31.10.2012 Views

Diseases, pathogens and parasites of Undaria pinnatifida

Diseases, pathogens and parasites of Undaria pinnatifida

Diseases, pathogens and parasites of Undaria pinnatifida

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong><br />

<strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong><br />

MAF Biosecurity New Zeal<strong>and</strong> Technical Paper No: 2009/44<br />

Authors:<br />

Neill, K., Heesch, S., Nelson, W.<br />

National Institute <strong>of</strong> Water <strong>and</strong> Atmospheric Research, Private<br />

Bag 14-901, Wellington<br />

Prepared for BNZ Post-clearance Directorate<br />

By National Institute <strong>of</strong> Water <strong>and</strong> Atmospheric Research<br />

As contract No: ZBS2005-01<br />

ISSN 1176-838X (Print)<br />

ISSN 1177-6412 (Online)<br />

ISBN 978-0-478-35752-3(Print)<br />

ISBN 978-0-478-35753-0(Online<br />

April 2008


Disclaimer<br />

While every effort has been made to ensure the information in this publication is accurate, the<br />

Ministry <strong>of</strong> Agriculture <strong>and</strong> Forestry does not accept any responsibility or liability for error or<br />

fact omission, interpretation or opinion which may be present, nor for the consequences <strong>of</strong><br />

any decisions based on this information.<br />

Any view or opinions expressed do not necessarily represent the <strong>of</strong>ficial view <strong>of</strong> the Ministry<br />

<strong>of</strong> Agriculture <strong>and</strong> Forestry.<br />

The information in this report <strong>and</strong> any accompanying documentation is accurate to the best <strong>of</strong><br />

the knowledge <strong>and</strong> belief <strong>of</strong> the National Institute <strong>of</strong> Water & Atmospheric Research Ltd<br />

(NIWA) acting on behalf <strong>of</strong> the Ministry <strong>of</strong> Agriculture <strong>and</strong> Forestry. While NIWA has<br />

exercised all reasonable skill <strong>and</strong> care in preparation <strong>of</strong> information in this report, neither<br />

NIWA nor the Ministry <strong>of</strong> Agriculture <strong>and</strong> Forestry accept any liability in contract, tort or<br />

otherwise for any loss, damage, injury, or expense, whether direct, indirect or consequential,<br />

arising out <strong>of</strong> the provision <strong>of</strong> information in this report.<br />

Requests for further copies should be directed to:<br />

Publication Adviser<br />

MAF Information Bureau<br />

P O Box 2526<br />

WELLINGTON<br />

Telephone: (04) 474 4100<br />

Facsimile: (04) 474 4111<br />

This publication is also available on the MAF website at www.maf.govt.nz/publications<br />

© Crown Copyright - Ministry <strong>of</strong> Agriculture <strong>and</strong> Forestry


Contents Page<br />

Executive Summary 1<br />

Overall objective 2<br />

Specific objectives 2<br />

1. Introduction 3<br />

2. Methods <strong>and</strong> Materials 5<br />

2.1. Definitions 5<br />

2.2. Data Sources 6<br />

2.3. Database 7<br />

2.4. Mapping 8<br />

3. Results 8<br />

3.1. General Comments 8<br />

3.2. description <strong>of</strong> known pathogen-host relationships 9<br />

3.3. Laminariales 13<br />

3.4. Brown algae other than Laminariales 16<br />

3.5. Red algae 20<br />

3.6. Green algae 27<br />

3.7. Xanthophyceae 28<br />

4. Discussion 30<br />

I: Assessment <strong>of</strong> information available on seaweed diseases worldwide <strong>and</strong> in New Zeal<strong>and</strong> 30<br />

II: Assessment <strong>of</strong> threats by <strong>pathogens</strong> <strong>of</strong> <strong>Undaria</strong> to New Zeal<strong>and</strong> native marine flora 31<br />

III: Future strategy for screening populations <strong>and</strong> increasing knowledge <strong>of</strong> risk posed by<br />

diseases/<strong>parasites</strong>/<strong>pathogens</strong> to New Zeal<strong>and</strong> macroalgae <strong>and</strong> coastal communities 32<br />

5. Conclusions 33<br />

6. Acknowledgements 33<br />

7. References 34<br />

i


Executive Summary<br />

A detailed desk study was carried out on diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>and</strong><br />

other macroalgae. In additional to published literature, data sources included specimens<br />

housed in New Zeal<strong>and</strong> herbaria, <strong>and</strong> information obtained through email <strong>and</strong> personal<br />

contacts. An Access database was established to enter data from the relevant papers <strong>and</strong> to<br />

record details <strong>of</strong> the diseases, <strong>parasites</strong> <strong>and</strong> <strong>pathogens</strong>. The database contains a complete<br />

listing <strong>of</strong> all papers considered (927 references) <strong>of</strong> which 549 pertinent papers are included in<br />

the reference list in this report.<br />

The information on diseases <strong>of</strong> seaweeds is very patchy <strong>and</strong> the emphasis <strong>of</strong> published work<br />

lies in two main areas: diseases occurring in monocultures <strong>of</strong> farmed species, mainly in East<br />

<strong>and</strong> Southeast Asia (particularly affecting the key economic genera Porphyra, Laminaria,<br />

<strong>Undaria</strong>, Gracilaria, Eucheuma <strong>and</strong> Kappaphycus), <strong>and</strong> observations <strong>of</strong> certain groups <strong>of</strong><br />

<strong>pathogens</strong> in particular geographic regions as a consequence <strong>of</strong> the research interests <strong>of</strong> a<br />

particular team or research group, leading to “pockets <strong>of</strong> information”. The amount <strong>of</strong><br />

information contained in the references we investigated varied greatly between articles,<br />

ranging from reports <strong>of</strong> the occurrence <strong>of</strong> <strong>pathogens</strong> to multi-paper treatments <strong>of</strong> certain<br />

diseases. The latter are especially numerous for farmed macroalgae e.g. Pythium porphyrae,<br />

the agent causing the red rot disease in Porphyra species (Porphyra cultivation is a billion<br />

dollar industry in Asian countries). Other agents, in contrast, have only been observed once<br />

<strong>and</strong> <strong>of</strong>ten only incidentally in the course <strong>of</strong> other research.<br />

The only disease reported in <strong>Undaria</strong> from its introduced range is the infection <strong>of</strong> thalli with<br />

the pigmented endophytic brown alga Laminariocolax aecidioides, both in Spain (Veiga et al.<br />

1997) <strong>and</strong> in Argentina (Gauna et al. personal communication). It is not clear whether this<br />

endophyte originates from Japanese populations introduced with the host or from European or<br />

Argentinian populations respectively. Laminariocolax aecidioides is known from other,<br />

native European kelps such as Laminaria hyperborea in the German Bight <strong>and</strong> Norway, <strong>and</strong><br />

Saccharina latissima in the Western Baltic Sea (Lein et al. 1991; Ellerstdottir & Peters 1995,<br />

1997; Peters & Schaffelke 1996), but it has not been reported from southern Europe. It also<br />

occurs in the native range <strong>of</strong> U. <strong>pinnatifida</strong>, in Japan (Yoshida & Akiyama 1978). Genetic<br />

studies may determine the origin <strong>of</strong> the Spanish <strong>and</strong> Argentinean populations <strong>and</strong> thus shed<br />

some light on whether endophytes were or can be transmitted with host sporophytes (or other<br />

disease agents).<br />

None <strong>of</strong> the known <strong>pathogens</strong> <strong>of</strong> <strong>Undaria</strong> have so far been observed in/on U. <strong>pinnatifida</strong> in<br />

New Zeal<strong>and</strong>, however, populations <strong>of</strong> U. <strong>pinnatifida</strong> around New Zeal<strong>and</strong> have not been<br />

screened for the presence <strong>of</strong> diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong>. Given that there is evidence<br />

that New Zeal<strong>and</strong> has received at least 10 separate introduction events <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong><br />

(Uwai et al. 2006), it would be important to construct a sampling regime that reflected this<br />

known genetic diversity within New Zeal<strong>and</strong> populations <strong>of</strong> <strong>Undaria</strong>.<br />

Seaweeds that are diseased are under-collected in New Zeal<strong>and</strong> <strong>and</strong>, as a consequence, the<br />

status <strong>of</strong> knowledge about biotic diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> is deficient: it is not<br />

possible to evaluate risk posed by introduced diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> on the basis <strong>of</strong><br />

current underst<strong>and</strong>ing <strong>of</strong> the native biota. Whilst experts in the field <strong>of</strong> algal diseases such as<br />

Correa (1997) stress the need for studies on the mechanisms <strong>of</strong> infection <strong>and</strong> the spread <strong>of</strong> the<br />

<strong>pathogens</strong> within <strong>and</strong> among host individuals, as well as on the genetics <strong>of</strong> the host-pathogen<br />

interaction, the basic underpinning surveys <strong>and</strong> research are required in New Zeal<strong>and</strong> to<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 1


document the biodiversity <strong>and</strong> distribution <strong>of</strong> diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> within<br />

macroalgae.<br />

OVERALL OBJECTIVE:<br />

To determine <strong>and</strong> assess the threats that known diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong><br />

<strong>pinnatifida</strong> pose to native New Zeal<strong>and</strong> macroalgae<br />

SPECIFIC OBJECTIVES:<br />

1. To undertake a review (literature, email, telephone) <strong>and</strong> map the known distribution <strong>of</strong> the<br />

diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> which have been recorded to affect <strong>Undaria</strong> <strong>pinnatifida</strong><br />

(<strong>and</strong>/or closely related members <strong>of</strong> the Laminariales)<br />

a. in its native range (Japan, Korea <strong>and</strong> the Kamchatka Peninsula <strong>of</strong> Russia), <strong>and</strong>,<br />

b. in its introduced range (Australia, United Kingdom, France, USA, Argentina, New<br />

Zeal<strong>and</strong>).<br />

2. To undertake a review (literature, email, telephone) <strong>and</strong> map the geographic distribution <strong>of</strong><br />

the status <strong>of</strong> known diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> in macroalgae.<br />

3. To determine if any <strong>of</strong> the diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> identified in specific objective<br />

1 are present in New Zeal<strong>and</strong>.<br />

4. To determine if any <strong>of</strong> the diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> identified in specific objective<br />

2 are present in native New Zeal<strong>and</strong> macroalgae.<br />

2 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


1. Introduction<br />

<strong>Undaria</strong> <strong>pinnatifida</strong> is a large kelp (Laminariales, Phaeophyceae) native to the north western<br />

Pacific (Japan, Korea, China <strong>and</strong> the Kamchatka Peninsula <strong>of</strong> Russia) (Akiyama & Kurogi<br />

1982; Silva et al. 2002; Guiry & Guiry 2007). It was introduced to Europe in the 1970s<br />

associated with the transport <strong>of</strong> oysters from Asia (Perez et al. 1981; Bourdouresque et al.<br />

1985; Castric-Fay et al. 1993; Fletcher & Farrell 1998). In the 1980s <strong>Undaria</strong> was recorded in<br />

New Zeal<strong>and</strong> (Hay & Luckens 1987; Hay 1990), Tasmania, Australia (S<strong>and</strong>erson 1990), in<br />

the 1990s in Argentina (Casas & Piriz 1996), Victoria, Australia (Campbell & Burridge<br />

1998), <strong>and</strong> in the 2000s from California, USA (Silva et al. 2002) <strong>and</strong> Baja California, Mexico<br />

(Aguilar-Rosas et al. 2004).<br />

Since its detection in New Zeal<strong>and</strong>, <strong>Undaria</strong> has spread primarily by human-mediated vectors<br />

such as vessel hulls <strong>and</strong> marine farming equipment. This species has the potential to displace<br />

native macroalgae (environmental impact), alter habitat for commercial species<br />

(environmental <strong>and</strong> economic impact), disrupt aquaculture activities (economic impact) <strong>and</strong><br />

may affect the cultural values <strong>of</strong> particular sites.<br />

At present, <strong>Undaria</strong> in New Zeal<strong>and</strong> has been reported from Great Barrier Isl<strong>and</strong>, Auckl<strong>and</strong><br />

(Waitemata Harbour), Corom<strong>and</strong>el, Tauranga, Gisborne, Napier, Port Taranaki, Wellington<br />

<strong>and</strong> the Wellington region <strong>of</strong> Cook Strait in the North Isl<strong>and</strong>, in the Marlborough Sounds,<br />

Nelson, Golden Bay, Kaikoura, Lyttelton, Akaroa, Timaru, Oamaru, Dunedin Harbour, Bluff<br />

in the South Isl<strong>and</strong> <strong>and</strong> also from Stewart Isl<strong>and</strong> <strong>and</strong> the Snares Isl<strong>and</strong>s. The potential exists<br />

for this species to be spread further to regions regarded as having high conservation values<br />

such as the other sub-Antarctic isl<strong>and</strong>s, Stewart Isl<strong>and</strong> (apart from Paterson Inlet <strong>and</strong> Oban),<br />

the Chatham Isl<strong>and</strong>s, Fiordl<strong>and</strong>, Abel Tasman National Park, as well as the isl<strong>and</strong>s <strong>of</strong> the<br />

Hauraki Gulf, <strong>and</strong> <strong>of</strong>fshore isl<strong>and</strong>s <strong>of</strong> north eastern New Zeal<strong>and</strong>. A genetic study <strong>of</strong> <strong>Undaria</strong><br />

populations in New Zeal<strong>and</strong> has revealed multiple introductions have occurred with 10<br />

distinct haplotypes present in New Zeal<strong>and</strong>, although only a single haplotype was found in<br />

current North Isl<strong>and</strong> populations (Uwai et al. 2006).<br />

As well as the direct impact this species has on indigenous biota, it also poses a potential risk<br />

to native New Zeal<strong>and</strong> macroalgae through diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong>. Infectious<br />

diseases in macroalgae are caused by a wide variety <strong>of</strong> organisms ranging from viruses,<br />

bacteria, cyanobacteria, fungi (phycomycetes, ascomycetes, fungi imperfecti),<br />

heterokontophytes (oomycetes, labyrinthulids), nematodes, protozoans, through to endophytic<br />

<strong>and</strong> parasitic macroalgae (Chlorophyta, Phaeophyceae, Rhodophyta) (Andrews 1976; G<strong>of</strong>f<br />

1982; Apt 1988b; Correa 1994; Bouarab et al. 2001a; Van Etten et al. 2002). In addition, the<br />

grazing <strong>of</strong> macroalgae by herbivores results in vulnerability to disease/access for pathogenic<br />

organisms. Within its native distribution <strong>Undaria</strong> has a number <strong>of</strong> known diseases, <strong>pathogens</strong><br />

<strong>and</strong> <strong>parasites</strong> (e.g. Yoshida & Akiyama 1978; Rho et al. 1993; Jiang et al. 1997). <strong>Undaria</strong>, as<br />

a member <strong>of</strong> the Laminariales, has a heteromorphic life history with the 2 life stages having<br />

entirely different morphologies – the sporophyte grows up to several metres in length whereas<br />

the gametophyte is microscopic growing to only several hundred microns in size. Any<br />

consideration <strong>of</strong> diseases in macroalgae needs to consider the vulnerability <strong>of</strong> different life<br />

history stages to diseases/<strong>pathogens</strong>/<strong>parasites</strong>.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 3


Biological invasions are understood to pose a significant threat to biodiversity, <strong>and</strong> <strong>parasites</strong><br />

are considered to play a role in determining the outcomes <strong>of</strong> invasions. Transmission <strong>of</strong><br />

<strong>parasites</strong> to native species from the invading species can influence the fitness <strong>of</strong> native taxa,<br />

mediating competitive interactions. Introduced diseases may have catastrophic impacts or<br />

may result in persistent <strong>and</strong> sub-lethal effects on natives <strong>and</strong> consequent impacts on<br />

community structure (Prenter et al. 2004). Introduced hosts may also play a role as reservoirs<br />

for native diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> from which potentially deleterious “spillback” <strong>of</strong><br />

infection to native hosts may occur (Prenter et al. 2004; Tompkins & Poulin 2006). Tompkins<br />

& Poulin (2006) observe that although many <strong>parasites</strong> are apparently lost from hosts when<br />

they are introduced to a new environment, the introduced hosts tend to acquire generalist<br />

<strong>parasites</strong> from the native biota. Impacts <strong>of</strong> disease are <strong>of</strong>ten dependent on the context, with<br />

multiple abiotic <strong>and</strong> biotic factors implicated in the emergence <strong>of</strong> <strong>parasites</strong>, invasion<br />

processes, <strong>and</strong> the impacts experienced by native biota (Blaustein & Kiesecker 2002). Factors<br />

which increase host susceptibility to infection, including a range <strong>of</strong> stressors such as habitat<br />

alteration <strong>and</strong> degradation, may make them more prone to introduced <strong>parasites</strong>. Artificial<br />

rearing <strong>and</strong> aquaculture increase the potential for disease transmission as well as increasing<br />

potential host susceptibility in crowded or sub-optimal growth conditions. Correa (1997)<br />

considers that long term strategies for disease control in macroalgal farms will only succeed if<br />

the genetics <strong>of</strong> disease resistance in the host <strong>and</strong> virulence in the pathogen are understood.<br />

The risks that diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> pose to the New Zeal<strong>and</strong> marine<br />

environment have yet to be quantified. To fully underst<strong>and</strong> <strong>Undaria</strong>’s impacts <strong>and</strong> to<br />

effectively implement control or management options, diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong><br />

associated with this species as well as with other macroalgae need to be documented, both<br />

internationally <strong>and</strong> nationally.<br />

In this study the status <strong>of</strong> known diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> was<br />

determined (Objective 1) <strong>and</strong> literature was reviewed for reports <strong>of</strong> these diseases, <strong>pathogens</strong><br />

<strong>and</strong> <strong>parasites</strong> in <strong>Undaria</strong> populations in New Zeal<strong>and</strong> (Objective 3). <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong><br />

<strong>parasites</strong> <strong>of</strong> other macroalgae known internationally were summarised (Objective 2), as was<br />

information relating to those present in macroalgal populations in New Zeal<strong>and</strong> (Objective 4).<br />

Within a wider consideration <strong>of</strong> diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> macroalgae there are<br />

difficulties in confirming a causal role <strong>of</strong> specific organisms that have been implicated in<br />

disease or infection. The confirmation <strong>of</strong> Koch’s postulates is the exception rather than the rule.<br />

Thus, the database developed in this proposal has considered all organisms that have been<br />

associated with infection/disease/pathology with a clear indication <strong>of</strong> the evidence linking<br />

specific organisms to disease states/symptomology.<br />

4 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


2. Methods <strong>and</strong> Materials<br />

2.1. DEFINITIONS<br />

A disease is defined by various authors as:<br />

• either “… a continuing disturbance to the plant’s normal structure or function such that it<br />

is altered in growth rate, appearance or economic importance” (Andrews 1976),<br />

• “... the abnormal, injurious <strong>and</strong> continuous interference with physiological activities <strong>of</strong> the<br />

host" (Andrews 1979a, page 429; 1979b, page 448),<br />

• or a "... disturbance <strong>of</strong> the normal appearance <strong>and</strong> function <strong>of</strong> a plant” (Correa 1994)<br />

<strong>Diseases</strong> can have a variety <strong>of</strong> causes. This study only deals with infectious diseases, i.e.<br />

diseases caused by another organism (i.e. viruses, bacteria, protozoa, animals, fungi, other<br />

algae). This excludes diseases due to adverse abiotic conditions, i.e. physiological diseases<br />

caused by factors such as UV light, high or low temperature, or by dehydration (Gäumann<br />

1951; Andrews 1976). Exceptions are diseases caused by organisms affecting hosts weakened<br />

by adverse abiotic conditions.<br />

A pathogen is an organism that causes a disease.<br />

In the literature, an agent is <strong>of</strong>ten called a pathogen when it is found to be associated with a<br />

disease or aberrant appearance. However, for true pathogenicity, causality has to be<br />

demonstrated according to Koch’s postulates (Andrews & G<strong>of</strong>f 1984):<br />

1. the agent must be associated in every case with the disease under natural conditions, <strong>and</strong><br />

the disease must not appear in the absence <strong>of</strong> the agent<br />

2. the agent must be isolated in pure culture <strong>and</strong> characterised.<br />

3. typical symptoms must develop when the host is inoculated with the agent under suitable<br />

conditions, <strong>and</strong> the appropriate control inoculations must be made concurrently.<br />

4. the causal agent must be re-isolated <strong>and</strong> demonstrated to be identical to the agent isolated<br />

originally.<br />

An endophyte is an "organism living within a host plant" (Greek: éndon = inside;<br />

phytón = plant; Womersley 1987)<br />

An epiphyte is an organism living on the surface <strong>of</strong> a plant (its basiphyte). Epiphyte species<br />

can be opportunists (i.e. grow on all available surfaces), generalist epiphytes (i.e. grow on a<br />

variety <strong>of</strong> algal substrates), or specialists (i.e. grow on one or a few algal surfaces). Obligate<br />

specialist epiphytes are restricted to the epiphyte habit <strong>and</strong> to particular hosts. In the database<br />

we primarily focused on obligate or specialist epiphytes. In some cases <strong>of</strong> obligate<br />

epiphytism, such as in Polysiphonia lanosa growing on Ascophyllum nodosum, a directional<br />

exchange <strong>of</strong> nutrients from basi- to epiphyte has been experimentally demonstrated (Citharel<br />

1972), however, such information is lacking in the majority <strong>of</strong> cases. Organisms that were<br />

isolated from the surface <strong>of</strong> macroalgae but can also grow on other substrates are not<br />

considered in this study.<br />

A parasite is an organism which benefits to the detriment <strong>of</strong> its host organism. Usually, this<br />

means a physiological dependence, e.g. parasitic algae are unpigmented <strong>and</strong> thus, as<br />

heterotrophic organisms, rely at least to some extent on their host for nutrition, especially<br />

carbohydrates (G<strong>of</strong>f 1983; Correa 1994, 1997).<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 5


Especially in older literature the terms pathogen <strong>and</strong> parasite, or parasite <strong>and</strong> endophyte, tend<br />

to be used interchangeably. This should be avoided. For example, endophytic algae may but<br />

need not be parasitic, while not all <strong>parasites</strong> live inside the tissue <strong>of</strong> their host. Likewise, the<br />

term symbiosis is <strong>of</strong>ten used as opposite to parasitism. However, in its original definition, i.e.<br />

sensu de Bary (1879), a symbiosis is "...a phenomenon in which dissimilar organisms live<br />

together..." (de Bary 1879, cited in Paracer & Ahmadjian 2000; G<strong>of</strong>f 1983; Correa 1994), thus<br />

including parasitism.<br />

Classification system: We have based the hierarchical classification used in this study on the<br />

work <strong>of</strong> Cavalier-Smith (1998) with modifications adopted for the New Zeal<strong>and</strong> Species 2000<br />

project (pers. comm. D. Gordon, NIWA). The hierarchy is provided as Appendix 1. In this<br />

study the term “fungus” comprises true fungi, such as Ascomycetes, but also taxa that are<br />

traditionally treated as fungi, but really belong to the Ochrophyta/Chromista, i.e. oomycetes,<br />

Labyrinthula sp., etc.<br />

The organisms are treated as follows:<br />

Section in report Kingdoms/phyla included<br />

Viruses Viruses, Virus-like particles (VLPs)<br />

Bacteria Bacteria including phyla Eubacteria, Cyanobacteria, Proteobacteria, & Mycoplasmalike<br />

Organisms<br />

Fungi Fungi, Chromista (phyla Bigyra, Sagenista)<br />

Animals Animalia, Protozoa<br />

Other algae Plantae, Chromista (phylum Ochrophyta)<br />

2.2. DATA SOURCES<br />

2.2.1. Literature Review:<br />

A detailed literature search was carried out by NIWA information management staff to locate<br />

literature on diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>and</strong> other macroalgae.<br />

The literature searching strategy <strong>and</strong> terms were 1+3 <strong>and</strong> 2+3, where 1= seaweeds,<br />

macroalgae, <strong>Undaria</strong>, Laminaria, Macrocystis, Laminariales, Phaeophyceae, Phaeophyta; 2=<br />

Rhodophyta, Chlorophyta, Phaeophyceae, Phaeophyta; 3= disease, pathogen, parasite,<br />

endophyte, symbiosis, ascomycetes, bacteria, fungi, cyanobacteria, bluegreen/blue-green/blue<br />

green alga*e, chytrid*iomycetes, labrinthulids, virus*es, nematodes, copepod*s. The<br />

databases searched included st<strong>and</strong>ard marine bibliographic sources (e.g. SCOPUS, Web <strong>of</strong><br />

Science, ASFA, Google Scholar) <strong>and</strong> also web sites <strong>of</strong> marine research organisations were<br />

explored. The references obtained were entered into an EndNote database.<br />

Titles <strong>and</strong> abstracts <strong>of</strong> literature were scrutinised to determine relevance to the review <strong>and</strong><br />

papers were scored (immediate acquisition, later acquisition, possible inclusion, no<br />

relevance). The scoring <strong>of</strong> literature was carried out by 2 people <strong>and</strong> cross–checked by a third<br />

to check for consistent treatment. Relevant literature was obtained, <strong>and</strong> there was an iterative<br />

review <strong>of</strong> key words. Additional papers to be scored <strong>and</strong> entered into the database were<br />

located through scrutiny <strong>of</strong> reference lists <strong>and</strong> earlier review articles.<br />

Translations were made <strong>of</strong> key papers in Chinese, Spanish, French <strong>and</strong> German. Generally<br />

papers in Japanese (<strong>and</strong> some in Chinese) included English abstracts/ summaries as well as<br />

captions in English for tables, <strong>and</strong> graphs.<br />

6 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


2.2.2. E-mail <strong>and</strong> personal contacts:<br />

A message about the project requesting literature <strong>and</strong> general information was sent to Algae-<br />

L, a bulletin-board-type forum for people interested in any aspect <strong>of</strong> algae (terrestrial,<br />

freshwater <strong>and</strong> marine). In addition the archives <strong>of</strong> Algae-L were searched (May 1995 -<br />

October 2007) for any messages containing the words “disease” (37 hits) “pathogen” (19<br />

hits), “parasite” (14 hits). The majority <strong>of</strong> these were found to be references to books,<br />

microalgae, or to be otherwise irrelevant.<br />

Personal contacts <strong>and</strong>/or email messages were sent to key researchers in this field including<br />

Pr<strong>of</strong>essor Juan Correa (Universidad Catolica de Chile, Santiago, Chile), Mr Smith (Australian<br />

Centre for International Agricultural Research, Australia), Dr M. Polne-Fuller (University <strong>of</strong><br />

California, Santa Barbara, USA), Dr Bruce Harger (Sunshine Marine Farms, USA), Pr<strong>of</strong>essor<br />

Ma & Dr Bin Sun (Shanghai Fisheries University, China), Pr<strong>of</strong>essor Sung Min Boo<br />

(Chungnam National University, Korea), Dr M. Gauna (Universidad Nacional del Sur, Bahia<br />

Blanca, Argentina), Dr Danilo Largo (University <strong>of</strong> San Carlos, Philippines).<br />

2.2.3. Herbaria:<br />

The collections <strong>of</strong> the herbaria holding the majority <strong>of</strong> macroalgal specimens in New Zeal<strong>and</strong><br />

were examined (Auckl<strong>and</strong> Museum – including the Lindauer <strong>and</strong> ex-Auckl<strong>and</strong> University<br />

collections [AK/AKU], Museum <strong>of</strong> New Zeal<strong>and</strong> Te Papa Tongarewa [WELT], L<strong>and</strong>care<br />

Manaaki Whenua [CHR]). In addition the NZFungi database <strong>of</strong> L<strong>and</strong>care was searched for<br />

specimens <strong>of</strong> algal parasitic taxa known to be reported from New Zeal<strong>and</strong>. The data are<br />

presented in Appendix 2.<br />

2.3. DATABASE<br />

An Access database was established to enter data from the relevant papers <strong>and</strong> to record<br />

details <strong>of</strong> the diseases, <strong>parasites</strong> <strong>and</strong> <strong>pathogens</strong>. The following fields were included:<br />

• bibliographic data (including author, year, title, book/journal/publication details, abstract,<br />

keywords, comments, language);<br />

• characteristics <strong>of</strong> the agent (including classification [Kingdom, Phylum, Class, Order,<br />

Family, Genus, original genus <strong>and</strong> species name, current genus <strong>and</strong> species name, species<br />

authority], common name, agent type, associated species/community, secondary agent);<br />

• characteristics <strong>of</strong> the host (including classification [Kingdom, Phylum, Class, Order,<br />

Family, Genus, original genus <strong>and</strong> species name, current genus <strong>and</strong> species name, species<br />

authority], common name, taxonomic hierarchy, with fields for notes <strong>and</strong> for comments<br />

on the generation <strong>of</strong> the host affected);<br />

• location data (including world region [based on FAO fisheries regions - Attachment 3],<br />

latitude, longitude, map references, country, location, depth, exposure, temperature,<br />

salinity, water clarity, habitat type, agent stability, timing <strong>of</strong> occurrence, as well as fields<br />

to record data on epidemiology, seasonality, culture information, disease control, host<br />

impact).<br />

In many cases data were not available, particularly with respect to location data <strong>and</strong><br />

epidemiological information, as very little detail was provided in the original literature.<br />

The majority <strong>of</strong> the required fields for the database were determined at an initial stage <strong>and</strong><br />

there was an on-going review <strong>of</strong> the database effectiveness with additional fields identified<br />

<strong>and</strong> included after the initial phase <strong>of</strong> the study.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 7


2.4. MAPPING<br />

The tender document specified a requirement to “map the known distribution <strong>of</strong> the diseases,<br />

<strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> which have been recorded”. Fields for longitude <strong>and</strong> latitude data<br />

were included in the database to enable this information to be extracted quickly from the<br />

database.<br />

3. Results<br />

3.1. GENERAL COMMENTS<br />

3.1.1. Data Sources<br />

Literature Review:<br />

The database includes a total <strong>of</strong> 927 references <strong>of</strong> which 549 pertinent papers are included in<br />

the reference list in this report. The Reference list also contains other literature cited in this<br />

report. The breakdown <strong>of</strong> papers by category is as follows: direct relevance (Laminariales),<br />

91; direct relevance (other algae), 363; generic/review, 70; source <strong>of</strong> additional references, 25;<br />

irrelevant, 292; unsourced, 86. The 292 entries considered irrelevant include, for example,<br />

papers dealing with epiphytes, saprobic organisms, freshwater, terrestrial <strong>and</strong>/or microalgae<br />

etc. Only relevant references are cited in the text <strong>of</strong> this report: the reference list provided lists<br />

all publications scored as ‘relevant’, ‘generic/reviews’ <strong>and</strong> ‘references only’, as well as papers<br />

cited in the text but not included in the database. The database contains a complete listing <strong>of</strong><br />

all papers considered in relation to algal diseases. Some additional papers that were identified<br />

through electronic search engines were discarded based on abstract, keywords or titles.<br />

Electronic search engines cover mainstream journals <strong>and</strong> publications, generally from the<br />

1970s onwards. A number <strong>of</strong> the papers relevant to this project fell outside these parameters<br />

i.e. published in the early 20 th century <strong>and</strong>/or in specialist or limited edition<br />

publications/journals. Although we sought “grey literature” <strong>and</strong> anticipated there would be<br />

guides <strong>and</strong> manuals available from marine farming centres or aquaculture institutions, almost<br />

none <strong>of</strong> this type <strong>of</strong> literature was forthcoming. Obtaining material from some overseas<br />

sources took much longer than anticipated <strong>and</strong> was sometimes extremely costly. The database<br />

includes bibliographic information for 87 references which are categorised as “unsourced”.<br />

These include post-graduate theses from outside New Zeal<strong>and</strong>, informal publication <strong>of</strong><br />

abstracts from congresses <strong>and</strong> conferences, <strong>and</strong> grey literature which we have been unable to<br />

source, particularly from Asian research institutes (Japan, China, Korea).<br />

E-mail <strong>and</strong> personal contacts:<br />

There was only minor interest generated by our posting in the ALGAE-L list, <strong>and</strong> <strong>of</strong> the 14<br />

responses to our email, most did not provide information, but instead were interested in the<br />

outcome <strong>of</strong> this study <strong>and</strong> its public availability. Three <strong>of</strong> the responses provided references,<br />

<strong>and</strong> one directed us to another potential contact. Additional personal <strong>and</strong> targeted contacts<br />

yielded only a small amount <strong>of</strong> additional information, although there was interest in the<br />

results <strong>of</strong> this study. Initially we had intended to include data from email searches <strong>and</strong> through<br />

personal contacts (via phone or email) but as these were very few in number <strong>and</strong> did not<br />

contain new information they were not included.<br />

3.1.2. Mapping<br />

Mapping distribution information obtained through the data sources was determined to be <strong>of</strong><br />

limited value. Only 72 <strong>of</strong> the 927 references (7.7%), or 192 <strong>of</strong> the more than 2300 agent<br />

entries in the database (~8%) included GIS compatible data (i.e. longitude <strong>and</strong> latitude) that<br />

8 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


could be mapped for sites where diseases were observed in seaweeds. More than 500 agents<br />

<strong>and</strong> 600 hosts were referred to in the relevant references reviewed, the majority <strong>of</strong> which were<br />

cited on a single occasion. It was concluded that mapping would not assist with visualization<br />

<strong>of</strong> these data. The data are summarised in Table 1 <strong>and</strong> 2 below.<br />

Two maps are provided illustrating the data obtained for the distribution <strong>of</strong> diseases/<br />

<strong>pathogens</strong>/ <strong>parasites</strong> reported for <strong>Undaria</strong> <strong>pinnatifida</strong>, using the FAO regions map (Appendix<br />

3) <strong>and</strong> a separate map showing the <strong>pathogens</strong> present in the native range <strong>of</strong> U. <strong>pinnatifida</strong><br />

(Appendix 4).<br />

Table 1. Summary <strong>of</strong> the number <strong>of</strong> records for each pest group in each algal host group. The<br />

numbers for the Ochrophyta exclude the Laminariales. NB. The numbers in the table do not<br />

relate directly to the number <strong>of</strong> references in the database, as references may contain multiple<br />

records.<br />

Viruses Bacteria Fungi Animals Other algae Total<br />

Rhodophyta 4 51 183 12 632 882<br />

Ochrophyta 95 3 120 14 84 316<br />

Chlorophyta 0 0 53 3 6 62<br />

Total 99 54 356 29 722 1260<br />

Table 2. Summary <strong>of</strong> the number records from each FAO region. Numbers for the Ochrophyta<br />

exclude the Laminariales. NB. Numbers in the table do not relate directly to the number <strong>of</strong><br />

references in the database, as references may contain multiple records. Total numbers differ<br />

from those in Table 1 as not all references contained location information.<br />

Rhodophyta Ochrophyta Chlorophyta Total<br />

21 - Atlantic, Northwest 69 42 12 123<br />

27 - Atlantic, Northeast 114 99 10 223<br />

31 - Atlantic, Western Central 11 10 1 22<br />

34 - Atlantic, Eastern Central 15 6 2 23<br />

37 - Mediterranean <strong>and</strong> Black Sea 30 8 2 40<br />

41 - Atlantic, Southwest 25 8 0 33<br />

47 - Atlantic, Southeast 50 1 0 51<br />

48 - Atlantic, Antarctic 10 7 0 17<br />

51 - Indian Ocean, Western 10 4 11 25<br />

57 - Indian Ocean, Eastern 38 12 9 59<br />

58 - Indian Ocean, Antarctic 0 1 0 1<br />

61 - Pacific, Northwest 105 14 1 120<br />

67 - Pacific, Northeast 117 7 3 127<br />

71 - Pacific, Western Central 42 3 0 45<br />

77 - Pacific, Eastern Central 114 12 3 129<br />

81 - Pacific, Southwest 19 30 2 51<br />

87 - Pacific, Southeast 36 19 0 55<br />

Total 805 283 56 1144<br />

3.2. DESCRIPTION OF KNOWN PATHOGEN-HOST RELATIONSHIPS<br />

3.2.1. <strong>Undaria</strong><br />

A summary <strong>of</strong> the records for each pest group in each algal host group, <strong>and</strong> number records<br />

from each FAO region are presented in Tables 3 & 4 respectively for members <strong>of</strong> the<br />

Laminariales, including <strong>Undaria</strong>. (Note – all papers refer to the sporophyte phase <strong>and</strong> not to<br />

the gametophyte phase <strong>of</strong> <strong>Undaria</strong>).<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 9


10 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 11


3.2.2. Known <strong>pathogens</strong> in native range<br />

Viruses<br />

There are no virus diseases known from <strong>Undaria</strong> <strong>pinnatifida</strong> or other <strong>Undaria</strong> species.<br />

Bacteria<br />

Gram-negative bacteria such as Aeromonas, Flavobacterium, Moraxella, Pseudomonas, <strong>and</strong><br />

Vibrio are associated with the "spot-rotting" disease ("Anaaki sho"; Kimura et al. 1976) <strong>and</strong><br />

the so-called "shot hole disease" (Tsukidate 1991) in Japanese <strong>Undaria</strong>. Severe outbreaks <strong>of</strong><br />

infections with Vibrio especially affect young sporophytes ("sporelings") <strong>of</strong> U. <strong>pinnatifida</strong><br />

(Anon. 1991). The "shot hole disease" is characterised by brown spots appearing on the<br />

thallus blade near the midrib which subsequently fuse together <strong>and</strong> spread onto the pinnate<br />

part <strong>of</strong> the blade (Tsukidate 1991).<br />

The "green spot disease/rot" caused by unspecified bacteria in Japan (Ishikawa & Saga 1989;<br />

Vairappan et al. 2001) <strong>and</strong> South Korea (Kang 1982) manifests with similar symptoms, first<br />

as green spots <strong>of</strong> rotting host tissue that result in small holes with green margins, <strong>and</strong> in the<br />

distal parts <strong>of</strong> the frond these enlarge <strong>and</strong> finally coalesce, accelerating the decay <strong>of</strong> the frond<br />

(Kang 1982). Japanese <strong>Undaria</strong> is furthermore infected by an unspecified bacterium causing<br />

the "yellow hole disease" (Ishikawa & Saga 1989; Vairappan et al. 2001) <strong>and</strong> “spot-rotting”<br />

disease (Kito et al. 1976).<br />

Bacteria enter the thallus <strong>of</strong> U. <strong>pinnatifida</strong> through openings like dead mucilage channels, <strong>and</strong><br />

digest cells <strong>and</strong> cell walls in the medulla. Cells <strong>of</strong> the cortex <strong>and</strong> meristoderm show ultrastructural<br />

damage (e.g. vacuolation <strong>of</strong> the dictyosome). When the host cells die, the disease<br />

symptoms become macroscopically visible (Kito et al. 1976).<br />

In China, the bacterium Halomonas venusta has been identified as a causative agent in “spot<br />

decay” (Ma et al. 1997a, b, 1998), <strong>and</strong> Vibrio logei in “green decay diseases” (Jiang et al.<br />

1997) <strong>of</strong> U. <strong>pinnatifida</strong>.<br />

Animals<br />

Some small crustacean species are associated with diseases in <strong>Undaria</strong>: The “pin hole<br />

disease” is caused by frond-mining nauplii <strong>of</strong> harpacticoid copepoda in <strong>Undaria</strong> from Japan<br />

(Anon. 1991) <strong>and</strong> South Korea (Tsukidate 1991), e.g. by species such as Amenophia<br />

orientalis, Parathalestris infestus, Scutellidium sp. (Ho & Hong 1988; Park et al. 1990; Anon.<br />

1991; Rho et al. 1993; Shimono et al. 2004) <strong>and</strong> Thalestris sp. (Kang 1982).<br />

Ceinina japonica, a gammeride amphipod from South Korea, invades the midrib <strong>of</strong> U.<br />

<strong>pinnatifida</strong> through the holdfast <strong>and</strong> bores a tunnel which may cause the longitudinal<br />

separation <strong>of</strong> the entire frond through the midrib. In heavily damaged thalli the holdfast may<br />

depart from the substrate (Kang 1982).<br />

Fungi<br />

A fungal infection occurs in <strong>Undaria</strong> from Japan, the so-called “chytrid blight” (Tsukidate<br />

1991). The name implies that this disease is caused by a true fungus <strong>of</strong> the class<br />

Chytridiomycetes, however, the culprit is an oomycete <strong>of</strong> the genus Olpidiopsis (Akiyama<br />

1977a). The fungus affects sporophytes, where it grows inside host cells, killing them slowly.<br />

Infected thalli gradually loose colour <strong>and</strong> disintegrate, juvenile thalli suffer severe damage or<br />

eventually die.<br />

12 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Other algae<br />

Laminariocolax aecidioides is an endophytic brown alga infecting farmed U. <strong>pinnatifida</strong> in<br />

Japan (Akiyama 1977b; Yoshida & Akiyama 1978; Veiga et al. 1997). Infections result in<br />

host thalli becoming thicker <strong>and</strong> stiffer, lowering their market value (Yoshida & Akiyama<br />

1978).<br />

3.2.3. Known <strong>pathogens</strong> in the introduced range other than New Zeal<strong>and</strong> (Australia, UK,<br />

France, Spain, USA (west coast), Argentina, Mexico, Taiwan)<br />

The endophyte Laminariocolax aecidioides (as Gononema aecidioides) has been found in<br />

farmed <strong>Undaria</strong> <strong>pinnatifida</strong> thalli from Spain (Veiga et al. 1997) <strong>and</strong> has also been found in<br />

<strong>Undaria</strong> in Argentina (Gauna et al. pers. comm.).<br />

3.2.4. Occurrence <strong>of</strong> known <strong>pathogens</strong> in New Zeal<strong>and</strong><br />

Even though members <strong>of</strong> the genus Laminariocolax occur in New Zeal<strong>and</strong> kelps, none have<br />

so far been observed in <strong>Undaria</strong> <strong>pinnatifida</strong>. Instead, in New Zeal<strong>and</strong> U. <strong>pinnatifida</strong> hosts<br />

another endophyte, Microspongium tenuissimum, which is also found in Ecklonia radiata <strong>and</strong><br />

various red algae. The infection <strong>of</strong> U. <strong>pinnatifida</strong> with M. tenuissimum was not associated<br />

with obvious macroscopic disease symptoms (Heesch 2005).<br />

3.3. LAMINARIALES<br />

3.3.1. Known <strong>pathogens</strong> worldwide<br />

Viruses<br />

There are no viral diseases reported from members <strong>of</strong> the Laminariales outside New Zeal<strong>and</strong><br />

(see 3.2.2).<br />

Bacteria<br />

Most bacteria affecting kelps belong to the phylum Proteobacteria. Pathogenic species <strong>of</strong><br />

Alteromonas, Pseudoalteromonas, Pseudomonas <strong>and</strong> Vibrio have been recorded from<br />

Saccharina japonica in China (e.g. Tang et al. 2001; Liu et al. 2002; Wang et al. 2006) <strong>and</strong><br />

Japan (e.g. Ezura et al. 1990; Yamada et al. 1990; Sawabe et al. 1998; Sawabe et al. 2000a, b;<br />

Narita et al. 2001; Vairappan et al. 2001) resulting in holes <strong>and</strong> lesions on thalli <strong>and</strong><br />

eventually “rot disease”. Some proteobacteria indirectly affect gametophytes <strong>and</strong> young<br />

sporophytes in culture when red spot disease <strong>of</strong> the culture bed (i.e. the culture ropes) causes<br />

the young Saccharina japonica to detach from infected ropes (e.g. Ezura et al. 1988; Yumoto<br />

et al. 1989a, b). Alteromonas sp. <strong>and</strong> Vibrio sp. are also associated with lesions <strong>and</strong> thallus<br />

bleaching <strong>of</strong> Saccharina ochotensis <strong>and</strong> S. religiosa in Japan (Vairappan et al. 2001). A<br />

species <strong>of</strong> Acinetobacter causes “white rot” in Nereocystis luetkeana resulting in rot <strong>of</strong> stipes<br />

<strong>and</strong> pneumatocysts, which collapse <strong>and</strong> become covered in white slime within 7-10 days<br />

(Andrews 1977).<br />

In China, both the gametophytes <strong>and</strong> sporophytes <strong>of</strong> Saccharina japonica are prone to<br />

“malformation disease” caused by the firmicute Macrococcus sp. (Anon. 1989).<br />

Unspecified bacteria have been reported as <strong>pathogens</strong> in Macrocystis pyrifera, Pelagophycus<br />

porra <strong>and</strong> Egregia laevigata in America (Br<strong>and</strong>t 1923), Saccharina japonica in China (Wu et<br />

al. 1983; Ding 1992; Yang et al. 2001; Huang et al. 2002a, b). The “black rot” <strong>of</strong> Macrocystis<br />

pyrifera in California is assumed to be caused by a unidentified parasitic microorganism<br />

invading already damaged host thalli (Rheinheimer 1992).<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 13


A mycoplasma-like organism (MLO) causes the "twisted frond disease" or “coiling-stunt<br />

disease” in Saccharina japonica from China (e.g. Wang et al. 1983; Wu et al. 1983;<br />

Tsukidate 1991).<br />

Animals<br />

A number <strong>of</strong> amphipods are known to bore in kelp stipes <strong>and</strong> hollow them, causing<br />

considerable damage which may eventually lead to the death <strong>of</strong> the host. In Alaska <strong>and</strong><br />

California, Peramphithoe stypotrupetes infests stipes <strong>of</strong> Laminaria setchellii damaged by<br />

gastropod grazing (Chess 1993). Also in California <strong>and</strong> Alaska, it occurs in Saccharina<br />

dentigera, <strong>and</strong> in southern California it is found in Eisenia arborea <strong>and</strong> Pterygophora<br />

californica (Conlan & Chess 1992), while Californian Macrocystis pyrifera populations are<br />

infested by the related amphipod P. humeralis (Chess 1993). In Irel<strong>and</strong>, Alaria esculenta is<br />

inhabited by Amphitholina cuniculus (Myers 1974; Chess 1993). In Japan, Saccharina<br />

japonica is similarly affected by Ceinina japonica (Akaike et al. 2002).<br />

Fungi<br />

The ascomycete Phycomelaina laminariae causes the “stipe blotch disease” in laminarian<br />

species from the north-western <strong>and</strong> north-eastern Atlantic. Its hyphae penetrate the surface <strong>of</strong><br />

Alaria esculenta, Saccharina latissima, S. longicruris <strong>and</strong> Laminaria digitata, leading to<br />

necrotic tissue <strong>and</strong> reduced overall performance <strong>of</strong> the host thalli (Sutherl<strong>and</strong> 1915b, c;<br />

Kohlmeyer 1968; Kohlmeyer 1979; Schatz et al. 1979; Schatz 1980, 1983, 1984a, c; G<strong>of</strong>f &<br />

Glasgow 1980; Porter & Farnham 1986a).<br />

Several other ascomycete fungi attack members <strong>of</strong> the Laminariales: Pontogeneia erikae is a<br />

parasite in Egregia menziesii from California (Kohlmeyer & Demoulin 1981), Sigmoidea<br />

marina causes lesions in the surface <strong>of</strong> Saccharina latissima from Britain (Haythorn et al.<br />

1980), Ophiobolus laminariae causes blackened patches on the stipes <strong>of</strong> Laminaria digitata in<br />

Scotl<strong>and</strong> (Sutherl<strong>and</strong> 1915c), <strong>and</strong> in California Asteromyces cruciatus has been reported from<br />

Egregia menziesii, however their relationship is uncertain (Nolan 1972).<br />

Oomycetes have also been reported from members <strong>of</strong> the Laminariales in the north-western<br />

<strong>and</strong> north-eastern Atlantic: Petersenia sp. causes damage to the stipes <strong>of</strong> Laminaria digitata,<br />

Laminaria sp. <strong>and</strong> Saccharina longicrucis (Kohlmeyer 1968) <strong>and</strong> Pleotrachelus minutus<br />

infects the apical hairs <strong>of</strong> Chorda filum in Sweden (Aleem 1952a).<br />

In France Labyrinthomyxa sauvageaui infects Laminaria ochroleuca (Duboscq 1921). An<br />

unknown hyphomycete causes contortion <strong>of</strong> the blade <strong>and</strong> blackening <strong>of</strong> the stipe in<br />

Laminaria digitata in Maine, USA (Kohlmeyer 1968) <strong>and</strong> in Russia an undetermined fungus<br />

has been isolated from farmed populations <strong>of</strong> Saccharina japonica (Zvereva 1998).<br />

Other algae<br />

Green algae are occasionally observed growing in kelps, however very little information is<br />

available on their impact on the host species. Acrochaete repens, for example, grows in<br />

Chorda filum from the North American east coast (O’Kelly et al. 2004), Canada (South 1968)<br />

<strong>and</strong> from Denmark, Irel<strong>and</strong> <strong>and</strong> the Isle <strong>of</strong> Man in the north eastern Atlantic (South 1968;<br />

Nielsen 1979). The related species A. geniculata infects kelps along the North American<br />

Pacific coast, such as Egregia menziesii, Cymathere triplicata, Laminaria sinclairii,<br />

Saccharina dentigera <strong>and</strong> Dictyoneurum californicum (O’Kelly 1983). Egregia menziesii<br />

from British Columbia also hosts another Acrochaete species, A. apiculata (C. O’Kelly, pers.<br />

com.).<br />

The green endophyte Bolbocoleon piliferum is found on the east <strong>and</strong> west coast <strong>of</strong> the USA,<br />

<strong>and</strong> eastern Canada, growing in the kelps Alaria marginata, Chorda filum, Cymathere<br />

14 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


triplicata <strong>and</strong> Pleurophycus gardneri (South 1968; O’Kelly et al. 2004). It is also recorded in<br />

Chorda filum from Denmark, Wales, Irel<strong>and</strong> <strong>and</strong> the Isle <strong>of</strong> Man (South 1968; Nielsen 1979)<br />

<strong>and</strong> in Laminaria hyperborea from Denmark (Nielsen 1979). Another green endophyte<br />

Entocladia viridis is also known from several countries in the north-eastern <strong>and</strong> north-western<br />

Atlantic, growing in Laminaria digitata <strong>and</strong> Saccharina latissima (Nielsen 1979). In Chile,<br />

another green endophyte, reported as Sporocladopsis novae-zel<strong>and</strong>iae grows in Lessonia<br />

nigrescens (Correa & Martinez 1996).<br />

Pigmented endophytic brown algae are very common in kelps (Lein et al. 1991; Ellertsdottir<br />

& Peters 1995). Their presence is <strong>of</strong>ten associated with brown spots (“dark-spot disease”,<br />

Lein et al. 1991), hyperplasia leading to warts or galls, <strong>and</strong>, in severe cases, thallus<br />

deformations (Andrews 1977; Apt 1988b). Traditionally, kelp endophytes have been<br />

classified as Streblonema species (G<strong>of</strong>f & Glasgow 1980), for example, the endophytes that<br />

affect Saccharina sessilis, Alaria tenuifolia, Laminaria setchellii <strong>and</strong> Nereocystis luetkeana<br />

along the North American west coast (Setchell & Gardner 1922). However, genetically, most<br />

kelp endophytes belong to the genera Laminariocolax <strong>and</strong> Microspongium.<br />

North Atlantic kelp populations are infected by two species <strong>of</strong> Laminariocolax: L.<br />

tomentosoides <strong>and</strong> L. aecidioides. The former is mainly found in Laminaria digitata, but<br />

occasionally also in L. hyperborea, Saccharina latissima <strong>and</strong> Alaria sp. (Lund 1959; Pedersen<br />

1976; Ellertsdottir & Peters 1997; Burkhardt & Peters 1998; Küpper et al. 2002).<br />

Laminariocolax tomentosoides ssp. deformans is associated with galls <strong>and</strong> stipe coiling in<br />

Laminaria digitata from France (Dangeard 1931b; Peters 2003).<br />

Laminariocolax aecidioides is found throughout the Northern Hemisphere. In the North<br />

Atlantic, it has been observed in Laminaria hyperborea <strong>and</strong> Saccharina latissima from<br />

Germany, France <strong>and</strong> Denmark (e.g. Peters & Ellertsdottir 1996; Burkhardt & Peters 1998;<br />

Heesch & Peters 1999; Peters 2003), in S. groenl<strong>and</strong>ica, Laminaria sp. <strong>and</strong> S. longicruris<br />

from Greenl<strong>and</strong> (Pedersen 1981), <strong>and</strong> on the North American east coast in Laminaria digitata<br />

(Peters 2003). In the North Pacific, it infects not only U. <strong>pinnatifida</strong>, but also Costaria sp.<br />

from Japan, <strong>and</strong> is furthermore known from Californian Hedophyllum sp. populations<br />

(Yoshida & Akiyama 1978).<br />

Southern hemisphere kelp populations are infected by two other members <strong>of</strong> the genus<br />

Laminariocolax, L. macrocystis <strong>and</strong> L. eckloniae. The former endophyte grows in<br />

Macrocystis pyrifera from Chile, the latter in Ecklonia maxima from South Africa (Peters<br />

1991; Burkhardt & Peters 1998). Heesch (2005) considers L. macrocystis <strong>and</strong> L. eckloniae to<br />

be synonymous.<br />

Laminariocolax sp. is recorded from the North Atlantic in Laminaria hyperborea (Lein et al.<br />

1991; Peters & Schaffelke 1996; Ellertsdottir & Peters 1997) <strong>and</strong> the Pacific in Macrocystis<br />

integrifolia, Saccharina latissima <strong>and</strong> Nereocystis luetkeana (Andrews 1977; Apt 1988a).<br />

Another endophytic brown alga, Laminarionema elsbetiae, occurs in Japanese Saccharina<br />

japonica as well as in the German kelps S. latissima <strong>and</strong> Laminaria digitata (Kawai &<br />

Tokuyama 1995; Peters & Ellertsdottir & 1996; Ellertsdottir & Peters 1997; Peters &<br />

Burkhardt 1998; Heesch & Peters 1999; Peters 2003).<br />

The genus Microspongium is occasionally found as endophyte in kelps. On the east coast <strong>of</strong><br />

North America, Alaria esculenta <strong>and</strong> Saccharina longicruris are infected by Microspongium<br />

alariae, with symptoms ranging from dark spots to twisted stipes (Peters 2003).<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 15


Gametophytes <strong>of</strong> kelps themselves colonise other algae as endophytes. A genetic study has<br />

revealed that endophytic brown algae growing in Lessoniopsis littoralis from British<br />

Columbia, Canada, are gametophytes <strong>of</strong> other kelps growing near the host, i.e. <strong>of</strong> Alaria sp.,<br />

Macrocystis integrifolia <strong>and</strong> Nereocystis luetkeana (Lane & Saunders 2005).<br />

The ectocarpalean endophytes Phaeostroma parasiticum <strong>and</strong> Dermatocelis laminariae occur<br />

in Saccharina latissima <strong>and</strong> Laminaria sp. respectively in Greenl<strong>and</strong> (Pedersen 1976). In<br />

Germany, unspecified ectocarpalean endophytes are reported to infect up to 85% <strong>of</strong> their<br />

hosts, Laminaria saccharina, L. digitata <strong>and</strong> L. hyperborea (Ellertsdottir & Peters 1995).<br />

An obligate epiphyte, Porphyra moriensis, infests Chorda filum in Japan (Notoya &<br />

Miyashita 1999).<br />

3.3.2. Occurrence <strong>of</strong> known <strong>pathogens</strong> in New Zeal<strong>and</strong><br />

In northern New Zeal<strong>and</strong>, mass diebacks <strong>of</strong> Ecklonia radiata where reported in the mid 1990s<br />

(e.g. Cole & Babcock 1996). Subsequent research indicates that the diebacks are caused by<br />

primary <strong>and</strong> secondary agents: E. radiata is affected by the amphipod Orchomenella aahu,<br />

which burrows into the stipes <strong>of</strong> the host <strong>and</strong> hollows them out, thus accelerating death <strong>of</strong> the<br />

fronds. The simultaneously occurring bleaching <strong>of</strong> the fronds is probably due to a secondary<br />

infection with a virus (Haggitt & Babcock 2003) <strong>and</strong> the diebacks have been associated with<br />

both virus-like particles (VLPs) <strong>and</strong> a poty virus (Easton 1995, Easton et al. 1997).<br />

Three species <strong>of</strong> pigmented endophytic brown algae infect kelps from New Zeal<strong>and</strong> (Heesch<br />

2005): Laminariocolax macrocystis (which in this treatment includes L. eckloniae) is<br />

associated with galls <strong>and</strong> thallus deformations in Macrocystis pyrifera (North <strong>and</strong> South<br />

Isl<strong>and</strong>s) <strong>and</strong> Ecklonia radiata from the North, South <strong>and</strong> Chatham Isl<strong>and</strong>s. Additionally, E.<br />

radiata hosts Microspongium tenuissimum (which includes M. radians), an endophyte mostly<br />

observed in red algae. The third endophyte, an undescribed ectocarpalean species so far only<br />

known from New Zeal<strong>and</strong>, was found in a gall on Lessonia tholiformis from the Chatham<br />

Isl<strong>and</strong>s (Heesch 2005).<br />

An unidentified green endophyte (probably a species belonging to the genus Acrochaete,<br />

O’Kelly pers. com.) was frequently observed in stipes <strong>of</strong> Macrocystis pyrifera along the<br />

Otago coast (Heesch, unpublished data).<br />

3.4. BROWN ALGAE OTHER THAN LAMINARIALES<br />

3.4.1. Known <strong>pathogens</strong> worldwide<br />

Viruses<br />

Virus-like particles (VLPs) in several members <strong>of</strong> the order Ectocarpales (Phaeophyceae), e.g.<br />

Ectocarpus <strong>and</strong> Pylaiella species (Markey 1974; Dodds 1979) have subsequently been<br />

identified as DNA viruses. Viruses have been found in Ectocarpus siliculosus (Ectocarpus<br />

siliculosus virus EsV), E. fasciatus (EfasV), Feldmannia irregularis (FirrV), F. simplex<br />

(FlexV), an unidentified Feldmannia species (FsV), Myriotricha clavaeformis (MclaV),<br />

Pylaiella littoralis (PlitV), Hincksia hincksiae (HincV), <strong>and</strong> also in Kuckuckia sp. <strong>and</strong><br />

Leptonematella fasciata. The viruses infect naked spores, leading to a latent infection in<br />

vegetative thalli. Upon maturation, reproductive organs develop abnormally producing new<br />

virus particles instead <strong>of</strong> spores (Clitheroe & Evans 1974; Müller et al. 1990, 1996 (a, b, c),<br />

1998, 2000; Müller 1991a, b; Henry & Meints 1992, 1994; Müller & Stache 1992; Lanka et<br />

al. 1993; Müller & Frenzer 1993; Friess-Klebl et al. 1994; Kuhlenkamp & Müller 1994;<br />

16 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Parodi & Müller 1994; Robledo et al. 1994; Bräutigam et al. 1995; Krueger et al. 1996;<br />

Müller & Schmid 1996; Sengco et al. 1996; Del Campo et al. 1997; Kapp et al. 1997; Maier<br />

et al. 1997, 1998, 2002; Kapp 1998; Lee et al. 1995, 1998; Maier & Müller 1998; Wolf et al.<br />

1998, 2000; Van Etten & Meints 1999; Delaroque et al. 2000a, b, 2003; Dixon et al. 2000;<br />

Van Etten et al. 2002; Chen et al. 2005; Dunigan et al. 2006). EsV <strong>and</strong> EfasV are known from<br />

host populations world-wide (Müller & Stache 1992).<br />

In Botrytella micromora, virus-like particles (VLPs) are associated with tissue necroses <strong>and</strong><br />

zoospores that fail to germinate <strong>and</strong> lyse instead (Oliveira & Bisalputra 1978; Henry &<br />

Meints 1994). Likewise, VLPs affect zoospore germination in Halosiphon tomentosus, while<br />

thalli <strong>of</strong> Streblonema sp. containing VLPs in their vegetative cells do not appear to be<br />

negatively affected (Toth & Wilce 1972; LaClaire & West 1977; Dodds 1979; Henry &<br />

Meints 1992, 1994; Müller et al. 1998).<br />

Bacteria<br />

Bacteria associated with galls <strong>and</strong> thallus deformations occur in Fucus vesiculosus, F. spiralis<br />

<strong>and</strong> Saccorhiza polyschides (Cantacuzene 1930; Apt 1988b; Rheinheimer 1992). In France a<br />

proteobacterium infects Cystoseira nodicaulis causing damage to the thallus (Pellegrini &<br />

Pellegrini 1982), <strong>and</strong> in Russia’s Kurile Isl<strong>and</strong>s, Pseudoalteromonas issachenkonii degrades<br />

the thallus <strong>of</strong> its host Fucus evanescens (Ivanova et al. 2002).<br />

Animals<br />

Protozoan <strong>pathogens</strong> are reported from members <strong>of</strong> the Ectocarpales <strong>and</strong> the Fucales. The<br />

infection <strong>of</strong> Ectocarpus siliculosus from Chile with the plasmodiophorid Maulinia ectocarpii<br />

results in the sterility <strong>of</strong> the host sporangia (Maier et al. 2000). Also in Chile, another<br />

plasmodiophorid infects Durvillaea antarctica causing galls <strong>and</strong> internal hypertrophy <strong>of</strong> cells<br />

(Aguilera et al. 1988). An unspecified brown alga is also reported to be infected by the<br />

plasmodiophorid Phagomyxa algarum (Porter & Farnham 1986a). Amoeba are found in<br />

Sargassum muticum <strong>and</strong> in British Fucus serratus, the latter affected by the species<br />

Trichosphaerium sieboldi. The amoeba digest the walls <strong>and</strong> invade the cytoplasm <strong>of</strong> the host<br />

cells leading to a dissociation <strong>of</strong> the host tissue (Polne-Fuller & Gibor 1987; Rogerson et al.<br />

1998).<br />

In Japan, the harpacticoid copepods Dactylopusioides fodiens <strong>and</strong> D. macrolabris feed on the<br />

internal tissue <strong>of</strong> Dictyota dichotoma <strong>and</strong> live in the resulting galleries; Dactylopusioides<br />

fodiens also parasitises Pachydictyon coriaceum (Shimono et al. 2003, 2004). Copepoda are<br />

furthermore associated with galls in Desmarestia aculeata from Scotl<strong>and</strong> (Barton 1892).<br />

Nematodes <strong>of</strong> the genus Halenchus are found in galls on members <strong>of</strong> the Fucales: H. fucicola<br />

affects Ascophyllum nodosum while H. dumnonicus inhabits Fucus vesiculosus <strong>and</strong> F.<br />

serratus (Barton 1892; Coles 1958; Tokida 1958; Apt 1988b).<br />

Fungi<br />

There is a large body <strong>of</strong> literature relating to fungi <strong>and</strong> seaweeds, however many contain little<br />

information about the fungal parasite’s impact on the algal host.<br />

Ascomycete fungi frequently form galls in members <strong>of</strong> the Fucales, e.g. Massarina<br />

cystophorae in Cystophora retr<strong>of</strong>lexa <strong>and</strong> C. subfarcinata. Members <strong>of</strong> the ascomycete genus<br />

Haloguignardia are widespread <strong>and</strong> occur in a range <strong>of</strong> hosts, e.g. Haloguignardia irritans in<br />

Cystoseira osmundea, Cystoseira sp., Halidrys dioica <strong>and</strong> Halidrys sp.; Haloguignardia sp. in<br />

Cystoseira balearica, Cystoseira sp., Halydris dioica <strong>and</strong> various Sargassum species (S.<br />

decipiens, S. fallax, S. fluitans, S. natans <strong>and</strong> S. sinclairii) (Estee 1913; Cribb & Herbert 1954;<br />

Tokida 1958; Kohlmeyer 1979; Apt 1988c; Alongi et al. 1999). Haloguignardia cystoseirae<br />

infects Cystoseria spp. in the Mediterranean (Kohlmeyer & Demoulin 1981; Alongi et al.<br />

1999), whereas Haloguignardia tumefaciens, H. oceanica, H. decidua <strong>and</strong> H. longispora<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 17


infect Sargassum spp. in Australia, Japan, America <strong>and</strong> the Sargasso Sea (e.g. Ferdin<strong>and</strong>sen<br />

& Winge 1920; Tokida 1958; Cribb & Cribb 1960; Kohlmeyer 1971, 1972; Alongi et al.<br />

1999). A secondary agent, the hyperparasite Sphaceloma cecidii has also been reported from<br />

Cystoseira sp., Sargassum sp. <strong>and</strong> Halidrys sp., where its infection is restricted to areas <strong>of</strong> the<br />

host already affected by Haloguignardia (Kohlmeyer 1979).<br />

Further members <strong>of</strong> the ascomycetes that affect marine algae include Thalassoascus<br />

treboubovii, recorded from Cutleria chilosa, C. multifida, Cystoseira sp. <strong>and</strong> Zanardinia typus<br />

(Ollivier 1929; Kohlmeyer 1979), Lindra thalassiae from Sargassum spp. (Meyers 1969;<br />

Kohlmeyer 1979; Raghukumar et al. 1992), Chadefaudia gymnogongri from Xiphophora<br />

chondrophylla (Kohlmeyer 1973a), Orcadia ascophylli <strong>and</strong> Trailia ascophylli from<br />

Ascophyllum nodosum (Sutherl<strong>and</strong> 1915c), <strong>and</strong> Asteromyces cruciatus from Cystoseira<br />

osmundacea (Nolan 1972). Ascomycetes reported from Fucus spp. include Cephalosporium<br />

sp., Sigmoidea marina, Didymella fucicola, Orcadia ascophylli <strong>and</strong> Trailia ascophylli<br />

(Sutherl<strong>and</strong> 1915c; Kohlmeyer 1968; Andrews 1977; Haythorn et al. 1980; Miller & Whitney<br />

1981; Schatz 1984a). Pelvetia canaliculata is also infected by a range <strong>of</strong> ascomycete fungi,<br />

including Didymella fucicola, Orcadia ascophylli, Dothidella pelvetiae, Pharcidia pelvetiae,<br />

Pleospora pelvetiae <strong>and</strong> Stigmatea pelvetiae (Sutherl<strong>and</strong> 1915a). Additionally,<br />

Scolecobasidium salinum degrades alginates <strong>of</strong> brown algae (Moen et al. 1995).<br />

In the Archemycota, Chytridium polysiphoniae, C. megastomum <strong>and</strong> Olpidium sphacellarum<br />

have been reported from Sphacelaria cirrosa, Sphacelaria sp., Striaria attenuata <strong>and</strong><br />

Pylaiella littoralis, disintegrating cell contents (Sparrow 1934, 1936; Raghukumar 1987b;<br />

Hyde et al. 1998; Küpper & Müller 1999; Müller et al. 1999).<br />

The term mycophycobiosis was created for obligate symbioses between algae <strong>and</strong> fungi<br />

which are without a detrimental effect for both symbionts, <strong>and</strong> in which, unlike in lichens, the<br />

alga is the partner that provides the structure. An example is Mycophycias ascophylli growing<br />

in Ascophyllum nodosum <strong>and</strong> in Pelvetia canaliculata in the Northwest Atlantic (e.g.<br />

Kohlmeyer & Kohlmeyer 1972; Miller & Whitney 1981; Porter & Farnham 1986a; Kingham<br />

& Evans 1986; Stanley 1992; Deckert & Garbary 2005a). The symbiosis between A.<br />

nodosum, M. ascophylli <strong>and</strong> Polysiphonia lanosa has been intensely studied (e.g. Garbary &<br />

London 1995; Garbary & MacDonald 1995; Deckert & Garbary 2005b; Garbary et al. 2005).<br />

In the pseud<strong>of</strong>ungi, oomycetes are also common <strong>pathogens</strong> <strong>of</strong> seaweeds. In particular they are<br />

found in members <strong>of</strong> the Ectocarpales: Pylaiella littoralis, Ectocarpus siliculosus, Striaria<br />

attenuata <strong>and</strong> Hincksia spp. are infected by species <strong>of</strong> Eurychasma, Anisolpidium,<br />

Pleotrachelus, Petersenia <strong>and</strong> Olpidiopsis (Sparrow 1934, 1936; Karling 1943; Aleem<br />

1950a,d, 1952a; Küpper & Müller 1999; Müller et al. 1999; West et al. 2006). Some members<br />

<strong>of</strong> the Sphacelariales are also affected by oomycetes (Aleem 1952a).<br />

In the Sagenista, the Labyrinthulomycetes include two groups that are frequently associated<br />

with seaweeds; the thraustochytrids <strong>and</strong> the labyrinthulids. From the former, Aplanochytrium<br />

spp. occur as endophytes in Sargassum spp. <strong>and</strong> Padina atillarum (Raghukumar et al. 1992;<br />

Sathe-Pathak et al. 1993; Ulken et al. 1985; Raghukumar 2002); in the latter Labyrinthula sp.<br />

is reported from Lobophora variegata (Raghukumar 1987b).<br />

Other algae<br />

A few members <strong>of</strong> the Rhodophyta occur as epi- or endophytes <strong>of</strong> brown algal hosts.<br />

Polysiphonia lanosa is an obligate epiphyte on Ascophyllum nodosum (Turner & Evans 1977;<br />

Garbary et al. 1991; Cardinal & Lesage 1992; Lining & Garbary 1992; Garbary & London<br />

1995), which has occasionally also been observed on Fucus vesiculosus (Pearson & Evans<br />

1990; Rindi & Guiry 2004). It is <strong>of</strong>ten found on damaged host fronds (Lobban & Baxter<br />

1983; Rindi & Guiry 2004), deeply penetrating the host with its rhizoids (Rawlence 1972;<br />

18 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Rawlence & Taylor 1972; Garbary et al. 2005). There is some evidence suggesting a transfer<br />

<strong>of</strong> substances occurs between the two symbionts (Citharel 1972; Penot 1974), while other<br />

studies doubt the translocation <strong>of</strong> synthetates from basiphyte to epiphyte (Turner & Evans<br />

1977; Harlin & Craigie 1975). Colacodictyon reticulatum is a small endophytic red alga<br />

growing in Desmarestia ligulata, <strong>and</strong> Haplodasya urceolata endophytises Cystophora<br />

retr<strong>of</strong>lexa (Kylin 1956).<br />

Brown algae occur as endophytes <strong>of</strong> other brown algae. The endophytic brown algae<br />

Herponema valiantei <strong>and</strong> Streblonemopsis irritans are associated with galls in Cystoseira<br />

tamariscifolia <strong>and</strong> C. zosteroides, respectively (Apt 1988a, 1988b). Pedersen (1976) reports<br />

Herponema desmarestiae <strong>and</strong> Streblonema fasciculatum from Desmarestia viridis <strong>and</strong><br />

Eudesme virescens respectively. The endophytic brown algae Microspongium alariae <strong>and</strong><br />

Myriactula cl<strong>and</strong>estina occur in Fucus vesiculosus from Finl<strong>and</strong> <strong>and</strong> Greenl<strong>and</strong> (Pedersen<br />

1976; Peters 2003). In California, Desmarestia ligulata is affected by Streblonema<br />

transfixum, <strong>and</strong> S. penetrale penetrates the stipe <strong>of</strong> Hesperophycus californicus (Setchell &<br />

Gardner 1922). Laminariocolax sp. occurs in Chordaria flagelliformis in Greenl<strong>and</strong> (Pedersen<br />

1976) <strong>and</strong> Laminariocolax aecidioides in Sphacelaria arctica from multiple sites in the North<br />

Atlantic (Yoshida & Akiyama 1978). Notheia anomala is a hemi-parasitic brown alga<br />

occurring in Australia <strong>and</strong> New Zeal<strong>and</strong> (Adams 1994). In Australia it infects Hormosira<br />

banksii <strong>and</strong> occasionally also Xiphophora chondrophylla (Gibson & Clayton 1987; Raven et<br />

al. 1995).<br />

Some small members <strong>of</strong> the Ectocarpales are on the border between epi- <strong>and</strong> endophytism.<br />

For example, Elachista fucicola is an obligate epiphyte <strong>of</strong> Fucus vesiculosus (Rindi & Guiry<br />

2004), but it also grows on Ascophyllum nodosum penetrating the host surface with its<br />

rhizoids <strong>and</strong> leading the host to form a tissue callus around the penetrating filaments (Deckert<br />

& Garbary 2005a, b). Filaments <strong>of</strong> Trachynema groenl<strong>and</strong>icum grow in the loosely organised<br />

cortex <strong>of</strong> Chordaria linearis in southern South America, but do not penetrate into the compact<br />

subcortex or medulla <strong>of</strong> the host (Peters 1992). Gononema pectinatum was isolated from a<br />

culture <strong>of</strong> Dictyosiphon hirsutum from Chile, however, the origin <strong>of</strong> the contaminant (epi- or<br />

endophytic) was not determined (Burkhardt & Peters 1998).<br />

Three endophytic brown algae have been reported from the Antarctic Peninsula:<br />

Laminariocolax eckloniae in Himanthothallus gr<strong>and</strong>ifolius, Geminocarpus austro-georgiae in<br />

Desmarestia menziesii, <strong>and</strong> Ascoseirophila violodora in Ascoseira mirabilis (Peters 2003). In<br />

addition, Antarctic Adenocystis utricularis specimens are epiphytised by Austr<strong>of</strong>ilum<br />

incommodum, a small phaeophyte that is anchored in its host with endophytic filaments<br />

(Müller et al. 1992; Peters 2003).<br />

Antarctic Ascoseira mirabilis furthermore hosts the unicellular endophytic green alga<br />

Chlorochytrium sp. (Peters 2003) which is, like Codiolum sp., considered to be the<br />

endophytic sporophyte <strong>of</strong> an Acrosiphonia species. Codiolum petrocelidis, for example,<br />

grows in the crustose brown alga Ralfsia pacifica from the Pacific coast <strong>of</strong> Canada (Sussmann<br />

& DeWreede 2002). Chlorochytrium dermatocolax has been recorded from the North Atlantic<br />

<strong>and</strong> the Pacific coast <strong>of</strong> North America in Sargassum muticum <strong>and</strong> Sphacelaria spp. (Lund<br />

1959; Pedersen 1976; Polne-Fuller 1987).<br />

A filamentous green alga, Acrochaete repens, grows endophytically in Fucus serratus from<br />

the German Bight, Denmark <strong>and</strong> the Channel Isl<strong>and</strong>s (Kremer 1975; Nielsen 1979) <strong>and</strong> F.<br />

vesiculosus from Denmark (Nielsen 1979). The closely related Entocladia species E. viridis<br />

<strong>and</strong> E. wittrockii grow endophytically in Desmarestia aculeata, Dictyota dichotoma <strong>and</strong><br />

Elasticha fucicola from locations in the Pacific, Mediterranean <strong>and</strong> North Atlantic (Nielsen<br />

1979; O’Kelly 1981).<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 19


Navicula endophytica is a diatom living in the intercellular mucilage <strong>of</strong> receptacles <strong>of</strong> Fucales<br />

from the northern hemisphere. It has been reported from species such as Ascophyllum<br />

nodosum, Fucus vesiculosus, F. serratus, F. spiralis, F. ceranoides, F. evanescens,<br />

Furcellaria lumbricalis <strong>and</strong> Pelvetia canaliculata from Great Britain <strong>and</strong> from Norway<br />

(Wardlaw & Boney 1984, Armstrong et al. 2000).<br />

3.4.2. Occurrence <strong>of</strong> known <strong>pathogens</strong> in New Zeal<strong>and</strong><br />

The DNA virus EsV was first isolated from specimens <strong>of</strong> Ectocarpus siliculosus from New<br />

Zeal<strong>and</strong> infecting gametangia <strong>and</strong> sporangia (Müller et al. 1990) <strong>and</strong> has subsequently been<br />

found in host populations around the world (Müller & Stache 1992) giving rise to a large<br />

body <strong>of</strong> literature on aspects <strong>of</strong> this virus <strong>and</strong> its hosts (e.g. Sengco et al. 1996; Kapp et al.<br />

1997).<br />

The ascomycete fungus Haloguignardia tumefaciens has been reported parasitizing<br />

Sargassum sinclairii from Wellington <strong>and</strong> the west coast <strong>of</strong> the South Isl<strong>and</strong> (Cribb & Cribb<br />

1960; Kohlmeyer & Demoulin 1981). Also from Wellington, thraustochytrids <strong>of</strong> either the<br />

genus Thraustochytium or Schizochytrium have been isolated from drift Zonaria<br />

aureomarginata, Durvillaea antarctica <strong>and</strong> Marginariella boryana (Serena Cox, pers<br />

comm.). Karling (1968) isolated Schizochytrium aggregatum from algal debris, which<br />

potentially included brown algae.<br />

Pleurostichidium falkenbergii is an obligate epiphytic red alga on Xiphophora chondrophylla<br />

from northern New Zeal<strong>and</strong> (Bay <strong>of</strong> Isl<strong>and</strong>s, Three Kings <strong>and</strong> North Cape) (Heydrich 1893;<br />

Kylin 1956; Phillips 2000).<br />

In addition to Notheia anomala partially-parasitising Hormosira banksii (Adams 1994)<br />

another parasitic brown alga occurs in New Zeal<strong>and</strong>: Herpodiscus durvillaeae, which is<br />

restricted to New Zeal<strong>and</strong> populations <strong>of</strong> Durvillaea antarctica. It grows epi-endophytically<br />

in its host <strong>and</strong>, in its emergent phase, leads to an erosion <strong>of</strong> the host surface, which may result<br />

in the eventual loss <strong>of</strong> the host phylloid (South 1974; Hay 1978; Peters 1990; Heesch 2005).<br />

An as yet undescribed pigmented endophytic ectocarpalean brown alga is associated with<br />

galls or pale spots on Durvillaea antarctica, D. willana, Marginariella urvilleana, <strong>and</strong><br />

Xiphophora gladiata (Heesch 2005).<br />

3.5. RED ALGAE<br />

3.5.1. Known <strong>pathogens</strong> worldwide<br />

Viruses<br />

Virus-like particles have been observed in the single-celled Porphyridium purpureum<br />

(Chapman & Lang 1973), in Gracilaria conferta <strong>and</strong> in G. epihippisora from the<br />

Mediterranean Sea (Weinberger et al. 1994), as well as in Audouinella saviana from the east<br />

coast <strong>of</strong> USA (Pueschel 1995).<br />

Bacteria<br />

Bacteria are associated with tumour-like growth occurring on the fronds <strong>of</strong> Chondracanthus<br />

teedii (Tsekos 1982). Galls <strong>and</strong> proliferating tissue associated with bacteria are furthermore<br />

found in Acrochaetium species, Ahnfeltia plicata, Bonnemaisonia asparagoides, Ceramium<br />

virgatum, Chondracanthus teedii, Chondrus crispus, Curdiea angustata, Cystoclonium<br />

purpureum, Delesseria sanguinea, Dumontia contorta, Grateloupia filicina, Palmaria<br />

palmata, Plocamium cartilagineum, Polyneuropsis stolonifera, Prionitis decipiens, P.<br />

20 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


filiformis, P. lanceolata, Pterocladiella capillacea <strong>and</strong> Schizymenia dubyi (Cantacuzene 1930;<br />

Apt 1988b; Apt & Gibor 1989; Rheinheimer 1992; Ashen & G<strong>of</strong>f 1996, 1998, 2000).<br />

A number <strong>of</strong> bacterial diseases <strong>of</strong> Porphyra have been reported, particularly in relation to<br />

farmed Porphyra, including “green spot rotting-like deterioration” (Ryokuhan-byo) <strong>of</strong><br />

Porphyra yezoensis (Nakao et al. 1972), "filament bacterial felt" disease (agent not specified)<br />

(Song et al. 1993), <strong>and</strong> "white wasting disease"/ white spot"/ "Gijishirogusare-sho" (Tsukidate<br />

1971, 1977). Tsukidate (1983) examined the symbiotic relationship between Porphyra species<br />

<strong>and</strong> attached bacteria that occurred in conjunction with white rot, the disease which has<br />

caused the most serious damage to the Porphyra cultivation industry in Japan. Anaaki-disease<br />

causes severe damage to the red alga Porphyra yezoensis; Hayashi et al. (1984) identified the<br />

agent as Vibrio fischeri <strong>and</strong> reported on how it attaches to host thalli (Porphyra sp.), digests<br />

host cells <strong>and</strong> makes holes in the thalli. Sunairi et al. (1995) reported Flavobacterium sp. to<br />

be the causative agent <strong>of</strong> Anaaki-disease, as a result <strong>of</strong> several repeated single-colony<br />

isolations <strong>and</strong> infection experiments. In order to ascertain the role <strong>of</strong> bacteria in the process <strong>of</strong><br />

rotting or decaying <strong>of</strong> cultured laver, Fujita et al. (1972) examined 24 strains <strong>of</strong> bacteria<br />

isolated from diseased fronds <strong>of</strong> Porphyra yezoensis, including species <strong>of</strong> Pseudomonas,<br />

Vibrio, Beneckea.<br />

Weinberger et al. (1994) quantified the bacterial epiphytes <strong>of</strong> Gracilaria conferta <strong>and</strong> found<br />

that saprophytic bacteria reached 350 times <strong>and</strong> agar degraders 25,000 times higher numbers<br />

per gram <strong>of</strong> wet weight on tissues infected with the “white tips disease”, as compared to<br />

healthy tissues. Jaffray & Coyne (1996) developed an in situ assay to detect bacterial<br />

<strong>pathogens</strong> <strong>of</strong> the red alga Gracilaria gracilis responsible for causing lesions, thallus<br />

bleaching, <strong>and</strong> Jaffray et al. (1997) examined bacterial epiphytes on Gracilaria gracilis. The<br />

cause for the “white canopy disease” or “colourless disease” described from Gracilaria<br />

tenuistipitata cultivated in Vietnam is not known (Phap & Thuan 2002) although it is<br />

probably similar to “ice-ice disease” in farmed Eucheuma/Kappaphycus species.<br />

Uyenco et al. (1977) isolated strains <strong>of</strong> Pseudomonas, Flavobacterium, <strong>and</strong> Actinobacterium<br />

associated with "ice-ice disease" in diseased Eucheuma striatum. The symptoms <strong>of</strong> this<br />

disease include the presence <strong>of</strong> a white powdery growth on the thallus which causes loss <strong>of</strong><br />

pigments, <strong>and</strong> the gradual consumption <strong>and</strong> subsequent fragmentation <strong>of</strong> the host. Largo et al.<br />

(1995a), found that pathogenic bacteria identified as Vibrio sp. <strong>and</strong> Cytophaga sp. promoted<br />

ice-ice disease in stressed host branches in the carrageenan-producing red algae Kappaphycus<br />

alvarezii <strong>and</strong> Eucheuma denticulatum. Largo et al. (1999) examined the time-dependent<br />

attachment mechanism <strong>of</strong> bacterial <strong>pathogens</strong> during ice-ice infection in Kappaphycus<br />

alvarezii.<br />

Ghirardelli (1998) reported on small sheathed Cyanophyta that occur in the cell walls <strong>of</strong> live<br />

<strong>and</strong> dead crustose rhodophytes, collected in the lower intertidal zone in the Gulf <strong>of</strong> Trieste<br />

(Northern Adriatic Sea, Italy). Pectonema terebrans is a cyanobacterium that grows in the<br />

calcified cell walls <strong>of</strong> coralline algae in Italy, such as Hydrolithon sp., Lithophyllum sp.,<br />

Sporolithon sp. <strong>and</strong> Titanoderma sp., <strong>and</strong> it leaves characteristic holes behind <strong>and</strong> thus can be<br />

identified even in ancient host material (Ghirardelli 1998). The endophytic cyanobacterium<br />

Pleurocapsa sp. is associated with galls <strong>and</strong> the “deformative disease” in Chilean Mazzaella<br />

laminarioides (Correa et al. 1993, 1997, 2000; Sanchez et al. 1996; Buschmann et al. 1997;<br />

Faugeron et al. 2000). Pleurocapsa triggers the development <strong>of</strong> tumours that can result in<br />

major changes in frond morphology <strong>and</strong> texture <strong>and</strong> negatively affect the number <strong>of</strong> spores,<br />

settlement rates, germination success <strong>and</strong> <strong>of</strong>fspring survival (Correa et al. 2000).<br />

An unspecified bacterium is the cause <strong>of</strong> “Coralline Lethal Orange Disease” (CLOD) in the<br />

crustose coralline alga Hydrolithon onkodes from central west Pacific. CLOD is characterised<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 21


y conspicuous bright orange dots associated with tissue necroses that develop into rings<br />

moving over the host thallus as a front <strong>and</strong> leaving completely dead white carbonate skeletons<br />

behind (Littler & Littler 1995; Morcom & Woelkerling 2000).<br />

Animals<br />

Amoeba perforate the cell walls <strong>of</strong> farmed Gracilaria sp., e.g. G. chilensis from Chile, <strong>and</strong><br />

digest the protoplast. Macroscopically the disease manifests as whitish spots spreading rapidly<br />

throughout the host thallus, similar to “ice-ice disease” (Correa & Flores 1995; Largo et al.<br />

1995a; Buschmann et al. 2001).<br />

Larvae <strong>and</strong> adults <strong>of</strong> the harpacticoid copepoda Diathrodes cystoceus <strong>and</strong> D. feldmanni live in<br />

burrows inside the tissue <strong>of</strong> red algae <strong>and</strong> feed on their hosts. Another species, Thalestris<br />

rhodymeniae, burrows in thalli <strong>of</strong> Palmaria palmata. The presence <strong>of</strong> copepoda in red algae is<br />

associated with galls or pinholes (Barton 1892; Apt 1988b; Park et al. 1990; Shimono et al.<br />

2004).<br />

Nematodes are associated with gall formation in Chondrus crispus <strong>and</strong> Furcellaria<br />

lumbricalis, however causality has not been demonstrated for these symbioses (Barton 1901;<br />

Apt 1988b).<br />

Fungi<br />

The most intensively studied fungi in red algae are oomycetes <strong>of</strong> the genus Pythium,<br />

particularly P. marinum <strong>and</strong> P. porphyrae, the latter a pathogen causing “red rot” in Porphyra<br />

species, one <strong>of</strong> the serious epidemics in laver cultures (e.g. Arasaki 1947; Fuller et al. 1966;<br />

Sasaki & Sato 1969; Kazama & Fuller 1970; Sasaki & Sakurai 1972; Sakurai et al. 1974;<br />

Fujita & Zenitani 1976, 1977; Takahashi et al. 1977; Aleem 1980; Tsukidate 1983; Kerwin et<br />

al. 1992; Amano et al. 1995, 1996; Uppalapati & Fujita 2000a, b, 2001; Uppalapati et al.<br />

2001; Park et al. 2001, 2007; Shin 2003a, b; Ding & Ma 2005). The majority <strong>of</strong> this research<br />

has been carried out in Japan <strong>and</strong> Korea although a number <strong>of</strong> studies have also been<br />

conducted in the eastern Pacific in Washington, USA.<br />

<strong>Diseases</strong> <strong>of</strong> the economically important Porphyra include “chytrid blight” disease (Migita<br />

1973; Song et al. 1993), the ascomycete Verrucaria consequens causing Kamenoko disease in<br />

conchocelis cultivation (Migita 1971), Olpidiopsis (Arasaki 1960; Arasaki et al. 1960) <strong>and</strong><br />

also simultaneous infection by red rot <strong>and</strong> chytrid disease reported by Ding & Ma (2005).<br />

One basidiomycete pathogen has been reported for red algae (Porter & Farnham 1986b;<br />

Stanley 1992; Binder et al. 2006). Mycaureola dilseae is a pathogen <strong>of</strong> the subtidal<br />

rhodophyte Dilsea carnosa in the Atlantic north-east. This agent causes necrotic lesions,<br />

which degrade <strong>and</strong> leave holes in the host frond while the fruiting bodies <strong>of</strong> the agent develop<br />

on the margins <strong>of</strong> the holes.<br />

In the Ascomycetes species in the genera Chaudefaudia, Hispidicarpomyces, Spathulospora<br />

have been described from a range <strong>of</strong> hosts (e.g. Cribb & Herbert 1954; Feldmann 1957; Cribb<br />

& Cribb 1960; Kohlmeyer 1963b, 1973a, b, c; Sanson et al. 1990; Nakagiri 1993; Nakagiri &<br />

Ito 1997). Lautitia danica, a pathogen <strong>of</strong> Chondrus crispus, is found in the reproductive tissue<br />

<strong>of</strong> the host, infecting both cystocarpic <strong>and</strong> tetrasporangial regions (Wilson & Knoyle 1961;<br />

Schatz 1984b; Stanley 1992).<br />

Two ascomycetes have been reported to affect commercially important carrageenophytes.<br />

Dewey et al. (1983) reported on Microascus brevicaulis affecting Eucheuma in the<br />

Philippines, <strong>and</strong> Dewey et al. (1984) recorded Penicillium waksmanii isolated from<br />

Kappaphycus in Micronesia.<br />

22 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Taxa belonging to the Bigyra, including species <strong>of</strong> Olpidiopsis, Eurychasmidium, Petersenia,<br />

Pontisma have been described from a number <strong>of</strong> hosts (e.g. Sparrow 1934, 1936; Aleem<br />

1950b, c, 1952b; Feldmann & Feldmann 1967; Whittick & South 1972; van der Meer &<br />

Pueschel 1985; Molina 1986; West et al. 2006).<br />

The geographic coverage <strong>of</strong> studies on marine fungi in red algae is very incomplete <strong>and</strong><br />

currently reflects the regions where the key workers have been based. For example, the<br />

studies reporting on Chytridium <strong>and</strong> Rhizophidium species are Sparrow (1936) in the northwest<br />

Atlantic, Aleem (1952b) in Sweden <strong>and</strong> Raghukumar (1987a, b) in India. Similarly, the<br />

only papers focusing on thraustochytrids are Quick (1974) in Florida, USA <strong>and</strong> Raghukumar<br />

(1986b, 1987a, b) <strong>and</strong> Raghukumar et al. (1992) in India.<br />

Other algae<br />

Parasitic red algae<br />

More research has been published on red algal <strong>parasites</strong> than on any other area <strong>of</strong> algal<br />

diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> considered in this study. Red algal <strong>parasites</strong> are quite<br />

common, making up to 15% <strong>of</strong> all named red algal genera, although this figure needs revising<br />

as the last comprehensive review <strong>of</strong> red algal <strong>parasites</strong> was by G<strong>of</strong>f (1982). Red algal<br />

parasitism is the most specific symbiosis between two red algae: parasitic red algae are<br />

symbionts that have a reduced size <strong>and</strong> are either completely colourless or have reduced<br />

pigmentation <strong>and</strong> must rely on their nutrition from their host. In the past two decades a lot has<br />

been learned about the origin <strong>of</strong> red algal <strong>parasites</strong> (G<strong>of</strong>f et al. 1996, 1997, Zuccarello et al.<br />

2004), their development (G<strong>of</strong>f & Coleman 1984, 1985; G<strong>of</strong>f & Zuccarello 1994; Zuccarello<br />

& West 1994a), <strong>and</strong> host specificity (Nonomura & West 1981b; G<strong>of</strong>f & Zuccarello 1994;<br />

G<strong>of</strong>f et al. 1997, Zuccarello & West 1994b, c). However only a very small percentage <strong>of</strong><br />

these parasitic red algae have been studied in any detail beyond their first description.<br />

The host specificity <strong>and</strong> evolutionary studies are especially revealing in the context <strong>of</strong> algal<br />

pathogenicity <strong>and</strong> the effects <strong>of</strong> new interactions. Evolutionary studies have revealed that<br />

many red algal <strong>parasites</strong> are derived directly from their hosts (G<strong>of</strong>f et al. 1996, 1997). This<br />

was able to be understood once the development <strong>of</strong> <strong>parasites</strong> on their hosts was elucidated<br />

(G<strong>of</strong>f & Coleman 1984, 1985; G<strong>of</strong>f & Zuccarello 1994), showing that their unusual<br />

development was very similar to post-fertilisation processes in red algae. Early in their<br />

development, either upon spore germination or soon after, red algal <strong>parasites</strong> transfer into a<br />

host cell the cytoplasm <strong>of</strong> an entire cell, or the complete contents <strong>of</strong> a spore. This<br />

“transforms” the host cell as it now develops as a parasite, presumably under the control <strong>of</strong><br />

the transferred parasite nucleus, producing more parasite nuclei <strong>and</strong> dividing to form new<br />

parasite cells. Finally reproductive structures are formed which eventually will lead to new<br />

infections. These developmental processes are similar to the nuclear transfer <strong>and</strong> subsequent<br />

events that occur during post-fertilisation development in most red algae, <strong>and</strong> thus red algal<br />

parasitism has been hypothesised to have been derived from these post-fertilisation processes<br />

(G<strong>of</strong>f et al. 1996, 1997).<br />

Nuclear transfer places constraints on the host range <strong>of</strong> red algal <strong>parasites</strong>. The majority <strong>of</strong> red<br />

algal <strong>parasites</strong> appear to be host specific, although this could be an artifact <strong>of</strong> naming new<br />

parasite species when <strong>parasites</strong> are found on new hosts. However, when host range has been<br />

tested in culture it has been shown to be quite limited (e.g. G<strong>of</strong>f & Zuccarello 1994).<br />

Occasionally <strong>parasites</strong> can grow on closely related host species (Nonomura & West 1981b;<br />

Zuccarello & West 1994b, c), but <strong>of</strong>ten this alternate host development is reduced <strong>and</strong><br />

reproductive structures are not produced. Thus evidence to date supports a high level <strong>of</strong> host<br />

specificity. However, on an evolutionary time scale this is shown not to be so, as “host<br />

jumps” have been discovered using molecular markers. Parasites <strong>of</strong> the Gigartinales family<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 23


Choreocolacaceae have been shown to infect several species or genera <strong>of</strong> hosts, although their<br />

original host was not determined. For example, the parasite Holmsella pachyderma infects<br />

species <strong>of</strong> two genera, Gracilaria <strong>and</strong> Gracilariopsis. The parasite Harveyella mirabilis<br />

infects several species <strong>of</strong> the family Rhodomelaceae plus one member <strong>of</strong> the family<br />

Delesseriaceae. Other studies have shown that while “host jumps” have been accomplished,<br />

the parasite is still found on its original host (G<strong>of</strong>f et al. 1996, 1997). So although not<br />

confirmed to date in culture studies, <strong>parasites</strong> appear to be able to jump hosts. This means that<br />

if introduced to new locations, <strong>and</strong> given there are appropriate host taxa in the new location,<br />

<strong>parasites</strong> may be able to infect new hosts in these environments.<br />

The question <strong>of</strong> the detrimental effects <strong>and</strong> nutritional requirements <strong>of</strong> red algal <strong>parasites</strong> on<br />

their hosts has been barely studied. The few studies that have been conducted show that<br />

although fixed carbon is translocated into the photosynthesis-lacking parasite, this is <strong>of</strong>ten a<br />

small fraction <strong>of</strong> the total fixed carbon (G<strong>of</strong>f 1979; Kremer 1983). No studies have looked at<br />

the effect <strong>of</strong> parasitism on host reproductive success, host recruitment, or the host ability to<br />

withst<strong>and</strong> perturbations.<br />

Endophytic red algae<br />

Endophytic red algae other than <strong>parasites</strong> are pigmented <strong>and</strong> do not form cellular connections<br />

to host cells. Usually they can be cultivated outside their hosts. Photosynthetic red algae<br />

found within the tissues <strong>of</strong> other algae are common. Species <strong>of</strong> Auduoinella sp. (also under<br />

the name <strong>of</strong> Acrochaetium sp., Colaconema sp., Rhodochorton sp.) are <strong>of</strong>ten found<br />

intercellularly within thallose red algae (e.g. West 1979). There have been few experimental<br />

studies <strong>of</strong> the specificity <strong>of</strong> these endophytes, although host range is considered to be fairly<br />

broad. It is possible that these endophytes could infect the tissue <strong>of</strong> new organisms given the<br />

opportunity. Acrochaetium yamadae grows in the tissue <strong>of</strong> Izziella orientalis from Taiwan<br />

(Kylin 1956) <strong>and</strong> <strong>of</strong> Liagora canariensis from the Canary Isl<strong>and</strong>s (Afonso-Carrillo et al.<br />

2003). The former Acrochaetium species, Colaconema asparagopsis <strong>and</strong> C. bonnemaisoniae,<br />

are found in British Bonnemaisonia hamifera <strong>and</strong> Asparagopsis sp., while the related species<br />

C. endophyticum grows in Heterosiphonia sp., (Kylin 1956; White & Boney 1969).<br />

Colaconema ophioglossum is an endophyte <strong>of</strong> Dudresnaya crassa from both sides <strong>of</strong> the<br />

central Atlantic (Afonso-Carrillo et al. 2003).<br />

Some semi-endophytic rhodophytes are found among non-geniculate coralline algae from the<br />

Central Pacific. The thallus <strong>of</strong> Lithophyllum cuneatum from Fiji is wedged into the thalli <strong>of</strong> its<br />

hosts, Neogoniolithon sp. <strong>and</strong> Hydrolithon onkodes. Endophyte <strong>and</strong> hosts do not form cellular<br />

connections; however the growth <strong>of</strong> the host may be disturbed by the presence <strong>of</strong> the<br />

endophyte (Keats 1995; Chamberlain 1999; Morcom & Woelkerling 2000). Similarly,<br />

Amphiroa species (such as A. kuetzingiana) are embedded into their hosts Hydrolithon<br />

onkodes, Neogoniolithon brassica-florida <strong>and</strong> Mesophyllum expansum, but apparently do not<br />

parasitise them (Chamberlain 1999).<br />

In contrast, the epiphyte Titanoderma corallinae has a detrimental effect on its basiphytes<br />

Corallina elongata <strong>and</strong> C. <strong>of</strong>ficinalis from France; contact with its spores leads to bleaching<br />

<strong>of</strong> the host tissue, from which the host may not recover (Cabioch 1979; Chamberlain 1999).<br />

Red algal epiphytes<br />

Most fouling red algae will grow on any surfaces (e.g. Stylonema, Erythrotrichia). These are<br />

<strong>of</strong>ten small algae, with asexual means <strong>of</strong> reproduction that can quickly colonise new surfaces.<br />

Most <strong>of</strong> these algae grow on the surface <strong>of</strong> the host without causing any structural damage to<br />

the host, though shading <strong>of</strong> the host could lead to slowed host growth. Some other red algae<br />

are generalist epiphytes, or at least much more common on algal surfaces (e.g. Microcladia<br />

coulteri - Gonzalez & G<strong>of</strong>f 1989). These algae have different ways <strong>of</strong> interacting with the<br />

24 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


host (Leonardi et al. 2006) with some <strong>of</strong> these interactions leading to damage <strong>and</strong> other<br />

detrimental effects to the host (e.g. tissue loss <strong>and</strong> secondary infections), as these epiphytes<br />

can penetrate host tissue to varying degrees. These algal-epiphyte interactions can especially<br />

be detrimental to cultivated algae (e.g. Gracilaria chilensisi) where hosts are in high<br />

concentration <strong>and</strong> economic loss is possible (Leonardi et al. 2006; Vairappan 2006). A<br />

number <strong>of</strong> filamentous red algae grow as epiphytes on Kappaphycus alvarezii, a<br />

carrageenophyte commercially cultivated throughout Asia. The predominant epiphyte species<br />

is Neosiphonia savatieri, but other species also occur such as Acanthophora sp., Ceramium<br />

sp., Centroceras sp. <strong>and</strong> N. apiculata. The epiphytes are anchored on their host by penetrating<br />

rhizoids. Their presence weakens the host <strong>and</strong> increases its susceptibility to bacteria<br />

(Vairappan 2006).<br />

Ostiophyllum sonderopeltae is an obligate epiphyte <strong>of</strong> Sonderopelta coriacea in Australia<br />

(Kraft 2003). Lembergia allanii is known only on Vidalia colensoi from New Zeal<strong>and</strong>,<br />

whereas Dasyptilon pellucidum is predominantly found on Euptilota formossissima but may<br />

also be found growing on Hymenocladia <strong>and</strong> Cenacrum (Adams 1994). As the specificity <strong>of</strong><br />

the epiphyte habit has not been determined for a number <strong>of</strong> species, <strong>and</strong> where these epiphyte<br />

taxa appear to cause no disease symptoms, epiphyte taxa have not been included in the<br />

database.<br />

Endophytic green algae in red algae<br />

Red algae are the hosts for a number endophytic green algae. The economically important<br />

carrageenophyte Chondrus crispus is infected by Acrochaete heteroclada <strong>and</strong> A. operculata<br />

on both sides <strong>of</strong> the northern Atlantic. Acrochaete heteroclada disrupts the tissue <strong>of</strong> the host<br />

cortex <strong>and</strong> has an overall negative effect on the host performance, slowing the growth <strong>and</strong><br />

decreasing the capacity for regeneration, leading to lower yields <strong>of</strong> carrageenan. A. operculata<br />

likewise penetrates the cortex <strong>of</strong> its host. However, while gametophytes are not invaded<br />

beyond the outer cortex, sporophytes become completely endophytised, resulting in severe<br />

damage <strong>of</strong> the host tissue, secondary bacterial infections, <strong>and</strong> eventually disintegration <strong>and</strong><br />

death <strong>of</strong> the host thallus (Correa & McLachlan 1991, 1992, 1994, Bouarab et al. 1999, 2001b;<br />

Potin et al. 1999, 2002; Bown et al. 2003; Weinberger et al. 2005).<br />

Achrochaete heteroclada is also found in Ahnfeltiopsis furcellata, A. linearis, Chondrus<br />

canaliculatus, Gracilaria chilensis <strong>and</strong> G. mammilaris (Correa & McLachlan 1991), while<br />

another Acrochaete species, A. leptochaete, infects Polysiphonia sp. <strong>and</strong> Champia sp.<br />

(O’Kelly et al. 2004). In Britain, Chondrus crispus hosts another green endophyte, Entocladia<br />

viridis (Bown et al. 2003), a species also found in Phycodrys rubens along the North Atlantic<br />

coasts <strong>of</strong> the USA (O’Kelly et al. 2004).<br />

The endophyte Endophyton ramosum causes “green patch disease” in Chilean Mazzaella<br />

laminarioides. This disease is characterised by fronds which lose their red pigmentation <strong>and</strong><br />

turn green. The host tissue starts decaying, opening the way for secondary bacterial invasions.<br />

Lesions on the stipes lead to their breaking in heavy wave action (Correa et al. 1994, 1997;<br />

Sanchez et al. 1996; Buschmann et al. 1997; Faugeron et al. 2000). Eucheuma ramosum also<br />

inhabits the related host species Mazzaella oregona in the Northeast Pacific (O’Kelly et al.<br />

2004).<br />

Endophytic unicellular sporophytes <strong>of</strong> Acrosiphonia species, originally described as<br />

Chlorochytrium inclusum <strong>and</strong> Codiolum petrocelidis, were observed in a number <strong>of</strong> foliose<br />

<strong>and</strong> crustose red algae, respectively, from British Columbia: Callophyllis sp., Chondrus<br />

crispus, Constantinea subulifera, Dilsea californica, D. integra, Farlowia sp., Haemescharia<br />

hennedyi, Halymenia sp., Hildenbr<strong>and</strong>ia occidentalis, Kallymenia sp., Mastocarpus<br />

papillatus, Mazzaella sanguinea, M. splendens, Palmaria mollis, Porphyra sp., Schizymenia<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 25


pacifica, Sparlingia pertusa, <strong>and</strong> Weeksia sp. (Sussmann et al. 1999, 2005, Sussmann &<br />

DeWreede 2001, 2002, 2005). Acrosiphonia sporophytes also occur in Palmaria mollis <strong>and</strong><br />

Polyides rotundus from the Northeast Atlantic (Sussmann & DeWreede 2002).<br />

Spongomorpha aeruginosa occurs in Haemescharia hennedyi from Germany, <strong>and</strong> the related<br />

species S. mertensii in Mastocarpus papillatus from Canada (Sussmann & DeWreede 2001).<br />

Two endophytic green algae observed in Curdiea racovitzae <strong>and</strong> Iridea cordata from the<br />

Antarctic Peninsula were not further identified (Peters 2003).<br />

Endophytic brown algae in red algae<br />

Brown algae living as endophytes in red algae are from three orders <strong>of</strong> the Phaeophyceae:<br />

Ectocarpales, Laminariales <strong>and</strong> Desmarestiales. Setchell & Gardner (1922) described a<br />

number <strong>of</strong> new species <strong>of</strong> Streblonema, both epiphytic <strong>and</strong> endophytic taxa, including the<br />

endophytes S. corymbiferum (in Cumagloia <strong>and</strong>ersonii) <strong>and</strong> S. investiens (in Helminthocladia<br />

calvadosii). Microspongium tenuissimum occurs in Aeodes orbitosa from South Africa,<br />

Grateloupia doryphora from Canary Isl<strong>and</strong>s, <strong>and</strong> Grateloupia intestinalis from Chile (Peters<br />

2003). A second Microspongium species, M. radians, which has been described from Chilean<br />

Grateloupia doryphora <strong>and</strong> also grows in Mazzaella laminarioides from South Africa<br />

(Burkhardt & Peters 1998; Peters 2003) is considered synonymous to M. tenuissimum<br />

(Heesch 2005). Another endophyte, genetically identified as Microspongium sp., was isolated<br />

from Polysiphonia elongata growing in the Western Baltic Sea (Burkhardt & Peters 1998).<br />

This species may be synonymous with Mikrosyphar polysiphoniae described from Baltic<br />

Polysiphonia stricta. Pedersen (1976) reported Mikrosyphar polysiphoniae in Polysiphonia<br />

arctica in collections from Greenl<strong>and</strong>. Other Mikrosyphar species, such as M. porphyrae, an<br />

endophyte <strong>of</strong> Porphyra sp. in the Baltic Sea, may likewise belong to the genus<br />

Microspongium (Heesch 2005).<br />

Kelp gametophytes have recently been discovered living endophytically in filamentous <strong>and</strong><br />

foliose red algae. Most <strong>of</strong> the hosts belong to the order Ceramiales, such as Antithamnion<br />

densum, Callithamnion acutum, C. biseriatum, Ceramium gardneri, Delesseria decipiens,<br />

Griffithsia pacifica, Herposiphonia plumula, Irtugovia pacifica, Membranoptera platyphylla,<br />

Pleonosporium vancouverianum, Polyneura latissima, Polysiphonia paniculata,<br />

Pterosiphonia dendroidea, Pterosiphonia sp., Pterothamnion pectinatum <strong>and</strong> Scagelia<br />

pylaisei. Kelp gametophytes are furthermore hosted by Fryeella gardneri (Rhodymeniales)<br />

<strong>and</strong> Euthora cristata, Orculifilum denticulatum (Gigartinales). In earlier studies, the species<br />

<strong>of</strong> Laminariales involved were not identified further (Garbary et al. 1999a, b, Garbary & Kim<br />

2000), although more recently Sasaki et al. (2003) were able to identify Agarum clathratum in<br />

Orculifilum denticulatum <strong>and</strong> Hubbard et al. (2004) identified gametophytes <strong>of</strong> Alaria<br />

esculenta <strong>and</strong> Nereocystis luetkeana growing in a number <strong>of</strong> hosts. Gametophytes <strong>of</strong><br />

Desmarestia antarctica grow in Antarctic Curdiea racovitzae (Moe & Silva 1989; Peters<br />

2003).<br />

Although some taxa are predominantly epiphytic, they may also affect the host through some<br />

endophytic development, as found in the epiphyte Elachista antarctica which is anchored<br />

within its Antarctic host Palmaria decipiens by endophytic filaments (Peters 2003).<br />

Endophytic diatoms<br />

Diatoms may either live as endo- or epiphytes in/on red algae. Diatoms such as Achnanthes<br />

longipes, Melosira nummoloides, Synedra gracilis <strong>and</strong> Ligmophora sp. heavily epiphytise<br />

Porphyra species, e.g. P. yezoense, in Japan <strong>and</strong> South Korea. The epiphyte load inhibits<br />

normal growth <strong>of</strong> the basiphyte, leading to a condition called “diatom felt disease” (Tsukidate<br />

1983, 1991; Fujita 1990; Song et al. 1993). Examples <strong>of</strong> endophytic diatoms are Gyrosigma<br />

coelophilum, which has been observed in Coelarthrum opuntia in Japan (Okamoto et al.<br />

26 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


2003), <strong>and</strong> Pseudogomphonema sp., an endophyte <strong>of</strong> Pachymenia sp. from the Antarctic<br />

Peninsula (Peters 2003).<br />

3.5.2. Occurrence <strong>of</strong> known <strong>pathogens</strong> in New Zeal<strong>and</strong><br />

Red algal <strong>parasites</strong> are poorly documented in New Zeal<strong>and</strong> although species belonging to the<br />

following genera are known, either reported in publications (e.g. Adams 1994) or recorded in<br />

herbaria: Callocolax, ?Ceratocolax sp., Champiocolax, Choreonema, Colacodasya,<br />

Colacopsis, Gloiocolax, Janczewskia, Levringiella, Microcolax, Plocamiocolax,<br />

Pterocladiophila, Rhodymeniocolax, Sporoglossum, Tylocolax. A great deal more work is<br />

required on the red algal <strong>parasites</strong> in the New Zeal<strong>and</strong> region.<br />

Three species <strong>of</strong> the ascomycete Spathulospora have been described from New Zeal<strong>and</strong><br />

collections - Spathulospora lanata in Camontagnea oxyclada, S. adelpha <strong>and</strong> S. calva on<br />

Ballia callitricha (Kohlmeyer 1973a). Kohlmeyer & Demoulin (1981) described two<br />

ascomycete fungi that are found in association with the New Zeal<strong>and</strong> endemic genus<br />

Apophlaea - Mycophycias apophlaeae <strong>and</strong> Polystigma apophlaeae Kohlm.<br />

The endophytic brown alga Microspongium tenuissimum (incl. M. radians) occurs in three red<br />

algae from New Zeal<strong>and</strong>: Pachymenia lusoria, Grateloupia intestinalis <strong>and</strong> in a so far<br />

undescribed species <strong>of</strong> the family Kallymeniaceae (Heesch 2005). Another species,<br />

Mikrosyphar pachymeniae was described from northern populations <strong>of</strong> P. lusoria, but may be<br />

synonymous with Microspongium tenuissimum (Heesch 2005).<br />

3.6. GREEN ALGAE<br />

3.6.1. Known <strong>pathogens</strong> worldwide<br />

Viruses<br />

No virus infections have been reported for marine green algae.<br />

Bacteria<br />

No bacterial diseases have been reported for marine green algae.<br />

Animals<br />

Two unidentified protozoa, a ciliate <strong>and</strong> a flagellate, live endophytically in Codium bursa<br />

(Armstrong et al. 2000), while an amoeba has been reported from Blidingia chadefaudii<br />

(Feldmann & Feldmann 1967). In the Florida Keys an amphipod (Erichthonius brasiliensis)<br />

affects the growth <strong>of</strong> the green alga Halimeda tuna by rolling its terminal segments (Sotka et<br />

al. 1999).<br />

Fungi<br />

Species <strong>of</strong> the genus Cladophora host a number <strong>of</strong> pathogenic fungi, such as Labyrinthula<br />

spp. (e.g. L. coenocystis), Coenomyces sp., Achlyogeton salinus, Entophlyctis maxima,<br />

Olpidium rostiferum <strong>and</strong> Sirolpidium bryopsidis (Dangeard 1931a; Sparrow 1936;<br />

Raghukumar 1986a, 1987b; Rheinheimer 1992; Hyde et al. 1998; Raghukumar 2002). In<br />

India, a thraustochytrid fungus infects Cladophora liebetruthii (Raghukumar 1986a).<br />

Blodgettiomyces bornetii is a fungus occuring in Cladophora catenata <strong>and</strong> other Cladophora<br />

species, as well as in Siphonocladus rigidus (Kohlmeyer & Kohlmeyer 1972; Porter &<br />

Farham 1986a). Blodgettia sp. occurs in Cladophora dalmatica (Saccardo 1882a).<br />

Labyrinthula sp. also occurs in Chaetomorpha <strong>and</strong> Rhizoclonium species. The latter moreover<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 27


hosts Coenomyces sp. <strong>and</strong> Olpidium rostiferum (Raghukumar 1986b, 1987a, 2002; Hyde et al.<br />

1998).<br />

Pontisma lagenidioides causes the “browning disease” in Chaetomorpha antennina<br />

(Raghukumar 1987a; Raghukumar & Ch<strong>and</strong>ramohan 1988). Thraustochytrium proliferum,<br />

Rhizophydium littoreum, R. globosum <strong>and</strong> Phlyctochytrium sp. are <strong>pathogens</strong> <strong>of</strong> Bryopsis<br />

plumosa (Sparrow 1936; Kazama 1972; Amon 1984; Hyde et al. 1998) <strong>and</strong> the former also<br />

infects Codium sp. (Amon 1984). Olpidiopsis <strong>and</strong>reii infects filamentous green algae, e.g.<br />

Acrosiphonia sp. <strong>and</strong> Spongomorpha sp. (Aleem 1952a; Porter & Farnham 1986a; West et al.<br />

2006).<br />

The ascomycetes Guignardia alaskana <strong>and</strong> G. prasiolae have been reported from Prasiola<br />

borealis <strong>and</strong> Prasiola tesselata, respectively. The former is also parasitised by Laestadia<br />

alaskana. Both algae furthermore host Turgidosculum complicatulum, while the related<br />

species T. ulvae occurs in Blidingia minima <strong>and</strong> B. minima var. vexata (Saccardo 1882b; Reed<br />

1902; Kohlmeyer & Kohlmeyer 1972, 1973; Kohlmeyer 1979) <strong>and</strong> Ulva californica (Reed<br />

1902). In France, the ascomycete Chadefaudia corallinarum infests Flabellia petiolata <strong>and</strong><br />

Halimeda tuna (Kohlmeyer 1963b). In Russia’s Sea <strong>of</strong> Japan, Ulva fenestrata is endophytised<br />

by Ulocladium littoreum (Pivkin & Zvereva 2000).<br />

Ostreobium queketti, an endolithic alga growing in corals from French-Polynesia, is<br />

parasitised by an aspergillus-like fungus, causing a black b<strong>and</strong>ing pattern on the coral host<br />

(Priess et al. 2000). In Sweden, an unspecified fungus has been reported to parasitise<br />

Elasticha fucicola (Aleem 1952a).<br />

A unidentified heterokont biflagellate parasite lives inside Codium fragile from the North<br />

American Atlantic coast, consuming the plastids <strong>of</strong> its host (Lee & Kugrens 2003).<br />

Other algae<br />

Members <strong>of</strong> the genus Achrochaete occur as endophytes in Ulva rigida <strong>and</strong> Codium fragile.<br />

Another endophyte, Entocladia viridis has been found in Bryopsis duplex <strong>and</strong> Chaetomorpha<br />

linum from Italy <strong>and</strong> Denmark, respectively (O’Kelly 1981; Nielsen 1979; del Campo et al.<br />

1998). Another green seaweed, Chlorochytrium dermatocolax, has been reported as a parasite<br />

<strong>of</strong> a green host, Bryopsis plumosa (Sparrow 1936).<br />

There is a single record <strong>of</strong> a red seaweed (Schmitziella endophloea) as an endophyte in<br />

Cladophora pellucida (Kylin 1956).<br />

3.6.2. Occurrence <strong>of</strong> known <strong>pathogens</strong> in New Zeal<strong>and</strong><br />

The labyrinthulid Thraustochytrium proliferum has been isolated from Bryopsis plumosa <strong>and</strong><br />

Cladophora sp. from Dunedin (Karling 1968).<br />

3.7. XANTHOPHYCEAE<br />

3.7.1. Known <strong>pathogens</strong> worldwide<br />

Viruses<br />

No virus infections have been reported for the Xanthophyceae.<br />

Bacteria<br />

No bacterial infections have been reported for the Xanthophyceae.<br />

28 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Animals<br />

A rotifer was reported to cause galls in Vaucheria sp. (Apt 1988b).<br />

Fungi<br />

No fungal infections have been reported for the Xanthophyceae.<br />

Other algae<br />

No algal infections have been reported for the Xanthophyceae.<br />

3.7.2. Occurrence <strong>of</strong> known <strong>pathogens</strong> in New Zeal<strong>and</strong><br />

No infections have been reported for the Xanthophyceae in New Zeal<strong>and</strong>.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 29


4. Discussion<br />

I: ASSESSMENT OF INFORMATION AVAILABLE ON SEAWEED DISEASES<br />

WORLDWIDE AND IN NEW ZEALAND<br />

A number <strong>of</strong> general reviews have dealt with <strong>pathogens</strong> <strong>of</strong> marine algae, e.g. Evans et al.<br />

(1978) <strong>and</strong> G<strong>of</strong>f (1982) focusing on parasitic red algae; Andrews (1979a, b) on the pathology<br />

<strong>of</strong> seaweeds; Apt (1988b) on galls <strong>and</strong> tumour-like growths; Correa (1997) examining the<br />

current knowledge <strong>and</strong> approaches to infectious diseases <strong>of</strong> marine algae; Bouarab et al.<br />

(2001a) examining the ecological <strong>and</strong> biochemical aspects <strong>of</strong> algal infectious diseases. Fujita<br />

(1990) authored a review specifically on the diseases <strong>of</strong> cultivated Porphyra in Japan.<br />

Biosecurity NZ requested that data in this project should be compiled for each pathogen<br />

including:<br />

• agent stability <strong>and</strong> inactivation data;<br />

• epidemiological features:<br />

− geographical range <strong>and</strong> features <strong>of</strong> distribution (international spread);<br />

− host range (including prevalence <strong>and</strong> incidence, resistant strains/species, life stage<br />

susceptibility <strong>and</strong> course <strong>of</strong> infection, habitat <strong>and</strong> seasonality);<br />

− morbidity/mortality rates;<br />

− transmission (including route <strong>and</strong> infectious dose).<br />

• host impact:<br />

− tissue tropism (site <strong>of</strong> infection);<br />

− brief description <strong>of</strong> major pathological <strong>and</strong> biological effects.<br />

• diagnostics <strong>and</strong> disease control:<br />

− key diagnostic features;<br />

− overview <strong>of</strong> diagnostic methods, including sensitivity <strong>and</strong> specificity;<br />

− disease management activities worldwide;<br />

− able to be eradicated?<br />

The majority <strong>of</strong> papers did not include data in these areas. Generally, the information on<br />

diseases <strong>of</strong> seaweeds is very patchy <strong>and</strong> the emphasis <strong>of</strong> published work lies in two main<br />

areas:<br />

• diseases occurring in monocultures <strong>of</strong> farmed species, mainly in East <strong>and</strong> Southeast Asia<br />

(particularly affecting the key economic genera Porphyra. Laminaria, <strong>Undaria</strong>,<br />

Gracilaria, Eucheuma <strong>and</strong> Kappaphycus);<br />

• observations <strong>of</strong> certain groups <strong>of</strong> <strong>pathogens</strong> in particular geographic regions as a<br />

consequence <strong>of</strong> the research interests <strong>of</strong> a particular team or research group, leading to<br />

“pockets <strong>of</strong> information”.<br />

The amount <strong>of</strong> information contained in the references we investigated varied greatly between<br />

articles, ranging from reports <strong>of</strong> the occurrence <strong>of</strong> <strong>pathogens</strong> to multi-paper treatments <strong>of</strong><br />

certain diseases. The latter are especially numerous for farmed macroalgae e.g. Pythium<br />

porphyrae, the agent causing the red rot disease in Porphyra species (Porphyra cultivation is<br />

a billion dollar industry in Asian countries). Other agents, in contrast, have only been<br />

observed once <strong>and</strong> <strong>of</strong>ten only incidentally in the course <strong>of</strong> other research.<br />

Problems with the correct identifications <strong>and</strong> classification <strong>of</strong> <strong>pathogens</strong> may lead to different<br />

names for the same agent or the same name for different agents. For example, small algae<br />

such as endophytes may have a reduced morphology, leaving only few characters for<br />

30 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


identification. Often, they are not fertile when observed, making the correct identification<br />

difficult.<br />

Host symptoms are not always a good character for identifying <strong>pathogens</strong>/ <strong>parasites</strong> either, as<br />

these may depend on the susceptibility <strong>of</strong> a host species to a specific agent. Susceptibility can<br />

vary between generations <strong>of</strong> the same host species e.g. the sporophyte <strong>of</strong> the red alga<br />

Chondrus crispus is susceptible to infections <strong>of</strong> the green endophyte Acrochaete operculata,<br />

while the host gametophyte shows some resistance (Correa & McLachlan 1991). Life stages<br />

<strong>of</strong> <strong>pathogens</strong> may also display different morphologies e.g. nauplii <strong>of</strong> harpacticoid copepoda<br />

burrowing in kelp stipes may have to be reared to adult stages in order to correctly identify<br />

them by morphology. Most references describe a disease by the symptoms expressed in the<br />

host, but fall short <strong>of</strong> demonstrating causality, meaning for example, more obvious secondary<br />

invaders could be mistakenly attributed as the primary cause <strong>of</strong> a disease. There is almost no<br />

work that has examined more complex pathogen/host systems.<br />

Information on diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> occurring in New Zeal<strong>and</strong> is scant.<br />

Generally the publications available reflect the activities <strong>of</strong> a few overseas workers who have<br />

visited or received specimens <strong>and</strong> have published on particular agents (e.g. Kohlmeyer).<br />

There have been no focused studies incorporating field <strong>and</strong> laboratory investigations other<br />

than the work <strong>of</strong> Heesch (2005) on endophytes <strong>of</strong> brown algae in New Zeal<strong>and</strong>, completed as<br />

research for a Ph.D. at the University <strong>of</strong> Otago.<br />

II: ASSESSMENT OF THREATS BY PATHOGENS OF UNDARIA TO NEW ZEALAND<br />

NATIVE MARINE FLORA<br />

The only disease reported in <strong>Undaria</strong> from its introduced range is the infection <strong>of</strong> thalli with<br />

the pigmented endophytic brown alga Laminariocolax aecidioides, both in Spain (Veiga et al.<br />

1997) <strong>and</strong> in Argentina (Gauna et al. personal communication). It is not clear whether this<br />

endophyte originates from Japanese populations introduced with the host or from European or<br />

Argentinian populations respectively. Laminariocolax aecidioides is known from other,<br />

native European kelps such as Laminaria hyperborea in the German Bight <strong>and</strong> Norway, <strong>and</strong><br />

Saccharina latissima in the Western Baltic Sea (Lein et al. 1991; Ellerstdottir & Peters 1995,<br />

1997; Peters & Schaffelke 1996), but it has not been reported from southern Europe. It also<br />

occurs in the native range <strong>of</strong> U. <strong>pinnatifida</strong>, in Japan (Yoshida & Akiyama 1978). Genetic<br />

studies may determine the origin <strong>of</strong> the Spanish <strong>and</strong> Argentinean populations <strong>and</strong> thus shed<br />

some light on whether endophytes were or can be transmitted with host sporophytes (or other<br />

disease agents).<br />

In the Western Baltic, thalli <strong>of</strong> Saccharina latissima infected with Laminariocolax aecidioides<br />

show more severe symptoms in shallow water, due to the endophyte growth being accelerated<br />

in better light conditions. Increased severity <strong>of</strong> infection symptoms prevent host thalli<br />

surviving in water depths <strong>of</strong> 2 m, in contrast to deeper water where growth <strong>of</strong> the endophyte is<br />

light limited (Schaffelke et al. 1996). In New Zeal<strong>and</strong>, Laminariocolax macrocystis, a closely<br />

related species in this genus, infects native kelps, such as Macrocystis pyrifera <strong>and</strong> Ecklonia<br />

radiata, <strong>and</strong> in severe cases this leads to crippled thalli (M. pyrifera) <strong>and</strong>/or stunted growth<br />

(E. radiata) (Heesch 2005). It is not known if this endophyte species has an influence on the<br />

depth distribution <strong>of</strong> its hosts. Further, it is not known if L. aecidioides would be able to infect<br />

New Zeal<strong>and</strong> native kelps, <strong>and</strong> if so, what the consequences would be for native kelp<br />

populations.<br />

Reports in the international literature have highlighted the occurrence <strong>of</strong> kelp gametophytes as<br />

endophytes in a range <strong>of</strong> hosts (e.g. Garbary et al. 1999a, b; Garbary & Kim 2000; Sasaki et<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 31


al. 2003; Hubbard et al. 2004). One <strong>of</strong> the potential threats <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> to New<br />

Zeal<strong>and</strong> native kelps may consist <strong>of</strong> competition with other kelp gametophytes as endophytes.<br />

III: FUTURE STRATEGY FOR SCREENING POPULATIONS AND INCREASING<br />

KNOWLEDGE OF RISK POSED BY DISEASES/PARASITES/PATHOGENS TO NEW<br />

ZEALAND MACROALGAE AND COASTAL COMMUNITIES<br />

None <strong>of</strong> the known <strong>pathogens</strong> <strong>of</strong> <strong>Undaria</strong> have so far been observed in/on U. <strong>pinnatifida</strong> in<br />

New Zeal<strong>and</strong>, however, populations <strong>of</strong> U. <strong>pinnatifida</strong> around New Zeal<strong>and</strong> have not been<br />

screened for the presence <strong>of</strong> diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong>. Given that there is evidence<br />

that New Zeal<strong>and</strong> has received at least 10 separate introduction events <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong><br />

(Uwai et al. 2006), it would be important to construct a sampling regime that reflected this<br />

known genetic diversity within New Zeal<strong>and</strong> populations <strong>of</strong> <strong>Undaria</strong>.<br />

Correa (1997) recommends an operational approach to the study <strong>of</strong> infectious diseases in<br />

seaweeds:<br />

1. field <strong>and</strong> laboratory observations aiming to individualize a potential pathogen <strong>and</strong> to<br />

describe the lesions associated with the presence <strong>of</strong> that organism,<br />

2. laboratory experiments <strong>and</strong> observations to establish causality i.e. applying Koch’s<br />

postulates (Andrews & G<strong>of</strong>f 1984), as well as manipulative experiments to underst<strong>and</strong><br />

aspects <strong>of</strong> the host-pathogen relationship <strong>and</strong> thus develop methods to manage the<br />

disease, e.g. in marine cultures<br />

3. epidemiology to “evaluate... the population segment ...affected..., the severity <strong>of</strong> the<br />

disease <strong>and</strong> the occurrence <strong>of</strong> seasonal <strong>and</strong> spatial patterns <strong>of</strong> disease expression”, which<br />

includes the study <strong>of</strong> the reproduction, mortality <strong>and</strong> physiological performance <strong>of</strong> the<br />

host population <strong>and</strong> individuals.<br />

From the research conducted by Heesch (2005) it is clear that it is necessary to identify host<br />

populations <strong>and</strong> look for disease symptoms both intra- <strong>and</strong> inter-annually, with seasonal<br />

sampling occurring ca. quarterly. Given the range <strong>of</strong> environments, water temperatures, <strong>and</strong><br />

photoperiods experienced through the New Zeal<strong>and</strong> region, the sampling would need to be<br />

stratified <strong>and</strong> targeted on priority taxa. Depending on the biology <strong>of</strong> the target taxa the<br />

sampling regime would need to incorporate considerations <strong>of</strong> the species life history (i.e.<br />

whether the species has isomorphic or heteromorphic alternation <strong>of</strong> generations or direct<br />

development; if life history phases have differing cell wall chemistry as found for example in<br />

isomorphic phases <strong>of</strong> members <strong>of</strong> the Gigartinales), ecology <strong>and</strong> distribution (light, depth,<br />

exposure/shelter, substrate). Causality between disease <strong>and</strong> symptoms requires both field <strong>and</strong><br />

detailed laboratory investigations.<br />

A number <strong>of</strong> authors point to the importance <strong>of</strong> considering diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong><br />

in the wider context, testing hypotheses about the roles they may play in shaping population<br />

<strong>and</strong> community structure (Correa 1997; Prenter et al. 2004; Tompkins & Poulin 2006).<br />

32 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


5. Conclusions<br />

Seaweeds that are diseased are under-collected in New Zeal<strong>and</strong> <strong>and</strong>, as a consequence, the<br />

status <strong>of</strong> knowledge about biotic diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> is deficient: it is not<br />

possible to evaluate risk posed by introduced diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> on the basis <strong>of</strong><br />

current underst<strong>and</strong>ing <strong>of</strong> the native biota.<br />

Whilst experts in the field <strong>of</strong> algal diseases such as Correa (1997) stress the need for studies<br />

on the mechanisms <strong>of</strong> infection <strong>and</strong> the spread <strong>of</strong> the <strong>pathogens</strong> within <strong>and</strong> among host<br />

individuals, as well as on the genetics <strong>of</strong> the host-pathogen interaction, the basic underpinning<br />

surveys <strong>and</strong> research are required in New Zeal<strong>and</strong> to document the biodiversity <strong>and</strong><br />

distribution <strong>of</strong> diseases, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> within macroalgae.<br />

6. Acknowledgements<br />

The following people are thanked for their contributions to this study: Megan Gee for<br />

literature searching <strong>and</strong> acquisition, Helen Sui for developing the database structure, Joe<br />

Zuccarello for assistance with reviewing literature on red algal <strong>parasites</strong>, Joe Buchanan <strong>and</strong><br />

Peter Martin for assistance with literature reviews, Tracy Farr for assistance with maps, Hoe<br />

Chang, Janet Grieve <strong>and</strong> Roberta D’Archino for assistance with translations.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 33


7. References<br />

Abbott, I.A., Hollenberg, G.J. 1976. Marine algae <strong>of</strong> California. California, Stanford<br />

University Press. pp. 827.<br />

Adams, N.M., 1994. Seaweeds <strong>of</strong> New Zeal<strong>and</strong>. Canterbury, Canterbury University Press. pp.<br />

360.<br />

Adey, W.H., Sperapani, C.P., 1971. The biology <strong>of</strong> Kvaleya epilaeve, a new parasite genus<br />

<strong>and</strong> species <strong>of</strong> Corallinaceae. Phycologia 10, 29 - 42.<br />

Adey, W.H., Masaki, T., Akioka, H., 1974. Ezo epiyessoense, a new parasitic genus <strong>and</strong><br />

species <strong>of</strong> Corallinaceae (Rhodophyta, Cryptonemiales). Phycologia 13, 329-344.<br />

Afonso-Carrillo, J., Sanson, M., Sangil, C., 2003. Colaconema ophioglossum comb. nov. <strong>and</strong><br />

Liagorophila endophytica, two acrochaetioid algae (Rhodophyta) from the eastern Atlantic.<br />

Cryptogamie, Algologie 24, 107-116.<br />

Aguilar-Rosas, R., Aguilar-Rosas L.E., Avila-Serrano G., Marcos-Ramirez R., 2004. First<br />

record <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> (Harvey) Suringar (Laminariales, Phaeophyta) on the Pacific<br />

coast <strong>of</strong> Mexico. Botanica Marina 47, 255-258.<br />

Aguilera, M., Rivera, P.J., Westermeier, R., 1988. The presence <strong>of</strong> Plasmodiophorales in<br />

plants <strong>of</strong> Durvillaea antarctica (Cham.) Hariot (Phaeophyta, Durvilleaceae) in southern<br />

Chile. Gayana. Botanica 45, 337-343.<br />

Akaike, S., Takiya, A., Tsuda, F., Motoya, A., Takahashi, K., 2002. Seasonal occurrence <strong>of</strong> a<br />

kelp-boring amphipod, Ceinina japonica along the coasts <strong>of</strong> Hokkaido from 1997 to 2001.<br />

Scientific Reports <strong>of</strong> Hokkaido Fisheries Experimental Station 61, 25-28.<br />

Akiyama, K., 1977a. On the Olpidiopsis disease <strong>of</strong> juveniles <strong>Undaria</strong> <strong>pinnatifida</strong> in field<br />

culture. Bulletin <strong>of</strong> Tohoku Regional Fisheries Research Laboratory 37, 43-49.<br />

Akiyama, K., 1977b. Preliminary report on Streblonema disease in <strong>Undaria</strong>. Bulletin <strong>of</strong><br />

Tohoku Regional Fisheries Research Laboratory 37, 39-41.<br />

Akiyama, K., Kurogi, M., 1982. Cultivation <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> (Harvey) Suringar, the<br />

decrease in crops from natural plants following crop increase from cultivation. Bulletin <strong>of</strong><br />

Tohoku Regional Fisheries Research Laboratory 44, 91–100.<br />

Aleem, A.A., 1950a. A fungus in Ectocarpus granulosus C. Agardh near Plymouth. Nature<br />

165, 119-120.<br />

Aleem, A.A., 1950b. Phycomycetes marins de diatomees et d’algues dans la region de<br />

Banyuls-sur-Mer (Pyrenees-Orientales). Vie et Milieu 1, 421-440.<br />

Aleem, A.A., 1950c. Phycomycetes marins <strong>parasites</strong> de diatomees et d’algues. Comptes<br />

rendus hebdomadaires des seances de l'Academie des sciences 231, 713-715.<br />

34 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Aleem, A.A., 1950d. The occurrence <strong>of</strong> Eurychasma dicksonii (Wright) Magnus in Engl<strong>and</strong><br />

<strong>and</strong> Sweden. Acta Horti Gotoburgensis: Meddel<strong>and</strong>en fra Göteborgs Botaniska Trädgard 18,<br />

239-245.<br />

Aleem, A.A., 1952a. Marine fungi from the west coast <strong>of</strong> Sweden. Arkiv for botanik Ser. 2<br />

(3), 1-31.<br />

Aleem, A.A., 1952b. Olpidiopsis feldmanni sp. nov. champignon marin parasite d’algues de<br />

la famille des Bonnemaisoniacees. Comptes rendus hebdomadaires des seances de l'Academie<br />

des sciences 235, 1250-1252.<br />

Aleem, A.A., 1980. Pythium marinum Sparrow (Phycomycetes) infesting Porphyra<br />

leucosticta Thuret in the Mediterranean Sea. Botanica Marina 23, 405-407.<br />

Alongi, G., Catra, M., Cormaci, M., 1999. First record <strong>of</strong> Haloguignardia cystoseirae<br />

(Ascomycota) parasitic on Cystoseira elegans (Fucophyceae) from the Mediterranean Sea.<br />

Botanica Marina 42, 33-35.<br />

Amano, H., Suginaga, R., Arashima, K., Noda, H., 1995. Immunological detection <strong>of</strong> the<br />

fungal parasite, Pythium sp. - the causative organism <strong>of</strong> Red Rot disease in Porphyra<br />

yezoensis. Journal <strong>of</strong> Applied Phycology 7, 53-58.<br />

Amano, H., Sakaguchi, K., Noda, H., Maegawa, M., 1996. The use <strong>of</strong> a monoclonal antibody<br />

for the detection <strong>of</strong> fungal parasite, Pythium sp., the causative organism <strong>of</strong> Red Rot disease, in<br />

seawater from Porphyra cultivation farms. Fisheries Science 62, 556-560.<br />

Amon, J.P., 1984. Rhizopodium littoreum: a chytrid from siphonaceus marine algae an<br />

ultrastructural examination. Mycologia 76, 132-139.<br />

Ando, Y., Inoue, K., 1961. Bacteria capable <strong>of</strong> decomposing brown algae Laminaria. Bulletin<br />

<strong>of</strong> the Japanese Society <strong>of</strong> Phycology 9, 17-21.<br />

Andrews, J.H., 1976. The pathology <strong>of</strong> marine algae. Biological Review 51, 211-253.<br />

Andrews, J.H., 1977. Observations on the pathology <strong>of</strong> seaweeds in the Pacific Northwest.<br />

Canadian Journal <strong>of</strong> Botany 55, 1019-1027.<br />

Andrews, J.H., 1979a. Introduction. In: Gerking, S.D. (Ed). Pathology <strong>of</strong> seaweeds: current<br />

status <strong>and</strong> future prospects, 3rd International Congress <strong>of</strong> Plant Pathology, Munich (GFR), 17<br />

Aug 1978. Centre for Agricultural Pub. <strong>and</strong> Documentation, Wageningen, Netherl<strong>and</strong>s. pp<br />

429-429.<br />

Andrews, J.H., 1979b. Conclusion: the seaweed pathosystem. In: Gerking, S.D. (Ed).<br />

Pathology <strong>of</strong> seaweeds: current status <strong>and</strong> future prospects, 3rd International Congress <strong>of</strong><br />

Plant Pathology, Munich (GFR), 17 Aug 1978. Centre for Agricultural Pub. <strong>and</strong><br />

Documentation, Wageningen, Netherl<strong>and</strong>s. pp. 448-450.<br />

Andrews, J.H., G<strong>of</strong>f, L.F., 1984. Pathology. In: Littler, M. M., Littler, D. S., (Eds). H<strong>and</strong>book<br />

<strong>of</strong> Phycological Methods, Ecological Field Methods: Macroalgae, Cambridge University<br />

Press. pp. 573-591.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 35


Anonymous, 1989. Culture <strong>of</strong> kelp (Laminaria japonica) in China. In: Scoggan, J., Zhimeng,<br />

Zhuang, Wang, Feijiu, (Eds.). Laminaria seafaring in China, FAO Training Manual 89/5<br />

(RAS/86/024).<br />

Anonymous, 1991. Summary Report on the Proceedings. Workshop on the cultivation <strong>and</strong><br />

processing <strong>of</strong> <strong>Undaria</strong>, Pusan, Republic <strong>of</strong> Korea 24-29 April 1991. Food <strong>and</strong> Agriculture<br />

Organization <strong>of</strong> the United Nations report. pp. 35.<br />

Anonymous, 1996. Gracilaria Gall Syndrome. Center for Tropical <strong>and</strong> Subtropical<br />

Aquaculture, CTSA publication 124: 1-2.<br />

(http://aquanic.org/publicat/usda_rac/efs/ctsa/og<strong>of</strong>act.pdf)<br />

Aponte, D.M., Ganesan, E.K., 1990. Centrocerocolax ubatubensis (Ceramiaceae,<br />

Ceramiales), an adelphoparasitic red algae new for the Caribbean Sea. Boletin del Instituto<br />

Oceanografico de Venezuela 29, 5-9.<br />

Apt, K.E., 1983. Effects <strong>of</strong> the symbiotic red alga Hypneocolax stellaris on its host Hypnea<br />

musciformis (Hypneaceae, Gigartinales). Journal <strong>of</strong> Phycology 20, 148-150.<br />

Apt, K.E., 1987. A new species <strong>of</strong> Janczewskia (Rhodomelaceae, Rhodophyta) from the<br />

Hawaiian Isl<strong>and</strong>s. Phycologia 26, 328-333.<br />

Apt, K.E., 1988a. Etiology <strong>and</strong> development <strong>of</strong> hyperplasia induced by Streblonema sp.<br />

(Phaeophyta) on members <strong>of</strong> the Laminariales (Phaeophyta). Journal <strong>of</strong> Phycology 24, 28-34.<br />

Apt, K.E., 1988b. Galls <strong>and</strong> tumor-like growths on marine macroalgae. <strong>Diseases</strong> <strong>of</strong> Aquatic<br />

Organisms 4, 211-217.<br />

Apt, K.E., 1988c. Morphology <strong>and</strong> development <strong>of</strong> hyperplasia on Cystoseira osmundacea<br />

(Phaeophyta) associated with Haloguignardia irritans (Ascomycotina). American Journal <strong>of</strong><br />

Botany 75, 979-984.<br />

Apt, K.E., Gibor, A., 1989. Development <strong>and</strong> induction <strong>of</strong> bacteria-associated galls on<br />

Prionitis lanceolata (Rhodophyta). <strong>Diseases</strong> <strong>of</strong> Aquatic Organisms 6, 151-156.<br />

Apt, K.E., Schlech, K.E., 1998. Ululania stellata gen. et sp. nov. (Rhodomelaceae), a new<br />

genus <strong>and</strong> species <strong>of</strong> parasitic red algae from Hawaii. Phycologia 37, 157-161.<br />

Arasaki, S., 1947. Studies on the rot <strong>of</strong> Porphyra tenera by Pythium. Nippon Suisan<br />

Gakkaishi 13, 74-90.<br />

Arasaki, S., 1956. A disease <strong>and</strong> its prevention in Porphyra tenera. Shokubutsu Boeki 10,<br />

243-246.<br />

Arasaki, S., 1960. Studies on the chytrid blight disease <strong>of</strong> Porphyra. A chytridean parasite on<br />

the Porphyra. Nippon Suisan Gakkaishi 26, 543-548.<br />

Arasaki, S., Inoue, A., Kochi, Y., 1960. The disease <strong>of</strong> the cultured Porphyra, with special<br />

reference to the cancer-disease <strong>and</strong> the chytrid-disease which occurred at the culture field in<br />

Tokyo Bay during 1959-1960. Nippon Suisan Gakkaishi 26, 1074-1079.<br />

36 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Armstrong, E., Rogerson, A., Leftley, J.W., 2000. Utilisation <strong>of</strong> seaweed carbon by three<br />

surface-associated heterotrophic protists, Stereomyxa ramosa, Nitzschia alba <strong>and</strong><br />

Labyrinthula sp. Aquatic Microbial Ecology 21 (1), 49-57.<br />

Ashen, J.B., G<strong>of</strong>f, L.J., 1996. Molecular identification <strong>of</strong> a bacterium associated with gall<br />

formation in the marine red alga Prionitis lanceolata. Journal <strong>of</strong> Phycology 32, 286-297.<br />

Ashen, J.B., G<strong>of</strong>f, L.J., 1998. Galls on the marine red alga Prionitis lanceolara<br />

(Halymeniaceae): specific induction <strong>and</strong> subsequent development <strong>of</strong> an algal-bacterial<br />

symbiosis. American Journal <strong>of</strong> Botany 85, 1710-1721.<br />

Ashen, J.B., G<strong>of</strong>f, L.J., 2000. Molecular <strong>and</strong> ecological evidence for species specificity <strong>and</strong><br />

coevolution in a group <strong>of</strong> marine algal-bacterial symbioses. Applied <strong>and</strong> Environmental<br />

Microbiology 66 (7), 3024-3030.<br />

Barton, E.S., 1891. On the occurrence <strong>of</strong> galls in Rhodymenia palmata. Journal <strong>of</strong> Botany,<br />

British <strong>and</strong> Foreign 29, 65-68.<br />

Barton, E.S., 1892. On malformations <strong>of</strong> Ascophyllum <strong>and</strong> Desmarestia. Phycological<br />

Memoirs 1, 21-24.<br />

Barton, E.S., 1901. On certain galls in Furcellaria <strong>and</strong> Chondrus. Journal <strong>of</strong> Botany, British<br />

<strong>and</strong> Foreign 39, 49-51.<br />

Batters, E.A.L., 1892. Gonimophyllum buffhami: a new marine alga. Journal <strong>of</strong> Botany<br />

(London) 30, 65-67.<br />

Batters, E.A.L., 1895. On some new British algae. Annals <strong>of</strong> Botany 9, 307-321.<br />

Binder, M., Hibbett, D.S., Wang, Z., Farnham, W.F., 2006. Evolutionary relationships <strong>of</strong><br />

Mycaureola dilseae (Agaricales), a basidiomycete pathogen <strong>of</strong> a subtidal rhodophyte.<br />

American Journal <strong>of</strong> Botany 93, 547-556.<br />

Blaustein, A.R., Kiesecker, J.M., 2002. Complexity in conservation: lessons from the global<br />

decline in amphibian populations. Ecol. Letters 5, 597-608.<br />

Boergesen, F., 1930. Marine algae from the Canary Isl<strong>and</strong>s especially from Teneriffe <strong>and</strong><br />

Gran Canaria III. Rhodophyceae Part III Ceramiales. K. dansk Vidensk. Selsk. Biol. Meddr.<br />

9, 1-159.<br />

Boney, A.D., 1965. Aspects <strong>of</strong> the biology <strong>of</strong> the algae <strong>of</strong> economic importance. Advances in<br />

Marine Biology 3, 105-252.<br />

Boney, A.D., 1972. In vitro growth <strong>of</strong> the endophyte Acrochaetium bonnemaisoniae (Batt.) J.<br />

et G. Feldm. Nova Hedwigia 23, 173-186.<br />

Boney, A.D., 1980. Post-attachment responses <strong>of</strong> monospores <strong>of</strong> some endophytic<br />

Audouinella ssp. (Nemaliales: Florideophyceae). Nova Hedwigia 33, 499-507.<br />

Bouarab, K., Potin, P., Correa, J.A., Kloareg, B., 1999. Sulfated oligosaccharides mediate the<br />

interaction between a marine red alga <strong>and</strong> its green algal pathogenic endophyte. Plant Cell 11,<br />

1635-1650.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 37


Bouarab, K., Kloareg, B., Potin, P., Correa, J.A., 2001a. Ecological <strong>and</strong> biochemical aspects<br />

in algal infections diseases. Cahiers de Biologie Marine 42, 91-100.<br />

Bouarab, K., Potin, P., Weinberger, F., Correa, J. A., Kloareg, B., 2001b. The Chondrus<br />

crispus Acrochaete operculata host-pathogen association, a novel model in glycobiology <strong>and</strong><br />

applied phycopathology. Journal <strong>of</strong> Applied Phycology 13, 185-193.<br />

Boudresque C.F., Gerbal M., Knoepffler-Peguy M., 1985. L'algue japonnaise <strong>Undaria</strong><br />

<strong>pinnatifida</strong> (Phaeophyta, Laminariales) en Mediterranee. Phycologia 24, 364-366.<br />

Bown, P., Plumb, J., Sanchez-Baracaldo, P., Hayes, P.K., Brodie, J., 2003. Sequence<br />

heterogeneity <strong>of</strong> green (Chlorophyta) endophytic algae associated with a population <strong>of</strong><br />

Chondrus crispus (Gigartinaceae, Rhodophyta). European Journal <strong>of</strong> Phycology 38, 153-163.<br />

Br<strong>and</strong>t, R.P., 1923. Potash from kelp; early development <strong>and</strong> growth <strong>of</strong> the giant kelp<br />

Macrocystis pyrifera. US Dept. Agric. Bull. 1191, 1-40.<br />

Brautigam, M., Klein, M., Knippers, R., Müller, D.G., 1995. Inheritance <strong>and</strong> meiotic<br />

elimination <strong>of</strong> a virus genome in the host Ectocarpus siliculosus (Phaeophyceae). Journal <strong>of</strong><br />

Phycology 31, 823-827.<br />

Broadwater, S.T., LaPointe, E.A., 1997. Parasitic interactions <strong>and</strong> vegetative ultrastructure <strong>of</strong><br />

Choreonema thuretii (Corallinales, Rhodophyta). Journal <strong>of</strong> Phycology 33, 396-407.<br />

Broadwater, S.T., Harvey, A.S., Lapointe, E.A., Woelkerling, W.J., 2002. Conceptacle<br />

structure <strong>of</strong> the parasitic coralline red alga Choreonema thuretii (Corallinales) <strong>and</strong> its<br />

taxonomic implications. Journal <strong>of</strong> Phycology 38, 1157-1168.<br />

Brown, M.T., 1972. Algal viruses. Advances in Virus Research 17, 243-277.<br />

Burkhardt, E., Peters, A.F., 1998. Molecular evidence from nrDNA its sequences that<br />

Laminariocolax (Phaeophyceae, Ectocarpales sensu lato) is a worldwide clade <strong>of</strong> closely<br />

related kelp endophytes. Journal <strong>of</strong> Phycology 34, 682-691.<br />

Buschmann, A.H., Correa, J.A., Beltran, J., Retamales, C.A., 1997. Determinants <strong>of</strong> disease<br />

expression <strong>and</strong> survival <strong>of</strong> infected individual fronds in wild populations <strong>of</strong> Mazzaella<br />

laminarioides (Rhodophyta) in central <strong>and</strong> southern Chile. Marine Ecology Progress Series<br />

154, 269-280.<br />

Buschmann, A.H., Correa, J.A., Westermeier, R., Hern<strong>and</strong>ez-Gonzalez, M.D., Norambuena,<br />

R., 2001. Red algal farming in Chile: a review. Aquaculture 194, 203-220.<br />

Cabioch, J., 1979. A new example <strong>of</strong> hemi-parasitism among the coralline algae<br />

(Rhodophyta): Dermatolithon corallinae (Crouan) Foslie. Comptes rendus hebdomadaires des<br />

seances de l'Academie des sciences Paris, Ser. D, 288, 1378-1387.<br />

Cabioch, J., 1980. The parasitism <strong>of</strong> Choreonema thuretii (Bornet) Schmitz (Rhodophyta,<br />

Corallinaceae) <strong>and</strong> its interpretation. Comptes rendus hebdomadaires des seances de<br />

l'Academie des sciences Paris, Ser. D, 290, 695-720.<br />

38 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Cabioch, J., Guiry, M.D., 1947. Halosacciocolax kjellmanii Lund, Rhodophycèe parasite<br />

nouvelle sur les cote de France. Travaux de la Station biologique de Rosc<strong>of</strong>f 23, 27-39.<br />

Callow, J.A., Callow, M.E., Evans, L.V., 1979. Nutritional studies on the parasitic red alga<br />

Choreocolax polysiphoniae. New Phytologist 83, 451-462.<br />

Campbell S.J., Burridge T.R., 1998. Occurrence <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> (Phaeophyta:<br />

Laminariales) in Port Philip Bay, Victoria, Australia. Marine & Fresh Water Research 49,<br />

379-381.<br />

Cantacuzene, A., 1930. Contribute a l’Etude des Tumeurs Bacteriennes chez les Algues<br />

Marines. Faculty <strong>of</strong> Sciences, University <strong>of</strong> Paris, Paris. pp. 87.<br />

Cardinal, A., Lesage, V., 1992. Repartition des epiphytes Pilayella littoralis (L.) Kjellm. et<br />

Polysiphonia lanosa (L.) T<strong>and</strong>y sur Ascophyllum nodosum (L.) Le Jol. en baie de Fundy<br />

(N.B., Canada). Cahiers de Biologie Marine 33, 125-135.<br />

Casas, G.N., Piriz, M.L., 1996. Surveys <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> (Laminariales, Phaeophyta) in<br />

Golfo Nuevo, Argentgina. Hydrobiologia 326/327, 213-215.<br />

Castric-Fay A., Girard A., L'Hardy-Halos, M.T., 1993. The distribution <strong>of</strong> <strong>Undaria</strong><br />

<strong>pinnatifida</strong> (Phaeophyceae, Laminariales) on the coast <strong>of</strong> St. Malo (Brittany France). Botanica<br />

Marina 36, 351-358.<br />

Cavalier-Smith, T., (1998). A revised six-kingdom system <strong>of</strong> life. Biological Reviews <strong>of</strong> the<br />

Cambridge Philosophical Society 73, 203-266.<br />

Chamberlain, Y.M., 1999. The occurrence <strong>of</strong> Ezo epiyessoense Adey, Masaki & Akioka<br />

(Rhodophyta, Corallinaceae) in Engl<strong>and</strong> with a summary <strong>of</strong> parasitism <strong>and</strong> endophytism in<br />

nongeniculate Corallinaceae. Cryptogamie, Algologie 20, 155-165.<br />

Chang, C.F., Xia, B.M., 1978. Studies on the parasitic red algae <strong>of</strong> China. Studia Marina<br />

Sinica 14, 119-127.<br />

Chapman, R.L., Lang, N.J., 1973. Virus-like particles <strong>and</strong> nuclear inclusions in the red alga<br />

Porphyridium purpureum (Bory) Drew et Ross. Journal <strong>of</strong> Phycology 9, 117-122.<br />

Chen, D., Liu, X.Y., Liu, X.Z., Yu, Y., Yang, Z.H., Qiu, S.H., 1984. Studies on alginic acid<br />

decomposing bacteria. 3. The cause <strong>of</strong> the rot disease <strong>and</strong> detaching <strong>of</strong> Laminaria<br />

sporophytes in sporeling culture stations <strong>and</strong> their preventive measures. Oceanologia et<br />

limnologia sinica/Haiyang Yu Huzhao 15, 581-588.<br />

Chen, J., Cassar, S.C., Zhang, D., Gopalakrishnan, M., 2005. A novel potassium channel<br />

encoded by Ectocarpus siliculosus virus. Biochemical <strong>and</strong> Biophysical Research<br />

Communications 326, 887-893.<br />

Chen, J.X., 1991. Seaweed diseases in phycoculture system. Fish health management in Asia-<br />

Pacific. Report on a regional study <strong>and</strong> Workshop on Fish Disease <strong>and</strong> Fish Health<br />

Management, ADB/NACA, Bangkok, Thail<strong>and</strong>. pp. 583-592.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 39


Chesnoy, L., Jonsson, S., 1989. Halosacciocolax kjellmanii, an Arctic parasite <strong>of</strong> Devaleraea<br />

ramentacea (Palmariales, Rhodophyta): Tetrasporogenesis. Bull. Soc. Bot. Fr., Lett. Bot 136,<br />

45-60.<br />

Chess, J.R., 1993. Effects <strong>of</strong> the stipe-boring amphipod Peramphithoe stypotrupetes<br />

(Corophioidea: Ampithoidae) <strong>and</strong> grazing gastropods on the kelp Laminaria setchellii. Journal<br />

<strong>of</strong> Crustacean Biology 13, 638-646.<br />

Chiovitti, A., Bacic, A., Kraft, G.T., Craik, D.J., Liao, M., 1999. Pyruvated carrageenans from<br />

Solieria robusta <strong>and</strong> its adelphoparasite Tikvahiella c<strong>and</strong>ida. Hydrobiologia 398/399, 400-<br />

405.<br />

Citharel, J., 1972. Contridution l'tude du mtabolisme azot des Algues marines. Utilisation<br />

mtabolique d'acide glutamique - 14C par Ascophyllum nodosum (Linne) Le Jolis et<br />

Polysiphonia lanosa (Linne) T<strong>and</strong>y. Botanica Marina 15, 157-161.<br />

Clitheroe, S.B., Evans, Len V., 1974. Virus-like particle in the brown alga Ectocarpus.<br />

Journal <strong>of</strong> ultrastructure research 49, 211-217.<br />

Cole, R.G., Babcock, R.C., 1996. Mass mortality <strong>of</strong> a dominant kelp (Laminariales) at Goat<br />

Isl<strong>and</strong>, North-eastern New Zeal<strong>and</strong>. Marine & Freshwater Research 47, 907-11.<br />

Coles, J.W., 1958. Nematodes parasitic on sea weeds <strong>of</strong> the genus Ascophyllum <strong>and</strong> Fucus.<br />

Journal <strong>of</strong> the Marine Biological Association <strong>of</strong> the United Kingdom 37, 145-155.<br />

Collantes, S.G., Etcheverry, D.H., 1980. Epiphyte benthic algae (Cyanophyta-Chlorophyta-<br />

Phaeophyta-Rhodophyta) in algae from central Chile.). Anales del Museo de Historia Natural<br />

de Valparaiso 13, 9-18.<br />

Conlan, K.E., Chess, J.R., 1992. Phylogeny <strong>and</strong> ecology <strong>of</strong> a new kelp-boring amphipod,<br />

Peramphitoes stypotrupetes, new species (Corophioidea: Amphithoidae). Journal <strong>of</strong><br />

Crustacean Biology 12, 410-422.<br />

Correa J.A., 1994. Infections by pigmented algal endophytes: misuse <strong>of</strong> concepts <strong>and</strong><br />

terminology. Revista Chilena de Historia Natural 67, 4-8.<br />

Correa, J.A., 1996. Algae infectious diseases: interaction levels <strong>and</strong> the Chilean experience.<br />

In: Bjoerk, M., Semesi, A. K., Pedersen, M., Bergman, B., (Eds.). Current trends in marine<br />

botanical research in the East African region. Proceedings <strong>of</strong> the Symposium on the biology<br />

<strong>of</strong> microalgae, macroalgae <strong>and</strong> seagrasses in the western Indian Ocean. SIDA Marine Science<br />

Program, Department for Research Cooperation, SAREC, Stockholm, Sweden. pp. 25-38.<br />

Correa, J.A., 1997. Infectious diseases <strong>of</strong> marine algae: current knowledge <strong>and</strong> approaches.<br />

Progress in Phycological Research 12, 149-180.<br />

Correa, J.A., Flores, V., 1995. Whitening, thallus decay <strong>and</strong> fragmentation in Gracilaria<br />

chilensis associated with an endophytic amoeba. Journal <strong>of</strong> Applied Phycology 7, 421-425.<br />

Correa, J.A., Martinez, E.A., 1996. Factors associated with host specificity in Sporocladopsis<br />

novae-zel<strong>and</strong>iae (Chlorophyta). Journal <strong>of</strong> Phycology 32, 22-27.<br />

40 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Correa, J.A., McLachlan, J.L., 1991. Endophytic algae <strong>of</strong> Chondrus crispus (Rhodophyta). 3.<br />

Host specificity. Journal <strong>of</strong> Phycology 27, 448-459.<br />

Correa, J.A., McLachlan, J.L., 1992. Endophytic algae <strong>of</strong> Chondrus crispus (Rhodophyta). 4.<br />

Effects on the host following infections by Acrochaete operculata <strong>and</strong> A. heteroclada<br />

(Chlorophyta). Marine Ecology Progress Series 81, 73-87.<br />

Correa, J.A., McLachlan, J.L., 1994. Endophytic algae <strong>of</strong> Chondrus crispus (Rhodophyta). 5.<br />

Fine structure <strong>of</strong> the infection by Acrochaete operculata (Chlorophyta). European Journal <strong>of</strong><br />

Phycology 29, 33-47.<br />

Correa, J.A., Sanchez, P.A., 1996. Ecological aspects <strong>of</strong> algal infectious diseases.<br />

Hydrobiologia 326/327, 89-95.<br />

Correa, J.A., Nielsen, R., Grund, D.W., McLachlan, J.L., 1987. Endophytic algae <strong>of</strong> Irish<br />

Moss (Chondrus crispus Stackh.). Proceedings <strong>of</strong> the International Seaweed Symposium 12,<br />

223-228.<br />

Correa, J.A., Flores, V., Sanchez, P., 1993. Deformative disease in Iridaea laminarioides<br />

(Rhodophyta): Gall development associated with an endophytic cyanobacterium. Journal <strong>of</strong><br />

Phycology 29, 853-860.<br />

Correa, J.A., Flores, V., Garrido, J., 1994. Green patch disease in Iridaea laminarioides<br />

(Rhodophyta) caused by Endophyton sp. (Chlorophyta). <strong>Diseases</strong> <strong>of</strong> Aquatic Organisms 19,<br />

203-213.<br />

Correa, J.A., Buschmann, A., Retamales, C., Beltran, J., 1997. Infectious diseases <strong>of</strong><br />

Mazzaella laminarioides (Rhodophyta): Changes in infection prevalence <strong>and</strong> disease<br />

expression associated with season, locality, <strong>and</strong> within-site location. Journal <strong>of</strong> Phycology 33,<br />

344-352.<br />

Correa, J.A., Faugeron, S., Martinez, E., Nimptsch, J., Paredes, A., 2000. Infectious diseases<br />

in macro-algae: The effect on host fitness. Journal <strong>of</strong> Phycology 36 (s3), 15-16.<br />

Cotton, A.D., 1908. Note on marine phycomycetes. Transactions <strong>of</strong> the British Mycological<br />

Society 3, 92-93.<br />

Court, G.J., 1980. Photosynthesis <strong>and</strong> translocation studies <strong>of</strong> Laurencia spectabilis <strong>and</strong> its<br />

symbiont Janczewskia gardneri (Rhodophyceae). Journal <strong>of</strong> Phycology 16, 270-279.<br />

Craigie, J.S., Correa, J.A., 1996. Etiology <strong>of</strong> infectious diseases in cultivated Chondrus<br />

crispus (Gigartinales, Rhodophyta). Hydrobiologia 326/327, 91-100.<br />

Cribb, A.B., Cribb, J.W., 1956. Marine fungi from Queensl<strong>and</strong> II. University <strong>of</strong> Queensl<strong>and</strong><br />

Papers, Dept. <strong>of</strong> Botany 3, 97-105.<br />

Cribb, A.B., Cribb, J.W., 1960. Some marine fungi on algae in European herbaria. University<br />

<strong>of</strong> Queensl<strong>and</strong> Papers, Dept. <strong>of</strong> Botany 4, 45-48.<br />

Cribb, A.B., Herbert, J.W., 1954. Three species <strong>of</strong> fungi parasitic on marine Algae in<br />

Tasmania. University <strong>of</strong> Queensl<strong>and</strong> Papers, Dept. <strong>of</strong> Botany 3, 9-13.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 41


Dangeard, P.A., 1931a. Observations sur la famille des Labyrinthulees et sur quelques autres<br />

<strong>parasites</strong> des Cladophora. Le Botaniste 24, 217-259.<br />

Dangeard, P.A., 1931b. Sur un Ectocarpus parasite provoquant des tumeurs chez le<br />

Laminaria flexicaulis (Ectocarpus deformans nov. sp.). Comptes rendus hebdomadaires des<br />

seances de l'Academie des sciences 192, 57-60.<br />

Dangeard, P.A., 1970. Réflexions sur quelques Ectocarpales nées en culture et<br />

particulièrement sur les "Streblonema". Le Botaniste 53, 23-61.<br />

Dawson, E.Y., 1944. A new parasitic red alga from southern California. Bull. Torrey bot.<br />

Club 71, 655-657.<br />

Dawson, E.Y., 1945. Notes on Pacific coast marine algae. III. Madroño 8, 93-97.<br />

Deckert, R.J., Garbary, D.J., 2005a. Ascophyllum <strong>and</strong> its symbionts. VI. Microscopic<br />

characterization <strong>of</strong> the Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli<br />

(Ascomycetes) Symbiotum. Algae 20, 225-232.<br />

Deckert, R.J., Garbary, D.J., 2005b. Ascophyllum <strong>and</strong> its symbionts. VIII. Interactions among<br />

Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) <strong>and</strong> Elachista<br />

fucicola (Phaeophyceae). Algae 20, 363-368.<br />

Del Campo, E., Ramazanov, Z., Garcia-Reina, G., Müller, D.G., 1997. Photosynthetic<br />

responses <strong>and</strong> growth performance <strong>of</strong> virus-infected <strong>and</strong> noninfected Ectocarpus siliculosus<br />

(Phaeophyceae). Phycologia 36, 186-189.<br />

Del Campo, E., Garcia-Reina, G., Correa, J.A., 1998. Degradative disease in Ulva rigida<br />

(Chlorophyceae) associated with Acrochaete geniculata (Chlorophyceae). Journal <strong>of</strong><br />

Phycology 34, 160-166.<br />

Delaroque, N., Wolf, S., Müller, D.G., Knippers, R., 2000a. Characterization <strong>and</strong><br />

immunolocalization <strong>of</strong> major structural proteins in the brown algal virus EsV-1. Virology<br />

269, 148-155.<br />

Delaroque, N., Wolf, S., Müller, D.G., Knippers, R., 2000b. The brown algal virus EsV-1<br />

particle contains a putative hybrid histidine kinase. Virology 273, 383-390.<br />

Delaroque, N., Bol<strong>and</strong>, W., Müller, D. G., Knippers, R., 2003. Comparisons <strong>of</strong> two large<br />

phaeoviral genomes <strong>and</strong> evolutionary implications. Journal <strong>of</strong> Molecular Evolution 57, 613-<br />

622.<br />

Dewey, F.M., Donnelly, K.A., Foster, D., 1983. Penicillium waksmanii isolated from a red<br />

seaweed, Eucheuma striatum. Transactions <strong>of</strong> the British Mycological Society 81, 433-434.<br />

Dewey, F.M., Hunter-Blair, C.M., Banbury, G.H., 1984. Isolation <strong>of</strong> Scopulariopsis<br />

brevicaulis from Eucheuma striatum <strong>and</strong> its ability to degrade seaweeds <strong>and</strong> their soluble<br />

products. Transactions <strong>of</strong> the British Mycological Society 83, 621-629.<br />

Ding, H., Ma, J., 2005. Simultaneous infection by red rot <strong>and</strong> chytrid diseases in Porphyra<br />

yezoensis Ueda. Journal <strong>of</strong> Applied Phycology 17, 51-56.<br />

42 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Ding, Meili., 1992. The effects <strong>of</strong> the environmental factors on Laminaria disease caused by<br />

alginic acid decomposing bacteria. Acta Oceanologica Sinica/Haiyang Xuebao 11, 123-130.<br />

Dixon, N.M., Leadbeater, B.S.C., Wood, K.R., 2000. Frequency <strong>of</strong> viral infection in a field<br />

population <strong>of</strong> Ectocarpus fasciculatus (Ectocarpales, Phaeophyceae). Phycologia 39, 258-263.<br />

Dixon, P.S., 1960. Studies on marine algae <strong>of</strong> the British Isles. The genus Ceramium. Journal<br />

<strong>of</strong> the Marine Biological Association <strong>of</strong> the United Kingdom 39, 331-347.<br />

Dodds, J.A., 1979. Viruses <strong>of</strong> marine algae. In: Gerking, S.D., (Ed.). Pathology <strong>of</strong> seaweeds:<br />

current status <strong>and</strong> future prospects, 3rd International Congress <strong>of</strong> Plant Pathology, Munich<br />

(GFR), 17 Aug 1978, Centre for Agricultural Pub. <strong>and</strong> Documentation, Wageningen,<br />

Netherl<strong>and</strong>s. pp. 440-442.<br />

Duboscq, O., 1921. Labyrinthomyxa sauvageaui n.g.n.sp.: Proteomyxee parasite de<br />

Laminaria lejolissi Sauvageau. Comptes rendus Soc. Biol. 84, 30-33.<br />

Dunigan, D.D., Fitzgerald, L.A., Van Etten, J.L., 2006. Phycodnaviruses: A peek at genetic<br />

diversity. Virus Research 117, 119-132.<br />

Easton, L.M., 1995. Ecklonia radiata dieback: the role <strong>of</strong> viral <strong>pathogens</strong>. M.Sc. thesis,<br />

University <strong>of</strong> Auckl<strong>and</strong>, New Zeal<strong>and</strong>. pp 129.<br />

Easton, L.M., Lewis, G.D., Pearson, M.N., 1997. Virus-like particles associated with dieback<br />

symptoms in the brown alga Ecklonia radiata. <strong>Diseases</strong> <strong>of</strong> Aquatic Organisms 30, 217-222.<br />

Edelstein, T., 1972. Halosacciocolax lundii sp. nov., a new red alga parasitic on Rhodymenia<br />

palmata (L.) Grev. British Phycological Journal 7, 249-253.<br />

Edelstein, T., McLachlan, J.L., 1977. On Choreocolax odonthaliae Levring (Cryptonemiales,<br />

Rhodophyceae). Phycologia 16, 287-293.<br />

Ellertsdottir, E., Peters, A., 1995. Massive infection <strong>of</strong> Laminaria sp. on Helgol<strong>and</strong> by<br />

endophytic brown algae. In: Grassle, J.P., Kelsey, A., Oates, E., Snelgrove, P.V., (Eds).<br />

Benthic Ecology Meeting, New Brunswick, NJ, USA. p23.<br />

Ellertsdottir, E., Peters, A. F., 1997. High prevalence <strong>of</strong> infection by endophytic brown algae<br />

in populations <strong>of</strong> Laminaria spp. (Phaeophyceae). Marine Ecology Progress Series 146, 135-<br />

143.<br />

Estee, L.M., 1913. Fungus galls on Cystoseira <strong>and</strong> Halidrys. University <strong>of</strong> California<br />

Publications in Botany 4, 305-316.<br />

Evans, Len V., Callow, J.A., Callow, Maureen E., 1973. Structural <strong>and</strong> physiological studies<br />

on the parasitic red alga Holmsella. New Phytologist 72, 393-402.<br />

Evans, L.V., Callow, J.A., Callow, M.E., 1978. Parasitic red algae: an appraisal. In: Irvine, D.<br />

E. G., Price, J. H., (Eds). Modern approaches to the taxonomy <strong>of</strong> red <strong>and</strong> brown algae,<br />

Academic Press, London. pp. 87-109.<br />

Evans, L.V., Callow, M.E., Callow, J.A., 1981. Host/parasite relationships in seaweeds.<br />

Proceedings <strong>of</strong> the International Seaweed Symposium 8, 167-171.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 43


Ezura, Y., Yamamoto, H., Kimura, T., 1988. Isolation <strong>of</strong> a marine bacterium that produces<br />

red-spots on the culture bed <strong>of</strong> makonbu Laminaria japonica cultivation. Nippon Suisan<br />

Gakkaishi 54, 665-672.<br />

Ezura, Y., Hara, Y., Kimura, T., 1990. A control method for the red-spots injury occurring on<br />

seed twines for the cultivation <strong>of</strong> makonbu Laminaria japonica. Nippon Suisan Gakkaishi 56,<br />

2045-2051.<br />

Fan, K.C., 1961. Studies on Hypneocolax with a discussion on the origin <strong>of</strong> parasitic red<br />

algae. Nova Hedwigia 3, 119-128.<br />

Fan, K.C., Papenfuss, G.F., 1959. Red algal <strong>parasites</strong> occuring on members <strong>of</strong> the Gelidiales.<br />

Madroño 15, 33-38.<br />

Faugeron, S., Martinez, E.A., Sanchez, P.A., Correa, Juan A., 2000. Infectious diseases in<br />

Mazzaella laminarioides (Rhodophyta): estimating the effect <strong>of</strong> infections on host<br />

reproductive potential. <strong>Diseases</strong> <strong>of</strong> Aquatic Organisms 42, 143-148.<br />

Feldmann, G., 1957. Un nouvel ascomycete parasite d’une algue marine: Chadefaudia<br />

marina. Revue Generale de Botanique 64, 140-152.<br />

Feldmann, G., Feldmann, J., 1968. Recherches sur quelques floridees <strong>parasites</strong>. Revue<br />

Génerale de Botanique 65, 49-124.<br />

Feldmann, J., Feldmann, G., 1967. Deux cas de parasitisme sur des algues marines. I Une<br />

amibe parasite du Blidingia chadudefaudii (J. Feldmann) Bliding. II. Le parasitisme d’un<br />

Olpidiopsis sur le Radicilingua reptans (Kylin) Papenfuss. Le Botaniste 50, 185-203.<br />

Felicini, G.P., Perrone, C., 1972. Sulla formazione di galle nella rigeneraziones de<br />

Pterocladia capillacea (Gmel.) Born & Thur. in coltura. Giornale di Botanica Italiana 106,<br />

351-358.<br />

Ferdin<strong>and</strong>sen, C., Winge, O., 1920. A Phyllachlorella parasitic on Sargassum. Mycologia 12,<br />

102-103.<br />

Fletcher R.L., Farrell P., 1998. Introduced brown algae in the North Atlantic, with particular<br />

respect to <strong>Undaria</strong> <strong>pinnatifida</strong> (Harvey) Suringar. Helgol<strong>and</strong>er Meeresuntersuchungen 52,<br />

259-275.<br />

Friess-Klebl, A., Knippers, R., Müller, D.G., 1994. Isolation <strong>and</strong> characterization <strong>of</strong> a DNA<br />

virus infecting Feldmannia simplex (Phaeophyceae). Journal <strong>of</strong> Phycology 30, 653-658.<br />

Fujii, M. T., Guimaraes, S.M.P.B., 1999. Morphological studies <strong>of</strong> the parasitic red alga<br />

Janczewskia moriformis (Rhodomelaceae, Ceramiales) from Brazil. Phycologia 38, 1-7.<br />

Fujita, Y., 1973. Maceration <strong>of</strong> laver frond by enzymes <strong>of</strong> bacteria causing green spot rottinglike<br />

deterioration. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries 39, 911-915.<br />

Fujita, Y., 1990. <strong>Diseases</strong> <strong>of</strong> cultivated Porphyra in Japan. In: Akatsuka, I. (Ed.). Introduction<br />

to Applied Phycology, SPB Academic Publishing, The Hague. pp. 177-190.<br />

44 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Fujita, Y., Zenitani, B., 1976. Studies on pathogenic Pythium <strong>of</strong> laver red rot in Ariake Sea<br />

farm. 1. General mycological characteristics. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific<br />

Fisheries 42, 1183-1188.<br />

Fujita, Y., Zenitani, B., 1977. Studies on pathogenic Pythium <strong>of</strong> laver red rot in Ariake Sea<br />

farm. 2. Experimental conditions <strong>and</strong> nutritional requirements for growth. Bulletin <strong>of</strong> the<br />

Japanese Society <strong>of</strong> Scientific Fisheries 43, 89-95.<br />

Fujita, Y., Zenitani, B., Nakao, Y., Matsubara, T., 1972. Bacteriological studies on diseases <strong>of</strong><br />

cultured laver. II. Bacteria associated with diseased laver. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong><br />

Scientific Fisheries 38, 565-569.<br />

Fuller, M.S., Lewis, B., Cook, P., 1966. Occurrence <strong>of</strong> Pythium sp. on the marine alga<br />

Porphyra. Mycologia 58, 313-318.<br />

Ganesan, E.K., 1970. A new species <strong>of</strong> Gelidiocolax Gardner (Choreocolacaceae,<br />

Rhodophyta) from the Caribbean Sea. Boletin del Instituto Oceanografico, Universidad de<br />

Oriente 9, 93-102.<br />

Garbary, D.J., Kim, K.Y., 2000. Biogeography <strong>and</strong> ecology <strong>of</strong> the kelp/red algal symbiosis.<br />

Journal <strong>of</strong> Phycology 36 (s3), 24-24.<br />

Garbary, D.J., London, J.F., 1995. The Ascophyllum Polysiphonia Mycosphaerella symbiosis<br />

.5. Fungal infection protects A. nodosum from desiccation. Botanica Marina 38, 529-533.<br />

Garbary, D.J., Macdonald, K.A., 1995. The Ascophyllum Polysiphonia Mycosphaerella<br />

symbiosis.4. Mutualism in the Ascophyllum Mycosphaerella interaction. Botanica Marina 38,<br />

221-225.<br />

Garbary, D.J., Burke, J., Lining, T., 1991. The Ascophyllum/Polysiphonia/ Mycosphaerella<br />

symbiosis .II. Aspects <strong>of</strong> the ecology <strong>and</strong> distribution <strong>of</strong> Polysiphonia lanosa. Botanica<br />

Marina 34, 391-401.<br />

Garbary, D.J., Kim, K.Y., Klinger, T., Duggins, D., 1999a. Red algae as hosts for endophytic<br />

kelp gametophytes. Marine Biology 135, 35-40.<br />

Garbary, D.J., Kim, K.Y., Klinger, A., Duggins, D., 1999b. Preliminary observations on the<br />

development <strong>of</strong> kelp gametophytes endophytic in red algae. Hydrobiologia 398/399, 246-274.<br />

Garbary, D.J., Deckert, R.J., Hubbard, C.B., 2001. Three part harmony- Ascophyllum <strong>and</strong> its<br />

symbionts. In: Seckbach, J. (Ed.). Symbiosis: Mechanisms <strong>and</strong> Model Systems, Kluwer,<br />

Dortrecht, The Netherl<strong>and</strong>s. pp. 309-321.<br />

Garbary, D J., Deckert, Ronald J., Hubbard, C.B., 2005. Ascophyllum <strong>and</strong> its symbionts. VII.<br />

Three-way interactions among Ascophyllum nodosum (Phaeophyceae), Mycophycias<br />

ascophylli (Ascomycetes) <strong>and</strong> Vertebrata lanosa (Rhodophyta). Algae 20, 353-361.<br />

Gardner, N.L., 1927. New Rhodophyceae from the Pacific Coast <strong>of</strong> North America. III.<br />

University <strong>of</strong> California Publications in Botany 13, 333-368.<br />

Gäumann, E., 1951. Pflanzliche Infektionslehre. 2 nd edition, Basel, Birkhäuser. pp. 611.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 45


Gerung, G.S., Yamamoto, H., 2002. The taxonomy <strong>of</strong> parasitic genera growing on Gracilaria<br />

(Rhodophyta, Gracilariaceae). In: Abbott, I. A., (Ed.). Taxonomy <strong>of</strong> economic seaweeds with<br />

reference to some Pacific species, Vol VIII. California Sea Grant Coll. Program, La Jolla,<br />

USA. pp. 209-213.<br />

Gerung, G.S., Terada, R., Yamamoto, H., Ohno, M., 1999. An adelphoparasite growing on<br />

Gracilaria edulis (Gracilariaceae Rhodophyta) from Manado, Indonesia. In: Abbott, I. A.<br />

(Ed.). Taxonomy <strong>of</strong> Economic Seaweeds with reference to some Pacific species, Vol VII.<br />

California Sea Grant Coll. Program, La Jolla, USA. pp. 131-136.<br />

Ghirardelli, L. A., 1998. An endolithic cyanophyte in the cell wall <strong>of</strong> calcareous algae.<br />

Botanica Marina 41, 367-373.<br />

Ghittino, P., 1976. International aspects <strong>of</strong> disease control in aquaculture. FAO Technical<br />

Conference on Aquaculture. Kyoto, Japan, 26 May 1976. FAO-FIR:AQ/Conf/76/R.2, FAO,<br />

Rome, Italy. pp. 14.<br />

Gibson, G., Clayton, M.N., 1987. Sexual reproduction, early development <strong>and</strong> branching in<br />

Notheia anomala (Phaeophyta) <strong>and</strong> its classification in the Fucales. Phycologia 26, 363-373.<br />

G<strong>of</strong>f, L.J., 1976. The biology <strong>of</strong> Harveyella mirabilis (Cryptonemiales; Rhodophyceae). V.<br />

Host response to parasite infection. Journal <strong>of</strong> Phycology 12, 313-328.<br />

G<strong>of</strong>f, L.J., 1979. The biology <strong>of</strong> Harveyella mirabilis (Cryptonemiales, Rhodophyceae). VI.<br />

Translocation <strong>of</strong> photoassimilated 14C. Journal <strong>of</strong> Phycology 15, 82-87.<br />

G<strong>of</strong>f, Lynda J., 1982. The biology <strong>of</strong> parasitic red algae. In: Round, F. E., Chapman, D.J.,<br />

(Eds). Progress in Phycological Research, Elsevier, Amsterdam. pp. 1289-1369.<br />

G<strong>of</strong>f, L.J., 1983. Marine algal interactions: epibiosis, endobiosis, parasitism <strong>and</strong> disease. In:<br />

Tseng, C.K. (Ed.). Proceedings <strong>of</strong> the Joint China-U.S. Phycology Symposium, Science Press,<br />

Beijing. pp. 221-274.<br />

G<strong>of</strong>f, L.J., Cole, K., 1973. The biology <strong>of</strong> Harveyella mirabilis (Cryptonemiales,<br />

Rhodophyceae). I. Cytological investigations <strong>of</strong> Harveyella mirabilis <strong>and</strong> its host Odonthalia<br />

floccosa. Phycologia 12, 237-245.<br />

G<strong>of</strong>f, L.J., Cole, K., 1976. The biology <strong>of</strong> Harveyella mirabilis (Cryptonemiales;<br />

Rhodophyceae). IV Life history <strong>and</strong> phenology. Canadian Journal <strong>of</strong> Botany 54, 281-292.<br />

G<strong>of</strong>f, L.J., Coleman, A.W., 1984. Transfer <strong>of</strong> nuclei from a parasite to its host. Proceedings <strong>of</strong><br />

the National Academy <strong>of</strong> Sciences, USA 81, 5420-5424.<br />

G<strong>of</strong>f, L.J., Coleman, A.W., 1985. The role <strong>of</strong> secondary pit connections in red algal<br />

parasitism. Journal <strong>of</strong> Phycology 21, 483-508.<br />

G<strong>of</strong>f, L. J., Coleman, A. W., 1995. Fate <strong>of</strong> parasite <strong>and</strong> host organelle DNA during cellulartransformation<br />

<strong>of</strong> red algae by their <strong>parasites</strong>. Plant Cell 7, 1899-1911.<br />

G<strong>of</strong>f, L.J., Glasgow, J.C., 1980. Pathogens <strong>of</strong> marine algae. Special Publication Number 7.<br />

Santa Cruz, Centre for Coastal Marine Studies, University <strong>of</strong> California. pp. 236.<br />

46 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


G<strong>of</strong>f, L.J., Zuccarello, G., 1994. The evolution <strong>of</strong> parasitism in red algae: Cellular interactions<br />

<strong>of</strong> adelpho<strong>parasites</strong> <strong>and</strong> their hosts. Journal <strong>of</strong> Phycology 30, 695-720.<br />

G<strong>of</strong>f, L.J., Moon, D.A., Nyvall, P., Stache, B., Mangin, K., Zuccarello, G., 1996. The<br />

evolution <strong>of</strong> parasitism in the red algae: Molecular comparisons <strong>of</strong> adelpho<strong>parasites</strong> <strong>and</strong> their<br />

hosts. Journal <strong>of</strong> Phycology 32, 297-312.<br />

G<strong>of</strong>f, L.J., Ashen, J., Moon, D., 1997. The evolution <strong>of</strong> <strong>parasites</strong> from their hosts: A case<br />

study in the parasitic red algae. Evolution 51, 1068-1078.<br />

Gonzalez, M. A., G<strong>of</strong>f, Lynda J., 1989. The red algal epiphytes Microcladia coulteri <strong>and</strong> M.<br />

californica (Rhodophyceae, Ceramiaceae). II. Basiphyte specifity. Journal <strong>of</strong> Phycology 25,<br />

558-567.<br />

Guimaraes, S.M.P.B., 1993. Morphology <strong>and</strong> systematics <strong>of</strong> the red algal parasite<br />

Dawsoniocolax bostrychiae (Choreocolacaeae, Rhodophyta). Phycologia 32, 251-258.<br />

Guiry, M.D., 1974. The occurrence <strong>of</strong> the red algal parasite Halosacciocolax lundii Edelstein<br />

in Britain. British Phycological Journal 9, 31-35.<br />

Guiry, M.D., 1975. Halosacciocolax kjellmanii Lund parasitic on Palmaria palmata forma<br />

mollis(S. et G.) Guiry in the eastern North Pacific. Syesis 8, 113-117.<br />

Guiry, M.D., Guiry, G.M., 2007. AlgaeBase. World-wide electronic publication, National<br />

University <strong>of</strong> Irel<strong>and</strong>, Galway. http://www.algaebase.org<br />

Haggitt, T.R., Babcock, R.C., 2003. The role <strong>of</strong> grazing by the lysianassid amphipod<br />

Orchomenella aahu in dieback <strong>of</strong> the kelp Ecklonia radiata in north-eastern New Zeal<strong>and</strong>.<br />

Marine Biology 143, 1201-1221.<br />

Hansen, J.R., Lein, T.E., 1984. New records <strong>of</strong> Halosacciocolax kjellmanii Lund<br />

(Rhodophyceae) in Norway. Sarsia 69, 215-217.<br />

Harlin, M M., Craigie, J S., 1975. The distribution <strong>of</strong> photosynthate in Ascophyllum nodosum<br />

as it relates to epiphytic Polysiphonia lanosa. Journal <strong>of</strong> Phycology 11, 109-113.<br />

Harvell, C.D., Kim, K., Burkholder, J.M., Colwell, R.R., Epstein, P.R., Grimes, D.J.,<br />

H<strong>of</strong>mann, E.E., Lipp, E.K., Osterhaus, A.D.M.E., Overstreet, R.M., Porter, J.W., Smith,<br />

G.W., Vasta, G.R., 1999. Emerging Marine <strong>Diseases</strong> - Climate links <strong>and</strong> Anthropogenic<br />

factors. Science 285, 1505-1510.<br />

Harvey, A.S., Woelkerling, W.J., 1995. An account <strong>of</strong> Austrolithon intumescens gen. et sp.<br />

nov. <strong>and</strong> Boreolithon van-heurckii (Heydrich) gen. et comb. nov. (Austrolithoideae subfam.<br />

nov., Corallinaceae, Rhodophyta). Phycologia 34, 362-382.<br />

Hay, C., 1978. Growth, mortality, longevity <strong>and</strong> st<strong>and</strong>ing crop <strong>of</strong> Durvillaea antarctica<br />

(Phaeophyceae) in New Zeal<strong>and</strong>. Proceedings <strong>of</strong> the International Seaweed Symposium 9,<br />

997-104.<br />

Hay, C.H., 1990. The dispersal <strong>of</strong> sporophytes <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> by coastal shipping in<br />

New Zeal<strong>and</strong> <strong>and</strong> implications for further dispersal <strong>of</strong> <strong>Undaria</strong> in France. British<br />

Phycological Journal 25, 301-313.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 47


Hay, C.H., Luckens, P.A., 1987. The Asian kelp <strong>Undaria</strong> <strong>pinnatifida</strong> (Phaeophyta;<br />

Laminariales) found in a New Zeal<strong>and</strong> harbour. New Zeal<strong>and</strong> Journal <strong>of</strong> Botany 25, 329-332.<br />

Hayashi, S., Sakata, T., Ooshiro, Z., Kito, H., 1984. Enzymes digesting the crude fiber<br />

isolated from cultured nori (Porphyra sp.). Memoirs <strong>of</strong> the Faculty <strong>of</strong> Fisheries, Kagoshima<br />

University 33, 107-113.<br />

Haythorn, J.M., Jones, E.B.G., Harrison, J.L., 1980. Observations on marine algicolous fungi,<br />

including the hyphomycete Sigmoidea marina sp. nov. Trans. Br. Mycol. Soc. 74, 615-623.<br />

Heesch, S., 2005. Endophytic Phaeophyceae from New Zeal<strong>and</strong>. A thesis submitted for the<br />

degree <strong>of</strong> Doctor <strong>of</strong> Philosophy at the University <strong>of</strong> Otago, Dunedin, New Zeal<strong>and</strong>. pp. 365.<br />

Heesch, S., Peters, A. F., 1999. Scanning electron microscopy observation <strong>of</strong> host entry by<br />

two brown algae endophytic in Laminaria saccharina (Laminariales, Phaeophyceae).<br />

Phycological Research 47, 1-5.<br />

Henry, E.C., Meints, R.H., 1992. A persistent virus infection in Feldmannia (Phaeophyceae).<br />

Journal <strong>of</strong> Phycology 28, 517-526.<br />

Henry, E.C., Meints, R.H., 1994. Recombinant viruses as transformation vectors <strong>of</strong> marine<br />

macroalgae. Journal <strong>of</strong> Applied Phycology 6, 247-253.<br />

Heydrich, F., 1893. Pleurostichidium, ein neues Genus der Rhodomeleen. Ber. dt. bot. Ges.<br />

11, 44-348.<br />

Ho, J-., Hong, J-S., 1988. Harpacticoid copepods (Thalestridae) infesting the cultivated<br />

Wakame (brown alga, <strong>Undaria</strong> <strong>pinnatifida</strong>) in Korea. Journal <strong>of</strong> Natural History 22, 1623-<br />

1637.<br />

Huang, Jian., Tang, Xuexi., Liu, Tao., Duan, Delin., Jiang, Ming., Li, Yongqi., 2002a.<br />

Observation on ultrastructure <strong>of</strong> Laminaria japonica during the alginic acid decomposing<br />

bacteria infection. Marine sciences/Haiyang Kexue 26, 50-52.<br />

Huang, Jian., Tang, Xuexi., Liu, Tao., Li, Yingqi., 2002b. Alteration <strong>of</strong> activated oxygen <strong>and</strong><br />

antioxidant system in kelp during alginic acid decomposing bacteria infection. Journal <strong>of</strong><br />

Ocean University <strong>of</strong> Qingdao/Qingdao Haiyang Daxue Xuebao 32, 574-578.<br />

Hubbard, C.B., Garbary, D.L., Kim, K.Y., Chiasson, D.M., 2004. Host specifity <strong>and</strong> growth<br />

<strong>of</strong> kelp gametophytes in symbiotic with filamentous red algae (Ceramiales, Rhodophyta).<br />

Helgol. Mar. Res. 58, 18-25.<br />

Hurtado, A.Q., Critchley, A.T., 2006. Seaweed industry <strong>of</strong> the Phillipines <strong>and</strong> the problem <strong>of</strong><br />

epiphytism in Kappaphycus farming. In: Phang, S. M., Critchley, A. T., Ang, P.O., (Eds).<br />

Advances in seaweed cultivation <strong>and</strong> utilisation in Asia, University <strong>of</strong> Malaya, Kuala<br />

Lumpur. pp. 21-28.<br />

Hurtado, A.Q., Critchley, A. T., Trespoey, A., Bleicher Lhonneur, G., 2006. Occurrence <strong>of</strong><br />

Polysiphonia epiphytes in Kappaphycus farms at Calaguas Is., Camarines Norte, Phillippines.<br />

Journal <strong>of</strong> Applied Phycology 18, 301-306.<br />

48 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Hyde, K.D., Gareth Jones, E.B., Leano, E., Pointing, S.B., Poonyth, A.D., Vrijmoed, L.L.P.,<br />

1998. Role <strong>of</strong> fungi in marine ecosystems. Biodiversity <strong>and</strong> Conservation 7, 1147-1161.<br />

Iima, M., Tatewaki, M., 1987. On the life history <strong>and</strong> host-specifity <strong>of</strong> Blastophysa rhizopus<br />

(Codiales, Chaetosiphonaceae), an endophytic green alga from Muroran in laboratory<br />

cultures. Japanese Journal <strong>of</strong> Phycology 4, 241-250.<br />

Ishikawa, Y., Saga, N., 1989. <strong>Diseases</strong> <strong>of</strong> economically valuable seaweeds <strong>and</strong> their<br />

pathology in Japan. Proceedings <strong>of</strong> the First International Marine Biotechnology Conference<br />

(IMBC '89), Tokyo, Japan. pp. 215-218.<br />

Ivanova, E.P., Sawabe, T., Alexeeva, Y.V., Lysenko, A.M., Gorshkova, N.M., Hayashi, K.,<br />

Zukova, N.V., Christen, R., Mikhailov, V.V., 2002. Pseudoalteromonas issachenkonii sp<br />

nov., a bacterium that degrades the thallus <strong>of</strong> the brown alga Fucus evanescens. International<br />

Journal <strong>of</strong> Systematic <strong>and</strong> Evolutionary Microbiology 52, 229-234.<br />

Jaffray, A.E., Coyne, V.E., 1996. Development <strong>of</strong> an in situ assay to detect bacterial<br />

<strong>pathogens</strong> <strong>of</strong> the red alga Gracilaria gracilis (Stackhouse) Steent<strong>of</strong>t, Irvine et Farnham.<br />

Journal <strong>of</strong> Applied Phycology 8, 409-414.<br />

Jaffray, A. E., Anderson, R. J., Coyne, V. E., 1997. Investigation <strong>of</strong> bacterial epiphytes <strong>of</strong> the<br />

agar-producing red seaweed Gracilaria gracilis (Stackhouse) Steent<strong>of</strong>t, Irvine et Farnham<br />

from Saldanha Bay, South Africa <strong>and</strong> Luederitz, Namibia. Botanica Marina 40, 569-576.<br />

Jiang, Jingying., Ma, Yuexin., Zhang, Zeyu., Xu, Hang., 1997. The histopathological study on<br />

"green decay diseases" <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> in Dalian. Journal <strong>of</strong> Dalian Fisheries<br />

University/Dalian Shuichan Xueyuan Xuebao 12, 7-12.<br />

Joly, A.B., 1965. Centrerocolax, a new parasitic genus <strong>of</strong> the Rhodophyceae. Rickia 2, 73-77.<br />

Joly, A.B., Yamaguishi-Tomita, N., 1965a. Dawsoniella bostrychiae, a new parasitic on<br />

mangrove algae. Sellowia 19, 63-70.<br />

Joly, A.B., Yamaguishi-Tomita, N., 1965b. Notes on Dawsoniella Joly & Yamaguishi-<br />

Tomita. Rickia 4, 209-210.<br />

Johnson, T.W., Sparrow, F.K., 1961. Fungi in Oceans <strong>and</strong> Estuaries. Cramer, Weinheim, pp<br />

668.<br />

Jones, E.B.G., 1976. Lignicolous <strong>and</strong> algicolous fungi. In: Jones, E.B.G., (Ed.). Recent<br />

advances in aquatic mycology, Wiley <strong>and</strong> Sons, New York. pp. 1-49.<br />

Jonsson, S., Chesnoy, L., 1988. Halosacciocolax kjellmanii, an arctic parasite <strong>of</strong> Devaleraea<br />

ramentacea (Palmariales, Rhodophyta): Organization <strong>and</strong> host-parasite relations. Bull. Soc.<br />

Bot. Fr., Lett. Bot 135, 211-227.<br />

Kang, J.W., 1982. Some seaweed diseases occurred at seaweed farms along the south-eastern<br />

coast <strong>of</strong> Korea. Bulletin <strong>of</strong> the Korean Fisheries Society 14, 165-170.<br />

Kapp, M., 1998. Viruses infecting marine brown algae. Virus Genes 16, 111-117.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 49


Kapp, M., Knippers, R., Müller, D.G., 1997. New members <strong>of</strong> a group <strong>of</strong> DNA viruses<br />

infecting brown algae. Phycological Research 45, 85-90.<br />

Karling, J.S., 1943. The life history <strong>of</strong> Anisolpidium ectocarpii gen. nov. et nov. <strong>and</strong> a<br />

synopsis <strong>and</strong> classifiction <strong>of</strong> othe fungi with anteriorly uniflagellate zoospores. American<br />

Journal <strong>of</strong> Botany 30, 637-648.<br />

Karling, J.S., 1968. Some zoosporic fungi <strong>of</strong> New Zeal<strong>and</strong>. XIII. Traustochytriaceae,<br />

Saprolegniaceae <strong>and</strong> Puthiaceae. Sydowia 20, 226-234.<br />

Kato, S., Watanabe, T., Sato, Y., 1973a. Studies on the diseases <strong>of</strong> cultures Porphyra VI.<br />

Nutritional behaviour <strong>of</strong> the causal fungus <strong>of</strong> the red wasting disease <strong>of</strong> Nori. Bulletin <strong>of</strong> the<br />

Japanese Society <strong>of</strong> Scientific Fisheries 39, 771-775.<br />

Kato, S., Watanabe, T., Sato, Y., 1973b. Studies on the diseases <strong>of</strong> cultures Porphyra VII. A<br />

comparison <strong>of</strong> physiological properties among the different isolates <strong>of</strong> the causal fungus <strong>of</strong><br />

the Red Wasting Disease. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries 39, 859-865.<br />

Kawaguchi, S., Yoshida, T., 1986. On the systematic position <strong>of</strong> the parasitic red alga<br />

Kintokiocolax aggregatocerantha Tanaka et Y. Nozawa. Japanese Journal <strong>of</strong> Phycology 34,<br />

311-318.<br />

Kawai, H., Tokuyama, M., 1995. Laminarionema elsbetiae gen. et sp. nov. (Ectocarpales,<br />

Phaeophyceae), a new endophyte in Laminaria sporophytes. Phycological Research 43, 185-<br />

190.<br />

Kazama, F., 1972. Development <strong>and</strong> morphology <strong>of</strong> a chytrid isolated from Bryopsis<br />

plumosa. Canadian Journal <strong>of</strong> Botany 50, 499-505.<br />

Kazama, F.Y., 1979. Pythium 'red rot disease' <strong>of</strong> Porphyra. In: Gerking, S.D., (Ed.).<br />

Pathology <strong>of</strong> seaweeds: current status <strong>and</strong> future prospects, 3rd International Congress <strong>of</strong><br />

Plant Pathology, Munich (GFR), 17 Aug 1978, Centre for Agricultural Pub. <strong>and</strong><br />

Documentation, Wageningen, Netherl<strong>and</strong>s. pp. 443-444.<br />

Kazama, F.Y., Fuller, M.S., 1970. Ultrastructure <strong>of</strong> Porphyra perforata infected with Pythium<br />

marinum, a marine fungus. Canadian Journal <strong>of</strong> Botany 48, 2103-2107.<br />

Keats, D.W., 1995. Lithophyllum cuneatum sp. nov. (Corallinaceae, Rhodophyta), a new<br />

species <strong>of</strong> non-geniculate coralline alga semi-endophytic in Hydrolithon onkodes <strong>and</strong><br />

Neogoniolithon sp. from Fiji, South Pacific. Phycological Research 43, 151-160.<br />

Kerwin, J.L., Johnson, L.M., Whisler, H.C., Tuininga, A.R., 1992. Infection <strong>and</strong><br />

morphogenesis <strong>of</strong> Pythium marinum in species <strong>of</strong> Porphyra <strong>and</strong> other red algae. Canadian<br />

Journal <strong>of</strong> Botany 70, 1017-1024.<br />

Kimura, T., Ezura, Y., Tajima, K., 1976. Microbiological study <strong>of</strong> a disease <strong>of</strong> Wakame<br />

(<strong>Undaria</strong> <strong>pinnatifida</strong>) <strong>and</strong> <strong>of</strong> the marine environments <strong>of</strong> Wakame culture sites in Kesennuma<br />

Bay. Bulletin <strong>of</strong> the Tokohu Regional Fisheries Research Laboratory 36, 57-65.<br />

Kingham, D.L., Evans, L.V., 1986. The Pelvetia-Mycosphaerella interrelationship. In: Moss,<br />

S.T., (Ed.). The Biology <strong>of</strong> Marine Fungi, Cambridge University Press, Cambridge. pp. 177-<br />

187.<br />

50 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Kito, H., Akiyama, K., Sasaki, M., 1976. Electron microscopic observations on the diseased<br />

thalli <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> (Harvey) Suringar, caused by parasitic bacteria. Bulletin <strong>of</strong> the<br />

Tokohu Regional Fisheries Research Laboratory 36, 67-73.<br />

Klein, M., Lanka, S.T.J., Knippers, R., Müller, D.G., 1995. Coat protein <strong>of</strong> the Ectocarpus<br />

siliculosus Virus. Virology 206, 520-526.<br />

Kohlmeyer, J., 1963a. The importance <strong>of</strong> fungi in the sea. In: Oppenheimer, C. H., (Ed.).<br />

Symposium on Marine Microbiology, Charles C Thomas Publ., Springfield, Illinois. pp. 300-<br />

314.<br />

Kohlmeyer, J., 1963b. Parasitische und epiphytische Pilze auf Meeresalgen. Nova Hedwigia<br />

6, 127-146.<br />

Kohlmeyer, J., 1968. Revisions <strong>and</strong> descriptions <strong>of</strong> algicolous marine fungi.<br />

Phytopathologische Zeitschrift 63, 341-363.<br />

Kohlmeyer, J., 1971. Fungi from the Sargasso Sea. Marine Biology 8, 344-350.<br />

Kohlmeyer, J., 1972. Parasitic Haloguignardia oceanica (Ascomycetes) <strong>and</strong> hyperparasitic<br />

Sphaceloma cecidii sp. nov. (Deuteromycetes) in drift Sargassum in North Carolina. Journal<br />

<strong>of</strong> the Elisha Mitchell Science Society 88, 255-259.<br />

Kohlmeyer, J., 1973a. Fungi from marine algae. Botanica Marina 16, 201-215.<br />

Kohlmeyer, J., 1973b. Chadefaudia balliae, a new species <strong>of</strong> ascomycetes on Ballia in<br />

Australia. Mycologia 65, 244-246.<br />

Kohlmeyer, J., 1973c. Spathulosporales, a new order <strong>and</strong> possible missing link between<br />

Laboulbeniales <strong>and</strong> Pyrenomycetes. Mycologia 65, 614-647.<br />

Kohlmeyer, J., 1974. Higher fungi as <strong>parasites</strong> <strong>and</strong> symbionts <strong>of</strong> algae. Veroeffentlichungen<br />

des Instituts fuer Meeresforschung in Bremerhaven. Sonderb<strong>and</strong> Suppl. 5, 338-356.<br />

Kohlmeyer, J., 1975. New clues to the possible origin <strong>of</strong> ascomycetes. Biosci 25, 86-93.<br />

Kohlmeyer, J., 1979. Marine fungal <strong>pathogens</strong> among Ascomycetes <strong>and</strong> Deuteromycetes. In:<br />

Gerking, S. D. (Ed.). Pathology <strong>of</strong> seaweeds: current status <strong>and</strong> future prospects, 3rd<br />

International Congress <strong>of</strong> Plant Pathology, Munich (GFR), 17 Aug 1978, Centre for<br />

Agricultural Pub. <strong>and</strong> Documentation, Wageningen, Netherl<strong>and</strong>s. pp. 437-439.<br />

Kohlmeyer, J., Demoulin, V., 1981. Parasitic <strong>and</strong> symbiotic fungi on marine algae. Botanica<br />

Marina 24, 9-18.<br />

Kohlmeyer, J., Kohlmeyer, E., 1972. Is Ascophyllum nodosum lichenized? Botanica Marina<br />

15, 109-112.<br />

Kohlmeyer, J., Kohlmeyer, E., 1973. A new genus <strong>of</strong> marine Ascomycetes on Ulva vexata<br />

Setch. et Gard.. Botanische Jahrbücher für Systematik, Pflanzengeschichte und<br />

Pflanzengeographie 98, 429-432.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 51


Kraft, G.T., 2003. The morphology <strong>of</strong> Ostiophyllum sonderopeltae gen. et sp. nov.<br />

(Gigartinaceae, Rhodophyta) from south-eastern Australia. Phycologia 42, 18-25.<br />

Kraft, G. T., Abbott, I.A., 2002. The anatomy <strong>of</strong> Neotenophycus ichthyosteus gen. et sp. nov.<br />

(Rhodomelaceae, Ceramiales), a bizarre red algal parasite from the central Pacific. European<br />

Journal <strong>of</strong> Phycology 37, 269-278.<br />

Kraft, G. T., Gabrielson, P.W., 1983. Tikvahiella c<strong>and</strong>ida gen. et sp.nov. (Solieriaceae,<br />

Rhodophyta), a new adelphoparasite from southern Australia. Phycologia 22, 47-57.<br />

Kremer, B.P., 1975. Physiological <strong>and</strong> chemical characteristics <strong>of</strong> different thallus regions <strong>of</strong><br />

Fucus serratus. Helgol. Wiss. Meeresunters 27, 115-127.<br />

Kremer, B.P., 1983. Carbon economy <strong>and</strong> nutrition <strong>of</strong> the alloparasitic red alga Harveyella<br />

mirabilis. Marine Biology 76, 231-239.<br />

Krueger, S.K., Ivey, R.G., Henry, E.C., Meints, R.H., 1996. A brown algal virus genome<br />

contains a ''RING'' zinc finger motif. Virology 219, 301-303.<br />

Kugrens, P., 1982. Leachiella pacifica, gen. et sp. nov, a new parasitic red alga from<br />

Washington <strong>and</strong> California. American Journal <strong>of</strong> Botany 69, 306-319.<br />

Kugrens, P., West, J.A., 1972a. Ultrastructure <strong>of</strong> spermatial development in the parasitic red<br />

algae Levringiella gardneri <strong>and</strong> Erythocystis saccata. Journal <strong>of</strong> Phycology 8, 331-343.<br />

Kugrens, P., West, J.A., 1972b. Ultrastructure <strong>of</strong> tetrasporogenesis in the parasitic red alga<br />

Levringiella gardneri (Setchell) Kylin. Journal <strong>of</strong> Phycology 8, 370-383.<br />

Kugrens, P., West, J.A., 1973a. The ultrastructure <strong>of</strong> carpospore differentiation in the parasitic<br />

red alga Levringiella gardneri (Setchell) Kylin. Phycologia 12, 163-173.<br />

Kugrens, P., West, J.A., 1973b. The ultrastructure <strong>of</strong> an alloparasitic red alga Choreocolax<br />

polysiphoniae. Phycologia 12, 175-186.<br />

Kuhlenkamp, R., Müller, D.G., 1994. Isolation <strong>and</strong> regeneration <strong>of</strong> protoplasts from healthy<br />

<strong>and</strong> virus-infected gametophytes <strong>of</strong> Ectocarpus siliculosus (Phaeophyceae). Botanica Marina<br />

37, 525-530.<br />

Küpper, F.C., 2001. New record <strong>of</strong> Anisolpidium rosenvingei (H.E.Petersen) Karling in<br />

Irel<strong>and</strong>. Irish Naturalists' Journal 26, 470-471.<br />

Küpper, F.C., Müller, D.G., 1999. Massive occurrence <strong>of</strong> the heterokont <strong>and</strong> fungal <strong>parasites</strong><br />

Anisolpidium, Eurychasma <strong>and</strong> Chytridium in Pylaiella littoralis (Ectocarpales,<br />

Phaeophyceae). Nova Hedwigia 69, 381-389.<br />

Küpper, F.C., Kloareg, B., Guern, J., Potin, P., 2001. Oligoguluronates elicit an oxidative<br />

burst in the brown algal kelp Laminaria digitata. Plant Physiology 125, 278-291.<br />

Küpper, F.C., Müller, D.G., Peters, A.F., Kloareg, B., Potin, P., 2002. Oligoalginate<br />

recognition <strong>and</strong> oxidative burst play a key role in natural <strong>and</strong> induced resistance <strong>of</strong><br />

sporophytes <strong>of</strong> Laminariales. Journal <strong>of</strong> Chemical Ecology 28, 2057-2081.<br />

52 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Küpper, F.C., Gaquerel, E., Boneberg, E.M., Morath, S., Salaun, J.P., Potin, P., 2006a. Early<br />

events in the perception <strong>of</strong> lipopolysaccharides in the brownalga Laminaria digitata include<br />

an oxidative burst <strong>and</strong> activation <strong>of</strong> fatty acid oxidation cascades. Journal <strong>of</strong> experimental<br />

Botany 59, 1991-1999.<br />

Küpper, F.C., Maier, I., Müller, D.G., Goer, S.L.D., Guillou, L., 2006b. Phylogenetic<br />

affinities <strong>of</strong> two eukaryotic <strong>pathogens</strong> <strong>of</strong> marine macroalgae, Eurychasma dicksonii (Wright)<br />

Magnus <strong>and</strong> Chytridium polysiphoniae Cohn. Cryptogamie, Algologie 27, 165-184.<br />

Kylin, H., 1930. Über die Entwicklungsgeschichte der Florideen. Acta Univ. lund., N.F. Avd.<br />

2 26 (6), 1-104.<br />

Kylin, H., 1941. Californische Rhodophyceen. Acta Univ. lund., N.F. Avd. 2 37 (2), 1-71.<br />

Kylin, H., 1956. Die Gattungen der Rhodophyceen. CWK Gleerups Forlag, Lund, Malmo, pp.<br />

666.<br />

Kylin, H., Skottsberg, C., 1919. Zur Kenntnis der subantarktischen und antarktischen<br />

Meeresalgen. II. Rhodophyceen. In: Nordenskjld, O. (Ed.). Wissenschaftliche Ergebnisse der<br />

Schwedischen Südpolar-Expedition 1901-1903 unter Leitung von Dr. Otto Nordenskjld,<br />

Lithographisches Institut des Generalstabs, Stockholm: 4(15): pp 88.<br />

La Claire, J. W., West, J.A., 1977. Virus-like particles in the brown alga Streblonema.<br />

Protoplasma 93, 127-130.<br />

Lane, C.E., Saunders, G.W., 2005. Molecular investigation reveals epi/endophytic<br />

extrageneric kelp (Laminariales, Phaeophyceae) gametophytes colonizing Lessoniopsis<br />

littoralis thalli. Botanica Marina 48, 426-436.<br />

Lanka, S.T.J., Klein, M., Ramsperger, U., Müller, D.G., Knippers, R., 1993. Genome<br />

structure <strong>of</strong> a virus infecting the marine brown alga Ectocarpus siliculosus. Virology 193,<br />

802-811.<br />

Largo, D.B., 2006. <strong>Diseases</strong> in cultivated seaweeds in the Phillipines: Is it an issue among<br />

seaweed industry players? In: Phang, S.M., Critchley, A.T., Ang, P.O., (Eds). Advances in<br />

seaweed cultivation <strong>and</strong> utilisation in Asi, University <strong>of</strong> Malaya, Kuala Lumpur. pp. 61-70<br />

Largo, D.B., Fukami, K., Nishijima, T., 1995a. Occasional pathogenic bacteria promoting iceice<br />

disease in the carrageenan-producing red algae Kappaphycus alvarezii <strong>and</strong> Eucheuma<br />

denticulatum (Solieriaceae, Gigartinales, Rhodophyta). Journal <strong>of</strong> Applied Phycology 7, 545-<br />

554.<br />

Largo, D.B., Fukami, K., Nishijima, T., Ohno, M., 1995b. Notes on the thalli whitening called<br />

ice-ice in red algae, Eucheuma/Kappaphycus <strong>and</strong> Gracilaria. Bulletin <strong>of</strong> Marine Science 15,<br />

39-42.<br />

Largo, D.B., Fukami, K., Nishijima, T., 1999. Time-dependent attachment mechanism <strong>of</strong><br />

bacterial pathogen during ice-ice infection in Kappaphycus alvarezii (Gigartinales,<br />

Rhodophyta). Journal <strong>of</strong> Applied Phycology 11, 129-136.<br />

Larpent-Gourgaud, M., Ducher, M., 1977. Isolation <strong>and</strong> identification <strong>of</strong> polluting bacteria <strong>of</strong><br />

a Rhodophyta (Acrochaetium sp.). Bull. Soc. Phycol. France 22, 35-39.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 53


Lee, A.M., Ivey, R.G., Henry, E.C., Meints, R.H., 1995. Characterization <strong>of</strong> a repetitive DNA<br />

element in a brown algal virus. Virology 212, 474-480.<br />

Lee, A.M., Ivey, R.G., Meints, R.H., 1998. The DNA polymerase gene <strong>of</strong> a brown algal virus:<br />

Structure <strong>and</strong> phylogeny. Journal <strong>of</strong> Phycology 34, 608-615.<br />

Lee, I.K., Kurogi, M., 1978. Neohalosacciocolax aleutica gen. et sp.nov. (Rhodophyta),<br />

parasitic on Halosaccion minjaii I. K. Lee from the North Pacific. British Phycological<br />

Journal 13, 131-139.<br />

Lee, T.F., Kugrens, P., 2003. An obligate (?) heterokont biflagellate parasite in Codium<br />

fragile. Journal <strong>of</strong> Phycology 39 (s1), 33-33.<br />

Lein, T.E., Sjoetun, K., Wakili, S., 1991. Mass-occurrence <strong>of</strong> a brown filamentous endophyte<br />

in the lamina <strong>of</strong> the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern<br />

coast <strong>of</strong> Norway. Sarsia 76, 187-193.<br />

Leonardi, P.I., Miravalles, A.B., Faugeron, S., Flores, V., Beltran, J., Correa, J.A., 2006.<br />

Diversity, phenomenology <strong>and</strong> epidemiology <strong>of</strong> epiphytism in farmed Gracilaria chilensis<br />

(Rhodophyta) in northern Chile. European Journal <strong>of</strong> Phycology 41, 247-257.<br />

Lining, T., Garbary, D.J., 1992. The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. 3.<br />

Experimental studies on the interactions between P. lanosa <strong>and</strong> A. nodosum. Botanica Marina<br />

35, 341-349.<br />

Littler, M.M., Littler, D.S., 1995. Impact <strong>of</strong> CLOD pathogen on Pacific coral reefs. Science<br />

(Washington) 267, 1356-1360.<br />

Littler, M.M., Littler, D.S., 1997. An undescribed fungal pathogen <strong>of</strong> reef-forming crustose<br />

coralline algae discovered in American Samoa. Coral Reefs 17, 144-144.<br />

Liu, Chengsheng., Wang, Lili., Wang, Meng., Tang, Xuexi., 2002. Difference analysis <strong>of</strong><br />

infection activity <strong>of</strong> alginic acid decomposing bacteria infecting Laminaria japonica. Marine<br />

sciences/Haiyang Kexue 26, 44-47.<br />

Liu, Shujin., Pan, Xiulian., Wang, Chunsheng., Yue, Houjun., 2003. Surveying <strong>and</strong> analysis<br />

<strong>of</strong> diseases <strong>of</strong> aquacultured species in Sh<strong>and</strong>ong. Transactions <strong>of</strong> oceanology <strong>and</strong><br />

limnology/Haiyang Huzhao Tongbao 97 (3), 78-88.<br />

Lobban, C.S., Baxter, D.M., 1983. Distribution <strong>of</strong> the red algal epiphyte Polysiphonia lanosa<br />

on its brown algal host, Ascophyllum nodosum in the Bay <strong>of</strong> Fundy, Canada. Botanica Marina<br />

26, 533-538.<br />

Lund, S., 1959. The marine algae <strong>of</strong> East Greenl<strong>and</strong>. I. Taxonomical part. Meddr Grnl<strong>and</strong><br />

156, 1-247.<br />

Ma, Yuexin., Zhang, Zeyu., Fan, Chunjiang., Cao, Shanmao., 1997a. Study on the pathogenic<br />

bacteria <strong>of</strong> spot decay disease <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> in Dalian. Journal <strong>of</strong> fishery sciences <strong>of</strong><br />

China/Zhongguo Shuichan Kexue 4, 62-65.<br />

54 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Ma, Yuexin., Zhang, Zeyu., Liu, Changfa., Fan, Chunjiang., Cao, Shanmao., 1997b. Study on<br />

the pathogenic bacteria <strong>of</strong> green decay disease <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> in Dalian. Journal <strong>of</strong><br />

fishery sciences <strong>of</strong> China/Zhongguo Shuichan Kexue 4, 66-69.<br />

Ma, Yuexin., Yang, Zhiping., Wan, Li., Ge, Muxiang., Zhang, Kai., 1998. Pathogenic bacteria<br />

<strong>of</strong> spot decay disease found in <strong>Undaria</strong> <strong>pinnatifida</strong>. Proceedings <strong>of</strong> International Symposium<br />

on Progress <strong>and</strong> Prospect <strong>of</strong> Marine Biotechnology (ISPPMB '98), Qingdao, China. pp. 356-<br />

360.<br />

Maier, I., Müller, D.G., 1998. Virus binding to brown algal spores <strong>and</strong> gametes visualized by<br />

DAPI fluorescence microscopy. Phycologia 37, 60-63.<br />

Maier, I., Rometsch, E., Wolf, S., Kapp, M., Müller, D.G., 1997. Passage <strong>of</strong> a marine brown<br />

algal DNA virus from Ectocarpus fasciculatus (Ectocarpales, Phaeophyceae) to Myriotrichia<br />

clavaeformis (Dictyosiphonales, Phaeophyceae): Infection symptoms <strong>and</strong> recovery. Journal <strong>of</strong><br />

Phycology 33, 838-844.<br />

Maier, I., Wolf, S., Delaroque, N., Müller, D.G., Kawai, H., 1998. A DNA virus infecting the<br />

marine brown alga Pilayella littoralis (Ectocarpales, Phaeophyceae) in culture. European<br />

Journal <strong>of</strong> Phycology 33, 213-220.<br />

Maier, I., Parodi, E., Westermeier, R., Müller, D.G., 2000. Maullinia ectocarpii gen. et sp.<br />

nov. (Plasmodiophorea), an intracellular parasite in Ectocarpus siliculosus (Ectocarpales,<br />

Phaeophyceae) <strong>and</strong> other filamentous brown algae. Protist 151, 225-238.<br />

Maier, I., Müller, D.G., Katsaros, C., 2002. Entry <strong>of</strong> the DNA virus, Ectocarpus fasciculatus<br />

virus type 1 (Phycodnaviridae), into host cell cytosol <strong>and</strong> nucleus. Phycological Research 50,<br />

227-231.<br />

Markey, D.R., 1974. A possible virus infection in the brown alga Pylaiella littoralis.<br />

Protoplasma 80, 223-232.<br />

Martin, M.T., Pocock, M.A., 1953. South African parasitic Florideae <strong>and</strong> their hosts. 2. Some<br />

South African parasitic Florideae. Journal <strong>of</strong> the Linnean Society. Botany 555, 48-64.<br />

Mason, L.R., 1953. The crustaceous coralline algae <strong>of</strong> the Pacific coast <strong>of</strong> the United States,<br />

Canada, <strong>and</strong> Alaska. University <strong>of</strong> California Publications in Botany 26, 313-390.<br />

Matsumoto, M., Yoshida, T., 1991. Leachiella pacifica Kugrens (Choreocolaceae,<br />

Rhodophyceae) new to Japan. Japanese Journal <strong>of</strong> Phycology 39, 15-20.<br />

Meyers, S.P., 1969. Thalassiomycetes IX. Further studies <strong>of</strong> the genus Lindra with a<br />

description <strong>of</strong> L. marinera, a new species. Mycologia 61, 486-495.<br />

Migita, S., 1971. Studies on the occurrence <strong>of</strong> Kamenoko disease in Conchocelis cultivation.<br />

Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries 37, 491-494.<br />

Migita, S., 1973. Chytrid disease <strong>of</strong> conchocelis in Porphyra cultivation. Bulletin <strong>of</strong> the<br />

Faculty <strong>of</strong> Fisheries, Nagasaki University 35, 41-48.<br />

Miller, J.D., Whitney, N.J., 1981. Fungi from the Bay <strong>of</strong> Fundy. II. Observations on fungi<br />

from living <strong>and</strong> cast seaweeds. Botanica Marina 24, 405-411.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 55


Moe, R.L.,Silva, P.C., 1989. Desmarestia antarctica (Desmarestiales, Phaephyceae), a new<br />

ligulate Antarctic species with an endophytic gametophyte. Plant Systematic Evolution 164,<br />

273-283.<br />

Moen, E., Alvarez-Colsa, P., Larsen, B. A., Ostgaard, K., 1995. Degradation <strong>of</strong> alginate by<br />

the marine fungus Dendryphiella salina. Journal <strong>of</strong> Marine Biotechnology 3, 140-142.<br />

Molina, F.I., 1986. Petersenia pollagaster (oomycetes): An invasive fungal pathogen <strong>of</strong><br />

Chondrus crispus (Rhodophyceae). In: Moss, S. T. (Ed.). Biology <strong>of</strong> Marine Fungi: 4.<br />

International Marine Mycology Symposium, Cambridge University Press, Cambridge. pp.<br />

165-175.<br />

Morcom, N.F., Woelkerling, W.J., 2000. A critical interpretation <strong>of</strong> coralline-coralline<br />

(Corallinales, Rhodophyta) <strong>and</strong> coralline-other plant interactions. Cryptogamie, Algologie 21,<br />

1-31.<br />

Morrill, J., 1976. Notes on parasitic Rhodomelaceae. I. The morphology <strong>and</strong> systematic<br />

position <strong>of</strong> Benzaitenia yenoshimensis Yendo, a parasitic red alga from Japan. Proceedings <strong>of</strong><br />

the Academy <strong>of</strong> Science Philadelphia 127, 203-215.<br />

Mshigeni, K.E., 1976. New records <strong>of</strong> Hypneocolax stellaris f. orientalis Weber-von-Bosse.<br />

A parasitic red alga. Nova Hedwigia 27, 829-834.<br />

Müller, D.G., 1991a. Mendelian segregation <strong>of</strong> a virus genome during host meiosis in the<br />

marine brown alga Ectocarpus siliculosus. Journal <strong>of</strong> Plant Physiology 137, 739-743.<br />

Müller, D.G., 1991b. Marine virioplankton produced by infected Ectocarpus siliculosus<br />

(Phaeophyceae). Marine Ecology Progress Series 76, 101-102.<br />

Müller, D.G., 1996. Host-virus interactions in marine brown algae. Hydrobiologia 326/327,<br />

21-28.<br />

Müller, D.G., Frenzer, K., 1993. Virus infections in three marine brown algae: Feldmannia<br />

irregularis, F. simplex <strong>and</strong> Ectocarpus siliculosus. Proceedings <strong>of</strong> the International Seaweed<br />

Symposium 14, 37-44.<br />

Müller, D.G., Parodi, E., 1993. Transfer <strong>of</strong> a marine DNA virus from Ectocarpus to<br />

Feldmannia (Ectocarpales, Phaeophyceae): aberrant symptoms <strong>and</strong> restitution <strong>of</strong> the host.<br />

Protoplasma 175, 121-125.<br />

Müller, D.G., Schmid, C.E., 1996. Intergeneric infection <strong>and</strong> persistence <strong>of</strong> Ectocarpus virus<br />

DNA in Kuckuckia (Phaeophyceae, Ectocarpales). Botanica Marina 39, 401-405.<br />

Müller, D.G., Stache, B., 1992. Worldwide occurence <strong>of</strong> virus infections in filamentous<br />

marine brown algae. Helgol<strong>and</strong>er Meeresuntersuchungen 46, 1-8.<br />

Müller, D.G., Kawai, H., Stache, B., Lanka, S.T.J., 1990. A virus infection in the marine<br />

brown alga Ectocarpus siliculosus (Phaeophyceae). Botanica Acta 103, 72-82.<br />

Müller, D.G., Ramirez, M.E., Westermeier, R., 1992. Utriculidium durvillei (Bory)<br />

Skottsberg, in King George Isl<strong>and</strong>, Antarctica. Serie cientifica. Instituto Antartico chileno 42,<br />

47-52.<br />

56 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Müller, D.G., Wolf, S., Parodi, E.R., 1996a. A virus infection in Myriotrichia clavaeformis<br />

(Dictyosiphonales, Phaeophyceae) from Argentina. Protoplasma 193, 58-62.<br />

Müller, D.G., Sengco, M., Wolf, S., Brautigam, M., Schmid, C.E., Kapp, M., Knippers, R.,<br />

1996b. Comparison <strong>of</strong> two DNA viruses infecting the marine brown algae Ectocarpus<br />

siliculosus <strong>and</strong> E. fasciculatus. Journal <strong>of</strong> General Virology 77, 2329-2333.<br />

Müller, D.G., Braeutigam, M., Knippers, R., 1996c. Virus infection <strong>and</strong> persistence <strong>of</strong> foreign<br />

DNA in the marine brown alga Feldmannia simplex (Ectocarpales, Phaeophyceae).<br />

Phycologia 35, 61-63.<br />

Müller, D.G., Kapp, M., Knippers, R., 1998. Viruses in marine brown algae. Advances in<br />

Virus Research 50, 49-67.<br />

Müller, D.G., Küpper, F.C., Küpper, H., 1999. Infection experiments reveal broad host ranges<br />

<strong>of</strong> Eurychasma dicksonii (Oomycota) <strong>and</strong> Chytridium polysiphoniae (Chytridiomycota), two<br />

eukaryotic <strong>parasites</strong> in marine brown algae (Phaeophyceae). Phycological Research 47, 217-<br />

223.<br />

Müller, D.G., Westermeier, R., Morales, J., Reina, G.G., del Campo, E., Correa, J.A.,<br />

Rometsch, E., 2000. Massive prevalence <strong>of</strong> viral DNA in Ectocarpus (Phaeophyceae,<br />

Ectocarpales) from two habitats in the North Atlantic <strong>and</strong> South Pacific. Botanica Marina 43,<br />

157-159.<br />

Myers, A.A., 1974. Amphitholina cuniculus (Strebing) a little known marine amphipod<br />

crustacean new to Irel<strong>and</strong>. Proceedings <strong>of</strong> the Royal Irish Academy 74, 463-469.<br />

Nakagiri, A., 1993. A new marine ascomycete in Spathulosporales, Hispidicarpomyces<br />

galaxauricola gen. et sp. nov. (Hispidicarpomycetaceae fam. nov.), inhabiting a red alga,<br />

Galaxaura falcata. Mycologia 85, 638-652.<br />

Nakagiri, A., Ito, T., 1997. Retrostium amphiroae gen. et sp. nov. inhabiting a marine red<br />

alga, Amphiroa zonata. Mycologia 89, 484-493.<br />

Nakao, Y., Onohara, T., Matsubara, T., Fujita, Y., Zenitani, B., 1972. Bacteriological studies<br />

on diseases <strong>of</strong> cultured laver. I. Green spot rotting-like deterioration <strong>of</strong> laver frond by bacteria<br />

in vitro. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries 38, 561-564.<br />

Narita, M., Sawabe, T., Gacesa, P., Ezura, Y., 2001. Rapid PCR detection <strong>of</strong><br />

Pseudoalteromonas elyakovii, the causative bacterium <strong>of</strong> Laminaria spot-wound disease in<br />

Japan. Proceedings <strong>of</strong> the International Seaweed Symposium 17, 389-394.<br />

Nauke, M.K., 1998. Provisions for the control <strong>and</strong> management <strong>of</strong> ballast water to minimize<br />

the transfer <strong>of</strong> harmful aquatic organisms <strong>and</strong> <strong>pathogens</strong>. In: Carlton, J.T. (ed.), Ballast<br />

Water: Ecological <strong>and</strong> Fisheries Implications. ICES Coop. Res. Rep. No. 224, pp. 113–117.<br />

Newroth, P., Taylor, A.R.A., 1968. The distribution <strong>of</strong> Ceratocolax hartzii. British<br />

Phycological Journal 3, 543-546.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 57


Nielsen, J.E., Yu, S., Bojko, M., Marcussen, J., 2000. alpha -1,4-Glucan lyase-producing<br />

endophyte <strong>of</strong> Gracilariopsis sp. (Rhodophyta) from China. European Journal <strong>of</strong> Phycology<br />

35, 207-212.<br />

Nielsen, R., 1979. Culture studies on the type species <strong>of</strong> Acrochaete, Bolbocoleon <strong>and</strong><br />

Entocladia (Chaetophoraceae, Chlorophyceae). Botaniska Notiser 132, 441-449.<br />

Nielsen, R., Kristiansen, A., Mathiesen, L., Mathiesen, H., 1995. Distributional index <strong>of</strong> the<br />

benthic macroalgae <strong>of</strong> the Baltic Sea area. Acta Botanica Fennica 155, 1-51.<br />

Noble, J.M., Kraft, G.T., 1983. Three new species <strong>of</strong> parasitic red algae (Rhodophyta) from<br />

Australia: Holmsella australis sp.nov., Meridiocolax bracteata sp.nov. <strong>and</strong> Trichidium<br />

pedicellatum gen. et sp.nov. British Phycological Journal 18, 391-413.<br />

Nolan, R.A., 1972. Asteromyces cruciatus from North America. Mycologia 64, 430-433.<br />

Nonomura, A.M., 1979. Development <strong>of</strong> Janczewskia morimotoi (Ceramiales) on its host<br />

Laurencia nipponica (Ceramiales, Rhodophyceae). Journal <strong>of</strong> Phycology 15, 154-162.<br />

Nonomura, A.M., West, J.A., 1981a. Seasonal growth <strong>of</strong> the parasite Janczewskia on<br />

Laurencia (Rhodophyta, Ceramiales) in California (USA) <strong>and</strong> Hokkaido (Japan). Botanica<br />

Marina 24, 349-359.<br />

Nonomura, A.M., West, J.A., 1981b. Host Specifity <strong>of</strong> Janczewskia (Ceramiales,<br />

Rhodophyta). Phycologia 20, 251-258.<br />

Norris, R.E., 1988a. Two new red algal <strong>parasites</strong> on Kuetzingia natalensis (Rhodomelaceae,<br />

Rhodophyta). Botanica Marina 31, 345-352.<br />

Norris, R.E., 1988b. A review <strong>of</strong> Colacopsis <strong>and</strong> Melanocolax, red algal <strong>parasites</strong> on South<br />

African Rhodomelaceae (Rhodophyta). British Phycological Journal 23, 229-237.<br />

Notoya, M., Miyashita, A., 1999. Life history, in culture, <strong>of</strong> the obligate epiphyte Porphyra<br />

moriensis (Bangiales, Rhodophyta). Hydrobiologia 398/399, 121-125.<br />

Nyvall, P., Pedersen, M., Longcore, J.E., 1999. Thalassochytrium gracilariopsidis<br />

(Chytridiomycota), gen. et sp. nov., endosymbiotic in Gracilariopsis sp. (Rhodophyceae).<br />

Journal <strong>of</strong> Phycology 35, 176-185.<br />

Okamoto, Noriko., Nagumo, Tamotsu., Tanaka, Jiro., Inouye, Isao., 2003. An endophytic<br />

diatom Gyrosigma coelophilum sp. nov. (Naviculales, Bacillariophyceae) lives inside the red<br />

alga Coelarthrum opuntia (Rhodymeniales, Rhodophyceae). Phycologia 42, 498-505.<br />

O'Kelly, C.J., 1981. Observations on marine Chaetophoraceae (Chlorophyta). II. On the<br />

circumscription <strong>of</strong> the genus Entocladia Reinsch. Phycologia 20, 32-45.<br />

O'Kelly, C.J., 1982. Observations on marine Chaetophoraceae (Chlorophyta). III. The<br />

structure, reprodution <strong>and</strong> life history <strong>of</strong> Endophyton ramosum. Phycologia 21, 247-257.<br />

O'Kelly, C.J., 1983. Observations on marine Chaetophoraceae (Chlorophyta). 4. The<br />

structure, reproduction, <strong>and</strong> life history <strong>of</strong> Acrochaete geniculata (Gardner) comb. nov.<br />

Phycologia 22, 13-21.<br />

58 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


O'Kelly, C.J., Bellows, W.K., Wysor, B., 2004. Phylogenetic position <strong>of</strong> Bolbocoleon<br />

piliferum (Ulvophyceae, Chlorophyta): Evidence from reproduction, zoospore <strong>and</strong> gamete<br />

ultrastructure, <strong>and</strong> small subunit rRNA gene sequences. Journal <strong>of</strong> Phycology 40, 209-222.<br />

Oliveira, L., Bisalputra, T., 1978. A virus infection in the brown alga Sorocarpus uvaeformis<br />

(Lyngbye) Pringsheim (Phaeophyta, Ectocarpales). Annals <strong>of</strong> Botany 42, 439-445.<br />

Ollivier, G., 1929. Etudes de la flore marine de la Cotte D’Azure. Annales de L’Institut<br />

Oceanographique 7, 53-173.<br />

Paracer, S., Ahmadjian, V., 2000. Symbiosis – An Introduction to Biological Associations, 2 nd<br />

edition. Oxford, Oxford University Press. pp. 291.<br />

Park, C.S., Kakinuma, M., Amano, H., 2001. Detection <strong>and</strong> quantitative analysis <strong>of</strong> zoospores<br />

<strong>of</strong> Pythium porphyrae, causative organism <strong>of</strong> red rot disease in Porphyra, by competitive<br />

PCR. Journal <strong>of</strong> Applied Phycology 13, 433-441.<br />

Park, C.S., Kakinuma, M., Amano, H., 2007. Forecasting infections <strong>of</strong> the red rot disease on<br />

Porphyra yezoensis Ueda (Rhodophyta) cultivation farms. Proceedings <strong>of</strong> the International<br />

Seaweed Symposium 18, 69-73.<br />

Park, T.S., Rho, Y.G., Gong, Y.G., Lee, D.Y., 1990. A harpacticoid copepod parasitic in the<br />

cultivated brown alga <strong>Undaria</strong> <strong>pinnatifida</strong> in Korea. Journal <strong>of</strong> the Korean Fisheries Society<br />

23, 439-442.<br />

Parodi, E.R., Müller, Dieter G., 1994. Field <strong>and</strong> culture studies on virus infections in Hincksia<br />

hincksiae <strong>and</strong> Ectocarpus fasciculatus (Ectocarpales, Phaeophyceae). European Journal <strong>of</strong><br />

Phycology 29, 113-117.<br />

Pearson, G.A., Evans, L.V., 1990. Settlement <strong>and</strong> survival <strong>of</strong> Polysiphonia lanosa<br />

(Ceramiales) spores on Ascophyllum nodosum <strong>and</strong> Fucus vesiculosus (Fucales). Journal <strong>of</strong><br />

Phycology 26, 597-603.<br />

Pedersen, P.M., 1976. Marine, benthic algae from southernmost Greenl<strong>and</strong>. Medd. Groenl<strong>and</strong><br />

199, 1-80.<br />

Pedersen, P.M., 1981. The life histories in culture <strong>of</strong> the brown algae Gononema alariae sp.<br />

nov. <strong>and</strong> G. aecidioides comb. nov. from Greenl<strong>and</strong>. Nordic Journal <strong>of</strong> Botany 1, 263-270.<br />

Pedersen, M., Collen, J., Abrahamsson, K., Mtolera, M., Semesi, A. K., Garcia Reina, G.,<br />

1996. The ice-ice disease <strong>and</strong> oxidative stress <strong>of</strong> marine algae. In: Bjoerk, M., Semesi, A. K.,<br />

Pedersen, M., Bergman, B., (Eds.). Proceedings <strong>of</strong> the 1995 Symposium on the biology <strong>of</strong><br />

microalgae, macroalgae <strong>and</strong> seagrasses in the Western Indian Ocean, Ord & Vet<strong>and</strong>e AB,<br />

Uppsala, Sweden. pp. 11-24.<br />

Pellegrini, M., Pellegrini, L., 1982. Some observations on relationships between bacteria <strong>and</strong><br />

a brown alga. Biology <strong>of</strong> the Cell 43, 195-200.<br />

Penot, M., 1974. Ion transport between the tissues <strong>of</strong> Ascophyllum nodosum (L.) Le Joilis <strong>and</strong><br />

Polysiphonia lanosa (L.) T<strong>and</strong>y. Z. Pflanzenphysiol. 73, 125-131.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 59


Penot, M., Hourmant, A., Penot, M., 1993. Comparative study <strong>of</strong> metabolism <strong>and</strong> forms <strong>of</strong><br />

transport between Ascophyllum nodosum <strong>and</strong> Polysiphonia lanosa. Physiologia Plantarum 87,<br />

291-296.<br />

Perez, R., Lee, J.Y., Juge, C., 1981. Observations sur la biologie de l’alge japnoaise <strong>Undaria</strong><br />

<strong>pinnatifida</strong> (Harvey) Suringar introduite accidentallement dans l’Etang de Thau. Science et<br />

Peche 343, 1-15.<br />

Perez-Cirera, J.L., Salinas, J.M., Cremades, J., Barbara, I., Granja, A., Veiga, A.J., Fuertes,<br />

C., 1997. Culture <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> (Laminariales, Phaeophyta) in Galicia. Nova Acta<br />

Cientifica Compostelana (NACC Bioloxia) 7, 3-28.<br />

Peters, A.F., 1990. Taxonomic implications <strong>of</strong> gamete fusions in the parasitic brown alga<br />

Herpodiscus durvilleae. Canadian Journal <strong>of</strong> Botany 68, 1398-1401.<br />

Peters, A.F., 1991. Field <strong>and</strong> culture studies <strong>of</strong> Streblonema macrocystis sp. nov.<br />

(Ectocapales, Phaeophyceae) from Chile, a sexual endophyte <strong>of</strong> giant kelp. Phycologia 30,<br />

365-377.<br />

Peters, A.F., 1992. Culture studies on the life history <strong>of</strong> Chordaria linearis (Phaeophyceae)<br />

from Tierra del Fuego, South America. Journal <strong>of</strong> Phycology 28, 678-683.<br />

Peters, A.F., 2003. Molecular identification, taxonomy <strong>and</strong> distribution <strong>of</strong> brown algal<br />

endophytes, with emphasis on species from Antarctica. Proceedings <strong>of</strong> the International<br />

Seaweed Symposium 17, 293-302.<br />

Peters, A.F., Burkhardt, E., 1998. Systematic position <strong>of</strong> the kelp endophyte Laminarionema<br />

elsbetiae (Ectocarpales sensu lato, Phaeophyceae) inferred from nuclear ribosomal DNA<br />

sequences. Phycologia 37, 114-120.<br />

Peters, A.F., Ellertsdottir, E., 1996. New record <strong>of</strong> the kelp endophyte Laminarionema<br />

elsbetiae (Phaeophyceae, Ectocarpales) at Helgol<strong>and</strong> <strong>and</strong> its life history in culture. Nova<br />

Hedwigia 62, 341-349.<br />

Peters, A.F., Schaffelke, B., 1996. Streblonema (Ectocarpales, Phaeophyceae) infection in the<br />

kelp Laminaria saccharina (Laminariales, Phaeophyceae) in the western Baltic.<br />

Hydrobiologia 326/327, 107-113.<br />

Peyriere, M., 1977. Utrastructure Harveyella mirabilis (Cryptonemiales, Rhodophycee)<br />

parasite de Rhodomela confervoides. Comptes rendus hebdomadaires des seances de<br />

l'Academie des sciences. D, Sciences naturelles 285, 965-968.<br />

Peyriere, M., 1981. Cell- <strong>and</strong> pit-connections in Floridean Rhodophytes. Study <strong>of</strong> two<br />

alloparasitic Choreocolaceae, Harveyella mirabilis <strong>and</strong> Holmsella pachyderma. Cryptogamie,<br />

Algologie 2, 85-104.<br />

Phap, T.T., Thuan, L.T.N., 2002. Tam Giang Lagoon aquatic systems health assessment. In:<br />

Arthur, J.R., Phillips, M.J., Subasinghe, R.P., Reantaso, M.B., MacRae, I.H., (Eds). Primary<br />

Aquatic Animal Health Care in Rural, Small-scale, Aquaculture Development, FAO Fish.<br />

Tech. Pap. No. 406. pp. 225-234.<br />

60 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Phillips, L.E., 2000. Taxonomy <strong>of</strong> the New Zeal<strong>and</strong>-endemic genus Pleurostichidium<br />

(Rhodomelaceae, Rhodophyta). Journal <strong>of</strong> Phycology 36, 773-786.<br />

Pivkin, M.V., Zvereva, L.V., 2000. Fungi <strong>of</strong> the genera Alternaria <strong>and</strong> Ulocladium from Peter<br />

the Great Bay (The Sea <strong>of</strong> Japan). Mikologiya I Fitopatologiya 34, 38-44.<br />

Pocock, M.A., 1956. South African parasitic Florideae <strong>and</strong> their hosts. 3. Four minute<br />

parasitic Florideae. Proceedings <strong>of</strong> the Linnean Society <strong>of</strong> London 167, 11-41.<br />

Polne-Fuller, M., 1987. A multinucleate marine amoeba which digests seaweeds. Journal <strong>of</strong><br />

Protozoology 34, 159-165.<br />

Polne-Fuller, M., Gibor, A., 1987. Microorganisms as digestors <strong>of</strong> seaweed cell walls.<br />

Proceedings <strong>of</strong> the International Seaweed Symposium 12, 405-409.<br />

Porter, D., Farnham, W.F., 1986a. Mycoses <strong>of</strong> marine organisms: an overview <strong>of</strong> pathogenic<br />

fungi. In: Moss, B. L. (Ed.). The biology <strong>of</strong> marine fungi, Cambridge University Press,<br />

Cambridge. pp. 141-153.<br />

Porter, D., Farnham, W.F., 1986b. Mycaureola dilsae, a marine basidiomycete parasite <strong>of</strong> the<br />

red alga, Dilsea carnosa. Transactions <strong>of</strong> the British Mycological Society 87, 575-582.<br />

Potin, P., Bouarab, K., Küpper, F., Kloareg, B., 1999. Oligosaccharide recognition signals <strong>and</strong><br />

defence reactions in marine plant-microbe interactions. Current Opinion in Microbiology 2,<br />

276-283.<br />

Potin, P., Bouarab, K., Salaun, J.P., Pohnert, G., Kloareg, B., 2002. Biotic interactions <strong>of</strong><br />

marine algae. Current Opinion in Plant Biology 5, 308-317.<br />

Prenter, J., MacNeil, C., Dick, J.T.A., Dunn, A.M., 2004. Roles <strong>of</strong> <strong>parasites</strong> in animal<br />

invasions. Trends in Ecology <strong>and</strong> Evolution 19, 385-390.<br />

Priess, K., Le Campion-Alsumard, T., Golubic, S., Gadel, F., Thomassin, B.A., 2000. Fungi<br />

in corals: Black b<strong>and</strong>s <strong>and</strong> density-b<strong>and</strong>ing <strong>of</strong> Porites lutea <strong>and</strong> P. lobata skeleton. Marine<br />

Biology 136, 19-27.<br />

Pueschel, C.M., 1995. Rod-shaped virus-like particles in the endoplasmic reticulum <strong>of</strong><br />

Audouinella saviana (Acrochaetiales, Rhodophyta). Canadian Journal <strong>of</strong> Botany 73, 1974-<br />

1980.<br />

Quick, J.A., 1974. Labyrinthuloides schizochytrops n. sp., a new marine Labyrinthula with<br />

spheroid spindle cells. Transactions <strong>of</strong> the American Microscopy Society 93, 344-365.<br />

Raghukumar, C., 1986a. Fungal <strong>parasites</strong> <strong>of</strong> the marine green algae, Cladophora <strong>and</strong><br />

Rhizoclonium. Botanica Marina 29, 289-297.<br />

Raghukumar, C., 1986b. Thraustochytrid fungi associated with marine algae. Indian Journal<br />

<strong>of</strong> Marine Sciences 15, 121-122.<br />

Raghukumar, C., 1987a. Fungal parasite <strong>of</strong> the green alga Chaetomorpha media. <strong>Diseases</strong> <strong>of</strong><br />

Aquatic Organisms 3, 147-150.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 61


Raghukumar, C., 1987b. Fungal <strong>parasites</strong> <strong>of</strong> marine algae from M<strong>and</strong>apam (South India).<br />

<strong>Diseases</strong> <strong>of</strong> Aquatic Organisms 3, 137-147.<br />

Raghukumar, C., Ch<strong>and</strong>ramohan, D., 1988. Changes in marine green alga Chaetomorpha<br />

media on infection by a fungal pathogen. Botanica Marina 31, 311-315.<br />

Raghukumar, C., Nagarkar, S., Raghukumar, S., 1992. Association <strong>of</strong> thraustochytrids <strong>and</strong><br />

fungi with living marine algae. Mycological Research 96, 542-546.<br />

Raghukumar, S., 2002. Ecology <strong>of</strong> the marine protists, the Labyrinthulomycetes<br />

(Thraustochytrids <strong>and</strong> Labyrinthulids). European Journal <strong>of</strong> Protistology 38, 127-145.<br />

Rath, R.K., 1992. Sea weed diseases in mariculture systems. Seafood export journal 24, 33-<br />

37.<br />

Rattray, J., 1885. Notes on Ectocarpus. Transactions <strong>of</strong> the Royal Society <strong>of</strong> Edinburgh 32,<br />

589-600.<br />

Raven, J.A., Beardall, J., Johnston, A.M., Kuebler, J.E., Geoghegan, I., 1995. Inorganic<br />

carbon acquisition by Hormosira banksii (Phaeophyta: Fucales) <strong>and</strong> its epiphyte Notheia<br />

anomala (Phaeophyta: Fucales). Phycologia 34, 267-277.<br />

Rawlence, D.J., 1972. An ultrastructural study <strong>of</strong> the relationship between rhizoids <strong>of</strong><br />

Polysiphonia lanosa (L.) T<strong>and</strong>y (Rhodophyceae) <strong>and</strong> tissue <strong>of</strong> Ascophyllum nodosum (L.) Le<br />

Jolis (Phaeophyceae). Phycologia 11, 279-290.<br />

Rawlence, D.J., Taylor, A.R.A., 1972. A light <strong>and</strong> electron microscopic study <strong>of</strong> the rhizoid<br />

development in Polysiphonia lanosa (L.). Journal <strong>of</strong> Phycology 8, 15-24.<br />

Reed, M., 1902. Two new Ascomycetous fungi parasitic on marine algae. University <strong>of</strong><br />

California Publications in Botany 1, 141-164.<br />

Reisser, W., 1993. Viruses <strong>and</strong> virus-like particles <strong>of</strong> freshwater <strong>and</strong> marine eukaryolic algae.<br />

Arch. Prolislenk 143, 257-265.<br />

Rheinheimer, G., 1992. Aquatic microbiology. John Wiley & Sons, Chichester. pp 363.<br />

Rho, Y.G., Gong, Y.G., Lee, D.Y., Cho, Y.C., Jang, J.W., 1993. On the parasitic copepod<br />

(Harpacticoida) in the cultivated brown alga, <strong>Undaria</strong> <strong>pinnatifida</strong> (Harvey) Suringar. Bulletin<br />

<strong>of</strong> National Fisheries Research <strong>and</strong> Development Institute (Korea) 47, 197-210.<br />

Rindi, F., Guiry, M.D., 2004. Composition <strong>and</strong> spatio temporal variability <strong>of</strong> the epiphytic<br />

macroalgal assemblage <strong>of</strong> Fucus vesiculosus Linnaeus at Clare Isl<strong>and</strong>, Mayo, western Irel<strong>and</strong>.<br />

Journal <strong>of</strong> Experimental Marine Biology <strong>and</strong> Ecology 311, 233-252.<br />

Robledo, D.R., Sosa, P.A., Garcia-Reina, G., Müller, D.G., 1994. Photosynthetic performance<br />

<strong>of</strong> healthy <strong>and</strong> virus-infected Feldmannia irregularis <strong>and</strong> F. simplex (Phaeophyceae).<br />

European Journal <strong>of</strong> Phycology 29, 247-251.<br />

Rogerson, A., Hannah, F. J., Wilson, P. C., 1993. Nitschia albicosalis: an apochloritic diatom<br />

worthy <strong>of</strong> ecological consideration. Cahiers de Biologie Marine 34, 513-522.<br />

62 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Rogerson, A., Williams, A.G., Wilson, P.C., 1998. Utilization <strong>of</strong> macroalgal carbohydrates by<br />

the marine amoeba Trichosphaerium sieboldi. Journal <strong>of</strong> the Marine Biological Association <strong>of</strong><br />

the United Kingdom 78, 733-744.<br />

Rosenvinge, L.K., 1931. The marine algae <strong>of</strong> Denmark. Contributions to theur natural history,<br />

Part IV. Rhodophyceae IV (Gigartinales, Rhodymeniales, Nemastomatales). K. danske<br />

Vidensk. Selsk. Skr., 7. Raekke, Nat. Math. Afd. 7, 487-627.<br />

Saccardo, P.A., 1882a. Sylloge Fungorum omnium hucusque cognitorum. X. Supplementum<br />

universale ii: Discomyceteae - Hyphomyceteae. Additi sunt Fungi fossiles Auct. A.<br />

Meschinelli); Patavii: sumptibus auctoris typis seminarii & Berlin. In: Sylloge Fungorum<br />

omnium hucusque cognitorum. Patavii: sumptibus auctoris typis seminarii, Bornträger,<br />

Berlin, X(iii)-xxx, (1)-964.<br />

Saccardo, P.A., 1882b. Sylloge Fungorum omnium hucusque cognitorum. XVII. (Suppl.<br />

universale vi. Hymenomyceteae - Laboulbenimycetae. Auct. P. A. Saccardo et D. Saccardo.<br />

Ajecta est bibliotheca mycologica, auct. J. B. Traverso); Patavii: sumptibus auctoris typis<br />

seminarii & Berl. In: Sylloge Fungorum omnium hucusque cognitorum. Patavii: sumptibus<br />

auctoris typis seminarii, Bornträger, Berlin, I-XVII(i-ix), x-cvii, (1)-991.<br />

Saito, Y., 1971. Two species <strong>of</strong> Janczewskia from Japan <strong>and</strong> their systematic relationships.<br />

Proceedings <strong>of</strong> the International Seaweed Symposium 7, 146-148.<br />

Saito, Y., Yoneta, T., Yoshikawa, M., 1977. The relationship <strong>of</strong> parasite <strong>and</strong> host in the red<br />

algae Janczewskia tokidae <strong>and</strong> Laurencia nipponica. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong><br />

Phycology 25, 311-317.<br />

Sakurai, Y., Akiyama, Kazuo., Sato, Shigekatsu., 1974. On the formation <strong>and</strong> the discharge <strong>of</strong><br />

zoospores <strong>of</strong> Pythium porphyrae in experimental conditions. Bulletin <strong>of</strong> the Tokohu Regional<br />

Fisheries Research Laboratory 33, 119-127.<br />

Sanchez, P.C., Correa, Juan A., Garcia-Reina, G., 1996. Host-specificity <strong>of</strong> Endophyton<br />

ramosum (Chlorophyta), the causative agent <strong>of</strong> green patch disease in Mazzaella<br />

laminarioides (Rhodophyta). European Journal <strong>of</strong> Phycology 31, 173-179.<br />

S<strong>and</strong>erson J.C., 1990. A preliminary survey <strong>of</strong> the distribution <strong>of</strong> the introduced macroalga<br />

<strong>Undaria</strong> <strong>pinnatifida</strong> (Harvey) Suringar on the coast <strong>of</strong> Tasmania, Australia. Botanica Marina<br />

33, 153-157.<br />

Sanson, M., Gil-Rodriguez, M.C., Kohlmeyer, J., 1990. A marine fungus on Laurencia spp.<br />

(Rhodomelaceae, Rhodophyta) from the Canary Isl<strong>and</strong>s: Chadefaudia corallinarum<br />

(Ascomycotina). Nova Acta Cientifica Compostelana (NACC Bioloxia) 1, 3-4.<br />

Sasaki, H., Lindstrom, S.C., Waal<strong>and</strong>, J.R., Kawai, H., 2003. Occurrence <strong>of</strong> the gametophyte<br />

<strong>of</strong> Agarum clathratum (Laminariales, Phaeophyceae) as an endophyte in Orculifilum<br />

denticulatum (Gigartinales, Rhodophyceae). Phycological Research 51, 192-202.<br />

Sasaki, M, Sakurai, Y., 1972. Comparative observations on the growth among the five strains<br />

in Pythium porphyrae under the same cultural conditions. Bulletin <strong>of</strong> the Tokohu Regional<br />

Fisheries Research Laboratory 32, 83-87.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 63


Sasaki, M., Sato, S., 1969. Composition <strong>of</strong> Medium <strong>and</strong> Cultural Temperature <strong>of</strong> Pythium sp.,<br />

a pathogenic fungus, <strong>of</strong> the "Akagusare" disease <strong>of</strong> cultivated Porphyra. Bulletin <strong>of</strong> the<br />

Tokohu Regional Fisheries Research Laboratory 29, 125-132.<br />

Sathe-Pathak, V., Raghukumar, S., Raghukumar, C., Sharma, S., 1993. Thraustochytrid <strong>and</strong><br />

fungal component <strong>of</strong> marine detritus. 1. Field studies on decomposition <strong>of</strong> the brown alga<br />

Sargassum cinereum J. Ag. Indian journal <strong>of</strong> marine sciences. New Delhi 22, 159-169.<br />

Saunders, G.W., Lehmkuhl, K. V., 2005. Molecular divergence <strong>and</strong> morphological diversity<br />

among four cryptic species <strong>of</strong> Plocamium (Plocamiales, Florideophyceae) in northern Europe.<br />

European Journal <strong>of</strong> Phycology 40, 293-312.<br />

Sawabe, T., Ezura, Y., Kimura, T., 1992. Purification <strong>and</strong> characterization <strong>of</strong> an alginate lyase<br />

from marine Alteromonas sp. Nippon Suisan Gakkaishi 58, 521-527.<br />

Sawabe, T., Makino, H., Tatsumi, M., Nakano, K., Tajima, K., Iqbal, M.M., Yumoto, I.,<br />

Ezura, Y., Christen, R., 1998. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium<br />

that is the causative agent <strong>of</strong> red spot disease <strong>of</strong> Laminaria japonica. International Journal <strong>of</strong><br />

Systematic Bacteriology 48, 747-755.<br />

Sawabe, T., Tanaka, R., Iqbal, M.M., Tajima, K., Ezura, Y., Ivanova, E.P., Christen, R.,<br />

2000a. Assignment <strong>of</strong> Alteromonas elyakovii KMM 162(T) <strong>and</strong> five strains isolated from<br />

spot-wounded fronds <strong>of</strong> Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. <strong>and</strong><br />

the extended description <strong>of</strong> the species. International Journal <strong>of</strong> Systematic <strong>and</strong> Evolutionary<br />

Microbiology 50, 264-271.<br />

Sawabe, T., Narita, M., Tanaka, R.i, Onji, M., Tajima, K., Ezura, Y., 2000b. Isolation <strong>of</strong><br />

Pseudoalteromonas elyakovii strains from spot-wounded fronds <strong>of</strong> Laminaria japonica.<br />

Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries 66, 249-254.<br />

Schaffelke, B., Peters, A.F., Reusch, T.B.H., 1996. Factors influencing depth distribution <strong>of</strong><br />

s<strong>of</strong>t bottom inhabiting Laminaria saccharina (L.) Lamour. in Kiel Bay, Western Baltic.<br />

Hydrobiologia 326/327, 117-123.<br />

Schatz, S., 1980. Degradation <strong>of</strong> Laminaria saccharina by higher fungi: a preliminary report.<br />

Botanica Marina 23, 617-622.<br />

Schatz, S., 1983. The developmental morphology <strong>and</strong> life history <strong>of</strong> Phycomelaina<br />

laminariae. Mycologia 75, 762-772.<br />

Schatz, S., 1984a. Degradation <strong>of</strong> Laminaria saccharina by saprobic fungi. Mycologia 76,<br />

426-432.<br />

Schatz, S., 1984b. The life history, developmental morphology, <strong>and</strong> taxonomy <strong>of</strong> Lautitia<br />

danica gen. nov., comb. nov. Canadian Journal <strong>of</strong> Botany 62, 28-32.<br />

Schatz, S., 1984c. The Laminaria-Phycomelaina host-parasite association: seasonal patterns<br />

<strong>of</strong> infection, growth <strong>and</strong> carbon <strong>and</strong> nitrogen storage in the host. Helgoländer<br />

Meeresuntersuchungen 37, 623-631.<br />

64 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Schatz, S., Mauzerall, D., Fiore, J., 1979. A comparative study on Laminaria saccharina<br />

(Phaeophyta) infected by Phycomelaina laminariae (Ascomycotina). Biological Bulletin Mar.<br />

Biol. Lab., Woods Hole 157, 391-395.<br />

Scotten, H.L., 1971. Microbiological aspects <strong>of</strong> the kelp bed environment. In: North, Wheeler<br />

J. (Ed.). The Biology <strong>of</strong> Giant Kelp Beds (Macrocystis) in California, J. Cramer, Lehre,<br />

Germany. pp. 315-318.<br />

Sengco, M.R., Braeutigam, M., Kapp, M., Müller, D.G., 1996. Detection <strong>of</strong> virus DNA in<br />

Ectocarpus siliculosus <strong>and</strong> E. fasciculatus (Phaeophyceae) from various geographic areas.<br />

European Journal <strong>of</strong> Phycology 31, 73-78.<br />

Seoane-Camba, J.A., 1989. Origin <strong>and</strong> structure <strong>of</strong> secondary synapses between the parasite<br />

Gelidiocolax deformans (Gelidiaceae, Rhodophyta) <strong>and</strong> its host Gelidium sesquipedale<br />

(Gelidiaceae, Rhodophyta). Cryptogamie, Algologie 10, 259-271.<br />

Setchell, W.A., 1914. Parasitic florideae, I. University <strong>of</strong> California Publications in Botany 6,<br />

1-34.<br />

Setchell, W.A., 1918. Parasitism among the red algae. Proceedings <strong>of</strong> the American<br />

Philosophical Society 57, 155-172.<br />

Setchell, W.A., 1923. Parasitic Florideae. II. University <strong>of</strong> California Publications in Botany<br />

10, 393-396.<br />

Setchell, W.A., Gardner, N.L., 1922. New species <strong>of</strong> Pylaiella <strong>and</strong> Streblonema. University <strong>of</strong><br />

California Publications in Botany 7, 385-402.<br />

Shimono, T., Sasaki, H., Kawai, H., 2003. Life history <strong>and</strong> feeding preferences <strong>of</strong> galleryforming<br />

harpacticoids in dictyotalean seaweeds. Journal <strong>of</strong> Phycology 39, 51-52.<br />

Shimono, T., Iwasaki, N., Kawai, H., 2004. A new species <strong>of</strong> Dactylopusioides (Copepoda:<br />

Harpacticoida: Thalestridae) infesting a brown alga, Dictyota dichotoma in Japan.<br />

Hydrobiologia 523, 1-9.<br />

Shin, J.A., 2003a. Inheritance mode <strong>of</strong> some characters <strong>of</strong> Porphyra yezoensis (Bangiales,<br />

Rhodophyta) II. Yield, photosynthetic pigments content, Red Rot Disease-resistance, color,<br />

luster <strong>and</strong> volatile sulfur compounds concentration. Algae 18, 83-88.<br />

Shin, J.A., 2003b. Yield improvement using recombinant wild-type in Porphyra yezoensis<br />

(Bangiales, Rhodophyta). Algae 18, 89-94.<br />

Silva, P.C., Woodfield, R.A., Cohen, A.N., Harris, L.H., Goddard, J.H.R., 2002. First report<br />

<strong>of</strong> the Asian kelp <strong>Undaria</strong> <strong>pinnatifida</strong> in the northeastern Pacific Ocean. Biological Invasions<br />

4, 333-338.<br />

Solms-Laubach, H., 1877. Note sur le Janczewskia nouvelle Floridee parasite de Chondria<br />

obtusa. Mem. Soc. Sc. Nat. Cherbour 21, 209-224.<br />

Song, H.I., Kim, D.H., Kim, J.R., Kim, S.U., 1993. A study on the occurrence <strong>of</strong> the larver<br />

disease, with its environmental factors in the larver farming area. Bulletin <strong>of</strong> National<br />

Fisheries Research <strong>and</strong> Development Institute (Korea) 47, 177-195.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 65


Sotka, E.E., Hay, M.E., Thomas, J.D., 1999. Host-plant specialization by a non-herbivore<br />

amphipod: advantages for the amphipod <strong>and</strong> costs for the seaweed. Oecologia 118, 471-482.<br />

South, G.R., 1968. Aspects <strong>of</strong> the development <strong>and</strong> reproduction <strong>of</strong> Acrochaete repens <strong>and</strong><br />

Bolbocoleon piliferum. Canadian Journal <strong>of</strong> Botany 26, 101-113.<br />

South, G.R., 1974. Herpodiscus gen. nov. <strong>and</strong> Herpodiscus durvilleae (Lindauer) comb. nov.,<br />

a parasite <strong>of</strong> Durvillea antarctica (Chamisso) Hariot endemic to New Zeal<strong>and</strong>. Journal <strong>of</strong> the<br />

Royal Society <strong>of</strong> New Zeal<strong>and</strong> 4, 455-461.<br />

Sparling, S.R., 1957. The structure <strong>and</strong> reproduction <strong>of</strong> some members <strong>of</strong> the<br />

Rhodymeniaceae. University <strong>of</strong> California Publications in Botany 29, 319-396.<br />

Sparrow, F.K., 1934. Observations on marine phycomycetes collected in Denmark. Danisk<br />

Botanisk Ark. 8, 1-24.<br />

Sparrow, F.K., 1936. Biological Observations on the marine fungi <strong>of</strong> Woods Hole waters.<br />

Biological Bulletin 70, 236-263.<br />

Stanley, S.J., 1992. Observations on the seasonal occurence <strong>of</strong> marine endophytic <strong>and</strong><br />

parasitic fungi. Canadian Journal <strong>of</strong> Botany 70, 2089-2096.<br />

Steinberg, P.D., De Nys, R., 2002. Chemical mediation <strong>of</strong> colonization <strong>of</strong> seaweed surfaces.<br />

Journal <strong>of</strong> Phycology 38, 621-629.<br />

Sturch, H.H., 1899. Harveyella mirabilis (Schmitz & Reinsch). Annals <strong>of</strong> Botany 13, 83-102.<br />

Sturch, H.H., 1924. On the life history <strong>of</strong> Harveyella pachyderma <strong>and</strong> H. mirabilis. Annals <strong>of</strong><br />

Botany 38, 27-42.<br />

Sturch, H.H., 1926. Choreocolax polysiphoniae Reinsch. Annals <strong>of</strong> Botany 40, 585-605.<br />

Sunairi, M., Tsuchiya, H., Tsuchiya, T., Omura, Y., Koyanagi, Y., Ozawa, M., Iwabuchi, N.,<br />

Murooka, H., Nakajima, M., 1995. Isolation <strong>of</strong> a bacterium that causes anaaki disease <strong>of</strong> the<br />

red algae Porphyra yezoensis. Journal <strong>of</strong> Applied Bacteriology 79, 225-229.<br />

Sussmann, A.V., DeWreede, R.E., 2001. Life history <strong>of</strong> Acrosiphonia (Codiolales,<br />

Chlorophyta) in southwestern British Columbia, Canada. American Journal <strong>of</strong> Botany 88,<br />

1535-1544.<br />

Sussmann, A.V., DeWreede, R.E., 2002. Host specificity <strong>of</strong> the endophytic sporophyte phase<br />

<strong>of</strong> Acrosiphonia (Codiolales, Chlorophyta) in southern British Columbia, Canada. Phycologia<br />

41, 169-177.<br />

Sussmann, A.V., DeWreede, R.E., 2005. Survival <strong>of</strong> the endophytic sporophyte <strong>of</strong><br />

Acrosiphonia (Codiolales, Chlorophyta). Journal <strong>of</strong> the Marine Biological Association <strong>of</strong> the<br />

United Kingdom 85, 49-58.<br />

Sussmann, A.V., Mable, B.K., DeWreede, R.E., Berbee, M.L., 1999. Identification <strong>of</strong> green<br />

algal endophytes as the alternate phase <strong>of</strong> Acrosiphonia (Codiolales, Chlorophyta) using ITS1<br />

<strong>and</strong> ITS2 ribosomal DNA sequence data. Journal <strong>of</strong> Phycology 35, 607-614.<br />

66 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Sussmann, A.V., Scrosati, R., DeWreede, R.E., 2005. Seasonal synchrony <strong>of</strong> a green algal<br />

endophyte, Acrosiphonia (Codiolales), with its red algal hosts, Mastocarpus <strong>and</strong> Mazzaella<br />

(Gigartinales). Phycologia 44, 129-132.<br />

Sutherl<strong>and</strong>, Geo K., 1915a. New marine fungi on Pelvetia. New Phytologist 14, 33-42.<br />

Sutherl<strong>and</strong>, Geo K., 1915b. Additional notes on marine phycomycetes. New Phytologist 14,<br />

183-193.<br />

Sutherl<strong>and</strong>, Geo K., 1915c. New marine phycomycetes. Transactions <strong>of</strong> the British<br />

Mycological Society 5, 147-155.<br />

Suto, S., 1952. Seaweed production <strong>and</strong> phycological research in Japan. Proceedings <strong>of</strong> the<br />

International Seaweed Symposium 1, 96-99.<br />

Suto, S., Umebayashi, O., 1954. On the perforating disease in nori (Porphyra) culture.<br />

Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries 19, 1176-1178.<br />

Takahashi, M., Ichitani, T., Sasaki, M., 1977. Pythium porphyrae Takahashi et Sasaki, sp.<br />

nov. causing red rot <strong>of</strong> marine algae Porphyra spp. Transactions <strong>of</strong> the Mycological Society<br />

<strong>of</strong> Japan 18, 279-285.<br />

Tam, C.E., Cole, K.M., Garbary, D.J., 1987. In situ <strong>and</strong> in vitro studies on the endophytic red<br />

algae Audouinella porphyrae <strong>and</strong> A. vaga (Acrochaetiales). Canadian Journal <strong>of</strong> Botany 65,<br />

532-538.<br />

Tang, X.-X., Wang, Y., Huang, J., Yang, Z., Gong, X.-Z., 2001. Action <strong>of</strong> reactive oxygen<br />

species in Laminaria japonica against infection by alginic acid decomposing bacteria. Acta<br />

Botanica Sinica 43, 1303-1306.<br />

Taniguchi, M., 1970. Studies on the yellow-spot disease <strong>of</strong> conchocelis. I. Influence <strong>of</strong> light<br />

on the attack <strong>of</strong> the disease. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries 36, 686-<br />

691.<br />

Taniguchi, M., 1977a. Studies on the yellow spot disease in Porphyra conchocelis. 2. Method<br />

for obtaining the pathogen complex. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong> Scientific Fisheries<br />

43, 255-258.<br />

Taniguchi, M., 1977b. Studies on the yellow spot disease in Porphyra conchocelis. 3. Aquatic<br />

factors influencing the development <strong>of</strong> the yellow spot disease. Bulletin <strong>of</strong> the Japanese<br />

Society <strong>of</strong> Scientific Fisheries 43, 259-263.<br />

Terada, R., Yamamoto, H., Muraoka, D., 1999. Observations on an adelphoparasite growing<br />

on Gracilaria salicornia from Thail<strong>and</strong>. In: Abbott, I.A., (Ed.). Taxonomy <strong>of</strong> Economic<br />

Seaweeds with reference to some Pacific species, California Sea Grant Coll. Program, La<br />

Jolla, USA. pp. 121-129.<br />

Tokida, J., 1934. Phycological observations I. Trans. Sapporo Nat. Hist. Soc 13, 196-202.<br />

Tokida, J., 1958. A review <strong>of</strong> galls in seaweeds. Bulletin <strong>of</strong> the Japanese Society <strong>of</strong><br />

Phycology 6, 93-99.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 67


Tokida, J., 1960. Marine algae epiphytic on Laminariales plants. Bulletin <strong>of</strong> the Faculty <strong>of</strong><br />

Fisheries, Hokkaido University 11, 73-105.<br />

Tompkins, D.M., Poulin, P., 2006. Parasites <strong>and</strong> Biological Invasions. In: Biological<br />

Invasions in New Zeal<strong>and</strong>. In: Allen R.B., <strong>and</strong> Lee. W.G., (Eds) Ecological Studies, Vol. 186.<br />

Analysis <strong>and</strong> Synthesis. Springer. pp. 67-84.<br />

Toth, R., Wilce, R.T., 1972. Virus-like particles in the marine alga Chorda tomentosa<br />

Lyngbye (Phaeophyceae). Journal <strong>of</strong> Phycology 8, 126-130.<br />

Townsend, R.A., Huisman, J.M., 2004. Epulo multipedes gen. et sp nov (Corallinaceae,<br />

Rhodophyta), a coralline parasite from Australia. Phycologia 43, 288-295.<br />

Tsekos, I., 1982. Tumour-like growths induced by bacteria in the thallus <strong>of</strong> a red alga,<br />

Gigartina teedii (Roth) Lamour. Annals <strong>of</strong> Botany 49, 123-126.<br />

Tseng, C.K., 1987. Laminaria mariculture in China. In: Doty, M.S., Caddy, J.F., Santelices,<br />

B. (Eds). Case study <strong>of</strong> seven commercial seaweed resources, FAO Fisheries Technical Paper<br />

281, 239-264.<br />

Tsukidate, J., 1971. Microbiological studies <strong>of</strong> Porphyra plants. III. Abnormality <strong>of</strong> the<br />

growth <strong>of</strong> Porphyra plants by the disturbance <strong>of</strong> the bacterial flora accompanying the plant.<br />

Bulletin <strong>of</strong> the Nansei Regional Fisheries Research Laboratory 4, 1-12.<br />

Tsukidate, J., 1977. Microbiological studies <strong>of</strong> Porphyra plants-5. On the relation between<br />

bacteria <strong>and</strong> Porphyra diseases. Bulletin <strong>of</strong> the Nansei National Fisheries Research Institute<br />

10, 101-112.<br />

Tsukidate, J., 1983. On the symbiotic relationship between Porphyra species <strong>and</strong> attached<br />

bacteria, <strong>and</strong> a bacterial pathogen in white rot. Bulletin <strong>of</strong> the Nansei National Fisheries<br />

Research Institute l5, 29-96.<br />

Tsukidate, J., 1991. Seaweed disease. Fish health management in Asia-Pacific. Report on a<br />

regional study <strong>and</strong> Workshop on Fish Disease <strong>and</strong> Fish Health Management, ADB/NACA,<br />

Bangkok, Thail<strong>and</strong>. pp. 397-408.<br />

Turner, C.H.C., Evans, Len V., 1977. Physiological studies on the relationship between<br />

Ascophyllum nodosum <strong>and</strong> Polysiphonia lanosa. New Phytologist 79, 363-371.<br />

Ulken, A., Jaeckle, I., Bahnweg, G., 1985. Morphology, nutrition <strong>and</strong> taxonomy <strong>of</strong> an<br />

Aplanochytrium from the Sargasso Sea. Marine Biology 85, 89-95.<br />

Uppalapati, R.S., Fujita, Y., 2000a. Red rot resistance in interspecific protoplast fusion<br />

product progeny <strong>of</strong> Porphyra yezoensis <strong>and</strong> P. tenuipedalis (Bangiales, Rhodophyta).<br />

Phycological Research 48, 281-289.<br />

Uppalapati, S.R., Fujita, Y., 2000b. Carbohydrate regulation <strong>of</strong> attachment, encystment, <strong>and</strong><br />

appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis<br />

(Rhodophyta). Journal <strong>of</strong> Phycology 36, 359-366.<br />

68 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Uppalapati, S.R., Fujita, Y., 2001. The relative resistances <strong>of</strong> Porphyra species (Bangiales,<br />

Rhodophyta) to infection by Pythium porphyrae (Peronosporales, Oomycota). Botanica<br />

Marina 44, 1-7.<br />

Uppalapati, S.R., Kerwin, J.L., Fujita, Y., 2001. Epifluorescence <strong>and</strong> scanning electron<br />

microscopy <strong>of</strong> host-pathogen interactions between Pythium porphyrae (Peronosporales,<br />

Oomycota) <strong>and</strong> Porphyra yezoensis (Bangiales, Rhodophyta). Botanica Marina 44, 139-145.<br />

Uwai, S., Nelson, W., Neill, K., Wang, W.D., Aguilar-Rosas, L.E., Boo, S-M., Kitayama, T.,<br />

Kawai, H., 2006. Genetic diversity in <strong>Undaria</strong> <strong>pinnatifida</strong> deduced from mitochondria genes<br />

– Origins <strong>and</strong> succession <strong>of</strong> introduced populations. Phycologia 45, 687-695.<br />

Uyenco, F.R., 1981. <strong>Diseases</strong> <strong>of</strong> seaweeds. In: Trono, G. C., Jr., Ganzon-Fortes, E., (Eds.).<br />

Report on the Training Course on Gracilaria Algae. Manila, South China Sea Fisheries<br />

Development <strong>and</strong> Coordinating Programme. pp 61-68.<br />

Uyenco, F.R., Saniel, L.S., Gomez, E.D., 1977. Microbiology <strong>of</strong> diseased Eucheuma striatum<br />

Schmitz. Journal <strong>of</strong> Phycology 13, 70-70.<br />

Uyenco, F.R., Saniel, L.S., Jacinto, G.S., 1981. The "ice-ice" problem in seaweed farming.<br />

Proceedings <strong>of</strong> the International Seaweed Symposium 10, 625-630.<br />

Vairappan, C.S., 2006. Seasonal occurrences <strong>of</strong> epiphytic algae on the commercially<br />

cultivated red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta). Journal<br />

<strong>of</strong> Applied Phycology 18, 611-617.<br />

Vairappan, C.S., Chung, C.S. 2006. Seaweed farming in Malaysia: Challenges. In: Phang, S.<br />

M., Critchley, A. T., Ang, P.O., (Eds). Advances in seaweed cultivation <strong>and</strong> utilisation in<br />

Asia, University <strong>of</strong> Malaya, Kuala Lumpur. pp. 161-169.<br />

Vairappan, C.S., Suzuki, M., Motomura, T., Ichimura, T., 2001. Pathogenic bacteria<br />

associated with lesions <strong>and</strong> thallus bleaching symptoms in the Japanese kelp Laminaria<br />

religiosa Miyabe (Laminariales, Phaeophyceae). Hydrobiologia 445, 183-191.<br />

Van der Meer, J.P., Pueschel, Curt M., 1985. Petersenia palmariae n. sp. (Ooomycetes): a<br />

pathogenic parasite <strong>of</strong> the red alga Palmaria mollis (Rhodophyceae). Canadian Journal <strong>of</strong><br />

Botany 63, 404-408.<br />

Van Etten, J.L., Meints, R.H., 1999. Giant viruses infecting algae. Annual Review <strong>of</strong><br />

Microbiology 53, 447-494.<br />

Van Etten, J.L., Lane, L.C., Meints, R.H., 1991. Viruses <strong>and</strong> virus-like particles <strong>of</strong> eukaryolic<br />

algae. Microbiological Reviews 55, 586-620.<br />

Van Etten, J.L., Graves, M.V., Müller, D.G., Bol<strong>and</strong>, W., Delaroque, N., 2002.<br />

Phycodnaviridae - large DNA algal viruses. Archives <strong>of</strong> Virology 147, 1479-1516.<br />

Veiga, A.J., Cremades, J., Bárbara, I., 1997. Gononema aecidioides (Ectocarpaceae), un<br />

nuevo feófito para la peninsula Ibérica. Anales Jardín Botanico de Madrid 55, 155-156.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 69


Verges, A., Izquierdo, C., Verlaque, M., 2005. Rhodymeniocolax mediterraneus sp. nov.<br />

(Rhodymeniales, Rhodophyta), parasitic on Rhodymenia ardissonei from the western<br />

Mediterranean Sea. Phycologia 44, 510-516.<br />

Vroman, M., 1968. The marine algal vegetation <strong>of</strong> St. Martin, St. Eustatius <strong>and</strong> Saba<br />

(Netherl<strong>and</strong>s Antilles). Studies on the flora <strong>of</strong> Curacao <strong>and</strong> other Caribbean Isl<strong>and</strong>s, Martinus<br />

Nijh<strong>of</strong>f, The Hague. Vol. II. 120 pp.<br />

Wang, Lili, Tang, Xuexi, Wang, Meng, Zhang, Peiyu, Liu, Chuanguo., 2003. Studies on<br />

physiological <strong>and</strong> biochemical changes <strong>of</strong> Laminaria japonica during the occurrence <strong>of</strong> rot<br />

disease-I. Changes <strong>of</strong> soluble sugar, soluble protein, total antioxidative ability <strong>and</strong> SOD<br />

activity. Advances in Marine Science/Haiyang Kexue Jinzhan 21, 331-335.<br />

Wang, Lili, Tang, Xuexi, Wang, Meng, Zhang, Peiyu, Liu, Chuanguo, 2004. Studies on<br />

physiological <strong>and</strong> biochemical changes <strong>of</strong> Laminaria japonica during the occurrence <strong>of</strong> rot<br />

disease (II)- changes <strong>of</strong> PAL activity, PPO activity <strong>and</strong> polyphenol content. Advances in<br />

Marine Science/Haiyang Kexue Jinzhan 22, 73-76.<br />

Wang, Q.K., Shi, C.L., Ma, J.C., 1983. Isolation <strong>and</strong> cultivation <strong>of</strong> MLO associated with<br />

coiling-stunt disease <strong>of</strong> sea tangle. Acta Microbiologica Sinica 23, 73-74.<br />

Wang, You, Tang, Xuexi, Yang, Zhen, Yu, Zhiming, 2006. Effect <strong>of</strong> alginic acid<br />

decomposing bacterium on the growth <strong>of</strong> Laminaria japonica (Phaeophyceae). Journal <strong>of</strong><br />

Environmental Science-China 18, 543-551.<br />

Wardlaw, V., Boney, A.D., 1984. The endophytic diatom: Navicula endophytica Hasle in<br />

fucoid algae <strong>of</strong> the Clyde Sea area. Glasg. Nat 20, 459-463.<br />

Weber van Bosse, A., 1928. Liste des algues du Siboga. IV. Rhodophyceae Troisieme partie<br />

Gigartinales et Rhodymeniales. Siboga-Expedition Monograph 59d, 393-533.<br />

Weinberger, F., Friedl<strong>and</strong>er, M., Gunkel, W., 1994. A bacterial facultative parasite <strong>of</strong><br />

Gracilaria conferta. <strong>Diseases</strong> <strong>of</strong> Aquatic Organisms 18, 135-141.<br />

Weinberger, F., Hoppe, H. G., Friedl<strong>and</strong>er, M., 1997. Bacterial induction <strong>and</strong> inhibition <strong>of</strong> a<br />

fast necrotic response in Gracilaria conferta (Rhodophyta). Journal <strong>of</strong> Applied Phycology 9,<br />

277-285.<br />

Weinberger, F., Pohnert, G., Berndt, M-L., Bouarab, K., Kloareg, B., Potin, P., 2005.<br />

Apoplastic oxidation <strong>of</strong> L-asparagine is involved in the control <strong>of</strong> the green algal endophyte<br />

Acrochaete operculata Correa & Nielsen by the red seaweed Chondrus crispus Stackhouse.<br />

Journal <strong>of</strong> Experimental Botany 56, 1317-1326.<br />

West, J.A., 1979. The life history <strong>of</strong> Rhodochorton membranaceum, an endozoic red alga.<br />

Botanica Marina 22, 111-115.<br />

West, J.A., Calumpong, H.P., 1988. Dawsoniocolax bostrychiae (Choreocolacaceae,<br />

Gigartinales), an alloparasitic red alga new to Australia. Phycologia 27, 463-468.<br />

West, J.A., Smith, C.M., McBride, D.L., 1988. Observations on the marine unicellular<br />

endophyte Chlorochytrium porphyrae (Chlorophyceae). Botanica Marina 31, 299-305.<br />

70 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


West, J.A., Klochkova, T.A., Kim, G.H., Loiseaux-de Göer, S. 2006. Olipidiopsis sp., an<br />

oomycete from Madagascar that infects Bostrychia <strong>and</strong> other red algae: Host species<br />

susceptibility. Phycological Research 54, 72-85.<br />

Wetherbee, R., Quirk, H.M., 1982. The fine structure <strong>of</strong> secondary pit connection formation<br />

between the red algal alloparasite Holmsella australis <strong>and</strong> its red algal host Gracilaria<br />

furcellata. Protoplasma 110, 166-176.<br />

Wetherbee, R., Quirk, H.M., Mallet, J.E., Ricker, R.W., 1984. The structure <strong>and</strong> formation <strong>of</strong><br />

host-parasite pit connection between the red algal alloparasite Harveyella mirabilis <strong>and</strong> its red<br />

algal host Odonthalia floccosa. Protoplasma 119, 62-73.<br />

White, E.B., Boney, A.D., 1969. Experiments with some endophytic <strong>and</strong> endozoic<br />

Acrochaetium species. Journal <strong>of</strong> Experimental Marine Biology <strong>and</strong> Ecology 3, 246-274.<br />

Whittick, A., South, G.R., 1972. Olpidiopsis antithamnionis n. sp. (Oomycetes,<br />

Olpidiopsidaceae), a parasite <strong>of</strong> Antithamnion floccosum (O. F. Mull.) Kleen from<br />

Newfoundl<strong>and</strong>. Arch. Mikrobiol 82, 353-360.<br />

Wilson, H.L., 1910. Gracilariophila, a new parasite on Gracilaria confervoides. University <strong>of</strong><br />

California Publications in Botany 4, 75-84.<br />

Wilson, I.M., 1960. Marine fungi: a review <strong>of</strong> the present position. Proceedings <strong>of</strong> the<br />

Linnean Society <strong>of</strong> London 171, 53-57.<br />

Wilson, I.M., Knoyle, J.M., 1961. Three species <strong>of</strong> Didymosphaeria on marine algae: D.<br />

danica (Berlese) comb. nov., D. pelvetiana Suth. <strong>and</strong> D. fucicola Suth. Transactions <strong>of</strong> the<br />

British Mycological Society 44, 55-71.<br />

Woelkerling, W.J., 1987. The genus Choreonema in southern Australia <strong>and</strong> its subfamilial<br />

classification within the Corallinaceae (Rhodophyta). Phycologia 26, 111-127.<br />

Woelkerling, W.J., Ducker, S.C., 1987. Lesueuria minderiana gen. et sp. nov. (Corallinaceae,<br />

Rhodophyta) from southern <strong>and</strong> western Australia. Phycologia 26, 192-204.<br />

Wolf, S., Maier, I., Katsaros, C., Müller, D.G., 1998. Virus assembly in Hincksia hincksiae<br />

(Ectocarpales, Phaeophyceae) an electron <strong>and</strong> fluorescence microscopic study. Protoplasma<br />

203, 153-167.<br />

Wolf, S., Müller, D.G., Maier, I., 2000. Assembly <strong>of</strong> a large icosahedral DNA virus, MclaV-<br />

1, in the marine alga Myriotrichia clavaeformis (Dictyosiphonales, Phaeophyceae). European<br />

Journal <strong>of</strong> Phycology 35, 163-171.<br />

Womersley, H.B.S., 1987. The marine benthic flora <strong>of</strong> southern Australia Part II. South<br />

Australian Government Printing Division, Adelaide, pp 484.<br />

Wood, E.J.F., 1965. Marine Microbial Ecology. London, Chapman & Hall. pp. 243.<br />

Wu, C.Y., Dou, C., Jiajun, L., 1983. On the diseases <strong>of</strong> cultivated Laminaria japonica. In:<br />

Tseng, C.K. (Ed.). Proceedings <strong>of</strong> the Joint China-U.S. Phycology Symposium, Science Press,<br />

Beijing. pp. 211-220.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 71


Wynne, M.J., 1970. Marine algae <strong>of</strong> Amchitka Isl<strong>and</strong> (Aleutian Isl<strong>and</strong>s). I. Delesseriaceae.<br />

Syesis 3, 95-114.<br />

Wynne, M.J., Heine, J.N., 1992. Collections <strong>of</strong> marine red algae from St. Matthew <strong>and</strong> St.<br />

Lawrence Isl<strong>and</strong>s, the Bering Sea. Nova Hedwigia 55, 55-97.<br />

Wynne, M.J., Scott, F.J., 1989. Phitycolax, a new genus <strong>of</strong> adelphoparasitic red algae from<br />

Amsterdam Isl<strong>and</strong>, southern Indian Ocean. Cryptogamie, Algologie 10, 23-32.<br />

Yamada, K., Yoshimizu, M., Ezura, Y., Kimura, T., 1990. Distribution <strong>of</strong> Alteromonas sp.,<br />

the red-spot causative agent on the culture bed <strong>of</strong> makonbu Laminaria japonica, in coastal<br />

areas <strong>of</strong> Hokkaido. Bulletin <strong>of</strong> the Faculty <strong>of</strong> Fisheries, Hokkaido University 41, 221-226.<br />

Yamamoto, H., Phang, S.M., 1997. An adelphoparasitic alga growing on Gracilaria<br />

salicornia from Malaysia. In: Taxonomy <strong>of</strong> Economic Seaweeds, Abbott, I.A. (Ed.) Vol.6. La<br />

Jolla, California: California Sea Grant College System. pp. 91-95.<br />

Yang, Zhen., Tang, Xuexi., Yan, Xiaojun., 2001. Histology <strong>and</strong> cytology observation on the<br />

rot disease <strong>of</strong> Laminaria japonica caused by alginic acid decomposing bacteria. Journal <strong>of</strong><br />

fisheries <strong>of</strong> China/Shuichan Xuebao. Shanghai 25, 355-358.<br />

Yoneshigue, Y., de Oliveira, E.C., 1984. Algae from Cabo Frio upwelling area. 2.<br />

Gelidiocolax pustulata (Gelidiaceae, Rhodophyta): An unusual new putative parasitic species.<br />

Journal <strong>of</strong> Phycology 20, 440-443.<br />

Yoshida, T., Akiyama, K., 1978. Streblonema (Phaeophyceae) infection in the frond <strong>of</strong><br />

cultivated <strong>Undaria</strong> (Phaeophyceae). Proceedings <strong>of</strong> the International Seaweed Symposium 9,<br />

9219-223.<br />

Yumoto, I., Ezura, Y., Kimura, T., 1989a. Distribution <strong>of</strong> the Alteromonas sp., the causative<br />

agent <strong>of</strong> red-spots on the culture bed <strong>of</strong> makonbu Laminaria japonica, in the coastal area <strong>of</strong><br />

Funka Bay. Nippon Suisan Gakkaishi 55, 453-462.<br />

Yumoto, I., Yamaguchi, K., Yamada, K., Ezura, Y., Kimura, T., 1989b. Relationship between<br />

bacterial flora <strong>and</strong> occurrence <strong>of</strong> the Alteromonas sp., the causative agent <strong>of</strong> red-spots on the<br />

culture bed <strong>of</strong> makonbu Laminaria japonica, in the coastal area <strong>of</strong> Funka Bay. Nippon Suisan<br />

Gakkaishi 55, 1907-1914.<br />

Zhang, Zhinan., Lin, Xia., Yu, Zishan., 1994. Preliminary study on the phytal mei<strong>of</strong>auna from<br />

the rocky beach at Shicao, Dalian. Journal <strong>of</strong> Ocean University <strong>of</strong> Qingdao/Qingdao Haiyang<br />

Daxue Xuebao 24, 373-383.<br />

Zhou, Li., Gong, Qingli., Yu, Kaikang., Meng, Qingxian., 1996. <strong>Diseases</strong> <strong>of</strong> kelp, Laminaria<br />

japonica. Transactions <strong>of</strong> oceanology <strong>and</strong> limnology/Haiyang Huzhao Tongbao 4, 38-43.<br />

Zobell, C.E., 1946. Marine microbiology. A monograph on Hydrobiology. Massachusetts,<br />

Chronica Botanica Co. pp. 240.<br />

Zuccarello, G.C., West, J.A., 1994a. Comparative development <strong>of</strong> the red algal <strong>parasites</strong><br />

Bostrychiocolax australis gen. et sp. nov. <strong>and</strong> Dawsoniocolax bostrychiae (Choreocolacaceae,<br />

Rhodophyta). Journal <strong>of</strong> Phycology 30, 137-146.<br />

72 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Zuccarello, G.C., West, J.A., 1994b. Genus <strong>and</strong> race specificity in the red algal parasite<br />

Leachiella pacifica (Choreocolacaceae, Rhodophyta). Phycologia 33, 213-218.<br />

Zuccarello, G.C., West, J.A., 1994c. Host specificity in the red algal <strong>parasites</strong><br />

Bostrychiocolax australis <strong>and</strong> Dawsoniocolax bostrychiae (Choreocolacaceae, Rhodophyta).<br />

Journal <strong>of</strong> Phycology 30, 462-473.<br />

Zuccarello, G.C., West, J.A., 1997. Hybridization studies in Bostrychia: 2. Correlation <strong>of</strong><br />

crossing data <strong>and</strong> plastid DNA sequence data within B. radicans <strong>and</strong> B. moritziana<br />

(Ceramiales, Rhodophyta). Phycologia 36, 293-304.<br />

Zuccarello, G.C., Moon, D., G<strong>of</strong>f, L.J., 2004. A phylogenetic study <strong>of</strong> parasitic genera placed<br />

in the family Choreocolacaceae (Rhodophyta). Journal <strong>of</strong> Phycology 40, 937-945.<br />

Zvereva, L.V., 1998. Mycobiota <strong>of</strong> the cultivated brown alga Laminaria japonica. Russian<br />

Journal <strong>of</strong> Marine Biology 24, 19-23.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 73


Appendix 4. Map <strong>of</strong> known <strong>pathogens</strong> affecting <strong>Undaria</strong> <strong>pinnatifida</strong> in its native range <strong>of</strong> Japan, China <strong>and</strong> Korea. Locations are approximate<br />

<strong>and</strong> inferred from placenames available in the literature.<br />

120˚E<br />

150˚E<br />

30˚N<br />

0 500<br />

km<br />

☼<br />

Amenophia (copepod)<br />

Parathalestris (copepod)<br />

Thalestris (copepod)<br />

Scutellidium (copepod)<br />

Ceinina (amphipod)<br />

SOUTH<br />

KOREA<br />

Honshu<br />

JAPAN<br />

☼ Olpidiopsis (fungi)<br />

Unspecified bacteria<br />

Vibrio (bacteria)<br />

40˚N<br />

Dalian<br />

CHINA<br />

Moraxella (bacteria)<br />

Flavobacterium (bacteria)<br />

Pseudomonas (bacteria)<br />

Hokkaido<br />

Halomonas (bacteria)<br />

Laminariocolax (algae)<br />

Microspongium (algae)


Appendix 3. Map showing FAO geographic regions, distribution <strong>of</strong> <strong>Undaria</strong> in these regions <strong>and</strong> <strong>pathogens</strong> ( Laminariocolax (algae);<br />

Microspongium (algae)) affecting <strong>Undaria</strong> in its introduced range. Native range (dark grey shading); introduced range (mid grey shading).


APPENDIX 1:<br />

Hierarchical Classification (based on Cavalier –Smith 1998) <strong>and</strong> Species 2000<br />

(D.Gordon, pers. comm. NIWA)<br />

EMPIRE OR SUPERKINGDOM 1. PROKARYOTA<br />

Kingdom 1. Bacteria<br />

Subkingdom 1. Negibacteria<br />

Infrakingdom 1. Eobacteria<br />

Phylum 1. Eobacteria<br />

Class 1. Chlorobacteria [e.g. Chlor<strong>of</strong>lexus, Heliothrix, Thermomicrobium]<br />

Class 2. Hadobacteria [e.g. Deinococcus, Thermus]<br />

Infrakingdom 2. Glycobacteria<br />

Phylum 1. Cyanobacteria<br />

Subphylum 1. Gloeobacteria<br />

Class 1. Gloeobacteria<br />

Order 1. Gloeobacterales [e.g. Gloeobacter]<br />

Subphylum 2. Phycobacteria<br />

Class 1. Chroobacteria<br />

Order 1. Chroococcales [e.g. Anabaena, Prochloron]<br />

Order 2. Pleurocapsales [e.g. Pleurocapsa]<br />

Order 3. Oscillatoriales [e.g. Oscillatoria]<br />

Class 2. Hormogoneae<br />

Order 1. Nostocales [e.g. Nostoc]<br />

Order 2. Stigonemates [e.g. Stigonema]<br />

Phylum 2. Spirochaetae<br />

Class Spirochaetes [e.g. Leptospira, Spirochaeta, Treponema]<br />

Phylum 3. Sphingobacteria<br />

Class 1. Flavobacteria [Fibrobacter, Flavobacterium]<br />

Class 2. Chlorobia [e.g. Cytophaga, Flavobacteria]<br />

SUPERPHYLUM EXOFLAGELLATA<br />

Phylum 1. Planctobacteria<br />

Class 1. Planctomycea [e.g. Pirellula, Planctomyces]<br />

Class 2. Verrucomicrobeae [e.g. Verrucomicrobium]<br />

Class 3. Chlamydiae [e.g. Chlamydia]<br />

Phylum 2. Proteobacteria<br />

Subphylum 1. Rhodobacteria<br />

Class 1. Chromatibacteria [e.g. Chromatium, Escherichia, Haemophilus, Methylococcus, Pseudomonas,<br />

Spirillum, Vibrio]<br />

Class 2. Alphabacteria [e.g. Agrobacterium, Caulobacter, Hyphomicrobium, Rhizobium, Rhodospirillum,<br />

Rickettsia]<br />

Subphylum 2. Thiobacteria<br />

Class 1. Deltabacteria[e.g. Bdellovibrio, Desulfovibrio, Myxococcus]<br />

Class 2. Epsilobacteria [e.g. Aquifex, Helicobacter, Hydrogenobacter, Thermotoga]<br />

Subphylum 3. Geobacteria<br />

Class 1. Ferrobacteria [e.g. Geobacter, Leptospirillum, Magnetobacterium]<br />

Class 2. Acidobacteria [e.g. Acidobacterium, Holophaga, Geothrix]<br />

Subkingdom 2. Unibacteria<br />

Phylum 1. Posibacteria<br />

Subphylum 1. Endobacteria<br />

Class 1. Togobacteria [e.g. Heliobacterium, Selenomonas, Thermotoga]<br />

Class 2. Teichobacteria [e.g. Bacillus, Clostridium, Staphylococcus, Streptococcus]<br />

Class 3. Mollicutes [e.g. Mycoplasma]<br />

Subphylum 2. Actinobacteria<br />

Class 1. Arthrobacteria [e.g. Arthrobacter, Actinomyces]<br />

Class 2. Arabobacteria<br />

Order 1. Actinoplanales [e.g. Actinoplanes]<br />

Order 2. Mycobacteriales [Mycobacterium]<br />

Class 3. Streptomycetes [e.g. streptomyces]<br />

Phylum 2. Archaebacteria<br />

74 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Subphylum 1. Euryarchaeota<br />

Superclass 1. Neobacteria<br />

Class 1. Methanothermea [e.g. Methanococcus]<br />

Class 2. Archaeoglobea<br />

Class 3. Halomebacteria [e.g. Halobacterium, Methanospirillum]<br />

Superclass 2. Eurythermea<br />

Class 1. Protoarchaea [e.g. Palaeococcus, Protococcus]<br />

Class 2. Picrophilea [e.g. Ferroplasma, Thermoplasma]<br />

Subphylum 2. Crenarchaeota<br />

Class 1. Crenarchaeota [e.g. Sulfolobus, Pyrobaculum]<br />

EMPIRE OR SUPERKINGDOM 2. EUKARYOTA<br />

Kingdom 1. Protozoa<br />

Subkingdom 1. Sarcomastigota<br />

Phylum 1. Amoebozoa [Rhizopoda]<br />

Subphylum 1. Protamoebae<br />

Class 1. Breviatea<br />

Class 2. Lobosea<br />

Order 1. Euamoebida [e.g. Amoeba, Rhizamoeba]<br />

Order 2. Copromyxida [e.g. Copromyxa]<br />

Order 3. Arcellinida [e.g. Arcella, Difflugia]<br />

Class 3. Discosea<br />

Order 1. Glycostylida [e.g. Paramoeba, Vannella]<br />

Order 2. Himatismenida [e.g. Cochliopodium]<br />

Order 3. Dermamoebida [e.g. Thecamoeba]<br />

Class 4. Variosea<br />

Order 1. Phalansteriida [e.g. Phalansterium]<br />

Order 2. Centramoebida [e.g. Acanthamoeba]<br />

Order 3. Varipodida [e.g. Filamoeba, Gephyramoeba]<br />

Subphylum 2. Conosa<br />

Infraphylum 1. Archamoebae<br />

Class 1. Archamoebea<br />

Order 1. Pelobiontida [e.g. Entamoeba, Pelomyxa]<br />

Order 2. Mastigamoebida [e.g. Endolimax, Mastigamoeba]<br />

Infraphylum 2. Mycetozoa<br />

Class 1. Stelamoebea<br />

Order 1. Protostelida [e.g. Protostelium, Schizoplasmodium]<br />

Order 2. Dictyosteliida [e.g. Dictyostelium]<br />

Class 2. Myxogastrea<br />

Order 1. Parastelida [e.g. Ceratiomyxa]<br />

Order 2. Echinosteliida [e.g. Echinostelium]<br />

Order 3. Liceida [e.g. Listerella]<br />

Order 4. Trichiida [e.g. Dianema]<br />

Order 5. Stemonitida [e.g. Stemonitis]<br />

Order 6. Physarida [e.g. Didymium, Elaeomyxa, Physarum]<br />

Phylum 2. Choanozoa<br />

Class 1. Choan<strong>of</strong>lagellatea<br />

Order 1. Craspedida [e.g. Codosiga, Monosiga, Salpingoeca]<br />

Order 2. Acanthoecida [e.g. Acanthoeca, Diaphanoeca]<br />

Class 2. Corallochytrea<br />

Order 1. Corallochytrida [e.g. Corallochytrium]<br />

Class 3. Ichthyosporea<br />

Order 1. Ichthyosporida [e.g. Dermocystidium, Ichthyophonus]<br />

Class 4. Cristidiscoidea<br />

Order 1. Ministeriida [e.g. Ministeria]<br />

Order 2. Nucleariida [e.g. Fonticula, Nuclearia]<br />

Subkingdom 2. Biciliata<br />

Infrakingdom 1. Rhizaria<br />

Phylum 1. Cercozoa [Zo<strong>of</strong>lagellata]<br />

Subphylum 1. Filosa<br />

Superclass 1. Reticul<strong>of</strong>ilosa<br />

Class 1. Chlorarachnea [e.g. Chlorarachnion]<br />

Class 2. Proteomyxidea [e.g. Dimorpha, Gymnophrys, Reticulamoeba]<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 75


Superclass 2. Monad<strong>of</strong>ilosa<br />

Class 1. Sarcomonadea [e.g. Cercomonas, Heteromita, Metopion]<br />

Class 2. Thec<strong>of</strong>ilosea [e.g. Cryothecomonas, Cryptodifflugia]<br />

Class 3. Spongomonadea [e.g. Spongomonas]<br />

Class 4. Imbricatea [e.g. Euglypha, Thaumatomonas]<br />

Class 5. Phaeodaria [e.g. Collosphaera]<br />

Subphylum 2. Endomyxa<br />

Class 1. Phytomyxea<br />

Order 1. Phagomyxida [e.g. Phagomyxa]<br />

Order 2. Plasmodiophorida [e.g. Plasmodiophora]<br />

Class 2. Ascetosporea<br />

Order 1. Haplosporida [e.g. Bonamia, Haplosporidium, Urosporidium]<br />

Order 2. Paramyxida [e.g. Paramyxa]<br />

Order 3. Claustrosporida [e.g. Claustrosporidium]<br />

Class 3. Gromiidea<br />

Order 1. Gromiida [e.g. Gromia]<br />

Phylum 2. Foraminifera<br />

Class 1. Athalamea [e.g. Reticulomyxa]<br />

Class 2. Polythalamea [e.g. Allogromia, Globigerina, Textularia]<br />

Class 3. Xenophyophorea [e.g. Psammina]<br />

Phylum 3. Radiozoa<br />

Class 1. Acantharea [e.g. Acanthometra]<br />

Class 2. Sticholonchea [e.g. Sticholonche]<br />

Class 3. Polycystinea [e.g. Collozoum]<br />

Infrakingdom 1. Excavata<br />

SUPERPHYLUM 1. APUSOZOA<br />

Phylum Apusozoa<br />

Class 1. Diphyllatea<br />

Order 1. Diphylleida [e.g. Collodictyon, Diphylleia]<br />

Class 2. Thecomonadea<br />

Order 1. Apusomonadida [e.g. Amastigomonas, Apusomonas]<br />

Order 2. Ancyromonadida [e.g. Ancyromonas]<br />

Order 3. Hemimastigida [e.g. Spironema]<br />

Class 3. Teonemea [e.g. Nephromyces, Telonema]<br />

SUPERPHYLUM 2. EOZOA<br />

Phylum 1. Loukozoa<br />

Class 1. Jakobea<br />

Order 1. Jakobida [e.g. Histiona, Jakoba, Reclinomonas]<br />

Class 2. Malawimonadea<br />

Order 1. Malawimonadida [e.g. Malawimonas]<br />

Phylum 2. Metamonada<br />

Subphylum 1. Anaeromonada<br />

Class 1. Anaeromonadea [e.g. Dinenympha, Personympha, Trimastix]<br />

Order 1. Trimastigida [e.g. Trimastix]<br />

Order 2. Oxymonadida [e.g. Dinenympha, Pyrsonympha]<br />

Subphylum 2. Trichozoa<br />

Superclass 1. Parabasalia<br />

Class 1. Trichomonadea<br />

Order 1. Trichomonadida [e.g. Calonympha, Trichomonas]<br />

Order 2. Lophomonadida [e.g. Microjoenia, Lophomonas]<br />

Order 3. Spirotrichonymphida [e.g. Holomastigotoides]<br />

Class 2. Trichonymphea<br />

Order 1. Trichonymphida [e.g. Trichonympha]<br />

76 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Superclass 2. Carpediemonadia<br />

Class 1. Carpediemonadea<br />

Order 1. Carpediemonadida [e.g. Carpediemonas]<br />

Superclass 3. Eopharyngia<br />

Class 1. Trepomonadea<br />

Subclass 1. Diplozoa<br />

Order 1. Distomatida [e.g. Hexamita, Spironucleus, Trepomonas]<br />

Order 2. Giardiida [e.g. Giardia, Octomitus]<br />

Subclass 2. Enteromonadia<br />

Order 1. Enteromonadida [e.g. Enteromonas]<br />

Class 2. Retortamonadea<br />

Order 1. Retortamonadida [e.g. Chilomastix, Retortamonas]<br />

SUPERPHYLUM 3. DISCICRISTATA<br />

Phylum 1. Percolozoa<br />

Class 1. Heterolobosea<br />

Order 1. Schizopyrenida [ e.g. Naegleria, Tetramitus, Vahlkampfia]<br />

Order 2. Acrasida [ e.g. Acrasis]<br />

Order 3. Lyromonadida [ e.g. Lyromonas, Psalteriomonas]<br />

Class 2. Percolatea<br />

Order 1. Percolomonadida [e.g. Percolomonas]<br />

Order 2. Pseudociliatida [e.g. Stephanopogon]<br />

Phylum 2. Euglenozoa<br />

Subphylum 1. Plicostoma<br />

Class 1. Euglenoidea<br />

Order 1. Petalomonadida [e.g. Calycimonas, Petalomonas]<br />

Order 2. Peranemida [e.g. Entosiphon, Peranema]<br />

Order 3. Rhabdomonadida [e.g. Distigma, Menoidium]<br />

Order 4. Euglenida [e.g. Astasia, Euglena, Eutreptia, Phacus]<br />

Class 2. Diplonemea<br />

Order 1. Diplonemida [e.g. Diplonema, Rhynchopus]<br />

Subphylum 2. Saccostoma<br />

Class 1. Kinetoplastea<br />

Order 1. Bodonida [e.g. Bodo, Cryptobia, Dimastigella, Ichthyobodo]<br />

Order 2. Trypanosomatida [e.g. Crithidia, Leishmannia, Trypanosoma]<br />

Class 2. Postgaardea<br />

Order 1. Postgaadida [e.g. Calkinsia, Postgaardi]<br />

Infrakingdom 2. Alveolata<br />

Phylum 1. Myzozoa<br />

Subphylum 1. Dinozoa<br />

Infraphylum 1. Protalveolata<br />

Class 1. Colponemea [e.g. Algovora, Colponema]<br />

Class 2. Myzomonadea [e.g. Alphamonas, Chilovora, Voromonas]<br />

Class 3. Perkinsea [e.g. Parvilucifera, Perkinsus, Phagodinium, Rastromonas]<br />

Class 4. Ellobiopsea [e.g. Elliobiopsis, Thalassomyces]<br />

Infraphylum 2. Din<strong>of</strong>lagellata<br />

Superclass 1. Syndina<br />

Class 1. Syndinea [e.g. Amoebophrya]<br />

Superclass 2. Dinokaryota<br />

Class 1. Noctilucea [e.g. Noctiluca]<br />

Class 2. Peridinea<br />

Subclass 1. Peridinoidia [e.g. Amylodinium, Heterocapsa, Prorocentrum]<br />

Subclass 2. Dinophysoidia [e.g. Dinophysis]<br />

Subclass 3. Gonyaulacoidia<br />

Order 1. Gonyaulacida [e.g. Ceratium, Cryptothecodinium]<br />

Subclass 4. Suessioidia<br />

Order 1. Suessiida [e.g. Polarella, Symbiodinium]<br />

Subclass 5. Oxyrrhia<br />

Order 1. Oxyrrhida [e.g. Oxyrrhis]<br />

Subphylum 2. Apicomplexa<br />

Infraphylum 1. Apicomonada<br />

Class 1. Apicomonadea [ e.g. Acrocoelus, Colpodella]<br />

Infraphylum 2. Sporozoa<br />

Class 1. Coccidea [e.g. Cryptosporidium, Hepatozoon, Toxoplasma]<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 77


Class 2. Gregarinea [e.g. Monocystis, Ophriocystis]<br />

Class 3. Haematozoa [e.g. Babesia, Plasmodium, Theileria]<br />

Phylum 2. Ciliophora<br />

Subphylum 1. Postciliodesmatophora<br />

Class 1. Karyorelictea [e.g. Kentrophoros, Loxodes, Tracheloraphis]<br />

Class 2. Heterotrichea [e.g. Blepharisma, Folliculina, Stentor]<br />

Subphylum 2. Intramacronucleata<br />

Infraphylum 1. Spirotrichia<br />

Class 1. Spirotrichea [e.g. Euplotes, Metopus, Oxytricha, Tintinnus]<br />

Infraphylum 2. Rhabdophora<br />

Class 1. Litostomatea [e.g. Didinium, Entodinium, Lacrymaria]<br />

Infraphylum 3. Ventrata<br />

Class 1. Phyllopharyngea [e.g. Dysteria, Podophrya]<br />

Class 2. Colpodea [e.g. Colpoda]<br />

Class 3. Nassophorea [e.g. Nassula]<br />

Class 4. Prostomatea [e.g. Coleps]<br />

Class 5. Plagiopylea<br />

Class 6. Oligohymenophorea [e.g. Paramecium, Tetrahymena, Vorticella]<br />

Kingdom 2. Animalia<br />

Subkingdom 1. Radiata<br />

Infrakingdom 1. Spongiaria<br />

Phylum 1. Porifera<br />

Subphylum 1. Hyalospongiae<br />

Subphylum 2. Calcispongiae<br />

Subphylum 3. Archaeocyatha<br />

Infrakingdom 2. Coelenterata<br />

Phylum 1. Cnidaria<br />

Subphylum 1. Anthozoa<br />

Subphylum 2. Medusozoa<br />

Phylum 2. Ctenophora<br />

Infrakingdom 3. Placozoa<br />

Phylum 1. Placozoa<br />

Subkingdom 2. Myxozoa<br />

Phylum 1. Myxosporidia<br />

Subkingdom 3. Bilateria<br />

Branch 1. PROTOSTOMIA<br />

Infrakingdom 1. Lophozoa<br />

SUPERPHYLUM POLYZOA<br />

Phylum 1. Bryozoa<br />

Subphylum 1. Stelmatopoda<br />

Subphylum 2. Lophopoda<br />

Phylum 2. Kamptozoa<br />

Subphylum 1. Entoprocta<br />

Subphylum 2. Cycliophora<br />

SUPERPHYLUM CONCHOZOA<br />

Phylum 1. Mollusca<br />

Subphylum 1. Bivalvia<br />

Subphylum 2. Glossophora<br />

Infraphylum 1. Univalvia<br />

Infraphylum 2. Spiculata<br />

Infraphylum 3. Cephalopoda<br />

Phylum 2. Brachiozoa<br />

Subphylum 1. Brachiopoda<br />

Subphylum 2. Phoronida<br />

SUPERPHYLUM 3. SIPUNCULA<br />

Phylum 1. Sipuncula<br />

SUPERPHYLUM 4. VERMIZOA<br />

Phylum 1. Annelida<br />

Subphylum 1. Polychaeta<br />

Subphylum 2. Clitellata<br />

Subphylum 3. Echiura<br />

Subphylum 4. Pogonophora<br />

78 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Phylum 2. Nemertina<br />

Infrakingdom 2. Chaetognathi<br />

Phylum 1. Chaetognatha<br />

Infrakingdom 3. Ecdysozoa<br />

SUPERPHYLUM 1. HAEMOPODA<br />

Phylum 1. Arthropoda<br />

Subphylum 1. Cheliceromorpha<br />

Infraphylum 1. Pycnogonida<br />

Infraphylum 2. Chelicerata<br />

Subphylum 2. Trilobitomorpha<br />

Subphylum 3. M<strong>and</strong>ibulata<br />

Infraphylum 1. Crustacea<br />

Infraphylum 2. Myriapoda<br />

Infraphylum 3. Insecta<br />

Phylum 2. Lobopoda<br />

Subphylum 1. Onychophora<br />

Subphylum 2. Tardigrada<br />

SUPERPHYLUM NEMATHELMINTHES<br />

Phylum Nemathelminthes<br />

Subphylum 1. Scalidorhyncha<br />

Infraphylum 1. Priapozoa<br />

Infraphylum 2. Kinorhyncha<br />

Subphylum 2. Nematoida<br />

Infraphylum 1. Nematoda<br />

Infraphylum 2. Nematomorpha<br />

Infrakingdom 4. Platyzoa<br />

Phylum 1. Acanthognatha<br />

Subphylum 1. Trochata (Gnathifera)<br />

Infraphylum 1. Rotifera<br />

Infraphylum 2. Acanthocephala<br />

Subphylum 2. Monokonta<br />

Phylum 2. Platyhelminthes<br />

Subphylum 1. Turbellaria<br />

Infraphylum 1. Mucorhabda<br />

Infraphylum 2. Rhabditophora<br />

Subphylum 2. Neodermata<br />

Infraphylum 1. Trematoda<br />

Infraphylum 2. Cercomeromorpha<br />

BRANCH 2. DEUTEROSTOMIA<br />

Infrakingdom 1. Coelomopora<br />

Phylum 1. Hemichordata<br />

Subphylum 1. Pterobranchia<br />

Subphylum 2. Enteropneusta<br />

Phylum 2. Echinodermata<br />

Subphylum 1. Homalozoa<br />

Subphylum 2. Pelmatozoa<br />

Infraphylum 1. Blastozoa<br />

Infraphylum 2. Crinozoa<br />

Subphylum 3. Eleutherozoa<br />

Infraphylum 1. Asterozoa<br />

Infraphylum 4. Echinozoa<br />

Infrakingdom 2. Chordonia<br />

Phylum 1. Urochorda<br />

Subphylum 1. Tunicata<br />

Infraphylum 1. Ascidiae<br />

Infraphylum 2. Thaliae<br />

Subphylum 2. Appendicularia<br />

Phylum 2. Chordata<br />

Subphylum 1. Acraniata<br />

Infraphylum 1. Cephalochordata<br />

Infraphylum 2. Conodonta<br />

Subphylum 2. Vertebrata<br />

Infraphylum 1. Agnatha<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 79


Infraphylum 2. Gnathostomata<br />

Subkingdom 4. Mesozoa<br />

Phylum 1. Mesozoa<br />

Kingdom 3. Fungi<br />

Subkingdom 1. Eomycota<br />

Phylum 1. Archemycota<br />

Subphylum 1. Dictyomycotina<br />

Class 1. Chytridiomycetes<br />

Class 2. Enteromycetes<br />

Subphylum 2. Melanomycotina<br />

Infraphylum 1. Allomycotina<br />

Class 1. Allomycetes<br />

Infraphylum 2. Zygomycotina<br />

Superclass 1. Eozygomycetia<br />

Class 1. Bolomycetes<br />

Class 2. Glomomycetes<br />

Superclass 2. Neozygomycetia<br />

Class 1. Zygomycetes<br />

Class 2. Zoomycetes<br />

Phylum Microsporidia<br />

Class 1. Minisporea<br />

Class 2. Microsporea<br />

Subkingdom 2. Neomycota<br />

Phylum 1. Ascomycota<br />

Subphylum 1. Hemiascomycotina<br />

Class 1. Taphrinomycetes<br />

Class 2. Geomycetes<br />

Class 3. Endomycetes<br />

Subphylum 2. Euascomycotina<br />

Class 1. Discomycetes<br />

Class 2. Pyrenomycetes<br />

Class 3. Loculomycetes<br />

Class 4. Plectomycetes<br />

Phylum 2. Basidiomycota<br />

Subphylum 1. Septomycotina<br />

Class 1. Septomycetes<br />

Subphylum 2. Orthomycotina<br />

Superclass 1. Hemibasidiomycetia<br />

Class 1. Ustomycetes<br />

Superclass 2. Hymenomycetia<br />

Class 1. Gelimycetes<br />

Class 2. Homobasidiomycetes<br />

Kingdom 4. Plantae<br />

Subkingdom 1. Biliphyta<br />

Infrakingdom 1. Glaucophyta<br />

Phylum 1.Glaucophyta [e.g. Cyanophora]<br />

Infrakingdom 2. Rhodophyta<br />

Phylum 1. Rhodophyta<br />

Subphylum 1. Rhodellophytina<br />

Class 1. Rhodellophyceae [e.g. Porphyridium]<br />

Subphylum 2. Macrorhodophytina<br />

Class 1. Bangiophyceae [e.g. Bangia, Porphyra]<br />

Class 2. Florideophyceae [e.g. Batrachospermum, Corallina]<br />

Subkingdom 2. Viridiplantae<br />

Infrakingdom 1. Chlorophyta<br />

Phylum 1. Chlorophyta<br />

Subphylum 1. Chlorophytina<br />

Infraphylum 1. Prasinophytae<br />

Class 1. Micromonadophyceae [e.g. Mesostigma, Micromonas]<br />

Class 2. Nephrophyceae [e.g. Nephroselmis, Pseudoscourfieldia]<br />

80 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Infraphylum 2. Tetraphytae<br />

Class 1. Chlorophyceae [e.g. Chlamydomonas, Tetraselmis]<br />

Class 2. Trebouxiophyceae [e.g. Chlorella]<br />

Class 3. Ulvophyceae [e.g. Acetabularia, Bryopsis, Codium, Ulva]<br />

Subphylum 2. Phragmophytina<br />

Infraphylum 1. Charophytae<br />

Class 1. Charophyceae [e.g. Chara, Nitella]<br />

Infraphylum 2. Rudophytae<br />

Class 1. Eophyceae [e.g. Coleochaete, Klebsormidium]<br />

Class 2. Conjugophyceae [e.g. Spirogyra]<br />

Infrakingdom 2. Cormophyta<br />

Phylum 1. Bryophyta<br />

Subphylum 1. Hepaticae<br />

Subphylum 2. Anthocerotae<br />

Subphylum 3. Musci<br />

Phylum 2. Tracheophyta<br />

Subphylum 1. Pteridophytina<br />

Infraphylum 1. Psilophytae<br />

Infraphylum 2. Lycophytae<br />

Infraphylum 3. Sphenophytae<br />

Infraphylum 4. Filices<br />

Subphylum 2. Spermatophytina<br />

Infraphylum 1. Gymnospermae<br />

Infraphylum 2. Angiospermae<br />

Kingdom 5. Chromista<br />

Subkingdom 1. Cryptista<br />

Phylum 1. Cryptista<br />

Subphylum 1. Cryptomonada<br />

Class 1. Cryptophyceae [e.g. Chilomonas, Cryptomonas, Guillardia]<br />

Class 2. Goniomonadea [e.g. Goniomonas]<br />

Subphylum 2. Leucocrypta<br />

Class 1. Leucocryptea [e.g. Kathablepharis, Leucocryptos]<br />

Subkingdom 2. Chromobiota<br />

Infrakingdom 1. Heterokonta<br />

Phylum 1. Ochrophyta<br />

Subphylum 1. Phaeista<br />

Infraphylum 1. Hypogyrista<br />

Class 1. Pelagophyceae [e.g. Pelagomonas, Sarcinochrysis]<br />

Class 2. Actinochrysea (Dictyochophyceae) [e.g. Dictyocha, Pedinella]<br />

Class 3. Pinguiophyceae [e.g. Glossomastix, Pinguiochrysis]<br />

Infraphylum 2. Chrysista<br />

Class 1. Raphidophyceae [e.g. Heterosigma]<br />

Class 2. Eustigmatophyceae [e.g. Vischeria]<br />

Class 3. Chrysophyceae [e.g. Ochromonas, Oikomonas, Spumella, Synura]<br />

Class 4. Chrysomerophyceae [e.g. Chrysomeris, Giraudyopsis]<br />

Class 5. Phaeothamniophyceae [e.g. Phaeothamnion, Pleurochloridella]<br />

Class 6. Xanthophyceae [e.g. Chloromeson, Vaucheria]<br />

Class 7. Phaeophyceae [e.g. Fucus, Laminaria]<br />

Subphylum 2. Khakista<br />

Class 1. Bolidophyceae [e.g. Bolidomonas]<br />

Class 2. Diatomeae [e.g. Coscinodiscus, Bacillaria, Nitzschia]<br />

Phylum 2. Bigyra<br />

Subphylum 1. Bigyromonada<br />

Class 1. Bigyromonadea [e.g. Developopayella]<br />

Subphylum 2. Pseud<strong>of</strong>ungi<br />

Class 1. Oomycetes [e.g. Achlya, Phytophthora]<br />

Class 2. Hyphochytrea [e.g. Rhizidiomyces]<br />

Subphylum 3. Opalinata<br />

Class 1. Proteromonadea [e.g. Proteromonas]<br />

Class 2. Blastocystea [e.g. Blastocystis]<br />

Class 3. Opalinea [e.g. Cepedea, Opalina]<br />

Phylum 3. Sagenista<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 81


Class 1. Labyrinthulea [e.g. Labyrinthula, Thraustochytrium]<br />

Class 2. Bisoecea [e.g. Bicosoeca, Caecitellus, Cafeteria]<br />

Class 3. Placididea [e.g. Pendulomonas, Placidia, Wobblia]<br />

Infrakingdom 2. Haptophyta<br />

Phylum 1. Haptophyta<br />

Class 1. Pavlovophyceae [e.g. Pavlova]<br />

Class 2. Prymnesiophyceae [e.g. Emiliania, Isochrysis, Prymnesium]<br />

Phylum 2. Heliozoa [e.g. Acanthocystis, Acanthophrys]<br />

82 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis sp. AKU100640 (VWL9231): Waitata,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s 9 Feb 1948 - on<br />

C. maschalocarpum<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Syncoryne reinkei R.Nielsen &<br />

P.M.Pedersen<br />

CHR401337: (slide CHR1203-1209)<br />

Kaikoura, 5 Sept 1979, O.Moestrup<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis sp. AKU100639 (VWL9135): Pawa Bay,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 18 Jan 1948 -<br />

on C. maschalocarpum<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis sp. AKU100636 (VWL9048): Long Beach,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 1 Jan 1948 - on<br />

Carpophyllum<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis sp. AKU 100641 (VWL9324): Long Beach,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 11 Feb 1948 -<br />

on C.plumosum<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis sp. AKU100642 (VWL9367): Long Beach,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 25 Feb 1948 -<br />

on C.plumosum<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis sp. AKU100643 (VWL9379): Temple Bar,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 26 Feb 1948 -<br />

on C.plumosum<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. WELT A001108: Russell, Long<br />

Beach, 12 Jan 1948, VWLindauer<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis sp. AKU100646 (VWL9687): Long Beach,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 14 Mar 1948 -<br />

on Carpophyllum plumosum<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. WELT A017693: North east end,<br />

Heaphy Shoal, Chatham Isl<strong>and</strong>, 04<br />

Nov 1986, CH Hay<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. WELT A003919: Isl<strong>and</strong> Bay, 26 Aug<br />

1970, N.Adams - on Lessonia<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. AKU100647 (VWL9823): Temple Bar,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 24 Mar 1948 -<br />

on Pachymenia<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. AKU100644 (VWL9652): Long Beach<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 9 Mar 1948 - on<br />

Pachymenia<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. AKU100645 (VWL9671): Long Beach,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 13 Mar 1948 -<br />

on Pachymenia<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. AKU100648 (VWL10159): Long Beach,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 27 Apr 1948 -<br />

on Pachymenia<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. AKU100650 (VWL13298): Stormy Bay,<br />

Russell, Bay <strong>of</strong> Isl<strong>and</strong>s, 20 Jan 1953 -<br />

on Pachymenia<br />

Division Class Order Family Genus Species Authority AK CHR Te Papa<br />

Chlorophyta Chlorophyceae Chaetophorales Chaetophoraceae Sporocladopsis novae-zel<strong>and</strong>iae V.J.Chapm. AKU100651 (VWL13330): Kaikoura,<br />

U.V.Dellow, Dec 1949 - on Lessonia<br />

APPENDIX 2:


Chlorophyta Bryopsidophyceae Bryopsidales Ostreobiaceae Ostreobium quekettii Bornet & Flahault CHR401340: (slide) Kakanui, 18<br />

May 1980, O.Moestrup<br />

Chlorophyta Bryopsidophyceae Bryopsidales Ostreobiaceae Ostreobium quekettii Bornet & Flahault CHR401339: (slide) Portobello, 17<br />

May 1980, O.Moestrup<br />

Chlorophyta Chlorophyceae Chlorococcales Endosphaeraceae Gomontia polyrhiza (Lagerh.) Bornet &<br />

Flahault<br />

Chlorophyta Chlorophyceae Chlorococcales Endosphaeraceae Gomontia polyrhiza (Lagerh.) Bornet &<br />

Flahault<br />

Chlorophyta Chlorophyceae Chlorococcales Endosphaeraceae Gomontia polyrhiza (Lagerh.) Bornet &<br />

Flahault<br />

Chlorophyta Chlorophyceae Chlorococcales Endosphaeraceae Gomontia polyrhiza (Lagerh.) Bornet &<br />

Flahault<br />

Chlorophyta Chlorophyceae Phaeophilales Phaeophilaceae Phaeophila dendroides (P.Crouan & H.Crouan)<br />

Batters<br />

Chlorophyta Chlorophyceae Phaeophilales Phaeophilaceae Phaeophila dendroides (P.Crouan & H.Crouan)<br />

Batters<br />

Chlorophyta Chlorophyceae Phaeophilales Phaeophilaceae Phaeophila dendroides (P.Crouan & H.Crouan)<br />

Batters<br />

Chlorophyta Chlorophyceae Phaeophilales Phaeophilaceae Phaeophila dendroides (P.Crouan & H.Crouan)<br />

Batters<br />

Chlorophyta Ulvophyceae Ulvales Ulvellaceae Entocladia viridis Reinke VWL13256: Stewart Is., May 1950, - on<br />

Epymenia<br />

Chlorophyta ? Endoderma - (?) VWL no number: Harriet Kings,<br />

Corom<strong>and</strong>el, 5 Apr 1931 - on<br />

Pachymenia lusoria<br />

CHR401340: (slide) Kakanui, 18<br />

May 1980, O.Moestrup<br />

CHR401339: (slide) Portobello, 17<br />

May 1980, O.Moestrup<br />

CHR401338: (slide) Piha, 16 Apr<br />

1980, O.Moestrup<br />

CHR401337: (slide) Kaikoura, 5<br />

Sept 1979, O.Moestrup<br />

CHR401340: (slide) Kakanui, 18<br />

May 1980, O.Moestrup<br />

CHR401339: (slide) Portobello, 17<br />

May 1980, O.Moestrup<br />

CHR401338: (slide) Piha, 16 Apr<br />

1980, O.Moestrup<br />

CHR401337: (slide) Kaikoura, 5<br />

Sept 1979, O.Moestrup<br />

Division Class Order Family Genus Species Authority AK CHR Te Papa<br />

Chlorophyta Chlorophyceae Chlorococcales Endosphaeraceae Eugomontia stelligera R.Nielsen Syntype - CHR219311: Kakanui,<br />

South I., 18 May 1980, O. Moestrup -<br />

green empty shell from<br />

intertidalzone, grown in culture


Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh WELT A13520: Port William, Stewart<br />

Is, 29 Jan 1983, W.A.Nelson - on<br />

Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh WELT A7450: RingaRinga, Stewart<br />

Is, 30 Nov 1959, E.A.Willa - on<br />

Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh WELT A1498: Gore Bay, South Is,<br />

Nov 1925, R.M.Laing - on<br />

Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A12982: Tautuku Peninsula,<br />

SE Otago, 7 Dec 1973, C.H.Hay - on<br />

Xiphophora gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A7449: Lonneker's Nugget,<br />

Stewart Is, 29 Jan 1960, E.A.Willa -<br />

on X. gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh WELT A6674: Lonneker's Nugget,<br />

Stewart Is., 2 Dec 1971, E.Conway &<br />

N.M.Adams - on Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh Manurewa Reef, Te Awhaite,<br />

Wairarapa, 4 Nov 1973, N.M.Adams -<br />

on Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh WELT A7945: Pukerua Bay,<br />

Wellington, 18 Nov 1972,<br />

N.M.Adams - on Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh CHR315689: Cape Palliser, North I.,<br />

11 Nov 1962, M.J.Parsons - on<br />

Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh WELT A4052a+b: Karaka Bay,<br />

Wellington, Nov 1970, J.McCredie -<br />

on Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh WELT A6584: Cape Palliser, 7 Nov<br />

1971, N.M.Adams - on Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh CHR38194: Whareponga, East<br />

Cape, North I., 12 Dec 1942,<br />

L.B.Moore - on C. torulosa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh CHR385155: Titahi Bay, Wellington,<br />

21 Nov 1942, L.B.Moore - on C.<br />

retr<strong>of</strong>lexa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh CHR219394: Lonneker's Bay,<br />

Stewart I., 2 Dec 1971, M.J.Parsons<br />

- on C. retr<strong>of</strong>lexa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh CHR354184: Big Sol<strong>and</strong>er I., 17<br />

Nov 1973, P.N.Johnson - on<br />

Cystophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh CHR230929: Akitio, North I., 2 Jan<br />

1972, M.J.Parsons - on C. scalaris<br />

Division Class Order Family Genus Species Authority AK CHR Te Papa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Corynophlaea cystophorae J.Agardh AK22498 (=ANZE185): Pihama, CHR385154 (=ANZE185): Pihama, WELT A985 (=ANZE185): Pihama,<br />

Taranaki, North I., 2 Dec 1944, Taranaki, North I., 2 Dec 1944, Taranaki, North I., 2 Dec 1944,<br />

V.W.Lindauer - on C. retr<strong>of</strong>lexa V.W.Lindauer - on C. retr<strong>of</strong>lexa V.W.Lindauer - on C. retr<strong>of</strong>lexa


Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing AK22516: (= ANZE203): Pegasus Bay,<br />

Stewart I., 6 Oct 1945, V.W.Lindauer -<br />

on Xiphophora gladiata<br />

CHR62508 (= ANZE203): Pegasus<br />

Bay, Stewart I., 6 Oct 1945,<br />

V.W.Lindauer - on Xiphophora<br />

gladiata<br />

WELT A1003 (= ANZE203): Pegasus<br />

Bay, Stewart I., 6 Oct 1945,<br />

V.W.Lindauer - on Xiphophora<br />

gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing CHR62503 (=VWL6698): Stewart I.,<br />

22 Oct 1945, E.Willa - on<br />

Xiphophora gladiata<br />

Herponema maculaeforme (J.Agardh) Laing AK146242: Dunedin, S.Berggren - on<br />

Xiphophora ISOTYPE<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema hormosirae Lindauer & V.J.Chapm. CHR230702: Shag Pt, Otago, South<br />

I., 9 Sept 1971, M.J.Parsons - on<br />

Hormosira<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema hormosirae Lindauer & V.J.Chapm. CHR219443: Lonneker's Nugget,<br />

Stewart I., 3 Dec 1971, M.J.Parsons<br />

- on Hormosira<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema hormosirae Lindauer & V.J.Chapm. WELT A6669: Lonneler's Nugget,<br />

Stewart Is, 3 Dec 1971, E.Conway &<br />

N.M.Adams<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema hormosirae Lindauer & V.J.Chapm. WELT A7445: Lonneker's Nugget,<br />

Stewart Is, 6 Feb 1963, E.Awilla<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing CHR219445: Lonneker's Nugget,<br />

Stewart I., 5 Dec 1971, M.J.Parsons<br />

- on Xiphophora gladiata<br />

J.Ag.)<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema hormosirae (as<br />

pulvinatum<br />

(Harv.MS) non<br />

AK30304: ANZE334: Waitangi, Bay <strong>of</strong><br />

Isdl<strong>and</strong>s, North I., 19 Aug 1950,<br />

VWLindauer - on Hormosira SYNTYPE<br />

CHR227375 (=ANZE334): Waitangi, WELT A1134 (=ANZE334): Waitangi,<br />

Bay <strong>of</strong> Isl<strong>and</strong>s, North I., 19 Aug Bay <strong>of</strong> Isl<strong>and</strong>s, North I., 19 Aug 1950,<br />

1950, V.W.Lindauer - on Hormosira V.W.Lindauer - on Hormosira<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Hecatonema stewartensis V.J.Chapm. AK295761: Chris's Bay, Pegasus,<br />

Stewart Is, 10 Apr 1948 ex VWL10256<br />

TYPE<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A15913: L<strong>and</strong>ing Bay,<br />

Burgess I, Mokohinau Is, 31 Dec<br />

1984, M.Francis - on X.chondrophylla<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A13850: Cable Bay,<br />

Doubtless Bay, 27 Oct. 1982,<br />

W.A.Nelson - on X.chondrophylla<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A13446: Tapeka Point, Bay <strong>of</strong><br />

Isl<strong>and</strong>s, 30 Oct 1982, W.A.Nelson -<br />

on X.chondrophylla<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A18903: Katherine Bay, Great<br />

Barrier I, 7 Dec 1989, F.I.Dromgoole -<br />

on X.chondrophylla<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A2509: The Pinnacles, Little<br />

Barrier I., no date, U.V.Dellow - on<br />

X.chondrophylla<br />

Division Class Order Family Genus Species Authority AK CHR Te Papa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Elachista australis J.Agardh WELT A6569: Cape Palliser,<br />

Wairarapa, 7 Nov 1971, N.M.Adams -<br />

on X.gladiata


Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. WELT A26060: Doubtful Sound,<br />

Fiordl<strong>and</strong>, 21 Jan 2000, C.Duffy<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. CHR63461: Kaikoura, South I., 14<br />

Nov 1948, L.B.Moore<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. WELT A25591" Bradshaw Sound,<br />

Fiordl<strong>and</strong>, 3 Oct 2000, K.Neill<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema sp. WELT A13952: Northeast I, Three<br />

Kings Is, 25 Nov 1983, M.Francis -<br />

on Sargassum johnsonii<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Mikrosyphar pachymeniae Lindauer Isotype - CHR68937: Russell, Bay<br />

<strong>of</strong> Isl<strong>and</strong>s, North I., 1 Apr 1944,<br />

V.W.Lindauer (4267)<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. AK22467: ANZE184 On Ulva lactuca ,<br />

Kaikoura, 31 Dec 1944<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. CHR219406: Lonneker's Bay,<br />

Stewart I., 2 Dec 1971, M.J.Parsons<br />

Xiphophora<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae as "Hecatonema?" in<br />

ANZE<br />

AK22532: (=ANZE229) Stewart Is, 14<br />

Jun 1945, V.W.Lindauer - on<br />

WELT A1029: (=ANZE229) Stewart<br />

Is, 14 Jun 1945, V.W.Lindauer<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing WELT A13525: Port William, Stewart<br />

Is, 29 Jan 1983, W.A.Nelson - on<br />

X.gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing WELT A7446: Ringaringa, Stewart<br />

Is, 27 Mar 1963, E.A.Willa - on<br />

X.gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing WELT A6576: Cape Palliser,<br />

Wairarapa, 7 Nov 1971, N.M.Adams -<br />

on X.gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing WELT A7784: Ranui Cove, Auckl<strong>and</strong><br />

Is, 30 Nov 1972, A.N.Baker - on<br />

X.gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing WELT A18813a+b: Cape Young,<br />

Chatham I, 6 Mar 1987, W.A.Nelson -<br />

on X.gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing WELT A18261: Long I, Dusky<br />

Sound, Fiordl<strong>and</strong>, 14 May 1986,<br />

L.A.Bolton - on X.gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing CHR46581: Auckl<strong>and</strong> Is., 26 Dec<br />

1943, W.Dawbin - on Xiphophora<br />

gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing CHR67782: Pencarrow Head, Cook<br />

Strait, North I., 14 Jan 1950,<br />

L.B.Moore - on Xiphophora gladiata<br />

(drift)<br />

Division Class Order Family Genus Species Authority AK CHR Te Papa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing CHR52070: Waitangi, Chatham Is.,<br />

12 July 1945, A.M.Rapson - on<br />

Xiiphophora gladiata<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Herponema maculaeforme (J.Agardh) Laing CHR230701: Shag Pt, Otago, South<br />

I,, 8 Oct 1971, M.J.Parsons - on<br />

Xiphophora gladiata


Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Pilinia rimosa Kuetz. WELT A022656: Piha, west<br />

Auckl<strong>and</strong>, 03 Jul 1994, E.Henry<br />

Heterokontophyta Phaeophyceae Sphacelariales Sphacelariaceae Sphacelaria pulvinata Hook.f. & Harv. WELT A4369: Wharariki Beach, NW<br />

Nelson, 19 Mar 1971, F.M.Climo - on<br />

Carpophyllum maschalocarpum<br />

Heterokontophyta Phaeophyceae Sphacelariales Sphacelariaceae Sphacelaria pulvinata Hook.f. & Harv. AK146468: ANZE131, on Carpophyllum<br />

maschalocarpum, Mangonui, 24 Oct<br />

1942<br />

WELT A931: (=ANZE131) Mangonui,<br />

Northl<strong>and</strong>, 24 Oct 1942,<br />

V.W.Lindauer - on Carpophyllum<br />

maschalocarpum<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South WELT A12907: Katiki, North Otago,<br />

4 Jun 1973, C.H.Hay<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South WELT A6331: Lonneker's Nugget,<br />

Stewart Is, 26 May 1971, E.Conway<br />

& N.M.Adams<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South WELT A3644a+b: Makara,<br />

Wellington, 2 Jun 1970, N.M.Adams -<br />

on drift<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South WELT A7447: RiongaRinga, Stewart<br />

Is, 18 Mar 1960, E.A.Willa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema sp. WELT A8619: Tasman Bay, Three<br />

Kings Is, Feb 1974, A.N.Baker - on<br />

L<strong>and</strong>sburgia quercifolia<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Nemacystus novae-zel<strong>and</strong>iae Kylin WELT A18016: Parnell Reef,<br />

Waitemata Harbour, Auckl<strong>and</strong>, 13<br />

Oct 1987, K.W.Glombitza - on<br />

Sargassum scabridum<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South AK295758: (VWL6253) Stewart Is, 12<br />

Jun 1945, E.Willa - ISOTYPE<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South AK22533: (ANZE230) (VWL6253),<br />

Stewart Is, 12 Jun 1945, E.Willa<br />

ISOTYPE<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South AK295759: (VWL6253) Stewart Is, 12<br />

Jun 1945, E.Willa - TYPE<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South CHR49999: Princess Bay Bay,<br />

Wellington, North I., 30 May 1943,<br />

L.B.Moore (drift)<br />

Heterokontophyta Phaeophyceae Ectocarpales incertae sedis Herpodiscus durvillaeae (Lindauer) South CHR248256: Oaro, Kaikoura, South<br />

I., 4 July 1973, M.J.Parsons<br />

Division Class Order Family Genus Species Authority AK CHR Te Papa<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. WELT A16379: Perserverance<br />

Harbour, Campbell I, 12 Feb 1985,<br />

J.C.Yaldwyn<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. WELT A984: ANZE 184: Kaikoura,<br />

31 Dec 1944, V.W.Lindauer<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. WELT A18688: Monau, Chatham I, 3<br />

Mar 1987, W.A.Nelson<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. WELT A1592a+b: York Bay,<br />

Wellington, 31 May 1953, R.K.Dell<br />

Heterokontophyta Phaeophyceae Ectocarpales Chordariaceae Myrionema strangulans Grev. WELT A7073: Rosa I, Port Pegasus,<br />

Stewart Is, 29 Feb 1972, N.M.Adams


galls on Durvillaea CHR243660: Kaitangata, Otago,<br />

South I., 26 Feb 1973, R.Mason &<br />

E.M.Chapman - on Durvillaea<br />

antarctica drift -"galls not caused by<br />

fungus - possibly bacteria" det.<br />

J.Kohlmeyer<br />

Division Class Order Family Genus Species Authority AK CHR Te Papa<br />

galls on Macrocystis CHR47805: Native Isl<strong>and</strong>, Paterson<br />

Inlet, Stewart Isl<strong>and</strong>, 2 Dec 1944,<br />

L.B.Moore - on Macrocystis pyrifera -<br />

"not fungal but possibly caused by<br />

filamentous brown algae (see<br />

Andrews 1976 Biol. Rev. 51: 211-<br />

253, Can J. Bot 55:1019-1027)" det<br />

J.Kohlmeyer


Rhodophyta Bangiophyceae Bangiales Bangiaceae Porphyra woolhousiae Harv. CHR 209060: Lyall Bay, Wellington,<br />

Sept 1931, Scarfe<br />

Rhodophyta Bangiophyceae Bangiales Bangiaceae Porphyra woolhousiae Harv. CHR55566: Hokio Beach, Levin,<br />

Nov 1946, Moore.<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. AK147200: Bluff, 1874, Berggren<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. AK147201: Ringaringa, Stewart Is, 15<br />

Jan 1940, L.M.Cranwell<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. AK223832: Preservation Inlet, Fiordl<strong>and</strong>,<br />

20 Jul 1995, M.S.Morley<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. AK22605: (=ANZE214) Stewart Is, 15<br />

Jan 1946, V.W.Lindauer<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR24001: Bluff, South I., 4 Jan<br />

1940, L.B.Moore<br />

Rhodophyta Bangiophyceae Bangiales Bangiaceae Porphyra adamsiae W.A.Nelson WELT A10322: Crater Bay,<br />

Antipodes Is, 23 Nov 1978, C.H.Hay<br />

Rhodophyta Bangiophyceae Bangiales Bangiaceae Porphyra adamsiae W.A.Nelson WELT A8038: Port Ross, Auckl<strong>and</strong><br />

Is, 19 Feb 1973, K.Johnson,<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Pyrophyllon subtumens (J.Agardh ex Laing)<br />

W.A.Nelson<br />

WELT A15999: Brighton, Otago, 2<br />

Feb 1983, W.A.Nelson - on<br />

D.antarctica<br />

D.chathamensis<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Pyrophyllon subtumens (J.Agardh ex Laing)<br />

W.A.Nelson<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Pyrophyllon cameronii (W.A.Nelson)<br />

W.A.Nelson<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Pyrophyllon cameronii (W.A.Nelson)<br />

W.A.Nelson<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Pyrophyllon subtumens (J.Agardh ex Laing)<br />

W.A.Nelson<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Chlidophyllon kaspar (W.A.Nelson et N.M.<br />

Adams) W.A.Nelson<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Chlidophyllon kaspar (W.A.Nelson et N.M.<br />

Adams) W.A.Nelson<br />

WELT A26849: Three Kings Is, Jan<br />

1994, V.Staines<br />

WELT A16714: Princes Rocks, Three<br />

Kings Is, 18 Jan 1985, M.Francis &<br />

M.A.Williams<br />

WELT A26851: Wharekauri,<br />

Chatham I, Feb 2001, R.Russell<br />

WELT A17785: Heaphy Shoal,<br />

Chatham I, 4 Nov 1986, C.H.Hay<br />

WELT A3669: Makara, Wellington, 2<br />

Jun 1970, N.M.Adams - on drift<br />

D.antarctica<br />

WELT A7466a+b: Point Webb,<br />

Chatham I, 4 Nov 1986, C.H.Hay - on<br />

Phylum Class Order Family Genus Species Authority AK CHR Te Papa<br />

Rhodophyta Rhodellophyceae Stylonematales Stylonemataceae Chroodactylon ornatum (C.Agardh) Basson AK30298: (=ANZE 341) Glendowie,<br />

WELT A1141: (=ANZE 341)<br />

Auckl<strong>and</strong>, 20 Dec 1949, V.W.Lindauer<br />

Glendowie, Auckl<strong>and</strong>, 20 Dec 1949,<br />

V.W.Lindauer<br />

Rhodophyta Rhodellophyceae Stylonematales Stylonemataceae Chroodactylon ornatum (C.Agardh) Basson WELT A6707: Oban, Stewart I, 3 Dec<br />

1971, E.Conway & N.M.Adams -<br />

epiphyte<br />

Rhodophyta Rhodellophyceae Stylonematales Stylonemataceae Stylonema alsidii (Zanardini) K.M.Drew WELT A4403: Days Bay, Wellington,<br />

13 Jun 1971, N.M.Adams - on<br />

Chaetomorpha<br />

Rhodophyta Rhodellophyceae Stylonematales Stylonemataceae Erythrocladia sp. WELT A18578: Durham & Gap Pts,<br />

Chatham I, 4 Mar 1987, W.A.Nelson -<br />

on Cladophora sp.<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Erythrotrichia foliiformis South et N.M.Adams WELT A17692: Petre Bay, Chatham<br />

I, 4 Nov 1986, C.H.Hay - on Lessonia<br />

tholiformis<br />

Rhodophyta Compsopogonophyceae Erythropeltidiales Erythrotrichiaceae Erythrotrichia foliiformis South et N.M.Adams WELT A6570: Cape Palliser,<br />

Wairarapa, 7 Nov 1971, N.M.Adams -<br />

on Marginariella (oval)


Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. WELT A3988: Owhiro Bay,<br />

Wellington, 19 Sep 1970, N.M.Adams<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. CHR357193: Rimu Bay, Pelorus<br />

Sound, South I., 5 Oct 1958,<br />

L.B.Moore<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. CHR49433: Matarangi Beach,<br />

Kuaotunu, Corom<strong>and</strong>el, North I., 29<br />

Mar 1945, N.M.Adams<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. CHR248233: Leigh Marine Station,<br />

North I., 22 May 1974, M.J.Parsons<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. AK290043: Waikawau Bay, Corom<strong>and</strong>el,<br />

7 Oct 2004, M.N.Lee<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. AK239454: Henderson Pt, Northl<strong>and</strong>, 1<br />

Jul 1999, E.K.Cameron<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. CHR191680: Whangamumu<br />

Harbour, North I., 26 May 1969,<br />

E.Godley<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. AK147207: (=ANZE46) Bay <strong>of</strong> Isl<strong>and</strong>s,<br />

14 Aug 1938, V.W.Lindauer<br />

WELT A846: (=ANZE46) Bay <strong>of</strong><br />

Isl<strong>and</strong>s, 14 Aug 1938, V.W.Lindauer<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. WELT A16131: Senecio Pool, Snares<br />

I, 18 Dec 1984, G.S.Hardy<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. WELT A25595, Deas Cove, 3 Oct<br />

2000, A.Loughnan<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. WELT A21795: Cascade I, South<br />

Westl<strong>and</strong>, 21 Feb 1996, D.Neale<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. WELT A4010: Brighton, Otago, 5 Dec<br />

1970, N.M.Adams<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. WELT A26159: Port Hutt, Chatham<br />

Is, 12 Mar 2001, W.Nelson, J.Broom,<br />

W.Jones, T. Farr<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR354186: Big Sol<strong>and</strong>er I., 17 Nov<br />

1973, P.N.Johnson<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR324992: Mangere I., Chatham<br />

Is, 21 Aug 1968, I. & M.Ritchie<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR509075: Ackers Pt, Stewart I., 4<br />

Jan 1987, D.R.Given<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR316773: Western Chain,<br />

Snares Is, 26 Nov 1974,<br />

D.S.Horning<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR57281: Tautuku, Otago, South<br />

I., Dec 1947, I.Coulter<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR368067: Secretary I., Doubtful<br />

Sound, Fiordl<strong>and</strong>, South I., 18 May<br />

1981, D.J.Brasch<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR205876: Blackhead, Dunedin,<br />

Otago, Dec 1919, W.A.Scarfe<br />

Phylum Class Order Family Genus Species Authority AK CHR Te Papa<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea lyallii Hook.f. et Harv. CHR379617: Bruce Rocks, Brighton,<br />

Otago, South I., Feb 1948,<br />

K.W.Allison


Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Sporoglossum lophurellae Kylin CHR319934: Atia Point, Kaikoura,<br />

South I., 14 Nov 1973, M.J.Parsons -<br />

on L. hookeriana<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Levringiella CHR367973: South Bay, Kaikoura,<br />

South I., 3 Dec 1980, G.D.Fenwick -<br />

on Pterosiphonia<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Levringiella CHR368028: Shap Point, Otago,<br />

South I., 10 Feb 1981, M.J.Parsons<br />

& M.Stolp - on Pterosiphonia<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Janczewskia sp. WELT A17700: McClatchie Reef,<br />

Chtaham I, 4 Nov 1986, C.H.Hay - on<br />

Chondria<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Levringiella CHR368051: Macrocarpa Point,<br />

Katiki Beach, Otago, South I., 9 Feb<br />

1981, M.J.Parsons - on<br />

Pterosiphonia, drift<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Janczewskia sp. WELT A17498a+b: Port Webb,<br />

Chatham I, 6 Nov 1986, C.H.Hay - on<br />

Chondria<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Janczewskia sp. CHR230816: Oaro, Kaikoura, South<br />

I., 6 Nov 1971, M.J.Parsons - on<br />

Chondria<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Janczewskia sp. CHR360270: Pier Wharf, Kaikoura,<br />

South I., 10 Sept 1974, M.J.Parsons -<br />

on Chondria<br />

Rhodophyta Florideophyceae Ceramiales Dasyaceae Colacodasya sp. CHR248307: Oamaru, South I., 31<br />

Oct 1972, M.J.Parsons - on<br />

Heterosiphonia concinna<br />

Rhodophyta Florideophyceae Ceramiales Dasyaceae Colacodasya sp. CHR248099: Penguin Bay,<br />

Campbell I., 18 Feb 1971,<br />

C.D.Meurk - on Heterosiphonia<br />

concinna<br />

Rhodophyta Florideophyceae Ceramiales Dasyaceae Colacodasya sp. CHR316964: Cod Cavern Gutway,<br />

Snares Is, 24 Jan 1975, D.S.Horning<br />

- on Heterosiphonia concinna<br />

Rhodophyta Florideophyceae Ceramiales Dasyaceae Colacodasya sp. CHR248303: Shag Point, Otago,<br />

South I., 1 Nov 1972, M.J.Parsons -<br />

on Heterosiphonia concinna<br />

Rhodophyta Florideophyceae Ceramiales Dasyaceae Colacodasya inconspicua (Reinsch) Schmitz CHR66045: French I., Auckl<strong>and</strong> Is,<br />

16 Aug 1976, C.A.Fleming - on<br />

Heterosiphonia berkeleyi (slide only<br />

No.66)<br />

Phylum Class Order Family Genus Species Authority AK CHR Te Papa<br />

Rhodophyta Florideophyceae Hildenbr<strong>and</strong>iales Hildenbr<strong>and</strong>iaceae Apophlaea sinclairii Hook.f. et Harv. WELT A13938: West I, Three Kings<br />

Is, 25 Nov 1983, M.Francis<br />

Rhodophyta Florideophyceae Corallinales Corallinaceae Choreonema thuretii (Bornet) F.Schmitz WELT A027067: Wairarapa east<br />

coast, Mataikona reef, Feb 1969,<br />

N.M.Adams<br />

Rhodophyta Florideophyceae Corallinales Corallinaceae Choreonema thuretii (Bornet) F.Schmitz WELT AA027066: Cape Palliser, Nov<br />

1971, N.M.Adams<br />

Rhodophyta Florideophyceae Corallinales Corallinaceae Choreonema thuretii (Bornet) F.Schmitz WELT A027038: Kaikoura, barbeque<br />

area just south <strong>of</strong> Rakautara, Sept<br />

2004, Nelson, Farr & Neill


Rhodophyta Florideophyceae Rhodymeniales Faucheaeceae Gloiocolax novae-zel<strong>and</strong>iae Sparling CHR64545: Eastbourne, Wellington,<br />

20 Mar 1949, L.B.Moore,<br />

N.M.Adams & G.F.Papenfuss<br />

(NB:"Type collection by CHR64545<br />

not seen by author <strong>of</strong> species -<br />

Sparling 1979) - on Gloioderma<br />

saccatum<br />

Rhodophyta Florideophyceae Rhodymeniales Champiaceae Champiocolax sp. WELT A18631a+b: Inner Chetwode<br />

Is, Marlborough, 11 Aug 1987,<br />

C.H.Hay - on C. chathamensis<br />

Rhodophyta Florideophyceae Gracilariales Pterocladiophyllaceae Pterocladiophila hemisphaerica K.C.Fan et Papenf. CHR117794: locality unknown - from<br />

commercial collection, identity<br />

confirmed by K.C.Fan (UC<br />

Berkeley); on Pterocladiella<br />

capillacea<br />

Rhodophyta Florideophyceae Gigartinales Kallymeniaceae Callocolax sp. CHR367972: South Bay, Kaikoura,<br />

South I., 3 Dec 1980, G.D.Fenwick -<br />

on Echinothamnion sp.<br />

Rhodophyta Florideophyceae Gigartinales Kallymeniaceae Callocolax neglectus Schmitz ex Batters CHR248213: Oaro, Kaikpoura,<br />

South I., 25 Oct 1972, M.J.Parsons -<br />

on Callophyllis calliblepharoides<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Tylocolax<br />

microcarpus ?<br />

CHR219462: Lonneker's Nugget,<br />

Stewart I., 3 Dec 1971, M.J.Parsons -<br />

on Adamsiella chauvinii<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Tylocolax<br />

microcarpus ?<br />

CHR368033: Shag Point, Otago,<br />

South I., 10 Feb 1981, M.J.Parsons<br />

& M.Stolp - on Adamsiella chauvinii<br />

chauvinii<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Tylocolax<br />

microcarpus ?<br />

CHR364690: Baxters Reef,<br />

Kaikoura, South I., 5 Feb 1980,<br />

G.D.Fenwick - on Adamsiella<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Sporoglossum sp. CHR319388: Curio Bay, SE Otago,<br />

South I., 16 Feb 1977, M.J.Parsons -<br />

on Echinothamnion (liq coll)<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Sporoglossum sp. CHR367972: South Bay, Kaikoura,<br />

South I., 3 Dec 1980, G.D.Fenwick -<br />

on Echinothamnion sp.<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Sporoglossum lophurellae Kylin WELT A18232: George Sound,<br />

Fiordl<strong>and</strong>, 14 Feb 1987, M.Francis -<br />

on L. hookeriana<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Sporoglossum sp. CHR399500: Katiki Beach, Otago,<br />

South I., 9 Feb 1981, M.J.Parsons -<br />

on Polysiphonia rhododactyla (liq<br />

coll)<br />

Phylum Class Order Family Genus Species Authority AK CHR Te Papa<br />

Rhodophyta Florideophyceae Ceramiales Rhodomelaceae Sporoglossum lophurellae Kylin CHR319947: Lighthouse Reef,<br />

Kaikoura, South I., 13 Nov 1973,<br />

M.J.Parsons - on L. hookeriana


parasite on<br />

Rhodophyllis<br />

CHR364774:Old Wharf, Kaikoura,<br />

South I., 4 Feb 1980, G.D.Fenwick -<br />

on Rhodophyllis (liq coll.)<br />

parasite on<br />

Rhodophyllis<br />

CHR364762: South Bay, Kaikoura,<br />

South I., 4 Feb 1980, G.D.Fenwick -<br />

on Rhodophyllis (liq coll.)<br />

sanguinea<br />

G.D.Fenwick (liq coll.)<br />

parasite on<br />

Hymenocladia<br />

CHR364678: Baxters Reef,<br />

Kaikoura, South I., 5 Feb 1980,<br />

sanguinea<br />

parasite on<br />

Hymenocladia<br />

CHR219369: Ringaringa, Stewart I.,<br />

30 Nov 1971, M.J.Parsons<br />

parasite on<br />

Dasyclonium<br />

CHR319896: Seal Reef, Kaikoura,<br />

South I., 6 Oct 1971, M.J.Parsons -<br />

on Dasyclonium incisum<br />

oblongifolia<br />

parasite on<br />

Cladhymenia<br />

oblongifolia<br />

CHR319472: Old Wharf, Kaikoura,<br />

South I., 13 Nov 1973, V.Hoggard &<br />

G.D.Fenwick - on Cladhymenia<br />

on A. lyallii<br />

parasite on<br />

Apophlaea lyallii<br />

CHR219466: Lonneker's Nugget,<br />

Stewart I., 2 Dec 1971, M.J.Parsons -<br />

Rhodophyta Florideophyceae Plocamiales Plocamiaceae Plocamiocolax WELT A026739: Te Werahi Beach,<br />

Northl<strong>and</strong>, North I., 25 Oct 2003,<br />

W.Nelson<br />

Rhodophyta Florideophyceae Plocamiales Plocamiaceae Plocamiocolax CHR364760: South Bay, Kaikoura,<br />

South I., 4 Feb 1980, G.D.Fenwick -<br />

on Plocamium 2x2 fine<br />

Rhodophyta Florideophyceae Plocamiales Plocamiaceae Plocamiocolax CHR367983: South Bay, Kaikoura,<br />

South I., 3 Dec 1980, G.D.Fenwick -<br />

on Plocamium 2 x 2 fine<br />

Rhodophyta Florideophyceae Plocamiales Plocamiaceae Plocamiocolax CHR360413: Katiki Beach, Otago,<br />

South I., 27 Apr 1975, M.J.Parsons -<br />

on Plocamium 2x2<br />

Phylum Class Order Family Genus Species Authority AK CHR Te Papa<br />

Rhodophyta Florideophyceae Rhodymeniales Faucheaeceae Gloiocolax novae-zel<strong>and</strong>iae Sparling WELT A26638: Wharariki Beach, 19<br />

Mar 2003, W.Nelson & J.Dalen - on<br />

Gloioderma saccata<br />

Rhodophyta Florideophyceae Rhodymeniales Faucheaeceae Gloiocolax novae-zel<strong>and</strong>iae Sparling WELT A17670: Okawa Beach,<br />

Chatham I, 6 Jan 1987, A.N.Baker -<br />

on Gloioderma saccata<br />

Rhodophyta Florideophyceae Rhodymeniales Faucheaeceae Gloiocolax novae-zel<strong>and</strong>iae Sparling WELT A6599: Ringaringa, Stewart I,<br />

26 Apr 1963, E.A.Willa<br />

Rhodophyta Florideophyceae Rhodymeniales Rhodymeniaceae Rhodymeniocolax sp. WELT A14130: Antipodes I, 4 Dec<br />

1978, C.H.Hay - on Rhodymenia<br />

epimenioides<br />

Rhodophyta Florideophyceae Rhodymeniales Rhodymeniaceae Rhodymeniocolax sp. WELT A7568: Golden Bay, Paterson<br />

Inlet, Stewart I, 29 Feb 1960,<br />

E.A.Willa - on Rhodymenia linearis


parasite on<br />

Rhodophyllis<br />

WELT A4167: West Lyall Bay,<br />

Wellington, 12 Jan 1971, N.M.Adams -<br />

"cf Ceratocolax"<br />

Phylum Class Order Family Genus Species Authority AK CHR Te Papa<br />

parasite on<br />

WELT A6798: Harrold's Bay,<br />

Rhodophyllis<br />

Halfmoon Bay, Stewart Is, 1 Dec<br />

1971, N.M.Adams - "cf Ceratocolax"


galls on Chaetangium "pycnidia - unfortunately cannot CHR248185a: Monument Harbour, Campbell I., 14 Feb<br />

be further identified as long as 1971, C.D.Meurk - on Chaetangium fastigiatum<br />

perfect (ascigerous) state is<br />

unknown. Many marine<br />

algicolous Ascomyctes have<br />

similar pycnidia." det J.Kohlmeyer<br />

Chaudefaudia corallinarum (Crouan et Crouan) Muller et<br />

v.Arx<br />

Chaudefaudia corallinarum (Crouan et Crouan) Muller et<br />

v.Arx<br />

det Kohlmeyer CHR248265: Mollymawk Bay, Snares Is, 6 Dec 1974,<br />

D.S.Horning - on Euptilota formosissma<br />

det Kohlmeyer CHR248266: Cod Cavern Gutway, Snares Is, 24 Jan<br />

1975, D.S.Horning - on Euptilota formosissima<br />

Eurychasma dicksonii (Wright) Magnus Saprolegniales - "forms peculiar<br />

"netsporangia" with encysted<br />

zoospores" det Kohlmeyer<br />

CHR248343: Shag Point, Otago, South I., 8 Sept 1971,<br />

M.J.Parsons (liq coll + photomicrograph) - on<br />

Ectocarpus on Scytosiphon (CHR219500)<br />

Spathulospora lanata Kohlmeyer CHR:64534: Runaround, Wellington, North I., 18 Mar<br />

1949, N.M.Adams - on Ballia scoparia - det Kohlmeyer<br />

CHR357143: Open Bay Isl<strong>and</strong>s, Westl<strong>and</strong>, South I., 4<br />

Feb 1976, G.D.Fenwick - on Sargassum undulatum (det<br />

Kohlmeyer)<br />

CHR315947c: Houghton Bay, 16 Oct 1962, M.J.Parsons<br />

- on Sargassum sinclairii (det Kohlmeyer)<br />

Haloguignardia tumefaciens (Cribb et Herbert) Cribb et<br />

Cribb<br />

Haloguignardia tumefaciens (Cribb et Herbert) Cribb et<br />

Cribb<br />

Genus species Authority comments CHR<br />

Mycosphaerella apophlaeae Kohlm. Bot Mar 24: 13- Kohlmeyer & CHR391939: South Promontory, Snares Is, 14 Dec<br />

Demoulin 1981<br />

1974, C.E.Holmes<br />

Polystigma apophlaeae Kohlm. Bot Mar 24: 13- Kohlmeyer & Herb - Holotype NY<br />

Demoulin 1981


APPENDIX 5:<br />

Data storage<br />

Dataset supplied to the Ministry in the form <strong>of</strong> an Access database <strong>and</strong> an electronic copy <strong>of</strong><br />

the report.<br />

Utility <strong>of</strong> the Access database<br />

The database was operated at NIWA through a Delphi web application, enabling multiple<br />

users. Below are examples <strong>of</strong> the web interface pages we used, configured for data entry.<br />

Search functions will need to be developed as part <strong>of</strong> the front end <strong>of</strong> this database.<br />

MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 99


100 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 101


102 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>


MAF Biosecurity New Zeal<strong>and</strong> <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> • 103


104 • <strong>Diseases</strong>, <strong>pathogens</strong> <strong>and</strong> <strong>parasites</strong> <strong>of</strong> <strong>Undaria</strong> <strong>pinnatifida</strong> MAF Biosecurity New Zeal<strong>and</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!