04.06.2015 Views

Jordan Lemma Proof - Gauge-institute.org

Jordan Lemma Proof - Gauge-institute.org

Jordan Lemma Proof - Gauge-institute.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

vic0@comcast.net<br />

May, 2011<br />

Abstract The <strong>Jordan</strong> <strong>Lemma</strong> is needed in the evaluation of<br />

infinite real integrals. We observe that <strong>Jordan</strong>’s proof, and<br />

Whittaker and Watson proof are both incomplete. Since all<br />

textbooks follow these proofs, we supply the complete proof.<br />

Keywords: Complex Variable, Residue Theorem, Analytic<br />

Functions, <strong>Jordan</strong> <strong>Lemma</strong>,<br />

2000 Mathematics Subject Classification 30D99; 30A10;<br />

Introduction<br />

To evaluate the infinite integral<br />

x =∞<br />

we consider the path integral<br />

∫<br />

cosx dx<br />

1<br />

2<br />

x +<br />

x =−∞<br />

on the contour γ<br />

∫<br />

e iz<br />

2<br />

z +<br />

γ<br />

dz<br />

1<br />

1


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

with ρ →∞.<br />

On the semi-circle,<br />

e iz<br />

∫ dz → 0 , as ρ →∞.<br />

2<br />

z + 1<br />

Therefore, by the Residue Theorem,<br />

x =∞<br />

∫<br />

x =−∞<br />

∩<br />

ix<br />

iz<br />

e<br />

⎧<br />

e ⎫<br />

dx = 2πiRes ⎪<br />

⎨<br />

⎪<br />

⎬<br />

2<br />

x + 1<br />

⎪⎩<br />

( z + i )( z −i<br />

)<br />

⎪⎭<br />

⎧<br />

iz<br />

e ⎫<br />

= 2πi<br />

lim⎪<br />

⎨<br />

⎪<br />

⎬<br />

z→i<br />

⎪⎩z<br />

+ i<br />

⎪⎭<br />

= πe<br />

−<br />

It follows that this is the value of the desired integral.<br />

The vanishing of the integral on the infinite semi-circle, holds<br />

under the conditions of a general result attributed by Whittaker<br />

and Watson, to <strong>Jordan</strong>.<br />

1<br />

.<br />

z=<br />

i<br />

z=<br />

i<br />

If f () z is an analytic function in the upper-half complex plane,<br />

so that f () z → 0<br />

, uniformly on any upper semi-circle C with<br />

ρ<br />

radius<br />

ρ →∞, centered at the origin,<br />

2


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

∫<br />

imz<br />

Then, for m > 0 , e f() z dz → 0, as ρ →∞.<br />

C<br />

ρ<br />

We show here that the proof of the <strong>Lemma</strong> by <strong>Jordan</strong>, and the<br />

proof by Whittaker and Watson are incomplete.<br />

Whittaker and Watson proof permeates many if not all textbooks<br />

on complex variables, and has to be corrected.<br />

1. <strong>Jordan</strong>’s <strong>Proof</strong><br />

In <strong>Jordan</strong>’s proof, m = 1.<br />

On the semi-circle, C<br />

ρ<br />

We have<br />

z<br />

i<br />

e θ<br />

= ρ , 0 ≤ θ ≤ π.<br />

iz<br />

iz<br />

∫ e f() z dz ≤ ∫ e f()<br />

z dz .<br />

C<br />

ρ<br />

C<br />

ρ<br />

Substituting<br />

iz<br />

iρcos θ−ρsin θ −ρsin<br />

θ<br />

e = e = e ,<br />

dz<br />

i θ<br />

= ρe dθ,<br />

dz<br />

= ρθ d ,<br />

θ=<br />

π<br />

iz<br />

∫ e f() z dz ≤ max f()<br />

z ρ∫ −ρsin<br />

θ<br />

e dθ.<br />

C<br />

C θ=<br />

0<br />

ρ<br />

ρ<br />

Since<br />

3


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

max f ( z) → 0, as ρ →∞,<br />

C<br />

ρ<br />

we need to show that<br />

ρ<br />

θ=<br />

π<br />

∫<br />

θ=<br />

0<br />

e<br />

−ρsin<br />

θ<br />

dθ<br />

is bounded.<br />

<strong>Jordan</strong> writes with no further explanation<br />

θ=<br />

π<br />

θ=<br />

∫<br />

−ρsin<br />

θ<br />

e d ≤ 2 ∫<br />

−ρsin<br />

θ<br />

e dθ, (1)<br />

θ= 0 θ=<br />

0<br />

ρ θ ρ<br />

π<br />

2<br />

and proceeds to bound<br />

ρ<br />

π<br />

2<br />

θ=<br />

−ρsin<br />

θ<br />

∫ e d θ, by π 2<br />

.<br />

θ=<br />

0<br />

Now, since<br />

the claim (1) amounts to<br />

π<br />

2<br />

θ= π θ=<br />

θ=<br />

π<br />

−ρsin θ −ρsin θ −ρsin<br />

θ<br />

∫ e dθ<br />

= ∫ e dθ<br />

+ ∫ e dθ,<br />

θ= 0 θ= 0<br />

θ=<br />

θ=<br />

π<br />

θ=<br />

∫<br />

−ρsin<br />

θ<br />

e dθ<br />

≤ ∫<br />

−ρsin<br />

θ<br />

e dθ.<br />

θ=<br />

θ=<br />

0<br />

π<br />

2<br />

Changing the integration variable in the first integral into<br />

π<br />

2<br />

π<br />

2<br />

we have<br />

and<br />

φ<br />

= θ − ,<br />

π<br />

2<br />

sin(<br />

π<br />

− sin − ρ φ+<br />

)<br />

e e<br />

2<br />

e<br />

ρ θ −ρcos<br />

φ<br />

= = ,<br />

4


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

π<br />

θ<br />

π<br />

2 2<br />

φ= =<br />

∫<br />

−ρcosφ e dφ<br />

≤ ∫<br />

−ρsin<br />

θ<br />

e d θ.<br />

φ= 0 θ=<br />

0<br />

That is,<br />

π<br />

θ<br />

π<br />

2 2<br />

θ= =<br />

∫<br />

−ρcosθ e dθ<br />

≤ ∫<br />

−ρsin<br />

θ<br />

e d θ.<br />

θ= 0 θ=<br />

0<br />

Since this inequality is un-established, <strong>Jordan</strong> <strong>Proof</strong> is incomplete.<br />

2. Whittaker and Watson <strong>Proof</strong><br />

Where <strong>Jordan</strong> saw an inequality, Whittaker and Watson saw an<br />

equality. They wrote with no further explanation<br />

θ=<br />

π<br />

θ=<br />

∫<br />

−mρsin<br />

θ<br />

e d = 2 ∫<br />

−mρsin<br />

θ<br />

e dθ, (2)<br />

θ= 0 θ=<br />

0<br />

ρ θ ρ<br />

θ=<br />

−mρsin<br />

θ<br />

and proceeded to bound ρ∫ e d θ, by π 2m<br />

.<br />

Now, since<br />

π<br />

2<br />

θ=<br />

0<br />

π<br />

2<br />

θ= π θ=<br />

θ=<br />

π<br />

−mρsin θ −mρsin θ −mρsin<br />

θ<br />

∫ e dθ<br />

= ∫ e dθ<br />

+ ∫ e dθ,<br />

θ= 0 θ= 0<br />

θ=<br />

their claim (2) leads to<br />

π<br />

2<br />

π<br />

θ<br />

π<br />

2 2<br />

θ= =<br />

∫<br />

−mρcos<br />

θ<br />

e dθ<br />

= ∫<br />

−mρsin<br />

θ<br />

e d θ.<br />

θ= 0 θ=<br />

0<br />

This is un-established, and Whittaker-Watson <strong>Proof</strong> is incomplete.<br />

π<br />

2<br />

5


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

3.<br />

θ=<br />

∫<br />

π<br />

2<br />

θ=<br />

0<br />

e<br />

−mρcos<br />

θ<br />

d θ, and<br />

θ=<br />

∫<br />

π<br />

2<br />

θ=<br />

0<br />

e<br />

−mρsin<br />

θ<br />

d θ by MAPLE<br />

Using<br />

in MAPLE, we obtain<br />

Using<br />

in MAPLE, we obtain<br />

Thus, an equality of areas under the graphs may be due to<br />

symmetry of the graphs. But we cannot confirm it, because do not<br />

know how to evaluate the integrals.<br />

6


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

In MAPLE, we confirm that<br />

and<br />

θ=<br />

∫<br />

π<br />

2<br />

θ=<br />

0<br />

θ=<br />

∫<br />

π<br />

2<br />

θ=<br />

0<br />

e<br />

e<br />

−2cosθ<br />

−2cosθ<br />

dθ<br />

dθ<br />

=<br />

=<br />

(1/2)*Pi*BesselI(0, 2)-(1/2)*Pi*StruveL(0, 2)<br />

(1/2)*Pi*BesselI(0, 2)-(1/2)*Pi*StruveL(0, 2)<br />

In the notations of Abramowitz, and Stegun<br />

BesselI(0, 2)=Modified Bessel Function I<br />

0(2)<br />

StruveL(0, 2)=Struve Function L (2) .<br />

That is, both integrals equal<br />

π<br />

( 0(2) 0(2)<br />

)<br />

2 I − L .<br />

This confirms Whittaker’s guess of equality.<br />

Nevertheless, it seems easier to complete the <strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

by bounding<br />

θ=<br />

∫<br />

π<br />

2<br />

θ=<br />

0<br />

e<br />

−mρcosθ<br />

0<br />

d θ, then by trying to prove the equality.<br />

4. Completed <strong>Proof</strong><br />

To complete the <strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong>, we need to bound<br />

ρ<br />

θ=<br />

∫<br />

π<br />

2<br />

θ=<br />

0<br />

e<br />

−ρcos<br />

θ<br />

dθ, similarly to the bounding of<br />

ρ<br />

π<br />

2<br />

θ=<br />

−ρsin<br />

θ<br />

∫ e dθ.<br />

θ=<br />

0<br />

7


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

The cord between the endpoints over the interval<br />

π<br />

0 ≤ θ ≤<br />

2<br />

has the slope<br />

and its equation is<br />

cos − cos 0 2<br />

=− ,<br />

− 0 π<br />

π<br />

2<br />

π<br />

2<br />

2<br />

y − 1 = − θ .<br />

π<br />

Since<br />

cosθ<br />

is concave down in<br />

π<br />

0 θ<br />

2<br />

≤ ≤ , the cord between the<br />

endpoints is under the graph of<br />

cosθ . That is,<br />

Therefore,<br />

and<br />

2<br />

cos θ ≥ y = 1 − θ.<br />

π<br />

2<br />

−cos θ ≤ − 1 + θ,<br />

π<br />

=<br />

π<br />

θ=<br />

π<br />

2 2<br />

2<br />

mρ( −cos θ)<br />

− mρ+<br />

mρ θ<br />

e d ≤ e<br />

π<br />

∫ ∫ dθ<br />

θ<br />

ρ θ ρ<br />

θ= 0 θ=<br />

0<br />

θ=<br />

π<br />

2<br />

1 m<br />

= ρ<br />

mρ<br />

∫<br />

e<br />

θ=<br />

0<br />

e<br />

2<br />

π<br />

ρ θ<br />

dθ<br />

8


<strong>Jordan</strong> <strong>Lemma</strong> <strong>Proof</strong><br />

H. Vic Dannon<br />

2<br />

π<br />

2 θ<br />

π<br />

2<br />

π<br />

=<br />

1 1 mρ θ<br />

= ρ e<br />

mρ<br />

e m ρ<br />

θ=<br />

0<br />

mρ<br />

2 π<br />

2<br />

( e<br />

π<br />

1)<br />

1 1 π<br />

= −<br />

mρ<br />

e m 2<br />

π ⎛ 1 ⎞<br />

= 1<br />

⎜<br />

− 2m<br />

⎜⎝<br />

m<br />

⎠⎟<br />

π<br />

≤ .<br />

2m<br />

e ρ<br />

Similarly, [Whittaker and Watson],<br />

ρ<br />

θ=<br />

∫<br />

π<br />

2<br />

θ=<br />

0<br />

e<br />

−ρsin<br />

θ<br />

dθ is bounded by<br />

π , and<br />

2m<br />

π<br />

π<br />

θ=<br />

π<br />

θ= θ=<br />

2 2<br />

ρ e dθ = ρ e dθ + ρ e<br />

∫<br />

−ρsin θ<br />

∫<br />

−ρsin θ<br />

∫<br />

−ρcosθdθ<br />

θ= 0 θ= 0 θ=<br />

0<br />

is bounded by m<br />

π .<br />

References<br />

[<strong>Jordan</strong>] <strong>Jordan</strong>, M. C., Cours D’ANALYSE de L’Ecole Polytechnique, Tome<br />

Deuxieme, Calcul Integral, Gauthier-Villars, 1894, pp. 285-286<br />

[Whittaker and Watson] Whittaker, E. T., and Watson G. N., A Course of Modern<br />

Analysis, Fourth Edition, Cambridge University press, 1927. p. 115.<br />

[Abramowitz and Stegun] Abramowitz Milton, and Stegun, Irene, Handbook of<br />

Mathematical Functions, National Bureau of Standards Applied Mathematics<br />

Series, May 1958<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!