in bundles<br />

tangential <strong>to</strong> <strong>the</strong> surface. Choanosomal skele<strong>to</strong>n is<br />

reticulate with smooth styles or acanthostyles (195–435 ×<br />

9–18 µm), anisochelae (18–37 µm), and bipocillae<br />

(8–14 µm).<br />

Zoogeographic distribution. Widespread and locally<br />

common. In Alaska – central Aleutian Islands. Elsewhere<br />

– North Pacific Ocean (Sea <strong>of</strong> Okhotsk and Sea<br />

<strong>of</strong> Japan), Arctic Ocean (Barents Sea including White<br />

Sea, Kara Sea – Vilkitsky Strait, and Greenland Sea), and<br />

North Atlantic Ocean (Norwegian Sea, Davis Strait, and<br />

Denmark Strait).<br />

Habitat. In Alaska – attached <strong>to</strong> pebbles and small<br />

cobbles at depths between 94 and 155 m. Elsewhere –<br />

eurybathic; reported at depths between 9 and 1785 m.<br />

Remarks. This species <strong>of</strong>ten grows in association with,<br />

and encrusts, hydroids and bryozoans.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 94 m in<br />

<strong>the</strong> central Aleutian Islands. Specimen is encrusting <strong>the</strong><br />

hydroid Abietinaria sp. (lower right). Grid marks are 1<br />

cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 (indicated by <strong>the</strong><br />

white arrows) in situ with <strong>the</strong> plumose hydroids (Abietinaria<br />

sp.). 3) Specimen collected at a depth <strong>of</strong> 155 m<br />

in <strong>the</strong> central Aleutian Islands. Specimen is encrusting<br />

<strong>the</strong> bryozoan (Microporina cf. articulata). Grid marks<br />

are 1 cm 2 .<br />

57


58 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

42. Iophon piceum abipocillus Koltun, 1959<br />

Description. This sponge is massively encrusting. It<br />

is very similar <strong>to</strong> Iophon piceum except <strong>the</strong> ec<strong>to</strong>some<br />

is white ra<strong>the</strong>r than golden-brown and <strong>the</strong> oscula are<br />

distinctly conical. Diameter is <strong>to</strong> 25 cm. Color in life is<br />

white; turns completely brown with darker brown oscula<br />

in ethanol.<br />

Skeletal structure. It is very similar <strong>to</strong> Iophon piceum<br />

except that bipocillae are absent.<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

central Aleutian Islands. Elsewhere – Sea <strong>of</strong> Okhotsk.<br />

Habitat. In Alaska – attached <strong>to</strong> boulders, cobbles, and<br />

pebbles at depths between 82 and 192 m. Elsewhere –<br />

reported at a depth <strong>of</strong> 1240 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 100 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ.


43. Megaciella anisochela Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge has clusters <strong>of</strong> 4–8 tubes with<br />

a common stalk. The surface is finely hispid with no recognizable<br />

oscula. The consistency is s<strong>of</strong>t and elastic. The<br />

dimensions <strong>of</strong> <strong>the</strong> short stalk are 2.0 × 0.5 cm and <strong>the</strong><br />

tubes are approximately 11 × 5 cm. Color in life is light<br />

yellow; golden brown after freezing; beige in ethanol.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some is a thin translucent<br />

membrane with tangentially arranged tylotes, singly or<br />

in small bundles, facing in all directions within <strong>the</strong> tangential<br />

plane. The ec<strong>to</strong>some contains many isochelae<br />

and is supported by underlying styles. The choanosome<br />

is a combination <strong>of</strong> a unispicular reticulation <strong>of</strong> single<br />

spicules and ascending paucispicular tracts connected<br />

by single spicules. Ascending tracts <strong>of</strong> styles penetrate<br />

<strong>the</strong> ec<strong>to</strong>somal membrane and cause <strong>the</strong> hispidation.<br />

Ec<strong>to</strong>somal tylotes (245–380 × 4–9 µm) have acanthose<br />

heads. Smooth choanosomal styles measure 490–615 ×<br />

18–22 µm. Microscleres are palmate isochelae (13–17<br />

µm) with narrow extensions, a small category <strong>of</strong> palmate<br />

isochelae (6–8 µm), and a small category <strong>of</strong> dis<strong>to</strong>rted<br />

anisochelae (4–6 µm).<br />

Zoogeographic distribution. In Alaska – locally abundant<br />

in central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Attached <strong>to</strong> bedrock, boulders, and cobbles<br />

at depths between 702 and 750 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 702 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ.<br />

59


60 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

44. Megaciella spirinae (Koltun, 1958)<br />

Description. This irregularly massive-lobate sponge<br />

has an uneven, corrugated surface. Oscula are present<br />

on <strong>to</strong>p <strong>of</strong> cylindrical elevations. Consistency is elastic,<br />

s<strong>of</strong>t, and easily <strong>to</strong>rn. Diameter is <strong>to</strong> 13 cm. Color in life<br />

is golden brown.<br />

Skeletal structure. Ec<strong>to</strong>somal <strong>to</strong>rnotes (160–210 ×<br />

4-6 µm) have acanthose ends. There are choanosomal<br />

acanthostyles (175–212 × 12–16 µm), arcuate isochelae<br />

(28–32 µm), and <strong>to</strong>xa (90–150 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – eastern Tartar<br />

Strait, near <strong>the</strong> Pacific Coast <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn Kuril Islands.<br />

Habitat. In Alaska – attached <strong>to</strong> small cobbles and pebbles<br />

in generally low-relief (i.e., flat-bot<strong>to</strong>med) habitat<br />

at depths between 150 and 160 m. Elsewhere – attached<br />

<strong>to</strong> pebbles in sandy habitat at depths between 71 and<br />

414 m and at temperatures between 2.3 and 6.6°C.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


45. Clathria (Clathria) barleei (Bowerbank, 1866)<br />

Description. This sponge is elongated and massive. It<br />

is irregularly ramified with a corrugated surface; oscula<br />

are flush with <strong>the</strong> surface. Diameter is <strong>to</strong> 15 cm. Color<br />

in life is orange-brown.<br />

Skeletal structure. Dermal styles (270–360 × 3–6 µm)<br />

have acanthose heads. There are choanosomal smooth<br />

styles (420–540 × 18–35 µm), isochelae (16–20 µm), and<br />

<strong>to</strong>xa (130–720 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – Arctic Ocean<br />

(Barents Sea near Murmansk, Russia) and Nor<strong>the</strong>ast<br />

Atlantic Ocean (from Ireland <strong>to</strong> France and Norway).<br />

Habitat. In Alaska – attached <strong>to</strong> small cobbles and pebbles<br />

in generally low-relief (i.e., flat-bot<strong>to</strong>med) habitat<br />

at depths between 150 and 160 m. Elsewhere – reported<br />

at depths between 72 and 440 m and temperatures between<br />

1 and 4.2° C.<br />

Remarks. Specimens from <strong>the</strong> Nor<strong>the</strong>ast Atlantic<br />

are described as flabellate with a characteristic honeycombed<br />

surface <strong>of</strong> a different color (Van Soest and<br />

S<strong>to</strong>ne, 1986). The spicule complement (types and size<br />

61<br />

ranges) <strong>of</strong> this specimen conforms perfectly <strong>to</strong> Clathria<br />

barleei so we assume it <strong>to</strong> be ano<strong>the</strong>r growth form <strong>of</strong> <strong>the</strong><br />

same species in <strong>the</strong> Pacific Ocean. Van Soest and S<strong>to</strong>ne<br />

(1986) report this species from <strong>the</strong> Arctic <strong>to</strong> <strong>the</strong> west<br />

coasts <strong>of</strong> Ireland and France so a circumpolar distribution<br />

seems possible.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


62 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

46. Clathria (Clathria) laevigata Lambe, 1893<br />

Description. This sponge is massive, laterally compressed,<br />

and irregularly lobate. Consistency is s<strong>of</strong>t and<br />

fragile with round, slightly elevated oscula. Diameter is<br />

<strong>to</strong> 30 cm. Color in life is golden brown. The ec<strong>to</strong>somal<br />

membrane may have a greyish tinge.<br />

Skeletal structure. Structure includes ec<strong>to</strong>somal<br />

smooth small styles (230–290 × 6–10 µm); choanosomal<br />

smooth styles (440–560 × 20–30 µm) occasionally with<br />

acanthose heads; and small acanthostyles (90–240 ×<br />

8–12 µm). Microscleres are palmate isochelae (20–25<br />

µm) and <strong>to</strong>xas (200–530 µm).<br />

Zoogeographic distribution. Locally common in<br />

North Pacific Ocean. In Alaska – central Aleutian Islands.<br />

Elsewhere – known from Kuril Strait (Russia) and<br />

near Vancouver Island (Canada).<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles and pebbles<br />

at a depth <strong>of</strong> 167 m. Elsewhere – reported at depths<br />

between 72 and 138 m.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> a specimen collected at a<br />

depth <strong>of</strong> 167 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 (indicated<br />

by <strong>the</strong> white arrow) in situ.


47. Clathria (Axosuberites) lambei (Koltun, 1955)<br />

Description. This sponge grows from an encrusting<br />

base <strong>to</strong> a mass <strong>of</strong> branches or lobes with an uneven<br />

surface. Consistency is s<strong>of</strong>t and elastic. Diameter is <strong>to</strong><br />

30 cm. Color in life is golden brown.<br />

Skeletal structure. Ec<strong>to</strong>some consists <strong>of</strong> brushes <strong>of</strong><br />

smaller subtylostyles and tylostyles with large protruding<br />

choanosomal styles. Choanosomal smooth styles, <strong>of</strong>ten<br />

with acanthaceous heads, are arranged in plumose<br />

tracts and echinated by small acanthostyles. There are<br />

eec<strong>to</strong>somal tylostyles and subtylostyles (520–1370 × 8–18<br />

µm); choanosomal large styles (540–1960 × 28–40 µm)<br />

with acanthose heads, acanthostyles (120–430 × 10–20<br />

µm), and palmate isochelae (18–25 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – sou<strong>the</strong>rn Sea<br />

<strong>of</strong> Okhotsk and Sea <strong>of</strong> Japan (sou<strong>the</strong>rn Kuril Islands).<br />

Habitat. In Alaska – attached <strong>to</strong> small cobbles and<br />

pebbles in generally low-relief (i.e., flat-bot<strong>to</strong>med)<br />

habitat at depths between 150 and 160 m. Elsewhere –<br />

reported at depths between 91 and 550 m on oozy sand<br />

63<br />

and pebbles and at temperatures between 1 and 1.3°C<br />

and a salinity <strong>of</strong> 34.18 psu.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


64 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

48. Echinoclathria vasa Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge has a stalked vase with a<br />

flared lip and a markedly concave surface; walls are<br />

5–10 mm in thickness. Consistency, except for <strong>the</strong> stalk,<br />

is very s<strong>of</strong>t and elastic. In areas <strong>of</strong> <strong>water</strong> current this species<br />

typically bends over near <strong>the</strong> base and sometimes<br />

lies in contact with <strong>the</strong> seafloor. Height is <strong>to</strong> 13 cm and<br />

width <strong>to</strong> 3 cm. Color in life is light yellow <strong>to</strong> creamy<br />

white; golden brown after freezing.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some is a thin membrane<br />

packed with anchorate isochelas (21–27 µm). The choanosome<br />

consists <strong>of</strong> paucispicular tracts <strong>of</strong> thick styles<br />

(760–920 × 16–21 µm) and brushes <strong>of</strong> thin styles that fan<br />

out <strong>to</strong>wards <strong>the</strong> surface with many isochelas in between.<br />

Thin styles (740–1230 × 4–6 µm) are slightly curved <strong>to</strong><br />

sinuous and have finely acanthose heads.<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Occurring individually on exposed bedrock,<br />

cobbles, and pebbles at depths between 622 and 876 m<br />

and generally in low-relief (i.e., flat-bot<strong>to</strong>med) habitats.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen) specimen collected at<br />

a depth <strong>of</strong> 744 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ<br />

during collection. 3) Same specimen as in pho<strong>to</strong>s 1 and<br />

2 in situ showing detail <strong>of</strong> <strong>the</strong> flared lip.


49. Artemisina amlia Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge is stalked with a subhemispherical<br />

or conical body. The stalk widens gradually<br />

from 4 <strong>to</strong> 25 mm over a distance <strong>of</strong> approximately 9 cm<br />

and is not sharply separated from <strong>the</strong> body. The consistency<br />

is s<strong>of</strong>t, elastic, and easily <strong>to</strong>rn. There are wart-like,<br />

slightly elevated oscula on <strong>the</strong> dorsal surface <strong>of</strong> <strong>the</strong><br />

sponge only that are circular and 2 mm in diameter. Diameter<br />

<strong>of</strong> conical body is <strong>to</strong> 20 cm; <strong>to</strong>tal height <strong>to</strong> 15 cm<br />

or more. Color in life is light orange <strong>to</strong> golden brown. In<br />

ethanol <strong>the</strong> body has a whitish, translucent ec<strong>to</strong>some on<br />

<strong>to</strong>p with a yellowish, fibrous choanosome underneath.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some <strong>of</strong> <strong>the</strong> conical body is<br />

composed <strong>of</strong> a mesh-work <strong>of</strong> polyspicular tracts (55–175<br />

µm in diameter) <strong>of</strong> small styles with a mesh-size <strong>of</strong> 350–<br />

750 µm. This large mesh is subdivided by a finer net <strong>of</strong><br />

strands <strong>of</strong> spongin-embedded isochelae. This finer net<br />

has a mesh-size <strong>of</strong> 45–90 µm; single, translucent strands<br />

are 15–25 µm in diameter. The ec<strong>to</strong>some <strong>of</strong> <strong>the</strong> stalk<br />

is thinner and consists <strong>of</strong> a dense, unispicular layer <strong>of</strong><br />

tangentially arranged, parallel-oriented thick styles. In<br />

<strong>the</strong> choanosome <strong>of</strong> <strong>the</strong> stalk, ascending polyspicular<br />

tracts <strong>of</strong> thick styles are connected by paucispicular<br />

tracts and single spicules, comparable <strong>to</strong> <strong>the</strong> choanosome<br />

<strong>of</strong> <strong>the</strong> conical body. There are large, smooth styles<br />

(400–520 × 20–25 µm), small styles (330–550 × 10 µm)<br />

with acanthose heads and <strong>of</strong>ten with one prominent<br />

dent, isochelae (10–13 µm), and <strong>to</strong>xa (110–170 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Attached <strong>to</strong> bedrock, boulders, cobbles, and<br />

pebbles at depths between 97 and 253 m. Associated<br />

with <strong>the</strong> demosponge Mycale carlilei.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 119 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ showing dorsal<br />

surface with elevated oscula.<br />

65


66 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

50. Artemisina arcigera (Schmidt, 1870)<br />

Description. This sponge is stalked and tube-shaped<br />

in <strong>the</strong> Aleutian Islands, but Koltun (1959) described<br />

this species as cushion-shaped, spherical, or somewhat<br />

elongated, and up <strong>to</strong> 5.5 cm in height. The surface <strong>of</strong><br />

<strong>the</strong> sponge is smooth at <strong>the</strong> stalk and gradually changes<br />

from hispid <strong>to</strong> rugose in <strong>the</strong> lower half and is smooth<br />

again in <strong>the</strong> apical region. No oscula are visible. The<br />

consistency <strong>of</strong> <strong>the</strong> stalk is wiry and gets s<strong>of</strong>ter along its<br />

length. In areas <strong>of</strong> <strong>water</strong> current this species typically<br />

bends over near <strong>the</strong> base and sometimes lies in contact<br />

with <strong>the</strong> seafloor. Stalked forms are <strong>to</strong> 31 cm in height<br />

and 7 cm in width. Color in life is brown <strong>to</strong> golden<br />

brown.<br />

Skeletal structure. There are ec<strong>to</strong>somal brushes <strong>of</strong><br />

smaller subtylostyles (280–428 × 9–18 µm); choanosomal<br />

large subtylostyles (430–676 × 6–9 µm), occasionally<br />

with acanthaceous heads; palmate isochelae (6–15 µm);<br />

and <strong>to</strong>xas with acanthaceous ends (60–360 µm).<br />

Zoogeographic distribution. Widespread and locally<br />

common. In Alaska – central Aleutian Islands. Elsewhere<br />

– widely distributed in <strong>the</strong> Arctic Ocean (Barents<br />

Sea – White Sea, Kara Sea – Vilkitsky Strait, Greenland<br />

Sea – Island <strong>of</strong> Spitsbergen) and Nor<strong>the</strong>ast Atlantic<br />

Ocean (Norwegian Sea, Denmark Strait, Davis Strait).<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles and pebbles<br />

at depths between 170 and 436 m. Elsewhere – reported<br />

at depths between 14 and 1000 m and temperatures<br />

between 1.4 and 5.0°C.<br />

Remarks. Specimens from <strong>the</strong> Aleutian Islands differ<br />

in form from previous records but <strong>the</strong> spicule<br />

complement (types and size ranges) <strong>of</strong> <strong>the</strong> specimens<br />

conform perfectly <strong>to</strong> A. arcigera so we assume <strong>the</strong>y are<br />

a previously unreported growth form <strong>of</strong> <strong>the</strong> same species.<br />

The shrimp Eualus barbatus is <strong>of</strong>ten associated with<br />

this sponge.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 192 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ (center).<br />

3) Same specimen as in pho<strong>to</strong>s 1 and 2 showing details<br />

<strong>of</strong> <strong>the</strong> rugose surface and apical region.


51. Artemisina stipitata Koltun, 1958<br />

Description. This sponge is flabellate in <strong>the</strong> Aleutian<br />

Islands but spherical and lobate forms have been<br />

reported elsewhere. It is basally stalked and gradually<br />

tapers <strong>to</strong> a holdfast. Conspicuous oscula are present on<br />

dorsal surfaces. The stalk is cylindrical and rigid. The<br />

body is s<strong>of</strong>t and elastic. Height and width are at least 50<br />

cm. The ec<strong>to</strong>some is yellow or light brown. The choanosome<br />

is orange-brown.<br />

Skeletal structure. Ec<strong>to</strong>somal skele<strong>to</strong>n has tangentially<br />

arranged small styles with acanthose heads (220–340<br />

× 6–10 µm). The reticulate choanosomal skele<strong>to</strong>n has<br />

fusiform styles with acanthose heads (460–510 × 18–25<br />

µm). Microscleres are palmate isochelae (10–19 µm).<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – central Aleutian Islands. Elsewhere – previously<br />

known from only two specimens collected in sou<strong>the</strong>rn<br />

Kuril Strait until discovered in <strong>the</strong> central Aleutian<br />

Islands in 2004.<br />

Habitat. In <strong>the</strong> Aleutian Islands – attached <strong>to</strong> bedrock<br />

outcrops, boulders, and cobbles at depths between 80<br />

and 239 m on shelf and upper slope habitats. Elsewhere<br />

– no information available.<br />

Remarks. It is similar in appearance <strong>to</strong> Tedania kagalaskai,<br />

with which it co-occurs. The dorsal surface <strong>of</strong> A.<br />

stipitata is typically more rounded than T. kagalaskai and<br />

<strong>the</strong> body form <strong>of</strong> <strong>the</strong> latter species is much smoo<strong>the</strong>r<br />

and more distinctly triangular. A. stipitata is <strong>of</strong>ten associated<br />

with <strong>the</strong> gorgonian Fanellia compressa.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 150 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ showing <strong>the</strong><br />

67<br />

detail <strong>of</strong> <strong>the</strong> oscula on <strong>the</strong> dorsal surface. 3) Specimen<br />

observed in situ at a depth <strong>of</strong> 87 m in <strong>the</strong> central Aleutian<br />

Islands. 4) Specimen observed in situ at a depth <strong>of</strong><br />

105 m in <strong>the</strong> central Aleutian Islands. A juvenile king<br />

crab uses <strong>the</strong> sponge as a perch.


68 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

52. Artemisina sp.<br />

Description. Aleutian Island specimens consist <strong>of</strong><br />

many large rounded lobes growing from a narrow base.<br />

Large lobes <strong>of</strong>ten develop side-branches. Koltun (1959)<br />

described this same species as funnel-shaped, thickly<br />

tabular or massive. The surface is strongly rugose with<br />

a thin ec<strong>to</strong>somal membrane. Circular oscula are flush<br />

with <strong>the</strong> surface. It is s<strong>of</strong>t and elastic but fragile. Size is<br />

large with height <strong>to</strong> 40 cm and width <strong>to</strong> 60 cm. Color<br />

in life varies from yellowish grey, light brown <strong>to</strong> orange;<br />

typically golden yellow color in situ.<br />

Skeletal structure. Ec<strong>to</strong>somal thin styles form a unispicular<br />

reticulation with microscleres scattered in<br />

between. Choanosomal multispicular tracts have large<br />

styles and single spicules. Styles are <strong>of</strong>ten acanthaceous<br />

at <strong>the</strong> base. There are large styles (490–840 × 15–30 µm),<br />

small styles (210–480 × 7–10 µm), palmate isochelae<br />

(12–22 µm), small <strong>to</strong>xa (30–120 µm), and large <strong>to</strong>xa<br />

(280–340 µm).<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – central Aleutian Islands. Elsewhere – Arctic<br />

Ocean (Barents, Greenland, Kara, and Laptev seas).<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, boulders,<br />

and cobbles at depths between 80 and 195 m. Elsewhere<br />

– reported at depths between 18 and 380 m.<br />

Remarks. This is Artemisina apollinis sensu Koltun<br />

(1959). However, A. apollinis was originally described<br />

from near <strong>the</strong> Kerguelen Islands in <strong>the</strong> sou<strong>the</strong>rn Indian<br />

Ocean so conspecificity is unlikely. It is similar in<br />

appearance <strong>to</strong> Mycale loveni with which it co-occurs, but<br />

this species is much more heavily lobed than M. loveni<br />

and narrows <strong>to</strong> a s<strong>to</strong>ut and narrow base. M. loveni is more<br />

massive with a less defineable base. It may be preyed<br />

upon by <strong>the</strong> sea star Henricia sp.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 195 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 . 2)<br />

Specimen collected at a depth <strong>of</strong> 155 m in <strong>the</strong> central<br />

Aleutian Islands. Grid marks are 1 cm 2 . 3) Specimen<br />

observed at a depth <strong>of</strong> 122 m in <strong>the</strong> central Aleutian<br />

Islands.


53. Coelosphaera oglalai Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge is subglobular or massively<br />

encrusting. The smooth surface is covered irregularly<br />

with conical papillae <strong>of</strong> very different sizes, ranging<br />

from 2–20 mm in height and 1–18 mm in diameter.<br />

Individuals are <strong>to</strong> about 8 cm in diameter. Color in life<br />

is light orange; beige in ethanol.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some is a tangential arrangement<br />

<strong>of</strong> tylote bundles in some areas and a tangential<br />

arrangement <strong>of</strong> all spicule types in o<strong>the</strong>r areas. In <strong>the</strong><br />

choanosome, strongyles are arranged halichondroid,<br />

relatively dense; polyspicular tracts are vaguely recognizable<br />

in some areas. The choanosomal megascleres vary<br />

from blunt ended (anis-) oxeas <strong>to</strong> strongyles (570–634<br />

× 27–32 µm), always with finely acanthose ends. Ec<strong>to</strong>somal<br />

tylotes (325–364 × 7–10 µm) have slightly acanthose<br />

ends. Microscleres are arcuate isochelae (47–52 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> cobbles and pebbles at depths<br />

between 100 and 155 m.<br />

69<br />

Remarks. They may be overgrown with bryozoans and<br />

found in association with <strong>the</strong> demosponge Iophon piceum<br />

abipocillus.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


70 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

54. Inflatella globosa Koltun, 1955<br />

Description. This sponge is subglobular with a conulose<br />

surface. Tiny conules are distributed uniformly<br />

over <strong>the</strong> surface <strong>of</strong> <strong>the</strong> sponge, but oscula are a<strong>to</strong>p small<br />

papillae that are restricted <strong>to</strong> <strong>the</strong> dorsal surface. The<br />

oscula contract upon fixation. Consistency is ra<strong>the</strong>r firm<br />

but elastic. Diameter is <strong>to</strong> approximately 50 cm. Color<br />

in life is orange, yellow, <strong>to</strong> creamy white; pale yellow in<br />

ethanol.<br />

Skeletal structure. There is a thick dermal membrane,<br />

densely packed with tylotes (300–400 µm in thickness)<br />

without apparent organization. Tylotes (about 240–350<br />

× 5–10 µm) have distinctive swollen heads that form<br />

polyspicular tracts arranged in an irregular meshwork.<br />

There are no microscleres.<br />

Zoogeographic distribution. Locally common in<br />

<strong>the</strong> North Pacific Ocean. In Alaska – central Aleutian<br />

Islands. Elsewhere – Bering Sea near Mednyi Island<br />

(Commander Islands), western Sea <strong>of</strong> Okhotsk, and<br />

Sea <strong>of</strong> Japan.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock and cobbles<br />

at depths between 56 and 138 m. Elsewhere – on rock,<br />

gravel, and sand at depths between 6 and 299 m and a<br />

temperature <strong>of</strong> 2°C.<br />

Remarks. The genus Inflatella typically has strongyles<br />

but Koltun (1959, fig. 59) described Inflatella<br />

globosa as having tylotes. So this species as described by<br />

Koltun might be transferred <strong>to</strong> ano<strong>the</strong>r genus in <strong>the</strong><br />

future. I. globosa is similar <strong>to</strong> Kirkpatrickia borealis but<br />

is more globular with oscules on <strong>to</strong>p <strong>of</strong> small papillae,<br />

while <strong>the</strong> latter species is irregularly massive with<br />

relatively inconspicuous oscules. Also, I. globosa has<br />

tylotes only, while K. borealis has tylotes, styles, and a few<br />

strongyles.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 138 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 . 2)<br />

Same specimen as in pho<strong>to</strong> 1 in situ.


55. Lissodendoryx (Lissodendoryx) behringi Koltun, 1958<br />

Description. This sponge is globular. Surface is very<br />

uneven, covered with numerous wart-like papillae.<br />

Oscula a<strong>to</strong>p <strong>the</strong> papillae contract upon collection. The<br />

contracted surface <strong>of</strong> <strong>the</strong> specimen on deck (see pho<strong>to</strong>)<br />

suggests that it looks quite different in situ. Consistency<br />

is only slightly elastic, easy <strong>to</strong> tear. Ec<strong>to</strong>some is relatively<br />

thick and easily detachable. Size is <strong>to</strong> 30 cm (diameter)<br />

× 20 cm (height). Color in life ranges from yellow <strong>to</strong><br />

light orange.<br />

Skeletal structure. This species has ec<strong>to</strong>somal <strong>to</strong>rnotes<br />

(380–750 × 10–18 µm) resembling strongyles and<br />

styles, choanosomal acanthostyles (290–680 × 20–40<br />

µm), and arcuate isochelae (42–47 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – known from <strong>the</strong><br />

Bering Sea (Russia) and <strong>the</strong> Sea <strong>of</strong> Okhotsk.<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles and boulders<br />

at depths between 87 <strong>to</strong> 220 m. Elsewhere – reported at<br />

depths between 32 and 198 m.<br />

Remarks. Koltun (1958) mentions strongylote ec<strong>to</strong>somal<br />

megascleres only in his description <strong>of</strong> this<br />

species, but we note some individual differences<br />

71<br />

between specimens that we have examined. In some<br />

specimens strongylote forms dominate, while o<strong>the</strong>rs<br />

have mainly stylote ec<strong>to</strong>somal <strong>to</strong>rnotes. As all o<strong>the</strong>r<br />

characters and <strong>the</strong> dimensions <strong>of</strong> <strong>the</strong> spicules are within<br />

<strong>the</strong> range for L. behringi, we attribute <strong>the</strong>se differences<br />

<strong>to</strong> intraspecific variations. Gross morphology and spicule<br />

complement are similar <strong>to</strong> Phorbas paucistyliferus, but<br />

<strong>the</strong> spicule architecture is quite different.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 124 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


72 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

56. Lissodendoryx (Ectyodoryx) olgae (Hentschel, 1929)<br />

Description. This sponge is massively encrusting.<br />

Oscula are in small depressions; surface is corrugated.<br />

Consistency is s<strong>of</strong>t and very fragile. Diameter is <strong>to</strong> 15 cm.<br />

Color in life is brown <strong>to</strong> golden brown.<br />

Skeletal structure. There are tangentially arranged<br />

ec<strong>to</strong>somal tylotes (240–290 × 4–8 µm), <strong>of</strong>ten strongylote.<br />

Choanosomal acanthostyles are in two size categories<br />

– large (235–310 × 12–18 µm), and smaller echinating<br />

acanthostyles (120–160 × 6–8 µm). There are large<br />

arcuate chelae (48–52 µm), small isochelae (15–20 µm),<br />

and sigmas (48–62 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – Arctic Ocean<br />

(western Barents Sea) and North Atlantic Ocean (near<br />

Norway).<br />

Habitat. In Alaska – attached <strong>to</strong> small cobbles and<br />

pebbles in generally low-relief (i.e., flat-bot<strong>to</strong>med) habitat<br />

and at depths between 150 and 160 m. Elsewhere –<br />

reported at depths between 130 and 210 m.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands growing with <strong>the</strong> gorgonian<br />

Plumarella sp. Grid marks are 1 cm 2 .


57. Lissodendoryx (Lissodendoryx) oxeota Koltun, 1958<br />

Description. This sponge is massive-lobate and encrusting.<br />

Surface has small papillae. A thick ec<strong>to</strong>somal<br />

membrane covers an underlying honeycombed structure<br />

<strong>of</strong> <strong>the</strong> ec<strong>to</strong>some. Consistency is elastic and compressible.<br />

Diameter is <strong>to</strong> 15 cm. Color in life is golden<br />

brown.<br />

Skeletal structure. There are ec<strong>to</strong>somal oxeas and tylotes<br />

(239–322 × 9–12 µm), choanosomal acanthostyles<br />

(231–426 × 12–18 µm), and arcuate isochelae (16–<br />

21 µm).<br />

Zoogeographic distribution. Rare. In Alaska – central<br />

Aleutian Islands. Elsewhere – previously known from<br />

only two records in <strong>the</strong> Sea <strong>of</strong> Okhotsk (east <strong>of</strong> Sakhalin<br />

Island and in Kuril Strait).<br />

Habitat. In Alaska – encrusts o<strong>the</strong>r demo<strong>sponges</strong> at<br />

depths between 758 and 955 m. Elsewhere – reported<br />

at depths between 100 and 110 m.<br />

Remarks. Aleutian Island specimens encrust near <strong>the</strong><br />

base <strong>of</strong> <strong>the</strong> demo<strong>sponges</strong> Esperiopsis flagrum and Abes<strong>to</strong>pluma<br />

ramosa.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 954 m<br />

in <strong>the</strong> central Aleutian Islands. Specimen is encrusting<br />

<strong>the</strong> demosponge Esperiopsis flagrum near <strong>the</strong> base.<br />

Grid marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1<br />

(indicated by <strong>the</strong> white arrow) in situ. The separation<br />

between <strong>the</strong> red laser marks is 10 cm.<br />

73


74 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

58. Lissodendoryx (Lissodendoryx) papillosa Koltun, 1958<br />

Description. This species appears as described by<br />

Koltun (1958) as a globular or massive-lobate sponge,<br />

only slightly elastic and up <strong>to</strong> 6 cm in height. It bears<br />

closely spaced cone-shaped papillae and has an easily<br />

detachable dermal membrane. Color in life is gold <strong>to</strong><br />

golden brown.<br />

Skeletal structure. Spicules form an irregular mesh.<br />

Styles (495–1050 × 15–24 µm) are smooth, generally<br />

slightly acanthose at <strong>the</strong> blunt end. Ec<strong>to</strong>somal tylotes<br />

(275–415 × 8–10 µm) have acanthose ends. Microscleres<br />

are arcuate isochelae (25–38 µm).<br />

Zoogeographic distribution. Rare. In Alaska – Bering<br />

Sea (Zhemchug Canyon). Elsewhere – previously known<br />

only from <strong>the</strong> Sea <strong>of</strong> Okhotsk.<br />

Habitat. In Alaska – attached <strong>to</strong> hexactinellid sponge<br />

skele<strong>to</strong>ns at a depth <strong>of</strong> 911 m. Elsewhere – no information<br />

available.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 911 m<br />

in Zhemchug Canyon, Bering Sea, with associated<br />

ophiuroids.


59. Monanchora alaskensis (Lambe, 1895)<br />

Description. This stalked sponge widens from a<br />

relatively narrow peduncle <strong>to</strong> <strong>the</strong> appearance <strong>of</strong> many<br />

agglutinated tubes (up <strong>to</strong> eight tubes). Growth form<br />

may also be flabellate, dactylate, or irregularly lobate<br />

(Koltun, 1959). Surface is smooth; large oscula are arranged<br />

in rows on <strong>the</strong> apical surface. The consistency<br />

is elastic and compressible but difficult <strong>to</strong> tear due <strong>to</strong><br />

<strong>the</strong> polyspicular tracts <strong>of</strong> <strong>the</strong> choanosome. Height is <strong>to</strong><br />

at least 17 cm. Color in life is golden brown <strong>to</strong> brown.<br />

Skeletal structure. There are ec<strong>to</strong>somal thin styles<br />

(120–200 × 7–9 µm), choanosomal styles (180–360 ×<br />

13–20 µm) that form an irregular meshwork <strong>of</strong> polyspicular<br />

tracts, anchorate isochelae (70–90 µm), and<br />

small isochelae (30–40 µm).<br />

Zoogeographic distribution. Widespread but uncommon<br />

in <strong>the</strong> North Pacific Ocean. In Alaska – central<br />

Aleutian Islands and Bering Sea. Elsewhere – Bering Sea<br />

(Russia) and Sea <strong>of</strong> Okhotsk.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock and cobbles<br />

at depths between 146 and 364 m. Elsewhere – on peb-<br />

bles, rocks, and sand at depths between 32 and 148 m<br />

and temperatures <strong>of</strong> 1.4 <strong>to</strong> 6.5°C.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 146 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

75


76 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

60. Monanchora laminachela Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge is stalked with a subglobular<br />

body and a corrugated surface in life which becomes<br />

conulose after freezing. Small circular oscula in depressions<br />

on <strong>the</strong> surface are only visible in live specimens.<br />

Consistency is elastic but firm. Total height is <strong>to</strong> 10<br />

cm; smooth stalk with a height <strong>of</strong> 4 cm. Color in life is<br />

golden yellow.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Ec<strong>to</strong>somal skele<strong>to</strong>n consists <strong>of</strong> a thick<br />

membrane <strong>of</strong> tangential brushes <strong>of</strong> smaller styles,<br />

fairly dense, and isochelae in between. Choanosome<br />

consists <strong>of</strong> thick, ascending polyspicular tracts <strong>of</strong> large,<br />

thick styles connected by shorter tracts <strong>of</strong> large styles.<br />

Ascending tracts (114–387 µm in diameter) support<br />

<strong>the</strong> surface tubercles and are visible <strong>to</strong> <strong>the</strong> unaided eye<br />

when dissecting <strong>the</strong> sponge. Spicules consist <strong>of</strong> megascleres<br />

– thin, small, ec<strong>to</strong>somal (sub)tylostyles (350–395<br />

× 9–11 µm), and choanosomal thick styles (840–1170 ×<br />

34–42 µm). Two categories <strong>of</strong> microscleres are present –<br />

anchorate isochelae with a peculiar plate in <strong>the</strong> middle<br />

(22–25 µm) and thin sigmas (19–23 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Attached <strong>to</strong> boulders and cobbles at depths<br />

between 203 and 485 m.<br />

Pho<strong>to</strong>s. 1) Preserved specimens (frozen) collected at<br />

a depth <strong>of</strong> 485 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimens as in pho<strong>to</strong> 1 with<br />

o<strong>the</strong>r biota. 3) Same specimens as in pho<strong>to</strong>s 1 and 2<br />

(indicated by <strong>the</strong> white arrows) in situ.


61. Monanchora pulchra (Lambe, 1894)<br />

Description. This sponge is flabellate with flattened,<br />

<strong>of</strong>ten coalesced branches. It is typically uniplanar in<br />

high current areas and multi-planed, even bushy, in<br />

areas <strong>of</strong> lower current. The surface is smooth and <strong>the</strong><br />

consistency is elastic. Height and width are <strong>to</strong> at least<br />

50 cm. Color in life is orange, yellow, or brownish<br />

orange.<br />

Skeletal structure. Ec<strong>to</strong>somal subtylostyles are scattered<br />

without obvious orientation. There are ec<strong>to</strong>somal<br />

styles <strong>to</strong> subtylostyles (225–680 × 8–12 µm). Choanosomal<br />

styles <strong>to</strong> subtylostyles are longer and thicker<br />

(670–990 × 28–40 µm). Isochelae are anchorate (18–22<br />

µm). Sigmas (16–20 µm) are typically present.<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – Aleutian Islands. Elsewhere – Pacific Coast <strong>of</strong><br />

<strong>the</strong> Kuril Islands and Pacific Coast <strong>of</strong> Canada (British<br />

Columbia).<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, boulders,<br />

cobbles, and pebbles at depths between 79 and 330 m.<br />

Elsewhere – attached <strong>to</strong> pebbles and rocks at depths<br />

between 87 and 232 m and at temperatures between<br />

1.8 and 5.3°C.<br />

Remarks. May be preyed upon by <strong>the</strong> sea star Henricia<br />

sp.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> a specimen collected at a<br />

depth <strong>of</strong> 80 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in<br />

situ (center) with a lighter-colored specimen (right). 3)<br />

Specimen collected at a depth <strong>of</strong> 150 m in <strong>the</strong> central<br />

Aleutian Islands.<br />

77


78 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

62. Crella brunnea (Hansen, 1885)<br />

Description. This sponge is polymorphic; may be tabular,<br />

irregularly compressed, occasionally massive-lobate<br />

or markedly lobate with an uneven, corrugated surface.<br />

The dermal membrane is thinly pellicular. Oscula are<br />

not visible on <strong>the</strong> surface. Dimensions are <strong>to</strong> 7 cm. Color<br />

in life is light <strong>to</strong> dark brown.<br />

Skeletal structure. Ec<strong>to</strong>somal <strong>to</strong>rnotes have 2–4<br />

pointed “teeth” at <strong>the</strong> ends (150–290 × 4–7 µm). There<br />

are choanosomal acanthostyles <strong>to</strong> acanthostrongyles<br />

(210–380 × 10–21 µm) and small anchorate isochelae<br />

(23–37 µm). Koltun (1959) additionally reports large<br />

anchorate isochelae (44–84 µm); <strong>the</strong>se were lacking in<br />

specimens we examined from <strong>the</strong> Aleutian Islands.<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

central Aleutian Islands. Elsewhere – Arctic Ocean (Barents<br />

Sea – White Sea, and Kara Sea) and North Atlantic<br />

Ocean (Norwegian Sea, Denmark Strait, Davis Strait).<br />

Habitat. In Alaska – attached <strong>to</strong> pebbles at a depth <strong>of</strong><br />

190 m. Elsewhere – reported at depths between 20 and<br />

300 m, temperatures <strong>of</strong> 1.5 <strong>to</strong> 4.95°C, and salinities <strong>of</strong><br />

27.68 <strong>to</strong> 35.01 psu.<br />

Pho<strong>to</strong>. 1) Fragmented specimen collected at a depth<br />

<strong>of</strong> 190 m in <strong>the</strong> central Aleutian Islands. Grid marks<br />

are 1 cm 2 .


63. Hymedesmia (Stylopus) dermata Lundbeck, 1910<br />

Description. This sponge is small, thin, and encrusting.<br />

Oscula are not visible on <strong>the</strong> surface. Consistency<br />

is s<strong>of</strong>t. Color in life is light orange; beige after preservation<br />

in ethanol.<br />

Skeletal structure. There are polytylote subtylostyles<br />

<strong>to</strong> subtylostrongyles (380–450 × 5–6 µm), erect on <strong>the</strong><br />

substrate with <strong>the</strong> points facing out, and acanthostyles<br />

(430–470 × 10–12 µm).<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – Aleutian Islands. Elsewhere – Arctic<br />

Ocean (Barents Sea, Laptev Sea, Kara Sea – Vilkitsky<br />

Strait, and Greenland Sea) and North Atlantic Ocean<br />

(between Faroe Islands and Iceland).<br />

Habitat. In Alaska – attached <strong>to</strong> mollusk shells at a<br />

depth <strong>of</strong> 146 m. Elsewhere – attached <strong>to</strong> rocks and<br />

pebbles on sandy ooze at depths between 91 and 410<br />

m, <strong>water</strong> temperatures <strong>of</strong> 1.47 <strong>to</strong> 1.17°C, and salinities<br />

<strong>of</strong> 34.42 <strong>to</strong> 34.65 psu.<br />

Pho<strong>to</strong>s. 1) Preserved specimen (in ethanol) attached<br />

<strong>to</strong> a green false jingle (Pododesmus macrochisma) shell<br />

collected at a depth <strong>of</strong> 146 m in <strong>the</strong> central Aleutian<br />

Islands. Grid marks are 1 cm 2 . 2) Close-up view <strong>of</strong> same<br />

specimen as in pho<strong>to</strong> 1.<br />

79


80 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

64. Hymedesmia (Hymedesmia) irregularis Lundbeck, 1910<br />

Description. This sponge is thinly encrusting with a<br />

smooth or partially hispid surface. According <strong>to</strong> Koltun<br />

(1959) <strong>the</strong>re are oscula a<strong>to</strong>p broad papillae. Color in<br />

life is greyish yellow or bluish white.<br />

Skeletal structure. There are acanthostyles (125–540 ×<br />

16–32 µm). Ec<strong>to</strong>somal spicules are polytylote strongyles<br />

(280–410 × 6–10 µm) tangentially arranged in bundles.<br />

Microscleres are arcuate isochelae (32–48 µm).<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – Bering Sea (Pribil<strong>of</strong> Canyon). Elsewhere<br />

– Arctic Ocean (White Sea) and North Atlantic<br />

Ocean (Davis Strait, Denmark Strait, southwest <strong>of</strong> Iceland<br />

near <strong>the</strong> Faroe Islands).<br />

Habitat. In Alaska – grows on boulders and cobbles at<br />

depths around 300 m. Elsewhere – reported at depths<br />

between 293 and 1441 m.<br />

Pho<strong>to</strong>. 1) Fragments <strong>of</strong> a preserved (frozen and <strong>the</strong>n<br />

s<strong>to</strong>red in ethanol) specimen collected at a depth <strong>of</strong> 300<br />

m in Pribil<strong>of</strong> Canyon, Bering Sea.


65. Kirkpatrickia borealis Koltun, 1970<br />

Description. In situ this species has a globular body<br />

covered with numerous papillae and possesses large<br />

circular oscula. On deck specimens typically collapse<br />

completely and appear <strong>to</strong> be irregularly massive-lobate<br />

without papillae and oscula. Surface is smooth and<br />

covered by a thin ec<strong>to</strong>somal membrane. Circular oscula<br />

on <strong>the</strong> surface are slightly elevated and close upon<br />

collection. The consistency is elastic and compressible.<br />

Diameter is <strong>to</strong> 10 cm. Color in life is yellow, orange, or<br />

golden brown.<br />

Skeletal structure. There are ec<strong>to</strong>somal tylotes (350–<br />

440 × 4–7 µm); choanosomal styles include a few strongyles<br />

(470–680 × 15–22 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – Northwest<br />

Pacific Ocean (previously known only from <strong>of</strong>f Shikotan<br />

Island, Kuril Islands).<br />

Habitat. In Alaska – attached <strong>to</strong> boulders and cobbles<br />

at depths between 82 and 426 m. Elsewhere – reported<br />

at depths between 472 and 479 m.<br />

Remarks. K. borealis is similar <strong>to</strong> Inflatella globosa but<br />

is irregularly massive with relatively inconspicuous<br />

oscules, while <strong>the</strong> latter species is more globular with<br />

oscules on <strong>to</strong>p <strong>of</strong> small papillae. Also, K. borealis has<br />

tylotes, styles, and a few strongyles while I. globosa has<br />

tylotes only.<br />

Pho<strong>to</strong>s. 1) Collapsed specimen collected at a depth <strong>of</strong><br />

146 m in <strong>the</strong> central Aleutian Islands. Grid marks are<br />

1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ.<br />

81


82 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

66. Phorbas paucistylifer Koltun, 1958<br />

Description. This sponge is globular with two distinct<br />

surface morphologies; some specimens are covered with<br />

round, crater-like depressions and round oscula that are<br />

flush with <strong>the</strong> surface, o<strong>the</strong>rs have a surface covered<br />

with short papillae. Dermal membrane is thick. Consistency<br />

is s<strong>of</strong>t and elastic. Diameter is <strong>to</strong> 20 cm. Color in<br />

life is bright orange (dominant phase) or yellow.<br />

Skeletal structure. Aniso<strong>to</strong>rnotes (420–490 × 8–12<br />

µm) with long thin points form a dense ec<strong>to</strong>somal<br />

crust <strong>to</strong>ge<strong>the</strong>r with numerous isochelae. Choanosomal<br />

ascending plumose spicule tracts are <strong>of</strong> <strong>the</strong> same <strong>to</strong>rnotes,<br />

cored and echinated by acanthostyles (280–540<br />

× 10–30 µm). Anchorate isochelae are strongly bent,<br />

<strong>the</strong> outline <strong>of</strong> a half circle and tridentate (32–40 µm).<br />

Koltun (1959) described somewhat smaller <strong>to</strong>rnotes and<br />

acanthostyles.<br />

Zoogeographic distribution. North Pacific Ocean.<br />

Locally common. In Alaska – central Aleutian Islands.<br />

Elsewhere – Sea <strong>of</strong> Okhotsk and Sea <strong>of</strong> Japan.<br />

Habitat. In Alaska – patchily distributed on bedrock<br />

and cobbles at depths between 56 and 120 m. Elsewhere<br />

– reported on rocks and ooze at depths between 3 and<br />

414 m and a temperature <strong>of</strong> 2.3°C.<br />

Remarks. Gross morphology and spicule complement<br />

are similar <strong>to</strong> Lissodendoryx behringi, but <strong>the</strong> spicule architecture<br />

is quite different.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 124 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ with <strong>the</strong> gorgonian<br />

Fanellia compressa. 3) Specimen collected at a depth<br />

<strong>of</strong> 110 m in <strong>the</strong> central Aleutian Islands. Grid marks are<br />

1 cm 2 . 4) Same specimen as in pho<strong>to</strong> 3 in situ.


67. Melonanchora globogilva Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge is globular. The surface is<br />

covered with numerous thin-walled, bulbous fistules,<br />

4–8 mm high and up <strong>to</strong> 4 mm in width; widest at <strong>the</strong><br />

distal end. The ec<strong>to</strong>some is a translucent white layer, easily<br />

detachable, 400–650 µm thick. Diameter is <strong>to</strong> about<br />

10 cm. Color in life is light yellow with whitish, almost<br />

translucent fistules.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some has smooth tylotes<br />

partially arranged perpendicular <strong>to</strong> <strong>the</strong> surface but<br />

oriented in all directions <strong>to</strong> some degree. From <strong>the</strong><br />

choanosome <strong>the</strong>re are tracts <strong>of</strong> tylotes fanning out <strong>to</strong>wards<br />

<strong>the</strong> ec<strong>to</strong>some. Tylotes with acanthostyles are also<br />

found in <strong>the</strong> choanosome. Tylotes are 640–680 × 10–<br />

12 µm. Choanosomal acanthostyles (660–670 × 20–<br />

30 µm) are singly distributed without recognizable orientation.<br />

Microscleres are three categories <strong>of</strong> isochelae:<br />

large isochelae with fimbriae (65–93 µm), large isochelae<br />

<strong>of</strong> <strong>the</strong> same size but with dented outer margins, and<br />

small anchorate isochelae (23–25 µm).<br />

Zoogeographic distribution. Rare. In Alaska – central<br />

Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> pebbles and shell hash at a depth<br />

<strong>of</strong> 173 <strong>to</strong> 190 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 190 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Specimen (indicated by <strong>the</strong> white arrow) observed at<br />

a depth <strong>of</strong> 179 m in <strong>the</strong> central Aleutian Islands.<br />

83


84 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

68. Myxilla (Myxilla) behringensis Lambe, 1895<br />

Description. This sponge is massive and irregularly<br />

globular. Surface is smooth. Consistency is slightly elastic<br />

and ra<strong>the</strong>r firm due <strong>to</strong> <strong>the</strong> polyspicular tracts <strong>of</strong> <strong>the</strong><br />

choansosome. Diameter is <strong>to</strong> at least 4–5 cm. Color in<br />

life is whitish <strong>to</strong> golden brown.<br />

Skeletal structure. Tylotes (220–270 × 6–10 µm) are<br />

ec<strong>to</strong>somal. Choanosomal acanthostyles (250–380 ×<br />

10–15 µm) occur in a meshwork <strong>of</strong> polyspicular tracts.<br />

There are anchorate large isochelae (70–80 µm), small<br />

isochelae (15–18 µm), large sigmas (65–78 µm), and<br />

small sigmas (27–32 µm).<br />

Zoogeographic distribution. Widespread but rare in<br />

<strong>the</strong> North Pacific Ocean. In Alaska – central Aleutian<br />

Islands and Bering Sea. Elsewhere – Sea <strong>of</strong> Okhotsk,<br />

Sea <strong>of</strong> Japan, and British Columbia (Vancouver Island).<br />

Habitat. In Alaska – encrusts o<strong>the</strong>r demo<strong>sponges</strong> at<br />

depths between 190 and 195 m. Elsewhere – reported at<br />

depths between 32 and 104 m and a salinity <strong>of</strong> 33.95 psu.<br />

Remarks. In Alaska, <strong>the</strong> species is epizoic on <strong>the</strong><br />

demosponge Halichondria oblonga. It was considered by<br />

Koltun (1958) as a subspecies <strong>of</strong> Myxilla incrustans.<br />

Pho<strong>to</strong>. 1) Specimen (center) collected at a depth <strong>of</strong><br />

195 m in <strong>the</strong> central Aleutian Islands. Grid marks are<br />

1 cm 2 . Specimen is encrusting <strong>the</strong> demosponge Halichondria<br />

oblonga.


69. Myxilla (Ectyomyxilla) parasitica Lambe, 1893<br />

Description. This sponge is encrusting, typically on<br />

<strong>the</strong> shells <strong>of</strong> scallops (Chlamys sp.). Surface is finely<br />

structured with radiating canals leading <strong>to</strong> small oscula<br />

that are flush with <strong>the</strong> surface. Thin encrustation is<br />

less than 1 cm in height and typically covers <strong>the</strong> entire<br />

available shell surface. Color in life is light brown <strong>to</strong><br />

golden brown.<br />

Skeletal structure. Ec<strong>to</strong>somal <strong>to</strong>rnotes have unequal<br />

ends and mammillate projections at <strong>the</strong>se ends (160–<br />

186 × 7–9 µm). Choanosomal acanthostyles are in an irregular<br />

meshwork (208–310 × 10–15 µm); microscleres<br />

are large isochelae (52–65 µm), small isochelae (15–20<br />

µm), and thin sigmata (17–25 µm).<br />

Zoogeographic distribution. Locally abundant in <strong>the</strong><br />

North Pacific Ocean. In Alaska – central Aleutian Islands.<br />

Elsewhere – Bering Sea (Russia), Sea <strong>of</strong> Okhotsk<br />

(near <strong>the</strong> Kuril Islands) and British Columbia (near<br />

Vancouver Island).<br />

Habitat. In Alaska – encrusts scallop shells at depths<br />

between 98 and 250 m. Elsewhere – on rocks, pebbles,<br />

and sand at depths between 15 and 126 m.<br />

Remarks. They are <strong>of</strong>ten very abundant in scallop<br />

beds.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 138 m<br />

in <strong>the</strong> central Aleutian Islands. Specimen completely<br />

encrusts a scallop (Chlamys sp.). Grid marks are 1 cm 2 .<br />

2) Specimen (center) collected at a depth <strong>of</strong> 98 m in<br />

<strong>the</strong> central Aleutian Islands. 3) A bed <strong>of</strong> scallops (Chlamys<br />

sp.), almost all <strong>of</strong> which are completed encrusted<br />

with Myxilla parasitica. The gorgonian Fanellia fraseri is<br />

at center.<br />

85


86 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

70. Myxilla (Bur<strong>to</strong>nanchora) pedunculata Lundbeck, 1905<br />

Description. This sponge is globular or lobate, usually<br />

with a stalk. The surface is slightly hispid. Irregularly<br />

scattered circular oscula are flush with <strong>the</strong> surface. Consistency<br />

is s<strong>of</strong>t and elastic. Height and width are <strong>to</strong> 12<br />

cm. Color in life is yellow <strong>to</strong> bright yellow.<br />

Skeletal structure. Spicules are arranged in long ascending<br />

fibers, connected by shorter spicule tracts and<br />

single spicules. There are smooth or slightly acanthose<br />

styles (270–551 × 10–20 µm), ec<strong>to</strong>somal <strong>to</strong>rnotes (220–<br />

380 × 6–10 µm), and microscleres that are anchorate<br />

isochelae (42–75 µm).<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – Bering Sea (Pribil<strong>of</strong> Canyon).<br />

Elsewhere – Arctic Ocean (Kara Sea – Vilkitsky Strait,<br />

Laptev Sea) and North Atlantic Ocean (Iceland and<br />

Faroe Islands).<br />

Habitat. In Alaska – attached <strong>to</strong> pebbles and cobbles<br />

at depths between 204 and 236 m. Elsewhere – reported<br />

at depths between 28 and 325 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 204 m<br />

in Pribil<strong>of</strong> Canyon, Bering Sea. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 showing <strong>the</strong> detail <strong>of</strong><br />

<strong>the</strong> oscula. 3) Specimen in situ collected at a depth <strong>of</strong><br />

236 m in Pribil<strong>of</strong> Canyon, Bering Sea. The demosponge<br />

Craniella spinosa is attached <strong>to</strong> <strong>the</strong> specimen. The separation<br />

between <strong>the</strong> red laser marks is 10 cm.


71. Stelodoryx oxeata Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This species exhibits two growth forms.<br />

One is a stalked, conical form with a ridged surface.<br />

The o<strong>the</strong>r is a massively encrusting, lobate sponge with<br />

a smooth surface. Consistency is ra<strong>the</strong>r hard and only<br />

slightly elastic, due <strong>to</strong> <strong>the</strong> densely packed spicules in<br />

<strong>the</strong> ec<strong>to</strong>some. The stalked specimen has a stalk <strong>of</strong> 2 ×<br />

0.7 cm, and <strong>the</strong> body is 5 × 4 cm in greatest dimensions.<br />

Color in life for both growth forms is greenish yellow<br />

<strong>to</strong> light green.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Ec<strong>to</strong>some is densely packed with a tangential<br />

arrangement <strong>of</strong> <strong>to</strong>rnotes, peculiar shaped oxeas,<br />

and microscleres. The choanosome consists in places<br />

<strong>of</strong> an irregular reticulation <strong>of</strong> single spicules or short<br />

spicule tracts. Megascleres are oxeas (517–558 × 20–<br />

30 µm); <strong>the</strong> points <strong>of</strong> oxeas have a ragged, dented<br />

outline. Tornotes have acanthose ends (230–270 × 9–<br />

11 µm). Microscleres are large isochelae (54–110 µm),<br />

medium-sized isochelae (23–32 µm), small anchorate<br />

isochelae (9–13 µm), and thin centrotylote sigmas<br />

(8–12 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> cobbles and pebbles at depths<br />

between 175 and 712 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 395 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Specimen (indicated by <strong>the</strong> white arrow) collected<br />

at a depth <strong>of</strong> 711 m in <strong>the</strong> central Aleutian Islands.<br />

The separation between <strong>the</strong> red laser marks is 10 cm.<br />

3) Specimen (<strong>to</strong>p, center) collected at a depth <strong>of</strong> 175 m<br />

in <strong>the</strong> central Aleutian Islands. The separation between<br />

<strong>the</strong> red laser marks is 10 cm.<br />

87


88 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

72. Stelodoryx <strong>to</strong>poroki Koltun, 1958<br />

Description. This sponge is stalked, flabellate, or a<br />

somewhat flattened funnel. Consistency is elastic with a<br />

thin ec<strong>to</strong>somal membrane. It is s<strong>of</strong>t and floppy in situ.<br />

Height is <strong>to</strong> 17 cm and width <strong>to</strong> 12 cm. Color in life is<br />

light yellow; dark brown after freezing.<br />

Skeletal structure. Ec<strong>to</strong>somal tylotes have acanthaceous<br />

ends (218–300 × 8–10 µm). Choanosomal styles<br />

(500–1140 × 21–30 µm) occasionally have acanthaceous<br />

heads, and anchorate isochelae are in two size categories<br />

– large (115–150 µm) and small (30–40 µm).<br />

Zoogeographic distribution. Locally common in<br />

<strong>the</strong> North Pacific Ocean. In Alaska – central Aleutian<br />

Islands. Elsewhere – Sea <strong>of</strong> Okhotsk (near <strong>the</strong> Kuril<br />

Islands).<br />

Habitat. In Alaska – occurring in small patches (up <strong>to</strong><br />

5 individuals per m 2 ) on bedrock, muds<strong>to</strong>ne, boulders,<br />

and cobbles at depths between 1714 and 2314 m. Elsewhere<br />

– found on sand, pebbles, and “reefs” at depths<br />

between 113 and 303 m and at temperatures between<br />

1.8 and 3.1°C.<br />

Remarks. A sponge with similar appearance except<br />

larger (up <strong>to</strong> 50 cm diameter) and more robust (forming<br />

distinct bowls) occurs at depths between 1185 and<br />

1540 m. Collection <strong>of</strong> a specimen within this depth<br />

range and examination <strong>of</strong> <strong>the</strong> spicules is necessary <strong>to</strong><br />

confirm conspecificity, however.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen) specimen collected at<br />

a depth <strong>of</strong> 2176 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 (lower<br />

center) in situ. 3) Close-up view <strong>of</strong> specimen in situ at a<br />

depth <strong>of</strong> 1505 m in <strong>the</strong> central Aleutian Islands.


73. Stelodoryx vitiazi (Koltun, 1959)<br />

Description. This sponge is tube-shaped, sometimes<br />

irregularly cylindrical, with a hollow center. It occurs<br />

in clusters <strong>of</strong> up <strong>to</strong> five individuals and is fragile and<br />

inelastic. Height is <strong>to</strong> 15 cm and width <strong>to</strong> 4 cm. Color<br />

in life is light yellow <strong>to</strong> golden brown.<br />

Skeletal structure. Tangentially arranged <strong>to</strong>rnotes<br />

have acanthaceous ends in <strong>the</strong> ec<strong>to</strong>some. There is an irregular<br />

meshwork <strong>of</strong> paucispicular tracts and individual<br />

acanthostyles in <strong>the</strong> choanosome. There are <strong>to</strong>rnotes with<br />

acanthose ends (180–291 × 4–7 µm), acanthostyles (370–<br />

520 × 20–29 µm), and anchorate isochelae (25–46 µm).<br />

Zoogeographic distribution. Locally common in<br />

<strong>the</strong> North Pacific Ocean. In Alaska – central Aleutian<br />

Islands. Elsewhere – Bering Sea (near <strong>the</strong> Commander<br />

Islands) and <strong>the</strong> Sea <strong>of</strong> Okhotsk.<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles and pebbles at<br />

depths between 155 m and 1009 m. Elsewhere – found<br />

on sand, pebbles, and “reefs” at depths between 115<br />

and 820 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 155 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Specimen collected at a depth <strong>of</strong> 1009 m in <strong>the</strong> central<br />

Aleutian Islands. 3) Same specimen as in pho<strong>to</strong> 2<br />

in situ.<br />

89


90 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

74. Echinostylinos hirsutus Koltun, 1970<br />

Description. This sponge is short with a cylindrical<br />

body and hollow central cavity. Koltun (1970) reported<br />

that this species was stalked, but our observations indicate<br />

that it narrows near <strong>the</strong> base and does not necessarily<br />

have a true stalk. Surface is corrugated. Height is <strong>to</strong> 5<br />

cm. Color in life is light brown <strong>to</strong> light yellow.<br />

Skeletal structure. There are two categories <strong>of</strong> styles:<br />

long, 1320 × 25 µm (Koltun: 660–1650 × 45–54 µm), and<br />

shorter, 350 × 9 µm (Koltun: 400–540 × 5–10 µm). It has<br />

isochelae (sigmancistras) 27–30 µm (Koltun: sigmoid<br />

arcuate chelae 18–27 µm) and sigmas 40 µm (Koltun:<br />

filiform sigmas 16–22 µm). We regard <strong>the</strong> differences in<br />

spicule sizes as intraspecific variation.<br />

Zoogeographic distribution. Apparently a very rare<br />

species; known from only two locations. In Alaska –<br />

central Aleutian Islands. Elsewhere – Sea <strong>of</strong> Okhotsk.<br />

Habitat. In Alaska – occurring singly on cobbles and<br />

pebbles at depths between 665 and 711 m. Elsewhere –<br />

reported at depths between 1440 and 1540 m.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen) specimen collected at a<br />

depth <strong>of</strong> 711 m in <strong>the</strong> central Aleutian Islands. 2) Same<br />

specimen as in pho<strong>to</strong> 1 (indicated by <strong>the</strong> white arrow)<br />

in situ on cobble.


75. Tedania (Tedania) dirhaphis Hentschel, 1912<br />

Description. This sponge is irregularly massive-lobate,<br />

<strong>of</strong>ten with dactylate processes bearing circular oscula on<br />

<strong>to</strong>p. The surface is smooth. The consistency is s<strong>of</strong>t and<br />

elastic. Height and width are <strong>to</strong> 20 cm. Color in life is<br />

yellow <strong>to</strong> golden yellow; brown after freezing.<br />

Skeletal structure. Styles are smooth (238–565 × 9–18<br />

µm). Ec<strong>to</strong>somal tylotes have slightly acanthose ends<br />

(215–487 × 5–8 µm). Microscleres are rhaphides in two<br />

size categories – large rhaphides (200–400 µm) and<br />

small rhaphides (45–180 µm).<br />

Zoogeographic distribution. North and West Pacific<br />

Ocean. Uncommon. In Alaska – central Aleutian Islands<br />

and Bering Sea (Pribil<strong>of</strong> Canyon). Elsewhere – Sea <strong>of</strong><br />

Okhotsk, Pacific Coast <strong>of</strong> Kuril Islands, and South China<br />

Sea.<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles at depths between<br />

100 m and 341 m. Elsewhere – reported at depths<br />

between 4 and 550 m.<br />

Remarks. Tedania dirhaphis was originally described<br />

by Hentschel (1912) from shallow Indonesian <strong>water</strong>s.<br />

Koltun (1959) reported <strong>the</strong> same species from <strong>the</strong> Sea<br />

<strong>of</strong> Okhotsk and <strong>the</strong> Kuril Islands in <strong>the</strong> North Pacific<br />

Ocean and <strong>the</strong> Alaskan specimens conform perfectly<br />

<strong>to</strong> Koltun’s decription. The Alaskan specimens also<br />

conform <strong>to</strong> <strong>the</strong> original description (p. 45 and pl. XIX,<br />

fig. 20) in spicule complement, growth form, and color<br />

(Hentschel, 1912) and differ from <strong>the</strong> Indonesian specimens<br />

in size only (somewhat larger). Accordingly, we<br />

report this species as T. dirhapsis sensu Koltun, 1959,<br />

but caution that given <strong>the</strong> extremes in zoogeography,<br />

additional taxonomic work on this species is warranted.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 100 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Preserved (frozen) specimen collected at a depth <strong>of</strong><br />

341 m in Pribil<strong>of</strong> Canyon, Bering Sea. Grid marks are<br />

1 cm 2 . 3) Same specimen as in pho<strong>to</strong> 1 in situ with a<br />

shortspine thornyhead (Sebas<strong>to</strong>lobus alascanus) at left.<br />

The separation between <strong>the</strong> red laser marks is 10 cm.<br />

91


92 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

76. Tedania kagalaskai Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This large flabellate sponge is attached <strong>to</strong><br />

substrate with a firm stalk that widens about 10 cm above<br />

<strong>the</strong> holdfast. Surface is very smooth; oscula are in several<br />

rows on <strong>the</strong> flattened apical surface. Body is s<strong>of</strong>t; stalk<br />

is wiry. Maximum dimensions <strong>of</strong> <strong>the</strong> roughly triangular<br />

body are approximately 30 × 30 × 5 cm. Color in life is<br />

light brown <strong>to</strong> orange-brown.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Ec<strong>to</strong>somal tylotes (300–330 × 4–6 µm)<br />

have acanthose ends. There are choanosomal smooth<br />

styles (360–390 × 15–20 µm), and onychaetes possibly<br />

in two size categories – large (170–210 µm) and small<br />

(30–40 µm).<br />

Zoogeographic distribution. Locally common. In Alaska<br />

– central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> bedrock, boulders, and cobbles<br />

at depths between 59 and 170 m. Specimens with a similar<br />

gross morphology have been observed at depths near<br />

478 m, but collection <strong>of</strong> a specimen within this depth<br />

range and examination <strong>of</strong> <strong>the</strong> spicules is necessary <strong>to</strong><br />

confirm conspecificity.<br />

Remarks. Species is similar in appearance <strong>to</strong> Artimisina<br />

stipitata with which it co-occurs. The dorsal surface <strong>of</strong><br />

T. kagalaskai is typically flatter and <strong>the</strong> body form more<br />

distinctly triangular and with a much smoo<strong>the</strong>r surface<br />

than A. stipitata. This is <strong>the</strong> only known species <strong>of</strong> Tedania<br />

that is stalked.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 146 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 . 2)<br />

Same specimen as in pho<strong>to</strong> 1 in situ. 3) Specimen collected<br />

at a depth <strong>of</strong> 155 m in <strong>the</strong> central Aleutian Islands.<br />

Grid marks are 1 cm 2 . 4) Specimen in situ collected at a<br />

depth <strong>of</strong> 105 m in <strong>the</strong> central Aleutian Islands.


77. Asbes<strong>to</strong>pluma ramosa Koltun, 1958<br />

Description. This sponge is flagelliform. This species<br />

appears as described by Koltun (1959) and <strong>of</strong>ten<br />

consists <strong>of</strong> numerous more or less cylindrical branches<br />

diverging from one point and arranged in one plane.<br />

We have observed up <strong>to</strong> five branches that diverge at<br />

multiple points, however. Branches may be bent or<br />

slightly curved. Occasionally <strong>the</strong> sponge is markedly<br />

elongated and has a ramified, stalk-like appearance<br />

with many closely spaced fine projections (according <strong>to</strong><br />

Koltun). Height is <strong>to</strong> at least 72 cm with branches up <strong>to</strong><br />

1.5 cm thick. Color in life is light yellow, light orange,<br />

or creamy white; <strong>the</strong> lower portion is <strong>of</strong>ten devoid <strong>of</strong><br />

<strong>the</strong> fine lateral projections and consequently a darker<br />

color, <strong>of</strong>ten brown.<br />

Skeletal structure. Styles are arranged in a central<br />

axis with side-tracts running in<strong>to</strong> <strong>the</strong> lateral projections;<br />

styles are 238–1500 × 7–18 µm and anisochelae<br />

are 10–17 µm.<br />

Zoogeographic distribution. Widespread and locally<br />

abundant. In Alaska – central Aleutian Islands, eastern<br />

Gulf <strong>of</strong> Alaska (near <strong>the</strong> Fairwea<strong>the</strong>r Ground). Elsewhere<br />

– North Pacific Ocean (Kuril Islands, Vancouver<br />

Island), Arctic Ocean (Southwest Barents Sea, Kara<br />

Sea – Vilkitsky Strait, Laptev Sea – Shokalsky Strait, East<br />

Siberian Sea, Greenland Sea, and Baffin Bay), and<br />

North Atlantic Ocean (Faroe Islands).<br />

Habitat. In Alaska – attached with a holdfast <strong>to</strong> bedrock,<br />

muds<strong>to</strong>ne, boulders, cobbles, and occasionally<br />

hexactinellid sponge skele<strong>to</strong>ns at depths between 395<br />

and 1812 m; more abundant at depths shallower than<br />

1200 m. Elsewhere – reported on ooze and sandy-ooze<br />

bot<strong>to</strong>ms at depths between 41 and 1134 m and temperatures<br />

<strong>of</strong> 1.64 <strong>to</strong> 4.8°C.<br />

Remarks. This species occasionally has ophiuroid associates<br />

particularly at depths shallower than 500 m. It<br />

occurs within <strong>the</strong> same depth range as Esperiopsis flagrum<br />

but attaches <strong>to</strong> hard substrate ra<strong>the</strong>r than anchoring in<br />

s<strong>of</strong>t sediment. A. ramosa may have a carnivorous feeding<br />

habit like o<strong>the</strong>r Cladorhizidae so collected specimens<br />

may have small crustaceans trapped in <strong>the</strong>ir outer tissues.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 1715 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Specimen collected at a depth <strong>of</strong> 1501 m in <strong>the</strong><br />

eastern Gulf <strong>of</strong> Alaska. 3) Specimen observed in situ<br />

at a depth <strong>of</strong> 843 m in <strong>the</strong> central Aleutian Islands. 4)<br />

Close-up view <strong>of</strong> same specimen as in pho<strong>to</strong> 3 showing<br />

detail <strong>of</strong> <strong>the</strong> closely spaced fine projections.<br />

93


94 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

77. Asbes<strong>to</strong>pluma ramosa Koltun, 1958 (continued)


78. Cladorhiza bathycrinoides Koltun, 1955<br />

Description. This stalked sponge terminates in a partially<br />

inverted conical head. Basal root-like processes<br />

consist <strong>of</strong> glassy, polyspicular tracts (2.5 cm long). Polyspicular<br />

tracts <strong>of</strong> <strong>the</strong> root-like processes become united<br />

at <strong>the</strong> base <strong>of</strong> <strong>the</strong> cylindrical stalk and are coated by a<br />

thin ec<strong>to</strong>somal veneer. The circular upper plane <strong>of</strong> <strong>the</strong><br />

head has a diameter <strong>of</strong> 1.4 cm and thin appendages<br />

(up <strong>to</strong> 12) are inserted along its margin. The appendages<br />

measure 1.9 cm × 0.8 mm, but <strong>the</strong> diameter <strong>of</strong><br />

<strong>the</strong> appendages regularly varies like a string <strong>of</strong> pearls.<br />

Typical <strong>of</strong> <strong>the</strong> genus, <strong>the</strong> polyspicular tracts <strong>of</strong> <strong>the</strong><br />

system <strong>of</strong> root-like processes are united at <strong>the</strong> base <strong>of</strong><br />

<strong>the</strong> stalk, run in bundles through <strong>the</strong> stalk, and <strong>the</strong>n<br />

diverge again <strong>to</strong> support <strong>the</strong> appendages. The height<br />

from distal ends <strong>of</strong> <strong>the</strong> root-like processes <strong>to</strong> <strong>the</strong> upper<br />

end <strong>of</strong> <strong>the</strong> head is up <strong>to</strong> at least 12 cm. The stalk is up<br />

<strong>to</strong> 7 cm long and 1–2 mm in diameter. Color in life is<br />

white or creamy white.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. Ec<strong>to</strong>somal veneer is packed with anisochelae.<br />

Fusiform styles (980–2100 × 12–40 µm) and<br />

tylostrongyles (350–900 × 2–10 µm) are most abundant<br />

at <strong>the</strong> distal parts <strong>of</strong> <strong>the</strong> root-like processes. There are<br />

large anisochelae (55–75 µm), rare small anisochelae<br />

(25–35 µm), large sigmas (95–110 µm), small sigmas<br />

(43–55 µm), and flattened sigmoids with claw-like appendages<br />

at <strong>the</strong> ends (42–45 µm). Large sigmas were<br />

typically damaged in our SEM preparations indicating<br />

that <strong>the</strong>y are extremely thin-walled, hollow, and fragile.<br />

Zoogeographic distribution. North Pacific Ocean.<br />

Locally common. In Alaska – central Aleutian Islands;<br />

patchy distribution at low densities. Elsewhere – Sea <strong>of</strong><br />

Okhotsk.<br />

Habitat. In Alaska – on s<strong>of</strong>t sediments (silt and sand)<br />

at depths between 1108 and 2854 m. Elsewhere – eurybathic;<br />

reported at depths between 150 and 3800 m.<br />

Remarks. C. bathycrinoides probably has a carnivorous<br />

feeding habit like o<strong>the</strong>r Cladorhizidae. We observed<br />

one specimen in situ capture a small shrimp with one<br />

<strong>of</strong> its appendages (actually <strong>the</strong> shrimp swam in<strong>to</strong> <strong>the</strong><br />

appendage and appeared <strong>to</strong> adhere <strong>to</strong> it). Collected<br />

specimens may have small crustaceans trapped in <strong>the</strong>ir<br />

outer tissues.<br />

95<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 1371 m in<br />

<strong>the</strong> central Aleutian Islands and held live in a shipboard<br />

aquarium. Note <strong>the</strong> basal root-like processes. 2) Same<br />

specimen as in pho<strong>to</strong> 1 in situ. The separation between<br />

<strong>the</strong> red laser marks is 10 cm.


96 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

79. Cladorhiza corona Lehnert, Watling and S<strong>to</strong>ne 2005<br />

Description. Body consists <strong>of</strong> a long cylindrical stalk<br />

with a basal plate and two sets <strong>of</strong> distal appendages:<br />

<strong>the</strong> basal set radiating in a full circle more or less in<br />

one plane, and <strong>the</strong> distal set forming a quarter circle<br />

<strong>of</strong> triangular-shaped structures oriented in a plane<br />

almost perpendicular <strong>to</strong> <strong>the</strong> basal appendages. Distal<br />

appendages are shorter than <strong>the</strong> basal and terminate<br />

in a spherical tyle. Root-like processes (common within<br />

<strong>the</strong> genus) are absent and <strong>the</strong> sponge attaches directly<br />

<strong>to</strong> hard substrate via <strong>the</strong> broadened basal plate. Consistency<br />

is wiry and elastic, with an easily detachable<br />

ec<strong>to</strong>somal membrane. Total length is <strong>to</strong> at least 33 cm.<br />

Color in life is light yellow or creamy white.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The three distinct parts <strong>of</strong> <strong>the</strong> sponge<br />

(basal plate, stalk with <strong>the</strong> basal appendages, and <strong>the</strong><br />

crown) differ considerably in spicule types and <strong>the</strong>ir<br />

arrangement. The basal plate consists <strong>of</strong> fusiform<br />

styles and shorter anisoxeas with slightly unequal ends,<br />

packed in one plane parallel <strong>to</strong> <strong>the</strong> surface <strong>of</strong> <strong>the</strong> substrate.<br />

The basal plate has no ec<strong>to</strong>somal membrane and<br />

is devoid <strong>of</strong> microscleres. From <strong>the</strong> basal plate polyspicular<br />

tracts <strong>of</strong> long fusiform styles run in thick bundles<br />

through <strong>the</strong> center <strong>of</strong> <strong>the</strong> long cylindrical stalk, which<br />

is covered by an ec<strong>to</strong>somal membrane, densely packed<br />

with ancorate anisochelae. The basal appendages are<br />

constructed in a similar manner as <strong>the</strong> stalk. The polyspicular<br />

tracts <strong>of</strong> long fusiform styles reaching <strong>the</strong> crown<br />

fan out in one plane, leaving little space between <strong>the</strong><br />

tracts. Single, thin (sub-) tylostyles are arranged more<br />

or less perpendicular <strong>to</strong> <strong>the</strong> thick fusiform styles. The<br />

ec<strong>to</strong>somal membrane <strong>of</strong> <strong>the</strong> crown is devoid <strong>of</strong> anisochelae<br />

but ra<strong>the</strong>r contains flattened sigmancistras with<br />

thin claw-like extensions at each end. These latter two<br />

spicule types occur exclusively in <strong>the</strong> crown. Megascleres<br />

include fusiform styles, almost anisoxeas (600–4260<br />

× 10–65 µm), present in all parts except <strong>the</strong> ec<strong>to</strong>somal<br />

membrane; (sub-) tylostyles (510–1650 × 8–20 µm)<br />

present in <strong>the</strong> ec<strong>to</strong>somal membrane <strong>of</strong> <strong>the</strong> crown; and<br />

thick, short anisoxeas with slightly unequal blunt ends<br />

(140–660 × 38–43 µm) present in <strong>the</strong> basal plate. Microscleres<br />

include anchorate anisochelae (30–42 µm),<br />

present in <strong>the</strong> ec<strong>to</strong>somal membrane <strong>of</strong> <strong>the</strong> stalk and<br />

<strong>the</strong> basal appendages; and flattened sigmancistras, each<br />

end with a thin pointed “claw” (35–42 µm), present in<br />

<strong>the</strong> ec<strong>to</strong>somal membrane <strong>of</strong> <strong>the</strong> crown.<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Occurs in small patches at depths between<br />

726 and 2077 m on bedrock, fragmented bedrock,<br />

muds<strong>to</strong>ne, and cobbles, and at temperatures between<br />

1.8 and 3.1°C.<br />

Remarks. C. corona is carnivorous and feeds mainly<br />

on calanoid copepods (Watling, 2007). Collected specimens<br />

may have small crustaceans trapped in <strong>the</strong>ir outer<br />

tissues.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 1720 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ.


80. Chondrocladia (Chondrocladia) concrescens (Schmidt, 1880)<br />

Description. This stalked sponge has numerous lateral<br />

processes with terminal swellings (as many as 80). Size<br />

and growth form <strong>of</strong> this species is variable. There are<br />

root-like tufts <strong>of</strong> polyspicular tracts fixing <strong>the</strong> sponge<br />

in <strong>the</strong> substrate. The consistency <strong>of</strong> <strong>the</strong> stalks is firm<br />

and wiry while <strong>the</strong> rest <strong>of</strong> <strong>the</strong> sponge is s<strong>of</strong>t and fragile.<br />

Thick polyspicular tracts support <strong>the</strong> stalk; thinner polyspicular<br />

tracts support <strong>the</strong> branches. Height is <strong>to</strong> 30 cm.<br />

Color in life is golden brown <strong>to</strong> light brown and reddish<br />

brown in shallower <strong>water</strong> (


98 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

81. Biemna variantia (Bowerbank, 1858)<br />

Description. This sponge is subglobular. Surface is<br />

covered with numerous papillae. Oscula are at <strong>the</strong> <strong>to</strong>p<br />

<strong>of</strong> <strong>the</strong> sponge in clusters. It is very s<strong>of</strong>t, fragile, and easily<br />

<strong>to</strong>rn. Diameter is <strong>to</strong> 10 cm. Color in life is greenish yellow<br />

<strong>to</strong> light brown; brown or dark brown after freezing.<br />

Skeletal structure. A thin ec<strong>to</strong>somal membrane contains<br />

only microscleres. There are styles (420–1450<br />

× 18–35 µm), sigmas possibly in two size categories<br />

(40–310 µm), rhaphides (60–125 µm), and spherules<br />

(10 µm). Long ascending and branching polyspicular<br />

tracts <strong>of</strong> styles in <strong>the</strong> choanosome have many spicules<br />

scattered between <strong>the</strong> tracts.<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – central Aleutian Islands. Elsewhere<br />

– North Pacific Ocean (Bering Sea – Russia), Arctic<br />

Ocean (Barents Sea and Greenland Sea), and North<br />

Atlantic Ocean (eastern Scotian Shelf east <strong>to</strong> Iceland<br />

and south <strong>to</strong> <strong>the</strong> Canary Islands; western Mediterranean<br />

Sea).<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles and pebbles<br />

at depths between 155 and 489 m. Elsewhere – reported<br />

at depths between 62 and 1800 m depth.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 155 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Preserved specimen (frozen) collected at a depth <strong>of</strong><br />

489 m in <strong>the</strong> central Aleutian Islands. Grid marks are 1<br />

cm 2 . 3) Same specimen as in pho<strong>to</strong> 2 (indicated by <strong>the</strong><br />

white arrow) in situ.


82. Euchelipluma elongata Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge is flagelliform or whip-like<br />

and occasionally bifurcated. The species is similar <strong>to</strong><br />

Asbes<strong>to</strong>pluma ramosa and Esperiopsis flagrum (differentiation<br />

requires careful examination). Rigid long, thin<br />

stalk is covered with thin, relatively short processes.<br />

It is basally attached in s<strong>of</strong>t substrates with a rigid<br />

root-like system. Length is <strong>to</strong> at least 35 cm, but few<br />

specimens attain this size. Color in life is light yellow<br />

<strong>to</strong> creamy white.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some consists <strong>of</strong> densely<br />

arranged isochelas, underlain by parallel oriented<br />

fusiform styles with blunt ends and smaller tylostyles.<br />

Single tylostyles are placed perpendicular <strong>to</strong> <strong>the</strong> orientation<br />

<strong>of</strong> <strong>the</strong> styles and tylostyles. The choanosome<br />

is dominated by ascending polyspicular tracts <strong>of</strong> styles,<br />

tylostyles, and isochelae. Megascleres are blunt-ended<br />

fusiform styles (1310–1510 × 40–55 µm). Tylostyles<br />

(620–660 × 9–13 µm) <strong>of</strong>ten have <strong>the</strong> tyle subterminal<br />

and occasionally polytylote. Microscleres are isochelae<br />

(80–95 µm), placochelae (70–88 µm), and sigmas<br />

(9–25 µm).<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Attached with a root-like system in unconsolidated<br />

sediments at depths between 1525 and about<br />

2200 m. Fairly abundant in some areas, reaching densities<br />

near 15 individuals per m 2 .<br />

Remarks. There are only four known species <strong>of</strong> Euchelipluma<br />

worldwide. E. elongata is by far <strong>the</strong> largest species<br />

in <strong>the</strong> genus. This species does not appear <strong>to</strong> harbor<br />

<strong>the</strong> ophiuroid associates that are so common with <strong>the</strong><br />

whip-like pennatulacean corals present in <strong>the</strong> same<br />

depth range. It may occasionally be preyed upon by <strong>the</strong><br />

99<br />

sea star Hippasteria. It does not co-occur with Esperiopsis<br />

flagrum but does overlap in depth range with Asbes<strong>to</strong>pluma<br />

ramosa. Unlike A. ramosa, however, it anchors in<br />

s<strong>of</strong>t-sediment ra<strong>the</strong>r than attaching <strong>to</strong> hard substrate.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 2161 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ (foreground).


100 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

83. Guitarra abbotti Lee, 1987<br />

Description. This sponge is subglobular and massive.<br />

Consistency is elastic, s<strong>of</strong>t, and easy <strong>to</strong> tear. Oscula are<br />

small, circular, and slightly elevated on short conical<br />

projections. The surface is smooth <strong>to</strong> <strong>the</strong> unaided eye<br />

but microscopically hispid or brain-like with narrow<br />

convolutions. Diameter is <strong>to</strong> 15 cm. Color in life is yellow,<br />

orange, or dark brown.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. There is no specialized ec<strong>to</strong>somal skele<strong>to</strong>n;<br />

<strong>the</strong> dermal membrane consists <strong>of</strong> spicule brushes<br />

at <strong>the</strong> ends <strong>of</strong> short polyspicular tracts, ascending only<br />

a short distance from <strong>the</strong> choanosome. Sections parallel<br />

<strong>to</strong> <strong>the</strong> surface show <strong>the</strong> regularly spaced spicule brushes<br />

up <strong>to</strong> 300 µm in diameter. Short polyspicular tracts <strong>of</strong><br />

styles make up a relatively dense but irregular meshwork<br />

in <strong>the</strong> choanosome, mesh-size 100–200 µm, with single<br />

spicules scattered in between. The short length <strong>of</strong> <strong>the</strong><br />

tracts gives a halichondroid appearance throughout<br />

much <strong>of</strong> <strong>the</strong> choanosome. Megascleres are fusiform<br />

styles (330–400 × 7–10 µm). There are seven types <strong>of</strong><br />

microscleres: large placochelae (105–115 µm); small<br />

placochelae (30–50 µm); large biplacochelae (35–52<br />

µm); small and relatively rare biplacochelae (13–16 µm<br />

in diameter); a rare, large category <strong>of</strong> isochelae (58-<br />

65 µm); small sigmoid isochelae (10–13 µm) almost<br />

closed; and small sigmoids (5–9 µm). All spicule-types<br />

are distributed without an obvious pattern throughout<br />

<strong>the</strong> sponge.<br />

Zoogeographic distribution. North Pacific Ocean.<br />

Locally common. In Alaska – central Aleutian Islands.<br />

Elsewhere – previously known only from Cordell Bank,<br />

California.<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles at depths between<br />

100 and 146 m. Elsewhere – reported at depths<br />

between 35 and 46 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 138<br />

m in <strong>the</strong> central Aleutian Islands. Grid marks are 1<br />

cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ (center).<br />

3) Specimen (center) collected at a depth <strong>of</strong> 146 m in<br />

<strong>the</strong> central Aleutian Islands.


84. Guitarra fimbriata Carter, 1874<br />

Description. This sponge is cushion-shaped with a tuberculate<br />

surface; no oscula visible. Consistency is only<br />

slightly compressible and not very elastic. Diameter is <strong>to</strong><br />

20 cm. Color in life is yellow <strong>to</strong> orange-brown.<br />

Skeletal structure. Spicules are anisotylotes (230–700<br />

× 5–15 µm) <strong>of</strong>ten one end conspicuously more inflated<br />

than <strong>the</strong> o<strong>the</strong>r, large placochelae (70–90 µm), small<br />

placochelae (35–55 µm), and bipocilli (6–15 µm).<br />

Zoogeographic distribution. Cosmopolitan and locally<br />

common. In Alaska – central Aleutian Islands. Elsewhere<br />

– Pacific coast <strong>of</strong> sou<strong>the</strong>rn Kuril Islands, North<br />

Atlantic Ocean, Indian Ocean, and Antarctica.<br />

Habitat. In Alaska – attached <strong>to</strong> small boulders and<br />

cobbles at a depth <strong>of</strong> 146 m. Elsewhere – reported on<br />

rocky bot<strong>to</strong>ms at depths between 28 and 188 m and at<br />

temperatures between 1.5 and 16.2°C.<br />

Pho<strong>to</strong>s. 1) Partial specimen collected at a depth <strong>of</strong> 146<br />

m in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ (center).<br />

101


102 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

85. Amphilectus digitatus (Miklucho-Maclay, 1870)<br />

Description. This species appears as described by<br />

Koltun (1959) and may be massive-lobate, laminate,<br />

dactylate, funnel-shaped, or vase-like, and usually has a<br />

stalk. The surface is smooth. The consistency is elastic,<br />

easily compressible, but difficult <strong>to</strong> tear. Vase-like forms<br />

<strong>to</strong> 10 cm in height; funnel-shaped forms <strong>to</strong> more than<br />

60 cm in diameter and 30 cm in height. Color in life is<br />

light grey, creamy white, yellow or brown.<br />

Skeletal structure. Spicules are styles (130–280 × 8–19<br />

µm) and palmate isochelae (12–28 µm).<br />

Zoogeographic distribution. Widespread and locally<br />

common. In Alaska – central Aleutian Islands and eastern<br />

Gulf <strong>of</strong> Alaska. Elsewhere – North Pacific Ocean<br />

(Kamchatka Coast, Bering Sea, British Columbia), and<br />

Arctic Ocean (Chukchi Sea and East Siberian Sea).<br />

Habitat. In Alaska – central Aleutian Islands (attached<br />

<strong>to</strong> pebbles at a depth <strong>of</strong> 100 m), eastern Gulf <strong>of</strong> Alaska<br />

(attached <strong>to</strong> bedrock, boulders, and cobbles at depths<br />

between 152 and 218 m). Elsewhere – reported at<br />

depths between 9 and 291 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 100 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ (center). 3)<br />

Specimen collected at a depth <strong>of</strong> 165 m in <strong>the</strong> eastern<br />

Gulf <strong>of</strong> Alaska. Grid marks are 1 cm 2 . 4) Same specimen<br />

as in pho<strong>to</strong> 3 in situ.


86. Esperiopsis flagrum Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This sponge has a flagelliform or cylindrical<br />

growth form; similar <strong>to</strong> Asbes<strong>to</strong>pluma ramosa and<br />

Euchelipluma elongata (differentiation requires careful<br />

examination). Occasionally it is bifurcated. A central<br />

long thin axis tapers near <strong>the</strong> tip and is covered with<br />

many thin processes. Processes are 3–5 mm in length,<br />

elastic but somewhat stiff. The central axis is up <strong>to</strong> 54 cm<br />

in length with a diameter <strong>of</strong> 4 mm at <strong>the</strong> base and 2.5<br />

mm at <strong>the</strong> tip. This cylindrical axis is compressible, elastic<br />

but resilient. Color in life is beige <strong>to</strong> creamy white.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. No special ec<strong>to</strong>some is developed. The<br />

central axis consists <strong>of</strong> interwoven polyspicular tracts <strong>of</strong><br />

styles with many microscleres in between. The lateral<br />

processes are supported by single polyspicular tracts<br />

running in<strong>to</strong> <strong>the</strong>m. The outermost layer <strong>of</strong> <strong>the</strong> processes<br />

and <strong>the</strong> longitudinal axis consists <strong>of</strong> densely arranged<br />

microscleres. Megascleres are fusiform styles (980–1320<br />

× 20–28 µm). Microscleres are large palmate isochelae<br />

(98–112 µm), small palmate isochelae (28–43 µm),<br />

large sigmas (37–48 µm), and small sigmas (17–20 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Occurs at depths between about 700 and<br />

1389 m. Appears <strong>to</strong> bury with root-like processes in s<strong>of</strong>t<br />

unconsolidated sediments.<br />

Remarks. The lower portion <strong>of</strong> <strong>the</strong> stalk is <strong>of</strong>ten fouled<br />

with hydroids. The species occurs within <strong>the</strong> same depth<br />

range as Asbes<strong>to</strong>pluma ramosa, but occurs in s<strong>of</strong>t-sediment<br />

habitats ra<strong>the</strong>r than attaching <strong>to</strong> hard rock. It does not<br />

co-occur with Euchelipluma elongata.<br />

103<br />

Pho<strong>to</strong>s. 1) Mid-section <strong>of</strong> a specimen collected at a<br />

depth <strong>of</strong> 954 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ.


104 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

87. Semisuberites cribrosa (Miklucho-Maclay, 1870)<br />

Description. This stalked sponge has two distinct<br />

forms: 1) several small funnels or cups (up <strong>to</strong> at least<br />

20 cups per individual) that branch initially from a<br />

central stalk, and 2) a long, thin stalk (30 cm or more<br />

in length) that terminates in a single cup-shaped body,<br />

rarely two, with a maximum diameter <strong>of</strong> approximately<br />

25 cm. The stalk is wiry, firm but elastic; <strong>the</strong> body(s) <strong>of</strong><br />

s<strong>of</strong>ter consistency. Surface is smooth <strong>to</strong> <strong>the</strong> unaided eye<br />

but microscopically hispid. Total height and width are<br />

<strong>to</strong> 70 cm (multi-cupped form). Color in life is golden<br />

brown <strong>to</strong> light brown.<br />

Skeletal structure. There is no specialized ec<strong>to</strong>somal<br />

skele<strong>to</strong>n; dermal membrane consists <strong>of</strong> <strong>the</strong> ends <strong>of</strong> ascending<br />

polyspicular tracts. Choanosomal polyspicular<br />

ascending tracts are quite conspicuous and cm-long<br />

fibers are easy drawn from <strong>the</strong> sponge. Tracts are connected<br />

by single spicules, styles in a very wide size range<br />

(75–650 × 6–15 µm).<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – central Aleutian Islands, Bering Sea<br />

(Zhemchug Canyon), and Gulf <strong>of</strong> Alaska. Elsewhere<br />

– widely distributed along <strong>the</strong> north and east coasts<br />

<strong>of</strong> Russia (Bering and Chukchi Seas), Arctic Ocean<br />

(Greenland Sea), and North Atlantic Ocean (Norwegian<br />

Sea).<br />

Habitat. In Alaska – <strong>the</strong> two forms appear <strong>to</strong> be ecomorphs.<br />

The multi-cupped form is attached primarily<br />

<strong>to</strong> bedrock (occasionally cobbles) at depths between<br />

80 and 270 m in low <strong>to</strong> moderate current areas. The<br />

single-cupped form is found in high current areas.<br />

Aleutian Islands – patchy distribution on moderately<br />

sloped sandy habitats; attached <strong>to</strong> pebbles with rootlike<br />

processes at depths between 99 and 306 m. Bering<br />

Sea – rare; pebble and sand slopes at depths around<br />

170 m. Elsewhere – reported at depths between 14 and<br />

325 m, temperatures between 1.9 and 7.0°C, and salinities<br />

between 29.81 and 35.23 psu.<br />

Remarks. This species may be preyed upon by <strong>the</strong><br />

blood star (Henricia sp.) and appears <strong>to</strong> be particularly<br />

fragile.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> a specimen collected at a<br />

depth <strong>of</strong> 100 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ<br />

(center). 3) Specimen collected at a depth <strong>of</strong> 97 m in<br />

<strong>the</strong> central Aleutian Islands. 4) Specimen collected at a<br />

depth <strong>of</strong> 170 m in Zhemchug Canyon, Bering Sea. Note<br />

that <strong>the</strong> specimen has a single large cup that was apparently<br />

two smaller cups now fused <strong>to</strong>ge<strong>the</strong>r. 5) Specimen<br />

collected at a depth <strong>of</strong> 139 m in <strong>the</strong> central Aleutian<br />

Islands. Note that <strong>the</strong> cup has been sliced open for<br />

examination. Grid marks are 1 cm 2 . 6) Same specimen<br />

as in pho<strong>to</strong> 5 in situ (<strong>to</strong>p half). 7) Same specimen as in<br />

pho<strong>to</strong> 5 in situ (bot<strong>to</strong>m half).


87. Semisuberites cribrosa (Miklucho-Maclay, 1870) (continued)<br />

105


106 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

88. Mycale (Aegogropila) adhaerens (Lambe, 1893)<br />

Description. This massive or thickly encrusting sponge<br />

has a bulbous or even fistulose surface. Oscula are<br />

not visible. Consistency is s<strong>of</strong>t and elastic. Size is <strong>to</strong> 20<br />

cm in all dimensions. Color in life is yellow <strong>to</strong> golden<br />

brown.<br />

Skeletal structure. It has ec<strong>to</strong>somal reticulation <strong>of</strong><br />

polyspicular tracts with microscleres in-between tracts.<br />

There is a choanosomal mesh <strong>of</strong> polyspicular tracts, <strong>of</strong>ten<br />

branching. There are tylostyles (350–440 × 5–12 µm),<br />

anisochelae arranged differently in two size classes –<br />

large anisochelae in rosettes (75–100 µm) and small<br />

anisochelae (18–50 µm); sigmata (45–58 µm), and<br />

rhaphides single and in trichodragmata (45–90 µm).<br />

Zoogeographic distribution. Widespread and common.<br />

In Alaska – central Aleutian Islands and Bering<br />

Sea. Elsewhere – North Pacific Ocean (Sea <strong>of</strong> Okhotsk,<br />

Sea <strong>of</strong> Japan, Vancouver Island) and Arctic Ocean<br />

(Greenland Sea).<br />

Habitat. In Alaska – encrusts all hard substrates including<br />

hydrocoral skele<strong>to</strong>ns at depths between 104 and<br />

442 m. Generally found in rough, steep-sloped habitats.<br />

Elsewhere – on rocks, pebbles, and sand bot<strong>to</strong>ms from<br />

<strong>the</strong> intertidal zone <strong>to</strong> a depth <strong>of</strong> 270 m.<br />

Remarks. This species encrusts hydrocorals (Stylaster<br />

sp. and Cyclohelia lamellata) and o<strong>the</strong>r sedentary biota<br />

in Aleutian Island coral gardens; inaccurately reported<br />

in S<strong>to</strong>ne (2006) as Myxilla incrustans.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> a specimen collected at a<br />

depth <strong>of</strong> 190 m in <strong>the</strong> central Aleutian Islands. Specimen<br />

is encrusting <strong>the</strong> hydrocoral Cyclohelia lamellata.<br />

Grid marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong><br />

1 (center) in situ. 3) Specimen collected at a depth <strong>of</strong><br />

109 m in <strong>the</strong> central Aleutian Islands.


89. Mycale (Carmia) carlilei Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This clavate sponge typically has a single<br />

cylinder, occasionally several (up <strong>to</strong> four) smaller<br />

branches, a<strong>to</strong>p a thinner well-defined stalk. One or<br />

more large oscula are a<strong>to</strong>p each cylinder; several smaller<br />

oscula along sides are obvious in situ. Surface is smooth.<br />

Consistency is very s<strong>of</strong>t, except for <strong>the</strong> wiry stalk. Height<br />

is <strong>to</strong> 50 cm or more. Color in life is golden brown.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The stalk consists <strong>of</strong> longitudinally<br />

arranged masses <strong>of</strong> tylostyles; individual tracts are not<br />

recognizable. A special ec<strong>to</strong>some is not developed. The<br />

choanosome consists <strong>of</strong> irregularly arranged pauci- and<br />

polyspicular tracts <strong>of</strong> tylostyles with masses <strong>of</strong> sigmas and<br />

very abundant anisochelae, both single and in rosettes.<br />

Spicules consist <strong>of</strong> tylostyles (470–520 × 10–14 µm), anisochelae<br />

(55–75 µm), and sigmas (65–80 µm).<br />

Zoogeographic distribution. Locally abundant (up<br />

<strong>to</strong> 8 individuals per m 2 ). In Alaska – central Aleutian<br />

Islands. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> bedrock, boulders, cobbles, and<br />

pebbles at depths between 82 and 360 m.<br />

Remarks. Mycale loveni and M. bellabellensis are <strong>the</strong><br />

only o<strong>the</strong>r species in <strong>the</strong> genus that exhibit a stalked<br />

growth form.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 150 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ. 3) Specimen<br />

with several M. loveni at a depth <strong>of</strong> 112 m. 4) Specimen<br />

with several Halichondria oblonga (upper right) at a<br />

depth <strong>of</strong> 119 m.<br />

107


108 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

90. Mycale (Mycale) jasoniae Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This massive sponge has several large<br />

tubes basally connected. In situ, several exhalent canals<br />

flow in<strong>to</strong> large circular oscula surrounded by thin walls.<br />

These oscula collapse and are not readily visible on collected<br />

specimens. The surface is bulbous with many irregularly<br />

distributed conical processes. The consistency<br />

is ra<strong>the</strong>r s<strong>of</strong>t, easily <strong>to</strong>rn, and fibrous. Diameter is <strong>to</strong> 25<br />

cm. Color in life is yellow <strong>to</strong> light yellow.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some is a tangential arrangement<br />

<strong>of</strong> short spicule tracts and single spicules with<br />

many microscleres in between <strong>the</strong> tracts. The choanosome<br />

consists <strong>of</strong> ra<strong>the</strong>r short spicule tracts (60–95 µm<br />

in diameter) that frequently branch <strong>of</strong>f side tracts in<br />

all directions. This pattern is obscured by <strong>the</strong> presence<br />

<strong>of</strong> many single mega- and microscleres in between <strong>the</strong><br />

tracts and without obvious orientation. Megascleres are<br />

tylostyles (405–460 × 10–12 µm). Microscleres include<br />

large anisochelae (80–100 µm), small anisochelae<br />

(40–60 µm), and rhaphides (42–65 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – not reported.<br />

Habitat. Attached <strong>to</strong> cobbles at depths between 178<br />

and 340 m.<br />

Remarks. M. jasoniae is quite similar <strong>to</strong> M. loveni but<br />

possesses rhaphides that <strong>the</strong> latter species lacks.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen) specimen collected at<br />

a depth <strong>of</strong> 208 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 in situ<br />

with a sculpin (Malacocottus sp.). 3) Close-up <strong>of</strong> same<br />

specimen as in pho<strong>to</strong>s 1 and 2.


91. Mycale (Mycale) loveni (Fristedt, 1887)<br />

Synonym: Mycale (Carmia) bellabellensis (Lambe, 1905)<br />

Description. This sponge is polymorphic; massively<br />

encrusting or stalked. The consistency is fragile, inelastic<br />

but difficult <strong>to</strong> tear against <strong>the</strong> direction <strong>of</strong> <strong>the</strong> long<br />

polyspicular tracts (laterally); easier <strong>to</strong> tear parallel <strong>to</strong><br />

<strong>the</strong> tracts (<strong>to</strong>p <strong>to</strong> bot<strong>to</strong>m). Aleutian specimens may<br />

be stalked vases <strong>to</strong> 20 cm in height or massive forms<br />

<strong>to</strong> 1 m high and wide. Color in life varies from yellow<br />

<strong>to</strong> greenish yellow <strong>to</strong> brown. Gulf <strong>of</strong> Alaska specimens<br />

have a cone-shaped body with a slender stalk and are<br />

club-shaped until approximately 8 cm high or wide and<br />

<strong>the</strong>n develop <strong>the</strong> characteristic cone shape. Cones may<br />

reach 1 m or more in height and diameter. Color in life<br />

varies from yellow <strong>to</strong> light yellow.<br />

Skeletal structure. Very long ascending polyspicular<br />

tracts (visible <strong>to</strong> <strong>the</strong> unaided eye) lie below a reticulate<br />

dermal skele<strong>to</strong>n. Tracts are branching with thick tracts<br />

connected by shorter tracts. Tylostyles (370–495 × 10–15<br />

µm) <strong>of</strong>ten have <strong>the</strong> largest diameter just before <strong>the</strong><br />

point. Anisochelae are large (80–110 µm) and small<br />

(30–42 µm).<br />

Zoogeographic distribution. Widespread and locally<br />

abundant. In Alaska – Chukchi Sea, Bering Sea,<br />

Aleutian Islands, and Gulf <strong>of</strong> Alaska. Elsewhere – Sea <strong>of</strong><br />

Okhotsk, Pacific Coast <strong>of</strong> <strong>the</strong> Kuril Islands, Chukchi Sea<br />

(Russia), Arctic Ocean (East Siberian Sea), and British<br />

Columbia.<br />

Habitat. Central Aleutian Islands – typically attached<br />

<strong>to</strong> boulders, cobbles, and pebbles at depths between 56<br />

and 744 m (massive form) and 171 <strong>to</strong> 191 m (stalked<br />

form). Bering Sea (Pribil<strong>of</strong> Canyon) – uncommon; attached<br />

<strong>to</strong> cobbles and pebbles at depths between 260<br />

and 309 m. Eastern Gulf <strong>of</strong> Alaska – most specimens are<br />

attached <strong>to</strong> bedrock, boulders, and cobbles at depths<br />

between 143 and 289 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska<br />

109<br />

(and presumably much <strong>deep</strong>er based on unconfirmed<br />

catches with longline gear). Elsewhere – no information<br />

is available.<br />

Remarks. We consider M. loveni and M. bellabellensis <strong>to</strong><br />

be <strong>the</strong> same species, <strong>the</strong> latter being a cone-shaped ecomorph<br />

adapted for low-current habitats in <strong>the</strong> Gulf <strong>of</strong><br />

Alaska. The two species have <strong>the</strong> same spicule complement<br />

and arrangement and internal skeletal structure.<br />

In <strong>the</strong> eastern Gulf <strong>of</strong> Alaska <strong>the</strong> species is club-shaped<br />

until approximately 8 cm wide and <strong>the</strong>n it develops<br />

<strong>the</strong> characteristic cone shape. The sharpchin rockfish<br />

(Sebastes zacentrus) and o<strong>the</strong>r rockfish species <strong>of</strong>ten use<br />

this sponge as perching habitat. This species is preyed<br />

upon by <strong>the</strong> sea star Ceramaster patagonicus.<br />

Pho<strong>to</strong>s. 1) Fragment <strong>of</strong> a specimen (massive form)<br />

collected at a depth <strong>of</strong> 309 m in Pribil<strong>of</strong> Canyon, Bering<br />

Sea. Grid marks are 1 cm 2 . 2) Several specimens (massive<br />

form) at a depth <strong>of</strong> 96 m in <strong>the</strong> central Aleutian<br />

Islands. 3) Several specimens (massive form) with a<br />

sharpchin rockfish (Sebastes zacentrus) at a depth <strong>of</strong> 119<br />

m in <strong>the</strong> central Aleutian Islands. 4) Preserved (frozen)<br />

specimen (stalked form) collected at a depth <strong>of</strong> 192 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

5) Same specimen as in pho<strong>to</strong> 4 in situ. The separation<br />

between <strong>the</strong> red laser marks is 10 cm. 6) Specimen collected<br />

at a depth <strong>of</strong> 167 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska.<br />

Grid marks are 1 cm 2 . 7) Juvenile specimen (with associated<br />

euphasid) collected at a depth <strong>of</strong> 165 m in <strong>the</strong><br />

eastern Gulf <strong>of</strong> Alaska. Grid marks are 1 cm 2 . 8) Same<br />

specimen as in pho<strong>to</strong> 7 in situ. 9) Specimen with a gravid<br />

sharpchin rockfish (S. zacentrus) at a depth <strong>of</strong> 170 m in<br />

<strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Pho<strong>to</strong> by J. Lincoln Freese<br />

(AFSC). 10) A more robust cone-shaped form with a<br />

sharpchin rockfish (S. zacentrus) in a higher current<br />

area at a depth <strong>of</strong> 179 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska.<br />

Note <strong>the</strong> juvenile specimen at <strong>the</strong> upper left. Pho<strong>to</strong> by<br />

J. Lincoln Freese (AFSC).


110 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

91. Mycale (Mycale) loveni (Fristedt, 1887) (continued)


91. Mycale (Mycale) loveni (Fristedt, 1887) (continued)<br />

111


112 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

92. Mycale (Mycale) tylota Koltun, 1958<br />

Description. This sponge is massive with a smooth<br />

but convoluted surface. Circular oscula are on conical<br />

elevations. Consistency is inelastic and very easily <strong>to</strong>rn.<br />

Diameter is <strong>to</strong> 10 cm. Color in life is yellow <strong>to</strong> golden<br />

brown.<br />

Skeletal structure. There is a thick ec<strong>to</strong>somal crust <strong>of</strong><br />

styles <strong>to</strong> tylotes that are scattered without obvious orientation<br />

and tangentially arranged with many microscleres<br />

in between. Choanosomal pauci- <strong>to</strong> polyspicular tracts<br />

are in triangular meshes with masses <strong>of</strong> sigmas in between.<br />

Rosettes <strong>of</strong> large anisochelae are less abundant.<br />

There are ec<strong>to</strong>somal styles <strong>to</strong> tylotes (415–570 × 10–16<br />

µm), choanosomal styles (670–890 × 15–25 µm), large<br />

anisochelae (95–112 µm), small anisochelae (15–35<br />

µm), large sigmas (82–105 µm), small sigmas (25–35<br />

µm), and rhaphides (70–110 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – sou<strong>the</strong>rn<br />

Kuril Strait.<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles and pebbles<br />

at depths between 135 and 175 m. Elsewhere – reported<br />

at depths between 73 and 181 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 172 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 (indicated by <strong>the</strong> white<br />

arrow) in situ.


93. Latrunculia (Biannulata) oparinae Samaii and Krasokhin, 2002<br />

Description. Globular sponge has numerous small oscula<br />

on short, wart-like elevations. Water jets are emitted<br />

through <strong>the</strong> oscula when <strong>the</strong> sponge is squeezed. Areolate<br />

pore-fields collapse upon collection and are only<br />

visible in situ. Consistency is ra<strong>the</strong>r firm, only slightly<br />

elastic and difficult <strong>to</strong> tear. Diameter is <strong>to</strong> at least 16 cm.<br />

Two distinct colors have been observed in situ – dark<br />

brown (dominant) and olive-green.<br />

Skeletal structure. Ec<strong>to</strong>some is thick and lea<strong>the</strong>ry,<br />

consisting <strong>of</strong> a cortex <strong>of</strong> tightly packed anisodiscorhabds.<br />

Fusiform, slightly sinuous styles have acanthose heads<br />

(320–525 × 9–15 µm) and anisodiscorhabds (42–50 µm).<br />

Zoogeographic distribution. Locally common and<br />

abundant (densities up <strong>to</strong> 14 individuals per m 2 in<br />

Alaska). In Alaska – central Aleutian Islands. Elsewhere<br />

– previously known only from <strong>the</strong> Kuril Islands in <strong>the</strong><br />

Sea <strong>of</strong> Okhotsk.<br />

Habitat. Attached <strong>to</strong> bedrock, boulders, cobbles, and<br />

pebbles at depths between 79 and 288 m (possibly <strong>to</strong><br />

113<br />

438 m). Elsewhere – reported at depths between 176<br />

and 202 m.<br />

Remarks. Sponges in <strong>the</strong> genus Latrunculia contain<br />

<strong>the</strong> cy<strong>to</strong><strong>to</strong>xic discorhabdin class <strong>of</strong> pyrroloiminoquinone<br />

alkaloids that exhibit significant antiviral activity<br />

against hepatitis virus C (HCV), antimalarial activity<br />

against Plasmodium falciparum, and antimicrobial effects<br />

against <strong>the</strong> AIDS opportunistic pathogens methicillinresistant<br />

Staphylococcus aureus (MRSA), Mycobacterium<br />

intracellulare, and M. tuberculosis (Na et al., 2010). This<br />

species is associated with several gorgonians, including<br />

Thouarella spp. and Plumarella spp.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 150 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 (right) in situ with <strong>the</strong><br />

olive-green morph (left). 3) Specimen collected at a<br />

depth <strong>of</strong> 146 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 4) Same specimen as in pho<strong>to</strong> 3 (center)<br />

in situ.


114 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

94. Latrunculia velera Lehnert, S<strong>to</strong>ne and Heimler, 2006<br />

Description. This cone-shaped sponge has a flattened<br />

smooth <strong>to</strong>p that is typically circular but occasionally<br />

kidney-shaped. On deck, specimens appear subglobular<br />

because <strong>the</strong>y have been laterally compressed. This<br />

species has a smooth uneven surface, thick and lea<strong>the</strong>ry,<br />

only slightly elastic, and easily <strong>to</strong>rn. The interior is<br />

markedly fibrous, somewhat similar <strong>to</strong> L. oparinae but<br />

differing slightly in shape and clearly in <strong>the</strong> absence<br />

<strong>of</strong> areolate pore-fields and <strong>the</strong> form <strong>of</strong> <strong>the</strong> anisodiscorhabds.<br />

Diameter is <strong>to</strong> about 12 cm. Color in life is<br />

dull brown; dark brown on deck.<br />

Skeletal structure. SEM images <strong>of</strong> spicules are shown<br />

in Appendix IV. The ec<strong>to</strong>some is a unispicular layer <strong>of</strong><br />

discorhabds, all arranged with <strong>the</strong>ir longitudinal axis<br />

perpendicular <strong>to</strong> <strong>the</strong> surface. The choanosome is a<br />

reticulation <strong>of</strong> polyspicular tracts <strong>of</strong> styles with some discorhabds<br />

in between. Megascleres are styles with slightly<br />

acanthose heads (500–540 × 9–11 µm). Microscleres are<br />

relatively smooth anisodiscorhabds (37–43 µm).<br />

Zoogeographic distribution. Locally common. In<br />

Alaska – central Aleutian Islands. Elsewhere – not<br />

reported.<br />

Habitat. Attached <strong>to</strong> bedrock, boulders, and cobbles<br />

at depths between 412 and 1009 m, but relatively rare<br />

at depths shallower than 600 m.<br />

Remarks. There appears <strong>to</strong> be ano<strong>the</strong>r species <strong>of</strong><br />

Latrunculia in <strong>the</strong> central Aleutian Islands at intermediate<br />

depths (i.e., slightly overlapping <strong>the</strong> depth ranges<br />

<strong>of</strong> both L. oparinae and L. velera). Latrunculia specimens<br />

in <strong>the</strong> depth range <strong>of</strong> 200 <strong>to</strong> 500 m should be a priority<br />

for collection.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen) specimen collected at<br />

a depth <strong>of</strong> 1009 m in <strong>the</strong> central Aleutian Islands. Note<br />

that <strong>the</strong> specimen has been laterally compressed. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 (far<br />

left) in situ. 3) Specimen observed in situ at a depth <strong>of</strong><br />

929 m. The separation between <strong>the</strong> red laser marks is<br />

10 cm.


95. Latrunculia sp. (undescribed)<br />

Description. This globular sponge has broad cratershaped<br />

pore fields; <strong>the</strong>se are prominent structures<br />

on <strong>the</strong> sponge surface. Surface is uneven and slimy.<br />

Diameter is <strong>to</strong> about 8 cm. Color in life is khaki-green<br />

<strong>to</strong> olive-green.<br />

Skeletal structure. The majority <strong>of</strong> megascleres are<br />

anisostyles, fusiform, not terminally spined, rarely<br />

polytylote, with only slight differentiation between<br />

<strong>the</strong> two ends (325–397 × 7–10 µm). Microscleres are<br />

anisodiscorhabds (49–66 × 4–7 µm). The manubrium,<br />

a base <strong>of</strong> six short, downward pointing smooth spines,<br />

is closely followed by <strong>the</strong> basal whorl, which consists <strong>of</strong><br />

a ring <strong>of</strong> horizontally aligned, smooth spines. The median<br />

whorl (21–31 µm in diameter) is located midway<br />

along <strong>the</strong> shaft and composed <strong>of</strong> undulate petals with<br />

denticulate margins, and some sculpted regions. The<br />

subsidiary whorl is composed <strong>of</strong> similar undulating petals<br />

with denticulate margins and sculpted sections, but<br />

<strong>the</strong> petals slant upwards and are located just underneath<br />

<strong>the</strong> apical whorl. The apical whorl is formed <strong>of</strong> fused<br />

undulating petals with denticulate margins forming a<br />

beautiful corona.<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – continental shelf <strong>of</strong>f Cape Ommaney, Baran<strong>of</strong><br />

Island, eastern Gulf <strong>of</strong> Alaska. Elsewhere – a sponge,<br />

believed <strong>to</strong> be this species, has also been reported from<br />

British Columbia and nor<strong>the</strong>rn Washing<strong>to</strong>n State.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock at depths<br />

between 69 and 210 m, temperatures between 5.5 and<br />

7.6°C, and salinities between 32.2 and 33.7 psu. Elsewhere<br />

– no information available.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 102 m<br />

in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ with <strong>the</strong> hydrocoral<br />

Distichopora borealis (right).<br />

115


116 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

96. Axinella blanca Koltun, 1959<br />

Description. This sponge has irregular branching<br />

and is extremely arborescent. Consistency is moderately<br />

firm and elastic. Surface <strong>of</strong> <strong>the</strong> side branches is<br />

smooth but microscopically hispid. Size is <strong>to</strong> at least<br />

50 cm × 50 cm. Color in life is highly variable ranging<br />

from light brown, light grey, light yellow, golden-yellow<br />

<strong>to</strong> light orange. Light brown is <strong>the</strong> dominant color<br />

in <strong>water</strong>s <strong>deep</strong>er than 120 m in <strong>the</strong> central Aleutian<br />

Islands; golden yellow and light orange are dominant<br />

in shallower <strong>water</strong>.<br />

Skeletal structure. Skeletal architecture consists <strong>of</strong><br />

ascending spicule tracts; spicules protruding from <strong>the</strong>se<br />

tracts cause <strong>the</strong> hispid surface <strong>of</strong> <strong>the</strong> ec<strong>to</strong>some. Spicules<br />

are long oxeas (850–1350 × 18–35 µm) and short styles<br />

(320–530 × 8–15 µm).<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – central Aleutian Islands and Bering Sea. Elsewhere<br />

– Bering Sea near Mednyi Island (Commander<br />

Islands, Russia).<br />

Habitat. In Alaska – forms dense fields almost completely<br />

covering <strong>the</strong> seafloor in areas <strong>of</strong> bedrock, boulders,<br />

and cobbles on steep slope habitat and at depths<br />

between 80 and 269 m. Elsewhere – reported at depths<br />

<strong>to</strong> 160 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 140 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ with <strong>the</strong> gorgonian<br />

Plumarella sp. (right). 3) Specimen observed in situ<br />

at a depth <strong>of</strong> 92 m in <strong>the</strong> central Aleutian Islands.


97. Axinella rugosa (Bowerbank, 1866)<br />

Description. This sponge is clavate. Branching, fanshaped,<br />

or single tubes (occasionally two tubes) are <strong>to</strong><br />

17 cm in height. Consistency is firm but elastic, with a<br />

hispid surface. Color in life is grey, light yellow, golden<br />

brown <strong>to</strong> brownish red.<br />

Skeletal structure. Axinellid spicule tracts consist <strong>of</strong><br />

styles, strongyles, and oxeas. All spicules have a large<br />

variation in length up <strong>to</strong> 1750 µm.<br />

Zoogeographic distribution. Widespread and locally<br />

abundant. In Alaska – central Aleutian Islands, Bering<br />

Sea, and eastern Gulf <strong>of</strong> Alaska. Elsewhere – North<br />

Pacific Ocean (Sea <strong>of</strong> Japan), Arctic Ocean (Barents<br />

Sea and Greenland Sea), and North Atlantic Ocean<br />

(Norwegian Sea).<br />

Habitat. In Alaska – attached <strong>to</strong> hard substrate at<br />

depths between 87 and 712 m. Densities <strong>to</strong> 63 individuals<br />

per m 2 in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Elsewhere – reported<br />

at depths between 90 and 320 m, temperatures<br />

between 2 and 5°C, and salinities between 34.20 and<br />

35.01 psu.<br />

Remarks. Though superficially similar <strong>to</strong> Mycale<br />

carlilei, A. rugosa is a hollow tube whereas M. carlilei is a<br />

solid tube with a flat <strong>to</strong>p and one or more prominent<br />

oscula. The Alaskan specimens are <strong>the</strong> first tube forms<br />

reported for <strong>the</strong> species.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 172 m<br />

in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ. 3) Specimen (indicated<br />

by <strong>the</strong> white arrow) collected in situ at a depth<br />

<strong>of</strong> 712 m in <strong>the</strong> central Aleutian Islands.<br />

117


118 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

98. Bubaris vermiculata (Bowerbank, 1866)<br />

Description. This sponge is encrusting, elongated, foliate<br />

or lobate. Consistency is s<strong>of</strong>t with a hispid surface.<br />

Dimensions are <strong>to</strong> 15 cm 2 . Color in life is bright red <strong>to</strong><br />

golden brown.<br />

Skeletal structure. It has characteristic axinellid spicule<br />

tracts. Styles are 426–4550 × 10–38 µm; strongyles<br />

and oxeas are irregularly curved or dis<strong>to</strong>rted (208–588<br />

× 6–15 µm).<br />

Zoogeographic distribution. Widespread and locally<br />

common. In Alaska – central Aleutian Islands. Elsewhere<br />

– Arctic Ocean (Barents and Greenland Seas),<br />

North Atlantic Ocean (Norwegian Sea <strong>to</strong> <strong>the</strong> Azores),<br />

and Mediterranean Sea.<br />

Habitat. In Alaska – encrusts muds<strong>to</strong>ne, cobbles, and<br />

pebbles at depths between 165 and 888 m. Elsewhere –<br />

reported at depths between 9 and 1360 m.<br />

Remarks. This is <strong>the</strong> same species as Axinella vermiculata<br />

sensu Koltun, 1959.<br />

Pho<strong>to</strong>s. 1) Specimen (center) collected with <strong>the</strong><br />

gorgonian Plumarella aleutiana at a depth <strong>of</strong> 165 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Specimen (right) collected on muds<strong>to</strong>ne at a depth<br />

<strong>of</strong> 888 m in <strong>the</strong> central Aleutian Islands.


99. Halichondria (Halichondria) colossea Lundbeck, 1902<br />

Description. This species appears as originally described<br />

and is irregularly cup-shaped and somewhat<br />

compressed. Large osculum is on <strong>the</strong> inside <strong>of</strong> <strong>the</strong> cup.<br />

The surface is smooth on <strong>the</strong> outside and hispid on <strong>the</strong><br />

inside <strong>of</strong> <strong>the</strong> cup. The consistency is firm. Width is <strong>to</strong> 50<br />

cm and height <strong>to</strong> 30 cm. Color in life is greyish brown<br />

<strong>to</strong> creamy white.<br />

Skeletal structure. Smaller oxeas have tangential<br />

arrangement in <strong>the</strong> ec<strong>to</strong>some and larger oxeas are in<br />

characteristic confused “halichondroid” arrangement<br />

in <strong>the</strong> choanosome. Oxeas in two size categories range<br />

in length from 140–2000 µm.<br />

Zoogeographic distribution. Rare. In Alaska – Bering<br />

Sea (Pribil<strong>of</strong> Canyon). Elsewhere – North Atlantic<br />

Ocean (Denmark Strait).<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles at a depth <strong>of</strong><br />

300 m. Elsewhere – reported at a depth <strong>of</strong> 1039 m.<br />

Remarks. The specimen collected in Pribil<strong>of</strong> Canyon<br />

is only <strong>the</strong> second record for <strong>the</strong> species worldwide<br />

and <strong>the</strong> first from <strong>the</strong> Pacific Ocean. Several specimens<br />

collected from <strong>the</strong> Atlantic Coast <strong>of</strong> <strong>the</strong> U.S. (Massa-<br />

119<br />

chusetts) have been tentatively identified as H. colossea<br />

(Van Soest 6 ).<br />

Pho<strong>to</strong>. 1) Fragment <strong>of</strong> a specimen collected at a depth<br />

<strong>of</strong> 300 m in Pribil<strong>of</strong> Canyon, Bering Sea.<br />

6 Van Soest, Rob. 2008. Personal commun. Zoological Museum, University<br />

<strong>of</strong> Amsterdam, Amsterdam, The Ne<strong>the</strong>rlands 1090 GT.


120 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

100. Halichondria (Halichondria) oblonga (Hansen, 1885)<br />

Description. This cylindrical, tube-shaped sponge<br />

has a narrow stalk. It may branch near <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

stalk so that several tubes (up <strong>to</strong> 12) may be connected<br />

basally. Consistency is only slightly elastic and stiff. Near<br />

<strong>the</strong> base <strong>the</strong> tubes are 3–4 mm in diameter and widen<br />

<strong>to</strong> a maximum diameter <strong>of</strong> 2 cm. Maximum height is <strong>to</strong><br />

18 cm. Color in life is golden brown with a light, almost<br />

whitish tip.<br />

Skeletal structure. The brown part <strong>of</strong> <strong>the</strong> sponge<br />

is more stiff and covered with an ec<strong>to</strong>somal layer <strong>of</strong><br />

densely packed, parallel arranged tangential oxeas. The<br />

whitish tip <strong>of</strong> <strong>the</strong> sponge is covered by a thin dermal<br />

membrane without spicules. Choanosomal ascending<br />

paucispicular tracts are connected by single spicules.<br />

Oxeas are 320–480 × 14–20 µm.<br />

Zoogeographic distribution. Widespread and locally<br />

abundant. In Alaska – central Aleutian Islands.<br />

Elsewhere – Arctic Ocean (Barents Sea and Kara Sea)<br />

and North Atlantic Ocean (Greenland and <strong>the</strong> Faroe<br />

Islands).<br />

Habitat. In Alaska – patchy distribution; attached<br />

<strong>to</strong> hard substrate (generally cobbles and pebbles) at<br />

depths between 115 and 305 m. Elsewhere – reported<br />

at depths between 18 and 823 m.<br />

Pho<strong>to</strong>s. 1) Specimens collected with <strong>the</strong> demosponge<br />

Myxilla behringensis (left center) at a depth <strong>of</strong> 195 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimens as in pho<strong>to</strong> 1 in situ. 3) Cluster <strong>of</strong><br />

specimens (lower center) below <strong>the</strong> golden king crab<br />

(Lithodes aequispina) at a depth <strong>of</strong> 272 m in <strong>the</strong> central<br />

Aleutian Islands.


101. Halichondria (Eumastia) sitiens (Schmidt, 1870)<br />

Description. This sponge has a short stalk that typically<br />

branches in<strong>to</strong> several agglutinated tubes. Consistency<br />

is inelastic and stiff due <strong>to</strong> a combination <strong>of</strong> high<br />

spicule density and lack <strong>of</strong> spongin, but easy <strong>to</strong> tear.<br />

Oscula are not obvious. Height is <strong>to</strong> at least 15 cm. Color<br />

in life is light brown, golden brown, or creamy white.<br />

Skeletal structure. Spicules are arranged tangentially<br />

in <strong>the</strong> ec<strong>to</strong>some as is typical for <strong>the</strong> genus. The choanosome<br />

is constructed by polyspicular tracts and many<br />

spicules without orientation in between. Oxeas are <strong>of</strong><br />

a wide size range (145–1200 × 5–20 µm).<br />

Zoogeographic distribution. Cosmopolitan and locally<br />

common. In Alaska – central Aleutian Islands,<br />

Bering Sea (Pribil<strong>of</strong> Canyon), and Arctic Ocean. Elsewhere<br />

– North Pacific Ocean, Arctic Ocean, and North<br />

Atlantic Ocean.<br />

Habitat. In Alaska – attached <strong>to</strong> boulders and cobbles<br />

at depths between 97 and 167 m (central Aleutian<br />

Islands). In <strong>the</strong> Bering Sea it attaches <strong>to</strong> cobbles and<br />

pebbles at depths between 208 and 300 m. Elsewhere –<br />

reported at depths between 6 and 220 m.<br />

Remarks. Koltun (1959) described a cushion-shaped<br />

sponge with a surface <strong>of</strong> numerous elongated papillae<br />

with oscula on <strong>to</strong>p. The agglutinated small tubes <strong>of</strong> <strong>the</strong><br />

Aleutian Island specimens are <strong>the</strong> equivalent <strong>of</strong> <strong>the</strong>se<br />

papillae in a fully grown sponge. The very long oxeas<br />

in halichondroid confused arrangement occur in both<br />

specimens and are regarded as diagnostic.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 167 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 (center) in situ growing<br />

in a cluster <strong>of</strong> <strong>the</strong> same species. 3) Fragmented specimen<br />

collected at a depth <strong>of</strong> 300 m in Pribil<strong>of</strong> Canyon,<br />

Bering Sea.<br />

121


122 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

102. Halichondria sp.<br />

Description. This sponge is extremely polymorphic;<br />

reported growth forms include encrusting, massivelobate,<br />

tubular, lobate, and vase-shaped. Oscula may<br />

be flush with <strong>the</strong> surface, slightly elevated, or on larger<br />

cone-shaped elevations. Consistency is only slightly<br />

elastic but easily fragmented. Size is <strong>to</strong> at least 30 cm ×<br />

30 cm. Color in life ranges from brown, grey, orange,<br />

green, yellow, <strong>to</strong> creamy white.<br />

Skeletal structure. Ec<strong>to</strong>somal spicules are tangentially<br />

arranged. Choanosomal arrangement <strong>of</strong> spicules<br />

is mostly confused but in places may be a unispicular<br />

reticulation or meshes <strong>of</strong> polyspicular tracts. Spicules<br />

are oxeas (220–335 × 15–24 µm).<br />

Zoogeographic distribution. Locally abundant. In<br />

Alaska – Aleutian Islands, Bering Sea (Pribil<strong>of</strong> Canyon),<br />

and eastern Gulf <strong>of</strong> Alaska. Elsewhere – North Pacific<br />

Ocean.<br />

Habitat. In Alaska – attached <strong>to</strong> hard substrate. Depths<br />

between 155 and 208 m (Aleutian Islands); depths between<br />

71 and 255 m (eastern Gulf <strong>of</strong> Alaska); Bering<br />

Sea (Pribil<strong>of</strong> Canyon) – locally abundant; attached <strong>to</strong><br />

bedrock, cobbles, pebbles, and encrusting <strong>the</strong> gorgonian<br />

coral Plumarella echinata at depths between 208 and<br />

309 m. Elsewhere – no information available.<br />

Remarks. This species might represent an undescribed<br />

species. The Alaskan specimens are similar <strong>to</strong><br />

Halichondria panicea (Pallas, 1766) that is common <strong>to</strong><br />

<strong>the</strong> North Atlantic Ocean and was recently introduced<br />

<strong>to</strong> San Francisco Bay. Alaskan specimens have a slightly<br />

different external appearance and <strong>the</strong> spicules are<br />

shorter and more robust than those <strong>of</strong> H. panicea. There<br />

are ongoing discussions about whe<strong>the</strong>r <strong>the</strong>re are several<br />

sibling species or whe<strong>the</strong>r <strong>the</strong> Atlantic and Pacific<br />

Ocean populations are conspecific (Erpenbeck and Van<br />

Soest, 2002). Eggs and hatching larvae similar <strong>to</strong> those<br />

<strong>of</strong> <strong>the</strong> snailfish (Careproctus sp.) were found in flabellate<br />

forms <strong>of</strong> this species in Pribil<strong>of</strong> Canyon, Bering Sea<br />

(Busby 4 ). This species is preyed upon by <strong>the</strong> sea stars<br />

Hippasteria spp., Pteraster tesselatus, Ceramaster patagonicus,<br />

and possibly Henricia longispina.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 175 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 in situ. The specimen<br />

was detached and lying on <strong>the</strong> seafloor in an area that<br />

had been trawled. 3) A fragment <strong>of</strong> a specimen collected<br />

at 152 m in <strong>the</strong> eastern Gulf <strong>of</strong> Alaska. Grid marks<br />

are 1 cm 2 . 4) Same specimen as in pho<strong>to</strong> 3 (lower right)<br />

in situ. Crinoids (Florometra serratissima) use <strong>the</strong> sponge<br />

as an elevated perch. 5) Specimen collected at a depth<br />

<strong>of</strong> 310 m in Pribil<strong>of</strong> Canyon, Bering Sea. This specimen<br />

has completely encrusted <strong>the</strong> gorgonian Plumarella<br />

echinata (tips exposed at right). Grid marks are 1 cm 2 .<br />

6) Same specimen as in pho<strong>to</strong> 5 (indicated by <strong>the</strong> white<br />

arrow) in situ. 7) Specimen collected at a depth <strong>of</strong> 155<br />

m in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


102. Halichondria sp. (continued)<br />

123


124 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

103. Hymeniacidon assimilis Levinsen, 1887<br />

Description. This sponge is polymorphic; massivelobate,<br />

massively cylindrical, ramified, semiglobular, or<br />

even encrusting. Some Aleutian specimens are highly<br />

ramified with some branches coalesced <strong>to</strong>ge<strong>the</strong>r. Rows<br />

<strong>of</strong> small oscula are visible in situ. The consistency is<br />

only slightly elastic, stiff, and easily <strong>to</strong>rn. It appears <strong>to</strong><br />

be particularly fragile. Height <strong>of</strong> highly ramified form<br />

is <strong>to</strong> 1 m or more. Color in life is yellow, light brown,<br />

golden-brown or creamy-white.<br />

Skeletal structure. Ec<strong>to</strong>somal spicules are tangentially<br />

arranged without fur<strong>the</strong>r orientation. There is<br />

choanosomal reticulation <strong>of</strong> polyspicular tracts and<br />

in o<strong>the</strong>r parts short tracts and single spicules without<br />

orientation. Styles (135–560 × 6–23 µm) probably occur<br />

in two size categories.<br />

Zoogeographic distribution. Cosmopolitan and locally<br />

common. In Alaska – central Aleutian Islands,<br />

Bering Sea, and Chukchi Sea. Elsewhere – North Pacific<br />

Ocean (Sea <strong>of</strong> Okhotsk and Sea <strong>of</strong> Japan), Arctic Ocean<br />

(Barents Sea, East Siberian Sea, and Kara Sea), and<br />

North Atlantic Ocean.<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles at depths<br />

between 119 and 253 m; also encrusts <strong>the</strong> gorgonian<br />

Muriceides nigra. Elsewhere – reported at depths between<br />

15 and 110 m.<br />

Pho<strong>to</strong>s. 1) Partial specimen (ramified form) collected<br />

at a depth <strong>of</strong> 119 m in <strong>the</strong> central Aleutian Islands.<br />

Grid marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong><br />

1 (center) in situ. 3) Close-up view <strong>of</strong> same specimen<br />

as in pho<strong>to</strong>s 1 and 2 showing rows <strong>of</strong> small oscula.<br />

4) Fragment <strong>of</strong> specimen (encrusting form) collected<br />

at a depth <strong>of</strong> 160 m in <strong>the</strong> central Aleutian Islands.<br />

Specimen encrusts <strong>the</strong> gorgonian Muriceides nigra.


104. Topsentia disparilis (Lambe, 1893)<br />

Description. On deck this species appears a massive<br />

sponge, but in situ it forms s<strong>to</strong>ut hollow tubes with<br />

spicule tracts protruding far above <strong>the</strong> surface. The<br />

consistency is fragile, inelastic, and easily <strong>to</strong>rn. Height<br />

is <strong>to</strong> 7 cm and width <strong>to</strong> 5 cm. Color in life is light brown<br />

<strong>to</strong> creamy white.<br />

Skeletal structure. Skele<strong>to</strong>n is confused and halichondroid.<br />

Large oxeas are 438–1400 × 13–21 µm;<br />

small oxeas (50–150 × 4–6 µm) are concentrated in <strong>the</strong><br />

ec<strong>to</strong>some.<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

central Aleutian Islands, Bering Sea, and Arctic Ocean<br />

(Beaufort Sea – Point Barrow). Elsewhere – Vancouver<br />

Island, British Columbia.<br />

Habitat. In Alaska – attached <strong>to</strong> muds<strong>to</strong>ne on steep<br />

canyon habitat at a depth <strong>of</strong> 2828 m. Grows in small<br />

clusters <strong>of</strong> up <strong>to</strong> eight individuals. Elsewhere – reported<br />

at depths between 80 and 110 m.<br />

Remarks. This species was previously known as<br />

Halichondria disparilis Lambe, 1893. It appears <strong>to</strong> be<br />

extremely eurybathic.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen <strong>the</strong>n s<strong>to</strong>red in ethanol)<br />

specimen collected at a depth <strong>of</strong> 2828 m in <strong>the</strong> central<br />

Aleutian Islands. Grid marks are 1 cm 2 . 2) Same specimen<br />

as in pho<strong>to</strong> 1 (lower left) in situ with a cluster <strong>of</strong><br />

<strong>the</strong> same species.<br />

125


126 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

105. Cladocroce ventilabrum (Fristedt, 1887)<br />

Description. Two growth forms exist: 1) massive <strong>to</strong><br />

hemispherical, and 2) fan-shaped and stalked. The fan<br />

may be thin-bladed or form an ovoid tube with a large<br />

osculum on <strong>to</strong>p. The surface is irregularly corrugated<br />

with crater-like oscula. Both growth forms narrow somewhat<br />

<strong>to</strong> a basal attachment or short stalk. Consistency<br />

is s<strong>of</strong>t, elastic, and easily <strong>to</strong>rn. Size is <strong>to</strong> 10 cm × 10 cm.<br />

Color in life is reddish brown or golden brown.<br />

Skeletal structure. There is an ec<strong>to</strong>somal unispicular<br />

reticulation <strong>of</strong> tangentially arranged oxeas (160–180 ×<br />

5–12 µm). Where oxeas are connected, one <strong>to</strong> four are<br />

arranged perpendicular <strong>to</strong> <strong>the</strong> surface. There is a choanosomal<br />

unispicular reticulation; in places paucispicular<br />

tracts are connected by single spicules.<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – central Aleutian Islands. Elsewhere<br />

– North Pacific Ocean (Sea <strong>of</strong> Japan), Arctic Ocean<br />

(Barents Sea and Greenland Sea), and North Atlantic<br />

Ocean (Davis Strait).<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles, pebbles,<br />

and bivalve shells at depths between 155 and 235 m.<br />

Elsewhere – reported at depths between 40 and 718 m.<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 190 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 (center) in situ.<br />

3) Specimen attached <strong>to</strong> a scallop shell (Chlamys sp.)<br />

collected at a depth <strong>of</strong> 155 m in <strong>the</strong> central Aleutian<br />

Islands. Grid marks are 1 cm 2 . 4) Specimen attached<br />

<strong>to</strong> a pebble collected at a depth <strong>of</strong> 155 m in <strong>the</strong> central<br />

Aleutian Islands. Grid marks are 1 cm 2 .


106. Haliclona bucina Tanita and Hoshino, 1989<br />

Description. This small vase-shaped sponge has a<br />

thin fistular stalk or basal fistular s<strong>to</strong>lons. Due <strong>to</strong> <strong>the</strong><br />

reticulation <strong>of</strong> single spicules <strong>the</strong>se <strong>sponges</strong> are only<br />

slightly elastic and consequently very fragile. Height is<br />

<strong>to</strong> 3 cm and width <strong>to</strong> 1 cm. Color in life is light brown<br />

<strong>to</strong> golden brown.<br />

Skeletal structure. There is a unispicular reticulation<br />

<strong>of</strong> oxeas (165–195 × 7–9 µm), slightly longer than those<br />

originally described.<br />

Zoogeographic distribution. Rare. In Alaska – central<br />

Aleutian Islands. Elsewhere – known only from Sagami<br />

Bay, Japan.<br />

Habitat. In Alaska – attached <strong>to</strong> <strong>the</strong> calcareous sponge<br />

Leucandra tuba at a depth <strong>of</strong> 145 m. Elsewhere – depths<br />

between 80 and 95 m.<br />

127<br />

Pho<strong>to</strong>. 1) Specimen (center) attached <strong>to</strong> <strong>the</strong> calcareous<br />

sponge Leucandra tuba collected at a depth <strong>of</strong> 145<br />

m in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


128 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

107. Haliclona (Gellius) digitata (Koltun, 1958)<br />

Description. Koltun (1959) described this species as<br />

“elongated, thinly tabular (foliate), or rolled up and intergrown<br />

in such a manner that it acquires an irregular<br />

shape … hollow dactylate projections….” Aleutian Island<br />

specimens are typically stalked and flabellate. The<br />

surface is smooth. The oscula are circular, chimney-like,<br />

on <strong>to</strong>p <strong>of</strong> oblique tubes. The consistency is only slightly<br />

elastic and easy <strong>to</strong> tear. Size is <strong>to</strong> at least 15 cm in height<br />

and width. Color in life is light brown <strong>to</strong> golden brown;<br />

appears characteristically yellow in situ.<br />

Skeletal structure. The choanosomal skele<strong>to</strong>n consists<br />

<strong>of</strong> long polyspicular tracts connected by single spicules,<br />

oxeas (320–370 × 12–18 µm), and thin sigmas (18–<br />

25 µm).<br />

Zoogeographic distribution. Uncommon. In Alaska<br />

– central Aleutian Islands. Elsewhere – North Pacific<br />

Ocean (Sea <strong>of</strong> Okhotsk near <strong>the</strong> Pacific coast <strong>of</strong> <strong>the</strong><br />

sou<strong>the</strong>rn Kuril Islands).<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, boulders,<br />

cobbles, and pebbles at depths between 96 and<br />

258 m. Elsewhere – found on sand and gravel at depths<br />

between 285 and 287 m and at a temperature <strong>of</strong> 1.7°C.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


108. Haliclona (Gellius) primitiva (Lundbeck, 1902)<br />

Description. According <strong>to</strong> Koltun (1959) this species<br />

is massive-lobate, or cushion-shaped, up <strong>to</strong> 10.5 cm in<br />

height, and <strong>of</strong>ten forms dactylate, lobate or o<strong>the</strong>r types<br />

<strong>of</strong> projections. Aleutian Island specimens are dactylate<br />

with hollow centers; up <strong>to</strong> three fingers are basally attached.<br />

Surface is corrugated. Color in life is light yellow,<br />

brown, or golden brown.<br />

Skeletal structure. The ec<strong>to</strong>somal skele<strong>to</strong>n is a tangential,<br />

unispicular reticulation <strong>of</strong> single spicules.<br />

Conspicuous polyspicular tracts, several mm in length,<br />

are connected by a reticulation <strong>of</strong> single spicules in <strong>the</strong><br />

choansosome. Oxeas are 140–175 × 8–13 µm and <strong>to</strong>xa<br />

are 45–135 µm.<br />

Zoogeographic distribution. Widespread but uncommon.<br />

In Alaska – central Aleutian Islands and Bering<br />

Sea. Elsewhere – North Pacific Ocean (Sea <strong>of</strong> Okhotsk,<br />

Sea <strong>of</strong> Japan, Pacific coast <strong>of</strong> <strong>the</strong> Kuril Islands), Arctic<br />

Ocean (White Sea), and North Atlantic Ocean (west <strong>of</strong><br />

Greenland).<br />

Habitat. In Alaska – attached <strong>to</strong> pebbles at a depth<br />

<strong>of</strong> 138 m. Elsewhere – found on sand, rock, and ooze<br />

at depths between 27 and 200 m, at temperatures between<br />

0.1 and 3.4°C, and at salinities between 27.0 and<br />

33.9 psu.<br />

Pho<strong>to</strong>s. 1) Partial specimen collected at a depth <strong>of</strong> 138<br />

m in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Same specimen as in pho<strong>to</strong> 1 (indicated by <strong>the</strong> white<br />

arrows) in situ covered with ophiuroids.<br />

129


130 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

109. Haliclona tenuiderma (Lundbeck, 1902)<br />

Description. This sponge is cushion-shaped with a<br />

finely hispid surface. Consistency is very delicate; only<br />

slightly elastic and easily <strong>to</strong>rn. Circular oscula are slightly<br />

elevated from <strong>the</strong> surface and not visible on collected<br />

specimens. Height is <strong>to</strong> 15 cm and width <strong>to</strong> 8 cm. Color<br />

in life is light grey <strong>to</strong> creamy white.<br />

Skeletal structure. Choanosomal paucispicular tracts<br />

are connected by single spicules and short tracts; oxeas<br />

(330–430 × 13–15 µm).<br />

Zoogeographic range. Widespread but rare. In Alaska<br />

– central Aleutian Islands. Elsewhere – North Pacific<br />

Ocean (Sea <strong>of</strong> Okhotsk and Sea <strong>of</strong> Japan), Arctic Ocean<br />

(Barents Sea and Greenland Sea), and North Atlantic<br />

Ocean.<br />

Habitat. In Alaska – attached <strong>to</strong> bedrock, boulders,<br />

and muds<strong>to</strong>ne at depths between 974 and 1706 m.<br />

Elsewhere – reported at depths between 0 and 15 m<br />

(Barents Sea) and at a depth <strong>of</strong> 887 m (North Atlantic<br />

Ocean).<br />

Pho<strong>to</strong>s. 1) Fragments <strong>of</strong> preserved (frozen <strong>the</strong>n ethanol)<br />

specimen collected at a depth <strong>of</strong> 1352 m in <strong>the</strong><br />

central Aleutian Islands. Grid marks are 1 cm 2 . 2) Same<br />

specimen as in pho<strong>to</strong> 1 in situ. 3) Close-up view <strong>of</strong> same<br />

specimen as in pho<strong>to</strong> 2 and 3.


110. Haliclona (Haliclona) urceolus (Rathke and Vahl, 1806)<br />

Description. This sponge is stalked and oviform or<br />

stalked tubes (de Weerdt, 1986a). Aleutian Island specimens<br />

are stalked tubes; stalk approximately 1 cm long,<br />

overall length <strong>to</strong> about 10 cm. Color in life is light yellow<br />

with a darker stalk.<br />

Skeletal structure. There is a unispicular reticulation<br />

<strong>of</strong> oxeas (178–280 µm).<br />

Zoogeographic range: Uncommon. In Alaska –<br />

central Aleutian Islands (first record in <strong>the</strong> North Pacific<br />

Ocean). Elsewhere – Arctic Ocean (Kara Sea) and<br />

North Atlantic Ocean (North Sea).<br />

Habitat. In Alaska – attached <strong>to</strong> cobbles at depths near<br />

490 m. Elsewhere – found on sediment covered s<strong>to</strong>nes<br />

in sheltered habitats at depths between 5 and l000 m.<br />

Pho<strong>to</strong>s. 1) Preserved (frozen) specimen collected at<br />

a depth <strong>of</strong> 490 m in <strong>the</strong> central Aleutian Islands. Grid<br />

marks are 1 cm 2 . 2) Same specimen as in pho<strong>to</strong> 1 (right)<br />

in situ.<br />

131


132 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

111. Haliclona sp. 1<br />

Description. This sponge is massively encrusting or<br />

cushion-shaped. Oscula are <strong>deep</strong> and crater-shaped.<br />

Surface is slightly rough; consistency is s<strong>of</strong>t and fragile.<br />

Diameter is <strong>to</strong> about 10 cm. Color in life is light brown<br />

or golden brown.<br />

Skeletal structure. There is a choanosomal arrangement<br />

<strong>of</strong> oxeas (160–220 × 10–15 µm) in paucispicular<br />

tracts connected by single spicules.<br />

Zoogeographic distribution. Uncommon. In Alaska –<br />

central Aleutian Islands and Bering Sea.<br />

Habitat. Attached <strong>to</strong> cobbles and pebbles at depths<br />

between 150 and 160 m.<br />

Remarks. This species might represent an undescribed<br />

species.<br />

Pho<strong>to</strong>. 1) Specimen collected at a depth <strong>of</strong> 155 m in<br />

<strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .


112. Haliclona sp. 2<br />

Description. This sponge is flabellate; single- or multiplaned.<br />

Oscula are conspicuous, slightly elevated and<br />

scattered over <strong>the</strong> entire surface. It is extremely slimy,<br />

even in preservative. Consistency is very s<strong>of</strong>t and elastic.<br />

Height and width are <strong>to</strong> 20 cm. Color in life is yellowish<br />

brown <strong>to</strong> light brown, but appears characteristically<br />

white in situ.<br />

Skeletal structure. Ec<strong>to</strong>somal tangential unispicular<br />

reticulation is streng<strong>the</strong>ned by large quantities <strong>of</strong><br />

spongin which covers <strong>the</strong> sponge like a perforated<br />

plate. Choanosomal paucispicular tracts are connected<br />

by single spicules <strong>to</strong> unispicular reticulation <strong>of</strong> oxeas<br />

(180–230 × 5–12 µm).<br />

Zoogeographic distribution. In Alaska – locally abundant<br />

in central Aleutian Islands.<br />

Habitat. Attached principally <strong>to</strong> bedrock, but occasionally<br />

<strong>to</strong> boulders and cobbles at depths between 74<br />

and 195 m; more common at depths shallower than<br />

120 m.<br />

Remarks. This species might represent an undescribed<br />

species. It is similar in growth form <strong>to</strong> Haliclona<br />

cinerea and displays <strong>the</strong> slime strands previously regarded<br />

as diagnostic for <strong>the</strong> species. However, H. cinerea has<br />

smaller oxeas than this species and is known only from<br />

shallow <strong>water</strong>s <strong>of</strong> <strong>the</strong> Celtic Seas Region <strong>of</strong> <strong>the</strong> North<br />

Atlantic Ocean. This species may be preyed upon by <strong>the</strong><br />

blood star (Henricia sp.).<br />

Pho<strong>to</strong>s. 1) Specimen collected at a depth <strong>of</strong> 80 m<br />

in <strong>the</strong> central Aleutian Islands. Grid marks are 1 cm 2 .<br />

2) Specimen (right) observed at 92 m in <strong>the</strong> central<br />

Aleutian Islands.<br />

133


134 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Acknowledgments<br />

We thank E. Brown, D. Carlile, S. France, L. Watling,<br />

S. Rooney, P. Malecha, T. Marshall, K. Lowyck, J. Hocevar,<br />

M. Ridgway, A. Andrews, and J. Mondragon for<br />

assistance with <strong>the</strong> collection <strong>of</strong> specimens. We thank<br />

John Hocevar <strong>of</strong> Greenpeace International for allowing<br />

us <strong>to</strong> include in this <strong>guide</strong> specimens collected during<br />

<strong>the</strong>ir 2007 Bering Sea Canyons Expedition. T. Warshaw<br />

provided <strong>the</strong> <strong>to</strong>pside pho<strong>to</strong>graphs <strong>of</strong> <strong>the</strong> Bering Sea<br />

specimens; B. Masuda helped with much <strong>of</strong> <strong>the</strong> pho<strong>to</strong><br />

editing. M. Kelly (NIWA) provided <strong>the</strong> skeletal structure<br />

description for <strong>the</strong> undescribed species <strong>of</strong> Latrunculia.<br />

The field collections were supported by <strong>the</strong> Alaska Fisheries<br />

Science Center <strong>of</strong> <strong>the</strong> National Marine Fisheries<br />

Service, West Coast and Polar Regions Undersea Research<br />

Center <strong>of</strong> NOAA’s National Undersea Research<br />

Program, and <strong>the</strong> North Pacific Research Board. We<br />

thank three anonymous reviewers for helpful comments<br />

on an earlier version <strong>of</strong> this manuscript. Funding for <strong>the</strong><br />

completion <strong>of</strong> this <strong>guide</strong> was provided by <strong>the</strong> National<br />

Marine Fisheries Service, Office <strong>of</strong> Habitat Conservation,<br />

as part <strong>of</strong> <strong>the</strong> Deep Sea Coral Research and Technology<br />

Program.<br />

Literature cited<br />

Adams, C. L., and J. N. A. Hooper.<br />

2001. A revision <strong>of</strong> Australian Erylus (Porifera: Demospongiae:<br />

Astrophorida: Geodiidae) with a tabular review <strong>of</strong> worldwide<br />

species. Invertebr. Taxon. 15:319–340.<br />

Anderson, J. M.<br />

1960. His<strong>to</strong>logical studies on <strong>the</strong> digestive system <strong>of</strong> a starfish<br />

Henricia, with notes on Tiedemann’s pouches in starfishes.<br />

Biol. Bull. (Woods Hole) 119:371–398.<br />

Austin, W. C.<br />

1985. Porifera. In An annotated checklist <strong>of</strong> marine invertebrates<br />

in <strong>the</strong> cold temperate Nor<strong>the</strong>ast Pacific, vol. 1 (W. C. Austin,<br />

ed.), p. 21–42. Khoyatan Marine Labora<strong>to</strong>ry, Cowichan<br />

Bay, BC.<br />

Austin, W. C., K. W. Conway, J. V. Barrie, and M. Krautter.<br />

2007. Growth and morphology <strong>of</strong> a reef-forming glass sponge,<br />

Aphrocallistes vastus (Hexactinellida), and implications for recovery<br />

from widespread trawl damage. In Porifera research:<br />

biodiversity, innovation and sustainability (M. R. Custódio, G.<br />

Lôbo-Hajdu, E. Hajdu, and G. Muricy, eds.), p. 139–145. Museu<br />

Nacional, Rio de Janeiro.<br />

Ayling, A. L.<br />

1983. Growth and regeneration rates in thinly encrusting Demospongiae<br />

from temperate <strong>water</strong>s. Biol. Bull. 165:343–352.<br />

Bergquist, P. R.<br />

1972. Deep <strong>water</strong> Demospongiae from New Zealand. Micronesica<br />

8:125–136.<br />

1978. Sponges. University <strong>of</strong> California Press, Berkeley and Los<br />

Angeles, 268 p.<br />

Blake, J. A., and A. L. Lissner.<br />

1994. Taxonomic atlas <strong>of</strong> <strong>the</strong> Santa Maria Basin and Western<br />

Santa Barbara Channel. Volume 2. Porifera. A final report prepared<br />

by Science Applications International Corporation, for<br />

<strong>the</strong> U.S. Department <strong>of</strong> <strong>the</strong> Interior, Minerals Management<br />

Service, Pacific OCS Region, Camarillo, CA. OCS Study MMS<br />

93-0068, 82 p.<br />

Boury-Esnault, N., and K. Rützler.<br />

1997. Thesaurus <strong>of</strong> sponge morphology. Smithson. Contrib.<br />

Zool. 596:1–55.<br />

Brøndsted, H. V.<br />

1933. The Godthaab Expedition 1928. Porifera. Meddelelser<br />

om Grønland 79(5):1–25.<br />

Bur<strong>to</strong>n, M.<br />

1934. Report on <strong>the</strong> <strong>sponges</strong> <strong>of</strong> <strong>the</strong> Norwegian expeditions<br />

<strong>to</strong> East-Greenland (1930, 1931, and 1932). Zoological results<br />

<strong>of</strong> <strong>the</strong> Norwegian scientific expeditions <strong>to</strong> East-Greenland<br />

3:3–33.<br />

Cárdenas, P., H. T. Rapp, C. Schander, and O. S. Tendal.<br />

2009. Molecular taxonomy and phylogeny <strong>of</strong> <strong>the</strong> Geodiidae<br />

(Porifera, Demospongiae, Astrophorida) – combining phylogenetic<br />

and Linnaean classification. Zool. Scr. 39:89–106.<br />

Conway, K. W., J. V. Barrie, W. C. Austin, and J. L. Luternauer.<br />

1991. Holocene sponge bioherms in <strong>the</strong> western Canadian<br />

continental shelf. Cont. Shelf Res. 11:771–790.<br />

Conway, K.W., M. Krautter, J. V. Barrie, and M. Neuweiler.<br />

2001. Hexactinellid sponge reefs on <strong>the</strong> Canadian continental<br />

shelf: a unique “living fossil”. Geoscience Canada 28:<br />

71–78.<br />

Conway, K.W., J. V. Barrie, and M. Krautter.<br />

2005. Geomorphology <strong>of</strong> unique reefs on <strong>the</strong> western Canadian<br />

shelf: sponge reefs mapped by multibeam bathymetry.<br />

Geo-Marine Letters 25:205–213.<br />

Day<strong>to</strong>n, P. K.<br />

1979. Observations <strong>of</strong> growth, dispersal and population dynamics<br />

<strong>of</strong> some <strong>sponges</strong> in McMurdo Sound. Colloques Internationaux<br />

du Centre National de la Recherche Scientifique<br />

291:271–282.<br />

de Laubenfels, M. W.<br />

1953. Sponges <strong>of</strong> <strong>the</strong> Alaskan Arctic. Smithson. Misc. Collect.<br />

121:1–22.<br />

de Weerdt, W. H.<br />

1986a. A systematic revision <strong>of</strong> <strong>the</strong> North-Eastern Atlantic<br />

shallow-<strong>water</strong> Haplosclerida (Porifera, Demospongiae), Part<br />

II: Chalinidae. Beaufortia 36:81–165.<br />

1986b. A monograph <strong>of</strong> <strong>the</strong> shallow-<strong>water</strong> Chalinidae (Porifera,<br />

Haplosclerida) <strong>of</strong> <strong>the</strong> Caribbean. Beaufortia 50:1–67.<br />

Dickinson, M. G.<br />

1945. Sponges <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> California. In Reports on <strong>the</strong><br />

collections obtained by Allan Hancock Pacific Expeditions <strong>of</strong><br />

Velero III <strong>of</strong>f <strong>the</strong> coast <strong>of</strong> Mexico, Central America, South America,<br />

and Galapagos Islands in 1932, in 1933, in 1934, in 1935,<br />

in 1936, in 1937, in 1939, and 1940, p. 1–55, plates 1–97. The<br />

University <strong>of</strong> Sou<strong>the</strong>rn California Press, Los Angeles.<br />

Ereskovsky, A. V.<br />

2010. The comparative embryology <strong>of</strong> <strong>sponges</strong>. Springer, New<br />

York, 329 p.<br />

Erpenbeck, D., and R. W. M. Van Soest.<br />

2002. Family Halichondriidae Gray 1867. In Systema Porifera:<br />

a <strong>guide</strong> <strong>to</strong> <strong>the</strong> classification <strong>of</strong> <strong>sponges</strong> (J. N. A. Hooper and R.<br />

W. M. Van Soest, eds.), p. 787–815. Kluwer Academic/Plenum<br />

Publishers, New York.<br />

Etnoyer, P., S. D. Cairns, J. A. Sanchez, J. K. Reed, J. V. Lopez, W. W.<br />

Schroeder, S. D. Brooke, L. Watling, A. Baco-Taylor, G. C. Williams,<br />

A. Lindner, S. C. France, and A.W. Bruckner.<br />

2006. Deep-sea coral collection pro<strong>to</strong>cols. NOAA Tech. Memo.<br />

<strong>NMFS</strong>-OPR-28, 50 p.<br />

Fallon, S. J., K. James, R. Norman, M. Kelly, and M. J. Ellwood.<br />

2010. A simple radiocarbon dating method for determining


<strong>the</strong> age and growth rate <strong>of</strong> <strong>deep</strong>-sea <strong>sponges</strong>. Nuclear Instruments<br />

and Methods in Physics Research B 268:1241–1243.<br />

Faulkner, J. D.<br />

2002. Marine natural products. Nat. Prod. Rev. 19:1–48.<br />

Fiore, C. L., and P. C. Jutte.<br />

2010. Characterization <strong>of</strong> macr<strong>of</strong>aunal assemblages associated<br />

with <strong>sponges</strong> and tunicates collected <strong>of</strong>f <strong>the</strong> sou<strong>the</strong>astern<br />

United States. Invertebr. Biol. 129:105–120.<br />

Freese, J. L.<br />

2001. Trawl-induced damage <strong>to</strong> <strong>sponges</strong> observed from a research<br />

submersible. Mar. Fish. Rev. 63(3):7–13.<br />

Freese, J. L., and B. L. Wing.<br />

2003. Juvenile red rockfish, Sebastes sp., associations with<br />

<strong>sponges</strong> in <strong>the</strong> Gulf <strong>of</strong> Alaska. Mar. Fish. Rev. 65(3):38–42.<br />

Freese, J. L., P. J. Auster, J. Heifetz, and B.L. Wing.<br />

1999. Effects <strong>of</strong> trawling on seafloor habitat and associated<br />

invertebrate taxa in <strong>the</strong> Gulf <strong>of</strong> Alaska. Mar. Ecol. Prog. Ser.<br />

182:119–126.<br />

Gray, J. E.<br />

1867. Notes on <strong>the</strong> arrangement <strong>of</strong> <strong>sponges</strong>, with <strong>the</strong> descriptions<br />

<strong>of</strong> some new genera. Proc. Zool. Soc. Lond. 1867(2):492–<br />

558, pls XXVII–XXVIII.<br />

Haefner, B.<br />

2003. Drugs from <strong>the</strong> <strong>deep</strong>: marine natural products as drug<br />

candidates. Drug Discovery Today 8(12):536–544.<br />

Heifetz, J., R. P. S<strong>to</strong>ne, and S. W. Shotwell.<br />

2009. Damage and disturbance <strong>to</strong> coral and sponge habitat <strong>of</strong><br />

<strong>the</strong> Aleutian Archipelago. Mar. Ecol. Prog. Ser. 397:295–303.<br />

Hentschel, E.<br />

1912. Kiesel- und Hornschwämme der Aru- und Kei-Inseln.<br />

Abhandlungen herausgegeben von der Senckenbergischen<br />

naturforschenden Gesellschaft 34(3):293–448, pls. 13–21. [In<br />

German]<br />

Hogg, M. M., O. S. Tendal, K. W. Conway, S. A. Pomponi, R. W. M.<br />

van Soest, J. Gutt, M. Krautter, and J. M. Roberts.<br />

2010. Deep-sea sponge grounds: reservoirs <strong>of</strong> biodiversity.<br />

UNEP-WCMC Biodiversity Series No. 32. UNEP-WCMC, Cambridge,<br />

U.K., 84 p.<br />

Holling, C. S.<br />

1973. Resilience and stability <strong>of</strong> ecological systems. Annu. Rev.<br />

Ecol. Syst. 4:1–23.<br />

Hooper, J. N. A., and C. Lévi.<br />

1994. Biogeography <strong>of</strong> Indo-west Pacific <strong>sponges</strong>: Microcionidae,<br />

Raspailiidae, Axinellidae. In Sponges in time and space<br />

(R. W. M. Van Soest, T. M. G. Van Kempern, and J-C Braekman,<br />

eds.), p. 191–212. Balkema, Rotterdam.<br />

Hooper, J. N. A., and R. W. M. Van Soest.<br />

2002. Systema Porifera: A <strong>guide</strong> <strong>to</strong> <strong>the</strong> classification <strong>of</strong> <strong>sponges</strong>.<br />

Kluwer Academic/Plenum Publishers, New York, 1708 p.<br />

Johnson, T.<br />

2003. The Bering Sea and Aleutian Islands: region <strong>of</strong> wonders.<br />

Alaska Sea Grant College Program, Univ. Alaska Fairbanks,<br />

Fairbanks, AK. 191 p.<br />

Koltun, V. M.<br />

1958. [Cornacuspongia <strong>of</strong> sea <strong>water</strong>s washing <strong>the</strong> South<br />

Sakhalin and <strong>the</strong> South Kurile Island region.] Issledovaniya<br />

dal′nevos<strong>to</strong>chnykh morei SSR 5:42–77, figs. 1–25.<br />

1959. Siliceous horny <strong>sponges</strong> <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn and far-eastern<br />

seas <strong>of</strong> <strong>the</strong> U.S.S.R. Opredeliteli po faune SSR, izdavae-<br />

mye Zoologicheskim muzeem Akademii nauk. 67:1–236. [In<br />

Russian]<br />

1970. Sponge fauna <strong>of</strong> <strong>the</strong> northwestern Pacific from <strong>the</strong><br />

shallows <strong>to</strong> <strong>the</strong> hadal depths. In Fauna <strong>of</strong> <strong>the</strong> Kurile-Kamchatka<br />

Trench and its environment (V. G. Bogorov, ed.), p.<br />

165–221. Institute <strong>of</strong> Oceanology <strong>of</strong> <strong>the</strong> Acadamy <strong>of</strong> Sciences<br />

<strong>of</strong> <strong>the</strong> U.S.S.R., 86. (Akademiya Nauk SSSR. Trudÿ Instituta<br />

135<br />

Okeanologii im P. P. Shirshov and Izdatel’stvo ‘Nauka’: Moskva):<br />

1–372, pls 1–8.<br />

Krautter, M., K. W. Conway, J. V. Barrie, and M. Neuweiler.<br />

2001. Discovery <strong>of</strong> a “living dinosaur”: globally unique modern<br />

hexactinellid sponge reefs <strong>of</strong>f British Columbia, Canada. Facies<br />

44:265–282.<br />

Lamb, A., and B. P. Hanby.<br />

2005. Marine life <strong>of</strong> <strong>the</strong> Pacific Northwest: a pho<strong>to</strong>graphic encyclopedia<br />

<strong>of</strong> invertebrates, seaweeds and selected fishes. Harbour<br />

Publishing, Madeira Park, BC, 398 p.<br />

Lambe, L. M.<br />

1900. Catalogue <strong>of</strong> <strong>the</strong> recent marine <strong>sponges</strong> <strong>of</strong> Canada and<br />

Alaska. The Ottawa Naturalist, Volume XIV (9):152–172.<br />

Lehnert, H., and R. P. S<strong>to</strong>ne.<br />

2011. Craniella sputnika sp. nov. (Porifera: Spirophorida: Tetillidae)<br />

from <strong>the</strong> Aleutian Islands, Alaska, with suggested nomenclatural<br />

changes for <strong>the</strong> genera Tetilla and Craniella. J. Mar.<br />

Biol. Assoc. U.K. 91:321–328.<br />

Lehnert, H., and R. W. M. Van Soest.<br />

1998. Shallow <strong>water</strong> <strong>sponges</strong> <strong>of</strong> Jamaica. Beaufortia 48(5):71–<br />

103.<br />

Lehnert, H., L. Watling, and R. S<strong>to</strong>ne.<br />

2005. Cladorhiza corona sp. nov. (Porifera: Demospongiae: Cladorhizidae)<br />

from <strong>the</strong> Aleutian Islands (Alaska). J. Mar. Biol.<br />

Assoc. U.K. 85:1359–1366.<br />

Levings, C. D., and N. G. McDaniel.<br />

1974. A unique collection <strong>of</strong> baseline biological data: benthic<br />

invertebrates from an under-<strong>water</strong> cable across <strong>the</strong> Strait <strong>of</strong><br />

Georgia. Fish. Res. Board Can. Tech. Rep. No. 441, 19 p.<br />

Leys, S. P., and A. V. Ereskovsky.<br />

2006. Embryogenesis and larval differentiation in <strong>sponges</strong>.<br />

Can. J. Zool. 84:262–287.<br />

Leys, S. P., and N. R. J. Lauzon.<br />

1998. Hexactinellid sponge ecology: growth rates and seasonality<br />

in <strong>deep</strong> <strong>water</strong> <strong>sponges</strong>. J. Exp. Mar. Biol. Ecol. 230:111–129.<br />

Maldonado, M., and P. R. Berquist.<br />

2002. Phylum Porifera. In Atlas <strong>of</strong> marine invertebrate larvae (C.<br />

M. Young, ed.), p. 19–50. Academic Press, London.<br />

Meylan, A.<br />

1988. Spongivory in hawksbill turtles: a diet <strong>of</strong> glass. Science<br />

239:393–395.<br />

Na, M., Y. Ding, B. Wang, B. L. Tekwani, R. F. Schinazi, S. Franzblau,<br />

M. Kelly, R. S<strong>to</strong>ne, X-C. Li, D. Ferreira, and M. T. Hamann.<br />

2010. Anti-infective discorhabdins from a <strong>deep</strong>-<strong>water</strong> Alaskan<br />

sponge <strong>of</strong> <strong>the</strong> genus Latrunculia. J. Nat. Prod. 73:383–387.<br />

Newman, D. J., and G. M. Cragg.<br />

2004. Marine natural products and related compounds in<br />

clinical and advanced preclinical trials. J. Nat. Prod. 67:1216–<br />

1238.<br />

Pile, A. J., M. R. Patterson, and J. D. Witman.<br />

1996. In situ grazing on plank<strong>to</strong>n


136 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Vacelet, J.<br />

2008. A new genus <strong>of</strong> carnivorous <strong>sponges</strong> (Porifera: Poecilosclerida,<br />

Cladorhizidae) from <strong>the</strong> <strong>deep</strong> N-E Pacific, and remarks<br />

on <strong>the</strong> genus Neocladia. Zootaxa 1752:57–65.<br />

Vacelet, J., and N. Boury-Esnault.<br />

1995. Carnivorous <strong>sponges</strong>. Nature 373(6512):458–459.<br />

Vallier, T. L., D. W. Scholl, M. A. Fisher, T. R. Bruns, F. H. Wilson,<br />

R. von Huene, and A. J. Stevenson<br />

1994. Geologic framework <strong>of</strong> <strong>the</strong> Aleutian arc, Alaska. In<br />

The geology <strong>of</strong> Alaska (G. Plafker and H. C. Berg, eds.),<br />

p. 367–388. The Geology Society <strong>of</strong> America, Inc., Boulder,<br />

CO.<br />

Van Dolah, R. F., P. H. Wendt, and N. Nicholson.<br />

1987. Effects <strong>of</strong> a research trawl on a hard-bot<strong>to</strong>m assemblage<br />

<strong>of</strong> <strong>sponges</strong> and corals. Fish. Res. 5:39–54.<br />

Van Soest, R. W. M., and K. Rützler.<br />

2002. Tetillidae Sollas, 1886. In Systema Porifera: A <strong>guide</strong> <strong>to</strong><br />

<strong>the</strong> classification <strong>of</strong> <strong>sponges</strong> (J. N. A. Hooper and R. W. M. Van<br />

Soest, eds.), p. 85–98. Kluwer Academic/Plenum Publishers,<br />

New York.<br />

Van Soest, R. W. M., and S. M. S<strong>to</strong>ne.<br />

1986. Antho brattegardi sp. n. (Porifera: Poecilosclerida), with<br />

remarks on and a key <strong>to</strong> <strong>the</strong> clathriids <strong>of</strong> Norwegian <strong>water</strong>s.<br />

Sarsia 71:41–48.<br />

Van Soest, R. W. M., N. Boury-Esnault, J. N. A. Hooper, K. Rützler, N. J.<br />

de Voogd, B. Alvarez, E. Hajdu, A. B. Pisera, J. Vacelet, R. Manconi,<br />

C. Schoenberg, D. Janussen, K. R. Tabachnick, and M. Klautau.<br />

2008. World Porifera Database. Website: http://www.marinespecies.org/porifera<br />

[Accessed 10 April 2009].<br />

Watling, L.<br />

2007. Predation on copepods by an Alaskan cladorhizid<br />

sponge. J. Mar. Biol. Assoc. U. K. 87:1721–1726.<br />

Wahle, C. M.<br />

1983. Regeneration <strong>of</strong> injuries among Jamaican gorgonians:<br />

<strong>the</strong> roles <strong>of</strong> colony physiology and environment. Biol. Bull.<br />

165:778–790.<br />

Yahel, G., D. I. Eerkes-Medrano, and S. P. Leys.<br />

2006. Size independent selective filtration <strong>of</strong> ultraplank<strong>to</strong>n<br />

by hexactinellid glass <strong>sponges</strong>. Aquatic Microbial Ecology<br />

45:181–194.


Appendix I. Sponge species reported from Alaskan <strong>water</strong>s<br />

This list includes <strong>the</strong> <strong>sponges</strong> currently known <strong>to</strong><br />

occur in <strong>the</strong> <strong>deep</strong> <strong>water</strong>s (>80 m) <strong>of</strong> Alaska. The list<br />

has been drawn from <strong>the</strong> published literature (mostly<br />

species descriptions) and from recent collections <strong>of</strong><br />

specimens that have been definitively identified by us<br />

through examination <strong>of</strong> microscopic characters. We<br />

provide a complete list <strong>of</strong> all species reported from<br />

<strong>the</strong> area, but only provide detailed species descriptions<br />

in this <strong>guide</strong> for those species that we collected<br />

PHYLUM PORIFERA<br />

CLASS CALCAREA<br />

Order Baerida<br />

Family Baeriidae<br />

Leuconia alaskensis de Laubenfels, 1953; (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Leucopsila cf. stylifera (Borojevic, Boury-Esnault and Vacelet, 2000); (Aleutian Islands)<br />

Order Clathrinida<br />

Family Clathrinidae<br />

Clathrina sp. ........................................................................Page 12<br />

Order Leucosolenida<br />

Family Amphoriscidae<br />

Leucilla nuttingi (Urban, 1902); (Aleutian Islands)<br />

Family Grantiidae<br />

Leucandra ananas (Montagu, 1818); (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Leucandra heathi Urban, 1906; (Aleutian Islands)<br />

Leucandra poculiformis Hozawa, 1918 .....................................................Page 13<br />

Leucandra pyriformis (Lambe, 1893); (Aleutian Islands)<br />

Leucandra taylori Lambe, 1900; (Aleutian Islands)<br />

Leucandra tuba Hozawa, 1918 ...........................................................Page 14<br />

Family Leucosoleniidae<br />

Leucosolenia eleanor Urban, 1905; (Aleutian Islands, Gulf <strong>of</strong> Alaska)<br />

Family Sycettidae<br />

Sycon compactum Lambe, 1893; (Aleutian Islands)<br />

CLASS HEXACTINELLIDA<br />

Subclass AMPHIDISCOPHORA<br />

Order Amphidiscosida<br />

Family Hyalonematidae<br />

Hyalonema (Cyliconema) apertum apertum Schulze, 1886; (western Aleutian Islands)<br />

Hyalonema (Cyliconema) apertum simplex Koltun, 1967; (Bering Sea)<br />

Hyalonema (Cyliconema) hozawai vicarium Koltun, 1967; (Bering Sea)*<br />

Hyalonema (Lep<strong>to</strong>nema) ovuliferum Schulze, 1899; (sou<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Hyalonema (Cyliconema) tenerum vitiazi Koltun, 1967; (Bering Sea)*<br />

Subclass HEXASTEROPHORA<br />

Order Hexactinosida<br />

Family Farreidae<br />

Farrea kurilensis ssp. nov. Reiswig and S<strong>to</strong>ne, in preparation ..................................Page 16<br />

Farrea occa occa Bowerbank, 1862 ........................................................Page 17<br />

Farrea watasei Okada, 1932; (Bering Sea)*<br />

Farrea sp. Okada, 1932; (Bering Sea)<br />

Farrea sp. nov. Reiswig and S<strong>to</strong>ne, in preparation ..........................................Page 18<br />

137<br />

and examined ourselves. For all o<strong>the</strong>r species we provide<br />

<strong>the</strong> zoogeographic ranges, but refer <strong>the</strong> reader <strong>to</strong><br />

<strong>the</strong> primary literature for those species descriptions.<br />

The taxonomic names are all modern, systematically<br />

arranged <strong>to</strong> family, and alphabetically arranged by<br />

genus and species within family. (*) indicates that <strong>the</strong><br />

species was reported without precise coordinates but<br />

we believe that <strong>the</strong> collection was made in Alaskan<br />

<strong>water</strong>s.


138 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Family Euretidae<br />

Chonelasma sp. Schulze, 1899; (nor<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Eurete irregularis Bowerbank, 1876; (Bering Sea)*<br />

Genus nov., sp. nov. Reiswig and S<strong>to</strong>ne, in preparation .....................................Page 19<br />

Family Tre<strong>to</strong>dictyidae<br />

Tre<strong>to</strong>dictyum sp. nov. Reiswig and S<strong>to</strong>ne, in preparation ......................................Page 20<br />

Family Aphrocallistidae<br />

Aphrocallistes vastus Schulze, 1886 .......................................................Page 21<br />

Heterochone aleutiana (Okada, 1932); (western Aleutian Islands)<br />

Heterochone calyx calyx Schulze, 1886 .....................................................Page 23<br />

Heterochone calyx schulzei Koltun, 1967; (Bering Sea)<br />

Heterochone tenera Schulze, 1899; (Bering Sea)*<br />

Heterochone n. sp. A Schuchert and Reiswig, 2006; (Gulf <strong>of</strong> Alaska)<br />

Order Lyssacinosida<br />

Family Euplectellidae<br />

Euplectella oweni Herklots and Marshall, 1868; (Bering Sea)*<br />

Euplectella sp. Koltun, 1967; (Bering Sea)*<br />

Holascus undulatus Schulze, 1899 (sou<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Regadrella okinoseana Ijima, 1896 ........................................................Page 25<br />

Family Rossellidae<br />

Acanthascus (Acanthascus) alani pr<strong>of</strong>undum Koltun, 1967; (Bering Sea)*<br />

Acanthascus (Rhabdocalyptus) australis Topsent, 1901; (Bering Sea)<br />

Acanthascus (Rhabdocalyptus) borealis Okada, 1932; (Bering Sea)<br />

Acanthascus (Rhabdocalyptus) dawsoni alascensis Wilson and Penney, 1930 (Bering Sea)<br />

Acanthascus (Rhabdocalyptus) dawsoni dawsoni (Lambe, 1893) .................................Page 27<br />

Acanthascus (Rhabdocalyptus) dawsoni horridus Koltun, 1967; (Bering Sea)*<br />

Acanthascus (Staurocalyptus) dowlingi (Lambe, 1894); (Gulf <strong>of</strong> Alaska)<br />

Acanthascus (Rhabdocalyptus) heteraster Okada, 1932; (Bering Sea)<br />

Acanthascus (Rhabdocalyptus) mirabilis (Schulze, 1899) ......................................Page 28<br />

Acanthascus (Acanthascus) mitis Koltun, 1967; (Bering Sea)*<br />

Acanthascus (Acanthascus) pr<strong>of</strong>undum ssp. nov. Reiswig and S<strong>to</strong>ne, in preparation .................Page 26<br />

Acanthascus (Staurocalyptus) rugocruciatus Okada, 1932; (Bering Sea)<br />

Acanthascus (Staurocalyptus) solidus (Schulze, 1899) .........................................Page 29<br />

Acanthascus (Rhabdocalyptus) unguiculatus (Ijima, 1904); (western Aleutian Islands)<br />

Acanthascus (Staurocalyptus) sp. nov. 1 Reiswig and S<strong>to</strong>ne, in preparation .......................Page 30<br />

Acanthascus (Staurocalyptus) sp. nov. 2 Reiswig and S<strong>to</strong>ne, in preparation .......................Page 31<br />

Aulosaccus fissuratus Okada, 1932; (Bering Sea, western Aleutian Islands)<br />

Aulosaccus ijimai (Schulze, 1899); (sou<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Aulosaccus pinularis Okada, 1932 ........................................................Page 32<br />

Aulosaccus schulzei Ijima, 1896 ..........................................................Page 33<br />

Bathydorus echinus Koltun, 1967; (Bering Sea)*<br />

Bathydorus laevis spinosus Wilson, 1904; (Bering Sea)*<br />

Bathydorus sp. Okada, 1932; (Bering Sea)<br />

Bathydorus sp. Reiswig and S<strong>to</strong>ne, in preparation ...........................................Page 34<br />

Caulophacus (Caulophacus) elegans Schulze, 1885; (Bering Sea)*<br />

Caulophacus (Caulophacus) schulzei hyperboreus Koltun, 1967; (Bering Sea)*<br />

Caulophacus (Caulophacus) sp. nov. Reiswig and S<strong>to</strong>ne, in preparation ..........................Page 35<br />

Scyphidium tuberculata (Okada, 1932); (Bering Sea)<br />

CLASS DEMOSPONGIAE<br />

Order Dendroceratida<br />

Family Darwinellidae<br />

Aplysilla glacialis (Merejkowski, 1877); (Arctic Ocean)


Order Homosclerophorida<br />

Family Plakinidae<br />

Plakina atka Lehnert, S<strong>to</strong>ne and Heimler, 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 38<br />

Plakina tanaga Lehnert, S<strong>to</strong>ne and Heimler, 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 39<br />

Order Spirophorida<br />

Family Tetillidae<br />

Craniella arb (de Laubenfels, 1930) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 40<br />

Craniella craniana de Laubenfels, 1953; (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Craniella sigmoancoratum (Koltun, 1966) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 41<br />

Craniella spinosa Lambe, 1893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 42<br />

Craniella sputnika Lehnert, S<strong>to</strong>ne and Heimler, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 43<br />

Craniella villosa Lambe, 1893; (Aleutian Islands, Gulf <strong>of</strong> Alaska)<br />

Order Astrophorida<br />

Family Ancorinidae<br />

Penares cortius de Laubenfels, 1930; (Gulf <strong>of</strong> Alaska)<br />

Stelletta validissima Thiele, 1898; (Bering Sea)<br />

Family Geodiidae<br />

Erylus aleuticus Lehnert, S<strong>to</strong>ne and Heimler, 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 44<br />

Geodia lendenfeldi nomen novum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 45<br />

Geodia mesotriaena Lendenfeld, 1910; (sou<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Family Pachastrellidae<br />

Poecillastra japonica (Thiele, 1898); (Bering Sea)<br />

Poecillastra tenuilaminaris (Sollas, 1886) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 46<br />

Order Hadromerida<br />

Family Polymastiidae<br />

Polymastia andrica de Laubenfels, 1949; (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Polymastia fluegeli Lehnert, S<strong>to</strong>ne and Heimler, 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 47<br />

Polymastia kurilensis Koltun, 1962; (Gulf <strong>of</strong> Alaska, Bering Sea)<br />

Polymastia pacifica Lambe, 1893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 48<br />

Radiella sol Schmidt, 1870; (eastern Gulf <strong>of</strong> Alaska)<br />

Family Stylocordylidae<br />

Stylocordyla borealis eous Koltun, 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 49<br />

Family Suberitidae<br />

Aap<strong>to</strong>s kanuux Lehnert, Hocevar and S<strong>to</strong>ne 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 50<br />

Pseudosuberites montiniger (Carter, 1880); (eastern Gulf <strong>of</strong> Alaska – Cross Sound)<br />

Rhizaxinella clavata (Thiele, 1898) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 51<br />

Suberites concinnus Lambe, 1895; (Gulf <strong>of</strong> Alaska, Bering Sea, Arctic Ocean)<br />

Suberites excellens (Thiele, 1898) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 52<br />

Suberites montalbidus Carter, 1880; (eastern Aleutian Islands)<br />

Suberites simplex Lambe, 1893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 53<br />

Suberites suberia (Montagu, 1818); (Gulf <strong>of</strong> Alaska, Bering Sea)<br />

Suberites virgul<strong>to</strong>sus (Johns<strong>to</strong>n, 1842); (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Suberites sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 54<br />

Order Haplosclerida (Suborder Petrosina)<br />

Family Petrosiidae<br />

Petrosia (Petrosia) borealis (Lambe, 1895); (western Aleutian Islands)<br />

Order Haplosclerida (Suborder Haplosclerina)<br />

Family Niphatidae<br />

Hemigellius porosus (Fristedt, 1887) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 55<br />

Order Poecilosclerida (Suborder Microcionina)<br />

Family Acarnidae<br />

Cornulum clathriata (Koltun, 1955) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 56<br />

Iophon piceum (Vosmaer, 1882) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 57<br />

139


140 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Family Acarnidae (continued)<br />

Iophon piceum abipocillus Koltun, 1959 ....................................................Page 58<br />

Megaciella anisochela Lehnert, S<strong>to</strong>ne and Heimler, 2006 .....................................Page 59<br />

Megaciella spirinae (Koltun, 1958) .......................................................Page 60<br />

Wigginsia wigginsi de Laubenfels, 1953; (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Family Microcionidae<br />

Clathria (Clathria) barleei (Bowerbank, 1866) ..............................................Page 61<br />

Clathria (Clathria) laevigata Lambe, 1893 .................................................Page 62<br />

Clathria (Axosuberites) lambei (Koltun, 1955) ..............................................Page 63<br />

Echinoclathria beringensis (Hentschel, 1929); (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Echinoclathria vasa Lehnert, S<strong>to</strong>ne and Heimler, 2006 .......................................Page 64<br />

Artemisina amlia Lehnert, S<strong>to</strong>ne and Heimler, 2006 ........................................Page 65<br />

Artemisina arcigera (Schmidt, 1870) .....................................................Page 66<br />

Artemisina stipitata Koltun, 1958. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 67<br />

Artemisina sp. .......................................................................Page 68<br />

Order Poecilosclerida (Suborder Myxillina)<br />

Family Coelosphaeridae<br />

Coelosphaera oglalai Lehnert, S<strong>to</strong>ne and Heimler, 2006 ......................................Page 69<br />

Inflatella globosa (Koltun, 1955) ........................................................Page 70<br />

Lissodendoryx (Lissodendoryx) amaknakensis (Lambe, 1895); (Gulf <strong>of</strong> Alaska, Bering Sea)<br />

Lissodendoryx (Lissodendoryx) behringi Koltun, 1958 .........................................Page 71<br />

Lissodendoryx (Lissodendoryx) firma (Lambe, 1895); (western Aleutian Islands)<br />

Lissodendoryx (Ectyodoryx) olgae (Hentschel, 1929) ..........................................Page 72<br />

Lissodendoryx (Lissodendoryx) oxeota Koltun, 1958 ...........................................Page 73<br />

Lissodendoryx (Lissodendoryx) papillosa Koltun, 1958 .........................................Page 74<br />

Family Crambeidae<br />

Monanchora alaskensis (Lambe, 1895) ....................................................Page 75<br />

Monanchora laminachela Lehnert, S<strong>to</strong>ne and Heimler, 2006 ..................................Page 76<br />

Monanchora pulchra (Lambe, 1894) .....................................................Page 77<br />

Family Crellidae<br />

Crella brunnea (Hansen, 1885) .........................................................Page 78<br />

Family Hymedesmiidae<br />

Hymedesmia (Stylopus) dermata Lundbeck, 1910 ............................................Page 79<br />

Hymedesmia (Hymedesmia) irregularis Lundbeck, 1910 .......................................Page 80<br />

Hymedesmia (Stylopus) longurius Lundbeck, 1910; (Aleutian Islands)<br />

Kirkpatrickia borealis Koltun, 1970 .......................................................Page 81<br />

Phorbas paucistylifer Koltun, 1958 ........................................................Page 82<br />

Family Iotrochotidae<br />

Iotroata magna (Lambe, 1900); (western Aleutian Islands)<br />

Family Myxillidae<br />

Melonanchora globogilva Lehnert, S<strong>to</strong>ne and Heimler, 2006 ...................................Page 83<br />

Myxilla (Myxilla) barentsi Vosmaer, 1885; (Gulf <strong>of</strong> Alaska, Bering Sea, Arctic Ocean)<br />

Myxilla (Myxilla) behringensis Lambe, 1895 ................................................Page 84<br />

Myxilla (Myxilla) incrustans (Johns<strong>to</strong>n, 1842); (Arctic Ocean – Point Barrow, Beaufort Sea;<br />

Gulf <strong>of</strong> Alaska)<br />

Myxilla (Bur<strong>to</strong>nanchora) lacunosa Lambe, 1893; (Aleutian Islands, Gulf <strong>of</strong> Alaska)<br />

Myxilla (Ectyomyxilla) parasitica Lambe, 1893 ..............................................Page 85<br />

Myxilla (Bur<strong>to</strong>nanchora) pedunculata Lundbeck, 1905 .......................................Page 86<br />

Stelodoryx oxeata Lehnert, S<strong>to</strong>ne and Heimler, 2006 .........................................Page 87<br />

Stelodoryx <strong>to</strong>poroki Koltun, 1958 ..........................................................Page 88<br />

Stelodoryx vitiazi (Koltun, 1959) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 89<br />

Family Phellodermidae<br />

Echinostylinos hirsutus Koltun, 1970 ......................................................Page 90<br />

Family Tedaniidae<br />

Tedania (Tedania) dirhaphis Hentschel, 1912 ..............................................Page 91


Family Tedaniidae (continued)<br />

Tedania (Tedania) fragilis Baer, 1906; (eastern Aleutian Islands)<br />

Tedania kagalaskai Lehnert, S<strong>to</strong>ne and Heimler, 2006 ...................................... Page 92<br />

Order Poecilosclerida (Suborder Mycalina)<br />

Family Cladorhizidae<br />

Abyssocladia bruuni Lévi, 1964; (sou<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Asbes<strong>to</strong>pluma occidentalis (Lambe, 1893); (Bering Sea)<br />

Asbes<strong>to</strong>pluma ramosa Koltun, 1958 ...................................................... Page 93<br />

Cladorhiza bathycrinoides Koltun, 1955 ................................................... Page 95<br />

Cladorhiza corona Lehnert, Watling and S<strong>to</strong>ne, 2005 ....................................... Page 96<br />

Cladorhiza longipinna Ridley and Dendy, 1886 (sou<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Chondrocladia (Chondrocladia) concrescens (Schmidt, 1880) .................................. Page 97<br />

Family Desmacellidae<br />

Biemna rhadia de Laubenfels, 1930; (sou<strong>the</strong>rn Gulf <strong>of</strong> Alaska)<br />

Biemna variantia (Bowerbank, 1858) ................................................... Page 98<br />

Family Guitarridae<br />

Euchelipluma elongata Lehnert, S<strong>to</strong>ne and Heimler, 2006 ................................... Page 99<br />

Guitarra abbotti Lee, 1987 ............................................................. Page 100<br />

Guitarra fimbriata Carter, 1874 ......................................................... Page 101<br />

Family Esperiopsidae<br />

Amphilectus digitatus (Miklucho-Maclay, 1870) ............................................ Page 102<br />

Amphilectus lobatus (Montagu, 1818); (Alaska)<br />

Esperiopsis flagrum Lehnert, S<strong>to</strong>ne and Heimler, 2006 ...................................... Page 103<br />

Semisuberites cribrosa (Miklucho-Maclay, 1870) ............................................ Page 104<br />

Family Mycalidae<br />

Mycale (Aegogropila) adhaerens (Lambe, 1893) ............................................ Page 106<br />

Mycale (Carmia) carlilei Lehnert, S<strong>to</strong>ne and Heimler, 2006 .................................. Page 107<br />

Mycale (Carmia) helios (Fristedt, 1887); (Bering Sea, Arctic Ocean)<br />

Mycale (Mycale) hispida (Lambe, 1893); (Gulf <strong>of</strong> Alaska, Aleutian Islands)<br />

Mycale (Mycale) jasoniae Lehnert, S<strong>to</strong>ne and Heimler, 2006 ................................. Page 108<br />

Mycale (Mycale) lingua (Bowerbank, 1866); (central Aleutian Islands)<br />

Mycale (Mycale) loveni (Fristedt, 1887) .................................................. Page 109<br />

Mycale (Mycale) modesta (Lambe, 1894); (Gulf <strong>of</strong> Alaska, Bering Sea)<br />

Mycale (Mycale) <strong>to</strong>poroki Koltun, 1958; (Bering Sea)<br />

Mycale (Mycale) tylota Koltun, 1958 ..................................................... Page 112<br />

Family Isodictyidae<br />

Isodictya quatsinoensis (Lambe, 1892); (Gulf <strong>of</strong> Alaska, Bering Sea)<br />

Order Poecilosclerida (Suborder Latrunculia)<br />

Family Latrunculiidae<br />

Latrunculia occulta Lehnert, S<strong>to</strong>ne and Heimler, 2006; (central Aleutian Islands)<br />

Latrunculia (Biannulata) oparinae Samaii and Krasokhin, 2002 ............................... Page 113<br />

Latrunculia velera Lehnert, S<strong>to</strong>ne and Heimler, 2006 ...................................... Page 114<br />

Latrunculia (undescribed species) ..................................................... Page 115<br />

Order Halichondrida<br />

Family Axinellidae<br />

Axinella blanca Koltun, 1959 ........................................................... Page 116<br />

Axinella rugosa (Bowerbank, 1866) ..................................................... Page 117<br />

Family Bubaridae<br />

Bubaris vermiculata (Bowerbank, 1866) .................................................. Page 118<br />

Family Halichondriidae<br />

Halichondria (Halichondria) colossea Lundbeck, 1902 ....................................... Page 119<br />

Halichondria (Halichondria) lambei Brøndsted, 1933; (Arctic Ocean – Point Barrow, Beaufort Sea)<br />

Halichondria (Halichondria) oblonga (Hansen, 1885) ....................................... Page 120<br />

Halichondria (Eumastia) sitiens (Schmidt, 1870) .......................................... Page 121<br />

Halichondria sp. .................................................................... Page 122<br />

141


142 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Family Halichondriidae (continued)<br />

Hymeniacidon assimilis Levinsen, 1887 ....................................................Page 124<br />

Topsentia disparilis (Lambe, 1893) .......................................................Page 125<br />

Order Haplosclerida<br />

Family Chalinidae<br />

Cladocroce ventilabrum (Fristedt, 1887) ...................................................Page 126<br />

Haliclona bucina Tanita and Hoshino, 1989 ...............................................Page 127<br />

Haliclona (Gellius) digitata (Koltun, 1958) ................................................Page 128<br />

Haliclona (Gellius) primitiva (Lundbeck, 1902) ............................................Page 129<br />

Haliclona (Rhizoniera) rufescens (Lambe, 1892); (Gulf <strong>of</strong> Alaska, Bering Sea, Arctic Ocean)<br />

Haliclona tenuiderma (Lundbeck, 1902) ..................................................Page 130<br />

Haliclona (Haliclona) urceolus (Rathke and Vahl, 1806) .....................................Page 131<br />

Haliclona sp. 1 .......................................................................Page 132<br />

Haliclona sp. 2. ......................................................................Page 133<br />

Family Petrosiidae<br />

Xes<strong>to</strong>spongia hispida (Ridley and Dendy, 1886); (Gulf <strong>of</strong> Alaska)


Appendix II. Priorities for bycatch moni<strong>to</strong>ring<br />

This list includes <strong>the</strong> <strong>deep</strong>-<strong>water</strong> (>80 m) <strong>sponges</strong> presented<br />

in this <strong>guide</strong>. Each species is ranked from low<br />

(1) <strong>to</strong> high (3) for its importance as fish habitat and<br />

its vulnerability <strong>to</strong> disturbance from fishing activities.<br />

Ranks for <strong>the</strong>se two measures are averaged <strong>to</strong> provide<br />

Importance as Vulnerability <strong>to</strong><br />

Species fish habitat disturbance Score<br />

CLASS CALCAREA<br />

Clathrina sp. 1 2 1.5<br />

Leucandra poculiformis 1 1 1.0<br />

Leucandra tuba 2 2 2.0<br />

CLASS HEXACTINELLIDA<br />

Farrea kurilensis ssp. nov. 3 2 2.5<br />

Farrea occa occa 3 3 3.0<br />

Farrea sp. nov. 1 1 1.0<br />

Genus nov., sp. nov. 2 1 1.5<br />

Tre<strong>to</strong>dictyum sp. nov. 1 2 1.5<br />

Aphrocallistes vastus 3 3 3.0<br />

Heterochone calyx calyx 3 3 3.0<br />

Regadrella okinoseana 1 1 1.0<br />

Acanthascus (Acanthascus) pr<strong>of</strong>undum ssp. nov. 1 1 1.0<br />

Acanthascus (Rhabdocalyptus) dawsoni dawsoni 3 2 2.5<br />

Acanthascus (Rhabdocalyptus) mirabilis 1 1 1.0<br />

Acanthascus (Staurocalyptus) solidus 2 2 2.0<br />

Acanthascus (Staurocalyptus) sp. nov. 1 2 3 2.0<br />

Acanthascus (Staurocalyptus) sp. nov. 2 2 2 2.0<br />

Aulosaccus pinularis 1 1 1.0<br />

Aulosaccus schulzei 1 2 1.5<br />

Bathydorus sp. 1 1 1.0<br />

Caulophacus (Caulophacus) sp. nov. 2 1 1.5<br />

CLASS DEMOSPONGIAE<br />

Plakina atka 1 1 1.0<br />

Plakina tanaga 1 1 1.0<br />

Craniella arb 1 2 1.5<br />

Craniella sigmoancoratum 1 1 1.0<br />

Craniella spinosa 1 1 1.0<br />

Craniella sputnika 1 1 1.0<br />

Erylus aleuticus 1 1 1.0<br />

Geodia lendenfeldi 1 1 1.0<br />

Poecillastra tenuilaminaris 3 3 3.0<br />

Polymastia fluegeli 1 1 1.0<br />

Polymastia pacifica 1 1 1.0<br />

Stylocordyla borealis eous 1 2 1.5<br />

Aap<strong>to</strong>s kanuux 1 2 1.5<br />

Rhizaxinella clavata 1 2 1.5<br />

Suberites excellens 2 1 1.5<br />

Suberites simplex 1 1 1.0<br />

143<br />

a score. Species with scores greater than 2.0 should<br />

rank as a high priority for moni<strong>to</strong>ring as bycatch in<br />

commercial fisheries and s<strong>to</strong>ck assessment surveys.<br />

The scores for high priority species are presented in<br />

bold lettering.


144 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Importance as Vulnerability <strong>to</strong><br />

Species fish habitat disturbance Score<br />

CLASS DEMOSPONGIAE (continued)<br />

Suberites sp. 1 1 1.0<br />

Hemigellius porosus 1 2 1.5<br />

Cornulum clathriata 1 1 1.0<br />

Iophon piceum 1 2 1.5<br />

Iophon piceum abipocillus 1 2 1.5<br />

Megaciella anisochela 1 1 1.0<br />

Megaciella spirinae 1 2 1.5<br />

Clathria (Clathria) barleei 1 2 1.5<br />

Clathria (Clathria) laevigata 1 2 1.5<br />

Clathria (Axosuberites) lambei 1 2 1.5<br />

Echinoclathria vasa 1 1 1.0<br />

Artemisina amlia 1 2 1.5<br />

Artemisina arcigera 1 2 1.5<br />

Artemisina stipitata 2 3 2.5<br />

Artemisina sp. 2 3 2.5<br />

Coelosphaera oglalai 1 2 1.5<br />

Inflatella globosa 1 2 1.5<br />

Lissodendoryx (Lissodendoryx) behringi 1 2 1.5<br />

Lissodendoryx (Ectyodoryx) olgae 1 1 1.0<br />

Lissodendoryx (Lissodendoryx) oxeota 1 1 1.0<br />

Lissodendoryx (Lissodendoryx) papillosa 1 1 1.0<br />

Monanchora alaskensis 2 2 2.0<br />

Monanchora laminachela 1 2 1.5<br />

Monanchora pulchra 3 2 2.5<br />

Crella brunnea 1 1 1.0<br />

Hymedesmia (Stylopus) dermata 1 1 1.0<br />

Hymedesmia (Hymedesmia) irregularis 1 1 1.0<br />

Kirkpatrickia borealis 1 2 1.5<br />

Phorbas paucistylifer 1 2 1.5<br />

Melonanchora globogilva 1 1 1.0<br />

Myxilla (Myxilla) behringensis 1 1 1.0<br />

Myxilla (Ectyomyxilla) parasitica 1 1 1.0<br />

Myxilla (Bur<strong>to</strong>nanchora) pedunculata 1 2 1.5<br />

Stelodoryx oxeata 1 2 1.5<br />

Stelodoryx <strong>to</strong>poroki 2 1 1.5<br />

Stelodoryx vitiazi 1 1 1.0<br />

Echinostylinos hirsutus 1 1 1.0<br />

Tedania (Tedania) dirhaphis 1 2 1.5<br />

Tedania kagalaskai 2 2 2.0<br />

Asbes<strong>to</strong>pluma ramosa 2 2 2.0<br />

Cladorhiza bathycrinoides 1 1 1.0<br />

Cladorhiza corona 1 2 1.5<br />

Chondrocladia (Chondrocladia) concrescens 1 2 1.5<br />

Biemna variantia 1 2 1.5<br />

Euchelipluma elongata 1 1 1.0<br />

Guitarra abbotti 2 1 1.5<br />

Guitarra fimbriata 2 1 1.5<br />

Amphilectus digitatus 2 2 2.0<br />

Esperiopsis flagrum 2 1 1.5<br />

Semisuberites cribrosa 2 2 2.0


Importance as Vulnerability <strong>to</strong><br />

Species fish habitat disturbance Score<br />

CLASS DEMOSPONGIAE (continued)<br />

Mycale (Aegogropila) adhaerens 2 3 2.5<br />

Mycale (Carmia) carlilei 2 2 2.0<br />

Mycale (Mycale) jasoniae 2 2 2.0<br />

Mycale (Mycale) loveni 3 3 3.0<br />

Mycale (Mycale) tylota 1 2 1.5<br />

Latrunculia (Biannulata) oparinae 2 2 2.0<br />

Latrunculia velera 2 1 1.5<br />

Latrunculia sp. (undescribed) 1 1 1.0<br />

Axinella blanca 3 3 3.0<br />

Axinella rugosa 2 2 2.0<br />

Bubaris vermiculata 1 1 1.0<br />

Halichondria (Halichondria) colossea 2 1 1.5<br />

Halichondria (Halichondria) oblonga 1 2 1.5<br />

Halichondria (Eumastia) sitiens 2 2 2.0<br />

Halichondria sp. 2 3 2.5<br />

Hymeniacidon assimilis 2 2 2.0<br />

Topsentia disparilis 1 1 1.0<br />

Cladocroce ventilabrum 1 2 1.5<br />

Haliclona bucina 1 1 1.0<br />

Haliclona (Gellius) digitata 1 2 1.5<br />

Haliclona (Gellius) primitiva 1 2 1.5<br />

Haliclona tenuiderma 1 1 1.0<br />

Haliclona (Haliclona) urceolus 1 2 1.5<br />

Haliclona sp. 1 1 2 1.5<br />

Haliclona sp. 2 2 1 1.5<br />

145


146 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Appendix III. Glossary <strong>of</strong> terms<br />

Acanthose: spined<br />

Anchorate: anchored or anchor-like<br />

Apical: located at <strong>the</strong> apex; distal<br />

Arborescent: highly branched<br />

Areolate: surface covered with numerous circular areas<br />

Choanosome: interior tissue<br />

Clavate: club-shaped<br />

Conspecificity: belonging <strong>to</strong> <strong>the</strong> same species<br />

Conules: cone-shaped projections<br />

Conulose: surface with numerous conules raised by <strong>the</strong><br />

underlying skele<strong>to</strong>n<br />

Crenulate: surface with minutely notched or scalloped<br />

projections<br />

Dactylate: finger-like projections<br />

Digitate: <strong>deep</strong>ly divided finger-like projections<br />

Ecomorph: growth form adapted for different ecological<br />

regime<br />

Ec<strong>to</strong>some: exterior surface<br />

Emergent epifauna: fauna having most <strong>of</strong> its parts elevated<br />

above <strong>the</strong> level <strong>of</strong> <strong>the</strong> surrounding seafloor<br />

Endopsammic: main part <strong>of</strong> <strong>the</strong> body buried in sand<br />

Epizoic: living attached <strong>to</strong> <strong>the</strong> body <strong>of</strong> an animal; a<br />

non-parasitic animal that lives attached <strong>to</strong> <strong>the</strong> outer<br />

surface <strong>of</strong> ano<strong>the</strong>r animal<br />

Eurybathic: broadly distributed with depth<br />

Filiform: shaped like a thread<br />

Fistules: cone-shaped elevations or tube-like protuberances<br />

Flabellate: fan-shaped<br />

Flagelliform: shaped as a single, very long, erect branch<br />

Foliate: shaped like a leaf<br />

Globular: ball-shaped or spherical<br />

Gonochoristic: having male and female individuals in<br />

<strong>the</strong> same population<br />

Hispid: covered with bristly hairs<br />

Holotype: <strong>the</strong> single specimen used as <strong>the</strong> basis for <strong>the</strong><br />

first published description <strong>of</strong> a species and designated<br />

as <strong>the</strong> type specimen<br />

Labyrinthic: an intricate structure <strong>of</strong> interconnecting<br />

passages<br />

Lobate: having lobes or rounded projections<br />

Mammillate: shaped like a nipple<br />

Massive: large and compact but amorphous or without<br />

a definable shape (note that <strong>the</strong> term “lumpy” is used<br />

in some <strong>of</strong> <strong>the</strong> sponge literature)<br />

Megascleres: large structural spicules<br />

Microscleres: small <strong>to</strong> minute reinforcing or packing<br />

spicules<br />

Osculum (a): <strong>the</strong> opening through which <strong>water</strong> is expelled<br />

from <strong>the</strong> sponge<br />

Ostium (a): <strong>the</strong> opening through which <strong>water</strong> enters<br />

<strong>the</strong> sponge<br />

Oviparous: producing eggs that are laid and hatch<br />

externally<br />

Papillae: Nipple-like protuberances projecting from <strong>the</strong><br />

sponge surface that bear ei<strong>the</strong>r ostia, oscula, or both<br />

Pellicular: covered with a liquid film or organic membrane<br />

Polymorphic: occurring in different shapes<br />

Polyspicular: composed <strong>of</strong> multiple spicule types<br />

Saccate: shaped like a sac or pouch<br />

Sibling species: a species that closely resembles ano<strong>the</strong>r<br />

in appearance and o<strong>the</strong>r characteristics but cannot<br />

interbreed with it<br />

Spicules: small needle-like structures made <strong>of</strong> silica or<br />

calcium carbonate that support <strong>the</strong> s<strong>of</strong>t tissues <strong>of</strong><br />

<strong>sponges</strong><br />

Spongin: <strong>the</strong> fibrous framework <strong>of</strong> collagen that forms<br />

<strong>the</strong> sponge’s organic skele<strong>to</strong>n<br />

Spongocoel (= atrium): <strong>the</strong> central exhalant cavity <strong>of</strong><br />

<strong>the</strong> sponge<br />

S<strong>to</strong>lon: a creeping or prostrate rope-like structure<br />

Subglobular: deviating slightly from globular<br />

Subspecies: a morphologically and genetically distinct<br />

population within a species that inhabits a separate<br />

geographic area or depth range<br />

Tabular: having a plane surface or flat<br />

Tuberculate: warty or verrucose<br />

Uncinate: large straight diactin spicules covered with<br />

barbs and brackets all inclined at one end<br />

Viviparous: producing live <strong>of</strong>fspring from within <strong>the</strong><br />

body <strong>of</strong> <strong>the</strong> parent


Appendix IV. Spicule types<br />

This appendix includes scanning electron microscopy<br />

(SEM) images <strong>of</strong> spicules from select calcareous<br />

<strong>sponges</strong> and demo<strong>sponges</strong> collected during <strong>the</strong><br />

2004 Aleutian Island expeditions. It also includes<br />

several SEM images <strong>of</strong> spicules from a few hexactinellid<br />

sponge species that are common in Alaskan<br />

<strong>water</strong>s. The purpose <strong>of</strong> <strong>the</strong> appendix is <strong>to</strong> provide<br />

<strong>the</strong> reader with a representative collection <strong>of</strong> spicule<br />

images so that <strong>the</strong>y may gain an understanding <strong>of</strong> <strong>the</strong><br />

terms used in <strong>the</strong> <strong>guide</strong> and an appreciation for <strong>the</strong><br />

Class Calcarea, Family Grantiidae, Leucandra poculiformis Hozawa, 1918.<br />

147<br />

variation between species and among spicule types.<br />

This collection also serves as a source <strong>of</strong> reference<br />

material for those who wish <strong>to</strong> microscopically examine<br />

<strong>sponges</strong>. We refer <strong>the</strong> reader <strong>to</strong> <strong>the</strong> Thesaurus<br />

<strong>of</strong> Sponge Morphology (Boury-Esnault and Rützler,<br />

1997) for a comprehensive glossary <strong>of</strong> terminology<br />

and a pic<strong>to</strong>rial <strong>guide</strong> <strong>to</strong> spicule types and skeletal<br />

structures. The species in this appendix have been<br />

arranged systematically <strong>to</strong> family and alphabetically<br />

arranged within family.<br />

(A) Overview <strong>of</strong> occurring spicules: large tri- and tetractines and small oxeas; (B) large triactine; (C) a rare large<br />

tetractine; and (D) acanthose microxeas with characteristic bend called a “lance-head” by Hozawa.


148 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Leucandra poculiformis Hozawa, 1918 (continued)<br />

Class Calcarea, Family Grantiidae, Leucandra tuba Hozawa, 1918.<br />

(A) Pugiole with unusual biforked end; (B) pugioles, small and large oxeas; (C) typical pugiole with normal points;<br />

(D) giant tetractines among small category <strong>of</strong> triactines; and (E) triactines among minute oxeote spicule types.


Leucandra poculiformis Hozawa, 1918 (continued)<br />

149


150 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Hexactinellida, Family Farreidae, Farrea occa occa Bowerbank, 1862.<br />

(A) An anchorate clavule; (B) a pileate clavule; (C) a dermal pentactin; (D) dictyonal framework; and (E) an oxyhexaster.


Farrea occa occa Bowerbank, 1862 (continued)<br />

Class Hexactinellida, Family Aphrocallistidae, Aphrocallistes vastus Schulze, 1886.<br />

(A) Dictyonal framework (scale bar equals 500 µm); (B) a pentactin from a juvenile specimen; (C) a scopule<br />

from a juvenile specimen; (D) a scopule head; (E) a spiny oxyhexaster; and (F) a s<strong>to</strong>ut oxyhexaster.<br />

151


152 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Aphrocallistes vastus Schulze, 1886 (continued)


Class Demospongiae, Family Plakinidae, Plakina atka Lehnert, S<strong>to</strong>ne and Heimler, 2005.<br />

(A) Spined calthrops with reduced 4 th ray, all rays with basal spines; (B) micr<strong>of</strong>urcate end <strong>of</strong> ray from a tetraloph,<br />

tetrafurcate lophocalthrops; (C) tetralophose calthrops, all rays tetrafurcate, points <strong>of</strong> rays micr<strong>of</strong>urcate; (D) smooth<br />

diods, smooth triods, and thicker triods with strongly spined bases <strong>of</strong> rays; and (E) thick category <strong>of</strong> diods with central<br />

spines. Probably derived from spined triods through reduction <strong>of</strong> one ray. (Figures A–E reproduced with permission<br />

from Zootaxa, Magnolia Press.)<br />

153


154 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Plakina atka Lehnert, S<strong>to</strong>ne and Heimler, 2005 (continued)


Class Demospongiae, Family Plakinidae, Plakina tanaga Lehnert, S<strong>to</strong>ne and Heimler, 2005.<br />

(A) Smooth oxeas, triods, and trilophose calthrops; (B) weakly spined triods and trilophose calthrops; and (C)<br />

trilophose calthrops with tetrafurcate lophose rays and biforked non-lophose ray. (Figures A–C reproduced with<br />

permission from Zootaxa, Magnolia Press.)<br />

155


156 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Geodiidae, Erylus aleuticus Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) An anisotylote (one <strong>of</strong> several unusual spicule types occurring in this species); (B) a juvenile apidaster with different<br />

surface structure; (C) adult apidasters; (D) a centrolyte microstrongyle on <strong>the</strong> surface <strong>of</strong> an apidaster; (E)<br />

cladome <strong>of</strong> triaene with bent rays; (F) star-shaped surface structure on adult aspidaster; (G) oxyaster; and (H) surface<br />

structures on aspidasters may vary in geometry. (Figures B, C, D, E, and F reproduced with permission from <strong>the</strong><br />

Journal <strong>of</strong> <strong>the</strong> Marine Biological Association <strong>of</strong> <strong>the</strong> United Kingdom.)


Erylus aleuticus Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)<br />

157


158 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Polymastiidae, Polymastia fluegeli Lehnert, S<strong>to</strong>ne and Heimler, 2005.<br />

(A) Small category <strong>of</strong> tylostyle and tyle <strong>of</strong> large tylostyle (note <strong>the</strong> radiolarian skele<strong>to</strong>n at lower right); (B) large and<br />

small tylostyles; and (C) small category <strong>of</strong> tylostyles on large tylostyles. (Figures A and B reproduced with permission<br />

from Facies, Springer Verlag.)


Class Demospongiae, Family Suberitidae, Aap<strong>to</strong>s kanuux Lehnert, Hocevar and S<strong>to</strong>ne, 2008.<br />

(A) Overview <strong>of</strong> spicules; large strongyloxeas, medium-size subtylostyles, and short ec<strong>to</strong>somal tylostyles; (B) mediumsized<br />

subtylostyles and ec<strong>to</strong>somal tylostyles; (C) ec<strong>to</strong>somal tylostyles and ends <strong>of</strong> medium-sized spicules. (Figures A–C<br />

reproduced with permission from Zootaxa, Magnolia Press.)<br />

159


160 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Acarnidae, Megaciella anisochela Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Category <strong>of</strong> thick styles among smaller tylotes and microscleres; (B) small category <strong>of</strong> palmate isochela; (C) large<br />

category <strong>of</strong> palmate isochela; (D) acanthose end <strong>of</strong> tylote (close-up view); (E) a dis<strong>to</strong>rted, tiny anisochela (this is <strong>the</strong><br />

only species <strong>of</strong> Megaciella with anisochelae); and (F) an anisochela. (Figures A–D reproduced with permission from<br />

Zootaxa, Magnolia Press.)


Megaciella anisochela Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)<br />

161


162 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Microcionidae, Echinoclathria vasa Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) A palmate isochela with narrow alae (note <strong>the</strong> rounded ends <strong>of</strong> alae); (B) long ec<strong>to</strong>somal thin styles among thick<br />

styles; (C) a palmate isochela, both alae with two points (acanthose end <strong>of</strong> thin style at upper right); (D) thick styles;<br />

(E) reduced palmate isochela (note different points on <strong>the</strong> alae); and (F) acanthose end <strong>of</strong> thin style. (Figures A–F<br />

reproduced with permission from Zootaxa, Magnolia Press.)


Echinoclathria vasa Lehnert, S<strong>to</strong>ne and Heimler (continued)<br />

Class Demospongiae, Family Microcionidae, Artemisina amlia Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) A smooth <strong>to</strong>xon; (B) a large, smooth style; (C) a thin style with prominent <strong>to</strong>oth (upper left <strong>to</strong> lower right); (D)<br />

an isochela; and (E) a close-up view <strong>of</strong> prominent <strong>to</strong>oth on thin category <strong>of</strong> style. (Figures A–E reproduced with<br />

permission from Zootaxa, Magnolia Press.)<br />

163


164 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Artemisina amlia Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)


Class Demospongiae, Family Coelosphaeridae, Coelosphaera oglalai Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) A choanosomal strongyle among microscleres; (B) microacanthose end <strong>of</strong> a choanosomal strongyle (close-up<br />

view); (C) acanthose end <strong>of</strong> tylote (close-up view); (D) isochelae (right) and acanthose end <strong>of</strong> a strongyle (left); and<br />

(E) an ec<strong>to</strong>somal tylote (center). (Figures A–E reproduced with permission from Zootaxa, Magnolia Press.)<br />

165


166 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Coelosphaera oglalai Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)<br />

Class Demospongiae, Family Crambeidae, Monanchora laminachela Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Choanosomal thick style among thin styles; (B) an ec<strong>to</strong>somal thin style; (C) an anchorate isochela with characteristic<br />

central plate; (D) variation <strong>of</strong> isochela with fused alae; (E) an isochela (rear view); and (F) a sigma. (Figures<br />

A–D and F reproduced with permission from Zootaxa, Magnolia Press.)


Monanchora laminachela Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)<br />

167


168 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Myxillidae, Melonanchora globogilva Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) An ec<strong>to</strong>somal tylote among microscleres; (B) smooth end <strong>of</strong> tylote and pointed end <strong>of</strong> acanthostyle (close-up<br />

view); (C) acanthostyles; (D) a large isochelae (shaft <strong>of</strong> inner margins <strong>of</strong> alae with fimbriae); (E) fimbriate inner<br />

margins <strong>of</strong> alae <strong>of</strong> isochelae (close-up view); (F) second type <strong>of</strong> large isochela with different shape and dented outer<br />

margins; (G) small category <strong>of</strong> isochelae; and (H) dented margins <strong>of</strong> second type <strong>of</strong> isochela (close-up view). (Figures<br />

A–H reproduced with permission from Zootaxa, Magnolia Press.)


Melonanchora globogilva Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)<br />

169


170 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Myxillidae, Stelodoryx oxeata Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) A large oxea with acanthose ends among <strong>to</strong>rnotes with acanthose ends; (B) acanthose end <strong>of</strong> <strong>to</strong>rnote and a sigma;<br />

(C) acanthose end <strong>of</strong> oxea (close-up view); (D) large category <strong>of</strong> anchorate isochela; (E) medium-sized category<br />

<strong>of</strong> anchorate, polydentate isochela; (F) small category <strong>of</strong> anchorate isochelae and centrolyte sigmas; (G) acanthose<br />

end <strong>of</strong> ec<strong>to</strong>somal <strong>to</strong>rnote, centrotylote sigma (above) and medium-sized isochela (below); and (H) large category <strong>of</strong><br />

isochela (side view). (Figures A–F reproduced with permission from Zootaxa, Magnolia Press.)


Stelodoryx oxeata Lehnert, S<strong>to</strong>ne and Heimler (continued)<br />

171


172 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Tedaniidae, Tedania kagalaskai Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Thick choanosomal styles and ec<strong>to</strong>somal tylotes; (B) acanthose end <strong>of</strong> tylote (close-up view); (C) large category<br />

<strong>of</strong> onychaete (lower left <strong>to</strong> upper right) among tylotes; and (D) small category <strong>of</strong> onychaete (note <strong>the</strong> unequal ends).<br />

(Figures A–D reproduced with permission from Zootaxa, Magnolia Press.)


Class Demospongiae, Family Cladorhizidae, Cladorhiza bathycrinoides Koltun, 1955.<br />

(A) An anisochela (rear view) with sigma (below); (B) a sigma; (C) a sigmancistra; (D) an anisochela; (E) an anisochela<br />

(rear view); (F) small end <strong>of</strong> anisochela with sharp claws (possibly adapted <strong>to</strong> capture prey) and pointed end<br />

<strong>of</strong> sigmancistra (above); (G) tylostrongyles and anisochelae; and (H) tylostrongyle and anisochelae.<br />

173


174 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Cladorhiza bathycrinoides Koltun, 1955 (continued)


Class Demospongiae, Family Cladorhizidae, Cladorhiza corona Lehnert, Watling and S<strong>to</strong>ne, 2005.<br />

(A) Claw-like appendages at <strong>the</strong> small end <strong>of</strong> anisochelae; (B) a sigmancistra; (C) a tylostyle among microscleres;<br />

(D) a large fusiform style and short oxeas; (E) an anisochela with claw-like appendages; (F) a small (anis-)oxea (a<br />

spicule type present in <strong>the</strong> basal plate); and (G) large fusiform styles and small (anis-)oxea. (Figure A reproduced<br />

with permission from <strong>the</strong> Journal <strong>of</strong> <strong>the</strong> Marine Biological Association <strong>of</strong> <strong>the</strong> United Kingdom.)<br />

175


176 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Cladorhiza corona Lehnert, Watling and S<strong>to</strong>ne, 2005 (continued)


Class Demospongiae, Family Guitarridae, Euchelipluma elongata Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Fusiform choanosomal style; (B) an isochela and sigmas; (C) ec<strong>to</strong>somal tylostyle, slightly polytylote among microscleres;<br />

(D) characteristically thin placochela; (E) developmental stage <strong>of</strong> polytylote tylostyle and two placochelae;<br />

(F) a sigma; (G) an isochela, placochela and sigmas; and (H) long fusiform styles, shorter ec<strong>to</strong>somal tylostyles and<br />

microscleres. (Figures A–F reproduced with permission from Zootaxa, Magnolia Press.)<br />

177


178 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Euchelipluma elongata Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)


Class Demospongiae, Family Guitarridae, Guitarra abbotti Lee, 1987.<br />

(A) Fusiform styles; (B) a large placochela among styles; (C) biplacochelae; (D) fimbriae <strong>of</strong> biplacochela (closeup<br />

view); (E) tiny, spined isochela; (F) a biplacochela showing frontal process; and (G) fimbriae <strong>of</strong> a biplacochela<br />

(close-up view).<br />

179


180 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Guitarra abbotti Lee, 1987 (continued)


Class Demospongiae, Family Esperiopsidae, Esperiopsis flagrum Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Microscleres (large and small categories <strong>of</strong> isochelae and sigmas); (B) a small isochela; (C) long fusiform styles<br />

and microscleres; (D) large and small sigmas; (E) a small isochela (side view); (F) a large isochela (rear view); and<br />

(G) large isochelae (front and rear views). (Figures A–F reproduced with permission from Zootaxa, Magnolia Press.)<br />

181


182 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Esperiopsis flagrum Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)


Class Demospongiae, Family Mycalidae, Mycale (Carmia) carlilei Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Spicule overview (styles, anisochelae and sigmas); (B) an anisoschela (<strong>to</strong>p view); (C) an anisochela (side view);<br />

and (D) a sigma. (Figures A–D reproduced with permission from Zootaxa, Magnolia Press.)<br />

183


184 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Class Demospongiae, Family Mycalidae, Mycale (Mycale) jasoniae Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Spicule overview (subtylostyles, large and small anisochelae, and rhaphids); (B) large anisochelae (front, side<br />

and rear views); (C) side view <strong>of</strong> a large anisochela (note <strong>to</strong>p view <strong>of</strong> broken end <strong>of</strong> small anisochela); (D) small<br />

category <strong>of</strong> anisochela and rhaphids; and (E) a small anisochela. (Figures A–D reproduced with permission from<br />

Zootaxa, Magnolia Press.)


Mycale (Mycale) jasoniae Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)<br />

Class Demospongiae, Family Latrunculiidae, Latrunculia velera Lehnert, S<strong>to</strong>ne and Heimler, 2006.<br />

(A) Spicule overview (styles and anisodiscorhabds); (B) acanthose end <strong>of</strong> style; (C) a rare polytylote tylostyle; (D) an<br />

anisodiscorhabd; (E) an anisodiscorhabd (apex view); (F) apex <strong>of</strong> anisodiscorhabd (side view); (G) early developmental<br />

stage <strong>of</strong> anisodiscorhabd on pointed end <strong>of</strong> style (acanthose pointed ends, as shown here, are rare); (H) developmental<br />

stage <strong>of</strong> anisdiscorhabd between two fully developed ones; (I) smoo<strong>the</strong>r variation <strong>of</strong> an anisodiscorhabd;<br />

and (J) anisodiscorhabds. (Figures A–I reproduced with permission from Zootaxa, Magnolia Press.)<br />

185


186 Pr<strong>of</strong>essional Paper <strong>NMFS</strong> 12<br />

Latrunculia velera Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)


Latrunculia velera Lehnert, S<strong>to</strong>ne and Heimler, 2006 (continued)<br />

187

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!