24.01.2013 Views

AN 360: Rapid Determination of Azo Dyes in Textiles Using ... - Dionex

AN 360: Rapid Determination of Azo Dyes in Textiles Using ... - Dionex

AN 360: Rapid Determination of Azo Dyes in Textiles Using ... - Dionex

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Rapid</strong> <strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong>Azo</strong> <strong>Dyes</strong> <strong>in</strong><br />

<strong>Textiles</strong> Us<strong>in</strong>g ASE and HPLC with MS<br />

and UV Detection<br />

IntroductIon<br />

<strong>Azo</strong> dyes are used widely <strong>in</strong> the manufacture<br />

<strong>of</strong> various consumer goods such as leather, textiles,<br />

plastics, paper, hair care products, and cosmetics.<br />

On September 11, 2003, the European Union enacted<br />

European Parliament Directive 2006/61/EC, prohibit<strong>in</strong>g<br />

the manufacture and sale <strong>of</strong> consumer goods conta<strong>in</strong><strong>in</strong>g<br />

certa<strong>in</strong> aromatic am<strong>in</strong>es orig<strong>in</strong>at<strong>in</strong>g from specific azo<br />

dyes. 1 The dyes named <strong>in</strong> this directive can, under certa<strong>in</strong><br />

conditions, be reduced to aromatic am<strong>in</strong>es. Twenty two<br />

aromatic am<strong>in</strong>es are currently classified as carc<strong>in</strong>ogenic or<br />

potentially carc<strong>in</strong>ogenic to humans and are prohibited by<br />

the directive.<br />

Current sample preparation and analysis methods for<br />

these compounds are time consum<strong>in</strong>g and labor <strong>in</strong>tensive.<br />

Us<strong>in</strong>g accelerated solvent extraction (ASE ® ) with<br />

UltiMate 3000 HPLC/MS/UV analysis has proven to be a<br />

more advantageous alternative compared to other products<br />

currently available.<br />

ASE is a product for extract<strong>in</strong>g organic compounds<br />

from solid or semisolid samples us<strong>in</strong>g conventional<br />

solvents at elevated temperatures and pressures. This<br />

application note describes methods for extraction <strong>of</strong><br />

textile samples us<strong>in</strong>g ASE, along with the analytical<br />

methods for determ<strong>in</strong>ation <strong>of</strong> 22 aromatic am<strong>in</strong>es, some<br />

<strong>of</strong> which are specified <strong>in</strong> the Parliament Directive.<br />

Application Note <strong>360</strong><br />

EquIpmEnt<br />

ASE 200 System<br />

Glass fiber filters (P/N 047017)<br />

UltiMate ® 3000 HPLC system consist<strong>in</strong>g <strong>of</strong>:<br />

SRD <strong>360</strong>0 Solvent Rack<br />

LPG <strong>360</strong>0 Pump<br />

WPS-3000T Autosampler<br />

TCC-3000 Column Compartment<br />

UVD340U Detector<br />

MSQ Plus Mass Spectrometer<br />

AXP-MS Pump<br />

Chromeleon ® 6.80 Chromatography Workstation<br />

rEagEnts and standards<br />

Acetonitrile, HPLC grade (Fisher Scientific)<br />

Methanol, HPLC grade (Fisher Scientific)<br />

Ammonium acetate, powder (Fisher Scientific)<br />

Acetic acid, glacial (Fisher Scientific)<br />

<strong>Azo</strong> <strong>Dyes</strong> Mix-6 (Ehrenstorfer Laboratories part<br />

18000376)<br />

Individual azo dye standards (Sigma Aldrich)


asE condItIons<br />

Preheat: 20 m<strong>in</strong> (purge closed)<br />

Pressure: 1500 psi<br />

Static Time: 5 m<strong>in</strong><br />

Temperature: 100 °C<br />

Cycles: 2<br />

Purge Time: 100 s<br />

Flush Volume: 30%<br />

Solvent: 90% MeOH with 10% 1 M KOH<br />

Extraction Time<br />

per Sample: 40 m<strong>in</strong><br />

Solvent Amount Used<br />

per Sample: 17 mL<br />

analytIcal condItIons<br />

Column: Acclaim ® 120 C18 3 µm 120 Å<br />

2.1 x 150 mm<br />

Eluent: H O/5%, CH CN/4%, CH OH<br />

2 3 3<br />

H O/40%, CH CN/45% CH OH<br />

2 3 3<br />

Column Temperature: 30 °C<br />

Flow Rate: 250 µL/m<strong>in</strong><br />

Injection Volume: 10 µL<br />

UV: 240 nm, 278 nm<br />

Ionization Mode: APCI, positive polarity<br />

Nitrogen: 3 bar<br />

Corona Current: 10 µA<br />

Source Temperature: 400 °C<br />

Cone Voltage: Varies by analyte (See Table 1.)<br />

SIM Mode: m/z by analyte (See Table 1.)<br />

Dwell Time: 0.3 s<br />

Span: 0.3 m/z<br />

Sample Prep<br />

Soak 1 g <strong>of</strong> material <strong>in</strong> 3 mL citrate buffer<br />

(pH 6.0) and 3 mL sodium dithionite (200 mg/mL) for<br />

2 m<strong>in</strong>. Transfer the mixture and solution to an ASE 11 mL<br />

cell conta<strong>in</strong><strong>in</strong>g a glass fiber filter.<br />

Extraction<br />

Place the extraction cells <strong>in</strong>to the ASE 200 carousel,<br />

and extract us<strong>in</strong>g the ASE conditions listed above. Record<br />

total volume <strong>of</strong> the extract, and <strong>in</strong>ject 10 µL onto the<br />

UltiMate 3000 HPLC/MS/UV system.<br />

LC Conditions<br />

Time Flow<br />

Rate<br />

(µL/m<strong>in</strong>)<br />

30 mM<br />

Ammonium<br />

Acetate, pH 4<br />

Acetonitrile Methanol Curve<br />

0.00 250 91 5 4<br />

25.00 250 69 27 4 5<br />

40.00 250 52 40 8 5<br />

45.00 250 15 40 45 5<br />

48.00 250 15 40 45 5<br />

48.10 250 91 5 4 5<br />

30 mM Ammonium Acetate, pH 4.0<br />

Weigh 2.31g NH OAc (FW 77.0825 g/mol). Add 1000<br />

4<br />

mL H O. Adjust pH to 4.0 with acetic acid.<br />

2<br />

2 <strong>Rapid</strong> <strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong>Azo</strong> <strong>Dyes</strong> <strong>in</strong> <strong>Textiles</strong> Us<strong>in</strong>g <strong>Dionex</strong> ASE and UltiMate 3000 HPLC Systems


Mass Spectrometer Conditions<br />

Individual standards for the azo dye compounds were<br />

obta<strong>in</strong>ed from Sigma Aldrich. An AXP-MS auxilliary<br />

pump was used to <strong>in</strong>fuse these samples for optimization<br />

<strong>in</strong> the mass spectrometer at a flow rate <strong>of</strong> 100 µL/<br />

m<strong>in</strong>. Dur<strong>in</strong>g the <strong>in</strong>fusions several scan funcions were<br />

performed to determ<strong>in</strong>e the optimum ionization technique,<br />

cone voltage, and and mass-to-charge ratio (m/z) for each<br />

analyte. These tuned values for cone voltage and m/z were<br />

used to def<strong>in</strong>e the SIM scans used <strong>in</strong> the method (Table 1).<br />

The preferred mode <strong>of</strong> ionization for all analytes<br />

was Atmospheric Pressure Chemical Ionizaion (APCI);<br />

positive mode. APCI is a gas-phase technique typically<br />

used to analyze small molecules. APCI is a robust<br />

technique which is not affected by m<strong>in</strong>or changes <strong>in</strong><br />

buffer strength. In positive ionization mode, protonated<br />

analyte ions are formed by gas-phase ion molecule<br />

reactions, result<strong>in</strong>g <strong>in</strong> the formation <strong>of</strong> [M+H] + ions.<br />

In some cases the SIM scans were staggered across<br />

the run time dur<strong>in</strong>g analysis; focus<strong>in</strong>g on a two m<strong>in</strong>ute<br />

region before and after the analyte eluted. Sequenc<strong>in</strong>g<br />

the scan functions <strong>in</strong> this fashion m<strong>in</strong>imized the total<br />

analytical cycle time and allowed the mass spectrometer<br />

to collect more data for the peaks <strong>of</strong> <strong>in</strong>terest, while<br />

exclud<strong>in</strong>g data collection where no signal was present.<br />

Table 1. Optimized Detection Conditions <strong>of</strong> <strong>Azo</strong> Dye<br />

Standards for Mass Spectrometric Analysis<br />

Compound Name Molecular<br />

Weight<br />

SIM<br />

m/z<br />

Cone<br />

Voltage (V)<br />

4-Am<strong>in</strong>oazobenzene 197.09 198 70<br />

2,4-Diam<strong>in</strong>otoluene 122.08 123 55<br />

4-Am<strong>in</strong>obiphenyl 169.09 170 30<br />

4,4’-Oxydianil<strong>in</strong>e 200.09 201 60<br />

2-Anisid<strong>in</strong>e 123.07 124 80<br />

4,4’-Methylenebis-(2-chloroanil<strong>in</strong>e) 266.04 267 50<br />

4,4’-Benzid<strong>in</strong>e 184.10 185 50<br />

o-Toluid<strong>in</strong>e 107.07 108 40<br />

4-Chloro-2-methylanil<strong>in</strong>e 141.03 142 60<br />

2-Methoxy-5-methylanil<strong>in</strong>e 137.08 138 55<br />

Bis-4-am<strong>in</strong>ophenylmethane 198.27 199 50<br />

4-Chloroanil<strong>in</strong>e 127.02 128 70<br />

o-Dianisid<strong>in</strong>e 244.12 245 55<br />

o-Tolid<strong>in</strong>e 212.13 213 55<br />

2-Am<strong>in</strong>onaphthalene 143.07 144 60<br />

2,6-Dimethylanil<strong>in</strong>e 121.09 122 55<br />

2,4-Dimethylanil<strong>in</strong>e 121.09 122 50<br />

4,4’-Methylenebis-(2-methylanil<strong>in</strong>e) 226.04 227 55<br />

3,3’-Dichlorobenzid<strong>in</strong>e 252.02 253 55<br />

2-Methyl-5-nitroanil<strong>in</strong>e 152.06 153 50<br />

4-Methoxy-1,3-phenylenediam<strong>in</strong>e 138.17 139 55<br />

4,4’-Thiodianil<strong>in</strong>e 216.30 217 50<br />

Application Note <strong>360</strong> 3


Column: Acclaim 120 C18 3 µm,<br />

120 Å (2.1 x 150 mm)<br />

Eluent: H2O/5% CH3CN/4% CH3OH<br />

H2O/40% CH3CN/45% CH3OH<br />

Temperature: 30 °C<br />

Peaks:<br />

1. 2,4-Diam<strong>in</strong>otoluene<br />

2. 4,4’-Oxydianil<strong>in</strong>e<br />

3. 2-Anisid<strong>in</strong>e<br />

4. 4,4’-Benzid<strong>in</strong>e<br />

5. 4-Methoxy-1,3-Phenylenediam<strong>in</strong>e<br />

6. o-Toluid<strong>in</strong>e<br />

7. Bis-4-am<strong>in</strong>ophenylmethane<br />

8. 2,4-Dimethylanil<strong>in</strong>e<br />

9. 2-Methoxy-5-methylanil<strong>in</strong>e<br />

10. 4-Cholroanil<strong>in</strong>e<br />

11. 2,6-Dimethylanil<strong>in</strong>e<br />

1 2 3<br />

4<br />

5 6 7 8<br />

9<br />

10<br />

11<br />

12 13<br />

Flow Rate: 250 µL/m<strong>in</strong><br />

Inj. Volume: 10 µL<br />

Detection: UV, 278 nm<br />

MSQ, APCI positive ionization<br />

12. o-Dianisid<strong>in</strong>e<br />

13. o-Tolid<strong>in</strong>e<br />

14. 2-Methyl-5-nitroanil<strong>in</strong>e<br />

15. 4,4’-Methylenebis-(2-methylanil<strong>in</strong>e)<br />

16. 2-Am<strong>in</strong>onapthal<strong>in</strong>e<br />

17. 4,4’-Thiodianil<strong>in</strong>e<br />

18. 4-Chloro-2-methylanil<strong>in</strong>e<br />

19. 4-Am<strong>in</strong>oazobenzene<br />

20. 3,3’-Dichlorobenzid<strong>in</strong>e<br />

21. 4-Am<strong>in</strong>obiphenyl<br />

22. 4,4’-Methylenebis-(2-chloroanil<strong>in</strong>e)<br />

0 10 20 30 40 45<br />

M<strong>in</strong>utes<br />

25331<br />

Figure 1. UV separation <strong>of</strong> azo dye standard mixture detected at<br />

278 nm.<br />

rEsults and dIscussIon<br />

A tertiary gradient was used because acetonitrile was<br />

found to improve the resolution <strong>of</strong> the peaks elut<strong>in</strong>g at<br />

the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the analysis, while methanol improved<br />

separation <strong>of</strong> the peaks at the end <strong>of</strong> the run. Ammonium<br />

acetate was used to ma<strong>in</strong>ta<strong>in</strong> a pH <strong>of</strong> 4, ensur<strong>in</strong>g analytes<br />

rema<strong>in</strong>ed <strong>in</strong> the the acid form; this resulted <strong>in</strong> improved<br />

detection by the mass spectrometer.<br />

Us<strong>in</strong>g the photodiode array detector, two<br />

wavelengths, 240 and 278nm, demonstrated optimum<br />

response for azo dye detection. Figures 1 and 2 show the<br />

detection and separation <strong>of</strong> the 22 aromatic am<strong>in</strong>es, each<br />

at a concentration <strong>of</strong> 5 mg/L.<br />

14<br />

16<br />

15<br />

17<br />

18<br />

19 20<br />

21<br />

22<br />

Column: Acclaim 120 C18 3 µm,<br />

120 Å (2.1 x 150 mm)<br />

Eluent: H2O/5% CH3CN/4% MeOH<br />

H2O/40% CH3CN/45% MeOH<br />

Temperature: 30 °C<br />

Peaks:<br />

1. 2,4-Diam<strong>in</strong>otoluene<br />

2. 4,4’-Oxydianil<strong>in</strong>e<br />

3. 2-Anisid<strong>in</strong>e<br />

4. 4,4’-Benzid<strong>in</strong>e<br />

5. 4-Methoxy-1,3-Phenylenediam<strong>in</strong>e<br />

6. o-Toluid<strong>in</strong>e<br />

7. Bis-4-am<strong>in</strong>ophenylmethane<br />

8. 2,4-Dimethylanil<strong>in</strong>e<br />

9. 2-Methoxy-5-methylanil<strong>in</strong>e<br />

10. 4-Cholroanil<strong>in</strong>e<br />

11. 2,6-Dimethylanil<strong>in</strong>e<br />

12. o-Dianisid<strong>in</strong>e<br />

13. o-Tolid<strong>in</strong>e<br />

14. 2-Methyl-5-nitroanil<strong>in</strong>e<br />

3<br />

3<br />

1 2 5 6<br />

16<br />

7 10<br />

17<br />

11<br />

14<br />

8 15 18<br />

9<br />

Flow Rate: 250 µL/m<strong>in</strong><br />

Inj. Volume: 10 µL<br />

Detection: UV: 240 nm, 278 nm<br />

MSQ, APCI positive ionization<br />

15. 4,4’-Methylenebis-(2-methylanil<strong>in</strong>e)<br />

16. 2-Am<strong>in</strong>onapthal<strong>in</strong>e<br />

17. 4,4’-Thiodianil<strong>in</strong>e<br />

18. 4-Chloro-2-methylanil<strong>in</strong>e<br />

19. 4-Am<strong>in</strong>oazobenzene<br />

20. 3,3’-Dichlorobenzid<strong>in</strong>e<br />

21. 4-Am<strong>in</strong>obiphenyl<br />

22. 4,4’-Methylenebis-(2-chloroanil<strong>in</strong>e)<br />

Figure 2. Comparison <strong>of</strong> azo dye standards detected by UV and<br />

mass spectrometric detection. The UV trace appears at the bottom<br />

and is expanded to show the detection <strong>of</strong> all compounds us<strong>in</strong>g<br />

SIM (selected ion monitor<strong>in</strong>g) channels <strong>in</strong> the mass spectrometer.<br />

4 <strong>Rapid</strong> <strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong>Azo</strong> <strong>Dyes</strong> <strong>in</strong> <strong>Textiles</strong> Us<strong>in</strong>g <strong>Dionex</strong> ASE and UltiMate 3000 HPLC Systems<br />

4<br />

12 13<br />

1<br />

6<br />

19<br />

8<br />

2<br />

4 14<br />

5<br />

15<br />

7<br />

16<br />

9<br />

10 22<br />

11<br />

12<br />

20<br />

21<br />

22<br />

19<br />

13<br />

17<br />

21<br />

18<br />

20<br />

25330


Figures 3 and 4 show LC/MS analysis <strong>of</strong> two<br />

different leather samples extracted us<strong>in</strong>g ASE and<br />

detected by UV/MS. As demostrated <strong>in</strong> these figures,<br />

complete resolution between peaks us<strong>in</strong>g UV detection<br />

is difficult <strong>in</strong> complex matrices. The specificity provided<br />

by mass spectrometry is critical for detection and<br />

positive identification <strong>of</strong> low level concentrations <strong>of</strong> azo<br />

compounds <strong>in</strong> these solutions<br />

conclusIons<br />

ASE comb<strong>in</strong>ed with the UltiMate 3000 HPLC system<br />

and MSQ Plus/UV detectors create a powerful tool for<br />

extraction and analysis <strong>of</strong> azo dyes. The ASE system is<br />

ideally suited for the extraction <strong>of</strong> the complex matrices<br />

analyzed here, provid<strong>in</strong>g significant sav<strong>in</strong>gs <strong>in</strong> time and<br />

solvent use compared to other techniques.<br />

The complexity <strong>of</strong> the sample extracts makes<br />

identification and quantitation <strong>of</strong> analytes difficult us<strong>in</strong>g<br />

UV detection alone. Coupl<strong>in</strong>g the HPLC system to the<br />

MSQ Plus detector provides improved specificity and<br />

selectivity for identification <strong>of</strong> compounds prohibited by<br />

the European Parliament Directive.<br />

Column: Acclaim 120 C18 3 µm,<br />

120 Å (2.1 x 150 mm)<br />

Eluent: H2O/5% CH3CN/4% CH3OH<br />

H2O/40% CH3CN/45% CH3OH<br />

Temperature: 30 °C<br />

18<br />

mAU<br />

0<br />

4,500<br />

Counts<br />

1<br />

2<br />

M<strong>in</strong>utes<br />

Flow Rate: 250 µL/m<strong>in</strong><br />

Inj. Volume: 10 µL<br />

Detection: UV, 278 nm<br />

Peaks: 1. 2-anisid<strong>in</strong>e<br />

2. o-toluid<strong>in</strong>e<br />

0<br />

0.2 2.5 5 7.5 10 12.5 1517.5 2022.5 2527.5 3032.5 3537.5 4042.5 45<br />

Figure 3. The top trace shows UV separation <strong>of</strong> an unknown red<br />

leather extract sample. Poor resolution between the peaks makes<br />

identification <strong>of</strong> azo dyes difficult. The bottom trace shows the<br />

advantage <strong>of</strong>fered by mass spectrometry; clear, positive identification<br />

<strong>of</strong> 2-anisid<strong>in</strong>e and o-toluid<strong>in</strong>e.<br />

Column: Acclaim 120 C18 3 µm,<br />

120 Å (2.1 x 150 mm)<br />

Eluent: H2O/5% CH3CN/4% MeOH<br />

H2O/40% CH3CN/45% MeOH<br />

Temperature: 30 °C<br />

18<br />

mAU<br />

0<br />

2,000<br />

Counts<br />

1<br />

M<strong>in</strong>utes<br />

Flow Rate: 250 µL/m<strong>in</strong><br />

Inj. Volume: 10 µL<br />

Detection: UV: 240 nm, 278 nm<br />

Peaks: 1. o-toluid<strong>in</strong>e<br />

2. 4-am<strong>in</strong>obiphenyl<br />

400<br />

0.2 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 3032.5 35 37.5 40 42.5 45<br />

Figure 4. Us<strong>in</strong>g a mass spectrometer provides positive identification<br />

<strong>of</strong> o-toluid<strong>in</strong>e and 4-am<strong>in</strong>obiphenyl extracted from a brown<br />

leather sample.<br />

25329<br />

25328<br />

Application Note <strong>360</strong> 5<br />

2


lIst <strong>of</strong> manufacturErs<br />

Ehrenstorfer EQ Laboratories<br />

530 Means Street Suite 120, Atlanta, GA 30318<br />

Tel: (404) 586-6828; www.ehrenstorfer.com<br />

Thermo Scientific Corp., a division <strong>of</strong><br />

ThermoFischer Scientific, Inc.<br />

81 Wyman St., Waltham, MA, 02545,<br />

Tel: (781) 622-1000; www.thermo.com<br />

Sigma-Aldrich<br />

3050 Spruce St., St. Louis, MO 63178;<br />

Tel: (800) 325-3010; www.sigmaaldrich.com<br />

Passion. Power. Productivity.<br />

<strong>Dionex</strong> Corporation<br />

1228 Titan Way<br />

P.O. Box <strong>360</strong>3<br />

Sunnyvale, CA<br />

94088-<strong>360</strong>3<br />

(408) 737-0700<br />

North America<br />

U.S. (847) 295-7500<br />

Canada (905) 844-9650<br />

South America<br />

Brazil (55) 11 3731 5140<br />

Europe<br />

Austria (43) 1 616 51 25 Benelux (31) 20 683 9768 (32) 3 353 4294<br />

Denmark (45) 36 36 90 90 France (33) 1 39 30 01 10 Germany (49) 6126 991 0<br />

Ireland (353) 1 644 0064 Italy (39) 02 51 62 1267 Switzerland (41) 62 205 9966<br />

United K<strong>in</strong>gdom (44) 1276 691722<br />

rEfErEncEs<br />

1. Puntener, A., Page, C. European Ban on Certa<strong>in</strong><br />

<strong>Azo</strong> <strong>Dyes</strong>. TFL Leather and Technology. 2004. 2:1–5<br />

Chromeleon, ASE, Ultimate, and Acclaim are registered trademarks <strong>of</strong> <strong>Dionex</strong> Corporation.<br />

MSQ Plus is a trademark <strong>of</strong> Thermo Fischer Scientific.<br />

Asia Pacific<br />

Australia (61) 2 9420 5233 Ch<strong>in</strong>a (852) 2428 3282 India (91) 22 2764 2735<br />

Japan (81) 6 6885 1213 Korea (82) 2 2653 2580 S<strong>in</strong>gapore (65) 6289 1190<br />

Taiwan (886) 2 8751 6655<br />

LPN 2007-01 PDF 06/08<br />

©2008 <strong>Dionex</strong> Corporation<br />

www.dionex.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!