19.06.2013 Views

Zootaxa, Taxonomy of Serpulidae (Annelida ... - Magnolia Press

Zootaxa, Taxonomy of Serpulidae (Annelida ... - Magnolia Press

Zootaxa, Taxonomy of Serpulidae (Annelida ... - Magnolia Press

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ZOOTAXA<br />

2036<br />

<strong>Taxonomy</strong> <strong>of</strong> <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta):<br />

The state <strong>of</strong> affairs<br />

HARRY A. TEN HOVE & ELENA K. KUPRIYANOVA<br />

<strong>Magnolia</strong> <strong>Press</strong><br />

Auckland, New Zealand


Harry A. ten Hove & Elena K. Kupriyanova<br />

<strong>Taxonomy</strong> <strong>of</strong> <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta): The state <strong>of</strong> affairs<br />

(<strong>Zootaxa</strong> 2036)<br />

126 pp.; 30 cm.<br />

16 March 2009<br />

ISBN 978-1-86977-327-4 (paperback)<br />

ISBN 978-1-86977-328-1 (Online edition)<br />

FIRST PUBLISHED IN 2009 BY<br />

<strong>Magnolia</strong> <strong>Press</strong><br />

P.O. Box 41-383<br />

Auckland 1346<br />

New Zealand<br />

e-mail: zootaxa@mapress.com<br />

http://www.mapress.com/zootaxa/<br />

© 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

All rights reserved.<br />

No part <strong>of</strong> this publication may be reproduced, stored, transmitted or disseminated, in any form, or by<br />

any means, without prior written permission from the publisher, to whom all requests to reproduce<br />

copyright material should be directed in writing.<br />

This authorization does not extend to any other kind <strong>of</strong> copying, by any means, in any form, and for any purpose<br />

other than private research use.<br />

ISSN 1175-5326 (Print edition)<br />

ISSN 1175-5334 (Online edition)<br />

2 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


<strong>Zootaxa</strong> 2036: 1–126 (2009)<br />

www.mapress.com/zootaxa/<br />

Copyright © 2009 · <strong>Magnolia</strong> <strong>Press</strong><br />

<strong>Taxonomy</strong> <strong>of</strong> <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta): The state <strong>of</strong> affairs<br />

HARRY A. TEN HOVE 1 & ELENA K. KUPRIYANOVA 2<br />

1Zoological Museum, University <strong>of</strong> Amsterdam POB 94766, 1090 GT Amsterdam, The Netherlands<br />

E-mail: H.A.tenHove@uva.nl<br />

2 1<br />

Earth and Environmental Sciences, University <strong>of</strong> Adelaide SA 5005 Adelaide Australia<br />

E-mail: lena.kupriyanova@gmail.com, elenak@ynu.ac.jp<br />

Table <strong>of</strong> contents<br />

ISSN 1175-5326 (print edition)<br />

ZOOTAXA<br />

ISSN 1175-5334 (online edition)<br />

Abstract ............................................................................................................................................................................... 4<br />

Introduction ......................................................................................................................................................................... 5<br />

Material and methods.......................................................................................................................................................... 6<br />

Morphology.......................................................................................................................................................................... 7<br />

The tube ........................................................................................................................................................................ 7<br />

The general morphology <strong>of</strong> the body ......................................................................................................................... 11<br />

The branchial crown................................................................................................................................................... 11<br />

The operculum ........................................................................................................................................................... 14<br />

The opercular peduncle.............................................................................................................................................. 16<br />

The collar and the thoracic membranes ..................................................................................................................... 22<br />

The thorax .................................................................................................................................................................. 23<br />

The abdomen.............................................................................................................................................................. 25<br />

Valid genera with diagnoses and lists <strong>of</strong> species............................................................................................................... 27<br />

Apomatus Philippi, 1844 ............................................................................................................................................ 27<br />

Bathyditrupa Kupriyanova, 1993b ............................................................................................................................. 29<br />

Bathyvermilia Zibrowius, 1973a ................................................................................................................................ 29<br />

Chitinopoma Levinsen, 1884 ..................................................................................................................................... 32<br />

Chitinopomoides Benham, 1927 ................................................................................................................................ 32<br />

Crucigera Benedict, 1887 .......................................................................................................................................... 36<br />

Dasynema Saint-Joseph, 1894 ................................................................................................................................... 36<br />

Ditrupa Berkeley, 1835 .............................................................................................................................................. 39<br />

Ficopomatus Southern, 1921 ..................................................................................................................................... 41<br />

Filograna Berkeley, 1835 .......................................................................................................................................... 42<br />

Filogranella Ben-Eliahu & Dafni, 1979 .................................................................................................................... 44<br />

Filogranula Langerhans, 1884 ................................................................................................................................... 44<br />

Floriprotis Uchida, 1978 ............................................................................................................................................ 45<br />

Galeolaria Lamarck, 1818 ......................................................................................................................................... 49<br />

Hyalopomatus Marenzeller, 1878 .............................................................................................................................. 50<br />

Hydroides Gunnerus, 1768 ......................................................................................................................................... 52<br />

Janita Saint-Joseph, 1894 .......................................................................................................................................... 55<br />

Josephella Caullery & Mesnil, 1896.......................................................................................................................... 57<br />

Laminatubus ten Hove & Zibrowius, 1986................................................................................................................ 59<br />

Marifugia Absolon & Hrabĕ, 1930 ............................................................................................................................ 59<br />

1. Faculty <strong>of</strong> Education and Human Sciences, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan<br />

Accepted by P. Hutchings: 19 Dec. 2008; published: 16 Mar. 2009 3


Membranopsis Bush, 1910......................................................................................................................................... 62<br />

Metavermilia Bush, 1905 ........................................................................................................................................... 62<br />

Microprotula Uchida, 1978........................................................................................................................................ 64<br />

Neomicrorbis Rovereto, 1904 .................................................................................................................................... 64<br />

Neovermilia Day, 1961 ............................................................................................................................................... 66<br />

Nogrobs de Montfort, 1808........................................................................................................................................ 68<br />

Omphalopomopsis Saint-Joseph, 1894 ...................................................................................................................... 69<br />

Paraprotis Uchida, 1978 ............................................................................................................................................ 70<br />

Paumotella Chamberlin, 1919 ................................................................................................................................... 71<br />

Placostegus Philippi, 1844 ......................................................................................................................................... 74<br />

Pomatoceros Philippi, 1844 ....................................................................................................................................... 75<br />

Pomatoleios Pixell, 1913 ........................................................................................................................................... 77<br />

Pomatostegus Schmarda, 1861 .................................................................................................................................. 78<br />

Protis Ehlers, 1887 ..................................................................................................................................................... 78<br />

Protula Risso, 1826.................................................................................................................................................... 81<br />

Pseudochitinopoma Zibrowius, 1969a ....................................................................................................................... 83<br />

Pseudovermilia Bush, 1907 ....................................................................................................................................... 85<br />

Pyrgopolon de Montfort, 1808 ................................................................................................................................... 86<br />

Rhodopsis Bush, 1905 ................................................................................................................................................ 88<br />

Salmacina Claparède, 1870........................................................................................................................................ 89<br />

Semivermilia ten Hove, 1975 ..................................................................................................................................... 91<br />

Serpula Linnaeus, 1758 .............................................................................................................................................. 93<br />

Spiraserpula Regenhardt, 1961 ................................................................................................................................. 95<br />

Spirobranchus de Blainville, 1818............................................................................................................................. 96<br />

Tanturia Ben-Eliahu, 1976......................................................................................................................................... 98<br />

Vermiliopsis Saint-Joseph, 1894 .............................................................................................................................. 100<br />

Vitreotubus Zibrowius, 1979b ................................................................................................................................... 103<br />

Invalid genera (as Serpulid) ............................................................................................................................................ 105<br />

Key to serpulid genera (described before 2008) ............................................................................................................. 107<br />

Acknowledgements ......................................................................................................................................................... 109<br />

Glossary ........................................................................................................................................................................... 110<br />

References ....................................................................................................................................................................... 113<br />

Abstract<br />

The <strong>Serpulidae</strong> are a large group <strong>of</strong> sedentary polychaetes inhabiting calcareous tubes. The relationships within the group<br />

are poorly understood and taxonomy <strong>of</strong> the group is very confused which is a major obstacle to accessing their<br />

phylogeny. This review provides up-to-date information on the current state <strong>of</strong> taxonomy <strong>of</strong> <strong>Serpulidae</strong> sensu lato (not<br />

including Spirorbinae). The morphology <strong>of</strong> the group is reviewed with special reference to the features that can provide<br />

characters for future phylogenetic analyses. Scanning electron micrographs illustrate the structure <strong>of</strong> the chaetae and<br />

uncini. The list <strong>of</strong> 46—in our opinion valid—genera is accompanied by detailed generic diagnoses, species composition<br />

and distribution (checklist), and remarks on major taxonomic literature. A taxonomic key to the genera and a list <strong>of</strong><br />

invalid genera with synonymy is also provided.<br />

Key words: <strong>Annelida</strong>, Polychaeta, <strong>Serpulidae</strong>, taxonomy, morphology, SEM ultrastructure <strong>of</strong> chaetae and uncini<br />

4 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Introduction<br />

The family <strong>Serpulidae</strong> is a discrete group <strong>of</strong> sedentary calcareous tubeworms within the large clade Sabellida,<br />

which shares a presence <strong>of</strong> radiolar crown and separation <strong>of</strong> the body into thoracic and abdominal regions, as<br />

divergence from the usually rather uniformly segmented motile polychaete form. The views on the<br />

relationships within <strong>Serpulidae</strong> have undergone many changes over the years (see Kupriyanova et al. 2006 for<br />

the details). The <strong>Serpulidae</strong> Rafinesque, 1815 had been traditionally divided into subfamilies Serpulinae<br />

Rafinesque, 1815 (although probably in most papers attributed to MacLeay, 1840) and Spirorbinae<br />

Chamberlin, 1919 until Rioja (1923) established the subfamily Filograninae. Pillai (1960) included 5<br />

brackish-water serpulid genera in the subfamily Ficopomatinae but ten Hove & Weerdenburg (1978) revised<br />

the group and placed all its genera in the genus Ficopomatus. Uchida (1978) created 11 sub-families and<br />

numerous new genera, but his scheme, strongly criticized by ten Hove (1984) has not been accepted widely.<br />

Pillai (1970) elevated Spirorbinae to the family Spirorbidae, but later a number <strong>of</strong> authors suggested that<br />

Spirorbidae are more closely related to Serpulinae than to Filograninae (ten Hove 1984, Fitzhugh 1989, Smith<br />

1991, Rouse & Fitzhugh 1994) and that the maintenance <strong>of</strong> the family Spirorbidae is not justified. Recent<br />

phylogenetic analyses confirmed the position <strong>of</strong> Spirorbinae as a subfamily <strong>of</strong> <strong>Serpulidae</strong> (Kupriyanova 2003,<br />

Kupriyanova et al. 2006, Lehrke et al. 2007, Kupriyanova & Rouse 2008). Ten Hove (1984) regarded the<br />

Filograninae as paraphyletic and a morphology-based cladistic analysis <strong>of</strong> some <strong>Serpulidae</strong> (Kupriyanova<br />

2003) supported his conclusions. Moreover, the most recent phylogenetic analyses <strong>of</strong> <strong>Serpulidae</strong> using 18S<br />

ribosomal DNA (Lehrke et al. 2007) and another using combined molecular and morphological data<br />

(Kupriyanova et al. 2006) suggested that both traditionally formulated sub-families Serpulinae and<br />

Filograninae are not monophyletic. Kupriyanova et al. (2006) refrained from revising the serpulid<br />

classification and suggested that a major revision <strong>of</strong> serpulid taxonomy is needed based on more genera than<br />

used in their study.<br />

The major obstacle to a comprehensive phylogenetic analysis <strong>of</strong> the <strong>Serpulidae</strong> remains the state <strong>of</strong> its<br />

alpha taxonomy. It is almost proverbial to say that serpulid taxonomy is very confused and most currently<br />

recognized serpulid genera have long and convoluted taxonomic histories. Within <strong>Serpulidae</strong>, specific<br />

identification has traditionally been based on a combination <strong>of</strong> characters such as morphology <strong>of</strong> the<br />

operculum and opercular peduncle (if present), degree <strong>of</strong> development <strong>of</strong> the collar and thoracic membranes,<br />

structure <strong>of</strong> collar chaetae and tube and, to a lesser degree, structure <strong>of</strong> chaetae and uncini. Serpulid genera<br />

have been described on the basis <strong>of</strong> unique characters or on unique combinations <strong>of</strong> characters (even on<br />

absence <strong>of</strong> characters) rather than on presence <strong>of</strong> shared derived characters. Although traditionally only few<br />

characters have been used in serpulid taxonomy, variability <strong>of</strong> these characters remains largely unstudied.<br />

There have been very few reviews <strong>of</strong> serpulid taxonomy. The very first revision (Mörch 1863) was<br />

followed by early reviews by Saint-Joseph (1894), Bush (1905), and Pixell (1912, 1913). Chamberlin (1919)<br />

gave a key to the serpulid genera without attempting to revise the family, and so did Southward (1963), half a<br />

century later. Fauchald (1977) compiled a list <strong>of</strong> generic diagnoses and a key to genera for all polychaetes,<br />

including serpulids and spirorbids. In addition to the Spirorbidae, he acknowledged 331 species <strong>of</strong> serpulids,<br />

divided into 3 sub-families; the Serpulinae with 44 genera, the Filograninae with 5 genera, and the<br />

Ficopomatinae with 5 genera. Of these 54 genera, 22 were monotypic and another 13 had only 2 species.<br />

Uchida (1978) provided a systematic review <strong>of</strong> the group with a description <strong>of</strong> new species and new genera,<br />

but gave no key. He mentioned only 233 species, as compared to the 331 <strong>of</strong> Fauchald (1977). Of the 61 genera<br />

distinguished by Uchida (1978), 26 were monotypic, and 15 had only two species. No attempts to review<br />

<strong>Serpulidae</strong> have been made ever since and now, thirty years later, Fauchald (1977) still remains the most<br />

commonly used source <strong>of</strong> information on the generic composition <strong>of</strong> serpulids. During the last three decades<br />

serpulid taxonomy underwent significant changes, with numerous taxa being synonymized, older diagnoses<br />

emended and extended, new species described and about 10 genera added.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 5


Material and methods<br />

The aim <strong>of</strong> this review is to provide up-to-date information on the current state <strong>of</strong> taxonomy <strong>of</strong> <strong>Serpulidae</strong><br />

sensu lato. Although the position <strong>of</strong> Spirorbinae within <strong>Serpulidae</strong> has been determined (Kupriyanova 2003,<br />

Kupriyanova et al. 2006, Lehrke et al. 2007), spirorbins are not included in the present paper because<br />

composition and phylogenetic relationships within this monophyletic group recently have been treated<br />

elsewhere (Macdonald 2003). The morphology <strong>of</strong> serpulids (and variability <strong>of</strong> morphological characters) is<br />

reviewed with respect to features that can be used as characters in forthcoming cladistic analyses. “Not<br />

observed” in the diagnoses below indicates that no data have been given in the literature and material either<br />

could not be (re-) examined by us, or was not preserved well enough.<br />

Since a mere literature compilation would not be sufficient when dealing with a group with such a<br />

complex taxonomic history, we examined with use <strong>of</strong> light microscopy representatives (mostly previously<br />

unpublished material) <strong>of</strong> all genera currently considered valid in <strong>Serpulidae</strong> sensu lato. It should be noted that<br />

some <strong>of</strong> the characters are subject to interpretation, changing gradually rather than in distinct steps. Moreover,<br />

while structure <strong>of</strong> chaetae and uncini do provide important characters for serpulid taxonomy, many existing<br />

descriptions, especially the early ones, were published with very sketchy line-drawings <strong>of</strong> chaetal structures<br />

made under a compound light microscope. These illustrations <strong>of</strong>ten do not provide adequate details <strong>of</strong> chaetal<br />

ultrastructure, and even can give a wrong impression when compared with images done with scanning<br />

electron microscopy (SEM) (ten Hove & Jansen-Jacobs 1984: 147; compare for instance Fauvel 1927 fig.<br />

121q with Breton & Vincent 1999 fig. 10). Therefore, chaetae and uncini <strong>of</strong> at least one representative <strong>of</strong> the<br />

genus were re-examined with SEM, enabling to catch the dentition <strong>of</strong> uncini in a dental formula, see glossary.<br />

Note that SEM photographs <strong>of</strong> many currently known serpulids have never been published before. Existing<br />

descriptions <strong>of</strong> two monotypic genera, Chitinopomoides and Paumotella, were that incomplete that full<br />

redescriptions <strong>of</strong> their type-species have been included.<br />

Authors’ names and year <strong>of</strong> publication for valid serpulid taxa can be found in the Table <strong>of</strong> Contents and<br />

in the relevant sections and lists <strong>of</strong> species. For the remaining taxa, this information is given with their first<br />

occurrence in the text.<br />

The material examined for this review is deposited in the following museums:<br />

BMNH collection number <strong>of</strong> the Natural History Museum, London, United Kingdom, formerly the<br />

British Museum <strong>of</strong> Natural History<br />

DIZMSU Department <strong>of</strong> Invertebrate Zoology, Moscow State University, Moscow, Russia<br />

HUJ the Hebrew University <strong>of</strong> Jerusalem, Biological Collections, Israel<br />

LACM-AHF Los Angeles County Museum <strong>of</strong> Natural History, Allan Hancock Foundation, California,<br />

USA<br />

MCZ Museum <strong>of</strong> Comparative Zoology, Harvard University, Cambridge, USA<br />

NHMW Natural History Museum Vienna, Naturhistorisches Museum Wien, Vienna, Austria<br />

QM Queensland Museum, Brisbane, Queensland, Australia<br />

RMNH collection number <strong>of</strong> the Nationaal Natuurhistorisch Museum Naturalis, Leiden, the<br />

Netherlands, formerly the Rijks Museum voor Natuurlijke Historie<br />

SAM South Australian Museum, Adelaide, Australia<br />

SIO RAS Shirshov Institute <strong>of</strong> Oceanology, Russian Academy <strong>of</strong> Sciences, Moscow, Russia<br />

USNM collection number <strong>of</strong> the Smithsonian National Museum <strong>of</strong> Natural History (NMNH),<br />

Washington, formerly United States National Museum<br />

ZMA Zoological Museum <strong>of</strong> Amsterdam, Amsterdam, the Netherlands<br />

ZMH Zoologisches Institut und Zoologisches Museum, Hamburg, Germany.<br />

6 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Morphology<br />

The tube<br />

Whereas tubes <strong>of</strong> the closely related sabellid family are constructed <strong>of</strong> mucus and muddy or sandy sediments<br />

(e.g., Bonar 1972; with the exception <strong>of</strong> the calcareous tube in the sabellid Glomerula Nielsen, 1931<br />

(including Calcisabella Perkins, 1991), e.g., Vinn et al. 2008), all serpulids build tubes <strong>of</strong> crystalline calcium<br />

carbonate and a mucopolysaccharide matrix using calcium glands located on the collar (e.g., Neff 1968, 1971,<br />

Nott & Parkes 1975, Vovelle et al. 1991). Tube additions are molded by the collar folds when the worm is in a<br />

feeding position, at the entrance <strong>of</strong> the tube. The resulting tube shape depends upon the degree <strong>of</strong> rotation <strong>of</strong><br />

the worm within the tube and upon the morphology <strong>of</strong> the collar folds themselves (Faouzi 1930, Hanson<br />

1948b, Hedley 1956a, b, 1958).<br />

In spirorbins the tubes are coiled either dextrally or sinistrally in a tight flat spiral (the character that gave<br />

the name to the group) and are usually completely attached to the substrate (Helicosiphon Gravier, 1907 is an<br />

exception having the tube with erect distal end). In serpulins the tube shape is quite variable and coiling, when<br />

present, is irregular (maybe with the exception <strong>of</strong> Nogrobs grimaldii (de Montfort, 1808), but the tube <strong>of</strong> this<br />

taxon starts and ends with a straight part). In almost all serpulids the tubes are attached to the substrate by at<br />

least the proximal older parts. The only known exceptions are the free-living Ditrupa (Fig. 1A), and maybe<br />

Bathyditrupa, Nogrobs grimaldii, and Serpula crenata (Ehlers, 1908; possibly including S. sinica Wu & Chen,<br />

1979). Very likely larvae <strong>of</strong> these taxa settle on a pebble or a shell (as observed for D. arietina by Charles et<br />

al. (2003) and for S. crenata by ten Hove & Ben-Eliahu, unpublished), and break free later. Some serpulids<br />

have tubes attached to the substrate throughout their entire length (e.g., Pomatoceros triqueter (Linnaeus,<br />

1758)) while others have free erect distal parts (e.g., Hyalopomatus spp.). The direction <strong>of</strong> tube growth is<br />

apparently affected by environmental conditions (e.g., Knight-Jones 1981). Serpulids are able to deal with<br />

high rates <strong>of</strong> sedimentation by changing the shape and direction <strong>of</strong> tube growth (e.g., Hartmann-Schröder<br />

1967, 1971). Standing erect tubes are observed in waters with low current and high sedimentation rate; the<br />

most extreme example being that <strong>of</strong> Serpula israelitica Amoureux, 1976, with up to 10 cm long erect tubes<br />

embedded in sand (ten Hove, 16 June 1982, observation on Van Veen grab sample, CANCAP Expedition VI,<br />

Sta. 111, South <strong>of</strong> Santa Luzia, 55–62 m, sand). Tubes completely attached to the substrate may be indicative<br />

<strong>of</strong> water movements (currents, tides) with low rates <strong>of</strong> sedimentation (Kupriyanova & Badyaev 1998). A high<br />

density <strong>of</strong> tubes may result in the distal parts growing away from the substrate (e.g., Jackson 1977, Table 3).<br />

Tubes <strong>of</strong> some taxa, such as Floriprotis (Fig. 1E) and several Spirobranchus spp. (Fig. 1D) may be completely<br />

embedded in scleractinian corals (see review by Martín & Britayev 1998, Ben-Tzvi et al. 2006). These are not<br />

boring organisms, but settle on a dead coral part and become overgrown later.<br />

The importance <strong>of</strong> tubes in serpulid taxonomy is underestimated and adequate descriptions and figures are<br />

mostly absent in Recent descriptions. In some genera (e.g., Hydroides) the tube morphology is too uniform for<br />

general taxonomic use, but locally some Hydroides species can be recognized in the field by their tubes. In<br />

other genera (such as Filogranula, Pyrgopolon, Pseudovermilia) the tubes provide excellent diagnostic<br />

characters.<br />

Tube shapes. In external cross-section, tubes <strong>of</strong> many serpulids are circular or sub-circular when a<br />

flattened area <strong>of</strong> attachment is present. However, in some taxa the tube cross-sections may be notably<br />

triangular (Pomatoceros, Pomatostegus, Placostegus, Pseudovermilia, Fig. 2E) or sub-triangular with one<br />

major longitudinal keel (Laminatubus alvini ten Hove & Zibrowius, 1986). Tubes <strong>of</strong> Galeolaria having two<br />

major longitudinal keels can be considered as trapezoidal. Bathyditrupa hovei Kupriyanova, 1993b and<br />

Nogrobs grimaldii are unusual in having tubes rectangular in cross-section. Within a single tube changes may<br />

occur from trapezoidal to polyangular (Pyrgopolon differens (Augener, 1922): ten Hove 1973 Pl. IIB) or from<br />

triangular respectively trapezoidal/semicircular to circular (e.g., Pseudovermilia occidentalis (McIntosh,<br />

1885); Hydroides brachyacanthus Rioja, 1941a: ten Hove 1975 Pl. VII g, k; Imajima & ten Hove 1984 fig. 5).<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 7


FIGURE 1. Serpulids in their tubes. A—Ditrupa arietina, in situ, tubes not attached to substrate, from Madeira Island<br />

(photo P. Wirtz), B—Filograna implexa, in situ from Portugal, Sesimbra (photo P. Wirtz), C—Serpula vittata, from<br />

Australia, Queensland, Lizard Island (photo G. Rouse), D—Spirobranchus gardineri, from the Seychelles Exp. oceanic<br />

reefs, Amirantes, Alphonse Atoll, SE part <strong>of</strong> lagoon, 7º03'S, 52º44'E, 4–6 January 1993; patch reef and reef flat, 4 m,<br />

near Sta. 787 (photo J. Randall), E—Floriprotis sabiuraensis, from Indonesia, North Sulawesi, tube embedded into coral<br />

(photo M. Boyer), F—Placostegus sp., in transparent tube, from Australia, Queensland, Lizard Island, branchial crown<br />

and operculum missing, orange belt <strong>of</strong> thoracic eyes is well seen (photo G. Rouse). Abbreviations: op—operculum,<br />

te—girdle <strong>of</strong> thoracic eyes.<br />

8 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 2. Variability <strong>of</strong> serpulid tube morphology. A—Rhodopsis pusilla, tube with brood chambers from Japan,<br />

Okinawa (photo E. Nishi), B—Spiraserpula caribensis, aggregations (pink/purple) mixed with Homotrema rubens<br />

(Lamarck, 1816; red) and some filogranids (white) from the Netherlands Antilles, Curaçao, St. Jorisbaai, about 100 m<br />

from sea; from undersides <strong>of</strong> boulders and large metal poles in surf (legit & photo H. A. ten Hove), the insert shows a<br />

single Spiraserpula caribensis tube from the Netherlands Antilles, Curaçao, Zakitó (legit and photo H.A. ten Hove),<br />

C—Internal colouration <strong>of</strong> Spirobranchus giganteus tube, the Netherlands Antilles, Curaçao, Bullenbaai, E, near<br />

swimming pool, 28 April 1970; sandflat, 5–6 m, from living Millepora, legit H.A. ten Hove, St. 2048A (photo C.<br />

Roessler), D—Galeolaria caespitosa aggregation from Australia, Sydney, Balmoral (photo N. Tait), E—Tubes <strong>of</strong><br />

Pseudovermilia occidentalis (triangular) and Hydroides bispinosus (enrolled on itself) from the Netherlands Antilles,<br />

Curaçao, Bullenbaai, near swimming pool, from rusted can in sand, Sta. 2048 (legit & photo H.A. ten Hove).<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 9


The inside <strong>of</strong> the tube, the lumen, is even more underexploited as a character than the outside. The internal<br />

cross-section <strong>of</strong> the tube lumen in serpulids is mostly circular. However, in species <strong>of</strong> the genus Spiraserpula<br />

Pillai & ten Hove, 1994, the lumen can also be oval with a “waist”, the cross-section is like a ∞ without the<br />

middle line dividing it in two parts (Fig. 7E). Such a lumen shape is a result <strong>of</strong> the internal tube structures<br />

(ITS) in the form <strong>of</strong> ridges and crests that are known only for this genus. There is a single observation <strong>of</strong> a<br />

Protula species with a dorso-ventrally compressed lumen (Netherlands Antilles, Curaçao, Piscadera Bay, 20<br />

m, reef, 12 Jan. 1990, ten Hove unpublished). Finally, two series <strong>of</strong> small pits in the substrate-side <strong>of</strong> the<br />

lumen have been described for Spirobranchus corrugatus (see ten Hove & Nishi 1996).<br />

Tabulae or transverse tube elements (Fig. 7C) may partition the oldest parts <strong>of</strong> the tube as response to tube<br />

damage in Pyrgopolon, Pomatoceros, Spirobranchus, and Serpula (e.g., Lamarck 1818: 362, McIntosh 1923<br />

fig. 168, Mörch 1863: 349, ten Hove 1973, ten Hove & van den Hurk 1993: 27), and rarely so in Hydroides<br />

(Perkins pers. comm.; Breton & Vincent 1999 fig. 14), as well as in Crucigera, Ficopomatus, Hyalopomatus,<br />

and Neovermilia (present paper).<br />

Attached parts <strong>of</strong> the tubes are <strong>of</strong>ten flattened and may contain alveolar structures as for instance in<br />

Filogranula, Pomatoceros, Semivermilia, and Spirobranchus (e.g., Bianchi 1981 figs 32c, 36a, 42b, 43b;<br />

McIntosh 1923 fig. 169–170; Thomas 1940 Plate 1 figs 2, 3). According to Thomas (1940: 7) it is probable<br />

that alveoles are left to economize the amount <strong>of</strong> material used.<br />

The ornamentation <strong>of</strong> the external tube surface <strong>of</strong> the serpulid tubes is variable within populations and<br />

may be quite elaborate (e.g., Janita fimbriata, see Bianchi 1981 fig. 39), but most typically consists <strong>of</strong><br />

longitudinal and transverse elements (see Bianchi 1981 fig. 6 for possibilities). Serpulids may have a single<br />

major prominent longitudinal keel (as in Pomatoceros or Laminatubus, e.g., ten Hove & Zibrowius 1986 fig.<br />

1) or two identical major keels may be present (as in Galeolaria, e.g., Dew 1959 figs 11, 12), even though<br />

such keels may be indistinct as in some Hydroides spp. In other cases, the major longitudinal keel is<br />

supplemented by secondary more subtle ones (compare Pomatoceros triqueter with P. lamarckii in Bianchi<br />

1981 figs 42a, b, 43a, b). Finally, a number <strong>of</strong> longitudinal keels may be present (Metavermilia multicristata,<br />

Serpula vermicularis, e.g., Bianchi 1981 figs 29, 13). The keels may either be sharp (Semivermilia<br />

agglutinata: Bianchi 1981 fig. 33) or smooth (S. pomatostegoides: Bianchi 1981 fig. 34), straight (Hydroides<br />

uniformis Imajima & ten Hove, 1986 fig. 1) or wavy (as in Semivermilia crenata: Bianchi 1981 fig. 31), or in<br />

the form <strong>of</strong> longitudinal rows <strong>of</strong> larger denticles and smaller tubercules (Spirobranchus lima: Bianchi 1981<br />

fig. 40).<br />

Transverse tube ornamentation includes simple growth striations such as in Protula, circular growth rings<br />

(Josephella marenzelleri: Bianchi 1981 fig. 50), flaring smooth trumpet peristomes directed toward the distal<br />

end <strong>of</strong> the tube as seen in Ficopomatus enigmaticus. The most complex denticulate peristomes are found in<br />

Filogranula stellata, F. calyculata, and F. gracilis (e.g., Bianchi 1981 figs 35–38).<br />

A combination <strong>of</strong> numerous longitudinal keels and transverse ridges may form structures as in<br />

Metavermilia arctica Kupriyanova (1993d fig. 1K) or Vermiliopsis labiata (see Imajima 1977 fig. 4). Tube<br />

ornamentation in the free distal and attached proximal parts <strong>of</strong> one tube may differ (e.g., Filogranula<br />

annulata: Bianchi 1981 fig. 37, Placostegus incomptus Ehlers (1887 pl. 60 fig. 8) or Pyrgopolon differens (ten<br />

Hove, 1973 pl. IIb)). Tube ovicells used for brooding such as found in Rhodopsis (Fig. 2A), Chitinopoma, and<br />

Pseudovermilia (Fig. 7D) are also a form <strong>of</strong> tube ornamentation.<br />

The tube wall is usually uniformly opaque, but in species such as, for example, Ditrupa arietina and<br />

Laminatubus alvini, the walls consist <strong>of</strong> two distinct layers: an inner opaque and outer hyaline layer; the latter<br />

may cause a shiny surface in tubes <strong>of</strong> e.g., Bathyvermilia and Serpula crenata. A hyaline granular overlay is<br />

present in tubes <strong>of</strong> Spiraserpula species (see ten Hove & Pillai 1994), as well as in Serpula oshimae and S.<br />

hartmanae, in Hydroides mongeslopezi and also in an undescribed species <strong>of</strong> Apomatus (ten Hove unpubl.). It<br />

may have been overlooked in other taxa. Placostegus (Fig. 1F), Vitreotubus, and Neomicrorbis have entirely<br />

transparent tubes, and this situation also may occur in some spirorbins (e.g., Paradexiospira vitrea (Fabricius,<br />

1780) and Protolaeospira striata (Quiévreux, 1963)). Scanning electron microscopy observation <strong>of</strong> some <strong>of</strong><br />

these tubes (ten Hove & Zibrowius 1986) suggested that transparency is caused by preferred orientation <strong>of</strong><br />

10 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


large crystals in the structure <strong>of</strong> the tube, while small, disorderly arranged crystals give an opaque appearance.<br />

Most recently, Vinn et al. (2008) described up to four different layers found in 34% <strong>of</strong> serpulid tubes, based on<br />

SEM and they also found a positive correlation between regular crystal orientation and tube transparency.<br />

Aggregated tubes. Serpulids like Salmacina, Filograna, and Filogranella build characteristic open<br />

aggregates made <strong>of</strong> numerous tiny branching tubes (Fig. 1B). Nishi (1992c) illustrated that the “colonies” are<br />

the result <strong>of</strong> combination <strong>of</strong> asexual budding and gregarious larval settling. Asexual reproduction also leads to<br />

a chain <strong>of</strong> tubes in Filogranula (cf. ten Hove 1979: 286) or a network <strong>of</strong> branching tubes in Josephella<br />

marenzelleri and Rhodopsis pusilla (see George 1974, Ben-Eliahu & ten Hove 1989, Nishi 1992c, Nishi &<br />

Yamasu 1992). Asexual reproduction also has been reported for Spiraserpula (Pillai & ten Hove 1994 fig.<br />

16B). These “colonies” are different from dense aggregations such as found in Galeolaria caespitosa (Fig.<br />

2D), Ficopomatus enigmaticus or some or some Hydroides spp. resulting from gregarious larval settling only.<br />

For a review <strong>of</strong> serpulid “colonies” see ten Hove & van den Hurk (1993).<br />

Tube colour. Serpulid tube colour is most commonly white, however in some species completely or<br />

partly pink, bluish, orange (e.g., Spirobranchus, Serpula and one Hydroides), or purple (Fig. 2B), as well as<br />

mustard (both Spiraserpula), or even white with dark-brown cross-striation as in Serpula vittata (as S.<br />

palauense Imajima, 1982 fig. 2m; Fig. 1C). Sometimes inner tube parts can be coloured as in tropical<br />

Spirobranchus spp. (ten Hove 1970, Smith 1985, Fig. 2C). In individual tubes <strong>of</strong> small Serpula spp. colour<br />

can change from pink to white in a few millimeters near the entrance <strong>of</strong> the tube (ten Hove unpublished).<br />

The general morphology <strong>of</strong> the body<br />

Serpulids (and sabellids) have a body that is clearly divided into three regions: branchial crown, thorax, and<br />

abdomen (Fig. 5A–D). The branchial crown is composed <strong>of</strong> a number <strong>of</strong> radioles each bearing a double row<br />

<strong>of</strong> ciliated pinnules. One <strong>of</strong> the radioles is usually transformed into the opercular peduncle (Fig. 5C, D, pd)<br />

and distally bears the operculum (Fig. 5B–C, op). The base <strong>of</strong> the branchial crown is surrounded by the collar,<br />

which continues as the thoracic membranes, a structure found only in serpulids. The border between thorax<br />

and abdomen is marked by chaetal inversion, with the dorsal notochaetae and ventral comb-shaped<br />

neurochaetae (uncini) <strong>of</strong> the thorax changing places such that abdominal uncini become dorsal (notopodial)<br />

and abdominal chaetae become ventral (neuropodial) in the abdomen.<br />

Although serpulids are <strong>of</strong>ten very brightly coloured and the colour <strong>of</strong> the animals indeed may be useful in<br />

the field (Fig. 1), as a taxonomic character the type <strong>of</strong> colouration is <strong>of</strong> little use as colour is rapidly lost in<br />

preservatives, particularly in alcohol. The colouration may also be a subject to significant interspecific<br />

variability (e.g., in the Spirobranchus corniculatus complex: Fosså & Nilsen 2000: 140, 147; Song 2006, as S.<br />

giganteus). It may even vary within a single specimen, for instance, in Spirobranchus the colour <strong>of</strong> both lobes<br />

<strong>of</strong> a branchial crown may be so different as blue and red (ten Hove unpubl.). Føyn & Gjøen (1953) describe a<br />

Mendelian pattern found in the colouration <strong>of</strong> branchial crowns <strong>of</strong> Pomatoceros triqueter, with 2628 brown,<br />

218 blue, and only 2 orange branchial crowns.<br />

The branchial crown<br />

The branchial crown, used for feeding and respiration, with each radiole bearing rows <strong>of</strong> paired ciliated<br />

pinnules is a distinct feature <strong>of</strong> sabellids and serpulids. The crown is considered to be prostomial (cf. Segrove<br />

1941). The radioles <strong>of</strong> the branchial crown are attached to paired lobes (Fig. 6F, bl) located laterally on both<br />

sides <strong>of</strong> the mouth. The branchial lobes are completely separate from one another in serpulids, but are fused<br />

together in some sabellids (e.g., Chone Bush, 1905 and Sabella Linnaeus, 1767, see Fitzhugh (1989)).<br />

The number <strong>of</strong> radioles used to delineate some taxa (e.g., Salmacina tribranchiata) is an unreliable<br />

character. In individual species, the lower limit <strong>of</strong> the number <strong>of</strong> radioles has no value, since all juveniles have<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 11


fewer radioles than adults. The upper limit is possibly an exponent <strong>of</strong> size, possibly genetically determined.<br />

However, the variation within individuals <strong>of</strong> larger species (e.g., Spirobranchus and Protula) is enormous.<br />

Kupriyanova (1999) showed that within some Serpula species number <strong>of</strong> radioles (as well as number <strong>of</strong><br />

opercular radii) is directly correlated with animal size.<br />

The bases <strong>of</strong> the radioles in some sabellids and serpulids may be joined with an inter-radiolar membrane<br />

(Fig. 3A, E, mb). In serpulids, the inter-radiolar membrane is very high in Pomatoleios and it unites radioles<br />

for up to half <strong>of</strong> their length in Pyrgopolon. The membrane is also well developed in Spirobranchus (and may<br />

bear processes in some Spirobranchus spp.), Pomatoceros, Pomatostegus, Galeolaria, Dasynema, and<br />

Neovermilia. It is also commonly found in species <strong>of</strong> Serpula, Spiraserpula, and Crucigera, but is very rare in<br />

Hydroides (see Bastida-Zavala & ten Hove 2002). The membrane is absent in the serpulid genera<br />

Ficopomatus, Filograna, Pseudochitinopoma, Pseudovermilia, Salmacina, and Vermiliopsis.<br />

Eyes. Photoreceptors may be found not only in the anterior region but almost anywhere in annelids,<br />

including Sabellida, from ephemeral eye-spots on epitokous segments (notably in Eunicidae) to those on<br />

pygidia (e.g., Fabricia Blainville, 1828; Augeneriella Banse, 1957 (both in Fitzhugh 1989)). The serpulids are<br />

no exception to this plasticity, as e.g., shown by the girdle <strong>of</strong> thoracic (peristomial?) red-pigmented ocelli in<br />

Placostegus (Fig. 1F, te). One difficulty is that the eyespots may disappear in preservative in a comparatively<br />

short time. In the diagnoses given below, “presence” or “absence” has been observed in fresh material; “not<br />

observed” indicates that no data have been given in the literature and material could not be (re-)examined by<br />

us. Another difficulty is that there has been no consistent terminology, “eye” or “eyespot” can have any <strong>of</strong> the<br />

meanings given below.<br />

Prostomial ocellar clusters. Many serpulids possess a pair <strong>of</strong> brain-associated clusters <strong>of</strong> ocelli in the<br />

prostomium, apparently the continuation <strong>of</strong> the larval “eyes” (Smith 1984a, b). For instance, more than 20<br />

preserved specimens <strong>of</strong> Filograna implexa showed 2 rows <strong>of</strong> 4–6 pigmented cells in the prostomial area,<br />

presumed to be prostomial “eyespots”, however without lenses; on the other hand, more than 20 nonoperculate<br />

specimens <strong>of</strong> Salmacina spec. from Marseille lacked pigmented spots in the prostomial area (ten<br />

Hove & Pantus 1985). Metavermilia multicristata has prostomial “eyes” (Zibrowius 1968a: 86, 128, as<br />

Vermiliopsis), presumably simple ocelli. On the other hand, in fresh M. multicristata specimens from the<br />

Seychelles “eyespots” were invisible (ten Hove unpublished).<br />

Branchial eyes. In serpulids, most photoreceptors are associated with the branchial crown (including the<br />

operculum), and these could be termed collectively “branchial eyes”. Apart from ultrastructural differences,<br />

and although intermediate types do occur, photoreceptors may roughly be grouped into three groups for which<br />

we propose the following “standard” terms:<br />

Ocelli: single eyespots with (or without a single lens). These may occur on the axis <strong>of</strong> radioles (e.g.,<br />

Vermiliopsis spp., some taxa <strong>of</strong> the Spirobranchus tetraceros-complex), but also near the inter-radiolar<br />

membrane (Fig. 6D), on the peduncle or the operculum (e.g., a hundred or more ocelli, not rigidly patterned,<br />

on the ventral rim <strong>of</strong> the opercula <strong>of</strong> Pomatostegus stellatus and Spirobranchus corrugatus).<br />

Ocellar clusters: loose, bulging groupings <strong>of</strong> approximately 2–20 ocelli, generally with as many lenses.<br />

Occurrence on various radioles (notably Apomatus spp.), or peduncle (e.g., Semivermilia pomatostegoides, on<br />

border between peduncle and opercular ampulla). Dasynema chrysogyrus has 5–6 pairs <strong>of</strong> ocellar clusters,<br />

with 2–11 lenses each (Imajima & ten Hove 1984). Uchida (1978) reports Microprotula ovicellata as having<br />

8–11 pairs <strong>of</strong> “eyespots” (ocellar clusters) on each radiole, and a red "eye" (probably a simple ocellus) in the<br />

base <strong>of</strong> each branchial tuft.<br />

Compound eyes: more or less rigidly patterned groupings <strong>of</strong> ocelli (Fig. 6A). In the Spirobranchus<br />

giganteus-complex sensu lato, for instance, there are 600–1000 lenses in a compound eye, located at the base<br />

<strong>of</strong> each branchial lobe (Fig. 6E), proximally on the first left and right radiole. These might very well be<br />

capable <strong>of</strong> receiving visual impressions in a similar way as in crustaceans (Smith 1984a). The radii <strong>of</strong> the<br />

opercular funnel in Hydroides lambecki and <strong>of</strong> the operculum <strong>of</strong> Pyrgopolon ctenactis show circular<br />

groupings <strong>of</strong> 20–30 red pigmented bulging structures (Fig. 6B), which certainly are very reminiscent <strong>of</strong> small<br />

compound eyes. The knobs at the base <strong>of</strong> the radioles in Protula balboensis (illustrated by Monro 1933 fig.<br />

12 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


30A) most probably too are a series <strong>of</strong> large ocellar clusters or small compound eyes, as is evident from<br />

syntypes (BMNH 1933:7:10:265–266) and additional material in LACM-AHF (present paper).<br />

Some interesting literature observations could not be confirmed by us. For example, Protula intestinum is<br />

reported to have two elliptical compound eyespots at both sides <strong>of</strong> the head by Radl (1912: 246, as P. protula),<br />

but we cannot confirm this observation. In Protula spp. we found scattered single ocelli along the rhachis,<br />

radioles with two rows <strong>of</strong> single red ocelli (“eyespots”), to radioles with up to 9 bright red transverse bands,<br />

marking paired bulging ocellar clusters (Fig. 6F). Janita fimbriata is reported as sometimes with stalked<br />

“eyes” on the base <strong>of</strong> the pinnules (as Omphalopoma spinosa by Langerhans 1884, fig. 45a; by Fauvel 1927,<br />

Rioja 1931, both as Omphalopomopsis); these presumably ocellar clusters could not be found by us in<br />

preserved material.<br />

Field notes on about 80 serpulid taxa made by one <strong>of</strong> us (HAtH) also show no overall consistent patterns.<br />

For instance, in Crucigera tricornis observations are contradictory, from a single medial row <strong>of</strong> transparent<br />

lenses on the rhachis <strong>of</strong> each radiole in one specimen to the same plus a row <strong>of</strong> bulbous bright red spots,<br />

presumably large ocellar clusters or small compound eyes, above the inter-radiolar membrane in another.<br />

There are indications that occurrence <strong>of</strong> photoreceptors may be dependent on the (dorsal to ventral) position<br />

<strong>of</strong> radioles in the branchial crown as exemplified by the different observations in Spiraserpula paraypsilon,<br />

where there are up to 6 eyespots (type not specified) at the base <strong>of</strong> radioles, however, neither in dorsal-most<br />

radiole nor in the 3 ventral radioles, while in other specimens no lenses were seen (not looked for in the<br />

correct position?).<br />

In conclusion, compiled data from the literature and field notes, altogether from almost a hundred species<br />

in 30 genera, show no consistent patterns. Moreover, eyespots and eyes are difficult to find in preserved<br />

material. These characters have not been systematically studied in most serpulids nor mentioned in taxonomic<br />

descriptions. They may be useful in some taxonomic decisions, but need more consistent study.<br />

Stylodes. An unusual feature found on serpulid radioles is external unpaired finger-like stylodes (Fig.<br />

14A), an autapomorphy found in the serpulid genus Dasynema only (Imajima & ten Hove 1984); paired<br />

stylodes are known in the sabellid genera Pseudobranchiomma Jones, 1962 and Branchiomma Kölliker, 1858<br />

(e.g., Tovar-Hernández & Knight-Jones 2006, figs 1C–F).<br />

The radiole arrangement. In most small serpulids, radioles are arranged in two semi-circles when<br />

outside the tube in the feeding position (Hartman 1969 frontispiece, present Fig. 1E). Depending on the length<br />

<strong>of</strong> branchial lobes, short pectinate arrangement (as in Semivermilia spp.: Zibrowius 1968a Plate 4 fig. 26) and<br />

long pectinate arrangement (Pseudovermilia occidentalis: ten Hove 1975 Plate II f) <strong>of</strong> radioles is possible in<br />

serpulids. Spiralled arrangement <strong>of</strong> radioles occurs when the ventral margins <strong>of</strong> the branchial lobe continue to<br />

grow, adding radioles and spiralling along the inner margin <strong>of</strong> the crown. In some large serpulids, especially in<br />

the large species <strong>of</strong> the genus Spirobranchus, the crown is a pair <strong>of</strong> beautiful spiralled cones (hence the name),<br />

the arrangement that is responsible for the common name “Christmas-tree worm” for Spirobranchus (Fig.<br />

1D). Some Protula species, such as the huge Protula bispiralis (including P. magnifica (Straughan, 1967b))<br />

also have distinctly spiral branchiae. Perkins (1984) and Knight-Jones & Perkins (1998) suggested that<br />

spiralling <strong>of</strong> branchiae is an exclusively size-related phenomenon. However, Fitzhugh (1989) pointed out that<br />

whereas in juveniles <strong>of</strong> some sabellid species the branchial base is semi-circular and begins to spiral ventrally<br />

with increase in size, other small species <strong>of</strong> the same genus never exhibit spiralling when mature.<br />

Filamentous tips. Long filiform ends <strong>of</strong> radioles (filamentous tips) are sometimes mentioned in serpulid<br />

descriptions, however, there has been no systematic documentation <strong>of</strong> these structures across the group.<br />

Bastida-Zavala & ten Hove (2002) distinguished 4 size classes <strong>of</strong> filamentous tips in Hydroides. They found<br />

the character to be variable on the infraspecific level: 4 taxa showed filamentous tips in a single size class, 12<br />

in two, 6 in three, while in one species the size ranged through all 4 sizes, from absent to very long.<br />

Mouth palps. The presence <strong>of</strong> filiform dorsal mouth palps is a character not commonly used in serpulid<br />

systematics (ten Hove 1973). These processes are held facing anteriorly and ventrally across the mouth into<br />

the centre <strong>of</strong> the branchial crown on each side. Although considered to be typically absent by some authors<br />

(Day 1967, Pettibone 1982), these palp-like processes are likely to be a consistent feature <strong>of</strong> serpulids, albeit<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 13


inconspicuous in larger species. Orrhage (1980: 155–156) distinguished three types <strong>of</strong> palps: 1) lip associated<br />

radioles (Sabella, Potamilla Malmgren, 1866, Euchone Malmgren, 1866, Chone); 2) lip associated pinnules<br />

(Potamilla, Euchone, Chone, Pomatoceros, Ditrupa, Hydroides, Placostegus, Serpula, in the latter almost<br />

invisible); 3) de novo outgrowths <strong>of</strong> the dorsal lip (Apomatus, Protula, ?Filograna). Unfortunately Orrhage<br />

studied only a few genera, but apparently in serpulids all “palps” may not be homologous. As opposed to<br />

these dorsal palps, ventral mouth palps have been reported for Pseudovermilia madracicola and Rhodopsis by<br />

ten Hove (1989) and Ben-Eliahu & ten Hove (1989). However, re-studying the types <strong>of</strong> P. madracicola, it<br />

becomes apparent that the palps are attached to the dorsal lip (which already could be suspected from ten<br />

Hove’s figure (1989 fig. 23)), and that it having been attributed to being connected to a ventral lip is incorrect.<br />

In absence <strong>of</strong> well preserved material <strong>of</strong> Rhodopsis we have not been able to check the position here, but we<br />

would not be surprised if the same applies to the “ventral” palp <strong>of</strong> Ben-Eliahu & ten Hove (1989). “Not<br />

observed” in the diagnoses below indicates that no data have been given in the literature and material either<br />

could not be (re-) examined by us, or was not preserved well enough.<br />

The operculum<br />

A modified radiole, the operculum, serving as a tube plug when a worm withdraws into its tube, is generally<br />

present in serpulids (Fig. 4A–F), but is always absent in sabellids and sabellariids. The opercular structure in<br />

serpulids has traditionally been considered one <strong>of</strong> the most important taxonomic characters.<br />

Some serpulid taxa are non-operculate: Salmacina, Protula (Fig. 5A, 6F), Protis, Filogranella (Fig. 6C),<br />

Floriprotis (Fig. 1E), and Microprotula. However, Salmacina and Protula are practically indistinguishable<br />

from the nominal operculate taxa Filograna and Apomatus (Fig. 5B) respectively. As a consequence, some<br />

authors considered Apomatus to be a synonym <strong>of</strong> Protula, and mentioned individual specimens <strong>of</strong> what was<br />

considered to be Protula tubularia with s<strong>of</strong>t globular opercula (Zibrowius 1968a, Hong 1984, Bianchi 1981).<br />

However, based on the examination <strong>of</strong> thoracic blood-vessel patterns in over a hundred specimens ten Hove &<br />

Pantus (1985) regarded operculate and non-operculate forms found in the Mediterranean as belonging to two<br />

different genera, Protula and Apomatus. Differences have been elucidated in a key by Ben-Eliahu & Fiege<br />

(1996: 27). Whether P. tubularia really shows operculate and non-operculate individuals remains unclear.<br />

Normally non-operculate species may include operculate individuals and normally non-operculate genera<br />

may include operculate species, as mentioned for Protis (by Kupriyanova 1993b, Ben-Eliahu & Fiege 1996,<br />

Kupriyanova & Jirkov 1997) and for Paraprotis (by Imajima 1979). Normally operculate genera occasionally<br />

include non-operculate species (e.g., ten Hove 1989: 136, Fiege & ten Hove 1999 for Spirobranchus<br />

nigranucha, Lechapt 1992 for Neovermilia anoperculata, Knight-Jones et al. 1997 for Hyalopomatus<br />

cancerum). In Vermiliopsis striaticeps, the functional operculum is accompanied by a rudimentary operculum<br />

on a normal pinnulate radiole, or a modified, almost smooth radiole on the opposite lobe (Bianchi 1981 fig.<br />

26). Ludwig (1957) showed that if the operculum in Vermiliopsis is amputated, a new one is formed at the tip<br />

<strong>of</strong> the opposite radiole. Apomatus spp. also may have a slightly modified radiole, a pseudoperculum, opposite<br />

the functional operculum. Protis polyoperculata has up to 6 opercula, some <strong>of</strong> them smaller, which probably<br />

can be classified as pseudopercula.<br />

The serpulid genera Crucigera, Hydroides, Serpula, and Spiraserpula are uniformly characterized by a<br />

pseudoperculum (Fig. 5C, ps), a club-shaped underdeveloped operculum carried on short modified<br />

(rudimentary) radiole on the opposite side <strong>of</strong> the opercular crown. The pseudoperculum can develop into a<br />

functional operculum if the latter is shed or lost (Okada 1932, Schochet 1973a, b). Sometimes, two functional<br />

opercula can be found simultaneously, for example, in Hydroides bioperculate forms are not uncommon<br />

(Zeleny 1902, Ichikawa & Takagaki 1942, Schochet 1973a, b, ten Hove & Ben-Eliahu 2005), or some taxa<br />

from that group may have two rudimentary opercula only. For instance, in a population <strong>of</strong> Hydroides<br />

spongicola, 75%–95% <strong>of</strong> the individuals possess two small pseudopercula instead <strong>of</strong> one functional and one<br />

rudimentary operculum; a similar phenomenon has been reported for populations <strong>of</strong> Crucigera inconstans<br />

(see ten Hove & Jansen-Jacobs 1984: 164).<br />

14 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Throughout Spiraserpula, there is a trend <strong>of</strong> opercular loss. In S. massiliensis, for instance, Pillai & ten<br />

Hove (1994: 53) found 12 operculate specimens and 25 non-operculate ones, although mostly two<br />

pseudopercula are present. The trend culminates in some specimens <strong>of</strong> S. paraypsilon, where even the<br />

pseudopercula may be lost (Pillai & ten Hove 1994).<br />

One wonders if this loss <strong>of</strong> a functional defence mechanism has some relation to the gain <strong>of</strong> an alternative<br />

defence mechanism such as grab-footholds in the tube for Spiraserpula; the extremely irritating chemical<br />

defence mechanism <strong>of</strong> the host sponge Ne<strong>of</strong>ibularia nolitangere (Duchassaing & Michelotti, 1864) as extra<br />

protection for Hydroides spongicola; the occurrence deep down branches <strong>of</strong> species <strong>of</strong> Acropora Oken, 1815<br />

protecting S. nigranucha against predation; and the symbiotic Floriprotis may have extra protection <strong>of</strong> its host<br />

corals. Knight-Jones et al. (1997) also suggested that in serpulids secondary loss <strong>of</strong> the operculum could be an<br />

adaptation to certain environmental conditions, such as low oxygen concentration in some habitats.<br />

Opercular structure and reinforcement vary widely from simple vesicular and lacking any reinforcement<br />

(Apomatus (Fig. 5B), some Hyalopomatus (Fig. 3C), some Metavermilia spp. and Protis) or spoon-shaped<br />

(Filograna implexa)), to very elaborate ones. Quite commonly, serpulid opercula are reinforced with flat or<br />

slightly concave chitinous endplates (Bathyditrupa, Ditrupa, some Filogranula spp., Janita, Marifugia,<br />

Placostegus, Pseudochitinopoma, and Chitinopoma) or elongated distal caps (Vermiliopsis (Fig. 3F),<br />

Semivermilia) with or without distal thorns (Pseudovermilia, some Metavermilia spp.). Ficopomatus and<br />

Rhodopsis show a large number <strong>of</strong> chitinous spines sometimes imbedded in or inserted into a chitinous base.<br />

In Bathyvermilia, Dasynema, and Vermiliopsis labiata the chitinous endplates are additionally reinforced by<br />

encrusted calcareous deposits. Several serpulid genera have opercular reinforcements in the form <strong>of</strong><br />

calcareous endplates (Pomatoleios), sometimes adorned with non-movable horns <strong>of</strong> varying complexity<br />

(Pomatoceros, Spirobranchus: Fig. 3E, 4A). The two species <strong>of</strong> Galeolaria (Figs 2D, 4B) are the only<br />

serpulids that have opercula armed with very elaborate movable calcareous spines. In the genus Metavermilia<br />

a range <strong>of</strong> opercular forms is found (see Nishi et al. 2007), from a spherical s<strong>of</strong>t operculum in M. inflata, to an<br />

inverse conical ampulla with a horny distal cap in M. multicristata, with a complex multi-tiered chitinous<br />

structure in some other species such as M. acanthophora (Fig. 4C). Another multi-tiered opercular<br />

reinforcement in Pomatostegus spp. forms one <strong>of</strong> the most complex opercula known in <strong>Serpulidae</strong> (see<br />

Imajima 1977 fig. 7).<br />

Finally, calcareous opercular reinforcement is extreme in Pyrgopolon (Fig. 6B, including Sclerostyla, and<br />

the nominal fossil genera Hamulus Morton, 1834 and Turbinia Michelin, 1845), where both the operculum<br />

and opercular talon (reaching deep into the peduncle) are entirely calcified (ten Hove 1973). Calcareous talons<br />

are otherwise only found in spirorbins (e.g., Bianchi 1981 figs 54, 56, 58, 64) and Neomicrorbis (present<br />

paper); Pillai (1965 fig. 22H) and ten Hove (1973 fig. 43) report small talons in Pomatoleios, however, these<br />

do not reach beyond the opercular ampulla.<br />

The nature <strong>of</strong> opercular reinforcement is still unclear in some serpulids, for example, in Laminatubus and<br />

Neovermilia globula (Fig. 4E) the opercular distal cap is made <strong>of</strong> stouter material than the proximal s<strong>of</strong>t<br />

bulbous part (ampulla), however, without either calcareous or chitinous reinforcement. It might be a thickened<br />

cuticle similar to that found in the opercula <strong>of</strong> Serpula (Thorp et al. 1991) and Crucigera.<br />

The funnel-shaped opercula <strong>of</strong> Crucigera, Hydroides, Serpula, and Spiraserpula are very distinct in being<br />

composed <strong>of</strong> numerous fused radii (Figs 3A, D, 4F, 5C). While in species <strong>of</strong> Serpula and Spiraserpula the<br />

opercular funnel is simple, it possesses basal bulbous processes in Crucigera and is armed with a distal<br />

verticil <strong>of</strong> chitinous spines in Hydroides (Fig. 4D). The basal processes <strong>of</strong> Crucigera (Fig. 3D, bk) are thought<br />

to be homologous to the proximal funnel <strong>of</strong> Hydroides by ten Hove (1984). The similar basal knobs in the<br />

operculum <strong>of</strong> Janita (Fig. 24A) may be a convergent development. The calcareous long stalked funnel-shaped<br />

operculum <strong>of</strong> Pyrgopolon (Fig. 6B) appears superficially similar to the funnels <strong>of</strong> the Serpula-group (e.g., Fig.<br />

5C), but this similarity is <strong>of</strong> a convergent nature.<br />

Ontogeny <strong>of</strong> operculum and peduncle. Which radiole is ontogenetically modified into the peduncle has<br />

been a matter <strong>of</strong> debate. Pillai (1970) argued that the opercular peduncle <strong>of</strong> spirorbins is a modified second<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 15


adiole, whereas, in his opinion, it always is the first radiole in serpulins. He suggested, therefore, that<br />

spirorbin operculum is not homologous to the serpulin operculum.<br />

However, to determine which radiole is modified into the peduncle, ontogenetic studies are needed, and<br />

these do not give a clear-cut answer. According to the embryological literature, the operculum is formed from<br />

the 3 rd radiolar bud dorsally (e.g., Zeleny 1905 for Hydroides; Segrove 1941 for Pomatoceros; Vuillemin 1965<br />

for Ficopomatus and spirorbins). Salensky (1884) is less clear for spirorbins, but contrary to Vuillemin (1965)<br />

seems to indicate an origin from the second dorsal bud. According to Matjašič & Sket (1966), in Marifugia,<br />

the operculum even may be formed from the 4 th radiolar bud dorsally. However, it cannot be excluded that the<br />

differences in specifying the buds are due to confusion between radiolar and pinnular buds, such as the later<br />

lip-associated pinnule (see different types <strong>of</strong> mouth-palps, p. 13). Another explanation for the differences in<br />

numbering might be found in Smith (1985: 148): “The operculum arises completely independently <strong>of</strong> the<br />

existing radioles. It starts as a small bud at the left side <strong>of</strong> the prostomium between radioles 2 and 3 [in Smith’s<br />

perception radiole 1 becomes the dorsal palp <strong>of</strong> the mouth], but dorsal to them [thus outside the normal range<br />

<strong>of</strong> radioles], in what is essentially the dorsal position. This bud grows out into a cylindrical opercular stalk<br />

with distal swelling, … From the outset it is devoid <strong>of</strong> pinnules and no corresponding opercular stalk is found<br />

on the right side.”<br />

Partly based on the papers above, ten Hove (1984) argued that the peduncle in serpulids is actually the<br />

modified second dorsal-most radiole, but in large-bodied serpulids the peduncle migrates during development<br />

in such a way that it appears to be formed from the first radiole (or even completely outside the branchial<br />

crown, such as the position in Pomatoceros).<br />

Ten Hove (1984, 1989) distinguishes between indirect and direct opercular ontogeny. In some serpulids<br />

(Hydroides, Serpula) juveniles develop an operculum on a pinnulated radiole; later, the peduncle loses its<br />

pinnules and becomes smooth (= indirect development, e.g., Mörch 1863, ten Hove & Ben-Eliahu 2005).<br />

When a functional operculum is lost, the rudimentary operculum develops into a functional one. Direct<br />

development means that the peduncle and operculum develop directly from a knob, without a pinnule-bearing<br />

stage (Segrove 1941: Pomatoceros; Vuillemin 1965: Ficopomatus, spirorbins; Matjašič & Sket 1966:<br />

Marifugia; Smith 1985: 148 Spirobranchus). In the event <strong>of</strong> damage, a new operculum is regenerated from the<br />

same peduncle (e.g., ten Hove 1970, figs 122, 123). Marsden & Anderson (1981) gave a figure <strong>of</strong> the<br />

metamorphosing larva <strong>of</strong> Galeolaria; unfortunately they do not specify which <strong>of</strong> the 3 pairs <strong>of</strong> buds figured<br />

will be the later operculum, but the figure does not essentially differ from that <strong>of</strong> Pomatoceros in Segrove<br />

(1941 text/fig. 20). Most probably the opercular development in Galeolaria is direct, from a bud without a<br />

pinnulate stage, just as in Pomatoceros, Marifugia, Ficopomatus, and spirorbids.<br />

The opercular peduncle<br />

In some serpulid taxa, the branchial radiole that bears the operculum is identical to the other radioles<br />

(Filograna, Apomatus, Josephella (Fig. 3B; however, not in Josephella populations from the E.<br />

Mediterranean (Ben-Eliahu & Payiatas 1999)) and in Protis). In most serpulids the operculum is borne on a<br />

distinct peduncle (Fig. 3A, C, D, E, F). The peduncle may gradually merge into the basal fleshy part <strong>of</strong> the<br />

operculum (Figs 3E, 5C), or be separated from it by a more or less clear constriction (Fig. 3F).<br />

Morphologically, an opercular peduncle is usually inserted more or less below and between the first and<br />

second normal radiole, outside the line <strong>of</strong> radioles (Fig. 3F). In some genera, the peduncle is located at the<br />

base <strong>of</strong> branchial crown, covering several radioles (Pomatoceros, Spirobranchus, and Galeolaria). In other<br />

taxa, such as Semivermilia, Metavermilia and Bathyvermilia, the peduncle is clearly positioned as the second<br />

modified radiole (ten Hove 1975). In small specimens/species the insertion <strong>of</strong> peduncle may be very difficult<br />

to observe. In Semivermilia pomatostegoides the peduncle is either the second radiole, or inserted below and<br />

between first and second.<br />

16 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 3. Morphology <strong>of</strong> serpulid anterior ends, removed from tube unless stated otherwise. A—Serpula jukesii, from<br />

Edithburgh, South Australia, B—Josephella marenzelleri, in tube, from Australia, Queensland, Lizard Island,<br />

C—Hyalopomatus sp., hydrothermal vents, North Fiji Basin, D—Crucigera tricornis, from Australia, Queensland,<br />

Lizard Island, E—Spirobranchus tetraceros, from Australia, Queensland, Lizard Island, F—Vermiliopsis glandigeruspygidialis-complex,<br />

branchial lobe with operculum, from Australia, Queensland, Lizard Island (all photos G. Rouse).<br />

Abbreviations: op—operculum, mb—inter-radiolar membrane, bk—basal knobs, pd—peduncle, dp—endplate <strong>of</strong><br />

operculum, dw—distal peduncular wing, cn—constriction between operculum and opercular peduncle.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 17


FIGURE 4. Opercular variability in <strong>Serpulidae</strong>. A—Operculum <strong>of</strong> Spirobranchus coronatus, from Australia,<br />

Queensland, Lizard Island, showing calcareous endplate and branching calcareous spines, B—Operculum <strong>of</strong> Galeolaria<br />

hystrix, from South Australia, Edithburgh, with elaborate calcareous plates and numerous movable spines, C—Multitiered<br />

operculum <strong>of</strong> Metavermilia acanthophora, from South Australia, Edithburgh, D—Operculum <strong>of</strong> Hydroides<br />

tuberculatus, from Australia, Queensland, Lizard Island, E—Operculum <strong>of</strong> Neovermilia globula in tube, from South<br />

Australia, Edithburgh, F—Frontal view <strong>of</strong> Serpula jukesii operculum, from South Australia, Edithburgh, showing<br />

numerous radii (all photos G. Rouse).<br />

18 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 5. General morphology <strong>of</strong> serpulids removed from their tubes. A—Lateral view <strong>of</strong> Protula sp., removed from<br />

tube, Australia, Queensland, Lizard Island (photo G. Rouse), B—Lateral view <strong>of</strong> Apomatus sp., removed from tube, Cape<br />

Verde Islands, SE <strong>of</strong> Cima, 14º57'N, 24º39'W, 165 m, hard bottom with some yellow calcareous sand, van Veen grab,<br />

CANCAP St. 7.030 (photo F. Verbiest), C—Lateral view <strong>of</strong> Serpula vermicularis, removed from tube, Cape Verde<br />

Islands, SW <strong>of</strong> Ilha do Maio, Pta Inglez/Pta Preta, 15º07'N, 23º14'W, 69 m, calcareous nodules, CANCAP Sta. 7.058<br />

(photo F. Verbiest), D—Vermiliopsis glandigerus-pygidialis-complex, missing branchial lobe and operculum (shown in<br />

Fig. 3F), from Australia, Queensland, Lizard Island (photo G. Rouse). Abbreviations: op—operculum, br—branchial<br />

crown, ap—apron, th—thorax, ab—abdomen, tm—thoracic membranes, gp—glandular pad, pd—peduncle, lcl—lateral<br />

collar lobes, vcl—ventral collar lobe, ps—pseudoperculum.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 19


FIGURE 6. Serpulid eyes. A—Spirobranchus corniculatus, details <strong>of</strong> compound eye, Australia, Townsville, 10.1984<br />

(photo R. Smith), B—Pyrgopolon ctenactis, with compound eyes on opercular brim, Netherlands Antilles, Curaçao,<br />

Boca Hulu, SE, 14.09.1970. Reef, little sand; 28–30 m. From limestone and corals, St. 2041C (legit & photo H.A. ten<br />

Hove), C—?Filogranella elatensis, branchial crown lacking eyes, Cape Verde Islands, SW <strong>of</strong> Ilha do Maio, Pta Inglez/<br />

Pta Preta, 15º07'N, 23º13'W, 70 m, calcareous red algae, 1.2 m Agassiz trawl, 25 July1986, CANCAP St. 7.046 (photo F.<br />

Verbiest), D—Serpula jukesii, branchial crown showing single eyespots at base <strong>of</strong> radioles, Australia, Queensland,<br />

Magnetic Island (photo R. Smith), E—Spirobranchus cruciger, showing red compound eye at base <strong>of</strong> radioles, Israel,<br />

Elat in front <strong>of</strong> Marine Biology Laboratory, 1993 (photo U. Frank), F—Protula sp., with red ocellar clusters on radioles,<br />

Cape Verde Islands, S <strong>of</strong> Branco, 16º38'N, 24º41'W, 159 m, 1.2 m Agassiz trawl, CANCAP Sta. 7.152 (photo F.<br />

Verbiest). Arrows point to the eyes. Abbreviation: bl—branchial lobes.<br />

20 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 7. Serpulid morphology (continued). Omphalopomopsis langerhansii, holotype, a—tube fragments (photo H.<br />

Zibrowius), B—Operculum with calcareous endplate and opercular peduncle (photo H. Zibrowius), C—Tabulae in<br />

Pyrgopolon ctenactis tube, the Netherlands Antilles, Bonaire, Santa Barbara (near Hato), 25 June 1970; basis <strong>of</strong> reef, 41<br />

m; from dead and living corals, Sta. 2112Ja (legit & photo H.A. ten Hove), D—SEM showing external tube structures<br />

(ovicells?) in Semivermilia sp., Australia, Queensland, Lizard Island, E—SEM micrograph showing internal tube<br />

structures in Spiraserpula lineatuba from Australia, New South Wales, Sydney, Long Reef, legit Straughan, det. H.A. ten<br />

Hove, exchange from Australian Museum W 4019, ZMA V.Pol. 3450, F—SEM micrograph <strong>of</strong> morphallaxis<br />

(transformation abdominal segments into thoracic ones) during asexual budding in Salmacina from Hawaii, Pearl<br />

Harbor, Middle Loch, rust bucket, Waikiki <strong>of</strong> Ingerson, legit R.E. Brock, 12 April 2000 (ZMA stub H94, photo H.A. ten<br />

Hove).<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 21


Peduncular shape. Normally, the opercular peduncle is lacking pinnules and it is 1.5–3 times thicker than<br />

normal unmodified radioles. One <strong>of</strong> the notable exceptions is the genus Hyalopomatus, with the peduncle as<br />

wide as the normal radioles (Fig. 3C). However, a number <strong>of</strong> serpulids, such as Paraprotis pulchra,<br />

Filogranula exilis, Nogrobs grimaldii, and Bathyditrupa hovei, possess pinnules on the operculum-bearing<br />

peduncle. Filogranula species other than F. exilis typically have smooth peduncles, although Zibrowius<br />

(1968a) mentions that a pinnulated peduncle may occasionally occur. In Nogrobs grimaldii and Bathyditrupa<br />

hovei, an inverse conical opercular ampulla is reinforced with a chitinous endplate as in many serpulins, and<br />

the peduncle, though pinnulated, is very thick and is clearly a modified radiole (Fauvel 1909, Kupriyanova<br />

1993b). A peduncle without pinnules is smooth in most genera, but it is clearly wrinkled in Neovermilia<br />

globula (Fig. 4E) and Janita fimbriata.<br />

In cross-section, the opercular peduncle is most <strong>of</strong>ten cylindrical or slightly sub-cylindrical, but in some<br />

serpulids (e.g., Pomatoceros), it is nearly triangular. It is flattened in Bathyditrupa, Dasynema, Janita,<br />

Neovermilia, and Pomatostegus. The genus Metavermilia has a very characteristic flat ribbon-like peduncle<br />

(Fig. 4C).<br />

Peduncular distal wings. Below the operculum, the peduncle may be modified to form distal wings<br />

(Pomatoceros, Spirobranchus, Galeolaria, Pomatoleios, and Pomatostegus). These wings can be narrow,<br />

spine-shaped (Pomatoceros), or wide and flattened (Galeolaria) and running the entire length <strong>of</strong> the peduncle<br />

(Pomatostegus). In some Spirobranchus species, the wings are rounded, entire, in others they are distally<br />

digitated (Fig. 3E, dw) or crenulated. It is unclear whether small latero-dorsal distal “winglets” found on the<br />

peduncle <strong>of</strong> Dasynema, Neovermilia (Fig. 4E) and the syntypes <strong>of</strong> Vermiliopsis glandigerus are homologous<br />

to the larger wings described above or are caused by flattening <strong>of</strong> the peduncle.<br />

Peduncular proximal wings. Dasynema, Paumotella, Vermiliopsis glandigerus (as observed by us in the<br />

syntypes, though not explicitly mentioned by Gravier 1906), and V. leptochaeta show a long, one-sided lateral<br />

extension along the basal 2/3rds <strong>of</strong> the peduncle, which also might be termed a wing. In Vermiliopsis<br />

striaticeps, the presence <strong>of</strong> this proximal wing appears to be size related, being absent in small specimens, and<br />

present in large ones. The character is not always mentioned in existing descriptions. However, being<br />

unpaired and basal, the proximal wing most probably is not homologous with the distal ones discussed above.<br />

The collar and the thoracic membranes<br />

Collar. The base <strong>of</strong> the branchial crown <strong>of</strong> sabellids and serpulids is surrounded by a membranous peristomial<br />

collar, which is absent in sabellariids. The collar in serpulids is usually trilobed, sub-divided into one medioventral<br />

and two latero-dorsal lobes (Fig. 5D, lcl, vcl). Commonly, the medio-ventral lobe is wider and longer<br />

than the lateral ones. The medio-ventral lobe may have an additional incision as in Floriprotis and Tanturia,<br />

thus making the collar quadrilobed. Also, the ventral lobe may bear an additional tongue with 2 lateral<br />

incisions, thus making the collar pentalobed as in Janita fimbriata. Rarely, the serpulid collar is non-lobed as<br />

in Ditrupa, Ficopomatus, Paraprotis, and Bathyditrupa. The collar edge is normally smooth in most serpulids<br />

(see note under thoracic membranes).<br />

Tonguelets. Small tongue-shaped outgrowths, tonguelets, located between the dorso-lateral and ventral<br />

lobes <strong>of</strong> the collar are present in Spirobranchus, Pyrgopolon (ten Hove 1970, 1973 fig. 35, as Sclerostyla),<br />

Pomatoceros (termed lappets: Thomas 1940 pl. I fig. 5) and Pomatoleios. According to ten Hove (1973), they<br />

are not found in Ditrupa, Hydroides, Ficopomatus, Pomatostegus, Serpula, and Vermiliopsis. Thomas (1940:<br />

9, 39) hypothesizes a possible sensory function, since a nerve is seen to enter each tonguelet.<br />

Collar segment. In almost all Sabellida, the first chaetiger is the collar segment lacking neuropodial<br />

uncini and bearing only notopodial chaetae (termed collar chaetae). It appears that uncini are secondarily lost<br />

in the collar segment, the biramous condition being original in Polychaeta and Oligochaeta. Mainly because<br />

the first chaetiger in Ditrupa bears both chaetae and uncini, ten Hove & Smith (1990: 103) argue that it is not<br />

the collar segment, but actually the second segment. Secondary loss <strong>of</strong> collar chaetae has been reported to<br />

22 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


occur incidentally in Pomatoceros, Spirobranchus, and Pyrgopolon (ten Hove 1970, 1973, as Sclerostyla).<br />

Collar chaetae are absent in the genera Ditrupa (see above), Marifugia, Placostegus, Pomatoleios, and<br />

Rhodopsis), however, juvenile specimens <strong>of</strong> Pomatoleios sometimes do bear collar chaetae. Placostegus spp.<br />

have a girdle <strong>of</strong> ocelli (Fig. 1F) resembling a compound eye in the first segment (e.g., Langerhans 1884: 275).<br />

Thoracic membranes. The latero-dorsal collar lobes continue into the thoracic membranes (Fig. 5C, D,<br />

tm), a feature found only in serpulids, thus, the presence <strong>of</strong> thoracic membranes is a synapomorphy for the<br />

family (ten Hove 1984 fig. 4). It should be noted that spirorbin taxonomists (e.g., Knight-Jones & Knight-<br />

Jones 1977 fig. 1b) do not distinguish between thoracic membranes and the collar, they use the term “collar”<br />

collectively for both. The degree <strong>of</strong> thoracic membrane development varies significantly within the<br />

<strong>Serpulidae</strong>. The membranes may be very short, ending at the first (Ditrupa, Josephella, Rhodopsis) or the<br />

second thoracic chaetiger (Chitinopoma, Pseudovermilia, Semivermilia). In some serpulids thoracic<br />

membranes reach the mid-thorax (e.g., Pomatostegus, Vermiliopsis (Fig. 5D, tm), some Metavermilia), while<br />

in others they continue throughout the length <strong>of</strong> the thorax and end posterior to the last thoracic segment<br />

(some Spiraserpula and Metavermilia spp.). Thoracic membranes continuing past the end <strong>of</strong> the thorax <strong>of</strong>ten<br />

fuse over the first abdominal segment(s), forming a ventral apron (e.g., Serpula (Fig. 5C, ap), Hydroides,<br />

Protula (Fig. 5A, ap), Galeolaria, Ficopomatus, Spirobranchus, and Pomatoceros). Aprons tend to be absent<br />

in juvenile individuals <strong>of</strong> a species. Ben-Eliahu & Fiege (1996) regard the presence <strong>of</strong> an apron to be a full<br />

expression <strong>of</strong> a size-related character in Protis.<br />

In Serpulinae, margins <strong>of</strong> thoracic membranes are fused dorsally only in Ficopomatus uschakovi. In<br />

Spirorbinae the fused condition is more common, occurring in the nominal genera Neodexiospira Pillai, 1970,<br />

Romanchella Caullery & Mesnil, 1897, and Velorbis Knight-Jones & Knight-Jones, 1995. The genus<br />

Floriprotis shows pockets on the inside <strong>of</strong> the thoracic membranes (see remarks Floriprotis).<br />

The thorax<br />

Number <strong>of</strong> chaetigers. The number <strong>of</strong> thoracic chaetigers is fairly constant in most serpulid taxa and<br />

traditionally constitutes an important character in serpulid taxonomy. In most genera, the thorax <strong>of</strong> adults<br />

consists <strong>of</strong> 7 thoracic chaetigerous segments (Fig. 5A–D), including the collar segment lacking uncini (thus, 6<br />

thoracic uncinigerous segments), although juvenile specimens may have fewer chaetigers (e.g., Semivermilia<br />

cribrata and S. pomatostegoides with 5–6 chaetigers, present paper). Some serpulid taxa have 5 chaetigerous<br />

segments (Bathyditrupa, Josephella, Tanturia), 6 (Laminatubus, Hyalopomatus (Fig. 3C)), 9 (Protula setosa,<br />

?Filogranella prampramiana) or even more (Filogranella, Fig. 18A, see below). In spirorbins the number <strong>of</strong><br />

thoracic chaetigers generally varies from 3 to 5 (Knight-Jones & Knight-Jones 1977, Bianchi 1981), but<br />

Neomicrorbis (Fig. 29A) has 5–6 chaetigers. Sabellidae usually display a distinct constancy <strong>of</strong> 8 thoracic<br />

segments, even though deviations from this number have been noted as an intraspecific phenomenon<br />

(Fitzhugh 1989).<br />

Some serpulid taxa have a variable number <strong>of</strong> thoracic chaetigers, such as Filograna and Salmacina (6–12<br />

segments); Filogranella (11–14); Nogrobs, Rhodopsis (4–6); and Spiraserpula (5–11). This situation can be a<br />

result <strong>of</strong> asexual reproduction, where numbers <strong>of</strong> thoracic chaetigers in clones <strong>of</strong> Salmacina are congruent<br />

with those <strong>of</strong> their ancestors, as demonstrated by Vannini & Ranzoli (1961). Moreover, some genera with an<br />

otherwise fixed number <strong>of</strong> thoracic segments (7) occasionally show species with a variable number <strong>of</strong><br />

thoracic segments: for example, three Hydroides species (H. bisectus and 2 as yet undescribed species) have<br />

7–9 chaetigers (Imajima & ten Hove 1989: 13), three species <strong>of</strong> Serpula (S. israelitica, nanhaiensis, oshimae)<br />

have 9-12, while Vermiliopsis notialis has only 5 thoracic chaetigers.<br />

Thoracic chaetae. The terminology relating to the structure <strong>of</strong> serpulid chaetae has been inconsistent.<br />

Various interpretations <strong>of</strong> their shape by earlier taxonomists are most likely due to the fact that many details <strong>of</strong><br />

chaetal structure are near the limits <strong>of</strong> the optical resolution <strong>of</strong> a compound microscope. In the last two<br />

decades, wide use <strong>of</strong> scanning electron microscopy in zoological research allowed clarification <strong>of</strong> even the<br />

smallest chaetal structures.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 23


Notochaetae <strong>of</strong> thoracic chaetigerous segments are usually termed simple capillary and narrow limbate<br />

(or hooded) chaetae in all serpulids and sabellids. Under the high magnification <strong>of</strong> a compound microscope a<br />

distal hood (or limbus) looks like a transparent finely striated blade structure (e.g., Fig. 33A, C). However,<br />

with SEM it is obvious that the limbus (or hood) in fact consists <strong>of</strong> a large number <strong>of</strong> fibers, more loosely<br />

packed than in the shaft, ending in tiny needle-shaped teeth (e.g., Figs 37A, 50A). Moreover, the usual<br />

thoracic chaetae (including collar chaetae, if any) are all limbate, but <strong>of</strong> two sizes: the smaller being called<br />

capillary, but clearly “limbate” as well. We have not specified this again in the generic diagnoses, and referred<br />

to them as “limbate”.<br />

In posterior thoracic segments (usually from the third backwards), these limbate chaetae (<strong>of</strong> two sizes) can<br />

be supplemented in some species by special chaetae termed “Apomatus” chaetae (Figs 10A, 11B, 12E, 14C,<br />

18C, 19B, 24C, 25A, 28B, 30C, 33B, 37E, 41A, 44B). These chaetae are typically sigmoid to sickle-shaped<br />

with a proximal denticulate zone (looking like fine striation under a compound microscope) and a long flat<br />

curved blade with a row <strong>of</strong> blunt regular teeth. In the spirorbin literature (e.g., Knight-Jones 1981) sigmoid<br />

chaetae <strong>of</strong> both thorax and abdomen are called “sickle-chaetae”. However, the proximal denticulate zone is an<br />

order <strong>of</strong> magnitude shorter in abdominal sigmoid chaetae; therefore we propose to restrict “sickle-chaetae” to<br />

abdominal chaetae, to discern them from the thoracic Apomatus chaetae. Sometimes these Apomatus chaetae<br />

are almost straight.<br />

The bundle <strong>of</strong> collar chaetae may contain special chaetae in addition to simple limbate ones. These special<br />

chaetae have a more-or-less distinct boss at the base <strong>of</strong> the distal limbate blade. Like the “hoods” <strong>of</strong> the<br />

limbate blades, the basal bosses are made <strong>of</strong> fibres, ending in tips forming teeth. Depending on the number<br />

and size <strong>of</strong> the teeth in the boss, four types <strong>of</strong> special collar chaetae have been distinguished in serpulids.<br />

1. Bayonet-type chaetae generally have one or two (sometimes more) large proximal bosses at the base <strong>of</strong> the<br />

distal limbate zone: Serpula (Fig. 46A), Spiraserpula, Crucigera (Fig. 13A), Hydroides (Fig. 23A), and<br />

Floriprotis (Fig. 20A), sometimes small auxiliary teeth present.<br />

2. Fin-and-blade chaetae have the basal boss (“fin”) made <strong>of</strong> relatively few teeth <strong>of</strong> intermediate size; the<br />

basal fin may or may not be separated by a toothless zone (a gap) from the distal blade: Chitinopoma (Fig.<br />

11A), Chitinopomoides (Fig. 12A), Filograna (Fig. 17A), Filogranula (Fig. 19A).<br />

3. Spirobranchus-type chaetae have a proximal boss consisting <strong>of</strong> very numerous tiny hair-like spines:<br />

Spirobranchus (Fig. 47A) and Laminatubus (Fig. 26A).<br />

4. Ficopomatus has unusual collar chaetae, with coarse curved teeth alongside the distal part <strong>of</strong> chaetae (Fig.<br />

16A).<br />

Thoracic uncini. The uncini are arranged side by side in a single row in a torus, transverse relative to the<br />

long axis <strong>of</strong> the body, with the dentate distal edge <strong>of</strong> the uncini directed anteriorly. Thoracic uncinigerous tori<br />

generally are positioned along the lateral side <strong>of</strong> the thorax, but in some taxa they are widely separated in<br />

front, gradually approaching one another posteriorly, so that the posterior thoracic tori may touch each other,<br />

forming a triangular depression on the ventral side <strong>of</strong> the thorax. In other taxa (e.g., Neovermilia globula)<br />

thoracic tori are completely shifted to the ventral part <strong>of</strong> the thorax. Some species <strong>of</strong> Protula may completely<br />

lack thoracic uncini (e.g., P. bispiralis and, occasionally, P. intestinum as well (Fauvel 1927)).<br />

Serpulid uncini are flattened comb-shaped structures with a number <strong>of</strong> curved teeth on their edge. Each<br />

uncinus in our view possesses four characters: 1) the number <strong>of</strong> teeth visible in pr<strong>of</strong>ile (from 4 to well over<br />

30); 2) the (maximum) number <strong>of</strong> teeth in a transverse row; 3) the shape <strong>of</strong> the anterior-most tooth (“fang” or<br />

“peg”); 4) overall shape <strong>of</strong> the edge <strong>of</strong> the uncinus. Depending on the number <strong>of</strong> vertical rows <strong>of</strong> teeth in the<br />

uncini they are termed saw-shaped (one row <strong>of</strong> teeth along the edge, e.g., thorax Hydroides), saw-to-raspshaped<br />

(from 1 tooth on edge distally to a row <strong>of</strong> 5 teeth proximally above the peg, e.g., Filogranula, dental<br />

formula P:5:3:3:2:1:1:1:1:1:1:1:1:1, Fig. 19C, Semivermilia) or rasp-shaped (several rows <strong>of</strong> teeth along the<br />

entire edge, e.g., Hyalopomatus) (ten Hove 1975, ten Hove & Wolf 1984). In some taxa, thoracic uncini<br />

normally have teeth in a single row (saw-shaped, e.g., Figs 23B, 38B, 46B). However, towards the end <strong>of</strong> a<br />

row uncini occasionally may change from saw-shaped to saw-to-rasp-shaped, in which case the distal tooth<br />

(teeth) may be single, while the teeth proximal to the fang may be in 2–3 rows or uncini even change to<br />

24 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


completely rasp-shaped (Knight-Jones & Fordy 1979 figs 73, 77, for spirorbins). Also, juvenile specimens <strong>of</strong><br />

otherwise “saw-shaped” species may show rasp-shaped uncini (see also Ben-Eliahu & Fiege 1996). Finally,<br />

the shape <strong>of</strong> the uncini may change from saw-shaped to rasp-shaped from the anterior to the posterior thorax<br />

(this is a more or less normal situation in the abdomen). This especially is the case for juvenile specimens <strong>of</strong><br />

otherwise saw-shaped taxa because posterior chaetigers are formed later in ontogeny; however, it may be a<br />

specific character in other taxa as well.<br />

The shape (pr<strong>of</strong>ile) <strong>of</strong> a serpulid uncinus is roughly triangular or rectangular; these uncini never have the<br />

long proximal handles typical for some sabellids (Fitzhugh 1989). A serpulid uncinus roughly consists <strong>of</strong> the<br />

outer surface with the teeth, the lower base embedded into the torus, the anterior side below the main fang or<br />

peg (the breast sensu Fitzhugh 1989), and the posterior side (straight as in Spirobranchus, concave as in<br />

Protula, convex as in Serpula). The shape <strong>of</strong> the uncinus appears to be a character related to the number <strong>of</strong><br />

teeth, and it is difficult to observe unless the uncinus is removed from the tissue and mounted in a flat<br />

position.<br />

The shape <strong>of</strong> the anterior tooth <strong>of</strong> uncini is believed to be <strong>of</strong> taxonomic importance (e.g., ten Hove 1975);<br />

this structure is usually referred to in earlier publications as being either simple or bifurcate. However, SEM<br />

examinations here reveal that ultrastructure <strong>of</strong> the anterior tooth is very variable. The serpulid anterior tooth is<br />

simple pointed (acute) and termed a fang in such genera as, for example, Filograna (Fig. 17B), Hydroides<br />

(Fig. 23B), Neovermilia (Fig. 30A, B), Salmacina (Fig. 44C), and Serpula (Fig. 46B).<br />

However, what -depending on the orientation <strong>of</strong> the uncini on the slide- under a compound microscope<br />

appears to be a bifurcate or blunt anterior tooth may in fact be gouged, that is, a bluntly truncate flattened<br />

structure with lateral edges curved underneath (e.g., Pomatoceros, Fig. 35B, Pseudovermilia, Fig. 41B, and<br />

Spirobranchus, Fig. 47C). Examination with SEM shows that blunt (not pointed) anterior teeth <strong>of</strong> serpulid<br />

uncini may also be either flat, rounded, spatulate (as in Galeolaria, Fig. 21 B, C), rectangular or even<br />

trapezoidal in appearance (Ficopomatus, Fig. 16D), bilobed to quadrilobed (as in Hyalopomatus marenzelleri,<br />

Fig. 22B, C); or truncated, rounded or indented anteriorly (Chitinopoma Fig. 11C, Pyrgolopon, Fig. 42A, B,<br />

Vermiliopsis, Fig. 49C); or elongated, blunt, rounded to squarish, with transverse rows <strong>of</strong> teeth continuing<br />

over almost its entire length (Apomatus, Protula, Fig. 8A, 39A). For all these “wedge” shaped, not acute<br />

anterior teeth, we propose the collective term peg.<br />

The abdomen<br />

Number <strong>of</strong> segments. The abdomen consists <strong>of</strong> numerous segments, the number <strong>of</strong> which is very variable<br />

depending on size and age; it can be as low as 10 in small spirorbins and serpulins to over 200 segments in<br />

large species <strong>of</strong> Spirobranchus (e.g., S. corniculatus, S. giganteus) and Protula (P. bispiralis, P. pacifica). The<br />

maximal number <strong>of</strong> abdominal chaetigers is a function <strong>of</strong> age, but may well be genetically defined too.<br />

Several anterior abdominal segments may lack chaetae and uncini, forming a so called achaetous<br />

abdominal zone. Some taxa have a glandular zone on the dorsal side <strong>of</strong> the last abdominal segments called the<br />

posterior glandular pad (Fig. 5D, gp). Its function is unknown, it might be involved in closing <strong>of</strong>f damaged<br />

posterior tube parts, though a positive correlation between the glandular pad and occurrence <strong>of</strong> tabulae (see p.<br />

10, Tube shapes) has not been found. The pygidium is usually bilobed and bears a terminal slit-like anus.<br />

Abdominal chaetae. After the achaetous region, if present, each anterior and middle abdominal segment<br />

bears a dorsal uncinigerous torus and a ventral bundle <strong>of</strong> chaetae. Abdominal chaetae are normally less<br />

numerous per bundle than the thoracic ones. The simplest forms <strong>of</strong> abdominal chaetae are capillary (Fig.<br />

23D), nearly capillary (e.g., Hyalopomatus, Fig. 22D), or acicular (Paumotella, Fig. 33F).<br />

The term “trumpet-shaped chaetae”, commonly used by various authors to describe the abdominal chaetae<br />

in the genera Crucigera (Fig. 13D), Hydroides (Fig. 23C), Serpula (Fig. 46D) and Spiraserpula, is<br />

misleading. Although the distal parts <strong>of</strong> these chaetae, when examined under a compound microscope, are<br />

widened into what in pr<strong>of</strong>ile looks like a chalice or trumpet edged with apparently two rows <strong>of</strong> thin teeth,<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 25


examination with SEM shows that these chaetae are not hollow as the name might suggest, but rather flat,<br />

with a single row <strong>of</strong> marginal acute teeth. The second row <strong>of</strong> teeth observed under a compound microscope is<br />

an optical (refractory) illusion. Therefore, following ten Hove & Jansen-Jacobs (1984), where a more<br />

extensive discussion can be found, they are termed here flat trumpet-shaped chaetae.<br />

Truly trumpet-shaped chaetae, however, are distally hollow, with two parallel rows <strong>of</strong> sharp denticles,<br />

extending into a long lateral spine; they may be smoothly bent (e.g., in Ficopomatus Fig. 16C; Galeolaria Fig.<br />

21E), or abruptly bent (e.g., in Pomatoceros Figs 35C, D; Spirobranchus Fig. 47D). Fauvel (1927) used the<br />

term “en cornet comprimé à longue pointe latérale” for the latter, but used “geniculate chaetae” for<br />

Ficopomatus. In dictionaries, geniculate generally is defined as “having a knee-like joint” or “bent sharply”.<br />

In its first meaning this term is slightly misleading for this type <strong>of</strong> chaetae since a joint between the proximal<br />

and distal part <strong>of</strong> the chaetae is absent in all serpulid chaetae. “Bent sharply” applies to part <strong>of</strong> these<br />

abdominal chaetae. Again, it is extremely difficult to see with a compound microscope whether such chaetae<br />

have a single or double row <strong>of</strong> teeth bordering the blade (Fauvel 1927: 348; our observations). Therefore it is<br />

not surprising that in older literature true trumpet chaetae have been lumped together with the completely<br />

different flat geniculate abdominal chaetae. For instance Dew (1959) used the same term “geniculate” for the<br />

abdominal chaetae <strong>of</strong> Galeolaria and Neovermilia globula (as Vermiliopsis), both with, in our terminology,<br />

“true trumpets”, as well as for Metavermilia acanthophora (as Vermiliopsis), with “narrow flat trumpets”.<br />

Bianchi (1981) generally used “genicolate” consistently for truly trumpet chaetae, but also for Josephella,<br />

which has flat narrow geniculate abdominal chaetae as defined below.<br />

In reality, “geniculate” chaetae in our narrowed definition (flat geniculate, not hollow) possess a capillary<br />

proximal shaft and a bent blade, sometimes only bent slightly so (Day 1967: 799, geniculate setae have<br />

gradually tapering blades set at a slight angle to the shaft); the blade has a single row <strong>of</strong> blunt rounded to sharp<br />

denticles along its edge. These “flat geniculate” chaetae are not uniform in their structure and depending on<br />

the shape <strong>of</strong> the distal blade the following types can be distinguished:<br />

a) sickle-shaped: fairly straight to weakly sickle-shaped abdominal chaeta with long concave edge bordered<br />

by very regular rounded teeth (“en faucille” sensu Fauvel 1927; e.g., Apomatus, Fig. 8E, Ben-Eliahu &<br />

Fiege (1996) fig. 9D, and Protula, Fig. 39B); however, see ten Hove & Pantus (1985).<br />

b) flat triangular, with a knee-like bend and with dentition on the outside <strong>of</strong> a wide triangular distal blade (e.g.,<br />

Chitinopoma, Fig. 11E; Filogranula, Fig. 19E).<br />

c) flat narrow geniculate, as above b), but with the blade not so sharply bent and more elongated (e.g.,<br />

Filograna, Fig. 17C; Josephella, Fig. 25D; Salmacina, Fig. 44D; Vermiliopsis, Figs 49E, F).<br />

d) retro-geniculate chaeta, as c) above, but with a recurved hook on the outside (anterior side) <strong>of</strong> the knee,<br />

directed proximally (e.g., Protula balboensis Monro, 1933 and Neomicrorbis, Fig. 29F).<br />

Abdominal chaetae usually become progressively longer towards the pygidium, and the posterior<br />

abdominal chaetae tend to be either true capillaries (e.g., Hydroides, Fig. 23D) or elongated and “unbent”<br />

modified chaetae. If capillary chaetae <strong>of</strong> the most posterior abdominal segments are at least an order <strong>of</strong><br />

magnitude longer than the chaetae <strong>of</strong> anterior and middle abdominal segments, they are referred to as “long<br />

capillary chaetae”.<br />

Abdominal uncini. In lateral view, anterior abdominal uncini in serpulids are usually similar to thoracic<br />

ones, but may be slightly smaller. However, the shape <strong>of</strong> the edge <strong>of</strong> the uncini (saw- and/or rasp- shaped)<br />

may vary strongly according to their position in the abdomen. Zibrowius (1968a) suggested that presence <strong>of</strong><br />

rasp-shaped uncini in the abdomen was <strong>of</strong> prime importance for generic classification <strong>of</strong> serpulids. However,<br />

rasp-shaped uncini are almost invariably found in the most posterior and thus, in the youngest, segments.<br />

Since polychaetes increase body length by addition <strong>of</strong> segments posteriorly (e.g., Parapar et al. 1993), this<br />

uncinal variability implies that serpulids can shed or resorb their juvenile rasp-shaped uncini and replace them<br />

with saw-to-rasp-shaped uncini and finally with saw-shaped adult uncini as they grow. Thus, when examining<br />

specimens, consideration should be taken <strong>of</strong> their ontogenetic state, the size <strong>of</strong> the individual.<br />

26 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Valid genera with diagnoses and lists <strong>of</strong> species<br />

The <strong>Serpulidae</strong> sensu lato, but excluding spirorbins, currently contain about 350 nominal species in 46 “valid”<br />

genera (see below); <strong>of</strong> which 19 include only one species (e.g., Chitinopomoides, Paumotella, Microprotula)<br />

and/or are known from one or two records only. Others (e.g., Bathyditrupa, Bathyvermilia, Laminatubus) are<br />

found only in abyssal locations. Whether serpulid genera constitute monophyletic groups remains unknown,<br />

so no assumption <strong>of</strong> their monophyly has been made here. Instead, the serpulid taxa that are currently<br />

recognized as valid by us are listed below; in some cases, considered as “valid” only because some have not<br />

been formally synonymized or are too poorly described to synonymize here. A list <strong>of</strong> invalid serpulid genera<br />

with their synonyms is given separately. Each generic diagnosis is accompanied by the list <strong>of</strong> “valid” species<br />

with notes on their distribution. Generic remarks concern the current state <strong>of</strong> the taxonomy and major<br />

taxonomic studies.<br />

1. Apomatus Philippi, 1844<br />

(Fig. 8)<br />

Type-species: Apomatus ampulliferus Philippi, 1844<br />

Number <strong>of</strong> species: 7<br />

Tube white, opaque, circular in cross-section, keels and collar-like rings absent. Granular overlay may be<br />

present. Operculum a s<strong>of</strong>t membranous vesicle without endplate borne on unmodified pinnulated radiole.<br />

Opercular constriction may be present. Pseudoperculum may be present on unmodified radiole. Arrangement<br />

<strong>of</strong> radioles in semi-circles (may be up to ¾ <strong>of</strong> a circle), maximum number up to 40 per lobe in larger species.<br />

Inter-radiolar membrane present. Branchial eyes present in the form <strong>of</strong> ocellar clusters. Stylodes absent.<br />

Mouth palps present. 7 thoracic chaetigerous segments. Collar trilobed with smooth edge. Thoracic membrane<br />

long, forming ventral apron across anterior abdominal segments. Tonguelets between ventral and lateral collar<br />

lobes absent. Collar chaetae limbate, <strong>of</strong> two sizes (thus, in the classical terminology capillary and limbate).<br />

Apomatus chaetae present (Fig. 8C, D). Thoracic uncini saw-to-rasp-shaped with approximately 30 teeth in<br />

pr<strong>of</strong>ile, up to 3 (exceptionally 4) teeth in a row above and continuing onto peg; anterior peg very long, blunt,<br />

almost rectangular (Fig. 8A, B). Ventral thoracic triangular depression absent. Abdominal chaetae sickleshaped<br />

with finely denticulate blades (Fig 8E, F); uncini rasp-shaped with approximately 30 teeth in pr<strong>of</strong>ile.<br />

Short achaetous anterior abdominal zone present. Posterior capillary chaetae present. Posterior glandular pad<br />

present.<br />

Remarks. A controversy exists whether Protula and Apomatus should be regarded as separate genera (ten<br />

Hove & Pantus 1985) or synonymized under Protula (Kupriyanova & Jirkov 1997). The genera are separated<br />

mainly by the presence (Apomatus) or absence (Protula) <strong>of</strong> a s<strong>of</strong>t vesicular operculum on an unmodified<br />

radiole. Hanson’s (1948a) study on the pattern <strong>of</strong> blood vessels showed that P. tubularia, A. ampulliferus, and<br />

A. similis are similar to each other, but dissimilar to P. intestinum. She proposed that these genera should be<br />

fused. However, ten Hove & Pantus (1985) studied over a 100 fresh specimens and found consistent<br />

differences in blood-vessel patterns between operculate and non-operculate specimens. They suggested that<br />

Protula and Apomatus are valid genera and that Hanson (1948a) mistook an Apomatus specimen that<br />

incidentally lost its operculum for P. tubularia. This controversy is yet to be resolved, probably with the aid <strong>of</strong><br />

molecular genetics.<br />

1. Apomatus ampulliferus Philippi, 1844 Mediterranean, Atlantic<br />

2. Apomatus elisabethae McIntosh, 1885 New Zealand<br />

3. Apomatus enosimae Marenzeller, 1885 South Japan, South China Sea<br />

4. Apomatus geniculata (Moore & Bush, 1904), incl. A. timsii, North Pacific, Japan to California<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 27


FIGURE 8. SEM micrographs <strong>of</strong> chaetae in Apomatus ampulliferus. France, Marseille, 200 m, legit F.J.A. Pantus, ZMA<br />

V.Pol. 3812. A—uncini <strong>of</strong> 4 th thoracic chaetiger, B—anterior abdominal uncini, details <strong>of</strong> peg, C—details <strong>of</strong> Apomatus<br />

chaetae in 7 th thoracic chaetiger, D—details <strong>of</strong> Apomatus chaetae in 4 th thoracic chaetiger, E—middle abdominal chaetae,<br />

F—details <strong>of</strong> E.<br />

28 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


5. Apomatus globifer Théel, 1878, Arctic, Norway; probably see A. similis<br />

6. Apomatus lilliei Benham, 1927, North Cape, New Zealand<br />

7. Apomatus similis Marion & Bobretzky, 1875, Mediterranean Atlantic; probably includes A. globifer<br />

2. Bathyditrupa Kupriyanova, 1993b<br />

(Fig. 9)<br />

Type-species: Bathyditrupa hovei Kupriyanova, 1993b<br />

Number <strong>of</strong> species: 1<br />

Tube free, curved but not coiled, white, opaque, rectangular in cross-section; collar-like rings absent. Granular<br />

overlay absent. Operculum inverse conical, with brown chitinous endplate, flat or slightly concave. Opercular<br />

ampulla gradually merges (constriction absent) into thick, rather triangular peduncle with pinnules, but<br />

without wings. Peduncle inserted as the second dorsal radiole on one side. Pseudoperculum absent.<br />

Arrangement <strong>of</strong> radioles semi-circular, up to 6 per lobe. Branchial eyes not observed. Inter-radiolar membrane<br />

and stylodes absent. Mouth palps not observed. 5 thoracic chaetigerous segments. Collar non-lobed, short,<br />

with entire edge. Tonguelets absent. Thoracic membranes short, ending at second thoracic segment. Collar<br />

chaetae limbate (Fig. 9A). Apomatus chaetae absent (Fig. 9B). Thoracic uncini saw-to-rasp-shaped, with up to<br />

4 (?6) teeth in a row above peg, with about 15 curved teeth in a row in pr<strong>of</strong>ile (Fig. 9D). Anterior peg bifurcate<br />

in high-power microscopy, but clearly gouged when studied by SEM (Fig. 9E). Thoracic triangular depression<br />

absent. Abdominal chaetae all capillary (Fig. 9C), posterior ones slightly longer; abdominal uncini raspshaped<br />

(Fig. 9F). Achaetous anterior abdominal zone short, just one or two segments. Posterior glandular pad<br />

absent.<br />

Remarks. This abyssal species had only been reported from the Kurile-Kamchatka trench (Kupriyanova<br />

1993b). We studied 2 additional specimens from the North Pacific Ocean, collected by the R/V Vityaz, Sta.<br />

3151, near the Emperor Seamounts, 44°28'3'' N 170°07'0''E, grab, 5237 m, ZMA V.Pol. 5326; Sta. 4370, NE<br />

<strong>of</strong>f Hawaii, 26°04'2'' N, 153°49'3'' W, grab, 6050 m, ZMA V.Pol. 5325. The characteristic feature <strong>of</strong> the genus<br />

is a free, unattached tube similar to that <strong>of</strong> Ditrupa, but rectangular in cross-section and without an outer<br />

hyaline layer (see The tube, p. 7). It is probably synonymous with Nogrobs fide Jäger (2004: 140), see<br />

remarks below (p. 69).<br />

Bathyditrupa hovei Kupriyanova, 1993b, Kurile-Kamchatka trench and North Pacific Ocean; abyssal.<br />

3. Bathyvermilia Zibrowius, 1973a<br />

(Fig. 10)<br />

Type-species: Bathyvermilia challengeri Zibrowius, 1973a<br />

Number <strong>of</strong> species: 5.<br />

Tube white, opaque, circular in cross-section, longitudinal keel may be present. Collar-like rings present.<br />

Granular overlay absent. Operculum sub-globular, with simple flat to slightly conical chitinous endplate,<br />

which may be encrusted by calcareous deposit. Peduncle cylindrical, smooth or wrinkled, without distal<br />

wings; inserted as second dorsal radiole on one side, constriction present. Pseudoperculum absent.<br />

Arrangement <strong>of</strong> radioles in semi-circles, up to 35 per lobe. Inter-radiolar membrane absent. Branchial eyes not<br />

observed. Stylodes absent. Mouth palps may be present. 7 thoracic chaetigerous segments. Collar trilobed<br />

(may be non-lobed) with entire edge, tonguelets absent. Thoracic membranes variable, ending at 2 nd —7 th<br />

thoracic segment. Collar chaetae limbate. Apomatus chaetae present (Fig. 10A). Thoracic uncini saw-shaped<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 29


(Fig. 10B), with few teeth (6 to 10). Anterior fang simple, pointed. Abdominal chaetae flat, narrow geniculate<br />

with blunt teeth (Fig. 10D); abdominal uncini saw-shaped, except in a few far posterior segments, with raspshaped<br />

uncini (Fig. 10C). Short achaetous anterior abdominal zone present. Posterior capillary chaetae<br />

present. Posterior glandular pad present.<br />

FIGURE 9. SEM micrographs <strong>of</strong> chaetae in Bathyditrupa hovei, ZMA V.Pol.5325 . A—collar chaetae, B—fourth<br />

bundle <strong>of</strong> thoracic chaetae, C—anterior abdominal chaeta, D—third row <strong>of</strong> thoracic uncini, E—gouged pegs <strong>of</strong> posterior<br />

thoracic uncini from below, F—first row <strong>of</strong> abdominal uncini.<br />

30 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 10. SEM micrographs <strong>of</strong> chaetae in Bathyvermilia kupriyanovae. USA, <strong>of</strong>f California, 34°41' N, 123°08' W,<br />

4100 m, legit K.L. Smith, R/V New Horizon, det. H.A. ten Hove, Natural History Museum <strong>of</strong> LA County, USA.<br />

A—details <strong>of</strong> Apomatus chaetae <strong>of</strong> 4 th thoracic chaetiger, B—uncini <strong>of</strong> 4 th thoracic chaetiger, C—posterior abdominal<br />

uncini, D—detail <strong>of</strong> middle abdominal chaeta.<br />

Remarks. Zibrowius (1973a) established the genus Bathyvermilia for the deep-water Vermiliopsis<br />

langerhansi Fauvel, 1909 and the newly described Bathyvermilia challengeri (new name for Placostegus<br />

ornatus not Mörch, 1863 but sensu McIntosh, 1885). Later, three species (see list below) were added.<br />

Zibrowius (1973a) provided a table summarizing the differences for the genera Bathyvermilia, Metavermilia,<br />

Pseudovermilia, and Vermiliopsis, previously all united under Vermiliopsis.<br />

1. Bathyvermilia challengeri Zibrowius, 1973a, Mid Pacific; abyssal<br />

2. Bathyvermilia islandica Sanfilippo, 2001, Iceland; bathyal-abyssal<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 31


3. Bathyvermilia kupriyanovae Bastida-Zavala, 2008, <strong>of</strong>f California; bathyal<br />

4. Bathyvermilia langerhansi (Fauvel, 1909), Atlantic; bathyal-abyssal<br />

5. Bathyvermilia zibrowiusi Kupriyanova, 1993b, Kurile-Kamchatka trench; abyssal.<br />

4. Chitinopoma Levinsen, 1884<br />

(Fig. 11)<br />

Type-species: Chitinopoma fabricii Levinsen, 1884 = junior synonym <strong>of</strong> Vermilia serrula Stimpson, 1854.<br />

Number <strong>of</strong> species: 3 (possibly 4)<br />

Tube white, opaque, with single longitudinal keel, triangular or sub-triangular in cross-section, with brood<br />

chambers. Hyaline granular overlay absent. Operculum inverse conical, with chitinous endplate. Peduncle<br />

cylindrical, smooth, without distal wings, constriction present; inserted as second dorsal radiole on one side.<br />

Pseudoperculum absent. Radioles arranged in semi-circles, up to 7 radioles per lobe, inter-radiolar membrane<br />

absent. Branchial eyes and stylodes absent. Mouth palps not observed. 7 thoracic chaetigerous segments.<br />

Collar trilobed with entire edge, tonguelets between ventral and lateral collar lobes absent. Thoracic<br />

membranes short, ending at second thoracic chaetiger. Collar chaetae fin-and-blade, fin well separated from<br />

blade, and limbate (Fig. 11A). Apomatus chaetae present (Fig. 11B). Thoracic uncini saw-shaped, with about<br />

12 teeth (Fig. 11C); anterior peg simple, rounded. Thoracic triangular depression absent. Abdominal chaetae<br />

with large flat triangular denticulate blade (Fig. 11E); uncini rasp-shaped (Fig. 11D). Achaetous anterior<br />

abdominal zone absent. Posterior capillary chaetae absent. Posterior glandular pad absent.<br />

Remarks. The partial revision <strong>of</strong> the genus by Zibrowius (1969a) showed that the brooding Chitinopoma<br />

serrula is a species widely distributed in the Arctic and boreal North Atlantic. Later, brooding C. arndti<br />

Zibrowius, 1983 was added and C. rzhavskii (Kupriyanova, 1993a) was transferred from Filogranula<br />

(Kupriyanova et al. 2001). However, various forms <strong>of</strong> brooding <strong>of</strong> embryos, the main character distinguishing<br />

Chitinopoma from Filogranula, are very common for small serpulid species (Kupriyanova et al. 2001).<br />

Additional studies are needed to determine whether these two genera should be synonymized. Probably the<br />

nominal taxon Ficopomatus capensis Day, 1961 belongs here as well (fide ten Hove & Weerdenburg 1978:<br />

101).<br />

1. Chitinopoma arndti Zibrowius, 1983, St. Paul, Amsterdam Island, southern Atlantic<br />

2. ?Chitinopoma capensis (Day, 1961), South Africa<br />

3. Chitinopoma rzhavskii (Kupriyanova, 1993a), Kamchatka<br />

4. Chitinopoma serrula (Stimpson, 1854), Arctic, North Atlantic.<br />

5. Chitinopomoides Benham, 1927<br />

(Figs 12, 51A–D)<br />

Type-species: Chitinopoides wilsoni Benham, 1927<br />

Number <strong>of</strong> species: 1<br />

Tube white, opaque, triangular in cross-section, with a smooth longitudinal keel and sometimes 2 poorlydefined<br />

smooth ridges along the sides. Tube with irregularly placed former peristomes, questionably with<br />

brood care function. Granular overlay not observed. Operculum fig-shaped with bilaterally symmetrical<br />

concave chitinous endplate. Peduncle smooth, subtriangular in cross-section, without distal wings; inserted<br />

just below and between 1 st and 2 nd radiole (=second radiole). Pseudoperculum absent. Arrangement <strong>of</strong> radioles<br />

short pectinately, up to 10 pairs <strong>of</strong> radioles. Inter-radiolar membrane absent. Branchial eyes unknown.<br />

Stylodes absent. Mouth palps not observed. 7 thoracic chaetigerous segments. Collar trilobed with entire edge,<br />

32 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


tonguelets between ventral and lateral collar lobes absent. Thoracic membranes short, ending at second<br />

chaetiger; no apron. Collar chaetae fin-and-blade (Benham (1927): “with a large knob and few proximal<br />

additional teeth below the limbate zone”, Fig. 12A), and limbate. Apomatus chaetae present (Fig. 12E).<br />

Thoracic uncini saw-shaped with about 12 teeth, anterior peg blunt, seemingly bifurcate (slightly gouged?)<br />

(Fig. 12B). Triangular depression absent. Abdominal chaetae flat geniculate with large distal triangular blade<br />

(Fig. 12D). Abdominal uncini all rasp-shaped (Fig. 12C), with more teeth in posterior segments than in the<br />

anterior ones, with at least 12 teeth seen in pr<strong>of</strong>ile. Achaetous anterior abdominal zone absent. Posterior<br />

capillary chaetae short, glandular pad present.<br />

Remarks. Chitinopomoides wilsoni was previously known from a single specimen dredged in the Ross<br />

Sea. Zibrowius (1969a) re-examined the specimen and expanded Benham’s description <strong>of</strong> the chaetae and<br />

uncini. However, as the collar chaetae <strong>of</strong> the specimen were all broken, Zibrowius could not re-examine their<br />

structure and thus, generic justification <strong>of</strong> Chitinopomoides was questionable. A redescription (below) based<br />

on new unpublished material allowed us to elucidate the ultrastructure <strong>of</strong> collar (and other) chaetae with use<br />

<strong>of</strong> SEM. A possible relationship with other genera will be discussed in (a) forthcoming paper(s) by us.<br />

Chitinopomoides wilsoni Benham, 1927, Antarctic.<br />

Chitinopomoides wilsoni Benham, 1927: 156–158, Pl. 5 figs 162–173 [McMurdo Sound, 366 m, British Antarctic “Terra<br />

Nova” Exp. Sta. 348, BMNH 1928:2:29:174]; Hartman 1966: 129–130, Pl. 43 figs 4–7 [same, no new data];<br />

Zibrowius, 1969a: 9–10, fig. 3 [re-examined holotype]; Fauchald, 1977: 144 [generic diagnosis]; Uchida, 1978: 74<br />

[name in list].<br />

Material studied. Antarctica, Davis Sea, Wilkes Land, Burton Island, 66°32.94’S, 93°90’E, 80 m, Deep<br />

Freeze III, legit R.R. Starr, Sta. 5, Russian St. Mirny, 29.I.1958, det. H.A. ten Hove 1971 (3 thoraxes, 3<br />

abdomens, 1 small spec., tubes, USNM 51505, ZMA V.Pol. 3166); Ross Sea, Victoria Land, Robertson Bay<br />

area, 77°26’S, 169°30’E, Deep Freeze I, legit Wiston-W.H. Littlewood, R/V “Edisto” 1955/56, Sta. 8,<br />

9.II.1956, USNM 51506, det. H.A. ten Hove 1971 (1 broken specimen); Argentina, Ushuaia, 54°48’S,<br />

68°19’W, 18 m (10 Faden) legit H. Mag. Samm. 122, don. W. Michaelsen, det. H.A. ten Hove 1982, ZMH P-<br />

17557 (2 spec., tubes, separated from ZMH V 4963, Serpula spec., det. Augener 1921).<br />

Description. TUBE: white, up to 1.4 mm wide with lumen <strong>of</strong> maximally 0.8 mm. Triangular in crosssection<br />

when attached, to almost semicircular when free; may bear wide, three-lobed, collar-like peristomes (2<br />

mm across, Fig. 51A), not unlike those figured for Pseudovermilia conchata (ten Hove, 1975 pl. VIIIe, h).<br />

Smooth undulating medial keel present. Entire tube-wall (approx. 0.28 mm thick) appearing opaque in<br />

stereomicroscopy, though thin (0.03 mm) outer and inner layers are slightly more transparent, milky.<br />

BRANCHIAE: each lobe with 9–10 branchial radioles, arranged short pectinately or almost semi-circular,<br />

not connected by branchial membrane. Rachis <strong>of</strong> radiole rounded triangular in cross-section, extended into<br />

flange to which pinnules are attached. Pinnules all more or less equal in size; terminal filament about twice as<br />

long as pinnule. Mouth palps not observed. Pair <strong>of</strong> prostomial eyes not observed. Branchial eyes not observed.<br />

Stylodes absent.<br />

PEDUNCLE: smooth, subtriangular in cross section, inserted at left side just between first and second<br />

normal radiole, slightly wider than these. The distal part <strong>of</strong> the peduncle gradually swelling to about 1/2 the<br />

width <strong>of</strong> the opercular ampulla, separated from the latter by a clear constriction. Peduncular wings absent.<br />

Pseudoperculum absent.<br />

OPERCULUM: fig-shaped, bilaterally symmetrical, with a distal concave endplate, almost an oblique<br />

funnel reaching halfway down into the ampulla (Fig. 51B–D). Distal plate chitinous, without ornamentation.<br />

Length <strong>of</strong> the operculum about 1.8 mm, width 1.4 mm.<br />

COLLAR and thoracic membranes: collar low, with laciniate edge; continuous with thoracic membranes,<br />

ending at chaetiger 2 (1 st row <strong>of</strong> uncini). Pockets in thoracic membranes absent. Pairs <strong>of</strong> wart-like<br />

protuberances <strong>of</strong> collar chaetiger absent; tonguelets between ventral and lateral collar lobes absent.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 33


FIGURE 11. SEM micrographs <strong>of</strong> chaetae in Chitinopoma serrula. Greenland, det. H. Zibrowius, ZMA V.Pol. 3832.<br />

A—details <strong>of</strong> fin-and-blade collar chaeta, B—details <strong>of</strong> Apomatus chaetae <strong>of</strong> 4 th chaetiger, C—1 st row <strong>of</strong> thoracic uncini,<br />

D—middle abdominal uncini, E—middle abdominal chaetae.<br />

34 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 12. SEM micrographs <strong>of</strong> chaetae in Chitinopomoides wilsoni. Antarctic, ZMA V.Pol. 3166. A—fin-and-blade<br />

collar chaeta, B—1 st row <strong>of</strong> thoracic uncini, C—abdominal uncini, D—middle abdominal chaeta, E—“capillary” and<br />

Apomatus chaetae <strong>of</strong> 4 th thoracic chaetiger.<br />

THORAX: with collar chaetiger, and 6 uncinigerous chaetigers. Collar chaetae <strong>of</strong> two types: fin-andblade<br />

and hooded (limbate). Subsequent chaetae hooded, <strong>of</strong> two sizes. Apomatus chaetae from chaetiger 3<br />

onwards. Uncini along entire thorax saw-shaped, with 12 curved teeth, with blunt, apparently bifurcated peg<br />

(dental formula P + 12).<br />

ABDOMEN: abdominal chaetigers up to 62 at least (broken). Anterior uncini rasp-shaped, with peg and<br />

12 teeth when seen in pr<strong>of</strong>ile; posterior uncini with up to 5 teeth in a row. Chaetae flat geniculate. Short<br />

capillary chaetae and glandular pad present in about 12 posterior chaetigers. Pygidium bilobed.<br />

Size: length up to 24 mm. Width <strong>of</strong> thorax up to 0.8 mm. Branchiae and operculum accounting for 1/5th<br />

<strong>of</strong> entire length.<br />

Colour: no records.<br />

Ecology: no data except for depth, 18–366 m. The USNM material was removed from tubes <strong>of</strong> Serpula<br />

narconensis by H. Zibrowius.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 35


Remarks. All literature records are based on the same specimen, the holotype. Our seven additional<br />

specimens are all broken (or juvenile), but none <strong>of</strong> the thoraxes still have significant parts <strong>of</strong> the abdomen<br />

attached, at most 1 or 2 chaetigers; the numbers <strong>of</strong> abdominal chaetigers (40, 45, 53, 62) as counted on the<br />

loose abdomens thus probably represent almost complete counts. The specimen collected on 9.II.1956 showed<br />

eggs in its abdomen.<br />

6. Crucigera Benedict, 1887<br />

(Fig. 13)<br />

Type-species: Crucigera websteri Benedict, 1887<br />

Number <strong>of</strong> species: 5<br />

Tube white or yellowish, opaque, circular to semi-circular in cross-section, with or without longitudinal keels<br />

and/or peristomes; tabulae may be present. Granular overlay absent, but outer layer may be shiningly hyaline.<br />

Operculum s<strong>of</strong>t, funnel shaped, formed <strong>of</strong> fused radii. Base <strong>of</strong> funnel with 2–4 finger-like bosses. Peduncle<br />

smooth, cylindrical, without wings, separated from operculum by constriction; inserted proximal from first<br />

and/or second dorsal radiole on one side. Pseudoperculum present. Arrangement <strong>of</strong> radioles in two half to<br />

complete circles, up to 50 radioles per lobe in larger taxa. Inter-radiolar membrane present. Branchial eyes<br />

may be present. Stylodes absent. Mouth palps absent. 7 thoracic chaetigerous segments. Collar trilobed,<br />

tonguelets between ventral and lateral collar lobes absent. Thoracic membranes long, forming apron. Collar<br />

chaetae bayonet-shaped and limbate (Fig. 13A). Thoracic chaetae limbate, Apomatus chaetae absent (Fig.<br />

13B). Thoracic uncini saw-shaped with 5–7 teeth, including simple pointed anterior fang (Fig. 13C).<br />

Triangular depression present. Abdominal chaetae flat trumpet-shaped, with denticulate edge (Fig. 13D).<br />

Abdominal uncini saw-shaped with 4–6 teeth anteriorly (Fig. 13E); rasp-shaped with 2–4 rows, 7–8 teeth in<br />

pr<strong>of</strong>ile posteriorly. Long posterior capillary chaetae present. Achaetous anterior abdominal zone absent.<br />

Posterior glandular pad absent.<br />

Remarks. The genus, with 5 species, was thoroughly revised by ten Hove & Jansen-Jacobs (1984).<br />

However, Kupriyanova et al. (2008) demonstrate that the traditional genera Crucigera and Serpula most<br />

probably are paraphyletic.<br />

1. Crucigera inconstans Straughan, 1967b, Queensland, New South Wales, Western Australia<br />

2. Crucigera irregularis Bush, 1905, Arctic North Pacific, Kamchatka to Washington State<br />

3. Crucigera tricornis Gravier, 1906, widely distributed in the Indo-West Pacific<br />

4. Crucigera websteri Benedict, 1887, Gulf <strong>of</strong> Mexico, Caribbean, Brazil; Pacific Colombia, California<br />

5. Crucigera zygophora (Johnson, 1901), North Japan, Arctic North Pacific, Kamchatka to Washington State.<br />

7. Dasynema Saint-Joseph, 1894<br />

(Fig. 14)<br />

Type-species: Serpula chrysogyrus Grube, 1876<br />

Number <strong>of</strong> species: 1<br />

Tube white, opaque, with some orange, semi-circular in cross-section, with peristomes and (5) irregular<br />

longitudinal keels. Hyaline granular overlay <strong>of</strong> the tube absent. Operculum with fleshy globular ampulla<br />

proximally, calcium carbonate infested chitinous cone distally. Peduncle smooth, without pinnules, broadly<br />

flattened, with unpaired basal wing for 2/3 rds <strong>of</strong> its length and paired small distal wings, separated from<br />

ampulla by constriction; inserted at the base <strong>of</strong> branchial crown below and between 1 st and 2 nd radioles.<br />

Pseudoperculum absent. Radioles arranged in two semi-circles and connected by short inter-radiolar<br />

36 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


membrane. Radioles with ocellar clusters and unpaired outwardly directed stylodes, up to 15 radioles per lobe<br />

(Fig. 14A). Mouth palps not observed. 7 thoracic chaetigerous segments. Collar trilobed, tonguelets absent.<br />

Thoracic membranes ending at 5 th chaetiger, no apron. Collar chaetae limbate (Fig. 14B). Apomatus chaetae<br />

present (Fig. 14C). Thoracic uncini saw-shaped (Fig. 14D), with numerous (approximately 17) teeth, anterior<br />

peg blunt (not gouged or pointed). Triangular depression present. Abdominal chaetae (Fig. 14E) flat narrow<br />

geniculate with blunt teeth along blade (Vermiliopsis type). Abdominal uncini saw-shaped anteriorly, with<br />

11–12 teeth, posteriorly rasp-shaped with 2–4 rows <strong>of</strong> teeth, 14–15 teeth in pr<strong>of</strong>ile (Fig. 14G). Achaetous<br />

anterior abdominal zone absent. Posterior capillary chaetae present, very long (Fig. 14F). Posterior glandular<br />

pad present.<br />

FIGURE 13. SEM micrographs <strong>of</strong> chaetae in Crucigera websteri. Australia, Queensland, Lizard Island, legit & det. E.<br />

Kupriyanova. A—bayonet collar chaeta, B—thoracic chaetae, C—thoracic uncini; Crucigera zygophora (Johnson,<br />

1901), Canada, British Columbia, Barkley Sound, legit T. Macdonald, det. E. Kupriyanova, D—flat trumpet-shaped<br />

abdominal chaetae, E—anterior abdominal uncini.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 37


FIGURE 14. SEM micrographs <strong>of</strong> Dasynema chrysogyrus. Australia, Queensland, Lizard Island, legit & det. H.A. ten<br />

Hove. ZMA V.Pol. 4540. A—Branchial crown with stylodes (st), B—bundle <strong>of</strong> collar chaetae, C—details <strong>of</strong> thoracic<br />

chaetae (“limbate” and Apomatus), D—thoracic uncini, E—anterior abdominal chaetae, F—posterior capillary<br />

abdominal chaeta, G—middle abdominal uncini.<br />

38 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Remarks. This relatively poorly known monotypic genus is recorded from the Indo-West Pacific (see<br />

Imajima & ten Hove 1984, Nishi 1993). Its characteristic feature, outwardly directed stylodes on the radioles,<br />

is unique for serpulids. Paired stylodes are found elsewhere only in the sabellid genera Branchiomma and<br />

Pseudobranchiomma. See also discussion by Imajima & ten Hove (1984).<br />

Dasynema chrysogyrus (Grube, 1876), Japan, Philippine Islands, Ponape, Indonesia.<br />

8. Ditrupa Berkeley, 1835<br />

(Fig. 15)<br />

Type-species: Dentalium subulatum Deshayes, 1826 = junior synonym <strong>of</strong> Dentalium arietinum Müller, 1776; designated<br />

by Bush 1905: 223.<br />

Number <strong>of</strong> species: 2<br />

Tube free, tusk-like, not attached to substratum, circular in cross-section, open at both ends, broadening<br />

anteriorly though exterior tapers just prior to tube mouth. Outer layer hyaline or white, inner layer opaque.<br />

Granular overlay <strong>of</strong> the tube absent. Operculum inverse conical with chitinous endplate. Peduncle cylindrical,<br />

smooth, without wings, gradually merging into operculum, no constriction; it is positioned as first dorsal left<br />

radiole. Pseudoperculum absent. Radioles arranged pectinately; up to 15 radioles per lobe. Inter-radiolar<br />

membrane, branchial eyes, and stylodes absent. Pair <strong>of</strong> filiform mouth palps present. 6 thoracic chaetigerous<br />

segments. Large entire (non-lobed) collar continuous with short thoracic membranes, ending at first chaetiger<br />

(second thoracic segment); tonguelets absent. Collar chaetae absent (see Collar segment, p. 22). First<br />

thoracic chaetiger biramous (see Collar segment, p. 22) with limbate chaetae (Fig. 15A, B) and with uncini;<br />

sometimes with special chaetae (see remarks). Apomatus chaetae absent. Thoracic uncini saw-to-rasp-shaped<br />

(dental formula P:2:2:2:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1 or P:3:2:2:1……1) or rasp-shaped; about 25<br />

teeth in pr<strong>of</strong>ile, with 2 or 3 teeth in a row above peg (P); peg blunt, curved upwards and gouged underneath<br />

(Fig. 15C). Triangular depression absent. Abdominal chaetae and certainly posterior ones thin, almost<br />

capillary, with very faint narrow geniculate tip (to completely capillary in D. gracillima). Abdominal uncini<br />

rasp-shaped, with 20–25 in pr<strong>of</strong>ile, up to 8 teeth in a row above peg; anterior peg blunt, almost rectangular<br />

(Fig. 15D). Achaetous anterior abdominal zone absent; however, anterior half <strong>of</strong> abdomen with uncini only.<br />

Posterior capillary chaetae present. Posterior glandular pad absent.<br />

Remarks. The genus is found living unattached (Fig. 1A) in s<strong>of</strong>t sediment marine environments around<br />

the world. Like many serpulid genera, Ditrupa has a history <strong>of</strong> taxonomic confusion to the extent that its tubes<br />

were included in the Mollusca by some authors. The generic diagnosis was emended by ten Hove & Smith<br />

(1990). An unattached free tube similar to that <strong>of</strong> Ditrupa is known only in two (?three) other serpulids,<br />

Bathyditrupa hovei and Serpula crenata (possibly incl. S. sinica). Unlike the circular in cross-section tubes <strong>of</strong><br />

Ditrupa, those <strong>of</strong> Bathyditrupa and S. crenata are rectangular to multi-angular in cross-section (see The tube,<br />

p. 7).<br />

Ten Hove & Smith (1990: 113, 115) describe 2 populations <strong>of</strong> Ditrupa gracillima in which the first<br />

thoracic chaetiger shows special chaetae, one almost geniculately terminating in an oblique frayed narrow<br />

limbus, the other stoutly acicular. In view <strong>of</strong> the limited distributions <strong>of</strong> these two forms they question<br />

whether these populations might be in the process <strong>of</strong> speciation.<br />

1. Ditrupa arietina (Müller, 1776), Northern Norway to Azores and Canary Islands, Mediterranean<br />

2. Ditrupa gracillima Grube, 1878, widely distributed in Indo-West Pacific.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 39


FIGURE 15. SEM micrographs <strong>of</strong> chaetae in Ditrupa arietina. Canary Islands, SW <strong>of</strong> Palma, 28°39' N 17°58' W, 60-80<br />

m, legit H.A. ten Hove, ZMA V.Pol. 3559. A—chaetae <strong>of</strong> 4 th chaetiger, two sizes, B—chaetae <strong>of</strong> 1 st chaetiger, two sizes,<br />

C—uncini <strong>of</strong> 1 st thoracic chaetiger, D—anterior abdominal uncini.<br />

40 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


9. Ficopomatus Southern, 1921<br />

(Fig. 16)<br />

Type-species: Ficopomatus macrodon Southern, 1921<br />

Number <strong>of</strong> species: 5<br />

Tube white (exceptionally orange), opaque, circular to triangular in cross-section, keels, peristomes, and<br />

tabulae may be present. Granular overlay <strong>of</strong> the tube absent. Operculum a bulbous fleshly ampulla, uncovered<br />

or covered with either a chitinous, non-calcified endplate or with numerous chitinous spines in the distal<br />

tissue. Peduncle smooth, sub-triangular, with dorsal groove, without distal wings, gradually merging into the<br />

opercular ampulla; inserted just below left branchial lobe, near medial line. Pseudoperculum absent. Radioles<br />

arranged in semi-circles, up to 11 per lobe, not united by inter-radiolar membrane. Branchial eyes, stylodes,<br />

and mouth palps absent. 7 thoracic chaetigerous segments. Collar non-lobed, with entire edge, tonguelets<br />

absent. Thoracic membranes long, forming ventral apron across anterior abdominal segments. Dorsal edges <strong>of</strong><br />

thoracic membranes fused in F. uschakovi. Collar chaetae coarsely serrated (Fig. 16A) and limbate. Apomatus<br />

FIGURE 16. SEM micrographs <strong>of</strong> chaetae in Ficopomatus enigmaticus. The Netherlands, Vlissingen, Keersluisbrug<br />

near power station, legit H.A. ten Hove, ZMA V.Pol. 3069. A—details <strong>of</strong> Ficopomatus collar chaetae, B—uncini <strong>of</strong> 4 th<br />

thoracic chaetiger, C—posterior abdominal chaeta with double row <strong>of</strong> teeth (hollow tip), D—detail <strong>of</strong> peg, uncini <strong>of</strong> 4 th<br />

thoracic chaetiger.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 41


chaetae absent. Thoracic uncini saw-shaped (Fig. 16B), rarely partly rasp-shaped, with 6–12 teeth; anterior<br />

peg flat trapezoidal, blunt, with numerous tiny auxiliary teeth above peg (Fig. 16D). Triangular depression<br />

absent. Abdominal chaetae truly trumpet-shaped, smoothly bent, with denticulate edge (Fig. 16C); uncini<br />

saw- or rasp-shaped. Achaetous anterior abdominal zone absent. Posterior capillary chaetae and glandular pad<br />

absent.<br />

Remarks. Ten Hove & Weerdenburg (1978) revised in detail the monotypic brackish-water genera<br />

Mercierella Fauvel, 1923, Sphaeropomatus Treadwell, 1934, Mercierellopsis Rioja, 1945, and Neopomatus<br />

Pillai, 1960 and synonymized them under Ficopomatus Southern, 1921. It should be noted that Pillai (2008)<br />

reinstated the genus Neopomatus, based on the autapomorphy <strong>of</strong> thoracic membranes joined over the dorsal<br />

thorax, for its single species uschakovi. In Ficopomatus species there is a continuous series in opercular<br />

development from unadorned ampulla without any endplate to a fully developed chitinous plate, even with<br />

spines (ten Hove & Weerdenburg 1978). The nominal species Ficopomatus capensis Day, 1961 more<br />

probably should be placed in Chitinopoma (fide ten Hove & Weerdenburg 1978: 101).<br />

1. Ficopomatus enigmaticus (Fauvel, 1923), worldwide subtropical-temperate, Northern and Southern<br />

Hemisphere; brackish<br />

2. Ficopomatus macrodon Southern, 1921, India, Sri Lanka; tropical; brackish<br />

3. Ficopomatus miamiensis (Treadwell, 1934), Gulf <strong>of</strong> Mexico, Caribbean; SE Gulf <strong>of</strong> California; tropical;<br />

brackish<br />

4. Ficopomatus talehsapensis Pillai, 2008 Taléh Sap, Gulf <strong>of</strong> Thailand; tropical; brackish<br />

5. Ficopomatus uschakovi (Pillai, 1960), Africa, Indo-Pacific; tropical; brackish.<br />

10. Filograna Berkeley, 1835<br />

(Fig. 17)<br />

Type species: Filograna implexa Berkeley, 1835<br />

Number <strong>of</strong> species: 1<br />

Worms form open aggregates consisting <strong>of</strong> large numbers <strong>of</strong> small whitish tubes, circular in cross-section.<br />

Granular overlay and keels absent. A pair <strong>of</strong> membranous spoon-shaped opercula on first unmodified<br />

pinnulate radioles. Radioles arranged into semi-circles, up to 4 radioles per lobe. Branchial eyes absent. Interradiolar<br />

membrane and stylodes absent. Prominent prostomium with ocellar clusters. Mouth palps present.<br />

6–12 thoracic chaetigerous segments. Collar trilobed, tonguelets between ventral and lateral collar lobes<br />

absent. Thoracic membranes long, forming apron. Collar chaetae fin-and-blade (Fig. 17A) and limbate.<br />

Apomatus chaetae present. All uncini rasp-shaped with up to 10 teeth in pr<strong>of</strong>ile, 2–4 teeth in a transverse row;<br />

anterior fang pointed (Fig. 17B). Triangular depression absent. Achaetous anterior abdominal zone present,<br />

short. Abdominal chaetae flat narrow geniculate with rounded teeth along edge (Fig. 17C). Long posterior<br />

capillary chaetae and glandular pad absent.<br />

Remarks. The genus Filograna has been attributed by e.g., Mörch (1863; as Filigrana) and Hartman<br />

(1959) to Oken (1815). However, Oken used filograna as species name in the combination “Clymene<br />

filograna, Serpula filograna”; the species name was elevated to generic rank by Berkeley (1835). The<br />

nominal genera Filograna and Salmacina are distinguished mainly by the presence <strong>of</strong> two (rarely one)<br />

membranous opercula in the former and absence <strong>of</strong> an operculum in the latter. Some authors consider them<br />

distinct genera (Iroso 1921, Fauvel 1927, Pillai 1960, Straughan 1967b), whereas others treat them as a single<br />

species (McIntosh 1923, Faulkner 1929, Day 1955, 1967). More recent authors (Nelson-Smith 1967, Gee<br />

1963, Zibrowius 1968a, 1973b, Uchida 1978, Kupriyanova & Jirkov 1997) regard operculate and nonoperculate<br />

forms to be separate species within the genus Filograna. Nogueira & ten Hove (2000) gave an<br />

extensive discussion and synonymy and adapted the heuristic view that the operculate cold-temperate Atlantic<br />

Filograna better be kept separate from the non-operculate ubiquitous Salmacina.<br />

42 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Filograna implexa M. Berkeley, 1835. Weymouth, English Channel, UK; cold temperate-subtropical Atlantic,<br />

Mediterranean; other locations doubtful.<br />

FIGURE 17. SEM micrographs <strong>of</strong> chaetae in Filograna implexa. United Kingdom, Orkney Islands, Head <strong>of</strong> Work, 22<br />

m, legit M.J. de Kluyver, ZMA V.Pol. 3767. A—fin-and-blade collar chaetae, B—1 st row <strong>of</strong> thoracic uncini, C—middle<br />

abdominal chaetae, imprint <strong>of</strong> tip.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 43


11. Filogranella Ben-Eliahu & Dafni, 1979<br />

(Fig. 18)<br />

Type-species: Filogranella elatensis Ben-Eliahu & Dafni, 1979<br />

Number <strong>of</strong> species: 1, maybe 3<br />

Tubes white, opaque, circular in cross-section, with 5 longitudinal keels; peristomes absent. Granular overlay<br />

<strong>of</strong> the tube absent. Operculum and pseudoperculum absent (but see Remarks). Radioles arranged in semicircles,<br />

up to 9 per lobe. Inter-radiolar membrane and stylodes absent. Branchial eyes absent. Prominent<br />

prostomium with ocellar clusters. Mouth palps absent. 11–14 thoracic chaetigerous segments (Fig. 18A).<br />

Well-developed trilobed collar continuous with thoracic membranes ending in mid-thorax, around 5 th –6 th<br />

thoracic chaetiger. Tonguelets absent. Collar chaetae limbate (Fig. 18B). Apomatus chaetae present (Fig.<br />

18C). Thoracic uncini saw- to rasp-shaped with about 16 teeth in pr<strong>of</strong>ile and up to 4 teeth in a row above peg.<br />

Triangular depression absent. Abdominal chaetae flat sickle shaped with blunt teeth on the edge (Fig. 18E).<br />

Abdominal uncini rasp-shaped with > 20 teeth in pr<strong>of</strong>ile, up to 7 teeth in a row; anterior peg blunt, slightly<br />

gouged underneath (Fig. 18D). Achaetous anterior abdominal zone short. Posterior capillary chaetae present.<br />

Posterior glandular pad absent.<br />

Remarks. Filogranella forms aggregations that resemble those <strong>of</strong> Filograna, but worms and their tubes<br />

are larger. However, Filograna differs from Filogranella in having fin-and-blade collar chaetae with proximal<br />

denticulate wing well separated from the distal limbate zone, a pair <strong>of</strong> well-developed thoracic membranes<br />

with apron, and rasp-shaped thoracic uncini (Ben-Eliahu & Dafni 1979). Filogranella aggregations have been<br />

mentioned from various locations around the world in diving guides (e.g., Allen & Steene 1994, 1996, Colin<br />

& Arneson 1995, Gosliner et al. 1996, Weinberg 1996, Debelius 1998, Fosså & Nilsen, 2000: Red Sea,<br />

Indonesia, Philippines, Caribbean). Some colonies have specimens with opercula with flat chitinous<br />

endplates, on a flat peduncle (more or less like that <strong>of</strong> Metavermilia) inserted as the second dorsal radiole. We<br />

suspect it is a complex <strong>of</strong> related species that needs to be sorted out. Vermiliopsis prampramiana Augener,<br />

1918, regarded to be undeterminable by Zibrowius (1973b), might belong here by its general chaetation<br />

pattern and 9 thoracic chaetigers. Neovermilia aberrans Rullier & Amoureux, 1979, might rather belong in<br />

this genus.<br />

1. ?Filogranella aberrans (Rullier & Amoureux, 1979), Brazil<br />

2. Filogranella elatensis Ben-Eliahu & Dafni, 1979, Elat, Gulf <strong>of</strong> Aqaba; Indo-West Pacific, Central Atlantic,<br />

Caribbean; probably more than one species<br />

3. ?Filogranella prampramiana (Augener, 1918), Gold Coast, Africa.<br />

12. Filogranula Langerhans, 1884<br />

(Fig. 19)<br />

Type-species: Filogranula gracilis Langerhans, 1884<br />

Number <strong>of</strong> species: 6<br />

Tube white, opaque, with elaborate peristomes; keel present. Granular overlay absent. Operculum with<br />

chitinous endplate, may have additional spines in the center. Peduncle cylindrical, smooth, without wings<br />

(however, see Remarks); inserted as second dorsal radiole on one side. Opercular constriction present (but for<br />

F. stellata, absent). Pseudoperculum absent. Radioles arranged in semi-circles, up to 7 per lobe. Inter-radiolar<br />

membrane and stylodes absent. Branchial eyes may be present. Mouth palps not observed. 7 thoracic<br />

chaetigerous segments. Collar generally non-lobed (may be trilobed) with entire edge, continuous with short<br />

thoracic membranes, ending at second thoracic chaetiger. Tonguelets absent. Collar chaetae fin-and-blade<br />

(Fig. 19A) and limbate. Apomatus chaetae present (Fig. 19B). Thoracic uncini saw- or saw-to-rasp-shaped<br />

44 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


with 12–14 teeth in pr<strong>of</strong>ile, up to 5 teeth in a row above anterior peg (P), blunt, gouged underneath (e.g.,<br />

dental formula P:5:3:3:2:1:1:1:1:1:1:1:1:1, Fig. 19C). Triangular depression absent. Abdominal chaetae short,<br />

flat triangular with wide distal denticulate blade (Fig. 19E); abdominal uncini rasp-shaped (Fig. 19D).<br />

Achaetous anterior abdominal zone present. Long posterior capillary chaetae present. Posterior glandular pad<br />

absent.<br />

Remarks. Zibrowius (1983) and Kupriyanova (1993a) remark that the genera Chitinopoma and<br />

Filogranula are very similar in general structure <strong>of</strong> the operculum, chaetal structure, and length <strong>of</strong> the thoracic<br />

membranes. See also comments to Chitinopoma. Filogranula exilis is unusual as it shows a pinnulate radiole<br />

functioning as peduncle.<br />

1. Filogranula annulata (O.G. Costa, 1861), Mediterranean, Portugal<br />

2. Filogranula calyculata (O.G. Costa, 1861), Mediterranean, Lusitania, Mauretania<br />

3. Filogranula exilis Imajima, 1979, Japan, Seychelles<br />

4. Filogranula gracilis Langerhans, 1884, Eastern Atlantic, Hawaii?<br />

5. Filogranula revizee Nogueira & Abbud, 2009, South Brazil<br />

6. Filogranula stellata (Southward, 1963), Mediterranean Atlantic<br />

13. Floriprotis Uchida, 1978<br />

(Fig. 20)<br />

Type-species: Floriprotis sabiuraensis Uchida, 1978<br />

Number <strong>of</strong> species: 1<br />

Tube white, opaque, circular in cross-section, normally completely embedded into living corals; granular<br />

overlay absent. Operculum and pseudoperculum absent. Radioles arranged (semi-circular to) short<br />

pectinately, up to 20 per lobe. Inter-radiolar membrane present. Stylodes absent. Branchial eyes absent. Mouth<br />

palps absent. 7 thoracic chaetigerous segments. Collar trilobed with entire edge, tonguelets absent. Thoracic<br />

membranes long, apron present. A pair <strong>of</strong> pockets on the inner side <strong>of</strong> each thoracic membrane, between the<br />

second and third thoracic segments. Collar chaetae bayonet, with elongate rounded teeth at base <strong>of</strong> very short<br />

blade (Fig. 20A), and limbate. Apomatus chaetae absent. Thoracic uncini <strong>of</strong> Serpula type, with 4–5 teeth and<br />

pointed fang (Fig. 20B). Triangular depression present. Abdominal chaetae flat trumpet-shaped with<br />

denticulate edge as in Serpula (Fig. 20D). Abdominal uncini similar to thoracic ones, saw-shaped with 4–5<br />

teeth anteriorly, but rasp-to-saw-shaped (dental formula F:1:1:2:3:3:3:4:3) posteriorly (Fig. 20C), with 1 tooth<br />

proximally above fang (F) to 3 (exceptionally 4) teeth per row distally, 7–8 teeth in pr<strong>of</strong>ile. Achaetous zone<br />

absent. Long posterior capillary chaetae present. Posterior glandular pad absent.<br />

Remarks. The species is an obligate symbiont <strong>of</strong> corals in the Indo-West Pacific (Uchida 1978, Bailey-<br />

Brock 1985, Nishi 1992b). The chaetation pattern <strong>of</strong> this species is very similar to that typical for Crucigera-<br />

Hydroides-Serpula-Spiraserpula group and, as it was suggested by its author, F. sabiuraensis is likely to be<br />

closer to that clade than to Protis.<br />

The unusual characteristic feature <strong>of</strong> this monotypic genus is the presence <strong>of</strong> pockets in the thoracic<br />

membranes, however, see Remarks following Serpula. Bailey-Brock (1985) noted that one Floriprotis<br />

specimen from Fiji did contain eggs in pockets with a few eggs under the overlapping flaps <strong>of</strong> thoracic<br />

membranes, but whether these eggs were fertilized remains unknown. Thus, there is no hard evidence that the<br />

pockets are used for incubation.<br />

Another special feature according to Uchida (1978, Plate V A) would be the presence <strong>of</strong> wart-like<br />

protuberances laterally in the collar segment. However, though never reported before, wart-like protuberances<br />

are found in some larger species <strong>of</strong> Hydroides and Serpula and in Protis hydrothermica (ten Hove &<br />

Zibrowius 1986, fig. 6q); the character had not been noted before in these taxa.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 45


FIGURE 18. SEM micrographs <strong>of</strong> Filogranella elatensis. Israel, Elat, 10 m, legit J. Dafni, det. H.A. ten Hove, ex HUJ,<br />

SAM E3661. A—Lateral view <strong>of</strong> thorax, B—bundle <strong>of</strong> collar chaetae, C—thoracic chaetae <strong>of</strong> 4 th chaetiger (Apomatus<br />

and “limbate”), D—anterior abdominal uncini, E—anterior abdominal chaetae.<br />

46 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 19. SEM micrographs <strong>of</strong> chaetae in Filogranula stellata. United Kingdom, Outer Hebrides, Mingulay Reef,<br />

Biosys 2006, 56°80’53.5”N 7°44’19”W, 127 m, det. H.A. ten Hove. A—fin-and-blade and “limbate” collar chaetae,<br />

B—Apomatus chaetae, C—thoracic uncini, D—abdominal uncini, E—anterior abdominal chaeta.<br />

Floriprotis has been reported from southern Japan (Uchida 1978, Nishi 1992b) and Fiji (Bailey-Brock<br />

1985) and Indonesia (herein). At least some <strong>of</strong> the latter material, however, shows abraded Serpula-type collar<br />

chaetae (e.g., Nishi 1992b fig. 2C) rather than the typical Floriprotis bayonets (e.g., Uchida 1978 Pl. V C;<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 47


Bailey-Brock 1985 fig. 13e; this paper), and either a pair <strong>of</strong> small pseudopercula or even a half developed<br />

Serpula-type operculum. The presence <strong>of</strong> warts on the collar segment makes this material even more<br />

confusing, all should be rechecked and variability (if any) <strong>of</strong> collar chaetae and (pseud)opercula should be<br />

documented.<br />

Floriprotis sabiuraensis Uchida, 1978, Japan, Indonesia, Fiji.<br />

FIGURE 20. SEM micrographs <strong>of</strong> chaetae in Floriprotis sabiuraensis. Indonesia, Ambon, 03°39' S, 128°3' E, inner bay<br />

West <strong>of</strong> Halong, Snellius II Expedition, 2-15 m, legit H.A. ten Hove, ZMA V.Pol. 3801. A—bayonet collar chaeta,<br />

B—uncini <strong>of</strong> 1 st thoracic row, C—posterior abdominal uncini, D—anterior abdominal chaetae.<br />

48 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


14. Galeolaria Lamarck, 1818<br />

(Fig. 21)<br />

Type-species: Galeolaria caespitosa Lamarck, 1818<br />

Number <strong>of</strong> species: 2<br />

.<br />

FIGURE 21. SEM micrographs <strong>of</strong> chaetae in Galeolaria caespitosa. Australia, Sydney, Port Jackson, intertidal, Th.<br />

Mortensen's Pacific Expedition 14-16, exchange Zoological Museum Copenhagen, ZMA V.Pol. 3637. A—bundle <strong>of</strong><br />

collar chaetae, B—detail <strong>of</strong> thoracic limbate chaeta, C—1 st row <strong>of</strong> thoracic uncini, D—anterior abdominal uncini,<br />

E—details <strong>of</strong> anterior abdominal chaeta with a hollow tip.<br />

Tube white or pink, opaque, with 2 longitudinal keels, trapezoidal in cross-section. Granular overlay absent.<br />

Operculum rather flat ampulla with distal calcareous plate, armed with elaborate movable spines. Peduncle<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 49


thick, triangular in cross-section, with distal wings; inserted almost medio-dorsally, covering the base <strong>of</strong> up to<br />

3–4 dorsal radioles; constriction absent. Pseudoperculum absent. Radioles arranged almost in spirals (1.25<br />

whorl), up to 42 per lobe. Stylodes and branchial eyes absent. Inter-radiolar membrane present. Mouth palps<br />

absent. 7 thoracic chaetigerous segments. Collar trilobed, collar edge entire, smooth, occasionally with frilly<br />

edge (G. hystrix). Tonguelets absent. Thoracic membranes forming apron. Collar chaetae small, limbate (Fig.<br />

21A). Apomatus chaetae absent. Thoracic uncini saw-shaped with 7–10 teeth, anterior peg stout, rounded to<br />

spatulate (Fig. 21C). Triangular depression absent. Abdominal chaetae true trumpet-shaped, smoothly bent,<br />

with two rows <strong>of</strong> denticles separated by a hollow groove and extended into a long lateral spine (Fig. 21E).<br />

Abdominal uncini with 11–15 teeth, anterior peg stout, rounded (Fig. 21D), posterior ones rasp-shaped with<br />

2–3 rows. Long posterior capillary chaetae absent. Achaetous anterior abdominal zone short (2–3 segments).<br />

Posterior glandular pad absent.<br />

Remarks. The genus Galeolaria is one <strong>of</strong> the taxa that has been attributed to Savigny by various authors<br />

(e.g., Fauchald 1977: 144). The Code, however, is very clear on the point <strong>of</strong> priority <strong>of</strong> publication, Lamarck<br />

(1818) precedes Savigny (1820), and is the author <strong>of</strong> Galeolaria (cf. Fauchald 1992: 2–3).<br />

The genus Galeolaria is endemic to the southern half <strong>of</strong> Australia and New Zealand. G. caespitosa is<br />

gregarious and intertidal, whereas G. hystrix is solitary and subtidal, rarely forming “reefs” (see Smith et al.<br />

2005). The uncorroborated records <strong>of</strong> Galeolaria caespitosa from New Caledonia by Fauvel (1947) and <strong>of</strong> G.<br />

hystrix from N.W. Spain by Alvariño (1951) are most probably erroneous.<br />

1. Galeolaria caespitosa Lamarck, 1818, temperate and cold southern part <strong>of</strong> Australia<br />

2. Galeolaria hystrix Mörch, 1863, New Zealand, temperate and cold southern part <strong>of</strong> Australia.<br />

15. Hyalopomatus Marenzeller, 1878<br />

(Fig. 22)<br />

Type-species: Hyalopomatus claparedii Marenzeller, 1878<br />

Number <strong>of</strong> species: 11 or 12<br />

Tube white, opaque, sometimes with external hyaline layer, but granular overlay absent; (semi) circular in<br />

cross-section. Tabulae may be present. Operculum globular, s<strong>of</strong>t, without distinct endplate or consisting <strong>of</strong><br />

proximal ampulla with slightly chitinized distal cap; well separated from peduncle by constriction; sometimes<br />

operculum absent. Peduncle very thin, cylindrical, smooth, without wings; inserted outside branchial crown<br />

proper in front <strong>of</strong> first dorsal radiole on one side. However, for H. langerhansi we observed “between base <strong>of</strong><br />

first and second radiole”. Pseudoperculum absent. Arrangement <strong>of</strong> radioles short pectinate, up to 15 pairs <strong>of</strong><br />

radioles. Inter-radiolar membrane absent. Branchial eyes rarely present. Stylodes absent. Mouth palps present.<br />

6 thoracic chaetigerous segments. Collar trilobed, tonguelets absent. Thoracic membranes short, ending at<br />

first or second thoracic chaetiger. Collar chaetae fin-and-blade (Fig. 22A), or without gap between fin and<br />

blade and thus with uniform distal denticulate wing, and limbate. Apomatus chaetae absent (contrary to Ben-<br />

Eliahu & ten Hove 1989). Thoracic uncini rasp-shaped with numerous small teeth, approximately 20 in<br />

pr<strong>of</strong>ile, up to 9 teeth in a row above peg; anterior peg made <strong>of</strong> two rounded lobes with a shallow incision in<br />

between, flat or slightly gouged in the middle (Fig. 22B). Triangular depression absent. Abdominal chaetae<br />

almost capillary with only tip flat narrow geniculate with pointed teeth (Fig. 22D); uncini rasp-shaped, similar<br />

to thoracic ones, but their anterior peg with 3–4 flat rounded lobes (Fig. 22C). Achaetous anterior abdominal<br />

zone may be present. Posterior capillary chaetae present. Posterior glandular pad absent.<br />

Remarks. This genus is poorly known probably because it includes mainly bathyal and abyssal species.<br />

Zibrowius (1969a) revised the genus to include six species. Kupriyanova (1993c) described three new species<br />

and provided a key to all species known at that time. More recently, three new species were added to the<br />

genus, H. variorugosus Ben-Eliahu & Fiege (1996), who also discuss the then known species, the non-<br />

50 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


operculate H. cancerum Knight-Jones et al. (1997) and H. madreporae Sanfilippo (2009), known by tubes<br />

only. Non-operculate specimens <strong>of</strong> Hyalopomatus, apparently accidental, were reported in the review by<br />

Zibrowius (1969a: 13).<br />

FIGURE 22. SEM micrographs <strong>of</strong> chaetae in Hyalopomatus marenzelleri. Canary Islands, SE <strong>of</strong> Lanzarote, 28°45' N,<br />

13°19' W, 1134-1315 m, legit H.A. ten Hove, RMNH 18332. A—fin-and-blade and “capillary” collar chaetae, B—detail<br />

<strong>of</strong> peg in last (6 th ) thoracic uncini, C—posterior/middle abdominal uncini, D—posterior/middle abdominal chaetae.<br />

1. Hyalopomatus biformis (Hartman, 1960), S. California<br />

2. Hyalopomatus cancerum Knight-Jones et al., 1997, <strong>of</strong>f Oman<br />

3. Hyalopomatus claparedii Marenzeller, 1878, Arctic; bathyal<br />

4. Hyalopomatus jirkovi Kupriyanova, 1993c, Kurile-Kamchatka trench; abyssal/hadal<br />

5. Hyalopomatus langerhansi Ehlers, 1887, <strong>of</strong>f Cuba; compare H. sombrerianus<br />

6. Hyalopomatus macintoshi (Gravier, 1911), Antarctic<br />

7. Hyalopomatus madreporae Sanfilippo, 2009, Mediterranean<br />

8. Hyalopomatus marenzelleri Langerhans, 1884c, Canary Islands to S. <strong>of</strong>f Ireland, ?Mediterranean<br />

9. Hyalopomatus mironovi Kupriyanova, 1993, Kurile-Kamchatka trench, <strong>of</strong>f California; abyssal/hadal<br />

10. Hyalopomatus nigropileatus (Ehlers, 1900c), South Chile, Antarctica<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 51


11. Hyalopomatus sikorskii Kupriyanova, 1993c, Kurile-Kamchatka trench; abyssal/hadal<br />

12. Hyalopomatus sombrerianus (McIntosh, 1885), <strong>of</strong>f Sombrero, St. Thomas, Caribbean; compare H.<br />

langerhansi<br />

13. Hyalopomatus variorugosus Ben-Eliahu & Fiege, 1996, Mediterranean, Atlantic.<br />

16. Hydroides Gunnerus, 1768<br />

(Fig. 23)<br />

Type species: Hydroides norvegicus Gunnerus, 1768<br />

Number <strong>of</strong> species: 89 (one with 2 subspecies)<br />

Tube white (sometimes bluish), more or less circular to trapezoidal (with flattened upper surface) in crosssection,<br />

peristomes and shallow longitudinal ridges may be present, no distinct keels. A granular overlay may<br />

be present. Operculum two-tiered, composed <strong>of</strong> basal funnel <strong>of</strong> fused radii and distal verticil (crown) <strong>of</strong><br />

chitinized spines. Peduncle cylindrical, smooth, without wings, may or may not be separated from opercular<br />

funnel by a constriction; formed from second dorsal radiole on one side. Pseudoperculum present.<br />

Arrangement <strong>of</strong> radioles in semi-circles, up to 33 per lobe. Branchial eyes absent. Inter-radiolar membrane<br />

generally absent, rarely present (Bastida-Zavala & ten Hove 2002, mention only one species where it is<br />

present). Stylodes absent. Mouth palps absent. 7 thoracic chaetigerous segments, exceptionally more (9 in H.<br />

bisectus Imajima & ten Hove, 1989 and Hydroides sp.2 Bastida-Zavala & ten Hove 2002; 7–9 in H.<br />

bannerorum Bailey-Brock, 1991). Collar trilobed, tonguelets absent. Thoracic membranes long, forming<br />

ventral apron. Collar chaetae bayonet-type (Fig. 23A) and limbate. Apomatus chaetae absent. All uncini sawshaped<br />

with relatively few (up to 7) teeth; anterior fang simple pointed (Fig. 23B). Triangular depression<br />

present. Abdominal chaetae flat trumpet-shaped with denticulate edge (Fig. 23C). Achaetous anterior<br />

abdominal zone absent. Posterior capillary chaetae present (Fig. 23D). Posterior glandular pad absent.<br />

Remarks. Hydroides is the largest serpulid genus with a mainly tropical to sub-tropical distribution.<br />

Species in the genus are distinguished by well-differentiated opercula and differences in chaetal and tube<br />

structure. Although a complete world-wide revision <strong>of</strong> the genus is yet to be completed, Bastida-Zavala & ten<br />

Hove (2002, 2003) recently published revisions <strong>of</strong> the Hydroides species from the Western Atlantic region,<br />

respectively Eastern Pacific region and Hawaii. Also, Bastida-Zavala & ten Hove (2002) provided a detailed<br />

historical review <strong>of</strong> taxonomic studies <strong>of</strong> the genus.<br />

1. Hydroides alatalateralis (Jones, 1962), Jamaica, Caribbean, Colombian Pacific<br />

2. Hydroides albiceps (Grube, 1870), Red Sea, widely distributed in the Indo-West Pacific; compare H.<br />

trivesiculosus<br />

3. Hydroides ancorispinus Pillai, 1971, Sri Lanka; compare H. malleolaspinus<br />

4. Hydroides arnoldi Augener, 1918, Annobón, Sao Tome, Congo, Zaire, Ghana, Liberia; NB. part <strong>of</strong> Augener<br />

1918, Tebble 1956, and all Uschakov 1970 belongs to H. augeneri<br />

5. Hydroides augeneri Zibrowius, 1973b, Congo, Dahomey, Ghana, Liberia, Guinea; see remark H. arnoldi<br />

6. Hydroides azoricus Zibrowius, 1972d, Azores; sometimes confused with H. norvegicus<br />

7. Hydroides bandaensis Zibrowius, 1972c, Banda Sea; compare H. novaepommeraniae<br />

8. Hydroides bannerorum Bailey-Brock, 1991, Hawaii<br />

9. Hydroides bifurcatus Pixell, 1913, Maldives, South Africa, Madagascar, ?Sri Lanka, ?New Caledonia<br />

10. Hydroides bisectus Imajima & ten Hove, 1989, Okinawa, Japan<br />

11. Hydroides bispinosus Bush, 1910, Bermuda, Gulf <strong>of</strong> Mexico, Eastern USA and Caribbean<br />

12. Hydroides brachyacanthus Rioja, 1941a, Western Mexico to Ecuador, ?Hawaii; circum(sub)tropical<br />

records from elsewhere probably belong to a complex <strong>of</strong> species (Bastida-Zavala & ten Hove 2002, 2003)<br />

13. Hydroides cf. brachyacanthus Rioja, 1941a, Lesser Antilles, Venezuela, South Brazil<br />

52 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


14. Hydroides bulbosus ten Hove, 1990, Gulf <strong>of</strong> Oman<br />

15. Hydroides calopoma Zibrowius, 1973b, Annobón<br />

16. Hydroides capensis Zibrowius, 1972d, Cape, Ghana, Nigeria, Senegal; sometimes confused with H.<br />

norvegicus<br />

17. Hydroides centrospina Wu & Chen, 1981b, South China, Tonga; see remarks under H. elegans<br />

18. Hydroides chilensis Hartmann-Schröder, 1962, Arica, Chile, Colombia<br />

19. Hydroides cruciger Mörch, 1863, Punta Arenas Pac., Baja California to Colombia, Hawaii; N.B. all<br />

Caribbean records belong to H. bispinosus and/or H. parvus<br />

20. Hydroides dafnii (Amoureux, Rullier & Fishelson, 1978), Red Sea; compare H. perezi, tuberculatus<br />

21. Hydroides deleoni Bastida-Zavala & ten Hove, 2003, Punta San Juanico, Baja California Sur to Ecuador<br />

22. Hydroides dianthus (Verrill, 1873), New Jersey to Massachusetts, temperate to subtropical Atlantic coasts<br />

<strong>of</strong> North America; probably ship-transported to Curaçao, Atlantic coasts <strong>of</strong> Europe, Africa, and the<br />

Mediterranean; complicated synonymy, see Zibrowius (1971a)<br />

23. Hydroides dipoma (Schmarda, 1861), tropical West Africa, South Africa, Suez<br />

24. Hydroides diramphus Mörch, 1863, St. Thomas, Caribbean, probably ship-transported to a circum<br />

(sub)tropical distribution; complicated synonymy, see Bastida-Zavala & ten Hove 2002, 2003<br />

25. Hydroides elegans (Haswell, 1883), Port Jackson, Australia probably ship-transported to a circum(sub)<br />

tropical distribution; very confused synonymy, see e.g., ten Hove (1974), all (sub)tropical records <strong>of</strong> H.<br />

norvegicus belong here; N.B. In tropical Indo-Pacific regions the species can easily be confused with H.<br />

centrospina, H. longispinosus, H. multispinosus, and H. nanhaiensis<br />

26. Hydroides elegantulus (Bush, 1910), Bermuda Islands<br />

27. Hydroides exaltatus (Marenzeller, 1885), widely distributed in the Indo-West Pacific<br />

28. Hydroides externispina Straughan, 1967a, Queensland, South-Western Japan; compare H. ralumianus<br />

29. Hydroides ezoensis Okuda, 1934, Northern Sea <strong>of</strong> Japan, Vladivostok, South China, imported in France<br />

and Southern United Kingdom, and temperate Australia<br />

30. Hydroides floridanus (Bush, 1910), Florida, Gulf <strong>of</strong> Mexico and Eastern USA<br />

31. Hydroides furcifer (Grube, 1878), Philippines, Palau Island<br />

32. Hydroides fuscus Imajima, 1976, South Japan, Palau Island, Red Sea, South China<br />

33. Hydroides fusicola Mörch, 1863, Japan, South China<br />

34. Hydroides gairacensis Augener, 1934, La Guayra, Venezuela; South Florida to South Brazil, Pacific<br />

Panama<br />

35. Hydroides glandifer Rioja, 1941a, Acapulco, West Mexico, Baja California Sur<br />

36. Hydroides gracilis (Bush, 1905), Pacific Groove, California to Baja California Sur<br />

37. Hydroides helmatus (Iroso, 1921), Naples, Mediterranean<br />

38. Hydroides heterocerus (Grube, 1868), Red Sea, Zanzibar, Madagascar, Iranian Gulf, Sri Lanka, ?New<br />

Caledonia, Lessepsian migrant to the Levant Mediterranean<br />

39. Hydroides heter<strong>of</strong>urcatus Pillai, 1971, Sri Lanka<br />

40. Hydroides homoceros Pixell, 1913, Maldives, Zanzibar, Seychelles, Sudan, Iranian Gulf, Lessepsian<br />

migrant to the Levant Mediterranean, once mentioned from ship’s hull in Toulon, Mediterranean<br />

41. Hydroides huanghaiensis Sun & Yang, 2000, Yellow Sea<br />

42. Hydroides humilis (Bush, 1905), Gulf <strong>of</strong> California, Baja California to Panama<br />

43. Hydroides inermis Monro, 1933, Galapagos, North Peru<br />

44. Hydroides inornatus Pillai, 1960, Sri Lanka, India, Hong Kong; most probably synonym <strong>of</strong> H. operculatus<br />

45. Hydroides lambecki Bastida-Zavala & ten Hove, 2003, Curaçao, Caribbean<br />

46. Hydroides longispinosus Imajima, 1976, South Japan, South China, Ponape, Tonga, Queensland; see<br />

remark under H. elegans<br />

47. Hydroides longistylaris Chen & Wu, 1980, South China Sea; compare H. rectus<br />

48. Hydroides malleolaspinus Straughan, 1967b, Queensland, tropical Australia, Sri Lanka; compare H.<br />

ancorispinus; not sensu Imajima 1982, see H. novaepommeraniae<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 53


49. Hydroides microtis Mörch, 1863, North America, North Carolina, Gulf <strong>of</strong> Mexico, Guyana<br />

50. Hydroides minax (Grube, 1878), widely distributed in the Indo-West Pacific, Lessepsian migrant to the<br />

Levant Mediterranean<br />

51. Hydroides mongeslopezi Rioja, 1959, Vera Cruz, Gulf <strong>of</strong> Mexico, Caribbean<br />

52. Hydroides monroi Zibrowius, 1973b, Congo, Cabinda<br />

53. Hydroides mucronatus Rioja, 1959, Veracruz, Gulf <strong>of</strong> Mexico<br />

54. Hydroides cf. mucronatus Rioja, 1959; ten Hove, 1984 Caribbean; status uncertain, see Bastida-Zavala &<br />

ten Hove (2002), probably new (sub?)species<br />

55. Hydroides multispinosus Marenzeller, 1885, Enoshima, Japan; see remark under H. elegans<br />

56. Hydroides nanhaiensis Wu & Chen, 1981b, South China Sea; see remark under H. elegans<br />

57. Hydroides niger Zibrowius, 1971a, Mediterranean<br />

58. Hydroides nodosus Straughan, 1967b, Queensland<br />

59. Hydroides norvegicus Gunnerus, 1768, Boreal European species; very confused synonymy, all harbour<br />

and Indo Pacific records see H. elegans<br />

60. Hydroides novaepommeraniae Augener, 1925, New Britain, Palau and Truk Island, Philippines, South<br />

Japan; confused synonymy, see Imajima & ten Hove (1984)<br />

61. Hydroides ochoterena Rioja, 1941a, Acapulco, Western Mexico to Pacific Colombia<br />

62. Hydroides operculatus (Treadwell, 1929), probably incl. H. inornatus; Somalia, Moçambique,<br />

Queensland, Lessepsian migrant to the Levant Mediterranean<br />

63. Hydroides panamensis Bastida-Zavala & ten Hove, 2003, Pacific Panama, Ecuador<br />

64. Hydroides parvus (Treadwell, 1902), Puerto Rico, South Florida to Brazil<br />

65. Hydroides perezi Fauvel, 1918, Iranian Gulf, Red Sea, Tonga; not sensu Straughan 1967b, compare H.<br />

dafnii, H. tuberculatus<br />

66. Hydroides plateni (Kinberg, 1867), South Brazil to Patagonia<br />

67. Hydroides protulicola Benedict, 1887, Cape Hatteras, North Carolina, Eastern USA and northern Gulf <strong>of</strong><br />

Mexico<br />

68a. Hydroides pseudouncinatus africanus Zibrowius, 1971a, Morocco, Guinee, Senegambia, ?Madagascar<br />

68b. Hydroides pseudouncinatus pseudouncinatus Zibrowius, 1968a, Marseille, Mediterranean<br />

69. Hydroides ralumianus Augener, 1927, New Caledonia; compare H. externispina<br />

70. Hydroides rectus Straughan, 1967b, Queensland, Northern Territories; compare H. longistylaris<br />

71. Hydroides recurvispina Rioja, 1941a, Acapulco, West Mexico, Gulf <strong>of</strong> California to Panama<br />

72. Hydroides rhombobulus Chen & Wu, 1980, South China Sea, Hong Kong; compare H. uniformis and H.<br />

xishaensis<br />

73. Hydroides rostratus Pillai, 1971, Sri Lanka; N.B. preoccupied by H. rostratus Iroso, 1921, nov. nom. for<br />

H. uncinatus Ehlers, 1887, = H. floridanus<br />

74. Hydroides salazarvallejoi Bastida-Zavala & ten Hove, 2003, Colombia, Caribbean and Pacific Costa Rica<br />

to Ecuador<br />

75. Hydroides sanctaecrucis Krøyer [in] Mörch, 1863, St. Croix, Caribbean, both sides <strong>of</strong> Mexico and<br />

Panama, ?Hawaii, ship-transported to Singapore and tropical Australia; confused synonymy, see Bastida-<br />

Zavala & ten Hove (2002)<br />

76. Hydroides similis (Treadwell, 1929), Baja California to Panama<br />

77. Hydroides similoides Bastida-Zavala & ten Hove, 2003, Puerto Rico, Caribbean<br />

78. Hydroides sinensis Zibrowius, 1972c, Yellow Sea<br />

79. Hydroides spongicola Benedict, 1887, Gulf <strong>of</strong> Mexico, Caribbean, Bahamas<br />

80. Hydroides steinitzi Ben-Eliahu, 1972, Suez Canal, Philippines, found once on ship’s hull in Toulon,<br />

Mediterranean<br />

81. Hydroides stoichadon Zibrowius, 1971a, Provence, Mediterranean<br />

82. Hydroides tambalagamensis Pillai, 1961, widely distributed in the Indo-West Pacific<br />

83. Hydroides tenhovei Bastida-Zavala & de Leon Gonzalez, 2002, Cabo San Lázaro, Baja California Sur<br />

54 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


84. Hydroides trilobulus Chen & Wu, 1978, Guandong, South China Sea<br />

85. Hydroides trivesiculosus Straughan, 1967a, Queensland; tropical Australia, Tanzania, Red Sea; compare<br />

H. albiceps<br />

86. Hydroides trompi Bastida-Zavala & ten Hove, 2003, Baja California to Panama<br />

87. Hydroides tuberculatus Imajima, 1976, widely distributed in the Indo-West Pacific; compare H. dafnii, H.<br />

perezi<br />

88. Hydroides uniformis Imajima & ten Hove, 1986, Solomon Islands, ?Queensland; compare H.<br />

rhombobulus and H. xishaensis<br />

89. Hydroides xishaensis Chen & Wu, 1978, Guandong, China; compare H. rhombobulus and H. uniformis.<br />

FIGURE 23. SEM micrographs <strong>of</strong> chaetae in Hydroides norvegicus. Norway, South <strong>of</strong> Island Fosenheia, 63°37’ N,<br />

9°27’ E, 30 m, Scandinavia Expedition 1961, det. H.A. ten Hove 1969, ZMA V.Pol. 3090. A—details <strong>of</strong> bayonet collar<br />

chaetae, B—anterior abdominal uncini, C—middle abdominal chaetae, D—tip <strong>of</strong> posterior abdominal capillary chaeta.<br />

17. Janita Saint-Joseph, 1894<br />

(Fig. 24)<br />

Type-species: Omphalopoma spinosa Langerhans, 1884, = junior synonym <strong>of</strong> Serpula fimbriata delle Chiaje, 1822<br />

Number <strong>of</strong> species: 1<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 55


FIGURE 24. SEM micrographs <strong>of</strong> chaetae in SEM micrographs <strong>of</strong> Janita fimbriata. France, Marseille, det. and don. H.<br />

Zibrowius, ZMA V.Pol. 3033. A—lateral view <strong>of</strong> entire animal, B—Spirobranchus type collar chaeta, C—Apomatus<br />

chaeta, D—anterior abdominal chaeta, E—thoracic uncini, F—posterior abdominal uncini.<br />

Tube white, sub-circular in cross-section, with 5 longitudinal winding ridges. Granular overlay absent.<br />

Operculum bell-shaped, ending in simple thick brown concave endplate; opercular base surrounded by three<br />

fleshy processes, one triangular and two rounded ones, not unlike those figured for Crucigera zygophora by<br />

ten Hove & Jansen-Jacobs (1984 fig. 9C). Peduncle cylindrical, slightly compressed dorso-ventrally and<br />

wrinkled; inserted below and between first and second normal radiole (below second in larger specimens).<br />

Pseudoperculum absent. Arrangement <strong>of</strong> radioles short pectinate, up to 12 radioles per lobe. Inter-radiolar<br />

56 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


membrane and stylodes absent. Branchial eyes present, reported as stalked eyes at base <strong>of</strong> pinnules by<br />

Langerhans (1884 fig. 45a). Mouth palps present. 7 thoracic chaetigerous segments. Collar pentalobate,<br />

medioventral lobe divided by deep median and two shallow incisions. Tonguelets absent. Thoracic<br />

membranes short, ending at second thoracic chaetiger. Collar chaetae <strong>of</strong> Spirobranchus type (Fig. 24B),<br />

acicular and limbate. Apomatus chaetae present (Fig. 24C). Thoracic uncini saw-shaped with up to 16 teeth,<br />

anterior peg blunt, questionably gouged (Fig. 24E). Triangular depression absent. Anterior abdominal uncini<br />

saw-shaped, posterior rasp-shaped (Fig. 24F), with approximately 13 teeth in pr<strong>of</strong>ile, 3–5 teeth per row.<br />

Abdominal chaetae flat narrow geniculate, with a more or less crenulated edge to the blade (Fig. 24D).<br />

Achaetous anterior abdominal zone very short or absent. Long posterior capillary chaetae absent. Posterior<br />

glandular pad present.<br />

Remarks. The genus Janita was erected by Saint-Joseph for Omphalopoma spinosa Langerhans, 1884,<br />

which is a junior synonym <strong>of</strong> Serpula fimbriata delle Chiaje, 1822 (see e.g., Fauchald, 1977: 144,<br />

Lommerzheim 1979: 157). There was a considerable confusion about generic attribution <strong>of</strong> this species,<br />

generally it has been attributed to Omphalopomopsis. Zibrowius (1972b) points out that the distinction<br />

between Janita and Omphalopomopsis is justified due to having very different opercula: O. langerhansi has a<br />

simple globular operculum with a shallow concave calcareous endplate, J. fimbriata has a more complex<br />

operculum with a deeply cupped chitinous endplate, which has a horny talon into the fleshy opercular ampulla<br />

(Imajima, 1979).<br />

It should be noted that Rioja (1923) and Fauvel (1927) mentioned both “Spirobranchus” type and acicular<br />

collar chaetae for Janita fimbriata (as Omphalopomopsis); (Zibrowius (1968a) on the other hand regarded the<br />

“acicular” chaetae as misinterpretation <strong>of</strong> “Spirobranchus” type, observed from the back (not in lateral view).<br />

Martín (1989) assumed that specimens with acicular collar chaetae and those with “Spirobranchus” type<br />

chaetae belong to different taxa. Ben-Eliahu & Fiege (1996) mentioned specimens with one or the other type<br />

<strong>of</strong> collar chaetae from a single population <strong>of</strong> what they regard to be J. fimbriata; ten Hove (in Ben-Eliahu &<br />

Fiege 1996) mentioned a specimen with both types. The phenomenon merits further attention.<br />

The monotypic genus is distributed in the (sub) tropical Atlantic, Mediterranean (Zibrowius 1972b,<br />

1973b, Bianchi 1981, Bianchi et al. 1984), and Indo-West Pacific (Imajima & ten Hove, 1984, 1986, ten Hove<br />

1994). See also remarks following Omphalopomopsis.<br />

Janita fimbriata (delle Chiaje, 1822), (sub)tropical Atlantic, Mediterranean, Indo-West Pacific.<br />

18. Josephella Caullery & Mesnil, 1896<br />

(Fig. 25)<br />

Type-species: Josephella marenzelleri Caullery & Mesnil, 1896<br />

Number <strong>of</strong> species: 1<br />

Tube white, opaque, circular in cross-section, with small peristomes; tube diameter approximately 0.1 mm.<br />

Granular overlay absent. Operculum delicate membranous cup with a flat distal surface surmounted by a<br />

marginal crown <strong>of</strong> fine teeth joined by a transparent membrane. Peduncle second non-modified pinnulate<br />

radiole, though Bush (1905) and Ben-Eliahu & Payiatas (1999: 109) mention a non-pinnulate radiole (the first<br />

as J. humilis). Pseudoperculum absent. Radioles arranged in semi-circles, up to 3 per lobe. Inter-radiolar<br />

membrane absent. Branchial eyes absent, a pair <strong>of</strong> red ocellar clusters at the base <strong>of</strong> collar. Stylodes absent.<br />

Mouth palps absent. 5 thoracic chaetigerous segments. Collar non-lobed. Tonguelets absent. Thoracic<br />

membranes short, ending at first chaetiger. Collar chaetae limbate. Apomatus chaetae present (Fig. 25A).<br />

Uncini rasp-shaped, with 10–12 teeth seen in pr<strong>of</strong>ile, 4 teeth in a row distally to 7 above peg (Fig. 25B, C).<br />

Anterior peg gouged, widened into a rectangular to trapezoid base, flat, but with sharp angles that sometimes<br />

curve underneath (thus giving a bifurcate appearance under compound microscope). Triangular depression<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 57


absent. Abdominal chaetae flat narrow geniculate with pointed denticulate edge (Fig. 25D). Abdominal uncini<br />

with 9–10 teeth in a row. Achaetous anterior abdominal zone long. Posterior capillary chaetae absent.<br />

Posterior glandular pad absent.<br />

FIGURE 25. SEM micrographs <strong>of</strong> chaetae in Josephella marenzelleri. France, Marseille, Vieux Port, legit H. Zibrowius,<br />

ZMA V.Pol. 3030. A—Apomatus and “limbate” chaetae <strong>of</strong> 3 rd thoracic chaetiger, B—4 th (and last) thoracic row <strong>of</strong> uncini,<br />

C—anterior abdominal uncini, D—tip <strong>of</strong> anterior abdominal chaeta.<br />

Remarks. This tiny serpulid is known from numerous circum(sub)tropical, temperate locations around<br />

the world: Australia (Dew 1959), Japan (Uchida 1978, Imajima 1979), Hawaii (Bailey-Brock 1991), Israel<br />

(Ben-Eliahu 1976), Italy (Bianchi 1981), Cyprus (Ben-Eliahu & Payiatas 1999), Germany (Hartmann-<br />

58 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Schröder 1971), France (Fauvel 1927, Zibrowius 1968a), west coast <strong>of</strong> Africa (Zibrowius 1973b), north coast<br />

<strong>of</strong> Tunis (Zibrowius 1979a). The species was confused with Rhodopsis (by Straughan 1967a fig. 5i). Ben-<br />

Eliahu & Payiatas (1999) provided SEMs <strong>of</strong> Josephella chaetae. Dew (1959) mentioned a single specimen<br />

with two opercula equal in size.<br />

Josephella marenzelleri Caullery & Mesnil, 1896, circum(sub)tropical, temperate.<br />

19. Laminatubus ten Hove & Zibrowius, 1986<br />

(Fig. 26)<br />

Type-species: Laminatubus alvini ten Hove & Zibrowius, 1986<br />

Number <strong>of</strong> species: 1<br />

Tube white, more or less triangular in cross-section, with large undulating longitudinal keel; consisting <strong>of</strong> two<br />

layers: an inner opaque layer and an outer (not granular) hyaline one. Operculum globular, with bulbous<br />

proximal ampulla and more or less flattened distal part with thickened cuticle. Peduncle cylindrical, gradually<br />

merging into opercular ampulla, constriction absent; inserted to left side, proximal from first and second<br />

normal radiole. Pseudoperculum absent. Radioles not connected by inter-radiolar membrane, arranged into<br />

slightly ascending spiral <strong>of</strong> up to two whorls. Up to 33 radioles per lobe. Stylodes and branchial eyes absent.<br />

Mouth palps not observed. 6 thoracic chaetigerous segments. Collar with medio-ventral and two latero-dorsal<br />

lobes, continuous with thoracic membranes, forming apron. Tonguelets absent. Collar chaetae Spirobranchustype<br />

(Fig. 26A) and limbate. Apomatus chaetae absent. All uncini saw-shaped with 5–7 teeth, anterior fang<br />

simple, pointed (Fig. 26D, C). Thoracic tori converging posteriorly, forming triangular depression. Abdominal<br />

chaetae long, with hollow trumpet-shaped tip, smoothly bent (Fig. 26D). Posterior chaetae become longer, but<br />

posterior capillary chaetae absent. Achaetous anterior abdominal zone absent. Posterior glandular pad absent.<br />

Remarks. The species is a common element <strong>of</strong> the bathyal hydrothermal vent communities found in the<br />

Galapagos rift and the East Pacific Rise.<br />

Laminatubus alvini ten Hove & Zibrowius, 1986, East Pacific, 1–21º N; bathyal.<br />

20. Marifugia Absolon & Hrabĕ, 1930<br />

(Fig. 27)<br />

Type-species: Marifugia cavatica Absolon & Hrabĕ, 1930<br />

Number <strong>of</strong> species: 1<br />

Tube white, opaque, circular in cross-section; irregular longitudinal keel and collar like rings may be present.<br />

Thin hyaline granular overlay <strong>of</strong> the tube present. Operculum fig-shaped to inverse conical, with (or without)<br />

chitinous endplate. Peduncle flattened cylindrical, smooth, without distal wings, gradually merging into<br />

opercular ampulla; inserted just below and between first and second dorsal radiole on left side (in large<br />

specimen almost covering base <strong>of</strong> branchial lobe). Pseudoperculum absent. Radioles arranged in semi-circles,<br />

up to 6 per lobe. Inter-radiolar membrane, branchial eyes and stylodes absent. Mouth palps not found. 6<br />

thoracic chaetigerous segments. Collar non-lobed but with low medio-ventral projection. Thoracic<br />

membranes narrow but forming apron. Tonguelets absent. Collar chaetae absent. Thoracic chaetae limbate,<br />

Apomatus chaetae absent (Fig. 27A). Thoracic uncini saw-to-rasp-shaped, with about 8 teeth in pr<strong>of</strong>ile, up to<br />

4 in a row above blunt almost square shallowly gouged anterior peg (dental formula P:4:3:2:1:1:1:1:1, Fig.<br />

27B). Triangular depression absent. Abdominal chaetae trumpet-shaped, long, smoothly bent, with hollow tip<br />

bordered with pointed teeth (Fig. 27D). Posterior abdominal capillaries not observed. Uncini saw-to-rasp-<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 59


shaped; anterior peg simple rounded (Fig. 27C). Achaetous anterior abdominal zone, long posterior capillary<br />

chaetae and glandular pad absent.<br />

FIGURE 26. SEM micrographs <strong>of</strong> chaetae in Laminatubus alvini. Galapagos rift, “Alvin” dive 884, Garden <strong>of</strong> Eden,<br />

hydrothermal vent areas, 0°47.69' N, 80°07.74' W, 2482 m, ZMA V.Pol. 3480. A—details <strong>of</strong> Spirobranchus collar<br />

chaeta, B—uncini <strong>of</strong> 4 th thoracic chaetiger, C—anterior abdominal uncini, D—anterior abdominal chaetae, details <strong>of</strong><br />

hollow tip.<br />

Remarks. Marifugia cavatica is unique in being the world's only fresh-water serpulid, <strong>of</strong> presumably<br />

marine origin (Sket 1983), inhabiting subterranean waters <strong>of</strong> the Dinaric karst <strong>of</strong> the former Yugoslavia. The<br />

60 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


most recent study (Kupriyanova et al., in prep.) summarises data on ecology, distribution, and reproduction <strong>of</strong><br />

the species and shows its close relationship with Ficopomatus.<br />

Marifugia cavatica Absolon & Hrabĕ, 1930, Bosnia and Herzegovina, Croatia, Slovenia to extreme N.E.<br />

Italy; fresh-water subterranean caves.<br />

FIGURE 27. SEM micrographs <strong>of</strong> chaetae in Marifugia cavatica. Bosnia & Herzegovina, Ravno, Zavala, Vjetrenica,<br />

Ravanjski kanal, legit M. Zagmajster, det. E. Kupriyanova, SAM E3612. A—thoracic chaetae, B—thoracic uncini,<br />

C—anterior abdominal uncini, D—anterior abdominal chaetae with hollow tips.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 61


Membranopsis Bush, 1910<br />

Type-species: Membranopsis inconspicua Bush, 1910<br />

Number <strong>of</strong> species: 1<br />

Tube not known. Specimen without branchial crown, thus all radiolar characters not known. Mouth palps not<br />

known. 9 thoracic chaetigerous segments. Collar quadrilobed; thoracic membranes wide, forming apron;<br />

tonguelets between ventral and lateral collar lobes not known. Collar chaetae damaged, apparently limbate.<br />

Subsequent chaetae limbate. Apomatus chaetae present from 7 th chaetiger onwards. Uncini [along entire<br />

body?] similar to those in Protula and Apomatus. Abdominal chaetae “curved somewhat in crescent shape<br />

rather narrow and abruptly tapering toward the tip” [? thus sickle-shaped?]. Achaetous anterior abdominal<br />

zone, long posterior capillary chaetae and glandular pad not known.<br />

Remarks. This monotypic taxon is ill-defined and known from Bush’s (1910) very sketchy original<br />

description only. Based on type comparison (by Gayle Playa, pers. comm.), Membranopsis inconspicua is<br />

most likely synonymous with Salmacinopsis setosa Bush, 1910, also with 9 thoracic chaetigers, probably a<br />

Protula species, an opinion shared with Chamberlin (1919a: 479); the latter taxon was referred to Protula<br />

setosa by Perkins (1998: 95). Since the generic name had not been formally synonymized yet, we mention it<br />

in this account, without number, but we regard it to be an invalid genus.<br />

21. Metavermilia Bush, 1905<br />

(Fig. 28)<br />

Type-species: Vermilia multicristata Philippi, 1844<br />

Number <strong>of</strong> species: 14<br />

Tube white, opaque, peristomes may be present, as well as several longitudinal keels, sometimes denticulate.<br />

Granular overlay generally absent. Operculum with chitinous, non-calcified endplate, sometimes with<br />

complex multi-tiered structures, or endplate may be absent. Peduncle flattened, ribbon-like, without distal<br />

wings; formed from second dorsal radiole on one side. Constriction may be present. Pseudoperculum may be<br />

present. Radioles arranged in semi-circles to short pectinate, up to 18 per lobe. Inter-radiolar membrane and<br />

stylodes absent. Branchial eyes may be present. Mouth palps absent. 7 thoracic chaetigerous segments. Collar<br />

trilobed, tonguelets between ventral and lateral collar lobes absent. Length <strong>of</strong> thoracic membranes variable,<br />

ending at thoracic segments 3–7, sometimes forming ventral apron on anterior abdominal segments. Collar<br />

chaetae limbate (Fig. 28A). Apomatus chaetae present (Fig. 28B). Thoracic uncini saw-shaped with up to 15<br />

teeth, anterior tooth blunt, rounded (Fig. 28C). Triangular depression absent. Abdominal chaetae with flat<br />

narrow geniculate blade with rounded teeth (Fig. 28E); uncini saw- or rasp-shaped (Fig. 28D). Achaetous<br />

anterior abdominal zone absent. Posterior capillary chaetae and glandular pad present.<br />

Remarks. The genus Metavermilia was revised and emended by Zibrowius (1971b) for four species;<br />

since then 10 more species have been added (see Nishi et al. 2007 for history and literature review).<br />

Specimens <strong>of</strong> M. acanthophora have a pseudoperculum (as mentioned for AM W3629 by Dew (1959) and<br />

ZMA V.Pol. 4701); another in the Queensland Museum (G 3905) has 2 opercula, one elaborate with three<br />

chitinous diabolos and spine, the other simple with a single chitinous endplate with spine.<br />

1. Metavermilia acanthophora (Augener, 1914), Indo-West Pacific, South Japan to Australia<br />

2. Metavermilia annobonensis Zibrowius, 1971b, Annobón, Western Africa; records from elsewhere should<br />

be checked<br />

3. Metavermilia arctica Kupriyanova, 1993d, <strong>of</strong>f Greenland, <strong>of</strong>f Norway, Arctic Ocean<br />

4. Metavermilia gravitesta Imajima, 1978, Izu Islands, Japan<br />

62 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 28. SEM micrographs <strong>of</strong> chaetae in Metavermilia acanthophora. Australia, Queensland, Lizard Island, legit G.<br />

Rouse and E. Kupriyanova, det. E. Kupriyanova. A—bundle <strong>of</strong> collar chaetae, B—thoracic “limbate” and Apomatus<br />

chaetae, C—thoracic uncini, D—anterior abdominal uncini, E—anterior abdominal chaetae.<br />

5. Metavermilia inflata Imajima, 1977, Ogasawara Islands, Japan; bathyal<br />

6. Metavermilia multicristata (Philippi, 1844), (sub)tropical Atlantic, Mediterranean, West Indian Ocean<br />

7. Metavermilia nanshaensis Sun, 1998, China<br />

8. Metavermilia nates Zibrowius, 1971b, Europa Island, Tanzania; Red Sea, Ponape; Honshu, Japan<br />

9. Metavermilia ogasawaraensis Nishi, Kupriyanova & Tachikawa, 2007, Ogasawara Islands, Japan<br />

10. Metavermilia ovata Imajima, 1978, Japan, Seychelles<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 63


11. Metavermilia spicata Imajima, 1977, Japan<br />

12. Metavermilia taenia Zibrowius, 1971b, Josephine Bank, East Atlantic<br />

13. Metavermilia truncata Imajima, 1978, Izu Islands, Japan<br />

14. Metavermilia yamazatoi Imajima & ten Hove, 1989, Okinawa, North-West Pacific.<br />

22. Microprotula Uchida, 1978<br />

Type-species: Microprotula ovicellata Uchida, 1978<br />

Number <strong>of</strong> species: 1<br />

Tube white, opaque, circular in cross-section, proximal part irregularly coiled and attached to substrate, distal<br />

erect and free. Granular overlay absent. Globular ovicells around erect distal part <strong>of</strong> the tube. Operculum and<br />

pseudoperculum absent. Arrangement <strong>of</strong> radioles semi-circular, up to 4 per lobe. Inter-radiolar membrane and<br />

stylodes absent. 8–12 pairs <strong>of</strong> red ocellar clusters present on both sides <strong>of</strong> each radiole. Mouth palps absent. 7<br />

thoracic chaetigerous segments. Collar well developed, with 4 weakly expressed lobes. Tonguelets absent.<br />

Thoracic membranes narrow, but forming apron. Collar chaetae limbate. Apomatus chaetae present. Thoracic<br />

and abdominal uncini rasp-shaped, Protula type, up to approximately 20 teeth in pr<strong>of</strong>ile, up to 6 in a row;<br />

anterior peg elongated, blunt, questionably gouged. Triangular depression absent. Abdominal chaetae sickleshaped<br />

with blunt teeth. Achaetous anterior abdominal zone short. Long posterior capillary chaetae present.<br />

Posterior glandular pad absent.<br />

Remarks. This poorly known tiny species has never been found in the field, the material described by<br />

Uchida (1978) comes from a population found in a marine aquarium. Some more questionable specimens<br />

(without typical ovicells) came from “reef rock in aquarium shop in Germany, origin probably Central Indo-<br />

Pacific” (Fosså & Nilsen 2000: 151, ZMA V.Pol. 4046). The type material was re-examined by EK. The<br />

species is morphologically very similar to small representatives <strong>of</strong> the genus Protula (hence the name). The<br />

major reason <strong>of</strong> its elevation into a separate genus has been the presence <strong>of</strong> tube ovicells used to brood<br />

embryos. Microprotula may not have a phylogenetic basis, as some Protula species do show incubation <strong>of</strong><br />

embryos (Kupriyanova et al. 2001), admittedly not in special brood-chambers but in gelatinous masses.<br />

Microprotula ovicellata Uchida, 1978, Sabiura, Japan.<br />

23. Neomicrorbis Rovereto, 1904<br />

(Fig. 29)<br />

Type-species: Serpula crenatostriata Münster in Goldfuss, 1831 (fide Regenhardt 1961: 89); a fossil taxon<br />

Number <strong>of</strong> Recent species: 1<br />

Tube transparent (vitreous), circular in cross-section, with numerous longitudinal ridges consisting <strong>of</strong> small<br />

denticles (Fig. 29C). Tube spiral, either dextral or sinistral. Granular overlay absent. Operculum with distal<br />

calcareous plate and large talon projecting into proximal ampulla, merging into peduncle without constriction<br />

(Fig. 29B). Peduncle second radiole right, two small distal wings. Pseudoperculum absent. Arrangement <strong>of</strong><br />

radioles semi-circular, 10 radioles left, 7 right. Inter-radiolar membrane, branchial eyes, and stylodes absent.<br />

Mouth palps absent. Number <strong>of</strong> thoracic chaetigers asymmetric, 5 to the left and 6 to the right (Fig. 29A).<br />

Collar non-lobed, tonguelets and length <strong>of</strong> thoracic membranes not known. Collar chaetae fin-and-blade and<br />

limbate. Apomatus chaetae present in posterior thoracic segments (Fig. 29E). Thoracic uncini saw-shaped<br />

with 12–15 teeth and rounded peg. Thoracic depression is not known. Abdominal chaetae retro-geniculate<br />

(Fig. 29F). Abdominal uncini rasp-shaped with 14–17 teeth in pr<strong>of</strong>ile, 3–5 in a row (Fig. 29D). Long anterior<br />

achaetous abdominal zone. Posterior capillary chaetae present. Posterior glandular pad absent.<br />

64 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 29. Photos and SEMs <strong>of</strong> chaetae <strong>of</strong> Neomicrorbis azoricus. Azores, 37°18'N 24°45.5'W, 610 m, R/V “Jean<br />

Charcot”, det. and don. H. Zibrowius, ZMA V.Pol. 3905. A—Lateral view <strong>of</strong> entire animal removed from its tube (photo<br />

R. Bastida-Zavala), B—operculum (photo R. Bastida-Zavala), C—tube (photo H. Zibrowius), D—anterior abdominal<br />

uncini, E—4 th thoracic bundle <strong>of</strong> thin “capillary” and Apomatus chaetae, F—anterior abdominal chaeta.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 65


Remarks. The diagnosis above is partly based on a personal communication by R. Bastida-Zavala. This is<br />

a poorly known monotypic genus with unclear affinities. According to Rzhavsky (pers. comm.), Neomicrorbis<br />

belongs to the Spirorbidae (Paralaeospirinae) because <strong>of</strong> its incomplete chaetal inversion typical for<br />

spirorbins. Reproduction is unknown, which makes placement within spirorbins difficult. Zibrowius (1972a)<br />

regards it as something intermediate between a “serpulid” and a spirorbin.<br />

Neomicrorbis azoricus Zibrowius, 1972a, Azores, St. Paul Island, West Indian Ocean.<br />

24. Neovermilia Day, 1961<br />

(Fig. 30)<br />

Type-species: Neovermilia capensis Day, 1961<br />

Number <strong>of</strong> species: 6<br />

Tube white, opaque, triangular to subcircular in cross-section, medial keel may be present. Granular overlay<br />

absent, though hyaline inner (bordering lumen) and hyaline outer layers may be present. Tabulae occasionally<br />

present. Operculum globular, s<strong>of</strong>t proximally, at most with slightly chitinized, or sclerotized, or calcified cap.<br />

Operculum absent in one species. Peduncle sub-cylindrical to triangular, wrinkled (annulated), sometimes<br />

with small distal latero-dorsal “winglets” (flattened parts <strong>of</strong> the peduncle), constriction present; inserted at<br />

base <strong>of</strong> first to fourth normal radiole. Pseudoperculum absent (but see remarks). Radioles arranged in semicircles<br />

to short spiral (1.5 whorls), up to 50 per lobe. Inter-radiolar membrane present (that is, radioles fused<br />

basally for about 1/20 th <strong>of</strong> their length). Stylodes absent. Branchial eyes not observed. Mouth palps absent. 7<br />

thoracic chaetigerous segments. Collar trilobed, tonguelets between ventral and lateral collar lobes absent.<br />

Thoracic membranes forming ventral apron across anterior abdominal segment. Collar chaetae limbate.<br />

Apomatus chaetae absent. Thoracic uncini saw-shaped with 5–6 teeth above pointed anterior fang (Fig. 30A);<br />

saw-to-rasp shaped in one species. Triangular depression absent, but rows <strong>of</strong> thoracic tori converge,<br />

completely touching each other medioventrally. Abdominal chaetae long, trumpet-shaped, smoothly bent,<br />

with hollow end bordered by two rows <strong>of</strong> pointed teeth (Fig. 30C). Abdominal uncini similar to thoracic ones,<br />

with 7 teeth above fang (Fig. 30B). Achaetous anterior abdominal zone absent. Posterior capillary chaetae and<br />

glandular pad absent.<br />

Remarks. Ten Hove (1975) tabulated the known species <strong>of</strong> Neovermilia. Later, two more species were<br />

described and attributed to this genus, N. aberrans Rullier & Amoureux, 1979 and N. anoperculata Lechapt,<br />

1992. Uncini <strong>of</strong> N. aberrans were figured with a bifid anterior peg; contrary to the description, Apomatus<br />

chaetae are present, and the number <strong>of</strong> thoracic chaetigers is higher than 7 (Zibrowius, pers. comm.), it might<br />

rather belong to Filogranella. The taxon anoperculata agrees well with the diagnosis <strong>of</strong> Neovermilia, but for<br />

the absence <strong>of</strong> an operculum and its thoracic uncini which are saw-to-rasp-shaped. One specimen <strong>of</strong> N.<br />

globula from Taronga Park checked by one <strong>of</strong> us (HAtH; Australian Museum) had a pseudoperculum in<br />

addition to the normal peduncle.<br />

1. Neovermilia anoperculata Lechapt, 1992, New Caledonia; SEM photos <strong>of</strong> chaetae in original description<br />

2. Neovermilia capensis Day, 1961, False Bay, South Africa<br />

3. Neovermilia dewae (Straughan, 1967b), Heron Island, Queensland, Australia<br />

4. Neovermilia falcigera (Roule, 1898), Cape Bojador; East Atlantic from <strong>of</strong>f Ireland to North Africa,<br />

Mediterranean; bathyal<br />

5. Neovermilia globula (Dew, 1959), Port Jackson, New South Wales, Australia<br />

6. Neovermilia sphaeropomatus (Benham, 1927), New Zealand.<br />

66 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 30. SEM micrographs <strong>of</strong> chaetae in Neovermilia globula. Australia, New South Wales, Sydney, Bondi Beach,<br />

legit G. Rouse, det. E. Kupriyanova. A—thoracic uncini, B—abdominal uncini, C—hollow tip <strong>of</strong> abdominal chaeta.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 67


25. Nogrobs de Montfort, 1808<br />

(Fig. 31)<br />

Type-species: Nogrobs vermicularis de Montfort, 1808 (a fossil taxon)<br />

Number <strong>of</strong> (Recent) species: 1<br />

FIGURE 31. SEM micrographs <strong>of</strong> chaetae in Nogrobs grimaldii. Azores, 39°03.5' N, 28°25.5' W, 2440 m, R/V “Jean<br />

Charcot”, det. H. Zibrowius 1972, ZMA V.Pol. 3906. A—collar chaetae, B—6 th row <strong>of</strong> thoracic uncini, C—anterior<br />

abdominal uncini, D—anterior abdominal chaeta.<br />

Tube free, white, sinistrally coiled, initially cylindrical, then prismatic (quadrangular in cross-section), finally<br />

with short cylindrical straight distal part. Collar like rings and granular overlay absent. Operculum inverse<br />

cone (ampulla) with chitinous endplate and central depression. Peduncle pinnulated, without distal wings,<br />

with outer groove distally, with or without constriction beneath ampulla; inserted as second right radiole, up to<br />

3 times as wide as other radioles. Pseudoperculum absent. Arrangement <strong>of</strong> radioles semi-circular, up to 8 per<br />

lobe. Inter-radiolar membrane, branchial eyes, and stylodes absent. Mouth palps absent. 4–6 thoracic<br />

chaetigerous segments. Collar non-lobed with entire edge, no clear separation towards thoracic membranes<br />

that end at second chaetiger. No apron, no tonguelets. Collar chaetae limbate (Fig. 31A). Apomatus chaetae<br />

68 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


absent. Thoracic uncini saw-to-rasp-shaped with numerous teeth (> 12) in pr<strong>of</strong>ile, 2–3 teeth per row (dental<br />

formula P:3:3:3:2:2:1:1:1:1:1:1:1:1); anterior peg gouged (Pomatoceros type) (Fig. 31B). Abdominal chaetae<br />

short, with flat triangular denticulate blade (Fig. 31D). Thoracic triangular depression absent. Abdominal<br />

uncini similar to thoracic ones (Fig. 31C). Achaetous anterior abdominal zone absent. Long posterior capillary<br />

chaetae absent. Posterior glandular pad absent.<br />

Remarks. The diagnosis above is based on the description <strong>of</strong> the only Recent species thus far described -<br />

from specimens collected at depths <strong>of</strong> 1846–1900 m <strong>of</strong>f the Azores. Topotypical material from 2440 m is<br />

present in the collections <strong>of</strong> the ZMA (V.Pol. 3906, presented by H. Zibrowius), additional material from the<br />

Central Atlantic was mentioned by Hartman & Fauchald (1971), they, however, counted 4 thoracic chaetigers<br />

only. A possible second undescribed species was found at 4124 m south-east <strong>of</strong>f the Galapagos Islands (ZMA<br />

V.Pol. 3859). Zibrowius (pers. comm.) suspects a total <strong>of</strong> 4 different species, partly with not coiled<br />

quadrangular tubes.<br />

Jäger (2004) synonymized the Recent genus Spirodiscus Fauvel, 1909 with the Fossil Nogrobs de<br />

Montfort, 1808. Jäger also suggested that the Recent Bathyditrupa hovei might belong to the subgenus<br />

Nogrobs (Tetraditrupa) Regenhardt, 1961, without further argumentation.<br />

Nogrobs grimaldii (Fauvel, 1909), Central Atlantic, <strong>of</strong>f Azores; bathyal, abyssal.<br />

26. Omphalopomopsis Saint-Joseph, 1894<br />

(Fig. 7A, B)<br />

Type-species: Omphalopoma langerhansii Marenzeller, 1885<br />

Number <strong>of</strong> species: 1<br />

Tube subcylindrical, white, opaque, with 3 denticulate keels and an occasional low collar-like ring. Granular<br />

overlay not observed. Operculum bulbous with slightly convex brilliantly white calcareous endplate. Peduncle<br />

cylindrical, broadening and wrinkled towards opercular ampulla, constriction present; without wings;<br />

insertion unknown. Pseudoperculum not mentioned in original description, presumably absent. Up to 25 pairs<br />

<strong>of</strong> radioles, arranged in two circles/short spires. Inter-radiolar membrane absent. Branchial eyes, stylodes, and<br />

mouth palps not observed. 7 thoracic chaetigerous segments. Collar trilobed, well developed, especially<br />

medio-ventrally; thoracic membranes wide till 3 rd segment, further unknown (damaged), apron apparently<br />

absent. Tonguelets unknown. Collar chaetae bayonet-like with numerous hair-like processes basally,<br />

Spirobranchus-type and limbate. Apomatus chaetae present. Thoracic uncini saw-shaped, with 7–8 teeth<br />

above anterior pointed fang. Triangular depression unknown. Abdominal chaetae geniculate, SEM details<br />

unknown, probably Vermiliopsis-type (then flat narrow geniculate), apparently with almost smooth edge, very<br />

long posteriorly. Uncini saw-shaped anteriorly with 7 teeth and fang, rasp-shaped posteriorly. Achaetous zone<br />

not known. Long posterior capillary chaetae present. Posterior glandular pad not observed.<br />

Remarks. The taxon is known only from the single holotype deposited in the Natural History Museum <strong>of</strong><br />

Vienna, NHMW A.N.14552, Inv. no. 2054 (Fig. 7A, B). The description by Marenzeller (1885) leaves doubt<br />

about the shape <strong>of</strong> the anterior uncinal tooth, it may be either pointed as in Hydroides, or blunt as in<br />

Vermiliopsis.<br />

Specimens attributed to Omphalopomopsis by Fauvel (1930, 1953) and Pillai (1960) in reality belong to<br />

Pomatostegus actinoceras (fide Zibrowius (1973b), as P. stellatus).<br />

Omphalopomopsis langerhansii (Marenzeller, 1885), South Japan, Enoshima, 366 m.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 69


27. Paraprotis Uchida, 1978<br />

(Fig. 32)<br />

Type-species: Paraprotis dendrova Uchida, 1978<br />

Number <strong>of</strong> species: 2, maybe 1<br />

FIGURE 32. SEM micrographs <strong>of</strong> chaetae in Paraprotis dendrova. Australia, Queensland, Lizard Island, Granite Head,<br />

from underside <strong>of</strong> boulders on rock, little sand, subtidally, legit H.A. ten Hove, 18.06.1983, det. D. Makhan. A—bundle<br />

<strong>of</strong> collar chaetae, B—thoracic uncini, C—thoracic chaetae, D—abdominal chaeta.<br />

70 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Tube white, opaque, circular in cross-section, without longitudinal keels. Granular overlay not observed.<br />

Operculum and pseudoperculum absent (or s<strong>of</strong>t globular operculum may be present on second unmodified<br />

radiole in P. pulchra). Arrangement <strong>of</strong> radioles semi-circular or short pectinate, up to 6 per lobe (up to 32 per<br />

lobe in P. pulchra). Inter-radiolar membrane absent. Branchial eyes (ocellar clusters) present. Stylodes absent.<br />

Mouth palps absent, but a spiral projection for brood attachment originates from the right side <strong>of</strong> the mouth.<br />

Collar non-lobed, tonguelets absent. Thoracic membranes narrowing at third chaetiger but continuing to the<br />

7 th thoracic chaetiger, a narrow apron is probably present (neither Uchida’s description nor an additional<br />

specimen SAM E3591 give a definite answer). 7 thoracic chaetigerous segments. Collar chaetae limbate (Fig.<br />

32A). Apomatus chaetae absent (Fig. 32C). Thoracic uncini <strong>of</strong> Protis type, saw-shaped with about 10 teeth,<br />

anterior fang with pointed tip (Fig. 32B). Thoracic triangular depression not observed. Anterior abdominal<br />

chaetae flat narrow geniculate with a row <strong>of</strong> sharp teeth along its free margin (Fig. 32D). Abdominal uncini<br />

similar to thoracic ones but rasp-shaped. Achaetous anterior abdominal zone present, short (2–4 segments).<br />

Long posterior capillary chaetae present. Posterior glandular pad not observed.<br />

Remarks. The diagnosis has been taken from Uchida (1978) who in the name for his new genus implied<br />

some similarity to Protis, mainly in the shape <strong>of</strong> thoracic uncini and lack <strong>of</strong> operculum, even though Protis<br />

has special fin-and-blade collar chaetae and thoracic Apomatus chaetae. Imajima (1979) described a second<br />

Paraprotis species, P. pulchra from Japan. Both species have a similar chaetation pattern; however, some<br />

specimens <strong>of</strong> P. pulchra have a thin globular operculum. Also, P. pulchra has a well developed trilobed collar,<br />

an inter-radiolar membrane, and uniformly wide thoracic membranes unlike P. dendrova, with its poorly<br />

developed non-lobed collar, bright ocellar clusters on its radioles but lacking an inter-radiolar membrane, and<br />

thoracic membranes that narrow at the 3 rd thoracic chaetiger. Spiral brooding projections typical for P.<br />

dendrova have not been mentioned for P. pulchra. Because <strong>of</strong> all the differences, P. pulchra very likely does<br />

not belong to the genus Paraprotis (fide ten Hove, 1984). Nishi (1992b) provided SEM micrographs <strong>of</strong><br />

chaetae <strong>of</strong> P. dendrova, additional figures are given in this paper (Fig. 32).<br />

1. Paraprotis dendrova Uchida, 1978, Sabiura, South Japan<br />

2. ?Paraprotis pulchra Imajima, 1979, Honshu, Japan.<br />

28. Paumotella Chamberlin, 1919<br />

(Figs 33, 51E)<br />

Type-species: Paumotella takemoana Chamberlin, 1919<br />

Number <strong>of</strong> species: 1<br />

Tube unknown. Operculum inverse conical, the distal chitinous endplate slightly depressed, without<br />

processes. Opercular peduncle smooth, oval (flattened circular) in cross-section, with long basal lateral wing<br />

(Fig. 51E); insertion just outside radioles, covering base <strong>of</strong> 4–5 radioles. Pseudoperculum absent.<br />

Arrangement <strong>of</strong> radioles in semi-circles, up to 21 per lobe. Inter-radiolar membrane absent. Branchial eyes not<br />

found in preserved material, stylodes absent. Mouth palps present. 7 thoracic chaetigerous segments. Collar<br />

trilobed, with entire edge. Thoracic membranes narrowing abruptly between 4 th and 5 th segment, where they<br />

end; no apron. Tonguelets absent. Collar chaetae limbate (Fig. 33A). Apomatus chaetae present (Fig. 33B, C).<br />

Thoracic uncini saw-shaped, with 12 teeth above rounded peg (Fig. 33D). Thoracic triangular depression<br />

present. Anterior and median abdominal regions with stout, moderately curved, acute, slightly compressed<br />

acicular chaetae (Fig. 33F); posteriorly long capillaries with distal limbus; uncini rasp-shaped, with about 10<br />

teeth in pr<strong>of</strong>ile, 2–3 teeth in a row above peg (Fig. 33E). Achaetous anterior abdominal zone short, 2–3<br />

segments only. Posterior glandular pad absent.<br />

Remarks. The original description <strong>of</strong> this monotypic genus is not up to the present standards, a new<br />

description is given below. The characteristic features <strong>of</strong> the genus, according to Chamberlin (1919) are the<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 71


abdominal chaetae that are neither denticulate nor geniculate, but acicular, as well as the shape <strong>of</strong> the<br />

operculum; however, the latter is not very characteristic, being similar to that <strong>of</strong> some Vermiliopsis spp., as<br />

well as that <strong>of</strong> Ditrupa.<br />

Paumotella takemoana Chamberlin, 1919, French Polynesia, Paumotu Archipelago.<br />

Paumotella takemoana Chamberlin, 1919: 481–483, pl. 78 figs 1–5; Southward, 1963: 586 (in key only); Fauchald,<br />

1977: 145 (opercular peduncle with wings); Uchida, 1978: 71–72 (associated with Vermiliopsis).<br />

Material studied. French Polynesia, Paumotu Archipelago, Makemo, coral, at bottom <strong>of</strong> lagoon, 24 m (13<br />

fm), R/V “Albatross” E. Pac. Exp. 1899–1900 ident. by Chamberlin (further details not present in internet list<br />

<strong>of</strong> stations) (holotype, USNM 19432; 2 slides (schizotypes) MCZ).<br />

Description. TUBE: absent, and not described by Chamberlin either.<br />

BRANCHIAE: each lobe with 20–21 branchial radioles, arranged in semi-circles, not connected by<br />

branchial membrane. Radioles too convoluted to observe details <strong>of</strong> pinnules, terminal filament long.<br />

Branchial eyes not observed. Stylodes absent. Pair <strong>of</strong> mouth palps present.<br />

PEDUNCLE: smooth, flattened circular in cross section, inserted just below left branchial lobe, covering<br />

base <strong>of</strong> 4–5 radioles. A single lateral wing along proximal 2/3 rds <strong>of</strong> peduncle (Fig. 51E), exactly like figured<br />

for Vermiliopsis leptochaeta Pillai, 1971; showing clear constriction just below ampulla. Pseudoperculum<br />

absent.<br />

OPERCULUM: globular to inverse conical with a distal slightly concave chitinous endplate, with smooth<br />

margin, and with flat central area without further ornamentation (Fig. 51E). Length <strong>of</strong> operculum and<br />

peduncle 4–5 mm; opercular bulb 1.4 mm, width 1.8 mm.<br />

COLLAR and thoracic membranes: collar high, with entire edge; deep incision between ventral and<br />

lateral collar lobes, the latter continuous with thoracic membranes, ending between chaetiger 4 and 5.<br />

Tonguelets between ventral and lateral collar lobes absent. Internal pockets in thoracic membranes and wartlike<br />

protuberances <strong>of</strong> collar chaetiger as in Floriprotis absent.<br />

THORAX: with collar chaetiger, and 6 uncinigerous chaetigers. Pair <strong>of</strong> prostomial eyes not observed.<br />

Collar chaetae broken <strong>of</strong>f, but according to Chamberlin they are limbate, <strong>of</strong> two sizes. Subsequent chaetae<br />

hooded (limbate), <strong>of</strong> two sizes. Apomatus chaetae occur in addition as well, both in slides <strong>of</strong> the type (MCZ)<br />

as well as in rest <strong>of</strong> holotype (contrary to Chamberlin’s description, and Fauchald (1977). Uncini along entire<br />

thorax saw-shaped, with 12 curved teeth and rounded peg. Thoracic uncinigerous tori gradually approaching<br />

one another posteriorly, forming a triangular depression on the ventral side <strong>of</strong> the thorax.<br />

ABDOMEN: abdominal chaetigers 56, anterior three achaetigerous. Uncini rasp-shaped, with peg and 10<br />

teeth in pr<strong>of</strong>ile, 2–3 teeth in a row. Chaetae faintly curved, rounded acute aciculae, 3–4 per bundle. Long<br />

capillary chaetae present in 10–15 posterior chaetigers, broken, thus extent not entirely clear. Pygidium<br />

clearly bilobed. Posterior glandular pad absent.<br />

Size: length up to 23.5 mm. Width <strong>of</strong> thorax 2.1 mm. Branchiae and operculum accounting for 1/6 <strong>of</strong><br />

entire length.<br />

Colour: the general colour is brownish yellow, with the parapodial processes paler. The thoracic collar is<br />

transparent. The branchiae yellow. Operculum yellow, with the rim black (Chamberlin 1919: 482).<br />

Ecology: no data except for those in label: coral, at bottom <strong>of</strong> lagoon, 24 m.<br />

Remarks. Chamberlin´s original label gives as locality “Takemo”, hence the specific name <strong>of</strong> the taxon;<br />

this mistake already was corrected in his paper to the atoll <strong>of</strong> Makemo. From the fact that Fauchald (1977:<br />

145) attributes wings to the opercular peduncle, a character not mentioned by Chamberlin, we infer that he<br />

probably saw the holotype. But for the presence <strong>of</strong> the absolutely unique abdominal chaetae the taxon could<br />

easily be mistaken for a species <strong>of</strong> the genus Vermiliopsis. Uchida (1978: 71–72) also associates the genus<br />

tentatively with Vermiliopsis sensu lato (his subfamily Vermiliopsinae). Possible relationship will be<br />

discussed in (a) forthcoming paper(s) by us.<br />

72 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 33. Photos (A–E) and a SEM micrograph (F) <strong>of</strong> chaetae in Paumotella takemoana. Holotype, USNM and<br />

MCZ (slides). A—“limbate” chaeta <strong>of</strong> 6 th thoracic chaetiger, B—Apomatus chaeta <strong>of</strong> 6 th chaetiger, C—same Apomatus<br />

chaeta as in B, but different focus, D—lateral view <strong>of</strong> thoracic uncini, E—frontal view <strong>of</strong> abdominal uncini, F—acicular<br />

abdominal chaetae.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 73


29. Placostegus Philippi, 1844<br />

(Fig. 34)<br />

Type-species: Serpula tridentata Fabricius, 1780<br />

Number <strong>of</strong> species: 7 (-8)<br />

FIGURE 34. SEM micrographs <strong>of</strong> chaetae in Placostegus tridentatus. Norway, Bolsøy galten, S. <strong>of</strong> Hamarøy, 67°57.0'<br />

N, 15°23.8' E, 115 m, legit H. Lemche, det. H.A. ten Hove, ZMA V.Pol. 3643. A—1 st row <strong>of</strong> thoracic uncini, B—anterior<br />

abdominal uncini, C—anterior abdominal chaeta with a hollow tip.<br />

Tube triangular in cross-section, with denticulate keels, transparent or semi-transparent, <strong>of</strong>ten only attached to<br />

substratum at the base, collar-like rings absent. Granular overlay absent. Operculum inverse conical, with<br />

chitinous cup-shaped endplate. Peduncle cylindrical, smooth, without wings, gradually merging into<br />

operculum, at most with shallow constriction; inserted at base <strong>of</strong> radioles on one side between first and second<br />

74 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


normal radiole and maximally covering base <strong>of</strong> first three radioles. Pseudoperculum absent. Radioles arranged<br />

in semi-circles, up to 24 per lobe; inter-radiolar membrane, branchial eyes, and stylodes absent. Mouth palps<br />

present. 6 thoracic chaetigerous segments. Collar tri- to penta-lobed, collar edge may be almost laciniate;<br />

tonguelets between ventral and lateral collar lobes present. Thoracic membranes long, forming ventral apron<br />

across anterior abdominal segment. Collar chaetae absent; collar region with girdle <strong>of</strong> reddish ocelli.<br />

Apomatus chaetae absent. All uncini sub-rectangular, rasp-shaped with > 20 teeth in pr<strong>of</strong>ile, and up to 8 small<br />

teeth in a row; anterior peg wide, flat, bluntly truncate, almost rectangular (Fig. 34A). Thoracic triangular<br />

depression absent. Abdominal chaetae truly trumpet, with distal hollow triangular blade, abruptly bent (Fig.<br />

34C). Achaetous anterior abdominal zone present. Long posterior capillary chaetae may be present. Posterior<br />

glandular pad absent.<br />

Remarks. Placostegus is one <strong>of</strong> three serpulid genera (see also Neomicrorbis and Vitreotubus) with an<br />

entirely vitreous tube; completely transparent, glass-like in live animals, it may become milky-white semitransparent<br />

after preservation in formalin. The tube in P. incomptus shows a remarkable dual appearance,<br />

proximally with closely set transverse ribs, distally smoothly triangular. Fauvel (1927 fig. 128i) and Imajima<br />

(1978 fig. 9c) mention a chitinous talon projecting from the endplate into the opercular bulb.<br />

Placostegus has one evident diagnostic autapomorphy—the belt <strong>of</strong> bright red ocelli in the region where in<br />

other genera collar-chaetae are found (e.g., Langerhans 1884 fig. 38b, Ehlers 1887 fig. 3, Hartman 1969 fig. 2;<br />

our Fig. 1F).<br />

1. Placostegus assimilis McIntosh, 1885, <strong>of</strong>f Bermudas; bathyal<br />

2. Placostegus californicus Hartman, 1969, Southern California<br />

3. Placostegus crystallinus (Scacchi, 1836) sensu Zibrowius, 1968a, Eastern North Atlantic, Mediterranean;<br />

?Red Sea, Indian Ocean, these reports might belong to a different species (Ben-Eliahu, pers. comm.)<br />

4. ? Placostegus grayi Baird, 1865, no location given; generic status uncertain<br />

5. Placostegus incomptus Ehlers, 1887, <strong>of</strong>f Cuba; bathyal<br />

6. Placostegus langerhansi Marenzeller, 1893, Madeira, Canary Islands<br />

7. Placostegus tridentatus (Fabricius, 1780), Atlantic, Mediterranean, Indo-West Pacific.<br />

30. Pomatoceros Philippi, 1844<br />

(Fig. 35)<br />

Type-species: Serpula triquetra Linnaeus, 1758<br />

Number <strong>of</strong> species: 5<br />

Tube generally white, opaque, though blue, purplish and pink parts may occur; usually with longitudinal<br />

keel(s), may be with more or less regular series <strong>of</strong> pits, triangular or sub-triangular in cross-section; granular<br />

overlay absent. Operculum with inverse conical to rather shallow ampulla, with calcified endplate, sometimes<br />

bearing spines. Peduncle thick, triangular in cross-section, with distal lateral wings; a constriction between<br />

peduncle and ampulla may be present; peduncle inserted almost medio-dorsally, covering the base <strong>of</strong> up to<br />

three dorsal radioles. Pseudoperculum absent. Radioles arranged in semi-circles and up to 20 per lobe.<br />

Branchial eyes and stylodes absent. Mouth palps present. 7 thoracic chaetigerous segments. Collar trilobed;<br />

tonguelets between ventral and lateral collar lobes present. Thoracic membranes long, forming ventral apron<br />

across anterior abdominal segment. Collar chaetae small, limbate. Apomatus chaetae absent. All uncini sawshaped<br />

with 10–11 teeth, anterior peg blunt gouged (Fig. 35A, B). Thoracic triangular depression present.<br />

Abdominal chaetae true trumpet-shaped, abruptly bent, distally with two rows <strong>of</strong> denticles separated by<br />

hollow groove (Fig. 35C, D). Achaetous anterior abdominal zone absent. Long posterior capillary chaetae<br />

absent. Posterior glandular pad absent.<br />

Remarks. See remarks for Spirobranchus.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 75


FIGURE 35. SEM micrographs <strong>of</strong> chaetae in Pomatoceros triqueter. United Kingdom, Liverpool Bay, 53˚50’ N, 3˚50’<br />

W, legit S.J. de Groot, ZMA V.Pol. 3201. A—anterior abdominal uncini, B—detail <strong>of</strong> pegs in last row <strong>of</strong> uncini, view<br />

from below, C—anterior abdominal chaetae with hollow tips, D—posterior abdominal chaetae.<br />

1. Pomatoceros americanus Day, 1973, Beaufort, North Carolina; temperate Eastern USA<br />

2. Pomatoceros lamarckii (Quatrefages, 1866), Guettary, France; Mediterranean-Atlantic, U.K., English<br />

Channel<br />

3. Pomatoceros minutus Rioja, 1941b, Acapulco, West Mexico; Gulf <strong>of</strong> California, Gulf <strong>of</strong> Mexico,<br />

Caribbean to Brazil<br />

4. Pomatoceros taeniatus (Lamarck, 1818), Tasmania; South Australia, New South Wales, New Zealand,<br />

South Trinidad Islands; a remarkable and questionable distribution, Trinidad might be explained by a label<br />

error by Benham (1927, as P. terraenovae)<br />

5. Pomatoceros triqueter (Linnaeus, 1758), Norway to and including Mediterranean-Atlantic, Black Sea;<br />

records from other areas questionable.<br />

76 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


31. Pomatoleios Pixell, 1913<br />

(Fig. 36)<br />

Type-species: Pomatoleios crosslandi Pixell, 1913, junior synonym <strong>of</strong> Placostegus cariniferus var. kraussii Baird, 1865<br />

Number <strong>of</strong> species: 1<br />

Tube white or bluish, opaque, triangular in cross-section, with medial keel projecting into flap over the<br />

entrance. Granular overlay absent. Operculum inverse conical with flat calcareous plate; sometimes with talon<br />

projecting into opercular ampulla (best seen if operculum is cleared in glycerine). Peduncle thick, triangular in<br />

cross-section, with distal wings, without constriction, inserted almost medially, slightly left, covering base <strong>of</strong><br />

up to five radioles. Pseudoperculum absent. Radioles arranged in semi-circles, up to 19 per lobe, connected by<br />

very high inter-radiolar membrane. Branchial eyes present (single ocelli visible in fresh material only).<br />

Stylodes absent. Mouth palps present. 6 thoracic chaetigerous segments (in juveniles 7). Collar with entire<br />

edge, tonguelets between ventral and lateral collar lobes present; thoracic membranes forming ventral apron.<br />

Collar chaetae absent (limbate ones present in juveniles only). Apomatus chaetae absent. Uncini saw-shaped<br />

with fairly numerous (10–11) teeth, anterior peg wide and blunt, gouged (Fig. 36B). Triangular depression<br />

present. Abdominal chaetae true trumpet-shaped, abruptly bent, distally with two rows <strong>of</strong> denticles separated<br />

by a groove (Fig. 36A). Achaetous anterior abdominal zone absent. Posterior capillary chaetae and posterior<br />

glandular pad absent.<br />

FIGURE 36. SEM micrographs <strong>of</strong> chaetae in Pomatoleios kraussii. Madagascar, Tuléar, littoral, det. and don. H.<br />

Zibrowius, legit J. Picard, ZMA V.Pol. 3068. A—anterior abdominal chaetae with hollow tips, B—thoracic uncini <strong>of</strong> 1 st<br />

row.<br />

Remarks. Opercular talons as reported by Pillai (1965 fig. 22H) and ten Hove (1973 fig. 43) are not<br />

consistenly mentioned (nor looked for) in the literature. Whether or not the presence <strong>of</strong> such a talon is a<br />

character distinguishing between populations or even taxa should be investigated.<br />

Pomatoleios kraussii is widely distributed in the Indo-Pacific forming intertidal aggregations. The only<br />

difference between Pomatoceros and Pomatoleios is the more or less consistent lack <strong>of</strong> collar chaetae in the<br />

latter. However, collar chaetae may be present in juvenile specimens (Zibrowius 1968a, Crisp 1977, ten Hove<br />

& Nishi 1996), and occasionally absent in Pomatoceros (e.g., 9 specimens from the Irish Sea, ZMA V.Pol.<br />

3201) as well as in Spirobranchus (e.g., as Olga elegantissima Jones, 1962), thus this monotypic genus likely<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 77


lacks a phylogenetic basis. See further remarks for Spirobranchus. SEM photos <strong>of</strong> Pomatoleios are published<br />

in Fiege & Sun (1999).<br />

Pomatoleios kraussii (Baird, 1865), South Africa; widely distributed in the Indo-Pacific; Lessepsian migrant<br />

to the Levant Mediterranean.<br />

32. Pomatostegus Schmarda, 1861<br />

(Fig. 37)<br />

Type-species: Pomatostegus macrosoma Schmarda, 1861, junior synonym <strong>of</strong> Terebella stellata Abildgaard, 1789<br />

Number <strong>of</strong> species: 3<br />

Tube white, opaque, semi-circular to roughly triangular in cross-section, with up to 5 longitudinal keels;<br />

granular overlay absent. Operculum a very flat ampulla covered with chitinous disk bearing a column with<br />

several serrated disks alternating with circlets <strong>of</strong> spines proximally and closely applied to each disk. Peduncle<br />

flatly triangular in cross-section with broad latero-distal wings along its entire length; inserted to the left or<br />

right at the basis <strong>of</strong> the branchial lobe; from the fact that the first and second radiole separated by the base <strong>of</strong><br />

the peduncle, it is inferred that it is derived from the second normal radiole. Constriction absent.<br />

Pseudoperculum absent. Arrangement <strong>of</strong> radioles in (semi-)circles, up to 90 per lobe. Inter-radiolar membrane<br />

present. Branchial eyes present. Stylodes absent. Mouth palps absent. 7 thoracic chaetigerous segments.<br />

Collar tri- to penta-lobed, well developed with an entire smooth margin. Tonguelets absent. Thoracic<br />

membranes short, ending just posterior to the second row <strong>of</strong> uncini (segment 3). Collar chaetae<br />

Spirobranchus-type, with basal pilose fin and distal blade, and limbate (Fig. 37B). Apomatus chaetae present<br />

(Fig. 37E). Thoracic uncini saw-shaped, with 9–13 teeth, anterior peg blunt (Fig. 37C). Thoracic tori meet<br />

ventrally in larger specimens; in juveniles the ventral space between thoracic tori narrowing towards last rows<br />

that almost fused, leaving a triangular depression. Abdominal chaetae flat narrow geniculate, with long blade<br />

(Fig. 37F). Abdominal uncini smaller than thoracic ones, with about 8 teeth in pr<strong>of</strong>ile, 3 teeth in a row (Fig.<br />

37D). Achaetous anterior abdominal zone absent. Long posterior capillary chaetae absent, but posterior<br />

chaetae longer. Posterior glandular pad absent.<br />

Remarks. According to the recent literature there is but a single circumtropical species, Pomatostegus<br />

stellatus. However, an unpublished study by P. Valentijn (former student to HAtH, University Utrecht), reinstigated<br />

two species regarded to be synonymous with the type-species to full specific rank: P. actinoceras,<br />

from the Indo-West Pacific Region, and P. krøyeri, from tropical Pacific America, leaving a tropical Atlantic<br />

distribution only for P. stellatus. The latter taxon has been recorded from Atlantic Africa by Augener (1918),<br />

Amoureux (1973), and Zibrowius (1973b), however, the single specimen studied from Western Africa by<br />

Valentijn and ten Hove could not be attributed with certainty to either P. actinoceras (likely) or P. stellatus<br />

(less likely).<br />

1. Pomatostegus actinoceras Mörch, 1863, Indo-West Pacific, ?Western Africa; generally synonymised with<br />

P. stellatus<br />

2. Pomatostegus krøyeri Mörch, 1863, tropical Pacific America; generally synonymised with P. stellatus<br />

3. Pomatostegus stellatus (Abildgaard, 1789), West Indies; Caribbean; usually including preceding 2 species.<br />

33. Protis Ehlers, 1887<br />

(Fig. 38)<br />

Type-species: Protis simplex Ehlers, 1887<br />

Number <strong>of</strong> species: 6 (or 7)<br />

78 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 37. SEM micrographs <strong>of</strong> chaetae in Pomatostegus stellatus. Cuba, South-East, Isla de la Juventud, Cayo Boca<br />

de Alonso, 4 m, legit G. San Martin, ZMA V.Pol. 3840. A—“limbate” chaeta <strong>of</strong> 2 nd thoracic bundle, B—Spirobranchus<br />

collar chaeta, C—1 st row <strong>of</strong> thoracic uncini, D—middle abdominal uncini, E—Apomatus chaetae <strong>of</strong> 7 th thoracic bundle,<br />

F—anterior abdominal chaeta.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 79


Tube white, opaque, without keels or flaring peristomes. Granular overlay absent. Operculum absent or one or<br />

more membranous globular opercula present on normal pinnulate radiole. Arrangement <strong>of</strong> radioles pectinate,<br />

up to 20 per lobe. Inter-radiolar membrane absent. Branchial eyes not observed. Stylodes absent. Mouth palps<br />

absent. 7 thoracic chaetigers. Collar trilobed with entire edge, tonguelets absent. Thoracic membranes long, at<br />

least to the end <strong>of</strong> thorax and usually forming ventral apron across anterior abdominal segments. Collar<br />

chaetae fin-and-blade (Fig. 38A) and limbate. Apomatus chaetae present. Thoracic uncini saw-shaped with<br />

about 6 teeth, anterior fang simple pointed (Fig. 38B). Triangular depression absent. Abdominal chaetae flat<br />

narrow geniculate with rounded teeth (Fig. 38D), slightly more triangular blade in P. hydrothermica.<br />

Abdominal uncini rasp-shaped in all segments, with up to 6 teeth in pr<strong>of</strong>ile, approximately 5–7 teeth in a row<br />

above fang (Fig. 38C). Achaetous anterior abdominal zone absent. Long posterior capillary chaetae present. A<br />

posterior glandular pad may be present.<br />

FIGURE 38. SEM micrographs <strong>of</strong> chaetae in Protis arctica. North East <strong>of</strong>f Iceland, 60°33' N, 7°25' W, 1802 m, R/V<br />

“Ingolf”, det. E. Wesenberg-Lund, redet. M.N. Ben-Eliahu, exchange with Zoological Museum Copenhagen, ZMA<br />

V.Pol. 3833. A—details <strong>of</strong> fin-and-blade collar chaeta, B—uncini <strong>of</strong> 4 th thoracic chaetiger, C—posterior abdominal<br />

uncini, D—anterior abdominal chaetae.<br />

Remarks. According to the original diagnosis, the lack <strong>of</strong> an operculum is considered a characteristic<br />

feature <strong>of</strong> Protis Ehlers, 1887. Ten Hove & Zibrowius (1986) reformulated the diagnosis, Kupriyanova &<br />

80 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Jirkov (1997) further extended it to include individuals with one or more opercula following the description <strong>of</strong><br />

the abyssal P. polyoperculata by Kupriyanova (1993b). Ben-Eliahu & Fiege (1996) and Kupriyanova &<br />

Jirkov (1997) report both operculate and non-operculate specimens <strong>of</strong> P. arctica. The nominal taxon<br />

Salmacina chilensis Gallardo, 1969 better would fit here (or in Chitinopoma). The taxonomy <strong>of</strong> the genus is<br />

difficult because chaetae, uncini and tubes are very similar and opercula, if present, are undifferentiated.<br />

Protis hydrothermica shows two characters not mentioned for the other species: warts between ventral and<br />

lateral collar lobes (see remarks Floriprotis), and a pair <strong>of</strong> pockets in the medio-ventral collar.<br />

1. Protis arctica (Hansen, 1879), Arctic to Central Atlantic, Mediterranean; bathyal; compare P. simplex<br />

2. Protis brownii (Pixell, 1913), Antarctic; maybe synonym <strong>of</strong> P. simplex<br />

3. ?Protis chilensis (Gallardo, 1969), <strong>of</strong>f Punta Patache, Northern Chile; bathyal (fide Nogueira & ten Hove<br />

2000)<br />

4. Protis hydrothermica ten Hove & Zibrowius, 1986, East Pacific; near hydrothermal vents<br />

5. Protis pacifica Moore, 1923, Southern California; bathyal<br />

6. Protis polyoperculata Kupriyanova, 1993b, Kurile-Kamchatka trench; abyssal<br />

7. Protis simplex Ehlers, 1887, <strong>of</strong>f Florida, 1500 m; compare P. arctica.<br />

34. Protula Risso, 1826<br />

(Fig. 39)<br />

Type-species: Protula rudolphi Risso, 1826, junior synonym <strong>of</strong> Serpula tubularia Montagu, 1803<br />

Number <strong>of</strong> species: ?23<br />

Tube white, opaque, may be up to 2 cm across and 40 cm long, (semi-)circular in cross-section, longitudinal<br />

keels and flaring peristomes absent. Operculum and pseudoperculum absent. Radioles arranged in two semicircles<br />

to a spire <strong>of</strong> up to 6 whorls, up to 320 per lobe (P. superba). Inter-radiolar membrane present. Branchial<br />

eyes may be present. Stylodes absent. Mouth palps present. 7 thoracic chaetigerous segments (however, see<br />

remarks). Collar trilobed, tonguelets absent. Thoracic membranes long and wide, with undulating edge,<br />

forming ventral apron across anterior abdominal segments. Collar chaetae limbate. Apomatus chaetae present.<br />

Thoracic and abdominal uncini rasp-shaped with approximately 30 teeth in pr<strong>of</strong>ile, up to 6 rows <strong>of</strong> teeth<br />

above and continuing onto elongated rounded peg (Fig. 39A, C). Thoracic triangular depression absent.<br />

Abdominal chaetae sickle-shaped, with finely denticulate blades (Fig. 39B), may be retro-geniculate in some<br />

taxa. Achaetous anterior abdominal zone absent. Long posterior capillary chaetae present. Posterior glandular<br />

pad present.<br />

Remarks. The genus Protula is the most problematic serpulid taxon and it has been pointed out that the<br />

phylogenetic basis for this genus is ill-defined (ten Hove 1984). The generic characters are based mainly on<br />

the negative characters, such as lack <strong>of</strong> operculum, lack <strong>of</strong> special collar chaetae and any characteristic<br />

ornamentation <strong>of</strong> the tubes. Because reliable species-level morphological characters are missing, species in<br />

the genus Protula have been described based on small differences in the shape <strong>of</strong> collar, number and<br />

arrangement <strong>of</strong> radioles, and even body and tube size. These differences may have been caused by varying<br />

state <strong>of</strong> preservation, variation in age, a different way <strong>of</strong> figuring and interpretation by the authors. Moreover,<br />

some species distinctions have been based on presumed differences in chaetation. For instance, Uchida (1978)<br />

relies heavily on literature data on absence or presence <strong>of</strong> Apomatus chaetae, a character used for generic<br />

distinction in his “subfamily Protulinae”. However, ten Hove & Pantus (1985) showed that Apomatus chaetae<br />

are extremely difficult to discern in the thick bundles <strong>of</strong> limbate chaetae, and if present occur at best in the<br />

chaetigers 5–7 in the Mediterranean Protula tubularia sensu auct. Within one population, specimens with and<br />

without Apomatus chaetae may occur, as well as specimens with or without thoracic uncini. Thus, the scanty<br />

literature data should be viewed with more caution than was done by Uchida (1978). For instance, his genus<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 81


FIGURE 39. SEM micrographs <strong>of</strong> chaetae in Protula tubularia. France, Banyuls, ZMA V.Pol. 3816. A—thoracic uncini<br />

<strong>of</strong> 1 st row, details <strong>of</strong> pegs, B—tip <strong>of</strong> anterior abdominal chaetae, C—thoracic uncini <strong>of</strong> 1 st row.<br />

82 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Paraprotula was based on the absence <strong>of</strong> the character “capillary” chaetae in thoracic segments in literature<br />

descriptions <strong>of</strong> Protula. However, “capillary” chaetae do occur in all serpulid genera we observed, including<br />

Protula. A further difference according to Uchida would be the abdominal chaetae, sickle shaped in Protula,<br />

retro-geniculate (“with a notch at the base <strong>of</strong> the free margin”) in Paraprotula apomatoides; however, this<br />

retro-geniculate chaetal type is known from Protula balboensis as well. Therefore we included his taxon<br />

Paraprotula apomatoides in the genus Protula. The number <strong>of</strong> 9 thoracic chaetigers, in our opinion, is<br />

insufficient to maintain a separate genus, Salmacinopsis, for the nominal taxon setosa, it would fit in the<br />

genus Protula.<br />

A very necessary revision <strong>of</strong> the genus should be based upon a comparison <strong>of</strong> all available types and as<br />

well as a statistical study <strong>of</strong> variability and should be confirmed with molecular data. Some <strong>of</strong> the names<br />

given below as “valid” had been synonymised in the past, on the misconception that widespread distributions<br />

<strong>of</strong> polychaetes were very common.<br />

1. Protula alba Benedict, 1887, West Indies; perhaps see P. longiseta<br />

2. Protula alberti Fauvel, 1909, <strong>of</strong>f Azores; bathyal<br />

3. Protula americana McIntosh, 1885, Nova Scotia, Eastern Canada<br />

4. Protula antennata Ehlers, 1887, <strong>of</strong>f South Florida; bathyal; compare P. longiseta<br />

5. Protula apomatoides (Uchida, 1978), Sabiura, South Japan<br />

6. Protula appendiculata Schmarda, 1861, Jamaica; questionable<br />

7. Protula atypha Bush, 1905, California, Hawaii; compare P. superba<br />

8. Protula balboensis Monro, 1933, Gulf <strong>of</strong> Panama, Pacific Colombia, ?Brazil<br />

9. Protula bispiralis (Savigny, 1820), widely distributed in the Indo-West Pacific, New Zealand; probably<br />

complex <strong>of</strong> species<br />

10. Protula diomedeae Benedict, 1887, Eastern USA; shelf depths to bathyal; compare P. submedia<br />

11. Protula intestinum (Lamarck, 1818), Mediterranean-Atlantic, southern U.K.<br />

12. Protula longiseta Schmarda, 1861, West Indies; compare P. alba and P. antennata<br />

13. Protula lusitanica McIntosh, 1885, <strong>of</strong>f Portugal; bathyal; indeterminable, specimen lost<br />

14. Protula media Stimpson, 1854, Eastern Canada, Arctic<br />

15. Protula pacifica Pixell, 1912, West Canada, North Japan Sea<br />

16. Protula palliata (Willey, 1905), Sri Lanka, Indo-West Pacific<br />

17. ?Protula setosa (Bush, 1910), Bermuda Islands; the generic and specific status <strong>of</strong> Salmacinopsis setosa is<br />

uncertain, but most probably Protula<br />

18. ?Protula so<strong>of</strong>ita Ben-Eliahu, 1976, Gulf <strong>of</strong> Elat (= Gulf <strong>of</strong> Aqaba); generic attribution uncertain, shows<br />

affinities with Vermiliopsis as well<br />

19. Protula submedia Augener, 1906, West Indies; bathyal; compare P. diomedeae<br />

20. Protula superba Moore, 1909, Gulf <strong>of</strong> California, California; compare P. atypha<br />

21. Protula tubularia (Montagu, 1803), England, Atlantic, questionably worldwide<br />

22. Protula tubularia anomala Day, 1955, South Africa; probably a full species<br />

23. Protula tubularia caeca Imajima, 1977, Ogasawara Islands, Japan; probably a full species.<br />

35. Pseudochitinopoma Zibrowius, 1969a<br />

(Fig. 40)<br />

Type-species: Hyalopomatopsis occidentalis Bush, 1905<br />

Number <strong>of</strong> species: 2<br />

Tube white opaque, with longitudinal keel, sub-triangular or triangular in cross-section, with occasional<br />

scooped peristomes (brood-care?). Hyaline granular overlay may be present. Operculum inverse conical with<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 83


FIGURE 40. SEM micrographs <strong>of</strong> chaetae in Pseudochitinopoma occidentalis. Canada, British Columbia, Barkley<br />

Sound, legit T. Macdonald, det. E. Kupriyanova. A—fin-and-blade collar chaetae, B—thoracic chaetae, C—thoracic<br />

uncini, D—abdominal uncini, E—abdominal chaeta with a hollow tip.<br />

distal chitinous shallow cap. Peduncle circular to rounded triangular in cross-section, about twice as wide as<br />

radiole, without wings or pinnules, separated from ampulla by constriction; inserted at base <strong>of</strong> left branchial<br />

lobe, in front <strong>of</strong> first radiole or almost midway between branchial lobes. Pseudoperculum absent. Radioles in<br />

semi-circles to short pectinate arrangement, with up to 10 radioles per lobe, inter-radiolar membrane absent.<br />

Branchial eyes absent. Mouth palps absent. 7 thoracic chaetigerous segments. Collar trilobed, tonguelets<br />

between median and latero-dorsal lobes absent. Thoracic membranes short, ending at the chaetiger 2. Collar<br />

chaetae fin-and-blade, with a distal limbate zone and a proximal wing not well separated (Fig. 40A), and<br />

84 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


limbate chaetae. Apomatus chaetae absent. Thoracic uncini saw-shaped, with about 12 teeth above gouged<br />

peg (Fig. 40C). Triangular depression absent. Abdominal chaetae hollow trumpet-shaped, narrow and<br />

smoothly bent, with long lateral tip (Fig. 40E). Abdominal uncini rasp-shaped, with 12–14 teeth in pr<strong>of</strong>ile,<br />

3–6 teeth in a row above gouge shaped peg (Fig. 40D). Achaetous anterior abdominal zone absent. Long<br />

posterior capillary chaetae and posterior glandular pad absent.<br />

Remarks. Zibrowius (1969a) erected the genus Pseudochitinopoma for Hyalopomatopsis occidentalis<br />

Bush, 1905 to stress its superficial similarity to the genus Chitinopoma. He tabulated the differences between<br />

these two genera in the shape <strong>of</strong> anterior tooth <strong>of</strong> thoracic uncini, the structure <strong>of</strong> the special collar chaetae and<br />

abdominal chaetae, as well as the presence <strong>of</strong> Apomatus chaetae. However, morphologically, Chitinopoma<br />

appears to be closer to Filogranula than to Pseudochitinopoma (Kupriyanova & ten Hove in prep.), see<br />

remarks for Filogranula. Moreover, Kupriyanova et al. (2006) provided preliminary molecular evidence that<br />

Pseudochitinopoma and Chitinopoma are not closely related.<br />

1. Pseudochitinopoma occidentalis (Bush, 1905), Prince William Sound, Eastern North Pacific<br />

2. Pseudochitinopoma pavimentata Nishi, 1999, <strong>of</strong>f Tateyana, Tokyo Bay, Formosa Strait, Japan.<br />

36. Pseudovermilia Bush, 1907<br />

(Fig. 41)<br />

Type-species: Spirobranchus occidentalis McIntosh, 1885<br />

Number <strong>of</strong> species: 10<br />

Tube white (in one species with transverse brown bands), opaque, with longitudinal keel(s), sub-triangular or<br />

triangular in cross-section; generally with regular ornamentation <strong>of</strong> ribs, pits, or teeth. Double or single<br />

brooding scoops may be present. Granular overlay absent. Operculum consisting <strong>of</strong> bulbous ampulla<br />

terminated by chitinous endplate or cap, usually with spine(s). Pseudoperculum absent. Peduncle smooth,<br />

cylindrical, without wings, clearly separated from ampulla by constriction; inserted just below and between<br />

first and second radiole on one side. Arrangement <strong>of</strong> radioles pectinate, up to 17 per lobe, inter-radiolar<br />

membrane absent. Branchial eyes not known. Stylodes absent. Filiform mouth palps present. 7 thoracic<br />

chaetigerous segments. Collar with unpaired medio-ventral lobe and two latero-dorsal lobes continuous with<br />

short thoracic membranes, continuing to second thoracic chaetiger. Tonguelets between ventral and lateral<br />

collar lobes absent. Collar chaetae limbate. Apomatus chaetae present from second or third chaetiger onward<br />

(Fig. 41A). Thoracic uncini saw-shaped, with 9–17 teeth above gouged peg (seemingly bifurcate). Triangular<br />

depression absent. Abdominal chaetae flat narrow geniculate, with rounded teeth on edge (Fig. 41D).<br />

Abdominal uncini rasp-shaped with 9–13 teeth in pr<strong>of</strong>ile view, up to 6 teeth in a row above gouged peg (Fig.<br />

41B, C). Short achaetous anterior abdominal zone may be present. Long posterior capillary chaetae present.<br />

Posterior glandular pad may be present.<br />

Remarks. The original diagnosis <strong>of</strong> Bush (1905) was emended by Zibrowius (1970b) and further<br />

emended by ten Hove (1975).<br />

1. Pseudovermilia babylonia (Day, 1967), Vema Sea Mount, South Africa<br />

2. Pseudovermilia conchata ten Hove, 1975, California, Baja California Sur; ? South China Sea<br />

3. Pseudovermilia fuscostriata ten Hove, 1975, Bonaire, Netherlands Antilles; Caribbean<br />

4. Pseudovermilia harryi Nogueira & Abbud, 2009, South Brazil<br />

5. Pseudovermilia holcopleura ten Hove, 1975, Barbados, Caribbean; ?Tonga<br />

6. Pseudovermilia madracicola ten Hove, 1989, Bonaire, Netherlands Antilles; Caribbean<br />

7. Pseudovermilia multispinosa (Monro, 1933), Gorgona Island, Gulf <strong>of</strong> Panama; Florida to South Brazil<br />

8. Pseudovermilia occidentalis (McIntosh, 1885), Bermuda, (sub)tropical Atlantic, ?Indo-West Pacific<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 85


9. Pseudovermilia pacifica Imajima, 1978, Izu Island, Indo-West Pacific<br />

10. Pseudovermilia xishaensis Sun & Yang, 2001, Xisha Islands, South China Sea.<br />

FIGURE 41. SEM micrographs <strong>of</strong> chaetae in Pseudovermilia occidentalis. Puerto Rico, <strong>of</strong>f Isla Matei, 17°53' N, 60°59'<br />

W, 20-25 m, legit & det. H.A. ten Hove, ZMA V.Pol. 3138. A—Apomatus and “limbate” chaetae <strong>of</strong> 4 th thoracic chaetiger,<br />

B—anterior abdominal uncini, C—posterior abdominal uncini, D—anterior abdominal chaeta.<br />

37. Pyrgopolon de Montfort, 1808<br />

(Fig. 42)<br />

Type-species: Pyrgopolon mosae de Montfort, 1808 (a fossil taxon)<br />

Number <strong>of</strong> (Recent) species: 3<br />

Tube white or pinkish/red, opaque, generally with longitudinal ridges and/or transverse rims; tabulae may be<br />

present. Cross-section semi-circular to trapezoidal, erect part polygonal. A hyaline, granular overlay may be<br />

present. Operculum funnel-shaped, with numerous radial ridges on inner side; operculum and peduncle<br />

86 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 42. SEM micrographs <strong>of</strong> chaetae in Pyrgopolon ctenactis. The Netherlands Antilles, Bonaire, North <strong>of</strong> Witte<br />

Pan, legit H.A. ten Hove, Sta. 2117, ZMA V.Pol. 4969. A—middle abdominal uncini, B—same as A, detail <strong>of</strong> pegs,<br />

C—1 st row <strong>of</strong> thoracic uncini, D—detail anterior abdominal chaeta with double row <strong>of</strong> teeth.<br />

entirely calcified; with an extremely long calcareous talon embedded into the tissue <strong>of</strong> the peduncle that is<br />

inserted medially. Pseudoperculum absent. Radioles arranged in semi-circles, up to 38 per lobe, united by<br />

inter-radiolar membrane for 1/4–1/2 <strong>of</strong> their length, surrounding pair <strong>of</strong> well-developed mouth palps.<br />

Branchial eyes have not been observed but the brim <strong>of</strong> the skin around the operculum is scalloped, due to a<br />

circle <strong>of</strong> compound eyespots (Fig. 6B). Stylodes absent. 7 thoracic chaetigerous segments, though collar<br />

chaetae generally missing. Collar with large, bilobed ventral part; tonguelets between lateral and ventral collar<br />

lobes present. Thoracic membranes very wide anteriorly, narrowing at 3 rd or 4 th segment, and united ventrally<br />

on first abdominal segment forming an apron. Collar chaetae (if present) Spirobranchus-type and limbate.<br />

Apomatus chaetae absent. Thoracic uncini saw-shaped, with 8–9 teeth, anterior peg bluntly truncated,<br />

indented anteriorly (Fig. 42C). Thoracic tori almost touching ventrally in posterior thoracic segments <strong>of</strong> larger<br />

specimens, leaving a clear triangular depression. Abdominal chaetae almost capillary, with short hollow<br />

trumpet-shaped tips, smoothly bent and with double row <strong>of</strong> pointed teeth extending in long lateral spine (Fig.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 87


42D). Abdominal uncini rasp-shaped with 8–11 teeth in pr<strong>of</strong>ile, 2–3 teeth in a row (Fig. 42A, B). Achaetous<br />

anterior abdominal zone absent. Short capillary chaetae present posteriorly. Posterior glandular pad, if present,<br />

hardly visible.<br />

Remarks. Sclerostyla Mörch, 1863 has been synonymized with Pyrgopolon, according to Jäger (1993,<br />

2004) including the genera Hamulus and Turbinia, known only from the fossil record. This opinion is shared<br />

by Belokrys (1994). Fossils have been mentioned from the Maastrichtian (Cretaceous) from e.g., the Southern<br />

Netherlands, Northern Belgium, and the Crimean Mountains. The Recent distribution <strong>of</strong> the genus is the<br />

tropical seas <strong>of</strong> the Americas and is little known because the animals are difficult to find as their tubes are<br />

usually embedded into substrate. The distinguishing feature (autapomorphy) <strong>of</strong> the genus is the funnel-shaped<br />

calcareous operculum continuing into a calcareous peduncle (talon). Opercular talons, but shorter, are also<br />

known in Pomatoleios and Neomicrorbis. The bright red “glandular fields” around the brim <strong>of</strong> the operculum<br />

mentioned by ten Hove (1973 figs 32–33) in the meantime have been found to be compound eyespots (HAtH,<br />

SEM observations); ten Hove’s (1973) revision still remains the most comprehensive source <strong>of</strong> information<br />

about this genus.<br />

1. Pyrgopolon ctenactis (Mörch, 1863), St. Thomas, Caribbean and tropical Pacific America<br />

2. Pyrgopolon differens (Augener, 1922), Barbados, Shelf <strong>of</strong> Surinam<br />

3. Pyrgopolon semiannulatum (ten Hove, 1973), Barbados.<br />

38. Rhodopsis Bush, 1905<br />

(Fig. 43)<br />

Type-species: Rhodopsis pusilla Bush, 1905<br />

Number <strong>of</strong> species: 2<br />

Tube white, circular in cross-section, thin-walled, not increasing in diameter, distal part sometimes erect,<br />

unattached, with peristomes; granular overlay absent. Animals with tube diameter < 0.2 mm. Some tubes may<br />

have one or more unpaired, inverted brood-chambers associated with peristomial rings. Operculum pearshaped,<br />

laterally compressed, usually with well-developed chitinous plate bearing spines. Opercular plate may<br />

be deeply infolded and sunk, angled, within the opercular ampulla, then with halves closely appressed; plate<br />

rarely flat and terminal. Rarely operculum a simple ampulla only. Peduncle smooth, cylindrical, without<br />

wings, separated from ampulla by constriction; inserted proximal to 1 st radiole on one side. Pseudoperculum<br />

absent. Arrangement <strong>of</strong> radioles short pectinate, only 2–3 radioles per lobe. Inter-radiolar membrane absent.<br />

Branchial eyes not observed. Stylodes absent. Mouth palps present. 4–6 thoracic chaetigerous segments<br />

present. Collar (tri-)quadri-lobed. Thoracic membranes short, reaching 1 st thoracic chaetiger. Collar chaetae<br />

absent. Apomatus chaetae present from second chaetiger onward. Thoracic and abdominal uncini rasp-shaped,<br />

with 6–8 teeth in a row in edge view and about 8 teeth in pr<strong>of</strong>ile, anterior fang simple pointed (Fig. 43A, B).<br />

Triangular depression absent. Single capillary chaeta in middle abdominal chaetigers accompanied by single<br />

flat narrow geniculate chaeta with blunt teeth (Fig. 43C). Achaetous anterior abdominal zone long, followed<br />

by up to 15 chaetigers. Posterior capillary chaetae present (Fig. 43D). Posterior glandular pad not observed.<br />

Remarks. This little known species was incompletely described by Bush (1905) from a tiny worm<br />

collected on corals <strong>of</strong>f Bermuda, characterized by numerous irregular spines in chitinous opercular plate. The<br />

type material was lost. Ben-Eliahu & ten Hove (1989) designated the neotype and re-described the species in<br />

detail. They also referred the monotypic Apomatolos Uchida, 1978 to Rhodopsis.<br />

1. Rhodopsis pusilla Bush, 1905, Bermuda, Caribbean, Mediterranean, Indo-West Pacific<br />

2. Rhodopsis simplex (Uchida, 1978), Kushimoto, Japan.<br />

88 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 43. SEM micrographs <strong>of</strong> chaetae in Rhodopsis pusilla. Australia, Queensland, Lizard Island, legit & det. E.<br />

Kupriyanova. A—thoracic uncini, B—abdominal uncini, C—anterior abdominal chaetae, D—posterior abdominal<br />

chaeta.<br />

39. Salmacina Claparède, 1870<br />

(Fig. 44)<br />

Type-species: Salmacina incrustans Claparède, 1870<br />

Number <strong>of</strong> species: 11 (?10)<br />

Worms form open aggregates consisting <strong>of</strong> large numbers <strong>of</strong> tiny whitish tubes, circular in cross-section<br />

without further diagnostic features; granular overlay absent. Operculum and pseudoperculum absent,<br />

sometimes swollen tips <strong>of</strong> radioles present. Radioles arranged in semi-circles, up to 4 radioles per lobe. Interradiolar<br />

membrane and stylodes absent. Branchial eyes may be present. Mouth palps present. 6–12 thoracic<br />

chaetigerous segments. Collar trilobed, tonguelets absent. Thoracic membranes forming apron. Collar chaetae<br />

fin-and-blade, distal blade well separated from fin, and limbate (Fig. 44A). Apomatus chaetae present (Fig.<br />

44B). Thoracic uncini rasp-shaped, rectangular to wedge-shaped (triangular) in frontal view, with 2–12 teeth<br />

in a transverse row, with up to 10 teeth in pr<strong>of</strong>ile view; anterior fang pointed (Fig. 44C). Thoracic triangular<br />

depression absent. Achaetous anterior abdominal zone present. Abdominal chaetae flat narrow geniculate<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 89


with pointed teeth along edge (Fig. 44D). Uncini similar to thoracic ones, with more teeth in the transverse<br />

rows, and squarish peg. Long posterior capillary chaetae and posterior glandular pad absent.<br />

.<br />

FIGURE 44. SEM micrographs <strong>of</strong> chaetae in Salmacina incrustans. Spain, Costa Brava, Playa de San Pol, legit & det.<br />

H.A. ten Hove, ZMA V.Pol. 3814. A—details <strong>of</strong> fin-and-blade collar chaeta, B—Apomatus and “capillary” chaetae <strong>of</strong> 7 th<br />

thoracic chaetiger, C—uncini <strong>of</strong> 4 th thoracic chaetiger, D—middle/posterior abdominal chaeta.<br />

Remarks. See remarks for Filograna, and Nogueira & ten Hove (2000) for a discussion on the Filograna/<br />

Salmacina complex. The generic attribution <strong>of</strong> Salmacina chilensis is doubtful, probably it belongs in Protis<br />

or Chitinopoma.<br />

90 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


1. Salmacina amphidentata Jones, 1962, Port Royal, Jamaica; Caribbean; ?South China, ?Japan<br />

2. Salmacina australis Haswell, 1885, Port Jackson, Australia; temperate-cold Southern part <strong>of</strong> Australia,<br />

New Zealand; compare S. dysteri<br />

3. Salmacina ceciliae Nogueira & ten Hove, 2000, Alcatrazes, Sao Paulo, Brazil<br />

4. ?Salmacina chilensis Gallardo, 1969, <strong>of</strong>f Punta Patache, Northern Chile; bathyal; generic attribution<br />

doubtful, Protis (or Chitinopoma)?<br />

5. Salmacina dysteri (Huxley, 1855) Tenby, Bristol Channel, Wales; not “worldwide”, but complex <strong>of</strong> species<br />

(Ben-Eliahu & ten Hove, in prep.)<br />

6. Salmacina dysteri falklandica Monro, 1930, East Falkland Island; collar chaetae aberrant, generic<br />

attribution questionable<br />

7. Salmacina huxleyi (Ehlers, 1887), Tortugas; Loggerhead Key, Florida; Bahamas, Caribbean<br />

8. Salmacina incrustans Claparède, 1870, Gulf <strong>of</strong> Naples, Italy; “worldwide”; probably complex <strong>of</strong> species<br />

9. Salmacina piranga (Grube, 1872), Estreite, Desterro, Brazil<br />

10. Salmacina setosa Langerhans, 1884, Madeira; West <strong>of</strong>f England; bathyal<br />

11. Salmacina tribranchiata (Moore, 1923), Santa Rosa Island, South California; British Columbia, ?Japan.<br />

40. Semivermilia ten Hove, 1975<br />

(Fig. 45)<br />

Type-species: Vermiliopsis pomatostegoides Zibrowius, 1969b<br />

Number <strong>of</strong> species: 8<br />

Tube triangular to sub-triangular in cross-section, keels present, otherwise variable; without flaring<br />

peristomes; granular overlay absent. Operculum inverse conical with chitinous endplate, more <strong>of</strong>ten a cap or<br />

series <strong>of</strong> diabolo-like plates; sometimes with terminal spine. Peduncle inserted as second radiole, cylindrical<br />

in cross-section; constriction present. Pseudoperculum absent. Radiolar arrangement short pectinately, up to 7<br />

radioles per lobe. Inter-radiolar membrane absent. Branchial eyes may be present. Stylodes absent. Mouth<br />

palps present. (5-)7 thoracic chaetigerous segments. Collar tri- to penta-lobed, tonguelets absent. Thoracic<br />

membranes end at chaetiger 2. Collar chaetae limbate. Apomatus chaetae present in posterior thoracic<br />

segments (Fig. 45A). Thoracic uncini saw- to-rasp-shaped; with about 15 teeth in pr<strong>of</strong>ile view, 1 tooth at the<br />

apex <strong>of</strong> the uncinus to 5 teeth in the row above the wide gouged peg (dental formula e.g.,<br />

P:5:3:2:2:1:1:1:1:1:1:1:1:1:1; Fig. 45B). Triangular depression absent. Abdominal chaetae flat narrow<br />

geniculate, with rounded teeth on edge (Fig. 45D, E); abdominal uncini smaller than thoracic ones, entirely<br />

rasp-shaped, with about 13 teeth in pr<strong>of</strong>ile view, up to 8 teeth in a row (Fig. 45C). Achaetous anterior<br />

abdominal zone, if present, very short. Long posterior capillary chaetae absent. Posterior glandular pad may<br />

be present.<br />

Remarks. Within the group <strong>of</strong> Vermiliopsis-like genera, Zibrowius (1972b, 1973a, b) distinguished 4<br />

genera (Bathyvermilia, Metavermilia, Pseudovermilia, and Vermiliopsis) and a group <strong>of</strong> aberrant species that<br />

he termed ?Vermiliopsis. Ten Hove (1975) erected a new genus Semivermilia for part <strong>of</strong> the latter (leaving the<br />

attribution <strong>of</strong> ?Vermiliopsis glacialis Monro, 1939, V. notialis Monro, 1930, and V. eliasoni Zibrowius, 1970a<br />

uncertain) and provided a table that allows distinguishing between the five genera above and Neovermilia.<br />

In small specimens/species, such as Semivermilia pomatostegoides (this paper), and certainly S. cribrata<br />

(as Josephella carenata Zibrowius, 1968a: 176) the number <strong>of</strong> thoracic chaetigers may be 5 or 6. Contrary to<br />

statements in the literature that the peduncle is the first radiole (e.g., Zibrowius (1968a) for S. crenata as<br />

Vermiliopsis undulata, respectively Zibrowius (1969b) as V. pomatostegoides), we checked material (Canary<br />

Islands, SW coast <strong>of</strong> La Palma, Punta del Hombre, 8–12 m, May 29, 1980, CANCAP Sta. 4.D10, ZMA V.Pol.<br />

4213), and found it to be the second normal radiole, or to be inserted just below the first and second normal<br />

radiole (thus probably migrated down from the second position). The character is difficult to observe, and may<br />

be subject to prejudice.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 91


FIGURE 45. SEM micrographs <strong>of</strong> chaetae in Semivermilia elliptica. Japan, Shirohama, Seto Marine Biological<br />

Laboratory, marine aquarium, legit E. Kupriyanova, det. H.A. ten Hove, SAM E3664. A—4 th thoracic bundle, B—uncini<br />

<strong>of</strong> 4 th thoracic chaetiger, C—abdominal uncini, D—anterior abdominal chaeta, E—posterior abdominal chaetae.<br />

1. Semivermilia agglutinata (Marenzeller, 1893), Benghazi, Mediterranean; bathyal<br />

2. Semivermilia crenata (O.G. Costa, 1861), Mediterranean, Mauretania<br />

3. Semivermilia cribrata (O.G. Costa, 1861), Mediterranean, Mauretania<br />

4. Semivermilia elliptica Imajima, 1978, Izu Island, Japan<br />

5. Semivermilia parapomatostega Wu & Chen, 1981a, South China Sea<br />

6. Semivermilia pomatostegoides (Zibrowius, 1969b), Tripolis, Mediterranean, Central Atlantic, Indo-West<br />

Pacific<br />

92 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


7. Semivermilia torulosa (delle Chiaje, 1822), Mediterranean, Mauretania<br />

8. Semivermilia uchidai Imajima & ten Hove, 1986, Solomon Islands, ?Seychelles.<br />

41. Serpula Linnaeus, 1758<br />

(Fig. 46)<br />

Type-species: Serpula vermicularis Linnaeus, 1767, designated by Heppell, 1963.<br />

Number <strong>of</strong> species: 29<br />

Tube white, pink, orange, or yellowish, opaque; (semi)circular to trapezoidal in cross-section, rarely<br />

polygonal; longitudinal keels, peristomes, a hyaline outer layer or granular overlay may be present.<br />

Operculum s<strong>of</strong>t to cartilaginous, funnel shaped with crenulated edge (fused radii). Peduncle smooth,<br />

cylindrical, without wings; inserted just below and between first and second dorsal radiole on one side. In<br />

large specimens the insertion outside the normal radioles, seemingly the first radiole. Radioles arranged in<br />

semi-circles, up to 50 per lobe in larger species. Pseudoperculum and inter-radiolar membrane present.<br />

Branchial eyes may be present. Mouth palps present, though only to be observed with histological techniques<br />

(Orrhage, 1980). Stylodes absent. 7 (rarely up to 12) thoracic segments. Collar trilobed. Tonguelets absent,<br />

though wart-like protuberances may be present at base <strong>of</strong> cleft between ventral and latero-dorsal collar lobes.<br />

Thoracic membranes long, forming ventral apron across anterior abdominal segments. Collar chaetae<br />

bayonet-shaped (Fig. 46A) and limbate. Apomatus chaetae absent. Uncini saw-shaped, with approximately 5<br />

teeth, anterior fang simple pointed (Fig. 46B). Thoracic triangular depression present. Abdominal chaetae flat<br />

trumpet-shaped with denticulate edge (Fig. 46D); uncini similar to thoracic ones, smaller, anteriorly sawshaped<br />

but becoming rasp-shaped towards the pygidium, with up to 12 teeth in pr<strong>of</strong>ile, up to 8 teeth in a row<br />

(Fig. 46C). Achaetous anterior abdominal zone absent. Posterior capillary chaetae present. Posterior glandular<br />

pad absent.<br />

Remarks. This is another serpulid genus that poses serious taxonomic difficulties. Although attribution <strong>of</strong><br />

any given specimen to the genus Serpula is easy due to a very characteristic funnel-shaped operculum with<br />

rounded radii (but see below), the number <strong>of</strong> useful taxonomic characters within the genus is limited and their<br />

variability is not documented enough to ensure the validity <strong>of</strong> many described species (see discussion in ten<br />

Hove & Jansen-Jacobs 1984). Many <strong>of</strong> the original descriptions are very limited and vague, and the characters<br />

typical for all species <strong>of</strong> the genus (such as the presence <strong>of</strong> bayonet-chaetae and a funnel-shaped operculum)<br />

have been used for specific diagnoses. As a consequence, the nominal species S. vermicularis has been<br />

reported from Arctic to tropical conditions, neither ecologically nor biogeographically a likely distribution.<br />

Some nominal species were based on incomplete or juvenile specimens; juvenile Hydroides species, also<br />

characterised by an operculum with a single scalloped operculum only, were <strong>of</strong>ten attributed to Serpula too<br />

(ten Hove & Ben-Eliahu 2005). The most commonly used meristic character, the number <strong>of</strong> opercular radii,<br />

appears to have limited taxonomic value for discriminating species because <strong>of</strong> its population and ontogenetic<br />

variability (Kupriyanova 1999). A much-needed revision <strong>of</strong> the genus is currently under way (Pillai, pers.<br />

com.), and the list <strong>of</strong> “valid” species below is tentative only. Unpublished field notes by ten Hove state that<br />

some larger Serpula species (i.e. S. cf. jukesii) have thoracic membrane pockets similar to those found in<br />

Floriprotis, see also remarks to Floriprotis. Finally, a recent study by Kupriyanova et al. (2008) demonstrates<br />

that the traditional genus Serpula most probably is paraphyletic.<br />

1. Serpula cavernicola Fassari & Mollica, 1991, Messina, Italy; compare S. vermicularis-complex<br />

2. Serpula columbiana Johnson, 1901, incl. S. nannoides Chamberlin, 1919, Puget Sound, North-West coast<br />

<strong>of</strong> Americas<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 93


FIGURE 46. SEM micrographs <strong>of</strong> chaetae in Serpula columbiana. USA, Washington State, Puget Sound, San Juan<br />

Island, Friday Harbor Laboratories, legit & det. E. Kupriyanova. A—bayonet collar chaetae, B—thoracic uncini,<br />

C—posterior abdominal uncini, D—anterior abdominal flat trumpet-shaped chaetae.<br />

3. Serpula concharum Langerhans, 1880, Madeira, Atlantic-Mediterranean; other records probably belong to<br />

different species<br />

4. Serpula crenata (Ehlers, 1908), Zanzibar, Indo-West Pacific; bathyal; possibly incl. S. sinica<br />

5. Serpula granulosa Marenzeller, 1885, Kagoshima and Enoshima, Japan, Indo-West Pacific<br />

6. Serpula hartmanae Reish, 1968, Bikini, Indo-West Pacific<br />

7. Serpula indica Parab & Gaikwad, 1989, India<br />

8. Serpula israelitica Amoureux, 1976, Haifa, Levant Basin<br />

9. Serpula japonica Imajima, 1979, Honshu, Japan; questionably Seychelles<br />

10. Serpula jukesii Baird, 1865, Indo-West Pacific<br />

11. Serpula lobiancoi Rioja, 1917, Mediterranean-Atlantic<br />

12. Serpula longituba Imajima, 1979, Honshu, Japan<br />

94 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


13. Serpula maorica (Benham, 1927), New Zealand; doubtful fide ten Hove & Jansen-Jacobs (1984: 151)<br />

14. Serpula nanhaiensis (Sun & Yang, 2001), South China Sea<br />

15. Serpula narconensis Baird, 1865, Narcon Island, Antarctica, subantarctic<br />

16. Serpula oshimae Imajima & ten Hove, 1984, Indo-West Pacific<br />

17. Serpula pacifica (Uchida, 1978), Sabiura, Japan; questionable fide ten Hove (1984: 103–104) and Pillai &<br />

ten Hove (1994: 40, 100)<br />

18. Serpula philippensis McIntosh, 1885, Philippine Islands; bathyal; questionable<br />

19. Serpula planorbis (Southward, 1963), Irish Sea; bathyal<br />

20. Serpula rubens Straughan, 1967b, Queensland, New South Wales, Australia<br />

21. Serpula sinica Wu & Chen, 1979 (in Wu, Sun & Chen 1979), South China Sea; possibly synonym <strong>of</strong> S.<br />

crenata<br />

22. Serpula tetratropia Imajima & ten Hove, 1984, Palau and Caroline Island<br />

23. Serpula uschakovi Kupriyanova, 1999, Gilderbrandt Island, Sea <strong>of</strong> Japan; Moneron, Sakhalin<br />

24. Serpula vasifera Haswell, 1885, Port Jackson, New South Wales, Australia<br />

25. Serpula vermicularis Linnaeus, 1767, Western Europe; and probably restricted to this area, not worldwide<br />

as reported<br />

26. Serpula vittata Augener, 1914, Sharks Bay, Australia; Indo-West Pacific<br />

27. Serpula watsoni Willey, 1905, Trincomalee, Sri Lanka; Indo-West Pacific<br />

28. Serpula willeyi Pillai, 1971, Pearl Banks, Sri Lanka<br />

29. Serpula zelandica Baird, 1865, New Zealand.<br />

42. Spiraserpula Regenhardt, 1961<br />

Type-species: Spiraserpula spiraserpula Regenhardt, 1961 (a fossil taxon)<br />

Number <strong>of</strong> Recent species: 18<br />

Tube variable in colour, from white to orange and mustard, or with pink lateral longitudinal stripes; opaque;<br />

circular to trapezoidal in cross-section, rarely with small peristomes. Rounded longitudinal keels may be<br />

present; hyaline granular overlay present. Tube with internal longitudinal keels or other structures (Fig. 7E)<br />

and/or rows <strong>of</strong> teeth. Operculum s<strong>of</strong>t, funnel shaped, formed <strong>of</strong> fused radii, endplate absent. Operculum<br />

absent in some species. Peduncle smooth, cylindrical, without wings; it is formed from the second dorsal<br />

radiole on one side. Pseudoperculum present. Radioles arranged in semi-circles, up to 8 per lobe. Interradiolar<br />

membrane present. Branchial eyes may be present. Stylodes absent. Mouth palps absent. 5–14<br />

thoracic chaetigerous segments. Collar trilobed, tonguelets absent. Thoracic membranes ending in mid-thorax.<br />

Collar chaetae bayonet-shaped and limbate. Apomatus chaetae absent. Thoracic uncini saw-shaped, with up to<br />

7 teeth above anterior pointed fang. Thoracic triangular depression present. Abdominal chaetae flat trumpetshaped<br />

with denticulate edge. Abdominal uncini similar to thoracic ones, smaller, anteriorly saw-shaped but<br />

becoming rasp-shaped towards the pygidium, with up to 8 teeth in pr<strong>of</strong>ile, up to 7 teeth in a row. Achaetous<br />

anterior abdominal zone absent. Posterior capillary chaetae present. Posterior glandular pad absent.<br />

Remarks. The genus Spiraserpula Regenhardt, 1961 was previously known only from fossils. Its species<br />

are closely related to the genus Serpula. Pillai & ten Hove (1994) referred to the genus Spiraserpula those<br />

Serpula species that lack an apron and possess sharp ridges and spines on the inner walls (“internal tube<br />

structures”, ITS, Fig. 7E) <strong>of</strong> their tubes.<br />

1. Spiraserpula capeverdensis Pillai & ten Hove, 1994, Sao Vicente, Cape Verde Islands, Central Atlantic<br />

2. Spiraserpula caribensis Pillai & ten Hove, 1994, Curaçao, Netherlands Antilles, Caribbean, Florida, Pacific<br />

Panama<br />

3. Spiraserpula deltoides Pillai & ten Hove, 1994, Sumba, Indonesia, Central Indo-West Pacific<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 95


4. Spiraserpula discifera Pillai & ten Hove, 1994, Sydney, New South Wales, Australia<br />

5. Spiraserpula iugoconvexa Pillai & ten Hove, 1994, North-East Flores Sea, Indonesia, Central Indo-West<br />

Pacific<br />

6. Spiraserpula karpatensis Pillai & ten Hove, 1994, Bonaire, Netherlands Antilles, Caribbean<br />

7. Spiraserpula lineatuba (Straughan, 1967b), Sydney, New South Wales, Australia<br />

8. Spiraserpula massiliensis (Zibrowius, 1968a), Marseille, France, Mediterranean, Eastern North Atlantic<br />

9. Spiraserpula minuta (Straughan, 1967b), Port Douglas, Queensland, Australia, Indo-West Pacific<br />

10. Spiraserpula nudicrista Pillai & ten Hove, 1994, Bonaire, Netherlands Antilles, Caribbean<br />

11. Spiraserpula paraypsilon Pillai & ten Hove, 1994, Klein Bonaire, Netherlands Antilles, Caribbean<br />

12. Spiraserpula plaiae Pillai & ten Hove, 1994, Curaçao, Netherlands Antilles, Caribbean<br />

13. Spiraserpula singularis Pillai & ten Hove, 1994, Puerto Rico, Caribbean<br />

14. Spiraserpula snellii Pillai & ten Hove, 1994, Taka Bone Rate, Indonesia, Indo-West Pacific<br />

15. Spiraserpula sumbensis Pillai & ten Hove, 1994, Sumba, Indonesia, Central Indo-West Pacific<br />

16. Spiraserpula vasseuri Pillai & ten Hove, 1994, Europa Island, the French Southern and Antarctic Lands,<br />

SW Indian Ocean<br />

17. Spiraserpula ypsilon Pillai & ten Hove, 1994, Brava, Cape Verde Islands, Central Atlantic, Caribbean,<br />

Gulf <strong>of</strong> Mexico<br />

18. Spiraserpula zibrowii Pillai & ten Hove, 1994, Curaçao, Netherlands Antilles, Caribbean.<br />

43. Spirobranchus de Blainville, 1818<br />

(Fig. 47)<br />

Type-species: Serpula gigantea Pallas, 1766<br />

Number <strong>of</strong> species: 20+<br />

Tube colour white, blue, pink or salmon, inside and/or outside. Tube typically (sub)triangular in cross-section,<br />

with median keel, rarely (sub)circular. Granular overlay absent. Operculum with inverse conical to rather<br />

shallow ampulla, covered by calcified endplate, with or without group <strong>of</strong> spines, sometimes branching.<br />

Peduncle broad, thickly triangular in cross-section, with distal lateral wings; inserted at base <strong>of</strong> branchial<br />

crown just left <strong>of</strong> medial line (formed between first and second normal dorsal radiole on left side, see<br />

Ontogeny <strong>of</strong> operculum and peduncle, p. 15). above. Pseudoperculum absent. Operculum rarely lacking.<br />

Radioles may be arranged in a clear spiral <strong>of</strong> up to 8 whorls, but in most small species as well as in<br />

Spirobranchus tetraceros arranged in a circle. Up to 50–60 pairs <strong>of</strong> radioles in larger species. Inter-radiolar<br />

membrane present. Branchial eyes may be present; stylodes absent. Mouth palps present. 7 thoracic<br />

chaetigerous segments. Collar trilobed (exceptionally pentalobed). Tonguelets present. Thoracic membranes<br />

forming ventral apron across anterior abdominal segment. Collar chaetae bayonet-like, with numerous hairlike<br />

processes on its basal portion (Spirobranchus chaetae, Fig. 47A), and limbate. Apomatus chaetae absent.<br />

All uncini saw-shaped (9–25 teeth), incidentally with 2 teeth above peg (Fig. 47B); anterior peg blunt, clearly<br />

gouged underneath (Fig. 47C). Ventral ends <strong>of</strong> thoracic uncinigerous tori widely separated anteriorly,<br />

gradually approaching one another towards the end <strong>of</strong> thorax, thus leaving a triangular depression. Abdominal<br />

chaetae true trumpet-shaped, abruptly bent distally, with two rows <strong>of</strong> denticles separated by a hollow groove<br />

and forming long lateral spine (Fig. 47D). Achaetous anterior abdominal zone absent. Chaetae becoming<br />

increasingly longer posteriorly, but posterior capillary chaetae absent. Posterior glandular pad absent.<br />

Remarks. Species <strong>of</strong> this genus commonly occur in subtropical and tropical waters, but their taxonomy is<br />

confused because <strong>of</strong> significant variability in the opercular morphology. The major difference between the<br />

genera Pomatoceros, Pomatoleios and Spirobranchus is in the collar chaetae that are absent in Pomatoleios,<br />

simple limbate in Pomatoceros, and special with a knob consisting <strong>of</strong> numerous hair-like teeth in<br />

Spirobranchus. However, collar chaetae are occasionally absent in Pomatoceros and Spirobranchus and<br />

present in juvenile Pomatoleios.<br />

96 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 47. SEM micrographs <strong>of</strong> chaetae in Spirobranchus giganteus. The Netherlands Antilles, Curaçao, Piscadera<br />

Baai, outer bay, piling, iron & wooden poles, 0-1 m, legit P. Wagenaar Hummelinck, ZMA V.Pol. 3021.<br />

A—Spirobranchus collar chaeta, B—middle abdominal uncini, C—detail <strong>of</strong> gouged anterior peg <strong>of</strong> thoracic uncini,<br />

D—posterior abdominal chaeta with a hollow tip.<br />

Although Spirobranchus has special collar chaetae, the range <strong>of</strong> chaetal forms in what traditionally is<br />

included in Spirobranchus is quite wide and includes species with almost simple limbate chaetae. Moreover,<br />

the sperm morphology <strong>of</strong> Spirobranchus and Pomatoleios is very similar (Nishi 1992a). Thus, although it is<br />

very likely that the three genera are synonymous, for the purpose <strong>of</strong> this review we have treated them as<br />

separate taxa.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 97


A schematic presentation <strong>of</strong> the Spirobranchus giganteus-complex in its largest sense is given in Fiege &<br />

ten Hove (1999). According to Marsden (1992), the two morphotypes described by ten Hove (1970) as S.<br />

polycerus and S. polycerus var. augeneri are reproductively isolated, they thus probably should be regarded as<br />

full species.<br />

1. Spirobranchus carinifer (Gray, 1843), New Zealand<br />

2. Spirobranchus corniculatus (Grube, 1862), Java, Indonesia, Indo-West Pacific; part <strong>of</strong> a complex <strong>of</strong><br />

species, <strong>of</strong>ten as S. giganteus<br />

3. Spirobranchus coronatus Straughan, 1967b, Queensland, Fiji, Seychelles; compare S. tetraceros<br />

4. Spirobranchus corrugatus Straughan, 1967a, Queensland, widely distributed in Indo-West Pacific<br />

5. Spirobranchus cruciger (Grube, 1862), Red Sea, Indo-West Pacific; part <strong>of</strong> S. corniculatus-complex, <strong>of</strong>ten<br />

as S. giganteus<br />

6. Spirobranchus decoratus Imajima, 1982, Palau Islands, widely distributed in Indo-West Pacific<br />

7. Spirobranchus eitzeni Augener, 1918, Cameroon, tropical East Atlantic<br />

8. Spirobranchus gardineri Pixell, 1913, North <strong>of</strong> Madagascar, widely distributed in Indo-West Pacific;<br />

maybe complex <strong>of</strong> 2 species<br />

9. Spirobranchus gaymardi (Quatrefages, 1866), unknown type locality, widely distributed in Indo-West<br />

Pacific; part <strong>of</strong> S. corniculatus-complex<br />

10. Spirobranchus giganteus (Pallas, 1766), West Indies, widely distributed in tropical Western Atlantic; not<br />

in Pacific, where specimens belong to the S. corniculatus-complex<br />

11. Spirobranchus incrassatus Krøyer [in] Mörch, 1863, Puntarenas, Colombia, tropical American Pacific;<br />

part <strong>of</strong> S. giganteus-complex<br />

12. Spirobranchus latiscapus (Marenzeller, 1885), South Japan, widely distributed in Indo-West Pacific<br />

13. Spirobranchus lima (Grube, 1862), Adriatic Sea, Mediterranean; records from elsewhere are incorrect<br />

14. Spirobranchus maldivensis Pixell, 1913, Maldive Islands, Indian Ocean, Central Indo-Pacific; compare S.<br />

latiscapus<br />

15. Spirobranchus nigranucha (Fischli, 1903), Ternate, Indonesia, Indo-West Pacific<br />

16. Spirobranchus paumotanus (Chamberlin, 1919), Paumotu Islands, widely distributed in Indo-West Pacific<br />

17. Spirobranchus polycerus (Schmarda, 1861), Jamaica, Caribbean; probably “var. augeneri ten Hove, 1970”<br />

is a full species<br />

18. Spirobranchus polytrema (Philippi, 1844), Mediterranean, Atlantic; records from Indo-West Pacific<br />

probably complex <strong>of</strong> species by themselves<br />

19. Spirobranchus spinosus Moore, 1923, Sta. Barbara Isl., California; belongs to S. giganteus-complex<br />

20. Spirobranchus tetraceros (Schmarda, 1861), New South Wales, circumtropical complex <strong>of</strong> species;<br />

Lessepsian migrant to Eastern Mediterranean and ship-transported to Senegal (Zibrowius, pers. comm.).<br />

44. Tanturia Ben-Eliahu, 1976<br />

(Fig. 48)<br />

Type-species: Tanturia zibrowii Ben-Eliahu, 1976<br />

Number <strong>of</strong> species: 1<br />

No details <strong>of</strong> tube available, tiny specimens (0.9–2.17 mm in length) were extracted from vermetid reefs.<br />

Operculum globular to inverse conical, with flat to convex chitinous endplate. Peduncle smooth, without<br />

distal wings, inserted as second radiole; constriction absent. Pseudoperculum absent. Arrangement <strong>of</strong> radioles<br />

in semi-circles, up to 3 per lobe. Inter-radiolar membrane and stylodes absent, branchial eyes not observed.<br />

Mouth palps unknown. 5 thoracic chaetigerous segments. Collar trilobed, with 2 deep lateral incisions;<br />

tonguelets absent. Thoracic membranes unknown. Collar chaetae fin-and-blade, with well-separated distal<br />

98 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


limbate zone and proximal wing (Fig. 48A), and limbate. Apomatus chaetae present from 3 rd chaetiger on (Fig.<br />

48B). Thoracic uncini saw-to-rasp-shaped with about 15 teeth in pr<strong>of</strong>ile, up to 4 teeth in a row above peg<br />

(dental formula P:4:3:3:1:2:1:1:1:1:1:1:1:1:1:1, Fig. 48C); peg bifurcate under compound microscope but<br />

blunt, almost trapezoidal in SEM. Triangular depression absent. Abdominal chaetae with flat triangular blades<br />

with blunt teeth (Fig. 48E). Abdominal uncini rasp-shaped, with 7 teeth in pr<strong>of</strong>ile, up to 8 fine teeth in row<br />

above blunt apparently bifurcate (gouged?) anterior fang (Fig. 48D). Achaetous anterior abdominal zone<br />

present. Posterior capillary chaetae absent. Posterior glandular pad not observed.<br />

FIGURE 48. SEM micrographs <strong>of</strong> chaetae in Tanturia zibrowii. Israel, Gulf <strong>of</strong> Aqaba (Elat), Sinai coast, infauna <strong>of</strong><br />

Dendropoma, paratype, exchange with HUJ, ZMA V.Pol. 4668. A—fin-and-blade collar chaetae, B—thoracic chaetae,<br />

C—thoracic uncini, D—abdominal uncini, E—abdominal chaeta.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 99


Remarks. This monotypic genus is known only from 14 specimens (type series) collected from vermetid<br />

reefs near Elat, Red Sea.<br />

Tanturia zibrowii Ben-Eliahu, 1976, Elat, Gulf <strong>of</strong> Aqaba, Sinai coast.<br />

45. Vermiliopsis Saint-Joseph, 1894<br />

(Fig. 49)<br />

Type-species: Vermilia multivaricosa Mörch, 1863, new name for Vermilia infundibulum sensu Philippi, 1844<br />

Number <strong>of</strong> species: 13 (-19)<br />

Tube white, opaque, circular to sub-quadrangular in cross-section; generally with 3–7 longitudinal keels and<br />

peristomes. Granular overlay absent. Operculum an inverse conical ampulla, with flat to conical chitinous<br />

endplate, sometimes a partitioned cap. Peduncle wrinkled, cylindrical, separated from opercular ampulla by a<br />

constriction; without distal wings, but a proximal wing may be present. Peduncle ontogenetically formed from<br />

second dorsal radiole on one side, but in adults at base <strong>of</strong> branchial crown covering 3–6 normal radioles.<br />

Pseudoperculum generally absent (but present as under-developed second radiole in V. striaticeps). Radioles<br />

arranged in (semi-)circles, up to 20 per lobe. Inter-radiolar membrane absent. Branchial eyes (single<br />

pigmented ocelli) along dorsal side <strong>of</strong> rhachis. Stylodes absent. Mouth palps may be present. 7 thoracic<br />

chaetigerous segments present. Collar trilobed, tonguelets absent. Thoracic membranes short, continuing to<br />

3 rd –5 th thoracic chaetiger. Collar chaetae limbate (Fig. 49A). Apomatus chaetae present. Thoracic uncini sawshaped<br />

with up to 10–15 teeth above blunt indented peg (Fig. 49B, C). Triangular depression present.<br />

Abdominal chaetae flat narrow geniculate, with a more or less crenulated edge (rounded teeth) to the blade<br />

(Fig. 49E, F). Abdominal uncini rasp-shaped, anterior peg blunt (Fig. 49D). Achaetous anterior abdominal<br />

zone absent. Long posterior capillary chaetae present. Posterior glandular pad present.<br />

Remarks. As early as 1776 a summary description <strong>of</strong> Serpula infundibulum was given by Martini (1776:<br />

359, pl. 12 fig. 1). “Serpula Infundibulum. Tubulus vermicularis testaceus, in formâ infundibulorum triplici<br />

gyro convolutus”. From his description and figure it is impossible to decide whether this tube belongs to the<br />

genus Serpula s.str., Vermiliopsis s.str., or Dasynema. His material “a nice group <strong>of</strong> Eastindian seatophus [=<br />

tuff] obtained in an auction” apparently has been lost, it was not found in the musea in Copenhagen and Berlin<br />

where some <strong>of</strong> Martini's mollusks still are. The species was subsequently mentioned by various authors (e.g.,<br />

Gmelin 1791, Lamarck 1818, Philippi 1844, Chenu 1842–55), generally miscited as S. infundibulum Gm.,<br />

although Gmelin explicitly refers to Martini in his 13 th edition <strong>of</strong> Systema Naturae.<br />

Mörch (1863: 389) apparently thought that Philippi's (1844: 193) “Vermilia infundibulum Gm.” was not<br />

the same as Martini's species, since he proposed a new name Vermilia multivaricosa Mörch for Philippi's and<br />

other Mediterranean records <strong>of</strong> this nominal species. Unfortunately Mörch does not give reasons why, and<br />

except for a listing as extant species (p. 453) Serpula infundibulum Martini is not discussed further by him,<br />

though he reidentified some other “Serpula infundibulum” as vermetid or probable Hydroides species.<br />

Although Vermilia multivaricosa has been used in the literature about 20 times, the great majority (150<br />

records) <strong>of</strong> the authors still used the name Vermiliopsis infundibulum, generally attributed to Philippi (1844),<br />

probably to indicate that they wanted to confine the name to Mediterranean-Lusitanian material.<br />

Saint-Joseph (1894: 262) erected a new genus Vermiliopsis to contain a number <strong>of</strong> Vermilia species, the<br />

first he included was Vermilia multivaricosa Mörch, 1863. This species was subsequently formally designated<br />

as type species <strong>of</strong> the genus Vermiliopsis by Bush (1905: 223), in line with Saint-Joseph's intentions.<br />

Many species included in Vermiliopsis by various authors, catalogued by Hartman (1959, 608–609), in the<br />

meantime have been referred to the above mentioned genera Metavermilia, Bathyvermilia, Pseudovermilia,<br />

Semivermilia, and Neovermilia by Zibrowius (1971b, 1973a) and ten Hove (1975). The traditional<br />

“Vermiliopsis infundibulum Philippi” from the Mediterranean as for instance in Fauvel (1927: 362–363) and<br />

100 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


FIGURE 49. SEM micrographs <strong>of</strong> chaetae in Vermiliopsis. V. infundibulum. France, Marseille, legit & det. H.<br />

Zibrowius. ZMA V.Pol. 3041. A—“limbate” collar chaetae <strong>of</strong> two sizes, B—1 st row <strong>of</strong> thoracic uncini, C—uncini <strong>of</strong> 4 th<br />

thoracic chaetiger, details <strong>of</strong> blunt indented pegs, D—posterior abdominal uncini. Vermiliopsis sp., Cayman Islands,<br />

Little Cayman, legit Paul Humann, det. T. Perkins and H.A. ten Hove, ZMA V.Pol. 3807, E—anterior abdominal chaeta,<br />

F—middle abdominal chaeta.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 101


Zibrowius (1968a: 121–124) was found to contain two different species “Vermiliopsis infundibulum Philippi<br />

s.str.” and Vermiliopsis striaticeps Grube, 1862 (Zibrowius 1973b: 44–45, ten Hove 1975: 57–58; Bianchi<br />

1981: 74–75). Apparently both the genus Vermiliopsis and the species infundibulum are ill-defined, and<br />

designation <strong>of</strong> a neotype is unavoidable. The binomen Vermiliopsis infundibulum generally has been used for<br />

Mediterranean-Lusitanian forms, and only rarely for Indo-Pacific forms which normally are identified as<br />

Vermiliopsis glandigera Gravier, 1906 or Vermilia/Vermiliopsis pygidialis Willey, 1905. The origin <strong>of</strong><br />

Martini's specimen is ill defined at least, maybe even doubtful (obtained in an auction). In view <strong>of</strong> the<br />

Preamble <strong>of</strong> the International Code <strong>of</strong> Nomenclature, the object <strong>of</strong> it being to promote stability, it appears<br />

fitting to choose a neotype from the Mediterranean to preserve a well known name. This, however, should be<br />

done in the context <strong>of</strong> a much-needed revision <strong>of</strong> the problematic genus, and falls outside the scope <strong>of</strong> present<br />

account.<br />

According to Zibrowius (1973a), Vermiliopsis sensu stricto is characterized by a peduncle formed from<br />

the first dorsal radiole. On closer inspection (by us) it appeared to be derived from the second, covering<br />

radioles 1–4. There is one species, V. labiata, where the distal chitinous plate <strong>of</strong> the operculum is reinforced<br />

with calcareous matter like a coral-theca.<br />

The attribution <strong>of</strong> the taxa Vermiliopsis (?) eliasoni, glacialis, and notialis to this genus has been<br />

questioned by Zibrowius (1968b, 1970a). V. prampramiana, from the Gold Coast (Africa), is regarded to be<br />

undeterminable by Zibrowius (1973b), however, see remarks Filogranella.<br />

1. Vermiliopsis annulata (Schmarda, 1861), Jamaica, Caribbean; complex <strong>of</strong> at least 2 species, with the next<br />

taxon<br />

2. Vermiliopsis cf. annulata sensu ten Hove & San Martín (1995), Caribbean; see above<br />

3. ? Vermiliopsis eliasoni Zibrowius, 1970a, Banc Joséphine, Central Atlantic; generic attribution uncertain<br />

4. ? Vermiliopsis glacialis Monro, 1939, Antarctic; bathyal; generic attribution uncertain<br />

5. Vermiliopsis glandigerus Gravier, 1906, Red Sea, Indo-West Pacific; part <strong>of</strong> complex with V. pygidialis, V.<br />

infundibulum<br />

6. Vermiliopsis infundibulum (Philippi, 1844), Mediterranean, North Atlantic; part <strong>of</strong> complex with V.<br />

pygidialis, V. glandigerus<br />

7. Vermiliopsis labiata (Costa, 1861), Mediterranean, tropical Atlantic, Indo-West Pacific<br />

8. Vermiliopsis leptochaeta Pillai, 1971, Sri Lanka; part <strong>of</strong> complex with V. pygidialis, V. glandigerus<br />

9. ? Vermiliopsis longiseta (Bush, 1910), Bermuda Islands; questionable<br />

10. ? Vermiliopsis minuta Straughan, 1967a, Heron Island, Queensland; doubtful, maybe composite<br />

11. Vermiliopsis monodiscus Zibrowius, 1968c, Mediterranean, North Atlantic<br />

12. Vermiliopsis multiannulata (Moore, 1923), South California to the Galapagos; part <strong>of</strong> complex with V.<br />

glandigerus, V. infundibulum<br />

13. ? Vermiliopsis notialis Monro, 1930, South Georgia, (sub)antarctic; generic attribution uncertain<br />

14. ? Vermiliopsis producta (Benham, 1927), New Zealand; status uncertain<br />

15. Vermiliopsis pygidialis (Willey, 1905), Sri Lanka, Indo-West Pacific; part <strong>of</strong> complex with V. glandigerus,<br />

V. infundibulum<br />

16. Vermiliopsis spirorbis (Langerhans, 1884), Madeira; part <strong>of</strong> V. infundibulum-complex<br />

17. Vermiliopsis striaticeps (Grube, 1862), Mediterranean, Atlantic<br />

18. Vermiliopsis torquata Treadwell, 1943, Hawaiian Islands; part <strong>of</strong> complex with V. glandigerus, V.<br />

infundibulum<br />

19. Vermiliopsis zibrowii Nogueira & Abbud, 2009, South Brazil.<br />

102 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


46. Vitreotubus Zibrowius, 1979b<br />

(Fig. 50)<br />

Type-species: Vitreotubus digeronimoi Zibrowius, 1979b<br />

Number <strong>of</strong> species: 1<br />

FIGURE 50. SEM micrographs <strong>of</strong> chaetae in Vitreotubus digeronimoi. Indian Ocean, East Amsterdam Island, 37°47.20'<br />

N, 77°38.98' E, 1680-940 m, R/V “Marion Dufresne” cruise MD 50, don. & det. Zibrowius, ZMA V.Pol. 3907.<br />

A—chaetae <strong>of</strong> 7 th thoracic bundle, two sizes, B—Spirobranchus collar chaeta, C—middle abdominal uncini,<br />

D—posterior abdominal uncini, E—abdominal chaeta with a hollow tip.<br />

Tube entirely vitreous, more or less quadrangular in cross-section by its two ample undulating lateral keels,<br />

and with a dorsal row <strong>of</strong> teeth. Granular overlay absent. Operculum inverse conical with chitinous diabololike<br />

endplate. Peduncle smooth, cylindrical, merging gradually into operculum, without wings, inserted as<br />

first radiole (at base <strong>of</strong> left branchial lobe, in line with first radiole). Pseudoperculum absent. Arrangement <strong>of</strong><br />

radioles short pectinate, up to 11 per lobe. Inter-radiolar membrane and stylodes absent. Branchial eyes not<br />

observed. Mouth palps present. 7 thoracic chaetigerous segments. Collar trilobed. Medial lobe <strong>of</strong> collar with<br />

scalloped edge and lateral projections, separated from lateral lobes by deep incision (tonguelets absent), latter<br />

continuous with thoracic membranes extending all along the thorax, but narrow in the posterior segments,<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 103


FIGURE 51. Drawings <strong>of</strong> serpulids redescribed herein. Chitinopomoides wilsoni, USNM 51505. A—tube,<br />

B–D—opercula, B–C—lateral and dorsal view <strong>of</strong> same specimen, D—lateral view <strong>of</strong> second specimen. Paumotella<br />

takemoana, holotype. E—lateral view <strong>of</strong> operculum, peduncle and its insertion.<br />

104 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


forming ventral apron. Collar chaetae Spirobranchus-type (Fig. 50B) and simple limbate. Apomatus chaetae<br />

absent. Thoracic uncini saw-shaped with 6–7 teeth above pointed fang. Triangular depression present.<br />

Abdominal chaetae true trumpet-shaped, with two rows <strong>of</strong> pointed teeth bordering hollow groove and<br />

extended into a long lateral spine (Fig. 50E). Abdominal uncini saw-shaped with about 6 teeth anteriorly (Fig.<br />

50C), rasp-shaped with about 10 teeth in pr<strong>of</strong>ile, 3–4 teeth in a row posteriorly (Fig. 50D). Achaetous anterior<br />

abdominal zone absent. Posterior capillary chaetae absent, but geniculate chaetae long at the end <strong>of</strong> abdomen.<br />

Posterior glandular pad absent.<br />

Remarks. The monotypic genus was originally described from fossil records and Recent material from<br />

the bathyal zone <strong>of</strong> the Azores and the Indian Ocean (Zibrowius, 1979b), more recent records are given by ten<br />

Hove (1994). It has a very characteristically shaped transparent tube.<br />

Vitreotubus digeromimoi Zibrowius, 1979b, Central Atlantic, Indian Ocean; bathyal.<br />

Invalid genera (as Serpulid)<br />

Actinocerus (error pro –ras Bronn, 1835) Quatrefages, 1866 Mollusca*<br />

Amphiserpula Uchida, 1978 see Serpula<br />

Anatomus Montfort, 1810 not spirorbin but Mollusca: Scissurellidae<br />

Anisomelus Templeton, 1835 indeterminable, depositfeeding, not serpulid<br />

Antalium not Garsault, 1764 (Mollusca), sensu Guettard, 1770 see Serpula<br />

Apomatolos Uchida, 1978 see Rhodopsis<br />

Apomatopsis Saint-Joseph, 1894 see Apomatus<br />

Bonhourella Gravier, 1905 see Ditrupa gracillima Grube, 1878<br />

Bunodus Guettard, 1770 (Mollusca), erroneously mentioned as synonym <strong>of</strong> Protula<br />

Calcareopomatus Straughan, 1967a see Neovermilia<br />

Clymene Oken, 1815 see Hydroides and Filograna<br />

Codonytes not delle Chiaje, 1828 (Bryozoa), sensu de Quatrefages, 1866 see Hydroides<br />

Conchoserpula Blainville, 1818 erected for Serpula triquetra Linnaeus, see Pomatoceros<br />

Conopomatus Pillai, 1960 see Spirobranchus<br />

Crinoserpula Uchida, 1978 see Serpula<br />

Crosslandiella Monro, 1933 see Pseudovermilia<br />

Cymospira Blainville, 1828 see Spirobranchus and Pomatostegus<br />

Cystopomatus Gravier, 1911 see Hyalopomatus<br />

Dipomatus Ehlers, 1913 see Serpula<br />

Ehlerprotula Uchida, 1978 see Protula<br />

Eucarphus Mörch, 1863 see Hydroides<br />

Eupomatus Philippi, 1844 see Hydroides<br />

Filigrana Mörch, 1863 see correct spelling Filograna<br />

Filipora Fleming, 1825 variant spelling Filopora, see Filograna<br />

Glomerula Nielsen, 1931 (incl. Calcisabella Perkins, 1991) see Sabellidae**<br />

Glossopsis Bush, 1905 see Hydroides<br />

Helena Castelnau, 1842 see Serpula<br />

Hyalopomatopsis Saint-Joseph, 1894 see Hyalopomatus and Pseudochitinopoma (occidentalis)<br />

Isovermilia Rosenfeldt, 1979 error for Semivermilia<br />

Lemintina Risso, 1826 (Mollusca), erroneously mentioned as synonym <strong>of</strong> Protula<br />

Membranopsis Bush, 1910 see Protula<br />

Mercierella Fauvel, 1923 see Ficopomatus<br />

Mercierellopsis Rioja, 1945 see Ficopomatus<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 105


Miroserpula Dons, 1930, variant spelling Microserpula, 1931 see Chitinopoma<br />

Neopomatus Pillai, 1960 see Ficopomatus, and note p. 42<br />

Olga Jones, 1962 see Spirobranchus<br />

Olgaharmania Rioja, 1941b see Hydroides<br />

Omphalopoma Mörch, 1863 type species undeterminable (fide Zibrowius 1973b), other taxa see Filogranula,<br />

Janita, Omphalopomopsis<br />

Paraprotula Uchida, 1978 see Protula<br />

Paraserpula Southward, 1963 see Serpula<br />

Paravermilia Bush, 1905 see Vermiliopsis<br />

Philippiprotula Uchida, 1978 see Protula<br />

Piratesa Templeton 1835, indeterminable<br />

Pixellgrana Uchida, 1978 see Protis<br />

Placostegopsis Saint-Joseph, 1894 see Placostegus<br />

Podioceros Quatrefages, 1866 see Pomatoceros<br />

Polyphragma Quatrefages, 1866 see Hydroides<br />

Pomatoceroides Munier-Chalmas in Ferronière, 1901 is chironomid larva (fide Zibrowius, Botosaneanu & ten<br />

Hove 1995)<br />

Pomatoceropsis Gravier, 1905 see Spirobranchus<br />

Pomatoceropsis Holly, 1935 homonym <strong>of</strong> Pomatoceropsis Gravier, 1905 also see Spirobranchus<br />

Pomatocerus Mörch, 1863 variant spelling <strong>of</strong> Pomatoceros<br />

Protoplacostegus Bush, 1905 see Placostegus<br />

Protohydroides Uchida, 1978 see Hydroides<br />

Protoserpula Uchida, 1978 see Serpula or Spiraserpula (fide Pillai & ten Hove 1994: 40, 100)<br />

Protulopsis Saint-Joseph, 1894; re-instated Uchida, 1978 see Protula<br />

Pseudopomatoceros Holly, 1936, erected for homonym Pomatoceropsis Gravier, see Spirobranchus<br />

Pseudoserpula Straughan, 1967b see Spiraserpula and Crucigera<br />

Psygmobranchus Philippi, 1844 see Protula<br />

Salmacinopsis Bush, 1910, ill-defined but referred to Protula by Perkins (1998: 95)<br />

Sclerostyla Mörch, 1863 see Pyrgopolon<br />

Schizocraspedon Bush, 1905 see Hydroides<br />

Semiserpula Imajima, 1979 homonym <strong>of</strong> the fossil genus Semiserpula Wetzel, 1957; Recent species placed in<br />

Serpula<br />

Siliquaria not Bruguière, 1789 (Mollusca, Siliquariidae) sensu Lamarck, 1818, confused, partly siliquariid<br />

mollusc (Pyxipoma), partly indeterminable polychaete<br />

Sphaeropomatus Treadwell, 1934 see Ficopomatus<br />

Spiramella Blainville, 1828 see Protula<br />

Spirodiscus Fauvel, 1909 see Nogrobs<br />

Stoa de Serres, 1855 questionable vermetid (or spirorbid)<br />

Subprotula Bush, 1910 confused, type-species questionably see Vermiliopsis, other taxa see Protula<br />

Temporaria Straughan, 1967b see Spirobranchus<br />

Vermilia Lamarck, 1818 confused, V. rostrata see Spirobranchus, other taxa referrable to Vermiliopsis sensu<br />

lato, Pomatoceros, Hydroides, and even to vermetid gastropods<br />

Zopyrus Kinberg, 1867 see Serpula<br />

*The genus Actinoceras Bronn, 1835 has been mistakenly attributed to Mörch, 1863 by e.g., Hartman (1959: 568).<br />

However, the genus was erected for nautiloid molluscs from the Silurian-Carboniferous, not for a serpulid. Mörch (1863:<br />

400) mentioned Actinoceras Bigsbyi Chenu, 1859 as a synonym <strong>of</strong> the serpulid Pomatostegus actinoceras Mörch, 1863;<br />

in reality Chenu (1859: 64–65, fig. 230) depicted a fossil siphon <strong>of</strong> a nautiloid, probably correctly under the genus<br />

Actinoceras, which indeed shows a superficial resemblance to the operculum <strong>of</strong> the recent serpulid P. actinoceras.<br />

106 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


** According to Ippolitov (2007: 260), the name Glomerula Nielsen, 1931 should be “unavailable according to<br />

ICZN 13.3)”. No further explanation is given by Ippolitov. If he is referring to Article 13 (iii), the full text <strong>of</strong> that is:<br />

“Article 13. Names published after 1930.- (a) Names in general.- In addition to satisfying the provisions <strong>of</strong> Article 11, a<br />

name published after 1930 must be either . . . (iii) proposed expressly as a replacement fro a pre-existing available<br />

name”. Nielsen (1931: 85) defines the genus Glomerula in a key, and (p. 88) attributes a single species (Serpulites<br />

gordialis von Schlotheim, 1820) to his genus. Nielsen, who did not give any explanation for his action at all, either<br />

replaced the generic name Serpulites, a name explicitly unavailable according to “Article 20. Genus-group names ending<br />

in –ites . . . given to fossils.”, or he simply placed the species gordialis in a new genus. Both ways we do not see conflict<br />

with the Code, certainly not with 13 (iii), and in our opinion the name Glomerula is available, though not being a<br />

serpulid.<br />

Key to serpulid genera (described before 2008)<br />

Although we have included the most obvious exceptions to the generic diagnoses with a double, even<br />

sometimes treble pathway (e.g., Hyalopomatus (in part)), it is impossible to provide for every exception. For<br />

instance, juveniles may show fewer thoracic segments than adults, while the adult number <strong>of</strong> segments has<br />

been used in this key. The genera Pomatoceros and Spirobranchus occasionally show specimens without<br />

collar chaetae, which then would key out with Pomatoleios. Specimens with two minute pseudopercula<br />

instead <strong>of</strong> one pseudoperculum and a full grown operculum have been reported for all genera <strong>of</strong> the Serpulaclade.<br />

A generic name found with this (any) key always should be checked carefully against its diagnosis.<br />

Spirorbins have been included as category only.<br />

1 Body symmetrical ..................................................................................................................................................... 2<br />

- Body asymmetrical ................................................................................................................................................. 49<br />

2 (1) Operculum present.................................................................................................................................................... 3<br />

- Operculum absent .................................................................................................................................................. 40<br />

3 (2) Collar chaetae absent ............................................................................................................................................... 4<br />

- Collar chaetae present ............................................................................................................................................. 8<br />

4 (3) Opercular peduncle without wings ........................................................................................................................... 5<br />

- Peduncle with wings ............................................................................................................................... Pomatoleios<br />

5 (4) Tube free (see 30 as well), tusk-shaped, smooth, thoracic membranes short................................................ Ditrupa<br />

- Tube otherwise, mostly attached to the substrate ..................................................................................................... 6<br />

6 (5) Operculum inverse conical, with brown(ish) endplate lacking spines ..................................................................... 7<br />

- Operculum pear-shaped, laterally compressed, and if bearing chitinous plate at all, than with multiple spines ......<br />

................................................................................................................................................................... Rhodopsis<br />

7 (6) Tube (semi) transparent, apron present, collar region with reniform band <strong>of</strong> reddish ocelli ..................Placostegus<br />

- Tube white opaque, apron absent.............................................................................................................. Marifugia<br />

8 (3) Opercular peduncle with well developed membranous distal wings........................................................................ 9<br />

- Opercular peduncle without well developed distal wings ...................................................................................... 12<br />

9 (8) Collar chaetae few, fine and capillary..................................................................................................................... 10<br />

- Collar chaetae numerous, Spirobranchus-type ...................................................................................................... 11<br />

10 (9) Operculum with calcareous endplate, sometimes with non-movable spines........................................ Pomatoceros<br />

- Operculum with elaborate calcareous movable spines ............................................................................. Galeolaria<br />

11 (9) Operculum with calcareous endplate, sometimes with non-movable spines.......................................Spirobranchus<br />

- Operculum with chitinous column bearing several serrated disks .......................................................Pomatostegus<br />

12 (8) Pseudoperculum (rudimentary operculum) present................................................................................................ 13<br />

- Pseudoperculum (rudimentary operculum) absent ................................................................................................ 17<br />

13 (12) Collar chaetae simple, peduncle with distal latero-dorsal winglets, opercular ampulla slightly chitinized distally.<br />

.................................................................................................................................. Neovermilia globula (in part)<br />

- Collar chaetae simple, peduncle without winglets, opercular ampulla with brown horny distal cap ........................<br />

................................................................................................................................Vermiliopsis (in part, striaticeps)<br />

- Collar chaetae simple and fin-and-blade-type, one to six vesicular opercula ......... Protis (in part, polyoperculata)<br />

- Collar chaetae simple and bayonet-type ................................................................................................................. 14<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 107


14 (13) Operculum two-tiered (in mature specimens), with proximal funnel <strong>of</strong> fused radii and distal verticil <strong>of</strong> spines ....<br />

....................................................................................................................................................................Hydroides<br />

- Operculum a simple funnel made <strong>of</strong> fused radii..................................................................................................... 15<br />

15 (14) Tube with internal structures ................................................................................................................ Spiraserpula<br />

- Tube without internal structures ............................................................................................................................. 16<br />

16 (15) Basal processes on opercular funnel absent ..................................................................................................Serpula<br />

- Basal processes on opercular funnel present ..............................................................................................Crucigera<br />

17 (12) Collar chaetae coarsely serrated and simple......................................................................................... Ficopomatus<br />

- Collar chaetae fin-and-blade and simple ................................................................................................................ 18<br />

- Collar chaetae simple only ..................................................................................................................................... 29<br />

18 (17) Colonies <strong>of</strong> branching tubes, 2 membranous spoon-shaped opercula on pinnulated radioles ..................Filograna<br />

- Tubes do not form colonies <strong>of</strong> branching tubes, opercula otherwise...................................................................... 19<br />

19 (18) 7 thoracic segments ............................................................................................................................................... 20<br />

- Less than 7 thoracic segments ................................................................................................................................ 27<br />

20 (19) Operculum and peduncle not calcified .................................................................................................................. 21<br />

- Operculum and peduncle calcified ......................................................................................................... Pyrgopolon<br />

21 (20) Opercular base surrounded by three fleshy processes..................................................................................... Janita<br />

- Opercular base without fleshy processes ................................................................................................................ 22<br />

22 (21) Tube transparent .....................................................................................................................................Vitreotubus<br />

- Tube opaque............................................................................................................................................................ 23<br />

23 (22) Anterior tooth <strong>of</strong> thoracic uncini a pointed fang, operculum with calcareous endplate ............ Omphalopomopsis<br />

- Anterior tooth otherwise ......................................................................................................................................... 24<br />

24 (23) Anterior peg <strong>of</strong> thoracic uncini bifurcate, gouged................................................................................................. 25<br />

- Anterior peg <strong>of</strong> thoracic uncini simple, rounded .................................................................................................... 26<br />

25 (24) Operculum with flat to hollow endplate, abdominal chaetae flat triangular ..........................................Filogranula<br />

- Operculum with conical endplate, abdominal chaetae hollow trumpet shaped ......................... Pseudochitinopoma<br />

26 (24) Posterior glandular pad absent............................................................................................................. Chitinopoma<br />

- Posterior glandular pad present....................................................................................................... Chitinopomoides<br />

27 (19) 6 thoracic segments .............................................................................................................................................. 28<br />

- 5 thoracic segments ...................................................................................................................................... Tanturia<br />

28 (27) Thoracic membranes long, apron ........................................................................................................ Laminatubus<br />

- Thoracic membranes reaching segment 2............................................................................. Hyalopomatus (in part)<br />

29 (17) Opercular peduncle pinnulate................................................................................................................................ 30<br />

- Peduncle smooth, without pinnules ........................................................................................................................ 34<br />

30 (29) Peduncle non-modified radiole, tube attached ...................................................................................................... 31<br />

- Peduncle modified, thicker than normal radioles, tube mostly free ....................................................................... 33<br />

31 (30) Operculum delicate membranous cup with a flat distal surface surmounted by a marginal crown <strong>of</strong> fine teeth<br />

joined by a transparent membrane, 5 thoracic chaetigerous segments Josephella (in part)<br />

- Operculum simple membranous vesicle, 7 thoracic segments .............................................................................. 32<br />

32 (31) Thoracic uncini saw-shaped with pointed fang ........................................................................................Paraprotis<br />

- Thoracic uncini saw-to-rasp-shaped with elongated peg............................................................................ Apomatus<br />

33 (30) 5 thoracic segments ..............................................................................................................................Bathyditrupa<br />

- 6 thoracic segments....................................................................................................................................... Nogrobs<br />

34 (29) Stylodes present ....................................................................................................................................... Dasynema<br />

- Stylodes absent........................................................................................................................................................ 35<br />

35 (34) Abdominal chaetae short stout curved spines ........................................................................................Paumotella<br />

- Abdominal chaetae otherwise................................................................................................................................ 36<br />

36 (35) Opercular peduncle flat, ribbon-like, 7 thoracic segments.................................................................. Metavermilia<br />

- Opercular peduncle flat, ribbon-like, 11–14 thoracic segments ...............................................Filogranella (in part)<br />

- Peduncle cylindrical or sub-cylindrical .................................................................................................................. 37<br />

37 (36) Peduncle with latero-dorsal winglets, apron present, Apomatus chaetae absent .................................. Neovermilia<br />

- Peduncle without winglets, thoracic membranes not forming apron, Apomatus chaetae absent ..............................<br />

...............................................................................................................................................Hyalopomatus (in part)<br />

- Peduncle without winglets, thoracic membranes not forming apron, Apomatus chaetae present ......................... 38<br />

108 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


38 (37) Thoracic uncini saw shaped with blunt anterior peg, thoracic membranes ending at segment 3–5 ..... Vermiliopsis<br />

- Thoracic uncini saw shaped with pointed fang, thoracic membranes ending at segment 2–7, depending on species<br />

............................................................................................................................................................. Bathyvermilia<br />

- Thoracic uncini rasp-shaped with broadly gouged peg, thoracic membranes ending at segment 1 ..........................<br />

.....................................................................................................................................................Josephella (in part)<br />

- Anterior peg <strong>of</strong> uncini bifurcate, gouged, thoracic membranes ending at segment 2 ............................................ 39<br />

39 (38) Arrangement <strong>of</strong> radioles long pectinately; thoracic uncini saw-shaped...........................................Pseudovermilia<br />

- Arrangement <strong>of</strong> radioles short pectinately; thoracic uncini saw-to-rasp-shaped...................................Semivermilia<br />

40 (2) Special collar chaetae present ................................................................................................................................. 41<br />

- Special collar chaetae absent .................................................................................................................................. 45<br />

41 (40) Special collar chaetae bayonet-type, thoracic uncini with 5–7 teeth only............................................................ 42<br />

- Special collar chaetae fin-and-blade, thoracic uncini with more than 7 teeth ........................................................ 43<br />

- Special collar chaetae Spirobranchus-type ..................................................... Spirobranchus (in part, nigranucha)<br />

42 (41) Internal tube structures present, pockets <strong>of</strong> thoracic membranes absent................................ Spiraserpula (in part)<br />

- Internal tube structures absent, pockets <strong>of</strong> thoracic membranes present.................................................. Floriprotis<br />

43 (41) Forms open colonies consisting <strong>of</strong> large number <strong>of</strong> tiny tubes ................................................................ Salmacina<br />

- Solitary tubes .......................................................................................................................................................... 44<br />

44 (43) 6 thoracic segments ............................................................................................Hyalopomatus (in part, cancerum)<br />

- 7 thoracic segments............................................................................................................................. Protis (in part)<br />

45 (40) 7 thoracic segments ............................................................................................................................................... 46<br />

- More than 7 thoracic segments ............................................................................................................................... 48<br />

46 (45) Apomatus chaetae absent; brooding appendage in branchial crown; abdominal chaetae narrow geniculate ...........<br />

...................................................................................................................................................................Paraprotis<br />

- Apomatus chaetae absent; no brooding appendage in branchial crown; abdominal chaetae hollow trumpet shaped<br />

...........................................................................................................................Neopomatus (in part, anoperculata)<br />

- Apomatus chaetae present, no brooding appendages in branchial crown............................................................. 47<br />

47 (46) Tube ovicells absent ......................................................................................................................................Protula<br />

- Tube ovicells present .............................................................................................................................Microprotula<br />

48 (45) 9 thoracic segments .............................................................................................................Protula (in part, setosa)<br />

- 12 or more segments ...............................................................................................................................Filogranella<br />

49 (1) Less than 5 thoracic chaetigers, tube regularly coiled................................................................................ spirorbins<br />

- Five or more thoracic chaetigers............................................................................................................................. 50<br />

50 (49) Thorax with 5–6 chaetigers, operculum with calcified endplate, tube regularly coiled..................... Neomicrorbis<br />

- Thorax with 5–14 chaetigers, operculum not calcified or only pseudoperculum/a, tube irregularly coiled .............<br />

................................................................................................................................................ Spiraserpula (in part).<br />

Acknowledgements<br />

This work was supported by the Australian Research Council grant DP0558736. Thanks are due to Elly<br />

Beglinger and Dr. Dirk Platvoet (both ZMA) and the staff <strong>of</strong> the Adelaide Microscopy for their help with<br />

SEM. Over the years we have studied material from all the museums mentioned in the introduction, we are<br />

very grateful to all staff involved in the time consuming loans, registrations <strong>of</strong> new material, or help in the<br />

collections. This study would not have been possible without the help <strong>of</strong> many colleagues who over the years<br />

shared material, literature, and unpublished observations. We both feel privileged to have been allowed to<br />

share ideas and forces in the past and present with so many colleagues in and outside joint publications, <strong>of</strong><br />

which some can be found in the References.<br />

Specific thanks are due (in alphabetical order) to Dr. R. Bastida-Zavala (Universidad del Mar, Puerto<br />

Angel, Oaxaca, Mexico), for providing details <strong>of</strong> Neomicrorbis; to Dr. M.N. Ben-Eliahu (the Hebrew<br />

University <strong>of</strong> Jerusalem, Biological Collections, Section <strong>of</strong> Aquatic Invertebrates) for making available type<br />

material <strong>of</strong> the genera Tanturia and Filogranella and for assisting in obtaining live Filogranella; to Dr. J.<br />

Dafni for assistance in obtaining live Filogranella; to Dr. E. Nishi (Yokohama National University) for<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 109


hosting EK’s trip to Japan and to both Dr. Nishi and Mr. K. Nomura (Kushimoto Marine Park Center) for<br />

assisting in obtaining live Floriprotis sabiuraensis; to G. Playa (at that time The Florida Marine Research<br />

Institute, St. Petersburg, Florida, USA) for unpublished data on Membranopsis and Salmacinopsis; to Dr. H.<br />

Uchida (Kushimoto Marine Park Center) for making available the type material <strong>of</strong> Microprotula ovicellata; to<br />

P. Valentijn (then University Utrecht) for the use <strong>of</strong> his unpublished Master’s thesis; to Dr. H. Zibrowius<br />

(Station Marine d’Endoume, Marseille) for use <strong>of</strong> his unpublished data.<br />

For permission to use their photographs thanks are due to, in alphabetical order, R. Bastida-Zavala, M.<br />

Boyer, U. Frank, E. Nishi, J. Randall, C. Roessler, G. Rouse, R. Smith, N. Tait, F. Verbiest, P. Wirtz, H.<br />

Zibrowius; many <strong>of</strong> them assisted too in other ways such as being buddies in diving and other fieldwork.<br />

Dr. M.N. Ben-Eliahu and Dr. D. Fiege (Forschungsinstitut Senckenberg, Frankfurt/M., Deutschland) are<br />

thanked for their critical, detailed and very helpful reviews <strong>of</strong> the manuscript.<br />

Last, but certainly not least, we thank the countless persons who over the years contributed as students,<br />

acted as diving buddies, or more in general helped us with fieldwork, collecting and with working up the<br />

material which was the basis <strong>of</strong> this overview.<br />

Glossary<br />

Essentially adapted from Fauchald (1977), ten Hove & Jansen-Jacobs (1984), Glasby et al. (2000), Rouse &<br />

Pleijel (2001), and Bastida-Zavala & ten Hove (2002), this glossary aims to standardize terminology by<br />

using preferential and more precisely defined terms. Preferential terms are given in bold.<br />

abdomen: body region posterior to the thorax.<br />

achaetous: without chaetae.<br />

acicular chaeta: stout, projecting chaeta.<br />

annulated: ringed or marked with transverse grooves.<br />

ampulla: proximal living part <strong>of</strong> operculum, mostly bulbous, distally <strong>of</strong>ten covered by calcareous or<br />

chitinous plate.<br />

Apomatus chaeta: sigmoid to overall sickle shaped thoracic chaeta, with a proximal denticulate limbate zone<br />

and distal zone with fine rectangular teeth (compare sickle-chaeta).<br />

apron: thoracic membranes joined ventrally past the last thoracic chaetigers, across anterior abdominal<br />

segments.<br />

basal membrane, basal web, see preferred term: interradiolar membrane.<br />

bayonet chaeta: special chaeta in first thoracic chaetiger <strong>of</strong> overall bayonet shape: collar chaeta, generally<br />

with one or two (sometimes more) large proximal bosses (or “teeth”) at the base <strong>of</strong> a distal limbate zone.<br />

biramous: parapodium consisting <strong>of</strong> two (chaetae bearing) parts, a ventral neuro- and a dorsal notopodium.<br />

blade: distal, seemingly flat portion <strong>of</strong> a chaeta (see, however, hooded (capillary) chaeta).<br />

boss: small projection or knob-like process in collar chaeta.<br />

branchiae: see branchial crown<br />

branchial crown: a bilaterally symmetrical branched structure formed by prostomial palps. In serpulids<br />

consisting <strong>of</strong> two lobes, each with a number <strong>of</strong> (branchial) radioles bearing pinnules; <strong>of</strong>ten including an<br />

operculum with peduncle on one lobe and sometimes also a pseudoperculum on the opposite lobe.<br />

branchial eyes: all photoreceptors <strong>of</strong> the branchial crown (and operculum).<br />

branchial filament, see preferred term: radiole.<br />

branchial membrane, see preferred term: interradiolar membrane.<br />

capillary chaeta: slender, <strong>of</strong>ten long, chaeta tapering to a fine point; in the literature the term has been used as<br />

collective term for elongate, needle-like chaetae <strong>of</strong> otherwise variable shape and ontogeny. See explanation<br />

hooded as well. It is very unlikely that the “capillaries” <strong>of</strong> a thorax are homologous with the types <strong>of</strong><br />

“capillaries” as occurring in the posterior abdomen <strong>of</strong> various genera.<br />

110 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


chaeta (pl. chaetae): chitinous bristle protruding from an epidermal pocket in the body wall.<br />

chaetal inversion: in <strong>Serpulidae</strong> (and Sabellidae) the thorax bears chaetae dorsally (in notopodia) and uncini<br />

ventrally (neuropodial); in the abdomen the position <strong>of</strong> chaetae and uncini is reversed.<br />

chaetiger: segment bearing chaetae.<br />

collar segment: first chaetiger, with an anterior collar, an encircling fold or flap covering the base <strong>of</strong> the<br />

branchial crown (see thoracic membranes too). Usually longer than other thoracic chaetigers; uniramous,<br />

lacking uncini.<br />

compound eye: a more or less rigidly patterned groupings <strong>of</strong> ocelli.<br />

constriction: narrowing <strong>of</strong> the opercular peduncle or a transverse groove, at basis <strong>of</strong> funnel or ampulla.<br />

crenulated: having a margin with small, low, rounded teeth.<br />

crown: see branchial crown.<br />

cuticle: thin, non-cellular protective layer produced by, and overlying, the epidermis; probably not chitinous<br />

but consisting <strong>of</strong> scleroprotein.<br />

dental formula: notation showing the distribution <strong>of</strong> teeth on the crest <strong>of</strong> an uncinus, first used by Ben-Eliahu<br />

& Dafni (1979). For instance: F + 4 means Fang + 4 teeth (seen in pr<strong>of</strong>ile), alternatively F:1:1:1:1; P + 10<br />

means Peg + 10 teeth (seen in pr<strong>of</strong>ile), which may be detailed as P:1:1:1:1:1:1:1:1:1:1 if saw-shaped,<br />

P:3:2:2: 1:1:1:1:1:1:1 if saw-to-rasp-shaped, P:4:4:4:4:4:4:4:4:3:2 if rasp-shaped.<br />

dentate: toothed.<br />

denticulate: with small teeth.<br />

entire edge (margin): smooth edged, without projections.<br />

eye, eyespot: photoreceptor or light-receptive organ, usually occurring on prostomium, but may occur on the<br />

pygidium or almost anywhere along the body.<br />

fang: sharply pointed anterior (or primary) tooth <strong>of</strong> uncinus.<br />

filamentous: shaped like a filament or fine thread.<br />

filiform: thread-like, very slender.<br />

fin-and-blade chaeta: collar chaeta with basal boss (“fin”) made <strong>of</strong> relatively few teeth <strong>of</strong> intermediate size;<br />

the basal fin may or may not be separated by a toothless zone (a gap) from the distal blade.<br />

flat-trumpet-shaped chaeta: chaeta with a thin, flat distal part with small teeth on its edge.<br />

funnel: descriptive term used to indicate the inverted cone-like proximal part <strong>of</strong> the operculum in Hydroides,<br />

the ditto distal part in Crucigera, and the entire operculum in Serpula.<br />

geniculate: “having a knee-like joint” or “bent sharply”. In serpulids traditionally used for a variety <strong>of</strong> bent<br />

chaetae, see discussion and specification <strong>of</strong> types <strong>of</strong> chaetae in the introductory part <strong>of</strong> this paper.<br />

glandular pad: glandular zone on the dorsal side <strong>of</strong> the last abdominal segments in some serpulids.<br />

hooded (capillary) chaetae, hooded (limbate) chaetae: type <strong>of</strong> thoracic chaetae, stiff, elongate, narrowly<br />

hooded and tapering to a fine point (usually called “limbate”), or slender, elongate, very narrowly hooded<br />

and tapering (usually called “capillaries”). These chaetae consist <strong>of</strong> densely packed fibrils; distally they<br />

seem to have a limbus or flat blade, which on close inspection is an outer layer where the fibrils are packed<br />

less tightly than in the central axis (or shaft), enveloping 1/2 to 2/3 <strong>of</strong> the axis.<br />

internal tube structures: in the narrow sense, ridges and crests inside Spiraserpula tubes; in a wider sense,<br />

any internal structure such as the small pits in the substrate-side <strong>of</strong> the lumen in Spirobranchus corrugatus.<br />

interradial groove: groove on outside <strong>of</strong> a funnel, marking radius insertion (Serpula-clade).<br />

interbranchial membrane, preferred term: interradiolar membrane.<br />

interradiolar membrane: thin membrane connecting basal parts <strong>of</strong> radioles in some Sabellida.<br />

lappet: lobe or flap-like projection.<br />

limbate: condition <strong>of</strong> chaetae, in which a longitudinal flange appears to be present; however, this is an artifact<br />

<strong>of</strong> light microscopy, see hooded.<br />

limbus: flattened distal border <strong>of</strong> chaetae, longitudinal flange (Latin = edge, border), however, see hooded.<br />

mouth: anterior opening <strong>of</strong> the alimentary canal; in serpulids also used for anterior opening (or entrance) <strong>of</strong><br />

the tube.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 111


mouth palp: filiform projections <strong>of</strong> the dorsal lip <strong>of</strong> the Sabellida mouth.<br />

neurochaeta: chaeta <strong>of</strong> a neuropodium.<br />

neuropodium (pl. neuropodia): ventral branch or ramus <strong>of</strong> a parapodium.<br />

notochaeta: chaeta <strong>of</strong> a notopodium.<br />

notopodium (pl. notopodia): dorsal branch or ramus <strong>of</strong> a parapodium.<br />

ocellar clusters: loose groupings <strong>of</strong> approximately 2–20 ocelli, generally with as many lenses.<br />

ocellus (pl. ocelli): single eyespot with (or without a single lens).<br />

operculum (pl. opercula): tip <strong>of</strong> modified radiole used to plug the tube when the worm is retracted.<br />

opercular plate: terminal reinforcement <strong>of</strong> opercular ampulla, <strong>of</strong>ten chitinous or calcareous.<br />

opercular stalk, see preferred term: peduncle.<br />

palmar or palmate membrane, see preferred term: interradiolar membrane.<br />

parapodium (pl. parapodia): fleshy lateral projection from a body segment which usually bears chaetae.<br />

pectinate: comb-like; with series <strong>of</strong> projections like the teeth <strong>of</strong> a comb. In serpulids an arrangement <strong>of</strong><br />

radioles.<br />

peduncle: modified radiole bearing the operculum.<br />

peduncular wings: collective term for all flattened lateral wing-like appendages <strong>of</strong> peduncle.<br />

peg: wedge shaped, not sharply pointed anterior tooth <strong>of</strong> uncinus<br />

peristome: collar-like widening <strong>of</strong> tube (former tube-mouth).<br />

peristomium: pre-segmental region <strong>of</strong> the body surrounding the mouth (alimentary canal).<br />

pinnules: small paired side branches <strong>of</strong> the radioles, giving each radiole a feathery appearance.<br />

primary tooth, see fang.<br />

prostomium: anteriormost, presegmental region <strong>of</strong> body, bearing the branchial radioles and sometimes eyes.<br />

pseudoperculum (pl. pseudopercula) [variant, but not preferred spelling pseudo-operculum]: modified<br />

radiole (generally the second dorsal one), generally without pinnules; can develop into a new functional<br />

operculum when the functional operculum is lost.<br />

pygidium: post-segmental terminal body-part surrounding the anus.<br />

radiolar crown, see preferred term: branchial crown.<br />

radiolar web or webbing, see preferred term: interradiolar membrane.<br />

radioles: pinnulate filaments <strong>of</strong> branchiae, used for respiration and feeding.<br />

radius (pl. radii): radial projection <strong>of</strong> the funnel (Serpula-clade).<br />

rasp-shaped uncinus: uncinus with two (biseriate) or more rows <strong>of</strong> teeth (multiseriate), see dental formula.<br />

reniform: kidney-shaped.<br />

rudimentary operculum, see preferred term: pseudoperculum.<br />

saw-shaped uncinus: uncinus with only one row <strong>of</strong> teeth (uniseriate), see dental formula.<br />

segment: one <strong>of</strong> the serially repeated units comprising the trunk; <strong>of</strong>ten separated internally by septa or<br />

dissepiments.<br />

seta (pl. setae), see: chaeta, term preferentially adopted by the 1 st International Polychaete Conference in<br />

Australia.<br />

shaft: proximal part <strong>of</strong> a chaeta.<br />

sickle-chaeta: a recurved abdominal chaeta with tiny dentition on the inside <strong>of</strong> the curve. N.B. used in<br />

spirorbin literature for both thoracic Apomatus chaetae and abdominal sickle-chaetae<br />

spinule: each <strong>of</strong> the tubercular or tooth-like projections <strong>of</strong> a spine in the verticil <strong>of</strong> the genus Hydroides. By<br />

their position relative to the axis, spinules may be internal, lateral, or external. By their position along the<br />

spine they may be proximal, medial, or distal.<br />

Spirobranchus-type chaeta: bayonet-like collar chaeta with a proximal boss consisting <strong>of</strong> very numerous<br />

tiny hair-like spines.<br />

stylode: finger-like outward projection <strong>of</strong> radioles in some Sabellida.<br />

tabulae: transverse internal tube elements partitioning <strong>of</strong>f the oldest parts <strong>of</strong> the tube, generally as response to<br />

tube damage.<br />

112 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


thoracic membranes: thin folds on both sides <strong>of</strong> thorax, extending from dorsal part <strong>of</strong> collar to lateral and/or<br />

ventral side <strong>of</strong> posterior thorax. N.B. Thoracic membranes have been included in the the term collar by<br />

some spirorbin taxonomists.<br />

thorax: anterior region <strong>of</strong> the body behind the head.<br />

tonguelet: special form <strong>of</strong> lappet, between dorso-lateral and ventral lobes <strong>of</strong> the collar in some serpulid<br />

genera.<br />

torus (pl. tori): transverse elevation <strong>of</strong> parapodium surrounding the uncini.<br />

transversal ridge: annular elevation <strong>of</strong> tube, less pronounced than peristome.<br />

triangular depression: depressed area between thoracic uncinigerous tori when gradually approaching and<br />

almost touching one another posteriorly and ventrally.<br />

trumpet chaetae: abdominal chaetae in e.g., Serpula, Hydroides, formerly thought to be hollow (like a<br />

trumpet; in French “soies en calice comprimé”); however, more recently proven to be flat, not hollow at<br />

all. See preferred term: flat-trumpet-shaped chaetae.<br />

truly trumpet-shaped chaetae: distally hollow chaetae, with two parallel rows <strong>of</strong> sharp denticles, extending<br />

into a long lateral spine.<br />

unciniger: segment carrying uncini.<br />

uncinus (pl. uncini): deeply embedded comb-shaped chaeta with only its dentate edge protruding from the<br />

body wall; uncini usually arranged in tori, elevated rows transverse to the axis <strong>of</strong> the animal.<br />

uniramous: parapodium with only one (chaetae bearing) part.<br />

verticil: distal part <strong>of</strong> operculum in Hydroides.<br />

verticil spine: any <strong>of</strong> the radial elements, generally around a central disc, together forming the verticil in<br />

Hydroides.<br />

wing: in the genus Hydroides used in the restricted sense <strong>of</strong> lateral and flat expansion <strong>of</strong> verticil spine.<br />

References<br />

Abildgaard, P.C. (1789) Beschreibung 1. einer grossen Seeblase (Holothuria Priapus Linn.) 2. zween Arten des Steinbohrers<br />

(Terebella Linn.) 3. einer grossen Sandröhre (Sabella Linn.). Schrifter der Gesellschaft naturforschender<br />

Freunde zu Berlin, 9, 133–146.<br />

Absolon, K. & Hrabĕ, S. (1930) Über einen neuen Süsswasser–Polychaeten aus den Höhlengewässern der Herzegowina.<br />

Zoologischer Anzeiger, Leipzig, 88, 9/10, 249–264.<br />

Allen, G.R. & Steene, R. (1994 (reprinted 1996)) Indo-Pacific coral reef field guide. Tropical Reef Research, Singapore,<br />

378 pp.<br />

Alvariño, A. (1951) Incrustaciones marinas. Boletin del Instituto Español de Oceanografia 45, 1–12.<br />

Amoureux, L. (1973) Quelques annélides polychètes de l'Afrique occidentale et équatoriale. Cahiers O.R.S.T.O.M.,<br />

Océanographie, 11, 1, 41–65.<br />

Amoureux, L. (1976) Serpula (Paraserpula) israelitica, nouvelle espèce de <strong>Serpulidae</strong> (Annélides Polychètes) et une<br />

petite collection annélidienne de la Mediterranée orientale. Bulletin de Muséum National d'Histoire Naturelle, Paris,<br />

(3) 404 (Zoologie 281), 1047-1059.<br />

Amoureux, L. (1978) Annélides polychètes recoltes par J. Stirn en 1969, sur les côtes marocaines du détroit de Gibraltar.<br />

Cuademos de Ciencias Biológicas, 5, 5–33.<br />

Amoureux, L., Rullier, F. & Fishelson, L. (1978) Systématique et écologie d'annélides polychètes de la presqu'il du Sinai.<br />

Israel Journal <strong>of</strong> Zoology, 27, 57–163.<br />

Augener, H. (1906) Reports on the results <strong>of</strong> dredging, under the supervision <strong>of</strong> Alexander Agassiz, in the Gulf <strong>of</strong> Mexico<br />

and the Caribbean Sea, and on the east coast <strong>of</strong> the U.S. 1877–1880, by the U.S.S. Coast Survey Steamer<br />

"Blake". XLII, Westindische Polychaeten. Bulletin <strong>of</strong> the Museum <strong>of</strong> Comparative Zoology at Harvard College, 43,<br />

91–196.<br />

Augener, H. (1914) Polychaeta, II, Sedentaria. In: Michaelsen, W. & Hartmeyer, R. (Eds). Die Fauna Südwest–Australiens<br />

5, 1, 170 pp.<br />

Augener, H. (1918) Polychaeta. In: Michaelsen, W. & Friedrichsen, L. (Eds.), Beiträgen zur Kenntnis der Meeresfauna<br />

Westafrikas, Vol. 2. Friedrichsen, Hamburg, pp. 69–625.<br />

Augener, H. (1922) Über litorale Polychaeten von Westindien. Sitzungsberichte der Gesellschaft naturforschender Freunde<br />

zu Berlin, 1922, 38–53.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 113


Augener, H. (1925) Die Polychaeten der Südsee–Expedition der Hamburgischen Wissenschaftlichen Stiftung<br />

1908–1909. Mitteilungen der zoologischen Staatsinstitut und Museum Hamburg, 41, 53–70.<br />

Augener, H. (1927) Polychaeten von Neu–Pommern. Sitzungsberichte der Gesellschaft naturforschender Freunde zu<br />

Berlin, 1926, 119–152.<br />

Augener, H. (1934) Polychaeten aus den zoologischen Museen von Leiden und Amsterdam. IV. Schluss. Zoologische<br />

Mededeelingen, Leiden, 17, 67–160.<br />

Bailey-Brock, J.H. (1985) Polychaetes from Fijian coral reefs. Pacific Science, 39, 195–220.<br />

Bailey-Brock, J.H. (1991) Tubeworms (<strong>Serpulidae</strong>, Polychaeta) collected from sewage outfalls, coral reefs and deep<br />

waters <strong>of</strong>f the Hawaiian Islands, including a new Hydroides species. Bulletin <strong>of</strong> Marine Science, 48, 198–207.<br />

Baird, W. (1865) Description <strong>of</strong> several new species and varieties <strong>of</strong> tubicolous annelides = Tribe Limivora <strong>of</strong> Grube, in<br />

the collection <strong>of</strong> the British Museum. I & II. Journal <strong>of</strong> the Linnean Society, London (Zoology), 8, 10–22.<br />

Banse, K. (1957) Die Gattungen Oriopsis, Desdemona and Augeneriella (Sabellidae, Polychaeta. Videnskabelige Meddelelser<br />

fra Dansk naturhistorisk Forening i København, 119, 67–105.<br />

Bastida-Zavala, J.R. (2008) Serpulids (<strong>Annelida</strong>: Polychaeta) from the Eastern Pacific, including a short mention <strong>of</strong><br />

Hawaiian serpulids. <strong>Zootaxa</strong>, 1722, 1–61.<br />

Bastida-Zavala, J.R. & Hove, H.A. ten (2002) Revision <strong>of</strong> Hydroides Gunnerus, 1768 (Polychaeta: <strong>Serpulidae</strong>) from the<br />

Western Atlantic Region. Beaufortia, 52, 103–173.<br />

Bastida-Zavala, J.R. & Hove, H.A. ten (2003) Revision <strong>of</strong> Hydroides Gunnerus, 1768 (Polychaeta: <strong>Serpulidae</strong>) from the<br />

Eastern Pacific Region and Hawaii. Beaufortia, 53, 67–110.<br />

Bastida–Zavala, J.R. & León–González, J.A. de (2002) A new species <strong>of</strong> Hydroides (Polychaeta: <strong>Serpulidae</strong>) from western<br />

Mexico. Journal <strong>of</strong> the Marine Biological Association <strong>of</strong> the United Kingdom, 82, 389–393.<br />

Belokrys, L.S. (1994) The little-known Maastrichtian Pyrgopolon from the Crimea. Paleontological Journal, 28, 53–61.<br />

[transl. from: Maloizvestnye serpulidy Pyrgopolon iz maastrikhta Kryma. Paleontologichesky Zhurnal, 1, 44–50.]<br />

Benedict, J.E. (1887) Descriptions <strong>of</strong> ten species and one new genus <strong>of</strong> the Annelids from the dredgings <strong>of</strong> the U.S. Fish<br />

Commission Steamer Albatross. Proceedings <strong>of</strong> the United States National Museum, 9, 547–553.<br />

Ben–Eliahu, M.N. (1972) A description <strong>of</strong> Hydroides steinitzi n.sp. (Polychaeta: <strong>Serpulidae</strong>) from the Suez Canal with<br />

remarks on the serpulid fauna <strong>of</strong> the Canal. Israel Journal <strong>of</strong> Zoology, 21, 77–81.<br />

Ben-Eliahu, M.N. (1976) Polychaete crypt<strong>of</strong>auna from rims <strong>of</strong> similar intertidal vermetid reefs on the Mediterranean<br />

coast <strong>of</strong> Israel and in the Gulf <strong>of</strong> Elat: <strong>Serpulidae</strong> (Polychaeta Sedentaria). Israel Journal <strong>of</strong> Zoology, 25, 103–119.<br />

Ben-Eliahu, M.N. & Dafni, J. (1979) A new reef-building serpulid genus and species from the Gulf <strong>of</strong> Elat and the Red<br />

Sea, with notes on other gregarious tubeworms from Israeli waters. Israel Journal <strong>of</strong> Zoology, 28, 199–208.<br />

Ben-Eliahu, M.N. & Fiege, D. (1996) Serpulid tube-worms (<strong>Annelida</strong>, Polychaeta) <strong>of</strong> the central and eastern Mediterranean<br />

with particular attention to the Levant Basin. Senckenbergiana Maritima, 28, 1–51.<br />

Ben-Eliahu, M.N. & Hove, H.A. ten (1989) Redescription <strong>of</strong> Rhodopsis pusilla Bush, a little known but widely distributed<br />

species <strong>of</strong> <strong>Serpulidae</strong> (Polychaeta). Zoologica Scripta, 18, 381–395.<br />

Ben-Eliahu, M.N. & Payiatas, G. (1999) Searching for Lessepsian migrant serpulids (<strong>Annelida</strong>: Polychaeta) on Cyprus -<br />

some results <strong>of</strong> a recent expedition. Israel Journal <strong>of</strong> Zoology, 45, 101–119.<br />

Benham, W.B. (1927) Polychaeta. British Antarctic ("Terra Nova") Expedition, 1910. British Museum (Natural History),<br />

Natural History Report, Zoology 7, 2, 47–182.<br />

Ben-Tzvi, O., Einbinder, S. & Brokovich, E. (2006) A beneficial association between a polychaete worm and a scleractinian<br />

coral? Coral Reefs, 25, 98.<br />

Berkeley, M.J. (1835) Observations upon the Dentalium subulatum <strong>of</strong> Deshayes. Zoological Journal, London, 5, 20,<br />

424–427.<br />

Bianchi, C.N. (1981) Policheti Serpuloidei. Guide per il riconoscimento delle specie animali delle acqua laguna e costiere<br />

italiane AQ/1/96, 5, 1–187.<br />

Bianchi, C.N., Chessa, L.A. & Morri, C. (1984) Serpuloidea (<strong>Annelida</strong>, Polychaeta) della Sardegna, con particolare<br />

riguardo alle lagune costiere. Ecologia della Sardegna e delle isole tirreniche supplemento, 54, 49–58.<br />

Blainville, H. de (1818) Mémoire sur la classe des Sétipodes, partie des Vers à sang rouge de M. Cuvier, et des Annélides<br />

de M. de Lamarck. Bulletin de la Société Philomatique de Paris, 1818, 3, 78–85.<br />

Blainville, H. de (1828) Dictionnaire des Sciences naturelles, 57, 368–501.<br />

Bonar, D.B. (1972) Feeding and tube construction in Chone mollis Bush (Polychaeta, Sabellidae). Journal <strong>of</strong> Experimental<br />

Marine Biology and Ecology, 9, 1–18.<br />

Breton, G. & Vincent, T. (1999) Invasion du port du Havre (France, Manche) par Hydroides ezoensis (Polychaeta, <strong>Serpulidae</strong>),<br />

espèce d’origine japonaise. Bulletin trimestriel de la Société géologique de Normandie et Amis Muséum du<br />

Havre, 86, 33–43.<br />

Bronn, H.G., ((1835) 1837) Lethaea geognostica, oder Abbildungen und Beschreibungen der für die Gebirgs-Formationen<br />

bezeichnendsten Versteinerungen. 2 nd ed., Stuttgart, 768 pp.<br />

Bush, K.J. (1905) Tubicolous annelids <strong>of</strong> the tribes Sabellides and Serpulides from the Pacific Ocean. Harriman Alaska<br />

Expedition, 12, 169–355.<br />

114 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Bush, K.J. (1907) Descriptions <strong>of</strong> the two genera <strong>of</strong> tubicolous annelids, Paravermilia and Pseudovermilia, with species<br />

from Bermuda referable to them. American Journal <strong>of</strong> Science, New Haven (4) 23, 131–136.<br />

Bush, K.J. (1910) Description <strong>of</strong> new serpulids from Bermuda, with notes on known forms from adjacent regions. Proceedings<br />

<strong>of</strong> the Academy <strong>of</strong> Natural Sciences <strong>of</strong> Philadelphia, 62, 490–501.<br />

Castelnau, F.L. de Laporte de (1842) L’Histoire naturelle des Annélides. p.1–46 in: Lucas, M. (1840) Histoire naturelle<br />

des Crustacés, des Arachnides et des Myriapodes. Duménil, Paris, 600 pp.<br />

Caullery, M. & Mesnil, F. (1896) Note sur deux Serpuliens nouveaux (Oriopsis Metchnikowi n. g., n. sp. et Josephella<br />

Marenzelleri n. g., n. sp.). Zoologischer Anzeiger, Leipzig, 19 (519), 482–486.<br />

Caullery, M. & Mesnil, F. (1897) Études sur la morphologie comparée et la phylogénie des espèces chez les Spirorbes.<br />

Bulletin Biologique de la France et de la Belgique, 30, 185–233.<br />

Chamberlin, R.V. (1919) The <strong>Annelida</strong> Polychaeta. “Albatross” Expedition. Memoirs <strong>of</strong> the Museum <strong>of</strong> Comparative<br />

Zoology, Harvard, 48, 1–518.<br />

Charles, F., Jordana, E., Amouroux, J.-M., Grémare, A., Desmalades, M. & Zudaire, L. (2003) Reproduction, recruitment<br />

and larval metamorphosis in the serpulid polychaete Ditrupa arietina (O.F. Müller). Estuarine, Coastal and<br />

Shelf Science, 57 (3), 435–443.<br />

Chen, M. & Wu, B.-L. (1978) Two new species <strong>of</strong> the genus Hydroides (Polychaeta, <strong>Serpulidae</strong>) from the Xisha Islands,<br />

Guangdong Province, China. Studia Marina Sinica 12, 141–145 [in Chinese with English summary].<br />

Chen, M. & Wu, B.-L. (1980) Two new species <strong>of</strong> the genus Hydroides (Polychaeta, <strong>Serpulidae</strong>). Oceanologica et Limnologica<br />

Sinica 11(3), 247–250 [in Chinese with English summary].<br />

Chenu, J.C. (1842–55) Illustrations Conchyliologiques ou déscription et figures de toutes les coquilles connues vivantes<br />

et fossiles, classées suivant le système de Lamarck,..... Forton, Masson, Paris, 1842–55. In several volumes.<br />

Chenu, J.C. (1859) Manuel de conchyliologie et de paléontologie, 1. Paris, vii + 499 pp.<br />

Chiaje, S. delle (1828) Memorie sulla storia e notomia degli Animali senza vertebre del regno di Napoli. Figure (1822) ,<br />

Vol. III. 232 pp., 109 pls. [part also in: Oken, L. (1832) (Isis), 654–655].<br />

Claparède, E. (1869–70) Les annélides chétopodes du Golfe de Naples. Annélides sédentaires. Supplément. Mémoires de<br />

la Société de physique et d'histoire naturelle de Genève, 20, 1–225, 365–542.<br />

Colin, P.L. & Arneson, C. (1995) Tropical Pacific Invertebrates. A field guide to the marine invertebrates occurring on<br />

tropical Pacific coral reefs, seagrass beds and mangroves. Coral Reef <strong>Press</strong>, California, 296 pp.<br />

Costa, O.G. (1861) Microdoride mediterranea o descrizione de’ poco ben conosciuti od affato ignoti viventi minuti e<br />

microscopici del Mediterraneo. Tomo primo. Napoli, i–xviii, 1–80, 13 pls. (fide Zibrowius (1972b).<br />

Crisp, M. (1977) The development <strong>of</strong> the serpulid Pomatoleios kraussii (<strong>Annelida</strong>, Polychaeta). Journal <strong>of</strong> Zoology,<br />

London, 183, 147–160.<br />

Day, J.H. (1955) The Polychaeta <strong>of</strong> South Africa. 3. Sedentary species from Cape shores and estuaries. Journal <strong>of</strong> the<br />

Linnean Society (Zoology), 42, 407–452.<br />

Day, J.H. (1961) The Polychaet fauna <strong>of</strong> South Africa. 6. Sedentary species dredged <strong>of</strong>f Cape coasts with a few new<br />

records from the shore. Journal <strong>of</strong> the Linnean Society, London (Zoology) 44, 463–560.<br />

Day, J.H. (1967) A monograph on the Polychaeta <strong>of</strong> Southern Africa. Part 2. Sedentaria. British Museum (Natural History),<br />

London, pp. 459–878.<br />

Day, J.H. (1973) New Polychaeta from Beaufort, with a key to all species recorded from North Carolina. National Oceanic<br />

and Atmospheric Administration Technical Report, National Marine Fisheries Service, Circular, 375, 1–140.<br />

Debelius, H. (1998) Rode Zee Riffengids. (Red Sea Reef Guide). VIPMEDIA Breda/IKAN Unterwasserarchiv Frankfurt,<br />

321 pp.<br />

delle Chiaje, see Chiaje<br />

Deshayes, G.P. (1826) Anatomie et monographie du genre Dentale. Mémoires de la Societé d'Histoire naturelle Paris 2<br />

(1825), 321–378.<br />

Dew, B. (1959) <strong>Serpulidae</strong> (Polychaeta) from Australia. Records <strong>of</strong> the Australian Museum, 25, 19–56.<br />

Dons, C. (1930) Zoologiske Notiser 9. Miroserpula inflata nov.gen. n. sp. Forhandlinger det Kongelige norske Videnskabers<br />

Selskap, Trondhjem, 3, 2, 3–5.<br />

Duchassaing de Fonbressin, P. & Michelotti, G. (1864) Spongiaires de la mer Caraïbe. Natuurkundige verhandelingen<br />

van de Hollandse maatschappij der wetenschappen te Haarlem, 21, 2, 1–124.<br />

Ehlers, E. (1887) Report on the Annelids. Reports on the results <strong>of</strong> dredging, under the direction <strong>of</strong> L.F. Pourtalès, during<br />

the years 1868–1870, and <strong>of</strong> Alexander Agassiz, in the Gulf <strong>of</strong> Mexico, and in the Caribbean Sea, in the U.S. Coast<br />

Survey Steamer “Blake”. Memoirs <strong>of</strong> the Museum <strong>of</strong> Comparative Zoology, Harvard, 15, 1–335.<br />

Ehlers, E. (1900) Magellanische Anneliden gesammelt während der schwedischen Expedition nach den Magellansländern.<br />

Nachrichten von der Königlichen Gesellschaft der Wissenchaften zu Göttingen (Mathematisch-Physikalische<br />

Klasse) 1900, 206–223.<br />

Ehlers, E. (1908) Die bodensässigen Anneliden aus den Sammlungen der deutschen Tiefsee–Expedition "Valdivia".<br />

Deutsche Tiefsee–Expedition auf dem Dampfer Valdivia 1898–1899, Wissenschaftliche Ergebnisse, 16, 1, 1–168.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 115


Ehlers, E. (1913) Die Polychaeten–Sammlungen der deutschen Südpolar– Expedition 1901–1903. Deutsche Südpolar–Expedition,<br />

13, 4, 397–598.<br />

Fabricius, O. (1780) Fauna Groenlandica. Copenhagen & Leipzig, 452 pp.<br />

Faouzi, H. (1930) Tube formation in Pomatoceros triqueter L. Journal <strong>of</strong> the Marine Biological Association <strong>of</strong> the<br />

United Kingdom, 17, 379–384.<br />

Fassari, G. & Móllica, E. (1991) Una nuova specie di <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta) di grotta. Animalia, Catania, 18,<br />

261–267.<br />

Fauchald, K. (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Natural History<br />

Museum <strong>of</strong> Los Angeles County Science Series, 28, 1–188.<br />

Fauchald, K. (1992) A review <strong>of</strong> the genus Eunice (Polychaeta: Eunicidae) based upon type material. Smithsonian Contributions<br />

to Zoology 523, x + 422 pp.<br />

Faulkner, G.H. (1929) The anatomy and the histology <strong>of</strong> bud-formation in the serpulid Filograna implexa together with<br />

some cytological observations on the nuclei <strong>of</strong> the neoblasts. Journal <strong>of</strong> the Linnean Society (Zoology), 37, 109–190.<br />

Fauvel, P. (1909) Deuxième note préliminaire sur les Polychètes provenant des campagnes de l'Hirondelle et de la Princesse-Alice,<br />

ou déposées dans la Musée Océanographique de Monaco. Bulletin de l'Institute Océanographique, 142,<br />

1–76.<br />

Fauvel, P. (1918) Annélides polychètes des côtes d´Arabie, récoltées par M.Ch. Pérez. Bulletin de Muséum National<br />

d'Histoire Naturelle, Paris, 1918 (2), 329–344.<br />

Fauvel, P. (1923) Un nouveau serpulien d'eau saumâtre Mercierella n. g. enigmatica n. sp. Bulletin de la Société<br />

zoologique de France, 47 (1922), 424–430.<br />

Fauvel, P. (1927) Polychètes sédentaires. Addenda aux errantes, Archiannélides, Myzostomaires. Faune de France, 16,<br />

1–494.<br />

Fauvel, P. (1930) <strong>Annelida</strong> polychaeta <strong>of</strong> the Madras Government Museum. Bulletin <strong>of</strong> the Madras Government Museum<br />

(new series, Natural History), 1, 1–72.<br />

Fauvel, P. (1947) Annélides polychètes de Nouvelle-Calédonie et des îles Gambier. Faune Empire Français, 8, 1–107.<br />

Fauvel, P. (1953) <strong>Annelida</strong> Polychaeta. Fauna <strong>of</strong> India, Pakistan, Ceylon, Burma and Malaya. The Indian <strong>Press</strong>, Allahabad,<br />

507 pp.<br />

Ferronnière, G. (1901) Études biologiques sur les zones supralittorales de la Loire–inférieure. Bulletin de la Societé des<br />

sciences naturelles de l'Ouest de la France, Nantes, 2, 1, 1–451.<br />

Fiege, D. & Hove, H.A. ten (1999) Redescription <strong>of</strong> Spirobranchus gaymardi (Quatrefages, 1866) (Polychaeta: <strong>Serpulidae</strong>)<br />

from the Indo-Pacific with remarks on the Spirobranchus giganteus complex. Zoological Journal <strong>of</strong> the Linnean<br />

Society, 126, 355–364.<br />

Fiege, D. & Sun, R. (1999) Polychaeta from Hainan Island, South China Sea Part I: <strong>Serpulidae</strong>. Seckenbergiana Biologia,<br />

79, 109–141.<br />

Fischli, H. (1903) Polychäten von Ternate. Abhandlungen herausgegeben von der Senckenbergischen Naturforschenden<br />

Gesellschaft, 25, 90–136.<br />

Fleming, J. (1825) On the British Testaceous Annelides. Edinburgh Philosophical Journal, 12, 24, 238–248.<br />

Fitzhugh, K. (1989) A systematic revision <strong>of</strong> the Sabellidae-Caobangiidae-Sabellongidae complex (<strong>Annelida</strong>: Polychaeta).<br />

Bulletin <strong>of</strong> the American Museum <strong>of</strong> Natural History, 192, 1–104.<br />

Fosså, S.A. & Nilsen, A.J. (2000) The modern coral reef aquarium. Vol. 3. Birgit Schmettkamp Verlag, Bornheim, 448<br />

pp.<br />

Føyn, B. & Gjøen, I. (1953) Studies on the serpulid Pomatoceros triqueter L. II. The colour pattern <strong>of</strong> the branchial<br />

crown and its inheritance. Nytt Magasin for Zoologi, 2, 85–90.<br />

Gallardo, V.A. (1969) Description <strong>of</strong> Salmacina chilensis n.sp. (Polychaeta, <strong>Serpulidae</strong>) from northern Chile. Boletín de<br />

la Sociedad de Biologia de Concepción, 41, 9–12.<br />

Gee, J.M. (1963) On the taxonomy and distribution in South Wales <strong>of</strong> Filograna, Hydroides and Mercierella (Polychaeta:<br />

<strong>Serpulidae</strong>). Annals and Magazine <strong>of</strong> Natural History Series 13, 6, 705–715.<br />

George, J.D. (1974) The marine fauna <strong>of</strong> Lundy. Polychaeta (marine bristleworms). Reports <strong>of</strong> the Lundy Field Society,<br />

25, 33–48.<br />

Glasby, C.J., Fauchald, K. & Hutchings, P.A. (2000) Glossary. In: Beesley, P.L., Ross, G.J.B. & Glasby, C.J. (Eds) (2000)<br />

Polychaetes & Allies: the southern synthesis. Fauna <strong>of</strong> Australia. Vol. 4A. Polychaeta, Myzostomida, Pogonophora,<br />

Echiura, Sipuncula. CSIRO Publishing, Melbourne, xii + 465 pp.<br />

Gmelin, J.F. (1791) Vermes, Mollusca. In: Linnaeus, C. (1791) Systema naturae. 13 ed. I. 6, 3021–3910.<br />

Goldfuss, A. (1826–33) Petrefacta Musei Universitatis Regiae Borussicae Rhenanae Bonnensis nec non Hoeninghusiani<br />

Crefeldensis, Iconibus et descriptionibus illustrata. Abbildungen und Beschreibungen der Petrefacten des Museums<br />

der Königl. Preusischen Rheinischen Universität zu Bonn und des Hoeninghausischen zu Crefeld. I. Düsseldorf,<br />

1826–1833, vi + 252 pp.<br />

Gosliner, T.M., Behrens, D.W. & Williams, G.C. (1996) Coral reef animals <strong>of</strong> the Indo-Pacific. Animal life from Africa to<br />

Hawai'i exclusive <strong>of</strong> the vertebrates. Sea Challengers, Monterey, California, 314 pp.<br />

116 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Gravier, C. (1905 (1906?)) Sur deux types nouveaux de serpuliens Pomatoceropsis nov.gen.; coutierei nov.spec.; Bonhourella<br />

nov.gen.; insignis nov.spec. Bulletin de la Musée nationale d'Histoire naturelle, 11, 445–451.<br />

Gravier, C. (1906) Sur les Annélides Polychètes de la Mer Rouge (Serpulides). Bulletin de la Musée nationale d'Histoire<br />

naturelle, 12, 110–115.<br />

Gravier, C. (1907) Annélides polychètes. In: Expédition antarctique française (1903–1905), commandée par le Dr. Jean<br />

Charcot. Paris, Masson & Cie, 75 pp.<br />

Gravier, C. (1911) Expédition antarctique française du "Pourquoi–Pas", dirigée par M. le Dr. J.B. Charcot (1908–1910).<br />

Espèces nouvelles d'Annélides polychètes. Bulletin de la Musée nationale d'Histoire naturelle, 17, 310–316.<br />

Gray, J.E. (1843) Materials towards a fauna <strong>of</strong> New Zealand, Auckland Island, and Chatham Islands. Additional radiated<br />

animals and annelides. Chapter X in: Fauna <strong>of</strong> New Zealand. In: Dieffenbach, E. (1843) Travels in New Zealand;<br />

with contributions to the geography, geology, botany and natural history <strong>of</strong> that country, 2, iv + 396 pp.<br />

Grube, A.E. (1862) Mittheilungen über die Serpulen, mit besonderer Berücksichtigung ihrer Deckel. Jahresbericht und<br />

Abhandlungen der Schlesischen Gesellschaft in Breslau, 39, 53–69.<br />

Grube, A.E. (1868) Beschreibungen einiger von G.R. von Frauenfeld gesammelter Anneliden und Gephyreen des Rothen<br />

Meeres. Verhandlungen der zoologischen und botanischen Gesellschaft zu Wien 18, 629–650.<br />

Grube, A.E. (1870) Beschreibungen neuer oder weniger bekannter von Hrn. Ehrenberg gesammelter Anneliden des<br />

Rothen Meeres. Monatsberichte der Königlichen preussischen Akademie der Wissenschaften zu Berlin, 1869,<br />

484–521.<br />

Grube, A.E. (1872) Zur kritischen Übersicht der bisher beschriebenen Terebellen und über Terebellides anguicomus und<br />

einige Serpulaceen. Jahres-Bericht der Schlesischen Gesellschaft für vaterländische Cultur, 49, 48–53.<br />

Grube, A.E. (1876) "Vortragende dass unter der Semperschen Annelidenausbeute von den Philippinen eine Serpula: Serpula<br />

chrysogyrus Gr. gefunden". Jahres-Bericht der Schlesischen Gesellschaft für vaterländische Cultur, 53, 73.<br />

Grube, A.E. (1878) Annulata Semperiana. Beiträge zur Kenntniss der Annelidenfauna der Philippinen, nach den von<br />

Herrn Pr<strong>of</strong>. Semper mitgebrachten Sammlungen. Mémoires de l'Académie Impériale des Sciences de St. Petersbourg,<br />

(7) 25, 8, ix + 300 pp.<br />

Guettard, J.-E. (1770) Mémoires sur différentes parties des sciences et arts. Tome 3. Prault, Paris, iii + 544 pp.<br />

Gunnerus, J. (1768) Om nogle norske coraller. Skrifter det Kongliger norske Videnskabsselskabet Trondhjem, 4, 38–73.<br />

Hansen, G.A. (1879) Annelider fra den norske Nordhavsexpedition i 1876. Nyt Magazin for Naturvidenskaberne Christiania<br />

24, 1, 1–17.<br />

Hanson, J. (1948a) The genera Apomatus and Protula (Polychaeta, <strong>Serpulidae</strong>). Journal <strong>of</strong> the Marine Biological Association<br />

<strong>of</strong> the United Kingdom, 27, 581–584.<br />

Hanson, J. (1948b) Formation and breakdown <strong>of</strong> serpulid tubes. Nature, 161, 610–611.<br />

Hartman, O. (1951) Literature <strong>of</strong> the polychaetous annelids. Vol. I. Bibliography. Allan Hancock Foundation, Los Angeles,<br />

California, vi + 290 pp.<br />

Hartman, O. (1959) Catalogue <strong>of</strong> the Polychaetous Annelids <strong>of</strong> the World. Occasional Papers <strong>of</strong> the Allan Hancock<br />

Foundation, 23, 1–628.<br />

Hartman, O. (1960) The benthic fauna <strong>of</strong> the deep basins <strong>of</strong>f Southern California. Part 2. Systematic account <strong>of</strong> some<br />

marine invertebrate animals from the deep basins <strong>of</strong> Southern California. Allan Hancock Pacific Expeditions 22 (2),<br />

69–215.<br />

Hartman, O. (1966) Polychaeta Myzostomidae and Sedentaria <strong>of</strong> Antarctica. Antarctic Research Series, 7, 1–158.<br />

Hartman, O. (1969) Atlas <strong>of</strong> the sedentariate polychaetous annelids from California. University <strong>of</strong> Southern California,<br />

Los Angeles, 812 pp.<br />

Hartman, O. & Fauchald, K. (1971). Deep-water benthic polychaetous annelids <strong>of</strong>f New England to Bermuda and other<br />

North Atlantic areas. Part 2. Allan Hancock Monographs in Marine Biology, 6, 1–327.<br />

Hartmann–Schröder, G. (1962) Zur Kenntnis des Eulitorals der chilenischen Pazifikküste und der argentinischen Küste<br />

Südpatagoniens unter besonderer Berücksichtigung der Polychaeten und Ostracoden.. Teil II. Die Polychaeten des<br />

Eulitorals.Mitteilungen aus dem hamburgischen zoologischen Museum und Institut, 60, Erganzungsband, 57–167,<br />

266–270.<br />

Hartmann-Schröder, G. (1967) Zur Morphologie, Ökologie und Biologie von Mercierella enigmatica (<strong>Serpulidae</strong>, Polychaeta)<br />

und ihrer Röhre. Zoologischer Anzeiger, 179, 421–456.<br />

Hartmann-Schröder, G. (1971) <strong>Annelida</strong>, Borstenwurmer, Polychaeta. Die Tierwelt Deutschlands und der angrenzenden<br />

Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise, 58, 1–594.<br />

Haswell, W.A. (1883) On some new Australian tubicolous Annelids. Proceedings <strong>of</strong> the Linnean Society <strong>of</strong> New South<br />

Wales, 7, 633–638.<br />

Haswell, W.A. (1885) The marine annelides <strong>of</strong> the order Serpulea. Some observations on their anatomy, with the characteristics<br />

<strong>of</strong> the Australian species. Proceedings <strong>of</strong> the Linnean Society <strong>of</strong> New South Wales, 9 (3) [1884], 649–675.<br />

Hedley, R.H. (1956a) Studies <strong>of</strong> the serpulid tube formation. 1. The secretion <strong>of</strong> the calcareous and organic components<br />

<strong>of</strong> the tube by Pomatoceros triqueter. Journal <strong>of</strong> Microscopical Science, 97, 411–419.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 117


Hedley, R.H. (1956b) Studies <strong>of</strong> the serpulid tube formation. II. The calcium secreting glands in the peristomium <strong>of</strong><br />

Spirorbis, Hydroides, and Serpula. Quarterly Journal <strong>of</strong> Microscopical Science, 97, 419–421.<br />

Hedley, R.H. (1958) Tube formation by Pomatoceros triqueter (Polychaeta). Journal <strong>of</strong> the Marine Biological Association<br />

<strong>of</strong> the United Kingdom, 37, 315–322.<br />

Heppell, D. (1963) Serpula Linnaeus, 1758 (<strong>Annelida</strong>, Polychaeta): proposed designation <strong>of</strong> a type-species under the<br />

plenary powers and relevant proposals. Z.N.(S.) 1606. Bulletin <strong>of</strong> zoological Nomenclature 20, 6, 443–446.<br />

Holly, M. (1935) Polychäten von den Philippinen. II. Zweite Mitteilung über Polychäten. Zoologischer Anzeiger,<br />

Leipzig, 111, 96–100.<br />

Holly, M. (1936) Zur Nomenklatur der Polychäten–Gattung Pomatoceropsis Holly. Zoologischer Anzeiger, Leipzig, 114,<br />

223.<br />

Hong, J.-S. (1984) On two polychaetous serpulids new to Korean waters with notes on the ecological aspects. Korean<br />

Journal <strong>of</strong> Zoology, 27, 35–48.<br />

Hove, H.A. ten (1970) Serpulinae (Polychaeta) from the Caribbean: I—the genus Spirobranchus. Studies on the Fauna <strong>of</strong><br />

Curaçao and other Caribbean Islands, 32, 1–57.<br />

Hove, H.A. ten (1973) Serpulinae (Polychaeta) from the Caribbean: II—the genus Sclerostyla. Studies on the Fauna <strong>of</strong><br />

Curaçao and other Caribbean Islands, 43, 1–21.<br />

Hove, H.A. ten (1974) Notes on Hydroides elegans (Haswell, 1883) and Mercierella enigmatica Fauvel, 1923, alien serpulid<br />

polychaetes introduced into the Netherlands. Bulletin <strong>of</strong> the Zoological Museum, Amsterdam, 4, 45–51.<br />

Hove, H.A. ten (1975) Serpulinae (Polychaeta) from the Caribbean: III—the genus Pseudovermilia. Studies on the<br />

Fauna <strong>of</strong> Curaçao and other Caribbean Islands, 47, 46–101.<br />

Hove, H.A. ten (1979) Different causes <strong>of</strong> mass occurrence in serpulids.In: Larwood, G. & Rosen, B.R. (Eds.) Biology<br />

and systematics <strong>of</strong> colonial organisms. Systematic Association Special Volume 11, pp. 281–298.<br />

Hove, H.A. ten (1984) Towards a phylogeny in serpulids (<strong>Annelida</strong>; Polychaeta). In: Hutchings, P.A. (Ed.), Proceedings<br />

<strong>of</strong> the first International Polychaete Conference. Linnean Society <strong>of</strong> New South Wales, Sydney, pp. 181–196.<br />

Hove, H.A. ten (1989) Serpulinae (Polychaeta) from the Caribbean: IV– Pseudovermilia madracicola sp.n., a symbiont<br />

<strong>of</strong> corals. Studies in honour <strong>of</strong> Dr. Pieter Wagenaar Hummelinck. Foundation for Scientific Research in Surinam and<br />

the Netherlands Antilles, 123, 135–144.<br />

Hove, H.A. ten (1990) Description <strong>of</strong> Hydroides bulbosus sp.nov. (Polychaeta, <strong>Serpulidae</strong>), from the Iranian Gulf, with a<br />

terminology for opercula <strong>of</strong> Hydroides. Beaufortia, 41, 16, 115–120.<br />

Hove, H.A. ten (1994) <strong>Serpulidae</strong> (<strong>Annelida</strong>: Polychaeta) from the Seychelles and Amirante Islands. In: Land, J. van der<br />

(Ed.) Oceanic reefs <strong>of</strong> the Seychelles. Cruise Reports <strong>of</strong> Netherlands Indian Ocean Program 2. National Natural<br />

History Museum, Leiden, pp. 107–116.<br />

Hove, H.A. ten & Ben-Eliahu, M.N. (2005) On the identity <strong>of</strong> Hydroides priscus Pillai 1971 – Taxonomic confusion due<br />

to ontogeny in some serpulid genera (<strong>Annelida</strong>: Polychaeta: <strong>Serpulidae</strong>). Senckenbergiana Biologica, 85, 127–145.<br />

Hove, H.A. ten & Hurk, P. van den (1993) A review <strong>of</strong> Recent and fossil serpulid “reefs”; actuopaleontology and the<br />

“Upper Malm” serpulid limestones in NW Germany. Geologie en Mijnbouw, 72, 23–67.<br />

Hove, H.A. ten & Jansen-Jacobs, M.J. (1984) A revision <strong>of</strong> the genus Crucigera (Polychaeta; <strong>Serpulidae</strong>); a proposed<br />

methodical approach to serpulids, with special reference to variation in Serpula and Hydroides. In: Hutchings, P.A.<br />

(Ed.) Proceedings <strong>of</strong> the First International Polychaete Conference, Sydney, Australia, July 1983. Linnean Society<br />

<strong>of</strong> New South Wales, Sydney, pp. 143–180.<br />

Hove, H.A. ten & Nishi, E. (1996) A redescription <strong>of</strong> the Indo-West Pacific Spirobranchus corrugatus Straughan, 1967<br />

(<strong>Serpulidae</strong>, Polychaeta), and an alternative hypothesis on the nature <strong>of</strong> a group <strong>of</strong> Middle Miocene micr<strong>of</strong>ossils<br />

from Poland. Beaufortia, 46, 83–96.<br />

Hove, H.A. ten & Pantus, F.J.A. (1985) Distinguishing the genera Apomatus Philippi, 1844 and Protula Risso, 1826<br />

(Polychaeta: <strong>Serpulidae</strong>). A further plea for a methodical approach to serpulid taxonomy. Zoologische Mededelingen<br />

(Leiden), 59, 419–437.<br />

Hove, H.A. ten & Pillai, T.G. (1994) A cladistic analysis <strong>of</strong> Spiraserpula Regenhardt, 1961 (<strong>Serpulidae</strong>, Polychaeta):<br />

characters and character states. In: Dauvin, J.-C., Laubier, L. & Reish, D.J. (Eds.) Actes de la 4ème Conférence<br />

internationale des Polychètes. Mémoires du Muséum national D'Histoire naturelle, 162, 625.<br />

Hove, H.A. ten, & San Martín, S. (1995) <strong>Serpulidae</strong> (Polychaeta) procedentes de la I Expedición Cubano-Española a la<br />

Isla de la Juventud y Archipiélago de los Canarreos (Cuba). Studies on the Natural History <strong>of</strong> the Caribbean Region,<br />

72, 13–24.<br />

Hove, H.A. ten & Smith, R.S. (1990) A re-description <strong>of</strong> Ditrupa gracillima Grube, 1878 (Polychaeta, <strong>Serpulidae</strong>) from<br />

the Indo-Pacific, with a discussion <strong>of</strong> the genus. Records <strong>of</strong> the Australian Museum, 42, 101–118.<br />

Hove, H.A. ten & Weerdenburg, J.C.A. (1978) A generic revision <strong>of</strong> the brackish-water serpulid Ficopomatus Southern<br />

1921 (Polychaeta: Serpulinae), including Mercierella Fauvel 1923, Sphaeropomatus Treadwell 1934, Mercierellopsis<br />

Rioja 1945 and Neopomatus Pillai 1960. Biological Bulletin, 154, 96–120.<br />

118 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Hove, H.A. ten & Wolf, P.S. (1984) Family <strong>Serpulidae</strong> Johnston, 1865. In: Uebelacker, J.M. & Johnson, P.G. (Eds.), Taxonomic<br />

Guide to the Polychaetes <strong>of</strong> the Northern Gulf <strong>of</strong> Mexico. Final Report to the Minerals Management Service,<br />

contract 14-12-001-29091. Barry A. Vittor & Ass., Inc., Mobile, Alabama, pp. 55-1 to 55–34.<br />

Hove, H.A. ten & Zibrowius, H. (1986) Laminatubus alvini gen. et sp. n. and Protis hydrothermica sp. n. (Polychaeta,<br />

<strong>Serpulidae</strong>) from the bathyal hydrothermal vent communities in the eastern Pacific. Zoologica Scripta, 15, 21–31.<br />

Huxley, T.A. (1855) On a Hermaphrodite and Fissiparous Species <strong>of</strong> Tubicolar Annelid. Edinburgh New Philosophical<br />

Journal, new series, 1 (1), 113–129.<br />

Ichikawa, A. & Takagaki, N. (1942) The reversible asymmetry in the opercula <strong>of</strong> Hydroides ezoensis. 1. Observations on<br />

the intact opercula. Journal <strong>of</strong> Faculty <strong>of</strong> Science Hokkaido Imperial University (6) Zoology, 8, 1–8.<br />

Imajima, M. (1976) Serpulinae (<strong>Annelida</strong>, Polychaeta) from Japan. I. The genus Hydroides. Bulletin <strong>of</strong> the National Science<br />

Museum (A, Zoology), 2, 4, 229–248.<br />

Imajima, M. (1977) <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta) collected around Chichi-jima (Ogasawara Islands). Memoirs <strong>of</strong><br />

the National Science Museum, Tokyo, 10, 89–111.<br />

Imajima, M. (1978) <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta) collected around Nii–jima and O–shima, Izu Islands. Memoirs <strong>of</strong><br />

the National Science Museum Tokyo, 11, 49–72.<br />

Imajima, M. (1979) <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta) collected around Cape Shionomisaki, Kii Peninsula. Memoirs <strong>of</strong><br />

the National Science Museum, Tokyo, 12, 159–183.<br />

Imajima, M. (1982) Serpulinae (polychaetous annelids) from the Palau and Yap Islands. Proceedings <strong>of</strong> the Japanese<br />

Society <strong>of</strong> Systematic Zoology, 23, 37–55.<br />

Imajima, M. & Hove, H.A. ten (1984) Serpulinae (<strong>Annelida</strong>, Polychaeta) from the Truk Islands, Ponape and Majuro<br />

Atoll, with some other new Indo-Pacific records. Proceedings <strong>of</strong> the Japanese Society <strong>of</strong> Systematic Zoology, 27,<br />

35–66.<br />

Imajima, M. & Hove, H.A. ten (1986) Serpulinae (<strong>Annelida</strong>, Polychaeta) from Nauru, the Gilbert Islands (Kiribati) and<br />

the Solomon Islands. Proceedings <strong>of</strong> the Japanese Society <strong>of</strong> Systematic Zoology, Tokyo, 32, 1–16.<br />

Imajima, M. & Hove, H.A. ten (1989) Two new species <strong>of</strong> serpulids (<strong>Annelida</strong>, Polychaeta) from Sesoko Island, Okinawa.<br />

Bulletin <strong>of</strong> the National Science Museum, Tokyo, Series A (Zoology), 15, 11–17.<br />

Ippolitov, A.P. (2007) Contribution to the revision <strong>of</strong> some Late Callovian Serpulids (<strong>Annelida</strong>, Polychaeta) <strong>of</strong> Central<br />

Russia: Part 1. Paleontological Journal, 41, 260–267.<br />

Iroso, I. (1921) Revisione dei Serpulidi e Sabellidi del Golfo di Napoli. Pubblicazioni della Stazione Zoologica di<br />

Napoli, 3, 47–91.<br />

Jackson, J.B.C. (1977) Competition on marine hard substrata: the adaptative significance <strong>of</strong> solitary and colonial strategies.<br />

American Naturalist, 111, 980, 743–767.<br />

Jäger, M. (1993) Danian <strong>Serpulidae</strong> and Spirorbidae from NE Belgium and the SE Netherlands: K/T boundary extinction,<br />

survival, and origination patterns. Contributions to tertiary and quaternary Geology, 29, 3–4, 73–137.<br />

Jäger, M. (2004) <strong>Serpulidae</strong> und Spirorbidae (Polychaeta sedentaria) aus Campan und Maastricht von Norddeutschland,<br />

den Niederlanden, Belgien und angrenzenden Gebieten. Geologisches Jahrbuch, A157, 121–249.<br />

Johnson, H.P. (1901) The polychaeta <strong>of</strong> the Puget Sound Region. Proceedings <strong>of</strong> the Boston Society <strong>of</strong> Natural History,<br />

24 (18), 381–437.<br />

Jones, M.L. (1962) On some polychaetous annelids from Jamaica, the West Indies. Bulletin <strong>of</strong> the American Museum <strong>of</strong><br />

Natural History, New York, 124, 5, 169–212.<br />

Kinberg, J.G.H. (1867) Annulata nova. Öfversigt af Kunglige Vetenskabsakademiens Stockholm, Föhrhandlingar, 23,<br />

337–357.<br />

Knight-Jones, E.W., Knight-Jones, P., Oliver, P.G. & Mackie, A.S.Y. (1997) A new species <strong>of</strong> Hyalopomatus (<strong>Serpulidae</strong><br />

Polychaeta) which lacks an operculum, is this an adaptation to low oxygen? Hydrobiologia, 355, 145–151.<br />

Knight-Jones, P. (1981) Behaviour, setal inversion and phylogeny <strong>of</strong> Sabellida (Polychaeta). Zoologica Scripta, 10,<br />

183–202.<br />

Knight-Jones, P. & Fordy, M.R. (1979) Setal structure, functions and interrelationships in Spirorbidae (Polychaeta, Sedentaria).<br />

Zoologica Scripta, 8, 2, 119–138.<br />

Knight-Jones, P. & Knight-Jones, E.W. (1977) <strong>Taxonomy</strong> and ecology <strong>of</strong> British Spirorbidae (Polychaeta). Journal <strong>of</strong> the<br />

Marine Biological Association <strong>of</strong> the United Kingdom, 57, 453–499.<br />

Knight–Jones, P. & Knight–Jones, E.W. (1995) Spirorbidae (Polychaeta) from Madeira including a new species and subgenus<br />

<strong>of</strong> Spirorbis. Mitteilungen aus dem hamburgischen zoologischen Museum und Institut, 92, Erganzungsband,<br />

89–101.<br />

Knight-Jones, P. & Perkins, T.H. (1998) A revision <strong>of</strong> Sabella, Bispira and Stylomma (Polychaeta: Sabellidae). Zoological<br />

Journal <strong>of</strong> the Linnean Society, 123, 385–467.<br />

Kölliker, A. (1858) Ueber Kopfkiemer mit Augen an den Kiemen (Branchiomma dalyelli). Zeitschrift für Wissenschaftliche<br />

Zoologie, Leipzig, 9, 536–541.<br />

Kupriyanova, E.K. (1993a) Filogranula rzhavskii sp. n. (Polychaeta, <strong>Serpulidae</strong>) from the Russian Far-Eastern Seas.<br />

Zoologichesky Zhurnal, 72, 142–145.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 119


Kupriyanova, E.K. (1993b) Deep-water <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta) from the Kurile-Kamchatka trench: 2. Genera<br />

Bathyditrupa, Bathyvermilia and Protis. Zoologichesky Zhurnal, 72, 21–28.<br />

Kupriyanova, E.K. (1993c) Deep-water <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta) from the Kurile-Kamchatka trench: 1. Genus<br />

Hyalopomatus. Zoologichesky Zhurnal, 72, 145–152.<br />

Kupriyanova, E.K. (1993d) A new species, Metavermilia arctica (Polychaeta, <strong>Serpulidae</strong>), from the Arctic ocean. Sarsia,<br />

78, 155–157.<br />

Kupriyanova, E.K. (1999) The taxonomic status <strong>of</strong> Serpula cf. columbiana Johnson, 1901 from the American and Asian<br />

coasts <strong>of</strong> the North Pacific Ocean (Polychaeta: <strong>Serpulidae</strong>). Ophelia, 50, 21–34.<br />

Kupriyanova, E.K. (2003) Life history evolution in Serpulimorph polychaetes: a phylogenetic analysis. Hydrobiologia,<br />

496, 105–114.<br />

Kupriyanova, E.K. & Badyaev, A.V. (1998) Ecological correlates <strong>of</strong> arctic <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta) distributions.<br />

Ophelia, 49, 181–193.<br />

Kupriyanova, E.K., Bastida-Zavala, R., Halt, M.N., Lee, M.S.Y, & Rouse, G.W. (2008) Phylogeny <strong>of</strong> the Serpula–Crucigera–Hydroides<br />

clade (<strong>Serpulidae</strong>: <strong>Annelida</strong>) using molecular and morphological data: implications for operculum<br />

evolution. Invertebrate Systematics, 22, 425–437.<br />

Kupriyanova, E.K. & Jirkov, I.A. (1997) <strong>Serpulidae</strong> (<strong>Annelida</strong>, Polychaeta) <strong>of</strong> the Arctic Ocean. Sarsia, 82, 203–236.<br />

Kupriyanova, E.K., Macdonald, T. & Rouse, G.W. (2006) Phylogenetic relationships within <strong>Serpulidae</strong> (<strong>Annelida</strong>: Polychaeta)<br />

inferred from molecular and morphological data. Zoologica Scripta, 35, 421–439.<br />

Kupriyanova, E.K., Nishi, E., Hove, H.A. ten & Rzhavsky, A.V. (2001) A review <strong>of</strong> life history patterns in Serpulimorph<br />

polychaetes: ecological and evolutionary perspectives. Oceanography and Marine Biology: an Annual Review, 39,<br />

1–101.<br />

Kupriyanova, E.K. & Rouse, G.W. (2008) Yet another example <strong>of</strong> paraphyly in <strong>Annelida</strong>: molecular evidence that Sabellidae<br />

contains <strong>Serpulidae</strong>. Molecular Phylogenetics and Evolution, 46, 1174–1181.<br />

Lamarck, J.B. de (1818) Histoire Naturelle des animaux sans vertèbres, présentant ... Part 5. Deterville and Verdiere,<br />

Paris, 612 pp. [Annélides, 274–374].<br />

Langerhans, P. (1880) Die Wurmfauna von Madeira. 3. Zeitschrift für Wissenschaftliche Zoologie, Leipzig, 34, 87–143.<br />

Langerhans, P. (1884) Die Wurmfauna von Madeira. 4. Zeitschrift fur Wissenschaftliche Zoologie, 40, 247–285.<br />

Lechapt, J.P. (1992) Neovermilia anoperculata, new species, new deep water species from New Caledonia (Polychaeta,<br />

<strong>Serpulidae</strong>). Bulletin du Museum National Naturelle Section A, Zoologie Biologie et Écologie Animale, 14,<br />

443–448.<br />

Lehrke, J., Hove, H.A. ten, Macdonald, T.A., Bartolomaeus, T. & Bleidorn, C. (2007) Phylogenetic relationships <strong>of</strong> <strong>Serpulidae</strong><br />

(<strong>Annelida</strong>, Polychaeta) based on 18S rDNA sequence data and implications for opercular evolution. Organisms,<br />

Diversity and Evolution, 7, 195–206.<br />

Levinsen, G.M.R. (1884) Systematisk–geografisk Oversigt over de nordiske Annulata, Gephyrea, Chaetognathi og Balanoglossi.<br />

Anden Halvdel (= Pt.2). Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i København,1883,<br />

92–350.<br />

Linnaeus, C. (1758) Systema Naturae, 10 ed. Vol.1. L. Salvius, Holmiae 1758, 823 pp.<br />

Linnaeus, C. (1767) Systema Naturae, 12 ed. Vol.1, Part 2. L. Salvius, Holmiae 1767, 533–1327, appendices excl.<br />

Lommerzheim, A. (1979) Monographische Bearbeitung der <strong>Serpulidae</strong> (Polychaeta sedentaria) aus dem Cenoman (Oberkreide)<br />

am Südwestrand des Münsterlander Beckens. Decheniana, 132, 110–195.<br />

Ludwig, H.W. (1957) Morphologische und physiologische Untersuchungen zur Regeneration der Opercula der Serpuliden.<br />

Verhandlungen der Deutschen Zoologischen Gesellschaft, 1956, 272–277.<br />

Macdonald, T.A. (2003) Phylogenetic relations among spirorbid subgenera and the evolution <strong>of</strong> opercular brooding.<br />

Hydrobiologia, 496, 125–143.<br />

MacLeay, W.S. (1840) Note on the <strong>Annelida</strong>. Annals and Magazine <strong>of</strong> Natural History London (1) 4, 385–388.<br />

Malmgren, A.J. (1866) Nordiska Hafs-Annulater. Öfversigt af Kunglige Vetenskabsakademiens Stockholm, Föhrhandlingar,<br />

22, 51–110, 181–192, 355–410.<br />

Marenzeller, E. von (1878) Die Coelenteraten, Echinodermen und Würmer der K.K. Österreichisch–Ungarischen Nordpol–Expedition.<br />

Denkschrift der Königliche Akademie der Wissenschaften Wien (mathematische und naturwissenschaften<br />

Klasse), 35, 357–398.<br />

Marenzeller, E. von (1885) Südjapanische Anneliden. II. Ampharetea, Terebellacea, Sabellacea, Serpulacea. Denkschrift<br />

der Königliche Akademie der Wissenschaften Wien (mathematische und naturwissenschaften Klasse), 49 (2),<br />

197–224.<br />

Marenzeller, E. von (1893) Polychaeten des Grundes, gesammelt 1890, 1891 und 1892. Denkschrift der Königliche<br />

Akademie der Wissenschaften Wien (mathematische und naturwissenschaften Klasse), 60, 25–48.<br />

Marion, A.F. & Bobretzky, N. (1875) Étude des annélides du Golfe de Marseille. Annales des Sciences naturelles, Paris<br />

(6, Zoologie.) 2, 1, 1–106.<br />

Marsden, J.R. (1992) Reproductive isolation in two forms <strong>of</strong> the serpulid polychaete, Spirobranchus polycerus (Schmarda)<br />

in Barbados. Bulletin <strong>of</strong> Marine Science, 51, 14–18.<br />

120 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Marsden, J.R. & Anderson, D.T. (1981) Larval development and metamorphosis <strong>of</strong> the serpulid polychaete Galeolaria<br />

caespitosa Lamarck. Australian Journal <strong>of</strong> Marine and Freshwater Research, 32, 670–680.<br />

Martín, D. (1989) Anélidos poliquetos asociados a las concreciones de algas calcáreas del litoral catalán. Miscellania<br />

Zoologica, Barcelona (1987), 11, 61–75.<br />

Martín, D. & Britayev, T.A. (1998) Symbiotic polychaetes: review <strong>of</strong> known species. Oceanography and Marine Biology:<br />

an Annual Review, 36, 217–340.<br />

Martini, F.H.W. (1776) Konchyliologische Rhapsodien. Beschäftigungen des berlinisches Gesellschaft naturforschende<br />

Freunde, 2, 347–375.<br />

Matjašič, J. & Sket, B. (1966) Développement larvaire du serpulien cavernicole Marifugia cavatica Absolon et Hrabĕ<br />

(Polychaeta, Sedentaria). International Journal <strong>of</strong> Speleology, 2, 9–16.<br />

McIntosh, W.C. (1885) Report on the <strong>Annelida</strong> Polychaeta collected by H.M.S. Challenger during the years 1873–1876.<br />

Challenger Reports 12 (Zoology), 554 pp.<br />

McIntosh, W.C. (1923) Monograph <strong>of</strong> the British Marine Annelids. 4, 2. Polychaeta - Sabellidae to <strong>Serpulidae</strong>. Ray<br />

Society, London, pp. 251–538.<br />

Michelin, J.L.H. (1840–1847) Iconographie zoophytologique; descrition par localités et terrains des polypiers fossiles<br />

de France et pays environnants. xii + 348 pp., 79 pls. Paris.<br />

Monro, C.C.A. (1930) Polychaete worms. ‘Discovery’ Reports 2, 222 pp.<br />

Monro, C.C.A. (1933) The Polychaeta Sedentaria collected by Dr. C. Crossland at Colón in the Panama region and the<br />

Galapagos Islands during the expedition <strong>of</strong> the S.Y. St. George. Proceedings <strong>of</strong> the Zoological Society London, 2,<br />

1039–1092.<br />

Monro, C.C.A. (1939) Polychaeta. Reports <strong>of</strong> the B.A.N.Z. Antarctic Research Expedition 1929–1931 (B, Zoology, Botany)<br />

4 (4), 89–156.<br />

Montagu, G. (1803) Testacea Brittanica or natural history <strong>of</strong> British shells, marine, land and fresh–water, including the<br />

most minute: systematically arranged and embellished with figures. London, part II, 293–606.<br />

Montfort, D. de (1808) Conchyliologie systématique, 1. Coquilles univalves, cloisonées. Paris, lxxxvii + 409 pp.<br />

Montfort, D. de (1810) Conchyliologie systématique, 2. Coquilles univalves, non cloisonées. Paris, 24–45.<br />

Moore, J.P. (1909) Polychaetous Annelids from Monterey Bay and San Diego, California. Proceedings <strong>of</strong> the Academy<br />

<strong>of</strong> Natural Sciences <strong>of</strong> Philadelphia, 61, 235–295.<br />

Moore, J.P. (1923) The polychaetous annelids dredged by the U.S.S. Albatros <strong>of</strong>f the coast <strong>of</strong> southern California in<br />

1904. Spionidae to Sabellariidae. Proceedings <strong>of</strong> the Academy <strong>of</strong> Natural Sciences <strong>of</strong> Philadelphia, 75, 179–259.<br />

Moore, J.P. & Bush, K.J. (1904) Sabellidae and <strong>Serpulidae</strong> from Japan, with descriptions <strong>of</strong> new species <strong>of</strong> Spirorbis.<br />

Proceedings <strong>of</strong> the Academy <strong>of</strong> Natural Sciences <strong>of</strong> Philadelphia, 56 (1), 157–179.<br />

Mörch, O.A.L. (1863) Revisio critica Serpulidarum. Et bidrag til rørormenes naturhistorie. Naturhistorisk Tidsskrift Henrik<br />

Krøyer, København (Ser. 3), 1, 347–470.<br />

Morton, S.G. (1834) Synopsis <strong>of</strong> the organic remains <strong>of</strong> the Cretaceous Group <strong>of</strong> the United States. Philadelphia, 88 pp.<br />

Müller, O.F. (1776) Zoologiae Danicae Prodromus, seu animalium Daniae et Norvegiae indigenarum. Characteres,<br />

nomina et synonyma imprimis popularum. Havniae, 1776, xxxii + 174 pp., Plates (published 1777).<br />

Neff, J.M. (1968) Calcium carbonate formation by serpulid polychaete worms: physiology and ultrastructure. Dissertation<br />

Abstracts 29B, 4, 1489.<br />

Neff, J.M. (1971). Ultrastructural studies <strong>of</strong> the secretion <strong>of</strong> calcium carbonate by the serpulid polychaete worm Pomatoceros<br />

caeruleus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 120, 160–186.<br />

Nelson-Smith, A. (1967) Catalogue <strong>of</strong> main marine fouling organisms. Vol. 3. Serpulids. Organization for Economic Cooperation<br />

and Development, Paris, 79 pp.<br />

Nielsen, K.B. (1931 (-35)) <strong>Serpulidae</strong> from the Senonian and Danian deposits <strong>of</strong> Denmark. Meddelelelser fra Dansk<br />

geologisk Forening, 8, 71–113.<br />

Nishi, E. (1992a) Sperm morphology <strong>of</strong> serpulid polychaetes, Pomatoleios kraussii (Baird), Spirobranchus giganteus<br />

corniculatus Pallas, Hydroides elegans Haswell and Salmacina dysteri (Huxley). Galaxea, 11, 9–14.<br />

Nishi, E. (1992b) Occurrence <strong>of</strong> the boring serpulid Floriprotis sabiuraensis Uchida and the brooding serpulid Paraprotis<br />

dendrova Uchida (Polychaeta: Sedentaria) in Okinawa. Galaxea, 11, 15–20.<br />

Nishi, E. (1992c) Asexual reproduction in the serpulid tube worm, Josephella marenzelleri Caullery and Mesnil (Polychaete,<br />

Sedentaria). Nanki-seibutu, the Nanki Biological Society, 34, 109–111.<br />

Nishi, E. (1993) Occurrence <strong>of</strong> Dasynema chrysogyrus Grube, 1876 (<strong>Serpulidae</strong>, Polychaeta) on the living coral Goniopora<br />

sp., at Zampa Cape, Okinawa. Nanki-seibutu, the Nanki Biological Society, 35, 145–148.<br />

Nishi, E. (1999) Pseudochitinopoma pavimentata new species (Polychaeta: <strong>Serpulidae</strong>) from <strong>of</strong>f Tateyama, near Tokyo<br />

Bay, Central Japan. Bulletin <strong>of</strong> Marine Science, 64, 89–94.<br />

Nishi, E., Kupriyanova, E.K. & Tachikawa, H. (2007) Metavermilia ogasawaraensis sp. nov. (<strong>Serpulidae</strong>: Sabellida:<br />

Polychaeta: <strong>Annelida</strong>) from deep-sea locations <strong>of</strong>f Ogasawara Island, Japan with a literature overview <strong>of</strong> the genus.<br />

<strong>Zootaxa</strong>, 1447, 47–56.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 121


Nishi, E. & Yamasu, T. (1992) Brooding and development <strong>of</strong> Rhodopsis pusilla Bush (<strong>Serpulidae</strong>, Polychaeta). Bulletin<br />

<strong>of</strong> the College <strong>of</strong> Science, University <strong>of</strong> the Ryukyus, 54, 93–100.<br />

Nogueira, J.M. de Matos & Abbud, A. (2009) Three new serpulids (Polychaeta: <strong>Serpulidae</strong>) from the Brazilian Exclusive<br />

Economic Zone. 9 th IPC, Zoosymposia [in press]<br />

Nogueira, J.M. de Matos & Hove, H.A. ten (2000) On a new species <strong>of</strong> Salmacina Claparède, 1870 (Polychaeta: <strong>Serpulidae</strong>)<br />

from Sao Paolo State, Brazil. Beaufortia, 50, 151–161.<br />

Nott, J.A. & Parkes, K.R. (1975) Calcium accumulation and secretion in the serpulid polychaete Spirorbis spirorbis L. at<br />

settlement. Journal <strong>of</strong> the Marine Biological Association <strong>of</strong> the United Kingdom, 55, 911–921.<br />

Okada, Y.K. (1932) Remarks on the reversible asymmetry in the opercular <strong>of</strong> the polychaete Hydroides. Journal <strong>of</strong> the<br />

Marine Biological Association <strong>of</strong> the United Kingdom, 18, 655–670.<br />

Oken, L. (1815) Lehrbuch der Naturgeschichte 3 (Zoologie) (1). Jena, 850 + XXVIII pp.<br />

Okuda, S. (1934) Some tubicolous Annelids from Hokkaido. Journal <strong>of</strong> the Faculty <strong>of</strong> Science <strong>of</strong> the Hokkaido Imperial<br />

University (6) Zoology, 3, 233–246.<br />

Orrhage, L. (1980) On the structure and homologues <strong>of</strong> the anterior end <strong>of</strong> the polychaete families Sabellidae and <strong>Serpulidae</strong>.<br />

Zoomorphology, 96, 113–168.<br />

Pallas, P.S. (1766) Miscellanea Zoologica. Hagae Comitum, vii + 224 pp.<br />

Parab, P.P. & Gaikwad, U.D. (1989) Occurrence and ecology <strong>of</strong> Serpula indica sp.nov. (<strong>Serpulidae</strong> – Polychaeta) from<br />

Ratnagiri coast. Journal <strong>of</strong> Ecobiology, 1, 223–232.<br />

Parapar, J., Freire, J., Urgorri, V. & Besteiro, C. (1993) Morphological variability in Eunice vittata (Chiaje, 1828) (Polychaeta;<br />

Eunicidae) in the Ría de Ferrol (Galicia, NW Spain). Ophelia, 37, 117–125.<br />

Perkins, T.H. (1984) Revision <strong>of</strong> Demonax Kinberg, Hypsicomus Grube, and Notaulax Tauber, with a review <strong>of</strong> Megalomma<br />

Johansson from Florida (Polychaeta: Sabellidae). Proceedings <strong>of</strong> the Biological Society <strong>of</strong> Washington, 97,<br />

285–368.<br />

Perkins, T.H. (1991) Calcisabella piloseta, a new genus and species <strong>of</strong> Sabellinae (Polychaeta: Sabellidae). Proceedings<br />

<strong>of</strong> the 3rd International Polychaete Conference. Bulletin <strong>of</strong> Marine Science, 48, 2, 261–267.<br />

Perkins, T.H. (1998) Checklist <strong>of</strong> shallow–water marine polychaetous <strong>Annelida</strong> <strong>of</strong> Florida. pp.79–122 in: D.K. Camp,<br />

D.K., Lyons, W.G. & Perkins, T.H. (1998) Checklists <strong>of</strong> selected shallow–water marine invertebrates <strong>of</strong> Florida.<br />

Florida Marine Research Institute, Technical Report TR–3, 238 pp.<br />

Pettibone, M.H. (1982) <strong>Annelida</strong>. In: Parker, S.P. (Ed.), Synopsis and classification <strong>of</strong> living organisms. Vol. 2. McGraw-<br />

Hill Book Co, New York, pp. 1–43.<br />

Philippi, A. (1844) Einige Bemerkungen über die Gattung Serpula, nebst Aufzählung der von mir im Mittelmeer mit<br />

dem Thier beobachteten Arten. Archiv für Naturgeschichte, Berlin, 10, 186–198. (translated in: Annals and Magazine<br />

<strong>of</strong> Natural History London (1), 14, 153–162).<br />

Pillai, T.G. (1960) Some marine and brackish-water serpulid polychaetes from Ceylon, including new genera and species.<br />

Ceylon Journal <strong>of</strong> Science (Biological Sciences), 3, 1–40.<br />

Pillai, T.G. (1961) <strong>Annelida</strong> Polychaeta <strong>of</strong> Tambalagam Lake, Ceylon. Ceylon Journal <strong>of</strong> Science (Biological Science), 4,<br />

1–40.<br />

Pillai, T.G. (1965) <strong>Annelida</strong> polychaeta from the Philippines and Indonesia. Ceylon Journal <strong>of</strong> Science (Biological Science),<br />

5, 110–177.<br />

Pillai, T.G. (1970) Studies on a collection <strong>of</strong> spirorbids from Ceylon, together with a critical review and revision <strong>of</strong><br />

spirorbid systematics and an account <strong>of</strong> their phylogeny and zoogeography. Ceylon Journal <strong>of</strong> Science (Biological<br />

Sciences), 8, 100–172.<br />

Pillai, T.G. (1971) Studies on a collection <strong>of</strong> marine and brackish–water polychaete annelids <strong>of</strong> the family <strong>Serpulidae</strong><br />

from Ceylon. Ceylon Journal <strong>of</strong> Science (Biological Science), 9, 2, 88–130.<br />

Pillai, T.G. (2008) Ficopomatus talehsapensis, a new brackish-water species (Polychaeta: <strong>Serpulidae</strong>: Ficopomatinae)<br />

from Thailand, with discussions on the relationships <strong>of</strong> taxa constituting the subfamily, opercular insertion as a taxonomic<br />

character and their taxonomy, a key to its taxa, and their zoogeography. <strong>Zootaxa</strong> 1967, 36–52.<br />

Pillai, T.G. & Hove, H.A. ten (1994) On recent species <strong>of</strong> Spiraserpula Regenhardt, 1961, a serpulid polychaete genus<br />

hitherto known only from Cretaceous and Tertiary fossils. Bulletin <strong>of</strong> the British Museum (Natural History), Zoology,<br />

London, 60, 39–104.<br />

Pixell, H.L.M. (1912) Polychaeta from the Pacific coast <strong>of</strong> North America. Part I. <strong>Serpulidae</strong>, with a revised table <strong>of</strong><br />

classification <strong>of</strong> the genus Spirorbis. Proceedings <strong>of</strong> the Zoological Society <strong>of</strong> London, 1912, 784–805.<br />

Pixell, H.L.M. (1913) Polychaeta <strong>of</strong> the families <strong>Serpulidae</strong> and Sabellidae, collected by the Scottish National Antarctic<br />

Expedition. Transactions <strong>of</strong> the Royal Society <strong>of</strong> Edinburgh, 49, 347–358.<br />

Quatrefages, A. de (1866). Histoire naturelle des Annelés marins et d'eau douce. Annélides et Géphyriens. 2 volumes and<br />

atlas: vol. 1: 1–588, vol. 2(1): 1–336, vol. 2(2): 337–794. year 1865, but published in 1866 acc. to The Zoological<br />

Record 1866 (vol. 3) for the year 1865]. Paris, Librairie Encyclopédique de Rôret.<br />

Quiévreux, C. (1963) Paralaeospira striata n.sp., nouvelle espèce de Spirorbinae (Annélide Polychète). Archives de<br />

Zoologie Expérimentale et Génerale, Paris, 102, 69–78.<br />

122 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Radl, E. (1912) Neue Lehre vom Zentralen Nervensystem. Engelmann, Leipzig, 1912, 496 pp.<br />

Rafinesque, S.C. (1815) L'analyse de la nature. Palermo, 1815, 224 pp.<br />

Regenhardt, H. (1961) <strong>Serpulidae</strong> (Polychaeta sedentaria) aus der Kreide Mitteleuropas, ihre ökologische, taxionomische<br />

und stratigraphische Bewertung. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 30, 5–115.<br />

Reish, D.J. (1968) Polychaetous annelids <strong>of</strong> the Marshall Islands. Pacific Science, 22, 2, 208–231.<br />

Rioja, E. (1917) Datos para el conocimiento de la fauna de Anélidos Poliquetos del Cantábrico. Trabajos del Museo<br />

nacional de Ciencias Naturales de Madrid (Zoologia), 29, 1–111.<br />

Rioja, E. (1923). Estudio sistemático de las especies Ibéricas del suborden Sabelliformia. Trabajos del Museo Nacional<br />

de Ciencias Naturales Serie Zoológica, 48, 1–144.<br />

Rioja, E. (1931) Estudio de los poliquetos de la Península Ibérica. Memorias de la Academia de Ciencias Exactas,<br />

Fisicas y Naturales de Madrid. Serie Ciencias Naturales, 2, 1–472.<br />

Rioja, E. (1941a) Estudios anelidológicos. II. Observaciones acerca de varias especies del genero Hydroides Gunnerus<br />

(sensu Fauvel) de las costas Mexicanas del Pacifico. Anales del Instituto de Biología de México, 12, 161–175.<br />

Rioja, E. (1941b) Estudios anelidológicos. III. Datos para el conocimiento de la fauna de Poliquetos de las costas del<br />

Pacífico de México. Anales del Instituto de Biología de México, 12, 669–746.<br />

Rioja, E. (1945) Estudios anelidológicos. XIII. Un nuevo genero de Serpulido de agua salobre de Mexico. Anales del<br />

Instituto de Biología de México, 16, 2, 414–417.<br />

Rioja, E. (1959) Estudios anelidológicos. XXI. Observaciónes acerca de algunas especies de Serpulidos de los generos<br />

Hydroides y Eupomatus de las costas del Golfo de México. Anales del Instituto de Biología de México, 28 (1958),<br />

247–266.<br />

Risso, A. (1826) Histoire Naturelle des principales productions de l’Europe Meridionale et particulièrement de celles<br />

des environs de Nice et des Alpes Maritimes. IV, Mollusques, Annélides. Paris, VII + 439 pp., 12 pls. [Annélides p.<br />

397–432.]<br />

Rosenfeldt, P. (1979) Zur Ultrastruktur der Borsten und Haken von Polychaeten und ihre taxonomische Bedeutung. Thesis,<br />

Universität Hamburg, 1979, vi + 118 pp. [mimeogr.]<br />

Roule, L. (1898) Notice préliminaire sur les espèces d’annélides recueillies dans les explorations sous-marines du ‘Travailleur’<br />

et du ‘Talisman’. Bulletin de Muséum National d'Histoire Naturelle, Paris, 8, 190–195.<br />

Rouse, G.W. & Fitzhugh, K. (1994) Broadcasting fables: is external fertilization really primitive? Sex, size, and larvae in<br />

sabellid polychaetes. Zoologica Scripta, 23, 271–314.<br />

Rouse, G.W. & Pleijel, F. (2001) Polychaetes. Oxford University <strong>Press</strong>. Oxford, New York, etc., xiii + 354 pp.<br />

Rovereto, G. (1904) Studi monografici sugli Annelidi fossili. Palaeontographia Italica 10, 1–73.<br />

Rullier, F. & Amoureux, L. (1979) Annélides Polychètes. Résultats scientifiques des campagnes de la Calypso, fasc.11.<br />

Campagne de la Calypso au large des côtes atlantiques de l'Amerique du Sud (1961–1962) I. 33. Annales de l'Institut<br />

d'Océanographie, 55, Supplément, 145–206.<br />

Saint-Joseph, A. de (1894) Les annélides polychètes des Côtes de Dinard. Pt. 3. Annales des Sciences Naturelles (Zoologie<br />

et Paléontologie, série 7), 17, 1–395.<br />

Salensky, W. (1884) Études sur le développement des Annélides. Pt. 3. Pileolaria, 4. Aricia et 5. Terebella. Archives de<br />

Biologie, 4, 143–264.<br />

Sanfilippo, R. (2001) Bathyvermilia islandica (Polychaeta, <strong>Serpulidae</strong>): a new deep–water species from south <strong>of</strong> Iceland.<br />

Sarsia, 86, 177–182.<br />

Sanfilippo, R. (2009) A new species <strong>of</strong> Hyalopomatus Marenzeller, 1878 (Polychaeta, <strong>Serpulidae</strong>) from Recent Mediterranean<br />

deep-water coral mounds and comments on some congeners. Zoosymposia (in print)<br />

Savigny, J.C. (1820) Système des Annélides, principalement de celles des côtes de l’Égypte et de la Syrie, <strong>of</strong>frant les caractères<br />

tant distinctifs que naturels des ordres, familles et genres, avec la description des espèces. Description de<br />

l’Égypte, Histoire Naturelle, Paris I (3), l’Imprimerie Royale: 3–128.<br />

Scacchi, A. (1836) Catalogus conchyliorum regni Neapolitani quae usque adhuc reperit Neapoli, 18 pp.<br />

Schlotheim, E.F. von (1820) Die Petrefactenkunde auf ihrem jetztigen Standpunkte durch die Beschreibung seiner Sammlung<br />

versteinerter und fossiler Überreste des Thier– und Pflanzenreichs der Vorwelt. Becker, Gotha, 1820, lxii +<br />

437 pp.<br />

Schmarda, L.K. (1861) Neue wirbellose Thiere beobachtet und gesammelt auf einer Reise um die Erde 1853 bis 1857. I,<br />

Turbellarien, Rotatorien und Anneliden (2), 1–164.<br />

Schochet, J. (1973a) Opercular regulation in the polychaete Hydroides dianthus (Verrill), 1873. 1. Opercular ontogeny,<br />

distribution and flux. Biological Bulletin, 140, 400–420.<br />

Schochet, J. (1973b) Opercular regulation in the polychaete Hydroides dianthus (Verrill), 1873. 2. Control <strong>of</strong> opercular<br />

regulation. Journal <strong>of</strong> Experimental Zoology, 184, 259–280.<br />

Segrove, F. (1941) The development <strong>of</strong> the serpulid Pomatoceros triqueter L. Quarterly Journal <strong>of</strong> Microscopical Science,<br />

82, 467–540.<br />

Serres, M. de (1855) Note sur un nouveau genre d’annélide tubicole perforant. Annales des Sciences naturelles, Paris,<br />

(Zoologie 4) 4, 238–243.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 123


Sket, B. (1983) Je Marifugia res ubeznik iz morja? [Is Marifugia really a fugitive from the sea ?], Proteus, 46, 102–104.<br />

Smith, A.M., McGourty, C.R., Kregting, L. & Elliot, A. (2005) Subtidal Galeolaria hystrix (Polychaeta, <strong>Serpulidae</strong>)<br />

reefs in Paterson Inlet, Stewart Island, New Zealand. New Zealand Journal <strong>of</strong> Marine and Freshwater Research, 39,<br />

1297–1304.<br />

Smith, R.S. (1984a) Novel organelle associations in photoreceptors <strong>of</strong> a serpulid polychaete worm. Tissue and Cell, 16,<br />

951–956.<br />

Smith, R.S. (1984b) Development and settling <strong>of</strong> Spirobranchus giganteus (Polychaeta: <strong>Serpulidae</strong>). In: Hutchings, P.A.<br />

(Ed.) Proceedings <strong>of</strong> the First International Polychaete Conference. Linnean Society <strong>of</strong> New South Wales, Sydney,<br />

pp. 461–483.<br />

Smith, R.S. (1985) Photoreceptors <strong>of</strong> Serpulid polychaetes. Doctoral Dissertation, James Cook University, Townsville,<br />

Queensland, Australia; 3 vols., 539 pp.<br />

Smith, R.S. (1991) Relationships within the order Sabellida (Polychaeta). In: Petersen, M.E. & Kirkegaard, J.B. (Eds.),<br />

Proceedings <strong>of</strong> the 2nd International Polychaete Conference, Copenhagen 1986. Ophelia Supplement, 5, 249–260.<br />

Song, D.S. (2006) Christmas colors: colormorph distribution <strong>of</strong> Spirobranchus giganteus Pallas 1766 on Moorea, French<br />

Polynesia. Water Resources Center Archives. Biology and Geomorphology <strong>of</strong> Tropical Islands (ESPM 107/IB 158).<br />

Available from http://repositories.cdlib.org/wrca/moorea/song (accessed 6 April, 2008).<br />

Southern, R. (1921) Polychaeta <strong>of</strong> the Chilka Lake and also <strong>of</strong> fresh and brackish waters in other parts <strong>of</strong> India. Memoirs<br />

<strong>of</strong> the Indian Museum, 5, 563–659.<br />

Southward, E.C. (1963) Some new and little-known serpulid polychaetes from the continental slope. Journal <strong>of</strong> the<br />

Marine Biological Association <strong>of</strong> the United Kingdom, 43, 573–587.<br />

Stimpson, W. (1854) Synopsis <strong>of</strong> the marine invertebrata <strong>of</strong> Grand Manan: or the region about the mouth <strong>of</strong> the Bay <strong>of</strong><br />

Fundy, New Brunswick. Smithsonian Contributions to Zoology, 6, 1–67.<br />

Straughan, D. (1967a) Some <strong>Serpulidae</strong> (<strong>Annelida</strong>: Polychaeta) from Heron Island, Queensland. University <strong>of</strong> Queensland<br />

Papers, 1, 27–45.<br />

Straughan, D. (1967b) Marine <strong>Serpulidae</strong> (<strong>Annelida</strong>: Polychaeta) <strong>of</strong> eastern Queensland and New South Wales. Australian<br />

Journal <strong>of</strong> Zoology, 15, 201–261.<br />

Sun, R. (1998) The Polynoidae, Eunicidae and <strong>Serpulidae</strong> (<strong>Annelida</strong>: Polychaeta) from Nansha Islands and adjacent<br />

waters. p. 79–114, 20 figs in: Studies on marine fauna and flora and biogeography <strong>of</strong> the Nansha Islands and neighbouring<br />

waters. III. Contribution 2942 from the Institute <strong>of</strong> Oceanology, Chinese Academy <strong>of</strong> Sciences. ISBN<br />

7–5027–4471–1.<br />

Sun, R. & Yang, D. (2000) Study on Hydroides (Polychaeta: <strong>Serpulidae</strong>) from waters <strong>of</strong>f China I. Studia Marina Sinica,<br />

42, 116–135. [in Chinese with English summary]<br />

Sun, R., & Yang, D. (2001) Study on <strong>Serpulidae</strong> (Polychaeta: Sabellida) from waters <strong>of</strong>f China II. Studia Marina Sinica,<br />

43, 184–208. [in Chinese with English summary]<br />

Tebble, N. (1956) The polychaete fauna <strong>of</strong> the Gold Coast. Bulletin <strong>of</strong> the British Museum (Natural History), Zoology, 3,<br />

61–148.<br />

Templeton, R. (1835) Descriptions <strong>of</strong> a few invertebrated animals obtained at the Isle <strong>of</strong> France. Proceedings <strong>of</strong> the Zoological<br />

Society London, 3, 111–112.<br />

Théel, Hj. (1878) Les annélides polychètes des mers de la Nouvelle–Zemble. Svenska Vetenskaps Akadademien Handlingar,<br />

16, 3, 1–75.<br />

Thomas, J.G. (1940) Pomatoceros, Sabella and Amphitrite. Liverpool Marine Biology Committee, Memoirs, 23, 1–88.<br />

Thorp, C.H., Sewell, F.M. & Bond, P.R. (1991) A self-cleaning mechanism in the operculum <strong>of</strong> Serpula vermicularis L.<br />

(Polychaeta: <strong>Serpulidae</strong>). Bulletin <strong>of</strong> Marine Science, 48, 412–419.<br />

Tovar-Hernández, M.A. & Knight-Jones, P. (2006) Species <strong>of</strong> Branchiomma (Polychaeta: Sabellidae) from the Caribbean<br />

Sea and Pacific coast <strong>of</strong> Panama. <strong>Zootaxa</strong>, 1189, 1–37.<br />

Treadwell, A.L. (1902) The polychaetous annelids <strong>of</strong> Porto Rico. Bulletin <strong>of</strong> the United States Fish Commission 20, 2,<br />

181–210.<br />

Treadwell, A.L. (1929) New species <strong>of</strong> polychaetous annelids in the collections <strong>of</strong> the American Museum <strong>of</strong> Natural History<br />

from Porto Rico, Florida, Lower California, and British Somaliland. American Museum Novitates, 392, 1–13.<br />

Treadwell, A.L. (1934) Sphaeropomatus miamiensis, a new genus and species <strong>of</strong> serpulid polychaete. Journal <strong>of</strong> the<br />

Washington Academy <strong>of</strong> Sciences, 24, 338–341.<br />

Treadwell, A.L. (1943) New species <strong>of</strong> polychaetous annelids from Hawaii. American Museum Novitates, 1233, 1, 4.<br />

Uchida, H. (1978) Serpulid tube worms (Polychaeta, Sedentaria) from Japan with the systematic review <strong>of</strong> the group.<br />

Bulletin <strong>of</strong> the Marine Park Research Stations, 2, 1–98.<br />

Ushakov, P.V. (1970) Observations sur la répartitions de la fauna benthique du littoral guinéen. Cahiers de Biologie<br />

Marine, 11, 435–457.<br />

Vannini, E. & Ranzoli, F. (1961) Correlazione del numero di metameri toracici fra schizonte e schizozoide in Salmacina<br />

dysteri. Atti della Accademia Nazionale dei Lincei, Rendiconti Classe di Scienze Fisiche, Matematiche e Naturali<br />

(8), 30, 94–99.<br />

124 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA


Verrill, A.E. (1873) Report upon the invertebrate animals <strong>of</strong> Vineyard Sound and the adjacent waters, with an account <strong>of</strong><br />

the physical characters <strong>of</strong> the region. United States Commission <strong>of</strong> Fisheries, Washington, Report for 1871–1872,<br />

295–778.<br />

Vinn, O., Hove, H.A. ten, Mutvei, H. & Kirsimiäe, K. (2008) Ultrastructure and mineral composition <strong>of</strong> serpulid tubes<br />

(Polychaeta, <strong>Annelida</strong>). Zoological Journal <strong>of</strong> the Linnean Society, 154, 633–650.<br />

Vovelle, J., Grasset, M. & Truchet, M. (1991) Sites <strong>of</strong> biomineralization in the polychaete Pomatoceros triqueter (<strong>Serpulidae</strong>)<br />

with comments on some other species. In: Petersen, M.E. & Kirkegaard, J.B. (Eds.), Proceedings <strong>of</strong> the 2nd<br />

International Polychaete Conference Copenhagen 1986. Ophelia Supplement, 5, 661–667.<br />

Vuillemin, S. (1965) Contribution à l'étude écologique du lac de Tunis. Biologie de Mercierella enigmatica Fauvel. Doctoral<br />

Dissertation. Paris: Université de Paris.<br />

Weinberg, S. (1996) Découvrir la mer Rouge et l’océan Indien. Nathan, Paris, 1996, 415 pp.<br />

Wetzel, W. (1957) Semiserpula, eine neue Röhrenwurm–Gattung aus dem Alt–Tertiär Chiles. Senckenbergiana lethaea,<br />

38, 29–36.<br />

Willey, A. (1905) Report on the Polychaeta collected by Pr<strong>of</strong>essor Herdman, at Ceylon, in 1902. In: Herdman, W.A.<br />

(1905) Report to the government <strong>of</strong> Ceylon on the pearl oyster fisheries <strong>of</strong> the Gulf <strong>of</strong> Manaar. London, Royal Society,<br />

4, Supplementary Report 30, 243–342.<br />

Wu, B.-L. & Chen, M. (1981a) Two new species <strong>of</strong> the family <strong>Serpulidae</strong> from the South China Sea. Acta Zootaxonomica<br />

Sinica, 6, 3, 247–249. [in Chinese with English summary]<br />

Wu, B.-L. & Chen, M. (1981b) Two new species <strong>of</strong> Hydroides (Polychaeta: <strong>Serpulidae</strong>) from South China Sea. Oceanologia<br />

et Limnologia Sinica, 12, 4, 354–357. [in Chinese with English summary]<br />

Wu, B.–L., Sun, R.P. & Chen, M. (1979) Two new species <strong>of</strong> the Polychaeta from the South China Sea. Oceanic Selections,<br />

2, 2, 89–94.<br />

Zeleny, C. (1902) A case <strong>of</strong> compensatory regulation in the regeneration <strong>of</strong> Hydroides dianthus. Wilhelm Roux’ Archiv<br />

für Entwicklungsmechanik der Organismen, 13, 597–609.<br />

Zeleny, C. (1905) The rearing <strong>of</strong> serpulid larvae with notes on the behavior <strong>of</strong> the young animals. Biological Bulletin<br />

Woods Hole, 8, 308–312.<br />

Zibrowius, H. (1968a) Étude morphologique, systématique et écologique des <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta) de la<br />

région de Marseille. Recueil des Traveaux de la Station Marine d'Endoume, Bulletin 43, 81–252.<br />

Zibrowius, H. (1968b) Remarques sur les Polychètes <strong>Serpulidae</strong> antarctiques Vermiliopsis notialis Monro, 1930 et Vermiliopsis<br />

glacialis Monro, 1939. Bulletin de l’ Institut royal des Sciences naturelles Belgique = Bulletin van het<br />

Koninklijk Belgisch Instituut voor Natuurwetenschappen, 44, 1–11.<br />

Zibrowius, H. (1968c) Description de Vermiliopsis monodiscus n.sp. espèce Méditerranéenne nouvelle de <strong>Serpulidae</strong><br />

(Polychaeta, Sedentaria). Bulletin du Muséum d’Histoire Naturelle, (2) 39, 6, 1202–1210.<br />

Zibrowius, H. (1969a) Review <strong>of</strong> some little known genera <strong>of</strong> <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta). Smithsonian Contributions<br />

to Zoology, 42, 1–22.<br />

Zibrowius, H. (1969b) Quelques nouvelles récoltes de <strong>Serpulidae</strong> (Polychaeta Sedentaria) dans le Golfe de Gabès et en<br />

Tripolitaine. Description de Vermiliopsis pomatostegoides n. sp. Bulletin de l'Institut d’Océanographie et Pêche,<br />

Salammbô, 1, 123–136.<br />

Zibrowius, H. (1970a) <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta) des campagnes du "Skagerak" (1946) et du "Faial" (1957) au<br />

large de Portugal. Boletim da Sociedade Portuguesa de Ciências Naturais, 12, 117–131.<br />

Zibrowius, H. (1970b) Contribution à l'étude des <strong>Serpulidae</strong> (Polychaeta Sedentaria) du Brésil. Boletim do Instituto<br />

Oceanogrảfico, Sao Paulo, 19, 1–32.<br />

Zibrowius, H. (1971a) Les espèces Méditerrannéennes du genre Hydroides (Polychaeta <strong>Serpulidae</strong>). Remarques sur le<br />

prétendu polymorphisme de Hydroides uncinata. Téthys, 2, 691–746.<br />

Zibrowius, H. (1971b) Revision <strong>of</strong> Metavermilia Bush (Polychaeta, <strong>Serpulidae</strong>), with descriptions <strong>of</strong> three new species<br />

from <strong>of</strong>f Portugal, Gulf <strong>of</strong> Guinea and Western Indian Ocean. Journal <strong>of</strong> the Fisheries Research Board <strong>of</strong> Canada,<br />

28, 1373–1383.<br />

Zibrowius, H. (1972a) Un espèce actuelle du genre Neomicrorbis Rovereto (Polychaeta, <strong>Serpulidae</strong>) découverte dans<br />

l'étage bathyal aux Açores. Bulletin du Muséum d’Histoire Naturelle, Paris, 33, 423–430.<br />

Zibrowius, H. (1972b) Mise au point sur les espèces Méditerranéennes de <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta) décrites par<br />

Stefano delle Chiaje (1822–1829, 1841–1844) et Orionzo Costa (1861). Téthys, 4, 113–126.<br />

Zibrowius, H. (1972c) Deux espèces nouvelles du genre Hydroides (Polychaeta, <strong>Serpulidae</strong>) de la Mer Jaune et des Iles<br />

Banda. Bulletin de la Société zoologique de France, 97, 89–93.<br />

Zibrowius, H. (1972d) Hydroides norvegica Gunnerus, Hydroides azorica n.sp. et Hydroides capensis n.sp. (Polychaeta<br />

<strong>Serpulidae</strong>), espèces vicariantes dans l'Atlantique. Bulletin de la Musée nationale d'Histoire naturelle Paris Zoologie,<br />

33, 434–446.<br />

Zibrowius, H. (1973a) Revision <strong>of</strong> some <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta) from abyssal depths in the Atlantic and<br />

Pacific, collected by the “Challenger” and Prince <strong>of</strong> Monaco Expeditions. Bulletin <strong>of</strong> British Museum <strong>of</strong> Natural<br />

History (Zoology), 24, 427–439.<br />

TAXONOMY OF SERPULIDS: STATE OF AFFAIRS<br />

<strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong> · 125


Zibrowius, H. (1973b) <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta) des côtes ouest de l'Afrique et des Archipels Voisins. Musée<br />

Royal de l'Afrique Centrale, Tervuren, Belgique Annales, Série 8, Sciences Zoologiques, 207, 1–93.<br />

Zibrowius, H. (1979a) Quelques récoltes de <strong>Serpulidae</strong> (<strong>Annelida</strong> Polychaeta) sur les côtes nord de la Tunisie. Bulletin<br />

de l´Office nationale de Pêche de Tunisie, 2, 221–222.<br />

Zibrowius, H. (1979b) Vitreotubus digeronimoi n.g., n.sp. (Polychaeta <strong>Serpulidae</strong>) du Pléistocène inférieur de la Sicile et<br />

de l'étage bathyal des Açores et de l'Océan Indien. Téthys, 9, 183–190.<br />

Zibrowius, H. (1983) Chitinopoma arndti n. sp. an incubating bathyal serpulid polychaete from Saint-Paul Island, Southern<br />

Indian Ocean. Téthys, 11, 21–24.<br />

Zibrowius, H., Botosaneanu, L. & Hove, H.A. ten (1995) Un étrange cas de confusion transphylétique: Potamoceroides<br />

giardi Munier-Chalmas in Ferronnière, 1901—Diptère Chironomide et non Polychète Serpulide. Bulletin de la<br />

Societé des sciences naturelles de l'Ouest de la France, Nantes, N.S., 17, 3–8<br />

126 · <strong>Zootaxa</strong> 2036 © 2009 <strong>Magnolia</strong> <strong>Press</strong><br />

TEN HOVE & KUPRIYANOVA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!