06.04.2013 Views

Hydroids (Cnidaria, Hydrozoa) of the Danish expedition to

Hydroids (Cnidaria, Hydrozoa) of the Danish expedition to

Hydroids (Cnidaria, Hydrozoa) of the Danish expedition to

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

<strong>Hydroids</strong> (<strong>Cnidaria</strong>, <strong>Hydrozoa</strong>) <strong>of</strong> <strong>the</strong> <strong>Danish</strong> <strong>expedition</strong><br />

<strong>to</strong> <strong>the</strong> Kei Islands<br />

PETER SCHUCHERT<br />

Steenstrupia<br />

INTRODUCTION<br />

Steenstrupia 27(2): 137-256.<br />

137<br />

Schuchert, P. <strong>Hydroids</strong> (<strong>Cnidaria</strong>, <strong>Hydrozoa</strong>) <strong>of</strong> <strong>the</strong> <strong>Danish</strong> <strong>expedition</strong> <strong>to</strong> <strong>the</strong> Kei Islands. –<br />

Steenstrupia 27 (2): 137–256. Copenhagen, Denmark, May 2003 (for 2001). ISSN 0375-2909.<br />

This paper reports upon <strong>the</strong> marine a<strong>the</strong>cate and <strong>the</strong>cate hydroids collected by <strong>the</strong> <strong>Danish</strong> <strong>expedition</strong><br />

<strong>to</strong> <strong>the</strong> Kei Islands (Indonesia) in 1922. Concomitantly, <strong>the</strong> his<strong>to</strong>ric collection <strong>of</strong> hydroids from <strong>the</strong><br />

Moluccas made by C. Pictet and M. Bedot in 1890 was revised. The family Tubidendridae Nutting,<br />

1905 is recognized as valid and its diagnosis emended. Taxonomic problems with <strong>the</strong> genera<br />

Campalecium and Mitrocomium are discussed. The new species Cladocarpus keiensis is described.<br />

Ec<strong>to</strong>pleura pacifica Thornely, 1900 is considered <strong>to</strong> be a subjective junior synonym <strong>of</strong> Tubularia<br />

viridis Pictet, 1893. Acryp<strong>to</strong>laria rectangularis (Jarvis, 1922) is removed from <strong>the</strong> synonymy <strong>of</strong><br />

Acryp<strong>to</strong>laria angulata (Bale, 1914). Gymnangium unjinense Watson, 2000 is recognized as a<br />

subjective synonym <strong>of</strong> Ly<strong>to</strong>carpia orientalis (Billard, 1908). The following 15 species are new<br />

records for Indonesian waters: Hydractinia granulata Hirohi<strong>to</strong>, 1988; Balella mirabilis (Nutting,<br />

1905); Garveia clevelandensis Pennycuik, 1959; Eudendrium kirkpatricki Watson, 1985; Corydendrium<br />

corrugatum Nutting, 1905; Cladocoryne haddoni Kirkpatrick, 1890; Solanderia secunda<br />

(Inaba, 1892); Campanulina panicula G. O. Sars, 1874; Acryp<strong>to</strong>laria rectangularis (Jarvis, 1922);<br />

Acryp<strong>to</strong>laria angulata (Bale, 1914); Lafoea dumosa (Fleming, 1820); Zygophylax rufa (Bale, 1884);<br />

Salacia punctagonangia Hargitt, 1924; Syn<strong>the</strong>cium flabellum Hargitt, 1924; Antennella campanulaformis<br />

(Mulder & Trebilcock, 1909). A lec<strong>to</strong>type is designated for Syn<strong>the</strong>cium samauense Billard,<br />

1925. Halecium simplex Pictet, 1893 is transferred <strong>to</strong> Mitrocomium, as M. simplex, n. comb.<br />

Thecocarpus perarmatus Billard, 1908 is transferred <strong>to</strong> Ly<strong>to</strong>carpia, as L. perarmata, n. comb., and T.<br />

myriophyllum var. orientalis, Billard, 1908 is raised <strong>to</strong> full species level, as Ly<strong>to</strong>carpia orientalis, n.<br />

comb., n. status. Aglaophenia pluma var. sibogae Billard, 1913 is raised <strong>to</strong> full species level as A.<br />

sibogae, n. status.<br />

Keywords: marine <strong>Cnidaria</strong>, <strong>Hydrozoa</strong>, Anthoa<strong>the</strong>cata, Lep<strong>to</strong><strong>the</strong>cata, taxonomy, revision, new<br />

species, new records, Kei Islands, Moluccas, Indonesia<br />

Peter Schuchert, Muséum d’His<strong>to</strong>ire Naturelle, 1 Route de Malagnou, CH-1211 Geneva, Switzerland.<br />

E-mail: Peter.Schuchert@MHN.ville-ge.ch<br />

In 1921, <strong>the</strong> eminent <strong>Danish</strong> echinoderm taxonomist<br />

Theodor Mortensen set out on an <strong>expedition</strong><br />

<strong>to</strong> <strong>the</strong> islands <strong>of</strong> Indonesia, in particular <strong>the</strong> Kei<br />

Islands sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> Moluccas. The aim <strong>of</strong> <strong>the</strong><br />

<strong>expedition</strong> was <strong>to</strong> evaluate <strong>the</strong> feasibility <strong>of</strong> establishing<br />

a tropical marine biological station.<br />

For this goal, numerous dredgings were made<br />

around <strong>the</strong> Kei Islands, <strong>the</strong> Banda Islands, <strong>the</strong><br />

Moluccas, and in <strong>the</strong> Sunda Strait. The account<br />

<strong>of</strong> this <strong>expedition</strong> and most station data were<br />

published by Mortensen in 1923. Mortensen’s<br />

collection also included numerous hydroids in<br />

comparatively good condition. This interesting<br />

hydroid collection is now kept by <strong>the</strong> Zoological<br />

Museum in Copenhagen and, as<strong>to</strong>nishingly, it<br />

has never been worked up and <strong>the</strong> species remained<br />

unidentified. Only Petersen (1990) described<br />

<strong>the</strong> new species Ralpharia neira and<br />

recorded Ec<strong>to</strong>pleura pacifica (Thornely, 1900)<br />

based on this collection. The present author<br />

<strong>the</strong>refore gladly accepted an <strong>of</strong>fer <strong>to</strong> study this<br />

collection, moreover as it <strong>of</strong>fered an opportunity<br />

<strong>to</strong> concomitantly revise a collection <strong>of</strong> hydroids<br />

from <strong>the</strong> Moluccas collected and described by<br />

Pictet (1893), a collection now kept by <strong>the</strong> Natural<br />

His<strong>to</strong>ry Museum <strong>of</strong> Geneva.


138<br />

The larger <strong>the</strong>cate hydroid species <strong>of</strong> Indonesia<br />

are relatively well known, mostly through <strong>the</strong><br />

studies <strong>of</strong> Billard (see below). The medusae <strong>of</strong><br />

<strong>the</strong> region are also quite well known, except<br />

perhaps <strong>the</strong> smaller forms (Kramp 1968). In contrast,<br />

<strong>the</strong> a<strong>the</strong>cate hydroids and smaller <strong>the</strong>cate<br />

hydroids producing medusae are very poorly<br />

known. These forms can <strong>of</strong>ten not be identified in<br />

dredged material because <strong>the</strong>y require live observation<br />

and knowledge <strong>of</strong> <strong>the</strong> complete life-cycle.<br />

The first study dealing exclusively with Indonesian<br />

hydroids was by Pictet (1893). It was based<br />

on material collected by M. Bedot and C. Pictet<br />

during an <strong>expedition</strong> <strong>to</strong> <strong>the</strong> Moluccas (Bedot<br />

1893–1909). Shortly afterwards, this publication<br />

was followed by <strong>the</strong> studies <strong>of</strong> von<br />

Campenhausen (1896) and Weltner (1900). The<br />

Dutch Siboga <strong>expedition</strong> in 1899–1900 produced<br />

a particularly rich collection <strong>of</strong> hydroids<br />

studied thoroughly by Billard (1911a through<br />

1942b). The investigation on <strong>the</strong> Stylasteridae <strong>of</strong><br />

<strong>the</strong> Siboga <strong>expedition</strong> was published by Hickson<br />

& England (1906). Also Stechow & Müller<br />

(1923), Leloup (1930), Vervoort (1941), Cairns<br />

(1983), and Vervoort (1993) contributed important<br />

accounts on Indonesian hydroids (see Appendix<br />

2). For <strong>the</strong> hydromedusae, <strong>the</strong> synopsis <strong>of</strong><br />

Kramp (1965, 1968) remains certainly <strong>the</strong> most<br />

relevant publication. A newer account is provided<br />

by van der Spoel & Bleeker (1988). Because<br />

<strong>the</strong> hydrozoan fauna <strong>of</strong> <strong>the</strong> tropical Indo-<br />

Pacific is ra<strong>the</strong>r homogeneous and certainly belongs<br />

<strong>to</strong> one biogeographic unit, systematic studies<br />

from waters belonging <strong>to</strong> o<strong>the</strong>r economic<br />

zones <strong>of</strong>ten contain essential information. The<br />

most important <strong>of</strong> <strong>the</strong>se studies are: Allman<br />

(1883, 1888), Bale (1884), Thornely (1900,<br />

1904), Nutting (1905, 1927), Jarvis (1922),<br />

Millard & Bouillon (1973), Vervoort & Vasseur<br />

(1977), Bouillon (1978a, 1978b, 1980, 1984b,<br />

1985b), Gravier-Bonnet (1979), Watson (1985,<br />

1997, 1999, 2000), Rees & Vervoort (1987),<br />

Gibbons & Ryland (1989), and Ryland & Gibbons<br />

(1991).<br />

The present account deals with hydrozoan<br />

polyps collected by Mortensen’s Kei Island Expedition<br />

as well as <strong>the</strong> hydroid material described<br />

by Pictet (1893). The numerous new records<br />

demonstrate that our knowledge <strong>of</strong> this region is<br />

still far from being complete.<br />

P. SCHUCHERT<br />

MATERIALS AND METHODS<br />

Materials<br />

The hydroids <strong>of</strong> <strong>the</strong> <strong>Danish</strong> <strong>expedition</strong> <strong>to</strong> <strong>the</strong> Kei<br />

Islands are kept by <strong>the</strong> Zoological Museum, University<br />

<strong>of</strong> Copenhagen. Some slide material <strong>of</strong><br />

this collection as well as some alcohol material <strong>of</strong><br />

species collected in great abundance are also in<br />

<strong>the</strong> Natural His<strong>to</strong>ry Museum <strong>of</strong> Geneva. The<br />

localities are given – if available – as Kei Islands<br />

Expedition station numbers. The geographic coordinates<br />

and fur<strong>the</strong>r data <strong>of</strong> <strong>the</strong>se stations are<br />

given in Appendix 1 and in Mortensen (1923).<br />

Some material <strong>of</strong> <strong>the</strong> Kei Islands Expedition was<br />

taken at sites without a station number and <strong>the</strong>refore<br />

<strong>the</strong> information on <strong>the</strong> labels is given here.<br />

The specimens were examined with a dissecting<br />

microscope or a compound microscope using<br />

temporary or permanent preparations on microscope<br />

slides (see Gibbons & Ryland 1989).<br />

Drawings based on material examined for this<br />

study were usually made with <strong>the</strong> help <strong>of</strong> a camera<br />

lucida. The figures given in this publication<br />

thus enable calculation <strong>of</strong> linear dimensions. In<br />

cases where a species was recorded from one<br />

station only, no locality data are specified in <strong>the</strong><br />

legends <strong>of</strong> <strong>the</strong> illustrations.<br />

Taxonomy and technical terms<br />

Supraspecific taxa are here used as defined in<br />

Cornelius (1995a, 1995b), Bouillon (1985a), or<br />

Millard (1975), except for <strong>the</strong> Hydractiniidae and<br />

Cordylophoridae, which are delimited as discussed<br />

in Schuchert (2001). Additionally, <strong>the</strong><br />

families Tubidendridae Nutting, 1905 and Hebellidae<br />

Fraser, 1912 are here regarded as valid.<br />

Technical terms are generally used as explained<br />

in Cornelius (1995a, 1995b), Millard<br />

(1975), and Schuchert (1996, 1997).<br />

Abbreviations<br />

MHNG Muséum d’His<strong>to</strong>ire Naturelle, Geneva,<br />

Switzerland<br />

NMNH National Museum <strong>of</strong> Natural His<strong>to</strong>ry,<br />

Smithsonian Institution, Washing<strong>to</strong>n<br />

D.C., USA<br />

ZMUC Zoological Museum <strong>of</strong> <strong>the</strong> University<br />

<strong>of</strong> Copenhagen, Denmark


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 1. Hydractinia granulata Hirohi<strong>to</strong>, 1988. A. Gastrozooid.<br />

B. Gonozooid with medusoids. C. Dactylozooid. D.<br />

Spines and prickles. E. View <strong>of</strong> distal end <strong>of</strong> medusoid with<br />

its rudimentary tentacles and <strong>the</strong> four radial canals (rc). –<br />

Scales: A–C, D = 0.2 mm; E = 50 µm.<br />

ZMA Zoological Museum Amsterdam, The<br />

Ne<strong>the</strong>rlands<br />

SYSTEMATIC PART<br />

Order Anthoa<strong>the</strong>cata<br />

Family Hydractiniidae<br />

Hydractinia granulata Hirohi<strong>to</strong>, 1988<br />

Fig. 1.<br />

Hydractinia granulata Hirohi<strong>to</strong>, 1988: 121, fig. 44.<br />

Material examined:<br />

Kei Islands Expedition station 96, 4 gastropod shells (Nassarius<br />

sp., 2 cm) inhabited by hermit crab Diogenes cus<strong>to</strong>s<br />

(Fabricius, 1798) (kindly identified by Dr Jacques Forest,<br />

Paris), shells covered completely by hydroid, fertile males.<br />

139<br />

Description<br />

Colonies encrusting and covering nearly whole<br />

shell, hydrorhiza covered by naked coenosarc,<br />

provided with densely set spines and numerous<br />

small prickles. Spines simple, up <strong>to</strong> 2 mm high,<br />

smaller ones almost smooth and conical, larger<br />

ones with longitudinal ridges set with irregular<br />

prickles. Hydranths polymorphic.<br />

Gastrozooids 1 mm high (contracted), hypos<strong>to</strong>me<br />

conical, without belt <strong>of</strong> nema<strong>to</strong>cysts, 6–14<br />

tentacles in one whorl.<br />

Gonozooids smaller and more slender than<br />

gastrozooids, shaped like ninepins, 6–8 tentacles,<br />

<strong>the</strong>se shorter than in gastrozooids, hypos<strong>to</strong>me<br />

with a few larger nema<strong>to</strong>cysts. Gonophores in<br />

one whorl in middle <strong>of</strong> hydranth, 4–6 gonophores<br />

per hydranth. Gonophores are medusoids<br />

with reduced tentacles, only males observed.<br />

Dactylozooids present along outer lip <strong>of</strong> shell<br />

opening, 1–2 mm, curved, tapering, distal end<br />

rounded and densely studded with nema<strong>to</strong>cysts.<br />

Medusoids spherical, diameter about 0.25<br />

mm, with four thin radial canals and a ring canal<br />

around <strong>the</strong> narrow bell-opening, opening surrounded<br />

by 8 short tentacle stumps. Male gonads<br />

in four interradial, wedge-shaped packets filling<br />

<strong>the</strong> subumbrella completely and hiding <strong>the</strong><br />

manubrium. Nema<strong>to</strong>cysts: a) microbasic euryteles,<br />

7 x 3 µm, on tentacles; b) heteronemes, (10–<br />

12) x (3–4) µm, on hypos<strong>to</strong>me <strong>of</strong> gonozooids and<br />

abundantly on tips <strong>of</strong> dactylozooids; c) desmonemes,<br />

(5–6) x (3) µm, on tentacles.<br />

Remarks<br />

This is <strong>the</strong> second record <strong>of</strong> this species and <strong>the</strong><br />

first record outside Japan. It is apparently also <strong>the</strong><br />

first record <strong>of</strong> a Hydractinia species for Indonesia.<br />

The Indonesian material agrees well with<br />

Hirohi<strong>to</strong>’s (1988) description.<br />

Distribution<br />

Japan, Indonesia. Type locality: Hayama, Sagami<br />

Bay, Japan.<br />

Family Tubidendridae<br />

Diagnosis (emended)<br />

Anthoa<strong>the</strong>cata Filifera with erect, branched,


140<br />

polysiphonic colonies. Hydranths polymorphic.<br />

Gastrozooids with club-shaped body and with<br />

two well separated whorls <strong>of</strong> tentacles. Gonozooids<br />

with ei<strong>the</strong>r one tentacle or none, with one<br />

whorl <strong>of</strong> gonophores. Dactylozooids small, tentacle-like.<br />

Gonophores released as immature medusae.<br />

Young medusa with four filiform tentacles,<br />

manubrium simple.<br />

Remarks<br />

When Nutting (1905) described Balea mirabilis,<br />

he also created <strong>the</strong> new family Tubidendridae <strong>to</strong><br />

accommodate it. Because <strong>the</strong> name Balea is preoccupied<br />

for a gastropod, Stechow (1919: 154)<br />

renamed <strong>the</strong> genus Balella. Some authors, e.g.,<br />

Fraser (1938), recognized <strong>the</strong> family Tubidendridae,<br />

while Stechow (1922) referred Balella<br />

<strong>to</strong> <strong>the</strong> new subfamily Balellinae <strong>of</strong> Clavidae<br />

McCrady, 1859. Millard (1975), Bouillon<br />

(1985a), and Hirohi<strong>to</strong> (1988) referred <strong>the</strong> genus<br />

<strong>to</strong> <strong>the</strong> family Bougainvilliidae. Because <strong>the</strong><br />

gonophores <strong>of</strong> Balella are produced on <strong>the</strong> body<br />

<strong>of</strong> hydranths <strong>the</strong>y can be placed nei<strong>the</strong>r in <strong>the</strong><br />

Bougainvilliidae nor <strong>the</strong> Cordylophoridae (sensu<br />

Schuchert 2001, <strong>the</strong> taxon Clavidae is a synonym<br />

<strong>of</strong> Hydractiniidae). Because <strong>of</strong> this and its unique<br />

tentacle arrangement it is here placed again in <strong>the</strong><br />

family Tubidendridae. The polymorphic, almost<br />

sessile polyps as well as <strong>the</strong> young medusae<br />

suggest close affinities with <strong>the</strong> Hydractiniidae.<br />

Nutting (1905) made cross-sections <strong>of</strong> <strong>the</strong> stem<br />

and observed naked coenosarc at <strong>the</strong> surface.<br />

This prompted him likewise <strong>to</strong> associate <strong>the</strong><br />

Tubidendridae with <strong>the</strong> Hydractiniidae. The<br />

presence <strong>of</strong> such naked coenosarc could not be<br />

seen with sufficient accuracy in <strong>the</strong> present samples<br />

and no cross-sections could be made. Fur<strong>the</strong>r<br />

discussions on <strong>the</strong> affinities <strong>of</strong> Balella<br />

mirabilis must await information on <strong>the</strong> adult<br />

medusa.<br />

Balella mirabilis (Nutting, 1905)<br />

Fig. 2.<br />

Balea mirabilis Nutting, 1905: 940, pl. 2: fig. 3, pl. 7: figs 3–<br />

4. – Jäderholm 1919: 4, pl. 1: figs 1–4.<br />

Balella mirabilis. – Hirohi<strong>to</strong> 1988: 91, fig. 32a–c.<br />

Material examined:<br />

Kei Islands Expedition station 81, about 25 colonies, some<br />

with medusae buds.<br />

P. SCHUCHERT<br />

Description<br />

Erect hydroid colonies reaching 6 cm in height,<br />

irregularly pinnate, side-branches primarily in<br />

one plane. Stem and branches polysiphonic <strong>to</strong> <strong>the</strong><br />

tips, component tubes neatly parallel and compactly<br />

fused <strong>to</strong>ge<strong>the</strong>r. Hydrorhiza a large, tangled<br />

mass <strong>of</strong> very fine s<strong>to</strong>lons anchoring <strong>the</strong><br />

colony in <strong>the</strong> sediment. Polyps polymorphic,<br />

with gastrozooids, gonozooids, and dactylozooids.<br />

Gastrozooids up <strong>to</strong> 1.2 mm high, sitting preferentially<br />

on upper and under side <strong>of</strong> <strong>the</strong> sidebranches<br />

in a wide and shallow perisarc collar;<br />

body <strong>of</strong> gastrozooids with a slender, pedicel-like<br />

lower part and a swollen, pear-shaped main<br />

body; nipple-shaped hypos<strong>to</strong>me very high, two<br />

well separated whorls <strong>of</strong> filiform tentacles, about<br />

ten tentacles per whorl, lower whorl <strong>of</strong> tentacles<br />

at base <strong>of</strong> swelling, second whorl at base <strong>of</strong><br />

hypos<strong>to</strong>me, tentacles tapering, evenly covered<br />

with nema<strong>to</strong>cysts, gastrodermal cells chordoid.<br />

In younger gastrozooids <strong>the</strong> two tentacle whorls<br />

more approximated.<br />

Gonozooids only half <strong>the</strong> size or less <strong>of</strong><br />

gastrozooids, very slender and only slightly<br />

swollen distally, base in a short, tubular perisarc<br />

collar; at distal end a single, thin tentacle, may be<br />

absent; at one third from upper end a single whorl<br />

with 4–6 medusae buds.<br />

Dactylozooids very numerous and <strong>of</strong>ten regularly<br />

spaced, finger-like, with no or very low<br />

perisarc collar, epidermis <strong>of</strong> dactylozooids with<br />

only few euryteles.<br />

Medusa buds up <strong>to</strong> 0.25 mm, oldest observed<br />

stage with four radial canals, four marginal bulbs,<br />

each with thick epidermis and a short tentacle,<br />

manubrium simple, without visible gonad tissue.<br />

Nema<strong>to</strong>cysts similar <strong>to</strong> <strong>the</strong> ones described below.<br />

Nema<strong>to</strong>cysts: desmonemes, four coils when<br />

discharged, approx. 4 x 2.5 µm; microbasic<br />

euryteles, about 7 x 2.5 µm, almond-shaped,<br />

discharged shaft about as long as capsule, only<br />

slightly swollen.<br />

Remarks<br />

The present material is <strong>the</strong> first find <strong>of</strong> this species<br />

in Indonesian waters. The gonozooids and<br />

gonophores are here described for <strong>the</strong> second<br />

time only. They were first seen by Jäderholm


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 2. Balella mirabilis (Nutting, 1905). A. Silhouette <strong>of</strong> colony, note massive hydrorhiza. B. Part <strong>of</strong> branch with<br />

gastrozooids, gonozooids, and dactylozooids. C. Dactylozooid. D. Gonozooid with medusae buds and tentacle; left <strong>of</strong> <strong>the</strong><br />

gonozooid an empty perisarc collar <strong>of</strong> a young gastrozooid. E. Marginal bulb with tentacle <strong>of</strong> medusa, seen from inside. –<br />

Scales: A = 1 cm; B = 0.5 mm; C, E = 0.1 mm; D = 0.2 mm<br />

(1919) in material from Japan and he described<br />

<strong>the</strong> gastrozooids as devoid <strong>of</strong> tentacles. Contrary<br />

<strong>to</strong> <strong>the</strong> material <strong>of</strong> Jäderholm, <strong>the</strong> gonozooids <strong>of</strong><br />

<strong>the</strong> present material usually had a single tentacle<br />

(Fig. 2D); some, however, were devoid <strong>of</strong> such a<br />

tentacle (Fig. 2B). Whe<strong>the</strong>r this is due <strong>to</strong> mechanical<br />

damage or represents a natural polymorphism<br />

could not be determined.<br />

Distribution<br />

Rare species, occurring at <strong>the</strong> coasts <strong>of</strong> Japan,<br />

Hawaii, and Indonesia; depth range 49–232 m,<br />

on sandy or muddy bot<strong>to</strong>ms. Type locality: Hawaiian<br />

Archipelago, between Molokai and Maui,<br />

232 m.<br />

Family Stylasteridae<br />

Conopora major Hickson & England, 1905<br />

Fig. 3.<br />

141<br />

Conopora major Hickson & England, 1905: 25, pl. 3: figs<br />

33–35. – ?Broch 1936: 91, fig. 30, pl. 13: fig. 38. –<br />

Boschma 1956: F100, fig. 82, 2c. – Boschma 1957: 39,<br />

bibliography. – Cairns 1991: 73.<br />

Material examined:<br />

Kei Islands Expedition station 45, 14 colonies, some<br />

attached on s<strong>to</strong>nes, preserved dry, associated polynoid<br />

polychaetes <strong>of</strong>ten present.<br />

Description<br />

Colonies forming erect, calcareous skele<strong>to</strong>n, 1–4<br />

cm high, robust, arborescent, not uniplanar,<br />

branches short, with up <strong>to</strong> 3 cyclosystems, main<br />

stem with associated polynoid polychaetes that<br />

induce trunk <strong>to</strong> grow in<strong>to</strong> hollow tube with slitlike<br />

openings. Coenosteum white, microscopic<br />

texture linear-imbricate, macroscopic texture<br />

smooth. Nema<strong>to</strong>pores only present locally, preferentially<br />

near base, rare or mostly absent in<br />

distal parts <strong>of</strong> colony, nema<strong>to</strong>pores on shallow<br />

mounds. Clyclosystems in region inhabited


142<br />

Fig. 3. Conopora major Hickson & England, 1905. A.<br />

Colony, height 2.5 cm. B. Schematic organization <strong>of</strong> <strong>the</strong><br />

cyclosystem, split longitudinally, with ampulla on its side.<br />

Note that lower dactylopores are not always as distinct as<br />

shown here. – Scale: B = 0.2 mm.<br />

by polychaete irregularly arranged, in distal<br />

branches sympodial in arrangements, shifted<br />

only slightly <strong>to</strong> one side <strong>of</strong> branch, distal ones<br />

slightly standing out, proximal ones flush <strong>to</strong><br />

slightly recessed in<strong>to</strong> branch coenosteum. Cyclosystems<br />

circular <strong>to</strong> slightly irregular in shape,<br />

1 mm in diameter, 9–16 dactylopores per nondiastemate<br />

cyclosystem (mean 12.2, S.D. 1.6, n =<br />

P. SCHUCHERT<br />

47, 10 colonies, most frequent value (mode) 12),<br />

one pseudoseptum occasionally thicker than o<strong>the</strong>rs,<br />

adaxial dactylopores <strong>of</strong> older cyclosystems<br />

<strong>of</strong>ten filled by coenosteum (diastema). Gastropores,<br />

about 0.4 mm in diameter. Gastropore<br />

tubes up <strong>to</strong> 1.2 mm deep, divided in<strong>to</strong> three<br />

sections <strong>of</strong> approximately same height. Upper<br />

section cylindrical, bordered by pseudoseptae;<br />

below this part a middle section delimited below<br />

by <strong>the</strong> ring <strong>of</strong> <strong>the</strong> lower dactylopores; lowest part<br />

hemispherical, not delimited by constriction<br />

from middle part or constriction very shallow and<br />

indistinct. Ring <strong>of</strong> lower dactylopores can be<br />

absent. Ampullae internal, ellipsoidal cavities,<br />

only present around cyclosystems; efferent pores<br />

on <strong>the</strong> pseudoseptae or in <strong>the</strong> gaps between <strong>the</strong>m.<br />

Remarks<br />

The present samples came from a site near <strong>the</strong><br />

Kei Islands that is only about 40 km away from<br />

one <strong>of</strong> <strong>the</strong> type localities <strong>of</strong> Conopora major. All<br />

colonies showed little variation and matched perfectly<br />

<strong>the</strong> description <strong>of</strong> Conopora major given<br />

in Hickson & England (1905), notably also <strong>the</strong><br />

colony form (Fig. 2A). Broch (1936) assigned<br />

material from Mauritius <strong>to</strong> C. major. His colonies<br />

were more or less regularly pinnate and had <strong>the</strong>ir<br />

cyclosystems on <strong>the</strong> anterior side only. Fur<strong>the</strong>rmore,<br />

<strong>the</strong> diameter <strong>of</strong> <strong>the</strong> cyclosystems in<br />

Broch’s samples measured 1.5–1.8 mm in diameter,<br />

which is considerably more than <strong>the</strong> 1 mm<br />

observed here, or <strong>the</strong> 1.2 mm observed by<br />

Hickson & England (1905). Thus, <strong>the</strong> population<br />

studied by Broch perhaps belongs <strong>to</strong> ano<strong>the</strong>r<br />

species, but due <strong>to</strong> <strong>the</strong> lack <strong>of</strong> information on <strong>the</strong><br />

geographic variability <strong>of</strong> this species it seems<br />

impossible <strong>to</strong> draw reliable conclusions.<br />

Cairns (1991) re-described <strong>the</strong> closely similar<br />

Conopora verrucosa (Studer, 1878) and regarded<br />

Conopora major as a potential junior<br />

synonym. Cairns’ (1991) material from New<br />

Zealand differs from <strong>the</strong> present one by having a<br />

uniplanar growth versus a bushy and irregular<br />

growth; by <strong>the</strong> abundant nema<strong>to</strong>pores that make<br />

<strong>the</strong> surface warty while in <strong>the</strong> present material<br />

<strong>the</strong>se nema<strong>to</strong>pores are quite rare; by <strong>the</strong> longer<br />

branches with more than 3 cyclosystems; by<br />

gastropores that are twice as deep, and by <strong>the</strong><br />

regular presence <strong>of</strong> a constriction in <strong>the</strong> gas-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

tropore. These differences, and in particular <strong>the</strong><br />

difference in colony form, made me hesitate <strong>to</strong><br />

synonymize C. verrucosa and C. major.<br />

Distribution<br />

Indonesia, ?Mauritius. Type localities: Kei Islands<br />

(5°28.4’S, 132°00.2’E, 204 m) and Sulawesi<br />

(1°33.5’N, 124°41’E, 1901 m).<br />

Family Cordylophoridae<br />

Turri<strong>to</strong>psis cf. nutricula McCrady, 1859<br />

Fig. 4.<br />

Turri<strong>to</strong>psis nutricula McCrady, 1959: 55, pls 4–5. – Russell<br />

1953: 115, figs 54A–C, 55, 56, pl. 5: figs 1–5, pl. 29. –<br />

Kramp 1968: 27, fig. 66. – Millard 1975: 76, figs 24F–G.<br />

– Calder 1988: 8, figs 5–6, synonymy. – Schuchert 1996:<br />

16, fig. 5a–e, synonymy. – Migot<strong>to</strong> 1996: 11, fig. 3a–c.<br />

Fig. 4. Turri<strong>to</strong>psis nutricula McCrady, 1859; material from<br />

Ambon. A. Shoot with medusae buds. B. Advanced medusa<br />

bud, note <strong>the</strong> coloured interradial patches (stippled). –<br />

Scales: A = 0.5 mm; B = 0.1 mm.<br />

143<br />

?Dendroclava Dohrnii Weismann, 1883: 26. – Pictet 1893:<br />

6, pl. 1: figs 1–2.<br />

?Corydendrium chevalense Thorneley, 1904: 109, pl. 1: fig.<br />

4.<br />

Material examined:<br />

Kei Islands Expedition, 28.02.1922, Ambon, harbour pier, 1<br />

m, on Pennaria disticha and sponges, with medusae buds. –<br />

Kei Islands Expedition station 37, on hydroids and o<strong>the</strong>r<br />

material, with medusae buds. – MHNG INVE 31269, Bay <strong>of</strong><br />

Ambon, material <strong>of</strong> Pictet (1893), labelled Dendroclava<br />

Dohrni, collected 15.7–12.8.1890, on Pennaria disticha,<br />

with medusae buds, preserved with HgCl 2 . – MHNG INVE<br />

32617, Thailand, Andaman Sea, Koh Bi Da Nok, coll. A,<br />

Faucci, 6 Apr 2000, 12–18 m, with medusae buds. – MHNG<br />

INVE 29753, Mediterranean, Mallorca, Cala Murada,<br />

16.8.2000, 2 m, examined alive, newly released medusae<br />

observed. – New Zealand material: see Schuchert (1996).<br />

Description<br />

Hydroid branched, monosiphonic or polysiphonic,<br />

0.5–2 cm in height, arising from creeping,<br />

reticulate s<strong>to</strong>lons. Branches and pedicels <strong>of</strong> hydranths<br />

adnate for some distance <strong>the</strong>n curving<br />

outwards, diameter <strong>of</strong> branches 0.1–0.15 mm.<br />

Perisarc double layered, outer layer straight,<br />

inner layer undulated. Hydranths 0.5–1.0 mm,<br />

spindle-shaped, with up <strong>to</strong> 20 filiform tentacles<br />

scattered in distal ¾ <strong>of</strong> hydranth. Gonophores<br />

medusae developing on hydranth pedicels (in<br />

perisarc-covered region). Medusa buds spherical.<br />

Oldest buds observed with 4 radial canals,<br />

several tentacles, 8 eye-spots, manubrium with<br />

four interradial pads consisting <strong>of</strong> large, darkly<br />

coloured cells. Nema<strong>to</strong>cysts: desmonemes 3.5 x<br />

2 µm, microbasic euryteles (5.5–6) x (2.5–3) µm.<br />

Remarks<br />

Turri<strong>to</strong>psis hydroids and young medusae possess<br />

some characteristic traits that facilitate <strong>the</strong>ir identification:<br />

<strong>the</strong> double-layered perisarc and <strong>the</strong><br />

interradial patches <strong>of</strong> coloured cells on <strong>the</strong> manubrium<br />

<strong>of</strong> <strong>the</strong> medusa. The first Indonesian record<br />

<strong>of</strong> a hydroid referable <strong>to</strong> Turri<strong>to</strong>psis was made<br />

by Pictet (1893, as Dendroclava dohrni). Reexamination<br />

<strong>of</strong> Pictet’s original material clearly<br />

showed that it belongs <strong>to</strong> Turri<strong>to</strong>psis. The medusa<br />

phase <strong>of</strong> Turri<strong>to</strong>psis is also known <strong>to</strong> occur<br />

in <strong>the</strong> region (Kramp 1968, as T. nutricula).<br />

Although <strong>the</strong> hydroid phase and young medusa<br />

<strong>of</strong> <strong>the</strong> specimens from Indonesia, <strong>the</strong> Andaman<br />

Sea, New Zealand, and <strong>the</strong> Mediterranean appear


144<br />

identical and <strong>the</strong>y agree with <strong>the</strong> current concept<br />

<strong>of</strong> T. nutricula (see Schuchert 1996), <strong>the</strong>re still<br />

remains <strong>the</strong> possibility <strong>of</strong> sibling hydroid species<br />

producing different adult medusae. According<br />

<strong>to</strong> Kramp (1961, 1968), <strong>the</strong>re are only two valid<br />

Turri<strong>to</strong>psis medusae, T. nutricula and T. lata<br />

von Lendenfeld, 1885. Results from ongoing<br />

research (P. Schuchert, publication in prep.),<br />

however, suggest that Turri<strong>to</strong>psis medusae from<br />

various populations differ significantly and that<br />

T. nutricula as presently conceived is very likely<br />

a species complex. The Indonesian material was<br />

<strong>the</strong>refore only tentatively assigned <strong>to</strong> T. nutricula,<br />

pending fur<strong>the</strong>r information on <strong>the</strong> medusa<br />

phase <strong>of</strong> this population. The Turri<strong>to</strong>psis species<br />

<strong>of</strong> <strong>the</strong> tropical Indo-Pacific might all be referrable<br />

<strong>to</strong> Turri<strong>to</strong>psis chevalense (Thorneley, 1904),<br />

a hydroid known from Ceylon. Turri<strong>to</strong>psis chevalense<br />

is only known from its polyp phase and at<br />

present not distinguishable from o<strong>the</strong>r Turri<strong>to</strong>psis<br />

hydroids.<br />

Distribution<br />

Circumglobal, mainly in tropical waters but<br />

spreading in<strong>to</strong> temperate waters <strong>to</strong>o. Type locality:<br />

Charles<strong>to</strong>n Harbour, South Carolina, USA.<br />

Corydendrium cf. corrugatum Nutting, 1905<br />

Fig. 5.<br />

Corydendrium corrugatum Nutting, 1905: 941, pl. 2: fig. 2,<br />

pl. 7: figs 5–7.<br />

Material examined:<br />

Kei Islands Expedition stations 74. – 107. – For comparison:<br />

MHNG INVE 25127, Corydendrium parasiticum, Mediterranean,<br />

Naples, fertile males.<br />

Description<br />

Colonies up <strong>to</strong> 4 cm high, arising from tangled,<br />

<strong>to</strong>rtuous s<strong>to</strong>lons. Colonies polysiphonic, s<strong>to</strong>ut,<br />

branching irregularly, diameter <strong>of</strong> terminal<br />

branches (hydranth pedicels) about 0.4 mm.<br />

Perisarc thick, not regularly two-layered, slightly<br />

and irregularly corrugated or folded, ending<br />

abruptly below base <strong>of</strong> hydranths. Branches<br />

adnate for most <strong>of</strong> <strong>the</strong>ir length, <strong>the</strong>n curving<br />

outwards, preferentially on one side <strong>of</strong> branch,<br />

free part about 1 mm. Contracted hydranths 1.5<br />

mm long, with about 20 scattered filiform tentacles.<br />

Sporosacs not seen.<br />

P. SCHUCHERT<br />

Fig. 5. Corydendrium cf. corrugatum Nutting, 1905; station<br />

107. Lateral view <strong>of</strong> part <strong>of</strong> stem, without hydranths. – Scale:<br />

0.5 mm.<br />

Remarks<br />

Nutting’s (1905) Hawaiian material as well as <strong>the</strong><br />

present material was infertile, thus <strong>the</strong> genus<br />

allocation must remain preliminary only. In view<br />

<strong>of</strong> this lack <strong>of</strong> knowledge <strong>of</strong> <strong>the</strong> gonosome, and<br />

also <strong>the</strong> relatively simple structure <strong>of</strong> this hydroid<br />

<strong>of</strong>fering few reliable distinguishing characters,<br />

<strong>the</strong> identification must considered <strong>to</strong> be only<br />

tentative.<br />

The structure <strong>of</strong> <strong>the</strong> trophosome <strong>of</strong> <strong>the</strong> Indonesian<br />

specimens matched ra<strong>the</strong>r well <strong>the</strong> description<br />

and figures given by Nutting (1905) for C.<br />

corrugatum, except for <strong>the</strong> annulation <strong>of</strong> <strong>the</strong><br />

terminal part <strong>of</strong> <strong>the</strong> cauli. These free, terminal<br />

parts were longer and had only irregular corrugations<br />

and not <strong>the</strong> broad, regular annulation depicted<br />

by Nutting (1905). Because perisarc annulation<br />

in hydroids is <strong>of</strong>ten highly dependent on<br />

environmental conditions, not <strong>to</strong>o much weight<br />

should be placed on this difference.<br />

Compared <strong>to</strong> Mediterranean material <strong>of</strong> Corydendrium<br />

parasiticum (Linnaeus, 1767), a species<br />

forming similar colonies as C. corrugatum,<br />

<strong>the</strong> Indonesian Corydendrium is much more robust<br />

(thicker), <strong>the</strong> free terminal branches (hy-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

dranth pedicels) are shorter and <strong>the</strong>y are preferentially<br />

on one side only, thus creating branches<br />

with an anterior and rear side, a trait typical for C.<br />

corrugatum. In C. parasiticum, <strong>the</strong> hydranths are<br />

primarily held sideways.<br />

Distribution<br />

Hawaii, ?Indonesia. Type localities: South <strong>of</strong><br />

Oahu, 582 m, and nor<strong>the</strong>ast coast <strong>of</strong> Maui, 181 m<br />

(Nutting 1905).<br />

Family Bougainvilliidae<br />

Garveia clevelandensis Pennycuik, 1959<br />

Fig. 6.<br />

Garveia clevelandensis Pennycuik, 1959: 166, pl. 2: figs 7–<br />

9.<br />

Material examined:<br />

MHNG INVE 31975, harbour <strong>of</strong> Ambon, collected 1890 by<br />

M. Bedot and C. Pictet (see Pictet 1893), on hydroid labelled<br />

as S. vegae (correct id. is Dynamena crisioides, see below).<br />

Fig. 6. Garveia clevelandensis Pennycuik, 1959. A. Single<br />

shoot <strong>of</strong> a colony. B. Terminal portion with hydranth and<br />

sporosac. C. Sporosac with egg. – Scales: A = 0.5 mm; B =<br />

0.2 mm; C = 0.1 mm.<br />

145<br />

Description<br />

Colonies growing on Dynamena crisioides,<br />

erect, branched up <strong>to</strong> second order, height reaching<br />

4 mm. S<strong>to</strong>lons creeping, ramified. Stems<br />

evenly thick, monosiphonic, about 0.15 mm diameter,<br />

densely covered by fine silt particles,<br />

periderm ends below tentacles <strong>of</strong> hydranths as<br />

pseudohydro<strong>the</strong>ca, pseudohydro<strong>the</strong>ca not much<br />

dilated and not sheathing base <strong>of</strong> tentacles. Periderm<br />

thin, without regular annulations. Hydranth<br />

0.25 mm long, with 8–14 tentacles (10 or 12 most<br />

frequently), tentacles in one whorl; hypos<strong>to</strong>me<br />

prominent, conical. Gonophores arise on stem<br />

and branches, pear-shaped, up <strong>to</strong> 0.2 mm. Gonophores<br />

are sessile sporosacs without any radialor<br />

circular canals, spadix simple, females bearing<br />

a single egg, gonophore covered by thin periderm<br />

lamella. Development takes place within<br />

sporosac. Male gonophores unknown.<br />

Remarks<br />

The present material corresponds very well with<br />

<strong>the</strong> description and figures <strong>of</strong> Pennycuik (1959),<br />

only <strong>the</strong> diameter <strong>of</strong> <strong>the</strong> stem being greater<br />

in <strong>the</strong> present material. This is <strong>the</strong> second find<br />

<strong>of</strong> this species and also a new record for Indonesia.<br />

Garveia clevelandensis closely resembles<br />

Garveia franciscana (Torrey, 1902) in its finer<br />

structure, especially <strong>the</strong> monosiphonic colony<br />

and <strong>the</strong> sporosacs with one egg only (see<br />

Vervoort 1964 or Morri 1982 for a description <strong>of</strong><br />

G. franciscana). Garveia franciscana differs<br />

only in forming much larger colonies (7–20 cm)<br />

and in preferring brackish waters. The dense<br />

covering with silt particles found in Garveia<br />

clevelandensis could be ano<strong>the</strong>r difference <strong>of</strong><br />

diagnostic value. Garveia nutans Wright, 1859<br />

forms up <strong>to</strong> 2.5 cm high colonies that are usually<br />

polysiphonic, but fertile, monosiphonic colonies<br />

are possible (MHNG INVE 31852). Monosiphonic<br />

Garveia nutans can be distinguished from<br />

G. clevelandensis by <strong>the</strong>ir higher number <strong>of</strong> eggs<br />

per sporosac (6–10).<br />

Distribution<br />

Queensland, Moluccas (new record). Type locality:<br />

Cleveland, Queensland, Australia; on Dynamena<br />

crisioides growing on jetty piles.


146<br />

Family Eudendriidae<br />

Eudendrium kirkpatricki Watson, 1985<br />

Eudendrium generale. – Kirkpatrick 1890: 607, pl. 15: figs<br />

1–2.<br />

Eudendrium capillare. – Stechow 1925: 202.<br />

Eudendrium kirkpatricki Watson, 1985: 194, figs 35-39. –<br />

Watson 1999: 5, fig. 4A–D. – Marques et al. 2000: 98,<br />

figs 58–63.<br />

Material examined:<br />

Kei Islands Expedition station 106, infertile. – Kei Islands<br />

Expedition, Sulawesi, Ujungpandang, Samalon Island, 25<br />

m, 29 Jun 1922, fertile female, 5-cm shoots, on Nemertesia<br />

indivisa. – Kei Islands Expedition, Moluccas, Bay <strong>of</strong> Ambon,<br />

128 m, 25 Feb 1922, fertile female, 2-cm shoots, on<br />

organic polychaete tube.<br />

Description<br />

Colonies erect, 2–5 cm high, branched, monosiphonic,<br />

<strong>of</strong>ten one longer main stem with shorter<br />

side-branches, s<strong>to</strong>lons creeping. Stem diameter<br />

around 0.2 mm, hydranth-cauli diameter around<br />

0.12 mm. Hydranths relatively small (0.4 mm),<br />

18–20 tentacles in one whorl, hypos<strong>to</strong>me globular.<br />

Female sporosacs develop on nearly fully<br />

formed hydranth, one whorl <strong>of</strong> 3–8 sporosacs,<br />

spadix simple. During later development spadix<br />

reduced and <strong>the</strong> tentacles <strong>of</strong> <strong>the</strong> hydranth shortened<br />

<strong>to</strong> stumps. Eggs are ultimately attached by<br />

means <strong>of</strong> a membrane <strong>to</strong> <strong>the</strong> perisarc-covered<br />

pedicels <strong>of</strong> blas<strong>to</strong>styles. Nema<strong>to</strong>cysts: microbasic<br />

euryteles abundant on tentacles, (7–8) x<br />

(2.5–3.5) µm; microbasic eurytele, few (< 8)<br />

capsules on hydranth body, oblong oval, shaft<br />

thick in undischarged and discharged capsule,<br />

shaft shorter than capsule, discharged directed<br />

sideways, size (22–25) x (11–13) µm in first two<br />

samples, (31–35) x (13.5–15) µm in third sample.<br />

Remarks<br />

Eudendrium kirkpatricki is here for <strong>the</strong> first time<br />

recorded for Indonesia. The Indonesian material<br />

agrees well with <strong>the</strong> description given by Watson<br />

(1985, 1999) except for <strong>the</strong> size <strong>of</strong> <strong>the</strong> larger<br />

microbasic euryteles, which were smaller in two<br />

samples. Unfortunately, no male colonies were<br />

seen. It is desirable <strong>to</strong> have information on <strong>the</strong><br />

male blas<strong>to</strong>styles in order <strong>to</strong> assure a full congruence<br />

<strong>of</strong> <strong>the</strong> Indonesian population with <strong>the</strong> Australian<br />

one. The previous records along nor<strong>the</strong>rn<br />

P. SCHUCHERT<br />

Australia, however, are ra<strong>the</strong>r close <strong>to</strong> <strong>the</strong> present<br />

ones, which fall within <strong>the</strong> known range <strong>of</strong> this<br />

species.<br />

There were o<strong>the</strong>r Eudendrium colonies in <strong>the</strong><br />

present collection which resembled <strong>the</strong> ones described<br />

here, but had different nema<strong>to</strong>cysts, ei<strong>the</strong>r<br />

isorhizas or egg-shaped microbasic euryteles.<br />

Due <strong>the</strong> lack <strong>of</strong> gonophores, <strong>the</strong>y were not<br />

assigned <strong>to</strong> a species.<br />

Distribution<br />

Tropical Australia, Red Sea, Indonesia. Type<br />

locality: Torres Strait, 09°55’S, 144°08’W.<br />

Family Cladocorynidae<br />

Cladocoryne haddoni Kirkpatrick, 1890<br />

Fig. 7.<br />

Cladocoryne haddoni Kirkpatrick, 1890: 605, pl. 14: fig. 2.<br />

– Jäderholm 1903: 263. – Ritchie 1910b: 805. – Bouillon,<br />

Boero & Seghers 1987: 281, figs 2–4.<br />

Material examined :<br />

Kei Islands Expedition, Ambon, harbour pier, 1 m, 28 Feb<br />

Fig 7. Cladocoryne haddoni Kirkpatrick, 1890. – Scale: 0.5<br />

mm.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

1922, on Pennaria disticha and sponges, infertile. – Kei<br />

Islands Expedition, Banda Islands, Lonthoir Channel, 25 m,<br />

11 Jun 1922, on bivalve, infertile.<br />

Description<br />

Colonies s<strong>to</strong>lonal or rarely branched once, reaching<br />

heights <strong>of</strong> about 4–8 mm. Perisarc mostly<br />

smooth, thin, ending abruptly below hydranth.<br />

Hydranths spindle-shaped, with two aboral<br />

whorls <strong>of</strong> branched tentacles and one whorl <strong>of</strong><br />

short capitate tentacles around mouth. Aboral<br />

tentacles longer than hydranth height, tapering,<br />

about 8 per whorl, <strong>the</strong> two whorls clearly separated,<br />

each tentacle with two lateral rows <strong>of</strong> short<br />

capitate side-branchlets, sometimes also a row <strong>of</strong><br />

such branchlets on upper side <strong>of</strong> tentacle. Oral<br />

tentacles 6–8, short, adnate, with terminal capitae.<br />

On hydranth body, halfway between oral<br />

and aboral tentacles, five or more oblong pads<br />

with large macrobasic euryteles. Gonophores<br />

absent.<br />

Additional data<br />

According <strong>to</strong> Bouillon, Boero & Seghers (1987),<br />

<strong>the</strong> gonophores develop in<strong>to</strong> elongated medusoids<br />

with radial canals, marginal bulbs, but<br />

without tentacles. Females with 10–20 big, yellowish<br />

eggs. Embryos develop in situ.<br />

Remarks<br />

Following Philbert (1936), many subsequent authors<br />

regarded Cladocoryne haddoni as a synonym<br />

<strong>of</strong> C. floccosa. Bouillon, Boero & Seghers<br />

(1987) re-described C. haddoni based on material<br />

from Papua New Guinea and found sufficient<br />

differences <strong>to</strong> C. floccosa <strong>to</strong> permit a reliable<br />

identification, even <strong>of</strong> immature specimens.<br />

Cladocoryne haddoni differs from C. floccosa<br />

by having only two instead <strong>of</strong> three whorls <strong>of</strong><br />

branched tentacles, by having nema<strong>to</strong>cyst pads in<br />

one ring on <strong>the</strong> hydranth body in <strong>the</strong> region<br />

between <strong>the</strong> oral and branched tentacles ra<strong>the</strong>r<br />

than at <strong>the</strong> bases <strong>of</strong> <strong>the</strong> oral and <strong>the</strong> branched<br />

tentacles, and finally by developing oblong gonophores<br />

distal <strong>to</strong> <strong>the</strong> branched tentacles and not<br />

more spherical ones among <strong>the</strong> tentacles.<br />

The present material <strong>of</strong> C. haddoni – although<br />

infertile – agrees well with <strong>the</strong> account <strong>of</strong> Bouillon,<br />

Boero & Seghers (1987).<br />

147<br />

Cladocoryne haddoni is here recorded for <strong>the</strong><br />

first time for waters belonging politically <strong>to</strong> Indonesia;<br />

however, from a biogeographic point <strong>of</strong><br />

view this species is already known from <strong>the</strong><br />

region as <strong>the</strong> type locality in <strong>the</strong> Torres Strait is<br />

very close <strong>to</strong> <strong>the</strong> present findings and also <strong>the</strong><br />

records from Papua New Guinea belong <strong>to</strong> this<br />

geographic region.<br />

O<strong>the</strong>r Indonesian findings <strong>of</strong> Cladocoryne<br />

species were reported by Stechow & Müller<br />

(1923) and Vervoort (1941). Stechow & Müller<br />

(1923) identified <strong>the</strong>ir material as Cladocoryne<br />

pelagica Allman, 1876. Allman’s (1876) description<br />

<strong>of</strong> Cladocoryne pelagica found on Atlantic<br />

Sargassum is not precise enough <strong>to</strong> allow a<br />

reliable separation from C. floccosa. Allman’s<br />

figure shows a hydranth which apparently has<br />

only one whorl <strong>of</strong> branched tentacles, but reexamination<br />

<strong>of</strong> <strong>the</strong> type material must confirm<br />

whe<strong>the</strong>r this is correct. It was not possible <strong>to</strong><br />

locate this type material. The material <strong>of</strong> Stechow<br />

& Müller (1923) originating from <strong>the</strong> Aru Islands<br />

was re-examined for this study (<strong>the</strong> specimens<br />

are kept by <strong>the</strong> “Zoologische Staatssammlung”,<br />

Munich, Germany). It is a well preserved, typical<br />

Cladocoryne species growing on <strong>the</strong> hydroid<br />

Idiellana pristis. The hydranths have one or two<br />

very closely set whorls <strong>of</strong> aboral tentacles. If two<br />

whorls are present, <strong>the</strong>y are closer <strong>to</strong>ge<strong>the</strong>r as in<br />

<strong>the</strong> material from <strong>the</strong> Kei Islands. One hydranth<br />

had a small, spherical gonophore which developed<br />

distal <strong>to</strong> <strong>the</strong> aboral tentacles. Despite careful<br />

examination, I was unable <strong>to</strong> see any nema<strong>to</strong>cyst<br />

pad on <strong>the</strong> hydranth body, although discharged<br />

macrobasic euryteles could regularly be found<br />

in <strong>the</strong> cauli and on <strong>the</strong> hydranths. I suspect<br />

that this hydroid is not C. haddoni and that <strong>the</strong>re<br />

exist more Cladocoryne species than previously<br />

thought. Vervoort’s (1941) material identified by<br />

him as C. floccosa had 3–4 whorls <strong>of</strong> branched<br />

tentacles, each with four tentacles only. Normally<br />

both C. floccosa and C. haddoni have<br />

about eight tentacles per whorl and Vervoort’s<br />

Cladocoryne could <strong>the</strong>refore be ano<strong>the</strong>r, so far<br />

unnamed species.<br />

Distribution<br />

Torres Strait, Papua New Guinea, Moluccas,<br />

Banda Islands, Mergui Islands, coast <strong>of</strong> India.


148<br />

Type locality: Murray Island, Torres Strait, Australia,<br />

27–37 m.<br />

Pteroclava crassa (Pictet, 1893)<br />

Syncoryne crassa Pictet, 1893: 8, pl. 1: figs 3–4. – Boero,<br />

Bouillon & Gravier-Bonnet 1995: 71.<br />

Remarks<br />

No new material <strong>of</strong> this species could be obtained.<br />

Examination <strong>of</strong> <strong>the</strong> type material <strong>of</strong><br />

Syncoryne crassa Pictet, 1893 (MHNG INVE<br />

25777) showed that it has moniliform tentacles<br />

and thus conforms <strong>to</strong> <strong>the</strong> genus Pteroclava (see<br />

Boero, Bouillon & Gravier-Bonnet 1995). Additionally,<br />

<strong>the</strong> few gonophores present revealed<br />

that <strong>the</strong>y must develop in<strong>to</strong> medusae with only<br />

two tentacle bulbs. The material strongly resembles<br />

Pteroclava krempfi (Billard, 1919a). However,<br />

Pteroclava krempfi is only known <strong>to</strong> occur<br />

on Oc<strong>to</strong>corallia while Pteroclava crassa was<br />

found on <strong>the</strong> hydrorhiza <strong>of</strong> <strong>the</strong> hydroid Macrorhynchia<br />

philippina. Boero, Bouillon & Gravier-<br />

Bonnet (1995) regarded <strong>the</strong>m <strong>the</strong>refore as separate<br />

species.<br />

Family Pennariidae<br />

Pennaria disticha Goldfuss, 1820<br />

Pennaria disticha Goldfuss, 1820: 89. – Brinckmann-Voss<br />

1970: 40, text-figs 43, 45–50. – Gibbons & Ryland 1989:<br />

387, fig. 5. – Schuchert 1996: 142, fig. 85a–c. – Migot<strong>to</strong><br />

1996: 25.<br />

Pennaria Cavolinii Ehrenberg, 1834: 297. – Pictet 1893: 12,<br />

pl. 1: figs 7–9. – von Campenhausen 1896b: 307. –<br />

Weltner 1900: 585.<br />

Pennaria australis Bale, 1884: 45.<br />

Halocordyle disticha var. australis. – Vervoort 1941: 192.<br />

Halocordyle disticha. – Millard 1975: 41, figs 16C–G. –<br />

Garcia-Corrales & Aguirre 1985: 85, figs 1–3, synonymy.<br />

– Calder 1988: 57, figs 43–45, synonymy. – Östman<br />

et al.1991: 607, figs 1–18. – Hirohi<strong>to</strong> 1988: 28, fig. 9a–<br />

d, pl. 1: fig. C.<br />

Material examined:<br />

Kei Islands Expedition stations 11. – 104, fertile. – 116. –<br />

Kei Islands Expedition, Moluccas, Ambon, pier <strong>of</strong> harbour,<br />

1 m, 28.02.1922, well preserved and fertile. – MHNG INVE<br />

31269, Bay <strong>of</strong> Ambon, material <strong>of</strong> Pictet (1893), jar labelled<br />

Dendroclava Dohrni, collected 15 Jul–12 Aug 1890, with<br />

mature medusoids. – MHNG INVE 29809, Mediterranean,<br />

Mallorca, Cala Murada, 1 m, coll. 24 Aug 2000.<br />

Diagnosis<br />

Anthoa<strong>the</strong>cata Capitata with hydroid phase<br />

P. SCHUCHERT<br />

forming erect, pinnately branched stems, height<br />

10 cm and more, hydranths on upper side <strong>of</strong><br />

branches, pedicellate, body pear-shaped, one<br />

aboral whorl <strong>of</strong> filiform tentacles and distal <strong>to</strong><br />

<strong>the</strong>m scattered capitate tentacles. Gonophores<br />

oblong medusoids without tentacles, short-lived,<br />

released with mature gonads.<br />

Remarks<br />

This characteristic and well known species needs<br />

no special comments. Its synonymy is well<br />

known and <strong>the</strong>re were no significant differences<br />

between <strong>the</strong> Pacific and Mediterranean material.<br />

According <strong>to</strong> current usage, <strong>the</strong> genus name<br />

Pennaria is preferred over Halocordyle (see<br />

Schuchert 1996).<br />

Distribution<br />

Circumglobal in tropical <strong>to</strong> warm-temperate waters.<br />

Type locality: Gulf <strong>of</strong> Naples, Mediterranean.<br />

Fig. 8. Solanderia secunda (Inaba, 1892). A. Colony silhouette.<br />

B. Skele<strong>to</strong>n <strong>of</strong> terminal branch with triangular<br />

hydrophores. – Scales: A = 3 cm; B = 0.2 cm.


Family Solanderiidae<br />

HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Solanderia secunda (Inaba, 1892)<br />

Fig. 8.<br />

Dendrocoryne secunda Inaba, 1892: 98, figs 111–113.<br />

Solanderia secunda. – Hirohi<strong>to</strong> 1988: 49, fig. 15. – Bouillon,<br />

Wouters & Boero 1992: 12, pls 5–6, 10–12, synonymy. –<br />

Watson 1999: 13, fig. 9A–F.<br />

Solanderia minima. – Millard & Bouillon 1973: 16, fig. 2A–<br />

B, pl. 1. – Millard 1975: 59, fig. 21C–E.<br />

Material examined:<br />

Kei Islands Expedition, Banda Islands, Neira Island, 25 m,<br />

coll. 14 Jun 1922, without gonophores, colony broadly fanshaped,<br />

dimension 22 x 18 cm, stem and thicker branches<br />

darkly coloured.<br />

Diagnosis<br />

Solanderiidae with hydranth bases flanked by<br />

two parallel, broadly triangular periderm processes<br />

(hydrophores).<br />

Remarks<br />

This is <strong>the</strong> first find <strong>of</strong> S. secunda in Indonesian<br />

waters, but it lies well within <strong>the</strong> known distribution<br />

<strong>of</strong> this species. All Solanderia species have<br />

recently been revised by Bouillon, Wouters &<br />

Boero (1992) and several nominal species were<br />

synonymized. For detailed descriptions <strong>of</strong> this<br />

species see Bouillon, Wouters & Boero (1992),<br />

Millard (1975, as S. minima), or Watson (1999).<br />

Distribution<br />

Tropical and subtropical Pacific and Indian<br />

Ocean, reaching from Japan over Australia <strong>to</strong><br />

South Africa and <strong>the</strong> Red Sea. Type locality:<br />

Misaki, Japan.<br />

Family Tubulariidae<br />

Ec<strong>to</strong>pleura viridis (Pictet, 1893)<br />

Fig. 9.<br />

Tubularia viridis Pictet, 1893: 17, pl. 1: figs 10–11. – Billard<br />

1905: 331, figs 1–3.<br />

Ec<strong>to</strong>pleura pacifica Thornely, 1900: 452, pl. 44: figs 1, 1a.<br />

New synonym.<br />

Ec<strong>to</strong>pleura pacifica. – Petersen 1990: 165. – Schuchert<br />

1996: 112.<br />

Tubularia pacifica. – Borradaile 1905: 838.<br />

Not Ec<strong>to</strong>pleura pacifica. – Mammen 1963: 59, figs 27–29<br />

[= Ec<strong>to</strong>pleura indica Petersen, 1990].<br />

149<br />

Fig. 9. Ec<strong>to</strong>pleura viridis (Pictet, 1893); after type material.<br />

Hydranth with part <strong>of</strong> caulus. – Scale: 1 mm.<br />

Type material examined:<br />

MHNG INVE 31350, coll. Pictet and Bedot, 14 Aug 1890,<br />

Port <strong>of</strong> Ambon, Moluccas, on sponge, depth 1 m, several<br />

stems with medusa buds.<br />

O<strong>the</strong>r material examined :<br />

Kei Islands Expedition, labelled as Ec<strong>to</strong>pleura pacifica,<br />

Banda Islands, <strong>of</strong>f Neira Island, 10 m, on Meli<strong>to</strong>des ochracea<br />

(Oc<strong>to</strong>corallia), 1.06.1922, several stems with medusae<br />

buds. – ZMUC, as Ec<strong>to</strong>pleura pacifica, Laing Island, Papua<br />

New Guinea, 40 m, July 1977, coll. J. Bouillon, on crab;<br />

solitary, very short hydroids, perhaps does not belong <strong>to</strong> E.<br />

viridis.<br />

Description<br />

Hydroid erect, 0.5–1.0 cm, stems not branched,<br />

smooth, curved or not, 0.3–0.4 mm diameter,<br />

periderm firm, transparent, at distal end <strong>of</strong> caulus<br />

a neck-region, neck-region with filmy perisarc<br />

which originates below distal end <strong>of</strong> stem, with<br />

collar formation (see Petersen 1990). Hydranth<br />

body ovoid, 1.0–1.2 mm high, one whorl <strong>of</strong> 16–<br />

20 oral tentacles, oral tentacles relatively short<br />

and stubby, nema<strong>to</strong>cysts concentrated at tip. At<br />

hydranth base on whorl <strong>of</strong> 18–25 long, filiform


150<br />

tentacles, nema<strong>to</strong>cysts more concentrated on underside.<br />

Gonophores develop in a whorl just above <strong>the</strong><br />

aboral tentacles, up <strong>to</strong> about 12 blas<strong>to</strong>styles bearing<br />

1–6 medusae buds, blas<strong>to</strong>styles not longer<br />

than oral tentacles. Oldest, but still attached,<br />

medusa-stage with two tentacle bulbs and eight<br />

meridional tracks <strong>of</strong> nema<strong>to</strong>cysts on exumbrella.<br />

Radial canals <strong>of</strong> equal length. Mature medusa<br />

unknown.<br />

Fur<strong>the</strong>r details (fide Pictet 1893): s<strong>to</strong>lons<br />

creeping, hydranth colour: yellowish-green.<br />

Remarks<br />

Re-examination <strong>of</strong> <strong>the</strong> type material <strong>of</strong> Ec<strong>to</strong>pleura<br />

viridis (Pictet, 1893) permitted extraction<br />

<strong>of</strong> some additional details nei<strong>the</strong>r mentioned<br />

in Pictet (1893) nor Billard (1905). Ec<strong>to</strong>pleura<br />

viridis is a small, but typical tubulariid hydroid.<br />

The base <strong>of</strong> <strong>the</strong> caulus is deeply embedded in <strong>the</strong><br />

sponge tissue. The oral tentacles are not in two<br />

distinct whorls as stated by Pictet, but only one<br />

whorl, with an occasional tentacle very slightly<br />

displaced. The neck region corresponds <strong>to</strong> <strong>the</strong><br />

one for an Ec<strong>to</strong>pleura species in <strong>the</strong> sense <strong>of</strong><br />

Petersen (1990). The gonophores are medusae<br />

with two marginal bulbs and eight meridional<br />

tracks <strong>of</strong> exumbrellar nema<strong>to</strong>cysts. The original<br />

fixation with HgCl apparently stained <strong>the</strong> nem-<br />

2<br />

a<strong>to</strong>cysts brown and thus rendered <strong>the</strong>m visible<br />

even under <strong>the</strong> stereo microscope.<br />

With this additional information, Ec<strong>to</strong>pleura<br />

viridis becomes indistinguishable from E. pacifica<br />

Thornely, 1900, except perhaps for <strong>the</strong><br />

slightly thicker stem in <strong>the</strong> former species and <strong>the</strong><br />

difference <strong>of</strong> substrates. I am convinced that <strong>the</strong>y<br />

are conspecific.<br />

Petersen (1990) also reported Ec<strong>to</strong>pleura pacifica<br />

from Papua New Guinea, growing on a<br />

crab. This sample was re-examined and it is<br />

somewhat uncertain that it belongs <strong>to</strong> E. pacifica<br />

or E. viridis because <strong>the</strong> polyps are solitary and<br />

<strong>the</strong> stems only about 1 mm long. It produces also<br />

a two-tentacled medusa.<br />

Distribution<br />

Indonesia, Papua New Guinea, Gambier Islands,<br />

Maldives.<br />

P. SCHUCHERT<br />

Order Lep<strong>to</strong><strong>the</strong>cata<br />

Family Campanulinidae<br />

Campanulina panicula G. O. Sars, 1874<br />

Fig. 10.<br />

Campanulina panicula G. O. Sars, 1874: 121, pl. 5: figs 9–<br />

13. – Kramp 1941: 1, figs 1–5. – Cornelius 1995a: 190,<br />

fig. 43. – Schuchert 2001: 56, fig. 41.<br />

Campanulina denticulata Clarke, 1907: 12, pl. 8.<br />

Opercularella panicula. – Leloup 1974: 4, fig. 3. – Ramil &<br />

Vervoort 1992: 25, fig. 3a–d, synonymy. – Hirohi<strong>to</strong><br />

1995: 91, fig. 25d–e.<br />

Campanulina (?)indivisa Fraser, 1948: 216, pl. 24: fig. 7. –<br />

Vervoort 1966: 106.<br />

Opercularella denticulata. – Gili, Vervoort & Pagès 1989:<br />

76, fig. 6a.<br />

Material examined:<br />

Kei Islands Expedition station 42, large colony overgrowing<br />

axial skele<strong>to</strong>n <strong>of</strong> gorgonid oc<strong>to</strong>coral, infertile.<br />

Description<br />

Colonies with erect stems arising from thin,<br />

creeping s<strong>to</strong>lons. Stems up <strong>to</strong> 2 cm high, monosiphonic,<br />

0.15–0.2 mm thick, perisarc smooth.<br />

Along stem in more or less regular intervals sidebranches<br />

formed by pedicellate hydro<strong>the</strong>cae, all<br />

directed <strong>to</strong>wards one side, <strong>of</strong>ten roughly in two<br />

rows forming an angle smaller than 180°, some<br />

hydro<strong>the</strong>cal pedicels branched. Pedicels <strong>of</strong> hy-<br />

Fig. 10. Campanulina panicula G. O. Sars, 1874. Part <strong>of</strong><br />

stem in side view with hydro<strong>the</strong>cae. Scale: 0.2 mm.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

dro<strong>the</strong>cae 0.3–0.8 mm long, at base with or without<br />

annulation. Hydro<strong>the</strong>ca cylindrical, height<br />

without operculum about 0.3 mm, perisarc thin<br />

and filmy, hydro<strong>the</strong>ca at base with slight constriction<br />

where hydranth-base is attached and<br />

forms a diaphragm-like shelf; operculum conical,<br />

formed by about 10 triangular flaps, <strong>the</strong>se<br />

not demarcated from hydro<strong>the</strong>ca by crease line.<br />

Gono<strong>the</strong>cae absent.<br />

Remarks<br />

The present material <strong>of</strong> Campanulina panicula<br />

was indistinguishable from similar Atlantic material<br />

(Schuchert 2001). This is <strong>the</strong> first record for<br />

Indonesia for this species, but this find fits well<br />

in<strong>to</strong> its circumglobal occurrence.<br />

Distribution<br />

Moderately deep <strong>to</strong> deep waters <strong>of</strong> <strong>the</strong> Atlantic,<br />

Pacific and Indian Oceans, including <strong>the</strong> Mediterranean<br />

(Ramil & Vervoort 1992). Type locality:<br />

Oslo Fjord near Drøbak, Norway, 90–100 m.<br />

Family Haleciidae<br />

Hydrodendron sibogae (Billard, 1929)<br />

Fig. 11.<br />

Diplocyathus sibogae Billard, 1929a: 70, fig. A.<br />

Hydrodendron sibogae. – Leloup 1938: 1, fig. 3. – Hirohi<strong>to</strong><br />

1995: 38, fig. 11a–c, pl. 3: fig. B.<br />

Material examined:<br />

Kei Islands Expedition, Moluccas, Bay <strong>of</strong> Ambon, 90 m, 2<br />

Mar 1922, on s<strong>to</strong>nes and sand.<br />

Description<br />

Colonies up <strong>to</strong> 10 cm high and broad, irregularly<br />

branched, stem and major branches polysiphonic;<br />

short and thin monosiphonic branches originating<br />

from polysiphonic ones. Monosiphonic<br />

branches geniculate and with more or less distinct<br />

nodes, nodes alternately oblique, segments<br />

about 0.4 mm long, with broad and short apophyses<br />

for <strong>the</strong> attachment <strong>of</strong> hydro<strong>the</strong>cae at proximal<br />

end <strong>of</strong> segments, apophyses alternate on lateral<br />

sides.<br />

In upper axil <strong>of</strong> apophysis a tubular nema<strong>to</strong><strong>the</strong>ca,<br />

length about 0.07 mm, with a tentacle-like<br />

nema<strong>to</strong>phore having a swollen distal end.<br />

151<br />

Fig. 11. Hydrodendron sibogae (Billard, 1929). A. Monosiphonic<br />

part <strong>of</strong> branch. B. Hydro<strong>the</strong>ca, hydrophore, and<br />

nema<strong>to</strong><strong>the</strong>ca with nema<strong>to</strong>phore; s<strong>of</strong>t tissue stippled. –<br />

Scales: A = 0.2 mm; B = 0.1 mm.<br />

Hydro<strong>the</strong>ca movable, on a long (0.2 mm),<br />

conical hydrophore. Hydro<strong>the</strong>ca about 20–30<br />

µm deep, diameter 0.1 mm, walls converging,<br />

straight or slightly everted, ring <strong>of</strong> refringent<br />

nodules on inside.<br />

Gono<strong>the</strong>cae not present.<br />

Remarks<br />

The gono<strong>the</strong>cae <strong>of</strong> this species are bell-shaped<br />

with a broad, truncated end, about 1 mm high and<br />

0.5–0.7 mm broad, growing on <strong>the</strong> main stem and<br />

branches (Hirohi<strong>to</strong> 1995).<br />

The hydrophores <strong>of</strong> <strong>the</strong> present material were<br />

about 1/3 shorter than those observed by Billard<br />

(1929a) and Hirohi<strong>to</strong> (1995).<br />

In its microscopic structure, especially <strong>the</strong><br />

present sample with its somewhat shorter hydrophores,<br />

Hydrodendron sibogae closely resembles<br />

Hydrodendron dicho<strong>to</strong>mum (Allman, 1888)<br />

(see, e.g., Rees & Vervoort 1987, Watson 2000).<br />

The polysiphonic stem <strong>of</strong> <strong>the</strong> former species<br />

seems <strong>to</strong> be <strong>the</strong> only reliable character <strong>to</strong> separate<br />

it from H. dicho<strong>to</strong>mum.<br />

Distribution<br />

Japan, Indonesia. Type locality: “Indonesia”.


152<br />

Halecium halecinum var. minor Pictet, 1893<br />

Halecium halecinum var. minor Pictet, 1893: 20, pl. 1: figs<br />

14–15.<br />

Type material examined:<br />

MHNG INVE 31408, type colony <strong>of</strong> H. halecium var. minor,<br />

coll 10 Aug 1890 by M. Bedot and C. Pictet, Bay <strong>of</strong> Ambon,<br />

Indonesia.<br />

Description<br />

Colonies 2–4 cm high, branching irregularly,<br />

primarily in one plane; main stem and some<br />

side-branches polysiphonic from which arise<br />

monosiphonic branches. Monosiphonic parts<br />

with regular nodes, <strong>the</strong>se transverse <strong>to</strong> slightly<br />

oblique. Hydro<strong>the</strong>cae on alternating sides <strong>of</strong><br />

distal ends <strong>of</strong> internodes, sessile, adcauline wall<br />

adnate <strong>to</strong> internode, hydro<strong>the</strong>cal wall very short,<br />

straight, opening slightly tilted downwards. Gono<strong>the</strong>cae<br />

absent.<br />

Dimensions<br />

Length <strong>of</strong> internodes about 0.5 mm, diameter <strong>of</strong><br />

hydro<strong>the</strong>ca 0.13 mm, depth <strong>of</strong> hydro<strong>the</strong>ca 20 µm.<br />

Remarks<br />

Pictet’s colonies lack <strong>the</strong> typical regular and parallel<br />

side-branches <strong>of</strong> H. halecinum (Cornelius<br />

1995a, Schuchert 2001). Fur<strong>the</strong>rmore, H. halecinum<br />

is a species mostly known from temperate<br />

<strong>to</strong> cool waters. It is <strong>the</strong>refore improbable that <strong>the</strong><br />

present material genetically belongs <strong>to</strong> H. halecinum.<br />

The material also conforms with H. sessile<br />

Norman, 1876, a species which is reportedly<br />

cosmopolitan (Millard 1975, Hirohi<strong>to</strong> 1995) and<br />

which has been recorded in Indonesian waters<br />

by Vervoort (1941). Likewise, Pictet’s material<br />

could also be identified as H. beanii, a species<br />

closely resembling H. sessile. However, in <strong>the</strong><br />

absence <strong>of</strong> information on <strong>the</strong> gono<strong>the</strong>ca, Pictet’s<br />

material cannot be identified with sufficient accuracy.<br />

Distribution<br />

Only known with certainty from type locality:<br />

Bay <strong>of</strong> Ambon, Indonesia.<br />

P. SCHUCHERT<br />

Fig. 12. Halecium humile Pictet, 1893; after type material. A.<br />

Single shoot. B. Hydro<strong>the</strong>ca and side-branch. – Scales: A =<br />

0.5 mm; B = 0.1 mm.<br />

Halecium humile Pictet, 1893<br />

Fig. 12.<br />

Halecium humile Pictet, 1893: 23, pl. 1: figs 16–17.<br />

Type material examined:<br />

MHNG INVE 25036, Port <strong>of</strong> Ambon, Moluccas, slide and<br />

alcohol material, 1 mm high shoots with 2–3 hydranths, 20–<br />

22 tentacles, internode walls smooth.<br />

Remarks<br />

No new material <strong>of</strong> this species could be obtained.<br />

Its gono<strong>the</strong>cae are unknown, which<br />

makes identification difficult. The hydro<strong>the</strong>cae<br />

are very shallow and much everted (depth 50 µm,<br />

diameter at diaphragm 150 µm, at rim 220 µm)<br />

and might render <strong>the</strong> species recognizable. It<br />

closely resembles Halecium pygmeum Fraser,<br />

1911 (see Fraser 1937, Hirohi<strong>to</strong> 1995). Also<br />

Halecium sp. 1 depicted in Gibbons & Ryland<br />

(1989) might belong <strong>to</strong> it. A similar Indonesian<br />

species is Halecium scalariformis Billard, 1929c,<br />

which, however, has straight hydro<strong>the</strong>cal walls.<br />

New material from <strong>the</strong> type locality must be<br />

examined <strong>to</strong> complement <strong>the</strong> description <strong>of</strong> H.<br />

humile.<br />

Distribution<br />

Only known from type locality: Port <strong>of</strong> Ambon,<br />

Moluccas.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Mitrocomium simplex (Pictet, 1893), n. comb.<br />

Halecium simplex Pictet, 1893: 22, pl. 1: figs 16–17. –<br />

Ritchie 1910b: 807, pl. 77: figs 10–11.<br />

Campalecium cirratum. – Millard & Bouillon 1975: 7, fig.<br />

2C–E.<br />

Type material examined:<br />

MHNG INVE 25037, as Halecium simplex Pictet, 1893, Bay<br />

<strong>of</strong> Ambon.<br />

Remarks<br />

The taxonomic situation <strong>of</strong> <strong>the</strong> various species<br />

referable <strong>to</strong> Campalecium or Mitrocomium is<br />

complicated and unresolved (see Calder 1991).<br />

The following hydroids referable <strong>to</strong> <strong>the</strong> genus<br />

Campalecium have been described: C. simplex<br />

(Pictet, 1893); C. medusiferum Torrey, 1902; C.<br />

<strong>to</strong>rreyi (Motz-Kossowska, 1911); C. micro<strong>the</strong>ca<br />

Hadzi, 1914; and C. alcoicum Watson, 1993. Due<br />

<strong>to</strong> <strong>the</strong>ir similarity, several authors regarded most<br />

<strong>of</strong> <strong>the</strong>m as conspecific or questionably conspecific<br />

(Calder 1991). Brinckmann (1959) – working<br />

with Mediterranean material – examined fertile<br />

polyps clearly referable <strong>to</strong> C. micro<strong>the</strong>ca. She<br />

was able <strong>to</strong> rear <strong>the</strong> medusa until <strong>the</strong> onset <strong>of</strong><br />

gonad development and she allocated her material<br />

<strong>to</strong> Mitrocomium cirrata Haeckel, 1879<br />

(as Eucheilota cirrata), an uncommon medusa<br />

originally described from <strong>the</strong> Mediterranean.<br />

Brinckmann’s medusa agreed reasonably well<br />

with Haeckel’s medusa, especially in having several<br />

lateral cirri. The only serious difference was<br />

<strong>the</strong> tentacle number which was only four in <strong>the</strong><br />

oldest obtained medusae, while Haeckel’s original<br />

medusae had 8 tentacles (for a more recent<br />

description and figure <strong>of</strong> M. cirratum see Pagès<br />

et al. 1992). This difference can, however, easily<br />

be attributed <strong>to</strong> <strong>the</strong> younger age <strong>of</strong> Brinckmann’s<br />

medusae. The medusae observed by Brinckmann<br />

were sufficiently old <strong>to</strong> be allocated <strong>to</strong> <strong>the</strong><br />

Lovenellidae (sensu Russell 1953, not Bouillon<br />

1984a). As o<strong>the</strong>r medusae <strong>of</strong> <strong>the</strong> Lovenellidae<br />

have ei<strong>the</strong>r campanulid or lovenellid hydroid<br />

stages, it seems appropriate <strong>to</strong> keep <strong>the</strong> genus<br />

Mitrocomium with its Halecium-like hydro<strong>the</strong>ca<br />

until a comprehensive phylogenetic analysis enables<br />

recognition <strong>of</strong> monophyletic groups (see<br />

also discussion in Calder 1991).<br />

Because Brinckmann (1959) did not rear her<br />

medusae <strong>to</strong> full maturity, Bouillon (1985a: 149)<br />

doubted that C. micro<strong>the</strong>ca is <strong>the</strong> hydroid <strong>of</strong> M.<br />

153<br />

cirratum, although earlier he embraced this view<br />

(Millard & Bouillon 1975: 8) and regarded all<br />

Campalecium-type hydroids known at that time<br />

as conspecific with M. cirratum. Boero (1981:<br />

188) objected <strong>to</strong> this because he found a Mediterranean<br />

Campalecium-like hydroid which reportedly<br />

produced a medusa differing from <strong>the</strong> one<br />

described by Brinckmann (1959) and because<br />

he found that his polyps had nema<strong>to</strong>cysts that<br />

differed from <strong>the</strong> ones described by Millard &<br />

Bouillon (1975). While <strong>the</strong> umbrellula <strong>of</strong> <strong>the</strong><br />

polyps <strong>of</strong> Millard & Bouillon from <strong>the</strong> Indian<br />

Ocean had large microbasic mastigophores,<br />

Boero’s were initially identified as macrobasic<br />

mastigophores, later corrected <strong>to</strong> merotrichous<br />

isorhizas (Boero & Sarà 1987). Unfortunately,<br />

Brinckmann (1959) did not identify <strong>the</strong> large<br />

nema<strong>to</strong>cysts <strong>of</strong> her polyp. However, I can find no<br />

significant difference in <strong>the</strong> figures <strong>of</strong> <strong>the</strong> newly<br />

released medusae depicted by Boero (1981: fig.<br />

5, as Campalecium medusiferum?) and Brinckmann’s<br />

medusa (1959: fig. 2e) and I <strong>the</strong>refore<br />

suspect that Boero (1981) in fact had M. cirratum.<br />

But Boero is correct in that his material<br />

differs from Millard & Bouillon’s (1975) specimens<br />

from <strong>the</strong> Indian Ocean and that <strong>the</strong> latter<br />

material does not belong <strong>to</strong> M. cirratum because<br />

it has different nema<strong>to</strong>cysts. It could belong <strong>to</strong> M.<br />

medusiferum or more probably M. simplex. Lifecycle<br />

studies on Indo-Pacific and Californian<br />

material are needed <strong>to</strong> resolve <strong>the</strong> problem.<br />

Pictet’s material <strong>of</strong> H. simplex was infertile<br />

and it was Ritchie (1910b) who described <strong>the</strong><br />

gono<strong>the</strong>cae for <strong>the</strong> first time, this based on material<br />

from <strong>the</strong> Mergui Islands. The true nature <strong>of</strong><br />

<strong>the</strong> gono<strong>the</strong>ca content <strong>of</strong> Ritchie’s material was<br />

later described by Millard & Bouillon (1975),<br />

who recognized that <strong>the</strong> gono<strong>the</strong>cae contained<br />

medusa buds.<br />

Unfortunately, no new material <strong>of</strong> M. simplex<br />

could be found, but <strong>the</strong> type material <strong>of</strong> Halecium<br />

simplex was re-examined and it proved <strong>to</strong> have<br />

many large microbasic mastigophores identical<br />

<strong>to</strong> <strong>the</strong> ones depicted in Millard & Bouillon (1975)<br />

for <strong>the</strong>ir material from <strong>the</strong> Seychelles. It thus<br />

appears very probable that Millard & Bouillon<br />

(1975) as well as Ritchie (1910b) had Mitrocomium<br />

simplex and not M. cirratum. Future<br />

studies on living material from <strong>the</strong> type locality<br />

<strong>of</strong> M. simplex must substantiate this, however.


154<br />

As indicated above, <strong>the</strong> genus Mitrocomium<br />

(as defined in Brinckmann (1959) based on Haleciella<br />

micro<strong>the</strong>ca) presents considerable problems<br />

not only at <strong>the</strong> species level, but also at <strong>the</strong><br />

family level. Its hydroids have a hydro<strong>the</strong>ca that<br />

associates <strong>the</strong>m with <strong>the</strong> genus Halecium, while<br />

<strong>the</strong>ir medusae belong <strong>to</strong> <strong>the</strong> Lovenellidae (sensu<br />

Russell). Where known, <strong>the</strong> hydroids <strong>of</strong> <strong>the</strong> family<br />

Lovenellidae Russell, 1953 are quite disparate,<br />

some like Eucheilota maculata being <strong>of</strong> a<br />

campanulid type (Werner 1968), while o<strong>the</strong>rs<br />

are lovenellid with demarcated opercular valves<br />

(e.g., Lovenella clausa, see Russell 1953 or<br />

Cornelius 1995a). To account for this, Bouillon<br />

(1984a, 1985a) placed <strong>the</strong> genera Eucheilota<br />

and Lovenella in families <strong>of</strong> <strong>the</strong>ir own and dismissed<br />

<strong>the</strong> life cycle <strong>of</strong> M. cirrata as insufficiently<br />

known. By this, however, <strong>the</strong> problem is<br />

not entirely solved and systems based on <strong>the</strong><br />

medusa stage and <strong>the</strong> hydroid stage are still incongruent<br />

(see also Cornelius 1995a: 154, who<br />

expresses a similar opinion). I consider that<br />

Mitrocomium, and also <strong>the</strong> genus Hydran<strong>the</strong>a<br />

(see Boero & Sarà 1987), do not belong <strong>to</strong> <strong>the</strong><br />

Haleciidae but are more closely related <strong>to</strong> <strong>the</strong><br />

genera Lovenella and Eucheilota, both belonging<br />

<strong>to</strong> <strong>the</strong> family Lovenellidae Russell, 1953 (not<br />

Bouillon). The positive characters <strong>of</strong> an intratentacular<br />

web in <strong>the</strong> hydroid as well as <strong>the</strong> lateral<br />

cirri <strong>of</strong> <strong>the</strong> medusa appear <strong>to</strong> me as more convincing<br />

synapomorphies than <strong>the</strong> reduced, Haleciumlike<br />

hydro<strong>the</strong>ca. If one considers that <strong>the</strong> hydro<strong>the</strong>ca<br />

in Eucheilota species can be partially<br />

lost, resulting in hydro<strong>the</strong>cae strongly resembling<br />

<strong>the</strong> ones <strong>of</strong> Halecium (see fig. 14c in Werner<br />

1968), <strong>the</strong>n <strong>the</strong> usefulness <strong>of</strong> <strong>the</strong> shape <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>ca for delimiting families is severely<br />

undermined. Such macrotaxonomic problems<br />

can only be solved in <strong>the</strong> framework <strong>of</strong> a comprehensive<br />

phylogenetic analysis and Mitrocomium<br />

is presently not removed from <strong>the</strong> Haleciidae<br />

as it would cause a major taxonomic instability<br />

<strong>of</strong> this family.<br />

Family Hebellidae<br />

Remarks<br />

As discussed in Schuchert (2001), <strong>the</strong> members<br />

<strong>of</strong> <strong>the</strong> genus Hebella are here placed in <strong>the</strong> family<br />

P. SCHUCHERT<br />

Hebellidae Fraser, 1912 and not <strong>the</strong> Lafoeidae.<br />

The species belonging <strong>to</strong> <strong>the</strong> Hebellidae have<br />

recently been revised by Boero, Bouillon & Kubota<br />

(1997). This revision clearly showed that <strong>the</strong><br />

characters <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca alone are mostly<br />

insufficient <strong>to</strong> distinguish species. Many members<br />

<strong>of</strong> this family release immature medusae that<br />

must be cultivated <strong>to</strong> maturity <strong>to</strong> be identified<br />

properly, but this has been done for a few species<br />

only. Migot<strong>to</strong> & de Andrade (2000) succeeded in<br />

cultivating <strong>the</strong> adult medusa <strong>of</strong> Hebella furax.<br />

It proved <strong>to</strong> be a Toxorchis sp. (family Laodiceidae).<br />

O<strong>the</strong>r Hebellidae release medusae with<br />

mature gonads or medusoids with gonads on<br />

<strong>the</strong> manubrium (genus Anthohebella, see Boero,<br />

Bouillon & Kubota 1997). It is thus evident<br />

that Hebellidae species can only be reliably identified<br />

if <strong>the</strong> mature gonophores are known. We<br />

have here a similar situation as for <strong>the</strong> various<br />

Campanulina- and Cuspidella-like hydroids (see<br />

also above under Mitrocomium simplex).<br />

In <strong>the</strong> material examined for this study, hebellid<br />

hydroids were <strong>of</strong>ten present on o<strong>the</strong>r hydroids,<br />

sometimes even with gono<strong>the</strong>cae containing<br />

immature medusae. For <strong>the</strong> reasons given<br />

above, however, <strong>the</strong>y were not identified <strong>to</strong> species<br />

level.<br />

Family Lafoeidae<br />

Acryp<strong>to</strong>laria rectangularis (Jarvis, 1922)<br />

Fig. 13.<br />

Cryp<strong>to</strong>laria rectangularis Jarvis, 1922: 335, pl. 24: fig. 3.<br />

Cryp<strong>to</strong>laria bulbosa Stechow, 1932: 87.<br />

Acryp<strong>to</strong>laria rectangularis. – Millard 1975: 171, fig. 57A–<br />

D. – Gravier-Bonnet 1979: 17, fig. 4A. – Millard 1980:<br />

138, fig. 4A.<br />

Acryp<strong>to</strong>laria angulata. – Vervoort 1966: 116, fig. 16. –<br />

Hirohi<strong>to</strong> 1995: 102, fig. 29a–b, pl. 6: fig. B.<br />

Material examined:<br />

Kei Islands Expedition station 3, at least two stems and<br />

fragments.<br />

Description<br />

Colonies erect, up <strong>to</strong> 4 cm high, irregularly<br />

branched, branching primarily in one plane.<br />

Stem and branches polysiphonic through auxiliary<br />

tubes covering <strong>the</strong> hydro<strong>the</strong>ca-bearing primary<br />

tube, polysiphonic parts thinning distally,


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 13. Acryp<strong>to</strong>laria rectangularis (Jarvis, 1922). Part <strong>of</strong><br />

hydrocladium with hydro<strong>the</strong>cae. – Scale: 0.2 mm<br />

but even distal branches with at least one auxiliary<br />

tube.<br />

Hydro<strong>the</strong>cae in two rows, alternate, not much<br />

overlapping, tubular, adnate for ½ <strong>of</strong> length,<br />

sharply bent where becoming free, abcauline<br />

wall at bend with a more or less distinct notch,<br />

free part <strong>of</strong> hydro<strong>the</strong>ca straight, about 0.3 mm<br />

long, directed slightly upwards or nearly horizontal,<br />

diameter not much increasing distally,<br />

diameter at opening 0.15–0.18 mm, rim slightly<br />

everted, <strong>to</strong>wards base <strong>of</strong> hydro<strong>the</strong>ca a ring <strong>of</strong><br />

nodules or a fine diaphragm; hydro<strong>the</strong>ca without<br />

internal projection at adcauline side. Nema<strong>to</strong>cysts<br />

<strong>of</strong> two sizes: 5 x 3 µm and 23 x 7 µm.<br />

Gono<strong>the</strong>cae absent (see Millard 1980 for description).<br />

Remarks<br />

Jarvis (1922) distinguished her Acryp<strong>to</strong>laria<br />

rectangularis from A. angulata Bale, 1914 by <strong>the</strong><br />

absence <strong>of</strong> <strong>the</strong> adcauline projection (dent) in<strong>to</strong><br />

<strong>the</strong> hydro<strong>the</strong>ca, but Jarvis considered also <strong>the</strong><br />

possibility that both are only two forms <strong>of</strong> <strong>the</strong><br />

155<br />

same species. Vervoort (1966) re-examined putative<br />

type material <strong>of</strong> A. angulata and allocated<br />

also South African material <strong>to</strong> A. angulata even<br />

though it did not have <strong>the</strong> dent (“boss” in his<br />

words) described by Bale (1914b). Because this<br />

dent represents one <strong>of</strong> <strong>the</strong> important diagnostic<br />

characters <strong>to</strong> distinguish it from A. rectangularis,<br />

it must be assumed that Vervoort (1966) regarded<br />

<strong>the</strong>m as possibly conspecific, although he<br />

does not explicitly state so in his synonymy.<br />

Millard (1975) referred Vervoort’s material <strong>to</strong> A.<br />

rectangularis. Hirohi<strong>to</strong>’s (1985) material also<br />

lacked <strong>the</strong> internal projection and he formally<br />

synonymized A. angulata, A. rectangularis, and<br />

A. bulbosa Stechow, 1932. Here, both A. angulata<br />

and A. rectangularis are treated as separate<br />

species because both morphotypes were found<br />

not very far apart. However, I acknowledge <strong>the</strong><br />

possibility that both could be only forms belonging<br />

<strong>to</strong> <strong>the</strong> same species.<br />

In <strong>the</strong> material from <strong>the</strong> Kei Islands <strong>the</strong>re<br />

was one sample which unambiguously matched<br />

<strong>the</strong> descriptions <strong>of</strong> A. rectangularis as given by<br />

Jarvis (1922) and Millard (1975) (Fig. 13).<br />

Distribution<br />

Southwest Indian Ocean, South Africa, Japan,<br />

Indonesia (new record), below 100 m depth.<br />

Type locality: Providence Islands, Indian Ocean,<br />

228 m.<br />

Acryp<strong>to</strong>laria angulata (Bale, 1914)<br />

Fig. 14.<br />

Cryp<strong>to</strong>laria angulata Bale, 1914b: 166, pl. 35: fig. 1. – Bale<br />

1915: 251.<br />

Acryp<strong>to</strong>laria angulata. – Vervoort 1966: fig. 16.<br />

Type material examined:<br />

Syntypes <strong>of</strong> Cryp<strong>to</strong>laria angulata, Museum <strong>of</strong> Vic<strong>to</strong>ria,<br />

Melbourne, F58335, 3 slides.<br />

O<strong>the</strong>r material examined:<br />

Kei Islands Expedition station 7, several shoots, up <strong>to</strong> 2 cm.<br />

Differential diagnosis<br />

Similar <strong>to</strong> A. rectangularis, but hydro<strong>the</strong>cae<br />

larger, free part up 0.5–0.7 mm long, opening<br />

diameter 0.15–0.25 mm, hydro<strong>the</strong>cae bent nearly<br />

at right angle, adcauline side with dent projecting<br />

in<strong>to</strong> lumen, abcauline side becoming free with


156<br />

marked fold projecting in<strong>to</strong> lumen, without<br />

refringent nodules at base <strong>of</strong> hydro<strong>the</strong>ca. Free<br />

adcauline side concave. Hydro<strong>the</strong>cae at end <strong>of</strong><br />

branches different, <strong>the</strong>se with an S-shaped curvature<br />

(in Indonesian material only, see Fig. 14B).<br />

Remarks<br />

The present sample was allocated <strong>to</strong> A. angulata<br />

due <strong>to</strong> <strong>the</strong> distinct dent in <strong>the</strong> adcauline wall <strong>of</strong><br />

<strong>the</strong> hydro<strong>the</strong>ca and <strong>the</strong> pronounced fold at <strong>the</strong><br />

bent <strong>of</strong> <strong>the</strong> abcauline wall. The Indonesian material<br />

matched Bale’s type material reasonably<br />

well, although its hydro<strong>the</strong>cae are somewhat<br />

larger and longer (up <strong>to</strong> 1.5 times) and both <strong>the</strong><br />

adcauline dent and <strong>the</strong> abcauline fold are more<br />

pronounced (cf. Fig. 14A and C). The most distal<br />

hydro<strong>the</strong>cae <strong>of</strong> <strong>the</strong> Indonesian colony (Fig. 14B)<br />

deviate considerably from <strong>the</strong> shape <strong>of</strong> <strong>the</strong> more<br />

proximal ones in that <strong>the</strong>y have an S-shaped<br />

curvature at <strong>the</strong> place where <strong>the</strong>y become free.<br />

Such hydro<strong>the</strong>cae are not present in <strong>the</strong> type<br />

material. More material <strong>of</strong> this rare species is<br />

needed <strong>to</strong> evaluate <strong>the</strong> significance <strong>of</strong> <strong>the</strong>se differences.<br />

The difference from <strong>the</strong> sample identified here<br />

as A. rectangularis (Fig. 13) appeared <strong>to</strong>o pronounced<br />

<strong>to</strong> me <strong>to</strong> place <strong>the</strong>m both in<strong>to</strong> <strong>the</strong> same<br />

species (see above).<br />

Distribution<br />

Sou<strong>the</strong>rn Australia, Indonesia (new record),<br />

P. SCHUCHERT<br />

Fig. 14. Acryp<strong>to</strong>laria angulata (Bale, 1914); A–B, station 7; C, type material from Australia. A. Hydro<strong>the</strong>ca in polysiphonic<br />

part, accessory tubules removed. B. Indonesian material, hydro<strong>the</strong>cae at monosiphonic tip <strong>of</strong> branch. C. Hydro<strong>the</strong>ca in<br />

polysiphonic part. – Scale: A–C = 0.2 mm.<br />

depth range 182–328 m. Type locality: Great<br />

Australian Bight, 182 m.<br />

Acryp<strong>to</strong>laria conferta (Allman, 1877)<br />

Fig. 15.<br />

Cryp<strong>to</strong>laria conferta Allman, 1877: 17, pl. 12: figs 6–10. –<br />

von Campenhausen 1896b: 308.<br />

Fig. 15. Acryp<strong>to</strong>laria conferta (Allman, 1877). Monosiphonic<br />

part <strong>of</strong> distal branch. – Scale: 0.2 mm.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Acryp<strong>to</strong>laria conferta. – Tot<strong>to</strong>n 1930: 164, fig. 19a–b. –<br />

Ralph 1958: 315, fig. 4a–g. – Millard 1975: 169, fig. 56.<br />

– Calder 1991: 33, figs, 19–20, synonymy. – Hirohi<strong>to</strong><br />

1995: 104, fig. 29c–d, pl. 6: fig. C. – Schuchert 2001: 61,<br />

fig. 48A–B.<br />

Acryp<strong>to</strong>laria conferta var. australis. – Tot<strong>to</strong>n 1930: 163,<br />

figs, 19c–e. – Ralph 1958: 315, fig. 4a–g. – Millard 1964:<br />

9, fig. 1D, F–G.<br />

Acryp<strong>to</strong>laria conferta conferta. – Ramil & Vervoort 1992:<br />

41, fig. 7a–b.<br />

Acryp<strong>to</strong>laria conferta minor Ramil & Vervoort, 1992: 43,<br />

fig. 8a–c, 9a–c.<br />

Acryp<strong>to</strong>laria conferta australis. – Vervoort 1966: 115, fig.<br />

15. – Rees & Vervoort 1987: 37, fig. 6e.<br />

Material examined:<br />

Kei Islands Expedition station 7.<br />

Description<br />

Colony erect, up <strong>to</strong> 5 cm, irregularly branched,<br />

stem and main branches polysiphonic through<br />

overgrowth <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cae bearing primary<br />

tube with auxiliary tubes, polysiphonic part thinning<br />

<strong>to</strong>wards distal, ends <strong>of</strong> branches monosiphonic.<br />

Nodes <strong>of</strong> primary tube indistinct or absent.<br />

Hydro<strong>the</strong>cae alternately arranged on opposite<br />

sides <strong>of</strong> primary tube. Hydro<strong>the</strong>cae tubular,<br />

smooth, adnate for about half <strong>of</strong> <strong>the</strong>ir length,<br />

curving outward, outer wall not kinked but<br />

evenly curved, base <strong>of</strong> hydro<strong>the</strong>cae open <strong>to</strong>wards<br />

axial tube, no diaphragm, diameter <strong>of</strong> hydro<strong>the</strong>ca<br />

slightly increasing distally, diameter at opening<br />

0.2 mm, margin slightly everted, <strong>of</strong>ten renovated.<br />

Gono<strong>the</strong>cae absent.<br />

Remarks<br />

Millard (1975) commented on <strong>the</strong> variability <strong>of</strong><br />

this species and following her opinion, no subspecies<br />

or variants are recognized here. Besides<br />

nominal subspecies and variants, <strong>the</strong>re are also<br />

similar species like Acryp<strong>to</strong>laria pulchella (Allman,<br />

1888) which are difficult <strong>to</strong> separate. While<br />

it seems plausible that <strong>the</strong>re are actually several<br />

species lumped in<strong>to</strong> A. conferta, <strong>the</strong> trophosome<br />

<strong>of</strong> Acryp<strong>to</strong>laria <strong>of</strong>fers <strong>to</strong>o few characters for an<br />

objective separation <strong>of</strong> morphotypes. However,<br />

<strong>the</strong> coppinia <strong>of</strong> A. conferta from <strong>the</strong> tropical<br />

Atlantic and South Africa (see Allman 1877,<br />

Millard 1975, Calder 1991) lack modified hydro<strong>the</strong>cae,<br />

but such modified hydro<strong>the</strong>cae are<br />

157<br />

known <strong>to</strong> occur in Pacific specimens (Ralph<br />

1958, Hirohi<strong>to</strong> 1995). Hirohi<strong>to</strong> (1995) found<br />

both types in Japan. Perhaps this indicates <strong>the</strong><br />

presence <strong>of</strong> two species. New investigations must<br />

evaluate <strong>the</strong> significance <strong>of</strong> <strong>the</strong>se differences.<br />

Acryp<strong>to</strong>laria conferta has already been recorded<br />

in Indonesian waters by von Campenhausen<br />

(1896b).<br />

Distribution<br />

Circumglobal, usually below 50 m depth. Type<br />

locality: Off Cojima, Cuba, 823 m.<br />

Lafoea dumosa (Fleming, 1820)<br />

Fig. 16.<br />

Sertularia dumosa Fleming, 1820: 84.<br />

Lafoea dumosa. – Broch, 1918: 7, fig. 1. – Cornelius 1975b:<br />

385, fig. 4, synonymy. – Millard 1975: 185. – Rees &<br />

Vervoort 1987: 40, figs 7–8. – Ramil & Vervoort 1992:<br />

55. – Cornelius 1995a: 261, fig. 60. – Hirohi<strong>to</strong> 1995: 126,<br />

fig. 36a–c, pl. 8: fig. A. – Schuchert 2001: 67, figs 54–55.<br />

Lafoea fruticosa. – Millard 1975: 187, fig. 61A–F.<br />

Material examined:<br />

Kei Islands Expedition stations: 7. – 46.<br />

Description<br />

(Based on Indonesian material) Colonies erect,<br />

1–2 cm high, polysiphonic, thinning <strong>to</strong> monosiphonic,<br />

component tubes parallel, each bearing<br />

hydro<strong>the</strong>cae at irregular intervals, arising from<br />

all sides <strong>of</strong> branches.<br />

Hydro<strong>the</strong>cae tubular, straight, about 0.5 mm<br />

Fig. 16. Lafoea dumosa (Fleming, 1820); station 7. Hydro<strong>the</strong>ca.<br />

– Scale: 0.2 mm.


158<br />

deep, opening diameter 0.18 mm, cylindrical,<br />

tapering below in<strong>to</strong> distinct pedicel, pedicel corrugated;<br />

rim <strong>of</strong> opening slightly flared; no diaphragm<br />

or operculum.<br />

Gono<strong>the</strong>cae absent (see Millard 1975 or Cornelius<br />

1995a).<br />

Remarks<br />

Lafoea dumosa is here recorded in Indonesian<br />

waters for <strong>the</strong> first time. This cosmopolitan<br />

and extraordinarily variable species has an extensive<br />

and complicated synonymy (see Cornelius<br />

1975b, Rees & Vervoort 1987, Schuchert 2001).<br />

Contemporary authors mostly do not distinguish<br />

anymore between forms having hydro<strong>the</strong>cae<br />

on stalks or sessile ones. However, Schuchert<br />

(2001) noted that most colonies with sessile<br />

hydro<strong>the</strong>cae also have significantly smaller<br />

isorhiza capsules, suggesting never<strong>the</strong>less <strong>the</strong><br />

presence <strong>of</strong> two species. The present material<br />

from Indonesia (Fig. 16) had without exception<br />

hydro<strong>the</strong>cae with distinct stalks and <strong>the</strong> larger<br />

nema<strong>to</strong>cyst capsule measured around 25 µm in<br />

length, thus conforming with <strong>the</strong> common Atlantic<br />

form.<br />

Distribution<br />

Cosmopolitan, mostly below 100 m. Type locality:<br />

Arbroath, Scotland.<br />

Zygophylax bifurcata Billard, 1942<br />

Fig. 17.<br />

Zygophylax bifurcata Billard, 1942a: 34, figs 1–3. – Rees &<br />

Vervoort 1987: 79, fig. 13.<br />

Material examined:<br />

Kei Islands Expedition station 52, 3 shoots on small bivalve.<br />

Description<br />

Colonies erect, up <strong>to</strong> 1 cm, growing on bivalve,<br />

stem polysiphonic, hydrocladia monosiphonic.<br />

Primary tube <strong>of</strong> stem bears hydro<strong>the</strong>cae and<br />

hydrocladia.<br />

Hydrocladia unbranched, alternate, in two<br />

rows, thin and delicate, nodes indistinct, below<br />

distal node apophysis for attachment <strong>of</strong> hy-<br />

P. SCHUCHERT<br />

Fig. 17. Zygophylax bifurcata Billard, 1942. A. Part <strong>of</strong><br />

hydrocladium with hydro<strong>the</strong>ca. B. Apophysis with nema<strong>to</strong><strong>the</strong>ca.<br />

– Scales: A = 0.2 mm; B = 50 µm.<br />

dro<strong>the</strong>ca. Apophysis occasionally with nema<strong>to</strong><strong>the</strong>ca.<br />

Hydro<strong>the</strong>cae alternate, with pedicels longer or<br />

as long as hydro<strong>the</strong>ca, pedicels about 0.4 mm<br />

from base <strong>to</strong> diaphragm, at base some irregular<br />

annulation, with distinct node delimiting it from<br />

apophysis. Hydro<strong>the</strong>ca cylindrical, about 0.3<br />

mm from diaphragm <strong>to</strong> opening, tapering at base<br />

continuously in<strong>to</strong> pedicel; opening diameter 0.12<br />

mm, <strong>of</strong>ten slightly inclined; diaphragm thin.<br />

Nema<strong>to</strong><strong>the</strong>ca tubular, <strong>of</strong>ten curved, lower end<br />

annulated, margin slightly everted. Gono<strong>the</strong>cae<br />

not present.<br />

Remarks<br />

The present material is only tentatively assigned<br />

<strong>to</strong> Z. bifurcata because it lacks one <strong>of</strong> <strong>the</strong> diagnostic<br />

characters: <strong>the</strong> bifurcated hydrocladia.<br />

The colonies appear, however, <strong>to</strong> be juvenile and<br />

as in o<strong>the</strong>r hydroids hydrocladia may branch<br />

during later development. The identification was<br />

based on <strong>the</strong> long pedicels <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cae.<br />

Zygophylax bifurcata seems <strong>to</strong> be <strong>the</strong> only species<br />

in this genus with non-recurved primary<br />

hydro<strong>the</strong>cae that have pedicels as long or longer<br />

than <strong>the</strong> hydro<strong>the</strong>ca.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Distribution<br />

Indonesia. Type locality: 8.72°S, 127.28°E, 828<br />

m (Rees & Vervoort 1987).<br />

Zygophylax rufa (Bale, 1884)<br />

Fig. 18.<br />

Campanularia rufa Bale, 1884: 54, pl. 1 fig. 1.<br />

Lic<strong>to</strong>rella rufa. – Vervoort & Vasseur 1977: 15, figs 5–8.<br />

Zygophylax rufa. – Bale, 1914c: 90. – Rees & Vervoort,<br />

1987: 55. – Gibbons & Ryland 1989: 395, fig. 15.<br />

Material examined:<br />

Kei Islands Expedition station 53, 1.5 cm fragment <strong>of</strong> shoot.<br />

Description<br />

Colonies erect, a few cm high, stem polysiphonic<br />

but thin, composed <strong>of</strong> primary tube and 3 auxiliary<br />

tubes.<br />

Hydrocladia strictly pinnate, regularly parallel,<br />

thin, monosiphonic, without nodes.<br />

Fig. 18. Zygophylax rufa (Bale, 1884). A. Part <strong>of</strong> hydrocladium<br />

with hydro<strong>the</strong>ca and nema<strong>to</strong><strong>the</strong>ca. B. Hydro<strong>the</strong>ca<br />

with short apophysis and no node. – Scale: A–B = 0.2 mm<br />

159<br />

Hydro<strong>the</strong>cae alternate, in two rows, <strong>the</strong> two<br />

planes forming an angle <strong>of</strong>


160<br />

present in shallow waters <strong>of</strong> <strong>the</strong> tropical Pacific.<br />

Although von Campenhausen’s material was<br />

strictly pinnate, it is also unlikely that it belonged<br />

<strong>to</strong> Z. rufa because it was 12 cm high, it had<br />

branched stems, and <strong>the</strong> stems were dark-red <strong>to</strong><br />

black. The available data are insufficient <strong>to</strong> identify<br />

it unambiguously.<br />

Distribution<br />

Great Barrier Reef, French Polynesia, Fiji Islands,<br />

Kei Islands (new record). Type locality:<br />

Holborne Island, Great Barrier Reef, Australia.<br />

Zygophylax sibogae Billard, 1918<br />

Fig. 19.<br />

Zygophylax sibogae Billard, 1918: 21 fig. 1. – In part Tot<strong>to</strong>n<br />

1930: 167, fig. 21. – Ralph 1958: 311, fig. 2e–i. – Millard<br />

1975: 198, fig. 65A–C. – Rees & Vervoort 1987: 72. –<br />

Hirohi<strong>to</strong> 1995: 144, fig. 45a–d, pl. 9: fig. D.<br />

Fig. 19. Zygophylax sibogae Billard, 1918; station 33. A.<br />

Part <strong>of</strong> stem and hydrocladium; hydro<strong>the</strong>ca in frontal view.<br />

B. Hydro<strong>the</strong>ca in side view. C. Nema<strong>to</strong><strong>the</strong>ca on apophysis<br />

bearing a hydro<strong>the</strong>ca. – Scales: A–B = 0.2 mm; C = 50 µm.<br />

P. SCHUCHERT<br />

Material examined:<br />

Kei Islands Expedition stations: 33. – 46. – 48. – 58; all<br />

infertile.<br />

Description<br />

Colonies erect, up <strong>to</strong> several cm high; stem polysiphonic,<br />

sometimes branched, composed <strong>of</strong> a<br />

primary tube and auxiliary tubes. Primary tube<br />

bears hydrocladia, hydro<strong>the</strong>cae and nema<strong>to</strong><strong>the</strong>cae.<br />

Hydrocladia alternate, monosiphonic, unsegmented,<br />

bearing alternate hydro<strong>the</strong>cae on apophyses.<br />

The two rows <strong>of</strong> hydro<strong>the</strong>cae not in one<br />

plane but borne on anterior surface, with an acute<br />

angle between <strong>the</strong>m and with <strong>the</strong> hydro<strong>the</strong>cae <strong>of</strong><br />

one row rotated so that <strong>the</strong>y slightly face away<br />

from those <strong>of</strong> <strong>the</strong> o<strong>the</strong>r row.<br />

Hydro<strong>the</strong>ca slender and tubular below <strong>the</strong> diaphragm,<br />

<strong>the</strong>n widening and strongly recurved,<br />

<strong>to</strong>tal height 0.6–0.8 mm, depth from upper margin<br />

<strong>to</strong> diaphragm 0.3–0.35 mm, diameter <strong>of</strong><br />

opening 0.15 mm. The curved end is trumpetshaped<br />

and held perpendicular <strong>to</strong> <strong>the</strong> axis <strong>of</strong> <strong>the</strong><br />

lower part <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca, resulting in a deep<br />

fold on one side. Diaphragm well formed, with<br />

central hydropore. Nema<strong>to</strong><strong>the</strong>cae tubular, about<br />

80–90 µm long, diameter 20 µm, on axial tube,<br />

accessory tubes at base <strong>of</strong> hydrocladia, and on<br />

apophyses <strong>of</strong> hydro<strong>the</strong>cae. Not all apophyses<br />

bear nema<strong>to</strong><strong>the</strong>cae.<br />

Gono<strong>the</strong>cae not observed (see Billard 1918<br />

for description; figures are given by Hirohi<strong>to</strong><br />

1995).<br />

Distribution<br />

Indonesia, New Zealand, South Africa, Japan.<br />

Type locality: Kei Islands, 5.667°S, 132.433°E,<br />

310 m.<br />

Family Campanulariidae<br />

Clytia linearis (Thornely, 1900)<br />

Fig. 20.<br />

Obelia linearis Thornely, 1900: 453, pl. 44: fig. 6.<br />

In part Obelia bidentata var. – Pictet 1893: 25, pl. 1: figs 20–<br />

21. [Not Obelia bidentata Clarke, 1875]<br />

Clytia longicyatha. – Pictet 1893: 28, pl. 2: figs 22–23. [Not<br />

Obelia longicyatha Allman, 1877]<br />

In part Clytia serrulata. – Pictet 1893: 30.<br />

Campanularia gravieri Billard, 1904: 482, fig. 1.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Clytia gravieri. – Billard 1938: 429, figs 1–4. – Millard &<br />

Bouillon 1973: 51, fig. 7E–G. – Millard 1975: 215, fig.<br />

71F–H.<br />

Clytia linearis. – Hirohi<strong>to</strong> 1977: 14, fig. 4. – Cornelius 1982:<br />

84, fig. 12, synonymy. – Rees & Vervoort 1987: 94. –<br />

Gibbons & Ryland 1989: 404, fig. 22. – Calder 1991: 62,<br />

fig. 34, synonymy. – Ramil & Vervoort 1992: 238, fig.<br />

67b. – Hirohi<strong>to</strong> 1995: 65, fig. 18h–i. – Migot<strong>to</strong> 1996: 85,<br />

fig. 16a–b. – Medel & Vervoort 2000: 38, bibliography.<br />

– Watson 2000: 73, fig. 57D–E.<br />

Material examined:<br />

Kei Islands Expedition, harbour pier <strong>of</strong> Ambon, 28 Feb<br />

1922, 1 m, with gono<strong>the</strong>cae. – Kei Islands Expedition Stations:<br />

40, no gono<strong>the</strong>cae. – 104, no gono<strong>the</strong>cae. – MHNG<br />

INVE 25045, as C. longicyatha, Bay <strong>of</strong> Ambon, Moluccas,<br />

material described by Pictet (1893), fertile, on Pennaria and<br />

o<strong>the</strong>r hydroids, alcohol and slide material. – MHNG INVE<br />

31756, Ambon, coll. Pictet and Bedot 1890, colony with<br />

gono<strong>the</strong>cae. – MHNG INVE 31757, as Obelia bidentata,<br />

Ambon, on ascidians, several colonies, material described<br />

Fig. 20. Clytia linearis (Thornely, 1900); A–B, station 104;<br />

C, Kei Island Expedition, Ambon harbour. A. Hydro<strong>the</strong>ca.<br />

B. Hydro<strong>the</strong>cal opening seen from above. C. Gono<strong>the</strong>cae<br />

with medusae buds. – Scales: A–B = 0.2 mm; C = 0.5 mm.<br />

161<br />

by Pictet (1893), with gono<strong>the</strong>cae. – MHNG INVE 25040, as<br />

Clytia serrulata, Ambon, material <strong>of</strong> Pictet (1893), slide and<br />

alcohol material.<br />

Description<br />

Colonies erect, up <strong>to</strong> 1 cm high, branched, stem<br />

usually monosiphonic or rarely sparingly polysiphonic.<br />

Perisarc with short annulated stretches,<br />

especially at origin <strong>of</strong> side-branches or hydro<strong>the</strong>cal<br />

pedicels, o<strong>the</strong>rwise smooth; branches<br />

originate at acute angle.<br />

Hydro<strong>the</strong>cae on pedicels formed by short<br />

side-branches, <strong>the</strong>se pedicels usually annulated<br />

over larger part. Hydro<strong>the</strong>ca deep, depth 0.75–<br />

1.0 mm, diameter about 0.35 mm, cylindrical,<br />

tapering at base, periderm thin and <strong>of</strong>ten folded<br />

or damaged in preserved material; diaphragm<br />

thin. Margin <strong>of</strong> hydro<strong>the</strong>ca with 10–12 narrow<br />

cusps, between <strong>the</strong>m rounded embayments. Each<br />

cusp coincides with a sharp longitudinal inwardfold<br />

that is about 4 times as long as <strong>the</strong> cusp,<br />

becoming gradually shallower proximally. The<br />

folds are as narrow as <strong>the</strong> cusps and keel-like, <strong>the</strong><br />

periderm is slightly thickened. This produces a<br />

distinct striation pattern along <strong>the</strong> hydro<strong>the</strong>ca<br />

(Fig. 20A).<br />

Gono<strong>the</strong>cae on stem, singly or in pairs, clubshaped,<br />

up <strong>to</strong> 1.2 mm long, maximal diameter 0.4<br />

mm, end truncated, with a more or less distinct<br />

neck, pedicel annulated. Blas<strong>to</strong>style with one or<br />

two rows <strong>of</strong> medusae buds. Medusae with hemispherical<br />

bell and four marginal bulbs.<br />

Remarks<br />

Clytia linearis and its extensive synonymy have<br />

been discussed repeatedly, e.g., by Hirohi<strong>to</strong><br />

(1977), Cornelius (1982), and Calder (1991).<br />

Re-examination <strong>of</strong> material described by Pictet<br />

(1893) as C. longicyatha clearly showed that it<br />

is indistinguishable from C. linearis (Thornely,<br />

1900) as it is conceived <strong>to</strong>day (e.g., Cornelius<br />

1982, Calder 1991). Obelia longicyatha Allman,<br />

1877 is insufficiently known and Cornelius<br />

(1975a) considered it <strong>to</strong> be conspecific with O.<br />

bidentata.<br />

Also at least some <strong>of</strong> <strong>the</strong> material identified<br />

by Pictet as O. bidentata clearly belongs <strong>to</strong> C.<br />

linearis. Pictet’s sample was re-examined for this<br />

study and it does not match <strong>the</strong> figure given by


162<br />

Pictet (1893: pl. 1 fig. 21), which evidently is O.<br />

bidentata. Because Pictet reports his colony as<br />

growing on ascidians (“sur une Clavellina”) and<br />

<strong>the</strong>se animals are still present in <strong>the</strong> sample, a<br />

later confusion <strong>of</strong> samples can be excluded with<br />

relative certainty. There remains <strong>the</strong> possibility<br />

that Pictet examined a single colony no longer<br />

present in <strong>the</strong> sample. This seems plausible because<br />

all remaining colonies on <strong>the</strong> ascidians are<br />

without gono<strong>the</strong>cae, while Pictet (1893) figured<br />

a colony having a gono<strong>the</strong>ca containing medusae<br />

with numerous tentacles. But Pictet mentions<br />

longitudinal striae on his hydro<strong>the</strong>cae, which is<br />

ra<strong>the</strong>r typical for C. linearis, but not O. bidentata.<br />

All colonies growing on <strong>the</strong> ascidians are clearly<br />

C. linearis. The jar also contains one separate<br />

colony, which was originally probably not growing<br />

on <strong>the</strong> ascidians. This colony has gono<strong>the</strong>cae<br />

with typical Clytia medusae and it is also indistinguishable<br />

from C. linearis.<br />

The material identified by Pictet (1893) as<br />

Clytia serrulata (Bale, 1888) evidently contains<br />

at least three species. One <strong>of</strong> <strong>the</strong>m is clearly<br />

attributable <strong>to</strong> C. linearis. It has mostly s<strong>to</strong>lonal<br />

gono<strong>the</strong>cae that produce four-tentacled medusae.<br />

Some <strong>of</strong> <strong>the</strong> shoots growing on <strong>the</strong> same<br />

blade <strong>of</strong> sea grass belong <strong>to</strong> a different species;<br />

<strong>the</strong>ir hydro<strong>the</strong>cae are only half <strong>the</strong> size <strong>of</strong> C.<br />

linearis and <strong>the</strong> margin is like in Obelia bidentata<br />

(see below). A third, separate colony on a brown<br />

alga corresponds <strong>to</strong> Pictet’s figure 24. The cusps<br />

<strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca are <strong>of</strong>ten – but not always –<br />

asymmetric triangles and <strong>the</strong> colony appears indistinguishable<br />

from Clytia gracilis (Sars, 1850).<br />

Campanularia serrulata Bale, 1888 must be regarded<br />

as unrecognizable because it was based<br />

on infertile material. Cornelius (1982) synonymized<br />

it with C. hemisphaerica.<br />

Clytia linearis has previously been recorded<br />

in Indonesian waters by Billard (1938, as Clytia<br />

gravieri).<br />

Distribution<br />

Tropical and subtropical waters around <strong>the</strong><br />

world (Medel & Vervoort 2000). Type locality:<br />

Blanche Bay, New Britain, Papua New Guinea.<br />

Clytia trigona Pictet, 1893<br />

Fig. 21.<br />

P. SCHUCHERT<br />

Fig. 21. Clytia trigona Pictet, 1893; after slide preparation <strong>of</strong><br />

type material. A. Hydro<strong>the</strong>ca; note that <strong>the</strong> calyx is somewhat<br />

compressed. B. Part <strong>of</strong> stem showing typical arrangement<br />

<strong>of</strong> gono<strong>the</strong>cae in sets <strong>of</strong> three. C. Gono<strong>the</strong>cae with<br />

medusae buds. – Scales: A, C = 0.2 mm; B = 0.5 mm.<br />

Clytia trigona Pictet, 1893: 33, pl. 2 figs 28–29.<br />

Type material examined:<br />

MHNG INVE 25043, slide and alcohol material, alcohol<br />

material badly preserved.<br />

Diagnosis<br />

Like Clytia linearis (Thornely, 1900), but 2–3<br />

gono<strong>the</strong>cae grouped <strong>to</strong>ge<strong>the</strong>r, gono<strong>the</strong>cae 0.8–<br />

0.9 mm long, hydro<strong>the</strong>ca depth 0.5–0.7 mm.<br />

Remarks<br />

Clytia trigona closely resembles C. linearis and it<br />

is quite possible that <strong>the</strong>y are conspecific. Clytia<br />

trigona is here kept separate on account <strong>of</strong> <strong>the</strong><br />

gono<strong>the</strong>cae, which develop along <strong>the</strong> stem in<br />

groups <strong>of</strong> two or three; a few are also solitary. I


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

have never seen C. linearis with groups <strong>of</strong> more<br />

than 2 gono<strong>the</strong>cae. Additionally, <strong>the</strong> hydro<strong>the</strong>cae<br />

were significantly shorter than in specimens <strong>of</strong> C.<br />

linearis <strong>of</strong> <strong>the</strong> Bay <strong>of</strong> Ambon. If new material<br />

reveals intermediate forms, so that in C. linearis<br />

groups <strong>of</strong> up <strong>to</strong> three gono<strong>the</strong>cae can occur<br />

besides solitary ones, <strong>the</strong> younger C. linearis<br />

(Thornely, 1900) should be synonymized with<br />

Clytia trigona Pictet, 1893. This would be somewhat<br />

awkward, as a widely known and used<br />

name would be replaced by a virtually unknown<br />

one.<br />

Distribution<br />

Known from its type locality only: Bay <strong>of</strong> Ambon,<br />

Moluccas, Indonesia.<br />

Fig. 22. Clytia arborescens Pictet, 1893; after type material.<br />

A. Hydro<strong>the</strong>ca in oblique view. B. Monosiphonic part with<br />

gono<strong>the</strong>ca and hydro<strong>the</strong>ca. – Scale: 0.2 mm.<br />

163<br />

Clytia arborescens Pictet, 1893<br />

Fig. 22.<br />

Clytia arborescens Pictet, 1893: 34, pl. 2: figs 30–31. –<br />

Billard 1933: 8, fig. 2. – Millard & Bouillon 1973: 50,<br />

fig. 7A-D. – Medel & Vervoort 2000: 30, figs 7–8,<br />

bibliography.<br />

Laomedea arborescens. – Leloup 1937: 20, fig. 10.<br />

Type material examined:<br />

MHNG INVE 25044, alcohol and slide preparation, growing<br />

on stem <strong>of</strong> tubularid hydroid.<br />

O<strong>the</strong>r material examined:<br />

Kei Islands Expedition station 95, Sunda Strait, one 3 cm<br />

colony highly polysiphonic, without gono<strong>the</strong>cae, identification<br />

uncertain.<br />

Description<br />

Colony erect, up <strong>to</strong> 2 cm high, in same colony<br />

monosiphonic or highly polysiphonic stems, up<br />

<strong>to</strong> 20 tubes per polysiphonic stem, stem branching,<br />

branches also polysiphonic, thinning <strong>to</strong><br />

monosiphonic. Perisarc with short annulated<br />

stretches, especially at origin <strong>of</strong> side-branches or<br />

hydro<strong>the</strong>cal pedicels, o<strong>the</strong>rwise smooth, monosiphonic<br />

branches originate at acute angles.<br />

Hydro<strong>the</strong>cae on pedicels formed by short<br />

side-branches, <strong>the</strong>se usually almost entirely annulated.<br />

Hydro<strong>the</strong>ca conical, about 0.45–0.55<br />

mm deep, diameter 0.25–0.3 mm, with about 12–<br />

14 sinusoid cusps, <strong>the</strong>se about 20 µm high, symmetric,<br />

embayments between <strong>the</strong>m rounded.<br />

Each cusp coincides with a longitudinal inwardfold<br />

that is about 3 times as long as <strong>the</strong> cusp,<br />

becoming gradually shallower downwards. The<br />

folds produce a striation pattern originating lateral<br />

<strong>to</strong> <strong>the</strong> cusps (Fig. 22A–B). A thin diaphragm<br />

near base <strong>of</strong> hydro<strong>the</strong>ca, slightly oblique or horizontal.<br />

Gono<strong>the</strong>cae borne singly on stem, usually<br />

next <strong>to</strong> a hydro<strong>the</strong>cal pedicel. Gono<strong>the</strong>ca about<br />

0.8–1.2 mm, club-shaped, with flat distal end,<br />

without neck, diameter in middle <strong>of</strong> gono<strong>the</strong>ca<br />

about 0.25 mm, at end 0.18 mm. Blas<strong>to</strong>style in<br />

gono<strong>the</strong>ca forming a single row <strong>of</strong> up <strong>to</strong> 6<br />

medusae buds. Medusae with hemispherical bell<br />

and four bulbs.<br />

Remarks<br />

With its inward folds along <strong>the</strong> hydro<strong>the</strong>ca, Clytia<br />

arborescens somewhat resembles C. linearis,<br />

but it can be distinguished from <strong>the</strong> latter by its


164<br />

highly polysiphonic stem (although also monosiphonic<br />

ones occur in <strong>the</strong> same colony), <strong>the</strong><br />

shorter hydro<strong>the</strong>cae, and <strong>the</strong> broad, rounded<br />

cusps. Clytia linearis typically has pointed cusps<br />

and <strong>the</strong> longitudinal inward-fold are very narrow,<br />

giving a much more distinct longitudinal<br />

striation (see Fig. 20). Recently, Medel & Vervoort<br />

(2000) assigned material from Madeira <strong>to</strong><br />

this species. Their material closely resembles <strong>the</strong><br />

Pacific material, but has more pointed cusps<br />

which are apparently inclined <strong>to</strong> one side, and <strong>the</strong><br />

gono<strong>the</strong>ca has a slight neck formation and lacks<br />

an annulated pedicel. Moreover, Medel & Vervoort<br />

do not mention longitudinal folds <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>cae in <strong>the</strong>ir material.<br />

Distribution<br />

Indonesia, Vietnam, Seychelles, Gulf <strong>of</strong> Suez,<br />

Gulf <strong>of</strong> Akaba, Madeira (after Medel & Vervoort<br />

2000). Type locality: Port <strong>of</strong> Ambon, Moluccas,<br />

Indonesia.<br />

Clytia gracilis (M. Sars, 1850)<br />

Fig. 23.<br />

Laomedea gracilis M. Sars, 1850: 138.<br />

Clytia gracilis. – Stechow & Müller 1923: 461. – Cornelius<br />

Fig. 23. Clytia gracilis (M. Sars, 1850); MHNG INVE<br />

25040. Hydro<strong>the</strong>ca and gono<strong>the</strong>cae. – Scale: 0.2 mm.<br />

P. SCHUCHERT<br />

& Östman 1986: 163. – Calder 1991: 54, fig. 31, synonymy.<br />

– Ramil & Vervoort 1992: 235, fig. 67a. –<br />

Cornelius 1995b: 246, fig. 56. – Hirohi<strong>to</strong> 1995: 63, fig.<br />

18c–g. – Migot<strong>to</strong> 1996: 81, fig. 15c. – Medel & Vervoort<br />

2000: 32, bibliography.<br />

In part Clytia serrulata. – Pictet 1893: 30, pl. 2: figs 24–25.<br />

Material examined :<br />

MHNG INVE 25040, as Clytia serrulata, Ambon, material<br />

<strong>of</strong> Pictet (1893), slides and alcohol material.<br />

Description<br />

Colony s<strong>to</strong>lonal or sparingly branched (1–3<br />

times), height up <strong>to</strong> 5 mm. Perisarc smooth with<br />

annulated stretches.<br />

Hydro<strong>the</strong>ca campanulate, depth 0.6 mm, diameter<br />

0.33 mm, perisarc thin, diaphragm at base<br />

thin but distinct, margin with 12 large, pointed<br />

teeth, separated by rounded embayments. The<br />

teeth are <strong>of</strong>ten asymmetric (tilted) with one side<br />

almost vertical and <strong>the</strong> o<strong>the</strong>r oblique. The margin<br />

in <strong>the</strong> embayments is slightly everted.<br />

Gono<strong>the</strong>cae arise on s<strong>to</strong>lons and stems, oblong<br />

barrel-shaped, at distal end an indistinct<br />

neck formation for <strong>the</strong> aperture. Blas<strong>to</strong>style produces<br />

medusae with a hemispherical bell and<br />

four bulbs.<br />

Remarks<br />

As discussed under C. linearis, part <strong>of</strong> <strong>the</strong> material<br />

described by Pictet (1893) as C. serrulata<br />

(Bale, 1888) can be assigned <strong>to</strong> C. gracilis, a fact<br />

already suspected by Calder (1991). The material<br />

matched ra<strong>the</strong>r well material from <strong>the</strong> North Atlantic<br />

(Schuchert 2001), only <strong>the</strong> hydro<strong>the</strong>cae are<br />

somewhat smaller and apparently not all cusps<br />

are asymmetric (tilted).<br />

Clytia gracilis has previously been reported<br />

for Indonesian waters by Stechow & Müller<br />

(1923).<br />

Distribution<br />

Circumglobal in temperate and tropical waters.<br />

Type locality: L<strong>of</strong>oten Islands, Norway.<br />

Obelia bidentata Clarke, 1875<br />

Fig. 24<br />

Obelia bidentata Clarke, 1875: 58, pl. 9: fig. 2. – Cornelius<br />

1975a: 260, fig. 2. – Cornelius 1982: 113, table 4,<br />

synonymy. – Gibbons & Ryland 1989: 405, fig. 23. –


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 24. Obelia bidentata Clarke, 1875; hydro<strong>the</strong>cae and<br />

gono<strong>the</strong>ca. – Scale: 0.2 mm.<br />

Calder 1991: 70, fig. 37, synonymy. – Ramil & Vervoort<br />

1992: 241, fig. 68a–b. – Cornelius 1995b: 292, fig. 68. –<br />

Migot<strong>to</strong> 1996: 87, fig. 16c. – Medel & Vervoort 2000:<br />

46, fig. 12, bibliography.<br />

Obelia bicuspidata Clarke, 1875: 58, pl. 9: fig. 1. – Fraser<br />

1944: 153, fig. 125. – Millard & Bouillon 1973: 56. –<br />

Millard 1975: 226, fig. 75C–D. – Hirohi<strong>to</strong> 1995: 71, fig.<br />

21a–b, pl. 5: fig. A.<br />

In part Obelia bidentata var. – Pictet 1893: 25, pl. 1: figs 20–<br />

21.<br />

Gonothyraea longicyatha Thornely, 1900: 454, pl. 44: fig.<br />

4–4a.<br />

Material examined :<br />

Kei Islands Expedition station 81, with gono<strong>the</strong>cae.<br />

Description<br />

Colonies erect, up <strong>to</strong> 4 cm high, arising from a<br />

tangled mass <strong>of</strong> s<strong>to</strong>lons anchoring <strong>the</strong> colony in<br />

<strong>the</strong> sediment. Main trunk forked several times,<br />

polysiphonic, thinning <strong>to</strong> monosiphonic, branching<br />

irregular, primarily in one plane. Short<br />

stretches <strong>of</strong> annulations alternating with long<br />

smooth regions <strong>of</strong> perisarc.<br />

Hydro<strong>the</strong>cae on short, annulated pedicels; hy-<br />

165<br />

dro<strong>the</strong>cae set relatively dense. Hydro<strong>the</strong>ca deep,<br />

conical, <strong>of</strong>ten slightly asymmetric in lower region<br />

through slightly bulging wall, depth 0.7–<br />

0.75 mm, diameter at opening 0.30–0.33 mm,<br />

diaphragm thin, may be oblique, calyx margin<br />

with about 12 bimucoronate cusps, embayments<br />

all U-shaped, embayments not or only slightly<br />

everted. Each cusp with two very pointed teeth,<br />

separated by a deep embayment, depth <strong>of</strong> this<br />

embayment about 2/3 <strong>of</strong> <strong>the</strong> intercusp embayments.<br />

There are no longitudinal lines along <strong>the</strong><br />

hydro<strong>the</strong>ca.<br />

Gono<strong>the</strong>cae borne singly along stem, comparatively<br />

small, length around 0.8 mm, with<br />

annulated pedicel, main body flattened, clubshaped<br />

in broad view, end truncated, without<br />

neck formation. Blas<strong>to</strong>style with medusa buds,<br />

most advanced with numerous short tentacles.<br />

Remarks<br />

The gono<strong>the</strong>cae seen in <strong>the</strong> present specimen <strong>of</strong><br />

O. bidentata were all flattened. Similarly compressed<br />

gono<strong>the</strong>cae were noted for this species<br />

by Hirohi<strong>to</strong> (1995) and Thornely (1900, as Gonothyraea<br />

longicyatha), although <strong>the</strong> latter attributed<br />

this <strong>to</strong> <strong>the</strong> fixation. Although this is a reasonable<br />

explanation, living Pacific material should<br />

be examined <strong>to</strong> confirm this. In <strong>the</strong> present specimen,<br />

<strong>the</strong> regularity <strong>of</strong> <strong>the</strong> compression, even in<br />

immature gono<strong>the</strong>cae, led me <strong>to</strong> suspect that this<br />

compression is a natural feature. Perhaps it is<br />

confined <strong>to</strong> some Pacific populations.<br />

The gono<strong>the</strong>cae <strong>of</strong> O. bidentata are mostly<br />

described as having no neck at <strong>the</strong>ir end, but<br />

Gibbons & Ryland (1989) and Cornelius (1995b)<br />

depict and describe specimens having a distinct<br />

neck with a much smaller diameter than <strong>the</strong> main<br />

body <strong>of</strong> <strong>the</strong> gono<strong>the</strong>cae, resembling gono<strong>the</strong>cae<br />

found in many o<strong>the</strong>r Obelia species.<br />

As discussed under C. linearis, material described<br />

by Pictet (1893) as O. bidentata is mostly<br />

referable <strong>to</strong> C. linearis, although <strong>the</strong> figures<br />

given by Pictet (1893) are clearly <strong>of</strong> O. bidentata.<br />

Distribution<br />

Circumglobal in temperate <strong>to</strong> tropical waters<br />

(Medel & Vervoort 2000). Type locality: Wharf<br />

piles <strong>of</strong> Greenport, Long Island, New York,<br />

USA.


166<br />

Fig. 25. Diphasia digitalis (Busk, 1852); station 72. A. Part<br />

<strong>of</strong> stem and hydrocladium. B. Gono<strong>the</strong>ca. – Scale: A–B = 0.5<br />

mm.<br />

Family Sertulariidae<br />

Diphasia digitalis (Busk, 1852)<br />

Fig. 25.<br />

Sertularia digitalis Busk, 1852: 393.<br />

Desmoscyphus longi<strong>the</strong>ca Allman, 1877: 26, pl. 14: figs 3–<br />

6. – Nutting 1904: 111.<br />

Desmoscyphus acanthocarpus Allman, 1888: 73, pl. 35: fig.<br />

2a–c. – Nutting 1904: 111.<br />

Nigellastrum digitale. – Mammen 1965: 57, fig. 89.<br />

Diphasia digitalis. – Nutting 1904: 110, pl. 30: figs 2–7. –<br />

Bale 1884: 101, pl. 9: figs 3–5. – Billard 1925b: 209. –<br />

Vervoort 1959: 254, fig. 22. – Vervoort 1968: 37, fig. 17.<br />

– Millard & Bouillon 1973: 67, fig. 9A. – Millard 1975:<br />

257, fig. 85E. – Watson 2000: 14, fig. 10A–B.<br />

Material examined:<br />

Kei Islands Expedition stations: 18, fertile. – 67. – 68. – 71,<br />

fertile. – 72, fertile. – 90, fertile. – 104. – 107, fertile. – 110.<br />

Description<br />

Colonies erect, pinnate, 3–6 cm high. Main stem<br />

mostly unbranched, occasionally branched, with<br />

two rows <strong>of</strong> hydro<strong>the</strong>cae. Hydrocladia alternate,<br />

somewhat irregular in distribution and length.<br />

Hydro<strong>the</strong>cae in opposite pairs, consecutive<br />

pairs mostly overlapping or very close. In lower<br />

P. SCHUCHERT<br />

region <strong>of</strong> <strong>the</strong> stem members <strong>of</strong> a pair <strong>of</strong> hydro<strong>the</strong>cae<br />

placed on lateral sides and not contiguous<br />

with one ano<strong>the</strong>r; in distal region and on hydrocladia<br />

members <strong>of</strong> a pair placed on anterior surface<br />

and contiguous with one ano<strong>the</strong>r, <strong>the</strong> two<br />

rows forming an angle that is much less than<br />

180°. Hydro<strong>the</strong>ca about 0.8 mm deep, 0.3 mm<br />

broad, adnate for ¾ <strong>to</strong> entire length, distal part<br />

curved slightly away, cross section rounded in<br />

basal part, distinctly pentagonal at distal end,<br />

with lateral longitudinal crease lines, sometimes<br />

also a short median crease line on abcauline wall<br />

beginning at margin <strong>of</strong> hydro<strong>the</strong>ca, margin un<strong>to</strong>o<strong>the</strong>d,<br />

on adcauline side a broad and deep<br />

emargination. No internal cusps or ridges. Operculum<br />

single, large, attached <strong>to</strong> adcauline rim <strong>of</strong><br />

hydro<strong>the</strong>ca.<br />

Gono<strong>the</strong>cae on stem, spindle shaped, 2 mm<br />

long, diameter 0.6 mm, with numerous short,<br />

s<strong>to</strong>ut spines in 10–12 rows, 10–12 spines per row.<br />

Hydranths without abcauline blind-sac.<br />

Remarks<br />

Almost all examined colonies had characteristic<br />

blackish pigment granules in <strong>the</strong> epidermis <strong>of</strong> <strong>the</strong><br />

coenosarc and <strong>the</strong> tissue covering <strong>the</strong> inside <strong>of</strong><br />

<strong>the</strong> hydro<strong>the</strong>ca. Bale (1884) described <strong>the</strong> colour<br />

<strong>of</strong> <strong>the</strong> colony as grey <strong>to</strong> almost black.<br />

Distribution<br />

Circumglobal in tropical and subtropical waters.<br />

Type locality: Prince <strong>of</strong> Wales Channel, Torres<br />

Strait, Australia, 16 m.<br />

Diphasia mutulata (Busk, 1852)<br />

Fig. 26.<br />

Sertularia mutulata Busk, 1852: 391.<br />

Diphasia mutulata. – Bale 1884: 101, pl. 9: figs 6–9. –<br />

Ritchie 1910a: 12, pl. 4: fig. 3. – Billard 1933: 16, fig. 6,<br />

pl. fig. 4. – Watson 2000: 12, fig. 9A–G.<br />

?Diphasia mutulata. – Thornely 1904: 118, pl. 2: fig. 6 [? =<br />

Diphasia thornelyi Ritchie, 1909].<br />

?Diphasia thornelyi Ritchie, 1909: 525. – Ritchie 1910a: 13,<br />

pl. 4: figs 4–5. – Jäderholm 1919: 16, pl. 4: figs 2–3. –<br />

Billard 1925b: 215, fig. 54.<br />

Diphasia thornelyi. – Jäderholm 1919: 16, pl. 4 figs 2–3.<br />

Nigelastrum mutulatum. – Stechow & Müller 1923: 468. –<br />

Mammen 1965: 56, fig. 88.<br />

Material examined:<br />

Kei Islands Expedition, Tual, Kei Islands, 1–2 m, 23 Mar


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 26. Diphasia mutulata (Busk, 1852); Tual, Kei Islands.<br />

A. Part <strong>of</strong> stem with long hydro<strong>the</strong>cae, transparent side view.<br />

B. Oblique view <strong>of</strong> part <strong>of</strong> stem, shown opaque. C. Short<br />

form <strong>of</strong> hydro<strong>the</strong>cae. D. Female gono<strong>the</strong>ca. – Scale: A–D =<br />

0.2 mm.<br />

1922, fertile female, on Aglaophenia cupressina Lamouroux,<br />

1816. – Kei Islands Expedition, Tual, Kei Islands, 2 m,<br />

21 Mar 1922, infertile, on Aglaophenia cupressina Lamouroux,<br />

1816, some stems with opposite and alternate hydro<strong>the</strong>cae.<br />

– Kei Islands Expedition station 67, infertile, on<br />

Monoserius pennarius (Linnaeus, 1758).<br />

Description<br />

Colonies forming simple stems without hydro-<br />

167<br />

cladia, rarely branched once, up <strong>to</strong> 1 cm high,<br />

occasionally with terminal s<strong>to</strong>lonization, nodes<br />

occasionally present. Hydrorhiza tubular, creeping<br />

on host hydroid.<br />

Hydro<strong>the</strong>cae normally opposite, occasionally<br />

in more distal part alternate, successive hydro<strong>the</strong>cae<br />

not overlapping in present material, <strong>the</strong><br />

opposite pairs placed on lateral sides <strong>of</strong> stem and<br />

not contiguous, <strong>the</strong> pair not or only slightly displaced<br />

<strong>to</strong>wards one side <strong>of</strong> stem. Hydro<strong>the</strong>ca<br />

at base somewhat rectangular in cross-section,<br />

distal half tubular, outer side rounded, without<br />

sharp edges, curved outward, abcauline length<br />

0.45–0.5 mm, diameter at opening 0.16–0.2 mm,<br />

adcauline side adnate for ¾ <strong>of</strong> length, some hydro<strong>the</strong>cae<br />

almost completely adnate. Abcauline<br />

wall <strong>of</strong> hydro<strong>the</strong>ca in about middle with a transverse<br />

intra<strong>the</strong>cal semicircular ridge, this ridge<br />

very variable between hydro<strong>the</strong>cae, may be absent.<br />

Adcauline margin <strong>of</strong> hydro<strong>the</strong>ca with a<br />

broad emargination; sometimes on each side <strong>of</strong><br />

hydro<strong>the</strong>ca near distal end a short, weak crease<br />

line. One large adcauline operculum.<br />

Gono<strong>the</strong>cae near base <strong>of</strong> stem, two per shoot<br />

in present material, egg-shaped, 0.8 mm long,<br />

0.55 mm diameter, aperture on distinct neck,<br />

distal half with up <strong>to</strong> 12 short, broad, spines<br />

directed <strong>to</strong>wards distal end <strong>of</strong> gono<strong>the</strong>ca.<br />

Remarks<br />

Watson (2000) examined material from nor<strong>the</strong>rn<br />

Australia and found that this population <strong>of</strong> Diphasia<br />

mutulata had colonies producing two distinguishable<br />

stem forms. Watson named <strong>the</strong>se<br />

two forms mutulata and heurteli morph. The<br />

heurteli morph had shorter, contiguous hydro<strong>the</strong>cae.<br />

Although <strong>the</strong>re were no intermediate<br />

forms, both stem types grew from <strong>the</strong> same<br />

s<strong>to</strong>lons. Watson <strong>the</strong>refore synonymized Diphasia<br />

mutulata and D. heurteli Billard, 1924. Although<br />

I think she might be correct, Billard’s<br />

(1924) first description <strong>of</strong> D. heurteli shows<br />

hydro<strong>the</strong>cae somewhat different from Watson’s<br />

heurteli morph. Billard’s figure (1924, fig. 2A)<br />

appears indistinguishable from <strong>the</strong> hydro<strong>the</strong>cae<br />

observed here (Fig. 26A). Billard (1924) based<br />

his description <strong>of</strong> D. heurteli on infertile material<br />

and only Millard (1975) found gono<strong>the</strong>cae in<br />

a population from <strong>the</strong> type locality. Millard’s


168<br />

gono<strong>the</strong>cae were triangular with a wide distal<br />

aperture, thus differing from <strong>the</strong> ones repeatedly<br />

observed in D. mutulata (Fig. 26D), which are<br />

egg-shaped and have <strong>the</strong>ir opening on a distinct<br />

neck. Watson (2000), assumed that Millard’s<br />

gono<strong>the</strong>cae were immature. Although possible,<br />

I somewhat doubt this, because Millard could<br />

identify <strong>the</strong> sex <strong>of</strong> her specimen and she had<br />

several gono<strong>the</strong>cae at hand. New fertile material<br />

from <strong>the</strong> type locality <strong>of</strong> D. heurteli must be<br />

examined before fur<strong>the</strong>r conclusions can be<br />

drawn. Therefore, following Millard (1975),<br />

Diphasia heurteli is here kept separate from<br />

D. mutulata, although <strong>the</strong>y could prove <strong>to</strong> be<br />

conspecific.<br />

The hydro<strong>the</strong>cae in <strong>the</strong> present material also<br />

showed some variation within <strong>the</strong> same stem<br />

(Fig. 26A, C), but two distinguishable morphs<br />

were not discernible.<br />

Thornely’s (1904) material identified as D.<br />

mutulata had alternate hydro<strong>the</strong>cae and Ritchie<br />

(1909) referred it <strong>to</strong> Diphasia thornelyi Ritchie,<br />

1909. The alternate hydro<strong>the</strong>cae seem <strong>to</strong> be <strong>the</strong><br />

only reliable diagnostic character <strong>to</strong> distinguish<br />

D. thornelyi from D. mutulata. However, Ritchie<br />

(1909) and Billard (1925b) mention that occasionally<br />

some hydro<strong>the</strong>cae can be paired in D.<br />

thornelyi. Jäderholm (1919) identified material<br />

from Japan as D. thornelyi despite that it had<br />

opposite hydro<strong>the</strong>cae throughout. In one <strong>of</strong> <strong>the</strong><br />

colonies examined for <strong>the</strong> present study, opposite<br />

and alternate arrangements occurred within <strong>the</strong><br />

same stem. I <strong>the</strong>refore suspect that D. thornelyi is<br />

only a form <strong>of</strong> D. mutulata. I refrained from<br />

synonymizing <strong>the</strong>m definitively because I have<br />

not seen <strong>the</strong> type material <strong>of</strong> D. thornelyi.<br />

Besides <strong>the</strong> two mentioned species, <strong>the</strong>re are<br />

at least seven more Diphasia species known<br />

from Indonesia: D. cauloa<strong>the</strong>ca Billard, 1920b;<br />

D. cristata Billard, 1920b; D. densa (Stechow,<br />

1923); D. minuta Billard, 1920b; D. orientalis<br />

Billard, 1920b; Diphasia mutulata; and D. scalariformis.<br />

The latter two species were also found<br />

in <strong>the</strong> present material.<br />

Diphasia mutulata is easily distinguishable<br />

from D. scalariformis. Diphasia scalariformis<br />

has overlapping, quite straight, rectangular hydro<strong>the</strong>cae<br />

with sharp edges that are distinctly<br />

displaced <strong>to</strong>wards one side <strong>of</strong> <strong>the</strong> branch surface.<br />

D. mutulata has its hydro<strong>the</strong>cae on <strong>the</strong> lateral<br />

P. SCHUCHERT<br />

sides <strong>of</strong> <strong>the</strong> branch, <strong>the</strong>y are mostly not contiguous,<br />

<strong>the</strong>y are more curved and <strong>the</strong>ir distal end is<br />

tubular without sharp edges.<br />

Diphasia digitalis is distinguishable from<br />

D. mutulata through its pentagonal cross-section<br />

<strong>of</strong> <strong>the</strong> distal part <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cae, <strong>the</strong> much<br />

larger hydro<strong>the</strong>cae, <strong>the</strong> absence <strong>of</strong> intra<strong>the</strong>cal<br />

processes, <strong>the</strong> branched colonies, and <strong>the</strong> larger<br />

gono<strong>the</strong>cae with numerous spines.<br />

Diphasia cauloa<strong>the</strong>ca forms large, pinnate<br />

colonies and has stems without hydro<strong>the</strong>cae. Diphasia<br />

cristata is unbranched and has a characteristic<br />

pattern <strong>of</strong> sharp ridges on its hydro<strong>the</strong>cae<br />

and also on <strong>the</strong> rear side <strong>of</strong> <strong>the</strong> stem. Diphasia<br />

orientalis resembles D. mutulata, but its female<br />

gono<strong>the</strong>cae have complicated processes and<br />

<strong>the</strong> hydro<strong>the</strong>ca has a median ridge flanked by two<br />

channel-like concavities <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cal wall.<br />

Diphasia densa is not sufficiently well known.<br />

Diphasia minuta forms small (5 mm) shoots and<br />

has smooth gono<strong>the</strong>cae. O<strong>the</strong>rwise it closely resembles<br />

D. mutulata and it may in fact be only a<br />

form <strong>of</strong> this species<br />

Distribution<br />

Nor<strong>the</strong>rn Australia, Indonesia, Andaman Sea,<br />

Red Sea. Type locality: Prince <strong>of</strong> Wales Channel,<br />

Torres Strait, Australia, 16 m.<br />

Diphasia scalariformis Kirkpatrick, 1890<br />

Fig. 27.<br />

Diphasia scalariformis Kirkpatrick, 1890: 609, pl. 15: fig. 3.<br />

– Jäderholm 1903: 287. – Billard 1925b: 216, figs 55–56.<br />

Nigellastrum mutulatum. – Stechow & Müller 1823: 468. –<br />

Billard 1925b: 216, footnote.<br />

Material examined:<br />

Kei Islands Expedetion stations: 15. – 16. – 18. – 26. – 30. –<br />

Kei Island Expedition, Sulawesi, Ujungpandang, Samalon<br />

Island, 5 m, 28 Jun 1922; colonies <strong>of</strong> all stations with<br />

gono<strong>the</strong>cae and growing on Ly<strong>to</strong>carpia angulosa (Lamarck,<br />

1816).<br />

Description<br />

Colonies growing on Ly<strong>to</strong>carpia angulosa,<br />

shoots straight, without hydrocladia or with some<br />

irregular side-branches, 2–5 cm high.<br />

Hydro<strong>the</strong>cae in opposite pairs, each pair contiguous<br />

on one side <strong>of</strong> shoot, separate on rear,<br />

thus hydro<strong>the</strong>cae shifted <strong>to</strong> anterior side <strong>of</strong>


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 27. Diphasia scalariformis Kirkpatrick, 1890; A–C, E,<br />

station 30; D, station 18. A. Two pairs <strong>of</strong> hydro<strong>the</strong>cae in<br />

anterior view, shown opaque. B. Hydro<strong>the</strong>cae in posterior<br />

view, shown transparent. C. Hydrocladium with female<br />

gono<strong>the</strong>cae having short spines, side view. D. Variant with<br />

longer and more recurved hydro<strong>the</strong>cae, left hydro<strong>the</strong>ca in<br />

side view. E. Female gono<strong>the</strong>ca with long spines. – Scale:<br />

A–E = 0.2 mm.<br />

169<br />

hydrocladium, <strong>the</strong> two rows <strong>of</strong> hydro<strong>the</strong>cae<br />

forming an angle smaller <strong>the</strong>n 180°. Successive<br />

hydro<strong>the</strong>cae overlapping slightly. Hydro<strong>the</strong>ca<br />

quadrangular with sharp edges, distal half<br />

slightly curved outward, basal part straight, anterior<br />

and lateral sides <strong>of</strong> hydro<strong>the</strong>ca nearly plane,<br />

abcauline side 0.5–0.6 mm, adcauline side 0.35–<br />

0.45 mm, adcauline side adnate for most <strong>of</strong> its<br />

length, opening <strong>of</strong> hydro<strong>the</strong>ca oblique, lateral<br />

margin S-shaped, anterior margin slightly depressed<br />

and thus forming two lateral marginal<br />

cusps, edges <strong>of</strong> hydro<strong>the</strong>ca reinforced by perisarc<br />

thickenings, on abcauline side slightly above<br />

middle an intra<strong>the</strong>cal shelf or flap projecting<br />

upwards in<strong>to</strong> hydro<strong>the</strong>ca. Stem and branches<br />

without nodes.<br />

Gono<strong>the</strong>cae in a single row along anterior side<br />

<strong>of</strong> stem, very numerous, arising below hydro<strong>the</strong>cal<br />

pairs. Gono<strong>the</strong>ca egg-shaped, 0.45 mm<br />

long, diameter 0.3 mm, lateral and abcauline side<br />

with up <strong>to</strong> 12 spines, some colonies have blunt<br />

and shallow spines, some pointed and long ones,<br />

aperture <strong>of</strong> gono<strong>the</strong>ca at distal end on short neck.<br />

Female gono<strong>the</strong>cae with more than 50 small<br />

eggs, diameter <strong>of</strong> egg about 25 µm. Hydranths<br />

small, about 12 tentacles, without abcauline<br />

blind-sac.<br />

Remarks<br />

The tightly set quadrangular hydro<strong>the</strong>cae and <strong>the</strong><br />

small gono<strong>the</strong>cae make this species immediately<br />

recognizable. Fur<strong>the</strong>rmore, in Indonesia this species<br />

only grows on <strong>the</strong> hydroid Ly<strong>to</strong>carpia<br />

angulosa (Lamarck, 1816). Jäderholm reported<br />

this species from sou<strong>the</strong>rn Japan, growing on L.<br />

secundus (Kirchenpauer, 1872), a subjective<br />

synonym <strong>of</strong> Monoserius pennarius (Linnaeus,<br />

1758) (see Ritchie 1910a).<br />

Diphasia digitalis is readily distinguishable<br />

from D. scalariformis through its pentagonal<br />

cross-section <strong>of</strong> <strong>the</strong> distal part <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cae,<br />

<strong>the</strong> much larger hydro<strong>the</strong>cae, <strong>the</strong> absence<br />

<strong>of</strong> intra<strong>the</strong>cal processes, <strong>the</strong> pinnately branched<br />

colonies, and <strong>the</strong> larger gono<strong>the</strong>cae with numerous<br />

spines. The differences from D. mutulata are<br />

given under <strong>the</strong> latter species.<br />

Billard (1925b) found that <strong>the</strong> male gono<strong>the</strong>cae<br />

<strong>of</strong> D. scalariformis has more pointed<br />

spines. Perhaps this correlation was due <strong>to</strong> con-


170<br />

tingency because <strong>of</strong> <strong>the</strong> small number <strong>of</strong> specimens.<br />

In <strong>the</strong> present material also female gono<strong>the</strong>cae<br />

with very pointed spines could be found<br />

(Fig. 27E).<br />

Distribution<br />

Torres Strait, Indonesia, sou<strong>the</strong>rn Japan. Type<br />

locality: Torres Strait, Australia.<br />

Dynamena crisioides Lamouroux, 1824<br />

Fig. 28.<br />

Dynamena crisioides Lamouroux, 1824: 613, pl. 90: figs<br />

11–12. – Billard 1925b: 181, figs 36–37, pl. 7: fig. 21. –<br />

Vervoort, 1941: 209. – Vervoort 1959: 260, fig. 27a–b. –<br />

Vervoort 1968: 38, fig. 18. – Millard & Bouillon 1974:<br />

32, fig. 6D. – Millard 1975: 263, fig. 87A–F. – Rees &<br />

Vervoort 1987: 103. – Gibbons & Ryland 1989: 410, fig.<br />

28. – Calder 1991: 89, figs 47–48, synonymy. – Hirohi<strong>to</strong><br />

1995: 170, fig. 55a–b. – Migot<strong>to</strong> 1996: 60, fig. 11e–g. –<br />

Medel & Vervoort 1998: 21, synonymy and bibliography.<br />

Dynamena tubuliformis Marktanner-Turneretscher, 1890:<br />

238, pl. 4: fig. 10.<br />

Sertularia Vegae. – Pictet 1893: 44, pl. 2: figs 37–38 [not<br />

Thuiaria vegae Thompson, 1887].<br />

Not Sertularia tubuliformis. – Broch 1918: 132, fig. 71 [= S.<br />

similis (Clarke, 1876)].<br />

?Pasy<strong>the</strong>a griffini Hargitt, 1924: 498, pl. 6 fig. 25.<br />

Sertularia crisioides var. gigantea Billard, 1925a: 651. –<br />

Billard 1925b: 186, pl. 8: fig. 24. – Leloup 1930b: 7, figs<br />

4–5, pl. 1: fig. 2. – Vervoort 1941: 210, fig. 4.<br />

Sertularia crisioides var. alternata Billard, 1925a: 652. –<br />

Billard 1925b: 187, fig. 39, pl. 7: fig. 22. – Vervoort,<br />

1941: 213.<br />

Sertularia crisioides var. peculiaris Billard, 1925b: 185, fig.<br />

38.<br />

Material examined:<br />

Kei Island Expedition, Banda Islands, Waling, 20 m, 11 Jun<br />

1922 – Kei Islands Expedition, Ujungpandang, Samalon<br />

Island 35 m, 28 Jun 1922 – Kei Islands Expedition, Kei<br />

Islands, Tual, 1–2 m, 23 Jun 1922, with gono<strong>the</strong>cae. –<br />

MHNG INVE 31974, Sertularia vegae, Ambon, material <strong>of</strong><br />

Pictet (1893).<br />

Description<br />

Colonies erect, monosiphonic, 2–5 cm in present<br />

material, pinnate with alternate hydrocladia.<br />

Stem unbranched, zigzag, with short basal<br />

a<strong>the</strong>cate part terminated by a transverse node.<br />

Nodes on stem irregular, mostly indistinct. Stem<br />

with two lateral rows <strong>of</strong> alternate apophyses for<br />

<strong>the</strong> hydrocladia, apophyses long, delimited by<br />

node from hydrocladium. Hydro<strong>the</strong>cae <strong>of</strong> stem<br />

P. SCHUCHERT<br />

Fig. 28. Dynamena crisioides Lamouroux, 1824; Banda<br />

Islands. A. Silhouette <strong>of</strong> a shoot. B. Part <strong>of</strong> stem and<br />

hydrocladia. C. Group <strong>of</strong> hydro<strong>the</strong>cae from hydrocladium.<br />

D. Gono<strong>the</strong>ca in side view. – Scales: A = 1 cm; B, D = 0.5<br />

mm; C = 0.2 mm.<br />

in two lateral rows; one hydro<strong>the</strong>ca in axil <strong>of</strong><br />

apophysis and a variable number (2–3) <strong>of</strong> subopposite<br />

hydro<strong>the</strong>cae between two apophyses.<br />

Hydrocladia unbranched, divided by straight<br />

nodes in<strong>to</strong> internodes which bear a variable num-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

ber (normally 2–3) <strong>of</strong> subopposite pairs <strong>of</strong> hydro<strong>the</strong>cae.<br />

The two rows <strong>of</strong> hydro<strong>the</strong>cae in plane<br />

<strong>of</strong> ramification <strong>of</strong> shoot. Members <strong>of</strong> hydro<strong>the</strong>cal<br />

pairs not contiguous, consecutive hydro<strong>the</strong>cae <strong>of</strong><br />

an internode mostly overlapping and forming<br />

groups.<br />

Hydro<strong>the</strong>ca tubular, adnate for ¾ <strong>to</strong> 9/10 <strong>of</strong><br />

adcauline length, <strong>the</strong>n bent outwards, 0.40–0.45<br />

mm in abcauline height and 0.10–0.12 mm in<br />

marginal diameter; opening-plane parallel <strong>to</strong> axis<br />

or nearly so, margin with two broad and triangular<br />

lateral teeth slightly below middle and one<br />

smaller adcauline <strong>to</strong>oth. Below abcauline margin<br />

a perisarc thickening. Operculum composed <strong>of</strong><br />

two valves, upper valve like a gabled ro<strong>of</strong>.<br />

Hydranth with 10–12 tentacles, without abcauline<br />

blind-sac.<br />

Gono<strong>the</strong>cae arise on stem below hydro<strong>the</strong>cae,<br />

ovate, 1.4 mm long, thickest part 0.8 mm diameter,<br />

wall irregularly undulated, opening on a<br />

slightly curved and flaring neck, neck not in<br />

middle and thus rendering gono<strong>the</strong>cae bilateralsymmetric.<br />

Remarks<br />

This species can show considerable variation.<br />

The extent <strong>of</strong> variation is well described in Millard<br />

(1975). Billard (1925a, 1925b) named some<br />

<strong>of</strong> <strong>the</strong>se variants, but later authors, especially<br />

Millard (1975), found <strong>the</strong>m <strong>to</strong> be connected<br />

by all possible intermediate forms. The present<br />

samples conformed with Billard’s normal form.<br />

Pictet’s (1893) material <strong>of</strong> Sertularia vegae belongs<br />

<strong>to</strong> S. crisioides. It is a form with more<br />

distant hydro<strong>the</strong>cae.<br />

Re-examination <strong>of</strong> <strong>the</strong> type material <strong>of</strong> Pasy<strong>the</strong>a<br />

griffini Hargitt, 1924 (USNM 42656)<br />

showed it <strong>to</strong> closely resemble D. crisioides, but<br />

<strong>the</strong> few hydro<strong>the</strong>cae are apparently arranged in<br />

opposite pairs. The gono<strong>the</strong>cae are identical <strong>to</strong><br />

<strong>the</strong> ones described here for D. crisioides. Although<br />

Hargitt’s species likely belongs <strong>to</strong> D.<br />

crisioides, <strong>the</strong> available type material could not<br />

provide conclusive evidence.<br />

There exist at least five more Dynamena species<br />

in Indonesian waters: Dynamena moluccana<br />

(Pictet, 1893), 1858; D. fissa Thornely, 1904; D.<br />

heterodonta (Jarvis, 1922); Dynamena mer<strong>to</strong>ni<br />

(Stechow, 1923); and D. quadridenta (Ellis &<br />

171<br />

Solander, 1786). Dynamena crisioides is readily<br />

distinguished from all <strong>of</strong> <strong>the</strong>m through its subopposite<br />

hydro<strong>the</strong>cae. In <strong>the</strong> o<strong>the</strong>r species <strong>the</strong>y<br />

are always strictly opposite. Additional descriptions<br />

<strong>of</strong> <strong>the</strong> o<strong>the</strong>r Indonesian species <strong>of</strong> Dynamena<br />

can be found in Billard (1925b), Millard<br />

(1975), and Watson (2000).<br />

Distribution<br />

Circumglobal in tropical and subtropical waters.<br />

Type locality: Moluccas, Indonesia.<br />

Dynamena moluccana (Pictet, 1893)<br />

Fig. 29.<br />

Sertularia divergens. – Bale, 1884: 81, pl. 5: fig. 3, pl. 19:<br />

fig. 16. [Not Dynamena divergens Lamouroux, 1816]<br />

Sertularia moluccana Pictet, 1893: 50, pl. 2: figs 42–43. –<br />

Billard 1925b: 189.<br />

?Sertularia complexa. – Pictet 1893: 47, pl. 2: figs 39–40. –<br />

Billard 1925b: 189. [Not Sertularia complexa Clarke,<br />

1879, = Dynamena disticha (Bosc, 1802)]<br />

Desmoscyphus palkensis Thornely, 1904: 119, pl. 2: fig.<br />

7A–B.<br />

Dynamena cornicina. – Billard 1925b: 188, fig. 40, pl. 7: fig.<br />

23. – Billard 1933: 14, fig. 5, pl. fig. 3. – Vervoort 1941:<br />

206, fig. 3. – Millard & Bouillon 1973: 68. – Cooke<br />

1975: 94, pl. 3: figs 3–4. – Millard 1975: 261, fig. 86A–<br />

E. – Gibbons & Ryland 1989: 408, fig. 27. – Vervoort<br />

1993: 108.<br />

Not Dynamena cornicina McCrady, 1859: 204. – Genzano<br />

1992: 144, figs 5–6. – Hirohi<strong>to</strong> 1995: 167, fig. 54a–g.<br />

[All = Dynamena disticha (Bosc, 1802)]<br />

Sertularia cornicina var. pinnata Jarvis, 1922: 339.<br />

Dynamena exigua. – Hirohi<strong>to</strong> 1995: 172, fig. 55c–g. [Not<br />

Sertularia exigua Allman, 1877, = D. disticha]<br />

Type material examined:<br />

MHNG INVE 25031, holotype <strong>of</strong> Sertularia moluccana,<br />

slides, without gono<strong>the</strong>ca.<br />

O<strong>the</strong>r material examined:<br />

MNHG INVE 25033, as Sertularia complexa, slide and<br />

alcohol material <strong>of</strong> Pictet (1893), with gono<strong>the</strong>cae. – Kei<br />

Islands Expedition, Neira Island, Banda Islands, 1 Jun 1922,<br />

20 m, sand bot<strong>to</strong>m, 5 damaged plumes, no gono<strong>the</strong>cae. – For<br />

comparisons: Dynamena disticha, MHNG INVE 29754 and<br />

27132, both from Cala Murada, Mallorca, 1–2 m, coll. 1999<br />

and 2000, with gono<strong>the</strong>cae. – Dynamena pumila, MHNG<br />

INVE 29033, Sandgerdi, Iceland (see Schuchert 2001).<br />

Description<br />

Colonies erect, 1–3 cm high (reportedly up <strong>to</strong> 6<br />

cm), loosely pinnate. S<strong>to</strong>lons creeping, tubular.


172<br />

Fig. 29. Dynamena moluccana (Pictet, 1893); A–B, after<br />

holotype; C, after MHNG INVE 25033, unbranched form.<br />

A. Stem segments and basal parts <strong>of</strong> hydrocladia. B. Pair <strong>of</strong><br />

hydro<strong>the</strong>cae from hydrocladium. C. Gono<strong>the</strong>ca. – Scales: A<br />

= 0.5 mm; B–C = 0.2 mm.<br />

Stems zigzag, divided by transverse nodes, segment<br />

ends bulging. Each stem segment with three<br />

hydro<strong>the</strong>cae and an apophysis for <strong>the</strong> hydrocladium;<br />

apophysis short, near lower end <strong>of</strong> segment,<br />

in its axil a hydro<strong>the</strong>ca, this hydro<strong>the</strong>ca<br />

free for most <strong>of</strong> its length and strongly recurved,<br />

P. SCHUCHERT<br />

<strong>the</strong> two remaining hydro<strong>the</strong>cae more distal and<br />

subopposite.<br />

Hydrocladia alternate, first segment without<br />

hydro<strong>the</strong>ca, with proximal transverse node and a<br />

distal, very oblique hinge-joint node, nodes after<br />

first hydro<strong>the</strong>cal pair transverse or slightly oblique.<br />

Hydro<strong>the</strong>cae in two lateral rows, somewhat<br />

displaced <strong>to</strong> one side <strong>of</strong> hydrocladium,<br />

strictly opposite, each pair contiguous on anterior<br />

side, separate on rear side, consecutive hydro<strong>the</strong>cae<br />

<strong>of</strong> one row well separated.<br />

Hydro<strong>the</strong>ca tubular, adnate for 2/3 <strong>of</strong> its<br />

length, adcauline side sharply bent where becoming<br />

free, abcauline side nearly straight, length<br />

0.4–0.45 mm, adcauline side about 0.7 mm, diameter<br />

<strong>of</strong> opening 0.18–0.2 mm, angle <strong>of</strong> opening-plane<br />

nearly parallel <strong>to</strong> segment axis or<br />

slightly tilted <strong>to</strong>wards above, margin with two<br />

lateral cusps. Perisarc <strong>of</strong> hydro<strong>the</strong>ca, especially<br />

distal end, thin, very delicate and <strong>of</strong>ten damaged;<br />

lateral cusps frequently not observable. Hydranths<br />

relatively large, without abcauline caecum,<br />

about 20 tentacles, internal epidermal covering<br />

<strong>of</strong> hydro<strong>the</strong>ca <strong>of</strong>ten with thick patch <strong>of</strong><br />

larger nema<strong>to</strong>cysts near curvature <strong>of</strong> abcauline<br />

side.<br />

Gono<strong>the</strong>cae absent in examined material <strong>of</strong><br />

branched colonies, in unbranched colonies on<br />

stem and s<strong>to</strong>lons, ovoid, length 1 mm, width 0.7<br />

mm, walls undulated or smooth, this even in<br />

same gono<strong>the</strong>ca, end truncated, aperture wide<br />

and on short neck, on inside <strong>of</strong> neck a circle <strong>of</strong><br />

small perisarc pegs.<br />

Variation<br />

Fertile colonies can also be composed <strong>of</strong> simple<br />

stems without hydrocladia. According <strong>to</strong> Billard<br />

(1925b) and Millard (1975), such simple stems<br />

can co-occur with pinnate ones. The simple<br />

stems are identical <strong>to</strong> hydrocladia <strong>of</strong> <strong>the</strong> branched<br />

form, including <strong>the</strong> oblique hinge joint.<br />

Remarks<br />

Dynamena moluccana Pictet, 1890 is here regarded<br />

as valid and distinct from D. cornicina, a<br />

view already expressed by Calder (1991). Billard<br />

(1925b) re-examined <strong>the</strong> type material <strong>of</strong> D.<br />

moluccana and synonymized it with Dynamena<br />

cornicina McCrady, 1859. Billard also referred


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

unbranched material identified by Pictet as S.<br />

compressa <strong>to</strong> D. cornicina. However, Calder<br />

(1991) showed that D. cornicina is not unambiguously<br />

identifiable and McCrady’s material<br />

could have been ei<strong>the</strong>r Dynamena disticha<br />

(Bosc, 1802) or Sertularia distans (Lamouroux,<br />

1816) (syn. Dynamena distans Lamouroux, 1816<br />

or Tridentata distans; see Calder 1991). Calder<br />

(1991), Migot<strong>to</strong> (1996), Medel & Vervoort<br />

(1998) and o<strong>the</strong>rs subsequently regarded D. cornicina<br />

as conspecific with Dynamena disticha<br />

(Bosc, 1802), a view also shared by <strong>the</strong> present<br />

author. However, comparison <strong>of</strong> Mediterranean<br />

material <strong>of</strong> Dynamena disticha (Fig. 30) with<br />

Dynamena moluccana (Fig. 29) revealed that<br />

both species are distinguishable. The shoots <strong>of</strong><br />

Dynamena disticha (see Calder 1991 for description<br />

and synonyms) are usually simple (unbranched).<br />

Only rarely, some shoots can be<br />

branched once, as was found in material from <strong>the</strong><br />

Mediterranean (Fig. 30A). This contrasts with D.<br />

moluccana, which is <strong>of</strong>ten pinnately branched,<br />

but colonies with unbranched stems also occur.<br />

Comparing <strong>the</strong> stems <strong>of</strong> both branched forms, it<br />

is evident that <strong>the</strong>y are different. The stem <strong>of</strong><br />

branched D. disticha has opposite hydro<strong>the</strong>cae<br />

and it does not differ in structure from <strong>the</strong> one <strong>of</strong><br />

<strong>the</strong> side-branches (Fig. 30A). In D. moluccana,<br />

<strong>the</strong> stem differs pr<strong>of</strong>oundly from <strong>the</strong> hydrocladia:<br />

<strong>the</strong>re are three hydro<strong>the</strong>cae per segment,<br />

<strong>the</strong> distal pair is subopposite <strong>to</strong> almost alternate,<br />

and <strong>the</strong> most proximal hydro<strong>the</strong>ca is almost completely<br />

free and strongly recurved (Fig. 29A).<br />

This structure <strong>of</strong> <strong>the</strong> stem segments has repeatedly<br />

been observed in material coming from<br />

different localities (e.g., Thornely 1904 (as Desmoscyphus<br />

palkensis); Billard 1925b, Vervoort<br />

1941, Cooke 1975, Millard 1975, Gibbons &<br />

Ryland 1989 (all as D. cornicina); Hirohi<strong>to</strong> 1995<br />

(as D. exigua)). The hydrocladia <strong>of</strong> D. moluccana<br />

and D. disticha resemble each o<strong>the</strong>r very<br />

closely and it is understandable that both have<br />

been synonymized. It seems, however, that D.<br />

moluccana has slightly larger hydro<strong>the</strong>cae (abcauline<br />

side 0.40–0.45 mm versus 0.25–0.35<br />

mm). The gono<strong>the</strong>cae are also slightly different.<br />

Those <strong>of</strong> D. moluccana are more elongate, those<br />

<strong>of</strong> D. disticha characteristically spherical. The<br />

gono<strong>the</strong>cae <strong>of</strong> D. disticha are also <strong>of</strong>ten strongly<br />

annulated, sometimes even provided with trans-<br />

173<br />

Fig. 30. Dynamena disticha (Bosc, 1802); Mediterranean<br />

material. A. Stem with rare branching point. B. Gono<strong>the</strong>ca. –<br />

Scales: A–B = 0.2 mm.<br />

verse ribs, while <strong>the</strong> ones <strong>of</strong> D. moluccana are<br />

smooth, moderately annulated, or with transverse<br />

ribs (Cooke 1975, Millard 1975). The variability<br />

<strong>of</strong> <strong>the</strong> annulation precludes somewhat that<br />

this character can serve as a reliable diagnostic<br />

trait. The best characters <strong>to</strong> positively identify D.<br />

mollucana are thus <strong>the</strong> pinnate shoots and <strong>the</strong><br />

stem morphology. Unbranched colonies <strong>of</strong> this<br />

species are difficult <strong>to</strong> separate from unbranched<br />

D. disticha, but a more oblong and smoo<strong>the</strong>r<br />

gono<strong>the</strong>ca as well as larger hydro<strong>the</strong>cae are characteristic<br />

for D. mollucana. Using <strong>the</strong>se characters<br />

<strong>to</strong> distinguish <strong>the</strong> species, it is evident that<br />

Hirohi<strong>to</strong> (1995) probably found both species in<br />

sympatry. Hirohi<strong>to</strong>’s D. exigua is clearly recognizable<br />

as D. moluccana, while his D. cornicina<br />

is obviously referable <strong>to</strong> D. disticha. This sympatric<br />

occurrence <strong>of</strong> both morphotypes strongly<br />

argues in favour <strong>of</strong> two separate species being<br />

present and not geographic variants only (subspecies).<br />

It was noted that in <strong>the</strong> branched shoots <strong>of</strong> D.<br />

moluccana <strong>the</strong>re is <strong>of</strong>ten a patch <strong>of</strong> larger nema<strong>to</strong>cysts<br />

in <strong>the</strong> epidermal lining <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca.<br />

This thickened patch, frequently found in many<br />

Sertulariidae (Schuchert 2001), is usually found<br />

at <strong>the</strong> curvature <strong>of</strong> <strong>the</strong> abcauline side <strong>of</strong> <strong>the</strong>


174<br />

hydro<strong>the</strong>ca. No such patches were found in D.<br />

disticha. However, not enough well preserved<br />

material could be examined <strong>to</strong> substantiate this<br />

difference.<br />

Both D. moluccana and D. disticha have a<br />

very thin and delicate hydro<strong>the</strong>cal perisarc. It is<br />

<strong>of</strong>ten damaged or dis<strong>to</strong>rted in preserved samples.<br />

Toge<strong>the</strong>r with <strong>the</strong> frequent renovations <strong>the</strong>y can<br />

look deceptively like hydro<strong>the</strong>cae <strong>of</strong> <strong>the</strong> genus<br />

Salacia. A careful search for undamaged hydro<strong>the</strong>cae<br />

will, however, reveal <strong>the</strong> difference (cf.<br />

Medel & Vervoort 1998: 31 and Cornelius 1979:<br />

309, note 21). The flimsy perisarc is actually an<br />

important trait <strong>to</strong> distinguish D. disticha from D.<br />

pumila. A fur<strong>the</strong>r difference is <strong>the</strong> separation <strong>of</strong><br />

<strong>the</strong> hydro<strong>the</strong>cae: <strong>the</strong>y are not contiguous on ei<strong>the</strong>r<br />

side. Dynamena pumila also forms branched<br />

and unbranched forms (see Cornelius 1995b<br />

or Schuchert 2001 for recent descriptions).<br />

Dynamena pumila occurs in cooler waters <strong>of</strong> <strong>the</strong><br />

North Atlantic, while D. disticha is predominantly<br />

known from warmer water.<br />

The material identified by Pictet (1893) as<br />

Sertularia gracilis Hassal, 1848 (MHNG INVE<br />

25032) is clearly a Dynamena species and resembles<br />

somewhat D. moluccana, although it has<br />

simple shoots. But <strong>the</strong> hydro<strong>the</strong>cae are distinctly<br />

smaller (0.2 mm abcauline side) and <strong>the</strong>y are on<br />

long internodes. It could thus belong <strong>to</strong> Dynamena<br />

dalmasi (Versluys, 1899) (see Calder 1991<br />

and Medel & Vervoort 1998 for recent descriptions).<br />

Distribution<br />

Indonesia (Pictet 1893, Billard 1925b), Papua<br />

New Guinea (Thornely 1904), Marshall Islands<br />

(Cooke 1975), Australia (Bale 1884, as S. divergens),<br />

Seychelles (Jarvis 1922 as S. cornicina<br />

var. pinnata), sou<strong>the</strong>rn Africa (Millard 1975),<br />

Japan (Hirohi<strong>to</strong> 1995, as D. exigua). Type locality:<br />

Bay <strong>of</strong> Ambon.<br />

Geminella ceramensis (Billard, 1925)<br />

Fig. 31.<br />

Sertularella ceramensis Billard, 1925a: 649. – Billard<br />

1925b: 170, fig. 30, pl. 7: fig. 20.<br />

Geminella ceramensis. – Vervoort 1993: 109, fig. 3a–e.<br />

Not Geminella ceramensis. – Vannucci Mendes 1946: 570,<br />

pl. 4: figs 40–41.<br />

P. SCHUCHERT<br />

Fig. 31. Geminella ceramensis (Billard, 1925). A. Pair <strong>of</strong><br />

hydro<strong>the</strong>cae. B. Hydro<strong>the</strong>cal opening in oblique view showing<br />

<strong>the</strong> three opercular valves. C. Gono<strong>the</strong>ca. – Scales: A–B<br />

= 0.1 mm; C = 0.2 mm.<br />

Material examined:<br />

Kei Islands Expedition station 57, with gono<strong>the</strong>cae.<br />

Description<br />

Colonies erect, stems irregularly branched, up <strong>to</strong><br />

1 cm in height. S<strong>to</strong>lons tubular, ramified. Stem<br />

and branches with identical structure, regularly<br />

segmented by more or less distinct transverse<br />

nodes. Segments elongate, 0.7–1.1 mm long,<br />

each with a pair <strong>of</strong> opposite <strong>to</strong> subopposite hydro<strong>the</strong>cae<br />

in its middle. Side-branches originate<br />

below a hydro<strong>the</strong>ca, first segment without hydro<strong>the</strong>ca,<br />

about half as long as o<strong>the</strong>r segments.<br />

Hydro<strong>the</strong>ca conical, adcauline side adnate<br />

for half or less <strong>of</strong> length, abcauline side almost


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

straight, 0.20–0.24 mm long; adcauline side bent<br />

where becoming free, free adcauline side straight<br />

<strong>to</strong> somewhat convex, opening-plane directed<br />

slightly upwards <strong>to</strong> nearly parallel <strong>to</strong> segment<br />

axis, diameter 0.13–0.15 mm, margin with three<br />

distinct cusps: one on adcauline side, two on<br />

lateral sides somewhat below middle; operculum<br />

pyramidal and composed <strong>of</strong> three valves; hydro<strong>the</strong>cal<br />

margin <strong>of</strong>ten renovated. Hydranths with<br />

abcauline caecum and about 12 tentacles.<br />

Gono<strong>the</strong>cae develop immediately below a hydro<strong>the</strong>ca.<br />

Gono<strong>the</strong>ca vase-shaped, 1.2 mm long,<br />

max. diameter 0.5 mm, base rounded and with<br />

short pedicel, sides quite straight and converging<br />

<strong>to</strong>wards distal end; end truncated, walls with 15–<br />

18 distinct and sharp transverse ridges, some<br />

gono<strong>the</strong>cae with less distinct ridges and ra<strong>the</strong>r<br />

undulated only.<br />

Remarks<br />

Most gono<strong>the</strong>cae observed in this study had ra<strong>the</strong>r<br />

sharp transverse folds, and were not undulated<br />

as described by Vervoort (1993).<br />

Geminella ceramensis is <strong>the</strong> only known species<br />

<strong>of</strong> its genus. Geminella differs from <strong>the</strong><br />

genus Symplec<strong>to</strong>scyphus only by its opposite<br />

hydro<strong>the</strong>cae, but Vervoort (1993) noted that initial<br />

stages <strong>of</strong> Geminella ceramensis have alternate<br />

hydro<strong>the</strong>cae. A future revision might thus<br />

synonymize Geminella and Symplec<strong>to</strong>scyphus.<br />

Distribution<br />

Indonesia, Philippines, New Caledonia. Type<br />

locality: Ceram, Banda Islands, 2.475°S,<br />

131.055°E, 118 m, on coarse sand.<br />

Idiellana pristis (Lamouroux, 1816)<br />

Fig. 32.<br />

Idia pristis Lamouroux, 1816: 199, pl. 5: fig. 5. – Allman<br />

1888: 85, pl. 39: figs 1–10. – von Campenhausen 1896b:<br />

311. – Billard 1925b: 219, fig. 58, pl. 7: fig. 33. –<br />

Vervoort 1941: 205.<br />

Pasy<strong>the</strong>a philippina Marktanner-Turneretscher, 1890: 234,<br />

pl. 4: figs 8 & 8a.<br />

Idiella pristis. – Stechow & Müller 1923: 469. – Vervoort<br />

1959: 252.<br />

Idiellana pristis. – Ralph 1961a: 766, fig. 5c–e. – Mammen<br />

1965: 52, fig. 86. – Millard 1975: 269, fig. 88A–E. –<br />

Hirohi<strong>to</strong> 1995: 178, fig. 58a–c. – Vervoort 1993: 188. –<br />

Migot<strong>to</strong> 1996: 64, fig. 12f–g. – Watson 2000: 18, fig.<br />

14A–E.<br />

175<br />

Figure 32. Idiellana pristis (Lamouroux, 1816); A, station<br />

71; B–C, station 66; D, station 53. A. Colony silhouette. B.<br />

Hydrocladium seen from anterior side. C. Hydrocladium in<br />

side view. D. Gono<strong>the</strong>ca, scale bar 0.5 mm. – Scales: A = 2<br />

cm; B, C = 0.4 mm; D = 0.5 mm.<br />

Material examined:<br />

Kei Islands Expedition, Bay <strong>of</strong> Ambon, 13 m, 28 Feb 1922,<br />

sand bot<strong>to</strong>m, fertile. – Kei Islands Expedition, Bay <strong>of</strong><br />

Ambon, 90 m, 21 Feb 1922, bot<strong>to</strong>m <strong>of</strong> s<strong>to</strong>nes and sand,<br />

fertile. – Kei Islands Expedition, Ujungpandang, Samalon<br />

Island, 25 m, 29 Jun 1922, sand bot<strong>to</strong>m. – Kei Islands<br />

Expedition, Ujungpandang, Samalon Island, 35 m, 28 Jun<br />

1922, sand bot<strong>to</strong>m. – Kei Islands Expedition, Ambon, harbour<br />

pier, 13 m, 27 Feb 1922, sand bot<strong>to</strong>m. – Kei Islands<br />

Expedition stations: 11. – 14. – 19, fertile. – 20, fertile. – 21.<br />

– 36. – 40. – 53, fertile. – 57. – 61. – 64. – 65. – 66. – 67,<br />

fertile. – 68. – 69. – 71, fertile. – 72, fertile. – 73. – 74. – 90.<br />

– 103. – 104, fertile. – 106, fertile. – 107. – 110. – 117. – 118,<br />

fertile.<br />

Description<br />

Colonies pinnate, up <strong>to</strong> 7 cm high. Main stem<br />

unforked, monosiphonic, with regular nodes,<br />

nodes alternate in inclination, each segment with<br />

three non-contiguous hydro<strong>the</strong>cae and an apophysis<br />

near lower end.<br />

Hydrocladia alternate, widely spaced, un-


176<br />

branched, unsegmented or only few nodes<br />

present, bearing a double row <strong>of</strong> alternate, overlapping<br />

hydro<strong>the</strong>cae on <strong>the</strong> frontal face, <strong>the</strong> two<br />

rows contiguous with one ano<strong>the</strong>r.<br />

Hydro<strong>the</strong>ca tubular, basal half parallel <strong>to</strong> hydrocladium,<br />

distal half curving away, length <strong>of</strong><br />

abcauline side 0.6 mm, no internal teeth, rim with<br />

two indistinct lateral teeth, operculum composed<br />

<strong>of</strong> an adcauline flap, <strong>the</strong> base <strong>of</strong> which is not<br />

distinctly demarcated from hydro<strong>the</strong>ca, margin<br />

<strong>of</strong> hydro<strong>the</strong>ca <strong>of</strong>ten renovated and elongated like<br />

duck-bill.<br />

Gono<strong>the</strong>cae on stem, urn-shaped, 1.6 mm<br />

long, diameter 0.8 mm, with 8–10 longitudinal<br />

ridges, <strong>the</strong>se partly serrated, distal aperture on<br />

conical collar.<br />

Remarks<br />

The alternate hydro<strong>the</strong>cae on <strong>the</strong> anterior surface<br />

<strong>of</strong> <strong>the</strong> hydrocladia, as well as <strong>the</strong> characteristic<br />

hydro<strong>the</strong>cae, make this species easy <strong>to</strong> identify.<br />

However, it is arguable why this species should<br />

be placed in a separate genus Idiellana and not in<br />

<strong>the</strong> genus Diphasia. The only difference between<br />

<strong>the</strong> two genera is <strong>the</strong> alternate arrangement <strong>of</strong><br />

<strong>the</strong> hydro<strong>the</strong>cae in Idiellana. Hydro<strong>the</strong>cae on<br />

one side <strong>of</strong> <strong>the</strong> hydrocladium are also frequently<br />

found in Diphasia species.<br />

Distribution<br />

Widely distributed in tropical and subtropical<br />

regions <strong>of</strong> <strong>the</strong> world. Type locality: Australasia<br />

(as New Holland in Lamouroux, 1816).<br />

Salacia hexodon (Busk, 1852)<br />

Fig. 33.<br />

Pasy<strong>the</strong>a hexodon Busk, 1852: 395. – Bale 1884: 113, pl. 9:<br />

fig. 13. – Bale 1888: 771, pl. 14: figs 8–9. – von Campenhausen<br />

1896b: 311. – Watson 2000: 21, fig. 16A–B.<br />

Salacia hexodon. – Billard 1925b: 207, fig. 49C–D.<br />

Material examined:<br />

Kei Islands Expedition stations: 15. – 18. – 20. – 60. – 61. –<br />

67. – 68. – 71, with gono<strong>the</strong>cae. – 72, with gono<strong>the</strong>cae. – 90.<br />

– 107.<br />

Description<br />

Colonies erect, simple or irregularly branched,<br />

0.5–2 cm high, monosiphonic, with regular<br />

P. SCHUCHERT<br />

Fig. 33. Salacia hexodon (Busk, 1852); station 71. Part<br />

<strong>of</strong> shoot showing typically clustered hydro<strong>the</strong>cae, a sidebranch,<br />

and a gono<strong>the</strong>ca. – Scale: 0.5 mm.<br />

transverse nodes above groups <strong>of</strong> hydro<strong>the</strong>cae.<br />

Hydro<strong>the</strong>cae on lateral sides, clustered in groups<br />

<strong>of</strong> 5–7 (range 2–10, reportedly also more), within<br />

<strong>the</strong>se clusters consecutive individuals <strong>of</strong> one row<br />

in contact, <strong>the</strong> two rows not contiguous, long,<br />

tubular regions between <strong>the</strong> groups <strong>of</strong> hydro<strong>the</strong>cae.<br />

Branching points <strong>of</strong> side-branches below<br />

a hydro<strong>the</strong>ca.<br />

Hydro<strong>the</strong>ca tubular, abcauline side 0.4 mm,<br />

curved, adnate for half <strong>of</strong> its adcauline length,<br />

opening circular, angle variable, opening-plane<br />

parallel <strong>to</strong> stem or inclined <strong>to</strong>wards below, with<br />

single operculum attached <strong>to</strong> abcauline side. Hydranth<br />

without abcauline caecum, one abcauline<br />

tentacle longer than o<strong>the</strong>rs, thick club-shaped<br />

with larger nema<strong>to</strong>cysts than in o<strong>the</strong>r tentacles.<br />

Gono<strong>the</strong>cae arising below lowest hydro<strong>the</strong>ca


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

<strong>of</strong> a cluster, urn-shaped, 1.4 mm long, diameter 1<br />

mm, with 8–10 transverse ridges or ribs.<br />

Distribution<br />

Australia, Indonesia. Type locality: Whitsunday<br />

Islands, Queensland, Australia (as Cumberland<br />

Islands in Busk, 1852).<br />

Salacia sibogae Billard, 1924<br />

Fig. 34.<br />

Salacia sibogae Billard, 1924: 64, fig. 1B–C. – Billard<br />

177<br />

1925b: 206, fig. 49, pl. 8: fig. 30. – Hirohi<strong>to</strong> 1995: 185,<br />

fig. 60f.<br />

Material examined:<br />

Kei Islands Expedition stations: 3. – 12, with gono<strong>the</strong>cae. –<br />

14, with gono<strong>the</strong>cae. – 58.<br />

Description<br />

Colonies erect, pinnate. Stem 5–12 cm, monosiphonic,<br />

unbranched, zigzag, thicker than hydrocladia,<br />

regularly segmented by transverse <strong>to</strong><br />

slightly oblique nodes, nodes flanked by bulges<br />

<strong>of</strong> <strong>the</strong> segment ends. Each stem segment with<br />

Fig. 34. Salacia sibogae Billard, 1924; A, station 12; B–E, station 14. A. Colony silhouette. B. Stem segment with base <strong>of</strong><br />

hydrocladium. C. Segment from hydrocladium, note faint lateral crease lines originating from hydro<strong>the</strong>cal margin. D. Oblique<br />

view <strong>of</strong> hydro<strong>the</strong>ca, note possible upper opercular valve (dotted). E. Gono<strong>the</strong>cae in oblique view. F. Distal part <strong>of</strong> gono<strong>the</strong>ca<br />

in side view, shown transparent, same scale as E. – Scales: A = 1 cm; B, E = 0.5 mm; C, D = 0.2 mm.


178<br />

three alternate hydro<strong>the</strong>cae in two lateral rows<br />

and a long apophysis below <strong>the</strong> distal-most hydro<strong>the</strong>ca.<br />

Hydrocladia alternate, straight, with up <strong>to</strong> 10<br />

segments, nodes transverse and distinct, flanked<br />

by swellings <strong>of</strong> <strong>the</strong> segment ends, segments long<br />

and thin, quite uniform in length (1.5–1.6 mm).<br />

Hydrocladial hydro<strong>the</strong>cae in two lateral rows, in<br />

strictly opposite pairs in <strong>the</strong> distal half <strong>of</strong> <strong>the</strong><br />

segment, members <strong>of</strong> a pair not contiguous on<br />

any side, consecutive hydro<strong>the</strong>cae <strong>of</strong> one row<br />

very far apart.<br />

Hydro<strong>the</strong>ca curved, free part wedge-shaped<br />

in lateral view, duck-billed in oblique view, adcauline<br />

side adnate for less than half its length,<br />

sharply bent where becoming free, adnate part<br />

0.4 mm long, free adcauline side nearly horizontal,<br />

straight <strong>to</strong> slightly concave, 0.55–0.60 mm<br />

long, upper side <strong>of</strong> hydro<strong>the</strong>ca shaped like a<br />

gabled ro<strong>of</strong>, with lateral crease lines. Periderm <strong>of</strong><br />

distal part <strong>of</strong> hydro<strong>the</strong>ca very thin and flexible.<br />

Opening very oblique, with one large, oval adcauline<br />

opercular flap, sometimes repeatedly<br />

present; perhaps also a small, very indistinct adcauline<br />

opercular valve present. Hydranth with<br />

about 20 tentacles, without abcauline caecum.<br />

Gono<strong>the</strong>cae on stem, <strong>of</strong>ten opposite a hydrocladium.<br />

Gono<strong>the</strong>ca oblong, about 2 mm long, maximal<br />

diameter about 1 mm, distal end truncate,<br />

opening on a short neck with wide diameter,<br />

lateral wall <strong>of</strong> gono<strong>the</strong>ca with about 6 thick<br />

annulations; near distal end an interior ring <strong>of</strong><br />

periderm knobs.<br />

Remarks<br />

With its relatively large, pinnate colonies, and<br />

especially <strong>the</strong> widely spaced hydro<strong>the</strong>cal pairs<br />

with <strong>the</strong>ir long wedge-shaped ends, Salacia sibogae<br />

is quite easily identifiable in <strong>the</strong> present<br />

fauna. All examined samples come from a small<br />

area north-east <strong>of</strong> <strong>the</strong> Kei Island archipelago, not<br />

far from <strong>the</strong> type locality <strong>of</strong> <strong>the</strong> species. Most<br />

records lie in deeper waters, with a range <strong>of</strong> 40–<br />

450 m (<strong>of</strong> <strong>the</strong> seven known records six are below<br />

245 m, only one is from 40 m).<br />

Although <strong>the</strong> identity <strong>of</strong> <strong>the</strong> present material<br />

with Billard’s species is quite certain, <strong>the</strong> allocation<br />

<strong>of</strong> this species <strong>to</strong> <strong>the</strong> genus Salacia is not<br />

P. SCHUCHERT<br />

entirely secure because <strong>the</strong>re might be more than<br />

just one opercular valve and <strong>the</strong> species appears<br />

intermediate between <strong>the</strong> genera Dynamena and<br />

Salacia. In many hydro<strong>the</strong>cae, <strong>the</strong> adcauline (upper)<br />

margin is thinner and it looks like a short<br />

adcauline opercular valve partitioned by a short<br />

median <strong>to</strong>oth (Fig. 34D). This was only visible in<br />

<strong>the</strong> stereomicroscope and <strong>the</strong> putative valve is<br />

not distinctly demarcated at its base. It was not<br />

possible <strong>to</strong> evaluate whe<strong>the</strong>r this is a true, rudimentary<br />

operculum or only an illusion. However,<br />

<strong>the</strong> hydro<strong>the</strong>ca is not entirely typical for <strong>the</strong><br />

genus Salacia and perhaps <strong>the</strong> genus Dynamena<br />

might be more appropriate for this species. Millard<br />

(1975) mentions that in Dynamena <strong>the</strong> upper<br />

valve is usually smaller and it may have a median<br />

partition (see Dynamena crisioides). However,<br />

<strong>the</strong> distal part <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca <strong>of</strong> S. sibogae is so<br />

flimsy and difficult <strong>to</strong> observe that no clear answer<br />

seems possible with ordinary light microscopy.<br />

Distribution<br />

Indonesia, Indian Ocean (Hirohi<strong>to</strong> 1995). Type<br />

locality: Kei Islands, 5.473°S, 132.000°E, 204 m,<br />

on hard coralline sand.<br />

Salacia punctagonangia (Hargitt, 1924)<br />

Fig. 35.<br />

Sertularia punctagonangia Hargitt, 1924: 469, pl. 6: fig. 23.<br />

?Salacia spec. – Hirohi<strong>to</strong> 1995: 185, fig. 60d–e.<br />

Type material examined:<br />

Sertularia punctagonangia, NMNH, slide reg. number<br />

USNM 42655, part <strong>of</strong> a plume with male gono<strong>the</strong>cae.<br />

O<strong>the</strong>r material examined:<br />

Kei Islands Expedition station 4, with female gono<strong>the</strong>cae.<br />

Differential diagnosis<br />

Similar <strong>to</strong> Salacia sibogae Billard, 1924 (see<br />

above), but stem occasionally forked, 7 cm high,<br />

nodes on stem absent in proximal region. Hydrocladial<br />

hydro<strong>the</strong>cae smaller, subopposite, some<br />

almost alternate, few opposite. Free adcauline<br />

wall <strong>of</strong> hydro<strong>the</strong>ca convex in side view, crosssection<br />

rounded and not ro<strong>of</strong>-shaped, without<br />

lateral crease lines. Gono<strong>the</strong>ca smooth-walled,<br />

oblong oval, tapering below in<strong>to</strong> pedicel, termi-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 35. Salacia punctagonangia (Hargitt, 1924); station 4. A. Colony silhouette. B. Part <strong>of</strong> stem and hydrocladia. C. Side view<br />

<strong>of</strong> typical pair <strong>of</strong> hydro<strong>the</strong>cae. D. Oblique view <strong>of</strong> hydro<strong>the</strong>cal opening. E. Gono<strong>the</strong>ca in side view. – Scales: A = 1 cm; B, E<br />

= 0.5 mm; C = 0.2 mm.<br />

nal end truncate, with large convex operculum,<br />

with slight sub-terminal constriction, at height <strong>of</strong><br />

constriction a ring <strong>of</strong> internal wart-like periderm<br />

nodules. Measurements: length <strong>of</strong> free adcauline<br />

wall <strong>of</strong> hydro<strong>the</strong>ca 0.4–0.5 mm, adnate part 0.3<br />

mm, length <strong>of</strong> female gono<strong>the</strong>ca 1.8 mm, male<br />

gono<strong>the</strong>ca 1.3–1.4 mm.<br />

Remarks<br />

Salacia punctagonangia (Hargitt, 1924) is a rare<br />

species, so far only recorded from <strong>the</strong> Philippines<br />

(Hargitt 1924). Re-examination <strong>of</strong> Hargitt’s material<br />

showed that <strong>the</strong> present Indonesian material<br />

is indistinguishable from it. The only notable<br />

difference is <strong>the</strong> size <strong>of</strong> <strong>the</strong> gono<strong>the</strong>cae, <strong>the</strong><br />

length <strong>of</strong> which is 1.3–1.4 mm in <strong>the</strong> type mate-<br />

179<br />

rial, but 1.8 mm in <strong>the</strong> material from <strong>the</strong> Kei<br />

Islands. The type material is clearly male, while<br />

<strong>the</strong> Indonesian material contains oocytes. The<br />

size difference is thus likely <strong>to</strong> be explained by<br />

<strong>the</strong> different sexes.<br />

Salacia punctagonangia (Hargitt, 1924) so<br />

closely resembles Salacia sibogae Billard, 1924,<br />

especially in <strong>the</strong> aspect <strong>of</strong> <strong>the</strong> colony, hydro<strong>the</strong>cae<br />

and dimensions, that I <strong>to</strong>ok it first as a<br />

variant <strong>of</strong> <strong>the</strong> latter. However, <strong>the</strong> various small<br />

differences are convincing evidence that <strong>the</strong> two<br />

morphotypes belong <strong>to</strong> different species. Both<br />

morphotypes were fortunately found at localities<br />

so close <strong>to</strong>ge<strong>the</strong>r (less than one nautical mile<br />

apart), that <strong>the</strong> respective populations must be<br />

considered sympatric. Because both localities are<br />

in ra<strong>the</strong>r deep waters (245 and 250 m) where


180<br />

environmental conditions can be assumed <strong>to</strong> be<br />

virtually identical, <strong>the</strong> morphological differences<br />

do certainly reflect genetic differences and not<br />

phenotypic variations. These presumably genetic<br />

differences <strong>of</strong> sympatric specimens were considered<br />

due <strong>to</strong> two different species being involved.<br />

At closer examination, both species are reliably<br />

distinguishable using <strong>the</strong> differences given in <strong>the</strong><br />

diagnosis above. The most important characters<br />

<strong>to</strong> distinguish S. punc<strong>to</strong>gonagia from S. sibogae<br />

are <strong>the</strong> subopposite hydro<strong>the</strong>cae, <strong>the</strong> curved convex<br />

free adcauline wall <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca, and <strong>the</strong><br />

smooth gono<strong>the</strong>ca.<br />

As for S. sibogae, <strong>the</strong> hydro<strong>the</strong>cal margin in<br />

this species is also very thin and flimsy and it is<br />

not entirely clear whe<strong>the</strong>r <strong>the</strong> species belongs <strong>to</strong><br />

Salacia or Dynamena.<br />

Salacia punctagonangia is here recorded for<br />

<strong>the</strong> first time for Indonesia. It was previously<br />

only known from <strong>the</strong> Philippines. Hirohi<strong>to</strong><br />

(1995, as Salacia sp.) compares a Salacia species<br />

from Sagami Bay (Japan) with Salacia sibogae<br />

from <strong>the</strong> Indian Ocean. This Japanese material,<br />

although infertile, shows all characteristics <strong>of</strong> S.<br />

punctagonagia and is likely <strong>to</strong> belong <strong>to</strong> this<br />

species.<br />

Distribution<br />

Philippines, Indonesia, ? Japan. Depths: 120–<br />

400 m. Type locality: Batan, Philippines, 120–<br />

274 m.<br />

Salacia sinuosa (Bale, 1888)<br />

Fig. 36.<br />

Thuiaria sinuosa Bale, 1888: 772, pl. 18: figs 9–10. –<br />

Ritchie 1911: 844, pl. 85: fig. 4.<br />

Salacia sinuosa. – Billard 1925b: 204, fig. 48, pl. 8: fig. 29.<br />

– Watson 2000: 22, fig. 17E.<br />

Material examined:<br />

Kei Islands Expedition station 74, without gono<strong>the</strong>cae.<br />

Description<br />

Colony large, bush-like, up <strong>to</strong> 25 cm high, much<br />

branched, trunk at base up <strong>to</strong> 3 mm thick and<br />

woody, strongly polysiphonic through overgrowth<br />

<strong>of</strong> s<strong>to</strong>lon-like tubes, only distal-most tips<br />

monosiphonic, ultimate branches pinnate, pinnate<br />

parts up <strong>to</strong> 5 cm long, stem <strong>of</strong> pinnate<br />

P. SCHUCHERT<br />

Fig 36. Salacia sinuosa (Bale, 1888). A. Teminal part <strong>of</strong><br />

branch with base <strong>of</strong> hydrocladium B. Part <strong>of</strong> hydrocladium<br />

seen from broad side. – Scales: A = 0.5 mm; B = 0.2 mm.<br />

regions also polysiphonic. S<strong>to</strong>lons forming a<br />

root-like structure which anchors colony in sediment.<br />

Monosiphonic distal ends <strong>of</strong> stem with<br />

transverse nodes, segments short, each with three<br />

hydro<strong>the</strong>cae and an apophysis, a single hydro<strong>the</strong>ca<br />

opposite apophysis, two on side <strong>of</strong> apophysis.<br />

Hydro<strong>the</strong>cae <strong>of</strong> stem in two lateral rows,<br />

alternate, not in contact vertically or horizontally.<br />

Apophysis inserted between two successive hydro<strong>the</strong>cae<br />

<strong>of</strong> a segment, node <strong>to</strong> hydrocladium<br />

twisted.<br />

Hydrocladia stiff, straight, flattened, only occasionally<br />

a node present, with two lateral rows<br />

<strong>of</strong> overlapping hydro<strong>the</strong>cae. Hydro<strong>the</strong>cae <strong>of</strong> one<br />

row adjacent, oblique, overlapping for about 1/3


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

<strong>of</strong> length. Hydro<strong>the</strong>cae <strong>of</strong> <strong>the</strong> two rows not in<br />

contact, in opposite <strong>to</strong> subopposite pairs.<br />

Hydro<strong>the</strong>ca tubular, narrowing from base <strong>to</strong><br />

margin; adcauline wall 0.47–0.50 mm, almost<br />

completely adnate, only a very short upper rim<br />

free; lower half <strong>of</strong> abcauline side adnate <strong>to</strong> previous<br />

hydro<strong>the</strong>ca, free abcauline side mostly<br />

straight, nearly parallel <strong>to</strong> hydrocladium axis,<br />

0.18–0.20 mm long, below margin a perisarc<br />

thickening and sometimes with a short inward<br />

fold; opening in frontal view ovate, openingplane<br />

parallel <strong>to</strong> hydrocladial axis or somewhat<br />

tilted <strong>to</strong>wards below. Operculum a single valve<br />

attached <strong>to</strong> abcauline margin <strong>of</strong> hydro<strong>the</strong>ca, <strong>of</strong>ten<br />

several ones present. Below <strong>the</strong> side <strong>of</strong> some<br />

hydro<strong>the</strong>cae a round fenestration.<br />

Gono<strong>the</strong>cae not observed, according <strong>to</strong> Watson<br />

(2000) oblong, up <strong>to</strong> 1.5 mm long, width up<br />

<strong>to</strong> 0.54 mm, inserted between <strong>the</strong> rows <strong>of</strong> hydro<strong>the</strong>cae,<br />

wall smooth or with faint annulations,<br />

aperture on short neck at distal end. Colour<br />

<strong>of</strong> preserved material: stem dark brown, upper<br />

branches and hydrocladia light brown.<br />

Distribution<br />

Subtropical Australia, Indonesia. Type locality:<br />

Port Molle, Australia.<br />

Salacia tetracythara Lamouroux, 1816<br />

Fig. 37.<br />

Salacia tetracythara Lamouroux, 1816: 212: pl. 6: fig. 3a–c.<br />

– Billard 1925b: 202, fig. 47, pl. 3: figs 27–28. –<br />

Mammen 1965: 54, fig. 87. – Rees & Vervoort 1987:<br />

103, fig. 6d. – Gibbons & Ryland 1989: 414, fig. 31. –<br />

Hirohi<strong>to</strong> 1995: 183, fig. 60a–c. – Watson 2000: 23, fig.<br />

18A-F.<br />

Thuiaria fenestra Bale, 1884: 116, pl. 7: fig. 7, pl. 9: fig. 14.<br />

Calyp<strong>to</strong>thuiaria opposita von Campenhausen, 1896b: 312,<br />

fig. 7.<br />

Material examined:<br />

Kei Islands Expedition stations: 69. – 71. – 72, with gono<strong>the</strong>cae.<br />

– 91. – 104, with gono<strong>the</strong>cae. – 106. – 107.<br />

Description<br />

Colonies erect, pinnate, up <strong>to</strong> 6 cm in present<br />

material (reportedly up <strong>to</strong> 10 cm), sometimes<br />

neighbouring shoots connected through<br />

distal tendrils <strong>of</strong> hydrocladia. Stems mostly unbranched,<br />

monosiphonic or polysiphonic, peri-<br />

181<br />

Fig. 37. Salacia tetracythara Lamouroux, 1816; station 72.<br />

A. Part <strong>of</strong> stem and base <strong>of</strong> hydrocladium. B. Hydrocladium<br />

in side view and attached gono<strong>the</strong>ca. – Scale: A–B = 0.2 mm.<br />

sarc thick, nodes only visible in distal regions,<br />

two lateral rows <strong>of</strong> hydro<strong>the</strong>cae, <strong>the</strong>se not in<br />

contact, in subopposite pairs, three between<br />

successive hydrocladia <strong>of</strong> one side, apophyses<br />

for hydrocladia short, mostly delimited by node<br />

from hydrocladium.<br />

Hydrocladia in one plane, alternating,<br />

straight, stiff, length variable, held at approximately<br />

60°–80° <strong>to</strong> stem, occasionally branching<br />

2–3 three times, with numerous hydro<strong>the</strong>cae,<br />

nodes rare, distal end occasionally transformed<br />

in<strong>to</strong> s<strong>to</strong>lon-like tendril. Hydro<strong>the</strong>cae in two lateral<br />

rows, in opposite <strong>to</strong> subopposite pairs, members<br />

<strong>of</strong> a pair not in contact, successive hydro<strong>the</strong>cae<br />

<strong>of</strong> a row in contact and overlapping.<br />

Hydro<strong>the</strong>ca tubular, adnate for 9/10 <strong>of</strong> <strong>the</strong>ir<br />

adcauline length, proximal half <strong>to</strong> 2/3 <strong>of</strong> adcauline<br />

side straight, remaining part curved so<br />

that opening slightly tilted downward, abcauline<br />

side straight for nearly its entire length, length


182<br />

about 0.3 mm. Hydro<strong>the</strong>cal opening in frontal<br />

view elliptical, margin with three shallow teeth:<br />

two lateral ones and one median adcauline, opcerculum<br />

one oval valve attached on abcauline<br />

side <strong>of</strong> hydro<strong>the</strong>cal rim, <strong>of</strong>ten repeated. Hydranth<br />

without abcauline caecum, with about 20 tentacles.<br />

Gono<strong>the</strong>cae on stem and hydrocladia, all on<br />

one side, held perpendicular <strong>to</strong> plane <strong>of</strong> ramification.<br />

Gono<strong>the</strong>cae globular <strong>to</strong> urn-shaped, length<br />

1 mm, diameter in middle 0.75 mm, aperture<br />

wide, 0.5 mm diameter, on short neck, operculum<br />

convex, on inside <strong>of</strong> neck a ring <strong>of</strong> perisarc<br />

projections.<br />

Distribution<br />

Vietnam, Indonesia, Australia, India, Japan.<br />

Type locality: Australia.<br />

P. SCHUCHERT<br />

Caminothujaria molukkana<br />

von Campenhausen, 1896<br />

Fig. 38.<br />

Caminothujaria molukkana von Campenhausen, 1896a:<br />

104. – Vervoort 1993: 102, synonymy.<br />

Caminothujaria moluccana. – von Campenhausen 1896b:<br />

306, pl. 15: fig. 8.<br />

Thuiaria divergens Whitelegge, 1899: 372, pl. 22, figs 1–3.<br />

– Billard 1925b: 222.<br />

Sertularia indomalayica Stechow, 1919: 158.<br />

Sertularella singularis Billard, 1920a: 14, fig. 1.<br />

Sertularia sigmagonangia Hargitt, 1924: 495, pl. 5: fig. 20.<br />

Sertularella moluccana. – Billard 1925b: 167, figs 28–29,<br />

pl. 7: fig. 19.<br />

Dictyocladium aberrans Nutting, 1927: 214, pl. 41: figs 4–5.<br />

Material examined:<br />

Kei Islands Expedition stations: 21. – 26. – 27. – 53. – 54,<br />

with gono<strong>the</strong>cae. – 68. – 103.<br />

Description<br />

Colonies erect, pinnate, up <strong>to</strong> 7 cm high. S<strong>to</strong>lons<br />

Fig. 38. Caminothujaria molukkana von Campenhausen, 1896; A, station 53; B–E, station 26. A. Colony silhouette. B. Part<br />

<strong>of</strong> stem and base <strong>of</strong> hydrocladium. C. Paired hydro<strong>the</strong>cae. D. Verticil with four hydro<strong>the</strong>cae, opercular valves drawn dotted.<br />

E. Gono<strong>the</strong>ca in side view, same scale as B. – Scales: A = 1 cm; B, E = 0.5 mm; C = 0.2 mm; D = 0.4 mm.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

root-like or creeping. Stems unforked, monosiphonic<br />

in younger colonies, older colonies polysiphonic<br />

in lower half; with alternate hydrocladia<br />

which are more or less in one plane, nodes<br />

along stem absent or very indistinct. Hydro<strong>the</strong>cae<br />

<strong>of</strong> stem in two lateral rows, in groups <strong>of</strong> three<br />

close <strong>to</strong> origins <strong>of</strong> hydrocladia, one hydro<strong>the</strong>ca<br />

opposite hydrocladium, one axillary, one below<br />

hydrocladium; end <strong>of</strong> adcauline wall <strong>of</strong> stem<br />

hydro<strong>the</strong>cae <strong>of</strong>ten with process.<br />

Hydrocladia alternate, straight, occasionally<br />

branched secondarily, held at right angle <strong>to</strong> stem,<br />

can be long but length variable, with up <strong>to</strong> 24<br />

hydro<strong>the</strong>cal pairs or verticils, nodes rare. Hydro<strong>the</strong>cae<br />

<strong>of</strong> hydrocladia ei<strong>the</strong>r in opposite pairs<br />

(rarely subopposite), or in verticils <strong>of</strong> three or<br />

four; paired hydro<strong>the</strong>cae in plane <strong>of</strong> colony. Verticils<br />

with 3–4 hydro<strong>the</strong>cae more frequent near<br />

proximal end <strong>of</strong> hydrocladium, more distal hydro<strong>the</strong>cae<br />

usually in pairs.<br />

Hydro<strong>the</strong>ca uniform, curved so that openingplane<br />

is nearly parallel <strong>to</strong> hydrocladium or somewhat<br />

inclined <strong>to</strong>wards above, adcauline wall adnate<br />

for half its length or less, abcauline wall<br />

about 0.45 mm long, diameter <strong>of</strong> opening 0.22<br />

mm; rim with four low but acute cusps (two<br />

laterals, one adcauline, one abcauline); operculum<br />

composed <strong>of</strong> four valves, pyramid-like;<br />

renovations <strong>of</strong> margin frequent, lower end <strong>of</strong><br />

adcauline wall <strong>of</strong>ten with swelling, this swelling<br />

variably present, sometimes this swelling extended<br />

like an annular thickening. Hydranths<br />

with abcauline caecum.<br />

Gono<strong>the</strong>cae on hydrocladia, long axis parallel<br />

<strong>to</strong> hydrocladium, shape elongate-fusiform and<br />

slightly S-curved, about 2 mm long, maximal<br />

diameter 0.6 mm; body with 6–8 sharp transverse<br />

crests; opening terminal, ra<strong>the</strong>r small, surrounded<br />

by three distinct cusps, one adcauline,<br />

two laterals; opening covered by operculum divided<br />

in<strong>to</strong> four flaps.<br />

Remarks<br />

With its four-cusped hydro<strong>the</strong>cae in ei<strong>the</strong>r opposite<br />

pairs or verticils <strong>of</strong> three or four, this species<br />

is easily recognizable. Juvenile colonies may<br />

have only paired hydro<strong>the</strong>cae.<br />

183<br />

Distribution<br />

Indonesia, Philippines, Ellis Islands. Type locality:<br />

Ternate, Moluccas, Indonesia.<br />

Sertularella decipiens Billard, 1919<br />

Fig. 39.<br />

Sertularella decipiens Billard, 1919b: 21, fig. 3B. – Billard<br />

1925b: 155, fig. 21, pl. 7: fig. 15, pl. 8: fig. 34. – Watson<br />

2000: 27, fig. 22A–E.<br />

Material examined:<br />

Kei Islands Expedition station 11, with gono<strong>the</strong>cae.<br />

Fig. 39. Sertularella decipiens Billard, 1919. A. Stem internode<br />

with base <strong>of</strong> hydrocladium. B. Part <strong>of</strong> hydrocladium. C.<br />

Gono<strong>the</strong>ca, same scale as A. – Scales: A, C = 0.5 mm; B = 0.2<br />

mm


184<br />

Description<br />

Colonies erect, pinnate, up <strong>to</strong> 3 cm high, stems<br />

unbranched, monosiphonic, basal part without<br />

hydro<strong>the</strong>cae, delimited by oblique node from<br />

distal part; distal part with alternate hydrocladia<br />

and hydro<strong>the</strong>cae in two lateral rows, nodes at<br />

least in more distal parts visible, internodes elongate,<br />

apophysis for hydrocladium arising below<br />

most distal hydro<strong>the</strong>ca <strong>of</strong> internode, apophysis<br />

ra<strong>the</strong>r short, delimited by node from hydrocladium.<br />

Hydrocladia quite long, some with one or two<br />

side-branches, with distant nodes and a variable<br />

number <strong>of</strong> hydro<strong>the</strong>cae per internode. The two<br />

rows <strong>of</strong> hydro<strong>the</strong>cae on stem and hydrocladia<br />

more or less in one plane. Hydro<strong>the</strong>cae alternate,<br />

successive hydro<strong>the</strong>cae <strong>of</strong> one row well separated<br />

by a gap <strong>of</strong> about half a hydro<strong>the</strong>cal length.<br />

Hydro<strong>the</strong>ca roughly tubular, adnate for 7/8<br />

<strong>of</strong> length, adcauline side curved, abcauline wall<br />

straight for almost entire length and nearly parallel<br />

<strong>to</strong> hydrocladial axis, length <strong>of</strong> abcauline wall<br />

around 0.45 mm, diameter <strong>of</strong> opening 0.2 mm,<br />

opening-plane almost parallel <strong>to</strong> hydrocladial<br />

axis, margin with four pointed cusps, slightly<br />

below margin <strong>of</strong> abcauline side at point <strong>of</strong> flexure<br />

a short intra<strong>the</strong>cal shelf. Floor <strong>of</strong> hydro<strong>the</strong>ca not<br />

reaching abcauline side, without distinct process<br />

<strong>to</strong>wards interior <strong>of</strong> internode.<br />

Gono<strong>the</strong>cae developing in small clusters at<br />

very base <strong>of</strong> stem near junction <strong>to</strong> s<strong>to</strong>lons. Gono<strong>the</strong>ca<br />

very large, length 3 mm without pedicel,<br />

major part cylindrical, tapering and curving below<br />

in<strong>to</strong> pedicel, distal part with spiral annulation<br />

grading in<strong>to</strong> shallow annulation and smooth part<br />

below, distal end truncate, margin with four shallow<br />

cusps, operculum pyramidal, composed <strong>of</strong><br />

four flaps.<br />

Remarks<br />

Stechow & Müller (1923) doubted <strong>the</strong> validity <strong>of</strong><br />

this species, suggesting it may be conspecific<br />

with S. quadridens. This was contested by Watson<br />

(2000) who described <strong>the</strong> gono<strong>the</strong>ca for <strong>the</strong><br />

first time. The gono<strong>the</strong>cae <strong>of</strong> S. decipiens are<br />

larger and curved, have a spiral annulation, and<br />

develop at <strong>the</strong> base <strong>of</strong> <strong>the</strong> stem. The gono<strong>the</strong>cae<br />

<strong>of</strong> S. quadridens are smaller (up <strong>to</strong> 2.2 mm),<br />

straight, with sharp transverse ridges, and <strong>the</strong>y<br />

P. SCHUCHERT<br />

develop in <strong>the</strong> hydrocladiate region <strong>of</strong> <strong>the</strong> stem.<br />

The examined samples <strong>of</strong> S. decipiens agreed<br />

well with Billard’s (1925b) description, which<br />

was also based on material from <strong>the</strong> Kei Islands.<br />

The Indonesian material shows some minor differences<br />

<strong>to</strong> <strong>the</strong> material <strong>of</strong> nor<strong>the</strong>rn Australia<br />

described by Watson (2000): <strong>the</strong> hydro<strong>the</strong>cae are<br />

notably more widely spaced, <strong>the</strong> hydrocladia are<br />

sometimes branched, and <strong>the</strong> lower part <strong>of</strong> <strong>the</strong><br />

gono<strong>the</strong>ca is smooth. These differences are here<br />

interpreted as intraspecific variation. The characteristic<br />

site <strong>of</strong> gono<strong>the</strong>ca development at <strong>the</strong> base<br />

<strong>of</strong> <strong>the</strong> stem renders this species quite easily identifiable.<br />

Distribution<br />

Indonesia, nor<strong>the</strong>rn Australia. Type locality:<br />

Tual, Kei Islands, Indonesia, 22 m.<br />

Sertularella diaphana (Allman, 1886)<br />

Fig. 40.<br />

Thuiaria diaphana Allman, 1886: 145, pl. 18: figs 1–3.<br />

Sertularella diaphana var. delicata Billard, 1919b: 21, fig.<br />

3A. – Billard 1925b: 161, fig. 24, pl. 7: fig. 14.<br />

Sertularella diaphana var. orthogona Billard 1925b: 161,<br />

fig. 23.<br />

Sertularella diaphana var. gigantea Billard, 1925b: 161, pl.<br />

9: fig. 35. – Vervoort 1941: 213.<br />

Sertularella diaphana. – Bale 1919: 337, pl. 16: fig. 5. –<br />

Billard 1925b: 157, fig. 22 pl. 7: figs 12–13. – Millard<br />

1975: 285, fig. 93A–D. – Calder 1991: 101, fig. 53,<br />

synonymy. – Vervoort 1993: 214, figs 45d–e & 46d,<br />

synonymy. – Hirohi<strong>to</strong> 1995: 192, fig. 62b–d, pl. 12: fig.<br />

A. – Watson 2000: 31, fig. 24, synonymy.<br />

Material examined:<br />

Kei Islands Expedition station 107, on hydroid, with gono<strong>the</strong>cae.<br />

– Kei Islands Expedition, Neira Island, Banda<br />

Islands, 10 m, 5 Jun 1922, on hydroids, sponges and o<strong>the</strong>r<br />

substrata, numerous colonies, many with gono<strong>the</strong>cae. – Kei<br />

Islands Expedition, Bay <strong>of</strong> Ambon, 90 m, 2 Mar 1922,<br />

bot<strong>to</strong>m <strong>of</strong> s<strong>to</strong>nes and sand, no gono<strong>the</strong>cae, corresponds <strong>to</strong> S.<br />

diaphana var. orthogona.<br />

Description<br />

Colonies erect, reaching heights <strong>of</strong> 12 cm, multipinnate.<br />

Stem thick, polysiphonic, forked or not,<br />

final branches pinnate with alternate hydrocladia<br />

which are more or less in one plane. Stem and<br />

branches divided in<strong>to</strong> internodes in distal regions<br />

only, nodes oblique, sloping alternately <strong>to</strong> left<br />

and right. Each stem internode bearing three


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 40. Sertularella diaphana (Allman, 1886); Neira Island.<br />

A. Colony silhouette, height about 6 cm. B. Stem internodes<br />

with bases <strong>of</strong> hydrocladia. C. Hydro<strong>the</strong>cae <strong>of</strong> hydrocladium.<br />

D. Gono<strong>the</strong>ca. – Scales: B = 0.5 mm; C = 0.2 mm.<br />

hydro<strong>the</strong>cae in two rows and one hydrocladium,<br />

<strong>the</strong> latter rising just below <strong>the</strong> most distal hydro<strong>the</strong>ca.<br />

Hydrocladium straight, unbranched, with distant<br />

nodes and a variable number <strong>of</strong> hydro<strong>the</strong>cae<br />

per internode. The two rows <strong>of</strong> hydro<strong>the</strong>cae on<br />

185<br />

stem, branches and hydrocladia shifted somewhat<br />

<strong>to</strong> anterior surface. Hydro<strong>the</strong>cae alternate,<br />

<strong>the</strong> two rows <strong>of</strong> hydro<strong>the</strong>cae on <strong>the</strong> hydrocladia<br />

ei<strong>the</strong>r in one plane or in two planes <strong>of</strong> variable<br />

obtuse <strong>to</strong> right angle, both rows well separated.<br />

Hydro<strong>the</strong>ca completely adnate or very nearly<br />

so, without floor, smooth, curved outwards,<br />

opening tilted <strong>to</strong>wards abcauline side, adcauline<br />

side about 0.5 mm, opening diameter 0.22–0.25<br />

mm. Marginal cusps low but pointed, no internal<br />

teeth. Lower end <strong>of</strong> adcauline hydro<strong>the</strong>cal wall<br />

<strong>of</strong>ten ending in a swelling, especially so in <strong>the</strong><br />

cauline hydro<strong>the</strong>cae (Fig. 40B).<br />

Gono<strong>the</strong>cae borne on anterior surface <strong>of</strong> hydrocladia,<br />

elongated, polygonal in cross-section,<br />

truncated distally, length 2 mm, diameter 0.7<br />

mm, no marginal spines,<br />

Variation<br />

The variant Sertularella diaphana var. delicata<br />

forms 1 cm high, monosiphonic shoots; variant S.<br />

diaphana var. orthogona has <strong>the</strong> two rows <strong>of</strong><br />

hydro<strong>the</strong>cae set at a right angle; variant gigantea<br />

forms very large colonies, reaching dimensions<br />

<strong>of</strong> 35 x 28 cm (all after Billard 1925b).<br />

Remarks<br />

Only an abbreviated synonymy <strong>of</strong> this species is<br />

given here because several authors provided one<br />

in recent publications (Calder 1991, Vervoort<br />

1993, Watson 2000). The sample from <strong>the</strong> Bay <strong>of</strong><br />

Ambon was clearly referable <strong>to</strong> <strong>the</strong> variant orthogona,<br />

although it lacked <strong>the</strong> thickenings at <strong>the</strong><br />

lower end <strong>of</strong> <strong>the</strong> adcauline hydro<strong>the</strong>cal wall.<br />

Vervoort (1993) also mentions material <strong>of</strong> this<br />

variant lacking <strong>the</strong> thickening.<br />

Distribution<br />

Widespread in tropical and subtropical waters<br />

<strong>of</strong> <strong>the</strong> Indo-Pacific and Atlantic. Type locality:<br />

More<strong>to</strong>n Bay, Queensland, Australia.<br />

Sertularella quadridens (Bale, 1884)<br />

Fig. 41.<br />

Thuiaria quadridens Bale, 1884: 119, pl. 7: figs 5–6. –<br />

Weltner 1900: 586, pl. 46: figs 1–3.<br />

Thuiaria vincta Allman, 1888: 68, pl. 32: figs 2 & 2a.<br />

Sertularella quadridens. – Ritchie 1910b: 818, pl. 77: fig.


186<br />

12a–b. – Stechow & Müller 1923: 471. – Billard 1925b:<br />

150, fig. 19. – Vervoort 1941: 214, fig. 5. – Mammen<br />

1965: 38, fig. 70. – Watson 2000: 28, fig. 23.<br />

Sertularella timorensis Billard, 1919b: 21, fig. 1f–g.<br />

Sertularella polyzonias var. cornuta Ritchie, 1909: 525. –<br />

Ritchie 1910a: 10, pl. 4: fig. 2.<br />

P. SCHUCHERT<br />

Fig. 41. Sertularella quadridens (Bale, 1884); A–E, typical form, station 18; F–G, variant form “cornuta”, Samalon Island; H–<br />

I, variant form “timorensis”, station 26. A. Colony silhouette. B. Stem internode with base <strong>of</strong> hydrocladium. C–H.<br />

Hydrocladial hydro<strong>the</strong>cae, note variation <strong>of</strong> spacing and process at end <strong>of</strong> adcauline side, all drawn <strong>to</strong> same scale. I. Gono<strong>the</strong>ca,<br />

same scale as B. – Scales: A = 1 cm; B & I = 0.5 mm; C–H = 0.2 mm.<br />

Sertularella cornuta. – Stechow 1923: 12. – Nutting 1927:<br />

215, pl. 42: figs 1–2.<br />

Sertularella quadridens var. cornuta. – Billard 1925b: 151,<br />

pl. 7: fig. 9. – Vervoort 1941: 216.<br />

Sertularella quadridens var. timorensis. – Billard 1925b:<br />

153, fig. 20, pl. 7: figs 10–11.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Sertularella quadridens forma quadridens Ralph, 1961a:<br />

830, fig. 23h.<br />

Sertularella quadridens cornuta. – Vervoort 1993: 232, figs<br />

52b–e, 53a–b.<br />

Material examined:<br />

Normal form<br />

Kei Islands Expedition station 18, several stems, no gono<strong>the</strong>cae.<br />

Morphotype “cornuta”<br />

Kei Islands Expedition stations: 16. – 60. – 63. – 64. – 103.<br />

– 104. – 106. – Kei Island Expedition, Samalon Island near<br />

Ujungpandang, 35 m, 28 Jun 1922.<br />

Morphotype “timorensis”<br />

Kei Islands Expedition station 26, one shoot with gono<strong>the</strong>ca,<br />

much overgrown by Bryozoa and algae.<br />

Description <strong>of</strong> typical form<br />

Colonies erect, pinnate, reaching heights <strong>of</strong> 7 cm.<br />

Stems monosiphonic, unbranched, with alternate<br />

hydrocladia which are more or less in one plane,<br />

divided in<strong>to</strong> internodes in distal regions only,<br />

nodes oblique, sloping alternately <strong>to</strong> left and<br />

right. Each stem internode bearing three hydro<strong>the</strong>cae<br />

in two rows and one hydrocladium, <strong>the</strong><br />

latter rising just below <strong>the</strong> most distal hydro<strong>the</strong>ca.<br />

Hydrocladia straight, unbranched, with distant<br />

nodes and a variable number <strong>of</strong> hydro<strong>the</strong>cae<br />

per internode.<br />

Hydro<strong>the</strong>cae alternate, <strong>the</strong> two rows <strong>of</strong> hydro<strong>the</strong>cae<br />

on <strong>the</strong> hydrocladia in one plane, both<br />

rows well separated, successive hydro<strong>the</strong>cae <strong>of</strong><br />

one row well separated for about somewhat less<br />

than <strong>the</strong> length <strong>of</strong> one hydro<strong>the</strong>ca. Hydro<strong>the</strong>ca<br />

tubular, curved outwards, adnate for 2/3 <strong>to</strong> ¾ <strong>of</strong><br />

its adcauline length, length <strong>of</strong> abcauline side<br />

0.30–0.35 mm, diameter <strong>of</strong> opening 0.20–0.23<br />

mm, length <strong>of</strong> free adcauline side 0.13–0.18 mm,<br />

adcauline side evenly curved, abcauline side<br />

straight in lower part and curved in last fourth,<br />

opening oblique, margin with four cusps; floor<br />

complete, with large pore, lower end <strong>of</strong> adcauline<br />

wall <strong>of</strong>ten with an oblique or vertical process,<br />

sometimes even connected <strong>to</strong> opposite hydro<strong>the</strong>ca<br />

(Fig. 41B), size and form <strong>of</strong> this process<br />

very variable within <strong>the</strong> same shoot (Fig. 41B–<br />

D), many hydro<strong>the</strong>cae even without such a process.<br />

Gono<strong>the</strong>cae <strong>of</strong> this form not observed (see<br />

Watson 2000, Billard 1925b).<br />

187<br />

Variant form “cornuta”<br />

Colony 2–5 cm high, hydro<strong>the</strong>cae slightly larger<br />

(abcauline wall 0.35–0.4 mm), hydro<strong>the</strong>ca more<br />

projecting (adnate for 2/3), process at lower end<br />

<strong>of</strong> adcauline wall absent or represented by a<br />

slight thickening only (Fig. 41E–G). No gono<strong>the</strong>cae<br />

present.<br />

Variant form “timorensis”<br />

Colony 3 cm high, perisarc much thickened, a<br />

large and massive intra<strong>the</strong>cal <strong>to</strong>oth on adcauline<br />

side, <strong>of</strong>ten also smaller on abcauline side, hydro<strong>the</strong>cae<br />

adnate for 2/3 <strong>to</strong> ¾ <strong>of</strong> <strong>the</strong>ir adcauline side,<br />

length abcauline side 0.38–0.40 mm, diameter <strong>of</strong><br />

opening 0.15–0.16 mm. Gono<strong>the</strong>ca on hydrocladia,<br />

about 1.2 mm long, diameter 0.5 mm,<br />

barrel-shaped, with transverse annulation, end<br />

truncate, square, with four sharp corners, operculum<br />

pyramidal and composed <strong>of</strong> four triangular<br />

flaps.<br />

Remarks<br />

Typical Sertularella quadridens have hydro<strong>the</strong>cae<br />

with a characteristic process at <strong>the</strong> lower end<br />

<strong>of</strong> <strong>the</strong> adcauline wall (Fig. 41B–D), which renders<br />

<strong>the</strong>m relatively easy <strong>to</strong> identify, even in <strong>the</strong><br />

absence <strong>of</strong> <strong>the</strong> characteristic gono<strong>the</strong>ca. However,<br />

this process is very variable and can be<br />

absent in quite a number <strong>of</strong> hydro<strong>the</strong>cae. Therefore,<br />

also o<strong>the</strong>rwise closely similar colonies lacking<br />

this process (variant forms) were here also<br />

allocated <strong>to</strong> this species. One <strong>of</strong> <strong>the</strong>se variant<br />

forms likely corresponds <strong>to</strong> <strong>the</strong> form described<br />

by Billard (1925b) as S. quadridens var. cornuta.<br />

Billard (1925b) distinguished this variant from<br />

<strong>the</strong> typical form through <strong>the</strong> more widely spaced<br />

and more projecting hydro<strong>the</strong>cae and smaller<br />

gono<strong>the</strong>ca with longer marginal cusps. The status<br />

<strong>of</strong> this variant is at present unclear. Ritchie (1909,<br />

1910a) suggested it <strong>to</strong> be a variant <strong>of</strong> S. polyzonias,<br />

but Stechow (1923) and Nutting (1927)<br />

recognized it as a full species, an opinion also<br />

favoured by Watson (2000). Billard (1925b) and<br />

Vervoort (1941, 1993) regarded it as a variant <strong>of</strong><br />

S. quadridens. Ano<strong>the</strong>r variant is S. quadridens<br />

var. timorensis, a morphotype originally described<br />

as a separate species by Billard (1919b),<br />

but later demoted <strong>to</strong> a mere variant <strong>of</strong> S. qua-


188<br />

dridens by Billard (1925b) himself. This characteristic<br />

variant has a much thicker perisarc,<br />

massive intra<strong>the</strong>cal teeth, and smaller gono<strong>the</strong>cae<br />

than <strong>the</strong> normal form. Additionally, it<br />

seems <strong>to</strong> become mature at a smaller size. The<br />

thickenings at <strong>the</strong> lower end <strong>of</strong> <strong>the</strong> adcauline<br />

hydro<strong>the</strong>cal walls are somewhat masked by <strong>the</strong><br />

general thickening <strong>of</strong> <strong>the</strong> perisarc. With <strong>the</strong> available<br />

material it was not possible <strong>to</strong> gain more<br />

insight in<strong>to</strong> <strong>the</strong> status <strong>of</strong> <strong>the</strong>se morphotypes.<br />

More fertile material <strong>of</strong> all three morphotypes,<br />

preferentially from <strong>the</strong> same locality and accompanied<br />

with detailed ecological information,<br />

must be examined and compared <strong>to</strong> re-assess<br />

<strong>the</strong>ir validity.<br />

Distribution<br />

Indonesia, Philippines, India, nor<strong>the</strong>rn Australia,<br />

New Caledonia. Type locality: Pt. Curtis,<br />

Queensland, Australia.<br />

Sertularia loculosa Busk, 1852<br />

Fig. 42.<br />

Sertularia loculosa Busk, 1852: 393, pl. 19: fig. 9. – Migot<strong>to</strong><br />

1996: 71, fig. 13f–i.<br />

Sertularia ligulata Thornely, 1904: 116, pl. 2: fig. 1–1B. –<br />

Billard 1925b: 178, fig. 35. – Millard 1958: 193, figs<br />

8C, 9A–B. – Vervoort 1959: 277, fig. 37. – Millard &<br />

Bouillon 1973: 74, fig. 9G. – Millard 1975: 307, fig.<br />

100A–D. – Vervoort & Vasseur 1977: 53, fig. 24. –<br />

Gibbons & Ryland 1989: 420. – Hirohi<strong>to</strong> 1995: 213, fig.<br />

71a–g.<br />

Sertularia turbinata. – Ritchie, 1910b: 821. – Bale 1913:<br />

124, pl. 12: fig. 6. – Jäderholm 1919: 14, pl. 3: fig. 8. –<br />

Jarvis 1922: 341, pl. 19: fig. 8 (synonyms after Billard<br />

1925b). [Not Sertularia turbinata (Lamouroux, 1816)]<br />

Not Sertularia loculosa. – Bale 1884: 91. – Thornely 1904:<br />

118. – Warren 1908: 306. – Jarvis 1922: 340 [all S.<br />

turbinata].<br />

Material examined:<br />

Kei Islands Expedition stations: 67. – 90. – 106.<br />

Description<br />

Colonies forming erect, monosiphonic shoots, up<br />

<strong>to</strong> 3 cm high, usually unbranched but rarely 1–2<br />

short side-branches; basal ahydro<strong>the</strong>cate part<br />

ending in oblique hinge joint, distal part bearing<br />

hydro<strong>the</strong>cae in opposite pairs; nodes mostly absent<br />

or indistinct. Members <strong>of</strong> a pair <strong>of</strong> hydro<strong>the</strong>cae<br />

contiguous in front, separate on rear side.<br />

P. SCHUCHERT<br />

Fig. 42. Sertularia loculosa Busk, 1852; station 67. A. Two<br />

pairs <strong>of</strong> hydro<strong>the</strong>ca just above hinge joint. B. Hydro<strong>the</strong>ca<br />

with ligula (hydranth not shown), operculum shown with<br />

broken line. – Scales: A = 0.2 mm; B = 0.1 mm.<br />

Branches, when present, with structure identical<br />

<strong>to</strong> stem.<br />

Hydro<strong>the</strong>ca adnate for 2/3 <strong>of</strong> its adcauline<br />

length, height 0.3 mm, adcauline side bent at 90°,<br />

hydro<strong>the</strong>ca broadest somewhat above middle,<br />

opening-plane parallel <strong>to</strong> stem axis, margin with<br />

two very shallow lateral cusps or irregularly undulated,<br />

operculum composed <strong>of</strong> two valves, abcauline<br />

one large and circular, covering nearly<br />

<strong>the</strong> whole opening and <strong>of</strong>ten tucked in<strong>to</strong> hydro<strong>the</strong>ca;<br />

abcauline valve very small, rudimentary,<br />

<strong>of</strong>ten not observable. On abcauline side<br />

somewhat below opening an oblique, semicircular<br />

ridge projecting in<strong>to</strong> lumen <strong>of</strong> hydro<strong>the</strong>ca. On<br />

adcauline side <strong>of</strong> hydranth a long process with<br />

a terminal, swollen, finger-like region densely<br />

studded with large nema<strong>to</strong>cysts (= ligula, nema<strong>to</strong>phore).<br />

Hydranth with abcauline caecum.<br />

Gono<strong>the</strong>ca not observed, according <strong>to</strong> Migot<strong>to</strong><br />

(1996) barrel-shaped, annulated, about 1<br />

mm long and 0.6 mm broad.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Remarks<br />

The characteristic ligula makes this species easily<br />

identifiable (Fig. 42B). The lateral cusps <strong>of</strong><br />

<strong>the</strong> hydro<strong>the</strong>cal margin are very shallow and<br />

<strong>of</strong>ten difficult <strong>to</strong> observe. They are best seen<br />

under a stereomicroscope. The grossly unequal<br />

upper and lower valve <strong>of</strong> <strong>the</strong> operculum set this<br />

species somewhat apart from o<strong>the</strong>r Sertularia<br />

species. In this and <strong>the</strong> inconspicuous lateral<br />

marginal cusps, this species approaches <strong>the</strong> genus<br />

Thuiaria. However, <strong>the</strong> habitus resembles<br />

more that <strong>of</strong> Salacia, and only <strong>the</strong> presence <strong>of</strong> an<br />

abcauline caecum and <strong>the</strong> ligula may prevent<br />

misidentification.<br />

Some authors (e.g., Millard 1975) described<br />

this species as having an intra<strong>the</strong>cal septum.<br />

However, <strong>the</strong>re is no true septum but merely a<br />

semicircular ridge projecting in<strong>to</strong> <strong>the</strong> hydro<strong>the</strong>cal<br />

lumen (Fig. 42B). This ridge is moreover<br />

not transverse as shown in several figures,<br />

but slightly inclined <strong>to</strong>wards <strong>the</strong> rear. Billard<br />

(1925b) made similar observations.<br />

Flattened s<strong>to</strong>lons at <strong>the</strong> end <strong>of</strong> <strong>the</strong> stems as<br />

described by Thornely (1904) were not observed<br />

in <strong>the</strong> present material.<br />

Migot<strong>to</strong> (1996) re-examined <strong>the</strong> type material<br />

<strong>of</strong> this species and provides a synonymy.<br />

Distribution<br />

Tropical Indo-Pacific, Japan, sou<strong>the</strong>rn Africa,<br />

tropical West Africa, Brazil. Type locality: Bass<br />

Strait, Australia.<br />

Sertularia borneensis Billard, 1925<br />

Fig. 43.<br />

?Sertularia maldivensis Borradaile, 1905: fig. 6a–b. –<br />

Stechow 1919: 97, fig. L1.<br />

Sertularia borneensis Billard, 1925a: 649, fig. 1D. – Billard<br />

1925b: 171, fig. 31. – Vervoort & Vasseur 1977: 60, figs<br />

26b & 27b. – Gibbons & Ryland 1989: 418, fig. 34.<br />

Sertularia west-indica. – Mammen 1965: 40, fig. 71.<br />

Sertularia westindica. – Cooke 1975: 100, pl. 5: fig. 1.<br />

Sertularia turbinata. – Vervoort & Vasseur 1977: 60, figs<br />

26–27. [Not Sertularia turbinata (Lamouroux, 1816)].<br />

?Sertularia <strong>to</strong>ngensis Stechow, 1919: 101, fig. N1.<br />

?Sertularia malayensis var. sorongensis Leloup, 1930b: 3,<br />

figs 1–3, pl. 1: fig. 1.<br />

Material examined:<br />

Kei Islands Expedition stations: 67, on Macrorhynchia<br />

189<br />

Fig. 43. Sertularia borneensis Billard, 1925; station 67. A.<br />

Hydro<strong>the</strong>cal pair in lower region, scale bar 0.2 mm. B. Distal<br />

hydro<strong>the</strong>cae, same scale as A. C. Gono<strong>the</strong>ca, scale bar 0.5<br />

mm. – Scales: A–B = 0.2 mm; C = 0.5 mm.<br />

phoenicea, with gono<strong>the</strong>cae. – 107, on concretions, no<br />

gono<strong>the</strong>cae.<br />

Description<br />

Colonies with erect, simple, monosiphonic<br />

shoots, never branched. S<strong>to</strong>lons creeping, tubular,<br />

without internal pegs. Shoots reaching<br />

heights <strong>of</strong> 2 cm, at base relatively long ahydro<strong>the</strong>cate<br />

part ending in oblique hinge joint<br />

(length <strong>of</strong> this part equals 2–4 internode lengths<br />

<strong>of</strong> distal part), distal part bearing hydro<strong>the</strong>cae in<br />

opposite pairs, nodes transverse, mostly distinct,<br />

hydro<strong>the</strong>cal pairs in distal half <strong>of</strong> segment. Hydro<strong>the</strong>cae<br />

on lateral side <strong>of</strong> stem, proximal pairs<br />

not contiguous, most distal pairs contiguous in<br />

front, separate on rear side.<br />

Hydro<strong>the</strong>ca swollen in middle, hydro<strong>the</strong>ca<br />

broadest somewhat above middle, adnate for ½<br />

or more <strong>of</strong> its adcauline length, adcauline side<br />

curved for nearly 90°, free adcauline wall nearly<br />

horizontal, abcauline wall oblique with slight<br />

double curvature (S-shape). Length <strong>of</strong> abcauline<br />

side 0.21–0.24 mm, diameter <strong>of</strong> opening (in side<br />

view) 0.1–0.11 mm. Hydro<strong>the</strong>cal opening slightly<br />

tilted <strong>to</strong>wards above, margin with two con-


190<br />

spicuous lateral cusps, median adcauline cusp<br />

not observed, operculum composed <strong>of</strong> two<br />

valves, upper only slightly smaller than lower<br />

one. Bot<strong>to</strong>m <strong>of</strong> hydro<strong>the</strong>ca oblique, adcauline<br />

wall elongated in<strong>to</strong> tapering process. There is no<br />

intra<strong>the</strong>cal ridge. Hydranth with abcauline caecum.<br />

Gono<strong>the</strong>ca arising perpendicular <strong>to</strong> stem between<br />

lowest pair <strong>of</strong> hydro<strong>the</strong>cae, ovoid, 1.2 mm<br />

long, diameter 0.8 mm, with flat truncated end,<br />

wall with sharp, projecting spiral sculpture in 7–<br />

8 loops.<br />

Remarks<br />

There is no doubt that <strong>the</strong> present material is<br />

identical <strong>to</strong> S. borneensis as described and depicted<br />

in Billard (1925b) and Vervoort & Vasseur<br />

(1977). The fertile colony was also found on<br />

<strong>the</strong> same host as <strong>the</strong> type material and in nearly<br />

<strong>the</strong> same water depth.<br />

Vervoort & Vasseur (1977) – who also examined<br />

<strong>the</strong> type material <strong>of</strong> S. borneensis – synonymized<br />

this species with S. turbinata, although<br />

<strong>the</strong>ir material lacked an intra<strong>the</strong>cal ridge (see Fig.<br />

43). They explained its absence by <strong>the</strong> juvenile<br />

state <strong>of</strong> <strong>the</strong>ir material. This explanation appears<br />

now invalid, as also fertile material examined in<br />

this study lacked <strong>the</strong> ridge. Calder (1991) regarded<br />

S. borneensis as distinct from S. turbinata,<br />

but following Leloup (1960) he synonymized<br />

it with <strong>the</strong> Caribbean S. tumida Allman,<br />

1877. Sertularia borneenis is here kept separate<br />

from both S. turbinata and S. tumida. Similar<br />

conclusions were reached by Gibbons & Ryland<br />

(1989), who also regarded S. borneensis as valid.<br />

One sample from a nearby locality (station<br />

68), and thus sympatric with <strong>the</strong> o<strong>the</strong>r specimens<br />

<strong>of</strong> S. borneesis, contained a sertularid clearly<br />

referable <strong>to</strong> S. turbinata (see below, Fig. 44).<br />

Although I acknowledge <strong>the</strong> possibility that both<br />

could be only variants belonging <strong>to</strong> <strong>the</strong> same<br />

biological species, <strong>the</strong>y are preferably kept separate<br />

because no intermediate forms are known so<br />

far. Indonesian morphotypes referable <strong>to</strong> ei<strong>the</strong>r<br />

Sertularia borneensis or S. turbinata differ in <strong>the</strong><br />

following details: Sertularia borneensis lacks an<br />

intra<strong>the</strong>cal ridge, has smaller hydro<strong>the</strong>cae (cf.<br />

Figs 43 and 44), <strong>the</strong> majority <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cal<br />

pairs are not contiguous, <strong>the</strong> bot<strong>to</strong>m <strong>of</strong> <strong>the</strong> hy-<br />

P. SCHUCHERT<br />

dro<strong>the</strong>ca is more oblique, <strong>the</strong> ahydro<strong>the</strong>cate part<br />

below <strong>the</strong> hinge joint is longer.<br />

Sertularia tumida, a species originally described<br />

from <strong>the</strong> tropical western Atlantic is insufficiently<br />

known because <strong>the</strong> gono<strong>the</strong>cae have<br />

never been described from <strong>the</strong> original region.<br />

Sertularia borneensis is <strong>the</strong>refore preferably<br />

kept separate from S. tumida (or its synonym<br />

S. westindica) as long as <strong>the</strong> gono<strong>the</strong>cae <strong>of</strong><br />

S. tumida remain unknown from waters <strong>of</strong> <strong>the</strong><br />

tropical Atlantic. Perhaps <strong>the</strong> gono<strong>the</strong>cae show<br />

significant differences and <strong>the</strong>y might resemble<br />

more <strong>the</strong> South African S. longa, which has<br />

smooth gono<strong>the</strong>acae but is o<strong>the</strong>rwise hardly distinguishable.<br />

Mammen (1965, as S. west-indica)<br />

provides <strong>the</strong> only description and figure <strong>of</strong> <strong>the</strong><br />

gono<strong>the</strong>ca for material attributed <strong>to</strong> <strong>the</strong> nominal<br />

species S. tumida, but for biogeographic reasons<br />

and also morphological differences Mammen’s<br />

material is better referred <strong>to</strong> S. borneenis or S.<br />

maldivensis.<br />

Sertularia borneensis differs from Atlantic S.<br />

tumida in <strong>the</strong> following details (cf. Calder 1991):<br />

it apparently lacks <strong>the</strong> small median <strong>to</strong>oth on<br />

<strong>the</strong> adcauline rim <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca, it is never<br />

branched, and <strong>the</strong> hydro<strong>the</strong>cal bot<strong>to</strong>m is more<br />

oblique. These are admittedly characters prone <strong>to</strong><br />

variation and <strong>of</strong> very limited taxonomic value. If<br />

Atlantic S. tumida should prove <strong>to</strong> have <strong>the</strong> same<br />

gono<strong>the</strong>cae as found here for S. borneensis, both<br />

nominal species would be indistinguishable. Biogeographic<br />

arguments might <strong>the</strong>n never<strong>the</strong>less<br />

be put forward <strong>to</strong> regard both species as distinct.<br />

Sertularia maldivensis Borradaile, 1905, an<br />

inadequately known species, appears conspecific<br />

with S. borneensis. Billard (1925b) did not discuss<br />

why he considered <strong>the</strong>m distinct. Type material<br />

<strong>of</strong> Sertularia maldivensis must be examined<br />

before reliable conclusions can be drawn.<br />

Distribution<br />

Indonesia, Polynesia, perhaps also Maldives.<br />

Type locality: Indonesia, 2°25’S, 117°43’E, 34<br />

m, on Macrorhynchia phoenicea.<br />

Sertularia turbinata (Lamouroux, 1816)<br />

Fig. 44<br />

Dynamena turbinata Lamouroux, 1816: 180.<br />

Desmoscyphus brevicyathus Versluys, 1899: 40, figs 9–10.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 44. Sertularia turbinata (Lamouroux, 1816). Two pairs<br />

<strong>of</strong> hydro<strong>the</strong>cae. – Scale: 0.5 mm.<br />

Sertularia loculosa Bale, 1913: 121: pl. 12: figs 7–8, invalid<br />

name.<br />

Tridentata acuta Stechow, 1921: 231.<br />

Sertularia balei Briggs, 1922: 150.<br />

Not Sertularia turbinata. – Jarvis 1922: 341, pl. 24: fig. 8 [=<br />

Dynamena spec.].<br />

Sertularia restricta Tot<strong>to</strong>n, 1930: 205.<br />

Geminella ceramensis. – Vannucci Mendes 1946: 570, pl. 4:<br />

figs 40–41. [Not Sertularella ceramensis Billard, 1925]<br />

Sertularia drachi Vannucci, 1949: 247.<br />

Sertularia turbinata. – Billard 1925b: 177, fig. 34. – Millard<br />

& Bouillon 1973: 76, fig. 9H. – Millard 1975: 312, fig.<br />

100B–C, E. – Gibbons & Ryland 1989: 425, fig. 39. –<br />

Hirohi<strong>to</strong> 1995: 218, fig. 73d–f. – Migot<strong>to</strong> 1996: 78, figs<br />

14f-g. – Watson 1997: 52. – Medel & Vervoort 1998: 70,<br />

fig. 23, synonymy.<br />

Sertularia acuta. – Millard 1958: 19, figs 8A–F.<br />

Not Sertularia turbinata. – Garcia, Aguirre, & Gonzalez<br />

1980: 57, fig. 19 [= Sertularia tumida Allman, 1877].<br />

Not Sertularia turbinata. – Vervoort & Vasseur 1977: 60<br />

figs 26–27 [= Sertularia borneensis Billard, 1925].<br />

Tridentata tubinata. – Calder 1991: 110, fig. 60, synonymy.<br />

Material examined:<br />

Kei Islands Expedition station 68, without gono<strong>the</strong>cae.<br />

191<br />

Diagnosis<br />

Similar <strong>to</strong> D. borneensis but with a horizontal<br />

intra<strong>the</strong>cal ridge on abcauline side and hydro<strong>the</strong>cal<br />

pairs always contiguous.<br />

Remarks<br />

See discussion under D. borneensis<br />

Distribution<br />

Tropical and subtropical waters. Type locality:<br />

Australasia.<br />

Sertularia trigonos<strong>to</strong>ma Busk, 1852<br />

Fig. 45.<br />

Sertularia trigonos<strong>to</strong>ma Busk, 1952: 392. – Bale 1884: 84,<br />

Fig. 45. Sertularia trigonos<strong>to</strong>ma Busk, 1852; station 68. A.<br />

Stem internode with base <strong>of</strong> hydrocladium. B. Hydrocladial<br />

internode. – Scales: A = 0.2 mm; B = 0.1 mm.


192<br />

pl. 5: fig. 8. – Billard 1910: 21, fig. 7. – Billard 1925b:<br />

174. – Vervoort 1941: 217. – Watson 2000: 33, fig. 26A–<br />

E .<br />

Desmoscyphus obliquus Allman, 1888: 72, pl. 34: fig. 3–3a.<br />

Sertularia trigonos<strong>to</strong>ma var. alternata Vervoort, 1959: 284,<br />

fig. 42.<br />

Material examined:<br />

Kei Islands Expedition stations: 68. – 71; both colonies<br />

without gono<strong>the</strong>cae.<br />

Description<br />

Colonies erect, pinnate, up <strong>to</strong> 7 cm high. Stems<br />

monosiphonic, ra<strong>the</strong>r thick near base (0.7 mm),<br />

tapering distally, bearing alternate hydrocladia<br />

and two lateral rows <strong>of</strong> alternate hydro<strong>the</strong>cae,<br />

nodes distinct <strong>to</strong> indistinct, if present, alternately<br />

slanted and delimiting internodes. Stem internodes<br />

with three hydro<strong>the</strong>cae and an apophysis<br />

for hydrocladium, two hydro<strong>the</strong>cae on side <strong>of</strong><br />

apophysis, one on opposite side, apophysis below<br />

lower hydro<strong>the</strong>ca.<br />

Hydrocladia straight, parallel, regular, arising<br />

at an angle <strong>of</strong> about 45° <strong>to</strong> axis, unbranched,<br />

longest ones in lower region <strong>of</strong> shoot, well demarcated<br />

from apophysis by transverse node,<br />

nodes more or less distinct, nodes inclined <strong>to</strong>wards<br />

one side, two subopposite hydro<strong>the</strong>cae per<br />

internode; hydro<strong>the</strong>cae shifted <strong>to</strong> anterior side <strong>of</strong><br />

internode, adnate on anterior side, separate on<br />

rear side.<br />

Hydro<strong>the</strong>ca adnate for most <strong>of</strong> its length, sacshaped,<br />

walls thick, abcauline side about 0.2 mm<br />

long, straight; opening directed upwards, margin<br />

with two blunt lateral teeth and sometimes a<br />

small adcauline median <strong>to</strong>oth. Opening elliptical,<br />

margin reinforced by thickened perisarc, operculum<br />

composed <strong>of</strong> two valves, difficult <strong>to</strong> observe.<br />

Connection <strong>of</strong> hydro<strong>the</strong>ca <strong>to</strong> internode<br />

very wide, thus hydro<strong>the</strong>ca without true floor.<br />

Gono<strong>the</strong>cae not present (see Watson 2000 for<br />

description).<br />

Remarks<br />

The hydranths in <strong>the</strong> present samples were not<br />

ideally preserved and it was not possible <strong>to</strong> decide<br />

reliably whe<strong>the</strong>r an abcauline caecum is<br />

present or not. Watson (2000) states that <strong>the</strong>re is<br />

no caecum, although she also had badly preserved<br />

hydranths. If <strong>the</strong> absence <strong>of</strong> an abcauline<br />

P. SCHUCHERT<br />

caecum can be corroborated, this species should<br />

be referred <strong>to</strong> <strong>the</strong> genus Dynamena.<br />

Distribution<br />

Tropical Indo-Pacific, Red Sea, tropical western<br />

Africa. Type locality: Torres Strait, Australia.<br />

Sertularia malayensis Billard, 1925<br />

Fig. 46.<br />

Sertularia malayensis Billard, 1925a: 649. – Billard 1925b:<br />

173, fig. 32. – Vervoort & Vasseur 1977: 57, fig. 25. –<br />

Hirohi<strong>to</strong> 1983: 49, fig. 21. – Gibbons & Ryland 1989:<br />

421, fig. 37. – Hirohi<strong>to</strong> 1995: 215, fig. 72a–c.<br />

Material examined:<br />

Kei Islands Expedition station 26, several shoots without<br />

gono<strong>the</strong>ca on S. quadridens var. timorensis.<br />

Description<br />

Colonies forming erect unbranched shoots without<br />

hydrocladia, height 2–4 mm. S<strong>to</strong>lons creeping,<br />

ramified. Stem thin (about 0.1 mm), with<br />

occasional oblique or transverse nodes. Hydro<strong>the</strong>cae<br />

strictly opposite, each pair contiguous on<br />

frontal side, separated at rear.<br />

Hydro<strong>the</strong>ca tubular, upper and underside converging<br />

and end thus duck-bill shaped, adcau-<br />

Fig. 46. Sertularia malayensis Billard, 1925. Pair <strong>of</strong> hydro<strong>the</strong>cae.<br />

– Scale: 0.1 mm.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

line wall adnate for 1/3 <strong>of</strong> its length, abcauline<br />

curved, about 0.18 mm long, adcauline wall<br />

quite sharply bent where becoming free, margin<br />

with two long, pointed lateral teeth, operculum<br />

formed by two valves, upper one much larger,<br />

lower valve not distinctly delimited from hydro<strong>the</strong>ca,<br />

distal end <strong>of</strong> hydro<strong>the</strong>ca very s<strong>of</strong>t<br />

and <strong>of</strong>ten dis<strong>to</strong>rted; floor <strong>of</strong> hydro<strong>the</strong>ca complete,<br />

lower end <strong>of</strong> adcauline wall forming short,<br />

pointed process. Hydranth with about 8 tentacles,<br />

with small abcauline caecum.<br />

Gono<strong>the</strong>cae not observed (according <strong>to</strong> Hirohi<strong>to</strong><br />

1983: pear-shaped, smooth walls, with truncate<br />

end and opening on short collar).<br />

Remarks<br />

The hydro<strong>the</strong>cal margin <strong>of</strong> this small and delicate<br />

species is ra<strong>the</strong>r flimsy and <strong>the</strong> generic characters<br />

are very difficult <strong>to</strong> see.<br />

Leloup (1930b) described a variant <strong>of</strong> this<br />

species from New Guinea as Sertularia malayensis<br />

var. sorongensis. Leloup’s material was<br />

juvenile and not reliably identifiable. It resembles<br />

much more S. borneensis, <strong>to</strong> which it most<br />

probably belongs. Leloup (1930b: 6) also discusses<br />

<strong>the</strong> differences <strong>of</strong> his variant <strong>to</strong> S. borneensis,<br />

but all tabulated characters are <strong>of</strong> very<br />

limited value in discriminating Sertularia species.<br />

Distribution<br />

Indonesia, Japan, French Polynesia, Fiji. Type<br />

locality: Borneo, 2°25’S, 117°43’E, 40–50 m, on<br />

hydroids.<br />

Symplec<strong>to</strong>scyphus macrocarpa (Billard, 1918)<br />

Fig. 47.<br />

Sertularella macrocarpa Billard, 1918: 23, fig. 3A–B. –<br />

Billard 1925b: 162, fig. 25, pl. 7: figs 16–17.<br />

Material examined:<br />

Kei Islands Expedition station 1, with gono<strong>the</strong>cae.<br />

Description<br />

Colonies erect, up <strong>to</strong> 2 cm high, pinnate. Stem<br />

and hydrocladia zigzag, both with identical structure,<br />

stem with about 2–3 hydro<strong>the</strong>cae between<br />

successive hydrocladia <strong>of</strong> one side.<br />

193<br />

Fig. 47. Symplec<strong>to</strong>scyphus macrocarpa (Billard, 1918). A.<br />

Two hydro<strong>the</strong>cae. B. Gono<strong>the</strong>cae. – Scales: A = 0.2 mm; B<br />

= 0.5 mm.<br />

Hydrocladia long, may reach <strong>the</strong> same length<br />

as stem, inserting below hydro<strong>the</strong>cae <strong>of</strong> stem,<br />

nodes oblique, <strong>of</strong>ten indistinct or absent.<br />

Hydro<strong>the</strong>ca cylindrical, adnate for 2/5 <strong>of</strong> its<br />

adcauline length, free part held at about 60°<br />

<strong>to</strong> internode, abcauline wall almost straight <strong>to</strong><br />

slightly concave, 0.35–0.4 mm, abcauline side<br />

sharply curved where becoming free; opening<br />

diameter 0.14–0.16 mm, margin with three<br />

cusps, one median adcauline and two lateroabcauline;<br />

operculum composed <strong>of</strong> three flaps,<br />

hydro<strong>the</strong>cal floor not complete, reaching mostly<br />

only <strong>to</strong> middle. Gono<strong>the</strong>cae numerous, on hydrocladia.


194<br />

Gono<strong>the</strong>ca elongate amphora-shaped, walls<br />

smooth, length 2–2.2 mm, maximal diameter<br />

above middle 0.5–0.6 mm, terminal opening on a<br />

narrow tubular neck, length 0.2 mm.<br />

Distribution<br />

Moluccas, Kei Islands. Type locality: Moluccas,<br />

3.450°S, 131.008°E, 567 m, on fine grey-yellow<br />

mud. So far only known from deeper waters<br />

(370–567 m).<br />

Family Thyroscyphidae<br />

Thyroscyphus bedoti Splettstösser, 1929<br />

Fig. 4.<br />

Ly<strong>to</strong>scyphus junceus. – Pictet 1893: 37, pl. 2: figs 32–33.<br />

[Not Thyroscyphus junceus (Allman, 1876)]<br />

Thyroscyphus bedoti Splettstösser, 1929: 42, figs 36–38,<br />

new name.<br />

?Thyroscypus macrocytharus. – Watson 2000: 37, fig. 29A.<br />

Type material examined:<br />

MHNG INVE 25030, as Ly<strong>to</strong>scyphus junceus, material described<br />

in Pictet (1893), type material <strong>of</strong> Thyroscyphus<br />

bedoti Splettstösser, 1929.<br />

Description<br />

Colony erect, up <strong>to</strong> 4 cm high, unbranched, without<br />

hydrocladia, with alternately oblique nodes,<br />

internodes smooth, <strong>of</strong> variable length, with subterminal<br />

apophysis for hydro<strong>the</strong>cae, apophysis<br />

demarcated from hydro<strong>the</strong>ca by node. Hydro<strong>the</strong>cae<br />

alternating, in two rows, in one plane.<br />

Pedicel <strong>of</strong> hydro<strong>the</strong>ca annulated or not. Mature<br />

shoots with numerous gono<strong>the</strong>cae <strong>of</strong> different<br />

developmental stages, almost every hydro<strong>the</strong>ca<br />

with one gono<strong>the</strong>ca below it<br />

Hydro<strong>the</strong>ca campanulate, radially symmetric<br />

<strong>to</strong> bilaterally symmetric, straight abcauline side<br />

and convex adcauline side, depth 1.1–1.2 mm,<br />

diameter at opening 0.6 mm, walls smooth; margin<br />

with 4 shallow cusps or almost even; operculum<br />

pyramidal with four flaps, mostly lost; diaphragm<br />

an oblique perisarcal ring, more developed<br />

on adcauline side. Hydranth with about 25<br />

tentacles.<br />

Gono<strong>the</strong>ca 1.4 mm long, diameter 0.7 mm,<br />

cylindrical, tapering in<strong>to</strong> pedicel below, distal<br />

half <strong>of</strong> gono<strong>the</strong>ca slightly undulated.<br />

P. SCHUCHERT<br />

Fig. 48. Thyroscyphus bedoti Splettstösser, 1929; after type<br />

material. A. Part <strong>of</strong> stem with hydro<strong>the</strong>cae and gono<strong>the</strong>cae <strong>of</strong><br />

various developmental stages. B. Mature gono<strong>the</strong>ca, same<br />

scale as A. – Scale: A–B = 0.5 mm.<br />

Remarks<br />

Pictet (1893) allocated unbranched but mature<br />

colonies <strong>of</strong> a Thyroscyphus species <strong>to</strong> Ly<strong>to</strong>scyphus<br />

junceaus (Allman, 1876). Thyroscyphus<br />

junceus (Allman, 1874), an obvious synonym <strong>of</strong><br />

T. fruticosus, forms large and branched plumes<br />

and it is unlikely that Pictet’s material belongs<br />

this species. In his detailed study <strong>of</strong> <strong>the</strong> Thyroscyphidae,<br />

Splettstösser (1929) <strong>the</strong>refore proposed<br />

a new name for Pictet’s species: Thyroscyphus<br />

bedoti.<br />

Thyroscyphus bedoti shows some resemblance<br />

<strong>to</strong> T. macrocyttarus (Lamouroux, 1824).<br />

This species has recently been re-described<br />

(Watson 1994) and synonymized with T. marginatus<br />

(Bale, 1884) (= T. balei Calder, 1983).<br />

Thyroscyphus macrocyttarus had been reported<br />

until recently only from temperate waters <strong>of</strong><br />

sou<strong>the</strong>rn and south-western Australia. Its colo-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

nies are characterized as occurring ei<strong>the</strong>r as s<strong>to</strong>lonal<br />

forms or as unbranched stems that have all<br />

<strong>the</strong>ir hydro<strong>the</strong>cae on one side only. The perisarc<br />

<strong>of</strong> its internodes are usually undulated. These<br />

characteristics separate it clearly from T. bedoti,<br />

which is a species <strong>of</strong> warm waters and which has<br />

two rows <strong>of</strong> hydro<strong>the</strong>cae. Watson (2000) allocated<br />

material from tropical waters near Darwin<br />

<strong>to</strong> T. macrocyttarus (as T. macrocytharus), although<br />

it had two rows <strong>of</strong> alternate hydro<strong>the</strong>cae<br />

and ra<strong>the</strong>r smooth internodes. Her material was<br />

growing on sponges. Due <strong>to</strong> <strong>the</strong>se morphological,<br />

substrate, and biogeographic differences, I<br />

think that Watson’s material from Darwin could<br />

also belong <strong>to</strong> T. bedoti, although it has more<br />

pointed cusps and <strong>the</strong> hydro<strong>the</strong>cae are considerably<br />

smaller.<br />

Distribution<br />

Eastern Indonesia, ? nor<strong>the</strong>rn Australia. Type<br />

locality: Batumera, Bay <strong>of</strong> Ambon, Moluccas,<br />

Indonesia; lit<strong>to</strong>ral zone, on coarse sand.<br />

Thyroscyphus fruticosus (Esper, 1793)<br />

Fig. 49.<br />

Spongia fruticosa Esper, 1793: 188.<br />

Thyroscyphus vitiensis Marktanner-Turneretscher, 1890:<br />

210, pl. 3: fig. 10. – Gibbons & Ryland 1989: 427.<br />

Campanularia thyroscyphiformis Marktanner-Turneretscher,<br />

1890: 206, pl. 3: fig. 4. – Rees & Vervoort 1987:<br />

67.<br />

?Campanularia juncea Allman, 1876: 260, pl. 11: figs 3–4.<br />

Campanularia juncea. – Thornely 1904: 113, text. figs 1–3,<br />

pl. 1: fig. 1a–b.<br />

Not Ly<strong>to</strong>scyphus junceus. – Pictet 1893: 37, pl. 2: figs 32–33<br />

[= Thyroscyphus bedoti Splettstösser, 1929]<br />

Ly<strong>to</strong>scyphus fruticosus. – Stechow & Müller 1923: 465, pl.<br />

27: fig. 6.<br />

Thyroscyphus fruticosus. – Splettstösser 1929: 7, figs 1–11,<br />

13–27. – Vervoort 1941: 202. – Ralph 1961a: 754, fig.<br />

1a. – ? Millard 1975: 323, fig. 104. – Gibbons & Ryland<br />

1989: 425, fig. 40. – Watson 2000: 38, fig. 29D.<br />

Thyroscyphus ramosus. – Mammen 1965: 30, fig. 63. [Not T.<br />

ramosus Allman, 1877]<br />

Material examined:<br />

Kei Islands Expedition stations: 11, with gono<strong>the</strong>cae. – 19,<br />

with gono<strong>the</strong>cae. – 43. – 67, with gono<strong>the</strong>cae. – 86. – Kei<br />

Islands Expedition, Banda Islands, Lonthoir, 07 Jun 1922,<br />

with gono<strong>the</strong>cae.<br />

Description<br />

Colony erect, pinnate, 5–20 cm, stems <strong>of</strong>ten in<br />

195<br />

Fig. 49. Thyroscyphus fruticosus (Esper, 1793); A & C–D,<br />

station 19; B, station 11. A. Colony silhouette. B. Hydro<strong>the</strong>ca<br />

variant with marginal cusps and operculum. C. Two<br />

hydro<strong>the</strong>cae with smooth margin and a male gono<strong>the</strong>ca,<br />

same scale as B. D. Presumed female gono<strong>the</strong>ca, same scale<br />

as B. – Scales: A = 1 cm; B–D = 0.5 mm.<br />

dense clusters. Stem thick, stiff, monosiphonic,<br />

without nodes, with two lateral rows <strong>of</strong> hydro<strong>the</strong>cae,<br />

hydro<strong>the</strong>cae alternate and in one plane.


196<br />

Hydrocladia alternate, in one plane, long and<br />

quite straight, usually unbranched, only rarely<br />

branched, nodes indistinct or absent, hydro<strong>the</strong>cae<br />

on a broad and short apophysis. Hydro<strong>the</strong>ca<br />

with short pedicel, without distinct node demarcating<br />

it from apophysis.<br />

Hydro<strong>the</strong>ca campanulate, 1–1.2 mm deep, diameter<br />

at opening 0.5–0.6 mm, slightly bilateral<br />

symmetric through bulging upper side and almost<br />

straight underside, at base a distinct diaphragm,<br />

margin ei<strong>the</strong>r smooth or with four indistinct,<br />

broad cusps; below rim an internal annular<br />

ridge, operculum pyramidal and composed <strong>of</strong><br />

four flaps, operculum frequently lost. Inside <strong>of</strong><br />

hydro<strong>the</strong>ca covered by thin tissue layer with few<br />

large nema<strong>to</strong>cysts. Hydranth with about 30 tentacles.<br />

Gono<strong>the</strong>cae on stem and hydrocladia, developing<br />

below hydro<strong>the</strong>cae on <strong>the</strong>ir apophyses,<br />

1.8–2.4 mm, oblong oval, basal part tapering, end<br />

truncated, wall smooth. Male more slender, female<br />

thicker and end wider.<br />

Remarks<br />

See comments under T. <strong>to</strong>rresii. The hydro<strong>the</strong>cae<br />

in living colonies have a characteristic rosepink<br />

colour, which is lost in preserved material<br />

(Millard 1975, Watson 2000).<br />

Distribution<br />

Tropical Indo-West Pacific, New Zealand, sou<strong>the</strong>rn<br />

Africa, western Africa, Mediterranean. Type<br />

locality: Unknown.<br />

Thyroscyphus <strong>to</strong>rresii (Busk, 1852)<br />

Fig. 50.<br />

Laomedea <strong>to</strong>rresii Busk, 1852: 402.<br />

Campanularia Torresii. – Bale 1884: 52, pl. 11: fig. 3.<br />

Tyroscyphus simplex Allman, 1888: 25, pl. 13: figs 1–2.<br />

Tyroscyphus regularis Jäderholm, 1896: 9, pl. 1: fig. 8.<br />

Cnidoscyphus <strong>to</strong>rresii. – Splettstösser 1929: 70, figs 68–77,<br />

map 2. – Vervoort 1941: 204, fig. 1. – Vervoort 1993:<br />

104.<br />

Thyroscyphus <strong>to</strong>rresi. – Jäderholm 1903: 273, pl. 12: fig. 6.<br />

– Stechow & Müller 1923: 466. – Watson 2000: 37, fig.<br />

29B–C.<br />

Thyroscyphus fruticosus. – Mammen 1965: 31, fig. 64. [Not<br />

T. fruticosus (Esper, 1793)]<br />

Material examined:<br />

Kei Islands Expedition stations: 15. – 18. – 20. – 40. – 64. –<br />

P. SCHUCHERT<br />

Fig. 50. Thyroscyphus <strong>to</strong>rresii (Busk, 1852); station 65. A.<br />

Two internodes with hydro<strong>the</strong>cae. B. Hydro<strong>the</strong>ca and gono<strong>the</strong>ca,<br />

same scale as A. – Scale: A–B = 0.5 mm.<br />

65, with gono<strong>the</strong>cae. – 68. – 71. – 74. – 90. – 102. – 103. –<br />

104. – 106.<br />

Differential diagnosis<br />

Similar <strong>to</strong> Thyroscyphus fruticosus, but epidermal<br />

lining <strong>of</strong> hydro<strong>the</strong>ca with a pad containing a<br />

dense cluster <strong>of</strong> large nema<strong>to</strong>cysts; stems shorter<br />

(up <strong>to</strong> 10 cm); hydrocladia with distinct nodes,<br />

nodes alternately inclined left and right; hydro<strong>the</strong>ca<br />

demarcated by distinct node from apophysis,<br />

rim <strong>of</strong> hydro<strong>the</strong>ca with four distinct cusps,<br />

operculum regularly present. Diaphragm <strong>of</strong> hydro<strong>the</strong>ca<br />

more unequally developed. Gono<strong>the</strong>ca<br />

more barrel-shaped, 1.1 mm, lateral wall undulated<br />

in distal half.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Remarks<br />

Thyroscyphus fruticosus and T. <strong>to</strong>rresii share<br />

many characters, particularly in size <strong>of</strong> colony,<br />

habit and choice <strong>of</strong> habitat (Watson 2000). Their<br />

morphological similarity has probably led <strong>to</strong><br />

some past confusion <strong>of</strong> <strong>the</strong> species. In <strong>the</strong> present<br />

Indonesian material, just as in <strong>the</strong> Australian one<br />

described by Watson (2000), T. <strong>to</strong>rresii is relatively<br />

easy <strong>to</strong> distinguish from T. fruticosus<br />

through <strong>the</strong> distinct nodes <strong>of</strong> <strong>the</strong> hydrocladia and<br />

<strong>the</strong> distinct marginal cusps <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca.<br />

O<strong>the</strong>r populations may show intermediate characters.<br />

The figure <strong>of</strong> T. fruticosus in Millard<br />

(1975, fig. 104) resembles more T. <strong>to</strong>rresii. The<br />

colour <strong>of</strong> <strong>the</strong> African material, however, matches<br />

T. fruticosus. Living colonies <strong>of</strong> T. fruticosus are<br />

rose-pink, while T. <strong>to</strong>rresii are golden-yellow <strong>to</strong><br />

golden-brown (Watson 2000). Using this colour<br />

information and his figures, it is evident that<br />

Mammen (1965) confounded <strong>the</strong> two species.<br />

His material identified as T. ramosus is actually<br />

T. fruticosus, while his T. fruticosus material<br />

belongs <strong>to</strong> T. <strong>to</strong>rresii. A good character <strong>to</strong> distinguish<br />

both species are <strong>the</strong> large nema<strong>to</strong>cyst batteries<br />

in <strong>the</strong> interior lining <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cae <strong>of</strong><br />

T. <strong>to</strong>rresii (Splettstösser 1929). However, <strong>the</strong>se<br />

nema<strong>to</strong>cyst clusters are <strong>of</strong>ten lost in dredged<br />

material. Splettstösser (1929) used this character<br />

<strong>to</strong> establish <strong>the</strong> new genus Cnidoscyphus.<br />

The validity <strong>of</strong> this genus was emphasized by<br />

Vervoort (1993), but o<strong>the</strong>r recent authors, e.g.,<br />

Bouillon (1985a), Calder (1983), and Watson<br />

(2000), did not use it. Such thick nema<strong>to</strong>cyst pads<br />

are also found in many species <strong>of</strong> <strong>the</strong> Sertulariidae,<br />

<strong>the</strong> closest relatives <strong>of</strong> <strong>the</strong> Thyroscyphidae,<br />

and thus likely represent a plesiomorphy. Because<br />

plesiomorphic traits are not suitable for<br />

detecting monophyletic groups, <strong>the</strong> genus Cnidoscyphus<br />

is not used here ei<strong>the</strong>r.<br />

Mature gono<strong>the</strong>cae <strong>of</strong> this species have been<br />

described by Jäderholm (1903) and Splettstösser<br />

(1929). The gono<strong>the</strong>cae observed in <strong>the</strong> present<br />

material confirmed Jäderholm’s findings in that<br />

<strong>the</strong>ir distal half has an undulated wall. The male<br />

gono<strong>the</strong>cae may be more slender and smooth as<br />

Splettstösser’s (1929) figures suggest.<br />

Distribution<br />

Indonesia, nor<strong>the</strong>rn and western Australia,<br />

197<br />

Queensland, China Sea, Mergui Archipelago.<br />

Type locality: Prince <strong>of</strong> Wales Channel, Torres<br />

Strait, Australia.<br />

Thyroscyphus sibogae Billard, 1930<br />

Fig. 51.<br />

Thyroscyphus sibogae Billard, 1930: 230, fig. 1. –<br />

Pennycuik 1959: 198. – Gibbons & Ryland 1989: 427,<br />

fig. 41.<br />

Material examined:<br />

Kei Islands Expedition station 60, without gono<strong>the</strong>cae, few<br />

shoots on a synascidian.<br />

Description<br />

Colony forming erect shoots, up <strong>to</strong> 1 cm high,<br />

unbranched, without hydrocladia, with indistinct<br />

alternately oblique nodes, internodes smooth or<br />

slightly undulated, with subterminal apophysis<br />

for hydro<strong>the</strong>cae, apophysis demarcated from hydro<strong>the</strong>ca<br />

by node. Hydro<strong>the</strong>cae alternating, in<br />

one plane.<br />

Fig. 51. Thyroscyphus sibogae Billard, 1930. Hydro<strong>the</strong>ca. –<br />

Scale: 0.2 mm


198<br />

Hydro<strong>the</strong>ca campanulate, bilaterally symmetric,<br />

straight abcauline side and convex adcauline<br />

side, depth 0.5–0.6 mm, diameter at opening 0.33<br />

mm, lateral wall with distinct transverse corrugation<br />

(about 6 bulges), margin with 4 pointed<br />

cusps and deep, round embayments between<br />

<strong>the</strong>m, operculum pyramidal with four flaps, diaphragm<br />

an oblique perisarcal ring, more developed<br />

on adcauline side. Pedicel <strong>of</strong> hydro<strong>the</strong>ca<br />

annulated or not.<br />

Gono<strong>the</strong>cae absent, according <strong>to</strong> Gibbons &<br />

Ryland (1989) arising from hydro<strong>the</strong>cal apophyses,<br />

pedicellate, annulated, usually directed horizontally<br />

and down, not in <strong>the</strong> same plane as<br />

<strong>the</strong> remainder hydro<strong>the</strong>cae; obovoid, truncated<br />

distally; aperture with four cusps and operculum<br />

<strong>of</strong> four flaps.<br />

Remarks<br />

The corrugated, small hydro<strong>the</strong>cae distinguish<br />

this species from all o<strong>the</strong>r congeners in <strong>the</strong> Indonesian<br />

region.<br />

Distribution<br />

Eastern Indonesia, Great Barrier Reef, Fiji. Type<br />

locality: Timor.<br />

Family Syn<strong>the</strong>ciidae<br />

Syn<strong>the</strong>cium flabellum Hargitt, 1924<br />

Fig. 52.<br />

Syn<strong>the</strong>cium flabellum Hargitt, 1924: 497, pl. 6: fig: 24. –<br />

Gravier-Bonnet 1979: 41.<br />

Syn<strong>the</strong>cium samauense in part Billard, 1925a: 646, fig. 1A<br />

(not o<strong>the</strong>rs). – Billard 1925b: 132, fig. 7C–E, pl. 7: fig. 3<br />

(not o<strong>the</strong>rs).<br />

Sertularia tubi<strong>the</strong>ca. – Pictet 1893: 51–52, pl. 2: figs 44–45.<br />

– von Campenhausen 1896b: 309. [Not Syn<strong>the</strong>cium tubi<strong>the</strong>cum<br />

(Allman, 1877)]<br />

?Syn<strong>the</strong>cium mega<strong>the</strong>cum Billard, 1925a: 648. – Billard<br />

1925b: 130, fig. 6, pl. 7: fig. 2.<br />

Type material examined:<br />

Syn<strong>the</strong>cium flabellum Hargitt, 1924, NMNH reg. number<br />

USNM 42514, in formaldehyde, overgrown by Hebella<br />

spec. – Syn<strong>the</strong>cium samauense Billard, 1925, ZMA number<br />

Coel 3835, Siboga station 60, tube labelled by Billard as<br />

female type, only colonies with gono<strong>the</strong>cae belong <strong>to</strong> S.<br />

flabellum, infertile ones are S. samauense.<br />

O<strong>the</strong>r material examined:<br />

ZMA no. Coel 3833, Siboga station 274, identified as S.<br />

P. SCHUCHERT<br />

samauense by Billard, fertile female colonies. – Kei Islands<br />

Expedition, Neira Island, Banda Islands, Indonesia, 10 m,<br />

coll. 5 Jun 1922, few stems on black sponge and hydroids,<br />

with female gono<strong>the</strong>cae, overgrown by Hebella sp. – MHNG<br />

INVE 32194, as Sertularia tubi<strong>the</strong>ca, Ambon, 16 Aug 1890,<br />

material <strong>of</strong> Pictet (1893), overgrown by Hebella sp.<br />

Description<br />

Colonies pinnate, 2–4 cm in height. S<strong>to</strong>lons tubular,<br />

thick. Stems flexible, with opposite pairs <strong>of</strong><br />

hydrocladia, 4–6 per side, stem without nodes,<br />

hydrocladia without distinct apophysis, with 2 or<br />

more pairs <strong>of</strong> opposite hydro<strong>the</strong>cae between successive<br />

hydrocladia.<br />

Hydrocladia straight, unbranched, some with<br />

terminal tendrils, up <strong>to</strong> 2.5 cm long, nodes rare,<br />

with two rows <strong>of</strong> opposite hydro<strong>the</strong>cae, <strong>the</strong> pairs<br />

<strong>of</strong> hydro<strong>the</strong>cae not contiguous, successive hydro<strong>the</strong>cae<br />

<strong>of</strong> one row not in contact and quite<br />

distant, <strong>the</strong> median planes <strong>of</strong> <strong>the</strong> two rows form<br />

an angle < 180°.<br />

Hydro<strong>the</strong>ca tubular, recurved 60–75°, opening<br />

inclined upwards, abcauline side adnate for 3/<br />

5–2/3 <strong>of</strong> its length, opening diameter 0.25–0.30<br />

mm (mean 0.27, S.D. 0.017, n = 6, 3 colonies),<br />

length free part <strong>of</strong> adcauline side 0.25–0.40 mm,<br />

length adnate part 0.57–0.67 mm. Margin <strong>of</strong><br />

opening planar or sinuous, slightly everted, <strong>of</strong>ten<br />

renovated several times, without operculum.<br />

Only female gono<strong>the</strong>cae seen, developing<br />

from within stem hydro<strong>the</strong>cae, 0.9–1.1 mm<br />

long, diameter 0.7–0.8 mm, egg-shaped, with<br />

distal nipple-shaped process, not flattened, walls<br />

smooth; terminal opening small; containing one<br />

egg <strong>of</strong> 0.5–0.6 mm diameter.<br />

Nema<strong>to</strong>cysts: I, abundant tentacular capsule,<br />

almond-shaped, 5.5 x 1.5 µm, probably a mastigophore.<br />

II, large isorhiza, (40–43) x (10–11)<br />

µm. III, smaller isorhiza 17 x 5 µm.<br />

Remarks<br />

Syn<strong>the</strong>cium flabellum Hargitt, 1924 is a little<br />

known species and Gravier-Bonnet (1979) suggested<br />

that it could be conspecific with S. samauense<br />

Billard, 1925. Re-examination <strong>of</strong> <strong>the</strong><br />

type material <strong>of</strong> Syn<strong>the</strong>cium flabellum and S.<br />

samauense showed that part <strong>of</strong> Billard’s type<br />

material <strong>of</strong> S. samauense indeed belongs <strong>to</strong> S.<br />

flabellum, while <strong>the</strong> remainder <strong>of</strong> <strong>the</strong> type mate-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 52. Syn<strong>the</strong>cium flabellum Hargitt, 1924; A–C, Banda Islands; D–E, type material. A. Colony silhouette. B. Part <strong>of</strong> stem,<br />

hydrocladia, and female gono<strong>the</strong>ca. C. Pair <strong>of</strong> hydro<strong>the</strong>cae. D. Pair <strong>of</strong> hydro<strong>the</strong>cae, same scale as C. E. Part <strong>of</strong> stem with female<br />

gono<strong>the</strong>cae. – Scales: A = 1 cm; B & E = 0.5 mm; C = 0.2 mm<br />

rial belongs <strong>to</strong> S. samauense sensu la<strong>to</strong>. For more<br />

details see under S. samauense.<br />

Especially <strong>the</strong> characteristic female gono<strong>the</strong>cae<br />

resembling a lemon was important for recognizing<br />

<strong>the</strong> species (Fig. 52B). The male gono<strong>the</strong>cae<br />

<strong>of</strong> this species are so far unknown, but it<br />

is very probable that Syn<strong>the</strong>cium mega<strong>the</strong>cum<br />

Billard, 1925b is nothing but <strong>the</strong> male <strong>of</strong> S.<br />

flabellum. Billard kept Syn<strong>the</strong>cium mega<strong>the</strong>cum<br />

separate from o<strong>the</strong>r congeners on account <strong>of</strong><br />

199<br />

its large hydro<strong>the</strong>cae. Billard (1925b) gives for<br />

Syn<strong>the</strong>cium mega<strong>the</strong>cum a hydro<strong>the</strong>ca diameter<br />

<strong>of</strong> 0.28–0.33 mm, which largely overlaps with<br />

<strong>the</strong> here observed values for female Syn<strong>the</strong>cium<br />

flabellum (0.25–0.30 mm).<br />

Distribution<br />

Philippines, Indonesia. Type locality: Philippine<br />

Islands.


200<br />

Syn<strong>the</strong>cium samauense Billard, 1925<br />

Fig. 53.<br />

Syn<strong>the</strong>cium samauense in part Billard, 1925a: 646, fig. 1B. –<br />

in part Billard 1925b: 132, fig. 7A-B. – Vervoort &<br />

Vasseur 1977: 24, figs 10–13. – Gibbons & Ryland 1989:<br />

398, fig. 16.<br />

Type material examined:<br />

Syn<strong>the</strong>cium samauense Billard, 1925, ZMA no Coel 3835,<br />

Siboga station 60, Haingsisi; comprises two tubes: one tube<br />

labelled by Billard as male type containing several male<br />

colonies as depicted in Billard (1925b: fig. 7A–B), but also<br />

one colony with female gono<strong>the</strong>cae; this female colony<br />

placed in new tube and designed here as lec<strong>to</strong>type. The tube<br />

labelled by Billard as female type contains several colonies:<br />

some fertile females with distinctly larger hydro<strong>the</strong>cae and<br />

some distinctly more gracile ones without gono<strong>the</strong>cae. The<br />

latter are presumably also S. samauense, while <strong>the</strong> fertile<br />

colonies are clearly S. flabellum Hargitt, 1924.<br />

O<strong>the</strong>r material examined:<br />

ZMA Coel 3835, Siboga station 282, as Syn<strong>the</strong>cium samauense,<br />

with gono<strong>the</strong>ca, s<strong>of</strong>t tissue not well preserved<br />

but shape and dimensions conforms with lec<strong>to</strong>type. – Kei<br />

Islands Expedition, Waling, Banda Island, Indonesia, 20 m,<br />

coll. 11 Jun 1922, on sponge, several stems with female<br />

gono<strong>the</strong>cae, some empty.<br />

Differential diagnosis<br />

Like Syn<strong>the</strong>cium flabellum, but colonies 1–2 cm,<br />

hydro<strong>the</strong>ca distinctly narrower, diameter <strong>of</strong><br />

opening 0.16–0.20 mm (mean 0.175, S.D. 0.017,<br />

n = 15, 4 colonies), length <strong>of</strong> free adcauline wall<br />

0.15–0.31 mm, length adnate part 0.48– 0.55<br />

mm, occasionally some hydro<strong>the</strong>cal pairs contiguous.<br />

Female gono<strong>the</strong>ca ovoid-lenticular,<br />

broader side horizontal, smooth walled or slightly<br />

undulated, length 1.1 mm, thickness 0.65 mm,<br />

without nipple-shaped distal process, opening<br />

sometimes with indistinct collar, one egg <strong>of</strong> 0.5–<br />

0.6 mm. Male gono<strong>the</strong>cae elongated pod-shaped,<br />

1.6 mm long, somewhat flattened, broader side<br />

held horizontally, wall with or without gentle<br />

undulation, terminal opening, pedicel within hydro<strong>the</strong>ca<br />

and not at right angle <strong>to</strong> body <strong>of</strong> gono<strong>the</strong>ca.<br />

Remarks<br />

When describing Syn<strong>the</strong>cium samauense, Billard<br />

(1925b) noted that <strong>the</strong> dimensions <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cae<br />

in his material permitted <strong>the</strong> distinction <strong>of</strong><br />

two separate morphotypes, this even within <strong>the</strong><br />

specimens from <strong>the</strong> type locality. Billard interpreted<br />

this as sexual dimorphism as his obvious<br />

P. SCHUCHERT<br />

female colonies belonged <strong>to</strong> <strong>the</strong> morphotypes<br />

with larger hydro<strong>the</strong>cae. Vervoort & Vasseur<br />

(1977) re-examined Billard’s type material from<br />

Siboga station 60 and found no female gono<strong>the</strong>cae<br />

and all dimensions <strong>of</strong> <strong>the</strong> investigated<br />

material were ra<strong>the</strong>r homogeneous. The female<br />

gono<strong>the</strong>cae observed by Vervoort & Vasseur<br />

(1977) in material from Moorea deviated clearly<br />

from <strong>the</strong> one depicted in Billard (1925b) as <strong>the</strong>y<br />

lacked <strong>the</strong> nipple-shaped process and <strong>the</strong>y were<br />

flattened. Identical material from Fiji was later<br />

described by Gibbons & Ryland (1989). Because<br />

<strong>the</strong> material <strong>of</strong> Syn<strong>the</strong>cium species from <strong>the</strong> Kei<br />

Islands <strong>expedition</strong> presented considerable difficulties<br />

for identification, and because <strong>the</strong>re were<br />

also two sets <strong>of</strong> colonies with distinctly different<br />

dimensions and gono<strong>the</strong>cae, I compared it <strong>to</strong><br />

Billard’s type material, <strong>the</strong> non-type material<br />

from <strong>the</strong> Siboga collection and <strong>the</strong> holotype <strong>of</strong><br />

Syn<strong>the</strong>cium flabellum Hargitt, 1924 as well.<br />

Re-examination <strong>of</strong> <strong>the</strong> type material <strong>of</strong> Syn<strong>the</strong>cium<br />

samauense convinced me that it is composed<br />

<strong>of</strong> two species. The type material from<br />

Siboga station 60 is separated in<strong>to</strong> two tubes with<br />

labels made by Billard: one labelled as female,<br />

one as male. The tube labelled as female contains<br />

several stems, some <strong>of</strong> <strong>the</strong>m with gono<strong>the</strong>cae.<br />

The infertile stems in this tube are clearly distinct<br />

as <strong>the</strong>y have narrower hydro<strong>the</strong>cae. It seems thus,<br />

that Vervoort & Vasseur (1977) did not have <strong>the</strong><br />

complete type series at hand. In fertile female<br />

stems, <strong>the</strong> eggs are clearly visible in <strong>the</strong> gono<strong>the</strong>cae,<br />

and <strong>the</strong>se specimens are identical <strong>to</strong> <strong>the</strong><br />

holotype <strong>of</strong> Syn<strong>the</strong>cium flabellum Hargitt, 1924.<br />

The infertile stems are here regarded as belonging<br />

<strong>to</strong> S. samauense. The sample labelled as<br />

containing male colonies contains also several<br />

stems, most <strong>of</strong> <strong>the</strong>m with male gono<strong>the</strong>cae as<br />

figured in Billard (1925b). The dimensions <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>cae do not vary significantly and <strong>the</strong><br />

specimes are distinguishable from <strong>the</strong> larger S.<br />

flabellum. One <strong>of</strong> <strong>the</strong> fertile colonies in <strong>the</strong> tube<br />

reportedly containing male S. samaunese, however,<br />

has short gono<strong>the</strong>cae and closer inspection<br />

(temporary clearing in 50% lactic acid) revealed<br />

it <strong>to</strong> be female (Fig. 53F). Because it is evident<br />

that Billard’s type material <strong>of</strong> S. samauense contains<br />

two species, this female stem was chosen as<br />

lec<strong>to</strong>type and placed in a separate tube. The<br />

remainder <strong>of</strong> <strong>the</strong> tubes are <strong>the</strong> stems with male


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 53. Syn<strong>the</strong>cium samauense Billard, 1925; A–D, from Banda Islands; E–F, lec<strong>to</strong>type; G, male type colony. A. Colony<br />

silhouette. B. Three pairs <strong>of</strong> hydro<strong>the</strong>cae, note variation <strong>of</strong> separation and length <strong>of</strong> free part. C. Female gono<strong>the</strong>cae. D. Female<br />

gono<strong>the</strong>ca seen from broad (upper) side with tissue inside (incipient egg stippled dark), same scale as B. E. Pair <strong>of</strong> hydro<strong>the</strong>cae,<br />

same scale as B. F. Female gono<strong>the</strong>ca in side view, egg stippled dark, same scale as B. G. Pair <strong>of</strong> male gono<strong>the</strong>cae in side view,<br />

same scale as C. – Scales: A = 1 cm; B, D–F = 0.2 mm; C, G = 0.5 mm.<br />

201


202<br />

gono<strong>the</strong>cae. By choosing <strong>the</strong> female colony with<br />

<strong>the</strong> smaller dimensions as lec<strong>to</strong>type, Billard’s<br />

species remains valid and does not become a<br />

subjective synonym <strong>of</strong> S. flabellum. Fur<strong>the</strong>rmore,<br />

Vervoort & Vasseur’s (1977) and Gibbons<br />

& Ryland’s (1989) identifications remain correct<br />

by this procedure.<br />

The validity <strong>of</strong> both S. samauense and S. flabellum<br />

is underlined by <strong>the</strong> sympatric occurrence<br />

<strong>of</strong> <strong>the</strong>ir respective morphotypes (Siboga station<br />

60, Banda Islands). Syn<strong>the</strong>cium samauense and<br />

S. flabellum can be distinguished on account<br />

<strong>of</strong> <strong>the</strong> differently shaped female gono<strong>the</strong>cae and<br />

<strong>the</strong> dimension <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca. Syn<strong>the</strong>cium<br />

samauense has a lenticular female gono<strong>the</strong>cae,<br />

while S. flabellum has a spherical one with a<br />

nipple-shaped process. The hydro<strong>the</strong>cal diameter<br />

<strong>of</strong> S. samauense is like most <strong>of</strong> <strong>the</strong> congeners<br />

<strong>of</strong> <strong>the</strong> region (0.16–0.20 mm), while S. flabellum<br />

has a diameter <strong>of</strong> 0.25–0.30 mm. The diameters<br />

are more obviously different than o<strong>the</strong>r dimensions<br />

<strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca.<br />

With its new, restricted scope, Syn<strong>the</strong>cium<br />

samauense is not easy <strong>to</strong> separate from S. orthogonium<br />

or S. campylocarpum, at least for <strong>the</strong><br />

material encountered in this study. The regular<br />

corrugation <strong>of</strong> <strong>the</strong> gono<strong>the</strong>cae <strong>of</strong> S. orthogonium<br />

is <strong>the</strong> only reliable character <strong>to</strong> separate it from S.<br />

samauense. Syn<strong>the</strong>cium campylocarpum forms<br />

larger colonies (6 cm versus 1–2 cm) and has<br />

male gono<strong>the</strong>cae with a pedicel inserting at a<br />

right angle.<br />

More material <strong>of</strong> all morphotypes must be<br />

examined <strong>to</strong> consolidate <strong>the</strong> validity <strong>of</strong> all Syn<strong>the</strong>cium<br />

species discussed here. As shown by<br />

Watson (2000), life observation <strong>of</strong> colour and<br />

ecology might provide additional and more reliable<br />

characters <strong>to</strong> separate <strong>the</strong>m.<br />

Distribution<br />

Indonesia, Polynesia, New Caledonia. Type locality:<br />

Hainsisi, Indonesia.<br />

Syn<strong>the</strong>cium orthogonium (Busk, 1852)<br />

Fig. 54.<br />

Sertularia orthogonia Busk, 1852: 390.<br />

Syn<strong>the</strong>cium orthogonium. – Stechow & Müller 1923: 465. –<br />

Watson 2000: 41, fig. 32A–F, table 4.<br />

P. SCHUCHERT<br />

Fig. 54. Syn<strong>the</strong>cium orthogonium (Busk, 1852). A. Colony<br />

silhouette. B. Part <strong>of</strong> stem with two hydrocladia and gono<strong>the</strong>ca<br />

with smooth underside. C. Hydro<strong>the</strong>cae <strong>of</strong> hydrocladium.<br />

D. Gono<strong>the</strong>ca in side view, upper and underside are<br />

corrugated, same scale as B. E. Gono<strong>the</strong>ca seen from broad<br />

side, same scale as B. – Scales: A = 1 cm; B, D–E = 0.5 mm;<br />

C = 0.2 mm.<br />

Not Syn<strong>the</strong>cium orthogonium. – Bale 1888: 767. – Bale<br />

1924: 250. [= S. campylocarpum]<br />

Syn<strong>the</strong>cium patulum. – Billard 1925b: 125, figs 2–3. –<br />

Vervoort 1941: 199, fig. 2.<br />

Syn<strong>the</strong>cium patulum var. elongatum Billard, 1925b: 128,<br />

fig. 4. [Not Syn<strong>the</strong>cium patulum (Busk, 1852)]


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Material examined:<br />

Kei Islands Expedition station 67, on Idiellana pristis¸ several<br />

fertile plumes.<br />

Description<br />

Colonies pinnate, up <strong>to</strong> 3 cm. S<strong>to</strong>lons tubular,<br />

thick. Stems with opposite hydrocladia, 6–8 per<br />

side, stem with indistinct transverse nodes, hydrocladia<br />

at distal end <strong>of</strong> internodes, without<br />

distinct apophysis, 1–3 pairs <strong>of</strong> opposite hydro<strong>the</strong>cae<br />

per stem internode bearing hydrocladia.<br />

Hydrocladia straight, unbranched, up <strong>to</strong> 1 cm<br />

long, nodes rare, with two rows <strong>of</strong> opposite hydro<strong>the</strong>cae,<br />

<strong>the</strong> pairs <strong>of</strong> hydro<strong>the</strong>cae not contiguous,<br />

successive hydro<strong>the</strong>cae <strong>of</strong> one row not in<br />

contact but ra<strong>the</strong>r close, <strong>the</strong> median planes <strong>of</strong> <strong>the</strong><br />

two rows form an angle < 180°.<br />

Hydro<strong>the</strong>ca tubular, recurved 90°, openingplane<br />

parallel <strong>to</strong> hydrocladial axis, abcauline side<br />

adnate for 2/3, opening diameter 0.14–0.15 mm,<br />

length free part <strong>of</strong> adcauline side 0.20–0.25 mm,<br />

length adnate part 0.45 mm. Margin <strong>of</strong> opening<br />

planar and not sinuous, slightly everted, <strong>of</strong>ten<br />

renovated several times, without operculum.<br />

Gono<strong>the</strong>cae arise from within stem hydro<strong>the</strong>cae,<br />

1.2 mm long, oblong ovoid, somewhat flattened,<br />

broader sides horizontal, ei<strong>the</strong>r both sides<br />

corrugated or upper side corrugated and underside<br />

smooth, corrugations fading out <strong>to</strong>wards<br />

periphery, if both sides corrugated, <strong>the</strong> crests do<br />

not meet at <strong>the</strong> narrow sides, <strong>the</strong> crests <strong>of</strong> both<br />

sides are out <strong>of</strong> phase; opening terminal, small.<br />

Nema<strong>to</strong>cysts: I, abundant tentacular capsule,<br />

almond-shaped, 5.5 x 1.5 µm, probably a mastigophore.<br />

II, large isorhiza, holotrichous, (40–<br />

43) x (10) µm, on hydranth body, thread well<br />

visible in un-discharged capsule. III, smaller<br />

isorhiza, (19–23) x (5–6) µm, on hydranth body.<br />

Remarks<br />

The sample identified here as S. orthogonium<br />

agreed well with <strong>the</strong> figures and dimensions<br />

given in Watson (2000) and <strong>the</strong>re can be little<br />

doubt that <strong>the</strong>y belong <strong>to</strong> <strong>the</strong> same species.<br />

Because Busk (1852) himself somewhat<br />

doubted <strong>the</strong> validity <strong>of</strong> Syn<strong>the</strong>cium orthogonium<br />

(Busk, 1852), most authors referred this species<br />

<strong>to</strong> S. patulum (Busk, 1852) (e.g., Billard 1925b,<br />

Rees & Vervoort 1987). Watson (2000) showed<br />

203<br />

that both are distinct species, although separating<br />

<strong>the</strong> two is not trivial. Syn<strong>the</strong>cium patulum is<br />

restricted <strong>to</strong> temperate waters <strong>of</strong> sou<strong>the</strong>rn and<br />

south-eastern Australia, while S. orthogonium is<br />

a species occurring in tropical waters. Living<br />

colonies <strong>of</strong> S. patulum have a characteristic reddish-purple<br />

colour, which is, however, lost in<br />

preserved material.<br />

Syn<strong>the</strong>cium campylocarpum Allman, 1888<br />

has likewise been synonymized by many authors<br />

with S. patulum and S. orthogonium (e.g., Billard<br />

1925b, Rees & Vervoort 1987). Watson (2000)<br />

re-examined type material and provided evidence<br />

that it can be distinguished from both <strong>of</strong><br />

<strong>the</strong>m, although <strong>the</strong> differences are minimal (see<br />

remarks under S. campylocarpum).<br />

There is little, except for biogeographic arguments,<br />

<strong>to</strong> distinguish Syn<strong>the</strong>cium orthogonium<br />

(Busk, 1852) from S. tubi<strong>the</strong>cum (Allman, 1877),<br />

a species <strong>of</strong> <strong>the</strong> warm Atlantic Ocean (see Calder<br />

1991 for description). The two could be indistinguishable,<br />

but not necessarily belong <strong>to</strong> <strong>the</strong> same<br />

biological species.<br />

Distribution<br />

Indonesia, nor<strong>the</strong>rn Australia, ?Queensland,<br />

?Papua New Guinea. Depth range: usually less<br />

than 100 m, one record <strong>of</strong> 400 m (Billard 1925b).<br />

Type locality: Torres Strait, Australia.<br />

Syn<strong>the</strong>cium campylocarpum Allman, 1888<br />

Fig. 55.<br />

Syn<strong>the</strong>cium campylocarpum Allman, 1888: 78, pl. 37: figs 1<br />

& 1a–c. – von Campenhausen 1896b: 310, fig. 6. –<br />

Billard 1910: 26, fig. 10. – Ralph 1958: 347, fig. 15c–g.<br />

– Watson 2000: 40, figs 30A–G, 31A–C.<br />

Syn<strong>the</strong>cium orthogonium. – Bale 1888: 767. – Bale 1924:<br />

250.<br />

Syn<strong>the</strong>cium patulum. – Millard & Bouillon 1973: 64, fig. 8J.<br />

– Millard & Bouillon 1975: 12, fig. 3C–E. [Not Syn<strong>the</strong>cium<br />

patulum (Busk, 1852)]<br />

Material examined:<br />

Kei Islands Expedition, Samalon Island, Sulawesi, Ujungpandang,<br />

Indonesia, 25 m, sandy bot<strong>to</strong>m, coll. 29 Jun 1922,<br />

one plume 6 cm and hydrocladium with male gono<strong>the</strong>cae.<br />

Differential diagnosis<br />

Like Syn<strong>the</strong>cium orthogonium, but stems larger<br />

(6 cm), stem thick, lower half <strong>of</strong> stem without<br />

hydro<strong>the</strong>cae between successive hydrocladia,


204<br />

apophyses demarcated by node; hydro<strong>the</strong>ca usually<br />

less curved (60°) with opening inclined <strong>to</strong>wards<br />

above, margin usually sinuous. Measurements:<br />

hydro<strong>the</strong>cal opening diameter 0.18–0.21<br />

mm, free adcauline part 0.28–0.31 mm, adnate<br />

part 0.50–0.55 mm. Large isorhiza (49) x (12–<br />

13) µm, smaller isorhiza 24 x 6 µm.<br />

Description <strong>of</strong> gono<strong>the</strong>ca<br />

Only male gono<strong>the</strong>cae seen, develop inside hydrocladial<br />

hydro<strong>the</strong>cae, pod-shaped, flattened,<br />

1.7 mm long, diameter in middle 0.7 mm, pedicel<br />

inserted at right angle slightly above lower end,<br />

broad sides gently undulated, upper end pointed<br />

with small opening.<br />

P. SCHUCHERT<br />

Fig. 55. Syn<strong>the</strong>cium campylocarpum Allman, 1888. A. Colony silhouette, note apical tendril on second hydrocladium on right.<br />

B. Internodes <strong>of</strong> distal part <strong>of</strong> stem. C. Typical hydro<strong>the</strong>cae. D. More rare hydro<strong>the</strong>cae with sharper bend; from same colony<br />

and scale as shown in C. E. Hydro<strong>the</strong>cal margin with typical sinuous outline. F. Pair <strong>of</strong> male gono<strong>the</strong>cae, twisted so that broad<br />

sides are in plane <strong>of</strong> view, same scale as B. – Scales: A = 1 cm; B & F = 0.5 mm; C-D = 0.2 mm; E = 0.1 mm.<br />

Female gono<strong>the</strong>cae not seen, according <strong>to</strong><br />

Ralph (1958) and Watson (2000) resembling <strong>the</strong><br />

one <strong>of</strong> S. orthogonium.<br />

Remarks<br />

The identification <strong>of</strong> this material as Syn<strong>the</strong>cium<br />

campylocarpum was largely influenced by<br />

Watson (2000), but I am not sure whe<strong>the</strong>r <strong>the</strong><br />

differences from S. orthogonium are significant<br />

or represent intraspecific variation due <strong>to</strong> larger<br />

grown colonies. The material strongly resembles<br />

S. orthogonium and <strong>the</strong> traits <strong>of</strong> <strong>the</strong> trophosome<br />

used <strong>to</strong> distinguish it from <strong>the</strong> latter species are<br />

given in <strong>the</strong> section “Differential diagnosis”.<br />

The most important differences are <strong>the</strong> larger


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

stem, <strong>the</strong> less curved hydro<strong>the</strong>cae, and <strong>the</strong> sinuous<br />

hydro<strong>the</strong>cal margin. Although <strong>the</strong>se traits<br />

generally agree with Watson’s material <strong>of</strong> S.<br />

campylocarpum, <strong>the</strong>y also show variation within<br />

<strong>the</strong> same plume that approached <strong>the</strong> characteristics<br />

<strong>of</strong> S. orthogonium. Some few hydro<strong>the</strong>cae<br />

are longer and curved for 90° (Fig. 55D), while<br />

o<strong>the</strong>r hydro<strong>the</strong>cae quite frequently lack <strong>the</strong> sinuous<br />

margin. A quite distinct difference <strong>to</strong> <strong>the</strong><br />

material identified here as S. orthogonium is<br />

<strong>the</strong> paucity <strong>of</strong> cauline hydro<strong>the</strong>cae, even in<br />

internodes bearing hydrocladia. Only more distal<br />

stem internodes have hydro<strong>the</strong>cae (Fig. 55A–B).<br />

The figures by Allman (1888) show a similar<br />

situation. However, Watson (2000) indicates that<br />

also <strong>the</strong> basal internodes <strong>of</strong> S. orthogonium may<br />

lack hydro<strong>the</strong>cae. One dimension did not agree<br />

with Watson’s measurements: <strong>the</strong> length <strong>of</strong> <strong>the</strong><br />

free adcauline side <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca. While<br />

Watson measured 0.1–0.17 mm, here 0.28–0.31<br />

mm were found. It seems that new material <strong>of</strong><br />

both species from different localities is needed <strong>to</strong><br />

evaluate <strong>the</strong>ir status.<br />

Distribution<br />

Eastern Australia, nor<strong>the</strong>rn Australia, Indonesia,<br />

Japan, ?New Zealand. Type locality: Off Sydney,<br />

Australia, 55–64 m.<br />

Family Halopterididae<br />

Antennella campanulaformis<br />

(Mulder & Trebilcock, 1909)<br />

Fig. 56.<br />

Plumularia campanulaformis Mulder & Trebilcock, 1909:<br />

31, pl. 1: figs 6, 9, 10.<br />

Plumularia campanulaformis var. dubia Mulder &<br />

Trebilcock 1911: 115, pl. 2: fig. 6.<br />

Antennella campanuliformis. – Watson 1973: 182, figs 43–<br />

44.<br />

Halopteris diaphana. – Millard & Bouillon 1973: 82, fig.<br />

10L–M.<br />

Antennella campanulaformis. – Schuchert 1997: 24, fig. 7.<br />

Material examined:<br />

Kei Islands Expedition, Banda Islands, Kombir, 70–90 m, 6<br />

Jun 1922, numerous shoots with gono<strong>the</strong>cae, on sponge and<br />

presumable polychaete tubes made <strong>of</strong> sand grains.<br />

Description<br />

Colonies erect, shoots thread-like, not branching,<br />

205<br />

Fig. 56. Antennella campanulaformis (Mulder & Trebilcock,<br />

1909). A. Part <strong>of</strong> stem with main- and intersegment. B.<br />

Lateral nema<strong>to</strong><strong>the</strong>cae and apophysis seen from outer side. C.<br />

Male gono<strong>the</strong>ca. D–F. Female gono<strong>the</strong>cae, same scale as C.<br />

– Scales: A = 0.1 mm; B = 50 µm; C–F = 0.2 mm.<br />

lacking hydrocladia, 1–1.5 cm high. S<strong>to</strong>lons<br />

creeping, tubular, ramified. Stems heteromerously<br />

segmented by alternating, distinct, oblique<br />

nodes and less distinct transverse nodes,<br />

delimiting main segments bearing a hydro<strong>the</strong>ca<br />

and intersegments without hydro<strong>the</strong>ca. First<br />

node oblique, in stem region below first node 1–<br />

3 median nema<strong>to</strong><strong>the</strong>cae, sometimes on a separate<br />

segment flanked by two oblique nodes. Main


206<br />

segment 0.8 mm long, with central hydro<strong>the</strong>ca<br />

and three nema<strong>to</strong><strong>the</strong>cae: one median inferior and<br />

two laterals. Intersegment <strong>of</strong> variable length,<br />

0.4–0.6 mm, with a single nema<strong>to</strong><strong>the</strong>ca near its<br />

distal end.<br />

Hydro<strong>the</strong>ca cylindrical <strong>to</strong> campanulate, held<br />

at an angle <strong>of</strong> 30–40° <strong>to</strong> segment axis, length<br />

abcauline side 0.25–0.27 mm, diameter <strong>of</strong> opening<br />

0.20–0.21 mm, margin sinuous, sometimes<br />

somewhat everted.<br />

Nema<strong>to</strong><strong>the</strong>cae movable. Lateral nema<strong>to</strong><strong>the</strong>cae<br />

on short, rounded apophysis. Nema<strong>to</strong><strong>the</strong>cae<br />

about 50 µm high, egg-shaped, two-chambered,<br />

upper chamber larger, walls incurved, abcauline<br />

and adcauline side with round emarginations,<br />

adcauline notch deeper and broader, reaching<br />

bot<strong>to</strong>m <strong>of</strong> upper chamber. Hydranth small, fits<br />

in<strong>to</strong> hydro<strong>the</strong>ca, about 16 tentacles.<br />

Male and female gono<strong>the</strong>cae present in same<br />

colony, <strong>of</strong>ten on same stem; if so, female gono<strong>the</strong>cae<br />

distal <strong>to</strong> male ones. Female gono<strong>the</strong>ca<br />

0.5 mm long, egg-shaped, flattened, end truncated,<br />

when mature with large convex operculum,<br />

two nema<strong>to</strong><strong>the</strong>cae near base <strong>of</strong> gono<strong>the</strong>ca,<br />

pedicel <strong>of</strong> gono<strong>the</strong>ca with one separate segment<br />

attached <strong>to</strong> an apophysis originating below hydro<strong>the</strong>cae.<br />

Female gono<strong>the</strong>cae contain one egg<br />

only. Male gono<strong>the</strong>ca 0.4 mm, egg-shaped <strong>to</strong> oblong,<br />

distal end more pointed, operculum small,<br />

one nema<strong>to</strong><strong>the</strong>ca near base.<br />

Nema<strong>to</strong>cysts: I, small tentacular capsule, 6 x 2<br />

µm. – II, microbasic mastigophore in nema<strong>to</strong>phores,<br />

(16–18) x (5) µm, almond-shaped, discharged<br />

shaft 0.7 times <strong>the</strong> capsule length.<br />

Remarks<br />

Antennella campanulaformis has recently been<br />

reported <strong>to</strong> occur in <strong>the</strong> north-eastern Atlantic<br />

(Ansín Agís, Ramil & Vervoort 2001), but Peña<br />

Cantero & Garcìa Carrascosa (2002) referred this<br />

population <strong>to</strong> a new species, Antennella ansini.<br />

The main character <strong>to</strong> distinguish A. ansini from<br />

A. campanulaformis is <strong>the</strong> occurrence <strong>of</strong> male<br />

and female gono<strong>the</strong>cae on separate stems.<br />

Distribution<br />

Australia, Seychelles, Indonesia (new record).<br />

Depth range 1–90 m. Type locality: Barwon<br />

Heads, Vic<strong>to</strong>ria, Australia.<br />

P. SCHUCHERT<br />

Antennella secundaria (Gmelin, 1791)<br />

Fig. 57.<br />

Sertularia secundaria Gmelin, 1791: 3856.<br />

Plumularia secundaria. – Pictet 1893: 53, pl. 2: fig. 26.<br />

Antennella secundaria. – Billard 1913: 8, fig. 1, pl. 1: figs 1–<br />

3. – Stechow & Müller 1923: 473. – Mammen 1967: 296,<br />

fig. 93. – Millard & Bouillon 1973: 77, fig. 10E. –<br />

Millard 1975: 332, fig. 107F–L. – Vervoort & Vasseur<br />

1977: 64, fig. 28. – Calder 1997: 29, fig. 7, synonymy. –<br />

Ryland & Gibbons 1991: 525, fig. 1. – Cornelius 1995b:<br />

121, fig. 28 A–C, E–G, not D. – Hirohi<strong>to</strong> 1995: 236, fig.<br />

79a–c. – Schuchert 1997: 14, figs 3–4, synonymy. –<br />

Watson 1997: 522, fig. 6A–B. – Watson 2000: 45, fig.<br />

34A–D. – Ansín Agís, Ramil & Vervoort 2001: 140, fig.<br />

63, bib-liography.<br />

Material examined:<br />

Kei Islands Expedition stations: 65, male and female gono<strong>the</strong>cae<br />

present. – 67, on Diphasia digitalis, no gono<strong>the</strong>cae. –<br />

68, on hydroids, no gono<strong>the</strong>cae. – 71, on sponge and s<strong>to</strong>lons<br />

<strong>of</strong> o<strong>the</strong>r hydroids, no gono<strong>the</strong>cae. – 90, on hydroids, with<br />

female and male gono<strong>the</strong>cae, two samples. – 104, on<br />

hydroids, male and female gono<strong>the</strong>cae present. – 106, on<br />

hydroids, no gono<strong>the</strong>cae. – 107, on Bryozoa, no gono<strong>the</strong>cae.<br />

– 110, on hydroids, no gono<strong>the</strong>cae. – 111, only female<br />

gono<strong>the</strong>cae present. – Kei Islands Expedition, 5.12°S,<br />

119.34°W, Ujungpandang, Samalon Island, 35 m, 28 Jun<br />

1922, on Bivalvia, no gono<strong>the</strong>cae. – MNHG INVE 25024,<br />

Bay <strong>of</strong> Ambon, Moluccas, material <strong>of</strong> Pictet (1893, as<br />

Plumularia secundaria), no gono<strong>the</strong>cae. – MHNG INVE<br />

32969, Banyuls-sur-Mer, France, Mediterranean, 15 May<br />

2002, 62 m, on Protula sp., female gono<strong>the</strong>cae distal <strong>to</strong> male<br />

ones, living colony yellow-greenish.<br />

Description<br />

Colonies erect, shoots thread-like, lacking hydrocladia,<br />

mostly unbranched, fertile stems 0.8–<br />

2 cm high. S<strong>to</strong>lons tubular, ramified. Basal part<br />

<strong>of</strong> stem without hydro<strong>the</strong>cae, stem above basal<br />

part heteromerously segmented by alternating<br />

oblique and transverse nodes. Main segments<br />

with hydro<strong>the</strong>ca and four nema<strong>to</strong><strong>the</strong>cae: one<br />

median inferior, two lateral <strong>of</strong> hydro<strong>the</strong>ca, and<br />

one axillary behind hydro<strong>the</strong>ca. Main segment<br />

quite short, hydro<strong>the</strong>ca project beyond transverse<br />

node. Intersegments mostly with two<br />

nema<strong>to</strong><strong>the</strong>cae, rarely some segments with three,<br />

length variable within and between stems.<br />

Hydro<strong>the</strong>ca cup-shaped, walls in side view<br />

ra<strong>the</strong>r straight, converging <strong>to</strong>wards below, margin<br />

sinuous, opening forming an angle <strong>of</strong> 45 <strong>to</strong><br />

55° with <strong>the</strong> main axis, adcauline side adnate for<br />

half <strong>of</strong> its length or less, length <strong>of</strong> abcauline side<br />

0.19–0.26 mm, opening diameter 0.20–0.23 mm.<br />

Nema<strong>to</strong><strong>the</strong>cae all two-chambered. Median inferior<br />

nema<strong>to</strong><strong>the</strong>cae with adcauline wall <strong>of</strong> upper


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 57. Antennella secundaria (Gmelin, 1791); A-D, station 104, colonies having short lateral nema<strong>to</strong><strong>the</strong>cae only; E–G,<br />

colonies with long lateral nema<strong>to</strong><strong>the</strong>cae, E & G, station 90, F, station 67. A. Part <strong>of</strong> stem with main- and intersegment. B. Two<br />

lateral nema<strong>to</strong><strong>the</strong>cae and apophysis, left one seen from inner side, right one in side view. C. Female and male gono<strong>the</strong>cae. D.<br />

Basal part <strong>of</strong> a branched stem. E. Part <strong>of</strong> stem, main- and intersegment, same scale as A. F. Size variation <strong>of</strong> lateral<br />

nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> single stem, same scale as B. G. Gono<strong>the</strong>cae, same scale as C. – Scales: A, E = 0.1 mm; B, F = 50 µm; C, G<br />

= 0.2 mm; D = 0.5 mm.<br />

207


208<br />

chamber much lowered. Lateral nema<strong>to</strong><strong>the</strong>cae<br />

on long apophysis, conical, walls straight and not<br />

incurved, adcauline wall <strong>of</strong> upper chamber lowered,<br />

sometimes bilabiate; length <strong>of</strong> laterals very<br />

variable even within <strong>the</strong> same stem, usually 0.07<br />

mm and not reaching beyond hydro<strong>the</strong>cal rim but<br />

in Indonesian material frequently longer, sometimes<br />

up 0.3 mm long. Axillary nema<strong>to</strong><strong>the</strong>ca<br />

ra<strong>the</strong>r variably developed, one side reduced.<br />

Gono<strong>the</strong>cae <strong>of</strong> both sexes can occur on <strong>the</strong><br />

same stem, developing below hydro<strong>the</strong>cae, male<br />

gono<strong>the</strong>cae ei<strong>the</strong>r below female ones, above<br />

<strong>the</strong>m, or mixed. Female gono<strong>the</strong>ca 0.6–0.8 mm<br />

long, diameter 0.4 mm, end truncate with large<br />

convex lid, pedicel segmented, near bas <strong>of</strong> gono<strong>the</strong>ca<br />

2 nema<strong>to</strong><strong>the</strong>cae. Male gono<strong>the</strong>ca 0.3–0.4<br />

mm, distal end more rounded and with small<br />

aperture, at base 1–2 nema<strong>to</strong><strong>the</strong>cae.<br />

Nema<strong>to</strong>cysts: I, small tentacular capsule. II,<br />

larger mastigophore in nema<strong>to</strong>phores, (16–20) x<br />

(5.5–7) µm.<br />

Remarks<br />

Antennella secundaria is a well known, almost<br />

cosmopolitan species, and its taxonomy has been<br />

treated recently by several authors (see synonymy<br />

list above).<br />

The study <strong>of</strong> <strong>the</strong> specimen here assigned <strong>to</strong><br />

Antennella secundaria, however, brought up<br />

several problems. While some colonies have<br />

only short lateral nema<strong>to</strong><strong>the</strong>cae as seen in European<br />

populations (Fig. 57A–B), o<strong>the</strong>rs have numerous<br />

very long lateral nema<strong>to</strong><strong>the</strong>cae that reach<br />

far beyond <strong>the</strong> rim <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca (Fig. 57E–<br />

F). The same stems bearing <strong>the</strong>se extremely long<br />

nema<strong>to</strong><strong>the</strong>cae invariably also have short nema<strong>to</strong><strong>the</strong>cae<br />

and all intermediate lengths. Sometimes<br />

<strong>the</strong>re is even a long and a short nema<strong>to</strong><strong>the</strong>ca<br />

flanking <strong>the</strong> same hydro<strong>the</strong>ca. Such long lateral<br />

nema<strong>to</strong><strong>the</strong>cae have also been observed by Billard<br />

(1913, Indonesia), Millard (1975, South Africa),<br />

Rees & Vervoort (1987, Zanzibar). All <strong>the</strong>se<br />

authors regarded <strong>the</strong>m as variants <strong>of</strong> one species<br />

only. Billard (1913) thought that <strong>the</strong> long nema<strong>to</strong><strong>the</strong>cae<br />

could be regenerated ones. Mammen<br />

(1967) thought that Billard’s material with long<br />

nema<strong>to</strong><strong>the</strong>cae belonged <strong>to</strong> a different species and<br />

he tentatively allocated <strong>the</strong>m <strong>to</strong> A. allmani Armstrong,<br />

1879.<br />

P. SCHUCHERT<br />

I was unable <strong>to</strong> find any o<strong>the</strong>r significant<br />

character that co-varied reliably with <strong>the</strong> presence<br />

<strong>of</strong> long lateral nema<strong>to</strong><strong>the</strong>cae and thus prefer<br />

<strong>the</strong> hypo<strong>the</strong>sis that only one species is present.<br />

The stems having long nema<strong>to</strong><strong>the</strong>cae never<br />

showed any branching, while those with short<br />

nema<strong>to</strong><strong>the</strong>cae occasionally have branched stems<br />

(see below). This correlation could, however, be<br />

purely coincidental.<br />

The respective position <strong>of</strong> <strong>the</strong> male and female<br />

gono<strong>the</strong>cae is ano<strong>the</strong>r problem. In Mediterranean<br />

(type locality) and South African populations,<br />

<strong>the</strong> male gono<strong>the</strong>cae are below <strong>the</strong> female<br />

ones. These observations are based on very<br />

few observations and it is not clear how variable<br />

this arrangement is. Watson (2000) found in an<br />

o<strong>the</strong>rwise typical specimen from nor<strong>the</strong>rn Australia<br />

a reversed order. A mixed arrangement was<br />

reported by Ryland & Gibbons (1991) in material<br />

from Fiji and by Hirohi<strong>to</strong> (1995, fig. 79c) in a<br />

Japanese specimen. In <strong>the</strong> material examined<br />

here, colonies with short nema<strong>to</strong><strong>the</strong>cae had ei<strong>the</strong>r<br />

<strong>the</strong> male gono<strong>the</strong>cae below <strong>the</strong> female ones, or<br />

<strong>the</strong>y were mixed. In one colony having long<br />

lateral nema<strong>to</strong><strong>the</strong>cae <strong>the</strong> male gono<strong>the</strong>cae were<br />

distal <strong>to</strong> <strong>the</strong> female ones. It seems thus that at least<br />

Pacific populations <strong>of</strong> A. secundaria have a variable<br />

<strong>the</strong> arrangement <strong>of</strong> <strong>the</strong> male and female<br />

gono<strong>the</strong>cae in monoecious stems.<br />

Some stems examined in this study were<br />

branched 2–3 times (Fig. 57D). The observed<br />

branching pattern is characteristic for <strong>the</strong> genus<br />

Monostaechas (see Schuchert 1997). Identical<br />

branched stems have also been described by<br />

Billard (1913), Millard & Bouillon (1973),<br />

Watson (1975), Vervoort & Vasseur (1977),<br />

Ryland & Gibbons (1991), and Calder (1997).<br />

The “Monostaechas”-like branching seems thus<br />

<strong>to</strong> be a characteristic trait <strong>of</strong> most populations<br />

<strong>of</strong> A. secundaria. Billard (1913) noted that <strong>the</strong><br />

branching <strong>of</strong> A. secundaria and Monostaechas<br />

are different in that in <strong>the</strong> latter species a new axis<br />

is formed by <strong>the</strong> successive basal stem segments.<br />

I think this is not really tenable and that <strong>the</strong>re is no<br />

fundamental difference. This renders Monostaechas<br />

quadridens (McCrady, 1859) only gradually<br />

different from A. secundaria. While it is<br />

absolutely justified <strong>to</strong> regard M. quadridens as a<br />

distinct species, <strong>the</strong> validity <strong>of</strong> <strong>the</strong> genus Monostaechas,<br />

however, is clearly undermined. The


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

same problem exists for <strong>the</strong> genus Halopteris and<br />

a new discussion on generic limits in <strong>the</strong> family<br />

Halopterididae is needed. As a fur<strong>the</strong>r difference<br />

it was found that <strong>the</strong> Indonesian specimen had<br />

mastigophores that are nearly twice as long as<br />

<strong>the</strong> ones found in specimens from Europe (cf.<br />

Schuchert 1997).<br />

Distribution<br />

Cosmopolitan species with a distinct preference<br />

for temperate and tropical waters, occurring from<br />

<strong>the</strong> subtidal zone down <strong>to</strong> 1250 m. Type locality:<br />

Mediterranean.<br />

Halopteris plagiocampa (Pictet, 1893)<br />

Fig. 58.<br />

Plumularia plagiocampa Pictet, 1893: 56, pl. 3: fig. 50. –<br />

Billard 1913: 31, fig. 23. – Jäderholm, 1919: 21.<br />

Halopteris plagiocampa. – Schuchert 1997: 117, fig. 42. –<br />

Watson 2000: 47, fig. 36A–C.<br />

Type material examined:<br />

MHNG INVE 25021, holotype <strong>of</strong> Plumularia plagiocampa,<br />

slide preparation.<br />

Material examined:<br />

Kei Islands Expedition station 11, infertile, on sponge. – Kei<br />

Islands Expedition Samalon Island, Ujungpandang, Sulawesi,<br />

28 Jun 1922, 35 m, infertile, on polychaete tube.<br />

Description<br />

Colonies erect, pinnate, hydrocladia in opposite<br />

pairs, stems 1–2 cm high. Stem monosiphonic,<br />

straight, unbranched, with basal part devoid <strong>of</strong><br />

hydro<strong>the</strong>cae and hydrocladia and a longer distal<br />

part. This distal part homomerously segmented<br />

by transverse nodes, in terminal region sometimes<br />

heteromerously segmented through an oblique<br />

node below hydro<strong>the</strong>ca. Each cauline segment<br />

with a hydro<strong>the</strong>ca at its distal end, hydro<strong>the</strong>ca<br />

flanked by two opposite apophyses for<br />

<strong>the</strong> hydrocladia; three nema<strong>to</strong><strong>the</strong>cae in association<br />

with <strong>the</strong> hydro<strong>the</strong>ca: two lateral and one<br />

median inferior; below cauline hydro<strong>the</strong>ca on <strong>the</strong><br />

fused intersegment 3–4 median nema<strong>to</strong><strong>the</strong>cae.<br />

Up <strong>to</strong> 16 hydrocladia per side. Apophysis<br />

followed by a short, quadrangular segment, both<br />

lacking a nema<strong>to</strong><strong>the</strong>ca. Remaining part <strong>of</strong> hydrocladium<br />

heteromerously segmented by alternating<br />

oblique and transverse nodes, <strong>of</strong>ten with<br />

a quadrangular segment without nema<strong>to</strong><strong>the</strong>cae<br />

209<br />

Fig. 58. Halopteris plagiocampa (Pictet, 1893); station 11.<br />

A. Stem segment and proximal parts <strong>of</strong> hydrocladia. B.<br />

Repeated unit <strong>of</strong> hydrocladium (main- and intersegment). C.<br />

Lateral nema<strong>to</strong><strong>the</strong>ca seen from inner side. – Scales: A = 0.2<br />

mm; B = 0.1 mm; C = 50 µm.<br />

intercalating between main- and intersegments.<br />

Intersegments proximal <strong>to</strong> main segment, with a<br />

single median nema<strong>to</strong><strong>the</strong>ca. Main segments with<br />

three nema<strong>to</strong><strong>the</strong>cae: one median inferior and a<br />

pair <strong>of</strong> laterals.<br />

Hydro<strong>the</strong>ca cup-shaped, placed in middle <strong>of</strong><br />

main segment, margin reaches <strong>to</strong> distal end <strong>of</strong><br />

segment, rear- and frontal wall quite straight and<br />

roughly parallel in side view. Hydro<strong>the</strong>ca adnate<br />

for about half its length, rim smooth and flat,<br />

opening forming an angle <strong>of</strong> about 40 <strong>to</strong> 50° with<br />

hydrocladial axis. Depth <strong>of</strong> hydro<strong>the</strong>ca 0.12 mm,<br />

diameter 0.15 mm.<br />

Nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> stem and hydrocladia all<br />

two-chambered and movable. Median inferior<br />

nema<strong>to</strong><strong>the</strong>ca <strong>of</strong> main segments conical, adcauline<br />

wall <strong>of</strong> upper chamber lowered. Lateral nema<strong>to</strong><strong>the</strong>cae<br />

on very short pedicel or pedicel lacking,<br />

conical, walls straight, rim deeply emarginated<br />

on inner side. Nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> inter-


210<br />

segments similar <strong>to</strong> median inferior but with<br />

longer lower chamber.<br />

Gono<strong>the</strong>cae absent in present material, see<br />

Schuchert (1997) for a description and figures.<br />

Remarks<br />

The type material <strong>of</strong> Halopteris plagiocampa<br />

(Pictet, 1893) was recently located (see Schuchert<br />

1997) and was re-examined for this study.<br />

The new material from <strong>the</strong> Kei Islands Expedition<br />

was indistinguishable from <strong>the</strong> type material.<br />

My previous description <strong>of</strong> <strong>the</strong> stem segmentation<br />

(Schuchert 1997) is not entirely correct.<br />

Nearly <strong>the</strong> whole stem is segmented by transverse<br />

nodes only, except for <strong>the</strong> most distal part<br />

where an oblique node below <strong>the</strong> hydro<strong>the</strong>ca can<br />

delimit an intersegment. In <strong>the</strong> homomerously<br />

segmented part <strong>of</strong> <strong>the</strong> stem, <strong>the</strong> intersegments are<br />

thus fused <strong>to</strong> <strong>the</strong> lower end <strong>of</strong> <strong>the</strong> main segments.<br />

Contrary <strong>to</strong> <strong>the</strong> previously examined material,<br />

<strong>the</strong> lateral nema<strong>to</strong><strong>the</strong>cae in <strong>the</strong> present material<br />

and <strong>the</strong> type specimen had deep emarginations<br />

on <strong>the</strong> adcauline side. Such a variation, however,<br />

is quite usual in this family.<br />

Distribution<br />

Indonesia, Japan, nor<strong>the</strong>rn Australia. Type locality:<br />

Bay <strong>of</strong> Ambon, Moluccas, Indonesia, zone <strong>of</strong><br />

corals (Pictet 1893).<br />

Family Plumulariidae<br />

Plumularia badia Kirchenpauer, 1876<br />

Fig. 59.<br />

Plumularia badia Kirchenpauer, 1876: 34, 45, pl. 1: figs 3–<br />

4, pl. 4: fig. 3. – Bale 1884: 128, pl. 18: figs 1–2. –<br />

Stechow & Müller 1923: 473. – Vervoort 1941: 221. –<br />

Watson 2000: 51, fig. 39A–E.<br />

Plumularia ramsayi Bale, 1884: 131, pl. 11: figs 3–4. –<br />

Billard 1913: 52. – Vervoort 1941: 221.<br />

Plumularia gracilis von Lendenfeld, 1885: 476, pl. 14: fig.<br />

17, pl. 17: figs 28–29.<br />

Material examined:<br />

Kei Islands Expedition stations: 71, several stems, without<br />

gono<strong>the</strong>cae. – 104, with gono<strong>the</strong>cae. – Kei Islands Expedition,<br />

Samalon Island near Ujungpandang, Sulawesi, 35 m,<br />

28 Jun 1922, with gono<strong>the</strong>cae, on shell fragment.<br />

P. SCHUCHERT<br />

Fig. 59. Plumularia badia Kirchenpauer, 1876; A–B station<br />

71; D station 104. A. Part <strong>of</strong> colony. B. Branch with apophysis<br />

and part <strong>of</strong> hydrocladium. C. Internode <strong>of</strong> hydrocladium.<br />

D. Gono<strong>the</strong>ca, perhaps not fully grown yet, same<br />

scale as B. – Scales: A = 1 cm; B = 0.1 mm; C = 50 µm.<br />

Description<br />

Colonies up <strong>to</strong> 8 cm high, multi-pinnate, stems<br />

monosiphonic, stiff, branches opposite or alternate,<br />

in one plane. Stem and branches bear alternate<br />

hydrocladia. Stem and branches without<br />

nodes, without hydro<strong>the</strong>cae, with long apophyses<br />

for hydrocladia (0.18 mm). Three nema<strong>to</strong><strong>the</strong>cae<br />

associated with each apophysis: two on<br />

apophysis, one close <strong>to</strong> base.<br />

Hydrocladia relatively short and very thin, all<br />

in plane <strong>of</strong> branches and stem, length quite uniform,<br />

with up <strong>to</strong> 10 hydro<strong>the</strong>cae, homomerously


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

segmented by oblique nodes, segments about 0.3<br />

mm long, all segments with a hydro<strong>the</strong>ca and<br />

three nema<strong>to</strong><strong>the</strong>cae: one below and two lateral <strong>to</strong><br />

hydro<strong>the</strong>ca. Internode with internal ribs, variably<br />

developed: one at each end, one below median<br />

nema<strong>to</strong><strong>the</strong>ca, one at base <strong>of</strong> hydro<strong>the</strong>ca.<br />

Hydro<strong>the</strong>ca cup-shaped, depth 64–80 µm,<br />

placed centrally on internode, adcauline side<br />

adnate, abcauline wall at an angle <strong>of</strong> about 30° <strong>to</strong><br />

internode axis, straight or with slight curvature,<br />

hydro<strong>the</strong>cal margin sinuate, distinctly lowered<br />

<strong>to</strong>wards internode.<br />

All nema<strong>to</strong><strong>the</strong>cae two-chambered and movable,<br />

conical, walls straight, rim not incurved,<br />

adcauline wall <strong>of</strong> upper chamber emarginated.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca not reaching <strong>to</strong> hydro<strong>the</strong>ca,<br />

on prominence <strong>of</strong> internode. Lateral<br />

nema<strong>to</strong><strong>the</strong>cae almost as big as depth <strong>of</strong> hydro<strong>the</strong>ca.<br />

Gono<strong>the</strong>cae inserted without pedicel in upper<br />

axil <strong>of</strong> apophyses, small (0.2 mm), conical, distally<br />

truncated, terminal orifice oval, perisarc<br />

thin.<br />

Colour: Stem and branches deep brown, hydrocladia<br />

white.<br />

Distribution<br />

Indonesia, tropical and subtropical coast <strong>of</strong> Australia<br />

(Watson 2000). Type localities: Brisbane<br />

and Singapore.<br />

Plumularia habereri Stechow, 1909<br />

Fig. 60<br />

Plumularia habereri Stechow, 1909: 77, pl. 6: fig. 4. –<br />

Stechow 1913: 91, figs 59–60. – van Gemerden-Hoogeeven<br />

1965: 60, figs 34–36. – Ryland & Gibbons 1991:<br />

532: fig. 5.<br />

Plumularia habereri var. attenuata Billard, 1913: 42, fig.<br />

34.<br />

Plumularia habereri var. elongta Billard, 1913: 44, figs 35–<br />

37.<br />

Plumularia habereri var. subarmata Billard, 1913: 45, fig.<br />

38.<br />

Plumularia habereri var. mediolineata Billard, 1913: 45,<br />

fig. 39, pl. 3: fig. 31.<br />

Plumularia habereri var. mucronata Billard, 1913: 46, fig.<br />

40, pl. 2: fig. 24.<br />

Denti<strong>the</strong>ca habereri. – Hirohi<strong>to</strong> 1995: 259, fig. 87a–c.<br />

Material examined:<br />

Kei Islands Expedition, Waling, Banda Islands, 10 m, 15 Jun<br />

1922, fragmented plume with gono<strong>the</strong>cae. – Kei Islands<br />

211<br />

Fig. 60. Plumularia habereri Stechow, 1909; A–D, Banda<br />

Islands; E, Samalon Island. A. Colony silhouette (damaged).<br />

B. Part <strong>of</strong> branch with apophysis. C. Branch with gono<strong>the</strong>ca,<br />

same scale as B. D. Two hydro<strong>the</strong>cae from same hydrocladium;<br />

note variability. E. Hydrocladial internode <strong>of</strong> juvenile<br />

colony, same scale as D. – Scales: A = 2 cm; B, C = 0.2<br />

mm; D, E = 0.1 mm.<br />

Expedition, Samalon Island near Ujungpandang, Sulawesi,<br />

35 m, 28 Jun 1922, juvenile colony, <strong>to</strong>ge<strong>the</strong>r with P. badia.<br />

Description<br />

Colonies 5–25 cm high, multi-pinnate, up <strong>to</strong>


212<br />

fourth order branching, roughly in one plane,<br />

stem and branches polysiphonic, thinning <strong>to</strong><br />

monosiphonic in distal regions. Stem and<br />

branches in polysiphonic parts composed <strong>of</strong> an<br />

embedded main tube and auxiliary tubes. Main<br />

tube originally with alternate hydrocladia, but<br />

<strong>the</strong>se <strong>of</strong>ten broken <strong>of</strong>f in older parts. Branches<br />

originating from auxiliary tubes, auxiliary tubes<br />

bearing nema<strong>to</strong><strong>the</strong>cae. Stem and branches without<br />

nodes in large colonies, homomerously segmented<br />

in juveniles, with alternate apophyses for<br />

hydrocladia, without hydro<strong>the</strong>cae. In segmented<br />

stems two hydrocladia per internode. Two nema<strong>to</strong><strong>the</strong>cae<br />

associated with each apophysis, additional<br />

nema<strong>to</strong><strong>the</strong>cae present on stem and<br />

branches.<br />

Hydrocladia with up <strong>to</strong> 15 hydro<strong>the</strong>cae, nodes<br />

ei<strong>the</strong>r mostly absent or homomerously segmented<br />

by transverse nodes, each hydro<strong>the</strong>ca and<br />

associated with three nema<strong>to</strong><strong>the</strong>cae: one below<br />

and two lateral <strong>to</strong> hydro<strong>the</strong>ca. Hydrocladium <strong>of</strong>ten<br />

with numerous, evenly spaced, thick internal<br />

ribs formed by annular thickenings, some regions<br />

with no or only weakly developed ribs.<br />

Hydro<strong>the</strong>ca tubular, abcauline wall 0.25–0.3<br />

mm, straight and parallel <strong>to</strong> hydrocladial axis,<br />

adcauline side completely adnate, shorter than<br />

abcauline side, margin <strong>the</strong>refore much lowered<br />

on adcauline side, lateral rim with two broad and<br />

shallow lobes, on inside <strong>of</strong> abcauline wall frequently<br />

a transverse semicircular perisarc thickening,<br />

rim on adcauline side with thickened perisarc.<br />

All nema<strong>to</strong><strong>the</strong>cae two-chambered and movable,<br />

conical, walls straight, rim not incurved,<br />

adcauline wall <strong>of</strong> upper chamber emarginated,<br />

lower chamber longer than upper one. Median<br />

inferior nema<strong>to</strong><strong>the</strong>ca far below hydro<strong>the</strong>ca, not<br />

reaching hydro<strong>the</strong>ca, on distinct prominence <strong>of</strong><br />

internode. Lateral nema<strong>to</strong><strong>the</strong>cae inserted near<br />

rim <strong>of</strong> hydro<strong>the</strong>ca, about 70 µm high.<br />

Female gono<strong>the</strong>ca inserted in upper axil <strong>of</strong><br />

apophyses, 0.3 high mm, <strong>to</strong>p-shaped (turbinate),<br />

end flat, wall straight, no pedicel. Male gono<strong>the</strong>cae<br />

not seen<br />

Remarks<br />

The Indonesian population <strong>of</strong> Plumularia habereri<br />

is very variable and Billard (1913) proposed<br />

P. SCHUCHERT<br />

a number <strong>of</strong> nominal variants. Because <strong>the</strong>y are<br />

sympatric, <strong>the</strong>se variants are not subspecies, but<br />

represent phenotypic or genotypic variability.<br />

Most <strong>of</strong> <strong>the</strong>m are quite unlike <strong>the</strong> form from <strong>the</strong><br />

original location in Japan (Stechow 1909, Hirohi<strong>to</strong><br />

1995), from <strong>the</strong> Caribbean (van Gemerden-<br />

Hogeveen 1965), or from Fiji (Ryland & Gibbons<br />

1991). The material examined here clearly<br />

matched Plumularia habereri var. mediolineata<br />

Billard, 1913 as most hydro<strong>the</strong>cae had an internal<br />

perisarc thickening (Fig. 60D). Some hydro<strong>the</strong>cae<br />

<strong>of</strong> <strong>the</strong> same stem or even hydrocladium,<br />

however, lacked this thickening and more approached<br />

<strong>the</strong> variant elongata. The more juvenile<br />

colony also corresponded <strong>to</strong> <strong>the</strong> form elongata<br />

(Fig. 60E). Only few specimens <strong>of</strong> all <strong>the</strong>se variants<br />

are known and more material is needed <strong>to</strong><br />

fur<strong>the</strong>r evaluate <strong>the</strong> validity <strong>of</strong> all <strong>of</strong> <strong>the</strong>m. Some,<br />

especially <strong>the</strong> form described above, could prove<br />

<strong>to</strong> be separate species.<br />

Distribution<br />

Japan, Indonesia, Caribbean Sea. Type locality:<br />

Between I<strong>to</strong> and Hatsushima Islands, Sagami<br />

Bay, Japan.<br />

Plumularia scabra Lamarck, 1816<br />

Fig. 61.<br />

Plumularia scabra Lamarck, 1816; 127. – Billard 1907: 322.<br />

– Billard 1913: 47. – Watson 2000: 52, fig. 40A–E.<br />

Plumularia effusa Busk, 1852: 400. – Kirchenpauer 1876:<br />

46, pl. 1: fig. 4, pl. 5: fig. 4. – Bale 1884: 129, pl. 18: fig.<br />

5.<br />

Acan<strong>the</strong>lla effusa. – Allman 1883: 27, pl. 6: figs 1–4. – von<br />

Campenhausen 1896b: 315. – Stechow & Müller 1923:<br />

474.<br />

Material examined:<br />

Kei Islands Expedition stations: 67, with gono<strong>the</strong>cae. – 72,<br />

large cluster <strong>of</strong> 25 cm high stems. – 106, with gono<strong>the</strong>cae. –<br />

107.<br />

Description<br />

Colonies 5–25 cm high, comprising many stems,<br />

multi-pinnate, up <strong>to</strong> third-order branching, sidebranches<br />

in verticels and not in one plane, stem<br />

and branches monosiphonic, quite rigid, all bearing<br />

alternate hydrocladia, hydrocladia in older<br />

parts usually lost, branches <strong>of</strong> lower part <strong>of</strong> stem<br />

usually broken <strong>of</strong>f. Stem and branches without<br />

nodes, with long apophyses for hydrocladia (0.12


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 61. Plumularia scabra (Lamarck, 1816); A, station 72;<br />

B–D, station 106. A. Colony silhouette, height 13 cm. B. Part<br />

<strong>of</strong> hydrocaulus (branch) with apophysis, scale bar 0.1 mm.<br />

C. Segment <strong>of</strong> hydrocladium. D. Gono<strong>the</strong>cae. – Scales: B =<br />

0.1 mm; C = 50 µm; D = 0.2 mm.<br />

213<br />

mm), only in most distal portions with oblique<br />

nodes, each segment with two apophyses, without<br />

hydro<strong>the</strong>cae. Two <strong>to</strong> three nema<strong>to</strong><strong>the</strong>cae associated<br />

with each apophysis: one or two on<br />

apophysis, one close <strong>to</strong> base.<br />

Hydrocladia with up <strong>to</strong> 15 hydro<strong>the</strong>cae, homomerously<br />

segmented by oblique nodes, segments<br />

about 0.25 mm long, all segments with<br />

hydro<strong>the</strong>ca and three nema<strong>to</strong><strong>the</strong>cae: one below<br />

and two lateral <strong>to</strong> hydro<strong>the</strong>ca. Internode with<br />

internal ribs, variably developed: one at each<br />

end, one at rear wall <strong>of</strong> hydro<strong>the</strong>ca, one curved<br />

between hydro<strong>the</strong>ca and median inferior nema<strong>to</strong><strong>the</strong>ca.<br />

Several terminal hydrocladia <strong>of</strong> some<br />

branches <strong>of</strong>ten replaced by thorn-like growth <strong>of</strong><br />

<strong>the</strong> apophysis bearing a nema<strong>to</strong><strong>the</strong>ca.<br />

Hydro<strong>the</strong>ca cup-shaped, depth 0.13 mm, centrally<br />

placed on internode, adcauline side adnate,<br />

abcauline wall strongly S-shaped, adcauline wall<br />

convex, hydro<strong>the</strong>cal margin with two broad,<br />

rounded lateral lobes.<br />

All nema<strong>to</strong><strong>the</strong>cae two-chambered and movable,<br />

conical, walls straight, rim not incurved,<br />

adcauline wall <strong>of</strong> upper chamber emarginated,<br />

lower chamber longer than upper one. Median<br />

inferior nema<strong>to</strong><strong>the</strong>ca immediately below hydro<strong>the</strong>ca,<br />

reaching beyond middle <strong>of</strong> hydro<strong>the</strong>ca,<br />

not on distinct prominence <strong>of</strong> internode. Lateral<br />

nema<strong>to</strong><strong>the</strong>cae inserted near rim <strong>of</strong> hydro<strong>the</strong>ca,<br />

about 70 µm high.<br />

Gono<strong>the</strong>ca inserted in upper axil <strong>of</strong> apophyses,<br />

0.5 mm, ovoid, flattened, distal end truncated<br />

and oblique, orifice slit-like.<br />

Remarks<br />

See under Polyplumaria cornuta.<br />

Distribution<br />

Nor<strong>the</strong>rn Australia, Singapore, Philippines, Indonesia.<br />

Type locality: “South Seas” (Lamarck,<br />

1816).<br />

Polyplumaria cornuta (Bale, 1884)<br />

Fig. 62.<br />

Plumularia cornuta Bale, 1884: 132, pl. 11: figs 1–2.<br />

Polyplumaria cornuta. – Billard 1913: 53, figs 65–66, pl. 3:<br />

fig. 33, pl. 4: 35–36. – Watson 2000: 56, fig. 44A–F.<br />

Polyplumaria cornuta var. longispina Billard, 1913: 56, fig.<br />

67.


214<br />

Material examined:<br />

Kei Islands Expedition stations: 53, with gono<strong>the</strong>cae. – 63,<br />

with long hydrocladia. – 65. – 66. – 67, with gono<strong>the</strong>cae. –<br />

69. – 72. – 83. – 90. – 102. – 103. – 112.<br />

Description<br />

Colonies forming solitary stems, stems very slender<br />

and limp, monosiphonic, reaching heights <strong>of</strong><br />

20 cm and more, branched, multi-pinnate, stems<br />

with relatively short branches, <strong>the</strong>se branches not<br />

branched again, thus branching order being first<br />

degree only, branches arranged helically around<br />

stem in upper half. Stem with hydrocladia, ei<strong>the</strong>r<br />

P. SCHUCHERT<br />

Fig 62. Polyplumaria cornuta (Bale, 1884); A, station 66; B–D, station 72; E, station 53. A. Colony silhouette. B. Oblique view<br />

<strong>of</strong> apophysis, base <strong>of</strong> hydrocladium and modified secondary hydrocladium, circle on apophysis is scar from broken-<strong>of</strong>f<br />

gono<strong>the</strong>ca. C. Modified secondary hydrocladium with additional hydro<strong>the</strong>cate segment at end, same scale as B. D.<br />

Hydrocladial internode in side view. E. Gono<strong>the</strong>ca. – Scales: A = 1 cm; B, C = 0.1 mm; D = 50 µm; E = 0.2 mm.<br />

in two lateral rows or in verticels, <strong>of</strong>ten broken<br />

<strong>of</strong>f. S<strong>to</strong>lons root-like, anchored in mobile substrata.<br />

Terminal apophyses never modified in<strong>to</strong><br />

thorn-like process.<br />

Hydrocladia on branches in two rows, origin<br />

shifted <strong>to</strong> upper side, with up <strong>to</strong> 10 hydro<strong>the</strong>cae,<br />

homomerously segmented by oblique nodes,<br />

segments about 0.2 mm long, all segments with<br />

hydro<strong>the</strong>ca and three nema<strong>to</strong><strong>the</strong>cae: one below<br />

and two lateral <strong>to</strong> hydro<strong>the</strong>ca. Proximal part <strong>of</strong><br />

hydrocladium <strong>of</strong>ten strongly modified, fused <strong>to</strong><br />

apophysis, bifurcated, one normal hydrocladium<br />

and one branch with a basal hydro<strong>the</strong>ca and <strong>the</strong>n


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

tapering in<strong>to</strong> pointed horn-like process with a<br />

nema<strong>to</strong><strong>the</strong>ca, sometimes on <strong>to</strong>p <strong>of</strong> this secondary<br />

hydrocladium an additional terminal segment<br />

bearing a hydro<strong>the</strong>ca and nema<strong>to</strong><strong>the</strong>cae (Fig.<br />

62C).<br />

Internodes with internal ribs, variably developed:<br />

one at each end, two at rear wall <strong>of</strong> hydro<strong>the</strong>ca,<br />

one curved between hydro<strong>the</strong>ca and<br />

median inferior nema<strong>to</strong><strong>the</strong>ca.<br />

Hydro<strong>the</strong>ca cup-shaped, depth 0.13 mm, centrally<br />

placed on internode, adcauline side adnate,<br />

abcauline wall weakly s-shaped, adcauline wall<br />

straight, hydro<strong>the</strong>cal margin with two broad,<br />

rounded lateral lobes.<br />

All nema<strong>to</strong><strong>the</strong>cae two-chambered and movable,<br />

conical, walls straight, rim not incurved,<br />

adcauline wall <strong>of</strong> upper chamber lowered, lower<br />

chamber longer than upper one. Median inferior<br />

nema<strong>to</strong><strong>the</strong>ca immediately below hydro<strong>the</strong>ca,<br />

reaching beyond middle <strong>of</strong> hydro<strong>the</strong>ca, sometimes<br />

on indistinct prominence <strong>of</strong> internode. Lateral<br />

nema<strong>to</strong><strong>the</strong>cae inserted near rim <strong>of</strong> hydro<strong>the</strong>ca,<br />

about 80 µm high.<br />

Gono<strong>the</strong>ca inserted in upper axil <strong>of</strong> apophyses,<br />

0.45 mm, diameter 0.3 mm, conical, walls<br />

quite straight, distal end planar, circular.<br />

Remarks<br />

If present, <strong>the</strong> characteristically modified secondary<br />

hydrocladium (Fig. 62B) renders Polyplumaria<br />

cornuta (Bale, 1884) easy <strong>to</strong> recognize.<br />

Unfortunately, <strong>the</strong>se horn-like processes can be<br />

quite rare and some younger colonies may lack<br />

<strong>the</strong>m entirely. Because <strong>the</strong> microscopic structure<br />

<strong>of</strong> <strong>the</strong> hydrocladia <strong>of</strong> Polyplumaria cornuta and<br />

Plumularia scabra are virtually indistinguishable<br />

(cf. Figs 61C and 62D), o<strong>the</strong>r characteristics<br />

Table 1. Differences between Polyplumaria cornuta and Plumularia scabra.<br />

215<br />

must be used <strong>to</strong> identify such material. The important<br />

differences are summarized in Table 1.<br />

The easiest way <strong>to</strong> distinguish <strong>the</strong>m is by comparing<br />

<strong>the</strong> colony form. While P. scabra has<br />

colonies comprising usually several stems that<br />

are branched up <strong>to</strong> <strong>the</strong> third order, P. cornuta<br />

colonies form very elongate, solitary stems with<br />

simple, short branches. The hydrocladia are also<br />

generally shorter, but <strong>the</strong> length is quite variable<br />

(cf. Figs 61A and 62A). The longest hydrocladia<br />

were observed in a sample from deeper waters<br />

(250 m). This sample also regularly had secondary<br />

hydrocladia, while in colonies with shorter<br />

hydrocladia <strong>the</strong>y can be scarce or absent.<br />

The hydrocladia <strong>of</strong> <strong>the</strong> stem <strong>of</strong> Polyplumaria<br />

cornuta can be arranged in verticels and <strong>the</strong><br />

coenosarc <strong>of</strong> <strong>the</strong> stem can be canaliculated, both<br />

characteristic for <strong>the</strong> genus Nemertesia, a fact<br />

already noted by Billard (1913). The limits <strong>of</strong> <strong>the</strong><br />

genera Plumularia, Polyplumaria and Nemertesia<br />

are thus somewhat diffuse.<br />

Distribution<br />

Indonesia, tropical coasts <strong>of</strong> Australia. Type locality:<br />

Holborn Island, Queensland, Australia.<br />

Nemertesia indivisa (Allman, 1883)<br />

Fig. 63.<br />

Sciurella indivisa Allman, 1883: 26, pl. 5: figs 1–4. –<br />

Kirkpatrick 1890: 609.<br />

Antennularia cylindricala Bale, 1884: 146, pl. 10: fig. 7.<br />

Nemertesia indivisa. – Billard 1910: 38. – Billard 1913: 60,<br />

fig. 50.<br />

Material examined:<br />

Kei Islands Expedition stations: 67. – 71. – Kei Islands<br />

Expedition, Samalon Island, Ujungpandang, Sulawesi, 25<br />

m, 29 Jun 1922.<br />

Character Polyplumaria cornuta Plumularia scabra<br />

Hydrocladia may be branched, secondary branch modified never branched<br />

Terminal apophyses never modified some drawn in<strong>to</strong> horn-like process<br />

Branching (exclusive hydrocladia) 1st order up <strong>to</strong> 3rd order<br />

Stem s<strong>of</strong>t stiff<br />

Hydrocladia on stem two rows or in verticels two rows<br />

Hydrocladia <strong>of</strong>ten recurved <strong>to</strong>wards branch end mostly straight<br />

Gono<strong>the</strong>ca conical, circular cross-section ovoid, flattened, distal end truncated<br />

Hydro<strong>the</strong>ca, abcauline wall shallow double-curvature strong double-curvature


216<br />

Fig. 63. Nemertesia indivisa (Allman, 1883); Samalon<br />

Island. A. Colony silhouette. B. One stem internode seen<br />

from above, showing arrangement <strong>of</strong> hydrocladia in four<br />

lateral rows. C. Hydrocladial segment. D. Lateral nema<strong>to</strong><strong>the</strong>ca.<br />

– Scales: A = 2 cm; B = 0.5 mm; C = 0.1 mm; D = 50<br />

µm.<br />

Description<br />

Colonies with several unbranched or occasionally<br />

branched stems, 5–15 cm high, stems clustered,<br />

with laterally held hydrocladia all along<br />

most <strong>of</strong> <strong>the</strong> stem length giving impression <strong>of</strong><br />

stems being pinnate. Stems thick, usually with<br />

distinct nodes but nodes may be indistinct in<br />

some regions, majority <strong>of</strong> internodes with four<br />

hydrocladia, less frequently two, six, or more.<br />

Hydrocladia originating on relatively short apophyses,<br />

each apophysis associated with up <strong>to</strong> four<br />

nema<strong>to</strong><strong>the</strong>cae and 1–2 or more close <strong>to</strong> apophysis.<br />

Coenosarc <strong>of</strong> stem canaliculated.<br />

Hydrocladia short in comparison <strong>to</strong> stem<br />

length, in four longitudinal rows but directed<br />

P. SCHUCHERT<br />

<strong>to</strong>wards sides, in opposite pairs. Basal parts <strong>of</strong><br />

younger stems may have only two lateral rows <strong>of</strong><br />

hydrocladia, being thus truly pinnate, in distal<br />

parts <strong>the</strong> hydrocladia can be arranged around<br />

<strong>the</strong> stem in whorls comprising three hydrocladia<br />

each. Hydrocladia homomerously segmented by<br />

slightly oblique nodes, internodes quite short<br />

(0.4–0.5 mm), each with one hydro<strong>the</strong>ca and<br />

three nema<strong>to</strong><strong>the</strong>cae: one median inferior, <strong>to</strong>w<br />

laterals. Internal ribs absent. Median inferior<br />

nema<strong>to</strong><strong>the</strong>ca on slight elevation or not so.<br />

Hydro<strong>the</strong>ca cylindrical, depth 0.2–0.26 mm,<br />

diameter about 0.1 mm, adcauline wall completely<br />

adnate, adcauline and abcauline wall<br />

quite straight and nearly parallel, opening-plane<br />

perpendicular <strong>to</strong> internode axis, rim somewhat<br />

lowered on adcauline side.<br />

Lateral nema<strong>to</strong><strong>the</strong>cae 60 µm high, close <strong>to</strong><br />

hydro<strong>the</strong>cal margin, ovoid <strong>to</strong> conical, upper and<br />

lower chamber nearly <strong>of</strong> same height, wall <strong>of</strong><br />

upper chamber slightly incurved, rim emarginated<br />

on outer and inner side, emarginations<br />

on inner side much deeper, reaching bot<strong>to</strong>m <strong>of</strong><br />

upper chamber. Median inferior nema<strong>to</strong><strong>the</strong>cae<br />

longer, conical, rim not incurved, rim lowered on<br />

adcauline side only.<br />

Gono<strong>the</strong>cae not observed, according <strong>to</strong> Billard<br />

(1913) about 1 mm, irregularly lobed, flattened,<br />

with numerous nema<strong>to</strong><strong>the</strong>cae.<br />

Remarks<br />

The arrangement <strong>of</strong> <strong>the</strong> hydrocladia <strong>of</strong> Nemertesia<br />

indivisa (Allman, 1883) shows quite some<br />

variation. The majority <strong>of</strong> <strong>the</strong>m are in four longitudinal<br />

rows and <strong>the</strong>y are directed sideways. But<br />

also truly pinnate sections and sections with verticillate<br />

arrangement occur. Nemertesia indivisa<br />

with its mostly laterally held hydrocladia, <strong>the</strong><br />

deep hydro<strong>the</strong>cae, and <strong>the</strong> lobed gono<strong>the</strong>cae furnished<br />

with nema<strong>to</strong><strong>the</strong>cae is somewhat unusual<br />

among it congeners. The peculiar gono<strong>the</strong>ca induced<br />

Allman (1883) <strong>to</strong> place this species in <strong>the</strong><br />

new genus Sciurella, which has, however, not<br />

found general acceptance.<br />

Distribution<br />

Nor<strong>the</strong>rn Australia, Indonesia. Type locality:<br />

Somerset Island, Cape York, Torres Strait, Australia,<br />

9–18 m.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Sibogella erecta Billard, 1911<br />

Fig. 64.<br />

Sibogella erecta Billard, 1911a: 108. – Billard 1913: 61, fig.<br />

51, pl. 3: fig. 32. – Billard 1929b: 72. – Vervoort 1941:<br />

222. – Hirohi<strong>to</strong> 1969: 27, fig. 18. – Hirohi<strong>to</strong> 1995: 282,<br />

fig. 97g.<br />

Stechowia armata Nutting, 1927: 230, pl. 44: figs 1–2.<br />

Material examined:<br />

Kei Islands Expedition station 18.<br />

Description<br />

Colony comprising several erect stems, up <strong>to</strong><br />

10 cm high. Stem monosiphonic, composed<br />

<strong>of</strong> a trunk with spirally arranged side-branches,<br />

branches bearing hydrocladia. Main stems unsegmented,<br />

with numerous nema<strong>to</strong><strong>the</strong>cae in<br />

three rows. Side-branches homomerously segmented<br />

by transverse nodes, segments without<br />

hydro<strong>the</strong>ca, with a subterminal apophysis for<br />

hydrocladium, apophysis with a nema<strong>to</strong><strong>the</strong>ca<br />

and a mamelon, in middle <strong>of</strong> segment a fur<strong>the</strong>r<br />

nema<strong>to</strong><strong>the</strong>ca.<br />

Hydrocladia alternate, segmented by transverse<br />

nodes, only one hydro<strong>the</strong>ca per hydrocladium,<br />

distal part modified in<strong>to</strong> flexible process.<br />

First segment <strong>of</strong> hydrocladium simple (intersegment),<br />

with one nema<strong>to</strong><strong>the</strong>ca. Second segment<br />

long, bearing at distal end hydro<strong>the</strong>ca and<br />

three nema<strong>to</strong><strong>the</strong>cae: one median inferior far below<br />

hydro<strong>the</strong>ca, two laterals near margin <strong>of</strong> hydro<strong>the</strong>ca.<br />

Distal <strong>to</strong> hydro<strong>the</strong>cate segment several<br />

simple segments, each with one or two nema<strong>to</strong><strong>the</strong>cae<br />

thin, jointed flexibly and forming a tendril-like<br />

appendage.<br />

Hydro<strong>the</strong>ca cup-shaped, shallow, abcauline<br />

side 50 µm, diameter 70 µm, adcauline side<br />

adnate, rim even.<br />

Nema<strong>to</strong><strong>the</strong>cae all movable and two-chambered,<br />

conical, lower chamber longer than upper<br />

chamber, wall <strong>of</strong> upper chamber lower on one<br />

side.<br />

Gono<strong>the</strong>cae not observed, according <strong>to</strong> Billard<br />

(1913) pyriform, 0.3–0.34 mm long, in upper<br />

axil <strong>of</strong> apophyses <strong>of</strong> hydrocladia<br />

Remarks<br />

The flexible, modified distal hydrocladia with<br />

up <strong>to</strong> 12 segments (Billard 1913) make this species<br />

quite unique and immediately recognizable.<br />

It would be interesting <strong>to</strong> learn more about<br />

217<br />

Fig. 64. Sibogella erecta Billard, 1911. A. Colony silhouette.<br />

B. Part <strong>of</strong> side-branch with one hydrocladium. – Scales:<br />

A = 2 cm; B = 0.1 mm.<br />

its function, which is presumably defensive. Billard<br />

(1927) described <strong>the</strong> arrangement <strong>of</strong> sidebranches<br />

as in three longitudinal rows. In <strong>the</strong><br />

present material, this arrangement is better described<br />

as spiral. Occasionally it is also pinnate.


218<br />

Distribution<br />

Indonesia, Philippines, Japan. Type locality: Indonesia,<br />

1°42.5’S, 130°47.5’E, 32 m.<br />

Family Aglaopheniidae<br />

Gymnangium longicorne (Busk, 1852)<br />

Fig. 65.<br />

Plumularia longicornis Busk, 1852: 399.<br />

Aglaophenia longicornis. – Bale 1884: 157, pl. 14: figs 7–8,<br />

pl. 17: fig. 5.<br />

Ly<strong>to</strong>carpus longicornis. – Allman 1883: 45, pl. 19: figs 4–6.<br />

Macrorhynchia (?) longicornis. – Stechow & Müller 1923:<br />

474.<br />

Halicornaria longicornis var. sibogae Billard, 1913: 67, fig.<br />

54, pl. 4: fig. 38.<br />

Halicornaria intermedia Billard, 1913: 65, fig. 53, pl. 4: fig.<br />

37.<br />

Gymnangium longicorne. – Watson 2000: 60, fig. 48A–F.<br />

Material examined:<br />

Kei Islands Expedition stations: 67. – 68, 30 m and 50 m<br />

depth. – 71. – 73, with gono<strong>the</strong>cae. – 104.<br />

Description<br />

Colonies up <strong>to</strong> 20 cm high, multi-pinnate,<br />

branching in one plane; composed <strong>of</strong> a polysiphonic<br />

main trunk and pinnately arranged sidebranches<br />

bearing <strong>the</strong>mselves pinnately arranged<br />

hydrocladia. Main trunk ei<strong>the</strong>r unbranched or<br />

forked, strongly polysiphonic up <strong>to</strong> distal end,<br />

composed <strong>of</strong> a superficial primary tube and numerous<br />

auxiliary tubes. Primary tube with alternate<br />

hydrocladia, <strong>the</strong>se short (2–3 hydro<strong>the</strong>cae)<br />

and <strong>of</strong>ten lost. No nema<strong>to</strong><strong>the</strong>cae on auxiliary<br />

tubes. From auxiliary tubes <strong>of</strong> main trunk issue<br />

pinnately arranged side-branches, <strong>the</strong>se always<br />

monosiphonic, 1.5–2 cm long, at base a deeply<br />

cut, oblique hinge-joint rendering branch easily<br />

movable, o<strong>the</strong>r nodes only visible in more distal<br />

parts, each internode with an apophysis bearing a<br />

hydrocladium. Below hinge-joint no hydrocladia,<br />

only median nema<strong>to</strong><strong>the</strong>cae. Apophysis <strong>of</strong><br />

hydrocladia associated with two nema<strong>to</strong><strong>the</strong>cae,<br />

one on abcauline end and one in upper axil, both<br />

nema<strong>to</strong><strong>the</strong>cae with two apertures, one aperture<br />

much larger than <strong>the</strong> o<strong>the</strong>r.<br />

Hydrocladia thin and dense, curved, not in one<br />

plane, planes forming an angle < 90°, hydro<strong>the</strong>cae<br />

facing <strong>to</strong>wards above, hydrocladia relatively<br />

short, with up <strong>to</strong> 7 hydro<strong>the</strong>cae, with dis-<br />

P. SCHUCHERT<br />

tinct oblique nodes, internode length about 0.2<br />

mm. Each segment with two well developed<br />

internal ribs.<br />

First or second hydrocladium <strong>of</strong> side-branch<br />

<strong>of</strong>ten modified in<strong>to</strong> long, very flexible pseudophylac<strong>to</strong>carp;<br />

proximal 2–5 segments like in<br />

normal hydrocladia, <strong>the</strong>n up <strong>to</strong> 12 modified segments<br />

with without hydro<strong>the</strong>ca but with three<br />

long nema<strong>to</strong><strong>the</strong>cae.<br />

Hydro<strong>the</strong>ca about 0.22 mm in <strong>to</strong>tal length, 1/5<br />

<strong>of</strong> its upper end curved for nearly 90°, lower part<br />

straight or slightly curved, slightly inclined <strong>to</strong>wards<br />

above, adcauline side adnate for ¾ <strong>of</strong> its<br />

length, opening-plane tilted <strong>to</strong>wards above or<br />

parallel <strong>to</strong> internode axis, margin with two broad,<br />

rounded cusps, one on each lateral side and one<br />

frontal, <strong>the</strong> latter cusp shallow and appearing as<br />

frontal <strong>to</strong>oth in side view. Distal part <strong>of</strong> abcauline<br />

hydro<strong>the</strong>cal wall sharply bent, at site <strong>of</strong> bend<br />

an abcauline perisarc thickening projecting in<strong>to</strong><br />

hydro<strong>the</strong>ca, on adcauline side near base <strong>of</strong> hydro<strong>the</strong>cae<br />

a second, horizontal intra<strong>the</strong>cal ridge,<br />

length and thickness very variable, opening for<br />

hydranth below this ridge, axis <strong>of</strong> extended<br />

hydranth thus S-shaped within hydro<strong>the</strong>ca. Hydranth<br />

with about 10 tentacles.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca tubular, distal<br />

end sometimes slightly swollen, mostly very<br />

long, as long or longer as height <strong>of</strong> hydro<strong>the</strong>ca,<br />

<strong>the</strong> first hydro<strong>the</strong>cae <strong>of</strong> a hydrocladium may<br />

have much shorter median nema<strong>to</strong><strong>the</strong>cae. Median<br />

nema<strong>to</strong><strong>the</strong>ca adnate up <strong>to</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>ca, with three openings: one at distal<br />

end, one on upper side where becoming free from<br />

hydro<strong>the</strong>ca, and one leading in<strong>to</strong> <strong>the</strong> lumen <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>ca. Lateral nema<strong>to</strong><strong>the</strong>cae thin and tubular,<br />

straight, following free upper wall <strong>of</strong> hydro<strong>the</strong>ca,<br />

reaching beyond margin <strong>of</strong> hydro<strong>the</strong>ca.<br />

Gono<strong>the</strong>cae on upper axil <strong>of</strong> apophyses for<br />

hydrocladia, 0.4 mm long, leaf-shaped, flattened,<br />

rounded distal end without opening, aperture on<br />

side, slit-like, short pedicel near base.<br />

Remarks<br />

With its fea<strong>the</strong>r-like side-branches, pivoting at<br />

<strong>the</strong> slightest movement, <strong>the</strong> long nema<strong>to</strong><strong>the</strong>cae,<br />

and <strong>the</strong> lash-like modified hydrocladia, Gymnangium<br />

longicorne (Busk, 1852) is a very characteristic<br />

species. The very flexible hinge joint


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 65. Gymnangium longicorne (Busk, 1852); A, station 71; B–E, station 68; F, station 73. A. Colony silhouette. B. Part <strong>of</strong><br />

sidebranch with apophysis (pointing <strong>to</strong>wards right) and two nema<strong>to</strong><strong>the</strong>cae. C. Hydrocladial segment with common form <strong>of</strong><br />

long median nema<strong>to</strong><strong>the</strong>ca. D. Segment <strong>of</strong> proximal region <strong>of</strong> hydrocladium with less common, short median nema<strong>to</strong><strong>the</strong>ca,<br />

same scale as C. E. Modified hydrocladium (pseudophylac<strong>to</strong>carp). F. Gono<strong>the</strong>ca, same scale as B. – Scales: A = 1 cm; B, F =<br />

0.1 mm; C–D = 50 µm; E = 0.2 mm.<br />

<strong>of</strong> <strong>the</strong> side-branches, well described by Allman<br />

(1883), renders <strong>the</strong> side-branches very movable.<br />

The modified hydrocladia, named pseudophy-<br />

219<br />

lac<strong>to</strong>carps by Watson (2000), are normally regularly<br />

present, but some colonies have only few <strong>of</strong><br />

<strong>the</strong>m. Watson (2000) argued that <strong>the</strong>se structures


220<br />

are not homologous <strong>to</strong> phylac<strong>to</strong>carps because<br />

<strong>the</strong>y nei<strong>the</strong>r bear gono<strong>the</strong>cae nor protect <strong>the</strong>m.<br />

The correlation <strong>of</strong> <strong>the</strong> occurrence <strong>of</strong> <strong>the</strong>se pseudophylac<strong>to</strong>carps<br />

and absence <strong>of</strong> epibionts led<br />

Watson (2000) assume that <strong>the</strong>y have a defensive<br />

function.<br />

Halicornaria intermedia Billard, 1913 was<br />

regarded by Rees & Vervoort (1987) as a synonym<br />

<strong>of</strong> G. eximium (Allman, 1874). I agree with<br />

Watson (2000), that Halicornaria intermedia<br />

more probably belongs <strong>to</strong> Gymnangium longicorne.<br />

Billard (1913) mentioned that <strong>the</strong> type<br />

colony <strong>of</strong> H. intermedia has modified hydrocladia<br />

(pseudophylac<strong>to</strong>carps), a structure not<br />

known <strong>to</strong> occur in G. eximium.<br />

Rees & Vervoort (1987) regarded <strong>the</strong> record<br />

<strong>of</strong> Allman (1883) <strong>of</strong> L. longicornis as a misidentification<br />

and referred it <strong>to</strong> G. eximium. Allman’s<br />

material had monosiphonic side-branches<br />

with hinge-joints and <strong>the</strong> median inferior nema<strong>to</strong><strong>the</strong>cae<br />

were very long. Allman’s figure <strong>of</strong> <strong>the</strong><br />

colony (1883, pl. 19: fig. 4) is also very characteristic.<br />

Although Allman did not mention modified<br />

hydrocladia, his identification seems correct<br />

beyond any doubt. Gymnangium eximium can be<br />

distinguished from G. longicornis by <strong>the</strong> shorter<br />

median inferior nema<strong>to</strong><strong>the</strong>ca, <strong>the</strong> polysiphonic<br />

side-branches without hinge-joint, and absence<br />

<strong>of</strong> modified hydrocladia (based on <strong>the</strong> description<br />

by Rees & Vervoort 1987).<br />

Distribution<br />

Tropical Australia, Indonesia, Philippines. Type<br />

locality: Prince <strong>of</strong> Wales Channel, Torres Strait,<br />

Australia.<br />

Gymnangium cf. gracilicaule (Jäderholm,<br />

1903)<br />

Fig. 66.<br />

Ly<strong>to</strong>carpus gracilicaulis Jäderholm, 1903: 299, pl. 14: figs<br />

3–4.<br />

Halicornaria gracilicaulis. – Billard 1913: 63. – Billard<br />

1933: 25, pl. fig. 5. – Vervoort 1967: 47, figs 14–15.<br />

?Halicornaria gracilicaulis var. armata Billard, 1913: 65,<br />

fig. 52.<br />

Halicetta gracicaulis. – Hirohi<strong>to</strong> 1995: 293, fig. 103b–d.<br />

Gymnangium gracilicaule gracilicaule Millard, 1968: 282.<br />

– Millard 1975: 443, fig. 136A & D.<br />

Gymnangium gracilicaule. – Rees & Vervoort 1987: 168,<br />

fig. 40, synonymy. – Watson, 1997: 539, fig. 8G–H.<br />

Ly<strong>to</strong>carpus philippinus. – Rho 1969: 165, figs 5–6, pl. 1: fig.<br />

6, pl. 2: fig. 8.<br />

P. SCHUCHERT<br />

Fig. 66. Gymnangium cf. gracilicaule (Jäderholm, 1903). A.<br />

Silhouette <strong>of</strong> damaged colony, lower part <strong>of</strong> main trunk<br />

overgrown with o<strong>the</strong>r organisms. B. Side view <strong>of</strong> sidebranch<br />

segment with apophysis and two nema<strong>to</strong><strong>the</strong>cae. C.<br />

Hydrocladial segment. – Scales: A = 1 cm; B = 0.1 mm; C =<br />

50 µm.<br />

Material examined:<br />

Kei Islands Expedition station 107, no gono<strong>the</strong>cae.<br />

Description<br />

Colonies up <strong>to</strong> 6 cm high, multi-pinnate, branching<br />

in one plane; composed <strong>of</strong> a polysiphonic<br />

main trunk and pinnately arranged lateral<br />

branches bearing <strong>the</strong>mselves pinnately arranged<br />

hydrocladia. Main stem weakly polysiphonic up<br />

<strong>to</strong> distal end, composed <strong>of</strong> a superficial primary<br />

tube and 2–3 auxiliary tubes bearing side-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

branches, no nema<strong>to</strong><strong>the</strong>cae on auxiliary tubes.<br />

Primary tube with alternate hydrocladia. Sidebranches<br />

always monosiphonic, about 1.5 cm<br />

long, at base a deeply cut, oblique hinge-joint<br />

rendering branch very movable, o<strong>the</strong>r nodes only<br />

visible in more distal parts, each internode with<br />

an apophysis bearing a hydrocladium. Below<br />

hinge-joint no hydrocladia, only median nema<strong>to</strong><strong>the</strong>cae.<br />

Apophysis <strong>of</strong> hydrocladia associated<br />

with two nema<strong>to</strong><strong>the</strong>cae, one on abcauline end<br />

and one in upper axil, both nema<strong>to</strong><strong>the</strong>cae with<br />

two apertures.<br />

Hydrocladia alternate, curved, relatively<br />

short, with up <strong>to</strong> 7 hydro<strong>the</strong>cae, with distinct<br />

nodes, internode length about 0.25 mm. Each<br />

segment with two internal ribs, not much developed.<br />

Hydro<strong>the</strong>ca about 0.25 mm in <strong>to</strong>tal length,<br />

distal third curved for nearly 90°, lower 2/3<br />

straight and inclined <strong>to</strong>wards hydrocladial axis,<br />

adcauline side adnate for ¾ <strong>of</strong> its length, opening<br />

tilted slightly <strong>to</strong>wards above, margin smooth,<br />

without lateral cusps or median <strong>to</strong>oth, distal part<br />

<strong>of</strong> abcauline wall sharply bent, at site <strong>of</strong> bend an<br />

abcauline perisarc thickening projecting in<strong>to</strong><br />

hydro<strong>the</strong>ca. On adcauline side near base <strong>of</strong> hydro<strong>the</strong>cae<br />

a second, horizontal intra<strong>the</strong>cal ridge,<br />

length and thickness very variable.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca tubular, not<br />

longer than about 2/3 <strong>the</strong> depth <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca,<br />

end reaching <strong>to</strong> level <strong>of</strong> upper curvature <strong>of</strong><br />

hydro<strong>the</strong>ca, with three openings: one at distal<br />

end, one on upper side where becoming free from<br />

hydro<strong>the</strong>ca, and one leading in<strong>to</strong> <strong>the</strong> lumen <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>ca. Lateral nema<strong>to</strong><strong>the</strong>cae thin and tubular,<br />

straight, following free upper wall <strong>of</strong><br />

hydro<strong>the</strong>ca, reaching beyond margin <strong>of</strong> hydro<strong>the</strong>ca.<br />

Gono<strong>the</strong>cae not observed, according <strong>to</strong> Vervoort<br />

(1967) horn-shaped, 0.4–0.45 mm long,<br />

end truncated, flattened, aperture slit-like, females<br />

with one egg only.<br />

Remarks<br />

The present Indonesian material was only hesitatingly<br />

assigned <strong>to</strong> Gymnangium gracilicaule<br />

because it does not agree entirely with <strong>the</strong> description<br />

<strong>of</strong> <strong>the</strong> type material given by Rees &<br />

Vervoort (1987): <strong>the</strong> abcauline wall is not curved<br />

221<br />

but ra<strong>the</strong>r bent, <strong>the</strong> <strong>to</strong>tal length <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca<br />

is smaller (0.25 versus 0.29–38 mm), and <strong>the</strong><br />

abcauline wall <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca at <strong>the</strong> curvature<br />

is quite thickened and forms a short septum projecting<br />

in<strong>to</strong> <strong>the</strong> hydro<strong>the</strong>ca. Such a thickening is<br />

also known from G. eximium and it can be very<br />

variably expressed (Rees & Vervoort 1987). Although<br />

<strong>the</strong> observed variations are within <strong>the</strong><br />

variation observed for o<strong>the</strong>r similar hydroids, it is<br />

never<strong>the</strong>less possible that <strong>the</strong> present material<br />

belongs <strong>to</strong> ano<strong>the</strong>r species.<br />

Gymnangium gracilicaule and Gymnangium<br />

eximium (Allman, 1874) resemble each o<strong>the</strong>r and<br />

need careful examination <strong>to</strong> be distinguished.<br />

Rees & Vervoort (1987) re-examined <strong>the</strong> type<br />

material <strong>of</strong> G. graciliaule and worked out <strong>the</strong><br />

differences <strong>to</strong> G. eximium. The latter species<br />

differs from G. graciliaule: in having polysiphonic<br />

side-branches instead <strong>of</strong> strictly monosiphonic<br />

ones, its hydro<strong>the</strong>ca is less sinuous and<br />

has a margin with lateral lobes, <strong>the</strong> axillary<br />

nema<strong>to</strong><strong>the</strong>ca above <strong>the</strong> cauline apophysis has<br />

one aperture. Very likely correlated with <strong>the</strong><br />

polysiphonic side-branches, <strong>the</strong> strong, oblique<br />

hinge joint found in G. graciliaule is apparently<br />

absent in G. eximium.<br />

The likewise similar G. longicorne (see<br />

above) has much denser hydrocladia (two times),<br />

thicker stems, <strong>the</strong> median inferior nema<strong>to</strong><strong>the</strong>cae<br />

are usually longer, <strong>the</strong> hydro<strong>the</strong>cal margin is<br />

distinctly lobed, and modified hydrocladia are<br />

usually present (cf. Figs 65 and 66). Comparing<br />

colonies <strong>of</strong> both species side by side, <strong>the</strong> differing<br />

habits are very evident (cf. Fig. 65A and 66A),<br />

but it could be that it is only an extreme variant <strong>of</strong><br />

G. longicorne.<br />

Distribution<br />

Japan, Indonesia, Indian Ocean, South Africa,<br />

Red Sea, Western Australia. Type locality:<br />

Sou<strong>the</strong>rn Japan, 90 m.<br />

Macrorhynchia philippina Kirchenpauer,<br />

1872<br />

Fig. 67.<br />

Macrorhynchia philippina Kirchenpauer, 1872: 19. – Stechow<br />

& Müller 1923: 475. – ?Not Hirohi<strong>to</strong> 1983: 78, fig.<br />

41. – ?Not Rees & Vervoort 1987: 177, fig. 43. – Ryland<br />

& Gibbons 1991: 553, fig. 22. – ?Not Hirohi<strong>to</strong> 1995: 297,<br />

fig. 105d–g. – Migot<strong>to</strong> 1996: 40, fig. 8e–f. – Calder


222<br />

Fig. 67. Macrorhynchia philippina Kirchenpauer, 1872; A,<br />

Indonesia; B–E, Kei Island Expedition, Ambon harbour. A.<br />

Silhouette <strong>of</strong> colony fragment. B. Hydrocladial segment. C.<br />

Rim <strong>of</strong> hydro<strong>the</strong>ca in oblique view, note abcauline <strong>to</strong>oth,<br />

same scale as B. D. Oblique view <strong>of</strong> segment <strong>of</strong> primary<br />

tube, with apophysis (pointing <strong>to</strong>wards left), nema<strong>to</strong><strong>the</strong>cae,<br />

and mamelon (on apophysis). E. Phylac<strong>to</strong>carp with<br />

gono<strong>the</strong>ca containing a male medusoid, tissue stippled. –<br />

Scales: A = 2 cm; B–C = 50 µm; D = 0.1 mm; E = 0.2 mm.<br />

P. SCHUCHERT<br />

1997: 66, fig. 21. – Watson 1997: 538, fig. 8F. – Watson<br />

2000: 67, fig. 53A–D. – Ansín Agís, Ramil & Vervoort<br />

2001: 46, fig. 46, bibliography, synonymy.<br />

Ly<strong>to</strong>carpus philippinus. – Pictet 1893: 60, pl. 3: fig. 53. –<br />

Nutting 1900: 122, pl. 31: figs 4–7. – Weltner 1900: 587.<br />

– Billard 1913: 78, fig. 63. – Vervoort 1941: 225. – Fraser<br />

1944: 419, pl. 93: fig. 410. – Vervoort 1968: 88, fig. 41.<br />

– Millard & Bouillon 1973: 93. – Millard 1975: 449, fig.<br />

138A–C.<br />

?Ly<strong>to</strong>carpus balei. – Leloup 1930b: 8, fig. 6, pl. 1: fig. 3.<br />

[Not Macrorhynchia balei (Nutting, 1905)]<br />

Ly<strong>to</strong>carpus crosslandi Ritchie, 1907: 511, pl. 24: fig. 11, pl.<br />

26: figs 2–4.<br />

Material examined :<br />

Kei Islands Expedition stations: 11, with gono<strong>the</strong>cae. – 31. –<br />

107. – Kei Islands Expedition, Ambon, harbour pier, 4 Mar<br />

1922, with gono<strong>the</strong>cae. – Kei Islands Expedition, Lonthoir<br />

Channel, Banda Islands, 25 m, 11 Jun 1922. – Kei Islands<br />

Expedition, Bay <strong>of</strong> Ambon, Feb 1922. – MHNG INVE<br />

32228, as Ly<strong>to</strong>carpus philippinus, material <strong>of</strong> Pictet (1893),<br />

Ambon Harbour.<br />

Description<br />

Colonies 5–40 cm high, much branched, multipinnate,<br />

stem and branches polysiphonic, thinning<br />

in distal ramifications, only short terminal<br />

portions monosiphonic. Stem and branches composed<br />

<strong>of</strong> a superficial primary tube and a bundle<br />

<strong>of</strong> auxiliary tubes, primary tube <strong>of</strong> side-branches<br />

originating from auxiliary tubes <strong>of</strong> sister branch.<br />

Primary tube with hydrocladia, nodes may be<br />

present in distal regions, each segment with a<br />

hydrocladial apophysis, a broad median inferior<br />

nema<strong>to</strong><strong>the</strong>ca, a nema<strong>to</strong><strong>the</strong>ca on side <strong>of</strong> apophysis,<br />

and a mamelon on apophysis.<br />

Hydrocladia alternate, s<strong>of</strong>t, shifted <strong>to</strong> anterior<br />

side <strong>of</strong> primary tube, regularly segmented by<br />

transverse <strong>to</strong> slightly oblique nodes, each segment<br />

with two internal ribs, <strong>the</strong>se variably developed,<br />

up <strong>to</strong> 18 hydro<strong>the</strong>cae per hydrocladium.<br />

Hydro<strong>the</strong>ca sac-shaped, <strong>to</strong>tal height 0.32 mm,<br />

diameter in middle 0.11 mm, upper third curving<br />

away, opening oblique, margin with two rounded<br />

lateral cusps and a median abcauline <strong>to</strong>oth, <strong>the</strong><br />

latter variably developed, between margin and<br />

median inferior nema<strong>to</strong><strong>the</strong>ca a thick shelf projecting<br />

halfway in<strong>to</strong> hydro<strong>the</strong>ca, shelf in side<br />

view triangular. Hydranth with 8–10 tentacles.<br />

Nema<strong>to</strong><strong>the</strong>cae with very large mastigophores<br />

(80 µm long). Median inferior nema<strong>to</strong><strong>the</strong>ca conical<br />

in side view, free part tubular (not guttershaped),<br />

about 90 mm long, reaching beyond


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

margin <strong>of</strong> hydro<strong>the</strong>ca, with three openings: one<br />

terminal, one on upper surface where becoming<br />

free, one just below <strong>the</strong> latter leading in<strong>to</strong> hydro<strong>the</strong>cal<br />

cavity (foramen). Lateral nema<strong>to</strong><strong>the</strong>cae<br />

tubular, inclined forward, over<strong>to</strong>pping somewhat<br />

hydro<strong>the</strong>cal margin, one or two openings:<br />

one terminal and one near base on upper surface,<br />

<strong>the</strong> latter not always visible.<br />

Gono<strong>the</strong>cae on modified hydrocladia (phylac<strong>to</strong>carps),<br />

one or two per phylac<strong>to</strong>carp. Phylac<strong>to</strong>carps<br />

composed <strong>of</strong> one hydrocladial segment<br />

with hydro<strong>the</strong>ca as in normal hydrocladia, followed<br />

by cylindrical segments with one or two<br />

nema<strong>to</strong><strong>the</strong>cae. Gono<strong>the</strong>ca attached <strong>to</strong> segment<br />

following hydro<strong>the</strong>cate segment, lens-shaped,<br />

diameter 0.6 mm; gonophore medusoid, with<br />

spadix, bell margin with granules.<br />

Remarks<br />

Hirohi<strong>to</strong>’s (1983, 1995) material allocated <strong>to</strong> this<br />

species had ra<strong>the</strong>r thin intra<strong>the</strong>cal septae, had<br />

several gono<strong>the</strong>cae per phylac<strong>to</strong>carp, and was<br />

apparently larviparous. I <strong>the</strong>refore doubt that Hirohi<strong>to</strong>’s<br />

samples belonged <strong>to</strong> M. philippina. The<br />

increased number <strong>of</strong> gono<strong>the</strong>cae and <strong>the</strong> lamellar<br />

intra<strong>the</strong>cal septae match better M. balei (Nutting,<br />

1905). Contrary <strong>to</strong> this, Leloup’s (1930b) specimen<br />

identified as M. balei appears indistinguishable<br />

from M. philippina.<br />

Distribution<br />

Circumglobal in tropical and subtropical waters.<br />

Type locality: Manila, Philippines.<br />

Macrorhynchia phoenicea (Busk, 1852)<br />

Figs 68–69.<br />

Plumularia aurita Busk, 1852: 397.<br />

Plumularia phoenicea Busk, 1852: 398.<br />

Aglaophenia rostrata Kirchenpauer, 1872: 45, pl. 1: fig. 25,<br />

pl. 6: fig. 25. – Weltner 1900: 588.<br />

Ly<strong>to</strong>carpus spectabilis Allman, 1883: 43, fig. 2, pl. 15: figs<br />

1–5.<br />

Aglaophenia phoenicea. – Bale 1884: 159, pl. 15: figs 1–5,<br />

pl. 17: figs 1–4, pl. 19: fig. 31.<br />

?Aglaophenia disjuncta Pictet, 1893: 59, pl. 3: figs 51–52.<br />

Ly<strong>to</strong>carpus phoeniceus. – Billard 1910: 48, fig. 22. – Billard<br />

1913: 74, figs 60–61. – Weltner 1900: 588. – Leloup<br />

1930b: 10, fig. 7, pl. 2: fig. 1. – Millard & Bouillon 1973:<br />

94. – Millard 1975: 451, fig. 137D.<br />

Macrorhynchia phoenicea. – Mammen 1967: 313, figs 108–<br />

109. – Rho 1967: 348, fig. 8. – Ryland & Gibbons 1991:<br />

555, fig. 23. – Hirohi<strong>to</strong> 1995: 299, fig. 106a–e.<br />

223<br />

Macrorhynchia phoenicia.– Watson 2000: 68, fig. 54A–E.<br />

Material examined:<br />

Kei Islands Expedition stations: 18. – 19, with gono<strong>the</strong>cae. –<br />

24. – 26, with gono<strong>the</strong>cae. – 57. – 67. – 69. – 71, with<br />

gono<strong>the</strong>cae. – 72. – 106. – 107. – Kei Islands Expedition, Kei<br />

Islands, Tual, 2 m, 28 Mar 1922, with gono<strong>the</strong>cae. – Kei<br />

Islands Expedition, Kei Islands, Tual, 22 Mar 1922, with<br />

gono<strong>the</strong>cae. – Kei Islands Expedition, Banda Islands, Neira<br />

Island, 25 m, 14 Jun 1922.<br />

Differential diagnosis<br />

Somewhat similar <strong>to</strong> Macrorhynchia philippina,<br />

but branching more regular, hydrocladia more<br />

bristly, denser, lengths quite homogenous, about<br />

12 hydro<strong>the</strong>cae per hydrocladium; abcauline horizontal<br />

shelf in hydro<strong>the</strong>ca thin and not triangular,<br />

height <strong>of</strong> hydro<strong>the</strong>ca smaller (0.22–0.25<br />

mm), free abcauline wall short, margin without<br />

abcauline <strong>to</strong>oth, lateral margin with two irregular<br />

cusps; majority <strong>of</strong> lateral nema<strong>to</strong><strong>the</strong>ca directed<br />

<strong>to</strong>wards above; both nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> hydrocaulus<br />

with two openings <strong>of</strong> different size. Gono<strong>the</strong>ca<br />

lens-shaped, less flattened but also with<br />

sharp edge along circumference. Nema<strong>to</strong><strong>the</strong>cae<br />

<strong>of</strong> phylac<strong>to</strong>carps in three rows.<br />

Description<br />

See Millard (1975), Ryland & Gibbons (1991),<br />

and Watson (2000).<br />

Remarks<br />

The bristly, neatly regular hydrocladia <strong>of</strong> equal<br />

length (Fig. 68) make large and fully grown<br />

Macrorhynchia phoenicea (Busk, 1852) <strong>to</strong> some<br />

degree recognizable even without <strong>the</strong> aid <strong>of</strong> a<br />

microscope. The hydro<strong>the</strong>cae and <strong>the</strong> internodes<br />

are quite variable (Fig. 68C–E). Especially <strong>the</strong><br />

outline <strong>of</strong> <strong>the</strong> lateral rim <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca is very<br />

variable. Bale (1884) discussed <strong>the</strong> variability <strong>of</strong><br />

this species.<br />

The gonophores seen in <strong>the</strong> present material<br />

are likely sessile sporosacs, female ones containing<br />

10–16 eggs.<br />

The samples from stations 24, 26, and 57<br />

deviate somewhat from <strong>the</strong> o<strong>the</strong>rs (Fig. 69). The<br />

colonies are smaller (6 cm), more gracile, <strong>the</strong>y<br />

have longer internodes (0.30–0.34 mm), thinner<br />

hydrocladia, <strong>the</strong> lateral nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> <strong>the</strong><br />

proximal hydro<strong>the</strong>cae are directed in <strong>the</strong> direc-


224<br />

tion <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>cal opening and not <strong>to</strong>wards<br />

above, and <strong>the</strong> phylac<strong>to</strong>carps have only two rows<br />

<strong>of</strong> nema<strong>to</strong><strong>the</strong>cae instead <strong>of</strong> three as observed in<br />

<strong>the</strong> o<strong>the</strong>r samples. These samples came from<br />

P. SCHUCHERT<br />

Fig. 68. Macrorhynchia phoenicea (Busk, 1852); A, station 71; B & F, station 19; C–D, Tual; E, Neira Island. A. Colony<br />

silhouette. B. Frontal view <strong>of</strong> segment <strong>of</strong> primary tube, with apophysis (pointing <strong>to</strong>wards left), nema<strong>to</strong><strong>the</strong>cae, and mamelon<br />

(on apophysis). C–E. Hydrocladial segments <strong>of</strong> different colonies, note variation <strong>of</strong> rim, length <strong>of</strong> median nema<strong>to</strong><strong>the</strong>ca, and<br />

length <strong>of</strong> segment. F. Phylac<strong>to</strong>carp with gono<strong>the</strong>ca containing eggs (stippled). – Scales: A = 2 cm; B = 0.1 mm; C–E = 50 µm;<br />

F = 0.2 mm.<br />

deeper waters (90–200 m), which could perhaps<br />

explain <strong>the</strong> differences, but <strong>the</strong>y could as well<br />

also belong <strong>to</strong> a different species. This material<br />

resembles M. phoenicea described by Ryland &


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 69. Macrorhynchia phoenicea (Busk, 1852); variant morphotype from station 24. A. Colony silhouette. B. Hydrocladial<br />

segment, note elongated shape (compare Fig. 68C–E). C. Variation <strong>of</strong> lateral nema<strong>to</strong><strong>the</strong>ca and hydro<strong>the</strong>cal margin within one<br />

hydrocladium, proximal hydro<strong>the</strong>ca below, distal one at <strong>to</strong>p, note second opening in lateral nema<strong>to</strong><strong>the</strong>ca <strong>of</strong> middle region,<br />

same scale as B. – Scales: A = 1 cm; B–C = 50 µm.<br />

Gibbons (1989). The morphology approaches<br />

also <strong>the</strong> one <strong>of</strong> material described by Pictet<br />

(1893) as Aglaophenia disjuncta, but <strong>the</strong> internodes<br />

and hydro<strong>the</strong>cae are less elongated. Bedot<br />

(1926) considered Aglaophenia disjuncta Pictet,<br />

1893 as a synonym <strong>of</strong> M. phoenicea and a reexamination<br />

<strong>of</strong> <strong>the</strong> type material <strong>of</strong> A. disjuncta<br />

(MHNG INVE 25025, Bay <strong>of</strong> Ambon, Moluccas,<br />

80 m) indeed confirmed <strong>the</strong> close resemblance.<br />

Aglaophenia disjuncta, however, is characterized<br />

by very long hydrocladial internodes<br />

(Fig. 70), while <strong>the</strong> hydro<strong>the</strong>cae appear not distinguishable<br />

from M. phoenicea. The observed<br />

internode length (0.35–0.40 mm), however, is<br />

perhaps beyond <strong>the</strong> variation observed for M.<br />

phoenicea (0.27–0.34 mm, cf. also Figs 68C–E<br />

and 69B). Because <strong>the</strong> gonosome <strong>of</strong> Aglaophenia<br />

disjuncta remains also unknown, I prefer <strong>to</strong><br />

regard it as only questionably conspecific with<br />

M. phoenicea.<br />

Distribution<br />

Australia, Indonesia, Malay Peninsula, New<br />

Guinea, Philippines, South China Sea, Japan,<br />

225<br />

Fig. 70. Aglaophenia disjuncta Pictet, 1893; type material.<br />

Hydrocladial segment. – Scale: 50 µm.


226<br />

Polynesia, tropical Indian Ocean, sou<strong>the</strong>rn Africa.<br />

Type locality: Torres Strait, Australia.<br />

Macrorhynchia balei (Nutting, 1905)<br />

Fig. 71.<br />

Ly<strong>to</strong>carpus balei Nutting, 1905: 954, pl. 6: fig. 1, pl. 13: figs<br />

7–8. – in part Stechow 1909: 99, pl. 6: figs 12–13. –<br />

Billard 1913: 81, fig. 66. – Stechow 1919: 134. – Nutting<br />

1927: 236. – Vervoort 1941: 226, fig. 9. – Hirohi<strong>to</strong> 1995:<br />

297, fig. 105a–c. [Not Ly<strong>to</strong>carpia balei (Nutting, 1927)]<br />

Not Ly<strong>to</strong>carpus balei. – Leloup 1930b: 8, fig. 6, pl. 1: fig. 3.<br />

[= M. philippina]<br />

?Macrorhynchia philippina. – Hirohi<strong>to</strong> 1983: 78, fig. 41. –<br />

Hirohi<strong>to</strong> 1995: 297, fig. 105d–g. [Not Macrorhynchia<br />

philippina Kirchenpauer, 1872]<br />

Type material examined:<br />

USNM 22220, Albatross Station 3852, South <strong>of</strong> Molokai,<br />

47–115 fathoms (86–210 m), fragmented colony, with numerous<br />

phylac<strong>to</strong>carps, not labelled as type material, but<br />

locality and collec<strong>to</strong>r clearly identifies it as such.<br />

Material examined:<br />

Kei Islands Expedition station 57. – Kei Islands Expedition,<br />

Bay <strong>of</strong> Ambon, 90 m, 2 Mar 1922, with 4 gono<strong>the</strong>cae on<br />

young phylac<strong>to</strong>carps. – Kei Islands Expedition, Bay <strong>of</strong><br />

Ambon, 45–90 m, 2 Mar 1922. – Kei Islands Expedition,<br />

Bay <strong>of</strong> Ambon, 13–18 m, 28 Feb 1922. – USNM 68534, loc.<br />

Philippines, material described in Nutting (1927).<br />

Differential diagnosis<br />

Similar <strong>to</strong> Macrorhynchia philippina, but differs<br />

in forming smaller sized colonies, thicker hydrocladia<br />

with up <strong>to</strong> 17 hydro<strong>the</strong>cae; hydro<strong>the</strong>ca<br />

with lamellar adcauline septum, hydro<strong>the</strong>cal rim<br />

with or without abcauline <strong>to</strong>oth; lateral nema<strong>to</strong><strong>the</strong>cae<br />

ei<strong>the</strong>r parallel <strong>to</strong> upper wall <strong>of</strong> hydro<strong>the</strong>ca<br />

or pointing <strong>to</strong>wards above (varies from proximal<br />

<strong>to</strong> distal <strong>of</strong> hydrocladium, Fig. 71D), rim <strong>of</strong> opening<br />

<strong>of</strong> median inferior nema<strong>to</strong><strong>the</strong>ca <strong>of</strong>ten curved;<br />

lateral rim <strong>of</strong> hydro<strong>the</strong>cae with two ra<strong>the</strong>r variably<br />

shaped cusps, lateral rim can also be almost<br />

smooth. On rear wall <strong>of</strong> hydrocladia, auxiliary<br />

tubes, and primary tubes numerous small pores<br />

(nema<strong>to</strong>pores) plugged with clusters <strong>of</strong> nema<strong>to</strong>cysts<br />

(isorhizas) (Fig. 71B). Phylac<strong>to</strong>carps 2/3 as<br />

long as hydrocladia, with up <strong>to</strong> 8 lenticular gono<strong>the</strong>cae,<br />

<strong>the</strong>se alternately shifted <strong>to</strong> <strong>the</strong> right and<br />

left.<br />

Differs from M. phoenicea by its more irregular<br />

colonies, longer hydrocladia, forward directed<br />

lateral nema<strong>to</strong><strong>the</strong>cae, rear nema<strong>to</strong>pores,<br />

and <strong>the</strong> number <strong>of</strong> gono<strong>the</strong>cae per phylac<strong>to</strong>carp.<br />

P. SCHUCHERT<br />

Measurements: colony height 4–10 cm, <strong>to</strong>tal<br />

height <strong>of</strong> hydro<strong>the</strong>ca 0.25–0.32 mm, larger isorhiza<br />

about 85 µm long (in median inferior<br />

nema<strong>to</strong><strong>the</strong>ca), smaller isorhiza about 40 µm long<br />

(in rear nema<strong>to</strong>pores). Female gono<strong>the</strong>cae contain<br />

4–6 eggs. Gono<strong>the</strong>ca diameter 0.6 mm.<br />

Remarks<br />

The numerous nema<strong>to</strong>pores on <strong>the</strong> rear side <strong>of</strong><br />

<strong>the</strong> hydrocladia, primary tubes, and auxiliary<br />

tubes make Macrorhynchia balei recognizable<br />

even in <strong>the</strong> absence <strong>of</strong> phylac<strong>to</strong>carps. These nema<strong>to</strong>phores<br />

are funnel-shaped holes in <strong>the</strong> periderm<br />

that are plugged by a bundle <strong>of</strong> elongated<br />

nema<strong>to</strong>cysts (see Fig. 71B). If <strong>the</strong> capsules are<br />

lost in preserved material, <strong>the</strong> nema<strong>to</strong>pores are<br />

not conspicuous. However, if <strong>the</strong>se isorhizas are<br />

discharged so that <strong>the</strong> bundle <strong>of</strong> shafts protrude<br />

trough <strong>the</strong> pore, <strong>the</strong> pores are easy <strong>to</strong> see and very<br />

characteristic. The number <strong>of</strong> pores per hydrocladial<br />

segments varies from zero <strong>to</strong> two, mostly<br />

<strong>the</strong>y are at <strong>the</strong> level <strong>of</strong> <strong>the</strong> internal ribs. The pores<br />

are usually absent in <strong>the</strong> distal segments <strong>of</strong> <strong>the</strong><br />

hydrocladium. The auxiliary tubes also have<br />

<strong>the</strong>se pores, usually in several rows (Fig. 71D).<br />

As in <strong>the</strong> hydrocladia, also here <strong>the</strong> density <strong>of</strong> <strong>the</strong><br />

pores is variable between colonies.<br />

No such nema<strong>to</strong>pores were reported in any <strong>of</strong><br />

<strong>the</strong> available descriptions <strong>of</strong> this species (see<br />

synonymy). The type material <strong>of</strong> Macrorhynchia<br />

balei was <strong>the</strong>refore re-examined for this study.<br />

Although <strong>the</strong> s<strong>of</strong>t tissue <strong>of</strong> <strong>the</strong> type material is is<br />

not well preserved, perhaps due <strong>to</strong> mechanical<br />

damage during <strong>the</strong> collecting procedure, some<br />

hydrocladia with intact s<strong>of</strong>t tissue clearly possess<br />

identical nema<strong>to</strong>pores and tufts <strong>of</strong> isorhiza capsules<br />

just like in <strong>the</strong> Indonesian material. The<br />

dimensions and morphology <strong>of</strong> hydro<strong>the</strong>ca and<br />

nema<strong>to</strong><strong>the</strong>cae were also indistinguishable from<br />

<strong>the</strong> Indonesian material, which is thus almost<br />

certainly conspecific with Nutting’s original material.<br />

Nutting (1927) also attributed material<br />

from <strong>the</strong> Philippines <strong>to</strong> <strong>the</strong> present species. Also<br />

this material could be re-examined. It is more<br />

robust than <strong>the</strong> type colony, infertile, and <strong>the</strong> s<strong>of</strong>t<br />

tissue is almost completely lost. There are, however,<br />

distinct pores on <strong>the</strong> rear side <strong>of</strong> <strong>the</strong> hydrocladia,<br />

which renders this identification quite<br />

secure.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 71. Macrorhynchia balei (Nutting, 1905); A–B & D, Bay <strong>of</strong> Ambon; C, station 57; F after type material. A. Colony<br />

silhouette. B. Hydrocladial segment, note clusters <strong>of</strong> nema<strong>to</strong>cysts at rear side. C. Variation <strong>of</strong> median inferior nema<strong>to</strong><strong>the</strong>ca and<br />

abcauline <strong>to</strong>oth, same scale as B. D. Variation <strong>of</strong> lateral nema<strong>to</strong><strong>the</strong>ca from proximal (bot<strong>to</strong>m) <strong>to</strong> distal (<strong>to</strong>p) part <strong>of</strong><br />

hydrocladium, same scale as B. E. Side view <strong>of</strong> auxiliary tube wall with nema<strong>to</strong>pores and nema<strong>to</strong>cyst clusters, same scale as<br />

B. F. Phylac<strong>to</strong>carp with gono<strong>the</strong>cae, note that <strong>the</strong> hydro<strong>the</strong>ca at <strong>the</strong> base <strong>of</strong> <strong>the</strong> phylac<strong>to</strong>carp is not visible in this figure. –<br />

Scales: A = 1 cm; B–E = 50 µm; F = 0.5 mm.<br />

The curved margin <strong>of</strong> <strong>the</strong> distal opening <strong>of</strong> <strong>the</strong><br />

median nema<strong>to</strong><strong>the</strong>ca is also quite characteristic<br />

(Fig. 71B), although not all nema<strong>to</strong><strong>the</strong>cae have it<br />

(Fig. 71C).<br />

Macrorhynchia balei was originally described<br />

by Nutting based on material from Hawaii. Subsequently,<br />

Stechow (1909) reported it from Japan.<br />

Later, however, Stechow (1919: 134) referred<br />

part <strong>of</strong> this material <strong>to</strong> Macrorhynchia<br />

singularis (Billard, 1913). Billard (1913) identified<br />

infertile material from Indonesia as M. balei.<br />

227<br />

Stechow (1919: 129) thought that Billard’s material<br />

did not belong <strong>to</strong> M. balei and he referred it <strong>to</strong><br />

Ly<strong>to</strong>carpia(?) graeffei (Kirchenpauer, 1876), a<br />

problematic species. Kirchenpauer (1876) provided<br />

only <strong>the</strong> name Aglaophenia graeffii, this<br />

without any diagnosis or illustration. This nominal<br />

species must <strong>the</strong>refore be seen as invalid, a<br />

nomen nudum. It appears, however, that Stechow<br />

(1919) based his description and figure on<br />

Kirchenpauer’s original material, so Stechow<br />

thus becomes <strong>the</strong> author <strong>of</strong> this species. Stechow


228<br />

based his description <strong>of</strong> Ly<strong>to</strong>carpia graffei on a<br />

small, juvenile colony. The colony was monosiphonic<br />

and had no gono<strong>the</strong>cae. It must be considered<br />

as unrecognizable. Stechow (1919) distinguished<br />

it from M. balei on account <strong>of</strong> <strong>the</strong><br />

shape <strong>of</strong> <strong>the</strong> bot<strong>to</strong>m <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca: rounded<br />

in M. balei, with a step in Ly<strong>to</strong>carpia graffei. This<br />

character is <strong>of</strong> little use, as usually all intermediates<br />

can be found in Macrorhynchia colonies.<br />

Leloup (1930b) also contested Stechow’s view,<br />

however, Leloup’s (1930b: fig. 6) material <strong>of</strong> M.<br />

balei appears indistinguishable from M. philippina<br />

because his figures show a thick, triangular<br />

intra<strong>the</strong>cal septum. Hirohi<strong>to</strong> (1983, 1995) again<br />

described Japanese material <strong>of</strong> M. balei. Hirohi<strong>to</strong><br />

distinguished his material from M. philippina<br />

solely on account <strong>of</strong> <strong>the</strong> length and thickness <strong>of</strong><br />

<strong>the</strong> intra<strong>the</strong>cal septum. However, <strong>the</strong> figures <strong>of</strong><br />

M. philippina given by Hirohi<strong>to</strong> (1983, 1995),<br />

are more typical for M. balei: <strong>the</strong> upright lateral<br />

nema<strong>to</strong><strong>the</strong>ca and <strong>the</strong> numerous gono<strong>the</strong>cae on<br />

<strong>the</strong> phylac<strong>to</strong>carps. Because Hirohi<strong>to</strong> (1983) also<br />

described female gono<strong>the</strong>cae containing planulae,<br />

thus being larviparous and not releasing<br />

medusoids as seen in typical M. philippina, it<br />

seems more likely that this material was also M.<br />

balei. Hiroho<strong>to</strong>’s material should be re-examined<br />

for <strong>the</strong> presence <strong>of</strong> nema<strong>to</strong>pores.<br />

Distribution<br />

Hawaii, Indonesia, Philippines, Japan. Type locality:<br />

Off south coast <strong>of</strong> Molokai, Hawaiian<br />

archipelago, 86–210 m.<br />

Macrorhynchia singularis (Billard, 1908)<br />

Fig. 72.<br />

Plumulariidae spec. IV von Campenhausen 1896b: 317, pl.<br />

15 fig. 5.<br />

Ly<strong>to</strong>carpus philippinus var. singularis Billard, 1908b: 112,<br />

figs A–B.<br />

Ly<strong>to</strong>carpus singularis Billard, 1913: 79, figs 64–65.<br />

Ly<strong>to</strong>carpus balei. – In part Stechow 1909: 99, pl. 6: fig. 12.<br />

– Stechow 1919: 134.<br />

Material examined:<br />

Kei Islands Expedition stations: 18. – 40. – Kei Islands<br />

Expedition, Bay <strong>of</strong> Ambon, 45–90 m, 2 Mar 1922. – Kei<br />

Islands Expedition, Bay <strong>of</strong> Ambon, 90 m, 2 Mar 1922.<br />

Differential diagnosis<br />

Similar <strong>to</strong> Macrorhynchia philippina, but colo-<br />

P. SCHUCHERT<br />

Fig. 72. Macrorhynchia singularis (Billard, 1908); station<br />

40. A. First internode <strong>of</strong> hydrocladium, note enlarged lateral<br />

nema<strong>to</strong><strong>the</strong>ca (dotted: nema<strong>to</strong>cyst). B. Second segment <strong>of</strong><br />

hydrocladium with characteristic thick median inferior nema<strong>to</strong><strong>the</strong>ca.<br />

– Scale: A–B 50 µm.<br />

nies smaller (up <strong>to</strong> 10 cm), one lateral nema<strong>to</strong><strong>the</strong>ca<br />

<strong>of</strong> first hydrocladial segment much enlarged<br />

and directed <strong>to</strong>wards rear, opposite nema<strong>to</strong><strong>the</strong>ca<br />

<strong>of</strong> same segment small, free part <strong>of</strong><br />

median nema<strong>to</strong><strong>the</strong>ca very short; median nema<strong>to</strong><strong>the</strong>ca<br />

<strong>of</strong> segments distal <strong>to</strong> first one mostly<br />

much enlarged and thick, lateral nema<strong>to</strong><strong>the</strong>cae<br />

usually small. Some lateral nema<strong>to</strong><strong>the</strong>cae <strong>of</strong><br />

more distal segments can also be enlarged on one<br />

side, as well as some median inferior nemat-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

o<strong>the</strong>cae can be short. Hydro<strong>the</strong>cal margin with<br />

two broad lateral lobes or irregular, abcauline<br />

side with pointed <strong>to</strong>oth.<br />

Remarks<br />

Billard (1908b) first regarded M. singularis as<br />

a variety <strong>of</strong> M. philippina, but in his 1913 publication<br />

he raised its status <strong>to</strong> <strong>the</strong> species level.<br />

Macrorhynchia singularis indeed resembles M.<br />

philippina, but <strong>the</strong> unilaterally hypertrophied lateral<br />

nema<strong>to</strong><strong>the</strong>cae as well as <strong>the</strong> alternately extremely<br />

short or very thick median inferior nema<strong>to</strong><strong>the</strong>cae<br />

make this morphotype ra<strong>the</strong>r distinct<br />

and easy <strong>to</strong> recognize (Fig. 72A–B). Stechow<br />

(1919) found Japanese material from Sagami<br />

Bay that only partially matched Billard’s description.<br />

It had one enlarged lateral nema<strong>to</strong><strong>the</strong>ca on<br />

<strong>the</strong> first segment, but <strong>the</strong> median inferior ones<br />

were normal. Stechow (1919) made some comments<br />

that let one suspect that he doubted somewhat<br />

<strong>the</strong> validity <strong>of</strong> M. singularis. In his survey <strong>of</strong><br />

<strong>the</strong> <strong>the</strong>cate hydroids <strong>of</strong> Sagami Bay, Hirohi<strong>to</strong><br />

(1995) did not include M. singularis.<br />

Distribution<br />

Indonesia, ?Japan. Type locality: Salawati Island,<br />

NW New Guinea, 1.701°S, 130.785°E, 32<br />

m.<br />

Monoserius pennarius (Linnaeus, 1758)<br />

Fig. 73.<br />

Sertularia pennaria Linnaeus, 1758: 813.<br />

Aglaophenia spicata Lamouroux, 1816: 166. – Billard 1909:<br />

329.<br />

Plumularia Banksii Gray, 1843: 294. – Billard 1910: 48.<br />

Aglaophenia secunda Kirchenpauer 1872: 35, pl. 1: fig. 15,<br />

pl. 2: fig. 15, pl. 3: fig. 15. – Marktanner-Turneretscher<br />

1890: 273. – Billard 1909: 329.<br />

Aglaophenia crispata Kirchenpauer, 1872: 36, pl. 1: fig. 16,<br />

pl. 2: fig. 16, pl. 3: fig. 17. – Billard 1909: 329.<br />

Not Aglaophenia spicata. – Kirchenpauer 1872; 27, pl. 1:<br />

fig. 12, pl. 2: fig. 11, pl. 4: fig. 11, [= A. cupressina<br />

Lamouroux, 1816].<br />

Ly<strong>to</strong>carpus secundus. – Allman, 1883: 42, pl. 14. – Jäderholm<br />

1903: 298. – Billard 1908c: 940.<br />

Ly<strong>to</strong>carpus fasciculatus Thornely, 1904: 123, pl. 3: figs 3,<br />

3A, 3B.<br />

Ly<strong>to</strong>carpus pennarius. – Billard 1909: 329. – Ritchie 1910a:<br />

19, pl. 4: fig. 2.<br />

Hemicarpus fasciculatus. – Billard 1913: 83, figs 68–69, pl.<br />

5: figs 41–42.<br />

Hemicarpus banksi. – Bale 1924: 263, fig. 17a.<br />

229<br />

Monoserius fasciculatus. – Leloup 1932: 165, fig. 28. –<br />

Vervoort 1941: 228.<br />

Monoserius banksii. – Ralph 1961b: 56, fig. 8h<br />

Monoserius pennarius. – Mammen 1967: 307, figs 108–109.<br />

Monoserius fasciculatus. – Mammen 1967: 310.<br />

Material examined:<br />

Kei Islands Expedition stations: 65, incipient gonocladium<br />

present. – 67, with male gono<strong>the</strong>cae. – 69. – 70. – 83. – 102.<br />

– 103. – 105. – 110. – 114. – Kei Islands Expedition,<br />

Samalon Island, Ujungpandang, Sulawesi, 35 m, 28 Jun<br />

1922. – Kei Islands Expedition, Taka Bako, Ujungpandang,<br />

Sulawesi, 25 m, 27 Jun 1922.<br />

Description<br />

Colonies forming single stems, rooted in sediment<br />

by a tangled mass <strong>of</strong> fibre-like s<strong>to</strong>lons, stem<br />

height reaching 100 cm and more, flexible, limp<br />

when out <strong>of</strong> water. Stem polysiphonic, with regularly<br />

spaced pinnate side-branches. Basal part <strong>of</strong><br />

stem in younger colonies pinnate through alternate<br />

hydrocladia, hydrocladia arise from superficial<br />

primary tube; in more distal part where <strong>the</strong>re<br />

are pinnate side-branches and in larger colonies<br />

without pinnate base <strong>the</strong>re is no primary tube,<br />

stem thus formed by auxiliary tubes only. Sidebranches<br />

originate from auxiliary tubes <strong>of</strong> main<br />

stem, fea<strong>the</strong>r-like through dense hydrocladia,<br />

side-branches alternate, in two rows, <strong>the</strong> two<br />

rows forming an angle <strong>of</strong> 90° or less, sidebranches<br />

thus directed <strong>to</strong>wards one side (depending<br />

on view). Axis <strong>of</strong> side-branches polysiphonic<br />

but thinning <strong>to</strong> monosiphonic, with superficial<br />

primary tube bearing alternate hydrocladia. Primary<br />

tube with short apophyses for hydrocladia,<br />

each apophysis associated with three nema<strong>to</strong><strong>the</strong>cae:<br />

one on apophysis, one on side, one below.<br />

Hydrocladia straight, stiff, dense, inclined <strong>to</strong>wards<br />

hydrocaulus at an angle <strong>of</strong> about 40°, with<br />

or without transverse nodes delimiting segments,<br />

spacing <strong>of</strong> hydro<strong>the</strong>cae variable: hydro<strong>the</strong>cae ei<strong>the</strong>r<br />

slightly overlapping (Fig. 73C) or well separated<br />

(Fig. 73D). Internal ribs not much developed,<br />

usually two originating from rear wall <strong>of</strong><br />

hydro<strong>the</strong>ca.<br />

Hydro<strong>the</strong>ca campanulate, nearly parallel <strong>to</strong><br />

hydrocladial axis, 0.27–0.35 mm high, diameter<br />

at rim 0.15–0.17 mm, adcauline side completely<br />

adnate, opening-plane perpendicular <strong>to</strong> hydrocladial<br />

axis, rim with a large abcauline <strong>to</strong>oth and<br />

4–5 triangular cusps on both lateral sides. Marginal<br />

abcauline <strong>to</strong>oth rectangular in frontal view,


230<br />

P. SCHUCHERT<br />

Fig. 73. Monoserius pennarius (Linnaeus, 1758); A, station 70; B–C, E–F, station 67; D, station 102. A. Silhouette <strong>of</strong> young<br />

colony. B. Hydro<strong>the</strong>ca in oblique view, note abcauline gutter-shaped <strong>to</strong>oth. C. Two hydro<strong>the</strong>cae in side view, from colony with<br />

narrow spacing, same scale as B. D. Two hydro<strong>the</strong>cae from colony with widely spaced hydro<strong>the</strong>cae, same scale as B. E.<br />

Gonocladium with three gono<strong>the</strong>cae, note that <strong>the</strong>re is only one row <strong>of</strong> nema<strong>to</strong>cladia. F. Part <strong>of</strong> gonocladium with<br />

nema<strong>to</strong>cladium. Scales: A = 2 cm; B–D = 0.1 mm; E = 0.5 mm; F = 0.1 mm.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

curved in side view, with longitudinal gutter-like<br />

depression along its entire length, gutter also<br />

somewhat continued on abcauline wall <strong>of</strong> hydro<strong>the</strong>ca.<br />

Lateral cusps <strong>of</strong> variable height, <strong>the</strong> two in<br />

<strong>the</strong> middle more prominent.<br />

Nema<strong>to</strong><strong>the</strong>cae all with finely crenulated rims.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca reaching <strong>to</strong> middle<br />

or up <strong>to</strong> 2/3 <strong>of</strong> hydro<strong>the</strong>ca, free part <strong>of</strong> variable<br />

length, <strong>to</strong>p side open and thus gutter-like, opening<br />

in<strong>to</strong> hydro<strong>the</strong>ca (foramen) present, <strong>of</strong>ten difficult<br />

<strong>to</strong> see, perhaps also obliterated. Lateral<br />

nema<strong>to</strong><strong>the</strong>cae cup-shaped, small, 0.1–0.12 mm<br />

long, opening facing <strong>to</strong>wards above.<br />

Gono<strong>the</strong>cae borne on modified hydrocladia,<br />

(gonocladia), about every third <strong>to</strong> fifth hydrocladium<br />

may be modified in<strong>to</strong> a gonocladium.<br />

Gonocladia straight, fully mature ones reach <strong>the</strong><br />

same length as o<strong>the</strong>r hydrocladia. First segment<br />

as in normal hydrocladia, thus with a hydro<strong>the</strong>ca,<br />

along rest <strong>of</strong> gonocladium no hydro<strong>the</strong>cae, but<br />

with one row <strong>of</strong> spine-like processes (nema<strong>to</strong>cladia)<br />

bearing two rows <strong>of</strong> nema<strong>to</strong><strong>the</strong>cae along<br />

<strong>the</strong>ir sides. Gonocladial axis also with nema<strong>to</strong><strong>the</strong>cae.<br />

Nema<strong>to</strong><strong>the</strong>cae adnate on one side. Gono<strong>the</strong>cae<br />

arise at base <strong>of</strong> nema<strong>to</strong>cladia, lens-shaped<br />

but not much flattened, diameter 0.7 mm.<br />

Remarks<br />

The genus Monoserius Marktanner-Turneretscher,<br />

1890 is here used for this species and<br />

Hemicarpus Billard, 1913 is regarded as a synonym<br />

<strong>of</strong> it. With its gonocladia having a single row<br />

<strong>of</strong> side-branches (nema<strong>to</strong>cladia), this is quite a<br />

distinct genus.<br />

Mammen (1967) is here followed in regarding<br />

M. pennarius (L.) and M. fasciculatus (Thornely,<br />

1904) as conspecific. Billard (1909, 1910) examined<br />

<strong>the</strong> type material <strong>of</strong> Sertularia pennaria<br />

Linnaeus, 1758; Aglaophenia spicata Lamouroux,<br />

1816; and Plumularia Banksii Gray, 1843<br />

and he concluded that <strong>the</strong>y are conspecific. He<br />

also included Aglaophenia secunda Kirchenpauer<br />

1872 and Aglaophenia crispata Kirchenpauer,<br />

1872 in this synonymy. It is <strong>the</strong>refore<br />

somewhat surprising that Billard (1913) regarded<br />

M. fasciculatus (Thornely, 1904) as valid<br />

and did not discuss <strong>the</strong> differences <strong>to</strong> M. pennarius.<br />

In <strong>the</strong> present material two variants are dis-<br />

231<br />

cernible: a variant with more robust, thick stems<br />

and long branches and a gracile variant with thin<br />

stems and short side-branches. These differences<br />

are here seen as age related.<br />

Distribution<br />

India, Ceylon, Indonesia, Philippines, Taiwan,<br />

Sou<strong>the</strong>rn Japan, Palau, New Zealand. Type locality:<br />

Unknown.<br />

Cladocarpus keiensis new species<br />

Fig. 74.<br />

Type material:<br />

Holotype: ZMUC, Kei Islands Expedition station 24, Kei<br />

Islands, 15 Apr 1922, hard bot<strong>to</strong>m, colony fragmented; part<br />

<strong>of</strong> this colony as schizotype slides in MHNG, collection no.<br />

INVE 32487. Type locality: Kei Islands Expedition station<br />

24, 5.62°S, 132.93°E, 100 m.<br />

Description<br />

Colony 6 cm high, stem with a few sidebranches,<br />

stem polysiphonic, composed <strong>of</strong> one<br />

superficial primary tube bearing hydrocladia<br />

(lost in lower part) and bundle <strong>of</strong> about 8 auxiliary<br />

tubes, number <strong>of</strong> auxiliary tubes reduced<br />

<strong>to</strong>wards distal, terminal part <strong>of</strong> stem monosiphonic;<br />

few side-branches present, structured<br />

like stem, lower ones slightly polysiphonic,<br />

distal ones monosiphonic, primary tube <strong>of</strong> sidebranches<br />

originates from primary tube <strong>of</strong> stem.<br />

Auxiliary tubes with a row <strong>of</strong> nema<strong>to</strong><strong>the</strong>cae in<br />

groove separating two adnate tubes, nema<strong>to</strong><strong>the</strong>cae<br />

<strong>of</strong> auxiliary tube similar <strong>to</strong> those <strong>of</strong> primary<br />

tube. Primary tube segmented in more distal<br />

parts, internodes long (0.9 mm); in distal third <strong>of</strong><br />

internode an apophysis for <strong>the</strong> hydrocladium,<br />

with three nema<strong>to</strong><strong>the</strong>cae: one axillary and two<br />

median in lower half <strong>of</strong> segment. Nema<strong>to</strong><strong>the</strong>cae<br />

oval, free end gutter-like.<br />

Hydrocladia on stem and side-branches in two<br />

rows, alternate, stiff, thin, up <strong>to</strong> 2 cm long, <strong>the</strong><br />

two rows not in one plane but at variable angle,<br />

angle may be smaller than 90°. Hydrocladium<br />

homomerously segmented by slightly oblique<br />

nodes, segments 0.65–0.75 mm long, diameter<br />

at nodes 0.15–0.2 mm, each segment with one<br />

hydro<strong>the</strong>ca and three nema<strong>to</strong><strong>the</strong>cae: two laterals<br />

and one median inferior; internodes with regular


232<br />

internal thickenings (ribs): 7–8 semicircular ones<br />

along adcauline wall <strong>of</strong> hydro<strong>the</strong>ca, one circular<br />

at base <strong>of</strong> median inferior nema<strong>to</strong><strong>the</strong>ca.<br />

Hydro<strong>the</strong>ca elongate, conical, depth 0.5 mm,<br />

opening diameter 0.2 mm, adcauline wall completely<br />

adnate, abcauline wall mostly straight or<br />

very slightly S-shaped, opening-plane perpendicular<br />

<strong>to</strong> internode axis, margin smooth except<br />

for a sharp rectangular abcauline cusp, cusp not<br />

P. SCHUCHERT<br />

Fig. 74. Cladocarpus keiensis new species. A. Part <strong>of</strong> stem in polysiphonic region, with base <strong>of</strong> hydrocladium; note presence<br />

<strong>of</strong> nema<strong>to</strong><strong>the</strong>cae on auxiliary tube (left). B. Hydrocladial segment in lateral, transparent view. C. Hydrocladial segment in<br />

oblique view, note intra<strong>the</strong>cal septum and ridge (stippled). D. Median inferior nema<strong>to</strong><strong>the</strong>ca. E. Lateral nema<strong>to</strong><strong>the</strong>ca seen from<br />

inner side, note that two lobes formed by drop-shaped emargination can also be fused, same scale as D. F. Hydrocladium with<br />

gonocladium bearing three juvenile gono<strong>the</strong>cae, note presence <strong>of</strong> hydro<strong>the</strong>cae on gonocladium as well as single row <strong>of</strong><br />

nema<strong>to</strong><strong>the</strong>cae. – Scales: A = 0.2 mm; B–C = 0.1 mm; D–E = 50 µm; F = 0.5 mm.<br />

gutter-like. Hydropore near base <strong>of</strong> adcauline<br />

side. At lower fourth <strong>of</strong> hydro<strong>the</strong>ca an internal<br />

adcauline septum spanning half <strong>the</strong> hydro<strong>the</strong>cal<br />

diameter, scoop-shaped, directed obliquely upward,<br />

lateral sides attached <strong>to</strong> hydro<strong>the</strong>ca and<br />

continued as a looped ridge <strong>to</strong> abcauline wall<br />

where both ends meet (Fig. 74B–C). Septum and<br />

ridge very conspicuous, present in all hydro<strong>the</strong>cae.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Lateral nema<strong>to</strong><strong>the</strong>cae tubular, distal half extending<br />

beyond hydro<strong>the</strong>ca, bent at level <strong>of</strong><br />

hydro<strong>the</strong>cal margin, upper part upright, lower,<br />

adnate part oblique, one circular terminal opening,<br />

inner wall with ei<strong>the</strong>r a deep, drop-shaped<br />

emargination or a similarly shaped hole (Fig.<br />

74E). Median inferior nema<strong>to</strong><strong>the</strong>ca below hydro<strong>the</strong>ca<br />

and just reaching somewhat beyond its<br />

bot<strong>to</strong>m, tubular, straight, lower half adnate, free<br />

part gutter-like.<br />

Gono<strong>the</strong>cae borne on modified hydrocladia<br />

(gonocladia) branching <strong>of</strong>f from ordinary hydrocladia,<br />

branching point near base <strong>of</strong> a hydro<strong>the</strong>ca.<br />

Gonocladia unpaired, straight, closely resembling<br />

ordinary hydrocladia, with a few segments<br />

bearing a hydro<strong>the</strong>ca and nema<strong>to</strong><strong>the</strong>cae,<br />

<strong>the</strong>se segments thus identical <strong>to</strong> <strong>the</strong> ones <strong>of</strong> ordinary<br />

hydrocladia, intercalated between <strong>the</strong>m 2–3<br />

internodes bearing a gono<strong>the</strong>ca, each internode<br />

with 2–3 nema<strong>to</strong><strong>the</strong>cae, nema<strong>to</strong><strong>the</strong>cae <strong>the</strong>se internodes<br />

in one median row, thus not paired,<br />

resembling median inferior nema<strong>to</strong><strong>the</strong>cae. Gonocladium<br />

with regular internal ribs.<br />

Observed gono<strong>the</strong>cae all at beginning <strong>of</strong> development<br />

only, funnel-shaped, circular crosssection.<br />

Etymology<br />

The name keiensis refers <strong>to</strong> <strong>the</strong> type locality in <strong>the</strong><br />

channel between <strong>the</strong> two main islands <strong>of</strong> <strong>the</strong> Kei<br />

Archipelago.<br />

Remarks<br />

Cladocarpus keiensis resembles Cladocarpus<br />

sibogae, <strong>the</strong> type locality <strong>of</strong> which is only 8–9<br />

nautical miles distant. They differ, however, in<br />

a number <strong>of</strong> independent details. Cladocarpus<br />

sibogae has median inferior and lateral nema<strong>to</strong><strong>the</strong>cae<br />

with slit-like openings which are not<br />

gutter-shaped or tubular (see Ramil & Vervoort<br />

1992: fig. 27f), <strong>the</strong> hydro<strong>the</strong>cal margin is undulated,<br />

it lacks <strong>the</strong> large intra<strong>the</strong>cal septum and<br />

<strong>the</strong> looped ridge, <strong>the</strong> gonocladium has no interspersed<br />

segments with hydro<strong>the</strong>cae, and <strong>the</strong> nema<strong>to</strong><strong>the</strong>cae<br />

<strong>of</strong> <strong>the</strong> gonocladium are in two rows.<br />

Fur<strong>the</strong>r differences are found in <strong>the</strong> unbranched<br />

stem and <strong>the</strong> generally larger dimensions <strong>of</strong> internode<br />

length and hydro<strong>the</strong>ca size. Cladocarpus<br />

multiseptata Bale, 1915, is also similar but this<br />

233<br />

species has gonocladia with nema<strong>to</strong><strong>the</strong>cae in two<br />

rows and without hydro<strong>the</strong>cae. There are more<br />

such similar species and <strong>the</strong>ir differences are<br />

discussed in Vervoort (1966), Rees & Vervoort<br />

(1987), Ramil & Vervoort (1992), and Ansín<br />

Agís et al. (2001). Cladocarpus keiensis differs<br />

from all <strong>of</strong> <strong>the</strong>m by its peculiar gonocladium and<br />

<strong>the</strong> intra<strong>the</strong>cal septum continued as a looped<br />

ridge.<br />

The gonocladium (phylac<strong>to</strong>carp) <strong>of</strong> Cladocarpus<br />

keiensis with its interspersed hydro<strong>the</strong>cate<br />

elements immediately suggests its origin<br />

from an ordinary hydrocladium and could represent<br />

<strong>the</strong> least derived phylac<strong>to</strong>carp morphology<br />

found in this genus. The gono<strong>the</strong>cae <strong>of</strong> <strong>the</strong> type<br />

specimen were all juvenile, but clearly recognizable<br />

as incipient gono<strong>the</strong>cae (Fig. 74F).<br />

Distribution<br />

Only known from <strong>the</strong> type locality: Kei Islands<br />

Expedition station 24, 5.62°S, 132.93°E, 100 m.<br />

Ly<strong>to</strong>carpia angulosa (Lamarck, 1816)<br />

Fig. 75.<br />

Plumularia angulosa Lamarck, 1816: 126.<br />

Aglaophenia angulosa Lamouroux, 1816: 166.<br />

Plumularia Huxleyi Busk, 1852: 395.<br />

Acanthocladium Huxleyi. – Allman 1883: 33, pls 9 & 20:<br />

figs 1–3.<br />

Aglaophenia Huxleyi. – Bale 1884: 161, pl. 15: fig. 6, pl. 17:<br />

fig. 8.<br />

Thecocarpus angulosus. – Billard 1907: 326, fig. 2, revision.<br />

– Billard 1913: 85, figs 70–74.<br />

Acanthocladium studeri Weltner, 1900: 588, pl. 46: figs 4–<br />

7.<br />

Acanthocladium angulosum. – Stechow & Müller 1923:<br />

478.<br />

Ly<strong>to</strong>carpia angulosa. – Watson 2000: 64, fig. 51A–G.<br />

Material examined:<br />

Kei Islands Expedition stations: 15, with gono<strong>the</strong>cae. – 16. –<br />

18. – 21. – 24. – 26. – 30, with gono<strong>the</strong>cae. – 37. – 53.<br />

Description<br />

Colonies forming single stems, rooted in sediment<br />

by tangled mass <strong>of</strong> fibre-like s<strong>to</strong>lons, stem<br />

height reaching 60 cm and more, flexible, limp<br />

when out <strong>of</strong> water, polysiphonic, furnished all<br />

around with helically arranged pinnate sidebranches.<br />

Stem only occasionally with hydrocladia<br />

arising from a primary tube, hydrocladia


234<br />

<strong>of</strong>ten lost, some replaced by pseudophylac<strong>to</strong>carps.<br />

Auxiliary tubes can also bear pseudophylac<strong>to</strong>carps;<br />

<strong>the</strong>y can also be present on sidebranches,<br />

sometimes <strong>the</strong>y are rare or absent.<br />

Pseudophylac<strong>to</strong>carps are modified hydrocladia<br />

without hydro<strong>the</strong>cae, highly flexible, com-<br />

P. SCHUCHERT<br />

Fig. 75. Ly<strong>to</strong>carpia angulosa (Lamarck, 1816); A, Indonesia, Kei Islands collection; B–D, station 18; E, station 15. A. Distal<br />

fourth <strong>of</strong> a colony. B. Hydrocladial segment, note abcauline marginal <strong>to</strong>oth. C. Same hydrocladial segment seen from left and<br />

right, note differently shaped lateral nema<strong>to</strong><strong>the</strong>cae. D. Modified hydrocladium (pseudophylac<strong>to</strong>carp) from stem, same scale as<br />

C. E. One costa <strong>of</strong> a corbula seen from inner side. – Scales: A = 2 cm; B = 50 µm; C–D = 0.1 mm; E = 0.2 mm.<br />

posed <strong>of</strong> short segments, each segment with<br />

three nema<strong>to</strong><strong>the</strong>cae, <strong>the</strong>se resembling <strong>to</strong> a pair <strong>of</strong><br />

laterals and one median inferior nema<strong>to</strong><strong>the</strong>ca <strong>of</strong><br />

normal hydrocladia.<br />

Axis <strong>of</strong> side-branches polysiphonic, monosiphonic<br />

at very ends only, with superficial pri-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

mary tube bearing alternate hydrocladia, base <strong>of</strong><br />

side-branches without oblique pinching (hingejoint).<br />

Hydrocladia straight, stiff, dense, inclined <strong>to</strong>wards<br />

hydrocaulus at an angle <strong>of</strong> about 60°, up <strong>to</strong><br />

5 mm long, with oblique nodes delimiting segments.<br />

The distal-most hydrocladia <strong>of</strong> a sidebranch<br />

can be transformed in<strong>to</strong> spine-like processes<br />

bearing nema<strong>to</strong><strong>the</strong>cae.<br />

Hydro<strong>the</strong>ca semi-circular in side view, 0.21–<br />

0.25 mm high, adcauline side 2/3 adnate, opening-plane<br />

parallel <strong>to</strong> hydrocladial axis, almost no<br />

free abcauline side, rim with a large abcauline<br />

<strong>to</strong>oth, lateral margin undulated, with a horizontal,<br />

thin abcauline septum projecting in<strong>to</strong> lumen<br />

<strong>of</strong> hydro<strong>the</strong>ca, free end <strong>of</strong> septum in-rolled.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca adnate along<br />

entire length <strong>of</strong> abcauline hydro<strong>the</strong>cal wall, <strong>to</strong>tal<br />

length less than height <strong>of</strong> hydro<strong>the</strong>ca, free part<br />

<strong>of</strong> variable length, <strong>to</strong>p side <strong>of</strong> free part open<br />

and thus gutter-like, opening in<strong>to</strong> hydro<strong>the</strong>ca<br />

(foramen) present. Lateral nema<strong>to</strong><strong>the</strong>cae cupshaped,<br />

broad, opening facing upward; <strong>the</strong> two<br />

lateral nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> on hydro<strong>the</strong>cae are <strong>of</strong>ten<br />

unequally developed, especially in more proximal<br />

hydro<strong>the</strong>cae (Fig. 75C).<br />

Gono<strong>the</strong>cae borne on hydrocladium modified<br />

in<strong>to</strong> corbula. Corbula as long as hydrocladia, axis<br />

without hydro<strong>the</strong>cae, with two rows <strong>of</strong> alternate<br />

costae. Costae solitary and not fused, up <strong>to</strong> 1.3<br />

mm long, each with a hydro<strong>the</strong>ca in lower part,<br />

distal part tapering, segmented, on lateral side <strong>of</strong><br />

each segment two opposite, adnate nema<strong>to</strong><strong>the</strong>cae.<br />

Gono<strong>the</strong>cae attached below hydro<strong>the</strong>ca, lenticular<br />

<strong>to</strong> sac-shaped, 0.6 mm diameter; gonophore<br />

medusoid, bell margin with granules.<br />

Remarks<br />

The hydro<strong>the</strong>ca <strong>of</strong> Ly<strong>to</strong>carpia angulosa (Lamarck,<br />

1816) resembles somewhat <strong>the</strong> one <strong>of</strong><br />

Macrorhynchia phoenicea, but its abcauline<br />

<strong>to</strong>oth, <strong>the</strong> gutter-shaped median inferior nema<strong>to</strong><strong>the</strong>ca,<br />

and <strong>the</strong> frequently unequal development<br />

<strong>of</strong> <strong>the</strong> lateral nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> L. angulosa are<br />

sufficient <strong>to</strong> distinguish <strong>the</strong>m. The colony form<br />

<strong>of</strong> <strong>the</strong> two species is quite different and so <strong>the</strong>y<br />

are easily separable macroscopically (cf. Figs<br />

68A and 75A).<br />

Some <strong>of</strong> <strong>the</strong> examined gono<strong>the</strong>cae contain<br />

235<br />

gonophores that are clearly similar <strong>to</strong> <strong>the</strong> ones<br />

found in M. philippina, thus presumably liberable<br />

medusoids. The medusoids even have a<br />

ring <strong>of</strong> refringent granules along <strong>the</strong> bell margin.<br />

These medusoids are now known for quite a<br />

number <strong>of</strong> <strong>the</strong>cate hydroids (see Boero & Bouillon<br />

1989, Gravier-Bonnet & Migot<strong>to</strong> 2000).<br />

Likewise, <strong>the</strong> pseudophylac<strong>to</strong>carps are found in<br />

various species <strong>of</strong> tropical aglaophenids belonging<br />

<strong>to</strong> different genera (see also L. perarmata<br />

below).<br />

Distribution<br />

Nor<strong>the</strong>rn Australia, Indonesia. Type locality:<br />

Australia.<br />

Ly<strong>to</strong>carpia delicatula (Busk, 1852)<br />

Fig. 76.<br />

Plumularia delicatula Busk, 1852: 396.<br />

Aglaophenia delicatula Bale, 1884: 167, pl. 14: fig. 4, pl. 17:<br />

fig. 11. – Borradaile 1905: 843, pl. 69: fig. 7. – Billard<br />

1913: 106, fig. 95. – Jäderholm 1920: 8, pl. 2: fig. 7. –<br />

Jarvis 1922: 350. – Pennycuik 1959: 185. – Watson<br />

2000: 57, fig. 46A–E.<br />

Thecocarpus delicatulus. – Millard & Bouillon 1973: 94,<br />

fig. 11J–K. – Millard 1975: 455, 139D–E.<br />

Material examined:<br />

Kei Islands Expedition stations: 37, on sponge and s<strong>to</strong>ne. –<br />

67, part <strong>of</strong> plume. – 85, with gono<strong>the</strong>cae. – Kei Islands<br />

Expedition, Banda Islands, Neira Island, 20 m, 1 Jun 1922,<br />

on sponge.<br />

Description<br />

Colony pinnate, 3–12 cm, stem not branched,<br />

monosiphonic, bearing alternate hydrocladia,<br />

with prosegments, with one or two hingejoints,<br />

part above hinge-joint segmented through<br />

slightly oblique nodes, each segment bearing a<br />

hydrocladial apophysis with a mamelon and<br />

three nema<strong>to</strong><strong>the</strong>cae: one inferior anterior and one<br />

on each side <strong>of</strong> <strong>the</strong> apophysis.<br />

Hydrocladia up <strong>to</strong> 8 mm long, held obliquely<br />

<strong>to</strong> caulus, bearing anterior hydro<strong>the</strong>cae, homomerously<br />

segmented by transverse nodes, segments<br />

with weakly developed internal ribs.<br />

Hydro<strong>the</strong>ca campanulate, depth 0.21–0.23<br />

mm, covering nearly complete segment, adcauline<br />

side adnate; opening forming an angle <strong>of</strong><br />

about 55° with segment, inclined <strong>to</strong>wards below,<br />

margin with five cusps: one distinct abcauline


236<br />

<strong>to</strong>oth and on each lateral side two broader triangular<br />

cusps. On inside <strong>of</strong> lower part <strong>of</strong> hydro<strong>the</strong>ca<br />

a short adcauline shelf, shelf continued as<br />

ridge along hydro<strong>the</strong>cal wall <strong>to</strong>wards front.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca adnate <strong>to</strong> abcauline<br />

hydro<strong>the</strong>cal wall <strong>to</strong> just below origin <strong>of</strong><br />

abcauline <strong>to</strong>oth, free end ra<strong>the</strong>r short, guttershaped,<br />

reaching approximately <strong>to</strong> level <strong>of</strong> <strong>the</strong><br />

tips <strong>of</strong> <strong>the</strong> marginal cusps; foramen in<strong>to</strong> hydro<strong>the</strong>ca<br />

present but inconspicuous and small, may<br />

be obliterated. Lateral nema<strong>to</strong><strong>the</strong>cae curved,<br />

opening directed <strong>to</strong>wards above, reaching beyond<br />

margin <strong>of</strong> hydro<strong>the</strong>ca.<br />

P. SCHUCHERT<br />

Fig. 76. Ly<strong>to</strong>carpia delicatula (Busk, 1852); A, Indonesia, Kei Islands collection; B–F, station 85. A. Colony silhouette. B.<br />

Two stem segments. C. Hydro<strong>the</strong>ca in oblique view. D. Hydrocladial segment from side. E. Hydro<strong>the</strong>cal <strong>to</strong>oth and median<br />

inferior nema<strong>to</strong><strong>the</strong>ca from hydro<strong>the</strong>ca on same hydrocladium as that shown in D, note <strong>the</strong> variability. F. Corbula containing<br />

gono<strong>the</strong>cae. – Scales: A = 1 cm; B, F = 0.2 mm; C = 0.1 mm; D, E = 50 µm.<br />

Corbula open, replacing a hydrocladium, first<br />

segment like in a normal hydrocladium with hydro<strong>the</strong>ca,<br />

followed by 6–7 segments bearing alternate<br />

ribs (costae). Costae thin, not flattened,<br />

not fused, near base a hydro<strong>the</strong>ca with associated<br />

lateral nema<strong>to</strong><strong>the</strong>cae; part <strong>of</strong> costa distal <strong>to</strong> hydro<strong>the</strong>ca<br />

with two rows <strong>of</strong> alternate nema<strong>to</strong><strong>the</strong>cae.<br />

Gono<strong>the</strong>ca attached on costal apophysis <strong>of</strong><br />

corbula axis (rachis), oblong, flattened, 0.8–1.0<br />

mm long<br />

Remarks<br />

The corbulae <strong>of</strong> Ly<strong>to</strong>carpia delicatula (Busk,


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

1852) are relatively small. In <strong>the</strong> present material<br />

(Fig. 76F), <strong>the</strong> simultaneous presence <strong>of</strong> gono<strong>the</strong>cae<br />

with s<strong>of</strong>t tissue and o<strong>the</strong>rs that are already<br />

empty never<strong>the</strong>less suggests that <strong>the</strong> corbulae are<br />

mature. See also below for <strong>the</strong> distinction from<br />

<strong>the</strong> similar Ly<strong>to</strong>carpia phyteuma.<br />

Distribution<br />

Nor<strong>the</strong>rn Australia, Great Barrier Reef, Indonesia,<br />

Seychelles, Maldives, Mozambique. Type<br />

locality: Torres Strait, Australia, 16 m.<br />

Ly<strong>to</strong>carpia phyteuma (Kirchenpauer, 1876)<br />

Fig. 77.<br />

Agalophenia phyteuma Kirchenpauer, 1876: 23.<br />

237<br />

Agalophenia elongata var. sibogae Billard, 1913: 103, figs<br />

92–93.<br />

Thecocarpus phyteuma. – Stechow 1919: 139, figs C2–D2. –<br />

Pennycuik 1959: 187. – Millard & Bouillon 1973: 95,<br />

fig. 11E–F. – ?Vervoort & Vasseur, 1977: 86, fig. 36.<br />

Ly<strong>to</strong>carpia phyteuma. – Ryland & Gibbons 1991: 548, figs<br />

18–19. – Watson 2000: 65, fig. 52A–G.<br />

Aglaophenia clavicula Whitelegge, 1899: 373, pl. 23: figs<br />

4–6.<br />

Thecocarpus leopoldi Leloup, 1930a: 1, fig. 1. – Leloup<br />

1930b: 11, figs 8–9, pl. 2: figs 2–3. – Vervoort &<br />

Vasseur, 1977: 86, revision.<br />

Material examined:<br />

Kei Islands Expedition station 69. – Kei Islands Expedition,<br />

Banda Islands, Neira Island, 20 m, 1 Jun 1922, incipient<br />

corbulae with hydro<strong>the</strong>cae present. – Kei Islands Expedition,<br />

Banda Island, village <strong>of</strong> Waling, 20 m, 11 Jun 1922.<br />

– MHNG INVE 32597, Thailand, Andaman Sea, Koh Pee<br />

Pee, 10–15 m, 15 Apr 2000, coll. A. Faucci, with corbulae<br />

Fig. 77. Ly<strong>to</strong>carpia phyteuma (Kirchenpauer, 1876); A–C, Banda Islands; D–E, Andaman Sea. A. colony silhouette. B. Two<br />

stem segments. C. Hydrocladial segment from side. D. Corbula. E. Two costae <strong>of</strong> corbula. – Scales: A = 1 cm; B = 0.2 mm; C<br />

= 50 µm; D = 0.5 mm.


238<br />

Differential diagnosis<br />

Similar <strong>to</strong> L. delicatula, differing in: stems only<br />

up <strong>to</strong> 4 cm, hydrocladia wider spaced, stem without<br />

hinge-joints, prosegments not visible but<br />

with solitary nema<strong>to</strong><strong>the</strong>cae on proximal stemregion;<br />

hydro<strong>the</strong>ca deeper (0.26 mm), opening<br />

less inclined, lateral margin with three cusps,<br />

median inferior nema<strong>to</strong><strong>the</strong>ca reaches only <strong>to</strong><br />

middle <strong>of</strong> hydro<strong>the</strong>ca; mature corbula long (2/3<br />

<strong>of</strong> hydrocladia), with fused broad ribs bearing<br />

only one row <strong>of</strong> nema<strong>to</strong><strong>the</strong>cae.<br />

Description <strong>of</strong> gono<strong>the</strong>ca<br />

Corbulae closed, length variable but may reach<br />

almost <strong>the</strong> length <strong>of</strong> a hydrocladium. First segment<br />

hydro<strong>the</strong>cate and identical <strong>to</strong> normal hydrocladium,<br />

<strong>the</strong>n axis with two alternate rows <strong>of</strong><br />

costae. Costae leaf-like, at base a hydro<strong>the</strong>ca on a<br />

lobe, distal rim <strong>of</strong> costa with a row <strong>of</strong> nema<strong>to</strong><strong>the</strong>ca,<br />

costae fused <strong>to</strong> form a tube, distal end<br />

mostly open, this even in corbulae with mature<br />

gono<strong>the</strong>cae. Lobe bearing hydro<strong>the</strong>ca can be<br />

elongated like a spur and may bear a terminal<br />

nema<strong>to</strong><strong>the</strong>ca.<br />

Description <strong>of</strong> trophosome<br />

See Stechow (1919) or Ryland & Gibbons<br />

(1991).<br />

Remarks<br />

The Indonesian material assigned here <strong>to</strong> Ly<strong>to</strong>carpia<br />

phyteuma (Kirchenpauer, 1876) had only<br />

one immature corbula. The hydro<strong>the</strong>ca on <strong>the</strong><br />

corbula made it clear that it belonged <strong>to</strong> Ly<strong>to</strong>carpia.<br />

The trophosome matched quite well fertile<br />

material from <strong>the</strong> Andaman Sea as well as<br />

<strong>the</strong> description <strong>of</strong> Millard & Bouillon (1973),<br />

or Ryland & Gibbons (1991). It matched also<br />

Stechow’s (1919) re-description <strong>of</strong> <strong>the</strong> type specimen,<br />

although <strong>the</strong> median nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> <strong>the</strong><br />

type material are tubular and not gutter-shaped as<br />

observed here. All o<strong>the</strong>r authors describing material<br />

<strong>of</strong> L. phyteuma reported gutter-like median<br />

nema<strong>to</strong><strong>the</strong>cae. Millard & Bouillon (1973) interpreted<br />

this as an interspecific variation because<br />

such a variation is also known in from o<strong>the</strong>r<br />

aglaophenids. The material <strong>of</strong> Vervoort & Vasseur<br />

(1977) differs in that <strong>the</strong> lateral nema<strong>to</strong>-<br />

P. SCHUCHERT<br />

<strong>the</strong>cae extend much <strong>to</strong>wards <strong>the</strong> rear side <strong>of</strong> <strong>the</strong><br />

internode. Watson (2000) had <strong>the</strong>refore some<br />

doubts on <strong>the</strong> identity <strong>of</strong> this material. The Australian<br />

material <strong>of</strong> Watson (2000), however, also<br />

differs slightly from <strong>the</strong> Indonesian one in that<br />

<strong>the</strong> median nema<strong>to</strong><strong>the</strong>ca reaches much higher up,<br />

thus approaching <strong>the</strong> condition <strong>of</strong> L. delicatula.<br />

The size <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca is apparently also<br />

smaller.<br />

The material <strong>of</strong> <strong>the</strong> present investigation is<br />

obviously identical <strong>to</strong> Billard’s (1913) Aglaophenia<br />

elongata var. sibogae from various Indonesian<br />

localities. Billard had apparently only infertile<br />

material at hand and his variant is <strong>the</strong>refore<br />

here regarded as a synonym <strong>of</strong> L. phyteuma.<br />

Aglaophenia elongata Meneghini, 1845 is a<br />

Mediterranean species (Svoboda & Cornelius<br />

1991).<br />

Ly<strong>to</strong>carpia leopoldi (Leloup, 1930) from New<br />

Guinea is very similar <strong>to</strong> L. phyteuma. The main<br />

distinguishing characters are <strong>the</strong> gutter-shaped<br />

median nema<strong>to</strong><strong>the</strong>ca, two nema<strong>to</strong><strong>the</strong>cae per<br />

cauline segment, and some aspects <strong>of</strong> <strong>the</strong> corbula.<br />

Vervoort & Vasseur (1977) found that <strong>the</strong><br />

differences <strong>of</strong> <strong>the</strong> corbula are not significant and<br />

<strong>the</strong>y synonymized <strong>the</strong> two names. As mentioned<br />

above, tubular or gutter-shaped median nema<strong>to</strong><strong>the</strong>ca<br />

is likely only representing intra-specific<br />

variation. The cauline nema<strong>to</strong><strong>the</strong>cae are sometimes<br />

not easy <strong>to</strong> observe, especially in slide<br />

preparations, and Leloup might have overlooked<br />

one. Ly<strong>to</strong>carpia leopoldi is <strong>the</strong>rfore very likely a<br />

synonym <strong>of</strong> L. phyteuma, although for a final<br />

decision <strong>the</strong> type material <strong>of</strong> L. leopoldi should<br />

be re-examined.<br />

Distribution<br />

Polynesia, Great Barrier Reef, nor<strong>the</strong>rn Australia,<br />

Indonesia, Seychelles. Type locality:<br />

Tonga Islands.<br />

Ly<strong>to</strong>carpia perarmata (Billard, 1908), n. comb.<br />

Fig. 78.<br />

Thecocarpus myriophyllum perarmatus Billard, 1908a: 74,<br />

fig. 3.<br />

Thecocarpus perarmatus. – Billard 1913: 95, figs 81–86.<br />

Material examined:<br />

Kei Islands Expedition stations: 53, with corbulae. – 54, with<br />

corbulae.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 78. Ly<strong>to</strong>carpia perarmata (Billard, 1908); station 53. A. Colony silhouette. B. Hydro<strong>the</strong>ca in side view. C. Hydrocladium<br />

seen from behind, note asymmetric pair <strong>of</strong> lateral nema<strong>to</strong><strong>the</strong>cae (<strong>to</strong>p), and additional nema<strong>to</strong><strong>the</strong>ca on rear side (below), same<br />

scale as B. D. Part <strong>of</strong> corbula. E. Appendage at base <strong>of</strong> hydrocladium. – Scales: A = 1 cm; B–C = 0.1 mm; D = 0.5 mm;<br />

E = 0.2 mm.<br />

Description<br />

Colonies pinnate, 4–6 cm high, planar, stem not<br />

forking, lightly polysiphonic but becoming monosiphonic<br />

<strong>to</strong>wards distal, composed <strong>of</strong> a superficial<br />

primary tube and a few auxiliary tubes.<br />

Primary tube with nema<strong>to</strong><strong>the</strong>cae and apophyses<br />

for <strong>the</strong> hydrocladia. Hydrorhiza a tangled mass <strong>of</strong><br />

s<strong>to</strong>lons anchoring colony in s<strong>of</strong>t substrate.<br />

Hydrocladia, alternate, long (up <strong>to</strong> 2.5 cm),<br />

straight, with oblique nodes, nodes can be indistinct.<br />

Hydro<strong>the</strong>ca cup-shaped, depth 0.3 mm,<br />

slightly curved, opening-plane perpendicular <strong>to</strong><br />

hydrocladial axis, abcauline wall rounded, short<br />

intra<strong>the</strong>cal shelf on adcauline side, hydro<strong>the</strong>cal<br />

rim with one median, rectangular <strong>to</strong>oth, this <strong>to</strong>oth<br />

slightly gutter-shaped, lateral rim <strong>of</strong> hydro<strong>the</strong>ca<br />

with two or more shallow teeth.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca gutter-shaped,<br />

attached up <strong>to</strong> middle <strong>of</strong> hydro<strong>the</strong>ca and more,<br />

without foramen leading in<strong>to</strong> hydro<strong>the</strong>ca. Lateral<br />

pair <strong>of</strong> nema<strong>to</strong><strong>the</strong>cae unequal, one nema<strong>to</strong><strong>the</strong>ca<br />

taller and displaced <strong>to</strong>wards rear side. On rear<br />

side at <strong>the</strong> level <strong>of</strong> lower third <strong>of</strong> hydro<strong>the</strong>ca an<br />

239<br />

additional nema<strong>to</strong><strong>the</strong>ca, displaced from median<br />

line <strong>to</strong>wards side with smaller lateral nema<strong>to</strong><strong>the</strong>ca.<br />

Hydrocladial apophysis <strong>of</strong> primary tube <strong>of</strong>ten<br />

bearing a flexible appendage consisting <strong>of</strong> a row<br />

<strong>of</strong> segments with nema<strong>to</strong><strong>the</strong>cae, each segment<br />

with three nema<strong>to</strong><strong>the</strong>cae (Fig. 78E).<br />

Gono<strong>the</strong>cae protected in corbulae. Corbula<br />

replacing a hydrocladium, long and thin, tubular,<br />

about 1/3 <strong>of</strong> hydrocladial length, beginning with<br />

a few (3) segments having a structure identical <strong>to</strong><br />

normal hydrocladia (Fig. 78D), <strong>the</strong>n with two<br />

rows <strong>of</strong> costae forming a closed corbula. Costae<br />

flattened, fused at distal end with opposite costae,<br />

one row <strong>of</strong> tubular nema<strong>to</strong><strong>the</strong>cae along distal rim<br />

<strong>of</strong> each costa, each costa at its base with a lobe<br />

bearing a fully formed hydro<strong>the</strong>ca.<br />

Remarks<br />

Because Ly<strong>to</strong>carpia Kirchenpauer, 1872 has priority<br />

over its synonym Thecocarpus Nutting,<br />

1900 (Rees & Vervoort 1987), Thecocarpus perarmatus<br />

is here used in <strong>the</strong> new combination<br />

Ly<strong>to</strong>carpia perarmata.


240<br />

With its additional nema<strong>to</strong><strong>the</strong>ca placed almost<br />

behind <strong>the</strong> hydro<strong>the</strong>ca and <strong>the</strong> asymmetric lateral<br />

nema<strong>to</strong><strong>the</strong>cae, this species is very distinct and<br />

easy <strong>to</strong> recognize, but see also <strong>the</strong> discussion<br />

under L. orientalis.<br />

The apophyses <strong>of</strong> <strong>the</strong> primary tube that bear<br />

<strong>the</strong> hydrocladia <strong>of</strong>ten also possess an appendage<br />

resembling <strong>the</strong> pseudophylac<strong>to</strong>carps described<br />

for Gymnangium longicorne, Ly<strong>to</strong>carpia angulosa<br />

and o<strong>the</strong>r aglaophenids (Fig. 78E). Although<br />

it is likely a modified hydrocladium, it is<br />

probably not strictly homologous <strong>to</strong> <strong>the</strong> pseudophylac<strong>to</strong>carps<br />

<strong>of</strong> Gymnangium longicorne,<br />

because it does not replace a hydrocladium.<br />

Distribution<br />

Indonesia. Type localities: 2.475°S, 131.058°E,<br />

188 m and 2.592°S, 131.437°E, 95 m.<br />

Ly<strong>to</strong>carpia orientalis (Billard, 1908) n. comb.,<br />

n. status<br />

Fig. 79.<br />

Thecocarpus myriophyllum var. orientalis Billard, 1908a:<br />

73, fig. 1. – Billard 1913: 91, fig. 76–78, pl. 5: fig. 43. –<br />

Jäderholm 1919: 25, pl. 6: fig. 5. – Billard 1922: 347, fig.<br />

2. – Vervoort 1941: 23. – Vervoort 1972: 221, fig. 76.<br />

Thecocarpus myriophyllum var. angulatus Billard, 1913:<br />

94, figs 79–80. – Billard 1922: 347, fig. 3.<br />

Thecocarpus myriophyllum var. elongatus Billard, 1910: 51.<br />

– Billard 1922: 348, fig. 4.<br />

Gymnangium unjinense Watson, 2000: 62, fig. 50A–E, new<br />

synonym.<br />

Material examined:<br />

Kei Islands Expedition stations: 67. – 72, with corbulae. –<br />

90, with corbulae. – 106.<br />

Description<br />

Colonies pinnate, stems never forked, up <strong>to</strong> 12<br />

cm high, outline <strong>of</strong> plume with blunt <strong>to</strong>p. Hydrorhiza<br />

a tangled mass <strong>of</strong> s<strong>to</strong>lons anchoring<br />

colony in sediment. Stem polysiphonic, becoming<br />

monosiphonic in distal-most part, in basal<br />

part pinched obliquely one or more times; stem<br />

composed <strong>of</strong> a superficial primary tube on a<br />

bundle <strong>of</strong> auxiliary tubes. Auxiliary tubes with<br />

rows <strong>of</strong> small, ovoid nema<strong>to</strong><strong>the</strong>cae along <strong>the</strong><br />

grooves where two tubes meet. Primary tube with<br />

more or less distinct nodes, each segment with<br />

one hydrocladial apophysis and two nema<strong>to</strong><strong>the</strong>cae:<br />

one on lower part, one axillary; mamelon on<br />

P. SCHUCHERT<br />

apophysis present. Pseudophylac<strong>to</strong>carps absent.<br />

Hydrocladia dense, straight, stiff, up <strong>to</strong> 2 cm<br />

long, regularly segmented by slightly oblique<br />

nodes, each segment with hydro<strong>the</strong>ca covering<br />

about ¾ <strong>of</strong> segment and three nema<strong>to</strong><strong>the</strong>cae,<br />

internal ribs weakly developed or absent.<br />

Hydro<strong>the</strong>ca 0.21–0.28 mm deep, opening diameter<br />

0.2 mm, cup-shaped, abcauline wall gently<br />

convex, adcauline wall completely adnate,<br />

opening-plane nearly perpendicular <strong>to</strong> hydrocladium<br />

or inclined <strong>to</strong>wards below, hydropore in<br />

about middle <strong>of</strong> adcauline wall, covered by a<br />

downward pointing intra<strong>the</strong>cal septum attached<br />

at adcauline wall, septum margin thickened, septum<br />

makes completely contracted hydranth <strong>to</strong><br />

face downward. Abcauline margin with a distinct<br />

median cusp, cusp depressed longitudinally and<br />

thus gutter-shaped; lateral margin with 2–3 shallow,<br />

variable teeth.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca almost completely<br />

adnate, attached along 6/7 <strong>of</strong> abcauline<br />

wall <strong>of</strong> hydro<strong>the</strong>ca, free end short, gutter-shaped,<br />

reaching <strong>to</strong> rim <strong>of</strong> hydro<strong>the</strong>ca, without foramen<br />

in<strong>to</strong> hydro<strong>the</strong>ca. Lateral nema<strong>to</strong><strong>the</strong>cae cupshaped,<br />

opening facing <strong>to</strong>wards above.<br />

Gono<strong>the</strong>cae in corbulae, corbula replaces hydrocladium.<br />

Corbula thin, closed, about 7 mm<br />

long, diameter 0.7 mm; first three segments identical<br />

<strong>to</strong> hydro<strong>the</strong>cate segments <strong>of</strong> normal hydrocladia,<br />

<strong>the</strong>n axis furnished with two rows <strong>of</strong><br />

costae, costae fused <strong>to</strong>ge<strong>the</strong>r <strong>to</strong> form an almost<br />

closed tube; near base <strong>of</strong> each costa a nema<strong>to</strong><strong>the</strong>ca<br />

and a free hydro<strong>the</strong>ca with its lateral nema<strong>to</strong><strong>the</strong>cae;<br />

instead <strong>of</strong> median inferior nema<strong>to</strong><strong>the</strong>ca<br />

grows <strong>the</strong> leaf-like main body <strong>of</strong> <strong>the</strong> costa with<br />

one row <strong>of</strong> about 4 nema<strong>to</strong><strong>the</strong>cae along edge<br />

facing away from stem. Tip <strong>of</strong> corbula axis (rachis)<br />

with short process bearing nema<strong>to</strong><strong>the</strong>cae.<br />

The pair <strong>of</strong> lateral nema<strong>to</strong><strong>the</strong>cae <strong>of</strong> <strong>the</strong> costal<br />

hydro<strong>the</strong>ca can be replaced by a process bearing<br />

4–7 nema<strong>to</strong><strong>the</strong>cae, rarely this process developed<br />

as a free costa. The most proximal costae can be<br />

free.<br />

Remarks<br />

Ly<strong>to</strong>carpia orientalis (Billard, 1908) was first<br />

described as a variant orientalis <strong>of</strong> <strong>the</strong> Atlantic L.<br />

myriophyllum (Linnaeus, 1758). Billard also described<br />

several o<strong>the</strong>r variants <strong>of</strong> this species and


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 79. Ly<strong>to</strong>carpia orientalis (Billard, 1908); station 72. A. Colony silhouette. B. Segment <strong>of</strong> primary tube. C. Hydrocladial<br />

segment from side. D. Middle part <strong>of</strong> corbula. – Scales: A = 1 cm; B = 0.1 mm; C = 50 µm; D = 0.2 mm.<br />

he reviewed <strong>the</strong>ir features (Billard 1922). Ly<strong>to</strong>carpus<br />

myriophyllum (Linnaeus, 1758) is indeed<br />

a very variable species as far as <strong>the</strong> hydro<strong>the</strong>ca<br />

and <strong>the</strong> colony form are concerned. Ramil &<br />

Vervoort (1992) and also Ansìn Agìs, Ramil<br />

& Vervoort (2001) documented thoroughly <strong>the</strong><br />

variation <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca <strong>of</strong> a population from<br />

<strong>the</strong> north-eastern Atlantic. Atlantic and Mediterranean<br />

colonies can be ei<strong>the</strong>r simple or branched,<br />

reaching heights <strong>of</strong> up <strong>to</strong> 1 m. The variation <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>cal morphology and colony form observed<br />

in <strong>the</strong> Atlantic populations also encompass<br />

<strong>the</strong> variant orientalis, and both morphotypes<br />

cannot objectively be separated using this character<br />

set alone. Constant differences between <strong>the</strong><br />

Atlantic and Pacific populations were, however,<br />

observed in <strong>the</strong> morphology <strong>of</strong> <strong>the</strong> corbulae.<br />

While Atlantic morphotypes have open corbulae<br />

with isolated, thin costae, <strong>the</strong> ones from <strong>the</strong> Pacific<br />

have closed, tubiform corbulae formed by<br />

<strong>the</strong> fusion <strong>of</strong> leaf-like costae (compare Figs 79D<br />

and 80, note different scaling fac<strong>to</strong>r). There is<br />

241<br />

also a considerable size difference. Whe<strong>the</strong>r<br />

<strong>the</strong>se differences are due <strong>to</strong> inter- or intra specific<br />

variation is not immediately apparent, and<br />

whe<strong>the</strong>r <strong>the</strong> Pacific morphotype corresponds <strong>to</strong> a<br />

true geographic subspecies <strong>of</strong> L. myriophyllum or<br />

whe<strong>the</strong>r it represents a separate species can only<br />

be answered based on genetic information (note<br />

that <strong>the</strong> category subspecies is only used in some<br />

species concepts, while o<strong>the</strong>rs do not accept<br />

<strong>the</strong>m, see Wheeler & Meier 2000). In o<strong>the</strong>r aglaophenids,<br />

however, such a difference in corbula<br />

morphology is seen as a good indica<strong>to</strong>r for two<br />

species being involved (cf. L. delicatula and L.<br />

phyteuma). Additionally, <strong>the</strong> wide geographic<br />

separation – Nor<strong>the</strong>rn Atlantic Ocean versus Pacific<br />

Ocean – argues in favour <strong>of</strong> treating <strong>the</strong><br />

two morphotypes as representatives <strong>of</strong> separate<br />

species. Therefore, and out <strong>of</strong> a preference for<br />

species concepts not accepting <strong>the</strong> category <strong>of</strong><br />

subspecies, Billard’s variety orientalis is raised<br />

<strong>to</strong> full species level as Ly<strong>to</strong>carpia orientalis<br />

(Ly<strong>to</strong>carpia has priority over Thecocarpus, see


242<br />

Fig. 80. Ly<strong>to</strong>carpia myriophyllum (Linnaeus, 1758); Azores,<br />

Atlantic Ocean (MHNG collection). Part <strong>of</strong> corbula with two<br />

costae. – Scale: 0.5 mm.<br />

above). Contrary <strong>to</strong> Billard (1913), <strong>the</strong> present<br />

Indonesian material was very homogeneous and<br />

showed only little variation. This material thus<br />

differed also from Atlantic L. myriophyllum (see<br />

Cornelius 1995b, Schuchert 2001) in having<br />

unbranched colonies only, having a median<br />

nema<strong>to</strong><strong>the</strong>cae reaching higher up <strong>the</strong> abcauline<br />

wall <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>ca, having much smaller<br />

hydro<strong>the</strong>cae, and lacking intra-segmental ribs.<br />

Thecocarpus myriophyllum var. angulatus<br />

Billard, 1913 differs from <strong>the</strong> variety orientalis<br />

mainly in having more inclined hydro<strong>the</strong>cal<br />

openings. This difference and o<strong>the</strong>rs mentioned<br />

by Billard (1913) appear insignificant and this<br />

form is here regarded as a synonym only.<br />

Likewise, Thecocarpus myriophyllum var.<br />

elongatus Billard, 1910 is also seen as a synonym<br />

<strong>of</strong> L. orientalis (see Billard 1922).<br />

According <strong>to</strong> Ansìn Agìs, Ramil, & Vervoort<br />

(2001: 98), Thecocarpus myriophyllum vervoorti<br />

Stepanjants, 1979 from <strong>the</strong> south tip <strong>of</strong> South<br />

America also belongs <strong>to</strong> <strong>the</strong> orientalis group. The<br />

spine-like processes <strong>of</strong> <strong>the</strong> corbula depicted in<br />

Stepanjants (1979) set this species somewhat<br />

apart. Because <strong>of</strong> this, <strong>the</strong> wide geographic separation<br />

and its occurrence in colder waters it is<br />

here not included in <strong>the</strong> synonymy, pending<br />

closer examination <strong>of</strong> material.<br />

Ly<strong>to</strong>carpia annandalei (Ritchie, 1910a) also<br />

resembles L. orientalis, but <strong>the</strong> former has<br />

pseudophylac<strong>to</strong>carps (Ritchie interpreted <strong>the</strong>m<br />

P. SCHUCHERT<br />

as phylac<strong>to</strong>carps). Pseudophylac<strong>to</strong>carps have so<br />

far never been observed in L. orientalis, but <strong>the</strong>y<br />

occur in L. perarmata. The latter species is –<br />

apart from <strong>the</strong> pseudophylac<strong>to</strong>carps and <strong>the</strong> additional<br />

nema<strong>to</strong><strong>the</strong>ca behind <strong>the</strong> hydro<strong>the</strong>ca –<br />

strikingly similar <strong>to</strong> L. orientalis, notably in<br />

colony habit and hydro<strong>the</strong>cal morphology.<br />

Gymnangium unjinense Watson, 2000 appears<br />

identical <strong>to</strong> <strong>the</strong> present material and this<br />

name is here regarded as a subjective synonym <strong>of</strong><br />

L. orientalis. Watson (2000) based her description<br />

on infertile material and acknowledged <strong>the</strong><br />

similarity <strong>to</strong> M. orientalis. The differences given<br />

by Watson are here considered as not significant<br />

Distribution<br />

Indonesia (Billard 1913), Philippines (Billard<br />

1910, as L. myriophyllum var. elongata), Japan<br />

(Jäderholm 1919), Chile (Vervoort 1972), nor<strong>the</strong>rn<br />

Australia (Watson 2000, as Gymnangium<br />

unjinense). Perhaps also China Sea (Leloup<br />

1937, cited in Ansìn Agìs, Ramil, & Vervoort<br />

2001). Type localities: Borneo Bank, SW Celebes,<br />

5.058°S, 119.000°E, 450 m and Waigeu<br />

Island, NW New Guinea, 0.063°N, 130.405°E,<br />

141 m.<br />

Aglaophenia cupressina Lamouroux, 1816<br />

Fig. 81.<br />

Aglaophenia cupressina Lamouroux, 1816: 169. – Kirchenpauer<br />

1872: 27, pl. 1: fig. 11. – Billard 1907: 331, fig. 5.<br />

– Billard 1909: 330. – Billard 1913: 107, fig. 96; pl. 6. –<br />

Bale 1915: 319, pl. 47: figs 6–8. – Leloup 1930b: 15, figs<br />

10–11, pl. 2: fig. 4. – Leloup 1932: 1–3. – Vervoort 1941:<br />

233, fig. 11. – Millard & Bouillon 1974: 36, fig. 8E–F. –<br />

Millard 1975: 408, fig. 128A–C.<br />

Plumularia bipinnata Lamarck, 1816: 126. – Billard 1907:<br />

331.<br />

Aglaophenia macgillivrayi Busk, 1852: 400. – Allman<br />

1883: 34, pl. 10, pl. 20: figs. 4–6. – von Campenhausen<br />

1896b: 315. – Billard 1909: 331.<br />

Aglaophenia spicata. – Kirchenpauer 1872; 27, pl. 1: fig. 12,<br />

pl. 2: fig. 11, pl. 4: fig. 11. [Not Aglaophenia spicata<br />

Lamouroux, 1816 = Monoserius pennarius (Linnaeus,<br />

1758)]<br />

Corbulifera macgillivrayi. – Naumov 1969: 530, figs 380–<br />

381.<br />

Material examined:<br />

Kei Islands Expedition, Kei Islands, Tual, 2 m, 21 Mar 1922,<br />

numerous stems, with corbulae. – Kei Islands Expedition,<br />

Moluccas, Bay <strong>of</strong> Ambon, 1 m, 8 Feb 1922, with corbulae. –<br />

Kei Islands Expedition, Banda Islands, Neira Island, 10 m, 5


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Fig. 81. Aglaophenia cupressina Lamouroux, 1816; A–C, Bay <strong>of</strong> Ambon, 1 m depth; D–F, Neira Island, 10 m depth. A. Colony<br />

silhouette. B. Hydrocladial segment. C. Two costae <strong>of</strong> a male corbula. D. Colony silhouette, same scale as A. E. Hydrocladial<br />

segment, same scale as B. F. Two costae <strong>of</strong> a female corbula, same scale as C. – Scales: A, D = 2 cm; B, E = 0.1 mm; C, F =<br />

0.2 mm.<br />

Jun 1922, numerous stems, with corbulae. – Kei Islands<br />

Expedition, Kei Islands, Tual, 1–2 m, 23 Mar 1922, with<br />

corbulae.<br />

Description<br />

Colonies large, 7–20 cm, branched up <strong>to</strong> fourth<br />

order, branching <strong>of</strong>ten in one plane, usually a<br />

243<br />

thick central primary axis (stem) with two lateral<br />

rows <strong>of</strong> side-branches, side-branches nearly<br />

opposite, regularly spaced, some side-branches<br />

branched again similar <strong>to</strong> main axis. Main stem<br />

and all branches thickly polysiphonic, only very<br />

short stretches at distal ends monosiphonic, polysiphonic<br />

parts composed <strong>of</strong> a superficial pri-


244<br />

mary tube and a bundle <strong>of</strong> auxiliary tubes. Primary<br />

tube <strong>of</strong> side-branches originate from primary<br />

tube <strong>of</strong> stem, branching points <strong>of</strong> primary<br />

tubes <strong>of</strong>ten overgrown by few auxiliary tube.<br />

Primary tubes segmented in terminal parts, each<br />

segment with an apophysis for hydrocladium and<br />

two nema<strong>to</strong><strong>the</strong>cae at side <strong>of</strong> apophysis. Primary<br />

tubes usually with hydrocladia, but <strong>the</strong>se may be<br />

broken <strong>of</strong>f in proximal part <strong>of</strong> stem. S<strong>to</strong>lons<br />

tangled, creeping, anchoring colony on solid<br />

substrata. Inside <strong>of</strong> periderm <strong>of</strong> whole colony<br />

densely covered by a lining <strong>of</strong> spherical zooxan<strong>the</strong>llae,<br />

size 7–9 µm.<br />

Hydrocladia alternate, thick and bristly, making<br />

colony resemble a fir twig, hydrocladia 3–5<br />

mm, 6–11 hydro<strong>the</strong>cae, length within one colony<br />

similar, flattened laterally, rear side keeled, regularly<br />

segmented by transverse nodes, each segment<br />

with one hydro<strong>the</strong>ca, with two strong internal<br />

ribs (ridges, thickenings) at <strong>the</strong> level <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>ca, <strong>the</strong>se ribs irregularly curved, fused<br />

<strong>to</strong> a longitudinal ridge running along rear side,<br />

rear wall o<strong>the</strong>rwise remarkably thin.<br />

Hydro<strong>the</strong>ca relatively narrow, depth 0.25–<br />

0.28 mm, diameter 0.13–0.15 mm, campanulate,<br />

not curved, adcauline side completely adnate,<br />

opening slightly inclined <strong>to</strong>wards below (approx.<br />

30°), lateral margin slightly undulated or with a<br />

distinct antero-lateral cusp, hydropore at base <strong>of</strong><br />

rear wall, above hydropore a very short adcauline<br />

shelf which is continued as a transverse internal<br />

ridge, presence variable.<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca very s<strong>to</strong>ut,<br />

breadth in lateral view 2/3 or more <strong>of</strong> hydro<strong>the</strong>cal<br />

diameter, completely adnate, reaching <strong>to</strong> <strong>the</strong><br />

level <strong>of</strong> hydro<strong>the</strong>ca, margin with two broad lateral<br />

cusps (or free end gutter-shaped), on inside<br />

near upper third an oblique septum with a pore on<br />

adcauline side; no foramen in<strong>to</strong> hydro<strong>the</strong>ca. Lateral<br />

nema<strong>to</strong><strong>the</strong>ca over<strong>to</strong>p hydro<strong>the</strong>ca, ovoid <strong>to</strong><br />

cup shaped, about half as high as hydro<strong>the</strong>ca,<br />

opening directed <strong>to</strong>wards above or inclined <strong>to</strong>wards<br />

rear.<br />

Gono<strong>the</strong>cae in closed corbula which replaces<br />

a hydrocladium. Corbula 1.7–2.5 mm long, tubular,<br />

first segment like in ordinary hydrocladia,<br />

<strong>the</strong>n with leaf-like costae, 5–8 per side, fused <strong>to</strong><br />

form a cylinder but with slit-like lateral openings,<br />

costae with one row <strong>of</strong> nema<strong>to</strong><strong>the</strong>cae, basal 2–3<br />

may be on a raised lobe.<br />

P. SCHUCHERT<br />

Remarks<br />

The samples from 1 m and 10 m water depth<br />

showed very obvious differences that are very<br />

likely attributable <strong>to</strong> <strong>the</strong>ir different environment<br />

(cf. Fig. 81A–C and 81D–F). The colonies from<br />

10 m depth were dark brown, while those from<br />

1 m were bright amber coloured. Fur<strong>the</strong>rmore,<br />

<strong>the</strong> colonies from 10 m were more branched,<br />

more flexible, less bristly, had longer and thinner<br />

hydrocladia. There was also a difference in <strong>the</strong><br />

corbulae. This difference, however, could be ei<strong>the</strong>r<br />

due <strong>to</strong> depth or sexual dimorphism. The<br />

limited number <strong>of</strong> independent colonies did not<br />

make it possible <strong>to</strong> draw a reliable conclusion.<br />

The difference was mainly confined <strong>to</strong> <strong>the</strong> presence<br />

or absence <strong>of</strong> a raised lobe near <strong>the</strong> base <strong>of</strong><br />

each costa. This lobe had 2–3 nema<strong>to</strong><strong>the</strong>cae. The<br />

opening behind this lobe was also larger than <strong>the</strong><br />

usual slits. In <strong>the</strong> examined material this type <strong>of</strong><br />

corbula contained gono<strong>the</strong>cae with eggs, while<br />

<strong>the</strong> o<strong>the</strong>r type <strong>of</strong> corbula was quite certainly<br />

male. Both type <strong>of</strong> corbulae have been described<br />

by o<strong>the</strong>r authors. Billard (1913) depicts <strong>the</strong> form<br />

without lobe, while Millard & Bouillon (1974)<br />

depict a corbula with a basal lobe. Bale (1915)<br />

also described such a lobe and he also thought <strong>of</strong><br />

a possible sexual dimorphism.<br />

Aglaophenia cupressina is a very characteristic<br />

species and especially <strong>the</strong> microscopic structure<br />

make its identification easy (see Fig. 81B<br />

and 81E). The colonies <strong>of</strong>ten occur in very shallow<br />

waters and are thus easily encountered. They<br />

are very no<strong>to</strong>rious for <strong>the</strong>ir painful stings.<br />

Naumov (1969, as Corbulifera macgillivrayi)<br />

reported this o<strong>the</strong>rwise tropical shallow water<br />

species from <strong>the</strong> arctic sea <strong>of</strong> Okhotsk and from<br />

deep waters near <strong>the</strong> Kuriles. His material was<br />

sterile. For biogeographic reasons I doubt somewhat<br />

that Naumov’s specimen belonged <strong>to</strong> A.<br />

cupressina, although his figures look identical <strong>to</strong><br />

<strong>the</strong> present material. Although A. cupressina is<br />

widespread in <strong>the</strong> tropical Indo-Pacific, interestingly,<br />

it is not known <strong>to</strong> occur on smaller islands<br />

<strong>of</strong> <strong>the</strong> tropical Pacific (Polynesia).<br />

Distribution<br />

From Zanzibar and Mozambique <strong>to</strong> Great Barrier<br />

Reef, Indonesia, New Guinea, Philippines, Japan.<br />

?Sea <strong>of</strong> Okhotsk. Occurs even in very shal-


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

low water (1 m), but Billard (1913) found it down<br />

<strong>to</strong> 564 m. Type locality: East Indies (Lamouroux,<br />

1816).<br />

Aglaophenia sibogae Billard, 1913, n. status<br />

Fig. 82.<br />

Aglaophenia pluma var. sibogae Billard, 1913: 101, figs 90–<br />

91.<br />

Material examined:<br />

Kei Islands Expedition station 65, one plume, with corbulae.<br />

Description<br />

Colony pinnate, 3 cm high; s<strong>to</strong>lons creeping;<br />

stem with prosegment, monosiphonic, with oblique<br />

hinge-joint, with regular nodes, segments<br />

with hydrocladial apophysis bearing a mamelon<br />

and three nema<strong>to</strong><strong>the</strong>cae: two on each side <strong>of</strong> <strong>the</strong><br />

apophysis and one below.<br />

Hydrocladia alternate, thin and flexible, up <strong>to</strong><br />

4 mm, regularly segmented by slightly oblique<br />

nodes, segments without internal ribs.<br />

Hydro<strong>the</strong>cal walls U-shaped in side view,<br />

depth 0.30–0.35 mm, adcauline wall not entirely<br />

adnate, free for about 1/7 <strong>of</strong> <strong>to</strong>tal abcauline<br />

length, hydropore close <strong>to</strong> base, diameter <strong>of</strong><br />

opening 0.15–0.17 mm, opening slightly inclined<br />

<strong>to</strong>wards below, margin with 9–10 sinusoid<br />

cusps: one median abcauline (largest), four<br />

laterals, and sometimes a shallow and broad<br />

adcauline one (<strong>the</strong> latter can be absent).<br />

Median inferior nema<strong>to</strong><strong>the</strong>ca nearly completely<br />

adnate, tip reaching <strong>to</strong> base <strong>of</strong> abcauline<br />

cusp, free part about 1/7 <strong>of</strong> length, gutter-shaped,<br />

with foramen leading in<strong>to</strong> hydro<strong>the</strong>ca, perisarc <strong>of</strong><br />

outer wall thickened where nema<strong>to</strong><strong>the</strong>ca joins<br />

internode. Lateral nema<strong>to</strong><strong>the</strong>cae ovoid <strong>to</strong> cupshaped,<br />

reaching just below tips <strong>of</strong> marginal<br />

cusps, height relatively small (60 µm high), inner<br />

wall reduced.<br />

Gono<strong>the</strong>cae protected in corbulae. Corbula<br />

open, replacing a hydrocladium, shorter than<br />

hydrocladium, first segment identical <strong>to</strong> <strong>the</strong> ones<br />

<strong>of</strong> normal hydrocladia, followed by rachis bearing<br />

two rows <strong>of</strong> alternate costae, about 8 per side;<br />

costae rod-shaped, free, with two rows <strong>of</strong> lateral<br />

nema<strong>to</strong><strong>the</strong>cae and an additional one in axil <strong>to</strong><br />

rachis. Gono<strong>the</strong>cae oblong, about 0.6 mm.<br />

245<br />

Fig. 82. Aglaophenia sibogae Billard, 1913. A. Colony<br />

silhouette. B. Stem segment. C. Two hydrocladial segments.<br />

D. Hydro<strong>the</strong>ca seen from abcauline side, same scale as B. E.<br />

Corbula in side view, only one row <strong>of</strong> costae shown. –<br />

Scales: A = 1 cm; B, C = 0.1 mm; E = 0.4 mm<br />

.


246<br />

Remarks<br />

Aglaophenia sibogae Billard, 1913 was first described<br />

as a variety <strong>of</strong> A. pluma (Linnaeus, 1758).<br />

Aglaophenia pluma is a species <strong>of</strong> <strong>the</strong> temperate<br />

north-eastern Atlantic, but it also penetrates<br />

in<strong>to</strong> <strong>the</strong> western Mediterranean (Svoboda &<br />

Cornelius 1991). It always has closed corbulae<br />

and can also form branched colonies. Billard’s<br />

Indonesian variant has open corbulae and referring<br />

<strong>to</strong> <strong>the</strong> same arguments as given for Ly<strong>to</strong>carpia<br />

orientalis (see above) it is here raised <strong>to</strong><br />

full species level.<br />

Aglaophenia sibogae resembles closely A.<br />

postdentata Billard, 1913 (for description see<br />

also Millard & Bouillon 1973, Ryland & Gibbons<br />

1991, Watson 1994). Billard (1913) distinguished<br />

A. postdentata on account <strong>of</strong> <strong>the</strong> smaller<br />

hydro<strong>the</strong>cae (depth 0.22–0.24 mm) and <strong>the</strong> presence<br />

<strong>of</strong> a distinct cusp on <strong>the</strong> adcauline side <strong>of</strong> <strong>the</strong><br />

hydro<strong>the</strong>cal opening. The colony size <strong>of</strong> A. postdentata<br />

does also not surpass 1 cm, while <strong>the</strong><br />

stems <strong>of</strong> Aglaophenia sibogae are more than two<br />

times as high. There seem <strong>to</strong> be no significant<br />

differences in <strong>the</strong> morphology <strong>of</strong> <strong>the</strong> corbulae.<br />

Perhaps when more material <strong>of</strong> both species becomes<br />

available, intermediate forms might link<br />

<strong>the</strong> two morphotypes and A. sibogae could be<br />

prove <strong>to</strong> be conspecific with A. postdentata.<br />

Distribution<br />

Indonesia. Type localities: 3°27’S, 117°36’E, 59<br />

m; 1°42.5’S, 130°47.5’E, 32 m (Indonesia).<br />

ACKNOWLEDGEMENTS<br />

I wish <strong>to</strong> thank Dr. Ole Tendal <strong>of</strong> <strong>the</strong> Zoological<br />

Museum, University <strong>of</strong> Copenhagen, for his <strong>of</strong>fer<br />

<strong>to</strong> study Mortensen’s hydroids, <strong>the</strong> loan <strong>of</strong><br />

o<strong>the</strong>r hydroids, and also for his hospitality during<br />

two pleasant stays in Copenhagen. I would also<br />

like <strong>to</strong> thank Dr J. Watson for reading and correcting<br />

<strong>the</strong> manuscript and for her valuable comments<br />

that improved <strong>the</strong> quality <strong>of</strong> this report.<br />

The loans <strong>of</strong> hydroids from <strong>the</strong> NMNH, <strong>the</strong> Museum<br />

<strong>of</strong> Vic<strong>to</strong>ria, and <strong>the</strong> ZMA helped <strong>to</strong> settle<br />

many critical details and <strong>the</strong> generosity <strong>of</strong> <strong>the</strong>se<br />

museums is highly appreciated.<br />

P. SCHUCHERT<br />

REFERENCES<br />

Allman, G. J. 1876. Diagnoses <strong>of</strong> new genera and species <strong>of</strong><br />

Hydroida. – Journal <strong>of</strong> <strong>the</strong> Linnean Society <strong>of</strong> London.<br />

(Zoology) 12: 251–284, pls 9–23.<br />

Allman, G. J. 1877. Report on <strong>the</strong> Hydroida collected during<br />

<strong>the</strong> Exploration <strong>of</strong> <strong>the</strong> Gulf Stream by L. F. de Pourtalès,<br />

Assistant United States Coast Survey. – Memoirs <strong>of</strong> <strong>the</strong><br />

Museum <strong>of</strong> Comparative Zoology 5: 1–66, pls 1–34.<br />

Allman, G. J. 1883. Report on <strong>the</strong> Hydroida dredged by<br />

H. M. S. Challenger during <strong>the</strong> years 1873–76. – The<br />

Voyage <strong>of</strong> H. M. S. Challenger, Zoology 20: 1–55, pls 1–<br />

20.<br />

Allman, G. J. 1886. Description <strong>of</strong> Australian, Cape and<br />

o<strong>the</strong>r <strong>Hydroids</strong>, mostly new, from <strong>the</strong> collection <strong>of</strong> Miss<br />

H. Gatty. – Journal <strong>of</strong> <strong>the</strong> Linnean Society 19: 132–161.<br />

Allman, G. J. 1888. Report on <strong>the</strong> Hydroida dredged by H.<br />

M. S. Challenger during <strong>the</strong> years 1873–76. Part II. - The<br />

Tubularinae, Corymorphinae, Campanularinae, Sertularinae,<br />

and Thalamophora. – The Voyage <strong>of</strong> H. M. S.<br />

Challenger, Zoology 23: 1–90.<br />

Ansín Agís, J., F. Ramil, & W. Vervoort. 2001. Atlantic<br />

Lep<strong>to</strong>lida (<strong>Hydrozoa</strong>, <strong>Cnidaria</strong>) <strong>of</strong> <strong>the</strong> families Aglaopheniidae,<br />

Halopterididae, Kirchenpaueriidae and Plumulariidae<br />

collected during <strong>the</strong> CANCAP and Mauretania-II<br />

<strong>expedition</strong>s <strong>of</strong> <strong>the</strong> National Museum <strong>of</strong> Natural<br />

His<strong>to</strong>ry, Leiden, <strong>the</strong> Ne<strong>the</strong>rlands. – Zoologische Verhandelingen,<br />

Leiden 333: 1–268.<br />

Bale, W. M. 1884. Catalogue <strong>of</strong> <strong>the</strong> Australian Hydroid<br />

Zoophytes. – Australian Museum Catalogue No. 8, 198<br />

pp, 19 pls.<br />

Bale, W. M. 1888. On some new and rare Hydroida in <strong>the</strong><br />

Australian Museum collections. – Proceedings <strong>of</strong> <strong>the</strong><br />

Linnean Society <strong>of</strong> New South Wales 3: 745–799, pls<br />

12–21.<br />

Bale, W. M. 1913. Fur<strong>the</strong>r notes on Australian hydroids. II.<br />

– Proceedings <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> Vic<strong>to</strong>ria (new<br />

series) 26: 114–147, pls 12–13.<br />

Bale, W. M. 1914a. Report on <strong>the</strong> Hydroida collected in <strong>the</strong><br />

Great Australian Bight and o<strong>the</strong>r localities. Part 1. –<br />

Biological Results <strong>of</strong> <strong>the</strong> Fishing Experiments carried on<br />

by <strong>the</strong> F.I.S. “Endeavour,” 1909–1914 2: 1–62, pls 1–7.<br />

Bale, W. M. 1914b. Report on <strong>the</strong> Hydroida collected in <strong>the</strong><br />

Great Australian Bight and o<strong>the</strong>r localities. Part 2. –<br />

Biological Results <strong>of</strong> <strong>the</strong> Fishing Experiments carried on<br />

by <strong>the</strong> F.I.S. “Endeavour”, 1909–1914 2: 164–188, pls<br />

35–38.<br />

Bale, W. M. 1914c. Fur<strong>the</strong>r notes on Australian hydroids. III.<br />

– Proceedings <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> Vic<strong>to</strong>ria, n. ser. 27:<br />

72–93, pls 11–13.<br />

Bale, W. M. 1915. Report on <strong>the</strong> Hydroida collected in <strong>the</strong><br />

Great Australian Bight and o<strong>the</strong>r localities. Part 3. –<br />

Biological Results <strong>of</strong> <strong>the</strong> Fishing Experiments carried on<br />

by <strong>the</strong> F.I.S. “Endeavour,” 1909–1914 3: 241–336, pls<br />

46–47.<br />

Bale, W. M. 1919. Fur<strong>the</strong>r notes on Australian hydroids. IV.<br />

– Proceedings <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> Vic<strong>to</strong>ria (new<br />

series) 31: 327–361, pls 16–17.<br />

Bale, W. M. 1924. Report on some hydroids from <strong>the</strong> New<br />

Zealand coast, with notes on New Zealand Hydroida<br />

generally, supplementing Farquhar’s list. – Transactions


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

and Proceedings <strong>of</strong> <strong>the</strong> New Zealand Institute 55: 225–<br />

268.<br />

Bedot, M. 1893–1909. Voyage Scientifique dans l’Archipel<br />

Malais. – W. Kündig, Genève, 558 pp., 31 pls.<br />

Billard, A. 1904. Hydroides récoltés par M. Ch. Gravier dans<br />

le Golfe de Tadjourah. – Bulletin du Muséum national<br />

d’His<strong>to</strong>ire naturelle de Paris 11: 480–485.<br />

Billard, A. 1905. Hydroides récoltés par M. Seurat aux Îles<br />

Gambier. – Bulletin du Muséum national d’His<strong>to</strong>ire naturelle,<br />

Paris 5: 331–334.<br />

Billard, A. 1907a. Hydroides de Madagscar et du su-est de<br />

l’Afrique. – Archives de Zoologie Expérimentale et Générale<br />

7: 335–396.<br />

Billard, A. 1908a. Note sur deux varietés nouvelles d’Hydroides<br />

provenant de l’<strong>expedition</strong> du “Siboga”. – Archives<br />

de Zoologie Expérimentale et Générale (4) 8,<br />

Notes et Revue: LXXIII–LXXVII.<br />

Billard, A. 1908b. Note sur une variété nouvelle d’Hydroide.<br />

– Archives de Zoologie Expérimentale et Générale (4) 8,<br />

Notes et Revue: CXII–CXIV.<br />

Billard, A. 1908c. Sur les Plumulariidae de la collection du<br />

Challenger. – Comptes rendus hebdomadaires des séances<br />

de l’Académie des sciences de Paris 147: 758–760,<br />

938–941.<br />

Billard, A. 1909. Révision des espèces types d’hydraires de<br />

la collection Lamouroux. – Annales des Sciences naturelles,<br />

neuvième série, Zoologie 9: 307–336.<br />

Billard, A. 1910. Révision d’une partie de la collection du<br />

British Museum. – Annales des Sciences naturelles, neuvième<br />

série, Zoologie 11: 1–67.<br />

Billard, A. 1911a. Note sur un nouveau genre et une nouvelle<br />

espèce d’Hydroïde: Sibogella erecta. – Archives de Zoologie<br />

Expérimentale et Générale (5) 6, Notes et Revue:<br />

CVIII–CIX.<br />

Billard, A. 1911b. Note préliminaire sur les espèces nouvelles<br />

de Plumulariidae de l’expédition du “Siboga”. –<br />

Archives de Zoologie Expérimentale et Générale (5) 8,<br />

Notes et Revue: LXII–LXXI.<br />

Billard, A. 1913. Les Hydroides de l’expédition du SIBO-<br />

GA. I Plumulariidae. – Siboga Expeditie 7a: 1–115, pls<br />

1–6.<br />

Billard, A. 1918. Notes sur quelques espèces d’hydroïdes de<br />

l’expédition du Siboga. – Archives de Zoologie Expérimentale<br />

et Générale 57, Notes et Revue: 21–27.<br />

Billard, A. 1919a. Note sur une espèce nouvelle d’hydroïde<br />

gymnoblastique (Clava krempfi), parasite d’un Alcyonaire.<br />

– Bulletin du Muséum national d’His<strong>to</strong>ire naturelle<br />

de Paris 25: 187–188.<br />

Billard, A. 1919b. Note sur quelques espèces nouvelles de<br />

Sertularella de l’expédition de “Siboga”. – Archives de<br />

Zoologie Expérimentale et Générale 58, Notes et Revue:<br />

18–23.<br />

Billard, A. 1920a. Note sur une espèce nouvelle d’Hydroïde:<br />

Sertularella singularis. – Archives de Zoologie Expérimentale<br />

et Générale 59, Notes et Revue: 14–16.<br />

Billard, A. 1920b. Notes sur quatres espèces d’hydroides du<br />

genre “Diphasia”. – Bulletin du Muséum national d’His<strong>to</strong>ire<br />

naturelle de Paris 45: 144–147.<br />

Billard, A. 1922. Le Thecocarpus myriophyllum et ses variétés.<br />

– Annales Sciences naturelles, séries Botanique et<br />

Zoologie, 10e sér. 5: 343–350.<br />

247<br />

Billard, A. 1924. Note critique sur divers genres et espèces<br />

d’hydroides avec la description de trois espèces nouvelles.<br />

– Revue suisse de Zoologie 31: 53–74.<br />

Billard, A. 1925a. Note sur quelques espèces la plupart<br />

nouvelles de synthécides et de sertularides du Siboga. –<br />

Bulletin de la Société Zoologique de France 49: 646–<br />

652.<br />

Billard, A. 1925b. Les hydroïdes de l’expédition du Siboga.<br />

II. Syn<strong>the</strong>cidae et Sertularidae. – Siboga Expeditie 7b:<br />

117–232.<br />

Billard, A. 1929a. Note sur deux espèces d’halécide du genre<br />

Diplocyathus Allm. – Bulletin de la Société Zoologique<br />

de France 54: 69–71.<br />

Billard, A. 1929b. Sur l’identité des genres Sibogella et<br />

Stechowia (Plumulariidae). – Bulletin de la Société Zoologique<br />

de France 54: 72–73.<br />

Billard, A. 1929c. Note sur un genre nouveau et quelques<br />

espèces nouvelles d’Halecidae. – Bulletin de la Société<br />

Zoologique de France 54: 305–307.<br />

Billard, A. 1930. Note sur une espèce nouvelle d’hydroïde<br />

(Thyroscyphus sibogae). – Bulletin de la Société Zoologique<br />

de France 55: 230–232.<br />

Billard, A. 1933. Les hydroïdes des golfes de Suez et<br />

d’Akaba. – Mémoires de l’Institut d’Egypte 21: 1–30, pl.<br />

1.<br />

Billard, A. 1937. Note sur une nouvelle espèce de Halecium<br />

(Halecium galeatum). – Bulletin de la Société Zoologique<br />

de France 62: 292–293.<br />

Billard, A. 1938. Note sur une espèce de campanularidés<br />

(Clytia Gravieri Billard). – Bulletin du Muséum d’His<strong>to</strong>ire<br />

naturelle de Paris, 2ème sér. 10: 429–432.<br />

Billard, A. 1939. Note sur le Sertularella tricincta n. sp. –<br />

Bulletin de la Société Zoologique de France 64: 248–<br />

250.<br />

Billard, A. 1940a. Note sur une espèce nouvelle d’hydroïde:<br />

Egmundella sibogae (Campanulinidae). – Bulletin de la<br />

Société Zoologique de France 5: 134–135.<br />

Billard, A. 1940b. Note sur deux espèces nouvelles de<br />

Campanulinidae (hydroïdes). – Bulletin de la Société<br />

Zoologique de France 65: 135–137.<br />

Billard, A. 1941a. Note sur les hydroïdes: Hebella costata<br />

(Bale) et H. corrugata (Thornely). – Bulletin de la Société<br />

Zoologique de France 66: 13–15.<br />

Billard, A. 1941b. Note sur une espèce d’hydroïde peu<br />

connue: Stegopoma operculatum (Nutting). – Bulletin de<br />

la Société Zoologique de France 66: 16–17.<br />

Billard, A. 1942a. Note sur une nouvelle espèce et une<br />

nouvelle variété de Zygophylax (hydroïdes). – Bulletin<br />

de la Société Zoologique de France 67: 34–36.<br />

Billard, A. 1942b. Note sur quelques espèces et variétés<br />

nouvelles des genres Hebella et Hebellopsis (hydroïdes).<br />

– Bulletin de la Société Zoologique de France 67: 67–70.<br />

Boero, F. 1981. Systematics and ecology <strong>of</strong> <strong>the</strong> hydroid<br />

population <strong>of</strong> two Posidonia oceanica Meadows. – Marine<br />

Ecology 2: 181–197.<br />

Boero, F., & J. Bouillon. 1989. An evolutionary interpretation<br />

<strong>of</strong> anomalous medusoid stages in <strong>the</strong> life cycles <strong>of</strong><br />

some Lep<strong>to</strong>medusae (<strong>Cnidaria</strong>). – European Marine Biology<br />

Symposium 23: 37–41.<br />

Boero, F., & M. Sarà. 1987. Motile sexual stages and evolu-


248<br />

tion <strong>of</strong> Lep<strong>to</strong>medusae (<strong>Cnidaria</strong>). – Bollettino di Zoologia<br />

54: 131–139.<br />

Boero, F., J. Bouillon, & N. Gravier-Bonnet. 1995. The life<br />

cycle <strong>of</strong> Pteroclava krempfi (<strong>Cnidaria</strong>, <strong>Hydrozoa</strong>, Cladocorynidae),<br />

with notes on Asyncoryne philippina (Asyncorynidae).<br />

– Scientia Marina 59: 65–76.<br />

Boero, F., J. Bouillon, & S. Kubota. 1997. The medusae <strong>of</strong><br />

some species <strong>of</strong> Hebella Allman, 1888, and Anthohebella<br />

gen. nov. (<strong>Cnidaria</strong>, <strong>Hydrozoa</strong>, Lafoeidae), with a<br />

world synopsis <strong>of</strong> species. – Zoologische Verhandelingen,<br />

Leiden 310: 1–53.<br />

Borradaile, L. A. 1905. <strong>Hydroids</strong>. – The fauna and geography<br />

<strong>of</strong> <strong>the</strong> Maldive and Laccadive Archipelagos 2:<br />

836–845.<br />

Bosc, L. A. G. 1802. His<strong>to</strong>ire naturelle des vers, contenant<br />

leur description et leurs moeurs; avec figures dessinées<br />

d’après nature. Tome 3. – Guilleminet, Paris, 270 pp.,<br />

pls. 26–32.<br />

Boschma, H. 1953. The Stylasterina <strong>of</strong> <strong>the</strong> Pacific. – Zoologische<br />

Meddeligen, Leiden 32: 165–184.<br />

Boschma, H. 1956. Milleporina and Stylasterina. In: R. C.<br />

Moore (ed). Treatise on Invertebrate Paleon<strong>to</strong>logy, part<br />

F, Coelenterata. University <strong>of</strong> Kansas Press, Kansas, pp.<br />

F99–F106.<br />

Boschma, H. 1957. List <strong>of</strong> <strong>the</strong> described species <strong>of</strong> <strong>the</strong><br />

Stylasterina. – Zoologische Verhandelingen, Leiden 33:<br />

1–72.<br />

Bouillon, J. 1978a. Hydroméduses de l’archipel des Sechelles<br />

et du Moçambique. – Revue de Zoologie Africaine<br />

92: 117–172.<br />

Bouillon, J. 1978b. Hydroméduses de la mer de Bismarck<br />

(Papouasie, Nouvelle-Guinée). Partie 1: Anthomedusae<br />

Capitata (<strong>Hydrozoa</strong> – <strong>Cnidaria</strong>). – Cahiers de Biologie<br />

Marine 19: 249–297.<br />

Bouillon, J. 1980. Hydroméduses de la Mer de Bismarck.<br />

(Papouasie Nouvelle-Guinée). Partie 3: Anthomedusae -<br />

Filifera (<strong>Hydrozoa</strong> – <strong>Cnidaria</strong>). – Cahiers de Biologie<br />

Marine 21: 307–344.<br />

Bouillon, J. 1984a. Revision de la famille des Phialuciidae<br />

(Kramp, 1955) (Lep<strong>to</strong>medusae, <strong>Hydrozoa</strong>, <strong>Cnidaria</strong>),<br />

avec un essai de classification des Thecatae-Lep<strong>to</strong>medusae.<br />

– Indo-Malayan Zoology 1: 1–24.<br />

Bouillon, J. 1984b. Hydroméduses de la Mer de Bismarck<br />

(Papouasie Nouvelle-Guinée). Partie 4: Lep<strong>to</strong>medusae<br />

(<strong>Hydrozoa</strong> – <strong>Cnidaria</strong>). – Indo-Malayan Zoology 1: 25–<br />

112.<br />

Bouillon, J. 1985a. Essai de classification des hydropolypeshydroméduses<br />

(<strong>Hydrozoa</strong> – <strong>Cnidaria</strong>). – Indo-Malayan<br />

Zoology 2: 29–243.<br />

Bouillon, J. 1985b. Notes additionelles sur les hydroméduses<br />

de la mer de Bismarck (<strong>Hydrozoa</strong> – <strong>Cnidaria</strong>). –<br />

Indo-Malayan Zoology 2: 245–266.<br />

Bouillon, J., F. Boero, & G. Seghers. 1987. Redescription <strong>of</strong><br />

Cladocoryne haddoni Kirkpatrick and a proposed phylogeny<br />

<strong>of</strong> <strong>the</strong> superfamily Zancleoidea (Anthomedusae,<br />

<strong>Hydrozoa</strong>, <strong>Cnidaria</strong>). – Indo-Malayan Zoology 4: 279–<br />

292.<br />

Bouillon, J., K. Wouters, & F. Boero. 1992. Étude des<br />

Solanderiidae de la Baie de Hansa (Papouasie Nouvelle-<br />

Guinée) avec une révision du genre Solanderia (Cni-<br />

P. SCHUCHERT<br />

daria, <strong>Hydrozoa</strong>. – Bulletin de l’Institut Royal des Sciences<br />

Naturelles de Belgique, Biologie 62: 5–33.<br />

Briggs, E. A. 1922. Description <strong>of</strong> <strong>the</strong> coppinia <strong>of</strong> an Australian<br />

hydroid. – Australian Zoologist 2: 148–150.<br />

Brinckmann, A. 1959. Ueber den Generationswechsel von<br />

Eucheilota cirrata (Haeckel, 1879). – Pubblicazioni della<br />

Stazione Zoologica di Napoli 31: 82–89.<br />

Brinckmann-Voss, A. 1970. Anthomedusae/A<strong>the</strong>cata (<strong>Hydrozoa</strong>,<br />

<strong>Cnidaria</strong>) <strong>of</strong> <strong>the</strong> Mediterranean. Part I. Capitata.<br />

– Fauna e Flora Golfo di Napoli 39: 1–96, pls 1–11.<br />

Broch, H. 1918. Hydroida. (Part II). – <strong>Danish</strong> Ingolf Expedition<br />

5: 1–206.<br />

Broch, H. 1936. Untersuchungen an Stylasteriden (Hydrokorallen).<br />

Teil I. – Skrifter utgitt av det Norske Videnskaps-Akademi<br />

i Oslo, I. Mat. -naturv. Klasse 1936 (8):<br />

1–103, pls 1–13.<br />

Busk, G. 1852. An account <strong>of</strong> <strong>the</strong> Polyzoa, and <strong>the</strong> sertularian<br />

zoophytes, collected in <strong>the</strong> voyage <strong>of</strong> “Rattlesnake”,<br />

on <strong>the</strong> coasts <strong>of</strong> Australia and <strong>the</strong> Louisiade<br />

Archipelago, etc. – Pp. 343–402 in: J. MacGillivray,<br />

Narrative <strong>of</strong> <strong>the</strong> voyage <strong>of</strong> H.M.S. Rattlesnake, commanded<br />

by late Captain Owen Stanley, R.N., F.R.S., etc.,<br />

during <strong>the</strong> years 1846–1850. Vol 1. Appendix 4. – T. and<br />

W. Boone, London.<br />

Cairns, S. D. 1983. Pseudocryp<strong>the</strong>lia, a new genus <strong>of</strong> stylasterine<br />

coral (Coelenterata: <strong>Hydrozoa</strong>) from <strong>the</strong> Indonesian<br />

region. – Beaufortia 33: 29–35.<br />

Cairns, S. D. 1991. The marine fauna <strong>of</strong> New Zealand:<br />

Stylasteridae (<strong>Cnidaria</strong>: Hydroida). – New Zealand Oceanographic<br />

Institute Memoir 98: 1–179.<br />

Cairns, S. D., & B. W. Hoeksema. 1998. Distichopora vervoorti,<br />

a new shallow-water stylasterid coral (<strong>Cnidaria</strong>:<br />

<strong>Hydrozoa</strong>: Stylasteridae) from Bali, Indonesia. Zoologische<br />

Verhandelingen 323: 311–318.<br />

Calder, D. R. 1988. Shallow-water hydroids <strong>of</strong> Bermuda.<br />

The A<strong>the</strong>catae. – Royal Ontario Museum Life Sciences<br />

Contributions 148: 1–107.<br />

Calder, D. R. 1991. Shallow-water hydroids <strong>of</strong> Bermuda: <strong>the</strong><br />

Thecatae, exclusive <strong>of</strong> Plumularioidea. – Royal Ontario<br />

Museum Life Sciences Contributions 154: 1–140.<br />

Calder, D. R. 1997. Shallow-Water <strong>Hydroids</strong> <strong>of</strong> Bermuda:<br />

(Superfamily Plumularoidea). – Royal Ontario Museum<br />

Life Science Contributions 161: 1–85.<br />

Campenhausen, B. von. 1896a. Hydroiden von Ternate,<br />

nach den Sammlungen Pr<strong>of</strong>. W. Kükenthal’s. –<br />

Zoologischer Anzeiger 19: 103–107.<br />

Campenhausen, B. von. 1896b. Hydroiden von Ternate. –<br />

Abhandlungen herausgegeben von der Senckenbergischen<br />

Naturforschenden Gesellschaft 23: 297–320.<br />

Clarke, S. F. 1875. Descriptions <strong>of</strong> new and rare species <strong>of</strong><br />

hydroids from <strong>the</strong> New England coast. – Transactions <strong>of</strong><br />

<strong>the</strong> Connecticut Academy <strong>of</strong> Sciences 3: 58–66.<br />

Clarke, S. F. 1876. Report on <strong>the</strong> hydroids collected on <strong>the</strong><br />

coast <strong>of</strong> Alaska and <strong>the</strong> Aleutian Islands by W.H. Dall,<br />

U.S. Coast Survey, and party, from 1871 <strong>to</strong> 1874 inclusive.<br />

– Proceedings <strong>of</strong> <strong>the</strong> Academy <strong>of</strong> Natural Sciences<br />

<strong>of</strong> Philadelphia 1876: 209–235, plates.<br />

Clarke, S. F. 1879. Report on <strong>the</strong> Hydroida collected during<br />

<strong>the</strong> Exploration <strong>of</strong> <strong>the</strong> Gulf Stream <strong>of</strong> Mexico by Alexander<br />

Agassiz, 1877–78. – Bulletin <strong>of</strong> <strong>the</strong> Museum <strong>of</strong><br />

Comparative Zoology 5: 239–252, pl. 5.


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Clarke, S. F. 1907. Reports on <strong>the</strong> scientific results <strong>of</strong> <strong>the</strong><br />

<strong>expedition</strong> <strong>to</strong> <strong>the</strong> eastern tropical Pacific, in charge <strong>of</strong><br />

Alexander Agassiz, by <strong>the</strong> U. S. Fish Commission<br />

steamer ‘Albatros’, from Oc<strong>to</strong>ber 1904 <strong>to</strong> March 1905,<br />

Lieut.-Commander L. M. Garrett, U. S. N., commanding.<br />

VIII The hydroids. – Memoirs <strong>of</strong> <strong>the</strong> Museum <strong>of</strong> comparative<br />

Zoology at Harvard College 35: 1–18.<br />

Cooke, W. J. 1975. Shallow water hydroids from Enewetak<br />

A<strong>to</strong>ll, Marshall Islands. – Micronesica 11: 85–108, pls<br />

1–6.<br />

Cornelius, P. F. S. 1979. A revision <strong>of</strong> <strong>the</strong> species <strong>of</strong><br />

Sertulariidae (Coelenterata: Hydroida) recorded from<br />

Britain and nearby seas. – Bulletin <strong>of</strong> <strong>the</strong> British Museum<br />

34: 243-321.<br />

Cornelius, P. F. S. 1975a. The hydroid species <strong>of</strong> Obelia<br />

(Coelenterata, <strong>Hydrozoa</strong>: Campanulariidae), with notes<br />

on <strong>the</strong> medusa stage. – Bulletin <strong>of</strong> <strong>the</strong> British Museum,<br />

Zoology 28: 251–293.<br />

Cornelius, P. F. S. 1975b. A revision <strong>of</strong> <strong>the</strong> species <strong>of</strong><br />

Lafoeidae and Haleciidae (Coelenterata: Hydroida) recorded<br />

from Britain and nearby seas. – Bulletin <strong>of</strong> <strong>the</strong><br />

British Museum, Zoology 28: 373-426.<br />

Cornelius, P. F. S. 1982. <strong>Hydroids</strong> and medusae <strong>of</strong> <strong>the</strong> family<br />

Campanulariidae recorded from <strong>the</strong> eastern north Atlantic,<br />

with a world synopsis <strong>of</strong> genera. – Bulletin <strong>of</strong> <strong>the</strong><br />

British Museum, Zoology 42: 37–148.<br />

Cornelius, P. F. S. 1995a. North-west European <strong>the</strong>cate<br />

hydroids and <strong>the</strong>ir medusae. Part 1. Introduction, Laodiceidae<br />

<strong>to</strong> Haleciidae. – Synopses <strong>of</strong> <strong>the</strong> British Fauna<br />

(New Series) 50: 1–347.<br />

Cornelius, P. F. S. 1995b. North-west European <strong>the</strong>cate<br />

hydroids and <strong>the</strong>ir medusae. Part 2. Sertulariidae <strong>to</strong><br />

Campanulariidae. – Synopses <strong>of</strong> <strong>the</strong> British Fauna (New<br />

Series) 50: 1–386.<br />

Cornelius, P. F. S., & C. Östman. 1986. On <strong>the</strong> names <strong>of</strong> two<br />

species <strong>of</strong> <strong>the</strong> genus Clytia Lamouroux, 1812 (<strong>Cnidaria</strong>,<br />

<strong>Hydrozoa</strong>) common in western Europe. – Bulletin <strong>of</strong><br />

Zoological Nomenclature 43: 163–169.<br />

Ehrenberg, C. G. 1834. Beiträge zur physiologischen Kenntnis<br />

der Corallenthiere im allgemeinen, und besonders des<br />

ro<strong>the</strong>n Meeres, nebst einem Versuche zur physiologischen<br />

Systematik derselben. – Abhandlungen der Königlichen<br />

Akademie der Wissenschaften, Berlin 1: 225–<br />

380.<br />

Ellis, J., & D. Solander. 1786. The Natural His<strong>to</strong>ry <strong>of</strong> Many<br />

Curious and Uncommon Zoophytes, Collected from Various<br />

Parts <strong>of</strong> <strong>the</strong> Globe by <strong>the</strong> late John Ellis, Esq. F.R.S.<br />

Soc. Reg. Upsal. Soc. Author <strong>of</strong> <strong>the</strong> Natural His<strong>to</strong>ry<br />

<strong>of</strong> English Corallines, and o<strong>the</strong>r Works. Systematically<br />

Arranged and Described by <strong>the</strong> Late Daniel Solander,<br />

M.D. F.R.S. & c. with sixty-two plates engraven by<br />

principal artists. – Benjamin White and Peter Elmsly,<br />

London, 206 pp., 63 pls.<br />

Esper, E. J. C. 1793. Die Pflanzentiere in Abbildungen nach<br />

der Natur mit Farben erleuchtet. Vol. 2. – Bauer &<br />

Raspe, Nürnberg, 304 pp.<br />

Fleming, J. 1820. Observations on <strong>the</strong> natural his<strong>to</strong>ry <strong>of</strong><br />

Sertularia gelatinosa <strong>of</strong> Pallas. – Edinburgh Philosophical<br />

Journal 2: 82–89.<br />

Fraser, C. M. 1912. Some hydroids <strong>of</strong> Beaufort, North<br />

249<br />

Carolina. – Bulletin <strong>of</strong> <strong>the</strong> Unites States Bureau <strong>of</strong> Fisheries<br />

30: 337–387.<br />

Fraser, C. M. 1937. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong> Pacific coast <strong>of</strong> Canada<br />

and <strong>the</strong> United States. The University <strong>of</strong> Toron<strong>to</strong> Press,<br />

Toron<strong>to</strong>, 208 pp., 44 pls.<br />

Fraser, C. M. 1938. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong> 1934 Allan Hancock<br />

Pacific Expedition. – Allan Hancock Pacific Expeditions<br />

4: 1–105.<br />

Fraser, C. M. 1944. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong> Atlantic coast <strong>of</strong> North<br />

America. – The University <strong>of</strong> Toron<strong>to</strong> Press, Toron<strong>to</strong>, pp.<br />

1–451, pls 1–94.<br />

Fraser, C. M. 1948. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong> Allan Hancock Pacific<br />

Expeditions since March, 1938. Allan Hancock Pacific<br />

Expeditions 4: 179–343.<br />

Garcia Corrales, P., A. Aguirre Inchaurbe, & D. Gonzalez<br />

Mora. 1980. Contribución al conocimien<strong>to</strong> de los hidrozoos<br />

de las costas españolas. Parte 3: Sertulariidae. –<br />

Boletin del Institu<strong>to</strong> Español de Oceanografia 6: 3–67.<br />

Garcia Corrales, P., & A. Aguirre. 1985. La especie Halocordyle<br />

disticha (Goldfuss, 1820), y sus sinonimias. –<br />

Boletin del Institu<strong>to</strong> Español de Oceanografia 2: 85–96.<br />

Gemerden-Hoogeveen, G. C. H. van. 1965. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong><br />

Caribbean : Sertulariidae, Plumulariidae and Aglaopheniidae.<br />

– Studies on <strong>the</strong> fauna <strong>of</strong> Curaçao and o<strong>the</strong>r<br />

Caribbean Islands 22: 1–87.<br />

Genzano, G. N. 1992. La Fauna de hydropolypos (<strong>Cnidaria</strong>)<br />

del li<strong>to</strong>ral de Buenos Aires, Argentina. I. – Neotropica<br />

38: 141–148.<br />

Gibbons, M. J., & J. S. Ryland. 1989. Intertidal and shallow<br />

water hydroids from Fiji. 1. A<strong>the</strong>cata <strong>to</strong> Sertulariidae. –<br />

Memoirs <strong>of</strong> <strong>the</strong> Queensland Museum 27: 377–432.<br />

Gili, J. M., W. Vervoort, & F. Pages. 1989. <strong>Hydroids</strong> from<br />

<strong>the</strong> west African coast: Guinea Bissau, Namibia and<br />

South Africa. – Scientia Marina 53: 67–112.<br />

Gmelin, J. F. 1791. C. Linnaeus, Systemae Naturae. Thirteenth<br />

edition, edited by. J. F. Gmelin. Vol. 1, part 6<br />

(vermes), pp. 3021–3910.<br />

Goldfuss, G. A. 1820. Handbuch der Zoologie. Erste Abteilung.<br />

– Schrag, Nürnberg, 606 pp.<br />

Gravier-Bonnet, N. 1979. Hydraires semi-pr<strong>of</strong>onds de<br />

Madegascar, (Coelenterata <strong>Hydrozoa</strong>), étude systématique<br />

et écologique. – Zoologische Verhandelingen,<br />

Leiden 169: 1–76.<br />

Gravier-Bonnet, N., & A. E. Migot<strong>to</strong>. 2000. Gonangium<br />

development and medusoid <strong>of</strong> Nemalecium lighti (Hargitt,<br />

1924) (<strong>Cnidaria</strong> : <strong>Hydrozoa</strong>, Haleciidae). – Scientia<br />

Marina 64: 207–213.<br />

Gray, J. E. 1843. Additional radiated animals and annelides.<br />

pp. 292. – In: E. Dieffenbach, Travels in New Zealand:<br />

with contributions <strong>to</strong> <strong>the</strong> geography, geology, botany,<br />

and natural his<strong>to</strong>ry <strong>of</strong> that country. Vol. 2, London.<br />

Hadzi, J. 1914. Poredbena hidroidska istraivanja. III. Haleciella<br />

micro<strong>the</strong>ca g. n., sp.n.; Georginella diaphana g.<br />

n., sp. n.; Halanthus adriaticus g. n., sp. n.; Campanopsis<br />

clausa (Hadzi) i o porodici Campanopsida uopæe. – Rad<br />

Jugoslavenske Akademije Zanosti i Umjetnosti 202:<br />

191–241. (German translation in: Bulletin des Traveaux<br />

de la Classe des Sciences mathématigues et naturelles 2:<br />

50–59)<br />

Haeckel, E. 1879. Das System der Medusen. Erster Teil einer<br />

Monographie der Medusen. – Denkschriften der Medi-


250<br />

cinisch-Naturwissenschaftlichen Gesellschaft zu Jena 1:<br />

1–360, 20 pls.<br />

Hargitt, C. W. 1924. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong> Philippine Islands. –<br />

Philippine Journal <strong>of</strong> Science 24: 467–507, pls 1–6.<br />

Hickson, S. J., & H. M. England. 1905. The Stylasterina <strong>of</strong><br />

<strong>the</strong> Siboga Expedition. – Siboga Expeditie 8: 1–26, 3 pls.<br />

Hirohi<strong>to</strong>, Emperor <strong>of</strong> Japan. 1969. Some hydroids from <strong>the</strong><br />

Amakusa Islands. – Biological Labora<strong>to</strong>ry <strong>of</strong> <strong>the</strong> Imperial<br />

Household, Tokyo, 32 pp.<br />

Hirohi<strong>to</strong>, Emperor <strong>of</strong> Japan. 1977. Five hydroid species from<br />

<strong>the</strong> Gulf <strong>of</strong> Aqaba, Red Sea. – Biological Labora<strong>to</strong>ry <strong>of</strong><br />

<strong>the</strong> Imperial Household, Tokyo, 26 pp.<br />

Hirohi<strong>to</strong>, Emperor <strong>of</strong> Japan. 1983. <strong>Hydroids</strong> from Izu Oshima<br />

and Nijima. – Biological Labora<strong>to</strong>ry <strong>of</strong> <strong>the</strong> Imperial<br />

Household, Tokyo, 83 pp.<br />

Hirohi<strong>to</strong>, Emperor <strong>of</strong> Japan. 1988. The hydroids <strong>of</strong> Sagami<br />

Bay collected by His Majesty <strong>the</strong> Emperor <strong>of</strong> Japan.<br />

– Biological Labora<strong>to</strong>ry <strong>of</strong> <strong>the</strong> Imperial Household,<br />

Tokyo, pp.1–179, 4 pls.<br />

Hirohi<strong>to</strong>, Emperor <strong>of</strong> Japan 1995. <strong>Hydroids</strong> <strong>of</strong> Sagami Bay.<br />

II. Thecata. – Biological Labora<strong>to</strong>ry <strong>of</strong> <strong>the</strong> Imperial<br />

Household, Tokyo, 355 pp., 13 pls.<br />

Inaba, M. 1892. The hydroids collected at Misaki, Miura,<br />

Soshu (in Japanese). – Zoological Magazine 4: 93–101,<br />

124–131.<br />

Jäderholm, E. 1896. Ueber aussereuropäische Hydroiden<br />

des zoologischen Museums der Universität Upsala. –<br />

Bihang till Kungliga Svenska Vetenskaps-akademiens<br />

Handlingar 4: 1–20, pls 1–2.<br />

Jäderholm, E. 1903. Aussereuropäische Hydroiden im<br />

schwedischen Reichsmuseum. – Arkiv för Zoologi 1:<br />

259–312, pls 12–15.<br />

Jäderholm, E. 1919. Zur Kenntis der Hydroidenfauna Japans.<br />

– Arkiv för Zoologi 12: 1–34, pls 1–6.<br />

Jäderholm, E. 1920. On some exotic hydroids in <strong>the</strong> Swedish<br />

Zoological State Museum. – Arkiv för Zoologi 13: 1–11,<br />

pls 1–2.<br />

Jarvis, F. E. 1922. The hydroids from <strong>the</strong> Chagos, Seychelles<br />

and o<strong>the</strong>r islands and from <strong>the</strong> coasts <strong>of</strong> British East<br />

Africa and Zanzibar. – Transaction <strong>of</strong> <strong>the</strong> Linnean Society<br />

<strong>of</strong> London, Zoology 18: 331–360, pls 24–26.<br />

Kirchenpauer, G. H. 1872. Ueber die Hydroidenfamilie Plumulariidae,<br />

einzelne Gruppen derselben und ihre Fruchtbehälter.<br />

I. Aglaophenia. – Abhandlungen aus dem Gebiet<br />

der Naturwissenschaften, herausgegeben von dem<br />

naturwissenschaftlichen Verein in Hamburg 5: 1–52,<br />

plates 1–8.<br />

Kirchenpauer, G. H. 1876. Ueber die Hydroidenfamilie Plumulariidae,<br />

einzelne Gruppen derselben und ihre Fruchtbehälter.<br />

II. Plumularia und Nemertesia. – Abhandlungen<br />

aus dem Gebiet der Naturwissenschaften, herausgegeben<br />

von dem naturwissenschaftlichen Verein in Hamburg<br />

6: 1–59, plates 1–8.<br />

Kirkpatrick, R. 1890. Reports on <strong>the</strong> collections made in<br />

Torres Straits by Pr<strong>of</strong>essor A. C. Haddon, 1888-1889.<br />

Hydroida and Polyzoa. – Proceedings <strong>of</strong> <strong>the</strong> Royal Dublin<br />

Society, n. s. 6: 603–626.<br />

Kramp, P. L. 1941. Notes on <strong>the</strong> hydroid Campanulina<br />

paniculata G.O. Sars. – Göteborgs Kunglige Vetenskaps-<br />

och Vitterhets-Samhälles Handlingar, Ser. B 1: 1–<br />

11.<br />

P. SCHUCHERT<br />

Kramp, P. L. 1961. Synopsis <strong>of</strong> <strong>the</strong> medusae <strong>of</strong> <strong>the</strong> world.–<br />

Journal <strong>of</strong> <strong>the</strong> Marine Biological Association <strong>of</strong> <strong>the</strong> U. K.<br />

40, 1–469.<br />

Kramp, P. L. 1965. The Hydromedusae <strong>of</strong> <strong>the</strong> Pacific and<br />

Indian Oceans. – Dana Report 63: 1–162.<br />

Kramp, P. L. 1968. The Hydromedusae <strong>of</strong> <strong>the</strong> Pacific and<br />

Indian Oceans. Sections II and III. – Dana Report 72: 1–<br />

200.<br />

Lamarck, J. B. P. A. de. 1816. His<strong>to</strong>ire naturelle des Animaux<br />

sans Vertébres, vol. 2. Paris, Verdière, 568 pp.<br />

Lamouroux, J. V. F. 1816. His<strong>to</strong>ire des Polypiers coralligènes<br />

flexibles, vulgairemant nommés Zoophytes. F.<br />

Poisson, Caen, 559 pp.<br />

Lamouroux, J. V. F. 1824. Description des polypiers flexibles,<br />

pp. 603–643, pls 88–95. – In: L. de Freycinet. Voyage<br />

au<strong>to</strong>ur du monde, entrepris par ordre du Roi, éxecuté<br />

sur les corvettes l’Uranie et la Physicienne, pendant les<br />

années 1817, 1818, 1819 et 1820. Zoologie, rédigé par<br />

MM. J. R. C. Quoy et J. P. Gaimard, Pillet Aîné, Paris.<br />

Leloup, E. 1930a. Sur un hydropolype nouveau, Thecocarpus<br />

leopoldi nov. sp., des Indes orientales néerlandaises.<br />

– Bulletin du Musée Royal d’His<strong>to</strong>ire Naturelle<br />

de Belgique 6: 1–3.<br />

Leloup, E. 1930b. Coelentérés hydropolypes. In: Résultats<br />

Scientifiques du Voyage aux Indes Orientles Néerlandaises<br />

de LL. AA. RR. le Prince et la Princesse Léopold<br />

de Belgique. – Mémoires du Musée Royal d’His<strong>to</strong>ire<br />

Naturelle de Belgique, hors série 2: 1–18, pl. 1.<br />

Leloup, E. 1932. Répartition géographique de l’Aglaophenia<br />

cupressina Lamouroux. – Bulletin du Musée Royal<br />

d’His<strong>to</strong>ire Naturelle de Belgique 8: 1–3.<br />

Leloup, E. 1937. Hydropolypes et Scyphopolypes recueillis<br />

par C. Dawyd<strong>of</strong>f sur les côtes de l’Indochine française. –<br />

Bulletin du Musée Royal d’His<strong>to</strong>ire Naturelle de Belgique<br />

12: 1–73.<br />

Leloup, E. 1938. Quelques hydropolypes de la baie de<br />

Sagami, Japon. – Bulletin du Musée Royal d’His<strong>to</strong>ire<br />

Naturelle de Belgique 14: 1–22.<br />

Leloup, E. 1960. Hydropolypes du Muséum National d’His<strong>to</strong>ire<br />

naturelle de Paris. – Mémoirs du Muséum national<br />

d’His<strong>to</strong>ire naturelle de Paris, n. ser. 17: 217–241.<br />

Leloup, E. 1974. Hydropolypes calyp<strong>to</strong>blastiques du Chili.<br />

Report no. 48 <strong>of</strong> <strong>the</strong> Lund University Chile Expedition<br />

1948-1949. – Sarsia 55: 1–62.<br />

Lendenfeld, R. v. 1885a. The Australian Hydromedusae. –<br />

Proceedings <strong>of</strong> <strong>the</strong> Linnean Society <strong>of</strong> New South Wales<br />

9: 206–241, 345–353, 401–420, 467–492, 581–634, pls<br />

6–8, 12–17, 20–29.<br />

Linneaus, C. 1758. Systema naturae per regna tria naturae,<br />

secundum classes, ordines, genera, species cum characteribus,<br />

differentiis, synonymis, locis. Edition decima,<br />

reformata. Laurentii Salvii, Holmiae, 823 pp.<br />

Linneaus C. 1767. Systema naturae per regna tria naturae,<br />

secundum classes, ordines, genera, species cum characteribus,<br />

differentiis, synonymis, locis. Tomus I. Pars II.<br />

Editio duodecima, reformata. Laurentii Salvii, Holmiae,<br />

pp. 533–1317.<br />

Mammen, T. A. 1963. On a collection <strong>of</strong> hydroids from<br />

South India. I. Suborder A<strong>the</strong>cata. – Journal <strong>of</strong> <strong>the</strong> Marine<br />

biological Association <strong>of</strong> India 5: 27–61.<br />

Mammen, T. A. 1965. On a collection <strong>of</strong> hydroids from


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

South India. II. Suborder Thecata (excluding family<br />

Plumulariidae). – Journal <strong>of</strong> <strong>the</strong> Marine biological Association<br />

<strong>of</strong> India 7: 1–57.<br />

Mammen, T. A. 1967. On a collection <strong>of</strong> hydroids from<br />

South India. III. Family Plumulariidae. – Journal <strong>of</strong> <strong>the</strong><br />

Marine biological Association <strong>of</strong> India 7: 291–324.<br />

Marktanner-Turneretscher, G. 1890. Hydroiden des K. & K.<br />

Naturhis<strong>to</strong>rischen H<strong>of</strong>museums. – Annalen des K. K.<br />

Naturhis<strong>to</strong>rischen H<strong>of</strong>museums 5: 195–286.<br />

Marques, A. C., H. Mergner, R. Höinghaus, C. M. D. San<strong>to</strong>s<br />

& W. Vervoort. 2000. Morphological study and taxonomical<br />

notes on Eudendriidae (<strong>Cnidaria</strong>: <strong>Hydrozoa</strong>:<br />

A<strong>the</strong>cate/Anthomedusae). – Zoologische Mededelingen,<br />

Leiden 74: 75–118.<br />

McCrady, J. 1859a. Description <strong>of</strong> Oceania (Turri<strong>to</strong>psis)<br />

nutricula nov. spec. and <strong>the</strong> embryological his<strong>to</strong>ry <strong>of</strong> a<br />

singular medusan larva, found in <strong>the</strong> cavity <strong>of</strong> its bell. –<br />

Proceedings <strong>of</strong> <strong>the</strong> Elliot Society <strong>of</strong> Natural His<strong>to</strong>ry 1:<br />

55–90, pls 4–7.<br />

Medel, M. D. & W. Vervoort. 1998. Atlantic Thyroscyphidae<br />

and Sertulariidae (<strong>Hydrozoa</strong>, <strong>Cnidaria</strong>) collected<br />

during <strong>the</strong> CANCAP and Mauritania-II <strong>expedition</strong>s <strong>of</strong><br />

<strong>the</strong> National Museum <strong>of</strong> Natural His<strong>to</strong>ry, Leiden, <strong>the</strong><br />

Ne<strong>the</strong>rlands. – Zoologische Verhandelingen, Leiden<br />

320: 1–85.<br />

Medel, M. D. & W. Vervoort. 2000. Atlantic Haleciidae and<br />

Campanulariidae (<strong>Hydrozoa</strong>, <strong>Cnidaria</strong>) collected during<br />

<strong>the</strong> CANCAP and Mauretania-II <strong>expedition</strong>s <strong>of</strong> <strong>the</strong><br />

National Museum <strong>of</strong> Natural His<strong>to</strong>ry, Leiden, <strong>the</strong><br />

Ne<strong>the</strong>rlands. – Zoologische Verhandelingen, Leiden<br />

330: 1–68.<br />

Meneghini, G. 1845. Osservazioni sull’ ordine delle<br />

sertulariee della classe dei polipi. – Memorie dell’<br />

Imperiale Reale Institu<strong>to</strong> Vene<strong>to</strong> di Scienze, Lettere ed<br />

Arti 2: 183–199.<br />

Migot<strong>to</strong>, A. E. 1996. Benthic shallow-water hydroids<br />

(<strong>Cnidaria</strong>, <strong>Hydrozoa</strong>) <strong>of</strong> <strong>the</strong> coast <strong>of</strong> São Sebastião,<br />

Brazil, including a checklist <strong>of</strong> Brazilian hydroids. –<br />

Zoologische Verhandelingen, Leiden 306: 1–125.<br />

Migot<strong>to</strong>, A. E., & L. P. de Andrade. 2000. The life cycle <strong>of</strong><br />

Hebella furax (<strong>Cnidaria</strong>: <strong>Hydrozoa</strong>): a link between a<br />

lafoeid hydroid and a laodiceid medusa. – Journal <strong>of</strong><br />

Natural His<strong>to</strong>ry 34: 1871–1888.<br />

Millard, N. A. H. 1958. <strong>Hydrozoa</strong> from <strong>the</strong> coasts <strong>of</strong> Natal<br />

and Portuguese East Africa. Part I. Calyp<strong>to</strong>blastea. –<br />

Annals <strong>of</strong> <strong>the</strong> South African Museum 44: 165–226.<br />

Millard, N. A. H. 1964. The <strong>Hydrozoa</strong> <strong>of</strong> <strong>the</strong> south and west<br />

coasts <strong>of</strong> South Africa. Part II. The Lafoeidae,<br />

Syn<strong>the</strong>ciidae and Sertulariidae. – Annals <strong>of</strong> <strong>the</strong> South<br />

African Museum 48: 1–56.<br />

Millard, N. A. H. 1968. South African hydroids from Dr. Th.<br />

Mortensen’s Java-South Africa <strong>expedition</strong> 1930. –<br />

Videnskabelige Meddelelser fra Dansk Naturhis<strong>to</strong>risk<br />

Forening i København 131: 251–288.<br />

Millard, N. A. H. 1975. Monograph on <strong>the</strong> Hydroida <strong>of</strong><br />

sou<strong>the</strong>rn Africa. – Annals <strong>of</strong> <strong>the</strong> South African Museum<br />

68: 1–513.<br />

Millard, N. A. H. 1980. The South African Museum’s<br />

Meiring Naude cruises. Part 11. Hydroida. – Annals <strong>of</strong><br />

<strong>the</strong> South African Museum 82: 129–153.<br />

Millard, N. A. H., & J. Bouillon. 1973. <strong>Hydroids</strong> from <strong>the</strong><br />

251<br />

Seychelles (Coelenterata). – Annales du Musée Royal de<br />

l’Afrique Centrale, série In-8°, Sciences Zoologiques<br />

206: 1–106, pls 1–5.<br />

Millard, N. A. H., & J. Bouillon. 1975. Additional hydroids<br />

from <strong>the</strong> Seychelles. – Annals <strong>of</strong> <strong>the</strong> South African<br />

Museum 69: 1–15.<br />

Morri, C. 1982. Sur la presence en Mediterranée de Garveia<br />

franciscana (Torrey 1902) (<strong>Cnidaria</strong>, Hydroida). –<br />

Cahiers de Biologie Marine 23: 381–391.<br />

Mortensen, T. 1923. The <strong>Danish</strong> Expedition <strong>to</strong> <strong>the</strong> Kei<br />

Islands 1922. – Videnskabelige Meddelelser fra Dansk<br />

Naturhis<strong>to</strong>risk Forening 76: 25-99, pls 1–3.<br />

Motz-Kossowska, S. 1911. Contribution à la connaissance<br />

des hydraires de la Méditerranée occidentale. II.-<br />

Hydraires calyp<strong>to</strong>blastiques. – Archives de Zoologie<br />

Expérimentale et Générale 6: 325–352.<br />

Mulder, J. F. & R. E. Trebilcock. 1909. Notes on Vic<strong>to</strong>rian<br />

Hydroida, with descriptions <strong>of</strong> new species. – The<br />

Geelong Naturalist 4: 29–35, pl. 1.<br />

Mulder, J. F., & R. E. Trebilcock. 1911. Notes on Vic<strong>to</strong>rian<br />

Hydroida, with description <strong>of</strong> new species. (Continued).<br />

– The Geelong Naturalist 4: 115–124.<br />

Norman A. M. 1867. Report <strong>of</strong> <strong>the</strong> committee appointed for<br />

<strong>the</strong> purpose <strong>of</strong> explorating <strong>the</strong> coasts <strong>of</strong> <strong>the</strong> Hebrides by<br />

means <strong>of</strong> <strong>the</strong> dredge. Part II. On <strong>the</strong> Crustacea,<br />

Echinodermata, Polyzoa, Actinozoa, and <strong>Hydrozoa</strong>. –<br />

Report <strong>of</strong> <strong>the</strong> British Association for <strong>the</strong> Advancement <strong>of</strong><br />

Science 1866: 193–206.<br />

Nutting, C. C. 1900. American <strong>Hydroids</strong>. Part I. The<br />

Plumularidae. – Smithsonian Institution, United States<br />

National Museum Special Bulletin 4: 1–285.<br />

Nutting, C. C. 1904. American <strong>Hydroids</strong>. Part II. The<br />

Sertularidae. – Smithsonian Institution, United States<br />

National Museum Special Bulletin 4: 1–325, pls 1–41.<br />

Nutting, C. C. 1905. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong> Hawaiian Islands<br />

collected by <strong>the</strong> steamer Albatross in 1902. – Bulletin <strong>of</strong><br />

<strong>the</strong> United States Fish Commission for 1903 23: 931–<br />

959, pls 1–13.<br />

Nutting, C. 1927. Report on Hydroida collected by <strong>the</strong><br />

Unites States Fisheries steamer Albatross in <strong>the</strong><br />

Philippine region 1910. – Bulletin <strong>of</strong> <strong>the</strong> United States<br />

National Museum 100: 195-242.<br />

Östman, C., S. Piraino & W. Kem. 1991. Nema<strong>to</strong>cysts <strong>of</strong> <strong>the</strong><br />

Mediterranean hydroid Halocordyle disticha. – Hydrobiologia<br />

216–217: 607–613.<br />

Pages, F., J.-M. Gili & J. Bouillon. 1992. Medusae<br />

(<strong>Hydrozoa</strong>, Scyphozoa, Cubozoa) <strong>of</strong> <strong>the</strong> Benguela<br />

Current (sou<strong>the</strong>astern Atlantic). – Scientia Marina 56: 1–<br />

64.<br />

Peña Cantero, A. L. & A. M. Garcìa Carrascosa. 2002. The<br />

benthic hydroid fauna <strong>of</strong> <strong>the</strong> Chafarina Islands (Alborán<br />

Sea, western Mediterranean). – Zoologische Verhandelingen,<br />

Leiden 337: 1–180.<br />

Pennycuik, P. R. 1959. Faunistic record from Queensland.<br />

Part V. Marine and Brackish Water <strong>Hydroids</strong>. – Papers <strong>of</strong><br />

<strong>the</strong> Department <strong>of</strong> Zoology <strong>of</strong> <strong>the</strong> University <strong>of</strong><br />

Queensland 1: 141–210.<br />

Petersen, K. W. 1990. Evolution and taxonomy in capitate<br />

hydroids and medusae (<strong>Cnidaria</strong>: <strong>Hydrozoa</strong>). –<br />

Zoological Journal <strong>of</strong> <strong>the</strong> Linnean Society 100: 101–231.<br />

Philbert, M. 1936. Études sur Cladocoryne floccosa Rotch. –


252<br />

Bulletin de l’ Institut océanographique de Monaco 708:<br />

1–16.<br />

Pictet, C. 1893. Etude sur les hydraires de la Baie d’Amboine.<br />

– Revue Suisse de zoologie 1: 1–64.<br />

Ralph, P. M. 1958. New Zealand <strong>the</strong>cate hydroids. Part II. -<br />

Families Lafoeidae, Lineolariidae, Haleciidae and Syn<strong>the</strong>ciidae.<br />

– Transactions <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> New<br />

Zealand 85: 301–356.<br />

Ralph, P. M. 1961a. New Zealand <strong>the</strong>cate hydroids. Part III.<br />

- Family Sertulariidae. – Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> New Zealand 88: 749–838.<br />

Ralph, P. M. 1961b. New Zealand <strong>the</strong>cate hydroids. Part IV.<br />

- The family Plumulariidae. – Transactions <strong>of</strong> <strong>the</strong> Royal<br />

Society <strong>of</strong> New Zealand, Zoology 1: 19–74.<br />

Ramil, F. & W. Vervoort. 1992. Report on <strong>the</strong> Hydroida<br />

collected by <strong>the</strong> ‘BALGIM’ <strong>expedition</strong> in and around <strong>the</strong><br />

Strait <strong>of</strong> Gibraltar. Zoologische Verhandelingen, Leiden<br />

277: 1–262.<br />

Rees, W. J. & W. Vervoort. 1987. <strong>Hydroids</strong> from <strong>the</strong> John<br />

Murray Expedition <strong>to</strong> <strong>the</strong> Indian Ocean, with revisory<br />

notes on Hydrodendron, Abietinella, Cryp<strong>to</strong>laria and<br />

Zygophylax (<strong>Cnidaria</strong>: <strong>Hydrozoa</strong>). – Zoologische Verhandelingen,<br />

Leiden 237: 1–209.<br />

Rho, B. J. 1967. Marine hydroids from <strong>the</strong> west and south sea<br />

<strong>of</strong> Korea. – Korean Culture Research Institute 10: 341–<br />

360.<br />

Rho, B. J. 1969. Studies on <strong>the</strong> marine hydroids in Korea. –<br />

Journal <strong>of</strong> <strong>the</strong> Korean Research Institute for better Living,<br />

Ewha Womans University 2: 161–172, pls 1–2.<br />

Ritchie, J. 1907. On Collections <strong>of</strong> <strong>the</strong> Cape Verde Island<br />

Marine Fauna, made by Cyril Crossland, M. A. (Cantab.),<br />

B.Sc. (Lond.), F.Z.S., <strong>of</strong> St. Andrews University,<br />

July <strong>to</strong> September, 1904. – Proceedings <strong>of</strong> <strong>the</strong> Zoological<br />

Society <strong>of</strong> London 1907: 488–514.<br />

Ritchie, J. 1909b. New Species and Varieties <strong>of</strong> <strong>Hydroids</strong><br />

Thecata from <strong>the</strong> Andaman Islands. – Annals and Magazine<br />

<strong>of</strong> Natural His<strong>to</strong>ry (8) 3: 524–528.<br />

Ritchie, J. 1910a. <strong>Hydroids</strong> <strong>of</strong> <strong>the</strong> Indian Museum. No. 1. –<br />

Records <strong>of</strong> <strong>the</strong> Indian Museum 5: 1–30, pl. 4.<br />

Ritchie, J. 1910b. The marine fauna <strong>of</strong> <strong>the</strong> Mergui Archipelago,<br />

lower Burma etc. - <strong>the</strong> <strong>Hydroids</strong>. – Proceedings<br />

<strong>of</strong> <strong>the</strong> Zoological Society <strong>of</strong> London 1910: 799–825, pls.<br />

Ritchie, J. 1910c. <strong>Hydroids</strong> from Christmas Island, Indian<br />

Ocean. – Proceedings <strong>of</strong> <strong>the</strong> Zoological Society <strong>of</strong> London<br />

1910: 826–836.<br />

Russell, F. S. 1953. The Medusae <strong>of</strong> <strong>the</strong> British Isles. Anthomedusae,<br />

Lep<strong>to</strong>medusae, Limnomedusae, Trachymedusae<br />

and Narcomedusae. – Cambridge University Press,<br />

London, 530 pp., 35 pls.<br />

Ryland, J. S. & M. J. Gibbons. 1991. Intertidal and shallow<br />

water hydroids from Fiji. 2. Plumulariidae and Aglaopheniidae.<br />

– Memoirs <strong>of</strong> <strong>the</strong> Queensland Museum 30:<br />

525–560.<br />

Sars, G. O. 1874. Bidrag til Kundskaben om Norges Hydroider.<br />

– Forhandelinger i Videnskabs-Selskabet i Kristiana<br />

1873: 91–150, pls 2–5.<br />

Sars, M. 1850. Beretning om en i sommeren 1849 foretagen<br />

zoologisk reise i L<strong>of</strong>oten og Finmarken. – Nyt Magazin<br />

for Naturvidenskaberne 9: 110–164.<br />

Schuchert, P. 1996. The marine fauna <strong>of</strong> New Zealand:<br />

P. SCHUCHERT<br />

a<strong>the</strong>cate hydroids and <strong>the</strong>ir medusae. – New Zealand<br />

Oceanographic Institute Memoir 106: 1–160.<br />

Schuchert, P. 1997. Review <strong>of</strong> <strong>the</strong> family Halopterididae<br />

(<strong>Hydrozoa</strong>, <strong>Cnidaria</strong>). – Zoologische Verhandelingen,<br />

Leiden 309: 1–162.<br />

Schuchert, P. 2001. The hydroids (<strong>Cnidaria</strong>, <strong>Hydrozoa</strong>) <strong>of</strong><br />

Greenland and Iceland. Meddelelser om Grønland, Bioscience<br />

53: 1–184.<br />

Splettstösser, W. 1929. Beiträge zur Kenntnis der Sertulariiden.<br />

Thyroscyphus Allm., Cnidoscyphus nov. gen.,<br />

Parascyphus Ritchie. – Zoologische Jahrbücher, Abteilung<br />

für Systematik, Oekologie und Geographie der<br />

Tiere 58: 1–134.<br />

Spoel, S. van der & J. Bleeker. 1988. Medusae from <strong>the</strong><br />

Banda Sea and Aru Sea plank<strong>to</strong>n, collected during <strong>the</strong><br />

Snellius II Expeditions, 1984-1985. – Indo-Malayan<br />

Zoology 5: 161–202.<br />

Stechow, E. 1909. Hydroidpolypen der japanischen Ostküste.<br />

I. Teil: A<strong>the</strong>cata und Plumularidae. In: F. D<strong>of</strong>lein,<br />

Beiträge zur Naturgeschichte Ostasiens. – Abhandlungen<br />

der Ma<strong>the</strong>matisch-Physikalische Klasse der Königlichen<br />

Bayerischen Akademie der Wissenschaften,<br />

Supplement Band 1: 1–111, pls 1–7.<br />

Stechow, E. 1913. Hydroidpolypen der japanischen Ostküste.<br />

II. Teil: Campanularidae, Halecidae, Lafoeidae,<br />

Campanulinidae und Sertularidae, nebst Ergänzungen<br />

zu den A<strong>the</strong>cata und Plumularidae. – In: F. D<strong>of</strong>lein,<br />

Beiträge zur Naturgeschichte Ostasiens. – Abhandlungen<br />

der Ma<strong>the</strong>matisch-Physkalische Klasse der Königlichen<br />

Bayerischen Akademie der Wissenschaften,<br />

Supplement Band 3: 1–162.<br />

Stechow, E. 1919. Zur Kenntnis der Hydroidenfauna des<br />

Mittelmeeres, Amerikas und anderer Gebiete, nebst Angaben<br />

über einige Kirchenpauer’sche Typen von Plumulariden.<br />

– Zoologische Jahrbücher, Abteilung Systematik,<br />

Oekologie und Geographie der Tiere 42: 1–172.<br />

Stechow, E. 1921. Ueber Hydroiden der Deutschen Tiefsee-<br />

Expedition, nebst Bemerkungen über einige andre<br />

Formen. – Zoologischer Anzeiger 53: 223–236.<br />

Stechow, E. 1922. Zur Systematik der Hydrozoen, Stroma<strong>to</strong>poren,<br />

Siphonophoren, Anthozoen und Ctenophoren.<br />

– Archiv für Naturgescheschichte 88: 141–155.<br />

Stechow, E. 1923. Neue Hydroiden der Deutschen Tiefsee-<br />

Expedition, nebst Bemerkungen über einige andre Formen.<br />

– Zoologischer Anzeiger 56: 1–20.<br />

Stechow, E. 1925. Hydroiden von West- und Südwestaustralien<br />

nach den Sammlungen von Pr<strong>of</strong>. Dr. Michaelsen<br />

und Pr<strong>of</strong>. Dr. Hartmeyer. – Zoologische Jahrbücher,<br />

Abteilung Systematik, Oekologie und Geographie der<br />

Tiere 50: 191–270.<br />

Stechow, E. 1932. Neue Hydroiden aus dem Mittelmeer und<br />

dem Pazifischen Ozean, nebst Bemerkungen über einige<br />

wenig bekannte Formen. – Zoologischer Anzeiger 100:<br />

81–92.<br />

Stechow, E. & H. C. Müller. 1923. Hydroiden von den Aru-<br />

Inseln. – Abhandlungen der Senckenbergischen naturforschenden<br />

Gesellschaft 35: 459–478.<br />

Studer, T. 1878. Uebersicht der Steinkorallen aus der Familie<br />

der Madreporina aporosa, Eupsammina, und Turbinaria,<br />

welche auf der Reise S.M.S. Gazelle um die Erde<br />

gesammelt wurden. – Monatsberichte der Königlich


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Preussschen Akademie der Wissenschaften zu Berlin<br />

1877: 625–654, 4 pls.<br />

Svoboda, A. & P. F. S. Cornelius 1991. The European and<br />

Mediterranean species <strong>of</strong> Aglaophenia (<strong>Cnidaria</strong>:<br />

<strong>Hydrozoa</strong>). – Zoologische Verhandelingen, Leiden 274:<br />

1–72.<br />

Thompson, D. A. W. 1887. The Hydroida <strong>of</strong> <strong>the</strong> Vega Expedition.<br />

– Vega Expeditionens Vetenskapliga Iakttagelser<br />

4: 387–400.<br />

Thornely, L. R. 1900. The Hydroid Zoophytes collected by<br />

Dr Willey in Sou<strong>the</strong>rn Seas. – In: Zoological results<br />

based on material from New Britain, New Guinea,<br />

Loyality Islands and elsewhere collected during <strong>the</strong> years<br />

1895-97 by A. Willey. Cambridge, pp. 451–458, pl. 44.<br />

Thornely, L. A. 1904. Report on <strong>the</strong> Hydroida collected by<br />

pr<strong>of</strong>essor Herdman, at Ceylon, in 1902. – Report <strong>to</strong> <strong>the</strong><br />

Government <strong>of</strong> Ceylon on <strong>the</strong> pearl oyster fisheries <strong>of</strong> <strong>the</strong><br />

Gulf <strong>of</strong> Manaar 2, suppl. Rep. no. 8: 107–126.<br />

Torrey, H. B. 1902. The Hydroida <strong>of</strong> <strong>the</strong> Pacific Coast <strong>of</strong><br />

North America. – University <strong>of</strong> California Publications<br />

Zoology 1: 1–104, pls 1–11.<br />

Tot<strong>to</strong>n, A. K. 1930. Coelenterata. Part V.- Hydroida. –<br />

British Antarctic (“Terra Nova”) Expedition, 1910,<br />

Natural His<strong>to</strong>ry Report, Zoology 5: 131–252, pls 1–3.<br />

Vannucci-Mendes, M. 1946. Hydroida Thecaphora do<br />

Brasil. – Arquivos de Zoologia do Estado de São Paulo 4:<br />

535–597, pls 1–7.<br />

Vannucci, M. 1949. <strong>Hydrozoa</strong> do Brasil. – Boletim da<br />

Faculdade de Filos<strong>of</strong>ia, Ciências da Universidade de São<br />

Paulo, Zoologia 14: 219–266.<br />

Versluys, J. J. 1899. Hydraires calyp<strong>to</strong>blastes recueillis dans<br />

la mer des Antilles, pendant l’une des croisières<br />

accomplies par le comte R. de Dalmas sur son yacht<br />

“CHAZALIE”. – Mémoires de la Societé Zoologique de<br />

France 12: 29–58.<br />

Vervoort, W. 1941. The Hydroida <strong>of</strong> <strong>the</strong> Snellius Expedition<br />

(Milleporidae and Stylasteridae excluded). Biological<br />

results <strong>of</strong> <strong>the</strong> Snellius Expedition XI. – Temminckia 6:<br />

186–240.<br />

Vervoort, W. 1959. The Hydroida <strong>of</strong> <strong>the</strong> tropical west coast<br />

<strong>of</strong> Africa. – Atlantide Report 5: 211–325.<br />

Vervoort, W. 1964. Note on <strong>the</strong> distribution <strong>of</strong> Garveia<br />

franciscana (Torrey) and Cordylophora caspia (Pallas,<br />

1771) in <strong>the</strong> Ne<strong>the</strong>rlands. – Zoologische Mededelingen,<br />

Leiden 39: 125–146.<br />

Vervoort, W. 1966. Bathyal and abyssal hydroids. –<br />

Gala<strong>the</strong>a Report 8: 97–173.<br />

Vervoort, W. 1967. The Hydroida and Chondrophora <strong>of</strong> <strong>the</strong><br />

Israel South Red Sea Expedition In: Israel South Red Sea<br />

Expedition Reports, No. 25. – Bulletin <strong>of</strong> <strong>the</strong> Sea<br />

Fisheries Research Station <strong>of</strong> Israel 43: 18–54.<br />

Vervoort, W. 1968. Report on a collection <strong>of</strong> Hydroida from<br />

<strong>the</strong> Caribbean region, including an annotated checklist <strong>of</strong><br />

Caribbean hydroids. – Zoologische Verhandelingen,<br />

Leiden 92: 1–124.<br />

Vervoort, W. 1993. <strong>Cnidaria</strong>, <strong>Hydrozoa</strong>, Hydroida:<br />

<strong>Hydroids</strong> from <strong>the</strong> Western Pacific (Philippines,<br />

Indonesia and New Caledonia. 1: Sertulariidae (Part 1). –<br />

Mémoires du Muséum national d’His<strong>to</strong>ire Naturelle de<br />

Paris 158: 89–298.<br />

Vervoort, W., & P. Vasseur. 1977. <strong>Hydroids</strong> from French<br />

253<br />

Polynesia with notes on distribution and ecology. –<br />

Zoologische Verhandelingen, Leiden 159: 3–98.<br />

Warren, E. 1908. On a collection <strong>of</strong> hydroids, mostly from<br />

<strong>the</strong> Natal coast. – Annales <strong>of</strong> <strong>the</strong> Natal Museum 1: 269–<br />

355.<br />

Watson, J. E. 1973. <strong>Hydroids</strong>. In: Pearson Island Expedition<br />

9. – Transactions <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> South Australia<br />

97: 153–200.<br />

Watson, J. E. 1985. The genus Eudendrium (<strong>Hydrozoa</strong>:<br />

Hydroida) from Australia. – Proceedings <strong>of</strong> <strong>the</strong> Royal<br />

Society <strong>of</strong> Vic<strong>to</strong>ria 97: 179–221.<br />

Watson, J. E. 1993. Two new species <strong>of</strong> Haleciidae<br />

(<strong>Hydrozoa</strong>: Hydroida) from sou<strong>the</strong>rn Australia. –<br />

Proceedings <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> Vic<strong>to</strong>ria 105: 81–84.<br />

Watson, J. E. 1994. New records and redescriptions <strong>of</strong><br />

<strong>the</strong>cate hydroids from sou<strong>the</strong>rn Australia. – Proceedings<br />

<strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> Vic<strong>to</strong>ria 106: 147–162.<br />

Watson, J. E. 1997. The hydroid fauna <strong>of</strong> <strong>the</strong> Houtman<br />

Abrolhos Islands, Western Australia. – Pp. 503–546 in F.<br />

E. Wells (ed): Proceedings <strong>of</strong> <strong>the</strong> Seventh International<br />

Marine Biological Workshop: The Marine Flora and<br />

Fauna <strong>of</strong> <strong>the</strong> Houtman Abrolhos Islands, Western<br />

Australia. Western Australian Museum, Perth.<br />

Watson, J. E. 1999. <strong>Hydroids</strong> (<strong>Hydrozoa</strong>: Anthoa<strong>the</strong>cata)<br />

from <strong>the</strong> Beagle Gulf and Darwin Harbour, Nor<strong>the</strong>rn<br />

Australia. – The Beagle, Records <strong>of</strong> <strong>the</strong> Museums and<br />

Art Galleries <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Terri<strong>to</strong>ry 15: 1–21.<br />

Watson, J. E. 2000. <strong>Hydroids</strong> (<strong>Hydrozoa</strong>: Lep<strong>to</strong><strong>the</strong>catae)<br />

from <strong>the</strong> Beagle Gulf and Darwin Harbour, nor<strong>the</strong>rn<br />

Australia. – The Beagle, Records <strong>of</strong> <strong>the</strong> Museums and<br />

Art Galleries <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Terri<strong>to</strong>ry 16: 1–82.<br />

Weisman, A. 1883. Die Entstehung der Sexualzelllen bei<br />

den Hydromedusen. Zugleich ein Beitrag zur Kenntnis<br />

des Baues und der Lebensgeschichte dieser Gruppe.<br />

Gustav Fischer, Jena, 295 pp.<br />

Weltner, W. 1900. Hydroiden von Amboina und Thursday<br />

Islands. – Denkschriften der medizinisch naturwissenschaftlichen<br />

Gesellschaft von Jena 8: 583–590, pl. 46.<br />

Werner, B. 1968. Polypengeneration und Entwicklungsgeschichte<br />

von Eucheilota maculata (Thecata-Lep<strong>to</strong>medusae).<br />

– Helgoländer wissenschaftliche Meeresuntersuchungen<br />

18: 136–168.<br />

Wheeler, Q. D. & R. Meier. 2000. Species Concepts and<br />

Phylogenetic Theory: A Debate. Columbia University<br />

Press, New York. 230 pp.<br />

Whitelegge, T. 1899. The <strong>Hydrozoa</strong>, Scyphozoa, Actinozoa,<br />

and Vermes <strong>of</strong> Funafuti. – In: The a<strong>to</strong>ll <strong>of</strong> Funafuti, Elliot<br />

Group; its zoology, botany, ethnology, and general<br />

structure based on collections made by Mr. Charles<br />

Hedley <strong>of</strong> <strong>the</strong> Australian Museum, Sydney, N.S.W. –<br />

Memoirs <strong>of</strong> <strong>the</strong> Australian Museum 3: 371–394, pls 23–<br />

27.<br />

Wright, T. S. 1859. Observations on British zoophytes. –<br />

Edinburgh New Philosophical Journal 10: 105–114, pls<br />

8–9.<br />

Submitted 5.ii.2002; accepted 5.xi.2002


254<br />

P. SCHUCHERT<br />

Appendix 1<br />

Station data <strong>of</strong> <strong>the</strong> Kei Island Expedition, after Mortensen (1923); only those stations which yielded identifiable hydroids are<br />

included. Data given as follows: station number; locality; decimal coordinates (if available); depth; collection date; bot<strong>to</strong>m<br />

type. Mortensen (1923) provides more details and also maps.<br />

1. Kei Islands; 5.57°S, 132.83°E; 370 m; 30 Mar 1922; mud<br />

3. Kei Islands; 5.53°S, 132.6°E; 245 m; 31 Mar 1922; sand<br />

4. Kei Islands; 5.53°S, 132.63°E; 250 m; 3 May 1922; sand<br />

7. Kei Islands; 5.64°S, 132.43°E; 196 m; 5 Apr 1922; sandy<br />

mud, small s<strong>to</strong>nes<br />

11. Kei Islands, <strong>of</strong>f Tual; 20 m; 9 Apr 1922; sand, shells,<br />

corals<br />

12. Kei Islands; 5.5°S, 132.58°E; 320 m; 9 Apr 1922; sand,<br />

shells, coral<br />

14. Kei Islands, south <strong>of</strong> Doe Roa; 40 m; 10 Apr 1922; sand<br />

15. Kei Islands, South <strong>of</strong> Doe Roa; 5 m; 10 Apr 1922; sand<br />

16. Kei Islands; 5.54°S, 132.62°E; 50 m; 12 Apr 1922; sand,<br />

Lithothamnion<br />

18. Kei Islands, Doe Roa Strait; 40 m; 12 Apr 1922; sand,<br />

corals<br />

19. Kei Islands <strong>of</strong>f Tual; 20 m; 14 Apr 1922; sand<br />

20. Kei Islands, Doe Roe Bassin; 50 m; 14 Apr 1922; sand<br />

21. Kei Islands; 5.5°S, 132.78°E; 50 m; 14 Apr 1922; hard<br />

bot<strong>to</strong>m, corals<br />

24. Kei Islands; 5.62°S, 132.93°E; 100 m; 15 Apr 1922; hard<br />

bot<strong>to</strong>m<br />

26. Kei Islands; 5.63°S, 132.92°E; 20 m; 16 Apr 1922; sand<br />

27. Kei Islands, 2 miles N <strong>of</strong> Elat; 60 m; 17 Apr 1922; fine<br />

sand<br />

30. Kei Islands, between Doe Roa and Kei Doelah; 40 m; 18<br />

Apr 1922; sand, shells<br />

31. Kei Islands, Doe Roe Bassin; 50 m; 18 Apr 1922; sand<br />

33. Kei Islands; 5.517°S, 132.567°E; 285 m; 22 Apr 1922;<br />

sand<br />

36. Kei Islands, bay North <strong>of</strong> Noehoe-Roa; 35 m; 23 Apr<br />

1922; sand<br />

37. Kei Islands, Doe Roa Strait; 40 m; 23 Apr 1922; sand<br />

40. Kei Islands, North <strong>of</strong> Doe Roa; 20 m; 25 Apr 1922; sand<br />

42. Kei Islands; 5.58°S, 132.48°E; 225 m; 26 Apr 1922; mud<br />

43. Kei Islands; 5.5°S, 132.75°E; 35 m; 7 Apr 1922; sand,<br />

coral<br />

45. Kei Islands; 5.81°S, 132.23°E; 270 m; 1 May 1922; sand<br />

46. Kei Islands; 5.79°S, 132.43°E; 250 m; 2 May 1922; clay,<br />

mud<br />

48. Kei Islands; 5.67°S, 132.35°E; 263 m; 3 May 1922;<br />

sandy mud<br />

52. Kei Islands; 5.77°S, 132.83°E; 352 m; 7 May 1922; mud<br />

53. Kei Islands; 5.6°S, 132.92°E; 85 m; 9 May 1922; sand<br />

54. Kei Islands; 5.57°S, 132.92°E; 85 m; 9 May 1922; sand<br />

57. Kei Islands; 5.53°S, 132.82°E; 200 m; 10 May 1922;<br />

shells<br />

58. Kei Islands; 5.48°S, 132.74°E; 290 m; 12 May 1922;<br />

mud<br />

60. Kei Islands, South <strong>of</strong> Doe Roa; 25 m; 14 May 1922;<br />

gravel, shells, lithothamnion<br />

61. Kei Islands, between Doe Roa and Kei Doelah; 50 m; 15<br />

May 1922; Bryozoans<br />

63. Kei Islands; 5.53°S, 132.61°E; 250 m; 16 May 1922;<br />

sand<br />

64. Sunda Strait; 5.85°S, 106.37°E; 35 m; 26 Jul 1922; sandy<br />

mud, shells<br />

65. Sunda Strait; 5.87°S, 106.28°E; 25 m; 27 Jul 1922; sand<br />

66. Sunda Strait; 5.9°S, 106.2°E; 24 m; 27 Jul 1922; sandy<br />

mud, shells<br />

67. Sunda Strait; 5.8°S, 106.2°E; 38 m; 27 Jul 1922; sand<br />

68. Sunda Strait; 5.78°S, 106.28°E; 50 m; 27 Jul 1922;<br />

s<strong>to</strong>nes<br />

69. Sunda Strait; 5.78°S, 106.28°E; 50 m; 27 Jul 1922; sand<br />

70. Kei Islands; 5.67°S, 106.35°E; 35 m; 28 Aug 1922; mud,<br />

shells<br />

71. Sunda Strait; 5.67°S, 106.13°E; 54 m; 28 Jul 1922; sand,<br />

s<strong>to</strong>nes<br />

72. Sunda Strait; 5.68°S, 105.95°E; 35 m; 28 Jul 1922;<br />

s<strong>to</strong>nes<br />

73. Sunda Strait; 5.95°S, 105.95°E; 30 m; 28 Jul 1922; sand,<br />

shells<br />

74. Sunda Strait; 6.05°S, 105.9°E; 30 m; 29 Jul 1922; mud<br />

81. Sunda Strait; 6.62°S, 105.45°E; 49 m; 29 Jul 1922; mud<br />

83. Sunda Strait; 6.7°S, 105.57°E; 42 m; 30 Jul 1922; sandy<br />

mud<br />

85. Sunda Strait; 5.88°S, 105.52°E; 25 m; 31 Jul 1922; sandy<br />

mud, pumice<br />

86. Sunda Strait; 5.9°S, 105.617°E; 31 m; 31 Jul 1922; mud,<br />

pumice<br />

90. Sunda Strait; 5.92°S, 105.5°E; 36 m; 1 Aug 1922; hard<br />

bot<strong>to</strong>m<br />

91. Sunda Strait; 5.88°S, 105.45°E; 42 m; 1 Aug 1922; mud<br />

95. Sunda Strait; 5.73°S, 105.33°E; 25 m; 1 Aug 1922; mud<br />

96. Sunda Strait; 5.7°S, 105.28°E; 29 m; 1 Aug 1922; mud<br />

102. Krako<strong>to</strong>a; 6.15°S, 105.47°E; 75 m; 3 Aug 1922; mud,<br />

pumice<br />

103. Sunda Strait; 6.08°S, 105.7°E; 52 m; 4 Aug 1922; sand,<br />

shells<br />

104. Sunda Strait; 5.87°S, 106.07°E; 38 m; 4 Aug 1922;<br />

s<strong>to</strong>nes<br />

105. Sunda Strait; 5.93°S, 106.12°E; 13 m; 5 Aug 1922; mud<br />

106. Sunda Strait; 5.83°S, 106.27°E; 32 m; 5 Aug 1922; sand<br />

107. Sunda Strait; 5.78°S, 106.12°E; 49 m; 5 Aug 1922;<br />

sand, s<strong>to</strong>nes<br />

110. Sunda Strait; 5.42°S, 105.88°E; 12 m; 5 Aug 1922;<br />

sandy mud<br />

111. Sunda Strait; 5.47°S, 106.05°E; 22 m; 6 Aug 1922;<br />

sandy mud<br />

112. Sunda Strait; 5.6°S, 106.22°E; 52 m; 6 Aug 1922; mud<br />

114. Sunda Strait; 5.85°S, 106.45°E; 60 m; 7 Aug 1922; mud<br />

116. Sunda Strait; 5.95°S, 106.57°E; 22 m; 7 Aug 1922;<br />

sand, shells<br />

117. Sunda Strait; 5.85°S, 106.45°E; 60 m; 7 Aug 1922; mud<br />

118. Sunda Strait; 5.9°S, 106.67°E; 27 m; 7 Aug 1922; sand,<br />

shells


HYDROIDS OF THE DANISH EXPEDITION TO THE KEI ISLANDS<br />

Appendix 2<br />

List <strong>of</strong> marine hydoids recorded in Indonesian waters. The list is not necessarily complete. The numerous Stylasteridae are not<br />

included. For this taxon, see Boschma (1953, 1957), Cairns (1983), and Cairns & Hoeksema (1998).<br />

Some nominal species listed here are problematic and <strong>the</strong>ir inclusion does not mean that <strong>the</strong>y are valid records or species.<br />

Species encountered in <strong>the</strong> collection <strong>of</strong> <strong>the</strong> Kei Island Expedi<strong>to</strong>n and described and discussed in this study are marked by a<br />

*. For <strong>the</strong> o<strong>the</strong>r species, one suitable reference is given, although <strong>the</strong> species may have been recorded by o<strong>the</strong>r authors <strong>to</strong>o.<br />

Family Hydractiniidae<br />

Hydractinia granulata * new record<br />

Family Tubidendridae<br />

Balella mirabilis * new record<br />

Family Cordylophoridae<br />

Turri<strong>to</strong>psis nutricula this study<br />

Corydendrium corrugatum * new record<br />

Corydendrium parasiticum Vervoort 1941<br />

Family Bougainvilliidae<br />

Bougainvillia muscus Pictet 1893<br />

Garveia clevelandensis new record<br />

Family Eudendriidae<br />

Eudendrium capillare Vervoort 1941<br />

Eudendrium kirkpatricki * new record<br />

Eudendrium ramosum Stechow & Müller 1923<br />

Myrionema amboinense Pictet 1893<br />

Family Sphaerocorynidae<br />

Sphaerocoryne bedoti Pictet 1893<br />

Family Cladocorynidae<br />

Cladocoryne haddoni * new record<br />

Pteroclava crassa Pictet 1893<br />

Family Pennariidae<br />

Pennaria disticha *<br />

Family Solanderiidae<br />

Solanderia secunda * new record<br />

Family Tubulariidae<br />

Ralpharia neira Petersen 1990<br />

Ec<strong>to</strong>pleura viridis * this study<br />

Family Campanulinidae<br />

Campanulina maduraensis Billard 1940b<br />

Campanulina panicula * new record<br />

Campanulina paucilaminosa Billard 1940b<br />

Egmundella sibogae Billard 1940a<br />

Modeeria rotunda Vervoort 1941<br />

Family Haleciidae<br />

Halecium dyssymmetrum Billard 1929b<br />

Halecium humile this study<br />

Halecium halecinum var. minor this study<br />

Halecium scalariformis Billard 1929b<br />

Halecium sessile Vervoort 1941<br />

Halecium sibogae Billard 1929b<br />

Hydrodendron dicho<strong>to</strong>mum Billard 1929a<br />

Halecium spatulum Watson 2000<br />

255<br />

Hydrodendron sibogae *<br />

Mitrocomium simplex this study<br />

Family Hebellidae<br />

Hebella con<strong>to</strong>rta Campenhausen 1896b<br />

Hebella corrugata Stechow & Müller 1923<br />

Hebella costata Stechow & Müller 1923<br />

Hebella dyssymetra Billard 1942b<br />

Hebella hartmeyeri Stechow & Müller 1923<br />

Hebella lata Pictet 1893<br />

Hebella laterocaudata Billard 1942b<br />

Hebella scandens Weltner 1900<br />

Hebella cylindrica Pictet 1893<br />

Family Lafoeidae<br />

Acryp<strong>to</strong>laria rectangularis * new record<br />

Acryp<strong>to</strong>laria angulata * new record<br />

Acryp<strong>to</strong>laria conferta *<br />

Cryp<strong>to</strong>larella abyssicola Campenhausen 1896b<br />

Lafoea dumosa * new record<br />

Zygophylax bifurcata Billard 1942a<br />

Zygophylax bifurcata *<br />

Zygophylax pinnata Campenhausen 1896b<br />

Zygophylax rufa * new record<br />

Zygophylax sibogae *<br />

Family Campanulariidae<br />

Clytia arborescens this study<br />

Clytia gracilis this study<br />

Campanularia raridenta Stechow & Müller 1923<br />

Clytia linearis *<br />

Clytia noliformis Pictet 1893<br />

Clytia sibogae Billard 1917<br />

Clytia trigona this study<br />

Obelia bidentata *<br />

Obelia geniculata Pictet 1893<br />

Family Sertulariidae<br />

Caminothujaria molukkana *<br />

Diphasia cauloa<strong>the</strong>ca Billard 1925b<br />

Diphasia cristata Billard 1925b<br />

Diphasia densa Stechow & Müller 1923<br />

Diphasia digitalis *<br />

Diphasia minuta Billard 1925b<br />

Diphasia mutulata *<br />

Diphasia orientalis Billard 1925b<br />

Diphasia scalariformis *<br />

Diphasia thornelyi Billard 1925b<br />

Dynamena crisioides *<br />

Dynamena fissa Billard 1925b<br />

Dynamena heterodonta Billard 1925b<br />

Dynamena mer<strong>to</strong>ni Stechow & Müller 1923<br />

Dynamena moluccana *<br />

Dynamena quadridenta Billard 1925b


256<br />

Geminella ceramensis *<br />

Hincksella cylindrica Billard 1925b<br />

Hincksella sibogae Billard 1925b<br />

Idiellana pristis *<br />

Salacia hexodon *<br />

Salacia punctagonangia * new record<br />

Salacia sibogae *<br />

Salacia sinuosa *<br />

Salacia tetracythara *<br />

Sertularella acutidentata Billard 1925b<br />

Sertularella catena Billard 1925b<br />

Sertularella crassa Billard 1925b<br />

Sertularella decipiens *<br />

Sertularella diaphana *<br />

Sertularella parva Billard 1925b<br />

Sertularella inconstans Billard 1925b<br />

Sertularella intricata Billard 1925b<br />

Sertularella keiensis Billard 1925b<br />

Sertularella minuscula Billard 1925b<br />

Sertularella quadridens *<br />

Sertularella robusta Billard 1925b<br />

Sertularia borneensis *<br />

Sertularia elongata Stechow & Müller 1923<br />

Sertularia loculosa *<br />

Sertularia malayensis *<br />

Sertularia trigonos<strong>to</strong>ma *<br />

Sertularia turbinata *<br />

Symplec<strong>to</strong>scyphus clarkii Campenhausen 1896b<br />

Symplec<strong>to</strong>scyphus macrocarpa *<br />

Symplec<strong>to</strong>scyphus pedunculatus Billard 1925b<br />

Symplec<strong>to</strong>scyphus sibogae Billard 1925b<br />

Symplec<strong>to</strong>scyphus tropicus Billard 1925b<br />

Thuiaria abyssicola Billard 1925b<br />

Thuiaria articulata Stechow & Müller 1923<br />

Family Thyroscyphidae<br />

Thyroscyphus bedoti this study<br />

Thyroscyphus fruticosus *<br />

Thyroscyphus sibogae *<br />

Thyroscyphus <strong>to</strong>rresii *<br />

Family Syn<strong>the</strong>ciidae<br />

Syn<strong>the</strong>cium flabellum * new record<br />

Syn<strong>the</strong>cium elegans Billard 1925b<br />

Syn<strong>the</strong>cium mega<strong>the</strong>cum Billard 1925b<br />

Syn<strong>the</strong>cium dentigerum Billard 1925b<br />

Syn<strong>the</strong>cium orthogonium *<br />

Syn<strong>the</strong>cium campylocarpum *<br />

Syn<strong>the</strong>cium samauense *<br />

Family Halopterididae<br />

Antennella campanulaformis * new record<br />

Antennella secundaria *<br />

Antennella sibogae Billard 1913<br />

Antennella varians Billard 1913<br />

Halopteris alternata Billard 1913<br />

Halopteris campanula Billard 1913<br />

Halopteris concava Billard 1913<br />

Halopteris crassa Billard 1913<br />

Halopteris diaphragmata Billard 1913<br />

P. SCHUCHERT<br />

Halopteris jedani Billard 1913<br />

Halopteris peculiaris Billard 1913<br />

Halopteris plagiocampa *<br />

Halopteris polymorpha Billard 1913<br />

Monostaechas simplex Billard 1913<br />

Monostaechas sibogae Billard 1913<br />

Family Plumulariidae<br />

Nemertesia indivisa *<br />

Nemertesia ramosa Billard 1913<br />

Nemertesia singularis Vervoort 1941<br />

Plumularia badia *<br />

Plumularia campanuloides Billard 1913<br />

Plumularia crater Billard 1913<br />

Plumularia habereri *<br />

Plumularia insignis Billard 1913<br />

Plumularia orientalis Billard 1913<br />

Plumularia scabra *<br />

Plumularia setacea Billard 1913<br />

Plumularia spiralis Billard 1913<br />

Plumularia stric<strong>to</strong>carpa Pictet 1893<br />

Plumularia strobilophora Billard 1913<br />

Plumularia stylifera Stechow & Müller 1923<br />

Polyplumaria cornuta *<br />

Polyplumaria kossowskae Billard 1913<br />

Polyplumaria sibogae Billard 1913<br />

Polyplumularia bedoti Billard 1913<br />

Sibogella erecta *<br />

Family Kirchenpaueriidae<br />

Kirchenpaueria halecioides Pictet 1893<br />

Kirchenpaueria ventruosa Billard 1913<br />

Family Aglaopheniidae<br />

Aglaophenia cupressina *<br />

Aglaophenia laxa Billard 1913<br />

Aglaophenia postdentata Billard 1913<br />

Aglaophenia sibogae *<br />

Cladocarpus keiensis* new species<br />

Cladocarpus multiapertus Billard 1913<br />

Cladocarpus siboga Billard 1913<br />

Gymnangium allmani Billard 1913<br />

Gymnangium gracilicaule *<br />

Gymnangium haswellii Billard 1913<br />

Gymnangium hians Billard 1913<br />

Gymnangium longicorne *<br />

Ly<strong>to</strong>carpia angulosa *<br />

Ly<strong>to</strong>carpia brevirostris Billard 1913<br />

Ly<strong>to</strong>carpia delicatula *<br />

Ly<strong>to</strong>carpia furcata Vervoort 1941<br />

Ly<strong>to</strong>carpia orientalis *<br />

Ly<strong>to</strong>carpia perarmata *<br />

Ly<strong>to</strong>carpia phyteuma *<br />

Macrorhynchia balei *<br />

Macrorhynchia philippina *<br />

Macrorhynchia phoenicea *<br />

Macrorhynchia sibogae Billard 1913<br />

Macrorhynchia singularis *<br />

Monoserius pennarius *

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!