20.01.2013 Views

An Updated Classification of the Recent Crustacea

An Updated Classification of the Recent Crustacea

An Updated Classification of the Recent Crustacea

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>Updated</strong> <strong>Classification</strong><br />

<strong>of</strong> <strong>the</strong> <strong>Recent</strong> <strong>Crustacea</strong><br />

By Joel W. Martin and George E. Davis<br />

Natural History Museum <strong>of</strong> Los <strong>An</strong>geles County<br />

Science Series 39 December 14, 2001


AN UPDATED CLASSIFICATION<br />

OF THE RECENT CRUSTACEA


Cover Illustration: Lepidurus packardi, a notostracan branchiopod from an ephemeral pool in <strong>the</strong> Central<br />

Valley <strong>of</strong> California. Original illustration by Joel W. Marin.


AN UPDATED CLASSIFICATION<br />

OF THE RECENT CRUSTACEA<br />

BY<br />

JOEL W. MARTIN<br />

AND<br />

GEORGE E. DAVIS<br />

NO. 39<br />

SCIENCE SERIES<br />

NATURAL HISTORY MUSEUM<br />

OF LOS ANGELES COUNTY


SCIENTIFIC PUBLICATIONS COMMITTEE<br />

NATURAL HISTORY MUSEUM<br />

OF LOS ANGELES COUNTY<br />

John Heyning, Deputy Director<br />

for Research and Collections<br />

John M. Harris, Committee Chairman<br />

Brian V. Brown<br />

Kenneth E. Campbell<br />

Kirk Fitzhugh<br />

Karen Wise<br />

K. Victoria Brown, Managing Editor<br />

Natural History Museum <strong>of</strong> Los <strong>An</strong>geles County<br />

Los <strong>An</strong>geles, California 90007<br />

ISSN 1-891276-27-1<br />

Published on 14 December 2001<br />

Printed in <strong>the</strong> United States <strong>of</strong> America


For anyone with interests in a group <strong>of</strong> organisms<br />

as large and diverse as <strong>the</strong> <strong>Crustacea</strong>, it is difficult<br />

to grasp <strong>the</strong> enormity <strong>of</strong> <strong>the</strong> entire taxon at one<br />

time. Those who work on crustaceans usually specialize<br />

in only one small corner <strong>of</strong> <strong>the</strong> field. Even<br />

though I am sometimes considered a specialist on<br />

crabs, <strong>the</strong> truth is I can pr<strong>of</strong>ess some special knowledge<br />

about only a relatively few species in one or<br />

two families, with forays into o<strong>the</strong>r groups <strong>of</strong> crabs<br />

and o<strong>the</strong>r crustaceans. Crabs are but a small picture<br />

<strong>of</strong> <strong>the</strong> overall diversity <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>. They represent<br />

only one infraorder [Brachyura] within one<br />

order [Decapoda] within one superorder [Eucarida]<br />

within one subclass [Eumalacostraca] within one<br />

class [Malacostraca] <strong>of</strong> <strong>the</strong> six currently recognized<br />

classes <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> (as depicted herein). I am<br />

certain that this situation is similar for all o<strong>the</strong>r<br />

crustacean systematists, with <strong>the</strong> result that <strong>the</strong>re<br />

are no living specialists who can truly claim to have<br />

an in-depth understanding <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> as a<br />

whole.<br />

This volume is an attempt to provide <strong>the</strong> reader,<br />

whe<strong>the</strong>r a seasoned systematist or a beginning student,<br />

with a glimpse into <strong>the</strong> enormous variety <strong>of</strong><br />

extant crustaceans. The sheer number <strong>of</strong> categories<br />

that humans have constructed to contain and order<br />

this group is some indication <strong>of</strong> <strong>the</strong> incredible<br />

amount <strong>of</strong> morphological diversity <strong>the</strong>y exhibit.<br />

But this is only a small part <strong>of</strong> <strong>the</strong> overall picture.<br />

Even if one were to grasp <strong>the</strong> full range <strong>of</strong> taxonomic<br />

diversity as presented in this classification,<br />

PREFACE<br />

such knowledge would shed no light on <strong>the</strong> actual<br />

biology <strong>of</strong> <strong>the</strong>se fascinating animals: <strong>the</strong>ir behavior,<br />

feeding, locomotion, reproduction; <strong>the</strong>ir relationships<br />

to o<strong>the</strong>r organisms; <strong>the</strong>ir adaptations to <strong>the</strong><br />

environment; and o<strong>the</strong>r facets <strong>of</strong> <strong>the</strong>ir existence<br />

that fall under <strong>the</strong> heading <strong>of</strong> biodiversity.<br />

By producing this volume we are attempting to<br />

update an existing classification, produced by Tom<br />

Bowman and Larry Abele (1982), in order to arrange<br />

and update <strong>the</strong> <strong>Crustacea</strong> collection <strong>of</strong> <strong>the</strong><br />

Natural History Museum <strong>of</strong> Los <strong>An</strong>geles County.<br />

This enormous and diverse collection contains an<br />

estimated four to five million specimens, making it<br />

<strong>the</strong> second largest collection <strong>of</strong> <strong>Crustacea</strong> in <strong>the</strong><br />

Americas. While undertaking this task, it occurred<br />

to us that o<strong>the</strong>rs might benefit from our efforts, and<br />

that perhaps a general update on <strong>the</strong> number and<br />

arrangement <strong>of</strong> <strong>the</strong> living crustacean families, along<br />

with an explanation <strong>of</strong> <strong>the</strong> systematic and classificatory<br />

changes suggested during <strong>the</strong> last two decades,<br />

might be a welcome addition to <strong>the</strong> literature.<br />

I hope this volume is seen as nothing more<br />

than <strong>the</strong> briefest <strong>of</strong> introductions into an understanding<br />

<strong>of</strong> crustaceans and that it might lead to<br />

fur<strong>the</strong>r work not only on <strong>the</strong> relationships among<br />

crustaceans but also toward understanding <strong>the</strong><br />

overall picture <strong>of</strong> crustacean biodiversity and natural<br />

history.<br />

Joel W. Martin<br />

June 2001<br />

Los <strong>An</strong>geles, California


We sincerely thank <strong>the</strong> many carcinologists to<br />

whom we sent earlier versions <strong>of</strong> <strong>the</strong> classification<br />

(all <strong>of</strong> whom are listed in Appendix II). Although<br />

not all <strong>of</strong> <strong>the</strong>se persons responded to our queries<br />

(we had a response rate <strong>of</strong> approximately 60% to<br />

<strong>the</strong> first mailing and approximately 70% to <strong>the</strong> second)<br />

and some saw only later versions, we felt it<br />

appropriate to list all persons from whom comments<br />

were solicited. Drs. Rodney Feldmann and<br />

Ge<strong>of</strong>frey Boxshall, in addition to commenting on<br />

sections <strong>of</strong> <strong>the</strong> classification, served as external referees<br />

for <strong>the</strong> entire manuscript, and to both we are<br />

extremely grateful. We mourn <strong>the</strong> loss <strong>of</strong> Erik Dahl<br />

in January 1999, <strong>of</strong> Mihai Băcescu in August 1999,<br />

<strong>of</strong> Arthur Humes and Austin Williams in October<br />

1999, <strong>of</strong> Gary Brusca and Ray Manning in January<br />

2000, <strong>of</strong> Théodore Monod in November 2000, and<br />

<strong>of</strong> Denton Belk in April 2001, during <strong>the</strong> compilation<br />

<strong>of</strong> this classification. Their absence is keenly<br />

felt by all carcinologists. Deserving <strong>of</strong> special recognition<br />

are David K. Camp for supplying much<br />

needed information and literature for a wide variety<br />

<strong>of</strong> taxa; <strong>An</strong>ne C. Cohen for literature on ostracodes<br />

and maxillopods and for enlightening discussions<br />

<strong>of</strong> that group’s presumed monophyly; William<br />

Newman and Mark Grygier, both <strong>of</strong> whom provided<br />

literature and enlightening comments on maxillopods;<br />

Mark Grygier for additional comments on<br />

interpretation <strong>of</strong> ICZN recommendations; Trisha<br />

Spears and Cheryl Morrison for providing unpublished<br />

molecular sequence or gene rearrangement<br />

data for <strong>the</strong> decapods; Ge<strong>of</strong>frey Fryer for his always<br />

direct comments concerning <strong>the</strong> branchio-<br />

ACKNOWLEDGMENTS<br />

pods; Gary Poore for information and literature on<br />

several peracarid and decapod groups and for his<br />

detailed review <strong>of</strong> our penultimate draft; Robert<br />

Hessler for providing needed literature and for his<br />

insightful suggestions; and Lipke Holthuis for suggesting<br />

corrections to several taxonomic authorities<br />

and dates in our earlier versions. Obviously, not all<br />

<strong>of</strong> <strong>the</strong> suggestions we received were incorporated,<br />

in part because some suggested changes contradicted<br />

o<strong>the</strong>rs and in part because some suggested<br />

changes would have involved major rearrangements<br />

for which we deemed <strong>the</strong> evidence insufficient<br />

or incomplete. Inclusion <strong>of</strong> crustacean-related<br />

web sites as an appendix was <strong>the</strong> idea <strong>of</strong> Keith<br />

Crandall. We thank Todd Zimmerman, Regina<br />

Wetzer, Todd Haney, and Sandra Trautwein in our<br />

Los <strong>An</strong>geles crustacean laboratory for suggestions<br />

and assistance at various points; Regina Wetzer in<br />

particular was instrumental in assembling Appendix<br />

III.<br />

We thank <strong>the</strong> Natural History Museum <strong>of</strong> Los<br />

<strong>An</strong>geles County, and especially John Heyning, John<br />

Harris, and <strong>the</strong> members <strong>of</strong> <strong>the</strong> Scientific Publications<br />

Committee, for support and for assistance<br />

with readying <strong>the</strong> manuscript for publication. We<br />

also thank <strong>the</strong> National Science Foundation for<br />

partial support via grants DEB 9020088, DEB<br />

9320397, and DEB 9727188 to J. W. Martin; NSF<br />

Biotic Surveys and Inventories grant DEB 9972100<br />

to T. L. Zimmerman and J. W. Martin; and NSF<br />

PEET grant DEB 9978193 to J. W. Martin and D.<br />

K. Jacobs. Finally, we sincerely thank Sue, Alex,<br />

and Paul Martin and Ru<strong>the</strong> Davis for <strong>the</strong>ir kind<br />

encouragement and understanding.


CONTENTS<br />

Preface ......................................................................................................................... v<br />

Acknowledgments ......................................................................................................... vii<br />

General Introduction....................................................................................................... 1<br />

Methods ................................................................................................................... 3<br />

Names, Dates, and <strong>the</strong> ICZN......................................................................................... 3<br />

Cladistics and <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> ..................................................................... 5<br />

Molecular Systematics and <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> ..................................................... 7<br />

Developmental Genetics and <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> ................................................... 8<br />

Sperm Morphology and <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>......................................................... 8<br />

Larval Morphology and <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>......................................................... 9<br />

The Fossil Record and <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>.......................................................... 10<br />

A Note on <strong>the</strong> Appendices ........................................................................................... 10<br />

Rationale .................................................................................................................... 12<br />

Concluding Remarks...................................................................................................... 57<br />

<strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Recent</strong> <strong>Crustacea</strong> ................................................................................ 58<br />

Literature Cited ............................................................................................................ 76<br />

Appendix I: Comments and Opinions............................................................................... 102<br />

Appendix II: List <strong>of</strong> Contributors .................................................................................... 114<br />

Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources......................................................................... 115


<strong>An</strong> <strong>Updated</strong> <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Recent</strong> <strong>Crustacea</strong><br />

By JOEL W. MARTIN 1 AND GEORGE E. DAVIS 1<br />

ABSTRACT. <strong>An</strong> updated classification <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> down to <strong>the</strong> level <strong>of</strong> family is<br />

provided. The classification is based loosely on that given by Bowman and Abele (1982)<br />

and includes all new families and higher level taxa described since that time. In addition,<br />

in several crustacean groupings, new arrangements and assignments have been incorporated,<br />

based usually on phylogenetic information that has accrued or that has become<br />

more widely accepted since 1982. Among <strong>the</strong> more salient changes, some <strong>of</strong> which are<br />

more controversial than o<strong>the</strong>rs, are <strong>the</strong> recognition <strong>of</strong> <strong>the</strong> former phylum Pentastomida<br />

as a group <strong>of</strong> maxillopod crustaceans based on additional spermatological and molecular<br />

evidence, <strong>the</strong> inclusion <strong>of</strong> <strong>the</strong> parasitic Tantulocarida also among <strong>the</strong> maxillopods, <strong>the</strong><br />

treatment <strong>of</strong> <strong>the</strong> Branchiopoda as <strong>the</strong> most primitive extant group <strong>of</strong> crustaceans, and<br />

<strong>the</strong> recognition <strong>of</strong> Guinot’s (1977, 1978) division <strong>of</strong> <strong>the</strong> higher (eubrachyuran) crabs<br />

into two ‘‘grades’’ based primarily on placement <strong>of</strong> <strong>the</strong> genital aperture. The revised<br />

classification includes 849 extant families in 42 orders and 6 classes; this is an increase<br />

<strong>of</strong> nearly 200 families since <strong>the</strong> Bowman and Abele classification. More than 90 specialists<br />

in <strong>the</strong> field were consulted and asked to contribute to <strong>the</strong> update. Some workers<br />

are not in agreement with our final arrangement. In particular, <strong>the</strong>re are questions or<br />

dissenting opinions over our choice <strong>of</strong> which taxa to recognize, which authorities and<br />

dates to credit for various taxa, and especially over <strong>the</strong> arrangements among and/or<br />

within <strong>the</strong> higher taxa. As an aid to future workers in crustacean classification and<br />

phylogeny, comments and dissenting opinions <strong>of</strong> some <strong>of</strong> <strong>the</strong>se workers are appended<br />

to highlight areas <strong>of</strong> uncertainty or controversy. Also appended are a list <strong>of</strong> <strong>the</strong> specialists<br />

who were given <strong>the</strong> opportunity to respond (Appendix II) and a list <strong>of</strong> printed and<br />

World Wide Web resources that contain information on crustaceans (Appendix III). The<br />

new classification is in part a result <strong>of</strong> one such site, <strong>the</strong> <strong>Crustacea</strong>n Biodiversity Survey<br />

(formerly found at URL http://www.nhm.org/cbs/, now temporarily <strong>of</strong>f-line).<br />

No group <strong>of</strong> plants or animals on <strong>the</strong> planet exhibits<br />

<strong>the</strong> range <strong>of</strong> morphological diversity seen among<br />

<strong>the</strong> extant <strong>Crustacea</strong>. This morphological diversity,<br />

or disparity in <strong>the</strong> paleontological jargon, is what<br />

makes <strong>the</strong> study <strong>of</strong> crustaceans so exciting. Yet it is<br />

also what makes deciphering <strong>the</strong> phylogeny <strong>of</strong> <strong>the</strong><br />

group and ordering <strong>the</strong>m into some sort <strong>of</strong> coherent<br />

classification so difficult. Because <strong>of</strong> <strong>the</strong> great age<br />

<strong>of</strong> <strong>the</strong> group, extending back at least as far as <strong>the</strong><br />

early Cambrian and almost certainly beyond that,<br />

<strong>the</strong>re has been ample time for endless experimentation<br />

with form and function. The result <strong>of</strong> <strong>the</strong>se<br />

many millions <strong>of</strong> years <strong>of</strong> evolution is quite dazzling.<br />

The current estimate <strong>of</strong> <strong>the</strong> number <strong>of</strong> described<br />

species is approximately 52,000 (Land,<br />

1996; Monod and Laubier, 1996). This estimate is<br />

surely on <strong>the</strong> low side, as a recent estimate <strong>of</strong> <strong>the</strong><br />

1 Natural History Museum <strong>of</strong> Los <strong>An</strong>geles County, Research<br />

and Collections, Department <strong>of</strong> Invertebrate Zoology,<br />

900 Exposition Boulevard, Los <strong>An</strong>geles, California<br />

90007<br />

Email: jmartin@nhm.org and gdavis@nhm.org<br />

GENERAL INTRODUCTION<br />

number <strong>of</strong> living species <strong>of</strong> ostracodes alone is<br />

10,000 to 15,000 (K. Martens, pers. comm., and<br />

discussions on <strong>the</strong> electronic ostracode listserver<br />

OSTRACON@LISTSERV.UH.EDU) and Kensley<br />

(1998) has estimated more than 54,000 for <strong>the</strong> reefassociated<br />

peracarids. Among <strong>the</strong> Metazoa, <strong>the</strong> estimate<br />

<strong>of</strong> 52,000 species places crustaceans fourth,<br />

behind insects, molluscs, and chelicerates, in terms<br />

<strong>of</strong> overall species diversity. But morphological diversity<br />

(disparity) is higher in <strong>the</strong> <strong>Crustacea</strong> than in<br />

any o<strong>the</strong>r taxon on Earth. There are probably few<br />

o<strong>the</strong>r groups <strong>of</strong> animals (squids come to mind because<br />

<strong>of</strong> Architeuthis) in which <strong>the</strong> difference in<br />

maximum size <strong>of</strong> adults can be a factor <strong>of</strong> 1,000.<br />

The known size <strong>of</strong> crabs now ranges from a maximum<br />

leg span <strong>of</strong> approximately 4min<strong>the</strong>giant<br />

Japanese spider crab Macrocheira kaempferi and a<br />

maximum carapace width <strong>of</strong> 46 cm in <strong>the</strong> giant<br />

Tasmanian crab Pseudocarcinus gigas (as cited in<br />

Schmitt, 1965) to a minimum <strong>of</strong> 1.5 mm across <strong>the</strong><br />

carapace for a mature ovigerous female pinno<strong>the</strong>rid,<br />

Nanno<strong>the</strong>res moorei, <strong>the</strong> smallest known spe-


cies <strong>of</strong> crab (Manning and Felder, 1996). <strong>An</strong> ovigerous<br />

hermit crab (probably genus Pygmaeopagurus)<br />

with a shield length <strong>of</strong> only 0.76 mm taken<br />

from dredge samples in <strong>the</strong> Seychelles (McLaughlin<br />

and Hogarth, 1998) might hold <strong>the</strong> record for decapods,<br />

and <strong>of</strong> course much smaller crustaceans exist.<br />

Tantulocarids, recently discovered parasites found<br />

on o<strong>the</strong>r deep-sea crustaceans, are so small that<br />

<strong>the</strong>y are sometimes found attached to <strong>the</strong> aes<strong>the</strong>tascs<br />

<strong>of</strong> <strong>the</strong> antennule <strong>of</strong> copepods; <strong>the</strong> total body<br />

length <strong>of</strong> Stygotantulus stocki is only 94 �m ‘‘from<br />

tip <strong>of</strong> rostrum to end <strong>of</strong> caudal rami’’ (Boxshall and<br />

Huys, 1989a:127). In terms <strong>of</strong> biomass, that <strong>of</strong> <strong>the</strong><br />

<strong>An</strong>tarctic krill Euphausia superba has been estimated<br />

at 500 million tons at any given time, probably<br />

surpassing <strong>the</strong> biomass <strong>of</strong> any o<strong>the</strong>r group <strong>of</strong><br />

metazoans (reviewed by Nicol and Endo, 1999). In<br />

terms <strong>of</strong> sheer numbers, <strong>the</strong> crustacean nauplius<br />

has been called ‘‘<strong>the</strong> most abundant type <strong>of</strong> multicellular<br />

animal on earth’’ (Fryer, 1987d). <strong>Crustacea</strong>ns<br />

have been found in virtually every imaginable<br />

habitat (see Monod and Laubier, 1996), have been<br />

mistaken for molluscs, worms, and o<strong>the</strong>r distantly<br />

related animals, and continue to defy our attempts<br />

to force <strong>the</strong>m into convenient taxonomic groupings.<br />

Indeed, <strong>the</strong>re is still considerable debate over<br />

whe<strong>the</strong>r <strong>the</strong> group is monophyletic (see below).<br />

Not surprisingly, <strong>the</strong> history <strong>of</strong> crustacean classification<br />

is a long and convoluted one. A summary<br />

<strong>of</strong> that history is well beyond <strong>the</strong> scope <strong>of</strong> this paper,<br />

and <strong>the</strong> reader is referred to <strong>the</strong> following publications<br />

as some <strong>of</strong> many possible starting points:<br />

Schram (1986); Fryer (1987a, c); Dahl and Strömberg<br />

(1992); Spears and Abele (1997); Rice (1980);<br />

Schram and H<strong>of</strong> (1998); Monod and Forest (1996);<br />

and papers in <strong>the</strong> edited volumes The Biology <strong>of</strong><br />

<strong>Crustacea</strong> (1982–1985; D. E. Bliss, editor-in-Chief)<br />

(especially volume 1); <strong>Crustacea</strong>n Issues (F. R.<br />

Schram, general editor); Arthropod Fossils and<br />

Phylogeny (G. D. Edgecombe, editor); Traité de<br />

Zoologie (P.-P. Grassé, series editor; J. Forest, crustacean<br />

volumes editor); and <strong>the</strong> Treatise <strong>of</strong> Invertebrate<br />

Paleontology (R. C. Moore, editor) (a revision<br />

<strong>of</strong> this last work is currently underway). Despite<br />

<strong>the</strong> long history <strong>of</strong> studies on <strong>Crustacea</strong>, in<br />

many ways, we are just beginning our journey. New<br />

and significant finds continue to delight and surprise<br />

<strong>the</strong> student <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>. In <strong>the</strong> last two<br />

decades, <strong>the</strong> newly discovered taxa Remipedia,<br />

Tantulocarida, and Mictacea, as well as beautifully<br />

preserved fossils from <strong>the</strong> ‘‘Orsten’’ fauna <strong>of</strong> Sweden,<br />

are some <strong>of</strong> <strong>the</strong> more obvious examples. <strong>An</strong>o<strong>the</strong>r<br />

striking example <strong>of</strong> how little we know about<br />

crustaceans is <strong>the</strong> relatively recent discovery <strong>of</strong> an<br />

entirely new phylum <strong>of</strong> animal life, <strong>the</strong> Cycliophora<br />

(Funch and Kristensen, 1995; Winnepenninckx et<br />

al., 1998), found living on <strong>the</strong> mouthparts <strong>of</strong> <strong>the</strong><br />

Norway lobster Nephrops norvegicus, a species <strong>of</strong><br />

commercial importance that is encountered <strong>of</strong>ten in<br />

European restaurants.<br />

The 1982 classification <strong>of</strong> <strong>the</strong> <strong>Recent</strong> <strong>Crustacea</strong><br />

by T. E. Bowman and L. G. Abele, in turn based to<br />

a large extent on that <strong>of</strong> Moore and McCormick<br />

(1969), was a benchmark compilation that has<br />

been <strong>of</strong> tremendous use to students <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>.<br />

In that classification, <strong>the</strong> extant crustaceans<br />

were divided among 6 classes, 13 subclasses, 38 orders,<br />

and 652 families. Although it was recognized<br />

by Bowman and Abele and o<strong>the</strong>r workers in <strong>the</strong><br />

field, even at <strong>the</strong> time <strong>of</strong> publication, that <strong>the</strong> classification<br />

was intended to be little more than a stopgap<br />

measure, it has continued to be employed in<br />

many major treatments <strong>of</strong> crustaceans (e.g., Barnes<br />

and Harrison, 1992; Young, 1998) and has widely<br />

influenced <strong>the</strong> study <strong>of</strong> crustaceans since its appearance.<br />

Subsequent to <strong>the</strong> appearance <strong>of</strong> <strong>the</strong><br />

Bowman and Abele (1982) classification, a large<br />

number <strong>of</strong> new families and even some higher level<br />

taxa have been described. Indeed, our current list<br />

includes 849 families, an increase <strong>of</strong> 197 families<br />

over <strong>the</strong> Bowman and Abele (1982) classification.<br />

Thus, an argument could be made that an updated<br />

classification is warranted on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> increased<br />

number <strong>of</strong> new families alone. A more<br />

compelling reason is that several major treatises<br />

have appeared that <strong>of</strong>fer substantially different arrangements<br />

<strong>of</strong> those taxa and that many exciting<br />

areas <strong>of</strong> phylogenetic research and improved methodology<br />

have contributed significantly to our understanding<br />

<strong>of</strong> <strong>the</strong> relationships within <strong>the</strong> <strong>Crustacea</strong><br />

and <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> to o<strong>the</strong>r arthropod<br />

groups.<br />

While attempting to arrange <strong>the</strong> collections at <strong>the</strong><br />

Natural History Museum <strong>of</strong> Los <strong>An</strong>geles County,<br />

<strong>the</strong> second largest collection <strong>of</strong> crustaceans in <strong>the</strong><br />

United States, we decided to update <strong>the</strong> Bowman<br />

and Abele (1982) classification by simply inserting<br />

<strong>the</strong> taxa described since that time. This proved to<br />

be a more difficult task than we originally envisioned.<br />

In part this was because <strong>the</strong> number <strong>of</strong> new<br />

taxa was larger than we first thought. <strong>An</strong>d, in part,<br />

it was because <strong>the</strong>re have been so many suggestions<br />

for new arrangements and groupings <strong>of</strong> crustacean<br />

assemblages, and we wanted to reflect some <strong>of</strong> <strong>the</strong><br />

recent thinking in crustacean phylogeny in <strong>the</strong> arrangement<br />

<strong>of</strong> our museum’s collection. At about <strong>the</strong><br />

same time, we announced a World Wide Web product<br />

(http://www.nhm.org/cbs/) called <strong>the</strong> <strong>Crustacea</strong>n<br />

Biodiversity Survey (Martin, 1996). The Survey<br />

was designed to allow workers from anywhere<br />

in <strong>the</strong> world to add information at a variety <strong>of</strong> levels<br />

to a database on crustacean biodiversity. The<br />

currently proposed classification is one result <strong>of</strong><br />

that survey.<br />

Lines have to be drawn at certain times in order<br />

to attain some level <strong>of</strong> completion. We received <strong>the</strong><br />

suggestion from several workers to take <strong>the</strong> classification<br />

down to <strong>the</strong> level <strong>of</strong> subfamily; one worker<br />

even suggested we include a list <strong>of</strong> all known genera<br />

for each family. O<strong>the</strong>rs suggested that we provide<br />

a clear diagnosis and/or characters that distinguish<br />

each taxon or at least each major clade. Although<br />

<strong>the</strong>se additions would undoubtedly be extremely<br />

helpful, for what we hope are obvious reasons, we<br />

2 � Contributions in Science, Number 39 General Introduction


did not want to attempt it. We are also aware that<br />

<strong>the</strong>re are a number <strong>of</strong> works in progress that will<br />

have a bearing on our understanding <strong>of</strong> <strong>the</strong> classification<br />

<strong>of</strong> <strong>Crustacea</strong> (future volumes <strong>of</strong> <strong>the</strong> Traité<br />

de Zoologie [J. Forest, editor] and <strong>the</strong> ongoing revision<br />

<strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> sections <strong>of</strong> <strong>the</strong> Treatise on<br />

Invertebrate Paleontology [edited by R. L. Kaesler,<br />

University <strong>of</strong> Kansas] are examples <strong>of</strong> works we<br />

have not yet seen). However, <strong>the</strong> field is moving<br />

rapidly, and we felt that <strong>the</strong>re was more merit to<br />

publishing what we have than in waiting for additional<br />

analyses and publications to appear. We are<br />

also aware <strong>of</strong> <strong>the</strong> relatively recent suggestions to<br />

replace Linnaean hierarchical taxonomy and classification<br />

with a more phylogenetically based system.<br />

A brief review by Milius (1999, Science News,<br />

vol. 156: 268) outlines <strong>the</strong> controversy as presented<br />

at <strong>the</strong> International Botanical Congress meetings in<br />

St. Louis (see also de Queiroz and Gauthier, 1994;<br />

Hibbett and Donoghue, 1998; Cantino et al., 1999;<br />

Cantino, 2000; Nixon and Carpenter, 2000; Meier<br />

and Richter, 1992; and <strong>the</strong> web site for <strong>the</strong><br />

PhyloCode at www.ohiou.edu/phylocode/). Some<br />

authors have even advocated doing away with species<br />

names as a supposedly logical consequence <strong>of</strong><br />

using phylogenetic taxonomy (e.g., Pleijel and<br />

Rouse, 2000). However, we have retained a more<br />

classical approach for now.<br />

METHODS<br />

To arrive at <strong>the</strong> present classification, we began by<br />

incorporating all <strong>of</strong> <strong>the</strong> changes or rearrangements<br />

<strong>of</strong> which we were aware. Mostly, because <strong>of</strong> our<br />

own taxonomic interests and <strong>the</strong> strengths <strong>of</strong> <strong>the</strong><br />

<strong>Crustacea</strong> collection <strong>of</strong> <strong>the</strong> Natural History Museum<br />

<strong>of</strong> Los <strong>An</strong>geles County, this meant <strong>the</strong> changes<br />

or updates within <strong>the</strong> Decapoda and Branchiopoda.<br />

In addition, we scanned <strong>the</strong> following journals<br />

from 1982 until <strong>the</strong> present: <strong>Crustacea</strong>na, Journal<br />

<strong>of</strong> <strong>Crustacea</strong>n Biology, Proceedings <strong>of</strong> <strong>the</strong> Biological<br />

Society <strong>of</strong> Washington, Smithsonian Contributions<br />

in Zoology, Contributions in Science <strong>of</strong> <strong>the</strong><br />

Natural History Museum <strong>of</strong> Los <strong>An</strong>geles County,<br />

Researches on <strong>Crustacea</strong> (now <strong>Crustacea</strong>n Research),<br />

and Journal <strong>of</strong> Natural History. Knowing<br />

that <strong>the</strong>se journals would not provide a complete<br />

account <strong>of</strong> <strong>the</strong> many changes and additions suggested<br />

since 1982, we <strong>the</strong>n endeavored to solicit <strong>the</strong><br />

input <strong>of</strong> a large number <strong>of</strong> crustacean systematists<br />

from around <strong>the</strong> world. <strong>An</strong>y measure <strong>of</strong> completeness<br />

is due to <strong>the</strong> considerable help and input given<br />

by <strong>the</strong>se workers (Appendix II). At <strong>the</strong> same time,<br />

we accept <strong>the</strong> responsibility and inevitable criticism<br />

that any such undertaking generates, as final decisions<br />

were made by us.<br />

After incorporating comments received from <strong>the</strong><br />

first mailing <strong>of</strong> <strong>the</strong> updated classification, we again<br />

sent <strong>the</strong> classification back to <strong>the</strong> same carcinologists<br />

and also to several o<strong>the</strong>r workers whose<br />

names had been suggested to us. Finally, in a third<br />

mailing, we asked those same workers (again, with<br />

some new names added to <strong>the</strong> list) to send us additional<br />

corrections and also <strong>the</strong>ir comments, supportive<br />

or o<strong>the</strong>rwise, concerning <strong>the</strong> resulting classification,<br />

with <strong>the</strong> promise that we would try to<br />

publish <strong>the</strong>se comments verbatim as Appendix I. In<br />

this way, we hope to point out areas <strong>of</strong> disagreement<br />

and existing controversies in <strong>the</strong> ‘‘current’’<br />

classification such that future workers will know<br />

that what is presented here as a classification is<br />

merely a suggested starting point and that <strong>the</strong>re is<br />

considerable room for improvement.<br />

Not all workers responded. Some responded only<br />

to <strong>the</strong> first mailing, o<strong>the</strong>rs only to <strong>the</strong> second or<br />

third. <strong>An</strong>d <strong>of</strong> course not all persons listed in Appendix<br />

II received all three <strong>of</strong> <strong>the</strong> mailings. It is<br />

important to note that <strong>the</strong> listing <strong>of</strong> a name in Appendix<br />

II does not necessarily imply agreement with<br />

<strong>the</strong> new classification, regardless <strong>of</strong> whe<strong>the</strong>r a dissenting<br />

opinion has been <strong>of</strong>fered. We also received<br />

a large number <strong>of</strong> positive comments and letters <strong>of</strong><br />

encouragement.<br />

The present classification will not be accepted by<br />

all current workers and is sure to be considered<br />

obsolete almost immediately. Yet we have found <strong>the</strong><br />

Bowman and Abele (1982) classification to be <strong>of</strong><br />

such help, in everything from organizing our museum<br />

collections to searching for taxa with which<br />

we are unfamiliar, that we hoped to provide a similar<br />

and updated tool that would be <strong>of</strong> at least some<br />

usefulness for students <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>.<br />

As concerns <strong>the</strong> authorship <strong>of</strong> this paper, it is<br />

pertinent to note that G. E. Davis has been responsible<br />

for <strong>the</strong> overall organization, tracking, and dissemination<br />

<strong>of</strong> information from <strong>the</strong> beginning <strong>of</strong><br />

this project. Thus, any and all errors or oversights<br />

concerning <strong>the</strong> actual classification itself or concerning<br />

<strong>the</strong> rationale behind <strong>the</strong> choices, <strong>the</strong> literature<br />

reviewed and cited, and <strong>the</strong> introductory text<br />

are <strong>the</strong> responsibility <strong>of</strong> J. W. Martin.<br />

NAMES, DATES, AND THE ICZN<br />

The Introduction section <strong>of</strong> <strong>the</strong> fourth edition <strong>of</strong><br />

<strong>the</strong> International Code <strong>of</strong> Zoological Nomenclature<br />

(ICZN, 1999:xix) states that <strong>the</strong> Code ‘‘does not<br />

fully regulate <strong>the</strong> names <strong>of</strong> taxa above <strong>the</strong> family<br />

group.’’ This is, as we understand it, an intentional<br />

move designed to allow for some flexibility in establishing<br />

higher order taxa. Because <strong>of</strong> this flexibility,<br />

<strong>the</strong>re are different schools <strong>of</strong> thought for recognizing<br />

<strong>the</strong> names <strong>of</strong> higher taxonomic categories<br />

and for crediting <strong>the</strong> names and dates <strong>of</strong> <strong>the</strong>se higher<br />

taxa. One school <strong>of</strong> thought would advocate that<br />

a different name (and thus a different person and<br />

date) should be used each time <strong>the</strong> constituency <strong>of</strong><br />

<strong>the</strong> taxon is altered. Thus, for example, if <strong>the</strong> thalassinoid<br />

families are removed from <strong>the</strong> <strong>An</strong>omura,<br />

<strong>the</strong>n we should no longer use <strong>the</strong> term <strong>An</strong>omura<br />

(or use it in a newly restricted sense) to describe <strong>the</strong><br />

remaining (nonthalassinoid) members <strong>of</strong> that assemblage.<br />

Using ano<strong>the</strong>r example, if we persist in<br />

keeping <strong>the</strong> taxon name Eumalacostraca and yet<br />

Contributions in Science, Number 39 General Introduction � 3


exclude <strong>the</strong> hoplocarids (stomatopods) from <strong>the</strong><br />

group, we should not credit <strong>the</strong> name to Grobben,<br />

who originally coined <strong>the</strong> name but considered <strong>the</strong><br />

hoplocarids to be within <strong>the</strong> Eumalacostraca. Such<br />

changes seem to us to detract considerably from<br />

stability and can result in a plethora <strong>of</strong> new names<br />

being proposed for major taxa that essentially have<br />

changed very little. <strong>An</strong> example might be <strong>the</strong> Achelata<br />

<strong>of</strong> Scholtz and Richter (1995), proposed for<br />

what is essentially <strong>the</strong> Palinura if <strong>the</strong> family Polychelidae<br />

is removed.<br />

The second school <strong>of</strong> thought maintains that stability<br />

is perhaps more valuable than strict accuracy<br />

and that <strong>the</strong>re is no need to change (for example)<br />

<strong>the</strong> name Isopoda simply because <strong>the</strong> tanaidaceans<br />

were once included but have since been removed,<br />

or to discontinue use <strong>of</strong> Eumalacostraca because<br />

<strong>the</strong> stomatopods have been removed, or to change<br />

<strong>the</strong> <strong>An</strong>omura to <strong>An</strong>omala because <strong>the</strong> thalassinoids<br />

have been removed. The latter example was discussed<br />

at length by McLaughlin (1983b), who originally<br />

advocated using <strong>the</strong> term <strong>An</strong>omala, ra<strong>the</strong>r<br />

than <strong>An</strong>omura, for this reason. Later, McLaughlin<br />

and Holthuis (1985) argued for stability and for<br />

maintaining <strong>the</strong> use <strong>of</strong> <strong>the</strong> familiar name <strong>An</strong>omura.<br />

For <strong>the</strong>se reasons, and because <strong>the</strong> Code reminds<br />

us in <strong>the</strong> Introduction (ICZN, 1999) that ‘‘nomenclatural<br />

rules are tools that are designed to provide<br />

<strong>the</strong> maximum stability compatible with taxonomic<br />

freedom,’’ we side with <strong>the</strong> second school <strong>of</strong><br />

thought. Certainly, at lower taxonomic levels, we<br />

would never advocate changing <strong>the</strong> name <strong>of</strong> a family<br />

or genus because <strong>of</strong> <strong>the</strong> transfer or synonymy <strong>of</strong><br />

a single species, and similarly we are hesitant to do<br />

away with well-established higher names because<br />

<strong>the</strong>ir constituency has been slightly altered. Thus,<br />

for <strong>the</strong> most part, we have tended to retain a wellrecognized<br />

taxonomic name in favor <strong>of</strong> a new one<br />

that differs slightly in its composition.<br />

<strong>An</strong>o<strong>the</strong>r area <strong>of</strong> controversy is in <strong>the</strong> crediting <strong>of</strong><br />

higher taxon names to <strong>the</strong> original author <strong>of</strong> <strong>the</strong><br />

group vs. crediting <strong>the</strong>m to <strong>the</strong> first person to use<br />

<strong>the</strong> name in its new, higher, context. For example,<br />

<strong>the</strong> ostracode family Darwinulidae is usually credited<br />

to Brady and Norman (1889). These authors<br />

did not use it to describe any higher taxon, and it<br />

was Sohn (1988) who first established <strong>the</strong> suborder<br />

Darwinulocopina (based on this family). Should we<br />

refer to <strong>the</strong> Darwinulocopina Brady and Norman<br />

or to <strong>the</strong> Darwinulocopina Sohn? The ICZN <strong>of</strong>fers<br />

some guidelines for resolution <strong>of</strong> this problem at<br />

lower levels via article 50.3.1 (ICZN, 1999:53).<br />

This article states that ‘‘<strong>the</strong> authorship <strong>of</strong> <strong>the</strong> name<br />

<strong>of</strong> a nominal taxon within <strong>the</strong> family group, genus<br />

group or species group is not affected by <strong>the</strong> rank<br />

at which it is used.’’ This clearly applies only to<br />

those mentioned taxonomic levels, and so it does<br />

not necessarily need to be invoked for <strong>the</strong> name <strong>of</strong><br />

a family that has been elevated to <strong>the</strong> rank <strong>of</strong> superfamily<br />

(or higher). However, in an attempt to be<br />

as consistent as possible, Dr. Lipke Holthuis (who<br />

not only is one <strong>of</strong> <strong>the</strong> most prolific writers on crus-<br />

tacean systematics in history but also has served on<br />

<strong>the</strong> International Commission <strong>of</strong> Zoological Nomenclature)<br />

has suggested that we extend that recommendation<br />

to higher levels for those cases where<br />

it was clear to us that <strong>the</strong> higher taxon had been<br />

based on a lower one. Thus, in <strong>the</strong> above example<br />

where <strong>the</strong> family Darwinulidae has been elevated<br />

to superfamily and even to suborder, we might continue<br />

to recognize Brady and Norman as <strong>the</strong> author<br />

<strong>of</strong> both <strong>of</strong> those higher taxa. Holthuis (1993a) also<br />

mentioned ICZN Article 36a (now 36.1), and as an<br />

example cited <strong>the</strong> fact that <strong>the</strong> ‘‘family name Palaemonidae,<br />

subfamily name Palaemoninae and <strong>the</strong><br />

superfamily Palaemonoidea, all have as <strong>the</strong> author<br />

Rafinesque, 1815.’’ The Editorial Preface to <strong>the</strong><br />

Treatise on Invertebrate Paleontology (Moore,<br />

1969:xi–xxxvi) stated this in a slightly different<br />

way, and we quote from it:<br />

All family-group taxa having names based on <strong>the</strong> same<br />

type genus are attributed to <strong>the</strong> author who first published<br />

<strong>the</strong> name for any <strong>of</strong> <strong>the</strong>se assemblages, whe<strong>the</strong>r<br />

tribe, subfamily, or family (superfamily being almost<br />

inevitably a later-conceived taxon). Accordingly, if a<br />

family is divided into subfamilies or a subfamily into<br />

tribes, <strong>the</strong> name <strong>of</strong> no such subfamily or tribe can antedate<br />

<strong>the</strong> family name. Also, every family containing<br />

differentiated subfamilies must have a nominate (sensu<br />

stricto) subfamily, which is based on <strong>the</strong> same type genus<br />

as that for <strong>the</strong> family, and <strong>the</strong> author and date set<br />

down for <strong>the</strong> nominate subfamily invariably are identical<br />

with those <strong>of</strong> <strong>the</strong> family, without reference to<br />

whe<strong>the</strong>r <strong>the</strong> author <strong>of</strong> <strong>the</strong> family or some subsequent<br />

author introduced subdivisions.<br />

The negative side to following this advice (in <strong>the</strong><br />

above case, using <strong>the</strong> taxon names Darwinulidae<br />

Brady and Norman and also Darwinulocopina Brady<br />

and Norman) is that some ‘‘bibliographic’’ and<br />

historical information is lost. The reader will know<br />

<strong>the</strong> original source <strong>of</strong> <strong>the</strong> name but will have a very<br />

difficult time discovering who first employed that<br />

name as a superfamily, suborder, or higher taxon<br />

and when this was first done. Using <strong>the</strong> name ‘‘Darwinulocopina<br />

Sohn, 1988’’ is <strong>the</strong>refore more informative,<br />

if not strictly in keeping with ICZN 50.3.1.<br />

Holthuis (1993a) was aware <strong>of</strong> this as well, stating:<br />

‘‘One could, in keeping with <strong>the</strong> rules for <strong>the</strong> family<br />

names, consider <strong>the</strong> authors <strong>of</strong> <strong>the</strong> family name to<br />

be at <strong>the</strong> same time <strong>the</strong> author <strong>of</strong> <strong>the</strong> name <strong>of</strong> <strong>the</strong>se<br />

higher categories, but it seemed more logical to cite<br />

as <strong>the</strong>ir author <strong>the</strong> first zoologist who used such a<br />

name for a category above <strong>the</strong> family group level.’’<br />

There are also cases in which <strong>the</strong> higher taxon was<br />

clearly used and described separately, by different<br />

authors, ra<strong>the</strong>r than being an ‘‘elevation’’ <strong>of</strong> a family<br />

name. For example, within <strong>the</strong> Peracarida, <strong>the</strong><br />

family Mictocarididae is correctly credited to Bowman<br />

and Iliffe (1985), whereas <strong>the</strong> order Mictacea<br />

is credited to Bowman et al. (1985), who established<br />

<strong>the</strong> order in a companion paper in <strong>the</strong> same<br />

issue <strong>of</strong> <strong>the</strong> journal. For <strong>the</strong>se reasons, <strong>the</strong> choice<br />

<strong>of</strong> author and date following a taxonomic name<br />

might at first seem arbitrary, but we have endeav-<br />

4 � Contributions in Science, Number 39 General Introduction


ored to credit <strong>the</strong> person or persons who first used<br />

that name in its new (higher) context when this information<br />

was known to us. In o<strong>the</strong>r instances<br />

where we were unsure or where we could not personally<br />

check <strong>the</strong> original literature, we have employed<br />

<strong>the</strong> oldest known name and date, more in<br />

keeping with <strong>the</strong> suggestion by Holthuis (pers.<br />

comm.) to extend ICZN 50.3.1 to higher categories.<br />

Thus, <strong>the</strong> present classification, like many o<strong>the</strong>rs<br />

before it, is something <strong>of</strong> an unfortunate mix <strong>of</strong><br />

‘‘rules’’ used to credit authors and dates with <strong>the</strong><br />

establishment <strong>of</strong> taxa. M. Grygier (pers. comm.) informs<br />

us that <strong>the</strong> above discussion is slightly misinformed<br />

in that <strong>the</strong> term ‘‘family group’’ explicitly<br />

includes superfamilies (ICZN article 35.1), such<br />

that <strong>the</strong> real difficulty should be only at <strong>the</strong> level <strong>of</strong><br />

suborder (or any level above that <strong>of</strong> superfamily).<br />

One <strong>of</strong> <strong>the</strong> specific suggestions we received from<br />

several workers was a plea to credit Latreille (1803)<br />

for a large number <strong>of</strong> higher level crustacean taxa<br />

(we had used <strong>the</strong> date 1802 in earlier editions <strong>of</strong><br />

<strong>the</strong> classification). These taxa include Ostracoda,<br />

Malacostraca, Gammaridae (and thus Gammaridea),<br />

Oniscidea (and thus Oniscoidea), Astacidea<br />

(and thus Astacoidea), Palinura, Paguroidea, Brachyura,<br />

Squilloidea, and many more. Our choice <strong>of</strong><br />

1802 instead <strong>of</strong> 1803 is based on <strong>the</strong> following information<br />

quoted from a letter we received from L.<br />

Holthuis (pers. comm., 13 July 1998) referring to<br />

an earlier draft <strong>of</strong> our classification:<br />

Some <strong>of</strong> Latreille’s names proposed in his Histoire naturelle<br />

générale et particulière des Crustacés et des Insectes,<br />

vol. 3 . . . have been cited with <strong>the</strong> year 1802<br />

. . . o<strong>the</strong>rs have <strong>the</strong> year 1803. The year <strong>of</strong> publication<br />

<strong>of</strong> vol. 3 <strong>of</strong> Latreille’s work was studied by <strong>the</strong> best<br />

authority on Latreille, namely C. Dupuis, who in 1975<br />

(Bulletin <strong>of</strong> Zoological Nomenclature, 32: 4) stated<br />

that this vol. 3 was published after April 1802 and before<br />

6 November 1802, thus definitely in 1802. Therefore<br />

all <strong>the</strong> author’s names ‘Latreille, 1803’ should be<br />

changed to ‘Latreille, 1802.’<br />

Similarly, unless we had fairly convincing evidence<br />

to <strong>the</strong> contrary, in those cases where we were<br />

faced with a choice <strong>of</strong> different dates (which usually,<br />

although not always, meant also different authors,<br />

such as White, 1850 vs. Dana, 1853 vs. Harger,<br />

1879, all suggested to us by different workers<br />

as <strong>the</strong> correct author/date <strong>of</strong> <strong>the</strong> isopod family Limnoriidae)<br />

for <strong>the</strong> establishment <strong>of</strong> a taxon, we went<br />

with <strong>the</strong> earliest date. In this particular example, at<br />

least, it proved <strong>the</strong> correct choice, as White (1850)<br />

is indeed <strong>the</strong> author <strong>of</strong> <strong>the</strong> family Limnoriidae (G.<br />

Poore, pers. comm.).<br />

Finally, we wish to caution readers that we have<br />

not been able to research each name to <strong>the</strong> degree<br />

that we would have liked, and we have depended<br />

instead upon <strong>the</strong> many contributors (not all <strong>of</strong><br />

whom were in agreement). Consequently, we would<br />

advise any user <strong>of</strong> this (or any o<strong>the</strong>r) classification<br />

to take <strong>the</strong> time necessary to research carefully <strong>the</strong><br />

history <strong>of</strong> each taxonomic name for his- or herself,<br />

which, because <strong>of</strong> <strong>the</strong> sheer number <strong>of</strong> names in-<br />

volved in this project, we simply were not able to<br />

do.<br />

CLADISTICS AND CLASSIFICATION OF THE<br />

CRUSTACEA<br />

Ideally, a classification should accurately reflect <strong>the</strong><br />

phylogenetic history <strong>of</strong> <strong>the</strong> group. We are very<br />

much in favor <strong>of</strong> following rigorous cladistic analyses<br />

wherever possible, and some <strong>of</strong> <strong>the</strong> newly proposed<br />

classification reflects phylogenetic hypo<strong>the</strong>ses<br />

based on cladistic analysis <strong>of</strong> morphological and/or<br />

molecular data. However, saying that we favor<br />

classifications based on rigorous cladistic methods<br />

is not <strong>the</strong> same as saying that any cladistic analysis<br />

is more correct than every preceding hypo<strong>the</strong>sis <strong>of</strong><br />

crustacean phylogeny. We wish to state this more<br />

clearly so that <strong>the</strong>re can be no mistaking our meaning:<br />

A phylogeny is not correct simply because it<br />

was generated using cladistics. This somewhat obvious<br />

point is quite <strong>of</strong>ten overlooked. The advantage<br />

that cladistics imparts is <strong>the</strong> objective use <strong>of</strong><br />

synapomorphies to define clades. Cladistics is a<br />

powerful tool, and, like all such tools, it must be<br />

wielded carefully. <strong>An</strong>d, as with any o<strong>the</strong>r tool, <strong>the</strong>re<br />

is never any guarantee that <strong>the</strong> result is ‘‘correct.’’<br />

We received numerous suggestions that we employ<br />

a ‘‘more cladistic’’ approach to our new classification.<br />

For many crustacean assemblages, <strong>the</strong>re have<br />

been no proposed phylogenies, cladistic or o<strong>the</strong>rwise.<br />

For o<strong>the</strong>r groups, although cladistic methods<br />

may have been used, <strong>the</strong>re are no published or accessible<br />

data for confirmation <strong>of</strong> <strong>the</strong> results, and/or<br />

<strong>the</strong> proposed phylogenies are in stark contrast with<br />

large literatures on fossil, morphological, developmental,<br />

or molecular studies <strong>of</strong> <strong>the</strong>se taxa, making<br />

<strong>the</strong>m, at least to us, suspect. Two taxa that demonstrate<br />

this problem are <strong>the</strong> Maxillopoda and <strong>the</strong><br />

Decapoda, for which some <strong>of</strong> <strong>the</strong> most vocal proponents<br />

<strong>of</strong> cladistic approaches gave us quite different<br />

suggestions for <strong>the</strong> classification, all supposedly<br />

based on rigorous cladistic analyses <strong>of</strong> ‘‘good’’<br />

data. Similar frustration concerning recent attempts<br />

to cladistically analyze fossil arthropods is expressed<br />

by Fryer (1999c). More troubling still is<br />

that <strong>the</strong>re are o<strong>the</strong>r cladistic analyses <strong>of</strong> which we<br />

are aware, and that appear to be based on solid<br />

evidence, that we could not follow completely because<br />

to do so would have orphaned large numbers<br />

<strong>of</strong> families. For example, we do not doubt <strong>the</strong> revelation<br />

by Cunningham et al. (1992) that king crabs<br />

<strong>of</strong> <strong>the</strong> family Lithodidae are actually nested within<br />

one clade <strong>of</strong> hermit crabs (but see McLaughlin and<br />

Lemaitre, 1997, 2000, for a dissenting opinion).<br />

But <strong>the</strong>re are o<strong>the</strong>r clades <strong>of</strong> hermits and o<strong>the</strong>r species<br />

<strong>of</strong> lithodids that were not part <strong>of</strong> this study,<br />

and we hesitated to make sweeping changes before<br />

all evidence is in. <strong>An</strong>o<strong>the</strong>r example concerns dromiacean<br />

crabs, traditionally placed among <strong>the</strong> lower<br />

Brachyura but whose larvae appear distinctly anomuran.<br />

The molecular analysis <strong>of</strong> Spears et al.<br />

(1992) grouped at least one dromiid with <strong>the</strong> <strong>An</strong>-<br />

Contributions in Science, Number 39 General Introduction � 5


omura ra<strong>the</strong>r than <strong>the</strong> Brachyura—but does this<br />

hold for all crabs in <strong>the</strong> former Dromiacea? Thus,<br />

we have in some instances knowingly presented<br />

groupings for which contrary evidence exists for at<br />

least some <strong>of</strong> <strong>the</strong> constituent taxa. We have tried to<br />

mention all such areas in <strong>the</strong> text <strong>of</strong> <strong>the</strong> Rationale<br />

section that follows. Several workers noted this<br />

problem and suggested that perhaps no classification<br />

should be attempted until such time that we<br />

have better supported phylogenetic analyses in<br />

hand for all (or at least most) crustacean groups.<br />

There is merit to this argument. But in keeping with<br />

our original goal <strong>of</strong> updating a classification <strong>of</strong> <strong>the</strong><br />

entire assemblage to benefit students who wish to<br />

view <strong>the</strong> overall picture <strong>of</strong> crustacean diversity, we<br />

felt that waiting would not improve <strong>the</strong> situation.<br />

<strong>An</strong> additional practical problem faced by <strong>the</strong> student<br />

wishing to construct a cladistically based classification<br />

is <strong>the</strong> very real difficulty <strong>of</strong> representing<br />

complex relationships in a two-dimensional classification.<br />

To accurately depict all <strong>of</strong> <strong>the</strong> branching<br />

relationships and show all <strong>of</strong> <strong>the</strong> sister groupings<br />

would necessitate a ra<strong>the</strong>r large number <strong>of</strong> additional<br />

taxonomic categories. One proposed solution<br />

is to simply indent <strong>the</strong> families in <strong>the</strong> list (without<br />

creating additional names for groupings) to imply<br />

<strong>the</strong> relationships. But even this is difficult when<br />

dealing with <strong>the</strong> number <strong>of</strong> families in, for example,<br />

<strong>the</strong> gammaridean amphipods or <strong>the</strong> harpacticoid<br />

copepods. <strong>An</strong>o<strong>the</strong>r proposed solution is to completely<br />

abandon Linnaean hierarchical classifications<br />

in favor <strong>of</strong> a more phylogenetically based system<br />

(e.g., see Milius, 1999; Cantino et al., 1999).<br />

We feel that, in many cases, a ‘‘standard’’ classification—that<br />

is, a simple list <strong>of</strong> families—still serves<br />

a purpose for those taxa where <strong>the</strong> phylogeny remains<br />

uncertain (which is nearly every group <strong>of</strong> <strong>the</strong><br />

<strong>Crustacea</strong>) in that it at least allows recognition and<br />

placement within well-defined higher groups for beginning<br />

students. Thus, while very much in favor<br />

<strong>of</strong> <strong>the</strong> application <strong>of</strong> cladistic methodology and <strong>of</strong><br />

<strong>the</strong> construction <strong>of</strong> classifications based on <strong>the</strong>se<br />

methods whenever possible, we have had difficulties<br />

in trying to arrive at a sensible or useful way<br />

<strong>of</strong> depicting <strong>the</strong>se relationships to <strong>the</strong> beginning<br />

student <strong>of</strong> carcinology. Consequently, to many<br />

readers, our current arrangements and ‘‘lists’’ <strong>of</strong><br />

families will appear old fashioned and unsatisfactory.<br />

The number <strong>of</strong> phylogenetic studies on <strong>the</strong> <strong>Crustacea</strong><br />

has risen dramatically since Bowman and<br />

Abele’s (1982) classification. Christ<strong>of</strong>fersen (1994:<br />

135) estimated that 123 cladistic analyses <strong>of</strong> crustaceans<br />

had appeared in print as <strong>of</strong> <strong>the</strong> end <strong>of</strong> 1992,<br />

and that number has increased dramatically since<br />

<strong>the</strong>n. Reasons for <strong>the</strong> increase include improved<br />

methods <strong>of</strong> computation and <strong>the</strong> availability <strong>of</strong> cladistic<br />

programs, such as PAUP, McCLADE, and<br />

HENNIG 86, in addition to <strong>the</strong> growing acceptance<br />

<strong>of</strong> cladistics as a preferred way <strong>of</strong> thinking<br />

about and depicting crustacean relationships and<br />

relationships <strong>of</strong> all o<strong>the</strong>r groups as well (see papers<br />

cited in Nielsen, 1995, and Nielsen et al., 1996).<br />

<strong>Recent</strong> phylogenetic s<strong>of</strong>tware is reviewed by Eernisse<br />

(1998), and a list <strong>of</strong> phylogenetic programs<br />

by categories is provided on J. Felsenstein’s ‘‘Phylogenetic<br />

Programs’’ web site at http://evolution.<br />

genetics.washington.edu/phylip/s<strong>of</strong>tware.html#<br />

methods. The fact that cladistics is almost routinely<br />

employed in studies <strong>of</strong> crustacean relationships today<br />

can be credited largely to <strong>the</strong> efforts <strong>of</strong> F. R.<br />

Schram (e.g., see Schram, 1983a, and papers <strong>the</strong>rein;<br />

Schram, 1986; Schram and H<strong>of</strong>, 1998). Although<br />

it is beyond <strong>the</strong> scope <strong>of</strong> this project to review<br />

<strong>the</strong> many cladistic analyses <strong>of</strong> crustacean<br />

groups that have appeared since 1982, we list below<br />

a few <strong>of</strong> <strong>the</strong> more salient papers that treat crustaceans<br />

above <strong>the</strong> level <strong>of</strong> family, with <strong>the</strong> hope that<br />

this might form something <strong>of</strong> an introduction to <strong>the</strong><br />

literature for students <strong>of</strong> crustacean phylogeny. The<br />

list is not intended to be exhaustive. Instead, we<br />

hope it alerts readers to <strong>the</strong> fact that very little is<br />

settled with regard to crustacean relationships and<br />

classification and to <strong>the</strong> fact that cladistic thinking<br />

has pr<strong>of</strong>oundly affected our understanding <strong>of</strong> crustacean<br />

relationships.<br />

In alphabetical order within chronological order,<br />

<strong>the</strong>se works include: Briggs (1983, Cambrian arthropods<br />

and crustaceans [see also Briggs and<br />

Whittington, 1981]), Grygier (1983a, b, maxillopodans),<br />

Sieg (1983a, tanaidaceans), Takeuchi<br />

(1993, caprellidean amphipods), Wheeler et al.<br />

(1993, arthropods including crustaceans), Ho<br />

(1984, nereicoliform copepods), Schram (1984a,<br />

Eumalacostraca; 1984b, Syncarida), Martin and<br />

Abele (1986, anomuran decapods), Schram (1986,<br />

all crustacean groups), Christ<strong>of</strong>fersen (1986, 1987,<br />

caridean shrimp), Grygier (1987a, b, maxillopodans),<br />

Pires (1987, peracarids), Christ<strong>of</strong>fersen<br />

(1988a, b, caridean shrimp), Müller and Walossek<br />

(1988, Maxillopoda), Abele et al. (1989, pentastomids),<br />

Boxshall and Huys (1989a, maxillopodans),<br />

Briggs and Fortey (1989, Cambrian arthropods<br />

including crustaceans), Christ<strong>of</strong>fersen (1989,<br />

caridean shrimp), Schmalfuss (1989, oniscidean<br />

isopods), Brusca and Brusca (1990, all crustacean<br />

groups), Christ<strong>of</strong>fersen (1990, Caridea), Ho (1990,<br />

copepod orders), Kim and Abele (1990, decapods),<br />

Walossek and Müller (1990, ‘‘stem line’’ crustaceans),<br />

Abele (1991, decapods), Brusca and Wilson<br />

(1991, isopods), Abele et al. (1992, maxillopodan<br />

groups), Briggs et al. and Briggs and Fortey (1992,<br />

Cambrian arthropods including crustaceans), Høeg<br />

(1992a, maxillopodans), Spears et al. (1992, brachyuran<br />

crabs), Walossek and Müller (1992, ‘‘orsten’’<br />

fossil crustaceans), Wilson (1992, most major<br />

extant groups), Kim and Kim (1993, gammaridean<br />

amphipod families and amphipod suborders), Walossek<br />

(1993, branchiopods and <strong>Crustacea</strong>), Poore<br />

(1994, thalassinideans), Spears et al. (1994, <strong>the</strong>costracan<br />

maxillopodans), Wagner (1994, peracarids),<br />

Wilson (1994, janiroidean isopods), Glenner et al.<br />

(1995, cirripedes), Scholtz and Richter (1995, decapods),<br />

Bellwood (1996, calappid crabs), Humes<br />

6 � Contributions in Science, Number 39 General Introduction


and Boxshall (1996, lichomolgoid copepods),<br />

Moura and Christ<strong>of</strong>fersen (1996, ‘‘mandibulate’’<br />

arthropods), Wilson (1996, isopods), Ahyong<br />

(1997, stomatopods), Emerson and Schram (1997,<br />

all arthropods), Hanner and Fugate (1997, branchiopods),<br />

Spears and Abele (1997, several major<br />

groups, review), Tshudy and Babcock (1997,<br />

clawed lobsters), Tudge (1997b, anomurans), Walossek<br />

and Müller (1997, Cambrian crustaceans and<br />

<strong>the</strong>ir bearing on crustacean phylogeny), Wheeler<br />

(1997, arthropods including crustaceans), Wills<br />

(1997, all <strong>Crustacea</strong>), Jenner et al. (1998, hoplocarids),<br />

Olesen (1998, conchostracans and cladocerans),<br />

Schram and H<strong>of</strong> (1998, all major groups,<br />

extant and extinct), Shen et al. (1998, spelaeogriphaceans),<br />

Strausfeld (1998, crustacean neurological<br />

features), Taylor et al. (1998, mysidaceans and<br />

o<strong>the</strong>r peracarids), Tucker (1998, raninoid crabs),<br />

Wheeler (1998, all arthropod groups), Wills et al.<br />

(1998, fossil and extant arthropod groups), Almeida<br />

and Christ<strong>of</strong>fersen (1999, pentastomids), Cumberlidge<br />

and Sternberg (1999, freshwater crabs),<br />

Huys and Lee (1999, laophontoidean harpacticoid<br />

copepods), Sternberg et al. (1999, freshwater<br />

crabs), Olesen (1999b, leptostracans), Spears and<br />

Abele (1999b, crustaceans with foliaceous limbs;<br />

2000, branchiopods), Walossek (1999, major crustacean<br />

groups), Edgecomb et al. (2000, all major<br />

arthropod groups), Negrea et al. (1999, branchiopods),<br />

Shultz and Regier (2000, all major arthropod<br />

groups), and Richter et al. (2001, cladocerans).<br />

MOLECULAR SYSTEMATICS AND<br />

CLASSIFICATION OF THE CRUSTACEA<br />

Without doubt, <strong>the</strong> most exciting recent developments<br />

in our understanding <strong>of</strong> crustacean relationships<br />

have been in <strong>the</strong> realm <strong>of</strong> molecular systematics<br />

and phylogenetics. Indeed, many <strong>of</strong> <strong>the</strong> cladistic<br />

papers mentioned in <strong>the</strong> previous section are<br />

based on molecular sequence data, which essentially<br />

were not available at <strong>the</strong> time <strong>of</strong> <strong>the</strong> Bowman<br />

and Abele classification. Molecular systematic studies<br />

<strong>of</strong> arthropods have become so numerous that<br />

Wheeler (1998) stated ‘‘<strong>the</strong> past decade has presented<br />

us with nearly annual molecular analyses <strong>of</strong><br />

Arthropoda.’’ For <strong>the</strong> <strong>Crustacea</strong>, most <strong>of</strong> this work<br />

has been championed by <strong>the</strong> laboratories <strong>of</strong> L. G.<br />

Abele and T. Spears at Florida State University and<br />

C. W. Cunningham at Duke University. This field,<br />

as well as <strong>the</strong> field <strong>of</strong> developmental genetics<br />

(which we barely touch upon here), is growing and<br />

changing at a phenomenal rate. Many <strong>of</strong> <strong>the</strong> early<br />

studies were based on relatively small sequences, so<br />

it is not terribly surprising that <strong>the</strong>re have been<br />

some published results that appear unreasonable<br />

based on our knowledge <strong>of</strong> morphology, embryology,<br />

paleontology, and o<strong>the</strong>r sets <strong>of</strong> characters. As<br />

we refine our selection <strong>of</strong> which genes to target,<br />

improve our ability to extract and align increasingly<br />

larger sequences, and devise better computational<br />

algorithms, we might begin to see more agree-<br />

ment between molecular results and more traditional<br />

views <strong>of</strong> crustacean phylogeny, or at least<br />

results that are less ambiguous. Or we may not. As<br />

Spears and Abele (1997) state in <strong>the</strong> conclusion to<br />

<strong>the</strong>ir review paper on <strong>the</strong> use <strong>of</strong> 18S rDNA data in<br />

crustacean phylogeny, ‘‘Regrettably, in <strong>the</strong> crusade<br />

for understanding relationships among crustaceans<br />

and o<strong>the</strong>r arthropod lineages, <strong>the</strong> rDNA data represent<br />

but a relic, and not <strong>the</strong> Holy Grail itself.’’<br />

Yet despite this sobering conclusion, Spears and<br />

Abele (1997) were able to make some very strong<br />

statements concerning at least some crustacean<br />

taxa. For example, Branchiopoda, Copepoda, Podocopida,<br />

and Myodocopida are all clearly monophyletic;<br />

<strong>the</strong> Malacostraca is clearly monophyletic<br />

and includes <strong>the</strong> Phyllocarida (Leptostraca) (supported<br />

also by Shultz and Regier, 2000); Maxillopoda<br />

does not appear monophyletic (although certain<br />

groups within it seem to be united); etc.<br />

There are, <strong>of</strong> course, known problems associated<br />

with some <strong>of</strong> <strong>the</strong>se approaches (as one early example,<br />

see <strong>the</strong> responses by Nielsen and o<strong>the</strong>rs<br />

(1989) to <strong>the</strong> article by Field et al. (1988) entitled<br />

‘‘Molecular analysis <strong>of</strong> <strong>the</strong> animal kingdom’’). Fryer<br />

(1997) points out several papers that question <strong>the</strong><br />

results and/or validity <strong>of</strong> recent studies <strong>of</strong> arthropod<br />

phylogeny based on molecular data; Wägele<br />

and Stanjek (1995) make <strong>the</strong> point that alignment<br />

alone can be responsible for serious discrepancies<br />

in analyses <strong>of</strong> such data. <strong>An</strong>d <strong>of</strong> course <strong>the</strong> history<br />

<strong>of</strong> a particular gene might not accurately reflect <strong>the</strong><br />

phylogeny <strong>of</strong> <strong>the</strong> species containing that gene (e.g.,<br />

see Brower et al., 1996; Doyle, 1997; Maddison,<br />

1997; Page and Charleston, 1998). Unfortunately,<br />

<strong>the</strong> branchiopod genus Artemia, which has been<br />

used for more molecular comparative studies than<br />

any o<strong>the</strong>r crustacean genus, is not <strong>the</strong> best choice;<br />

Maley and Marshall (1998) note that ‘‘brine shrimp<br />

[have] long been known to produce artifactual<br />

groupings.’’ Lake (1990) admitted that arthropod<br />

paraphyly as indicated in his analysis may be a result<br />

<strong>of</strong> long branch attraction caused by <strong>the</strong> inclusion<br />

<strong>of</strong> Artemia and Drosophila; this problem was<br />

mentioned also by Turbeville et al. (1991). It is also<br />

disconcerting that, after so much money and effort<br />

have been expended toward applying genetic data<br />

to resolving <strong>the</strong> evolutionary roots <strong>of</strong> modern humans,<br />

we still do not have a clear answer. Whe<strong>the</strong>r<br />

Homo sapiens arose from a single African source<br />

200,000 years ago or ‘‘multiple groups in Africa<br />

and elsewhere’’ at least a million years ago is still<br />

hotly debated (see Bower, 1999). How, <strong>the</strong>n, are we<br />

expected to place confidence in what <strong>the</strong> molecules<br />

are telling us about <strong>the</strong> evolution <strong>of</strong> crustaceans<br />

when our efforts, in comparison, have been so limited?<br />

To summarize, we again quote Maley and<br />

Marshall (1998): ‘‘To be confident in our hypo<strong>the</strong>ses<br />

<strong>of</strong> relationships among <strong>the</strong> animal phyla we<br />

need to ga<strong>the</strong>r more DNA sequences, especially<br />

from undersampled phyla; develop better methods<br />

<strong>of</strong> DNA analysis on <strong>the</strong> basis <strong>of</strong> more realistic models<br />

<strong>of</strong> DNA evolution; and develop independent<br />

Contributions in Science, Number 39 General Introduction � 7


data sets using morphological, developmental, and<br />

o<strong>the</strong>r molecular data to corroborate or falsify specific<br />

hypo<strong>the</strong>ses or to combine in total-evidence<br />

analyses.’’ Thus, just as we have not accepted all<br />

cladistic analyses simply because <strong>the</strong>y were cladistic,<br />

we have incorporated molecular analyses with<br />

caution because <strong>of</strong> perceived problems with some<br />

<strong>of</strong> <strong>the</strong>se studies. At <strong>the</strong> same time, <strong>the</strong>re is little<br />

question that <strong>the</strong>se efforts, however preliminary<br />

<strong>the</strong>y may be, represent <strong>the</strong> first attempts to apply<br />

‘‘new’’ and objective data to <strong>the</strong> resolution <strong>of</strong> crustacean<br />

phylogeny for <strong>the</strong> first time in some 200<br />

years <strong>of</strong> study, and we look forward to continued<br />

advances in this field.<br />

Papers mentioned below are merely examples <strong>of</strong><br />

some <strong>of</strong> <strong>the</strong> more comprehensive or influential<br />

works <strong>of</strong> which we are aware. As in <strong>the</strong> previous<br />

section, we have included only those papers that<br />

deal with ‘‘higher level’’ crustacean taxa or with <strong>the</strong><br />

relationships <strong>of</strong> crustaceans to o<strong>the</strong>r arthropods. In<br />

alphabetical order within chronological order, <strong>the</strong>se<br />

papers include Abele et al. (1989, pentastomids,<br />

rRNA), Kim and Abele (1990, decapods, 18S<br />

rRNA), Abele (1991, decapods, 18s rRNA), Turbeville<br />

et al. (1991, arthropods including crustaceans,<br />

18S rRNA), Abele et al. (1992, maxillopodans,<br />

18S rDNA), Cunningham et al. (1992, lithodid<br />

and pagurid anomurans), Spears et al. (1992,<br />

brachyuran crabs, 18s rRNA), Wheeler et al.<br />

(1993, arthropods including crustaceans, 18S<br />

rDNA, and polyubiquitin), Raff et al. (1994, review<br />

<strong>of</strong> arthropod relationships [and o<strong>the</strong>r metazoan<br />

groups] based on various genes), Spears et al.<br />

(1994, <strong>the</strong>costracans, 18S rDNA), Boore et al.<br />

(1995, arthropods including crustaceans), Friedrich<br />

and Tautz (1995, arthropods, 18S and 28S rDNA),<br />

France and Kocher (1996, DNA sequencing <strong>of</strong> formalin-fixed<br />

crustaceans), Wray et al. (1996, 6 mitochondrial<br />

and 2 nuclear genes), Eernisse (1997,<br />

arthropods [including crustaceans] and annelids,<br />

18S rRNA), Hanner and Fugate (1997, branchiopods,<br />

12S rDNA), Regier and Schultz (1997, major<br />

arthropod groups, two nuclear genes), Spears and<br />

Abele (1997, all crustacean groups, 18S rDNA),<br />

Wheeler (1997, most arthropod groups), Boore et<br />

al. (1998, crustaceans and insects, gene translocations),<br />

Colgan et al. (1998, arthropods including<br />

crustaceans, histone H3 and U2 snRNA), Min et<br />

al. (1998, arthropods, 18S rDNA), Regier and<br />

Schultz (1998a, b, arthropods, amino acid sequence<br />

<strong>of</strong> EF-1�), Schwenk et al. (1998, cladocerans, 16S<br />

rDNA), Wheeler (1998, arthropods [including crustaceans],<br />

18S and 28S rDNA), Braga et al. (1999,<br />

copepods, 16S and 28S rRNA), Morrison and Cunningham<br />

(1999, anomurans, mitochondrial gene rearrangements),<br />

Spears and Abele (1999b, crustaceans<br />

with foliaceous limbs, 18S rDNA), Crandall<br />

et al. (2000, Astacidea, 18S, 28S, and 16S rDNA),<br />

Edgecomb et al. (2000, arthropods including crustaceans,<br />

histone H3 and U2 snRNA sequences), Giribet<br />

and Ribera (2000, all arthropod groups, 18S<br />

and 28S rDNA), Harris et al. (2000, barnacles, 18S<br />

rDNA), Jarman et al. (2000, malacostracans, 28S<br />

rDNA), Perl-Treves et al. (2000, <strong>the</strong>costracans, 18S<br />

rDNA), Remigio and Hebert (2000, anostracan<br />

branchiopods, 28S and 16S rDNA), Spears and<br />

Abele (2000, branchiopods, 18S rDNA), Schubart<br />

et al. (2000a, b, grapsoid crabs, 16S rDNA), Shultz<br />

and Regier (2000, arthropods, Ef-1� and Pol II),<br />

Wilson et al. (2000, Malacostraca, mitochondrial<br />

DNA and gene order), Mattern and Schlegel (2001,<br />

oniscidean isopods, ssu rDNA), and Richter et al.<br />

(2001, Cladocera, 12S rDNA). See also papers in<br />

<strong>the</strong> symposium Evolutionary Relationships <strong>of</strong><br />

Metazoan Phyla organized by D. McHugh and K.<br />

Halanych (1998, American Zoologist 38:813–982)<br />

and <strong>the</strong> volume Arthropod Relationships edited by<br />

R. A. Fortey and R. H. Thomas (1997).<br />

DEVELOPMENTAL GENETICS AND<br />

CLASSIFICATION OF THE CRUSTACEA<br />

The relatively newly emerging field <strong>of</strong> developmental<br />

genetics needs to be mentioned here as well,<br />

though we hasten to add that this field <strong>of</strong> study is<br />

well beyond our area <strong>of</strong> expertise and that any attempt<br />

at a syn<strong>the</strong>sis would be premature. <strong>Recent</strong><br />

discoveries concerning especially homeotic (Hox)<br />

genes and arthropod relationships are having a pr<strong>of</strong>ound<br />

influence on our understanding <strong>of</strong> crustacean<br />

morphological plasticity and clearly will play an increasingly<br />

important role in elucidating relationships<br />

within <strong>Crustacea</strong> and among <strong>the</strong> various arthropod<br />

groups. We include this brief section only<br />

as a way to signal to <strong>the</strong> beginning student what is<br />

surely to be an active field <strong>of</strong> research for many<br />

years to come. Some <strong>of</strong> <strong>the</strong> recent papers in this<br />

field with applications to crustacean classification<br />

include (in alphabetical order) Akam (1998), Akam<br />

et al. (1994), Arhat and Kaufman (1999), Aver<strong>of</strong><br />

and Akam (1993, 1995a, b), Aver<strong>of</strong> and Patel<br />

(1997), Carroll (1995), Davidson et al. (1995), Fortey<br />

and Thomas (1997), Grenier et al. (1997), Panganiban<br />

et al. (1995, 1997), Popadić et al. (1996),<br />

Roush (1995), Scholtz (1995), Shubin et al. (1997),<br />

and Williams and Nagy (1995) (some <strong>of</strong> which are<br />

briefly reviewed in Brusca, 2000).<br />

SPERM MORPHOLOGY AND<br />

CLASSIFICATION OF THE CRUSTACEA<br />

Yet ano<strong>the</strong>r field <strong>of</strong> research that is improving our<br />

understanding <strong>of</strong> crustacean relationships is <strong>the</strong> description<br />

and comparison <strong>of</strong> crustacean sperm,<br />

termed ‘‘spermiocladistics’’ by Jamieson (1987,<br />

1991a). While examination <strong>of</strong> crustacean sperm<br />

morphology for systematic purposes is not new<br />

(e.g., Koltz<strong>of</strong>f, 1906; Wingstrand, 1972, 1978,<br />

1988; Grygier, 1981, 1982), recent work has employed<br />

ultrastructural characters that show more<br />

promise for resolution <strong>of</strong> long-standing questions.<br />

In <strong>the</strong> words <strong>of</strong> Tudge (1997b), <strong>the</strong> ‘‘use <strong>of</strong> spermatozoal<br />

ultrastructure in taxonomy and phylogeny<br />

is now firmly established as a valid means <strong>of</strong><br />

investigating phylogenetic relationships in various<br />

8 � Contributions in Science, Number 39 General Introduction


animal phyla.’’ For <strong>the</strong> <strong>Crustacea</strong>, <strong>the</strong>se characters<br />

have been invoked mostly for resolving relationships<br />

within <strong>the</strong> Eumalacostraca. This work is being<br />

championed primarily by B. G. Jamieson and<br />

C. Tudge and <strong>the</strong>ir colleagues. Some <strong>of</strong> <strong>the</strong> many<br />

recent papers advocating sperm ultrastructural<br />

characters in phylogeny are Guinot et al. (1994,<br />

primitive crabs; 1997, freshwater crabs; 1998,<br />

dromiacean crabs), Richer de Forges et al. (1997,<br />

crabs), Jamieson (1989a, b, crabs; 1989c, stomatopods;<br />

1990, primitive crabs; 1991a, overview <strong>of</strong><br />

crustacean sperm ultrastructure and phylogeny;<br />

1991b, 1993, 1994, crabs), Jamieson et al. (1993a–<br />

c, crabs; 1994a, b, 1995, 1996, 1997, crabs), Jamieson<br />

and Tudge (1990, crabs), Jamieson, Tudge,<br />

and Scheltinga (1993, primitive crabs), Jespersen<br />

(1979, leptostracans), Grygier (1981, 1982, maxillopodans),<br />

Storch and Jamieson (1992, pentastomids),<br />

Tudge (1991, 1992, 1995, 1997a, b, 1999a,<br />

b, anomuran decapods), Tudge et al. (1998a, lithodid<br />

crabs; 1998b, hydro<strong>the</strong>rmal vent crabs), and<br />

Tudge et al. (2000, mud-shrimp families; 1999, hippoid<br />

crabs). Many <strong>of</strong> <strong>the</strong>se papers and <strong>the</strong>ir contributions<br />

are discussed in <strong>the</strong> sections dealing with<br />

<strong>the</strong> taxa in question.<br />

Some <strong>of</strong> <strong>the</strong> revelations from <strong>the</strong> study <strong>of</strong> sperm<br />

ultrastructure are not terribly surprising and in fact<br />

support previous long-standing hypo<strong>the</strong>ses <strong>of</strong> crustacean<br />

relationships (e.g., peracarid unity; Jamieson,<br />

1991a). O<strong>the</strong>r results are more controversial<br />

and include <strong>the</strong> alliance <strong>of</strong> <strong>the</strong> Remipedia with <strong>the</strong><br />

Maxillopoda on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> shared ‘‘flagellate<br />

condition’’ <strong>of</strong> <strong>the</strong>ir spermatozoon (Jamieson,<br />

1991a) and placing <strong>the</strong> genus Lomis outside <strong>of</strong>, and<br />

thalassinids within, <strong>the</strong> <strong>An</strong>omura (Tudge, 1997a, b)<br />

(in contrast with what Morrison and Cunningham,<br />

1999, presented based on mitochondrial gene rearrangement<br />

data). [As an aside, <strong>the</strong> congruence between<br />

<strong>the</strong> phylogenetic diagrams <strong>of</strong> Jamieson<br />

(1991a:111), based on sperm ultrastructure, and<br />

Schram (1986), based on cladistic analysis <strong>of</strong> morphological<br />

characters, is perhaps not so remarkable<br />

as Schram and H<strong>of</strong> (1998) suggest. Schram and<br />

H<strong>of</strong> (1998) refer to Jamieson’s figure and ask <strong>the</strong><br />

reader to ‘‘note <strong>the</strong> general correspondence with <strong>the</strong><br />

major classes as arranged in Fig. 6.1.A.’’ However,<br />

Jamieson’s figure was in turn based on Schram<br />

(1986) with a diagram <strong>of</strong> <strong>the</strong> spermatozoal ultrastructure<br />

simply added to Schram’s tree; it is not an<br />

independently derived phylogeny.] Continued use<br />

<strong>of</strong> sperm ultrastructure in crustacean taxonomy<br />

and systematics will almost certainly contribute significantly<br />

to our understanding <strong>of</strong> crustacean phylogeny.<br />

LARVAL MORPHOLOGY AND<br />

CLASSIFICATION OF THE CRUSTACEA<br />

The study <strong>of</strong> crustacean systematics and phylogeny<br />

has involved larval characters from <strong>the</strong> very earliest<br />

times. For many groups <strong>of</strong> crustaceans, a study <strong>of</strong><br />

systematic relationships is a study <strong>of</strong> <strong>the</strong> larvae, as<br />

<strong>the</strong>se are <strong>of</strong>ten <strong>the</strong> only characters, or <strong>the</strong> best characters,<br />

that we have. For example, it could be argued<br />

that, until recently, <strong>the</strong> history <strong>of</strong> studies in<br />

barnacle phylogeny has been essentially a history<br />

<strong>of</strong> comparisons <strong>of</strong> barnacle larvae, and to some extent<br />

this is true for many groups. For some taxa, in<br />

particular <strong>the</strong> Facetotecta, <strong>the</strong> larvae are all that we<br />

know; <strong>the</strong> adult has yet to be recognized or described.<br />

The reverse is also true: <strong>the</strong>re are still some<br />

important groups <strong>of</strong> crustaceans (<strong>the</strong> class Remipedia,<br />

for example) for which <strong>the</strong> larval forms have<br />

never been identified. Many <strong>of</strong> <strong>the</strong> classic treatments<br />

<strong>of</strong> crustacean larvae were published prior to<br />

<strong>the</strong> Bowman and Abele (1982) classification and<br />

were thus available for consideration by those authors.<br />

The summary <strong>of</strong> crustacean larval diversity<br />

published by Williamson in that same series <strong>of</strong> volumes<br />

(Williamson, 1982) remains a good entry<br />

point for <strong>the</strong> literature on crustacean larvae and<br />

relationships based on larval characters.<br />

In <strong>the</strong> years following <strong>the</strong> Bowman and Abele<br />

(1982) classification, <strong>the</strong>re have been additional<br />

and significant treatments <strong>of</strong> crustacean larval characters<br />

and phylogeny. Indeed, nearly every modern<br />

publication that describes a larval stage includes at<br />

least some comments on <strong>the</strong> applicability <strong>of</strong> <strong>the</strong><br />

findings to relationships within <strong>the</strong> group. The<br />

study <strong>of</strong> larval crabs, in particular, has been a rich<br />

source <strong>of</strong> new characters for postulating higher level<br />

relationships among <strong>the</strong> Brachyura (e.g., see<br />

Rice, 1980, 1981, 1983, 1988; Martin, 1984,<br />

1988; Martin et al., 1985; Felder et al., 1985, as a<br />

few selected examples from a huge body <strong>of</strong> literature<br />

on crab relationships based on larvae and postlarvae).<br />

Williamson (1988a, b) has proposed ra<strong>the</strong>r<br />

drastic changes in our understanding <strong>of</strong> various<br />

pleocyemate groups (particularly <strong>the</strong> position <strong>of</strong> <strong>the</strong><br />

dromiid crabs relative to anomurans and true<br />

crabs, <strong>the</strong> placement <strong>of</strong> <strong>the</strong> mysidaceans within <strong>the</strong><br />

Eucarida, and <strong>the</strong> separation <strong>of</strong> palinurid lobsters<br />

from o<strong>the</strong>r eucarids based on <strong>the</strong>ir bizarre larvae).<br />

Grygier (1987a–c) and o<strong>the</strong>rs have used larval<br />

characters to explore maxillopod phylogeny; within<br />

<strong>the</strong> Maxillopoda, <strong>the</strong> work <strong>of</strong> Dahms (e.g., Dahms,<br />

1990) could be mentioned for advancing our understanding<br />

<strong>of</strong> copepod naupliar characters in phylogeny.<br />

Discoveries <strong>of</strong> fossilized larvae, in particular<br />

papers on <strong>the</strong> ‘‘Orsten’’ fauna, have added new<br />

characters and new insights into <strong>the</strong> evolution <strong>of</strong><br />

early crustaceans and ‘‘stem-line’’ crustaceans (e.g.,<br />

see Müller and Walossek, 1985a, 1986b; Walossek,<br />

1993, 1995; Walossek and Müller, 1990, 1997).<br />

Walossek and Müller (1997) recognize <strong>the</strong> Entomostraca,<br />

and exclude from <strong>the</strong> <strong>Crustacea</strong> <strong>the</strong> Pentastomida,<br />

in part based on larval evidence.<br />

We have tried to mention studies based on larval<br />

characters (where <strong>the</strong>y have a bearing on classification<br />

at <strong>the</strong> family level or higher) under each<br />

crustacean taxon. A recent review <strong>of</strong> larval diversity<br />

(Harvey et al., in press) provides additional material<br />

geared primarily for <strong>the</strong> beginning student <strong>of</strong><br />

carcinology.<br />

Contributions in Science, Number 39 General Introduction � 9


THE FOSSIL RECORD AND CLASSIFICATION<br />

OF THE CRUSTACEA<br />

No understanding <strong>of</strong> crustacean diversity and evolution<br />

would be complete without knowledge <strong>of</strong> <strong>the</strong><br />

fascinating fossil history <strong>of</strong> <strong>the</strong> group. <strong>An</strong>d many<br />

exciting discoveries that bear on crustacean origins,<br />

relationships, and classification have surfaced since<br />

<strong>the</strong> Bowman and Abele treatment. A recent example<br />

is <strong>the</strong> intriguing find <strong>of</strong> a serolid-like sphaeromatoid<br />

isopod from <strong>the</strong> Solnh<strong>of</strong>en <strong>of</strong> Germany<br />

(Brandt et al., 1999), pushing back <strong>the</strong> origin <strong>of</strong><br />

sphaeromatoid isopods to at least <strong>the</strong> Late Jurassic.<br />

Although a thorough review <strong>of</strong> such discoveries is<br />

beyond <strong>the</strong> scope <strong>of</strong> this report (see papers in Edgecombe,<br />

1998, and reviews by Delle Cave and Simonetta,<br />

1991; Bergström, 1992; Schram and H<strong>of</strong>,<br />

1998; Walossek and Müller, 1997, 1998; Wills,<br />

1998; Wills et al., 1995; Fortey et al., 1997; Fryer,<br />

1999c), we feel <strong>the</strong> need to mention especially <strong>the</strong><br />

stem and crown group crustaceans <strong>of</strong> <strong>the</strong> ‘‘Orsten’’<br />

fauna <strong>of</strong> Sweden (Orsten-type fossils have also been<br />

found on o<strong>the</strong>r continents; see review by Walossek,<br />

1999). These works include papers by Müller<br />

(1982, Hesslandona; 1983, crustaceans with s<strong>of</strong>t<br />

parts), Müller and Walossek (1985, Skaracarida;<br />

1986a, Martinssonia; 1986b, various arthropod<br />

larvae; 1988, <strong>the</strong> maxillopod Bredocaris), Walossek<br />

and Müller (1990, stem line crustacean concept;<br />

1992, overview <strong>of</strong> <strong>the</strong> Orsten fauna; 1994, possible<br />

pentastomids; 1997, 1998, overviews), Walossek<br />

and Szaniawski (1991, Cambrocaris), Walossek et<br />

al. (1994, possible pentastomids), and Walossek<br />

(1993, 1995, <strong>the</strong> branchiopod Rehbachiella; 1999,<br />

overview <strong>of</strong> Cambrian crustaceans). These publications<br />

include detailed descriptions <strong>of</strong> several new<br />

taxa that have in many ways altered our view <strong>of</strong><br />

primitive crustaceans and <strong>the</strong> timing <strong>of</strong> crustacean<br />

evolution.<br />

The Burgess Shale crustaceans have been reexamined<br />

recently by Briggs et al. (1994), and <strong>the</strong><br />

remarkable fossil arthropods from <strong>the</strong> Lower Cambrian<br />

Chengjiang fauna <strong>of</strong> southwest China have<br />

been summarized by Hou and Bergström (1991,<br />

1997). Included in <strong>the</strong> Chengjiang fauna are no unequivocal<br />

crustaceans (Waptia being <strong>the</strong> only remote<br />

possibility), but several fossils seem to have a<br />

bearing on our understanding <strong>of</strong> crustacean evolution.<br />

O<strong>the</strong>r recent studies <strong>of</strong> Chinese fossil crustaceans<br />

have included papers on conchostracans (e.g.,<br />

Shen, 1984, 1990; Zhang et al., 1990; see also Orr<br />

and Briggs, 1999, for Carboniferous conchostracans<br />

from Ireland), and Lower Cambrian crustaceans<br />

are known from o<strong>the</strong>r sites around <strong>the</strong> world<br />

as well (e.g., see Butterfield, 1994). Studies <strong>of</strong> bradoriid<br />

and phosphatocopid arthropods (once<br />

thought to be ostracodes) (see Siveter and Williams,<br />

1997) have even shed light on our understanding<br />

<strong>of</strong> <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> crustacean circulatory system<br />

(Vannier et al., 1997). The phosphatocopids<br />

are now thought to be close to <strong>the</strong> ‘‘stem-line’’ crustaceans<br />

(and possibly <strong>the</strong> sister taxon to <strong>Crustacea</strong>;<br />

see Walossek, 1999) ra<strong>the</strong>r than relatives <strong>of</strong> any <strong>of</strong><br />

<strong>the</strong> crown-group crustaceans such as ostracodes or<br />

maxillopods, which had been suggested previously<br />

(e.g., see reviews by Walossek and Müller, 1992,<br />

1998). At least two major groups, and possibly<br />

many more unknown to us, remain enigmatic as to<br />

whe<strong>the</strong>r <strong>the</strong>y belong in <strong>the</strong> <strong>Crustacea</strong> or not: Thylacocephala<br />

(see Pinna et al., 1982, 1985; Secretan,<br />

1985 [as Conchyliocarida]; Rolfe, 1985, 1992;<br />

Schram et al., 1999) and Cycloidea (see Schram et<br />

al., 1997; Schram and H<strong>of</strong>, 1998), although cycloids<br />

were probably allied to <strong>the</strong> maxillopodans<br />

(Schram et al., 1997). Schram and H<strong>of</strong> presented,<br />

as part <strong>of</strong> <strong>the</strong> Fourth International <strong>Crustacea</strong>n Congress<br />

(ICC-4) in Amsterdam, evidence that <strong>the</strong> Thylacocephala<br />

are indeed crustaceans; <strong>the</strong>y fur<strong>the</strong>r<br />

postulate <strong>the</strong> inclusion <strong>of</strong> <strong>the</strong> Thylacocephala in <strong>the</strong><br />

Thecostraca on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> presence <strong>of</strong> lattice<br />

organs. Their paper, entitled ‘‘At last: <strong>the</strong> Thylacocephala<br />

are <strong>Crustacea</strong>,’’ was a late addition and<br />

<strong>the</strong>refore is not included among <strong>the</strong> published abstracts<br />

<strong>of</strong> <strong>the</strong> ICC-4 Congress, but since <strong>the</strong>n, <strong>the</strong><br />

information has been submitted (Lange et al., in<br />

press). However, Schram et al. (1999) are more<br />

cautious and stopped short <strong>of</strong> declaring that thylacocephalans<br />

were crustaceans. The Permian ‘‘pygocephalomorph’’<br />

crustaceans and <strong>the</strong>ir relationship<br />

to extant mysidaceans was examined recently<br />

by Taylor et al. (1998). A thorough review <strong>of</strong> most<br />

<strong>of</strong> <strong>the</strong> above contributions is presented by Schram<br />

and H<strong>of</strong> (1998). Many o<strong>the</strong>r papers on crustacean<br />

fossils continue to add to our knowledge <strong>of</strong> <strong>the</strong> history<br />

<strong>of</strong> <strong>the</strong> group (e.g., Brandt et al., 1999, on <strong>the</strong><br />

Late Jurassic origin <strong>of</strong> sphaeromatoid isopods).<br />

In light <strong>of</strong> <strong>the</strong>se remarkable finds, it is understandable<br />

that a number <strong>of</strong> colleagues have suggested,<br />

some ra<strong>the</strong>r strongly, that we incorporate<br />

fossil taxa into <strong>the</strong> current classification. We have<br />

opted not to do so, primarily because we are less<br />

familiar with <strong>the</strong> fossil crustacean literature (and<br />

with workers in that field) than we are with <strong>the</strong><br />

literature on extant groups. Thus, <strong>the</strong> opportunities<br />

for us to inadvertently perpetuate or create errors<br />

would have been much greater had we attempted<br />

this task. Also, if <strong>the</strong> currently proposed classification<br />

proves to have merit, it should not be difficult<br />

for more paleontologically inclined carcinologists<br />

to, at some point, add <strong>the</strong>se fossil taxa to <strong>the</strong> existing<br />

framework. We hope that <strong>the</strong> classification is<br />

<strong>of</strong> some use to paleontologists and that, at some<br />

point, we can incorporate fossil taxa into this<br />

scheme. Relatively recent lists <strong>of</strong> crustacean fossil<br />

taxa can be found in Whatley et al. (1993, ostracodes)<br />

and Briggs et al. (1993, all o<strong>the</strong>r crustacean<br />

groups) (both in M. J. Benton, editor, The Fossil<br />

Record 2, Chapman and Hall, 1993). However,<br />

since our knowledge (and time) is limited, we have<br />

decided to include only extant taxa for now.<br />

A NOTE ON THE APPENDICES<br />

APPENDIX I. COMMENTS AND OPINIONS<br />

After receiving and considering <strong>the</strong> input from various<br />

workers around <strong>the</strong> world, we <strong>the</strong>n asked <strong>the</strong><br />

10 � Contributions in Science, Number 39 General Introduction


same persons to comment on <strong>the</strong> resulting product.<br />

We did this for two reasons. First, many <strong>of</strong> <strong>the</strong> suggestions<br />

we received were not incorporated, and we<br />

wanted collaborators to have <strong>the</strong> opportunity to<br />

express <strong>the</strong>ir disagreement. Reasons for not incorporating<br />

a particular suggestion were many and<br />

ranged from simple disagreement on our part to<br />

conflicting suggestions or corrections from noted<br />

experts. Second, we wanted students <strong>of</strong> carcinology<br />

to know where <strong>the</strong> major areas <strong>of</strong> disagreement lie<br />

in our understanding <strong>of</strong> crustacean phylogeny and<br />

classification. By pointing out areas where o<strong>the</strong>r experts<br />

in <strong>the</strong> field disagree with <strong>the</strong> current classification,<br />

we hoped to avoid <strong>the</strong> impression that <strong>the</strong><br />

classification is accepted or agreed upon by some<br />

consensus <strong>of</strong> crustacean taxonomists.<br />

APPENDIX II: LIST OF CONTRIBUTORS<br />

The list <strong>of</strong> persons to whom we sent ei<strong>the</strong>r first,<br />

second, or third drafts <strong>of</strong> <strong>the</strong> classification is given<br />

in Appendix II. Some <strong>of</strong> those listed responded to<br />

only one <strong>of</strong> our mailings; some responded to all<br />

mailings; some workers did not respond at all. No<br />

person on <strong>the</strong> list should be assumed to be in agreement<br />

with <strong>the</strong> classification as a whole. Despite<br />

<strong>the</strong>se caveats, we felt that we should list all <strong>of</strong> <strong>the</strong><br />

workers we attempted to contact to let readers<br />

know <strong>the</strong> potential pool <strong>of</strong> expertise from which<br />

we solicited input.<br />

Because <strong>of</strong> <strong>the</strong> tremendous interest in <strong>the</strong> <strong>Crustacea</strong><br />

worldwide, <strong>the</strong> number <strong>of</strong> qualified workers<br />

is much greater than this list indicates. Our decision<br />

on whose input to solicit was more or less arbitrary,<br />

based on our own knowledge <strong>of</strong> workers in <strong>the</strong><br />

field and on suggestions received as a result <strong>of</strong> <strong>the</strong><br />

first and second mailings. We apologize in advance<br />

if, by omitting someone from one or more mailings,<br />

we have inadvertently slighted anyone; such was<br />

not our intent.<br />

APPENDIX III: OTHER CRUSTACEAN<br />

RESOURCES<br />

Finally, a list <strong>of</strong> o<strong>the</strong>r crustacean resources is provided<br />

to give <strong>the</strong> student <strong>of</strong> <strong>Crustacea</strong> an introduction<br />

to <strong>the</strong> large and ever growing number <strong>of</strong> crustacean<br />

resources. The list includes crustacean-specific<br />

journals, newsletters <strong>of</strong> special interest groups<br />

(e.g., Zoea, Ecdysiast, Monoculus, <strong>An</strong>ostracan<br />

News, and Cumacean Newsletter), and URLs <strong>of</strong><br />

helpful crustacean-related sites on <strong>the</strong> World Wide<br />

Web.<br />

Contributions in Science, Number 39 General Introduction � 11


SUBPHYLUM CRUSTACEA<br />

Many <strong>of</strong> <strong>the</strong> questions considered most pressing today<br />

have been asked for well over 100 years: Are<br />

crustaceans a monophyletic group? How many major<br />

clades, or classes, are <strong>the</strong>re? Which is <strong>the</strong> most<br />

primitive class? What are <strong>the</strong> relationships among<br />

<strong>the</strong> classes? We cannot attempt to answer all <strong>of</strong><br />

<strong>the</strong>se questions here, but below we <strong>of</strong>fer a brief explanation<br />

<strong>of</strong> how and why we arrived at <strong>the</strong> current<br />

classification. In most cases, we provide some additional<br />

information under <strong>the</strong> heading for each <strong>of</strong><br />

<strong>the</strong> various taxa (each <strong>of</strong> which is treated later). For<br />

more in-depth discussions <strong>of</strong> <strong>the</strong> complex history<br />

<strong>of</strong> attempts to classify <strong>the</strong> <strong>Crustacea</strong>, we refer <strong>the</strong><br />

reader to <strong>the</strong> following publications: Moore and<br />

McCormick (1969), Schram (1986), Spears and<br />

Abele (1997), Schram and H<strong>of</strong> (1998), and especially<br />

Monod and Forest (1996).<br />

Are <strong>Crustacea</strong>ns a Monophyletic Group?<br />

The question <strong>of</strong> crustacean monophyly, <strong>the</strong> place <strong>of</strong><br />

<strong>the</strong> <strong>Crustacea</strong> within <strong>the</strong> Arthropoda, <strong>the</strong> question<br />

<strong>of</strong> arthropod monophyly, and <strong>the</strong> relationships<br />

among <strong>the</strong> many arthropod and crustacean groups<br />

have been reviewed by several recent workers (see<br />

especially Boore et al., 1995; Friedrich and Tautz,<br />

1995; Telford and Thomas, 1995; Raff et al., 1994;<br />

Fortey et al., 1997; Regier and Shultz, 1997,<br />

1998b; Wheeler, 1998; Shultz and Regier, 2000;<br />

Edgecomb et al., 2000). Broader questions concerning<br />

whe<strong>the</strong>r crustaceans and o<strong>the</strong>r arthropods belong<br />

in a phylum or larger clade called <strong>the</strong> Ecdysozoa<br />

(see Garey et al., 1996; Aguinaldo et al.,<br />

1997) are reviewed by Schmidt-Rhaesa et al. (1998)<br />

and Garey (2000). We have not attempted to address<br />

ei<strong>the</strong>r <strong>of</strong> <strong>the</strong>se issues (that is, <strong>the</strong> relationship<br />

<strong>of</strong> crustaceans to o<strong>the</strong>r arthropods or <strong>the</strong> relationships<br />

within <strong>the</strong> Ecdysozoa) and instead refer <strong>the</strong><br />

reader to <strong>the</strong> following publications and <strong>the</strong> papers<br />

cited <strong>the</strong>rein. Wheeler et al. (1993) presented a<br />

combined analysis <strong>of</strong> morphological and molecular<br />

data that strongly supported arthropod monophyly,<br />

and this view was streng<strong>the</strong>ned by Wheeler (1998).<br />

Lake (1990) suggested arthropod paraphyly, while<br />

Fryer (1997) presents several arguments in favor <strong>of</strong><br />

arthropod polyphyly. Strausfeld (1998) depicts insects<br />

and crustaceans (both <strong>of</strong> which he feels may<br />

be paraphyletic) as sister groups on <strong>the</strong> basis <strong>of</strong><br />

neuroanatomical data. Preliminary work on <strong>the</strong><br />

neurogenesis <strong>of</strong> compound eyes supports common<br />

ancestry for crustaceans and insects as well (e.g.,<br />

see Harzsch and Walossek, 2001, and references<br />

cited <strong>the</strong>rein). Friedrich and Tautz (1995) support<br />

both arthropod monophyly and a crustacean–insect<br />

sister group arrangement with DNA sequence data,<br />

as do Boore et al. (1995, 1998), using mitochondrial<br />

gene rearrangement data, and Wilson et al.<br />

(2000), comparing <strong>the</strong> complete mitochondrial ge-<br />

RATIONALE<br />

nome <strong>of</strong> a malacostracan with that <strong>of</strong> Drosophila.<br />

Regier and Schultz (1997, 1998a, b) also questioned<br />

crustacean monophyly (<strong>the</strong>ir 1997 title suggests<br />

crustacean polyphyly) based on EF-1� and<br />

RNA polymerase II (Pol II); however, <strong>the</strong>ir results<br />

were somewhat ambiguous, as <strong>the</strong>re were no<br />

strongly supported nodes, and support for a basal<br />

Malacostraca was not high (J. Regier, pers. comm.).<br />

Regier and Shultz also suggested (1997, 1998b), as<br />

had o<strong>the</strong>r workers, that branchiopod crustaceans<br />

may be more closely related to o<strong>the</strong>r arthropod<br />

groups (hexapods and myriapods) than <strong>the</strong>y are to<br />

malacostracan crustaceans, although this too did<br />

not have strong node support (what was strongly<br />

supported was that branchiopods, and indeed all <strong>of</strong><br />

our six classes <strong>of</strong> crustaceans, grouped with hexapods<br />

to <strong>the</strong> exclusion <strong>of</strong> myriapods, arguing against<br />

<strong>the</strong> concept <strong>of</strong> <strong>the</strong> ‘‘Atelocerata’’ (hexapods � myriapods);<br />

see also Popadić et al., 1996, and Shultz<br />

and Regier, 2000). <strong>An</strong>o<strong>the</strong>r way <strong>of</strong> stating this is<br />

that, if crustaceans are not monophyletic, <strong>the</strong>n <strong>the</strong><br />

group that breaks <strong>the</strong>m up is <strong>the</strong> Hexapoda and<br />

not myriapods or chelicerates or groups outside Arthropoda.<br />

The emerging field <strong>of</strong> developmental biology<br />

(see references cited in <strong>the</strong> earlier section on<br />

developmental genetics and crustacean classification)<br />

also provides evidence that crustaceans and<br />

insects are closely linked. Brusca (2000) nicely summarizes<br />

<strong>the</strong> history <strong>of</strong> <strong>the</strong> controversy and <strong>the</strong> disparate<br />

data sets. Two recent volumes address <strong>the</strong>se<br />

questions by way <strong>of</strong> collections <strong>of</strong> edited papers:<br />

Fortey and Thomas (1997, Arthropod Relationships,<br />

Chapman and Hall) and Edgecombe (1998,<br />

Arthropod Fossils and Phylogeny, Columbia University<br />

Press).<br />

In <strong>the</strong> introduction to <strong>the</strong> latter volume, Edgecombe<br />

notes that ‘‘<strong>the</strong> monophyly <strong>of</strong> <strong>Crustacea</strong> is<br />

endorsed in every chapter that investigates <strong>the</strong> issue’’<br />

(see also Edgecomb et al., 2000). Yet <strong>the</strong>re<br />

remains some doubt. We have found it advantageous,<br />

at least for <strong>the</strong> project at hand, to treat <strong>the</strong><br />

group as monophyletic. We also note that <strong>the</strong>re is<br />

an abundance <strong>of</strong> fossil, morphological, and molecular<br />

data that support this view. The ‘‘crown-’’ vs.<br />

‘‘stem-group’’ approach as detailed by Walossek<br />

and Müller (1990, 1998) is worth noting in this<br />

regard; those authors consider <strong>the</strong> <strong>Crustacea</strong> monophyletic<br />

and give several morphological characters<br />

that uniquely define <strong>the</strong> group, while at <strong>the</strong> same<br />

time <strong>the</strong>y present interesting information on ‘‘stemline<br />

crustaceans,’’ crustacean-like arthropods that<br />

are not members <strong>of</strong> <strong>the</strong> crown group (<strong>the</strong>ir ‘‘Eucrustacea’’)<br />

but that share at least some features<br />

with true crustaceans. O<strong>the</strong>r workers have argued,<br />

some with more data than o<strong>the</strong>rs, that <strong>the</strong> <strong>Crustacea</strong><br />

is paraphyletic (e.g., Moura and Christ<strong>of</strong>fersen,<br />

1996; García-Machado et al., 1999; Wilson et al.,<br />

2000) or polyphyletic (e.g., Aver<strong>of</strong> and Akam,<br />

1995a, b) or that <strong>the</strong> question is, at best, unre-<br />

12 � Contributions in Science, Number 39 Rationale


solved (e.g., Regier and Schultz, 1997, 1998a, b;<br />

Shultz and Regier, 2000), and we would be remiss<br />

not to mention <strong>the</strong>se dissenting opinions. Fur<strong>the</strong>r<br />

arguments for or against <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong><br />

<strong>Crustacea</strong> (and also Arthropoda) can be found in<br />

<strong>the</strong> reviews by Brusca (2000) and Giribet and Ribera<br />

(2000).<br />

Our treatment <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> as a subphylum<br />

(<strong>of</strong> <strong>the</strong> Arthropoda) is <strong>the</strong>refore somewhat arbitrary.<br />

Arguments could be (and have been) made<br />

for recognizing <strong>the</strong> group as a distinct phylum, and<br />

some workers refer to <strong>the</strong> <strong>Crustacea</strong> as a superclass<br />

or class. Our choice <strong>of</strong> subphylum allowed us to<br />

use classes within <strong>the</strong> group, which to us was more<br />

manageable. Treating <strong>the</strong> <strong>Crustacea</strong> as a subphylum<br />

implies monophyly <strong>of</strong> <strong>the</strong> Arthropoda. Although<br />

this issue is not completely settled (see<br />

above references and especially Fryer, 1997, in Fortey<br />

and Thomas, 1997), most bodies <strong>of</strong> evidence <strong>of</strong><br />

which we are aware seem to indicate that <strong>the</strong> arthropods<br />

are indeed a phylum (see summaries in<br />

Raff et al., 1994; Telford and Thomas, 1995; and<br />

Brusca, 2000) that includes <strong>the</strong> <strong>Crustacea</strong>.<br />

How Many Classes Are There?<br />

The history <strong>of</strong> higher level classification <strong>of</strong> <strong>the</strong><br />

<strong>Crustacea</strong> is briefly discussed in Holthuis (1993a),<br />

Spears and Abele (1997), Schram (1986), Schram<br />

and H<strong>of</strong> (1998), and especially Monod and Forest<br />

(1996). Some <strong>of</strong> <strong>the</strong> more notable schemes for crustacean<br />

classification that have appeared subsequent<br />

to <strong>the</strong> Bowman and Abele (1982) classification are<br />

those <strong>of</strong> Schram (1986), Starobogatov (1986, with<br />

English translation by Grygier in 1988), and Brusca<br />

and Brusca (1990). O<strong>the</strong>r workers have presented<br />

phylogenies from which <strong>the</strong> reader can deduce alternative<br />

classifications, even if no specific classification<br />

is presented in <strong>the</strong> paper (e.g., Wilson,<br />

1992).<br />

Schram (1986) departed from Bowman and<br />

Abele’s use <strong>of</strong> six classes by recognizing four<br />

groups: Remipedia, Phyllopoda (which included <strong>the</strong><br />

branchiopods, cephalocarids [as Brachypoda], and<br />

leptostracans), Maxillopoda (including tantulocarids,<br />

branchiurans, mystacocaridans, ostracodes, copepods,<br />

facetotectans, rhizocephalans, ascothoracidans,<br />

acrothoracicans, and thoracicans), and Malacostraca<br />

(containing both <strong>the</strong> hoplocarids and <strong>the</strong><br />

eumalacostracans). Schram’s (1986:542–544) classification<br />

extends to <strong>the</strong> level <strong>of</strong> suborder and occasionally<br />

infraorder. It is noteworthy not only for<br />

attempting to derive a classification from his cladistic<br />

analyses but also because <strong>of</strong> his inclusion <strong>of</strong><br />

a large number <strong>of</strong> fossil taxa. Unfortunately,<br />

Schram (1986) also introduced, or employed, some<br />

taxonomic names that have not been well accepted<br />

(e.g., ‘‘Euzygida’’ for <strong>the</strong> stenopodidean shrimps;<br />

‘‘Eukyphida’’ for <strong>the</strong> carideans; ‘‘Edriophthalma’’ to<br />

contain <strong>the</strong> isopods and amphipods as distinct from<br />

all o<strong>the</strong>r peracarids, etc.). Starobogatov (1986,<br />

1988) recognized four groups as well, but <strong>the</strong> com-<br />

position <strong>of</strong> his four groups differs appreciably from<br />

those <strong>of</strong> Schram and from those <strong>of</strong> all o<strong>the</strong>r previous<br />

workers. Additionally, Starobogatov employed<br />

some unusual names for his groupings (such<br />

as Carcinioides for <strong>the</strong> malacostracans and Halicynioides<br />

to accommodate some <strong>of</strong> <strong>the</strong> maxillopodan<br />

groups) that are unlikely to receive wide recognition,<br />

and his classification appears to be at<br />

odds with most <strong>of</strong> <strong>the</strong> morphological and fossil<br />

data (e.g., see Schram and H<strong>of</strong>, 1998) as well as<br />

with <strong>the</strong> molecular data (e.g., Spears and Abele,<br />

1997). Brusca and Brusca (1990) recognized five<br />

classes (Remipedia, Branchiopoda, Cephalocarida,<br />

Maxillopoda, and Malacostraca), and in part because<br />

this usage is in a major textbook, it has received<br />

wide acceptance. Bousfield and Conlan<br />

(1990, Encyclopaedia Britannica), whose classification<br />

extends only to <strong>the</strong> ordinal level, followed<br />

Schram’s lead for some groups <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> and<br />

Bowman and Abele (1982) for o<strong>the</strong>rs. Their classification<br />

is noteworthy because <strong>of</strong> <strong>the</strong>ir attempt to<br />

include fossil taxa as well and because <strong>of</strong> <strong>the</strong>ir laudable<br />

attempt to estimate <strong>the</strong> number <strong>of</strong> families in<br />

each order. Gruner (1993) treats <strong>the</strong> <strong>Crustacea</strong> as<br />

a class, does not recognize <strong>the</strong> Branchiopoda or<br />

Maxillopoda, and as a result includes 13 separate<br />

subclasses. Apart from <strong>the</strong> somewhat unusual treatment<br />

by Starobogatov, <strong>the</strong> number <strong>of</strong> proposed or<br />

recognized classes seems to have depended mostly<br />

upon whe<strong>the</strong>r <strong>the</strong> maxillopods are seen as a natural<br />

assemblage and, if <strong>the</strong>y are, whe<strong>the</strong>r <strong>the</strong> ostracodes<br />

are within or outside <strong>of</strong> <strong>the</strong> Maxillopoda, and on<br />

whe<strong>the</strong>r and how <strong>the</strong> Malacostraca should be divided.<br />

In our classification, <strong>the</strong> subphylum <strong>Crustacea</strong><br />

includes six major groups, which we are treating as<br />

classes: Branchiopoda, Remipedia, Cephalocarida,<br />

Maxillopoda, Ostracoda, and Malacostraca. However,<br />

this is somewhat misleading in that we are<br />

also positing <strong>the</strong> Branchiopoda as <strong>the</strong> sister taxon<br />

to all o<strong>the</strong>r crustacean groups. Thus, <strong>the</strong> ‘‘class’’<br />

Branchiopoda should be accorded more weight<br />

than <strong>the</strong> remaining classes, which toge<strong>the</strong>r constitute<br />

<strong>the</strong> sister group to <strong>the</strong> branchiopods in our<br />

arrangement. Our treatment <strong>of</strong> crustaceans as being<br />

comprised <strong>of</strong> six classes is quite conservative and<br />

follows essentially <strong>the</strong> Bowman and Abele (1982)<br />

classification. Perhaps <strong>the</strong> most salient problem is<br />

our continued recognition <strong>of</strong> <strong>the</strong> Maxillopoda as a<br />

valid class, when virtually all lines <strong>of</strong> evidence point<br />

to its being an artificial assemblage (see discussion<br />

under Maxillopoda). Thus, Wilson (1992) observed<br />

that ‘‘<strong>the</strong> concept <strong>of</strong> <strong>the</strong> Maxillopoda is not supported<br />

in any <strong>of</strong> <strong>the</strong> trees’’ and Spears and Abele’s<br />

(1997) molecular analysis ‘‘fails to provide strong<br />

support for a monophyletic Maxillopoda.’’ If we<br />

eliminated <strong>the</strong> Maxillopoda as a class, as has Gruner<br />

(1993) (and <strong>the</strong>re are many lines <strong>of</strong> evidence<br />

that suggest that this is <strong>the</strong> correct course), <strong>the</strong>n we<br />

would treat as distinct classes each <strong>of</strong> <strong>the</strong> currently<br />

recognized ‘‘maxillopodan’’ subclasses (<strong>the</strong> Thecostraca,<br />

Tantulocarida, Mystacocarida, and Copepo-<br />

Contributions in Science, Number 39 Rationale � 13


da). This would have <strong>the</strong> advantage <strong>of</strong> fur<strong>the</strong>r increasing<br />

our perception <strong>of</strong> crustacean diversity<br />

(only because nine classes sounds more diverse than<br />

six). The number <strong>of</strong> crustacean classes that should<br />

be recognized is a very controversial topic, and<br />

opinion is sharply divided. As Spears and Abele<br />

(1997) noted, ‘‘surprisingly, <strong>the</strong>re is as yet no consensus<br />

regarding even <strong>the</strong> number <strong>of</strong> constituent<br />

crustacean classes.’’<br />

We do not recognize <strong>the</strong> taxon ‘‘Entomostraca,’’<br />

which has been used historically by several workers<br />

in slightly different contexts (e.g., McKenzie et al.,<br />

1983; Walossek and Müller, 1998). Walossek and<br />

Müller (1998:210) and Walossek (1999) recognize<br />

this group as one <strong>of</strong> <strong>the</strong> ‘‘two major lineages’’ <strong>of</strong><br />

<strong>Crustacea</strong> (<strong>the</strong> o<strong>the</strong>r being <strong>the</strong> Malacostraca). Contained<br />

in <strong>the</strong>ir Entomostraca are <strong>the</strong> cephalocarids<br />

(depicted as <strong>the</strong> sister taxon to <strong>the</strong> Maxillopoda<br />

and Branchiopoda) and two extinct groups (Orstenocarida<br />

and Skaracarida).<br />

Which Is <strong>the</strong> Most Primitive Class?<br />

We are treating <strong>the</strong> class Branchiopoda as <strong>the</strong> most<br />

primitive <strong>of</strong> <strong>the</strong> extant groups <strong>of</strong> <strong>Crustacea</strong>. We arrived<br />

at this decision mostly because <strong>of</strong> <strong>the</strong> following<br />

three lines <strong>of</strong> evidence. First, <strong>the</strong> group as a<br />

whole is ancient and extends back into <strong>the</strong> Upper<br />

Cambrian and probably fur<strong>the</strong>r (see Fryer, 1999,<br />

and especially Walossek, 1993). A beautifully preserved<br />

fossil from <strong>the</strong> Upper Cambrian <strong>of</strong> Sweden<br />

(Rehbachiella) appears to be a branchiopod and is<br />

similar in many ways to living anostracans (Walossek,<br />

1993; although note that Olesen (1999a)<br />

questions <strong>the</strong> anostracan affinities <strong>of</strong> Rehbachiella,<br />

while both Wills (1997) and Schram and H<strong>of</strong><br />

(1998) obtained nonbranchiopod positions for<br />

Rehbachiella on <strong>the</strong>ir cladograms). There are no<br />

known fossils <strong>of</strong> any cephalocarids, and <strong>the</strong> only<br />

fossils thought to be remipedian are from <strong>the</strong> Carboniferous<br />

(Mississippian and Pennsylvanian) Period<br />

(Schram and H<strong>of</strong>, 1998). In fairness, we<br />

should state also that (1) cephalocarids, because <strong>of</strong><br />

<strong>the</strong>ir habitat, size, and fragility, would seem unlikely<br />

candidates for fossilization (and yet, such could<br />

also be said about <strong>the</strong> minute animals in <strong>the</strong> Orsten<br />

fauna) and (2) <strong>the</strong>re are o<strong>the</strong>r crustacean groups<br />

known from <strong>the</strong> Upper Cambrian, such that appearance<br />

<strong>of</strong> branchiopods in <strong>the</strong> Upper Cambrian<br />

is not in itself sufficient to argue for <strong>the</strong>ir being <strong>the</strong><br />

most primitive <strong>of</strong> <strong>the</strong> extant classes. Second, <strong>the</strong>re<br />

are developmental studies that show clear and unambiguous<br />

anamorphic development in at least<br />

some branchiopods, which is exhibited by no o<strong>the</strong>r<br />

living crustacean group (e.g., see Fryer, 1983). On<br />

<strong>the</strong> o<strong>the</strong>r hand, cephalocarids exhibit only slightly<br />

metamorphic development, and as <strong>of</strong> this writing,<br />

we still know nothing about remipede development.<br />

Third, some studies based on molecular sequence<br />

data seem to indicate that branchiopods are<br />

not only monophyletic but are also distinct from all<br />

o<strong>the</strong>r crustacean assemblages (e.g., Spears and<br />

Abele, 1997, 2000; Regier and Schultz, 1997,<br />

1998a, b; Shultz and Regier, 2000). As noted earlier,<br />

Regier and Schultz (1997) suggested that branchiopods<br />

may be closer to o<strong>the</strong>r groups <strong>of</strong> arthropods<br />

than to malacostracan crustaceans, although<br />

<strong>the</strong>re was no strong support for this arrangement<br />

and <strong>the</strong>y concluded that <strong>the</strong> EF-1� data are ambiguous<br />

on this question. These authors later (1998b)<br />

depict remipedes closer to <strong>the</strong> crustacean stem, but<br />

again in this analysis, node support was not strong,<br />

and thus <strong>the</strong> authors remain suitably cautious as to<br />

interpretation <strong>of</strong> <strong>the</strong>se data (J. Regier, pers. comm.).<br />

Spears and Abele (1997) conclude that ‘‘we cannot<br />

identify which crustacean lineage is most basal;<br />

branchiopods, pentastomes, branchiurans, and ostracodes<br />

[but note <strong>the</strong> absence <strong>of</strong> remipedes or cephalocarids]<br />

all diverged from <strong>the</strong> main crustacean<br />

lineage in relatively rapid succession.’’ Although arguments<br />

on this point will surely continue for many<br />

years to come, we have elected to follow <strong>the</strong> 18S<br />

rDNA-based findings <strong>of</strong> Spears and Abele (1997),<br />

supported to some degree (in our estimation) by <strong>the</strong><br />

EF-1� findings <strong>of</strong> Regier and Schultz (1997, 1998b;<br />

see also Shultz and Regier, 2000). Thus, we treat<br />

branchiopods first in our classification, <strong>the</strong>reby implying<br />

that we are in agreement with branchiopods<br />

being <strong>the</strong> most basal <strong>of</strong> <strong>the</strong> extant crustacean<br />

groups. This treatment also receives some support<br />

from Itô’s (1989) suggestion <strong>of</strong> a remipede � cephalocarid<br />

� copepod clade, an arrangement that<br />

was also suggested by Spears and Abele (1997)<br />

based on 18S rDNA data (see especially <strong>the</strong>ir fig.<br />

14.7 and accompanying discussion). We have not,<br />

however, created <strong>the</strong> additional taxonomic categories<br />

that would be required to group branchiopods<br />

as <strong>the</strong> sister group to all o<strong>the</strong>r crustaceans. In o<strong>the</strong>r<br />

words, our classification is far from being a strictly<br />

cladistically based arrangement. Branchiopods are<br />

thus accorded class status, as are <strong>the</strong> o<strong>the</strong>r five major<br />

crustacean groupings, in this classification. Additionally,<br />

if we are positing <strong>the</strong> branchiopods as<br />

<strong>the</strong> sister group to <strong>the</strong> o<strong>the</strong>r crustaceans, <strong>the</strong>n we<br />

should list specific synapomorphies unique to <strong>the</strong><br />

clade. Most <strong>of</strong> <strong>the</strong> morphological characters seeming<br />

to cast branchiopods in a primitive light (e.g.,<br />

foliaceous limbs, anamorphic development) are indeed<br />

primitive features, but <strong>the</strong>y may have been retained<br />

in this group and lost or modified in o<strong>the</strong>rs.<br />

Noting simply that <strong>the</strong>ir morphology is ‘‘primitive’’<br />

sheds no real light on phylogeny, and o<strong>the</strong>r groups<br />

<strong>of</strong> crustaceans exhibit o<strong>the</strong>r ‘‘primitive’’ characters.<br />

Possible candidates for branchiopod synapomorphies<br />

might include <strong>the</strong> ‘‘specialization <strong>of</strong> postnaupliar<br />

feeding apparatus to true filter feeding’’ (from<br />

Walossek, 1993:71), aspects <strong>of</strong> sperm morphology<br />

(Wingstrand, 1978), and <strong>the</strong> 18S rDNA sequences,<br />

which Spears and Abele (2000) used to conclude<br />

that ‘‘(1) branchiopods are monophyletic; (2) <strong>the</strong>y<br />

are considerably divergent from o<strong>the</strong>r crustaceans<br />

(e.g., <strong>the</strong> Malacostraca), and (3) <strong>the</strong>y are divided<br />

into two main lineages’’ (<strong>An</strong>ostraca and all o<strong>the</strong>rs).<br />

The issue <strong>of</strong> which extant class is closest to <strong>the</strong><br />

14 � Contributions in Science, Number 39 Rationale


ancestral crustacean is <strong>of</strong> course not completely settled,<br />

and <strong>the</strong>re are published arguments for presenting<br />

ei<strong>the</strong>r <strong>the</strong> Cephalocarida or <strong>the</strong> Remipedia<br />

as <strong>the</strong> most primitive group <strong>of</strong> living crustaceans.<br />

There have also been, from time to time, hypo<strong>the</strong>ses<br />

presented where o<strong>the</strong>r groups <strong>of</strong> crustaceans<br />

have occupied a basal position (e.g., McKenzie,<br />

1991, postulated a bradoriid ostracode origin for<br />

all o<strong>the</strong>r crustaceans).<br />

In favor <strong>of</strong> depicting remipedes as <strong>the</strong> most primitive<br />

class are <strong>the</strong> works <strong>of</strong> Schram (1986), Brusca<br />

and Brusca (1990), Briggs et al. (1993a), Schram<br />

and H<strong>of</strong> (1998), Wills (1997), and Wills et al.<br />

(1998), all based on cladistic analyses <strong>of</strong> morphological<br />

characters from extant and extinct forms.<br />

Also supporting this view is <strong>the</strong> phylogeny presented<br />

by Jamieson (1991a) based on sperm ultrastructure,<br />

in which <strong>the</strong> Remipedia is <strong>the</strong> most basal <strong>of</strong><br />

<strong>the</strong> crustacean groups. (It should be noted, however,<br />

that Jamieson’s study is not purely independent<br />

<strong>of</strong> o<strong>the</strong>r phylogenies in that his figure is actually<br />

an overlay <strong>of</strong> <strong>the</strong> various sperm types on top<br />

<strong>of</strong> <strong>the</strong> classification <strong>of</strong>fered by Schram in 1986.)<br />

Thus, <strong>the</strong>re are workers at several independent laboratories<br />

whose studies have indicated that remipedes<br />

occupy <strong>the</strong> most basal position among <strong>the</strong><br />

crustaceans, and several textbooks have followed<br />

this arrangement as well (e.g., Hickman et al.,<br />

1996: 401, figs. 20–30; Brusca and Brusca, 1990).<br />

Molecular evidence concerning where remipedes<br />

belong has been maddeningly difficult to obtain.<br />

Regier and Schultz (1998b) could not say with certainty<br />

(using EF-1�), and Spears and Abele (1997)<br />

were equally unsure (using 18S rDNA). Emerson<br />

and Schram (1990, 1997) have also suggested that<br />

crustacean biramous limbs arose from fusion <strong>of</strong> adjacent<br />

uniramous limbs, and this has a bearing on<br />

<strong>the</strong> placement <strong>of</strong> remipedes relative to o<strong>the</strong>r crustacean<br />

groups as well (discussed fur<strong>the</strong>r in Schram<br />

and H<strong>of</strong>, 1998, but see Spears and Abele, 1997). It<br />

should also be pointed out that at least one publication<br />

(Moura and Christ<strong>of</strong>fersen, 1996) suggests<br />

that <strong>the</strong> Remipedia are a derived assemblage that<br />

may be <strong>the</strong> sister group to <strong>the</strong> Tracheata (terrestrial<br />

mandibulates).<br />

In support <strong>of</strong> cephalocarids occupying <strong>the</strong> most<br />

basal position among extant crustaceans are some<br />

surely primitive external morphological features.<br />

These features include <strong>the</strong> flattened and ‘‘Orstenlike’’<br />

limbs, <strong>the</strong> lack <strong>of</strong> differentiation <strong>of</strong> <strong>the</strong> second<br />

maxilla (also shared with some <strong>of</strong> <strong>the</strong> Orsten crustaceans),<br />

and relatively anamorphic development.<br />

Hessler (1992) reviewed early considerations <strong>of</strong> <strong>the</strong><br />

placement <strong>of</strong> <strong>the</strong> cephalocarids with respect to o<strong>the</strong>r<br />

crustaceans. He concluded, based on <strong>the</strong> morphology<br />

<strong>of</strong> some <strong>of</strong> <strong>the</strong> Upper Cambrian ‘‘Orsten’’<br />

fauna <strong>of</strong> Sweden and in comparison with remipedes<br />

and o<strong>the</strong>r crustaceans, that <strong>the</strong> argument for placing<br />

cephalocarids at <strong>the</strong> base <strong>of</strong> <strong>the</strong> crustacean lineage<br />

is still strong (see also Walossek, 1993; Moura<br />

and Christ<strong>of</strong>fersen, 1996). In Hessler’s words,<br />

‘‘among living crustaceans, cephalocarids still best<br />

personify what <strong>the</strong> ur-crustacean must have looked<br />

like.’’ Hessler (1992) also made <strong>the</strong> point, with<br />

which we agree, that remipedes are quite specialized,<br />

and he found it ‘‘impossible to accept <strong>the</strong><br />

claim that <strong>the</strong> Remipedia better approximates <strong>the</strong><br />

ur-crustacean.’’ However, cephalocarids face problems<br />

as primitive crustaceans as well. Schram and<br />

H<strong>of</strong> (1998) point out some cephalocarid features<br />

<strong>the</strong>y consider highly derived, and molecular studies<br />

(e.g., Spears and Abele, 1997; Regier and Schultz,<br />

1998b) and spermatological data (especially lack <strong>of</strong><br />

a flagellum; see Jamieson, 1991a) do not place cephalocarids<br />

basal to o<strong>the</strong>r crustacean taxa (although<br />

in fairness, <strong>the</strong> EF-1� data <strong>of</strong> Regier and<br />

Shultz do not decisively place cephalocarids elsewhere,<br />

ei<strong>the</strong>r). We have not followed <strong>the</strong> suggestion<br />

<strong>of</strong> Hessler (1992) to revive <strong>the</strong> taxon Thoracopoda<br />

to include <strong>the</strong> cephalocarids, branchiopods, and<br />

malacostracans (based on <strong>the</strong>ir shared possession <strong>of</strong><br />

an epipod on <strong>the</strong> trunk limbs).<br />

What Are <strong>the</strong> Relationships Among <strong>the</strong> Classes?<br />

This question is closely related to <strong>the</strong> issues raised<br />

above. In fact, most <strong>of</strong> <strong>the</strong> competing phylogenetic<br />

hypo<strong>the</strong>ses for class-level relationships have already<br />

been alluded to in earlier sections (e.g., in <strong>the</strong> sections<br />

‘‘Cladistics and <strong>Classification</strong> <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>’’<br />

and ‘‘Molecular Systematics and <strong>Classification</strong><br />

<strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>,’’ and under <strong>the</strong> above three questions<br />

on crustacean monophyly, number <strong>of</strong> classes,<br />

and most primitive class). Ra<strong>the</strong>r than attempt a<br />

discussion <strong>of</strong> <strong>the</strong> many competing hypo<strong>the</strong>ses for<br />

<strong>the</strong> relationships within and among <strong>the</strong> various<br />

classes, we have opted to treat each group individually<br />

below. We also refer <strong>the</strong> reader to <strong>the</strong> reviews<br />

by Wills et al. (1998) and Schram and H<strong>of</strong> (1998),<br />

both in Edgecombe (editor, 1998, Arthropod Fossils<br />

and Phylogeny), and to <strong>the</strong> review <strong>of</strong> 18S rDNA<br />

studies by Spears and Abele (1997).<br />

Concerning authorship <strong>of</strong> <strong>the</strong> name <strong>Crustacea</strong>,<br />

although most workers credit Pennant (1777), Lipke<br />

Holthuis, in a detailed and well-researched footnote<br />

to his FAO volume on marine lobsters (Holthuis,<br />

1991), noted that <strong>the</strong> first usage was actually<br />

that <strong>of</strong> Brünnich in 1772. We have followed Holthuis’<br />

(1991) suggestion and have credited Brünnich<br />

(1772) with authorship <strong>of</strong> this taxon.<br />

CLASS BRANCHIOPODA<br />

Virtually all evidence points to <strong>the</strong> fact that <strong>the</strong><br />

branchiopods are a strongly supported monophyletic<br />

group, despite <strong>the</strong> staggering diversity <strong>of</strong> extant<br />

forms (e.g., see Martin, 1992). Lines <strong>of</strong> evidence<br />

indicating branchiopod monophyly include<br />

sperm morphology (Wingstrand, 1978), larval<br />

characters (e.g., Sanders, 1963), feeding apparatus<br />

(Walossek, 1993), adult characters (e.g., Negrea et<br />

al., 1999), and 18S rDNA sequence data (Spears<br />

and Abele, 1997, 1998, 1999a, b, 2000). However,<br />

<strong>the</strong> group’s tremendous morphological diversity<br />

and age (see Fryer, 1987a–c, 1999; Martin, 1992;<br />

Contributions in Science, Number 39 Rationale � 15


Walossek, 1993; Negrea et al., 1999) makes it difficult<br />

to find characters shared by all extant members,<br />

and perhaps for this reason some analyses<br />

have hinted at para- or polyphyly (e.g., see Wilson,<br />

1992). Gruner (1993) does not recognize <strong>the</strong> Branchiopoda,<br />

instead treating <strong>the</strong> extinct Lipostraca<br />

and <strong>the</strong> extant <strong>An</strong>ostraca and Phyllopoda (Notostraca<br />

� Diplostraca) as separate subclasses within<br />

<strong>the</strong> class <strong>Crustacea</strong>. The fact that <strong>the</strong>re appears to<br />

be solid support from molecular data for branchiopod<br />

monophyly (e.g., Spears and Abele, 1997,<br />

1998, 1999b, 2000) is never<strong>the</strong>less reassuring.<br />

There is also a consensus that, within <strong>the</strong> Branchiopoda,<br />

<strong>the</strong> <strong>An</strong>ostraca diverged early, are very<br />

primitive (despite a large number <strong>of</strong> apomorphic<br />

features in <strong>the</strong> various families), and should be depicted<br />

as separate from <strong>the</strong> remaining branchiopod<br />

groups. Beyond that, however, <strong>the</strong>re is little agreement<br />

concerning <strong>the</strong> relationships among <strong>the</strong> constituent<br />

branchiopod taxa.<br />

Because <strong>the</strong> <strong>An</strong>ostraca are clearly a separate lineage<br />

from <strong>the</strong> remaining branchiopods and are an<br />

ancient and slowly evolving group (e.g., see Fryer,<br />

1992, 1999), we have elevated <strong>the</strong> group to <strong>the</strong> level<br />

<strong>of</strong> subclass, to be treated as <strong>the</strong> sister group <strong>of</strong><br />

<strong>the</strong> o<strong>the</strong>r branchiopods (as was advocated also by<br />

Walossek, 1993, and Negrea et al., 1999). However,<br />

this move necessitates creating a name for <strong>the</strong><br />

subclass or choosing an available name from <strong>the</strong><br />

literature to contain <strong>the</strong> <strong>An</strong>ostraca (and which<br />

would eventually, we assume, contain also <strong>the</strong> fossil<br />

branchiopod order Lipostraca and possibly also <strong>the</strong><br />

Cambrian Rehbachiella; see Walossek, 1993; Walossek<br />

and Müller, 1998). Tasch’s (1969) proposal<br />

to use <strong>the</strong> name Sarsostraca (to contain anostracans<br />

and lipostracans) is not very appealing, in part because<br />

Tasch originally included in his Sarsostraca a<br />

noncrustacean (obviously also a nonbranchiopod),<br />

and one <strong>of</strong> his anostracans was in fact an insect<br />

larva (G. Fryer, pers. comm.). Never<strong>the</strong>less, <strong>the</strong><br />

name Sarsostraca appears to be a valid preexisting<br />

name by ICZN standards and would have seniority<br />

over any newly proposed name here, so reluctantly<br />

we accommodate <strong>the</strong> order <strong>An</strong>ostraca within <strong>the</strong><br />

subclass Sarsostraca, as did Bowman and Abele<br />

(1982) and, more recently, Negrea et al. (1999).<br />

Finding a name suitable to contain <strong>the</strong> o<strong>the</strong>r<br />

(non-<strong>An</strong>ostraca) groups was more difficult. First <strong>of</strong><br />

all, <strong>the</strong> tremendous morphological differences<br />

among <strong>the</strong> groups traditionally thought <strong>of</strong> as cladocerans,<br />

conchostracans, and notostracans has led<br />

several workers, most notable among <strong>the</strong>m Ge<strong>of</strong>frey<br />

Fryer (e.g., see Fryer, 1987a, c, 1995, 1999a,<br />

b), to suggest that <strong>the</strong>re is no reason to try to force<br />

such disparate groups into artificial groupings as<br />

‘‘cladocerans’’ and ‘‘conchostracans.’’ Fryer’s wellwritten<br />

articles argue convincingly for <strong>the</strong> separation<br />

<strong>of</strong> <strong>the</strong>se ancient and diverse taxa (most <strong>of</strong><br />

which he would elevate to ordinal level), and indeed<br />

his suggested classification (Fryer, 1987a, c)<br />

has been followed by several workers, such as Martin<br />

(1992), Alonso (1996), Amoros (1996), Frey<br />

(1995), Brtek and Thiéry (1995), Thiéry (1996),<br />

Brtek (1997), and o<strong>the</strong>rs. However, simply recognizing<br />

how different <strong>the</strong>se groups are from one ano<strong>the</strong>r<br />

and elevating <strong>the</strong> former conchostracan or<br />

cladoceran taxa to higher taxonomic categories<br />

while doing away with <strong>the</strong> categories that once included<br />

<strong>the</strong>m does not, in our opinion, shed light on<br />

<strong>the</strong>ir relationships. The question still remains as to<br />

whe<strong>the</strong>r <strong>the</strong>se orders are more closely related to one<br />

ano<strong>the</strong>r than any is to some o<strong>the</strong>r crustacean assemblage.<br />

The morphological and molecular evidence<br />

seems to indicate (1) that branchiopods are<br />

monophyletic and (2) that some <strong>of</strong> <strong>the</strong>se taxa (not<br />

all are well represented by molecular or even morphological<br />

data) are indeed related more closely to<br />

one ano<strong>the</strong>r than to any o<strong>the</strong>r crustacean group.<br />

The alternative is to suggest that, for example, <strong>the</strong><br />

<strong>An</strong>omopoda are more closely related to anostracans<br />

or to some nonbranchiopod crustacean. We<br />

think this is very unlikely. Thus, <strong>the</strong> value <strong>of</strong> Fryer’s<br />

arguments is in <strong>the</strong> recognition <strong>of</strong> <strong>the</strong> tremendous<br />

age and morphological differences that exist (and<br />

have existed for a long time) among <strong>the</strong>se disparate<br />

taxa, a point that is well taken. Despite <strong>the</strong>se arguments,<br />

and because we still must postulate relationships,<br />

we are forced to group <strong>the</strong>se taxa toge<strong>the</strong>r.<br />

Toward this end, several workers have suggested<br />

that we use <strong>the</strong> name Phyllopoda for <strong>the</strong> taxon encompassing<br />

<strong>the</strong> Notostraca and <strong>the</strong> bivalved branchiopods<br />

(see comments below about <strong>the</strong> nonmonophyly<br />

<strong>of</strong> <strong>the</strong> ‘‘diplostracans’’), and indeed <strong>the</strong><br />

name Phyllopoda has been used <strong>of</strong>ten for that assemblage<br />

(e.g., Walossek, 1993, and later). Unfortunately,<br />

<strong>the</strong> name Phyllopoda has also been used<br />

to denote groupings that include <strong>the</strong> <strong>An</strong>ostraca or<br />

that include <strong>the</strong> Ostracoda or that include <strong>the</strong> Leptostraca<br />

and Cephalocarida and in several o<strong>the</strong>r<br />

contexts as well. In fact, <strong>the</strong> term Phyllopoda has<br />

been used so <strong>of</strong>ten in crustacean systematics, and<br />

with such different meanings, that Martin and<br />

Christiansen (1995a) argued for avoiding it completely<br />

to avoid fur<strong>the</strong>r confusion. Not surprisingly,<br />

we agree with Martin and Christiansen (1995a)<br />

and would prefer to employ ano<strong>the</strong>r available name<br />

for this lineage. Does one exist? Tasch (1969) employed<br />

<strong>the</strong> names Calmanostraca (for <strong>the</strong> notostracans)<br />

and Diplostraca (for <strong>the</strong> conchostracans and<br />

cladocerans) as subclasses, but <strong>the</strong> two groups were<br />

treated equally (i.e., Tasch did not depict <strong>the</strong>m as<br />

being more closely related to each o<strong>the</strong>r than ei<strong>the</strong>r<br />

would be to <strong>the</strong> anostracans). Because <strong>the</strong> name<br />

Diplostraca obviously refers to <strong>the</strong> bivalved carapace<br />

seen in some groups, we could have opted to<br />

use <strong>the</strong> name Calmanostraca suggested by Tasch<br />

(1969) but expanding its definition to include both<br />

notostracans and <strong>the</strong> bivalved groups, which seems<br />

to be advocated by <strong>the</strong> classification proposed by<br />

Spears and Abele (2000). However, <strong>the</strong> name Calmanostraca<br />

should probably be reserved for containing<br />

<strong>the</strong> extinct Kazacharthra and <strong>the</strong> extant<br />

Notostraca (as it was first intended) when fossil<br />

taxa are eventually added to <strong>the</strong> ‘‘updated’’ classi-<br />

16 � Contributions in Science, Number 39 Rationale


fication (see also Negrea et al., 1999). Therefore,<br />

with trepidation and against our own recommendations<br />

(Martin and Christiansen, 1995a), we have<br />

resurrected <strong>the</strong> name Phyllopoda, using it this time<br />

to include <strong>the</strong> extant Notostraca and <strong>the</strong> bivalved<br />

branchiopod groups (i.e., all branchiopods except<br />

<strong>the</strong> <strong>An</strong>ostraca). We have credited <strong>the</strong> taxon name<br />

to Preuss (1951), who was, to our knowledge, <strong>the</strong><br />

first person to use <strong>the</strong> name Phyllopoda in <strong>the</strong> sense<br />

that we are using it (to contain all branchiopods<br />

o<strong>the</strong>r than <strong>the</strong> anostracans). This decision will surely<br />

prompt arguments from many current students<br />

<strong>of</strong> <strong>the</strong> Branchiopoda (see especially Fryer, 1987c,<br />

1995, 1999b).<br />

There have been many significant findings in extant<br />

and extinct branchiopods that have altered our<br />

view <strong>of</strong> branchiopod relationships since <strong>the</strong> Bowman<br />

and Abele (1982) classification. Morphological<br />

treatments have included Fryer (1983, 1985,<br />

1987a–c, 1995, 1996a, b, 1999), Martin (1992),<br />

Martin and Cash-Clark (1995), Walossek (1993,<br />

1995), Olesen et al. (1997), Olesen (1996, 1998,<br />

1999), Thiéry (1996), Amoros (1996), and Negrea<br />

et al. (1999), to mention only a few <strong>of</strong> <strong>the</strong> recent<br />

papers. There have also been several attempts to<br />

deduce branchiopod relationships using molecular<br />

data, including Hanner and Fugate (1997) and<br />

Spears and Abele (1997, 1998, 1999b, 2000). In<br />

<strong>the</strong> current classification, we have attempted to reconcile<br />

some <strong>of</strong> <strong>the</strong> recent morphological and molecular<br />

findings, but earlier classifications should<br />

not be discarded as being out <strong>of</strong> date or invalid.<br />

Indeed, many <strong>of</strong> <strong>the</strong> most detailed accounts <strong>of</strong><br />

branchiopods remain <strong>the</strong> older, classical treatments,<br />

and to ignore <strong>the</strong>se is a grave mistake. Thiéry<br />

(1996, based in large part on Martin, 1992) reviewed<br />

<strong>the</strong> biology <strong>of</strong> <strong>the</strong> noncladoceran groups<br />

(including Cycles<strong>the</strong>ria among <strong>the</strong> conchostracans),<br />

and Amoros (1996) reviewed <strong>the</strong> four ‘‘former cladoceran’’<br />

orders Ctenopoda, <strong>An</strong>omopoda, Onychopoda,<br />

and Haplopoda.<br />

SUBCLASS SARSOSTRACA, ORDER<br />

ANOSTRACA<br />

Within <strong>the</strong> <strong>An</strong>ostraca, Brtek (1995) elevated <strong>the</strong><br />

former chirocephalid subfamily Artemiopsinae to<br />

family level and thus recognized <strong>the</strong> Artemiopsidae.<br />

Earlier, Brtek (1964) established <strong>the</strong> family Linderiellidae.<br />

However, Denton Belk (pers. comm.) believed<br />

<strong>the</strong>se moves are unwarranted. Concerning<br />

<strong>the</strong> Artemiopsidae, Belk stated, ‘‘placing this single<br />

genus in a separate family obscures <strong>the</strong> many features<br />

it shares with o<strong>the</strong>r genera in <strong>the</strong> Chirocephalidae,<br />

and is thus a hindrance to having a meaningful<br />

taxonomic classification <strong>of</strong> <strong>the</strong> <strong>An</strong>ostraca.’’<br />

Concerning <strong>the</strong> Linderiellidae, he noted that ‘‘<strong>the</strong>se<br />

genera have antennal appendages and some penal<br />

features that suggest <strong>the</strong>y are related to o<strong>the</strong>r genera<br />

<strong>of</strong> <strong>the</strong> Chirocephalidae; separate familial status<br />

obscures <strong>the</strong>se seemingly significant similarities.’’ In<br />

light <strong>of</strong> Belk’s expertise with anostracans, we have<br />

followed his suggestion and have not recognized<br />

<strong>the</strong>se two families, although <strong>the</strong>y are recognized in<br />

<strong>the</strong> latest key to families and genera (Brtek and<br />

Mura, 2000). Our classification <strong>of</strong> <strong>the</strong> <strong>An</strong>ostraca<br />

<strong>the</strong>refore follows Belk (1996), with <strong>the</strong> exception<br />

<strong>of</strong> <strong>the</strong> Linderiellidae (which was included by Belk,<br />

1996, but is not included here). A recent molecular<br />

analysis (Remigio and Hebert, 2000) <strong>of</strong> <strong>the</strong> relationships<br />

among extant anostracan families suggested<br />

two clades, one containing Artemiidae and<br />

Branchipodidae and <strong>the</strong> o<strong>the</strong>r containing <strong>the</strong> o<strong>the</strong>r<br />

five families.<br />

SUBCLASS PHYLLOPODA<br />

By placing anostracans in a subclass separate from<br />

all o<strong>the</strong>r branchiopods, we are assuming also that<br />

<strong>the</strong> o<strong>the</strong>r branchiopods form a monophyletic<br />

grouping. In o<strong>the</strong>r words, we believe that <strong>the</strong> notostracans,<br />

conchostracans, and cladocerans are<br />

more closely related to one ano<strong>the</strong>r than any <strong>of</strong><br />

those groups is to <strong>the</strong> anostracans. There are some<br />

morphological features (e.g., Negrea et al., 1999)<br />

and molecular data (e.g., Spears and Abele 1997,<br />

1999b, 2000) that suggest this might be true. This<br />

arrangement has been proposed by many o<strong>the</strong>r<br />

workers as well (some <strong>of</strong> whom, such as Walossek,<br />

1993, 1995; Walossek and Müller, 1998, have also<br />

employed <strong>the</strong> name Phyllopoda in <strong>the</strong> same sense<br />

that we are using it).<br />

ORDER NOTOSTRACA<br />

It may be necessary, once fossil taxa are included<br />

in this classification, to someday resurrect Tasch’s<br />

(1969) name Calmanostraca to accommodate <strong>the</strong><br />

extant notostracans and <strong>the</strong> extinct and obviously<br />

closely related Kazacharthra. The sole family <strong>of</strong> extant<br />

Notostraca, Triopsidae, is credited to Keilhack<br />

(‘‘Kielhack’’ was a misspelling in Bowman and<br />

Abele, 1982), and that date has been changed from<br />

1910 to 1909 (L. Holthuis, pers. comm.). Although<br />

<strong>the</strong> original spelling was Triopidae, as listed in<br />

Bowman and Abele (1982), <strong>the</strong> spelling Triopsidae<br />

(based on <strong>the</strong> genus Triops) was entered in <strong>the</strong> Official<br />

List <strong>of</strong> Family-Group Names in Zoology by<br />

<strong>the</strong> ICZN, Opinion 502 (M. Grygier, pers. comm.).<br />

ORDER DIPLOSTRACA<br />

As noted above, <strong>the</strong> Phyllopoda as used here includes<br />

<strong>the</strong> orders Notostraca and Diplostraca (a<br />

name that predates Onychura used by some authors,<br />

such as Walossek, 1993, and Negrea et al.,<br />

1999). Whe<strong>the</strong>r <strong>the</strong>se are indeed sister taxa is unclear;<br />

<strong>the</strong>re is some morphological and molecular<br />

evidence to suggest that this might not be <strong>the</strong> case.<br />

Recognition <strong>of</strong> <strong>the</strong> taxon Diplostraca indicates our<br />

feeling that <strong>the</strong> former conchostracan and cladoceran<br />

groups are indeed related. There appears to be<br />

some morphological (e.g., see Walossek, 1993; Olesen,<br />

1998; Negrea et al., 1999) and molecular<br />

(Spears and Abele, 2000) evidence supporting this<br />

Contributions in Science, Number 39 Rationale � 17


elationship, although <strong>the</strong> view is certainly not universally<br />

shared (e.g., see <strong>the</strong> exchange between Olesen,<br />

1998, 2000, and Fryer, 1999, 2001), and <strong>the</strong>re<br />

is a large body <strong>of</strong> evidence suggesting that Diplostraca<br />

is nonmonophyletic. Additionally, <strong>the</strong>re is<br />

considerable doubt concerning <strong>the</strong> monophyly <strong>of</strong><br />

some <strong>of</strong> <strong>the</strong> groups we have included within it, such<br />

as <strong>the</strong> Cladocera. Fryer (1987a, 1995, 1999a, b)<br />

discusses <strong>the</strong> great morphological differences<br />

among <strong>the</strong> four groups traditionally placed in <strong>the</strong><br />

‘‘so-called Cladocera’’ and highlights <strong>the</strong> trenchant<br />

differences among <strong>the</strong>se taxa and <strong>the</strong> difficulty in<br />

reconciling <strong>the</strong>se forms within one taxonomic category.<br />

We should also point out that <strong>the</strong> ‘‘secondary<br />

shield’’ mentioned as unifying <strong>the</strong>se taxa (e.g., by<br />

Walossek, 1993; Olesen et al., 1997; Olesen, 1998)<br />

is, according to Fryer (1996b, 1999b), simply nonexistant,<br />

a misunderstanding <strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong><br />

crustacean carapace. O<strong>the</strong>r characters that supposedly<br />

unite <strong>the</strong> ‘‘diplostracan’’ groups are similarly<br />

called into question by Fryer in a series <strong>of</strong> papers<br />

(1987a–c, 1995, 1996a, b, 1999b). In particular,<br />

after considerable work in attempting to reconstruct<br />

a primitive anomopod from which extant anomopods<br />

could have been derived and by so doing<br />

highlighting <strong>the</strong> great difficulties <strong>of</strong> any such exercise,<br />

Fryer (1995) argued against attempting to<br />

force such disparate taxa as Leptodora, Bythotrephes,<br />

and <strong>the</strong> superficially similar ctenopods into a<br />

taxon with <strong>the</strong> <strong>An</strong>omopoda, stating (pers. comm.)<br />

that ‘‘when those who make <strong>the</strong>se proposals can<br />

support <strong>the</strong>m by evolutionary series that involve<br />

animals that would work, I’ll pay more attention<br />

to <strong>the</strong>m.’’<br />

Within <strong>the</strong> Diplostraca, we have removed <strong>the</strong><br />

‘‘Conchostraca’’ (following to some extent <strong>the</strong> suggestions<br />

<strong>of</strong> Fryer, 1987c, and Olesen, 1998) in recognition<br />

<strong>of</strong> (1) <strong>the</strong> distinct nature <strong>of</strong> <strong>the</strong> Laevicaudata<br />

(Lynceidae), (2) <strong>the</strong> stark differences that separate<br />

Cycles<strong>the</strong>ria hislopi (sole member <strong>of</strong> <strong>the</strong> Cycles<strong>the</strong>riidae)<br />

from all o<strong>the</strong>r conchostracans, and<br />

(3) Cycles<strong>the</strong>ria’s possible affinities to <strong>the</strong> cladocerans<br />

on morphological and molecular grounds (see<br />

Martin and Cash-Clark, 1995; Olesen et al., 1997;<br />

Olesen, 1998; Spears and Abele, 1998, 2000). The<br />

fact that Cycles<strong>the</strong>ria differs significantly from o<strong>the</strong>r<br />

spinicaudate conchostracans, and probably to<br />

<strong>the</strong> extent that it should not be placed among <strong>the</strong>m,<br />

has also been highlighted (Martin and Cash-Clark,<br />

1995; Olesen et al., 1997; Olesen, 1999; Negrea et<br />

al., 1999). Thus, our resulting classification within<br />

<strong>the</strong> Diplostraca differs slightly from, and is in some<br />

ways a compromise between, <strong>the</strong> classification suggested<br />

by Olesen (1998) based on morphological<br />

characters and that suggested by Spears and Abele<br />

(2000) based on molecular data and is easily reconciled<br />

with <strong>the</strong> phylogeny proposed by Negrea et<br />

al. (1999). Our arrangement does not agree with<br />

<strong>the</strong> somewhat preliminary findings <strong>of</strong> Hanner and<br />

Fugate (1997) based on a relatively small segment<br />

<strong>of</strong> <strong>the</strong> genome.<br />

Removal <strong>of</strong> Cycles<strong>the</strong>ria from <strong>the</strong> Spinicaudata<br />

and placing it on an equal footing with <strong>the</strong> remaining<br />

Spinicaudata and with <strong>the</strong> Cladocera necessitated<br />

<strong>the</strong> creation <strong>of</strong> a separate suborder, <strong>the</strong> Cycles<strong>the</strong>rida,<br />

which we are crediting to Sars (1899)<br />

in keeping with ICZN article 50.3.1. Negrea et al.<br />

(1999) used <strong>the</strong> same spelling to refer to an order<br />

(Cycles<strong>the</strong>rida) within <strong>the</strong>ir superorder Conchostraca,<br />

thus indicating a closer affinity <strong>of</strong> Cycles<strong>the</strong>ria<br />

to <strong>the</strong> conchostracans ra<strong>the</strong>r than <strong>the</strong> cladocerans.<br />

We have not taken <strong>the</strong> bolder step <strong>of</strong> actually<br />

including <strong>the</strong> Cycles<strong>the</strong>riidae among <strong>the</strong> Cladocera,<br />

although <strong>the</strong>re is apparently evidence for<br />

this as well. Spears and Abele (1999a, b, 2000) note<br />

that, not only do 18S rDNA sequence data support<br />

<strong>the</strong> close relationships <strong>of</strong> Cycles<strong>the</strong>ria and <strong>the</strong> cladocerans,<br />

<strong>the</strong> two groups also share certain hypervariable<br />

regions <strong>of</strong> <strong>the</strong> gene that are not found in<br />

o<strong>the</strong>r branchiopods, and <strong>the</strong>se are potential synapomorphies.<br />

Ax (1999) first suggested <strong>the</strong> term<br />

‘‘Cladoceromorpha’’ for <strong>the</strong> clade containing Cycles<strong>the</strong>ria<br />

plus Cladocera. Papers by Crease and<br />

Taylor (1998) and Taylor et al. (1999) appear to<br />

<strong>of</strong>fer additional molecular support, and <strong>the</strong> phylogeny<br />

suggested by Negrea et al. (1999:196) supports<br />

such a clade as well, although <strong>the</strong>ir resulting classification<br />

<strong>of</strong> <strong>the</strong> Branchiopoda into five superorders<br />

does not.<br />

Sassaman (1995) presented fascinating insights<br />

into possible phylogenetic models for <strong>the</strong> conchostracan<br />

families based on <strong>the</strong> evolution <strong>of</strong> unisexuality<br />

in <strong>the</strong> group; he views lynceids as <strong>the</strong> sister<br />

group to all o<strong>the</strong>r families, while noting at <strong>the</strong> same<br />

time <strong>the</strong> unusual nature <strong>of</strong> <strong>the</strong> cycles<strong>the</strong>riids, which<br />

he posits as <strong>the</strong> sister group to <strong>the</strong> remaining ‘‘spinicaudatan’’<br />

families. Thus, in many ways, Sassaman’s<br />

(1995) phylogeny is consistent with our classification.<br />

Within <strong>the</strong> former ‘‘conchostracan’’ groups, <strong>the</strong><br />

spelling <strong>of</strong> <strong>the</strong> Lynceidae has been corrected (from<br />

Lyncaeidae, a typographical error in Bowman and<br />

Abele, 1982), and authorship for <strong>the</strong> family is now<br />

credited to Baird, 1845 (L. Holthuis, pers. comm.).<br />

Mark Grygier points out (pers. comm.) that ICZN<br />

Opinion 532 attributes <strong>the</strong> family name to Sayce,<br />

1902; however, <strong>the</strong>re are clearly earlier uses <strong>of</strong> <strong>the</strong><br />

family name Lynceidae (e.g., see review by Martin<br />

and Belk, 1988), and we are crediting <strong>the</strong> family<br />

name to Baird as noted above.<br />

Although <strong>the</strong> genera Imnadia and Metalimnadia<br />

at times have been suggested to represent distinct<br />

families (<strong>the</strong> Imnadiidae Botnariuc and Orghidan<br />

and <strong>the</strong> Metalimnadiidae Straskraba; see Marincek<br />

and Petrov, 1991; Roessler, 1991, 1995a, b; Orr<br />

and Briggs, 1999:8), most workers (e.g., Martin,<br />

1992; Sassaman, 1995) consider <strong>the</strong>m members <strong>of</strong><br />

<strong>the</strong> family Limnadiidae, as do we. Roessler’s (1991)<br />

erection <strong>of</strong> <strong>the</strong> family Paraimnadiidae was based on<br />

a species he described as Paraimnadia guayanensis,<br />

a junior synonym <strong>of</strong> Metalimnadia serratura (see<br />

Orr and Briggs, 1999). We also include among <strong>the</strong><br />

limnadiids <strong>the</strong> genus Limnadopsis and agree with<br />

18 � Contributions in Science, Number 39 Rationale


Bowman and Abele in not recognizing Tasch’s<br />

(1969) family Limnadopsidae.<br />

The superfamilies Cyzicoidea (which contained<br />

only Cyzicidae) and Limnadioidea have been removed,<br />

as <strong>the</strong>re is no longer any need for <strong>the</strong>m in<br />

light <strong>of</strong> <strong>the</strong> above reassignments. Indeed, <strong>the</strong> families<br />

Cyzicidae and Leptes<strong>the</strong>riidae are probably<br />

more closely related to each o<strong>the</strong>r than ei<strong>the</strong>r is to<br />

<strong>the</strong> Limnadiidae (Martin, 1992; Sassaman, 1995).<br />

Within <strong>the</strong> Cladocera, <strong>the</strong> spelling <strong>of</strong> <strong>the</strong> Holopediidae<br />

has been corrected (from Holopedidae in<br />

Bowman and Abele, 1982) in light <strong>of</strong> <strong>the</strong> spelling<br />

<strong>of</strong> <strong>the</strong> type genus Holopedium (M. Grygier, pers.<br />

comm.). The correct spelling <strong>of</strong> Macrotrichidae<br />

(ra<strong>the</strong>r than Macrothricidae) was also pointed out<br />

to us by M. Grygier (pers. comm), referring us to<br />

Appendix D <strong>of</strong> <strong>the</strong> ICZN, third edition, example<br />

24, page 223 (ICZN, 1985a), for examples <strong>of</strong> family<br />

names formed from genus names ending in -<br />

thrix. However, <strong>the</strong> fourth edition <strong>of</strong> <strong>the</strong> Code<br />

(ICZN, 1999) now allows such misspellings to<br />

stand if <strong>the</strong>y are in ‘‘prevailing use,’’ which <strong>the</strong> family<br />

name Macrothricidae certainly is. Thus, we retain<br />

<strong>the</strong> spelling Macrothricidae. (This same logic<br />

(i.e., retention <strong>of</strong> a misspelling because <strong>of</strong> prevailing<br />

use) applies also to <strong>the</strong> family Rhizothricidae in <strong>the</strong><br />

harpacticoid copepods.)<br />

Within <strong>the</strong> <strong>An</strong>omopoda, we have removed <strong>the</strong><br />

family Moinidae, following <strong>the</strong> suggestion <strong>of</strong> G.<br />

Fryer (1995, and pers. comm.). Comparisons <strong>of</strong> <strong>the</strong><br />

trunk limbs <strong>of</strong> species <strong>of</strong> Moina and Daphnia indicate<br />

great similarity between <strong>the</strong>se groups; certainly<br />

<strong>the</strong>y are much more similar than are many<br />

macrothricid and chydorid genera to each o<strong>the</strong>r. If<br />

a separate family were recognized for Moina and<br />

Moinodaphnia, <strong>the</strong>n we would have to erect a series<br />

<strong>of</strong> families for various chydorids and macrothricids,<br />

which we see as only adding to <strong>the</strong> confusion.<br />

Thus, <strong>the</strong> Moinidae is not recognized here.<br />

For <strong>the</strong> same reason, we have decided not to recognize<br />

<strong>the</strong> family Ilyocryptidae as treated by Smirnov<br />

(1992) based on <strong>the</strong> genus Ilyocryptus (see also<br />

Young, 1998:23). However, it is possible that <strong>the</strong><br />

correct course <strong>of</strong> action would be to acknowledge<br />

anomopodan diversity by recognizing both <strong>the</strong><br />

Moinidae and Ilyocryptidae as valid families and<br />

establishing <strong>the</strong> additional families for o<strong>the</strong>r genera<br />

as needed.<br />

The four main cladoceran groupings have been<br />

treated as infraorders. Although we are in full<br />

agreement with Fryer’s (1987a–c, 1995) assessment<br />

<strong>of</strong> <strong>the</strong> distinct nature <strong>of</strong>, and tremendous differences<br />

among, <strong>the</strong>se taxa (Fryer argued for removal <strong>of</strong><br />

<strong>the</strong> terms ‘‘cladocera’’ and ‘‘conchostraca’’ as formal<br />

taxonomic entities), we never<strong>the</strong>less felt that<br />

<strong>the</strong> four groups are more closely related to one ano<strong>the</strong>r<br />

than any one <strong>of</strong> <strong>the</strong>m is to any o<strong>the</strong>r crustacean<br />

assemblage, <strong>the</strong> same conclusion reached by<br />

Richter et al. (2001) and several earlier workers.<br />

This may prove to be a mistake. Certainly, treatment<br />

<strong>of</strong> <strong>the</strong> cladocerans as a single order containing<br />

four infraorders and a handful <strong>of</strong> families has <strong>the</strong><br />

unfortunate appearance <strong>of</strong> minimizing <strong>the</strong> staggering<br />

morphological and ecological diversity <strong>of</strong> this<br />

group, and we very much regret that. Schwenk et<br />

al. (1998) provided a preliminary estimate <strong>of</strong> <strong>the</strong><br />

relationships <strong>of</strong> <strong>the</strong> Ctenopoda, Haplopoda, Onychopoda,<br />

and <strong>An</strong>omopoda based on 16S rDNA sequence<br />

data. See Fryer (1995) for suggested relationships<br />

among <strong>the</strong> families <strong>of</strong> <strong>the</strong> <strong>An</strong>omopoda<br />

and Richter et al. (2001) for 12S rDNA-based relationships<br />

among onychopods and between <strong>the</strong><br />

‘‘gymnomerans’’ (� onychopods � Leptodora) and<br />

o<strong>the</strong>r cladoceran groups.<br />

The taxon ‘‘Eucladocera’’ has been removed, as<br />

we saw no evidence for grouping toge<strong>the</strong>r all o<strong>the</strong>r<br />

cladocerans as <strong>the</strong> sister taxon to <strong>the</strong> monotypic<br />

Haplopoda (Leptodora), as proposed by several<br />

workers (most recently by Negrea et al., 1999). Our<br />

classification is more in keeping with <strong>the</strong> study by<br />

Richter et al. (2001), who supported <strong>the</strong> monophyly<br />

<strong>of</strong> <strong>the</strong> Onychopoda � Haplopoda (<strong>the</strong> former<br />

Gymnomera) and argued for cladoceran monophyly.<br />

The superfamilies Sidoidea, Daphnioidea, and<br />

Polyphemoidea have also been removed.<br />

CLASS REMIPEDIA<br />

It is a little discouraging that we still know so little<br />

about <strong>the</strong> phylogenetic relationships <strong>of</strong> this fascinating<br />

group. The initial establishment <strong>of</strong> a separate<br />

class (Yager, 1981) met with criticism early on,<br />

and similarities between <strong>the</strong> limbs <strong>of</strong> remipedes and<br />

those <strong>of</strong> certain maxillopods have been pointed out<br />

(Itô, 1989). Felgenhauer et al. (1992) hinted at molecular<br />

data that suggested maxillopodan affinities<br />

as well, although, to our knowledge, <strong>the</strong>se data<br />

have not been published. Spears and Abele (1997)<br />

also suggested possible maxillopodan affinities. In<br />

an early draft <strong>of</strong> this classification, we had <strong>the</strong> remipede<br />

families included among <strong>the</strong> Maxillopoda,<br />

but this was criticized, and rightly so, by several<br />

persons who pointed out that some <strong>of</strong> <strong>the</strong> similarities<br />

between Remipedia and Maxillopoda are symplesiomorphies<br />

(although o<strong>the</strong>rs, such as <strong>the</strong> loss <strong>of</strong><br />

<strong>the</strong> maxillary endopod, defined precoxa <strong>of</strong> <strong>the</strong><br />

maxillule, and three-segmented endopod <strong>of</strong> <strong>the</strong><br />

trunk limbs, may be synapomorphies) and are insufficient<br />

to warrant <strong>the</strong> inclusion <strong>of</strong> <strong>the</strong> former<br />

among <strong>the</strong> latter. More detailed morphological<br />

studies (e.g., Schram et al., 1986; Itô and Schram,<br />

1988; Schram and Lewis, 1989; Yager, 1989a, b,<br />

1991; Yager and Schram, 1986; Emerson and<br />

Schram, 1991; Felgenhauer et al., 1992) seem to<br />

confirm <strong>the</strong> unique nature <strong>of</strong> <strong>the</strong> group. Their status<br />

as a distinct class is <strong>the</strong>refore maintained in this<br />

classification. See also our introductory comments<br />

concerning which class <strong>of</strong> extant <strong>Crustacea</strong> appears<br />

most plesiomorphic.<br />

As noted above in <strong>the</strong> general discussion <strong>of</strong> <strong>the</strong><br />

primitive groups <strong>of</strong> <strong>Crustacea</strong>, several workers<br />

(e.g., see Schram, 1986; Brusca and Brusca, 1990;<br />

Briggs et al., 1993a; Schram and H<strong>of</strong>, 1998; Wills,<br />

1997; Wills et al., 1998) have suggested that re-<br />

Contributions in Science, Number 39 Rationale � 19


mipedes occupy <strong>the</strong> most basal position among <strong>the</strong><br />

extant crustaceans. These arguments are perhaps<br />

best summarized in Schram and H<strong>of</strong> (1998) and in<br />

Wills (1997), where remipedes come out at <strong>the</strong> base<br />

<strong>of</strong> all o<strong>the</strong>r <strong>Crustacea</strong> groups following cladistic<br />

analyses <strong>of</strong> large datasets. Moura and Christ<strong>of</strong>fersen<br />

(1996) take an opposing stance, suggesting that<br />

remipedes are an apical group <strong>of</strong> crustaceans that<br />

are possibly <strong>the</strong> sister group to terrestrial mandibulates.<br />

To us, <strong>the</strong> evidence (morphological, molecular,<br />

and developmental) for branchiopods being<br />

basal appears stronger (see earlier comments on<br />

primitive crustaceans). Emerson and Schram (1990;<br />

see also Emerson and Schram, 1991) have suggested<br />

that crustacean biramous limbs may have arisen<br />

from fusion <strong>of</strong> adjacent uniramous limbs, and this<br />

has a bearing on <strong>the</strong> placement <strong>of</strong> remipedes relative<br />

to o<strong>the</strong>r crustacean groups (discussed fur<strong>the</strong>r<br />

in Schram and H<strong>of</strong>, 1998). Spears and Abele<br />

(1997) also discussed possible affinities between remipedes<br />

and cephalocarids, some <strong>of</strong> which may be<br />

artifactual as a result <strong>of</strong> long branch attractions.<br />

Within <strong>the</strong> Remipedia, <strong>the</strong> order Nectiopoda was<br />

erected by Schram (1986) to separate extant remipede<br />

families from some fossils that appear remipedian<br />

(and that are treated as <strong>the</strong> fossil order Enantiopoda).<br />

One additional family, <strong>the</strong> Godzilliidae,<br />

was added by Schram et al. (1986). Yager and<br />

Humphreys (1996) reported <strong>the</strong> first species from<br />

Australia and <strong>the</strong> Indian Ocean and presented a key<br />

to <strong>the</strong> world species known at that time. Cals<br />

(1996) reviewed <strong>the</strong> biology <strong>of</strong> <strong>the</strong> group and presented<br />

a table comparing <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong><br />

two currently accepted families, Speleonectidae and<br />

Godzilliidae; more recently, Yager and Carpenter<br />

(1999) and Carpenter (1999) have added to what<br />

is known <strong>of</strong> <strong>the</strong> natural history <strong>of</strong> speleonectids.<br />

CLASS CEPHALOCARIDA<br />

Our classification differs from that <strong>of</strong> Bowman and<br />

Abele (1982) only in recognizing a single family,<br />

Hutchinsoniellidae, ra<strong>the</strong>r than two families. The<br />

family Lightiellidae proposed by Jones (1961) is<br />

thought to differ only slightly and insignificantly<br />

from <strong>the</strong> characters established for <strong>the</strong> former family<br />

(R. Hessler, pers. comm.). Our placement <strong>of</strong> <strong>the</strong><br />

cephalocarids here, between <strong>the</strong> remipedes and<br />

maxillopods, to some degree reflects <strong>the</strong> summary<br />

finding <strong>of</strong> Spears and Abele (1997) that remipedes<br />

and cephalocarids may constitute a clade that is <strong>the</strong><br />

sister group to one <strong>of</strong> <strong>the</strong> maxillopodan groups (<strong>the</strong><br />

Copepoda) (e.g., Spears and Abele, 1997, figs. 14.4,<br />

14.7, and accompanying text), although Spears and<br />

Abele (1997) also note that this arrangement is not<br />

well supported by <strong>the</strong>ir bootstrap analysis. The<br />

placement <strong>of</strong> cephalocarids and remipedes toge<strong>the</strong>r,<br />

and adjacent to <strong>the</strong> maxillopods, in some ways also<br />

supports Itô’s (1989) morphology-based suggestion<br />

<strong>of</strong> a remipede � cephalocarid � copepod clade.<br />

Hessler and El<strong>of</strong>sson (1996) recently reviewed<br />

what is known <strong>of</strong> cephalocarid biology and phylogeny.<br />

CLASS MAXILLOPODA<br />

The Maxillopoda continues to be a terribly controversial<br />

assemblage concerning both <strong>the</strong> number <strong>of</strong><br />

constituent groups and <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> entire<br />

taxon. We were tempted to abandon, once and for<br />

all, <strong>the</strong> concept <strong>of</strong> a monophyletic Maxillopoda, as<br />

<strong>the</strong>re seems very little in <strong>the</strong> way <strong>of</strong> morphological<br />

or molecular evidence uniting <strong>the</strong> disparate groups<br />

(Wilson, 1992; Spears and Abele, 1997; Shultz and<br />

Regier, 2000). Ostracodes in particular have been<br />

placed sometimes within <strong>the</strong> Maxillopoda (e.g., see<br />

Boxshall and Huys, 1989a) and sometimes in <strong>the</strong>ir<br />

own class, and <strong>the</strong> issue remains unresolved despite<br />

much debate (e.g., see Boxshall et al., editors, Acta<br />

Zoologica, vol. 73(5), 1992). It is certainly no secret<br />

that <strong>the</strong> characters used in defining <strong>the</strong> group<br />

do not hold for many <strong>of</strong> <strong>the</strong> taxa traditionally<br />

thought <strong>of</strong> as being ‘‘maxillopodan.’’ Abandoning<br />

<strong>the</strong> Maxillopoda seems to have been implied in<br />

tome VII fascicule II <strong>of</strong> <strong>the</strong> Traité de Zoologie<br />

(1996), as only <strong>the</strong> constituent groups are treated<br />

with no mention <strong>of</strong> maxillopod affinities or relationships<br />

(e.g., see Grygier 1996a, b), and Gruner<br />

(1993) similarly did not recognize <strong>the</strong> Maxillopoda.<br />

Boxshall (1983) and o<strong>the</strong>rs have argued against<br />

recognition <strong>of</strong> <strong>the</strong> Maxillopoda on morphological<br />

grounds, although Boxshall has also continued to<br />

employ it from time to time (e.g., in Huys et al.,<br />

1994). Yet o<strong>the</strong>r workers (e.g., see Newman, 1983;<br />

Grygier, 1983a; Walossek, 1993; Wills, 1997; Walossek<br />

and Müller, 1998) have argued, some quite<br />

forcefully, that <strong>the</strong>re is merit to recognition <strong>of</strong> <strong>the</strong><br />

Maxillopoda as a natural (monophyletic) assemblage,<br />

despite <strong>the</strong> fact that <strong>the</strong>re seem to be exceptions<br />

to every synapomorphy proposed. In fairness,<br />

so many maxillopodan taxa are so small and/or<br />

modified as parasites that it should come as no surprise<br />

to find exceptions to groundplans. Removal<br />

<strong>of</strong> <strong>the</strong> Maxillopoda as a class would raise <strong>the</strong> number<br />

<strong>of</strong> crustacean classes from six to nine once <strong>the</strong><br />

maxillopodan subclasses were elevated (each to <strong>the</strong><br />

level <strong>of</strong> class).<br />

The somewhat controversial history <strong>of</strong> <strong>the</strong> concept<br />

<strong>of</strong> <strong>the</strong> Maxillopoda (whe<strong>the</strong>r it is monophyletic,<br />

and if so, which groups should be included,<br />

and what <strong>the</strong> relationships are within <strong>the</strong> group and<br />

<strong>of</strong> <strong>the</strong> group to o<strong>the</strong>r crustaceans) is reviewed on<br />

morphological grounds by Grygier (1983a, b,<br />

1985, 1987a–c), Müller and Walossek (1988),<br />

Boxshall and Huys (1989a), Huys (1991), Newman<br />

(1992), Schram et al. (1997), Schram and H<strong>of</strong><br />

(1998), and papers cited <strong>the</strong>rein, and on molecular<br />

grounds by Abele et al. (1992), Spears et al. (1994),<br />

and Spears and Abele (1997). Some <strong>of</strong> <strong>the</strong> fossil<br />

discoveries since <strong>the</strong> Bowman and Abele classification<br />

have a bearing on our understanding <strong>of</strong> <strong>the</strong><br />

monophyly and definitions <strong>of</strong> <strong>the</strong> Maxillopoda as<br />

well, such as <strong>the</strong> description <strong>of</strong> <strong>the</strong> Skaracarida<br />

20 � Contributions in Science, Number 39 Rationale


(Müller and Walossek, 1985), <strong>the</strong> Orstenocarida<br />

(Müller and Walossek, 1988), and <strong>the</strong> Mazon<br />

Creek Cycloidea (Schram et al., 1997). A relatively<br />

recent and widely used text on invertebrates (Brusca<br />

and Brusca, 1990) recognizes <strong>the</strong> Maxillopoda<br />

(including <strong>the</strong> Ostracoda), and that text is <strong>of</strong>ten cited<br />

in o<strong>the</strong>r listings <strong>of</strong> crustaceans (e.g., <strong>the</strong> Tree <strong>of</strong><br />

Life web project; see URL http://ag.arizona.edu/<br />

tree/eukaryotes/animals/arthropoda/crustacea/<br />

maxillopoda.html), whereas ano<strong>the</strong>r recent text<br />

(Gruner, 1993) treats <strong>the</strong> various maxillopod<br />

groups separately.<br />

While it is clear that <strong>the</strong>re is not a single ‘‘good’’<br />

character shared by <strong>the</strong> various maxillopod groups<br />

(see especially Boxshall, 1992), it is also true that<br />

some <strong>of</strong> <strong>the</strong>m seem closely related on morphological<br />

and molecular grounds. Fur<strong>the</strong>rmore, even<br />

some <strong>of</strong> <strong>the</strong> more vocal opponents to <strong>the</strong> Maxillopoda<br />

will argue from time to time that <strong>the</strong>re<br />

seems to be a core group <strong>of</strong> taxa that ‘‘hang toge<strong>the</strong>r<br />

well’’ (although <strong>the</strong> members <strong>of</strong> this core<br />

group change depending on <strong>the</strong> speaker). The question<br />

as to which groups are and which are not<br />

‘‘true’’ maxillopods and whe<strong>the</strong>r any <strong>of</strong> <strong>the</strong> constituent<br />

groups should remain allied in a classification<br />

has not been, in our opinion, satisfactorily<br />

answered.<br />

Although <strong>the</strong> issue is still unresolved, we have<br />

found it useful to continue to recognize <strong>the</strong> Maxillopoda,<br />

and refer <strong>the</strong> reader to discussions <strong>of</strong> morphological<br />

characters seeming to unite <strong>the</strong> maxillopodan<br />

groups (see above). At <strong>the</strong> same time, we<br />

caution readers that acceptance <strong>of</strong> <strong>the</strong> Maxillopoda<br />

as monophyletic and acceptance <strong>of</strong> <strong>the</strong> constituent<br />

groups are not universal and nowhere near as finalized<br />

as envisioned by Walossek (1993; see review<br />

<strong>of</strong> this work by Martin, 1995) or by Walossek<br />

and Müller (1994). In <strong>the</strong> latter paper, Walossek<br />

and Müller state that <strong>the</strong> ‘‘interrelationships <strong>of</strong> <strong>the</strong><br />

majority <strong>of</strong> maxillopod taxa, particularly <strong>of</strong> <strong>the</strong><br />

<strong>the</strong>costracan lineage, are well-founded on morphological,<br />

ontogenetic, and fossil data.’’ This could<br />

hardly be fur<strong>the</strong>r from <strong>the</strong> truth. We have followed,<br />

for <strong>the</strong> most part, <strong>the</strong> treatment by Newman (1992)<br />

for higher classification <strong>of</strong> <strong>the</strong> Maxillopoda and his<br />

subsequent work (especially Newman, 1996) for<br />

lower taxonomic divisions. We differ from Newman’s<br />

treatment in not using <strong>the</strong> ‘‘superclass’’ rank,<br />

in an attempt to be consistent with our o<strong>the</strong>r uses<br />

and categories. This necessitated <strong>the</strong> creation <strong>of</strong><br />

some lower level taxonomic names (superorders,<br />

infraorders, etc.) that unfortunately add to <strong>the</strong> clutter<br />

<strong>of</strong> this already confusing assemblage. We also<br />

differ from Newman’s treatment in that we have<br />

treated <strong>the</strong> Rhizocephala as members <strong>of</strong> <strong>the</strong> cirripedian<br />

line (see below), as suggested by J. Høeg<br />

(pers. comm.) and o<strong>the</strong>rs (see below).<br />

Published and unpublished hypo<strong>the</strong>ses <strong>of</strong> relationships<br />

within <strong>the</strong> Maxillopoda are numerous. As<br />

one example, Walossek and Müller (1998) feel that<br />

<strong>the</strong>re are two ra<strong>the</strong>r clear lines and presented character<br />

states for each. The first is <strong>the</strong> ‘‘copepod line,’’<br />

including <strong>the</strong> copepods, mystacocarids, and <strong>the</strong> extinct<br />

Skaracarida (which is in keeping with <strong>the</strong><br />

analysis <strong>of</strong> maxillopod orders by Boxshall and<br />

Huys, 1989a). The second is <strong>the</strong> ‘‘<strong>the</strong>costracan line’’<br />

that includes <strong>the</strong> tantulocarids, ascothoracidans, facetotectans,<br />

acrothoracicans, and cirripeds. However,<br />

this division does not appear to have much<br />

neontological (e.g., Høeg, 1992a) or molecular<br />

(Spears et al., 1994; Spears and Abele, 1997) support.<br />

Some <strong>of</strong> <strong>the</strong> major areas <strong>of</strong> disagreement in<br />

<strong>the</strong> various maxillopod hypo<strong>the</strong>ses include whe<strong>the</strong>r<br />

<strong>the</strong> ostracodes should be included vs. excluded,<br />

where <strong>the</strong> Facetotecta belong, where <strong>the</strong> Tantulocarida<br />

belong, and <strong>the</strong> placement (and subdivision)<br />

<strong>of</strong> <strong>the</strong> cirripedes. We have attempted to list <strong>the</strong><br />

more salient <strong>of</strong> <strong>the</strong>se efforts in <strong>the</strong> individual sections<br />

that follow. For an overview <strong>of</strong> maxillopod<br />

classification and phylogenetic studies, we refer<br />

readers to Grygier (1987a, b), Newman (1987),<br />

Boxshall and Huys (1989a), Boxshall (1992), Huys<br />

et al. (1993), Spears et al. (1994), and Spears and<br />

Abele (1997).<br />

SUBCLASS THECOSTRACA<br />

Spears et al. (1994) concluded, based on 18S rDNA<br />

sequence data, that <strong>the</strong> Thecostraca, as recognized<br />

by Grygier (1987a; see also Grygier, 1987b) and<br />

Newman (1987, 1992) on morphological grounds,<br />

is a monophyletic assemblage. Fur<strong>the</strong>rmore, within<br />

<strong>the</strong> Thecostraca, Spears et al. (1994) recognized<br />

two major subdivisions, one containing <strong>the</strong> Ascothoracida<br />

and a second (a modified ‘‘Cirripedia’’)<br />

containing <strong>the</strong> Acrothoracica, Rhizocephala, and<br />

Thoracica. Although we have maintained <strong>the</strong> Thecostraca,<br />

we have not divided <strong>the</strong> group as suggested<br />

by Spears et al., treating instead <strong>the</strong> Facetotecta<br />

(which was not treated by Spears et al.),<br />

Ascothoracida, and Cirripedia (now including <strong>the</strong><br />

Acrothoracica, Rhizocephala, and Thoracica) as<br />

taxa <strong>of</strong> equivalent rank (infraclasses in <strong>the</strong> current<br />

scheme) within <strong>the</strong> Thecostraca. Huys et al. (1993)<br />

recognized <strong>the</strong> Thecostraca (without <strong>the</strong> tantulocarids)<br />

and postulated a sister-group relationship<br />

between <strong>the</strong> Tantulocarida and Thecostraca, noting<br />

that ‘‘inclusion <strong>of</strong> <strong>the</strong> Tantulocarida in <strong>the</strong> Thecostraca,<br />

as proposed by Newman (1992), would significantly<br />

dilute <strong>the</strong> o<strong>the</strong>rwise robust concept <strong>of</strong> <strong>the</strong><br />

Thecostraca.’’ Jensen et al. (1994b) described cuticular<br />

autapomorphies (details <strong>of</strong> <strong>the</strong> lattice organs;<br />

see also Høeg et al., 1998) that also support <strong>the</strong><br />

Thecostraca as a monophyletic assemblage.<br />

INFRACLASS FACETOTECTA<br />

Surely one <strong>of</strong> <strong>the</strong> biggest remaining mysteries <strong>of</strong><br />

crustacean classification is <strong>the</strong> taxon Facetotecta.<br />

Credited to Grygier (1985, corrected from 1984 in<br />

Bowman and Abele by M. Grygier, pers. comm.;<br />

see also Grygier, 1987a, b, 1996a), <strong>the</strong> taxon currently<br />

contains no fur<strong>the</strong>r taxonomic divisions o<strong>the</strong>r<br />

than a single genus, Hansenocaris Itô, to accommodate<br />

<strong>the</strong> curious ‘‘y-larvae.’’ The group consists<br />

Contributions in Science, Number 39 Rationale � 21


<strong>of</strong> small (250–620 micrometers) nauplii with a<br />

vaulted and ornamented cephalic shield, sometimes<br />

with complex honeycomb patterns, followed by a<br />

relatively long and ornamented trunk region. The<br />

intriguing possibility that <strong>the</strong>se planktonic forms<br />

may be larval tantulocaridans (which would result<br />

in tantulocaridans being classified under <strong>the</strong> Facetotecta)<br />

has also been suggested (M. Grygier and<br />

W. Newman, pers. comm.), based in part on <strong>the</strong><br />

fact that <strong>the</strong>re are still gaps in <strong>the</strong> known life cycle<br />

<strong>of</strong> tantulocarids following <strong>the</strong> work <strong>of</strong> Boxshall<br />

and Lincoln (1987) and Huys et al. (1993). As Grygier<br />

(pers. comm.) points out, ‘‘<strong>the</strong>re is a hole in <strong>the</strong><br />

tantulocaridan life cycle where y-larvae might fit<br />

(i.e., <strong>the</strong> progeny <strong>of</strong> <strong>the</strong> supposedly sexual males<br />

and females), but it would be a very tough fit.’’<br />

Newman (pers. comm.) succinctly describes <strong>the</strong><br />

current state <strong>of</strong> our knowledge: ‘‘They [facetotectans]<br />

are <strong>the</strong> larvae <strong>of</strong> some very small, parasitic<br />

maxillopodan, and if not tantulocarids, <strong>the</strong>y are <strong>the</strong><br />

last survivors <strong>of</strong> some o<strong>the</strong>r great free-living radiation<br />

close to <strong>the</strong>m.’’ A recent review <strong>of</strong> <strong>the</strong> Facetotecta<br />

was provided by Grygier (1996a).<br />

INFRACLASS ASCOTHORACIDA<br />

The Ascothoracida have been treated in <strong>the</strong> past<br />

sometimes as an order (e.g., by Newman, 1992),<br />

but that rank is changed to infraclass here to accommodate<br />

<strong>the</strong> constituent taxa that have been elevated<br />

to (or treated as) orders by Grygier (1987a,<br />

b) and Newman (1987, 1996), whose classifications<br />

we follow (see also Grygier, 1983a, b, 1987c,<br />

1996b). Our classification thus includes two families,<br />

Ascothoracidae Grygier, 1987, and Ctenosculidae<br />

Thiele, 1925, that were not included in <strong>the</strong><br />

Bowman and Abele (1982) listing. Thus, <strong>the</strong> infraclass<br />

currently consists <strong>of</strong> two orders, Laurida and<br />

Dendrogastrida, each with three families.<br />

INFRACLASS CIRRIPEDIA<br />

Whe<strong>the</strong>r <strong>the</strong> Cirripedia should include <strong>the</strong> Rhizocephala<br />

(e.g., Høeg, 1992a) or whe<strong>the</strong>r <strong>the</strong> Rhizocephala<br />

are early <strong>of</strong>fshoots <strong>of</strong> <strong>the</strong> cirripedian line<br />

and not members <strong>of</strong> <strong>the</strong> crown group (as in Newman,<br />

1982, 1987; Grygier, 1983a; Schram, 1986)<br />

is not settled. However, <strong>the</strong>re appears to be a growing<br />

consensus that <strong>the</strong> Rhizocephala and <strong>the</strong> Cirripedia<br />

form a monophyletic group. Høeg (1992a)<br />

provides strong evidence based on larval morphology,<br />

and Spears et al. (1994) support this with molecular<br />

data. There is some evidence (both morphological<br />

and molecular) that Cirripedia, with or<br />

without <strong>the</strong> Rhizocephala, may be paraphyletic<br />

(Newman, 1987; Spears et al., 1994). Our classification<br />

treats <strong>the</strong> Cirripedia as one <strong>of</strong> three infraclasses<br />

<strong>of</strong> <strong>the</strong> subclass Thecostraca. Included in our<br />

Cirripedia are <strong>the</strong> Rhizocephala. This is more in<br />

line with Høeg’s (1992a) view, where he suggested<br />

that Cirripedia be defined as containing <strong>the</strong> Rhizocephala,<br />

Thoracica, and Acrothoracica, than<br />

with Newman’s (1992) view, although Newman<br />

(pers. comm.) has indicated to us more recently that<br />

he now agrees with placing <strong>the</strong> rhizocephalans<br />

within <strong>the</strong> Cirripedia. Characters <strong>of</strong> <strong>the</strong> naupliar<br />

and cypris larval stages argue for inclusion <strong>of</strong> <strong>the</strong><br />

rhizocephalans within <strong>the</strong> Cirripedia (Høeg,<br />

1992a), and molecular evidence (in <strong>the</strong> form <strong>of</strong><br />

rRNA sequences) supports this (Spears et al.,<br />

1994). A close relationship between Rhizocephala<br />

and Thoracica is supported by 18S rDNA data as<br />

well (Abele and Spears, 1997).<br />

Although earlier molecular studies (Spears et al.,<br />

1994) seemed to indicate that <strong>the</strong> Ascothoracida<br />

might be <strong>the</strong> sister taxon to <strong>the</strong> Acrothoracica<br />

(which we have included in <strong>the</strong> Cirripedia), fur<strong>the</strong>r<br />

analyses have not supported this arrangement<br />

(Spears and Abele, 1997). Thus, our current arrangement<br />

maintains <strong>the</strong> inclusion <strong>of</strong> <strong>the</strong> Acrothoracica<br />

within <strong>the</strong> Cirripedia.<br />

Treatment <strong>of</strong> <strong>the</strong> Iblomorpha as one <strong>of</strong> four thoracican<br />

suborders (with no phylogenetic order implied)<br />

is at least in keeping with <strong>the</strong> finding <strong>of</strong> Mizrahi<br />

et al. (1998) that Ibla is not as different from<br />

o<strong>the</strong>r thoracicans as some earlier workers had supposed<br />

and should not be treated as near <strong>the</strong> base<br />

<strong>of</strong> <strong>the</strong> stem <strong>of</strong> <strong>the</strong> Thoracica.<br />

<strong>An</strong> extensive morphology-based cladistic analysis<br />

<strong>of</strong> <strong>the</strong> Cirripedia Thoracica by Glenner et al.<br />

(1995), reanalyzed with some characters rescored<br />

by Høeg et al. (1999), supported <strong>the</strong> monophyly <strong>of</strong><br />

<strong>the</strong> Balanomorpha and Verrucomorpha and suggested<br />

that several groups, among <strong>the</strong>m <strong>the</strong> Pedunculata,<br />

Scalpellomorpha, and Chthamaloidea, were<br />

demonstrably paraphyletic. Yet o<strong>the</strong>r major questions<br />

remained unresolved, and Glenner et al.<br />

(1995) suggested that <strong>the</strong> fields <strong>of</strong> larval ultrastructure,<br />

early ontogeny, and molecular sequencing<br />

might be promising areas for future research. <strong>An</strong>derson<br />

(1994:326) presented a slightly different<br />

classification, where <strong>the</strong> Cirripedia (which he treats<br />

as a subclass within <strong>the</strong> class Thecostraca) comprises<br />

five superorders (two <strong>of</strong> which, <strong>the</strong> Archithoracica<br />

and Prothoracica, would be new taxa<br />

coined by him), but this has not been followed by<br />

many o<strong>the</strong>r workers. Naupliar evidence seems to<br />

support, in general, <strong>the</strong> classification we have depicted<br />

within <strong>the</strong> cirripedes based on adult morphology<br />

(Korn, 1995). Høeg (1995) presents some<br />

interesting alternatives based on evolution <strong>of</strong> <strong>the</strong><br />

sexual system <strong>of</strong> cirripedes and related groups,<br />

where again <strong>the</strong>costracans and tantulocaridans are<br />

depicted as sister taxa.<br />

A study <strong>of</strong> <strong>the</strong> brachylepadomorphs (Newman,<br />

1987) led Newman to abandon thoughts <strong>of</strong> polyphyly<br />

in favor <strong>of</strong> monophyly <strong>of</strong> <strong>the</strong> sessile barnacles<br />

(Newman, 1991, 1993, 1996, and pers. comm.).<br />

Thus, <strong>the</strong> Sessilia was resurrected to contain <strong>the</strong><br />

brachylepadomorphs, verrucomorphs, and balanomorphs,<br />

as was <strong>the</strong> Penduculata for <strong>the</strong> pedunculate<br />

barnacles. This has been challenged by Glenner<br />

et al. (1995) (see above and see also <strong>the</strong> reanalysis<br />

<strong>of</strong> <strong>the</strong> Glenner at al. data by Høeg et al., 1999).<br />

A review <strong>of</strong> various bodies <strong>of</strong> information con-<br />

22 � Contributions in Science, Number 39 Rationale


cerning barnacle evolution (Schram and Høeg,<br />

1995) reveals mostly that we still have much to<br />

learn about <strong>the</strong> relationships <strong>of</strong> <strong>the</strong> various groups<br />

<strong>of</strong> maxillopods.<br />

SUPERORDER ACROTHORACICA<br />

For this group, we have followed <strong>the</strong> classification<br />

<strong>of</strong> Newman (1996), where acrothoracicans are divided<br />

among two orders, Pygophora (with two<br />

families) and Apygophora (with a single family).<br />

SUPERORDER RHIZOCEPHALA<br />

Our classification <strong>of</strong> this group follows Høeg<br />

(1992), Høeg and Rybakov (1992), Høeg and Lützen<br />

(1993, 1996), Huys (1991), and Lützen and<br />

Takahashi (1996). Thus, we treat <strong>the</strong> Rhizocephala<br />

as an infraclass that contains two orders, Kentrogonida<br />

(with three families) and Akentrogonida<br />

(with six families), although <strong>the</strong>re is concern that<br />

one or both <strong>of</strong> <strong>the</strong>se orders may be paraphyletic<br />

(see Høeg and Lützen, 1993). Jensen et al. (1994a,<br />

b) supported monophyly <strong>of</strong> <strong>the</strong> Akentrogonida on<br />

<strong>the</strong> basis <strong>of</strong> details <strong>of</strong> <strong>the</strong> lattice organs.<br />

Within <strong>the</strong> Kentrogonida, concerning <strong>the</strong> issue <strong>of</strong><br />

authorship <strong>of</strong> <strong>the</strong> families Peltogastridae and Sacculinidae<br />

(which we had earlier credited to Boschma),<br />

W. Vervoort writes (pers. comm.): ‘‘. . . both<br />

<strong>the</strong> families Peltogastridae and Sacculinidae must<br />

be ascribed to Lilljeborg, 1860. This has been duly<br />

checked. Boschma lived [from] 1893–1976 and<br />

cannot possibly be <strong>the</strong> author <strong>of</strong> <strong>the</strong>se two families.<br />

Holthuis and I consulted Lilljeborg’s 1860 publication,<br />

a copy <strong>of</strong> which is in our library; <strong>the</strong>re is<br />

not a shadow <strong>of</strong> a doubt concerning his authorship.’’<br />

The family Sylonidae (Sylidae in Bowman<br />

and Abele) has been subsumed within <strong>the</strong> Clistosaccidae<br />

Boschma, which is now included in <strong>the</strong><br />

Akentrogonida (J. Høeg, pers. comm.).<br />

Within <strong>the</strong> Akentrogonida, three new families<br />

(Duplorbidae, Mycetomorphidae, and Thompsoniidae)<br />

were described by Høeg and Rybakov (1992)<br />

and one new family (Polysaccidae) was added by<br />

Lützen and Takahashi (1996). The Chthamalophilidae<br />

is recognized as a valid family (also following<br />

Høeg and Rybakov, 1992), and, as noted above,<br />

<strong>the</strong> Clistosaccidae was transferred into <strong>the</strong> Akentrogonida<br />

from <strong>the</strong> Kentrogonida.<br />

SUPERORDER THORACICA<br />

Although few new extant families have been suggested<br />

since 1982, <strong>the</strong>re have been significant rearrangements<br />

<strong>of</strong> <strong>the</strong> cirripedes (or attempts to rearrange<br />

<strong>the</strong>m) by workers using morphological and<br />

molecular data. Perhaps <strong>the</strong> most comprehensive is<br />

<strong>the</strong> cladistic study by Glenner et al. (1995), who<br />

concluded that many currently recognized groups<br />

appear to be paraphyletic, including <strong>the</strong> groups that<br />

appear in our classification under <strong>the</strong> headings ‘‘Lepadomorpha’’<br />

and ‘‘Pedunculata.’’ However, Glenner<br />

et al. (1995) also noted that ‘‘we have far to go<br />

before a new taxonomy can emerge’’ and suggested<br />

<strong>the</strong> continued use <strong>of</strong> such commonly used terms as<br />

‘‘lepadomorphs’’ or ‘‘pedunculates’’ as long as<br />

workers understand that <strong>the</strong>se are groupings more<br />

<strong>of</strong> convenience than <strong>of</strong> common descent. We are<br />

not in agreement with this philosophy and would<br />

prefer to recognize taxa that reflect common descent,<br />

but in this group, it is apparent that we are<br />

not yet at <strong>the</strong> point where we know which clades<br />

are valid.<br />

For <strong>the</strong> most part, we have followed <strong>the</strong> classification<br />

<strong>of</strong> <strong>the</strong> Thoracica given by Newman (1996).<br />

Thus, we are recognizing <strong>the</strong> order Pedunculata (an<br />

old name that was previously thought to lack validity<br />

but that Newman (1996) feels is a natural<br />

assemblage and thus has resurrected) as containing<br />

four suborders. Some <strong>of</strong> <strong>the</strong> names in this order<br />

(e.g., Heteralepadomorpha, Iblomorpha, Scalpellomorpha)<br />

are credited to Newman (1987), although<br />

it is clear that <strong>the</strong>se higher taxon names are<br />

based on older works, which perhaps should be<br />

credited as <strong>the</strong> taxon author and date if we were<br />

to closely adhere to ICZN article 50.3.1 as extended<br />

to higher taxa. Many <strong>of</strong> <strong>the</strong> families now treated<br />

in <strong>the</strong>se four suborders were elevated from subfamily<br />

status by Newman (1987). For example, within<br />

<strong>the</strong> Scalpellomorpha, only <strong>the</strong> family Scalpellidae<br />

Pilsbry is also found in <strong>the</strong> Bowman and Abele<br />

(1982) classification. Within <strong>the</strong> resurrected order<br />

Sessilia (see Newman, 1987; Buckeridge, 1995), <strong>the</strong><br />

brachylepadomorph family Neobrachylepadidae<br />

was described by Newman and Yamaguchi (1995)<br />

and <strong>the</strong> verrucomorph family Neoverrucidae was<br />

described by Newman (1989, in Newman and Hessler,<br />

1989:268; see also Newman, 1989). Within<br />

<strong>the</strong> Balanomorpha, Buckeridge (1983) added <strong>the</strong><br />

superfamily Chionelasmatoidea, containing <strong>the</strong> single<br />

family Chionelasmatidae. Suggestions for evolutionary<br />

radiations within <strong>the</strong> Balanomorpha were<br />

presented by Yamaguchi and Newman (1990). A<br />

recent molecular analysis <strong>of</strong> several thoracican taxa<br />

(Harris et al., 2000) suggests that <strong>the</strong> sessile barnacles<br />

are monophyletic but that <strong>the</strong> pedunculate<br />

forms (our Pedunculata) may not be.<br />

SUBCLASS TANTULOCARIDA<br />

The Tantulocarida, bizarre parasites <strong>of</strong> o<strong>the</strong>r deepsea<br />

crustaceans, were known as early as <strong>the</strong> beginning<br />

<strong>of</strong> <strong>the</strong> 20th century (reviewed by Huys, 1990e,<br />

1991; Boxshall, 1991, 1996) but were recognized<br />

as a distinct class <strong>of</strong> <strong>Crustacea</strong> only in 1983<br />

(Boxshall and Lincoln, 1983), just too late for inclusion<br />

by Bowman and Abele (1982). They have<br />

since been relegated to a subclass or infraclass within<br />

<strong>the</strong> Thecostraca or have been proposed as <strong>the</strong><br />

sister group to <strong>the</strong> Thecostraca within <strong>the</strong> Maxillopoda<br />

(e.g., Boxshall and Huys, 1989a; Boxshall,<br />

1991; Huys et al., 1993). Our classification follows<br />

that <strong>of</strong> Huys (1990e) (see also Huys, 1991, where<br />

two families are also described). Discussions <strong>of</strong> <strong>the</strong><br />

relationships <strong>of</strong> tantulocaridans (all <strong>of</strong> which lack<br />

Contributions in Science, Number 39 Rationale � 23


ecognizable cephalic limbs, o<strong>the</strong>r than paired antennules<br />

in one known stage, which makes elucidation<br />

<strong>of</strong> <strong>the</strong>ir affinities very difficult) to o<strong>the</strong>r<br />

<strong>Crustacea</strong> can be found in <strong>the</strong> above works as well<br />

as in Boxshall and Lincoln (1987) and Huys et al.<br />

(1993). Newman (pers. comm.) feels that, based on<br />

<strong>the</strong> placement <strong>of</strong> <strong>the</strong> male and female genital apertures<br />

and based also on <strong>the</strong> fact that <strong>the</strong> male<br />

genital aperture empties at <strong>the</strong> end <strong>of</strong> a median intromittant<br />

organ, tantulocarids are so closely related<br />

to <strong>the</strong> Thecostraca that placement within <strong>the</strong><br />

subclass Thecostraca may be warranted. Certainly<br />

<strong>the</strong>y appear more closely related to <strong>the</strong> Thecostraca<br />

than to any o<strong>the</strong>r maxillopodan group (W. Newman,<br />

pers. comm.; J. Høeg, pers. comm.; and some<br />

<strong>of</strong> <strong>the</strong> above references). However, for <strong>the</strong> present<br />

classification, we have retained <strong>the</strong>m as a separate<br />

group within <strong>the</strong> Maxillopoda but not within <strong>the</strong><br />

Thecostraca. Separate status <strong>of</strong> <strong>the</strong> Thecostraca and<br />

Tantulocarida was also suggested on morphological<br />

grounds by Boxshall and Huys (1989a), although<br />

we have not closely followed <strong>the</strong>ir proposed arrangement<br />

(<strong>the</strong>ir fig. 6) for <strong>the</strong> organization <strong>of</strong> <strong>the</strong><br />

Maxillopoda.<br />

The unusual and confusing life cycle <strong>of</strong> <strong>the</strong> tantulocarids<br />

is now more completely known, thanks<br />

to <strong>the</strong> work <strong>of</strong> Boxshall and Lincoln (1987) and<br />

Huys et al. (1993). Based on <strong>the</strong>se works and because<br />

<strong>of</strong> <strong>the</strong> gap still remaining in <strong>the</strong> known tantulocarid<br />

life cycle, <strong>the</strong> possibility that y-larvae (<strong>the</strong><br />

Facetotecta) might belong to this taxon has at least<br />

been considered (M. Grygier, pers. comm.; see earlier<br />

discussion under Facetotecta).<br />

SUBCLASS BRANCHIURA<br />

To our knowledge, this subclass, containing a single<br />

order and family, has not changed since Bowman<br />

and Abele (1982) (see also Gruner, 1996). Bill Poly<br />

(pers. comm.) alerted us to <strong>the</strong> fact that, although<br />

<strong>the</strong> order Arguloida is <strong>of</strong>ten credited to Rafinesque<br />

(1815), Rafinesque employed only <strong>the</strong> term ‘‘Argulia’’<br />

without treating it as a family or order. The<br />

first person to use <strong>the</strong> name as an order was apparently<br />

S. Yamaguti (1963, as Argulidea) (B. Poly,<br />

pers. comm.). Bowman and Abele (1982) credited<br />

<strong>the</strong> family name to Leach (1819) (as did Yamaguti,<br />

1963, and Gruner, 1996). Although Leach’s usage<br />

appeared after Rafinesque’s work, we have credited<br />

Leach with recognition <strong>of</strong> <strong>the</strong> family and Yamaguti<br />

(1963) for <strong>the</strong> order, despite Rafinesque’s original<br />

(1815) use <strong>of</strong> ‘‘Argulia,’’ which <strong>of</strong> course became<br />

<strong>the</strong> basis <strong>of</strong> both family and order names. Yamaguti<br />

(1963) also established <strong>the</strong> family Dipteropeltidae,<br />

and some subsequent workers (e.g., Overstreet et<br />

al., 1992; Young, 1998) have continued to recognize<br />

it, although we do not.<br />

SUBCLASS PENTASTOMIDA<br />

One <strong>of</strong> <strong>the</strong> most contentious changes in <strong>the</strong> new<br />

classification is <strong>the</strong> inclusion within <strong>the</strong> <strong>Crustacea</strong><br />

Maxillopoda <strong>of</strong> <strong>the</strong> former phylum Pentastomida,<br />

all members <strong>of</strong> which are, as adults, parasites in <strong>the</strong><br />

respiratory passages <strong>of</strong> vertebrates (see reviews by<br />

Riley, 1986, and Palmer et al., 1993). <strong>An</strong> alliance<br />

between pentastomes and branchiuran crustaceans<br />

was first suggested on <strong>the</strong> basis <strong>of</strong> sperm morphology<br />

some 29 years ago (Wingstrand, 1972; see also<br />

Wingstrand, 1978; Riley et al., 1978; Grygier,<br />

1983). Inclusion <strong>of</strong> pentastomes among <strong>the</strong> <strong>Crustacea</strong><br />

was actually considered but rejected by Bowman<br />

and Abele (1982), who at <strong>the</strong> time felt that<br />

insufficient evidence was available on that issue.<br />

Ironically, it was Abele et al. (1989) (see also Abele<br />

et al., 1992) who finally confirmed this relationship<br />

(although some would debate whe<strong>the</strong>r this was<br />

confirmed or not) by comparison <strong>of</strong> 18S rRNA sequences.<br />

Additional supporting spermatological evidence<br />

has accumulated since that publication (e.g.,<br />

Storch, 1984; Storch and Jamieson, 1992). Storch<br />

and Jamieson (1992) concluded that ‘‘a sister-group<br />

relationship <strong>of</strong> pentastomids and Branchiura . . . is<br />

confirmed’’ and that ‘‘<strong>the</strong> sperm <strong>of</strong> <strong>the</strong> pentastomebranchiuran<br />

assemblage appear to be <strong>the</strong> most<br />

highly evolved <strong>of</strong> <strong>the</strong> flagellate crustacean sperm.’’<br />

Some modern invertebrate texts now treat <strong>the</strong> pentastomids<br />

as crustaceans (e.g., Brusca and Brusca,<br />

1990; Ruppert and Barnes, 1994). Brusca and Brusca<br />

(1990) mention additional evidence such as similarities<br />

in <strong>the</strong> type <strong>of</strong> embryogenesis, cuticular fine<br />

structure, and arrangement <strong>of</strong> <strong>the</strong> nervous system.<br />

Never<strong>the</strong>less, <strong>the</strong> amazing discovery <strong>of</strong> fossils<br />

from Middle Cambrian limestones that are extremely<br />

similar to extant pentastomes (Walossek<br />

and Müller, 1994; Walossek et al., 1994) would<br />

seem to cast doubt on placing <strong>the</strong>m within <strong>the</strong><br />

<strong>Crustacea</strong> (see discussions in Walossek and Müller,<br />

1994, 1998; also Almeida and Christ<strong>of</strong>fersen,<br />

1999) and certainly would argue against <strong>the</strong>ir being<br />

maxillopods. If <strong>the</strong>se fossils are indeed related to<br />

modern-day pentastomids (an issue we feel is not<br />

yet settled, but see Almeida and Christ<strong>of</strong>fersen,<br />

1999, for a dissenting opinion), <strong>the</strong>n this finding<br />

would dispel any notion that <strong>the</strong> pentastomes are<br />

a recently derived group. Walossek and Müller<br />

(1994) make <strong>the</strong> point that, if pentastomids are related<br />

to branchiurans, <strong>the</strong>n <strong>the</strong> morphology <strong>of</strong> <strong>the</strong><br />

two groups as well as <strong>the</strong>ir modes <strong>of</strong> development<br />

have differed markedly for more than 500 million<br />

years, such that present day similarities <strong>of</strong> <strong>the</strong>ir<br />

sperm morphology might seem to carry less weight.<br />

If <strong>the</strong> Cambrian fossils are indeed pentastomids—<br />

appearing hundreds <strong>of</strong> millions <strong>of</strong> years before<br />

most <strong>of</strong> <strong>the</strong>ir present day hosts were on <strong>the</strong> scene—<br />

we must rethink whe<strong>the</strong>r we can accept such a major<br />

divergence in body plan so soon after <strong>the</strong> <strong>Crustacea</strong><br />

itself appears in <strong>the</strong> fossil record. Thus, our<br />

inclusion <strong>of</strong> <strong>the</strong>m here represents an acceptance <strong>of</strong><br />

<strong>the</strong> available molecular and sperm morphology<br />

data (for additional molecular support, see Garey<br />

et al., 1996, and Eernisse, 1997) over apparently<br />

sound fossil evidence to <strong>the</strong> contrary; this may<br />

prove to be an error. Brusca (2000) suggests a way<br />

to reconcile <strong>the</strong> issues if early pentastomids were<br />

24 � Contributions in Science, Number 39 Rationale


parasites <strong>of</strong> early fish-like vertebrates as represented<br />

by <strong>the</strong> conodonts, many <strong>of</strong> which were present in<br />

<strong>the</strong> Cambrian.<br />

The classification we follow for <strong>the</strong> pentastomids<br />

is from Riley (1986; see also Riley et al., 1978).<br />

This classification has been questioned recently by<br />

Almeida and Christ<strong>of</strong>fersen (1999), who do not<br />

consider pentastomes to be crustaceans. Almeida<br />

and Christ<strong>of</strong>fersen suggest, based on a cladistic<br />

analysis <strong>of</strong> available genera, <strong>the</strong> recognition <strong>of</strong> <strong>the</strong><br />

Raillietiellida as a new order to contain <strong>the</strong>ir new<br />

family Raillietiellidae (for <strong>the</strong> genus Raillietiella),<br />

<strong>the</strong> recognition <strong>of</strong> <strong>the</strong> Reighardiida as a new order<br />

to contain <strong>the</strong> family Reighardiidae, and <strong>the</strong> dissolution<br />

<strong>of</strong> <strong>the</strong> family Sambonidae. Additionally,<br />

<strong>the</strong> Porocephalida was partitioned by <strong>the</strong>m into<br />

two superfamilies. We have not followed <strong>the</strong> Almeida<br />

and Christ<strong>of</strong>fersen (1999:702) classification<br />

here.<br />

Authority for <strong>the</strong> taxon name Pentastomida was<br />

somewhat difficult to decipher. Riley (pers. comm.)<br />

informs us that <strong>the</strong> name ‘‘Pentastomum’’ was first<br />

employed by Rudolphi (1819) to refer to a single<br />

species, and several workers (e.g., Almeida and<br />

Christ<strong>of</strong>fersen, 1999) credit <strong>the</strong> taxon name Pentastomida<br />

to Rudolphi. We have been unable to locate<br />

a work by Rudolphi in 1819 and suspect that<br />

Rudolphi, 1809, was <strong>the</strong> intended reference, as Rudolphi<br />

described <strong>the</strong> genus Pentastoma and used<br />

<strong>the</strong> group name Pentastomata in this 1809 work<br />

(L. Holthuis, pers. comm.). Diesing (1836) first<br />

used it (as Pentastoma) for <strong>the</strong> entire group, although<br />

<strong>the</strong> rank was not given. Elevation to phylum<br />

status was not suggested until 1969 (Self,<br />

1969), although his evidence and reasoning were<br />

flawed (Riley, pers. comm.). Prior to that, <strong>the</strong>re<br />

were various spellings and ranks assigned (e.g., by<br />

Heymons, 1935; Fain, 1961; and o<strong>the</strong>rs; see Riley,<br />

1986). Thus, because Diesing was <strong>the</strong> first to use<br />

<strong>the</strong> name Pentastoma for <strong>the</strong> entire assemblage, we<br />

have attributed <strong>the</strong> authorship <strong>of</strong> <strong>the</strong> Pentastomida<br />

to him.<br />

Riley (1986) also was <strong>of</strong> <strong>the</strong> opinion that pentastomids<br />

were allied with arthropods and probably<br />

with crustaceans, noting that ‘‘<strong>the</strong> available evidence<br />

overwhelmingly indicates that pentastomids<br />

are euarthropods and, more specifically, that <strong>the</strong>ir<br />

affinities are closer to crustaceans than uniramians.’’<br />

More recently, however, he has indicated that<br />

<strong>the</strong> return to <strong>the</strong> status <strong>of</strong> separate phylum is probably<br />

warranted (pers. comm., 1998). Riley’s (1986)<br />

classification (his table 1), which we have followed,<br />

recognized nine families in two orders. Two suborders<br />

<strong>of</strong> <strong>the</strong> Porocephalida are mentioned in Riley’s<br />

text, but he chose not to recognize <strong>the</strong>m in his<br />

table, and we have followed his lead.<br />

The inclusion <strong>of</strong> pentastomids among <strong>the</strong> <strong>Crustacea</strong><br />

takes <strong>the</strong> known morphological diversity and<br />

lifestyle extremes <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>—already far<br />

greater than for any o<strong>the</strong>r taxon on earth—to new<br />

heights. How many o<strong>the</strong>r predominantly marine invertebrate<br />

taxa can claim to have representatives<br />

living in <strong>the</strong> respiratory passages <strong>of</strong> crocodilians,<br />

reindeer, and lions?<br />

SUBCLASS MYSTACOCARIDA, ORDER<br />

MYSTACOCARIDIDA<br />

To our knowledge, <strong>the</strong>re have been no suggested<br />

changes in <strong>the</strong> classification <strong>of</strong>, or in our understanding<br />

<strong>of</strong> <strong>the</strong> phylogeny <strong>of</strong>, <strong>the</strong> mystacocarids<br />

since Bowman and Abele (1982). The subclass continues<br />

to be represented by a single extant order<br />

(Mystacocaridida) and family (Derocheilocarididae).<br />

In <strong>the</strong>ir review <strong>of</strong> crustacean relationships<br />

based on 18S rDNA, Spears and Abele (1997) noted,<br />

within <strong>the</strong> maxillopodan groups, that ‘‘<strong>the</strong> long<br />

branch leading to <strong>the</strong> first lineage, <strong>the</strong> Mystacocarida,<br />

indicates extensive divergence relative to o<strong>the</strong>r<br />

crustaceans.’’ Schram et al. (1997) suggest a mystacocarid<br />

� copepod lineage; a relationship with<br />

copepods has also been suggested by Boxshall and<br />

Huys (1989) and Walossek and Muller (1998). The<br />

group was most recently reviewed by Boxshall and<br />

Defaye (1996) and Olesen (2001).<br />

SUBCLASS COPEPODA<br />

What could have been a truly daunting task for us<br />

has been made considerably easier by <strong>the</strong> relatively<br />

recent publication <strong>of</strong> Copepod Evolution by Huys<br />

and Boxshall (1991), by Damkaer’s (1996) list <strong>of</strong><br />

families <strong>of</strong> copepods (along with <strong>the</strong>ir type genus),<br />

and by three recent treatments <strong>of</strong> copepods by Razouls<br />

(1996, free-living copepods), Raibaut (1996,<br />

parasitic copepods), and Razouls and Raibaut<br />

(1996, phylogeny and classification). Our acceptance<br />

<strong>of</strong> <strong>the</strong> Huys and Boxshall classification resulted<br />

in 26 families that have been added, while<br />

18 families recognized by Bowman and Abele have<br />

been replaced, resulting in a net gain <strong>of</strong> 8 families.<br />

Additional families have been described or recognized<br />

since <strong>the</strong>n (listed below). Huys and Boxshall<br />

(1991) proposed some ra<strong>the</strong>r sweeping changes in<br />

some <strong>of</strong> <strong>the</strong> higher taxonomic levels as well. Indeed,<br />

most <strong>of</strong> <strong>the</strong> suborders and superfamilies appearing<br />

in <strong>the</strong> Bowman and Abele (1982) list have been<br />

suppressed. This tack was taken also by Damkaer<br />

(1996), although he does not cite Huys and Boxshall.<br />

Where <strong>the</strong> two classifications differ, we tended<br />

to follow Huys and Boxshall (1991), and readers<br />

are referred to that tome for arguments underlying<br />

<strong>the</strong>se changes. However, we must also point out<br />

that not everyone has accepted <strong>the</strong> changes suggested<br />

by Huys and Boxshall (1991) (see especially<br />

<strong>the</strong> critique by Ho, 1994a). Indeed, Huys continues<br />

to use <strong>the</strong> superfamily concept in some instances<br />

(see Huys and Lee, 1999, for <strong>the</strong> Laophontoidea)<br />

even though it was not used in Huys and Boxshall<br />

(1991). W. Vervoort (pers. comm.) reminds us that<br />

‘‘a subdivision <strong>of</strong> a subclass <strong>the</strong> size as that <strong>of</strong> <strong>the</strong><br />

Copepoda will always remain a matter <strong>of</strong> personal<br />

choice,’’ and indeed some <strong>of</strong> <strong>the</strong> changes advocated<br />

by Huys and Boxshall have been corrected by <strong>the</strong>se<br />

same authors in subsequent personal communica-<br />

Contributions in Science, Number 39 Rationale � 25


tions, as noted below. These changes represent not<br />

a capricious nature but our constantly changing understanding<br />

<strong>of</strong> a tremendously diverse group <strong>of</strong> organisms.<br />

Just prior to <strong>the</strong> publication <strong>of</strong> Huys and Boxshall’s<br />

book, Ho (1990) presented a cladistic analysis<br />

<strong>of</strong> <strong>the</strong> orders <strong>of</strong> <strong>the</strong> copepods. The results <strong>of</strong><br />

that analysis differ in several significant ways from<br />

<strong>the</strong> classification <strong>of</strong> Huys and Boxshall (and thus<br />

from our classification). For example, Ho (1990)<br />

recognized a gymnoplean clade that included <strong>the</strong><br />

Platycopioidea and Calanoidea, and this clade was<br />

<strong>the</strong> sister group to <strong>the</strong> remaining copepod orders.<br />

In contrast, Huys and Boxshall (1991) treated <strong>the</strong><br />

Platycopioidea as being outside <strong>of</strong> <strong>the</strong> Gymnoplea.<br />

There are o<strong>the</strong>r differences as well, such as <strong>the</strong><br />

placement <strong>of</strong> <strong>the</strong> monstrilloids and cyclopoids. Ho<br />

(1990) consistently placed <strong>the</strong>se taxa near each o<strong>the</strong>r,<br />

whereas Huys and Boxshall (1991) separate<br />

<strong>the</strong>m in <strong>the</strong>ir classification, at least implying that<br />

<strong>the</strong>y are not closely related. In his subsequent critique<br />

<strong>of</strong> <strong>the</strong> Huys and Boxshall (1991) phylogeny,<br />

Ho (1994a) pointed out an alternative phylogeny<br />

where <strong>the</strong> Misophrioida was depicted as <strong>the</strong> sister<br />

group to <strong>the</strong> remaining seven orders <strong>of</strong> <strong>the</strong> Podoplea.<br />

For an in-depth review <strong>of</strong> recent attempts at<br />

producing copepod phylogenies, interested readers<br />

should consult Huys and Boxshall (1991) and <strong>the</strong><br />

critique by Ho (1994a). A more recent molecular<br />

study (Braga et al., 1999) <strong>of</strong> relationships among<br />

<strong>the</strong> Poecilostomatoida, Calanoida, and Harpacticoida<br />

yielded somewhat different results, with <strong>the</strong><br />

Poecilostomatoida depicted as basal to <strong>the</strong> calanoids<br />

and harpacticoids, in contrast with <strong>the</strong> abovementioned<br />

morphology-based hypo<strong>the</strong>ses.<br />

The review <strong>of</strong> copepod phylogeny and classification<br />

presented by Razouls and Raibaut (1996)<br />

(based in part on Boxshall, 1983, 1986; Boxshall<br />

et al., 1984; Por, 1984) recognizes 10 orders <strong>of</strong> copepods,<br />

as did Huys and Boxshall (1991). However,<br />

Razouls and Raibaut (1996) did not list <strong>the</strong><br />

orders under superorders or subclasses, preferring<br />

instead to treat each order separately and refrain<br />

from phylogenetic hypo<strong>the</strong>ses (although <strong>the</strong>y reproduce<br />

<strong>the</strong> ‘‘tree’’ <strong>of</strong> important events in <strong>the</strong> evolution<br />

<strong>of</strong> copepods from Boxshall, 1986). Also, <strong>the</strong> list <strong>of</strong><br />

accepted families within each order is not always<br />

<strong>the</strong> same in <strong>the</strong> two treatments. The included families<br />

are not always given by Razouls and Raibaut<br />

(1996), and <strong>the</strong>re are differences in <strong>the</strong> names and<br />

dates assigned to some <strong>of</strong> <strong>the</strong> families. It is also<br />

apparent that some phylogenetic information may<br />

be forthcoming from detailed studies <strong>of</strong> copepod<br />

developmental (naupliar and copepodid) stages<br />

(e.g., see Dahms, 1990, 1993), but <strong>the</strong> data to date<br />

are preliminary and incomplete (Dahms, 1990).<br />

M. Grygier informs us (pers. comm.) that <strong>the</strong><br />

correct date for <strong>the</strong> many copepod taxa named by<br />

Giesbrecht should perhaps be 1893 ra<strong>the</strong>r than<br />

1892; he refers to Scott’s (1909) note in <strong>the</strong> Siboga<br />

Expedition (a note added to <strong>the</strong> entry for Giesbrecht’s<br />

Naples volume in <strong>the</strong> reference list <strong>of</strong> Scott,<br />

1909). We have not seen Scott’s 1909 reference list,<br />

but <strong>the</strong> date 1893 has been confirmed by W. Vervoort<br />

(pers. comm.), who additionally notes that<br />

Scott was a contemporary <strong>of</strong> Giesbrecht and that<br />

<strong>the</strong>re is <strong>the</strong>refore ‘‘no reason at all to doubt [his]<br />

accuracy.’’ We have thus used this date (1893) instead<br />

<strong>of</strong> <strong>the</strong> <strong>of</strong>ten-used 1892.<br />

Publications describing or recognizing additional<br />

families subsequent to Bowman and Abele (1982),<br />

some <strong>of</strong> which appeared too late for inclusion in<br />

(or subsequent to) Huys and Boxshall (1991), are<br />

listed in <strong>the</strong> following sections on copepod orders.<br />

ORDER PLATYCOPIOIDA<br />

This newly recognized order (established by Fosshagen,<br />

1985, in Fosshagen and Iliffe, 1985) is<br />

based on <strong>the</strong> family Platycopiidae Sars, 1911, and<br />

currently contains only that family and its four genera<br />

(Platycopia, Nanocopia, Sarsicopia, and <strong>An</strong>trisocopia).<br />

Because Sars established <strong>the</strong> family Platycopiidae,<br />

an argument could be made that Sars<br />

should be <strong>the</strong> name associated with <strong>the</strong> higher taxon<br />

as well, although most workers credit Fosshagen<br />

(correctly) and/or Fosshagen and Iliffe (1985).<br />

ORDER CALANOIDA<br />

Publications with newly described calanoid taxa include<br />

Fosshagen and Iliffe (1985; Boholinidae),<br />

Suarez-Morales and Iliffe (1996; Fosshageniidae),<br />

Ohtsuka, Roe, and Boxshall (1993; Hyperbionychidae),<br />

and Ferrari and Markhaseva (1996; Parkiidae).<br />

Suarez-Morales and Iliffe (1996) also erected<br />

a superfamily, <strong>the</strong> Fosshagenioidea, to accommodate<br />

<strong>the</strong>ir new family Fosshageniidae, but in<br />

keeping with our decision to follow <strong>the</strong> Huys and<br />

Boxshall (1991) classification, which avoids superfamilies,<br />

we have not included that taxon, instead<br />

listing <strong>the</strong> Fosshageniidae alphabetically among <strong>the</strong><br />

o<strong>the</strong>r calanoid families. The family name Phyllopodidae<br />

has been replaced (because an older use <strong>of</strong><br />

<strong>the</strong> name Phyllopus was suppressed only for purposes<br />

<strong>of</strong> synonymy and not homonymy; G. Boxshall,<br />

pers. comm.), and <strong>the</strong> family name erected to<br />

replace it is Nullosetigeridae (Soh et al., 1999). The<br />

very similar spelling <strong>of</strong> <strong>the</strong> families Pseudocyclopidae<br />

and Pseudocyclopiidae, pointed out earlier by<br />

some readers as a possible error, is in fact correct<br />

and results from <strong>the</strong> former being based on <strong>the</strong> genus<br />

Pseudocyclops Brady while <strong>the</strong> latter is based<br />

on <strong>the</strong> genus Pseudocyclopia Scott (G. Boxshall,<br />

pers. comm.). Park (1986) presented a brief discussion<br />

<strong>of</strong> calanoid phylogeny (based largely on that<br />

<strong>of</strong> <strong>An</strong>dronov, 1974); more recently, Braga et al.<br />

(1999) examined relationships among calanoid superfamilies<br />

using 28s rRNA data.<br />

ORDER MISOPHRIOIDA<br />

Two new families <strong>of</strong> misophrioidans, <strong>the</strong> Palpophriidae<br />

and Speleophriidae, both comprising genera<br />

found in anchialine habitats, were described by<br />

26 � Contributions in Science, Number 39 Rationale


Boxshall and Jaume (2000, see also 1999). The palpophriids<br />

and misophriids constitute a clade that is<br />

<strong>the</strong> sister group to <strong>the</strong> Speleophriidae (Boxshall and<br />

Jaume, 1999).<br />

ORDER CYCLOPOIDA<br />

Papers with new cyclopoid taxa include Boxshall<br />

(1988; Chordeumiidae), Ho and Thatcher (1989;<br />

Ozmanidae [<strong>of</strong> interest because this family is based<br />

on a new genus and species from a freshwater snail,<br />

making it, according to <strong>the</strong> authors, <strong>the</strong> ‘‘first parasitic<br />

copepod ever recorded from a freshwater invertebrate’’]),<br />

da Rocha and Iliffe (1991; Speleoithonidae),<br />

and Ho et al. (1998; Fratiidae). The<br />

family Thespesiopsyllidae has been removed, as it<br />

is an objective synonym <strong>of</strong> Thaumatopsyllidae (see<br />

McKinnon, 1994). The family Mantridae, originally<br />

placed in <strong>the</strong> Poecilostomatoida, was transferred<br />

to <strong>the</strong> Cyclopoida by Huys (1990d).<br />

We initially removed from <strong>the</strong> cyclopoids <strong>the</strong> Botrylophyllidae<br />

and Buproridae, following Huys and<br />

Boxshall (1991). Illg and Dudley (1980) recognized<br />

<strong>the</strong>se as subfamilies <strong>of</strong> <strong>the</strong> Ascidicolidae (along<br />

with five o<strong>the</strong>r subfamilies), and Huys and Boxshall<br />

(1991) followed that arrangement. However, Huys<br />

(pers. comm.) has suggested that <strong>the</strong> Buproridae<br />

(and also <strong>the</strong> Botrylophyllidae; see below) should<br />

be reinstated. G. Boxshall (pers. comm.) also feels<br />

that <strong>the</strong> Ascidicolidae, as constituted, ‘‘is too heterogeneous<br />

and <strong>the</strong> Buproridae at least should be<br />

accorded separate family status.’’ However, <strong>the</strong> situation<br />

with <strong>the</strong> Botrylophyllidae is more problematic,<br />

one problem being that it is a junior synonym<br />

<strong>of</strong> <strong>the</strong> Schizoproctidae (Illg and Dudley, 1980; G.<br />

Boxshall, pers. comm.); Boxshall (pers. comm.)<br />

feels that most, but not all, <strong>of</strong> <strong>the</strong> seven ascidicolid<br />

subfamilies recognized by Illg and Dudley (1980)<br />

‘‘will eventually be given full family status.’’ Thus,<br />

we have reinstated <strong>the</strong> Buproridae but not <strong>the</strong> Botrylophyllidae.<br />

The former families Enterocolidae,<br />

Enteropsidae, and Schizoproctidae were also reduced<br />

to subfamilies <strong>of</strong> <strong>the</strong> Ascidicolidae by Illg<br />

and Dudley (1980), according to J.-S. Ho (pers.<br />

comm.). The family Cucumaricolidae was transferred<br />

here from <strong>the</strong> Poecilostomatoidea following<br />

Huys and Boxshall (1991), among o<strong>the</strong>r such<br />

changes (see <strong>the</strong>ir book). O<strong>the</strong>r changes to <strong>the</strong><br />

Bowman and Abele (1982) list include <strong>the</strong> removal<br />

<strong>of</strong> <strong>the</strong> Doropygidae (long known to be a synonym<br />

<strong>of</strong> <strong>the</strong> Notodelphyidae) and <strong>the</strong> Namakosiramiidae<br />

(a synonym <strong>of</strong> <strong>the</strong> harpacticoid family Laophontidae)<br />

(J.-S. Ho, pers. comm.; G. Boxshall, pers.<br />

comm.). Ho (1994b) discussed cyclopoid phylogeny<br />

(based on cladistic analysis <strong>of</strong> <strong>the</strong> 10 families<br />

known at that time) and concluded that parasitism<br />

had arisen twice in <strong>the</strong> group.<br />

ORDERS GELYELLOIDA AND<br />

MORMONILLOIDA<br />

The order Gelyelloida was established by Huys<br />

(1988) for <strong>the</strong> family Gelyellidae, treated in <strong>the</strong> past<br />

as a harpacticoid family and listed as ‘‘infraorder<br />

incertae cedis’’ by Bowman and Abele (1982:11).<br />

The Mormonilloida is unchanged, consisting still <strong>of</strong><br />

<strong>the</strong> single family Mormonillidae.<br />

ORDER HARPACTICOIDA<br />

Papers describing new harpacticoid taxa (or elevating<br />

former subfamilies) include Huys (1990a, Adenopleurellidae;<br />

1990b, Hamondiidae, Ambunguipedidae;<br />

1990c, Cristacoxidae, Orthopsyllidae),<br />

Por (1986, Argestidae, Huntemanniidae, Paranannopidae<br />

[revised by Huys and Gee, 1996], Rhizothricidae<br />

[splitting <strong>the</strong> polyphyletic Cletodidae]),<br />

Fiers (1990, Cancrincolidae), Huys and Willems<br />

(1989, Laophontopsidae, Normanellidae; see also<br />

Huys and Lee, 1999), Huys and Iliffe (1998, Novocriniidae),<br />

Huys (1988, Rotundiclipeidae), Huys<br />

(1993, Styracothoracidae), and Huys (1997, Superornatiremidae).<br />

Huys and Lee (1999) elevated to<br />

family level <strong>the</strong> Cletopsyllinae, formerly a subfamily<br />

<strong>of</strong> <strong>the</strong> Normanellidae (following Huys and Willems,<br />

1989). The Paranannopidae established by<br />

Por (1986) was relegated to a subfamily <strong>of</strong> <strong>the</strong><br />

Pseudotachidiidae by Willen (1999); <strong>the</strong> Pseudotachidiidae<br />

was formerly a subfamily <strong>of</strong> <strong>the</strong> Thalestriidae.<br />

Huys et al. (1996) referred to this assemblage<br />

(<strong>the</strong> Paranannopidae) as <strong>the</strong> Danielsseniidae<br />

Huys and Gee because Paranannopidae was based<br />

on an unavailable genus name. Thus, <strong>the</strong> family<br />

Paranannopidae (� <strong>the</strong> Danielsseniidae <strong>of</strong> Huys et<br />

al., 1996) does not appear in our list, as it is considered<br />

a subfamily <strong>of</strong> <strong>the</strong> Pseudotachiidae following<br />

Willen’s (1999) preliminary study. The subfamily<br />

Leptastacinae Lang was upgraded to a family by<br />

Huys (1992). The family Gelyellidae, treated by<br />

Bowman and Abele (1982) as a harpacticoid family,<br />

was transferred to its own order, Gelyelloida,<br />

by Huys (1988). Relationships among <strong>the</strong> laophontoidean<br />

families were addressed by Huys (1990b)<br />

and Huys and Lee (1999).<br />

Arbizu and Moura (1994) found <strong>the</strong> family Cylindropsyllidae<br />

polyphyletic and elevated <strong>the</strong> former<br />

subfamily Leptopontiinae to family level (family<br />

Leptopontiidae). Although <strong>the</strong>y also suggested<br />

that <strong>the</strong> family Cylindropsyllidae should be relegated<br />

to a subfamily <strong>of</strong> <strong>the</strong> Canthocamptidae, we<br />

have retained <strong>the</strong> family Cylindropsyllidae for now<br />

(and on <strong>the</strong> advice <strong>of</strong> R. Huys, pers. comm.).<br />

ORDER POECILOSTOMATOIDA<br />

Papers describing new poecilostomatoid taxa include<br />

Humes (1986, <strong>An</strong><strong>the</strong>ssiidae), Humes and<br />

Boxshall (1996, <strong>An</strong>chimolgidae, Kelleriidae, Macrochironidae,<br />

Octopicolidae, Synapticolidae,<br />

Thamnomolgidae), Avdeev and Sirenko (1991, Chitonophilidae<br />

[incomplete description; tentative<br />

placement in <strong>the</strong> Poecilostomatoida is based on<br />

pers. comm. from W. Vervoort, A. Humes, and G.<br />

Boxshall]), Ho (1984, Entobiidae, Spiophanicolidae),<br />

Humes (1987, Erebonasteridae), Marchenkov<br />

and Boxshall (1995, Intramolgidae), Huys and<br />

Contributions in Science, Number 39 Rationale � 27


Böttger-Schnack (1997, Lubbockiidae), Lamb et al.<br />

(1996, Nucellicolidae), Boxshall and Huys (1989b,<br />

Paralubbockiidae), Ho and Kim (1997, Polyankylidae).<br />

The family Phyllodicolidae was transferred<br />

here from <strong>the</strong> cyclopoids by Huys and Boxshall<br />

(1991) (it still appears as a cyclopoid in Damkaer,<br />

1996).<br />

Also within <strong>the</strong> poecilostomatoids, <strong>the</strong> Lernaeosoleidae<br />

was elevated (from <strong>the</strong> Lernaeosoleinae<br />

Yamaguti, 1963) by Hogans and Benz (1990). The<br />

family Amazonicopeidae proposed by Thatcher<br />

(1986) has not been recognized; it is thought to be<br />

a synonym <strong>of</strong> <strong>the</strong> Ergasilidae by G. Boxshall (pers.<br />

comm.) and J. Ho (pers. comm., and citing Amado<br />

et al., 1995). The family <strong>An</strong>omopsyllidae (included<br />

in Bowman and Abele, 1982, and in Huys and<br />

Boxshall, 1991) is not listed here. According to G.<br />

Boxshall (pers. comm.), ‘‘<strong>the</strong> genus <strong>An</strong>omopsyllus<br />

was included in <strong>the</strong> Nereicolidae by Stock (1968),<br />

<strong>the</strong> family <strong>An</strong>omopsyllidae thus becoming a junior<br />

synonym <strong>of</strong> <strong>the</strong> Nereicolidae.’’ Laubier (1988) (unfortunately<br />

overlooked by Huys and Boxshall,<br />

1991) described both sexes <strong>of</strong> <strong>the</strong> genus and confirmed<br />

that it is a nereicolid. The family Vaigamidae<br />

proposed by Thatcher and Robertson (1984) also<br />

is not included here, as it was shown to be a synonym<br />

<strong>of</strong> <strong>the</strong> Ergasilidae by Amado et al. (1995).<br />

The Nucellicolidae, although retained for now, may<br />

prove to be a junior synonym <strong>of</strong> <strong>the</strong> Chitonophilidae<br />

(R. Huys, pers. comm.). Finally, <strong>the</strong> family Micrallectidae<br />

has been established recently (Huys,<br />

2001) to accommodate poecilostomatoid genera associated<br />

with pteropods.<br />

Ho (1984) suggested phylogenetic relationships<br />

among <strong>the</strong> nereicoliform families, indicating three<br />

main lines <strong>of</strong> evolution. Later, Ho (1991) conducted<br />

a more thorough analysis <strong>of</strong> <strong>the</strong> 47 known poecilostomatoid<br />

families, which remains <strong>the</strong> most indepth<br />

study <strong>of</strong> poecilostomatoid relationships while<br />

at <strong>the</strong> same time being somewhat preliminary in<br />

nature. Relationships <strong>of</strong> 10 poecilostomatoid families<br />

(in <strong>the</strong> lichomolgoid complex) are presented by<br />

Humes and Boxshall (1996). Unfortunately, we<br />

could not follow <strong>the</strong>ir suggestions here because <strong>of</strong><br />

<strong>the</strong> absence <strong>of</strong> knowledge concerning <strong>the</strong> o<strong>the</strong>r<br />

(nonlichomolgoid) poecilostomatoid families.<br />

ORDER SIPHONOSTOMATOIDA<br />

Papers describing new siphonostomatoid taxa include<br />

Izawa (1996, Archidactylinidae [questionable,<br />

as this is an incomplete description]), Humes<br />

and Stock (1991, Coralliomyzontidae), and Humes<br />

(1987, Ecbathyriontidae). The Herpyllobiidae<br />

(treated as siphonostomes by Huys and Boxshall,<br />

1991) have been removed to <strong>the</strong> Poecilostomatoidea<br />

(R. Huys, pers. comm.). Two new families, Dichelinidae<br />

and Codobidae, have been proposed recently<br />

for siphonostomatoid genera parasitic on<br />

echinoderms (Boxshall and Ohtsuka, 2001), and<br />

<strong>the</strong> family Scottomyzontidae (erected for Scottomyzon<br />

gibberum, a symbiont <strong>of</strong> <strong>the</strong> asteroid Aste-<br />

rias rubens) was established by Ivanenko et al.<br />

(2001).<br />

ORDER MONSTRILLOIDA<br />

With <strong>the</strong> transfer <strong>of</strong> <strong>the</strong> Thaumatopsyllidae to <strong>the</strong><br />

Cyclopoida (Huys and Boxshall, 1991; Grygier,<br />

pers. comm.), <strong>the</strong> order Monstrilloida has been reduced<br />

to a single family, Monstrillidae, which now<br />

is credited to Dana ra<strong>the</strong>r than to Giesbrecht following<br />

ICZN Opinion 1869 (M. Grygier, pers.<br />

comm.).<br />

There have also been many additional changes to<br />

<strong>the</strong> list <strong>of</strong> copepod families that are not detailed<br />

here—including additions, deletions, reinstatements<br />

<strong>of</strong> older families, corrected spellings and authors,<br />

etc.—suggested by various workers, mostly Ju-Shey<br />

Ho, Arthur Humes, H.-E. Dahms, G. Boxshall, and<br />

Rony Huys. In some cases, we did not ask for a<br />

published reference, instead taking <strong>the</strong>se workers at<br />

<strong>the</strong>ir word (and also because in some cases <strong>the</strong> suggestion<br />

has not been published).<br />

CLASS OSTRACODA<br />

This section received extensive input from Dr. <strong>An</strong>ne<br />

Cohen, and our treatment <strong>of</strong> this group is in many<br />

ways based on her impressive knowledge <strong>of</strong> this<br />

taxon. Major references included Morin and Cohen<br />

(1991), Martens (1992), Whatley et al. (1993),<br />

Hartmann and Guillaume (1996), Martens et al.<br />

(1998), and Cohen et al. (1998).<br />

Many previous workers have considered ostracodes<br />

to be a subclass <strong>of</strong> <strong>the</strong> Maxillopoda. The<br />

strongest reason for including ostracodes among<br />

maxillopods is, apparently, <strong>the</strong> presence in ostracodes<br />

<strong>of</strong> a naupliar eye with three cups and tapetal<br />

cells between <strong>the</strong> sensory and pigment cells (e.g.,<br />

see El<strong>of</strong>sson, 1992; Huvard, 1990; and earlier papers<br />

cited in <strong>the</strong>se works). This feature is found also<br />

in <strong>the</strong> Thecostraca, Branchiura, and Copepoda, and<br />

for this reason, Schram (1986), Brusca and Brusca<br />

(1990), and o<strong>the</strong>rs have placed ostracodes within<br />

<strong>the</strong> Maxillopoda (see also discussions in Grygier,<br />

1983a; Boxshall, 1992; El<strong>of</strong>sson, 1992; Cohen et<br />

al., 1998). Schram (pers. comm., and citing K.<br />

Schultz, Das Chitinskelett der Podocopida und der<br />

Frage der Metamerie dieser Gruppe, doctoral dissertation,<br />

University <strong>of</strong> Hamburg, which we have<br />

not seen) informs us that an additional apomorphy<br />

that argues for inclusion <strong>of</strong> ostracodes within <strong>the</strong><br />

Maxillopoda is <strong>the</strong> location <strong>of</strong> <strong>the</strong> gonopods.<br />

Swanson’s (1989a, b, 1990, 1991) discovery <strong>of</strong> living<br />

specimens <strong>of</strong> <strong>the</strong> primitive ostracode genus<br />

Manawa (family Punciidae) caused him to suggest<br />

<strong>the</strong> inclusion <strong>of</strong> ostracodes within <strong>the</strong> Maxillopoda<br />

as well. Cohen et al. (1998) note <strong>the</strong> following<br />

‘‘perhaps homologous morphological characters’’: a<br />

medial naupliar eye that has three cups and a tapetal<br />

layer (present in most Myodocopida and in<br />

many Podocopida), and overall reduction in body<br />

size and limb number.<br />

However, o<strong>the</strong>r workers are quick to point out<br />

28 � Contributions in Science, Number 39 Rationale


that reduction in body segmentation has occurred<br />

independently as a functional adaptation in many<br />

different and unrelated crustacean taxa and that <strong>the</strong><br />

unique features <strong>of</strong> <strong>the</strong> Ostracoda argue for <strong>the</strong>ir<br />

recognition as a separate class (see especially discussions<br />

in Newman, 1992; Boxshall, 1992; Wilson,<br />

1992). Treatment <strong>of</strong> ostracodes as a subclass<br />

<strong>of</strong> <strong>the</strong> Maxillopoda has additional problems as<br />

well. Wilson (1992) could not find support for placing<br />

<strong>the</strong> former within <strong>the</strong> latter based on morphological<br />

grounds (although Schram and H<strong>of</strong>, 1998,<br />

point out errors in Wilson’s analysis that, if corrected,<br />

would indeed group ostracodes with one<br />

cluster <strong>of</strong> Maxillopoda). Abele et al. (1992) rejected<br />

<strong>the</strong> inclusion <strong>of</strong> ostracodes in <strong>the</strong> Maxillopoda on<br />

molecular grounds. Spears and Abele (1997) suggest<br />

<strong>the</strong> possibility that, based on molecular data,<br />

both Ostracoda and Maxillopoda might be paraphyletic.<br />

There is also some evidence, both morphological<br />

and molecular, that <strong>the</strong> two major groupings <strong>of</strong> <strong>the</strong><br />

Ostracoda (Myodocopa and Podocopa) may not<br />

constitute a monophyletic assemblage (e.g., see<br />

Vannier and Abe, 1995; Spears and Abele, 1997).<br />

On <strong>the</strong> o<strong>the</strong>r hand, Cohen et al. (1998), based on<br />

<strong>the</strong> many similarities between <strong>the</strong>se two groups,<br />

‘‘regard it more parsimonious and useful to assume<br />

that <strong>the</strong>y do.’’ This older view—that ostracodes are<br />

monophyletic—has been adopted here and is in fact<br />

held by a majority <strong>of</strong> current workers in <strong>the</strong> field.<br />

The assignment <strong>of</strong> ostracodes to a group ‘‘Entomostraca’’<br />

(which included, in addition to ostracodes,<br />

<strong>the</strong> Branchiopoda, Cirripedia, Branchiura,<br />

and Phyllocarida) by McKenzie et al. (1983) was<br />

clearly an unsupported departure (see also discussions<br />

on Branchiopoda and Phyllocarida and notes<br />

on Entomostraca under <strong>the</strong> general heading <strong>Crustacea</strong>).<br />

A modified version <strong>of</strong> <strong>the</strong> classification <strong>of</strong> <strong>the</strong> Ostracoda<br />

used by Whatley et al. (1993), which will<br />

be <strong>the</strong> basis for <strong>the</strong> classification used in <strong>the</strong> upcoming<br />

revision <strong>of</strong> <strong>the</strong> Treatise on Invertebrate Paleontology<br />

(‘‘more or less,’’ according to Whatley,<br />

pers. comm.; R. Kaesler, pers. comm.), was sent to<br />

us by R. Whatley. This classification, which differs<br />

considerably from what was proposed by Mc-<br />

Kenzie et al. (1983) and also from <strong>the</strong> classification<br />

used by Hartmann and Guillaume (1996), has been<br />

followed fairly closely. Differences include <strong>the</strong> spelling<br />

<strong>of</strong> <strong>the</strong> endings <strong>of</strong> superfamilies. We use <strong>the</strong><br />

ICZN-recommended ending ‘‘–oidea’’ (which in <strong>the</strong><br />

latest (fourth) edition <strong>of</strong> <strong>the</strong> International Code <strong>of</strong><br />

Zoological Nomenclature is mandatory ra<strong>the</strong>r than<br />

a recommendation; ICZN, 1999, article 29.2).<br />

Whatley, in one <strong>of</strong> <strong>the</strong> more interesting responses<br />

we received, has indicated that <strong>the</strong> ‘‘-oidea’’ spelling<br />

is an ‘‘attempted imposition’’ by <strong>the</strong> ICZN. Kaesler<br />

(pers. comm.) and Whatley (pers. comm.) note that<br />

ostracodologists prefer to think <strong>of</strong> <strong>the</strong> higher<br />

groups as superfamilies ra<strong>the</strong>r than as suborders<br />

and are also more accustomed to <strong>the</strong> use <strong>of</strong> <strong>the</strong><br />

ending ‘‘-acea’’ for superfamilies and thus are more<br />

familiar with, and prefer, <strong>the</strong> concept <strong>of</strong> a superfamily<br />

Bairdiacea as opposed to a superfamily Bairdioidea<br />

or suborder Bairdiocopina. On <strong>the</strong> spelling<br />

<strong>of</strong> superfamily names, however, <strong>the</strong> ICZN recommendation<br />

(ICZN, 1999, fourth edition, article<br />

29.2) is ra<strong>the</strong>r clear: ‘‘The suffix -OIDEA is used<br />

for a superfamily name, -IDAE for a family name,<br />

-INAE for a subfamily name . . .’’ etc. <strong>An</strong>d it appears<br />

to us that it is primarily <strong>the</strong> paleontologists<br />

(who are, we admit, <strong>the</strong> majority <strong>of</strong> <strong>the</strong> ostracodologists)<br />

ra<strong>the</strong>r than neontologists who prefer<br />

(and use) <strong>the</strong> ‘‘-acea’’ ending for superfamilies (e.g.,<br />

see Martens, 1992, and Martens et al., 1998, for<br />

living freshwater ostracode superfamilies, all <strong>of</strong><br />

which are spelled according to ICZN recommendation<br />

29.A [now 29.2]). As Martens et al. (1998:<br />

41) explain in a note to accompany <strong>the</strong>ir classification,<br />

‘‘. . . as ostracods are animals, we will follow<br />

<strong>the</strong> ICZN throughout this book.’’<br />

Thus, we have followed <strong>the</strong> ICZN recommendation<br />

(as did Bowman and Abele, 1982, and<br />

Schram, 1986) for spellings <strong>of</strong> superfamilies (e.g.,<br />

Bairdioidea, not Bairdiacea). Whatley (pers.<br />

comm.) also feels that, relative to <strong>the</strong> Podocopida,<br />

<strong>the</strong> Myodocopa is probably ‘‘one hierarchical level<br />

too high.’’ Whatley (pers. comm.) considers his<br />

own arrangement (Whatley et al., 1993) ‘‘old fashioned<br />

but acceptable to people who actually work<br />

on <strong>the</strong> group,’’ a justification that we feel is baseless<br />

but that, at <strong>the</strong> moment, faces nothing in <strong>the</strong> way<br />

<strong>of</strong> a serious alternative classification. Martens<br />

(1992) and Martens et al. (1998) appear to base<br />

<strong>the</strong>ir decisions more on shared derived characters<br />

and more <strong>of</strong>ten than not employ characters <strong>of</strong> <strong>the</strong><br />

entire animal (as opposed to those <strong>of</strong> <strong>the</strong> shell<br />

only). Consequently, we have followed <strong>the</strong>ir lead<br />

for <strong>the</strong> names, spellings, and arrangement <strong>of</strong> <strong>the</strong><br />

superfamilies and families <strong>of</strong> <strong>the</strong> freshwater families<br />

as far as was possible (not all families are treated<br />

in those works). Thus, although Whatley would remove<br />

<strong>the</strong> superfamilies Macrocypridoidea and Pontocypridoidea<br />

(placing <strong>the</strong>ir families among <strong>the</strong> Cypridoidea),<br />

we have maintained <strong>the</strong>se groupings<br />

following Martens (1992) and Martens et al.<br />

(1998). Whatley (pers. comm.) also feels that <strong>the</strong><br />

family Saipanettidae (� Sigilliidae; see later) is no<br />

more than a subfamily <strong>of</strong> <strong>the</strong> Bairdiidae, whereas<br />

Martens (1992) recognized a separate superfamily,<br />

<strong>the</strong> Sigillioidea Mandelstam, to accommodate this<br />

unusual group, and here again we have followed<br />

Martens (1992).<br />

Whatley (pers. comm.) and Whatley et al. (1993)<br />

also place <strong>the</strong> unusual and primitive family Punciidae<br />

in <strong>the</strong> Platycopida (he considers Manawa to be<br />

a member <strong>of</strong> <strong>the</strong> Cy<strong>the</strong>rellidae), indicating that<br />

<strong>the</strong>re are still no living members <strong>of</strong> <strong>the</strong> Palaeocopidae.<br />

Martens et al. (1998) also feel that <strong>the</strong>re are<br />

no living palaeocopids, which also supports transfer<br />

<strong>of</strong> <strong>the</strong> punciids. We have followed Whatley’s advice<br />

in moving <strong>the</strong> punciids to <strong>the</strong> Platycopida (although<br />

<strong>the</strong>y appear to share no unique characters<br />

with platycopids and differ in many respects), but<br />

Contributions in Science, Number 39 Rationale � 29


we have retained <strong>the</strong>m in <strong>the</strong>ir own family, <strong>the</strong> Punciidae,<br />

as we are not aware <strong>of</strong> any publications that<br />

demonstrate that <strong>the</strong>y belong among <strong>the</strong> cy<strong>the</strong>rellids.<br />

Possibly a better solution would have been to<br />

list <strong>the</strong>m as incertae sedis for now.<br />

Although <strong>the</strong>re have been rearrangements <strong>of</strong> <strong>the</strong><br />

Ostracoda, <strong>the</strong>re have been surprisingly few higher<br />

taxa described or recognized since Bowman and<br />

Abele (1982) and Cohen (1982). The fossil bradoriids<br />

and <strong>the</strong> ‘‘phosphatocopines’’ <strong>of</strong> Sweden’s Upper<br />

Cambrian ‘‘Orsten’’ fauna are no longer considered<br />

true ostracodes. Walossek and Müller<br />

(1998, in Edgecombe) hypo<strong>the</strong>size that, although<br />

phosphatocopines are not crown group crustaceans<br />

(<strong>the</strong>ir ‘‘Eucrustacea’’), <strong>the</strong>y may be <strong>the</strong> sister taxon<br />

to this group.<br />

SUBCLASS MYODOCOPA<br />

Arrangement <strong>of</strong> families in <strong>the</strong> Myodocopa follows<br />

Kornicker (1986:178), which in turn was based<br />

largely on McKenzie et al. (1983), although some<br />

<strong>of</strong> <strong>the</strong> higher taxon spellings have been changed for<br />

consistency. The suborder Cladocopina may be deserving<br />

<strong>of</strong> status as a separate order (A. Cohen,<br />

pers. comm.), although this step has not been taken<br />

here (see also Kornicker and Sohn, 1976, who first<br />

suggested <strong>the</strong> inclusion <strong>of</strong> <strong>the</strong> Cladocopina and<br />

Halocypridina within <strong>the</strong> Halocyprida).<br />

SUBCLASS PODOCOPA<br />

The superfamilies Bairdioidea and Cy<strong>the</strong>roidea<br />

have been elevated to suborders, with spelling<br />

changed to Bairdiocopina and Cy<strong>the</strong>rocopina (respectively)<br />

(following Martens, 1992, and A. Cohen,<br />

pers. comm.). Alexander Liebau (pers. comm.)<br />

informs us that <strong>the</strong> Cy<strong>the</strong>rocopina has been divided<br />

by him (Liebau, 1991; not seen by us) into two<br />

infraorders, <strong>the</strong> Nomocy<strong>the</strong>rinina (which includes<br />

species showing epidermal cell constancy reflected<br />

by mesh constancy <strong>of</strong> reticulate sculptures) and <strong>the</strong><br />

Archaeocy<strong>the</strong>rinina, containing <strong>the</strong> paraphyletic remaining<br />

cy<strong>the</strong>rocopines. We have not used this division<br />

here. Within <strong>the</strong> Cy<strong>the</strong>roidea, we have used<br />

<strong>the</strong> list <strong>of</strong> families supplied by R. Whatley (pers.<br />

comm.), based in part on Whatley et al. (1993) and<br />

on his anticipation <strong>of</strong> <strong>the</strong> Ostracoda section <strong>of</strong> <strong>the</strong><br />

next edition <strong>of</strong> <strong>the</strong> Treatise on Invertebrate Paleontology<br />

(Whatley, pers. comm.; R. Kaesler, pers.<br />

comm.). The family Bonaducecy<strong>the</strong>ridae McKenzie<br />

has been removed (R. Maddocks, pers. comm.).<br />

The superfamily Terrestricy<strong>the</strong>rioidea and its sole<br />

family, <strong>the</strong> Terrestricy<strong>the</strong>ridae, have been removed;<br />

Martens et al. (1998), citing Danielopol and Betsch<br />

(1980), note that Terrestricypris is a modified member<br />

<strong>of</strong> <strong>the</strong> Candonidae (<strong>the</strong> spelling <strong>of</strong> which has<br />

been corrected from Candoniidae; R. Maddocks,<br />

pers. comm.).<br />

The suborder Metacopina now contains only fossils<br />

and thus has been removed from our classification,<br />

as <strong>the</strong> Darwinulocopina has now been established<br />

by Sohn (1988) to accommodate <strong>the</strong> fam-<br />

ily Darwinulidae (A. Cohen, pers. comm.). The former<br />

superfamily Cypridoidea is now treated as a<br />

suborder, Cypridocopina Jones (Martens et al.,<br />

1998). The family Paracyprididae has been removed;<br />

this group also is now thought to be a subfamily<br />

<strong>of</strong> <strong>the</strong> Candonidae (Martens et al., 1998).<br />

The Cypridopsidae has been removed (Martens et<br />

al., 1998). The family Saipanettidae, formerly in<br />

<strong>the</strong> superfamily Healdioidea (which has been removed),<br />

also has been removed. The Saipanettidae<br />

was found to be a junior synonym <strong>of</strong> <strong>the</strong> Sigilliidae,<br />

an extant family reviewed recently by Tabuki and<br />

Hanai (1999). Spelling <strong>of</strong> <strong>the</strong> Sigilliidae was initially<br />

given as Sigillidae by Tabuki and Hanai<br />

(1999); we have corrected it based on <strong>the</strong> spelling<br />

<strong>of</strong> <strong>the</strong> genus Sigillium. The Sigilliidae is now treated<br />

as a member <strong>of</strong> <strong>the</strong> superfamily Sigillioidea (see Tabuki<br />

and Hanai, 1999; spelling emended from Sigilloidea;<br />

R. Maddocks, pers. comm.), which in turn<br />

has been placed in its own suborder, <strong>the</strong> Sigilliocopina<br />

(see Martens, 1992). Martens (1992) originally<br />

suggested recognition at <strong>the</strong> infraorder level,<br />

as ‘‘infraorder 3, ‘Sigillioidea.’ ’’ The spelling we use<br />

for <strong>the</strong> suborder was first employed by Cohen et al.<br />

(1998).<br />

CLASS MALACOSTRACA<br />

Because <strong>of</strong> <strong>the</strong>ir size and numbers, malacostracans<br />

have been <strong>the</strong> subject <strong>of</strong> a huge number <strong>of</strong> classificatory<br />

and phylogenetic studies employing morphological<br />

characters, molecular characters, or<br />

both. For <strong>the</strong> most part, <strong>the</strong>re seems to be agreement<br />

that <strong>the</strong> Malacostraca itself is a monophyletic<br />

grouping (e.g., see Hessler, 1983; Dahl, 1983a, b,<br />

1991; Mayrat and Saint Laurent, 1996; Shultz and<br />

Regier, 2000; Watling et al., 2000; Richter and<br />

Scholtz, in press), although differing opinions can<br />

certainly be found. There is considerably less agreement<br />

concerning <strong>the</strong> constituencies and relationships<br />

<strong>of</strong> <strong>the</strong> various groupings <strong>of</strong> <strong>the</strong> Malacostraca,<br />

and <strong>the</strong>se topics are <strong>the</strong> subject <strong>of</strong> a vast body <strong>of</strong><br />

literature (much <strong>of</strong> which was reviewed recently by<br />

Richter and Scholtz, in press). Attempts to place<br />

phyllocarids outside <strong>the</strong> Malacostraca have largely<br />

been shown to be misguided (see below). We have<br />

tried to refer readers to <strong>the</strong> salient papers that <strong>of</strong>fer<br />

arrangements that differ from our own in <strong>the</strong> individual<br />

sections that follow.<br />

SUBCLASS PHYLLOCARIDA, ORDER<br />

LEPTOSTRACA<br />

The status <strong>of</strong> <strong>the</strong> subclass Phyllocarida (which includes<br />

only one extant order, <strong>the</strong> Leptostraca) as<br />

true malacostracans is now fairly well accepted. Arguments<br />

can be found in Dahl (1987), in rebuttal<br />

to Schram (1986), who had been in favor <strong>of</strong> resurrecting<br />

<strong>the</strong> older term Phyllopoda to include<br />

branchiopods, cephalocarids, and leptostracans<br />

(see also Rolfe, 1981; Dahl, 1992; Martin and<br />

Christiansen, 1995a; Spears and Abele, 1999; Richter<br />

and Scholtz, in press; but see also Ferrari, 1988,<br />

30 � Contributions in Science, Number 39 Rationale


for a rebuttal <strong>of</strong> Dahl’s criticism). Inclusion <strong>of</strong> leptostracans<br />

within <strong>the</strong> Malacostraca has been fur<strong>the</strong>r<br />

supported by molecular evidence (rDNA data<br />

summarized in Spears and Abele, 1997, 1999; see<br />

also Shultz and Regier, 2000, for EF-1� and Pol II<br />

data). Hessler (1984) established <strong>the</strong> family Nebaliopsidae<br />

in recognition <strong>of</strong> <strong>the</strong> great differences setting<br />

<strong>the</strong> genus Nebaliopsis apart from o<strong>the</strong>r leptostracans,<br />

<strong>the</strong>reby doubling <strong>the</strong> number <strong>of</strong> recognized<br />

families <strong>of</strong> <strong>the</strong> extant phyllocarids. However, J.<br />

Olesen (1999b, and pers. comm.) finds that, depending<br />

upon <strong>the</strong> choice <strong>of</strong> outgroups (and characters)<br />

used in cladistic analyses <strong>of</strong> <strong>the</strong> group (based<br />

on descriptions in <strong>the</strong> literature), <strong>the</strong>re is still some<br />

room for doubt as to whe<strong>the</strong>r Nebaliidae is monophyletic<br />

or paraphyletic (with Nebaliopsis nested<br />

within <strong>the</strong> o<strong>the</strong>r nebaliacean genera). Most recently,<br />

Walker-Smith and Poore (2001) have erected a<br />

third family, Paranebaliidae, to contain <strong>the</strong> genera<br />

Paranebalia and Levinebalia (<strong>the</strong> latter <strong>of</strong> which<br />

was described by Walker-Smith, 2000).<br />

Our treatment <strong>of</strong> <strong>the</strong> Phyllocarida follows Hessler<br />

(1984), Martin et al. (1996), Dahl and Wägele<br />

(1996), and our PEET web page for Leptostraca<br />

(URL http://www.nhm.org/�peet/) in recognizing<br />

two extant families (see Rolfe, 1981, for extinct<br />

phyllocarids) plus <strong>the</strong> recently established family<br />

Paranebaliidae following Walker-Smith and Poore<br />

(2001). Most authors in <strong>the</strong> past have credited <strong>the</strong><br />

family Nebaliidae to Baird (1850). However, according<br />

to L. Holthuis (pers. comm.), Samouelle<br />

(1819:100) mentioned ‘‘Fam. VI. Nebaliadae’’ [sic]<br />

in his ‘‘Entomologist’s Useful Compendium,’’ which<br />

<strong>of</strong> course predates Baird’s (1850) work. Thus, we<br />

have attributed <strong>the</strong> family Nebaliidae to Samouelle,<br />

1819.<br />

SUBCLASS HOPLOCARIDA, ORDER<br />

STOMATOPODA<br />

Several workers, today and in <strong>the</strong> past (examples<br />

include Hessler, 1983; Scholtz, 1995; Richter and<br />

Scholtz, in press), have considered <strong>the</strong> hoplocarids<br />

to be members <strong>of</strong> <strong>the</strong> Eumalacostraca, a placement<br />

that has been used <strong>of</strong>ten and in some textbooks as<br />

well (e.g., Brusca and Brusca, 1990). However, we<br />

have retained <strong>the</strong>ir placement as a separate subclass<br />

within <strong>the</strong> Malacostraca pending fur<strong>the</strong>r exploration<br />

<strong>of</strong> this question (see review by Watling et al.,<br />

2000). Our treatment <strong>of</strong> <strong>the</strong> hoplocarids as separate<br />

from <strong>the</strong> o<strong>the</strong>r Eumalacostraca also is consistent<br />

with some (admittedly weak) molecular evidence<br />

(see Spears and Abele, 1997, 1999b) and<br />

with cladistic analyses based mostly on fossil taxa<br />

(e.g., H<strong>of</strong>, 1998a, b; H<strong>of</strong> and Schram, 1999).<br />

Schram (1971, 1986) had argued earlier for separate<br />

status <strong>of</strong> <strong>the</strong> hoplocarids as well. Spears and<br />

Abele (1997) could state only that <strong>the</strong> position <strong>of</strong><br />

<strong>the</strong> ‘‘Hoplocarida relative to <strong>the</strong> Eumalacostraca is<br />

equivocal’’ (low bootstrap value) based on rDNA<br />

sequence data, and thus <strong>the</strong>y were ‘‘unable to determine<br />

whe<strong>the</strong>r hoplocarids represent a separate,<br />

independent malacostracan lineage with taxonomic<br />

rank (subclass) equivalent to that <strong>of</strong> phyllocarids<br />

and eumalacostracans.’’ Their subsequent paper<br />

(Spears and Abele, 1999b) seems (to us) to indicate<br />

somewhat stronger evidence that hoplocarids are<br />

not eumalacostracans, but <strong>the</strong> authors are suitably<br />

cautious in not saying so. Without firm indications<br />

that we should do o<strong>the</strong>rwise, we have maintained<br />

separate status for <strong>the</strong> Hoplocarida and Eumalacostraca.<br />

Although a thorough cladistic analysis <strong>of</strong><br />

fossil and extant crustacean taxa by Schram and<br />

H<strong>of</strong> (1998) resulted in a tree that showed hoplocarids<br />

arising from somewhere within <strong>the</strong> Eumalacostraca,<br />

<strong>the</strong>se authors also noted that forcing <strong>the</strong><br />

hoplocarids into a ‘‘sister group’’ position to <strong>the</strong><br />

Eumalacostraca increased tree length by only 1%.<br />

O<strong>the</strong>r workers (e.g., Watling, 1999a), recognizing<br />

how very derived <strong>the</strong> stomatopods are, place <strong>the</strong>m<br />

in <strong>the</strong> Eumalacostraca as <strong>the</strong> sister taxon to <strong>the</strong> Eucarida.<br />

Most recently, Richter and Scholtz (in press)<br />

suggested that hoplocarids occupy a basal position<br />

within <strong>the</strong> Eumalacostraca. Thus, placement <strong>of</strong> <strong>the</strong><br />

hoplocarids continues to be an unresolved issue,<br />

but we felt that <strong>the</strong> weight <strong>of</strong> <strong>the</strong> evidence placed<br />

<strong>the</strong>m outside, ra<strong>the</strong>r than within, <strong>the</strong> Eumalacostraca.<br />

Scholtz (pers. comm.) additionally suggests<br />

that our crediting <strong>the</strong> name Eumalacostraca to<br />

Grobben is <strong>the</strong>refore incorrect, as Grobben included<br />

<strong>the</strong> hoplocarids among <strong>the</strong> Eumalacostraca (but<br />

see earlier notes on names, dates, and <strong>the</strong> ICZN).<br />

Within <strong>the</strong> Hoplocarida, most <strong>of</strong> our changes are<br />

based on <strong>the</strong> catalog provided by H.-G. Müller<br />

(1994) and on Manning (1995), and our final arrangement<br />

<strong>of</strong> families and superfamilies follows <strong>the</strong><br />

recent cladistic analysis by Ahyong and Harling<br />

(2000). Publications that describe or recognize families<br />

or higher taxa <strong>of</strong> stomatopods subsequent to<br />

Bowman and Abele (1982) include Manning (1995,<br />

Indosquillidae, Parasquillidae, Heterosquillidae),<br />

Manning and Bruce (1984, Erythrosquillidae [for<br />

which <strong>the</strong> superfamily Erythrosquilloidea was later<br />

created by Manning and Camp, 1993]), Manning<br />

and Camp (1993, Tetrasquillidae), Moosa (1991,<br />

Alainosquillidae), and Ahyong and Harling (2000,<br />

superfamilies Eurysquilloidea and Parasquilloidea).<br />

Concerning phylogeny within <strong>the</strong> Hoplocarida,<br />

<strong>the</strong>re is recent evidence from several laboratories<br />

that <strong>the</strong> superfamily Gonodactyloidea as presented<br />

in Bowman and Abele (1982) is not a monophyletic<br />

grouping (H<strong>of</strong>, 1998b; Ahyong, 1997; Barber and<br />

Erdmann, 2000; Ahyong and Harling, 2000; Cappola<br />

and Manning, 1998; Cappola, 1999) and that<br />

within <strong>the</strong> gonodactyloids <strong>the</strong> eurysquillids may be<br />

paraphyletic. These same authors disagree over<br />

whe<strong>the</strong>r <strong>the</strong> Bathysquilloidea are monophyletic<br />

(Cappola and Manning, 1998) or not (Ahyong,<br />

1997). A comparative study <strong>of</strong> eye design in stomatopods<br />

(Harling, 2000) also supports a nonmonophyletic<br />

Gonodactyloidea and questions <strong>the</strong> fivesuperfamily<br />

scheme <strong>of</strong> Müller (1994). The nonmonophyly<br />

<strong>of</strong> <strong>the</strong> Gonodactyloidea necessitates <strong>the</strong><br />

creation <strong>of</strong> additional families and superfamilies to<br />

Contributions in Science, Number 39 Rationale � 31


accommodate some <strong>of</strong> <strong>the</strong> former gonodactyloid<br />

taxa (Ahyong, 1997; Ahyong and Harling, 2000;<br />

Cappola and Manning, 1998). Cappola and Manning<br />

(1998) also suggested that a new superfamily<br />

and family (Eurysquilloidoidea, Eurysquilloididae)<br />

should be established to accommodate <strong>the</strong> former<br />

eurysquillid genus Eurysquilloides. We have followed<br />

<strong>the</strong> classification suggested by Ahyong and<br />

Harling (2000). According to <strong>the</strong>ir scheme, <strong>the</strong><br />

families Eurysquillidae and Parasquillidae, formerly<br />

treated as members <strong>of</strong> <strong>the</strong> Gonodactyloidea, are<br />

each deserving <strong>of</strong> superfamily status, and thus <strong>the</strong>y<br />

established <strong>the</strong> superfamilies Eurysquilloidea and<br />

Parasquilloidea to accommodate <strong>the</strong>m. The Gonodactyloidea<br />

has been reconfigured and now contains<br />

<strong>the</strong> Alainosquillidae, Hemisquillidae, Gonodactylidae,<br />

Odontodactylidae, Protosquillidae,<br />

Pseudosquillidae, and Takuidae. The family Heterosquillidae<br />

established by Manning (1995) has<br />

been removed, as it was suggested to be a synonym<br />

<strong>of</strong> Tetrasquillidae (see Ahyong and Harling, 2000).<br />

In <strong>the</strong> most recent treatment, Ahyong (2001) synonymized<br />

<strong>the</strong> Harpiosquillidae Manning with <strong>the</strong><br />

Squillidae; thus <strong>the</strong> Harpiosquillidae is not in our<br />

list.<br />

H<strong>of</strong> (1998b) recognized two main clades <strong>of</strong> extant<br />

stomatopods. One clade included most <strong>of</strong> <strong>the</strong><br />

gonodactyloid families but excluded <strong>the</strong> alainosquillids<br />

and <strong>the</strong> eurysquillids. The second clade<br />

contained <strong>the</strong> remaining extant families and indicated<br />

possible affinities between <strong>the</strong> squilloids and<br />

lysiosquilloids and also between <strong>the</strong> bathysquilloids<br />

and erythrosquilloids. H<strong>of</strong> (1998b) points out that,<br />

although his results are preliminary, <strong>the</strong> fact that<br />

fossils should be included when at all possible in<br />

any cladistic analysis is clear and obvious from his<br />

work. A cladistic analysis <strong>of</strong> <strong>the</strong> hoplocarids that<br />

incorporated Paleozoic taxa was presented by Jenner<br />

et al. (1998), but it did not resolve relationships<br />

within <strong>the</strong> sole extant order (<strong>the</strong>ir Unipeltata). In<br />

<strong>the</strong> most recent treatment, Ahyong and Harling<br />

(2000) have also suggested that <strong>the</strong> recent stomatopods<br />

have evolved ‘‘in two broad directions from<br />

<strong>the</strong> outset,’’ corresponding roughly to <strong>the</strong> smashing<br />

and spearing types.<br />

SUBCLASS EUMALACOSTRACA<br />

The concept <strong>of</strong> <strong>the</strong> Eumalacostraca as a monophyletic<br />

assemblage has not been seriously challenged,<br />

with <strong>the</strong> exception <strong>of</strong> <strong>the</strong> question <strong>of</strong> whe<strong>the</strong>r hoplocarids<br />

belong (see above discussion under Hoplocarida<br />

for arguments as to <strong>the</strong>ir inclusion or exclusion).<br />

Our classification is roughly similar to<br />

that <strong>of</strong> Bowman and Abele (1982) in recognizing<br />

<strong>the</strong> Eumalacostraca and its constituent groups, although<br />

<strong>the</strong>re have been several significant rearrangements<br />

within and among those groups, as noted<br />

below (see also Richter and Scholtz, in press).<br />

Schram (1984a) reviewed characters that defined<br />

<strong>the</strong> various eumalacostracan groups recognized at<br />

that time and presented alternatives to more traditional<br />

classifications.<br />

SUPERORDER SYNCARIDA, ORDERS<br />

BATHYNELLACEA AND ANASPIDACEA<br />

Monophyly <strong>of</strong> <strong>the</strong> Syncarida appears to be fairly<br />

well accepted (e.g., Schram, 1984b; Richter and<br />

Scholtz, in press). Within <strong>the</strong> Bathynellacea, we<br />

have removed <strong>the</strong> family Leptobathynellidae, as<br />

this was synonymized with <strong>the</strong> Parabathynellidae<br />

by Schminke (1973:56). Schram (1984b) credits<br />

both names (Bathynellidae, Bathynellacea) to<br />

Chappuis (1915), whereas Lopretto and Morrone<br />

(1998) credit <strong>the</strong> Bathynellidae to Grobben (as did<br />

Bowman and Abele, 1982) and <strong>the</strong> Bathynellacea<br />

to Chappuis. We have not been able to locate a<br />

paper by Grobben describing bathynellids and so<br />

have followed Schram’s (1984b, 1986) lead, crediting<br />

both taxa to Chappuis (1915). The <strong>An</strong>aspidacea<br />

remains unchanged, with four extant families.<br />

Thus, our classification <strong>of</strong> <strong>the</strong> Syncarida and its<br />

two orders (<strong>An</strong>aspidacea and Bathynellacea) is <strong>the</strong><br />

same as that presented by Lopretto and Morrone<br />

(1998), where all known syncarid genera are also<br />

listed, and is essentially <strong>the</strong> same as <strong>the</strong> classification<br />

suggested earlier by Schram (1984a:196) based<br />

on a phylogenetic analysis <strong>of</strong> fossil syncarids (excluding<br />

<strong>the</strong> entirely fossil order Paleocaridacea).<br />

SUPERORDER PERACARIDA<br />

We continue to recognize <strong>the</strong> Peracarida, treating it<br />

as a superorder that contains nine orders. This is<br />

mostly in keeping with Bowman and Abele (1982)<br />

and most major treatments since that time (see especially<br />

Hessler and Watling, 1999; Richter and<br />

Scholtz, in press). However, <strong>the</strong>re have been suggestions<br />

made to abandon <strong>the</strong> Peracarida or at least<br />

significantly revise it (e.g., Dahl, 1983a), and <strong>the</strong><br />

relationships among <strong>the</strong> various peracarid groups<br />

(and <strong>of</strong> peracarids to o<strong>the</strong>r groups <strong>of</strong> crustaceans)<br />

are very controversial. Schram (1986) advocated<br />

eliminating <strong>the</strong> Peracarida <strong>of</strong> earlier workers, feeling<br />

that it united groups that were only superficially<br />

similar. O<strong>the</strong>r workers (e.g., Pires, 1987; Brusca<br />

and Brusca, 1990; Wagner, 1994; Hessler and Watling,<br />

1999; Richter and Scholtz, in press) recognize<br />

<strong>the</strong> group, but <strong>the</strong> treatments occasionally differ as<br />

to which orders are included. Hessler and Watling<br />

(1999) review major attempts to phyletically order<br />

<strong>the</strong> peracarids, including Schram (1986), Watling<br />

(1983), Wills (1997), and Wheeler (1997), all <strong>of</strong><br />

which have appeared subsequent to <strong>the</strong> Bowman<br />

and Abele (1982) classification. There is little agreement<br />

among <strong>the</strong>se various schemes. Mysidaceans in<br />

particular are sometimes treated as one order,<br />

sometimes as <strong>the</strong> separate orders Lophogastrida<br />

and Mysida within <strong>the</strong> Peracarida, and sometimes<br />

suggested to fall outside <strong>of</strong> <strong>the</strong> Peracarida altoge<strong>the</strong>r.<br />

As examples, Watling (1998, 1999b) argues that<br />

mysids should fall outside <strong>the</strong> Peracarida and that<br />

32 � Contributions in Science, Number 39 Rationale


<strong>the</strong> Amphipoda are deserving <strong>of</strong> status separate<br />

from all o<strong>the</strong>r peracarids and should constitute<br />

<strong>the</strong>ir own superorder as a sister group to <strong>the</strong> remaining<br />

taxa, which would <strong>the</strong>n constitute a reduced<br />

Peracarida sensu stricto. (Interestingly, if <strong>the</strong><br />

Mysidacea and Thermosbaenacea are removed<br />

from Watling’s (1981) fig. 1, <strong>the</strong>n <strong>the</strong> Amphipoda<br />

would indeed appear as <strong>the</strong> sister group to all o<strong>the</strong>r<br />

‘‘true’’ peracaridans in that diagram.) But this is not<br />

in agreement with Wagner (1994), who depicted<br />

amphipods and isopods as closely related and depicted<br />

amphipods, isopods, cumaceans, and tanaidaceans<br />

as a monophyletic clade. Wagner (1994)<br />

also suggested affinities between <strong>the</strong> Thermosbaenacea<br />

and Mictacea and between those two groups<br />

and <strong>the</strong> Spelaeogriphacea, whereas Pires (1987)<br />

treated amphipods and mysidaceans as related taxa<br />

that were in turn <strong>the</strong> sister group to all o<strong>the</strong>r peracarids.<br />

In Wagner’s phylogenies, <strong>the</strong> mysids (both<br />

Mysida and Lophogastrida) are shown as <strong>the</strong> sister<br />

group to <strong>the</strong> o<strong>the</strong>r Peracarida. Depending on where<br />

<strong>the</strong> line is drawn, Wagner’s phylogeny could be<br />

used as an argument for inclusion or exclusion <strong>of</strong><br />

<strong>the</strong> mysids within <strong>the</strong> Peracarida.<br />

Spears and Abele (1997, 1998) have suggested,<br />

on <strong>the</strong> basis <strong>of</strong> molecular data, that <strong>the</strong> two groups<br />

<strong>of</strong> mysidaceans are not monophyletic (suggested<br />

earlier by Dahl, 1983a, and o<strong>the</strong>rs based on morphological<br />

features), with <strong>the</strong> Lophogastrida grouping<br />

with o<strong>the</strong>r peracarids but with <strong>the</strong> Mysida falling<br />

outside that clade (see below). Jarman et al.<br />

(2000) also concluded (on <strong>the</strong> basis <strong>of</strong> 28S rDNA<br />

sequence data) that <strong>the</strong> Mysida and Lophogastrida<br />

are not closely related but posited <strong>the</strong> Mysida closer<br />

to <strong>the</strong> Euphausiacea. Thermosbaenaceans, treated<br />

as true peracarids by us (see arguments below and<br />

also Richter and Scholtz, in press), have in <strong>the</strong> past<br />

been treated by some workers (e.g., Bowman and<br />

Abele, 1982; Pires, 1987) as <strong>the</strong> separate order Pancarida,<br />

which we have abandoned. A more radical<br />

departure is suggested by Mayrat and Saint Laurent<br />

(1996), who suggested a phylogeny (<strong>the</strong>ir fig. 342)<br />

<strong>of</strong> <strong>the</strong> Malacostraca in which <strong>the</strong> peracarids are<br />

polyphyletic, with amphipods depicted as <strong>the</strong> sister<br />

taxon to all o<strong>the</strong>r malacostracans (except <strong>the</strong> leptostracans)<br />

and with cumaceans and mysids associated<br />

with <strong>the</strong> higher eumalacostracans. This, to<br />

us, seems unlikely. Richter (1999), after a thorough<br />

analysis <strong>of</strong> characters <strong>of</strong> <strong>the</strong> compound eyes <strong>of</strong> malacostracans,<br />

felt that ‘‘Lophogastrida and Mysida<br />

are clearly members <strong>of</strong> <strong>the</strong> Peracarida.’’ These are<br />

only a few <strong>of</strong> <strong>the</strong> suggestions to be found in <strong>the</strong><br />

ra<strong>the</strong>r confusing literature on <strong>the</strong> diverse peracarid<br />

crustaceans. The most recent coverage is a wonderful<br />

in-depth treatment <strong>of</strong> <strong>the</strong> entire Peracarida<br />

in Tome VII, fascicule IIIA <strong>of</strong> <strong>the</strong> Traité de Zoologie<br />

edited by J. Forest (see especially <strong>the</strong> review by Hessler<br />

and Watling, 1999).<br />

The suggestion that <strong>the</strong> orders Spelaeogriphacea,<br />

Cumacea, Tanaidacea, and Thermosbaenacea constitute<br />

a grouping termed <strong>the</strong> ‘‘Brachycarida’’ that<br />

is <strong>the</strong> sister group to <strong>the</strong> Isopoda, first suggested by<br />

Schram (1981) and supported by Watling (1983,<br />

1999b) [although note that <strong>the</strong> suggested placement<br />

<strong>of</strong> isopods and amphipods differs in <strong>the</strong>se two papers],<br />

is not followed here. However, removal <strong>of</strong> <strong>the</strong><br />

<strong>the</strong>rmosbaenaceans from <strong>the</strong> ‘‘Pancarida’’ and<br />

grouping <strong>the</strong>m with <strong>the</strong> o<strong>the</strong>r peracarids, which we<br />

have done, could be seen as supportive <strong>of</strong> that<br />

move (see below under order Thermosbaenacea).<br />

Gutu (1998) and Gutu and Iliffe (1998) have suggested<br />

a novel reorganization <strong>of</strong> <strong>the</strong> peracarids,<br />

where both <strong>the</strong> spelaeogriphaceans and mictaceans<br />

would be treated as suborders <strong>of</strong> a new peracarid<br />

order, <strong>the</strong> Cosinzeneacea (Gutu, 1998). The mictacean<br />

family Hirsutiidae would be removed to <strong>the</strong><br />

new order Bochusacea (Gutu and Iliffe, 1998). We<br />

have not followed this suggestion.<br />

Thus, our Peracarida contains <strong>the</strong> two orders <strong>of</strong><br />

former ‘‘mysids’’ treated as <strong>the</strong> separate orders Lophogastrida<br />

and Mysida (as in many earlier treatments<br />

as well; see below), plus <strong>the</strong> Thermosbaenacea,<br />

in addition to <strong>the</strong> Spelaeogriphacea, Mictacea,<br />

Amphipoda, Isopoda, Tanaidacea, and Cumacea.<br />

Additional comments on each group are<br />

given below.<br />

ORDER SPELAEOGRIPHACEA<br />

To date, <strong>the</strong>re are only three known extant species<br />

<strong>of</strong> this group, from South America (Brazil), South<br />

Africa, and Australia (Pires, 1987; Poore and Humphreys,<br />

1998; see also Shen et al., 1998). Pires<br />

(1987) suggested that spelaeogriphaceans and mictaceans<br />

might be sister taxa. A recent cladistic analysis<br />

stemming from <strong>the</strong> discovery <strong>of</strong> a new genus<br />

and species from <strong>the</strong> Upper Jurassic <strong>of</strong> China (Shen<br />

et al., 1998) indicates that <strong>the</strong> Spelaeogriphacea<br />

may be paraphyletic. Although Shen et al. treat <strong>the</strong><br />

Spelaeogriphacea as a suborder under <strong>the</strong> order<br />

Hemicaridea Schram, we have not followed that<br />

suggestion. This may change if fossil taxa are incorporated<br />

into <strong>the</strong> next edition <strong>of</strong> this classification.<br />

All species are currently considered members<br />

<strong>of</strong> a single extant family, <strong>the</strong> Spelaeogriphidae, and<br />

<strong>the</strong> group has been reviewed recently by Boxshall<br />

(1999). Gutu (1998) has suggested recently that<br />

spelaeogriphaceans and some former mictaceans<br />

(<strong>the</strong> family Mictocarididae, not <strong>the</strong> Hirsutiidae)<br />

should be treated as suborders within <strong>the</strong> newly<br />

created order Cosinzeneacea. We have not followed<br />

this suggestion, as most o<strong>the</strong>r workers seem to be<br />

in agreement that <strong>the</strong> two groups are deserving <strong>of</strong><br />

separate status within <strong>the</strong> Peracarida.<br />

ORDER THERMOSBAENACEA<br />

The former order Pancarida (as used in Bowman<br />

and Abele, 1982), erected to accommodate <strong>the</strong> order<br />

Thermosbaenacea, has been eliminated in light<br />

<strong>of</strong> suggestions that <strong>the</strong>rmosbaenaceans are members<br />

<strong>of</strong> a redefined Peracarida clade (see discussion<br />

in Wagner, 1994; see also Monod and Cals, 1988;<br />

Cals and Monod, 1988; Spears and Abele, 1998;<br />

Richter and Scholtz, in press; and above under Per-<br />

Contributions in Science, Number 39 Rationale � 33


acarida). Our treatment <strong>of</strong> <strong>the</strong> Thermosbaenacea as<br />

true peracarids is in agreement with morphological<br />

interpretations (e.g., Monod, 1984; Cals and Monod,<br />

1988; Monod and Cals, 1988, 1999) and recent<br />

molecular evidence (Spears and Abele, 1998).<br />

O<strong>the</strong>r workers (e.g., Newman, 1983; Sieg, 1983a,<br />

b; Pires, 1987; A. Brandt, pers. comm.) have argued<br />

for maintaining separate status from <strong>the</strong> o<strong>the</strong>r peracarid<br />

groups (reviewed by Wagner, 1994). Wagner<br />

(1994), whose extensive review we followed in <strong>the</strong><br />

current classification, also was <strong>of</strong> <strong>the</strong> opinion that<br />

<strong>the</strong>re is no real justification for excluding <strong>the</strong> Thermosbaenacea<br />

from <strong>the</strong> Peracarida.<br />

Within <strong>the</strong> Thermosbaenacea, two new families<br />

have been described since 1982: Halosbaenidae<br />

(Monod and Cals, 1988) and Tulumellidae (Wagner,<br />

1994). The family Monodellidae was also recognized<br />

by Wagner (1994), bringing <strong>the</strong> total to<br />

four recognized extant families (up from one in<br />

Bowman and Abele, 1982). Wagner’s (1994) thorough<br />

treatment also suggests some phylogenetic relationships<br />

among <strong>the</strong> <strong>the</strong>rmosbaenaceans (as did<br />

Monod and Cals, 1988). The Thermosbaenidae<br />

and Monodellidae appear to be sister taxa, but <strong>the</strong><br />

position <strong>of</strong> <strong>the</strong> Tulumellidae was undetermined,<br />

sometimes appearing as <strong>the</strong> sister group to <strong>the</strong> Halosbaenidae<br />

and sometimes as part <strong>of</strong> <strong>the</strong> <strong>the</strong>rmosbaenid<br />

� monodellid clade (as in his ‘‘final proposed<br />

phylogenetic tree’’; Wagner, 1994, fig. 498).<br />

Thus, we have not attempted to phyletically order<br />

<strong>the</strong> four recognized families at this time. See also<br />

<strong>the</strong> recent review by Monod and Cals (1999),<br />

where previous systematic arrangements (Cals and<br />

Monod, 1988; Wagner, 1994) are briefly discussed.<br />

ORDERS LOPHOGASTRIDA AND MYSIDA<br />

Abele and Spears (1997) concluded, based on<br />

rDNA studies, that <strong>the</strong> Peracarida (including <strong>the</strong><br />

Thermosbaenacea) is indeed a monophyletic assemblage,<br />

but only if <strong>the</strong> Mysida are excluded. Jarman<br />

et al. (2000) also would separate <strong>the</strong> Mysida, which<br />

<strong>the</strong>y felt are closer to <strong>the</strong> Decapoda, from <strong>the</strong> Lophogastrida.<br />

Supporting evidence is also found in<br />

<strong>the</strong> fact that all peracarids (again including <strong>the</strong>rmosbaenaceans<br />

but excluding Mysida) contain similar<br />

hypervariable regions <strong>of</strong> 18S rDNA (Spears and<br />

Abele, 1998). However, <strong>the</strong>se distinctly peracarid<br />

features appear to be present in <strong>the</strong> o<strong>the</strong>r mysidacean<br />

group, <strong>the</strong> Lophogastrida. The inclusion <strong>of</strong> <strong>the</strong><br />

mysids (both Mysida and Lophogastrida) in <strong>the</strong><br />

Peracarida (e.g., as suggested most recently by<br />

Richter and Scholtz, in press) has also been questioned<br />

on morphological grounds. For example, as<br />

noted above, Watling (1998, 1999a, b) feels that<br />

<strong>the</strong> mysidaceans (i.e., both <strong>the</strong> Mysida and Lophogastrida<br />

as <strong>the</strong> taxon Mysidacea) do not belong to<br />

<strong>the</strong> Peracarida and are instead more closely allied<br />

to <strong>the</strong> eucarids. Yet both groups <strong>of</strong> <strong>the</strong> Mysidacea<br />

(Mysida and Lophogastrida) share some unique<br />

and possibly synapomorphic morphological features<br />

<strong>of</strong> <strong>the</strong> walking limbs (Hessler, 1982; see also<br />

Hessler, 1985) and foregut (De Jong-Moreau and<br />

Casanova, 2001) that suggest monophyly. Additionally,<br />

Richter (1999; see also Richter and<br />

Scholtz, in press) has shown that lophogastridans<br />

and mysidans share unique morphological components<br />

to <strong>the</strong> design <strong>of</strong> <strong>the</strong>ir ommatidia (although<br />

<strong>the</strong>se features also are shared with <strong>An</strong>aspidacea and<br />

Euphausiacea). The recent treatment by Nouvel et<br />

al. (1999) treats <strong>the</strong> Mysidacea as monophyletic<br />

(see also Richter, 1994, for fur<strong>the</strong>r arguments in<br />

favor <strong>of</strong> monophyly <strong>of</strong> <strong>the</strong> Mysidacea).<br />

Are mysidaceans paraphyletic? Is it possible that<br />

<strong>the</strong> Mysida fall outside <strong>the</strong> Peracarida sensu stricta<br />

but that <strong>the</strong> Lophogastrida are true peracarids (ignoring,<br />

for <strong>the</strong> moment, <strong>the</strong> larger question <strong>of</strong><br />

whe<strong>the</strong>r <strong>the</strong> Peracarida itself is monophyletic)? This<br />

seems unlikely based on limb morphology (e.g.,<br />

Hessler, 1982), and foregut morphology (De Jong-<br />

Moreau and Casanova, 2001), and yet o<strong>the</strong>r workers<br />

have noted significant differences between <strong>the</strong><br />

Mysida and Lophogastrida on morphological (and<br />

now, it appears, on molecular) grounds. Several<br />

o<strong>the</strong>r workers (e.g., G. Scholtz and S. Richter, pers.<br />

comm.) commented on <strong>the</strong> distinct morphological<br />

differences between <strong>the</strong> Lophogastrida and Mysida<br />

and suggested that <strong>the</strong>se taxa be elevated to ordinal<br />

status and that <strong>the</strong> former Mysidacea that contained<br />

<strong>the</strong> two be abandoned (but see also Richter,<br />

1994, De Jong-Moreau and Casanova, 2001, and<br />

Richter and Scholtz, in press, for arguments in favor<br />

<strong>of</strong> monophyly). We have split <strong>the</strong> former order<br />

Mysidacea, elevating each <strong>of</strong> <strong>the</strong> former mysid suborders<br />

to order level, as have several o<strong>the</strong>r workers<br />

before us, such as Schram (1984, 1986), and Brusca<br />

and Brusca (1990:624, who note that an increasing<br />

number <strong>of</strong> specialists have begun to treat <strong>the</strong> two<br />

groups separately). This could be seen as a preliminary<br />

for removing one or both <strong>of</strong> <strong>the</strong>se groups<br />

from <strong>the</strong> Peracarida, if <strong>the</strong> suggestions <strong>of</strong> Watling<br />

(1998, 1999a, b) and Spears and Abele (1998) find<br />

additional support in <strong>the</strong> future. However, we have<br />

kept <strong>the</strong> two groups within <strong>the</strong> Peracarida for now.<br />

Taylor et al. (1998) analyzed <strong>the</strong> relationships <strong>of</strong><br />

a group <strong>of</strong> fossil malacostracans (<strong>the</strong> Pygocephalomorpha)<br />

that are possibly allied with mysids; one<br />

<strong>of</strong> <strong>the</strong>ir conclusions was that <strong>the</strong> recent mysids and<br />

lophogastrids do form a clade (albeit a somewhat<br />

‘‘confused’’ one). Thus, our classification is most<br />

similar to that <strong>of</strong> Brusca and Brusca (1990) in recognizing<br />

both former ‘‘mysidacean’’ groups as orders<br />

within <strong>the</strong> superorder Peracarida ra<strong>the</strong>r than<br />

as suborders within <strong>the</strong> Mysidacea (as presented by<br />

Nouvel et al., 1999). Casanova et al. (1998) examined<br />

relationships <strong>of</strong> <strong>the</strong> two lophogastrid families<br />

(Eucopiidae and Lophogastridae) based on<br />

morphological and limited molecular data. Among<br />

<strong>the</strong>ir conclusions was that <strong>the</strong> monogeneric eucopiids<br />

(Eucopia) originated from within <strong>the</strong> Lophogastridae.<br />

Authorities and dates for some taxa in <strong>the</strong> Mysida<br />

have been changed to earlier workers and dates<br />

(e.g., Mysida Haworth and Mysidae Haworth rath-<br />

34 � Contributions in Science, Number 39 Rationale


er than Mysida Boas or Mysida Dana) following<br />

<strong>the</strong> recommendation <strong>of</strong> L. Holthuis (pers. comm.)<br />

citing ICZN article 50(c)(i) (now 50.3.1, ICZN<br />

fourth edition, 1999). Tchindonova (1981) suggested<br />

<strong>the</strong> erection within <strong>the</strong> Mysida <strong>of</strong> <strong>the</strong> suborders<br />

Petalopthalmina and Stygiomysina as well as<br />

<strong>the</strong> tribe Amblyopsini and <strong>the</strong> family Boreomysidae<br />

(in addition to several new subfamilies, tribes, and<br />

genera; P. Chevaldonne, pers. comm.). We have not<br />

followed this suggestion.<br />

ORDER MICTACEA<br />

In 1985, two groups <strong>of</strong> workers simultaneously described<br />

two new families <strong>of</strong> an entirely new order<br />

<strong>of</strong> peracarid crustaceans and <strong>the</strong>n jointly described<br />

<strong>the</strong> new order (Bowman et al., 1985). The new<br />

families were <strong>the</strong> Hirsutiidae (Sanders et al., 1985)<br />

and <strong>the</strong> Mictocarididae (Bowman and Iliffe, 1985),<br />

<strong>the</strong> latter <strong>of</strong> which formed <strong>the</strong> basis <strong>of</strong> <strong>the</strong> name <strong>of</strong><br />

<strong>the</strong> new order Mictacea. A second species <strong>of</strong> <strong>the</strong><br />

Hirsutiidae was described from Australia by Just<br />

and Poore (1988). Although discovery <strong>of</strong> <strong>the</strong> Mictacea<br />

has prompted speculation about its phylogenetic<br />

affinities, most workers are in agreement that<br />

<strong>the</strong> group fits comfortably within <strong>the</strong> Peracarida.<br />

Thus, we include <strong>the</strong> order and its two families<br />

among <strong>the</strong> Peracarida, as does <strong>the</strong> most recent<br />

treatment (Hessler, 1999) <strong>of</strong> <strong>the</strong> order. Gutu and<br />

Iliffe (1998) described a new (third) species <strong>of</strong> hirsutiid<br />

from anchialine and submarine caves in <strong>the</strong><br />

Bahamas and suggested that <strong>the</strong> family be removed<br />

to a new order, <strong>the</strong> Bochusacea (separate order status<br />

for <strong>the</strong> hirsutiids had been suggested also by<br />

Sanders et al., 1985). The o<strong>the</strong>r family <strong>of</strong> Mictacea<br />

(Mictocarididae) was <strong>the</strong>n proposed by Gutu<br />

(1998) to belong to a new order, Cosinzeneacea,<br />

which would include as suborders <strong>the</strong> Spelaeogriphacea<br />

and Mictacea. We have not followed <strong>the</strong><br />

suggestions <strong>of</strong> Gutu and Iliffe (1998) and Gutu<br />

(1998).<br />

ORDER AMPHIPODA<br />

The Amphipoda, despite a large number <strong>of</strong> dedicated<br />

workers and numerous proposed phylogenies<br />

and classificatory schemes, remain to a large extent<br />

an unresolved mess. Families proposed by one<br />

worker <strong>of</strong>ten are not recognized by ano<strong>the</strong>r, and<br />

disparate classifications based on poorly defined<br />

features seem to be <strong>the</strong> rule. The Gammaridea, containing<br />

<strong>the</strong> vast majority <strong>of</strong> amphipod families, is<br />

<strong>the</strong> most confusing suborder, although several<br />

workers (e.g., Kim and Kim, 1993) have proposed<br />

cladistically based rearrangements <strong>of</strong> <strong>the</strong> taxa. We<br />

should comment especially on <strong>the</strong> ‘‘semi-phyletic<br />

classification’’ put forth by Bousfield and Shih<br />

(1994) in <strong>the</strong> journal Amphipacifica. This classification<br />

apparently is being used as <strong>the</strong> basis for amphipod<br />

classification in an upcoming publication<br />

on common names <strong>of</strong> North American invertebrates<br />

overseen by <strong>the</strong> American Fisheries Society<br />

(although ‘‘minor changes may yet be made’’; E.<br />

Bousfield, pers. comm., March, 1999). Consequently,<br />

<strong>the</strong> Bousfield and Shih (1994) classification or<br />

its successor in <strong>the</strong> AFS publication (see Bousfield,<br />

2001) is likely to be cited <strong>of</strong>ten in <strong>the</strong> years to<br />

come. Although <strong>the</strong> Bousfield and Shih (1994)<br />

work is <strong>of</strong> value in reviewing previous classificatory<br />

attempts in recent years, we have not adopted it<br />

here. The classification divides <strong>the</strong> group into <strong>the</strong><br />

Amphipoda ‘‘Natantia’’ and Amphipoda ‘‘Reptantia,’’<br />

without assigning taxonomic rank to <strong>the</strong>se divisions,<br />

and <strong>the</strong>n lists <strong>the</strong> amphipod families under<br />

superfamily headings. Unfortunately, no authors or<br />

dates are provided for any <strong>of</strong> <strong>the</strong> higher taxa. A<br />

fur<strong>the</strong>r point <strong>of</strong> frustration is that <strong>the</strong> authors include<br />

in that paper several different phylogenetic<br />

hypo<strong>the</strong>ses based on different morphological features;<br />

however, <strong>the</strong> phylogenies are not concordant,<br />

so it is difficult to determine <strong>the</strong> characters on<br />

which <strong>the</strong>y base <strong>the</strong>ir resulting ‘‘semi-phyletic’’ classification.<br />

These disparaging comments should not<br />

be taken as reflecting adversely on o<strong>the</strong>r papers<br />

from <strong>the</strong>se authors. <strong>An</strong>d indeed, a large number <strong>of</strong><br />

papers in which various gammaridean amphipod<br />

superfamilies and families are revised have been authored<br />

by Bousfield and his colleagues in recent<br />

years and should be consulted by workers interested<br />

in those families. These works include Jarett and<br />

Bousfield (1994a, b, superfamily Phoxocephaloidea:<br />

Phoxocephalidae), Bousfield and Hendrycks<br />

(1994, superfamily Leucothoidea: Pleustidae; 1997,<br />

superfamily Eusiroidea: Calliopidae), Bousfield and<br />

Kendall (1994, superfamily Dexaminoidea: Atylidae,<br />

Dexaminidae), Bousfield and Hoover (1995,<br />

superfamily Pontoporeioidea: Haustoriidae), Bousfield<br />

and Hendrycks (1997, superfamily Eusiroidea:<br />

Calliopiidae), and Bousfield and Hoover (1997, superfamily<br />

Corophioidea: Corophiidae), and o<strong>the</strong>r<br />

papers in <strong>the</strong> journal Amphipacifica.<br />

Following <strong>the</strong> Fourth International <strong>Crustacea</strong>n<br />

Congress in Amsterdam, <strong>the</strong>re was a meeting <strong>of</strong><br />

amphipod specialists in Kronenburg, Germany (<strong>the</strong><br />

IXth International Meeting on Amphipoda, July,<br />

1998). One topic discussed in Kronenburg was<br />

‘‘Whi<strong>the</strong>r amphipod family-level taxonomy?’’ The<br />

report stemming from that discussion (Vader et al.,<br />

1998) is interesting and informative, and we quote<br />

from it here:<br />

Currently <strong>the</strong> classification <strong>of</strong> <strong>the</strong> Amphipoda is still in<br />

a state <strong>of</strong> flux; <strong>the</strong> schedules <strong>of</strong> Jerry Barnard and Ed<br />

Bousfield, <strong>of</strong>ten not very compatible and nei<strong>the</strong>r <strong>of</strong><br />

<strong>the</strong>m based on cladistic analyses, are still prevalent.<br />

Discussions revolved around <strong>the</strong> bush-like evolution <strong>of</strong><br />

<strong>the</strong> Amphipoda and envious comparisons to <strong>the</strong> Isopoda<br />

where <strong>the</strong> general classification appears clearer.<br />

Not unexpectedly, <strong>the</strong> classification problems <strong>of</strong> <strong>the</strong><br />

Amphipoda were not solved! However, it was suggested<br />

that a cladistic analysis <strong>of</strong> <strong>the</strong> amphipod families should<br />

have high priority, simply to give a general idea <strong>of</strong> <strong>the</strong><br />

overall relationships, and to generate topics for fur<strong>the</strong>r<br />

studies.<br />

To summarize, in <strong>the</strong> words <strong>of</strong> Les Watling (pers.<br />

comm.), ‘‘most <strong>of</strong> us working in <strong>the</strong> amphipod<br />

Contributions in Science, Number 39 Rationale � 35


world would ra<strong>the</strong>r that <strong>the</strong> [gammaridean] families<br />

be listed alphabetically ra<strong>the</strong>r than by superfamilies.’’<br />

Thus, somewhat to our disappointment, we have<br />

followed that group’s suggestion and also <strong>the</strong> work<br />

<strong>of</strong> Barnard and Karaman (1991) (which has been<br />

followed by several o<strong>the</strong>r workers such as De Broyer<br />

and Jazdzewski, 1993) in listing alphabetically<br />

<strong>the</strong> many families <strong>of</strong> gammaridean amphipods in<br />

<strong>the</strong> current classification. This was done in <strong>the</strong><br />

Bowman and Abele classification as well. The most<br />

recent treatment, an indispensable review by Bellan-Santini<br />

(1999), also lists <strong>the</strong> families <strong>of</strong> gammaridean<br />

amphipods (67 <strong>of</strong> <strong>the</strong>m) alphabetically<br />

(in addition to listing ano<strong>the</strong>r 24 families <strong>of</strong> questionable<br />

standing) without using superfamilies.<br />

This work (Bellan-Santini, 1999) differs from our<br />

compilation slightly and should be consulted by<br />

any serious student <strong>of</strong> gammaridean amphipods.<br />

The alphabetical list <strong>of</strong> families presented here<br />

has <strong>the</strong> advantage <strong>of</strong> not espousing one worker’s<br />

view over ano<strong>the</strong>r (although because Barnard and<br />

Karaman, 1991, also listed families alphabetically,<br />

it could be argued that we are preferring <strong>the</strong>ir approach;<br />

E. Bousfield, pers. comm.). It has <strong>the</strong> additional<br />

advantage <strong>of</strong> signaling to future workers<br />

that <strong>the</strong> gammarideans are in serious need <strong>of</strong> fur<strong>the</strong>r<br />

attention. However, our alphabetical listing<br />

has <strong>the</strong> clear disadvantage <strong>of</strong> discarding some<br />

groupings (e.g., corophioids, talitroids, lysianassoids)<br />

that seem to be fairly well accepted. <strong>An</strong> additional<br />

problem that should be noted is that, while<br />

we are avoiding superfamilies because <strong>the</strong>y are controversial<br />

and/or not widely used, <strong>the</strong> same could<br />

be said for a large percentage <strong>of</strong> <strong>the</strong> families that<br />

we have chosen to recognize.<br />

Works appearing subsequent to <strong>the</strong> Bowman and<br />

Abele (1982) classification that employ <strong>the</strong>se superfamily<br />

groupings (although not all in perfect<br />

agreement as to <strong>the</strong> constituent families) <strong>of</strong> <strong>the</strong><br />

gammarideans include Schram (1986), Ishimaru<br />

(1994), Bousfield (1983), and Bousfield and Shih<br />

(1994). These papers should be consulted for fur<strong>the</strong>r<br />

information on gammaridean superfamily hypo<strong>the</strong>ses.<br />

Fur<strong>the</strong>r advances in our understanding <strong>of</strong><br />

amphipod phylogeny were presented as part <strong>of</strong> <strong>the</strong><br />

10th Colloquium on Amphipoda (Heraklion, Crete,<br />

April, 2000) and include Berge et al. (2000),<br />

Bousfield (2000a, b), Serejo (2000), and Lowry and<br />

Myers (2000), abstracts <strong>of</strong> all <strong>of</strong> which are available<br />

via <strong>the</strong> Amphipod Homepage hosted by Old<br />

Dominion University in Norfolk, Virginia (URL<br />

http://www.odu.edu/%7Ejrh100f/amphome).<br />

SUBORDER GAMMARIDEA<br />

Gammaridean amphipod families that have been<br />

described or recognized since <strong>the</strong> Bowman and<br />

Abele (1982) list include, in alphabetical order <strong>of</strong><br />

<strong>the</strong> families, Acanthonotozomellidae (by Coleman<br />

and Barnard, 1991), Amathillopsidae (recognized<br />

by Coleman and Barnard, 1991, credited to Pirlot,<br />

1934, but considered only a subfamily <strong>of</strong> <strong>the</strong> Epimeriidae<br />

by Lowry and Myers, 2000), Allocrangonyctidae<br />

(by Holsinger, 1989), Aristiidae (by<br />

Lowry and Stoddart, 1997), Bolttsiidae, Cardenioidae,<br />

Clarenciidae (all by Barnard and Karaman,<br />

1987), Cheidae (by Thurston, 1982), Condukiidae<br />

(by Barnard and Drummond, 1982), Cyphocarididae<br />

(by Lowry and Stoddart, 1997), Dikwidae (by<br />

Coleman and Barnard, 1991, suggested to be only<br />

a tribe within <strong>the</strong> subfamily Amathillopsinae by<br />

Lowry and Myers, 2000), Didymocheliidae (by Bellan-Santini<br />

and Ledoyer, 1986), Endevouridae (by<br />

Lowry and Stoddart, 1997), Ipanemidae and Megaluropidae<br />

(by Barnard and Thomas, 1988), Metacrangonyctidae<br />

(by Boutin and Missouli, 1988),<br />

Micruropidae (by Kamaltynov, 1999), Odiidae (by<br />

Coleman and Barnard, 1991, but see Berge et al.,<br />

1998, 1999, who believe that <strong>the</strong> Odiidae is paraphyletic<br />

and that its genera belong instead within<br />

<strong>the</strong> Ochlesidae), Opisidae (by Lowry and Stoddart,<br />

1995), Pachyschesidae (by Kamaltynov, 1999), Paracalliopiidae<br />

(by Barnard and Karaman, 1982),<br />

Paracrangonyctidae (by Bousfield, 1982), Paraleptamphopidae<br />

(by Bousfield, 1983), Perthiidae (by<br />

Williams and Barnard, 1988), Phoxocephalopsidae<br />

(by Barnard and Clark, 1984, who credit Barnard<br />

and Drummond, 1982), Phreatogammaridae (by<br />

Bousfield, 1982), Pseudamphilochidae Schellenberg<br />

(revised and reinserted by Barnard and Karaman,<br />

1982), Podoprionidae (by Lowry and Stoddart,<br />

1996), Pseudocrangonyctidae (by Holsinger, 1989),<br />

Scopelocheiridae (by Lowry and Stoddart, 1997),<br />

Sinurothoidae (by Ren, 1999), Sternophysingidae<br />

(by Holsinger, 1992), Urohaustoriidae (by Barnard<br />

and Drummond, 1982), Valettidae (by Thurston,<br />

1989), Wandinidae (by Lowry and Stoddart, 1990),<br />

and Zobrachoidae (by Barnard and Drummond,<br />

1982). Additionally, we include <strong>the</strong> Podoceridae<br />

Leach, as this appears to be a widely recognized<br />

and relatively uncontroversial family (e.g., in Barnard<br />

and Karaman, 1991, and Bellan-Santini,<br />

1999), although it was not listed by Bowman and<br />

Abele (1982). Iphimedioid amphipods, like many<br />

o<strong>the</strong>r groupings, are currently being revised, and as<br />

a result, some <strong>of</strong> <strong>the</strong> names and ranks above will<br />

undoubtedly change (see Lowry and Myers, 2000).<br />

The family Lepechinellidae Schelenberg, listed in<br />

Bowman and Abele (1982), has been removed. Barnard<br />

and Karaman (1991) listed <strong>the</strong> genus Lepichenella<br />

in <strong>the</strong> Dexaminidae and considered <strong>the</strong><br />

Lepichenellidae a synonym <strong>of</strong> <strong>the</strong> Dexaminidae<br />

(but note that Bousfield and Kendall, 1994, treated<br />

<strong>the</strong> Lepichinellidae as a subfamily <strong>of</strong> <strong>the</strong> Atylidae).<br />

The family Conicostomatidae is listed in <strong>the</strong> Zoological<br />

Record (1983, vol. 20, section 10), where it<br />

is attributed to Lowry and Stoddart (1983). However,<br />

although those authors recognized it as a<br />

grouping <strong>of</strong> related taxa, <strong>the</strong>y did not establish it<br />

as a family in <strong>the</strong>ir 1983 paper, and <strong>the</strong>y have not<br />

done so subsequently (J. Lowry, pers. comm.).<br />

Thus, <strong>the</strong> listing <strong>of</strong> <strong>the</strong> family in <strong>the</strong> Zoological Record<br />

is in error. The family <strong>An</strong>amixidae is main-<br />

36 � Contributions in Science, Number 39 Rationale


tained in our classification, although <strong>the</strong>re is reason<br />

to believe that this family was erected to accommodate<br />

what are turning out to be highly derived<br />

males <strong>of</strong> some species <strong>of</strong> <strong>the</strong> Leucothoidae (J. Lowry,<br />

pers. comm.). If true, <strong>the</strong> <strong>An</strong>amixidae will have<br />

to be synonymized at some point. A few workers<br />

asked us to ‘‘correct’’ <strong>the</strong> spelling <strong>of</strong> <strong>the</strong> family<br />

name Liljeborgiidae to Lilljeborgiidae to reflect <strong>the</strong><br />

fact that <strong>the</strong> family name honors William Lilljeborg<br />

(1816–1908). The confusion stems from <strong>the</strong> fact<br />

that Vilhelm Liljeborg changed <strong>the</strong> spelling <strong>of</strong> his<br />

name to William Lilljeborg sometime in <strong>the</strong> early<br />

1860s. When Bate (1862) established <strong>the</strong> genus Liljeborgia,<br />

he used <strong>the</strong> <strong>the</strong>n-correct spelling honoring<br />

Vilhelm Liljeborg. Thus, when Stebbing in 1899 established<br />

<strong>the</strong> family Lilejborgiidae based on <strong>the</strong> genus<br />

Liljeborgia, he was obliged to use this spelling<br />

as well even though, by that time, <strong>the</strong> man was<br />

known as William Lilljeborg (J. Lowry, pers.<br />

comm., and see Vader, 1972). (As an aside, <strong>the</strong><br />

spelling <strong>of</strong> <strong>the</strong> genus Lilljeborgiella, erected by<br />

Schellenberg in 1931, is <strong>the</strong>refore also correct, as<br />

by that time <strong>the</strong> name was William Lilljeborg).<br />

All <strong>of</strong> <strong>the</strong> 67 families that Bellan-Santini (1999)<br />

lists as those that ‘‘ne présent pas actuellement de<br />

problème majeur d’interprétation’’ are included in<br />

our list. Bellan-Santini (1999) also lists ano<strong>the</strong>r 24<br />

families that do present problems, and some <strong>of</strong><br />

those are in our list as well. Some <strong>of</strong> <strong>the</strong> names and<br />

dates attributed to some families differ between our<br />

list and hers as well.<br />

SUBORDER CAPRELLIDEA<br />

Takeuchi (1993) indicated that <strong>the</strong> Caprellidea may<br />

not be monophyletic but stopped short <strong>of</strong> proposing<br />

a new classification <strong>of</strong> <strong>the</strong> group. His results<br />

(Takeuchi, 1993, figs. 1, 5) indicated that <strong>the</strong> phtisicids<br />

are <strong>the</strong> sister group to all o<strong>the</strong>r caprellideans<br />

and that <strong>the</strong> paracercopids are more closely related<br />

to <strong>the</strong> caprellid-caprogammarid line (he did not<br />

deal with <strong>the</strong> parasitic family Cyamidae). Thus, we<br />

have removed <strong>the</strong> family Paracercopidae from <strong>the</strong><br />

superfamily Phtisicoidea and have placed it instead<br />

in <strong>the</strong> superfamily Caprelloidea, leaving <strong>the</strong> Phtisicidae<br />

<strong>the</strong> sole family <strong>of</strong> <strong>the</strong> Phtisicoidea. We saw<br />

this move as preferable to creating yet ano<strong>the</strong>r superfamily<br />

(to contain <strong>the</strong> paracercopids) in an already<br />

taxon-dense suborder. In <strong>the</strong> same year and<br />

in <strong>the</strong> same volume, Laubitz (1993) described two<br />

new caprellidean families (Caprellinoididae and<br />

Pariambidae). She also recognized as valid <strong>the</strong> Protellidae<br />

McCain and tentatively suggested some<br />

evolutionary lines or trends within and leading up<br />

to <strong>the</strong> Caprellidea. Some <strong>of</strong> <strong>the</strong>se ideas differ from<br />

those proposed by Takeuchi (1993), although both<br />

workers recognize <strong>the</strong> same eight families (as does<br />

Bellan-Santini, 1999). Also in that same volume,<br />

Kim and Kim (1993) suggested affinities between<br />

caprellideans and corophioids. Margolis et al.<br />

(2000) have suggested that <strong>the</strong> Cyamidae may be<br />

closer to <strong>the</strong> Caprogammaridae-Caprellidae lineage<br />

ra<strong>the</strong>r than to <strong>the</strong> Caprellinoididae-Phtiscidae line,<br />

as suggested by Laubitz (1993). Several names and<br />

dates have reverted to earlier workers (suggestions<br />

<strong>of</strong> L. Holthuis, pers. comm.). The families Aeginellidae<br />

and Dodecadidae have been deleted, as <strong>the</strong>y<br />

are now considered subfamilies <strong>of</strong> <strong>the</strong> Caprellidae<br />

and Phtisicidae (K. Larsen, pers. comm.; Laubitz,<br />

1993). See also Bellan-Santini (1999).<br />

SUBORDER HYPERIIDEA<br />

Workers familiar with hyperiideans may wonder<br />

why we did not follow <strong>the</strong> revision <strong>of</strong> <strong>the</strong> Hyperiidea<br />

by Vinogradov et al. (1982, with English translation<br />

edited by D. Siegel-Causey appearing in<br />

1996). While that work contains much updated information<br />

concerning <strong>the</strong> biology <strong>of</strong> hyperiideans<br />

and nomenclatural changes below <strong>the</strong> level <strong>of</strong> family,<br />

<strong>the</strong> authors followed, for <strong>the</strong> higher classification,<br />

<strong>the</strong> earlier work by Bowman and Gruner<br />

(1973). Thus, <strong>the</strong> Bowman and Abele (1982) classification<br />

is <strong>the</strong> more current <strong>of</strong> <strong>the</strong> two for higher<br />

level taxa, although workers will want to consult<br />

<strong>the</strong> Vinogradov et al. volume for information within<br />

families and genera (D. Causey, pers. comm.).<br />

Our classification is also consistent with <strong>the</strong> classifications<br />

<strong>of</strong> Schram (1986, which in turn was<br />

based largely on Bousfield, 1983) and Bellan-Santini<br />

(1999). Kim and Kim (1993) suggested that hyperiids<br />

may be related to certain leucothoid members<br />

(Amphilochidae and Stenothoidae) <strong>of</strong> <strong>the</strong><br />

Gammaridea.<br />

SUBORDER INGOLFIELLIDEA<br />

Several workers (e.g., J. Holsinger, pers. comm.)<br />

have pointed out that <strong>the</strong> ingolfiellids and metaingolfiellids<br />

may not justify <strong>the</strong>ir own suborder and<br />

could probably be accommodated within <strong>the</strong> Gammaridea.<br />

Indeed, Bowman and Abele (1982) listed<br />

<strong>the</strong>m alphabetically among <strong>the</strong> o<strong>the</strong>r gammaridean<br />

families. However, Holsinger notes at <strong>the</strong> same time<br />

that this view is not universally shared by o<strong>the</strong>r<br />

amphipod workers, and most workers (e.g., Bellan-<br />

Santini, 1999) continue to treat <strong>the</strong>se two families<br />

as <strong>the</strong> sole members <strong>of</strong> <strong>the</strong> suborder Ingolfiellidea.<br />

Vonk and Schram (1998) argue for maintaining<br />

separate status for <strong>the</strong> group. We have retained<br />

<strong>the</strong>ir separate status pending fur<strong>the</strong>r investigations<br />

into <strong>the</strong> group’s affinities.<br />

ORDER ISOPODA<br />

The diversity <strong>of</strong> and fascination with isopods are<br />

reflected in <strong>the</strong> relatively large number <strong>of</strong> carcinologists<br />

currently working on isopod systematics and<br />

phylogeny. Although it is encouraging to see so<br />

many skilled workers dedicated to resolving questions<br />

<strong>of</strong> isopod systematics, <strong>the</strong>re are negative aspects,<br />

one <strong>of</strong> which is <strong>the</strong> relatively large number<br />

<strong>of</strong> responses we received that contained conflicting<br />

ideas or information. For <strong>the</strong> most part, we have<br />

relied on <strong>the</strong> ra<strong>the</strong>r straightforward list <strong>of</strong> <strong>the</strong> ma-<br />

Contributions in Science, Number 39 Rationale � 37


ine isopods that has been posted on <strong>the</strong> World<br />

Wide Web by B. Kensley and M. Schotte (http://<br />

www.nmnh.si.edu/iz/isopod). However, in that<br />

compilation, <strong>the</strong> various suborders and <strong>the</strong>ir constituent<br />

superfamilies and families are arranged alphabetically.<br />

Brusca and Wilson (1991), while proposing<br />

some phylogenetic changes that would seriously<br />

alter <strong>the</strong> arrangement <strong>of</strong> groups as presented<br />

here (and at <strong>the</strong> same time countering several <strong>of</strong><br />

<strong>the</strong> hypo<strong>the</strong>ses forwarded earlier by Wägele, 1989),<br />

stopped short <strong>of</strong> proposing a new classification<br />

based on <strong>the</strong>ir hypo<strong>the</strong>sis. Their feeling was that<br />

insufficient evidence had been amassed for proposing<br />

classifications based on <strong>the</strong> phylogenetic hypo<strong>the</strong>ses<br />

<strong>the</strong>y were presenting as testable ideas. The<br />

Brusca and Wilson (1991) analysis was criticized<br />

by Wägele (1994), who in fact used <strong>the</strong>ir paper to<br />

point out potential pitfalls in any attempt at computer-generated<br />

cladistic analyses. Wägele (1994)<br />

was in turn rebutted by Wilson (1996), who was<br />

answered by Wägele (1996), and it would seem<br />

that we have a long way to go before any consensus<br />

concerning isopod phylogeny (not to mention phylogenetic<br />

method) is reached. Thus, our classification<br />

is in some ways a step backward in that we<br />

continue to recognize some groups, such as <strong>the</strong> Flabellifera,<br />

that appear clearly paraphyletic (following<br />

<strong>the</strong> analyses <strong>of</strong> both Brusca and Wilson, 1991,<br />

and Wägele, 1989) but for which no alternative<br />

classifications have been proposed. In <strong>the</strong> most recent<br />

overall treatment <strong>of</strong> isopods, Roman and Dalens<br />

(1999) continue to recognize <strong>the</strong> Flabellifera as<br />

well while acknowledging that it is a heterogeneous<br />

assemblage.<br />

Additionally, many changes, especially those concerning<br />

names and dates <strong>of</strong> <strong>the</strong> authorities credited<br />

with establishing families but also concerning<br />

whe<strong>the</strong>r or not to recognize a particular family,<br />

have been incorporated at <strong>the</strong> request <strong>of</strong> some <strong>of</strong><br />

<strong>the</strong> major workers (e.g., L. Holthuis, B. Kensley, R.<br />

Brusca, G. Poore, W. Wägele, and G. Wilson) via<br />

personal communications. It has not always been<br />

possible for us to verify <strong>the</strong>se suggestions. Often,<br />

despite a ra<strong>the</strong>r large library on crustacean systematics<br />

at our disposal, we have been unable to see<br />

<strong>the</strong> original references. In cases where we received<br />

conflicting information (such as whe<strong>the</strong>r <strong>the</strong> family<br />

Arcturidae should be credited to White, 1850 vs.<br />

Bate and Westwood, 1868 vs. Sars, 1899) and/or<br />

we could not verify by checking on all <strong>of</strong> <strong>the</strong> suggested<br />

references ourselves, we have chosen <strong>the</strong> first<br />

known usage (in this case, using Arcturidae White,<br />

1850, which turns out to be correct according to<br />

G. Poore, who owns <strong>the</strong> book) in accordance with<br />

ICZN article 50.3.1. One such change involves <strong>the</strong><br />

establishment <strong>of</strong> a large number <strong>of</strong> families and superfamilies<br />

credited to Latreille. L. Holthuis (pers.<br />

comm.) assures us that 1802 is <strong>the</strong> correct date for<br />

<strong>the</strong> many taxa that have been, in <strong>the</strong> past, credited<br />

to Latrielle (1803) (see earlier section on names,<br />

dates, and <strong>the</strong> ICZN).<br />

Major papers suggesting changes in how we or-<br />

ganize <strong>the</strong> Isopoda that have appeared subsequent<br />

to Bowman and Abele (1982) include Wägele<br />

(1989) and Brusca and Wilson (1991). Poore<br />

(2001a) presented a phylogeny <strong>of</strong> <strong>the</strong> <strong>An</strong>thuridea<br />

suggesting relationships among <strong>the</strong> six families<br />

(two new), but to our knowledge, <strong>the</strong>re have not<br />

as yet been names proposed for <strong>the</strong> divisions suggested<br />

by him. The most recent review, by Roman<br />

and Dalens (1999), recognizes eight suborders.<br />

Their arrangement differs from ours in that (1) <strong>the</strong>y<br />

recognize <strong>the</strong> suborder Gnathiidea, which we do<br />

not, and (2) <strong>the</strong>y do not recognize <strong>the</strong> suborders<br />

Microcerberidea and Calabozoidea, which we do,<br />

for reasons discussed below.<br />

Concerning <strong>the</strong> former suborder Gnathiidea,<br />

Brusca and Wilson (1991) suggested that <strong>the</strong> gnathiids<br />

were derived from among <strong>the</strong> families traditionally<br />

thought <strong>of</strong> as ‘‘flabelliferan’’ isopods (a<br />

group that <strong>the</strong>y demonstrate is not monophyletic).<br />

Wägele (1989, pers. comm.) also would remove <strong>the</strong><br />

gnathiids from <strong>the</strong>ir own suborder, but his preference<br />

was to place <strong>the</strong>m among <strong>the</strong> Cymothoida, a<br />

group he recognizes as containing a large number<br />

<strong>of</strong> former Flabellifera families. We have, for <strong>the</strong><br />

current classification, removed <strong>the</strong> gnathiids from<br />

<strong>the</strong>ir own superfamily and have placed <strong>the</strong>m within<br />

<strong>the</strong> Flabellifera, knowing that <strong>the</strong> Flabellifera itself<br />

is not monophyletic and must some day be extensively<br />

revised. L. Holthuis (pers. comm.) has suggested<br />

that we credit <strong>the</strong> family name Gnathiidae<br />

to Leach (1814) ra<strong>the</strong>r than to Harger (1880), as<br />

was used by Bowman and Abele (1982) and Roman<br />

and Dalens (1999).<br />

SUBORDER PHREATOICIDEA<br />

Wilson (pers. comm.) suggests that many <strong>of</strong> <strong>the</strong><br />

subfamilies <strong>of</strong> <strong>the</strong> Amphisopodidae recognized by<br />

Nicholls (1943, 1944) will need to be elevated to<br />

family level (e.g., as Hypsimetopodidae, Mesamphisopodidae,<br />

Phreatoicopsididae) once this suborder<br />

is revised (see also Wilson and Johnson,<br />

1999; Wilson and Keable, 1999, 2001). Our classification<br />

follows Roman and Dalens (1999) in recognizing<br />

three families (<strong>the</strong> same three that appear<br />

in Bowman and Abele, 1982). By listing <strong>the</strong> phreatoicids<br />

first among all isopod suborders, we are acknowledging<br />

<strong>the</strong> primitive nature <strong>of</strong> <strong>the</strong>se isopods.<br />

Brusca and Wilson (1991) and Wilson and Johnson<br />

(1999) have indicated that <strong>the</strong> phreatoicideans, all<br />

<strong>of</strong> which are restricted to Gondwanan fresh waters,<br />

may be ‘‘<strong>the</strong> earliest derived isopod Crustaca’’ (Wilson<br />

and Johnson, 1999:264). The phreatoicidean<br />

fossil record extends back to <strong>the</strong> Carboniferous<br />

(Wilson and Johnson, 1999).<br />

SUBORDER ANTHURIDEA<br />

Within this suborder, <strong>the</strong> family <strong>An</strong><strong>the</strong>luridae was<br />

described by Poore and Lew Ton (1988) and <strong>the</strong><br />

families Expanathuridae and Leptanthuridae were<br />

described recently by Poore (2001a; see also Poore,<br />

1998). Our treatment differs from that <strong>of</strong> Roman<br />

38 � Contributions in Science, Number 39 Rationale


and Dalens (1999) in that we include six families.<br />

Roman and Dalens do not recognize <strong>the</strong> family <strong>An</strong><strong>the</strong>luridae<br />

and <strong>of</strong> course could not have known<br />

about <strong>the</strong> Expanathuridae and Leptanthuridae.<br />

SUBORDER MICROCERBERIDEA<br />

Wägele (1983) placed <strong>the</strong> family Microcerberidae<br />

within <strong>the</strong> Aselloidea; Brusca and Wilson (1991)<br />

considered <strong>the</strong> Microcerberoidea <strong>the</strong> sister group to<br />

<strong>the</strong> Asellota and consequently suggested <strong>the</strong>y not<br />

be included among <strong>the</strong> Asellota. Our treatment <strong>of</strong><br />

<strong>the</strong> family as belonging to its own suborder and<br />

superfamily follows Bowman and Abele (1982) but<br />

is also in keeping with <strong>the</strong> suggestion <strong>of</strong> Brusca and<br />

Wilson (1991). Additionally, we now treat <strong>the</strong><br />

monotypic family Atlantasellidae in this suborder<br />

on <strong>the</strong> recommendation <strong>of</strong> G. D. F. Wilson (pers.<br />

comm.).<br />

SUBORDER FLABELLIFERA<br />

Brusca and Wilson (1991) showed that <strong>the</strong> Flabellifera<br />

was a paraphyletic grouping, a finding that<br />

has been suggested also by o<strong>the</strong>r workers. Wägele<br />

(1989) (rebutted to some degree by Wilson, 1996)<br />

argued for dividing <strong>the</strong> flabelliferan families into<br />

two somewhat smaller groups, <strong>the</strong> Cymothoida<br />

and Sphaeromatidea (see Wägele, 1989). Wägele<br />

would remove from <strong>the</strong> Flabellifera <strong>the</strong> family Atlantasellidae<br />

(which he considers an Aselloidea).<br />

The families Aegidae, <strong>An</strong>uropidae, Argathonidae,<br />

Cirolanidae, Corallanidae, Cymothoidae, and Tridentellidae<br />

would belong to his grouping Cymothoida<br />

Leach, 1814. The remaining families (Bathynataliidae,<br />

Hadromastacidae, Keuyphyliidae, Limnoriidae,<br />

Phoratopodidae, Plakarthriidae, Serolidae,<br />

Sphaeromatidae, and Tecticepitidae) he would<br />

place in <strong>the</strong> Sphaeromatoidea. Thus, <strong>the</strong> two most<br />

current and most ambitious schemes <strong>of</strong> isopod phylogeny,<br />

although agreeing in some respects, do not<br />

agree even closely on how to treat <strong>the</strong> former flabelliferan<br />

families (see also Brandt et al., 1999, for<br />

a comparison <strong>of</strong> phylogenetic hypo<strong>the</strong>ses <strong>of</strong> sphaeromatoid<br />

families in light <strong>of</strong> <strong>the</strong> fossil family<br />

Schweglerellidae). Roman and Dalens (1999) recognize<br />

<strong>the</strong> Flabellifera, and divide it into three superfamilies:<br />

Cirolanoidea (seven families), Sphaeromatoidea<br />

(two families), and Seroloidea (two<br />

families). We have retained <strong>the</strong> Flabellifera for <strong>the</strong><br />

current classification, knowing that this assemblage<br />

cannot be considered monophyletic, and for now,<br />

we have avoided <strong>the</strong> use <strong>of</strong> superfamilies. <strong>Recent</strong><br />

fossil finds (see Brandt et al., 1999) have pushed<br />

back <strong>the</strong> origin <strong>of</strong> some former flabelliferan isopods,<br />

indicating that <strong>the</strong> sphaeromatoid isopods, at<br />

least, are <strong>of</strong> Late Jurassic ancestry or older.<br />

Within <strong>the</strong> Flabellifera, <strong>the</strong> following changes<br />

have been incorporated (listed alphabetically by<br />

family): <strong>An</strong>cinidae (elevated to family status by N.<br />

L. Bruce, 1993), Argathonidae (removed per R.<br />

Brusca, pers. comm.), Bathynomidae (removed per<br />

B. Kensley, pers. comm.), Excorallanidae (removed<br />

per B. Kensley, pers. comm.), Hadromastacidae (described<br />

by Bruce and Müller, 1991), Lynseiidae (described<br />

by Poore, 1987; removed per Cookson and<br />

Poore, 1994; see also Bruce, 1988), Protognathiidae<br />

(described by Wägele and Brandt, 1988; moved<br />

from Gnathiidea per R. Brusca and also G. Wilson,<br />

pers. comm.), Tecticepitidae (originally described as<br />

a subfamily by Iverson, 1982; elevated to family<br />

status by N. L. Bruce, 1993), and Tridentellidae<br />

(described by Bruce, 1984).<br />

N. L. Bruce (1993) presented a key to <strong>the</strong> known<br />

flabelliferan families, reappraised <strong>the</strong> family Sphaeromatidae<br />

Latreille (a family in ra<strong>the</strong>r dire need <strong>of</strong><br />

internal revision; see Harrison and Ellis, 1991), and<br />

recognized as families <strong>the</strong> <strong>An</strong>cinidae Dana and Tecticipitidae<br />

Iverson.<br />

G. Poore (pers. comm.) informs us that <strong>the</strong> Aegidae<br />

is correctly attributed to White (1850) ra<strong>the</strong>r<br />

than to Leach (<strong>the</strong>re are no families mentioned in<br />

<strong>the</strong> only paper that Leach published in 1815, <strong>the</strong><br />

date given in Bowman and Abele for this family).<br />

He also informs us that <strong>the</strong> families <strong>An</strong>cinidae, Cirolanidae,<br />

and Serolidae are correctly attributed to<br />

Dana (1852) instead <strong>of</strong> 1853 (as in Bowman and<br />

Abele, 1982).<br />

Bowman and Abele (1982) used <strong>the</strong> spelling <strong>An</strong>uropodidae<br />

for this isopod family, while noting<br />

(1982: 21) that <strong>the</strong> tanaid family <strong>An</strong>uropodidae Băcescu<br />

was a homonym <strong>of</strong> <strong>the</strong> isopod family <strong>An</strong>uropodidae<br />

Stebbing. ICZN Opinion 1357 (ICZN,<br />

1985b) dictated that <strong>the</strong> spelling <strong>of</strong> <strong>the</strong> isopod family<br />

should be <strong>An</strong>uropidae to remove <strong>the</strong> homonymy,<br />

and thus we use <strong>An</strong>uropidae as <strong>the</strong> correct<br />

spelling <strong>of</strong> this isopod family.<br />

The Plakarthriidae Hansen is, according to G.<br />

Poore (pers. comm.), ‘‘an effective replacement<br />

name for Chelonidiidae Pfeffer, 1887, but is conserved<br />

under ICZN article 40’’; Dr. Poore suggests<br />

that <strong>the</strong> date 1887 should follow Hansen, 1905, in<br />

paren<strong>the</strong>ses, as Plakarthriidae Hansen, 1905<br />

(1887).<br />

SUBORDER ASELLOTA<br />

According to G. Wilson and G. Poore (pers.<br />

comm.), <strong>the</strong> currently recognized superfamilies <strong>of</strong><br />

<strong>the</strong> Asellota are ei<strong>the</strong>r poly- or paraphyletic (see<br />

also Wilson, 1987) and will not stand <strong>the</strong> test <strong>of</strong><br />

time. Roman and Dalens (1999) treat <strong>the</strong> Asellota<br />

as being comprised <strong>of</strong> four superfamilies (down one<br />

from Bowman and Abele, 1982; <strong>the</strong> Protallocoxoidea<br />

and its single family, Protallocoxidae, have<br />

been removed). We have followed this arrangement<br />

here, recognizing <strong>the</strong> superfamilies Aselloidea, Stenetrioidea,<br />

Janiroidea, and Gnathostenetroidea.<br />

The superfamily Pseudojaniroidea, proposed by<br />

Wilson (1986), has been removed at his suggestion<br />

(G. Wilson, pers. comm.; see also Serov and Wilson,<br />

1999). Its former family, <strong>the</strong> Pseudojaniridae,<br />

has been transferred to <strong>the</strong> Stenetrioidea following<br />

<strong>the</strong> revision <strong>of</strong> <strong>the</strong> Pseudojaniridae by Serov and<br />

Wilson (1999).<br />

Contributions in Science, Number 39 Rationale � 39


In <strong>the</strong> superfamily Aselloidea, <strong>the</strong> family Atlantasellidae<br />

has been removed. Brusca and Wilson<br />

(1991) suggested its removal to <strong>the</strong> Microcerberoidea,<br />

where we have placed it. Although Roman and<br />

Dalens (1999) treat <strong>the</strong> family Microcerberidae as<br />

a member <strong>of</strong> <strong>the</strong> Aselloidea, we are keeping it in its<br />

own suborder (Microcerberidea) and superfamily<br />

(Microcerberoidea) as per Bowman and Abele<br />

(1982) (as noted earlier). Thus, <strong>the</strong> Aselloidea presently<br />

contains only <strong>the</strong> Asellidae and Stenasellidae.<br />

The superfamily Stenetrioidea now contains <strong>the</strong><br />

Pseudojaniridae (as noted above), although Roman<br />

and Dalens (1999) have kept it at one family, <strong>the</strong><br />

Stenetriidae.<br />

Within <strong>the</strong> enormous superfamily Janiroidea, <strong>the</strong><br />

Abyssianiridae was removed (incorporated into <strong>the</strong><br />

Paramunnidae) following Just (1990). Species formerly<br />

within that family are now considered to belong<br />

to <strong>the</strong> Paramunnidae. The former families Eurycopidae,<br />

Ilyarachnidae, and Munnopsididae are<br />

now considered subfamilies <strong>of</strong> <strong>the</strong> Munnopsididae<br />

(Wilson, 1989). The Microparasellidae is apparently<br />

polyphyletic; ‘‘some taxa may be moved to <strong>the</strong><br />

Vermectiadidae or put in a new family; Microparasellus<br />

will stay in <strong>the</strong> Janiroidea’’ (Wilson, pers.<br />

comm.). The Janiridae was shown to be nonmonophyletic<br />

by Wilson (1994) but remains a valid<br />

family; some <strong>of</strong> its genera will eventually be reassigned<br />

to o<strong>the</strong>r families. The Katianiridae was described<br />

by Svavarsson (1987). Although <strong>the</strong> family<br />

Pleurogoniidae is recognized by some workers (e.g.,<br />

Roman and Dalens, 1999), we have removed it at<br />

<strong>the</strong> suggestion that it is a junior synonym <strong>of</strong> <strong>the</strong><br />

Paramunnidae (G. Poore, pers. comm.; G. Wilson,<br />

pers. comm.). The family Pseudomesidae was sunk<br />

into <strong>the</strong> Desmosomatidae by Svavarsson (1984).<br />

Although <strong>the</strong> family Santiidae is credited to Kussakin<br />

(1988) by many workers (e.g., Wolff, 1989),<br />

it was first used (in a figure) by Wilson (1987). In<br />

Wilson’s (1987) paper, he acknowledges Fresi et al.<br />

(1980) as <strong>the</strong> source for one <strong>of</strong> <strong>the</strong> phylogenetic<br />

trees in that paper (Wilson’s fig. 5B). However, Fresi<br />

et al. (1980) did not include <strong>the</strong> Santiidae in <strong>the</strong>ir<br />

figure; it was apparently added (and <strong>the</strong>refore first<br />

used) by Wilson (1987). Thus, we have credited <strong>the</strong><br />

family Santiidae to Wilson. Cohen (1998), in his<br />

review <strong>of</strong> <strong>the</strong> family Dendrotiidae, explains why<br />

this spelling <strong>of</strong> <strong>the</strong> family name is preferred over<br />

Dendrotionidae (used by Lincoln and Boxshall,<br />

1983). Interested workers should also consult Roman<br />

and Dalens (1999), whose list <strong>of</strong> families differs<br />

from ours in several respects.<br />

The superfamily Protallocoxoidea and family<br />

Protallocoxidae were removed per G. Wilson (pers.<br />

comm.).<br />

The superfamily Gnathostenetroidoidea contains<br />

<strong>the</strong> families Gnathostenetroididae and Protojaniridae<br />

(following Roman and Dalens, 1999). Additionally,<br />

<strong>the</strong> interesting family Vermectiadidae was<br />

described by Just and Poore (1992), and our tentative<br />

inclusion <strong>of</strong> <strong>the</strong> vermectiadids in <strong>the</strong> super-<br />

family Gnathostenetroidoidea is based mostly on<br />

<strong>the</strong> recommendation <strong>of</strong> R. Brusca (pers. comm.).<br />

SUBORDER CALABAZOIDA<br />

This family (Calabozoidae) and its suborder were<br />

erected by Van Lieshout (1983). Brusca and Wilson<br />

(1991) suggest that <strong>the</strong> calabazoids are oniscideans<br />

and so <strong>the</strong>y should probably be moved, but we<br />

have not done so in this classification. Wägele<br />

(pers. comm.) points out that <strong>the</strong> ending -oidea<br />

should be reserved for superfamilies and suggested<br />

that we change <strong>the</strong> spelling <strong>of</strong> <strong>the</strong> suborder to Calabazoida,<br />

which we have done.<br />

SUBORDER VALVIFERA<br />

Within <strong>the</strong> Valvifera, several families have been<br />

added since <strong>the</strong> Bowman and Abele (1982) classification.<br />

The family Austrarcturellidae was described<br />

by Poore and Bardsley (1992), and <strong>the</strong> families<br />

<strong>An</strong>tarcturidae, Arcturididae, and Rectarcturidae<br />

were added by Poore (2001b). Poore (2001b)<br />

also recognized <strong>the</strong> Holidoteidae, crediting it to<br />

Wägele (1989), who first suggested it as a subfamily.<br />

Current research shows that <strong>the</strong> family Amesopodidae<br />

is probably a junior synonym <strong>of</strong> <strong>the</strong> Arcturidae<br />

(G. Poore, G. Wilson, pers. comm.), and so<br />

we have removed it, although <strong>the</strong> family was listed<br />

by Roman and Dalens (1999), who did not list <strong>the</strong><br />

Austrarcturellidae. Thus, we recognize 11 families,<br />

4 more than did Bowman and Abele (1982). The<br />

family Arcturidae, credited by Bowman and Abele<br />

(1982) to Sars, is correctly credited to Dana (1849),<br />

and <strong>the</strong> family Idoteidae is correctly attributed to<br />

Samouelle (G. Poore, pers. comm.).<br />

SUBORDER EPICARIDEA<br />

Wägele (1989, pers. comm.) suggested that all <strong>of</strong><br />

<strong>the</strong> epicaridean families we have listed should be<br />

treated as families or subfamilies <strong>of</strong> <strong>the</strong> Cymothoida<br />

Leach (see above). We have not made this ra<strong>the</strong>r<br />

radical change and instead have followed <strong>the</strong> more<br />

conservative classification given by Trilles (1999).<br />

Trilles (1999) divides <strong>the</strong> epicaridean families into<br />

two sections, Bopyrina and Cryptoniscina, which<br />

we have treated as superfamilies (Bopyroidea and<br />

Cryptoniscoidea) to allow a more consistent spelling<br />

and in keeping with our treatments <strong>of</strong> o<strong>the</strong>r<br />

peracarid groups. In <strong>the</strong> Bopyroidea are <strong>the</strong> three<br />

families Bopyridae, Dajidae, and Entoniscidae (all<br />

<strong>of</strong> which were listed by Bowman and Abele, 1982).<br />

In <strong>the</strong> section (now superfamily) Cryptoniscoidea,<br />

Trilles (1999) treats an additional eight families not<br />

listed by Bowman and Abele (1982); <strong>the</strong> family Liriopsidae<br />

has been deleted (see arguments in Grygier<br />

and Bowman, 1990, 1991; Trilles, 1999). Thus, 11<br />

epicaridean families are recognized. The families<br />

added since Bowman and Abele (1982) are not<br />

newly described families but instead represent recognition<br />

<strong>of</strong> formerly described families that were<br />

treated in <strong>the</strong> past, at least by some authors, as<br />

40 � Contributions in Science, Number 39 Rationale


subfamilies <strong>of</strong> <strong>the</strong> Cryptoniscidae, for which Bowman<br />

and Abele (1982), followed by Schram (1986),<br />

used <strong>the</strong> name Liriopsidae (see Grygier and Bowman,<br />

1990). Crediting authorship <strong>of</strong> <strong>the</strong> family<br />

Cryptoniscidae (and thus Cryptoniscoidea) to Kossman<br />

ra<strong>the</strong>r than to Gerstaecker is based on <strong>the</strong> correction<br />

published by Grygier and Bowman (1991).<br />

Following Trilles (1999), we also do not recognize<br />

<strong>the</strong> family Microniscidae Müller for <strong>the</strong> genus Microniscus,<br />

although this family is still listed in some<br />

compendia (e.g., by Brasil-Lima, 1998:641, in<br />

Young, 1998). The spelling Cabiropsidae used by<br />

Trilles (1999) and some earlier workers is corrected<br />

to Cabiropidae based on <strong>the</strong> explanation given by<br />

Sassaman (1992).<br />

SUBORDER ONISCIDEA<br />

The relationships <strong>of</strong> <strong>the</strong> terrestrial isopod groups to<br />

one ano<strong>the</strong>r and to marine relatives are still poorly<br />

understood. Although Schmalfuss (1989, in Ferrara,<br />

1989) proposed some relationships among oniscideans<br />

and compared <strong>the</strong> classification <strong>of</strong> oniscideans<br />

presented by Holdich et al. (1984) with a<br />

new one based on his analysis, Schmalfuss’ work<br />

was based on relatively few characters and was criticized<br />

by Brusca (1990). Wägele (pers. comm.) informs<br />

us that <strong>the</strong>re are ‘‘enormous advances that<br />

will be published next year’’ concerning <strong>the</strong> phylogeny<br />

<strong>of</strong> <strong>the</strong> Oniscidea and that several groups<br />

presented here are not monophyletic; fur<strong>the</strong>r, he informs<br />

us that <strong>the</strong> ‘‘section’’ Diplochaeta is currently<br />

being revised. Until <strong>the</strong>se advances become known<br />

to us, we are unsure as to what relationships our<br />

classification should suggest. Holdich et al. (1984)<br />

used two infraorders (<strong>the</strong> Tylidae were placed in a<br />

separate infraorder, Tylomorpha), and within <strong>the</strong><br />

infraorder Ligiamorpha <strong>the</strong>y recognized three sections.<br />

Schmalfuss (1989) did not employ <strong>the</strong> infraorder<br />

level and instead divided all oniscideans<br />

among four major sections. More recent arrangements<br />

<strong>of</strong> <strong>the</strong> oniscidean families have been proposed<br />

by Erhard (1995) and Tabacaru and Danielopol<br />

(1996a, b; see also Roman and Dalens, 1999,<br />

who followed mostly Schmalfuss, 1989, and also<br />

Mattern and Schlegel, 2001). Many workers (e.g.,<br />

Souza-Kury, 1998, in Young, 1998) list <strong>the</strong> oniscidean<br />

families alphabetically.<br />

We have maintained <strong>the</strong> two-infraorder system<br />

and have not recognized <strong>the</strong> new section Microchaeta<br />

proposed by Schmalfuss. The four families<br />

Helelidae, Irmaosidae, Pseudarmadillidae, and<br />

Scleropactidae have been removed from any infraorder<br />

or superfamily, as <strong>the</strong>ir status is indeterminate<br />

(R. Brusca, pers. comm.). For <strong>the</strong> currently<br />

accepted family names (as well as authors and<br />

dates, which were not included by Schmalfuss), we<br />

have had to rely primarily on <strong>the</strong> alphabetical list<br />

<strong>of</strong> oniscidean families maintained on <strong>the</strong> Smithsonian’s<br />

server (Kensley et al., 1998; URL http://<br />

www/nmnh.si.edu/iz/isopod), which is based on<br />

Schmalfuss’ families (<strong>the</strong> terrestrial isopod list is<br />

also accessible via <strong>the</strong> Kensley et al. list <strong>of</strong> marine<br />

isopods, URL gopher://nmnhgoph.si.edu:70/11/.<br />

invertebrate/.crustaceans). Users <strong>of</strong> <strong>the</strong> terrestrial<br />

isopod list are strongly cautioned by <strong>the</strong> authors<br />

(Kensley et al., 1998):<br />

This list is thus intended as a rough guide to <strong>the</strong> astounding<br />

array <strong>of</strong> names and taxa in <strong>the</strong> Oniscidea.<br />

Synonymy will be rampant in <strong>the</strong> list. We have tried to<br />

use <strong>the</strong> most current interpretations <strong>of</strong> some genera and<br />

families. Never<strong>the</strong>less, we realise that in no way do we<br />

even begin to resolve <strong>the</strong> taxonomic confusion that<br />

reigns in this group. There is uncertainty regarding <strong>the</strong><br />

familial placement <strong>of</strong> some genera, and <strong>the</strong>re will certainly<br />

be repetition <strong>of</strong> <strong>the</strong> same specific name under<br />

different genera. There are omissions from <strong>the</strong> list, ei<strong>the</strong>r<br />

<strong>of</strong> names <strong>of</strong> taxa that we’ve completely missed, or<br />

<strong>of</strong> authors and dates <strong>of</strong> publication and/or <strong>of</strong> localities<br />

that we have been unable to find.<br />

We are aware <strong>of</strong> only two newly described oniscidean<br />

families since 1982: Ferrara and Taiti<br />

(1983) described <strong>the</strong> family Irmaosidae, and<br />

Schultz (1995) described <strong>the</strong> Dubioniscidae (see<br />

Souza-Kury, in Young, 1998:656). Establishment <strong>of</strong><br />

<strong>the</strong> family Platyarthridae is credited to Verhoeff<br />

(ra<strong>the</strong>r than to Vandel) by Ferrara and Taiti (1989),<br />

who also note that <strong>the</strong> families Bathytropidae and<br />

<strong>the</strong> Platyarthridae might coincide. G. Poore (pers.<br />

comm.) notes that <strong>the</strong> Styloniscidae Vandel, 1952,<br />

is a replacement name for <strong>the</strong> Patagoniscidae Verhoeff,<br />

1939, and is conserved under ICZN article<br />

40; he <strong>the</strong>refore recommends that <strong>the</strong> earlier date<br />

appear in paren<strong>the</strong>ses, as Styloniscidae Vandel,<br />

1952 (1939). Characters that define <strong>the</strong> various<br />

groupings <strong>of</strong> <strong>the</strong> oniscideans are given by Roman<br />

and Dalens (1999), although workers should note<br />

that <strong>the</strong> characters and groupings based on <strong>the</strong>m<br />

are, in some cases, not universally accepted. A recent<br />

molecular analysis (Mattern and Schlegel,<br />

2001) based on ssu rDNA suggests that Crinochaeta<br />

and Synochaeta are monophyletic, and that <strong>the</strong>se<br />

groups toge<strong>the</strong>r are <strong>the</strong> sister taxon to <strong>the</strong> Diplochaeta.<br />

ORDER TANAIDACEA<br />

Many <strong>of</strong> <strong>the</strong> major taxonomic changes suggested<br />

by <strong>the</strong> late J. Sieg were made prior to 1982 and<br />

were <strong>the</strong>refore incorporated into <strong>the</strong> Bowman and<br />

Abele classification. Subsequent to 1982, <strong>the</strong>re were<br />

also some large-scale rearrangements suggested by<br />

Sieg (1983a, b, 1984, 1986a, b), but <strong>the</strong>re has been<br />

almost no work done at higher levels <strong>of</strong> tanaid systematics<br />

since that time. Unfortunately, it now appears<br />

that many <strong>of</strong> <strong>the</strong> characters established or<br />

used by Sieg do not hold up well under scrutiny<br />

(see Larsen and Wilson, 1998), and it is not clear<br />

how many <strong>of</strong> Sieg’s characters or numerous classificatory<br />

assignments will survive. Kim Larsen (pers.<br />

comm.) is actively studying <strong>the</strong> group and has kindly<br />

updated us, as far as is possible pending a thorough<br />

revision <strong>of</strong> <strong>the</strong> group. Additionally, he has<br />

provided us with many suggested changes. <strong>An</strong> excellent<br />

and comprehensive web site maintained by<br />

Contributions in Science, Number 39 Rationale � 41


Richard Heard and Gary <strong>An</strong>derson now exists at<br />

URL http://tidepool.st.usm.edu/tanaids/index.html,<br />

and our arrangement <strong>of</strong> <strong>the</strong> group is <strong>the</strong> same as<br />

<strong>the</strong>irs.<br />

Authorship <strong>of</strong> <strong>the</strong> Tanaidacea is now credited to<br />

Dana (1849) ra<strong>the</strong>r than to Hansen (1895) (L. Holthuis,<br />

pers. comm.). A review by M. Gutu and <strong>the</strong><br />

late Jürgen Sieg (Gutu and Sieg, 1999) additionally<br />

includes fossil taxa (most <strong>of</strong> which were added by<br />

Schram et al., 1983). The classification in Gutu and<br />

Sieg (1999) differs from ours in that we include <strong>the</strong><br />

family Tanapseudidae, not listed in Gutu and Sieg<br />

(1999), and in that we have deleted <strong>the</strong> Leptognathiidae<br />

(see below).<br />

SUBORDER TANAIDOMORPHA<br />

The naturalness <strong>of</strong> <strong>the</strong> entire suborder Tanaidomorpha<br />

was questioned by Larsen and Wilson<br />

(1998), who noted that inconsistencies or contradictions<br />

in descriptions and illustrations <strong>of</strong> several<br />

authors ‘‘plague tanaidomorphan taxonomy.’’ Larsen<br />

and Wilson also noted that several <strong>of</strong> Sieg’s<br />

characters and subsequent classifications, which<br />

form <strong>the</strong> basis <strong>of</strong> our current understanding <strong>of</strong> tanaid<br />

systematics, have been found wanting. They<br />

conclude that ‘‘<strong>the</strong> current taxonomy . . . for <strong>the</strong><br />

suborder Tanaidomorpha, heavily burdened by inconsistencies,<br />

is not useful at <strong>the</strong> present stage.’’ It<br />

seems unlikely that <strong>the</strong> situation for <strong>the</strong> o<strong>the</strong>r suborders<br />

would be any better.<br />

Within <strong>the</strong> Tanaidomorpha, <strong>the</strong> family Leptognathiidae<br />

was abandoned by Sieg (1986b) as it<br />

was found to be a junior synonym <strong>of</strong> <strong>An</strong>arthruridae<br />

(Sieg, 1986b; see Larsen and Wilson, 1998). One<br />

<strong>of</strong> its constituent subfamilies was incorporated into<br />

<strong>the</strong> <strong>An</strong>arthruridae Lang, and <strong>the</strong> o<strong>the</strong>r was elevated<br />

to familial rank (now <strong>the</strong> Typhlotanaidae Sieg). The<br />

family Agathotanaidae similarly was downgraded<br />

from a family to ‘‘tribe’’ status (Sieg, 1986b). Dates<br />

<strong>of</strong> establishment <strong>of</strong> <strong>the</strong> Nototanaidae and Pseudotanaidae<br />

(in <strong>the</strong> past, <strong>of</strong>ten credited to Sieg, 1973)<br />

have been changed from 1973 to 1976, as <strong>the</strong> 1973<br />

work is an unpublished <strong>the</strong>sis that did not appear<br />

in published form until three years later (Sieg,<br />

1976) (K. Larsen, pers. comm.).<br />

Additional tanaidomorphan families described<br />

subsequent to <strong>the</strong> Bowman and Abele (1982) list<br />

include <strong>the</strong> Pseudozeuxidae and Typhlotanaidae,<br />

described by Sieg (1982) and Sieg (1986b), respectively.<br />

SUBORDERS NEOTANAIDOMORPHA AND<br />

APSEUDOMORPHA<br />

Sieg (1983b) elevated to family status <strong>the</strong> Whiteleggiidae<br />

and placed within it <strong>the</strong> former family Leviapseudidae<br />

as a subfamily (Leviapseudinae) <strong>of</strong> <strong>the</strong><br />

Whiteleggiidae. Sieg (1984) established <strong>the</strong> family<br />

Cyclopoapseudidae to accommodate a genus formerly<br />

in <strong>the</strong> Metapseudidae (Sieg, 1984; Larsen,<br />

pers. comm.), but <strong>the</strong> Cycloapseudidae is now considered<br />

a junior synonym <strong>of</strong> <strong>the</strong> Metapseudidae<br />

(Larsen, pers. comm.). The Parapseudidae was not<br />

accepted by Sieg (1986a, b) but has since been recognized<br />

as valid (see brief discussion in Gutu, 1996;<br />

K. Larsen, pers. comm.). See Gutu and Sieg (1999)<br />

for <strong>the</strong> most recent review.<br />

ORDER CUMACEA<br />

Our classification follows <strong>the</strong> World Wide Web list<br />

compiled by Watling and Kornfield (URL http://<br />

nature.umesci.maine.edu/pub/Cumacea/data.html)<br />

as part <strong>of</strong> <strong>the</strong>ir National Science Foundation PEET<br />

training project. Their list is similar to that <strong>of</strong> Bowman<br />

and Abele, with two exceptions. First, <strong>the</strong> family<br />

Archaeocumatidae Băcescu, 1972, containing<br />

<strong>the</strong> single genus Archaeocuma, has been removed.<br />

Its establishment (in Băcescu, 1972) had been questioned<br />

earlier by Jones (1976), who felt that fur<strong>the</strong>r<br />

confirmation was needed prior to accepting this<br />

family, and Watling (pers. comm.) informs us that<br />

this family is generally not recognized. However,<br />

<strong>the</strong> family is listed (considered valid) by Băcescu<br />

(1988) and by Băcescu and Petrescu (1999). Second,<br />

<strong>the</strong> family Gynodiastylidae Stebbing, 1912,<br />

has been included following Day (1980), Băcescu<br />

(1992), Băcescu and Petrescu (1999), and <strong>the</strong><br />

above-mentioned web site. Thus, <strong>the</strong> total number<br />

<strong>of</strong> cumacean families remains at eight, as with <strong>the</strong><br />

Bowman and Abele list, although <strong>the</strong> composition<br />

has changed. Watling (pers. comm.) also notes that<br />

<strong>the</strong> family Nannastacidae will very likely be split<br />

into two families in <strong>the</strong> near future.<br />

Relationships within <strong>the</strong> Cumacea have been tentatively<br />

suggested recently by Haye and Kornfield<br />

(1999) on <strong>the</strong> basis <strong>of</strong> somewhat limited molecular<br />

data. Their suggestion is that those families with an<br />

articulated telson (families Bodotriidae, Leuconidae,<br />

and Nannastacidea) form a clade that is distinct<br />

from a second lineage containing <strong>the</strong> five families<br />

without an articulated telson. This grouping is<br />

not reflected in <strong>the</strong> current classification, where all<br />

families are instead listed alphabetically.<br />

SUPERORDER EUCARIDA<br />

Most workers seem to be in agreement that <strong>the</strong> Eucarida<br />

is a valid (i.e., monophyletic) assemblage<br />

(but see arguments against a monophyletic Eucarida<br />

in Richter and Scholtz, in press). Schram (1984)<br />

noted that <strong>the</strong> eucarids ‘‘are destined for some kind<br />

<strong>of</strong> realignment,’’ and he later (1986) apparently<br />

abandoned <strong>the</strong> group in his classification, treating<br />

euphausiids, amphionidaceans, and decapods as<br />

separate orders within <strong>the</strong> Eumalacostraca<br />

(Schram, 1986:543). Yet his cladogram (Schram,<br />

1986:530) and his accompanying text (1986:529)<br />

depict <strong>the</strong> eucarid line as distinct, and he refers to<br />

<strong>the</strong> eucarids as one <strong>of</strong> <strong>the</strong> recognizable lines <strong>of</strong> eumalacostracan<br />

evolution. <strong>An</strong>d indeed, most treatments<br />

consider <strong>the</strong> Eucarida a valid superorder <strong>of</strong><br />

<strong>the</strong> subclass Eumalacostraca, as did Bowman and<br />

Abele (1982) and most treatments since <strong>the</strong>n (e.g.,<br />

Christ<strong>of</strong>fersen, 1988; Ruppert and Barnes, 1994;<br />

42 � Contributions in Science, Number 39 Rationale


Brusca and Brusca, 1990; Mayrat and Saint Laurent,<br />

1996; Camp, 1998 (in Camp et al., 1998);<br />

Young, 1998). But as with nearly all o<strong>the</strong>r crustacean<br />

assemblages, this grouping has its opponents<br />

as well. Most <strong>of</strong> <strong>the</strong> disagreement concerns whe<strong>the</strong>r<br />

<strong>the</strong> mysidaceans (i.e., ei<strong>the</strong>r mysids, lophogastrids,<br />

or both) should be placed here (see earlier discussions<br />

on mysids and lophogastrids) and what <strong>the</strong><br />

relationships are among <strong>the</strong> three currently recognized<br />

orders Euphausiacea, Amphionidacea, and<br />

Decapoda (see Jarman et al., 2000; Richter and<br />

Scholtz, in press). Eucarid relationships have been<br />

analyzed by Schram (1984) and by Christ<strong>of</strong>fersen<br />

(1988). Our classification is consistent with both <strong>of</strong><br />

<strong>the</strong>se analyses at higher levels but differs in <strong>the</strong> constituent<br />

suborders.<br />

ORDER EUPHAUSIACEA<br />

The Euphausiacea still contains only <strong>the</strong> two families<br />

Ben<strong>the</strong>uphausiidae (monotypic) and Euphausiidae<br />

(all o<strong>the</strong>r species). The treatment by Baker et<br />

al. (1990) follows this arrangement as well. A recent<br />

analysis <strong>of</strong> 28S rDNA sequence data by Jarman<br />

et al. (2000) suggests that euphausiaceans may<br />

be more closely related to <strong>the</strong> Mysida than to <strong>the</strong><br />

Decapoda.<br />

ORDER AMPHIONIDACEA<br />

This order remains mon<strong>of</strong>amilial and monogeneric<br />

(Amphionides).<br />

ORDER DECAPODA<br />

The decapods have been <strong>the</strong> subject <strong>of</strong> more published<br />

papers than have all o<strong>the</strong>r crustacean groups<br />

combined. This popularity stems in part from <strong>the</strong><br />

economic importance <strong>of</strong> many groups (especially<br />

penaeoid shrimps, palinurid and nephropid lobsters,<br />

and portunid and xanthoid crabs) but also in<br />

part because <strong>of</strong> <strong>the</strong>ir marvelous diversity. The convenient<br />

size <strong>of</strong> most decapods predisposed <strong>the</strong>m to<br />

become subjects <strong>of</strong> some <strong>of</strong> <strong>the</strong> earliest papers using<br />

biochemical and molecular data to resolve crustacean<br />

relationships. Yet we are as far from reaching<br />

a consensus on <strong>the</strong> relationships among <strong>the</strong> decapods<br />

as we are for <strong>the</strong> more obscure groups, and<br />

opinions and datasets remain sharply divided. In<br />

<strong>the</strong> treatment that follows, we have tried to address<br />

<strong>the</strong> many changes and arrangements that have been<br />

suggested since 1982 under <strong>the</strong> taxonomic heading<br />

for each major group <strong>of</strong> decapods. However, we are<br />

certain to have missed several important papers,<br />

and we hasten to remind <strong>the</strong> reader that <strong>the</strong> literature<br />

on this topic is vast. In general, we have settled<br />

on a fairly conservative classification <strong>of</strong> <strong>the</strong><br />

decapods, knowing that, as with all o<strong>the</strong>r crustacean<br />

taxa, this group is destined for revision. Some<br />

<strong>of</strong> <strong>the</strong> many reviews <strong>of</strong> decapod classification that<br />

have appeared since <strong>the</strong> Bowman and Abele (1982)<br />

classification are Felgenhauer and Abele (1983),<br />

Abele and Felgenhauer (1986), Kim and Abele<br />

(1990), Abele (1991), Holthuis (1993a), and<br />

Scholtz and Richter (1995).<br />

The creation <strong>of</strong> two major branches <strong>of</strong> decapods,<br />

Dendrobranchiata and Pleocyemata, by Martin<br />

Burkenroad (1963, 1981) was a ra<strong>the</strong>r bold departure<br />

from previous schemes <strong>of</strong> decapod classification.<br />

According to Fenner Chace (pers. comm.), T.<br />

Bowman more or less accepted Burkenroad’s arguments<br />

without much questioning, and thus <strong>the</strong><br />

use <strong>of</strong> <strong>the</strong> Dendrobranchiata and Pleocyemata in<br />

<strong>the</strong> Bowman and Abele (1982) classification. Chace<br />

(pers. comm.) feels that <strong>the</strong>re is ample evidence for<br />

elevating many <strong>of</strong> <strong>the</strong> major groups <strong>of</strong> <strong>the</strong> Decapoda<br />

as Burkenroad did with <strong>the</strong> penaeoids and<br />

that singling out <strong>the</strong> penaeoid shrimp was to assign<br />

that group an artificial distinction. He is not alone.<br />

Holthuis (1993a; see especially pages 11–13 for a<br />

concise historical overview <strong>of</strong> <strong>the</strong> many attempts to<br />

classify <strong>the</strong> decapods) felt that treating <strong>the</strong> penaeoids<br />

as a separate group (<strong>the</strong> Dendrobranchiata)<br />

equal in rank to <strong>the</strong> combined Natantia � Macrura<br />

Reptantia � <strong>An</strong>omura � Brachyura (<strong>the</strong> Pleocyemata<br />

<strong>of</strong> Burkenroad) was unsatisfactory. Holthuis<br />

(1993a) proposed to revert to <strong>the</strong> older classifications<br />

and treated <strong>the</strong> Natantia and <strong>the</strong> Macrura<br />

Reptantia as ‘‘full suborders <strong>of</strong> equal rank with <strong>the</strong><br />

<strong>An</strong>omura and Brachyura.’’ In his own words (Holthuis,<br />

1993a:6):<br />

I know that this classification will generally be considered<br />

old-fashioned: in several modern handbooks <strong>the</strong><br />

suborder Natantia has been abandoned altoge<strong>the</strong>r; a<br />

small part <strong>of</strong> it, namely <strong>the</strong> Penaeoidea, is elevated to<br />

<strong>the</strong> rank <strong>of</strong> a separate suborder Dendrobranchiata<br />

while <strong>the</strong> rest <strong>of</strong> <strong>the</strong> Natantia plus <strong>the</strong> Macrura Reptantia,<br />

plus <strong>the</strong> <strong>An</strong>omura, plus <strong>the</strong> Brachyura are<br />

placed in a single suborder Pleocyemata. This to me<br />

seems a very artificial and unsatisfactory arrangement,<br />

and I <strong>the</strong>refore still keep to <strong>the</strong> old classification.<br />

This ‘‘old’’ classification to which he refers, probably<br />

because <strong>of</strong> its simplicity and relative lack <strong>of</strong><br />

controversy, is <strong>of</strong>ten encountered in popular and<br />

lay versions <strong>of</strong> crustacean classification. As an example,<br />

<strong>the</strong> publishers <strong>of</strong> <strong>the</strong> BIOSIS and Zoological<br />

Record databases (see URL http://www.york.<br />

biosis.org/zrdocs for <strong>the</strong> BIOSIS/Zoological Record<br />

Taxonomic Hierarchy, Section 10, <strong>Crustacea</strong>) have<br />

‘‘thrown up <strong>the</strong>ir hands in despair’’ (Chace, pers.<br />

comm.) and have reverted to this older and simpler<br />

classification. There, Natantia is treated as a taxon<br />

containing all <strong>of</strong> <strong>the</strong> known shrimp groups (Penaeidea,<br />

Caridea, and Stenopodidea) and <strong>the</strong> Reptantia<br />

is treated as containing <strong>the</strong> anomurans, astacurans,<br />

brachyurans, and palinurans.<br />

Yet <strong>the</strong> distinct nature <strong>of</strong> <strong>the</strong> penaeoids (<strong>the</strong> Dendrobranchiata)<br />

has been supported by additional<br />

morphological (e.g., Schram, 1984, 1986), embryological,<br />

spermatological (e.g., see Jamieson,<br />

1991a), and molecular data. Kim and Abele (1990)<br />

reviewed previous schemes <strong>of</strong> decapod classification<br />

and concluded, based on somewhat limited<br />

data from 18S rRNA, that <strong>the</strong> penaeids were distinct<br />

from o<strong>the</strong>r decapods. This view was support-<br />

Contributions in Science, Number 39 Rationale � 43


ed with additional sequence data and additional<br />

taxon sampling by Abele (1991), whose review <strong>of</strong><br />

morphological and molecular data supported a distinct<br />

Dendrobranchiata (<strong>the</strong> penaeoids) clade and<br />

also three o<strong>the</strong>r distinct clades corresponding to (1)<br />

<strong>the</strong> Caridea (including <strong>the</strong> procaridoids), (2) <strong>the</strong><br />

Stenopodidea, and (3) a ‘‘reptant’’ lineage. (The latter<br />

lineage is responsible for most <strong>of</strong> <strong>the</strong> more troublesome<br />

remaining problems in decapod classification.<br />

As Abele (1991) stated, ‘‘<strong>the</strong>re seems to be as<br />

many groupings <strong>of</strong> <strong>the</strong>se taxa as <strong>the</strong>re are authors<br />

who have studied <strong>the</strong>m.’’) The artificiality <strong>of</strong> <strong>the</strong><br />

‘‘Natantia’’ is also pointed out by Christ<strong>of</strong>fersen<br />

(1988a) and Scholtz and Richter (1995).<br />

Thus, <strong>the</strong>re is no morphological or molecular<br />

support for a natural ‘‘natantian’’ clade that contains<br />

all shrimp-like forms. The features that seem<br />

to unite <strong>the</strong> natantians appear to be primitive characters<br />

that do not clearly define a monophyletic<br />

group. Consequently, we have recognized <strong>the</strong> Dendrobranchiata<br />

and Pleocyemata on <strong>the</strong> basis <strong>of</strong><br />

what appear (to us) to be shared, derived features<br />

<strong>of</strong> both morphological and molecular data.<br />

Within <strong>the</strong> Dendrobranchiata, classification is<br />

relatively stable, mostly because <strong>the</strong>re are relatively<br />

few taxa in this suborder. Relationships among <strong>the</strong><br />

pleocyemate taxa are ano<strong>the</strong>r story. If Caridea and<br />

Stenopodidea are treated as separate clades, <strong>the</strong>n<br />

an argument could be made for recognition <strong>of</strong> <strong>the</strong><br />

Reptantia (or Macrura Reptantia, following Holthuis,<br />

1993a) as a natural taxon based on <strong>the</strong> work<br />

<strong>of</strong> Schram (1984, 1986), Abele (1991), Scholtz and<br />

Richter (1995), and o<strong>the</strong>rs. Scholtz (pers. comm.)<br />

argues that <strong>the</strong> evidence for a monophyletic Reptantia<br />

is at least as convincing as <strong>the</strong> evidence for<br />

recognition <strong>of</strong> Caridea and o<strong>the</strong>r decapod infraorders,<br />

and we tend to agree. Yet <strong>the</strong> Reptantia <strong>of</strong><br />

Abele (1991) and Scholtz and Richter (1995) differ<br />

as to <strong>the</strong> constituent groups, and we have opted for<br />

treating <strong>the</strong> ‘‘reptant’’ infraorders (Astacidea, Thalassinidea,<br />

Palinura, <strong>An</strong>omura, and Brachyura) separately<br />

ra<strong>the</strong>r than combining <strong>the</strong>m in a taxon that<br />

would be <strong>the</strong> sister group to <strong>the</strong> stenopodidean and/<br />

or caridean shrimps. Recognition <strong>of</strong> a natural<br />

‘‘Reptantia’’ would involve using this name at <strong>the</strong><br />

level <strong>of</strong> infraorder and <strong>the</strong>n ‘‘demoting’’ <strong>the</strong> above<br />

five groups to just below <strong>the</strong> infraorder level, which<br />

would add considerably to <strong>the</strong> confusion in an assemblage<br />

that already contains a large number <strong>of</strong><br />

taxonomic subdivisions.<br />

Scholtz and Richter (1995) attempted to place<br />

<strong>the</strong> classification <strong>of</strong> <strong>the</strong> reptant decapods on firm<br />

cladistic footing. They argued (as did Christ<strong>of</strong>fersen,<br />

1988a) that <strong>the</strong> Reptantia was a clearly defined<br />

monophyletic taxon and that its sister group was<br />

possibly <strong>the</strong> Stenopodidea (which, according to<br />

o<strong>the</strong>r authors, are members <strong>of</strong> <strong>the</strong> same clade Pleocyemata).<br />

Thus, <strong>the</strong> branching sequence <strong>of</strong> <strong>the</strong><br />

decapods would be Penaeoidea (Dendrobranchiata),<br />

<strong>the</strong>n Caridea, Stenopodidea, and Reptantia;<br />

this much at least is consistent with o<strong>the</strong>r bodies <strong>of</strong><br />

data (e.g., Schram, 1984, 1986; Jamieson, 1991a;<br />

Abele, 1991) (although Christ<strong>of</strong>fersen (1988a:342)<br />

suggested that Stenopodidea was <strong>the</strong> sister group to<br />

a Caridea � Reptantia clade). In light <strong>of</strong> this support,<br />

it is curious, and possibly a mistake, that we<br />

have not included <strong>the</strong> Reptantia as a monophyletic<br />

clade in our classification, although inclusion or exclusion<br />

<strong>of</strong> <strong>the</strong> stenopodideans is unresolved. Scholtz<br />

and Richter (1995) argued convincingly for monophyly<br />

<strong>of</strong> some <strong>of</strong> <strong>the</strong> constituent reptant groups,<br />

such as <strong>the</strong> Brachyura and <strong>An</strong>omura, but o<strong>the</strong>r arguments<br />

are (to us) less convincing. The Scholtz<br />

and Richter (1995) classification also included several<br />

new group names, such as <strong>the</strong> Achelata, Fractosternalia,<br />

Meiura, etc., which we feel are unlikely<br />

to persist (but note that some <strong>of</strong> <strong>the</strong>se taxon names<br />

already have been employed (although not necessarily<br />

endorsed) in <strong>the</strong> papers <strong>of</strong>, e.g., Schmidt and<br />

Harzsch, 1999; Suzuki and McLay, 1998; Sternberg,<br />

1996; Taylor et al., 1999; and Taylor and<br />

Schram, 1999). For reasons we feel are inappropriate<br />

for discussion in a review and compilation <strong>of</strong><br />

this nature (mostly differences in how we would<br />

score certain morphological characters and <strong>the</strong> low<br />

number <strong>of</strong> specimens examined), we have not followed<br />

Scholtz and Richter here. In fairness, some<br />

<strong>of</strong> <strong>the</strong> characters proposed by Scholtz and Richter<br />

are well beyond our ability to comment on (such<br />

as <strong>the</strong> shape <strong>of</strong> thoracic and cephalic ganglia and<br />

<strong>the</strong> development <strong>of</strong> embryonic growth zones) and<br />

possibly provide fertile ground for fur<strong>the</strong>r investigations.<br />

<strong>An</strong>d we acknowledge and compliment<br />

<strong>the</strong>m on an attempt to place decapod classification<br />

in a phylogenetic context, which our classification<br />

clearly does not do. But concerns raised by <strong>the</strong>ir<br />

questionable (to us) use <strong>of</strong> morphological characters<br />

caused sufficient doubt as to <strong>the</strong>ir overall<br />

scheme, and we have not accepted <strong>the</strong> Scholtz and<br />

Richter (1995) arrangement in <strong>the</strong> current classification.<br />

The date <strong>of</strong> establishment <strong>of</strong> <strong>the</strong> name Decapoda<br />

has been changed to Latreille (1802) ra<strong>the</strong>r than<br />

Latreille (1803) (L. Holthuis, pers. comm.; see earlier<br />

comments in <strong>the</strong> section Names, Dates, and <strong>the</strong><br />

ICZN).<br />

SUBORDER DENDROBRANCHIATA<br />

Christ<strong>of</strong>fersen (pers. comm.) would ra<strong>the</strong>r we employ<br />

<strong>the</strong> name Penaeidea Dana instead <strong>of</strong> Dendrobranchiata<br />

Bate, as <strong>the</strong> former name is older and<br />

‘‘perfectly legitimate.’’ Holthuis (pers. comm.)<br />

agrees but notes that ‘‘since Dendrobranchiata<br />

seems to [have] become generally accepted, I am<br />

quite willing to go along.’’ Within <strong>the</strong> group, <strong>the</strong>re<br />

have been no significant family-level or higher<br />

changes proposed (to our knowledge) since <strong>the</strong><br />

Bowman and Abele (1982) classification. Authorship<br />

<strong>of</strong> <strong>the</strong> family Solenoceridae has been credited<br />

to Wood-Mason ra<strong>the</strong>r than to Wood-Mason and<br />

Alcock (Kensley, pers. comm.). Thus, our classification<br />

<strong>of</strong> <strong>the</strong> Dendrobranchiata is <strong>the</strong> same as that<br />

44 � Contributions in Science, Number 39 Rationale


employed recently by Pérez Farfante and Kensley<br />

(1997).<br />

SUBORDER PLEOCYEMATA<br />

The Pleocyemata contains all nonpenaeoid decapods,<br />

whe<strong>the</strong>r swimming (natant) or crawling (reptant).<br />

The group appears to be monophyletic based<br />

on morphological data (e.g., Schram, 1984, 1986;<br />

Scholtz and Richter, 1995) and molecular data<br />

(e.g., Kim and Abele, 1990; Abele, 1991).<br />

INFRAORDER STENOPODIDEA<br />

For this section, we followed <strong>the</strong> classification provided<br />

by Holthuis (1993a), which does not appear<br />

to be very controversial. Authorship <strong>of</strong> <strong>the</strong> taxon<br />

Stenopodidea is changed from Bate (1888) to Claus<br />

(1872) at <strong>the</strong> recommendation <strong>of</strong> M. Tavares (pers.<br />

comm.). To our knowledge, <strong>the</strong>re has been only one<br />

new family-level taxon described since <strong>the</strong> Bowman<br />

and Abele (1982) work. Schram (1986) erected <strong>the</strong><br />

family Spongicolidae, so that <strong>the</strong>re are now two<br />

recognized families <strong>of</strong> extant stenopodideans (see<br />

also Holthuis, 1993a). Schram et al. (2000) recently<br />

described <strong>the</strong> first known fossil stenopodidean, also<br />

attributed to <strong>the</strong> Spongicolidae.<br />

INFRAORDER CARIDEA<br />

For <strong>the</strong> carideans, we followed, for <strong>the</strong> most part,<br />

<strong>the</strong> classification provided by Holthuis (1993a),<br />

which is very similar to that suggested by Chace<br />

(1992) (see also Vereshchaka, 1997b, for a key to<br />

caridean superfamilies modified slightly from Chace,<br />

1992). But in contrast with <strong>the</strong> relative lack <strong>of</strong> controversy<br />

over dendrobranchiate or stenopodidean<br />

classification, <strong>the</strong>re is apparently no consensus on<br />

<strong>the</strong> relationships or even <strong>the</strong> names <strong>of</strong> <strong>the</strong> incredibly<br />

diverse families <strong>of</strong> caridean shrimps. There have<br />

been several cladistic analyses conducted on groups<br />

<strong>of</strong> caridean families by M. Christ<strong>of</strong>fersen (see especially<br />

Christ<strong>of</strong>fersen, 1990). These studies would,<br />

if accepted, rearrange large numbers <strong>of</strong> caridean<br />

families. For example, in his 1986 paper, Christ<strong>of</strong>fersen<br />

placed seven families (oplophorids, atyids,<br />

pasiphaeids, alvinocarids, bresiliids, psalidopodids,<br />

and disciadids) in <strong>the</strong> superfamily Atyoidea, in contrast<br />

with Chace (1992) and Holthuis (1993a), who<br />

treated <strong>the</strong> Atyoidea as containing only <strong>the</strong> family<br />

Atyidae. Christ<strong>of</strong>fersen points out (pers. comm.)<br />

that, among <strong>the</strong> ‘‘glaringly non-monophyletic assemblages’’<br />

in our current classification, are <strong>the</strong> Alpheoidea,<br />

Hippolytidae, Pandaloidea, and Nematocarcinoidea.<br />

Adding to Christ<strong>of</strong>fersen’s frustration<br />

(pers. comm.) is that, whereas many authors<br />

comment on <strong>the</strong> unsatisfactory state <strong>of</strong> current classifications,<br />

especially as concerns such ‘‘wastebasket’’<br />

assemblages as <strong>the</strong> Hippolytidae and Pandaloidea,<br />

his own suggestions for novel arrangements<br />

have been slow to catch on. Chace (1997) recognizes<br />

<strong>the</strong> Hippolytidae Bate, and Holthuis (1993a)<br />

elected to synonymize a large number <strong>of</strong> Christ<strong>of</strong>-<br />

fersen’s new taxa. Thus, we are left with <strong>the</strong> difficult<br />

task <strong>of</strong> following older yet clearly nonphylogenetic<br />

listings (e.g., Chace, 1992; Holthuis, 1993a)<br />

vs. cladistically generated phylogenetic arrangements<br />

(e.g., Christ<strong>of</strong>fersen, 1987, 1988a, b, 1989a,<br />

b, 1990) that seem to have little following in <strong>the</strong><br />

carcinological community and for which, in our estimation,<br />

some <strong>of</strong> <strong>the</strong> employed characters are<br />

questionable. We have followed Holthuis’s lead,<br />

more in deference to his vast knowledge <strong>of</strong> <strong>the</strong> carideans<br />

than for any o<strong>the</strong>r reason, while acknowledging<br />

that <strong>the</strong>re have been alternative phylogenetically<br />

based ideas presented in <strong>the</strong> literature. Only<br />

those superfamilies for which <strong>the</strong>re have been<br />

changes subsequent to Bowman and Abele (1982)<br />

are mentioned below.<br />

Superfamily Gala<strong>the</strong>acaridoidea<br />

The family Gala<strong>the</strong>acarididae and its superfamily<br />

Gala<strong>the</strong>acaridoidea were both described by Vereshchaka<br />

(1997b) for <strong>the</strong> species Gala<strong>the</strong>acaris abyssalis<br />

based on a single specimen. Additional specimens<br />

have since been found in <strong>the</strong> stomachs <strong>of</strong><br />

deep-sea lancetfish (Chow et al., 2000).<br />

Superfamily Bresilioidea<br />

This assemblage has long been recognized as being<br />

an artificial group in dire need <strong>of</strong> revision (e.g., see<br />

Forest, 1977). Holthuis (1993a) elected to treat <strong>the</strong><br />

Bresiliidae as a family and placed in synonymy<br />

some <strong>of</strong> <strong>the</strong> recently proposed families (Agostocaridae,<br />

Alvinocarididae). We have treated <strong>the</strong> group<br />

as an (admittedly) artificial superfamily containing<br />

five caridean families that may or may not be related.<br />

Three <strong>of</strong> <strong>the</strong>se families are new (i.e., <strong>the</strong>y<br />

were not included in <strong>the</strong> Bowman and Abele (1992)<br />

classification): <strong>the</strong> family Agostocarididae was<br />

erected by Hart and Manning (1986), <strong>the</strong> Alvinocarididae<br />

was proposed by Christ<strong>of</strong>fersen (1986),<br />

and <strong>the</strong> Mirocarididae was described by Vereshchaka<br />

(1997a).<br />

Christ<strong>of</strong>fersen’s (1986) family Alvinocarididae is<br />

recognized to accommodate <strong>the</strong> majority <strong>of</strong> <strong>the</strong><br />

morphologically similar ‘‘bresilioid’’ shrimp from<br />

hydro<strong>the</strong>rmal vents. The family was more thoroughly<br />

(although still somewhat incompletely) diagnosed<br />

by Segonzac et al. (1993) in a footnote and<br />

also by Vereshchaka (1996, 1997a) (see also Shank<br />

et al., 1999). Vereshchaka (1997a) created a new<br />

genus (Mirocaris) and family, <strong>the</strong> Mirocarididae,<br />

for <strong>the</strong> hydro<strong>the</strong>rmal vent shrimp described originally<br />

as Chorocaris fortunata by Martin and Christiansen<br />

(1995b).<br />

Superfamily Campylonotoidea<br />

The family Bathypalaemonellidae was established<br />

(although without a description or diagnosis and<br />

without mention <strong>of</strong> <strong>the</strong> genus Bathypalaemonella;<br />

see Holthuis, 1993a:87) by Saint Laurent (1985).<br />

The family is placed in <strong>the</strong> superfamily Campylon-<br />

Contributions in Science, Number 39 Rationale � 45


otoidea on <strong>the</strong> recommendation <strong>of</strong> L. Holthuis<br />

(1993a:87, and pers. comm.).<br />

Superfamily Palaemonoidea<br />

The family Euryrhynchidae Holthuis, 1950, was<br />

added on <strong>the</strong> recommendation <strong>of</strong> Holthuis (pers.<br />

comm.). The family Kakaducarididae was described<br />

by A. J. Bruce (1993) as a subfamily <strong>of</strong> <strong>the</strong><br />

Palaeomonidae and is here treated as a family on<br />

<strong>the</strong> recommendation <strong>of</strong> L. Holthuis (pers. comm.).<br />

Superfamily Alpheoidea<br />

Authorship <strong>of</strong> <strong>the</strong> family Ogyrididae remains credited<br />

to Holthuis (1955). Although Hay and Shore<br />

(1918) established <strong>the</strong> family Ogyridae, as noted by<br />

M. Tavares (pers. comm.), L. Holthuis (pers.<br />

comm.) points out that <strong>the</strong>y based it on <strong>the</strong> type<br />

genus Ogyris Stimpson, 1860, which is a junior<br />

homonym <strong>of</strong> Ogyris Westwood and is thus invalid.<br />

Stebbing (1914) proposed <strong>the</strong> replacement genus<br />

Ogyrides, and thus <strong>the</strong> family name is Ogyrididae,<br />

first used as such by Holthuis (1955). We have not<br />

followed Christ<strong>of</strong>fersen’s (1987) suggestion to<br />

transfer <strong>the</strong> family Processidae to <strong>the</strong> Crangonoidea<br />

or to combine <strong>the</strong> alpheoids and crangonoids and<br />

pandaloids into one monophyletic taxon. Christ<strong>of</strong>fersen<br />

(1987) also proposed <strong>the</strong> new alpheoid families<br />

Nauticarididae (to contain Nauticaris and Saron),<br />

Alopidae (to contain Chorismus, Alope, and<br />

Caridion), and Bythocarididae (to contain Bythocaris,<br />

Cryptocheles, and Bathyhippolyte). We have<br />

not followed <strong>the</strong>se suggestions, nor have we recognized<br />

<strong>the</strong> families Merhippolytidae and Thoridae<br />

recognized by Christ<strong>of</strong>fersen (e.g., Christ<strong>of</strong>fersen<br />

1998).<br />

Christ<strong>of</strong>fersen later (1987) also suggested <strong>the</strong> recognition<br />

<strong>of</strong> <strong>the</strong> family Barbouridae (spelling corrected<br />

to Barbouriidae by Christ<strong>of</strong>fersen, 1990), to<br />

include <strong>the</strong> genera Barbouria, Janicea, and Parhippolyte.<br />

In his review <strong>of</strong> caridean shrimps <strong>of</strong> <strong>the</strong> Albatross<br />

Philippine Expedition, Chace (1997), although<br />

finding ‘‘no clear evidence to support <strong>the</strong><br />

superfamilial categories suggested by Christ<strong>of</strong>fersen<br />

(1987),’’ found ‘‘considerable reason to endorse his<br />

[Christ<strong>of</strong>fersen’s] establishment <strong>of</strong> <strong>the</strong> Barbouriidae.’’<br />

Chace refrained from treating <strong>the</strong>se genera<br />

as Barbouriidae in that paper, but we have taken<br />

that step here and recognize <strong>the</strong> Barbouriidae. Inclusion<br />

<strong>of</strong> <strong>the</strong> family in <strong>the</strong> superfamily Alpheoida<br />

is because <strong>of</strong> <strong>the</strong> similarities to hippolytids (all three<br />

genera were formerly treated as members <strong>of</strong> <strong>the</strong><br />

Hippolytidae).<br />

Superfamily Crangonoidea<br />

As noted above, Christ<strong>of</strong>fersen (1987) proposed <strong>the</strong><br />

family Barbouriidae for <strong>the</strong> genera Barbouria, Janicea,<br />

and Parhippolyte and originally placed <strong>the</strong><br />

family in <strong>the</strong> superfamily Crangonoidea. We treat<br />

it here as a member <strong>of</strong> <strong>the</strong> Alpheoidea because <strong>of</strong><br />

<strong>the</strong> similarities to <strong>the</strong> alpheoid family Hippolytidae<br />

(see Chace, 1997:40).<br />

Superfamily Pandaloidea<br />

Christ<strong>of</strong>fersen (1989) suggested a new classification<br />

<strong>of</strong> this superfamily, wherein he proposed many significant<br />

changes. Three new families were proposed<br />

(Plesionikidae for <strong>the</strong> genus Plesionika, Heterocarpoididae<br />

for <strong>the</strong> genus Heterocarpoides, and Dorodoteidae<br />

for <strong>the</strong> genus Dorodotes). In addition,<br />

<strong>the</strong> family Physetocarididae was removed from its<br />

own superfamily and placed in <strong>the</strong> Pandaloidea,<br />

and <strong>the</strong> family Heterocarpidae was recognized. No<br />

diagnoses <strong>of</strong> <strong>the</strong> new taxa were provided (although<br />

character states were given), and we have opted to<br />

not recognize <strong>the</strong>se changes for now.<br />

INFRAORDER ASTACIDEA<br />

Although we are not recognizing <strong>the</strong> ‘‘Macrura<br />

Reptantia’’ as a suborder (see above), for <strong>the</strong> most<br />

part, we have followed <strong>the</strong> admittedly conservative<br />

classification <strong>of</strong> Holthuis (1991) for <strong>the</strong> superfamilies<br />

and families <strong>of</strong> <strong>the</strong> Astacidea (see also Williams,<br />

1988, for classification <strong>of</strong> commercially important<br />

lobster families). Holthuis, who was at <strong>the</strong><br />

time dealing only with <strong>the</strong> marine lobsters and so<br />

did not include <strong>the</strong> parastacoids and astacoids,<br />

treated marine astacideans as belonging to a single<br />

superfamily Nephropoidea containing two families,<br />

Thaumastochelidae and Nephropidae. Our classification<br />

differs only in <strong>the</strong> inclusion <strong>of</strong> <strong>the</strong> Enoplometopoidea<br />

(see below) and Gylpheoidea, <strong>the</strong> latter<br />

placed by Holthuis among <strong>the</strong> infraorder Palinura<br />

(his Palinuridea). Scholtz (1999) recently reviewed<br />

<strong>the</strong> freshwater crayfishes (Astacoidea and Parastacoidea)<br />

and argued that <strong>the</strong>y are members <strong>of</strong> a distinct<br />

clade, Astacida, that is not closely related to<br />

clawed lobsters. However, strong molecular evidence<br />

suggests that clawed lobsters are indeed <strong>the</strong><br />

sister group to <strong>the</strong> astacids (Crandall et al., 2000).<br />

Superfamily Glypheoidea<br />

The primitive family Glypheidae (<strong>the</strong> only extant<br />

family in <strong>the</strong> Glypheoidea) has been transferred to<br />

<strong>the</strong> Astacidea as per <strong>the</strong> recommendations <strong>of</strong> Forest<br />

and Saint Laurent (1989). The taxon name, credited<br />

to Zittel in Bowman and Abele (1982), has<br />

now been credited to <strong>the</strong> earlier usage by Winckler<br />

(M. Hendrickx, pers. comm.), following <strong>the</strong> usage<br />

in Glaessner (1969).<br />

Superfamily Enoplometopoidea<br />

The genus Enoplometopus was assigned its own superfamily<br />

and family (Enoplometopoidea, Enoplometopidae)<br />

by Saint Laurent (1988).<br />

Superfamily Nephropoidea<br />

Tshudy and Babcock (1997) examined fossil and<br />

extant clawed lobsters and indicated that <strong>the</strong> family<br />

Thaumastochelidae, at least as used previously,<br />

may be paraphyletic. We have not taken <strong>the</strong> extra<br />

step <strong>of</strong> deleting this family (which would result in<br />

46 � Contributions in Science, Number 39 Rationale


<strong>the</strong> former thaumastochelids being treated as Nephropidae),<br />

as <strong>the</strong>re was also strong support in<br />

<strong>the</strong>ir analysis for grouping at least some thaumastochelid<br />

genera toge<strong>the</strong>r (Tshudy and Babcock,<br />

1997: fig. 1).<br />

Superfamilies Astacoidea and Parastacoidea<br />

Monophyly <strong>of</strong> <strong>the</strong> freshwater crayfishes now appears<br />

secure based on adult morphology, sperm ultrastructure,<br />

embryology, and molecular data (e.g.,<br />

see Crandall, 1999; Crandall et al., 2000; Scholtz,<br />

1998, 1999). Scholtz (1998, 1999) reviews evolution<br />

<strong>of</strong> <strong>the</strong> crayfishes and confirms that <strong>the</strong>re are<br />

two distinct clades within <strong>the</strong> group (i.e., within his<br />

Astacida) corresponding to <strong>the</strong> nor<strong>the</strong>rn hemisphere<br />

Astacoidea (families Cambaridae and Astacidae,<br />

<strong>the</strong> latter <strong>of</strong> which is probably paraphyletic)<br />

and <strong>the</strong> sou<strong>the</strong>rn hemisphere Parastacoidea (family<br />

Parastacidae). Crandall et al. (2000), using over<br />

3000 nucleotides from 3 different genes, have confirmed<br />

both <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> freshwater crayfishes<br />

(Astacoidea � Parastacoidea) as well as <strong>the</strong><br />

monophyly <strong>of</strong> <strong>the</strong> astacoid and parastacoid clades.<br />

Thus, our current classification is misleading in that<br />

<strong>the</strong>se two superfamilies (<strong>the</strong> Astacoidea and Parastacoidea)<br />

are still treated as being <strong>of</strong> equal rank<br />

with three o<strong>the</strong>r superfamilies in <strong>the</strong> Astacidea<br />

when in fact <strong>the</strong>y need to be depicted as more closely<br />

related to each o<strong>the</strong>r than ei<strong>the</strong>r is to any o<strong>the</strong>r<br />

astacidean superfamily. Scholtz (1999) also proposes<br />

that <strong>the</strong> crayfishes are not closely related to homarids<br />

(not supported by Crandall et al., 2000) but<br />

are instead members <strong>of</strong> ‘‘a large group including<br />

Thalassinida, <strong>An</strong>omala and Brachyura’’ (see also<br />

Scholtz and Richter, 1995). Taylor et al. (1999)<br />

added some insights into evolution within <strong>the</strong><br />

group based on well-preserved fossil material from<br />

China.<br />

INFRAORDER THALASSINIDEA<br />

Monophyly <strong>of</strong> <strong>the</strong> thalassinideans is uncertain; at<br />

least some morphological and molecular analyses<br />

indicate that <strong>the</strong> group is not monophyletic (e.g.,<br />

Tudge, 1995; Morrison and Cunningham, 1999).<br />

The propensity to construct complex vertical burrows<br />

is one character that has been postulated as<br />

defining <strong>the</strong> group (Atkinson and Taylor, 1988;<br />

Griffis and Suchanek, 1991; Scholtz and Richter,<br />

1995), as has <strong>the</strong> presence <strong>of</strong> a dense row <strong>of</strong> long<br />

setae along <strong>the</strong> lower margin <strong>of</strong> <strong>the</strong> second leg<br />

(Poore, 1994, 1997). We have followed <strong>the</strong> revision<br />

by Poore (1994:92) (who also established <strong>the</strong> family<br />

Strahlaxiidae), with <strong>the</strong> only difference being<br />

that some <strong>of</strong> <strong>the</strong> authors and dates <strong>of</strong> some taxa<br />

have been changed to earlier usages according to<br />

L. Holthuis (pers. comm.). Relationships among <strong>the</strong><br />

extant superfamilies, families, and genera were suggested<br />

by Poore (1994). Poore’s resulting classification<br />

(1997:92), like ours, does not adequately<br />

display all <strong>of</strong> <strong>the</strong> relationships suggested by his phylogenetic<br />

analysis (Poore, 1994:120). In particular,<br />

<strong>the</strong> Axioidea is <strong>the</strong> sister group to <strong>the</strong> Thalassinoidea<br />

� Callianassoidea in his phylogeny, whereas<br />

in his classification, all three are treated as superfamilies.<br />

The family Ctenochelidae is acknowledged<br />

by Poore (1994) to be paraphyletic (although Tudge<br />

et al., 2000, argued for ctenochelid monophyly).<br />

Poore (1997) subsequently addressed three <strong>of</strong> <strong>the</strong>se<br />

families and <strong>the</strong>ir relationships in greater detail<br />

(Callianideidae Kossman, Micheleidae Sakai, and<br />

Thomassiniidae de Saint Laurent).<br />

In <strong>the</strong> superfamily Callianassoidea, <strong>the</strong> family<br />

Axianassidae was removed by Poore (1994), and<br />

<strong>the</strong> family Ctenochelidae was erected by Manning<br />

and Felder (1991). As noted above, Tudge et al.<br />

(2000) supported <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> family Callianassidae<br />

and <strong>the</strong> family Ctenochelidae (while<br />

noting that <strong>the</strong> latter includes, at least in <strong>the</strong>ir analysis,<br />

<strong>the</strong> genus <strong>An</strong>acalliax, considered by some<br />

workers to belong to <strong>the</strong> Callianassidae). In <strong>the</strong> superfamily<br />

Axioidea, Sakai (1992) first established<br />

<strong>the</strong> subfamily Micheleinae, elevated to family level<br />

(Micheleidae Sakai) by Poore (1994), and Poore<br />

(1994) erected <strong>the</strong> Strahlaxiidae. Sakai (1999) recently<br />

has proposed some ra<strong>the</strong>r large-scale revisions<br />

within <strong>the</strong> Callianassidae; his revisions are apparently<br />

at odds with o<strong>the</strong>r analyses <strong>of</strong> <strong>the</strong> same or<br />

similar taxa (e.g., see Tudge et al., 2000).<br />

INFRAORDER PALINURA<br />

Holthuis (1991) referred to this assemblage as <strong>the</strong><br />

Palinuridea, a spelling that would be consistent<br />

with some <strong>of</strong> our o<strong>the</strong>r infraorder names (such as<br />

Stenopodidea, Caridea) but not with o<strong>the</strong>rs (<strong>An</strong>omura,<br />

Brachyura). We have retained <strong>the</strong> spelling<br />

Palinura. Within <strong>the</strong> superfamily Palinuroidea, Davie<br />

(1990) felt that synaxids were not deserving <strong>of</strong><br />

separate familial status and synonymized <strong>the</strong> family<br />

Synaxidae with <strong>the</strong> Palinuridae. However, Holthuis<br />

(1991) continued to recognize <strong>the</strong>m as separate<br />

families, and we have maintained <strong>the</strong>m as separate<br />

families here as well. The family Polychelidae has<br />

been recently reviewed and rediagnosed by Galil<br />

(2000). Removal <strong>of</strong> <strong>the</strong> glypheoids from this infraorder<br />

to <strong>the</strong> Astacidea has been noted above.<br />

INFRAORDER ANOMURA<br />

Our classification follows McLaughlin’s (1983b)<br />

fairly closely, with <strong>the</strong> exception <strong>of</strong> <strong>the</strong> use <strong>of</strong> <strong>the</strong><br />

family name Pylochelidae replacing Pomatochelidae<br />

(following Forest, 1987). McLaughlin (1983a,<br />

b) employed <strong>the</strong> name <strong>An</strong>omala De Haan (as had<br />

Burkenroad, 1981) ra<strong>the</strong>r than <strong>An</strong>omura H. Milne<br />

Edwards, which had been used by Bowman and<br />

Abele (and many o<strong>the</strong>r workers). G. Scholtz (pers.<br />

comm.) also would prefer this usage (<strong>An</strong>omala over<br />

<strong>An</strong>omura), arguing that when <strong>the</strong> thalassinoid families<br />

are removed <strong>the</strong> taxon composition changes<br />

and thus <strong>the</strong> name <strong>An</strong>omala is <strong>the</strong> more accurate.<br />

Use <strong>of</strong> <strong>An</strong>omala over <strong>An</strong>omura was reconsidered<br />

and discussed at length by McLaughlin and Holthuis<br />

(1985), who pointed out that both names<br />

Contributions in Science, Number 39 Rationale � 47


have been used inconsistently in <strong>the</strong> past and that<br />

<strong>the</strong>re are no rules governing <strong>the</strong> name given to a<br />

taxon above <strong>the</strong> family-group level. Thus, according<br />

to McLaughlin and Holthuis, <strong>the</strong> Rule <strong>of</strong> Priority<br />

need not be applied (<strong>An</strong>omala is, strictly<br />

speaking, <strong>the</strong> older <strong>of</strong> <strong>the</strong> two names). Fur<strong>the</strong>rmore,<br />

<strong>the</strong>y argued that, for stability, <strong>the</strong> name <strong>An</strong>omura<br />

MacLeay, 1838, should be used for <strong>the</strong> taxa<br />

traditionally considered to belong to this group<br />

(lomisoids, gala<strong>the</strong>oids, paguroids, and hippoids),<br />

and we have followed <strong>the</strong>ir suggestion. Phylogenetic<br />

relationships within <strong>the</strong> <strong>An</strong>omura remain largely<br />

unsettled; studies addressing this question include<br />

McLaughlin (1983b), Martin and Abele (1986),<br />

Cunningham et al. (1992), Tudge (1997b), Mc-<br />

Laughlin and Lemaitre (1997, 2000), and Morrison<br />

and Cunningham (1999).<br />

McLaughlin (1983a) recognized <strong>the</strong> unusual nature<br />

<strong>of</strong> Lomis hirta and placed it in its own family<br />

(Lomidae) and superfamily (Lomoidea) (corrected<br />

herein to Lomisidae and Lomisoidea, respectively).<br />

McLaughlin (1983b) concluded that <strong>the</strong> hermit<br />

crab families were monophyletic, and she <strong>the</strong>refore<br />

treated all six families as members <strong>of</strong> <strong>the</strong> superfamily<br />

Paguroidea. This arrangement has been adopted<br />

by a variety <strong>of</strong> workers (e.g., Tudge, 1991; Richter<br />

and Scholtz, 1994; Scholtz and Richter, 1995; Tudge,<br />

pers. comm.) and seems to us both logical and simple,<br />

and we have used it here. In his treatment <strong>of</strong><br />

<strong>the</strong> Pylochelidae (treated as Pomatochelidae in<br />

Bowman and Abele, 1982), Forest (1987) indicated<br />

that <strong>the</strong> family is more closely allied with <strong>the</strong> Diogenidae<br />

than with o<strong>the</strong>r anomuran families, but<br />

we have not indicated this alliance pending formal<br />

recognition <strong>of</strong> that relationship.<br />

The family name Lomisidae and <strong>the</strong> superfamily<br />

name Lomisoidea, containing only <strong>the</strong> monotypic<br />

genus Lomis, occasionally have been spelled, beginning<br />

with Glaessner (1969), as Lomidae and Lomoidea<br />

(see especially McLaughlin, 1983a). However,<br />

<strong>the</strong> genus Lomis is not a Greek or Latin word,<br />

and thus it has no Greek or Latin stem (such as<br />

Lom-) to which <strong>the</strong> -idae ending can be added; <strong>the</strong><br />

original author <strong>of</strong> Lomis, Bouvier, coined <strong>the</strong><br />

French common name ‘‘Lomisinés’’ for <strong>the</strong>se crabs<br />

(G. Poore, pers. comm.). Thus, <strong>the</strong> preferred spelling<br />

for <strong>the</strong> family is Lomisidae and for <strong>the</strong> superfamily<br />

is Lomisoidea.<br />

A recent analysis <strong>of</strong> anomuran phylogeny based<br />

on mitochondrial DNA gene rearrangements (Morrison<br />

and Cunningham, 1999; C. Morrison and C.<br />

Cunningham, pers. comm.) largely supports Mc-<br />

Laughlin’s (1983b) recognition <strong>of</strong> <strong>the</strong> major anomuran<br />

groups and <strong>the</strong>ir phylogeny. According to<br />

<strong>the</strong> findings <strong>of</strong> Morrison and Cunningham (1999),<br />

lithodids are strongly associated with pagurids and<br />

toge<strong>the</strong>r <strong>the</strong>se groups constitute a monophyletic<br />

clade (confirming <strong>the</strong> earlier report by Cunningham<br />

et al., 1992). The Hippoidea is also strongly supported<br />

as a monophyletic clade, and <strong>the</strong> Gala<strong>the</strong>oidea<br />

(including both Aegla and Lomis) is depicted<br />

as basal to <strong>the</strong> remaining <strong>An</strong>omura. Thus, a clas-<br />

sification based on <strong>the</strong>se data would differ from<br />

McLaughlin’s (1983a, b) in that <strong>the</strong> superfamily<br />

Lomisoidea would be removed, with <strong>the</strong> monotypic<br />

Lomisidae being placed within <strong>the</strong> Gala<strong>the</strong>oidea<br />

(which also contains <strong>the</strong> Aeglidae, Porcellanidae,<br />

Gala<strong>the</strong>idae, and Chirostylidae; see Baba (1988)<br />

for a thorough review <strong>of</strong> <strong>the</strong> latter family). However,<br />

support for this particular node (placement <strong>of</strong><br />

Lomis) was not as strong in <strong>the</strong> Morrison and Cunningham<br />

tree, and indeed C. Morrison (pers.<br />

comm.) has suggested that we might be better <strong>of</strong>f<br />

depicting a separate lineage for Aegla and Lomis<br />

from <strong>the</strong> remaining gala<strong>the</strong>oids. We have for now<br />

retained Lomis in its own family and superfamily,<br />

<strong>the</strong> Lomisoidea, which we have placed adjacent to<br />

<strong>the</strong> Gala<strong>the</strong>oidea as a concession to <strong>the</strong> new data.<br />

Similarly, we have moved <strong>the</strong> Paguroidea closer to<br />

<strong>the</strong> Hippoidea, also reflecting <strong>the</strong> findings <strong>of</strong> Morrison<br />

and Cunningham (1999). Several workers<br />

have discussed <strong>the</strong> fact that <strong>the</strong> lithodids (at least<br />

some <strong>of</strong> <strong>the</strong>m) appear to have stemmed from within<br />

<strong>the</strong> Paguridae (Cunningham et al., 1992; Richter<br />

and Scholtz, 1994; Tudge, 1991, Tudge et al., 1998;<br />

C. Morrison, pers. comm.). Additionally, Cunningham<br />

(pers. comm.) suggested a ra<strong>the</strong>r close tie between<br />

<strong>the</strong> Aeglidae (restricted to freshwater streams<br />

and lakes in temperate South America) and <strong>the</strong><br />

Lomisidae (a monotypic and exclusively marine<br />

family known only from Australia). According to<br />

Scholtz and Richter (1995), two groups <strong>of</strong> <strong>the</strong> <strong>An</strong>omura,<br />

hippoids and gala<strong>the</strong>oids, share <strong>the</strong> apomorphic<br />

character <strong>of</strong> a telson stretch receptor not<br />

found in any o<strong>the</strong>r malacostracan group (Scholtz<br />

and Richter, 1995, citing Paul, 1989).<br />

In contrast with <strong>the</strong> phylogenetic hypo<strong>the</strong>ses <strong>of</strong><br />

McLaughlin (1983b) and Morrison and Cunningham<br />

(1999), evidence from sperm ultrastructure<br />

(reviewed in Tudge, 1997b) would suggest that <strong>the</strong><br />

<strong>An</strong>omura is not monophyletic, that Lomis does not<br />

belong to <strong>the</strong> <strong>An</strong>omura sensu stricta, that at least<br />

some <strong>of</strong> <strong>the</strong> thalassinoids are within <strong>the</strong> <strong>An</strong>omura,<br />

and that <strong>the</strong> superfamilies Thalassinoidea, Paguroidea,<br />

and Gala<strong>the</strong>oidea are not monophyletic. Because<br />

at this time <strong>the</strong> bulk <strong>of</strong> <strong>the</strong> evidence (i.e.,<br />

adult morphology combined with molecular sequence<br />

and gene arrangement data) seems to support<br />

<strong>the</strong> more conservative approach <strong>of</strong> Mc-<br />

Laughlin (1983b), we have modified our arrangement<br />

<strong>of</strong> anomuran taxa only slightly. Our classification<br />

is <strong>the</strong>refore more in agreement with <strong>the</strong><br />

findings <strong>of</strong> Morrison and Cunningham (1999) than<br />

with <strong>the</strong> sperm ultrastructural findings presented by<br />

Tudge (1997b).<br />

In <strong>the</strong> Bowman and Abele (1982) classification,<br />

<strong>the</strong> hermit crab families were divided among two<br />

superfamilies, Coenobitoidea and Paguroidea. The<br />

Coenobitoidea was removed following <strong>the</strong> suggestion<br />

<strong>of</strong> McLaughlin (1983b), and <strong>the</strong> family Coenobitidae<br />

is now treated within <strong>the</strong> superfamily Paguroidea.<br />

Thus, our infraorder <strong>An</strong>omura contains<br />

four superfamilies: Lomisoidea (<strong>the</strong> distinctness <strong>of</strong><br />

which is questionable in light <strong>of</strong> <strong>the</strong> Morrison and<br />

48 � Contributions in Science, Number 39 Rationale


Cunningham (1999) data, which suggest placement<br />

in <strong>the</strong> gala<strong>the</strong>oid clade), Gala<strong>the</strong>oidea, Paguroidea,<br />

and Hippoidea (spermatozoal characters <strong>of</strong> which<br />

are described by Tudge et al., 1999). The paguroids<br />

(which in our scheme include <strong>the</strong> former coenobitoids)<br />

and hippoids should be considered sister taxa<br />

and toge<strong>the</strong>r are <strong>the</strong> sister taxon to <strong>the</strong> Gala<strong>the</strong>oidea,<br />

according to Morrison and Cunningham<br />

(1999) and C. Morrison (pers. comm.).<br />

INFRAORDER BRACHYURA<br />

Subsequent to <strong>the</strong> Bowman and Abele (1982) classification,<br />

<strong>the</strong>re has been relatively widespread use<br />

<strong>of</strong> a scheme first suggested by Guinot (1977, 1978,<br />

1979; see also Saint Laurent, 1979; Guinot and<br />

Bouchard, 1998) that recognizes three morphological<br />

‘‘grades’’ <strong>of</strong> brachyuran crabs (which she called<br />

<strong>the</strong> Podotremata, Heterotremata, and Thoracotremata)<br />

based mostly on <strong>the</strong> coxal vs. sternal location<br />

<strong>of</strong> <strong>the</strong> male and female genital apertures. Although<br />

Abele (1991) and Spears et al. (1992) found no molecular<br />

support for <strong>the</strong>se divisions, some spermatological<br />

data seemed to support <strong>the</strong>m (e.g., see Jamieson,<br />

1994; Jamieson et al., 1994a, b, 1995). The<br />

latter two groups (Heterotremata and Thoracotremata)<br />

were treated jointly as <strong>the</strong> Eubrachyura by<br />

Saint Laurent (1980a, b), and various authors (e.g.,<br />

Schram, 1986) have followed this arrangement as<br />

well. At <strong>the</strong> same time, <strong>the</strong>re is also growing evidence<br />

from molecular sequence data (e.g., Spears et<br />

al., 1992; Abele and Spears, 1997; Spears and<br />

Abele, 1999; Spears, pers. comm.) and from mitochondrial<br />

gene rearrangement data (Morrison and<br />

Cunningham, 1999; Morrison, pers. comm.) that<br />

<strong>the</strong> true crabs (Brachyura) can be divided into two<br />

major clades, one containing <strong>the</strong> dromiacean families<br />

and <strong>the</strong> o<strong>the</strong>r containing all ‘‘higher’’ crabs,<br />

and including <strong>the</strong> raninids. The two ideas are not<br />

totally incompatible, but at <strong>the</strong> same time, <strong>the</strong>y<br />

cannot be completely reconciled. The main areas <strong>of</strong><br />

disagreement concern <strong>the</strong> limits <strong>of</strong> <strong>the</strong> ‘‘true’’ crabs,<br />

<strong>the</strong> placement <strong>of</strong> several families traditionally<br />

thought <strong>of</strong> as being ‘‘primitive’’ (dromiids and raninids<br />

in particular), and <strong>the</strong> recognition <strong>of</strong> various<br />

assemblages (tribes, sections, etc.) within <strong>the</strong> major<br />

divisions. Evidence brought to bear on <strong>the</strong>se issues<br />

has come from many fields, such as larval morphology<br />

(e.g., Rice, 1980, 1983, 1988; Martin,<br />

1988, 1991), sperm morphology (e.g., Jamieson,<br />

1991a, b, 1994), adult morphology (e.g., Sˇtevčić,<br />

1995, 1998; McLay, 1991, 1999; Guinot and Bouchard,<br />

1998), and molecular sequence data (e.g.,<br />

Spears et al., 1992).<br />

Guinot (1977, 1978) originally defined <strong>the</strong> section<br />

Podotremata as containing <strong>the</strong> dromioids,<br />

homoloids, raninoids, and tymoloids. The Podotremata<br />

was suggested to be monophyletic on <strong>the</strong> basis<br />

<strong>of</strong> sperm ultrastructure (Jamieson, 1994) and yet<br />

paraphyletic on <strong>the</strong> basis <strong>of</strong> rRNA sequences<br />

(Spears and Abele, 1988; Spears et al., 1992). To<br />

quote Guinot and Bouchard (1998), ‘‘Monophyly<br />

versus paraphyly <strong>of</strong> <strong>the</strong> Podotremata and <strong>the</strong>ir possible<br />

placement as <strong>the</strong> sister group <strong>of</strong> <strong>the</strong> heterotreme-thoracotreme<br />

assemblage remain open questions.’’<br />

Within <strong>the</strong> Podotremata, Guinot (1977,<br />

1978) recognized a subsection Dromiacea to contain<br />

two superfamilies, Dromioidea and Homolodromioidea,<br />

and a subsection Archaeobrachyura to<br />

contain <strong>the</strong> superfamilies Raninoidea, Homoloidea,<br />

and Tymoloidea. The molecular data (e.g., Spears<br />

et al., 1992; Spears and Abele, 1999; Morrison and<br />

Cunningham, 1999; Spears, pers. comm.) do not<br />

support this arrangement. Although one group <strong>of</strong><br />

crabs, corresponding to <strong>the</strong> Dromiacea <strong>of</strong> Guinot<br />

and earlier workers, does appear separate from o<strong>the</strong>r<br />

‘‘higher’’ crabs, nearly all evidence to date points<br />

to <strong>the</strong> fact that <strong>the</strong> raninids are not members <strong>of</strong> this<br />

dromioid clade (in contrast with <strong>the</strong> conclusions <strong>of</strong><br />

Sˇtevčić, 1973, 1995, 1998), and thus <strong>the</strong> Podotremata<br />

cannot be recognized as originally envisioned.<br />

Instead, <strong>the</strong> raninids appear to be basal members<br />

<strong>of</strong> <strong>the</strong> second ‘‘higher crab’’ clade.<br />

Thus, we have decided to abandon <strong>the</strong> concept<br />

<strong>of</strong> <strong>the</strong> Podotremata. The Brachyura is herein depicted<br />

as being composed <strong>of</strong> two major clades. The<br />

groups formerly treated as ‘‘podotremes’’ are split,<br />

with dromiaceans in one major clade and all o<strong>the</strong>r<br />

crabs in <strong>the</strong> o<strong>the</strong>r major clade. We are referring to<br />

<strong>the</strong> first clade as <strong>the</strong> section Dromiacea, a name<br />

that has much historical usage and that is well<br />

known among brachyuran researchers. This clade<br />

(section Dromiacea) is <strong>the</strong> sister group to all <strong>of</strong> <strong>the</strong><br />

higher crab families. In our treatment, it contains<br />

<strong>the</strong> superfamily Homolodromioidea and its sole<br />

family Homolodromiidae, <strong>the</strong> superfamily Dromioidea<br />

containing <strong>the</strong> families Dromiidae and Dynomenidae,<br />

and <strong>the</strong> superfamily Homoloidea containing<br />

<strong>the</strong> Homolidae, Latreilliidae, and Poupiniidae<br />

(<strong>the</strong> latter established by Guinot, 1991).<br />

The second major clade (all o<strong>the</strong>r crab families<br />

and superfamilies) is <strong>the</strong>n treated collectively as <strong>the</strong><br />

section Eubrachyura, a name coined by Saint Laurent<br />

(1980a, b) for this assemblage (but now including<br />

<strong>the</strong> raninoids, which were excluded by<br />

Saint Laurent). We note, however, that Sˇtevčić<br />

(1973, 1995, 1998) would retain raninids with<br />

dromiids, and Jamieson et al. (1994b) argue, based<br />

on sperm morphology, against any raninid/higher<br />

crab sister group relationship. Inclusion <strong>of</strong> <strong>the</strong> raninoids<br />

among <strong>the</strong> Eubrachyura also might be questioned<br />

on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> fact that <strong>the</strong>y lack <strong>the</strong><br />

‘‘sella turcica’’ <strong>of</strong> <strong>the</strong> endophragmal system (see Secretan,<br />

1998). Within this enormous clade Eubrachyura,<br />

we are recognizing three subsections.<br />

First, we are treating <strong>the</strong> raninids and <strong>the</strong>ir allies<br />

(<strong>the</strong> former tymolids, now treated as <strong>the</strong> Cyclodorippoidea;<br />

see below) as <strong>the</strong> subsection Raninoida.<br />

We could have used for this group <strong>the</strong> name Archaeobrachyura,<br />

a name that has been used previously<br />

for <strong>the</strong> assemblage that contained raninoids,<br />

homoloids, and tymoloids (Saint Laurent 1980a, b)<br />

while <strong>the</strong>y were still considered members <strong>of</strong> <strong>the</strong><br />

‘‘podotreme’’ lineage. However, use <strong>of</strong> <strong>the</strong> name Ar-<br />

Contributions in Science, Number 39 Rationale � 49


chaeobrachyura would have been confusing, not<br />

only because <strong>the</strong> constituency and alliances have<br />

changed considerably from its original usage by<br />

Guinot but because <strong>the</strong> entire group has been<br />

moved to <strong>the</strong> o<strong>the</strong>r major crab clade. We also could<br />

have used <strong>the</strong> older name Gymnopleura, established<br />

by Bourne (1922) to accommodate <strong>the</strong> raninids<br />

and still used by some modern workers (e.g.,<br />

Dai and Yang, 1991). But we have now placed <strong>the</strong><br />

former tymoloids (now <strong>the</strong> Cyclodorippoidea) in<br />

this subsection with <strong>the</strong> raninids (which may be a<br />

mistake; see below). Hence, our use <strong>of</strong> <strong>the</strong> name<br />

Raninoida for <strong>the</strong> subsection. We have credited this<br />

higher taxon to <strong>the</strong> same authority (De Haan) who<br />

established <strong>the</strong> family Raninidae. The o<strong>the</strong>r two<br />

subsections (<strong>the</strong> subsections Heterotremata and<br />

Thoracotremata), jointly constituting <strong>the</strong> sister<br />

group to <strong>the</strong> Raninoida, are more or less as envisioned<br />

by Guinot (1977, 1978, 1979). Our adoption<br />

<strong>of</strong> Guinot’s scheme (minus <strong>the</strong> Podotremata)<br />

has meant that many formerly recognized ‘‘tribes’’<br />

or ‘‘sections’’ among <strong>the</strong> higher crabs have been removed.<br />

This reflects not so much an advance in our<br />

knowledge <strong>of</strong> which families are closely related but<br />

ra<strong>the</strong>r knowledge concerning which ones are not.<br />

For example, <strong>the</strong> formerly recognized Oxyrhyncha<br />

appears to be an artificial assemblage (Sˇtevčić and<br />

Gore, 1982; Jamieson, 1991a, b, 1994; Spears et<br />

al., 1992), and <strong>the</strong>re is no longer any justification<br />

for recognizing <strong>the</strong> Oxystomata, Brachyrhyncha,<br />

and o<strong>the</strong>r former sections or tribes (e.g., see Guinot,<br />

1977, 1978; Spears et al., 1992; Sˇtevčić, 1998).<br />

Thus, we have retained several <strong>of</strong> <strong>the</strong> crab superfamilies<br />

but have removed many <strong>of</strong> <strong>the</strong> sections that<br />

were found in <strong>the</strong> Bowman and Abele (1982) classification.<br />

Yet acceptance <strong>of</strong> <strong>the</strong> sections Heterotremata<br />

and Thoracotremata as natural monophyletic<br />

lineages is by no means universal. For one thing,<br />

Guinot herself never explicitly assigned every<br />

known family to one <strong>of</strong> her sections, leaving some<br />

families ‘‘orphaned’’ in her earlier publications.<br />

<strong>An</strong>d as noted above, <strong>the</strong>se groups are admittedly<br />

(Guinot 1977, 1978) ‘‘grades’’ ra<strong>the</strong>r than true<br />

monophyletic lineages (or at least, if <strong>the</strong>y are monophyletic,<br />

this has yet to be demonstrated, although<br />

<strong>the</strong>re are preliminary data from morphology (see<br />

below) and from 16S rDNA (Trisha Spears, pers.<br />

comm.) that at least <strong>the</strong> Thoracotremata may have<br />

some validity). While usage <strong>of</strong> <strong>the</strong>se sections has<br />

become relatively widespread, it is unfortunate that<br />

many families were not explicitly mentioned by<br />

Guinot, such that users <strong>of</strong> her classification have<br />

been uncertain as to which families belonged to<br />

which section. Schram (1986) provided a more<br />

complete list <strong>of</strong> families (including some known<br />

only from fossils).<br />

Concerning monophyly <strong>of</strong> <strong>the</strong> Thoracotremata,<br />

dissections <strong>of</strong> <strong>the</strong> male reproductive tract <strong>of</strong> a series<br />

<strong>of</strong> freshwater crabs and some marine heterotremes<br />

and thoracotremes (during a search for <strong>the</strong> sister<br />

taxon <strong>of</strong> <strong>the</strong> freshwater crabs) has indicated that<br />

<strong>the</strong> Thoracotremata is a monophyletic group<br />

(Sternberg and Cumberlidge, 2001). One character<br />

uniting <strong>the</strong> thoracotremes is that <strong>the</strong> distal tracts <strong>of</strong><br />

<strong>the</strong> vas deferentia pass through thoracic endosternite<br />

8 and contact <strong>the</strong> male pleopods via apertures<br />

on thoracic sternite 8. The situation in heterotremes<br />

is different, with <strong>the</strong> vas deferens passing through<br />

<strong>the</strong> musculature <strong>of</strong> endosternite 8 but also through<br />

<strong>the</strong> coxa <strong>of</strong> pereiopod 5 such that <strong>the</strong> male sexual<br />

tube contacts <strong>the</strong> pleopods via an aperture on <strong>the</strong><br />

coxopodite. According to Sternberg et al. (1999),<br />

Sternberg and Cumberlidge (2001), and Cumberlidge<br />

and Sternberg (pers. comm.), <strong>the</strong> Eubrachyura<br />

(sensu Saint Laurent, 1980) are <strong>the</strong>refore defined by<br />

females with sternal vulvae and males with sexual<br />

tube outlets that open on <strong>the</strong> coxa <strong>of</strong> pereiopod 5.<br />

The Thoracotremata constitutes a monophyletic<br />

subset <strong>of</strong> <strong>the</strong> Eubrachyura characterized by male<br />

sexual tube outlets that unambiguously open on <strong>the</strong><br />

sternum.<br />

Within <strong>the</strong>se last two subsections (Heterotremata<br />

and Thoracotremata), many former subfamilies <strong>of</strong><br />

crabs, notably in <strong>the</strong> Xanthoidea and Majoidea and<br />

some also in <strong>the</strong> Par<strong>the</strong>nopoidea, have been elevated<br />

to family status based on <strong>the</strong> publications <strong>of</strong> several<br />

workers (e.g., Serène, 1984, for xanthids; Hendrickx,<br />

1995, for majids). This is an ongoing trend<br />

that merely reflects our growing awareness <strong>of</strong> how<br />

incredibly diverse <strong>the</strong>se taxa are.<br />

SECTION DROMIACEA<br />

In an early version <strong>of</strong> <strong>the</strong> updated classification, we<br />

had removed <strong>the</strong> dromiacean crabs from <strong>the</strong> Brachyura<br />

and had placed <strong>the</strong>m instead among <strong>the</strong> <strong>An</strong>omura.<br />

Larval characters have suggested this for<br />

years (e.g., see Williamson, 1976, 1982; Rice,<br />

1980, 1983; Martin, 1991), so much so that Williamson<br />

(1988a, b) invoked an unusual hypo<strong>the</strong>sis<br />

<strong>of</strong> transspecific gene flow to account for it. Molecular<br />

(18S rRNA) evidence brought to bear by<br />

Spears et al. (1992) seemed to indicate that at least<br />

some dromiaceans are indeed closer to <strong>the</strong> <strong>An</strong>omura<br />

than to <strong>the</strong> Brachyura sensu stricta based on<br />

<strong>the</strong>se preliminary data, and early studies <strong>of</strong> dromiacean<br />

sperm morphology suggested <strong>the</strong>ir removal<br />

from <strong>the</strong> Brachyura as well (Jamieson 1990,<br />

1991a). Yet adult morphology has always suggested<br />

that dromiids are true crabs (e.g., see Sˇtevčić,<br />

1995), and moving <strong>the</strong> dromiids to <strong>the</strong> <strong>An</strong>omura<br />

would raise many additional questions. Should all<br />

<strong>of</strong> <strong>the</strong> families associated with dromiids (i.e., <strong>the</strong><br />

former Dromiacea, including dromiids, dynomenids,<br />

and homolodromiids) be moved to <strong>the</strong> <strong>An</strong>omura,<br />

even though larval and molecular evidence<br />

are not in hand for all <strong>of</strong> <strong>the</strong>m? Is <strong>the</strong> Dromiacea<br />

in fact a valid, monophyletic grouping? If that<br />

scheme were accepted, how many o<strong>the</strong>r ‘‘primitive’’<br />

families should be moved? The fact that information<br />

on larval, molecular, and sperm morphology<br />

characters is still lacking for many members <strong>of</strong> this<br />

assemblage, plus more recent molecular data<br />

(Spears and Abele, 1999; T. Spears, pers. comm.),<br />

50 � Contributions in Science, Number 39 Rationale


eventually led us to keep dromiids with <strong>the</strong> o<strong>the</strong>r<br />

‘‘primitive’’ brachyurans in our section Dromiacea,<br />

knowing that by so doing we are continuing to displease<br />

students <strong>of</strong> crab phylogeny who rely mostly<br />

on larval characters and that <strong>the</strong> current arrangement<br />

<strong>of</strong> primitive crabs is not completely in keeping<br />

with <strong>the</strong> molecular evidence in <strong>the</strong> Spears et al.<br />

(1992) study. A detailed discussion <strong>of</strong> <strong>the</strong> situation<br />

within <strong>the</strong> Dromiacea can be found in <strong>the</strong> review<br />

<strong>of</strong> <strong>the</strong> Dynomenidae by McLay (1999).<br />

Superfamily Dromioidea<br />

The families Dromiidae and Dynomenidae are still<br />

listed as valid families, although based on molecular<br />

data (Spears et al., 1992) and sperm morphology<br />

(Jamieson, 1994; Jamieson et al., 1995; Guinot<br />

et al., 1998), <strong>the</strong>ir monophyletic status has been<br />

questioned (but see McLay, 1991, 1999; Sˇtevčić,<br />

1995). Earlier classifications, some <strong>of</strong> which have<br />

included <strong>the</strong> Homolidae among <strong>the</strong> dromiacean<br />

families, are reviewed by Sˇtevčić (1995), Guinot<br />

and Richer de Forges (1995), and McLay (1999).<br />

Guinot et al. (1998) argue that <strong>the</strong> Dromioidea (referred<br />

to as Dromiacea in that paper, a lapsus calami,<br />

Guinot, pers. comm.), containing <strong>the</strong> three<br />

families Dromiidae, Dynomenidae, and Homolodromiidae,<br />

is a valid monophyletic superfamily, although<br />

<strong>the</strong>y note <strong>the</strong> differences separating <strong>the</strong><br />

homolodromiids. We have maintained <strong>the</strong> separate<br />

status <strong>of</strong> <strong>the</strong> homolodromiids (i.e., placing <strong>the</strong>m in<br />

<strong>the</strong>ir own superfamily Homolodromioidea; see below)<br />

in light <strong>of</strong> <strong>the</strong> many morphological features <strong>of</strong><br />

adults that seem to separate <strong>the</strong>m from <strong>the</strong> dromiids<br />

and dynomenids. In doing so, we follow Guinot<br />

(1995), even though Guinot and Bouchard (1998)<br />

have reverted to treating all three <strong>of</strong> <strong>the</strong>se families<br />

in one superfamily (<strong>the</strong>ir Dromiacea). The families<br />

were reviewed recently by McLay (1991, Dromiidae;<br />

1999, Dynomenidae) with special regard to<br />

<strong>the</strong>ir Indo-Pacific members.<br />

Superfamily Homolodromioidea<br />

Separate superfamily status for <strong>the</strong> Homolodromiidae<br />

appears warranted on <strong>the</strong> basis <strong>of</strong> larval and<br />

adult morphology (see Martin, 1991; Guinot,<br />

1995). Sˇtevčić (1998) considers <strong>the</strong> homolodromiids<br />

<strong>the</strong> most primitive extant family <strong>of</strong> brachyuran<br />

crabs. The date <strong>of</strong> Alcock’s establishment <strong>of</strong> <strong>the</strong><br />

Homolodromiidae has been changed from 1899 to<br />

1900 following <strong>the</strong> revision by Guinot (1995).<br />

Superfamily Homoloidea<br />

The alliance <strong>of</strong> homolids with dromiids has been<br />

supported by ultrastructural characters <strong>of</strong> <strong>the</strong><br />

sperm (Guinot et al., 1994; see also <strong>the</strong> extensive<br />

review by Guinot and Richer de Forges, 1995). The<br />

family Poupiniidae was added by Guinot (1991).<br />

SECTION EUBRACHYURA, SUBSECTION<br />

RANINOIDA<br />

Superfamily Raninoidea<br />

Within <strong>the</strong> Raninoidea, <strong>the</strong> subfamily Symethinae<br />

(monogeneric; Symethis Goeke) was elevated to<br />

family level by Tucker (1998), as had been suggested<br />

earlier by Guinot (1993). However, Tucker<br />

did not agree with <strong>the</strong> removal <strong>of</strong> <strong>the</strong> subfamily<br />

Cyrtorhininae from <strong>the</strong> Raninidae, which had been<br />

suggested as a possibility by Guinot (1993).<br />

Superfamily Cyclodorippoidea<br />

The superfamily Tymoloidea has been removed and<br />

in its place is <strong>the</strong> superfamily Cyclodorippoidea, as<br />

<strong>the</strong> family name Cyclodorippidae Ortmann has seniority<br />

over Tymolidae Alcock, according to Guinot<br />

(pers. comm.) and Tavares (1991, 1993). Tavares<br />

(1998) also established a new family, <strong>the</strong> Phyllotymolinidae,<br />

within <strong>the</strong> Cyclodorippoidea. Guinot<br />

and Bouchard (1998) continue to recognize <strong>the</strong> superfamily<br />

Cyclodorippoidea (as did Tavares, 1991,<br />

1993, 1998), stating that this was done ‘‘for convenience’’<br />

while at <strong>the</strong> same time cautioning against<br />

possible paraphyly in <strong>the</strong> assemblage.<br />

Placement <strong>of</strong> this superfamily with <strong>the</strong> raninoids<br />

in <strong>the</strong> Raninoida is possibly a mistake; molecular<br />

data seem to indicate a placement somewhere between<br />

<strong>the</strong> raninids and <strong>the</strong> higher eubrachyurans<br />

(T. Spears, pers. comm.).<br />

SECTION EUBRACHYURA, SUBSECTION<br />

HETEROTREMATA<br />

Superfamily Dorippoidea<br />

The family Orithyiidae Dana has been transferred<br />

to this superfamily based on <strong>the</strong> suggestion <strong>of</strong> Bellwood<br />

(1996, 1998; see below).<br />

Superfamilies Calappoidea and Leucosioidea<br />

The monophyly <strong>of</strong> <strong>the</strong> family Calappidae and its<br />

constituent subfamilies has been questioned recently.<br />

Bellwood (1996, 1998) has recommended that<br />

only <strong>the</strong> families Calappidae and Hepatidae be retained<br />

in <strong>the</strong> superfamily Calappoidea, with <strong>the</strong><br />

Matutidae joining <strong>the</strong> leucosiids in <strong>the</strong> Leucosioidea<br />

and with <strong>the</strong> Orithyiidae transferred to <strong>the</strong> dorippoids.<br />

To some extent, <strong>the</strong>se changes reflect earlier<br />

suggestions based on larval (Rice, 1980) and<br />

adult (Guinot, 1978; Seridji, 1993) morphology,<br />

and <strong>the</strong>re is at least some fossil support for this<br />

arrangement as well (Feldmann and Hopkins,<br />

1999; Schweitzer and Feldmann, 2000). Sˇtevčić<br />

(1983) had earlier suggested recognition <strong>of</strong> <strong>the</strong> Matutidae<br />

and Orithyidae and <strong>the</strong>ir separation from<br />

o<strong>the</strong>r Calappidae as well. We have followed Bellwood’s<br />

(1996) recommendations while at <strong>the</strong> same<br />

time not agreeing with her that <strong>the</strong> Oxystomata be<br />

retained. Bellwood’s rearrangement <strong>of</strong> <strong>the</strong> calappids<br />

is not supported by recent molecular data (S.<br />

Boyce, unpublished).<br />

Contributions in Science, Number 39 Rationale � 51


Superfamily Majoidea<br />

Hendrickx (1995, and pers. comm.) brought our<br />

attention to <strong>the</strong> elevation <strong>of</strong> several majid subfamilies<br />

to familial rank, such as <strong>the</strong> elevation <strong>of</strong> some<br />

inachoid groups by Drach and Guinot (1983), who<br />

recognized as families <strong>the</strong> Inachidae and Inachoididae.<br />

We have followed Hendrickx’s recognition <strong>of</strong><br />

former majid subfamilies as families. To some degree,<br />

our treatment (and Hendrickx’s) <strong>of</strong> <strong>the</strong> majoid<br />

families follows <strong>the</strong> seven subfamilies proposed by<br />

Griffin and Tranter (1986) in <strong>the</strong>ir major revision<br />

<strong>of</strong> <strong>the</strong> Majidae <strong>of</strong> <strong>the</strong> Indo-West Pacific. Additional<br />

subfamilies have been proposed by o<strong>the</strong>r workers,<br />

including Sˇtevčić (1994), who disagreed with some<br />

<strong>of</strong> <strong>the</strong> subdivisions proposed by Griffin and Tranter<br />

(1986). Diversity <strong>of</strong> <strong>the</strong> former family Majidae is<br />

incredibly high, and recognition or treatment <strong>of</strong> <strong>the</strong><br />

majoids as a superfamily has been noted or suggested<br />

by many earlier workers (e.g., Guinot, 1978;<br />

Drach and Guinot, 1983; Sˇtevčić, 1994; Clark and<br />

Webber, 1991, among o<strong>the</strong>rs). M. Wicksten (pers.<br />

comm.) suggests that, if we elevate some <strong>of</strong> <strong>the</strong> former<br />

majid subfamilies to <strong>the</strong> family level, <strong>the</strong>n we<br />

should recognize also <strong>the</strong> family Oregoniidae<br />

Garth, 1958, and possibly also <strong>the</strong> Macrocheiridae<br />

Balss, 1929, ‘‘for consistency.’’ Indeed, Clark and<br />

Webber (1991) proposed recognition <strong>of</strong> both <strong>of</strong><br />

<strong>the</strong>se families based on a reevaluation <strong>of</strong> <strong>the</strong> larval<br />

features <strong>of</strong> Macrocheira and suggested that extant<br />

majoids be partitioned among four families: Oregoniidae,<br />

Macrocheiridae, Majidae, and Inachidae.<br />

Larval morphology indicates <strong>the</strong> distinct nature,<br />

and presumed monophyly, <strong>of</strong> <strong>the</strong>se groups as well<br />

(Pohle and Marques, 2000). We have not taken that<br />

step here, feeling that knowledge <strong>of</strong> larval majoids<br />

is still ra<strong>the</strong>r incomplete, and we recognize here<br />

only <strong>the</strong> families Epialtidae, Inachidae, Inachoididae,<br />

Majidae, Mithracidae, Pisidae, and Tychidae.<br />

Concerning phylogeny among <strong>the</strong> higher (heterotrematous)<br />

crabs, Rice (1983:326) depicts <strong>the</strong> Majidae<br />

(our Majoidea) as basal to <strong>the</strong> primitive xanthid<br />

stock, which in turn gives rise to all o<strong>the</strong>r crab<br />

families and superfamilies. A recent study based on<br />

larval characters (Pohle and Marques, 2000) suggests<br />

that, within <strong>the</strong> Majoidea, <strong>the</strong> Oregoniinae<br />

clade is most basal among those majoid families (or<br />

subfamilies) for which larval morphology is<br />

known.<br />

Superfamily Hymenosomatoidea<br />

According to Guinot and Richer de Forges (1997),<br />

members <strong>of</strong> <strong>the</strong> family Hymenosomatidae (sole<br />

member <strong>of</strong> this superfamily) are thought to be<br />

‘‘highly advanced Heterotremata and not Thoracotremata’’<br />

(Guinot and Richer de Forges, 1997:<br />

454, English abstract). In addition, Guinot and<br />

Richer de Forges (1997) revive <strong>the</strong> idea that <strong>the</strong><br />

closest relatives <strong>of</strong> <strong>the</strong> hymenosomatids may lie<br />

among <strong>the</strong> majoid family Inachoididae. The unusual<br />

sperm morphology <strong>of</strong> one species <strong>of</strong> <strong>the</strong> family,<br />

as reported by Richer de Forges et al. (1997),<br />

would seem to exclude <strong>the</strong> Hymenosomatidae from<br />

<strong>the</strong> Thoracotremata, and even casts doubts as to<br />

<strong>the</strong> family’s inclusion in <strong>the</strong> Heterotremata.<br />

Superfamily Par<strong>the</strong>nopoidea<br />

The superfamily Mimilambroidea and its sole family<br />

Mimilambridae, both originally erected by Williams<br />

(1979) to contain Mimilambrus, have been<br />

removed following <strong>the</strong> suggestion <strong>of</strong> Ng and Rodriguez<br />

(1986) that Mimilambrus can be accommodated<br />

within <strong>the</strong> Par<strong>the</strong>nopidae. Hendrickx (1995)<br />

again alerted us to <strong>the</strong> fact that several former subfamilies<br />

<strong>of</strong> crabs (in this case, former par<strong>the</strong>nopid<br />

subfamilies) had been suggested to be deserving <strong>of</strong>,<br />

or had actually been elevated to, family rank as<br />

long ago as 1978 (Guinot, 1978). Although several<br />

authors (e.g., Hendrickx, 1999) have attributed <strong>the</strong><br />

family name Daldorfiidae to M. J. Rathbun, we<br />

have found no indication that <strong>the</strong> taxon was recognized<br />

by her. Ng and Rodriguez (1986) recognized<br />

<strong>the</strong> suggested par<strong>the</strong>nopoid groupings <strong>of</strong><br />

Guinot as valid families and first used <strong>the</strong> names<br />

Daldorfiidae [as Daldorfidae] and Dairidae, and we<br />

have attributed <strong>the</strong>se families to <strong>the</strong>m. We have followed<br />

Guinot (1978) and Ng and Rodriguez (1986)<br />

and recognize <strong>the</strong> families Aethridae, Dairidae,<br />

Daldorfiidae, and Par<strong>the</strong>nopidae within a superfamily<br />

Par<strong>the</strong>nopoidea, although Hendrickx (1995)<br />

stopped short <strong>of</strong> treating all <strong>of</strong> <strong>the</strong>se as valid families.<br />

Superfamily Retroplumoidea<br />

The family Retroplumidae was given its own superfamily<br />

by Saint Laurent (1989), and its placement<br />

among <strong>the</strong> Heterotremata is based on Saint<br />

Laurent (1989) and Guinot (pers. comm.)<br />

Superfamily Cancroidea<br />

The family Cheiragonidae Ortmann, 1893, containing<br />

<strong>the</strong> genera Telmessus and Erimacrus (formerly<br />

treated by most workers as atelecyclids), was<br />

resurrected and redescribed by Sˇtevčić (1988), and<br />

this has been followed by Peter Ng (1998, and pers.<br />

comm., 1997; see also Schweitzer and Salva, 2000),<br />

and so we have included it here as well.<br />

Superfamily Portunoidea<br />

The freshwater family Trichodactylidae has now<br />

been placed in this superfamily, where it joins <strong>the</strong><br />

portunids and geryonids, based primarily on a recent<br />

morphological analysis (Sternberg et al., 1999;<br />

see also below under Potamoidea). Fundamental<br />

differences between trichodactylids and o<strong>the</strong>r freshwater<br />

crabs were recognized by several earlier<br />

workers. Rodriguez (1982, 1986, 1992), Magalhães<br />

and Türkay (1996a–c), Sternberg (1997),<br />

Sternberg et al. (1999), Christoph Schubart (pers.<br />

comm.), and Spears et al. (2000) all acknowledge<br />

<strong>the</strong> unique position <strong>of</strong> <strong>the</strong> Trichodactylidae and all<br />

consider <strong>the</strong> family monophyletic. The hypo<strong>the</strong>sis<br />

52 � Contributions in Science, Number 39 Rationale


that <strong>the</strong> trichodactylids may represent an independent<br />

lineage from any <strong>of</strong> <strong>the</strong> o<strong>the</strong>r freshwater crab<br />

families and that <strong>the</strong>y are descended from portunoid<br />

stock is supported by a number <strong>of</strong> independent<br />

studies using morphological data (e.g., Rodriguez,<br />

1982; Magalhães and Türkay, 1996a–c;<br />

Sternberg, 1997; Sternberg et al., 1999; and Sternberg<br />

and Cumberlidge, in press). Possible corroboration<br />

from preliminary molecular evidence (18S,<br />

16S, and 12S rDNA), which is admittedly based on<br />

only a handful <strong>of</strong> freshwater and marine crab species,<br />

nei<strong>the</strong>r strongly supports nor falsifies this relationship<br />

(Abele et al., 1999; Spears et al., 2000).<br />

Based on <strong>the</strong> totality <strong>of</strong> <strong>the</strong> evidence available to<br />

us, we have transferred <strong>the</strong> freshwater crab family<br />

Trichodactylidae to <strong>the</strong> marine superfamily Portunoidea.<br />

Superfamily Bythograeoidea<br />

Since <strong>the</strong> discovery <strong>of</strong> crabs at hydro<strong>the</strong>rmal vents<br />

and <strong>the</strong> erection <strong>of</strong> a new superfamily and family<br />

(Bythograeidae) to accommodate <strong>the</strong>m (Williams,<br />

1980), <strong>the</strong>re has been much discussion concerning<br />

<strong>the</strong> origins and affinities <strong>of</strong> <strong>the</strong>se crabs (e.g., see<br />

Guinot, 1988, 1990; Hessler and Martin, 1989).<br />

Williams (1980) noted morphological similarities<br />

between bythograeids and portunoids, xanthoids,<br />

and potamoids. Guinot (1988) argued for a recent<br />

derivation <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>rmal crab fauna. Bythograeids<br />

are morphologically similar to certain xanthoids,<br />

and <strong>the</strong>re are some spermatozoal similarities<br />

as well (Tudge et al., 1998). It may be that, at some<br />

point, <strong>the</strong> bythograeids should be transferred to <strong>the</strong><br />

Xanthoidea. For now, we have left <strong>the</strong>m in <strong>the</strong>ir<br />

own superfamily.<br />

Superfamily Xanthoidea<br />

The former xanthids are now treated as a superfamily<br />

containing 11 families, a recognition <strong>of</strong> <strong>the</strong><br />

group’s diversity that many workers feel is long<br />

overdue. The former family Xanthidae contained a<br />

wide variety <strong>of</strong> disparate forms and was <strong>the</strong> largest<br />

single family <strong>of</strong> <strong>the</strong> Decapoda, with an estimated<br />

130 genera and over 1,000 species (Rice, 1980;<br />

Martin, 1988). Manning and Holthuis (1981) list<br />

no fewer than 32 family and subfamily names that<br />

have been proposed for various assemblages within<br />

<strong>the</strong> family. Our elevation <strong>of</strong> <strong>the</strong> former subfamilies<br />

follows mostly <strong>the</strong> recommendations <strong>of</strong> Guinot<br />

(1977, 1978). A similar subdivision was provided<br />

by Serène (1984), although his treatment was restricted<br />

to those taxa found in <strong>the</strong> Red Sea, and so<br />

some xanthoid groups (such as <strong>the</strong> Panopeidae)<br />

were not considered by him. Serène (1984) recognized<br />

a Xanthoidea containing only five families<br />

(Xanthidae, Trapeziidae, Pilumnidae, Carpiliidae,<br />

and Menippidae), most with a fairly large number<br />

<strong>of</strong> subfamilies, some <strong>of</strong> which we are now treating<br />

as families. There is recent molecular evidence suggesting<br />

that at least some <strong>of</strong> <strong>the</strong>se former subfamilies<br />

are indeed distinct and warrant separate family<br />

status (e.g., see Schubart et al., 2000b, for <strong>the</strong> Panopeidae).<br />

Coelho and Coelho Filhol (1993) suggested<br />

splitting <strong>the</strong> former Xanthidae into four<br />

families (Carpiliidae, Xanthidae [containing <strong>the</strong><br />

subfamilies Menippinae, Platyxanthinae, Xanthinae,<br />

and Eucratopsinae], Eriphiidae, and Pilumnidae<br />

[with subfamilies Trapeziinae and Pilumninae]).<br />

One <strong>of</strong> <strong>the</strong> problems in elevating <strong>the</strong> various<br />

xanthid groups is that currently <strong>the</strong>re are no published<br />

lists <strong>of</strong> which genera should be included in<br />

which family. The field worker who previously<br />

could place any xanthoid crab in <strong>the</strong> Xanthidae is<br />

now faced with <strong>the</strong> ra<strong>the</strong>r challenging task <strong>of</strong> wading<br />

through a large amount <strong>of</strong> primary literature to<br />

locate <strong>the</strong> appropriate family; a fur<strong>the</strong>r problem is<br />

that <strong>the</strong> primary literature <strong>of</strong>ten does not contain<br />

all <strong>of</strong> this information ei<strong>the</strong>r. Like so many o<strong>the</strong>r<br />

groups <strong>of</strong> crustaceans, <strong>the</strong> ‘‘xanthoid’’ crabs are in<br />

need <strong>of</strong> revision, both taxonomic and phylogenetic<br />

(see also Coelho and Coelho Filhol, 1993).<br />

Peter Ng (pers. comm.) feels that <strong>the</strong> name Eriphiidae<br />

MacLeay, 1838, is a senior synonym and<br />

should be used instead <strong>of</strong> Menippidae Ortmann,<br />

1893, for this family, and indeed some workers<br />

(e.g., Ng, 1998) have employed <strong>the</strong> name Eriphiidae.<br />

Serène (1984) and o<strong>the</strong>r workers have occasionally<br />

treated <strong>the</strong> Eriphiinae as a subfamily <strong>of</strong> <strong>the</strong><br />

Menippidae. The family Oziidae Dana, 1852, is apparently<br />

a senior synonym <strong>of</strong> Menippidae as well,<br />

as pointed out by Holthuis (1993b), and probably<br />

should be used in place <strong>of</strong> Menippidae if Ozius and<br />

Menippe are both considered members <strong>of</strong> this<br />

group. However, we continue to use Menippidae in<br />

this case because <strong>the</strong> current (fourth) edition <strong>of</strong> <strong>the</strong><br />

ICZN allows continued recognition <strong>of</strong> a name that<br />

is enjoying ‘‘prevailing use,’’ and in our estimation,<br />

replacing Menippidae with Oziidae or Eriphiidae<br />

would cause more confusion than maintaining use<br />

<strong>of</strong> Menippidae. Hendrickx (1998) elevated <strong>the</strong> former<br />

goneplacid subfamily Pseudorhombilinae to<br />

family status to accommodate six goneplacid-like<br />

genera; hence, our inclusion <strong>of</strong> <strong>the</strong> family Pseudorhombilidae<br />

Alcock, 1900, among <strong>the</strong> xanthoids.<br />

The Eumedonidae, a family <strong>of</strong> crabs symbiotic<br />

on echinoderms, has at times been recognized as a<br />

distinct family (Lim and Ng, 1988; Sˇtevčić et al.,<br />

1988; and P. Ng, pers. comm.; see Chia and Ng,<br />

2000), and it is <strong>of</strong>ten placed within <strong>the</strong> Xanthoidea,<br />

although exactly where it belongs in relation to o<strong>the</strong>r<br />

crab families is still somewhat uncertain. Most<br />

workers are in agreement that early attempts to<br />

place it among <strong>the</strong> par<strong>the</strong>nopoids were misguided<br />

(e.g., see Van Dover et al., 1986; Sˇtevčić et al.,<br />

1988; Ng and Clark, 1999, 2000) and that it is<br />

probably a xanthoid (Sˇtevčić et al., 1988). Daniele<br />

Guinot (pers. comm.), who earlier listed <strong>the</strong> family<br />

in its own superfamily, <strong>the</strong> Eumedonoidea Miers<br />

(see Guinot, 1985), now also suggests that it might<br />

belong in <strong>the</strong> Xanthoidea, possibly close to <strong>the</strong> Pilumnidae,<br />

a view shared by Van Dover et al. (1986)<br />

based on larval evidence. Most recently, Ng and<br />

Clark (1999, 2000) have arrived at <strong>the</strong> conclusion<br />

Contributions in Science, Number 39 Rationale � 53


(based primarily on additional strong larval evidence<br />

that has accrued since <strong>the</strong> Van Dover et al.<br />

(1986) paper) that eumedonids are simply a subfamily<br />

<strong>of</strong> <strong>the</strong> Pilumnidae (see also Lim and Ng,<br />

1988). Indeed, Ng (1983) considered it a pilumnid<br />

subfamily, as have several o<strong>the</strong>r workers (reviewed<br />

by Sˇtevčić et al., 1988). Yet Chia and Ng (2000)<br />

continue to recognize <strong>the</strong> family. For now, we have<br />

continued to treat <strong>the</strong> Eumedonidae as a separate<br />

family with clear affinities to <strong>the</strong> Pilumnidae, and<br />

thus we have placed it with <strong>the</strong> pilumnids among<br />

<strong>the</strong> xanthoids.<br />

Recognition <strong>of</strong> Halimede as different from o<strong>the</strong>r<br />

pilumnids goes back at least to <strong>the</strong> time <strong>of</strong> Alcock<br />

(1898), who recognized <strong>the</strong> ‘‘alliance’’ Halimedoida.<br />

More recent workers (e.g., Serène, 1984:11)<br />

have recognized <strong>the</strong> Halimedinae as a subfamily <strong>of</strong><br />

<strong>the</strong> Pilumnidae. Although Bella Galil (pers. comm.)<br />

feels that <strong>the</strong> genus Halimede differs sufficiently<br />

from o<strong>the</strong>r xanthoids to warrant recognition <strong>of</strong> a<br />

separate family, <strong>the</strong> Halimedidae, we are not aware<br />

<strong>of</strong> any formal treatment or description <strong>of</strong> <strong>the</strong> family<br />

and how it differs from <strong>the</strong> o<strong>the</strong>r pilumnid groupings.<br />

At least some workers (e.g., R. von Sternberg,<br />

pers. comm.) would place <strong>the</strong> Hexapodidae in <strong>the</strong><br />

Thoracotremata instead <strong>of</strong> among <strong>the</strong> xanthoid<br />

families in <strong>the</strong> Heterotremata; von Sternberg also<br />

suggests, based primarily on characters <strong>of</strong> <strong>the</strong> orbits,<br />

that <strong>the</strong> Goneplacidae may be more closely<br />

related to portunids than to o<strong>the</strong>r xanthoid families<br />

(see also Sternberg and Cumberlidge, in press).<br />

Concerning phylogeny <strong>of</strong> xanthoid crabs, Rice<br />

(1980, 1983) and Martin (1988) have postulated,<br />

based on larval features (zoeal and megalopal), that<br />

<strong>the</strong> ‘‘Group III’’ larvae (e.g., Homalaspis, Ozius,<br />

Eriphia) might be primitive; Martin et al. (1985)<br />

suggested that pilumnids might be <strong>the</strong> least derived<br />

assemblage. Guinot (1978) felt that pilumnids and<br />

panopeids were more derived than <strong>the</strong> o<strong>the</strong>r groupings.<br />

In <strong>the</strong> current classification, we have simply<br />

listed <strong>the</strong> families alphabetically within <strong>the</strong> Xanthoidea.<br />

Superfamily Potamoidea<br />

The higher taxonomy <strong>of</strong> <strong>the</strong> freshwater crabs has<br />

long been in a state <strong>of</strong> disarray, and <strong>the</strong>re has been<br />

little agreement among authors as to <strong>the</strong> number <strong>of</strong><br />

superfamilies and families (e.g., see Cumberlidge,<br />

1999, for a review; Bott, 1970a, b; Pretzmann,<br />

1973; Ng, 1988, 1998; Sternberg et al., 1999; Peter<br />

Ng, pers. comm.; Neil Cumberlidge, pers. comm.).<br />

Up to 3 superfamilies and 12 families are recognized,<br />

depending on <strong>the</strong> author and also on how<br />

far back in <strong>the</strong> literature one goes. Available higher<br />

classifications <strong>of</strong> <strong>the</strong> freshwater crabs are based<br />

largely on morphological data and, until recently<br />

(Rodríguez, 1992; Sternberg, 1997; Sternberg et al.,<br />

1999; Sternberg and Cumberlidge, in press), few<br />

have been based on cladistic analyses. Many early<br />

freshwater crab systematists considered all <strong>the</strong><br />

world’s freshwater crabs to comprise a single<br />

monophyletic family, Potamidae. O<strong>the</strong>rs (Bott,<br />

1970a, b; Pretzmann, 1973) recognized 11 families<br />

and 3 superfamilies, arguing that <strong>the</strong> group is polyphyletic<br />

(or at least paraphyletic) and that similarities<br />

represent convergent adaptations <strong>of</strong> different<br />

lineages to similar habitats. Investigations over <strong>the</strong><br />

past two decades (e.g., Rodríguez, 1982; Ng, 1988;<br />

Guinot et al., 1997; Cumberlidge, 1999) have questioned<br />

<strong>the</strong> validity <strong>of</strong> several families, and <strong>the</strong>se<br />

studies continue to reveal <strong>the</strong> fundamental artificiality<br />

<strong>of</strong> Bott’s (1970a,b) 11-family taxonomic arrangement.<br />

However, in <strong>the</strong> absence <strong>of</strong> a robust<br />

phylogenetic study, most authors (including Bowman<br />

and Abele, 1982) have adopted <strong>the</strong>ir own variant<br />

<strong>of</strong> Bott’s classification (albeit reluctantly), and<br />

this format is followed here.<br />

Underlying <strong>the</strong> above taxonomic instability is <strong>the</strong><br />

unresolved question <strong>of</strong> <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> freshwater<br />

crabs. A growing body <strong>of</strong> recent research<br />

(Rodríguez, 1992; Sternberg, 1997; Sternberg et al.,<br />

1999; Sternberg and Cumberlidge, in press) has falsified<br />

<strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> entire group and supports<br />

paraphyly with two main lineages. The first<br />

lineage includes <strong>the</strong> Trichodactylidae, which may<br />

be descended from some portunoid stock (see<br />

above under superfamily Portunoidea), and thus<br />

represents an independent line from any <strong>of</strong> <strong>the</strong> ‘‘potamoid’’<br />

stock. The second lineage includes <strong>the</strong> rest<br />

<strong>of</strong> <strong>the</strong> freshwater crab families. The work <strong>of</strong> Sternberg<br />

et al. (1999), Cumberlidge and Sternberg<br />

(1999), Abele et al. (1999), Spears et al. (2000),<br />

and Sternberg and Cumberlidge (2000a) indicates<br />

that <strong>the</strong> nontrichodactylid freshwater crabs (all <strong>of</strong><br />

which are heterotremes) appear to be most closely<br />

related to a marine crab clade that includes ocypodids,<br />

grapsids, and possibly pinno<strong>the</strong>rids, with<br />

<strong>the</strong> grapsids providing <strong>the</strong> best candidate for a sister<br />

taxon (an odd result in light <strong>of</strong> <strong>the</strong> fact that<br />

currently <strong>the</strong> potamoids are treated as heterotremes<br />

whereas <strong>the</strong> grapsoids are thoracotremes). The hypo<strong>the</strong>sis<br />

suggested by Sternberg et al. (1999), that<br />

most families <strong>of</strong> freshwater crabs form a single<br />

clade composed <strong>of</strong> New and Old World lineages, is<br />

a departure from <strong>the</strong> traditional view <strong>of</strong> <strong>the</strong> freshwater<br />

crab relationships and may lead to fur<strong>the</strong>r<br />

alterations <strong>of</strong> <strong>the</strong> higher classification <strong>of</strong> <strong>the</strong> group.<br />

Some <strong>of</strong> <strong>the</strong> more recent evidence (see especially<br />

Abele et al., 1999; Spears et al., 2000) seems to<br />

indicate that <strong>the</strong> freshwater crabs may have arrived<br />

via two (and possibly more) invasions. One point<br />

<strong>of</strong> agreement seems to be that <strong>the</strong> New World pseudo<strong>the</strong>lphusids<br />

represent a separate clade from <strong>the</strong><br />

Old World potamoids. These New World crabs<br />

have long been thought to represent an independent<br />

lineage (sometimes referred to as <strong>the</strong> Pseudo<strong>the</strong>lphusoidea;<br />

see below) from <strong>the</strong> rest <strong>of</strong> <strong>the</strong> world’s<br />

freshwater crabs (see also Sternberg and Cumberlidge,<br />

1999). However, even this idea is somewhat<br />

controversial concerning whe<strong>the</strong>r <strong>the</strong> trichodactylids<br />

belong to <strong>the</strong> New World clade or represent a<br />

separate, independent invasion. Sternberg et al.<br />

(1999), citing <strong>the</strong> works <strong>of</strong> Magalhães and Türkay<br />

54 � Contributions in Science, Number 39 Rationale


(1996a–c), Rodríguez (1982, 1986, 1992), and<br />

Sternberg (1997), feel that <strong>the</strong>re is ‘‘strong support<br />

for <strong>the</strong> idea that <strong>the</strong> Pseudo<strong>the</strong>lphusidae and Trichodactylidae<br />

each form a natural group,’’ and<br />

Spears and Abele (1999) have suggested that <strong>the</strong><br />

pseudo<strong>the</strong>lphusids are deserving <strong>of</strong> superfamily status.<br />

Christoph Schubart (pers. comm.) also agrees<br />

that <strong>the</strong> former Potamoidea is polyphyletic, especially<br />

as concerns <strong>the</strong> South American lineages<br />

(families Pseudo<strong>the</strong>lphusidae and Trichodactylidae).<br />

Our classification is in keeping with most <strong>of</strong><br />

<strong>the</strong> above views.<br />

Thus, excluding <strong>the</strong> trichodactylids, we recognize<br />

three superfamilies <strong>of</strong> freshwater crabs: Potamoidea,<br />

Pseudo<strong>the</strong>lphusoidea, and Gercarcinucoidea.<br />

Within <strong>the</strong> ‘‘potamoid’’ families (superfamily Potamoidea),<br />

<strong>the</strong> families Sinopotamidae and Isolapotamidae<br />

have been removed, as both are thought<br />

to fall within <strong>the</strong> limits <strong>of</strong> <strong>the</strong> existing Potamidae<br />

(Ng, 1988; Dai et al., 1995; Dai, 1997; Dai and<br />

Türkay, 1997). Sternberg and Cumberlidge (1999)<br />

have recently recognized <strong>the</strong> monogeneric Platy<strong>the</strong>lphusidae<br />

Colossi, 1920, as a distinct potamoid<br />

family (see also Cumberlidge et al., 1999; Cumberlidge,<br />

1999) and at <strong>the</strong> same time suggested that<br />

<strong>the</strong> sister group <strong>of</strong> <strong>the</strong> platy<strong>the</strong>lphusids is most likely<br />

<strong>the</strong> East African family Deckeniidae. The Potamonautidae,<br />

considered to belong to <strong>the</strong> Potamidae<br />

by Monod (1977, 1980) and Guinot et al. (1997),<br />

is recognized as an independent family following<br />

<strong>the</strong> works <strong>of</strong> Ng (1988), Ng and Takeda (1994),<br />

Stewart (1997), Cumberlidge (1999), and Sternberg<br />

et al. (1999).<br />

Thus, within <strong>the</strong> superfamily Potamoidea, we<br />

recognize only four families here, all <strong>of</strong> <strong>the</strong>m Old<br />

World groups: Potamidae, Potamonautidae, Deckeniidae,<br />

and Platy<strong>the</strong>lphusidae.<br />

Superfamily Gecarcinucoidea<br />

Only two <strong>of</strong> <strong>the</strong> three families originally included<br />

in this superfamily by Bott (1970a, b) are recognized<br />

here: Gecarcinucidae and Para<strong>the</strong>lphusidae.<br />

The family Sunda<strong>the</strong>lphusidae has been removed,<br />

as that family is now considered a junior synonym<br />

<strong>of</strong> <strong>the</strong> Para<strong>the</strong>lphusidae (Peter Ng, pers. comm; see<br />

also Ng and Sket, 1996; Chia and Ng, 1998). The<br />

family Gecarcinucidae, although recognized as being<br />

artificial as currently defined and in need <strong>of</strong> revision<br />

(N. Cumberlidge, pers. comm.; and see Cumberlidge,<br />

1987, 1991, 1996a, b, 1999; Cumberlidge<br />

and Sachs, 1991), has been retained for now. Membership<br />

<strong>of</strong> <strong>the</strong> family, as currently defined, is likely<br />

to be altered radically in <strong>the</strong> near future (N. Cumberlidge,<br />

pers. comm.). For example, it is possible<br />

that <strong>the</strong> Gecarcinucidae will be shown to be restricted<br />

to <strong>the</strong> Indian subcontinent, Asia, and Australasia<br />

(see Cumberlidge, 1999; Martin and Trautwein,<br />

in press), and it is not represented on <strong>the</strong><br />

African continent, despite reports to <strong>the</strong> contrary<br />

(e.g., Bott, 1970a, b). Evidence for maintaining this<br />

superfamily (Gecarcinucoidea) and for separating<br />

<strong>the</strong>se two families (Gecarcinucidae and Para<strong>the</strong>lphusidae)<br />

from <strong>the</strong> four families in <strong>the</strong> Potamoidea<br />

is weak and controversial. Never<strong>the</strong>less, we are recognizing<br />

<strong>the</strong> distinctness <strong>of</strong> <strong>the</strong> Gecarcinucidae and<br />

Para<strong>the</strong>lphusidae from <strong>the</strong> four potamoid families<br />

until fur<strong>the</strong>r evidence becomes available.<br />

Superfamily Pseudo<strong>the</strong>lphusoidea<br />

Originally established by Bott (1970a, b) to include<br />

two families, Pseudo<strong>the</strong>lphusidae and Potamocarcinidae,<br />

this New World superfamily is now restricted<br />

to a single family. The family Potamocarcinidae<br />

was removed by Rodríguez (1982), and its<br />

species are now included among <strong>the</strong> Pseudo<strong>the</strong>lphusidae<br />

(see Sternberg et al., 1999). The monophyly<br />

<strong>of</strong> <strong>the</strong> family Pseudo<strong>the</strong>lphusidae appears<br />

well established. As noted above, Sternberg et al.<br />

(1999), citing <strong>the</strong> works <strong>of</strong> Magalhães and Türkay<br />

(1996a–c), Rodríguez (1982, 1986, 1992), and<br />

Sternberg (1997), feel that <strong>the</strong>re is ‘‘strong support<br />

for <strong>the</strong> idea that <strong>the</strong> Pseudo<strong>the</strong>lphusidae and Trichodactylidae<br />

each form a natural group.’’ Spears<br />

and Abele (1999) also have suggested that <strong>the</strong> pseudo<strong>the</strong>lphusids<br />

may be deserving <strong>of</strong> superfamily status,<br />

and most workers are in agreement that <strong>the</strong><br />

pseudo<strong>the</strong>lphusids are a natural (monophyletic)<br />

group (T. Spears, pers. comm.; C. Schubart, pers.<br />

comm.; Sternberg and Cumberlidge, 1999; Sternberg<br />

et al., 1999). We have retained this superfamily<br />

and its single family Pseudo<strong>the</strong>lphusidae.<br />

Superfamily Cryptochiroidea<br />

Finally in <strong>the</strong> Heterotremata, <strong>the</strong> correct name for<br />

<strong>the</strong> superfamily and family <strong>of</strong> <strong>the</strong> coral gall crabs<br />

(Cryptochiroidea and Cryptochiridae, both credited<br />

to Paulson) was recognized by Kropp and Manning<br />

(1985, 1987), who replaced <strong>the</strong> name Hapalocarcinidae<br />

used previously for this group.<br />

SECTION EUBRACHYURA, SUBSECTION<br />

THORACOTREMATA<br />

Superfamily Pinno<strong>the</strong>roidea<br />

C. Schubart (pers. comm.) believes that <strong>the</strong> Pinno<strong>the</strong>ridae<br />

‘‘should remain in <strong>the</strong> Thoracotremata<br />

based on evidence from DNA sequencing.’’ Placement<br />

<strong>of</strong> <strong>the</strong> pinno<strong>the</strong>rids in <strong>the</strong> Thoracotremata<br />

was also advocated by Sˇtevčić (1998) based on<br />

morphological features. Thus, <strong>the</strong> pinno<strong>the</strong>rids are<br />

moved to within <strong>the</strong> Thoracotremata, although <strong>the</strong><br />

author <strong>of</strong> <strong>the</strong> Thoracotremata does not agree with<br />

this placement (Guinot, pers. comm.) and feels that<br />

<strong>the</strong>y fit better within <strong>the</strong> Heterotremata. Within <strong>the</strong><br />

Pinno<strong>the</strong>roidea, it is possible that an additional<br />

family will have to be erected to accommodate <strong>the</strong><br />

genera Dissodactylus and Clypeasterophilus, which<br />

differ morphologically (larval characters) and genetically<br />

from o<strong>the</strong>r pinno<strong>the</strong>rids (J. Cuesta, pers.<br />

comm.).<br />

Contributions in Science, Number 39 Rationale � 55


Superfamily Ocypodoidea<br />

Within <strong>the</strong> Ocypodoidea, Guinot (pers. comm.)<br />

questioned <strong>the</strong> inclusion <strong>of</strong> <strong>the</strong> Retroplumidae<br />

among <strong>the</strong> ocypodoids and also among <strong>the</strong> thoracotremes;<br />

she now feels that <strong>the</strong> family Retroplumidae<br />

‘‘probably belongs to <strong>the</strong> Heterotremata’’<br />

(where we have now placed it, in its own superfamily<br />

following Saint Laurent, 1989). Also within <strong>the</strong><br />

Ocypodoidea, Guinot (pers. comm.) questions <strong>the</strong><br />

placement <strong>of</strong> <strong>the</strong> Palicidae and suggests that <strong>the</strong>y<br />

be listed currently as incertae sedis; Guinot and<br />

Bouchard (1998) treat <strong>the</strong>m as members <strong>of</strong> <strong>the</strong> Heterotremata.<br />

C. Schubart (pers. comm.) also questions<br />

<strong>the</strong> placement <strong>of</strong> <strong>the</strong> palicids based on results<br />

<strong>of</strong> his 16S mtDNA studies (Schubart et al., 1998).<br />

We have left <strong>the</strong> palicids among <strong>the</strong> Ocypodoids<br />

pending more firm suggestions as to where <strong>the</strong>y<br />

might belong. We have also corrected authorship <strong>of</strong><br />

<strong>the</strong> family Palicidae to Bouvier from Rathbun (as<br />

in Bowman and Abele, 1982, and most o<strong>the</strong>r earlier<br />

treatments), following <strong>the</strong> detailed explanation<br />

<strong>of</strong>fered in Castro’s (2000) revision <strong>of</strong> <strong>the</strong> Palicidae<br />

<strong>of</strong> <strong>the</strong> Indo-West Pacific. The family Camptandriidae<br />

Stimpson is recognized by Ng (1988). Schubart<br />

(pers. comm.) points out that if we recognize <strong>the</strong><br />

Camptandriidae, it would be logical also to elevate<br />

<strong>the</strong> o<strong>the</strong>r three ocypodid subfamilies (Macropthalminae,<br />

Dotillinae, and Heloeciinae) to family level,<br />

and apparently <strong>the</strong>re is some preliminary data to<br />

support this from zoeal and adult morphology (C.<br />

Schubart, pers. comm.). This seems especially logical<br />

in light <strong>of</strong> <strong>the</strong> finding <strong>of</strong> Kitaura et al. (1998)<br />

that <strong>the</strong> Camptrandriinae (now Camptrandriidae)<br />

is more closely related to <strong>the</strong> Dotillinae (based on<br />

molecular studies) than to any o<strong>the</strong>r ocypodid<br />

group; however, we have not yet taken that step.<br />

Superfamily Grapsoidea<br />

It has been suggested that <strong>the</strong> former grapsid subfamilies<br />

(especially <strong>the</strong> Varuninae) should be elevated<br />

to family status based on a combination <strong>of</strong><br />

morphological, larval, and molecular data (Cuesta<br />

and Schubart, 1999; Cuesta et al., 2000; Schubart,<br />

2000a–c; Spivak and Cuesta, 2000; Sternberg and<br />

Cumberlidge, 2000b). Schubart, Cuesta, and Felder<br />

(in press) review some <strong>of</strong> <strong>the</strong>se arguments and establish,<br />

on <strong>the</strong> basis <strong>of</strong> adult and larval morphology<br />

and molecular sequence data, <strong>the</strong> validity <strong>of</strong> <strong>the</strong><br />

Glyptograpsidae (containing only Glyptograpsus<br />

and Platychirograpsus); <strong>the</strong>y also review relationships<br />

among o<strong>the</strong>r former grapsid subfamilies. On<br />

<strong>the</strong> basis <strong>of</strong> <strong>the</strong>se papers, we recognize as valid families<br />

within <strong>the</strong> Grapsidoidea <strong>the</strong> Gecarcinidae,<br />

Glyptograpsidae, Grapsidae, Plagusiidae, Sesarmidae,<br />

and Varunidae. Comparing <strong>the</strong> families Grapsidae<br />

(as restricted; see Schubart, Cuesta, and Felder,<br />

in press, and Schubart, Cuesta, and Rodríguez,<br />

in press) and Gecarcinidae, Cuesta and Schubart<br />

stated (1999: 52) that <strong>the</strong>re is ‘‘not a single larval<br />

morphological character that consistently distinguishes<br />

<strong>the</strong> Gecarcinidae from <strong>the</strong> Grapsidae.’’<br />

However, J. Cuesta (pers. comm.) does not feel that<br />

<strong>the</strong> families are closely related and instead feels that<br />

larvae <strong>of</strong> <strong>the</strong> Gecarcinidae are more similar to larvae<br />

<strong>of</strong> <strong>the</strong> Varunidae and Sesarmidae.<br />

56 � Contributions in Science, Number 39 Rationale


We have thoroughly enjoyed <strong>the</strong> discussions with,<br />

and suggestions from, fellow carcinologists during<br />

<strong>the</strong> compilation and editing <strong>of</strong> this classification.<br />

Doubtless we have pleased and angered some<br />

workers more than o<strong>the</strong>rs in our ‘‘final’’ arrangement.<br />

We have been accused <strong>of</strong> making changes<br />

‘‘simply for <strong>the</strong> sake <strong>of</strong> change,’’ while at <strong>the</strong> same<br />

time we have been accused <strong>of</strong> ‘‘classificatory paralysis’’<br />

in our ‘‘unwillingness to change.’’ The classification<br />

has been criticized as being ‘‘nonphylogenetic,’’<br />

while at <strong>the</strong> same time parts <strong>of</strong> it have been<br />

criticized as relying too heavily on ‘‘recent lines <strong>of</strong><br />

cladistic evidence’’ (for which read molecular systematics).<br />

We accept all such criticisms gladly; <strong>the</strong>y<br />

are <strong>the</strong> signs <strong>of</strong> a growing and developing field <strong>of</strong><br />

CONCLUDING REMARKS<br />

study and <strong>of</strong> a field that is <strong>of</strong> passionate interest to<br />

a large number <strong>of</strong> dedicated workers. We are proud<br />

to be your colleagues.<br />

It is our sincere hope that <strong>the</strong> classification that<br />

follows is used primarily as a starting point for future<br />

research. By comparing <strong>the</strong> new classification<br />

with that <strong>of</strong> Bowman and Abele and seeing where<br />

changes have, and have not, occurred, and by reading<br />

<strong>the</strong> various dissenting opinions that follow (in<br />

Appendix I), we hope that <strong>the</strong> weaknesses inherent<br />

in this classification will be more readily spotted.<br />

We fur<strong>the</strong>r hope that knowledge <strong>of</strong> <strong>the</strong>se weaknesses<br />

will in turn lead to fur<strong>the</strong>r work on <strong>the</strong> <strong>Crustacea</strong>,<br />

<strong>the</strong> planet’s most morphologically diverse—<br />

and to us, <strong>the</strong> most interesting—group <strong>of</strong> organisms.<br />

Contributions in Science, Number 39 Concluding Remarks � 57


CLASSIFICATION OF RECENT CRUSTACEA<br />

Subphylum <strong>Crustacea</strong> Brünnich, 1772<br />

Class Branchiopoda Latreille, 1817<br />

Subclass Sarsostraca Tasch, 1969<br />

Order <strong>An</strong>ostraca Sars, 1867<br />

Family Artemiidae Grochowski, 1896<br />

Branchinectidae Daday, 1910<br />

Branchipodidae Simon, 1886<br />

Chirocephalidae Daday, 1910<br />

Polyartemiidae Simon, 1886<br />

Streptocephalidae Daday, 1910<br />

Thamnocephalidae Simon, 1886<br />

Subclass Phyllopoda Preuss, 1951<br />

Order Notostraca Sars, 1867<br />

Family Triopsidae Keilhack, 1909<br />

Order Diplostraca Gerstaecker, 1866<br />

Suborder Laevicaudata Linder, 1945<br />

Family Lynceidae Baird, 1845<br />

Suborder Spinicaudata Linder, 1945<br />

Family Cyzicidae Stebbing, 1910<br />

Leptes<strong>the</strong>riidae Daday, 1923<br />

Limnadiidae Baird, 1849<br />

Suborder Cycles<strong>the</strong>rida Sars, 1899<br />

Family Cycles<strong>the</strong>riidae Sars, 1899<br />

Suborder Cladocera Latreille, 1829<br />

Infraorder Ctenopoda Sars, 1865<br />

Family Holopediidae Sars, 1865<br />

Sididae Baird, 1850<br />

Infraorder <strong>An</strong>omopoda Stebbing, 1902<br />

Family Bosminidae Baird, 1845<br />

Chydoridae Stebbing, 1902<br />

Daphniidae Straus, 1820<br />

Macrothricidae Norman & Brady, 1867<br />

Infraorder Onychopoda Sars, 1865<br />

Family Cercopagididae Mordukhai-Boltovskoi, 1968<br />

Podonidae Mordukhai-Boltovskoi, 1968<br />

Polyphemidae Baird, 1845<br />

Infraorder Haplopoda Sars, 1865<br />

Family Leptodoridae Lilljeborg, 1900<br />

Class Remipedia Yager, 1981<br />

Order Nectiopoda Schram, 1986<br />

Family Godzilliidae Schram, Yager & Emerson, 1986<br />

Speleonectidae Yager, 1981<br />

Class Cephalocarida Sanders, 1955<br />

Order Brachypoda Birshteyn, 1960<br />

Family Hutchinsoniellidae Sanders, 1955<br />

Class Maxillopoda Dahl, 1956<br />

Subclass Thecostraca Gruvel, 1905<br />

Infraclass Facetotecta Grygier, 1985<br />

Infraclass Ascothoracida Lacaze-Duthiers, 1880<br />

Order Laurida Grygier, 1987<br />

Family Lauridae Gruvel, 1905<br />

Petrarcidae Gruvel, 1905<br />

Synagogidae Gruvel, 1905<br />

Order Dendrogastrida Grygier, 1987<br />

Family Ascothoracidae Grygier, 1987<br />

Ctenosculidae Thiele, 1925<br />

Dendrogastridae Gruvel, 1905<br />

Infraclass Cirripedia Burmeister, 1834<br />

Superorder Acrothoracica Gruvel, 1905<br />

58 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Order Pygophora Berndt, 1907<br />

Family Cryptophialidae Gerstaecker, 1866<br />

Lithoglyptidae Aurivillius, 1892<br />

Order Apygophora Berndt, 1907<br />

Family Trypetesidae Stebbing, 1910<br />

Superorder Rhizocephala Müller, 1862<br />

Order Kentrogonida Delage, 1884<br />

Family Lernaeodiscidae Boschma, 1928<br />

Peltogastridae Lilljeborg, 1860<br />

Sacculinidae Lilljeborg, 1860<br />

Order Akentrogonida Häfele, 1911<br />

Family Chthamalophilidae Bocquet-Védrine, 1961<br />

Clistosaccidae Boschma, 1928<br />

Duplorbidae Høeg & Rybakov, 1992<br />

Mycetomorphidae Høeg & Rybakov, 1992<br />

Polysaccidae Lützen & Takahashi, 1996<br />

Thompsoniidae Høeg & Rybakov, 1992<br />

Superorder Thoracica Darwin, 1854<br />

Order Pedunculata Lamarck, 1818<br />

Suborder Heteralepadomorpha Newman, 1987<br />

Family <strong>An</strong>elasmatidae Gruvel, 1905<br />

Heteralepadidae Nilsson-Cantell, 1921<br />

Koleolepadidae Hiro, 1933<br />

Malacolepadidae Hiro, 1937<br />

Microlepadidae Zevina, 1980<br />

Rhizolepadidae Zevina, 1980<br />

Suborder Iblomorpha Newman, 1987<br />

Family Iblidae Leach, 1825<br />

Suborder Lepadomorpha Pilsbry, 1916<br />

Family Lepadidae Darwin, 1852<br />

Oxynaspididae Gruvel, 1905<br />

Poecilasmatidae <strong>An</strong>nandale, 1909<br />

Suborder Scalpellomorpha Newman, 1987<br />

Family Calanticidae Zevina, 1978<br />

Lithotryidae Gruvel, 1905<br />

Pollicipedidae Leach, 1817<br />

Scalpellidae Pilsbry, 1907<br />

Order Sessilia Lamarck, 1818<br />

Suborder Brachylepadomorpha Wi<strong>the</strong>rs, 1923<br />

Family Neobrachylepadidae Newman & Yamaguchi, 1995<br />

Suborder Verrucomorpha Pilsbry, 1916<br />

Family Neoverrucidae Newman, 1989<br />

Verrucidae Darwin, 1854<br />

Suborder Balanomorpha Pilsbry, 1916<br />

Superfamily Chionelasmatoidea Buckeridge, 1983<br />

Family Chionelasmatidae Buckeridge, 1983<br />

Superfamily Pachylasmatoidea Utinomi, 1968<br />

Family Pachylasmatidae Utinomi, 1968<br />

Superfamily Chthamaloidea Darwin, 1854<br />

Family Catophragmidae Utinomi, 1968<br />

Chthamalidae Darwin, 1854<br />

Superfamily Coronuloidea Leach, 1817<br />

Family Chelonibiidae Pilsbry, 1916<br />

Coronulidae Leach, 1817<br />

Platylepadidae Newman & Ross, 1976<br />

Superfamily Tetraclitoidea Gruvel, 1903<br />

Family Bathylasmatidae Newman & Ross, 1971<br />

Tetraclitidae Gruvel, 1903<br />

Superfamily Balanoidea Leach, 1817<br />

Family Archaeobalanidae Newman & Ross, 1976<br />

Balanidae Leach, 1817<br />

Pyrgomatidae Gray, 1825<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 59


Subclass Tantulocarida Boxshall & Lincoln, 1983<br />

Family Basipodellidae Boxshall & Lincoln, 1983<br />

Deoterthridae Boxshall & Lincoln, 1987<br />

Doryphallophoridae Huys, 1991<br />

Microdajidae Boxshall & Lincoln, 1987<br />

Onceroxenidae Huys, 1991<br />

Subclass Branchiura Thorell, 1864<br />

Order Arguloida Yamaguti, 1963<br />

Family Argulidae Leach, 1819<br />

Subclass Pentastomida Diesing, 1836<br />

Order Cephalobaenida Heymons, 1935<br />

Family Cephalobaenidae Fain, 1961<br />

Reighardiidae Heymons, 1935<br />

Order Porocephalida Heymons, 1935<br />

Family Armilliferidae Fain, 1961<br />

Diesingidae Fain, 1961<br />

Linguatulidae Heymons, 1935<br />

Porocephalidae Fain, 1961<br />

Sambonidae Fain, 1961<br />

Sebekiidae Fain, 1961<br />

Subtriquetridae Fain, 1961<br />

Subclass Mystacocarida Pennak & Zinn, 1943<br />

Order Mystacocaridida Pennak & Zinn, 1943<br />

Family Derocheilocarididae Pennak & Zinn, 1943<br />

Subclass Copepoda Milne-Edwards, 1840<br />

Infraclass Progymnoplea Lang, 1948<br />

Order Platycopioida Fosshagen, 1985<br />

Family Platycopiidae Sars, 1911<br />

Infraclass Neocopepoda Huys & Boxshall, 1991<br />

Superorder Gymnoplea Giesbrecht, 1882<br />

Order Calanoida Sars, 1903<br />

Family Acartiidae Sars, 1900<br />

Aetideidae Giesbrecht, 1893<br />

Arietellidae Sars, 1902<br />

Augaptilidae Sars, 1905<br />

Bathypontiidae Brodsky, 1950<br />

Boholinidae Fosshagen & Iliffe, 1989<br />

Calanidae Dana, 1846<br />

Candaciidae Giesbrecht, 1893<br />

Centropagidae Giesbrecht, 1893<br />

Clausocalanidae Giesbrecht, 1893<br />

Diaixidae Sars, 1902<br />

Diaptomidae Baird, 1850<br />

Discoidae Gordejeva, 1975<br />

Epacteriscidae Fosshagen, 1973<br />

Eucalanidae Giesbrecht, 1893<br />

Euchaetidae Giesbrecht, 1893<br />

Fosshageniidae Suárez-Moráles & Iliffe, 1996<br />

Heterorhabdidae Sars, 1902<br />

Hyperbionychidae Ohtsuka, Roe & Boxshall, 1993<br />

Lucicutiidae Sars, 1902<br />

Mecynoceridae <strong>An</strong>dronov, 1973<br />

Megacalanidae Sewell, 1947<br />

Mesaiokeratidae Mat<strong>the</strong>ws, 1961<br />

Metridinidae Sars, 1902<br />

Nullosetigeridae Soh, Ohtsuka, Imbayashi & Suh, 1999<br />

Paracalanidae Giesbrecht, 1893<br />

Parapontellidae Giesbrecht, 1893<br />

Parkiidae Ferrari & Markhaseva, 1996<br />

Phaennidae Sars, 1902<br />

Pontellidae Dana, 1852<br />

Pseudocyclopidae Giesbrecht, 1893<br />

60 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Pseudocyclopiidae Sars, 1902<br />

Pseudodiaptomidae Sars, 1902<br />

Rhincalanidae Geletin, 1976<br />

Ridgewayiidae Wilson, 1958<br />

Ryocalanidae <strong>An</strong>dronov, 1974<br />

Scolecitrichidae Giesbrecht, 1893<br />

Spinocalanidae Vervoort, 1951<br />

Stephidae Sars, 1902<br />

Sulcanidae Nicholls, 1945<br />

Temoridae Giesbrecht, 1893<br />

Tharybidae Sars, 1902<br />

Tortanidae Sars, 1902<br />

Superorder Podoplea Giesbrecht, 1882<br />

Order Misophrioida Gurney, 1933<br />

Family Misophriidae Brady, 1878<br />

Palpophriidae Boxshall & Jaume, 2000<br />

Speleophriidae Boxshall & Jaume, 2000<br />

Order Cyclopoida Burmeister, 1834<br />

Family Archinotodelphyidae Lang, 1949<br />

Ascidicolidae Thorell, 1860<br />

Buproridae Thorell, 1859<br />

Chordeumiidae Boxshall, 1988<br />

Cucumaricolidae Bouligand & Delamare-Deboutteville, 1959<br />

Cyclopidae Dana, 1846<br />

Cyclopinidae Sars, 1913<br />

Fratiidae Ho, Conradi & López-González, 1998<br />

Lernaeidae Cobbold, 1879<br />

Mantridae Leigh-Sharpe, 1934<br />

Notodelphyidae Dana, 1852<br />

Oithonidae Dana, 1852<br />

Ozmanidae Ho & Thatcher, 1989<br />

Speleoithonidae da Rocha & Iliffe, 1991<br />

Thaumatopsyllidae Sars, 1913<br />

Order Gelyelloida Huys, 1988<br />

Family Gelyellidae Rouch & Lescher-Moutoué, 1977<br />

Order Mormonilloida Boxshall, 1979<br />

Family Mormonillidae Giesbrecht, 1893<br />

Order Harpacticoida Sars, 1903<br />

Family Adenopleurellidae Huys, 1990<br />

Aegisthidae Giesbrecht, 1893<br />

Ambunguipedidae Huys, 1990<br />

Ameiridae Monard, 1927<br />

<strong>An</strong>corabolidae Sars, 1909<br />

Argestidae Por, 1986<br />

Balaenophilidae Sars, 1910<br />

Cancrincolidae Fiers, 1990<br />

Canthocamptidae Sars, 1906<br />

Canuellidae Lang, 1944<br />

Cerviniidae Sars, 1903<br />

Chappuisiidae Chappuis, 1940<br />

Cletodidae Scott, 1905<br />

Cletopsyllidae Huys & Williams, 1989<br />

Clytemnestridae Scott, 1909<br />

Cristacoxidae Huys, 1990<br />

Cylindropsyllidae Sars, 1909<br />

Darcythompsoniidae Lang, 1936<br />

Diosaccidae Sars, 1906<br />

Ectinosomatidae Sars, 1903<br />

Euterpinidae Brian, 1921<br />

Hamondiidae Huys, 1990<br />

Harpacticidae Dana, 1846<br />

Huntemanniidae Por, 1986<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 61


Laophontidae Scott, 1905<br />

Laophontopsidae Huys & Willems, 1989<br />

Latiremidae Bozˇić, 1969<br />

Leptastacidae Lang, 1948<br />

Leptopontiidae Lang, 1948<br />

Longipediidae Sars, 1903<br />

Louriniidae Monard, 1927<br />

Metidae Sars, 1910<br />

Miraciidae Dana, 1846<br />

Neobradyidae Ol<strong>of</strong>fson, 1917<br />

Normanellidae Lang, 1944<br />

Novocriniidae Huys & Iliffe, 1998<br />

Orthopsyllidae Huys, 1990<br />

Paramesochridae Lang, 1944<br />

Parastenheliidae Lang, 1936<br />

Parastenocarididae Chappuis, 1933<br />

Peltidiidae Sars, 1904<br />

Phyllognathopodidae Gurney, 1932<br />

Porcellidiidae Boeck, 1865<br />

Pseudotachidiidae Lang, 1936<br />

Rhizothricidae Por, 1986<br />

Rotundiclipeidae Huys, 1988<br />

Styracothoracidae Huys, 1993<br />

Superornatiremidae Huys, 1997<br />

Tachidiidae Boeck, 1865<br />

Tegastidae Sars, 1904<br />

Tetragonicipitidae Lang, 1944<br />

Thalestridae Sars, 1905<br />

Thompsonulidae Lang, 1944<br />

Tisbidae Stebbing, 1910<br />

Order Poecilostomatoida Thorell, 1859<br />

Family <strong>An</strong>chimolgidae Humes & Boxshall, 1996<br />

<strong>An</strong>omoclausiidae Gotto, 1964<br />

<strong>An</strong><strong>the</strong>acheridae Sars, 1870<br />

<strong>An</strong><strong>the</strong>ssiidae Humes, 1986<br />

Bomolochidae Sumpf, 1871<br />

Catiniidae Bocquet & Stock, 1957<br />

Chitonophilidae Avdeev & Sirenko, 1991<br />

Chondracanthidae Milne Edwards, 1840<br />

Clausidiidae Embleton, 1901<br />

Clausiidae Giesbrecht, 1895<br />

Corallovexiidae Stock, 1975<br />

Corycaeidae Dana, 1852<br />

Echiurophilidae Delamare-Deboutteville & Nunes-Ruivo, 1955<br />

Entobiidae Ho, 1984<br />

Erebonasteridae Humes, 1987<br />

Ergasilidae von Nordmann, 1832<br />

Eunicicolidae Sars, 1918<br />

Gastrodelphyidae List, 1889<br />

Herpyllobiidae Hansen, 1892<br />

Intramolgidae Marchenkov & Boxshall, 1995<br />

Kelleriidae Humes & Boxshall, 1996<br />

Lamippidae Joliet, 1882<br />

Lernaeosoleidae Yamaguti, 1963<br />

Lichomolgidae Kossmann, 1877<br />

Lubbockiidae Huys & Böttger-Schnack, 1997<br />

Macrochironidae Humes & Boxshall, 1996<br />

Mesoglicolidae de Zulueta, 1911<br />

Micrallectidae Huys, 2001<br />

Myicolidae Yamaguti, 1936<br />

Mytilicolidae Bocquet & Stock, 1957<br />

Nereicolidae Claus, 1875<br />

62 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Nucellicolidae Lamb, Boxshall, Mill & Grahame, 1996<br />

Octopicolidae Humes & Boxshall, 1996<br />

Oncaeidae Giesbrecht, 1893<br />

Paralubbockiidae Boxshall & Huys, 1989<br />

Pharodidae Illg, 1948<br />

Philichthyidae Vogt, 1877<br />

Philoblennidae Izawa, 1976<br />

Phyllodicolidae Delamare-Deboutteville & Laubier, 1961<br />

Polyankylidae Ho & Kim, 1997<br />

Pseudan<strong>the</strong>ssiidae Humes & Stock, 1972<br />

Rhynchomolgidae Humes & Stock, 1972<br />

Sabelliphilidae Gurney, 1927<br />

Saccopsidae Lützen, 1964<br />

Sapphirinidae Thorell, 1860<br />

Serpulidicolidae Stock, 1979<br />

Shiinoidae Cressey, 1975<br />

Spiophanicolidae Ho, 1984<br />

Splanchnotrophidae Norman & Scott, 1906<br />

Synapticolidae Humes & Boxshall, 1996<br />

Synaptiphilidae Bocquet, 1953<br />

Taeniacanthidae Wilson, 1911<br />

Tegobomolochidae Avdeev, 1978<br />

Telsidae Ho, 1967<br />

Thamnomolgidae Humes & Boxshall, 1996<br />

Tuccidae Vervoort, 1962<br />

Urocopiidae Humes & Stock, 1972<br />

Vahiniidae Humes, 1967<br />

Ventriculinidae Leigh-Sharpe, 1934<br />

Xarifiidae Humes, 1960<br />

Xenocoelomatidae Bresciani & Lützen, 1966<br />

Order Siphonostomatoida Thorell, 1859<br />

Family Archidactylinidae Izawa, 1996<br />

Artotrogidae Brady, 1880<br />

Asterocheridae Giesbrecht, 1899<br />

Brychiopontiidae Humes, 1974<br />

Caligidae Burmeister, 1834<br />

Calverocheridae Stock, 1968<br />

Cancerillidae Giesbrecht, 1897<br />

Cecropidae Dana, 1849<br />

Codobidae Boxshall & Ohtsuka, 2001<br />

Coralliomyzontidae Humes & Stock, 1991<br />

Dichelesthiidae Milne Edwards, 1840<br />

Dichelinidae Boxshall & Ohtsuka, 2001<br />

Dinopontiidae Murnane, 1967<br />

Dirivultidae Humes & Dojiri, 1981<br />

Dissonidae Yamaguti, 1963<br />

Ecbathyriontidae Humes, 1987<br />

Entomolepididae Brady, 1899<br />

Eudactylinidae Wilson, 1922<br />

Euryphoridae Wilson, 1905<br />

Hatschekiidae Kabata, 1979<br />

Hyponeoidae Heegaard, 1962<br />

Kroyeriidae Kabata, 1979<br />

Lernaeopodidae Milne Edwards, 1840<br />

Lernanthropidae Kabata, 1979<br />

Megapontiidae Heptner, 1968<br />

Micropontiidae Gooding, 1957<br />

Nanaspididae Humes & Cressey, 1959<br />

Nicothoidae Dana, 1849<br />

Pandaridae Milne Edwards, 1840<br />

Pennellidae Burmeister, 1834<br />

Pontoeciellidae Giesbrecht, 1895<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 63


Pseudocycnidae Wilson, 1922<br />

Rataniidae Giesbrecht, 1897<br />

Scottomyzontidae Ivanenko, Ferrari, & Smurov, 2001<br />

Sphyriidae Wilson, 1919<br />

Sponginticolidae Topsent, 1928<br />

Spongiocnizontidae Stock & Kleeton, 1964<br />

Stellicomitidae Humes & Cressey, 1958<br />

Tanypleuridae Kabata, 1969<br />

Trebiidae Wilson, 1905<br />

Order Monstrilloida Sars, 1901<br />

Family Monstrillidae Dana, 1849<br />

Class Ostracoda Latreille, 1802<br />

Subclass Myodocopa Sars, 1866<br />

Order Myodocopida Sars, 1866<br />

Suborder Myodocopina Sars, 1866<br />

Superfamily Cypridinoidea Baird, 1850<br />

Family Cypridinidae Baird, 1850<br />

Superfamily Cylindroleberidoidea Müller, 1906<br />

Family Cylindroleberididae Müller, 1906<br />

Superfamily Sarsielloidea Brady & Norman, 1896<br />

Family Philomedidae Müller, 1906<br />

Rutidermatidae Brady & Norman, 1896<br />

Sarsiellidae Brady & Norman, 1896<br />

Order Halocyprida Dana, 1853<br />

Suborder Cladocopina Sars, 1865<br />

Superfamily Polycopoidea Sars, 1865<br />

Family Polycopidae Sars, 1865<br />

Suborder Halocypridina Dana, 1853<br />

Superfamily Halocypridoidea Dana, 1853<br />

Family Halocyprididae Dana, 1853<br />

Superfamily Thaumatocypridoidea Müller, 1906<br />

Family Thaumatocyprididae Müller, 1906<br />

Subclass Podocopa Müller, 1894<br />

Order Platycopida Sars, 1866<br />

Family Cy<strong>the</strong>rellidae Sars, 1866<br />

Punciidae Hornibrook, 1949<br />

Order Podocopida Sars, 1866<br />

Suborder Bairdiocopina Sars, 1865<br />

Superfamily Bairdioidea Sars, 1865<br />

Family Bairdiidae Sars, 1865<br />

Bythocyprididae Maddocks, 1969<br />

Suborder Cy<strong>the</strong>rocopina Baird, 1850<br />

Superfamily Cy<strong>the</strong>roidea Baird, 1850<br />

Family Bythocy<strong>the</strong>ridae Sars, 1866<br />

Cy<strong>the</strong>ridae Baird, 1850<br />

Cy<strong>the</strong>rideidae Sars, 1925<br />

Cy<strong>the</strong>romatidae El<strong>of</strong>son, 1939<br />

Cy<strong>the</strong>ruridae Müller, 1894<br />

Entocy<strong>the</strong>ridae H<strong>of</strong>f, 1942<br />

Eucy<strong>the</strong>ridae Puri, 1954<br />

Hemicy<strong>the</strong>ridae Puri, 1953<br />

Kliellidae Schäfer, 1945<br />

Krithidae Mandelstam, 1958<br />

Leptocy<strong>the</strong>ridae Hanai, 1957<br />

Loxoconchidae Sars, 1925<br />

Microcy<strong>the</strong>ridae Klie, 1938<br />

Neocy<strong>the</strong>rideidae Puri, 1957<br />

Paradoxostomatidae Brady & Norman, 1889<br />

Pectocy<strong>the</strong>ridae Hanai, 1957<br />

Protocy<strong>the</strong>ridae Ljubimova, 1956<br />

Psammocy<strong>the</strong>ridae Klie, 1938<br />

Schizocy<strong>the</strong>ridae Howe, 1961<br />

64 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Terrestricy<strong>the</strong>ridae Schornikov, 1969<br />

Thaerocy<strong>the</strong>ridae Hazel, 1967<br />

Trachyleberididae Sylvester-Bradley, 1948<br />

Xestoleberididae Sars, 1928<br />

Suborder Darwinulocopina Sohn, 1988<br />

Superfamily Darwinuloidea Brady & Norman, 1889<br />

Family Darwinulidae Brady & Norman, 1889<br />

Suborder Cypridocopina Jones, 1901<br />

Superfamily Cypridoidea Baird, 1845<br />

Family Candonidae Kaufmann, 1900<br />

Cyprididae Baird, 1845<br />

Ilyocyprididae Kaufmann, 1900<br />

Notodromadidae Kaufmann, 1900<br />

Superfamily Macrocypridoidea Müller, 1912<br />

Family Macrocyprididae Müller, 1912<br />

Superfamily Pontocypridoidea Müller, 1894<br />

Family Pontocyprididae Müller, 1894<br />

Suborder Sigilliocopina Martens, 1992<br />

Superfamily Sigillioidea Mandelstam, 1960<br />

Family Sigilliidae Mandelstam, 1960<br />

Class Malacostraca Latreille, 1802<br />

Subclass Phyllocarida Packard, 1879<br />

Order Leptostraca Claus, 1880<br />

Family Nebaliidae Samouelle, 1819<br />

Nebaliopsidae Hessler, 1984<br />

Paranebaliidae Walker-Smith & Poore, 2001<br />

Subclass Hoplocarida Calman, 1904<br />

Order Stomatopoda Latreille, 1817<br />

Suborder Unipeltata Latreille, 1825<br />

Superfamily Bathysquilloidea Manning, 1967<br />

Family Bathysquillidae Manning, 1967<br />

Indosquillidae Manning, 1995<br />

Superfamily Gonodactyloidea Giesbrecht, 1910<br />

Family Alainosquillidae Moosa, 1991<br />

Hemisquillidae Manning, 1980<br />

Gonodactylidae Giesbrecht, 1910<br />

Odontodactylidae Manning, 1980<br />

Protosquillidae Manning, 1980<br />

Pseudosquillidae Manning, 1977<br />

Takuidae Manning, 1995<br />

Superfamily Erythrosquilloidea Manning & Bruce, 1984<br />

Family Erythrosquillidae Manning & Bruce, 1984<br />

Superfamily Lysiosquilloidea Giesbrecht, 1910<br />

Family Coronididae Manning, 1980<br />

Lysiosquillidae Giesbrecht, 1910<br />

Nannosquillidae Manning, 1980<br />

Tetrasquillidae Manning & Camp, 1993<br />

Superfamily Squilloidea Latreille, 1802<br />

Family Squillidae Latreille, 1802<br />

Superfamily Eurysquilloidea Ahyong & Harling, 2000<br />

Family Eurysquillidae Manning, 1977<br />

Superfamily Parasquilloidea Ahyong & Harling, 2000<br />

Family Parasquillidae Manning, 1995<br />

Subclass Eumalacostraca Grobben, 1892<br />

Superorder Syncarida Packard, 1885<br />

Order Bathynellacea Chappuis, 1915<br />

Family Bathynellidae Chappuis, 1915<br />

Parabathynellidae Noodt, 1965<br />

Order <strong>An</strong>aspidacea Calman, 1904<br />

Family <strong>An</strong>aspididae Thomson, 1893<br />

Koonungidae Sayce, 1908<br />

Psammaspididae Schminke, 1974<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 65


Stygocarididae Noodt, 1963<br />

Superorder Peracarida Calman, 1904<br />

Order Spelaeogriphacea Gordon, 1957<br />

Family Spelaeogriphidae Gordon, 1957<br />

Order Thermosbaenacea Monod, 1927<br />

Family Halosbaenidae Monod & Cals, 1988<br />

Monodellidae Taramelli, 1954<br />

Thermosbaenidae Monod, 1927<br />

Tulumellidae Wagner, 1994<br />

Order Lophogastrida Sars, 1870<br />

Family Eucopiidae Sars, 1885<br />

Lophogastridae Sars, 1870<br />

Order Mysida Haworth, 1825<br />

Family Lepidomysidae Clarke, 1961<br />

Mysidae Haworth, 1825<br />

Petalophthalmidae Czerniavsky, 1882<br />

Stygiomysidae Caroli, 1937<br />

Order Mictacea Bowman, Garner, Hessler, Iliffe & Sanders, 1985<br />

Family Hirsutiidae Sanders, Hessler & Garner, 1985<br />

Mictocarididae Bowman & Iliffe, 1985<br />

Order Amphipoda Latreille, 1816<br />

Suborder Gammaridea Latreille, 1802<br />

Family Acanthogammaridae Garjajeff, 1901<br />

Acanthonotozomellidae Coleman & Barnard, 1991<br />

Allocrangonyctidae Holsinger, 1989<br />

Amathillopsidae Pirlot, 1934<br />

Ampeliscidae Costa, 1857<br />

Amphilochidae Boeck, 1871<br />

Ampithoidae Stebbing, 1899<br />

<strong>An</strong>amixidae Stebbing, 1897<br />

<strong>An</strong>isogammaridae Bousfield, 1977<br />

Aoridae Walker, 1908<br />

Argissidae Walker, 1904<br />

Aristiidae Lowry & Stoddart, 1997<br />

Artesiidae Holsinger, 1980<br />

Bateidae Stebbing, 1906<br />

Biancolinidae Barnard, 1972<br />

Bogidiellidae Hertzog, 1936<br />

Bolttsiidae Barnard & Karaman, 1987<br />

Calliopidae Sars, 1893<br />

Carangoliopsidae Bousfield, 1977<br />

Cardenioidae Barnard & Karaman, 1987<br />

Caspicolidae Birstein, 1945<br />

Ceinidae Barnard, 1972<br />

Cheidae Thurston, 1982<br />

Cheluridae Allman, 1847<br />

Clarenciidae Barnard & Karaman, 1987<br />

Colomastigidae Stebbing, 1899<br />

Condukiidae Barnard & Drummond, 1982<br />

Corophiidae Leach, 1814<br />

Crangonyctidae Bousfield, 1973<br />

Cressidae Stebbing, 1899<br />

Cyphocarididae Lowry & Stoddart, 1997<br />

Cyproideidae Barnard, 1974<br />

Dexaminidae Leach, 1814<br />

Didymocheliidae Bellan-Santini & Ledoyer, 1986<br />

Dikwidae Coleman & Barnard, 1991<br />

Dogielinotidae Gurjanova, 1953<br />

Dulichiidae Dana, 1849<br />

Endevouridae Lowry & Stoddart, 1997<br />

Eophliantidae Sheard, 1936<br />

Epimeriidae Boeck, 1871<br />

66 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Eusiridae Stebbing, 1888<br />

Exoedicerotidae Barnard & Drummond, 1982<br />

Gammaracanthidae Bousfield, 1989<br />

Gammarellidae Bousfield, 1977<br />

Gammaridae Latreille, 1802<br />

Gammaroporeiidae Bousfield, 1979<br />

Hadziidae Karaman, 1943<br />

Haustoriidae Stebbing, 1906<br />

Hyalellidae Bulycheva, 1957<br />

Hyalidae Bulycheva, 1957<br />

Hyperiopsidae Bovallius, 1886<br />

Iciliidae Dana, 1849<br />

Ipanemidae Barnard & Thomas, 1988<br />

Iphimediidae Boeck, 1871<br />

Isaeidae Dana, 1853<br />

Ischyroceridae Stebbing, 1899<br />

Kuriidae Walker & Scott, 1903<br />

Laphystiidae Sars, 1893<br />

Laphystiopsidae Stebbing, 1899<br />

Lepechinellidae Schellenberg, 1926<br />

Leucothoidae Dana, 1852<br />

Liljeborgiidae Stebbing, 1899<br />

Lysianassidae Dana, 1849<br />

Macrohectopidae Sowinsky, 1915<br />

Maxillipiidae Ledoyer, 1973<br />

Megaluropidae Thomas & Barnard, 1986<br />

Melitidae Bousfield, 1973<br />

Melphidippidae Stebbing, 1899<br />

Mesogammaridae Bousfield, 1977<br />

Metacrangonyctidae Boutin & Missouli, 1988<br />

Micruropidae Kamaltynov, 1999<br />

Najnidae Barnard, 1972<br />

Neomegamphopidae Myers, 1981<br />

Neoniphargidae Bousfield, 1977<br />

Nihotungidae Barnard, 1972<br />

Niphargidae Bousfield, 1977<br />

Ochlesidae Stebbing, 1910<br />

Odiidae Coleman & Barnard, 1991<br />

Oedicerotidae Lilljeborg, 1865<br />

Opisidae Lowry & Stoddart, 1995<br />

Pachyschesidae Kamaltynov, 1999<br />

Pagetinidae Barnard, 1931<br />

Paracalliopidae Barnard & Karaman, 1982<br />

Paracrangonyctidae Bousfield, 1982<br />

Paraleptamphopidae Bousfield, 1983<br />

Paramelitidae Bousfield, 1977<br />

Pardaliscidae Boeck, 1871<br />

Perthiidae Williams & Barnard, 1988<br />

Phliantidae Stebbing, 1899<br />

Phoxocephalidae Sars, 1891<br />

Phoxocephalopsidae Barnard & Drummond, 1982<br />

Phreatogammaridae Bousfield, 1982<br />

Platyischnopidae Barnard & Drummond, 1979<br />

Pleustidae Buchholz, 1874<br />

Plioplateidae Barnard, 1978<br />

Podoceridae Leach, 1814<br />

Podoprionidae Lowry & Stoddart, 1996<br />

Pontogammaridae Bousfield, 1977<br />

Pontoporeiidae Dana, 1853<br />

Priscomilitaridae Hirayama, 1988<br />

Pseudamphilochidae Schellenberg, 1931<br />

Pseudocrangonyctidae Holsinger, 1989<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 67


Salentinellidae Bousfield, 1977<br />

Scopelocheiridae Lowry & Stoddart, 1997<br />

Sebidae Walker, 1908<br />

Sinurothoidae Ren, 1999<br />

Stegocephalidae Dana, 1853<br />

Stenothoidae Boeck, 1871<br />

Sternophysingidae Holsinger, 1992<br />

Stilipedidae Holmes, 1908<br />

Synopiidae Dana, 1853<br />

Talitridae Rafinesque, 1815<br />

Temnophliantidae Griffiths, 1975<br />

Trischizostomatidae Lilljeborg, 1865<br />

Tulearidae Ledoyer, 1979<br />

Typhlogammaridae, Bousfield, 1977<br />

Uristidae Hurley, 1963<br />

Urohaustoriidae Barnard & Drummond, 1982<br />

Urothoidae Bousfield, 1978<br />

Valettidae Stebbing, 1888<br />

Vicmusiidae Just, 1990<br />

Vitjazianidae Birstein & Vinogradov, 1955<br />

Wandinidae Lowry & Stoddart, 1990<br />

Zobrachoidae Barnard & Drummond, 1982<br />

Suborder Caprellidea Leach, 1814<br />

Infraorder Caprellida Leach, 1814<br />

Superfamily Caprelloidea Leach, 1814<br />

Family Caprellidae Leach, 1814<br />

Caprellinoididae Laubitz, 1993<br />

Caprogammaridae Kudrjaschov & Vassilenko, 1966<br />

Paracercopidae Vassilenko, 1968<br />

Pariambidae Laubitz, 1993<br />

Protellidae McCain, 1970<br />

Superfamily Phtisicoidea Vassilenko, 1968<br />

Family Phtisicidae Vassilenko, 1968<br />

Infraorder Cyamida Rafinesque, 1815<br />

Family Cyamidae Rafinesque, 1815<br />

Suborder Hyperiidea Milne Edwards, 1830<br />

Infraorder Physosomata Pirlot, 1929<br />

Superfamily Scinoidea Stebbing, 1888<br />

Family Archaeoscinidae Stebbing, 1904<br />

Mimonectidae Bovallius, 1885<br />

Proscinidae Pirlot, 1933<br />

Scinidae Stebbing, 1888<br />

Superfamily Lanceoloidea Bovallius, 1887<br />

Family Chuneolidae Woltereck, 1909<br />

Lanceolidae Bovallius, 1887<br />

Microphasmatidae Stephensen & Pirlot, 1931<br />

Infraorder Physocephalata Bowman & Gruner, 1973<br />

Superfamily Vibilioidea Dana, 1853<br />

Family Cystisomatidae Willemoes-Suhm, 1875<br />

Paraphronimidae Bovallius, 1887<br />

Vibiliidae Dana, 1853<br />

Superfamily Phronimoidea Rafinesque, 1815<br />

Family Dairellidae Bovallius, 1887<br />

Hyperiidae Dana, 1853<br />

Phronimidae Rafinesque, 1815<br />

Phrosinidae Dana, 1853<br />

Superfamily Lycaeopsoidea Chevreux, 1913<br />

Family Lycaeopsidae Chevreux, 1913<br />

Superfamily Platysceloidea Bate, 1862<br />

Family <strong>An</strong>apronoidae Bowman & Gruner, 1973<br />

Lycaeidae Claus, 1879<br />

Oxycephalidae Dana, 1853<br />

68 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Parascelidae Bate, 1862<br />

Platyscelidae Bate, 1862<br />

Pronoidae Dana, 1853<br />

Suborder Ingolfiellidea Hansen, 1903<br />

Family Ingolfiellidae Hansen, 1903<br />

Metaingolfiellidae Ruffo, 1969<br />

Order Isopoda Latreille, 1817<br />

Suborder Phreatoicidea Stebbing, 1893<br />

Family Amphisopodidae Nicholls, 1943<br />

Nichollsiidae Tiwari, 1955<br />

Phreatoicidae Chilton, 1891<br />

Suborder <strong>An</strong>thuridea Monod, 1922<br />

Family <strong>An</strong><strong>the</strong>luridae Poore & Lew Ton, 1988<br />

<strong>An</strong>thuridae Leach, 1814<br />

Expanathuridae Poore, 2001<br />

Hyssuridae Wägele, 1981<br />

Leptanthuridae Poore, 2001<br />

Paranthuridae Menzies & Glynn, 1968<br />

Suborder Microcerberidea Lang, 1961<br />

Family Atlantasellidae Sket, 1980<br />

Microcerberidae Karaman, 1933<br />

Suborder Flabellifera Sars, 1882<br />

Family Aegidae White, 1850<br />

<strong>An</strong>cinidae Dana, 1852<br />

<strong>An</strong>uropidae Stebbing, 1893<br />

Bathynataliidae Kensley, 1978<br />

Cirolanidae Dana, 1852<br />

Corallanidae Hansen, 1890<br />

Cymothoidae Leach, 1814<br />

Gnathiidae Leach, 1814<br />

Hadromastacidae Bruce & Müller, 1991<br />

Keuphyliidae Bruce, 1980<br />

Limnoriidae White, 1850<br />

Phoratopodidae Hale, 1925<br />

Plakarthriidae Hansen, 1905<br />

Protognathiidae Wägele & Brandt, 1988<br />

Serolidae Dana, 1852<br />

Sphaeromatidae Latreille, 1825<br />

Tecticepitidae Iverson, 1982<br />

Tridentellidae Bruce, 1984<br />

Suborder Asellota Latreille, 1802<br />

Superfamily Aselloidea Latreille, 1802<br />

Family Asellidae Latreille, 1802<br />

Stenasellidae Dudich, 1924<br />

Superfamily Stenetrioidea Hansen, 1905<br />

Family Pseudojaniridae Wilson, 1986<br />

Stenetriidae Hansen, 1905<br />

Superfamily Janiroidea Sars, 1897<br />

Family Acanthaspidiidae Menzies, 1962<br />

Dendrotiidae Vanhöffen, 1914<br />

Desmosomatidae Sars, 1899<br />

Echinothambematidae Menzies, 1956<br />

Haplomunnidae Wilson, 1976<br />

Haploniscidae Hansen, 1916<br />

Ischnomesidae Hansen, 1916<br />

Janirellidae Menzies, 1956<br />

Janiridae Sars, 1897<br />

Joeropsididae Nordenstam, 1933<br />

Katianiridae Svavarsson, 1987<br />

Macrostylidae Hansen, 1916<br />

Mesosignidae Schultz, 1969<br />

Microparasellidae Karaman, 1933<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 69


Mictosomatidae Wolff, 1965<br />

Munnidae Sars, 1897<br />

Munnopsididae Sars, 1869<br />

Nannoniscidae Hansen, 1916<br />

Paramunnidae Vanhöffen, 1914<br />

Pleurocopidae Fresi & Schiecke, 1972<br />

Santiidae Wilson, 1987<br />

Thambematidae Stebbing, 1913<br />

Superfamily Gnathostenetroidoidea Kussakin, 1967<br />

Family Gnathostenetroididae Kussakin, 1967<br />

Protojaniridae Fresi, Idato & Scipione, 1980<br />

Vermectiadidae Just & Poore, 1992<br />

Suborder Calabozoida Van Lieshout, 1983<br />

Family Calabozoidae Van Lieshout, 1983<br />

Suborder Valvifera Sars, 1882<br />

Family <strong>An</strong>tarcturidae Poore, 2001<br />

Arcturidae Dana, 1849<br />

Arcturididae Poore, 2001<br />

Austrarcturellidae Poore & Bardsley, 1992<br />

Chaetiliidae Dana, 1849<br />

Holidoteidae Wägele, 1989<br />

Holognathidae Thomson, 1904<br />

Idoteidae Samouelle, 1819<br />

Pseudido<strong>the</strong>idae Ohlin, 1901<br />

Rectarcturidae Poore, 2001<br />

Xenarcturidae Sheppard, 1957<br />

Suborder Epicaridea Latreille, 1831<br />

Superfamily Bopyroidea Rafinesque, 1815<br />

Family Bopyridae Rafinesque, 1815<br />

Dajidae Giard & Bonnier, 1887<br />

Entoniscidae Kossmann, 1881<br />

Superfamily Cryptoniscoidea Kossmann, 1880<br />

Family Asconiscidae Bonnier, 1900<br />

Cabiropidae Giard & Bonnier, 1887<br />

Crinoniscidae Bonnier, 1900<br />

Cryptoniscidae Kossmann, 1880<br />

Cyproniscidae Bonnier, 1900<br />

Fabidae Danforth, 1963<br />

Hemioniscidae Bonnier, 1900<br />

Podasconidae Bonnier, 1900<br />

Suborder Oniscidea Latreille, 1802<br />

Family Dubioniscidae Schultz, 1995<br />

Helelidae Ferrara, 1977<br />

Irmaosidae Ferrara & Taiti, 1983<br />

Pseudarmadillidae Vandel, 1973<br />

Scleropactidae Verhoeff, 1938<br />

Infraorder Tylomorpha Vandel, 1943<br />

Family Tylidae Dana, 1852<br />

Infraorder Ligiamorpha Vandel, 1943<br />

Section Diplocheta Vandel, 1957<br />

Family Ligiidae Leach, 1814<br />

Mesoniscidae Verhoeff, 1908<br />

Section Synocheta Legrand, 1946<br />

Superfamily Trichoniscoidea Sars, 1899<br />

Family Buddelundiellidae Verhoeff, 1930<br />

Trichoniscidae Sars, 1899<br />

Superfamily Styloniscoidea Vandel, 1952<br />

Family Schoebliidae Verhoeff, 1938<br />

Styloniscidae Vandel, 1952<br />

Titaniidae Verhoeff, 1938<br />

Tunanoniscidae Borutskii, 1969<br />

Section Crinocheta Legrand, 1946<br />

70 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Superfamily Oniscoidea Latreille, 1802<br />

Family Bathytropidae Vandel, 1952<br />

Berytoniscidae Vandel, 1973<br />

Detonidae Budde-Lund, 1906<br />

Halophilosciidae Verhoeff, 1908<br />

Olibrinidae Vandel, 1973<br />

Oniscidae Latreille, 1802<br />

Philosciidae Kinahan, 1857<br />

Platyarthridae Vandel, 1946<br />

Pudeoniscidae Lemos de Castro, 1973<br />

Rhyscotidae Budde-Lund, 1908<br />

Scyphacidae Dana, 1852<br />

Speleoniscidae Vandel, 1948<br />

Sphaeroniscidae Vandel, 1964<br />

Stenoniscidae Budde-Lund, 1904<br />

Tendosphaeridae Verhoeff, 1930<br />

Superfamily Armadilloidea Brandt, 1831<br />

Family Actaeciidae Vandel, 1952<br />

Armadillidae Brandt, 1831<br />

Armadillidiidae Brandt, 1833<br />

Atlantidiidae Arcangeli, 1954<br />

Balloniscidae Vandel, 1963<br />

Cylisticidae Verhoeff, 1949<br />

Eubelidae Budde-Lund, 1904<br />

Periscyphicidae Ferrara, 1973<br />

Porcellionidae Brandt, 1831<br />

Trachelipodidae Strouhal, 1953<br />

Order Tanaidacea Dana, 1849<br />

Suborder Tanaidomorpha Sieg, 1980<br />

Superfamily Tanaoidea Dana, 1849<br />

Family Tanaidae Dana, 1849<br />

Superfamily Paratanaoidea Lang, 1949<br />

Family <strong>An</strong>arthruridae Lang, 1971<br />

Leptochelidae Lang, 1973<br />

Nototanaidae Sieg, 1976<br />

Paratanaidae Lang, 1949<br />

Pseudotanaidae Sieg, 1976<br />

Pseudozeuxidae Sieg, 1982<br />

Typhlotanaidae Sieg, 1986<br />

Suborder Neotanaidomorpha Sieg, 1980<br />

Family Neotanaidae Lang, 1956<br />

Suborder Apseudomorpha Sieg, 1980<br />

Superfamily Apseudoidea Leach, 1814<br />

Family <strong>An</strong>uropodidae Băcescu, 1980<br />

Apseudellidae Gutu, 1972<br />

Apseudidae Leach, 1814<br />

Gigantapseudidae Kudinova-Pasternak, 1978<br />

Kalliapseudidae Lang, 1956<br />

Metapseudidae Lang, 1970<br />

Pagurapseudidae Lang, 1970<br />

Parapseudidae Gutu, 1981<br />

Sphyrapidae Gutu, 1980<br />

Tanapseudidae Băcescu, 1978<br />

Tanzanapseudidae Băcescu, 1975<br />

Whiteleggiidae Gutu, 1972<br />

Order Cumacea Krøyer, 1846<br />

Family Bodotriidae Scott, 1901<br />

Ceratocumatidae Calman, 1905<br />

Diastylidae Bate, 1856<br />

Gynodiastylidae Stebbing, 1912<br />

Lampropidae Sars, 1878<br />

Leuconidae Sars, 1878<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 71


Nannastacidae Bate, 1866<br />

Pseudocumatidae Sars, 1878<br />

Superorder Eucarida Calman, 1904<br />

Order Euphausiacea Dana, 1852<br />

Family Ben<strong>the</strong>uphausiidae Colosi, 1917<br />

Euphausiidae Dana, 1852<br />

Order Amphionidacea Williamson, 1973<br />

Family Amphionididae Holthuis, 1955<br />

Order Decapoda Latreille, 1802<br />

Suborder Dendrobranchiata Bate, 1888<br />

Superfamily Penaeoidea Rafinesque, 1815<br />

Family Aristeidae Wood-Mason, 1891<br />

Ben<strong>the</strong>sicymidae Wood-Mason, 1891<br />

Penaeidae Rafinesque, 1815<br />

Sicyoniidae Ortmann, 1898<br />

Solenoceridae Wood-Mason, 1891<br />

Superfamily Sergestoidea Dana, 1852<br />

Family Luciferidae de Haan, 1849<br />

Sergestidae Dana, 1852<br />

Suborder Pleocyemata Burkenroad, 1963<br />

Infraorder Stenopodidea Claus, 1872<br />

Family Spongicolidae Schram, 1986<br />

Stenopodidae Claus, 1872<br />

Infraorder Caridea Dana, 1852<br />

Superfamily Procaridoidea Chace & Manning, 1972<br />

Family Procarididae Chace & Manning, 1972<br />

Superfamily Gala<strong>the</strong>acaridoidea Vereshchaka, 1997<br />

Family Gala<strong>the</strong>acarididae Vereshchaka, 1997<br />

Superfamily Pasiphaeoidea Dana, 1852<br />

Family Pasiphaeidae Dana, 1852<br />

Superfamily Oplophoroidea Dana, 1852<br />

Family Oplophoridae Dana, 1852<br />

Superfamily Atyoidea de Haan, 1849<br />

Family Atyidae de Haan, 1849<br />

Superfamily Bresilioidea Calman, 1896<br />

Family Agostocarididae Hart & Manning, 1986<br />

Alvinocarididae Christ<strong>of</strong>fersen, 1986<br />

Bresiliidae Calman, 1896<br />

Disciadidae Rathbun, 1902<br />

Mirocarididae Vereshchaka, 1997<br />

Superfamily Nematocarcinoidea Smith, 1884<br />

Family Eugonatonotidae Chace, 1937<br />

Nematocarcinidae Smith, 1884<br />

Rhynchocinetidae Ortmann, 1890<br />

Xiphocarididae Ortmann, 1895<br />

Superfamily Psalidopodoidea Wood-Mason & Alcock, 1892<br />

Family Psalidopodidae Wood-Mason & Alcock, 1892<br />

Superfamily Stylodactyloidea Bate, 1888<br />

Family Stylodactylidae Bate, 1888<br />

Superfamily Campylonotoidea Sollaud, 1913<br />

Family Bathypalaemonellidae de Saint Laurent, 1985<br />

Campylonotidae Sollaud, 1913<br />

Superfamily Palaemonoidea Rafinesque, 1815<br />

Family <strong>An</strong>chistioididae Borradaile, 1915<br />

Desmocarididae Borradaile, 1915<br />

Euryrhynchidae Holthuis, 1950<br />

Gnathophyllidae Dana, 1852<br />

Hymenoceridae Ortmann, 1890<br />

Kakaducarididae Bruce, 1993<br />

Palaemonidae Rafinesque, 1815<br />

Typhlocarididae <strong>An</strong>nandale & Kemp, 1913<br />

Superfamily Alpheoidea Rafinesque, 1815<br />

72 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Family Alpheidae Rafinesque, 1815<br />

Barbouriidae Christ<strong>of</strong>fersen, 1987<br />

Hippolytidae Dana, 1852<br />

Ogyrididae Holthuis, 1955<br />

Superfamily Processoidea Ortmann, 1890<br />

Family Processidae Ortmann, 1890<br />

Superfamily Pandaloidea Haworth, 1825<br />

Family Pandalidae Haworth, 1825<br />

Thalassocarididae Bate, 1888<br />

Superfamily Physetocaridoidea Chace, 1940<br />

Family Physetocarididae Chace, 1940<br />

Superfamily Crangonoidea Haworth, 1825<br />

Family Crangonidae Haworth, 1825<br />

Glyphocrangonidae Smith, 1884<br />

Infraorder Astacidea Latreille, 1802<br />

Superfamily Glypheoidea Winkler, 1883<br />

Family Glypheidae Winkler, 1883<br />

Superfamily Enoplometopoidea de Saint Laurent, 1988<br />

Family Enoplometopidae de Saint Laurent, 1988<br />

Superfamily Nephropoidea Dana, 1852<br />

Family Nephropidae Dana, 1852<br />

Thaumastochelidae Bate, 1888<br />

Superfamily Astacoidea Latreille, 1802<br />

Family Astacidae Latreille, 1802<br />

Cambaridae Hobbs, 1942<br />

Superfamily Parastacoidea Huxley, 1879<br />

Family Parastacidae Huxley, 1879<br />

Infraorder Thalassinidea Latreille, 1831<br />

Superfamily Thalassinoidea Latreille, 1831<br />

Family Thalassinidae Latreille, 1831<br />

Superfamily Callianassoidea Dana, 1852<br />

Family Callianassidae Dana, 1852<br />

Callianideidae Kossmann, 1880<br />

Ctenochelidae Manning & Felder, 1991<br />

Laomediidae Borradaile, 1903<br />

Thomassiniidae de Saint Laurent, 1979<br />

Upogebiidae Borradaile, 1903<br />

Superfamily Axioidea Huxley, 1879<br />

Family Axiidae Huxley, 1879<br />

Calocarididae Ortmann, 1891<br />

Micheleidae Sakai, 1992<br />

Strahlaxiidae Poore, 1994<br />

Infraorder Palinura Latreille, 1802<br />

Superfamily Eryonoidea de Haan, 1841<br />

Family Polychelidae Wood-Mason, 1874<br />

Superfamily Palinuroidea Latreille, 1802<br />

Family Palinuridae Latreille, 1802<br />

Scyllaridae Latreille, 1825<br />

Synaxidae Bate, 1881<br />

Infraorder <strong>An</strong>omura MacLeay, 1838<br />

Superfamily Lomisoidea Bouvier, 1895<br />

Family Lomisidae Bouvier, 1895<br />

Superfamily Gala<strong>the</strong>oidea Samouelle, 1819<br />

Family Aeglidae Dana, 1852<br />

Chirostylidae Ortmann, 1892<br />

Gala<strong>the</strong>idae Samouelle, 1819<br />

Porcellanidae Haworth, 1825<br />

Superfamily Hippoidea Latreille, 1825<br />

Family Albuneidae Stimpson, 1858<br />

Hippidae Latreille, 1825<br />

Superfamily Paguroidea Latreille, 1802<br />

Family Coenobitidae Dana, 1851<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 73


Diogenidae Ortmann, 1892<br />

Lithodidae Samouelle, 1819<br />

Paguridae Latreille, 1802<br />

Parapaguridae Smith, 1882<br />

Pylochelidae Bate, 1888<br />

Infraorder Brachyura Latreille, 1802<br />

Section Dromiacea de Haan, 1833<br />

Superfamily Homolodromioidea Alcock, 1900<br />

Family Homolodromiidae Alcock, 1900<br />

Superfamily Dromioidea de Haan, 1833<br />

Family Dromiidae de Haan, 1833<br />

Dynomenidae Ortmann, 1892<br />

Superfamily Homoloidea de Haan, 1839<br />

Family Homolidae de Haan, 1839<br />

Latreilliidae Stimpson, 1858<br />

Poupiniidae Guinot, 1991<br />

Section Eubrachyura de Saint Laurent, 1980<br />

Subsection Raninoida de Haan, 1839<br />

Superfamily Raninoidea de Haan, 1839<br />

Family Raninidae de Haan, 1839<br />

Symethidae Goeke, 1981<br />

Superfamily Cyclodorippoidea Ortmann, 1892<br />

Family Cyclodorippidae Ortmann, 1892<br />

Cymonomidae Bouvier, 1897<br />

Phyllotymolinidae Tavares, 1998<br />

Subsection Heterotremata Guinot, 1977<br />

Superfamily Dorippoidea MacLeay, 1838<br />

Family Dorippidae MacLeay, 1838<br />

Orithyiidae Dana, 1853<br />

Superfamily Calappoidea Milne Edwards, 1837<br />

Family Calappidae Milne Edwards, 1837<br />

Hepatidae Stimpson, 1871<br />

Superfamily Leucosioidea Samouelle, 1819<br />

Family Leucosiidae Samouelle, 1819<br />

Matutidae de Hann, 1841<br />

Superfamily Majoidea Samouelle, 1819<br />

Family Epialtidae MacLeay, 1838<br />

Inachidae MacLeay, 1838<br />

Inachoididae Dana, 1851<br />

Majidae Samouelle, 1819<br />

Mithracidae Balss, 1929<br />

Pisidae Dana, 1851<br />

Tychidae Dana, 1851<br />

Superfamily Hymenosomatoidea MacLeay, 1838<br />

Family Hymenosomatidae MacLeay, 1838<br />

Superfamily Par<strong>the</strong>nopoidea MacLeay, 1838<br />

Family Aethridae Dana, 1851<br />

Dairidae Ng & Rodriguez, 1986<br />

Daldorfiidae Ng & Rodriguez, 1986<br />

Par<strong>the</strong>nopidae MacLeay, 1838<br />

Superfamily Retroplumoidea Gill, 1894<br />

Family Retroplumidae Gill, 1894<br />

Superfamily Cancroidea Latreille, 1802<br />

Family Atelecyclidae Ortmann, 1893<br />

Cancridae Latreille, 1802<br />

Cheiragonidae Ortmann, 1893<br />

Corystidae Samouelle, 1819<br />

Pirimelidae Alcock, 1899<br />

Thiidae Dana, 1852<br />

Superfamily Portunoidea Rafinesque, 1815<br />

Family Geryonidae Colosi, 1923<br />

Portunidae Rafinesque, 1815<br />

74 � Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>


Trichodactylidae Milne Edwards, 1853<br />

Superfamily Bythograeoidea Williams, 1980<br />

Family Bythograeidae Williams, 1980<br />

Superfamily Xanthoidea MacLeay, 1838<br />

Family Carpiliidae Ortmann, 1893<br />

Eumedonidae Dana, 1853<br />

Goneplacidae MacLeay, 1838<br />

Hexapodidae Miers, 1886<br />

Menippidae Ortmann, 1893<br />

Panopeidae Ortmann, 1893<br />

Pilumnidae Samouelle, 1819<br />

Platyxanthidae Guinot, 1977<br />

Pseudorhombilidae Alcock, 1900<br />

Trapeziidae Miers, 1886<br />

Xanthidae MacLeay, 1838<br />

Superfamily Bellioidea Dana, 1852<br />

Family Belliidae Dana, 1852<br />

Superfamily Potamoidea Ortmann, 1896<br />

Family Deckeniidae Ortmann, 1897<br />

Platy<strong>the</strong>lphusidae Colosi, 1920<br />

Potamidae Ortmann, 1896<br />

Potamonautidae Bott, 1970<br />

Superfamily Pseudo<strong>the</strong>lphusoidea Ortmann, 1893<br />

Family Pseudo<strong>the</strong>lphusidae Ortmann, 1893<br />

Superfamily Gecarcinucoidea Rathbun, 1904<br />

Family Gecarcinucidae Rathbun, 1904<br />

Para<strong>the</strong>lphusidae Alcock, 1910<br />

Superfamily Cryptochiroidea Paulson, 1875<br />

Family Cryptochiridae Paulson, 1875<br />

Subsection Thoracotremata Guinot, 1977<br />

Superfamily Pinno<strong>the</strong>roidea de Haan, 1833<br />

Family Pinno<strong>the</strong>ridae de Haan, 1833<br />

Superfamily Ocypodoidea Rafinesque, 1815<br />

Family Camptandriidae Stimpson, 1858<br />

Mictyridae Dana, 1851<br />

Ocypodidae Rafinesque, 1815<br />

Palicidae Bouvier, 1898<br />

Superfamily Grapsoidea MacLeay, 1838<br />

Family Gecarcinidae MacLeay, 1838<br />

Glyptograpsidae Schubart, Cuesta & Felder, 2001<br />

Grapsidae MacLeay, 1838<br />

Plagusiidae Dana, 1851<br />

Sesarmidae Dana, 1851<br />

Varunidae Milne Edwards, 1853<br />

Contributions in Science, Number 39 <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong> � 75


Abele, L. G. 1987. Review <strong>of</strong>: Schram, F. R. 1986. <strong>Crustacea</strong>.<br />

Oxford University Press. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 7:200–201.<br />

. 1991. Comparisons <strong>of</strong> morphological and molecular<br />

phylogeny <strong>of</strong> <strong>the</strong> Decapoda. In Proceedings <strong>of</strong><br />

<strong>the</strong> 1990 International <strong>Crustacea</strong>n Conference, ed.<br />

P. J. F. Davie and R. H. Quinn. Memoirs <strong>of</strong> <strong>the</strong><br />

Queensland Museum 31:101–108.<br />

Abele, L. G., and B. E. Felgenhauer. 1986. Phylogenetic<br />

and phenetic relationships among <strong>the</strong> lower Decapoda.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 6:385–400.<br />

Abele, L. G., W. Kim, and B. E. Felgenhauer. 1989. Molecular<br />

evidence for inclusion <strong>of</strong> <strong>the</strong> phylum Pentastomida<br />

in <strong>the</strong> <strong>Crustacea</strong>. Molecular Biology and<br />

Evolution 6:685–691.<br />

Abele, L. G., and T. Spears. 1997. Issues and answers in<br />

<strong>the</strong> molecular phylogeny <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>. Program<br />

and Abstracts, The <strong>Crustacea</strong>n Society 1997 Summer<br />

Meeting, Mobile, Alabama: 13.<br />

Abele, L. G., T. Spears, and N. Cumberlidge. 1999. Biogeography<br />

and phylogeny <strong>of</strong> freshwater crabs based<br />

on molecular evidence. Program and Abstracts, The<br />

<strong>Crustacea</strong>n Society 1999 Summer Meeting, Lafayette,<br />

Louisiana: 20.<br />

Abele, L. G., T. Spears, W. Kim, and M. Applegate. 1992.<br />

Phylogeny <strong>of</strong> selected maxillopodan and o<strong>the</strong>r crustacean<br />

taxa based on 18S ribosomal nucleotide sequences:<br />

a preliminary analysis. Acta Zoologica 73:<br />

271–392.<br />

Aguinaldo, A. M., J. M. Turbeville, L. S. Linford, M. C.<br />

Rivera, J. R. Garey, R. A. Raffe, and J. A. Lake.<br />

1997. Evidence for a clade <strong>of</strong> nematodes, arthropods,<br />

and o<strong>the</strong>r moulting animals. Nature 387:489–<br />

493.<br />

Ahyong, S. T. 1997. Phylogenetic analysis <strong>of</strong> <strong>the</strong> Stomatopoda<br />

(Malacostraca). Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

17:695–715.<br />

. 2001. Revision <strong>of</strong> <strong>the</strong> Australian stomatopod<br />

<strong>Crustacea</strong>. Records <strong>of</strong> <strong>the</strong> Australian Museum, supplement<br />

26:1–326.<br />

Ahyong, S. T., and C. Harling. 2000. The phylogeny <strong>of</strong><br />

<strong>the</strong> stomatopod <strong>Crustacea</strong>. Australian Journal <strong>of</strong><br />

Zoology 48:607–642.<br />

Akam, M. 1998. Hox genes in arthropod development<br />

and evolution. Biological Bulletin 195:373–374<br />

Akam, M., M. Aver<strong>of</strong>, J. Castelli-Gair, R. Dawes, F. Falciani,<br />

and D. Ferrier. 1994. The evolving role <strong>of</strong> Hox<br />

genes in arthropods. Development 1994(supplement):209–215.<br />

Alcock, A. 1898. Materials for a carcinological fauna <strong>of</strong><br />

India. No. 3. The Brachyura Cyclometopa. Part I.<br />

The Family Xanthidae. Journal <strong>of</strong> <strong>the</strong> Asiatic Society<br />

<strong>of</strong> Bengal 68(part 2, no. 1):67–233.<br />

. 1900. Materials for a carcinological fauna <strong>of</strong> India.<br />

No. 5. The Brachyura Primigenia or Dromiacea.<br />

Journal <strong>of</strong> <strong>the</strong> Asiatic Society <strong>of</strong> Bengal 68(part 2,<br />

no. 3):123–169.<br />

Almeida, W. de O., and M. L. Christ<strong>of</strong>fersen. 1999. A<br />

cladistic approach to relationships in Pentastomida.<br />

Journal <strong>of</strong> Parasitology 85:695–704.<br />

Alonso, M. 1996. <strong>Crustacea</strong> Branchiopoda. Fauna Iberica,<br />

vol. 7. Madrid: Museo Nacional de Ciencias Naturales,<br />

486 pp.<br />

Amado, M. A. P., J.-S. Ho, and C. E. F. da Rocha. 1995.<br />

Phylogeny and biogeography <strong>of</strong> <strong>the</strong> Ergasilidae (Copepoda,<br />

Poecilostomatoidea), with reconsideration<br />

LITERATURE CITED<br />

<strong>of</strong> <strong>the</strong> taxonomic status <strong>of</strong> <strong>the</strong> Vaigamidae. Contributions<br />

to Zoology 65:233–243.<br />

Amoros, C. 1996. Branchiopodes II. Ordre des Cténopodes,<br />

<strong>An</strong>omopodes, Onychopodes et Haplopodes<br />

(Ctenopoda Sars, 1865—<strong>An</strong>omopoda Sars, 1865—<br />

Onychopoda Sars, 1865—Haplopoda Sars, 1865).<br />

In Traité de Zoologie. <strong>An</strong>atomie, Systématique, Biologie.<br />

Crustacés. Tome VII, Fascicule II. Généralités<br />

(suite) et Systématique, ed. J. Forest, 353–383. Paris:<br />

Masson, 1002 pp.<br />

<strong>An</strong>derson, D. T. 1994. Barnacles. Structure, function, development<br />

and evolution. London: Chapman and<br />

Hall, 357 pp.<br />

<strong>An</strong>dronov, V. N. 1974. Phylogenetic relations <strong>of</strong> large taxa<br />

within <strong>the</strong> suborder Calanoida (<strong>Crustacea</strong>, Copepoda).<br />

Zoologischeskii Zhurnal 53:1002–1012. [In<br />

Russian, with English summary]<br />

Arbizu, P. M., and G. Moura. 1994. The phylogenetic position<br />

<strong>of</strong> <strong>the</strong> Cylindropsyllinae Sars (Copepoda, Harpacticoida)<br />

and <strong>the</strong> systematic status <strong>of</strong> <strong>the</strong> Leptopontiinae<br />

Lang. Zoologisch Beiträge 35:55–77.<br />

Arhat, A., and T. C. Kaufman. 1999. Novel regulation <strong>of</strong><br />

<strong>the</strong> homeotic gene Scr associated with a crustacean<br />

leg-to-maxilliped appendage transformation. Development<br />

126:1121–1128.<br />

Atkinson, R. J. A., and A. C. Taylor. 1988. Physiological<br />

ecology <strong>of</strong> burrowing decapods. In Aspects <strong>of</strong> Decapod<br />

<strong>Crustacea</strong>n Biology, ed. A. A. Fincham and P.<br />

Rainbow. Symposium <strong>of</strong> <strong>the</strong> Zoological Society <strong>of</strong><br />

London 59:201–226.<br />

Avdeev, G. V., and B. I. Sirenko. 1991. Chitonophilidae<br />

fam. n., a new family <strong>of</strong> parasitic copepods from <strong>the</strong><br />

chitons <strong>of</strong> <strong>the</strong> north-western Pacific. Parazitologiya<br />

25:370–374.<br />

Aver<strong>of</strong>, M., and M. Akam. 1993. Hom/Hox genes <strong>of</strong> Artemia:<br />

implications for <strong>the</strong> origin <strong>of</strong> insect and crustacean<br />

body plans. Current Biology 3:73–78.<br />

. 1995a. Hox genes and <strong>the</strong> diversification <strong>of</strong> insect<br />

and crustacean body plans. Nature 376:420–423.<br />

. 1995b. Insect–crustacean relationships: insights<br />

from comparative developmental and molecular<br />

studies. Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> London 347B:293–303.<br />

Aver<strong>of</strong>, M., and N. H. Patel. 1997. <strong>Crustacea</strong>n appendage<br />

evolution associated with changes in Hox gene expression.<br />

Nature 388:682–686.<br />

Ax, P. 1999. Das system der Metazoa II. Ein Lehrbuch<br />

der phylogenetischen Systematik. Stuttgart: G. Fischer,<br />

383 pp.<br />

Baba, K. 1988. Chirostylid and gala<strong>the</strong>id crustaceans (Decapoda:<br />

<strong>An</strong>omura) <strong>of</strong> <strong>the</strong> ‘‘Albatross’’ Philippine Expedition.<br />

Researches on <strong>Crustacea</strong>, special no. 2. Tokyo:<br />

The Carcinological Society <strong>of</strong> Japan, 203 pp.<br />

Băcescu, M. 1972. Archaeocuma and Schizocuma, new<br />

genera <strong>of</strong> Cumacea from <strong>the</strong> American tropical waters.<br />

Reue Roumaine de Biologie, serie Zoologie 17:<br />

241–245.<br />

. 1988. Cumacea I (Fam. Archaeocumatidae, Lampropidae,<br />

Bodotriidae, Leuconidae). In Crustaceourum<br />

catalogus pars 7, ed. H.-E. Gruner and L. B.<br />

Holthuis, 1–173. The Hague: SPB Academic Publishing.<br />

. 1992. Cumacea II (Fam. Nannastacidae, Diastylidae,<br />

Pseudocumatideae, Gynodiastylidae et Ceratocumatidae).<br />

In Crustaceorum catalogus pars 8, ed.<br />

76 � Contributions in Science, Number 39 Literature Cited


H.-E. Gruner and L. B. Holthuis, 1–468. The Hague:<br />

SPB Academic Publishing.<br />

Băcescu, M., and I. Petrescu. 1999. Ordre des Cumacés<br />

(Cumacea Kroyer, 1846). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Tome VII, Fascicule<br />

IIIA. Crustacés Péracarides, ed. J. Forest. Memoires<br />

de l’Institut Oceanographique Fondation Albert I er ,<br />

Prince de Monaco, 19:391–428.<br />

Baird, W. 1850. The natural history <strong>of</strong> British Entomostraca.<br />

London: The Ray Society, 364 pp.<br />

Baker, A. de C., B. P. Boden, and E. Brinton. 1990. A<br />

practical guide to <strong>the</strong> euphausiids <strong>of</strong> <strong>the</strong> world. London:<br />

Natural History Museum Publications, The<br />

Natural History Museum, 96 pp.<br />

Barber, P. H., and M. V. Erdmann. 2000. Molecular systematics<br />

<strong>of</strong> <strong>the</strong> Gonodactylidae (Stomatopoda) using<br />

mitochondrial cytochrome oxidase C (subunit 1)<br />

DNA sequence data. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology,<br />

special no. 2, 20:20–36.<br />

Barnard, J. L., and J. Clark. 1984. Redescription <strong>of</strong> Phoxocephalopsis<br />

zimmeri with a new species, and establishment<br />

<strong>of</strong> <strong>the</strong> family Phoxocephalopsidae (Amphipoda)<br />

from Magellanic South America. Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology 4:85–105.<br />

Barnard, J. L., and M. M. Drummond. 1982. Gammaridean<br />

amphipoda <strong>of</strong> Australia, part V: superfamily<br />

Haustorioidea. Smithsonian Contributions in Zoology<br />

360:1–148.<br />

Barnard, J. L., and G. S. Karaman. 1982. Classificatory<br />

revisions in gammaridean Amphipoda (<strong>Crustacea</strong>),<br />

part 2. Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong><br />

Washington 95:167–187.<br />

. 1987. Revisions in classification <strong>of</strong> gammaridean<br />

Amphipoda (<strong>Crustacea</strong>), part 3. Proceedings <strong>of</strong> <strong>the</strong><br />

Biological Society <strong>of</strong> Washington 100:856–875.<br />

. 1991. The families and genera <strong>of</strong> marine gammaridean<br />

Amphipoda (except marine gammaroids). Records<br />

<strong>of</strong> <strong>the</strong> Australian Museum Supplement<br />

13(parts 1 and 2):1–866.<br />

Barnard, J. L., and J. D. Thomas. 1988. Ipanemidae, new<br />

family, Ipanema talpa, new genus and species, from<br />

<strong>the</strong> surf zone <strong>of</strong> Brazil (<strong>Crustacea</strong>: Amphipoda:<br />

Haustorioidea). Proceedings <strong>of</strong> <strong>the</strong> Biological Society<br />

<strong>of</strong> Washington 101:614–621.<br />

Barnes, R. D., and F. W. Harrison. 1992. Introduction. In<br />

Microscopic anatomy <strong>of</strong> invertebrates, vol. 9, <strong>Crustacea</strong>,<br />

ed. F. W. Harrison and A. G. Humes, 1–8.<br />

New York: Wiley-Liss, Inc.<br />

Bate, C. S. 1862. Catalogue <strong>of</strong> <strong>the</strong> specimens <strong>of</strong> amphipodous<br />

<strong>Crustacea</strong> in <strong>the</strong> collection <strong>of</strong> <strong>the</strong> British Museum.<br />

London: British Museum <strong>of</strong> Natural History,<br />

iv � 399 pages, plates. 1–58.<br />

Belk, D. 1996. Was sind ‘‘Urzeitkrebse’’? Stapfia 42, Zugleich<br />

Kataloge des O. Ö. Landesmuseums N. F.<br />

100:15–19.<br />

Bellan-Santini, D. 1999. Ordre des Amphipodes (Amphipoda<br />

Latreille, 1816). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Tome VII, Fascicule<br />

IIIA. Crustacés Péracarides, ed. J. Forest. Memoires<br />

de l’Institut Oceanographique Fondation Albert I er ,<br />

Prince de Monaco, 19:93–176.<br />

Bellan-Santini, D., and M. Ledoyer. 1986. Gammariens<br />

(<strong>Crustacea</strong>—Amphipoda) des Iles Marion et Prince<br />

Edward. Boletino Museum Civico Storia Naturale<br />

Verona 13:349–435.<br />

Bellwood, O. 1996. A phylogenetic study <strong>of</strong> <strong>the</strong> Calappidae<br />

H. Milne Edwards 1837 (<strong>Crustacea</strong>: Brachyura)<br />

with a reappraisal <strong>of</strong> <strong>the</strong> status <strong>of</strong> <strong>the</strong> family.<br />

Zoological Journal <strong>of</strong> <strong>the</strong> Linnean Society 118:165–<br />

193.<br />

. 1998. Evolution and biogeography <strong>of</strong> <strong>the</strong> Calappidae<br />

(Decapoda: Brachyura). Proceedings and Abstracts<br />

<strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n Congress,<br />

Amsterdam: 71 (abstract 101).<br />

Benton, M. J. (editor). 1993. The fossil record 2. London:<br />

Chapman and Hall, 845 pp.<br />

Berge, J., G. Boxshall, and W. Vader. 2000. Cladistic analysis<br />

<strong>of</strong> <strong>the</strong> Amphipoda. Abstracts <strong>of</strong> <strong>the</strong> 10th Colloqium<br />

on Amphipoda (http://www.odu.edu/<br />

%7Ejrh100f/amphome): 1.<br />

Berge, J., W. Vader, and C. O. Coleman. 1998. Cladistic<br />

analysis <strong>of</strong> <strong>the</strong> amphipod families Odiidae and Ochlesidae.<br />

Proceedings and Abstracts <strong>of</strong> <strong>the</strong> 4th International<br />

<strong>Crustacea</strong>n Congress, Amsterdam: 53 (abstract<br />

40).<br />

. 1999. A cladistic analysis <strong>of</strong> <strong>the</strong> amphipod families<br />

Ochlesidae and Odiidae, with description <strong>of</strong> a<br />

new species and genus. In <strong>Crustacea</strong>ns and <strong>the</strong> biodiversity<br />

crisis. Proceedings <strong>of</strong> <strong>the</strong> 4th International<br />

<strong>Crustacea</strong>n Congress, Amsterdam, vol. 1, ed. F. R.<br />

Schram and J. C. von Vaupel Klein, 239–265. Leiden:<br />

Brill.<br />

Bergström, J. 1992. The oldest arthropods and <strong>the</strong> origin<br />

<strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>. Acta Zoologica 73:287–292.<br />

Boore, J. L., T. M. Collins, D. Stanton, L. L. Daehler, and<br />

W. M. Brown. 1995. Deducing arthropod phylogeny<br />

from mitochondrial DNA rearrangements. Nature<br />

376:163–165.<br />

Boore, J. L., D. Lavrov, and W. M. Brown. 1998. Gene<br />

translocation links insects and crustaceans. Nature<br />

392:667–668.<br />

Bott, R. 1970a. Die Süsswasserkrabben von Europa,<br />

Asien, Australien und ihre Stammesgeschichte. Eine<br />

Revision der Potamoidea und der Para<strong>the</strong>lphusoidea<br />

(<strong>Crustacea</strong>, Decapoda). Abhandlungen der Senckenbergischen<br />

Naturforschenden Gesellschaft 526:1–<br />

338.<br />

. 1970b. Betrachtungen uber die Entwicklungsgeschichte<br />

und Verbreitung der Süsswasser-krabben<br />

nach der Sammlung des Naturhistorischen Museums<br />

in Genf/Schweitz. Revue Suisse de Zoologie 77:327–<br />

344.<br />

Bourne, G. C. 1922. The Raninidae: a study in carcinology.<br />

Journal <strong>of</strong> <strong>the</strong> Linnean Society <strong>of</strong> London (Zoology)<br />

35:25–79.<br />

Bousfield, E. L. 1982a. Amphipoda. Gammaridea and Ingolfiellidea.<br />

In Synopsis and classification <strong>of</strong> living<br />

organisms, vol. 2, ed. S. B. Parker, 254–284, 293–<br />

294. New York: McGraw-Hill.<br />

. 1982b. Amphipoda (palaeohistory). In McGraw-<br />

Hill Yearbook <strong>of</strong> Science & Technology 1982–1983,<br />

96–100. New York: McGraw-Hill.<br />

. 1983. <strong>An</strong> updated phyletic classification and palaeohistory<br />

<strong>of</strong> <strong>the</strong> Amphipoda. In <strong>Crustacea</strong>n Issues<br />

1. <strong>Crustacea</strong>n Phylogeny, ed. F. R. Schram, 257–277.<br />

Rotterdam: A. A. Balkema Press, 372 pp.<br />

. 2000a. <strong>An</strong> updated commentary on <strong>the</strong> phyletic<br />

classification <strong>of</strong> amphipod crustaceans. Abstracts <strong>of</strong><br />

<strong>the</strong> 10th Colloqium on Amphipoda (http://www.<br />

odu.edu/%7Ejrh100f/amphome): 1.<br />

. 2000b. The value <strong>of</strong> phyletic classification in biogeographical<br />

analyses. Abstracts <strong>of</strong> <strong>the</strong> 10th Colloqium<br />

on Amphipoda (http://www.odu.edu/%7Ejrh100f/<br />

amphome): 1–2.<br />

. 2001. <strong>An</strong> updated commentary on phyletic classification<br />

<strong>of</strong> <strong>the</strong> amphipod <strong>Crustacea</strong> and its appli-<br />

Contributions in Science, Number 39 Literature Cited � 77


cability to <strong>the</strong> North American fauna. Amphipacifica<br />

3:49–120.<br />

Bousfield, E. L., and K. E. Conlan. 1990. <strong>Crustacea</strong>ns. In<br />

The new Encyclopaedia Britannica, 15th edition,<br />

vol. 16, 840–859. Chicago: Encyclopaedia Brittanica,<br />

Inc.<br />

Bousfield, E. L., and E. A. Hendrycks. 1994. A revision<br />

<strong>of</strong> <strong>the</strong> family Pleustidae (<strong>Crustacea</strong>: Amphipoda:<br />

Leucothoidea). Systematics and biogeography <strong>of</strong><br />

component subfamilies. Part I. Amphipacifica 1:17–<br />

58.<br />

. 1997. The amphipod superfamily Eusiroidea in<br />

<strong>the</strong> North American Pacific region. II. Family Calliopidae.<br />

Systematics and distributional ecology. Amphipacifica<br />

2:3–66.<br />

Bousfield, E. L., and P. M. Hoover. 1995. The amphipod<br />

superfamily Pontoporeioidea on <strong>the</strong> Pacific coast <strong>of</strong><br />

North America. II. Family Haustoriidae. Genus Eohaustorius<br />

J. L. Barnard: systematics and distributional<br />

ecology. Amphipacifica 2:35–64.<br />

. 1997. The amphipod superfamily Corophioidea<br />

on <strong>the</strong> Pacific coast <strong>of</strong> North America. Part V. Family<br />

Corophiidae. Corophinae, new subfamily. Systematics<br />

and distributional ecology. Amphipacifica 2:<br />

67–139.<br />

Bousfield, E. L., and J. A. Kendall. 1994. The amphipod<br />

superfamily Dexaminoidea on <strong>the</strong> North American<br />

Pacific coast; families Atylidae and Dexaminidae:<br />

systematics and distributional ecology. Amphipacifica<br />

1:3–66.<br />

Bousfield, E. L., and C.-T. Shih. 1994. The phyletic classification<br />

<strong>of</strong> amphipod crustaceans: problems in resolution.<br />

Amphipacifica 1:76–134.<br />

Boutin, C., and M. Missouli. 1988. Metacrangonyx gineti,<br />

n. sp., d’une source du haut-Atlas Marocain det la<br />

famille des Metacrangonyctidae, n. fam. Vie et Milieu<br />

38:67–84.<br />

Bower, B. 1999. DNA’s evolutionary dilemma: genetic<br />

studies collide with <strong>the</strong> mystery <strong>of</strong> human evolution.<br />

Science News 155:88–90.<br />

Bowman, T. E., and L. G. Abele. 1982. <strong>Classification</strong> <strong>of</strong><br />

<strong>the</strong> <strong>Recent</strong> <strong>Crustacea</strong>. In Systematics, <strong>the</strong> fossil record,<br />

and biogeography, ed. L. G. Abele, 1–27, vol.<br />

I<strong>of</strong>The biology <strong>of</strong> <strong>Crustacea</strong>, ed. D. E. Bliss. New<br />

York: Academic Press.<br />

Bowman, T. E., S. P. Garner, R. R. Hessler, T. M. Iliffe,<br />

and H. L. Sanders. 1985. Mictacea, a new order <strong>of</strong><br />

<strong>Crustacea</strong> Peracarida. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

5:74–78.<br />

Bowman, T. E., and H. E. Gruner. 1973. The families and<br />

genera <strong>of</strong> Hyperiidea. Smithsonian Contributions to<br />

Zoology 146:1–64.<br />

Bowman, T. E., and T. Iliffe. 1985. Mictocaris halope, a<br />

new unusual peracaridan crustacean from marine<br />

caves on Bermuda. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 5:<br />

58–73.<br />

Boxshall, G. A. 1983. A comparative functional analysis<br />

<strong>of</strong> <strong>the</strong> major maxillopodan groups. In <strong>Crustacea</strong>n Issues<br />

1. <strong>Crustacea</strong>n Phylogeny, ed. F. R. Schram,<br />

121–143. Rotterdam: A. A. Balkema Press, 372 pp.<br />

. 1986. Panel discussion: copepod phylogeny. Syllogeus<br />

58:197–208.<br />

. 1988. A review <strong>of</strong> <strong>the</strong> copepod endoparasites <strong>of</strong><br />

brittle stars (Ophiuroida). Bulletin <strong>of</strong> <strong>the</strong> British Museum<br />

<strong>of</strong> Natural History (Zoology) 54:261–270.<br />

. 1991. A review <strong>of</strong> <strong>the</strong> biology and phylogenetic<br />

relationships <strong>of</strong> <strong>the</strong> Tantulocarida, a subclass <strong>of</strong><br />

<strong>Crustacea</strong> recognized in 1983. Verhandelungen der<br />

Deutschen Zoologischen Gesellschaft 84:271–279.<br />

. 1992. Synopsis <strong>of</strong> group discussion on <strong>the</strong> Maxillopoda.<br />

Acta Zoologica 73:335–337.<br />

. 1996. Classe de Tantulocarides (Tantulocarida<br />

Boxshall et Lincoln, 1983). In Traité de Zoologie.<br />

<strong>An</strong>atomie, Systématique, Biologie. Crustacés. Tome<br />

VII, Fascicule II. Généralités (suite) et Systématique,<br />

ed. J. Forest, 399–408. Paris: Masson, 1002 pp.<br />

. 1999. Ordre des Spélaeogriphacés (Spelaeogriphacea<br />

Gordon, 1957). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Tome VII, Fascicule IIIA.<br />

Crustacés Péracarides, ed. J. Forest. Mémoires de<br />

l’Institut Océanographique Fondation Albert, I er ,<br />

Prince de Monaco, 19:35–38.<br />

Boxshall, G. A., and D. Defaye. 1996. Classe des Mystacocarides<br />

(Mystacocarida Pennak et Zinn, 1943). In<br />

Traité de Zoologie. <strong>An</strong>atomie, Systématique, Biologie.<br />

Crustacés. Tome VII, Fascicule II. Généralités<br />

(suite) et Systématique, ed. J. Forest, 409–424. Paris:<br />

Masson, 1002 pp.<br />

Boxshall, G. A., F. D. Ferrari, and H. Tiemann. 1984. The<br />

ancestral copepod: towards a consensus <strong>of</strong> opinion<br />

at <strong>the</strong> First International Conference on Copepoda.<br />

<strong>Crustacea</strong>na 7(supplement):68–84.<br />

Boxshall, G. A., and R. Huys. 1989a. New tantulocarid,<br />

Stygotantulus stocki, parasitic on harpacticoid copepods,<br />

with an analysis <strong>of</strong> <strong>the</strong> phylogenetic relationships<br />

within <strong>the</strong> Maxillopoda. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 9:126–140.<br />

. 1989b. New family <strong>of</strong> deep-sea plankonic copepods,<br />

<strong>the</strong> Paralubbockiidae (Copepoda: Poecilostomatoida).<br />

Biological Oceanography 6:163–173.<br />

Boxshall, G. A., and D. Jaume. 1999. On <strong>the</strong> origin <strong>of</strong><br />

misophrioid copepods from anchialine caves. <strong>Crustacea</strong>na<br />

72:957–963.<br />

. 2000. Discoveries <strong>of</strong> cave misophrioids (<strong>Crustacea</strong>:<br />

Copepoda) shed new light on <strong>the</strong> origin <strong>of</strong> anchialine<br />

faunas. Zoologische <strong>An</strong>zeiger 239:1–19.<br />

Boxshall, G. A., and R. J. Lincoln. 1983. Tantulocarida,<br />

a new class <strong>of</strong> <strong>Crustacea</strong> ectoparasitic on o<strong>the</strong>r crustaceans.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 3:1–16.<br />

. 1987. The life cycle <strong>of</strong> <strong>the</strong> Tantulocarida (<strong>Crustacea</strong>).<br />

Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> London 315B:267–303.<br />

Boxshall, G. A., and S. Ohtsuka. 2001. Two new families<br />

<strong>of</strong> copepods (Copepoda: Siphonostomatoida) parasitic<br />

on echinoderms. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

21:96–105.<br />

Boxshall, G. A., J.-O. Strömberg, and E. Dahl (editors).<br />

1992. The <strong>Crustacea</strong>: origin and evolution. Acta<br />

Zoologica 73:271–392.<br />

Brady, G. S., and A. M. Norman, 1889. A monograph on<br />

<strong>the</strong> marine and freshwater Ostracoda <strong>of</strong> <strong>the</strong> North<br />

Atlantic and <strong>of</strong> northwestern Europe. Section I: Podocopa.<br />

Scientific Transactions <strong>of</strong> <strong>the</strong> Royal Dublin<br />

Society, series 2, 4:63–270.<br />

Braga, E., R. Zardoya, A. Meyer, and J. Yen. 1999. Mitochondrial<br />

and nuclear rRNA based copepod phylogeny<br />

with emphasis on <strong>the</strong> Euchaetidae (Calanoida).<br />

Marine Biology 133:79–90.<br />

Brandt, A., J. A. Crame, H. Polz, and M. R. A. Thomson.<br />

1999. Late Jurassic Tethyan ancestry <strong>of</strong> <strong>Recent</strong><br />

sou<strong>the</strong>rn high-latitude marine isopods (<strong>Crustacea</strong>,<br />

Malacostraca). Palaeontology 42:663–675.<br />

Brasil-Lima, I. M. 1998. Malacostraca—Peracarida. Isopoda.<br />

Epicaridea. In Catalogue <strong>of</strong> <strong>Crustacea</strong> <strong>of</strong> Bra-<br />

78 � Contributions in Science, Number 39 Literature Cited


zil, ed. P. S. Young, 635–644. Rio de Janeiro: Museu<br />

Nacional.<br />

Briggs, D. E. G. 1983. Affinities and early evolution <strong>of</strong> <strong>the</strong><br />

<strong>Crustacea</strong>: <strong>the</strong> evidence <strong>of</strong> <strong>the</strong> Cambrian fossils. In<br />

<strong>Crustacea</strong>n issues 1. <strong>Crustacea</strong>n phylogeny, ed. F. R.<br />

Schram, 1–22. Rotterdam: A. A. Balkema Press, 372<br />

pp.<br />

Briggs, D. E. G., D. H. Erwin, and F. J. Collier. 1994. The<br />

fossils <strong>of</strong> <strong>the</strong> Burgess Shale. Washington, D.C.:<br />

Smithsonian Institution Press, 238 pp.<br />

Briggs, D. E. G., and R. A. Fortey. 1989. The early radiation<br />

and relationships <strong>of</strong> <strong>the</strong> major arthropod<br />

groups. Science 246:241–243.<br />

. 1992. Chapter 10. The Early Cambrian radiation<br />

<strong>of</strong> arthropods. In Origin and early evolution <strong>of</strong> <strong>the</strong><br />

Metazoa, ed. J. H. Lipps and P. W. Signor, 335–373.<br />

New York: Plenum Press.<br />

Briggs, D. E. G., R. A. Fortey, and M. A. Wills. 1992.<br />

Morphological disparity in <strong>the</strong> Cambrian. Science<br />

256:1670–1673.<br />

. 1993a. How big was <strong>the</strong> Cambrian explosion? A<br />

taxonomic and morphologic comparison <strong>of</strong> Cambrian<br />

and <strong>Recent</strong> arthropods. In Evolutionary patterns<br />

and processes, Linnean Society Symposium, ed. D.<br />

R. Lees and D. Edwards, 33–44. London: Linnean<br />

Society.<br />

Briggs, D. E. G., M. J. Weedon, and M. A. Whyte. 1993b.<br />

Arthropoda (<strong>Crustacea</strong> excluding Ostracoda). In<br />

The Fossil Record 2, ed. M. J. Benton, 321–342.<br />

London: Chapman and Hall.<br />

Briggs, D. E. G., and H. B. Whittington. 1981. Relationships<br />

<strong>of</strong> arthropods from <strong>the</strong> Burgess Shale and o<strong>the</strong>r<br />

Cambrian sequences. In Short Papers for <strong>the</strong> Second<br />

International Symposium on <strong>the</strong> Cambrian System,<br />

ed. M. E. Taylor, 38–41. U.S. Geological Survey<br />

Open-File Report 81-743:1–254.<br />

Brower, A. V. Z., R. DeSalle, and A. Vogler. 1996. Gene<br />

trees, species trees, and systematics: a cladistic perspective.<br />

<strong>An</strong>nual Review <strong>of</strong> Ecology and Systematics<br />

27:423–450.<br />

Brtek, J. 1964. Eine neue gattung und familie der ordnung<br />

<strong>An</strong>ostraca. <strong>An</strong>notationes Zoologicae et Botanicae<br />

(Slovenské Národné Múzeum) 7:1–7.<br />

. 1995. Some notes on <strong>the</strong> taxonomy <strong>of</strong> <strong>the</strong> family<br />

Chirocephalidae (<strong>Crustacea</strong>, Branchiopoda, <strong>An</strong>ostraca).<br />

Zborník Slovenského Národného Mu´zea<br />

(Prirodné Vedy) 41:3–15.<br />

. 1997. Checklist <strong>of</strong> <strong>the</strong> valid and invalid names <strong>of</strong><br />

<strong>the</strong> ‘‘large branchiopods’’ (<strong>An</strong>ostraca, Notostraca,<br />

Spinicaudata, and Laevicaudata), with a survey <strong>of</strong><br />

<strong>the</strong> taxonomy <strong>of</strong> all Branchiopoda. Zborník Slovenského<br />

Národného Múzea (Prírondné Vedy) 43:1–<br />

66.<br />

Brtek, J., and G. Mura. 2000. Revised key to families and<br />

genera <strong>of</strong> <strong>the</strong> <strong>An</strong>ostraca with notes on <strong>the</strong>ir geographical<br />

distribution. <strong>Crustacea</strong>na 73:1037–1088.<br />

Brtek, J., and A. Thiéry. 1995. The geographic distribution<br />

<strong>of</strong> <strong>the</strong> European branchiopods (<strong>An</strong>ostraca, Notostraca,<br />

Spinicaudata, Laevicaudata). Hydrobiologia 298:<br />

263–280.<br />

Bruce, A. J. 1993. Kakadukaris glabra gen. nov., spec.<br />

nov., a new freshwater shrimp from <strong>the</strong> Kakadu National<br />

Park, Nor<strong>the</strong>rn Territory, Australia (<strong>Crustacea</strong>:<br />

Decapoda: Palaemonidae) with designation <strong>of</strong> a<br />

new subfamily Kakaducaridinae. Hydrobiologia<br />

268:27–44.<br />

Bruce, N. L. 1984. A new family for <strong>the</strong> isopod crustacean<br />

genus Tridentella Richardson, 1905, with descrip-<br />

tion <strong>of</strong> a new species from Fiji. Zoological Journal<br />

<strong>of</strong> <strong>the</strong> Linnean Society 80:447–455.<br />

. 1988. Hadromastax merga, a new genus and species<br />

<strong>of</strong> marine isopod crustacean (Limnoriidae) from<br />

sou<strong>the</strong>astern Australia, with discussion on <strong>the</strong> status<br />

<strong>of</strong> <strong>the</strong> families Keuphyliidae and Lynseiidae. Proceedings<br />

<strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington<br />

101:346–353.<br />

. 1993. Two new genera <strong>of</strong> marine isopod crustaceans<br />

(Flabellifera: Sphaeromatidae) from sou<strong>the</strong>rn<br />

Australia, with a reappraisal <strong>of</strong> <strong>the</strong> Sphaeromatidae.<br />

Invertebrate Taxonomy 7:151–171.<br />

Bruce, N. L., and H.-G. Müller. 1991. A new family for<br />

<strong>the</strong> isopod genus Hadromastax Bruce, 1988, with a<br />

description <strong>of</strong> a new species from <strong>the</strong> Society Islands.<br />

Zoological Journal <strong>of</strong> <strong>the</strong> Linnean Society 101:51–<br />

58.<br />

Brünnich, M. Th. 1772. Zoologiae fundamenta praelectionibus<br />

academicis accomodata. Grunde i Dyrelaeren.<br />

Hafniae et Lipsiae [� Copenhagen and Leipzig]:<br />

Apud Frider. Christ. Pelt., 254 pp. [not seen; as<br />

cited in Holthuis, 1991].<br />

Brusca, R. C. 1990. Ferrara, F. (editor). Proceedings <strong>of</strong> <strong>the</strong><br />

second symposium on <strong>the</strong> biology <strong>of</strong> terrrestrial isopods<br />

(Review). Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 10:<br />

568–570.<br />

. 2000. Unraveling <strong>the</strong> history <strong>of</strong> arthropod biodiversification.<br />

In Our unknown planet: recent discoveries<br />

and <strong>the</strong> future. Proceedings <strong>of</strong> <strong>the</strong> 45th <strong>An</strong>nual<br />

Systematics Symposium <strong>of</strong> <strong>the</strong> Missouri Botanical<br />

Garden. <strong>An</strong>nals <strong>of</strong> <strong>the</strong> Missouri Botanical Garden<br />

87:13–25.<br />

Brusca, R. C., and G. J. Brusca. 1990. Invertebrates. Sunderland,<br />

Massachusetts: Sinauer Associates, Inc.,<br />

922 pp.<br />

Brusca, R. C., and G. D. F. Wilson. 1991. A phylogenetic<br />

analysis <strong>of</strong> <strong>the</strong> Isopoda with some classificatory recommendations.<br />

In Proceedings <strong>of</strong> <strong>the</strong> 1990 International<br />

<strong>Crustacea</strong>n Conference, ed. P. J. F. Davie and<br />

R. H. Quinn. Memoirs <strong>of</strong> <strong>the</strong> Queensland Museum<br />

31:143–204.<br />

Buckeridge, J. S. 1983. Fossil barnacles (Cirripedia: Thoracica)<br />

<strong>of</strong> New Zealand and Australia. New Zealand<br />

Geological Survey Paleontological Bulletin 50:1–<br />

151.<br />

. 1995. Phylogeny and biogeography <strong>of</strong> <strong>the</strong> primitive<br />

Sessilia and a consideration <strong>of</strong> a Tethyan origin<br />

for <strong>the</strong> group. In <strong>Crustacea</strong>n Issues 10. New Frontiers<br />

in Barnacle Evolution, ed. F. R. Schram and J.<br />

T. Høeg, 255–267. Rotterdam: A. A. Balkema Press,<br />

318 pp.<br />

Burkenroad, M. D. 1963. The evolution <strong>of</strong> <strong>the</strong> Eucarida<br />

(<strong>Crustacea</strong>, Eumalacostraca) in relation to <strong>the</strong> fossil<br />

record. Tulane Studies in Geology 2:3–16.<br />

. 1981. The higher taxonomy and evolution <strong>of</strong> Decapoda<br />

(<strong>Crustacea</strong>). Transactions <strong>of</strong> <strong>the</strong> San Diego<br />

Society <strong>of</strong> Natural History 19:251–268.<br />

Butterfield, N. J. 1994. Burgess Shale-type fossils from a<br />

Lower Cambrian shallow-shelf sequence in northwestern<br />

Canada. Nature 369:477–479.<br />

Cals, Ph. 1996. Classe des Rémipèdes (Remipedia Yager,<br />

1981). In Traité de Zoologie. <strong>An</strong>atomie, Systématique,<br />

Biologie. Crustacés. Tome VII, Fascicule II.<br />

Généralités (suite) et Systématique, ed. J. Forest,<br />

385–397. Paris: Masson, 1002 pp.<br />

Cals, Ph., and Th. Monod. 1988. Évolution et biogéographie<br />

des Crustacés Thermosbénacés. Comptes Ren-<br />

Contributions in Science, Number 39 Literature Cited � 79


dus Hebdomadaires des Seances de l’Academie des<br />

Sciences, series 3, 307:341–348.<br />

Camp, D. K., W. G. Lyons, and T. H. Perkins. 1998.<br />

Checklists <strong>of</strong> selected shallow-water marine invertebrates<br />

<strong>of</strong> Florida. Florida Marine Research Institute<br />

Technical Report TR-3, Florida Department <strong>of</strong> Environmental<br />

Protection, 1998:i–xv, 1–238.<br />

Cantino, P. D. 2000. Phylogenetic nomenclature: addressing<br />

some concerns. Taxon 49:85–93.<br />

Cantino, P. D., H. N. Bryant, K. de Queiroz, M. J. Donoghue,<br />

T. Eriksson, D. M. Hillis, and M. S. Y. Lee.<br />

1999. Species names in phylogenetic nomenclature.<br />

Systematic Biology 48:790–807.<br />

Cappola, V. A. 1999. Phylogeny <strong>of</strong> stomatopod crustaceans.<br />

Program and Abstracts, The <strong>Crustacea</strong>n Society<br />

1999 Summer Meeting, Lafayette, Louisiana:<br />

25.<br />

Cappola, V. A., and R. B. Manning. 1998. Stomatopod<br />

superfamily Gonodactyloidea is not a natural group.<br />

Proceedings and Abstracts <strong>of</strong> <strong>the</strong> 4th International<br />

<strong>Crustacea</strong>n Congress, Amsterdam: 77 (abstract 121).<br />

Carpenter, J. H. 1999. Behavior and ecology <strong>of</strong> Speleonectes<br />

epilimnius (Remipedia, Speleonectidae) from<br />

surface water <strong>of</strong> an anchialine cave on San Salvador<br />

Island, Bahamas. <strong>Crustacea</strong>na 72:979–991.<br />

Carroll, S. B. 1995. Homeotic genes and <strong>the</strong> evolution <strong>of</strong><br />

arthropods and chordates. Nature 376:479–485.<br />

Casanova, J.-P., L. De Jong, and E. Faure. 1998. Interrelationships<br />

<strong>of</strong> <strong>the</strong> two families constituting <strong>the</strong> Lophogastrida<br />

(<strong>Crustacea</strong>: Mysidacea) inferred from<br />

morphological and molecular data. Marine Biology<br />

132:59–65.<br />

Castro, P. 2000. <strong>Crustacea</strong> Decapoda: A revision <strong>of</strong> <strong>the</strong><br />

Indo-West Pacific species <strong>of</strong> palicid crabs (Brachyura<br />

Palicidae). In Résultats des Campagnes Musorstom,<br />

vol. 21, ed. A. Crosnier. Mémoires du Museum National<br />

d’Histoire Naturelle, vol. 184, 437–610.<br />

Chace, F. A. 1992. On <strong>the</strong> classification <strong>of</strong> <strong>the</strong> Caridea<br />

(Decapoda). <strong>Crustacea</strong>na 63:70–80.<br />

. 1997. The caridean shrimps (<strong>Crustacea</strong>: Decapoda)<br />

<strong>of</strong> <strong>the</strong> Albatross Philippine Expedition, 1907–<br />

1910, Part 7: families Atyidae, Eugonatonotidae,<br />

Rhynchocinetidae, Bathypalaemonellidae, Processidae,<br />

and Hipploytidae. Smithsonian Contributions<br />

to Zoology 587:1–106.<br />

Chappuis, P. A. 1915. Bathynella natans und ihre Stellung<br />

im System. Zoologisches Jahrbüch der Systematik<br />

40:147–176.<br />

Chia, O. K. S., and P. K. L. Ng. 1998. Is <strong>the</strong> Sunda<strong>the</strong>lphusidae<br />

Bott, 1969 a valid taxon? A cladistic appraisal.<br />

Proceedings and Abstracts <strong>of</strong> <strong>the</strong> 4th International<br />

<strong>Crustacea</strong>n Congress, Amsterdam: 72 (abstract<br />

103).<br />

Chia, D. G. B., and P. K. L. Ng. 2000. A revision <strong>of</strong> Eumedonus<br />

H. Milne Edwards, 1834 and Gonatonotus<br />

White, 1847 (<strong>Crustacea</strong>: Decapoda: Brachyura: Eumedonidae),<br />

two genera <strong>of</strong> crabs symbiotic with sea<br />

urchins. Journal <strong>of</strong> Natural History 34:15–56.<br />

Chow, S., M. Okazaki, M. Takeda, and T. Kubota. 2000.<br />

A rare abyssal shrimp, Gala<strong>the</strong>ocaris abyssalis,<br />

found in <strong>the</strong> stomach <strong>of</strong> a lancetfish. <strong>Crustacea</strong>na<br />

73:243–246.<br />

Christ<strong>of</strong>fersen, M. L. 1986. Phylogenetic relationships between<br />

Oplophoridae, Atyidae, Pasiphaeidae, Alvinocarididae<br />

fam. n., Bresiliidae, Psalidopodidae and<br />

Disciadidae (<strong>Crustacea</strong> Caridea Atyoidea). Bolletim<br />

de Zoologie (University Sao Paulo, Brazil) 10:273–<br />

281.<br />

. 1987. Phylogenetic relationships <strong>of</strong> hippolytid<br />

genera, with an assignment <strong>of</strong> new families for <strong>the</strong><br />

Crangonoidea and Alpheoidea (<strong>Crustacea</strong>, Decapoda,<br />

Caridea). Cladistics 3:348–362.<br />

. 1988a. Phylogenetic systematics <strong>of</strong> <strong>the</strong> Eucarida<br />

(<strong>Crustacea</strong> Malacostraca). Revista Brasiliera de<br />

Zoologia 5:325–351.<br />

. 1988b. Genealogy and phylogenetic classification<br />

<strong>of</strong> <strong>the</strong> world Crangonidae (<strong>Crustacea</strong>, Caridea), with<br />

a new species and new records for <strong>the</strong> southwestern<br />

Atlantic. Revista Nordestina de Biologia 6:43–59.<br />

. 1989. Phylogeny and classification <strong>of</strong> <strong>the</strong> Pandaloidea<br />

(<strong>Crustacea</strong>, Caridea). Cladistics 5:259–274.<br />

. 1990. A new superfamily classification <strong>of</strong> <strong>the</strong> Caridea<br />

(<strong>Crustacea</strong>: Pleocyemata) based on phylogenetic<br />

pattern. Zeitschrift für Zoologische Systematik und<br />

Evolutionsforschung 28:94–106.<br />

. 1994. <strong>An</strong> overview <strong>of</strong> cladistic applications. Revista<br />

Nordestina de Biologia 9:133–141.<br />

. 1998. Malacostraca. Eucarida. Caridea. Crangonidea<br />

and Alpheoidea (except Glyphocrangoidae and<br />

Crangonidae). In Catalogue <strong>of</strong> <strong>Crustacea</strong> <strong>of</strong> Brazil,<br />

ed. P. S. Young, 351–372. Rio de Janeiro: Museu<br />

Nacional.<br />

Clark, P. F., and W. R. Webber. 1991. A redescription <strong>of</strong><br />

Macrocheira kaempferi (Temminck, 1836) zoeas<br />

with a discussion <strong>of</strong> <strong>the</strong> classification <strong>of</strong> <strong>the</strong> Majoidea<br />

Samouelle, 1819 (<strong>Crustacea</strong>: Brachyura). Journal<br />

<strong>of</strong> Natural History 25:1259–1279.<br />

Coelho, P. A., and P. A. Coelho Filhol. 1993. Proposta de<br />

classificação da família Xanthidae (<strong>Crustacea</strong>, Decapoda,<br />

Brachyura) através da taxonomia numérica.<br />

Revista Brasileira de Zoologia 10:559–580.<br />

Cohen, A. C. 1982. Ostracoda. In Synopsis and classification<br />

<strong>of</strong> living organisms, ed. S. Parker, 181–202.<br />

New York: McGraw-Hill.<br />

Cohen, A. C., J. W. Martin, and L. S. Kornicker. 1998.<br />

Homology <strong>of</strong> Holocene ostracode biramous appendages<br />

with those <strong>of</strong> o<strong>the</strong>r crustaceans: <strong>the</strong> protopod,<br />

epipod, exopod, and endopod. Lethaia 31:251–265.<br />

Cohen, B. F. 1998. Dendrotiidae (<strong>Crustacea</strong>: Isopoda) <strong>of</strong><br />

<strong>the</strong> sou<strong>the</strong>astern Australian continental slope. Memoirs<br />

<strong>of</strong> <strong>the</strong> Museum <strong>of</strong> Victoria 57:1–38.<br />

Coineau, N. 1996. Sous-classe des Eumalacostracés (Eumalacostraca<br />

Grobben, 1892) super-ordre des Syncarides<br />

(Syncarida Packard, 1885). In Traité de<br />

Zoologie. <strong>An</strong>atomie, Systématique, Biologie. Crustacés.<br />

Tome VII, Fascicule II. Généralités (suite) et<br />

Systématique, ed. J. Forest, 897–954. Paris: Masson,<br />

1002 pp.<br />

Coleman, C. O., and J. L. Barnard. 1991. Revision <strong>of</strong><br />

Iphimediidae and similar families (Amphipoda:<br />

Gammaridea). Proceedings <strong>of</strong> <strong>the</strong> Biological Society<br />

<strong>of</strong> Washington 104:253–268.<br />

Colgan, D. J., A. McLauchlan, G. D. F. Wilson, S. P. Livingston,<br />

G. D. Edgecomb, J. Macaranas, G. Cassis,<br />

and M. R. Gray. 1998. Histone H3 and U2 snRNA<br />

DNA sequences and arthropod molecular evolution.<br />

Australian Journal <strong>of</strong> Zoology 46:419–437.<br />

Cookson, L. J., and G. C. B. Poore. 1994. New species <strong>of</strong><br />

Lynseia and transfer <strong>of</strong> <strong>the</strong> genus to Limnoriidae.<br />

Memoirs <strong>of</strong> <strong>the</strong> Museum <strong>of</strong> Victoria 54:179–189.<br />

Crandall, K. A. 1999. On <strong>the</strong> origin(s) <strong>of</strong> freshwater crayfishes.<br />

Program and Abstracts, The <strong>Crustacea</strong>n Society<br />

1999 Summer Meeting, Lafayette, Louisiana:<br />

27.<br />

Crandall, K. A., D. J. Harris, and J. W. Fetzner, Jr. 2000.<br />

The monophyletic origin <strong>of</strong> freshwater crayfish esti-<br />

80 � Contributions in Science, Number 39 Literature Cited


mated from nuclear and mitochondrial DNA sequences.<br />

Proceedings <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London<br />

B 267:1679–1686.<br />

Crease, T. J., and D. J. Taylor. 1998. The origin and evolution<br />

<strong>of</strong> variable-region helices in V4 and V7 <strong>of</strong> <strong>the</strong><br />

small-subunit ribosomal RNA <strong>of</strong> branchiopod crustaceans.<br />

Molecular Biology and Evolution 15:1430–<br />

1446.<br />

Cuesta, J. A., and C. D. Schubart. 1999. Proposed classification<br />

<strong>of</strong> <strong>the</strong> Grapsidae and Gecarcinidae (Decapoda,<br />

Brachyura) on <strong>the</strong> basis <strong>of</strong> larval morphology.<br />

Program and Abstracts, The <strong>Crustacea</strong>n Society<br />

1999 Summer Meeting, Lafayette, Louisiana: 52.<br />

Cuesta, J. A., C. D. Schubart, and A. Rodríguez. 2000.<br />

Larval development <strong>of</strong> Brachynotus sexdentatus<br />

(Risso, 1827) (Decapoda, Brachyura) reared under<br />

laboratory conditions, with notes on larval characters<br />

<strong>of</strong> <strong>the</strong> Varunidae. Invertebrate Reproduction<br />

and Development 38:207–223.<br />

Cumberlidge, N. 1987. Notes on <strong>the</strong> taxonomy <strong>of</strong> West<br />

African gecarcinucids <strong>of</strong> <strong>the</strong> genus Globonautes<br />

Bott, 1959 (Decapoda, Brachyura). Canadian Journal<br />

<strong>of</strong> Zoology 65:2210–2215.<br />

. 1991. The respiratory system <strong>of</strong> Globonautes macropus<br />

(Rathbun, 1898), a terrestrial freshwater crab<br />

from Liberia (Gecarcinucoidea, Gecarcinucidae).<br />

<strong>Crustacea</strong>na 61:69–80.<br />

. 1996a. A taxonomic revision <strong>of</strong> freshwater crabs<br />

(Brachyura, Potamoidea, Gecarcinucidae) from <strong>the</strong><br />

Upper Guinea forest <strong>of</strong> West Africa. <strong>Crustacea</strong>na 69:<br />

681–695.<br />

. 1996b. On <strong>the</strong> Globonautinae Bott, 1969, freshwater<br />

crabs from West Africa (Brachyura: Potamoidea:<br />

Gecarcinucidae). <strong>Crustacea</strong>na 69:809–820.<br />

. 1999. The freshwater crabs <strong>of</strong> West Africa. Family<br />

Potamonautidae. Paris: IRD Éditions, Faune et<br />

Flore Tropicales 35, 1–382.<br />

Cumberlidge, N., and R. Sachs. 1991. Ecology, distribution,<br />

and growth in Globonautes macropus (Rathbun,<br />

1898), a tree-living freshwater crab from <strong>the</strong><br />

rain forests <strong>of</strong> Liberia (Para<strong>the</strong>lphusoidea, Gecarcinucidae).<br />

<strong>Crustacea</strong>na 61:55–68.<br />

Cumberlidge, N., and R. von Sternberg. 1999. Phylogenetic<br />

relationships <strong>of</strong> <strong>the</strong> freshwater crabs <strong>of</strong> Lake<br />

Tanganyika (Decapoda, Brachyura). In <strong>Crustacea</strong>ns<br />

and <strong>the</strong> biodiversity crisis. Proceedings <strong>of</strong> <strong>the</strong> 4th<br />

International <strong>Crustacea</strong>n Congress, Amsterdam, vol.<br />

1, ed. F. R. Schram and J. C. von Vaupel Klein, 405–<br />

422. Leiden: Brill.<br />

Cumberlidge, N., R. von Sternberg, I. R. Bills, and H.<br />

Martin. 1999. A revision <strong>of</strong> <strong>the</strong> genus Platy<strong>the</strong>lphusa<br />

A. Milne-Edwards, 1887 from Lake Tanganyika,<br />

East Africa (Decapoda: Potamoidea: Platy<strong>the</strong>lphusidae).<br />

Journal <strong>of</strong> Natural History 33:1487–1512.<br />

Cunningham, C. W., N. W. Blackstone, and L. W. Buss.<br />

1992. Evolution <strong>of</strong> king crabs from hermit crab ancestors.<br />

Nature 355:539–542.<br />

Dahl, E. 1983a. Alternatives in malacostracan evolution.<br />

Australian Museum Memoir 18:1–5.<br />

. 1983b. Malacostracan phylogeny and evolution.<br />

In <strong>Crustacea</strong>n issues 1. <strong>Crustacea</strong>n phylogeny, ed. F.<br />

R. Schram, 189–212. Rotterdam: A. A. Balkema<br />

Press, 372 pp.<br />

. 1987. Malacostraca maltreated—<strong>the</strong> case <strong>of</strong> <strong>the</strong><br />

Phyllocarida. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 7:721–<br />

726.<br />

. 1991. <strong>Crustacea</strong> Phyllopoda and Malacostraca: a<br />

reappraisal <strong>of</strong> cephalic dorsal shield and fold sys-<br />

tems. Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> London 334B:1–26.<br />

. 1992. Aspects <strong>of</strong> malacostracan evolution. Acta<br />

Zoologica 73:339–346.<br />

Dahl, E., and J.-O. Strömberg. 1992. Introduction: discovering<br />

crustacean diversity. Acta Zoologica 73:<br />

271–272.<br />

Dahl, E., and J.-W. Wägele. 1996. Sous-classe des Phyllocarides<br />

(Phyllocarida Packard, 1879). In Traité de<br />

Zoologie. <strong>An</strong>atomie, Systématique, Biologie. Crustacés.<br />

Tome VII, Fascicule II. Généralités (suite) et<br />

Systématique, ed. J. Forest, 865–896. Paris: Masson,<br />

1002 pp.<br />

Dahms, H.-U. 1990. Naupliar development <strong>of</strong> Harpacticoida<br />

(<strong>Crustacea</strong>, Copepoda) and its significance for<br />

phylogenetic systematics. Micr<strong>of</strong>auna Marina 6:<br />

169–272.<br />

. 1993. Copepodid development in Harpacticoida<br />

(<strong>Crustacea</strong>, Copepoda). Micr<strong>of</strong>auna Marina 8:195–<br />

245.<br />

Dai, A.-Y. 1997. A revision <strong>of</strong> freshwater crabs <strong>of</strong> <strong>the</strong><br />

genus Nanhaipotamon Bott, 1968 from China<br />

(<strong>Crustacea</strong>: Decapoda: Brachyura: Potamidae). Raffles<br />

Bulletin <strong>of</strong> Zoology 45:209–235.<br />

Dai, A.-Y., and M. Türkay. 1997. Revision <strong>of</strong> <strong>the</strong> Chinese<br />

freshwater crabs previously placed in <strong>the</strong> genus Isolapotamon<br />

Bott, 1968 (<strong>Crustacea</strong>: Decapoda: Brachyura:<br />

Potamidae). Raffles Bulletin <strong>of</strong> Zoology 45:<br />

237–264.<br />

Dai, A.-Y., and S.-I. Yang. 1991. Crabs <strong>of</strong> <strong>the</strong> China Seas.<br />

Beijing: China Ocean Press, and Berlin: Springer Verlag,<br />

682 pp. [1991 English reprint <strong>of</strong> a 1984 Chinese<br />

volume]<br />

Dai, A.-Y., X. M. Zhou, and W. D. Peng. 1995. Eight new<br />

species <strong>of</strong> <strong>the</strong> genus Sinopotamon from Jiangxi Province,<br />

China (<strong>Crustacea</strong>, Decapoda, Brachyura, Potamidae).<br />

Beaufortia 45:61–76.<br />

Damkaer, D. M. 1996. Copepod taxonomy: discovery vs.<br />

recognition. Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong><br />

Washington 109:687–694.<br />

Dana, J. D. 1849. Conpsectus crustaceorum quae in orbis<br />

terrarum circumnavigatione, Carolo Wilkes e classe<br />

Reipublicae, Foederate Duce, lexit et descripsit (continued).<br />

American Journal <strong>of</strong> Sciences and Arts 8(2):<br />

424–428.<br />

. 1852. On <strong>the</strong> classification <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> Choristopoda<br />

or Tetradecapoda. American Journal <strong>of</strong> Sciences<br />

and Arts 14(2):297–316.<br />

Danielopol, D. L., and J. M. Betsch. 1980. Ostracodes<br />

terrestres de Madagascar: systematique, origine, adaptations.<br />

Revue d’Ecologie et de Biologie du Sol 17:<br />

87–123.<br />

da Rocha, C. E. F., and T. M. Iliffe. 1991. Speleoithonidae,<br />

a new family <strong>of</strong> Copepoda (Cyclopoida) from anchialine<br />

caves in <strong>the</strong> Bahama Islands. Sarsia 76:167–<br />

175.<br />

Davidson, E. H., K. J. Peterson, and R. A. Cameron.<br />

1995. Origin <strong>of</strong> bilaterian body plans: evolution <strong>of</strong><br />

developmental regulatory mechanisms. Science 270:<br />

1319–1325.<br />

Davie, P. J. F. 1990. A new genus and species <strong>of</strong> marine<br />

crayfish, Palibythus magnificus, and new records <strong>of</strong><br />

Palinurellus (Decapoda: Palinuridae) from <strong>the</strong> Pacific<br />

Ocean. Invertebrate Taxonomy 4:685–695.<br />

Day, J. 1980. Sou<strong>the</strong>rn African Cumacea, part 4. Families<br />

Gynodiastylidae and Diastylidae. <strong>An</strong>nals <strong>of</strong> <strong>the</strong><br />

South African Museum 82:187–292.<br />

De Broyer, C., and K. Jazdzewski. 1993. Contribution to<br />

Contributions in Science, Number 39 Literature Cited � 81


<strong>the</strong> marine biodiversity inventory. A checklist <strong>of</strong> <strong>the</strong><br />

Amphipoda (<strong>Crustacea</strong>) <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Ocean.<br />

Documents de Travail de l’Institut Royal des Sciences<br />

Naturelles des Belgique 73:1–154.<br />

De Jong-Moreau, L., and J.-P. Casanova. 2001. The foreguts<br />

<strong>of</strong> <strong>the</strong> primitive families <strong>of</strong> <strong>the</strong> Mysida (<strong>Crustacea</strong>,<br />

Peracarida): a transitional link between those<br />

<strong>of</strong> <strong>the</strong> Lophogastrida (<strong>Crustacea</strong>, Mysidacea) and<br />

<strong>the</strong> most evolved Mysida. Acta Zoologica 82:137–<br />

147.<br />

Delle Cave, L., and A. M. Simonetta. 1991. Early Paleozoic<br />

arthropods and problems <strong>of</strong> arthropod phylogeny,<br />

with some notes on taxa <strong>of</strong> doubtful affinities.<br />

In The early evolution <strong>of</strong> Metazoa and <strong>the</strong> significance<br />

<strong>of</strong> problematic taxa, ed. A. M. Simonetta and<br />

S. Conway Morris, 189–244. London: Cambridge<br />

University Press.<br />

de Queiroz, K., and J. Gauthier. 1994. Toward a phylogenetic<br />

system <strong>of</strong> biological nomenclature. Trends in<br />

Ecology and Evolution 9:27–31.<br />

Diesing, K. M. 1835 (1836). Versuch einter Monographie<br />

der Gattung Pentastoma. <strong>An</strong>nalen des Wiener Museums<br />

der Naturgeschichte 1:1–32.<br />

Doyle, J. J. 1997. Trees within trees: genes and species,<br />

molecules and morphology. Systematic Biology 46:<br />

537–553.<br />

Drach, P., and D. Guinot. 1983. Les Inachoididae Dana,<br />

famille de Majoidea caractérisée par des connexions<br />

morphologiques d’un type nouveau entre carapace,<br />

pleurites, sternites, et pléon. Comptes Rendus Hebdomadaires<br />

des Seances de l’Academie des Sciences,<br />

series 3, 297:37–42.<br />

Dupuis, C. 1975. Objections aux propositions de Bousfield<br />

& Holthuis (1969) concernant une douzaine de<br />

genres d’Amphipodes. Z.N.(S.) 1879. Bulletin <strong>of</strong><br />

Zoological Nomenclature 32:3–5.<br />

Edgecombe, G. D. (editor). 1998. Arthropod fossils and<br />

phylogeny. New York: Columbia University Press,<br />

347 pp.<br />

Edgecomb, G. D., G. D. F. Wilson, D. J. Colgan, M. R.<br />

Gray, and G. Cassis. 2000. Arthropod cladistics:<br />

combined analysis <strong>of</strong> histone H3 and U2 snRNA sequences<br />

and morphology. Cladistics 16:155–203.<br />

Eernisse, D. J. 1997. Arthropod and annelid relationships<br />

re-examined. In Arthropod relationships, ed. R. A.<br />

Fortey and R. H. Thomas, 43–56. Systematics Association<br />

Special Volume Series 55. London: Chapman<br />

and Hall.<br />

. 1998. A brief guide to phylogenetic s<strong>of</strong>tware.<br />

Trends in Genetics 14:473–475.<br />

El<strong>of</strong>sson, R. 1992. To <strong>the</strong> question <strong>of</strong> eyes in primitive<br />

crustaceans. Acta Zoologica 73:369–372.<br />

Emerson, M. J., and F. R. Schram. 1990. The origin <strong>of</strong><br />

crustacean biramous appendages and <strong>the</strong> evolution<br />

<strong>of</strong> Arthropoda. Science 250:667–669.<br />

. 1991. Remipedia, part 2, paleontology. Proceedings<br />

<strong>of</strong> <strong>the</strong> San Diego Society <strong>of</strong> Natural History 7:<br />

1–52.<br />

. 1997. Theories, patterns, and reality: game plan<br />

for arthropod phylogeny. In Arthropod relationships,<br />

ed. R. A. Fortey and R. H. Thomas, 67–86.<br />

Systematics Association Special Volume series 55.<br />

London: Chapman and Hall.<br />

Erhard, F. 1995. Vergleichend- und funktionell-anatomische<br />

Untersuchungen am Pleon der Oniscidea (<strong>Crustacea</strong>,<br />

Isopoda) Zugleich ein Beitrag zu phylogenetischen<br />

Systematik der Landasseln. Zoologia 48:114<br />

pp.<br />

Fain, A. 1961. Les pentastomides de l’Afrique centrale.<br />

<strong>An</strong>nales de Musee Royale de l’Afrique Centrale, serie<br />

8, 92:1–115.<br />

Felder, D. L., J. W. Martin, and J. W. Goy. 1985. Patterns<br />

in early postlarval development <strong>of</strong> decapods. In<br />

<strong>Crustacea</strong>n issues 2. Larval growth, ed. A. M. Wenner,<br />

163–225. Rotterdam: A. A. Balkema Press, 236<br />

pp.<br />

Feldmann, R. M., and C. S. Hopkins. 1999. Reconsideration<br />

<strong>of</strong> <strong>the</strong> family status <strong>of</strong> fossil and extant calappid<br />

crabs. Program and Abstracts, The <strong>Crustacea</strong>n<br />

Society 1999 Summer Meeting, Lafayette, Louisiana:<br />

29.<br />

Felgenhauer, B. E., and L. G. Abele. 1983. Phylogenetic<br />

relationships among <strong>the</strong> shrimp-like decapods (Penaeoidea,<br />

Caridea, Stenopodidea). In <strong>Crustacea</strong>n issues<br />

1. <strong>Crustacea</strong>n phylogeny, ed. F. R. Schram, 291–<br />

311. Rotterdam: A. A. Balkema Press, 372 pp.<br />

Felgenhauer, B. E., L. G. Abele, and D. L. Felder. 1992.<br />

Remipedia. In Microscopic anatomy <strong>of</strong> invertebrates,<br />

vol. 9, <strong>Crustacea</strong>, ed. F. W. Harrison and A.<br />

G. Humes, 225–247. New York: Wiley-Liss.<br />

Ferrara, F. (editor). 1989. Proceedings <strong>of</strong> <strong>the</strong> second symposium<br />

on <strong>the</strong> biology <strong>of</strong> terrestrial isopods. Monitore<br />

Zoologico Italiano, n.s., Monografia 4:1–512.<br />

Ferrara, F., and S. Taiti. 1983. Isopodi terrestri. Contributions<br />

a l’etude de la faune granitiques de l’archipel<br />

des Seychelles. <strong>An</strong>nales du Musee Royale Afrique<br />

Centrale, Tervuren (serie in octavo), Sciences Zoologiques<br />

240:1–92.<br />

. 1989. A new genus and species <strong>of</strong> terrestrial isopod<br />

from Malaysia (<strong>Crustacea</strong>, Oniscidea, Platyarthridae).<br />

Journal <strong>of</strong> Natural History 23:1033–1039.<br />

Ferrari, F. D. 1988. Evolutionary transformations and<br />

Dollo’s law. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 8:618–<br />

619.<br />

Ferrari, F. D., and E. L. Markhaseva. 1996. Parkius karenwishnerae,<br />

a new genus and species <strong>of</strong> calanoid<br />

copepod (Parkiidae, new family) from benthopelagic<br />

waters <strong>of</strong> <strong>the</strong> eastern tropical Pacific Ocean. Proceedings<br />

<strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington<br />

109:264–285.<br />

Field, K. G., G. J. Olsen, D. J. Lane, S. J. Giovanni, M.<br />

T. Ghiselin, E. C. Raff, N. R. Pace, and R. A. Raff.<br />

1988. Molecular analysis <strong>of</strong> <strong>the</strong> animal kingdom.<br />

Science 239:748–753.<br />

Fiers, F. 1990. Abscondicola humesi, n. gen., n. sp., from<br />

<strong>the</strong> gill chambers <strong>of</strong> land crabs and <strong>the</strong> definition <strong>of</strong><br />

Cancrincolidae n. fam. (Copepoda, Harpacticoida).<br />

Bulletin d’Institute Royal de Sciences Naturelles Belgique<br />

(Biologie) 60:69–103.<br />

Forest, J. 1977. Un groupement injustifie: la superfamille<br />

des Bresilioidea. Remarques critiques sur le statut<br />

des familles sous ce nom (<strong>Crustacea</strong> Decapoda Caridea).<br />

Bulletin de Museum National Histoire Naturelle<br />

(Paris), series 3, no. 475, Zoologie 332:869–<br />

888.<br />

. 1987. Les Pylochelidae ou ‘‘Pagures symétriques’’<br />

(<strong>Crustacea</strong> Coenobitoidea). In Résultats des Campagnes<br />

Musorstum, vol. 3, ed. A. Crosnier. Mémoires<br />

du Muséum National d’Histoire Naturelle, sére<br />

A, Zoologie, vol. 137, 1–254.<br />

. (editor). 1996. Traité de Zoologie. <strong>An</strong>atomie, Systématique,<br />

Biologie. Crustacés. Tome VII. Fascicule<br />

II. Généralities (suite) et systématique. Paris: Masson,<br />

1002 pp, 426 plates and figures, 22 tables.<br />

. (editor). 1999. Traité de Zoologie. <strong>An</strong>atomie, Systématique,<br />

Biologie. Tome VII, Fascicule IIIA. Crus-<br />

82 � Contributions in Science, Number 39 Literature Cited


tacés Péracarides. Memoires de l’Institut Oceanographique<br />

Fondation Albert I er , Prince de Monaco,<br />

19:450 pp.<br />

Forest, J., and M. de St. Laurent. 1989. Nouvelle contribution<br />

à la connaissance de Neoglyphea inopinata<br />

Forest & de Saint Laurent, à propos de la description<br />

de la femelle adulte. In Résultats des Campagnes<br />

Musorstom, vol. 5, ed. J. Forest. Mémoires de Museum<br />

National d’Histoire Naturelle (Paris), sére A,<br />

vol. 144, 75–92.<br />

Fortey, R. A., D. E. G. Briggs, and M. A. Wills. 1997. The<br />

Cambrian evolutionary ‘explosion’ recalibrated.<br />

BioEssays 19:429–434.<br />

Fortey, R. A., and R. H. Thomas (editors). 1997. Arthropod<br />

relationships. Systematics Association Special<br />

Volume series 55. London: Chapman and Hall, 367<br />

pp.<br />

Fosshagen, A., and T. M. Iliffe. 1985. Two new genera <strong>of</strong><br />

Calanoida and a new order <strong>of</strong> Copepoda, Platycopioida,<br />

from marine caves on Bermuda. Sarsia 70:<br />

345–358.<br />

France, S. C., and T. D. Kocher. 1996. DNA sequencing<br />

<strong>of</strong> formalin-fixed crustaceans from archival research<br />

collections. Molecular Marine Biology and Technology<br />

5:304–313.<br />

Fresi, E., E. Idato, and M. B. Scipione. 1980. The Gnathostenetroidea<br />

and <strong>the</strong> evolution <strong>of</strong> primitive asellote<br />

isopods. Monitore Zoologico Italiano (Nuovo<br />

Serie) 14:119–136.<br />

Frey, D. 1995. Changing attitudes toward chydorid anomopods<br />

since 1769. Hydrobiologia 307:43–45.<br />

Friedrich, M., and D. Tautz. 1995. Ribosomal DNA phylogeny<br />

<strong>of</strong> <strong>the</strong> major extant arthropod classes and <strong>the</strong><br />

evolution <strong>of</strong> myriapods. Nature 376:165–167.<br />

Fryer, G. 1983. Functional ontogenetic changes in Branchinecta<br />

ferox (Milne-Edwards) (<strong>Crustacea</strong>: <strong>An</strong>ostraca).<br />

Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> London 303B:229–343.<br />

. 1985. Structure and habits <strong>of</strong> living branchiopods<br />

and <strong>the</strong>ir bearing on <strong>the</strong> interpretation <strong>of</strong> fossil<br />

forms. Transactions <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> Edinburgh<br />

76:103–113.<br />

. 1987a. Morphology and classification <strong>of</strong> <strong>the</strong> socalled<br />

Cladocera. Hydrobiologia 145:19–28.<br />

. 1987b. The feeding mechanisms <strong>of</strong> <strong>the</strong> Daphniidae<br />

(<strong>Crustacea</strong>: Cladocera): recent suggestions and<br />

neglected considerations. Journal <strong>of</strong> Plankton Research<br />

9:419–432.<br />

. 1987c. A new classification <strong>of</strong> <strong>the</strong> branchiopod<br />

<strong>Crustacea</strong>. Zoological Journal <strong>of</strong> <strong>the</strong> Linnean Society<br />

91:357–383.<br />

. 1987d. Quantitative and qualitative: numbers and<br />

reality in <strong>the</strong> study <strong>of</strong> living organisms. Freshwater<br />

Biology 17:177–189.<br />

. 1992. The origin <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>. Acta Zoologica<br />

73:273–286.<br />

. 1995. Phylogeny and adaptive radiation within<br />

<strong>the</strong> <strong>An</strong>omopoda: a preliminary exploration. Hydrobiologia<br />

307:57–68.<br />

. 1996a. Reflections on arthropod evolution. Biological<br />

Journal <strong>of</strong> <strong>the</strong> Linnean Society 58:1–55.<br />

. 1996b. The carapace <strong>of</strong> <strong>the</strong> branchiopod <strong>Crustacea</strong>.<br />

Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> London 351B:1703–1712.<br />

. 1997. A defence <strong>of</strong> arthropod polyphyly. In Arthropod<br />

relationships, ed. R. A. Fortey and R. H.<br />

Thomas, 23–33. Systematics Association Special<br />

Volume Series 55. London: Chapman and Hall.<br />

. 1999a. The case <strong>of</strong> <strong>the</strong> one-eyed brine shrimp: are<br />

ancient atavisms possible? Journal <strong>of</strong> Natural History<br />

33:791–798.<br />

. 1999b. A comment on a recent phylogenetic analysis<br />

<strong>of</strong> certain orders <strong>of</strong> <strong>the</strong> branchiopod <strong>Crustacea</strong>.<br />

<strong>Crustacea</strong>na 72:1039–1050.<br />

. 1999c. Cambrian animals: evolutionary curiosities<br />

or <strong>the</strong> crucible <strong>of</strong> creation? Hydrobiologia 403:<br />

1–11.<br />

. 2001. The elucidation <strong>of</strong> branchiopod phylogeny.<br />

<strong>Crustacea</strong>na 74:105–114.<br />

Funch, P., and R. M. Kristensen. 1995. Cycliophora is a<br />

new phylum with affinities to Entoprocta and Ectoprocta.<br />

Nature 378:711–714.<br />

Galil, B. 2000. <strong>Crustacea</strong> Decapoda: review <strong>of</strong> <strong>the</strong> genera<br />

and species <strong>of</strong> <strong>the</strong> family Polychelidae Wood-Mason,<br />

1874. In Résultats des Campagnes Musorstom, vol.<br />

21, ed. A. Crosnier. Mémoires du Muséum National<br />

d’Histoire Naturelle, vol. 184, 285–387.<br />

García-Machado, E., M. Pempera, N. Dennebouy, M. Oliver-Suarez,<br />

J. C. Mounolou, and M. Monnerot.<br />

1999. Mitochondrial genes collectively suggest <strong>the</strong><br />

paraphyly <strong>of</strong> <strong>Crustacea</strong> with respect to Insecta. Journal<br />

<strong>of</strong> Molecular Evolution 49:142–149.<br />

Garey, J. R. 2000. Invertebrate evolution. In McGraw-Hill<br />

Yearbook <strong>of</strong> Science and Technology 2001, 216–<br />

218. New York: McGraw-Hill.<br />

Garey, J. R., M. Krotec, D. R. Nelson, and J. Brooks.<br />

1996. Molecular analysis supports a tardigrade-arthropod<br />

association. Invertebrate Biology 115:79–<br />

88.<br />

Giribet, G., and C. Ribera. 2000. A review <strong>of</strong> arthropod<br />

phylogeny: new data based on ribosomal DNA sequences<br />

and direct character optimization. Cladistics<br />

16:204–231.<br />

Glaessner, M. F. 1969. Decapoda. In Treatise on invertebrate<br />

paleontology, part R, Arthropoda 4, ed. R. C.<br />

Moore, R399–R651. Lawrence, Kansas: The Geological<br />

Society <strong>of</strong> America and <strong>the</strong> University <strong>of</strong> Kansas<br />

Press.<br />

Glenner, H., M. J. Grygier, J. T. Høeg, P. G. Jensen, and<br />

F. R. Schram. 1995. Cladistic analysis <strong>of</strong> <strong>the</strong> Cirripedia<br />

Thoracica. Zoological Journal <strong>of</strong> <strong>the</strong> Linnean<br />

Society 114:365–404.<br />

Grenier, J. K., T. L. Garber, R. Warren, P. M. Whittington,<br />

and S. Carroll. 1997. Evolution <strong>of</strong> <strong>the</strong> entire arthropod<br />

Hox gene set predated <strong>the</strong> origin and radiation<br />

<strong>of</strong> <strong>the</strong> onychophoran/arthropod clade. Current Biology<br />

7:547–553.<br />

Griffin, D. J. G., and H. A. Tranter. 1986. The Decapoda<br />

Brachyura <strong>of</strong> <strong>the</strong> Siboga Expedition. Part VIII. Majidae.<br />

Siboga-Expeditie Monograph 39, C4, Livraison<br />

148:1–335.<br />

Griffis, R. B., and T. H. Suchanek. 1991. A model <strong>of</strong> burrow<br />

architecture and trophic models in thalassinidean<br />

shrimp (Decapoda: Thalassinidea). Marine<br />

Ecology Progress Series 79:171–183.<br />

Gruner, H. E. 1993. Lehrbuch der Speziellen Zoologie begründet<br />

von Alfred Kaestner. Band. 1: Wirbellose Tiere.<br />

Teil 4: Arthropoda (ohne Insecta). Jena: Gustav<br />

Fischer Verlag, 1209 pp.<br />

. 1996. Classe de Branchioures (Branchiura Thorell,<br />

1864). In Traité de Zoologie. <strong>An</strong>atomie, Systématique,<br />

Biologie. Crustacés. Tome VII, Fascicule II.<br />

Généralités (suite) et Systématique, ed. J. Forest,<br />

739–754. Paris: Masson, 1002 pp.<br />

Grygier, M. J. 1981. Sperm <strong>of</strong> <strong>the</strong> ascothoracican parasite<br />

Dendrogaster, <strong>the</strong> most primitive found in Crusta-<br />

Contributions in Science, Number 39 Literature Cited � 83


cea. International Journal <strong>of</strong> Invertebrate Reproduction<br />

3:65–73.<br />

. 1982. Sperm morphology in Ascothoracida (<strong>Crustacea</strong>:<br />

Maxillopoda): confirmation <strong>of</strong> generalized nature<br />

and phylogenetic importance. International<br />

Journal <strong>of</strong> Invertebrate Reproduction 4:323–332.<br />

. 1983a. Ascothoracida and <strong>the</strong> unity <strong>of</strong> Maxillopoda.<br />

In <strong>Crustacea</strong>n issues 1. <strong>Crustacea</strong>n phylogeny,<br />

ed. F. R. Schram, 73–104. Rotterdam: A. A. Balkema<br />

Press, 372 pp.<br />

. 1983b. Revision <strong>of</strong> Synagoga (<strong>Crustacea</strong>: Maxillopoda:<br />

Ascothoracida). Journal <strong>of</strong> Natural History<br />

17:213–239.<br />

. 1985. Comparative morphology and ontogeny <strong>of</strong><br />

<strong>the</strong> Ascothoracida, a step toward a phylogeny <strong>of</strong> <strong>the</strong><br />

Maxillopoda. Dissertation Abstracts International<br />

45:2466B–2467B.<br />

. 1987a. New records, external and internal anatomy,<br />

and systematic position <strong>of</strong> Hansen’s y-larvae<br />

(<strong>Crustacea</strong>: Maxillopoda: Facetotecta). Sarsia 72:<br />

261–278.<br />

. 1987b. <strong>Classification</strong> <strong>of</strong> <strong>the</strong> Ascothoracida (<strong>Crustacea</strong>).<br />

Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong><br />

Washington 100:452–458.<br />

. 1987c. Nauplii, antennular ontogeny, and <strong>the</strong> position<br />

<strong>of</strong> <strong>the</strong> Ascothoracida within <strong>the</strong> Maxillopoda.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 7:87–104.<br />

. 1996a. Sous-classe des Facetotecta (Facetotecta<br />

Grygier, 1985). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Crustacés. Tome VII, Fascicule<br />

II. Généralités (suite) et Systématique, ed. J.<br />

Forest, 425–432. Paris: Masson, 1002 pp.<br />

. 1996b. Sous-classe de Ascothoracides (Ascothoracida<br />

Lacaze-Duthiers, 1880). In Traité de Zoologie.<br />

<strong>An</strong>atomie, Systématique, Biologie. Crustacés. Tome<br />

VII, Fascicule II. Généralités (suite) et Systématique,<br />

ed. J. Forest, 433–452. Paris: Masson, 1002 pp.<br />

Grygier, M. J., and T. E. Bowman. 1990. The correct family-level<br />

name for <strong>the</strong> ‘‘cryptoniscid’’ isopods (Epicaridea).<br />

<strong>Crustacea</strong>na 58:27–32.<br />

. 1991. The authorship <strong>of</strong> Cryptoniscidae (Isopoda,<br />

Epicaridea); a correction. <strong>Crustacea</strong>na 61:106–107.<br />

Guinot, D. 1977. Propositions pour une nouvelle classification<br />

des Crustacés Décapodes Brachyoures. Comptes<br />

Rendus Hebdomadaires des Seances de<br />

l’Academie des Sciences, series 3, 285:1049–1052.<br />

. 1978. Principes d’une classification évolutive des<br />

Crustacés Décapodes Brachyoures. Bulletin Biologique<br />

de le France et de le Belgique (n. s.) 112:211–<br />

292.<br />

. 1979. Données nouvelles sur la morphologie, la<br />

phylogenèse et la taxonomie des Crustacés Décapodes<br />

Brachyoures. Mémoires du Muséum National<br />

d’Histoire Naturelle (Paris) sére A, Zoologie 112:1–<br />

354.<br />

. 1985. <strong>Crustacea</strong>. In French Polynesian coral reefs,<br />

reef knowledge and field guides, 5th International<br />

Coral Reef Congress, Tahiti, ed. G. Richard, 446–<br />

455. Paris: Muséum National d’Histoire Naturelle<br />

and École Pratique des Hautes Études <strong>An</strong>tenne de<br />

Tahiti.<br />

. 1988. Les crabes des sources hydro<strong>the</strong>rmales de<br />

la dorsale du Pacifique oriental (Campagne BIO-<br />

CYARISE), 1984. Oceanologica Acta (special volume)<br />

8:109–118.<br />

. 1990. Austinograea alayseae sp. nov., crabe hydro<strong>the</strong>rmal<br />

découvert dans le bassin de Lau, Pacifique<br />

sud-occidental (<strong>Crustacea</strong> Decapoda Brachy-<br />

ura). Bulletin du Museum National d’Histoire (Paris)<br />

11:879–903.<br />

. 1991. Établissement de la famille des Poupiniidae<br />

pour Poupinia hirsuta gen. nov., sp. nov. de Polynésie<br />

(<strong>Crustacea</strong> Decapoda Brachyura Homoloidea).<br />

Bulletin du Museum National d’Historie Naturelle<br />

(Paris) 12:577–605.<br />

. 1993. Donnees nouvelles sur les Raninoidea de<br />

Haan, 1841 (<strong>Crustacea</strong> Decapoda Brachyura Podotremata).<br />

Comptes Rendus Hebdomadaires des Seances<br />

de l’Academie des Sciences, series 3, 316:<br />

1324–1331.<br />

. 1995. <strong>Crustacea</strong> Decapoda Brachyura: révision<br />

des Homolodromiidae Alcock, 1900. In Résultats<br />

des Campagnes Musorstom, vol. 13, ed. A. Crosnier.<br />

Mémoires du Muséum National d’Histoire Naturelle,<br />

vol. 163, 155–282.<br />

Guinot, D., and J.-M. Bouchard. 1998. Evolution <strong>of</strong> <strong>the</strong><br />

abdominal holding systems <strong>of</strong> brachyuran crabs<br />

(<strong>Crustacea</strong>, Decapoda, Brachyura). Zoosystema 20:<br />

613–694.<br />

Guinot, D., B. G. M. Jamieson, and B. Richer de Forges.<br />

1994. Relationship <strong>of</strong> Homolidae and Dromiidae—<br />

evidence from spermatozoal ultrastructure (<strong>Crustacea</strong>,<br />

Decapoda). Acta Zoologica 75:255–267.<br />

Guinot, D., B. G. M. Jamieson, B. Richer de Forges, and<br />

C. C. Tudge. 1998. Comparative spermatozoal ultrastructure<br />

<strong>of</strong> <strong>the</strong> three dromiacean families exemplified<br />

by Homolodromia kai (Homolodromiiidae),<br />

Sphaerodromia lamellata (Dromiidae), and Dynomene<br />

tanensis (Dynomenidae) (Podotremata: Brachyura).<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 18:78–94.<br />

Guinot, D., B. G. M. Jamieson, and C. C. Tudge. 1997.<br />

Ultrastructure and relationships <strong>of</strong> spermatozoa <strong>of</strong><br />

<strong>the</strong> freshwater crabs Potamon fluviatile and Potamon<br />

ibericum (<strong>Crustacea</strong>, Decapoda, Potamidae).<br />

Journal <strong>of</strong> Zoology 241:229–244.<br />

Guinot, D., and B. Richer de Forges. 1995. <strong>Crustacea</strong> Decapoda<br />

Brachyura: révision des Homolidae de Haan,<br />

1839. In Résultats des Campagnes Musorstom, vol.<br />

13, ed. A. Cronsnier. Mémoires de Muséum National<br />

d’Histoire Naturelle, vol. 163, 283–517.<br />

. 1997. Affinités entre les Hymenosomatidae Mac-<br />

Leay, 1838 et les Inachoididae Dana, 1851 (<strong>Crustacea</strong>,<br />

Decapoda, Brachyura). Zoosystema 19:453–<br />

502.<br />

Gutu, M. 1996. Tanaidacea (<strong>Crustacea</strong>, Peracarida) from<br />

Brazil, with description <strong>of</strong> new taxa and systematical<br />

remarks on some families. Travaux du Muséum National<br />

d’Histoire Naturelle ‘‘Grigore <strong>An</strong>tipa’’ 36:23–<br />

133.<br />

. 1998. Spelaeogriphacea and Mictacea (partim)<br />

suborders <strong>of</strong> a new order, Cosinzeneacea (<strong>Crustacea</strong>,<br />

Peracarida). Travaux du Muséum National<br />

d’Histoire Naturelle ‘‘Grigore <strong>An</strong>tipa’’ 40:121–129.<br />

Gutu, M., and T. M. Iliffe. 1998. Description <strong>of</strong> a new<br />

hirsutiid (n. g., n. sp.) and reassignment <strong>of</strong> this family<br />

from Order Mictacea to <strong>the</strong> new order, Bochusacea<br />

(<strong>Crustacea</strong>, Peracarida). Travaux du Muséum<br />

d’Histoire Naturelle ‘‘Grigore <strong>An</strong>tipa’’ 40:93–120.<br />

Gutu, M., and J. Sieg. 1999. Ordre des Tanaïdacés (Tanaidacea<br />

Hansen, 1895). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Tome VII, Fascicule<br />

IIIA. Crustacés Péracarides, ed. J. Forest. Memoires<br />

de l’Institut Oceanographique Fondation Albert I er ,<br />

Prince de Monaco, 19:353–389.<br />

Hanner, R., and M. Fugate. 1997. Branchiopod phyloge-<br />

84 � Contributions in Science, Number 39 Literature Cited


netic reconstruction from 12S rDNA sequence data.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 17:174–183.<br />

Hansen, H. J. 1895. Isopoden, Cumaceen und Stomatopoden<br />

der Plankton Expedition. Ergebnisse der im<br />

Atlanishcen Ozean Plankton-Expedition der Humbolt-Stiftung,<br />

1889 2:1–105.<br />

Harling, C. 2000. Reexamination <strong>of</strong> eye design in <strong>the</strong> classification<br />

<strong>of</strong> stomatopod crustaceans. Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology 20:172–185.<br />

Harris, D. J., L. S. Maxson, L. F. Braithwaite, and K. A.<br />

Crandall. 2000. Phylogeny <strong>of</strong> <strong>the</strong> thoracican barnacles<br />

based on 18S rDNA sequences. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 20:393–398. Harrison, K., and J. P.<br />

Ellis. 1991. The genera <strong>of</strong> <strong>the</strong> Sphaeromatidae (<strong>Crustacea</strong>:<br />

Isopoda): a key and distribution list. Invertebrate<br />

Taxonomy 5:915–952.<br />

Hart, C. W. J., and R. B. Manning. 1986. Two new<br />

shrimps (Procarididae and Agostocarididae, new<br />

family) from marine caves <strong>of</strong> <strong>the</strong> western North Atlantic.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 6:408–416.<br />

Hartmann, G., and M.-C. Guillaume. 1996. Classe des<br />

Ostracodes (Ostracoda Latreille, 1802). In Traité de<br />

Zoologie. <strong>An</strong>atomie, Systématique, Biologie. Crustacés.<br />

Tome VII, Fascicule II. Généralités (suite) et<br />

Systématique, ed. J. Forest, 755–839. Paris: Masson,<br />

1002 pp.<br />

Harvey, A. H., J. W. Martin, and R. Wetzer. In press.<br />

<strong>Crustacea</strong>. In Atlas <strong>of</strong> marine invertebrate larvae, ed.<br />

C. Young, M. Sewell, and M. Rice. London: Academic<br />

Press.<br />

Harzsch, S., and D. Walossek. 2001. Neurogenesis in <strong>the</strong><br />

developing visual system <strong>of</strong> <strong>the</strong> branchiopod crustacean<br />

Triops longicaudatus (LeConte, 1846): corresponding<br />

patterns <strong>of</strong> compound-eye formation in<br />

<strong>Crustacea</strong> and Insecta? Developmental Genes and<br />

Evolution 211:37–43.<br />

Hay, W. P., and C. A. Shore. 1918. The decapod crustaceans<br />

<strong>of</strong> Beaufort, N. C., and <strong>the</strong> surrounding regions.<br />

Bulletin <strong>of</strong> <strong>the</strong> U.S. Fisheries Bureau 35(for<br />

1915 and 1916):369–475.<br />

Haye, P., and I. Kornfield. 1999. Familial relationships<br />

within <strong>the</strong> Cumacea: preliminary molecular findings.<br />

Program and Abstracts, The <strong>Crustacea</strong>n Society<br />

1999 Summer Meeting, Lafayette, Louisiana: 33.<br />

Hendrickx, M. E. 1995. Checklist <strong>of</strong> brachyuran crabs<br />

(<strong>Crustacea</strong>: Decapoda) from <strong>the</strong> eastern tropical Pacific.<br />

Bulletin de l’Institut Royal des Sciences Naturelles<br />

de Belgique, Biologie 65:125–150.<br />

. 1998. A new genus and species <strong>of</strong> ‘‘goneplacidlike’’<br />

brachyuran crab (<strong>Crustacea</strong>: Decapoda) from<br />

<strong>the</strong> Gulf <strong>of</strong> California, Mexico, and a proposal for<br />

<strong>the</strong> use <strong>of</strong> <strong>the</strong> family Pseudorhombilidae Alcock,<br />

1900. Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington<br />

111:634–644.<br />

. 1999. Los Cangrejos Braquiros (<strong>Crustacea</strong>:<br />

Brachyura: Majoidea y Par<strong>the</strong>nopoidea) del Pacifico<br />

Mexicano. Instituto de Ciencias del Mar y Limnología,<br />

Universidad Nacional Autónoma de México:<br />

CONABIO, 274 pp., 13 plates.<br />

Hessler, R. R. 1982. The structural morphology <strong>of</strong> walking<br />

mechanisms in eumalacostracan crustaceans.<br />

Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong><br />

London 296B:245–298.<br />

. 1983. A defense <strong>of</strong> <strong>the</strong> caridoid facies; wherein<br />

<strong>the</strong> early evolution <strong>of</strong> <strong>the</strong> Eumalacostraca is discussed.<br />

In <strong>Crustacea</strong>n issues 1. <strong>Crustacea</strong>n phylogeny,<br />

ed. F. R. Schram, 145–164. Rotterdam: A. A.<br />

Balkema Press, 372 pp.<br />

. 1984. Dahlella caldariensis, new genus, new species:<br />

a leptostracan (<strong>Crustacea</strong>, Malacostraca) from<br />

deep-sea hydro<strong>the</strong>rmal vents. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 4:655–664.<br />

. 1985. Swimming in <strong>Crustacea</strong>. Transactions <strong>of</strong><br />

<strong>the</strong> Royal Society <strong>of</strong> Edinburgh 76:115–122.<br />

. 1992. Reflections on <strong>the</strong> phylogenetic position <strong>of</strong><br />

<strong>the</strong> Cephalocarida. Acta Zoologica 73:315–316.<br />

. 1999. Ordre des Mictacés (Mictacea Bowman,<br />

Garner, Hessler, Iliffe, Sanders, 1985). In Traité de<br />

Zoologie. <strong>An</strong>atomie, Systématique, Biologie. Tome<br />

VII, Fascicule IIIA. Crustacés Péracarides, ed. J. Forest.<br />

Memoires de l’Institut Oceanographique Fondation<br />

Albert I er , Prince de Monaco, 19:87–91.<br />

Hessler, R. R., and R. El<strong>of</strong>sson. 1996. Classe de Céphalocarides<br />

(Cephalocarida Sanders, 1955). In Traité de<br />

Zoologie. <strong>An</strong>atomie, Systematique, Biologie. Tome<br />

VII, Fascicule II. Généralités (suite) et Systématique,<br />

ed. J. Forest, 271–286. Paris: Masson, 1002 pp.<br />

Hessler, R. R., and J. W. Martin. 1989. Austinograea williamsi,<br />

new genus, new species, a hydro<strong>the</strong>rmal vent<br />

crab (Decapoda: Bythograeidae) from <strong>the</strong> Mariana<br />

Back-Arc Basin, western Pacific. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 9:645–661.<br />

Hessler, R. R., and L. Watling. 1999. Les Péracarides: un<br />

groupe controversé. In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Tome VII, Fascicule<br />

IIIA. Crustacés Péracarides, ed. J. Forest. Memoires<br />

de l’Institut Oceanographique Fondation Albert I er ,<br />

Prince de Monaco, 19:1–10.<br />

Heymons, R. 1935. Pentastomida. In Bronns Klassen und<br />

Ordnungen das Tierreichs, vol. 5, 1–268. Leipzig:<br />

Akademische Verlagsgesellschaft.<br />

Hibbett, D. S., and M. J. Donoghue. 1998. Integrating<br />

phylogenetic analysis and classification in fungi. Mycologia<br />

90:347–356.<br />

Hickman, C. P., Jr., L. S. Roberts, and A. Larson. 1996.<br />

Integrated principles <strong>of</strong> zoology. Dubuque, Iowa:<br />

Wm. C. Brown Publishers, Times Mirror Higher Education<br />

Group, 901 pp.<br />

Ho, J.-S. 1984. New family <strong>of</strong> poecilostomatoid copepods<br />

(Spiophanicolidae) parasitic on polychaetes from<br />

sou<strong>the</strong>rn California, with a phylogenetic analysis <strong>of</strong><br />

nereicoliform families. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

4:134–146.<br />

. 1990. Phylogenetic analysis <strong>of</strong> copepod orders.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 10:528–536.<br />

. 1991. Phylogeny <strong>of</strong> Poecilostomatoida; a major<br />

order <strong>of</strong> symbiotic copepods. Proceedings <strong>of</strong> <strong>the</strong> 4th<br />

International Conference on Copepoda. Bulletin <strong>of</strong><br />

<strong>the</strong> Plankton Society <strong>of</strong> Japan, Special Volume, 25–<br />

48.<br />

. 1994a. Copepod phylogeny: a reconsideration <strong>of</strong><br />

Huys & Boxshall’s ‘‘parsimony versus homology.’’<br />

Hydrobiologia 292/293:31–39.<br />

. 1994b. Origin and evolution <strong>of</strong> <strong>the</strong> parasitic cyclopoid<br />

copepods. International Journal for Parasitology<br />

24:1293–1300.<br />

Ho, J.-S., M. Conradi, and P. J. López-González. 1998. A<br />

new family <strong>of</strong> cyclopoid copepods (Fratiidae) symbiotic<br />

in <strong>the</strong> ascidian (Clavellina dellavallei) from<br />

Cádiz, Spain. Journal <strong>of</strong> Zoology 246:39–48.<br />

Ho, J.-S., and I. H. Kim. 1997. A new family <strong>of</strong> poecilostomatoid<br />

copepods (Polyankyliidae) from a tide pool<br />

on a mud flat in Korea. Korean Journal <strong>of</strong> Biological<br />

Sciences 1:429–434.<br />

Ho, J.-S., and V. E. Thatcher. 1989. A new family <strong>of</strong> cyclopoid<br />

copepods (Ozmanidae) parasitic in <strong>the</strong> he-<br />

Contributions in Science, Number 39 Literature Cited � 85


mocoel <strong>of</strong> a snail from <strong>the</strong> Brazilian Amazon. Journal<br />

<strong>of</strong> Natural History 23:903–911.<br />

Høeg, J. T. 1992a. The phylogenetic position <strong>of</strong> <strong>the</strong> Rhizocephala:<br />

are <strong>the</strong>y truly barnacles? Acta Zoologica<br />

73:271–392.<br />

. 1992b. Rhizocephala. In Microscopic anatomy <strong>of</strong><br />

invertebrates. vol. 9, <strong>Crustacea</strong>, ed F. W. Harrison<br />

and A. G. Humes, 313–345. New York; Wiley-Liss.<br />

. 1995. Sex and <strong>the</strong> single cirriped: a phylogenetic<br />

perspective. In <strong>Crustacea</strong>n issues 10. New frontiers<br />

in barnacle evolution, ed. F. R. Schram and J. T.<br />

Høeg, 195–207. Rotterdam: A. A. Balkema Press,<br />

318 pp.<br />

Høeg, J. T., B. Hosfeld, and P. G. Jensen. 1998. TEM<br />

studies on <strong>the</strong> lattice organs <strong>of</strong> cirripede cypris larvae<br />

(<strong>Crustacea</strong>, Thecostraca, Cirripedia). Zoomorphology<br />

118:195–205.<br />

Høeg, J. T., and J. Lützen. 1993. Comparative morphology<br />

and phylogeny <strong>of</strong> <strong>the</strong> family Thompsoniidae<br />

(Cirripedia, Rhizocephala, Akentrogonida), with descriptions<br />

<strong>of</strong> three new genera and seven new species.<br />

Zoologica Scripta 22:363–386.<br />

. 1996. Super-ordre des Rhizocephales (Rhizocephala<br />

F. Müller, 1862). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Crustacés. Tome VII,<br />

Fascicule II. Généralités (suite) et Systématique, ed.<br />

J. Forest, 541–570. Paris: Masson, 1002 pp.<br />

Høeg, J. T., and A. V. Rybakov. 1992. Revision <strong>of</strong> <strong>the</strong><br />

Rhizocephala Akentrogonida (Cirripedia), with a list<br />

<strong>of</strong> all <strong>the</strong> species and a key to <strong>the</strong> identification <strong>of</strong><br />

families. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 12:600–609.<br />

Høeg, J. T., M. A. Whyte, H. Glenner, and F. R. Schram.<br />

1999. New evidence on <strong>the</strong> basic phylogeny <strong>of</strong> <strong>the</strong><br />

Cirripedia Thoracia. In <strong>Crustacea</strong>ns and <strong>the</strong> biodiversity<br />

crisis. Proceedings <strong>of</strong> <strong>the</strong> 4th International<br />

<strong>Crustacea</strong>n Congress, Amsterdam, ed. F. R. Schram<br />

and J. C. von Vaupel Klein, 101–149. Leiden: Brill.<br />

H<strong>of</strong>, C. H. J. 1998a. Mesozoic stomatopods. Proceedings<br />

and Abstracts <strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n<br />

Congress, Amsterdam: 78 (abstract 123).<br />

. 1998b. Fossil stomatopods (<strong>Crustacea</strong>: Malacostraca)<br />

and <strong>the</strong>ir phylogenetic impact. Journal <strong>of</strong> Natural<br />

History 32:1567–1576.<br />

H<strong>of</strong>, C. H. J., and F. R. Schram. 1999. The phylogenetic<br />

position and evolution <strong>of</strong> Hoplocarida. Program and<br />

Abstracts, The <strong>Crustacea</strong>n Society 1999 Summer<br />

Meeting, Lafayette, Louisiana: 35.<br />

Hogans, W. E., and G. W. Benz. 1990. A new family <strong>of</strong><br />

parasitic copepods, <strong>the</strong> Lernaeosoleidae (Poecilostomatoida),<br />

from demersal fishes in <strong>the</strong> northwest Atlantic,<br />

with a description <strong>of</strong> Bobkabata kabatabobbus<br />

n. gen., n. sp. and a redescription <strong>of</strong> Lernaeosolea<br />

lycodis Wilson, 1944. Canadian Journal <strong>of</strong> Zoology<br />

68:2483–2488.<br />

Holdich, D., R. Lincoln, and J. Ellis. 1984. The biology<br />

<strong>of</strong> terrestrial isopods: terminology and classification.<br />

Symposium <strong>of</strong> <strong>the</strong> Zoological Society <strong>of</strong> London 53:<br />

1–6.<br />

Holsinger, J. R. 1989. Allocrangonyctidae and Pseudocrangonyctidae,<br />

two new families <strong>of</strong> Holarctic subterranean<br />

amphipod crustaceans (Gammaridea),<br />

with comments on <strong>the</strong>ir phylogenetic and zoogeographic<br />

relationships. Proceedings <strong>of</strong> <strong>the</strong> Biological<br />

Society <strong>of</strong> Washington 102:947–959.<br />

. 1992. Sternophysingidae, a new family <strong>of</strong> subterranean<br />

amphipods (Gammaridea: Crangonyctoidea)<br />

from South Africa, with descriptions <strong>of</strong> Sternophysinx<br />

calceola, new species, and comments on phy-<br />

logenetic and biogeographic relationships. Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology 12:111–124.<br />

Holthuis, L. B. 1955. The <strong>Recent</strong> genera <strong>of</strong> <strong>the</strong> caridean<br />

and stenopodidean shrimps (Class <strong>Crustacea</strong>, Order<br />

Decapoda, supersection Natantia) with keys for <strong>the</strong>ir<br />

determination. Zoologische Verhandelingen 26:1–<br />

157.<br />

. 1991. Marine lobsters <strong>of</strong> <strong>the</strong> world. <strong>An</strong> annotated<br />

and illustrated catalogue <strong>of</strong> species <strong>of</strong> interest to fisheries<br />

known to date. FAO species catalogue, vol. 13,<br />

and FAO Fisheries Synopsis no. 125. Rome: FAO, i–<br />

vii � 292 pp.<br />

. 1993a. The <strong>Recent</strong> genera <strong>of</strong> <strong>the</strong> caridean and<br />

stenopodidean shrimps (<strong>Crustacea</strong>, Decapoda) with<br />

an appendix on <strong>the</strong> order Amphionidacea. Leiden:<br />

Nationaal Natuurhistorisch Museum, 328 pp.<br />

. 1993b. The non-Japanese new species established<br />

by W. de Haan in <strong>the</strong> <strong>Crustacea</strong> volume <strong>of</strong> Fauna<br />

Japonica (1833–1850). In Ph. F. von Siebold and<br />

Natural History <strong>of</strong> Japan, <strong>Crustacea</strong>, ed. T. Yamaguchi,<br />

599–642. Tokyo: The Carcinological Society<br />

<strong>of</strong> Japan.<br />

Hou X., and J. Bergström. 1991. The arthropods <strong>of</strong> <strong>the</strong><br />

Lower Cambrian Chengjiang fauna, with relationships<br />

and evolutionary significance. In The early evolution<br />

<strong>of</strong> Metazoa and <strong>the</strong> significance <strong>of</strong> problematic<br />

taxa, ed. A. M. Simonetta and S. Conway Morris,<br />

179–188. London: Cambridge University Press.<br />

. 1997. Arthropods <strong>of</strong> <strong>the</strong> Lower Cambrian Chengjiang<br />

fauna <strong>of</strong> southwest China. Fossils and Strata<br />

45:1–116.<br />

Humes, A. G. 1986. Myicola metisiensis (Copepoda: Poecilostomatoida),<br />

a parasite <strong>of</strong> <strong>the</strong> bivalve Mya arenaria<br />

in eastern Canada, redefinition <strong>of</strong> <strong>the</strong> Myicolidae,<br />

and diagnosis <strong>of</strong> <strong>the</strong> <strong>An</strong><strong>the</strong>ssiidae n. fam.<br />

Canadian Journal <strong>of</strong> Zoology 64:1021–1033.<br />

. 1987. Copepoda from deep-sea hydro<strong>the</strong>rmal<br />

vents. Bulletin <strong>of</strong> Marine Science 41:645–788.<br />

Humes, A. G., and G. A. Boxshall. 1996. A revision <strong>of</strong><br />

<strong>the</strong> lichomolgoid complex (Copepoda: Poecilostomatoidea),<br />

with <strong>the</strong> recognition <strong>of</strong> six new families.<br />

Journal <strong>of</strong> Natural History 30:175–227.<br />

Humes, A. G., and J. H. Stock. 1991. Coralliomyzontidae,<br />

fam. n. (Copepoda: Siphonostomatoida), associated<br />

with scleractinian corals in Madagascar. Bulletin<br />

Zoölogisch Museum (Universiteit van Amsterdam)<br />

13:17–24.<br />

Huvard, A. 1990. Ultrastructural study <strong>of</strong> <strong>the</strong> naupliar eye<br />

<strong>of</strong> <strong>the</strong> ostracode Vargula graminicola (<strong>Crustacea</strong>,<br />

Ostracoda). Zoomorphology 110:47–51.<br />

Huys, R. 1988a. Gelyelloida, a new order <strong>of</strong> stygobiont<br />

copepods from European karstic systems. Hydrobiologia<br />

167/168:485–495.<br />

. 1988b. On <strong>the</strong> identity <strong>of</strong> <strong>the</strong> Namakosiramiidae<br />

Ho & Perkins, 1977 (<strong>Crustacea</strong>, Copepoda), including<br />

a review <strong>of</strong> harpacticoid associates <strong>of</strong> Echinodermata.<br />

Journal <strong>of</strong> Natural History 22:1517–1532.<br />

. 1990a. Adenopleurella, new genus, Proceropes,<br />

new genus, Sarsocletodes Wilson (ex Laophontidae),<br />

and Miroslavia Apostolov (ex Cletodidae): representatives<br />

<strong>of</strong> a new family (Copepoda: Harpacticoida).<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 10:340–363.<br />

. 1990b. A new harpacticoid copepod family collected<br />

from Australian sponges and <strong>the</strong> status <strong>of</strong> <strong>the</strong><br />

subfamily Rhynchothalestrinae Lang. Zoological<br />

Journal <strong>of</strong> <strong>the</strong> Linnean Society 99:51–115.<br />

. 1990c. Amsterdam expeditions to <strong>the</strong> West Indian<br />

Islands, Report 64. A new family <strong>of</strong> harpacticoid co-<br />

86 � Contributions in Science, Number 39 Literature Cited


pepods and an analysis <strong>of</strong> <strong>the</strong> phylogenetic relationships<br />

within <strong>the</strong> Laophontoidea T. Scott. Bijdragen<br />

tot de Dierkunde 60:79–120.<br />

. 1990d. Allocation <strong>of</strong> <strong>the</strong> Mantridae Leigh-Sharpe<br />

to <strong>the</strong> Cyclopoida (<strong>Crustacea</strong>: Copepoda) with notes<br />

on Nearchinotodelphys Ummerkutty. Bijdragen tot de<br />

Dierkunde 60:283–291.<br />

. 1990e. Campyloxiphos dineti gen. et spec. nov.<br />

from <strong>of</strong>f Namibia and a redefinition <strong>of</strong> <strong>the</strong> Deoterthridae<br />

Boxshall and Lincoln (<strong>Crustacea</strong>: Tantulocarida).<br />

Journal <strong>of</strong> Natural History 24:415–432.<br />

. 1991. Tantulocarida (<strong>Crustacea</strong>: Maxillopoda): a<br />

new taxon from <strong>the</strong> temporary meiobenthos. Marine<br />

Ecology (Publicazioni della Stazione Zoologica di<br />

Napoli I) 12:1–34.<br />

. 1992. The amphiatlantic distribution <strong>of</strong> Leptastacus<br />

macronyx (T. Scott, 1892) (Copepoda: Harpacticoida):<br />

a paradigm <strong>of</strong> taxonomic confusion;<br />

and, a cladistic approach to <strong>the</strong> classification <strong>of</strong> <strong>the</strong><br />

Leptastacidae Land, 1948. Mededelingen Koninklijke<br />

Academie voor Wetenschappen, Letteren en<br />

Schone Kunsten van Belgie 54:21–196.<br />

. 1993. Styracothoracidae (Copepoda: Harpacticoida),<br />

a new family from <strong>the</strong> Philippine deep sea.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 13:769–783.<br />

. 1997. Superornatiremidae fam. nov. (Copepoda:<br />

Harpacticoida): an enigmatic family from North Atlantic<br />

anchialine caves. Scientia Marina 60:497–542.<br />

. 2001. Splanchnotrophid systematics: a case <strong>of</strong> polyphyly<br />

and taxonomic myopia. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 21:106–156.<br />

Huys, R., and R. Böttger-Schnack. 1997. On <strong>the</strong> diphyletic<br />

origin <strong>of</strong> <strong>the</strong> Oncaeidae Giesbrech, 1892 (Copepoda:<br />

Poecilostomatoida) with a phylogenetic<br />

analysis <strong>of</strong> <strong>the</strong> Lubockiidae fam. nov. Zoologischer<br />

<strong>An</strong>zeiger 235:243–261.<br />

Huys, R., and G. A. Boxshall. 1991. Copepod evolution.<br />

London: The Ray Society, 468 pp.<br />

Huys, R., G. A. Boxshall, and R. J. Lincoln. 1993. The<br />

tantulocarid life cycle: <strong>the</strong> circle closed? Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology 13:432–442.<br />

Huys, R., and J. M. Gee. 1996. A revision <strong>of</strong> Danielssenia<br />

Boeck and Psammis Sars with <strong>the</strong> establishment <strong>of</strong><br />

two new genera Archisenia and Bathypsammis (Harpacticoida:<br />

Paranannopidae). Bulletin National<br />

d’Histoire Naturelle (Zoologie) 59:45–81.<br />

Huys, R., J. M. Gee, C. G. Moore, and R. Hammond.<br />

1996. Marine and brackish water harpacticoid copepods.<br />

Part 1. Keys and notes for identification <strong>of</strong><br />

<strong>the</strong> species. Synopses <strong>of</strong> <strong>the</strong> British Fauna (New Series).<br />

London: Academic Press, for <strong>the</strong> Linnean Society<br />

<strong>of</strong> London, 352 pp. Huys, R., and T. M. Iliffe.<br />

1998. Novocriniidae, a new family <strong>of</strong> harpacticoid<br />

copepods from anchialine caves in Belize. Zoologica<br />

Scripta 27:1–15.<br />

Huys, R., and W. Lee. 1999. On <strong>the</strong> relationships <strong>of</strong> <strong>the</strong><br />

Normanellidae and <strong>the</strong> recognition <strong>of</strong> Cletopsyllidae<br />

grad. nov. (Copepoda, Harpacticoida). Zoologischer<br />

<strong>An</strong>zeiger 237:267–290.<br />

Huys, R., S. Ohtsuka, and G. A. Boxshall. 1994. A new<br />

tantulocaridan (<strong>Crustacea</strong>: Maxillopoda) parasitic<br />

on calanoid, harpacticoid, and cyclopoid copepods.<br />

Publications <strong>of</strong> <strong>the</strong> Seto Marine Biological Laboratory<br />

36:197–209.<br />

Huys, R., and K. A. Willems. 1989. Laophontopsis Sars<br />

and <strong>the</strong> taxonomic concept <strong>of</strong> <strong>the</strong> Normanellinae<br />

(Copepoda: Harpacticoida): a revision. Bijdragen tot<br />

de Dierkunde 59:203–227.<br />

Illg, P. L., and P. L. Dudley. 1980. The family Ascidicolidae<br />

and its subfamilies (Copepoda, Cyclopoida),<br />

with descriptions <strong>of</strong> new species. Memoires du Museum<br />

National d’Histoire Naturelle, Nouvelle Serie<br />

A, Zoologie 117:1–192.<br />

International Commission on Zoological Nomenclature.<br />

1985a. International Code <strong>of</strong> Zoological Nomenclature,<br />

3rd edition. London: The International Trust<br />

for Zoological Nomenclature and The British Museum<br />

(Natural History), 338 pp.<br />

. 1985b. Opinion 1357. <strong>An</strong>uropodidae Băcescu,<br />

1980 (<strong>Crustacea</strong>, Tanaidacea) and <strong>An</strong>uropodidae<br />

Stebbing, 1893 (<strong>Crustacea</strong>, Isopoda); a ruling to remove<br />

<strong>the</strong> homonymy. Bulletin <strong>of</strong> Zoological Nomenclature<br />

42:338–340.<br />

. 1999. International Code <strong>of</strong> Zoological Nomenclature,<br />

4th edition. London: The International Trust<br />

for Zoological Nomenclature and The Natural History<br />

Museum, 306 pp.<br />

International Code <strong>of</strong> Zoological Nomenclature, 3rd edition,<br />

adopted by <strong>the</strong> XX General Assembly <strong>of</strong> <strong>the</strong><br />

International Union <strong>of</strong> Biological Sciences. 1985.<br />

Berkeley, California: University <strong>of</strong> California Press<br />

and International Trust for Zoological Nomenclature,<br />

338 pp.<br />

Ishimaru, S. 1994. A catalogue <strong>of</strong> gammaridean and ingolfiellidean<br />

Amphipoda recorded from <strong>the</strong> vicinity<br />

<strong>of</strong> Japan. Reports <strong>of</strong> <strong>the</strong> Seto Marine Biological Laboratory<br />

24:29–846.<br />

Itô, T. 1989. Origin <strong>of</strong> <strong>the</strong> basis in copepod limbs, with<br />

reference to remipedian and cephalocarid limbs.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 9:85–103.<br />

Itô, T., and F. R. Schram. 1988. Gonopores and <strong>the</strong> reproductive<br />

system <strong>of</strong> nectiopodan Remipedia. Journal<br />

<strong>of</strong> <strong>Crustacea</strong>n Biology 8:250–253.<br />

Ivanenko, V. N., F. D. Ferrari, and A. V. Smurov. 2001.<br />

Nauplii and copepodids <strong>of</strong> Scottomyzon gibberum<br />

(Copepoda: Siphonostomatoida: Scottomyzontidae,<br />

a new family), a symbiont <strong>of</strong> Asterias rubens (Asteroida).<br />

Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington<br />

114:237–261.<br />

Iverson, E. 1982. Revision <strong>of</strong> <strong>the</strong> isopod family Sphaeromatidae<br />

(<strong>Crustacea</strong>: Isopoda: Flabellifera) I. Subfamily<br />

names with diagnoses and key. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 2:248–254.<br />

Izawa, K. 1996. Archidactylina myxinicola, new genus,<br />

new species (Siphonostomatoida), in a new family <strong>of</strong><br />

Copepoda parasitic on hagfishes (Agnatha: Myxiniformes)<br />

from Japan. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

16:406–417.<br />

Jamieson, B. G. M. 1987. The ultrastructure and phylogeny<br />

<strong>of</strong> insect spermatozoa. London: Cambridge University<br />

Press, 320 pp.<br />

. 1989a. The ultrastructure <strong>of</strong> <strong>the</strong> spermatozoa <strong>of</strong><br />

four species <strong>of</strong> xanthid crabs (<strong>Crustacea</strong>, Brachyura,<br />

Xanthidae). Journal <strong>of</strong> Submicroscopic Cytology<br />

and Pathology 21:589–584.<br />

. 1989b. Ultrastructural comparison <strong>of</strong> <strong>the</strong> spermatozoa<br />

<strong>of</strong> Ranina ranina (Oxystomata) and <strong>of</strong> o<strong>the</strong>r<br />

crabs exemplified by Portunus pelagicus (Brachygnatha)<br />

(<strong>Crustacea</strong>, Brachyura). Zoomorphology<br />

109:103–111.<br />

. 1989c. A comparison <strong>of</strong> <strong>the</strong> spermatozoa <strong>of</strong> Oratosquilla<br />

stephensoni and Squilla mantis (<strong>Crustacea</strong>,<br />

Stomatopoda) with comments on <strong>the</strong> phylogeny<br />

<strong>of</strong> <strong>the</strong> Malacostraca. Zoologica Scripta 18:509–517.<br />

. 1990. The ultrastructure <strong>of</strong> <strong>the</strong> spermatozoa <strong>of</strong><br />

Petalomera lateralis (Gray) (<strong>Crustacea</strong>, Brachyura,<br />

Contributions in Science, Number 39 Literature Cited � 87


Dromiacea) and its phylogenetic significance. Invertebrate<br />

Reproduction and Development 17:39–45.<br />

. 1991a. Ultrastructure and phylogeny <strong>of</strong> crustacean<br />

spermatozoa. In Proceedings <strong>of</strong> <strong>the</strong> 1990 International<br />

<strong>Crustacea</strong>n Conference, ed. P. J. F. Davie<br />

and R. H. Quinn. Memoirs <strong>of</strong> <strong>the</strong> Queensland Museum<br />

31:109–142.<br />

. 1991b. Sperm and phylogeny in <strong>the</strong> Brachyura<br />

(<strong>Crustacea</strong>). In Comparative spermatology 20 years<br />

after, ed. B. Bacetti, 967–972. New York: Serono<br />

Symposia Publications from Raven Press, vol. 75.<br />

. 1993. Spermatological evidence for <strong>the</strong> taxonomic<br />

status <strong>of</strong> Trapezia (<strong>Crustacea</strong>: Brachyura: Heterotremata).<br />

Memoirs <strong>of</strong> <strong>the</strong> Queensland Museum 33:<br />

225–234.<br />

. 1994. Phylogeny <strong>of</strong> <strong>the</strong> Brachyura with particular<br />

reference to <strong>the</strong> Podotremata: evidence from a review<br />

<strong>of</strong> spermatozoal ultrastructure. Philosophical<br />

Transactions <strong>of</strong> <strong>the</strong> Royal Society 345B:373–393.<br />

Jamieson, B. G. M., D. Guinot, and B. Richer de Forges.<br />

1993a. The ultrastructure <strong>of</strong> <strong>the</strong> spermatozoon <strong>of</strong><br />

Paradynomene tuberculata Sakai, 1963 (<strong>Crustacea</strong>,<br />

Brachyura, Dynomenidae): synapomorphies with<br />

dromiid sperm. Helgoländer Meeresuntersuchungen<br />

47:311–322.<br />

. 1993b. Spermatozoal ultrastructure in 4 genera<br />

<strong>of</strong> Homolidae (<strong>Crustacea</strong>, Decapoda)—exemplified<br />

by Homologenus sp., Latreillopsis sp., Homolomannia<br />

sibogae, and Paromolopsis boasi. Helgoländer<br />

Meeresuntersuchungen 47:323–334.<br />

. 1993c. The spermatozoon <strong>of</strong> Calocarcinus africanus<br />

(Heterotremata, Brachyura, <strong>Crustacea</strong>)—ultrastructural<br />

synapomorphies with xanthid sperm.<br />

Invertebrate Reproduction and Development 24:<br />

189–196.<br />

. 1994a. Relationships <strong>of</strong> <strong>the</strong> Cyclodorippoidea<br />

Ortmann—evidence from spermatozoal ultrastructure<br />

in <strong>the</strong> genera Xeinostoma, Tymolus, and Cymonomus<br />

(<strong>Crustacea</strong>, Decapoda). Invertebrate Reproduction<br />

and Development 26:153–164.<br />

. 1994b. Podotreme affinities <strong>of</strong> Raninoides sp. and<br />

Lyreidus brevifrons—evidence from spermatozoal<br />

ultrastructure (<strong>Crustacea</strong>, Brachyura, Raninoidea).<br />

Marine Biology 120:239–249.<br />

. 1995. Phylogeny <strong>of</strong> <strong>the</strong> Brachyura: evidence from<br />

spermatozoal ultrastructure (<strong>Crustacea</strong>, Decapoda).<br />

In Advances in spermatozoal phylogeny and taxonomy,<br />

ed. B. G. M. Jamieson, J. Ausio, and J.-L. Justine<br />

Mémoires du Muséum National d’Histoire Naturelle,<br />

vol. 166, 265–283.<br />

. 1996. Contrasting spermatozoal ultrastructure in<br />

two thoracotreme crabs, Cardisoma carnifex (Gecarcinidae)<br />

and Varuna litterata (Grapsidae) (<strong>Crustacea</strong>:<br />

Brachyura). Invertebrate Reproduction and<br />

Development 29:111–126.<br />

Jamieson, B. G. M., D. Guinot, C. C. Tudge, and B. Richer<br />

de Forges. 1997. Ultrastructure <strong>of</strong> <strong>the</strong> spermatozoa<br />

<strong>of</strong> Corystes cassivelaunus (Corystidae), Platepistoma<br />

nanum (Cancridae), and Cancer pagurus (Cancridae)<br />

supports recognition <strong>of</strong> <strong>the</strong> Corystoidea (<strong>Crustacea</strong>,<br />

Brachyura, Heterotremata). Helgoländer<br />

Meeresuntersuchungen 51:83–93.<br />

Jamieson, B. G. M., and C. C. Tudge. 1990. Dorippids<br />

are Heterotremata: evidence from ultrastructure <strong>of</strong><br />

<strong>the</strong> spermatozoa <strong>of</strong> Neodorippe astuta (Dorippidae)<br />

and Portunus pelagicus (Portunidae) (Brachyura: Decapoda).<br />

Marine Biology 106:347–354.<br />

Jamieson, B. G. M., C. C. Tudge, and D. M. Scheltinga.<br />

1993. The ultrastructure <strong>of</strong> <strong>the</strong> spermatozoan <strong>of</strong><br />

Dromidiopsis edwardsi Rathbun, 1919 (<strong>Crustacea</strong>:<br />

Brachyura: Dromiidae): confirmation <strong>of</strong> a dromiid<br />

sperm type. Australian Journal <strong>of</strong> Zoology 41:537–<br />

548.<br />

Jarett, N. E., and E. L. Bousfield. 1994a. The amphipod<br />

superfamily Phoxocephaloidea on <strong>the</strong> Pacific Coast<br />

<strong>of</strong> North America. Family Phoxocephalidae. Part I.<br />

Metharpiniinae, new subfamily. Amphipacifica 1:<br />

58–140.<br />

. 1994b. The amphipod superfamily Phoxocephaloidea<br />

on <strong>the</strong> Pacific Coast <strong>of</strong> North America. Family<br />

Phoxocephalidae. Part II. Subfamilies Pontharpiniinae,<br />

Parharpiniinae, Brolginae, Phoxocephalinae,<br />

and Harpiniinae. Systematics and distributional ecology.<br />

Amphipacifica 1:71–150.<br />

Jarman, S. N., S. Nicol, N. G. Elliott, and A. McMinn.<br />

2000. 28S rDNA evolution in <strong>the</strong> Eumalacostraca<br />

and <strong>the</strong> phylogenetic position <strong>of</strong> krill. Molecular<br />

Phylogenetics and Evolution 17:26–36.<br />

Jenner, R. A., C. H. J. H<strong>of</strong>, and F. R. Schram. 1998. Palaeo-<br />

and archaeostomatopods (Hoplocarida, <strong>Crustacea</strong>)<br />

from <strong>the</strong> Bear Gulch Limestone, Mississippian<br />

(Namurain), <strong>of</strong> central Montana. Contributions to<br />

Zoology (Amsterdam: SPB Academic Publishing) 67:<br />

155–185.<br />

Jensen, P. G., J. T. Høeg, S. Bower, and A. V. Rybakov.<br />

1994a. Scanning electron microscopy <strong>of</strong> lattice organs<br />

in cyprids <strong>of</strong> <strong>the</strong> Rhizocephala Akentrogonida<br />

(<strong>Crustacea</strong>: Cirripedia). Canadian Journal <strong>of</strong> Zoology<br />

72:1018–1026.<br />

Jensen, P. G., J. Moyse, J. T. Høeg, and H. Al-Yahya.<br />

1994b. Comparative SEM studies <strong>of</strong> lattice organs:<br />

putative sensory structures on <strong>the</strong> carapace <strong>of</strong> larvae<br />

from Ascothoracida and Cirripedia (<strong>Crustacea</strong> Maxillopoda<br />

Theocostraca). Acta Zoologica 75:125–<br />

142.<br />

Jespersen, A˚ . 1979. Spermiogenesis in two species <strong>of</strong> Nebalia<br />

Leach (<strong>Crustacea</strong>, Malacostraca, Phyllocarida).<br />

Zoomorphology 93:87–97.<br />

Jones, M. L. 1961. Lightiella serendipita gen. nov., sp.<br />

nov., a cephalocarid from San Francisco Bay, California.<br />

<strong>Crustacea</strong>na 3:31–46.<br />

Jones, N. S. 1976. British Cumaceans. Synopses <strong>of</strong> <strong>the</strong><br />

British Fauna No. 7. London: Academic Press, for<br />

<strong>the</strong> Linnean Society <strong>of</strong> London, 66 pp.<br />

Just, J. 1990. Abyssianiridae, a synonym <strong>of</strong> Paramunnidae<br />

(<strong>Crustacea</strong>: Isopoda: Asellota) with two new species<br />

<strong>of</strong> Abyssianira from south-eastern Australia. Memoirs<br />

<strong>of</strong> <strong>the</strong> Museum <strong>of</strong> Victoria 50:403–416.<br />

Just, J., and G. C. B. Poore. 1988. Second record <strong>of</strong> Hirsutiidae<br />

(Peracarida: Mictacea): Hirsutia sandersetalia,<br />

new species, from sou<strong>the</strong>astern Australia. Journal<br />

<strong>of</strong> <strong>Crustacea</strong>n Biology 8:483–488.<br />

. 1992. Vermectiadidae, a new primitive asellote<br />

isopod family with important phylogenetic implications.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 12:125–144.<br />

Kamaltynov, R. M. 1999. On <strong>the</strong> higher classification <strong>of</strong><br />

Lake Baikal amphipods. <strong>Crustacea</strong>na 72:933–944.<br />

Kensley, B. 1998. Estimates <strong>of</strong> species diversity <strong>of</strong> freeliving<br />

isopod crustaceans on coral reefs. Coral Reefs<br />

17:83–88.<br />

Kensley, B., M. Schotte, and S. Schilling. 1996–1998.<br />

World list <strong>of</strong> marine, freshwater and terrestrial isopod<br />

crustaceans. URL gopher://nmnhgoph.si.edu:70/<br />

11/.invertebrate/.crustaceans; URL http://www.<br />

nmnh.si.edu/iz/isopod/about.html#org.<br />

Kim, C. B., and W. Kim. 1993. Phylogenetic relationships<br />

88 � Contributions in Science, Number 39 Literature Cited


among gammaridean families and amphipod suborders.<br />

Journal <strong>of</strong> Natural History 27:933–946.<br />

Kim, W., and L. G. Abele. 1990. Molecular phylogeny <strong>of</strong><br />

selected decapod crustaceans based on 18S rRNA<br />

nucleotide sequences. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

10:1–13.<br />

Kitaura, J., K. Wada, and M. Nishida. 1998. Molecular<br />

phylogeny and evolution <strong>of</strong> unique mud-using territorial<br />

behavior in ocypodid crabs (<strong>Crustacea</strong>: Brachyura:<br />

Ocypodidae). Molecular Biology and Evolution<br />

15:626–637.<br />

Koltz<strong>of</strong>f, N. K. 1906. Studien über die Gestalt der Zelle.<br />

I. Untersuchungen über dies Spermien der Decapoden,<br />

als Einleitung in das Problem der Zellengestalt.<br />

Archiv für Mikroskopische <strong>An</strong>atomomie 67:364–<br />

572.<br />

Korn, O. M. 1995. Naupliar evidence for cirripede taxonomy<br />

and phylogeny. In <strong>Crustacea</strong>n issues 10. New<br />

frontiers in barnacle evolution, ed. F. R. Schram and<br />

J. T. Høeg, 87–121. Rotterdam: A. A. Balkema<br />

Press, 318 pp.<br />

Kornicker, L. S. 1986. Sarsiellidae <strong>of</strong> <strong>the</strong> western Atlantic<br />

and nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico, and revision <strong>of</strong> <strong>the</strong><br />

Sarsiellinae (Ostracoda: Myodocopina). Smithsonian<br />

Contributions to Zoology 415:1–217.<br />

Kornicker, L. S., and I. G. Sohn. 1976. Phylogeny, ontogeny,<br />

and morphology <strong>of</strong> living and fossil Thaumatocypridacea<br />

(Myodocopa: Ostracoda). Smithsonian<br />

Contributions to Zoology 219:1–124.<br />

Kropp, R. K., and R. B. Manning. 1985. Cryptochiridae,<br />

<strong>the</strong> correct name for <strong>the</strong> family containing <strong>the</strong> gall<br />

crabs (<strong>Crustacea</strong>: Decapoda: Brachyura). Proceedings<br />

<strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington 98:954–<br />

955.<br />

. 1987. The Atlantic gall crabs, family Cryptochiridae<br />

(<strong>Crustacea</strong>: Decapoda: Brachyura). Smithsonian<br />

Contributions to Zoology 462:1–21.<br />

Kussakin, O. G. 1988. Marine and brackish isopods (Isopoda)<br />

<strong>of</strong> cold and temperate waters <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

hemisphere. Volume 3. Suborder Asellota. Part 1.<br />

Families Janiridae, Santiidae, Dendrotionidae, Munnidae,<br />

Paramunnidae, Haplomunnidae, Mesosignidae,<br />

Halponiscidae, Mictosomatidae, Ischnomesidae.<br />

Opredeliteli Faune SSR 152:1–500.<br />

Lake, J. A. 1990. Origin <strong>of</strong> <strong>the</strong> Metazoa. Proceedings <strong>of</strong><br />

<strong>the</strong> National Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> United<br />

States <strong>of</strong> America 87:763–766.<br />

Lamb, E. J., G. A. Boxshall, P. J. Mill, and J. Grahame.<br />

1996. Nucellicolidae: a new family <strong>of</strong> endoparasitic<br />

copepods (Poecilostomatoida) from <strong>the</strong> dog whelk<br />

Nucella lapillus (Gastropoda). Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 16:142–148.<br />

Land, M. F. 1996. Les yeux: structure et fonctionnement<br />

des mécanismes optiques. In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Crustacés. Tome<br />

VII, Fascicule II. Généralités (suite) et Systématique,<br />

ed. J. Forest, 1–42. Paris: Masson, 1002 pp.<br />

Lange, S., F. R. Schram, C. H. J. H<strong>of</strong>, and F. A. Steeman.<br />

In press. A new genus and species <strong>of</strong> Thylacocephala,<br />

with observations that allow assignment <strong>of</strong> <strong>the</strong><br />

group at last to <strong>the</strong> <strong>Crustacea</strong>. Palaeontology.<br />

Larsen, K., and G. D. F. Wilson. 1998. Tanaidomorphan<br />

systematics—is it obsolete? Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 18:346–362.<br />

Latreille, P. A. 1802. Histoire naturelle générale et particulière<br />

des Crustacés et des Insectes, vol. 3, 1–467.<br />

(For date <strong>of</strong> publication, see Dupuis, 1975).<br />

Laubier, L. 1988. Le genre <strong>An</strong>omopsyllus Sars, 1921, co-<br />

pepode parasite d’annelides polychetes: A. pranizoides<br />

Sars, 1921 et A. abyssorum nov. sp. <strong>Crustacea</strong>na<br />

55:180–192.<br />

Laubitz, D. R. 1993. Caprellidae (<strong>Crustacea</strong>: Amphipoda):<br />

towards a new syn<strong>the</strong>sis. Journal <strong>of</strong> Natural<br />

History 27:965–976.<br />

Leach, W. E. 1815. A tabular view <strong>of</strong> <strong>the</strong> external characters<br />

<strong>of</strong> four classes <strong>of</strong> animals, which Linn., arranged<br />

under Insecta; with <strong>the</strong> distribution <strong>of</strong> <strong>the</strong><br />

genera composing three <strong>of</strong> <strong>the</strong>se classes into orders,<br />

&c. and descriptions <strong>of</strong> several new genera and species.<br />

Transactions <strong>of</strong> <strong>the</strong> Linnean Society <strong>of</strong> London<br />

11:306–400.<br />

Lim, G. S. Y., and P. K. L. Ng. 1988. The first zoeal stage<br />

<strong>of</strong> Harrovia albolineata Adams and White, 1848<br />

(<strong>Crustacea</strong>: Brachyura: Pilumnidae), with a note on<br />

Eumedonine systematics. Journal <strong>of</strong> Natural History<br />

22:217–223.<br />

Lincoln, R. J., and G. A. Boxshall. 1983. Deep-sea asellote<br />

isopods <strong>of</strong> <strong>the</strong> north-east Atlantic: <strong>the</strong> family Dendrotionidae<br />

and some new ectoparasitic copepods.<br />

Zoological Journal <strong>of</strong> <strong>the</strong> Linnean Society 79:297–<br />

318.<br />

Lopretto, E. C., and J. J. Morrone. 1998. <strong>An</strong>aspidacea,<br />

Bathynellacea (<strong>Crustacea</strong>, Syncarida), generalised<br />

tracks, and <strong>the</strong> biogeographical relationships <strong>of</strong><br />

South America. Zoologica Scripta 27:311–318.<br />

Lowry, J. K., and A. A. Myers. 2000. A family level<br />

phylogeny <strong>of</strong> iphemedioid amphipods (<strong>Crustacea</strong>,<br />

Amphipoda). Abstracts <strong>of</strong> <strong>the</strong> 10th Colloqium<br />

on Amphipoda (http://www.odu.edu/%7Ejrh100f/<br />

amphome): 14.<br />

Lowry, J. K., and H. E. Stoddart. 1983. The shallow-water<br />

gammaridean Amphipoda <strong>of</strong> <strong>the</strong> subantarctic islands<br />

<strong>of</strong> New Zealand and Australia: Lysianassoidea. Journal<br />

<strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> New Zealand 13:279–<br />

394.<br />

. 1990. The Wandinidae, a new Indo-Pacific family<br />

<strong>of</strong> lysianassoid Amphipoda (<strong>Crustacea</strong>). Records <strong>of</strong><br />

<strong>the</strong> Australian Museum 42:159–171.<br />

. 1995. The Amphipoda (<strong>Crustacea</strong>) <strong>of</strong> Madang<br />

Lagoon: Lysianassidae, Opisidae, Uristidae, Wandinidae<br />

and Stegocephalidae. In Amphipoda (<strong>Crustacea</strong>)<br />

<strong>of</strong> <strong>the</strong> Madang Lagoon, Papua New Guinea, ed.<br />

J. K. Lowry. Records <strong>of</strong> <strong>the</strong> Australian Museum,<br />

22(supplement):97–174.<br />

. 1996. New lysianassoid amphipod species from<br />

Namibia and Madagascar (Lysianassidae Dana,<br />

1849, Podoprionidae Fam. Nov.). Bolletino di Museo<br />

Civico di Storia Naturale di Verona 20:225–247.<br />

. 1997. Amphipoda <strong>Crustacea</strong> IV. Families Aristiidae,<br />

Cyphocarididae, Endevouridae, Lysianassidae,<br />

Scopelocheiridae, Uristidae. Memoirs <strong>of</strong> <strong>the</strong> Hourglass<br />

Cruises (Florida Marine Research Institute, St.<br />

Petersburg, Florida) 10:1–148.<br />

Lützen, J., and T. Takahashi. 1996. Morphology and biology<br />

<strong>of</strong> Polysaccus japonicus (<strong>Crustacea</strong>, Rhizocephala,<br />

Akentrogonida, Polysaccidae, fam. N.), a parasite<br />

<strong>of</strong> <strong>the</strong> ghost-shrimp Callianassa japonica. Zoologica<br />

Scripta 25:171–181.<br />

Maddison, W. P. 1997. Gene trees in species trees. Systematic<br />

Biology 46:523–536.<br />

Magalhães, C., and M. Türkay. 1996a. Taxonomy <strong>of</strong> <strong>the</strong><br />

Neotropical freshwater crab family Trichodactylidae.<br />

I. The generic system with description <strong>of</strong> some<br />

new genera (<strong>Crustacea</strong>: Decapoda: Brachyura).<br />

Senckenbergiana Biologica 75:63–95.<br />

. 1996b. Taxonomy <strong>of</strong> <strong>the</strong> Neotropical freshwater<br />

Contributions in Science, Number 39 Literature Cited � 89


crab family Trichodactylidae. II. The genera Forsteria,<br />

Melocarcinus, Sylviocarcinus and Zilchiopsis<br />

(<strong>Crustacea</strong>: Decapoda: Brachyura). Senckenbergiana<br />

Biologica 75:97–130.<br />

. 1996c. Taxonomy <strong>of</strong> <strong>the</strong> Neotropical freshwater<br />

crab family Trichodactylidae. III. The genera Fredilocarcinus<br />

and Goyazana (<strong>Crustacea</strong>: Decapoda:<br />

Brachyura). Senckenbergiana Biologia 75:131–142.<br />

Maley, L. E., and C. R. Marshall. 1998. The coming <strong>of</strong><br />

age <strong>of</strong> molecular systematics. Science 279:505–506.<br />

Manning, R. B. 1995. Stomatopod <strong>Crustacea</strong> <strong>of</strong> Vietnam:<br />

<strong>the</strong> legacy <strong>of</strong> Raoul Serene. The Carcinological Society<br />

<strong>of</strong> Japan. <strong>Crustacea</strong>n Research, Special no. 4:<br />

viii � 339 pp.<br />

Manning, R. B., and A. J. Bruce. 1984. Erythrosquilla<br />

megalops, a remarkable new stomatopod from <strong>the</strong><br />

western Indian Ocean. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

4:329–332.<br />

Manning, R. B., and D. K. Camp. 1993. Erythrosquilloidea,<br />

a new superfamily, and Tetrasquillidae, a new<br />

family <strong>of</strong> stomatopod crustaceans. Proceedings <strong>of</strong><br />

<strong>the</strong> Biological Society <strong>of</strong> Washington 106:85–91.<br />

Manning, R. B., and D. L. Felder. 1991. Revision <strong>of</strong> <strong>the</strong><br />

American Callianassidae (<strong>Crustacea</strong>: Decapoda:<br />

Thalassinidea). Proceedings <strong>of</strong> <strong>the</strong> Biological Society<br />

<strong>of</strong> Washington 104:764–792.<br />

. 1996. Nanno<strong>the</strong>res moorei, a new genus and species<br />

<strong>of</strong> minute pinno<strong>the</strong>rid crab from Belize, Caribbean<br />

Sea (<strong>Crustacea</strong>: Decapoda: Pinno<strong>the</strong>ridae).<br />

Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington<br />

109:311–317.<br />

Manning, R. B., and L. B. Holthuis. 1981. West African<br />

brachyuran crabs. Smithsonian Contributions to Zoology<br />

306:1–379.<br />

Marchenkov, A. V., and G. A. Boxshall. 1995. A new family<br />

<strong>of</strong> copepods associated with ascidiaceans in <strong>the</strong><br />

White Sea, and an analysis <strong>of</strong> antennulary segmentation<br />

and setation patterns in <strong>the</strong> order Poecilostomatoida.<br />

Zoologisches <strong>An</strong>zeiger 234:133–143.<br />

Margolis, L., T. E. McDonald, and E. L. Bousfield. 2000.<br />

The whale-lice (Amphipoda: Cyamidae) <strong>of</strong> <strong>the</strong><br />

nor<strong>the</strong>astern Pacific region. Amphipacifica 2:63–<br />

117.<br />

Marincek, M., and B. Petrov. 1991. A review <strong>of</strong> <strong>the</strong> Conchostraca<br />

(<strong>Crustacea</strong>) <strong>of</strong> Yugoslavia. Bulletin du<br />

Muséum d’Histoire Naturelle de Belgrade, series B,<br />

Sciences Biologiques 39:105–122.<br />

Martens, K. 1992. On Namibcypris costata n. gen., n. sp.<br />

(<strong>Crustacea</strong>, Ostracoda, Candoninae) from a spring<br />

in nor<strong>the</strong>rn Namibia, with <strong>the</strong> description <strong>of</strong> a new<br />

tribe and a discussion on <strong>the</strong> classification <strong>of</strong> <strong>the</strong> Podocopina.<br />

Stygologia 7:27–42.<br />

Martens, K., D. J. Horne, and H. I. Griffiths. 1998. Age<br />

and diversity <strong>of</strong> non-marine ostracodes. In Sex and<br />

par<strong>the</strong>nogenesis: evolutionary ecology <strong>of</strong> reproductive<br />

modes in non-marine ostracods, ed. K. Martens,<br />

37–55. Leiden: Backhuys Publishers, 336 pp.<br />

Martin, J. W. 1984. Notes and bibliography on <strong>the</strong> larvae<br />

<strong>of</strong> xanthid crabs, with a key to <strong>the</strong> known zoeas <strong>of</strong><br />

<strong>the</strong> western Atlantic and Gulf <strong>of</strong> Mexico. Bulletin <strong>of</strong><br />

Marine Science 34:220–239.Martin, J. W. 1988.<br />

Phylogenetic significance <strong>of</strong> <strong>the</strong> brachyuran megalopa:<br />

evidence from <strong>the</strong> Xanthidae. Symposium <strong>of</strong> <strong>the</strong><br />

Zoological Society <strong>of</strong> London 59:69–102.<br />

. 1991. Crabs <strong>of</strong> <strong>the</strong> family Homolodromiidae, III.<br />

First record <strong>of</strong> <strong>the</strong> larvae. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

11:156–161.<br />

. 1992. Branchiopoda. In Microscopic anatomy <strong>of</strong><br />

invertebrates, vol. 9, <strong>Crustacea</strong>, ed. F. W. Harrison<br />

and A. G. Humes, 25–224. New York: Wiley-Liss.<br />

. 1995. Review <strong>of</strong>: Walossek, D. 1993. The Upper<br />

Cambrian Rehbachiella and <strong>the</strong> phylogeny <strong>of</strong> Branchiopoda<br />

and <strong>Crustacea</strong>. Earth-Science Reviews 38:<br />

72–75.<br />

. 1996. The <strong>Crustacea</strong>n biodiversity survey. Program<br />

and Abstracts, The <strong>Crustacea</strong>n Society 1996<br />

Summer Meeting, San Diego, California: 28.<br />

Martin, J. W., and L. G. Abele. 1986. Phylogenetic relationships<br />

<strong>of</strong> <strong>the</strong> genus Aegla (Decapoda: <strong>An</strong>omura:<br />

Aeglidae), with comments on anomuran phylogeny.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 6:576–616.<br />

Martin, J. W., and D. Belk. 1988. Review <strong>of</strong> <strong>the</strong> clam<br />

shrimp family Lynceidae Stebbing, 1902 (Branchiopoda:<br />

Conchostraca), in <strong>the</strong> Americas. Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology 8:451–482.<br />

Martin, J. W., and C. Cash-Clark. 1995. The external<br />

morphology <strong>of</strong> <strong>the</strong> onychopod ‘cladoceran’ genus<br />

Bythotrephes (<strong>Crustacea</strong>, Branchiopoda, Onychopoda,<br />

Cercopagididae), with notes on <strong>the</strong> morphology<br />

and phylogeny <strong>of</strong> <strong>the</strong> order Onychopoda. Zoologica<br />

Scripta 24:61–90.<br />

Martin, J. W., and J. C. Christiansen. 1995a. A morphological<br />

comparison <strong>of</strong> <strong>the</strong> phyllopodous thoracic<br />

limbs <strong>of</strong> a leptostracan (Nebalia sp.) and a spinicaudate<br />

conchostracan (Leptes<strong>the</strong>ria sp.), with comments<br />

on <strong>the</strong> use <strong>of</strong> Phyllopoda as a taxonomic category.<br />

Canadian Journal <strong>of</strong> Zoology 73:2283–2291.<br />

. 1995b. A new species <strong>of</strong> <strong>the</strong> shrimp genus Chorocaris<br />

Martin and Hessler, 1990 (<strong>Crustacea</strong>: Decapoda:<br />

Bresiliidae) from hydro<strong>the</strong>rmal vent fields<br />

along <strong>the</strong> Mid-Atlantic Ridge. Proceedings <strong>of</strong> <strong>the</strong> Biological<br />

Society <strong>of</strong> Washington 108:220–227.<br />

Martin, J. W., and S. Trautwein. In press. Fossil crabs<br />

(<strong>Crustacea</strong>, Decapoda, Brachyura) from Lothagam.<br />

In Lothagam: <strong>the</strong> dawn <strong>of</strong> humanity in eastern Africa,<br />

ed. M. G. Leakey and J. M. Harris. New York:<br />

Columbia University Press.<br />

Martin, J. W., F. M. Truesdale, and D. L. Felder. 1985.<br />

Larval development <strong>of</strong> Panopeus bermudensis Benedict<br />

and Rathbun, 1891 (Brachyura, Xanthidae)<br />

with notes on zoeal characters in xanthid crabs.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 5:84–105.<br />

Martin, J. W., E. W. Vetter, and C. E. Cash-Clark. 1996.<br />

Description, external morphology, and natural history<br />

observations <strong>of</strong> Nebalia hessleri, new species<br />

(Phyllocarida: Leptostraca), from sou<strong>the</strong>rn California,<br />

with a key to <strong>the</strong> extant families and genera <strong>of</strong><br />

<strong>the</strong> Leptostraca. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 16:<br />

347–372.<br />

Mattern, D., and M. Schlegel. 2001. Molecular evolution<br />

<strong>of</strong> <strong>the</strong> small subunit ribosomal DNA in woodlice<br />

(<strong>Crustacea</strong>, Isopoda, Oniscidea) and implications for<br />

oniscidean phylogeny. Molecular Phylogenetics and<br />

Evolution 18:54–65.<br />

Mayrat, A., and M. de Saint Laurent. 1996. Classe des<br />

Malacostracés (Malacostraca Latreille, 1802). Considerations<br />

sur la classe des Malacostracés. In Traité<br />

de Zoologie. <strong>An</strong>atomie, Systématique, Biologie.<br />

Crustacés. Tome VII, Fascicule II. Généralités (suite)<br />

et Systématique, ed. J. Forest, 841–863. Paris: Masson,<br />

1002 pp.<br />

McHugh, D., and K. M. Halanych. 1998. Introduction to<br />

<strong>the</strong> symposium: evolutionary relationships <strong>of</strong> Metazoan<br />

phyla: advances, problems, and approaches.<br />

American Zoologist 38:813–817.<br />

McKenzie, K. G. 1991. <strong>Crustacea</strong>n evolutionary sequenc-<br />

90 � Contributions in Science, Number 39 Literature Cited


es and consequences. In Proceedings <strong>of</strong> <strong>the</strong> 1990 International<br />

<strong>Crustacea</strong>n Conference, ed. P. J. F. Davie<br />

and R. H. Quinn. Memoirs <strong>of</strong> <strong>the</strong> Queensland Museum<br />

31:19–38.<br />

McKenzie, K. G., K. J. Müller, and M. N. Gramm. 1983.<br />

Phylogeny <strong>of</strong> Ostracoda. In <strong>Crustacea</strong>n issues 1.<br />

<strong>Crustacea</strong>n phylogeny, ed. F. R. Schram, 29–46. Rotterdam:<br />

A. A. Balkema Press, 372 pp.<br />

McKinnon, A. D. 1994. Australopsyllus fallaz gen. et sp.<br />

nov., <strong>the</strong> third known species <strong>of</strong> <strong>the</strong> family Thaumatopsyllidae<br />

(Copepoda: Cyclopoida). Sarsia 79:<br />

27–32.<br />

McLaughlin, P. A. 1983a. A review <strong>of</strong> <strong>the</strong> phylogenetic<br />

position <strong>of</strong> <strong>the</strong> Lomidae (<strong>Crustacea</strong>: Decapoda: <strong>An</strong>omala).<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 3:431–437.<br />

. 1983b. Hermit crabs—are <strong>the</strong>y really polyphyletic?<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 3:608–621.<br />

McLaughlin, P. A., and P. Hogarth. 1998. Hermit crabs<br />

(Decapoda: <strong>An</strong>omura: Paguridea) from <strong>the</strong> Seychelles.<br />

Zoologisches Mededelingen 318:1–48.<br />

McLaughlin, P. A., and L. B. Holthuis. 1985. <strong>An</strong>omura<br />

versus <strong>An</strong>omala. <strong>Crustacea</strong>na 49:204–209.<br />

McLaughlin, P. A., and R. Lemaitre. 1997. Carcinization<br />

in <strong>the</strong> <strong>An</strong>omura—fact or fiction? I. Evidence from<br />

adult morphology. Contributions in Zoology (Amsterdam)<br />

67:79–123.<br />

. 2000. Aspects <strong>of</strong> evolution in <strong>the</strong> anomuran superfamily<br />

Paguroidea: one larval prospective. Invertebrate<br />

Reproduction and Development 38:159–<br />

169.<br />

McLay, C. L. 1991. <strong>Crustacea</strong> Decapoda: <strong>the</strong> sponge<br />

crabs (Dromiidae) <strong>of</strong> New Caledonia and <strong>the</strong> Philippines<br />

with a review <strong>of</strong> <strong>the</strong> genera. In Résultats des<br />

Campagnes Musorstom, ed. A. Crosnier. Mémoires<br />

de Muséum National d’Histoire Naturelle, vol. 10,<br />

no. 156, 11–251.<br />

. 1999. <strong>Crustacea</strong> Decapoda: revision <strong>of</strong> <strong>the</strong> family<br />

Dynomenidae. In Résultats des Campagnes Musorstom,<br />

ed. A. Crosnier. Mémoires de Muséum National<br />

d’Histoire Naturelle, vol. 20, no. 180, 427–<br />

569.<br />

Meier, R., and S. Richter. 1992. Suggestions for a more<br />

precise usage <strong>of</strong> proper names <strong>of</strong> taxa. Zeitschrift für<br />

Zoologische Systematik und Evolutionsforschung<br />

30:81–88.<br />

Milius, S. 1999. Should we junk Linnaeus? Science News<br />

156:268–270.<br />

Min, G. S., S. H. Kim, and W. Kim. 1998. Molecular phylogeny<br />

<strong>of</strong> arthropods and <strong>the</strong>ir relatives: polyphyletic<br />

origin <strong>of</strong> arthropodization. Molecules and Cells 8:<br />

75–83.<br />

Mizrahi, L., Y. Achituv, D. J. Katc<strong>of</strong>f, and R. Perl-Treves.<br />

1998. Phylogenetic position <strong>of</strong> Ibla (Cirripedia:<br />

Thoracica) based on 18S rDNA sequence analysis.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 18:363–368.<br />

Monod, Th. 1984. La position systématique des Thermosbaenacea.<br />

<strong>An</strong>nales de Societe Royale de Zoologie<br />

Belgique 114(supplement 1):204–206.<br />

Monod, Th., and Ph. Cals. 1988. Systématique et évolution<br />

des Thermosbénacés (Arthropodes, Crustacés),<br />

d’après l’ordonnance des structures épidermiques superficielles.<br />

Comptes Rendus Hebdomadaires des Seances<br />

de l’Academie des Sciences, series 3, 306:99–<br />

108.<br />

. 1999. Ordre des Thermosbaenacés (Thermosbaenacea<br />

Monod, 1927). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Tome VII, Fascicule<br />

IIIA. Crustacés Péracarides, ed. J. Forest. Memoires<br />

de l’Institut Oceanographique Fondation Albert I er ,<br />

Prince de Monaco, 19:11–34.<br />

Monod, Th., and J. Forest. 1996. Histoire de la classification<br />

des Crustacés. In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Crustacés. Tome VII,<br />

Fascicule II. Généralités (suite) et Systématique, ed.<br />

J. Forest, 235–267. Paris: Masson, 1002 pp.<br />

Monod, Th., and L. Laubier. 1996. Les Crustacés dans la<br />

Biosphere. In Traité de Zoologie. <strong>An</strong>atomie, Systématique,<br />

Biologie. Crustacés. Tome VII, Fascicule II.<br />

Généralités (suite) et Systématique, ed. J. Forest, 91–<br />

166. Paris: Masson, 1002 pp.<br />

Moore, R. C. 1969. Editorial preface. In Treatise on invertebrate<br />

paleontology, part R, Arthropoda 4, ed.<br />

R. C. Moore, xi–xxxvi. Lawrence, Kansas: Geological<br />

Society <strong>of</strong> America and <strong>the</strong> University <strong>of</strong> Kansas<br />

Press.<br />

Moore, R. C., and McCormick. 1969. General features <strong>of</strong><br />

<strong>Crustacea</strong>. In Treatise on invertebrate paleontology,<br />

part R, Arthropoda 4, ed. R. C. Moore, R57—R120.<br />

Lawrence, Kansas: Geological Society <strong>of</strong> America<br />

and <strong>the</strong> University <strong>of</strong> Kansas Press.<br />

Moosa, M. K. 1991. The Stomatopoda <strong>of</strong> New Caledonia<br />

and Chesterfield Islands. In Le benthos des fonds<br />

meubles des lagons de Nouvelle-Calédonie, vol. 1,<br />

ed. B. Richer de Forges, 149–219. Paris: ORSTOM<br />

Editions.<br />

Morin, J. G., and A. C. Cohen. 1991. Bioluminescent displays,<br />

courtship, and reproduction in ostracodes. In<br />

<strong>Crustacea</strong>n sexual biology, ed. R. T. Bauer and J. W.<br />

Martin, 1–16. New York: Columbia University<br />

Press.<br />

Morrison, C. L., and C. W. Cunningham. 1999. Dramatic<br />

mitochondrial DNA gene rearrangements clarify relationships<br />

among anomuran crustaceans. Program<br />

and Abstracts, The <strong>Crustacea</strong>n Society 1999 Summer<br />

Meeting, Lafayette, Louisiana: 40.<br />

Moura, G., and M. L. Christ<strong>of</strong>fersen. 1996. The system<br />

<strong>of</strong> <strong>the</strong> mandibulate arthropods: Tracheata and Remipedia<br />

as sister groups, ‘‘<strong>Crustacea</strong>’’ non-monophyletic.<br />

Journal <strong>of</strong> Comparative Biology 1:95–113.<br />

Müller, H.-G. 1994. World catalogue and bibliography <strong>of</strong><br />

<strong>the</strong> <strong>Recent</strong> Stomatopoda. Berlin: Wissenschaftlicher<br />

Verlag, 228 pp.<br />

Müller, K. J. 1982. Hesslandona unisulcata sp. nov. (Ostracoda)<br />

with phosphatized appendages from Upper<br />

Cambrian ‘Orsten’ <strong>of</strong> Sweden. In A research manual<br />

<strong>of</strong> fossil and <strong>Recent</strong> ostracods, ed. R. H. Bate et al.,<br />

276–307. Chichester, England: Ellis Horwood.<br />

. 1983. <strong>Crustacea</strong>ns with preserved s<strong>of</strong>t parts from<br />

<strong>the</strong> Upper Cambrian <strong>of</strong> Sweden. Lethaia 16:93–109.<br />

Müller, K. J., and D. Walossek. 1985a. A remarkable arthropod<br />

fauna from <strong>the</strong> Upper Cambrian ‘‘Orsten’’<br />

<strong>of</strong> Sweden. Transactions <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> Edinburgh,<br />

Earth Sciences 76:161–172.<br />

. 1985b. Skaracarida, a new order <strong>of</strong> <strong>Crustacea</strong><br />

from <strong>the</strong> Upper Cambrian <strong>of</strong> Västergötland, Sweden.<br />

Fossils and Strata 17:1–65.<br />

. 1986a. Martinssonia elongata gen. et. sp. n., a<br />

crustacean-like euarthropod from <strong>the</strong> Upper Cambrian<br />

‘Orsten’ <strong>of</strong> Sweden. Zoologica Scripta 15:73–<br />

92.<br />

. 1986b. Arthropod larvae from <strong>the</strong> Upper Cambrian<br />

<strong>of</strong> Sweden. Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> Edinburgh, Earth Sciences 77:157–179.<br />

. 1988. External morphology and larval development<br />

<strong>of</strong> <strong>the</strong> Upper Cambrian maxillopod Bredocaris<br />

admirabilis. Fossils and Strata 23:1–70.<br />

Contributions in Science, Number 39 Literature Cited � 91


Negrea, S., N. Botnariuc, and H. J. Dumont. 1999. Phylogeny,<br />

evolution and classification <strong>of</strong> <strong>the</strong> Branchiopoda<br />

(<strong>Crustacea</strong>). Hydrobiologia 412:191–212.<br />

Newman, W. A. 1982. Evolution within <strong>the</strong> <strong>Crustacea</strong>,<br />

part 3: Cirripedia. In The biology <strong>of</strong> <strong>Crustacea</strong>, vol.<br />

1, Systematics, <strong>the</strong> fossil record, and biogeography,<br />

ed. L. G. Abele, 197–221. New York: Academic<br />

Press.<br />

. 1983. Origin <strong>of</strong> <strong>the</strong> Maxillopoda; urmalacostracan<br />

ontogeny and progenesis. In <strong>Crustacea</strong>n issues<br />

1. <strong>Crustacea</strong>n phylogeny, ed. F. R. Schram, 105–119.<br />

Rotterdam: A. A. Balkema Press, 372 pp.<br />

. 1987. Evolution <strong>of</strong> cirripedes and <strong>the</strong>ir major<br />

groups. In <strong>Crustacea</strong>n issues 5. Barnacle biology, ed.<br />

A. J. Southward, 3–42. Rotterdam: A. A. Balkema<br />

Press, 443 pp.<br />

. 1989. Juvenile ontogeny and metamorphosis in<br />

<strong>the</strong> most primitive living sessile barnacle, Neoverruca,<br />

from abyssal hydro<strong>the</strong>rmal springs. Bulletin <strong>of</strong><br />

Marine Science 45:467–477.<br />

. 1991. Cirripedia. In Encyclopedia Britannica,<br />

15th edition, vol. 16, 849–854, 859. Chicago: Encyclopedia<br />

Britannica.<br />

. 1992. Origin <strong>of</strong> Maxillopoda. Acta Zoologica 73:<br />

271–392.<br />

. 1993. Darwin and cirripedology. In <strong>Crustacea</strong>n<br />

issues 8. History <strong>of</strong> carcinology, ed. F. M. Truesdale,<br />

349–434. Rotterdam: A. A. Balkema Press, 445 pp.<br />

. 1996. Sous-classe de Cirripedes (Cirripedia Burmeister,<br />

1834) super-ordre des Thoraciques et des<br />

Acrothoraciques (Thoracica Darwin, 1854—Acrothoracica<br />

Gruvel, 1905). In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Crustacés. Tome<br />

VII, Fascicule II. Généralités (suite) et Systématique,<br />

ed. J. Forest, 453–540. Paris: Masson, 1002 pp.<br />

Newman, W. A., and R. R. Hessler. 1989. A new abyssal<br />

hydro<strong>the</strong>rmal verrucomorphan (Cirripedia; Sessilia):<br />

<strong>the</strong> most primitive living sessile barnacle. Transactions<br />

<strong>of</strong> <strong>the</strong> San Diego Society <strong>of</strong> Natural History<br />

21:259–273.<br />

Newman, W. A., and T. Yamaguchi. 1995. A new sessile<br />

barnacle (Cirripedia: Balanomorpha) from <strong>the</strong> Lau<br />

Back-Arc Basin, Tonga: first record <strong>of</strong> a living representative<br />

since <strong>the</strong> Miocene. Bulletin du Museum<br />

National d’Histoire Naturelle (Paris) 17A:211–243.<br />

Ng, P. K. L. 1983. Aspects <strong>of</strong> <strong>the</strong> systematics <strong>of</strong> <strong>the</strong> family<br />

Pilumnidae Samouelle, 1819 (<strong>Crustacea</strong>, Decapoda,<br />

Brachyura) and a study <strong>of</strong> evolutionary trends within<br />

<strong>the</strong> superfamily Xanthoidea (sensu Guinot, 1978).<br />

Unpublished B. Sc. Honors Thesis, Department <strong>of</strong><br />

Zoology, National University <strong>of</strong> Singapore, 251 pp,<br />

12 plates.<br />

. 1988. The freshwater crabs <strong>of</strong> peninsular Malaysia<br />

and Singapore. Singapore: Department <strong>of</strong> Zoology,<br />

University <strong>of</strong> Singapore, and Shing Lee Publishers,<br />

156 pp.<br />

. 1998. Marine crabs. In FAO species identification<br />

guide for fishery purposes. The living marine resources<br />

<strong>of</strong> <strong>the</strong> Western-Central Pacific, vol. 2. Cephalopods,<br />

crustaceans, holothurians and sharks, ed.<br />

K. E. Carpenter and V. H. Niem, 1045–1155. Rome:<br />

Food and Agriculture Organisation.<br />

Ng, P. K. L, and P. F. Clark. 1999. The systematic position<br />

<strong>of</strong> <strong>the</strong> Eumedonidae: evidence from adult and larval<br />

morphology. In General information and book <strong>of</strong><br />

abstracts, 7th Colloquium <strong>Crustacea</strong> Decapoda<br />

Mediterranea, ed. J. Paula. Lisbon, Portugal: University<br />

<strong>of</strong> Lisbon, 179 pp.<br />

. 2000. The eumedonid file: a case study <strong>of</strong> systematic<br />

compatibility using larval and adult characters<br />

(<strong>Crustacea</strong>: Decapoda: Brachyura). Invertebrate Reproduction<br />

and Development 38:225–252.<br />

Ng, P. K. L., and G. Rodriguez. 1986. New records <strong>of</strong><br />

Mimilambrus wileyi Williams, 1979 (<strong>Crustacea</strong>: Decapoda:<br />

Brachyura), with notes on <strong>the</strong> systematics <strong>of</strong><br />

<strong>the</strong> Mimilambridae Williams, 1979 and Par<strong>the</strong>nopoidea<br />

MacLeay, 1838 sensu Guinot, 1978. Proceedings<br />

<strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington 99:<br />

88–99.<br />

Ng, P. K. L., and B. Sket. 1996. The freshwater crab fauna<br />

(<strong>Crustacea</strong>: Brachyura) <strong>of</strong> <strong>the</strong> Philippines. IV. On a<br />

collection <strong>of</strong> Para<strong>the</strong>lphusidae from Bohol. Proceedings<br />

<strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington 109:<br />

695–706.<br />

Ng, P. K. L., and M. Takeda. 1994. Skeloso<strong>the</strong>lphusa<br />

(<strong>Crustacea</strong>, Decapoda, Brachyura), a new genus <strong>of</strong><br />

potamonautid freshwater crab from Madagascar,<br />

with descriptions <strong>of</strong> two new species. Bulletin <strong>of</strong> <strong>the</strong><br />

National Science Museum, Tokyo, series A (Zoology)<br />

20:161–172.<br />

Nicholls, G. E. 1943. The Phreatoicoidea: part I. The Amphisopidae.<br />

Papers and Proceedings <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> Tasmania, 1942:1–145.<br />

. 1944. The Phreatoicoidea: part II. The Phreatocoidae.<br />

Papers and Proceedings <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> Tasmania, 1943:1–156.<br />

Nicol, S., and Y. Endo. 1999. Krill fisheries: development,<br />

management and ecosystem implications. Aquatic<br />

Living Resources 12:105–120.<br />

Nielsen, C. 1995. <strong>An</strong>imal evolution: interrelationships <strong>of</strong><br />

<strong>the</strong> living phyla. Oxford: Oxford University Press,<br />

467 pp.<br />

Nielsen, C., N. Scharff, and D. Eibye-Jacobsen. 1996. Cladistic<br />

analysis <strong>of</strong> <strong>the</strong> animal kingdom. Biological<br />

Journal <strong>of</strong> <strong>the</strong> Linnean Society 57:385–410.<br />

Nielsen, C., W. F. Walker, H. R. Bode, and R. E. Steele.<br />

1989. Phylogeny and molecular data (published as<br />

three separate comments on <strong>the</strong> paper by Field et al.,<br />

1988). Science 243:548–551.<br />

Nixon, K., and J. Carpenter. 2000. On <strong>the</strong> o<strong>the</strong>r ‘‘phylogenetic<br />

systematics.’’ Cladistics 16:298–318.<br />

Nouvel, H., J.-P. Casanova, and J.-P. Lagardère. 1999. Ordre<br />

des Mysidacés (Mysidacea Boas 1883). In Traité<br />

de Zoologie. <strong>An</strong>atomie, Systématique, Biologie.<br />

Tome VII, Fascicule IIIA. Crustacés Péracarides, ed.<br />

J. Forest. Memoires de l’Institut Oceanographique<br />

Fondation Albert I er , Prince de Monaco, 19:39–86.<br />

Ohtsuka, S., H. S. J. Roe, and G. A. Boxshall. 1993. A<br />

new family <strong>of</strong> calanoid copepods, <strong>the</strong> Hyperbionychidae,<br />

collected from <strong>the</strong> deep-sea hyperbenthic<br />

community in <strong>the</strong> nor<strong>the</strong>astern Atlantic. Sarsia 78:<br />

69–82.<br />

Olesen, J. 1996. External morphology and phylogenetic<br />

significance <strong>of</strong> <strong>the</strong> dorsal/neck organ in <strong>the</strong> Conchostraca<br />

and <strong>the</strong> head pores <strong>of</strong> <strong>the</strong> cladoceran family<br />

Chydoridae (<strong>Crustacea</strong>, Branchiopoda). Hydrobiologia<br />

330:213–226.<br />

. 1998. A phylogenetic analysis <strong>of</strong> <strong>the</strong> Conchostraca<br />

and Cladocera (<strong>Crustacea</strong>, Branchiopoda, Diplostraca).<br />

Zoological Journal <strong>of</strong> <strong>the</strong> Linnean Society<br />

122:491–536.<br />

. 1999a. Larval and post-larval development <strong>of</strong> <strong>the</strong><br />

branchiopod clam shrimp Cycles<strong>the</strong>ria hislopi<br />

(Baird, 1859) (<strong>Crustacea</strong>, Branchiopoda, Conchostraca,<br />

Spinicaudata). Acta Zoologica 80:163–184.<br />

. 1999b. A new species <strong>of</strong> Nebalia (<strong>Crustacea</strong>, Lep-<br />

92 � Contributions in Science, Number 39 Literature Cited


tostraca) form Unguja Island (Zanzibar), Tanzania,<br />

East Africa, with a phylogenetic analysis <strong>of</strong> leptostracan<br />

genera. Journal <strong>of</strong> Natural History 33:1789–<br />

1809.<br />

. 2000. <strong>An</strong> updated phylogeny <strong>of</strong> <strong>the</strong> Conchostraca–Cladocera<br />

clade (Branchiopoda, Diplostraca).<br />

<strong>Crustacea</strong>na 73:869–886.<br />

. 2001. External morphology and larval development<br />

<strong>of</strong> Derocheilocaris remanei Delamare-Debouteville<br />

& Chapuis, 1951 (<strong>Crustacea</strong>, Mystacocarida),<br />

with a comparison <strong>of</strong> crustacean segmentation and<br />

tagmosis patterns. Biologiske Skrifter 53:1–59.<br />

Olesen, J., J. W. Martin, and E. Roessler. 1997. External<br />

morphology <strong>of</strong> <strong>the</strong> male <strong>of</strong> Cycles<strong>the</strong>ria hislopi<br />

(Baird, 1859) (<strong>Crustacea</strong>, Branchiopoda, Spinicaudata),<br />

with comparison <strong>of</strong> male claspers among <strong>the</strong><br />

Conchostraca and Cladocera and its bearing on phylogeny<br />

<strong>of</strong> <strong>the</strong> ‘‘bivalved’’ Branchiopoda. Zoologica<br />

Scripta 25:291–316.<br />

Orr, P. J., and D. E. G. Briggs. 1999. Exceptionally preserved<br />

conchostracans and o<strong>the</strong>r crustaceans from<br />

<strong>the</strong> Upper Carboniferous <strong>of</strong> Ireland. Special Papers<br />

in Paleontology (The Paleontology Association <strong>of</strong><br />

London) 62:1–68.<br />

Overstreet, R. M., I. Dyková, and W. E. Hawkins. 1992.<br />

Branchiura. In Microscopic anatomy <strong>of</strong> invertebrates,<br />

vol. 9, <strong>Crustacea</strong>, ed. F. W. Harrison and A.<br />

G. Humes, 385–413. New York: Wiley-Liss.<br />

Page, R. D. M., and M. A. Charleston. 1998. From gene<br />

to organismal phylogeny: reconciled trees and <strong>the</strong><br />

gene tree/species tree problem. Molecular Phylogenetics<br />

and Evolution 7:231–240.<br />

Palmer, A. R. 1993. Whi<strong>the</strong>r Pentastomida? Nature 361:<br />

214.<br />

Panganiban, G., S. M. Irvine, C. Lowe, H. Roehl, L. S.<br />

Corley, B. Sherbon, J. K. Grenier, J. F. Fallon, J. Kimble,<br />

M. Walker, G. A. Wray, B. J. Swalla, M. Q.<br />

Martindale, and S. B. Carroll. 1997. The origin and<br />

evolution <strong>of</strong> animal appendages. Proceedings <strong>of</strong> <strong>the</strong><br />

National Academy <strong>of</strong> Sciences 94:5162–5166.<br />

Panganiban, G., A. Sebring, L. Nagy, and S. Carroll. 1995.<br />

The development <strong>of</strong> crustacean limbs and <strong>the</strong> evolution<br />

<strong>of</strong> arthropods. Science 270:1363–1366.<br />

Park, T. 1986. Phylogeny <strong>of</strong> calanoid copepods. Syllogeus<br />

58:191–196.<br />

Paul, D. H. 1989. A neurophylogenists view <strong>of</strong> decapod<br />

<strong>Crustacea</strong>. Bulletin <strong>of</strong> Marine Science 45:487–504.<br />

Pennant, T. 1777. The British zoology, vol. 4, 4th edition,<br />

<strong>Crustacea</strong>, Mollusca, Testacea. London: B. White,<br />

136 pp.<br />

Pérez Farfante, I., and B. F. Kensley. 1997. Penaeoid and<br />

sergestoid shrimps and prawns <strong>of</strong> <strong>the</strong> world. Keys<br />

and diagnoses for <strong>the</strong> families and genera. Mémoires<br />

du Muséum National d’Histoire Naturelle, vol. 175,<br />

1–233.<br />

Perl-Treves, R., L. Mizrahi, D. J. Katc<strong>of</strong>f, and Y. Achituv.<br />

2000. Elucidation <strong>of</strong> <strong>the</strong> phylogenetic relationship <strong>of</strong><br />

three <strong>the</strong>costracans, Verruca, Paralepas, and Dendrogaster<br />

based on 18S rDNA sequence. Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology 20:385–392.<br />

Pinna, G., P. Arduini, C. Pesarini, and G. Teruzzi. 1982.<br />

Thylacocephala: una nuova classe di Crostacei fossili.<br />

Atti della Societá Italiano di Scienze Naturali e<br />

del Museo Civico di Storia Naturale Milano 123:<br />

469–482.<br />

. 1985. Some controversial aspects <strong>of</strong> <strong>the</strong> morphology<br />

and anatomy <strong>of</strong> Ostenocaris cypriformis<br />

(<strong>Crustacea</strong>, Thylacocephala). Transactions <strong>of</strong> <strong>the</strong><br />

Royal Society <strong>of</strong> Edinburgh 76:373–379.<br />

Pires, A. M. S. 1987. Potiicoara brasiliensis: a new genus<br />

and species <strong>of</strong> Spelaeogriphacea (<strong>Crustacea</strong>: Peracarida)<br />

from Brazil with a phylogenetic analysis <strong>of</strong> <strong>the</strong><br />

Peracarida. Journal <strong>of</strong> Natural History 21:225–238.<br />

Pirlot, J. M. 1934. Les amphipodes de l’expedition du Siboga.<br />

Deuxieme partie, II. Les amphipodes de lar<br />

mer pr<strong>of</strong>onde. 2. Hyperiopsidae, Jassidae. Siboga<br />

Expedite 33d:167–235.<br />

Pleijel, F., and G. W. Rouse. 2000. Least-inclusive taxonomic<br />

unit: a new taxonomic concept for biology.<br />

Proceedings <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London 267B:<br />

627–630.<br />

Pohle, G., and F. Marques. Larval stages <strong>of</strong> Paradasygyius<br />

depressus (Bell, 1835) (<strong>Crustacea</strong>: Decapoda: Brachyura:<br />

Majidae) and a phylogenetic analysis for 21<br />

genera <strong>of</strong> Majidae. Proceedings <strong>of</strong> <strong>the</strong> Biological Society<br />

<strong>of</strong> Washington 113:739–760.<br />

Poore, G. C. B. 1987. Lynseiidae (Isopoda, Flabellifera),<br />

a new monotypic family from Australia. Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology 7:258–264.<br />

. 1994. A phylogeny <strong>of</strong> <strong>the</strong> families <strong>of</strong> Thalassinidea<br />

(<strong>Crustacea</strong>: Decapoda) with keys to families and<br />

genera. Memoirs <strong>of</strong> <strong>the</strong> Museum <strong>of</strong> Victoria 54:79–<br />

120.<br />

. 1997. A review <strong>of</strong> <strong>the</strong> thalassinidean families Callianideidae<br />

Kossman, Micheleidae Sakai, and Thomassiniidae<br />

de Saint Laurent (<strong>Crustacea</strong>, Decapoda)<br />

with descriptions <strong>of</strong> fifteen new species. Zoosystema<br />

19:345–420.<br />

. 1998. Phylogeny <strong>of</strong> <strong>the</strong> <strong>An</strong>thuridea (Isopoda).<br />

Proceedings and Abstracts <strong>of</strong> <strong>the</strong> 4th International<br />

<strong>Crustacea</strong>n Congress, Amsterdam: 71 (abstract 42).<br />

. 2001a. Families and genera <strong>of</strong> Isopoda <strong>An</strong>thuridea.<br />

In <strong>Crustacea</strong>n issues 13. Isopod systematics and<br />

evolution, ed. B. Kensley and R. C. Brusca, 63–174.<br />

Rotterdam: A. A. Balkema Press, 357 pp.<br />

. 2001b. Isopoda Valvifera: diagnoses and relationships<br />

<strong>of</strong> <strong>the</strong> families. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

21:205–230.<br />

Poore, G. C. B., and T. M. Bardsley. 1992. Austrarcturellidae<br />

(<strong>Crustacea</strong>: Isopoda: Valvifera), a new family<br />

from Australia. Invertebrate Taxonomy 6:843–908.<br />

Poore, G. C. B., and W. F. Humphreys. 1998. First record<br />

<strong>of</strong> Spelaeogriphacea from Australasia: a new genus<br />

and species from an aquifer in <strong>the</strong> arid Pilbara <strong>of</strong><br />

Western Australia. <strong>Crustacea</strong>na 71:721–742.<br />

Poore, G. C. B., and H. M. Lew Ton. 1988. <strong>An</strong><strong>the</strong>luridae,<br />

a new family <strong>of</strong> <strong>Crustacea</strong> (Isopoda: <strong>An</strong>thuridea)<br />

with new species from Australia. Journal <strong>of</strong> Natural<br />

History 22:489–506.<br />

Popadić, A., D. Rusch, M. Peterson, B. T. Rogers, and T.<br />

C. Kaufman. 1996. Origin <strong>of</strong> <strong>the</strong> arthropod mandible.<br />

Nature 380:395.<br />

Por, F. D. 1984. Canuellidae Lang (Harpacticoida: Polyarthra)<br />

and <strong>the</strong> ancestry <strong>of</strong> <strong>the</strong> Copepoda. <strong>Crustacea</strong>na<br />

7(supplement):1–24.<br />

. 1986. A re-evaluation <strong>of</strong> <strong>the</strong> family Cleotodidae<br />

Sars, Lang (Copepoda, Harpacticoida). Syllogeus 58:<br />

420–425.<br />

Pretzmann, G. 1973. Grundlagen und Ergebnisse der Systematik<br />

der Pseudo<strong>the</strong>lphusidae. Zeitschrift für<br />

Zoologische Systematik und Evolutionsforschung<br />

11:196–218.<br />

Preuss, G. 1951. Die Verwandtschaft der <strong>An</strong>ostraca und<br />

Phyllopoda. Zoologisches <strong>An</strong>zeiger 147:50–63.<br />

Raff, R. A., C. R. Marshall, and J. M. Turbeville. 1994.<br />

Contributions in Science, Number 39 Literature Cited � 93


Using DNA sequences to unravel <strong>the</strong> Cambrian radiation<br />

<strong>of</strong> <strong>the</strong> animal phyla. <strong>An</strong>nual Review <strong>of</strong> Ecology<br />

and Systematics 25:351–375.<br />

Rafinesque, C. S. 1815. <strong>An</strong>alyse de la nature ou tableau<br />

de l’univers et des corps organisés. Palermo:<br />

l’Imprimerie de Jean Barravecchia, 224 pp.<br />

Raibaut, A. 1996. Copépodes II. Les Copépodes parasites.<br />

In Traité de Zoologie. <strong>An</strong>atomie, Systématique, Biologie.<br />

Crustacés. Tome VII, Fascicule II. Généralités<br />

(suite) et Systématique, ed. J. Forest, 639–718. Paris:<br />

Masson, 1002 pp.<br />

Razouls, C. 1996. Copépodes I. Les Copépodes libres. In<br />

Traité de Zoologie. <strong>An</strong>atomie, Systématique, Biologie.<br />

Crustacés. Tome VII, Fascicule II. Généralités<br />

(suite) et Systématique, ed. J. Forest, 571–638. Paris:<br />

Masson, 1002 pp.<br />

Razouls, C., and A. Raibaut. 1996. Copépodes III. Phylogénie<br />

et classification. In Traité de Zoologie. <strong>An</strong>atomie,<br />

Systématique, Biologie. Crustacés. Tome<br />

VII, Fascicule II. Généralités (suite) et Systématique,<br />

ed. J. Forest, 719–738. Paris: Masson, 1002 pp.<br />

Regier, J. C., and J. W. Shultz. 1997. Molecular phylogeny<br />

<strong>of</strong> <strong>the</strong> major arthropod groups indicates polyphyly<br />

<strong>of</strong> crustaceans and a new hypo<strong>the</strong>sis for <strong>the</strong> origin<br />

<strong>of</strong> hexapods. Molecular Biology and Evolution 14:<br />

902–913.<br />

. 1998a. Resolving arthropod phylogeny using<br />

multiple nuclear genes. American Zoologist 37:<br />

102A.<br />

. 1998b. Molecular phylogeny <strong>of</strong> arthropods and<br />

<strong>the</strong> significance <strong>of</strong> <strong>the</strong> Cambrian ‘‘explosion’’ for molecular<br />

systematics. American Zoologist 38:918–<br />

928.<br />

Remigio, E. A., and P. D. Hebert. 2000. Affinities among<br />

anostracan (<strong>Crustacea</strong>: Branchiopoda) families inferred<br />

from phylogenetic analyses <strong>of</strong> multiple gene<br />

sequences. Molecular Phylogenetics and Evolution<br />

17:117–128.<br />

Ren, X.-Q. 1999. A new family <strong>of</strong> superfamily Haustorioidea<br />

(<strong>Crustacea</strong>: Amphipoda: Gammaridea) from<br />

<strong>the</strong> China sea. Chinese Journal <strong>of</strong> Oceanology and<br />

Limnology 17:344–349.<br />

Rice, A. L. 1980. Crab zoeal morphology and its bearing<br />

on <strong>the</strong> classification <strong>of</strong> <strong>the</strong> Brachyura. Transactions<br />

<strong>of</strong> <strong>the</strong> Zoological Society <strong>of</strong> London 35:271–424.<br />

. 1981. The megalopa stage in brachyuran crabs.<br />

The Podotremata Guinot. Journal <strong>of</strong> Natural History<br />

15:1003–1011.<br />

. 1983. Zoeal evidence for brachyuran phylogeny.<br />

In <strong>Crustacea</strong>n issues 1. <strong>Crustacea</strong>n phylogeny, ed. F.<br />

R. Schram, 313–329. Rotterdam: A. A. Balkema<br />

Press, 372 pp.<br />

. 1988. The megalopa stage in majid crabs, with a<br />

review <strong>of</strong> spider crab relationships based on larval<br />

characters. Symposium <strong>of</strong> <strong>the</strong> Zoological Society <strong>of</strong><br />

London 59:27–46.<br />

Richer de Forges, B., B. G. M. Jamieson, D. Guinot, and<br />

C. C. Tudge. 1997. Ultrastructure <strong>of</strong> <strong>the</strong> spermatozoan<br />

<strong>of</strong> Hymenosomatidae (<strong>Crustacea</strong>: Brachyura)<br />

and <strong>the</strong> relationships <strong>of</strong> <strong>the</strong> family. Marine Biology<br />

130:233–242.<br />

Richter, S. 1994. Monophylie der Lophogastrida und Phylogenetisches<br />

System der Peracarida (<strong>Crustacea</strong>).<br />

Verhandlungen der Deutschen Zoologischer Gesellschaft<br />

87:231.<br />

. 1999. The structure <strong>of</strong> <strong>the</strong> ommatidia <strong>of</strong> <strong>the</strong> Malacostraca<br />

(<strong>Crustacea</strong>)—a phylogenetic approach.<br />

Verhandlungen der Naturwissenschaftlichen Vereine<br />

in Hamburg 38:161–204.<br />

Richter, S., A. Braband, N. Aladin, and G. Scholtz. 2001.<br />

The phylogenetic relationships <strong>of</strong> ‘‘predatory waterfleas’’<br />

(Cladocera: Onychopoda, Haplopoda) inferred<br />

from 12S rDNA. Molecular Phylogenetics and<br />

Evolution 18:1–9.<br />

Richter, S., and G. Scholtz. 1994. Morphological evidence<br />

for a hermit crab ancestry <strong>of</strong> lithodids (<strong>Crustacea</strong>,<br />

Decapoda, <strong>An</strong>omala, Paguroidea). Zoologische <strong>An</strong>zeiger<br />

233:187–210.<br />

. In press. Phylogenetic analysis <strong>of</strong> <strong>the</strong> Malacostraca<br />

(<strong>Crustacea</strong>). Journal <strong>of</strong> Zoological Systematics<br />

and Evolutionary Research.<br />

Riley, J. 1986. The biology <strong>of</strong> pentastomids. In Advances<br />

in parasitology, vol. 25, 45–128. London and New<br />

York: Academic Press.<br />

Riley, J., A. A. Banaja, and J. L. James. 1978. The phylogenetic<br />

relationships <strong>of</strong> <strong>the</strong> Pentastomida: <strong>the</strong> case<br />

for <strong>the</strong>ir inclusion within <strong>the</strong> <strong>Crustacea</strong>. International<br />

Journal for Parasitology 8:245–254.<br />

Rodríguez, G. 1982. Les crabes d’eau douce d’Amerique.<br />

Familie des Pseudo<strong>the</strong>lphusidae. Paris: ORSTOM,<br />

Faune Tropicale, vol. 22, 223 pp.<br />

. 1986. Centers <strong>of</strong> radiation <strong>of</strong> freshwater crabs in<br />

<strong>the</strong> Neotropics. In <strong>Crustacea</strong>n issues 4. <strong>Crustacea</strong>n<br />

biogeography, ed. R. H. Gore and K. L. Heck, 51–<br />

67. Rotterdam: A. A. Balkema Press, 292 pp.<br />

. 1992. The freshwater crabs <strong>of</strong> America. Family<br />

Trichodactylidae and a supplement to <strong>the</strong> family<br />

Pseudo<strong>the</strong>lphusidae. Paris: ORSTOM, Faune Tropicale,<br />

vol. 31, 189 pp.<br />

Roessler, E. W. 1991. Estudios sobre Entomostraces de<br />

Colombia VI—Paraimnadiidae, una nueva familia<br />

de <strong>Crustacea</strong>—Conchostraca. Revista de la Academia<br />

Colombiana de Ciencias Exactas, Físicas y Naturales<br />

18:93–104.<br />

. 1995a. Review <strong>of</strong> Colombian conchostraca (<strong>Crustacea</strong>)—morphotaxonomic<br />

aspects. Hydrobiologia<br />

298 (Developmental Hydrobiology 103):253–262.<br />

. 1995b. Review <strong>of</strong> Colombian conchostraca<br />

(<strong>Crustacea</strong>)—ecological aspects and life cycles—families<br />

Lynceidae, Limndadiidae, Leptes<strong>the</strong>riidae, and<br />

Metalimnadiidae. Hydrobiologia 298 (Developmental<br />

Hydrobiology 103):113–124.<br />

Rolfe, W. D. I. 1981. Phyllocarida and <strong>the</strong> origin <strong>of</strong> <strong>the</strong><br />

Malacostraca. Geobios 14:17–27.<br />

. 1985. Form and function in <strong>the</strong> Thylacocephala,<br />

Conchyliocarida and Concavicarida (?<strong>Crustacea</strong>): a<br />

problem <strong>of</strong> interpretation. Transactions <strong>of</strong> <strong>the</strong> Royal<br />

Society <strong>of</strong> Edinburgh, Earth Sciences, 76:391–399.<br />

. 1992. Not yet proven <strong>Crustacea</strong>: <strong>the</strong> Thylacocephala.<br />

Acta Zoologica 73:301–304.<br />

Roman, M.-L., and H. Dalens. 1999. Ordre des Isopodes<br />

(Épicarides exclus) (Isopoda Latreille, 1817). In Traité<br />

de Zoologie. <strong>An</strong>atomie, Systématique, Biologie.<br />

Tome VII, Fascicule IIIA. Crustacés Péracarides, ed.<br />

J. Forest. Memoires de l’Institut Oceanographique<br />

Fondation Albert I er , Prince de Monaco, 19:177–<br />

278.<br />

Roush, W. 1995. Gene ties arthropods toge<strong>the</strong>r. Science<br />

270:1297.<br />

Rudolphi, K. A. 1809. Entozoorum, sive Vermium Intestinalis<br />

Historia naturalis 2 (1).<br />

Ruppert, E. E., and R. D. Barnes. 1994. Invertebrate zoology,<br />

6th edition. Orlando, Florida: Saunders College<br />

Publishing and Harcourt Brace Jovanovich,<br />

1056 pp.<br />

94 � Contributions in Science, Number 39 Literature Cited


Saint Laurent, M. de. 1979. Vers une nouvelle classification<br />

des Crustaces Decapodes Reptantia. Bulletin de<br />

l’Office National des Pêches République Tunisienne<br />

(Tunisia), Ministere de l’Agriculture 3:15–31.<br />

. 1980a. Sur classification et phylogenie des Crustaces<br />

Decapodes brachyoures. I. Podotremata Guinot,<br />

1977, et Eubrachyura sect. nov. Comptes Rendus<br />

Hebdomadaires des Seances de l’Academie des Sciences,<br />

series D, 290:1265–1268.<br />

. 1980b. Sur classification et phylogenie des Crustaces<br />

Decapodes brachyoures. II. Heterotremata et<br />

Thoracotremata Guinot, 1977. Comptes Rendus<br />

Hebdomadaires des Seances de l’Academie des Sciences,<br />

series D, 290:1317–1320.<br />

. 1985. Remarques sur la distribution des Crustacés<br />

Décapodes. In Peuplements pr<strong>of</strong>onds du Golfe de<br />

Gascogne, Campagnes Biogas, ed. L. Laubier and C.<br />

Monniot, 469–478. Ifremer: Institut Francaise de<br />

Rechereche pour l’Exploraion de la Mer.<br />

. 1988. Enoplometopoidea, nouvelle superfamille<br />

de Crustacés Décapodes Astacidea. Comptes Rendus<br />

Hebdomadaires des Seances de l’Academie des Sciences,<br />

series 3, 307:59–62.<br />

. 1989. La nouvelle superfamille des Retroplumoidea<br />

Gill, 1894 (Decapoda, Brachyura): systématique,<br />

affinités et évolution. In Résultats des Campagnes<br />

MUSORSTOM, vol. 5, ed. J. Forest. Mémoires<br />

du Muséum National d’Histoire Naturelle<br />

(Paris), sére A, vol. 144, 103–179.<br />

Sakai, K. 1992. The families Callianideidae and Thalassinidae,<br />

with <strong>the</strong> description <strong>of</strong> two new subfamilies,<br />

one new genus and two new species. Naturalists 4:<br />

1–33.<br />

. 1999. Synopsis <strong>of</strong> <strong>the</strong> family Callianassidae, with<br />

keys to subfamilies, genera and species, and <strong>the</strong> description<br />

<strong>of</strong> new taxa (<strong>Crustacea</strong>: Decapoda: Thalassinidea).<br />

Zoologische Verhandelingen (Leiden)<br />

326:1–152.<br />

Samouelle, G. 1819. The entomologist’s useful compendium;<br />

or an introduction to <strong>the</strong> knowledge <strong>of</strong> British<br />

insects, comprising <strong>the</strong> best means <strong>of</strong> obtaining and<br />

preserving <strong>the</strong>m, and a description <strong>of</strong> <strong>the</strong> apparatus<br />

generally used; toge<strong>the</strong>r with <strong>the</strong> genera <strong>of</strong> Linné,<br />

and <strong>the</strong> modern method <strong>of</strong> arranging <strong>the</strong> classes<br />

<strong>Crustacea</strong>, Myriapoda, Spiders, Mites and Insects,<br />

from <strong>the</strong>ir affinities and structure, according to <strong>the</strong><br />

views <strong>of</strong> Dr. Leach, Also an explanation <strong>of</strong> <strong>the</strong> terms<br />

used in entomology; a calendar <strong>of</strong> <strong>the</strong> times <strong>of</strong> appearance<br />

and usual situations <strong>of</strong> near 3,000 species<br />

<strong>of</strong> British insects; with instructions for collecting and<br />

fitting up objects for <strong>the</strong> microscope. London:<br />

Thomas Boys, 496 pp.<br />

Sanders, H. L. 1963. Significance <strong>of</strong> <strong>the</strong> Cephalocarida. In<br />

Phylogeny and evolution <strong>of</strong> <strong>Crustacea</strong>, ed. H. B.<br />

Whittington and W. D. I Rolfe, 163–175. Cambridge,<br />

Massachusetts: Special Publication <strong>of</strong> <strong>the</strong><br />

Museum <strong>of</strong> Comparative Zoology.<br />

Sanders, H. L., R. R. Hessler, and S. P. Garner. 1985. Hirsutia<br />

bathyalis, a new unusual deep-sea benthic peracaridan<br />

crustacean from <strong>the</strong> tropical Atlantic. Journal<br />

<strong>of</strong> <strong>Crustacea</strong>n Biology 5:30–57.<br />

Sassaman, C. 1992. Description <strong>of</strong> <strong>the</strong> mature female and<br />

epicaridium lava <strong>of</strong> Cabiropsis montereyensis Sassaman<br />

from sou<strong>the</strong>rn California (<strong>Crustacea</strong>: Isopoda:<br />

Cabiropidae). Proceedings <strong>of</strong> <strong>the</strong> Biological Society<br />

<strong>of</strong> Washington 105:575–584.<br />

. 1995. Sex determination and evolution <strong>of</strong> unisex-<br />

uality in <strong>the</strong> Conchostraca. Hydrobiologia 298:45–<br />

65.<br />

Schmalfuss, H. 1989. Phylogenetics in Oniscidea. Monitore<br />

Zoologico Italiano, n. s., Monografia 4:3–27.<br />

Schmidt, M., and S. Harzsch. 1999. Comparative analysis<br />

<strong>of</strong> neurogenesis in <strong>the</strong> central olfactory pathway <strong>of</strong><br />

adult decapod crustaceans by in vivo BrdU labeling.<br />

Biological Bulletin 196:127–136.<br />

Schmidt-Rhaesa, A., U. Ehlers, T. Bartolomaeus, C. Lemburg,<br />

and J. R. Garey. 1998. The phylogenetic position<br />

<strong>of</strong> <strong>the</strong> Arthropoda. Journal <strong>of</strong> Morphology<br />

238:263–285.<br />

Schminke, H. K. 1973. Evolution, System und Verbreitungsgeschichte<br />

der Familie Parabathynellidae (Bathynellacea,<br />

Malacostraca). Mikr<strong>of</strong>auna des Meeresbodens<br />

24:1–192.<br />

Schmitt, W. L. 1965. <strong>Crustacea</strong>ns. <strong>An</strong>n Arbor, Michigan:<br />

The University <strong>of</strong> Michigan Press, 204 pp.<br />

Scholtz, G. 1995. Expression <strong>of</strong> <strong>the</strong> engrailed gene reveals<br />

nine putative segment-anlagen in <strong>the</strong> embryonic<br />

pleon <strong>of</strong> <strong>the</strong> freshwater crayfish Cherax destructor<br />

(<strong>Crustacea</strong>, Malacostraca, Decapoda). Biological<br />

Bulletin 188:157–165.<br />

. 1998. Von Zellen und Kontinenten—die Evolution<br />

der Flußkrebse (Decapoda, Astacida). Stapfia<br />

58:205–212.<br />

. 1999. Freshwater crayfish evolution. Freshwater<br />

crayfish 12 (Proceedings <strong>of</strong> <strong>the</strong> Twelfth Symposium<br />

<strong>of</strong> <strong>the</strong> International Association <strong>of</strong> Astacology): 36–<br />

48.<br />

Scholtz, G., and S. Richter. 1995. Phylogenetic systematics<br />

<strong>of</strong> <strong>the</strong> reptantian Decapoda (<strong>Crustacea</strong>, Malacostraca).<br />

Zoological Journal <strong>of</strong> <strong>the</strong> Linnean Society 113:<br />

289–328.<br />

Schram, F. R. 1971. Polyphyly in <strong>the</strong> Eumalacostraca?<br />

<strong>Crustacea</strong>na 16:243–250.<br />

. 1981. On <strong>the</strong> classification <strong>of</strong> Eumalacostraca.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 1:1–10.<br />

. (editor). 1983a. <strong>Crustacea</strong>n issues 1. <strong>Crustacea</strong>n<br />

phylogeny. Rotterdam: A. A. Balkema Press, 372 pp.<br />

. 1983b. Remipedia and crustacean phylogeny. In<br />

<strong>Crustacea</strong>n issues 1. <strong>Crustacea</strong>n phylogeny, ed. F. R.<br />

Schram, 23–28. Rotterdam: A. A. Balkema Press,<br />

372 pp.<br />

. 1984a. Relationships within eumalacostracan<br />

<strong>Crustacea</strong>. Transactions <strong>of</strong> <strong>the</strong> San Diego Society <strong>of</strong><br />

Natural History 20:301–312.<br />

. 1984b. Fossil Syncarida. Transactions <strong>of</strong> <strong>the</strong> San<br />

Diego Society <strong>of</strong> Natural History 20:189–246.<br />

. 1986. <strong>Crustacea</strong>. New York: Oxford University<br />

Press, 606 pp.<br />

. 1991. Arthropod pattern <strong>the</strong>ory: a new approach<br />

to arthropod phylogeny. In Proceedings <strong>of</strong> <strong>the</strong> 1990<br />

International <strong>Crustacea</strong>n Conference, ed. P. J. F. Davie<br />

and R. H. Quinn. Memoirs <strong>of</strong> <strong>the</strong> Queensland<br />

Museum 31:1–18.<br />

Schram, F. R., and J. T. Høeg. 1995. New frontiers in<br />

barnacle evolution. In <strong>Crustacea</strong>n issues 10. New<br />

frontiers in barnacle evolution, ed. F. R. Schram and<br />

J. T. Høeg, 297–312. Rotterdam: A. A. Balkema<br />

Press.<br />

Schram, F. R., and C. H. J. H<strong>of</strong>. 1998. Fossils and <strong>the</strong><br />

interrelationships <strong>of</strong> major crustacean groups. In Arthropod<br />

fossils and phylogeny, ed. G. D. Edgecombe,<br />

233–302. New York: Columbia University Press.<br />

Schram, F. R., C. H. J. H<strong>of</strong>, and F. A. Steeman. 1999.<br />

Thylacocephala (Arthropoda: <strong>Crustacea</strong>?) from <strong>the</strong><br />

Contributions in Science, Number 39 Literature Cited � 95


Cretaceous <strong>of</strong> Lebanon and implications for thylacocephalan<br />

systematics. Palaeontology 42:769–797.<br />

Schram, F. R., and C. Lewis. 1989. Functional morphology<br />

<strong>of</strong> feeding in <strong>the</strong> Nectiopoda. In <strong>Crustacea</strong>n issues<br />

6. Functional morphology <strong>of</strong> feeding and<br />

grooming in <strong>Crustacea</strong>, ed. B. E. Felgenhauer,<br />

L. Watling, and A. B. Thistle, 115–122. Rotterdam:<br />

A. A. Balkema Press.<br />

Schram, F. R., J. Sieg, and E. Malzahn. 1986. Fossil Tanaidacea.<br />

Transactions <strong>of</strong> <strong>the</strong> San Diego Society <strong>of</strong><br />

Natural History 21:127–144.<br />

Schram, F. R., S. Yanbin, R. Vonk, and R. S. Taylor. 2000.<br />

The first fossil stenopodidean. <strong>Crustacea</strong>na 73:235–<br />

242.<br />

Schram, F. R., R. Vonk, and C. H. J. H<strong>of</strong>. 1997. Mazon<br />

Creek Cycloidea. Journal <strong>of</strong> Paleontology 71:261–<br />

284.<br />

Schram, F. R., and J. C. von Vaupel Klein (editors). 1999.<br />

<strong>Crustacea</strong>ns and <strong>the</strong> biodiversity crisis. Proceedings<br />

<strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n Congress, Amsterdam.<br />

Leiden: Brill, 1021 pp.<br />

Schram, F. R., J. Yager, and M. J. Emerson. 1986. Remipedia,<br />

part 1, systematics. San Diego Society <strong>of</strong> Natural<br />

History Memoir 15:1–60.<br />

Schubart, C. D., J. A. Cuesta, R. Diesel, and D. L. Felder.<br />

2000a. Molecular phylogeny, taxonomy, and evolution<br />

<strong>of</strong> nonmarine lineages within <strong>the</strong> American<br />

grapsoid crabs (<strong>Crustacea</strong>: Brachyura). Molecular<br />

Phylogenetics and Evolution 15:179–190.<br />

Schubart, C. D., J. A. Cuesta, and D. L. Felder. In press.<br />

Glyptograpsidae, a new brachyuran family from<br />

Central America: larval and adult morphology and<br />

a molecular phylogeny <strong>of</strong> <strong>the</strong> Grapsoidea. Journal <strong>of</strong><br />

<strong>Crustacea</strong>n Biology.<br />

Schubart, C. D., J. A. Cuesta, and A. Rodríguez. In press.<br />

Molecular phylogeny <strong>of</strong> <strong>the</strong> crab genus Brachynotus<br />

(Brachyura: Varunidae) based on <strong>the</strong> 16S rRNA<br />

gene. Hydrobiologia.<br />

Schubart, C. D., J. E. Neigel, and D. L. Felder. 1998. The<br />

use <strong>of</strong> <strong>the</strong> mitochondrial 16S gene for <strong>the</strong> study <strong>of</strong><br />

crustacean phylogenies and biogeography. Proceedings<br />

and abstracts <strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n<br />

Congress, Amsterdam: 93 (abstract 172).<br />

. 2000b. Molecular phylogeny <strong>of</strong> mud crabs<br />

(Brachyura: Panopeidae) from <strong>the</strong> northwestern Atlantic<br />

and <strong>the</strong> role <strong>of</strong> morphological stasis and convergence.<br />

Marine Biology 137:1167–1174.<br />

. 2000c. Use <strong>of</strong> <strong>the</strong> mitochondrial 16S rRNA gene<br />

for phylogenetic and population studies <strong>of</strong> <strong>Crustacea</strong>.<br />

In <strong>Crustacea</strong>n issues 12. The biodiversity crisis<br />

and <strong>Crustacea</strong>, ed. J. C. von Vaupel Klein and F. R.<br />

Schram, 817–830. Rotterdam: A. A. Balkema Press.<br />

Schultz, G. A. 1995. Terrestrial isopod crustaceans (Oniscidea)<br />

from Paraguay with definition <strong>of</strong> a new family.<br />

Revue Suisse de Zoologie 102:387–424.<br />

Schweitzer, C. E., and R. M. Feldmann. 2000. New species<br />

<strong>of</strong> calappid crabs from western North America<br />

and reconsideration <strong>of</strong> <strong>the</strong> Calappidae sensu lato.<br />

Journal <strong>of</strong> Paleontology 74:230–246.<br />

Schweitzer, C. E., and E. W. Salva. 2000. First recognition<br />

<strong>of</strong> <strong>the</strong> Cheiragonidae (Decapoda) in <strong>the</strong> fossil record<br />

and comparison <strong>of</strong> <strong>the</strong> family with <strong>the</strong> Atelecyclidae.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 20:285–298.<br />

Schwenk, K., A. Sand, M. Boersma, M. Brehem, E. Mader,<br />

D. Offerhaus, and P. Spaak. 1998. Genetic markers,<br />

genealogies and biogeographic patterns in <strong>the</strong> Cladocera.<br />

Aquatic Ecology 32:37–51.<br />

Scott, A. 1909. The Copepoda <strong>of</strong> <strong>the</strong> Siboga Expedition.<br />

Part I. Free-swimming, littoral and semi-parasitic<br />

Copepoda. Siboga Expeditie Monograph 29a:1–323,<br />

plates 1–69.<br />

Secretan, S. 1985. Conchyliocarida, a class <strong>of</strong> fossil crustaceans:<br />

relationships to Malacostraca and postulated<br />

behaviour. Transactions <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong><br />

Edinburgh, Earth Sciences 76:381–389.<br />

. 1998. The sella turcica <strong>of</strong> crabs and <strong>the</strong> endophragmal<br />

system <strong>of</strong> decapods. Journal <strong>of</strong> Natural<br />

History 32:2753–1767.<br />

Segonzac, M., M. de Saint Laurent, and B. Casanova.<br />

1993. L’enigma du comportement trophique des<br />

crevettes Alvinocarididae des sites hydro<strong>the</strong>rmaux de<br />

la dorsale medio-atlantique. Cahiers de Biologie Marine<br />

34:535–571.<br />

Self, J. T. 1969. Biological relationships <strong>of</strong> <strong>the</strong> Pentastomida;<br />

a bibliography on <strong>the</strong> Pentastomida. Experimental<br />

Parasitology 24:63–119.<br />

Serejo, C. S. 2000. A preliminary cladistic analysis <strong>of</strong> <strong>the</strong><br />

superfamily Talitroidea (Amphipoda, Gammaridea).<br />

Abstracts <strong>of</strong> <strong>the</strong> 10th Colloqium on Amphipoda<br />

(http://www.odu.edu/%7Ejrh 100f/amphome): 6–7.<br />

Serène, R. 1984. Crustacés Décapodes Brachyoures de<br />

l’Ocean Indien Occidental et de la Mer Rouge, Xanthoidea:<br />

Xanthidae et Trapeziidae. Avec un addendum<br />

par Crosnier, A.: Carpiliidae et Menippidae.<br />

Faune Tropicale 24:1–400.<br />

Seridji, R. 1993. Descriptions <strong>of</strong> some planktonic larvae<br />

<strong>of</strong> <strong>the</strong> Calappidae (<strong>Crustacea</strong>: Decapoda: Brachyura).<br />

Journal <strong>of</strong> Plankton Research 15:437–453.<br />

Serov, P. A., and G. D. F. Wilson. 1999. A revision <strong>of</strong> <strong>the</strong><br />

Pseudojaniridae Wilson, with a description <strong>of</strong> a new<br />

genus <strong>of</strong> Stenetriidae Hansen (<strong>Crustacea</strong>: Isopoda:<br />

Asellota). Invertebrate Taxonomy 13:67–116.<br />

Shank, T. M., M. B. Black, K. M. Halanych, R. A. Lutz,<br />

and R. C. Vrijenhoek. 1999. Miocene radiation <strong>of</strong><br />

deep-sea hydro<strong>the</strong>rmal vent shrimp (Caridea: Bresiliidae):<br />

evidence from mitochondrial cytochrome oxidase<br />

subunit I. Molecular Phylogenetics and Evolution<br />

13:244–254.Shen, Y. 1984. Occurrence <strong>of</strong><br />

Permian leaid conchostracans in China and its palaeogeographical<br />

significance. Acta Paleontologica<br />

Sinica 29:505–513.<br />

Shen, Y. 1990. A new conchostracan genus from Lower<br />

Permian Tungziyan Formation, Fujian. Acta Paleontologica<br />

Sinica 29:309–314.<br />

Shen, Y., R. S. Taylor, and F. R. Schram. 1998. A new<br />

spelaeogriphacean (<strong>Crustacea</strong>: Peracarida) from <strong>the</strong><br />

Upper Jurassic <strong>of</strong> China. Contributions to Zoology<br />

(Amsterdam) 68:19–35.<br />

Shubin, N., C. Tabin, and S. Carroll. 1997. Fossils, genes<br />

and <strong>the</strong> evolution <strong>of</strong> animal limbs. Nature 388:639–<br />

648.<br />

Shultz, J. W., and J. C. Regier. 2000. Phylogenetic analysis<br />

<strong>of</strong> arthropods using two nuclear protein-encoding<br />

genes supports a crustacean � hexapod clade. Proceedings<br />

<strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London 267B:<br />

1011–1019.<br />

Sieg, J. 1973. Ein Beitrag zum Natürlichen System der<br />

Dikonophora Lang. (Textteil, Tafelteil). Ph.D. Dissertation,<br />

University <strong>of</strong> Kiel, 298 pp.<br />

. 1976. Zum Natürlichen System der Tanaidacea<br />

Lang (<strong>Crustacea</strong>, Tanaidacea). Zeitschrift für Zoologischer<br />

Systematik und Evolutionsforschung 14:<br />

177–198.<br />

. 1982. Uber ein ‘‘connecting link’’ in der Phylogenie<br />

der Tanaidomorpha (Tanaidacea). <strong>Crustacea</strong>na<br />

43:65–77.<br />

96 � Contributions in Science, Number 39 Literature Cited


. 1983a. Evolution <strong>of</strong> Tanaidacea. In <strong>Crustacea</strong>n<br />

issues 1. <strong>Crustacea</strong>n phylogeny, ed. F. R. Schram,<br />

229–254. Rotterdam: A. A. Balkema Press, 372 pp.<br />

. 1983b. Tanaidacea. In Crustaceorum catalogus<br />

pars 6, ed. H. E. Gruner and L. B. Holthuis, 1–552.<br />

The Hague: W. Junk.<br />

. 1984. Neuere Erkenntnisse zum Natürliche System<br />

der Tanaidacea. Eine phylogenetische Studie.<br />

Zoologica (Stuttgart) 136:1–132.<br />

. 1986a. <strong>Crustacea</strong> Tanaidacea <strong>of</strong> <strong>the</strong> <strong>An</strong>tarctic and<br />

subanctarctic. 1. On material collected at Tierra del<br />

Fuego, Isla de los Estados, and <strong>the</strong> west coast <strong>of</strong> <strong>the</strong><br />

<strong>An</strong>tarctic peninsula. Biology <strong>of</strong> <strong>the</strong> <strong>An</strong>tarctic Seas<br />

18:1–180.<br />

. 1986b. Tanaidacea (<strong>Crustacea</strong>) von der <strong>An</strong>tarktis<br />

und Subantarktis. II. Tanaidacea gesammelt von Dr.<br />

J. W. Wägele während der Deutschen <strong>An</strong>tarktis Expedition<br />

1983. Mitteilungen aus dem Zoologischen<br />

Museum der Universität Keil 2:1–80.<br />

Siveter, D. J., and M. Williams. 1997. Cambrian bradoriid<br />

and phosphatocopid arthropods <strong>of</strong> North America.<br />

Special Papers in Paleontology (The Paleontological<br />

Association <strong>of</strong> London) 57:1–69.<br />

Smirnov, N. N. 1992. The Macrothricidae <strong>of</strong> <strong>the</strong> world.<br />

Guides to <strong>the</strong> Identification <strong>of</strong> Microinvertebrates <strong>of</strong><br />

<strong>the</strong> Continental Waters <strong>of</strong> <strong>the</strong> World 1:1–143.<br />

Soh, H. Y., S. Ohtsuka, H. Imabayashi, and H.-L. Suh.<br />

1999. A new deep-water calanoid copepod and <strong>the</strong><br />

phylogeny <strong>of</strong> <strong>the</strong> genus Nullosetigera nom. nov. in<br />

<strong>the</strong> Nullosetigeridae nom. nov. (pro Phyllopus: Phyllopodidae)<br />

from Japanese waters. Journal <strong>of</strong> Natural<br />

History 33:1581–1602.<br />

Sohn, I. G. 1988. Darwinulocopina (<strong>Crustacea</strong>, Podocopa),<br />

a new suborder proposed for nonmarine Palaeozoic<br />

to Holocene Ostracoda. Proceedings <strong>of</strong> <strong>the</strong><br />

Biological Society <strong>of</strong> Washington 101:817–824.<br />

Souza-Kury, L. A. 1998. Malacostraca—Peracarida. Isopoda.<br />

Oniscidea. In Catalogue <strong>of</strong> <strong>Crustacea</strong> <strong>of</strong> Brazil,<br />

ed. P. S. Young, 653–674. Rio de Janeiro: Museu<br />

Nacional.<br />

Spears, T., and L. G. Abele. 1988. Molecular phylogeny<br />

<strong>of</strong> brachyuran crustaceans based on 18S rRNA nucleotide<br />

sequences. American Zoologist 28:2A.<br />

. 1997. <strong>Crustacea</strong>n phylogeny inferred from 18S<br />

rDNA. In Arthropod relationships, ed. R. A. Fortey<br />

and R. H. Thomas, 169–187. Systematics Association<br />

Special Volume series 55. London: Chapman<br />

and Hall.<br />

. 1998. The role <strong>of</strong> 18S rDNA hypervariable regions<br />

in crustacean phylogeny. Proceedings and Abstracts<br />

<strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n Congress,<br />

Amsterdam: 92 (abstract 171).<br />

. 1999a. <strong>Crustacea</strong>n molecular systematics and<br />

phylogeny: <strong>the</strong> 18S rDNA chronicles. Program and<br />

Abstracts, The <strong>Crustacea</strong>n Society 1999 Summer<br />

Meeting, Lafayette, Louisiana: 44.<br />

. 1999b. The phylogenetic relationships <strong>of</strong> crustaceans<br />

with foliaceous limbs: an 18S rDNA study <strong>of</strong><br />

Branchiopoda, Cephalocarida, and Phyllocarida.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 19:825–843.<br />

. 2000. Branchiopod monophyly and interordinal<br />

phylogeny inferred from 18S ribosomal DNA. Journal<br />

<strong>of</strong> <strong>Crustacea</strong>n Biology 20:1–24.<br />

Spears, T., L. G. Abele, and M. A. Applegate. 1994. Phylogenetic<br />

study <strong>of</strong> cirripedes and selected relatives<br />

(Thecostraca) based on 18S rDNA sequence analysis.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 14:641–656.<br />

Spears, T., L. G. Abele, and W. Kim. 1992. The mono-<br />

phyly <strong>of</strong> brachyuran crabs: a phylogenetic study<br />

based on 18S rRNA. Systematic Biology 41:446–<br />

461.<br />

Spears, T., N. Cumberlidge, and L. G. Abele. 2000. A<br />

molecular-based phylogeny <strong>of</strong> <strong>the</strong> freshwater crabs.<br />

Program and Abstracts, The <strong>Crustacea</strong>n Society<br />

2000 Summer Meeting, Puerto Vallarta, Mexico: 46.<br />

Spivak, E. D., and J. A. Cuesta. 2000. Larval development<br />

<strong>of</strong> Cyrtograpsus affinis (Dana) (Decapoda, Brachyura,<br />

Varunidae) from Rio de la Plata estuary, reared<br />

in <strong>the</strong> laboratory. Scientia Marina 64:29–47.<br />

Starobogatov, Y. I. 1986. Systematics <strong>of</strong> <strong>Crustacea</strong>. Zoologicheskiy<br />

Zhurnal 65:1769–1781. [In Russian, with<br />

English summary]<br />

. 1988. Systematics <strong>of</strong> <strong>Crustacea</strong>. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 8:300–311. (English translation by<br />

M. J. Grygier <strong>of</strong> Starobogatov, 1986, above).<br />

Stebbing, T. R. R. 1899. Revision <strong>of</strong> Amphipoda (continued).<br />

<strong>An</strong>nals and Magazine <strong>of</strong> Natural History, series<br />

7, 4:205–211.<br />

Sternberg, R. von. 1996. Carcinization as an underlying<br />

synapomorphy for <strong>the</strong> decapod crustacean taxon<br />

Meiura. Evolutionary Theory 11:153–162.<br />

. 1997. Cladistics <strong>of</strong> <strong>the</strong> freshwater crab family Trichodactylidae<br />

(<strong>Crustacea</strong>: Decapoda): appraising <strong>the</strong><br />

reappraisal. Journal <strong>of</strong> Comparative Biology 2:49–<br />

62.<br />

Sternberg, R. von, and N. Cumberlidge. 1999. A cladistic<br />

analysis <strong>of</strong> Platy<strong>the</strong>lphusa A. Milne Edwards, 1887,<br />

from lake Tanganyika, East Africa (Decapoda: Potamoidea:<br />

Platy<strong>the</strong>lphusidae) with comments on <strong>the</strong><br />

phylogenetic position <strong>of</strong> <strong>the</strong> group. Journal <strong>of</strong> Natural<br />

History 33:493–511.<br />

. 2000a. Cladistic relationships <strong>of</strong> <strong>the</strong> true freshwater<br />

crabs (Decapoda: Eubrachyura: Gecarcinucicoidea,<br />

Potamoidea, Pseudo<strong>the</strong>lphusoidea, and Trichodactylidae).<br />

Program and Abstracts, The <strong>Crustacea</strong>n<br />

Society 2000 Summer Meeting, Puerto Vallarta,<br />

Mexico: 46.<br />

. 2000b. Taxic relationships within <strong>the</strong> Grapsidae<br />

MacLeay, 1838 (<strong>Crustacea</strong>: Decapoda: Brachyura).<br />

Journal <strong>of</strong> Comparative Biology 3:115–136.<br />

. 2001. On <strong>the</strong> heterotreme-thoracotreme distinction<br />

in <strong>the</strong> Eubrachyura de Saint-Laurent, 1980 (Decapoda,<br />

Brachyura). <strong>Crustacea</strong>na 74:321–338.<br />

. In press. Notes on <strong>the</strong> position <strong>of</strong> <strong>the</strong> true freshwater<br />

crabs within <strong>the</strong> brachyrhynchan Eubrachyura<br />

(<strong>Crustacea</strong>: Decapoda: Brachyura). Hydrobiologia.<br />

Sternberg, R. von, N. Cumberlidge, and G. Rodríguez.<br />

1999. On <strong>the</strong> marine sister groups <strong>of</strong> <strong>the</strong> freshwater<br />

crabs (<strong>Crustacea</strong>: Decapoda: Brachyura). Journal <strong>of</strong><br />

Zoological Systematics and Evolutionary Research<br />

37:19–38.<br />

Sˇtevčić, Z. 1973. The systematic position <strong>of</strong> <strong>the</strong> family<br />

Raninidae. Systematic Zoology 22:625–632.<br />

. 1983. Revision <strong>of</strong> <strong>the</strong> Calappidae. Australian Museum<br />

Memoir 18:165–171.<br />

. 1988. The status <strong>of</strong> <strong>the</strong> family Cheiragonidae Ortmann,<br />

1893. International Journal <strong>of</strong> Marine Biology<br />

and Oceanography (Taranto, Italy) 14:1–14.<br />

. 1994. Contribution to <strong>the</strong> re-classification <strong>of</strong> <strong>the</strong><br />

family Majidae. Periodicum Biologorum 96:419–<br />

420.<br />

. 1995. Brachyuran systematics and <strong>the</strong> position <strong>of</strong><br />

<strong>the</strong> family Raninidae reconsidered. Arthropoda Selecta<br />

4:27–36.<br />

. 1998. Evolutionary arrangement <strong>of</strong> <strong>the</strong> brachy-<br />

Contributions in Science, Number 39 Literature Cited � 97


uran families toge<strong>the</strong>r with a checklist. Periodicum<br />

Biologorum 100:101–104.<br />

Sˇtevčić, Z., P. Castro, and R. H. Gore. 1988. Re-establishment<br />

<strong>of</strong> <strong>the</strong> family Eumedonidae Dana, 1853<br />

(<strong>Crustacea</strong>: Decapoda: Brachyura). Journal <strong>of</strong> Natural<br />

History 22:1301–1324.<br />

Sˇtevčić, Z., and R. H. Gore. 1982. Are <strong>the</strong> Oxyrhyncha a<br />

natural group? Thalassia Jugoslavica 17:1–16.<br />

Stock, J. H. 1968. Vectoriella marinovi, un copépode nouveau,<br />

parasite d’une annélide polychète pontique.<br />

<strong>Crustacea</strong>na 1(supplement 10):186–192.<br />

Storch, V. 1984. Pentastomida. In Biology <strong>of</strong> <strong>the</strong> integument,<br />

ed. J. Bereiter-Hahn, A. G. Matoltsky, and K.<br />

S. Richards, 709–713. Berlin: Springer Verlag.<br />

Storch, V., and B. G. M. Jamieson. 1992. Fur<strong>the</strong>r spermatological<br />

evidence for including <strong>the</strong> Pentastomida<br />

(tongue worms) in <strong>the</strong> <strong>Crustacea</strong>. International Journal<br />

<strong>of</strong> Parasitology 22:95–108.<br />

Strausfeld, N. J. 1998. <strong>Crustacea</strong>n–insect relationships:<br />

<strong>the</strong> use <strong>of</strong> brain characters to derive phylogeny<br />

among segmented invertebrates. Brain, Behavior,<br />

and Evolution 52:186–206.<br />

Suarez-Morales, E., and T. M. Iliffe. 1996. New superfamily<br />

<strong>of</strong> Calanoida (Copepoda) from an anchialine cave<br />

in <strong>the</strong> Bahamas. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 16:<br />

754–762.<br />

Suzuki, H., and C. L. McLay. 1998. Gill-cleaning mechanisms<br />

<strong>of</strong> Paratya curvirostris (Caridea, Atyidae)<br />

and comparisons with seven species <strong>of</strong> Japanese<br />

atyid shrimps. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 18:<br />

253–270.<br />

Svavarsson, J. 1984. Description <strong>of</strong> <strong>the</strong> male <strong>of</strong> Pseudomesus<br />

brevicornis Hansen, 1916 (Isopoda, Asellota,<br />

Desmosomatidae) and rejection <strong>of</strong> <strong>the</strong> family Pseudomesidae.<br />

Sarsia 69:37–44.<br />

. 1987. Reevaluation <strong>of</strong> Katianira in Arctic waters<br />

and erection <strong>of</strong> a new family, Katianiridae (Isopoda:<br />

Asellota). Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 7:704–720.<br />

Swanson, K. M. 1989a. Ostracod phylogeny and evolution—a<br />

manawan perspective. Courier Forschungsinstitut<br />

Senckenberg 113:11–20.<br />

. 1989b. Manawa staceyi n. sp. (Punciidae, Ostracoda):<br />

s<strong>of</strong>t anatomy and ontongeny. Courier Forschungsinstitut<br />

Senckenberg 113:235–249.<br />

. 1990. The punciid ostracod—a new crustacean<br />

evolutionary window. Courier Forschungsinstitut<br />

Senckenberg 123:11–18.<br />

. 1991. Distribution, affinities and origin <strong>of</strong> <strong>the</strong><br />

Punciidae (<strong>Crustacea</strong>: Ostracoda). In Proceedings <strong>of</strong><br />

<strong>the</strong> 1990 International <strong>Crustacea</strong>n Conference, ed.<br />

P. J. F. Davie and R. H. Quinn. Memoirs <strong>of</strong> <strong>the</strong><br />

Queensland Museum 31:77–92.<br />

Tabacaru, I., and D. L. Danielopol. 1996a. Phylogénie des<br />

Isopodes terrestres. Comptes Rendus Hebdomadaires<br />

des Seances de l’Academie des Sciences 319:71–<br />

80.<br />

. 1996b. Phylogenèse et convergence chez les Isopodes<br />

terrestres. Vie et Milieu 46:171–181.<br />

Tabuki, R., and T. Hanai. 1999. A new sigillid ostracod<br />

from submarine caves <strong>of</strong> <strong>the</strong> Ryukyu Islands, Japan.<br />

Paleontology 42:569–593.<br />

Takeuchi, I. 1993. Is <strong>the</strong> Caprellidea a monophyletic<br />

group? Journal <strong>of</strong> Natural History 27:947–964.<br />

Tasch, P. 1969. Branchiopoda. In Treatise on invertebrate<br />

paleontology, part R, Arthropoda 4, ed. R. C.<br />

Moore, R128–R191. Lawrence, Kansas: The Geological<br />

Society <strong>of</strong> America and <strong>the</strong> University <strong>of</strong> Kansas<br />

Press.<br />

Tavares, M. S. 1991. Espèces nouvelles de Cyclodorippoidea<br />

Ortmann et remarques sur les genres Tymolus<br />

Stimpson et Cyclodorippe A. Milne Edwards<br />

(<strong>Crustacea</strong>, Decapoda, Brachyura). Bulletin de Museum<br />

National d’Histore Naturelle, series 4, 12:623–<br />

648.<br />

. 1993. <strong>Crustacea</strong> Decapoda: Les Cyclodorippidae<br />

et Cymonomidae de l’Indo-Ouest-Pacifique à<br />

l’exclusion du genre Cymonomus. In Résultats des<br />

Campagnes MUSORSTOM, vol. 10, ed. A. Crosnier.<br />

Mémoires du Muséum National d’Histoire Naturelle,<br />

vol. 156, 253–313.<br />

. 1998. Phyllotymolinidae, nouvelle famille de<br />

Brachyoures Podotremata (<strong>Crustacea</strong>, Decapoda).<br />

Zoosystema 20:109–122.<br />

Taylor, D. J., T. J. Crease, and W. M. Brown. 1999. Phylogenetic<br />

evidence for a single long-lived clade <strong>of</strong><br />

crustacean cyclic par<strong>the</strong>nogens and its implications<br />

for <strong>the</strong> evolution <strong>of</strong> sex. Proceedings <strong>of</strong> <strong>the</strong> Royal<br />

Society <strong>of</strong> London 266B:791–797.<br />

Taylor, R. S., and F. R. Schram. 1999. Meiura (anomalan<br />

and brachyuran crabs). In Functional morphology <strong>of</strong><br />

<strong>the</strong> invertebrate skeleton, ed. E. Savazzi, 517–528.<br />

Chichester: John Wiley.<br />

Taylor, R. S., F. R. Schram, and Y. Shen. 1999. A new<br />

crayfish family (Decapoda: Astacida) from <strong>the</strong> Upper<br />

Jurassic <strong>of</strong> China, with a reinterpretation <strong>of</strong> o<strong>the</strong>r<br />

Chinese crayfish taxa. Paleontological Research 3:<br />

121–136.<br />

Taylor, R. S., Y. Shen, and F. R. Schram. 1998. New pygocephalomorph<br />

crustaceans from <strong>the</strong> Permian <strong>of</strong><br />

China and <strong>the</strong>ir phylogenetic relationships. Paleontology<br />

41:815–834.<br />

Tchindonova, J. G. 1981. New data on <strong>the</strong> systematic<br />

position <strong>of</strong> some deep-sea mysids (Mysidacea, <strong>Crustacea</strong>)<br />

and <strong>the</strong>ir distribution in <strong>the</strong> world ocean. In<br />

Biology <strong>of</strong> <strong>the</strong> Pacific Ocean depths, ed. N. G. Vinogradova,<br />

24–33. Vladivostok: Academy <strong>of</strong> Sciences<br />

<strong>of</strong> <strong>the</strong> USSR. [In Russian]<br />

Telford, M. J., and R. H. Thomas. 1995. Demise <strong>of</strong> <strong>the</strong><br />

Atelocerata? Nature 376:123–124.<br />

Thatcher, V. E. 1986. The parasitic crustaceans <strong>of</strong> fishes<br />

from <strong>the</strong> Brazilian Amazon, 16, Amazonicopeus<br />

elongatus gen. et sp. nov. (Copepoda: Poecilostomatoida)<br />

with <strong>the</strong> proposal <strong>of</strong> Amazonicopeidae<br />

fam. nov. and remarks on its pathogenicity. Amazoniana<br />

10:49–56.<br />

Thatcher, V. E., and B. A. Robertson. 1984. The parasitic<br />

crustaceans <strong>of</strong> fishes from <strong>the</strong> Brazilian Amazon. 11.<br />

Vaigamidae fam. nov. (Copepoda: Poecilostomatoida)<br />

with males and females <strong>of</strong> Vaigamus retrobarbatus<br />

gen. et sp. nov. and V. spinicephalus sp. nov.<br />

from plankton. Canadian Journal <strong>of</strong> Zoology 62:<br />

716–729.<br />

Thiéry, A. 1996. Branchiopodes I. Ordres des <strong>An</strong>ostracés,<br />

Notostracés, Spinicaudata et Laevicaudata (<strong>An</strong>ostraca<br />

Sars, 1867—Notostraca Sars, 1867—Spinicaudata<br />

Linder, 1945—Laevicaudata Linder, 1945). In<br />

Traité de Zoologie. <strong>An</strong>atomie, Systematique, Biologie.<br />

Tome VII, Fascicule II. Généralités (suite) et Systématique,<br />

ed. J. Forest, 287–351. Paris: Masson,<br />

1002 pp.<br />

Thurston, M. H. 1982. Cheus annae, new genus, new species<br />

(Cheidae, new family), a fossorial amphipod<br />

from <strong>the</strong> Falkland Islands. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

2:410–419.<br />

. 1989. A new species <strong>of</strong> Valettia (<strong>Crustacea</strong>: Amphipoda)<br />

and <strong>the</strong> relationship <strong>of</strong> <strong>the</strong> Valettidae to <strong>the</strong><br />

98 � Contributions in Science, Number 39 Literature Cited


Lysianassoidea. Journal <strong>of</strong> Natural History 23:<br />

1093–1107.<br />

Trilles, J.-P. 1999. Ordre des Isopodes sous-ordre des Épicarides<br />

(Epicaridea Latreille, 1825). In Traité de<br />

Zoologie. <strong>An</strong>atomie, Systématique, Biologie. Tome<br />

VII, Fascicule IIIA. Crustacés Péracarides, ed. J. Forest.<br />

Memoires de l’Institut Oceanographique Fondation<br />

Albert I er , Prince de Monaco, No. 19, 279–<br />

352.<br />

Tshudy, D., and L. E. Babcock. 1997. Morphology-based<br />

phylogenetic analysis <strong>of</strong> <strong>the</strong> clawed lobsters (family<br />

Nephropidae and <strong>the</strong> new family Chilenophoberidae).<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 17:253–263.<br />

Tucker, A. B. 1998. Systematics <strong>of</strong> <strong>the</strong> Raninidae (<strong>Crustacea</strong>:<br />

Decapoda: Brachyura) with accounts <strong>of</strong> three<br />

new genera and two new species. Proceedings <strong>of</strong> <strong>the</strong><br />

Biological Society <strong>of</strong> Washington 111:320–371.<br />

Tudge, C. C. 1991. Spermatophore diversity within and<br />

among <strong>the</strong> hermit crab families, Coenobitidae, Diogenidae<br />

and Paguridae (Paguroidea, <strong>An</strong>omura, Decapoda).<br />

Biological Bulletin 181:238–247.<br />

. 1992. Comparative ultrastructure <strong>of</strong> hermit crab<br />

spermatozoa (Paguroidea, <strong>An</strong>omura, Decapoda).<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 12:397–409.<br />

. 1995. Ultrastructure and phylogeny <strong>of</strong> <strong>the</strong> spermatozoa<br />

<strong>of</strong> <strong>the</strong> infraorders Thalassinidea and <strong>An</strong>omura<br />

(Decapoda, <strong>Crustacea</strong>). In Advances in spermatozoal<br />

phylogeny and taxonomy, ed. B. G. M. Jamieson,<br />

J. Ausio, and J.-L. Justine. Mémoires du Muséum<br />

National d’Histoire Naturelle, vol. 166, 251–<br />

263.<br />

. 1997a. Spermatological evidence supports <strong>the</strong><br />

taxonomic placement <strong>of</strong> <strong>the</strong> Australian endemic<br />

hairy stone crab, Lomis hirta (Decapoda, <strong>An</strong>omura,<br />

Lomidae). Memoirs <strong>of</strong> <strong>the</strong> Museum <strong>of</strong> Victoria 56:<br />

235–244.<br />

. 1997b. Phylogeny <strong>of</strong> <strong>the</strong> <strong>An</strong>omura (Decapoda,<br />

<strong>Crustacea</strong>): spermatozoan and spermatophore morphological<br />

evidence. Contributions to Zoology 67:<br />

125–141.<br />

. 1999a. Ultrastructure <strong>of</strong> <strong>the</strong> spermatophore lateral<br />

ridge in hermit crabs (Decapoda, <strong>An</strong>omura, Paguroidea).<br />

<strong>Crustacea</strong>na 72:77–84.<br />

. 1999b. Spermatophore morphology in <strong>the</strong> hermit<br />

crab families Paguridae and Parapaguridae (Paguroidea,<br />

<strong>An</strong>omura, Decapoda). Invertebrate Reproduction<br />

and Development 35:203–214.<br />

Tudge, C. C., B. G. M. Jamieson, L. Sandberg, and C.<br />

Erseus. 1998a. Ultrastructure <strong>of</strong> <strong>the</strong> mature spermatozoon<br />

<strong>of</strong> <strong>the</strong> king crab Lithodes maja (Lithodidae,<br />

<strong>An</strong>omura, Decapoda): fur<strong>the</strong>r confirmation <strong>of</strong> a<br />

lithodid-pagurid relationship. Invertebrate Biology<br />

117:57–66.<br />

Tudge, C. C., B. G. M. Jamieson, M. Segonzac, and D.<br />

Guinot. 1998b. Spermatozoal ultrastructure in three<br />

species <strong>of</strong> hydro<strong>the</strong>rmal vent crab, in <strong>the</strong> genera Bythograea,<br />

Austinograea and Segonzacia (Decapoda,<br />

Brachyura, Bythograeidae). Invertebrate Reproduction<br />

and Development 34:13–23.<br />

Tudge, C. C., G. C. B. Poore, and R. Lemaitre. 2000.<br />

Preliminary phylogenetic analysis <strong>of</strong> generic relationships<br />

within <strong>the</strong> Callianassidae and Ctenochelidae<br />

(Decapoda: Thalassinidea: Callianassoidea). Journal<br />

<strong>of</strong> <strong>Crustacea</strong>n Biology 20(special no. 2):129–149.<br />

Tudge, C. C., D. M. Scheltinga, and B. G. M. Jamieson.<br />

1999. Spermatozoal ultrastructure in <strong>the</strong> Hippoidea<br />

(<strong>An</strong>omura, Decapoda). Journal <strong>of</strong> Submicroscopic<br />

Cytology and Pathology 31:1–13.<br />

Turbeville, J. M., D. M. Pfeiffer, K. G. Field, and R. A.<br />

Raff. 1991. The phylogenetic status <strong>of</strong> arthropods,<br />

as inferred from 18S rRNA sequences. Molecular Biology<br />

and Evolution 8:669–686.<br />

Vader, W. 1972. A list <strong>of</strong> amphipod genera and species<br />

described by W. Lilljeborg. Amphipod Newsletter 2:<br />

13–15.<br />

Vader, W., A. Baldinger, and T. Krapp-Schickel. 1998.<br />

IXth International Amphipod Meeting (Kronenberg,<br />

Germany). Ecdysiast (Newsletter <strong>of</strong> The <strong>Crustacea</strong>n<br />

Society,) vol. 17, no. 2:6–7.<br />

Van Dover, C. L., R. H. Gore, and P. Castro. 1986. Echinoecus<br />

pentagonus (A. Milne Edwards, 1879): larval<br />

development and systematic position (<strong>Crustacea</strong>:<br />

Brachyura: Xanthoidea nec Par<strong>the</strong>nopoidea). Journal<br />

<strong>of</strong> <strong>Crustacea</strong>n Biology 6:757–776.<br />

Van Lieshout, S. E. N. 1983. Amsterdam expedition to<br />

<strong>the</strong> West Indian islands, report 27. Calabazoidea,<br />

new suborder <strong>of</strong> stygobiont Isopoda, discovered in<br />

Venezuela. Bijdragen tot de Dierkunde 53:165–177.<br />

Vannier, J., and K. Abe. 1995. Size, body plan, and respiration<br />

in <strong>the</strong> Ostracoda. Paleontology 38:843–<br />

873.<br />

Vannier, J., M. Williams, and D. J. Siveter. 1997. The<br />

Cambrian origin <strong>of</strong> <strong>the</strong> circulatory system <strong>of</strong> crustaceans.<br />

Lethaia 30:169–184.<br />

Vereshchaka, A. L. 1996. A new genus and species <strong>of</strong> caridean<br />

shrimp (<strong>Crustacea</strong>: Decapoda: Alvinocarididae)<br />

from North Atlantic hydro<strong>the</strong>rmal vents. Journal<br />

<strong>of</strong> <strong>the</strong> Marine Biological Association <strong>of</strong> <strong>the</strong> United<br />

Kingdom 76:951–961.<br />

. 1997a. A new family for a deep-sea caridean<br />

shrimp from North Atlantic hydro<strong>the</strong>rmal vents.<br />

Journal <strong>of</strong> <strong>the</strong> Marine Biological Association <strong>of</strong> <strong>the</strong><br />

United Kingdom 77:425–438.<br />

. 1997b. A new family and superfamily for a deepsea<br />

caridean shrimp from <strong>the</strong> Gala<strong>the</strong>a collections.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 17:361–373.<br />

Vinogradov, M. E., A. F. Volkov, and T. N. Semenova.<br />

1982 (1996). Hyperiid amphipods (Amphipoda, Hyperiidea)<br />

<strong>of</strong> <strong>the</strong> world oceans. Editor <strong>of</strong> 1996 English<br />

version: D. Siegel-Causey, translated under agreement<br />

with <strong>the</strong> Smithsonian Institution Libraries,<br />

Washington, D.C., by Amerind Publishing Co. Pvt.<br />

Ltd., New Delhi. [English translation <strong>of</strong> Amfipodygiperiidy<br />

(Amphipoda, Hyperiidea) mirovogo<br />

okeana, Leningrad: Nauka Publishers.]<br />

Vonk, R., and F. R. Schram. 1998. On <strong>the</strong> distribution<br />

and phylogeny <strong>of</strong> ingolfiellid amphipods. Proceedings<br />

and Abstracts <strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n<br />

Congress, Amsterdam: 58 (abstract 56).<br />

Wägele, J.-W. 1983. On <strong>the</strong> origin <strong>of</strong> <strong>the</strong> Microcerberidae<br />

(<strong>Crustacea</strong>: Isopoda). Zeitschrift für Zoologische<br />

Systematik und Evolutionsforschung 21:249–262.<br />

. 1989. Evolution und phylogenetisches System der<br />

Isopoda. Stand der Forschung und neue Erkenntnisse.<br />

Zoologica (Stuttgart) 140:1–262.<br />

. 1994. Review <strong>of</strong> methodological problems <strong>of</strong><br />

‘computer cladistics’ exemplified with a case study<br />

on isopod phylogeny (<strong>Crustacea</strong>: Isopoda). Zeitschift<br />

für Zoologische Systematik und Evolutionsforschung<br />

32:81–107.<br />

. 1996. The <strong>the</strong>ory and methodology <strong>of</strong> phylogenetic<br />

systematics is still evolving: a reply to Wilson.<br />

Vie et Milieu 46:183–184.<br />

Wägele, J.-W., and A. Brandt. 1988. Protognathia n. gen.<br />

bathypelagica (Schultz, 1977) rediscovered in <strong>the</strong><br />

Contributions in Science, Number 39 Literature Cited � 99


Weddell Sea: a missing link between <strong>the</strong> Gnathiidae<br />

and <strong>the</strong> Cirolanidae. Polar Biology 8:359–365.<br />

Wägele, J.-W., and G. Stanjek. 1995. Arthropod phylogeny<br />

inferred from partial 12S rRNA revisited: monophyly<br />

<strong>of</strong> <strong>the</strong> Tracheata depends on sequence alignment.<br />

Journal <strong>of</strong> Zoological Systematics and Evolutionary<br />

Research 33:75–80.<br />

Wagner, H. P. 1994. A monographic review <strong>of</strong> <strong>the</strong> Thermosbaenacea.<br />

Zoologische Verhandelingen 291:1–<br />

338.<br />

Walker-Smith, G. K. 2000. Levinebalia maria, a new genus<br />

and species <strong>of</strong> Leptostraca (<strong>Crustacea</strong>) from<br />

Australia. Memoirs <strong>of</strong> Museum Victoria 58:137–<br />

148.<br />

Walker-Smith, G. K., and G. C. B. Poore. 2001. A phylogeny<br />

<strong>of</strong> <strong>the</strong> Leptostraca (<strong>Crustacea</strong>) with keys to<br />

families and genera. Memoirs <strong>of</strong> Museum Victoria<br />

58:383–410.<br />

Walossek, D. 1993. The Upper Cambrian Rehbachiella<br />

kinnekullensis and <strong>the</strong> phylogeny <strong>of</strong> Branchiopoda<br />

and <strong>Crustacea</strong>. Fossils and Strata 32:1–202.<br />

. 1995. The Upper Cambrian Rehbachiella, its larval<br />

development, morphology, and significance for<br />

<strong>the</strong> phylogeny <strong>of</strong> Branchiopoda and <strong>Crustacea</strong>. Hydrobiologia<br />

298:1–13.<br />

. 1999. On <strong>the</strong> Cambrian diversity <strong>of</strong> <strong>Crustacea</strong>. In<br />

<strong>Crustacea</strong>ns and <strong>the</strong> biodiversity crisis. Proceedings<br />

<strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n Congress, Amsterdam,<br />

vol. 1, ed. F. R. Schram and J. C. von Vaupel<br />

Klein, 3–27. Leiden: Brill.<br />

Walossek, D., and K. J. Müller. 1990. Stem-lineage crustaceans<br />

from <strong>the</strong> Upper Cambrian <strong>of</strong> Sweden and<br />

<strong>the</strong>ir bearing upon <strong>the</strong> position <strong>of</strong> Agnostus. Lethaia<br />

23:409–427.<br />

. 1992. The ‘Alum Shale Window’—contribution<br />

<strong>of</strong> ‘Orsten’ arthropods to <strong>the</strong> phylogeny <strong>of</strong> <strong>Crustacea</strong>.<br />

Acta Zoologica 73:305–312.<br />

. 1994. Pentastomid parasites from <strong>the</strong> Lower Paleozoic<br />

<strong>of</strong> Sweden. Transactions <strong>of</strong> <strong>the</strong> Royal Society<br />

<strong>of</strong> Edinburgh, Earth Sciences 85:1–37.<br />

. 1997. Cambrian ‘‘Orsten’’-type arthropods and<br />

<strong>the</strong> phylogeny <strong>of</strong> <strong>Crustacea</strong>. In Arthropod relationships,<br />

ed. R. A. Fortey, 139–153. Systematics Association<br />

Special Volume Series 55. London: Chapman<br />

and Hall.<br />

. 1998. Early arthropod phylogeny in light <strong>of</strong> <strong>the</strong><br />

Cambrian ‘‘Orsten’’ fossils. In Arthropod fossils and<br />

phylogeny, ed. G. D. Edgecombe, 185–231. New<br />

York: Columbia University Press.<br />

Walossek, D., J. E. Repetski, and K. J. Müller. 1994. <strong>An</strong><br />

exceptionally preserved parasitic arthropod, Heymoniscambria<br />

taylori n. sp. (Arthropoda incertae<br />

sedis: Pentastomida), from Cambrian-Ordovician<br />

boundary beds <strong>of</strong> Newfoundland, Canada. Canadian<br />

Journal <strong>of</strong> Earth Sciences 31:1664–1671.<br />

Walossek, D., and H. Szaniawski. 1991. Cambrocaris baltica,<br />

n. gen. n. sp., a possible stem-lineage crustacean<br />

from <strong>the</strong> Upper Cambrian <strong>of</strong> Poland. Lethaia 24:<br />

363–378.<br />

Watling, L. 1981. <strong>An</strong> alternative phylogeny <strong>of</strong> peracarid<br />

crustaceans. Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 1:201–<br />

210.<br />

. 1983. Peracaridan disunity and its bearing on Eumalacostracan<br />

phylogeny with a redefinition <strong>of</strong> Eumalacostracan<br />

superorders. In <strong>Crustacea</strong>n issues 1.<br />

<strong>Crustacea</strong>n phylogeny, ed. F. R. Schram, 213–228.<br />

Rotterdam: A. A. Balkema Press, 372 pp.<br />

. 1998. On peracarid unity: who goes, who stays?<br />

Proceedings and Abstracts <strong>of</strong> <strong>the</strong> 4th International<br />

<strong>Crustacea</strong>n Congress, Amsterdam: 71 (abstract 518).<br />

. 1999a. The place <strong>of</strong> <strong>the</strong> Hoplocarida in <strong>the</strong> malacostracan<br />

pan<strong>the</strong>on. Program and Abstracts, The<br />

<strong>Crustacea</strong>n Society 1999 Summer Meeting, Lafayette,<br />

Louisiana: 47.<br />

. 1999b. Toward understanding <strong>the</strong> relationships <strong>of</strong><br />

<strong>the</strong> peracaridan orders: <strong>the</strong> necessity <strong>of</strong> determining<br />

exact homologies. In <strong>Crustacea</strong>ns and <strong>the</strong> biodiversity<br />

crisis. Proceedings <strong>of</strong> <strong>the</strong> 4th International <strong>Crustacea</strong>n<br />

Congress, Amsterdam, vol. 1, ed. F. R.<br />

Schram and J. C. von Vaupel Klein, 73–89. Leiden:<br />

Brill.<br />

Watling, L., C. H. J. H<strong>of</strong>, and F. R. Schram. 2000. The<br />

place <strong>of</strong> <strong>the</strong> Hoplocarida in <strong>the</strong> malacostracan pan<strong>the</strong>on.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology 20(special<br />

number 2):1–11.<br />

Watling, L., and I. Kornfield. 1996. Cumacean web page,<br />

URL http://nature.umesci.maine.edu/pub/cumacea.<br />

html.<br />

Whatley, R. C., D. J. Siveter, and I. D. Boomer. 1993.<br />

Arthropoda (<strong>Crustacea</strong>: Ostracoda). In The fossil record<br />

2, ed. M. J. Benton, 343–356. London: Chapman<br />

and Hall.<br />

Wheeler, W. C. 1997. Sampling, groundplans, total evidence<br />

and <strong>the</strong> systematics <strong>of</strong> arthropods. In Arthropod<br />

relationships, ed. R. A. Fortey and R. H. Thomas,<br />

87–96. Systematics Association Special Volume<br />

Series 55. London: Chapman and Hall.<br />

. 1998. Molecular systematics and arthropods. In<br />

Arthropod fossils and phylogeny, ed. G. D. Edgecombe,<br />

9–32. New York: Columbia University Press.<br />

Wheeler, W. C., P. Cartwright, and C. Y. Hayashi. 1993.<br />

Arthropod phylogeny: a combined approach. Cladistics<br />

9:1–39.<br />

Willen, E. 1999. Preliminary revision <strong>of</strong> <strong>the</strong> Pseudotachidiidae<br />

Lang, 1936 (Copepoda, Harpacticoida). Courier<br />

Forschungsinstitut 215:221–225.<br />

Williams, A. B. 1979. A new crab family from shallow<br />

waters <strong>of</strong> <strong>the</strong> West Indies (<strong>Crustacea</strong>: Decapoda:<br />

Brachyura). Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong><br />

Washington 92:399–413.<br />

. 1980. A new crab family from <strong>the</strong> vicinity <strong>of</strong> submarine<br />

<strong>the</strong>rmal vents on <strong>the</strong> Galapagos Rift (<strong>Crustacea</strong>:<br />

Decapoda: Brachyura). Proceedings <strong>of</strong> <strong>the</strong> Biological<br />

Society <strong>of</strong> Washington 93:443–472.<br />

. 1988. Lobsters <strong>of</strong> <strong>the</strong> world—an illustrated guide.<br />

Huntington, New York: Osprey Books, 186 pp.<br />

Williams, T. A., and L. M. Nagy. 1995. Brine shrimp add<br />

salt to <strong>the</strong> stew. Current Biology 5:1330–1333.<br />

Williams, W. D., and J. L. Barnard. 1988. The taxonomy<br />

<strong>of</strong> crangonyctoid Amphipoda (<strong>Crustacea</strong>) from Australian<br />

fresh waters: foundation studies. Records <strong>of</strong><br />

<strong>the</strong> Australian Museum, 10(supplement):1–180.<br />

Williamson, D. I. 1976. Larval characters and <strong>the</strong> origin<br />

<strong>of</strong> crabs (<strong>Crustacea</strong>, Decapoda, Brachyura). Thalassia<br />

Jugoslavica 10:401–414.<br />

. 1982. Larval morphology and diversity. In The<br />

biology <strong>of</strong> <strong>Crustacea</strong>, vol. 2. Embryology, morphology,<br />

and genetics, ed. L. G. Abele, 43–110. New<br />

York: Academic Press.<br />

. 1988a. Evolutionary trends in larval form. In Aspects<br />

<strong>of</strong> decapod crustacean biology, ed. A. A. Fincham<br />

and P. Rainbow, 11–25. London: Symposium<br />

<strong>of</strong> <strong>the</strong> Zoological Society <strong>of</strong> London 59, 375 pp.<br />

. 1988b. Incongruous larvae and <strong>the</strong> origin <strong>of</strong> some<br />

invertebrate life histories. Progress in Oceanography<br />

19:87–116.<br />

100 � Contributions in Science, Number 39 Literature Cited


Wills, M. A. 1997. A phylogeny <strong>of</strong> recent and fossil <strong>Crustacea</strong><br />

derived from morphological characters. In Arthropod<br />

relationships, ed. R. A. Fortey and R. H.<br />

Thomas, 189–209. Systematics Association Special<br />

Volume Series 55. London: Chapman and Hall.<br />

. 1998. <strong>Crustacea</strong>n disparity through <strong>the</strong> Phanerozoic:<br />

comparing morphological and stratigraphic<br />

data. Biological Journal <strong>of</strong> <strong>the</strong> Linnean Society 65:<br />

455–500.<br />

Wills, M. A, D. E. Briggs, R. A. Fortey, and M. Wilkinson.<br />

1995. The significance <strong>of</strong> fossils in understanding arthropod<br />

evolution. Verhandlungen der Deutschen<br />

Zoologischen Gesellschaft 88:203–215.<br />

Wills, M. A., D. E. G. Briggs, R. A. Fortey, M. Wilkinson,<br />

and P. H. A. Sneath. 1998. <strong>An</strong> arthropod phylogeny<br />

based on fossil and <strong>Recent</strong> taxa. In Arthropod fossils<br />

and phylogeny, ed. G. D. Edgecombe, 33–105. New<br />

York: Columbia University Press.<br />

Wilson, G. D. F. 1986. Pseudojaniridae (<strong>Crustacea</strong>: Isopoda),<br />

a new family for Pseudojanira stenetrioides<br />

Barnard, 1925, a species intermediate between <strong>the</strong><br />

asellote superfamilies Stenetrioidea and Janiroidea.<br />

Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington<br />

99:350–358.<br />

. 1987. The road to <strong>the</strong> Janiroidea: comparative<br />

morphology and evolution <strong>of</strong> <strong>the</strong> asellote isopod<br />

crustaceans. Zeitschrift für Zoologische Systematik<br />

und Evolutionsforschung 25:257–280.<br />

. 1989. A systematic revision <strong>of</strong> <strong>the</strong> deep-sea subfamily<br />

Lipomerinae, <strong>of</strong> <strong>the</strong> isopod crustacean family<br />

Munnopsidae. Bulletin <strong>of</strong> <strong>the</strong> Scripps Institution <strong>of</strong><br />

Oceanography (University <strong>of</strong> California, San Diego)<br />

27:1–138.<br />

. 1992. Computerized analysis <strong>of</strong> crustacean relationships.<br />

Acta Zoologica 73:383–389.<br />

. 1994. A phylogenetic analysis <strong>of</strong> <strong>the</strong> isopod family<br />

Janiridae (<strong>Crustacea</strong>). Invertebrate Taxonomy 8:<br />

749–766.<br />

. 1996. Of uropods and isopod crustacean trees: a<br />

comparison <strong>of</strong> ‘‘groundpattern’’ and cladistic methods.<br />

Viet et Milieu 46:139–153.<br />

Wilson, G. D. F., and R. T. Johnson. 1999. <strong>An</strong>cient endemism<br />

among freshwater isopods (<strong>Crustacea</strong>,<br />

Phreatoicidea). In The o<strong>the</strong>r 99%. The conservation<br />

and biodiversity <strong>of</strong> invertebrates, ed. W. Ponder and<br />

D. Lunney, 264–268. Mosman, New South Wales:<br />

Transactions <strong>of</strong> <strong>the</strong> Royal Zoological Society <strong>of</strong> New<br />

South Wales.<br />

Wilson, G. D. F., and S. J. Keable. 1999. A new genus <strong>of</strong><br />

phreatoicidean isopod (<strong>Crustacea</strong>) from <strong>the</strong> north<br />

Kimberly region, western Australia. Zoological Journal<br />

<strong>of</strong> <strong>the</strong> Linnean Society 126:51–79.<br />

. 2001. Systematics <strong>of</strong> <strong>the</strong> Phreatoicidea. In <strong>Crustacea</strong>n<br />

Issues 13. Isopod systematics and evolution,<br />

ed. B. Kensley and R. C. Brusca, 175–194. Rotterdam:<br />

A. A. Balkema Press, 357 pp.<br />

Wilson, K., V. Cahill, E. Ballment, and J. Benzie. 2000.<br />

The complete sequence <strong>of</strong> <strong>the</strong> mitochondrial genome<br />

<strong>of</strong> <strong>the</strong> crustacean Penaeus monodon: are malacostracan<br />

crustaceans more closely related to insects than<br />

to branchiopods? Molecular Biology and Evolution<br />

17:863–874.<br />

Wingstrand, K. G. 1972. Comparative spermatology <strong>of</strong> a<br />

pentastomid Raeillietiella hemidactyli and a branchiuran<br />

crustacean Argulus foliaceus with a discus-<br />

sion <strong>of</strong> pentastomid relationships. Kongelige Danske<br />

Videnskabarens Selskab Biologiske Skrifter 19:1–72.<br />

. 1978. Comparative spermatology <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong><br />

Entomostraca. 1. Subclass Branchiopoda. Kongelige<br />

Danske Videnskabarens Selskab Biologiske<br />

Skrifter 22:1–66.<br />

. 1988. Comparative spermatology <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong><br />

Entomostraca. 2. Subclass Ostracoda. Kongelige<br />

Danske Videnskabarens Selskab Biologiske Skrifter<br />

32:1–149.<br />

Winnepenninckx, B. M. H., T. Backeljau, and R. M. Kristensen.<br />

1998. Relations <strong>of</strong> <strong>the</strong> new phylum Cycliophora.<br />

Nature 393:636–638.<br />

Wolff, T. 1989. The genera <strong>of</strong> Santiidae Kussakin, 1988,<br />

with <strong>the</strong> description <strong>of</strong> a new genus and species<br />

(<strong>Crustacea</strong>, Isopoda, Asellota). Steenstrupia 15:177–<br />

191.<br />

Wray, G. A., J. S. Levinton, and L. H. Shapiro. 1996.<br />

Molecular evidence for deep Precambrian divergences<br />

among metazoan phyla. Science 274:568–573.<br />

Yager, J. 1981. Remipedia, a new class <strong>of</strong> crustaceans<br />

from a marine cave in <strong>the</strong> Bahamas. Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology 1:328–333.<br />

. 1989a. The male reproductive system, sperm, and<br />

spermatophores <strong>of</strong> <strong>the</strong> primitive hermaphroditic, remipede<br />

crustacean Speleonectes benjamini. Invertebrate<br />

Reproduction and Development 15:75–81.<br />

. 1989b. Pleomothra apletocheles and Godzilliognomus<br />

frondosus, two new genera and species <strong>of</strong> remipede<br />

crustaceans (Godzilliidae) from anchialine<br />

caves in <strong>the</strong> Bahamas. Bulletin <strong>of</strong> Marine Science 44:<br />

1195–1206.<br />

. 1991. The Remipedia (<strong>Crustacea</strong>): recent investigations<br />

<strong>of</strong> <strong>the</strong>ir biology and phylogeny. Verhandlungen<br />

der Deutschen Zoologischen Gesellschaft, Stuttgart<br />

84:261–269.<br />

Yager, J., and J. H. Carpenter. 1999. Speleonectes epilimnius<br />

new species (Remipedia, Speleonectidae) from<br />

surface water <strong>of</strong> an anchialine cave on San Salvador<br />

Island, Bahamas. <strong>Crustacea</strong>na 72:965–977.<br />

Yager, J., and W. F. Humphreys. 1996. Lasionectes exleyi,<br />

sp. nov., <strong>the</strong> first remipede crustacean recorded from<br />

Australia and <strong>the</strong> Indian Ocean, with a key to <strong>the</strong><br />

world species. Invertebrate Taxonomy 10:171–187.<br />

Yager, J., and F. R. Schram. 1986. Lasionectes entrichoma,<br />

new genus, new species (<strong>Crustacea</strong>: Remipedia) from<br />

anchialine caves in <strong>the</strong> Turks and Caicos, British<br />

West Indies. Proceedings <strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong><br />

Washington 99:65–70.<br />

Yamaguchi, T., and W. A. Newman. 1990. A new and<br />

primitive barnacle (Cirripedia: Balanomorpha) from<br />

<strong>the</strong> North Fiji Basin abyssal hydro<strong>the</strong>rmal field, and<br />

its evolutionary implications. Pacific Science 44:135–<br />

155.<br />

Yamaguti, S. 1963. Parasitic Copepoda and Branchiura <strong>of</strong><br />

fishes. New York: Interscience Publishers (John Wiley<br />

& Sons), i–vii � 1104 pp.<br />

Young, P. S. (editor). 1998. Catalogue <strong>of</strong> <strong>Crustacea</strong> <strong>of</strong><br />

Brazil. Rio de Janeiro: Museo Nacional, Série Livros<br />

6, i–xvii � 717 pp.<br />

Zhang, W., Y. Shen, and N. Shaowu. 1990. Discovery <strong>of</strong><br />

Jurassic conchostracans with well preserved s<strong>of</strong>t<br />

parts and notes on its biological significance. Palaeontologia<br />

Cathayana 5:311–352.<br />

Contributions in Science, Number 39 Literature Cited � 101


APPENDIX I. COMMENTS AND OPINIONS<br />

The following comments and opinions were provided<br />

by colleagues (all <strong>of</strong> whom are listed in Appendix<br />

II) after seeing <strong>the</strong> penultimate draft <strong>of</strong> <strong>the</strong><br />

classification. The authors wish to gratefully acknowledge<br />

<strong>the</strong>m for allowing us to reproduce <strong>the</strong>ir<br />

remarks. References are listed after each comment<br />

only if those references are not already listed in our<br />

Literature Cited section. Some authors did not supply<br />

full references; consequently, references may be<br />

missing for some papers cited below.<br />

CRUSTACEA (GENERAL)<br />

The authors choose to treat <strong>the</strong> <strong>Crustacea</strong> as a<br />

monophyletic group and thus find it justifiable to<br />

produce an updated classification for organizing<br />

museum collections and helping students <strong>of</strong> crustaceans<br />

to search unfamiliar taxa. It should thus<br />

become a useful taxonomic tool. I find much merit<br />

in (1) <strong>the</strong> exposition <strong>of</strong> reasons for preferred arrangements<br />

and (2) <strong>the</strong> attempt to introduce readers<br />

to alternative opinions. The permanent drawback<br />

<strong>of</strong> this compilation (considered by <strong>the</strong> authors)<br />

is that taxa are not justified by diagnostic<br />

characters.<br />

As a means <strong>of</strong> reflecting some current phylogenetic<br />

ideas on crustaceans, however, <strong>the</strong> present attempt<br />

will be considered obsolete almost immediately<br />

by some workers. The monophyly <strong>of</strong> <strong>the</strong><br />

<strong>Crustacea</strong> is far from settled. In fact, in my opinion,<br />

it is very unlikely. The mandibulate arthropods are<br />

traditionally divided into two grades (crustaceans<br />

and tracheates), and it is obvious that <strong>the</strong> closest<br />

relatives <strong>of</strong> <strong>the</strong> terrestrial tracheates should be<br />

sought among aquatic crustaceans. If this scenario<br />

is reasonable, <strong>the</strong> <strong>Crustacea</strong> become, in principle, a<br />

nonmonophyletic grade-group. The Remipedia and<br />

Malacostraca have been pinpointed as two successive<br />

outgroups <strong>of</strong> <strong>the</strong> Tracheata (Moura and Christ<strong>of</strong>fersen,<br />

1996). If <strong>the</strong>re is merit in such a proposal,<br />

an incorrect assumption <strong>of</strong> monophyly could immediately<br />

account for many discrepancies noted<br />

among cladistic papers establishing <strong>the</strong> position<br />

and internal relationships <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>. Researchers<br />

striving for a phylogenetic arrangement<br />

<strong>of</strong> <strong>the</strong> crustaceans should not exclude <strong>the</strong> terrestrial<br />

descendants <strong>of</strong> crustaceans from <strong>the</strong>ir system. For<br />

<strong>the</strong>se reasons, ra<strong>the</strong>r than a practical, largely consensual,<br />

and authority-based classification <strong>of</strong> <strong>the</strong><br />

<strong>Recent</strong> <strong>Crustacea</strong>, we need to reconstruct <strong>the</strong> system<br />

<strong>of</strong> <strong>the</strong> Mandibulata (apparently <strong>the</strong> smallest<br />

clade that includes all <strong>the</strong> so-called crustaceans, as<br />

well as <strong>the</strong>ir myriapod and hexapod descendants).<br />

Fur<strong>the</strong>rmore, apomorphic characters need to be<br />

provided to distinguish acceptable monophyletic<br />

taxa from unstudied, unknown, or unresolved traditional<br />

taxa. Let me suggest that this become ano<strong>the</strong>r<br />

demanding, but long overdue, story.<br />

Submitted by Martin L. Christ<strong>of</strong>fersen,<br />

Federal University <strong>of</strong> Paraíba, Brazil<br />

BRANCHIOPODA AS PRIMITIVE<br />

In regards to your first argument here, <strong>the</strong>re are<br />

three different sets <strong>of</strong> authors who cannot confirm<br />

a branchiopod affinity for this taxon [Rehbachiella]<br />

and consequently <strong>the</strong>re in fact may be no Cambrian<br />

branchiopods. The second part <strong>of</strong> your argument,<br />

that <strong>the</strong>re are nei<strong>the</strong>r Cambrian cephalocarids, nor<br />

remipedes, is a non-sequitor. The late Ralph Gordon<br />

Johnson used to say about <strong>the</strong> apparent age <strong>of</strong><br />

fossils ‘‘Things are always older than you think <strong>the</strong>y<br />

are.’’ <strong>An</strong> example <strong>of</strong> which relates to those Carboniferous<br />

remipedes; <strong>the</strong>re is in fact something in<br />

<strong>the</strong> Silurian <strong>of</strong> Wisconsin, yet undescribed, that<br />

may be a remipede. So, your first argument is weak.<br />

Your second argument, derived from apomorphic<br />

development, would seem to be valid, at least<br />

under traditional assumptions. However, two<br />

points might be mentioned in this regard. The<br />

weakest point relates to <strong>the</strong> basic assumption <strong>of</strong><br />

anamorphy � primitive. Certain aspects emerging<br />

from developmental genetics might suggest an alternative;<br />

however, this needs to be developed and<br />

published (something I have not had time to do as<br />

yet). Never<strong>the</strong>less, if we consider <strong>the</strong> matter in<br />

strictly cladistic terms, if as you correctly state that<br />

anamorphy is unique to branchiopods, within<br />

<strong>Crustacea</strong> sensu stricto <strong>the</strong> issue <strong>of</strong> plesiomorphy is<br />

not resolved—branchiopods have it, but non-branchiopods<br />

(apparently) don’t. If you add outgroups<br />

from <strong>the</strong> ‘‘o<strong>the</strong>r Mandibulata,’’ in an attempt to polarize<br />

patterns <strong>of</strong> development, <strong>the</strong>n if insects are<br />

in fact a sister group to crustaceans, epimorphy<br />

could be argued as plesiomorphic.<br />

Third, <strong>the</strong> molecular data cited here is not being<br />

employed properly by you. The distinctness <strong>of</strong><br />

branchiopods here in <strong>the</strong> papers you cite is stronger<br />

than you indicate. For example, Spears and Abele<br />

(1997) under certain assumptions actually pull<br />

branchiopods into <strong>the</strong> hexapods, which possibly indicates<br />

crustacean polyphyly. Of course you say<br />

that branchiopods are (might be) closer to o<strong>the</strong>r<br />

groups <strong>of</strong> arthropods—a fair judgment. If true, that<br />

would indicate that <strong>the</strong> position <strong>of</strong> branchiopods<br />

far exceeds that <strong>of</strong> a potential ‘‘basal group’’ <strong>of</strong><br />

crustaceans. Primitiveness under those circumstances<br />

has nothing to do with it.<br />

In short, you are wise not to create any additional<br />

taxonomic categories. Moreover, your threepronged<br />

argument would appear to be not clearly<br />

drawn at all.<br />

On <strong>the</strong> ancestral crustacean . . . you remark that<br />

Schram and H<strong>of</strong> (1998) obtain a clade Phyllopoda.<br />

First, if you look at <strong>the</strong> paper carefully, we sometimes<br />

get a phyllopodan clade, and sometimes<br />

not—depending on <strong>the</strong> assumptions and inclusiveness<br />

<strong>of</strong> <strong>the</strong> database employed. Contrary to Schram<br />

(1986), I think H<strong>of</strong> and I would state that <strong>the</strong> issue<br />

<strong>of</strong> whe<strong>the</strong>r or not <strong>the</strong>re is a monophyletic clade<br />

Phyllopoda is indeed an open one—which is not<br />

102 � Contributions in Science, Number 39 Appendix I: Comments and Opinions


what your sentence says. Second, just because one<br />

clade in a comprehensive analysis does not find<br />

wide favor does not necessarily call o<strong>the</strong>r aspects<br />

<strong>of</strong> <strong>the</strong> analysis into question. [Editors’note: In our<br />

penultimate draft, we criticized <strong>the</strong> recognition <strong>of</strong><br />

<strong>the</strong> Phyllopoda by Schram and H<strong>of</strong>, and <strong>the</strong>n used<br />

that criticism to cast doubt on o<strong>the</strong>r <strong>of</strong> <strong>the</strong>ir findings<br />

in that paper; this unfair criticism has since<br />

been removed.] What <strong>the</strong> main conclusion <strong>of</strong><br />

Schram and H<strong>of</strong> indicated was that <strong>the</strong> issue <strong>of</strong><br />

crustacean phylogenetic relationships has more<br />

mileage in it before we hope to approach a solution.<br />

That ought to be conveyed in your text at this<br />

point.<br />

Submitted by Frederick R. Schram,<br />

Zoölogisches Museum, Amsterdam<br />

BRANCHIOPODA AS PRIMITIVE<br />

You state several places that you place <strong>the</strong> Branchiopoda<br />

as <strong>the</strong> sister group to <strong>the</strong> remaining crustaceans.<br />

This may be correct, but you mention no<br />

arguments. The only possible arguments could be<br />

characters shared by <strong>the</strong> remaining crustaceans that<br />

would set <strong>the</strong> Branchiopoda aside. It is not enough<br />

to state that <strong>the</strong>y [look] very primitive and that<br />

some <strong>of</strong> <strong>the</strong>m look like some <strong>of</strong> <strong>the</strong> ‘Orsten’ fossils.<br />

I agree, <strong>of</strong> course, that <strong>the</strong> branchiopods ARE indeed<br />

some <strong>of</strong> <strong>the</strong> most primitive <strong>Recent</strong> <strong>Crustacea</strong><br />

we have, but this doesn’t automatically give <strong>the</strong>m<br />

sister group position to <strong>the</strong> rest (only synapomorphies<br />

for <strong>the</strong> remaining ...,asmentioned above).<br />

It is NOT difficult to imagine <strong>the</strong> branchiopods (or<br />

<strong>the</strong> cephalocarids) placed a little bit up in <strong>the</strong> system.<br />

It would only require that <strong>the</strong> primitive features<br />

that <strong>the</strong>y have are retained a couple <strong>of</strong> nodes,<br />

and that those that actually are branched <strong>of</strong>f first<br />

(Malacostraca, Remipedia, whatever) have attained<br />

<strong>the</strong>ir special modifications independently from o<strong>the</strong>r<br />

<strong>Crustacea</strong>.<br />

So, to summarize, <strong>the</strong> discussion <strong>of</strong> which <strong>Crustacea</strong><br />

is <strong>the</strong> most primitive to look at, and which is<br />

<strong>the</strong> sister group to <strong>the</strong> rest, is a mixture <strong>of</strong> two<br />

discussions which actually should be separate. The<br />

two discussions have been treated as one when certain<br />

o<strong>the</strong>r authors have been discussing <strong>the</strong> same<br />

for cephalocarids and remipedes, I know, but it<br />

does not make <strong>the</strong> discussion more sensible. I believe<br />

plenty <strong>of</strong> examples could be mentioned where<br />

<strong>the</strong> sister group to a larger group is far from being<br />

<strong>the</strong> best candidate as <strong>the</strong> most primitive one. To<br />

take an example from animals we are both interested<br />

in: If for example notostracans are <strong>the</strong> sister<br />

group to all <strong>the</strong> ‘bivalved’ branchiopods, it doesn’t<br />

follow that <strong>the</strong>y also are <strong>the</strong> most primitive. This<br />

is <strong>the</strong> same story for <strong>the</strong> possible sister group to <strong>the</strong><br />

<strong>Crustacea</strong>. We should not exclude any <strong>of</strong> <strong>the</strong> derived<br />

forms from having that honorary position.<br />

Only synapomorphies uniting <strong>the</strong> rest can place a<br />

taxon in this position.<br />

My advice would be to skip <strong>the</strong> idea <strong>of</strong> branchiopod<br />

as sister group to <strong>the</strong> rest, unless you pro-<br />

vide arguments. But <strong>of</strong> course, you should retain<br />

<strong>the</strong> point <strong>of</strong> branchiopods being quite primitive<br />

(based on similarities to certain ‘Orsten’ fossils),<br />

but I think it is impossible and subjective to distinguish<br />

between <strong>the</strong> branchiopods and <strong>the</strong> cephalocarids<br />

in this respect. [Both] look like certain ‘Orsten’<br />

fossils, and not least <strong>the</strong> cephalocarids. There<br />

is not [an] objective way to say which is most primitive,<br />

because it depends on <strong>the</strong> feature you focus<br />

on. So, perhaps you should mention both taxa as<br />

<strong>the</strong> best candidates to being ‘primitive’.<br />

Also, I simply don’t understand how you can say<br />

that we ‘are treating <strong>the</strong> class Branchiopoda as <strong>the</strong><br />

most primitive <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>’ when this is not<br />

included in your classification. It sounds like you<br />

don’t believe it enough to actually include it (by<br />

finding a name for <strong>the</strong> rest). In my opinion, it contains<br />

no information about primitivity to mention<br />

it as <strong>the</strong> first <strong>of</strong> <strong>the</strong> classes in your classification.<br />

Submitted by Jørgen Olesen,<br />

University <strong>of</strong> Copenhagen, Denmark<br />

BRANCHIOPODA<br />

Elucidation <strong>of</strong> <strong>the</strong> relationships <strong>of</strong> <strong>the</strong> ‘‘cladoceran’’<br />

and ‘‘conchostraca’’ branchiopods appears to have<br />

reached what is doubtless a temporary impasse.<br />

Morphology seems to be saying one thing, some<br />

molecular evidence ano<strong>the</strong>r. In morphology, <strong>the</strong><br />

‘‘cladoceran’’ orders differ much from each o<strong>the</strong>r,<br />

and attempts to unite <strong>the</strong>m are unsatisfactory. On<br />

his own estimation, Olesen (1998), who would do<br />

so, feels that <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> ‘‘Cladocera’’<br />

‘‘may not seem well supported’’ by his cladistic<br />

analysis. In fact, <strong>of</strong> five characters used in support,<br />

three are wrong, one is <strong>of</strong> no significance, and <strong>the</strong><br />

o<strong>the</strong>r is but a small, to be expected, adaptive<br />

change that could have happened more than once.<br />

The four constituent groups, which merit ordinal<br />

rank, differ from each o<strong>the</strong>r more than do <strong>the</strong> various<br />

orders <strong>of</strong> <strong>the</strong> Copepoda. Although some copepods<br />

are modified for parasitic habits, some representatives<br />

<strong>of</strong> all orders retain various fundamental<br />

similarities.<br />

Olesen himself says that his analysis does not<br />

support <strong>the</strong> ‘‘Conchostraca,’’ nor, incidentally, <strong>the</strong><br />

Spinicaudata, a well-defined component <strong>of</strong> that<br />

group, especially if <strong>the</strong> divergent Cycles<strong>the</strong>ria is<br />

segregated from it. Never<strong>the</strong>less, he unites <strong>the</strong> morphologically<br />

diverse ‘‘cladoceran’’ orders with <strong>the</strong><br />

unsupported, and very different, ‘‘Conchostraca’’ as<br />

<strong>the</strong> ‘‘Diplostraca,’’ which compounds <strong>the</strong> difficulties.<br />

All <strong>the</strong> alleged synapomorphies <strong>of</strong> <strong>the</strong> ‘‘Diplostraca’’<br />

are incorrect (Fryer, 1999b). Walossek’s<br />

(1993, 1995) less detailed attempt to demonstrate<br />

<strong>the</strong> same relationship fails for similar reasons.<br />

The Spinicaudata was fully differentiated at least<br />

as long ago as <strong>the</strong> early Devonian. Ephippia <strong>of</strong> even<br />

extant genera <strong>of</strong> <strong>the</strong> ‘‘cladoceran’’ order <strong>An</strong>omopoda<br />

are known from <strong>the</strong> Lower Cretaceous, and<br />

molecular evidence suggests that Daphnia originated<br />

more than 200 My ago (Colbourne and Hebert,<br />

Contributions in Science, Number 39 Appendix I: Comments and Opinions � 103


1996). The order must be extremely ancient. If <strong>the</strong><br />

‘‘cladoceran’’ orders prove to be monophyletic, <strong>the</strong>y<br />

must be <strong>of</strong> extremely ancient origin. The most convincing<br />

molecular evidence <strong>of</strong> affinity <strong>of</strong> <strong>the</strong> ‘‘cladoceran’’<br />

orders is that in all four <strong>the</strong> V4 and V7<br />

regions <strong>of</strong> <strong>the</strong> small subunit ribosomal RNA possesses<br />

four helices, three <strong>of</strong> which are present in<br />

Cycles<strong>the</strong>ria but are o<strong>the</strong>rwise so far unique<br />

(Crease and Taylor, 1998). Cycles<strong>the</strong>ria, long regarded<br />

as a somewhat recalcitrant spinicaudatan,<br />

has <strong>of</strong>ten been cast in <strong>the</strong> role <strong>of</strong> ancestor <strong>of</strong> <strong>the</strong><br />

‘‘Cladocera’’—without however demonstrating<br />

how such different orders as <strong>the</strong> <strong>An</strong>omopoda and<br />

Haplopoda could have been derived from it. Although<br />

<strong>the</strong> helices are very different in length and<br />

primary sequences <strong>of</strong> <strong>the</strong>ir distal ends in <strong>the</strong> different<br />

orders, <strong>the</strong>ir locations, secondary structures,<br />

and primary sequences at <strong>the</strong>ir proximal ends are<br />

conserved, which suggests homology. None <strong>of</strong> <strong>the</strong>se<br />

peculiarities is shared with <strong>the</strong> Spinicaudata, within<br />

which order Cycles<strong>the</strong>ria was long included and to<br />

which it is vastly more similar in morphology than<br />

it is to any ‘‘cladoceran’’ order! According to some<br />

investigators, evidence deduced from 18S ribosomal<br />

DNA supports <strong>the</strong>se relationships (Spears and<br />

Abele, 2000). However, according to Dumont<br />

(2000), ‘‘ongoing molecular work using <strong>the</strong> full sequence<br />

<strong>of</strong> <strong>the</strong> 18S rDNA nuclear gene’’ not only<br />

confirms <strong>the</strong> distinction <strong>of</strong> that order ‘‘but also suggests<br />

that <strong>the</strong> Onychopoda might even be more<br />

closely related to <strong>the</strong> <strong>An</strong>ostraca than with <strong>the</strong> cladoceran<br />

orders Ctenopoda and <strong>An</strong>omopoda.’’<br />

Note, also, that <strong>the</strong> widely accepted 18S rRNA<br />

phylogenetic tree <strong>of</strong> <strong>the</strong> Protozoa has now been seriously<br />

questioned, and is probably unreliable (Phillippe<br />

and Adoutte, 1998)!<br />

With qualifications, some molecular evidence is<br />

seductive and welcome, but is contradicted by o<strong>the</strong>r<br />

molecular findings, and cannot gainsay ei<strong>the</strong>r <strong>the</strong><br />

great morphological differences between <strong>the</strong> groups<br />

concerned, or <strong>the</strong> failure to justify ei<strong>the</strong>r <strong>the</strong> ‘‘Cladocera,’’<br />

‘‘Conchostraca,’’ or ‘‘Diplostraca’’ by cladistic<br />

analyses. To change <strong>the</strong> classification <strong>of</strong> <strong>the</strong>se<br />

animals on <strong>the</strong> basis <strong>of</strong> still-contentious molecular<br />

evidence while ignoring <strong>the</strong> larger corpus <strong>of</strong> information<br />

now accumulated, not only on morphology<br />

but on morphology whose functional significance is<br />

sometimes understood, and on life histories, would<br />

merely upset what may indeed eventually prove to<br />

be only an interim scheme, but one which for <strong>the</strong><br />

time being is perfectly serviceable. As Avise (1994)<br />

notes, morphological and molecular evolution may<br />

proceed at different rates, and <strong>the</strong> overall magnitude<br />

<strong>of</strong> genetic distance between taxa is not necessarily<br />

<strong>the</strong> only, or <strong>the</strong> best, guide to phylogenetic<br />

relationships within groups.<br />

The subclasses Sarsostraca and Phyllopoda seem<br />

to be unnecessary. The latter name has also already<br />

been a source <strong>of</strong> much confusion. A case can be<br />

made for <strong>the</strong> Notostraca as being as distinctive as<br />

<strong>the</strong> <strong>An</strong>ostraca, which alone renders grouping into<br />

subclasses untenable.<br />

Additional References<br />

Avise, J. C. 1994. Molecular markers, natural history and<br />

evolution. New York: Chapman and Hall.<br />

Colbourne, J. K., and P. D. N. Hebert. 1996. The systematics<br />

<strong>of</strong> <strong>the</strong> North American Daphnia (<strong>Crustacea</strong>:<br />

<strong>An</strong>omopoda): a molecular phylogenetic approach.<br />

Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong><br />

London 351B:349–360.<br />

Dumont, H. J. 2000. Endemism in <strong>the</strong> Ponto-Caspian fauna,<br />

with special emphasis on <strong>the</strong> Onychopoda (<strong>Crustacea</strong>).<br />

Advances in Ecological Research 31:181–<br />

196.<br />

Phillippe, H., and A. Adoutte. 1998. The molecular phylogeny<br />

<strong>of</strong> Eukaryota: solid facts and uncertainties. In<br />

Evolutionary relationships among Protozoa, eds. G.<br />

H. Coombs et al., 25–56. London: Chapman and<br />

Hall.<br />

Submitted by Ge<strong>of</strong>frey Fryer,<br />

University <strong>of</strong> Lancaster, United Kingdom<br />

BRANCHIOPODA<br />

I am not sure that you should not include <strong>the</strong> Ilyocryptidae<br />

in your classification. After all, it is a<br />

quite serious action not to follow <strong>the</strong> advice <strong>of</strong> <strong>the</strong><br />

most important <strong>Recent</strong> taxonomist working in <strong>the</strong><br />

Cladocera that we have (N. N. Smirnov). Especially<br />

since you follow so many o<strong>the</strong>r taxonomists in <strong>the</strong>ir<br />

suggestions. You present no arguments for not doing<br />

so. One could argue that an eventual splitting<br />

<strong>of</strong> <strong>the</strong> Macrothricidae should await a phylogenetic<br />

revision, but such a revision is likely not to appear<br />

in due time. It is true that <strong>the</strong> change suggested by<br />

Smirnov may not be based on phylogenetic criteria<br />

(and <strong>the</strong> remaining macrothricids may still be paraphyletic),<br />

but <strong>the</strong> same could be said about so<br />

much <strong>of</strong> your classification anyway, as you mention<br />

a couple <strong>of</strong> times.<br />

I think when it comes to <strong>the</strong> lower level classification,<br />

I believe it would be wise to follow <strong>the</strong> advice<br />

<strong>of</strong> <strong>the</strong> people actually working on <strong>the</strong> taxa,<br />

unless you have personal, strong arguments no to<br />

do so. The case <strong>of</strong> <strong>the</strong> ‘Moinidae’ is different because<br />

Fryer convincingly argues for <strong>the</strong>ir unity with<br />

<strong>the</strong> rest <strong>of</strong> <strong>the</strong> Daphniidae. You could also cite his<br />

1991 monograph on Daphniidae adaptive radiation<br />

here.<br />

The step you take concerning Cycles<strong>the</strong>ria is OK,<br />

I think. It is understandable that you choose something<br />

between <strong>the</strong> two alternatives. If we one day<br />

decide to take <strong>the</strong> full step <strong>of</strong> <strong>the</strong> possible sister<br />

group relation to <strong>the</strong> Cladocera, <strong>the</strong>n a name is already<br />

available by Ax (1999). He suggests <strong>the</strong> term<br />

‘Cladoceromorpha.’ There are also a couple <strong>of</strong> new<br />

molecular papers out on <strong>the</strong> issue that seem to support<br />

Cycles<strong>the</strong>ria in <strong>the</strong> mentioned sister group position.<br />

Submitted by Jørgen Olesen,<br />

University <strong>of</strong> Copenhagen, Denmark<br />

BRANCHIOPODA<br />

The quotation from Fryer really encapsulates what<br />

is wrong with <strong>the</strong> old ideas about crustacean phy-<br />

104 � Contributions in Science, Number 39 Appendix I: Comments and Opinions


logeny and taxonomy. This focus on ‘‘. . . animals<br />

that work . . .’’ is directly lifted from <strong>the</strong> later writings<br />

<strong>of</strong> Sidnie Manton. Schram (1993, The British<br />

School: Calman, Canon, and Manton and <strong>the</strong>ir effect<br />

on carcinology in <strong>the</strong> English speaking world;<br />

<strong>Crustacea</strong>n Issues 8:321–348) outlined <strong>the</strong> roots <strong>of</strong><br />

Mantonian reasoning in an idealist philosophical<br />

tradition that passed on through Thompson and his<br />

treatise On Growth and Form. This is essentially a<br />

Platonic view <strong>of</strong> comparative biology, and stands<br />

essentially at odds with <strong>the</strong> current emphasis, ei<strong>the</strong>r<br />

a priori or a posteriori, on elucidating ground<br />

plans. You are <strong>of</strong> course free to quote Fryer, but<br />

you ought to give fair play to alternative philosophical<br />

and conceptual foundations for systematics.<br />

Submitted by Frederick R. Schram,<br />

Zoölogisches Museum, Amsterdam<br />

BRANCHIOPODA: ANOSTRACA<br />

Weekers et al. (in press) examined small subunit<br />

ribosomal DNA <strong>of</strong> anostracans from 23 genera belonging<br />

to eight <strong>of</strong> <strong>the</strong> nine families recognized by<br />

Brtek (1997). Their results do not support <strong>the</strong> family<br />

Linderiellidae or Polyartemiidae. Instead, <strong>the</strong>y<br />

group Linderiella with Polyartemia and Polyartemiella<br />

as a subfamily <strong>of</strong> <strong>the</strong> family Chirocephalidae.<br />

Morphological considerations support this arrangement<br />

in that <strong>the</strong> three genera share rigid antennal<br />

appendages on o<strong>the</strong>rwise simple antennae and double<br />

pre-epipodites. Unfortunately, <strong>the</strong>se workers<br />

were not able to obtain usable Artemiopsis. Thus,<br />

<strong>the</strong> validity <strong>of</strong> Artemiopsidae remains untested by<br />

molecular methods; however, I continue to consider<br />

that <strong>the</strong> morphology <strong>of</strong> <strong>the</strong> penes places Artemiopsis<br />

in <strong>the</strong> family Chirocephalidae.<br />

Additional References<br />

Weekers, P. H. H., G. Murugan, J. R. Vanfleteren, and H.<br />

J. Dumont. In press. Phylogenetic analysis <strong>of</strong> anostracans<br />

(Branchiopoda: <strong>An</strong>ostraca) inferred from<br />

SSU rDNA sequences. Molecular Phylogenetics and<br />

Evolution.<br />

Submitted by Denton Belk,<br />

Our Lady <strong>of</strong> <strong>the</strong> Lake University,<br />

San <strong>An</strong>tonio, Texas<br />

REMIPEDIA<br />

See comments from G. Boxshall under Maxillopoda<br />

and from M. Christ<strong>of</strong>fersen under <strong>Crustacea</strong>.<br />

REMIPEDIA<br />

In <strong>the</strong> section about <strong>the</strong> Remipedia, you mention<br />

that <strong>the</strong> similarities between <strong>the</strong> Maxillopoda and<br />

<strong>the</strong> Remipedia are symplesiomorphies. But what<br />

are <strong>the</strong>se? The only similarities I can think <strong>of</strong>, I<br />

would not consider as symplesiomorphies, but perhaps<br />

as convergences. Perhaps it is unwise to mention<br />

something like this without also mentioning<br />

<strong>the</strong> characters. The first question people will raise<br />

is what <strong>the</strong>se characters are. In <strong>the</strong> same section<br />

you use <strong>the</strong> term ‘basal’ about branchiopods, but<br />

what does that actually mean? There are two possibilities,<br />

ei<strong>the</strong>r early <strong>of</strong>f split (e.g., sister group) or<br />

primitive (or at least with many primitive features),<br />

but <strong>the</strong>se are two different things, as addressed earlier.<br />

Submitted by Jørgen Olesen,<br />

University <strong>of</strong> Copenhagen, Denmark<br />

CEPHALOCARIDA<br />

In <strong>the</strong> section about <strong>the</strong> Cephalocarida, you say<br />

that <strong>the</strong> sequence <strong>of</strong> <strong>the</strong> classes reflects something<br />

(it doesn’t matter exactly what in this context). My<br />

problem here is that I don’t think that <strong>the</strong> sequence<br />

<strong>of</strong> taxa <strong>of</strong> equal rank in a classification reflects anything.<br />

If a classification shall reflect anything concerning<br />

relationship, it has to be put into <strong>the</strong> hierachical<br />

categories (like you have done for <strong>the</strong> classification<br />

within <strong>the</strong> Branchiopoda, for example). I<br />

think this is an old way <strong>of</strong> thinking with no meaning<br />

today.<br />

Submitted by Jørgen Olesen,<br />

University <strong>of</strong> Copenhagen, Denmark<br />

MAXILLOPODA<br />

The status <strong>of</strong> <strong>the</strong> Maxillopoda remains uncertain. I<br />

consider that <strong>the</strong>re is a group <strong>of</strong> related taxa which<br />

form <strong>the</strong> core <strong>of</strong> a Maxillopoda: <strong>the</strong>se are <strong>the</strong> Copepoda,<br />

Thecostraca, Tantulocarida and Ostracoda<br />

(excluding <strong>the</strong> Phosphatocopines which are not ostracods<br />

and do not even belong to <strong>the</strong> crown group<br />

<strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>). The Mystacocarida and Branchiura<br />

may also belong to this group but <strong>the</strong> available<br />

supporting evidence is weaker. I also consider<br />

that <strong>the</strong> Remipedia is related to <strong>the</strong> maxillopodan<br />

lineage. Remipedes share several derived features <strong>of</strong><br />

<strong>the</strong> thoracopods, maxillules and maxillae with o<strong>the</strong>r<br />

maxillopodans as indicated in my paper on comparative<br />

musculature (Boxshall, 1997).<br />

Additional References<br />

Boxshall, G. A. 1997. Comparative limb morphology in<br />

major arthropod groups: <strong>the</strong> coxa-basis joint in postmandibular<br />

limbs. In Arthropod relationships, eds.<br />

R. A. Fortey and R. H. Thomas, 155–167. London:<br />

Chapman and Hall.<br />

Submitted by Ge<strong>of</strong>f Boxshall,<br />

Natural History Museum, London<br />

MAXILLOPODA<br />

I really understand your difficulties here. To cut <strong>the</strong><br />

message short, I think you should have chosen to<br />

include <strong>the</strong> component taxa <strong>of</strong> <strong>the</strong> Maxillopoda as<br />

classes and <strong>the</strong>n skip <strong>the</strong> ‘Maxillopoda’ (as you also<br />

almost decided to, I can see from your writing).<br />

I know you [are trying] to be conservative by<br />

following Bowman and Abele here, but actually, to<br />

be real conservative you should skip that level. This<br />

Contributions in Science, Number 39 Appendix I: Comments and Opinions � 105


would be a choice <strong>of</strong> <strong>the</strong> future for <strong>the</strong> reasons<br />

mentioned below.<br />

I think it is better to have your higher level classification<br />

to include only what is quite certain. The<br />

highest categories (classes) should <strong>the</strong>n be something<br />

like <strong>the</strong> following: Malacostraca, Branchiopoda,<br />

Remipedia, Copepoda, Mystacocarida, Branchiura,<br />

Thecostraca, Cephalocarida, Ostracoda,<br />

Tantulocarida, (Pentastomida).<br />

These are with <strong>the</strong> highest certainty all monophyletic<br />

(not considering that insects may go in<br />

somewhere). As for <strong>the</strong> grouping <strong>of</strong> <strong>the</strong>se taxa, we<br />

appear to know too little yet. As you know, this is<br />

reflected in <strong>the</strong> high number <strong>of</strong> different schemes<br />

put forward that all differ from each o<strong>the</strong>r. Perhaps<br />

it will take 50–100 years before we get <strong>the</strong> full story,<br />

if ever. The great advantage <strong>of</strong> having such a flat<br />

structure is that it would tell people what <strong>the</strong> crustacean<br />

community thinks is certain, but it would<br />

also point at what is unknown by not having any<br />

<strong>of</strong> <strong>the</strong>se weakly supported higher level taxa included<br />

(like Maxillopoda, Entomostraca, Thoracopoda,<br />

and <strong>the</strong> one you now suggest being comprised <strong>of</strong><br />

all non-branchiopod <strong>Crustacea</strong>). This will be a logical<br />

starting point for any students <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong><br />

that want to address <strong>the</strong> higher level phylogeny. If<br />

a taxon like Maxillopoda is included, for example,<br />

<strong>the</strong>n <strong>the</strong> starting point is most likely already polluted.<br />

Submitted by Jørgen Olesen,<br />

University <strong>of</strong> Copenhagen, Denmark<br />

MAXILLOPODA: RHIZOCEPHALA<br />

Boschma (1928) is without any doubt <strong>the</strong> author<br />

<strong>of</strong> <strong>the</strong> family Lernaeodiscidae, but both <strong>the</strong> families<br />

Peltogastridae and Sacculinidae must be ascribed to<br />

Lilljeborg (1860). This has been duly checked.<br />

Boschma lived 1893–1976, and cannot possibly be<br />

<strong>the</strong> author <strong>of</strong> <strong>the</strong>se two families. Holthuis and I<br />

consulted Lilljeborg’s (1860) publication, a copy <strong>of</strong><br />

which is in our library; <strong>the</strong>re is not a shadow <strong>of</strong> a<br />

doubt concerning his authorship!<br />

Submitted by W. Vervoort,<br />

Rijksmuseum van Natuurlijke Historie,<br />

Leiden, The Ne<strong>the</strong>rlands<br />

MAXILLOPODA: COPEPODA<br />

I suggest you strictly adhere to what is already published.<br />

Names should in my view not be introduced<br />

un<strong>of</strong>ficially but through full and reviewed papers.<br />

Two PhD <strong>the</strong>ses have just been completed here with<br />

phylogenetic revisions <strong>of</strong> <strong>the</strong> Cyclopoida and one<br />

branch <strong>of</strong> Harpacticoida. I could tell you all <strong>the</strong><br />

changes <strong>the</strong>y entail but that would alter your list<br />

quite visibly. The Poecilostomatoida, e.g., are not a<br />

separate order but a specialised branch within Cyclopoida.<br />

There are many new families and o<strong>the</strong>rs<br />

had to be synonymized. So, please, stick to published<br />

and avoid cryptic information (� pers.<br />

comm.).<br />

Submitted by H. Kurt Schminke,<br />

Universität Oldenburg, Germany<br />

MAXILLOPODA: PENTASTOMIDA<br />

First, on a separate subclass Pentastomida—what<br />

can I say. You cite all <strong>the</strong> relevant papers that argue<br />

and provide evidence that <strong>the</strong>se are Branchiura, and<br />

yet you reject <strong>the</strong>se and separate <strong>the</strong>m. This is one<br />

<strong>of</strong> <strong>the</strong> few places where we have good apomorphies<br />

to unite <strong>the</strong> groups involved. If you accept Thecostraca,<br />

<strong>the</strong>n why not accept a single subclass Branchiura<br />

with two orders: Arguloida and Cephalobaenida?<br />

Concerning <strong>the</strong> Walossek arguments in <strong>the</strong> second<br />

paragraph: All this Cambrian apparent pentastomid<br />

says is that Pentastomida are older than we<br />

thought <strong>the</strong>y were. It does not argue against anything.<br />

You rightly point out that <strong>the</strong> fossils might<br />

not even be pentastomids. As to whe<strong>the</strong>r or not <strong>the</strong><br />

hosts ‘‘were on <strong>the</strong> scene,’’ you must be careful. <strong>Recent</strong><br />

issues <strong>of</strong> Science and Nature have featured a<br />

stunningly preserved early chordate that to all intents<br />

and purposes looks like it was drawn by old<br />

Al Romer himself when figuring a vertebrate ancestor.<br />

This Chengjiang fossil in fact trumps Brusca’s<br />

suggestion, which is true by <strong>the</strong> way, that <strong>the</strong><br />

conodont animal is a chordate.<br />

Submitted by Frederick R. Schram,<br />

Zoölogisches Museum, Amsterdam<br />

OSTRACODA<br />

I am sure <strong>the</strong> classification and appended rationale<br />

will be useful and will advance <strong>the</strong> study <strong>of</strong> crustaceans.<br />

I am still <strong>of</strong> <strong>the</strong> opinion that <strong>the</strong> suborders<br />

<strong>of</strong> <strong>the</strong> order Podocopida are unnecessary and<br />

should be deleted, especially as each contains only<br />

one superfamily except for <strong>the</strong> Cypridoidea, all superfamilies<br />

<strong>of</strong> which are monotypic.<br />

It is likely that <strong>the</strong> paleontologists will follow <strong>the</strong><br />

classification that is published in <strong>the</strong> revised Treatise,<br />

and that classification will be determined by<br />

Pr<strong>of</strong>essor Whatley and his team <strong>of</strong> specialists,<br />

which includes Dr. Martens.<br />

As for -acea v. -oidea, you must <strong>of</strong> course be consistent<br />

throughout your classification. Some volumes<br />

<strong>of</strong> <strong>the</strong> Treatise (most notably <strong>the</strong> revision <strong>of</strong><br />

<strong>the</strong> brachiopods) have now begun to follow <strong>the</strong> recommendation<br />

<strong>of</strong> <strong>the</strong> ICZN, but you should realize<br />

that <strong>the</strong>se are only recommendations, not rules; and<br />

<strong>the</strong>y may sometimes lead to <strong>the</strong> curious duplications<br />

<strong>of</strong> names among superfamilies and genera.<br />

Good luck with <strong>the</strong> classification. I look forward<br />

to seeing <strong>the</strong> final version.<br />

106 � Contributions in Science, Number 39 Appendix I: Comments and Opinions


Submitted by Roger L. Kaesler,<br />

Paleontological Institute,<br />

The University <strong>of</strong> Kansas<br />

OSTRACODA<br />

Spelling <strong>of</strong> Suborder Halocyprina Dana, 1853.<br />

Dana (1853: 1281) based his subfamily Halocyprinae<br />

and family Halocypridae on his new genus Halocypris.<br />

Therefore, at least according to present<br />

rules, <strong>the</strong> subfamily should be Halocypridinae and<br />

<strong>the</strong> family Halocyprididae. Dana did not use <strong>the</strong><br />

names Halocyprina or Halocyprida. If you are basing<br />

your Halocyprina and Halocyprida on <strong>the</strong> family<br />

name Halocyprididae, it seems to me that, to be<br />

consistent, <strong>the</strong> suborder should be Halocypridina<br />

and <strong>the</strong> order should be Halocypridida. If you are<br />

basing your Halocyprina on <strong>the</strong> commonly used<br />

name for <strong>the</strong> order, Halocyprida, <strong>the</strong>n I think you<br />

are correct in using Halocyprina. Possibly, you<br />

should explain your reasoning for using Halocyprina,<br />

because I think that you are creating a new<br />

spelling for <strong>the</strong> suborder. [Editors’note: we retained<br />

<strong>the</strong> spelling Halocyprida for <strong>the</strong> order, as listed in<br />

Bowman and Abele (1982: 13), and Halocyprina<br />

for <strong>the</strong> suborder based on <strong>the</strong> order name.]<br />

Submitted by Louis Kornicker,<br />

Smithsonian Institution,<br />

National Museum <strong>of</strong> Natural History<br />

STOMATOPODA<br />

I am leery <strong>of</strong> following suggestions made in abstracts<br />

concerning higher taxonomy. Cappola has<br />

never published her Pseudosquilloidea (which I see<br />

you accept) with documented reasons for her decision.<br />

In fact, some <strong>of</strong> <strong>the</strong> new analyses <strong>of</strong> Ahyong<br />

and H<strong>of</strong> (not yet published) would not entirely support<br />

such an arrangement.<br />

Thus, while we are at it, you need to turn to<br />

[page 86 in original draft]. I suggest for now you<br />

simply leave all <strong>the</strong> ‘‘gonodactyloid’’ families in one<br />

superfamily Gonodactyloidea. When we can identify<br />

clear clades and suggest valid groupings, you<br />

can change it; or when people actually publish revisions<br />

in a refereed journal.<br />

Submitted by Frederick R. Schram,<br />

Zoölogisches Museum, Amsterdam<br />

AMPHIPODA<br />

Although I agree in general with <strong>the</strong> thrust <strong>of</strong> your<br />

arguments, you fail to recognise <strong>the</strong> complexity <strong>of</strong><br />

amphipod morphology and <strong>the</strong> lack <strong>of</strong> family level<br />

revisions, which makes <strong>the</strong> development <strong>of</strong> an acceptable<br />

classification extremely difficult. Suborder<br />

and families were established long ago and for <strong>the</strong><br />

most part have never been revised. Superfamilies<br />

were to a certain extent based on gestalt, which<br />

worked well for some groups like corophioids, lysianssoids<br />

and haustorioids, but failed for families<br />

which didn’t show clear body-plan relationships.<br />

Even groups as seemingly distinctive as <strong>the</strong> Lysianassoidea<br />

are very difficult to define morphologically<br />

when all genera are considered. When Barnard<br />

and Karaman (1991) collapsed <strong>the</strong> majority<br />

<strong>of</strong> corophioid families, <strong>the</strong>y did it because <strong>the</strong>se traditional<br />

families (although workable when <strong>the</strong>y<br />

were originally established) were no longer definable<br />

and could no longer be supported. Genera described<br />

over <strong>the</strong> years had been pigeon-holed into<br />

one family or ano<strong>the</strong>r until any characters which<br />

might define <strong>the</strong>m had become totally diluted. It<br />

will take a large effort using modern phylogenetic<br />

techniques to develop an acceptable classification.<br />

The results <strong>of</strong> <strong>the</strong>se works have to be published in<br />

reputable journals after careful peer-group review.<br />

Attempts to revise classifications are underway. For<br />

instance, Lowry and Myers are currently revising<br />

<strong>the</strong> iphimedioid group and Myers and Lowry are<br />

revising <strong>the</strong> corophioid group. The website<br />

www.crustacea.net has recently been established to<br />

publish information and retrieval systems (electronic<br />

monographs) for all crustaceans. For instance,<br />

Watling and his students are currently preparing<br />

cumacean data bases and Lowry and his students<br />

are working on amphipod data bases for <strong>the</strong> website.<br />

It is unfortunate that <strong>the</strong> use <strong>of</strong> poorly refereed<br />

journals and pseudophylogenetic methodologies<br />

have been used in some cases to produce untestable<br />

and, in some cases, unacceptable classification systems.<br />

Because <strong>of</strong> <strong>the</strong>se problems, we currently list our<br />

taxa alphabetically in <strong>the</strong> Amphipoda. I do not see<br />

<strong>the</strong> problem. All classifications are hypo<strong>the</strong>ses<br />

which change as new hypo<strong>the</strong>ses are produced. In<br />

a large monograph, it is fine to discuss and list <strong>the</strong><br />

phylogenetic classification, but probably <strong>the</strong> taxonomic<br />

section should be alphabetical. Trying to find<br />

families or genera listed phylogenetically in a large<br />

monograph can be a nightmare for those not in <strong>the</strong><br />

know (basically everyone but experts). It is relatively<br />

easy, for example, to find a family level taxon<br />

in Barnard and Karaman (1991). One does not<br />

have to continually consult <strong>the</strong> index.<br />

Submitted by Jim Lowry,<br />

Australian Museum, Sydney<br />

AMPHIPODA: GAMMARIDEA<br />

As Ed Bousfield was not present at <strong>the</strong> amphipod<br />

conference in Amsterdam to defend <strong>the</strong> value <strong>of</strong><br />

phyletic vs. alphabetical classification <strong>of</strong> <strong>the</strong> Gammaridea,<br />

several points raised in <strong>the</strong> Vader-Baldinger-K-S-Watling<br />

report seem largely matters <strong>of</strong> mechanics<br />

ra<strong>the</strong>r than matters <strong>of</strong> phyletic substance.<br />

Some points <strong>of</strong> your recent ‘‘critique’’ summary<br />

may require modification, viz: (1) ‘‘<strong>the</strong> schedules <strong>of</strong><br />

Jerry Barnard and Ed Bousfield (are) <strong>of</strong>ten not very<br />

compatible’’ and (2) ‘‘. . . not espousing one worker’s<br />

view over ano<strong>the</strong>r.’’ With all due respect to Jerry’s<br />

enormous contribution to gammaridean taxonomy,<br />

his formal ‘‘track record’’ in gammaridean<br />

phylogeny was actually quite modest in scope.<br />

Contributions in Science, Number 39 Appendix I: Comments and Opinions � 107


Thus, he did recognize (temporarily, at various<br />

times) Talitroidea Bulycheva, 1957, Corophioidea<br />

Barnard, 1973, and Haustorioidea Barnard and<br />

Drummond, 1982. Several <strong>of</strong> Jerry’s informal ‘‘anglicized’’<br />

groupings <strong>of</strong> freshwater families (e.g.,<br />

‘‘gammarida,’’ ‘‘crangonyctoids,’’ ‘‘hadzioid<br />

group,’’ etc., in Barnard and Barnard, 1983; Williams<br />

and Barnard, 1988) ra<strong>the</strong>r closely resemble<br />

some <strong>of</strong> <strong>the</strong> superfamilies (and families) formally<br />

named and fully defined previously (1973, 1977,<br />

1979, 1982) by Bousfield and co-workers (e.g.,<br />

about 75% compatibility with Gammaroidea, Hadzioidea,<br />

Crangonyctoidea, Melphidippoidea, etc.).<br />

However, he did not attempt formal phyletic groupings<br />

<strong>of</strong> most marine gammaridean families, nor formal<br />

integration with o<strong>the</strong>r amphipod suborders.<br />

Unlike Sars (1895), Stebbing (1906), and o<strong>the</strong>r<br />

‘‘turn-<strong>of</strong>-<strong>the</strong>-century’’ workers, Jerry apparently did<br />

not recognize <strong>the</strong> significance <strong>of</strong> reproductive form<br />

and behaviour in amphipod phylogeny. Jerry’s final<br />

major work (with Gordan Karaman, 1991, p. 7)<br />

disavowed <strong>the</strong> significance or use <strong>of</strong> <strong>the</strong> formal superfamily<br />

concept, and listed families alphabetically<br />

ra<strong>the</strong>r than phyletically or semi-phyletically (as in<br />

Sars and Stebbing, above). Some classifications are<br />

based on carefully defined characters and character<br />

states that have required (and will continue to require)<br />

modification according to features found in<br />

subsequently discovered species and genera, and<br />

are consistent at proper classificatory levels. The<br />

cladistic arrangement by Kim and Kim (1993), reviewed<br />

ra<strong>the</strong>r unfavourably by Schram (1994), underscores<br />

<strong>the</strong> unreliability <strong>of</strong> cladistic analysis when<br />

care is not taken in <strong>the</strong> appropriate selection and<br />

accurate definition <strong>of</strong> characters and character<br />

states.<br />

[Concerning your statement about Bousfield and<br />

Shih], Bousfield and Shih (1994) represents an updating<br />

and refinement <strong>of</strong> previous �20 years <strong>of</strong><br />

study and publication on gammaridean phylogeny.<br />

[Concerning your statement about Reptantia],<br />

‘‘Natantia’’ and ‘‘Reptantia’’ are terms (names)<br />

pragmatically defined, but not incorporated formally<br />

by Bousfield and Shih (1994). The terms are<br />

analogous to former groupings <strong>of</strong> families and superfamilies,<br />

etc., within <strong>the</strong> Order Decapoda.<br />

[Concerning your statement about names and<br />

dates], omission <strong>of</strong> author names and dates in tabular<br />

listing <strong>of</strong> families and superfamilies is modeled<br />

after similar ‘‘heading’’ omissions in Barnard’s<br />

‘‘Families and Genera . . .‘‘ (1969) and earlier ‘‘Index<br />

. . .’’ (1958). Obviously, <strong>the</strong>se names are fully<br />

treated in <strong>the</strong> major references (e.g., Stebbing,<br />

1906; Gurjanova, 1951; Bousfield 1979, 1982,<br />

l983; Schram, 1986). Readers are expected to provide<br />

something <strong>of</strong> substance to <strong>the</strong> discussion, such<br />

as commentary on <strong>the</strong> paper’s extensive analysis <strong>of</strong><br />

‘‘across-<strong>the</strong>-phyletic-board’’ variability <strong>of</strong> major<br />

characters and character states (antennae to telson)<br />

that would be <strong>of</strong> prime significance in a cladistic<br />

treatment.<br />

[Concerning your statement to <strong>the</strong> effect that we<br />

presented different phylogenetic hypo<strong>the</strong>ses in our<br />

1994 paper], Bousfield and Shih acknowledge<br />

(problems in resolution) that <strong>the</strong>y do not have a<br />

‘‘final answer’’ to <strong>the</strong> probably correct evolutionary<br />

history <strong>of</strong> <strong>the</strong> Amphipoda (only one answer can be<br />

correct!). Their ‘‘semi-phyletic’’ methodology modifies<br />

<strong>the</strong> strictly phenetic format <strong>of</strong> Sneath and Sokal<br />

(1973) by careful ordering <strong>of</strong> character states<br />

to arrive at a ‘‘plesio-apo-morphic index’’ <strong>of</strong> probably<br />

correct phyletic relativity for each taxon. This<br />

approach tends to minimize <strong>the</strong> negative effects <strong>of</strong><br />

homoplasious convergence in many <strong>of</strong> <strong>the</strong>se character<br />

states (analyzed above). Mike Ghiselin (1984)<br />

correctly points out, rigid and uncritical application<br />

<strong>of</strong> cladistic methodology alone quite frequently<br />

leads <strong>the</strong> user to a less-than-credible phylogenetic<br />

result. Thus, use <strong>of</strong> <strong>the</strong> ‘‘Wagner 78’’ cladistic program<br />

<strong>of</strong>ten provides multiple ‘‘trees’’ from <strong>the</strong> same<br />

data base, each one different, each one tending to<br />

invalidate <strong>the</strong> o<strong>the</strong>r, and none probably correct!<br />

[Concerning your statement about cladistic analyses<br />

having high priority], to my knowledge, cladistic<br />

‘‘purists’’ have not yet actually demonstrated<br />

a cladistically derived treatment <strong>of</strong> all 118 gammaridean<br />

families <strong>of</strong> your list. Chances <strong>of</strong> doing so<br />

would appear ‘‘slim-to-non-existent.’’ Instead, advocacy<br />

<strong>of</strong> rDNA methodology would probably result<br />

much sooner in a most-probably-correct answer!<br />

[Concerning your statement that most workers<br />

would prefer to see <strong>the</strong> families listed alphabetically<br />

ra<strong>the</strong>r than by superfamily], how surprising that<br />

such an unsupported statement should come from<br />

Les Watling, a confirmed crustacean phylogenist!<br />

On more serious reflection, Les may find that quite<br />

a few current workers (e.g., Mike Thurston, John<br />

Holsinger) do not ‘‘give up’’ so easily on <strong>the</strong> full<br />

solution <strong>of</strong> this difficult problem.<br />

[Concerning your use <strong>of</strong> <strong>the</strong> word hypo<strong>the</strong>ses],<br />

do you mean ‘‘concepts’’? All family and superfamily<br />

names represent ‘‘concepts’’ <strong>of</strong> presumed natural<br />

groupings <strong>of</strong> species. Some are better defined (in<br />

terms <strong>of</strong> careful definition <strong>of</strong> character states) and<br />

longer time-tested than o<strong>the</strong>rs. Most superfamily<br />

names in Bousfield and Shih (1994) have been carefully<br />

and fully (multiple-character) defined, <strong>the</strong>ir<br />

component families named, and time-tested (by<br />

o<strong>the</strong>r workers as well) over a 15� year period.<br />

Since superfamily taxonomic stability (75%) would<br />

appear at least equal to that <strong>of</strong> <strong>the</strong> component family-level<br />

names <strong>of</strong> <strong>the</strong> current Martin–Davis list, although<br />

both lists are ‘‘conceptual,’’ nei<strong>the</strong>r can realistically<br />

be termed ‘‘hypo<strong>the</strong>tical.’’<br />

Additional References<br />

[Note: Dr. Bousfield did not supply references to all papers<br />

mentioned above.]<br />

Bousfield, E. L. 1995. A contribution to <strong>the</strong> natural classification<br />

<strong>of</strong> Lower and Middle Cambrian arthropods:<br />

food ga<strong>the</strong>ring and feeding mechanisms. Amphipacifica<br />

II(1):3–34.<br />

108 � Contributions in Science, Number 39 Appendix I: Comments and Opinions


Bousfield, E. L. 1996. A contribution to <strong>the</strong> reclassification<br />

<strong>of</strong> neotropical freshwater hyalellid amphipods<br />

(<strong>Crustacea</strong>: Gammaridea: Talitroidea). Bull. Mus.<br />

civ. St. nat. Verona 20[1993 (1996)]:175–224.<br />

Submitted by Ed Bousfield,<br />

Ottawa, Canada<br />

AMPHIPODA: GAMMARIDEA<br />

There would seem to be a second main reason why<br />

you might regret not employing a natural (superfamily)<br />

classification <strong>of</strong> <strong>the</strong> Gammaridea. Not only<br />

<strong>the</strong> Lysianassoidea, Talitroidea and Corophioidea,<br />

but about 75% <strong>of</strong> superfamilies <strong>of</strong> <strong>the</strong> Bousfield–<br />

Schram phyletic classification (including Jerry Barnard’s<br />

anglicized versions) are variously utilized by<br />

major workers today—if only because <strong>the</strong>y make<br />

pragmatic (workable) sense.<br />

Interestingly, and to my knowledge, none <strong>of</strong><br />

those who apparently condemn <strong>the</strong> present superfamily<br />

categories because <strong>the</strong>y ‘‘have not been derived<br />

cladistically’’ has attempted a natural treatment<br />

<strong>of</strong> all 113 families (embracing �5000� species!)<br />

<strong>of</strong> your list, based on cladistics alone.<br />

Why?—not only is <strong>the</strong> task extremely difficult and<br />

time-consuming, but <strong>the</strong> feasibility <strong>of</strong> obtaining a<br />

single, credible, ‘‘all-inclusive’’ answer with that<br />

methodology alone is highly improbable, and I<br />

think <strong>the</strong>y know it! On <strong>the</strong> o<strong>the</strong>r hand, rDNA studies<br />

seem virtually unaffected by homoplasious convergence<br />

<strong>of</strong> morphological character states ‘‘across<br />

<strong>the</strong> board’’ and are quite promising—if only someone<br />

would get started!<br />

The second, and perhaps more important, essentially<br />

scientific reason is that gammarideans, virtually<br />

alone among crustacean higher taxa (including<br />

<strong>the</strong> 3 o<strong>the</strong>r amphipod suborders!) would remain<br />

unclassified phyletically. Such an anomalous situation<br />

will be corrected inevitably—hopefully sooner<br />

than later—providing <strong>the</strong> principal reason for phyletic<br />

classification in <strong>the</strong> forthcoming CNAI lists<br />

and Pacific amphipod guide. Sars, Stebbing, and<br />

o<strong>the</strong>r perceptive ‘‘turn-<strong>of</strong>-<strong>the</strong>-century’’ amphipodologists<br />

might <strong>the</strong>n cease ‘‘rolling over in <strong>the</strong>ir<br />

graves’’!<br />

Submitted by Ed Bousfield,<br />

Ottawa, Canada<br />

ISOPODA<br />

In <strong>the</strong> near future, we must abandon <strong>the</strong> use <strong>of</strong><br />

Linnean categories, because we are currently identifying<br />

many more encaptic levels <strong>of</strong> monophyletic<br />

groups than <strong>the</strong>re are hierarchical levels in <strong>the</strong> Linnean<br />

system. The Paranthuridae, for example, are<br />

definitely a monophyletic group that contains fur<strong>the</strong>r<br />

subgroups. To erect new families for <strong>the</strong>se subgroups<br />

means to give up a categorical rank for <strong>the</strong><br />

taxon Paranthuridae.<br />

The same problem exists for <strong>the</strong> Epicaridea. New<br />

molecular evidence (Ph.D. <strong>the</strong>sis <strong>of</strong> H. Dreyer)<br />

proves that <strong>the</strong>se parasites <strong>of</strong> crustaceans are de-<br />

rived from a common ancestor shared with <strong>the</strong> Cymothoidae<br />

(fish parasites). Thus, <strong>the</strong> suborder Epicaridea<br />

is placed within <strong>the</strong> suborder ‘‘Flabellifera’’<br />

or, more precisely, within <strong>the</strong> suborder Cymothoidea<br />

sensu Wägele (1989), <strong>the</strong> sister group <strong>of</strong> <strong>the</strong><br />

suborder being a taxon classified as a family.<br />

Concerning <strong>the</strong> hypo<strong>the</strong>sis that <strong>the</strong> Sphaeromatidae,<br />

Serolidae, and o<strong>the</strong>r groups are derived from<br />

a disc-shaped ancestor (<strong>the</strong> ancestor <strong>of</strong> <strong>the</strong> Sphaeromatidea<br />

sensu Wägele, 1989), new evidence was<br />

discovered with <strong>the</strong> fossil Schweglerella stroebli<br />

(Polz, H. 1998. Archaeopteryx 16:19–28). This animal<br />

shows nei<strong>the</strong>r <strong>the</strong> apomorphies <strong>of</strong> <strong>the</strong> Serolidae<br />

nor <strong>of</strong> <strong>the</strong> Sphaeromatidae or o<strong>the</strong>r related extant<br />

taxa, but shows those characters identified as<br />

apomorphies <strong>of</strong> <strong>the</strong> suborder Sphaeromatidea (e.g.,<br />

disc-shaped body, head immersed in first pereonite,<br />

dorsal eyes).<br />

The subdivision <strong>of</strong> <strong>the</strong> Oniscidea into Tylomorpha<br />

and Ligiamorpha does not reflect <strong>the</strong> phylogeny<br />

<strong>of</strong> terrestrial isopods, as shown by Erhard<br />

(1996, 1998). Detailed phylogenetic analyses based<br />

on morphological characters will be published soon<br />

(Ph.D. <strong>the</strong>ses <strong>of</strong> C. Schmidt and <strong>of</strong> A. Leistikow).<br />

Submitted by J. W. Wägele,<br />

Ruhr-Universität Bochum, Germany<br />

SYNCARIDA<br />

The author <strong>of</strong> both <strong>the</strong> Bathynellidae and Bathynellacea<br />

is Chappuis, 1915. I have copied <strong>the</strong> paper<br />

by Chappuis (1915) for you. I am a bit surprised<br />

that you cite Lopretto and Morrone (1998) who<br />

have added nothing new to our understanding <strong>of</strong><br />

Syncarida. You should quote those who have.<br />

Submitted by H. Kurt Schminke,<br />

Universität Oldenburg, Germany<br />

DECAPODA: CARIDEA<br />

I am puzzled to find <strong>the</strong> family Barbouridae among<br />

<strong>the</strong> superfamily Bresilioidea. Chace (1997) put<br />

<strong>the</strong>m among <strong>the</strong> hippolytids. Christ<strong>of</strong>fersen (1987,<br />

1990) put <strong>the</strong>m in <strong>the</strong> superfamily Crangonoidea.<br />

Who put <strong>the</strong>m among <strong>the</strong> bresilioideans, and why?<br />

This is not stated clearly in your section on <strong>the</strong> superfamily<br />

Bresilioidea on p. 61. [Editor’s note: <strong>the</strong><br />

family Barbouriidae Christ<strong>of</strong>fersen was mistakenly<br />

placed by us in <strong>the</strong> Bresilioidea; this has since been<br />

corrected and <strong>the</strong>y are now listed among <strong>the</strong> Alpheoidea.]<br />

O<strong>the</strong>rwise, <strong>the</strong> classification contains <strong>the</strong> usual<br />

fights between lumpers and splitters. I think that<br />

Christ<strong>of</strong>fersen’s classification may fall apart in <strong>the</strong><br />

future because much <strong>of</strong> it is based on descriptions<br />

from <strong>the</strong> literature and not on examination <strong>of</strong> actual<br />

specimens. Some <strong>of</strong> <strong>the</strong> descriptions are inaccurate<br />

or do not contain pertinent information<br />

needed in classification today.<br />

Submitted by Mary K. Wicksten,<br />

Texas A&M University<br />

Contributions in Science, Number 39 Appendix I: Comments and Opinions � 109


DECAPODA: CARIDEA<br />

I <strong>of</strong> course must strongly disagree with <strong>the</strong> proposed<br />

arrangement <strong>of</strong> <strong>the</strong> caridean families into superfamilies,<br />

because I see this as a retrocess from<br />

taxa sustained by apomorphic characters (Christ<strong>of</strong>fersen,<br />

1990) back to groupings based on overall<br />

resemblance, authority (Chace, 1992; Holthuis,<br />

1993), or arbitrary usage. It is true that my proposals<br />

have had little following in <strong>the</strong> carcinological<br />

community, and that some <strong>of</strong> my employed<br />

characters may be questionable. But it is also true<br />

that my efforts remain <strong>the</strong> first attempt to produce<br />

a phylogenetic system <strong>of</strong> <strong>the</strong> Caridea. Because my<br />

system differs substantially from <strong>the</strong> traditional arrangements,<br />

my suggestions have usually been dismissed<br />

as totally heretical, without any serious attempt<br />

to argue alternative possibilities sustained by<br />

better uniquely shared characters. It is ra<strong>the</strong>r depressing<br />

to note that <strong>the</strong> present authors follow this<br />

same tactic. They do not accept a single superfamily<br />

as syn<strong>the</strong>sized in Christ<strong>of</strong>fersen (1990). More<br />

explicitly, but without justification, <strong>the</strong>y reject my<br />

proposal to combine alpheoids, crangonoids and<br />

pandaloids into a monophyletic taxon. This is surprising<br />

to me, because <strong>the</strong>se superfamilies, as redefined<br />

in my cited works, share a remarkable synapomorphy,<br />

<strong>the</strong> multiarticulated carpus <strong>of</strong> <strong>the</strong> second<br />

pereiopod, which is a unique adaptation within<br />

<strong>the</strong> carideans for body cleaning. For this transformation<br />

series, <strong>the</strong>re is even a transitional stage represented<br />

by <strong>the</strong> nematocarcinoids, in which <strong>the</strong> carpus<br />

<strong>of</strong> <strong>the</strong> second pereiopods is longer than in <strong>the</strong><br />

preceding carideans, before being subdivided in <strong>the</strong><br />

sister group represented by pandaloids, crangonoids,<br />

and alpheoids. At a still higher level <strong>of</strong> generality,<br />

this transformation series is congruent with<br />

<strong>the</strong> presence <strong>of</strong> a well developed incisor process on<br />

<strong>the</strong> mandible <strong>of</strong> palaemonoids and all <strong>the</strong> previously<br />

mentioned superfamilies. Going to a lower<br />

hierarchical level, <strong>the</strong>re is fur<strong>the</strong>r congruence with<br />

<strong>the</strong> uniquely expanded first cheliped in crangonoids<br />

and alpheoids. My rearrangements <strong>of</strong> <strong>the</strong> traditional<br />

families into superfamilies eliminate all <strong>the</strong> paraphyletic<br />

family-level taxa, including <strong>the</strong> notably<br />

unsatisfactory Hippolytidae. Finally, just to mention<br />

one remarkable autapomorphy justifying one<br />

<strong>of</strong> my new superfamilies, only palaemonids and<br />

rhynchocinetids share a second distolateral tooth<br />

on <strong>the</strong> basal segment <strong>of</strong> <strong>the</strong> antennule, in addition<br />

to <strong>the</strong> usual stylocerite. Some researchers complain<br />

that I presented few characters for each node, but<br />

this is because my approach is qualitative and I selected<br />

<strong>the</strong> best possible evidence from detailed studies<br />

<strong>of</strong> <strong>the</strong> total morphological and species diversity<br />

<strong>of</strong> <strong>the</strong> Caridea. To refute <strong>the</strong> phylogenetic system,<br />

it is necessary that researchers argue for alternative<br />

replacement characters where <strong>the</strong>y believe I have<br />

failed. Simply ignoring <strong>the</strong> system does not justify<br />

<strong>the</strong> usual assumption that my arrangements are totally<br />

wrong!<br />

Submitted by Martin L. Christ<strong>of</strong>fersen,<br />

Federal University <strong>of</strong> Paraíba, Brazil<br />

DECAPODA: REPTANTIA<br />

I really do not understand why you do not use a<br />

separate category for Reptantia. It is one <strong>of</strong> <strong>the</strong><br />

clearest, most universally accepted groups (taxonomically<br />

or cladistically) among <strong>the</strong> decapods that<br />

we have.<br />

Submitted by Frederick R. Schram,<br />

Zoölogisches Museum, Amsterdam<br />

DECAPODA: ASTACIDEA<br />

You really do get yourselves into deep water when<br />

you try to <strong>of</strong>fer editorial comments on cladistic<br />

analyses. Here you hit ano<strong>the</strong>r one. Where do you<br />

get <strong>the</strong> idea <strong>of</strong> ‘‘extremely primitive Neoglyphea’’<br />

from? Forest and de St. Laurent (1989, Nouvelle<br />

contribution a la connaissance de Neoglyphea inopinata<br />

a propos de la description de la femelle adulte,<br />

Res. Camp. Musorstom 5, Memoirs Mus. Nat.<br />

His. Nat., series A, 144:75–92) made [a] good argument<br />

for allying glypheoids with astacids—not a<br />

particularly primitive alliance. My own preliminary<br />

examination <strong>of</strong> decapod phylogeny (submitted, Hydrobiologia)<br />

not only fairly well confirms <strong>the</strong><br />

Scholtz and Richter scheme, but also squarely places<br />

Neoglyphea within <strong>the</strong> Fractosternalia.<br />

As I say, my own examination <strong>of</strong> <strong>the</strong> subject in<br />

connection with an assignment to address decapod<br />

phylogeny in connection with <strong>the</strong> beginning revision<br />

<strong>of</strong> <strong>the</strong> decapod section <strong>of</strong> <strong>the</strong> Treatise on Invertebrate<br />

Paleontology has, to my surprise, uncovered<br />

<strong>the</strong> basic robustness <strong>of</strong> <strong>the</strong> Scholtz and Richter<br />

analysis. I think you would do well to leave yourself<br />

an opening here.<br />

Of course, I see why you are keen to downplay<br />

Scholtz and Richter because here you adapt a very<br />

conservative combination <strong>of</strong> ‘‘clawed lobsters.’’ I<br />

can accept this for now. However, I think it would<br />

only be fair for you to point out that Scholtz and<br />

Richter would segregate <strong>the</strong> ‘‘clawed (true) lobsters’’<br />

as Homarida from <strong>the</strong> crayfish as Astacida.<br />

My own on-going, recent work indicates that at<br />

least <strong>the</strong> genus Neoglyphea is a fractosternalian in<br />

some kind <strong>of</strong> proximity to <strong>the</strong> Astacida, and that<br />

Enoplometopus may even be a separate clade from<br />

<strong>the</strong> Nephropoidea. That this paraphyly should<br />

emerge among ‘‘lobsters’’ is not too surprising,<br />

since we discover again and again that supposedly<br />

robust, traditional groups bearing a lot [<strong>of</strong>] plesiomorphies<br />

emerge on closer examination as paraphyletic<br />

taxa. Why should macrurous lobsters be<br />

any different?<br />

Submitted by Frederick R. Schram,<br />

Zoölogisches Museum, Amsterdam<br />

DECAPODA: ANOMURA<br />

I fully agree with <strong>the</strong> different parts <strong>of</strong> my specialty<br />

(<strong>An</strong>omura). I agree with <strong>the</strong> changes included in<br />

this new version. As you mention . . . we need more<br />

studies (especially molecular) to improve our<br />

110 � Contributions in Science, Number 39 Appendix I: Comments and Opinions


knowledge on <strong>the</strong> phylogeny and <strong>the</strong> classification<br />

<strong>of</strong> <strong>Crustacea</strong>, and obviously new, and perhaps<br />

strong, changes will come in <strong>the</strong> near future. However,<br />

we need to put in order our present knowledge<br />

<strong>of</strong> <strong>the</strong> group.<br />

Submitted by Enrique Macpherson,<br />

Centre D’Estudios Avancats de Blanes, Spain<br />

DECAPODA: ANOMURA<br />

I can only address your classification <strong>of</strong> <strong>the</strong> <strong>An</strong>omura.<br />

Forest (1987a, b), while concurring with<br />

McLaughlin’s (1983) argument that <strong>the</strong> Paguridea<br />

represented a monophyletic taxon, did not agree<br />

with her elimination <strong>of</strong> <strong>the</strong> Coenobitoidea as a superfamily.<br />

Consequently he elevated <strong>the</strong> Paguridea<br />

to rank <strong>of</strong> Section and reinstated <strong>the</strong> superfamily<br />

Coenobitoidea to include <strong>the</strong> families Pylochelidae,<br />

Diogenidae and Coenobitidae. He did concur with<br />

McLaughlin’s removal <strong>of</strong> <strong>the</strong> Lomidae and its elevation<br />

to superfamily. He did not address <strong>the</strong> hierarchical<br />

ranking <strong>of</strong> <strong>the</strong> o<strong>the</strong>r <strong>An</strong>omuran superfamilies.<br />

McLaughlin and Lemaitre (1997) acknowledged<br />

Forest’s sectional ranking for <strong>the</strong> Paguridea,<br />

but continued to refer to all <strong>of</strong> <strong>the</strong><br />

anomuran major taxa as superfamilies. However,<br />

Forest et al. (2000), Forest and McLaughlin (2000),<br />

and de Saint Laurent and McLaughlin (2000) all<br />

refer to <strong>the</strong> superfamilies Coenobitoidea and Paguroidea,<br />

under <strong>the</strong> Section Paguridea.<br />

I personally still believe that <strong>the</strong> Paguridea represent<br />

a monophyletic taxon; however, I also believe<br />

that Forest’s argument for reinstatement <strong>of</strong> <strong>the</strong><br />

Coenobitoidea is valid. For hierarchical balance<br />

within <strong>the</strong> <strong>An</strong>omura, perhaps <strong>the</strong> o<strong>the</strong>r superfamilies<br />

should similarly be elevated to Section rank in<br />

your classification.<br />

Additional References<br />

Forest, J. 1987a. Les Pylochelidae ou ‘‘Pagures symetriques’’<br />

(<strong>Crustacea</strong> Coeno-bitoidea). In Résultats des<br />

campagnes MUSORSTOM. Mémoires du Muséum<br />

National d’Histoire Naturelle, série A, Zoologie, vol.<br />

137, 1–254, figs. 1–82, plates 1–9.<br />

. 1987b. Ethology and distribution <strong>of</strong> Pylochelidae<br />

(<strong>Crustacea</strong> Decapoda Coenobitoidea). Bulletin <strong>of</strong><br />

Marine Science 41(2):309–321.<br />

Forest, J., M. de Saint Laurent, P. A. McLaughlin, and R.<br />

Lemaitre. 2000. The marine fauna <strong>of</strong> New Zealand:<br />

Paguridea (Decapoda: <strong>An</strong>omura) exclusive <strong>of</strong> <strong>the</strong><br />

Lithodidae. NIWA Biodiversity Memoir 114 (in<br />

press).<br />

Forest, J., and P. A. McLaughlin, 2000. Superfamily Coenobitoidea.<br />

In The marine fauna <strong>of</strong> New Zealand:<br />

Paguridea (Decapoda: <strong>An</strong>omura) exclusive <strong>of</strong> <strong>the</strong><br />

Lithodidae, eds. J. Forest, M. de Saint Laurent, P. A.<br />

McLaughlin, and R. Lemaitre. NIWA Biodiversity<br />

Memoir 114.<br />

McLaughlin, P. A. and R. Lemaitre. 1997. Carcinization<br />

in <strong>the</strong> <strong>An</strong>omura—fact or fiction? I. Evidence from<br />

adult morphology. Contributions to Zoology, Amsterdam<br />

67(2):79–123, figs. 1–13.<br />

Saint Laurent, M. de, and P. A. McLaughlin, 2000. Superfamily<br />

Paguroidea, Family Paguridae. In The ma-<br />

rine fauna <strong>of</strong> New Zealand: Paguridea (Decapoda:<br />

<strong>An</strong>omura) exclusive <strong>of</strong> <strong>the</strong> Lithodidae, eds. J. Forest,<br />

M. de Saint Laurent, P. A. McLaughlin, and R. Lemaitre.<br />

NIWA Biodiversity Memoir 114.<br />

Submitted by Patsy McLaughlin,<br />

Shannon Point Marine Center,<br />

<strong>An</strong>acortes, Washington<br />

DECAPODA: BRACHYURA<br />

As before, I think that <strong>the</strong> Oregoninae <strong>of</strong> Garth<br />

should be elevated to a family. I contacted Michel<br />

Hendrickx about <strong>the</strong> classification. He in turn<br />

quoted a paper that provided larval evidence for<br />

<strong>the</strong> distinction <strong>of</strong> <strong>the</strong> group as a family, and said<br />

that he will treat <strong>the</strong> group as such in his forthcoming<br />

work on crabs. Please contact Michel for fur<strong>the</strong>r<br />

information. If you cannot contact him, let me<br />

know and I’ll find that larval paper for you. My<br />

own suspicion is that <strong>the</strong> oregoniids are not covered<br />

in most monographs because <strong>the</strong>y are a cirumArctic<br />

and boreal nor<strong>the</strong>rn hemisphere group that does<br />

not range at all into tropical waters, where most<br />

researchers work!<br />

Submitted by Mary K. Wicksten,<br />

Texas A&M University<br />

DECAPODA: BRACHYURA<br />

I strongly believe that <strong>the</strong> Pinno<strong>the</strong>ridae are not<br />

monophyletic. So if I argued that this family<br />

‘‘should remain in <strong>the</strong> Thoracotremata based on evidence<br />

from DNA sequencing’’ [as cited in your<br />

classification], I should add that this might only be<br />

true for some <strong>of</strong> its constituent subfamilies or genera.<br />

My statement was made based on <strong>the</strong> phylogenetic<br />

position <strong>of</strong> Pinnixa in molecular analyses<br />

that showed a strikingly close relationship to <strong>the</strong><br />

Ocypodinae (Schubart et al., 2000a).<br />

I also think that <strong>the</strong> Ocypodidae in <strong>the</strong> traditional<br />

sense as well as <strong>the</strong> Ocypodoidea as defined in<br />

<strong>the</strong> latest draft <strong>of</strong> your classification might not be<br />

monophyletic. Molecular as well as larval morphological<br />

data suggest a close relationship between <strong>the</strong><br />

Varunidae (Grapsoidea) and <strong>the</strong> Macropthalminae<br />

(Schubart et al., 2000a; Schubart and Cuesta, unpublished).<br />

I think that this possible phylogenetic<br />

link would be ano<strong>the</strong>r reason to elevate ocypodid<br />

subfamilies to family level as already considered in<br />

your draft and suggested for <strong>the</strong> Grapsidae (Schubart<br />

et al., 2000b). This would certainly make justice<br />

to ocypodoid morphological diversity and allow<br />

a more objective comparison with o<strong>the</strong>r thoracotremes<br />

in <strong>the</strong> future.<br />

I disagree on <strong>the</strong> use <strong>of</strong> <strong>the</strong> superfamily name<br />

‘‘Grapsidoidea.’’ Since <strong>the</strong> stem <strong>of</strong> <strong>the</strong> name is<br />

Graps- (based on Cancer grapsus Linnaeus, see also<br />

family name Grapsidae) and <strong>the</strong> ending for superfamilies<br />

is -oidea, <strong>the</strong> superfamily should be called<br />

Grapsoidea (and not Grapsidoidea). The fact that<br />

<strong>the</strong> term Grapsoidea has been used in <strong>the</strong> past for<br />

a much wider systematic grouping <strong>of</strong> eubrachyuran<br />

Contributions in Science, Number 39 Appendix I: Comments and Opinions � 111


crabs and is now restricted to <strong>the</strong> families Grapsidae,<br />

Gecarcinidae, Plagusiidae, Searmidae, and Varunidae<br />

should not influence <strong>the</strong> nomenclature.<br />

Additional References<br />

Schubart, C. D., J. A. Cuesta, R. Diesel, and D. L. Felder.<br />

2000b. Molecular phylogeny, taxonomy, and evolution<br />

<strong>of</strong> non-marine lineages within <strong>the</strong> American<br />

Grapsoidea (<strong>Crustacea</strong>: Brachyura). Molecular Phylogenetics<br />

and Evolution (in press).<br />

Schubart, C. D., J. E. Neigel, and D. L. Felder. 2000a. The<br />

use <strong>of</strong> <strong>the</strong> mitochondrial 16S rRNA gene for phylogenetic<br />

and population studies <strong>of</strong> <strong>Crustacea</strong>. <strong>Crustacea</strong>n<br />

Issues 12 (in press).<br />

Submitted by Christoph Schubart,<br />

Universität Regensburg, Germany<br />

DECAPODA: BRACHYURA<br />

Although recently I published my arrangement <strong>of</strong><br />

<strong>the</strong> brachyuran families, I have some new discoveries<br />

in <strong>the</strong> brachyuran classification, but it is not<br />

finished and it will be published next year. I was<br />

able to classify all dromiacean families into superfamilies,<br />

but not <strong>the</strong> eubrachyuran ones, because<br />

<strong>the</strong>re are many families with obscure systematic position:<br />

Orithyiidae, Calappidae, Matutidae, Astenognathidae,<br />

Hexapodidae, Palicidae, Dairodidae<br />

and many up to now undescribed families (Acidopidae,<br />

Melybiidae, Speocarcinidae, etc.). Here are<br />

some <strong>of</strong> my remarks.<br />

(1) Dynomenidae are <strong>the</strong> most primitive Dromioidea,<br />

because only <strong>the</strong> last pair <strong>of</strong> legs is aberrant.<br />

(2) Among Homoloidea, <strong>the</strong> Poupinidae are <strong>the</strong><br />

most primitive because <strong>the</strong> last pair <strong>of</strong> legs are <strong>of</strong><br />

‘‘normal’’ structure but are partly subdorsal in position.<br />

(3) Raninidae are ‘‘Podotremata’’ (i.e. Dromiacea)<br />

because <strong>the</strong>ir sexual openings in both sexes<br />

are on <strong>the</strong> coxae <strong>of</strong> <strong>the</strong> legs (hence <strong>the</strong> name Podotremata).<br />

(4) The most primitive eubrachyuran<br />

family is <strong>the</strong> Atelecyclidae, because <strong>the</strong>y have <strong>the</strong><br />

antennules and antennae longitudinally directed, a<br />

narrow thoracic sternum, thoracic sternites 4/5–7/8<br />

continuous (entire), and sternites nearly regularly<br />

metamerized. (5) The Dorippidae are highly derived<br />

and aberrant: <strong>the</strong> dorsal position <strong>of</strong> <strong>the</strong> posterior<br />

pair <strong>of</strong> legs, <strong>the</strong> sternite 8 facing dorsally, and<br />

<strong>the</strong> narrowed buccal cavern all are secondarily attained.<br />

The similarity with <strong>the</strong> Dromiacea is thus<br />

superficial. (6) The same could be said for <strong>the</strong> Leucosiidae:<br />

highly derived crabs and consequently<br />

should be placed at <strong>the</strong> end <strong>of</strong> <strong>the</strong> classificatory<br />

scheme <strong>of</strong> <strong>the</strong> Heterotremata. (7) The Majidae are<br />

only one family with many subfamilies. The arrangement<br />

is enclosed [Sˇtevčić, Z. 1994. Contribution<br />

to <strong>the</strong> re-classification <strong>of</strong> <strong>the</strong> family Majidae.<br />

Periodicum Biologorum 96:419–420]. (8) The<br />

Par<strong>the</strong>nopidae are more primitive than Majidae,<br />

and <strong>the</strong>refore should be ahead <strong>of</strong> <strong>the</strong> Majidae. (9)<br />

The Retroplumidae are a very derived brachyuran<br />

family. (10) Geryonidae have a similar organization<br />

to <strong>the</strong> Goneplacidae s.s. (11) Your Xanthoidea is a<br />

highly polyphyletic group. (a) The most primitive<br />

‘‘xanthoids’’ are <strong>the</strong> Eriphiidae, not Menippidae!<br />

The most primitive Eriphiidae have sternites 4/5–<br />

7/8 entire, abdominal segments freely articulated in<br />

both sexes, and <strong>the</strong> second gonopod longer than <strong>the</strong><br />

first. They are probably related to Trapeziidae. In<br />

<strong>the</strong> same assemblage with <strong>the</strong> Eriphiidae are <strong>the</strong><br />

Pilumnoididae Guinot and Macpherson, 1987. (b)<br />

Xanthidae s.s. have [some] primitive representatives<br />

(Krausinae, with sternal sutures 4/5–7/8 entire),<br />

but abdominal segments 3–5 in <strong>the</strong> male are<br />

fused, and <strong>the</strong> second gonopod is short. They are<br />

related to <strong>the</strong> Panopeidae/Panopeinae and <strong>the</strong> Pseudorhombilidae.<br />

(c) Pilumnidae have a primitive abdomen<br />

(all segments freely articulated in both sexes)<br />

but specific first and second gonopods, <strong>the</strong> latter<br />

short. They are related to <strong>the</strong> Eumedonidae (in fact<br />

<strong>the</strong> Eumedoninae). (d) Goneplacidae s.s. are in fact<br />

a very small taxon, without any close relationships<br />

with <strong>the</strong> Xanthidae. They are probably close to <strong>the</strong><br />

Geryonidae and Euryplacidae/Euryplacinae. (12)<br />

The Potamidae are in fact a very difficult problem,<br />

however <strong>the</strong> gaps among subfamilies are not quite<br />

distinct. The gaps are not always [clear] and <strong>the</strong>refore<br />

<strong>the</strong> separation <strong>of</strong> <strong>the</strong> freshwater crabs into<br />

families remains uncertain. (13) I think that between<br />

Ocypodidae and Mictyridae and between<br />

Grapsidae and Gecarcinidae <strong>the</strong> gaps are not decisive<br />

and only Ocypodidae and Grapsidae are true<br />

families (this will be published later). (14) Finally,<br />

I think that <strong>the</strong> Cancroidea are not a taxon, <strong>the</strong>y<br />

are only a grade, not a clade (taxon i.e., monophyletic<br />

group). (15) Hepatinae are a subfamily <strong>of</strong> <strong>the</strong><br />

family Aethridae. (16) Palicidae belong to <strong>the</strong> Heterotremata,<br />

with no close affinity with <strong>the</strong> Ocypodidae.<br />

Submitted by Zdravko Sˇtevčić,<br />

Rudjer Boskovic Institute, Croatia<br />

DECAPODA: BRACHYURA<br />

Concerning my special knowledge, <strong>the</strong> Brachyura,<br />

I do not agree with all decisions (see my responses),<br />

but I respect <strong>the</strong>m. May I add my feeling, however.<br />

Concerning <strong>the</strong> Podotremata, <strong>the</strong> molecular data<br />

seem to outweigh all o<strong>the</strong>r considerations, despite<br />

<strong>the</strong> fact that <strong>the</strong> first results (Spears and Abele,<br />

1988; Spears, Abele, and Kim, 1992) were fragmentary,<br />

based only on very few taxa (only two<br />

Dromiidae were studied; and <strong>the</strong> conclusion was<br />

made without any Dynomenidae, Homolodromiidae,<br />

Homolidae, Latreilliidae, Cyclodorippidae,<br />

Cymonomidae, nor Phyllotymolinidae) and that <strong>the</strong><br />

new results are not yet published. I am happy to<br />

see that Spears now returns to <strong>the</strong> opinion that <strong>the</strong><br />

Dromiidae are true Brachyura, but we wait her paper<br />

where <strong>the</strong> new demonstration is given.<br />

Concerning your Section Raninoida, you write<br />

(p. 66, 69) that <strong>the</strong>re is ‘‘possibly a mistake.’’ I recognize<br />

that <strong>the</strong> problem <strong>of</strong> <strong>the</strong> placement <strong>of</strong> on <strong>the</strong><br />

one hand Cyclodorippidae, Cymonomidae, and<br />

Phyllotymolinidae, and on <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong> Ran-<br />

112 � Contributions in Science, Number 39 Appendix I: Comments and Opinions


inoidea is difficult, because <strong>the</strong>y do not clearly enter<br />

in a major group. You write that, for Spears herself<br />

(p. 69), ‘‘molecular data seem to indicate a placement<br />

[<strong>of</strong> Cyclodorippoidea] somewhere between<br />

<strong>the</strong> raninids and <strong>the</strong> higher eubrachyurans.’’ So, <strong>the</strong><br />

molecular data exactly give <strong>the</strong> same results that<br />

<strong>the</strong> morphological and ontogenetic ones. The two<br />

groups Raninoidea and Cyclodorippoidea (<strong>the</strong> last<br />

name is used by convenience, but perhaps <strong>the</strong>y<br />

form three distinct families, see Tavares) seem<br />

apart, but where is <strong>the</strong> best way?<br />

Submitted by Danièle Guinot,<br />

Muséum National d’Histoire Naturelle, Paris<br />

DECAPODA: BRACHYURA<br />

Evidence from morphology and larval development<br />

points to <strong>the</strong> polyphyletic nature <strong>of</strong> <strong>the</strong> Trapeziidae.<br />

There are three separate groups: one comprises Trapezia,<br />

Quadrella, Hexagonalia, Calocarcinus, Philippicarcinus<br />

and Sphenomerides, a second Tetralia<br />

and Tetraloides, and a third Domecia, Jonesius,<br />

Palmyria and Maldivia.<br />

Submitted by Peter Castro,<br />

California State Polytechnic University, Pomona<br />

DECAPODA: BRACHYURA<br />

I disagree that all Brachyura with female gonopores<br />

on P3 coxa and with sperma<strong>the</strong>cae at <strong>the</strong> extremities<br />

<strong>of</strong> thoracic sutures 7/8 are separated in two<br />

different major sections, Dromiacea and Eubrachyura,<br />

with <strong>the</strong> Raninoidea and Cyclodorippoidea<br />

distributed in a basal group inside <strong>the</strong> Eubrachyura.<br />

In that case, how to make a definition <strong>of</strong> both<br />

Dromiacea and Eubrachyura as a whole? The Podotremata<br />

may receive all Brachyura with female<br />

gonopores on P3 coxa and with sperma<strong>the</strong>cae at<br />

<strong>the</strong> extremities <strong>of</strong> thoracic sutures 7/8, i.e., two different<br />

apertures. The Eubrachyura may receive all<br />

Brachyura with a sternal location <strong>of</strong> female gonopores<br />

(vulvae on <strong>the</strong> thoracic sternum, sternite 6);<br />

<strong>the</strong>re is now a sole female orifice for reproduction<br />

(egg laying, intromission <strong>of</strong> male pleopod, and storage<br />

<strong>of</strong> <strong>the</strong> spermatozoas). <strong>An</strong>o<strong>the</strong>r synapomorphy<br />

(among o<strong>the</strong>rs) <strong>of</strong> <strong>the</strong> assemblage Heterotremata-<br />

Thoracotremata is <strong>the</strong> morphology <strong>of</strong> <strong>the</strong> first male<br />

pleopod, which is completely closed and provided<br />

with two distinct basal foramina (instead <strong>of</strong> only<br />

one in <strong>the</strong> Podotremata). To concile <strong>the</strong> evident<br />

apart position <strong>of</strong> <strong>the</strong> Raninoidea and Cyclodorippoidea<br />

(but, perhaps consider three distinct families:<br />

Cyclodorippidae, Cymonomidae, Phyllotymolinidae),<br />

I suggest to range <strong>the</strong>m among <strong>the</strong> Podotremata<br />

in Archaeobrachyura Guinot, 1977 emend.<br />

(i.e. with <strong>the</strong> exclusion <strong>of</strong> <strong>the</strong> Homoloidea).<br />

Submitted by Danièle Guinot,<br />

Muséum National d’Histoire Naturelle, Paris<br />

DECAPODA: BRACHYURA: DROMIACEA<br />

I disagree that <strong>the</strong> section Dromiacea contains <strong>the</strong><br />

Homoloidea. The Dromiacea and Homoloidea are<br />

two different lineages. I suggest to consider a Section<br />

Podotremata, with three subsections: Subsection<br />

Dromiacea, containing two superfamilies<br />

Homolodromioidea (Homolodromiidae) and<br />

Dromioidea (Dromiidae, Dynomenidae); Subsection<br />

Homoloidea (Homolidae, Latreilliidae, Poupiniidae);<br />

Subsection Archaeobrachyura (Cyclodorippidae,<br />

Cymonomidae, Phyllotymolinidae, and<br />

Raninidae). The monophyly <strong>of</strong> <strong>the</strong> Dromiacea is<br />

well supported by many features; <strong>the</strong> same for<br />

Homoloidea. I recognize that <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong><br />

Archaeobrachyura emend. (without <strong>the</strong> Homoloidea)<br />

is not so well supported and that <strong>the</strong>se crabs<br />

show puzzling features, but <strong>the</strong>y are all very specialized<br />

and modified by <strong>the</strong> burrowing life. Their<br />

attribution to <strong>the</strong> Podotremata is, at least for <strong>the</strong><br />

moment, supported by <strong>the</strong> appendicular location <strong>of</strong><br />

female gonopores (on P3 coxa) and <strong>the</strong> sperma<strong>the</strong>cae<br />

at <strong>the</strong> extremities <strong>of</strong> thoracic sutures 7/8, <strong>the</strong><br />

features <strong>of</strong> <strong>the</strong> sternal plate, <strong>the</strong> arthrodial cavities<br />

<strong>of</strong> <strong>the</strong> pereiopods, and o<strong>the</strong>rs characters. If we include<br />

<strong>the</strong> Cyclodorippidae, Cymonomidae, Phyllotymolinidae,<br />

and <strong>the</strong> Raninidae in <strong>the</strong> Eubrachyura,<br />

which becomes <strong>the</strong> diagnosis <strong>of</strong> <strong>the</strong> Eubrachyura?<br />

Submitted by Danièle Guinot,<br />

Muséum National d’Histoire Naturelle, Paris<br />

DECAPODA: BRACHYURA:<br />

HETEROTREMATA, THORACOTREMATA<br />

It is important to recall <strong>the</strong> original definition <strong>of</strong><br />

<strong>the</strong> taxa given by Guinot (1977, 1978).<br />

The section Hererotremata contains <strong>the</strong> Brachyuran<br />

families, ALL THE MEMBERS <strong>of</strong> which<br />

are sternitreme for <strong>the</strong> female gonopores, and<br />

ONLY some members, at least, are podotreme<br />

for <strong>the</strong> male gonopores.<br />

The section Thoracotremata contains <strong>the</strong> Brachyuran<br />

families, all <strong>the</strong> members <strong>of</strong> which are sternitreme<br />

for <strong>the</strong> female and male gonopores. It<br />

means that, for <strong>the</strong> Heterotremata, in <strong>the</strong> Leucosiidae<br />

or Leucosioidea by example it exists members<br />

with male gonopores on <strong>the</strong> P5 coxa and o<strong>the</strong>r<br />

members with sternal male apertures. But, in <strong>the</strong><br />

last case, it is only a coxo-sternal location <strong>of</strong> <strong>the</strong><br />

penis. The same is true for <strong>the</strong> Dorippidae, where<br />

some members show a coxo-sternal location <strong>of</strong> <strong>the</strong><br />

penis.<br />

Submitted by Danièle Guinot,<br />

Muséum National d’Histoire Naturelle, Paris<br />

Contributions in Science, Number 39 Appendix I: Comments and Opinions � 113


Abele, Lawrence G.<br />

Baba, Keiji<br />

*Belk, Denton<br />

Bousfield, Ed<br />

Boxshall, Ge<strong>of</strong>f<br />

Brandt, <strong>An</strong>gelika<br />

Brendonck, Luc<br />

Briggs, Derek<br />

Brusca, Gary<br />

Brusca, Richard<br />

Cadien, Don<br />

Camp, David<br />

Castro, Peter<br />

Causey, Douglas<br />

Chace, Fenner<br />

Christ<strong>of</strong>fersen, Martin<br />

Clark, Paul<br />

Cohen, <strong>An</strong>ne<br />

Crandall, Keith<br />

Crosnier, Alain<br />

Cumberlidge, Neil<br />

*Dahl, Erik<br />

Dahms, Hans-Uwe<br />

Davie, Peter<br />

El<strong>of</strong>sson, Rolfe<br />

Felder, Darryl L.<br />

Feldmann, Rodney<br />

Felgenhauer, Bruce<br />

Fryer, Ge<strong>of</strong>frey<br />

Galil, Bella<br />

Grygier, Mark<br />

Guinot, Danièle<br />

Haney, Todd<br />

Harvey, Alan<br />

APPENDIX II. LIST OF CONTRIBUTORS<br />

The following are colleagues who graciously gave <strong>of</strong> <strong>the</strong>ir time to review various<br />

drafts <strong>of</strong> <strong>the</strong> <strong>Classification</strong> <strong>of</strong> <strong>Recent</strong> <strong>Crustacea</strong>.<br />

* Denotes researchers recently deceased.<br />

Hayashi, Ken-Ichi<br />

Heard, Richard<br />

Hendrickx, Michel<br />

Hessler, Robert<br />

Ho, Ju-Shey<br />

Høeg, Jens<br />

H<strong>of</strong>, Cees<br />

Holsinger, John<br />

Holthuis, Lipke B.<br />

*Humes, Arthur<br />

Huys, Rony<br />

Jamieson, Barry<br />

Jones, Diana S.<br />

Kaesler, Roger<br />

Kensley, Brian<br />

Kornicker, Lou<br />

Larsen, Kim<br />

LeCroy, Sara<br />

Lemaitre, Rafael<br />

Lowry, Jim<br />

MacPherson, Enrique<br />

Maddocks, Rosalie<br />

*Manning, Ray<br />

Markham, John<br />

McLaughlin, Pat<br />

Mickevich, Mary<br />

Modlin, Richard<br />

Morgan, Gary<br />

Myers, Alan<br />

Newman, William<br />

Ng, Peter<br />

Olesen, Jørgen<br />

Poore, Gary<br />

Regier, Jerome C.<br />

Rice, Tony<br />

Richer de Forges, Bertrand<br />

Richter, Stefan<br />

Riley, John<br />

Sakai, Katsushi<br />

St. Laurent, Michele de<br />

Schminke, Horst<br />

Scholtz, Gerhard<br />

Schram, Frederick<br />

Secretan, Sylvie<br />

Schubart, Christoph<br />

Sorbe, Jean Claude<br />

Spears, Trisha<br />

Sˇtevčić, Zdravko<br />

Takeuchi, Ichiro<br />

Tavares, Marcos<br />

Thomas, James D.<br />

Tudge, Christopher<br />

Vereshchaka, Alexander<br />

Vervoort, W.<br />

Wägele, Wolfgang<br />

Wallis, Elycia<br />

Walossek, Dieter<br />

Watling, Les<br />

Whatley, Robin<br />

Wicksten, Mary K.<br />

*Williams, Austin<br />

Wilson, Buz<br />

Yager, Jill<br />

Young, Paulo<br />

Zimmerman, Todd L.<br />

114 � Contributions in Science, Number 39 Appendix II: List <strong>of</strong> Contributors


APPENDIX III. OTHER CRUSTACEAN RESOURCES<br />

This appendix is subdivided into four sections. Section<br />

III-A contains a list <strong>of</strong> journals and newsletters<br />

and <strong>the</strong>ir current editors and addresses. Section<br />

III-B is an alphabetical list <strong>of</strong> currently active web<br />

sites and <strong>the</strong>ir URLs, followed by a short selection<br />

<strong>of</strong> ‘‘personal pages’’ <strong>of</strong> some workers with crustacean<br />

information on <strong>the</strong>ir web sites. Section III-C<br />

is a list <strong>of</strong> crustacean-related listservers. Section<br />

III-D is a list <strong>of</strong> natural history museums with significant<br />

crustacean holdings, some <strong>of</strong> which have<br />

searchable crustacean databases.<br />

III-A. JOURNALS AND NEWSLETTERS<br />

1. JOURNALS<br />

Journals that publish only crustacean-specific articles<br />

are ra<strong>the</strong>r few and currently include only <strong>the</strong><br />

following (listed alphabetically).<br />

<strong>Crustacea</strong>na<br />

Description: ‘‘International Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Research’’ publishing ‘‘papers dealing with <strong>Crustacea</strong>,<br />

from all branches <strong>of</strong> Zoology.’’ Issued eight<br />

times per year (January, February, March, April,<br />

June, July, September, October, November, and December).<br />

Current editor and address: J. C. Von Vaupel<br />

Klein, <strong>Crustacea</strong>na, Editorial Board Administrative<br />

Office, Beetslaan 32, NL-3723 DX, Bilthoven, The<br />

Ne<strong>the</strong>rlands.<br />

Publisher: Brill Academic Publishers, Inc., Leiden,<br />

The Ne<strong>the</strong>rlands.<br />

<strong>Crustacea</strong>n Issues<br />

Description: <strong>An</strong> irregular series <strong>of</strong> collections <strong>of</strong> papers<br />

on <strong>Crustacea</strong>, each published as a hardbound<br />

volume and covering a discrete crustacean topic.<br />

Current editor and address: General editor, Frederick<br />

R. Schram, Zoological Museum, University <strong>of</strong><br />

Amsterdam.<br />

Publisher: A. A. Balkema, Rotterdam, The Ne<strong>the</strong>rlands.<br />

<strong>Crustacea</strong>n Research (formerly Researches on<br />

<strong>Crustacea</strong>)<br />

Description: A publication <strong>of</strong> <strong>the</strong> Carcinological<br />

Society <strong>of</strong> Japan, publishing papers dealing with<br />

‘‘any aspect <strong>of</strong> <strong>the</strong> biology <strong>of</strong> <strong>Crustacea</strong>.’’ Issued<br />

quarterly.<br />

Current editor: Keiji Baba, <strong>Crustacea</strong> Research,<br />

Faculty <strong>of</strong> Education, Kumamoto University, 860–<br />

8555, Japan.<br />

Publisher: Carcinological Society <strong>of</strong> Japan and<br />

Shimoto Printing, Kumamoto.<br />

Journal <strong>of</strong> <strong>Crustacea</strong>n Biology<br />

Description: The <strong>of</strong>ficial journal <strong>of</strong> The <strong>Crustacea</strong>n<br />

Society, ‘‘for <strong>the</strong> publication <strong>of</strong> research on any aspect<br />

<strong>of</strong> <strong>the</strong> biology <strong>of</strong> <strong>Crustacea</strong>.’’ Issued quarterly.<br />

Current editor: David K. Camp, Journal <strong>of</strong> <strong>Crustacea</strong>n<br />

Biology, P.O. Box 4430 Seminole, Florida<br />

33775–4430, USA.<br />

Publisher: The <strong>Crustacea</strong>n Society and Allen<br />

Press, Lawrence, Kansas.<br />

Nauplius (Revista da Sociedade Brasiliera de<br />

Carcinologia)<br />

Description: The journal <strong>of</strong> <strong>the</strong> Sociedade Brasileira<br />

de Carcinologia, publishing ‘‘original papers based<br />

on research in any aspect <strong>of</strong> crustacean biology, including<br />

taxonomy, phylogeny, morphology, development,<br />

physiology, ecology, biogeography, bioenergetics,<br />

aquaculture and fisheries biology.’’ Issued<br />

quarterly.<br />

Current editor: Mónica A. Montú, Nauplius, Laboratorio<br />

de Carcinologia, Departamento de<br />

Oceanografia—FURG, Caixa Postal 474, CEP<br />

96201–900, Rio Grande, RS, Brazil.<br />

Publisher: Sociedade Brasileira de Carcinologia.<br />

There are <strong>of</strong> course many more journals that<br />

publish taxonomic/systematic/phylogenetic studies<br />

<strong>of</strong> crustaceans along with papers on o<strong>the</strong>r invertebrate<br />

groups. We conducted an informal survey <strong>of</strong><br />

<strong>the</strong> subscribers to <strong>the</strong> crustacean listserver CRUST-<br />

L in March <strong>of</strong> 2000 and asked members to name<br />

<strong>the</strong> journals <strong>the</strong>y consult on a regular basis for new<br />

information on crustacean relationships. The following<br />

journals, arranged alphabetically, were all<br />

mentioned more than once in that survey: Acta<br />

Zoologica, Arthropoda Selecta, Biological Bulletin,<br />

Bulletin <strong>of</strong> Marine Science, Canadian Journal <strong>of</strong><br />

Zoology, Comptes Rendus de l’Academie des Sciences,<br />

Contributions to Zoology (University <strong>of</strong> Amsterdam),<br />

Deep-Sea Research, Evolution, Fishery<br />

Bulletin (US), Fossils and Strata, Gulf and Caribbean<br />

Research (formerly Gulf Research Reports),<br />

Hydrobiologia, Invertebrate Biology, Invertebrate<br />

Reproduction and Development, Invertebrate Taxonomy,<br />

Journal <strong>of</strong> Experimental Marine Biology<br />

and Ecology, Journal <strong>of</strong> <strong>the</strong> Marine Biological Association<br />

<strong>of</strong> <strong>the</strong> United Kingdom, Journal <strong>of</strong> Natural<br />

History, Journal <strong>of</strong> Plankton Research, Marine<br />

Biology, Marine Ecology Progress Series, Memoirs<br />

du Museum National d’Histoire Naturelle (Paris),<br />

Memoirs <strong>of</strong> <strong>the</strong> Museum <strong>of</strong> Victoria, Proceedings<br />

<strong>of</strong> <strong>the</strong> Biological Society <strong>of</strong> Washington, Proceedings<br />

<strong>of</strong> <strong>the</strong> Linnean Society <strong>of</strong> New South Wales,<br />

Proceedings <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London (series<br />

B), Raffles Bulletin <strong>of</strong> Zoology, Revista di Biologia<br />

Tropical, Sarsia, Smithsonian Contributions to Zoology,<br />

Zoologica Scripta, Zoological Journal <strong>of</strong> <strong>the</strong><br />

Linnean Society, Zoologischer <strong>An</strong>zeiger, Zoosystema.<br />

Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources � 115


2. NEWSLETTERS<br />

Included here are some <strong>of</strong> <strong>the</strong> more taxonomically<br />

or systematically oriented crustacean newsletters <strong>of</strong><br />

which we are aware. We have purposely avoided<br />

listing newsletters that primarily target aspects <strong>of</strong><br />

crustacean farming, aquaculture, and <strong>the</strong> aquarium<br />

trade.<br />

Amphipod Newsletter (see also <strong>the</strong> Amphipod<br />

Homepage)<br />

Editors as <strong>of</strong> March 2001: Jim Lowry and Wim<br />

Vader<br />

Address: Sydney, Australia (Jim Lowry); Tromso,<br />

Norway (Wim Vader)<br />

Homepage: http://web.odu.edu/sci/biology/<br />

amphome/<br />

<strong>An</strong>ostracan News (Newsletter <strong>of</strong> <strong>the</strong> IUCN/SSC<br />

Inland Water <strong>Crustacea</strong>n Specialist Group)<br />

Editor as <strong>of</strong> March 2001: Denton Belk<br />

Address: 840 E. Mulberry Avenue, San <strong>An</strong>tonio,<br />

Texas 78212–3194, USA<br />

Homepage: none to our knowledge<br />

Boletin de la Association Latinoamericana de<br />

Carcinologia<br />

Editor as <strong>of</strong> March 2001: Guido Pereira (gpereira@<br />

strix.ciens.ucv.ve)<br />

Address: Instituto de Zoologia Tropical, Universidad<br />

Central de Venezuela, Caracas, Venezuela<br />

Homepage: http://tierradelfuego.org.ar/alca/<br />

Coral Reef Newsletter<br />

Editors as <strong>of</strong> March 2001: C. E. Birkland and L.<br />

G. Eldredge<br />

Address: Pacific Science Association, P.O. Box<br />

17801, Honolulu, Hawaii 96817, USA<br />

Homepage: none to our knowledge<br />

Crayfish News (Official Newsletter <strong>of</strong> <strong>the</strong><br />

International Association <strong>of</strong> Astacology)<br />

Editor as <strong>of</strong> March 2001: Glen Whisson<br />

(twhisson@alpha2.curtin.edu.au)<br />

Address: IAA Secretariat, P.O. Box 44650, University<br />

<strong>of</strong> Louisiana at Lafayette, Lafayette, Louisiana<br />

70504, USA (jhuner@usl.edu)<br />

Homepage: http://www.uku.fi/english/<br />

organizations/IAA/<br />

Cumacean Newsletter<br />

Editors as <strong>of</strong> March 2001: Daniel Roccatagliata<br />

(rocca@bg.fcen.uba.ar), Richard W. Heard, Magdalena<br />

Blazewicz, and Ute Mühlenhardt-Siegel<br />

Address: (for Roccatagliata) Departamento de<br />

Biologia, Universidad de Buenos Aires, Ciudad Universitaria-Nunex,<br />

1428 Buenos Aires, Argentina<br />

Homepage: http://www.ims.usm.edu/cumacean/<br />

index.html<br />

Cypris (Newsletter for Ostracodologists)<br />

(formerly The Ostracodologist: Newsletter for Ostracod<br />

Workers)<br />

Editor as <strong>of</strong> March 2001: Elisabeth M. Brouwers<br />

Address: See home page for regional representative<br />

Homepage: http://www.uh.edu/�rmaddock/<br />

IRGO/cypris.html<br />

Ecdysiast (Official Newsletter <strong>of</strong> The <strong>Crustacea</strong>n<br />

Society)<br />

Editor as <strong>of</strong> March 2001: Tim Stebbins (TDS@<br />

sdcity.sannet.gov)<br />

Address: City <strong>of</strong> San Diego Marine Biology Laboratory,<br />

4918 N. Harbor Dr., Suite, 101, San Diego,<br />

California 92106, USA<br />

Homepage: http://www.lam.mus.ca.us/�tcs/<br />

ecdysiast.htm<br />

(The) Isopod Newsletter<br />

Editor as <strong>of</strong> March 2001: Brian Kensley (kensley.<br />

brian@nmnh.si.edu)<br />

Address: Department <strong>of</strong> Invertebrate Zoology,<br />

NHB-163, Smithsonian Institution, Washington,<br />

D.C. 20560–0163, USA<br />

Homepage: none to our knowledge<br />

(The) Lobster Newsletter<br />

Editor as <strong>of</strong> March 2001: Mark Butler<br />

Address: Department <strong>of</strong> Biological Sciences, Old<br />

Dominion University, Norfolk, Virginia 23529–<br />

0266, USA<br />

Homepage: none<br />

Monoculus (Copepod Newsletter)<br />

Editors as <strong>of</strong> March 2001: Hans-U. Dahms and<br />

H. Kurt Schminke<br />

Address: Fachbereich 7 (Biologie), Universitat<br />

Oldenburg, D-26111, Oldenburg, Germany<br />

Homepage: http:www.hrz.uni-oldenburg.de/<br />

monoculus<br />

Plankton Newsletter<br />

Editors as <strong>of</strong> March 2001: P. H. Schalk (peter@<br />

eti.bio.uva.nl) and S. van der Spoel<br />

Address: P.O. Box 16915, 1001 RK<br />

Amsterdam, The Ne<strong>the</strong>rlands<br />

Homepage: none to our knowledge<br />

SCAMIT Newsletter (Sou<strong>the</strong>rn California<br />

Association <strong>of</strong> Marine Invertebrate Taxonomists)<br />

Editor as <strong>of</strong> March 2001: Don Cadien (dcadien@<br />

lacsd.org)<br />

Address: Marine Biology Laboratory, County<br />

Sanitation Districts <strong>of</strong> Los <strong>An</strong>geles County, 24501<br />

South Figueroa Street, Carson, California 90745,<br />

USA<br />

Homepage: http://www.scamit.org/index.htm<br />

116 � Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources


(The) Stomatopod Newsletter<br />

Editors as <strong>of</strong> March 2001: Tatsuo Hamano<br />

(hamanot@fish-u.ac.jp) and Chris Norman<br />

(norman@snf.affrc.go.jp)<br />

Address: National Fisheries University, P.O. Box<br />

3, Yoshimi, Japan<br />

Homepage: None<br />

(The) Tanaidacea Newsletter<br />

Editors as <strong>of</strong> March 2001: Richard W. Heard<br />

(richard.heard@usm.htm) and Gary <strong>An</strong>derson<br />

Address: Institute <strong>of</strong> Marine Sciences, The University<br />

<strong>of</strong> Sou<strong>the</strong>rn Mississippi, P.O. Box 7000,<br />

Ocean Springs, Mississippi 39566–7000, USA<br />

Homepage: http://tidepool.st.usm.edu/tanaids/<br />

newsletter98.htm<br />

Zoea (Larval development newsletter for<br />

carcinologists)<br />

Editors as <strong>of</strong> March 2001: Klaus <strong>An</strong>ger, José A.<br />

Cuesta, and Pablo J. López-González<br />

Address: Departamento de Ecologia, Facultad de<br />

Biologia, Apdo 1095, E-41080 Sevilla, Spain<br />

Homepage: http://members.es.tripod.de/<br />

Megalopa/index.htm<br />

III-B. WEB SITES<br />

Knowing that any such list will become obsolete<br />

even before it is published because <strong>of</strong> <strong>the</strong> rapid<br />

growth <strong>of</strong> web sites in various areas <strong>of</strong> invertebrate<br />

biodiversity, we never<strong>the</strong>less <strong>of</strong>fer here some <strong>of</strong> <strong>the</strong><br />

more useful crustacean-related web sites <strong>of</strong> which<br />

we were aware at <strong>the</strong> time <strong>of</strong> printing. Although<br />

some <strong>of</strong> <strong>the</strong> sites were useful in constructing <strong>the</strong><br />

current classification, listing below does not necessarily<br />

indicate our endorsement nor does it necessarily<br />

indicate that <strong>the</strong> authors <strong>of</strong> any <strong>of</strong> <strong>the</strong>se sites<br />

are in agreement with <strong>the</strong> currently proposed classification.<br />

This list is far from exhaustive. It is meant to<br />

provide an introduction to <strong>the</strong> large and ever-growing<br />

number <strong>of</strong> web sites that may be <strong>of</strong> interest to<br />

students <strong>of</strong> carcinology. Additionally, <strong>the</strong> list excludes<br />

a number <strong>of</strong> ‘‘personal’’ sites (such as those<br />

<strong>of</strong> Colin MacLay, Jeff Shields, Dieter Walossek, and<br />

o<strong>the</strong>rs), some <strong>of</strong> which are quite interesting and<br />

contain a lot <strong>of</strong> information on crustaceans as well.<br />

A brief selection <strong>of</strong> <strong>the</strong>se personal sites is given after<br />

<strong>the</strong> alphabetized web page list.<br />

About Phreatoicidean Isopods in Australia<br />

http://www-personal.usyd.edu.au/�buz/<br />

popular.html<br />

A site devoted to <strong>the</strong>se fascinating crustaceans,<br />

maintained by George (Buz) Wilson, Australian<br />

Museum.<br />

(The) Amphipod Homepage<br />

http://www.odu.edu/�jrh100f/amphome/<br />

Maintained by Stefan Koenemann at Old Dominion<br />

University, Norfolk, Virginia. Nice introductory<br />

page leading to <strong>the</strong> ‘‘Amphipod Newsletter,’’<br />

web sites related to amphipods, pictures <strong>of</strong><br />

amphipods, and various sites about crustacean biology.<br />

<strong>An</strong>imal Diversity Web<br />

http://www.oit.itd.umich.edu/bio108/Arthropoda/<br />

<strong>Crustacea</strong>.shtml<br />

This address takes you to <strong>the</strong> <strong>Crustacea</strong> pages <strong>of</strong><br />

<strong>the</strong> University <strong>of</strong> Michigan’s <strong>An</strong>imal Diversity web<br />

site. Provides general information on several classes,<br />

primarily geared to <strong>the</strong> nonspecialist.<br />

<strong>An</strong>imal Evolutionary Pattern <strong>An</strong>alysis Home Page<br />

http://www.bio.uva.nl/onderzoek/cepa/<br />

Default.html#LL<br />

Presents <strong>the</strong> research activities <strong>of</strong> a group <strong>of</strong> scientists<br />

allied to <strong>the</strong> Institute for Systematics and<br />

Population Biology, a research institute within <strong>the</strong><br />

Faculty <strong>of</strong> Biology <strong>of</strong> <strong>the</strong> University <strong>of</strong> Amsterdam,<br />

with links to <strong>the</strong>ir ongoing arthropod and crustacean<br />

projects.<br />

<strong>An</strong>imals4ever<br />

http://www.animals4ever.com/<br />

A searchable and interactive listing, with figures<br />

and references, maintained in Belgium, with <strong>the</strong><br />

goal <strong>of</strong> eventually grouping ‘‘all animals on <strong>the</strong> web<br />

in one place.’’<br />

<strong>An</strong>t’phipoda, The <strong>An</strong>tarctic Marine Biodiversity<br />

Reference Center Devoted to Amphipod<br />

<strong>Crustacea</strong>ns<br />

http://www.naturalsciences.be/amphi/<br />

Managed by <strong>the</strong> Laboratory <strong>of</strong> Carcinology at<br />

<strong>the</strong> Royal Belgian Institute <strong>of</strong> Natural Sciences,<br />

with links to <strong>the</strong> checklist <strong>of</strong> amphipods <strong>of</strong> <strong>the</strong><br />

Sou<strong>the</strong>rn Ocean, amphipodologists involved with<br />

<strong>An</strong>tarctic fauna, research activities, pictures, and<br />

numerous amphipod sites.<br />

(The) Appalachian Man’s Crayfish Photo Gallery<br />

http://webby.cc.denison.edu/�stocker/<br />

cfgallery.html<br />

Many color crayfish photographs, plus links to<br />

o<strong>the</strong>r crayfish sites. Maintained by Whitney Stocker<br />

<strong>of</strong> Gunison University, Ohio, USA.<br />

Biographical Etymology <strong>of</strong> Marine Organism<br />

Names (BEMON)<br />

http://www.tmbl.gu.se/libdb/taxon/personetymol/<br />

index.htm<br />

Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources � 117


<strong>An</strong> interesting site attempting to track <strong>the</strong> history<br />

<strong>of</strong> taxonomic names <strong>of</strong> marine species, including<br />

crustaceans. Maintained by Hans G. Hansson.<br />

Biology <strong>of</strong> Copepods<br />

http://www.uni-oldenburg.de/zoomorphology/<br />

Biology.html#biotable<br />

A page maintained by Thorsten D. Künnemann,<br />

with an introduction to <strong>the</strong> biology <strong>of</strong> copepods,<br />

scanning electron micrographs, copepod systematics,<br />

and anatomy <strong>of</strong> copepods (in preparation).<br />

Biomedia Home Page<br />

http://www.gla.ac.uk/Acad/IBLS/DEEB/biomedia/<br />

home/home.htm<br />

Very general information on crustaceans (and<br />

o<strong>the</strong>r taxa) for <strong>the</strong> nonspecialist.<br />

BIOSIS—Internet Resource Guide for Zoology<br />

(<strong>Crustacea</strong>)<br />

(see Zoological Record)<br />

Biospeleology Home Page: The Biology <strong>of</strong> Caves,<br />

Karst, and Groundwater<br />

http://www.utexas.edu/depts/tnhc/.www/<br />

biospeleology/<br />

Provides information on some cave crustaceans.<br />

This site is maintained by <strong>the</strong> Texas Memorial Museum<br />

in Austin.<br />

(The) Blue Crab Home Page<br />

http://www.blue-crab.net/<br />

A useful and large resource page, with connections<br />

to literature, o<strong>the</strong>r sites about blue crabs, and<br />

o<strong>the</strong>r researchers interested in nearly all aspects <strong>of</strong><br />

<strong>the</strong> blue crab, Callinectes sapidus. Maintained by<br />

Vince Guillory.<br />

British Marine Life Study Society<br />

http://cbr.nc.us.mensa.org/homepages/BMLSS<br />

Brief reports <strong>of</strong> British marine life, with occasional<br />

reports <strong>of</strong> crustaceans and links to o<strong>the</strong>r marine<br />

life sites.<br />

Canadian Museum <strong>of</strong> Nature’s Database <strong>of</strong><br />

Canadian Arthropod (excl. Insects) Systematists<br />

http://www.nature.ca/english/arthro.htm<br />

A database <strong>of</strong> Canadian systematists, with scientists<br />

organized by area <strong>of</strong> expertise in arthropods<br />

(excluding insects).<br />

Central Terminal for <strong>Crustacea</strong>n Neuroscience<br />

http://wwwzoo.kfunigraz.ac.at/crusties.html<br />

A valuable site for everything related to crusta-<br />

cean neurology, with many interesting links to related<br />

sites.<br />

Cercopagis pengoi Page (Cladoceran)<br />

http://www.ku.lt/nemo/cercopag.htm<br />

A reference page for this cladoceran species; part<br />

<strong>of</strong> <strong>the</strong> Baltic Research Network on Ecology and<br />

Marine Invasions and Introductions, Estonian Marine<br />

Institute, Tallinn, Estonia. Contains taxonomic<br />

information, diagnosis, line drawings and color<br />

photographs, information on population dynamics,<br />

and references.<br />

Cladocera<br />

http://www.cladocera.uogluelph.ca/<br />

This site, maintained by Paul Hebert, provides a<br />

variety <strong>of</strong> information useful for cladoceran researchers<br />

and o<strong>the</strong>rs interested in <strong>the</strong> Cladocera.<br />

Includes pages on taxonomy, references, researchers,<br />

specimen wish lists, tools, and meetings.<br />

Copepods and Groundwater Biology<br />

http://www.uni-oldenburg.de/zoomorphology/<br />

Groundwater.html<br />

Maintained by <strong>the</strong> Zoomorphology Section at<br />

<strong>the</strong> University <strong>of</strong> Oldenburg, this is an overview<br />

page with links to Giuseppe Pesce’s various groundwater<br />

biology sites.<br />

Crabs Found in Belgium Waters<br />

http://uc2.unicall.be/RVZ/CrabBook.html<br />

A clever, useful sight for learning about crabs in<br />

this part <strong>of</strong> <strong>the</strong> world. Click on any crab for fur<strong>the</strong>r<br />

information.<br />

(The) Crayfish (T. H. Huxley, 1879, 1880)<br />

http://www.biology.ualberta.ca/palmer.hp/thh/<br />

crayfish/htm<br />

T. H. Huxley’s classic paper on crayfish in its entirety,<br />

including all <strong>of</strong> <strong>the</strong> original woodcut illustrations,<br />

available online courtesy <strong>of</strong> Eric Eldred and<br />

<strong>the</strong> University <strong>of</strong> Alberta, Canada.<br />

(The) Crayfish Corner<br />

http://www.mackers.com/crayfish<br />

A lay person site with general information about<br />

crayfish, <strong>the</strong>ir appearance, behavior, internal anatomy,<br />

pictures, and more.<br />

Crayfish Home Page<br />

http://bioag.byu.edu/mlbean/CRAYFISH/<br />

crayhome.htm<br />

Keith Crandall’s website highlighting lab personnel,<br />

publications and data, computer programs, lab<br />

links, lab tour, extensive crayfish photo gallery, and<br />

118 � Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources


links to crustacean societies, conservation, and<br />

more.<br />

<strong>Crustacea</strong> Gopher (U.S. National Museum,<br />

Smithsonian)<br />

gopher://nmnhgoph.si.edu:70/11/.invertebrate/.<br />

crustaceans<br />

The gopher menu allows access to ‘‘Crayfish,’’<br />

‘‘Isopods,’’ and <strong>the</strong> ‘‘CRUST-L Discussion Group<br />

Digests.’’ The ‘‘Crayfish’’ contains 13,000 searchable<br />

references. For isopods, see listing under<br />

‘‘World List <strong>of</strong> Marine, Freshwater, and Terrestrial<br />

Isopod <strong>Crustacea</strong>ns.’’<br />

<strong>Crustacea</strong> <strong>of</strong> Lake Biwa<br />

http://www.hirano-es.otsu.shiga.jp:80/fish-e.html<br />

Images and Japanese names <strong>of</strong> freshwater crustaceans<br />

in Lake Biwa.<br />

<strong>Crustacea</strong> Net<br />

http://www.crustacea.net<br />

Hosted on <strong>the</strong> Australian Museum website maintained<br />

by Jim Lowry, <strong>the</strong> DELTA (DEscription Language<br />

for TAxonomy) taxonomic computer program<br />

provides illustrated and interactive keys to<br />

identify higher <strong>Crustacea</strong> taxa, with keys to crustacean<br />

families.<br />

<strong>Crustacea</strong> Node <strong>of</strong> <strong>the</strong> Tree <strong>of</strong> Life Project<br />

http://phylogeny.arizona.edu/tree/eukaryotes/<br />

animals/arthropoda/crustacea/crustacea.html<br />

This will take you directly to <strong>the</strong> <strong>Crustacea</strong> part<br />

<strong>of</strong> David and Wayne Maddison’s Tree <strong>of</strong> Life project.<br />

The crustacean section currently is based on<br />

Brusca and Brusca (1990).<br />

<strong>Crustacea</strong>n Disease Information<br />

http://www.geocities.com/CapeCanaveral/Lab/<br />

7490/index.html#crustdis<br />

Part <strong>of</strong> <strong>the</strong> Aquaculture Health Page, maintained<br />

by Bill Lussier.<br />

(The) <strong>Crustacea</strong>n Biodiversity Survey<br />

http://www.nhm.org/cbs/<br />

A site <strong>of</strong> general interest that includes a searchable,<br />

additive, database.<br />

(The) <strong>Crustacea</strong>n Society<br />

http://www.vims.edu/tcs<br />

The <strong>Crustacea</strong>n Society Home Page, maintained<br />

by Jeff Shields and hosted by <strong>the</strong> Virginia Institute<br />

<strong>of</strong> Marine Science.<br />

<strong>Crustacea</strong>n Specimens <strong>of</strong> <strong>the</strong> Marine Biological<br />

Laboratory<br />

http://database.mbl.edu/SPECIMENS/phylum.<br />

taf?function�search&find<br />

�Arthropoda<br />

<strong>Crustacea</strong>n specimens in <strong>the</strong> collections <strong>of</strong> <strong>the</strong><br />

Marine Biological Laboratory, Woods Hole, Massachusetts.<br />

Crustacés Polynésiens<br />

http://biomar.free.fr/<br />

Provides a list <strong>of</strong> species and authorships <strong>of</strong> Indo-<br />

Pacific taxa; many entries are represented with photographs.<br />

Maintained by J. Poupin.<br />

Crypt<strong>of</strong>auna <strong>of</strong> Empty Barnacle Shells and Lego<br />

Plastic Blocks<br />

http://www.ex.ac.uk/biology/adrianc.html<br />

Strange but true, an interesting site on an obscure<br />

topic, maintained by Adrian Clayton.<br />

Cumacean Home Page<br />

http://nature.umesci.maine.edu/cumacea.html<br />

A product <strong>of</strong> a PEET grant from <strong>the</strong> U.S. National<br />

Science Foundation, this site is maintained<br />

by Les Watling and Irv Kornfield (and students) at<br />

<strong>the</strong> University <strong>of</strong> Maine.<br />

Directory <strong>of</strong> Copepodologists<br />

http://www.univaq.it/�sc�amb/wac.html<br />

Self explanatory; this is a subpage <strong>of</strong> <strong>the</strong> Monoculus<br />

site.<br />

Diversity and Geographical Distribution <strong>of</strong> Pelagic<br />

Copepoda<br />

http://www.obs-banyuls.fr/RAZOULS/WEBCD/<br />

accueil.htm<br />

A pelagic copepod site maintained by Claude Razouls<br />

and Francis de Bovée at <strong>the</strong> Observatoire<br />

Océanologique de Banyuls, France.<br />

European Register <strong>of</strong> Marine Species<br />

http://www.erms.biol.soton.ac.uk/<br />

A register <strong>of</strong> marine species in Europe established<br />

to facilitate marine biodiversity research and management.<br />

Contains checklists <strong>of</strong> European species,<br />

including most <strong>of</strong> <strong>the</strong> major groups <strong>of</strong> crustaceans.<br />

Ellis and Messina Catalogue <strong>of</strong> Ostracoda<br />

http://www.micropress.org<br />

<strong>An</strong> electronic version <strong>of</strong> <strong>the</strong> former looseleaf catalogue<br />

from <strong>the</strong> American Museum <strong>of</strong> Natural History<br />

(Micropaleontology Press). Visitors must go to<br />

<strong>the</strong> catalogues section <strong>of</strong> <strong>the</strong> site.<br />

Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources � 119


Epicaridea Page<br />

http://www.vims.edu/�jeff/isopod.htm#Epicaridea<br />

A thorough page devoted to parasitic isopods,<br />

maintained by Jeff Shields, Virginia Institute <strong>of</strong> Marine<br />

Science.<br />

(The) Expert Center for Taxonomic Identification<br />

(ETI)<br />

http://wwweti.eti.bio.uva.nl/<br />

A nongovernmental organization working with<br />

UNESCO and sponsored by <strong>the</strong> Ne<strong>the</strong>rlands Organization<br />

for Scientific Research (NWO), <strong>the</strong> University<br />

<strong>of</strong> Amsterdam, and UNESCO. Includes <strong>the</strong><br />

World Biodiversity Database (under construction),<br />

World Taxonomists Database, and UNESCO-IOC<br />

Register <strong>of</strong> Marine Organisms.<br />

Fiddler Crabs<br />

http://www.public.asu.edu/�mrosenb/Uca/<br />

A fiddler crab web site maintained by Mike Rosenberg,<br />

with 1,700 references, color photographs,<br />

and systematic information, mostly from his recent<br />

(2000) dissertation.<br />

Génétique et Biologie des Populations de<br />

Crustacés<br />

http://labo.univ-poitiers.fr/umr6556/<br />

A research program in genetics and population<br />

biology <strong>of</strong> crustaceans organized through <strong>the</strong> Université<br />

de Poitiers, France.<br />

Glossary <strong>of</strong> Morphological Terms<br />

http://www.nhm.org/lacmnh/departments/research/<br />

invertebrates/crustacea/cbs/Glossary�<strong>of</strong>�<br />

Morphological�Terms/index.shtml<br />

A page <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong>n Biodiversity Survey,<br />

this will eventually be <strong>the</strong> largest existing glossary<br />

<strong>of</strong> crustacean terminology. Contains multiple definitions<br />

put forth by various authors.<br />

Groundwater Biology<br />

http://www.geocities.com/�mediaq/fauna.html<br />

Contains many links to groundwater crustacean<br />

sites including amphipods, isopods, copepods, remipedes,<br />

mysids, spelaeogriphaceans, syncarids,<br />

mictaceans, and o<strong>the</strong>rs. Some links go to specialists’<br />

home pages, o<strong>the</strong>rs contain lists <strong>of</strong> taxa, still o<strong>the</strong>rs<br />

are in <strong>the</strong> process <strong>of</strong> being developed. Maintained<br />

by Giuseppe L. Pesce.<br />

(The) International Association <strong>of</strong><br />

Meiobenthologists<br />

http://www.mtsu.edu/�kwalt/meio/<br />

A society representing meiobenthologists in all<br />

aquatic disciplines, producing a quarterly newslet-<br />

ter entitled Psammonalia. The site includes several<br />

photos <strong>of</strong> live copepods and links to researchers<br />

(including some with expertise in <strong>Crustacea</strong>).<br />

International Research Group on Ostracoda<br />

http://www.uh.edu/�maddock/IRGO/irgohome.<br />

html<br />

Includes links to many useful sites <strong>of</strong> interest to<br />

ostracod workers. Maintained by Rosalie Maddocks.<br />

International Web Site on Terrestrial Isopods<br />

http://mo<strong>the</strong>r.biolan.uni-koeln.de/institute/zoologie/<br />

zoo3/terra/homepage.html<br />

This site was still being constructed as <strong>of</strong> our last<br />

check.<br />

(A) Key to Cladocerans (<strong>Crustacea</strong>) <strong>of</strong> British<br />

Columbia<br />

http://www.for.gov.bc.ca/ric/Pubs/Aquatic/<br />

crustacea/<br />

Provides keys to <strong>the</strong> families Holopedidae, Sididae,<br />

Daphniidae, Bosminidae, Leptodoridae, and<br />

Polyphemidae occurring in British Columbia (approximately<br />

45 species). Published by <strong>the</strong> Resources<br />

Inventory Committee <strong>of</strong> British Columbia.<br />

Keys to Marine Invertebrates <strong>of</strong> <strong>the</strong> Woods Hole<br />

Region<br />

http://www.mbl.edu/html/BB/KEYS/KEYScontents.<br />

html<br />

Chapters 11, 12, and 13 <strong>of</strong> this series deal with<br />

‘‘Lower <strong>Crustacea</strong> and Cirripedia,’’ ‘‘Pericaridan<br />

[sic] <strong>Crustacea</strong>ns,’’ and ‘‘Decapod and Stomatopod<br />

<strong>Crustacea</strong>ns,’’ respectively.<br />

Laboratory <strong>of</strong> Aquaculture and Artemia Reference<br />

Center<br />

http://allserv.rug.ac.be/�jdhont/index.htm<br />

The Artemia Reference Center at <strong>the</strong> University<br />

<strong>of</strong> Ghent, Belgium.<br />

Large Branchiopod Home Page<br />

http://mailbox.univie.ac.at/Erich.Eder/UZK/<br />

Eric Eder’s site for ‘‘everything you ever wanted<br />

to know about large branchiopods.’’<br />

Leptostraca<br />

http://www.nhm.org/�peet/<br />

A comprehensive site on leptostracans maintained<br />

by Todd Haney (toddhaney@crustacea.net)<br />

as part <strong>of</strong> a PEET project funded by <strong>the</strong> U.S. National<br />

Science Foundation.<br />

120 � Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources


(The) Lurker’s Guide to Stomatopods<br />

http://www.blueboard.com/mantis/welcome.htm<br />

Alan San Juan’s stomatopod site at Seton Hall,<br />

described by him as ‘‘an additional information resource<br />

for those people interested in <strong>the</strong> study and<br />

care <strong>of</strong> stomatopods (mantis shrimps).’’<br />

Marine <strong>Crustacea</strong>ns <strong>of</strong> Sou<strong>the</strong>rn Australia<br />

http://www.mov.vic.gov.au/crust/page1a.html<br />

This excellent guide has been assembled by Gary<br />

Poore (Museum <strong>of</strong> Victoria, Melbourne) as a reference<br />

for <strong>the</strong> identification <strong>of</strong> a few (about 100)<br />

<strong>of</strong> <strong>the</strong> numerous species <strong>of</strong> marine crustaceans<br />

known to exist in sou<strong>the</strong>rn Australia. Richly illustrated<br />

with excellent photographs and accompanied<br />

by background information on <strong>the</strong> biology,<br />

distinguishing characters, habitat, and distribution<br />

<strong>of</strong> <strong>the</strong> species illustrated.<br />

Monoculus—Copepod Newsletter<br />

http://www.uni-oldenburg.de/monoculus/<br />

The home page <strong>of</strong> <strong>the</strong> copepodologist’s newsletter,<br />

edited by Hans-Uwe Dahms.<br />

National Center for Biotechnology Information<br />

Taxonomy Browser<br />

http://www3.ncbi.nlm.nih.gov/htbin-post/<br />

Taxonomy/wgetorg?id�6681&lvl�10<br />

For locating DNA/RNA sequences <strong>of</strong> a variety <strong>of</strong><br />

crustaceans.<br />

National Shellfisheries Association<br />

http://www.shellfish.org/<br />

The home page <strong>of</strong> this association, with links to<br />

journals and o<strong>the</strong>r activities.<br />

‘‘Non-Cladoceran’’ Branchiopod Shrimp <strong>of</strong> Ohio<br />

http://www-obs.biosci.ohio-state.edu/f-shrimp.htm<br />

Contains information on anostracans, notostracans,<br />

and conchostracans <strong>of</strong> Ohio. Maintained by<br />

Stephen Weeks, University <strong>of</strong> Akron, Ohio, USA.<br />

North East Atlantic Taxa<br />

http://www.tmbl.gu.se/libdb/taxon/taxa.html<br />

Contains PDF files <strong>of</strong> species checklists, including<br />

crustaceans from this region, compiled by <strong>the</strong> Tjärnö<br />

Marine Biological Laboratory, Sweden.<br />

Orsten and <strong>Crustacea</strong>n Phylogeny<br />

http://biosys-serv.biologie.uni-ulm.de/sektion/<br />

dieter/dieter.html<br />

Dieter Walossek’s page introducing <strong>the</strong> ‘‘orsten’’<br />

fossils (Upper Cambrian <strong>of</strong> Sweden), Eucrustacea,<br />

nonarthropod crustaceans, and more. Includes photographs<br />

and drawings <strong>of</strong> <strong>the</strong> ‘‘orsten’’ arthropods.<br />

Ostracod Research Group<br />

http://users.aber.ac.uk/alm/web/ostrweb2.html<br />

A site maintained by Robin Whatley and Henry<br />

Lamb; this is a subgroup <strong>of</strong> <strong>the</strong> Micropaleontology<br />

Research Group in <strong>the</strong> Institute <strong>of</strong> Geography and<br />

Earth Sciences at <strong>the</strong> University <strong>of</strong> Wales, Aberystwyth.<br />

Pesce’s Home Page/Groundwater Fauna <strong>of</strong> Italy<br />

http://www.univaq.it/�sc�amb/pesce.html<br />

Contains information about, and links to,<br />

groundwater and spele<strong>of</strong>aunal crustaceans <strong>of</strong> Italy,<br />

with links to o<strong>the</strong>r sites dealing with amphipods,<br />

mysids, copepods, and more.<br />

PHOTOVAULT’s Aquatic <strong>Crustacea</strong>n’s Page<br />

http://www.photovault.com/Link/<strong>An</strong>imals/Aquatic�<br />

Crustacia/AARVolume01.html<br />

A commercial site that contains many photographs<br />

<strong>of</strong> various crustaceans.<br />

SCAMIT Arthropods <strong>of</strong> Sou<strong>the</strong>rn California<br />

http://www.scamit.org/SpeciesList/arthropd.htm<br />

<strong>An</strong> unannotated list <strong>of</strong> <strong>the</strong> species <strong>of</strong> s<strong>of</strong>t bottom<br />

habitats <strong>of</strong>f sou<strong>the</strong>rn California, maintained by <strong>the</strong><br />

Sou<strong>the</strong>rn California Association <strong>of</strong> Marine Invertebrate<br />

Taxonomists (SCAMIT).<br />

(A) Stereo-Atlas <strong>of</strong> Ostracod Shells<br />

http://www.nhm.ac.uk/hosted�sites/bms/saos.htm<br />

A site with information on this and o<strong>the</strong>r publications<br />

<strong>of</strong> <strong>the</strong> British Micropaleontological Association.<br />

(The) Subterranean Amphipod Database<br />

http://www.odu.edu/�jrh100f/amphipod/<br />

Maintained by John Holsinger at Old Dominion<br />

University, Norfolk, Virginia.<br />

Systematics <strong>of</strong> Amphipod <strong>Crustacea</strong>ns (order<br />

Amphipoda) in <strong>the</strong> families Crangonyctidae and<br />

Hadziidae<br />

http://www.odu.edu/�jrh100f/<br />

A U.S. National Science Foundation PEET project<br />

maintained by John Holsinger (and his students)<br />

at Old Dominion University, Virginia, USA.<br />

Includes <strong>the</strong> Subterranean Amphipod Database.<br />

Tanaidacea Homepage<br />

http://tidepool.st.usm.edu/tanaids/index.html<br />

A comprehensive and searchable listing <strong>of</strong> all<br />

Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources � 121


tanaid taxa and <strong>the</strong> literature in which <strong>the</strong>y were<br />

initially described. Maintained by Richard W.<br />

Heard and Gary <strong>An</strong>derson at <strong>the</strong> University <strong>of</strong><br />

Sou<strong>the</strong>rn Mississippi, USA.<br />

Urzeitkrebse—Lebende Fossilien!<br />

http://mailbox.univie.ac.at/Erich.Eder/UZK/index2.<br />

html<br />

Contains information on large branchiopods<br />

(<strong>An</strong>ostraca, Conchostraca, and Notostraca) <strong>of</strong> Austria,<br />

maintained by Eric Eder.<br />

(The) University <strong>of</strong> South Carolina Mei<strong>of</strong>aunal<br />

Laboratory <strong>of</strong> Bruce Coull<br />

http://inlet.geol.sc.edu/�nick/<br />

A mei<strong>of</strong>auna page, including harpacticoid copepods,<br />

maintained by Bruce Coull at <strong>the</strong> University<br />

<strong>of</strong> South Carolina.<br />

World List <strong>of</strong> Marine, Freshwater and Terrestrial<br />

Isopod <strong>Crustacea</strong>ns<br />

http://www.nmnh.si.edu/iz/isopod<br />

Contains more than 9,900 isopod records, all described<br />

species <strong>of</strong> isopods, and a complete bibliography<br />

in a searchable Access database. Maintained<br />

by Brian Kensley (kensley.brian@nmnh.si.edu) and<br />

Marailyn Schotte (schotte.marilyn@nmnh.si.edu) <strong>of</strong><br />

<strong>the</strong> USNM, Smithsonian Institution.<br />

(The) World <strong>of</strong> Copepoda<br />

http://www.nmnh.si.edu/iz/copepod/<br />

Contains bibliographic databases for all <strong>the</strong> literature<br />

contained in <strong>the</strong> Wilson Library on copepods<br />

and branchiurans. In total, <strong>the</strong> website contains<br />

four databases: (1) a bibliography <strong>of</strong> all<br />

known copepod and branchiuran literature, (2) a<br />

taxonomic list <strong>of</strong> reported Copepoda and Branchiura<br />

genera and species, (3) copepod and branchiuran<br />

researchers <strong>of</strong> <strong>the</strong> world, and (4) copepod and<br />

branchiuran type holdings <strong>of</strong> <strong>the</strong> U.S. National<br />

Museum <strong>of</strong> Natural History. Maintained by Chad<br />

Walter.<br />

Zoological Record Taxonomic Hierarchy<br />

http://www.biosis.org.uk/zrdocs/zoolinfo/grp�<br />

crus.htm<br />

The extensive Internet Resource Guide for Zoology<br />

provided by Biosis and <strong>the</strong> Zoological Society<br />

<strong>of</strong> London.<br />

Zooplankton Sensory Motor Systems<br />

http://www.pbrc.hawaii.edu/�lucifer/<br />

Contains information on, and links to, research<br />

and researchers investigating sensory biology and<br />

motor processes and systems in zooplankton <strong>of</strong> pe-<br />

lagic crustacean and crustacean larvae. Maintained<br />

by Dan Hartline and Petra Lenz.<br />

INDIVIDUAL WORKERS WITH HOME PAGES<br />

CONTAINING CRUSTACEAN<br />

INFORMATION<br />

Gary <strong>An</strong>derson<br />

http://tidepool.st.usm.edu/gandrsn/gandrsn.html<br />

A well-designed site with a large number <strong>of</strong> links<br />

to o<strong>the</strong>r sites <strong>of</strong> interest to crustacean workers.<br />

Raymond Bauer<br />

http://www.ucs.usl.edu/�rt6933/shrimp/<br />

Highlights his research interests in marine habitats<br />

and <strong>the</strong> biology <strong>of</strong> caridean and penaeoid<br />

shrimp, mating behavior and strategies, hermaphroditism<br />

and sex change, antifouling (grooming)<br />

behavior, sperm transfer, latitudinal variation in<br />

breeding patterns, seagrass fauna, coloration and<br />

camouflage, and student research.<br />

Ge<strong>of</strong>frey Boxshall<br />

http://www.nhm.ac.uk/science/zoology/project1/<br />

index.html<br />

A single page with general information on copepods,<br />

linked to The Natural History Museum,<br />

London site.<br />

Raul Castro R.<br />

http://members.xoom.com/renrique/copepoda2.<br />

html<br />

List <strong>of</strong> parasitic copepods on Chilean fishes with<br />

a list <strong>of</strong> his publications.<br />

Paul Hebert<br />

http://www.uogluelph.ca/�phebert/<br />

Summarizes past and current research and multimedia<br />

projects <strong>of</strong> <strong>the</strong> lab.<br />

Wolfgang Janetzky<br />

http://www.ifas.ufl.edu/�frank/crbrom.htm<br />

Highlights his interests in <strong>Crustacea</strong> inhabiting<br />

bromeliad phytotelmata.<br />

Gertraud Krapp-Schickel<br />

http://hydr.umn.edu/g-k/index.html<br />

Highlights her interests in amphipods, plus photos<br />

<strong>of</strong> amphipodologists.<br />

Colin McLay<br />

http://www.zool.canterbury.ac.nz/cm.htm<br />

Highlights his research interests in population<br />

and marine ecology, reproductive biology, mating<br />

122 � Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources


strategies, and phylogeny, especially <strong>of</strong> anomurans<br />

and brachyurans.<br />

Jeffrey Shields<br />

http://www.vims.edu/�jeff/<br />

The parasitic isopods <strong>of</strong> <strong>Crustacea</strong> (Bopyridae,<br />

Entoniscidae, and Dajidae).<br />

Wim Vader<br />

http//:www.imv.uit.no/ommuseet/enheter/zoo/wim/<br />

index.html<br />

A single page highlighting his interests in <strong>Crustacea</strong><br />

and Amphipoda.<br />

George (Buz) Wilson<br />

http://www-personal.usyd.edu.au/�buz/home.html<br />

Research interests emphasizing asellotan and<br />

phreatoicidean diversity, with links to many o<strong>the</strong>r<br />

isopod and crustacean sites.<br />

III-C. CRUSTACEAN LIST SERVERS<br />

ALCA-L<br />

majordomo@fenix.ciens.ucv.ve<br />

List server <strong>of</strong> <strong>the</strong> Asociation Latinoamericana de<br />

Carcinologia, currently maintained by Guido Pereira<br />

(gpereira@strix.ciens.ucv.ve), Instituto de<br />

Zoologia Tropical, Universidad Central de Venezuela,<br />

Caracas, Venezuela.<br />

BRINE-L<br />

http://ag.ansc.purdue.edu/aquanic/infosrcs/brine-l.<br />

htm<br />

A brine shrimp (<strong>An</strong>ostraca) discussion list, maintained<br />

by Lamar Jackson and Harold Pritchett at<br />

Mercer University, Georgia. Part <strong>of</strong> AquaNIC, <strong>the</strong><br />

Aquaculture Network Information Center.<br />

COPEPODA<br />

copepoda@sciencenet.com<br />

A list server for discussions <strong>of</strong> wide ranging copepod<br />

research.<br />

CRUST-L<br />

http://www.vims.edu/�jeff/crust-l.html<br />

<strong>An</strong> informal forum for those interested in <strong>Crustacea</strong>,<br />

including <strong>the</strong>ir biology, ecology, systematics,<br />

taxonomy, physiology, cell biology, culture, etc.<br />

Managed by Jeff Shields.<br />

OSTRACON<br />

The Ostracoda Discussion List, OSTRACON@<br />

LISTSERV.UH.EDU<br />

A list server for discussions <strong>of</strong> all things ostracode-like.<br />

The Vernal Pool ListServ<br />

vernal@sun.simmons.edu<br />

The Vernal Pool Association maintains a list on<br />

<strong>the</strong> EnvironNet server for those interested in vernal<br />

pool studies, protection, and education.<br />

III-D. SOME MUSEUMS WITH CRUSTACEAN<br />

HOLDINGS ON-LINE<br />

California Academy <strong>of</strong> Sciences<br />

http://web.calacademy.org/research/izg/<br />

This will take you directly to <strong>the</strong> CAS Invertebrate<br />

Zoology and Geology Department.<br />

Department <strong>of</strong> Invertebrate Zoology at <strong>the</strong> United<br />

States National Museum<br />

http://www.nmnh.si.edu/departments/invert.html<br />

A well-written overview <strong>of</strong> <strong>the</strong> history and activities<br />

<strong>of</strong> <strong>the</strong> staff <strong>of</strong> <strong>the</strong> world’s largest collection <strong>of</strong><br />

<strong>Crustacea</strong>.<br />

Illinois Natural History Survey <strong>Crustacea</strong>n<br />

Biology Information Page<br />

http://www.inhs.uiuc.edu/cbd/collections/crustacea.<br />

html<br />

One <strong>of</strong> <strong>the</strong> largest state collections <strong>of</strong> crustaceans<br />

in North America, with a searchable database and<br />

a well-designed page.<br />

Muséum National d’Histoire Naturelle (Paris)<br />

http://www.mnhn.fr/<br />

Extensive crustacean holdings, but no information<br />

available on line yet.<br />

Natural History Museum <strong>of</strong> Los <strong>An</strong>geles County<br />

http://www.nhm.org/<br />

The largest natural history museum in <strong>the</strong> western<br />

United States, this impressive institution is also<br />

home to <strong>the</strong> second largest collection <strong>of</strong> <strong>Crustacea</strong><br />

in this country. There are an estimated 110,000 to<br />

120,000 lots, containing 3 to 4 million specimens.<br />

University <strong>of</strong> California Berkeley Museum <strong>of</strong><br />

Paleontology<br />

http://www.ucmp.berkeley.edu<br />

<strong>An</strong> interesting page that includes mostly paleontological<br />

information on arthropods.<br />

Zoological Museum, University <strong>of</strong> Copenhagen<br />

http://www.aki.ku.dk/zmuc/zmuc.htm<br />

A beautiful home page for one <strong>of</strong> Europe’s oldest<br />

and most respected natural history museums. The<br />

<strong>Crustacea</strong> collection is extensive and well-curated.<br />

Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources � 123


Addendum<br />

As might be expected in any attempt to be current in a rapidly changing field, several publications<br />

or presentations that bear on high-level relationships <strong>of</strong> <strong>the</strong> <strong>Crustacea</strong> have come to light during <strong>the</strong><br />

final months while we prepared this volume for <strong>the</strong> printer. In particular, <strong>the</strong> following presentations<br />

dealing with higher crustacean systematics were selected from among <strong>the</strong> published abstracts <strong>of</strong> <strong>the</strong><br />

Fifth International <strong>Crustacea</strong>n Congress in Melbourne, Australia (July 9–13, 2001) (Fifth International<br />

<strong>Crustacea</strong>n Congress—Program and Abstracts, and List <strong>of</strong> Participants, 2001): Developmental<br />

data in crustacean systematics (Koenemann and Schram); Peracarida (Wilson, Watling, Richter, Jarman,<br />

Spears et al., Wilson and Ahyong, Keable and Wilson, Poore and Brandt, Myers and Lowry);<br />

malacostracan affinities with insects (K. Wilson); Decapoda (Ahyong and Schram, Porter et al., Brösing<br />

and Scholtz, Crandall et al., Richter, Pérez-Losada et al., Boyce et al., Wetzer et al., Ngoc-Ho);<br />

Remipedia (Spears and Yager); Leptostraca (Walker-Smith and Poore); Phosphatocopina (Maas and<br />

Walossek); Rhizocephala (Glenner and Spears).<br />

124 � Contributions in Science, Number 39 Appendix III: O<strong>the</strong>r <strong>Crustacea</strong>n Resources

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!