30.01.2013 Views

Entomology in Ecuador: Recent developments and - Olivier Dangles

Entomology in Ecuador: Recent developments and - Olivier Dangles

Entomology in Ecuador: Recent developments and - Olivier Dangles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Entomology</strong><br />

<strong>in</strong> <strong>Ecuador</strong><br />

Edited by<br />

<strong>Olivier</strong> <strong>Dangles</strong><br />

2009, 45 (4)


Volume 45(4) Octobre-Décembre 2009<br />

SOMMAIRE / CONTENTS<br />

<strong>Dangles</strong> O., <strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong> ............................................................................... 409<br />

Barragán A. R., <strong>Dangles</strong> O., Cárdenas R. E. & Onore G., The history of entomology<br />

<strong>in</strong> <strong>Ecuador</strong> .................................................................................................................... 410<br />

<strong>Dangles</strong> O., Barragán A. R., Cárdenas R. E., Onore G. & Keil C., <strong>Entomology</strong> <strong>in</strong><br />

<strong>Ecuador</strong>: <strong>Recent</strong> <strong>developments</strong> <strong>and</strong> future challenges .................................................. 424<br />

Donoso D. A., Salazar F., Maza F., Cárdenas R. E. & <strong>Dangles</strong> O., Diversity <strong>and</strong><br />

distribution of type specimens deposited <strong>in</strong> the Invertebrate section of the Museum<br />

of Zoology QCAZ, Quito, <strong>Ecuador</strong> ............................................................................. 437<br />

Carpio C., Donoso D. A., Ramón G. & <strong>Dangles</strong> O., Short term response of dung beetle<br />

communities to disturbance by road construction <strong>in</strong> the <strong>Ecuador</strong>ian Amazon ............ 455<br />

Checa M. F., Barragán A., Rodríguez J. & Christman M., Temporal abundance<br />

patterns of butterfly communities (Lepidoptera: Nymphalidae) <strong>in</strong> the <strong>Ecuador</strong>ian<br />

Amazonia <strong>and</strong> their relationship with climate .............................................................. 470<br />

Donoso D. A. & Ramón G., Composition of a high diversity leaf litter ant community<br />

(Hymenoptera: Formicidae) from an <strong>Ecuador</strong>ian premontane ra<strong>in</strong>forest ..................... 487<br />

Moret P., Altitud<strong>in</strong>al distribution, diversity <strong>and</strong> endemicity of Carabidae<br />

(Coleoptera) <strong>in</strong> the páramos of <strong>Ecuador</strong>ian Andes .......................................................... 500<br />

Cárdenas R. E., Buestán J. & <strong>Dangles</strong> O., Diversity <strong>and</strong> distribution models of horse<br />

flies (Diptera: Tabanidae) from <strong>Ecuador</strong> ...................................................................... 511<br />

Bahder B. W., Scheff rahn R. H., Křeček J., Keil C. & Whitney-K<strong>in</strong>g S., Termites<br />

(Isoptera: Kalotermitidae, Rh<strong>in</strong>otermitidae, Termitidae) of <strong>Ecuador</strong> ........................... 529<br />

Instructions aux auteurs .................................................................................................. 3e Tarif 2010 ..................................................................................................................... 2<br />

de couverture<br />

Instructions to the authors ................................................................................................. Inside back cover<br />

e de couverture<br />

Prices 2010 ................................................................................................................... Inside front cover<br />

Paru le : 24-12-2009 – ISSN 0037-9271 – ISBN 2-912703-11-5<br />

Issued: 24-12-2009 – ISSN 0037-9271 – ISBN 2-912703-11-5<br />

Prix de vente / price : 45 €<br />

Les Annales de la Société Entomologique de France sont citées dans : Biological abstracts : Pascal (INIST-CNRS) ; Current Contents<br />

(Agriculture, Biology & Environmental Sciences) ; Review of Agricultural <strong>Entomology</strong> ; Zoological Record.<br />

Th e Annales de la Sociéte Entomologique de France are cited <strong>in</strong>: Biological abstract: Pascal (INIST-CNRS); Current Contents (Agriculture,<br />

Biology & Environmental Sciences); Review of Agricultural <strong>Entomology</strong>; Zoological Record.


Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 409<br />

<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

The Western Amazonian bas<strong>in</strong> has long been recognized<br />

as support<strong>in</strong>g one of the highest levels of biological<br />

diversity <strong>in</strong> the world. Insects are particularly abundant <strong>and</strong><br />

species rich <strong>in</strong> this region, yet the task of describ<strong>in</strong>g new<br />

species, discover<strong>in</strong>g their range, underst<strong>and</strong><strong>in</strong>g the factors<br />

that govern their distribution <strong>and</strong> the degree of alteration <strong>in</strong><br />

their community structure as a result of habitat degradation<br />

is still <strong>in</strong> its early stages. Th e wide diversity of habitats that<br />

<strong>Ecuador</strong> possesses <strong>in</strong> a small area makes it an ideal location for<br />

biodiversity <strong>and</strong> ecological research. Although the diversity of<br />

many groups (e.g. plants, birds, <strong>and</strong> frogs) has been the focus<br />

of numerous publications data on the entomological fauna <strong>in</strong><br />

<strong>Ecuador</strong> are scarce, mostly limited to the response of <strong>in</strong>sect<br />

diversity to altitud<strong>in</strong>al gradients. Dur<strong>in</strong>g the past decades, the<br />

<strong>Ecuador</strong>ian research <strong>in</strong> <strong>Entomology</strong> has been dom<strong>in</strong>ated by<br />

taxonomic studies. Face to the acute environmental awareness<br />

<strong>and</strong> called attention to the press<strong>in</strong>g problem of biodiversity<br />

conservation, this taxonomic knowledge has recently been<br />

refocused <strong>in</strong> an ecological perspective.<br />

Th e n<strong>in</strong>e contributions to this special issue aim to present<br />

some of the major l<strong>in</strong>es of research developed <strong>in</strong> ecological<br />

entomology <strong>in</strong> <strong>Ecuador</strong>, ma<strong>in</strong>ly at the Museum of Zoology<br />

of the Catholic University of Quito (QCAZ), Invertebrate<br />

Section. Th e studies concern diff erent ecosystems of <strong>Ecuador</strong><br />

such as lowl<strong>and</strong> Amazonian ra<strong>in</strong>forests (Carpio et al. 2009,<br />

Checa et al. 2009), Montane cloud forest (Donoso & Ramon<br />

2009) <strong>and</strong> Andean páramos (Moret 2009). Most studies<br />

however cover a wide range of biogeographic regions (Badher<br />

et al. 2009, Barragan et al. 2009, Donoso et al. 2009, <strong>Dangles</strong><br />

et al. 2009) <strong>in</strong>clud<strong>in</strong>g comparisons with other regions<br />

from Lat<strong>in</strong> America (Cárdenas et al. 2009). Th e coverage of<br />

taxa (e.g. Diptera, Isoptera, Hymenoptera, Lepidoptera, Coleoptera),<br />

thematic (e.g. taxonomy, biogeography, community<br />

ecology, conservation biology) <strong>and</strong> methodologies (e.g.<br />

multi-dimensional analysis, spatial statistics, niche model<strong>in</strong>g)<br />

was designed to highlight the diverse areas on which QCAZ<br />

entomologists have focused dur<strong>in</strong>g the last years, giv<strong>in</strong>g a<br />

broad view of some of their scientifi c achievements.<br />

In spite of their large topical range, the contributions to<br />

this special issue are united by a common theme: a focus on<br />

how a good knowledge of species taxonomy plays a crucial<br />

role <strong>in</strong> foster<strong>in</strong>g <strong>and</strong> underp<strong>in</strong>n<strong>in</strong>g ecological research <strong>in</strong> the<br />

fi eld of entomology. Th is is particularly important <strong>in</strong> tropical<br />

countries like <strong>Ecuador</strong> where the task of entomologists seems<br />

to have a time limit with a clock tick<strong>in</strong>g faster <strong>and</strong> faster as<br />

human disturbance cont<strong>in</strong>ues to <strong>in</strong>crease. I hope that this<br />

special issue will not only provide a fresh view of entomo-<br />

E-mail: dangles@legs.cnrs-gif.fr<br />

Accepté le 19 novembre 2009<br />

ARTICLE<br />

<strong>Olivier</strong> <strong>Dangles</strong><br />

Escuela de Ciencias Biológicas, PUCE, Quito, <strong>Ecuador</strong><br />

IRD-LEGS, CNRS et Université Paris-Sud 11, F-91190 Gif-sur-Yvette, France<br />

logical research performed <strong>in</strong> <strong>Ecuador</strong> but also foster <strong>in</strong>terest<br />

from entomologists worldwide to come <strong>and</strong> perform research<br />

<strong>in</strong> this country which shelters one of the most species-rich<br />

but also most endangered <strong>in</strong>sect fauna on Earth.<br />

Acknowledgements. I am grateful to Brigitte Frérot, Pierre<br />

Rasmont, <strong>and</strong> Yves Carton for their enthusiasm <strong>in</strong> this special<br />

issue project <strong>and</strong> their support for mak<strong>in</strong>g it a reality. I also<br />

thank all the members of the QCAZ Museum, Invertebrates<br />

Section for their dedicated contribution to this issue. Special<br />

thanks to Raphael Cárdenas, for his help <strong>in</strong> the coord<strong>in</strong>ation<br />

of the issue. F<strong>in</strong>ancial supports from the Pontifi cia Universidad<br />

Católica del <strong>Ecuador</strong> (Donación de Impuesto a la Renta), the<br />

IRD (UR-072) <strong>and</strong> the University of Delaware (Department<br />

of <strong>Entomology</strong> & Wildlife Ecology) for the publication of this<br />

special issue are greatly acknowledged.<br />

References<br />

Bahder B. W., Scheff rahn R. H., Krecek J., Keil C., Whitney-K<strong>in</strong>g S.<br />

2009. Termites (Isoptera: Kalotermitidae, Rh<strong>in</strong>otermitidae, Termitidae)<br />

of <strong>Ecuador</strong>. Annales de la Société Entomologique de France (N. S.)<br />

45(4): 529-536.<br />

Barragán A. R., <strong>Dangles</strong> O., Cárdenas R. E., Onore G. 2009. Th e history<br />

of entomology <strong>in</strong> <strong>Ecuador</strong>. Annales de la Société Entomologique de<br />

France (N. S.) 45(4): 410-423.<br />

Cárdenas R. E., Buestán J., <strong>Dangles</strong> O. 2009. Diversity <strong>and</strong> distribution<br />

models of horse fl ies (Diptera: Tabanidae) from <strong>Ecuador</strong>. Annales de la<br />

Société Entomologique de France (N. S.) 45(4): 511-528.<br />

Carpio C, Donoso D. A., Ramón G., <strong>Dangles</strong> O. 2009. Short term response<br />

of dung beetle communities to disturbance by road construction<br />

<strong>in</strong> the <strong>Ecuador</strong>ian Amazon. Annales de la Société Entomologique de<br />

France (N. S.) 45(4): 455-469.<br />

Checa M. F., Barragán A., Rodríguez J., Christman M. 2009. Temporal<br />

abundance patterns of butterfl y communities (Lepidoptera:<br />

Nymphalidae) <strong>in</strong> the <strong>Ecuador</strong>ian Amazonia <strong>and</strong> their relationship<br />

with climate. Annales de la Société Entomologique de France (N. S.)<br />

45(4): 470-486.<br />

<strong>Dangles</strong> O., Barragán A. R., Cárdenas R. E., Onore G., Keil C. 2009.<br />

<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>: <strong>Recent</strong> <strong>developments</strong> <strong>and</strong> future challenges.<br />

Annales de la Société Entomologique de France (N. S.) 45(4): 424-436.<br />

Donoso D. A., Ramón G. 2009. Composition of a high diversity leaf litter<br />

ant community (Hymenoptera: Formicidae) from an <strong>Ecuador</strong>ian premontane<br />

ra<strong>in</strong>forest. Annales de la Société Entomologique de France (N.<br />

S.) 45(4): 487-499.<br />

Donoso D. A., Salazar F., Maza F., Cárdenas R. E., <strong>Dangles</strong> O. 2009.<br />

Diversity <strong>and</strong> distribution of type specimens deposited <strong>in</strong> the<br />

Invertebrate section of the Museum of Zoology QCAZ, Quito,<br />

<strong>Ecuador</strong>. Annales de la Société Entomologique de France (N. S.) 45(4):<br />

437-454.<br />

Moret P. 2009. Altitud<strong>in</strong>al distribution, diversity <strong>and</strong> endemicity of<br />

Carabidae (Coleoptera) <strong>in</strong> the páramos of <strong>Ecuador</strong>ian Andes. Annales<br />

de la Société Entomologique de France (N. S.) 45(4): 500-510.<br />

409


ARTICLE<br />

Th e History of <strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

E-mail: arbarragan@puce.edu.ec<br />

Accepté le 29 ju<strong>in</strong> 2009<br />

410<br />

Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 410-423<br />

Álvaro R. Barragán 1 , <strong>Olivier</strong> <strong>Dangles</strong> 1,2 , Rafael E. Cárdenas 1 & Giovanni Onore 3<br />

(1) Museo de Zoología QCAZ, Sección Invertebrados, Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Apartado 17-01-2184, Quito, <strong>Ecuador</strong><br />

(2) IRD-LEGS, University Paris-Sud 11, F-91190 Gif-sur-Yvette, France<br />

(3) Fundación Otonga, Apartado 17-03-1514A, Quito, <strong>Ecuador</strong><br />

Abstract. This work is not <strong>in</strong>tended to be a complete review of all publications about entomology <strong>in</strong><br />

<strong>Ecuador</strong>. It compiles the history of entomology <strong>in</strong> <strong>Ecuador</strong> <strong>in</strong> a chronological order. It fi rst provides<br />

observations about the <strong>in</strong>fl uence of pre-Columbian cultures <strong>and</strong> the cultural heritage of <strong>in</strong>digenous<br />

populations. It then presents the contribution of the Spanish conquest <strong>and</strong> colonization chroniclers, the<br />

specialists that described American species dur<strong>in</strong>g the Renaissance period <strong>and</strong> the great scientifi c<br />

expeditions. F<strong>in</strong>ally the birth of <strong>Ecuador</strong>ian entomology as a science is described with the creation of<br />

<strong>in</strong>stitutes for applied research <strong>and</strong> the <strong>Ecuador</strong>ian museums of entomology.<br />

Résumé. Histoire de l’entomologie en Equateur. Cette étude n’a pas pour objectif de faire une<br />

révision complète de toutes les publications sur le thème en Equateur, mais de présenter les gr<strong>and</strong>es<br />

étapes de l’évolution de l’entomologie dans ce pays dans un ordre chronologique. Il présente tout<br />

d’abord des <strong>in</strong>formations sur l’<strong>in</strong>fl uence des cultures pré-colombiennes et de l’héritage culturel légué<br />

par les populations <strong>in</strong>digènes. Il présente ensuite la contribution des chroniqueurs de la conquête<br />

espagnole et de la colonisation, des specialistes qui ont décrit les espèces américa<strong>in</strong>es pendant la<br />

période de la Renaissance et des gr<strong>and</strong>es expéditions scientifi ques. F<strong>in</strong>alement, la naissance de<br />

l’entomologie en tant que science est décrite avec la création des <strong>in</strong>stituts de recherche appliquée et<br />

des muséums équatoriens d’entomologie.<br />

Keywords: Pre-columbian, Conquest of America, Th e great expeditions, Th e beg<strong>in</strong>n<strong>in</strong>g of the 20th century.<br />

Pre-Columbian <strong>Ecuador</strong><br />

Pre-hispanic cultures had extensive knowledge of<br />

the <strong>in</strong>sects of <strong>Ecuador</strong> <strong>and</strong> <strong>in</strong>corporated <strong>in</strong>sects <strong>in</strong>to<br />

mythology, art, cuis<strong>in</strong>e <strong>and</strong> geography. For <strong>in</strong>stance,<br />

<strong>in</strong>sect motifs were used <strong>in</strong> diff erent ceramic pieces<br />

imply<strong>in</strong>g that these creatures were <strong>in</strong>volved <strong>in</strong> the<br />

every day lives of people from diff erent cultures that<br />

<strong>in</strong>habited these l<strong>and</strong>s (Cumm<strong>in</strong>s et al. 1996; Melic<br />

2003). Th ere are a variety of ceramic pieces deposited<br />

at the Museo Antropológico del Banco Central del<br />

<strong>Ecuador</strong> that <strong>in</strong>corporate <strong>in</strong>sects <strong>in</strong> their design (Fig. 1).<br />

Th is cultural heritage has been manifested <strong>in</strong> the use of<br />

<strong>in</strong>sects as a food source by a variety cultures. Onore<br />

(1997) mentioned 82 species of <strong>in</strong>sects that have been<br />

used as food <strong>in</strong> several <strong>in</strong>digenous cultures currently<br />

<strong>and</strong> historically. One of the most important examples<br />

is the beetle, Platyicoelia lutescens Blanchard 1850<br />

(Coleoptera: Scarabaeidae: Rutel<strong>in</strong>ae), commonly<br />

called “catzo blanco” that is used <strong>in</strong> a seasonal dish<br />

dur<strong>in</strong>g October <strong>and</strong> November <strong>in</strong> Quito’s valleys<br />

(Smith & Paucar 2000). Another example of <strong>in</strong>sects<br />

used as food is the beetle larva known as “chontacuro”,<br />

Rhynchophorus palmarum (L. 1758) (Coleoptera:<br />

Curculionidae). Th is larva is sold <strong>and</strong> cooked <strong>in</strong> various<br />

regions <strong>in</strong> the Amazon bas<strong>in</strong> (Onore 1997; Barragán<br />

& Carpio 2008).<br />

With<strong>in</strong> the American Indian cosmovision <strong>in</strong>sects<br />

occupy an important role. Numerous prehispanic<br />

cultures considered certa<strong>in</strong> <strong>in</strong>sects as terrestrial<br />

<strong>in</strong>carnations of div<strong>in</strong>e forces (Beutelspacher 1989).<br />

Butterfl ies are frequently represented <strong>in</strong> the art of<br />

various prehispanic cultures. In Mexican mythology,<br />

especially the Mayan culture, butterfl ies were<br />

considered to represent the souls of dead warriors<br />

killed <strong>in</strong> battles or sacrifi ces (Beutelspacher 1989). In<br />

other prehispanic cultures, butterfl ies were a sign of<br />

high rank <strong>and</strong> images were used to decorate pectorals,<br />

hair p<strong>in</strong>s (tocados) <strong>and</strong> nose pieces (narigueras).<br />

Th e use of <strong>in</strong>sect names to designate particular<br />

localities also demonstrates the importance of<br />

these animals. Th ere is an area near Quito named<br />

Cuzubamba, from the Kichwa roots: “cuzo” mean<strong>in</strong>g<br />

worm or grub, <strong>and</strong> “pampa” mean<strong>in</strong>g valley, imply<strong>in</strong>g<br />

the “valley of the grubs.” Other <strong>in</strong>sects represented bad<br />

fortune. Even today the moth, Ascalapha odorata L.


Histoire de l’entomologie en Equateur<br />

1758 (Lepidoptera Noctuidae), commonly called<br />

“t<strong>and</strong>acuchi” (Fig. 2) is considered, by the people<br />

liv<strong>in</strong>g <strong>in</strong> the central <strong>Ecuador</strong>ian Sierra (Andean<br />

region), as a messenger of death every time this moth<br />

gets <strong>in</strong>side their houses. Another example is the<br />

hemipteran, Fulgora laternaria L. 1758 (Hemiptera:<br />

Fulgoridae), commonly known as “machaca” (Fig. 3),<br />

that symbolizes lust. Th e belief is that if a person<br />

un<strong>in</strong>tentionally comes <strong>in</strong> contact with this <strong>in</strong>sect, this<br />

person must have sex otherwise he or she will die with<strong>in</strong><br />

a few hours (Medeiros Costa-Neto 2007). Before<br />

the arrival of the European conquistadors, the <strong>in</strong>sect<br />

Dactylopius spp. Costa 1835 (Hemiptera: Coccidae),<br />

known as “coch<strong>in</strong>illa del nopal,” was used to dye the<br />

fabrics of the Incas throughout South America. After<br />

the conquest, this <strong>in</strong>dustry was an important bus<strong>in</strong>ess<br />

with<strong>in</strong> the Spanish colony. Th e dye extracted from this<br />

<strong>in</strong>sect was the second most valuable product exported<br />

from Nueva España <strong>in</strong> the 18 th century, only after silver<br />

(Barragán & Carpio 2008).<br />

The Colonial Era <strong>in</strong> America<br />

With the arrival of the Europeans, knowledge about<br />

Figure 1<br />

Tuza Culture (Carchi) Ceramic pieces deposited at the Reserva<br />

Arqueológica de la Dirección Cultural del Banco Central del <strong>Ecuador</strong>.<br />

Regional Quito. (A.Janeta).<br />

the New World started to focus on nature with the fi rst<br />

identifi cation of specimens that numerous Spanish<br />

conquistadors brought back to Europe, together with<br />

gold <strong>and</strong> spices (Rodas 2003). One of the fi rst reports,<br />

written <strong>in</strong> the conquest period, was the Historia General<br />

y Natural de la Indias, Islas y Tierra fi rme del Mar<br />

Océano, by Gonzalo Fernández de Oviedo <strong>and</strong> Valdez<br />

<strong>in</strong> 1535. Th is work is divided <strong>in</strong>to 50 books. Libro<br />

XV: El cual trata de los animales <strong>in</strong>sectos (Acosta- Solís<br />

1977) described certa<strong>in</strong> entomological curiosities such<br />

as beetles with lights known as “cucuyos”, Pyrophorus<br />

spp. (Coleoptera: Elateridae), “coch<strong>in</strong>illas del nopal”,<br />

Dactylopius spp. (Coccidae: Hemiptera), <strong>and</strong> st<strong>in</strong>gless<br />

bees (Hymenoptera: Meliponi<strong>in</strong>ae) (Hogue 1993).<br />

Father Juan de Velasco (1727–1792) <strong>in</strong> his<br />

Historia del Re<strong>in</strong>o de Quito en la América Meridional<br />

<strong>in</strong> 1789 <strong>and</strong> Mario Cicala (1718–17..) <strong>and</strong> Descripción<br />

Histórico Físca de la Prov<strong>in</strong>cia de Quito de la Compañía<br />

de Jesus the fi rst to report details about the ancestral<br />

knowledge of the l<strong>and</strong> that now constitutes <strong>Ecuador</strong>.<br />

He described certa<strong>in</strong> aspects of <strong>Ecuador</strong>ian entomology<br />

(Velasco 1946; Cicala 2004). However, these reports<br />

were far from the centers of advanced science <strong>in</strong><br />

Europe <strong>and</strong> were not consistent with the develop<strong>in</strong>g<br />

L<strong>in</strong>nean b<strong>in</strong>omial classifi cation system. Many of these<br />

<strong>in</strong>itial reports from Nueva España were fantasies <strong>and</strong><br />

exaggerated observations (Acosta Solis 1977).<br />

Th e Great Expeditions<br />

De La Condam<strong>in</strong>e, Humboldt, Darw<strong>in</strong>, Whymper<br />

<strong>and</strong> others<br />

As a result of the Enlightenment <strong>in</strong> Europe,<br />

scientifi c academies mounted a series of expeditions<br />

to the colonies overseas. Th e French Geodesic Mission<br />

worked <strong>in</strong> <strong>Ecuador</strong> from 1735 to 1746 measur<strong>in</strong>g the<br />

roundness of the Earth (Rodas 2003). Th e mission<br />

was directed by the French naturalist Charles Marie<br />

de La Condam<strong>in</strong>e (1701–1774) <strong>and</strong> <strong>in</strong>cluded the<br />

botanist Joseph de Jussieu (1704–1779) <strong>and</strong> the<br />

Spanish capta<strong>in</strong> Antonio de Ulloa (1716–1795).<br />

Capta<strong>in</strong> Ulloa represented the Spanish military before<br />

the French Academy of Sciences for this expedition to<br />

South America. Th e report Noticias Americanas (1772)<br />

conta<strong>in</strong>s specifi c statements about several <strong>Ecuador</strong>ian<br />

<strong>in</strong>sects <strong>in</strong>clud<strong>in</strong>g a grasshopper plague that could have<br />

<strong>in</strong>volved one of the species of Schistocerca (Orthoptera:<br />

Acrididae) (Hogue 1993).<br />

One of the monumental expeditions conducted<br />

from 1799 to 1804 <strong>and</strong> without doubt the most<br />

impressive was the one carried out by Alex<strong>and</strong>er Von<br />

Humboldt (Fig. 4) <strong>and</strong> Aimé Bonpl<strong>and</strong> throughout<br />

411


Figure 2<br />

Ascalapha odorata L. 1758 (A. Janeta).<br />

Figure 3<br />

Fulgora laternaria L. 1758 (A. Janeta).<br />

412<br />

Á. R. Barragán, O. <strong>Dangles</strong>, R. E. Cárdenas & G. Onore


Histoire de l’entomologie en Equateur<br />

America (Papavero et al. 1995). Th ey made numerous<br />

<strong>and</strong> important observations concern<strong>in</strong>g the biological<br />

aspects of <strong>in</strong>sects <strong>and</strong> gathered an extensive collection<br />

of <strong>in</strong>sects that later were described by Pierre André<br />

Latreille (Papavero 1971). Today, a great number of<br />

these specimens are deposited <strong>in</strong> the Muséum National<br />

d’Histoire Naturelle de Paris. Numerous scientists<br />

consider Humboldt as the father of biogeographic <strong>and</strong><br />

ecological studies based on his narratives of his studies<br />

Figure 4<br />

Alex<strong>and</strong>er Von Humboldt by Friedrich Georg Weitsch 1806<br />

<strong>in</strong> South America. One of his most detailed illustrations<br />

was of the <strong>Ecuador</strong>ian Andes, where he illustrated<br />

the diversity <strong>and</strong> distribution of plants accord<strong>in</strong>g to<br />

altitude (Fig. 5). Th e <strong>in</strong>fl uence of altitude is refl ected<br />

<strong>in</strong> his manuscripts that described <strong>Ecuador</strong>ian species.<br />

One of his numerous publications is the Collection of<br />

Observations on Zoology <strong>and</strong> Comparative Anatomy<br />

(1805–1833) where he described <strong>in</strong> detail several<br />

observations on <strong>Ecuador</strong>ian <strong>in</strong>sects. Humboldt’s<br />

413


414<br />

Á. R. Barragán, O. <strong>Dangles</strong>, R. E. Cárdenas & G. Onore<br />

Figure 5<br />

Orig<strong>in</strong>al from A. von Humboldt 1807. Essai sur la géographie des plantes. Courtesy Rare Book Collection, Missouri Botanical Garden Library. (C. Ulloa).


Histoire de l’entomologie en Equateur<br />

work <strong>in</strong> the New World was so important that he<br />

is considered as the fi rst American scientist <strong>and</strong><br />

discoverer. Von Humboldt met Simón Bolívar <strong>in</strong><br />

Paris when Bolívar was still very young (Acosta Solis<br />

1977).<br />

Another great naturalists of the 19 th century was<br />

Jean-Baptiste Bouss<strong>in</strong>gault (1802–1887) who acquired<br />

fame <strong>in</strong> Europe as a result of his ten-year trip through<br />

equatorial America. He was an impresive scientist<br />

<strong>and</strong> naturalist, an em<strong>in</strong>ent agronomist, <strong>and</strong> an active<br />

chemist. Simón Bolívar, the liberator of Lat<strong>in</strong> America<br />

<strong>and</strong> head of the government of Gran Colombia <strong>in</strong>vited<br />

Bouss<strong>in</strong>gault to develop scientifi c research <strong>in</strong> the new<br />

republics (Acosta – Solís 1977; Boula<strong>in</strong>e 1995). In<br />

<strong>Ecuador</strong>, he was the fi rst to notice the existence of a<br />

peculiar entomological fauna <strong>in</strong> the high Andes. In his<br />

attempt to reach the summit of Chimborazo (6268 m)<br />

<strong>and</strong> before arriv<strong>in</strong>g at the glacier of this mounta<strong>in</strong>, he<br />

Figure 6<br />

Edward Whymper. Museo Nazionale della Montagna “Duca degli Abruzzi”.<br />

Centro Documentazione - Tor<strong>in</strong>o.<br />

collected several <strong>in</strong>sects that Moret (2005) stated could<br />

have been carabid beetles (Coleoptera: Carabidae).<br />

In the 19 th century, one of the most outst<strong>and</strong><strong>in</strong>g<br />

visits to <strong>Ecuador</strong> was the one by Charles Darw<strong>in</strong><br />

(1809–1882) on board the Beagle. In his book<br />

published <strong>in</strong> 1845, Voyage of the Beagle, Darw<strong>in</strong> (1989)<br />

cited the follow<strong>in</strong>g on his arrival to the Galápagos<br />

Archipelago: “I took great pa<strong>in</strong>s <strong>in</strong> collect<strong>in</strong>g <strong>in</strong>sects [of<br />

the Galápagos Isl<strong>and</strong>s], but except<strong>in</strong>g, Tierra del Fuego,<br />

I never saw <strong>in</strong> this respect so poor a country…”. However,<br />

he emphasized that the few species he collected turned<br />

out to be new species. Darw<strong>in</strong> was always fond of<br />

entomology <strong>and</strong> his observations <strong>and</strong> collections of<br />

beetles helped him to clarify his ideas concern<strong>in</strong>g<br />

the distribution of <strong>in</strong>sects <strong>and</strong> sexual selection. His<br />

entomological observations strengthened his ideas <strong>in</strong><br />

his monumental work , Th e Orig<strong>in</strong> of Species <strong>in</strong> 1859<br />

(Darw<strong>in</strong> 1985).<br />

Th e Spanish Scientifi c Commission of the Pacifi c,<br />

<strong>in</strong> December 1864 <strong>and</strong> January 1865, went <strong>in</strong>to the<br />

<strong>Ecuador</strong>ian Andes after travell<strong>in</strong>g along the American<br />

coast (Cabodevilla 1998). Francisco de Paula Martínez,<br />

chronicler of the expedition, made excursions to two<br />

volcanos near Quito, Guagua Pich<strong>in</strong>cha <strong>and</strong> Antisana.<br />

He collected numerous <strong>in</strong>sects that are housed today<br />

<strong>in</strong> the Madrid Museum of Natural History (Santos<br />

Mazorra 1994; López-Ocón 2003).<br />

One of the most important surveys was the one<br />

by Edward Whymper (1840–1911) who arrived to<br />

<strong>Ecuador</strong> <strong>in</strong> 1879 <strong>and</strong> returned to London <strong>in</strong> 1880<br />

(Fig. 6). He described his scientifi c observations <strong>in</strong> his<br />

work “Travels amongts the great Andes of the Equator”.<br />

Its fi rst edition came out <strong>in</strong> 1891 <strong>and</strong> conta<strong>in</strong>ed<br />

excellent descriptions of hundreds of <strong>in</strong>sects that were<br />

collected <strong>in</strong> his journey. It also <strong>in</strong>cluded a supplement<br />

that compiled species descriptions by contemporary<br />

scientists like Henry Walter Bates (1825–1892). Bates<br />

(1891) felt that the research done by Humboldt <strong>and</strong><br />

Bonpl<strong>and</strong> was unsatisfactory <strong>and</strong> that the observations<br />

done by Whymper had been superior <strong>in</strong> quantity <strong>and</strong><br />

quality as he described hundreds of high altitude <strong>in</strong>sects<br />

that were new to science (Moret 2005). Whymper<br />

not only gathered <strong>in</strong>formation about <strong>Ecuador</strong>ian<br />

mounta<strong>in</strong>s <strong>and</strong> volcanoes but also collected a great<br />

variety of <strong>in</strong>sects. Several of these <strong>in</strong>sects have been<br />

described <strong>in</strong> his honor, for example the scarab species,<br />

Heterogomphus whymperi Bates 1861 (Coleoptera:<br />

Scarabeidae). <strong>Ecuador</strong>ian biodiversity was refl ected <strong>in</strong><br />

an illustration by Whymper of the <strong>in</strong>sects he found<br />

one night <strong>in</strong> his hotel room <strong>in</strong> Guayaquil (Fig 7).<br />

Whymper also suggested that diversity decreases <strong>in</strong><br />

relation to higher altitude confi rm<strong>in</strong>g Von Humboldt’s<br />

observations. Th is observation was also made <strong>in</strong> the<br />

415


Figure 7<br />

Insects <strong>in</strong> Whymper bedroom <strong>in</strong> Guayaquil. (Whymper 1892).<br />

416<br />

Á. R. Barragán, O. <strong>Dangles</strong>, R. E. Cárdenas & G. Onore


Histoire de l’entomologie en Equateur<br />

preface table <strong>in</strong> the supplementary appendix written by<br />

Bates (Whymper 1892). Whymper’s collections were<br />

noteworthy <strong>in</strong> that he noted with precision the date,<br />

locality, <strong>and</strong> altitude of each specimen. Th is practice<br />

was uncommon even for professional naturalists at that<br />

time (Moret 2005). Whymper’s altitude measurements<br />

are exact <strong>in</strong> almost all <strong>in</strong>stances even though he<br />

obta<strong>in</strong>ed those numbers us<strong>in</strong>g a heavy <strong>and</strong> fragile<br />

mercury barometer. Th is <strong>in</strong>strument was baptized as<br />

“baby” because one of his companions, Alp<strong>in</strong>ist Jean-<br />

Anto<strong>in</strong>e Carrel, had to carry it on his back to the peak<br />

of the volcano Chimborazo (Whymper 1892).<br />

Th e Italian zoologist Enrico Festa visited <strong>Ecuador</strong><br />

<strong>and</strong> collected numerous specimens that are now deposited<br />

at the Museo Regionale di Scienze Naturali Di<br />

Tor<strong>in</strong>o. Festa left Italy <strong>in</strong> mid-1895 to head a historic<br />

expedition to <strong>Ecuador</strong>, but a revolution <strong>and</strong> fi ght<strong>in</strong>g<br />

between liberals <strong>and</strong> conservatives forced Festa to stop<br />

<strong>in</strong> Panama <strong>in</strong> the Darien jungles. While wait<strong>in</strong>g several<br />

months until the political situation calmed down,<br />

Festa collected <strong>in</strong>formation <strong>and</strong> specimens from the<br />

Panamenian Chocó forest. He arrived <strong>in</strong> Guayaquil <strong>in</strong><br />

September 1895, where he started his journey through<br />

<strong>Ecuador</strong> collect<strong>in</strong>g every specimen he came across,<br />

from <strong>in</strong>sects to large mammals. He ended his expedition<br />

<strong>in</strong> February 1898 when he returned to Europe.<br />

Much of his work was conducted <strong>in</strong> the <strong>Ecuador</strong>ian<br />

Andean region. He traveled from Cuenca <strong>in</strong> the south<br />

to Tulcán, the northern limit of <strong>Ecuador</strong> on the Colombian<br />

border (Festa 1909). He extensively collected<br />

specimens from all zoological taxa, however, much of<br />

the material collected by Festa was not published due<br />

to the vast size of his collections.<br />

Many <strong>in</strong>sect collections were made by important<br />

naturalists <strong>and</strong> men of science who travelled around<br />

<strong>Ecuador</strong>. Hugh Cum<strong>in</strong>g (1791–1865) was an English<br />

naturalist <strong>and</strong> conchologist who has been described<br />

as the “Pr<strong>in</strong>ce of Collectors” (Lovell 1864). Cum<strong>in</strong>g<br />

travelled around South America from 1821 to 1830.<br />

His vast assemblage of materials were immediately<br />

distributed to museums <strong>and</strong> <strong>in</strong>cluded 130,000<br />

specimens of dried plant material, 30,000 shells, large<br />

numbers of birds, reptiles, quadrupeds <strong>and</strong> <strong>in</strong>sects,<br />

<strong>and</strong> numerous liv<strong>in</strong>g orchids (Lovell 1864). Herman<br />

Karsten (1817–1908) was a German geologist, botanist<br />

<strong>and</strong> naturalist who followed the example of Humboldt<br />

<strong>and</strong> travelled from North <strong>and</strong> to South America <strong>in</strong><br />

1844–1856. In <strong>Ecuador</strong>, he worked <strong>in</strong> the vic<strong>in</strong>ity<br />

of the Pich<strong>in</strong>cha <strong>and</strong> Sangay volcanoes <strong>and</strong> collected<br />

both plants <strong>and</strong> <strong>in</strong>sects (Acosta Solís 1977). Another<br />

naturalist, Marc de Matham, also made entomological<br />

collections between 1887 <strong>and</strong> 1893 (Onore 2003),<br />

which were later studied by Vaurie (1969) <strong>and</strong><br />

Duckworth & Eichl<strong>in</strong> (1978). Th e German geologist,<br />

Alphons Stübel (1835–1904) travelled throughout the<br />

<strong>Ecuador</strong>ian Andes from 1870 to 1874. He focused<br />

on volcanism studies but also collected many <strong>in</strong>sect<br />

specimens that were sent to the entomologist, Th eodor<br />

Kirsch. Krisch published the descriptions of many new<br />

<strong>in</strong>sect species belong<strong>in</strong>g to the families Chrysomelidae,<br />

Tenebrionidae, Scarabaeidae, <strong>and</strong> Carabidae among<br />

others (Moret 2005, Acosta-Solís 1977).<br />

The Beg<strong>in</strong>n<strong>in</strong>g of the 20 th Century<br />

At the beg<strong>in</strong>n<strong>in</strong>g of the 20 th century, the Mission<br />

Géodésique de l´Equateur (1901–1906) organized by<br />

the military geographic service with the support of the<br />

Académie des Sciences de Paris came to <strong>Ecuador</strong> to<br />

measure the Equatorial meridian. Th ey also collected<br />

<strong>in</strong>sects that are now deposited at the Muséum<br />

National d’Histoire Naturelle de Paris <strong>and</strong> the British<br />

Museum. Th e French expedition collected a large<br />

number of specimens that were described <strong>in</strong> a series<br />

of volumes. Volume 10 deals with <strong>Entomology</strong> <strong>and</strong><br />

Botany; Chapter 2 is devoted to Diptera, where 34<br />

Nematocera species <strong>and</strong> 145 Barchycera species were<br />

reported. One of the described species was Dicladocera<br />

riveti (Tabanidae) (Surcouf 1919) that was orig<strong>in</strong>ally<br />

described as part of the genus Tabanus <strong>and</strong> was named<br />

<strong>in</strong> honor of Paul Rivet (1876–1958). Rivet was part of<br />

the expedition as a medical doctor <strong>and</strong> anthropologist<br />

but also dedicated himself to collect <strong>in</strong>sects dur<strong>in</strong>g his<br />

journey. Lieutenant colonel Robert Bourgeois, chief<br />

of the mission, was the brother of the coleopterist<br />

Jules Bourgeois (Moret 2005). For this reason, the<br />

<strong>in</strong>sect specimens collected by his colleagues were well<br />

studied.<br />

In the Galápagos Isl<strong>and</strong>s, the most signifi cant work<br />

after Darw<strong>in</strong> was the expedition of the California<br />

Academy of Science <strong>in</strong> 1905 <strong>and</strong> 1906) with F. X.<br />

Williams as the entomologist (Peck 2001). Th e next<br />

most signifi cant expedition was that of the Galápagos<br />

International Scientifi c Project (GISP) of 1964<br />

organized by the University of California (Us<strong>in</strong>ger<br />

1972)<br />

It is important to emphasize that from the<br />

beg<strong>in</strong>n<strong>in</strong>g, natural history expeditions traveled the<br />

country collect<strong>in</strong>g animals <strong>and</strong> plants us<strong>in</strong>g ma<strong>in</strong>ly<br />

the same roads <strong>and</strong> routes (Whymper 1892; Festa<br />

1909; Onore 2003). Many of the collect<strong>in</strong>g localities<br />

are named repeatedly. Benalcazar, Cieza de León, La<br />

Condam<strong>in</strong>e, Bonpl<strong>and</strong>, Ulloa, Humboldt, Whymper,<br />

<strong>and</strong> Festa followed routes used s<strong>in</strong>ce pre-Columbian<br />

times <strong>and</strong> elaborated <strong>and</strong> improved by the Incas. Th ese<br />

roads were named “Qhapac Ñan” (Inca road) <strong>and</strong> later<br />

the Spaniards used those roads as conections between<br />

417


Guayaquil (the ma<strong>in</strong> port) <strong>and</strong> Quito, the <strong>Ecuador</strong>ian<br />

capital (Onore 2003).<br />

Th e fi rst <strong>Ecuador</strong>ian that dedicated himself to the<br />

study of <strong>in</strong>sects was Francisco Campos Ribadeneira<br />

(1878–1943). He was an <strong>in</strong>telectual from Guayaquil<br />

<strong>and</strong> was considered as the zoologist of the country. He<br />

was a biology teacher at the Colegio Vicente Rocafuerte<br />

<strong>and</strong> a medical zoology professor at the University of<br />

Guayaquil, where he conducted studies <strong>in</strong> medical<br />

entomology. Campos collected numerous <strong>in</strong>sects <strong>and</strong><br />

created the fi rst entomological collection <strong>in</strong> <strong>Ecuador</strong><br />

(Moret 2005). Periodically, he also wrote important<br />

publications for the Revista del Colegio Vicente<br />

Rocafuerte <strong>and</strong> the Sociedad Médica Ecuatoriana<br />

that published the only scientifi c journal related to<br />

natural sciences. In 1926, he published Contribución<br />

al estudio de los <strong>in</strong>sectos del Callejón Inter<strong>and</strong><strong>in</strong>o. One<br />

of the surveys he presented at the second medical<br />

entomology congress was the Contribución al Estudio<br />

de los Esfíngidos where he presented 56 species from<br />

<strong>Ecuador</strong> (Campos 1930).<br />

Th e Development of <strong>Entomology</strong> as a Science<br />

418<br />

<strong>in</strong> <strong>Ecuador</strong><br />

Medical entomology<br />

Th e relationship between <strong>in</strong>sects <strong>and</strong> humans<br />

has been documented throughout history, from the<br />

mythical biblical plagues <strong>and</strong> the fi rst observations<br />

of malaria by Hipocrates about 400 BC, through the<br />

miasmatic theory of disease <strong>and</strong> the devastat<strong>in</strong>g pests<br />

that caused high mortality to human populations.<br />

Many chroniclers commented on the nuisance of<br />

mosquitos <strong>and</strong> how plagues attacked crops. However,<br />

it was only at the end of the 19 th century that <strong>in</strong>sects<br />

were recognized as possible vectors of diseases such as<br />

malaria (Machado-Allison 2004).<br />

Th e <strong>Ecuador</strong>ian government started programs to<br />

control tropical diseases <strong>in</strong> 1940 with creation of the<br />

Instituto Nacional de Higiene y Medic<strong>in</strong>a Tropical<br />

(INHMT) “Leopoldo Izquieta Perez”. Th is <strong>in</strong>stitute<br />

has the mission to identify vectors of tropical <strong>and</strong><br />

<strong>in</strong>fectious diseases <strong>and</strong> to establish an <strong>in</strong>sectary to<br />

test <strong>in</strong>secticides (http://www.<strong>in</strong>h.gov.ec/). Another<br />

<strong>in</strong>stitution devoted to the control of <strong>in</strong>sect vector of<br />

human disease is the Servicio Nacional de Erradicación<br />

de la Malaria (SNEM). Th is <strong>in</strong>stitute studies <strong>and</strong><br />

controls populations of Aedes aegypti (L. 1762)<br />

(Diptera: Culicidae) <strong>and</strong> the Chagas Disease vectors<br />

Panstrogylus rufotuberculatus (Champion 1883),<br />

Rhodnius ecuadoriensis Lent & León 1958, Triatoma<br />

Á. R. Barragán, O. <strong>Dangles</strong>, R. E. Cárdenas & G. Onore<br />

dimidiata (Latreille 1811) (Hemiptera: Triatom<strong>in</strong>ae),<br />

<strong>and</strong> other species.<br />

In 1950, José Rodriguez started the fi rst taxonomic<br />

study of Phlebotom<strong>in</strong>ae s<strong>and</strong>fl ies <strong>in</strong> <strong>Ecuador</strong>. He<br />

described a new vector species of Leishmaniasis,<br />

Phlebotomus camposi Rodriguez 1950 (Diptera:<br />

Psychodidae), (Rodriguez 1950, Rodriguez 1952a,<br />

1952b, Rodríguez 1953a, 1953b; Rodríguez1956). Luis<br />

León (1957) cont<strong>in</strong>ued this research on Leishmaniasis<br />

<strong>in</strong> <strong>Ecuador</strong>, look<strong>in</strong>g for other vectors <strong>and</strong> reservoirs of<br />

this disease.<br />

Roberto Leví Castillo<br />

One of the most <strong>in</strong>fl uent scientists <strong>in</strong> the<br />

development of medical entomology <strong>in</strong> <strong>Ecuador</strong> was<br />

a multi-talented man, Roberto Levi Castillo. He was<br />

a passionate stamp collector, historian, physician,<br />

chemist, professor <strong>and</strong> pilot <strong>in</strong> the <strong>Ecuador</strong>ian <strong>and</strong><br />

US Armies. He was born <strong>in</strong> January 29 of 1921 <strong>in</strong><br />

Guayaquil (<strong>Ecuador</strong>) <strong>and</strong> did post graduate swork <strong>in</strong><br />

Europe (1929-1931) <strong>and</strong> <strong>in</strong> the United States (1932-<br />

1937). In 1937, he was commissioned as a Second<br />

Lieutenant <strong>in</strong> the US Army with a specialization <strong>in</strong><br />

military aviation. He fought with the <strong>Ecuador</strong>ian<br />

Army dur<strong>in</strong>g the Peruvian <strong>in</strong>vasion of the <strong>Ecuador</strong>ian<br />

territory <strong>in</strong> 1941. He returned to the United States<br />

<strong>in</strong>1942, studied at the Cornell University Medical<br />

School <strong>and</strong> graduated as a physician with a specialization<br />

<strong>in</strong> Family Medic<strong>in</strong>e <strong>in</strong> 1943. For one year, he worked<br />

with the allied military comm<strong>and</strong> dur<strong>in</strong>g the Second<br />

World War controll<strong>in</strong>g malaria outbreaks <strong>in</strong> Greece<br />

<strong>and</strong> France (Perez Pimentel 1994).<br />

One of the most important results of Levi-Castillo’s<br />

research was the discovery that varieties of a s<strong>in</strong>gle<br />

Anopheles species are geographically specifi c (Leví-<br />

Castillo 1944a). Th is publication can be considered<br />

as an early <strong>in</strong>sight to ideas concern<strong>in</strong>g ecological<br />

speciation (Schluter, 2001) <strong>and</strong> vicariance biogeography<br />

(Wiley 1988). In 1945, he jo<strong>in</strong>ed the Inter-American<br />

Cooperative Service for Public Health of the United<br />

States as epidemiologist <strong>and</strong> sanitary entomologist.<br />

He fought aga<strong>in</strong>st Andean malaria caused by the<br />

mosquito Anopheles pseudopunctipennis. Return<strong>in</strong>g<br />

to <strong>Ecuador</strong>, he was posted as professor of Chemistry<br />

at the Vicente Rocafuerte National School <strong>in</strong> 1947.<br />

Perez-Pimentel (1994) states that he had passionate<br />

scientifi c discussions with Dr. Francisco Campos<br />

suggest<strong>in</strong>g they did not get along with each other <strong>and</strong><br />

had diff erent research viewpo<strong>in</strong>ts. In 1951, he was<br />

awarded a PhD <strong>in</strong> chemistry <strong>and</strong> pharmaceuticals<br />

from Guayaquil University. His doctoral research was<br />

an <strong>in</strong>vestigation of Culex resistance to <strong>in</strong>secticides, one<br />

of the fi rst studies of this type.


Histoire de l’entomologie en Equateur<br />

Levi-Castillo’s major contribution as entomologist<br />

was the detailed study of South American Anophel<strong>in</strong>ae.<br />

His worked <strong>in</strong> the areas of taxonomy, systematics,<br />

biology, zoogeography, ecology, <strong>and</strong> control of this group<br />

of mosquitoes (Leví-Castillo 1953, Leví-Castillo 1949,<br />

Leví-Castillo 1947, Levi-Castillo 1945, Levi-Castillo<br />

1944d). He experimented on the possible natural<br />

control of malaria vectors <strong>and</strong> published <strong>in</strong> highly rated<br />

<strong>in</strong>ternational research journals (Levi-Castillo 1944c).<br />

His publications have been cited worldwide <strong>and</strong> <strong>in</strong><br />

recognition, Dr. João Lane (University of São Paulo)<br />

named a Culex species <strong>in</strong> his honor (C. levicastillo Lane<br />

1945). He also wrote about environmental problems<br />

<strong>and</strong> consequences caused by human perturbation of<br />

the environment. He was a pioneer <strong>in</strong> conservation<br />

th<strong>in</strong>k<strong>in</strong>g. In 1962 he renounced entomological research<br />

because of a strike at the University of Guayaquil which<br />

destroyed his hopes of tra<strong>in</strong><strong>in</strong>g young entomologists.<br />

He said “I understood that my <strong>in</strong>tellect was <strong>in</strong> advance<br />

Figure 8<br />

Giovanni Onore (R. Cárdenas).<br />

compared to the <strong>Ecuador</strong>ian academic environment,<br />

<strong>and</strong> that entomology could not be my way of life <strong>in</strong> a<br />

country where there were not the economic resources to<br />

fi nance so many diversifi ed study-fi elds […] I sold my<br />

laboratory equipment <strong>and</strong> burned my books to defi nitely<br />

ab<strong>and</strong>on what sometime fi lled me with joy <strong>and</strong> illusions<br />

to give the chance to other challenges; look<strong>in</strong>g for these, I<br />

found <strong>in</strong> stamp collect<strong>in</strong>g, a new horizon”. S<strong>in</strong>ce then<br />

he has stood out as one of the best <strong>Ecuador</strong>ian stampcollectors<br />

(Perez Pimentel 1994).<br />

Agricultural entomology<br />

In 1959, the government of <strong>Ecuador</strong> created<br />

INIAP (Instituto Autónomo de Investigaciones<br />

Agropecuarias). Th is <strong>in</strong>stitution prioritized scientifi c<br />

research as the foundation of agricultural development<br />

<strong>in</strong> <strong>Ecuador</strong> (www.<strong>in</strong>iap-ecuador.gov.ec). Many<br />

agricultural eng<strong>in</strong>eers that work there studied<br />

agricultural entomology <strong>in</strong> Europe, United States, <strong>and</strong><br />

other Lat<strong>in</strong> American countries. Th e collaboration<br />

of countries such as the United States assisted the<br />

development of agricultural entomology <strong>in</strong> <strong>Ecuador</strong>.<br />

Th e agricultural eng<strong>in</strong>eer, Gualberto Mer<strong>in</strong>o, was<br />

one of the pioneers of agricultural entomology research<br />

(Mer<strong>in</strong>o & Vázquez 1959). He started his work at the<br />

M<strong>in</strong>isterio de Agricultura <strong>in</strong> an eff ort to control the pest<br />

grasshopper Schistocerca sp. (Orthoptera: Acrididae) <strong>in</strong><br />

the prov<strong>in</strong>ces of Loja <strong>and</strong> El Oro <strong>in</strong> southern <strong>Ecuador</strong><br />

<strong>in</strong> 1945 <strong>and</strong> 1946. He used fl ame throwers at night<br />

to try to destroy the grasshoppers <strong>in</strong> their noctural<br />

refuges. Th is work was cont<strong>in</strong>ued for two years without<br />

results until an undeterm<strong>in</strong>ed pathogen reduced the<br />

population of grasshoppers, caus<strong>in</strong>g foul odors due to<br />

the decomposition of millions of dead <strong>in</strong>sects (Mer<strong>in</strong>o,<br />

pers. com.).<br />

Mer<strong>in</strong>o <strong>and</strong> his collaborators published more than<br />

47 papers about diff erent crop pests <strong>in</strong> <strong>Ecuador</strong> (Mer<strong>in</strong>o<br />

2003). In the late 1940’s, <strong>Ecuador</strong> started to import<br />

synthetic <strong>in</strong>secticides for pest control, <strong>in</strong>clud<strong>in</strong>g DDT.<br />

Th ese <strong>in</strong>secticides were broadly used <strong>in</strong> erradication<br />

programs for agricultural pests, diseases vectors, <strong>and</strong> <strong>in</strong><br />

schools to elim<strong>in</strong>ate head lice on children. Th at period<br />

is known as the “green revolution” [Th e term “Green<br />

Revolution” generally referes to the use of improved<br />

varieties, fertilizer, irrigation <strong>and</strong> pesticides, but not<br />

pesticides <strong>in</strong> particular, that resulted <strong>in</strong> dramatic<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong> agricultural productivity. Th is most<br />

evident <strong>in</strong> <strong>Ecuador</strong> <strong>in</strong> the production of rice which<br />

benefi ted from improved varieties from IRRI] (Mer<strong>in</strong>o<br />

& Hern<strong>and</strong>ez 1959; Mer<strong>in</strong>o & Vázquez 1960; Edwards<br />

2004). It is important to emphasize the support of the<br />

Servicio Cooperativo Interamericano de Agricultura<br />

<strong>and</strong> the scientist, Harold Yust (1958) who made the<br />

419


fi rst <strong>in</strong>ventory of <strong>Ecuador</strong>ian agricultural pests.<br />

Th e control of pests with IPM techniques arrived<br />

late <strong>in</strong> <strong>Ecuador</strong> with replicas of experiences of other<br />

countries. Julio Mol<strong>in</strong>eros was a pioneer <strong>in</strong> research<br />

on fruit fl ies (Diptera:Tephritidae) (Mol<strong>in</strong>eros et<br />

al. 1992) <strong>and</strong> was responsible for the <strong>in</strong>troduction<br />

of Rodolia card<strong>in</strong>alis (Muslant 1850) (Coleoptera:<br />

Cocc<strong>in</strong>ellidae) for control of Icerya purchasi (Maskel<br />

1878), (Hemiptera: Margarodidae), a major pest of<br />

[crop] <strong>in</strong> <strong>Ecuador</strong>.<br />

Museums of Natural History<br />

Th e Museo Nacional de Ciencias Naturales was<br />

created <strong>in</strong> 1978 <strong>and</strong> was <strong>in</strong>itially directed by the<br />

eng<strong>in</strong>eer Moreno who gave to the Museum his collection<br />

of Molusca <strong>and</strong> Lepidoptera. Th e objectives of the<br />

National Museum are the <strong>in</strong>ventory <strong>and</strong> classifi cation<br />

of the fauna <strong>and</strong> fl ora <strong>and</strong> the exhibition <strong>and</strong> diff usion<br />

of knowledge of <strong>Ecuador</strong>’s biodiversity (see www.<br />

mecn.gov.ec). Th e collections at this museum have<br />

been acquired from national or foreign collectors. One<br />

of the important collection is the moths (Lepidoptera)<br />

that belonged to Th ierry Porion. Today the museum<br />

collaborates <strong>in</strong> research with several museums <strong>and</strong><br />

universities overseas, <strong>and</strong> generates its own projects <strong>in</strong><br />

several entomological taxa (Venedictoff & Herbulot<br />

1980).<br />

Th e Museo de la Escuela Politécnica Nacional,<br />

directed by the <strong>Ecuador</strong>ian zoologist Professor Gustavo<br />

Orcés, created a section devoted to entomology at the<br />

end of the 1980’s. Th is museum has an important<br />

collection that is available to the public. One of the<br />

outst<strong>and</strong><strong>in</strong>g researchers that have <strong>in</strong>creased the number<br />

of specimens <strong>in</strong> that collection is Terry Erw<strong>in</strong> of the<br />

Smithsonian Institution who works with the personnel<br />

from that museum. Erw<strong>in</strong> <strong>and</strong> his collaborators have<br />

deposited a large number of <strong>in</strong>sects collected from the<br />

canopy of trees of the <strong>Ecuador</strong>ian Amazon (Shpeley<br />

& Araujo 1997; Erw<strong>in</strong> 2000; Lucky et al. 2002). Th e<br />

collection has more than 10,000 dry <strong>in</strong>vertebrate<br />

specimens <strong>and</strong> 1,600 <strong>in</strong>vertebrate specimens <strong>in</strong> alcohol.<br />

Th e majority of these specimens has been collected by<br />

pesticide fogg<strong>in</strong>g of tree canopies.<br />

Creation of the Museum of Zoology at the<br />

Pontifical Catholic University of <strong>Ecuador</strong><br />

Giovanni Onore arrived <strong>in</strong> <strong>Ecuador</strong> from Italy <strong>in</strong><br />

1980 (Fig. 8). Onore is a Marianist missionary who<br />

worked <strong>in</strong> the Popular Republic of Congo for a decade<br />

strengthen<strong>in</strong>g agricultural production systems where<br />

<strong>in</strong>sect pests were one of his priorities (Onore 1980,<br />

Fabres et al. 1981) His fondness for <strong>in</strong>sects was evident<br />

s<strong>in</strong>ce he was very young, so Africa unveiled a world full<br />

420<br />

Á. R. Barragán, O. <strong>Dangles</strong>, R. E. Cárdenas & G. Onore<br />

of possibilities for research for him. He was a zoology<br />

professor at Brazzaville University (Jácome 2008).<br />

When he arrived <strong>in</strong> <strong>Ecuador</strong> he worked <strong>in</strong> the<br />

Cotopaxi prov<strong>in</strong>ce <strong>in</strong> education. In 1981, he started to<br />

teach <strong>in</strong>vertebrate zoology at the Pontifi cia Universidad<br />

Católica del <strong>Ecuador</strong> (PUCE). At PUCE he made one<br />

of the greatest contributions to entomology <strong>in</strong> <strong>Ecuador</strong>.<br />

He has published nearly 50 articles about <strong>Ecuador</strong>ian<br />

Figure 9<br />

Onorelucanus onorei Lacroix & Bartolozzi 1989 (A. Janeta).


Histoire de l’entomologie en Equateur<br />

<strong>in</strong>sects <strong>in</strong> forest entomology (Gara & Onore 1989,<br />

Onore & Maza 2003), agriculture entomology (Onore<br />

1986), biodiversity (Onore & Davidson 1990, Somme<br />

et al. 1996), ethnozoology (Onore 1997), history of<br />

entomology (Onore 2003), <strong>and</strong> taxonomic descriptions<br />

of new species (Bartolozzi et al. 1991, Onore 1993,<br />

Bartolozzi & Onore 1993, Pampligioni et al. 2002,<br />

Onore & Morón 2004, Bartolozzi & Onore 2006).<br />

Dur<strong>in</strong>g his time as a university professor, he supervised<br />

more than 60 bachelors thesis, all related to <strong>in</strong>sects (see<br />

<strong>Dangles</strong> et al. this issue). In recognition of his work,<br />

more than 150 <strong>in</strong>sects have been named <strong>in</strong> his honor<br />

such as Onorelucanus onorei Lacroix & Bartolozzi 1989<br />

(Coleoptera: Lucanidae) (Fig. 9).<br />

One of the most important contributions of Onore<br />

has been the creation of the, Invertebrate Division<br />

with<strong>in</strong> the Zoology Museum (QCAZ) at PUCE. Th is<br />

is a scientifi c collection that is the largest <strong>and</strong> most<br />

organized collection <strong>in</strong> <strong>Ecuador</strong>. It conta<strong>in</strong>s close to<br />

2 million specimens from all regions of <strong>Ecuador</strong> (see<br />

Donoso et al. this issue). A large number of those<br />

specimens were collected by Onore <strong>in</strong> his travels<br />

throughout <strong>Ecuador</strong>. A great number of specimens were<br />

collected by his students that were assigned to prepare<br />

a scientifi c <strong>in</strong>sect collection for the entomology class.<br />

Th is Museum is recognized <strong>in</strong>ternationally <strong>and</strong> has<br />

contact with the most important museums world-wide<br />

such as Staatliches Museum für Tierkunde Dresden<br />

(SMTD), Museum für Naturkunde der Humbolt<br />

Universitat Berl<strong>in</strong> (ZMHB), Universidad Nacional<br />

de La Plata (MLPA), Institut Royal des Sciences<br />

Naturelles de Belgique (ISNB), Canadian National<br />

Collection of Insects Ottawa (CNCI), Muséum<br />

National d`Histoire Naturelle, Paris (MNHN),<br />

Museo Zoologico La Specola Florencia (MZUF),<br />

Museo Regionale Scienze Naturali Tor<strong>in</strong>o (MRSN),<br />

Museum d`Histoire Naturelle Genève (MHNG),<br />

Th e Natural History Museum London (BMNH),<br />

Los Angeles County Museum of Natural History Los<br />

Angeles (LACM), California Academy of Sciences<br />

San Francisco (CASC), Florida State Collection of<br />

Arthropods Ga<strong>in</strong>esville (FSCA), Carnegie Museum<br />

of Natral History Pittsburg (CMNH), University of<br />

Nebraska L<strong>in</strong>coln (UNSM), American Museum of<br />

Natural History New York (AMNH), Smithsonian<br />

Institution Wash<strong>in</strong>gton (USNM) (Onore 2003). Th e<br />

active exchange of specimens <strong>and</strong> <strong>in</strong>formation that has<br />

contributed to <strong>in</strong>crease the knowledge of entomology<br />

<strong>in</strong> the country. Onore currently is the director of the<br />

Fundación Otonga, a private reserve <strong>in</strong> the cloud forest<br />

of <strong>Ecuador</strong> dedicated to conservation of this important<br />

habitat.<br />

Acknowledgements. Th e authors would like to thank the General<br />

Academic Direction of the Catholic University of <strong>Ecuador</strong> for<br />

the support granted to our research. We are grateful to Laura<br />

Arcos <strong>and</strong> Mercedes Rodrigues Riglos for their adm<strong>in</strong>istrative<br />

support. We express our gratitude to Gualberto Mer<strong>in</strong>o for his<br />

comments on agricultural entomology. Th anks to Aura Paucar-<br />

Cabrera for translat<strong>in</strong>g <strong>and</strong> review<strong>in</strong>g the English version of<br />

the manuscript <strong>and</strong> for her helpful comments. Th anks to<br />

Estel<strong>in</strong>a Qu<strong>in</strong>tana at the Reserva Arqueológica de la Dirección<br />

Cultural del Banco Central del <strong>Ecuador</strong> for permission to take<br />

the photographs. Also thanks to Carmen Ulloa for her help<br />

gather<strong>in</strong>g some of the fi gures <strong>in</strong>cluded <strong>in</strong> this manuscript <strong>and</strong><br />

to Alej<strong>and</strong>ro Janeta for his photographs. Special thanks to the<br />

members of the QCAZ Museum.<br />

References<br />

Acosta–Solís M. 1977. Investigadores de la geografía y la naturaleza de<br />

América tropical. Biblioteca <strong>Ecuador</strong>, Quito, 201 p.<br />

Barragán A., Carpio C. 2008. Plantas como alimento de <strong>in</strong>vertebrados<br />

útiles, p. 76-79 <strong>in</strong>: De la Torre L., Navarrete H., Muriel P., Macías<br />

M. J., Baslev H. (eds.), Enciclopedia de las Plantas Útiles del <strong>Ecuador</strong>.<br />

Herbario QCA & Herbario AAU, Quito & Aarhus.<br />

Bartolozzi L., Bomans H. E., Onore G. 1991. Contributo alla conoscenza<br />

dei Lucanidae dell’ <strong>Ecuador</strong> (Insecta: Coleoptera). Frustula entomologica<br />

14(27): 143-246.<br />

Bartolozzi L., Onore G. 1993. Observations of the biology <strong>and</strong> behaviour<br />

of Sphaenognathus oberon Krieshe (Coleoptera: Lucanidae). Scientifi c<br />

note. Th e Coleopterist Bullet<strong>in</strong> 47: 128-129.<br />

Bartolozzi L., Onore G. 2006. Sphaenognathus (Chiasognath<strong>in</strong>us)<br />

xerophilus sp.n. from Peru (Coleoptera: Lucanidae). Koleopterologische<br />

Rundschau 76: 361-365.<br />

Bates H. W. 1891. Coleoptera, p. 7-39 <strong>in</strong>: Whymper E. Supplementary<br />

appendix to travels amongst the great Andes of the Equator. John Murray,<br />

London, UK.<br />

Beutelspacher C. 1989. Mariposas entre los antiguos mexicanos. Fondo de<br />

cultura económica. 1st Edition, México, 104 p.<br />

Boula<strong>in</strong>e J. 1995. Jean-Baptiste Bouss<strong>in</strong>gault chez Bolivar en Nouvelle-<br />

Grenade, 1822-1832, p. 331-336 <strong>in</strong>: Laissus Y. (ed.), Les Naturalistes<br />

français en Amérique du Sud, XVIe-XIXe siècles. 118 e Congrès national<br />

des sociétés historiques et scientifi ques, Section d´histoire des sciences,<br />

CTHS, Paris.<br />

Cabodevilla M. 1998. El gran viaje. Jiménez de la Espada M., Francisco de<br />

Paula Martínez, Manuel Almagro. Editorial Abya-Yala, Quito-<strong>Ecuador</strong>,<br />

250 p.<br />

Campos F. 1921. Estudios sobre la fauna entomológica del <strong>Ecuador</strong>.<br />

Coleópteros. Revista del Colegio Nacional Vicente Rocafuerte 6: 26-106.<br />

Campos F. 1930. Contribución al estudio de los esfíngidos, p. 170-176 <strong>in</strong>:<br />

Memorias del II Congreso Médico Ecuatoriano. Reunido en la Ciudad de<br />

Guayaquil del 9 al 12 de Octubre de 1930, Jouv<strong>in</strong>, <strong>Ecuador</strong>.<br />

Campos F. 1932. Estudios sobre una pequeña colección de <strong>in</strong>sectos de<br />

Puná Vieja y archipiélago de Galápagos. Revista del Colegio Nacional<br />

Vicente Rocafuerte: 9-14.<br />

Cicala M. 2004. Descripción histórico física de la prov<strong>in</strong>cia de Quito de la<br />

compañía de Jesús. Tomo II. [Traducido del orig<strong>in</strong>al italiano por Bravo J.],<br />

Biblioteca Ecuatoriana “Aurelio Esp<strong>in</strong>osa Pólit”, Quito, <strong>Ecuador</strong>, 671 p.<br />

Cum<strong>in</strong>s T., Burgos J., Mora C. 1996. Arte prehispánico del <strong>Ecuador</strong>.<br />

Huellas del pasado. Los sellos de Jama-Coaque. Misceláneas antropológica<br />

ecuatoriana. Serie Monográfi ca 11. Banco Central del <strong>Ecuador</strong>, Quito,<br />

<strong>Ecuador</strong>, 254 p.<br />

<strong>Dangles</strong> O., Barragán A., Cárdenas R. E., Onore G., Keil C. 2008.<br />

<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>: <strong>Recent</strong> <strong>developments</strong> <strong>and</strong> futures challenges.<br />

Annales de la Société entomologique de France (n. s.) 45(4): 424-436.<br />

421


Darw<strong>in</strong> C. 1985. El origen de las especies. Editorial EDAF, S.A, Madrid-<br />

España, 501 p.<br />

Darw<strong>in</strong> C. 1989. Th e Voyage of the Beagle. London Pengu<strong>in</strong> Classics<br />

Paperback Repr<strong>in</strong>t, 8vo.XI. London, 432 p.<br />

Donoso D., Salazar F., Maza F., Cárdenas R., <strong>Dangles</strong> O. 2009. Diversity<br />

<strong>and</strong> distribution of types specimens deposited <strong>in</strong> the Invertebrate<br />

section of the Museum of Zoology QCAZ, Quito, <strong>Ecuador</strong>. Annales de<br />

la Société entomologique de France (n. s.) 45(4): 437-454.<br />

Duckworth W. D., Eichl<strong>in</strong> T. D. 1978. Th e Type-material of Central <strong>and</strong><br />

South American Clearw<strong>in</strong>g Moths (Lepidoptera: Sesiidae). Smithsonian<br />

Contribution to Zoology 261: 1-28.<br />

Edwards J. G. 2004. DDT. A case study <strong>in</strong> scientifi c fraud. Journal of<br />

American Physicians <strong>and</strong> Surgeons 9(3): 83-89.<br />

Erw<strong>in</strong> T. L. 2000. Arboreal beetles of neotropical forests: Taxonomic<br />

supplement for the Agra virgata <strong>and</strong> Ohausi groups with a new species<br />

<strong>and</strong> additional distribution records (Coleoptera: Carabidae). Th e<br />

Coleopterists Bullet<strong>in</strong> 54(2): 251-262.<br />

Fabres G., Onore G., Nkouka E. 1981. Éléments d’un <strong>in</strong>ventaire pour<br />

l’identifi cation des <strong>in</strong>sectes vecteurs de la bactériose vasculaire. Cahiers<br />

de l’ORSTOM 44(1): 9-10.<br />

Festa E. 1993. Nel Darien e nell´<strong>Ecuador</strong>. Unione Tip. Editrice Tor<strong>in</strong>ese,<br />

Tor<strong>in</strong>o, Italia. 429 p.<br />

Gara R., Onore G. 1989. Entomología forestal. M<strong>in</strong>isterio de Agricultura y<br />

Ganadería. Proyecto DINAF_AID. Quito, <strong>Ecuador</strong>, 267 p.<br />

Hogue C. L. 1993. Lat<strong>in</strong> American Insects <strong>and</strong> <strong>Entomology</strong>. University of<br />

California Press. Los Angeles, California, USA, 536 p.<br />

Jácome C. 2008. La vida de Giovanni Onore. El héroe nunca cantado.<br />

Fundación Otonga. <strong>Ecuador</strong>, 177 p.<br />

Lane J. 1945. Quatro especies novas de Culex da regiao neotropica. Revista<br />

de Entomologia 16(1-2): 204-209.<br />

León L. A. 1957. Leishmanias y Leishmaniasis. Editorial Universitaria,<br />

Quito, <strong>Ecuador</strong>, 116 p.<br />

Leví-Castillo R. 1943. Importancia sanitaria del control biológico de los<br />

mosquitos. Evolución histórica de los métodos de lucha antimosquito.<br />

Boletín. Del Instituto Botánico de la Universidad Central [Quito] 2(3-4):<br />

129-158.<br />

Leví-Castillo R. 1944a. El complejo Pseudopunctipennis en el <strong>Ecuador</strong><br />

(Diptera:Culicidae). Universidad de Guayaquil. Sept 28: 1-7.<br />

Leví-Castillo R. 1944b. La <strong>in</strong>fl uencia de los ferrocarriles para la difusión<br />

de los mosquitos. La Prensa 21 (6 128): 3.<br />

Leví-Castillo R. 1944c. Th e possible role of Chara fragilis <strong>in</strong> mosquito<br />

control. Science 100 (2595): 266.<br />

Leví-Castillo R. 1944d. Estudios sobre los Anofel<strong>in</strong>os de la región del Milagro.<br />

Revista de la Asociación de Escuela de Ciencias Químicas 3(1): 1-10.<br />

Leví-Castillo R. 1945. Anopheles psedudopunctipennis <strong>in</strong> the los Chillos<br />

Valley of <strong>Ecuador</strong>. Journal of Economic <strong>Entomology</strong> 38: 385-388.<br />

Leví-Castillo R. 1947. Une revue des Anopheles de l´Equateur. Revue du<br />

Paludisme et de Médec<strong>in</strong>e Tropicale (Paris) 4(29): 237-239.<br />

Leví -Castillo R. 1949. Atlas de los Anophel<strong>in</strong>os Sudamericanos. Tipografía<br />

de la Sociedad Filantrópica del Guayas 1(1): 5-207.<br />

Leví-Castillo R. 1953. Dos especies nuevas de mosquitos ecuatorianos<br />

(Diptera-Culicidae) Revista Ecuatoriana de Entomología y Parasitología<br />

1(1): 14-18.<br />

López-Ocón L. 2003. La comisión científi ca del pacífi co: de la ciencia<br />

imperial a la ciencia Federativa. Boletín del Instituto Francés de Estudios<br />

And<strong>in</strong>os 32(3): 479-515.<br />

Lovell R. 1864. Portraits of men of em<strong>in</strong>ence <strong>in</strong> Literature, Sciences, <strong>and</strong><br />

Art, with Biographical Memoirs. Vol 2. Lovell Reeve & Co, London,<br />

UK, 220 p.<br />

Lucky A., Erw<strong>in</strong> T. L., Witman J. D. 2002. Temporal <strong>and</strong> spatial diversity<br />

<strong>and</strong> distribution of arboreal Carabidae (Coleoptera) <strong>in</strong> a western<br />

Amazonian ra<strong>in</strong> forest. Biotropica 34: 376-386.<br />

422<br />

Á. R. Barragán, O. <strong>Dangles</strong>, R. E. Cárdenas & G. Onore<br />

Machado-Allison C. E. 2004. Historia de la entomología médica.<br />

Entomotropica 19(2): 65-77.<br />

Medeiros Costa-Neto E. 2007. Fulgora laternaria L. 1758 (Hemiptera:<br />

Fulgoridae) na concepçao dos moradores do povoado de Pedra Branca,<br />

Santa Terez<strong>in</strong>ha, Bahia, Brazil. Revista de Ciências Ambientais, Canoas<br />

1(1): 35-56.<br />

Melic A. 2003. De los jeroglífi cos a los tebeos: Los artrópodos en la cultura.<br />

Boletín de la Sociedad Entomológica Aragonesa 32: 325-357.<br />

Mer<strong>in</strong>o G. 2003. Identifi cación científi ca, <strong>in</strong>vestigaciones y observaciones sobre<br />

algunos <strong>in</strong>sectos del <strong>Ecuador</strong>. Ediciones Abya-Yala, Quito, <strong>Ecuador</strong>, 118 p.<br />

Mer<strong>in</strong>o G., Vázquez V. 1959. Combate del ácaro del duraznero, Tetranichus<br />

telarius (L.) mediante acaricidas en <strong>Ecuador</strong>. Turrialba 9(2):51-53.<br />

Mer<strong>in</strong>o G., Hernández D. 1959. Efecto del toxafeno en el combate<br />

de la oruga peluda de la hoja de banano, Ceramidia viridis (Druce)<br />

(Lepidoptera: Amatidae). Turrialba 9(4):123-126.<br />

Mer<strong>in</strong>o G., Vázquez V. 1960. Campaña química contra el picudo del<br />

tubérculo de la papa. Premnotrypes vorax (Hust.). Ciencia y naturaleza<br />

3(2-3): 116-121.<br />

Mol<strong>in</strong>eros J., Tigrero J. O., S<strong>and</strong>oval G. 1992. Diagnostico de la situación<br />

actual del problema de las moscas de la fruta en el <strong>Ecuador</strong>. Comisión ecuatoriana<br />

de energía atómica, dirección de <strong>in</strong>vestigaciones, Quito, 53 p.<br />

Moret P. 2005. Los coleópteros Carabidae del páramo en los Andes del <strong>Ecuador</strong>.<br />

Sistemática, ecología y biogeografía. Museo de Zoología, Centro de<br />

Biodiversidad y Ambiente, Escuela de Biología. Pontifi cia Universidad<br />

Católica del <strong>Ecuador</strong>. Gruppo Editoriale Il Capitello, Italia, 307 p.<br />

Onore G. 1980. Recherches prélim<strong>in</strong>aires sur les céto<strong>in</strong>es de la région<br />

de Dimonika. Brazzaville. Notes du Département de Biologie Animale,<br />

Faculté des Sciences, Université Marien NGOUABI, Brazzaville, Congo<br />

1: 1-9.<br />

Onore G. 1986. Entomofauna asociada a la palma africana (Elaeis<br />

gu<strong>in</strong>eensis). Sanidad Vegetal, Quito 1(1): 111-116.<br />

Onore G., Davidson R. L. 1990. Notes on the Morion<strong>in</strong>i (Coleoptera:<br />

Carabidae) of <strong>Ecuador</strong>. Th e Coleopterists Bullet<strong>in</strong> 44(2):216.<br />

Onore G. 1993. Description of the immature stage of six species of<br />

Sphaenognathus with comparative notes on phylogeny <strong>and</strong> natural<br />

history (Insecta: Coleoptera: Lucanidae). Annals of Carnegie Museum<br />

63(1): 77-99.<br />

Onore G. 1997. Edible <strong>in</strong>sects <strong>in</strong> <strong>Ecuador</strong>. Ecology of food <strong>and</strong> nutrition<br />

36(2-4): 277-285.<br />

Onore G. 2003. Historia de la escarabaeidología en el <strong>Ecuador</strong>, p 9-14 <strong>in</strong>:<br />

Melic A. (ed.) Escarababeidos de Lat<strong>in</strong>oamérica: Estado del conocimiento,<br />

Vol 3. Monografías Tercer Milenio, Zaragoza, España.<br />

Onore G., Maza F. 2003. Notas biológicas sobre Phoracantha semipunctata<br />

(Coleoptera: Cerambycidae) y entomofauna asociada al género<br />

Eucalyptus (Myrtaceae) en el <strong>Ecuador</strong>. Revista PUCE 71(9): 61-77.<br />

Onore G., Morón M.A. 2004. Dynastes neptunus Quenzel (Coleoptera:<br />

Scarabaeidae: Dynast<strong>in</strong>ae); Descriptions of the third <strong>in</strong>star larva <strong>and</strong><br />

pupa, with notes on biology. Th e Coleopterists Bullet<strong>in</strong> 58(1):103-110.<br />

Onore G., Bartolozzi L. 2008. Description of the larvae of Sphaenognathus<br />

(Chiasognath<strong>in</strong>us) gaujoni (Oberthur, 1885) <strong>and</strong> S. (C.) xerophilus<br />

Bartolozzi & Onore, 2006 (Coleptera: Lucanidae), with observations<br />

about their altitud<strong>in</strong>al range extension. Biodiversity of South America,<br />

I, World Biodiversity Association onlus, Verona, Italy. Memoirs on<br />

Biodiversity 1: 399-406.<br />

Osculati G. 1854. Exploraciones de las regiones ecuatoriales a través del Napo<br />

y de los ríos de la amazonía. [Traducción del orig<strong>in</strong>al en el 2000]. Abya-<br />

Yala, Quito, <strong>Ecuador</strong>, 291 p.<br />

Pampiglione S., Trent<strong>in</strong>i M., Fioravanti M. L., Onore G., Rivasi F.<br />

2002. A new species of Tunga (Insecta, Siphonaptera) <strong>in</strong> <strong>Ecuador</strong>.<br />

Parasitologia 44 (1): 127.


Histoire de l’entomologie en Equateur<br />

Papavero N. 1971. Essays on the history of Neotropical Dipterology, with<br />

special reference to collectors (1750-1905). Museo de Zoologia de la<br />

Universidad de Sao Paulo 1: 1-216.<br />

Papavero N., Llorente- Bousquets J., Schrocchi G., Esp<strong>in</strong>osa Organista<br />

D. 1995. Historia de la biología comparada desde el génesis hasta el siglo<br />

de las luces. UNAM, México, 242 p.<br />

Papavero N. 1973. Essays on the history of Neotropical Dipterology, with<br />

special references to collectors (1750-1905). Museo de Zoología de la<br />

Universidad de Sao Paulo 2: 217- 446.<br />

Peck S. B. 2001. Smaller orders of <strong>in</strong>sects of the Galápagos Isl<strong>and</strong>s, <strong>Ecuador</strong>:<br />

Evolution, Ecology <strong>and</strong> Diversity. National Research Council. Research<br />

Press, Canada, 278 p.<br />

Pérez Pimentel R. 1994. Roberto Leví-Castillo, p. 189-193 <strong>in</strong>: Fondo de<br />

Cultura. Banco Central del <strong>Ecuador</strong> (Ed.), Diccionario Biográfi co<br />

<strong>Ecuador</strong>. Guayaquil, <strong>Ecuador</strong>.<br />

Rodas G. 2003. J. De Moraiville y el Primer Dibujo Universal de la Qu<strong>in</strong>a<br />

o Cascarilla. Bullet<strong>in</strong> de L´Institut Français d´Etudes And<strong>in</strong>es 32(3):<br />

431-440.<br />

Rodríguez J. D. 1950. Los Phlebotomus del <strong>Ecuador</strong> (Diptera: Psychodidae)<br />

1. Consideraciones generales. Descripción de una nueva especie.<br />

Revista Ecuatoriana De Higiene y Medic<strong>in</strong>a Tropica 7(3-4): 20-29.<br />

Rodríguez J. D. 1952a. Notas adicionales sobre la especie ecuatoriana<br />

Phlebotomus (Presatia) camposi Rodríguez. Revista Ecuatoriana De<br />

Higiene y Medic<strong>in</strong>a Tropical 1(2): 91-96.<br />

Rodríguez J. D. 1952b. Los Phlebotomus del <strong>Ecuador</strong> (Diptera:<br />

Psychodidae) II. Revisión de conocimientos. Revista Ecuatoriana De<br />

Higiene y Medic<strong>in</strong>a Tropical 8-9(1-4): 15-18.<br />

Rodríguez J. D. 1953a. Observación de P.dysponetus (sic) Fairchild y<br />

Hertig, 1952. Revista Ecuatoriana De Higiene y Medic<strong>in</strong>a Tropical<br />

10: 25-26.<br />

Rodríguez J. D. 1953b. Los Phlebotomus del <strong>Ecuador</strong> (Diptera: Psychodidae).<br />

Revista Ecuatoriana De Higiene y Medic<strong>in</strong>a Tropical 10:51-55.<br />

Rodríguez J. D. 1956. Los Phlebotomus del <strong>Ecuador</strong> (Diptera: Psychodidae).<br />

Revista Ecuatoriana De Higiene y Medic<strong>in</strong>a Tropical 13:75-80.<br />

Santos Mazorra C. M., 1994. Catálogo de los <strong>in</strong>sectos recolectados por la<br />

Comisión Científi ca del Pacífi co (1862-1865). Museo Nacional de<br />

Ciencias Naturales - CSIC, Madrid, 196 p.<br />

Shpeley D., Araujo P. 1997. Euchro<strong>in</strong>a from <strong>Ecuador</strong>: A New Species,<br />

Euchroa onkonegare, <strong>and</strong> a new locality record for Trichonilla nigra<br />

Straneo (Coleoptera: Carabidae: Pterostich<strong>in</strong>i). Th e Coleopterists<br />

Bullet<strong>in</strong> 51(4): 400-405.<br />

Schluter D. 2001. Ecology <strong>and</strong> the orig<strong>in</strong> of species. Trends <strong>in</strong> Ecology &<br />

Evolution 16: 372-380.<br />

Smith A. B. T., Paucar A. 2000. Taxonomic review of Platycoelia lutescens<br />

(Scarabaeidae: Rutel<strong>in</strong>ae: Anoplognath<strong>in</strong>i) <strong>and</strong> description of its use as<br />

food by the people of <strong>Ecuador</strong>ian highl<strong>and</strong>s. Annals of the Entomological<br />

Society of America 93:408-414.<br />

Somme L., Davidson R. L., Onore G. 1996. Adaptations of <strong>in</strong>sects at high<br />

altitudes of Chimborazo, <strong>Ecuador</strong>. European Journal of <strong>Entomology</strong><br />

93: 313-318.<br />

Surcouf J. M. R. 1919. Brachycères piqueurs (Tabanidae), p. 217-233<br />

<strong>in</strong>: Académie des Sciences (Ed.), Mission du Service Géographique de<br />

l‘armée pour la mesure d‘un Arc de Méridien Équatorial en Amérique<br />

du Sud,Tome 10 (Entomologie, Botanique), Fascicule 2 (Opiliones.<br />

Diptères. Myriapodes). Gauthier-Villars et Cie, Paris.<br />

Us<strong>in</strong>ger R. L. 1972. Robert Leslie Us<strong>in</strong>ger: autobiography of an<br />

entomologist. Memoires of the Pacifi c Coast Entomological Society<br />

4: 330.<br />

Vaurie P. 1969.Th e other sex of Metamasius spurious <strong>and</strong> extensions of<br />

range of the genus (Coleoptera: Curculionidae). Th e Coleopterist<br />

Bullet<strong>in</strong> 23(4):108-109.<br />

Velasco J. 1946. Historia del re<strong>in</strong>o de Quito en la América meridional. Tomo<br />

I, La Historia Natural. Editorial El Comercio, Quito, 304 p.<br />

Venedictoff N., Herbulot C. 1980. Acerca de museos entomológicos y<br />

un nuevo betulodes del <strong>Ecuador</strong> (Betulodes morenoi n. sp.). Sociedad<br />

Ecuatoriana “Francisco Campos” de Amigos de la Naturaleza. <strong>Ecuador</strong><br />

3: 16-24.<br />

Wiley E. O. 1988. Vicariance biogeography. Annual Review of Ecology <strong>and</strong><br />

Systematic 19: 513-542.<br />

Whymper E. 1892. Travels amongst the great Andes of the Equator. John<br />

Murray, London, UK, 451 p.<br />

Yust H. R. 1958. Insect identifi cations made <strong>in</strong> <strong>Ecuador</strong> <strong>and</strong> key to collection.<br />

Servicio cooperativo <strong>in</strong>teramericano de agricultura, Centro audiovisual<br />

USOM <strong>Ecuador</strong>, Form 3, Quito, <strong>Ecuador</strong>, 290 p.<br />

423


ARTICLE<br />

<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>: <strong>Recent</strong> <strong>developments</strong><br />

<strong>and</strong> future challenges<br />

424<br />

Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 424-436<br />

<strong>Olivier</strong> <strong>Dangles</strong> (1),(2) , Álvaro Barragán (1) , Rafael E. Cárdenas (1) , Giovanni Onore (3) & Clifford Keil (1)<br />

E-mail: dangles@legs.cnrs-gif.fr<br />

Accepté le 2 avril 2009<br />

(1) Museo de Zoología QCAZ, Sección Invertebrados, Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Apartado 17-01-2184, Quito, <strong>Ecuador</strong><br />

(2) IRD-LEGS, University Paris-Sud 11, F-91190 Gif-sur-Yvette, France<br />

(3) Fundación Otonga, Apartado 17-03-1514A, Quito, <strong>Ecuador</strong><br />

Abstract. We review <strong>and</strong> analyze the recent development <strong>and</strong> future challenges fac<strong>in</strong>g entomology<br />

as a science <strong>in</strong> <strong>Ecuador</strong>, a country with limited fi nancial <strong>and</strong> human resources <strong>and</strong> numerous<br />

environmental problems. Taxonomic studies of the <strong>Ecuador</strong>ian <strong>in</strong>sect fauna have been well developed<br />

for only a few groups (e.g. Papilionoidea, Carabidae) <strong>and</strong> rema<strong>in</strong>s <strong>in</strong> its <strong>in</strong>fancy for most <strong>in</strong>sect orders.<br />

This is due to the huge diversity of species liv<strong>in</strong>g <strong>in</strong> a great diversity of habitats <strong>and</strong> the diffi culty to<br />

identify most species. There is a lack of published basic biological <strong>in</strong>formation <strong>and</strong> to a high rate of<br />

endemism of many groups, especially <strong>in</strong> the Andes. The development of ecological entomology as a<br />

formal discipl<strong>in</strong>e <strong>in</strong> <strong>Ecuador</strong> is a very recent phenomenon, <strong>and</strong> has been mostly limited to descriptive<br />

studies of the environmental factors that govern <strong>in</strong>sect diversity <strong>and</strong> abundance. We outl<strong>in</strong>e a set of<br />

research challenges regard<strong>in</strong>g the impact of global environmental changes on <strong>in</strong>sect communities <strong>and</strong><br />

habitats they live <strong>in</strong> <strong>and</strong> propose potential strategies for the development of entomology <strong>in</strong> <strong>Ecuador</strong>.<br />

Both basic <strong>and</strong> applied research will be important <strong>in</strong> this context as well as <strong>in</strong>ternational collaboration<br />

to strengthen the role of entomological science <strong>in</strong> decision mak<strong>in</strong>g processes <strong>in</strong> the country.<br />

Résumé. L’entomologie en Equateur : développements récents et futurs défi s. Cet article est une<br />

révision et une analyse des récentes avancées et des futurs challenges de l’entomologie en tant que<br />

science en Equateur, pays dont les ressources fi nancières et huma<strong>in</strong>es sont limitées et qui fait face à<br />

de nombreux problèmes environnementaux. La taxonomie de l’entomofaune d’Equateur a été étudiée<br />

en détail pour seulement quelques groupes (e.g. Papilionoidea, Carabidae) et reste fragmentaire<br />

pour la plupart des ordres d’<strong>in</strong>sectes. Ceci est lié à l’existence d’une très gr<strong>and</strong>e diversité d’espèces<br />

vivant dans une gr<strong>and</strong>e diversité d’habitats et de la diffi culté d’identifi er la plupart de celles-ci. A cela<br />

s’ajoutent un manque réel de données publiées sur la biologie de la plupart des espèces a<strong>in</strong>si qu’un<br />

fort taux d’endémisme de plusieurs groupes, notamment dans la région <strong>and</strong><strong>in</strong>e. Le développement<br />

de l’écologie entomologique en tant que discipl<strong>in</strong>e en Equateur est un phénomène très récent<br />

pr<strong>in</strong>cipalement restre<strong>in</strong>t à des études descriptives sur les facteurs environnementaux qui <strong>in</strong>fl uencent<br />

la diversité et l’abondance des <strong>in</strong>sectes. Nous présentons des thématiques de recherches d’enjeu<br />

pour les futures années, notamment en relation avec l’étude de l’impact des changements globaux<br />

sur les communautés d’<strong>in</strong>sectes et leurs habitats et nous proposons des stratégies pratiques pour<br />

le développement de l’entomologie en Equateur. Dans ce contexte, le développement comb<strong>in</strong>é de<br />

la recherche fondamentale et appliquée, si possible dans le cadre de collaborations <strong>in</strong>ternationales,<br />

permettra de renforcer le rôle de l’entomologie dans les processus de décision à l’échelle du pays.<br />

Keywords: Insect taxonomy, Ecology <strong>and</strong> evolution, Pests, Monitor<strong>in</strong>g, Global changes.<br />

The Neotropical region has long been recognized as<br />

support<strong>in</strong>g one of the highest levels of biological<br />

diversity <strong>in</strong> the world. Insects are particularly abundant<br />

<strong>and</strong> species rich <strong>in</strong> many Neotropical ecosystems, yet<br />

the extent of this diversity, the factors that govern its<br />

distribution <strong>and</strong> the degree of degradation as a result of<br />

anthropogenic changes are still <strong>in</strong>completely known.<br />

Th e wide diversity of habitats that <strong>Ecuador</strong> possesses <strong>in</strong><br />

a small area makes it an ideal location for biodiversity,<br />

ecological <strong>and</strong> evolutionary research. Although the<br />

diversity of many groups (e.g. plants, birds <strong>and</strong> frogs)<br />

has been the focus of numerous publications, data<br />

on the entomological fauna <strong>in</strong> <strong>Ecuador</strong> are still very<br />

<strong>in</strong>complete. In this paper, we aim to review <strong>and</strong> analyze<br />

recent <strong>developments</strong> <strong>and</strong> future challenges fac<strong>in</strong>g<br />

entomology as a science <strong>in</strong> <strong>Ecuador</strong>, a country with<br />

limited fi nancial <strong>and</strong> human resources <strong>and</strong> numerous<br />

environmental problems. It is not our goal to present<br />

a comprehensive review of every paper <strong>in</strong> entomology<br />

published on the <strong>Ecuador</strong>ian <strong>in</strong>sect fauna, but rather<br />

to cite studies, especially those published by, or <strong>in</strong><br />

collaboration with, <strong>Ecuador</strong>ian entomologists, that<br />

we have found especially important <strong>and</strong> reveal<strong>in</strong>g to<br />

illustrate the development of entomology as a science<br />

<strong>in</strong> <strong>Ecuador</strong>.


<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

Figure 1<br />

Digital elevation map of <strong>Ecuador</strong>, <strong>in</strong>clud<strong>in</strong>g Galápagos Isl<strong>and</strong>s. Color bar <strong>in</strong>dicates elevation range.<br />

<strong>Ecuador</strong>’s biogeographic zones<br />

Th e tropical Andes span more than 1.5 million<br />

km² from western Venezuela to northern Chile <strong>and</strong><br />

Argent<strong>in</strong>a, <strong>and</strong> <strong>in</strong>clude large portions of Colombia,<br />

<strong>Ecuador</strong>, Peru, <strong>and</strong> Bolivia. <strong>Ecuador</strong> is located <strong>in</strong><br />

the Northern part of the region, bordered by Peru <strong>in</strong><br />

the south <strong>and</strong> southeast, Colombia <strong>in</strong> the north <strong>and</strong><br />

northeast <strong>and</strong> the Pacifi c Ocean <strong>in</strong> the west. With<br />

an area of only 283.560 km², <strong>Ecuador</strong> is one of the<br />

smallest countries of South America. Th e great highs<br />

<strong>and</strong> lows of the Andes mounta<strong>in</strong> range (fi g. 1), with<br />

its snowcapped peaks, steep slopes, deep canyons,<br />

<strong>and</strong> isolated valleys, have led to the evolution of an<br />

amaz<strong>in</strong>g diversity of ecosystems, habitats <strong>and</strong> thus,<br />

species diversifi cation (Hughes & Eastwood 2006;<br />

Chaves et al. 2007; Ribas et al. 2007). <strong>Recent</strong> studies<br />

demonstrate that Andes uplift was separated by<br />

relatively long periods of stability (tens of millions of<br />

years), <strong>and</strong> by rapid changes of 1.5 Km or more <strong>in</strong><br />

relatively short periods of time (1 to 4 million years)<br />

(Garzione et al. 2008). Th is allowed the creation of new<br />

climatic <strong>and</strong> environmental niches <strong>in</strong> relatively short<br />

periods of times, <strong>and</strong> the adaptation of organisms to<br />

those habitats for long periods of time. Th e large variety<br />

<strong>and</strong> range of climatic regimes found <strong>in</strong> <strong>Ecuador</strong> have<br />

a major eff ect on the range of vegetation types that<br />

defi ne biogeographic zones (see Cárdenas et al., this<br />

issue). <strong>Ecuador</strong>’s territory is usually divided <strong>in</strong>to four<br />

ma<strong>in</strong> natural regions: the Amazonian lowl<strong>and</strong>s, the<br />

Andes, the Pacifi c coastal lowl<strong>and</strong>s <strong>and</strong> the Galápagos<br />

Isl<strong>and</strong>s (fi g. 1). We provide a short description of each<br />

region, which we th<strong>in</strong>k will guide the reader not only<br />

<strong>in</strong> this article, but also throughout the special issue.<br />

More details on the diff erent biogeographic zones can<br />

be found <strong>in</strong> Ron et al. (<strong>in</strong> press).<br />

Account<strong>in</strong>g for almost 40% of the total area of<br />

<strong>Ecuador</strong>, the Amazonian region gradually descends<br />

eastwards from the foothills of the Andes to altitudes<br />

of 200–400 m. Th e climate is tropical, humid <strong>and</strong><br />

aseasonal. Monthly mean precipitation is approximately<br />

2820 mm/ year with no month receiv<strong>in</strong>g less than<br />

100 mm of ra<strong>in</strong> (Valencia et al. 2004). Temperatures<br />

range from 22 °C (m<strong>in</strong>ima) to 32 °C (maxima). Th e<br />

absence of a prolonged dry season, together with<br />

warm temperatures throughout the year <strong>and</strong> a varied<br />

topography, make the region a hotspot of biodiversity<br />

(Myers et al. 2000). Th e only biogeographic region<br />

of this zone is the evergreen lowl<strong>and</strong> wet forest with<br />

a canopy mostly 15–30 m tall <strong>and</strong> emergent trees<br />

reach<strong>in</strong>g 50 m (fi g. 2A).<br />

Th e <strong>Ecuador</strong>ian Andes occupy the central third of<br />

<strong>Ecuador</strong> <strong>and</strong> are divided <strong>in</strong>to two ma<strong>in</strong> cordilleras,<br />

425


426<br />

O. <strong>Dangles</strong>, Á. Barragán, R. E. Cárdenas, G. Onore & C. Keil


<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

western <strong>and</strong> eastern. Transverse mounta<strong>in</strong> bridges<br />

<strong>in</strong>terconnect these two cordilleras form<strong>in</strong>g ten <strong>in</strong>ter-<br />

Andean bas<strong>in</strong>s with at least 30 peaks of volcanic<br />

orig<strong>in</strong> <strong>and</strong> 25 mounta<strong>in</strong>s above 4,500 m (Ron et al.<br />

<strong>in</strong> press). Th e cordillera exhibit precipitous elevation<br />

gradients with a complex topography which creates a<br />

l<strong>and</strong>scape with extreme climatic diff erences. Annual<br />

ra<strong>in</strong>fall varies between less than 500 mm <strong>in</strong> the dry<br />

<strong>in</strong>ter-Andean bas<strong>in</strong>s to above 6000 mm on the Eastern<br />

slope. Temperature varies as a function of elevation<br />

with small seasonal changes. Major biogeographic<br />

regions from East to West <strong>in</strong>clude Eastern foothill<br />

forest, Eastern montane forest (cloud forest), Páramo,<br />

Andean shrub, Western montane forest <strong>and</strong> Western<br />

foothill forest (fi gs. 2B, C, E).<br />

On the Western slope of the Andes, the Pacifi c coast<br />

conta<strong>in</strong>s lowl<strong>and</strong>s, river valleys, <strong>and</strong> a coastal cordillera<br />

with maximum elevations of 800–900 m. Natural<br />

ecosystems are dry scrub, deciduous forest, Chocó<br />

tropical forest, mangroves <strong>and</strong> Western montane forests<br />

at higher altitudes (ma<strong>in</strong>ly <strong>in</strong> Guayas <strong>and</strong> Esmeraldas<br />

prov<strong>in</strong>ces). Characterized as one of the wettest nonseasonal<br />

climates on Earth, the Chocó region is another<br />

of the top ten hotspots of biodiversity (Myers et al.<br />

2000), (fi g. 2F). Between the humid Chocoan forest<br />

<strong>and</strong> the dry Peruvian deserts, the dry coastal tropical<br />

forest is characterized by a North to South humidity<br />

gradient giv<strong>in</strong>g it a tremendous complexity of local<br />

climates <strong>and</strong> a great diversity of ecosystems (fi g. 2G).<br />

Th e Galápagos Archipelago comprises 12 large <strong>and</strong><br />

numerous smaller isl<strong>and</strong>s <strong>and</strong> exposed rocks that have<br />

a total area of about 8,000 km². All isl<strong>and</strong>s are oceanic<br />

<strong>and</strong> have never been connected to the cont<strong>in</strong>ent by<br />

any sort of l<strong>and</strong> bridge (Constant 2006). Located <strong>in</strong><br />

the Pacifi c Ocean approximately 1000 km west of the<br />

cont<strong>in</strong>ent, the Galápagos have a remarkably seasonal<br />

climate, largely <strong>in</strong>fl uenced by shifts <strong>in</strong> cool water<br />

masses orig<strong>in</strong>at<strong>in</strong>g from the South of Peru <strong>and</strong> warm<br />

water masses from the North (Kricher 2006). Large<br />

isl<strong>and</strong>s have an altitud<strong>in</strong>al gradient of vegetation types<br />

from arid <strong>and</strong> transitional forests <strong>in</strong> the lower parts<br />

to moist forest <strong>and</strong> fern-sedge zones <strong>in</strong> the higher<br />

Figure 2<br />

Photographs of some <strong>in</strong>sect rich-ecosystems of <strong>Ecuador</strong> A. Canopy view<br />

of the Amazonian tropical forest (Yasuni National Park, 300 m a.s.l.),<br />

B. High altitude grassl<strong>and</strong>s of páramo (Sangay National Park, 3600 m<br />

a.s.l.), C. Western montane forest (Yanacocha Reserve, 3200 m a.s.l.),<br />

D. Agricultural l<strong>and</strong>scape (Carchi Prov<strong>in</strong>ce, 2800 m a.s.l.), E. Tropical<br />

ra<strong>in</strong> forest (Misahuallí, 300 m a.s.l), F. Chocó evergreen forest (Can<strong>and</strong>e<br />

Reserve, 1200 m a.s.l.), G. Coastal dry forest (300 m. a.s.l.), H. Coastal<br />

mangroves <strong>and</strong> arid forest (Galápagos National Park). Photo credits: A-D,<br />

H: O. <strong>Dangles</strong>; E: M. Guerra-V.; F: R. E. Cárdenas; G: G. Ramón.<br />

elevations (Grant 1999, fi g. 2H). Th e volcanic orig<strong>in</strong><br />

of these isl<strong>and</strong>s, many of which still have highly active<br />

volcanoes, has resulted <strong>in</strong> celebrated levels of species<br />

diversifi cation <strong>and</strong> endemism (Kricher 2006).<br />

<strong>Recent</strong> advances <strong>in</strong> the entomological<br />

knowledge <strong>in</strong> <strong>Ecuador</strong><br />

Taxonomy <strong>and</strong> distribution<br />

S<strong>in</strong>ce the creation of the Invertebrate Section of the<br />

Museum of Zoology QCAZ of the Pontifi cal Catholic<br />

University of <strong>Ecuador</strong> (PUCE) <strong>in</strong> 1981 (see Barragán<br />

et al. this issue), <strong>in</strong>vestigations on entomology have<br />

focused ma<strong>in</strong>ly on the taxonomy <strong>and</strong> the biology of<br />

specifi c groups of <strong>in</strong>sects. As <strong>in</strong> many entomological<br />

museums, two taxonomic groups have been the focuses<br />

of <strong>in</strong>terest by both local <strong>and</strong> foreign entomological<br />

taxonomists: Lepidoptera <strong>and</strong> Coleoptera. Note that<br />

few other extensive entomological studies have been<br />

performed <strong>in</strong> specifi c regions of <strong>Ecuador</strong> such as<br />

the work by Peck (2001) on orders of <strong>in</strong>sects of the<br />

Galápagos Isl<strong>and</strong>s<br />

A database of <strong>Ecuador</strong>ian butterfl y diversity <strong>and</strong><br />

distribution has been developed by K. Willmott<br />

from the Florida Museum of Natural History <strong>and</strong> J.<br />

Hall from the National Museum of Natural History<br />

(onl<strong>in</strong>e access: http://www. butterfl iesofecuador.com). In<br />

addition to the <strong>in</strong>formation found on the “butterfl y<br />

of <strong>Ecuador</strong> website”, four monographs have been<br />

published on Lepidoptera genera (Piñas & Manzano<br />

1997), Arctiidae (Piñas & Manzano 2003a), Saturnidae<br />

(Piñas & Manzano 2003b), Papilionidae (Bol<strong>in</strong>o &<br />

Onore 2001), <strong>and</strong> Sph<strong>in</strong>gidae (Guevara et al. 2002).<br />

Willmott & Hall (2008) estimate that <strong>Ecuador</strong><br />

conta<strong>in</strong>s approximately 2700 species of Papilionoidea,<br />

about 50–55% of all Neotropical butterfl y species <strong>and</strong><br />

25% of the world’s species, mak<strong>in</strong>g it one of the world’s<br />

three most diverse countries along with Colombia<br />

<strong>and</strong> Peru. Exhaustive butterfl y <strong>in</strong>ventories <strong>in</strong> specifi c<br />

<strong>Ecuador</strong>ian regions over a s<strong>in</strong>gle year, such as <strong>in</strong> the<br />

Amazonian forest with about 20,000 <strong>in</strong>dividuals<br />

collected (Checa 2006), <strong>and</strong> <strong>in</strong> the Chocó where about<br />

10,000 <strong>in</strong>dividuals were collected (Velasco 2008),<br />

confi rmed the huge abundance <strong>and</strong> diversity of species,<br />

many of them be<strong>in</strong>g represented by only one or two<br />

<strong>in</strong>dividuals. S<strong>in</strong>ce 1993, a total of 168 species <strong>and</strong> 49<br />

genera of butterfl ies from <strong>Ecuador</strong> have been described<br />

by various authors (see Willmott & Hall 2008, for a<br />

complete list of references). About 200 species <strong>and</strong><br />

8 genera still require formal description. Even for a<br />

relatively well-studied group like Papilionoidea, one<br />

highly dist<strong>in</strong>ctive <strong>and</strong> four cryptic undescribed species<br />

427


have been recognized s<strong>in</strong>ce 1998, all occurr<strong>in</strong>g <strong>in</strong><br />

Andean habitats (Jas<strong>in</strong>ski 1998; Willmott et al. 2001).<br />

More poorly studied groups, such as the Lycaenidae,<br />

Riod<strong>in</strong>idae <strong>and</strong> Satyridae, are likely to conta<strong>in</strong> even<br />

higher proportions of new or unrecognized species<br />

(Willmot & Hall 2008) suggest<strong>in</strong>g that <strong>Ecuador</strong> rema<strong>in</strong>s<br />

a source of many discoveries for lepidopterists.<br />

Regard<strong>in</strong>g the Coleoptera of <strong>Ecuador</strong>, <strong>and</strong><br />

particularly Carabidae, the most complete study is<br />

by P. Moret on the Carabidae of the Páramo <strong>in</strong> the<br />

<strong>Ecuador</strong>ian Andes (Moret 2005). Th e Páramos are<br />

mounta<strong>in</strong> ecosystems consist<strong>in</strong>g of large areas of<br />

herbaceous plants <strong>and</strong> sclerophylous shrubs, above the<br />

tree l<strong>in</strong>e (3400–3600 m) <strong>and</strong> below the permanent<br />

snowl<strong>in</strong>e (4800–5000 m, fi g. 2B). Based on the direct<br />

exam<strong>in</strong>ation of about 8500 <strong>in</strong>dividuals, Moret (2005)<br />

reviewed 16 genera <strong>and</strong> 204 species, of which 57 were<br />

new to science. Th e fl ightless condition of most (96%)<br />

high Andean Carabidae implies reduced dispersal<br />

ability <strong>and</strong> has led to a great number of geographically<br />

restricted species. Th e author considered a total of<br />

191 species (94%) as micro - or meso-endemic to<br />

the <strong>Ecuador</strong> Andes. Th is rate of endemism is similar<br />

to that found <strong>in</strong> the Andes near Mérida, Venezuela<br />

(91%, Perrault 1994), although <strong>Ecuador</strong>ian Carabidae<br />

exhibit a higher diversity, both at specifi c <strong>and</strong> generic<br />

levels. Endemism rates are lower among the Alp<strong>in</strong>e<br />

Carabidae of the Alps (60%, Br<strong>and</strong>mayr et al. 2003)<br />

<strong>and</strong> the Pyrenees (44%, Moret 2005) with a higher<br />

number of genera <strong>and</strong> fewer species <strong>in</strong> each genera.<br />

Th ese detailed works on the Papilionoidea <strong>and</strong><br />

Carabidae reveal three ma<strong>in</strong> characteristic of the<br />

<strong>Ecuador</strong>ian entomological fauna which can be<br />

428<br />

O. <strong>Dangles</strong>, Á. Barragán, R. E. Cárdenas, G. Onore & C. Keil<br />

generalized to most taxonomic groups throughout<br />

the country: 1) the huge diversity of species <strong>in</strong> a great<br />

diversity of habitats, 2) the diffi culty <strong>in</strong> identifi cation<br />

of most species, <strong>and</strong> 3) the lack of published basic<br />

biological <strong>in</strong>formation, partly due to the high rate<br />

of endemism of many groups especially <strong>in</strong> the Andes<br />

(Table 1). For example, an exhaustive survey of st<strong>in</strong>gless<br />

bees (Hymenoptera: Melipon<strong>in</strong>ae) <strong>in</strong> 14 prov<strong>in</strong>ces<br />

of <strong>Ecuador</strong> by Coloma (1986) reported a total of 73<br />

species, of which 13 were new species for science <strong>and</strong><br />

49 new records for <strong>Ecuador</strong>. Similarly, Ayala (1998)<br />

<strong>and</strong> Battiston & Picciau (2008) reported a total of<br />

69 species of mantids (Mantodea) of which 10 were<br />

new to science. Th e high rate of endemism for many<br />

groups such as Coleoptera, especially <strong>in</strong> the Andean<br />

region, also complicates the work of taxonomists.<br />

For example, the <strong>Ecuador</strong>ian tiger beetle fauna<br />

(Coleoptera: Cic<strong>in</strong>delidae) conta<strong>in</strong>s 12 genera <strong>and</strong><br />

74 species, of which 26.0% are endemic (Nuñez et al.<br />

1994; Pearson et al. 1999). Th is is the highest percent<br />

of endemism among all Andean countries (Nuñez et<br />

al. 1994). Similarly, 173 species of Dynast<strong>in</strong>ae beetles<br />

(Coleoptera: Scarabeidae) have been reported <strong>in</strong><br />

<strong>Ecuador</strong>, of which 35 are endemic, ma<strong>in</strong>ly from the<br />

genus Cyclocephala (Ortiz 1997). F<strong>in</strong>ally, of the 283<br />

species of <strong>Ecuador</strong>ian Rutel<strong>in</strong>ae beetles, 26.8% are<br />

endemic (Paucar 1998; Smith 2003). Th e high rates of<br />

endemism observed for many <strong>in</strong>sect groups (Table 1)<br />

represent a challeng<strong>in</strong>g issue for <strong>in</strong>sect taxonomists not<br />

only <strong>in</strong> <strong>Ecuador</strong> but also <strong>in</strong> neighbor<strong>in</strong>g countries.<br />

Table 1. Diversity of species <strong>and</strong> genera <strong>and</strong> percentage of endemism of several taxonomic groups of <strong>in</strong>sects <strong>in</strong> <strong>Ecuador</strong>.<br />

Order Taxonomic<br />

group<br />

Number of<br />

species<br />

Number of<br />

genera<br />

Ma<strong>in</strong> genera<br />

(nb. species)<br />

Agricultural entomology<br />

Th e development of entomology as a scientifi c<br />

% endemism<br />

<strong>in</strong> <strong>Ecuador</strong> References<br />

Hymenoptera Melipon<strong>in</strong>ae 73 17 Trigona(20, Melipona(8) 31.1 Coloma (1986)<br />

Formicidae 670 74 Pheidole (93), Camponotus (58) 10.7 Donoso (unpubl. data)<br />

Ithomi<strong>in</strong>ae 116 32 Pteronymia (15), Oleria (14) 43.0 Gil (2001)<br />

Diptera Tabanidae 204 33 Tabanus (40), Esenbeckia (16) 12.2 Cárdenas & Buestan (this issue)<br />

Drosophila 112 1 - 36.6 Acurio & Rafael (unpubl. data)<br />

Orthoptera Caelifera 216 117 Jivarus (15), Orphulella (6) 55.0 Buzzetti & Carotti (2008)<br />

Mantodea 63 37 Vates (5), Acanthops (4) 34.8 Ayala (1998), Battiston & Picciau (2008)<br />

Isoptera all 62 28 Nasutitermes (15), Anoplotermes (6) - Bahder et al. (this issue)<br />

Coleoptera Cic<strong>in</strong>delidae 74 12 Cic<strong>in</strong>dela (26), Odontocheila (14) 29.2 Nuñez et al. 1994<br />

Dynast<strong>in</strong>ae 173 40 Cyclocephala(67), Ancognata(13) 20.2 Ortiz 1997<br />

Rutel<strong>in</strong>ae 283 38 Platycoelia (144), Anomala (64) 33.4 Paucar (1998), Smith (2003)<br />

Sacarabe<strong>in</strong>ae 233 21 Onthophagus (31), Canthidium (25) - Carpio, unpubl. data<br />

Carabidae 377 83 Dyscolus (63), Blennidus (33) 40.8 Zapata (1997)


<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

discipl<strong>in</strong>e <strong>in</strong> <strong>Ecuador</strong> has been fostered by dem<strong>and</strong>driven<br />

entomological research, especially research<br />

aimed at solv<strong>in</strong>g specifi c problems related to<br />

agriculture. S<strong>in</strong>ce the creation of the National Institute<br />

of Agronomical Research (INIAP, http://www.<strong>in</strong>iapecuador.gov.ec)<br />

<strong>in</strong> 1959, this research has focused on<br />

the study of deleterious eff ects of <strong>in</strong>sect pests on local<br />

crop production, e.g. fruit fl y (Mol<strong>in</strong>eros et al. 1992;<br />

Feican et al. 1999), white fl y (Peralta 1993), potato<br />

weevil (Gallegos et al. 1997), potato tuber moths<br />

(Pollet et al. 2003) or on the development of agro<strong>in</strong>dustrial<br />

projects such as cultivation of purple African<br />

nightshade (Solanum marg<strong>in</strong>atum, Moya 1985) or<br />

African palm (Elaeis gu<strong>in</strong>ensis, Mart<strong>in</strong>ez 1991).<br />

If diversity is a ma<strong>in</strong> feature of the entomological<br />

fauna <strong>in</strong> natural habitats, this is also true for cultivated<br />

l<strong>and</strong>scapes (fi g. 2D). For example, Onore & Arregui<br />

(1989) identifi ed 27 <strong>in</strong>sect pest species associated with<br />

Lup<strong>in</strong>us mutabilis, a species of lup<strong>in</strong>e grown <strong>in</strong> the<br />

Andes for its edible bean. Of the 27 species, 13 were<br />

Lepidoptera (e.g. the noctuids Copitarsia sp., Agrostris<br />

sp., Autoplusia sp.) whose larvae feed on lup<strong>in</strong>e leaves<br />

<strong>and</strong> seeds. Another major Andean crop, qu<strong>in</strong>oa<br />

(Chenopodium qu<strong>in</strong>oa), is attacked by at least 18 pest<br />

species, ma<strong>in</strong>ly lepidopteran Noctuidae (Copitarsia sp.,<br />

Agrostris sp.) (Fiallos 1989). Balsa (Ochroma pyramidale),<br />

a large fast-grow<strong>in</strong>g tree that can grow up to 30 m, has<br />

68 <strong>in</strong>sect pests <strong>in</strong>clud<strong>in</strong>g 60 species of Lepidoptera,<br />

ma<strong>in</strong>ly Arctiidae <strong>and</strong> Saturniidae (Barragán 1997).<br />

F<strong>in</strong>ally, sixteen defoliator species are associated with the<br />

UICN red-listed Podocarpus oleifolius (Podocarpaceae)<br />

of which 12 belong to the Geometridae (e.g. Anisodes<br />

atrimacula, Sabulodes boliviana) (Salazar 1998).<br />

Th e orig<strong>in</strong> <strong>and</strong> the implications of such pest<br />

diversity for agro-ecosystem productivity are virtually<br />

unknown. Whereas <strong>in</strong>ter-specifi c competition may be<br />

a key factor limit<strong>in</strong>g <strong>in</strong>sect diversity <strong>and</strong> abundance<br />

on the same host plant, mutualistic mechanisms (such<br />

as resource partition<strong>in</strong>g, sequential attack of the host<br />

plant) can promote coexistence among species. For<br />

example, <strong>in</strong> a study on the lepidoteran larva community<br />

on Podocarpus, Salazar (1998) showed that some<br />

species are specialized on the apex of the needle-like<br />

leaves whereas others feed on edges or stems. Similarly,<br />

Mazoyer (2007) showed the existence of facilitation<br />

mechanisms among pairs of potato moth species<br />

(Gelechiidae). Some species <strong>in</strong>creased their feed<strong>in</strong>g<br />

rate <strong>and</strong> survival when the tuber had been fi rst <strong>in</strong>fested<br />

by another species. Insect diversity <strong>and</strong> abundance can<br />

also be shaped by predator communities; however the<br />

high diversity of <strong>in</strong>sect predators <strong>in</strong> <strong>Ecuador</strong> makes<br />

this a complex issue. For example, Mart<strong>in</strong>ez (1991)<br />

reported that more than 50 species of parasitoids,<br />

ma<strong>in</strong>ly hymenopteran Chalcididae <strong>and</strong> Eulophidae<br />

<strong>and</strong> dipteran Tach<strong>in</strong>idae, were associated with 44<br />

species of defoliators, ma<strong>in</strong>ly Limacodidae <strong>and</strong><br />

Brassolidae Lepidopterans, <strong>in</strong> African palm (Elaeis<br />

gu<strong>in</strong>ensis) crops.<br />

Ecological entomology<br />

Because the complex patterns of uplift of the Andean<br />

cordillera <strong>and</strong> oceanic isl<strong>and</strong>s, a large number of<br />

speciation events took place <strong>in</strong> <strong>Ecuador</strong>. Th is makes<br />

this country not only a productive place for studies on<br />

<strong>in</strong>sect taxonomy, but also on <strong>in</strong>sect ecology, evolution,<br />

or biogeography (Peck 2001; Moret 2005; Jigg<strong>in</strong>s et al.<br />

2006). Th is unique environmental <strong>and</strong> evolutionary<br />

history has attracted a long list of explorers <strong>and</strong> naturalists<br />

such as Darw<strong>in</strong>, von Humboldt <strong>and</strong> Whymper<br />

who have played an important role <strong>in</strong> foster<strong>in</strong>g an <strong>in</strong>terest<br />

<strong>in</strong> South American natural history <strong>and</strong> evolution<br />

of <strong>in</strong>sects (Barragán et al. this issue). Despite the biological<br />

diversity of <strong>Ecuador</strong> <strong>and</strong> the scientifi c <strong>in</strong>terest it<br />

has generated <strong>in</strong> the past, the development of ecological<br />

entomology as a formal discipl<strong>in</strong>e <strong>in</strong> <strong>Ecuador</strong> is a<br />

very recent phenomenon. It has been mostly limited to<br />

descriptive studies on environmental factors that govern<br />

<strong>in</strong>sect diversity <strong>and</strong> abundance <strong>in</strong> diff erent types of<br />

natural habitats. Examples <strong>in</strong>clude the study of seasonality<br />

<strong>and</strong> stratifi cation of butterfl y <strong>and</strong> locust communities<br />

(DeVries et al. 1997; Amédégnato 2003; Checa<br />

2006; Velasco 2008), the microdistribution of vector<br />

<strong>and</strong> pest <strong>in</strong>sects (Suarez 2008; <strong>Dangles</strong> et al. 2008) or<br />

the altitud<strong>in</strong>al distribution of <strong>in</strong>sect species (Brehm et<br />

al. 2003a, 2003b; Jacobsen 2004; Hilt & Fiedler 2006;<br />

Cárdenas 2007; Fiedler et al. 2008).<br />

Th e succession of plant <strong>and</strong> animal communities<br />

along altitud<strong>in</strong>al gradients has been of major <strong>in</strong>terest<br />

for ecologists, especially <strong>in</strong> temperate regions (Berner<br />

et al. 2004; Hodk<strong>in</strong>son 2005). More recently, a grow<strong>in</strong>g<br />

number of studies have <strong>in</strong>vestigated the diversity<br />

of <strong>in</strong>sect assemblages along altitud<strong>in</strong>al gradients <strong>in</strong> species-rich<br />

tropical regions (Brühl et al. 1999; Axmacher<br />

et al. 2004), <strong>in</strong>clud<strong>in</strong>g <strong>Ecuador</strong> for several groups<br />

such as moths (Geometridae: Hilt & Fiedler 2006,<br />

Gelechiidae: <strong>Dangles</strong> et al. 2008) Dipteran Tabanidae<br />

(Cárdenas 2007), <strong>and</strong> aquatic <strong>in</strong>sects (Jacobsen<br />

2004). Th e works by Jacobsen on streams <strong>and</strong> rivers<br />

(fi g. 2E) represent the most complete study ever realized<br />

<strong>in</strong> the country on the ecological <strong>and</strong> physiological<br />

factors that govern distribution patterns of <strong>in</strong>sects<br />

along altitud<strong>in</strong>al gradients (Jacobsen et al. 1997; Jacobsen<br />

1998; Jacobsen et al. 2003; Jacobsen 2008a).<br />

A comb<strong>in</strong>ation of empirical <strong>and</strong> experimental studies<br />

has shown that distribution patterns correspond to the<br />

respiratory physiology of <strong>in</strong>dividual species <strong>in</strong> relation<br />

429


to the temperature <strong>and</strong> oxygen regime of the environment<br />

(Jacobsen & Brodersen 2008). Both temperature<br />

<strong>and</strong> oxygen saturation of stream water decrease<br />

with altitude. Th ese two factors are highly correlated<br />

to the decrease <strong>in</strong> diversity of macro<strong>in</strong>vertebrates with<br />

altitude <strong>in</strong> <strong>Ecuador</strong>ian streams (Jacobsen 2008b). In<br />

addition, Rostgaard & Jacobsen (2005) showed that<br />

oxygen availability <strong>in</strong> streams is expected to decrease<br />

more with altitude than respiratory oxygen dem<strong>and</strong> by<br />

macro<strong>in</strong>vertebrates, potentially aff ect<strong>in</strong>g the composition<br />

of communities <strong>in</strong> streams at very high altitudes<br />

(Jacobsen et al. 2003). Orography of <strong>Ecuador</strong> should<br />

foster more studies on <strong>in</strong>sect response to the chang<strong>in</strong>g<br />

environments experienced along altitud<strong>in</strong>al gradients,<br />

especially with regard to the grow<strong>in</strong>g awareness<br />

that these responses may serve as analogues for climate<br />

warm<strong>in</strong>g eff ects at a particular altitude over time.<br />

Future challenges: <strong>Ecuador</strong>ian entomology <strong>in</strong><br />

a chang<strong>in</strong>g world<br />

Habitat fragmentation<br />

<strong>Ecuador</strong>ian civilizations, as well as the great<br />

430<br />

O. <strong>Dangles</strong>, Á. Barragán, R. E. Cárdenas, G. Onore & C. Keil<br />

Peruvian empire of the Incas, have <strong>in</strong>habited <strong>in</strong> the<br />

<strong>Ecuador</strong> for thous<strong>and</strong>s of years. S<strong>in</strong>ce 1950, the<br />

population of <strong>Ecuador</strong> has experienced a fi ve-fold<br />

<strong>in</strong>crease. With 13,780,000 <strong>in</strong>habitants (INEC 2008),<br />

<strong>Ecuador</strong> is one of the most densely populated country<br />

<strong>in</strong> South America (55 <strong>in</strong>habitant/km²) result<strong>in</strong>g <strong>in</strong><br />

strong pressure on many natural ecosystems (fi g. 3).<br />

Because the coastal region <strong>and</strong> the <strong>in</strong>ter-Andean<br />

valleys are the most hospitable to people, they are also<br />

the most degraded parts of the <strong>Ecuador</strong>, with less than<br />

10 percent of their orig<strong>in</strong>al natural habitat rema<strong>in</strong><strong>in</strong>g<br />

(fi g. 3, UICN & WWF 2000). <strong>Ecuador</strong> together with<br />

Honduras <strong>and</strong> El Salvador have suff ered the highest<br />

rates of deforestation <strong>in</strong> Lat<strong>in</strong> America between years<br />

2000–2005 (≥ 1.5% decrease <strong>in</strong> forest area /year sensu<br />

FAO 2007) pr<strong>in</strong>cipally due to changes <strong>in</strong> l<strong>and</strong> use. In the<br />

montane forests, agriculture, dams, <strong>and</strong> road build<strong>in</strong>g<br />

are the most signifi cant threats. At higher altitudes,<br />

seasonal burn<strong>in</strong>g, graz<strong>in</strong>g, agriculture, m<strong>in</strong><strong>in</strong>g, <strong>and</strong><br />

fuel wood collection have degraded the grassl<strong>and</strong>s <strong>and</strong><br />

scrubl<strong>and</strong>s of páramos. In the Amazon, disturbances<br />

ma<strong>in</strong>ly orig<strong>in</strong>ate from <strong>and</strong> oil <strong>and</strong> gas companies that<br />

have constructed several roads for prospect<strong>in</strong>g <strong>and</strong><br />

Figure 3<br />

Maps of <strong>Ecuador</strong> show<strong>in</strong>g (A) the orig<strong>in</strong>al vegetation cover <strong>and</strong> (B) <strong>and</strong> the extent of habitat degradation <strong>in</strong> 2000, follow<strong>in</strong>g Sierra (1999).


<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

exploitation (Valencia et al. 2004). Th ese roads have<br />

facilitated an extensive colonization by family farms<br />

<strong>and</strong> communities <strong>in</strong> previously unpopulated l<strong>and</strong>. In<br />

the Galápagos, the <strong>in</strong>troduction of domestic species<br />

such as goats, pigs, cats <strong>and</strong> rodents <strong>and</strong> the <strong>in</strong>crease<br />

<strong>in</strong> bushfi res frequency have deteriorated the natural<br />

vegetation of many isl<strong>and</strong>s. Th e clear<strong>in</strong>g of native<br />

vegetation <strong>in</strong> the most humid zones for agriculture has<br />

signifi cantly degraded the vegetation of the transition<br />

<strong>and</strong> scalesia zones on populated isl<strong>and</strong>s. Th is has<br />

been exacerbated by <strong>in</strong>vasive plants such as raspberry<br />

(Rubus niveus), rose apple (Syzygium jambos), qu<strong>in</strong><strong>in</strong>e<br />

(C<strong>in</strong>chona succirubra), <strong>and</strong> Spanish fl ag (Lantana<br />

camara). Over 42.2% of the 438 exotic plant species<br />

are considered <strong>in</strong>vasive (McMullen 1999).<br />

Habitat fragmentation process implies habitat<br />

loss but also change <strong>in</strong> habitat confi guration (Farhig<br />

2003). While habitat loss has large, consistent negative<br />

eff ects on <strong>in</strong>sect communities, habitat fragmentation<br />

per se has a much weaker eff ect, <strong>and</strong> may be negative<br />

but also often positive (Grez et al. 2004). In <strong>Ecuador</strong>,<br />

it has been shown that spatial scale aff ects signifi cantly<br />

the response of <strong>in</strong>sect communities to habitat<br />

fragmentation (e.g. Tylianakis et al. 2006 for cavitynest<strong>in</strong>g<br />

Hymenopterans on the Pacifi c Coast; Velasco<br />

2008 for butterfl y communities <strong>in</strong> the Chocó). Th e<br />

temporal component (time elapsed after disturbance)<br />

is also a crucial issue of habitat fragmentation (e.g.<br />

Abedrabbo 1988; Carpio et al. this issue). For<br />

example, Abredrabbo (1988) found a relatively fast<br />

recovery of terrestrial <strong>in</strong>vertebrate fauna only 2 years<br />

after brush fi res on Isabela Isl<strong>and</strong>, Galápagos. Th e<br />

rapid recolonization was facilitated by the presence<br />

of un-impacted isolated areas where the arthropod<br />

fauna was not altered. More studies separat<strong>in</strong>g the<br />

eff ect of habitat loss <strong>and</strong> fragmentation on <strong>in</strong>sect<br />

communities, for example through manipulative<br />

experiments, are therefore urgently needed <strong>in</strong> <strong>Ecuador</strong>.<br />

Entomologists could also make good use of classical<br />

theories <strong>in</strong> community <strong>and</strong> population ecology such<br />

as the theory of isl<strong>and</strong> biogeography (McArthur &<br />

Wilson 1967), metapopulation dynamics (Lev<strong>in</strong>s<br />

1969) <strong>and</strong> metacommunity dynamics (Holyoak et<br />

al. 2005) to predict the complex consequences of<br />

habitat fragmentation on the entomological fauna of<br />

<strong>Ecuador</strong>.<br />

Climate change<br />

Potential impact of climate change on the <strong>Ecuador</strong>ian<br />

fauna has been poorly explored <strong>and</strong> has been restricted<br />

to only a few groups such as Amphibians (Pounds et<br />

al. 2006; Ron et al. <strong>in</strong> press) or plants (DeVries 2006).<br />

Obviously, as is the case for all ectothermic organisms<br />

whose development time is temperature-dependent,<br />

<strong>in</strong>sects are expected to respond strongly to changes <strong>in</strong><br />

climate regimes, but this response may greatly diff er<br />

depend<strong>in</strong>g on the region considered (Tewksbury et<br />

al. 2008). On the one h<strong>and</strong>, warm<strong>in</strong>g <strong>in</strong> the tropical<br />

Amazonian forest, although relatively small <strong>in</strong><br />

magnitude, may have deleterious consequences because<br />

tropical <strong>in</strong>sects are relatively sensitive to temperature<br />

change <strong>and</strong> may be liv<strong>in</strong>g very close to their optimal<br />

temperature (Deutsch et al. 2008). On the other h<strong>and</strong>,<br />

eff ect of climate change on <strong>in</strong>sect populations <strong>in</strong> the<br />

Andes is expected to be greater than <strong>in</strong> lowl<strong>and</strong>s,<br />

refl ect<strong>in</strong>g the prediction of much larger proportional<br />

temperature rises <strong>in</strong> these areas (Hodk<strong>in</strong>son 2005).<br />

Warmer temperatures may aff ect population dynamics<br />

of some <strong>in</strong>sect species (ma<strong>in</strong>ly agricultural pests),<br />

but also their altitud<strong>in</strong>al distribution. One of the<br />

few documented case <strong>in</strong> <strong>Ecuador</strong> is a study on the<br />

altitud<strong>in</strong>al distribution of the genus Sphaenognathus<br />

(Coleoptera: Lucanidae) (Onore & Bartolozzi 2008).<br />

Desiccated feces of lucanid larva were present <strong>in</strong> the soil<br />

at altitudes about 200 m lower than the lowest liv<strong>in</strong>g<br />

populations of larvae at the time of their collections.<br />

Th is suggests an upward shift of these <strong>in</strong>sects <strong>in</strong> the last<br />

15–25 years. More studies on the impact of climate<br />

change on <strong>in</strong>sects are defi nitely needed <strong>in</strong> <strong>Ecuador</strong>,<br />

especially because the small diff erences <strong>in</strong> elevation<br />

or vegetative cover over the country can create strong<br />

microclimatic diff erentials over short distances <strong>and</strong><br />

allow development of persistent microclimatic refuges<br />

for <strong>in</strong>sect populations to develop (see <strong>Dangles</strong> et al.<br />

2008).<br />

Invasive species<br />

Although Andean countries have recognized the<br />

problems associated with <strong>in</strong>vasive <strong>in</strong>sect species for<br />

several years (Ojasti 2001), a comprehensive approach<br />

to this issue is still to be developed, especially <strong>in</strong><br />

<strong>Ecuador</strong>. Globalization with exp<strong>and</strong><strong>in</strong>g trade <strong>and</strong><br />

<strong>in</strong>creased human movement is likely to <strong>in</strong>crease the<br />

risk of <strong>in</strong>vasive <strong>in</strong>sect species <strong>in</strong> South America. In the<br />

Andean region, commercial exchanges at regional <strong>and</strong><br />

local scales have been the ma<strong>in</strong> causes for the rapid<br />

expansion of the potato tuber moth Tecia solanivora,<br />

(Lepidoptera: Gelechiidae), an exotic pest orig<strong>in</strong>at<strong>in</strong>g<br />

from Guatemala. Th is pest now represents one of the<br />

most serious agricultural pest problems <strong>in</strong> <strong>Ecuador</strong><br />

(Puill<strong>and</strong>re et al. 2008). In the Galápagos Isl<strong>and</strong>s, a oneyear<br />

survey of arthropod communities associated with<br />

agricultural areas on the Santa Cruz Isl<strong>and</strong> collected<br />

160 species, of which 76 were <strong>in</strong>troduced (e.g. the<br />

pyralid Diaphania hyal<strong>in</strong>ata, Oquendo 2002).<br />

Insect <strong>in</strong>vasions can also spread <strong>and</strong> become<br />

431


established largely unnoticed as ‘‘tramp’’ species<br />

associated with human displacements. In a study of the<br />

drosophilid fl y communities (Diptera: Drosophilidae)<br />

<strong>in</strong> Yasuni National park <strong>in</strong> the Amazonian ra<strong>in</strong>forest, 7<br />

of the 34 drosophilid species collected <strong>in</strong> habitats with<br />

various degrees of disturbance were exotic (Acurio et al.,<br />

pers. com.). A s<strong>in</strong>gle study on Santa Cruz, Galápagos<br />

Isl<strong>and</strong>s, identifi ed 17 ant species, of which only four<br />

were endemic <strong>and</strong> nearly all the rest were well-known<br />

tramp species (Clark et al. 1982).<br />

New exotic host plants can also have <strong>in</strong>direct<br />

consequences for the native herbivorous <strong>in</strong>sect fauna.<br />

S<strong>in</strong>ce its <strong>in</strong>troduction <strong>in</strong> <strong>Ecuador</strong> <strong>in</strong> 1905, the Monterey<br />

p<strong>in</strong>e (P<strong>in</strong>us radiata) orig<strong>in</strong>at<strong>in</strong>g from California as<br />

well as the Mexican weep<strong>in</strong>g p<strong>in</strong>e P<strong>in</strong>us patula, have<br />

been planted as large plantations (Woolfson 1987).<br />

Th e measur<strong>in</strong>g worm (Leuculopsis parvistrigata,<br />

Lepidoptera: Geometridae), previously attack<strong>in</strong>g<br />

Hypericum laricifolium <strong>and</strong> Lup<strong>in</strong>us mutabilis, was<br />

reported for the fi rst time <strong>in</strong> 1980 attack<strong>in</strong>g p<strong>in</strong>e trees<br />

<strong>in</strong> <strong>Ecuador</strong>. Both direct <strong>and</strong> <strong>in</strong>direct consequences<br />

of <strong>in</strong>vasion events for the structure <strong>and</strong> function<br />

of <strong>in</strong>sect communities <strong>and</strong> the ecosystems they live<br />

<strong>in</strong> will be grow<strong>in</strong>g fi eld of research for <strong>Ecuador</strong>ian<br />

entomologists.<br />

432<br />

Strategies for development of entomology <strong>in</strong><br />

<strong>Ecuador</strong><br />

Priority research areas<br />

To foster the development of entomology <strong>in</strong><br />

<strong>Ecuador</strong> <strong>in</strong> the short term, it will be essential to support<br />

basic research while highlight<strong>in</strong>g applied <strong>and</strong> dem<strong>and</strong>driven<br />

studies. We focus on three potential priority<br />

research areas although we are aware that many others<br />

could also be equally important.<br />

Foster<strong>in</strong>g the utility of entomological collections.<br />

Th e collection of the QCAZ conta<strong>in</strong>s more than 2<br />

million specimens belong<strong>in</strong>g to at least 30,000 taxa<br />

(see Donoso et al. this issue). In addition to taxonomic<br />

studies, it is important to diversify the use of this<br />

material towards other discipl<strong>in</strong>es such as genomics<br />

<strong>and</strong> phylogenetics, morphology <strong>and</strong> development,<br />

population genetics, evolutionary ecology,<br />

conservation biology or even more distant fi elds such as<br />

pharmacology or biomimetics. Another key challenge<br />

will be to <strong>in</strong>crease the availability of taxonomic <strong>and</strong><br />

biological data on these species comb<strong>in</strong>ed with detailed<br />

environmental data (e.g. Bab<strong>in</strong>-Fenske et al. 2008; Foley<br />

et al. 2008). Th is could be achieved through digitiz<strong>in</strong>g<br />

the collection <strong>and</strong> the creation of databases available<br />

over the Internet. Th is will facilitate connections with<br />

O. <strong>Dangles</strong>, Á. Barragán, R. E. Cárdenas, G. Onore & C. Keil<br />

foreign entomological collections <strong>and</strong> researchers. An<br />

eff ective collaboration of <strong>Ecuador</strong>ian entomological<br />

collections would signifi cantly enhance their utility for<br />

<strong>in</strong>ternational research programs <strong>and</strong> <strong>in</strong> return allow<br />

defi nition of new sampl<strong>in</strong>g strategies with regards to<br />

taxonomic groups <strong>and</strong> locations (see Graham et al.<br />

2004). Th is process is currently underway but will<br />

dem<strong>and</strong> cont<strong>in</strong>uous resources to be fully realized.<br />

Insect diversity for ecosystem function<strong>in</strong>g. Decl<strong>in</strong>e<br />

of global <strong>in</strong>sect diversity has recently focused<br />

attention on the implications of species losses for the<br />

ma<strong>in</strong>tenance of ecosystem function<strong>in</strong>g (Jonsson et al.<br />

2002; Hoehn et al. 2008). In <strong>Ecuador</strong>, the functional<br />

relevance of the huge diversity of <strong>in</strong>sects is virtually<br />

unknown. Functional diversity has been suggested to<br />

be the most important component of diversity (e.g.<br />

Tilman et al. 1997; Hulot et al. 2000) <strong>and</strong> a common<br />

approach to test the eff ects of biodiversity on ecosystem<br />

function<strong>in</strong>g is an experimental manipulation of<br />

functional guild diversity. Th is could be performed <strong>in</strong><br />

<strong>Ecuador</strong> for a wide variety of groups <strong>and</strong> ecosystem<br />

processes such as butterfl ies <strong>and</strong> bees <strong>in</strong>volved <strong>in</strong> poll<strong>in</strong>ation<br />

process or dung beetles <strong>and</strong> ants implicated<br />

<strong>in</strong> decomposition <strong>and</strong> nutrient cycl<strong>in</strong>g. Underst<strong>and</strong><strong>in</strong>g<br />

the relationships between <strong>in</strong>sect diversity <strong>and</strong> ecosystem<br />

function<strong>in</strong>g is crucial not only to predict the impact<br />

of the ongo<strong>in</strong>g loss of <strong>Ecuador</strong>ian <strong>in</strong>sects species<br />

but also to develop strategies to accelerate ecosystem<br />

restoration.<br />

<strong>Entomology</strong> <strong>and</strong> the well-be<strong>in</strong>g of local people.<br />

Insects, such as agricultural pests or vectors of diseases,<br />

also put severe pressure on the well-be<strong>in</strong>g of millions<br />

of people <strong>in</strong> <strong>Ecuador</strong>. Both agricultural <strong>and</strong> medical<br />

entomology should be prioritized. Th e study of the<br />

entomological fauna of agro-ecosystems is particularly<br />

relevant <strong>in</strong> <strong>Ecuador</strong> where national parks <strong>and</strong> private<br />

biosphere reserves currently protect only about 20% of<br />

the l<strong>and</strong> area, while cultivated area occupy almost half<br />

of the country (ECOLAP 2007, fi g. 2D). Moreover,<br />

although a large proportion of <strong>Ecuador</strong>ian people is<br />

under the risk of <strong>in</strong>sect-borne diseases such as Chagas’<br />

disease (30,000 persons), malaria (up to 12,000<br />

persons dur<strong>in</strong>g epidemic phases), onchocerciasis (up to<br />

1,200 persons dur<strong>in</strong>g epidemic phases), or dengue (up<br />

to 23,000 persons dur<strong>in</strong>g epidemic phases) medical<br />

entomology <strong>in</strong> <strong>Ecuador</strong> is still <strong>in</strong> its <strong>in</strong>fancy. Our<br />

knowledge is limited to a h<strong>and</strong>ful of studies on few<br />

taxa: Rhodnius spp. (Hemiptera: Reduviidae, Aguilar<br />

et al. 1999; Abad-Franch et al. 2005; Suarez 2008),<br />

Anopheles spp. (Diptera: Culicidae, Birnberg 2008)<br />

<strong>and</strong> Simulium spp. (Diptera: Simuliidae, Vieira et al.<br />

2007). Th e development of national <strong>in</strong>vestigations<br />

for both areas of research (agronomic <strong>and</strong> medical


<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

entomology) is of major concern because many<br />

strategies for <strong>in</strong>sect pest <strong>and</strong> <strong>in</strong>sect vector management<br />

developed <strong>in</strong> other South American countries are not<br />

practical <strong>in</strong> <strong>Ecuador</strong>.<br />

Increas<strong>in</strong>g fund<strong>in</strong>g directed towards the study of<br />

<strong>in</strong>sects<br />

At present, limited national fund<strong>in</strong>g is one of the<br />

major obstacles to the development of entomology,<br />

as well as other life science discipl<strong>in</strong>es <strong>in</strong> <strong>Ecuador</strong>.<br />

To <strong>in</strong>crease the <strong>in</strong>terest of policy makers for<br />

entomological studies, one possible approach is to<br />

enhance the awareness of the importance of the l<strong>in</strong>k<br />

between ecosystem health <strong>and</strong> human well-be<strong>in</strong>g,<br />

expressed <strong>in</strong> the context of ecological services. In this<br />

context, there is a vast diversity of <strong>in</strong>sects <strong>in</strong>volved<br />

<strong>in</strong> complex <strong>in</strong>teractions that allow natural systems to<br />

provide ecological services on which humans depend<br />

(Losey & Vaughan 2006). Decomposition of organic<br />

matter, pest control, poll<strong>in</strong>ation, <strong>and</strong> food resource for<br />

wildlife are among the major processes accomplished<br />

by <strong>in</strong>sects, allow<strong>in</strong>g the global function<strong>in</strong>g of both<br />

natural <strong>and</strong> cultivated ecosystems (Samways 2005). In<br />

<strong>Ecuador</strong>, as well as <strong>in</strong> many parts of the world, these<br />

service-provid<strong>in</strong>g <strong>in</strong>sects are under <strong>in</strong>creas<strong>in</strong>g threat<br />

from a comb<strong>in</strong>ation of factors, <strong>in</strong>clud<strong>in</strong>g habitat<br />

destruction, <strong>in</strong>vasion of foreign species, <strong>and</strong> overuse of<br />

toxic chemicals. Once the benefi ts of <strong>in</strong>sect-provided<br />

services are realized, we hope to realize <strong>in</strong>creased<br />

fund<strong>in</strong>g directed toward the study of <strong>in</strong>sects <strong>and</strong> the<br />

vital services they provide so that conservation eff orts<br />

can be optimized (Losey & Vaughan 2006).<br />

Establish<strong>in</strong>g monitor<strong>in</strong>g networks<br />

Monitor<strong>in</strong>g is a fundamental part of environmental<br />

science <strong>and</strong> long-term data are particularly crucial for<br />

document<strong>in</strong>g key issues such as the spread of exotic<br />

species or the impact of climate change (Lovett<br />

et al. 2007). Monitor<strong>in</strong>g networks also provide<br />

fundamental feedback for strengthen<strong>in</strong>g management<br />

<strong>and</strong> conservation programs <strong>and</strong> opportunities for<br />

<strong>in</strong>creas<strong>in</strong>g education <strong>and</strong> awareness (Mart<strong>in</strong>ez et<br />

al. 2006). In this context, <strong>in</strong>sects have proven to be<br />

remarkable ecological sent<strong>in</strong>els for environmental<br />

changes <strong>in</strong> a wide range of tropical ecosystems such<br />

as forests (Basset et al. 2004), mounta<strong>in</strong>s (Moret<br />

2005; <strong>Dangles</strong> et al. 2008) or rivers (Jacobsen 1998).<br />

Although the establishment of ecological networks<br />

with st<strong>and</strong>ardized, repeated, quantitative sampl<strong>in</strong>gs<br />

faces limited fund<strong>in</strong>g <strong>and</strong> adm<strong>in</strong>istrative capabilities<br />

<strong>in</strong> <strong>Ecuador</strong>, <strong>in</strong>ternational <strong>in</strong>itiatives could represent<br />

an opportunity for entomologists. For example, the<br />

Long-Term Ecological Research (LTER, http://www.<br />

lternet.edu) networks that have been established ma<strong>in</strong>ly<br />

for plant studies <strong>in</strong> various Lat<strong>in</strong> American countries<br />

<strong>in</strong>clud<strong>in</strong>g <strong>Ecuador</strong> (Myster 2007) could also focus<br />

on the study of <strong>in</strong>sect assemblages (Bashford et al.<br />

2001). Another example is the Global Observation<br />

Initiative <strong>in</strong> Alp<strong>in</strong>e environments (GLORIA, http://<br />

www.gloria.ac.at) whose purpose is to establish <strong>and</strong><br />

ma<strong>in</strong>ta<strong>in</strong> world-wide long-term observation networks<br />

<strong>in</strong> Alp<strong>in</strong>e environments. Several sites have already been<br />

established <strong>in</strong> the Andes (Peru, Colombia, <strong>and</strong> Bolivia).<br />

Some of these <strong>in</strong>clude <strong>in</strong>sect community monitor<strong>in</strong>g.<br />

Th e <strong>Entomology</strong> Department of PUCE is currently<br />

<strong>in</strong>volved <strong>in</strong> the establishment of a GLORIA site <strong>in</strong><br />

<strong>Ecuador</strong> (Yanacocha Reserve, Prov<strong>in</strong>ce of Pich<strong>in</strong>cha,<br />

<strong>Ecuador</strong>). Insect monitor<strong>in</strong>g networks would also be<br />

a necessary tool for the surveillance of the dynamics<br />

of vector <strong>in</strong>sects, e.g. Reduviidae (Abad-Franch et al.<br />

2001) <strong>and</strong> agricultural pests, e.g. potato moth (<strong>Dangles</strong><br />

& Carpio 2008).<br />

Strengthen<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g <strong>and</strong> collaborations<br />

Another important endeavor for the development<br />

of entomology <strong>in</strong> <strong>Ecuador</strong> will be to <strong>in</strong>crease the small<br />

pool of tra<strong>in</strong>ed entomologists. Th e lack of solid graduate<br />

programs <strong>in</strong> entomology <strong>and</strong> limited job opportunities<br />

push young professionals abroad, creat<strong>in</strong>g a serious<br />

“bra<strong>in</strong>-dra<strong>in</strong>” problem <strong>in</strong> the country. Eff orts to develop<br />

local <strong>and</strong> regional entomological science should focus<br />

on reta<strong>in</strong><strong>in</strong>g these valuable scientists, while cont<strong>in</strong>u<strong>in</strong>g<br />

to foster <strong>in</strong>ternational collaboration (see Mart<strong>in</strong>ez et<br />

al. 2006). To achieve this goal, it would be necessary to<br />

reduce the limitations that the bureaucracy of obta<strong>in</strong><strong>in</strong>g<br />

research <strong>and</strong> collection permits from the M<strong>in</strong>istry<br />

puts on researchers. Th is actually disencourages many<br />

potential work <strong>and</strong> collaborations, with both national<br />

<strong>and</strong> foreigner scientists. Any type of partnerships<br />

with foreign countries should be strengthened <strong>and</strong><br />

promoted not only to provide unavailable expertise<br />

<strong>and</strong> techniques (e.g. molecular systematics, model<strong>in</strong>g)<br />

but also to <strong>in</strong>crease the overall fund<strong>in</strong>g available for<br />

entomological research. Such collaborations must<br />

encourage <strong>Ecuador</strong>ian entomologists to publish their<br />

results <strong>in</strong> <strong>in</strong>ternational peer-reviewed <strong>and</strong> <strong>in</strong>dexed<br />

journals, so that the greatest amount of reliable scientifi c<br />

<strong>in</strong>formation on the taxonomy, distribution, ecology<br />

<strong>and</strong> evolution of entomological fauna of <strong>Ecuador</strong> can<br />

be available. Th is will help to ensure that entomological<br />

knowledge participates <strong>in</strong> promot<strong>in</strong>g the conservation<br />

<strong>and</strong> susta<strong>in</strong>able use of the highly threatened natural<br />

resources of <strong>Ecuador</strong>.<br />

Acknowledgements. Th e authors are grateful to Dean Jacobsen<br />

for valuable comments on an early version of the manuscript<br />

<strong>and</strong> to one anonymous reviewer for helpful comments on an<br />

433


earlier version of the manuscript.<br />

References<br />

Abad-Franch F., Paucar A., Carpio C., Cuba C. A. C., Aguilar H. M.,<br />

Miles M. A. 2001. Biogeography of Triatom<strong>in</strong>ae (Hemiptera: Reduviidae)<br />

<strong>in</strong> <strong>Ecuador</strong>: implications for the design of control strategies.<br />

Memórias do Instituto Oswaldo Cruz 96: 611-620.<br />

Abad-Franch F., Palomeque F. S., Aguilar V. H. M., Miles M. A. 2005.<br />

Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatom<strong>in</strong>ae):<br />

risk factors for palm tree <strong>in</strong>festation <strong>in</strong> western <strong>Ecuador</strong>.<br />

Tropical Medic<strong>in</strong>e <strong>and</strong> International Health 10(12): 1258-1266.<br />

Abedrabbo S. 1988. Efectos del <strong>in</strong>cendio de 1985 sobre los <strong>in</strong>vertebrados<br />

en Sierra Negra, Iisla Isabela, Galápagos. Dissertation, Pontifi cia<br />

Universidad Católica del <strong>Ecuador</strong>, Quito, 232 p.<br />

Aguilar H. M., Abad-Franch F., Rac<strong>in</strong>es J., Paucar A. 1999. Epidemiology<br />

of Chagas disease <strong>in</strong> <strong>Ecuador</strong>. A brief review. Memórias do<br />

Instituto Oswald 94: 387-393.<br />

Amédégnato, C. 2003. Microhabitat distribution of forest grasshoppers<br />

<strong>in</strong> the Amazon, p. 237-255 <strong>in</strong>: Basset Y., Novotny V., Miller S. E.,<br />

Kitch<strong>in</strong>g R. L. (eds) Arthropods of Tropical Forests. Spatio-temporal<br />

Dynamics <strong>and</strong> Resource Use <strong>in</strong> the Canopy. Cambridge University<br />

Press, Cambridge.<br />

Ayala M. 1998. Los mántidos (Mantodea) del <strong>Ecuador</strong>: catálogo, distribución<br />

geográfi ca y notas de historia natural del género Calopteromantis. Dissertation,<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Quito, 184 p.<br />

Axmacher J. C., Holtmann G., Scheuermann L., Brehm G., Müller-<br />

Hohenste<strong>in</strong> K., Fiedler K. 2004. Diversity of geometrid moths<br />

(Lepidoptera: Geometridae) along an afrotropical elevational<br />

ra<strong>in</strong>forest transect. Diversity <strong>and</strong> Distributions 10: 293–302.<br />

Bab<strong>in</strong>-Fenske J., Madhu A., Alarie Y. 2008. Rapid morphological<br />

change <strong>in</strong> stream beetle museum specimens correlates with climate<br />

change. Ecological <strong>Entomology</strong> 33: 646-651.<br />

Bahder B. W., Krecek J., Scheff rahn R. H., Keil C., Whitney-K<strong>in</strong>g<br />

S. 2009. Termites (Isoptera: Kalotermitidae, Rh<strong>in</strong>otermitidae,<br />

Termitidae) of <strong>Ecuador</strong> <strong>and</strong> the Galapagos Isl<strong>and</strong>s. Annales de la<br />

Société entomologique de France (n. s.) 45(4): 529-536.<br />

Barragán A. 1997. Plagas de la balsa (Ochroma pyramidale) (Cav. ex<br />

Lam.) Urban y sus controles naturales en una plantación forestal en la<br />

costa ecuatoriana. Dissertation, Pontifi cia Universidad Católica del<br />

<strong>Ecuador</strong>, Quito, 157 p.<br />

Barragán A., <strong>Dangles</strong> O., Cárdenas R., Onore G. 2009. History<br />

of <strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>. Annales de la Société entomologique de<br />

France (n. s.) 45(4): 410-423.<br />

Bashford R., Taylor R., Driessen M., Doran N., Richardson A.<br />

2001. Research on <strong>in</strong>vertebrate assemblages at the Warra LTER site.<br />

Tasforests 13: 109-118.<br />

Basset Y., Mavoungou J. F., Mikissa J. B., Missa O., Miller S. E., Kitch<strong>in</strong>g<br />

R. L., Alonso A. 2004 Discrim<strong>in</strong>atory power of diff erent arthropod<br />

data sets for the biological monitor<strong>in</strong>g of anthropogenic disturbance<br />

<strong>in</strong> tropical forests. Biodiversity <strong>and</strong> Conservation 13: 709-732.<br />

Battiston R., Picciau L. 2008. Contribution to the knowledge of<br />

the Mantodea of <strong>Ecuador</strong> with the description of the male of<br />

Pseudoxyops perpulchra (Westwood, 1889) (Mantodea, Mantidae<br />

Stagmatopter<strong>in</strong>ae), p. 19-30 <strong>in</strong>: Giach<strong>in</strong>o P. M. (ed.), Biodiversity<br />

<strong>in</strong> South America I. Memoirs on Biodiversity World Biodiversity,<br />

Association onlus, Verona.<br />

Berner D., Körner C., Blanckenhorn W. U. 2004. Grasshopper<br />

populations across 2000 m of altitude: is there life history adaptation?<br />

Ecography 27: 733-740.<br />

Birnberg L. 2008. Ecología y diversidad de Anopheles spp. en dos ecoregiones<br />

de la prov<strong>in</strong>cia de El Oro. Dissertation, Pontifi cia Universidad<br />

Católica del <strong>Ecuador</strong>, Quito, 73 p.<br />

Boll<strong>in</strong>o M., Onore G. 2001. Mariposas del <strong>Ecuador</strong>. Vol. 10 A. Papilionidae.<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Quito, 171 p.<br />

Br<strong>and</strong>mayr P., Pizzoletto R., Scarlercio S. 2003. Diversity pattern<br />

of Carabidae <strong>in</strong> the Alps <strong>and</strong> the Apenn<strong>in</strong>es Nagy L., p. 306-317<br />

434<br />

O. <strong>Dangles</strong>, Á. Barragán, R. E. Cárdenas, G. Onore & C. Keil<br />

<strong>in</strong>: Nagy L., Grabherr G., Körner C., Th ompson D. B. A. (eds.),<br />

Alp<strong>in</strong>e biodiversity <strong>in</strong> Europe. Ecological Studies 167, Heidelberg,<br />

Berl<strong>in</strong>.<br />

Brehm G., Homeier J., Fiedler K. 2003a. Beta diversity of geometrid<br />

moths (Lepidoptera: Geometridae) <strong>in</strong> an Andean montane ra<strong>in</strong>forest.<br />

Diversity <strong>and</strong> Distributions 9: 351-366.<br />

Brehm G., Sussenbach D., Fiedler K. 2003b. Unique elevational<br />

diversity patterns of geometrid moths <strong>in</strong> an Andean montane<br />

ra<strong>in</strong>forest. Ecography 26: 456-466.<br />

Brühl C. A., Mohamed M., L<strong>in</strong>senmair K. E. 1999. Altitud<strong>in</strong>al distribution<br />

of leaf litter ants along a transect <strong>in</strong> primary forest on Mount<br />

K<strong>in</strong>abalu, Sabah, Malaysia. Journal of Tropical Ecology 15: 265-277.<br />

Buzzetti F. M., Carotti G. 2008. Annotated list of the Caelifera of<br />

<strong>Ecuador</strong> (Insecta: Orthoptera), p. 39-66 <strong>in</strong>: Giach<strong>in</strong>o P. M. (ed.),<br />

Biodiversity <strong>in</strong> South America I. Memoirs on Biodiversity World<br />

Biodiversity, Association onlus, Verona.<br />

Cardenas R. 2007. Diversidad y ecología de Tabanidae (Diptera) en un<br />

bosque remanente del Chocó ecuatoriano. Dissertation, Pontifi cia<br />

Universidad Católica del <strong>Ecuador</strong>, Quito, 157 p.<br />

Cárdenas R., Buestan J., Navarrete R., <strong>Dangles</strong> O. 2009. Diversity<br />

<strong>and</strong> distribution notes of horse fl ies (Diptera: Tabanidae) from <strong>Ecuador</strong>:<br />

a review. Annales de la Société entomologique de France (n. s.)<br />

45(4): 511-528.<br />

Carpio C., Donoso D., Ramon G., <strong>Dangles</strong> O. 2009. Short term<br />

response of dung beetle communities to disturbance by road<br />

construction <strong>in</strong> the <strong>Ecuador</strong>ian Amazon. Annales de la Société<br />

entomologique de France (n. s.) 45(4): XXX to be completed.<br />

Chaves J. A., Poll<strong>in</strong>ger J. P., Smith T. B., LeBuhn G. 2007. Th e<br />

role of geography <strong>and</strong> ecology <strong>in</strong> shap<strong>in</strong>g the phylogeography of<br />

the speckled humm<strong>in</strong>gbird (Adelomyia melanogenys) <strong>in</strong> <strong>Ecuador</strong>.<br />

Molecular Phylogenetics <strong>and</strong> Evolution 43: 795-807<br />

Checa F. 2006. Patrones de diversidad, fl uctuaciones poblacional y<br />

correlaciones climáticas de comunidades de mariposas carroñeras<br />

(Lepidoptera: Nymphalidae) en la estacion cientifi ca Yasuni, Amazonia<br />

ecuatoriana. Dissertation, Pontifi cia Universidad Católica del<br />

<strong>Ecuador</strong>, Quito, 107 p.<br />

Clark D. B., Donoso C., de Villacis Y. P. 1982. Th e tramp ant<br />

Wasmannia auropunctata: autecology <strong>and</strong> eff ects on ant diversity<br />

<strong>and</strong> distribution on Santa Cruz Isl<strong>and</strong>, Galapagos. Biotropica 14:<br />

196-207.<br />

Coloma L. 1986. Contribución al conocimiento de las abejas s<strong>in</strong> aguijón<br />

(Melipon<strong>in</strong>ae: Apidae: Hymenoptera) del <strong>Ecuador</strong>. Dissertation,<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Quito, 146 p.<br />

Constant P. 2006. Galapagos: A natural history guide. Odyssey Books<br />

<strong>and</strong> Guides, Hong Kong, 213 p.<br />

<strong>Dangles</strong> O., Carpio C. 2008. Cu<strong>and</strong>o los científi cos y las comunidades<br />

<strong>and</strong><strong>in</strong>as unen sus esfuerzos para luchar en contra de una plaga<br />

<strong>in</strong>vasora. Nuestra Ciencia 10: 23-25.<br />

<strong>Dangles</strong> O., Carpio C., Barragan A., Zeddam J.-L., Silva<strong>in</strong> J.-F.<br />

2008. Temperature as a key driver of ecological sort<strong>in</strong>g among<br />

<strong>in</strong>vasive pest species <strong>in</strong> the tropical Andes. Ecological Applications<br />

18(7): 1795-1809<br />

Deutsch C. A., Tewksbury J. J., Huey R. B., Sheldon K. S., Ghalambor<br />

C. K., Haak D. C., Mart<strong>in</strong> P. R. 2008. Impacts of climate<br />

warm<strong>in</strong>g on terrestrial ectotherms across latitude. Proceed<strong>in</strong>gs of the<br />

National Academy of Sciences 105: 6668-6672.<br />

DeVries T. 2006. Buddleja está desapareciendo por culpa de P<strong>in</strong>us, las<br />

plantaciones de p<strong>in</strong>o y el cambio climatico ciambian el paramo.<br />

Nuestra Ciencia 8: 15-18.


<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong><br />

DeVries P. J., Murray D., L<strong>and</strong>e R. 1997. Species diversity <strong>in</strong> vertical,<br />

horizontal <strong>and</strong> temporal dimensions of fruit-feed<strong>in</strong>g butterfl y<br />

community <strong>in</strong> an <strong>Ecuador</strong>ian ra<strong>in</strong>forest. Biological Journal of the<br />

L<strong>in</strong>nean Society 62: 343-364.<br />

Donoso D. A., Salazar F., Maza F., Cárdenas R. E., <strong>Dangles</strong> O. 2009.<br />

Diversity of <strong>in</strong>sects <strong>in</strong> <strong>Ecuador</strong>: <strong>in</strong>sights from type specimens at the<br />

Invertebrate Museum of the Catholic University of <strong>Ecuador</strong> (QCAZ).<br />

Annales de la Société entomologique de France (n. s.) 45(4): 437-454.<br />

ECOLAP 2007. Guía del patrimonio de áreas naturales protegidas del<br />

<strong>Ecuador</strong>. Universidad San Francisco de Quito, Quito, 330 p.<br />

Fahrig L. 2003. Eff ects of habitat fragmentation on biodiversity. Annual<br />

Review of Ecology <strong>and</strong> Systematics 34: 487-515.<br />

FAO 2007. Situación de los bosques del mundo. Parte 1: Progresos hacia<br />

la ordenación forestal sostenible. Capitulo América Lat<strong>in</strong>a y el Caribe.<br />

Roma,143 p.<br />

Feican M, Encalada A, Larriva C. 1999. Manejo <strong>in</strong>tegrado de las<br />

moscas de la fruta. Revista Informativa del Instituto Nacional Autónomo<br />

de Investigaciones Agropecuarias 86: 1-54.<br />

Fiallos E. A. 1989. Entomofauna asociada a Chenopodium qu<strong>in</strong>oa en las<br />

prov<strong>in</strong>cias de Imbabura, Pich<strong>in</strong>cha, Cotopaxi y Chimborazo. Dissertation,<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Quito, 152 p.<br />

Fiedler K., Brehm G., Hilt N., Süssenbach D., Häuser C. L. 2008.<br />

Variation of diversity patterns across moth families along a tropical<br />

altitud<strong>in</strong>al gradient <strong>in</strong> a tropical mounta<strong>in</strong> ecosystem – a synthesis,<br />

p. 167-179 <strong>in</strong> Beck E., Bendix J, Kottke I, Makesh<strong>in</strong> F., Mos<strong>and</strong>l<br />

R. (eds.), Gradients <strong>in</strong> a Tropical Mounta<strong>in</strong> Ecosystem of <strong>Ecuador</strong>.<br />

Ecological Studies 198. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.<br />

Foley D. H., Weitzman A. L., Miller S. E., Faran M. E., Rueda M. L.,<br />

Richard C. 2008. Th e value of georeferenced collection records for<br />

predict<strong>in</strong>g patterns of mosquito species richness <strong>and</strong> endemism <strong>in</strong><br />

the Neotropics. Ecological <strong>Entomology</strong> 33: 12-23.<br />

Gallegos P., Avalos G., Castillo C. 1997. El gusano blanco de la papa en<br />

<strong>Ecuador</strong>: comportamiento y control. INIAP, Quito, <strong>Ecuador</strong>, 35 p.<br />

Garzione C. N., Hoke G. D., Libark<strong>in</strong> J. C., Withers S., MacFadden<br />

B., Eiler J., Ghosh P., Mulch A. 2008. Rise of the Andes. Science<br />

320: 1304-1307.<br />

Gil J. 2001. Distribución de Ithomi<strong>in</strong>ae en el <strong>Ecuador</strong>. Dissertation,<br />

Pontifi cia Universidad católica del <strong>Ecuador</strong>, Quito, 212 p.<br />

Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. 2004.<br />

New <strong>developments</strong> <strong>in</strong> museum-based <strong>in</strong>formatics <strong>and</strong> applications <strong>in</strong><br />

biodiversity analysis. Trends <strong>in</strong> Ecology <strong>and</strong> Evolution 19: 497-503.<br />

Grant P. 1999. Ecology <strong>and</strong> evolution of the Darw<strong>in</strong>’s fi nches. Pr<strong>in</strong>ceton<br />

University Press, Pr<strong>in</strong>ceton, 512p.<br />

Grez A. A., Zaviezo T., Reyes S. 2004. Short-term eff ects of habitat<br />

fragmentation on the abundance <strong>and</strong> species richness of beetles <strong>in</strong><br />

experimental alfalfa microl<strong>and</strong>scapes. Revista Chilena de Historia<br />

Natural 77: 547-558.<br />

Guevara D., Iorio A., Piñas F., Onore G. 2002. Butterfl ies <strong>and</strong> moth of<br />

<strong>Ecuador</strong>: Vol 17a Sph<strong>in</strong>gidae. Centro de Biodiversidad y Ambiente,<br />

PUCE, Quito, <strong>Ecuador</strong>.<br />

Hilt N., Fiedler K. 2006. Arctiid moth ensembles along a successional<br />

gradient <strong>in</strong> the <strong>Ecuador</strong>ian montane ra<strong>in</strong> forest zone: how diff erent<br />

are subfamilies <strong>and</strong> tribes? Journal of Biogeography 33: 108–120.<br />

Hodk<strong>in</strong>son I. D. 2005. Terrestrial <strong>in</strong>sects along elevation gradients: species<br />

<strong>and</strong> community response to altitude. Biological Review 80: 489-513.<br />

Hoehn P., Tscharntke T., Tylianakis J. M., Steff an-Dewenter I. 2008.<br />

Functional group diversity of bee poll<strong>in</strong>ators <strong>in</strong>creases crop yield.<br />

Proceed<strong>in</strong>gs of the Royal Society of London B 275: 2283-2291.<br />

Holyoak M., Leibold M. A., Holt R. D. 2005. Metacommunities: spatial<br />

dynamics <strong>and</strong> ecological communities. University of Chicago Press,<br />

Chicago, 503 p.<br />

Hughes C., Eastwood R. 2006. Isl<strong>and</strong> radiation on a cont<strong>in</strong>ental scale:<br />

exceptional rates of plant diversifi cation after uplift of the Andes.<br />

Proceed<strong>in</strong>gs of the National Academy of Sciences 103: 10334-10339.<br />

Hulot F. D., Lacroix G., Lescher-Moutoue F. O., Loreau M. 2000.<br />

Functional diversity governs ecosystem response to nutrient<br />

enrichment. Nature 405: 340-344.<br />

INEC (Instituto Nacional de Estadisticas y Censos) 2008. <strong>Ecuador</strong> en<br />

cifras. Onl<strong>in</strong>e version http://www.<strong>in</strong>ec.gov.ec.<br />

Jacobsen D. 2008b. Tropical high-altitude streams, p. 219-256 <strong>in</strong>:<br />

Dudgeon D. (ed.) Aquatic Ecosystems: Tropical Stream Ecology.<br />

Amsterdam.<br />

Jacobsen D. 1998. Infl uence of organic pollution on the macro<strong>in</strong>vertebrate<br />

fauna of <strong>Ecuador</strong>ian highl<strong>and</strong> streams. Archiv für Hydrobiologie<br />

143: 179-195.<br />

Jacobsen D. 2004. Contrast<strong>in</strong>g patterns <strong>in</strong> local <strong>and</strong> zonal family richness<br />

of stream <strong>in</strong>vertebrates along an Andean altitud<strong>in</strong>al gradient.<br />

Freshwater Biology 49: 1293-1305.<br />

Jacobsen D. 2008a. Low oxygen pressure as a driv<strong>in</strong>g factor for the<br />

altitud<strong>in</strong>al decl<strong>in</strong>e <strong>in</strong> taxon richness of stream macro<strong>in</strong>vertebrates.<br />

Oecologia 154: 795-807.<br />

Jacobsen D., Schultz R., Encalada A. 1997. Structure <strong>and</strong> diversity of<br />

stream macro<strong>in</strong>vertebrates assemblages: the eff ect of temperature<br />

with altitude <strong>and</strong> latitude. Freshwater Biology 38: 247-261.<br />

Jacobsen D., Rostgaard S., Vásconez J. J. 2003. Are macro<strong>in</strong>vertebrates<br />

<strong>in</strong> high altitude streams aff ected by oxygen defi ciency? Freshwater<br />

Biology 48: 2025-2032.<br />

Jacobsen D., Brodersen K. P. 2008. Are altitud<strong>in</strong>al limits of equatorial<br />

stream <strong>in</strong>sects refl ected <strong>in</strong> their respiratory performance? Freshwater<br />

Biology 53: 2295-2308.<br />

Jas<strong>in</strong>ski A. 1998. Description of a new species of Hypanartia from<br />

southern <strong>Ecuador</strong> <strong>and</strong> northern Peru (Lepidoptera: Nymphalidae).<br />

Genus 9(3): 405-410.<br />

Jigg<strong>in</strong>s C. D., Mallar<strong>in</strong>o R., Willmott K. W., Berm<strong>in</strong>gham E. 2006.<br />

Th e phylogenetic pattern of speciation <strong>and</strong> w<strong>in</strong>g pattern change<br />

<strong>in</strong> neotropical Ithomia butterfl ies (Lepidoptera; Nymphalidae).<br />

Evolution 60: 1454-1466.<br />

Jonsson M., <strong>Dangles</strong> O., Malmqvist B., Guérold, F. 2002. Simulat<strong>in</strong>g<br />

species loss follow<strong>in</strong>g disturbance: assess<strong>in</strong>g the eff ects on process<br />

rates. Proceed<strong>in</strong>gs of the Royal Society of London B 269: 1047-1052.<br />

Kricher J. 2006. Galapagos: A natural history. Pr<strong>in</strong>ceton University<br />

Press, Pr<strong>in</strong>ceton, 256 p.<br />

Lev<strong>in</strong>s R. 1969. Some demographic <strong>and</strong> genetic consequences of environmental<br />

heterogeneity for biological control. Bullet<strong>in</strong> of the Entomological<br />

Society of America 15: 237-240.<br />

Losey J. E., Vaughan M. 2006. Th e economic value of ecological services<br />

provided by <strong>in</strong>sects. Biosicence 56: 311-323.<br />

Lovett G. M., Burns D. A., Driscoll C. T., Jenk<strong>in</strong>s J. C., Mitchell<br />

M. J., Rustad L., Shanley J. B., Likens G. E., Haeuber R. 2007.<br />

Who needs environmental monitor<strong>in</strong>g? Frontiers <strong>in</strong> Ecology <strong>and</strong> the<br />

Environment 5: 253-260.<br />

MacArthur R. H., Wilson E. O. 1967. Th e theory of isl<strong>and</strong> biogeography.<br />

Pr<strong>in</strong>ceton University Press, Pr<strong>in</strong>ceton, New Jersey, 203 p.<br />

MacMullen C. K. 1999. Flower<strong>in</strong>g plants of the Galapagos. Cornell<br />

University Press, Ithaca <strong>and</strong> London, 368 p.<br />

Martínez E. 1991. Defoliadores de la palma africana (Elaeis gu<strong>in</strong>eensis<br />

Jacq.) y sus controles naturales en una plantación <strong>in</strong>dustrial en la<br />

zona del Coca, <strong>Ecuador</strong>. Observaciones de pol<strong>in</strong>ización de Jessenia<br />

bataua (Arecaceae) en la Reserva de Producción Faunística Cuyabeno,<br />

Amazonía del <strong>Ecuador</strong>. Dissertation, Pontifi cia Universidad Católica<br />

del <strong>Ecuador</strong>, Quito, 154 p.<br />

Mart<strong>in</strong>ez M. L., Manson R. H., Balvanera P., Dirzo R., Soberon J.,<br />

Garcia-Barrios L., Mart<strong>in</strong>ez-Ramos M., Moreno-Casasola P.,<br />

Rosenzweig L., Sarukhan J. 2006. Th e evolution of ecology <strong>in</strong><br />

Mexico: fac<strong>in</strong>g challenges <strong>and</strong> prepar<strong>in</strong>g for the future. Frontiers <strong>in</strong><br />

Ecology <strong>and</strong> the Environment 5: 259-267.<br />

Mazoyer C. 2007. Mécanismes d’<strong>in</strong>teraction entre ravageurs <strong>in</strong>vasifs<br />

tropicaux de la pomme de terre en Équateur. MSc. Dissertation,<br />

University of Montpellier, France, 42p.<br />

435


Mol<strong>in</strong>eros J., Tigrero J. O., S<strong>and</strong>oval G. 1992. Diagnostico de la situación<br />

actual del problema de las moscas de la fruta en el <strong>Ecuador</strong>. Comisión Ecuatoriana<br />

de Energía Atómica, Dirección de Investigaciones, Quito, 53 p.<br />

Moret P. 2005. Los coleopteros Carabidae del páramo de los Andes del<br />

<strong>Ecuador</strong>. Sistematica, ecología y biogeografía. Centro de Biodiversidad<br />

y Ambiente, Tor<strong>in</strong>o, Italia, 306 p.<br />

Moya A. M. 1985. Estudio del vector de mycoplasmas en Solanum marg<strong>in</strong>atum.<br />

Dissertation, Pontifi cia Universidad Católica del <strong>Ecuador</strong>,<br />

Quito, 118 p.<br />

Myers N., Mittermeier R. A., Mittermeier C. G., Da Fonseca G. A. B.,<br />

Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature<br />

403: 853-858.<br />

Myster R. W. 2007. Early successional pattern <strong>and</strong> process after sugarcane,<br />

banana, <strong>and</strong> pasture cultivation <strong>in</strong> <strong>Ecuador</strong>. New Zeal<strong>and</strong><br />

Journal of Botany 45: 35-44.<br />

Nuñez V., Onore G., Pearson D. L. 1994. Escarabajos tigre del <strong>Ecuador</strong><br />

(Coleoptera: Cic<strong>in</strong>delidae), lista de especies y clave para géneros. Revista<br />

de la Pontifi cia Universidad Católica del <strong>Ecuador</strong> 13 (58): 57-67.<br />

Ojasti J. 2001. Estudio sobre el estado actual de las especies exóticas.<br />

Biblioteca digital <strong>and</strong><strong>in</strong>a, Quito, <strong>Ecuador</strong>, 223 p.<br />

Onore G., Arregui T. 1989. Estudio prelim<strong>in</strong>ar sobre la entomofauna<br />

asociada a Lup<strong>in</strong>us mutabilis Sweet, en el <strong>Ecuador</strong>. Memorias VI<br />

Congreso Internacional de Cultivos And<strong>in</strong>os. INIAP, Quito.<br />

Onore G., Bartolozzi L. 2008. Description of the larvae of Sphaenognathus<br />

(Chiasognath<strong>in</strong>us) gaujoni (Oberthür, 1885) <strong>and</strong> S. (C.) xerophilus<br />

Bartolozzi & Onore, 2006 (Coleoptera: Lucanidae), with<br />

observations about their altitud<strong>in</strong>al range extension, p. 399-406 <strong>in</strong>:<br />

Giach<strong>in</strong>o P. M. (ed.), Biodiversity <strong>in</strong> South America I. Memoirs on<br />

Biodiversity World Biodiversity, Association onlus, Verona.<br />

Oquendo R. 2002. Invertebrados asociados a cultivos agrícolas de importancia<br />

económica en la isla Santa Cruz Galapagos. Dissertation, Pontifi<br />

cia Universidad Católica del <strong>Ecuador</strong>, Quito, 120 p.<br />

Ortiz P. 1997. Catálogo, biogeografía y notas de historia natural de los<br />

Dynast<strong>in</strong>ae (Coleoptera: Scarabaeidae) del <strong>Ecuador</strong>. Dissertation,<br />

Pontifi cia Universidad católica del <strong>Ecuador</strong>, Quito, 323 p.<br />

Paucar A. 1998. Rutel<strong>in</strong>ae (Coleoptera: Scarabaeidae) del <strong>Ecuador</strong>:<br />

catálogo, zoogeografía y notas biológicas. Dissertation, Pontifi cia<br />

Universidad católica del <strong>Ecuador</strong>, Quito, 229 p.<br />

Pearson D. L., Buestán J., Navarrete R. 1999. Th e tiger beetles of <strong>Ecuador</strong>:<br />

their identifi cation, distribution <strong>and</strong> natural history. Contributions<br />

on <strong>Entomology</strong>, International 3: 185-315.<br />

Peck S. B. 2001. Smaller orders of <strong>in</strong>sects of the Galapagos Isl<strong>and</strong>s, <strong>Ecuador</strong>:<br />

Evolution, Ecology, <strong>and</strong> Diversity. National Research Council,<br />

Research Press, Canada, 278 p.<br />

Peralta E. 1993. Establecimiento del umbral de acción para el control de<br />

la mosca blanca (Trialeurodes vaporariorum W.) en frejol arbustivo<br />

en el valle del Chota - Imbabura – <strong>Ecuador</strong>. Revista Informativa del<br />

Instituto Nacional Autonomo de Investigaciones Agropecuarias 1: 1-30.<br />

Perrault G. G. 1994. Ecobiogeography of Carabidae <strong>in</strong> the Andes of Venezuela,<br />

p. 45-49 <strong>in</strong>: Desender K., Dufrêne M., Loreau M., Luff ,<br />

M. L., Maelfait J. P. (eds.), Carabid beetles: Ecology <strong>and</strong> Evolution,<br />

Series Entomologica 51, Kluwer Academia Publisher, Dordrecht.<br />

Piñas F., Manzano I. 1997. Mariposas del <strong>Ecuador</strong>. Vol. I. Géneros.<br />

Quito, Pontifi cia Universidad Católica del <strong>Ecuador</strong>, 115 p.<br />

Piñas F., Manzano I. 2003a. Mariposas del <strong>Ecuador</strong>. Vol. 16a.<br />

Saturniidae. Compañía de Jesús, Quito,79 p.<br />

Piñas F., Manzano I. 2003b. Mariposas del <strong>Ecuador</strong>. Vol. 21b. Arctiidae.<br />

Subfamilia: Ctenuch<strong>in</strong>ae. Compañía de Jesús, Quito, 97 p.<br />

Pollet A., Barragan A., Zeddam J.-L., Lery X. 2003. Tecia solanivora,<br />

a serious biological <strong>in</strong>vasion of potato cultures <strong>in</strong> South America.<br />

International Pest Control 45: 139-144.<br />

Pounds J. A., Bustamante M. R., Coloma L. A., Consuegra J. A.,<br />

Fogden M. P. L., Foster P. N., La Marca E., Masters K. L., Mer<strong>in</strong>o-<br />

Viteri A., Puschendorf R., Ron S. R., Sánchez-Azofeifa G. A., Still<br />

C. J., Young B. E. 2006. Widespread amphibian ext<strong>in</strong>ctions from<br />

epidemic disease driven by global warm<strong>in</strong>g. Nature 439: 161-167.<br />

436<br />

O. <strong>Dangles</strong>, Á. Barragán, R. E. Cárdenas, G. Onore & C. Keil<br />

Puill<strong>and</strong>re N., Dupas S., <strong>Dangles</strong> O., Zeddam J. L., Capdevielle-<br />

Dulac C., Barb<strong>in</strong> K., Torres-Leguizamon M., Silva<strong>in</strong> J.-F. 2008.<br />

Genetic bottleneck <strong>in</strong> <strong>in</strong>vasive species: the potato tuber moth adds to<br />

the list. Biological Invasions 10: 319-333.<br />

Ribas C. C., Moyle R. G., Miyaki C. Y. Cracraft J. 2007. Th e assembly<br />

of montane biotas: l<strong>in</strong>k<strong>in</strong>g Andean tectonics <strong>and</strong> climatic oscillations<br />

to <strong>in</strong>dependent regimes of diversifi cation <strong>in</strong> Pionus parrots.<br />

Proceed<strong>in</strong>gs of the Royal Society of London B 274: 2399-2408.<br />

Rostgaard S., Jacobsen D. 2005. Respiration rate of stream <strong>in</strong>sects measured<br />

<strong>in</strong> situ along a large altitude range. Hydrobiologia 549: 79-98.<br />

Ron S. R., Guayasamín J. M., Coloma L. A., Menéndez-Guerrero P.<br />

A. (<strong>in</strong> press). Biodiversity <strong>and</strong> conservation status of Amphibians<br />

<strong>in</strong> <strong>Ecuador</strong>, <strong>in</strong>: Heatwole H., Wilk<strong>in</strong>son J. W. (eds.), Amphibian<br />

Biology. Decl<strong>in</strong>e <strong>and</strong> conservation, Vol. IX. Surrey Beatty & Sons Pty.<br />

Ltd. Australia.<br />

Salazar F. 1998. Lepidópteros defoliadores asociados a Podocarpus. Dissertation,<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Quito, 96 p.<br />

Samways M. J. 2005. Insect diversity conservation. Cambridge University<br />

Press, Cambridge, 342 p.<br />

Sierra R. (ed.). 1999. Propuesta prelim<strong>in</strong>ar de un sistema de clasifi cación<br />

de vegetación para el <strong>Ecuador</strong> Cont<strong>in</strong>ental. Proyecto INEFAN / GEF-<br />

BIRF y EcoCiencia, Quito, <strong>Ecuador</strong>.<br />

Smith A. B. T. 2003. A monographic revision of the genus Platycoelia<br />

Dejean (Coleoptera: Scarabaeidae: Rutel<strong>in</strong>ae: Anoplognath<strong>in</strong>i). Bullet<strong>in</strong><br />

of the University of Nebraska State Museum 15: 1-202.<br />

Suárez M. V. 2008. Ecología de Triatom<strong>in</strong>os (Hemiptera: Reduviidae:<br />

Triatom<strong>in</strong>ae) peridomiciliares y silvestres en las prov<strong>in</strong>cias de Loja y<br />

Manabí. Dissertation, Pontifi cia Universidad Católica del <strong>Ecuador</strong>,<br />

Quito, 96 p.<br />

Tewksbury J., Huey R. B., Deutsch C. A. 2008. Putt<strong>in</strong>g the heat on<br />

tropical animals. Science 320: 1296-1297.<br />

Tilman D., Knops J., Wed<strong>in</strong> D., Reich P., Ritchie M., Siemann E.<br />

1997. Th e <strong>in</strong>fl uence of functional diversity <strong>and</strong> composition on<br />

ecosystem processes. Science 277: 1300-1302.<br />

Tylianakis J. M., Kle<strong>in</strong> A.-M., Lozada T., Tscharntke T. 2006. Spatial<br />

scale of observation aff ects a, b <strong>and</strong> c diversity of cavity-nest<strong>in</strong>g bees<br />

<strong>and</strong> wasps across a tropical l<strong>and</strong>-use gradient. Journal of Biogeography<br />

33: 1295-1304.<br />

UICN, WWF. 2000. Bosques nublados tropicales montanos: tiempo de<br />

acción. Suplemento especial del boletín arborvitae como complemento<br />

a la publicación del libro Decision Time for Cloud Forests de Bruijnzeel,<br />

L. A. & -Hamilton, L. S. 2000. Serie n°13, UNESCO.<br />

Valencia R., Foster R. B., Villa G., Condit R., Svenn<strong>in</strong>g J.-C., Hernández<br />

C., Romoleroux K., Losos E., Magård E., Balslev H. 2004. Tree<br />

species distributions <strong>and</strong> local habitat variation <strong>in</strong> the Amazon: large<br />

forest plot <strong>in</strong> eastern <strong>Ecuador</strong>. Journal of Ecology 92 (2): 214-229<br />

Velasco N. 2008. Patrones de diversidad de comunidades de mariposas carroñeras<br />

del Chocó ecuatoriano en bosque primario y <strong>in</strong>tervenido. Dissertation,<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Quito, 63 p.<br />

Vieira J. C., Cooper P. J., Lovato R., Mancero T., Rivera J., Proaño<br />

R., López A. A., Guderian R. H., Guzmán J. R. 2007. Impact of<br />

long-term treatment of onchocerciasis with ivermect<strong>in</strong> <strong>in</strong> <strong>Ecuador</strong>:<br />

potential for elim<strong>in</strong>ation of <strong>in</strong>fection. BMC Medic<strong>in</strong>e 5: 9.<br />

Willmott K. R., Hall J. P. W., Lamas G. 2001. Systematics of Hypanartia<br />

(Lepidoptera: Nymphalidae: Nymphal<strong>in</strong>ae), with a test for speciation<br />

mechanisms <strong>in</strong> the Andes. Systematic <strong>Entomology</strong> 26(4): 369-399.<br />

Willmott K. R., Hall J. P. W. 2008. Butterfl ies of <strong>Ecuador</strong>.<br />

www.butterfl iesofecuador.com /<strong>in</strong>tro.html#state<br />

Woolfson A. J. 1987. Estudio de la biología de Leuculopsis parvistrigata<br />

(Lepidoptera, Geometridae), plaga de P<strong>in</strong>us radiata. Dissertation,<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Quito, 64 p.<br />

Zapata G. 1997. Carabidae (Insecta: Coleoptera) del <strong>Ecuador</strong>: catálogo,<br />

notas biogeográfi cas y ecológicas. Dissertation, Pontifi cia Universidad<br />

Católica del <strong>Ecuador</strong>, Quito, 237 p.


Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 437-454<br />

Diversity <strong>and</strong> distribution of type specimens deposited <strong>in</strong> the<br />

Invertebrate section of the Museum of Zoology QCAZ,<br />

Quito, <strong>Ecuador</strong><br />

E-mail: mafersalazar@yahoo.es<br />

Accepté le 24 septembre 2009<br />

ARTICLE<br />

David A. Donoso (1,2) , Fern<strong>and</strong>a Salazar (1)* , Florencio Maza (1) ,<br />

Rafael E. Cárdenas (1) & <strong>Olivier</strong> <strong>Dangles</strong> (1,3)<br />

(1) Museo de Zoología, Escuela de Ciencias Biológicas, Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Av. 12 de Octubre 1076 y Roca,<br />

Apdo. 17-01-2184, Quito, <strong>Ecuador</strong><br />

(2) Graduate Program <strong>in</strong> Ecology <strong>and</strong> Evolutionary Biology, Department of Zoology, University of Oklahoma, Norman, OK 73019, USA<br />

(3) IRD-LEGS <strong>and</strong> University Paris-Sud 11, F-91190 Gif-sur-Yvette, France<br />

* Correspond<strong>in</strong>g author<br />

Abstract. The Invertebrate section of the Museum of Zoology QCAZ at the Pontifi cal Catholic University<br />

of <strong>Ecuador</strong> <strong>in</strong> Quito ma<strong>in</strong>ta<strong>in</strong>s nearly two million curated specimens, <strong>and</strong> comprises <strong>Ecuador</strong>´s largest<br />

collection of native taxa. We review 1902 type specimens from 6 subspecies <strong>and</strong> 320 species <strong>in</strong> 121<br />

genera <strong>and</strong> 42 families, currently kept <strong>in</strong> the Museum. The list <strong>in</strong>cludes 116 holotypes, 10 allotypes,<br />

1774 paratypes <strong>and</strong> 2 neoparatypes. The collection of type specimens is particularly strong <strong>in</strong> the<br />

Coleoptera (family Carabidae <strong>and</strong> Staphyl<strong>in</strong>idae) <strong>and</strong> Hymenoptera. However, other <strong>in</strong>sect orders<br />

such as Diptera <strong>and</strong> Lepidoptera <strong>and</strong> non-<strong>in</strong>sect arthropods such as Acari, Aranea <strong>and</strong> Scorpiones,<br />

are moderately represented <strong>in</strong> the collection. This report provides orig<strong>in</strong>al data from labels of every<br />

type specimen record. An analysis of the geographic distribution of type localities showed that<br />

collection sites are clustered geographically with most of them found towards the northern region of<br />

<strong>Ecuador</strong>, <strong>in</strong> Pich<strong>in</strong>cha, Cotopaxi <strong>and</strong> Napo prov<strong>in</strong>ces. Sites are ma<strong>in</strong>ly located <strong>in</strong> highly accessible<br />

areas near highways <strong>and</strong> towns. Localities with a high number of type species <strong>in</strong>clude the cloud forest<br />

reserve Bosque Integral Otonga <strong>and</strong> Parque Nacional Yasuní <strong>in</strong> the Amazon ra<strong>in</strong>forest near PUCE’s<br />

Yasuní Scientifi c Station. Type localities are not well represented <strong>in</strong> the <strong>Ecuador</strong>ian National System of<br />

Protected Areas. Future fi eldwork should <strong>in</strong>clude localities <strong>in</strong> the southern region of <strong>Ecuador</strong> but also<br />

target less accessible areas not located near highways or towns. We discuss the value of the collection<br />

as a source of <strong>in</strong>formation for conservation <strong>and</strong> biodiversity policies <strong>in</strong> <strong>Ecuador</strong>.<br />

Résumé. Diversité et distribution des spécimens types déposés à la section Invertébrés du<br />

Musée de ZOOLOGY QCAZ, Quito, Equateur. La section Invertébrés du Musée de Zoologie QCAZ<br />

héberge près de 2 millions de spécimens, ce qui en fait la plus gr<strong>and</strong>e collection de taxons natifs<br />

d’Equateur. Dans cet article, nous faisons la revue de 1902 spécimens types <strong>in</strong>cluant 6 sous-espèces<br />

et 320 espèces dans 121 genres et 42 familles, actuellement conservés au Musée. La liste <strong>in</strong>clut 116<br />

holotypes, 10 allotypes, 1774 paratypes et 2 neoparatypes. Au se<strong>in</strong> de l’embranchement Arthropoda,<br />

cette liste représente particulièrement bien les ordres d’<strong>in</strong>sectes très diversifi és que sont les Coléoptères<br />

(familles Carabidae <strong>and</strong> Staphyl<strong>in</strong>idae) et Hyménoptères. Toutefois, d’autres ordres d’<strong>in</strong>sectes tels que<br />

les Diptères et Lépidoptères, ou encore les Arachnides (Acariens, araignées et scorpions) ne sont que<br />

modestement représentés dans la collection. Cette étude synthétise les données orig<strong>in</strong>ales de chacun<br />

de ces spécimens. Une analyse de la distribution géographique des localités types montre que les<br />

sites de collection sont spatialement aggrégés, la plupart d’entre eux étant trouvés dans la partie<br />

nord de l’Equateur, dans les prov<strong>in</strong>ces de Pich<strong>in</strong>cha, Cotopaxi et Napo. Ces sites sont pr<strong>in</strong>cipalement<br />

situés dans des zones d’accès facile tels que près de routes et de villes. Les localités présentant un<br />

nombre de spécimens remarquablement élevés <strong>in</strong>cluent la forêt de nuages Bosque Integral Otonga<br />

et le Parque Nacional Yasuní dans la forêt amazonienne, près de la station scientifi que Yasuní de la<br />

PUCE. Les localités type ne sont pas bien représentées au se<strong>in</strong> du système équatorien des aires<br />

protégées. Nous suggérons que les futures études de terra<strong>in</strong> <strong>in</strong>cluent des sites de collecte dans la<br />

partie sud de l’Equateur mais aussi qu‘elles aient pour cible les zones ayant un accès plus limité, lo<strong>in</strong><br />

des routes et des villes. Nous discutons également la valeur de cette collection en tant que source<br />

d’<strong>in</strong>formation pour les stratégies politiques de conservation de la biodiversité en Equateur.<br />

Keywords: QCAZ Museum, Invertebrates, Type specimens, <strong>Ecuador</strong>, Conservation.<br />

437


Type collections are <strong>in</strong>valuable repositories of<br />

biological <strong>in</strong>formation <strong>and</strong> comprise unique <strong>and</strong><br />

irreplaceable taxonomic <strong>and</strong> natural history reference<br />

material (Suarez & Tsutsui 2004; Wheeler et al. 2004).<br />

Type specimens, the “bearers of the scientifi c names of<br />

all nom<strong>in</strong>al species-group taxa” (art. 72.10 of the ICZN<br />

1999) are obvious objects of <strong>in</strong>terest for systematics<br />

<strong>and</strong> taxonomists <strong>and</strong> studies <strong>in</strong> many other branches<br />

of scientifi c endeavor (Alberch 1993; W<strong>in</strong>ston 2007).<br />

It is crucially important to catalogue <strong>and</strong> digitise this<br />

<strong>in</strong>formation, not<strong>in</strong>g the site of deposition of type<br />

specimens <strong>and</strong> their state of conservation for wide<br />

dissem<strong>in</strong>ation (Garrett 1989; Michalski 1992).<br />

Th e use of label data from natural history<br />

collections has improved our underst<strong>and</strong><strong>in</strong>g of<br />

ecology, biogeography <strong>and</strong> evolutionary biology <strong>and</strong><br />

conservation biology (Freitag et al. 1998; Soberón<br />

et al. 2000; Soberón et al. 2003; Reddy & Davalos<br />

2003; Meier & Dikow 2004, O’Connel et al. 2004).<br />

Museum specimens are evidence of the geographic<br />

location of a species at a given time. Th is <strong>in</strong>formation<br />

can be <strong>in</strong>tegrated <strong>in</strong> models explor<strong>in</strong>g the geographic<br />

components of ecological processes, biodiversity <strong>and</strong><br />

global change (Graham et al. 2004; Rahbek et al.<br />

2007; but see Rowe 2005). Results from these studies<br />

attest to the benefi ts of modern database techniques,<br />

especially <strong>in</strong> terms of the dissem<strong>in</strong>ation of <strong>in</strong>formation<br />

from sources (museums) to users (scientists <strong>and</strong> policy<br />

makers) (Meier & Dikow 2004).<br />

Our fi rst objective was to review the type collection<br />

of the Invertebrate Section of the Museum of Zoology<br />

QCAZ (Quito, CAtólica, Zoología) at the Pontifi cia<br />

Universidad Católica del <strong>Ecuador</strong> (PUCE) <strong>in</strong> Quito.<br />

Th e museum was established <strong>in</strong> 1981 under the<br />

direction of Dr. Giovanni Onore as a unit of the School<br />

of Biological Sciences at PUCE. Additional <strong>in</strong>formation<br />

concern<strong>in</strong>g the Museum’s history, structure, functions<br />

<strong>and</strong> challenges may be found <strong>in</strong> Barragán et al. (this<br />

issue) <strong>and</strong> <strong>Dangles</strong> et al. (this issue). From its start<br />

<strong>in</strong> the early 1980’s, PUCE scientists <strong>and</strong> students<br />

have collected <strong>in</strong>vertebrates <strong>in</strong> ma<strong>in</strong>l<strong>and</strong> <strong>Ecuador</strong>, <strong>in</strong><br />

the Galápagos Isl<strong>and</strong>s <strong>and</strong> associated shallow water<br />

mar<strong>in</strong>e habitats, a practice that cont<strong>in</strong>ues today. Th ese<br />

specimens comprise the bulk of the museum’s hold<strong>in</strong>gs<br />

<strong>and</strong> are stored <strong>in</strong> cab<strong>in</strong>ets until they can be curated <strong>and</strong><br />

identifi ed by specialised taxonomists. Th ese collections<br />

have motivated scientifi c research <strong>in</strong>side <strong>and</strong> outside<br />

<strong>Ecuador</strong> <strong>and</strong> have resulted <strong>in</strong> the description of several<br />

hundred new species to science. Vouchers of these new<br />

species are stored <strong>in</strong> the Museum as type specimens. For<br />

example, the collection holds the fi rst records of several<br />

agricultural pests <strong>in</strong>clud<strong>in</strong>g several species of fruit fl ies<br />

Anastrepha spp. (Diptera: Tephritidae; Calles & Ponce<br />

438<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

2003), Eucalyptus pests, Phoracantha semipunctata<br />

(Coleoptera: Cerambycidae) <strong>and</strong> the potato moth,<br />

Tecia solanivora (Lepidoptera: Gelechiidae; Barragán<br />

et al. 2004, Pollet et al. 2003). Collections of the<br />

<strong>in</strong>sect vectors of human <strong>and</strong> veter<strong>in</strong>ary disease such<br />

as the vectors of Chagas <strong>and</strong> other diseases caused by<br />

trypanosomes (Aguilar et al. 1999; Cárdenas & Vieira<br />

2005; Palomeque et al. 2003; P<strong>in</strong>to et al. 2003; P<strong>in</strong>to<br />

et al. 2006;) are also housed <strong>in</strong> the Museum.<br />

Our second objective was to exam<strong>in</strong>e spatial patterns<br />

<strong>in</strong> the collection <strong>and</strong> potential bias of the type material<br />

<strong>in</strong> document<strong>in</strong>g <strong>Ecuador</strong>ian <strong>in</strong>vertebrate diversity,<br />

us<strong>in</strong>g geographical <strong>in</strong>formation systems (GIS) coupled<br />

to spatial analysis. Our goal is to provide to <strong>Ecuador</strong>ian<br />

authorities <strong>and</strong> policy makers basic <strong>in</strong>formation on<br />

the conservation status of the <strong>in</strong>vertebrate fauna <strong>in</strong><br />

<strong>Ecuador</strong>. Th is <strong>in</strong>formation can serve as a guide for<br />

conservation <strong>and</strong> biodiversity eff orts (Shi et al. 2005).<br />

Review of type specimens<br />

Materials <strong>and</strong> Methods<br />

From 2005–2008, an <strong>in</strong>tensive search of the wet <strong>and</strong> dry<br />

collections of the Museum for specimens labeled or identifi ed<br />

as “type” specimens (i.e. holotypes, paratypes, allotypes,<br />

neotypes, topotypes; but also specimens with a colored label)<br />

was done. Th ese specimens were separated from the collection<br />

<strong>and</strong> their identity as type specimens was confi rmed us<strong>in</strong>g<br />

orig<strong>in</strong>al literature. When required, specimens were curated<br />

(i.e. change of alcohol, conta<strong>in</strong>er, oxidized p<strong>in</strong>s, addition of a<br />

restored label), but no orig<strong>in</strong>al label, or other <strong>in</strong>formation, was<br />

removed from any specimen. Type specimens are ma<strong>in</strong>ta<strong>in</strong>ed<br />

separately from the ma<strong>in</strong> collection <strong>and</strong> kept <strong>in</strong> designated<br />

locked cab<strong>in</strong>ets under specifi c light <strong>and</strong> humidity conditions<br />

for long-term storage (Garrett 1989; Michalski 1992).<br />

Type specimens were the <strong>in</strong>itial focus of a current <strong>in</strong>itiative of the<br />

Museum to digitise specimen label <strong>in</strong>formation for all museum<br />

specimens. Museum personnel established a strict digitisation<br />

protocol, which consists of the follow<strong>in</strong>g steps. Label data from<br />

specimens stored <strong>in</strong> the museum cab<strong>in</strong>ets (i.e. ma<strong>in</strong>ly country<br />

of orig<strong>in</strong>, prov<strong>in</strong>ce, locality, altitude, geographic coord<strong>in</strong>ates,<br />

date, collector, determ<strong>in</strong>ation, <strong>and</strong> other ecological data) were<br />

recorded <strong>in</strong> a specially designed database (Apple Mac<strong>in</strong>tosh<br />

Filemaker Pro). Th e lowest taxonomic rank for each specimen<br />

was checked <strong>and</strong> recorded <strong>in</strong> the database up to Phylum<br />

(Triplehorn & Johnson 2005). Th is digitised <strong>in</strong>formation<br />

was l<strong>in</strong>ked to a unique accession number label (e.g. Tipos<br />

QCAZI 00001, for type specimens; QCAZI 00001, for other<br />

specimens), which was added to every specimen.<br />

Georeferenc<strong>in</strong>g<br />

We used label data as the ma<strong>in</strong> source of <strong>in</strong>formation to<br />

georeference type specimens deposited <strong>in</strong> the Museum. Due to<br />

the age of these collections (mostly from 1980’s <strong>and</strong> 1990’s), a<br />

considerable number of data labels (72%) had no geographic<br />

coord<strong>in</strong>ates. Before the widespread use of geographic<br />

<strong>in</strong>formation systems (GIS) products such as global position<strong>in</strong>g<br />

systems (GPS) <strong>and</strong> electronic gazetteers <strong>in</strong> the mid 1990’s, most


Type Specimens at the QCAZ Museum<br />

biological collections <strong>in</strong> the Museum did not have specifi c or<br />

complete geographic coord<strong>in</strong>ates. We <strong>in</strong>creased the number<br />

of known locations by submitt<strong>in</strong>g the label data <strong>in</strong>formation<br />

to a strict protocol of geo-referenc<strong>in</strong>g (Wieczorek et al. 2004).<br />

We divided the locality <strong>in</strong>formation from data labels <strong>in</strong>to n<strong>in</strong>e<br />

categories (Wieczorek et al. 2004). A locality description usually<br />

consists of several parts <strong>and</strong> could be assigned to more than one<br />

of the categories. Th ese categories range from category 1 which<br />

refers to dubious localities with questionable <strong>in</strong>formation to<br />

category 9, which describes localities defi ned by a distance from<br />

a l<strong>and</strong>mark (Table 1). Th e categories allowed us to estimate the<br />

geographical <strong>in</strong>formation content of each locality description.<br />

After the categorisation process, we used st<strong>and</strong>ard gazetteers<br />

for the country <strong>and</strong> publically available <strong>in</strong>formation GIS<br />

products such as digital <strong>Ecuador</strong>ian maps from the Almanaque<br />

Electrónico Ecuatoriano (2002) <strong>and</strong> UNEP-WCMC (2005)<br />

to provide geographic coord<strong>in</strong>ates for those type localities with<br />

valid geographic <strong>in</strong>formation, but without coord<strong>in</strong>ates.<br />

Spatial analyses<br />

Basic collection tendencies <strong>and</strong> potential bias <strong>in</strong> the location<br />

of type specimens <strong>in</strong>side <strong>Ecuador</strong> were analysed us<strong>in</strong>g the<br />

follow<strong>in</strong>g set of statistical analyses. First, we estimated the<br />

presence of cluster<strong>in</strong>g of the georeferenced localities us<strong>in</strong>g<br />

the nearest neighbor <strong>in</strong>dex (NNI) as calculated by the Spatial<br />

Statistics tool “average nearest neighbor distance” <strong>in</strong> ArcGIS 9.1<br />

(ESRI 2005). Localities <strong>in</strong> our catalogue are assumed clustered<br />

if the nearest neighbor observed me<strong>and</strong>istance/expected mean<br />

distance ratio was less than 1 (i.e. NNI < 1). As a measure of<br />

statistical signifi cance, we used the Z score statistic to test for the<br />

null hypothesis that localities are not clustered <strong>in</strong> space (ArcGIS<br />

9.1 Help, ESRI 2005).<br />

If cluster<strong>in</strong>g was found, we analysed the degree of cluster<strong>in</strong>g<br />

us<strong>in</strong>g the nearest neighbor distance distribution function, G(r)<br />

(Diggle 1983). G(r) represents the accumulated frequency of the<br />

type localities as a function of the m<strong>in</strong>imum distance separat<strong>in</strong>g<br />

them. We calculated distances between 165 type localities (n<br />

= 27,225 entries) us<strong>in</strong>g the SpatStat package <strong>in</strong> R (v.2.4.1, R<br />

Development Core Team 2007). Distances were converted from<br />

geographic coord<strong>in</strong>ates <strong>in</strong> degrees to km us<strong>in</strong>g the formula,<br />

1° = 111.3 km (Christopherson 2005). To obta<strong>in</strong> confi dence<br />

<strong>in</strong>tervals (CI) at 5% <strong>and</strong> 95%, we compared these distances<br />

with a null model generated by obta<strong>in</strong><strong>in</strong>g distances between<br />

165 r<strong>and</strong>om-generated localities (100 simulations). Because<br />

the simulated G(r) curves stabilised after approximately 500<br />

entries, we used the fi rst 500 entries for overall comparison.<br />

We visualised the cluster<strong>in</strong>g pattern of type localities by generat<strong>in</strong>g<br />

a map of locality spatial densities. Geographic coord<strong>in</strong>ates (x, y)<br />

of the 165 type localities <strong>and</strong> the correspond<strong>in</strong>g number of<br />

collected species, z, were fi tted to a surface of the form z(x,<br />

y). We used the function, GRIDFIT written <strong>in</strong> MATLAB<br />

(D’Errico 2006), to smooth density values by nearest neighbor<br />

<strong>in</strong>terpolation. Th e result<strong>in</strong>g GRIDFIT model<strong>in</strong>g surface,<br />

defi ned by values of a set of nodes form<strong>in</strong>g a rectangular lattice,<br />

was then fi tted to the profi le map of <strong>Ecuador</strong>. Th e base polygon<br />

consisted of a vector shapefi le of <strong>Ecuador</strong> divided <strong>in</strong>to the ma<strong>in</strong><br />

<strong>Ecuador</strong>ian geographic divisions: Coast (Costa), highl<strong>and</strong>s<br />

(Sierra) <strong>and</strong> Amazon bas<strong>in</strong> (Oriente).<br />

Conservation value of type specimens<br />

We estimated the economic <strong>and</strong> social importance <strong>and</strong><br />

conservation value of the type collections at the QCAZ by<br />

calculat<strong>in</strong>g the percentage of type localities located with<strong>in</strong> the<br />

<strong>Ecuador</strong>ian Protected Areas National System (SNAP; UNEP-<br />

WCMC 2005). We used 30 protected areas located <strong>in</strong>side<br />

cont<strong>in</strong>ental <strong>Ecuador</strong>, gathered <strong>in</strong> a polygon map (UNEP-<br />

WCMC 2005). Th e Galápagos Isl<strong>and</strong>s were excluded for this<br />

analysis. We calculated the percentage of type localities located<br />

<strong>in</strong>side the SNAP us<strong>in</strong>g the GIS tool “Count Po<strong>in</strong>ts” <strong>in</strong> polygons<br />

defi ned us<strong>in</strong>g Hawths Tools (Beyer 2004).<br />

We quantifi ed the overall accessibility (sensu Farrow & Nelson<br />

2001) of type localities. Accessibility was defi ned as a physical<br />

access potential for mov<strong>in</strong>g from one place to the other, measured<br />

by travel hours. In ArcGIS 9.1, we extracted accessibility<br />

values from the accessibility layer presented <strong>in</strong> the Almanaque<br />

Electrónico Ecuatoriano (2002), which, is based on overall average<br />

trip time, <strong>in</strong> hours, to every type locality, with respect to<br />

the follow<strong>in</strong>g features, topography, river navigability, fi rst <strong>and</strong><br />

second order roads <strong>and</strong> towns with more than 50,000 <strong>in</strong>habitants.<br />

Areas with a high accessibility value are diffi cult to access<br />

<strong>and</strong> usually are seldom visited by humans (i.e. high value of<br />

conservation). Areas with a low accessibility value are associated<br />

with roads, navigable rivers <strong>and</strong> airports.<br />

We further <strong>in</strong>vestigated the spatial distribution of type localities<br />

by count<strong>in</strong>g the number of type localities with<strong>in</strong> major <strong>Ecuador</strong>ian<br />

political divisions (i.e. prov<strong>in</strong>ces) <strong>and</strong> natural divisions<br />

or bioregions (Ron et al. <strong>in</strong> press).<br />

Table 1. Number of type localities for each of Wieczorek´s defi nitions of localities (Wieczorek et al. 2004). Most localities<br />

(n = 156) were assigned to Category 5 “Named place”. Examples of the type’s data label are given for each locality.<br />

Defi nition<br />

# Type<br />

Localities<br />

Example of Type´s Data Label<br />

Category 1 Dubious 1 -<br />

Category 2 Can not be located 49 <strong>Ecuador</strong>, Loja, Cord. Lag. Negra<br />

Category 3 Demonstrably <strong>in</strong>accurate 3<br />

<strong>Ecuador</strong>, Azuay, Cuenca, Challuabamba, 11 km NE<br />

Cuenca<br />

Category 4 Coord<strong>in</strong>ates 41 <strong>Ecuador</strong>, Loja, Veracruz, 2000, -79.57302 -3.97709<br />

Category 5 Named place 156 <strong>Ecuador</strong>, Cañar, Chocar<br />

Category 6 Off set 0 -<br />

Category 7 Off set along a path 8 <strong>Ecuador</strong>, Azuay, Km 100 Vía Cuenca-Loja<br />

Category 8 Off sets <strong>in</strong> orthogonal directions 6 <strong>Ecuador</strong>, Past(aza), 1100m, Ll<strong>and</strong>ia, (17 km N. Puyo)<br />

Category 9 Off set at a head<strong>in</strong>g 11 <strong>Ecuador</strong>, Napo, 27 km NW Baeza, 2700 m<br />

439


440<br />

Results<br />

Taxonomic content of the catalogue<br />

Our survey revealed 1,902 type specimens belong<strong>in</strong>g<br />

to 6 subspecies <strong>and</strong> 320 species <strong>in</strong> 121 genera <strong>and</strong><br />

42 families currently stored <strong>in</strong> the QCAZ Museum<br />

Figure 1<br />

Draw<strong>in</strong>gs of emblematic type specimens deposited at the Invertebrate<br />

Section of the Museum of Zoology QCAZ, Quito, <strong>Ecuador</strong>. A,<br />

Drosophila ecuatoriana Vela & Rafael 2004, paratype; B, Onorelucanus<br />

aequatorianus, Bartolozzi & Bomans 1989, paratype; C, Eulaema napensis<br />

Olivieira 2006, holotype.<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

(Fig. 1). Th e catalogue (Appendix 1) conta<strong>in</strong>s 116<br />

holotypes, 10 allotypes, 1,774 paratypes <strong>and</strong> 2 neoparatypes<br />

from two arthropod Classes: Insecta <strong>and</strong><br />

Arachnida. Insecta type specimens are from 8 orders<br />

of which Coleoptera conta<strong>in</strong>s the majority with 16<br />

families, 78 genera, <strong>and</strong> 199 species. Inside the Coleoptera,<br />

the Carabidae conta<strong>in</strong>s types from 23 genera<br />

<strong>and</strong> 91 species; the Staphyl<strong>in</strong>idae conta<strong>in</strong>s types from<br />

43 species <strong>in</strong> 19 genera <strong>and</strong> the Scarabaeidae has types<br />

from 20 species <strong>in</strong> 10 genera. Signifi cant publications<br />

that describe Coleoptera type specimens from <strong>Ecuador</strong><br />

<strong>in</strong>clude Cassola (1997), Smith (2003), <strong>and</strong> Moret<br />

(2005). Th e second greatest abundance of types is <strong>in</strong><br />

the Hymenoptera with examples from 7 families <strong>and</strong><br />

22 species, followed by the Hemiptera with types from<br />

5 families <strong>and</strong> 9 species <strong>and</strong> Diptera with types from 3<br />

families <strong>and</strong> 58 species. Remarkably, there are 215 type<br />

specimens from 37 new species of Drosophila result<strong>in</strong>g<br />

from the work of Dr. Rafael at PUCE (Rafael & Arcos<br />

1988, 1989; Vela & Rafael 2001; 2004a, b, c, 2005).<br />

Surpris<strong>in</strong>gly, there are relatively few type specimens<br />

from the Lepidoptera with 14 new species reported<br />

from the Nymphalidae (Pyrcz & Viloria 1999) <strong>and</strong><br />

just one type species (Hemeroblemma laguerrei Barbut<br />

& Lalanne-Cassou 2005) from the Noctuiidae. Th ere<br />

are 8 type specimens from the Class Arachnida all of<br />

which are spiders (Agnarsson 2006).<br />

Figure 2<br />

Accumulative number of <strong>Ecuador</strong>ian <strong>in</strong>vertebrate species with types<br />

deposited <strong>in</strong> the Invertebrate Secton of the Museum of Zoology QCAZ<br />

s<strong>in</strong>ce 1980.


Type Specimens at the QCAZ Museum<br />

Th e species accumulation curve (Fig. 2) describ<strong>in</strong>g<br />

the number of type species published per year s<strong>in</strong>ce the<br />

creation of the Museum has a signifi cant logarithmic<br />

trend through time (R 2 = 0.972, p < 0.001). Th is<br />

suggests a cont<strong>in</strong>uous <strong>in</strong>crease <strong>in</strong> taxonomic <strong>in</strong>terest<br />

<strong>in</strong> the poorly described <strong>in</strong>vertebrate fauna of <strong>Ecuador</strong>.<br />

For example, 43 new type specimens from species<br />

described <strong>in</strong> 2008 <strong>in</strong> various articles <strong>and</strong> compiled by<br />

Giach<strong>in</strong>o (2008) are currently kept at the Museum.<br />

Spatial analyses<br />

Locality data from specimen labels were extracted<br />

from 1,902 type specimens <strong>in</strong> the collection. Due to<br />

similarities <strong>in</strong> collection sites, we reduced the number of<br />

Figure 3<br />

Geographic distribution of type localities <strong>in</strong> <strong>Ecuador</strong>. Th e political limits of <strong>Ecuador</strong>ian prov<strong>in</strong>ces as of 2007.<br />

type localities <strong>in</strong> the type specimen database to 247. An<br />

analysis of this data set us<strong>in</strong>g the categorisation system<br />

proposed by Wieczorek et al. (2004) further reduced<br />

this to 165 unique type localities (Fig. 3). Fifty-two<br />

locality descriptions from Wieczorek’s categories 1, 2<br />

<strong>and</strong> 3 were elim<strong>in</strong>ated from further analyses (Table 1)<br />

as be<strong>in</strong>g unreliable. A large proportion of <strong>in</strong>vertebrate<br />

species <strong>and</strong> subspecies (28%) were collected <strong>in</strong> just<br />

fi ve localities, Bosque Integral Otonga (35 species),<br />

Pasochoa 1 (18 species), Pasochoa 2 (16 species),<br />

Yasuní (14 species) <strong>and</strong> Las Pampas (8 species) (Fig. 4).<br />

We found that 22.4% of type localities are located<br />

<strong>in</strong> Pich<strong>in</strong>cha prov<strong>in</strong>ce <strong>and</strong> 19.4% <strong>in</strong> Napo. No type<br />

specimens <strong>in</strong> the collection came from El Oro prov<strong>in</strong>ce,<br />

<strong>in</strong> the southern region of the country.<br />

441


Type localities were signifi cantly clustered geographically<br />

(NNI < 1; Z score = –7.101; p < 0.01). Th e<br />

analysis of the degree of cluster<strong>in</strong>g, by means of G(r)<br />

function analysis, further estimated that about 85% of<br />

the type localities were only 20 km or less from the<br />

nearest type locality (Fig. 5). Th e G(r) curve was above<br />

complete spatial r<strong>and</strong>omness envelopes <strong>and</strong> confi rmed<br />

a signifi cant aggregation of type localities. Only 15%<br />

of type localities were separated by distances higher<br />

than 20 km.<br />

A small percentage of type localities (10.3%) were<br />

located <strong>in</strong>side SNAP cont<strong>in</strong>ental protected areas<br />

(Fig. 6). Furthermore, most type localities (>75 % of<br />

georeferenced localities) were situated <strong>in</strong> areas with<br />

easy access (e.g. trip time = 0–1 hours; Fig. 7). Based on<br />

the <strong>Ecuador</strong>ian bioregions proposed by Ron et al. (<strong>in</strong><br />

press), type localities are more densely grouped <strong>in</strong> the<br />

Eastern Montane Forest (Baeza, Cosanga, El Chaco <strong>and</strong><br />

El Reventador), followed by the Amazonian Tropical<br />

Ra<strong>in</strong> Forest (Yasuní), the Western Foothills Montane<br />

Forest (Calacalí, Nanegalito, Chiriboga, Otongachi,<br />

Otonga), Andean Scrub Forest (Loja, Cuenca) <strong>and</strong><br />

Parámo (Pasochoa, Volcán Atacazo, Parque Nacional<br />

Figure 4<br />

Number of type specimens <strong>in</strong> the fi fteen richest localities <strong>in</strong> <strong>Ecuador</strong>.<br />

442<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

El Cajas). Bioregions with few or no type localities<br />

<strong>in</strong>clude the Chocoan Tropical Forest, the Deciduous<br />

Forest <strong>and</strong> the Dry Forest, with just 20 species between<br />

them.<br />

Discussion<br />

Th is is the fi rst catalogue of type specimens kept <strong>in</strong><br />

the Invertebrate Section of the Museum of Zoology<br />

QCAZ <strong>in</strong> Quito. Th is collection conta<strong>in</strong>s a signifi cant<br />

number of type specimens, 1,902 type specimens from<br />

320 species <strong>and</strong> 6 subspecies, which provide a measure<br />

of the importance of the museum <strong>in</strong> a national <strong>and</strong><br />

<strong>in</strong>ternational context.<br />

Most type specimens <strong>in</strong> the Museum (62.6%)<br />

belong to the Coleoptera, which is <strong>in</strong> accordance to<br />

the taxonomic diversity of the order on a global scale.<br />

However, perhaps more important than the total<br />

diversity of the group, species descriptions were related<br />

to the number of taxonomists work<strong>in</strong>g on the group<br />

(Wheeler 2007). For example, butterfl ies (Lepidoptera),<br />

fl ies (Diptera), social <strong>in</strong>sects (Hymenoptera) <strong>and</strong> spiders<br />

(Class Arachnida), which are also highly diverse <strong>in</strong>sect<br />

groups <strong>in</strong> <strong>Ecuador</strong> <strong>and</strong> worldwide, were relatively<br />

rare <strong>in</strong> our catalogue of types. Th is is perhaps related<br />

to diffi culties of do<strong>in</strong>g taxonomy <strong>in</strong> tropical regions<br />

(Balakrishnan 2005), rather than specimen availability<br />

<strong>in</strong> the collection (Checa et al., this issue).<br />

Most type localities were clustered towards the<br />

northern region of the country, <strong>in</strong> Pich<strong>in</strong>cha, Cotopaxi<br />

<strong>and</strong> Napo prov<strong>in</strong>ces <strong>and</strong> <strong>in</strong> areas of easy accessibility.<br />

Several reasons may account for these biases. First, the<br />

ma<strong>in</strong> airport servic<strong>in</strong>g the country is located <strong>in</strong> the<br />

capital city, Quito, <strong>in</strong> Pich<strong>in</strong>cha prov<strong>in</strong>ce. Foreign<br />

scientists, usually constra<strong>in</strong>ed by time, tend to collect<br />

<strong>in</strong> places near ma<strong>in</strong> airports <strong>and</strong> with good logistical<br />

support (Soberon et al. 2000). Second, the ma<strong>in</strong><br />

campus of PUCE is also located at Quito. Collections<br />

from PUCE students <strong>and</strong> researchers, the ma<strong>in</strong> sources<br />

of specimens for the museum, also tend to represent<br />

nearby, accessible areas around Quito. Th e logistical<br />

support of the Bosque Integral Otonga <strong>in</strong> Cotopaxi<br />

Prov<strong>in</strong>ce <strong>and</strong> the Yasuní Scientifi c Station <strong>in</strong> Amazonia<br />

has facilitated the growth of the collection from these<br />

areas as well.<br />

Similar to patterns <strong>in</strong> African conservation studies<br />

(Reddy & Dávalos 2003), our study demonstrated a<br />

relationship between type localities <strong>and</strong> areas of high<br />

biological diversity, hotspots sensu Myers et al. (2000).<br />

Th ere has been a bias of researchers to collect <strong>in</strong><br />

high rated biodiversity areas such as the <strong>Ecuador</strong>ian<br />

bioregions Tropical Andes <strong>and</strong> the southern limits<br />

of the Chocó-Darién. Accessibility <strong>in</strong>dexes of type


Type Specimens at the QCAZ Museum<br />

localities were also positively related to areas with oil<br />

company facilities. Biologists <strong>in</strong> <strong>Ecuador</strong> have taken<br />

advantage of oil <strong>in</strong>dustry <strong>in</strong>frastructure <strong>and</strong> logistics<br />

for biodiversity surveys (e.g. Carpio et al. this issue).<br />

Th is is also evident <strong>in</strong> Yasuní National Park, located<br />

<strong>in</strong> the Amazonian Tropical Ra<strong>in</strong> Forest hotspot (Myers<br />

et al. 2000) that conta<strong>in</strong>s oil exploration block 31,<br />

managed by Petrobras Oil Company (Brazil) <strong>and</strong> block<br />

16, managed by Repsol Oil Company (Spa<strong>in</strong>). Th ese<br />

areas have been the sites for extensive, although still<br />

<strong>in</strong>complete, <strong>in</strong>ventories of the local <strong>in</strong>vertebrate fauna.<br />

Collection activities were also related to biological<br />

hotspots near important agriculture zones, such as the<br />

Chocó-Darién Western <strong>Ecuador</strong> hotspot (Myers et al.<br />

2000). In the southern limits of the Chocó-Darién<br />

there were several type localities, such as Otonga<br />

<strong>and</strong> Otongachi, easily accessed by scientists through<br />

off -roads created after the <strong>Ecuador</strong>ian agricultural<br />

reformation <strong>in</strong> the 1960´s (Acosta 1999). It is unclear<br />

the degree to which collection bias (such as scientists<br />

fondness for easily accessible biodiversity hotspots with<br />

good <strong>in</strong>frastructure) may <strong>in</strong>fl uence our perception of<br />

Figure 5<br />

Type locality density extrapolations <strong>in</strong> the three ma<strong>in</strong> ecological regions of <strong>Ecuador</strong> (coast, highl<strong>and</strong>s, Amazon). Areas with more type localities are presented<br />

with reddish colors, while areas with few or no localities are <strong>in</strong> blue.<br />

443


444<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

Figure 6<br />

Unique type-localities <strong>and</strong> relationhip with Protected Areas National System (SNAP) with highways <strong>and</strong> river accessibility features.


Type Specimens at the QCAZ Museum<br />

biodiversity patterns <strong>in</strong> <strong>Ecuador</strong>.<br />

Geographic cluster<strong>in</strong>g of type localities is a strong<br />

warn<strong>in</strong>g about the completeness of the Museum<br />

collection. It also reduces its usefulness as a source of<br />

<strong>in</strong>formation on the <strong>in</strong>vertebrates <strong>in</strong> under-sampled<br />

areas of the country (Soberón et al. 2000). Perhaps most<br />

dangerous for conservation plann<strong>in</strong>g, type localities<br />

tended to be close to easily accessed areas. Th is may<br />

devalue the apparent value of more remote areas for<br />

conservation when actually they have simply not been<br />

adequately sampled. It is unclear what the consequences<br />

are of these biases <strong>in</strong> the collection. Clearly, at the<br />

present, the collection does not adequately represent<br />

<strong>Ecuador</strong>’s biodiversity <strong>and</strong> provide basel<strong>in</strong>e data for<br />

eff ective conservation plann<strong>in</strong>g (Soberón et al. 2000,<br />

Reddy & Dávalos 2003). We hope that future collection<br />

eff orts address this problem, target<strong>in</strong>g collection sites<br />

located toward southern <strong>and</strong> less accessible regions of<br />

the country. We also suggest that collection activity<br />

should move toward more prist<strong>in</strong>e areas, which may<br />

consequently provide better chances of collect<strong>in</strong>g rare<br />

or new biological material. Th ese collections should<br />

beg<strong>in</strong> to address patterns of speciation of various groups<br />

<strong>in</strong> <strong>Ecuador</strong>. Collection activity should also be planned<br />

to exam<strong>in</strong>e potential barriers to gene fl ow lead<strong>in</strong>g to<br />

speciation such as altitude, phytogeographic regions,<br />

biogeographic regions <strong>and</strong> major physiographic<br />

features of the l<strong>and</strong>scape. We argue that <strong>in</strong> do<strong>in</strong>g<br />

so, researchers may <strong>in</strong>crease both the amount <strong>and</strong><br />

quality of <strong>in</strong>vertebrate material <strong>in</strong> museum, <strong>and</strong> the<br />

signifi cance of their own work.<br />

Th e Merriam Webster dictionary defi nes<br />

conservation as “planned management of a natural<br />

resource to prevent exploitation, destruction, or<br />

neglect”. Priority sett<strong>in</strong>g is an elemental step towards<br />

biological conservation (Shi et al. 2002). However, it is<br />

a complex task to set priorities for conservation <strong>and</strong> to<br />

put <strong>in</strong> place the mechanisms for eff ective conservation<br />

practice <strong>in</strong> small countries such as <strong>Ecuador</strong>. Diffi culties<br />

arise from diff erent sources. First, the role <strong>and</strong><br />

leadership of the government <strong>in</strong> priority sett<strong>in</strong>g <strong>and</strong><br />

enforcement of laws <strong>and</strong> programs for conservation is<br />

not clear. Th e recent constitution of <strong>Ecuador</strong> provides<br />

for rights of the environment, however, the mechanism<br />

Figure 7<br />

Number of type-localities (fi lled bars) <strong>and</strong> r<strong>and</strong>om localities (empty bars) <strong>in</strong> relation to the average trip-time (N=165) it takes to arrive to such localities.<br />

Th e average trip time is a measure of the physical access capacity of mobility from a given po<strong>in</strong>t to another (trip average hours), determ<strong>in</strong>ed by logistic <strong>and</strong><br />

<strong>in</strong>frastructure facilities of both (UNEP-WCMC 2005).<br />

445


to realise these rights <strong>in</strong> balance with development <strong>and</strong><br />

exploitation of natural resources is not defi ned. Second,<br />

the current state of taxonomic expertise represented as<br />

both the number of people work<strong>in</strong>g <strong>and</strong> the amount<br />

of published <strong>in</strong>formation make conservation based<br />

on <strong>in</strong>vertebrates diffi cult. We are probably loos<strong>in</strong>g<br />

species to habitat destruction faster than they can be<br />

described or even discovered. As a result, the extent to<br />

which eff ective conservation agendas can be set up over<br />

taxonomically poorly known groups such as <strong>in</strong>sects is<br />

debatable. However, the importance of the <strong>in</strong>vertebrate<br />

fauna as a measure of biodiversity <strong>and</strong> ecosystem<br />

function<strong>in</strong>g cannot be ignored.<br />

We conclude that <strong>in</strong>vertebrate collections <strong>in</strong><br />

<strong>Ecuador</strong>, represented by type specimens at the Museum,<br />

are diverse but skewed towards few taxonomic groups<br />

<strong>and</strong> areas of high accessibility <strong>and</strong> recognised diversity.<br />

We challenge current <strong>and</strong> future researchers to direct<br />

their collection eff orts to locations <strong>and</strong> taxonomic<br />

groups other than the ones reported <strong>in</strong> this work. It is<br />

important to work collaboratively with scientists <strong>and</strong><br />

<strong>in</strong>stitutions around the world <strong>in</strong> this eff ort. It will be<br />

impossible for <strong>Ecuador</strong> to develop suffi cient scientifi c<br />

resources to catalogue, much less study <strong>in</strong> any depth,<br />

the country’s biodiversity. <strong>Ecuador</strong>ian students should<br />

pursue postgraduate opportunities abroad. We must<br />

develop coolaborative relationships with major natural<br />

history museums around the world to underst<strong>and</strong> our<br />

fauna yet still protect the biological patrimony of the<br />

country.<br />

Acknowledgements. Th is paper is dedicated to Giovanni Onore,<br />

the founder of the Section of Invertebrates of the Museum of<br />

Zoology at PUCE <strong>and</strong> for his many years of dedicated study<br />

of <strong>in</strong>sects <strong>and</strong> <strong>in</strong>spiration to countless students. Th e authors<br />

are grateful to C. Keil <strong>and</strong> P. Lalor for useful comments <strong>and</strong><br />

l<strong>in</strong>guistic revision of the manuscript. We thank S. McKamey, J.<br />

M. Salgado Costas <strong>and</strong> F. M Buzzeti for provid<strong>in</strong>g taxonomic<br />

articles <strong>and</strong> other useful <strong>in</strong>formation. We thank S. Burneo<br />

<strong>and</strong> J. Sanchez at PUCE for assist<strong>in</strong>g <strong>in</strong> spatial analysis <strong>and</strong><br />

statistics. S. Lobos <strong>and</strong> D. Alarcón provided the draw<strong>in</strong>gs.<br />

Fund<strong>in</strong>g for the publication was provided by the government<br />

of <strong>Ecuador</strong> (Donaciones del Impuesto a la Renta 2004–2006)<br />

<strong>and</strong> by the IRD. F<strong>in</strong>aly, we thank all scientists <strong>and</strong> students that<br />

have collected <strong>and</strong> described the <strong>Ecuador</strong>ian <strong>in</strong>vertebrates <strong>in</strong><br />

the Museum collection<br />

446<br />

References<br />

Acosta A. 1999. Breve historia económica del <strong>Ecuador</strong>. Biblioteca General<br />

de Cultura. 258 p.<br />

Agnarsson I. 2006. A revision of the New World eximius l<strong>in</strong>eage of<br />

Anelosimus (Araneae, Th eridiidae) <strong>and</strong> a phylogenetic analysis us<strong>in</strong>g<br />

worldwide exemplars. Zoological Journal of the L<strong>in</strong>nean Society 146:<br />

453-593.<br />

Aguilar H., Abad F., Rac<strong>in</strong>es J., Paucar A. 1999. Epidemiology of Chagas<br />

disease <strong>in</strong> <strong>Ecuador</strong>. A brief review. Memórias do Instituto Oswaldo Cruz<br />

94: 387-393.<br />

Alberch P. 1993. Museums, collections <strong>and</strong> biodiversity <strong>in</strong>ventories. Trends<br />

<strong>in</strong> Ecology <strong>and</strong> Evolution 8: 372-375.<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

Allegro G., Giach<strong>in</strong>o P. M., Sciaky R. 2008. Notes on some Trech<strong>in</strong>i<br />

(Coleoptera Carabidae) of South America with description of new<br />

species from Chile, <strong>Ecuador</strong> <strong>and</strong> Peru, p. 131-172, <strong>in</strong> Giach<strong>in</strong>o P. M.<br />

(ed.) Biodiversity of South America I. Memoirs on Biodiversity, World<br />

Biodiversity Association onlus, Verona, 1, 496 p.<br />

Almanaque Electrónico Ecuatoriano. 2002. Información espacial<br />

para aplicaciones agropecuarias. CD-ROM. Universidad del Azuay,<br />

Universidad Nacional de Loja, Fundación Jatun Sacha CDC,<br />

CIMMYT, ESPE. 2002.<br />

Amédégnato C., Poula<strong>in</strong> S. 1994. Nouvelles données sur les peuplements<br />

acridiens Nord Andeens et Nord-Ouest Amazoniens: La Famille<br />

des Romaleidae (Orthoptera: Acridoidea). Annales de la Société<br />

Entomologique de France (n. s.) 30: 1-24.<br />

Amédégnato C. Poula<strong>in</strong> S. 1998. New Acridoid Taxa from Northwestern<br />

South America: Th eir Signifi cance for the Phylogeny <strong>and</strong> Biogeography<br />

of the Family Acrididae (Orthoptera). Annals of the Entomological<br />

Society of America 91: 532-547.<br />

Anderson R. 2003. Neotropical Dryophthoridae: Redescription of the<br />

Genus Melchus Lacordaire with description of Daisya Anderson, New<br />

Genus, <strong>and</strong> seven New Species (Coleoptera: Curculionoidea). Th e<br />

Coleopterists Bullet<strong>in</strong> 57: 413-432.<br />

Arnaud P. 1982. Descriptions de deux nouvelles especes de Phanae<strong>in</strong>i (Col<br />

Scarabeidae). Miscellanea Entomologica 49: 121-123.<br />

Ashe J., Leschen R. 1995. Cajachara carltoni, a new genus <strong>and</strong> species<br />

of rove beetle (Coleoptera Staphyl<strong>in</strong>idae Aleochar<strong>in</strong>ae) from an<br />

<strong>Ecuador</strong>ean paramo. Tropical Zoology 8: 85-93.<br />

Balakrishnan R. 2005. Species concepts, species boundaries <strong>and</strong> species<br />

identifi cation: a view from the tropics. Systematic Biology 54: 689-<br />

693.<br />

Barragán Á. R., <strong>Dangles</strong> O., Cárdenas R. E., Onore G. 2009. Th e<br />

History of <strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>. Annales de la Société entomologique<br />

de France (n. s.) 45(4): 410-423.<br />

Barragán A., Pollet A., Prado J., Lagnaoui A., Onore G., Aveiga I.,<br />

Lery X., Zeddam, J. 2004. La polilla guatemalteca Tecia solanivora<br />

(Povolny) (Lepidoptera: Gelechiidae) en <strong>Ecuador</strong>. Diagnóstico y<br />

perspectivas de manejo bajo un método de predicción. In Memorias<br />

II Taller Internacional de Polilla Guatemalteca, Centro de Biodiversidad<br />

y Ambiente, Escuela de Biología, Pontifi cia Universidad Católica del<br />

<strong>Ecuador</strong>, Quito, Publicación Especial 7: 5-23.<br />

Barbut J., Lalanne-Cassou B. 2005. Description de trois nouvelles<br />

espèces d’Hemeroblemma Hubner, 1818 (Lepidoptera, Noctuidae,<br />

Catocal<strong>in</strong>ae). Revue Française d’Entomologie (n.s.) 27: 161-170.<br />

Bartolozzi L., Bomans H. 1989. Onorelucanus aequatorianus n.gen.,<br />

n.sp. di Lucanidae dell’<strong>Ecuador</strong> (Coleoptera). Bollett<strong>in</strong>o della Società<br />

Entomologica Italiana, Genova 121: 53-58.<br />

Bartolozzi L., Onore G. 2006. Sphaenognathus (Chiasognath<strong>in</strong>us) xerophilus<br />

sp. n. from Perú. Koleopterologische Rundschau 76: 361-365.<br />

Beyer H. L. 2004. Hawth’s Analysis Tools for ArcGIS. Available at http://<br />

www.spatialecology.com/htools<br />

Borowiec L. 1998a. Four new species of Aslamidium Borowiec, with description<br />

of Neoaslamidium new subgenus (Coleoptera: Chrysomelidae:<br />

Hisp<strong>in</strong>ae). Genus 9: 367-374.<br />

Borowiec L. 1998b. Review of the Cassid<strong>in</strong>ae of <strong>Ecuador</strong>, with a description<br />

of thirteen new species (Coleoptera: Chrysomelidae). Genus 9:<br />

155-246.<br />

Borowiec L., Dabrowska A. 1997. Two new species of Eugenysa Chevrolat,<br />

1837 from <strong>Ecuador</strong> <strong>and</strong> Peru (Coleoptera: Chrysomelidae: Cassid<strong>in</strong>ae).<br />

Genus 8: 673-678.<br />

Boucher S. 2004. Th e species of Passalidae (Insecta: Coleoptera) described<br />

by Johann Jakob Kaup: Historical overview <strong>and</strong> critical catalogue,<br />

with the description of four new species. Darmstädter Beiträge zur<br />

Naturgeschichte 13: 99-121.


Type Specimens at the QCAZ Museum<br />

Boucher S., Pardo L. 1997. Sur la présence de trois Verres Kaup du groupe<br />

Bates dans les Andes de Colombie-Equateur (Coleoptera,<br />

Passalidae). Nouvelle Revue d’Entomologie (n.s.) 14: 77-83.<br />

Brailovsky H. 1999. One new genus <strong>and</strong> tree new species of acanthocephal<strong>in</strong>i<br />

(Hemiptera: Heteroptera: Coreidae: Core<strong>in</strong>ae). Journal of the<br />

New York Entomological Society 107: 247-255.<br />

Brailovsky H. 2001. Five new species of Neotropical Coreidae (Insecta:<br />

Hemiptera). Reichenbachia, Staatliches Museum für Tierkunde Dresden<br />

34: 67-79.<br />

Brailovsky H., Barrera E. 2000. Four new species of Neotropical Coreidae<br />

(Insecta: Hemiptera: Heteroptera). Reichenbachia, Staatliches Museum<br />

für Tierkunde Dresden 33: 271-280.<br />

Brown B. 1997. Revision of the Apocephalus attophilus-group of antdecapitat<strong>in</strong>g<br />

fl ies (Diptera: Phoridae). Contributions <strong>in</strong> Science (Los<br />

Angeles) 468: 1-60.<br />

Brown B. 2000. Revision of the Apocephalus miricauda-group of antparasitiz<strong>in</strong>g<br />

fl ies. Contributions <strong>in</strong> Science (Los Angeles) 482: 1-50.<br />

Buzzeti F. 2006. Th e genus Potamobates Champion <strong>in</strong> <strong>Ecuador</strong>, with<br />

description of P. shuar n. sp. (Hemiptera: Gerridae). Zootaxa 1306:<br />

51-56.<br />

Calles J., Ponce P. 2003. Infl uencia de la disponibilidad de hospederos y<br />

los factores ambientales en la fl uctuación poblacional de las moscas<br />

de la fruta Anastrepha spp. (Diptera: Tephritidae) en Guayllabamba.<br />

Revista de la Pontifi cia Universidad Católica del <strong>Ecuador</strong> 71: 79-99.<br />

Camargo J., Moure J. 1994. Melipon<strong>in</strong>ae Neotropicais: Os Géneros<br />

Paratrigona Schwarz, 1938 e Aparatrigona Moure, 1951 (Hymenoptera,<br />

Apidae). Arquivos de Zoologia 32: 33-109.<br />

Cárdenas R., Vieira J. 2005. Nuevas citas de Tabánidos (Diptera:<br />

Tabanidae) para <strong>Ecuador</strong>. Boletín de la Sociedad Entomológica Aragonesa<br />

36: 153-156.<br />

Carpio C., Donoso D. A., Ramón G., <strong>Dangles</strong> O. 2009. Short term response<br />

of dung beetle communities to disturbance by road construction<br />

<strong>in</strong> the <strong>Ecuador</strong>ian Amazon. Annales de la Société entomologique de<br />

France (n. s.) 45(4): XXX complete at proof 2<br />

Casale A., Sciaky R. 1986. Un nuovo Oxytrechus dell‘ <strong>Ecuador</strong>. Bollett<strong>in</strong>o<br />

del Museo Regionale di Scienze Naturali, Tor<strong>in</strong>o 4: 483-488.<br />

Cassola F. 1997. Studies on tiger beetles. XC. Revision of the Neotropical<br />

Genus Pseudoxycheila Guér<strong>in</strong>, 1839 (Coleoptera, Cic<strong>in</strong>delidae).<br />

Fragmenta entomologica, Roma 29:1-121.<br />

Checa M. F., Barragán A., Rodríguez J., Christman M. 2009. Temporal<br />

abundance patterns of butterfl y communities (Lepidoptera: Nymphalidae)<br />

<strong>in</strong> the <strong>Ecuador</strong>ian Amazonia <strong>and</strong> their relationship with climate.<br />

Annales de la Société entomologique de France (n. s.) 45(4): XXX complete<br />

at proof 2<br />

Christopherson R. 2005. Geosystems: An Introduction to Physical Geography.<br />

6th Edition. Prentice Hall. New York. 752 p.<br />

Cobos A. 1990. Opuscula Buprestologica, III. Nuevos materiales de la<br />

fauna Neotropical (Coleoptera: Buprestidae). Elytron 3: 49-59.<br />

Contreras A. 1995. New species of Chloronia from <strong>Ecuador</strong> <strong>and</strong> Guatemala,<br />

with a key to the species <strong>in</strong> the genus (Megaloptera: Corydalidae).<br />

Journal of the North American Benthological Society 14: 108-114.<br />

Contreras A. 1998. Systematics of the Dobsonfl y Genus Corydalus (Megaloptera:<br />

Corydalidae). Th omas Say Publications <strong>in</strong> <strong>Entomology</strong>, Entomological<br />

Society of America, Lanham, Maryl<strong>and</strong>, USA, 360 p.<br />

Cook J. 1998. A Revision of the Neotropical Genus Bdelyrus Harold (Coleoptera:<br />

Scarabaeidae). Th e Canadian Entomologist 130: 631-689.<br />

Cook J. 2002. A revision of the Neotropical genus Cryptocanthon Balthasar<br />

(Coleoptera: Scarabaeidae: Scarabae<strong>in</strong>ae). Supplement to Coleopterists<br />

Bullet<strong>in</strong> 56. Coleopterists Society Monographs Patricia Vaurie Series 1:<br />

1-96.<br />

Cook J., Peck S. 2000. Aphodi<strong>in</strong>ae (Coleoptera: Scarabaeidae) of the<br />

Galapagos Isl<strong>and</strong>s. Th e Canadian Entomologist 132: 281-300.<br />

Cooper M. 2000. Five new species of Agelaia Lepeletier (Hym., Vespidae,<br />

Polist<strong>in</strong>ae) with a key to members of the genus, new synonymy <strong>and</strong><br />

notes. Entomologist´s Monthly Magaz<strong>in</strong>e 136: 177-197.<br />

Costa L., Couturier G. 2000. Mirideos Neotropicais: uma nova espécie do<br />

gênero Parafulvius Carvalho (Heteroptera: Miridae: Phyl<strong>in</strong>ae). Revue<br />

Française d’Entomologie (n.s.) 22: 119-122.<br />

Couturier G., Costa L. 2002. Mirídeos Neotropicais: Uma nova espécie do<br />

género Anomalocornis Carvalho & Wygodz<strong>in</strong>sky, 1945 (Heteroptera,<br />

Miridae, Phyl<strong>in</strong>ae). Revue Française d’Entomologie (n.s.) 24: 193-196.<br />

<strong>Dangles</strong> O., Barragán Á., Cárdenas R. E., Onore G., Keil C. 2009.<br />

<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>: <strong>Recent</strong> <strong>developments</strong> <strong>and</strong> future challenges.<br />

Annales de la Société entomologique de France (n. s.) 45(4): XXX<br />

complete at proof 2<br />

D’Errico J. R. 2006. Underst<strong>and</strong><strong>in</strong>g Gridfi t. Information available at:<br />

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.<br />

do?objectId=8998<br />

Deuve T. 2002. Nouveaux Trech<strong>in</strong>ae et Bembidi<strong>in</strong>ae de l’Equateur, de la<br />

Ch<strong>in</strong>e et du Laos Coleoptera, Trechidae. Revue Francaise d’Entomologie<br />

(n.s.) 24: 151-160.<br />

Diggle P. J. 1983. Statistical analysis of spatial po<strong>in</strong>t patterns. Academic<br />

Press, London, UK<br />

Donoso D. A., Vieira J., Wild A. 2006. Th ree new species of Leptanilloides<br />

Mann from Andean <strong>Ecuador</strong> (Formicidae: Leptanilloid<strong>in</strong>ae). Zootaxa<br />

1201: 47-62.<br />

Dupuis F. 1996. Description d’une nouvelle espece de Cyclocephala Latreille,<br />

1829, et mise au po<strong>in</strong>t sur les especes du groupe Melanocephala<br />

(Coleoptera, Dynastidae). Bullet<strong>in</strong> de la Societe entomologique de France<br />

101: 257-260.<br />

ESRI. 2005. ArcGIS Desktop ver. 9.1. Environmental Systems Research<br />

Institute, Inc., New York, USA<br />

Farrow A., Nelson A. 2001. Modelación de la accesibilidad en ArcView 3.<br />

Centro Internacional de Agricultura Tropical.<br />

Freitag S., Hobson C., Biggs H. C., Van Jaarsveld A. S. 1998. Test<strong>in</strong>g<br />

for potential survey bias: the eff ect of roads, urban areas <strong>and</strong> nature<br />

reserves on a southern African mammal data set. Animal Conservation<br />

1: 119−127.<br />

Garrett K. L. 1989. Documentation guidel<strong>in</strong>es for the preparation <strong>and</strong><br />

conservation of biological specimens. Collection Forum 5: 47-51.<br />

Genier F. 1996. A revision of the Neotropical genus Ontherus Erichson<br />

(Coleoptera: Scarabaeidae, Scarabae<strong>in</strong>ae). Memoirs of the Entomological<br />

Society of Canada 170: 1-169.<br />

Genier F., Kohlmann B. 2003. Revision of the Neotropical dung beetle<br />

genera Scatimus Erichson <strong>and</strong> Scatrichus gen. nov. (Coleoptera:<br />

Scarabaeidae, Scarabae<strong>in</strong>ae) Fabreries 28: 57-111.<br />

Giach<strong>in</strong>o P. M. (ed.) 2008. Biodiversity of South America I. Memoirs on<br />

Biodiversity, World Biodiversity Association onlus, Verona, 1, 496 p.<br />

Giach<strong>in</strong>o P. M., Moret P., Picciau L. 2008. A new microphthalmous<br />

species of Perigona Castelnau, 1835 from <strong>Ecuador</strong> (Coleoptera Carabidae),<br />

p. 195-199, <strong>in</strong>, Giach<strong>in</strong>o P. M. (ed.) Biodiversity of South<br />

America I. Memoirs on Biodiversity, World Biodiversity Association<br />

onlus, Verona, 1, 496 p.<br />

Golbach 1988. Contribucion al conocimiento de la subfamilia<br />

Pachyder<strong>in</strong>ae y primera cita de especies para la Argent<strong>in</strong>a. Revista de la<br />

Pontifi ia Universidad Catolica del <strong>Ecuador</strong> 51: 169-182.<br />

Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. New<br />

<strong>developments</strong> <strong>in</strong> museum-based <strong>in</strong>formatics <strong>and</strong> applications <strong>in</strong><br />

biodiversity analysis. Trends <strong>in</strong> Ecology <strong>and</strong> Evolution 19: 497-503.<br />

Hanley R. 2003. Lept<strong>and</strong>ria gen.n., a monophyletic group of Neotropical<br />

aleochar<strong>in</strong>e Staphyl<strong>in</strong>idae (Coleoptera). Journal of Natural History 37:<br />

2615-2626.<br />

Hovore F. 1992. A New Genus <strong>and</strong> Species of Flightless Longhorned<br />

Beetle from Central America (Coleoptera: Cerambycidae). Insecta<br />

Mundi 6: 37-41.<br />

Howden H. 1985. A revision of the South American species <strong>in</strong> the genus<br />

Neoathyreus Howden <strong>and</strong> Martínez (Coleoptera, Scarabaeidae, Geotrup<strong>in</strong>ae).<br />

Contributions American Entomological Institute 21: 1-95.<br />

447


Howden H. 2001. A new tribe of Hybosor<strong>in</strong>ae with a description of a<br />

new species of Callosides Howden (Coleoptera: Scarabaeidae). Th e<br />

Coleopterists Bullet<strong>in</strong> 55: 199-204.<br />

Iwan D. 1995. Revision of the genus Opatr<strong>in</strong>us DEJEAN, 1821 (Coleoptera,<br />

Tenebrionidae, Platynot<strong>in</strong>i). Genus 6: 1-90.<br />

Johnson N. F., Masner L. 2004. Th e Genus Th oron Haliday (Hymenoptera:<br />

Scelionidae), Egg-Parasitoids of Waterscorpions (Hemiptera:<br />

Nepidae), with Key to World Species. American Museum Novitates<br />

3452: 1-16.<br />

Kippenhan M. 1997. A Review of the Neotropical Tiger Beetle Genus<br />

Oxygonia Mannerheim (Coleoptera: Cic<strong>in</strong>delidae). Contributions on<br />

<strong>Entomology</strong>, International 2: 301-353.<br />

Klimaszewski J., Peck S. 1998. A review of Aleochar<strong>in</strong>e Rove Beetles<br />

from the Galápagos Isl<strong>and</strong>s, <strong>Ecuador</strong> (Coleoptera: Staphyl<strong>in</strong>idae:<br />

Aleochar<strong>in</strong>ae). Revue Suisse de Zoologie 105: 221-260.<br />

Leschen R. 1997. Th e Empocryptus Group (Languriidae: Toram<strong>in</strong>ae):<br />

Relationships <strong>and</strong> a New Genus Associated with a Lepidopteran<br />

Cocoon. Th e Coleopterists Bullet<strong>in</strong> 51: 303-318.<br />

Lourenco W. 1988. La faune des Scorpions de l’Equteur. I. Les Buthidae.<br />

Systématique et biogéographie. Revue Suisse de Zoologie 95: 681-697.<br />

Lourenco W. 1995. Les Scorpions (Chelicerata, Scorpiones) de l’Equateur<br />

avec quelques considerations sur la biogeographie et la diversité des<br />

espèces. Revue Suisse de Zoologie 102: 61-88.<br />

Mantilleri A. 2004. Six nouvelles espèces du genre Stereodermus Lacordaire,<br />

1866 [Coleoptera, Brentidae, Stereoderm<strong>in</strong>i]. Revue Française<br />

d’Entomologie (n.s.) 26: 131-140.<br />

Marshall S. A. 1985. A revision of the New World species of M<strong>in</strong>ilimos<strong>in</strong>a<br />

Rohácek (Diptera: Sphaeroceridae). Proceed<strong>in</strong>gs of the Entomological<br />

Society of Ontario 116: 1-60.<br />

Marshall S. A. 1998. A revision of the Archileptocera group, <strong>in</strong>clud<strong>in</strong>g<br />

Anomioptera Sch<strong>in</strong>er, Palaeocopr<strong>in</strong>a Duda <strong>and</strong> Archileptocera Duda,<br />

with a key to sphaerocerid genera with similar w<strong>in</strong>g venation <strong>and</strong><br />

a description of a new species of Palaeoceroptera Duda (Diptera:<br />

Sphaeroceridae). Journal of Natural History 32: 173-216.<br />

Marshall S. A., Langstaff R. 1998. Revision of the New World species of<br />

Opacifrons Duda (Diptera, Sphaeroceridae, Limos<strong>in</strong><strong>in</strong>ae). Contributions<br />

<strong>in</strong> Science, Natural History Museum of Los Angeles County 474: 1-27.<br />

Marshall S.A., Smith I. 1992. A revision of the New World <strong>and</strong> Pacifi c<br />

Phthitia Enderle<strong>in</strong> (Diptera; Sphaeroceridae; Limos<strong>in</strong><strong>in</strong>ae), <strong>in</strong>clud<strong>in</strong>g<br />

Kimos<strong>in</strong>a Rohácek, new synonym <strong>and</strong> Aubert<strong>in</strong>ia Richards, new<br />

synonym. Memoirs of the Entomological Society of Canada 161: 1-83.<br />

Marshall S. A., Totton S. 1995. Seven new species of Druciatus Marshall<br />

(Diptera: Sphaeroceridae; Limos<strong>in</strong><strong>in</strong>ae). Insecta Mundi 9: 291-299.<br />

Mascagni A. 1994. Descrizione di una Nuova Specie di Tropicus Pacheco<br />

dell’<strong>Ecuador</strong> (Coleoptera Heteroceridae). Bollett<strong>in</strong>o della Società<br />

Entomologica Italiana, Genova 126: 134-136.<br />

Masner L. 1976. Notes on the ecitophilous diapriid genus Mimopria Holmgren<br />

(Hymenoptera: Proctotrupoidea, Diapriidae). Canadian Entomologist<br />

108: 123-126.<br />

Mauff ray W. 1999. Oxyagrion tennesseni spec. Nov. From <strong>Ecuador</strong><br />

(Zygoptera: Coenagrionidae). Odonatologica 28: 165-170.<br />

McKamey S., Deitz L. 1991. Revision of the Neotropical Treehopper Genus<br />

Metcalfi ella (Homoptera: Membracidae). Technical Bullet<strong>in</strong> 294.<br />

North Carol<strong>in</strong>a Agricultural Research Service. North Carol<strong>in</strong>a State<br />

University. Raleigh, North Carol<strong>in</strong>a, USA, 89 p.<br />

Meier R., Dikow T. 2004. Signifi cance of specimen databases from<br />

taxonomic revisions for estimat<strong>in</strong>g <strong>and</strong> mapp<strong>in</strong>g the global species<br />

diversity of <strong>in</strong>vertebrates <strong>and</strong> repatriat<strong>in</strong>g reliable specimen data.<br />

Conservation Biology 18: 478-488.<br />

448<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

Merriam-Webster Onl<strong>in</strong>e Dictionary. 2008. http://www.merriam-webster.<br />

com (8 Oct 2008).<br />

Michalski S. 1992. A Systematic Approach to the Conservation (Care) of<br />

Museum Collections. Canadian Conservation Institute, Ottawa, 15 p.<br />

Moret P. 1993. Les Dyscolus de l’Equateur: Révision des espéces á élytres<br />

achétes (1ére partie) (Coleoptera, Harpalidae, Platyn<strong>in</strong>ae). Revue Francaise<br />

d’Entomologie (n.s.) 15: 1-13.<br />

Moret P. 1994. Les Dyscolus de l’Equateur: Révision des espéces á élytres<br />

achétes (2e partie) (Coleptera, Harpalidae, Platyn<strong>in</strong>ae). Revue Francaise<br />

d’Entomologie (n.s.) 16: 1-11.<br />

Moret P. 1995. Contribution á la connaissance du genre neotropical<br />

Blennidus Motschulsky, 1865. 1ére partie (Coleoptera, Harpalidae,<br />

Pterostich<strong>in</strong>ae). Bullet<strong>in</strong> de la Société entomologique de France 100:<br />

489-500.<br />

Moret P. 1996a. Contribution á la connaissance du genre néotropical<br />

Blennidus Motschulsky, 1865. 2eme partie (Coleoptera, Harpalidae,<br />

Pterostich<strong>in</strong>ae). Revue Française d’Entomologie (n.s.) 18: 1-10.<br />

Moret P. 1996b. Incastichus, nouveau genre de Pterostich<strong>in</strong>ae de l´Equateur<br />

(Coleoptera, Harpalidae). Nouvelle Revue d´Entomolgie (n.s.) 13:<br />

303-311.<br />

Moret P. 1998. Les Dyscolus de la zone périglaciaire des Andes<br />

équatoriennes (Coleoptera, Harpalidae, Platyn<strong>in</strong>ae). Bullet<strong>in</strong> de la<br />

Société entomologique de France 103: 11-28.<br />

Moret P. 2000. Le genre Pelmatellus Bates dans l´étage montagnard des<br />

Andes équatoriales (Coleoptera, Carabidae, harpal<strong>in</strong>i). Nouvelle Revue<br />

d´Entomologie (n.s.) 17: 215-232.<br />

Moret P. 2001a. Th e round beetles of the Chiles area (Coleoptera,<br />

Carabidae) a taxonomic <strong>and</strong> ecological overview, p. 125-135 <strong>in</strong>:<br />

Ramsay P. M. (ed.) Th e Ecology of Volcàn Chiles: high-altitude ecosystems<br />

on the <strong>Ecuador</strong>-Colombia border. Pebble & Shell, Plymouth, 217 p.<br />

Moret P. 2001b. El género Bradycellus Erichson, 1837 en los Andes del<br />

<strong>Ecuador</strong> (Coleoptera: Carabidae: Harpal<strong>in</strong>i). Revista aragonesa de<br />

Entomolgía 9: 25-29<br />

Moret P. 2005. Los coleópteros Carabidae del Páramo en los Andes del<br />

<strong>Ecuador</strong>: sistemática, ecología y biogeografía. Centro de Biodiversidad<br />

y Ambiente, Escuela de Biología. Pontifi cia Universidad Católica del<br />

<strong>Ecuador</strong>. Monografía # 2, 306 p.<br />

Moret P. 2008. Four new species of Diploharpus Chaudoir 1850 from<br />

<strong>Ecuador</strong> (Coleoptera, Carabidae, Perigon<strong>in</strong>i), p. 201-208, <strong>in</strong> Giach<strong>in</strong>o<br />

P. M. (ed.) Biodiversity of South America I. Memoirs on Biodiversity,<br />

World Biodiversity Association onlus, Verona, 1, 496 p.<br />

Moret P., Bousquet Y. 1995. Le sous-genre Dercylus (Lyc<strong>in</strong>odercylus)<br />

Kuntzen, 1912: position systématique, révision des espéces et<br />

descrption de la larve (Carabidae, Dercyl<strong>in</strong>i). Th e Canadian Entomolgist<br />

127: 753-798<br />

Moret P., Toledano L. 2002. Ecuadion, nouveau sous-genre de Bembidion<br />

Latreille du páramo équatoriem (Coleoptera, Carabidae, Bembidi<strong>in</strong>i).<br />

Bollet<strong>in</strong>o del Museo Civico di Storia Naturale di Venezia 53: 155-205.<br />

Muzón J., Ellenrieder N. 2001. Revision of the subgenus Marmaraeschna<br />

(Odonata, Aeshnidae). International Journal of Odonatology 4:<br />

135-166<br />

Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A. B.,<br />

Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature<br />

403: 853-858.<br />

Naviaux R. 1998. Ctenostoma (Coleoptera, Cic<strong>in</strong>delidae) Révision du<br />

genre et descriptions de nouveaux taxons. Mémoires de la Société<br />

Entomologique de France 2: 1-186.<br />

Noguera F. 2002. Revisión taxonómica de las especies del género Eburia<br />

Lepeletier y A.-Serville <strong>in</strong> Lacordaire de Norte y Centroamérica<br />

(Coleoptera: Cerambycidae). Folia Entomologica Mexicana 41: 1-167.<br />

Oliveira M. 2006. Três novas espécies de abelhas da Amazônia<br />

pertenecentes ao gênero Eulaema (Hymenoptera: Apidae: Eugloss<strong>in</strong>i).<br />

Acta Amazonica 36: 121-128.<br />

Otte D., Peck S. 1997. New species of Gryllus (Orthoptera: Grylloidea:<br />

Gryllidae) from the Galápagos Isl<strong>and</strong>s. Journal Orthoptera Research 6:<br />

161-173.


Type Specimens at the QCAZ Museum<br />

Pace R. 1996. Aleochar<strong>in</strong>ae della Colombia e dell’<strong>Ecuador</strong>: Parte I<br />

(Coleoptera, Staphyl<strong>in</strong>idae). Revue Suisse de Zoologie 103: 395-437.<br />

Pace R. 1997. Aleochar<strong>in</strong>ae della Colombia e dell’<strong>Ecuador</strong>: Parte III<br />

(conclusione) (Coleoptera, Staphyl<strong>in</strong>idae). Revue Suisse de Zoologie<br />

104: 17-50.<br />

Pace R. 2008. New records of Aleochar<strong>in</strong>ae from <strong>Ecuador</strong> <strong>and</strong> Peru,<br />

with the description of new species, new subgenera <strong>and</strong> new genera<br />

(Coleoptera, Staphyl<strong>in</strong>idae), p. 225-398 <strong>in</strong>: Giach<strong>in</strong>o P. M. (ed.)<br />

Biodiversity of South America I. Memoirs on Biodiversity, World<br />

Biodiversity Association onlus, Verona, 1, 496 p.<br />

Palomeque F., Abad F., Grijalva M. 2003. Notas sobre la biología<br />

y bionomía de Rhodnius robustus Larousse, 1927 (Hemiptera:<br />

Reduviidae, Triatom<strong>in</strong>ae). Revista de la Pontifi cia Universidad Católica<br />

del <strong>Ecuador</strong> 71: 49-60.<br />

P<strong>in</strong>to C. M., Grijalva M. J., Costales, J. 2003. Prevalencia de Trypanosoma<br />

cruzi en roedores y marsupiales en dos localidades de Manabí, <strong>Ecuador</strong>.<br />

Revista de la Pontifi cia Universidad Católica del <strong>Ecuador</strong> 71: 225-233.<br />

P<strong>in</strong>to C. M., Ocaña-Mayorga S., Lascano M. S., Grijalva M. J. 2006.<br />

Infection by trypanosomes <strong>in</strong> marsupials <strong>and</strong> rodents associated with<br />

human dwell<strong>in</strong>gs <strong>in</strong> <strong>Ecuador</strong>. Journal of Parasitology 92: 1251-1255.<br />

Pollet A., Barragán A., Zeddam J., Lery X. 2003. Tecia solanivora, a serious<br />

biological <strong>in</strong>vasion of potato cultures <strong>in</strong> South America. International<br />

Pest Control 45: 139-144.<br />

Pyrcz T. W., Viloria A. L.. 1999. Contribution to the knowledge of <strong>Ecuador</strong>ian<br />

Pronophil<strong>in</strong>i, Part 1; new pedaliod<strong>in</strong>es (Lepidoptera: Nymphalidae:<br />

Satyr<strong>in</strong>ae). Genus 10: 117-150.<br />

Pyrcz T. W., Willmott K. R., Hall J. P. W., Viloria A. L. 2006. A review<br />

of the genus Manerebia Staud<strong>in</strong>ger (Lepidoptera: Nymphalidae: Satyr<strong>in</strong>ae)<br />

<strong>in</strong> the northern Andes. Journal of Research on the Lepidoptera<br />

39: 37-79.<br />

Rafael V., Arcos G. 1988. Drosophila guayllabambae n.sp., un nuevo<br />

miembro del Grupo Repleta, Subgrupo Hydei (Diptera, Drosophilidae).<br />

Evolucion Biologica 2: 167-176.<br />

Rafael V., Arcos G. 1989. Subgrupo Inca, un nuevo Subgrupo del Grupo<br />

Repleta, con descripcion de Drosophila huancavilcae n.sp. (Diptera,<br />

Drosophilidae). Evolucion Biologica 3: 233-243.<br />

Rafael V., Vela D. 2003. Drosophila yangana sp.nov. un nuevo miembro del<br />

grupo Repleta, subgrupo Inca (Diptera: Drosophilidae). Revista de la<br />

Pontifi cia Universidad Católica del <strong>Ecuador</strong> 71: 129-139.<br />

Rahbek C., Gotelli N. J., Colwell R. K., Entsm<strong>in</strong>ger G. L., Rangel T. F.<br />

L. V. B., Graves G. R. 2007. Predict<strong>in</strong>g cont<strong>in</strong>ental-scale patterns of<br />

bird species richness with spatially explicit models. Procced<strong>in</strong>gs of the<br />

Royal Society London, Series B 274: 165-174.<br />

Ramirez S. 2006. Euglossa samperi n. sp., a new species of orchid bee from<br />

the <strong>Ecuador</strong>ian Andes (Hymenoptera: Apidae). Zootaxa 1272: 61-68.<br />

Reddy S., Dávalos L. M. 2003. Geographical sampl<strong>in</strong>g bias <strong>and</strong> its implications<br />

for conservation priorities <strong>in</strong> Africa. Journal of Biogeography<br />

30: 1719-1727.<br />

Rider D., Chap<strong>in</strong>, J. 1991. Revision of the genus Th yanta Stahl, 1862<br />

(Heteroptera: Pentatomidae) I. South America. Journal of the New York<br />

Entomological Society 99: 1-77.<br />

Ron S. R., Guayasam<strong>in</strong> J. M., Coloma L. A., Menedez-Guerrero P. A.<br />

<strong>in</strong> press. Biodiversity <strong>and</strong> conservation status of Amphibians <strong>in</strong> <strong>Ecuador</strong>.<br />

In, H. Heatwole H., Wilk<strong>in</strong>son J. W. (Eds.), Amphibian Biology.<br />

Decl<strong>in</strong>e <strong>and</strong> conservation, Vol. IX. Surrey Beatty & Sons Pty. Ltd.<br />

Australia. XXX please complete if possible<br />

Roubick D. 2004. Sibl<strong>in</strong>g species of Glossura <strong>and</strong> Glossuropoda <strong>in</strong> the<br />

Amazon Region (Hymenoptera: Apidae: Eugloss<strong>in</strong>i). Journal of the<br />

Kansas Entomological Society 77: 235-253.<br />

Rowe R. J. 2005. Elevational gradient analyses <strong>and</strong> the use of historical<br />

museum specimens: a cautionary tale. Journal of Biogeography 32:<br />

1883-1897.<br />

Salgado J. 2001. Nuevos datos sobre algunos Dissochaetus Reitter, 1885 de<br />

<strong>Ecuador</strong>, con la descripcion de una nueva especie (Coleoptera, Leiodidae,<br />

Cholev<strong>in</strong>ae) Nouvelle Revue d’Entomologie (n.s.) 18: 249-258.<br />

Salgado J. 2002. Data on the genus Adelopsis from <strong>Ecuador</strong>. Description<br />

of fi ve new species (Coleoptera Leiodidae Cholev<strong>in</strong>ae Ptomaphag<strong>in</strong>i).<br />

Belgian Journal of <strong>Entomology</strong> 4: 113-128.<br />

Salgado J. 2003. El Género Eucatops en <strong>Ecuador</strong>. Descripción de dos<br />

especies nuevas (Coleoptera, Leiodidae. Cholev<strong>in</strong>ae, Eucatop<strong>in</strong>i).<br />

Nouvelle Revue d’Entomologie (n.s.) 20: 51-60.<br />

Salgado J. 2008. Contribution to the knowledge of the biodiversity of<br />

<strong>Ecuador</strong>: new genus, new species <strong>and</strong> new records (Coleoptera,<br />

Leiodidae, Cholev<strong>in</strong>ae), p. 209-224 <strong>in</strong>: Giach<strong>in</strong>o P. M. (ed.)<br />

Biodiversity of South America I. Memoirs on Biodiversity, World<br />

Biodiversity Association onlus, Verona, 1, 496 p.<br />

Schatz H. 1994. Lohmanniidae (Acari: Oribatida) from the Galápagos<br />

Isl<strong>and</strong>s, Th e Cocos Isl<strong>and</strong>, <strong>and</strong> Central America. Acarologia 35:<br />

267-287.<br />

Shi H., S<strong>in</strong>gh A., Kant S., Zhu Z., Waller E. 2005. Integrat<strong>in</strong>g habitat status,<br />

human population pressure, <strong>and</strong> protection status <strong>in</strong>to biodiversity<br />

conservation priority sett<strong>in</strong>g. Conservation Biology 19: 1273-1285.<br />

Shpeley D., Ball G. 1993. Classifi cation, Reconstructed Phylogeny <strong>and</strong><br />

Geographical History of the New World species of Coptodera Dejean<br />

(Coleoptera: Carabidae: Leb<strong>in</strong>i). Proceed<strong>in</strong>gs of the Entomological<br />

Society of Ontario 124: 1-182.<br />

Shpeley D., Ball G. 2000. A taxonomic review of the subtribe Perical<strong>in</strong>a<br />

(Coleoptera: Carabidae: Lebi<strong>in</strong>i) <strong>in</strong> the Western Hemisphere,<br />

with descriptions of new species <strong>and</strong> notes about classifi cation <strong>and</strong><br />

zoogeography. Insecta Mundi 14: 1-185.<br />

Smith A. 2003. A Monographic Revision of the Genus Platycoelia Dejean<br />

(Coleoptera: Scarabaeidae: Rutel<strong>in</strong>ae: Anoplognath<strong>in</strong>i). Bullet<strong>in</strong> of the<br />

University of Nebraska State Museum 15: 1-202.<br />

Soberón J. M., Dávila P., Golubov J. 2003. Target<strong>in</strong>g sites for biological<br />

collections. p. 221-231 <strong>in</strong>: Smith R. R., Dickie J. B., L<strong>in</strong><strong>in</strong>gton S.<br />

H., Pritchard H. W., Probert R. J. (Eds). Seed Conservation. Turn<strong>in</strong>g<br />

Science <strong>in</strong>to Practice. Royal Botanic Garden, Kew, UK.<br />

Soberón J. M., Llorente J. B., Oñate L. 2000. Th e use of specimen-label databases<br />

for conservation purposes: an example us<strong>in</strong>g Mexican Papilionid<br />

<strong>and</strong> Pierid butterfl ies. Biodiversity <strong>and</strong> Conservation 9: 1441-1466.<br />

Soula M. 2002. La prima revisione dei seguenti generi Sud Americani: Crathoplus,<br />

Telaugis, Platyrutela, Pseudohypaspidius, Badiasis, Chlorota,<br />

Exothyridium, Th yriochlorota, Parathyridium, Hypaspidius, Mucama,<br />

Xenochlorota, Pichica, Tipicha, Heterochlorota, Th yridium, Pseudothyridium,<br />

Exochlorota, Aequatoria, Acraspedon, Paratelaugis, Exanticheira,<br />

Chalcentis, Vayana, M<strong>in</strong>idorysthetus, Pseudomacraspis, Maripa. Coll.<br />

“Coléoptères du Monde XXVI”, Association Entomologique pour la<br />

Connaissance de la Faune Tropicale, Sa<strong>in</strong>try, France.<br />

Soula M. 2003. La prima revisione dei seguenti generi Sud Americani:<br />

Pseudoptenomela, Paraptenomela, Exoptenomela, Ptenomela, Calomacraspis,<br />

Paramacraspis, Paradorysthetus, Macraspis, Pseudodorysthetus,<br />

Dorysthetus, Anticheiroides, Anticheira, Pseudoanticheiroides. Coll.<br />

“Coléoptères du Monde XXIX”, Association Entomologique pour la<br />

Connaissance de la Faune Tropicale, Sa<strong>in</strong>try, France.<br />

Straneo S. 1991a. South American species of Lox<strong>and</strong>rus LeConte, 1852<br />

(Coleoptera: Carabidae: Pterostich<strong>in</strong>i). Annals of the Carnegie Museum<br />

of Natural History 60: 1-62.<br />

Straneo S. 1991b. I Pterostich<strong>in</strong>i dell’ <strong>Ecuador</strong> (Coleoptera, Carabidae).<br />

Bollett<strong>in</strong>o del Museo Regionale di Scienze Naturali, Tor<strong>in</strong>o 9: 397-425.<br />

Suarez A., Tsutsui N. 2004. Th e value of museum collections for research<br />

<strong>and</strong> society. BioScience 54: 66-74.<br />

Tavakilian G. 2001. Une nouvelle espéce du genre néotropical Neseuterpia<br />

Villiers, 1980 (Coleoptera, Cerambycidae, Lami<strong>in</strong>ae). Bullet<strong>in</strong> de la<br />

Société Entomologique de France 106: 437-440.<br />

Tennessen K. 1997. Lestes jerrelli, n. sp. (Zygoptera: Lestidae), a new<br />

damselfl y from <strong>Ecuador</strong>. Proceed<strong>in</strong>gs Entomological Society Wash<strong>in</strong>gton<br />

99: 661-665.<br />

Toledano L. 2008. Systematic notes on the Bembidi<strong>in</strong>a of the Northern<br />

Andes with particular reference to the fauna of <strong>Ecuador</strong>. (Coleoptera,<br />

Carabidae), p. 81-130 <strong>in</strong>: Giach<strong>in</strong>o P. M. (ed.) Biodiversity of South<br />

America I. Memoirs on Biodiversity, World Biodiversity Association<br />

onlus, Verona, 1, 496 p.<br />

449


Triplehorn C. A., Johnson N. F. 2005. Borror <strong>and</strong> Delong’s Introduction<br />

to the Study of Insects. 7th Edition. Th omson Brooks/Cole, Belmont,<br />

California. 864 p.<br />

UNEP-WCMC. 2005. Indicadores de Biodiversidad para Uso Nacional<br />

(Proyecto BINU) [CD-ROM]. Fundación EcoCiencia y M<strong>in</strong>isterio del<br />

Ambiente del <strong>Ecuador</strong>. <strong>Ecuador</strong>, Quito, <strong>Ecuador</strong>.<br />

Vardy C. R. 2002. Th e New World tarantula-hawk wasp genus Pepsis<br />

Fabricius (Hymenoptera: Pompilidae). Part 2. Th e P. grossa- to P.<br />

deaurata-groups. Zoologische Verh<strong>and</strong>el<strong>in</strong>gen 337: 1-134.<br />

Vela D., Rafael V. 2001. Ocho nuevas especies del grupo Tripunctata,<br />

género Drosophila (Diptera, Drosophilidae), y el registro de Drosophila<br />

paraguayensis en el bosque protector Pasochoa, Pich<strong>in</strong>cha, <strong>Ecuador</strong>.<br />

Revista de la Pontifi cia Universidad Católica del <strong>Ecuador</strong> 66: 92-120.<br />

Vela D., Rafael V. 2004a. Dos Nuevas especies del grupo Flavopilosa,<br />

género Drosophila (Diptera, Drosophilidae) en el Bosque Pasochoa.<br />

Prov<strong>in</strong>cia de Pich<strong>in</strong>cha. Revista Ecuatoriana de Medic<strong>in</strong>a y Ciencias<br />

Biológicas 26: 14-21.<br />

Vela D., Rafael V. 2004b. Th ree new Andean species of Drosophila<br />

(Diptera, Drosophilidae) of the Mesophragmatica group. Iher<strong>in</strong>gia<br />

(Porto Alegre) 94: 295-299.<br />

Vela D., Rafael V. 2004c. Tres nuevas especies del grupo Guarani, género Drosophila<br />

(Diptera: Drosophilidae) en el Bosque Pasochoa, prov<strong>in</strong>cia de Pich<strong>in</strong>cha.<br />

Revista Ecuatoriana de Medic<strong>in</strong>a y Ciencias Biológicas 26: 7-14.<br />

Vela D., Rafael V. 2005a. Catorce nuevas especies del género Drosophila<br />

(Diptera, Drosophilidae) en el Bosque húmedo montano del Volcán<br />

Pasochoa, Pich<strong>in</strong>cha, <strong>Ecuador</strong>. Revista Ecuatoriana de Medic<strong>in</strong>a y<br />

Ciencias Biológicas 27: 27-34.<br />

Vela D., Rafael V. 2005b. Nuevas especies de Drosophila (Diptera,<br />

Drosophilidae) en el Bosque Pasochoa, Pich<strong>in</strong>cha-<strong>Ecuador</strong>. Revista de<br />

la Pontifi cia Universidad Católica del <strong>Ecuador</strong> 75: 69-80.<br />

Vois<strong>in</strong> J. 1996. Trois espèces nouvelles de Baillytes Vois<strong>in</strong>, de l’Équateur<br />

et remarques sur ce genre (Coleoptera, Curculionidae). Bullet<strong>in</strong> de la<br />

Societe entomologique de France 101: 357-362.<br />

Ward P. S. 1999. Systematics, biogeography <strong>and</strong> host plant associations of<br />

the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris-<br />

APPENDIX 1. Catalogue of type specimens deposited at<br />

the Invertebrate Section of QCAZ Museum.<br />

Th e list is organized alphabetically follow<strong>in</strong>g classes, orders,<br />

families <strong>and</strong> ultimately genera <strong>and</strong> species. Complete <strong>and</strong><br />

orig<strong>in</strong>al label <strong>in</strong>formation are available as appendix 2 to<br />

download on the Annales de la Société entomologique de France<br />

web site.<br />

450<br />

Class Insecta<br />

Order Coleoptera<br />

Family Buprestidae<br />

Halecia onorei Cobos 1989. Holotype.<br />

Hylaeogena onorei Cobos 1989. Holotype, paratype.<br />

Pachyschelus sabatratus Cobos 1989. Holotype.<br />

Policesta excavate episcopalis Cobos 1989. Holotype.<br />

Family Carabidae<br />

Abaris napoensis Will 2002. Paratype.<br />

Bembidion (Ecuadion) achipungi Moret & Toledano 2002.<br />

Paratype.<br />

Bembidion (Ecuadion) camposi Moret & Toledano 2002. Paratype.<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

<strong>and</strong> Tachigali-<strong>in</strong>habit<strong>in</strong>g ants. Zoological Journal of the L<strong>in</strong>nean Society<br />

126: 451-540.<br />

Wheeler Q. D. 2007. Invertebrate systematics or sp<strong>in</strong>eless taxonomy? p.<br />

11-18 <strong>in</strong>: Zhang Z.-Q., Shear W. A. (eds.), L<strong>in</strong>naeus Tercentenary:<br />

Progress <strong>in</strong> Invertebrate Taxonomy. Zootaxa 1668: 1-766.<br />

Wheeler Q. D., Raven P., Wilson E. O. 2004. Taxonomy: impediment or<br />

expedient? Science 303: 285.<br />

Wheeler T. A., Marshall S. A. 1995. Systematics of the new world Rachispoda<br />

Lioy (Diptera: Sphaeroceridae): revisions of the primarily Neotropical<br />

aequipilosa, divergens, fusc<strong>in</strong>ervis, macul<strong>in</strong>ea, marg<strong>in</strong>alis, <strong>and</strong><br />

m-nigrum species groups. Journal of Natural History 29: 1209-1307.<br />

Wieczorek J., Guo Q., Hijmans R. J. 2004. Th e po<strong>in</strong>t-radius method<br />

for georeferenc<strong>in</strong>g locality descriptions <strong>and</strong> calculat<strong>in</strong>g associated<br />

uncerta<strong>in</strong>ty. International Journal of Geographical Information Science<br />

18: 745-767.<br />

Wiesner J. 1999. Th e tiger beetle genus Oxycheila (Insecta:Coleoptera:<br />

Cic<strong>in</strong>delidae). 50th contribution towards the knowledge of<br />

Cic<strong>in</strong>delidae. Schwanfelder Coleopterologische Mitteilungen 3: 1-81.<br />

Wild A. L. 2007. Taxonomic revision of the ant genus L<strong>in</strong>epithema<br />

(Hymenoptera: Formicidae). University of California Publications <strong>in</strong><br />

<strong>Entomology</strong> 126: 1-151.<br />

Will K. 2002. Revision of the new world abariform genera Neotalus n.gen.<br />

<strong>and</strong> Abaris Dejean (Coleoptera: Carabidae: Pterostich<strong>in</strong>i (Auctorum).<br />

Annals of the Carnegie Museum of Natural History 71: 143-213.<br />

Will K. 2005. Th e Neotropical genera Oxycrepis Reiche <strong>and</strong> Stolonis<br />

Motschulsky: a taxonomic review, key to the described species<br />

<strong>and</strong> description of new Stolonis species from <strong>Ecuador</strong> (Coleoptera:<br />

Carabidae: Lox<strong>and</strong>r<strong>in</strong>i). Zootaxa 1049: 1-17.<br />

Wilson E. O. 2003. Pheidole <strong>in</strong> the New World: A Dom<strong>in</strong>ant, Hyperdiverse<br />

Ant Genus. Harvard University Press, Cambridge, Mass, USA.<br />

W<strong>in</strong>ston J. E. 2007. Archives of a small planet: Th e signifi cance of museum<br />

collections <strong>and</strong> museum-based research <strong>in</strong> <strong>in</strong>vertebrate taxonomy.<br />

p. 47-54 <strong>in</strong>: Zhang Z.-Q., Shear W. A. (eds.), L<strong>in</strong>naeus Tercentenary:<br />

Progress <strong>in</strong> Invertebrate Taxonomy. Zootaxa 1668: 1-766.<br />

Bembidion (Ecuadion) camposi Moret & Toledano 2002. Paratype.<br />

Bembidion caoduroi L. Toledano 2008. Paratype.<br />

Bembidion (Ecuadion) chilesi Moret & Toledano 2002. Paratype.<br />

Bembidion (Ecuadion) cotopaxi Moret & Toledano 2002. Paratype.<br />

Bembidion (Ecuadion) giselae Moret & Toledano 2002. Paratype.<br />

Bembidion (Ecuadion) humboldti Moret & Toledano 2002.<br />

Paratype.<br />

Bembidion illuchi Moret & Toledano 2002. Paratype.<br />

Bembidion (Ecuadion) mathani Moret & Toledano 2002.<br />

Paratype.<br />

Bembidion (Ecuadion) onorei Moret & Toledano 2002. Paratype.<br />

Bembidion (Ecuadion) saragurense Moret & Toledano 2002.<br />

Holotype, paratype.<br />

Bembidion walterrossii Toledano 2008. Paratype.<br />

Blennidus (Agraphoderus) ch<strong>in</strong>chillanus Moret 2005. Holotype,<br />

paratype.<br />

Blennidus (Agraphoderus) ecuadorianus viduus Moret 1996.<br />

Holotype, paratype.<br />

Blennidus (Agraphoderus) gregarius Moret 1996. Paratype.<br />

Blennidus (Agraphoderus) gregarius montivagus Moret 1996.<br />

Paratype.<br />

Blennidus marlenae Moret 1995. Holotype, paratype.<br />

Blennidus (Agraphoderus) mucronatus Moret 1996. Holotype,<br />

paratype.


Type Specimens at the QCAZ Museum<br />

Blennidus (Sierrobius) viridans Moret 1995. Holotype.<br />

Blennidus (Sierrobius) thoracatus Moret 2005. Paratype.<br />

Bradycellus aequatorius Moret 2001. Paratype.<br />

Bradycellus mart<strong>in</strong>ezi Moret 2001. Paratype.<br />

Bradycellus youngi Moret 2001. Paratype.<br />

Coptodera apicalis Shpeley & Ball 1993. Paratype.<br />

Dercylus (Lic<strong>in</strong>odercylus) onorei Moret 1995. Paratype.<br />

Dercylus (Lic<strong>in</strong>odercylus) orbiculatus Moret 1995. Paratype.<br />

Dercylus (Lic<strong>in</strong>odercylus) praepilatus Moret 1995. Paratype.<br />

Dercylus (Lic<strong>in</strong>odercylus) granifer Moret 1995. Paratype.<br />

Dercylus (Lic<strong>in</strong>odercylus) gibber Moret 1995. Paratype.<br />

Diploharpus rossii Moret 2008. Paratype.<br />

Dyscolus (s. str.) algidus Moret 2005. Paratype.<br />

Dyscolus (s. str.) araneus Moret 2005. Holotype, paratype.<br />

Dyscolus (s. str.) arvalis Moret 2005. Paratype.<br />

Dyscolus (s. str.) atk<strong>in</strong>si Moret 2001. Paratype.<br />

Dyscolus (s. str.) bliteus Moret 2005. Paratype.<br />

Dyscolus (s. str.) bordoni Moret 1993. Paratype.<br />

Dyscolus (s. str.) breviculus Moret 2001. Paratype.<br />

Dyscolus (s. str.) capsarius Moret 2005. Paratype.<br />

Dyscolus (s. str.) carbonescens Moret 2005. Holotype, paratype.<br />

Dyscolus (s. str.) cephalotes spp. sir<strong>in</strong>ae Moret 2005. Paratype.<br />

Dyscolus (s. str.) desultor Moret 2005. Paratype.<br />

Dyscolus (s. str.) exsul Moret 2005. Paratype.<br />

Dyscolus (s. str.) fartilis Moret 2005. Paratype.<br />

Dyscolus (s. str.) fucatus Moret 2005. Paratype.<br />

Dyscolus immodicus Moret 2005. Paratype.<br />

Dyscolus <strong>in</strong>volucer Moret 1994. Paratype.<br />

Dyscolus <strong>in</strong>volucer geodesicus Moret 1994. Paratype.<br />

Dyscolus (s. str.) lignicola Moret 1994. Paratype.<br />

Dyscolus (s. str.) lubricus Moret 2001. Holotype.<br />

Dyscolus (s. str.) maleodoratus Moret 2005. Paratype.<br />

Dyscolus (s. str.) montivagus Moret 1998. Paratype.<br />

Dyscolus (s. str.) montufari Moret 2005. Paratype.<br />

Dyscolus (s. str.) nubilus Moret 2001. Paratype.<br />

Dyscolus onorei Moret 1993. Paratype.<br />

Dyscolus (s. str.) palatus Moret 1998. Paratype.<br />

Dyscolus (s. str.) pullatus Moret 2005. Paratype.<br />

Dyscolus (s. str.) riveti Moret 2001. Paratype.<br />

Dyscolus segnipes Moret 1990. Paratype.<br />

Dyscolus (s. str.) tapiarius Moret 2005. Holotype, paratype.<br />

Dyscolus (s. str.) trossulus Moret 2005. Paratype.<br />

Dyscolus (s. str.) verecundus Moret 1998. Paratype.<br />

Dyscolus (Hydrodyscolus) hirsutus Moret 2005. Paratype.<br />

Dyscolus (Hydrodyscolus) imbaburae Moret 2005. Paratype.<br />

Dyscolus (Hydrodyscolus) nocticolor Moret 2005. Paratype.<br />

Dyscolus (Hydrodyscolus) smithersi Moret 2001. Paratype.<br />

Euchella kipl<strong>in</strong>gi Shpeley& Ball 2000. Paratype.<br />

Glyptolenoides balli Moret 2005. Paratype.<br />

Incastichus aequidianus Moret 1996. Paratype.<br />

Lox<strong>and</strong>rus ecuadoricus Straneo 1991. Paratype.<br />

Lox<strong>and</strong>rus photophilus Straneo 1991. Paratype.<br />

Ogmopleura (Agraphoderus) colomai Straneo 1991. Paratype.<br />

Ogmopleura balli Straneo 1991. Paratype.<br />

Ogmopleura ecuadoriana Straneo 1991. Paratype.<br />

Ogmopleura (Agraphoderus) liodes planoculis Straneo 1991.<br />

Paratype.<br />

Oxytrechus onorei Allegro et al. 2008. Paratype.<br />

Oxytrechus pierremoreti Allegro et al. 2008. Paratype.<br />

Oxytrechus reventadori Moret 2005. Holotype.<br />

Oxytrechus zoiai Casale & Sciaky 1986. Paratype.<br />

Pelmatellus gracilis Moret 2000. Paratype.<br />

Pelmatellus <strong>in</strong>ca Moret 2000. Paratype.<br />

Pelmatellus polylepis Moret 2000. Paratype.<br />

Pelmatellus caerulescens Moret 2005. Holotype, paratype.<br />

Perigona belloi Giach<strong>in</strong>o, Moret & Picciau 2008. Paratype.<br />

Sierrobius onorei Straneo 1991. Paratype.<br />

Stenognathus (Prostenognathus) onorei Shpeley & Ball 2000.<br />

Paratype.<br />

Stolonis tapiai Will 2005. Paratype.<br />

Stolonis sp<strong>in</strong>osus Will 2005. Paratype.<br />

Stolonis catenarius Will 2005. Paratype.<br />

Stolonis yasuni Will 2005. Paratype.<br />

Trechisibus (<strong>Ecuador</strong>itrechus) tapiai Deuve 2002. Holotype.<br />

Family Cerambycidae<br />

Apteraleidion lapierrei Hovore 1992. Paratype.<br />

Eburia frankei Noguera 2002. Paratype.<br />

Neseuterpia couturieri Tavakilian 2001. Paratype.<br />

Family Chrysomelidae<br />

Aslamidium (s. str.) ecuadoricum Borowiec 1998. Holotype.<br />

Cyclocassis secunda Borowiec 1998. Paratype.<br />

Discomorpha onorei Borowiec 1998. Holotype, paratype.<br />

Eugenisa jas<strong>in</strong>skii Borowiec & Dšbrowska 1997. Paratype.<br />

Eugenisa unicolor Borowiec & Dšbrowska 1997. Paratype.<br />

Stolas napoensis Borowiec 1998. Holotype, paratype.<br />

Stolas perezi Borowiec 1998. Holotype.<br />

Stolas stolida jadwiszczaki Borowiec 1998. Paratype.<br />

Stolas zumbaensis Borowiec 1998. Paratype.<br />

Family Cic<strong>in</strong>delidae<br />

Ctenostoma (Neoprocephalus) cassolai Naviaux 1998. Paratype.<br />

Ctenostoma (Procephalus) ecuadoriensis Naviaux 1998. Holotype.<br />

Ctenostoma (Procephalus) onorei Naviaux 1998. Holotype.<br />

Oxycheila brzoskai Wiesner 1999. Holotype, paratype.<br />

Oxygonia nigrovenator Kippenhan 1997. Holotype.<br />

Pseudoxycheila atahualpa Cassola 1997. Holotype, paratype.<br />

Pseudoxycheila caribe Cassola 1997. Paratype.<br />

Pseudoxycheila <strong>in</strong>ca Cassola 1997. Paratype.<br />

Pseudoxycheila nitidicollis Cassola 1997. Holotype, paratype.<br />

Pseudoxycheila onorei Cassola 1997. Holotype, paratype.<br />

Pseudoxycheila pearsoni Cassola 1997. Holotype, paratype.<br />

Pseudoxycheila pseudotarsalis Cassola 1997. Holotype, paratype.<br />

Pseudoxycheila quechua Cassola 1997. Paratype.<br />

451


452<br />

Family Curculionidae<br />

Baillytes bartolozzi Vois<strong>in</strong> 1996. Paratype.<br />

Melchus onorei Anderson 2003. Paratype.<br />

Family Elateridae<br />

Achrestus onorei Golbach, Zamudio & Guzmán de Tomé 1988.<br />

Holotype, paratype.<br />

Family Heteroceridae<br />

Tropicus bartolozzii Mascagni 1994. Paratype.<br />

Family Languriidae<br />

Lepidotoramus grouvellei Leschen 1997. Paratype.<br />

Family Leiodidae<br />

Adelopsis aloecuatoriana Salgado 2008. Paratype.<br />

Adelopsis (Adelopsis) bioforestae Salgado 2002. Holotype, paratype.<br />

Adelopsis (Adelopsis) ecuatoriana Salgado 2002. Holotype,<br />

paratype.<br />

Adelopsis (Lutururuca) dehiscentis Salgado 2002. Holotype,<br />

paratype.<br />

Adelopsis onorei Salgado 2002. Holotype, paratype.<br />

Adelopsis (Lutururuca) tuberculata Salgado 2002. Holotype,<br />

paratype.<br />

Dissochaetus anseriformis Salgado 2001. Holotype, paratype.<br />

Dissochaetus napoensis pallipes Salgado 2008. Paratype.<br />

Eucatops (Eucatops) <strong>in</strong>cognitus Salgado 2003. Holotype, paratype.<br />

Eucatops (Sphaerotops) granuliformis Salgado 2003. Holotype.<br />

Eucatops (Eucatops) onorei Salgado 2008. Paratype.<br />

Family Lucanidae<br />

Onorelucanus aequatorianus Bartolozzi & Bomans 1989. Paratype.<br />

Sphaenognathus (Chiasognath<strong>in</strong>us) xerophilus Bartolozzi & Onore<br />

2006. Holotype, paratype.<br />

Family Passalidae<br />

Passalus kaupi Boucher 2004. Paratype.<br />

Verres onorei Boucher & Pardo-Locarno 1997. Paratype.<br />

Family Rhysodidae<br />

Stereodermus jonathani Mantilleri 2004. Paratype.<br />

Family Scarabaeidae<br />

Aequatoria aenigmatica Soula 2002. Paratype.<br />

Ataenius cristobalensis Cook & Peck 2000. Paratype.<br />

Ataenius fl oreanae Cook & Peck 2000. Paratype.<br />

Bdelyrus gr<strong>and</strong>is Cook 1998. Paratype.<br />

Bdelyrus parvoculus Cook 1998. Holotype.<br />

Bdelyrus pecki Cook 1998. Paratype.<br />

Bdelyrus triangulus Cook 1998. Holotype.<br />

Callosides genieri Howden 2001. Paratype.<br />

Coprophanaeus morenoi Arnaud 1982. Paratype.<br />

Cryptocanthon otonga Cook 2002. Holotype, paratype.<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

Family Dynastidae<br />

Cyclocephala pseudomelanocephla Dupuis 1996. Paratype.<br />

Neoathyreus brazilensis Howden 1985. Paratype.<br />

Ontherus diabolicus Génier 1996. Paratype.<br />

Ontherus politus Genier 1996. Paratype.<br />

Ontherus pubens Genier 1996. Paratype.<br />

Platycoelia furva Smith 2003. Holotype, paratype.<br />

Platycoelia galerana Smith 2003. Paratype.<br />

Platycoelia hiporum Smith 2003. Paratype.<br />

Platycoelia paucarae Smith 2003. Paratype.<br />

Ptenomela giovannii Soula 2003 . Paratype.<br />

Scatimus onorei Genier & Kohlmann 2003. Holotype, paratype.<br />

Family Staphil<strong>in</strong>idae<br />

Apalonia archidonensis Pace 2008. Paratype.<br />

Apalonia pampeana Pace 1997. Paratype.<br />

Apalonia sigchosensis Pace 2008. Holotype, paratype.<br />

Apalonia vic<strong>in</strong>a Pace 2008. Holotype, paratype.<br />

Atheta altocotopaxicola Pace 2008. Paratype.<br />

Atheta annular<strong>in</strong>a Pace 2008. Holotype.<br />

Atheta cayambensis Pace 2008. Paratype.<br />

Atheta cioccai Pace 2008. Paratype.<br />

Atheta ecumaculata Pace 2008. Holotype.<br />

Atheta ecucastaneipennis Pace 2008. Holotype.<br />

Atheta holl<strong>in</strong>ensis Pace 2008. Holotype.<br />

Atheta neasuspiciosa Pace 2008. Paratype.<br />

Atheta pseudoclaudiensis Klimaszewski & Peck 1998. Paratype.<br />

Atheta toachiensis Pace 2008. Holotype.<br />

Cajachara carltoni Ashe & Leschen 1995. Paratype.<br />

Diestota simplex Pace 2008. Holotype.<br />

Falagria ecuapallida Pace 2008. Holotype.<br />

Gyrophaena cotopaxiensis Pace 1996. Paratype.<br />

Gyrophaena otongensis Pace 2008. Holotype.<br />

Gyrophaena rossii Pace 2008. Holotype, paratype.<br />

Gyrophaena spatulata Pace 1996. Paratype.<br />

Heterostiba rossii Pace 2008. Paratype.<br />

Homalota cotopaxiensis Pace 2008. Holotype.<br />

Lept<strong>and</strong>ria ecitophila Hanley, 2003. Paratype.<br />

Lept<strong>and</strong>ria tishechk<strong>in</strong>i Hanley, 2003. Paratype.<br />

Meronera ecuadorica Pace 2008. Holotype.<br />

Meronera otongicola Pace 2008. Holotype, paratype.<br />

Myllaena pich<strong>in</strong>chaensis Pace 2008. Paratype.<br />

Orphnebius curticornis Pace 2008. Holotype.<br />

Orphnebius ecuadorensis Pace 1997. Paratype.<br />

Orphnebius otongensis Pace 2008. Holotype, paratype.<br />

Parapl<strong>and</strong>ria caraorum Pace 2008. Holotype, paratype.<br />

Parapl<strong>and</strong>ria ecuadoricola Pace 2008. Holotype.<br />

Parasilusa otongensis Pace 2008. Holotype.<br />

Plesiomalota giach<strong>in</strong>oi Pace 2008. Paratype.<br />

Plesiomalota pasochoensis Pace 2008. Paratype.<br />

Plesiomalota rufi collis Pace 2008. Holotype.<br />

Plesiomalota rufi cornis Pace 2008. Holotype.<br />

Plesiomalota squalida Pace 2008. Holotype.


Type Specimens at the QCAZ Museum<br />

Plesiomalota varicornis Pace 2008. Holotype, paratype.<br />

Pseudoleptonia ecuadorica Pace 2008. Holotype, paratype.<br />

Pseudomniophila cotopaxiensis Pace 2008. Holotype, paratype.<br />

Pseudomyllaena ecuadorensis Pace 2008. Holotype, paratype.<br />

Family Tenebrionidae<br />

Opatr<strong>in</strong>us ecuadorensis Iwan 1995. Paratype.<br />

Order Diptera<br />

Family Drosophilidae<br />

Drosophila amaguana Vela & Rafael 2004. Holotype, paratype.<br />

Drosophila apag Vela & Rafael 2005. Holotype.<br />

Drosophila arcosae Vela & Rafael 2001. Holotype.<br />

Drosophila asiri Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila carlosvilelai Vela & Rafael 2001. Holotype, paratype.<br />

Drosophila condormachay Vela & Rafael 2005. Holotype,<br />

paratype.<br />

Drosophila cuscungu Vela & Rafael 2005. Holotype.<br />

Drosophila ecuatoriana Vela & Rafael 2004. Holotype, paratype.<br />

Drosophila fontdevilai Vela & Rafael 2001. Holotype, paratype.<br />

Drosophila guayllabambae Rafael & Arcos 1988. Holotype,<br />

paratype.<br />

Drosophila huancavilcae Rafael & Arcos 1989. Holotype,<br />

paratype.<br />

Drosophila ichubamba Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila korefae Vela & Rafael 2004. Holotype, paratype.<br />

Drosophila machachensis Vela & Rafael 2001. Holotype, paratype.<br />

Drosophila n<strong>in</strong>arumi Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila ogradi Vela & Rafael 2004. Holotype, paratype.<br />

Drosophila pasochoensis Vela & Rafael 2001. Holotype, paratype.<br />

Drosophila patacorna Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila pich<strong>in</strong>chana Vela & Rafael 2004. Holotype, paratype.<br />

Drosophila pilaresae Vela & Rafael 2001. Paratype.<br />

Drosophila pugyu Vela & Rafael 2005. Holotype.<br />

Drosophila quillu Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila quitensis Vela & Rafael 2004. Holotype, paratype.<br />

Drosophila rum<strong>in</strong>ahuii Vela & Rafael 2004. Holotype.<br />

Drosophila rumipamba Vela & Rafael 2005. Holotype.<br />

Drosophila rundoloma Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila shuyu Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila shyri Vela & Rafael 2004. Holotype.<br />

Drosophila sisa Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila suni Vela & Rafael 2005. Holotype.<br />

Drosophila surucucho Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila taxohuaycu Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila tomasi Vela & Rafael 2001. Holotype, paratype.<br />

Drosophila urcu Vela & Rafael 2005. Holotype.<br />

Drosophila valenciai Vela & Rafael 2001. Holotype, paratype.<br />

Drosophila yana Vela & Rafael 2005. Holotype, paratype.<br />

Drosophila yangana Rafael & Vela 2003. Holotype, paratype.<br />

Family Phoridae<br />

Apocephalus ancylus Brown 1997. Paratype.<br />

Apocephalus asyndetus Brown 2000. Paratype.<br />

Apocephalus catholicus Brown 2000. Paratype.<br />

Apocephalus comosus Brown 2000. Paratype.<br />

Apocephalus extraneus Brown 1997. Paratype.<br />

Apocephalus funditus Brown 2000. Paratype.<br />

Apocephalus mel<strong>in</strong>us Brown 2000. Paratype.<br />

Apocephalus onorei Brown 1997. Paratype.<br />

Apocephalus quadratus Brown 1997. Paratype.<br />

Apocephalus roeschardae Brown 2000. Paratype.<br />

Apocephalus securis Brown 1997. Paratype.<br />

Apocephalus tanyurus Brown 2000. Paratype.<br />

Apocephalus torulus Brown 2000. Paratype.<br />

Apocephalus trifi dus Brown 2000. Paratype.<br />

Family Sphaeroceridae<br />

Druciatus tricetus Marshall 1995. Paratype.<br />

Opacifrons triloba Marshall & Langstaff 1998. Paratype.<br />

Opacifrons redunca Marshall & Langstaff 1998. Paratype.<br />

Palaeocopr<strong>in</strong>a equiseta Marshall 1998. Paratype.<br />

Phthitia merida Marshall 1992. Paratype.<br />

Rachispoda just<strong>in</strong>i Wheeler 1995. Paratype.<br />

Rachispoda praealta Wheeler 1995. Paratype.<br />

Order Hemiptera<br />

Family Coreidae<br />

Anasa scitula Brailovsky & Barrera 2000. Holotype, paratype.<br />

Salapia onorei Brailovsky 1999. Holotype.<br />

Seph<strong>in</strong>a faceta Brailovsky 2001. Paratype.<br />

Family Gerridae<br />

Potamobates shuar Buzzetti 2006. Paratype.<br />

Family Miridae<br />

Anomalocornis peyreti Couturier & Costa 2002. Paratype.<br />

Parafulvius henryi Costa & Couturier 2000. Paratype.<br />

Family Pentatomidae<br />

Th yanta xerotica Rider & Chap<strong>in</strong> 1991. Paratype.<br />

Family Membracidae<br />

Metcalfi ella jaramillorum McKamey 1991. Paratype.<br />

Metcalfi ella nigrihumera Mckamey 1991. Paratype.<br />

Order Hymenoptera<br />

Family Apidae<br />

Euglossa lugubris Roubick 2004. Paratype.<br />

Euglossa occidentalis Roubick 2004. Holotype, paratype.<br />

Euglossa orellana Roubick 2004. Holotype, paratype.<br />

Euglossa samperi Ramirez 2006. Holotype.<br />

Euglossa tiput<strong>in</strong>i Roubick 2004. Paratypes.<br />

Eulaema napensis Oliveira 2006. Holotype.<br />

Paratrigona onorei Camargo & Moure 1994. Paratype.<br />

453


454<br />

Family Diapriidae<br />

Mimopria campbellorum Masner 1976. Paratype.<br />

Family Formicidae<br />

Leptanilloides nomada Donoso, Vieira & Wild 2006. Holotype,<br />

paratype.<br />

Leptanilloides nubecula Donoso, Vieira & Wild 2006. Holotype,<br />

paratype.<br />

L<strong>in</strong>epithema aztecoides Wild 2006. Paratype.<br />

L<strong>in</strong>epithema neotropicum Wild 2006. Paratype.<br />

L<strong>in</strong>epithema tsachila Wild 2006. Holotype.<br />

Pheidole alpestris Wilson 2003. Paratype.<br />

Pseudomyrmex eculeus Ward 1999. Paratype.<br />

Pseudomyrmex <strong>in</strong>suavis Ward 1999. Paratype.<br />

Pseudomyrmex ultirix Ward 1999. Paratype.<br />

Family Pompilidae<br />

Pepsis multichroma Vardy 2002. Paratype.<br />

Pepsis onorei Vardy 2002. Paratype.<br />

Family Scelionidae<br />

Th oron garciai Johnson & Masner 2004. Paratype.<br />

Family Vespidae<br />

Agelaia silvatica Cooper 2000. Paratype.<br />

Order Lepidoptera<br />

Family Noctuiidae<br />

Hemeroblemma laguerrei Barbut & Lalanne-Cassou 2005.<br />

Paratype.<br />

Family Nymphalidae<br />

Altopedaliodes tena nucea Pyrcz & Viloria 1999. Paratype.<br />

Manerebia golondr<strong>in</strong>a Pyrcz & Willmott 2006. Paratype.<br />

Manerebia satura pauperata Pyrcz & Willmott 2006. Paratype.<br />

Manerebia germaniae Pyrcz & Hall 2006. Paratype.<br />

Manerebia undulata undulata Pyrcz & Hall 2006. Paratype.<br />

Manerebia <strong>in</strong>derena similis Pyrcz & Willmott 2006. Paratype.<br />

Manerebia <strong>in</strong>derena clara Pyrcz & Willmott 2006. Paratype.<br />

Manerebia <strong>in</strong>derena laeniva Pyrcz & Willmott 2006. Paratype.<br />

Manerebia <strong>in</strong>derena mirena Pyrcz & Willmott 2006. Paratype.<br />

Pedaliodes rumba Pyrcz & Viloria 1999. Paratype.<br />

Pedaliodes morenoi pilaloensis Pyrcz & Viloria 1999. Paratype.<br />

Pedaliodes arturi Pyrcz & Viloria 1999. Paratype.<br />

Pedaliodes balnearia Pyrcz & Viloria 1999. Paratype.<br />

Pedaliodes peucestas restricta Pyrcz & Viloria 1999. Paratype.<br />

Order Megaloptera<br />

Family Corydalidae<br />

Chloronia convergens Contreras 1995. Paratype.<br />

Corydalus clauseni Contreras 1998. Paratype.<br />

D. A. Donoso, F. Salazar, F. Maza, R. E. Cárdenas & O. <strong>Dangles</strong><br />

Order Odonata<br />

Family Lestidae<br />

Lestes jerrelli Tennessen 1997. Paratype.<br />

Family Coenagrionidae<br />

Oxyagrion tennesseni Mauff ray 1999. Paratype.<br />

Family Aeshnidae<br />

Aeshna (Marmaraeschna) brevicercia Muzón & Von Ellenrieder<br />

2001. Holotype, paratype.<br />

Order Orthoptera<br />

Family Grillidae<br />

Gryllus abditus Otte & Peck 1997. Paratype.<br />

Gryllus isabela Otte & Peck 1997. Paratype.<br />

Family Acrididae<br />

Aphanolampis aberrans Descamps 1978. Neoparatype.<br />

Hyal<strong>in</strong>acris diaphana Amédégnato & Poula<strong>in</strong> 1998. Paratype.<br />

Hyal<strong>in</strong>acris onorei Amédégnato & Poula<strong>in</strong> 1998. Paratype.<br />

Class Arachnida<br />

Order Scorpionida<br />

Family Buthidae<br />

Tityus jussarae Lourenço 1988. Paratype.<br />

Family Chactidae<br />

Chactas mahnerti Lourenço 1995. Paratype.<br />

Order Araneae<br />

Family Th eridiidae<br />

Anelosimus guacamayos Agnarsson 2006. Paratype.<br />

Anelosimus oritoyacu Agnarsson 2006. Paratype.<br />

Anelosimus baeza Agnarsson 2006. Paratype.<br />

Anelosimus elegans Agnarsson 2006. Paratype.<br />

Order Acari<br />

Family Lohmaniidae<br />

Heptacarus encantadae Schatz 1994. Paratype.<br />

Torpacarus omittens galapagensis Schatz 1994. Paratype.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 1<br />

APPENDIX 2.<br />

Catalogue of type specimens deposited at the Invertebrate Section of QCAZ Museum<br />

The list is organized alphabetically follow<strong>in</strong>g classes, orders, families <strong>and</strong> ultimately<br />

genera <strong>and</strong> species. Complete <strong>and</strong> orig<strong>in</strong>al label <strong>in</strong>formation (i.e. as it appeared) is<br />

provided for each record, except when labels provided duplicate <strong>in</strong>formation. Red labels<br />

<strong>in</strong>dicat<strong>in</strong>g the status of the specimens (e.g. holotype, paratype) were omitted from the<br />

catalog. References are provided at the end of each record.<br />

CLASS INSECTA<br />

ORDER COLEOPTERA<br />

FAMILY BUPRESTIDAE<br />

Halecia onorei Cobos 1989. Holotype QCAZI 603. <strong>Ecuador</strong>, Napo, Coca, I. 85, Legit: G.<br />

Onore. Ref. Cobos 1989.<br />

Hylaeogena onorei Cobos 1989. Holotype QCAZI 605. <strong>Ecuador</strong>, Napo, Sacha, VII.84,<br />

Legit: G. Onore. Paratypes QCAZI 606 <strong>and</strong> QCAZI 607 (Allotype) with the same<br />

label as the holotype. Ref. Cobos 1989.<br />

Pachyschelus sabatratus Cobos 1989. Holotype QCAZI 608. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Los<br />

Bancos, 28-I-84, Log: M. Larrea. Ref. Cobos 1989.<br />

Policesta excavate episcopalis Cobos 1989. Holotype QCAZI 604. <strong>Ecuador</strong>, Manabí,<br />

Bahía de Caraquez, III-1983, Lg. Gómez P. Ref. Cobos 1989.<br />

FAMILY CARABIDAE<br />

Abaris napoensis Will 2002. Paratype QCAZI 1965 $. Label 1: <strong>Ecuador</strong>, Napo, Onkone<br />

Gare Camp 00°39’10”S, 76°26’00”W; 220 m. Terra firma forest; Label 2:<br />

flowerfall-leaf litter; at night 5&8.X.1995 07-95; Label 3: T. L. ERWIN<br />

ECUADOR EXPEDITON 1995. G.E. Ball <strong>and</strong> D. Shpeley colls. Ref. Will 2002.<br />

Bembidion (Ecuadion) achipungi Moret & Toledano 2002. Paratype QCAZI 81. <strong>Ecuador</strong>,<br />

Chimborazo, Achipungo, (Atillo), 4250 m, 7Jan1995, G. Zapata. Ref. Moret &<br />

Toledano 2002.<br />

Bembidion (Ecuadion) camposi Moret & Toledano 2002. Paratypes QCAZI 89 <strong>and</strong> QCAZI<br />

90. <strong>Ecuador</strong>, Salcedo, vía Napo km 40, XII. 87, leg.G. Onore. Ref. Moret &<br />

Toledano 2002.<br />

Bembidion caoduroi L. Toledano 2008. Paratypes QCAZI 1832 <strong>and</strong> QCAZI 1833.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Lloa, Río Blanco, m 2410, S 00°12’37.1”, W 78°40’01.9”,<br />

1.VIII.2006, P. M. Giach<strong>in</strong>o. Ref. Toledano 2008.<br />

Bembidion (Ecuadion) chilesi Moret & Toledano 2002. Paratype QCAZI 98. Chiles, 4050<br />

m, 10. VIII .1997, ñ285, N. Atk<strong>in</strong>s. Ref. Moret & Toledano 2002.<br />

Bembidion (Ecuadion) cotopaxi Moret & Toledano 2002. Paratypes QCAZI 91 to QCAZI


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 2<br />

97. <strong>Ecuador</strong>, Cotopaxi, Parque Nacional Cotopaxi, Control Norte, 3755 m,<br />

10Feb2001, I. G. Tapia. Ref. Moret & Toledano 2002.<br />

Bembidion (Ecuadion) giselae Moret & Toledano 2002. Paratype QCAZI 103. <strong>Ecuador</strong>,<br />

Loja, Valladolid, Límite del Parque Jocotoco y Podocarpus, 6Jan2001, I. G. Tapia.<br />

Ref. Moret & Toledano 2002.<br />

Bembidion (Ecuadion) humboldti Moret & Toledano 2002. Paratypes QCAZI 99 <strong>and</strong><br />

QCAZI 100. <strong>Ecuador</strong>, Chimborazo, Ozogoche, alrededor de la Laguna,<br />

27Dec1994, GOnore. Ref. Moret & Toledano 2002.<br />

Bembidion illuchi, Moret & Toledano 2002. Paratype QCAZI 101. <strong>Ecuador</strong>, Cotopaxi,<br />

Salcedo, Vía a Tena Pass, 3800 m, 15Jan1995, GOnore. Ref. Moret & Toledano<br />

2002.<br />

Bembidion (Ecuadion) mathani, Moret & Toledano 2002. Paratype QCAZI 102. <strong>Ecuador</strong>,<br />

Chimborazo, Achipungo, (Atillo), 4250 m, 7Jan1995, GZapata. Ref. Moret &<br />

Toledano 2002.<br />

Bembidion (Ecuadion) onorei Moret & Toledano 2002. Paratypes QCAZI 104 <strong>and</strong> QCAZI<br />

105. <strong>Ecuador</strong>, 7.VIII.90, Volcán Cotopaxi, 3800 - 4800 m, leg. Sciaki. Ref. Moret<br />

& Toledano 2002.<br />

Bembidion (Ecuadion) saragurense Moret & Toledano 2002. Holotype QCAZI 108. Label<br />

1: <strong>Ecuador</strong>, Loja, Saraguro, Paraíso de Celen, Laguna de Ch<strong>in</strong>chilla, 3660 m.,<br />

20Dec1998, E. Tapia; Label 2: EX: Dry season. Paratypes QCAZI 109 to QCAZI<br />

113, with the same label as the holotype. Ref. Moret & Toledano 2002.<br />

Bembidion walterrossii Toledano 2008. Paratype QCAZI 499. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28 VII 2005, W. Rossi. Ref.<br />

Toledano 2008.<br />

Blennidus (Agraphoderus) ch<strong>in</strong>chillanus Moret 2005. Holotype QCAZI 136. Label 1:<br />

<strong>Ecuador</strong>, Loja, Saraguro, Paraíso de Celen, Laguna de Ch<strong>in</strong>chilla, 3660 m.,<br />

20Dec1998, E. Tapia; Label 2: Ex: dry season. Paratypes QCAZI 137 to QCAZI<br />

144, with the same label as the holotype. Ref. Moret 2005.<br />

Blennidus (Agraphoderus) ecuadorianus viduus Moret 1996. Holotype QCAZI 128.<br />

<strong>Ecuador</strong>, Chimborazo, Ozogoche, alrededor de la Laguna, 27Dec1994, G.Onore. 6<br />

paratypes with the same label as the holotype. Ref. Moret 1996a.<br />

Blennidus (Agraphoderus) gregarius Moret, 1996. Paratype QCAZI 134. <strong>Ecuador</strong>, Prov.<br />

Azuay, Nudo de Azuay, 3980 m, Paredones sous pierre, P. Moret leg., 14. VII. 88.<br />

Ref. Moret 1996a.<br />

Blennidus (Agraphoderus) gregarius montivagus Moret 1996. Paratype QCAZI 135.<br />

<strong>Ecuador</strong>, Chimborazo, km 28 Guamote-Macas, 4000 m, –sous pierre, P. Moret leg.,<br />

7. I. 95. Ref. Moret 1996a.<br />

Blennidus marlenae Moret 1995. Holotype QCAZI 2. <strong>Ecuador</strong>, Cañar, Chocar, 3300 m,<br />

Nov1990, Legit: G. Onore. Paratype QCAZI 3 with the same label as the holotype.<br />

Ref. Moret 1995


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 3<br />

Blennidus (Agraphoderus) mucronatus Moret 1996. Holotype QCAZI 8. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Atacazo volcan, 3800-4000 m, 18Dec1994. 17 paratypes with the same<br />

label as the holotype. Ref. Moret 1996a.<br />

Blennidus (Sierrobius) viridans Moret 1995. Holotype QCAZI 22. <strong>Ecuador</strong>, Azuay,<br />

Nabón, 3200 m, Nov1990, Legit. G. Onore. Ref. Moret 1995.<br />

Blennidus (Sierrobius) thoracatus Moret 2005. Paratypes QCAZI 23. Label 1: <strong>Ecuador</strong>,<br />

Loja, Saraguro, Paraíso de Celén, Laguna de Ch<strong>in</strong>chilla, 3660 m, 20Dec1998, E.<br />

Tapia; Label 2: Ex: dry season. QCAZI 24. <strong>Ecuador</strong>, Loja, Saraguro, Laguna de<br />

Ch<strong>in</strong>chilla, 3665 m, 79°24’W 03°36’S, 20Dec1998, E. Tapia. Ref. Moret 2005<br />

Bradycellus aequatorius Moret 2001. Paratypes QCAZI 34. <strong>Ecuador</strong>, Bolívar, Cashca<br />

Totoras, XII/87, Legit: L. Coloma. QCAZI 36. <strong>Ecuador</strong>, Bolívar, Cashca Totoras,<br />

87-12-29, Legit S. Paredes. QCAZI 35. <strong>Ecuador</strong>, El Oro/Loja, 6 km ESE<br />

Guanazan, Pass, 3040 m, 7 Nov1987, C. Young, R. Davidson, J. Rawl<strong>in</strong>s.<br />

Grassl<strong>and</strong>. QCAZI 37. <strong>Ecuador</strong>, Bolívar, Guar<strong>and</strong>a, San Miguel, Santuario<br />

Lourdes, 3100 m, 4 Nov1995, GOnore. QCAZI 38. <strong>Ecuador</strong>, Bolívar, Totoras, 24-<br />

VI-87, Legit F. Campos. Ref. Moret 2001b.<br />

Bradycellus mart<strong>in</strong>ezi Moret 2001. Paratypes QCAZI 25 <strong>and</strong> QCAZI 29. <strong>Ecuador</strong>,<br />

Cotopaxi, Parque N. Cotopaxi, 4000 m, 14-V-1983, Col: D. Bastidas. QCAZI 26<br />

<strong>and</strong> QCAZI 31. <strong>Ecuador</strong>, Cotopaxi –Volcán, m. 4000, 19. VI-1983, Lg. L. Coloma.<br />

QCAZI 27. Label 1: <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Quito, 8-V-85, Leg: R. León; Label 2: Ex:<br />

Solanum tuberosum roots. QCAZI 28. <strong>Ecuador</strong>, Cotopaxi –Volcán, m. 4000, 25-V-<br />

1983, Lg. Ernesto Martínez. QCAZI 30. <strong>Ecuador</strong>, Cotopaxi, (4500), 04-05-1983,<br />

Lg. Valle, C. QCAZI 32. <strong>Ecuador</strong>, Cotopaxi, Misha Huayco, 3200 m., 17SEP1995,<br />

Gzapata. QCAZI 33. <strong>Ecuador</strong>, Cotopaxi, Planchaloma, 3100 m, 2 APR1995, G.<br />

Zapata. Ref. Moret 2001b.<br />

Bradycellus youngi Moret 2001. Paratype QCAZI 39. <strong>Ecuador</strong>, El Oro/Loja, 6 km ESE<br />

Guanazán pass, 3040 m., 7Nov1987, C. Young, R. Davidson J. Rawl<strong>in</strong>s. Grassl<strong>and</strong>.<br />

Ref. Moret 2001b.<br />

Coptodera apicalis Shpeley & Ball 1993. Paratype QCAZI 42. <strong>Ecuador</strong>, Esm. Pr., Zapallo<br />

Gr<strong>and</strong>e, 4February1988, Mike Huybensz. Ref. Shpeley & Ball 1993.<br />

Dercylus (Lic<strong>in</strong>odercylus) onorei Moret 1995. Paratypes QCAZI 168 to QCAZI 170.<br />

<strong>Ecuador</strong>, Cañar, Shical, 3200 m, Nov1990, Legit: G. Onore. Ref. Moret &<br />

Bousquet 1995.<br />

Dercylus (Lic<strong>in</strong>odercylus) orbiculatus Moret 1995. Paratype QCAZI 171. <strong>Ecuador</strong>, XI 83,<br />

Azuay, Cajas, Legit: G. Onore. Ref. Moret & Bousquet 1995.<br />

Dercylus (Lic<strong>in</strong>odercylus) praepilatus Moret 1995. Paratypes QCAZI 172. <strong>Ecuador</strong>,<br />

Bolívar, Totoras, II-87, Legit: L. Coloma. QCAZI 173. <strong>Ecuador</strong>, Chimborazo,<br />

Guangopud- Chimbo pass, 14Aug1993, 4200 m, C. W. Young, G. Onore & E.<br />

Tapia. Ref. Moret & Bousquet 1995.<br />

Dercylus (Lic<strong>in</strong>odercylus) granifer Moret 1995. Paratype QCAZI 179. <strong>Ecuador</strong>, Morona –<br />

Santiago/Azuay Pass, 21 km SE Gualaceo, 3720 m, 21Oct1987, C. Young, R.<br />

Davidson, J. Rawl<strong>in</strong>g. Wet paramo. Ref. Moret & Bousquet 1995.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 4<br />

Dercylus (Lic<strong>in</strong>odercylus) gibber Moret 1995. Paratype QCAZI 167. <strong>Ecuador</strong>, Loja, 2800<br />

m, 12Marzo1991, Legit: G. Onore. Ref. Moret & Bousquet 1995.<br />

Diploharpus rossii Moret 2008. Paratypes QCAZI 502, QCAZI 1826 <strong>and</strong> QCAZI 1827.<br />

<strong>Ecuador</strong>, Cotopaxi, Cantón Sigchos, Las Pampas, Bosque Integral de Otonga, 11-<br />

12 VII 2007, W. Rossi. Ref. Moret 2008<br />

Dyscolus (s. str.) algidus Moret 2005. Paratype QCAZI 56. <strong>Ecuador</strong>, Napo, Quil<strong>in</strong>daña,<br />

4000 m, 12 MAY1995, GZapata. QCAZI 57. <strong>Ecuador</strong>, Cotopaxi, vía Salcedo-<br />

Tena, Estribación Oriental, 2800-3800 m, 15JAN1995, G. Onore. Ref. Moret 2005<br />

Dyscolus (s. str.) araneus Moret 2005. Holotype QCAZI 70. <strong>Ecuador</strong>, Azuay, Patacocha,<br />

3500 m, 31DEC1995, G.Onore. Paratypes QCAZI 71 to QCAZI 76, with the same<br />

label as the holotype. QCAZI 77. <strong>Ecuador</strong>, Azuay, Paute, Antena, 3000 m,<br />

17MAR1996, F.Salazar. Ref. Moret 2005.<br />

Dyscolus (s. str.) arvalis Moret 2005. Paratype QCAZI 58. Label 1: Rio-bamba, m-3500<br />

m, Aoñt 77; Label 2: Equateur, Coll. J. Negre. Ref. Moret 2005<br />

Dyscolus (s. str.) atk<strong>in</strong>si Moret 2001. Paratypes QCAZI 49 to QCAZI 51. Carchi, Volcán<br />

Chiles, 3850 m., páramo, 11. VII. 1997, n°289, N. Atk<strong>in</strong>s leg. Ref. Moret 2001a.<br />

Dyscolus (s. str.) bliteus Moret 2005. Paratypes QCAZI 79. <strong>Ecuador</strong>, Chimborazo, Lag.<br />

Negra (Atillo), 3600 m., 6JAN1995, G.Zapata. QCAZI 80. <strong>Ecuador</strong>, Chimborazo,<br />

Hacienda Cubill<strong>in</strong>, 3650 m, ruisseau, 5.8.1998, P. Moret. Ref. Moret 2005.<br />

Dyscolus (s. str.) bordoni Moret 1993. Paratype QCAZI 78. <strong>Ecuador</strong>, 16-IX-84, Prov.<br />

Pich<strong>in</strong>cha, Cayambe, NE lag. San Marcos, Pierre Moret legit, 3600 m. Ref. Moret<br />

1993.<br />

Dyscolus (s. str.) breviculus Moret 2001. Paratype QCAZI 81. Carchi, Volcán Chiles, 3850<br />

m, paramo, 11.VIII.1997, n°290, N. Atk<strong>in</strong>s leg. Ref. Moret 2001a.<br />

Dyscolus (s. str.) capsarius Moret 2005. Paratypes QCAZI 82 <strong>and</strong> QCAZI 83. Label 1:<br />

<strong>Ecuador</strong>, Azuay, Las Cajas, 35 km WNW Cuenca, 3950 m, 9November1987; Label<br />

2: R. Davidson, J. Rawl<strong>in</strong>s, C. Young, páramo habitat, QCAZI 84. <strong>Ecuador</strong>, Azuay,<br />

Nudo de Cajas pass, 4150 m, 17.V.1997, A. Cassale leg. Ref. Moret 2005.<br />

Dyscolus (s. str.) carbonescens Moret 2005. Holotype QCAZI 60. <strong>Ecuador</strong>, Cañar, La<br />

Carbonería, 2850 m, 18JAN1996, FSalazar & G.Onore. Paratypes QCAZI 61 to<br />

QCAZI 66, with the same label as the holotype. Ref. Moret 2005.<br />

Dyscolus (s. str.) cephalotes spp. sir<strong>in</strong>ae Moret 2005. Paratype QCAZI 67. <strong>Ecuador</strong> -<br />

Chimborazo, Cerro Achipungu, (N) 4230 m, –sous pierre, P. Moret leg. 7.I.95. Ref.<br />

Moret 2005<br />

Dyscolus (s. str.) desultor Moret 2005. Paratypes QCAZI 68 <strong>and</strong> QCAZI 69. <strong>Ecuador</strong>,<br />

Chimborazo, Ozogoche, alrededor de la Laguna, 27DEC1994, G.Onore. Ref. Moret<br />

2005.<br />

Dyscolus (s. str.) exsul Moret 2005. Paratypes QCAZI 198 to QCAZI 210. <strong>Ecuador</strong>,<br />

Azuay, Patacocha, 3500 m, 30Dec1995, GOnore. Ref. Moret 2005.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 5<br />

Dyscolus (s. str.) fartilis Moret 2005. Paratype QCAZI 197. <strong>Ecuador</strong> -Chimborazo,<br />

Hacienda Cubill<strong>in</strong>, 3400-3520 m, foret, 5.8.1998, P. Moret. Ref. Moret 2005<br />

Dyscolus (s. str.) fucatus Moret 2005. Paratype QCAZI 211. <strong>Ecuador</strong>, Chimborazo,<br />

Shangay volcan, 3300 m, 14.VI.1991, Craie Downer. Ref. Moret 2005.<br />

Dyscolus immodicus Moret 2005. Paratypes QCAZI 213 to QCAZI 216. <strong>Ecuador</strong>, Pich,<br />

Antisana, VI-85, Legit: J. Coloma. QCAZI 217. Label 1: <strong>Ecuador</strong>, Pich, Antisana,<br />

VI-85, legit: A. Velasco, M. Larrea, 23 VII 1984; Label 2: Ex: excremento. Ref.<br />

Moret 2005.<br />

Dyscolus <strong>in</strong>volucer Moret 1994. Paratype QCAZI 220. Label 1: W. Otavalo, (<strong>Ecuador</strong>),<br />

3100 m., 5Sept.77; Label 2: Collection J. Négre. Ref. Moret 1994.<br />

Dyscolus <strong>in</strong>volucer geodesicus Moret 1994. Paratypes QCAZI 218 <strong>and</strong> QCAZI 219.<br />

<strong>Ecuador</strong>, Carchi, San Gabriel, Monte Verde, Bosque de Arrayanes, 2800 m, C.<br />

Young, G. Onore. Ref. Moret 1994.<br />

Dyscolus (s. str.) lignicola Moret 1994. Paratypes QCAZI 238. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Vía<br />

Chiriboga Guarumal, I-84, Leg. Yépez. QCAZI 239 <strong>and</strong> QCAZI 240. Label 1:<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Pasochoa, V-85, Legit: A. Salazar; Label 2: Hunt<strong>in</strong>g on<br />

Polylepis sp. QCAZI 241. <strong>Ecuador</strong>, XII -87, Otavalo, m 3000, leg. G. Onore. Ref.<br />

Moret 1994.<br />

Dyscolus (s. str.) lubricus Moret 2001. Holotype QCAZI 231. <strong>Ecuador</strong>, VIII-86, Carchi,<br />

Tuf<strong>in</strong>o, Legit: G. Onore. Ref. Moret 2001a.<br />

Dyscolus (s. str.) maleodoratus Moret 2005. Paratypes QCAZI 222 to QCAZI 225.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Páramo de Guamaní, 20-10-84, Legit: V. Zak. Ref. Moret<br />

2005.<br />

Dyscolus (s. str.) montivagus Moret 1998. Paratype QCAZI 227. <strong>Ecuador</strong>, Carchi, 23 km<br />

W Tuf<strong>in</strong>o, pass, Volcán Chiles, 4070 m, 18Nov1987, R. Davidson, C. Young.<br />

Paramo. Ref. Moret 1998.<br />

Dyscolus (s. str.) montufari Moret 2005. Paratype QCAZI 226. Label 1: <strong>Ecuador</strong>, Bolivar,<br />

Chimborazo Pass, 23 km SSW Chimborazo, 4040 m, 17Oct1987; Label 2: C.<br />

Young, R. Davidson, J. Rawl<strong>in</strong>s. Dry paramo. Ref. Moret 2005.<br />

Dyscolus (s. str.) nubilus Moret 2001. Paratypes QCAZI 229 <strong>and</strong> QCAZI 230. <strong>Ecuador</strong>,<br />

VIII-86, Carchi, Tufiño, Legit: G. Onore. Ref. Moret 2001a.<br />

Dyscolus onorei Moret 1993. Paratype QCAZI 242. <strong>Ecuador</strong>, II-86, Carchi, Chiles, 3900<br />

m., Legit: P. Ponce. Ref. Moret 1993.<br />

Dyscolus (s. str.) palatus Moret 1998. 7 paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Atacazo volcan, 3800-4000 m 18Dec1994, GOnore. Ref. Moret 1998.<br />

Dyscolus (s. str.) pullatus Moret 2005. Paratypes QCAZI 153. <strong>Ecuador</strong>, Bolívar, XII.81,<br />

Totoras, 3000 m, Legit: J. Naranjo. QCAZI 155, QCAZI 156, QCAZI 160.<br />

<strong>Ecuador</strong>, Bolívar, XII-87, Totoras, Legit: R. Puebla. QCAZI 158, QCAZI 159,<br />

QCAZI 163. <strong>Ecuador</strong>, Bolívar, 28.XII.81, Totoras, 3000 m, Legit: J. Naranjo.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 6<br />

QCAZI 162. <strong>Ecuador</strong>, XII-86, Bolívar, Totoras, Legit: L. Coloma. QCAZI 164 <strong>and</strong><br />

QCAZI 165. <strong>Ecuador</strong>, VI-86 Bolívar, Totoras, Legit: L. Coloma. QCAZI 154.<br />

<strong>Ecuador</strong>, Bolívar, Cashca Totoras, XII-87, Legit: L. Coloma. QCAZI 161. <strong>Ecuador</strong>,<br />

Bolívar, Cashca Totoras, 28-XII-1987, Legit: P. Coral. QCAZI 157. <strong>Ecuador</strong>, VIII -<br />

86, Pallatanga, Legit: G. Onore. Ref. Moret 2005.<br />

Dyscolus (s. str.) riveti Moret 2001. Paratypes QCAZI 145 to QCAZI 152. Carchi, Volcán<br />

Chiles, 4050 m, paramo, 10. VIII.1997, n 285, N. Atk<strong>in</strong>s Leg. Ref. Moret 2001a.<br />

Dyscolus segnipes Moret 1990. Paratype QCAZI 166. Label 1: <strong>Ecuador</strong>, Napo, Paso de<br />

Guamaní; e. Quito under stones; road-side, 3810-3962 m, May 13, 1982, #51-3;<br />

Label 2: <strong>Ecuador</strong>, exp. 1982, H. E. Frania & F. A. H. Sperl<strong>in</strong>g collectors. Ref.<br />

Moret 1990.<br />

Dyscolus (s. str.) tapiarius Moret 2005. Holotype QCAZI 232. <strong>Ecuador</strong>, Loja, Saraguro,<br />

Paraíso de Celen, Laguna de Ch<strong>in</strong>chilla, 3660 m, 20Dec1998, E. Tapia. Paratypes<br />

QCAZI 233 to QCAZI 235 with the same label as the holotype. Ref. Moret 2005<br />

Dyscolus (s. str.) trossulus Moret 2005. Paratype QCAZI 246. <strong>Ecuador</strong>, Azuay, S. José de<br />

Raranga, 3300 m, 16Nov1990, Legit: G. Onore. Ref. Moret 2005<br />

Dyscolus (s. str.) verecundus Moret 1998. Paratype QCAZI 247. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Atacazo volcan, 3800-4000 m, 18Dec1994, G. Onore. Ref. Moret 1998.<br />

Dyscolus (Hydrodyscolus) hirsutus Moret 2005. Paratype QCAZI 221. <strong>Ecuador</strong>, XI. 85,<br />

Napo, Papallacta, Legit: G. Onore. Ref. Moret 2005.<br />

Dyscolus (Hydrodyscolus) imbaburae Moret 2005. Paratype QCAZI 212. <strong>Ecuador</strong>,<br />

Imbabura, road Cahuasqui to Buenos Aires, 3500 m, 10Mar1993, G. Onore. Ref.<br />

Moret 2005<br />

Dyscolus (Hydrodyscolus) nocticolor Moret 2005. Paratype QCAZI 228. <strong>Ecuador</strong>,<br />

Imbabura, Moj<strong>and</strong>a, 4-Dic-89, Legit Mónica Coello. Ref. Moret 2005.<br />

Dyscolus (Hydrodyscolus) smithersi Moret 2001. Paratype QCAZI 174. Carchi, Volcán<br />

Chiles, 3400 m., stream side, VIII-1997, IDSPO8, P. Smithers leg. Ref. Moret<br />

2001a.<br />

Euchella kipl<strong>in</strong>gi Shpeley& Ball 2000. Paratype QCAZI 40 <strong>and</strong> QCAZI 41. 01°02’03”S,<br />

77°39’49”W, <strong>Ecuador</strong>, Napo Prov., Puerto Misahualli, 11:IX:1997, Col. K. Will.<br />

Ref. Shpeley & Ball 2000.<br />

Glyptolenoides balli Moret 2005. Paratype QCAZI 180. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Pifo-Baeza<br />

km 45, 29-XI-85, Legit: A. Izurieta. Ref. Moret 2005.<br />

Incastichus aequidianus Moret 1996. Paratype QCAZI 177. Label 1: <strong>Ecuador</strong>, Pich<strong>in</strong>cha;<br />

Label 2: Palmeras, 24/01/93, E. Pichil<strong>in</strong>gue. Ref. Moret 1996b.<br />

Lox<strong>and</strong>rus ecuadoricus Straneo 1991. Paratype QCAZI 176. Label 1: <strong>Ecuador</strong>: Carchi,<br />

Chical, 1250 m, 0 56’N, 78 11’W, Coll. R. Davidson. VII.11-20.1983; Label 2: ex:<br />

Eleacharis elegans swamp. Ref. Straneo 1991a.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 7<br />

Lox<strong>and</strong>rus photophilus Straneo 1991. Paratype QCAZI 175. Paraguay, Dept. Central, San<br />

Lorenzo, 18-19Nov1986, J. A. Kochalka. Uv light trap. Ref. Straneo 1991a.<br />

Ogmopleura (Agraphoderus) colomai Straneo 1991. Paratypes QCAZI 114 to QCAZI 121.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Antisana, 4200 m, 4 –II-1984, Lg. G. Onore. Comments:<br />

Labeled as Blennidus antisanae (Bates) by P. Moret <strong>in</strong> 2001. Ref. Straneo 1991b<br />

Ogmopleura balli Straneo 1991. Paratype QCAZI 122. Label 1: <strong>Ecuador</strong>, Azuay, Las<br />

Cajas, 35 km WNW Cuenca, 3950 m, 9 November 1987; Label 2: R. Davidson, J.<br />

Rawl<strong>in</strong>s; C. Young, Paramo habitat. Comments: Labeled as Blennidus balli Straneo<br />

by P. Moret <strong>in</strong> 2001. Ref. Straneo 1991b.<br />

Ogmopleura ecuadoriana Straneo 1991. Paratype QCAZI 133. Label 1: <strong>Ecuador</strong>, Bolívar,<br />

Chimborazo, Pass, 23 km SSW Chimborazo, 4040 m, 17Oct1987; Label 2: C.<br />

Young, R. Davidson, J. Rawl<strong>in</strong>s, Dry paramo. Comments: Labeled as Blennidus<br />

ecuadorianus (Straneo) by P. Moret <strong>in</strong> 2001. Ref. Straneo 1991b.<br />

Ogmopleura (Agraphoderus) liodes planoculis Straneo 1991. Paratype QCAZI 1. <strong>Ecuador</strong>,<br />

Tungurahua, 7 km NW Chmborazo, 3960 m., 15Oct1987, R. Davidson, J. Rawl<strong>in</strong>s,<br />

C. Young. Dry subparamo. Ref. Straneo 1991b, but see Moret 1996a.<br />

Oxytrechus onorei Allegro et al. 2008. Paratype QCAZI 500. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Volcán<br />

Cayambe, m. 4500, 14.VIII.1990, Sciaky. Ref. Allegro et al. 2008.<br />

Oxytrechus pierremoreti Allegro et al. 2008. Paratype QCAZI 501. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Atacazo volcán, 3800-4000 m., 18Dec1994, G. Onore. Ref. Allegro et al. 2008.<br />

Oxytrechus reventadori Moret 2005. Holotype QCAZI 195. <strong>Ecuador</strong>, Sucumbios, Volcan<br />

Reventador, 3530 m, Mayo1999, E. Tapia. Ref. Moret 2005.<br />

Oxytrechus zoiai Casale & Sciaky 1986. Paratype QCAZI 196. <strong>Ecuador</strong>, M. Cotopaxi, m<br />

4800, 3.IV.86, Leg. A. Casale. Ref. Casale & Sciaky 1986.<br />

Pelmatellus gracilis Moret 2000. Paratypes QCAZI 189. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Puembo,<br />

2450 m, 25-I-85, Legit: J. Coloma. QCAZI 190. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Pomasqui, 20-<br />

8-85, Legit: L. Torres. QCAZI 191. <strong>Ecuador</strong>, Tungurahua, Píllaro, 22-I-89, Legit:<br />

R. Puebla A. Ref. Moret 2000.<br />

Pelmatellus <strong>in</strong>ca Moret 2000. Paratype QCAZI 192. <strong>Ecuador</strong>, 14.VIII.88, Prov. Cañar,<br />

Nudo de Azuay, Paredones, 3980 m, Pierre Moret legit. Ref. Moret 2000.<br />

Pelmatellus polylepis Moret 2000. Paratype QCAZI 193. Label 1: <strong>Ecuador</strong>, Azuay, Las<br />

Cajas, 35 km WNW Cuenca, 3950 m, 9 November 1987; Label 2: R. Davidson, J.<br />

Rawl<strong>in</strong>s, C. Young. Paramo habitat. Ref. Moret 2000.<br />

Pelmatellus caerulescens Moret 2005. Holotype QCAZI 181. Label 1: <strong>Ecuador</strong>, Loja,<br />

Saraguro, Paraíso de Celen, Laguna de Ch<strong>in</strong>chilla, 3660 m, 20Dec1998, E. Tapia;<br />

Label 2: Ex: Dry season. Paratypes QCAZI 182 to QCAZI 188 with the same labels<br />

data as the holotype. Ref. Moret 2005.<br />

Perigona belloi Giach<strong>in</strong>o, Moret & Picciau 2008. Paratype QCAZI 1831 £. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, m 3150, S. José de M<strong>in</strong>as, Cerro Blanco, S 00°12’37.3”, W


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 8<br />

78°21’03.0”, 7.VIII.2006, C. Bellδ. Ref. Giach<strong>in</strong>o et al. 2008.<br />

Sierrobius onorei Straneo 1991. Paratypes QCAZI 106. <strong>Ecuador</strong>, VI-86, Bolívar, Totoras,<br />

Legit: L. Coloma. QCAZI 107. <strong>Ecuador</strong>, Bolívar, Totoras, Legit: L. Coloma,<br />

XII/86. Comments: Synonymyzed as Blennidus onorei (Straneo) by P. Moret 2001.<br />

Ref. Straneo 1991b.<br />

Stenognathus (Prostenognathus) onorei Shpeley & Ball 2000. Paratype QCAZI 178.<br />

<strong>Ecuador</strong>, Napo, II-89, Cosanga, Legit: G. Onore. Ref. Shpeley & Ball 2000.<br />

Stolonis tapiai Will 2005. Paratype QCAZI 1971 $. 00°40’36” S, 76°24’02” W,<br />

ECUADOR, Napo Prov., Yasuni Scientific Station, 20:IV:1998, 210m, Col. K.<br />

Will, Headlamp. QCAZI 1972 , with the same label as QCAZI 1971 except for:<br />

19:IV:1998 £. Ref. Will 2005.<br />

Stolonis sp<strong>in</strong>osus Will 2005. Paratype QCAZI 1968 $. 00°40’36” S, 76°24’02” W,<br />

ECUADOR, Napo Prov., Yasuni Scientific Station, 22:IV:1998, 210m, Col. K.<br />

Will, Headlamp. Ref. Will 2005.<br />

Stolonis catenarius Will 2005. Paratype QCAZI 1966 $. 00°40’36”S 76°24’02’’W<br />

ECUADOR, Napo Prov., Yasuni Scientific Station, 22:IV:1998, 210m, Col. K.<br />

Will, Headlamp. QCAZI 1967, with the same label as QCAZI 1966 except for:<br />

21:IV:1998, £. Ref. Will 2005.<br />

Stolonis yasuni Will 2005. Paratypes QCAZI 1969 $, QCAZI 1970 £. 00°40’36”S<br />

76°24’02’’W ECUADOR, Napo Prov., Yasuni Scientific Station 21:IV:1998,<br />

210m, Col. K. Will. Ref. Will 2005.<br />

Trechisibus (<strong>Ecuador</strong>itrechus) tapiai Deuve 2002. Holotype QCAZI 194. <strong>Ecuador</strong>, Loja,<br />

Saraguro, Paraíso de Celen, Laguna de Ch<strong>in</strong>chilla, 3660 m, 20DEC1998, E. Tapia.<br />

Figura 6 Pronotum. Ref. Deuve 2002.<br />

FAMILY CERAMBYCIDAE<br />

Apteraleidion lapierrei Hovore 1992. Paratype QCAZI 616. Costa Rica, Cartago Pr., Cerro<br />

de la Muerte, 3450 m, 11/13June1987, F. T. Hovore coll. Ref. Hovore 1992.<br />

Eburia frankei Noguera 2002. Paratype QCAZI 615. Costa Rica, Guan. Pr., Santa Rosa N.<br />

P., 31May/01 June 2002, F. Hovore, I. Swift coll. Ref. Noguera 2002.<br />

Neseuterpia couturieri Tavakilian 2001. Paratypes QCAZI 613 $ <strong>and</strong> QCAZI 614 $. Label<br />

1: <strong>Ecuador</strong>, (Puyo), Santa Clara-San José vía Puyo-Cena (522 m), 6novembre2000,<br />

Thomas Peyret leg.; Label 2: 01°17’07”S, 77°47’18”O, sur <strong>in</strong>florescence en<br />

anthése Astrocaryum urostachys Burret (ASTERACEAE). Ref. Tavakilian 2001.<br />

FAMILIA CHRYSOMELIDAE<br />

Aslamidium (s. str.) ecuadoricum Borowiec 1998. Holotype QCAZI 730. <strong>Ecuador</strong>, Napo,<br />

Misahualli, 450 m, MAY28 1994, C. Boada. Ref. Borowiec 1998a.<br />

Cyclocassis secunda Borowiec 1998. Paratype QCAZI 731. <strong>Ecuador</strong>, 2000 m, Loja,<br />

Veracruz 12 Aug1994, F. Maza. Ref. Borowiec 1998b.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 9<br />

Discomorpha onorei Borowiec 1998. Holotype QCAZI 732. <strong>Ecuador</strong>, Napo, X-87, Loreto,<br />

Legit: G. Onore. Paratype QCAZI 733. <strong>Ecuador</strong>, Napo, Río Holl<strong>in</strong>, 6/12/91, P.<br />

Delgado. Ref. Borowiec 1998b.<br />

Eugenisa jas<strong>in</strong>skii Borowiec & Dšbrowska 1997. Paratypes QCAZI 734. <strong>Ecuador</strong>, kupiony<br />

Baños, V-1996. QCAZI 735. <strong>Ecuador</strong>, Jatun Sacha, 6-09-89, Legit Mart<strong>in</strong> Steer.<br />

Ref. Borowiec & Dšbrowska 1997.<br />

Eugenisa unicolor Borowiec & Dšbrowska 1997. Paratypes QCAZI 736. <strong>Ecuador</strong>, Napo,<br />

Puyuyacu, 27-V-1996, leg. A. Jas<strong>in</strong>ski. QCAZI 737. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Puerto<br />

Quito, 720 mts, 3-XII-1982, Lg. M. Chieruzzi. QCAZI 738. <strong>Ecuador</strong>, Napo,<br />

Lumbaqui, 850 m, 28II 1976, Coll Vénédictoff. QCAZI 739. <strong>Ecuador</strong>, Napo,<br />

Talag, Pimpilala, 5 Nov1999. QCAZI 740. <strong>Ecuador</strong>, Napo, Misahualli, 480 m,<br />

28Dec1995, X. Salazar. Ref. Borowiec & Dšbrowska 1997.<br />

Stolas napoensis Borowiec 1998. Holotype QCAZI 741. <strong>Ecuador</strong>, Napo, SC Station<br />

Yasuní PUCE, 400 m, 11-23Sep1995, E. Baquero, F. Maza. Paratypes QCAZI 744,<br />

with the same label as the holotype. QCAZI 742 <strong>and</strong> QCAZI 745 with the same<br />

label as the holotype except for: 12APR1996, G. Cañas; 16Nov1996, M. Torres.<br />

QCAZI 743. <strong>Ecuador</strong>, Napo, Talag, 700 m, 10Jun1994, G. Onore. QCAZI 746.<br />

Label 1: <strong>Ecuador</strong>, Napo, SC Yasuní, 250 m, 28-30May1997, E. Baus; Label 2: Ex:<br />

Trampa de luz. Ref. Borowiec 1998b.<br />

Stolas perezi Borowiec 1998. Holotype QCAZI 747. <strong>Ecuador</strong>, Napo, Campanococha, 431<br />

m, 15/Jan/1994, Legit. C. Pérez. Ref. Borowiec 1998b.<br />

Stolas stolida jadwiszczaki Borowiec 1998 . Paratypes QCAZI 748 <strong>and</strong> QCAZI 749. Label<br />

1: <strong>Ecuador</strong>, Napo, Archidona, 705 m, 8-VI-91, Leg. Lee Sehel; Label 2: Jum<strong>and</strong>i,<br />

(Baeza-Archidona). QCAZI 750. <strong>Ecuador</strong>, Napo, Archidona, 1 May1992, J. Lussio.<br />

QCAZI 751. <strong>Ecuador</strong>, Napo, Tena, 500 m, 26Dic1996, I. Olmedo. Ref. Borowiec<br />

1998b.<br />

Stolas zumbaensis Borowiec 1998. Paratype QCAZI 752. <strong>Ecuador</strong>, Zamora Ch<strong>in</strong>chipe,<br />

Zumba, 19.04.97, K. Los. Ref. Borowiec 1998b.<br />

FAMILY CICINDELIDAE<br />

Ctenostoma (Neoprocephalus) cassolai Naviaux 1998. Paratype QCAZI 248. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, La Unión del Toachi, (Cuesta del Gall<strong>in</strong>azo), 950 m, 78°57’10”W,<br />

00°21’05” S, 6Mar1997, G. Onore. Ref. Naviaux 1998 [not reviewed].<br />

Ctenostoma (Procephalus) ecuadoriensis Naviaux 1998. Holotype QCAZI 249. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Chiriboga, 1800 m, 78°45’54”W, 00°13’42”S, 2 Nov1983, Leg.<br />

Comments: Labeled as CTENOSTOMA dormei Horn by F. Cassola <strong>in</strong> 1987. Ref.<br />

Naviaux 1998 [not reviewed].<br />

Ctenostoma (Procephalus) onorei Naviaux 1998. Holotype QCAZI 250. <strong>Ecuador</strong>,<br />

Esmeraldas, Rocafuerte, 50 m, 79°24’00”W, 01°01’00”N, APR1987, E. E. Briones;<br />

Comments: Labeled as CTENOSTOMA nigrum CHAUDOIR by F. Cassola. Ref.<br />

Naviaux 1998 [not reviewed].<br />

Oxycheila brzoskai Wiesner 1999. Holotype QCAZI 252. Label 1: <strong>Ecuador</strong>, Pich<strong>in</strong>cha,


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 10<br />

T<strong>in</strong>al<strong>and</strong>ia, (525m), 22March1995, D. W. Brzoska; Label 2: Nocturnal- rocks of<br />

Mounta<strong>in</strong> stream. Paratype QCAZI 257 with the same label as the holotype.<br />

QCAZI 253. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, T<strong>in</strong>al<strong>and</strong>ia, 650 m, 79°02’57 W, 00°18’21 S,<br />

23Dec1973, N. Venedictoff. QCAZI 254 <strong>and</strong> QCAZI 256 with the same label as<br />

QCAZI 253 except for: 800 m, 3JAN1997, D. Guevara; 5JAN1997, C. Pérez.<br />

QCAZI 255. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Santo Dom<strong>in</strong>go De Los Colorados, 500 m,<br />

79°10’11”W; 00°15’08”S, 29APR1973, N. Venedictoff. Comments: QCAZI 255<br />

was labeled as OXYCHILA nigroaenea by F. Cassola <strong>in</strong> 1987 <strong>and</strong> Oxycheila<br />

chestertoni Bates by R. L. Huber <strong>in</strong> 1995. Ref. Wiesner 1999.<br />

Oxygonia nigrovenator Kippenhan 1997. Holotype QCAZI 251. Label 1: <strong>Ecuador</strong>, Napo,<br />

20 km e. Tena-Baeza Rd., 22 Sept.1994, (1,100 m), D. L. Pearson, et al.; Label 2:<br />

DIURNAL –ON ROCKS IN SMALL STREAM. Ref. Kippenhan 1997.<br />

Pseudoxycheila atahualpa Cassola 1997. Holotype QCAZI 258. <strong>Ecuador</strong>, Napo, Río<br />

Holl<strong>in</strong>, 1100 m, 77°40’W, 00°42’S, 6Dec1987, M. Mena. Paratypes QCAZI 260<br />

(Allotype). <strong>Ecuador</strong>, Napo, San Rafael, 1400 m, 77°34’W, 00°03’S, 03Dec1988, C.<br />

Ayala. 3 paratypes with the same label as QCAZI 260 except for: E. Trujillo; V.<br />

Cachago; M. Pallares; 2 paratypes with the same label as QCAZI 260 except for:<br />

Nov1984, C. Josse; M. Ferro; QCAZI 270. <strong>Ecuador</strong>, Napo, San Rafael, 1500 m,<br />

77°34’W, 00°03’S, 2Nov1984, X. Pazmiño. QCAZI 290. <strong>Ecuador</strong>, Sucumbios, San<br />

Rafael, 1480 m, 77°33’W, 00°03’S, 20Nov1993, M. Montalvo. QCAZI 292.<br />

<strong>Ecuador</strong>, Napo, San Rafael, 1500 m, 77°33’W, 00°03’S, 1Nov1984, M. Ferro.<br />

QCAZI 259, with the same label as the holotype except for: S. Gutierrez. QCAZI<br />

261, QCAZI 334. <strong>Ecuador</strong>, Napo, Río Holl<strong>in</strong>, 1100 m, 77°40’W, 00°42’S,<br />

6Dec1987, J. Gómez. QCAZI 274 <strong>and</strong> QCAZI 275, <strong>Ecuador</strong>, Napo, Río Holl<strong>in</strong>,<br />

1100 m, 77°40’W, 00°42’S, 6Dec1987, H. Freire. 6 paratypes with the same label<br />

as the holotype except for: S. Gutierrez; R. Boada; F. Arellano; Hernández; M.<br />

Peñaherrera; R. Manosalvas. 6 paratypes with the same label as the holotype except<br />

for: 6DEC1991, P. Ramón; 5 Dec1987, Esp<strong>in</strong>osa; 6DEC1981, M. Endara;<br />

7DEC1991, F. Cáceres; Nov1994, J. Chávez; 5DEC1996. M. Bustamante. QCAZI<br />

300 <strong>and</strong> QCAZI 301. <strong>Ecuador</strong>, Napo, Río Holl<strong>in</strong>, 1100 m, 77°40’W 00°42’S<br />

9DEC1995, D. Prado. QCAZI 308 to QCAZI 310; QCAZI 312. <strong>Ecuador</strong>, Napo,<br />

Río Holl<strong>in</strong>, 1100 m, 77°40’W 00°42’S 8DEC1996, F. Maza. QCAZI 327 <strong>and</strong><br />

QCAZI 328. <strong>Ecuador</strong>, Napo, Río Holl<strong>in</strong>, 1100 m, 77°40’W 00°42’S 5DEC1987, N.<br />

L. Gr<strong>and</strong>a. 2 paratypes with the same label as the holotype except for: 07DEC1996,<br />

M. Avila; E. Gortaire. 7 paratypes with the same label as the holotype except for:<br />

6DEC1996, R. Ramírez; J. Gil. J. Lecaro; V. Barragán; G. Castañeda; F. Villalva;<br />

G. Gr<strong>and</strong>a. QCAZI 263. <strong>Ecuador</strong>, Napo, Vía Baeza- Lago Agrio, JAN1976, F. I.<br />

Ortiz. QCAZI 264. <strong>Ecuador</strong>, Napo, El Reventador, 77°33’W, 00°02’S, May1988,<br />

G. Onore. QCAZI 289 <strong>and</strong> QCAZI 325. <strong>Ecuador</strong>, Napo, El Reventador, 77°33’W,<br />

00°02’S, 1400 m, 9JAN1984, S. S<strong>and</strong>oval. 2 paratypes with the same label as<br />

QCAZI 289 except for: 03DEC1988, P. Jiménez; M. Pallares. QCAZI 265 <strong>and</strong><br />

QCAZI 272. <strong>Ecuador</strong>, Napo, El Reventador, 77°33’W, 00°02’S, 1400 m,<br />

3Dec1988, F. Haro. QCAZI 276. <strong>Ecuador</strong>, Napo, Reventador, 77°33’W, 00°02’S,<br />

1400 m, 9JAN1984, S. S<strong>and</strong>oval. QCAZI 279. <strong>Ecuador</strong>, Napo, El Reventador,<br />

77°33’W, 00°02’S, 1400 m, 4DEC1993, K. Proaño; QCAZI 266. <strong>Ecuador</strong>, Napo,<br />

Jum<strong>and</strong>i, 700 m, 00°52’S, 77°47’W, 18APR1992, R. Bernal. QCAZI 281.<strong>Ecuador</strong>,<br />

Napo, Jum<strong>and</strong>i, 400 m, 77°09’W, 00°29’S, 18APR1992, R. Bernal. QCAZI 271.<br />

<strong>Ecuador</strong>, Napo, Loreto, 350 m, 77°16’45”W, 00°42’42”S, Oct1987, G. Onore.<br />

QCAZI 273. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Vía Puerto Quito, 300 m, 79°16’10”W,


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 11<br />

00°06’42”N, 26Dec1985, F. Albán. QCAZI 282. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Nanegalito,<br />

1600 m, 78°41’00”W, 00°08’00”N, 23JAN1994, H. Romero. QCAZI 283.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Nanegalito, 1600 m, 78°41’00”W, 00°08’00”N, 1JAN1993, D.<br />

Villagómez. QCAZI 284. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, M<strong>in</strong>do, 1200 m, 78°48’00”W,<br />

00°03’00”S, 20Jun1993, M. Gamboa. QCAZI 316. Label 1: <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

M<strong>in</strong>do, 1200m, 78°48’00”W, 00°03’00”S, 17JAN1997, R. Oliva; Label 2:<br />

LOCALITY DOUBTFUL! F. Cassola, 1997. QCAZI 285. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

T<strong>and</strong>api, 1460 m, 78°49’34”W, 00°25’05”S, 13JAN1992, B. Elizalde. QCAZI 288.<br />

<strong>Ecuador</strong>, Napo, Baeza, 1400 m, 77°53’W, 00°27’S, 19JAN1992, V. Yánez. QCAZI<br />

289. <strong>Ecuador</strong>, Napo, Archidona, 610 m, 77°48’09”W, 00°54’13”S, 18JAN1992, P.<br />

Fernández. QCAZI 295, QCAZI 297, with the same label as QCAZI 289 except<br />

for: 21 May1993, T. Sant<strong>and</strong>er; 1MAY1992, L. V<strong>in</strong>ueza. QCAZI 296. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Sto. Dom<strong>in</strong>go, 650 m, 79°10’11”W, 00°15’08”S, 18DEC1992, J.<br />

Herbas. QCAZI 302. <strong>Ecuador</strong>, Napo, Papallacta, 3500 m, 78°08’00”W,<br />

00°22’00”S, 6MAY1995, N. Marchán. QCAZI 303. <strong>Ecuador</strong>, Napo, El Chaco,<br />

1000 m, 77°47’26”W, 00°19’27”S, 30MAY1995, X. Cisneros. 2 paratypes with the<br />

same label as QCAZI 303 except for: 6MAY1995, M. Rodríguez. 2 paratypes with<br />

the same label as QCAZI 303 except for: 6JUN1995, V. Quitiguiña; 6MAY1995,<br />

R. Paredes. QCAZI 311. <strong>Ecuador</strong>, Tungurahua, Río Blanco, 1500 m, 78°20’00”W,<br />

01°22’00”S, AUG1994, F. Maza. QCAZI 313. <strong>Ecuador</strong>, Napo, San Francisco de<br />

Borja, 77°49’W, 00°25’S, 18APR1992, V. Utreras. QCAZI 314 <strong>and</strong> QCAZI 315,<br />

with the same label as QCAZI 313 except for: 8APR1992. Comments: QCAZI 259,<br />

QCAZI 263, QCAZI 264 <strong>and</strong> QCAZI 271 labeled as PSEUDOXYCHILA<br />

bipustulata Latr. by F. Cassola <strong>in</strong> 1987. Ref. Cassola 1997.<br />

Pseudoxycheila caribe Cassola 1997. Paratypes QCAZI 336. Venezuela, Táchira, Carr.<br />

Cordero- Michelena, Casa del Padre, 2350 m, 24-25.VI.95, F. Cassola. QCAZI<br />

337. Venezuela, Táchira, Casa del Padre, m 2300. tra Cordero e Michelena,<br />

16.V.1993, leg. A. B<strong>and</strong><strong>in</strong>elli. Ref. Cassola 1997.<br />

Pseudoxycheila <strong>in</strong>ca Cassola 1997. Paratypes QCAZI 338. Label 1: <strong>Ecuador</strong>: Loja, 9 km al<br />

s. Yangana, 15Mar.1996, 4°22’s, 79°12’w, (2090), D. L. Pearson; Label 2: Road<br />

cut. QCAZI 339 to QCAZI 340. <strong>Ecuador</strong>, Zamora Ch., Valladolid, 2000 m,<br />

79°08’W, 0433’S, 20APR1997, A. Jas<strong>in</strong>ski. Ref. Cassola 1997.<br />

Pseudoxycheila nitidicollis Cassola 1997. Holotype QCAZI 341. Label 1: <strong>Ecuador</strong>, Napo,<br />

15 km w. Cosanga, 29Sept.1994, (2,200 m), D. L. Pearson et.al; Label 2:<br />

FORESTED CATTLE PASTURE. Paratypes (Allotype) QCAZI 347, with the<br />

same labels data as the holotype. QCAZI 369, with the same labels data as the<br />

holotype except for: 16 km w <strong>in</strong>stead of 15 km w. QCAZI 368. <strong>Ecuador</strong>: Napo, 6.6<br />

km n. Cosanga, 22Sept.1994 (1,875m), D. L. Pearson et al. BRUSHY ROAD CUT.<br />

QCAZI 342, QCAZI 343, QCAZI 346. <strong>Ecuador</strong>, Napo, San Rafael, 1100 m,<br />

00°04’S, 77°34’W, 09AUG1991, G. Onore. QCAZI 350. <strong>Ecuador</strong>, Napo, San<br />

Rafael, 1100 m, 00°04’S, 77°34’W, 6DEC1992, Mtroya. QCAZI 361. <strong>Ecuador</strong>,<br />

Sucumbios, San Rafael, 1400 m, 00°04’S, 77°34’W, Nov1984, M. Ferro. QCAZI<br />

344. <strong>Ecuador</strong>, Napo, Cosanga, 2000 m, 77°55’00”W, 00°34’00” S, 23AUG1992,<br />

R. Bernal. QCAZI 367. Label 1: <strong>Ecuador</strong>, Napo, Cosanga, 2000 m, 77°55’00”W,<br />

00°34’00” S, 20NOV1991, L. Suárez; Label 2: PASTURE EDGE. 6 paratypes with<br />

the same label as QCAZI 344 except for: Feb1989, G. Onore. QCAZI 359.<br />

<strong>Ecuador</strong>, Napo, Cosanga, 2000 m, 77°55’00”W, 00°34’00”S, 27APR1992, K.<br />

Paredes. QCAZI 388 <strong>and</strong> QCAZI 390. <strong>Ecuador</strong>, Napo, Cosanga, 2000 m,


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 12<br />

77°55’00”W, 00°34’00”S, 24 May1996, M. Vallejo. 3 paratypes with the same<br />

label as QCAZI 388 except for: 24 May1996, B. Yangari; 25May1996, V. Troya;<br />

26May1996, J. Chávez. QCAZI 348, QCAZI 389, QCAZI 397. <strong>Ecuador</strong>,<br />

Tungurahua, Viscaya, 2100-2300 m, 7 MAY1996, K. Los. QCAZI 349, QCAZI<br />

394. <strong>Ecuador</strong>, Napo, San Francisco de Borja, 1300m, 77°49’W, 00°25’S,<br />

18APR1992, V. Utreras. QCAZI 352. <strong>Ecuador</strong>, Napo, Baeza, 1450 m,<br />

77°53’06”W, 00°27’35”S, 19JAN1992, R. Bernal. QCAZI 372. Label 1: <strong>Ecuador</strong>,<br />

Napo, Baeza, 1450 m, 77°53’06”W, 00°27’35”S, 31NOV1985; Label 2: P.<br />

Gonzáles. Habitus figured F. Cassola, 1995. 3 paratypes with the same label as<br />

QCAZI 352 except for: 30NOV1985, S. M. Paz; 4MAY1995, D. Villagómez;<br />

30Nov1985, P. Vega. Ex: UNDER STONE. QCAZI 364. <strong>Ecuador</strong>, Sucumbios, El<br />

Reventador, 1400 m, 00°03’S, 77°34’W, 5DEC1992, I. de la Torre. 3 paratypes<br />

with the same label as QCAZI 364 except for: X. Carrillo; J. Arellano;<br />

06DEC1992, E. Barahona. Habitus <strong>and</strong> aedeagus figured F. Cassola, 1995. QCAZI<br />

356, QCAZI 385. <strong>Ecuador</strong>, Napo, Cuyuja, 2200m, 78°00’48”W, 00°29’12”S,<br />

16JAN1988, M. Ponce. QCAZI 357. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Sto. Dom<strong>in</strong>go de los<br />

Colorados, 500 m, 79°10’11”W, 00°15’08”S, AUG1974, N. Venedictoff. QCAZI<br />

358. <strong>Ecuador</strong>, Sucumbíos, Vía La Bonita-La Fama, 00°32’N, 77°32’W, 2200 m,<br />

01JAN1994, G. Onore. QCAZI 377, QCAZI 380 <strong>and</strong> QCAZI 381. <strong>Ecuador</strong>,<br />

Sucumbios, La Bonita, 1800 m, 77°33’00”W, 00°27’00”N, 22FEB1996, G. Onore.<br />

QCAZI 360. <strong>Ecuador</strong>, Napo, Misahualli, 431 m, 77°34’00”W, 01°03’00”S,<br />

14JAN1994, M. Montalvo. QCAZI 370. <strong>Ecuador</strong>, Napo, Río Pano, 500 m,<br />

00°59’S, 77°49’W, 3OCT1991, M. C. Erazo. QCAZI 373, QCAZI 374. <strong>Ecuador</strong>,<br />

Morona S., Vía Gualaceo-Limón, 78°31’W, 03°01’S, 2050 m, 19OCT1995, D. L.<br />

Pearson. QCAZI 375. Label 1: <strong>Ecuador</strong>, Morona S., Indaza, Vía Sigsig, 78°27’W,<br />

03°05’S, 1050 m, 28DEC1995, G. Onore; Label 2: Ex: adult associated with larva.<br />

Same data. QCAZI 376, QCAZI 378. <strong>Ecuador</strong>, Napo, vía Salcedo-Tena,<br />

10Jul1995, E. Tapia. QCAZI 382. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Río San Rimas, 25<br />

Mar1996, I. Aldaz. QCAZI 383. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Nanegalito, 1500 m,<br />

78°41’00”W, 00°08’00”N, 8JUL1995. J. Freile. QCAZI 384. <strong>Ecuador</strong>, Napo, Río<br />

Hollín, Vía Loreto, 77°40’W, 00°42’S, 1100 m, 9DEC1995, P. Muriel. QCAZI<br />

386. <strong>Ecuador</strong>, Napo, Cuyabeno, 250 m, 76°10’49”W, 00°01’05”N, Mar1984, E.<br />

Asanza. QCAZI 395, QCAZI 398 <strong>and</strong> QCAZI 399. <strong>Ecuador</strong>, Río Blanco. QCAZI<br />

396. <strong>Ecuador</strong>, Sucumbios, Sucumbíos, 300 m, 77°12’W, 00°10’N, JAN1996, I.<br />

Villafuerte. Ref. Cassola 1997.<br />

Pseudoxycheila onorei Cassola 1997. Holotype QCAZI 400. <strong>Ecuador</strong>, Loja, Catacocha,<br />

2500 m, 79°39’W, 04°03’S, 30DEC1994, G. Onore. Paratypes QCAZI 401<br />

(Allotype) to QCAZI 403, with the same label as the holotype. QCAZI 404 to 412.<br />

<strong>Ecuador</strong>, Loja, Las Ch<strong>in</strong>chas, 2200 m, 79°28’W, 03°59’S, 27DEC1996, G. Onore.<br />

Ref. Cassola 1997.<br />

Pseudoxycheila pearsoni Cassola 1997. Holotype QCAZI 413. <strong>Ecuador</strong>, Zamora Ch., 16<br />

km SE de Zamora, 04°05’S, 78°55’W, 18Mar1996, D. L. Pearson. Paratypes<br />

QCAZI 414. <strong>Ecuador</strong>, Zamora Ch., Vía 28 Mayo- Guadalupe, 78°55’W, 03°40’S,<br />

1600 m, 23May1996, A. Jas<strong>in</strong>ski. QCAZI 415, QCAZI 416; QCAZI 419. <strong>Ecuador</strong>,<br />

Zamora Ch., Ve<strong>in</strong>tiocho de Mayo, 78°55’W, 03°38’S, 1400 m, 23May1996, K.<br />

Los. QCAZI 420. <strong>Ecuador</strong>, Zamora Ch., 8 km al Sur de 28 de Mayo, 78°55’W,<br />

03°39’S, 1500 m, 30APR1997, K. Los. QCAZI 417 <strong>and</strong> 418. <strong>Ecuador</strong>, Zamora Ch.,<br />

Cordillera del Cóndor, 1300 m, 29APR1997, A. Jas<strong>in</strong>ski. Ref. Cassola 1997.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 13<br />

Pseudoxycheila pseudotarsalis Cassola 1997. Holotype QCAZI 421 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Puerto Quito, 300 m, 79°16’10”W, 00°06’42”N, JAN 1984, P. Ponce. Paratypes<br />

QCAZI 427 (Allotype). Label 1: <strong>Ecuador</strong>, Esmeraldas, Río Pitzará, 400-500 m,<br />

00°20’N, 79°11’W, APR1984, G. Onore; Label 2: Habitus figured F. Cassola,<br />

1995. QCAZI 422, QCAZI 428 <strong>and</strong> 429, with the same label as QCAZI 427 except<br />

for: MAR1985. QCAZI 423, QCAZI 425, with the same label as the holotype<br />

except for: 17Mar1985, S. Struve; 09JUN 1985, A. Sancho. QCAZI 424. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Maquipucuna, 78°37’W, 00°15’S, 26 Mar1988, I. Lippke. QCAZI 426.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, San Bernabé, May 1986, L. Coloma. Ref. Cassola 1997.<br />

Pseudoxycheila quechua Cassola 1997. Paratypes QCAZI 430. Bolivia, Cochabamba,<br />

Yungas del Chaparé, 30-31.I.76, Leg. C. Lopreiato. Ref. Cassola 1997.<br />

FAMILY CURCULIONIDAE<br />

Baillytes Bartolozzi Vois<strong>in</strong> 1996. Paratypes QCAZI 619. <strong>Ecuador</strong>, Cotopaxi, S. Francisco<br />

de Las Pampas, (1300-1500 m), II.1993, L. Bartolozzi (N.Mag.1406). QCAZI 620.<br />

<strong>Ecuador</strong>, Cotopaxi, Las Pampas, V/1985, G. Onorel. Ref. Vois<strong>in</strong> 1996.<br />

Melchus onorei Anderson 2003. Paratype QCAZI 621. <strong>Ecuador</strong>, Sto. Dom<strong>in</strong>go de los<br />

Colorados, I-1982, Lg. G. Onore. Ref. Anderson 2003.<br />

FAMILY ELATERIDAE<br />

Achrestus onorei Golbach, Zamudio & Guzmán de Tomé 1988. Holotype QCAZI 601.<br />

Label 1: <strong>Ecuador</strong>, Napo, Coca, XII-83, G. Onoré col.; Label 2: On oil- palm.<br />

Paratype QCAZI 600 (Allotype). <strong>Ecuador</strong>, Napo, Coca, V. 84, Legit: G. Onore.<br />

Ref. Golbach et al. 1988.<br />

FAMILY HETEROCERIDAE<br />

Tropicus bartolozzii Mascagni 1994. Paratype QCAZI 431. <strong>Ecuador</strong>, Manabí, d<strong>in</strong>t. Puerto<br />

López, 20.II.1993, L. Bartolozzi, (Numero Magazz. 1406). Ref. Mascagni 1994.<br />

FAMILY LANGURIIDAE<br />

Lepidotoramus grouvellei Leschen 1997. Paratypes QCAZI 432 to QCAZI 435. <strong>Ecuador</strong>,<br />

Napo, Cuyabeno, Legit: E. Corriazo. Comments: altitude <strong>and</strong> date of collection<br />

differ between paratypes. Ref. Leshen 1997.<br />

FAMILY LEIODIDAE<br />

Adelopsis aloecuatoriana Salgado 2008. Paratypes QCAZI 1828 £, QCAZI 1829 $ <strong>and</strong><br />

QCAZI 1830 $. <strong>Ecuador</strong>, Cotopaxi, Otonga, m 2065, S 00°25’01.2”,<br />

W79°00’14.0”, 21.III.2003 G. Onore. Ref. Salgado 2008.<br />

Adelopsis (Adelopsis) bioforestae Salgado 2002. Holotype QCAZI 589. Label 1: <strong>Ecuador</strong>,<br />

Cotopaxi, Otonga, 2000 m, 00°25’S, 79°00’W, 22Jul1999, I. G. Tapia & P. Ponce;<br />

Label 2: Ex: monte bajo CH2. Paratypes QCAZI 590, with the same label as the<br />

holotype except for: 24Jul1997. QCAZI 588. <strong>Ecuador</strong>, Cotopaxi, Otonga, 2000 m,<br />

78°57’00” W, 00°19’11” S 30Jun1997, I. G. Tapia, P. Ponce. Ref. Salgado 2002.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 14<br />

Adelopsis (Adelopsis) ecuatoriana Salgado 2002. Holotype QCAZI 591. <strong>Ecuador</strong>,<br />

Cotopaxi, 2000 m, 00°25’S, 79°00’W, 22Jul1999, I. Tapia & P. Ponce. Paratype<br />

QCAZI 592, with the same label as the holotype except for: 24Jul1999. Ref.<br />

Salgado 2002.<br />

Adelopsis (lutururuca) dehiscentis Salgado 2002. Holotype QCAZI 583. <strong>Ecuador</strong>, Los<br />

Ríos, CCRP, 4JAN1981, S. S<strong>and</strong>oval. Paratypes QCAZI 582 <strong>and</strong> QCAZI 586.<br />

<strong>Ecuador</strong>, Los Ríos, CCRP, 10JAN1981, S. S<strong>and</strong>oval; 6 paratypes with the same<br />

label as the holotype except for: 29Dec1980; 11JAN1981; 8JAN1981, £;<br />

4JAN1980; 4JAN1981; 20DEC1980. QCAZI 577. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, CCRP,<br />

10JAN1981, S. S<strong>and</strong>oval. QCAZI 578. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, CCRP, 23DEC1981, S.<br />

S<strong>and</strong>oval. Ref. Salgado 2002.<br />

Adelopsis onorei Salgado 2002. Holotype QCAZI 536. <strong>Ecuador</strong>, Morona, Río Yaupi, 260<br />

m, Cueva Achikianas, 2°55’24”LS, 77°54’21”O, 20JAN2001, M. Vallejo.<br />

Paratypes 12 paratypes with the same label as the holotype. QCAZI 545, QCAZI<br />

547- QCAZI 549 <strong>and</strong> QCAZI 554. <strong>Ecuador</strong>, Napo, Tena, 850 m, Lagarto Cave,<br />

LW77°46’79, LS00°49’55, 16JAN1999, Olmedo. QCAZI 552 $. <strong>Ecuador</strong>, Napo,<br />

Archidona, 850 m, 00°49’33” S, 77°46’47 W, 2 Nov1998, M. Avila & F. Sáenz.<br />

Ref. Salgado 2002.<br />

Adelopsis (lutururuca) tuberculata Salgado 2002. Holotype QCAZI 561. <strong>Ecuador</strong>, Napo,<br />

Archidona, 850 m, LS00°49’55, LW79°46’79, 16JAN1999, F. Ayala. Ex: Lagarto<br />

cave <strong>in</strong> guano. Paratypes 5 paratypes with the same label as the holotype. QCAZI<br />

565, QCAZI 566, QCAZI 573 <strong>and</strong> QCAZI 576. <strong>Ecuador</strong>, Napo, Tena, 850 m,<br />

Lagarto cave, LW 77°46’79, LS00°49’55, 16JAN1999, Olmedo. QCAZI 558,<br />

QCAZI 569. Label 1: <strong>Ecuador</strong>, Napo, Archidona, 850 m, S00°49’33,W77°46’47.<br />

2Nov1998, M. Avila; Label 2: Ex: Lagarto cave. QCAZI 555, QCAZI 568.<br />

<strong>Ecuador</strong>, Napo, Archidona, 750 m, Cave Kamatoa, 00°54’ S, 76°56’W,<br />

10Dec2000, P. Piedrahita. QCAZI 564, QCAZI 575, with the same label as QCAZI<br />

555 except for: 13JAN2001, J. Rodríguez. QCAZI 557. <strong>Ecuador</strong>, Napo, Archidona,<br />

Cueva Kamatoa, 750 m, LS 0°54’ 55”, LW 76°46’38”, 20JAN2001, F. Villamaría.<br />

QCAZI 556. Label 1: <strong>Ecuador</strong>, Napo, Tena, 750 m, 00°53’18”S, 77°47’49”W,<br />

27Dec1998, A. Lara; Label 2: Ex: Jum<strong>and</strong>i cave on the wall. QCAZI 559, QCAZI<br />

572. <strong>Ecuador</strong>, Napo, Archidona, 780 m, 00°50’54”S, 77°46’73”W, 16JAN1999, D.<br />

Paucar. Ex: Piña cave <strong>in</strong> guano. QCAZI 567 <strong>and</strong> QCAZI 574. <strong>Ecuador</strong>, Napo,<br />

Archidona, 750 m, Cueva del Cacique, 77°48’09”W, 00°54’13”S, 13JAN2001, J.<br />

Rodríguez. Ref. Salgado 2002.<br />

Dissochaetus anseriformis Salgado 2001. Holotype QCAZI 524. Label 1: <strong>Ecuador</strong>,<br />

Bolívar, Cashcatotoras, 2800 m, 77°36’38.9”W, 00°05’53.2”S, 3 -6Oct2000, F.<br />

Maza, L. Coloma; Label 2: Ex: Berlese. Paratypes 14 paratypes £ <strong>and</strong> 10 paratypes<br />

$ with the same labels data as the holotype. QCAZI 531. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Mte.<br />

Pasochoa, 3000 m, 15-XI-1987, Leg Rodríguez. QCAZI 533. <strong>Ecuador</strong>, Napo,<br />

Baeza, 30-XI-85, Sara M. Paz. QCAZI 534 to QCAZI 535. <strong>Ecuador</strong>, Cotopaxi<br />

(entrada Machachi-Latacunga), m 3440, L<strong>and</strong>. W Cotopaxi, 2.IX.1984, S. Zoia.<br />

Ref. Salgado 2001.<br />

Dissochaetus napoensis pallipes Salgado 2008. Paratype. QCAZI 498. <strong>Ecuador</strong>, Cotopaxi<br />

prov., Otonga, 13-VII-2007, Rossi leg. Ref. Salgado 2008.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 15<br />

Eucatops (Eucatops) <strong>in</strong>cognitus Salgado 2003. Holotype QCAZI 593. <strong>Ecuador</strong>, Cotopaxi,<br />

Las Pampas, 1500 m, 78°57’04”W, 00°25’16” S, 02Jul1997, I. G. Tapia, P. Ponce.<br />

Paratype QCAZI 594. <strong>Ecuador</strong>, Imbabura, Barcelona, 12-20Sep1995, A. Endara.<br />

Ref. Salgado 2003.<br />

Eucatops (Sphaerotops) granuliformis Salgado 2003. Holotype QCAZI 595. Label 1:<br />

<strong>Ecuador</strong>, Napo, SC Yasuní, 250 m, 7-14Sept1997, F. Maza; Label 2: Ex:<br />

<strong>in</strong>tercepcion trap. Ref. Salgado 2003.<br />

Eucatops (Eucatops) onorei Salgado 2008. Paratypes QCAZI 1834, QCAZI 1835 <strong>and</strong><br />

QCAZI 1836. <strong>Ecuador</strong>, Napo via Jondachi-Loreto km 59, ex cave m 700,<br />

13.VIII.2006, G. Onore leg. Ref. Salgado 2008.<br />

FAMILY LUCANIDAE<br />

Onorelucanus aequatorianus Bartolozzi & Bomans 1989. Paratype QCAZI 599 $.<br />

<strong>Ecuador</strong>, Cotopaxi, Palo Quemado, XII-1988, G. Onore. Ref. Bartolozzi & Bomans<br />

1989.<br />

Sphaenognathus (Chiasognath<strong>in</strong>us) xerophilus Bartolozzi & Onore 2006. Holotype<br />

QCAZI 1520 £. Perú, Huancabamba, Huancabamba, 2860 m, 02JAN2005, G.<br />

Onore. Paratypes 55 paratypes $ with the same label as the holotype. Bartolozzi &<br />

Onore 2006<br />

FAMILY PASSALIDAE<br />

Passalus kaupi Boucher 2004. Paratypes QCAZI 466, QCAZI 469. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Las Pampas Argent<strong>in</strong>as, 1300 m, 04.88. Lg. A. Rodríguez. 5 paratypes with the<br />

same label as QCAZI 466 except for: 04.88 Lg. Bustamante. 3 paratypes with the<br />

same label as QCAZI 466 except for: IV/88, 1500 m. Leg. M. Grijalva. 4 paratypes<br />

with the same label as QCAZI 466 except for: 04.88, Lg. S. Cazar. QCAZI 468.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Las Pampas Argent<strong>in</strong>as, 1300 m, 16.04.88, Lg. Galarza.<br />

QCAZI 472. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Las Pampas Argent<strong>in</strong>as, 15-16Abr-88, Ilenka von<br />

Lippke. QCAZI 474. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Las Pampas Argent<strong>in</strong>as, 1300 m, 04.88,<br />

Lg. J. Córdova. QCAZI 477. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Pamp. Argent<strong>in</strong>, IV/88, 1500 m,<br />

Leg. P. Casares. QCAZI 467. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Puerto Quito, 7-I-84, Leg: R.<br />

León. 6 paratypes with the same label as QCAZI 467 except for: 28-I-84, Leg: M.<br />

Larrea; XII-1983, Leg. G. Paz y Miño; 27-I-84, Col. M. Paz García ; 4-XII-83, Leg.<br />

L. Santamaría; 3-XII-83, Leg: C. Fiallo; 28-V-83, Lg. J. Woolfson. QCAZI 492.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, km 113 Vía Pto. Quito, 4XII83, col. Granizo. QCAZI 485.<br />

<strong>Ecuador</strong>, Pichicha, Sto. Dom<strong>in</strong>go, 550 m, 17JAN1993, M. Troya. QCAZI 486 <strong>and</strong><br />

QCAZI 487, with the same label as QCAZI 485 except for: A. Quiñones; I.<br />

Pallares. QCAZI 488. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, 10 km W Nanegalito, 1700 m,<br />

16Jan1992, L. de la Torre. QCAZI 496. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Nanegalito, 1400 m,<br />

23JAN1993, C. Segovia. QCAZI 497. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Nanegalito, 1300 m,<br />

1Jan1993, D. Villagómez. QCAZI 489. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, T<strong>and</strong>api, alt: 900 m,<br />

29-06-91, Legit Pérez V. QCAZI 493. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, S. Dom. T<strong>in</strong>al<strong>and</strong>ia,<br />

650 m, 1972, Coll Venédictoff. 2 paratypes with the same label as QCAZI 493<br />

except for: 7-IV-1973; 30-III-1972. Ref. Boucher 2004.<br />

Verres onorei Boucher & Pardo-Locarno 1997. Paratypes QCAZI 459. <strong>Ecuador</strong>,


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 16<br />

Pich<strong>in</strong>cha, S. Dom. T<strong>in</strong>al<strong>and</strong>ia, 650 m, 1972, Coll Vénedictoff, QCAZI 460.<br />

<strong>Ecuador</strong>, Napo, Reventador, V-1984, Legit: G. Onore. QCAZI 461. <strong>Ecuador</strong>, Prov.<br />

Pich<strong>in</strong>cha, Puerto Quito, 5-XII-1983, Leg. M. Iturralde. QCAZI 462. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Pto. Quito, 4-XII-82, lg. H. Bustos. QCAZI 463. <strong>Ecuador</strong>, Sucumbios,<br />

Reventador, 1500 m, 5, 6Dec1992, P. Salvador. QCAZI 464. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Alluriquín, 15JUA1983, H. Bustos. QCAZI 465. <strong>Ecuador</strong>, Cotopaxi, Guasagunda,<br />

27 12 94, L. Salazar. Ref. Boucher & Pardo-Locarno 1997.<br />

FAMILY RHYSODIDAE<br />

Stereodermus jonathani Mantilleri 2004. Paratype QCAZI 610. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

T<strong>and</strong>ayapa, IV-1983, leg. G. Onore. Comments: Genitalia separated. Ref.<br />

Mantilleri 2004.<br />

FAMILY SCARABAEIDAE<br />

Aequatoria aenigmatica Soula 2002. Paratypes QCAZI 719 to QCAZI 721. <strong>Ecuador</strong>,<br />

Cotopaxi, Las Pampas, May1984, G. Onore. Ref. Soula 2002 [not reviewed].<br />

Ataenius cristobalensis Cook & Peck 2000. Paratypes QCAZI 694 <strong>and</strong> QCAZI 695. Ecu:,<br />

Galápagos, S. Cristobal, 4 km E Baquerizo, 150 m, trans. z., 12-23.II.89, Fit Peck<br />

& S<strong>in</strong>clair, 89-53. QCAZI 696 <strong>and</strong> QCAZI 697. Ecu: Galapagos, San Cristobal,<br />

pampas, 500-700 m, 15-23. II. 1989, S. Peck, general collect<strong>in</strong>g. QCAZI 698. Ecu.,<br />

Galapagos, S Cristobal, El Junco 1kmE, Miconia Rav<strong>in</strong>e, 14.II.89, sift<strong>in</strong>glitter, 500<br />

m, S. Peck 89-61. Ref. Cook & Peck 2000.<br />

Ataenius floreanae Cook & Peck 2000. Paratypes QCAZI 699 to QCAZI 701. Ecu.,<br />

Galapagos, Floreana, 6 km E Black Beach, Scalesia z. cowdung, 360 m, 28. III. 89,<br />

S. Peck, 89-166. Ref. Cook & Peck 2000.<br />

Bdelyrus gr<strong>and</strong>is Cook 1998. Paratype QCAZI 59. <strong>Ecuador</strong>, Napo, Cuyabeno, IV-1986,<br />

Legit G. Onore. Ref. Cook 1998.<br />

Bdelyrus parvoculus Cook 1998. Holotype QCAZI 86. <strong>Ecuador</strong>, Napo, El Reventador, II<br />

88, Legit G. Onore. Ref. Cook 1998.<br />

Bdelyrus pecki Cook 1998. Paratype QCAZI 85. <strong>Ecuador</strong>, Napo, Holl<strong>in</strong>, 1100 m, 7-XII-91,<br />

F. Caceres. Ref. Cook 1998.<br />

Bdelyrus triangulus Cook 1998. Holotype QCAZI 87. Label 1: <strong>Ecuador</strong>, Napo, Sunka, 29-<br />

I-89, Legit S<strong>and</strong>oval; Label 2: Ex: Hojarasca Bosque Alto. Ref. Cook 1998.<br />

Callosides genieri Howden 2001. Paratypes QCAZI 643 <strong>and</strong> QCAZI 644. <strong>Ecuador</strong>,<br />

Carchi, Bosque de Arrayanes, 6.1 km E San Gabriel, 2830 m, 00°32’33”N,<br />

77°47’26” W, 2.XI.1999-221, R. Anderson arrayan forest litter. Ref. Howden 2001.<br />

Coprophanaeus morenoi Arnaud 1982. Paratypes QCAZI 625 $, QCAZI 626 £, QCAZI<br />

627 $ <strong>and</strong> QCAZI 628 £. <strong>Ecuador</strong>, (Pich), T<strong>in</strong>al<strong>and</strong>ia, I. 1982, 850 m, P & L.<br />

Arnaud leg. Ref. Arnaud 1982<br />

Cryptocanthon otonga Cook 2002. Holotype QCAZI 648. Label 1: Cotopaxi, <strong>Ecuador</strong>,<br />

Otonga, 2000 m, 0°25’S, 79°0’W, 4Mar1999, T. Enríquez; Label 2: Ex: Primary


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 17<br />

forest Pitfall Trap Human dung. Paratypes 5 paratypes with the same label as<br />

QCAZI 648 except for: 24Mar1999; Label 2: Pitfall Trap, all same data Label,<br />

types of bait <strong>and</strong> type of forest. 17 paratypes with the same label as QCAZI 648<br />

except for: 22Mar1999. 7 paratypes with the same label as QCAZI 648 except for:<br />

19Abr1999. 7 paratypes with the same label as QCAZI 648 except for: 16Mar1999.<br />

QCAZI 663, QCAZI 676. Label 1: <strong>Ecuador</strong>, Cotopaxi, Otonga, 2000 m, 0°25’S,<br />

79°0’W, 20 May1999, L. Torres; Label 2: Thubert Primary forest NTP80 Trap<br />

Fish. QCAZI 669, QCAZI 674. <strong>Ecuador</strong>, Cotopaxi, Otonga, 2000 m, 0°25’S,<br />

79°0’W, 23Apr1999, T. Enríquez Primary forest NTP80 Trap Fish. QCAZI 668<br />

with the same labels data as QCAZI 669 except for: 27Aug1999. QCAZI 688.<br />

Label 1: <strong>Ecuador</strong>, Cotopaxi, Otonga, 2000 m, 0°25’S, 79°0’W, 21Apr1999, T.<br />

Enríquez; Label 2: Ex: secondary forest NTP80 Trap Fish. Cook 2002.<br />

FAMILIA DYNASTIDAE<br />

Cyclocephala pseudomelanocephla Dupuis 1996. Paratype QCAZI 729. <strong>Ecuador</strong>, Pv. Loja,<br />

Masanamaca, III-85, Lg. L. Coloma. Ref. Dupuis 1996.<br />

Neoathyreus brazilensis Howden 1985. Paratype QCAZI 647. S. Paulo, Sorocova, Mendes<br />

leg. X-35. Ref. Howden 1985.<br />

Ontherus diabolicus Génier 1996. Paratypes QCAZI 633 <strong>and</strong> QCAZI 634. <strong>Ecuador</strong>, Past.,<br />

1100m, Ll<strong>and</strong>ia, (17 km N. Puyo), 19.VII.1994, F. Génier, remnant ra<strong>in</strong> for. feces<br />

tp. Ref. Génier 1996.<br />

Ontherus politus Genier 1996. Paratype QCAZI 635 $. <strong>Ecuador</strong>: Napo, 6600, 15km NW<br />

Baeza, 2-6. iii. 76, S. Peck cloud forest dung trap 12. Ref. Génier 1996.<br />

Ontherus pubens Genier 1996. Paratypes QCAZI 636 <strong>and</strong> QCAZI 637. <strong>Ecuador</strong>, Napo<br />

Prov., Tena, 400 m., 15-21.II.1986, human feces trap, Francois Génier. Ref. Génier<br />

1996.<br />

Platycoelia furva Smith 2003. Holotype QCAZI 705 $. <strong>Ecuador</strong>, XII-86, Bolivar, Totoras,<br />

Legit: L. Coloma. Paratype QCAZI 706 £. <strong>Ecuador</strong>, XII/86, Bolivar, Totoras,<br />

Legit: L. Coloma. Ref. Smith 2003.<br />

Platycoelia galerana Smith 2003. Paratypes QCAZI 707 $ to QCAZI 715 $. <strong>Ecuador</strong>,<br />

Napo, Sumaco, 10-20Nov1995, A. Barragán. QCAZI 716 $. <strong>Ecuador</strong>, Loja, La<br />

Toma, 1800 m, 22May1996, P. Salvador. QCAZI 717 £. <strong>Ecuador</strong>, Napo, Las<br />

Palmas, 1858 m, 78°42’W, 0°33’S, 13Sep1996, M. Vallejo. Ref. Smith 2003.<br />

Platycoelia hiporum Smith 2003. Paratype QCAZI 718. <strong>Ecuador</strong>, Esmeraldas, Cristal,<br />

1500 m, 6Dec1985, Legit: M. Vallejo. Ref. Smith 2003.<br />

Platycoelia paucarae Smith 2003. Paratypes QCAZI 702 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, T<strong>and</strong>api,<br />

1550 m, 3 En1997, D. Guevara. QCAZI 703 $. <strong>Ecuador</strong>, Cotopaxi, La Otonga,<br />

2000 M, 10JAN1998, G. Onore. QCAZI 704 $. <strong>Ecuador</strong>, Loja, Ch<strong>in</strong>chas/Piñas<br />

km7, 1950 m, 17 I 1975, Coll Vénédictoff. Ref. Smith 2003.<br />

Ptenomela giovannii Soula 2003 . Paratypes QCAZI 724, QCAZI 726, QCAZI 727.<br />

<strong>Ecuador</strong>, Cotopaxi, La Otonga, 2000 m, Sep1996, I. Tapia. QCAZI 725. <strong>Ecuador</strong>,<br />

Cotopaxi, La Otonga, 2000 m, 79°5’W, 00°27’S, 2May1997, T. Romero. QCAZI


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 18<br />

728. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, P V Maldonado, 760 m, 30Apr 1995, N. Marchán. Ref.<br />

Soula 2003 [not reviewed].<br />

Scatimus onorei Genier & Kohlmann 2003. Holotype QCAZI 645. <strong>Ecuador</strong>, III.90,<br />

Loja, Celica, Legit: G. Onore. QCAZI 646 £ (Allotype). <strong>Ecuador</strong>, III.90, Loja,<br />

Celica, Legit: G. Onore. Ref. Genier & Kohlmann 2003.<br />

FAMILY STAPHILINIDAE<br />

Apalonia archidonensis Pace 2008. Paratype QCAZI 1920. <strong>Ecuador</strong>, Napo, Archidona, S.<br />

Dom<strong>in</strong>go, m 680, S 00°57’33.3”, W 77°45’11.9”, 28-31.VII.2006, P. M. Giach<strong>in</strong>o.<br />

Ref. Pace 2008<br />

Apalonia pampeana Pace 1997. Paratypes QCAZI 436 to QCAZI 440. <strong>Ecuador</strong>, Cotopaxi,<br />

S. Francisco de Las Pampas, (1300-1500 m), II.1993, L. Bartolozzi (N. Mag.<br />

1406). Ref. Pace 1997.<br />

Apalonia sigchosensis Pace 2008. Holotype QCAZI 1960. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi.<br />

Paratypes QCAZI 1923 <strong>and</strong> QCAZI 1924 with the same label as the holotype. Ref.<br />

Pace 2008<br />

Apalonia vic<strong>in</strong>a Pace 2008. Holotype QCAZI 1959. <strong>Ecuador</strong>, Pich<strong>in</strong>cha La Union del<br />

Toachi Otongachi Natural Reserve 21-30.VII.2005 W. Rossi. Paratype QCAZI<br />

1925, with the same label as the holotype. Ref. Pace 2008.<br />

Atheta altocotopaxicola Pace 2008. Paratype QCAZI 1927. <strong>Ecuador</strong>, Cotopaxi, m 3500,<br />

Volcan Cotopaxi, El Pedregal, 3.VIII.2006, P.M. Giach<strong>in</strong>o. Ref. Pace 2008<br />

Atheta annular<strong>in</strong>a Pace 2008. Holotype QCAZI 1953. <strong>Ecuador</strong>, Cotopaxi, Cantón Sigchos,<br />

Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref. Pace 2008.<br />

Atheta cayambensis Pace 2008. Paratype QCAZI 1867 <strong>and</strong> QCAZI 1868. <strong>Ecuador</strong>,<br />

Cotopaxi, m 3500, Volcan Cotopaxi, El Pedregal, 3.VII.2006, G. Coaduro. Ref.<br />

Pace 2008.<br />

Atheta cioccai Pace 2008. Paratype QCAZI 1928. <strong>Ecuador</strong>, Cotopaxi, Otongachi, m 820,<br />

pitfall, 23.VI-2.VII.2006, S. Ciocca leg. Ref. Pace 2008.<br />

Atheta ecumaculata Pace 2008. Holotype QCAZI 1954. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008<br />

Atheta ecucastaneipennis Pace 2008. Holotype QCAZI 1955. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008<br />

Atheta holl<strong>in</strong>ensis Pace 2008. Holotype QCAZI 1952. <strong>Ecuador</strong>, Napo, Jondachi Loreto rd.,<br />

Rio Holl<strong>in</strong>, m 1100, 1.VIII.2005, W. Rossi leg. Ref. Pace 2008.<br />

Atheta neasuspiciosa Pace 2008. Paratypes QCAZI 1921. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, m 3900, Los<br />

Il<strong>in</strong>izas, La Virgen, S 00°37’45.3”, W 78°41’18.6”, 6.VIII.2006, G. Coaduro.<br />

QCAZI 1865. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Pasochoa, m 3000, S 00°25’19.5”, W


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 19<br />

78°30’57.9”, 26.VII.2006, P.M. Giach<strong>in</strong>o. Ref. Pace 2008.<br />

Atheta pseudoclaudiensis Klimaszewski & Peck 1998. Paratypes QCAZI 446 to QCAZI<br />

448. Label 1: Ecu. Galap. St Cruz CDRS, 10 m, 7.III.89; Label 2: old tortoise<br />

dropp<strong>in</strong>gs & hey, S. Peck 89-36. QCAZI 449 <strong>and</strong> QCAZI 450. Label 1: Ecu. Galap.<br />

San Cristobal, 600 m, El Junco, pampas; Label 2: horsemanure, 14.II.89 S. Peck<br />

89-60. QCAZI 451. Label 1: Ecu., Galap., Floreana, 6 km E Black Beach; Label 2:<br />

28. III.89, 89-166 S. Peck, Scalesia z. cowdung, 360 m. QCAZI 452 <strong>and</strong> QCAZI<br />

453. Label 1: Ecu. Galap. Floreana, 8 km E Black Beach; Label 2: Peck &S<strong>in</strong>clair,<br />

360m, 22-28. III.89, 89-147 Scalesia, FIT. QCAZI 454. Ecu., Galap., Isabela,<br />

9kmNE Tagus Cove, 1100 m, V. Darw<strong>in</strong>, 18-20.V.92, arid zone, dung traps, S.<br />

Peck 92-192. Ref. Klimaszewski & Peck 1998.<br />

Atheta toachiensis Pace 2008. Holotype QCAZI 1951. <strong>Ecuador</strong>, Cotopaxi, Cantón Sigchos,<br />

Las Pampas, Otonga Natural Reserve, 21-30.VII.2005, W. Rossi. Ref. Pace 2008.<br />

Cajachara carltoni Ashe & Leschen 1995. Paratypes QCAZI 442, QCAZI 443. Label 1:<br />

<strong>Ecuador</strong>, Azuay, Reserva Río Mazán, 25 km NW Cuenca, Lago Toreadora, 3800<br />

m; Label 2: 31DEC1991, C. Carlton R. Leschen, #81 ex: Polylepis berlasale. Ref.<br />

Ashe & Leschen 1995.<br />

Diestota simplex Pace 2008. Holotype QCAZI 1946. <strong>Ecuador</strong>, Cotopaxi, Cantón Sigchos,<br />

Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref. Pace 2008.<br />

Falagria ecuapallida Pace 2008. Holotype QCAZI 1947. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005 W. Rossi. Ref. Pace<br />

2008.<br />

Gyrophaena cotopaxiensis Pace 1996. Paratype QCAZI 455. <strong>Ecuador</strong>: Cotopaxi prov.,<br />

d<strong>in</strong>t. di S. Francisco de Las Pampas, (1300 -1500 m), II.1993 (num. Mag.1406),<br />

legit L. Bartolozzi. Ref. Pace 1996.<br />

Gyrophaena otongensis Pace 2008. Holotype QCAZI 1939. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008.<br />

Gyrophaena rossii Pace 2008. Holotype QCAZI 1938 <strong>Ecuador</strong>, Cotopaxi, Cantón Sigchos,<br />

Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Paratypes QCAZI<br />

1843- QCAZI 1853, QCAZI 1900-1905. <strong>Ecuador</strong>, Cotopaxi, Cantón Sigchos, Las<br />

Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref. Pace 2008.<br />

Gyrophaena spatulata Pace 1996. Paratype QCAZI 456. <strong>Ecuador</strong>: Cotopaxi prov., d<strong>in</strong>t. di<br />

S. Francisco de Las Pampas, (1300 -1500 m), II.1993 (num. Mag.1406) legit L.<br />

Bartolozzi. Ref. Pace 1996.<br />

Heterostiba rossii Pace 2008. Paratypes QCAZI 1919. Label 1: <strong>Ecuador</strong>, Tungurahua,<br />

Volcán Chimborazo, m 4058, S 01°22’20.3”, W 78°49’06.2”, 5.VIII.2006, G.<br />

Coaduro Label 2: Laboulbeniales n 2977 Walter Rossi. QCAZI 1926. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, m 3900, Los Il<strong>in</strong>izas, La Virgen, S 00°37’45.3”, W 78°41’18.6”,<br />

6.VIII.2006, G. Coaduro. Ref. Pace 2008.<br />

Homalota cotopaxiensis Pace 2008. Holotype QCAZI 1940. <strong>Ecuador</strong>, Cotopaxi, Cantón


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 20<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008.<br />

Lept<strong>and</strong>ria ecitophila Hanley, 2003. Paratype QCAZI 445 $. Label 1: <strong>Ecuador</strong>: Napo, mid.<br />

Río Tiput<strong>in</strong>i, Yasuni res. Stn. 0°40.5’S, 76°24’W, 22July 1999, AKT#091; Label 2:<br />

Eciton buchelli colony EC#21. Nomadic bivouac site just after emigration A.<br />

Tishechk<strong>in</strong>. Ref. Hanley 2003.<br />

Lept<strong>and</strong>ria tishechk<strong>in</strong>i Hanley, 2003. Paratype QCAZI 444 $. Label 1: <strong>Ecuador</strong>, Napo,<br />

mid. Río Tiput<strong>in</strong>i, Yasuni res. Stn. 0°40.5’S, 76°24’W, 26July 1999, AKT#111;<br />

Label 2: Eciton hamatum colony EC #28. Total bivouac sampl<strong>in</strong>g. A. Tishechk<strong>in</strong>.<br />

Ref. Hanley 2003.<br />

Meronera ecuadorica Pace 2008. Holotype QCAZI 1948. Label 1: <strong>Ecuador</strong>, Cotopaxi,<br />

Cantón Sigchos, Las Pampas, Otonga Natural Reserve, 7-10.VII.2006, W. Rossi;<br />

Label 2: Laboulbeniales n 2979 Walter Rossi. Ref. Pace 2008.<br />

Meronera otongicola Pace 2008. Holotype QCAZI 1956. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Ross. Paratype<br />

QCAZI 1936, with the same label as the holotype. Ref. Pace 2008.<br />

Myllaena pich<strong>in</strong>chaensis Pace 2008. Paratype QCAZI 1837. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008.<br />

Orphnebius curticornis Pace 2008. Holotype QCAZI 1958. Label 1: <strong>Ecuador</strong>, Cotopaxi,<br />

Cantón Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi.<br />

Ref. Pace 2008.<br />

Orphnebius ecuadorensis Pace 1997. Paratypes QCAZI 457 <strong>and</strong> QCAZI 458. <strong>Ecuador</strong>,<br />

Manabí d<strong>in</strong>t., Puerto Cayo, 21.II.1993, L. Bartolozzi alle luci (N. Mag. 1406). Ref.<br />

Pace 1997.<br />

Orphnebius otongensis Pace 2008. Holotype QCAZI 1957. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, La Union<br />

del Toachi Otongachi, Natural Reserve, 21-30.VII.2005, W. Rossi. Paratype<br />

QCAZI 1922 with the same label as the holotype. Ref. Pace 2008.<br />

Parapl<strong>and</strong>ria caraorum Pace 2008. Holotype QCAZI 1950. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi.<br />

Paratypes QCAZI 1934 <strong>and</strong> QCAZI 1935 with the same label as the holotype. Ref.<br />

Pace 2008.<br />

Parapl<strong>and</strong>ria ecuadoricola Pace 2008. Holotype QCAZI 1962. <strong>Ecuador</strong>, Napo, Jondachi<br />

Loreto rd., Rio Holl<strong>in</strong>, m 1100, 1.VIII.2005, W. Rossi leg. Pace 2008.<br />

Parasilusa otongensis Pace 2008. Holotype QCAZI 1941. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008.<br />

Plesiomalota giach<strong>in</strong>oi Pace 2008. Paratype QCAZI 1861. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Lloa, Rio<br />

Blanco, m 2650, (under bark), 1.VIII.2006, P.M. Giach<strong>in</strong>o. Ref. Pace 2008.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 21<br />

Plesiomalota pasochoensis Pace 2008. Paratypes QCAZI 1862-QCAZI 1864. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Pasochoa, m 3000, S 00°25’19.5”, W 78°30’57.9”, 26.VII.2006, G.<br />

Caoduro. Ref. Pace 2008.<br />

Plesiomalota ruficollis Pace 2008. Holotype QCAZI 1942. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008.<br />

Plesiomalota ruficornis Pace 2008. Holotype QCAZI 1943. Label 1: <strong>Ecuador</strong>, Cotopaxi,<br />

Cantón Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi;<br />

Label 2: HOLOTYPUS Plesiomalota ruficornis mihi det. R. Pace 2007. Ref. Pace<br />

2008.<br />

Plesiomalota squalida Pace 2008. Holotype QCAZI 1943. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Ref.<br />

Pace 2008.<br />

Plesiomalota varicornis Pace 2008. Holotype QCAZI 1944. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, La Union<br />

del Toachi, Otongachi Natural Reserve, 21-30.VII.2005, W. Rossi. Paratype<br />

QCAZI 1860, with the same label as the holotype. Ref. Pace 2008.<br />

Pseudoleptonia ecuadorica Pace 2008. Holotype QCAZI 1949. <strong>Ecuador</strong>, Cotopaxi, Cantón<br />

Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi. Paratype<br />

QCAZI 1866, with the same label as the holotye. Ref. Pace 2008.<br />

Pseudomniophila cotopaxiensis Pace 2008. Holotype QCAZI 1937. <strong>Ecuador</strong>, Cotopaxi,<br />

Cantón Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi.<br />

Paratypes QCAZI 1854- QCAZI 1859. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, La Union del Toachi,<br />

Otongachi Natural Reserve, 21-30.VII.2005, W. Rossi. Ref. Pace 2008.<br />

Pseudomyllaena ecuadorensis Pace 2008. Holotype QCAZI 1961. <strong>Ecuador</strong>, Cotopaxi,<br />

Cantón Sigchos, Las Pampas, Otonga Natural Reserve, 25-28.VII.2005, W. Rossi.<br />

Paratypes QCAZI 1907 <strong>and</strong> QCAZI 1913, with the same label as the holotype. Ref.<br />

Pace 2008.<br />

FAMILY TENEBRIONIDAE<br />

Opatr<strong>in</strong>us ecuadorensis Iwan 1995. Paratypes QCAZI 611. Label 1: Pichil<strong>in</strong>gue, <strong>Ecuador</strong><br />

16.XI.1977; Label 2: Black light 79.443. QCAZI 612. <strong>Ecuador</strong>, Los Ríos,<br />

Quevedo, VII.1977, Iwan 1995.<br />

ORDER DIPTERA<br />

FAMILIA DROSOPHILIDAE<br />

Drosophila amaguana Vela & Rafael 2004. Holotype QCAZI 1665 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Jul 1996, D. Vela col. Paratypes QCAZI 1666 $ <strong>and</strong> QCAZI<br />

1667 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Volcán Pasochoa, Jul 1997, D. Vela col. Ref. Vela &<br />

Rafael 2004.<br />

Drosophila apag Vela & Rafael 2005. Holotype QCAZI 1756 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Jul 1996, D. Vela col. Ref. Vela & Rafael 2005.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 22<br />

Drosophila arcosae Vela & Rafael 2001. Holotype QCAZI 1686 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Ago1996, Dvela col. Ref. Vela & Rafael 2001.<br />

Drosophila asiri Vela & Rafael 2005. Holotype QCAZI 1704 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Jun 1996, DVela col. Paratype QCAZI 1705 $. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, 20Oct 2001, DVela col. Ref. Vela & Rafael 2005.<br />

Drosophila carlosvilelai Vela & Rafael 2001. Holotype QCAZI 1629 $. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, 3200 m, LW 78°29’, LS 0°28’, 30Ago1996, Dvela.<br />

Paratypes $: 3 paratypes with the same label as holotype except for: Jun 1997<br />

DVela col. 3 paratypes with the same label dat as holotype except for: Jul 1997. 11<br />

paratypes with the same label as the holotype except for: Jul 1996. 4 paratypes with<br />

the same label as the holotype except for: Ago 1996. QCAZI 1651 with the same<br />

label as the holotype except for: Jun 1997. Ref. Vela & Rafael 2001.<br />

Drosophila condormachay Vela & Rafael 2005. Holotype QCAZI 1739 $. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Pasochoa, 16Jun2001, V. Rafael, DVela. Paratypes $: QCAZI 1740 with<br />

the same label as the holotype except for: 18Ago2001. 2 paratypes with the same<br />

label as the holotype except for: 29Sep2001. QCAZI 1743 with the same label as<br />

the holotype except for: 28Oct2001. QCAZI 1744 with the same label as the<br />

holotype except for: 20Oct2001. Ref. Vela & Rafael 2005.<br />

Drosophila cuscungu Vela & Rafael 2005. Holotype QCAZI 1774 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Pasochoa, 16Jun2001, V. Rafael, D. Vela. Ref. Vela & Rafael 2005.<br />

Drosophila ecuatoriana Vela & Rafael 2004. Holotype QCAZI 1609 $. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, 16Jul1996, D. Vela. Paratypes 5 paratypes with the<br />

same label as the holotype except for: Jul 1996. 4 paratypes with the same label as<br />

the holotype except for: Jul 1997. 3 partypes with the same label as the holotype<br />

except for: Ago1996. Ref. Vela & Rafael 2004.<br />

Drosophila fontdevilai Vela & Rafael 2001. Holotype QCAZI 1655 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Pasochoa, 3200 m, LW 78°29’, LS 0°28’, 30Jul1996, DVela. Paratypes $: QCAZI<br />

1656 to QCAZI 1663. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,Volcán Pasochoa, Jul 1996, DVela col.<br />

Ref. Vela & Rafael 2001.<br />

Drosophila guayllabambae Rafael & Arcos 1988. Holotype QCAZI 1775 $. Label 1: Ex:<br />

Isolínea 1P. N° 1; Label 2: <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Guayllabamba, Estación 1; Label 3:<br />

30 Km. Al NE de Quito, margen derecha del Río Guayllabamba, 2200 m.s.n.m.;<br />

Label 4: VII/86, Leg: G. Arcos & V. Rafael. Paratypes 9$ paratypes <strong>and</strong> 9 £ with<br />

the same labels data as the holotype. Ref. Rafael & Arcos 1989.<br />

Drosophila huancavilcae Rafael & Arcos 1989. Holotype QCAZI 1760. <strong>Ecuador</strong>, Guayas,<br />

Progreso, NO de Guayaquil, 300 m.s.n.m., XI/86, Leg: G. Arcos y M. Rivera.<br />

Paratype QCAZI 1761 (Allotype) with the same label as the holotype. Ref. Rafael<br />

& Arcos 1989.<br />

Drosophila ichubamba Vela & Rafael 2005. Holotype QCAZI 1735 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, DVela col. 5May. 2001. Paratypes QCAZI 1736 with the same<br />

label as the holotype. QCAZI 1737 <strong>and</strong> QCAZI 1738 with the same label as the<br />

holotype except for: 01Abr2002. Ref. Vela & Rafael 2005.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 23<br />

Drosophila korefae Vela & Rafael 2004. Holotype QCAZI 1717 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, D. Vela col., Jun. 1996. Paratypes 2 paratypes with the same<br />

label as the holotype. Ref. Vela & Rafael 2004.<br />

Drosophila machachensis Vela & Rafael 2001. Holotype QCAZI 1652. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, DVela col., Ago1996. Paratypes $: 2 paratypes with<br />

the same label as the holotype except for: Jul1996. Ref. Vela & Rafael 2001.<br />

Drosophila n<strong>in</strong>arumi Vela & Rafael 2005. Holotype QCAZI 1765 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, D. Vela col., Abr. 2001. Paratypes $: QCAZI 1766 with the same<br />

label as holotype except for: 16Junl2001. QCAZI 1767 with the same label as<br />

holotype except for: 14Jull2001. QCAZI 1768 with the same label as holotype<br />

except for: 26Jan2002. 2 paratypes with the same label as the holotype except for:<br />

02Feb2002. Ref. Vela & Rafael 2005.<br />

Drosophila ogradi Vela & Rafael 2004. Holotype QCAZI 1719 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Pasochoa, DVela col., Jun. 1996. Paratypes $: 6 paratypes with the same label as<br />

the holotype except for: Ago96; 2 paratypes with the same label as the holotype<br />

except for: Jul96. 3 paratypes with the same label as the holotype except for:<br />

Jul1997. 4 paratypes with the same label as the holotype except for: Jun1997. Ref.<br />

Vela & Rafael 2004.<br />

Drosophila pasochoensis Vela & Rafael 2001. Holotype QCAZI 1626 $. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, DVela 07Jul97. Paratypes $: 13 paratypes with the<br />

same label as the holotype. 7 paratypes with the same label as the holotype except<br />

for: Jul1996. 9 paratypes with the same label as the holotype except for: Ago1997.<br />

Ref. Vela & Rafael 2001.<br />

Drosophila patacorna Vela & Rafael 2005. Holotype $: QCAZI 1694. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, D. Vela col., Mar. 2001. Paratype $: QCAZI 1695 with the same<br />

label as the holotype except for: 04Abr 2001. Ref. Vela & Rafael 2005.<br />

Drosophila pich<strong>in</strong>chana Vela & Rafael 2004. Holotype $: QCAZI 1622. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, DVela col., Jul. 1996. Paratype $: QCAZI 1623 with<br />

the same label as the holotype. Ref. Vela & Rafael 2004.<br />

Drosophila pilaresae Vela & Rafael 2001. Paratypes $: QCAZI 1687 to QCAZI 1689.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Volcán Pasochoa, Jul1997. Ref. Vela & Rafael 2001.<br />

Drosophila pugyu Vela & Rafael 2005. Holotype $: QCAZI 1764. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, 17Oct2001, DVela col. Ref. Vela & Rafael 2005.<br />

Drosophila quillu Vela & Rafael 2005. Holotype $: QCAZI 1706. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Pasochoa, Mar2001, DVela col. Paratypes $: QCAZI 1707 with the same label as<br />

the holotype except for: 30Jun2001. QCAZI 1708 with the same label as holotype<br />

except for: 04Abr2001. 8 paratypes with the same label as the holotype except for:<br />

01Abr2002. 2 paratypes with the same label as the holotype except for: 14Jul2001.<br />

Ref. Vela & Rafael 2005.<br />

Drosophila quitensis Vela & Rafael 2004. Holotype $: QCAZI 1624. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Jul 1996, D. Vela col. Paratype $: QCAZI 1625 with the same<br />

label as the holotype except for: Ago1996. Ref. Vela & Rafael 2004.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 24<br />

Drosophila rum<strong>in</strong>ahuii Vela & Rafael 2004. Holotype $: QCAZI 1690. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, Jul. 1997, DVela col. Ref. Vela & Rafael 2004.<br />

Drosophila rumipamba Vela & Rafael 2005. Holotype $: QCAZI 1703. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, Jul. 1996, DVela. Ref. Vela & Rafael 2005.<br />

Drosophila rundoloma Vela & Rafael 2005. Holotype $: QCAZI 1699. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasocha, Jun. 1997, DVela col. Paratypes $: 3 paratypes with the<br />

same label as the holotype except for: Jul 1996. Ref. Vela & Rafael 2005.<br />

Drosophila shuyu Vela & Rafael 2005. Holotype $: QCAZI 1696. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasocha, 30Jun 2001, DVela col. Paratypes $: QCAZI 1697 with the same<br />

label as the holotype except for: 10Nov2001; QCAZI 1698 with the same label as<br />

the holotype except for: 01Abr2002. Ref. Vela & Rafael 2005.<br />

Drosophila shyri Vela & Rafael 2004. Holotype $: QCAZI 1664. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, 23Jul1996, DVela col. Ref. Vela & Rafael 2004.<br />

Drosophila sisa Vela & Rafael 2005. Holotype $: QCAZI 1772. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, 01Abr2002, DVela col. Paratype $: QCAZI 1773 with the same<br />

label as the holotype. Ref. Vela & Rafael 2005.<br />

Drosophila suni Vela & Rafael 2005. Holotype $: QCAZI 1771. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Mar2001, DVela col. Ref. Vela & Rafael 2005.<br />

Drosophila surucucho Vela & Rafael 2005. Holotype $: QCAZI 1747. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, 21Abr2001, DVela col. Paratypes $: 2 paratypes with the same<br />

label as the holotype except for: 04Abr2001. 2 paratypes with the same label as the<br />

holotype except for: 05May2001. QCAZI 1752 with the same label as the holotype<br />

except for: 16Jun 2001. QCAZI 1753 with the same label as the holotype except<br />

for: 09Jun 2001; QCAZI 1754 with the same label as the holotype except for:<br />

14Jul2001; 2 paratypes with the same label as the holotype except for: 16Jul2001.<br />

Ref. Vela & Rafael 2005.<br />

Drosophila taxohuaycu Vela & Rafael 2005. Holotype $: QCAZI 1745. <strong>Ecuador</strong>,<br />

Pich<strong>in</strong>cha, Volcán Pasochoa, Mar2001, DVela col. Paratype $: QCAZI 1746 with<br />

the same label as the holotype except for: 05May2001. Ref. Vela & Rafael 2005.<br />

Drosophila tomasi Vela & Rafael 2001. Holotype $: QCAZI 1668. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Jul1997, DVela col. Paratypes $: 5 paratypes with the same label<br />

as the holotype except for: Ago 1997; 10 paratypes with the same label as the<br />

holotype except for: Jul1997. Ref. Vela & Rafael 2001.<br />

Drosophila urcu Vela & Rafael 2005. Holotype $: QCAZI 1755. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, 01Abr2002, DVela col. Ref. Vela & Rafael 2005.<br />

Drosophila valenciai Vela & Rafael 2001. Holotype $: QCAZI 1684. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Jul1996, DVela col. Paratype $: QCAZI 1685 with the same<br />

label as the holotype except for: Jul1997. Ref. Vela & Rafael 2001.<br />

Drosophila yana Vela & Rafael 2005. Holotype $: QCAZI 1691. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Volcán Pasochoa, Mar 2001, DVela col. Paratypes $: QCAZI 1692 with the same


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 25<br />

label as the holotype except for: 05May2001. QCAZI 1693 with the same label as<br />

the holotype except for: 10Nov2001. Ref. Vela & Rafael 2005.<br />

Drosophila yangana Rafael & Vela 2003. Holotype $: QCAZI 1757. <strong>Ecuador</strong>, Loja,<br />

Yangana, 1800 m, LW79°10’28”, LS 4°21’24”, D. Vela col., Sep. 2001. Paratypes<br />

£: 2 paratypes with the same label as the holotype. Ref. Vela & Rafael 2005.<br />

FAMILY PHORIDAE<br />

Apocephalus ancylus Brown 1997. Paratype QCAZI 1362 £. <strong>Ecuador</strong>, Napo, Jatun Sacha,<br />

1.07°S, 77.6°W, 17.ix.1996, J. Röschard, raid Eciton burchelli. Ref. Brown 1997.<br />

Apocephalus asyndetus Brown 2000. Paratype QCAZI 1368. <strong>Ecuador</strong>, Sucumbíos, Sacha<br />

Lodge, 0.5°S, 76.5°W, 24.v-3.vi.1994, P. Hibbs MT., 270 m. Ref. Brown 2000.<br />

Apocephalus catholicus Brown 2000. Paratypes QCAZI 1373 £. <strong>Ecuador</strong>, Esmeraldas,<br />

Bilsa Biol. Stn., 500 m, 0.34° N, 79.71° W, 8.v.1996, B. Brown. Inj. Pachycondyla<br />

impressa. 3 paratypes with the same label as QCAZI 1373. 2 paratypes with the<br />

same label as QCAZI 1373 except for: Injured Odontomachus bauri. Ref. Brown<br />

2000.<br />

Apocephalus comosus Brown 2000. Paratype QCAZI 1369 £. <strong>Ecuador</strong>, Sucumbios, Sacha<br />

Lodge, 0.5°S, 76.5°W, 3-13.vi.1994, P. Hibbs. Malaise. 270m. Ref. Brown 2000.<br />

Apocephalus extraneus Brown 1997. Paratypes QCAZI 1359. <strong>Ecuador</strong>, Sucumbios, Sacha<br />

Lodge, 0.5°S, 76.5°W, 23.iv.3.v.1994, P. Hibbs. MT. 270 m. QCAZI 1360.<br />

<strong>Ecuador</strong>, Sucumbios, Sacha Lodge, 0.5°S, 76.5°W, 14-24.v.1994, P. Hibbs. MT.<br />

270 m. Ref. Brown 1997.<br />

Apocephalus funditus Brown 2000. Paratype QCAZI 1370. <strong>Ecuador</strong>, Sucumbios, Sacha<br />

Lodge, 0.5°S, 76.5°W, 12-22.ii.1994, P. Hibbs, Malaise, 270 m. Ref. Brown 2000.<br />

Apocephalus mel<strong>in</strong>us Brown 2000. Paratypes QCAZI 1366 <strong>and</strong> QCAZI 1367. <strong>Ecuador</strong>,<br />

Napo, Yasuní Bio.Res.Stn., 0.67°S, 76.36°W, 20.v.1996, B. V. Brown, <strong>in</strong>j.<br />

Dolichoderus attelaboides. Ref. Brown 2000.<br />

Apocephalus onorei Brown 1997. Paratype £: QCAZI 1363. <strong>Ecuador</strong>, Napo, Yasuní Bio.<br />

Stn., 0.67°S, 76.39°W, 24.v.1996, B. V. Brown. 220 m, over Acromymex sp. Ref.<br />

Brown 1997.<br />

Apocephalus quadratus Brown 1997. Paratype £: QCAZI 1364. <strong>Ecuador</strong>, Sucumbíos,<br />

Sacha Lodge, 0.5°s, 76.5°W, 23.iv-3.v.1994, P. Hibbs. MT. 270m. Ref. Brown<br />

1997.<br />

Apocephalus roeschardae Brown 2000. Paratype QCAZI 1365 £. <strong>Ecuador</strong>, Napo, Yasuní<br />

Bio.Res.Stn., 0.67°S, 76.36°W, 22.v.1996, B. V. Brown, 220 m, <strong>in</strong>j. Cephalotes<br />

atratus. Ref. Brown 2000.<br />

Apocephalus securis Brown 1997. Paratype QCAZI 1361. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, 17 km E<br />

Sto Dom<strong>in</strong>go, T<strong>in</strong>al<strong>and</strong>ia, 6-13.v.1987, B.V. Brown, 710 m. Clubhouse w<strong>in</strong>dows.<br />

Ref. Brown 1997.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 26<br />

Apocephalus tanyurus Brown 2000. Paratype QCAZI 1372 £. <strong>Ecuador</strong>, Sucumbios, Sacha<br />

Lodge, 0.5°S, 76.5°W, 10-21.x.1994, P. Hibbs, Malaise. 270 m. Ref. Brown 2000.<br />

Apocephalus torulus Brown 2000. Paratype QCAZI 1371 £. <strong>Ecuador</strong>, Esmeraldas, Bilsa<br />

Biol. Stn., 0.34°N, 79.71° W, 8.v.1996, Brown. Hibbs. Cantley raid Labidus<br />

praedator. Ref. Brown 2000.<br />

Apocephalus trifidus Brown 2000. Paratype QCAZI 1762. <strong>Ecuador</strong>, Napo, Yasuní Bio.<br />

Rest. Stn., 0.67°S, 76.39°W, 24.v.1996, B. V. Brown. Injured Pachycondyla<br />

crass<strong>in</strong>oda. Ref. Brown 2000.<br />

FAMILY SPHAEROCERIDAE<br />

Druciatus tricetus Marshall 1995. Paratypes QCAZI 1346. Ecu., Napo, Tena, 500 m,<br />

malaise 2’ ra<strong>in</strong>for. 21-27.v.87, ROM870017 Coote & Brown. QCAZI 1347 $. Ecu.,<br />

P<strong>in</strong>ch. Prov., Rio Palenque Stn., 47 kmS. Sto. Dom<strong>in</strong>go, 29.iv.1987, L. Coote & B.<br />

Brown, 180 m, mal. head 1*lowl<strong>and</strong>ra<strong>in</strong>for. Ref. Marshall 1995.<br />

Opacifrons triloba Marshall & Langstaff 1998. Paratype QCAZI 1353. Ecu., Pich., 16 km<br />

E Santo Dom<strong>in</strong>go, T<strong>in</strong>al<strong>and</strong>ia, 4.v.25.vii.85, S & J Peck, 680 m, ra<strong>in</strong>for.malaise-<br />

FIT. Ref. Marshall & Langstaff 1998.<br />

Opacifrons redunca Marshall & Langstaff 1998. Paratype QCAZI 1354. Ecu., Napo Prov.,<br />

Baeza, 18.v.87, L.D. Coote, scr.sweep wet montane, 1500-1700 m, ROM 870013<br />

Forest/Pasture. Ref. Marshall & Langstaff 1998.<br />

Palaeocopr<strong>in</strong>a equiseta Marshall 1998. Paratypes QCAZI 1350 <strong>and</strong> QCAZI 1351. Ecu.,<br />

Napo, 27 km NW Baeza, 2-6.III.1976, 2700 m., DgTp, S. Peck. Ref. Marshall<br />

1998.<br />

Phthitia merida Marshall 1992. Paratypes QCAZI 1348. Ecu., Napo, Prov., Quito- Baeza<br />

Rd., above thermal spgs., Papallacta, 3200 m, 22-24.ii.1983, L. Masner. Pan trap.<br />

QCAZI 1349. Ecu., Napo, Prov. Quito- Baeza Rd., 4000 m, 18-23.ii.1983, L.<br />

Masner. Pan trap <strong>in</strong> low paramo. Ref. Marshall & Smith 1992<br />

Rachispoda just<strong>in</strong>i Wheeler 1995. Paratypes QCAZI 1355 <strong>and</strong> QCAZI 1356. Ecu., Pich.,<br />

16 km E Santo Dom<strong>in</strong>go, T<strong>in</strong>al<strong>and</strong>ia, 4.v.85, S&J Peck, 680 m, ra<strong>in</strong>for. Malaise-<br />

FIT. Ref. Wheeler & Marshall 1995.<br />

Rachispoda praealta Wheeler 1995. Paratypes QCAZI 1357 <strong>and</strong> QCAZI 1358. Ecu:,<br />

Napo, 4000m, Quito- Baeza, Pass Elf<strong>in</strong>For, dungtrap, S. Marshall, 11.iii’79. Ref.<br />

Wheeler & Marshall 1995.<br />

ORDER HEMIPTERA<br />

FAMILY COREIDAE<br />

Anasa scitula Brailovsky & Barrera 2000. Holotype $: QCAZI 1410. <strong>Ecuador</strong>, Napo, Vía<br />

Holl<strong>in</strong>-Loreto, Km 30, 1100 m, 6/12/87, Lg. A. Rodríguez. 2 paratypes with the<br />

same label as the holotype except for: R. Boada. Ref. Brailovsky & Barrera 2000.<br />

Salapia onorei Brailovsky 1999. Holotype £: QCAZI 1407. <strong>Ecuador</strong>, Sucumbios, San


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 27<br />

Pablo, Río Aguarico, Oct1995, FNischk. Ref. Brailovsky 1999.<br />

Seph<strong>in</strong>a faceta Brailovsky 2001. Paratype $: QCAZI 1408. <strong>Ecuador</strong>, Napo, Reventador, I-<br />

1988, V- Nivel. B. P. Ref. Brailovsky 2001.<br />

FAMILIA GERRIDAE<br />

Potamobates shuar Buzzetti 2006. Paratypes $: QCAZI 1606 <strong>and</strong> QCAZI 1607. <strong>Ecuador</strong>,<br />

Morona Zantiago, Bomboiza, 800 m, 22-III-2004, Carotti & Tirello. Ref. Buzzetti<br />

2006.<br />

FAMILIA MIRIDAE<br />

Anomalocornis peyreti Couturier & Costa 2002. Paratypes QCAZI 1413 to QCAZI 1434.<br />

Label 1: Equateur, Pastaza, Chunitayo, 5-XI-2000, T. Peyret col.; Label 2:<br />

s/<strong>in</strong>florescence de Oenocarpus bataua Arecaceae. Ref. Couturier & Costa 2002<br />

Parafulvius henryi Costa & Couturier 2000. Paratypes QCAZI 1435 $, QCAZI 1436 $,<br />

QCAZ 1437 £, QCAZI 1438 £. Label 1: Equateur, Shushuf<strong>in</strong>i, 10-X-1999, L.<br />

Reynaud & Suarez col.; Label 2: sur Astrocaryum urostachys Palmae. Ref. Costa &<br />

Couturier 2000.<br />

FAMILIA PENTATOMIDAE<br />

Thyanta xerotica Rider & Chap<strong>in</strong> 1991. Paratypes QCAZI 1440 to QCAZI 1442. <strong>Ecuador</strong>,<br />

Manabí, San Clemente, XII-84, Legit: F. Cuesta. Ref. Rider & Chap<strong>in</strong> 1991<br />

ORDER HOMOPTERA<br />

FAMILY MEMBRACIDAE<br />

Metcalfiella jaramillorum McKamey 1991. Paratype QCAZI 1404. Label 1: Cuenca, 2400<br />

m, 2Jan 1986, McKamey. Coll.; Label 2: <strong>Ecuador</strong>, Azuay, Challuabamba, 11rd km<br />

NE. Ref. McKamey 1991<br />

Metcalfiella nigrihumera Mckamey 1991. Paratype QCAZI 1403. Label 1: <strong>Ecuador</strong>,<br />

Azuay, Challuabamba, 11rd km NE; Label 2: Cuenca, 2400 m, 3Jan1986,<br />

McKamey, Coll. Ref. McKamey 1991.<br />

ORDER HYMENOPTERA<br />

FAMILY APIDAE<br />

Euglossa lugubris Roubick 2004. Paratype QCAZI 754. Label 1: Perú, LO, Maynas, Peña<br />

Negra, km 10 (Purma), 5-7-01, Rasmussen; Label 2: Eugenol. Ref. Roubick 2004.<br />

Euglossa occidentalis Roubick 2004. Holotype QCAZI 1268. <strong>Ecuador</strong>, Napo<br />

Depto,Yasuní National Park, 13-27April1998, D. Roubick; coll. No 33. Paratypes<br />

12 paratypes with different collection number <strong>and</strong> the follow<strong>in</strong>g label: <strong>Ecuador</strong>,<br />

Fco. de Orellana Prov., Parque Nacional Yasuní, sept. 2001, E. Báus, D. Roubick<br />

coll. #91. 3 paratypes with different collection number <strong>and</strong> with the same label as<br />

the holotype. 16 paratypes with different collect<strong>in</strong>g number <strong>and</strong> the follow<strong>in</strong>g label:


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 28<br />

<strong>Ecuador</strong>, Orellana, PUCE SCYasuní, 250 m, 76°24’19” W, 00°40’32 S, 18-<br />

23Feb2001, D. Roubick & E. Báus. QCAZI 1276. <strong>Ecuador</strong>, Fco. De Orellana<br />

Prov., Parque Nacional Yasuní, nov. 1998, E. Báus, D. Roubick. QCAZI 1277.<br />

<strong>Ecuador</strong>, Napo, Tena, Shushuf<strong>in</strong>di, Yasuni, 500 m, 76°30’W, 00°38’ S, 3Aug1999,<br />

F. Palomeque. TRAP EUCALIPTOL. 2 paratypes with the follow<strong>in</strong>g label:<br />

<strong>Ecuador</strong>, Fco. De Orellana, Loreto, Cotap<strong>in</strong>o, 640 m, 22May1999, F. Palomeque.<br />

QCAZI 1285. <strong>Ecuador</strong>, Napo, Talag, 600 m, W77°54’, S01°03’, 12Jun99, H.<br />

Zumárraga. 2 paratypes with different coll. Number <strong>and</strong> the follow<strong>in</strong>g label:<br />

<strong>Ecuador</strong>, Fco. De Orellana Prov., Parque Nacional Yasuní, dic. 2001, E. Báus, D.<br />

Roubick. 17 paratypes with different coll. Number <strong>and</strong> the follow<strong>in</strong>g label:<br />

<strong>Ecuador</strong>, Fco. De Orellana Prov. ,Parque Nacional Yasuní, dic. 2002, E. Báus, D.<br />

Roubick. QCAZI 1321. <strong>Ecuador</strong>, Orellana, E.C. Yasuní, 250 m, 00°40’S, 76°23’W<br />

20Nov1999, L. Torres. Ref. Roubick 2004.<br />

Euglossa orellana Roubick 2004. Holotype QCAZI 980. <strong>Ecuador</strong>, Napo Depto, Yasuní<br />

National Park, 13-27April1998, D. Roubick; baits; #29. Paratypes 132 paratypes<br />

with the same label as the holotype <strong>and</strong> with different collection number. 7<br />

paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Napo, Tena, Shushuf<strong>in</strong>di, Yasuni, 500<br />

m, 76°30’ W, 00°38’S, 03Aug1999, F. Palomeque. Trap eucaliptol. QCAZI 764.<br />

<strong>Ecuador</strong>, Napo, Tena, Misahualli, Jatun Sacha, 550 m, 77°30’W, 01°03’S,<br />

23Oct1999, P. Carrera. Trap salicilato de metilo. 5 paratypes with the follow<strong>in</strong>g<br />

label: <strong>Ecuador</strong>, Napo, E.C. Yasuní, 250 m, LW78°58’, LS00 56, 22.Apr.1998, F.<br />

Palomeque. 2 paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Napo, Loreto,<br />

9Aug1991, D. Roubick. 189 paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Orellana,<br />

PUCE SCYasuní, 250 m, 76°24’19” W, 00°40’32 S, 18-23Feb2001, D. Roubick &<br />

E. Baus. QCAZI 889. <strong>Ecuador</strong>, Pich<strong>in</strong>-Napo, Taracoa, S. Abedravo, 18-V-84. 2<br />

paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Napo, Yuturi Lodge, Río Napo,<br />

0°32’54”S, 76°2’18” W, 270 m, 20Mar1999, R. Brooks, ECU1B99 009 ex:<br />

attracted to methyl salicylate. 108 paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Fco.<br />

de Orellana Prov., Parque Nacional Yasuní, dic2002, E. Baus, D. Roubick, coll.<br />

#100. 49 paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Fco. de Orellana Prov.,<br />

Parque Nacional Yasuní, sep2001, E. Baus, D. Roubick coll. #84. 47 paratypes<br />

with the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Fco. de Orellana, Yasuní Nat Park, Catholic<br />

Univ. Station, Aug 7-17 2004, D. Roubick, coll#113. QCAZI 979. ECUADOR:<br />

Napo, Yuturi Lodge, Río Napo, 0°32’54”S, 76°2’18”W, 270 m, 20 MAR1999, R.<br />

Brooks, ECU1889 009 ex: attracted to methyl salicylate. Comments: QCAZI 889 $<br />

<strong>and</strong> QCAZI 979 $ labeled as Euglossa chalybeata Friese by. R. W. Brooks. Ref.<br />

Roubick 2004.<br />

Euglossa samperi Ramirez 2006. Holotype QCAZI 1825. SR1906, Apr.8.2005, Bilsa,<br />

Naranja trail, 1100, Esmeraldas, <strong>Ecuador</strong>, 00°21’N, 79° 44’W, 500m, C<strong>in</strong>eole, Leg<br />

S. Ramirez. Ref. Ramirez 2006.<br />

Euglossa tiput<strong>in</strong>i Roubick 2004. Paratypes QCAZI 756 $. Hacienda Ila, Napo, <strong>Ecuador</strong>, D.<br />

Velastegui, C<strong>in</strong>eole, 12-26-68. QCAZI 757. <strong>Ecuador</strong>, Napo, Talag, 28Dic1993, 400<br />

m, O. Torres. Ref. Roubick 2004.<br />

Eulaema napensis Oliveira 2006. Holotype $: QCAZI 755. <strong>Ecuador</strong>, Napo, Jum<strong>and</strong>i, II/86,<br />

Legit: D. Sánchez. Ref. Oliveira 2006. Described under subgenus Eulaema.<br />

Paratrigona onorei Camargo & Moure 1994. Paratype QCAZI 1325. <strong>Ecuador</strong>, Napo,


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 29<br />

Cosanga, II/ 86, Legit: L. Coloma. Ref. Camargo & Moure 1994.<br />

FAMILY DIAPRIIDAE<br />

Mimopria campbellorum Masner 1976. Paratype £: QCAZI 1599. BRAZIL, Belem, Para,<br />

IPEAN, III-23-1970, JM & BA Campbell. Host: Eciton Hamatum (Fabr.). Ref.<br />

Masner 1976.<br />

FAMILY FORMICIDAE<br />

Leptanilloides nomada Donoso, Vieira & Wild 2006. Holotype QCAZI 1342. <strong>Ecuador</strong>,<br />

Cotopaxi, Otonga, 1960 m, 79°0.197 W, 0°25.158S, 02Dec2003, Wild & Vieira.<br />

Paratype QCAZI 1343. <strong>Ecuador</strong>, Cotopaxi, Otonga, 1960 m, 79°0.197 W,<br />

0°25.158S, 02Dec2003, Wild & Vieira. Ref. Donoso et al. 2006.<br />

Leptanilloides nubecula Donoso, Vieira & Wild 2006. Holotype QCAZI 1341. <strong>Ecuador</strong>,<br />

Cotopaxi, Otonga, 1978 m, 17M0722229, 9953647, 24-Jun-2004, D. A. Donoso.<br />

Paratypes QCAZI 1339 <strong>and</strong> QCAZI 1340. <strong>Ecuador</strong>, Cotopaxi, Otonga, 1978 m,<br />

17M0722229, 9953647, 24-Jun-2004, D.A. Donoso. Ref. Donoso et al. 2006.<br />

L<strong>in</strong>epithema aztecoides Wild 2006. Paratype £: QCAZI 1338. Label 1: Paraguay,<br />

Can<strong>in</strong>deyú, Res.Mbaracayú, Lagunita, 200 m, 24°08’ S, 055°26’ W, 13.xi.2002, A.<br />

L. Wild #AW1686; Label 2: Humid subtropical medium forest. On low vegetation.<br />

Ref. Wild 2006<br />

L<strong>in</strong>epithema neotropicum Wild 2006. Paratype QCAZI 1344. Label 1: Paraguay,<br />

Can<strong>in</strong>deyú, Res. Mbaracayú, Jejuimí, 170 m, 24°08’ S, 055°32’ W, 25.ix.2002, A.<br />

L. Wild, #AW1718; Label 2: humid sub-tropical tall forest edge. Ref. Wild 2006<br />

L<strong>in</strong>epithema tsachila Wild 2006. Holotype £: QCAZI 1337. Label 1: <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

ENDESA Forest Res., 700 m, 00°06’ N, 79°02’ W, 5.xii.2003, A. L. Wild,<br />

#AW2212; Label 2: 2 nd growth forest nest <strong>in</strong> rott<strong>in</strong>g center of live tree. Ref. Wild<br />

2006<br />

Pheidole alpestris Wilson 2003. Paratypes QCAZI 1453 <strong>and</strong> QCAZI 1454. Label 1:<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, 6 km SE Pifo, 0°15’ S, 78°18’ W, 2900 m, 16-VIII-1991, P. S.<br />

Ward, # 11485 #11486; Label 2: Under stone roadside edge. Ref. Wilson 2003.<br />

Pseudomyrmex eculeus Ward 1999. Paratype £: QCAZI 1326. Ecu, Prov. Napo, Jatun<br />

Sacha, 01°04’S, 77°36’W, 450 m, 13 .ix.1992, B. L. Fisher, # 458 ex: Tachigali,<br />

ra<strong>in</strong>for. Ref. Ward 1999.<br />

Pseudomyrmex <strong>in</strong>suavis Ward 1999. Paratype QCAZI 1327. Col Amazonas, Araracuara,<br />

00°38’ S, 72°15’ W, iv. 1994, G. Gangi #224 ex: Tachigali hypoleuca. Ref. Ward<br />

1999.<br />

Pseudomyrmex ultirix Ward 1999. Paratype QCAZI 1345. Label 1: <strong>Ecuador</strong>, Napo, 13 km<br />

NNE Archidona, 0°48’S, 77°47’ W, 960 m, 7.viii.1991, P. S. Ward. #11393; Label<br />

2: ex: Triplaris roadside edge. Ref. Ward 1999.<br />

FAMILY POMPILIDAE


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 30<br />

Pepsis multichroma Vardy 2002. Paratype $: QCAZI 1974. <strong>Ecuador</strong>, Azuay, Km 100 Vía<br />

Cuenca-Loja, IV-1985, G. Onore. Ref. Vardi 2001.<br />

Pepsis onorei Vardy 2002. Paratypes £: 3 paratypes with the follow<strong>in</strong>g label: <strong>Ecuador</strong>,<br />

Cotopaxi, Las Pampas, 1500, X.1983, G. Onore. 12 paratypes with the follow<strong>in</strong>g<br />

label: <strong>Ecuador</strong>, Cotopaxi, Las Pampas, 1500, VI.1983, G. Onore. 2 paratypes with<br />

the follow<strong>in</strong>g label: <strong>Ecuador</strong>, Cotopaxi, Las Pampas, 1500, X. 1985, G. Onore. Ref.<br />

Vardi 2002.<br />

FAMILY SCELIONIDAE<br />

Thoron garciai Johnson & Masner 2004. Paratype $: QCAZI 1600. Label 1:<br />

VENEZUELA, Amazonas, Surumoni, 100m, 3°10’30” N; Label 2: 65°40’30” O,<br />

13-21-vii-1999, J. L. García; Label 3: Trampa amarilla. Ref. Johnson & Masner<br />

2004.<br />

FAMILIA VESPIDAE<br />

Agelaia silvatica Cooper 2000. Paratypes £: QCAZI 1501. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Quito, Río<br />

Guajalito, 1800 m, W 78°38’10”, S 0°13’33”, 15Nov1997, A. Lara. QCAZI 1502.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, vía Calacalí-Nanegalito, 2000 m, 23JUN1996, L. Torres.<br />

QCAZI 1503. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, T<strong>and</strong>api, 16-I-1988, Legit: S. Gutierres. QCAZI<br />

1504 <strong>and</strong> QCAZI 1505. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Hda. Palmeras, VI-1986, Lg. F. Bravo.<br />

QCAZI 1506 <strong>and</strong> QCAZI 1507. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Palmeras, 23ENE1993, F.<br />

Haro. QCAZI 1508. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Palmeras, 1800 m, 7NOV1992, J.<br />

Mol<strong>in</strong>eros SP. QCAZI 1509. <strong>Ecuador</strong>, Cotopaxi, Las Pampas, VI.85, Legit: G.<br />

Onore. QCAZI 1510 to QCAZI 1513 with the same label as QCAZI 1509 except<br />

for: XII 85, QCAZI 1514 to QCAZI 1516 with the same label as QCAZI 1509<br />

except for: 2-XI.1985 Legit: F. Bravo. QCAZI 1517. <strong>Ecuador</strong>, Cotopaxi, Otonga,<br />

2000 m, 6JUL1996, Gonore. QCAZI 1518, with the same label as QCAZI 1517<br />

except for: 19NOV1994 Ssalazar. QCAZI 1519. <strong>Ecuador</strong>, Cotopaxi, Los Libres,<br />

2000 m, 5NOV1994, Ssalazar. Ref. Cooper 2000.<br />

ORDEN LEPIDOPTERA<br />

FAMILIA NOCTUIIDAE<br />

Hemeroblemma laguerrei Barbut & Lalanne-Cassou 2005. Paratype QCAZI 1577.<br />

Equateur, (Tunguraha), Rte de Puyo á Baños, Río Topo, 1400 m, 09-VI-2002, B.<br />

Lalanne-Cassou & M. Garnier leg. Ref. Barbut & Lalanne-Cassou 2005<br />

FAMILIA NYMPHALIDAE<br />

Altopedaliodes tena nucea Pyrcz & Viloria 1999. Paratype QCAZI 1464. <strong>Ecuador</strong>, Azuay,<br />

Jima, 4000 m, V 1997, I. Aldas leg. Ref. Pyrcz & Viloria 1999.<br />

Manerebia golondr<strong>in</strong>a Pyrcz & Willmott 2006. Paratype QCAZI 1471. ECUADOR, Prov.<br />

Carchi, Res. Forest. Golondr<strong>in</strong>as, 2150 m, 23.VI. 1999, Leg. Woujtusiak & Pyrcz.<br />

Pyrcz et al. 2006.<br />

Manerebia satura pauperata Pyrcz & Willmott 2006. Paratype QCAZI 1480. ECUADOR,<br />

Zamora Ch<strong>in</strong>., Loja-Zamora, 1500 m, 08.11.1996, leg. S. Attal. Ref. Pyrcz et al.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 31<br />

2006.<br />

Manerebia germaniae Pyrcz & Hall 2006. Paratype QCAZI 1478. ECUADOR, Prov.<br />

Pich<strong>in</strong>cha, Aloag T<strong>and</strong>api km 18, Los Alpes, 2700-2750 m, 26. I. 2004, leg. Pycz<br />

& Garlacz. Ref. Pyrcz et al. 2006.<br />

Manerebia undulata undulata Pyrcz & Hall 2006. Paratype QCAZI.1475. ECUADOR,<br />

Bolívar, Balzapamba, arriba de Sta. Lucìa, 2600-2650 m, 03.IX.2003, T. Pyrcz leg.<br />

Ref. Pyrcz et al. 2006.<br />

Manerebia <strong>in</strong>derena similis Pyrcz & Willmott 2006. Paratype $: QCAZI 1474.<br />

ECUADOR, Bolívar, Balzapamba, arriba de Sta. Lucìa, 2600-2650 m, 03.IX.2003,<br />

T. Pyrcz leg. Ref. Pyrcz et al. 2006.<br />

Manerebia <strong>in</strong>derena clara Pyrcz & Willmott 2006. Paratype $: QCAZI 1477. ECUADOR,<br />

Baeza, Papallacta, 2100 m, 07.IV.1998, leg. A. Neild. Ref. Pyrcz et al. 2006.<br />

Manerebia <strong>in</strong>derena laeniva Pyrcz & Willmott 2006. Paratype $: QCAZI 1476. P. Boyer,<br />

Leg. El Tablón, 3000 m, (El Triunfo-Patate), (Tungurahua), 26 km de Baños,<br />

EQUATEUR, 21/11/1998. Ref. Pyrcz et al. 2006.<br />

Manerebia <strong>in</strong>derena mirena Pyrcz & Willmott 2006. Paratype QCAZI 1472. ECUADOR,<br />

Zamora, C. Quebrada de los muertos near Valladolid, m 2550-november 1999, lg.<br />

I. Aldas-coll. Boll<strong>in</strong>o. Ref. Pyrcz et al. 2006.<br />

Pedaliodes rumba Pyrcz & Viloria 1999. Paratype QCAZI 1465. <strong>Ecuador</strong>, Prov. Cotopaxi,<br />

Pilaló, > 2500 < 3000, 1996 07, leg. I. Aldas. Ref. Pyrcz & Viloria 1999. Label<br />

data is <strong>in</strong>cosistent with publication. Ref. Pyrcz & Viloria 1999.<br />

Pedaliodes morenoi pilaloensis Pyrcz & Viloria 1999. Paratype QCAZI 1466. <strong>Ecuador</strong>,<br />

Prov. Cotopaxi, Pilaló, > 2500 < 3000, 1996 07, leg. I. Aldas. Ref. Pyrcz & Viloria<br />

1999. Not as deposited <strong>in</strong> QCAZ<br />

Pedaliodes arturi Pyrcz & Viloria 1999. Paratype $: QCAZI 1467. ECUADOR, Cord.Lag.<br />

Negra, 15. V.1998, 3000-3200 m, A. Jas<strong>in</strong>ski leg. One paratype is miss<strong>in</strong>g<br />

Pedaliodes balnearia Pyrcz & Viloria 1999. Paratype QCAZI 1481. ECUADOR,<br />

Tungurahua, Tung-Volcano, 2300-2600 m, 08-05-1996, leg. A. Jas<strong>in</strong>ski. Ref. Pyrcz<br />

& Viloria 1999.<br />

Pedaliodes peucestas restricta Pyrcz & Viloria 1999. Paratype $: QCAZI 1470.<br />

ECUADOR, Prov<strong>in</strong>cia Pich<strong>in</strong>cha, Aloag T<strong>and</strong>api road, approx. 1700, 25.09.1995,<br />

Chisiche, leg. Andrew Neild. Ref. Pyrcz & Viloria 1999.<br />

ORDER MEGALOPTERA<br />

FAMILY CORYDALIDAE<br />

Chloronia convergens Contreras 1995. Paratype $: QCAZI 1390. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Pto.<br />

Quito, 12-XII-1982, Lg. P. Navarrete. Ref. Contreras 1995.<br />

Corydalus clauseni Contreras 1998. Paratypes QCAZI 1379 £. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Puerto


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 32<br />

Quito, XII-1982, Lg. Ernesto Martínez. QCAZI 1380 £. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Puerto<br />

Quito, 20-I-85, Lg. C. Red<strong>in</strong>. QCAZI 1381 £. <strong>Ecuador</strong>, Loja, Masanamaca,<br />

16Mar1985, Legit: L. Coloma. QCAZI 1382 £. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Puerto Quito,<br />

14-I-84, Leg: R. León. QCAZI 1383 £. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Santo Dom<strong>in</strong>go, 6-06-<br />

1992, Pedro Jimenez. QCAZI 1384 £. <strong>Ecuador</strong>, Prov. Pich<strong>in</strong>cha, Puerto Quito, 15-<br />

I-1984, Col. M. I. Salazar. QCAZI 1385 £. <strong>Ecuador</strong>, Puerto Quito, 20-I-85, Legit:<br />

C. Red<strong>in</strong>. QCAZI 1386 £. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Puerto Quito, 3-XII-1923, Leg. P.<br />

Davila. QCAZI 1387 $. <strong>Ecuador</strong>, Napo, Lumbaqui, May1973, Legit: N.<br />

Venedectoff. QCAZI 1388 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Alluriqu<strong>in</strong>, III-1983, Lg. L.<br />

Coloma. QCAZI 1389 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, P.V. Maldonado, 15-III-91, Legit: J.<br />

Woolfson. Contreras 1998.<br />

ORDER ODONATA<br />

FAMILY LESTIDAE<br />

Lestes jerrelli Tennessen 1997. Paratypes QCAZI 1443. <strong>Ecuador</strong>, Napo Prov<strong>in</strong>ce, pond<br />

12.3 km W, on Loreto Rd, from Coca Rd., elev. 820’, 13 June 1995, Coll. By W.<br />

Mauffray In copula. Comments: Two specimens <strong>in</strong> same envelope labeled as Lestes<br />

forficula Rambur by Bill Mauffray <strong>in</strong> 1995. Ref. Tennessen 1997.<br />

FAMILY COENAGRIONIDAE<br />

Oxyagrion tennesseni Mauffray 1999. Paratype $: QCAZI 1444. <strong>Ecuador</strong>, Napo, Baeza;<br />

10.6 km S, on Hwy 45 near Bermojo, seepage marsh, 16-Jun-1995, Coll Bill<br />

Mauffray, Altitude: 5600 ft. Ref. Mauffray 1999.<br />

FAMILY AESHNIDAE<br />

Aeshna (Marmaraeschna) brevicercia Muzón & Von Ellenrieder 2001. Holotype $:<br />

QCAZI 1445. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, 2300 m, Feb. 1991, C. León. Paratypes QCAZI<br />

1446 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Sangolquí, Sep 7 1993, D. Padilla. QCAZI 1447 £.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Conocoto, Jun. 28. 1992, P. Fernández. QCAZI 1448 £.<br />

<strong>Ecuador</strong>, Pich<strong>in</strong>cha, Conocoto, 5 Mar 1993, G. Dávalos. QCAZI 1449 £. <strong>Ecuador</strong>,<br />

Imbabura, Ibarra, 2 Nov 1991, F. Mart<strong>in</strong>ez. QCAZI 1450 $. <strong>Ecuador</strong>, Imbabura,<br />

Atuntaqui, 2500 m, Dec. 26 1988, C. León. QCAZI 1451 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha,<br />

Sangolquí, Nov 15 1993, D. Padilla. QCAZI 1452 $. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Quito,<br />

Apr. 1975, M. L. Pérez. Comments: QCAZI 1445 <strong>and</strong> QCAZ 1452 labeled as<br />

Aeshna brevifrons Hagen by Bill Mauffray <strong>in</strong> 1995. Ref. Muzón & Von Ellenrieder<br />

2001.<br />

ORDER ORTHOPTERA<br />

FAMILY GRILLIDAE<br />

Gryllus abditus Otte & Peck 1997. Paratypes QCAZI 1391. Ecu., Galap., Floreana, Pta.<br />

Cormoran, arid z, mv. Light & night colln s<strong>and</strong> dunes, 21.IV.92, J. Cook, S. Peck,<br />

92-130. QCAZI 1392. Ecu., Galap., Isabela, NE rim Alcedo, 1100 m, 21 -25.<br />

VI.91, shrub forest carrion traps, S. Peck, 91-246. QCAZI 1393. Ecu., Galap.,<br />

Isabela, SE cratterrim, 22-23.VI.91, 1100 m, under rocks <strong>in</strong> grass, S. Peck, 91-249.<br />

QCAZI 1394. Ecu., Galap., Isabela, NE rim Alcedo, 1100 m, 21 -25. VI.91, shrub<br />

forest, gen. Colln. S. Peck, 21-247. QCAZI 1395. Ecu., Galap., Isabela, Sierra


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 33<br />

Negra, 3-14.III.89, 750 m, pampa, deepsoil traps, S. Peck, 89-98. Ref. Otte & Peck<br />

1997.<br />

Gryllus isabela Otte & Peck 1997. Paratypes QCAZI 1396 to QCAZI 1399. Ecu., Galap.,<br />

Isabela, Alcedo, 20-24.VI.91, Crater rim UV light, 1100 m, S. Peck. 91-286 Luz<br />

Ultravioleta. QCAZI 1400. Ecu., Galap., Isabela, NE slope Alcedo, 20-25.VI.91,<br />

850 m, open forest, night colln, S. Peck, 91-244. Ref. Otte & Peck 1997.<br />

FAMILY ACRIDIDAE<br />

Aphanolampis aberrans Descamps 1978. Neoparatypes: QCAZI 1401 <strong>and</strong> QCAZI 1402.<br />

Prov. Napo, Puerto Napo, Ahuano, 450 m, 16VIII/06 IX 1991. Comments:<br />

Neoparatypes designated by Amédégnato & Poula<strong>in</strong> 1994. Ref. Descamps 1978<br />

[not reviewed].<br />

Hyal<strong>in</strong>acris diaphana Amédégnato & Poula<strong>in</strong> 1998. Paratypes QCAZI 1486 <strong>and</strong> QCAZI<br />

1494. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Palmeras, Nov 1991, Galo Zapata. QCAZI 1487.<br />

<strong>Ecuador</strong>, (22-10-88), Pich<strong>in</strong>cha, Chillogallo, San Luis Páramo, 3600 m, Legit: A.<br />

Qu<strong>in</strong>tana. QCAZI 1488. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Palmeras, 22-I-84, Leg: I. Yépez.<br />

QCAZI 1489. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Sangolquí, 15 JAN1993, M. Baldeón. QCAZI<br />

1490. PICHINCHA, ECUADOR, Palmeras, 1820 m, 19-NOV-1994, Santiago<br />

Esp<strong>in</strong>osa. QCAZI 1491. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Palmeras, 24OCT1992, M.Troya.<br />

QCAZI 1492. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Vía Los Bancos km13, 20NOV1996, J.<br />

Costales. QCAZI 1493. ECUADOR, Pich<strong>in</strong>cha, Río Guajalito, 1200m, 76°48’W,<br />

00°53’S, 6MAR1997, F. GUAMAN. QCAZI 1495. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, Palmeras,<br />

17Nov 1991, Leg. A. Encalada. Ref. Amédégnato & Poula<strong>in</strong> 1998.<br />

Hyal<strong>in</strong>acris onorei Amédégnato & Poula<strong>in</strong> 1998. Paratypes QCAZI 1496 <strong>and</strong> QCAZI<br />

1497. <strong>Ecuador</strong>, Cotopaxi, Otonga, 2000 m, 3MAY1997, G. Onore. QCAZI 1498.<br />

<strong>Ecuador</strong>, Cotopaxi, Otonga, 2000 m, 79°5W, 0°27S, 2MAY1997, I. Olmedo. Ref.<br />

Amédégnato & Poula<strong>in</strong> 1998. Male specimens.<br />

CLASS ARACHNIDA<br />

ORDER ESCORPIONES<br />

FAMILY BUTHIDAE<br />

Tityus jussarae Lourenço 1988. Allotype £: QCAZI 1601. <strong>Ecuador</strong>, Napo, Archidona,<br />

Cueva de Lagarto, 00°56’ S, 77°50’ W, 2 May. 1988, F. Rodríguez. Ref. Lourenço<br />

1988.<br />

FAMILY CHACTIDAE<br />

Chactas mahnerti Lourenço 1995. Paratype £: QCAZI 1602. <strong>Ecuador</strong>, Pich<strong>in</strong>cha, La<br />

Florida, Cerca de Alluriqu<strong>in</strong>, 15 Sep. 1984, L. Coloma. Ref. Lourenço 1995.<br />

CLASS ARACHNIDA<br />

FAMILIA THERIDIIDAE<br />

Anelosimus guacamayos Agnarsson 2006. Paratypes QCAZI 1455 <strong>and</strong> QCAZI 1456.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

D.A. Donoso, F. Salazar, F. Maza, R.E. Cárdenas & O. <strong>Dangles</strong> 2009. Type specimens at the QCAZ Museum. Appendix II. 34<br />

<strong>Ecuador</strong>, Napo, Río Quijos S: 0.17469 W: 77.67926 1329 m 19-Jul-2004.<br />

Comments: Both paratypes are of opposite sex <strong>and</strong> are stored <strong>in</strong> the same envelope.<br />

Ref. Agnarsson 2006.<br />

Anelosimus oritoyacu Agnarsson 2006. Paratypes QCAZI 1457 <strong>and</strong> QCAZI 1458.<br />

<strong>Ecuador</strong>, Napo, Baeza-Lago Rd., 2.4 Km, S: 0.45157, W: 77.88392, 1818 m, 19-<br />

Jul-2004. Comments: Both paratypes are of opposite sex <strong>and</strong> are stored <strong>in</strong> the same<br />

envelope. Ref. Agnarsson 2006.<br />

Anelosimus baeza Agnarsson 2006. Paratypes QCAZI 1459 <strong>and</strong> QCAZI 1460. <strong>Ecuador</strong>,<br />

Napo, Baeza-Lago Rd., 2.6 Km, 1840 m, W. Maddison, 19-Jul-2004. Comments:<br />

Both paratypes are of opposite sex <strong>and</strong> are stored <strong>in</strong> the same envelope. Ref.<br />

Agnarsson 2006.<br />

Anelosimus elegans Agnarsson 2006. Paratypes QCAZI 1461 <strong>and</strong> QCAZI 1462. <strong>Ecuador</strong>,<br />

Napo, Río Salado, 1293 m, L. Aviles, 19-Jul-2004. Ref. Comments: Both paratypes<br />

are of opposite sex <strong>and</strong> are stored <strong>in</strong> the same envelope. Agnarsson 2006.<br />

CLASS ACARI<br />

FAMILY LOHMANIIDAE<br />

Heptacarus encantadae Schatz 1994. Paratypes QCAZI 1463. GAL 87-697 Galapagos, I.<br />

Rábida, Littoral, leg: Schatz. Comments: All paratypes (n=5) are under the same<br />

QCAZI # <strong>in</strong> a s<strong>in</strong>gle vial. Ref. Schatz 1994.<br />

Torpacarus omittens galapagensis Schatz 1994. Paratype QCAZI 1608. GAL 87-577<br />

Galapagos, P<strong>in</strong>zón, Crateriun leg: Schatz. Ref. Schatz 1994.


Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 455-469<br />

Short term response of dung beetle communities to disturbance<br />

by road construction <strong>in</strong> the <strong>Ecuador</strong>ian Amazon<br />

ARTICLE<br />

Carlos Carpio (1) , David A. Donoso (1,2) , Giovanni Ramón (1) & <strong>Olivier</strong> <strong>Dangles</strong> (1,3)<br />

(1) (2) Museo de Zoología QCAZ, Sección Invertebrados, Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Apartado 17-01-2184, Quito, <strong>Ecuador</strong> Graduate<br />

Program <strong>in</strong> Ecology <strong>and</strong> Evolutionary Biology, Department of Zoology, University of Oklahoma, Norman, OK 73019, USA<br />

(3) IRD-LEGS <strong>and</strong> University Paris-Sud 11, F-91190 Gif-sur-Yvette, France<br />

E-mail: fccarpio@yahoo.com<br />

Accepté le 28 mai 2009<br />

Abstract. In the tropics, human disturbance cont<strong>in</strong>uously challenges <strong>in</strong>itiatives for habitat conservation.<br />

In these regions, as economical budgets for conservation shr<strong>in</strong>k, conservation plann<strong>in</strong>g requires precise<br />

<strong>in</strong>formation on when <strong>and</strong> how different k<strong>in</strong>ds of disturbance may affect natural populations, but also<br />

on adequate experimental designs to monitor them. Due to their high diversity, ecological role, stable<br />

taxonomy <strong>and</strong> facilities to sample, dung beetles are used <strong>in</strong> biodiversity surveys for conservation<br />

purposes worldwide. Here we studied the short-term effects of dung beetle communities to an important<br />

<strong>and</strong> widespread ecological disturbance due to road construction <strong>in</strong> the Amazon bas<strong>in</strong>. We surveyed the<br />

dung-beetle community <strong>in</strong> a spatio-temporal context, i.e. <strong>in</strong> transects located at 10, 50 <strong>and</strong> 100-m from<br />

a newly constructed, 10-m wide, paved road. The sampl<strong>in</strong>g periods took place 1, 3 <strong>and</strong> 6 months after<br />

the construction. Dur<strong>in</strong>g the survey, we collected 4895 specimens that belong to 69 species <strong>in</strong> 19 dung<br />

beetles genera. Six dung beetles species (Canthon aequ<strong>in</strong>octialis, C. luteicolis, Dichotomius fortestriatus,<br />

Eurysternus caribaeus, E. confusus <strong>and</strong> Onthophagus haematopus) accounted for 55% of all <strong>in</strong>dividuals<br />

collected. Both species diversity <strong>and</strong> abundance tended to decrease dur<strong>in</strong>g the 6 months after the<br />

open<strong>in</strong>g of the road, but not with distance from the road. Accord<strong>in</strong>gly, an NMDS analysis revealed clear<br />

differences <strong>in</strong> dung beetle community composition <strong>and</strong> biomass among the three sampl<strong>in</strong>g periods, but<br />

not with respect to transect location. However, the number of rare species tended to <strong>in</strong>crease toward<br />

the forest <strong>in</strong>terior. A detailed analysis of dung beetle species among transects revealed that 5 species<br />

(Sylvicanthon bridarollii, Canthidium sp. 2, C. sp. 6, C. sp. 7 <strong>and</strong> Ontherus diabolicus) were more abundant<br />

when gett<strong>in</strong>g further from the road. On the contrary 6 species (Eurysternus hamaticollis, E. velut<strong>in</strong>us,<br />

E. confusus, E. caribaeus, Deltochilum oberbengeri <strong>and</strong> D. orbiculare) <strong>in</strong>creased <strong>in</strong> abundance <strong>in</strong> the<br />

transect next to the road. Our study therefore confi rmed that while overall community metrics did not<br />

respond to road construction, several rare dung beetle species did, with<strong>in</strong> an <strong>in</strong>credibly rapid time frame.<br />

While pattern based descriptions of dung beetle responses to anthropogenic activities are common <strong>in</strong><br />

the literature, our fi nd<strong>in</strong>gs suggest that effect of roads is certa<strong>in</strong>ly under emphasized.<br />

Résumé. Réponse à court terme des communautés de bousiers aux perturbations <strong>in</strong>duites par<br />

la constructions de toutes dans l’Amazonie Equatorienne. Dans les zones tropicales, les activités<br />

huma<strong>in</strong>es sont une menace constante pour la conservation des habitats. Les budgets alloués aux<br />

efforts de conservation étant réduits dans ces régions, l’établissement de plans de gestion requiert des<br />

<strong>in</strong>formations précises sur la manière dont différents types de perturbations affectent les populations<br />

naturelles et sur les protocoles expérimentaux adéquats pour suivre l’évolution de ces populations. En<br />

raison de leur diversité, de leur rôle écologique clé, de leur facilité d’échantillonnage et de leur taxonomie<br />

relativement bien connue, les coléoptères bousiers sont largement utilisés comme <strong>in</strong>dicateurs dans les<br />

programmes de conservation dans le monde entier. L’objectif de ce travail est d’étudier les effets à<br />

court terme de la construction d’une route sur les communautés de bousiers en forêt amazonienne.<br />

Nous avons réalisé une étude spatio-temporelle des communautés de bousiers le long d’un transect<br />

composé de site d’échantillonnages localisés à 10, 50 et 100 m de distance d’une route, après 1, 3 et<br />

6 mois de construction. Durant cette étude 4 895 <strong>in</strong>dividus appartenant à 69 espèces et 19 genres de<br />

boursiers ont été collectés. Six espèces (Canthon aequ<strong>in</strong>octialis, C. luteicolis, Dichotomius fortestriatus,<br />

Eurysternus caribaeus, E. confusus <strong>and</strong> Onthophagus haematopus) représentaient 55% de tous les<br />

<strong>in</strong>dividus collectés. Nos résultats ont montré que la diversité spécifi que, l’abondance et la composition<br />

des communautés de bousiers variaient signifi cativement en fonction du mois de collecte, mais pas<br />

en fonction de la distance à la route. Cependant, le nombre d’espèces rares de bousiers tendaient<br />

à augmenter en s’éloignant de la route. Par ailleurs, une analyse au niveau spécifi que a révélé que<br />

c<strong>in</strong>q espèces (Sylvicanthon bridarollii, Canthidium sp. 2, C. sp. 6, C. sp. 7 <strong>and</strong> Ontherus diabolicus)<br />

étaient signifi cativement plus abondantes en s’éloignant de la route. Au contraire, l’abondance de six<br />

espèces (Eurysternus hamaticollis, E. velut<strong>in</strong>us, E. confusus, E. caribaeus, Deltochilum obenbergeri <strong>and</strong><br />

D. orbiculare) augmentait en se rapprochant de la route. L’utilisation des bousiers comme <strong>in</strong>dicateurs de<br />

perturbation à court terme, telle qu’elle est réalisée dans de nombreux pays tropicaux est discutée dans<br />

un contexte général de conservation des milieux soumis à des perturbations anthropiques.<br />

Keywords: Human disturbance, <strong>Ecuador</strong>, Scarabae<strong>in</strong>ae, Tropical ra<strong>in</strong>forest, NMDS.<br />

455


Like many other South American countries, <strong>Ecuador</strong><br />

faces important habitat conservation challenges<br />

throughout its territory. Th ese place serious pressure<br />

on the survival of many species, <strong>and</strong> the ma<strong>in</strong>tenance<br />

of biodiversity <strong>and</strong> ecosystem function (<strong>Dangles</strong> et al.<br />

this issue). Although <strong>in</strong>sect biodiversity is crucial for<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g ecosystem function, our underst<strong>and</strong><strong>in</strong>g of<br />

the overall response of <strong>in</strong>sects to human activity rema<strong>in</strong>s<br />

limited. Dung beetles (Coleoptera: Scarabaeidae:<br />

Scarabae<strong>in</strong>ae) are relevant c<strong>and</strong>idates to assess<br />

<strong>in</strong>teractions between anthropogenic disturbances <strong>and</strong><br />

community composition (Nichols et al. 2007). Th ese<br />

<strong>in</strong>sects perform key roles <strong>in</strong> many ecosystems around<br />

the world as they provide a suite of vital ecosystem<br />

services such as recycl<strong>in</strong>g of dead tissue, fecal material,<br />

<strong>and</strong> the dispersal of seeds (Andresen & Feer 2005,<br />

Nichols et al. 2008). Dung beetles also represent a<br />

large proportion of <strong>in</strong>sect biomass, are easily attracted<br />

to baits, <strong>and</strong> have a relatively well-known taxonomy,<br />

at least for some groups (Hanski & Cambefort 1991).<br />

For these reasons, numerous studies have <strong>in</strong>vestigated<br />

the impact of habitat disturbance on dung beetle<br />

communities <strong>in</strong> various tropical regions <strong>in</strong>clud<strong>in</strong>g<br />

Eastern Asia (Boonrotpong et al. 2004, Shahabudd<strong>in</strong><br />

et al. 2005), Africa (Davis & Philips 2005) <strong>and</strong> Lat<strong>in</strong><br />

America (Kle<strong>in</strong> 1989, Forsyth et al. 1998, Qu<strong>in</strong>tero<br />

& Rosl<strong>in</strong> 2005, Scheffl er 2005, Gardner et al. 2008)<br />

(see Nichols et al. 2007 for a review). Some of these<br />

authors have stressed the potential use of dung beetles<br />

as bio-<strong>in</strong>dicators for mammal population densities (as<br />

many species rely directly on mammal excrement for<br />

food <strong>and</strong> nest<strong>in</strong>g while others are carrion feeders) <strong>and</strong><br />

environmental changes (e.g., Nichols et al. 2009). In<br />

<strong>Ecuador</strong>, environmental monitor<strong>in</strong>g programs have<br />

been developed with dung beetles as the focal group<br />

(Celi & Davalos 2001).<br />

Road construction is the ma<strong>in</strong> factor lead<strong>in</strong>g to forest<br />

fragmentation <strong>in</strong> the Amazon bas<strong>in</strong> (Perz et al. 2008).<br />

Forest fragmentation has negative ecological consequences<br />

such as stream network degradation, spread<br />

of exotic <strong>in</strong>vasive species, wildlife mortality <strong>and</strong> species<br />

loss from ecosystems (Trombulak & Frissell 2000; Forman<br />

et al. 2003), which implies that the Amazon <strong>in</strong><br />

the near future may become more vulnerable to global<br />

change than climate models assume (Perz et al. 2008).<br />

Roads can aff ect species by reduc<strong>in</strong>g available habitat,<br />

aff ect<strong>in</strong>g patterns of movement, <strong>and</strong> extend<strong>in</strong>g edge<br />

microclimatic conditions <strong>in</strong>to forests, further reduc<strong>in</strong>g<br />

exist<strong>in</strong>g habitat (see Dunn & Danoff -Burg 2007 <strong>and</strong><br />

references there<strong>in</strong>). In spite of great advances <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g<br />

of road ecology, much rema<strong>in</strong>s to be known<br />

about the eff ects of road construction on ecosystems <strong>in</strong><br />

the short <strong>and</strong> long-term (Forman et al. 2003).<br />

456<br />

C. Carpio, D. A. Donoso, G. Ramón & O. <strong>Dangles</strong><br />

<strong>Recent</strong> literature has outl<strong>in</strong>ed several long-term<br />

eff ects, both positive <strong>and</strong> negative, on the structure <strong>and</strong><br />

function of <strong>in</strong>vertebrate communities along the roadforest<br />

cont<strong>in</strong>uum (see Dunn & Danoff -Burg 2007).<br />

Obviously long-term eff ects are the most relevant <strong>in</strong> an<br />

ecological perspective. However, most environmental<br />

impact studies related to road construction <strong>in</strong><br />

develop<strong>in</strong>g countries are performed at short temporal<br />

<strong>and</strong> spatial scales. In most cases, the objective of these<br />

impact studies has been to assess the degree of local<br />

perturbations <strong>in</strong> view of authoriz<strong>in</strong>g the further use<br />

of the road. Because of limited fund<strong>in</strong>g, these impact<br />

studies have been limited to several months up to a few<br />

years <strong>in</strong> the best case. F<strong>in</strong>d<strong>in</strong>g biological <strong>in</strong>dicators that<br />

can rapidly respond to anthropogenic perturbation<br />

is an important issue for environmental assessment.<br />

Dung beetle communities are potential c<strong>and</strong>idates as<br />

biological <strong>in</strong>dicators, known to show a graded <strong>and</strong><br />

rapid response to environmental degradation (Larsen<br />

& Forsyth 2005).<br />

Th is study exam<strong>in</strong>es how <strong>in</strong>sect communities<br />

responded to the perturbation of road construction<br />

us<strong>in</strong>g dung beetles as an <strong>in</strong>dicator group (Halff ter &<br />

Favilla 1993, Forsyth et al. 1998, Davis et al. 2001). We<br />

studied dung beetle communities <strong>in</strong> a spatio-temporal<br />

context, i.e. at diff erent distances from the road <strong>and</strong><br />

at diff erent times after road open<strong>in</strong>g. Although overall<br />

community composition metrics were not sensitive<br />

to these changes, our study found rapid responses of<br />

several rare dung beetle species to road construction.<br />

Study site<br />

Material <strong>and</strong> methods<br />

Th e study site was near the “Chiruisla Station” on the south<br />

rim of the Napo River <strong>in</strong> Sucumbíos Prov<strong>in</strong>ce close to the<br />

Chiruisla Village of the Quichua Territory, <strong>Ecuador</strong>. We<br />

selected a 12600 m 2 study area (140 × 90 m) around a central<br />

po<strong>in</strong>t located at the coord<strong>in</strong>ate 00° 38’ 39.2’’ S, 75° 54’ 45.4’’<br />

W (Fig. 1). Th is site ranges from 180-250 m <strong>in</strong> altitude. Th e<br />

climate is tropical <strong>and</strong> humid. Ra<strong>in</strong>fall <strong>and</strong> temperature are<br />

aseasonal with an annual mean precipitation of 2400 mm. No<br />

month receives less than 100 mm (Valencia et al. 2004) of ra<strong>in</strong><br />

but December <strong>and</strong> January are generally slightly drier than<br />

the rest of the year. Temperatures range from 22–32 °C <strong>and</strong><br />

humidity from 56–96%. Th e whole area is a young l<strong>and</strong>form<br />

classifi ed as “western sedimentary upl<strong>and</strong>s,” which are fl uvial<br />

deposits (red clays, brown or gray alluvium) (sensu Tuomisto<br />

et al. 2003). Th e area has been reported to conta<strong>in</strong> important<br />

populations of large mammals with no record of species<br />

extirpation (Peres & Dolman 2000).<br />

Th e Chiruisla Station was controlled by the Petrobras Oil<br />

Company. Th e study plot was located 2 km <strong>in</strong>side a mature<br />

forest south of the Napo River, on a west side of a recently (< 1<br />

month) opened road for oil extraction activities. Th e road was<br />

12.5 km long <strong>and</strong> 10 m wide <strong>and</strong> ended at river. Every 1000 m,


Dung beetles response to road construction<br />

Figure 1<br />

Location of the study region <strong>in</strong> <strong>Ecuador</strong> (<strong>in</strong>sert) <strong>and</strong> map of the study area show<strong>in</strong>g the location dung beetle sampl<strong>in</strong>g transect (black arrow) along the recently<br />

constructed road <strong>in</strong> Chiruisla.<br />

457


458<br />

C. Carpio, D. A. Donoso, G. Ramón & O. <strong>Dangles</strong><br />

Figure 2<br />

A, photograph of the paved road <strong>in</strong> Chiruisla (2005). B, schematic draw<strong>in</strong>g of the sampl<strong>in</strong>g design used to collect dung beetle communities <strong>in</strong> Chiruisla.


Dung beetles response to road construction<br />

the road was partly covered by canopy segments thanks to the<br />

presence of canopy bridges. Th ese bridges consisted <strong>in</strong> 40-meterlong<br />

sections where the work<strong>in</strong>g row of the road was narrowed<br />

to seven meters to preserve canopy connections. Before road<br />

construction, the forest was considered a primary forest, except<br />

for some local disturbances orig<strong>in</strong>at<strong>in</strong>g from <strong>in</strong>digenous groups<br />

who clear the forest for agriculture. Th is is an evergreen lowl<strong>and</strong><br />

wet forest that has a canopy mostly 15–30 m high, with some<br />

emergent trees reach<strong>in</strong>g 50 m. It was dom<strong>in</strong>ated by species<br />

of the families Arecaeae (Iriartea deltoidea), Euphorbiaceae<br />

(Margaritaria nobilis), Rubiaceae (Duroia hirsuta), Lecythidaceae<br />

(Grias neuberthii) <strong>and</strong> Mimosaceae (Parkia multijuga).<br />

Sampl<strong>in</strong>g design<br />

From September 2005 to February 2006, we surveyed the<br />

study area on three occasions at one, three <strong>and</strong> six months<br />

(September, November <strong>and</strong> February, respectively) after the<br />

open<strong>in</strong>g of the road. Although we tried to control for ra<strong>in</strong> <strong>and</strong><br />

seasonal diff erences by limit<strong>in</strong>g our sampl<strong>in</strong>g to the early <strong>and</strong><br />

mid-ra<strong>in</strong>y season we are aware that seasonal eff ects can still be<br />

signifi cant as abundance of dung beetles is sometimes higher<br />

at the beg<strong>in</strong>n<strong>in</strong>g of the ra<strong>in</strong>y season than <strong>in</strong> mid-ra<strong>in</strong>y season.<br />

For logistic reasons, we were unable to sample the plot before<br />

the open<strong>in</strong>g of the road <strong>and</strong> thus data on the orig<strong>in</strong>al dung<br />

beetle community composition are not available. On each<br />

occasion, we surveyed the dung beetle fauna on three transects<br />

located at 10, 50 <strong>and</strong> 100 m <strong>in</strong>side the forest (L10, L50, L100,<br />

respectively, fi g. 2). Each transect was composed of 8 traps (T1,<br />

T2…., T8), separated by a distance of 20 m. Trap placement<br />

<strong>and</strong> collection was r<strong>and</strong>omized across transects to control for<br />

sampl<strong>in</strong>g time eff ect. Dung beetle communities were sampled<br />

us<strong>in</strong>g pitfall traps consist<strong>in</strong>g of two stacked 0.5 L plastic cups<br />

buried <strong>in</strong> the ground so that the top rim was aligned with the<br />

soil surface (Spector & Forsyth 1998). Two cups were used so<br />

that the top cup could be easily removed <strong>and</strong> replaced aga<strong>in</strong><br />

after each collection (Larsen & Forsyth 2005). Th e top cup was<br />

half-fi lled with water <strong>and</strong> a small amount of soap to reduce<br />

surface tension. Two types of baits, human dung <strong>and</strong> tuna fi sh<br />

were used <strong>in</strong> an alternat<strong>in</strong>g spatial confi guration (fi g. 2B). For<br />

both bait types, 50 g of bait material was wrapped <strong>in</strong> nylon<br />

mesh (1 mm²) <strong>and</strong> tied with plastic thread to a 30-cm wooden<br />

stick. Th is quantity of bait was suffi cient to attract the largest<br />

dung beetles at the sites (Peck & Howden 1984). Th e bait was<br />

suspended above the cups which were covered with large leaves<br />

positioned at least 20-cm over the trap to protect it from ra<strong>in</strong> <strong>and</strong><br />

sun. In each sample <strong>in</strong>terval, traps were baited for 6 complete<br />

days <strong>and</strong> beetles were collected daily. Baits were replaced every<br />

two days to avoid desiccation (Spector & Ayzama 2003). All<br />

<strong>in</strong>sects were preserved <strong>in</strong> 70% ethanol <strong>and</strong> returned to the lab<br />

for identifi cation.<br />

Identifi cation of Scarabae<strong>in</strong>ae<br />

We identifi ed the species of Scarabae<strong>in</strong>ae us<strong>in</strong>g taxonomic<br />

keys (Howden & Young 1981, Jessop 1985, Edmonds 1994,<br />

Génier 1996, Arnaud, 1997, Cook 1998, Med<strong>in</strong>a & Lopera<br />

2001), unpublished species lists <strong>and</strong> collections of the<br />

QCAZ Museum (PUCE), <strong>and</strong> assistance of W. D. Edmonds,<br />

Marfa, Texas. Where specifi c identifi cation was not possible,<br />

specimens were identifi ed to genus <strong>and</strong> then assigned to a<br />

morphospecies. In total, morphospecies represented 52% of<br />

the total collected Scarabae<strong>in</strong>ae, which is with<strong>in</strong> the range of<br />

morphospecies proportions found <strong>in</strong> other studies <strong>in</strong> South<br />

America: 42.0% (<strong>Ecuador</strong>, Celi et al. 2004), 43.0% (Peru,<br />

Larsen et al. 2006), 45.4% (Brazil, Durães et al. 2005), 45.6%<br />

(Bolivia, Vidaurre et al. 2008), <strong>and</strong> 61.0% (Brazil, Andresen<br />

2002). In all these studies, Canthidium <strong>and</strong> Dichotomius were<br />

the most problematic genera to identify to the species level.<br />

All specimens were deposited at the museum of Invertebrates<br />

at QCAZ Museum of the Pontifi cia Universidad Católica del<br />

<strong>Ecuador</strong>, Quito, <strong>Ecuador</strong>.<br />

Dung beetle biomass estimation<br />

We used l<strong>in</strong>ear measurement of elytra length + pronotum length<br />

as an estimator of dung beetle biomass. L<strong>in</strong>ear measurements<br />

are easier to obta<strong>in</strong> on dry specimens <strong>and</strong> there is a highly<br />

signifi cant relationship between the log values of these two<br />

variables (Radtke & Williamson 2005, R = 0.964, p < 0.001).<br />

When possible, l<strong>in</strong>ear measurements were made on at least 5<br />

<strong>in</strong>dividuals for each species us<strong>in</strong>g a caliper accurate to 0.1<br />

mm. Dung beetle species biomass was estimated from l<strong>in</strong>ear<br />

measurements accord<strong>in</strong>g to the equation (P < 0.01, R = 0.93)<br />

used by Radtke & Williamson (2005) <strong>in</strong> their fi gure 1. Th e<br />

estimated biomass of each species <strong>in</strong> each site was calculated by<br />

multiply<strong>in</strong>g the mean estimated biomass by the total abundance<br />

for that species (see Gardner et al. 2008 for further details).<br />

Data analysis<br />

To determ<strong>in</strong>e the degree of completeness of our samples, we<br />

calculated species accumulation curves <strong>and</strong> estimated the true<br />

species richness for each sample/day with the Chao 1 estimate<br />

us<strong>in</strong>g the software EstimateS (Colwell 2006). We then compared<br />

quantitatively the diff erences <strong>in</strong> community structure of dung<br />

beetles between the three distances (10, 50, <strong>and</strong> 100 m from<br />

the road) <strong>and</strong> three sampl<strong>in</strong>g dates (1, 3, <strong>and</strong> 6 months after<br />

the road open<strong>in</strong>g). Th e number of species, the abundance of<br />

<strong>in</strong>dividuals <strong>and</strong> the Shannon Index were calculated for each<br />

trap level. We also estimated richness at a transect scale to make<br />

comparisons of the total number of species potentially found at<br />

each distance from the road. For these analyses, we estimated<br />

the Chao1 overall richness us<strong>in</strong>g EstimateS (Colwell 2006).<br />

Species density, species abundance, <strong>and</strong> Shannon <strong>in</strong>dex per trap<br />

were compared among treatments us<strong>in</strong>g a two-way ANOVA<br />

with distance from road (10, 50, <strong>and</strong> 100 m), time after road<br />

open<strong>in</strong>g (1 month, 3 months, 6 months), <strong>and</strong> the <strong>in</strong>teraction<br />

term as factors. By consider<strong>in</strong>g traps as <strong>in</strong>dependent units <strong>in</strong> the<br />

ANOVA analysis, we were aware that our analysis may suff er<br />

from pseudoreplication (Hurlbert 1984). However, the large<br />

diff erences <strong>in</strong> dung beetle fauna found between neighbor<strong>in</strong>g<br />

pitfall traps with similar bait (40-m distance) suggested that<br />

the <strong>in</strong>dependence hypothesis of adjacent trap was likely true.<br />

Because rare taxa (s<strong>in</strong>gletons, doubletons, <strong>and</strong> tripletons) are an<br />

important feature of ra<strong>in</strong>forest <strong>in</strong>vertebrate samples (Novotny<br />

& Basset 2000), we also compared the presence of rare taxa<br />

between the three distances from the road.<br />

We then carried out a non-metric multidimensional scal<strong>in</strong>g<br />

(NMDS) analysis to exam<strong>in</strong>e patterns of biological similarity<br />

<strong>in</strong> dung beetle assemblages among distance <strong>and</strong> date. Th is ord<strong>in</strong>ation<br />

technique represents samples as po<strong>in</strong>ts <strong>in</strong> low-dimensional<br />

space, such that the relative distances of all po<strong>in</strong>ts are <strong>in</strong><br />

the same rank order as the relative similarities of the samples<br />

(Gucht et al., 2005). Th e Bray-Curtis method was used as a<br />

measure of similarity. Samples from the same transect or the<br />

same dates were grouped with convex hulls. Th e NMDS goodness<br />

of fi t was estimated with a stress function (which ranges<br />

459


from 0 to 1) with values close to zero <strong>in</strong>dicat<strong>in</strong>g a good fi t.<br />

Th e diff erence <strong>in</strong> composition of the dung beetle community<br />

between the three transects <strong>and</strong> the three dates were tested us<strong>in</strong>g<br />

an analysis of similarities (ANOSIM). Th is method has<br />

been widely used for test<strong>in</strong>g hypotheses about spatial diff er-<br />

460<br />

C. Carpio, D. A. Donoso, G. Ramón & O. <strong>Dangles</strong><br />

ences <strong>in</strong> plant <strong>and</strong> animal assemblages, <strong>in</strong> particular for detect<strong>in</strong>g<br />

environmental impacts (Chapman & Underwood 1999).<br />

ANOSIM tested the null hypothesis that the with<strong>in</strong>-sites similarity<br />

was equal to the between-sites similarity. ANOSIM generates<br />

a statistical parameter R which is <strong>in</strong>dicative of the degree<br />

Figure 3<br />

Photographs of several species of dung beetles collected dur<strong>in</strong>g the study period <strong>in</strong> Chiruisla (Amazonia, <strong>Ecuador</strong>). A, Eurysternus caribaeus (Herbst 1789);<br />

B, Coprophanaeus telamon (Erichson 1847); C, Malagoniella astyanax (<strong>Olivier</strong> 1789); D, Deltochilum car<strong>in</strong>atum (Westwood 1837); E, Canthon luteicollis<br />

(Erichson 1847); F, Oxysternon conspicillatum (Weber 1801); G, Phanaeus chalcomelas (Perty 1830); H, Eurysternus confusus (Jessop 1985).


Dung beetles response to road construction<br />

of separation between groups; a score of 1 <strong>in</strong>dicates complete<br />

separation <strong>and</strong> a score of 0 <strong>in</strong>dicates no separation (Gucht et<br />

al. 2005). Monte-Carlo r<strong>and</strong>omization of the group labels was<br />

used to generate null distributions <strong>in</strong> order to test the hypothesis<br />

that with<strong>in</strong>-group similarities were higher than would be<br />

expected by chance alone. F<strong>in</strong>ally, we determ<strong>in</strong>ed which dung<br />

beetle species contributed most to dist<strong>in</strong>guish transects at diff erent<br />

distances from the road by perform<strong>in</strong>g a SIMPER analysis<br />

on density data for all Scarabe<strong>in</strong>ae taxa. All analyses were performed<br />

us<strong>in</strong>g PAST (Paleontological statistics, version 1.79) on<br />

ln(X + 1) transformed data. Th is procedure is commonly applied<br />

to <strong>in</strong>vertebrate assemblage data to reduce the importance<br />

of occasional large abundance values (Clarke, 1993).<br />

F<strong>in</strong>ally, we plotted the percentage values for abundance vs.<br />

biomass data to detect diff erences <strong>in</strong> the analytical weight of<br />

<strong>in</strong>dividual species <strong>in</strong> discrim<strong>in</strong>at<strong>in</strong>g patterns of dung beetle<br />

community structure at the three distances from the road.<br />

Results<br />

Patterns <strong>in</strong> species diversity <strong>and</strong> abundance<br />

A total of 4895 <strong>in</strong>dividuals of 69 species <strong>and</strong><br />

morphospecies belong<strong>in</strong>g to 5 tribes (Ateuch<strong>in</strong>i,<br />

Table 1. Results of the two-way ANOVA analysis on dung beetle<br />

community richness.<br />

(A), abundance (B) <strong>and</strong> Shannon Index (C) at three distance from the road<br />

(10, 50 <strong>and</strong> 100 m) <strong>and</strong> three sampl<strong>in</strong>g dates (at one, three <strong>and</strong> six months<br />

after road open<strong>in</strong>g).<br />

A. Richness<br />

Source<br />

Sum of<br />

Squares<br />

Df Mean Square F P<br />

Date 932.583 2 466.292 4.590 0.014<br />

Distance 63.000 2 31.500 0.310 0.734<br />

Date * distance 137.667 4 34.417 0.339 0.851<br />

Error 6399.625 63 101.581<br />

Total 26643.000 72<br />

B. Abundance<br />

Source<br />

Sum of<br />

Squares<br />

Df Mean Square F P<br />

Date 129.104 2 64.552 3.874 0.026<br />

Distance 0.487 2 0.244 0.015 0.985<br />

Date * distance 11.258 4 2.814 0.169 0.953<br />

Error 1049.673 63 16.661<br />

Total 4806.000 72<br />

C. Shannon Index<br />

Source<br />

Sum of<br />

Squares<br />

Df Mean Square F P<br />

Date 2.422 2 1.211 4.428 0.016<br />

Distance 0.274 2 0.137 0.501 0.608<br />

Date * distance 1.083 4 0.271 0.990 0.420<br />

Error 17.232 63 0.274<br />

Total 367.444 72<br />

Figure 4<br />

Accumulation curves of Chao1 estimates of dung beetle species richness for<br />

each transect (L10, L50, L100) <strong>and</strong> each sampl<strong>in</strong>g date (A: 1 month, B: 3<br />

months <strong>and</strong> C: 6 months after road open<strong>in</strong>g). Capture units express total<br />

sampl<strong>in</strong>g eff ort at one site. Each curve represents 500 r<strong>and</strong>omizations us<strong>in</strong>g<br />

the program EstimateS (Colwell 2006).<br />

461


Figure 5<br />

Impact of road construction on the dung beetle community richness (A),<br />

abundance (B), <strong>and</strong> Shannon Index (C) at three distances from the road<br />

(L10, L50 <strong>and</strong> L100), dur<strong>in</strong>g the study period from 1 to 6 months after<br />

road open<strong>in</strong>g. For box-whisker plots, the outer edges of the box defi ne the<br />

<strong>in</strong>terquartile range, the center l<strong>in</strong>e is the median <strong>and</strong> the bars <strong>in</strong>dicate 1.5<br />

times the <strong>in</strong>terquartile range.<br />

462<br />

C. Carpio, D. A. Donoso, G. Ramón & O. <strong>Dangles</strong><br />

Canthon<strong>in</strong>i, Dichotomi<strong>in</strong>i, Onthophag<strong>in</strong>i, <strong>and</strong><br />

Phanae<strong>in</strong>i) of Scarabae<strong>in</strong>ae, were recorded over<br />

the study period, 432 trap-days (see Figure 3 <strong>and</strong><br />

Appendix 1). Six species (Canthon aequ<strong>in</strong>octialis,<br />

C. luteicollis, Dichotomius fortestriatus, Eurysternus<br />

caribaeus, E. confusus <strong>and</strong> Onthophagus haematopus)<br />

accounted for 55% of all <strong>in</strong>dividuals collected. Th e<br />

species accumulation curves accounted for 83.4 % of<br />

the variance <strong>in</strong> sampl<strong>in</strong>g performance at all sites (P <<br />

0.001, fi g. 4). We estimated that we collected 93.5 %<br />

of the true species richness.<br />

Box-whisker plots of species diversity, abundance<br />

<strong>and</strong> Shannon <strong>in</strong>dex at the trap level revealed large<br />

<strong>in</strong>ter-trap variability for these parameters at the three<br />

sampl<strong>in</strong>g dates (fi g. 5). Median species richness values<br />

ranged from 10 (L50, 6 months) to 22 species (L100,<br />

1 month) per trap. Median abundance values ranged<br />

from 22 (L100, 6 months) to 75 <strong>in</strong>dividuals (L100,<br />

1 month) per trap. Both species richness <strong>and</strong> abundance<br />

tended to decrease dur<strong>in</strong>g the 6 months after road<br />

open<strong>in</strong>g. We found that at the trap level, patterns of<br />

species density, abundance, <strong>and</strong> Shannon <strong>in</strong>dex varied<br />

signifi cantly from beg<strong>in</strong>n<strong>in</strong>g to later <strong>in</strong> the ra<strong>in</strong>y season<br />

(two-way ANOVA, F > 3.8, p < 0.005, Table 1), but<br />

not with the distance from the road (two-way ANOVA,<br />

F < 0.51, p > 0.6, Table 1) or the <strong>in</strong>teraction term<br />

(two-way ANOVA, F < 1.0, p > 0.4, Table 1). One<br />

month after road open<strong>in</strong>g, species accumulation curves<br />

showed diff erences <strong>in</strong> total richness between the three<br />

distances with a gradual <strong>in</strong>crease <strong>in</strong> estimated richness<br />

when go<strong>in</strong>g further from the road (fi g. 4A). However,<br />

this pattern was not observed <strong>in</strong> the two other sampl<strong>in</strong>g<br />

dates (fi g. 4B, C). As a general pattern, the diversity of<br />

rare taxa was generally higher <strong>in</strong> L50 <strong>and</strong> L100 than <strong>in</strong><br />

Figure 6<br />

Total number of rare dung beetle species (s<strong>in</strong>gletons, doubletons, tripletons)<br />

found at the three distances from the road (L10, L50, L100) over the study<br />

period (from 1 to 6 month after road open<strong>in</strong>g).


Dung beetles response to road construction<br />

L10 (fi g. 6). Eleven (Bdelyrus sp. 1, Canthidium sp. 1,<br />

Canthidium sp. 8, Canthon sp. 2, Deltochilum orbiculare,<br />

Deltochilum sp. 3, Malagoniella astyanax, Onthophagus<br />

sp. 7, Scatimus str<strong>and</strong>i, Scatimus sp. 2, Trichilum sp. 1)<br />

out of the 13 rare species/morphospecies found over<br />

the study period, were absent <strong>in</strong> the transect located<br />

10 m from the road.<br />

Community composition <strong>and</strong> biomass<br />

Th e NMDS analysis revealed clear diff erences <strong>in</strong><br />

dung beetle community composition (both richness<br />

<strong>and</strong> abundance) among the three sampl<strong>in</strong>g periods<br />

(fi g. 7A <strong>and</strong> C). Stress was low (0.01) <strong>in</strong>dicat<strong>in</strong>g a high<br />

degree of fi t. Th e ANOSIM signifi cantly separated<br />

Figure 7<br />

Nonmetric multidimensional scal<strong>in</strong>g (NMDS) analysis of dung beetle communities (A-B richness, C-D abundance) at the three distances from the road (L10,<br />

L50, <strong>and</strong> L100) <strong>and</strong> the three sampl<strong>in</strong>g dates after road open<strong>in</strong>g (1 month, 3 month, 5 months). Triangles show the convex hull (smallest convex polygon<br />

conta<strong>in</strong><strong>in</strong>g all po<strong>in</strong>ts) <strong>in</strong> each group (A-C sampl<strong>in</strong>g date, B-D sampl<strong>in</strong>g distance). S: September, N: November, F: February.<br />

463


the three diff erent sampl<strong>in</strong>g periods presented <strong>in</strong> the<br />

NMDS (ANOSIM, R = 0.44; p = 0.023 for richness,<br />

R = 0.66, p = 0.004 for abundance; see convex hulls <strong>in</strong><br />

Figure 7A <strong>and</strong> C). Contrast<strong>in</strong>gly, the NMDS showed<br />

no signifi cant diff erences <strong>in</strong> community composition<br />

(both richness <strong>and</strong> abundance) among transects l<strong>in</strong>es<br />

(ANOSIM, |R| < 0.2, p > 0.900, fi g. 7B <strong>and</strong> D).<br />

Despite the absence of signifi cant diff erences for the<br />

whole dung beetle communities between transect<br />

l<strong>in</strong>es, SIMPER analysis <strong>in</strong>dicated that several changes<br />

occurred for some species (Table 2). Of the 22 most<br />

discrim<strong>in</strong>atory dung beetle species among transects,<br />

5 species (Sylvicanthon bridarollii, Canthidium sp. 2,<br />

C. sp. 6, C. sp. 7, Ontherus diabolicus) were gradually<br />

more abundant when gett<strong>in</strong>g further from the road<br />

(Table 2). On the contrary 6 species (Eurysternus<br />

hamaticollis, E. velut<strong>in</strong>us, E. confusus, E. caribaeus,<br />

Deltochilum obenbergeri, D. orbiculare,) <strong>in</strong>creased <strong>in</strong><br />

abundance <strong>in</strong> the transect next to the road (Table 2).<br />

Community analyses based upon species abundance<br />

<strong>and</strong> estimated species biomass data produced<br />

superfi cially similar patterns between transects (fi g. 8,<br />

see also fi g. 3 for a visualization of some diff erences<br />

464<br />

C. Carpio, D. A. Donoso, G. Ramón & O. <strong>Dangles</strong><br />

<strong>in</strong> size among species). In all cases both large- <strong>and</strong><br />

<strong>in</strong>termediate-bodied species contributed the most to<br />

patterns based on biomass <strong>and</strong> abundance data (see the<br />

top right corner of each panel). However, these patterns<br />

were driven by dist<strong>in</strong>ct sets of species. Whereas the top<br />

3 weighted species (Canthon aequ<strong>in</strong>octialis, Dichotomius<br />

fortestriatus, <strong>and</strong> Onthophagus haematopus) were the<br />

same <strong>in</strong> all transects, they accounted for 47.5% of<br />

total estimated biomass at L100 <strong>and</strong> only for 31.3 %<br />

<strong>and</strong> 29.2% at L50 <strong>and</strong> L10, respectively. In particular,<br />

total estimated biomass of Dichotomius fortestriatus<br />

decreased by 64% between L100 <strong>and</strong> L10.<br />

Discussion<br />

Dung beetle diversity <strong>and</strong> composition <strong>in</strong> the<br />

<strong>Ecuador</strong>ian Amazon<br />

Th e total number of species found <strong>in</strong> the study area<br />

(n = 69) was with<strong>in</strong> the range of dung beetle diversity<br />

recorded <strong>in</strong> other Amazonian regions: 60 species<br />

<strong>in</strong> Leticia, Colombia (Howden & Nealis 1975); 74<br />

species <strong>in</strong> Tambopata (Spector & Forsyth 1998),<br />

Peru <strong>and</strong> 97 species <strong>in</strong> Parque Nacional Noel Kempff ,<br />

Table 2. Results of SIMPER analysis for 22 dung beetle species at three transect l<strong>in</strong>es (L10, L50 <strong>and</strong> L100).<br />

Log-transformed abundance data provide the percent contribution of each species to average dissimilarity between the three transects. Only species that<br />

contributed up to a total of 50% to the separation of transects are listed. Arrows <strong>in</strong>dicate the trend <strong>in</strong> species abundance with <strong>in</strong>creas<strong>in</strong>g distance from the<br />

road.<br />

Taxon Contribution Cumulative % L10 L50 L100 Trend<br />

Canthidium sp. 4 1 5 1.55 2.07 1.34<br />

Sylvicanthon bridarollii 0.82 9 1.19 1.5 1.84 �<br />

Phanaeus chalcomelas 0.75 12.06 2.71 1.36 1.73<br />

Canthidium sp. 7 0.72 14.57 1.32 1.44 1.87 �<br />

Eurysternus hamaticollis 0.72 17.06 2.78 2.51 1.99 �<br />

Eurysternus velut<strong>in</strong>us 0.71 19.52 3.4 2.93 2.07 �<br />

Onthophagus sp. 5 0.70 21.93 1.39 0.462 1.3<br />

Dichotomius lucasi 0.69 24.32 2.73 2.83 1.99<br />

Ateuchus murrayi 0.68 26.7 1.43 0.732 1.17<br />

Eurysternus confusus 0.66 29 4.04 3.37 2.72 �<br />

Deltochilum obenbergeri 0.61 31.12 3.22 3.12 2.14 �<br />

Canthidium sp. 6 0.58 33.14 0.693 1.26 1.36 �<br />

Oxysternon conspicillatum 0.56 35.08 2 2.59 2.49<br />

Ontherus diabolicus 0.55 37 0.903 1.73 2.16 �<br />

Onthophagus sp. 6 0.54 38.88 0.366 1.23 0.903<br />

Deltochilum orbiculare 0.52 40.67 0.924 0.462 0 �<br />

Onthophagus sp. 1 0.51 42.46 0.903 0.999 0.88<br />

Canthidium sp. 2 0.48 44.14 0.597 0.999 1.34 �<br />

Eurysternus caribaeus 0.48 45.8 3.42 3.36 3.04 �<br />

Canthidium haroldi 0.48 47.46 0.924 0.462 0.999<br />

Dichotomius ohausi 0.47 49.12 2.82 2.05 2.39<br />

Uroxys sp. 1 0.47 50.75 0.231 1.06 0.903


Dung beetles response to road construction<br />

Bolivia (Forsyth et al. 1998). Dung beetle species<br />

richness <strong>and</strong> abundance were variable among samples<br />

(fi g. 5), a feature that was also reported by Radtke et<br />

al. (2007) <strong>in</strong> the <strong>Ecuador</strong>ian Amazon. Both richness<br />

<strong>and</strong> abundance signifi cantly decreased from one to<br />

six months after road open<strong>in</strong>g for the three transects,<br />

which is probably due to slightly more ra<strong>in</strong>y conditions<br />

<strong>in</strong> the second part of the survey. Ra<strong>in</strong>, temperature,<br />

<strong>and</strong> seasonal conditions <strong>in</strong> general can greatly <strong>in</strong>fl uence<br />

dung beetle populations, caus<strong>in</strong>g surges <strong>and</strong> decl<strong>in</strong>es of<br />

particular species from one week to the next (Hanski<br />

& Cambefort 1991).<br />

Impact of road construction on dung beetle<br />

communities<br />

Although habitat edges can have profound eff ects<br />

on the spatial distribution of many species (e.g. Lovejoy<br />

et al. 1986, Murcia 1995, Ries et al. 2004, Laurance et<br />

al. 2007) <strong>in</strong>clud<strong>in</strong>g beetles (Ewers & Didham 2008),<br />

our study provides no clear evidence of short term<br />

impact of road open<strong>in</strong>g on dung beetle communities<br />

<strong>in</strong> Chiruisla. In general, diversity, abundance <strong>and</strong><br />

community composition did not diff er signifi cantly<br />

among transects located at various distance from the<br />

road. Potential explanations for the lack of an impact<br />

of the road on dung beetle populations concerns the<br />

limited width of the road (10 m) <strong>and</strong> the absence of<br />

further clear-cuts by coloniz<strong>in</strong>g people, as access to<br />

Chiruisla is controlled by the oil company. Dunn &<br />

Danoff -Burg (2007) found that the most important<br />

eff ect of roads on carrion beetle assemblages appeared<br />

to be due to road width rather than road type (paved or<br />

dirt). A parallel study on the impact of road construction<br />

on vegetation revealed that <strong>in</strong> areas that were not<br />

directly disturbed dur<strong>in</strong>g construction, the road had<br />

little eff ect on the orig<strong>in</strong>al vegetation composition (J.<br />

Jaramillo comm. pers.). Th is explanation would agree<br />

with Halff ter & Arellano (2002) who showed that tree<br />

cover was the most <strong>in</strong>fl uential factor determ<strong>in</strong><strong>in</strong>g dung<br />

beetle community composition <strong>in</strong> the neotropics.<br />

Another explanation could be that we did not<br />

sample deep enough <strong>in</strong>to the ra<strong>in</strong>forest to get much<br />

Figure 8<br />

Percentage contributions, based separately on abundance <strong>and</strong> biomass data,<br />

of <strong>in</strong>dividual dung beetle species at the three distances from the road (L10,<br />

L50, L100) over the study period (from 1 to 6 months after road open<strong>in</strong>g).<br />

Species are represented by black circles, which are scaled by diff erences <strong>in</strong><br />

average body mass. Both axes are log-transformed so the species <strong>in</strong> the top<br />

right corner of each panel contribute the most towards the patterns. Th e<br />

diagonal dashed l<strong>in</strong>e identifi es the position of species that contribute equal<br />

weights to analyses based on both data sets. Large-bodied species clearly<br />

contributed the most to patterns based on biomass data.<br />

465


eyond the edge eff ects, or that our sampl<strong>in</strong>g eff ort<br />

was not suffi cient (see the spatial extent <strong>in</strong> the study by<br />

Dunn & Danoff -Burg 2007 on carrion beetles). Th e<br />

great olfactory powers of dung beetles <strong>in</strong> locat<strong>in</strong>g feces<br />

may also have obscure local population diff erences over<br />

100 m distances. In a large scale study <strong>in</strong> the Southern<br />

Alps <strong>in</strong> New Zeal<strong>and</strong>, Ewers & Didham (2008) found<br />

that beetle communities diff ered <strong>in</strong> species richness<br />

<strong>and</strong> composition from the deep forest <strong>in</strong>terior up to 1<br />

km <strong>in</strong>side forest. Th e edge eff ects recorded <strong>in</strong> the study<br />

were much stronger than <strong>in</strong> our case, mak<strong>in</strong>g this explanation<br />

improbable.<br />

Th eoretically we would have expected opposite responses<br />

of dung <strong>and</strong> carrion beetle community to the<br />

road, the former be<strong>in</strong>g negatively aff ected by the road<br />

while the later be<strong>in</strong>g attracted by the carrion produced<br />

by the road. However, additional analyses revealed no<br />

signifi cant diff erences between these two guilds at the<br />

community level, <strong>in</strong> their response to road construction.<br />

Dung beetle richness <strong>and</strong> abundance were rather<br />

constant among transects, rang<strong>in</strong>g from 42–44 species<br />

<strong>and</strong> 480–580 <strong>in</strong>dividuals, respectively. Carrion beetles<br />

varied from 14–20 taxa <strong>and</strong> 50–58 <strong>in</strong>dividuals depend<strong>in</strong>g<br />

on date <strong>and</strong> transects, but with no evident<br />

<strong>in</strong>crease when gett<strong>in</strong>g closer to the road. For the two<br />

guilds, NMDS analyses revealed no diff erences among<br />

transects on both species richness <strong>and</strong> abundance (R <<br />

0.2, P > 0.67).<br />

Our analyses revealed two signs of potential<br />

eff ects by road open<strong>in</strong>g. First the number of rare<br />

species was greatly reduced <strong>in</strong> the transect nearest to<br />

the road, through time. Rare taxa have proven to be<br />

useful <strong>in</strong>dicators of human disturbance (Hecnar &<br />

M’closkey 1996, Maurer et. al., 1999). Because rare<br />

species by defi nition represent a small number of<br />

<strong>in</strong>dividuals, sampl<strong>in</strong>g for them requires extensive fi eld<br />

work to generate well-supported conclusions. Second<br />

the estimated biomass of the three dom<strong>in</strong>ant dung<br />

beetle species decreased with distance to the road. Th is<br />

pattern was ma<strong>in</strong>ly due the decrease <strong>in</strong> abundance of<br />

only one species, the two other large-bodied species<br />

showed no similar trend. Dung beetle biomass response<br />

to perturbation is however debated. On one h<strong>and</strong>,<br />

larger <strong>in</strong>sect species may be more susceptible to local<br />

ext<strong>in</strong>ction <strong>in</strong> disturbed areas because they usually have<br />

more stochastic population dynamics (Baumgartner<br />

1998). Alternatively, microclimate conditions are<br />

likely to be altered at forest edges (e.g. <strong>in</strong>creas<strong>in</strong>g<br />

temperature extremes <strong>and</strong> moisture loss, Williams-<br />

L<strong>in</strong>era et al. 1998) <strong>and</strong> larger body size may confer<br />

greater resistance to desiccation (see Grimbacher et al.<br />

2008 for a discussion).<br />

466<br />

C. Carpio, D. A. Donoso, G. Ramón & O. <strong>Dangles</strong><br />

Insights for plann<strong>in</strong>g environmental studies <strong>in</strong><br />

<strong>Ecuador</strong><br />

Th e Amazon region exhibits exceptionally high<br />

biodiversity (Myers et al. 2000), which makes capacity<br />

build<strong>in</strong>g for environmental governance <strong>in</strong> the region<br />

particularly important. In this context the search<br />

for relevant bio<strong>in</strong>dicators of the degree of human disturbance<br />

is a priority for all develop<strong>in</strong>g nations that<br />

conta<strong>in</strong> Amazon forest. Our study gave poor support<br />

for the use of dung beetles as <strong>in</strong>dicators of short termresponse<br />

(from 1 to 6 months) to road construction.<br />

However, although road construction might not negatively<br />

aff ect dung beetle diversity <strong>and</strong> abundance <strong>in</strong> microl<strong>and</strong>scapes<br />

over short time scales, these conclusions<br />

cannot be extrapolated directly to the much larger scales<br />

of l<strong>and</strong>scapes <strong>and</strong> decades (see the MAP <strong>in</strong>itiative concern<strong>in</strong>g<br />

the <strong>in</strong>ter-oceanic highway <strong>in</strong> the Southwestern<br />

Amazon (http://www.map-amazonia.net./) for further<br />

discussion; Perz et al. 2008). For example, a study of<br />

road impacts on a cloud forest <strong>in</strong> Puerto Rico 35 years<br />

after open<strong>in</strong>g, showed that although there was limited<br />

impact on vegetation structure <strong>and</strong> composition, the<br />

recovery of soil resource levels to those of mature forests<br />

was extremely slow (Ol<strong>and</strong>er et al. 1998). After open<strong>in</strong>g,<br />

roads foster access to natural resources <strong>and</strong> facilitate<br />

market access for rural producers, which <strong>in</strong> turn<br />

may generate habitat fragmentation <strong>and</strong> degradation<br />

(Perz et al. 2008). Develop<strong>in</strong>g a susta<strong>in</strong>able plan for<br />

road corridors <strong>in</strong> the Amazon would require long-term<br />

programs proceeded by coord<strong>in</strong>ated data collection <strong>and</strong><br />

long-term monitor<strong>in</strong>g. Th is would allow formulation<br />

of likely scenarios of long-term road impact, which<br />

then could serve as a basis for participatory plann<strong>in</strong>g<br />

not only with government agencies at national, prov<strong>in</strong>cial,<br />

<strong>and</strong> local levels but also with local communities.<br />

F<strong>in</strong>ally, to conclude this last article of the special session<br />

of “<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>”, we would like to stress<br />

that, <strong>in</strong> the light of this study, appropriate environmental<br />

assessment requires a good taxonomic basis. Limitations<br />

<strong>in</strong> taxonomy expertise represent a great challenge<br />

for the use of dung beetles as bio<strong>in</strong>dicators <strong>in</strong> the megadiverse<br />

ra<strong>in</strong>forest of the <strong>Ecuador</strong>ian Amazon. Further<br />

studies should reveal whether coarser taxonomic data<br />

or data on particular dung beetle taxa could be used to<br />

detect ecosystem changes with sensitivity. However, <strong>in</strong><br />

a study on tropical beetles, Grimbacher et al. (2008)<br />

showed that species data had the greatest sensitivity to<br />

environmental change <strong>and</strong> cautioned aga<strong>in</strong>st the use<br />

of higher taxonomic levels as a st<strong>and</strong>ard procedure for<br />

the study of environmental change <strong>in</strong> <strong>in</strong>vertebrate assemblages.<br />

Invest<strong>in</strong>g resources <strong>in</strong> <strong>in</strong>sect taxonomy likely<br />

represents a critical requirement for measur<strong>in</strong>g the


Dung beetles response to road construction<br />

conservation status of highly endangered Neotropical<br />

ecosystems.<br />

Acknowledgements. We warmly thank A. Janeta for his help<br />

with dung beetle photographs <strong>and</strong> sort<strong>in</strong>g <strong>and</strong> N. Andrade for<br />

database management. We also thank C. Keil for constructive<br />

discussions <strong>and</strong> the l<strong>in</strong>guistic revision of the manuscript <strong>and</strong><br />

H. Navarette <strong>and</strong> O.Vacas from the PUCE for logistic support<br />

<strong>and</strong> data compilation regard<strong>in</strong>g the description of the study<br />

site. F<strong>in</strong>ally we are grateful to S. Burneo <strong>and</strong> B. Liger for map<br />

edit<strong>in</strong>g <strong>and</strong> to all volunteers who helped with label<strong>in</strong>g <strong>and</strong> data<br />

process<strong>in</strong>g of the beetles. We thank three anonymous reviewers<br />

for helpful comments on a previous version of the manuscript.<br />

Th is study was funded by Petrobrás Energía <strong>Ecuador</strong>.<br />

References<br />

Andresen E. 2002. Dung beetles <strong>in</strong> a Central Amazonian ra<strong>in</strong>forest <strong>and</strong><br />

their ecological role as secondary seed disperses. Ecological <strong>Entomology</strong><br />

27: 257-270.<br />

Andresen E., Feer F. 2005. Th e role of dung beetles as secondary seed dispersers<br />

<strong>and</strong> their eff ect on plant regeneration <strong>in</strong> tropical ra<strong>in</strong>forests, p.<br />

331-349. <strong>in</strong>: Forget P. M., Lambert J. E., Hulme P. E., V<strong>and</strong>er Wall<br />

S. B. (eds.), Seed Fate: Predation, Dispersal <strong>and</strong> Seedl<strong>in</strong>g Establishment.<br />

CABI International, Wall<strong>in</strong>gford, UK.<br />

Arnaud P. 1997. Description de nouvelles espèces du Genre Coprophanaeus<br />

Ols. Besoiro 4: 4-8.<br />

Baumgartner J. 1998. Population <strong>and</strong> Community Ecology for Insect<br />

Management <strong>and</strong> Conservation. CRC Press, Rotterdam, Th e<br />

Netherl<strong>and</strong>s, 120 p.<br />

Boonrotpong S., Sotthib<strong>and</strong>hu, S., Pholpunth<strong>in</strong> C. 2004. Species<br />

composition of dung beetles <strong>in</strong> the primary <strong>and</strong> secondary forests at<br />

Ton Nga Chang Wildlife Sanctuary. Science Asia 30: 59-65.<br />

Celi J., Davalos A. 2001. Manual de monitoreo los escarabajos peloteros como<br />

<strong>in</strong>dicadores de la calidad ambiental. EcoCiencia, Quito, <strong>Ecuador</strong>. 71 p.<br />

Celi J., Terneus E., Torres J., Ortega M. 2004. Dung beetles (Coleoptera:<br />

Scarabae<strong>in</strong>ae) diversity <strong>in</strong> an altitud<strong>in</strong>al gradient <strong>in</strong> the Cutucú range,<br />

Morona Santiago, <strong>Ecuador</strong>ian Amazon. Lyonia 7: 37-52.<br />

Chapman M. G., Underwood A. J. 1999. Ecological patterns <strong>in</strong> multivariate<br />

assemblages: <strong>in</strong>formation <strong>and</strong> <strong>in</strong>terpretation of negative values <strong>in</strong><br />

ANOSIM tests. Mar<strong>in</strong>e Ecology Progress Series 180: 257-265.<br />

Clarke K. R. 1993. Non-parametric multivariate analyses of changes <strong>in</strong><br />

community structure. Australian Journal of Ecology 18: 117-143.<br />

Colwell R. K. 2006. Estimates: Statistical Estimation of Species Richness <strong>and</strong><br />

Shared Species from Samples, Version 7·5. User’s GUIDE <strong>and</strong> Application.<br />

http://purl.oclc.org/estimates<br />

Cook J. 1998. A revision of the neotropical genus Bdelyrus Harold<br />

(Coleoptera: Scarabaeidae) Th e Canadian Entomologist 130: 631-689.<br />

<strong>Dangles</strong> O., Barragan A., Cárdenas R., Keil C. 2009. <strong>Entomology</strong> <strong>in</strong><br />

<strong>Ecuador</strong>: <strong>Recent</strong> <strong>developments</strong> <strong>and</strong> future challenges. Annales de la<br />

Société Entomologique de France (n. s.) 45(4): XXX to be completed.<br />

Davis A. J., Holloway J. D., Huijbregts H., Krikken J., Kirk-Spriggs<br />

A. H., Sutton S. L. 2001. Dung beetles as <strong>in</strong>dicators of change <strong>in</strong> the<br />

forests of northern Borneo. Journal of Applied Ecology 38: 593-616.<br />

Davis A. L. V., Philips T. K. 2005. Eff ect of deforestation on a southwest<br />

Ghana dung beetle assemblage (Coleoptera: Scarabaeidae) at the<br />

periphery of Ankasa conservation area. Environmental <strong>Entomology</strong> 34:<br />

1081-1088.<br />

Dunn R. R., Danoff -Burg J. A. 2007. Road size <strong>and</strong> carrion beetle<br />

assemblages <strong>in</strong> a New York forest. Journal of Insect Conservation 11(4):<br />

325-332.<br />

Durães R., Mart<strong>in</strong>s W., Vaz-de-Mello F. 2005. Ecology, behavior <strong>and</strong><br />

bionomics of dung beetle (Coleoptera: Scarabaeidae) assemblages<br />

across a natural forest-cerrado ecotone <strong>in</strong> M<strong>in</strong>as Gerais, Brazil.<br />

Neotropical <strong>Entomology</strong> 34(5): 721-731.<br />

Edmonds W. D. 1994. Revisions of Phanaeus MacLeay, a new world genus<br />

of Scarabae<strong>in</strong>ae dung Beetles (Coleoptera: Scarabaeidae, Scarabae<strong>in</strong>ae)<br />

Contributions <strong>in</strong> Science of the National History Museum of Los Angeles<br />

County 443: 1-105.<br />

Ewers R. M., Didham R. K. 2008. Pervasive impact of large-scale edge<br />

eff ects on a beetle community. Proceed<strong>in</strong>gs of the National Academy of<br />

Sciences 105(14): 5426-5429.<br />

Forman R. T. T., Sperl<strong>in</strong>g D., Bissonette J. A., Clevenger A. P., Cutshall<br />

C. D., Dale V. H., Fahrig L., France R., Goldman C. R., Heanue K.,<br />

Jones J. A., Swanson F. J., Turrent<strong>in</strong>e T., W<strong>in</strong>ter T. C. 2003. Road<br />

ecology: science <strong>and</strong> solutions. Isl<strong>and</strong> Press, USA.<br />

Forsyth A. B., Spector S., Gill B., Guerra F., Ayzama S. 1998. Dung<br />

beetles (Coleoptera: Scarabaeidae: Scarabae<strong>in</strong>ae) of Parque Nacional<br />

Noel Kempff Mercado, p. 181-216, 368-372 <strong>in</strong>: Killeen T. J.,<br />

Schulenberg T. S. (eds.). A biological assessment of Parque Nacional<br />

Noel Kempff Mercado, Bolivia. RAP Work<strong>in</strong>g Papers 10, Conservation<br />

International, Wash<strong>in</strong>gton DC.<br />

Gardner T. A., Hernández M. I. M., Barlow J., Peres C. A. 2008.<br />

Underst<strong>and</strong><strong>in</strong>g the biodiversity consequences of habitat change: the<br />

value of secondary <strong>and</strong> plantation forests for neotropical dung beetles.<br />

Journal of Applied Ecology 45: 883-893.<br />

Génier F. 1996. A revision of the neotropical genus Ontherus Erichson<br />

(Coleoptera: Scarabaeidae, Scarabae<strong>in</strong>ae). Memoirs of Entomological<br />

Society of Canada 170: 1-169.<br />

Grimbacher P. S., Catterall C. P., Kitch<strong>in</strong>g R. L. 2008. Detect<strong>in</strong>g the eff ects<br />

of environmental change above the species level with beetles <strong>in</strong> a fragmented<br />

tropical ra<strong>in</strong>forest l<strong>and</strong>scape. Ecological <strong>Entomology</strong> 33: 66-79.<br />

Gucht K. van der, V<strong>and</strong>ekerckhove T., Vloemans N., Cous<strong>in</strong> S., Muylaert<br />

K., Sabbe K., Gillis M., Declerk S., Meester L. de, Vyverman<br />

W. 2005. Characterization of bacterial communities <strong>in</strong> four freshwater<br />

lakes diff er<strong>in</strong>g <strong>in</strong> nutrient load <strong>and</strong> food web structure. Microbiology<br />

Ecology 53: 205-220.<br />

Halff ter G., Favila M. E. 1993. Th e Scarabae<strong>in</strong>ae (Insecta: Coleoptera), an animal<br />

group for analyz<strong>in</strong>g, <strong>in</strong>ventory<strong>in</strong>g <strong>and</strong> monitor<strong>in</strong>g biodiversity <strong>in</strong> tropical<br />

ra<strong>in</strong> forest <strong>and</strong> modifi ed l<strong>and</strong>scapes. Biology International 27: 15-21.<br />

Halff ter G., Arellano L. 2002. Response of dung beetle diversity to human<strong>in</strong>duced<br />

changes <strong>in</strong> a tropical l<strong>and</strong>scape. Biotropica 34: 144-154.<br />

Hanski I., Cambefort Y. (eds) 1991. Dung Beetle Ecology. Pr<strong>in</strong>ceton<br />

University Press, Pr<strong>in</strong>ceton, New Jersey, 520 p.<br />

Hecnar S. J., M‘closkey R. T. 1996. Regional dynamics <strong>and</strong> the status of<br />

amphibians. Ecology 77: 2091-2097.<br />

Howden H. F., Nealis V. G. 1975. Eff ects of clear<strong>in</strong>g <strong>in</strong> a tropical ra<strong>in</strong><br />

forest on the composition of the coprophagous scarab beetle fauna<br />

(Coleoptera). Biotropica 7: 77-83.<br />

Howden H. F., Young O. P. 1981. Panamanian Scarabae<strong>in</strong>ae: taxonomy,<br />

distribution, <strong>and</strong> habits (Coleoptera, Scarabaeidae) Contributions of the<br />

American Entomological Institute 18(1): 1-204.<br />

Hurlbert S. H. 1984. Pseudoreplication <strong>and</strong> the design of ecological fi eld<br />

experiments. Ecological Monographs 54: 187-211.<br />

Jessop L. 1985. An identifi cation guide to Eurystern<strong>in</strong>e dung beetles<br />

(Coleoptera, Scarabaeidae) Journal of Natural History 19: 1087-1111.<br />

Kle<strong>in</strong> B. C. 1989. Eff ects of forest fragmentation on dung <strong>and</strong> carrion<br />

beetle communities <strong>in</strong> Central Amazonia. Ecology 70: 1715-1725.<br />

Larsen T. H., Forsyth A. 2005. Trap spac<strong>in</strong>g <strong>and</strong> transect design for dung<br />

beetle biodiversity studies. Biotropica 37: 322-325.<br />

Larsen T., Lopera A., Forsyth A. 2006. Extreme trophic <strong>and</strong> habitat<br />

specialization by peruvian dung beetles (Coleoptera: Scarabaeidae:<br />

Scarabae<strong>in</strong>ae). Th e Coleopterists Bullet<strong>in</strong> 60: 315-324.<br />

Laurance W. F., Nascimento H. E. M., Laurance S. G., Andrade A.,<br />

Ewers R. M., Harms K. E., Luizão R. C., Ribeiro J. E. 2007. Habitat<br />

fragmentation, variable edge eff ects, <strong>and</strong> the l<strong>and</strong>scape-divergence<br />

hypothesis. PLoS ONE 2(10): e1017. doi:10.1371/ journal.<br />

pone.0001017.<br />

467


Lovejoy T. E., Bierregaard R. O., Ryl<strong>and</strong>s A. B., Malcolm J. R., Qu<strong>in</strong>tela<br />

C. E., Harper L. H., Brown K. S., Powell A. H., Powell G. V. N.,<br />

Schubart H. O. R., Hays M. 1986. Edge <strong>and</strong> other eff ects of isolation<br />

on Amazon forest fragments, p. 257-285, <strong>in</strong>: Soule M. E. (ed.),<br />

Conservation biology: the science of scarcity <strong>and</strong> diversity. Sunderl<strong>and</strong>,<br />

Massachusetts.<br />

Maurer D., Gerl<strong>in</strong>ger T., Robertson G. 1999. Rare species as bio<strong>in</strong>dicators<br />

<strong>in</strong> mar<strong>in</strong>e monitor<strong>in</strong>g. Bullet<strong>in</strong> of the Southern California Academy of<br />

Sciences 98(3): 91-102.<br />

Med<strong>in</strong>a C. A., Lopera A. 2001. Clave ilustrada para la identifi cación<br />

de géneros de escarabajos coprófagos (Coleoptera: Scarabae<strong>in</strong>ae) de<br />

Colombia. Caldasia 22(2): 299-315.<br />

Myers N., Mittermeier R., da Fonseca G. A., Kent J. 2000. Biodiversity<br />

hotspots for conservation priorities. Nature 403: 853-858.<br />

Murcia C. 1995. Edge eff ects <strong>in</strong> fragmented forests: implications for<br />

conservation. Trends <strong>in</strong> Ecology & Evolution 10: 58-62.<br />

Nichols E., Larsen T. B., Spector S., Davis A. L. V., Escobar F., Favila<br />

M., Vul<strong>in</strong>ec K., the Scarabae<strong>in</strong>ae Research Network. 2007. Global<br />

dung beetle response to tropical forest modifi cation <strong>and</strong> fragmentation:<br />

a quantitative literature review <strong>and</strong> meta-analysis. Biological Conservation,<br />

137: 1-19.<br />

Nichols E., Spector S., Louzada J., Larsen T., Amezquita S., Favila M.<br />

E., Th e Scarabae<strong>in</strong>ae Research Network. 2008. Ecological functions<br />

<strong>and</strong> ecosystem services provided by Scarabae<strong>in</strong>ae dung beetles.<br />

Biological Conservation 141(6): 1461-1474.<br />

Nichols E., Gardner T. A., Peres C. A., Spector S., Th e Scarabae<strong>in</strong>ae<br />

Research Network. 2009. Co-decl<strong>in</strong><strong>in</strong>g mammals <strong>and</strong> dung beetles:<br />

an impend<strong>in</strong>g ecological cascade. Oikos 118: 481-487,<br />

Novotny V., Basset Y . 2000. Rare species <strong>in</strong> communities of tropical <strong>in</strong>sect<br />

herbivores: ponder<strong>in</strong>g the mystery of s<strong>in</strong>gletons. Oikos 89: 564-572.<br />

Ol<strong>and</strong>er L. P., Scatenab F. N., Silver W. L. 1998. Impacts of disturbance<br />

<strong>in</strong>itiated by road construction <strong>in</strong> a subtropical cloud forest <strong>in</strong> the<br />

Luquillo Experimental Forest, Puerto Rico. Forest Ecology <strong>and</strong><br />

Management 109: 33-49.<br />

Peck S. B., Howden H. F. 1984. Response of a dung beetles guild to diff erent<br />

sizes of dung bait <strong>in</strong> a Panamanian ra<strong>in</strong>forest. Biotropica 16: 235-238.<br />

Peres C. A., Dolman P. M. 2000. Density compensation <strong>in</strong> Neotropical<br />

primate communities: Evidence from 56 hunted <strong>and</strong> nonhunted<br />

Amazonian forests of vary<strong>in</strong>g productivity. Oecologia 122: 175-189.<br />

Perz S., Brilhante S., Brown F., Caldas M., Ikeda S., Mendoza E.,<br />

Overdevest C., Reis V., Reyes J. F., Rojas D., Schm<strong>in</strong>k M., Souza<br />

C., Walker R. 2008. Road build<strong>in</strong>g, l<strong>and</strong> use <strong>and</strong> climate change:<br />

prospects for environmental governance <strong>in</strong> the Amazon. Philosophical<br />

Transactions of the Royal Society 363: 1889-1895.<br />

468<br />

C. Carpio, D. A. Donoso, G. Ramón & O. <strong>Dangles</strong><br />

Qu<strong>in</strong>tero I., Rosl<strong>in</strong> T. 2005. Rapid recovery of dung beetle communities<br />

follow<strong>in</strong>g habitat fragmentation <strong>in</strong> central Amazonia. Ecology 12:<br />

3303-3311.<br />

Radtke M. G., Williamson G. B. 2005. Volume <strong>and</strong> l<strong>in</strong>ear measurements<br />

as predictors of dung beetle (Coleoptera: Scarabidae) biomass. Annals<br />

of the Entomological Society of America 98: 548-551.<br />

Radtke M. G., da Fonseca C. R. V., Williamson G. B. 2007. Th e old <strong>and</strong><br />

young Amazon: dung beetle biomass, abundance <strong>and</strong> species diversity.<br />

Biotropica 39: 725-730.<br />

Ries L., Fletcher R. J., Batt<strong>in</strong> J., Sisk T. D. 2004. Ecological responses to<br />

habitat edges: mechanisms, models, <strong>and</strong> variability expla<strong>in</strong>ed. Annual<br />

Review of Ecology, Evolution <strong>and</strong> Systematics 39: 491-522.<br />

Scheffl er P. Y. 2005. Dung beetle (Coleoptera: Scarabaeidae) diversity<br />

<strong>and</strong> community structure across three disturbance regimes <strong>in</strong> eastern<br />

Amazonia. Journal of Tropical Ecology 21: 9-19.<br />

Shahabudd<strong>in</strong> G., Schulze C. H., Tscharntke T. 2005. Changes of dung<br />

beetle communities from ra<strong>in</strong>forests towards agroforestry systems <strong>and</strong><br />

annual cultures <strong>in</strong> Sulawesi (Indonesia). Biodiversity <strong>and</strong> Conservation<br />

14: 863-877.<br />

Spector S., Ayzama S. 2003. Rapid turnover <strong>and</strong> edge eff ects <strong>in</strong> dung<br />

beetle assemblages (Scarabaeidae) at a Bolivian Neotropical Forest -<br />

Savanna Ecotone. Biotropica 35: 394-404.<br />

Spector S., Forsyth A. B. 1998. Indicator taxa <strong>in</strong> the vanish<strong>in</strong>g tropics, p.<br />

181-210 <strong>in</strong>: Mace G. M, Balmford A., G<strong>in</strong>sberg J. R. (eds.), Conservation<br />

<strong>in</strong> a Chang<strong>in</strong>g World. Cambridge University Press, London.<br />

Trombulak S. C., Frissell C. A. 2000. Review of ecological eff ects of roads<br />

on terrestrial <strong>and</strong> aquatic assemblages. Conservation Biology 14: 18-30.<br />

Tuomisto H., Poulsen A. D., Ruokole<strong>in</strong>en K., Morgan R. C., Qu<strong>in</strong>tana<br />

C., Celi J., Canas G. 2003. L<strong>in</strong>k<strong>in</strong>g fl oristic patterns with soil<br />

heterogeneity <strong>and</strong> satellite imagery <strong>in</strong> <strong>Ecuador</strong>ian Amazonia. Ecological<br />

Application 13: 352-371.<br />

Valencia R., Foster R. B., Villa G., Condit R., Svenn<strong>in</strong>g J.-C., Hernández<br />

C., Romoleroux K., Losos E., Magård E., Balslev H. 2004. Tree<br />

species distributions <strong>and</strong> local habitat variation <strong>in</strong> the Amazon: large<br />

forest plot <strong>in</strong> eastern <strong>Ecuador</strong>. Journal of Ecology 92 (2): 214-229.<br />

Vidaurre T., Gonzales L., Ledezma M. 2008. Escarabajos coprófagos<br />

(Scarabaeidae: Scarabae<strong>in</strong>ae) del palmar de las islas, Santa Cruz –<br />

Bolivia. Kempffi ana 4: 3-20.<br />

Williams-L<strong>in</strong>era G. , Dom<strong>in</strong>guez-Gastelu V., Garcia-Zurita M. E . 1998.<br />

Microenvironment <strong>and</strong> fl oristics of diff erent edges <strong>in</strong> a fragmented<br />

tropical ra<strong>in</strong>forest. Conservation Biology 12: 1091 - 1102.


Dung beetles response to road construction<br />

Appendix 1.<br />

List of total number of <strong>in</strong>dividuals of the dung beetle (Coleoptera: Scarabe<strong>in</strong>ae) species <strong>and</strong> morpho-species captured <strong>in</strong> excrement- <strong>and</strong> tuna fi sh-baited<br />

pitfall traps dur<strong>in</strong>g the study period (1 month, 3 month <strong>and</strong> 6 months after road build<strong>in</strong>g).<br />

Tribes Species Sept 2005 Nov 2005 Feb 2006<br />

Ateuch<strong>in</strong>i Ateuchus murrayi (Harold 1868)<br />

Ateuchus scatimoides (Balthasar 1939)<br />

Ateuchus sp.1<br />

Ateuchus sp.2<br />

Ateuchus sp.3<br />

Canthidium haroldi (Preudhome de Borre 1886)<br />

Canthidium sp.1 0 1 0<br />

Canthidium sp.2 12 6 2<br />

Canthidium sp.3 9 2 0<br />

Canthidium sp.4 107 12 0<br />

Canthidium sp.5 10 2 0<br />

Canthidium sp.6 22 5 2<br />

Canthidium sp.7 49 8 3<br />

Canthidium sp.8 3 0 0<br />

Trichilum sp.1 0 0 2<br />

Uroxys sp.1 2 6 5<br />

Canthon<strong>in</strong>i Canthon aequ<strong>in</strong>octialis (Harold 1868) 248 278 180<br />

Canthon luteicollis (Erichson 1847) 153 78 12<br />

Canthon brunneus (Schmidt 1922) 2 1 1<br />

Canthon sp.1 5 3 1<br />

Canthon sp.2 0 1 0<br />

Deltochilum car<strong>in</strong>atum (Westwood 1837) 9 2 2<br />

Deltochilum amazonicum (Bates 1887) 3 6 9<br />

Deltochilum orbiculare (Lansberge 1874) 0 1 10<br />

Deltochilum obenbergeri (Balthasar 1939)<br />

95<br />

65<br />

25<br />

Deltochilum sp.1<br />

8<br />

1<br />

2<br />

Deltochilum sp.2 1 2 2<br />

Deltochilum sp.3 19 21 12<br />

Malagoniella astyanax (<strong>Olivier</strong> 1789) 0 0 1<br />

S<strong>in</strong>apisoma sp.1 0 0 3<br />

Scybalocanthon sp.1 20 3 9<br />

Scybalocanthon pygidialis (Schmidt 1922) 3 0 0<br />

Sylvicanthon bridarollii (Mart<strong>in</strong>ez 1949) 21 36 2<br />

Sylvicanthon sp. 1 0 4 3<br />

Dichotomi<strong>in</strong>i Bdelyrus sp.1 0 1 0<br />

Dichotomius fortestriatus (Luederwaldt 1923) 210 201 115<br />

Dichotomius globulus (Felsche 1901) 5 2 5<br />

Dichotomius lucasi 112 18 27<br />

Dichotomius prietoi (Martínez & Mart<strong>in</strong>ez 1982) 29 15 14<br />

Dichotomius mamillatus (Felsche 1901) 80 45 35<br />

Dichotomius ohausi (Luederwaldt 1922)<br />

63<br />

26<br />

25<br />

Dichotomius sp.1<br />

20<br />

19<br />

9<br />

Ontherus diabolicus (Genier 1996) 26 15 7<br />

Scatimus str<strong>and</strong>i (Balthasar 1939)<br />

0<br />

4<br />

0<br />

Scatimus sp.1<br />

2<br />

5<br />

0<br />

Scatimus sp.2 1 0 1<br />

Eurystern<strong>in</strong>i Eurysternus caribaeus (Herbst 1789) 152 74 51<br />

Eurysternus confusus (Jessop 1985) 194 105 50<br />

Eurysternus hamaticollis (Balthasar 1939) 78 42 15<br />

Eurysternus <strong>in</strong>fl exus (Germar 1824) 8 1 0<br />

Eurysternus vastiorum (Mart<strong>in</strong>ez 1988) 10 2 1<br />

Eurysternus velut<strong>in</strong>us (Bates 1887) 103 51 38<br />

Onthophag<strong>in</strong>i Onthophagus haematopus (Harold 1875) 219 282 89<br />

Onthophagus acum<strong>in</strong>atus (Harold 1880) 5 12 3<br />

Onthophagus sp.1 14 6 0<br />

Onthophagus sp.2 6 9 3<br />

Onthophagus sp.3 10 8 4<br />

Onthophagus sp.4 19 11 0<br />

Onthophagus sp.5 15 2 2<br />

Onthophagus sp.6 1 1 0<br />

Onthophagus sp.7 1 0 0<br />

Onthophagus sp.8 2 1 1<br />

Onthophagus sp.9 3 2 4<br />

Onthophagus sp.10 11 7 1<br />

Phanae<strong>in</strong>i Coprophanaeus telamon (Erichson 1847) 23 40 22<br />

Coprophanaeus callegarii (Arnaud 2002) 1 7 2<br />

Oxysternon conspicillatum (Weber 1801) 63 33 15<br />

Oxysternon silenus (Castelnau 1840) 8 2 0<br />

Phanaeus chalcomelas (Perty 1830) 26 40 10<br />

26<br />

15<br />

5<br />

9<br />

3<br />

5<br />

5<br />

4<br />

10<br />

3<br />

3<br />

7<br />

1<br />

3<br />

0<br />

2<br />

0<br />

3<br />

469


Temporal abundance patterns of butterfl ies<br />

consideration that butterfl ies have been widely used as<br />

biological <strong>in</strong>dicators (Brown 1991, Pearson & Cassola<br />

1992, Kremen 1992; 1994, Hill et al. 2001, Scoble<br />

1995, Carroll & Pearson 1998, Lawton et al. 1998,<br />

Brown & Freitas 2000, Fleishmann et al. 2005).<br />

In this context, it is important to study factors<br />

that <strong>in</strong>fl uence the diversity <strong>and</strong> temporal patterns of<br />

species richness over time <strong>and</strong> not only to describe<br />

these patterns. Climate has a great <strong>in</strong>fl uence on several<br />

aspects of butterfl y communities. In temperate zones,<br />

climate is the most important <strong>in</strong>fl uential factor on<br />

Lepidopteran species richness through both direct<br />

eff ects (higher temperature may correlate with higher<br />

numbers of species) <strong>and</strong> <strong>in</strong>direct eff ects (weather<br />

<strong>in</strong>fl uences on food availability) (Menéndez et al.<br />

2007). Moreover, butterfl y populations from those<br />

areas are often regionally synchronized (see Pollard<br />

1991) due to the regional correlation <strong>in</strong> climatic<br />

patterns (Sutcliff e et al. 1996). Butterfl y abundance<br />

patterns are generally regulated by food resource<br />

availability (phenology of host plants) (Yamamoto et<br />

al. 2007), which is also regulated by the climate. In<br />

the Neotropics, climatic factors (temperature <strong>and</strong><br />

precipitation) are also important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g both<br />

richness <strong>and</strong> community structure of butterfl ies at<br />

both the local scale (Atlantic forest butterfl ies, Brown<br />

& Freitas 2000) <strong>and</strong> at regional scale (48 sites from<br />

Mexico to southern Brazil, Brown 2003).<br />

For several decades, it has been known that tropical<br />

<strong>in</strong>sects have seasonal changes <strong>in</strong> their abundance <strong>and</strong><br />

that climate is one of the most <strong>in</strong>fl uential factors<br />

controll<strong>in</strong>g these patterns (Wolda 1978; 1988 <strong>and</strong><br />

citations there<strong>in</strong>). In general, climate acts directly<br />

by <strong>in</strong>creas<strong>in</strong>g the mortality of adults <strong>and</strong> of larvae <strong>in</strong><br />

all stages of development, <strong>and</strong> <strong>in</strong>directly by aff ect<strong>in</strong>g<br />

food availability (production of new leaves, fruits <strong>and</strong><br />

fl owers). Th is relationship with plant phenology results<br />

because numerous herbivores use specifi c plant resources<br />

dur<strong>in</strong>g short periods of time, when the quality of these<br />

sources is optimal (Hellmann 2002). In comparison<br />

with temperate species, tropical <strong>in</strong>sects tend to have<br />

less noticeable seasonal peaks <strong>and</strong> a higher proportion<br />

of active species throughout a year, particularly <strong>in</strong> areas<br />

that does not have marked dry seasons (Wolda 1988).<br />

In the case of tropical butterfl ies, changes <strong>in</strong> temporal<br />

abundance patterns have been reported <strong>in</strong> Asian<br />

forests with seasons marked by the monsoon (Spitzer<br />

et. al 1993) <strong>and</strong> <strong>in</strong> aseasonal tropical forests (Hill et al.<br />

2003). Additionally, it has been reported that butterfl y<br />

communities attracted by baits <strong>in</strong> <strong>Ecuador</strong>ian Amazonia<br />

(area with an aseasonal climatic pattern) fl uctuate over<br />

the year <strong>in</strong> abundance <strong>and</strong> species richness, show<strong>in</strong>g<br />

clear peaks <strong>and</strong> lows (DeVries et al. 1997; 1999,<br />

DeVries & Walla 2001). Despite the <strong>in</strong>fl uence of the<br />

climate over tropical butterfl y populations, few studies<br />

have analyzed quantitatively the relationship between<br />

climate <strong>and</strong> butterfl y communities (see Hamer et al.<br />

2005) or changes <strong>in</strong> composition <strong>and</strong> structure of<br />

butterfl y communities over the year, <strong>and</strong> not only the<br />

variation <strong>in</strong> the species richness <strong>and</strong> abundance. Th is<br />

situation is especially true for the Neotropics, with<br />

countries with the highest diversity worldwide: Perú,<br />

<strong>Ecuador</strong> <strong>and</strong> Colombia.<br />

Th e primary objectives of this research were: (1) to<br />

analyze the variation of temporal patterns (composition<br />

<strong>and</strong> structure) of butterfl y communities attracted<br />

to carrion baits <strong>in</strong> an aseasonal forest of <strong>Ecuador</strong>ian<br />

Amazonia; <strong>and</strong> (2) to quantify the relationship between<br />

climatic factors (precipitation <strong>and</strong> temperature) <strong>and</strong><br />

variation <strong>in</strong> abundance <strong>and</strong> species richness <strong>in</strong> these<br />

Lepidopteran communities over the year.<br />

Study area<br />

Material <strong>and</strong> methods<br />

Th e study area was located <strong>in</strong> areas surround<strong>in</strong>g the Yasuni<br />

Scientifi c Research Station, <strong>in</strong> the <strong>Ecuador</strong>ian Amazonia<br />

(YSRS, 0°39’03’’ N, 76° 22’42” W). Th e station is located <strong>in</strong><br />

the Yasuni National Park, which with the Huaorani Ethnic<br />

Reserve, comprises 1.6 million ha of forest <strong>and</strong> was declared by<br />

UNESCO as a Biosphere Reserve <strong>in</strong> 1987 (Pitman 2000). Th e<br />

park conta<strong>in</strong>s extensive areas of primary forest <strong>and</strong> is <strong>in</strong>habited<br />

by <strong>in</strong>digenous groups. It is divided <strong>in</strong>to diff erent blocks ceded<br />

to oil companies which have constructed several roads <strong>in</strong> the<br />

north for prospect<strong>in</strong>g <strong>and</strong> exploitation (Valencia et al. 2004).<br />

Trees reach canopy heights of 30-35 m <strong>and</strong> emergent trees<br />

higher than 50 m exist <strong>in</strong> the area. Th e most abundant tree<br />

species <strong>in</strong> the park is a palm, Iriartea deltoidea Ruiz & Pav.<br />

1798 (Burnham 2002). Elevations range from 200-500 m.a.s.l.<br />

Weather is tropical <strong>and</strong> humid. Ra<strong>in</strong>fall <strong>and</strong> temperature are<br />

aseasonal with a mean annual temperature of 26°C (Burnham<br />

et al. 2001, Burnham 2002). Th ere is a slightly drier period<br />

between December <strong>and</strong> February (Baslev et al. 1987) but the<br />

mean temperature rema<strong>in</strong>s remarkably stable throughout the<br />

year (Pitman 2000). Th e area receives around 3000 mm³ of<br />

ra<strong>in</strong> per year, based on a 10-year record from a meteorological<br />

station located at YSRS.<br />

Census techniques<br />

Butterfl ies were successively sampled us<strong>in</strong>g Van Someren-<br />

Rydon traps (Rydon 1964)<br />

baited with shrimp (Penaeus vannamei Boone 1931) that had<br />

been ferment<strong>in</strong>g for 11–20 days.<br />

Th erefore, the present study focused on the rott<strong>in</strong>g-carrion<br />

guild of butterfl ies, species that feed on decay<strong>in</strong>g organic<br />

material. Accord<strong>in</strong>g to Hall & Willmott (2000), this guild has<br />

been ignored by most authors, <strong>in</strong>clud<strong>in</strong>g DeVries et al. (1997),<br />

who recognized a system of two feed<strong>in</strong>g guilds, one for fruit<br />

feeders <strong>and</strong> one for nectar feeders. We selected rotten shrimp<br />

as bait because it attracted at least 20 percent more species <strong>and</strong><br />

<strong>in</strong>dividuals than rotten fruit baits <strong>in</strong> small experiments carried<br />

out by us at YSRS (Checa, unpublished data).<br />

471


Us<strong>in</strong>g a hierarchical sampl<strong>in</strong>g design, four sampl<strong>in</strong>g sites were<br />

located with<strong>in</strong> four 1ha-plots of undisturbed forest (Fig. 1)<br />

near YSRS. Th e distance between two neighbor<strong>in</strong>g plots was<br />

over 500 m <strong>and</strong> all sites were similar <strong>in</strong> terms of altitude (400–<br />

450 m) <strong>and</strong> topography. At each site, three baited traps were<br />

set up at three diff erent strata, understory (1.5 m), <strong>in</strong>termediate<br />

(10 m) <strong>and</strong> canopy (20–27 m). Th ese diff erent strata were<br />

sampled due to the diff erent composition <strong>and</strong> structure reported<br />

for tropical butterfl y communities vertically <strong>in</strong> these forests<br />

(DeVries 1988; DeVries et al. 1997; DeVries et al. 1999; Hill et<br />

al. 2001; Schulze et al. 2001; Fermon et al. 2003, Dumbrell &<br />

Hill 2005, Molleman et al. 2006, Barlow et al. 2007).<br />

All 48 traps (4 plots × 4 sampl<strong>in</strong>g po<strong>in</strong>ts × 3 strata) were<br />

checked daily dur<strong>in</strong>g the last 11 days of each month from April<br />

2002 to April 2003. Th e traps were opened <strong>and</strong> baited on the<br />

fi rst trapp<strong>in</strong>g day. Over the next 10 days, traps were checked<br />

<strong>and</strong> all trapped butterfl ies were collected <strong>and</strong> killed by thoracic<br />

compression. Specimens were placed <strong>in</strong> glass<strong>in</strong>e envelopes. Th e<br />

bait was renewed daily. Traps were checked between 08:00 <strong>and</strong><br />

15:00. Th e sequence of site visitation was r<strong>and</strong>omized to avoid<br />

any systematic bias. A total of 130 trapp<strong>in</strong>g days were employed<br />

dur<strong>in</strong>g this research.<br />

Taxonomical identifi cation<br />

We only analyzed the Nymphalidae species captured, which<br />

correspond to the subfamilies Apatur<strong>in</strong>ae, Biblid<strong>in</strong>ae, Charax<strong>in</strong>ae,<br />

Heliconi<strong>in</strong>ae, Limenitid<strong>in</strong>ae, Morph<strong>in</strong>ae, Nymphal<strong>in</strong>ae<br />

<strong>and</strong> Satyr<strong>in</strong>ae. Although, some species of Riod<strong>in</strong>idae, Hesperiidae<br />

<strong>and</strong> Lycaenidae were also collected, they were not <strong>in</strong>cluded<br />

<strong>in</strong> the analysis of the present paper.<br />

All collected material was exam<strong>in</strong>ed <strong>in</strong> the laboratory <strong>and</strong><br />

classifi ed to the level of subspecies. Identifi cations were<br />

performed us<strong>in</strong>g taxonomic revisions of some Neotropical<br />

genera: Adelpha (Willmott 2003), Asterope (Jenk<strong>in</strong>s 1987),<br />

Catoblepia (Bristow 1981), Catonephele (Jenk<strong>in</strong>s 1985), Eunica<br />

(Jenk<strong>in</strong>s 1990) <strong>and</strong> Opsiphanes (Bristow 1991). However, as<br />

there are not taxonomic treatments for all genera <strong>in</strong> the study<br />

areas, the rema<strong>in</strong><strong>in</strong>g species were identifi ed by specialists,<br />

Gerardo Lamas (University of San Marcos, Perú) <strong>and</strong> Keith<br />

Willmott (University of Florida, USA), who also confi rmed<br />

the identifi cations made with the references. Th e taxonomic<br />

classifi cation <strong>and</strong> nomenclature followed the revision by Lamas<br />

(2004). All collected specimens were deposited <strong>in</strong> the Section<br />

of Invertebrates, Museum of Zoology QCAZ of the Pontifi cal<br />

Catholic University of <strong>Ecuador</strong>.<br />

Statistical analyses<br />

Species accumulation curves were used to determ<strong>in</strong>e whether<br />

the majority of the species from the area were <strong>in</strong>cluded <strong>in</strong> the<br />

sample. Th ese curves plot the cumulative number of species<br />

collected (S) as a function of sampl<strong>in</strong>g eff ort (n). S<strong>in</strong>ce the order<br />

of the samples <strong>in</strong>cluded <strong>in</strong> the process aff ects the general form<br />

of the curve (Colwell & Codd<strong>in</strong>gton 1994, Magurran 2004),<br />

curves were determ<strong>in</strong>ed with 100 r<strong>and</strong>omizations. Th is analysis<br />

was conducted for each of the subfamilies <strong>in</strong>cluded <strong>in</strong> this<br />

study, us<strong>in</strong>g the program, Species Diversity & Richness III®.<br />

Th e variation <strong>in</strong> the composition <strong>and</strong> structure of butterfl y<br />

communities over the year was analyzed us<strong>in</strong>g non-metrical<br />

multidimensional scal<strong>in</strong>g (NMDS) which uses distance vectors<br />

to dist<strong>in</strong>guish groups. In this study, Euclidean distance was<br />

selected. Th e ma<strong>in</strong> variable analyzed was time (13 months,<br />

from April 2002 to April 2003) <strong>and</strong> data from diff erent traps<br />

<strong>and</strong> plots dur<strong>in</strong>g each month were pooled. An Analysis of<br />

472<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

Similarities (ANOSIM) was used to test if the diff erences <strong>in</strong><br />

structure <strong>and</strong> composition of butterfl y communities throughout<br />

the year were signifi cant. A SIMPER analysis was employed to<br />

fi nd species that were responsible for the separation of groups<br />

(butterfl y communities) over time. Th ese analyses were done<br />

us<strong>in</strong>g the program PAST 1.8© (Hammer et al. 2008).<br />

L<strong>in</strong>ear regression models were run to determ<strong>in</strong>e if there was<br />

a relationship between butterfl y population fl uctuation <strong>and</strong><br />

climate variables. Th ese models <strong>in</strong>corporated autoregressive<br />

correlated errors for the repeated observations with<strong>in</strong> each<br />

month. Th e Kenward-Rogers (1997) adjustment to the<br />

denom<strong>in</strong>ator degrees of freedom <strong>in</strong> the F-tests was used to<br />

account for bias <strong>in</strong> the estimation of the variance-covariance<br />

matrix of the errors. We use the Glimmix procedure to run these<br />

models, which fi ts statistical models to data with correlations<br />

due to temporal proximity. Th e SAS 9.2 © program was used to<br />

run these analysis.<br />

Despite the correlation between temperature <strong>and</strong> ra<strong>in</strong>, both<br />

variables were used to diff erentiate the relationship with<br />

butterfl y population changes over time. If the l<strong>in</strong>ear model<br />

fi ts the data well, a residual plot should be a scatter of po<strong>in</strong>ts<br />

that follow a normal distribution <strong>and</strong> are uncorrelated with<br />

the fi tted values (Gotelli & Ellison 2004). When the residuals<br />

were not normally distributed, the variables were transformed<br />

logarithmicly (Gotelli & Ellison 2004). L<strong>in</strong>ear regression<br />

models were performed us<strong>in</strong>g the total number of species <strong>and</strong><br />

<strong>in</strong>dividuals collected daily with the average temperature <strong>and</strong><br />

precipitation data for that day. Each subfamily was evaluated<br />

<strong>in</strong>dividually to determ<strong>in</strong>e if each taxonomical group responded<br />

diff erently to the climatic variation.<br />

Results<br />

A total of 10,254 <strong>in</strong>dividuals were collected<br />

represent<strong>in</strong>g 240 butterfl y species from the families<br />

Nymphalidae, Riod<strong>in</strong>idae, Lycaenidae <strong>and</strong> Hesperiidae.<br />

In this report, only the data for the Nymphalidae<br />

were analyzed. Th is study group conta<strong>in</strong>ed 9,236<br />

<strong>in</strong>dividuals from 208 species as a subset of the total<br />

sample (Appendix 1), more than 90% of the specimens<br />

were males. Two new species, Magneuptychia sp. <strong>and</strong><br />

Chloreuptychia sp., <strong>and</strong> two new records for <strong>Ecuador</strong>,<br />

Eunica violetta Staud<strong>in</strong>ger [1885] <strong>and</strong> Adelpha<br />

amazona Aust<strong>in</strong> & Jas<strong>in</strong>ski 1999, were found (Fig. 2).<br />

Twenty s<strong>in</strong>gletons <strong>and</strong> 14 doubletons were registered.<br />

Temenis laothoe laothoe (Cramer 1777) was the most<br />

abundant species with 1,136 <strong>in</strong>dividuals (12.3% of the<br />

total sample). Adelpha jordani Fruhstorfer 1913 was<br />

represented by 522 <strong>in</strong>dividuals <strong>and</strong> Opsiphanes <strong>in</strong>virae<br />

cass<strong>in</strong>a (Hübner [1808]) was represented by 449<br />

<strong>in</strong>dividuals (Fig. 2). Th e subfamily Biblid<strong>in</strong>ae was the<br />

most numerous with 4,408 <strong>in</strong>dividuals from 70 species<br />

while Apatur<strong>in</strong>ae had the least number of species <strong>and</strong><br />

<strong>in</strong>dividuals (5 <strong>and</strong> 209 respectively). Th e accumulation<br />

curves for all subfamilies stabilized (Fig. 3) s<strong>in</strong>ce <strong>in</strong> the<br />

majority of cases only one new species was registered <strong>in</strong><br />

the last 30 survey days. Th e subfamily Limenitid<strong>in</strong>ae<br />

was an exception, as the species accumulation curve<br />

started to stabilize <strong>in</strong> the n<strong>in</strong>th month of survey.


ARTICLE Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 470-486<br />

Temporal abundance patterns of butterfl y communities<br />

(Lepidoptera: Nymphalidae) <strong>in</strong> the <strong>Ecuador</strong>ian Amazonia<br />

<strong>and</strong> their relationship with climate<br />

E-mail: mfcheca@ufl .edu<br />

Accepté le 24 septembre 2009<br />

470<br />

María Fern<strong>and</strong>a Checa (1,2) , Alvaro Barragán (1) , Joana Rodríguez & Mary Christman (3)<br />

(1) Museo de Zoología QCAZ, Sección Invertebrados, Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Apartado 17-01-2184, Quito, <strong>Ecuador</strong><br />

(2) Graduate Program, McGuire Center for Lepidoptera <strong>and</strong> Biodiversity, Florida Museum of Natural History, University of Florida,<br />

Ga<strong>in</strong>esville, FL 32611, USA<br />

(3) Department of Statistics, University of Florida, Ga<strong>in</strong>esville, FL 32608, USA<br />

Abstract. Tropical <strong>in</strong>sects show temporal changes <strong>in</strong> their abundance <strong>and</strong> climate is one of the most<br />

<strong>in</strong>fl uential factors. For tropical butterfl ies, few studies have quantifi ed this relationship or analyzed<br />

changes <strong>in</strong> community composition <strong>and</strong> structure throughout time. Communities of butterfl ies attracted<br />

to rott<strong>in</strong>g-carrion bait <strong>in</strong> one area of the Yasuni National Park, <strong>in</strong> <strong>Ecuador</strong>ian Amazonia were exam<strong>in</strong>ed<br />

for these relationships. Butterfl y communities <strong>in</strong> three different strata of the forest were sampled over<br />

13 months us<strong>in</strong>g traps with rotten shrimp bait. In total, 9236 <strong>in</strong>dividuals of 208 species were collected<br />

between April 2002 <strong>and</strong> April 2003. The composition <strong>and</strong> structure of butterfl y communities showed<br />

signifi cant variation dur<strong>in</strong>g the survey with a constant replacement of species throughout the year.<br />

Additionally, these communities had the highest species richness <strong>and</strong> abundance dur<strong>in</strong>g the months<br />

with high temperatures <strong>and</strong> <strong>in</strong>termediate precipitation. Despite relatively low variation, temperature<br />

was the most signifi cant climatic factor expla<strong>in</strong><strong>in</strong>g differences <strong>in</strong> butterfl y richness <strong>and</strong> abundance<br />

throughout the year. This signifi cant response of butterfl y communities to slight temperature variations<br />

re<strong>in</strong>force the need of temporal studies to better predict how tropical butterfl y populations will respond<br />

to predicted climate change.<br />

Résumé. Phénologie de l’abondance des communautés de papillons (Lepidoptera :<br />

Nymphalidae) de l’Amazonie Equatorienne et relations avec le climat. Les <strong>in</strong>sectes tropicaux<br />

montrent des variations en abondance qui sont pr<strong>in</strong>cipalement <strong>in</strong>fl uencées par le climat. En ce qui<br />

concerne les papillons tropicaux, relativement peu d’études ont quantifi é cette <strong>in</strong>fl uence ou analysé<br />

les changements de structure des communautés le long de l’année. Nous nous sommes <strong>in</strong>téressés<br />

à cette question en analysant les communautés de papillons attirés par des pièges à carcasse en<br />

décomposition dans une zone du Parc National de Yasuni, en Amazonie équatorienne. La méthodologie<br />

a consisté en un échantillonnage durant 13 mois dans trois strates différentes de la forêt en utilisant<br />

des pièges remplis d’appât à base de crevettes en décomposition. Un total de 9236 <strong>in</strong>dividus et<br />

208 espèces de papillons ont a<strong>in</strong>si été collectés entre avril 2002 et avril 2003. La composition des<br />

communautés de papillonns a montré une variation signifi cative pendant l’étude, décrivant un patron<br />

circulaire avec un remplacement constant des espèces le long de l’année. De plus, ces communautés<br />

ont montré une richesse et une abondance maximales pendant les mois présentant des températures<br />

élevées et des niveaux de précipitations <strong>in</strong>termédiaires. En dépit de variations relativement faibles,<br />

la température fut le facteur climatique le plus signifi catif pour expliquer les différences en terme de<br />

richesse et d’abondance tout au long de l’année. Cette réponse signifi cative des communautés de<br />

papillons à de faibles changements de température en forêt tropicale, renforce la nécessité d’études<br />

temporelles afi n de mieux prédire comment les populations de papillons tropicaux vont répondre aux<br />

changements globaux.<br />

Keywords: Rott<strong>in</strong>g-carrion Nymphalid guild, <strong>Ecuador</strong>, Precipitation, Temporal abundance patterns,<br />

Temperature, Tropical ra<strong>in</strong> forest.<br />

<strong>Ecuador</strong> is one of the most butterfl y diverse countries<br />

worldwide along with Perú <strong>and</strong> Colombia,<br />

countries that at least have 4 times more l<strong>and</strong>. <strong>Ecuador</strong><br />

has approximately 4000 species of butterfl ies (Willmott<br />

& Hall <strong>in</strong> prep.) but our knowledge about these <strong>in</strong>sects<br />

is still scarce. Accord<strong>in</strong>g to data from 2000–2005,<br />

<strong>Ecuador</strong> had the highest deforestation rate <strong>in</strong> Lat<strong>in</strong><br />

America (FAO 2007). As habitat loss is the ma<strong>in</strong> cause<br />

of butterfl y ext<strong>in</strong>ction, diversity is be<strong>in</strong>g lost before we<br />

can quantify or underst<strong>and</strong> it.<br />

Studies on the temporal fl uctuations of butterfl y<br />

species of temperate zones have contributed successfully<br />

to regional conservation programs (Sparrow et al.<br />

1994). In the same way, this type of research with<br />

tropical species could contribute to conservation<br />

programs <strong>in</strong> the Amazonia, especially tak<strong>in</strong>g <strong>in</strong>


Temporal abundance patterns of butterfl ies<br />

Temporal Patterns of Butterfly Communities<br />

Results from the NMDS analysis showed that the<br />

overall composition <strong>and</strong> structure of the butterfl y<br />

community changed over the year with a circular<br />

pattern of variation. Similarity between butterfl y<br />

communities collected <strong>in</strong> diff erent months decreased<br />

from April to September 2002 but later <strong>in</strong>creased until<br />

the end of the sampl<strong>in</strong>g period (April 2003) when<br />

the communities were similar <strong>in</strong> composition <strong>and</strong><br />

structure to those of April 2002 (Fig. 4). Results of the<br />

ANOSIM showed that most of these diff erences were<br />

highly signifi cant (p < 0.001), except for consecutive<br />

months <strong>in</strong> the majority of cases, <strong>and</strong> between April<br />

2002 <strong>and</strong> April 2003 (Table 1). Th e SIMPER analysis<br />

revealed that the species contribut<strong>in</strong>g the most to this<br />

separation of the butterfl y communities throughout a<br />

year were Adelpha jordani, Panacea procilla divalis (H.<br />

W. Bates 1868), Dynam<strong>in</strong>e chryseis (H. W. Bates 1865),<br />

Diaethria clymena peruviana (Guenée 1872), Adelpha<br />

mesent<strong>in</strong>a (Cramer 1777) <strong>and</strong> A. iphiclus iphiclus (L.<br />

1758) (Table 2, Fig. 2). Th ese butterfl ies were among<br />

the most numerous <strong>in</strong> this survey. Together they<br />

comprise 1913 <strong>in</strong>dividuals, 21% of the total sample.<br />

Th e 34 s<strong>in</strong>gleton <strong>and</strong> doubleton species contributed<br />

the least to the observed variation <strong>in</strong> the NMDS.<br />

Together they expla<strong>in</strong>ed only 6 percent of the variation<br />

(Table 2). A constant turnover of species with<strong>in</strong><br />

butterfl y communities was observed throughout the<br />

year, less than 13 percent of the species were present<br />

dur<strong>in</strong>g all the months of the survey. Th e subfamilies<br />

with the highest number of species dur<strong>in</strong>g the study,<br />

Figure 1<br />

Map of the study area show<strong>in</strong>g the location of the four butterfl y sampl<strong>in</strong>g sites (1,2,3 <strong>and</strong> 4) <strong>in</strong> Yasuni National Park, near the Yasuni Scientifi c Research<br />

Station (YSRS) <strong>Ecuador</strong>ian Amazon.<br />

473


474<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

Figure 2<br />

Some species collected <strong>in</strong> YSRS from April 2002 to April 2003. Two new records for <strong>Ecuador</strong> are <strong>in</strong>cluded: A1, Adelpha amazona <strong>and</strong> B3, Eunica violetta.<br />

Th e other species are: C2, Narope cyllabarus; D4, Opsiphanes <strong>in</strong>virae cass<strong>in</strong>a; E5, Temenis laothoe laothoe; F6, Coenophlebia Archidona; G7, Agrias claud<strong>in</strong>a<br />

lugens; H8, Panacea procilla divalis; I9, Adelpha jordani; J10, Anaeomorpha splendida. All of the photos are presented <strong>in</strong> the real size of the butterfl y. Photos<br />

by María F. Checa.


Temporal abundance patterns of butterfl ies<br />

Biblid<strong>in</strong>ae, Charax<strong>in</strong>ae <strong>and</strong> Limenitid<strong>in</strong>ae, were also<br />

the most abundant overall (Fig. 4).<br />

Butterfly Communities <strong>and</strong> Climate<br />

Butterfl ies attracted to rott<strong>in</strong>g-carrion bait showed<br />

a conspicuous fl uctuation along the year with clear<br />

highs <strong>and</strong> lows. Th e highest number of species (145)<br />

<strong>and</strong> the highest abundance (1681 <strong>in</strong>dividuals) were<br />

collected <strong>in</strong> September. Th is peak co<strong>in</strong>cides with the<br />

beg<strong>in</strong>n<strong>in</strong>g of the period with the least precipitation.<br />

Ra<strong>in</strong> level decreased from 424 mm³ <strong>in</strong> July to 145<br />

mm³ <strong>in</strong> September (Fig. 5). Th is peak <strong>in</strong> the species<br />

<strong>and</strong> overall abundance co<strong>in</strong>cides with an <strong>in</strong>crease <strong>in</strong><br />

average temperature by almost one degree from June<br />

to September (from 25.8 °C to 26.7 °C, see Fig. 5). In<br />

contrast, the number of <strong>in</strong>dividuals <strong>and</strong> species was the<br />

lowest from March to April with an average of 82 species<br />

<strong>and</strong> 310 <strong>in</strong>dividuals collected <strong>in</strong> the period when<br />

precipitation started to <strong>in</strong>crease (334 mm³ <strong>in</strong> February<br />

<strong>and</strong> 230 mm³ <strong>in</strong> March) <strong>and</strong> the average temperature<br />

decreased by almost one degree <strong>in</strong> comparison to the<br />

other months. Th e warmest period of the year ends <strong>in</strong><br />

March (Fig. 5). Th e l<strong>in</strong>ear regression models showed<br />

a signifi cant relationship between the butterfl y population<br />

fl uctuation <strong>and</strong> the climate variables (Table 3).<br />

Th e coeffi cient of temperature was signifi cant <strong>in</strong> the<br />

regression model between the total number species collected<br />

each day <strong>and</strong> the average temperature <strong>and</strong> precipitation<br />

on the same day (N = 100, β temp = 3.11, p <<br />

0.01). Similar results were obta<strong>in</strong>ed for the regression<br />

model between total daily relative abundance of butterfl<br />

ies <strong>and</strong> temperature <strong>and</strong> precipitation (N = 100,<br />

β temp = 3.93, p < 0.01). For these two l<strong>in</strong>ear regression<br />

models, the average temperature coeffi cient was higher<br />

than the precipitation coeffi cient (Table 3), <strong>in</strong>dicat<strong>in</strong>g<br />

that daily temperature expla<strong>in</strong>ed the highest amount<br />

of variation. In both cases, the precipitation coeffi cient<br />

Figure 3<br />

Species accumulation curves calculated for each Nymphalid subfamily,<br />

Biblid<strong>in</strong>ae (crosses), Charax<strong>in</strong>ae (open squares), Heliconi<strong>in</strong>ae (closed<br />

squares), Limenitid<strong>in</strong>ae (closed circles), Satyr<strong>in</strong>ae (open circles), Morph<strong>in</strong>ae<br />

(triangles), <strong>and</strong> Nymphal<strong>in</strong>ae (stars).<br />

was negative but not signifi cant, show<strong>in</strong>g that ra<strong>in</strong> <strong>in</strong>crease<br />

was l<strong>in</strong>ked to a decrease <strong>in</strong> the butterfl y number<br />

of <strong>in</strong>dividuals <strong>and</strong> species. In the months when precipitation<br />

decreased start<strong>in</strong>g <strong>in</strong> September, the number<br />

of butterfl ies <strong>in</strong>creased considerably (Fig. 5).<br />

Th e l<strong>in</strong>ear regressions models that were used to<br />

analyze daily data (species richness <strong>and</strong> abundance)<br />

of each subfamily <strong>in</strong>dependently showed similar<br />

results. Th e coeffi cients of temperature were signifi cant<br />

Table 1. Results of ANOSIM analysis with the p values of similarity between butterfl y communities from each month from April 2002 to April 2003.<br />

Apr<br />

2002 May Jun Jul Aug Sep Oct Nov Dec<br />

Jan<br />

2003 Feb Mar Apr<br />

Apr 2002 0.011 0.149 0 0 0 0 0.001 0.132 0.239 0.553 0.303 0.13<br />

May 0.347 0.337 0.173 0.002 0.024 0.439 0.264 0.171 0.013 0 0<br />

Jun 0.06 0.016 0 0 0.075 0.611 0.617 0.153 0.011 0.003<br />

Jul 0.662 0.007 0.065 0.806 0.094 0.053 0.003 0 0<br />

Aug 0.033 0.327 0.622 0.021 0.009 0 0 0<br />

Sep 0.341 0.018 0 0 0 0 0<br />

Oct 0.107 0 0 0 0 0<br />

Nov 0.07 0.042 0.001 0 0<br />

Dec 0.751 0.209 0.017 0.003<br />

Jan 2003 0.24 0.031 0.009<br />

Feb 0.3 0.123<br />

Mar 0.732<br />

475


for Biblid<strong>in</strong>ae, Limenitid<strong>in</strong>ae <strong>and</strong> Charax<strong>in</strong>ae, but<br />

were not signifi cant for Morph<strong>in</strong>ae, Nymphal<strong>in</strong>ae,<br />

Heliconi<strong>in</strong>ae, Apatur<strong>in</strong>ae <strong>and</strong> Satyr<strong>in</strong>ae. However,<br />

Satyr<strong>in</strong>ae presented signifi cant coeffi cients for<br />

precipitation (Table 3). Th e values of the coeffi cients<br />

from the models of each subfamily <strong>in</strong>creased compared<br />

to the models of the entire community (pool<strong>in</strong>g all of<br />

the subfamilies) <strong>in</strong>dicat<strong>in</strong>g a decrease <strong>in</strong> the variance<br />

<strong>and</strong> a better fi t of the variables <strong>in</strong> l<strong>in</strong>ear regression<br />

models.<br />

Discussion<br />

Dur<strong>in</strong>g this survey, 9236 <strong>in</strong>dividuals from 208<br />

species of butterfl ies were collected <strong>in</strong><br />

476<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

baited traps over 130 days of sampl<strong>in</strong>g us<strong>in</strong>g 48<br />

traps. Th is study focused on the rott<strong>in</strong>g carrion guild of<br />

butterfl ies, which is still poorly known; <strong>in</strong> fact, most of<br />

the previous studies focused on rott<strong>in</strong>g-fruit butterfl ies<br />

employ<strong>in</strong>g rotten banana as bait (e.g. P<strong>in</strong>heiro &<br />

Ortiz 1992, Kremen 1994, Shahabudd<strong>in</strong> & Terborgh<br />

1999, Lewis 2000, Schulze et al. 2001, Hill et al. 2001,<br />

DeVries & Walla 2001, Hamer et al. 2003, Fermon et<br />

al. 2003, Dumbrell & Hill 2005, Hamer et al. 2005,<br />

Veddeler et al. 2005, Molleman et al. 2006, Barlow et<br />

al. 2007, Uehara-Prado et al. 2007).<br />

Th is study found approximately fi ve times as<br />

many <strong>in</strong>dividuals to be attracted to carrion bait than<br />

a similar study by DeVries et al. (1999) us<strong>in</strong>g fruit<br />

bait at a nearby site. Th ese diff erences could be due<br />

Figure 4<br />

Results of the NMDS us<strong>in</strong>g Euclidean distance show<strong>in</strong>g diff erences <strong>in</strong> the structure <strong>and</strong> the composition of butterfl y communities throughout the year. Circles<br />

represent the variation <strong>in</strong> species richness of the diff erent subfamilies analyzed.


Temporal abundance patterns of butterfl ies<br />

to many factors, most obviously diff erences between<br />

the study location faunas <strong>and</strong> diff erences between<br />

the total community abundance over the two survey<br />

periods. However, diff erent types of bait are also<br />

likely to attract both diff erent numbers of species <strong>and</strong><br />

<strong>in</strong>dividuals. Consistent with our results, a study by<br />

Hall & Willmott (2000) throughout <strong>Ecuador</strong> found<br />

many more species <strong>and</strong> <strong>in</strong>dividuals of Riod<strong>in</strong>idae to be<br />

attracted to carrion baits than fruit baits. Additional<br />

studies explor<strong>in</strong>g this idea would clearly be valuable.<br />

Temporal Patterns of Butterfly Communities<br />

Th e composition of butterfl y communities attracted<br />

to rott<strong>in</strong>g-carrion bait showed a circular pattern of<br />

variation throughout the year (Fig. 4). Among-month<br />

diff erences <strong>in</strong> butterfl y composition were, <strong>in</strong> general,<br />

signifi cant except for consecutive months (Table 1).<br />

Table 2. Results of SIMPER method analyz<strong>in</strong>g all of the 13 months of survey together. It is shown the relative contribution (Cont.) of diff erent species to<br />

separate butterfl y communities along the year <strong>and</strong> the cumulative percent of explanation (Cu.%) of each species.<br />

Only species that most <strong>and</strong> less contributed are presented along with their abundance <strong>in</strong> each sampled month. To determ<strong>in</strong>e the contribution of each species,<br />

refer to the cumulative percent.<br />

Species Cont. Cu.% Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr<br />

Adelpha jordani 0,70 1,9 0 0 0 0 29 137 81 119 58 63 13 12 10<br />

Panacea procilla divalis 0,52 3,2 110 32 6 15 3 2 156 35 0 5 10 8 17<br />

Dynam<strong>in</strong>e chryseis 0,45 4,4 0 3 5 5 25 226 4 2 5 11 6 0 2<br />

Telenassa teletusa burchelli 0,44 5,6 0 9 9 25 20 3 1 0 0 2 1 0 0<br />

Diaethria clymena peruviana 0,43 6,7 5 15 17 36 16 17 6 10 1 2 0 1 1<br />

Adelpha mesent<strong>in</strong>a 0,41 7,8 7 19 10 19 18 41 47 48 15 17 4 4 0<br />

A. iphiclus iphiclus 0,40 8,9 4 30 11 22 21 76 61 54 16 18 3 3 3<br />

A. attica attica 0,38 9,9 3 6 5 12 5 18 17 26 7 6 3 0 0<br />

Pyrrhogyra neaerea arg<strong>in</strong>a 0,38 10,9 1 1 0 1 16 20 17 6 5 5 1 0 1<br />

Laparus doris doris 0,37 11,9 4 3 1 18 6 7 6 6 0 2 0 0 0<br />

Eunica clytia 0,37 12,8 0 0 1 19 6 23 0 1 2 2 0 0 0<br />

Marpesia chiron marius 0,37 13,8 3 3 4 1 13 8 13 0 0 0 0 0 0<br />

Hermeuptychia hermes 0,37 14,8 10 28 23 36 13 7 5 1 3 1 6 2 4<br />

Pyrrhogyra amphiro amphiro 0,36 15,7 3 3 0 1 5 33 13 7 1 7 1 0 2<br />

Panacea prola amazonica 0,36 16,7 2 4 8 2 0 3 3 10 0 20 1 1 0<br />

Delpha erotia erotia 0,35 17,6 3 13 8 8 7 8 5 19 7 2 5 0 0<br />

Doxocopa pavon pavon 0,34 18,5 0 0 0 0 6 12 4 13 2 0 1 2 0<br />

Callicore cynosura cynosura 0,34 19,4 2 4 4 10 11 7 3 6 1 0 1 0 0<br />

Adelpha thesprotia 0,33 20,3 5 10 5 12 7 14 10 17 6 10 0 1 1<br />

Hermeuptychia fallax 0,04 98,4 0 0 0 0 0 0 0 0 0 0 1 0 0<br />

Prepona pheridamas 0,04 98,5 1 0 0 0 0 0 0 0 0 0 0 0 0<br />

Cissia penelope 0,04 98,6 1 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hermeuptychia maimoune 0,04 98,7 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Caeruleuptychia scopulata 0,04 98,8 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Dynam<strong>in</strong>e gisella 0,04 98,9 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Dynastor darius stygianus 0,03 99,0 0 0 1 0 0 0 0 0 0 0 0 0 0<br />

Magneuptychia libye 0,03 99,1 0 1 0 0 0 0 0 0 0 0 0 0 0<br />

Bia actorion rebeli 0,03 99,1 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Adelpha serpa diadochus 0,03 99,2 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Dione juno juno 0,03 99,3 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Tegosa serpia 0,03 99,4 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Catoblepia generosa 0,03 99,5 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

Memphis xenocles xenocles 0,03 99,6 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

Callicore excelsior elatior 0,03 99,6 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

Memphis anna anna 0,03 99,7 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

Eunica violetta 0,03 99,8 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

Catacore kolyma kolyma 0,03 99,9 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

Anartia amathea sticheli 0,03 99,9 0 0 0 0 0 1 0 0 0 0 0 0 0<br />

Eunica mygdonia mygdonia 0,03 100 0 0 0 0 0 1 0 0 0 0 0 0 0<br />

477


A constant turnover of the majority of species over<br />

certa<strong>in</strong> periods of time was noted; less than 13% of<br />

species were present dur<strong>in</strong>g the whole year of sampl<strong>in</strong>g.<br />

Th e constant presence of some species as Temenis laothoe<br />

laothoe, Opsiphanes <strong>in</strong>virae cass<strong>in</strong>a, Adelpha iphiclus<br />

iphiclus <strong>and</strong> others (Appendix 1) suggests that they<br />

have overlapp<strong>in</strong>g generations (see Hamer et al. 2005).<br />

Th e butterfl y species that contributed the most to the<br />

diff erences <strong>in</strong> the collections throughout the year were,<br />

Adelpha jordani, Panacea procilla divalis, Dynam<strong>in</strong>e<br />

chryseis, Telenassa teletusa burchelli (Moulton 1909),<br />

Diaethria clymena peruviana, Adelpha mesent<strong>in</strong>a <strong>and</strong><br />

A. iphiclus iphiclus (Table 2, Fig. 2). Th ese butterfl ies<br />

were some of the most abundant species <strong>in</strong> the study,<br />

but <strong>in</strong> contrast with other abundant species like<br />

Temenis laothoe laothoe or Opsiphanes <strong>in</strong>virae cass<strong>in</strong>a,<br />

they were not present throughout the year <strong>and</strong> they<br />

had conspicuous peaks <strong>and</strong> decl<strong>in</strong>es <strong>in</strong> abundance.<br />

Th ese temporal abundance patterns <strong>and</strong> their relative<br />

abundance partially expla<strong>in</strong> why they contributed to<br />

the separation of butterfl y communities throughout<br />

the year of survey. Th ese temporal abundance patterns<br />

could also be related to the feed<strong>in</strong>g specialization,<br />

<strong>in</strong>dicat<strong>in</strong>g these species are probably specialists as<br />

polyphagous <strong>in</strong>sects, with a wide range of host plants,<br />

show less seasonality than monophagous species that<br />

are more <strong>in</strong>timately associated with the phenology<br />

of a s<strong>in</strong>gle host plant (Novotny & Basset 1998).<br />

In general, the temporal patterns of abundance <strong>in</strong><br />

butterfl y communities may be due to a variation <strong>in</strong> the<br />

dynamics of host plants or to a temporal variation <strong>in</strong><br />

larval mortality (Hamer et al. 2005).<br />

Butterfly Communities <strong>and</strong> Climate<br />

Plant phenology <strong>and</strong> climate are key environmental<br />

variables that aff ect butterfl y population dynamics<br />

(Murphy et al. 1990, Spitzer et al. 1993; Barlow et al.<br />

2007). In the case of abiotic factors, this study confi rms<br />

the signifi cant relationship between temperature <strong>and</strong><br />

precipitation <strong>and</strong> population fl uctuation of Neotropical<br />

butterfl ies, despite the overall aseasonality of the study<br />

area. Th ere is synchronization between the decrease<br />

of precipitation <strong>and</strong> the <strong>in</strong>crease <strong>in</strong> the number of<br />

captured species <strong>and</strong> <strong>in</strong>dividuals. Trap captures reached<br />

the lowest values of the entire year dur<strong>in</strong>g the period<br />

with highest ra<strong>in</strong>fall. It is possible that these data refl ect<br />

the abundance of adult butterfl ies, but also the level<br />

of activity. However, daily activity, the proportion of<br />

butterfl ies fl y<strong>in</strong>g, depends on the pool of <strong>in</strong>dividuals<br />

<strong>in</strong> a population. Despite overall favorable climatic<br />

conditions of high temperature <strong>and</strong> low precipitation,<br />

fewer species <strong>and</strong> <strong>in</strong>dividuals were collected dur<strong>in</strong>g the<br />

days with highest precipitation.<br />

478<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

Results from Yasuni concur with other studies about<br />

butterfl ies attracted to fruit baits <strong>in</strong> aseasonal forests <strong>in</strong><br />

<strong>Ecuador</strong>ian Amazonia (DeVries et al. 1997; DeVries<br />

& Walla 2001) <strong>and</strong> <strong>in</strong> other Neotropical areas with<br />

marked dry <strong>and</strong> ra<strong>in</strong>y periods (Barlow et al. 2007),<br />

where peaks of species richness <strong>and</strong> abundance were<br />

reported after the time of the year with the highest<br />

precipitation. Th ere is a negative correlation between<br />

this ra<strong>in</strong>fall <strong>and</strong> butterfl y population fl uctuation.<br />

Similar results were found <strong>in</strong> a study conducted <strong>in</strong><br />

Borneo that focused on one species of Satyr<strong>in</strong>ae (Hill<br />

et al. 2003). Furthermore, temperature is the variable<br />

that mostly expla<strong>in</strong>ed the variation <strong>in</strong> the trap captures<br />

<strong>in</strong> comparison with precipitation, even though mean<br />

temperature only varies over one degree dur<strong>in</strong>g the<br />

whole year. Th is result may be <strong>in</strong>creas<strong>in</strong>gly important<br />

<strong>in</strong> this century <strong>in</strong> light of global warm<strong>in</strong>g. Butterfl ies<br />

may have an extreme susceptibility to this phenomenon<br />

(Lawton et al. 1998 <strong>and</strong> citations there<strong>in</strong>, Wilson et<br />

al. 2005). Th is may have <strong>in</strong>creas<strong>in</strong>g importance <strong>in</strong><br />

conservation programs.<br />

Temperature’s central role <strong>in</strong> the biology <strong>and</strong> life<br />

history of butterfl ies can be expla<strong>in</strong>ed because these<br />

<strong>in</strong>sects are ectothermic. Th eir life cycle, distribution <strong>and</strong><br />

abundance are directly <strong>in</strong>fl uenced by temperature (Roy<br />

et al. 2001). Several key processes for butterfl y survival<br />

depend on regulation of <strong>in</strong>ternal temperature. Defense<br />

strategies of butterfl ies (mimetism, fast fl ight, etc) are<br />

related to their thermal biology (Chai et al. 1990). In<br />

periods with high precipitation, regularly accompanied<br />

by low temperatures, weather prevents fl ight, <strong>and</strong><br />

adult mortality is higher due to predation (Bowers et<br />

al. 1985, Srygley & Chai 1990). In experiments with<br />

Table 3. Coeffi cients (β) from l<strong>in</strong>ear regression models to analyze the<br />

relationship between the total butterfl y community <strong>and</strong> each subfamily<br />

<strong>in</strong>dependently with climatic variables.<br />

Species richness (S) <strong>and</strong> abundance of butterfl ies (N) collected daily were<br />

used as dependent variables. Signifi cant results are shown with asterisks<br />

(*: p


Temporal abundance patterns of butterfl ies<br />

species from temperate areas, fecundity <strong>and</strong> longevity<br />

was higher at higher temperatures (>25 °C) (Karlsson<br />

& Wiklund 2005).<br />

Butterfl y population dynamics are also related to<br />

plant phenology. Biotic <strong>in</strong>teractions such as herbivory<br />

<strong>and</strong> poll<strong>in</strong>ation select for tim<strong>in</strong>g of plant phenology<br />

patterns (Wright 1996). In a tropical dry forest<br />

<strong>in</strong> Venezuela, butterfl y oviposition occurs at the<br />

beg<strong>in</strong>n<strong>in</strong>g of the ra<strong>in</strong>y period which co<strong>in</strong>cides with the<br />

production of new leaves (Shahabudd<strong>in</strong> & Terborgh<br />

1999). Th is supports that the time of leaf production<br />

<strong>and</strong> dead plant tissue <strong>in</strong>fl uence the time of emergence<br />

<strong>and</strong> length of larval stages, egg hatch<strong>in</strong>g, diapause <strong>and</strong><br />

growth (Hellmann 2002). However, <strong>in</strong> the tropical ra<strong>in</strong><br />

forest of Yasuni, it is possible that a peak of abundance<br />

of larvae precedes the <strong>in</strong>crease <strong>in</strong> adults <strong>in</strong> months<br />

with high ra<strong>in</strong>fall levels (around May). However, this<br />

Figure 5<br />

Variation <strong>in</strong> species richness (A) <strong>and</strong> abundance (B) of butterfl y<br />

communities with climatic variables, ra<strong>in</strong>fall (bars, <strong>in</strong> mm) <strong>and</strong> average<br />

temperature (dots, <strong>in</strong> °C) from April 2002 to April 2003.<br />

would not co<strong>in</strong>cide with the period of leaf production,<br />

which has been predicted to occur dur<strong>in</strong>g time of peak<br />

irradiance <strong>in</strong> tropical evergreen forests where moisture<br />

defi cits are absent (Wright 1996). Th e peak of species<br />

richness <strong>and</strong> abundance of butterfl ies could be related<br />

to the amount of available resources (fl owers <strong>and</strong><br />

fruits) for adults as well, because many tropical plants<br />

show marked fl ower<strong>in</strong>g <strong>and</strong> fruit<strong>in</strong>g seasons which<br />

may be synchronized between species (Poul<strong>in</strong> et al.<br />

1999). In our sampl<strong>in</strong>g area, a parallel study of forest<br />

dynamics found a synchronized active period of fl ower<br />

production among most of the trees, shrubs <strong>and</strong> lianas<br />

when ra<strong>in</strong> decreased <strong>in</strong> June (Aguilar 2004). Th is study<br />

suggests that fruit production, one type of adult food<br />

resource, occurs after ra<strong>in</strong> decreases <strong>and</strong> co<strong>in</strong>cides with<br />

butterfl y abundance <strong>and</strong> species richness peaks.<br />

Information about temporal abundance patterns<br />

of tropical butterfl y communities is still scarce,<br />

especially <strong>in</strong> the Neotropics. Underst<strong>and</strong><strong>in</strong>g the<br />

temporal variation of butterfl y communities allows the<br />

establishment of environmental trends of these <strong>in</strong>sects<br />

but also generates useful <strong>in</strong>formation for conservation<br />

programs (Murphy et al. 1990, Kremen 1994). Th e<br />

analysis of these patterns <strong>in</strong> relation to weather is<br />

crucial due to alarm<strong>in</strong>g deforestation rates which are<br />

rapidly chang<strong>in</strong>g tropical l<strong>and</strong>scapes <strong>and</strong> modify<strong>in</strong>g<br />

tropical climates. Th is analysis is especially important<br />

due to potential negative eff ects of climate change on<br />

butterfl y populations (Lawton et al. 1998 <strong>and</strong> citations<br />

there<strong>in</strong>, Wilson et al. 2005). As an empirical support<br />

of the conclusions by Deutsch et al. (2008), our results<br />

of the tight relationship between temperature <strong>and</strong><br />

butterfl y population levels suggest that global warm<strong>in</strong>g<br />

issues will also be of major importance for ectothermic<br />

organisms liv<strong>in</strong>g <strong>in</strong> tropical regions.<br />

Acknowledgments. We are grateful to <strong>Olivier</strong> <strong>Dangles</strong> for<br />

review<strong>in</strong>g the manuscript <strong>and</strong> provid<strong>in</strong>g useful comments on<br />

NMDS statistical analysis, Gerardo Lamas <strong>and</strong> Keith Willmott<br />

for their help to identify butterfl y species <strong>and</strong> teach<strong>in</strong>g about<br />

Neotropical butterfl y research. Keith Willmott is also thanked<br />

for review<strong>in</strong>g the manuscript, Cliff ord Keil for the l<strong>in</strong>guistic<br />

revision, <strong>and</strong> H. Mogollón for his help <strong>in</strong> the preparation of<br />

data sets for analysis. We specially thank the Pontifi cal Catholic<br />

University of <strong>Ecuador</strong> for fi nanc<strong>in</strong>g <strong>and</strong> support<strong>in</strong>g this research<br />

<strong>and</strong> Patricio Ponce <strong>and</strong> Varsovia Cevallos for their support to<br />

<strong>in</strong>itiate <strong>and</strong> carry out fi eld work. Additionally, we are grateful to<br />

the staff of QCAZ Museum of Invertebrates of PUCE for their<br />

help <strong>in</strong> curat<strong>in</strong>g <strong>and</strong> preserv<strong>in</strong>g specimens <strong>and</strong> staff of YSRS for<br />

mak<strong>in</strong>g our stay <strong>in</strong> the station more comfortable.<br />

479


480<br />

References<br />

Aguilar Z. 2004. Flower<strong>in</strong>g on community level <strong>in</strong> a terra fi rme forest <strong>in</strong><br />

<strong>Ecuador</strong>ian Amazon. Lyonia 7: 116-123.<br />

Azerefegne F., Solbreck C., Ives A. 2001. Environmental forc<strong>in</strong>g <strong>and</strong> high<br />

amplitude fl uctuations <strong>in</strong> the population dynamics of the tropical<br />

butterfl y Acraea acerata (Lepidoptera: Nymphalidae). Th e Journal of<br />

Animal Ecology 70: 1032-1045.<br />

Balslev H., Luteyn J., Ollgaard B., Holm-Nielsen L. 1987. Composition<br />

<strong>and</strong> structure of adjacent unfl ooded <strong>and</strong> fl oodpla<strong>in</strong> forest <strong>in</strong> Amazonian<br />

<strong>Ecuador</strong>. Opera Botanica 92: 37-57.<br />

Barlow J., Overal W., Araujo I., Gardner T., Peres C. 2007. Th e value of<br />

primary, secondary <strong>and</strong> plantation forests for fruit-feed<strong>in</strong>g butterfl ies<br />

<strong>in</strong> the Brazilian Amazon. Ecology 44: 1001-1012.<br />

Bowers M. D., Brown I. L., Wheye D. D. 1985. Bird predation as a selective<br />

agent <strong>in</strong> a butterfl y population. Evolution 39: 93-103.<br />

Bristow C. R. 1981. A revision of the brassol<strong>in</strong>e genus Catoblepia<br />

(Lepidoptera: Rophalocera). Zoological Journal of the L<strong>in</strong>naean Society<br />

72: 117-163.<br />

Bristow C. R. 1991. A revision of the brassol<strong>in</strong>e genus Opsiphanes<br />

(Lepidoptera: Rophalocera). Zoological Journal of the L<strong>in</strong>naean Society<br />

101: 203-293.<br />

Brown K. S. Jr. 1991. Conservation of the Neotropical environments: <strong>in</strong>sects<br />

as <strong>in</strong>dicators, p. 350-404 <strong>in</strong>: Coll<strong>in</strong>s N. M., Th omas J. A. (eds),<br />

Th e conservation of <strong>in</strong>sects <strong>and</strong> their habitats. Academic Press, San Diego,<br />

USA.<br />

Brown K. S. Jr. 2003. Geologic, evolutionary <strong>and</strong> ecological bases of the<br />

diversifi cation of Neotropical butterfl ies: Implications for conservation,<br />

p. 166-201 <strong>in</strong>: Berm<strong>in</strong>gham E., Dick C. W., Moritz C. (eds.),<br />

Tropical ra<strong>in</strong>forests, past, present <strong>and</strong> future. Th e University of Chicago<br />

Press, Chicago, USA.<br />

Brown K. S. Jr., Freitas A. 2000. Atlantic forest butterfl ies: <strong>in</strong>dicators for<br />

l<strong>and</strong>scape conservation. Biotropica 32: 934-956.<br />

Burnham R. J. 2002. Dom<strong>in</strong>ance, diversity <strong>and</strong> distribution of lianas <strong>in</strong> Yasuni,<br />

<strong>Ecuador</strong>: who is on top? Journal of Tropical Ecology 18: 845-864.<br />

Burnham R. J., Pitman N. C., Johnson K. R., Wilf P. 2001. Habitatrelated<br />

error <strong>in</strong> estimat<strong>in</strong>g temperatures from leaf marg<strong>in</strong>s <strong>in</strong> a humid<br />

tropical forest. American Journal of Botany 88: 1096-1102.<br />

Carroll S. S., Pearson D. L. 1998. Spatial model<strong>in</strong>g of butterfl y species<br />

richness us<strong>in</strong>g tiger beetles (Cic<strong>in</strong>delidae) as a bio<strong>in</strong>dicator taxon.<br />

Ecological Applications 8: 531-543.<br />

Chai P., Srygley B. 1990. Predation <strong>and</strong> the fl ight, morphology <strong>and</strong><br />

temperature of neotropical ra<strong>in</strong>-forest butterfl ies. Th e American<br />

Naturalist 135: 748-765.<br />

Colwell R. K., Codd<strong>in</strong>gton J. A. 1994. Estimat<strong>in</strong>g terrestrial biodiversity<br />

through extrapolation, p. 101-118 <strong>in</strong>: Hawksworth D. L. (ed.), Biodiversity:<br />

measurement <strong>and</strong> estimation. Chapman & Hall Publications,<br />

London, UK.<br />

Deutsch C. A., Tewksbury J. J., Huey R. B., Sheldon K. S., Ghalambor<br />

C. K., Haak D. C., Mart<strong>in</strong> P.R. 2008. Impacts of climate warm<strong>in</strong>g on<br />

terrestrial ectotherms across latitude. Proceed<strong>in</strong>gs of the National Academy<br />

of Sciences of the USA 105: 6668-6672.<br />

DeVries P. J. 1988. Stratifi cation of fruit-feed<strong>in</strong>g nymphalid butterfl ies <strong>in</strong> a<br />

Costa Rican ra<strong>in</strong>forest. Journal of Research on the Lepidoptera 26: 98-108.<br />

DeVries P. J., Murray D., L<strong>and</strong>e R. 1997. Species diversity <strong>in</strong> vertical,<br />

horizontal <strong>and</strong> temporal dimensions of a fruit-feed<strong>in</strong>g butterfl y<br />

community <strong>in</strong> an <strong>Ecuador</strong>ian ra<strong>in</strong>forest. Biological Journal of the<br />

L<strong>in</strong>naean Society 62: 343-364.<br />

DeVries P. J., Walla T., Greeney H. F. 1999. Species diversity <strong>in</strong> spatial <strong>and</strong><br />

temporal dimensions of fruit-feed<strong>in</strong>g butterfl ies from two <strong>Ecuador</strong>ian<br />

ra<strong>in</strong>forests. Biological Journal of the L<strong>in</strong>naean Society 68: 333-353.<br />

DeVries P. J., Walla T. 2001. Species diversity <strong>and</strong> community structure <strong>in</strong><br />

neotropical fruit-feed<strong>in</strong>g butterfl ies. Biological Journal of the L<strong>in</strong>naean<br />

Society 74: 1-15.<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

Dumbrell A. J., Hill. J. K. 2005. Impacts of selective logg<strong>in</strong>g on canopy<br />

<strong>and</strong> ground assemblages of tropical forest butterfl ies: implications for<br />

sampl<strong>in</strong>g. Biological Conservation 125: 123-131.<br />

FAO. 2007. Situación de los bosques del mundo. Parte 1: Progresos hacia la<br />

ordenación forestal sostenible, Capitulo América Lat<strong>in</strong>a y el Caribe. FAO,<br />

Roma, Italia.<br />

Fermon H., Waltert M., Mühlenberg M. 2003. Movement <strong>and</strong> vertical<br />

stratifi cation of fruit-feed<strong>in</strong>g butterfl ies <strong>in</strong> a managed West African<br />

ra<strong>in</strong>forest. Journal of Insect Conservation 7: 7-19.<br />

Fleishman E., Macnally R., Murphy D. 2005. Relationships among nonnative<br />

plants, diversity of plants <strong>and</strong> butterfl ies, <strong>and</strong> adequacy of spatial<br />

sampl<strong>in</strong>g. Biological Journal of the L<strong>in</strong>naean Society 85: 157-166.<br />

Gotelli N. J., Ellison A. M. 2004. A primer of ecological statistics. S<strong>in</strong>auer<br />

Associates Publishers, Massachusetts, USA, 479 p.<br />

Hall J. W., Willmott K. R. 2000. Patterns of feed<strong>in</strong>g behaviour <strong>in</strong> adult<br />

male riod<strong>in</strong>id butterfl ies <strong>and</strong> their relationship to morphology <strong>and</strong><br />

ecology. Biological Journal of the L<strong>in</strong>naean Society 69: 1-23.<br />

Hamer K. C., Hill J. K., Benedick S., Mustaff a N., Sherratt T. N., Maryatis<br />

M., Chey V. K. 2003. Ecology of butterfl ies <strong>in</strong> natural <strong>and</strong> selectively<br />

logged forests of northern Borneo: the importance of habitat<br />

heterogeneity. Th e Journal of Applied Ecology 40: 150-162.<br />

Hamer K., Hill J., Mustaff a N., Benedick S., Sherratt T., Chey V.,<br />

Maryati M. 2005. Temporal variation <strong>in</strong> abundance <strong>and</strong> diversity of<br />

butterfl ies <strong>in</strong> Bornean ra<strong>in</strong> forests: opposite impacts of logg<strong>in</strong>g recorded<br />

<strong>in</strong> diff erent seasons. Journal of Tropical Ecology 21: 417-425.<br />

Hammer O., Harper D. A., Ryan P. D. 2008. PAST – Palaeontological Statistics,<br />

version 1.79. http: //folk.uio.no/ohamer/past.<br />

Hellmann J. J. 2002. Th e eff ect of an environmental change on mobile<br />

butterfl y larvae <strong>and</strong> the nutritional quality of their hosts. Th e Journal of<br />

Animal Ecology 71: 925-936.<br />

Hill J. K., Hamer K. C., Tangah J., Dawood M. 2001. Ecology of tropical<br />

butterfl ies <strong>in</strong> ra<strong>in</strong>forest gaps. Oecologia 128: 294-302.<br />

Hill J. K., Hamer K. C., Dawood M. M., Tangah J., Chey V. K. 2003.<br />

Ra<strong>in</strong>fall but not selective logg<strong>in</strong>g aff ects changes <strong>in</strong> abundance of a<br />

tropical forest butterfl y <strong>in</strong> Sabah, Borneo. Journal of Tropical Ecology<br />

19: 35-42.<br />

Jenk<strong>in</strong>s D. W. 1985. Neotropical Nymphalidae. III. Revision of Catonephele.<br />

Bullet<strong>in</strong> of the Allyn Museum 92: 1-65.<br />

Jenk<strong>in</strong>s D. W. 1987. Neotropical Nymphalidae. VI. Revision of Asterope.<br />

Bullet<strong>in</strong> of the Allyn Museum 114: 1-66.<br />

Jenk<strong>in</strong>s D. W. 1990. Neotropical Nymphalidae. VIII. Revision of Eunica.<br />

Bullet<strong>in</strong> of the Allyn Museum 131: 1-177.<br />

Karlsson B., Wiklund C. 2005. Butterfl y life history <strong>and</strong> temperature<br />

adaptations: dry open habitats select for <strong>in</strong>creased fecundity <strong>and</strong><br />

longevity. Th e Journal of Animal Ecology 74: 99-104.<br />

Kenward M. G., Roger J. H. 1997. Small sample <strong>in</strong>ference for fi xed eff ects<br />

from restricted maximum likelihood. Biometrics 53: 983–997.<br />

Kremen C. 1992. Asses<strong>in</strong>g the <strong>in</strong>dicator properties of species assemblages<br />

for natural areas monitor<strong>in</strong>g. Ecological Applications 2: 203-217.<br />

Kremen C. 1994. Biological <strong>in</strong>ventory us<strong>in</strong>g target taxa: a case study of the<br />

butterfl ies of Madagascar. Ecological Applications 4: 407-422.<br />

Lamas, G. 2004. Atlas of Neotropical Lepidoptera. Checklist: Part 4A,<br />

Hesperioidea-Papilionoidea. Scientifi c Publishers, Florida, USA, 439 p.<br />

Lawton J. H., Bignell D. E., Bolton B., Bloemers G. F., Eggleton P.,<br />

Hammond P. M., Hodda M., Holts R. D., Larsen T. B., Mawdsley<br />

N. A., Stork N. E., Srivastava D. S., Watt A. D. 1998. Biodiversity<br />

<strong>in</strong>ventories, <strong>in</strong>dicator taxa <strong>and</strong> eff ects of habitat modifi cation <strong>in</strong><br />

tropical forest. Nature 391: 72-75.<br />

Lewis O. T. 2000. Eff ect of experimental selective logg<strong>in</strong>g on tropical butterfl<br />

ies. Conservation Biology 15: 389-400.<br />

Magurran A. 2004. Measur<strong>in</strong>g biological diversity. Blackwell Science Press,<br />

Oxford, UK, 256 p.


Temporal abundance patterns of butterfl ies<br />

Menéndez R., González-Megías A., Coll<strong>in</strong>gham Y., Fox R., Roy D. B., R.<br />

Ohlemüller, Th omas C. D. 2007. Direct <strong>and</strong> <strong>in</strong>direct eff ects of climate<br />

<strong>and</strong> habitat factors on butterfl y diversity. Ecology 88: 605-611.<br />

Molleman F., Kop A., Brakefi eld P. M., DeVries P. J., Zwaan B. J.<br />

2006. Vertical <strong>and</strong> temporal patterns of biodiversity of fruit-feed<strong>in</strong>g<br />

butterfl ies <strong>in</strong> a tropical forest <strong>in</strong> Ug<strong>and</strong>a. Biodiversity <strong>and</strong> Conservation<br />

15: 107-121.<br />

Murphy D. D., Freas K. E., Weiss S. B. 1990. An environment-metapopulation<br />

approach to population viability analysis for a threatened<br />

<strong>in</strong>vertebrate. Conservation Biology 4: 41-51.<br />

Novotny V., Basset Y. 1998. Seasonality of sap-suck<strong>in</strong>g <strong>in</strong>sects (Auchenorrhyncha,<br />

Hemiptera) feed<strong>in</strong>g on Ficus (Moraceae) <strong>in</strong> a lowl<strong>and</strong> ra<strong>in</strong><br />

forest <strong>in</strong> New Gu<strong>in</strong>ea. Oecologia 115: 514-522.<br />

Pearson D. L., Cassola F. 1992. World-wide species richness patterns of<br />

tiger beetles (Coleoptera: Cic<strong>in</strong>delidae): Indicator taxon for biodiversity<br />

<strong>and</strong> conservation studies. Conservation Biology 6: 376-391.<br />

P<strong>in</strong>heiro C. E., Ortiz J. V. 1992. Communities of fruit-feed<strong>in</strong>g butterfl ies<br />

along a vegetation gradient <strong>in</strong> central Brazil. Journal of Biogeography<br />

19: 505-511.<br />

Pitman N. 2000. A large-scale <strong>in</strong>ventory of two Amazonian tree communities.<br />

PhD Dissertation, Graduate School of Duke University, USA, 240 p.<br />

Pollard E. 1991. Synchrony of population fl uctuations: the dom<strong>in</strong>ant<br />

<strong>in</strong>fl uence of widespread factors on local butterfl y populations. Oikos<br />

60: 7-10.<br />

Poul<strong>in</strong> B., Wright S. J., Lefebvre G., Calderón O. 1999. Interspecifi c synchrony<br />

<strong>and</strong> asynchrony <strong>in</strong> the fruit<strong>in</strong>g phenologies of congeneric birddispersed<br />

plants <strong>in</strong> Panama. Journal of Tropical Ecology 15: 213-227.<br />

Roy D., Rothery P., Moss D., Pollard E., Th omas J. 2001. Butterfl y<br />

numbers <strong>and</strong> weather: predict<strong>in</strong>g historical trends <strong>in</strong> abundance <strong>and</strong><br />

the future eff ects of climate change. Th e Journal of Animal Ecology 70:<br />

201-207.<br />

Rydon A. 1964. Notes on the use of butterfl y traps <strong>in</strong> East Africa. Journal<br />

of the Lepidopterists´ Society 35: 29-41.<br />

Schulze C. H., L<strong>in</strong>senmair K. E., Fiedler K. 2001. Understory versus<br />

canopy: patterns of vertical stratifi cation <strong>and</strong> diversity among<br />

Lepidoptera <strong>in</strong> a Bornean ra<strong>in</strong> forest. Plant Ecology 153: 133-152.<br />

Scoble M. J. 1995. Th e Lepidoptera: Form, Function <strong>and</strong> Diversity. Oxford<br />

University Press, New York, USA, 404 p.<br />

Shahabudd<strong>in</strong> G., Terborgh J. W. 1999. Frugivorous butterfl ies <strong>in</strong> Venezuelan<br />

forest fragments: abundance, diversity <strong>and</strong> the eff ects of isolation.<br />

Journal of Tropical Ecology 15: 703-722.<br />

Sparrow H., Sisk T., Ehrlich P., Murphy D. 1994. Techniques <strong>and</strong><br />

guidel<strong>in</strong>es for monitor<strong>in</strong>g neotropical butterfl ies. Conservation Biology<br />

8: 800-809.<br />

Spitzer K., Novotny V., Tonner M., Leps J. 1993. Habitat preferences,<br />

distribution <strong>and</strong> seasonality of the butterfl ies (Lepidoptera:<br />

Papilionoidea) <strong>in</strong> a montane tropical ra<strong>in</strong> forest, Vietnam. Journal of<br />

Biogeography 20: 109-121.<br />

Srygley R. B., Chai P. 1990. Predation <strong>and</strong> the elevation of thoracic<br />

temperature <strong>in</strong> brightly coloured neotropical butterfl ies. Th e American<br />

Naturalist 135: 766-787.<br />

Sutcliff e O. L., Th omas C. D., Moss D. 1996. Spatial synchrony <strong>and</strong><br />

asynchrony <strong>in</strong> butterfl y population dynamics. Th e Journal of Animal<br />

Ecology 65: 85-95.<br />

Uehara-Prado M., Brown K. S. Jr., Freitas A. V. 2007. Species richness,<br />

composition <strong>and</strong> abundance of fruit-feed<strong>in</strong>g butterfl ies <strong>in</strong> the Brazilian<br />

Atlantic Forest: comparison between a fragmented <strong>and</strong> a cont<strong>in</strong>uous<br />

l<strong>and</strong>scape. Global Ecology <strong>and</strong> Biogeography 16: 43-54.<br />

Valencia R., Foster R., Villa G., Condit R., Svenn<strong>in</strong>g J., Hernández C.,<br />

Romoleroux K., Losos E., Magard E., Balslev H. 2004. Tree species<br />

distributions <strong>and</strong> local habitat variation <strong>in</strong> the Amazonia: large forest<br />

plot <strong>in</strong> eastern <strong>Ecuador</strong>. Th e Journal of Ecology 92: 214-229.<br />

Veddeler D., Schulze C., Steff an-Dewenter I., Buchori D., Tscharntke<br />

T. 2005. Th e contribution of tropical secondary forest fragments to<br />

the conservation of fruit-feed<strong>in</strong>g butterfl ies: eff ects of isolation <strong>and</strong><br />

age. Biodiversity <strong>and</strong> Conservation 14: 3577-3592.<br />

Willmott K. R. 2003. Th e genus Adelpha: its systematics, biology <strong>and</strong><br />

biogeography (Lepidoptera: Nymphalidae: Limenitid<strong>in</strong>i). Scientifi c<br />

Publishers, Florida, USA.<br />

Wilson R. J., Gutiérrez D., Gutiérrez J., Martínez D., Agudo R.,<br />

Monserrat V. J. 2005. Changes to the elevational limits <strong>and</strong> extent of<br />

species ranges associated with climate change. Ecology Letters 8: 1138-<br />

1146.<br />

Wolda H. 1978. Seasonal fl uctuations <strong>in</strong> ra<strong>in</strong>fall, food <strong>and</strong> abundance of<br />

tropical <strong>in</strong>sects. Th e Journal of Animal Ecology 47: 369-381.<br />

Wolda H. 1988. Insect seasonality: why? Annual Review of Ecology <strong>and</strong><br />

Systematics 19: 1-18.<br />

Wright S. J. 1996. Phenological responses to seasonality <strong>in</strong> tropical forest<br />

plants, p. 440-461. In: Mulkey S. S., Chazdon R. L., Smith A. P.<br />

(eds.), Tropical Forest Plant Ecophysiology. Chapman <strong>and</strong> Hall, New<br />

York, U.S.A.<br />

Yamamoto N., Yokoyama J., Kawata M. 2007. Relative resource<br />

abundance expla<strong>in</strong>s butterfl y biodiversity <strong>in</strong> isl<strong>and</strong> communities.<br />

Proceed<strong>in</strong>gs of the National Academy of Sciences of the United States of<br />

America 104: 10524-10529.<br />

481


482<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

Appendix 1. List of the total number of butterfl y species attracted to bait (Lepidoptera: Nymphalidae) dur<strong>in</strong>g the study<br />

period: April 2002 to April 2003.<br />

Classifi cation <strong>and</strong> nomenclature follow the revision by Lamas (2004), except<strong>in</strong>g three species marked with asterisk (*).<br />

Species<br />

2002<br />

Apr<br />

May Jun Jul Aug Sep Oct Nov Dec<br />

2003<br />

Jan<br />

Feb Mar Apr<br />

Apatur<strong>in</strong>ae<br />

Doxocopa agath<strong>in</strong>a agath<strong>in</strong>a (Cramer 1777) 3 11 6 15 11 14 15 19 14 10 2 4 2<br />

Doxocopa laure griseldis (C. Felder & R. Felder 1862) 0 3 1 6 1 1 1 0 1 0 0 0 0<br />

Doxocopa l<strong>in</strong>da l<strong>in</strong>da (C. Felder & R. Felder 1862) 1 2 1 3 3 5 1 2 3 2 1 1 1<br />

Doxocopa pavon pavon (Latreille 1809) 0 0 0 0 6 12 4 13 2 0 1 2 0<br />

Doxocopa zunilda felderi (Godman & Salv<strong>in</strong> 1884) 1 0 1 0 0 0 0 1 0 0 0 0 0<br />

Biblid<strong>in</strong>ae<br />

Asterope markii hewitsoni (Staud<strong>in</strong>ger 1886) 4 6 10 7 10 13 6 8 4 4 2 1 1<br />

Batesia hypochlora C. Felder & R. Felder 1862 10 6 5 10 1 2 34 4 14 16 9 6 3<br />

Biblis hyperia laticlavia (Th ieme 1904) 3 3 0 1 4 5 5 4 3 6 1 0 0<br />

Callicore cynosura cynosura (Doubleday 1847) 2 4 4 10 11 7 3 6 1 0 1 0 0<br />

Callicore excelsior elatior (Oberthür 1916) 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

Callicore hesperis (Guér<strong>in</strong>-Méneville 1884) 1 0 0 0 0 1 0 0 0 0 0 0 0<br />

Callicore hystaspes zelphanta (Hewitson 1858) 0 1 3 2 2 3 2 1 1 1 1 0 0<br />

Callicore pygas cyllene (Doubleday 1847) 4 3 1 4 10 9 10 7 1 2 0 1 0<br />

Callicore texa maimuna (Hewitson 1858) 0 0 0 0 0 1 2 2 0 0 0 0 0<br />

Catacore kolyma kolyma (Hewitson 1852) 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

Catonephele acontius acontius (L. 1771) 7 11 5 7 5 3 8 7 13 5 5 2 2<br />

Catonephele numilia numilia (Cramer 1775) 14 13 16 11 4 11 6 15 19 12 6 5 4<br />

Catonephele salacia (Hewitson 1852) 2 2 0 2 0 0 0 0 0 0 0 0 0<br />

Diaethria clymena peruviana (Guenée 1872) 5 15 17 36 16 17 6 10 1 2 0 1 1<br />

Dynam<strong>in</strong>e artemisia glauce (Bates 1856) 0 3 0 0 1 1 2 1 1 0 0 0 0<br />

Dynam<strong>in</strong>e athemon barreiroi Fernández 1928 0 1 0 4 0 2 0 1 1 0 0 0 0<br />

Dynam<strong>in</strong>e chryseis (Bates 1865) 0 3 5 5 25 226 4 2 5 11 6 0 2<br />

Dynam<strong>in</strong>e gisella (Hewitson 1857) 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Dynam<strong>in</strong>e paul<strong>in</strong>a paul<strong>in</strong>a (Bates 1865) 0 5 2 5 5 4 1 0 0 0 1 0 3<br />

Dynam<strong>in</strong>e racidula racidula (Hewitson 1852) 0 0 1 0 0 1 0 1 0 0 0 0 0<br />

Dynam<strong>in</strong>e sara (Bates 1865) 0 1 1 0 1 0 0 1 0 0 0 0 0<br />

Dynam<strong>in</strong>e sosthenes smerdis Tessmann 1928 0 1 0 0 6 34 0 0 0 2 5 0 0<br />

Dynam<strong>in</strong>e vicaria hoppi Her<strong>in</strong>g 1926 0 0 0 0 1 0 3 1 1 1 2 1 1<br />

Dynam<strong>in</strong>e zenobia ampliata Zikán 1937 0 0 0 1 0 3 0 2 0 0 0 0 0<br />

Ectima lirides Staud<strong>in</strong>ger 1885 0 0 0 0 3 2 0 0 0 0 0 0 3<br />

Epiphile orea helios Attal 2003 0 0 0 0 0 3 4 4 7 2 0 0 0<br />

Eunica alpais alpais (Godart 1824) 0 1 1 1 2 16 8 6 1 2 1 0 0<br />

Eunica amelia erroneata (Cramer 1777) 0 1 0 1 1 6 6 1 0 1 0 2 0<br />

Eunica anna (Cramer 1780) 0 0 0 0 1 0 0 1 0 1 0 0 0<br />

Eunica cael<strong>in</strong>a alycia Fruhstorfer 1909 0 0 0 1 0 0 1 0 0 0 0 0 0<br />

Eunica clytia (Hewitson 1852) 0 0 1 19 6 23 0 1 2 2 0 0 0<br />

Eunica concordia (Hewitson 1852) 2 1 4 1 1 8 9 5 6 4 0 0 1<br />

Eunica eurota eurota (Cramer 1775) 0 0 0 2 6 17 3 6 0 2 0 0 0<br />

Eunica malv<strong>in</strong>a malv<strong>in</strong>a (Bates 1864) 0 1 0 2 2 11 3 1 0 1 0 0 0<br />

Eunica marsolia fasula Fruhstorfer 1909 2 0 0 1 0 0 0 0 0 0 0 0 0<br />

Eunica mygdonia mygdonia (Godart 1824) 0 0 0 0 0 1 0 0 0 0 0 0 0<br />

Eunica norica occia Fruhstorfer 1909 0 0 0 0 0 0 2 0 1 0 0 0 0<br />

Eunica orphise (Cramer 1775) 1 0 0 2 2 3 0 4 2 1 0 1 2<br />

Eunica pusilla (Bates 1864) 0 0 1 0 0 1 0 0 0 0 0 0 0<br />

Eunica sophonisba agele Seitz 1915 6 1 2 4 4 11 5 5 3 4 1 0 3<br />

Eunica sydonia sydonia (Godart 1824) 0 0 0 0 0 2 1 1 0 0 0 0 0


Temporal abundance patterns of butterfl ies<br />

Species<br />

2002<br />

Apr<br />

May Jun Jul Aug Sep Oct Nov Dec<br />

2003<br />

Jan<br />

Feb Mar Apr<br />

Eunica viola Bates 1864 0 0 1 0 0 0 2 2 0 0 0 0 0<br />

Eunica violetta Staud<strong>in</strong>ger 1885 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

Eunica volumna celma (Hewitson 1852) 0 0 0 1 1 0 0 0 0 0 1 0 0<br />

Hamadryas amph<strong>in</strong>ome amph<strong>in</strong>ome (L. 1767) 0 0 0 0 2 10 1 0 0 0 0 0 0<br />

Hamadryas ar<strong>in</strong>ome ar<strong>in</strong>ome (Lucas 1853) 1 6 0 4 1 6 4 1 6 2 1 2 2<br />

Hamadryas chloe chloe (Stoll 1787) 2 1 0 0 0 2 1 0 1 1 0 0 0<br />

Hamadryas laodamia laodamia (Cramer 1777) 0 0 1 0 1 0 0 1 0 0 0 0 0<br />

Marpesia berania berania (Hewitson 1852) 3 1 0 0 0 0 0 0 0 1 0 0 0<br />

Marpesia chiron marius (Cramer 1779) 3 3 4 1 13 8 13 0 0 0 0 0 0<br />

Marpesia crethon (Fabricius 1776) 0 14 6 1 10 3 4 1 2 0 1 0 2<br />

Marpesia furcula oechalia (Westwood 1850) 0 3 7 3 1 0 1 0 0 0 0 0 0<br />

Myscelia capenas octomaculata (Butler 1873) 10 22 17 14 14 27 18 29 22 14 6 4 3<br />

Nessaea hewitsonii hewitsonii (C. Felder & R. Felder<br />

1859)<br />

2 3 4 2 2 2 1 5 6 3 2 2 0<br />

Nessaea obr<strong>in</strong>us lesoudieri Le Moult 1933 1 1 0 0 1 2 4 0 1 0 2 2 0<br />

Nica fl avilla sylvestris Bates 1864 2 3 7 2 8 9 5 0 0 2 0 1 0<br />

Panacea procilla divalis (Bates 1868) 110 32 6 15 3 2 35 0 5 10 8 17<br />

Panacea prola amazonica Fruhstorfer 1915 2 4 8 2 0 3 3 10 0 20 1 1 0<br />

Panacea reg<strong>in</strong>a chalcothea (Bates 1868) 0 0 0 2 1 1 3 0 0 0 0 0 0<br />

Paulogramma pyracmon peristera (Hewitson 1853) 0 1 0 0 1 0 0 0 0 0 0 0 0<br />

Peria lamis (Cramer 1779) 1 0 3 1 0 2 1 0 0 0 0 0 0<br />

Pyrrhogyra amphiro amphiro Bates 1865 3 3 0 1 5 33 13 7 1 7 1 0 2<br />

Pyrrhogyra crameri nautaca Fruhstorfer 1908 6 16 11 18 31 50 13 7 14 11 8 11 12<br />

Pyrrhogyra edocla lysanias C. Felder & R. Felder 1862 3 3 7 7 10 15 4 1 2 4 3 5 1<br />

Pyrrhogyra neaerea arg<strong>in</strong>a Fruhstorfer 1908 1 1 0 1 16 20 17 6 5 5 1 0 1<br />

Pyrrhogyra otolais olivenca Fruhstorfer 1908 13 15 20 10 41 70 29 9 15 24 10 7 10<br />

Temenis laothoe laothoe (Cramer 1777) 49 64 63 63 63 29 22 26<br />

Temenis pulchra pallidior (Oberthür 1901) 4 15 12 20 20 31 29 27 13 5 3 3 3<br />

Vila emilia caecilia (C. Felder & R. Felder 1862) 1 1 0 0 1 2 3 1 1 1 0 1 0<br />

Vila eueidiformis Joicey & Talbot 1918<br />

Charax<strong>in</strong>ae<br />

0 0 0 1 0 0 1 0 0 0 0 0 0<br />

Agrias claud<strong>in</strong>a lugens Staud<strong>in</strong>ger 1886 2 3 2 1 1 3 2 0 0 0 0 0 3<br />

Anaeomorpha splendida Rothschild 1894 1 0 1 1 0 0 0 0 0 0 0 0 0<br />

Archaeoprepona amphimachus amphimachus<br />

(Fabricius 1775)<br />

0 2 0 1 1 1 0 0 1 0 0 1 0<br />

Archaeoprepona demophon demophon (L. 1758) 1 3 6 6 7 14 8 10 14 7 5 4 4<br />

Archaeoprepona demophoon <strong>and</strong>icola (Fruhstorfer<br />

1904)<br />

1 0 5 4 3 5 2 2 4 1 1 1 0<br />

Archaeoprepona licomedes licomedes (Cramer 1777) 4 1 0 2 3 3 4 4 2 1 0 2 1<br />

Archaeoprepona me<strong>and</strong>er me<strong>and</strong>er (Cramer 1775) 1 1 0 0 1 0 0 2 0 0 0 2 0<br />

Coenophlebia archidona (Hewitson 1860) 0 0 0 0 0 0 3 1 0 0 0 0 0<br />

Consul fabius diff usus (Butler 1875) 0 3 4 1 0 0 1 0 3 0 1 1 1<br />

Founta<strong>in</strong>ea eurypyle eurypyle (C. Felder & R. Felder<br />

1862)<br />

3 0 3 1 1 0 1 0 0 0 0 0 1<br />

Memphis acidalia memphis (C. Felder & R. Felder<br />

1867)<br />

16 14 8 7 13 12 7 8 17 10 8 3 5<br />

Memphis anna anna (Staud<strong>in</strong>ger 1897) 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

Memphis basilia drucei (Staud<strong>in</strong>ger 1887) 5 13 5 10 5 3 11 25 8 7 12 4 5<br />

Memphis glauce glauce (C. Felder & R. Felder 1862) 0 0 0 0 0 1 0 1 1 0 0 0 0<br />

Memphis moruus morpheus (Staud<strong>in</strong>ger 1886) 1 6 5 4 8 8 3 5 6 6 4 5 0<br />

Memphis off a off a (Druce 1877) 0 0 0 1 1 2 1 2 1 0 1 1 0<br />

Memphis philumena philumena (Doubleday 1849) 1 6 1 0 0 8 2 3 4 2 1 2 1<br />

Memphis polycarmes (Fabricius 1775) 2 7 3 2 4 2 3 8 8 4 4 2 0<br />

483


Species<br />

484<br />

2002<br />

Apr<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

May Jun Jul Aug Sep Oct Nov Dec<br />

2003<br />

Jan<br />

Feb Mar Apr<br />

Memphis polyxo (Druce 1874) 0 3 2 1 2 2 0 0 1 1 2 1 0<br />

Memphis praxias oblita (A. Hall 1929) 0 1 0 0 1 0 0 0 1 0 0 0 0<br />

Memphis xenocles xenocles (Westwood 1850) 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

Prepona dexamenus dexamenus Hopff er 1874 0 1 2 2 2 0 0 0 1 1 0 0 1<br />

Prepona laertes demodice (Godart 1824) 2 9 3 6 8 9 4 11 6 3 3 2 2<br />

Prepona pheridamas (Cramer 1777) 1 0 0 0 0 0 0 0 0 0 0 0 0<br />

Prepona pseudomphale* LeMoult 1932 0 0 1 0 0 0 1 2 1 0 1 0 0<br />

Prepona pylene eugenes Bates 1865 0 0 0 1 0 1 0 0 0 0 0 1 0<br />

Siderone galanthis thebais C. Felder & R. Felder 1862 0 0 0 0 0 0 0 0 0 1 1 0 0<br />

Zaretis isidora (Cramer 1779) 6 9 13 6 9 26 29 19 32 16 16 7 4<br />

Zaretis itys itys (Cramer 1777)<br />

Heliconi<strong>in</strong>ae<br />

0 2 0 0 0 2 1 1 0 2 1 1 1<br />

Agraulis vanillae luc<strong>in</strong>a C. Felder & R. Felder 1862 0 0 0 1 0 1 1 0 0 1 0 0 0<br />

Dione juno juno (Cramer 1779) 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Dryas iulia alcionea (Cramer 1779) 0 0 1 1 1 1 3 0 0 0 0 0 0<br />

Eueides aliphera aliphera (Godart 1819) 0 0 0 0 0 3 3 2 0 0 0 0 0<br />

Eueides isabella huebneri Ménétriés 1857 0 0 1 1 1 5 6 2 0 0 0 0 0<br />

Eueides lampeto acacetes Hewitson 1869 0 1 0 0 0 1 1 0 0 0 0 0 0<br />

Heliconius elevatus willmotti Neukirchen 1997 1 5 1 0 1 4 4 1 0 0 5 2 5<br />

Heliconius erato lativitta Butler 1877 0 1 0 0 1 2 5 0 0 0 0 0 1<br />

Heliconius hecale quitalena Hewitson 1853 2 2 0 1 1 0 1 0 0 1 0 0 3<br />

Heliconius leucadia leucadia Bates 1862 0 0 3 0 0 1 2 1 1 0 0 0 0<br />

Heliconius melpomene malleti Lamas 1988 2 0 0 0 1 1 0 1 2 0 1 2 2<br />

Heliconius numata bicoloratus Butler 1873 0 1 0 1 1 0 1 1 1 0 0 0 0<br />

Heliconius numata euphrasius* Weymer 1890 2 5 0 2 6 3 5 2 0 2 2 2 0<br />

Heliconius numata laura* Neustetter 1932 0 0 0 0 1 0 1 0 0 1 0 0 1<br />

Heliconius pardal<strong>in</strong>us julia Neukirchen 2000 0 0 0 0 6 6 0 1 4 3 2 1 2<br />

Heliconius sara sara (Fabricius 1793) 0 1 1 3 0 4 7 1 0 0 0 0 1<br />

Heliconius wallacei fl avescens Weymer 1891 0 0 0 0 4 20 3 1 1 0 0 0 0<br />

Heliconius xanthocles napoensis Holz<strong>in</strong>ger & Brown<br />

1982<br />

0 0 1 0 1 2 2 0 1 1 1 1 0<br />

Laparus doris doris (L. 1771) 4 3 1 18 6 7 6 6 0 2 0 0 0<br />

Neruda aoede auca Neukirchen 1997 0 0 0 0 0 5 3 2 0 1 1 0 2<br />

Neruda metharme perseis (Stichel 1923) 0 0 2 0 0 5 0 1 0 0 1 0 1<br />

Philaethria dido dido (L. 1763)<br />

Limenitid<strong>in</strong>ae<br />

0 0 0 0 0 0 2 0 0 0 0 0 0<br />

Adelpha amazona Aust<strong>in</strong> & Jas<strong>in</strong>ski 1999 0 1 2 0 1 2 1 2 1 0 1 0 0<br />

Adelpha attica attica (C. Felder & R. Felder 1867) 3 6 5 12 5 18 17 26 7 6 3 0 0<br />

Adelpha boeotia boeotia (C. Felder & R. Felder 1867) 2 1 0 1 1 1 10 9 7 2 0 0 1<br />

Adelpha capuc<strong>in</strong>us capuc<strong>in</strong>us (Walch 1775) 7 7 5 19 5 11 12 7 13 7 4 0 1<br />

Adelpha cocala cocala (Cramer 1779) 4 6 3 9 4 5 0 5 3 2 3 1 2<br />

Adelpha cytherea cytherea (L. 1758) 1 8 5 11 14 3 2 0 2 4 5 1 2<br />

Adelpha del<strong>in</strong>ita del<strong>in</strong>ita Fruhstorfer 1913 1 1 1 0 1 2 1 1 1 0 0 0 0<br />

Adelpha epione agilla Fruhstorfer 1907 0 0 0 0 2 11 3 9 1 3 0 2 0<br />

Adelpha erotia erotia (Hewitson 1847) 3 13 8 8 7 8 5 19 7 2 5 0 0<br />

Adelpha fabricia Fruhstorfer 1913 2 2 2 2 2 5 5 5 0 1 0 0 0<br />

Adelpha heraclea heraclea (C. Felder & R. Felder<br />

1867)<br />

0 2 2 1 3 4 1 6 0 1 0 2 0<br />

Adelpha iphiclus iphiclus (L. 1758) 4 30 11 22 21 76 61 54 16 18 3 3 3<br />

Adelpha jordani (Fruhstorfer 1913) 0 0 0 0 29 81 58 63 13 12 10<br />

Adelpha malea aethalia (C. Felder & R. Felder 1867) 1 3 2 1 2 3 2 5 1 0 2 0 0<br />

Adelpha melona leucocoma Fruhstorfer 1915 2 4 2 2 1 2 1 4 1 1 2 1 0


Temporal abundance patterns of butterfl ies<br />

Species<br />

2002<br />

Apr<br />

May Jun Jul Aug Sep Oct Nov Dec<br />

2003<br />

Jan<br />

Feb Mar Apr<br />

Adelpha mesent<strong>in</strong>a (Cramer 1777) 7 19 10 19 18 41 47 48 15 17 4 4 0<br />

Adelpha messana delphicola Fruhstorfer 1910 5 1 0 3 3 3 6 4 3 3 1 0 0<br />

Adelpha naxia naxia (C. Felder & R. Felder 1867) 0 0 0 0 4 5 0 1 0 0 0 0 0<br />

Adelpha paraena paraena (Bates 1865) 0 0 1 0 0 2 1 2 0 0 0 0 0<br />

Adelpha plesaure phliassa (Godart 1824) 2 2 1 4 1 6 6 8 4 0 0 0 0<br />

Adelpha poll<strong>in</strong>a Fruhstorfer 1915 0 0 1 0 1 1 0 1 0 0 0 0 0<br />

Adelpha serpa diadochus Fruhstorfer 1915 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Adelpha thesprotia (C. Felder & R. Felder 1867) 5 10 5 12 7 14 10 17 6 10 0 1 1<br />

Adelpha thoasa manilia Fruhstorfer 1915<br />

Morph<strong>in</strong>ae<br />

0 0 0 0 1 3 0 1 1 2 0 0 1<br />

Antirrhea hela C. Felder & R. Felder 1862 0 1 0 1 0 0 0 0 0 0 0 1 0<br />

Bia actorion rebeli Bryk 1953 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Caligo euphorbus euphorbus (C. Felder & R. Felder<br />

1862)<br />

0 0 0 1 0 0 0 0 0 0 0 1 0<br />

Caligo eurilochus livius Staud<strong>in</strong>ger 1886 0 2 2 1 2 2 0 2 3 3 2 0 0<br />

Caligo idomeneus idomenides Fruhstorfer 1903 2 1 1 1 1 2 3 2 1 2 4 2 1<br />

Caligo teucer ecuadora Joicey & Kaye 1917 0 0 0 0 0 1 0 0 0 0 2 0 0<br />

Catoblepia berecynthia midas Stichel 1908 3 4 5 4 6 4 6 3 2 2 4 4 1<br />

Catoblepia generosa Stichel 1902 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

Catoblepia soranus (Westwood 1851) 1 1 4 1 1 0 3 1 2 0 2 1 3<br />

Catoblepia xanthicles occidentalis Bristow 1981 0 0 0 1 0 0 0 0 0 1 1 0 0<br />

Catoblepia xanthus rivalis Niepelt 1911 0 0 1 0 0 0 0 2 0 0 0 0 0<br />

Dynastor darius stygianus Butler 1872 0 0 1 0 0 0 0 0 0 0 0 0 0<br />

Morpho achilles ssp. (L. 1758) 0 4 5 0 1 1 1 1 0 0 1 0 1<br />

Morpho deidamia neoptolemus Wood 1863 0 0 0 1 0 0 1 0 0 0 0 0 0<br />

Morpho helenor theodorus Fruhstorfer 1907 4 9 5 3 5 2 3 4 1 1 4 2 1<br />

Morpho menelaus occidentalis C. Felder & R. Felder<br />

1862<br />

0 3 3 2 1 2 1 6 1 1 3 1 2<br />

Narope cyllabarus Westwood 1851 0 0 0 0 0 1 0 1 0 1 0 0 0<br />

Opsiphanes cassiae rubigatus Stichel 1904 2 0 2 2 3 3 2 4 1 2 3 3 1<br />

Opsiphanes <strong>in</strong>virae <strong>in</strong>termedius Stichel 1902 23 74 5 26 95 16 24 62 7 60 25 7 25<br />

Opsiphanes quiteria quaestor Stichel 1902 6 2 0 0 2 4 0 0 2 0 2 2 4<br />

Selenophanes cassiope cassiopeia (Staud<strong>in</strong>ger 1886)<br />

Nymphal<strong>in</strong>ae<br />

0 6 10 2 3 11 1 4 1 0 1 4 0<br />

Anartia amathea sticheli Fruhstorfer 1907 0 0 0 0 0 1 0 0 0 0 0 0 0<br />

Castilia guaya Hall 1929 0 1 0 1 0 0 0 0 1 1 0 0 0<br />

Castilia perilla (Hewitson 1852) 0 2 2 1 0 0 0 1 0 0 0 0 0<br />

Colobura annulata Willmott, Constant<strong>in</strong>o & Hall<br />

2001<br />

6 4 6 8 0 2 1 0 2 7 4 2 2<br />

Colobura dirce dirce (L. 1758) 5 3 4 12 2 10 11 20 9 13 6 4 0<br />

Eresia clio clio (L. 1758) 0 0 0 0 3 4 4 1 0 0 0 0 0<br />

Eresia eunice eunice (Hübner 1807) 0 0 1 1 1 2 2 0 0 0 0 0 0<br />

Eresia nauplius plagiata (Röber 1913) 0 0 0 0 0 1 1 0 0 0 0 0 0<br />

Eresia pelonia callonia (Staud<strong>in</strong>ger 1885) 1 5 1 2 1 11 5 9 2 0 1 0 0<br />

Historis acheronta acheronta (Fabricius 1775) 0 0 0 0 0 1 0 5 0 0 0 0 0<br />

Historis odius dious Lamas 1995 0 0 0 1 2 1 2 0 0 1 0 1 1<br />

Metamorpha elissa elissa Hübner 1819 0 2 0 0 0 0 3 2 1 0 0 0 0<br />

Siproeta stelenes meridionalis (Fruhstorfer 1909) 2 5 6 5 2 5 9 2 6 5 1 2 1<br />

Tegosa serpia Higg<strong>in</strong>s 1981 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Telenassa teletusa burchelli (Moulton 1909) 0 9 9 25 20 3 1 0 0 2 1 0 0<br />

Tigridia acesta fulvescens (Butler 1873) 5 8 4 6 7 10 5 7 4 2 1 6 1<br />

485


Species<br />

486<br />

2002<br />

Apr<br />

M. F. Checa, A. Barragán, J. Rodríguez & M. Christman<br />

May Jun Jul Aug Sep Oct Nov Dec<br />

2003<br />

Jan<br />

Feb Mar Apr<br />

Satyr<strong>in</strong>ae<br />

Caeruleuptychia scopulata (Godman 1905) 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Cissia myncea (Cramer 1780) 0 0 0 1 0 1 0 0 0 0 0 0 2<br />

Cissia penelope (Fabricius 1775) 1 0 0 0 0 0 0 0 0 0 0 0 0<br />

Cissia proba (Weymer 1911) 1 2 3 2 0 0 1 0 0 0 1 1 1<br />

Erichthodes anton<strong>in</strong>a (C. Felder & R. Felder 1867) 0 0 0 1 0 3 0 2 1 0 1 0 1<br />

Harjesia obscura (Butler 1867) 0 0 1 0 0 0 1 0 0 0 0 0 0<br />

Hermeuptychia fallax (C. Felder & R. Felder 1862) 0 0 0 0 0 0 0 0 0 0 1 0 0<br />

Hermeuptychia hermes (Fabricius 1775) 10 28 23 36 13 7 5 1 3 1 6 2 4<br />

Hermeuptychia maimoune Butler 1870 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Magneuptychia libye (L. 1767) 0 1 0 0 0 0 0 0 0 0 0 0 0<br />

Megeuptychia antonoe (Cramer 1775) 6 9 1 4 6 17 7 17 15 5 1 1 2<br />

Megeuptychia monopunctata Willmott & Hall 1995 0 1 0 0 0 0 0 0 1 0 0 0 0<br />

Pareuptychia hesionides Forster 1964 1 7 1 4 2 8 3 1 2 0 0 1 1<br />

Pareuptychia summ<strong>and</strong>osa (Gosse 1880) 0 0 0 0 0 0 0 0 1 2 0 1 0<br />

Posttaygetis penelea (Cramer 1777) 0 0 0 0 0 2 0 0 0 1 1 1 0<br />

Pseudodebis valent<strong>in</strong>a (Cramer 1779) 0 1 0 1 0 0 1 0 0 0 0 0 0<br />

Taygetis cleopatra C. Felder & R. Felder 1867 2 2 1 2 0 1 2 0 0 2 0 0 0<br />

Taygetis laches (Fabricius 1793) 0 0 0 0 1 0 1 0 0 0 0 0 0<br />

Taygetis leuctra Butler 1870 0 0 0 0 0 0 0 1 0 0 0 1 0<br />

Taygetis thamyra (Cramer 1779) 1 1 3 0 1 3 1 0 2 1 1 1 2<br />

Taygetis virgilia (Cramer 1776) 0 0 0 0 0 0 1 0 1 2 0 0 1


Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 487-499<br />

Composition of a high diversity leaf litter ant community<br />

(Hymenoptera: Formicidae) from an <strong>Ecuador</strong>ian<br />

pre-montane ra<strong>in</strong>forest<br />

ARTICLE<br />

David A. Donoso (1,2) & Giovanni Ramón (1)<br />

(1) Museo de Zoología, Escuela de Ciencias Biológicas, Pontifi cia Universidad Católica del <strong>Ecuador</strong>, Av. 12 de Octubre 1076 y Roca,<br />

Apdo. 17-01-2184, Quito, <strong>Ecuador</strong><br />

(2) Graduate Program <strong>in</strong> Ecology <strong>and</strong> Evolutionary Biology, Department of Zoology, University of Oklahoma, Norman, OK 73019, USA<br />

Abstract. The pre-montane forest of the northern Andes is considered one of the most biodiverse<br />

regions <strong>in</strong> the world. Tools for rapidly assess<strong>in</strong>g biodiversity <strong>in</strong>ventories are currently be<strong>in</strong>g developed<br />

<strong>and</strong> may aid conservation efforts. Here, we focus on the use of the Ants of the Leaf Litter (ALL) protocol<br />

as such a tool <strong>and</strong> describe the composition of an <strong>Ecuador</strong>ian pre-montane leaf litter ant community.<br />

Two 200-m transects (i.e. two complete replications of the protocol) with a total of 40 w<strong>in</strong>kler sacs <strong>and</strong><br />

39 pitfall traps were analyzed. In total, we collected 4 875 specimens from 103 species, 37 genera <strong>and</strong><br />

9 subfamilies. The abundance-based coverage estimator (ACE), an asymptotic estimator of species<br />

richness, predicted a total of 109 ant species for the forest fl oor, mak<strong>in</strong>g this ant community one<br />

of the most diverse recorded <strong>in</strong> tropical mid-altitude forests. Subsets of the community sampled by<br />

w<strong>in</strong>kler sacs <strong>and</strong> pitfall traps differed signifi cantly. W<strong>in</strong>kler sacs were more effi cient than pitfall traps at<br />

captur<strong>in</strong>g <strong>in</strong>dividual ants (226% more) <strong>and</strong> species (129% more). Relative to pitfall traps, an analysis of<br />

morphology suggested that w<strong>in</strong>kler sacs collected a subset of the ant community that was smaller, less<br />

mobile <strong>and</strong> with smaller eyes (e.g. more subterranean). F<strong>in</strong>ally, we present the fi rst published records<br />

of the ant species Acanthognathus teledectus Brown & Kempf 1969, Hypoponera dist<strong>in</strong>guenda (Emery<br />

1890), Prionopelta amabilis Borgmeier 1949, Pachycondyla chyzeri (Forel 1907) <strong>and</strong> Procryptocerus<br />

mayri Forel 1899 for <strong>Ecuador</strong>.<br />

Résumé. Composition d’une communauté de fourmis hautement diversifi ée dans la litière<br />

d’une forêt pluviale pré-montagnarde Equatorienne. La forêt pluviale pré-montagnarde du nord<br />

des Andes est considérée comme l’une des régions qui héberge une des diversités biologiques les<br />

plus élevées au monde. Dans un soucis de conservation de ces milieux, on assiste actuellement<br />

à un développement croissant d’outils d’<strong>in</strong>ventaire de la biodiversité. Cette étude se focalise sur<br />

l’utilisation du protocole « Fourmis de litière» (Ants of the Leaf Litter, ALL) comme outil de description<br />

de la composition d’une communauté de fourmis dans une forêt pré-montagnarde de nuages en<br />

Equateur. Deux transects de 200 m chacun (c’est-à-dire deux répétitions complètes du protocole ALL)<br />

comprenant un total de 40 w<strong>in</strong>kler et 39 pièges à <strong>in</strong>terception ont été analysés. Au total, 4 875 <strong>in</strong>dividus<br />

appartenant à 103 espèces, 37 genres et 9 sous-familles ont été collectés. L’estimateur asymptotique de<br />

richesse spécifi que ACE (Abundance-based Coverage Estimator) prédit la présence d’un total de 109<br />

espèces de fourmis au niveau du sol forestier, une des diversités les plus gr<strong>and</strong>es jamais documentées<br />

pour une forêt tropicale d’altitude <strong>in</strong>termédiaire. Nous avons trouvé des différences signifi catives dans<br />

la composition des communautés de fourmis entre les deux méthodes d’échantillonnage, pièges à<br />

<strong>in</strong>terception et w<strong>in</strong>kler. Ces derniers furent plus effi caces pour capturer les fourmis, aussi bien en terme<br />

d’abondance (226% en plus) que d’espèces (129% en plus). Une analyse morphologique a de plus<br />

montré que les w<strong>in</strong>kler échantillonnent des fourmis généralement plus petites, mo<strong>in</strong>s mobiles, et avec<br />

des yeux plus petits (i.e. plus souterra<strong>in</strong>es) que les pièges à <strong>in</strong>terception. Enfi n, cette étude présente le<br />

premier registre publié pour l’Equateur des espèces Acanthognathus teledectus Brown & Kempf 1969,<br />

Hypoponera dist<strong>in</strong>guenda (Emery 1890), Prionopelta amabilis Borgmeier 1949, Pachycondyla chyzeri<br />

(Forel 1907) et Procryptocerus mayri Forel 1899.<br />

Keywords: Formicidae, ALL protocol, <strong>Ecuador</strong>, Otongachi, Biodiversity.<br />

Biological surveys are the primary source of<br />

<strong>in</strong>formation for current conservation eff orts of<br />

systematists <strong>and</strong> ecologists around the globe. Litterdwell<strong>in</strong>g<br />

ants are central to these eff orts (Brühl et al.<br />

1998; Fisher 1999; Delabie et al. 2000; Long<strong>in</strong>o et al.<br />

E-mail: david_donosov@yahoo.com<br />

Accepté le 24 novembre 2008<br />

2002; Leponce et al. 2004; Ste<strong>in</strong>er & Ste<strong>in</strong>er 2003;<br />

Dunn et al. 2007) <strong>and</strong> st<strong>and</strong>ardized survey methods,<br />

i.e. the Ants of the Leaf Litter protocol (ALL protocol),<br />

have been designed to monitor ant communities <strong>in</strong><br />

diverse habitats <strong>and</strong> at diff erent seasons of the year<br />

(Agosti et al. 2000). Ants are a group of <strong>in</strong>sects that<br />

are <strong>in</strong>cluded <strong>in</strong> long term biodiversity studies because<br />

(1) they are ecologically dom<strong>in</strong>ant <strong>and</strong> diverse <strong>in</strong> all<br />

terrestrial ecosystems, except <strong>in</strong> the poles (Kaspari,<br />

487


Alonso et al. 2000); (2) they are easy to sample <strong>in</strong> short<br />

time periods (Agosti et al. 2000); <strong>and</strong>, (3) ant diversity<br />

is high <strong>and</strong> their taxonomy is relatively well-resolved<br />

compared to other hyper-diverse <strong>in</strong>sect groups (Lapolla<br />

et al. 2007). By apply<strong>in</strong>g the same methodology,<br />

studies worldwide can be easily <strong>in</strong>tegrated <strong>and</strong> used for<br />

hypothesis test<strong>in</strong>g at global scale (Ward 2000; Kaspari<br />

2005; Dunn et al. 2007).<br />

To collect ants, two sampl<strong>in</strong>g techniques, pitfall<br />

traps <strong>and</strong> w<strong>in</strong>kler sacs, predom<strong>in</strong>ate <strong>in</strong> the current<br />

literature. Pitfall traps are the most widely used method<br />

to study ant diversity <strong>and</strong> ecology around the world<br />

(Luff 1975; Andersen 1991). Cups partially fi lled with<br />

a preserv<strong>in</strong>g fl uid are buried captur<strong>in</strong>g <strong>in</strong>vertebrates<br />

forag<strong>in</strong>g on the forest fl oor. In open environments,<br />

where litter material does not accumulate, ant species<br />

tend to show long-legged, epigaeic life-styles <strong>and</strong> pitfall<br />

traps are generally considered the most effi cient method<br />

for collect<strong>in</strong>g them (Parr & Chown 2001). Th e use of<br />

w<strong>in</strong>kler sacs <strong>in</strong> the study of ant diversity is common<br />

(Ward 1987; Nadkarni & Long<strong>in</strong>o 1990; Fisher 1999;<br />

Agosti et al. 2000; Lapolla et al. 2007). Th e method<br />

consists of a fabric sac, on a metal frame. Leaf litter<br />

from the forest fl oor (usually from 1-m 2 plots) is sifted<br />

through coarse mesh <strong>and</strong> then left for a given amount<br />

of time (usually 48-h) <strong>in</strong>side the sac. Th e <strong>in</strong>terior of the<br />

sac provides a relaxed environment allow<strong>in</strong>g the sifted<br />

litter to dry up with time. Invertebrates <strong>in</strong>side the sac<br />

will eventually fall <strong>in</strong>to an ethanol fi lled cup located<br />

at the bottom of the sac. Based on habitat, pitfall<br />

traps are recommended for sampl<strong>in</strong>g ants <strong>in</strong> open,<br />

less forested, environments, whereas w<strong>in</strong>kler sampl<strong>in</strong>g<br />

is considered to be more effi cient <strong>in</strong> forested habitats<br />

where litter accumulates <strong>and</strong> serves as shelter for litterdwell<strong>in</strong>g<br />

ants (Olson 1991; Fisher 1999; Agosti et al.<br />

2000; Lopes & Vasconcelos 2008). Nevertheless, if a<br />

collection method is to be preferred for a particular<br />

habitat, a measure of its eff ectiveness <strong>and</strong> possible<br />

sampl<strong>in</strong>g biases <strong>in</strong> the area should fi rst be addressed<br />

(Parr & Chown 2001; Dels<strong>in</strong>ne et al. 2008).<br />

<strong>Ecuador</strong> is one the 17-megadiverse countries of<br />

the world (Mittermeier et al. 1997), but its ant fauna<br />

rema<strong>in</strong>s mostly unknown, <strong>and</strong> taxonomically poorly<br />

understood. To our knowledge, only a h<strong>and</strong>ful of ant<br />

surveys have been undertaken <strong>in</strong> <strong>Ecuador</strong> <strong>and</strong> even<br />

fewer have been published (Ward 2000; Kaspari,<br />

Alonso et al. 2000; Kaspari et al. 2003; Ryder et al.<br />

2007). Moreover, most ant collections <strong>in</strong> <strong>Ecuador</strong><br />

have been carried out <strong>in</strong> the <strong>Ecuador</strong>ian Amazon. As a<br />

consequence, the ant diversity of coastal <strong>and</strong> Andean<br />

<strong>Ecuador</strong>, which holds one of the most diverse plant<br />

fl oras of the world (Mutke 2001; Ulloa Ulloa &<br />

Jorgensen 1993), rema<strong>in</strong>s under-sampled <strong>and</strong> poorly<br />

488<br />

D. A. Donoso & G. Ramón<br />

represented <strong>in</strong> taxonomic accounts.<br />

In this study we aimed to redress the lack of<br />

<strong>in</strong>formation on the ant fauna of the pre-montane<br />

forests of northern coastal <strong>Ecuador</strong>. Th e objectives<br />

of this study were (1) to provide for the fi rst time an<br />

st<strong>and</strong>ardized ant <strong>in</strong>ventory of a mid-altitude forest<br />

from the western slopes of the <strong>Ecuador</strong>ian Andes;<br />

(2) to describe its community composition; <strong>and</strong> (3),<br />

to test for the relative effi ciency <strong>and</strong> sampl<strong>in</strong>g bias of<br />

pitfall traps <strong>and</strong> W<strong>in</strong>kler sacs <strong>in</strong> this forest.<br />

Materials <strong>and</strong> Methods<br />

Study site <strong>and</strong> vegetation type<br />

Th is study was conducted with<strong>in</strong> the Otongachi forest<br />

(0º18’49’’S; 078º57’15’’W, 850-m), <strong>in</strong> the lowest-most area of<br />

the Reserva Bosque Integral Otonga (BIO Reserve) managed by<br />

the Fundación Otonga. Th e forest is located on the western<br />

slopes of the <strong>Ecuador</strong>ian Andes, near the town of La Unión del<br />

Toachi <strong>and</strong> the Aloag-Santo Dom<strong>in</strong>go road, Pich<strong>in</strong>cha prov<strong>in</strong>ce.<br />

Otongachi is near to a state-controlled primary forest called<br />

the Reserva Forestal del Río Lelia. Together, these forests cover<br />

a surface area of 5000 hectares, <strong>and</strong> are <strong>in</strong> turn connected to<br />

the National Park Reserva Ecologica Los Il<strong>in</strong>izas. Th e <strong>in</strong>teraction<br />

between these forests has allowed Otongachi to ma<strong>in</strong>ta<strong>in</strong> high<br />

biodiversity, <strong>and</strong> subsequently it has become one of the last<br />

important refuges for the fauna <strong>and</strong> fl ora of the entire region<br />

(Nieder & Barthlott 2001a, 2001b; Giach<strong>in</strong>o 2008).<br />

Otongachi covers 20-ha <strong>and</strong> is a secondary wet pre-montane<br />

forest (Cañadas 1983) that was modifi ed until 1990 by selective<br />

timber harvest<strong>in</strong>g (G. Onore, pers. comm.). It is located <strong>in</strong> the<br />

lowest part of the aseasonal altitud<strong>in</strong>al range 800-1800-m, with<br />

an average annual temperature of 18 to 24 ºC, <strong>and</strong> between<br />

1000 <strong>and</strong> 2000 mm of annual ra<strong>in</strong>fall. Th is altitud<strong>in</strong>al range<br />

encompasses approx. 10% of the country area but conta<strong>in</strong>s<br />

ca. 50% of the country’s fl ora (Mutke 2001, Ulloa Ulloa &<br />

Jorgensen 1993). Leaf litter <strong>in</strong> the forest was composed of plant<br />

species from sub-tropical, cloud <strong>and</strong> Andean forests. Plant<br />

species well represented <strong>in</strong> the area <strong>in</strong>cluded: Cedrela odorata L.<br />

“cedro”, Billia Columbiana Planch. & L<strong>in</strong>den “pacche”, Elaegia<br />

utilis (Goudot) “lacre”, Guarea kunthiana A. Juss “colorado”,<br />

Pochota squamigera (Cuatrec.) “frutipan”, Sapium verum Hemsl.<br />

“lechero” <strong>and</strong> Nect<strong>and</strong>ra acutifolia (Ruiz & Pav) “Gigua”. In the<br />

understory, several species of the genera Ficus L., Tournerfortia<br />

L., Cecropia Loefl ., We<strong>in</strong>mannia L., Inga Mill., Miconia Ruiz &<br />

Pav. <strong>and</strong> Clusia L. were common (Jaramillo 2001).<br />

Field methods<br />

We surveyed two transects (hereafter “T–LL1” <strong>and</strong> “T–LL2”)<br />

with<strong>in</strong> the Otongachi forest separated by approximately 2-km<br />

<strong>and</strong> located roughly at the same altitude. Fieldwork was done<br />

on 10 to 17-IX-2003. In each transect ant assemblages were<br />

sampled us<strong>in</strong>g a complete replicate of the ALL protocol as<br />

described <strong>in</strong> Agosti et al. (2000). Th e protocol mostly samples<br />

ant fauna from the leaf litter (soil surface), but subterranean or<br />

arboreal ants may occasionally be captured (Long<strong>in</strong>o & Colwell<br />

1997). Each transect consisted of 20 sampl<strong>in</strong>g po<strong>in</strong>ts separated<br />

by 10-m for a total extent of 200-m. At each sampl<strong>in</strong>g po<strong>in</strong>t,<br />

we r<strong>and</strong>omly (1) placed one pitfall trap partially fi lled with<br />

70% alcohol for 48-h, <strong>and</strong> (2) collected 1-m² leaf litter samples


High ant diversity <strong>in</strong> <strong>Ecuador</strong>’s Andean forests<br />

from which ants were extracted us<strong>in</strong>g a w<strong>in</strong>kler sac over 48-h.<br />

Species identifi cation<br />

Samples were processed <strong>in</strong> the laboratory. From every sample,<br />

at least one <strong>in</strong>dividual of each morphospecies was mounted<br />

<strong>and</strong> labeled, <strong>and</strong> the abundance of the morphospecies was<br />

recorded. We used Bolton (1994) <strong>and</strong> Bolton et al. 2006 to<br />

identify ant specimens to genus level <strong>and</strong> check for taxonomical<br />

nomenclature, respectively. Specimens were identifi ed to<br />

species level with the use of taxonomic keys (Br<strong>and</strong>ão 1990<br />

[Megalomyrmex]; Lattke et al. 2007 [Gnamptogenys]; Fern<strong>and</strong>ez<br />

& Palacio 1999 [Lenomyrmex]), unpublished species lists<br />

<strong>and</strong> collections of the QCAZ Museum (PUCE), <strong>and</strong> with<br />

the assistance of taxa specialists (F. Serna [Procryptocerus], A.<br />

Kumar [Eciton<strong>in</strong>ae], S. Dash [Hypoponera]). Where specifi c<br />

identifi cation was not possible, specimens were assigned to a<br />

morphospecies. All specimens were deposited <strong>in</strong> the Invertebrate<br />

section of the QCAZ Museum (PUCE), <strong>in</strong> Quito.<br />

Species Accumulation Curves<br />

Species accumulation curves provide a st<strong>and</strong>ard method to<br />

measure the completeness of diff erent biological surveys <strong>and</strong><br />

to allow comparison among surveys (Long<strong>in</strong>o et al. 2002).<br />

To construct accumulation curves, we used EstimateS 8.0<br />

(Colwell 2006). We calculated a MaoTau sample-based<br />

rarefaction species accumulation curve (Colwell et al. 2004) for<br />

each sampl<strong>in</strong>g transect (T-LL1, T-LL2) <strong>and</strong> for both transects<br />

comb<strong>in</strong>ed (T-LL1+T-LL2). Specifi cally, we constructed a data<br />

matrix <strong>in</strong> which we recorded the abundance of each ant species<br />

(comb<strong>in</strong><strong>in</strong>g catches from the pitfall traps <strong>and</strong> w<strong>in</strong>kler sacs) for<br />

each sampl<strong>in</strong>g po<strong>in</strong>t of the two transects.<br />

In order to assess the completeness of our <strong>in</strong>ventory, we estimated<br />

the total ant species richness of the Otongachi forest<br />

for the same groups previously described. We used the Abundance-based<br />

Coverage Estimator (ACE, Chao & Lee 1992)<br />

implemented <strong>in</strong> EstimateS (Colwell 2006). ACE constructs an<br />

asymptotic model based on the relative abundance of the rarest<br />

species (by default species with less than 10 <strong>in</strong>dividuals) <strong>in</strong> the<br />

sample. ACE <strong>in</strong>corporates an estimate of species that were not<br />

collected <strong>in</strong> the sampl<strong>in</strong>g survey (Chao & Lee 1992; Kumar et<br />

al. 2008), thereby giv<strong>in</strong>g an estimate of total species richness.<br />

What is the rate of ant species turnover <strong>in</strong>side a forest? How<br />

much distance should we travel from one collection po<strong>in</strong>t<br />

to another <strong>in</strong> order to maximize the number of ant species<br />

collected for a given a mount of eff ort? To approximate answers<br />

to these questions we employed a Chao’s Abundance-based<br />

Jaccard similarity measure (Chao et al. 2005; Kumar et al. 2008)<br />

computed <strong>in</strong> EstimateS 8.0 (Colwell 2006). Th e Chao-Jaccard<br />

<strong>in</strong>dex uses abundance data <strong>and</strong> computes the probability that<br />

two r<strong>and</strong>om ant species drawn from one of the transects will be<br />

found <strong>in</strong> both transects (Colwell 2006). Th e analysis is based on<br />

the Chao statistics (Chao et al. 2005) <strong>and</strong> therefore it adjusts<br />

the results to <strong>in</strong>clude an estimate of the species that are not<br />

present <strong>in</strong> our <strong>in</strong>ventory, but are likely to occur <strong>in</strong> the forest.<br />

Morphology<br />

To explore whether there was a relationship between the<br />

morphology of the collected ant species <strong>and</strong> the specifi c collection<br />

method, we measured four morphological traits frequently used<br />

<strong>in</strong> ant taxonomy, follow<strong>in</strong>g Weiser & Kaspari (2006). Up to<br />

fi ve specimens from each morphospecies collected <strong>in</strong> this survey<br />

(Appendix 1) were measured by one of us (GR) us<strong>in</strong>g a Leica<br />

MZ75 (Bannockburn, IL, USA) stereomicroscope, with a 0.02<br />

precision stage micrometer. Descriptions of morphological<br />

measurements are as follows:<br />

HL – Head length. In full-face view, the midl<strong>in</strong>e distance from<br />

the level of the maximum posterior projection of the occipital<br />

marg<strong>in</strong> of the head to the level of the most anterior projection<br />

of the clypeal marg<strong>in</strong>.<br />

HW – Head width. In full-face view, the maximum width of<br />

the head, exclusive of teeth, sp<strong>in</strong>es, tubercles or eyes. Head<br />

width was used together with HL as a proxy for head size.<br />

EL – Eye length. We measured maximum eye length at the<br />

largest diameter. For ant species with no eyes, such as Cerapachys<br />

<strong>and</strong> army ants (Eciton<strong>in</strong>ae), we arbitrarily assigned the value<br />

of 0.02-mm for subsequent analyses (i.e. the m<strong>in</strong>imum<br />

micrometer resolution).<br />

FL – Femur length. On side view, we measured femur length,<br />

from the trochanter-femur jo<strong>in</strong>t to the femur-tibia jo<strong>in</strong>t, as<br />

a surrogate for leg length. Leg length is commonly l<strong>in</strong>ked to<br />

forag<strong>in</strong>g capacities <strong>in</strong> ants (Feener et al. 1988).<br />

Pr<strong>in</strong>cipal components analysis (PCA) on morphometric<br />

measurements (Jolliff e 2002; Weiser & Kaspari 2006) provides<br />

the means to summarize the size <strong>and</strong> shape of ant specimens<br />

<strong>and</strong> construct a “morphospace” (Pie & Traniello 2007) where<br />

morphological associations can be displayed <strong>and</strong> used for<br />

analysis. We performed a PCA to construct an ant community<br />

morphospace us<strong>in</strong>g these four quantitative morphological<br />

traits (see measurements procedure above) (Jolliff e 2002).<br />

Th e analysis was performed us<strong>in</strong>g PAST (Paleontological<br />

statistics, version 1.79). Measurements were log 10 -transformed<br />

to build a covariance matrix (Weiser & Kaspari 2006; Pie<br />

& Traniello 2007) from which pr<strong>in</strong>cipal component (PC)<br />

scores were extracted. We reta<strong>in</strong>ed the fi rst two components<br />

as they expla<strong>in</strong>ed 86.8% <strong>and</strong> 10.8% of total orig<strong>in</strong>al variance,<br />

respectively. PC III <strong>and</strong> PC IV accounted just 1.7% <strong>and</strong> 0.4%<br />

of the variance, respectively.<br />

Comparison between collection Methods<br />

We used a one-way ANOVA on log-transformed species<br />

abundance <strong>and</strong> richness data (SPSS v. 10.0) to evaluate the<br />

hypothesis that, <strong>in</strong> the Otongachi forest, w<strong>in</strong>kler sacs collected<br />

more ant specimens <strong>and</strong> species than pitfall traps, respectively.<br />

We also used a one-way ANOVA to evaluate the hypothesis<br />

that PCI <strong>and</strong> PCII scores (proxies for morphology) were<br />

<strong>in</strong>dependent of collection method (e.g. w<strong>in</strong>kler vs. pitfall). To<br />

build comparison groups, we <strong>in</strong>cluded those ant species that<br />

were only caught by either w<strong>in</strong>kler sacs or pitfall traps.<br />

Th e diff erence <strong>in</strong> biological diversity between the subsets of the<br />

ant community collected by the diff erent methods was assessed<br />

with the follow<strong>in</strong>g set of statistical techniques. First, we carried<br />

out a non-metric multidimensional scal<strong>in</strong>g (NMDS) analysis on<br />

ant abundance data to exam<strong>in</strong>e patterns of biological similarity.<br />

Th is ord<strong>in</strong>ation technique represents samples as po<strong>in</strong>ts <strong>in</strong> twodimensional<br />

space, such that the relative distances of all po<strong>in</strong>ts<br />

are <strong>in</strong> the same rank order as the relative similarities of the<br />

samples (Gucht et al. 2005). Th e Bray-Curtis <strong>in</strong>dex was used to<br />

measure the similarity between samples (Field et al. 1982) <strong>and</strong><br />

samples from the same collection method were grouped with<br />

convex hulls. Th e NMDS goodness of fi t was estimated with<br />

a stress function, which ranges from 0 to 1, with values close<br />

to zero <strong>in</strong>dicat<strong>in</strong>g a good fi t. Second, we performed an analysis<br />

489


of similarities (ANOSIM) to test the null hypothesis that<br />

the with<strong>in</strong>-group similarity was equal to the between-group<br />

similarity, as expected by chance alone (Oliver & Beattie 1995;<br />

Chapman & Underwood 1999). Signifi cance was computed by<br />

permutation of group membership (n = 10 000). ANOSIM<br />

generates a statistical parameter R that is an <strong>in</strong>dicative of the<br />

degree of separation between groups; a score of 1 <strong>in</strong>dicates<br />

complete separation <strong>and</strong> a score of 0 <strong>in</strong>dicates no separation<br />

(Gucht et al. 2005). F<strong>in</strong>ally, we determ<strong>in</strong>ed which ant species<br />

from our survey contributed the most to dist<strong>in</strong>guish collection<br />

methods by perform<strong>in</strong>g a SIMPER analysis on density data for<br />

all Formicidae taxa <strong>in</strong> the list. To reduce the eff ects of large<br />

abundance catches due to ant’s colonial life styles, all analyses<br />

were performed on (log X + 1) transformed data (Clarke 1993).<br />

We used the statistical software PAST (Paleontological statistics,<br />

Table 1. Summary of taxonomic content of our ant species <strong>in</strong>ventory by<br />

subfamily <strong>and</strong> collection method: pitfall <strong>and</strong> w<strong>in</strong>kler samples.<br />

Pitfall W<strong>in</strong>kler<br />

Subfamily Genera Species Workers Genera Species Workers<br />

Amblyopon<strong>in</strong>ae – – – 1 1 44<br />

Cerapachy<strong>in</strong>ae – – – 1 2 16<br />

Dolichoder<strong>in</strong>ae 1 1 549 1 2 26<br />

Eciton<strong>in</strong>ae 1 2 4 1 3 6<br />

Ectatomm<strong>in</strong>ae 2 6 41 2 6 96<br />

Formic<strong>in</strong>ae 5 6 30 3 4 350<br />

Myrmic<strong>in</strong>ae 14 39 721 16 49 2640<br />

Poner<strong>in</strong>ae 4 12 146 4 14 215<br />

Procerati<strong>in</strong>ae – – – 1 1 1<br />

Total 27 66 1481 30 82 3394<br />

Table 2. Matrix of Pr<strong>in</strong>cipal Components for the morphological analyses<br />

of ant communities.<br />

Four morphological measurements, Head Length (HL), Head Width<br />

(HW), Eye Length (EL) <strong>and</strong> Femur Length (FL) were <strong>in</strong>cluded <strong>in</strong> this<br />

analysis. Eigenvalues <strong>and</strong> % of Variance expla<strong>in</strong>ed is given for PCI to PCIV.<br />

Only PCI <strong>and</strong> PCII were reta<strong>in</strong>ed for further analysis.<br />

Variables PC I PC II PC III PC IV<br />

HL –0.3787 0.3764 0.3353 86.88<br />

HW –0.3812 0.3695 0.5816 10.88<br />

EL –0.6269 –0.7718 0.1043 1.78<br />

FL –0.5642 0.3552 –0.7318 0.45<br />

Eigenvalue 3.4221 0.4286 0.0703 0.0176<br />

% Variance 86.88 10.88 1.78 0.45<br />

Table 3. One-way ANOVA results from comparison of ant collection<br />

methods.<br />

Type III sum of squares, degrees of freedom, mean squares, Fisher F <strong>and</strong><br />

signifi cance value for comparison between w<strong>in</strong>kler sacs <strong>and</strong> pitfall traps<br />

<strong>in</strong> PCI, PCII, number of specimens collected <strong>and</strong> number of species<br />

collected.<br />

490<br />

Type III SS d.f. F Sig.<br />

PCI 25.83 1 7.66 0.0064<br />

PCII 0.18 1 0.26 0.6119<br />

Specimens 46346.41 1 9.45 0.0029<br />

Species 86.76 1 6.81 0.0108<br />

version 1.79) to make these analyses.<br />

Results<br />

D. A. Donoso & G. Ramón<br />

Species diversity<br />

In total, 4 536 specimens from 103 species, 37<br />

genera <strong>and</strong> 9 subfamilies were collected <strong>in</strong> the two<br />

transects (Table 1) by 39 pitfall traps <strong>and</strong> 40 w<strong>in</strong>kler<br />

sacs (one pitfall trap sample was lost <strong>in</strong> the fi eld).<br />

W<strong>in</strong>kler sacs were more eff ective than pitfall traps<br />

<strong>in</strong> terms of the number of <strong>in</strong>dividuals (226% more,<br />

F 1,1 = 9.45, p < 0.01) <strong>and</strong> species (129% more, F 1,1 =<br />

Figure 1<br />

Taxonomic composition of the Otongachi Forest ant community. A,<br />

Number of specimens <strong>and</strong> B, species per sample.


High ant diversity <strong>in</strong> <strong>Ecuador</strong>’s Andean forests<br />

6.81, p = 0.01) collected (fi g. 1, Table 2 <strong>and</strong> 3). Pheidole<br />

(S = 15), Gnamptogenys <strong>and</strong> Pyramica (S = 8), <strong>and</strong><br />

Solenopsis (S = 7) <strong>and</strong> Hypoponera (S = 7) were the<br />

genera with largest number of species (43.7% of total<br />

species, fi g. 2a). Solenopsis, Pheidole, Azteca <strong>and</strong> Paratrech<strong>in</strong>a<br />

were the genera (exclud<strong>in</strong>g army ants) with<br />

the largest number of <strong>in</strong>dividuals captured (72.66%<br />

of total abundance, fi g. 2b). Ant species common <strong>in</strong><br />

pitfall traps but not found <strong>in</strong> w<strong>in</strong>kler sacs <strong>in</strong>cluded<br />

Ectatomma ruidum (Roger 1860), Pachycondyla apicalis<br />

(Latreille 1802), P. verenae (Forel 1922), Tatuidris<br />

tatusia Brown & Kempf 1968. On the contrary, ants<br />

Figure 2<br />

A, Number of specimens <strong>and</strong> B, species of ma<strong>in</strong> ant genera <strong>in</strong> the survey at<br />

the Otongachi Forest.<br />

collected by w<strong>in</strong>kler sacs but absent from pitfall traps<br />

were: Cerapachys sp. 1, C. sp. 2, Prionopelta amabilis<br />

Borgmeier 1949, Protalaridris armata Brown 1980<br />

(fi g. 5), Typhlomyrmex pusillus Emery, 1894 <strong>and</strong> several<br />

species of Gnamptogenys, Pyramica <strong>and</strong> Strumigenys<br />

(Appendix 1).<br />

Twelve s<strong>in</strong>gletons (i.e. species known from one<br />

specimen; Acromyrmex sp. 2, Apterostigma sp. 3,<br />

Camponotus sericeiventris (Guér<strong>in</strong>-Méneville 1838),<br />

Discothyrea sp. 1, Gnamptogenys m<strong>in</strong>uta Emery<br />

1896, Lenomyrmex foveolatus Fernández 2003,<br />

Megalomyrmex silvestrii Wheeler 1909, Myrmelachista<br />

sp. 1, Pachycondyla sp. 1, Pheidole sp. 12, Pyramica<br />

sp. 4, P. sp. 6, Trachymyrmex sp. 1; Appendix 1)<br />

were recorded <strong>in</strong> the <strong>in</strong>ventory. Additionally, 12<br />

Figure 3<br />

(A) MaoTau sample-based rarefaction species accumulation curve for<br />

transects T-LL1, T-LL2 <strong>and</strong> T-LL1+T-LL2 of the ant survey (B) Estimate of<br />

the total ant species richness at the Otongachi forest us<strong>in</strong>g the asymptotic<br />

model of the abundance based coverage estimator (ACE).<br />

491


doubletons (i.e. species <strong>in</strong> the list known from two<br />

specimens; Acanthognathus teledectus Brown & Kempf<br />

1969, Gnamptogenys sp. 1, G. sp. 2, Hypoponera sp. 2,<br />

Megalomyrmex bidentatus Fern<strong>and</strong>ez & Baena 1997,<br />

Octostruma sp. 4, Pachycondyla apicalis (Latreille<br />

1802), Pheidole sp. 11, P. sp. 15, Procryptocerus mayri<br />

Forel 1899, Pyramica sp. 2, P. sp. 5; Appendix 1) were<br />

recorded <strong>in</strong> the <strong>in</strong>ventory. No apparent trend was<br />

found with respect to collection methods on collect<strong>in</strong>g<br />

s<strong>in</strong>gletons or doubletons. Pitfall traps collected 16<br />

species <strong>in</strong> these categories <strong>and</strong> w<strong>in</strong>kler sacs collected<br />

12 (Appendix 1).<br />

Species Accumulation Curves<br />

Both MaoTau species accumulation curves <strong>and</strong> the<br />

ACE showed that the ant community was relatively<br />

well sampled (fi g. 3). MaoTau curves for <strong>in</strong>dividual <strong>and</strong><br />

492<br />

D. A. Donoso & G. Ramón<br />

coupled transects were similar <strong>in</strong> shape <strong>and</strong> showed a<br />

negatively accelerat<strong>in</strong>g trajectory. Th e ACE estimated<br />

that the species richness of the forest fl oor was 109 ant<br />

species, <strong>in</strong>dicat<strong>in</strong>g that our surveys probably missed<br />

six ant species from the forest fl oor. Although the<br />

estimated number of shared species by transects T-LL1<br />

<strong>and</strong> T-LL2 was 71.9, we found 52 species that were<br />

shared between transects. Both transects were well<br />

sampled <strong>and</strong> share approximately 83% of their ant<br />

faunas (Chao-Jaccard <strong>in</strong>dex = 0.83). Th e total number<br />

of species observed <strong>in</strong> T-LL1 was 78 (ACE estimator =<br />

87.7). Th e total number of species observed <strong>in</strong> T-LL2<br />

was 77 (ACE estimator = 88.6).<br />

Community morphospace<br />

Th e fi rst two pr<strong>in</strong>cipal components of the ant<br />

community morphospace described by the PC analysis<br />

Figure 4<br />

Non-metric multidimensional scal<strong>in</strong>g (NMDS) analysis of the diff erent subsets of the ant community under diff erent w<strong>in</strong>kler sacs <strong>and</strong> pitfall traps. Triangles<br />

show the convex hull (smallest convex polygon conta<strong>in</strong><strong>in</strong>g all po<strong>in</strong>ts) <strong>in</strong> each group.


High ant diversity <strong>in</strong> <strong>Ecuador</strong>’s Andean forests<br />

accounted for 97.76% of the total variance (Table 2).<br />

Th e fi rst component, PCI, accounted for most of the<br />

variation (86.88%) <strong>and</strong> refl ected variation <strong>in</strong> size,<br />

particularly eye length (EL coeffi cient = –0.63) <strong>and</strong><br />

femur length (FL coeffi cient = –0.56). PCII accounted<br />

for 10.88% of the variance <strong>and</strong> was highly correlated<br />

with eye size (EL coeffi cient = –0.77). Overall, species<br />

with high load<strong>in</strong>gs on PCI were smaller <strong>and</strong> presented<br />

smaller femurs <strong>and</strong> smaller eyes (i.e. bl<strong>in</strong>d). Species<br />

with high load<strong>in</strong>gs on PCII had also relatively small<br />

eyes. An analysis of variance of the PC scores of those<br />

ants that fell <strong>in</strong> w<strong>in</strong>kler sacs versus those that fell <strong>in</strong><br />

pitfall traps showed signifi cant diff erences for PCI<br />

(proxy for overall size, eye length <strong>and</strong> femur length;<br />

F = 7.65, d.f. = 1, p < 0.01), but not PCII (proxy for<br />

eye length; F = 0.25, d.f. = 1, p = 0.61) (Table 2).<br />

Community composition<br />

NMDS analysis revealed signifi cant diff erences<br />

<strong>in</strong> ant community composition between the two<br />

collection methods (fi g. 4). Stress was low (0.347)<br />

<strong>in</strong>dicat<strong>in</strong>g a good degree of fi t. ANOSIM signifi cantly<br />

separated the two collection methods presented <strong>in</strong> the<br />

NMDS (ANOSIM, R = 0.3; p < 0.0001 for richness;<br />

see convex hulls <strong>in</strong> fi g. 4). Additionally, SIMPER<br />

analysis <strong>in</strong>dicated that several changes occurred for<br />

some species (overall dissimilarity = 87.67%). From<br />

the 13 most explanatory ant species among collection<br />

methods, 9 species (Solenopsis cf. stricta, Solenopsis<br />

sp.1, Pheidole sp.2, Paratrech<strong>in</strong>a sp.1, Gnamptogenys<br />

bisulca, Pheidole sp.5, Hypoponera sp.3, Cyphomyrmex<br />

sp.3, Solenopsis sp.3) were more abundant <strong>in</strong> w<strong>in</strong>kler<br />

sacs, <strong>and</strong> 4 species (Pheidole sp.6, Azteca sp.1, Pheidole<br />

sp.10 <strong>and</strong> Pachycondyla chyzeri) were more abundant<br />

<strong>in</strong> pitfall traps (Table 4).<br />

Discussion<br />

Th is study documents one of the most diverse ant<br />

assemblages currently known for mid-altitude tropical<br />

pre-montane forest. We found 9 ant subfamilies <strong>and</strong><br />

103 ant species <strong>in</strong>habit<strong>in</strong>g the Otongachi forest fl oor.<br />

Similar studies with the same methodology have<br />

found from 38–74 species <strong>in</strong> Guyana (LaPolla et al.<br />

2007), to 59–72 <strong>in</strong> the Brazilian Cerrado (Lopes &<br />

Vasconcelos 2008), to 90-91 <strong>in</strong> the Paraguayan Chaco<br />

(Dels<strong>in</strong>ne et al. 2008). We recorded for the fi rst time<br />

<strong>in</strong> <strong>Ecuador</strong> the ant species Acanthognathus teledectus<br />

Brown & Kempf 1969 (fi g. 5 A–B), Hypoponera<br />

dist<strong>in</strong>guenda (Emery 1890), Prionopelta amabilis<br />

Borgmeier 1949, Pachycondyla chyzeri (Forel 1907)<br />

<strong>and</strong> Procryptocerus mayri Forel 1899. Th ese results lend<br />

support for the use of the ALL protocol <strong>in</strong> biodiversity<br />

surveys at taxonomically poorly known localities,<br />

especially those with a well-developed litter layer. Our<br />

sampl<strong>in</strong>g revealed an ant fauna that conta<strong>in</strong>ed most<br />

of the ma<strong>in</strong> components of a Chocoan (Neotropical)<br />

ant community (Lattke 2003). For example, the ant<br />

genera Pheidole, Gnamptogenys (fi g. 5 G–H), Pyramica,<br />

Solenopsis, Strumigenys, Azteca <strong>and</strong> Hypoponera, that<br />

are widespread <strong>in</strong> the neotropics (Brown 2000; Ward<br />

2000; Kaspari & Majer 2000), accounted for most of<br />

the species <strong>and</strong> specimens <strong>in</strong> the <strong>in</strong>ventory. However,<br />

the assemblage also conta<strong>in</strong>ed several endemic Andean<br />

Table 4. Results of SIMPER analysis for 13 ants species represent<strong>in</strong>g 50% (<strong>in</strong> our case, 51.62%) of the cumulative contribution to the separation between<br />

collection methods.<br />

Th e table provides the percent contribution of each species to average dissimilarity between the two collection methods, based on log-tranformed abundance<br />

data for pitfall traps <strong>and</strong> w<strong>in</strong>kler sacs.<br />

Taxon<br />

% Contribution<br />

Cumulative<br />

Contribution<br />

Pitfall<br />

traps<br />

W<strong>in</strong>kler<br />

sacs<br />

Solenopsis cf. stricta 6.447 7.354 0.353 1.63<br />

Solenopsis sp.1 5.874 14.05 0.534 1.42<br />

Pheidole sp.6 4.785 19.51 1.07 0.279<br />

Pheidole sp.2 4.64 24.81 0.678 0.765<br />

Azteca sp.1 3.746 29.08 0.886 0.182<br />

Paratrech<strong>in</strong>a sp.1 3.459 33.02 0.174 0.807<br />

Gnamptogenys bisulca 2.71 36.12 0.251 0.498<br />

Pheidole sp.5 2.525 39 0.283 0.366<br />

Hypoponera sp.3 2.343 41.67 0.0815 0.591<br />

Cyphomyrmex sp.3 2.291 44.28 0.163 0.437<br />

Pheidole sp.10 2.15 46.73 0.421 0.148<br />

Solenopsis sp.3 2.142 49.18 0.188 0.343<br />

Pachycondyla chyzeri 2.141 51.62 0.46 0.0934<br />

493


494<br />

D. A. Donoso & G. Ramón<br />

Figure 5<br />

Draw<strong>in</strong>gs of common ant species <strong>in</strong> the Otongachi forest. (A, C, E, G, I) Lateral views of the ants. (B, D, F, H, J) Ants <strong>in</strong> full-face view. A-B, Acantognathus<br />

teledectus; C-D, Lenomyrmex foveolatus; E-F, Protalaridris armata; G-H, Gnamptogenys sp.; I-J, Pachycondyla chyzeri. Scale bars = 0.5 mm. All draw<strong>in</strong>gs by<br />

Paula Terán.


High ant diversity <strong>in</strong> <strong>Ecuador</strong>’s Andean forests<br />

mounta<strong>in</strong> species such as Lenomyrmex foveolatus<br />

Fern<strong>and</strong>ez 2003, Pachycondyla chyzeri (Forel 1907) <strong>and</strong><br />

Protalaridris armata Brown 1980 (fi g. 5 C–D, E–F, I–J).<br />

We argue that the <strong>in</strong>tersection of two fairly dist<strong>in</strong>ct ant<br />

assemblages, one from the lowl<strong>and</strong> tropical forest <strong>and</strong><br />

one of the Andean forest may be contribut<strong>in</strong>g to the<br />

high diversity found <strong>in</strong> the forest. But more data on<br />

current distribution patterns of ant species <strong>in</strong> <strong>Ecuador</strong><br />

<strong>and</strong> their zones of endemism is needed to test these<br />

assumptions.<br />

Most of the ant species present <strong>in</strong> the forest available<br />

to be collected by our methods were detected <strong>in</strong> the<br />

list of recorded species (total species number = 103,<br />

estimated species number = 109). A high number of<br />

ant species was shared by the two transects (n = 52;<br />

Chao-Jaccard = 0.83; distance between transects =<br />

2-km), suggest<strong>in</strong>g we would need to <strong>in</strong>clude<br />

additional collection methods <strong>and</strong>/or new localities<br />

from comparatively far distances (e.g. more than 2 km<br />

apart) <strong>and</strong>/or diff erent altitudes to <strong>in</strong>crease the number<br />

of species collected.<br />

<strong>Recent</strong>ly, the use of morphometric techniques to<br />

summarize <strong>and</strong> analyze biological relationships between<br />

ant species <strong>and</strong> genera has advanced our underst<strong>and</strong><strong>in</strong>g<br />

of ant community composition (Weiser & Kaspari<br />

2006) <strong>and</strong> caste evolution (D<strong>in</strong>iz-Filho et al. 1994;<br />

De Andrade & Baroni Urbani 2000; Pie & Traniello<br />

2007). Our PC analysis based on morphological<br />

variables showed signifi cant diff erences <strong>in</strong> overall size,<br />

EL <strong>and</strong> FL between ants collected by w<strong>in</strong>kler sacs<br />

<strong>and</strong> the ones collected by pitfall traps. Pitfall traps<br />

were prone to collect bigger ants with well-developed<br />

eyes <strong>and</strong> long femurs. Th ese results are <strong>in</strong> accordance<br />

with the hypothesis that pitfall traps collect ants with<br />

epigaeic habits (Parr & Chown 2001). Accord<strong>in</strong>gly,<br />

ant diversity between the subsets of the ant community<br />

sampled under w<strong>in</strong>kler sacs <strong>and</strong> pitfall traps diff ered.<br />

Ant species that presented more discrim<strong>in</strong>atory power,<br />

such as Solenopsis cf. stricta, Solenopsis sp.1, Pheidole<br />

sp.6, Pheidole sp.2, Azteca sp.1, Paratrech<strong>in</strong>a sp.1 <strong>and</strong><br />

Gnamptogenys bisulca, expla<strong>in</strong>ed 33% of the total<br />

variance <strong>and</strong> belong to widespread <strong>and</strong> abundant<br />

Neotropical ant genera. Th erefore there is an a priori<br />

reason to prefer a comb<strong>in</strong>ation of both sampl<strong>in</strong>g<br />

methods, as opposed to the use of just one method,<br />

either w<strong>in</strong>kler sacs or pitfall traps, when collect<strong>in</strong>g ants<br />

<strong>in</strong> a forest with a well-developed litter layer.<br />

Particularly noteworthy is the absence <strong>in</strong> our<br />

species list of several worldwide <strong>in</strong>vasive ants such<br />

as L<strong>in</strong>epithema humile (Mayr 1868), Paratrech<strong>in</strong>a<br />

fulva (Mayr 1862) <strong>and</strong> Tap<strong>in</strong>oma menalocephalum<br />

(Fabricius 1793), already present <strong>in</strong> the surround<strong>in</strong>gs<br />

of the research station at the forest <strong>and</strong> nearby villages<br />

(vouchers of these species are stored at the ant collection<br />

of the QCAZ Museum). Th e apparent lack of <strong>in</strong>vasive<br />

species re<strong>in</strong>forces the conservation status of the forest<br />

<strong>and</strong> calls for its protection. Th e low frequency (n = 23,<br />

traps=2) of Wasmannia auropunctata <strong>in</strong> our survey<br />

either suggests that (1) W. auropunctata is native to<br />

this forest, or (2) it is <strong>in</strong> early stages of the <strong>in</strong>vasion<br />

process. Th e latter would not be surpris<strong>in</strong>g consider<strong>in</strong>g<br />

the proximity of the forest to the town of La Unión<br />

del Toachi <strong>and</strong> a primary highway of the country<br />

where the two ma<strong>in</strong> shipp<strong>in</strong>g ports of the country,<br />

the ma<strong>in</strong> travel<strong>in</strong>g media of <strong>in</strong>vasive species, <strong>in</strong>tersect.<br />

Further research is needed to exp<strong>and</strong> <strong>and</strong> clarify these<br />

observations (Le Breton 2003) as well as verify the<br />

pest status <strong>and</strong> orig<strong>in</strong> of these <strong>in</strong>vasive species <strong>in</strong>side<br />

<strong>Ecuador</strong>.<br />

Acknowledgements. We thank to G. Onore, A. Barragán <strong>and</strong><br />

M. Kaspari for help <strong>and</strong> support dur<strong>in</strong>g many years. G. Onore<br />

provided permission to work <strong>in</strong> the forest, access to the station<br />

<strong>and</strong> help with logistics <strong>and</strong> fi eldwork materials. J. Vieira, C.<br />

Carrión <strong>and</strong> S. Tello provided valuable help <strong>in</strong> the fi eld. L.<br />

Williams, O. <strong>Dangles</strong>, M.J. Endara, A. Kumar, N. Clay <strong>and</strong> the<br />

EEB Journal Group at OU provided useful comments on early<br />

drafts of this manuscript. F. Serna, A. Kumar, J. Vieira <strong>and</strong> S.<br />

Dash help us with ant identifi cation. O. <strong>Dangles</strong> readily provided<br />

us the French résumé. We thank C. Brown for suggestions on<br />

NMDS <strong>and</strong> ANOSIM analysis. P. Terán illustrated this article<br />

with some beautiful ants. PUCE provided economic support<br />

through Proyecto PUCE A-13015 to G. Onore. Fund<strong>in</strong>g for<br />

the publication was provided by the government of <strong>Ecuador</strong><br />

(Donaciones del Impuesto a la Renta 2004–2006) <strong>and</strong> IRD.<br />

DAD thanks OU-EEB program for support dur<strong>in</strong>g the writ<strong>in</strong>g<br />

of this manuscript.<br />

References<br />

Agosti D., Majer L. E., Schultz T. R. (eds.). 2000. Ants: St<strong>and</strong>ard methods<br />

for Measur<strong>in</strong>g <strong>and</strong> Monitor<strong>in</strong>g Biodiversity. Smithsonian Institution<br />

Press, 280 p.<br />

Andersen A. N. 1991. Sampl<strong>in</strong>g communities of ground-forag<strong>in</strong>g ants:<br />

Pitfall catches compared with quadrat counts <strong>in</strong> an Australian tropical<br />

savanna. Australian Journal of Ecology 16: 273-279.<br />

Br<strong>and</strong>ão C. R. F. 1990. Systematic revision of the neotropical ant genus<br />

Megalomyrmex Forel (Hymenoptera: Formicidae: Myrmic<strong>in</strong>ae), with<br />

the description of thirteen new species. Arquivos de Zoologia, São Paulo<br />

31: 411-481.<br />

Bolton B. 1994. Identifi cation Guide to the Ant Genera of the World. Harvard<br />

University Press: Cambridge, Massachusetts, USA, 222 p.<br />

Bolton B., Alpert G., Ward P. S., Naskrecki P. 2006. Bolton’s catalogue of<br />

ants of the world: 1758-2005. Harvard University Press: Cambridge,<br />

Massachusetts, USA, CD-ROM.<br />

Brühl C. A., Mohamed M., L<strong>in</strong>senmair K. E. 1998. Altitud<strong>in</strong>al distribution<br />

of leaf litter ants along a transect <strong>in</strong> primary forests on Mount<br />

K<strong>in</strong>abalu, Sabah, Malaysia. Journal of Tropical Ecology 15: 265-277.<br />

Cañadas L. 1983. El Mapa Bioclimático y Ecológico del <strong>Ecuador</strong>. Banco<br />

Central del <strong>Ecuador</strong>, Quito, <strong>Ecuador</strong>.<br />

Chapman M. G., Underwood A. J. 1999. Ecological patterns <strong>in</strong> multivariate<br />

assemblages: <strong>in</strong>formation <strong>and</strong> <strong>in</strong>terpretation of negative values <strong>in</strong><br />

ANOSIM tests. Mar<strong>in</strong>e Ecology Progress Series 180: 257-265.<br />

495


Chao A., Lee S. -M. 1992. Estimat<strong>in</strong>g the number of classes via sample<br />

coverage. Journal of the American Statistical Association 87: 210-217.<br />

Chao A., Chazdon R. L., Colwell R. K., Shen T.-J. 2005. A new statistical<br />

approach for assess<strong>in</strong>g compositional similarity based on <strong>in</strong>cidence <strong>and</strong><br />

abundance data. Ecology Letters 8: 148-159.<br />

Clarke K. R. 1993. Non-parametric multivariate analyses of changes <strong>in</strong><br />

community structure. Australian Journal of Ecology 18: 117-143.<br />

Colwell R. K., Mao C. X., Chang J. 2004. Interpolat<strong>in</strong>g, extrapolat<strong>in</strong>g,<br />

<strong>and</strong> compar<strong>in</strong>g <strong>in</strong>cidence-based species accumulation curves. Ecology<br />

85: 2717-2727.<br />

Colwell R. K. 2006. EstimateS: Statistical estimation of species richness <strong>and</strong><br />

shared species from samples. Version 8. User‘s Persistent URL: http://<br />

purl.oclc.org/estimates<br />

De Andrade M. L., Baroni Urbani C. 1999. Diversity <strong>and</strong> adaptation<br />

<strong>in</strong> the ant genus Cephalotes, past <strong>and</strong> present (Hymenoptera,<br />

Formicidae). Stuttgarter Beitrage zur Naturkunde Serie B (Geologie und<br />

Palaontologie) 271: 1-889.<br />

Delabie J. H., Fisher B. L., Majer J. D., Wright I. W. 2000. Sampl<strong>in</strong>g<br />

eff ort <strong>and</strong> choice of methods, p. 145-154 <strong>in</strong>: Agosti D., Majer J.,<br />

Alonso L. E., Schultz T. R. (eds.), Ants: St<strong>and</strong>ard Methods for Measur<strong>in</strong>g<br />

<strong>and</strong> Monitor<strong>in</strong>g Biodiversity. Smithsonian Institution Press, Wash<strong>in</strong>gton<br />

DC.<br />

Dels<strong>in</strong>ne T., Leponce M., Th eunis L., Braet Y., Rois<strong>in</strong> Y. 2008. Ra<strong>in</strong>fall<br />

Infl uences Ant Sampl<strong>in</strong>g <strong>in</strong> Dry Forests. Biotropica 40: 590-596.<br />

D<strong>in</strong>iz-Filho J. A., Von Zuben C. J., Fowler H. G., Schl<strong>in</strong>dwe<strong>in</strong> M. N.,<br />

Bueno O. C. 1994. Multivariate morphometries <strong>and</strong> allometry <strong>in</strong> a<br />

polymorphic ant. Insectes Sociaux 41: 153-163.<br />

Dunn R. R., S<strong>and</strong>ers N. J., Fitzpatrick M. C., Laurent E., Lessard J. -<br />

P., Agosti D., Andersen A. N., Bruhl C., Cerda X., Ellison A. M.,<br />

Fisher B. L., Gibb H., Gotelli N. J., Gove A., Guenard B., J<strong>and</strong>a<br />

M., Kaspari M., Long<strong>in</strong>o J. T., Majer J., McGlynn T. P., Menke<br />

S. B., Parr C. L., Philpott S. M., Pfeiff er M., Renata J., Suarez A. V.,<br />

Vasconcelos H. L. 2007. Global Ant (Hymenoptera: Formicidae)<br />

Biodiversity <strong>and</strong> Biogeography—A New Database <strong>and</strong> its Possibilities.<br />

Myrmecological News 10: 77-83.<br />

Feener D. H., Lighton J. R., Bartholomew G. A. 1988. Curvil<strong>in</strong>ear allometry,<br />

energetics <strong>and</strong> forag<strong>in</strong>g ecology: a comparison of leafcutt<strong>in</strong>g<br />

ants <strong>and</strong> army ants. Functional Ecology 2: 509-520.<br />

Fernández F. (ed.). 2003. Introducción a las Hormigas de la Región<br />

Neotropical. Instituto de Investigación de Recursos Biológicos<br />

Alex<strong>and</strong>er von Humboldt, Bogotá, Colombia. 398 p.<br />

Fernández C. F., Palacio G. E. E. 1999. Lenomyrmex, an enigmatic new<br />

ant genus from the Neotropical region (Hymenoptera: Formicidae:<br />

Myrmic<strong>in</strong>ae). Systematic <strong>Entomology</strong> 24: 7-16.<br />

Field J. G., Clarke K. R., Warwick R. M. 1982. A practical strategy for<br />

analys<strong>in</strong>g multispecies distribution patterns. Mar<strong>in</strong>e Ecology Progress<br />

Series 8: 37-52.<br />

Fisher B. L. 1999. Improv<strong>in</strong>g <strong>in</strong>ventory effi ciency: a case study of leaf litter<br />

ant diversity <strong>in</strong> Madagascar. Ecological Applications 9: 714-731.<br />

Giach<strong>in</strong>o P. M. (ed.). 2008. Biodiversity of South America I. Memoirs on<br />

Biodiversity, World Biodiversity Association onlus,Verona, 1, 496 p.<br />

Gucht K. van der, V<strong>and</strong>ekerckhove T., Vloemans N., Cous<strong>in</strong> S., Muylaert<br />

K., Sabbe K., Gillis M., Declerk S., Meester L. de, Vyverman W.<br />

2005. Characterization of bacterial communities <strong>in</strong> four freshwater<br />

lakes diff er<strong>in</strong>g <strong>in</strong> nutrient load <strong>and</strong> food web structure. Microbiology<br />

Ecology 53: 205-220.<br />

Jaramillo J. 2001. Th e Flora of the Río Guajalito, Mounta<strong>in</strong> Ra<strong>in</strong> Forest<br />

(<strong>Ecuador</strong>). <strong>in</strong>: Nieder J., Barthlott W. (eds.), Results of the Bonn-Quito<br />

epiphyte Project. Funded by the Volkswagen Foundation (Vol. 1 of 2).<br />

Bonn, Germany.<br />

Jolliff e I. T. 2002. Pr<strong>in</strong>cipal Component Analysis, 2nd ed., Spr<strong>in</strong>gerVerlag,<br />

New Cork.<br />

496<br />

D. A. Donoso & G. Ramón<br />

Jørgensen P. M., León-Yánez S. 1999. Catalogue of the Vascular Plants of<br />

<strong>Ecuador</strong>. Missouri Botanical Garden Press, St. Louis, Missouri.<br />

Kaspari M. 2005. Global energy gradients <strong>and</strong> the regulation of body size:<br />

worker mass <strong>and</strong> worker number <strong>in</strong> ant colonies. Proceed<strong>in</strong>gs of the<br />

National Academy of Science, USA 102: 5079-5083<br />

Kaspari M., Alonso L., O’Donnell S. 2000. Energy, density, <strong>and</strong><br />

constra<strong>in</strong>ts to species richness: ant assemblages along a productivity<br />

gradient. Th e American Naturalist 155: 280-293.<br />

Kaspari M., Majer J. D. 2000. Us<strong>in</strong>g ants to monitor environmental<br />

change, p. 89-98 <strong>in</strong>: Agosti D., Majer J. D., Alonso L. E., Schultz<br />

T. R. (eds.), Ants: St<strong>and</strong>ard Methods for Measur<strong>in</strong>g <strong>and</strong> Monitor<strong>in</strong>g<br />

Biodiversity. Smithsonian Institution Press, Wash<strong>in</strong>gton DC.<br />

Kaspari M., Yuan M., Alonso L. 2003. Spatial Gra<strong>in</strong> <strong>and</strong> the Causes of<br />

Regional Diversity Gradients <strong>in</strong> Ants. Th e American Naturalist 161:<br />

459-477.<br />

Kumar A., Long<strong>in</strong>o J. T., Colwell R. K., O´Donnell S. 2008. Elevational<br />

patterns of diversity <strong>and</strong> abundance of eusocial paper wasps (Vespidae)<br />

<strong>in</strong> Costa Rica. Biotropica, <strong>in</strong> press. XXX to be completed<br />

LaPolla J. S., Suman T., Sosa-Calvo J., Schultz T. R. 2007. Leaf litter ant<br />

diversity <strong>in</strong> Guyana. Biodiversity <strong>and</strong> Conservation 16: 491-510.<br />

Lattke J. E. 2003. Biogeografía de las hormigas neotropicales, p. 65-85 <strong>in</strong>:<br />

Fernández F, (ed.). Introducción a las hormigas de la región Neotropical.<br />

Instituto de Investigación de Recursos Biológicos Alex<strong>and</strong>er von<br />

Humboldt, Bogotá, Colombia.<br />

Lattke J. E., Fernández F., Arias-Penna T. M., Palacio E. E., Mackay W.,<br />

Mackay E. 2007. Género Gnamptogenys Roger, p. 66-100 <strong>in</strong>: Jiménez<br />

E., Fernández F., Arias T. M., Lozano-Zambrano F. H. (eds.),<br />

Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia.<br />

Instituto de Investigación de Recursos Biológicos Alex<strong>and</strong>er<br />

von Humboldt, Bogotá, Colombia.<br />

Le Breton J., Chazeau J., Jourdan H. 2003. Immediate impacts of <strong>in</strong>vasion<br />

by Wasmannia auropunctata (Hymenoptera: Formicidae) on native litter<br />

ant fauna <strong>in</strong> a New Caledonian ra<strong>in</strong>forest. Austral Ecology 28: 204-209.<br />

Leponce M., Th eunis L., Delabie J. H. C., Rois<strong>in</strong> Y. 2004. Scale dependency<br />

of diversity measures <strong>in</strong> a leaf-litter ant assemblage. Ecography<br />

27: 253-267.<br />

Long<strong>in</strong>o J. T., Codd<strong>in</strong>gton J., Colwell R. K. 2002. Th e ant fauna of a<br />

tropical ra<strong>in</strong> forest: estimat<strong>in</strong>g species richness three diff erent ways.<br />

Ecology 83: 689-702.<br />

Long<strong>in</strong>o J. T., Colwell R. K. 1997. Biodiversity Assessment Us<strong>in</strong>g Structured<br />

Inventory: Captur<strong>in</strong>g the Ant Fauna of a Tropical Ra<strong>in</strong> Forest.<br />

Ecological Applications 7: 1263-1277.<br />

Lopes C. T., Vasconcelos H. L. 2008. Evaluation of Th ree Methods for<br />

Sampl<strong>in</strong>g Ground Dwell<strong>in</strong>g Ants <strong>in</strong> the Brazilian Cerrado, Neotropical<br />

<strong>Entomology</strong> 37: 399-405.<br />

Luff M. L. 1975. Some Features Infl uenc<strong>in</strong>g the Effi ciency of Pitfall Traps.<br />

Oecologia 19: 345-357.<br />

Mittermeier R. A., Gil P. R., Mittermeier C. G. 1997. Megadiversity:<br />

Earth’s biologically wealthiest nations. Conservation International,<br />

Wash<strong>in</strong>gton, DC.<br />

Mutke J. 2001. Forest structure <strong>and</strong> tree species composition of the<br />

submontane ra<strong>in</strong>forest at Río Guajalito, <strong>in</strong>: Nieder J., Barthlott<br />

W. (eds.), Results the Bonn-Quito epiphyte Project. Funded by the<br />

Volkswagen Foundation (Vol. 1 of 2), Bonn, Germany.<br />

Nadkarni N. M., Long<strong>in</strong>o J. T. 1990. Invertebrates <strong>in</strong> canopy <strong>and</strong> ground<br />

organic matter <strong>in</strong> a Neotropical montane forest, Costa Rica. Biotropica<br />

22: 286-289.<br />

Nieder J., Barthlott W. (eds). 2001a. Th e fl ora of the Río Guajalito mounta<strong>in</strong><br />

ra<strong>in</strong> forest (<strong>Ecuador</strong>). Results of the Bonn - Quito epiphyte project.<br />

Funded by the Volkswagen Foundation (Vol. 1 of 2), Bonn, Germany.<br />

Nieder J., Barthlott W. (eds). 2001b. Epiphytes <strong>and</strong> canopy fauna of the<br />

Otonga ra<strong>in</strong> forest (<strong>Ecuador</strong>). Results of the Bonn - Quito epiphyte project.<br />

Funded by the Volkswagen Foundation (Vol. 2 of 2), Bonn, Germany.


High ant diversity <strong>in</strong> <strong>Ecuador</strong>’s Andean forests<br />

Oliver I., Beattie A. J. 1996. Invertebrate Morphospecies as Surrogates for<br />

Species: A Case Study. Conservation Biology 10: 99-109.<br />

Olson D. M. 1991. A comparison of the Effi cacy of Litter Sift<strong>in</strong>g <strong>and</strong><br />

Pitfall Traps for Sampl<strong>in</strong>g Leaf Litter Ants (Hymenoptera, Formicidae)<br />

<strong>in</strong> a Tropical Wet Forest, Costa Rica. Biotropica 23: 166-172.<br />

Parr C., Chown S. L. 2001. Inventory <strong>and</strong> bio<strong>in</strong>dicator sampl<strong>in</strong>g: Test<strong>in</strong>g<br />

pitfall <strong>and</strong> W<strong>in</strong>kler methods with ants <strong>in</strong> a South African savanna.<br />

Journal of Insect Conservation 5: 27-36.<br />

Pie M. R., Traniello J. F. A. 2007. Morphological evolution <strong>in</strong> a hyperdiverse<br />

clade: the ant genus Pheidole. Journal of Zoology 27: 99-109.<br />

Ryder K. T., Mertl A. L., Traniello J. F. 2007. Biodiversity below ground:<br />

prob<strong>in</strong>g the subterranean ant fauna of Amazonia. Naturwissenschaften<br />

94: 725-731.<br />

Appendix 1.<br />

Ste<strong>in</strong>er F. M., Ste<strong>in</strong>er B. C. 2004. Edge Eff ects on the Diversity of<br />

Ant Assemblages <strong>in</strong> a Xeric Alluvial Habitat <strong>in</strong> Central Europe<br />

(Hymenoptera: Formicidae). Entomologia Generalis 27: 55-62.<br />

Ulloa Ulloa C., Jorgensen P. 1993. Árboles y Arbustos de los Andes del<br />

<strong>Ecuador</strong>. AAU Reports, Quito, <strong>Ecuador</strong>.<br />

Ward P. S. 1987. Distribution of the <strong>in</strong>troduced Argent<strong>in</strong>e Ant (Iridomyrmex<br />

humilis) <strong>in</strong> natural habitats of the lower Sacramento Valley <strong>and</strong> its<br />

eff ect on the <strong>in</strong>digenous ant fauna. Hilgardia 55: 1-16.<br />

Ward P. S. 2000. Broad-scale patterns of diversity <strong>in</strong> leaf litter ant communities,<br />

p. 99-121 <strong>in</strong>: Agosti D., Majer J. D., Alonso L. E., Schultz<br />

T. R. (eds.), Ants: St<strong>and</strong>ard Methods for Measur<strong>in</strong>g <strong>and</strong> Monitor<strong>in</strong>g Biodiversity.<br />

Smithsonian Institution Press, Wash<strong>in</strong>gton DC.<br />

Weiser M., Kaspari M. 2006. Ecological morphospace of New World<br />

ants. Ecological <strong>Entomology</strong> 31: 131-142.<br />

List of ant species collected <strong>in</strong> Otongachi <strong>in</strong>cluded <strong>in</strong> our Inventory.<br />

For each species, the total number of specimens per collection method <strong>and</strong> transect <strong>and</strong> the total percentage of<br />

occurrence by collection method is <strong>in</strong>cluded. One asterisk (*) refl ect a s<strong>in</strong>gleton <strong>and</strong> two (**) a doubleton. Data<br />

showed for Eciton<strong>in</strong>ae ant genera refl ect occurrence, not abundance<br />

Pitfall W<strong>in</strong>kler Ocurrence(%)<br />

Species T-LL1 T-LL2 T-LL1 T-LL2 Pitfall W<strong>in</strong>kler<br />

AMBLYOPONINAE<br />

Prionopelta amabilis Borgmeier 1949 – – 4 40 – 7.5<br />

CERAPACHYINAE<br />

Cerapachys sp. 1 – – 3 – – 2.5<br />

Cerapachys sp. 2 – – 13 – – 2.5<br />

DOLICHODERINAE<br />

Azteca sp.1 195 354 15 5 35.9 15<br />

Azteca sp.2 – – 5 1 5<br />

ECITONINAE<br />

Labidus coecus (Latreille 1802) 2 – 2 – 5.1 5<br />

Labidus sp<strong>in</strong><strong>in</strong>odis (Emery 1890) – 2 1 1 5.1 5<br />

Neivamyrmex sp. 1 – – 1 1 – 5<br />

ECTATOMMINAE<br />

Ectatomma ruidum (Roger 1860) – 6 – – 2.6 –<br />

Gnamptogenys annulata (Mayr 1887) – 2 – – 5.1 –<br />

Gnamptogenys bisulca Kempf & Brown 1968 – 29 19 58 15.4 27.5<br />

Gnamptogenys m<strong>in</strong>uta Emery 1896 * – 1 – – 2.6 –<br />

Gnamptogenys sp. 1** – 2 – – 5.1 –<br />

Gnamptogenys sp. 2** – 1 – 1 2.6 2.5<br />

Gnamptogenys sp. 3 – – 6 – – 2.5<br />

Gnamptogenys sp. 4 – – 3 – – 2.5<br />

Gnamptogenys sp. 6 – – 4 – – 2.5<br />

Typhlomyrmex pusillus Emery 1894 – – 3 2 – 5<br />

FORMICINAE<br />

Acropyga sp. 1 1 – 24 – 2.6 10<br />

497


498<br />

D. A. Donoso & G. Ramón<br />

Pitfall W<strong>in</strong>kler Ocurrence(%)<br />

Species T-LL1 T-LL2 T-LL1 T-LL2 Pitfall W<strong>in</strong>kler<br />

Brachymyrmex sp. 1 – 7 – 3 2.6 2.5<br />

Brachymyrmex sp. 2 – 2 3 2 5.1 10<br />

Camponotus sericeiventris (Guér<strong>in</strong>-Méneville 1838)* 1 – – – 2.6<br />

Myrmelachista sp. 1* – 1 – – 2.6<br />

Paratrech<strong>in</strong>a sp. 1 7 11 161 157 12.8 38<br />

MYRMICINAE<br />

Acanthognathus teledectus Brown & Kempf 1969** – – 2 – 2.5<br />

Acromyrmex sp. 1 2 – 3 – 2.6 2.5<br />

Acromyrmex sp. 2* 1 – – – 2.6<br />

Apterostigma sp. 1 – 1 7 6 2.6 5<br />

Apterostigma sp. 2 – – 7 1 7.5<br />

Apterostigma sp. 3* – – 1 – 2.5<br />

Apterostigma sp. 4 1 – 21 11 2.6 17.5<br />

Apterostigma sp. 5 – 13 10 5 7.7 7.5<br />

Crematogaster sp. 1 – – 4 – 2.5<br />

Crematogaster sp. 2 – – 14 – 12.5<br />

Cyphomyrmex sp. 1 1 2 – – 7.7<br />

Cyphomyrmex sp. 2 – 3 1 – 2.6 2.5<br />

Cyphomyrmex sp. 3 3 9 23 40 17.9 32.5<br />

Hylomyrma sp. 1 5 5 9 7 15.4 25<br />

Lenomyrmex foveolatus Fernández 2003* – 1 – – 2.6<br />

Megalomyrmex sp. nov. 14 21 1 12 30.8 12.5<br />

Megalomyrmex silvestrii Wheeler 1909* – – – 1 2.5<br />

Megalomyrmex bidentatus Fern<strong>and</strong>ez & Baena 1997** – 2 – – 2.6<br />

Octostruma sp. 1 1 – 53 – 2.6 10<br />

Octostruma sp. 2 – 3 2 26 2.6 15<br />

Octostruma sp. 3 – 4 33 19 2.6 25<br />

Octostruma sp. 4** – – – 2 2.5<br />

Pheidole sp. 1 – 7 223 23 2.6 12.5<br />

Pheidole sp. 2 48 43 159 20 41.0 47.5<br />

Pheidole sp. 3 – – 43 2 22.5<br />

Pheidole sp. 4 6 2 – – 10.3<br />

Pheidole sp. 5 55 – 29 22 15.4 22.5<br />

Pheidole sp. 6 135 73 6 33 53.8 20<br />

Pheidole sp. 7 1 9 – 3 10.3 5<br />

Pheidole sp. 8 – 5 – – 5.1<br />

Pheidole sp. 9 – 7 – – 5.1<br />

Pheidole sp. 10 29 36 28 – 20.5 7.5<br />

Pheidole sp. 11** – – – 2 2.5<br />

Pheidole sp. 12* – 1 – – 2.6<br />

Pheidole sp. 13 – – 3 – 2.5<br />

Pheidole sp. 14 2 – 6 – 2.6 2.5<br />

Pheidole sp. 15** – 1 1 – 2.6 2.5<br />

Procryptocerus mayri Forel 1899** – 2 – – 2.6<br />

Protalaridris armata Brown 1980 – – 39 2 20<br />

Pyramica sp. 1 – 1 – 10 2.6 10<br />

Pyramica sp. 2** 1 – – 1 2.6 2.5<br />

Pyramica sp. 3 – – 36 1 10<br />

Pyramica sp. 4* – – – 1 2.5<br />

Pyramica sp. 5** – – 2 – 2.5


High ant diversity <strong>in</strong> <strong>Ecuador</strong>’s Andean forests<br />

Pitfall W<strong>in</strong>kler Ocurrence(%)<br />

Species T-LL1 T-LL2 T-LL1 T-LL2 Pitfall W<strong>in</strong>kler<br />

Pyramica sp. 6* 1 – – – 2.6<br />

Pyramica sp. 7 1 – 35 8 2.6 30<br />

Pyramica sp. 8 2 – 15 16 5.1 25<br />

Rogeria sp. 1 – – 1 2 7.5<br />

Solenopsis cf. stricta 3 27 481 280 28.2 55<br />

Solenopsis sp. 1 10 42 82 217 51.3 70<br />

Solenopsis sp. 2 – – 126 – 10<br />

Solenopsis sp. 3 2 14 24 40 17.9 15<br />

Solenopsis sp. 4 16 11 1 159 10.3 7.5<br />

Solenopsis sp. 5 – – – 10 2.5<br />

Solenopsis sp. 6 – – 22 – 5<br />

Strumigenys sp. 1 – – 75 8 7.5<br />

Strumigenys sp. 2 – – 4 – 7.5<br />

Tatuidris tatusia Brown & Kempf 1968 11 7 – – 7.7 –<br />

Trachymyrmex sp. 1* – 1 – – 2.6<br />

Trachymyrmex sp. 2 – – – 3 2.5<br />

Wasmannia auropunctata (Roger 1863) – 8 – 15 2.6 5<br />

PONERINAE<br />

Anochetus sp. 1 2 1 – – 5.1 –<br />

Anochetus sp. 2 – – 11 – – 5<br />

Hypoponera cf. reichenspergeri – – 8 – 2.5<br />

Hypoponera cf. trigona** – 1 1 – 2.6 2.5<br />

Hypoponera dist<strong>in</strong>guenda (Emery 1890) 3 8 16 39 10.3 27.5<br />

Hypoponera sp. 1 – – – 4 2.5<br />

Hypoponera sp. 2 – – 6 6 7.5<br />

Hypoponera sp. 3 2 3 59 14 10.3 45<br />

Hypoponera sp. 4 – 2 – 10 2.6 7.5<br />

Odontomachus bauri Emery 1892 6 5 2 15 12.8 7.5<br />

Odontomachus sp. 1 1 2 – 1 5.1 2.5<br />

Pachycondyla harpax (Fabricius 1894) 14 16 5 4 53.8 20<br />

Pachycondyla verenae (Forel 1922) 2 17 – – 10.3<br />

Pachycondyla impressa (Roger 1861) 7 14 – 2 30.8 2.5<br />

Pachycondyla chyzeri (Forel 1907) 13 25 – 11 43.6 5<br />

Pachycondyla apicalis (Latreille 1802)** 2 – – – 5.1<br />

Pachycondyla sp. 1* – – 1 – 2.5<br />

PROCERATIINAE<br />

Discothyrea sp. 1* – – – 1 – 2.5<br />

499


ARTICLE<br />

500<br />

Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 500-510<br />

Altitud<strong>in</strong>al distribution, diversity <strong>and</strong> endemicity of Carabidae<br />

(Coleoptera) <strong>in</strong> the páramos of <strong>Ecuador</strong>ian Andes<br />

E-mail: moret@univ-tlse2.fr<br />

Accepté le 2 mars 2009<br />

Pierre Moret<br />

13 rue Léo Delibes, F-31200 Toulouse, France<br />

Abstract. Species richness <strong>and</strong> diversity of Carabidae (Coleoptera), as well as rates of endemicity, are<br />

studied along altitud<strong>in</strong>al transects <strong>in</strong> the páramo of <strong>Ecuador</strong>ian Andes, from 3500 to 5000 m. Whereas<br />

a global tendency to reduction of species richness is evident from 4200 m upwards, two zones of<br />

high diversity <strong>and</strong> high proportion of endemic species occur at 3800–4000 m <strong>and</strong> at 4200–4400 m.<br />

Species turnover between grass páramo <strong>and</strong> superpáramo is signifi cantly higher <strong>in</strong> drier mounta<strong>in</strong>s,<br />

especially <strong>in</strong> the Western Cordillera, than <strong>in</strong> humid mounta<strong>in</strong>s of the Eastern Cordillera. The altitud<strong>in</strong>al<br />

range of Carabid species tends globally to decrease along the vertical gradient, but with important<br />

local variations due to microenvironmental factors, especially humidity rate. When compared with<br />

recent phytogeographical studies, these results tend to support the idea that the majority of tussockgrass<br />

páramo is a secondary anthropogenic ecosystem. On the contrary, it is argued that the xeric<br />

l<strong>and</strong>scape of the Chimborazo “arenal” is primordial, based on the presence of a stenotopic <strong>and</strong><br />

possibly relict species, Pelmatellus <strong>and</strong>ium Bates 1891.<br />

Résumé. Distribution en altitude, diversité et endémisme des Carabidae (Coleoptera) dans les<br />

páramos des Andes Equadorienne. La diversité et le taux d’endémicité des Carabidae (Coleoptera)<br />

sont analysés sur plusieurs transects altitud<strong>in</strong>aux dans les páramos des Andes de l’Equateur, entre<br />

3500 et 5000 m. Alors qu’une tendance générale à la dim<strong>in</strong>ution du nombre d’espèces apparaît à partir<br />

de 4200 m, deux zones de plus gr<strong>and</strong>e diversité et à fort taux d’espèces endémiques ont été mises en<br />

évidence à 3800–4000 m et à 4200–4400 m. Le taux de remplacement des espèces entre le páramo<br />

herbacé et le superpáramo est nettement plus élevé dans les massifs les plus secs, en particulier<br />

dans la Cordillère Occidentale, que dans les massifs humides de la Cordillère Orientale. L’amplitude<br />

altitud<strong>in</strong>ale des espèces tend globalement à dim<strong>in</strong>uer avec l’altitude, mais on note d’importantes<br />

variations d’une montagne à l’autre ou d’un versant à l’autre, en raison des conditions du milieu (en<br />

particulier le degré d’humidité). À partir d’une comparaison avec des études phytogéographiques<br />

récentes, on apporte des arguments à l’hypothèse selon laquelle la plus gr<strong>and</strong>e partie du páramo<br />

herbacé est une formation secondaire d’orig<strong>in</strong>e anthropique. À l’<strong>in</strong>verse, il est suggéré que le paysage<br />

semi-désertique de l’“arenal” du Chimborazo est climacique, compte tenu de la présence d’une<br />

espèce sténoèce et vraisemblablement relicte, Pelmatellus <strong>and</strong>ium Bates 1891.<br />

Keywords: Páramo, Carabidae, Ecology, Biodiversity, Endemism.<br />

Páramo is a tropical alp<strong>in</strong>e ecosystem that ranges <strong>in</strong><br />

the Andes from northern Peru to the Cordillera<br />

de Talamanca <strong>in</strong> Costa Rica, above cont<strong>in</strong>uous forest<br />

l<strong>in</strong>e (3400–3600 m) <strong>and</strong> below permanent snowl<strong>in</strong>e<br />

(4800–5000 m), with particular features such as: low<br />

ambient temperatures, higher daily oscillations than<br />

seasonal ones, <strong>and</strong> a high frequency of night frost<br />

throughout the year. It is formed by tussock grasses,<br />

cushion plants, <strong>and</strong> sclerophyllous shrubs.<br />

Follow<strong>in</strong>g its vegetation structure, the páramo<br />

has been divided <strong>in</strong>to three altitud<strong>in</strong>al belts: the<br />

subpáramo, which is a transitional zone with the<br />

montane forest, the grass páramo, <strong>and</strong> the superpáramo<br />

(van der Hammen & Cleef 1986; Luteyn 1999; for<br />

<strong>Ecuador</strong>: Acosta-Solís 1984; Sklenár & Ramsay<br />

2001). Grass páramos occur <strong>in</strong> <strong>Ecuador</strong> from about<br />

3400 to over 4000 m. Th is formation is dom<strong>in</strong>ated<br />

by bunch- or tussock-form<strong>in</strong>g grasses. In between the<br />

grass tussocks grow a diverse assemblage of herbaceous<br />

plants, scattered small shrubs <strong>and</strong> cushion plants. Most<br />

grass páramos are burned annually or every few years,<br />

present<strong>in</strong>g therefore morphological <strong>and</strong> physiological<br />

adaptations to survive frequent fi res (Lægaard 1992).<br />

Th e superpáramo usually occurs between 4100–<br />

4200 m <strong>and</strong> 4800–4900 m <strong>and</strong> is subdivided <strong>in</strong>to<br />

two belts, the lower <strong>and</strong> upper superpáramo (Sklenár<br />

& Balslev 2005). Lower superpáramo (4100–4200<br />

to 4400–4500 m) is usually richer <strong>in</strong> species, with<br />

sclerophyllous shrubs <strong>and</strong> cushion plants, but


Altitud<strong>in</strong>al distribution of Carabidae<br />

tussock grasses are usually also important. Th e upper<br />

superpáramo (above 4400–4500 m) is characterised<br />

by shortstem grasses, prostrate subshrubs <strong>and</strong> herbs,<br />

acaulescent rosettes <strong>and</strong> cushion plants. Th e vegetation<br />

is poor <strong>and</strong> patchy, be<strong>in</strong>g confi ned to a few favourable<br />

habitats.<br />

Most of the studies that have been dedicated to<br />

the ecology <strong>and</strong> the biogeography of the páramo deal<br />

with plants or vertebrates. Carabid beetles are rarely<br />

taken <strong>in</strong>to account <strong>in</strong> such works, except <strong>in</strong> local<br />

ecological surveys of s<strong>in</strong>gle mounta<strong>in</strong>s (Perrault 1994;<br />

Sturm 1994; Moret 2001; Smithers & Atk<strong>in</strong>s 2001;<br />

Camero 2003) or <strong>in</strong> physiological researches (Sømme<br />

et al. 1996). Nonetheless, Carabidae have proved to be<br />

very useful for ecological studies, <strong>in</strong>asmuch as many<br />

of them are stenotopic <strong>and</strong> l<strong>in</strong>ked to specifi c niches<br />

(Th iele 1977; Desender et al. 1994; Dajoz 2002).<br />

Moreover, <strong>in</strong> high altitude communities, their high rate<br />

of endemism provides valuable data for biogeographic<br />

analyses (Noonan et al. 1992; Liebherr 1994).<br />

In a recent revision of the Carabidae that live <strong>in</strong><br />

<strong>Ecuador</strong>ian páramos above 3400 m (Moret 2005),<br />

204 species were treated <strong>and</strong> arranged <strong>in</strong> 16 genera<br />

<strong>and</strong> 8 tribes (table 1). Most of them (94 %) are<br />

micropterous, with a very low dispersal power due<br />

to the loss of functional metathoracic w<strong>in</strong>gs, <strong>and</strong> are<br />

therefore restricted to small montane areas. Th is paper<br />

deals with some of the ecological <strong>and</strong> biogeographical<br />

results of that study, as far as species richness, diversity<br />

<strong>and</strong> endemicity are concerned. It will address the<br />

Table 1. Genera of Carabidae found <strong>in</strong> <strong>Ecuador</strong>ian páramos above 3400/3500 m.<br />

Am. = American; S.Am. = South American; M./S.Am. = Middle <strong>and</strong> South American.<br />

Tribe Genus<br />

follow<strong>in</strong>g questions: How do species richness <strong>and</strong><br />

beta-diversity vary along altitud<strong>in</strong>al gradients? How<br />

are microendemic species distributed along these<br />

gradients? A comparison will also be drawn with the<br />

results of recent phytogeographic studies (Lauer et al.<br />

2003; Sklenár & Lægaard 2003; Sklenár & Balslev<br />

2005; Sklenár 2006), <strong>in</strong> order to contribute to a<br />

better defi nition of altitud<strong>in</strong>al zonation <strong>and</strong> areas of<br />

endemism with<strong>in</strong> <strong>Ecuador</strong>ian páramos.<br />

Material <strong>and</strong> methods<br />

Our taxonomic treatment of the páramo Carabids of <strong>Ecuador</strong><br />

was based on direct exam<strong>in</strong>ation of ca 8500 specimens found<br />

throughout that country above 3400 m. 2481 specimens<br />

were collected by the author dur<strong>in</strong>g several fi eld work periods<br />

(1984–1986, July-August 1988, April 1991, January 1995,<br />

July-August 1998, July 2001), the rest by 31 collectors or teams<br />

of collectors between 1853 <strong>and</strong> 2002. A detailed checklist of<br />

materials can be found <strong>in</strong> Moret 2005: 21–24 (see also below<br />

<strong>in</strong> the acknowledgment section). A few m<strong>in</strong>or changes were<br />

<strong>in</strong>troduced <strong>in</strong> this data set, follow<strong>in</strong>g recent revisions of the<br />

genera Bembidion (Toledano 2008) <strong>and</strong> Oxytrechus (Allegro et<br />

al. 2008).<br />

As the fi rst level of analysis, all specimens bear<strong>in</strong>g precise<br />

altitud<strong>in</strong>al data (ca 7500) were taken <strong>in</strong>to account as a means<br />

to highlight global tendencies at generic level. But this general<br />

data set is far too heterogeneous to support accurate ecological<br />

<strong>and</strong> biogeographical analyses, s<strong>in</strong>ce it sums materials collected<br />

by diff erent researchers or travellers, each with dist<strong>in</strong>ct purposes<br />

<strong>and</strong> us<strong>in</strong>g diff erent techniques.<br />

Th us, at a second stage, <strong>in</strong> order to allow more precise faunistic<br />

assumptions, the focus was restricted to the Pich<strong>in</strong>cha-<br />

Chimborazo area of endemism, which has been far better<br />

Described<br />

species<br />

<strong>in</strong> <strong>Ecuador</strong><br />

Biogeographic area<br />

Maximum<br />

elevation<br />

<strong>in</strong> <strong>Ecuador</strong><br />

Migadop<strong>in</strong>i Aquilex Moret 1989 1 High-<strong>and</strong>ean endemic 4300<br />

Trech<strong>in</strong>i Trechisibus Motschulsky 1862 3 Austral Am. 4800<br />

Oxytrechus Jeannel 1927 12 Tropical <strong>and</strong><strong>in</strong>e 3800<br />

Paratrechus Jeannel 1920 16 Montane M./S.Am. 4600<br />

Bembidi<strong>in</strong>i Ecuadion Moret & Toledano 2002 30 Montane M./S.Am. 5070<br />

Harpal<strong>in</strong>i Notiobia Perty 1830 2 Temperate Am. 3850<br />

Bradycellus Erichson 1837 2 Temperate Am. 3800<br />

Pelmatellus Bates 1882 12 Montane M./S.Am. 4800<br />

Pterostich<strong>in</strong>i Blennidus Motschulsky 1865 24 Tropical <strong>and</strong><strong>in</strong>e 4900<br />

Platyn<strong>in</strong>i Incagonum Liebherr 1994 2 Temperate S.Am. 3800<br />

Sericoda Kirby 1837 1 Holarctic 4000<br />

Glyptolenoides Perrault 1991 2 Tropical <strong>and</strong><strong>in</strong>e 3900<br />

Dyscolus Dejean 1831 89 Neotropical 4970<br />

Dercyl<strong>in</strong>i Dercylus Castelnau 1832 5 Neotropical 4200<br />

Lebi<strong>in</strong>i Mimodromius Chaudoir 1873 2 Temperate S.Am. 4000<br />

Lebia Latreille 1802 1 Pantropical 3850<br />

501


502<br />

P. Moret<br />

Figure 1<br />

Map of the páramos <strong>in</strong> the central <strong>and</strong> northern Andes of <strong>Ecuador</strong>, with the limits of the Pich<strong>in</strong>cha-Chimborazo area of endemism <strong>and</strong> of its subareas<br />

(modifi ed from Moret 2005).


Altitud<strong>in</strong>al distribution of Carabidae<br />

Table 2. Characteristics of eight selected altitud<strong>in</strong>al transects, between 3500 <strong>and</strong> 5000 m elevation, <strong>in</strong> seven mounta<strong>in</strong>s of the<br />

Pich<strong>in</strong>cha-Chimborazo area of endemism.<br />

Pich<strong>in</strong>cha<br />

East <strong>and</strong> South slopes<br />

Chimborazo<br />

West slope<br />

Chimborazo<br />

East slope<br />

Cotopaxi<br />

North slope<br />

Cayambe<br />

West <strong>and</strong> North slopes<br />

Guamaní<br />

East slope<br />

Llanganatis<br />

North slope<br />

Ayapungu<br />

West slope<br />

Prov<strong>in</strong>ce Coord<strong>in</strong>ates<br />

surveyed than the others (fi g. 1). In that particular area, the<br />

faunistic analysis was limited to 142 species that are true páramo<br />

dwellers. Four species that have been registered sporadically<br />

at low elevations <strong>in</strong> the grass páramo were excluded, because<br />

they belong predom<strong>in</strong>antly to the upper montane forest<br />

fauna: Bembidion (Ecuadion) sanctaemarthae Darl<strong>in</strong>gton 1934<br />

(= Bembidion (Ecuadion) giselae Moret & Toledano 2002),<br />

Glyptolenoides azureus (Chaudoir 1859), Incagonum aeneum<br />

(Reiche 1843), <strong>and</strong> Dyscolus bordoni Moret 1993. Th ree<br />

more taxa were dismissed because they are highly specialised<br />

azonal species: Sericoda bembidioides Kirby 1837 (a widespread<br />

pyrophilous <strong>in</strong>sect), Lebia paramicola Moret 2005 <strong>and</strong><br />

Mimodromius leleupi Mateu 1970 (two ectoparasitic species).<br />

F<strong>in</strong>ally, special attention has been paid to seven mounta<strong>in</strong>s of<br />

the Pich<strong>in</strong>cha-Chimborazo area, where complete or almost<br />

complete altitud<strong>in</strong>al transects can be reconstructed along one<br />

or several slopes, from the bottom of the grass páramo up to<br />

the top of the superpáramo (table 2). Based on these data,<br />

altitud<strong>in</strong>al variation of Carabid diversity was studied between<br />

3500 <strong>and</strong> 5000 m to test possible occurrences of faunistic<br />

zonation, especially between grass páramo <strong>and</strong> superpáramo<br />

(fi g. 4).<br />

Th e altitud<strong>in</strong>al range of the species was calculated as the<br />

Maximum<br />

elevation<br />

Climate<br />

Total Nr<br />

of species<br />

Microendemic<br />

species<br />

Pich<strong>in</strong>cha 0°10’S 78°35’W 4794 Medium 18 3<br />

Chimborazo 1°28’S 78°52’W 6310 Dry 21 6<br />

Chimborazo 1°28’S 78°46’W 6310 Humid 17 8<br />

Cotopaxi 0°40’S 78°26’W 5897 Dry 29 2<br />

Pich<strong>in</strong>cha 0°02’N 77°59’W 5790 Humid 20 4<br />

Napo 0°18’S 78°14’W 4490 Wet 28 8<br />

Tungurahua 1°10’S 78°20’W 4390 Humid 20 8<br />

Chimborazo 2°17’S 78°35’W 4730 Humid 27 9<br />

Table 3. Diversity of Carabid species at diff erent elevations on seven altitud<strong>in</strong>al transects.<br />

Columns 2, 4, 6, 8: number of species. Columns 3, 5, 7 (S.I.): Sørensen similarity <strong>in</strong>dex.<br />

diff erence between the lowest <strong>and</strong> highest place where they<br />

were collected. Altitud<strong>in</strong>al data given by the labels of <strong>in</strong>dividual<br />

specimens were used to work out the number of species collected<br />

<strong>in</strong> any vertical <strong>in</strong>terval of 100 m, as a means to measure species<br />

richness per altitude. Th e follow<strong>in</strong>g analyses are therefore<br />

mostly based on presence-absence data. Th e lack of long-last<strong>in</strong>g<br />

<strong>and</strong> systematically planned samples throughout entire vertical<br />

transects makes impossible any attempt to measure species<br />

abundance with greater precision.<br />

Th e possibility of quantify<strong>in</strong>g species diversity <strong>in</strong> vertical<br />

transects is h<strong>in</strong>dered too by the heterogeneity of the data set.<br />

To compare as a whole the grass páramo Carabid community<br />

with that of the superpáramo, as we tried it <strong>in</strong> a previous<br />

work (Moret 2005: tab. 35), is almost impossible, <strong>in</strong>sofar as<br />

the defi nition of these communities is biased by subjective<br />

assumptions, due to altitud<strong>in</strong>al variations of the limit between<br />

both fl oristic belts <strong>and</strong> to the existence of a transition zone<br />

where diff erent faunistic elements overlap. Here we preferred<br />

to compare the composition of Carabid communities at four<br />

<strong>in</strong>tervals of altitude that were arbitrarily selected: 3600–3700,<br />

3900–4000, 4200–4300 <strong>and</strong> 4500–4600 m (tab. 3). Species<br />

diversity was calculated us<strong>in</strong>g the Sørensen similarity <strong>in</strong>dex:<br />

2A / (a 1 + a 2 ), where a 1 refers to species scores <strong>in</strong> the sample 1,<br />

3600–3700 m S.I. 3900–4000 m S.I. 4200–4300 m S.I. 4500–4600 m<br />

Pich<strong>in</strong>cha 7 0,71 7 0,27 8 0,75 8<br />

West Chimborazo 11 0,64 11 0,25 5 0,50 3<br />

Cotopaxi 12 0,50 8 0,25 8 0,46 5<br />

Cayambe 8 0,27 7 0,61 6 0,61 7<br />

Guamaní 7 0,44 20 0,44 12 -<br />

Llanganatis 10 0,47 7 0,37 9 -<br />

Ayapungu 11 0,33 7 0,59 10 -<br />

503


a 2 to species scores <strong>in</strong> the sample 2, <strong>and</strong> A to scores of species<br />

shared between both samples (Koleff 2005).<br />

Defi nition of endemic <strong>and</strong> microendemic species, as well as areas<br />

of endemism, are the result of a previous work (Moret 2005:<br />

262). Based on the distribution patterns of 191 micropterous<br />

species (which amount to 94 % of all páramo Carabid species),<br />

fi ve areas of endemism were dist<strong>in</strong>guished, from north to south:<br />

the Carchi area, the Pich<strong>in</strong>cha-Chimborazo area, the Cajas area,<br />

the Saraguro area, <strong>and</strong> the Loja area. Th ese results are strongly<br />

supported by a very high rate of prec<strong>in</strong>ctive species (i.e., species<br />

that have not been found <strong>in</strong> any other area): 85.7 % <strong>in</strong> Carchi,<br />

94.5 % <strong>in</strong> Pich<strong>in</strong>cha-Chimborazo, 81.4 % <strong>in</strong> Cajas, 80 % <strong>in</strong><br />

Saraguro <strong>and</strong> 100 % <strong>in</strong> Loja. On a smaller scale with<strong>in</strong> the<br />

Pich<strong>in</strong>cha-Chimborazo area (fi g. 1), the distributional patterns<br />

of microendemic species (i.e., species restricted to areas less<br />

than 1000 km 2 ) enabled us to defi ne 13 subareas of endemism,<br />

where the percentage of prec<strong>in</strong>ctive species is 10 % or more.<br />

504<br />

Results<br />

Genus diversity<br />

With only 16 taxa (table 1 <strong>and</strong> fi g. 2), generic<br />

richness is low <strong>in</strong> the <strong>Ecuador</strong>ian páramo when<br />

compared with other neotropical ecosystems. In the<br />

nearby Andean montane forest, the number of known<br />

genera of Carabidae ranges far above 50 (unpublished<br />

data). Th e number of genera is the highest <strong>in</strong> the basal<br />

zone of the páramo, due to the presence of several<br />

genera composed of sylvatic or ruderal species that<br />

occasionally enter the grass páramo at low altitudes:<br />

Incagonum, Glyptolenoides, Notiobia, Sericoda. 14 genera<br />

are recorded from altitudes around 3500–3600 m,<br />

whilst from 4100 m upwards only 9 genera are found.<br />

Th e fauna of the upper superpáramo, above 4400 m,<br />

is restricted to 6 genera (Bembidion, Oxytrechus,<br />

Paratrechus, Dyscolus, Blennidus <strong>and</strong> Pelmatellus),<br />

represented there by specialised orobiont forms. In<br />

global terms, these six genera are clearly dom<strong>in</strong>ant<br />

<strong>in</strong> <strong>Ecuador</strong>ian páramos (fi g. 2). Th eir curves reveal<br />

an optimum of species richness at middle elevations<br />

(from 3800 to 4100 m), <strong>and</strong> only then a progressive<br />

dim<strong>in</strong>ution. Only one genus, Aquilex, is endemic to<br />

<strong>Ecuador</strong>ian high Andes <strong>and</strong> can be considered as an<br />

exclusive páramo specialist. Th e other genera are all<br />

represented <strong>in</strong> the upper montane forest by species<br />

that are adapted to leaf-litter or arboreal habitats.<br />

Species richness varies greatly from one genus to<br />

the other, with Dyscolus conta<strong>in</strong><strong>in</strong>g 44 % of all species.<br />

Dyscolus species show a great variety of adaptations to<br />

almost every ecological condition that can be found<br />

<strong>in</strong> páramos, from the xeric puna-like “arenal” to the<br />

uppermost superpáramo. Other genera are l<strong>in</strong>ked with<br />

narrower habitat conditions. Aquilex, Paratrechus <strong>and</strong><br />

part of Bembidion are riparian or highly hygrophile;<br />

Blennidus <strong>and</strong> Pelmatellus conta<strong>in</strong> a majority of<br />

generalist species, along with a few xerophile species.<br />

P. Moret<br />

Figure 2<br />

Altitud<strong>in</strong>al range <strong>and</strong> species richness of the 16 Carabid genera that live <strong>in</strong><br />

<strong>Ecuador</strong>ian páramos (global data). In each 100 m-<strong>in</strong>terval, the number of<br />

black vertical bars <strong>in</strong>dicates the number of registered species.


Altitud<strong>in</strong>al distribution of Carabidae<br />

Species diversity <strong>and</strong> altitud<strong>in</strong>al distribution<br />

It is generally assumed that <strong>in</strong> montane faunas,<br />

diversity gradually decreases as altitude <strong>in</strong>creases<br />

(Stevens 1992). Th e case of páramo Carabids is not<br />

so straightforward. Whereas a global tendency to<br />

reduction of species richness is evident from 4200 m<br />

upwards, a completely diff erent situation is observed<br />

<strong>in</strong> the grass páramo between 3400 <strong>and</strong> 4200 m (fi g. 3).<br />

In that particular fl oristic belt, species richness reaches<br />

higher scores at medium elevations than at low ones,<br />

with a major peak of diversity at 3800–4000 m,<br />

as proved by a conspicuous rise of the number of<br />

microendemic species. Even <strong>in</strong> the superpáramo,<br />

a m<strong>in</strong>or peak can be detected between 4200 <strong>and</strong><br />

4400 m, be<strong>in</strong>g characterised by a pause <strong>in</strong> the decrease<br />

of the non-endemic species <strong>and</strong> a slight recovery of the<br />

microendemic ones.<br />

Th e analysis of <strong>in</strong>dividual transects allows a better<br />

underst<strong>and</strong><strong>in</strong>g of these phenomena (fi g. 4 <strong>and</strong> table 3).<br />

Two major patterns can be dist<strong>in</strong>guished. A fi rst group<br />

of mounta<strong>in</strong>s <strong>in</strong>cludes Pich<strong>in</strong>cha, West Chimborazo<br />

<strong>and</strong> Cotopaxi, with four characteristics: 1. high or<br />

moderately high similarity with<strong>in</strong> the grass páramo,<br />

from 3500 to 4000 m; 2. important turnover of species<br />

between grass páramo <strong>and</strong> superpáramo, as <strong>in</strong>dicated<br />

by a very low similarity <strong>in</strong>dex (ca 0,25) between the<br />

3900–4000 <strong>and</strong> 4200-4300 m <strong>in</strong>tervals; 3. reduced<br />

turnover with<strong>in</strong> the superpáramo; 4. highest species<br />

richness around 4000–4200 m <strong>in</strong> normal conditions<br />

(Pich<strong>in</strong>cha). On Cotopaxi <strong>and</strong> on the West slope<br />

of Chimborazo, a sudden collapse of the species<br />

richness at the same elevation is due to local factors:<br />

arid microclimate <strong>and</strong>/or recent volcanic activity (see<br />

below).<br />

Results of less complete surveys on the Ill<strong>in</strong>iza,<br />

Atacazo <strong>and</strong> Corazón volcanoes suggest that this<br />

pattern is widespread all along the Western Cordillera<br />

<strong>in</strong> the Pich<strong>in</strong>cha-Chimborazo area. Th e case of the<br />

Cotopaxi north transect seems to be an exception, as it<br />

belongs to the Eastern Cordillera.<br />

A second group is formed by four mounta<strong>in</strong>s<br />

of the Eastern Cordillera (Cayambe, Guamaní,<br />

Llanganatis, Ayapungu), along with the Eastern slope<br />

of the Chimborazo <strong>in</strong> the Western Cordillera. Th ey<br />

Figure 3<br />

Altitud<strong>in</strong>al variation of species richness (per 100 metres-<strong>in</strong>tervals of altitude) for 142 Carabidae species of the Pich<strong>in</strong>cha-Chimborazo area of endemism.<br />

White squares: microendemic species; black circles: other species.<br />

505


506<br />

P. Moret<br />

Figure 4<br />

Altitud<strong>in</strong>al distribution of Carabid species <strong>in</strong> vertical transects of seven mounta<strong>in</strong>s of the Pich<strong>in</strong>cha-Chimborazo area. Details about geographical situations<br />

<strong>in</strong> table 2. White triangles: microendemic species.


Altitud<strong>in</strong>al distribution of Carabidae<br />

present three dist<strong>in</strong>ctive traits: 1. similarity is low or<br />

moderate between the lower <strong>and</strong> the upper part of<br />

the grass páramo, from 3500 to 4000 m; 2. carabid<br />

communities at 3900–4000 m <strong>and</strong> at 4200–4300<br />

m are moderately similar (Cayambe, Ayapungu) or<br />

moderately dissimilar (Guamaní, Llanganatis), but <strong>in</strong><br />

general terms, similarity <strong>in</strong>dex between grass páramo<br />

<strong>and</strong> superpáramo is always higher than <strong>in</strong> the fi rst<br />

group; 3. species richness reaches very high scores <strong>in</strong><br />

non-disturbed páramos, be<strong>in</strong>g extremely high from<br />

3900 to 4100 m <strong>in</strong> the Guamaní transect (20 diff erent<br />

species occurr<strong>in</strong>g <strong>in</strong> that <strong>in</strong>terval), due to exceptional<br />

environmental conditions: high humidity, absence of<br />

graz<strong>in</strong>g, diverse vegetation.<br />

Th ese global tendencies are locally modifi ed by<br />

environmental or historical factors. Disturbances,<br />

such as volcanic activity or soil erosion, are important<br />

features <strong>in</strong> some páramos of <strong>Ecuador</strong> <strong>and</strong> may<br />

signifi cantly alter the general altitud<strong>in</strong>al patterns<br />

(Sklenár & Balslev 2005). For example, species richness<br />

has been dramatically reduced by volcanic activity<br />

of the last two centuries on the slopes of Cotopaxi,<br />

between 3900 <strong>and</strong> 4200 m (fi g. 4), <strong>and</strong> at all elevations<br />

on currently active volcanoes such as the Tungurahua<br />

or the Sangay, both <strong>in</strong> the Eastern Cordillera (Moret<br />

2005). Regard<strong>in</strong>g climatic factors, the case of the arid<br />

western side of Chimborazo will be discussed below.<br />

Altitud<strong>in</strong>al range<br />

Altitud<strong>in</strong>al range is quite variable among páramo<br />

Carabid species. In the genus Dyscolus, the mean<br />

altitud<strong>in</strong>al range is close to 500 m, but some species<br />

have been registered at almost all elevations from<br />

3400 m up to 4400 m (Moret 2005: fi g. 366). If we<br />

discard the species registered at low elevations that are<br />

known to live far below 3500 m <strong>in</strong> the subpáramo,<br />

the altitud<strong>in</strong>al range of Carabid species tends globally<br />

to decrease along the vertical gradient, i.e., the species<br />

from higher altitudes tend to have a narrower altitud<strong>in</strong>al<br />

range. Th is result seems to diff er from fl oristic data <strong>in</strong><br />

similar contexts, s<strong>in</strong>ce botanical surveys of the Ill<strong>in</strong>iza<br />

volcano, situated <strong>in</strong> the Western Cordillera south of<br />

the Pich<strong>in</strong>cha, have shown that the mean altitud<strong>in</strong>al<br />

range of species per altitude <strong>in</strong>creases along the gradient<br />

(Sklenár 2006).<br />

Th e altitud<strong>in</strong>al range of several widespread species<br />

diff ers greatly from one mounta<strong>in</strong> to another, or even<br />

from one slope to the other on the same mounta<strong>in</strong>.<br />

Th ese local variations may be important, as shown by<br />

a detailed analysis of the distribution of four species of<br />

the genus Dyscolus (Moret 2005: 246-248). In the case<br />

of Dyscolus diopsis (Bates 1891) <strong>and</strong> D. megacephalus<br />

(Bates 1891), it is quite clear that the range of these<br />

species is broader <strong>and</strong> starts at lower elevations <strong>in</strong><br />

humid páramos (Cayambe, Guamaní, Ayapungu),<br />

whereas it is much narrower <strong>and</strong> starts at higher<br />

elevations <strong>in</strong> drier contexts, be<strong>in</strong>g usually restricted<br />

to the superpáramo (Cotopaxi, Pich<strong>in</strong>cha). On the<br />

West slope of Chimborazo, Dyscolus oreas (Bates 1891)<br />

ranges from 4800 m to 4970 m, <strong>in</strong> the uppermost<br />

portion of the superpáramo, whereas on the East<br />

slope, the same microendemic species is present<br />

as low as 4400 m (fi g. 4, n° 3). A similar pattern is<br />

shown by Bembidion <strong>and</strong><strong>in</strong>um Bates 1891 (n° 2), but<br />

on the contrary Bembidion carreli Moret & Toledano<br />

2002 lives higher on the East slope than on the West<br />

one (n° 1). Th ese data reveal the role played by local<br />

environmental factors on stenotopic fl ightless <strong>in</strong>sects.<br />

Distribution of microendemic species<br />

If we take <strong>in</strong>to account all the species of the<br />

Pich<strong>in</strong>cha-Chimborazo area, the mean altitud<strong>in</strong>al<br />

range of the best known species –particularly those<br />

of the genus Dyscolus– appears to be much broader <strong>in</strong><br />

the widespread species than <strong>in</strong> the microendemic ones.<br />

In other words, there is a positive correlation between<br />

restricted geographic area <strong>and</strong> narrow altitud<strong>in</strong>al<br />

distribution.<br />

Proportion, richness <strong>and</strong> altitud<strong>in</strong>al distribution of<br />

microendemic species vary greatly from one mounta<strong>in</strong><br />

to another, <strong>and</strong> do not seem to respond to any clear<br />

general patterns. Only <strong>in</strong> some mounta<strong>in</strong>s of the above<br />

described second group (Eastern Cordillera + East<br />

Chimborazo), we can observe a very high proportion of<br />

microendemics <strong>in</strong> a few particular contexts: Guamaní<br />

from 3800 to 4100 m, Llanganatis above 4100 m,<br />

Ayapungu above 4200 m, East Chimborazo above<br />

4300. Except <strong>in</strong> the particular case of Guamaní, these<br />

data po<strong>in</strong>t to the lower superpáramo as to a hotspot of<br />

diversity with a high proportion of microendemics.<br />

Discussion<br />

Th e ma<strong>in</strong> strategy of páramo <strong>in</strong>sects seems to<br />

be behavioural avoidance of cold temperatures <strong>and</strong><br />

excessive dryness (Smithers & Atk<strong>in</strong>s 2001). It has<br />

been demonstrated that resistance to coldness <strong>and</strong><br />

dessication is surpris<strong>in</strong>gly low among <strong>Ecuador</strong>ian<br />

high-altitude Carabids (Sømme et al. 1996). Ow<strong>in</strong>g to<br />

the lack of physiological adaptation, these <strong>in</strong>sects are <strong>in</strong><br />

need of shelter under rocks, stones or cushion plants, or<br />

among the superfi cial roots of tussock-grasses, <strong>in</strong> order<br />

to avoid the extreme nycthemeral contrasts of the high<br />

Andean climate. Consequently, Carabid communities<br />

depend on vegetation structure <strong>and</strong> soil morphology as<br />

well as on the altitud<strong>in</strong>al factor itself. Th is is the reason<br />

507


why many Carabid species have diff erent altitud<strong>in</strong>al<br />

ranges <strong>in</strong> diff erent mounta<strong>in</strong>s, or <strong>in</strong> diff erent slopes<br />

of the same mounta<strong>in</strong>, accord<strong>in</strong>g to local climatic,<br />

pedologic <strong>and</strong> fl oristic conditions.<br />

Diversity <strong>in</strong> the grass páramo<br />

Carabid assemblages demonstrate that the highest<br />

diversity occurs <strong>in</strong> the upper part of the grass páramo<br />

(3900–4100 m) <strong>and</strong> <strong>in</strong> the lower part of the superpáramo<br />

(4100–4400 m), then fall<strong>in</strong>g off steeply <strong>in</strong>to the upper<br />

superpáramo. In the grass páramo, species diversity is<br />

much higher at high elevations (above 3800 m) than<br />

<strong>in</strong> its lower part (fi g. 3). Th ese results contradict the<br />

usual assumption of a gradual decrease of diversity <strong>and</strong><br />

species richness along altitud<strong>in</strong>al gradients (Stevens<br />

1992). Th ey can be expla<strong>in</strong>ed at some extent by the fact<br />

that the upper limit of the species that are restricted to<br />

the grass páramo overlaps with the lower limit of the<br />

high altitude orobionts, so that the maximum diversity<br />

occurs <strong>in</strong> a transitional zone where many fl ightless<br />

páramo Carabid species are likely to be found. But the<br />

ma<strong>in</strong> cause of the relatively depauperate fauna of the<br />

grass páramo, between 3500 <strong>and</strong> 3900 m, is probably<br />

anthropogenic.<br />

It has been assumed that the climax vegetation of the<br />

Andes was forest up to 4200–4300 m, <strong>and</strong> that presentday<br />

grass páramo is a fi re-<strong>in</strong>duced anthropogenic<br />

l<strong>and</strong>scape (Lægaard 1992). Carabid distribution <strong>and</strong><br />

diversity allow us to contribute to this debate with fi ve<br />

po<strong>in</strong>ts. 1/ Species richness is frequently higher <strong>in</strong> the<br />

lower superpáramo, around 4200–4300 m, than <strong>in</strong><br />

grazed páramos around 3700–3800 m, particularly<br />

<strong>in</strong> the Eastern Cordillera (fi g. 4). 2/ Th ere is a high<br />

faunistic similarity between forest edge communities<br />

<strong>and</strong> grass páramo communities (Moret 2005). 3/<br />

Th ere is a low or moderately low faunistic similarity<br />

between grazed páramo communities <strong>and</strong> superpáramo<br />

communities (table 3). Conversely, there is much less<br />

turnover between the upper part of grass páramo<br />

<strong>and</strong> the superpáramo <strong>in</strong> the few transects, such as<br />

Guamaní, where anthropic pressure is low. 4/ In the<br />

grass páramo, communities are dom<strong>in</strong>ated by a few<br />

generalist <strong>and</strong> eurytopic species, with broad altitud<strong>in</strong>al<br />

ranges: Bembidion fulvoc<strong>in</strong>ctum Bates 1891 <strong>and</strong> B.<br />

cotopaxi Moret & Toledano 2002, Dyscolus alp<strong>in</strong>us<br />

(Chaudoir 1878) <strong>and</strong> D. denigratus (Bates 1891),<br />

Blennidus pich<strong>in</strong>chae (Bates 1891), Dercylus cordicollis<br />

(Chaudoir 1883) <strong>and</strong> Pelmatellus columbianus (Reiche<br />

1843). 5/ Percentage of microendemic species is lower<br />

<strong>in</strong> the grass páramo, higher <strong>in</strong> most of the superpáramos<br />

(fi g. 4).<br />

Th ese observations <strong>in</strong>dicate clearly that the Carabid<br />

communities of the grazed páramo are impoverished,<br />

508<br />

P. Moret<br />

dom<strong>in</strong>ated by typically pioneer or opportunistic<br />

species, some of which come from the ecotone habitat<br />

of the forest edge. In that way, the results of this study<br />

strengthen the hypothesis of the tussock-grass páramo<br />

be<strong>in</strong>g a secondary anthropogenic ecosystem. In nondisturbed<br />

conditions, biotopes similar to the lower<br />

superpáramo may have existed locally as low as 3900 m,<br />

mixed with patches of Polylepis forest, as <strong>in</strong>dicated by<br />

the residual presence of superpáramo specialists at<br />

elevations between 3900 <strong>and</strong> 4100 m <strong>in</strong> almost all the<br />

surveyed transects.<br />

Only a few páramos below 4200 m can be<br />

considered to represent true climax vegetation, based<br />

on a greater species richness <strong>and</strong> higher percentage<br />

of microendemic species. On the one h<strong>and</strong>, there are<br />

the bamboo páramos of the most humid areas of the<br />

Eastern Cordillera, whose entomological fauna is still<br />

poorly known. A partial survey on the north slope<br />

of Llanganatis (table 2 <strong>and</strong> fi g. 4) <strong>in</strong>dicates that the<br />

Carabidae that have been found <strong>in</strong> this type of páramo<br />

are both related with the superpáramo community<br />

<strong>and</strong> with the most hygrophilic elements of the lower<br />

grass páramo community. In the Guamaní area, the<br />

outst<strong>and</strong><strong>in</strong>g richness of the Carabid community<br />

between 3800 <strong>and</strong> 4000 m is due to the great diversity<br />

of ecological niches <strong>in</strong> a patchy mosaic of shrub<br />

páramo, Polylepis pauta mixed woodl<strong>and</strong> <strong>and</strong> swamps<br />

(Lauer et al. 2003: 80).<br />

On the other h<strong>and</strong>, there is the xeromorphic<br />

páramo, locally called “arenal”, of the western side of<br />

Chimborazo. Th is desert-like area with very sparse <strong>and</strong><br />

patchy vegetation, <strong>in</strong> strong contrast with the dense<br />

humid páramo of the eastern side, is the result of a ra<strong>in</strong>shadow<br />

phenomenon on the western leeward side of the<br />

mounta<strong>in</strong>. A similar pattern, though less contrasted, is<br />

known on the Southwest side of the Antisana, a volcano<br />

situated halfway between Guamaní <strong>and</strong> Cotopaxi.<br />

Accord<strong>in</strong>g to Sklenár & Lægaard (2003), there is a<br />

higher fl oristic similarity between the two western<br />

<strong>and</strong> two eastern sides of these mounta<strong>in</strong>s, respectively,<br />

than between the opposite sides of each mounta<strong>in</strong>.<br />

Despite limited faunistic surveys on Antisana, the<br />

same conclusion can be drawn from the composition<br />

of Carabid communities. On Chimborazo, similarity<br />

is very low between the west <strong>and</strong> east slopes, though a<br />

typical xerophilic species of the Chimborazo “arenal”,<br />

Pelmatellus <strong>and</strong>ium Bates 1891, is present also at the<br />

same elevation on the west side of the Antisana.<br />

As to its fl oristic communities, the dry western<br />

Chimborazo has a low species richness <strong>and</strong> low betadiversity;<br />

it is among the least diverse páramos <strong>in</strong><br />

<strong>Ecuador</strong>, with 20 % less plant species than on the<br />

opposite humid east side (Sklenár & Lægaard 2003).


Altitud<strong>in</strong>al distribution of Carabidae<br />

Accord<strong>in</strong>g to these authors, the desert-like “arenal”<br />

would be an anthropogenic, depauperate l<strong>and</strong>scape<br />

“due to the comb<strong>in</strong>ed eff ect of (1) ra<strong>in</strong>-shadow of<br />

the volcano, (2) human-<strong>in</strong>duced disturbance of the<br />

vegetation by cattle-breed<strong>in</strong>g <strong>and</strong> heavy graz<strong>in</strong>g, <strong>and</strong><br />

(3) result<strong>in</strong>g erosion”. Th is assessment is not supported<br />

by faunistic data. Species richness is relatively low <strong>in</strong> the<br />

“arenal”, but its community is quite diff erent from that<br />

of st<strong>and</strong>ard grass páramo at the same elevation <strong>in</strong> other<br />

mounta<strong>in</strong>s of the Western Cordillera. Locally, there is<br />

a very low similarity between the “arenal” community<br />

at around 4200 m <strong>and</strong> that of the grass páramo under<br />

4000 m (table 3). Moreover, this xerophile community<br />

<strong>in</strong>cludes a stenotopic element, Pelmatellus <strong>and</strong>ium Bates<br />

1891, which is only known from three arid páramos<br />

or superpáramos (Antisana, Cotopaxi, Chimborazo).<br />

Ow<strong>in</strong>g to its discont<strong>in</strong>uous distribution <strong>in</strong> three of the<br />

most xeric páramos of the Pich<strong>in</strong>cha-Chimborazo area,<br />

this species is likely to be a relict testify<strong>in</strong>g to past cold<br />

<strong>and</strong> dry periods of the last glaciation, from 25 000 to<br />

15 000 BP, when the <strong>Ecuador</strong>ian Andes were covered<br />

by a puna-like l<strong>and</strong>scape down to 3000 m (Col<strong>in</strong>vaux<br />

et al. 1997). Tak<strong>in</strong>g these data <strong>in</strong>to account, we suggest<br />

that the desert-like páramo of the “arenal” has a long<br />

history <strong>and</strong> is not the result of recent anthropogenic<br />

disturbances.<br />

Diversity <strong>in</strong> the superpáramo<br />

Th e lower superpáramo (4100–4400 m) is well<br />

defi ned by its faunistic composition. In some of the<br />

best sampled transects (Cayambe, Pich<strong>in</strong>cha, East<br />

Chimborazo, Ayapungu), this belt proves to be a zone<br />

of high biodiversity, especially regard<strong>in</strong>g stenotopic<br />

elements. Similar patterns have been highlighted<br />

by recent fl oristic analyses (Sklenár & Balslev 2005;<br />

Sklenár 2006). Interest<strong>in</strong>gly, rates of species turnover<br />

from grass páramo to lower superpáramo are quite<br />

diff erent <strong>in</strong> humid <strong>and</strong> dry páramos, i.e. <strong>in</strong> Group 1<br />

(Western Cordillera + Cotopaxi) <strong>and</strong> <strong>in</strong> Group 2<br />

(Eastern Cordillera + East Chimborazo). In Group 1, a<br />

sharp threshold <strong>in</strong> species composition occurs at around<br />

4100 m, which corresponds to the transition between<br />

grass páramo <strong>and</strong> superpáramo. In Group 2, situations<br />

are more diverse: <strong>in</strong> some cases the same species that<br />

dom<strong>in</strong>ate <strong>in</strong> the superpáramo are present <strong>in</strong> the upper<br />

belt of the grass páramo (Guamaní), <strong>in</strong> others there is<br />

an important turnover at around 4300 m (Cayambe,<br />

Ayapungu). Th ese diff erences seem to be due to local<br />

environmental conditions, especially climatic <strong>and</strong><br />

hydric factors.<br />

Our data set suggests a positive correlation between<br />

humid microclimate <strong>and</strong> species richness, as illustrated<br />

by the most diverse superpáramos of Group 2<br />

(Guamaní, Llanganatis, Ayapungu), which are also<br />

the most humid (tables 2 <strong>and</strong> 3). Th e number of<br />

microendemic species is also very high <strong>in</strong> these humid<br />

superpáramos. Th ese hotspots of diversity correspond<br />

to the upper atmospheric condensation level, situated<br />

between 4000 <strong>and</strong> 4300 m <strong>in</strong> Colombia <strong>and</strong> Northern<br />

<strong>Ecuador</strong> (Van der Hammen & Cleef 1986: 158;<br />

Sklenár 2006). Higher species richness <strong>in</strong> humid<br />

oriental superpáramos is partly due to the presence<br />

of specialised riparian hygrophile species that live <strong>in</strong><br />

streamlets or swampy areas. Such humid biotopes do<br />

not exist at the same elevation <strong>in</strong> drier páramos of the<br />

Western Cordillera.<br />

Th e presence of microendemic species is<br />

signifi cantly high <strong>in</strong> the lower superpáramo of two of<br />

the few metamorphic mounta<strong>in</strong>s that exist <strong>in</strong> <strong>Ecuador</strong>,<br />

Llanganatis <strong>and</strong> Ayapungu (fi g. 4). But as it has been<br />

stated by Sklenár & Balslev (2005), the signifi cance of<br />

this geologic factor for the species distributions rema<strong>in</strong>s<br />

dubious, whereas humidity probably plays a greater<br />

role, <strong>in</strong>sofar as these páramos, along with Guamaní,<br />

receive the highest amounts of precipitation among<br />

the studied sites.<br />

Endemism <strong>and</strong> faunistic similarity<br />

As stated <strong>in</strong> a previous work (Moret 2005),<br />

the distribution of páramo Carabids supports the<br />

defi nition of areas of endemism on diff erent scales<br />

(fi g. 1). Th e endemicity rates that have been registered<br />

among fl ightless Andean Carabids is far higher than <strong>in</strong><br />

the fl ora of the páramo (Sklenár & Jørgensen 1999),<br />

open<strong>in</strong>g up prospects for a better underst<strong>and</strong><strong>in</strong>g of<br />

the complex history of that ecosystem dur<strong>in</strong>g the<br />

Pleistocene; but this is a diff erent issue that cannot be<br />

treated <strong>in</strong> this paper.<br />

Th ere is still one po<strong>in</strong>t that is worth emphasis<strong>in</strong>g.<br />

Th e rates of microendemism <strong>and</strong> of species richness<br />

are clearly higher <strong>in</strong> the Eastern Cordillera than <strong>in</strong> the<br />

Western Cordillera. Among possible causes, climate<br />

must be one of the most important, given the existence<br />

of humid areas, appropriate to many Carabid species, <strong>in</strong><br />

the major part of the Eastern cordillera. But it can also<br />

be noticed that the basal volcanic complex of Northern<br />

<strong>Ecuador</strong>ian Andes, Late Miocene to Early Pliocene<br />

<strong>in</strong> age, is much broader <strong>and</strong> higher <strong>in</strong> the Eastern<br />

Cordillera than <strong>in</strong> the Western Cordillera; <strong>in</strong> the latter,<br />

the mounta<strong>in</strong>s that range above 3500 m result from<br />

recent Quaternary volcanism (Barbieri et al. 1988).<br />

Th is means that conditions for the development <strong>and</strong><br />

diversifi cation of a highly specialised montane fauna<br />

existed much earlier <strong>in</strong> the Eastern Cordillera.<br />

F<strong>in</strong>ally, the two groups of mounta<strong>in</strong>s we defi ned<br />

above, based on altitud<strong>in</strong>al distribution of Carabid<br />

509


species, are congruent with the two major fl oristic<br />

divisions of Sklenár & Balslev (2005). Th eir fi rst group<br />

<strong>in</strong>cludes drier páramos (Chimborazo-west, Antisanawest,<br />

Il<strong>in</strong>iza, Cotopaxi, <strong>and</strong> Pich<strong>in</strong>cha), due to the<br />

occurrence of Plantago nubigena <strong>and</strong> Festuca vag<strong>in</strong>alis,<br />

whereas their second group, based on the presence<br />

of Pentacalia peruviana, is composed of humid<br />

páramos (Cotacachi, Imbabura, Cajas, Cayambe, <strong>and</strong><br />

Chimborazo-east).<br />

Acknowledgements. Th is work would have rema<strong>in</strong>ed<br />

<strong>in</strong>complete without the help of many curators <strong>and</strong> entomologists<br />

who made available valuable materials: G.E. Ball <strong>and</strong> D. Shpeley<br />

(University of Alberta, Strickl<strong>and</strong> Museum), Y. Bousquet<br />

(Canadian National Collections), A. Casale (Università di<br />

Sassari), R.L. Davidson (Carnegie Museum of Natural History),<br />

Th . Deuve (Muséum National d’Histoire Naturelle, Paris), K.<br />

Desender (Institut Royal des Sciences Naturelles de Belgique),<br />

P.M. Giach<strong>in</strong>o (Museo Regionale di Scienze Naturali, Tor<strong>in</strong>o),<br />

I. Izquierdo y C. Martín (Museo Nacional de Ciencias<br />

Naturales, Madrid), A. Jas<strong>in</strong>ski (Piastow),G. Onore, F. Maza<br />

<strong>and</strong> G. Zapata (Pontifi cia Universidad Católica del <strong>Ecuador</strong>),<br />

P. Ramsay <strong>and</strong> P. Smithers (University of Plymouth), A. Vigna<br />

Taglianti (Università di Roma), R. Sciaky (Milano), <strong>and</strong> L.<br />

Toledano (Verona).<br />

510<br />

References<br />

Acosta-Solís M. 1984. Los páramos <strong>and</strong><strong>in</strong>os del <strong>Ecuador</strong>. Publicaciones<br />

Científi cas Mas, Quito.<br />

Allegro G., Giach<strong>in</strong>o P. M, Sciaky R. 2008. Notes on some Trech<strong>in</strong>i<br />

(Coleoptera Carabidae) of South America with description of new<br />

species from Chile, <strong>Ecuador</strong> <strong>and</strong> Peru, p. 131-171 <strong>in</strong>: Giach<strong>in</strong>o P. M.<br />

(ed.), Biodiversity of South America I. Memoirs on Biodiversity, 1, World<br />

Biodiversity Association Onlus, Verona.<br />

Barbieri F., Coltelli M., Ferrara G., Innocenti F., Navarro J. M.,<br />

Santacroce R. 1988. Plio-Quaternary volcanism <strong>in</strong> <strong>Ecuador</strong>. Geological<br />

Magaz<strong>in</strong>e 125 (1): 1-14.<br />

Camero E. 2003. Caracterización de la fauna de carábidos (Coleoptera:<br />

Carabidae) en un perfi l altitud<strong>in</strong>al de la Sierra Nevada de Santa Marta,<br />

Colombia. Revista de la Academia Colombiana de Ciencias 27 (105):<br />

491-516.<br />

Col<strong>in</strong>vaux P. A., Bush M. B., Ste<strong>in</strong>itz-Kannan M., Miller M. C. 1997.<br />

Glacial <strong>and</strong> postglacial pollen records from the <strong>Ecuador</strong>ian Andes <strong>and</strong><br />

Amazon. Quaternary Research 48: 69-78.<br />

Dajoz R. 2002. Les Coléoptères Carabidés et Ténébrionidés: écologie et<br />

biologie. Lavoisier, Paris.<br />

Desender K., Dufrene M., Loreau M., Luff M. L., Maelfait J.-P. (eds.)<br />

1994. Carabid Beetles: Ecology <strong>and</strong> Evolution. Kluwer Academic<br />

Publishers, Dordrecht.<br />

Koleff P. 2005. Conceptos y medidas de la diversidad beta, p. 19-40 <strong>in</strong>:<br />

Halff ter G., Soberón J, Koleff P., Melic A. (eds.), Sobre diversidad<br />

biológica: el signifi cado de las diversidades alfa, beta y gamma. Monografías<br />

3ercer Milenio, 4, Zaragoza.<br />

Lægaard S. 1992. Infl uence of fi re <strong>in</strong> the grass páramo vegetation of<br />

<strong>Ecuador</strong>, p. 151-170 <strong>in</strong>: Balslev H., Luyten J. L. (eds.), Páramo: an<br />

Andean ecosystem under human <strong>in</strong>fl uence. Academic Press, London.<br />

Lauer W., Rafi qpoor M. D., Bendix J. 2003. Vergleichende Geoökologie der<br />

Hochgebirge der nördlichen (Mexiko) und südlichen (Bolivien) R<strong>and</strong>tropen<br />

sowie der <strong>in</strong>neren Tropen (<strong>Ecuador</strong>). Akademie der Wissenschaften<br />

P. Moret<br />

und der Literatur, Ma<strong>in</strong>z. Abh<strong>and</strong>lungen der Mathematischnaturwissenschafl<br />

tlichen Klasse, 2003-1, Ma<strong>in</strong>z.<br />

Liebherr J. K. 1994. Biogeographic patterns of montane Mexican <strong>and</strong><br />

Central American Carabidae (Coleoptera). Th e Canadian Entomologist<br />

126: 841-860.<br />

Luteyn J. L. 1999. Páramos. A checklist of plant diversity, geographical distribution,<br />

<strong>and</strong> botanical literature. Memoirs of the New York Botanical<br />

Garden, 84, New York.<br />

Moret P. 2001. Th e Ground Beetles of the Chiles area (Coleoptera, Carabidae):<br />

a taxonomic <strong>and</strong> ecological overview, p. 125-135 <strong>in</strong>: Ramsay<br />

P. M. (ed.), Th e Ecology of Volcán Chiles: high-altitude ecosystems on the<br />

<strong>Ecuador</strong>-Colombia border. Pebble & Shell, Plymouth, 217 p.<br />

Moret P. 2005. Los coleópteros Carabidae del páramo en los Andes del <strong>Ecuador</strong>.<br />

Sistemática, ecología y biogeografía. Pontifi cia Universidad Católica del<br />

<strong>Ecuador</strong>, Centro de Biodiversidad y Ambiente, Monografía 2, Quito,<br />

306 p.<br />

Noonan G. R., Ball G. E., Stork N. E. (eds.) 1992. Th e Biogeography<br />

of Ground Beetles of Mounta<strong>in</strong>s <strong>and</strong> Isl<strong>and</strong>s. Intercept Ltd, Andover,<br />

Hampshire.<br />

Perrault G.-G. 1994. Ecobiogeography of Carabidae <strong>in</strong> the Andes of<br />

Venezuela, p. 45-49 <strong>in</strong>: Desender K., Dufrene M., Loreau M., Luff<br />

M. L., Maelfait J.-P. (eds.), Carabid Beetles: Ecology <strong>and</strong> evolution.<br />

Series Entomologica, 51, Kluwer Academic Publishers, Dordrecht.<br />

Sklenár P. 2006. Search<strong>in</strong>g for altitud<strong>in</strong>al zonation: Species distribution<br />

<strong>and</strong> vegetation composition <strong>in</strong> the superpáramo of Volcán Il<strong>in</strong>iza,<br />

<strong>Ecuador</strong>. Plant Ecology 184 (2): 337-350.<br />

Sklenár P., Balslev H. 2005. Superpáramo plant species diversity <strong>and</strong><br />

phytogeography <strong>in</strong> <strong>Ecuador</strong>. Flora 200: 416-433.<br />

Sklenár P., Jørgensen P. M. 1999. Distribution patterns of paramo plants<br />

<strong>in</strong> <strong>Ecuador</strong>. Journal of Biogeography 26 (4): 681-691.<br />

Sklenár P., Lægaard S. 2003. Ra<strong>in</strong>-Shadow <strong>in</strong> the High Andes of <strong>Ecuador</strong><br />

evidenced by paramo vegetation. Arctic, Antarctic, <strong>and</strong> Alp<strong>in</strong>e Research<br />

35 (1): 8-17.<br />

Sklenár P., Ramsay P. M. 2001. Diversity of zonal páramo plant<br />

communities <strong>in</strong> <strong>Ecuador</strong>. Diversity <strong>and</strong> Distributions 7: 113-124.<br />

Smithers P., Atk<strong>in</strong>s N. 2001. Variation <strong>in</strong> páramo <strong>in</strong>vertebrate communities<br />

on Volcán Chiles, with particular reference to Carabidae (Coleoptera),<br />

p. 145-151 <strong>in</strong>: Ramsay P. M. (ed.), Th e Ecology of Volcán<br />

Chiles: high-altitude ecosystems on the <strong>Ecuador</strong>-Colombia border. Pebble<br />

& Shell, Plymouth, 217 p.<br />

Sømme L., Davidson R. L., Onore G. 1996. Adaptations of Insects at high<br />

altitudes of Chimborazo, <strong>Ecuador</strong>. European Journal of <strong>Entomology</strong> 93:<br />

313-318.<br />

Stevens G. C. 1992. Th e elevation gradient <strong>in</strong> altitud<strong>in</strong>al range: an<br />

extension of Rapoport’s latitud<strong>in</strong>al rule to altitude. American Naturalist<br />

140: 893-911.<br />

Sturm H. 1994. Fauna, p. 71-87 <strong>in</strong>: Sturm H., Mora-Osejo L. E. (eds.),<br />

Estudios ecológicos del páramo y del bosque alto<strong>and</strong><strong>in</strong>o, Cordillera Oriental<br />

de Colombia. Academia Colombiana de Ciencias exactas, físicas y<br />

naturales, Bogotá.<br />

Th iele H. U. 1977. Carabid beetles <strong>in</strong> their environments. Spr<strong>in</strong>ger Verlag,<br />

Berl<strong>in</strong>.<br />

Toledano L. 2008. Systematic notes on the Bembidi<strong>in</strong>a of the Northern<br />

Andes with particular reference to the fauna of <strong>Ecuador</strong> (Coleoptera,<br />

Carabidae), p. 81-130 <strong>in</strong>: Giach<strong>in</strong>o P. M. (ed.), Biodiversity of South<br />

America I. Memoirs on Biodiversity, 1, World Biodiversity Association<br />

Onlus, Verona.<br />

Van der Hammen T., Cleef A. M. 1986. Development of the High<br />

Andean Páramo Flora <strong>and</strong> Vegetation, p. 153-201 <strong>in</strong>: Vuilleumier F.,<br />

Monasterio M. (eds.), High Altitude Tropical Biogeography. Oxford<br />

University Press, Oxford.


Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 511-528<br />

Diversity <strong>and</strong> distribution models of horse fl ies<br />

(Diptera: Tabanidae) from <strong>Ecuador</strong><br />

ARTICLE<br />

Rafael E. Cárdenas (1) , Jaime Buestán (2) & <strong>Olivier</strong> <strong>Dangles</strong> (1,3)<br />

(1) Museo de Zoología QCAZ, Sección Invertebrados, Escuela de Ciencias Biológicas, Pontifi cia Universidad Católica del <strong>Ecuador</strong>,<br />

Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, <strong>Ecuador</strong><br />

(2) Instituto Nacional de Higiene y Medic<strong>in</strong>a Tropical, Leopoldo Izquieta Pérez, Área de Salud Animal,<br />

Julián Coronel 905 y Esmeraldas, Guayaquil, <strong>Ecuador</strong><br />

(3) IRD-LEGS, University Paris-Sud 11, F-91190 Gif-sur-Yvette, France<br />

Abstract. Worldwide <strong>in</strong>formation about Tabanidae is biased toward taxonomical research, which has<br />

been the ma<strong>in</strong> source of diversity data for this group of fl ies. In <strong>Ecuador</strong>, studies on horse fl ies have<br />

been irregular s<strong>in</strong>ce the fi rst descriptions of three Andean specimens <strong>in</strong> 1848. Catalogues, checklists<br />

<strong>and</strong> collections <strong>in</strong> national museums demonstrate that despite its size, <strong>Ecuador</strong> is at present the richest<br />

country <strong>in</strong> number of tabanids species <strong>in</strong> the Neotropics after Brazil, Colombia <strong>and</strong> Mexico, <strong>and</strong> has<br />

one of the highest numbers of species per unit area. The tabanofauna is predom<strong>in</strong>antly shared with<br />

Colombia (62.6%), Peru (47%), Brazil (35.9%), Panama (35.4%), <strong>and</strong> Venezuela (30.3%) that have<br />

biogeographic areas <strong>in</strong> common with <strong>Ecuador</strong>. Endemism rate of this group is around 12.6%, with<br />

Diachlorus, Dicladocera, Esenbeckia, Eristalotabanus (monotypic), <strong>and</strong> Leucotabanus genera as the<br />

most representatives. We add new records of Tabanidae for the country. The genus Hemichrysops was<br />

recorded for fi rst time. The number of species <strong>in</strong> <strong>Ecuador</strong> now totals 198. A catalogue of all <strong>Ecuador</strong>ian<br />

species is compiled with a localities-gazetteer. We also present <strong>and</strong> discuss for the fi rst time, the<br />

distribution of well known horse fl ies species (Chrysops varians var. tardus, Dicladocera macula <strong>and</strong><br />

Fidena rh<strong>in</strong>ophora) us<strong>in</strong>g georeferenced localities <strong>and</strong> niche modell<strong>in</strong>g analyses.<br />

Résumé. Diversité et modèles de distribution des taons (Diptera : Tabanidae) de l’Equateur.<br />

L’<strong>in</strong>formation existante sur les Tabanidae à l’échelle mondiale concerne pr<strong>in</strong>cipalement la recherche<br />

taxonomique qui a été la source pr<strong>in</strong>cipale de données concernant la diversité de ce groupe de<br />

mouches. En Équateur, les études sur les taons ont été irrégulières depuis les premières descriptions<br />

en 1848 de trois spécimens des Andes. Les catalogues, listes et collections d’espèces dans les<br />

musées nationaux démontrent qu’en dépit de sa taille restre<strong>in</strong>te, l’Equateur représente actuellement<br />

l’un des pays néotropicaux les plus riches en espèces de Tabanidae après le Brésil, la Colombie<br />

et le Mexique. L’Equateur abrite l’une des plus fortes densités d’espèces par unité de surface. Sa<br />

faune de Tabanidae est partagée pr<strong>in</strong>cipalement avec la Colombie (62,6% d’espèces en commun),<br />

le Pérou (47,0%), le Brésil (35,9%), Panama (35,4%) et le Vénézuela (30,3%). Le taux d’endémisme<br />

de ce groupe en Equateur est d’environ 12,6%. Les genres Diachlorus, Dicladocera, Esenbeckia,<br />

Eristalotabanus (monotypique) et Leucotabanus sont les plus représentatifs. Dans cette étude, nous<br />

présentons de nouveaux données de Tabanidae pour le pays (dont le genre Hemichrysops observé<br />

pour la première fois), menant a<strong>in</strong>si à une liste de 198 espèces pour le pays. Un catalogue de toutes les<br />

espèces équatoriennes est annexé avec toutes les localités. Pour la première fois pour ces <strong>in</strong>sectes,<br />

nous présentons et discutons également la distribution de certa<strong>in</strong>es espèces bien connues (Chrysops<br />

varians var. tardus, Dicladocera macula et Fidena rh<strong>in</strong>ophora) à l’aide de localités géoréférencées et<br />

de modèles de niche.<br />

Keywords: Andes, Biogeography, Neotropical Region, Niche modell<strong>in</strong>g, Tabanomorpha.<br />

Accord<strong>in</strong>g to the last catalogue of Neotropical<br />

Tabanidae (Fairchild & Burger 1994), 1172 valid<br />

species <strong>and</strong> subspecies have been described from the<br />

Neotropical Region of which larvae are known from<br />

only 4.1% (Coscarón 2002). In <strong>Ecuador</strong>, the study<br />

E-mail: recardenasm@yahoo.com, jaime_buestan@hotmail.com,<br />

dangles@legs.cnrs-gif.fr<br />

Accepté le 28 octobre 2009<br />

of tabanid fl ies began with the description of three<br />

Andean species from Quito: Esenbeckia testaceiventris<br />

Macquart 1848, Tabanus peruvianus Macquart 1848,<br />

<strong>and</strong> Dasychela ocellus (Walker) 1848. S<strong>in</strong>ce these fi rst<br />

descriptions, sporadic collections <strong>and</strong> expeditions by<br />

<strong>in</strong>ternational governmental <strong>and</strong> private <strong>in</strong>stitutions<br />

have been the ma<strong>in</strong> source of diversity <strong>in</strong>formation for<br />

this group. Most of the Tabanidae records from <strong>Ecuador</strong><br />

have been reported s<strong>in</strong>gly <strong>in</strong> scattered publications.<br />

Ecological studies on <strong>Ecuador</strong>ian Tabanidae are<br />

scarce as only three reports have been found <strong>in</strong> the<br />

511


literature. Buestán (1980) identifi ed with<strong>in</strong> a oneyear<br />

survey <strong>in</strong> the Guayas prov<strong>in</strong>ce, a unimodal peak<br />

of abundance for three perennial fl y species <strong>in</strong> the<br />

summer. Buestán (2006) reported the transmission<br />

of Dermatobia hom<strong>in</strong>is bot fl y (Diptera: Oestridae)<br />

by Chrysops varians var. tardus. Th is was the fi rst case<br />

of a horse fl y-vectored myiasis reported <strong>in</strong> <strong>Ecuador</strong>.<br />

Such <strong>in</strong>formation makes these fl ies of particular socioeconomic<br />

importance. Cárdenas (2007) presented<br />

a detailed ecological study of changes <strong>in</strong> horse fl y<br />

communities along a 1-km altitud<strong>in</strong>al gradient <strong>in</strong> a<br />

Chocoan cloud forest. Th ere were signifi cant diff erences<br />

<strong>in</strong> heteroge<strong>in</strong>ity <strong>and</strong> evenness of tabanid communities,<br />

<strong>and</strong> an important role of climatic variables <strong>in</strong> the daily<br />

activity of these fl ies.<br />

Th e biogeography of <strong>Ecuador</strong>ian tabanofauna is<br />

completely unknown. Only two important works by<br />

Fairchild (1969a, 1969b) reviewed the distributional<br />

patterns of tabanids <strong>in</strong> Central <strong>and</strong> South America.<br />

Biogeographic “zones” identifi ed by Fairchild are<br />

remarkably similar to biogeographical regions proposed<br />

by Morrone (2001, 2006) on which our comments<br />

<strong>and</strong> discussions are based.<br />

Th ough tabanids have been implicated <strong>in</strong><br />

transmission of pathogens of relative importance of<br />

cattle <strong>and</strong> humans (Kr<strong>in</strong>sky 1976; Davies 1990; Otte<br />

512<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

& Abuabara 1991; Buestán 2006) further research on<br />

natural history, vectorial capabilities <strong>and</strong> control are<br />

necessary. A start<strong>in</strong>g po<strong>in</strong>t to achieve these goals is the<br />

use of numerical technologies such as georeferenced<br />

databases, geographical <strong>in</strong>formation system (GIS) <strong>and</strong><br />

niche modell<strong>in</strong>g analyses. Th ese techniques represent<br />

the basic elements of modern <strong>in</strong>vestigations of species<br />

distributions (Elith et al. 2006) with widespread<br />

applications <strong>in</strong> biogeography, macroecology, evolution<br />

(Graham et al. 2004), parasitology <strong>and</strong> disease<br />

transmission (Peterson 2006). It is therefore necessary<br />

to rely on complete <strong>and</strong> updated species georeferenced<br />

localities databases of collected specimens. Museum<br />

fauna checklists are thus <strong>in</strong>dispensable (refer to<br />

Henriques & Gorayeb 1993 <strong>and</strong> Henriques 1995 for<br />

catalogue examples; see W<strong>in</strong>ston 2007 for a discussion<br />

on this subject).<br />

We present a revision of the <strong>Ecuador</strong>ian tabanid<br />

fauna. We fi rst compared the taxonomic diversity with<br />

other biogeographically-related countries <strong>and</strong> provide<br />

a gazetteer of georreferenced collection localities.<br />

Second, we analyze the potential distribution of three<br />

well known species (<strong>in</strong>clud<strong>in</strong>g bot fl y vector Chrysops<br />

varians var. tardus) us<strong>in</strong>g maximum entropy ecological<br />

niche modell<strong>in</strong>g.<br />

Table 1. Horse fl y diversity <strong>in</strong> the Neotropical Region.<br />

Top values correspond to the number of shared species between Neotropical countries. Bottom values correspond to the <strong>in</strong>dividual percentage of each country<br />

shared with another country. Data <strong>in</strong> parentheses correspond to the number of Tabanidae species per 10,000 km 2 (diversity density). Analyses were based on<br />

1214 Neotropical species.<br />

Mexico (1.05)<br />

Costa Rica (27.6)<br />

Panama (20)<br />

Venezuela (1.2)<br />

Colombia (2.25)<br />

<strong>Ecuador</strong> (7.72)<br />

Peru (1.48)<br />

Brazil (0.52)<br />

Bolivia (1.35)<br />

Argent<strong>in</strong>a (0.6)<br />

Chile (1.42)<br />

Mex. C. Rica Pan. Ven. Col. Ecu. Per. Bra. Bol. Arg. Chi.<br />

43 38 20 27 18 14 15 10 8 0<br />

21.3% 18.8% 9.9% 13.4% 8.9% 6.9% 7.4% 5% 4% 0%<br />

43<br />

124 40 83 59 33 35 22 12 1<br />

30.7%<br />

88.6% 28.6% 59.3% 42.1% 23.6% 25% 15.7% 8.6% 0.7%<br />

38 124<br />

46 96 70 38 38 26 12 1<br />

25% 81.6%<br />

30.3% 63.2% 46.1% 25% 25% 17.1% 7.9% 0.7%<br />

20 40 46<br />

80 60 48 61 32 14 1<br />

18.9% 37.7% 43.4%<br />

75.5% 56.6% 45.3% 57.5% 30.2% 13.2% 0.9%<br />

27 83 96 80<br />

124 83 81 50 19 1<br />

11.5% 35.5% 41% 34.2%<br />

53.0% 35.5% 34.6% 21.4% 8.1% 0.4%<br />

18 59 70 60 124<br />

93 71 58 22 1<br />

9.1% 29.8% 35.4% 30.3% 62.6%<br />

47% 35.9% 29.3% 11.1% 0.5%<br />

14 33 38 48 83 93<br />

85 74 24 11<br />

7.4% 17.5% 20.1% 25.4% 43.9% 49.2%<br />

45% 39.2% 12.7% 5.8%<br />

15 35 38 61 81 71 85<br />

76 61 1<br />

3.4% 8.0% 8.7% 13.9% 18.5% 16.0% 19.4%<br />

17.3% 13.9% 0.2%<br />

10 22 26 32 50 58 74 76<br />

50 2<br />

6.8% 15.1% 17.8% 21.9% 34.2% 39.7% 50.7% 52.1%<br />

34.2% 1.4%<br />

8 12 12 14 19 22 24 61 50<br />

39<br />

4.8% 7.3% 7.3% 8.5% 11.5% 13.3% 14.5% 37% 30.3%<br />

23.6%<br />

0 1 1 1 1 1 11 1 2 39<br />

0% 0.9% 0.9% 0.9% 0.9% 0.9% 10.4% 0.9% 1.9% 36.8%


Tabanidae of <strong>Ecuador</strong><br />

Materials <strong>and</strong> methods<br />

Horse fl y diversity <strong>in</strong> <strong>Ecuador</strong> compared to other<br />

Neotropical countries<br />

In order to catalogue all <strong>Ecuador</strong>ian Tabanidae species,<br />

we confi rmed the presence of each species <strong>in</strong> all available<br />

publications on Neotropical Tabanidae. We also visited the<br />

collections of C-JB, MEPN <strong>and</strong> QCAZ (see Appendix 3 for<br />

the acronyms). A total of 2,893 <strong>Ecuador</strong>ian horsefl y specimens<br />

were identifi ed to species level. Such identifi cations were made<br />

us<strong>in</strong>g orig<strong>in</strong>al descriptions, generic revisions <strong>and</strong>/or specifi c<br />

keys. Identifi cation of MEPN <strong>and</strong> QCAZ material followed<br />

the methodology detailed <strong>in</strong> Cárdenas (2007). Briefl y, it<br />

consists of follow<strong>in</strong>g keys <strong>and</strong> available orig<strong>in</strong>al descriptions<br />

as well as comparisons with type-specimen illustrations <strong>and</strong><br />

identifi ed material from museums (e.g. INPA). Morphological<br />

measurements were also taken <strong>in</strong>to account when available<br />

<strong>in</strong> literature. Also, comparisons with CAS <strong>and</strong> MCZ typematerials<br />

available onl<strong>in</strong>e were done <strong>in</strong> order to confi rm the<br />

identifi cation of some species. Pictures of type specimens were<br />

also sent by curators of foreign museums for evaluation. Frontal<br />

<strong>and</strong> divergence <strong>in</strong>dexes, body <strong>and</strong> w<strong>in</strong>g lengths of some new<br />

records are abbreviated FI (Frontal Index), DI (Divergence<br />

Index), BL (Body Length) <strong>and</strong> WL (W<strong>in</strong>g Lenght). C-JB<br />

identifi cations were made by Jaime Buestán.<br />

For compar<strong>in</strong>g <strong>Ecuador</strong>ian tabanids fauna with other Neotropical<br />

countries, we took account new taxonomic descriptions <strong>and</strong><br />

rearrangements, checklists <strong>and</strong> reports, published s<strong>in</strong>ce the<br />

last catalogue of Neotropical Tabanidae by Fairchild & Burger<br />

(1994) (see Appendix 1 for a complete reference list). In total,<br />

two genera, one subgenus <strong>and</strong> 50 species have been described<br />

s<strong>in</strong>ce 1994. In addition, n<strong>in</strong>e species have been synonimized,<br />

one has been revalidated, <strong>and</strong> two were transferred to related<br />

genera. Our analyses are thus based on 1214 valid Neotropical<br />

species. Th e number of species of Tabanidae <strong>in</strong> each country<br />

(see tab. 1 <strong>and</strong> fi g. 3), was therefore based on the Fairchild &<br />

Burger’s (1994) catalogue <strong>and</strong> subsequent publications on the<br />

Neotropical fauna. In the case of Chile, the scor<strong>in</strong>g of valid<br />

species was complemented by the catalogue by Coscarón &<br />

González (1991). When the presence of a species <strong>in</strong> a country<br />

was dubious <strong>in</strong> Fairchild & Burger’s catalogue (e.g. “?Brazil”)<br />

the <strong>in</strong>formation was discarded unless the presence of the species<br />

was confi rmed by subsequent publications. For example the<br />

presence of Fidena schildi <strong>in</strong> Brazil, questioned <strong>in</strong> the Fairchild<br />

& Burger (1994) catalogue was confi rmed by Henriques<br />

(1995). Fairchild & Burger (1994) described the distribution<br />

of widely-distributed taxa us<strong>in</strong>g geographical ranges (e.g.<br />

Dichelacera fasciata distribution: Nicaragua to <strong>Ecuador</strong>). In such<br />

cases, we <strong>in</strong>cluded every country <strong>in</strong>tersected by an imag<strong>in</strong>ary<br />

parsimonical l<strong>in</strong>e between the two cited localities <strong>and</strong> tried to<br />

confi rm the presence of species <strong>in</strong> the hypothetical range. Th e<br />

number of species per country presented <strong>in</strong> this work is strictly<br />

based on species-level identifi cations <strong>and</strong> reports available until<br />

September 2009. F<strong>in</strong>ally, we calculated every country-specifi c<br />

diversity density of Tabanidae by divid<strong>in</strong>g the total number of<br />

species by the correspond<strong>in</strong>g l<strong>and</strong> area of each country <strong>in</strong> km 2 .<br />

Horsefl y distribution <strong>and</strong> ecological niche modell<strong>in</strong>g<br />

To characterize the potential distributions (approximation of<br />

the fundamental niche) of selected horse fl y species <strong>in</strong> <strong>Ecuador</strong>,<br />

we compiled presence data (realized niche) from voucher<br />

specimens collected <strong>in</strong> the past two decades <strong>and</strong> deposited<br />

<strong>in</strong> <strong>Ecuador</strong>ian collections, <strong>and</strong> bibliographic records. We<br />

selected three species to be modeled based on the number of<br />

available records (n ≥ 20, see Hern<strong>and</strong>ez et al. 2006), <strong>and</strong> ease<br />

<strong>and</strong> certa<strong>in</strong>ty of identifi cation. Th ese species were Chrysops<br />

varians var. tardus (n = 30), Dicladocera macula (n = 24), <strong>and</strong><br />

Fidena rh<strong>in</strong>ophora (n = 22) (see Appendix AS 4 <strong>and</strong> AS 5 for<br />

complete localities records <strong>and</strong> gazetteer). Chrysops varians var.<br />

tardus is a widely distributed species <strong>in</strong> Neotropical lowl<strong>and</strong>s<br />

<strong>and</strong> midl<strong>and</strong>s from Panama to southern Brazil <strong>in</strong>clud<strong>in</strong>g<br />

Tr<strong>in</strong>idad, Paraguay, Bolivia, Guyana, Colombia, <strong>Ecuador</strong> <strong>and</strong><br />

Peru (Fairchild & Burger 1994). Manrique-Saide et al. (2001)<br />

also reported this species from Mexico (Campeche <strong>and</strong> Yucatán<br />

States). Dicladocera macula is a relatively common species <strong>in</strong><br />

the Andean countries. Its distributional range covers cool wet<br />

highl<strong>and</strong>s of Venezuela, Colombia, <strong>Ecuador</strong>, Peru <strong>and</strong> Bolivia<br />

(Wilkerson 1979; Fairchild & Burger 1994). Fidena rh<strong>in</strong>ophora<br />

has been reported from Mexico to eastern Venezuela <strong>and</strong> Peru<br />

(Fairchild & Burger 1994) <strong>in</strong> areas with high ra<strong>in</strong>fall (between<br />

600–1800 m <strong>in</strong> Panama, Fairchild 1986).<br />

Niche-based modell<strong>in</strong>g was realized us<strong>in</strong>g MAXENT (version<br />

3.2.1), a maximum entropy mach<strong>in</strong>e learn<strong>in</strong>g package freely<br />

available onl<strong>in</strong>e (http://www.cs.pr<strong>in</strong>ceton.edu/~schapire/<br />

maxent/) (Phillips et al. 2006; Phillips & Dudik 2008).<br />

MAXENT has been tested <strong>in</strong> a wide range of climatic regions<br />

<strong>and</strong> demonstrated to perform well compared to other modell<strong>in</strong>g<br />

techniques <strong>in</strong> predict<strong>in</strong>g potential distribution us<strong>in</strong>g small<br />

sample presence-only occurrences (Elith et al. 2006; Hern<strong>and</strong>ez<br />

et al. 2006). Likewise, Pearson et al. (2007) found positive <strong>and</strong><br />

signifi cant results with as few as 5 occurrence po<strong>in</strong>ts under<br />

the MAXENT model us<strong>in</strong>g a Jackknife validation approach.<br />

Georeferenc<strong>in</strong>g of all horsefl y species fi rst consisted <strong>in</strong> divid<strong>in</strong>g<br />

geographical <strong>in</strong>formation <strong>in</strong>to n<strong>in</strong>e categories (Wieczorek et<br />

al. 2004). Specimens fall<strong>in</strong>g <strong>in</strong>to the categories (1) “dubious”,<br />

(2) “can not be located”, <strong>and</strong> (3) “demonstrably <strong>in</strong>accurate”<br />

were elim<strong>in</strong>ated. Rema<strong>in</strong><strong>in</strong>g geographical <strong>in</strong>formation (fall<strong>in</strong>g<br />

<strong>in</strong>to categories 4–9, Wieczorek et al. 2004) were checked<br />

us<strong>in</strong>g various available gazetteers (IGM 1978–1982, 1982–<br />

1996; QCAZ Herpetological section gazetteer; Fall<strong>in</strong>g Ra<strong>in</strong><br />

Genomics 2006) or by consult<strong>in</strong>g orig<strong>in</strong>al collectors whenever<br />

possible. Th e georeferenc<strong>in</strong>g process used digital maps <strong>and</strong> GIS<br />

software with WGS84 datum. Follow<strong>in</strong>g the “po<strong>in</strong>t radius<br />

method” proposed by Wieczorek et al. (2004) we calculated<br />

the uncerta<strong>in</strong>ity (error) associated to every georeferenced<br />

locality. “Po<strong>in</strong>t radius method” consisted <strong>in</strong> tak<strong>in</strong>g each locality<br />

as a circular space of probabilities <strong>and</strong> a radius to describe the<br />

maximum distance from a fi xed po<strong>in</strong>t (georeferenced locality)<br />

with<strong>in</strong> which the actual locality is expected to occur (Wieczorek<br />

et al. 2004). We assumed an error of 0 Km. for all the localities<br />

georeferenced us<strong>in</strong>g a GPS <strong>in</strong> the fi eld (not for collections older<br />

than 2004).<br />

N<strong>in</strong>eteen cont<strong>in</strong>uous climate <strong>and</strong> elevation variables (available<br />

onl<strong>in</strong>e at http://www.worldclim.org/current.htm, Hijmans et<br />

al. 2005; spatial resolution ~1 km × 1 km) were used to exam<strong>in</strong>e<br />

the potential distribution of the three selected species <strong>in</strong> <strong>Ecuador</strong><br />

(X: –81.009156, –75.193084; Y: –5.012689, 1.456729).<br />

Orig<strong>in</strong>al climate <strong>and</strong> topographic grid fi les were converted<br />

to ASCII raster fi les us<strong>in</strong>g DIVA-GIS v. 5.4. Georeferenced<br />

localities per species were transformed to the UTM coord<strong>in</strong>ate<br />

system to m<strong>in</strong>imize imprecision. Every map was the result<br />

of the analysis of all of the data. For evaluation purposes, we<br />

r<strong>and</strong>omly selected 75% of localities as tra<strong>in</strong><strong>in</strong>g data <strong>and</strong> the<br />

513


Figure 1<br />

Descriptions (dashed l<strong>in</strong>e) <strong>and</strong> addition of new records (solid l<strong>in</strong>e) of horse<br />

fl ies species from <strong>Ecuador</strong> s<strong>in</strong>ce 1848.<br />

514<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

rema<strong>in</strong><strong>in</strong>g 25% were used for test<strong>in</strong>g model results. Models<br />

were validated us<strong>in</strong>g receiver operat<strong>in</strong>g characteristic (ROC)<br />

analysis, which evaluates model performance <strong>in</strong>dependently of<br />

arbitrary thresholds at which presence of the species might be<br />

accepted (Pearce & Boyce 2006). Th e ROC analysis assesses<br />

model performance by plott<strong>in</strong>g the proportion of presence<br />

po<strong>in</strong>ts correctly predicted vs. the proportion of absences<br />

correctly predicted across all possible thresholds. Good model<br />

performance is characterized by large areas under this curve<br />

(AUC) (Elith et al. 2006). AUC values ranges from 0 to 1<br />

where 1 <strong>in</strong>dicates perfect discrim<strong>in</strong>ation, <strong>and</strong> 0.5 r<strong>and</strong>om<br />

discrim<strong>in</strong>ation. Values below 0.5 <strong>in</strong>dicate that models are worse<br />

than a r<strong>and</strong>om prediction therefore, results under 0.5 may not<br />

be taken <strong>in</strong>to account (Elith et al. 2006). To avoid sample<br />

auto-correlation, we used the “remove duplicate presence<br />

records” option. Regularization multiplier, maximum number<br />

of iterations, convergence threshold, <strong>and</strong> maximum number<br />

of background po<strong>in</strong>ts (pseudo-absences), were set by default.<br />

For threshold selection we chose the “equal tra<strong>in</strong><strong>in</strong>g sensitivity<br />

<strong>and</strong> specifi city” threshold (Liu et al. 2005). A jackknife test was<br />

then performed with all data to estimate the weight of each<br />

environmental variable <strong>in</strong> the model. F<strong>in</strong>ally, based on test<br />

Figure 2<br />

Richness of endemic (solid boxes) <strong>and</strong> native species (dotted boxes) with<strong>in</strong> <strong>Ecuador</strong>ian genera (empty boxes) <strong>in</strong> the Neotropics. n corresponds to the number<br />

of described Neotropical species per genera. Names denoted by † are monotypic. An ‡ symbol is assigned to taxa with specifi c richness (r) 2 ≤ r < 10. Total<br />

number of analyzed species N = 1089.


Tabanidae of <strong>Ecuador</strong><br />

results, we compared raster maps of variable contributors with<br />

the obta<strong>in</strong>ed distribution models of each species <strong>in</strong> order to<br />

<strong>in</strong>fer <strong>in</strong>traspecifi c climatic <strong>and</strong> habitat preferences.<br />

Results<br />

A historical review of the <strong>Ecuador</strong>ian tabanid<br />

fauna<br />

Th e evolution of tabanid descriptions <strong>in</strong> <strong>Ecuador</strong><br />

showed <strong>in</strong> Figure 1, represents the accumulation of<br />

valid species described <strong>and</strong>/or recorded from <strong>Ecuador</strong><br />

s<strong>in</strong>ce 1848. Our work lists a total of 198 Tabanidae<br />

species from <strong>Ecuador</strong>. S<strong>in</strong>ce late 1920´s, the number<br />

of documented Tabanid species has been based mostly<br />

on collection surveys rather than on descriptions<br />

of <strong>Ecuador</strong>ian fauna, which clearly refl ects the poor<br />

systematic research from <strong>Ecuador</strong>ian entomologists<br />

with<strong>in</strong> this group. S<strong>in</strong>ce 1920, two periods characterize<br />

the temporal trend of horsefl y species description <strong>in</strong><br />

<strong>Ecuador</strong> (fi g. 1, solid l<strong>in</strong>e). Th e fi rst period (1928–<br />

1988) ma<strong>in</strong>ly nourished by the works of Kröber (1934),<br />

Campos (1952), Fairchild & León (1957), Patrick &<br />

Hays (1968), Fairchild (1971) <strong>and</strong> Buestán (1980)<br />

show a 4-fold <strong>in</strong>crease <strong>in</strong> Tabanid species descriptions<br />

s<strong>in</strong>ce 1920´s. Dur<strong>in</strong>g the second period (1988–2008)<br />

the 1980’s knowledge on Tabanid fauna was duplicated<br />

<strong>in</strong> only two decades. Species lists presented <strong>in</strong> Fairchild<br />

& Burger (1994), Cárdenas & Vieira (2005), Buestán<br />

et al. (2007) <strong>and</strong> the present work, all contributed to<br />

the exponential description of <strong>Ecuador</strong>ian horse fl ies<br />

species dur<strong>in</strong>g the last two decades.<br />

Diversity of <strong>Ecuador</strong>ian horse flies<br />

We registered a total of 198 tabanid species with 2<br />

subspecies <strong>and</strong> 5 varieties for <strong>Ecuador</strong>. Species belonged<br />

to 33 genera, 5 tribes <strong>and</strong> 3 subfamilies (Appendix 2)<br />

<strong>and</strong> represented 16.3% of the current Neotropical<br />

tabanofauna. Around 2.1% of Neotropical species are<br />

endemic to <strong>Ecuador</strong> (12.6% of its tabanofauna) with<br />

Diachlorus, Dicladocera, Eristalotabanus (monotypic),<br />

Esenbeckia, <strong>and</strong> Leucotabanus as the most representative<br />

genera (fi g. 2). Despite its limited size, <strong>Ecuador</strong> is the<br />

richest country <strong>in</strong> number of tabanid species <strong>in</strong> the<br />

Neotropics after Brazil, Colombia, <strong>and</strong> Mexico (fi g. 3)<br />

<strong>and</strong> has the highest density of species diversity per unit<br />

area after Panama <strong>and</strong> Costa Rica (tab. 1).<br />

We report for the fi rst time <strong>in</strong> <strong>Ecuador</strong> the presence<br />

of six species: (1) Hemichrysops fascipennis collected<br />

from north-western <strong>Ecuador</strong> (western foothill<br />

forest); the specimen fi ts very well with the Wilkerson<br />

(1979) <strong>and</strong> Fairchild (1986) descriptions, <strong>and</strong><br />

INBio plates (Burger et al. 2002). (2) Two females of<br />

Chrysops bulbicornis, sampled from eastern lowl<strong>and</strong>s<br />

(Amazonia, amazonian tropical ra<strong>in</strong> forest), <strong>in</strong> agreement<br />

with Lutz’s (1911) orig<strong>in</strong>al description, fi gured<br />

structures, <strong>and</strong> with Coscarón (1979)’s key, descrip-<br />

Figure 3<br />

Number of catalogued species per country <strong>in</strong> the Neotropics. Empty boxes are assigned to countries that share biogeographical prov<strong>in</strong>ces with <strong>Ecuador</strong>; dotted<br />

boxes are assigned to countries that share biogeographical sub-regions with <strong>Ecuador</strong>; slashed boxes correspond to countries that share regional biota with<br />

<strong>Ecuador</strong>. Biogeographical categories follow Morrone (2001, 2006).<br />

515


tion <strong>and</strong> fi gures. (3) Stenotabanus penai specimens<br />

collected from north-western lowl<strong>and</strong>s (Costa, deciduous<br />

forest) <strong>in</strong> agreement with the key <strong>in</strong> Cha<strong>in</strong>ey<br />

et al. (1999) (structure <strong>and</strong> coloration), fi gures, <strong>and</strong><br />

morphological dimensions ( x FI = 3; x WL = 7.47<br />

mm; x BL = 8.09 mm; N = 12). (4) One specimen<br />

of Diachlorus scutellatus, eastern <strong>Ecuador</strong> (Amazonia,<br />

516<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

amazonian tropical ra<strong>in</strong> forest) was identifi ed follow<strong>in</strong>g<br />

Macquart´s orig<strong>in</strong>al description provided by Lutz<br />

(1913), <strong>and</strong> Wilkerson & Fairchild’s (1982) key. (5)<br />

Philipotabanus porteri, from 6 specimens collected <strong>in</strong><br />

north-western <strong>Ecuador</strong> (Costa, chocoan tropical forest),<br />

identifi ed us<strong>in</strong>g Fairchild´s (1975) key, orig<strong>in</strong>al<br />

description, fi gures, <strong>and</strong> onl<strong>in</strong>e images of the holotype<br />

Figure 4<br />

Distribution models of three species of <strong>Ecuador</strong>ian horse fl ies. Black areas correspond to potential distribution modeled with >85% probability of occurrence<br />

(>75% for Dicladocera macula). Grey areas correspond to “equal tra<strong>in</strong><strong>in</strong>g sensitivity <strong>and</strong> specifi city” threshold which is diff erent for each species. White dots<br />

correspond to collect<strong>in</strong>g localities. A, Chrysops varians var. tardus (AUC=0.947; threshold: 22.5%); B, Dicladocera macula (AUC = 0.971; threshold: 30.8%);<br />

C, Fidena rh<strong>in</strong>ophora (AUC = 0.958; threshold: 26.31%); D, General <strong>Ecuador</strong>ian Tabanidae collections.


Tabanidae of <strong>Ecuador</strong><br />

deposited <strong>in</strong> MCZ ( x FI = 4.06; x DI = 1.2; x WL =<br />

9.03 mm; x BL = 9.88 mm; N = 6). (6) One female<br />

of Phaeotabanus pras<strong>in</strong>iventris (collected <strong>in</strong> alcohol,<br />

lighter colours), from north-eastern <strong>Ecuador</strong> (Amazonia,<br />

amazonian tropical ra<strong>in</strong> forest), identifi ed by K.<br />

M. Bayless, agrees with structures <strong>and</strong> w<strong>in</strong>g patterns of<br />

two INPA females specimens of the same species (det.<br />

by A. L. Henriques) from P.N. Jau, Rio Jau, Igarapé<br />

Miratucu, Brazil.<br />

<strong>Ecuador</strong>ian tabanid fauna compared to other<br />

Neotropical countries<br />

Th e <strong>Ecuador</strong>ian tabanofauna is predom<strong>in</strong>antly<br />

shared with Colombia (62.6%), Peru (47%), Panama<br />

(35.4%) <strong>and</strong> Venezuela (30.3%), with which <strong>Ecuador</strong><br />

shares biogeographic prov<strong>in</strong>ces (tab. 1). 35.9% of<br />

<strong>Ecuador</strong>ian Tabanofauna is <strong>in</strong> common with Brazil<br />

which shares the Amazonian biogeographic sub-region<br />

with <strong>Ecuador</strong> (Morrone 2006). Chile has a s<strong>in</strong>gular<br />

tabanid fauna, shar<strong>in</strong>g no species with Mexico, 10.9%<br />

with Peru <strong>and</strong> 36.7% with Argent<strong>in</strong>a refl ect<strong>in</strong>g the high<br />

endemism (around 53.8%) of this country. Similarly,<br />

Mexico shares 21.3% <strong>and</strong> 18.8% with Costa Rica <strong>and</strong><br />

Panama, respectively (tab. 1). Th is confi rms a gradient<br />

of specifi c richness <strong>and</strong> s<strong>in</strong>gularity, with lower diversity<br />

<strong>and</strong> higher s<strong>in</strong>gularity of tabanid fauna <strong>in</strong> southern<br />

<strong>and</strong> northern temperate <strong>and</strong> subtropical countries.<br />

Th e tabanid fauna of Andean countries showed higher<br />

degree of resemblance (see the percent of species<br />

shared between Venezuela, Colombia, <strong>Ecuador</strong>, Perú<br />

<strong>and</strong> Bolivia, tab. 1).<br />

Table 2. Contribution of environmental variables to horse fl y species distribution models.<br />

Analyses are based on MAXENT parameters. Th e highest values are <strong>in</strong> bold.<br />

Horse fl y species<br />

Chrysops varians<br />

(Total model ga<strong>in</strong>: 1.61)<br />

Dicladocera macula<br />

(Total model ga<strong>in</strong>: 1.82)<br />

Fidena rh<strong>in</strong>ophora<br />

(Total model ga<strong>in</strong>: 1.59)<br />

Environmental variables<br />

(only the most representative)<br />

- precipitation driest month<br />

- mean temperature wettest quarter<br />

- annual mean temperature<br />

- precipitation seasonality<br />

- altitude<br />

- mean temperature warmest quarter<br />

- altitude<br />

- mean temperature warmest quarter<br />

- max. temperature warmest month<br />

- annual mean temperature<br />

- m<strong>in</strong>. temperature coldest month<br />

- mean temperature driest quarter<br />

- mean temperature coldest quarter<br />

- mean temperature wettest quarter<br />

- altitude<br />

- precipitation wettest quarter<br />

- precipitation seasonality<br />

- temperature annual range<br />

Comparisons of diversity densities <strong>in</strong> Neotropical<br />

countries (tab. 1) rank <strong>Ecuador</strong> as one of the most<br />

diverse territories per unit area (7.7 species per 10,000<br />

km 2 ). Costa Rica <strong>and</strong> Panama are by far, the most<br />

diverse countries <strong>in</strong> proportion to their size (27.6 <strong>and</strong><br />

20 species per 10,000 km 2 respectively). Regardless<br />

of the great number of species <strong>and</strong> the relatively high<br />

number of ecosystems, Brazil has the lowest specifi c<br />

density <strong>in</strong> Lat<strong>in</strong> America (0.52 species per 10,000<br />

km 2 ), followed by Argent<strong>in</strong>a <strong>and</strong> Mexico (0.6 <strong>and</strong> 1.1<br />

species per 10,000 km 2 , respectively).<br />

Ecological niche modell<strong>in</strong>g distribution of three<br />

Tabanid species<br />

Chrysops varians var. tardus Wiedemann 1828<br />

Most specimens of C. varians from <strong>Ecuador</strong>ian<br />

collections <strong>and</strong> <strong>in</strong> the literature were reported from<br />

amazonian tropical ra<strong>in</strong>forests <strong>and</strong> eastern foothill<br />

<strong>and</strong> montane forests <strong>in</strong> a relatively large altitud<strong>in</strong>al<br />

range (200–1900 m) with only one record <strong>in</strong> a western<br />

montane forest (Río Guajalito Scientifi c Station, Santo<br />

Dom<strong>in</strong>go Prov.). Modelled potential distribution for ><br />

85% probability values of suitable habitat (maximum<br />

rate prediction = 91.67%) corresponds to central <strong>and</strong><br />

southern eastern Andean slopes <strong>in</strong> amazonian <strong>and</strong><br />

foothills-montane forests at elevations between 600<br />

<strong>and</strong> 1300 m (fi g. 4A, black regions). Th e MAXENT<br />

“equal tra<strong>in</strong><strong>in</strong>g sensitivity <strong>and</strong> specifi city” cumulative<br />

threshold calculation assume presences of C. varians to<br />

areas over 22.5 % of presence probability (fi g. 4A, grey<br />

contribution<br />

(%)<br />

28.4<br />

22.5<br />

12.5<br />

12.4<br />

4<br />

0<br />

69.4<br />

7.3<br />

3.3<br />

1.5<br />

1.2<br />

0.9<br />

0<br />

0<br />

31.2<br />

14.9<br />

11.8<br />

8.6<br />

Jackknife analysis of regularized<br />

model ga<strong>in</strong> (%)<br />

if isolated if omitted<br />

(ga<strong>in</strong> decrease)<br />

~ 27.9<br />

~ 48.8<br />

~ 34.2<br />

~ 38.5<br />

~ 40.6<br />

~ 40.6<br />

~ 83.3<br />

~ 85<br />

~ 86.1<br />

~ 85<br />

~ 80.6<br />

~ 80.6<br />

~ 85<br />

~ 80.6<br />

~ 55.3<br />

~ 9.4<br />

~ 22<br />

~ 9.3<br />

~ 0<br />

~ 0<br />

~ 0<br />

~ 18.8<br />

~ 3.1<br />

~ 0.6<br />

~ 0<br />

~ 0<br />

~ 0<br />

~ 0<br />

~ 0.4<br />

~ 0<br />

~ 0<br />

~ 0<br />

~ 5.7<br />

~ 0<br />

~ 7.6<br />

~ 8.8<br />

517


zones, p < 0.001). Precipitation of the driest month,<br />

mean temperature of the wettest quarter, annual mean<br />

temperature <strong>and</strong> precipitation seasonality predicted<br />

28.4%, 22.5%, 12.5%, <strong>and</strong> 12.4% of the distribution<br />

model, respectively (tab. 2). Jackknife analysis revealed<br />

that mean temperature of the wettest quarter, followed<br />

by altitude <strong>and</strong> mean temperature of the warmest<br />

quarter, expla<strong>in</strong>ed most of model variation when<br />

isolated (48.8%, 40.6%, <strong>and</strong> 40.6% respectively).<br />

AUC values ranged from 0.947 to 0.922 (us<strong>in</strong>g 75%<br />

<strong>and</strong> 25% of data, respectively), <strong>in</strong>dicat<strong>in</strong>g a good<br />

discrim<strong>in</strong>ation of species presence/absence.<br />

Dicladocera macula (Macquart 1846)<br />

In <strong>Ecuador</strong> D. macula has been recorded between<br />

1600–3400 m on both sides of the Andean cordillera<br />

with<strong>in</strong> eastern <strong>and</strong> western montane forests, paramo<br />

<strong>and</strong> Andean shrubs, which was confi rmed by our niche<br />

model analysis (fi g. 4B). Th e MAXENT “equal tra<strong>in</strong><strong>in</strong>g<br />

sensitivity <strong>and</strong> specifi city” cumulative threshold<br />

calculation assumed presences <strong>in</strong> areas over 30.8% of<br />

presence probability (fi g. 4B, grey zones, p < 0.001).<br />

Maximum rate of prediction was of 78.35%. However,<br />

based on the MAXENT default output graphic <strong>and</strong><br />

> 75% predictions, we identifi ed two areas of higher<br />

suitable habitat correspond<strong>in</strong>g to western montane<br />

forest bioregions (fi g. 4B, black regions).Th e analysis<br />

of environmental variable contributions estimated that<br />

69.4% of the model prediction was related to altitude<br />

<strong>and</strong> temperature variables (tab. 2). Further Jackknife<br />

analyses (tab. 2) revealed an important contribution of<br />

the maximum temperature of the warmest month by<br />

itself (~ 86.1%). Th e omission of any of these variables<br />

had a negative repercussion on the ga<strong>in</strong> of the model.<br />

AUC values ranged from 0.971, to 0.923 (us<strong>in</strong>g 75%<br />

<strong>and</strong> 25% of data respectively), <strong>in</strong>dicat<strong>in</strong>g a good discrim<strong>in</strong>ation<br />

of species presence/absence.<br />

Fidena rh<strong>in</strong>ophora (Bellardi 1859)<br />

In <strong>Ecuador</strong> F. rh<strong>in</strong>ophora has been recorded between<br />

500–2500 m <strong>in</strong> chocoan tropical ra<strong>in</strong>forests, Andean<br />

shrubs <strong>and</strong> western/eastern montane <strong>and</strong> foothills<br />

forests. Niche modell<strong>in</strong>g analyses showed a moderately<br />

specifi c potential distribution of the species <strong>in</strong> montane<br />

forests of Andean slopes on both sides of the cordillera,<br />

which however had the highest distribution probability<br />

(fi g. 4C). Potential distribution analysis of >85%<br />

probability values of suitable habitat (maximum rate<br />

prediction of 93.61%) corresponded to north-western<br />

<strong>Ecuador</strong>, through tropical ra<strong>in</strong>forests to montane<br />

forests (fi g. 4C, black regions). Th e MAXENT<br />

“equal tra<strong>in</strong><strong>in</strong>g sensitivity <strong>and</strong> specifi city” cumulative<br />

threshold calculation assumed presences of F. rh<strong>in</strong>ophora<br />

518<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

<strong>in</strong> areas over 26.31% of presence probabilities (fi g.<br />

4C, grey zones, p < 0.001). Th e relative estimates<br />

of environmental variable contributions po<strong>in</strong>ted to<br />

altitude, wettest quarter, <strong>and</strong> seasonality precipitation<br />

as the most important variables, expla<strong>in</strong><strong>in</strong>g 31.2%,<br />

14.9%, <strong>and</strong> 11.8% of the model variance, respectively.<br />

Consistently, Jackknife analysis showed that altitude<br />

presented the most important <strong>in</strong>formation, <strong>and</strong> that<br />

annual temperature range, precipitation seasonality,<br />

<strong>and</strong> altitude, signifi cantly reduced model ga<strong>in</strong> when<br />

omitted (~ 8.8%, ~ 7.6% <strong>and</strong> ~ 5.7%, respectively).<br />

AUC values ranged from 0.958 to 0.96 (us<strong>in</strong>g 75%<br />

<strong>and</strong> 25% of data, respectively), <strong>in</strong>dicat<strong>in</strong>g a good<br />

discrim<strong>in</strong>ation of species presence/absence.<br />

Discussion<br />

<strong>Ecuador</strong>ian horsefly diversity<br />

Despite the low number of studies on the <strong>Ecuador</strong>ian<br />

tabanid fauna, compared to Panama (Fairchild<br />

1986) <strong>and</strong> Costa Rica (Burger et al. 2002), our review<br />

revealed a high density of species diversity per unit area<br />

for the country (tab. 1). Th is result agrees with species<br />

densities reported for other families of <strong>Ecuador</strong>ian <strong>in</strong>sects<br />

(<strong>Dangles</strong> et al., this issue for a thorough review)<br />

as well as other groups such as amphibians (Ron et al.<br />

<strong>in</strong> press) <strong>and</strong> vascular plants (Jørgensen & León-Yánez<br />

1999).<br />

Diachlorus, Esenbeckia (Esenbeckia) <strong>and</strong> Leucotabanus,<br />

which are Andean <strong>and</strong> sub-Andean genera,<br />

are relatively specialized with<strong>in</strong> their tribes (Fairchild<br />

1969b), <strong>and</strong> are represented by high rates of endemicity<br />

(fi g. 2). Th ese genera are possibly represent<strong>in</strong>g an<br />

altitud<strong>in</strong>al “niche evolution” outcome related to the<br />

Andes uplift (based <strong>in</strong> a Wiens & Donoghue (2004)<br />

species diversifi cation altitud<strong>in</strong>al view). Th eir endemism<br />

might also be a consequence of adaptive radiation<br />

pushed by recent vicariance processes (Hughes<br />

& Eastwood 2006; Ribas et al. 2007; Garzione et al.<br />

2008) as it has been proved for other groups of <strong>in</strong>sects<br />

(Brühl 1997) although this has to be confi rmed by<br />

historical biogeographic studies based on strong phylogenies.<br />

Th is should partly expla<strong>in</strong> the high rate of<br />

endemism of the Andean genus, Dicladocera, as well as<br />

the probable recent diversifi cation of monotypic genus<br />

Eristalotabanus (Fairchild 1969b) (fi g. 2).<br />

Th e overall relatively low rate of <strong>Ecuador</strong>ian species<br />

endemism (2.06% of Neotropical species, fi g. 2.)<br />

can be expla<strong>in</strong>ed by the low sampl<strong>in</strong>g eff ort <strong>and</strong> the<br />

scarcity of taxonomical studies on Diptera <strong>in</strong> the<br />

country (Donoso et al. this issue). Th is assumption<br />

is supported by the disproportion between recorded


Tabanidae of <strong>Ecuador</strong><br />

species <strong>and</strong> the relatively low number of <strong>Ecuador</strong>ian<br />

new species descriptions (fi g. 1): new descriptions<br />

are mostly published by foreign entomologists with<br />

sampl<strong>in</strong>g areas clustered around Quito (fi g. 4D). Th ere<br />

is an evident lack of surveys <strong>in</strong> many biogeographical<br />

zones such as <strong>in</strong> the dry shrubs of southern amazonian<br />

<strong>and</strong> the north-central chocoan tropical ra<strong>in</strong>forests.<br />

Buestán et al. (2007) presented a list of about ten “new”<br />

species neither confi rmed nor described, illustrat<strong>in</strong>g<br />

the poor knowledge of the extant fauna <strong>in</strong> <strong>Ecuador</strong><br />

<strong>and</strong> its potential higher endemism. It should also be<br />

noted that nearly all <strong>Ecuador</strong>ian collections represent<br />

understorey fauna, for what canopy surveys might<br />

provide many surprises.<br />

Tabanid diversity <strong>in</strong> the Neotropics <strong>and</strong> its relation<br />

with <strong>Ecuador</strong>ian fauna<br />

Morrone´s (2006) biogeographic areas for Lat<strong>in</strong><br />

America <strong>and</strong> the Caribbean Isl<strong>and</strong>s presented a good<br />

classifi cation of the biogeographical distribution of<br />

tabanid species (tab. 1). Th e <strong>Ecuador</strong>ian prov<strong>in</strong>ces of<br />

Chocó, Cauca, Western <strong>Ecuador</strong>, Napo <strong>and</strong> North<br />

Andean Paramo shared with Colombia, <strong>and</strong> Tumbes-<br />

Piura, Napo, <strong>and</strong> North Andean Paramo shared with<br />

Peru could expla<strong>in</strong> the high number of <strong>Ecuador</strong>ian<br />

tabanid species <strong>in</strong> common with the two countries.<br />

Furthermore 35.5% of the <strong>Ecuador</strong>ian tabanofauna<br />

was <strong>in</strong> common with Brazil (Amazonian subregion)<br />

whose biogeographical prov<strong>in</strong>ces of Varzea, Ucayali<br />

<strong>and</strong> Yungas are probably the most <strong>in</strong>fl uential for the<br />

distribution of equatorial amazonian tropical ra<strong>in</strong>forest<br />

biota.<br />

Consistent with Morrone (2006), Chile has served<br />

as a refuge for “ancestral” biota such as the genera<br />

Veprius <strong>and</strong> Protodasyapha. It also shared genera such as<br />

Dasybasis, Pseudotabanus <strong>and</strong> Scaptia with the Austral<br />

K<strong>in</strong>gdom <strong>and</strong> presented an overlap of Neotropical <strong>and</strong><br />

Andean taxa like Esenbeckia subgenus Astomyia <strong>and</strong><br />

Palassomyia (Fairchild 1969b; Burger 1999). Mackerras<br />

(1961) suggested that the “modern” west-pacifi c<br />

tabanid fauna might have evolved from temperate<br />

Antarctica, southern Africa <strong>and</strong> Holarctic regions with<br />

dispersal to subtropical <strong>and</strong> tropical regions, where an<br />

extraord<strong>in</strong>ary radiation took place. Th e “primitive”<br />

genus Dasybasis might be an example of such radiation<br />

after migrations from Patagonia northward through<br />

the Andean cha<strong>in</strong> (Fairchild 1969b; González 1999,<br />

Morrone 2006). Th e absence of species <strong>in</strong> common<br />

between the Mexican <strong>and</strong> Chilean tabanid fauna<br />

refl ects the geographic <strong>and</strong> climatic isolation of<br />

Chile, as asserted by Fairchild (1969b) <strong>and</strong> Morrone<br />

(2006). Th e apparent low diversity of tabanid fauna<br />

of Venezuela, known as a megadiverse country with an<br />

area 3.5 times <strong>Ecuador</strong>ian territory, is likely to be due<br />

to the absence of studies on this family.<br />

Niche modell<strong>in</strong>g<br />

To our knowledge, this study is the fi rst to use niche<br />

modell<strong>in</strong>g analyses to study horse fl y distribution. Our<br />

aim was to illustrate possible distributions of selected<br />

species restricted to the <strong>Ecuador</strong>ian territory, rather than<br />

try<strong>in</strong>g to fi nd their “exact” suitable habitat (fundamental<br />

niche). We are aware that for better results, even at<br />

the country level, it is necessary to work with more<br />

distribution data (collect<strong>in</strong>g localities), especially from<br />

other countries. Another limitation of our modell<strong>in</strong>g<br />

approach is that most specimens were collected<br />

dur<strong>in</strong>g the periods of greater horse fl y abundance (e.g.<br />

Cárdenas 2007), generally dur<strong>in</strong>g the optimal months<br />

of population abundance dur<strong>in</strong>g the dry season<br />

(Buestán 1980; Desquesnes et al. 2005; Oliveira et al.<br />

2007). Museum collections are likely to best represent<br />

horse fl y optimal habitats. Tabanid presence <strong>in</strong> less<br />

optimal habitats may therefore be underestimated; <strong>in</strong><br />

few cases horse fl y peak abundances have for example<br />

been reported at the beg<strong>in</strong>n<strong>in</strong>g or with<strong>in</strong> the ra<strong>in</strong>y<br />

season (Barros 2001; Velásquez de Ríos et al. 2004).<br />

Our results illustrated more essentially the regions<br />

that have similar environmental conditions to where<br />

the species are known to occur rather than predict<strong>in</strong>g<br />

actual limits to their distributional range (Pearson et<br />

al. 2007). Furthermore, noth<strong>in</strong>g is known about the<br />

responses of tabanids to other environmental variables<br />

such as deforestation, presence of cattle or climate<br />

change. Additional physiological <strong>and</strong> phenological<br />

studies are therefore necessary to describe present (<strong>and</strong><br />

future) horse fl y distribution ranges <strong>in</strong> a more accurate<br />

way. For example, mechanistic niche modell<strong>in</strong>g would<br />

allow <strong>in</strong>corporat<strong>in</strong>g the functional traits of organisms<br />

<strong>and</strong> model its distribution, beg<strong>in</strong>n<strong>in</strong>g from its<br />

physiological responses <strong>and</strong> constra<strong>in</strong>ts to spatial data,<br />

<strong>in</strong>to a more natural fundamental niche (as described by<br />

Kearney & Porter 2009). Our study should therefore<br />

be considered as a fi rst step towards more detailed<br />

studies on the biogeography <strong>and</strong> the macroecology of<br />

this group of fl ies.<br />

Altitude was one of the most discrim<strong>in</strong>ant variables<br />

to expla<strong>in</strong> species distribution, contribut<strong>in</strong>g to 69.4%<br />

<strong>and</strong> 31.2% of model predictions for D. macula <strong>and</strong> F.<br />

rh<strong>in</strong>ophora, respectively. Accord<strong>in</strong>g to Körner’s (2007)<br />

explanations on how altitude relates to many other<br />

environmental variables it was no surpris<strong>in</strong>g to fi nd<br />

such results. For example, the author enumerates some<br />

general <strong>and</strong> relevant altitude-related characteristics<br />

that aff ect species distribution, among them, the<br />

reduced atmospheric temperature at higher altitudes,<br />

519


which has strong implications for ambient humidity.<br />

As an illustration of this importance, the variables<br />

that best expla<strong>in</strong>ed D. macula distribution were all<br />

altitud<strong>in</strong>al-thermal related (tab. 2). Further Jackknife<br />

520<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

analysis showed that maximum temperature of the<br />

warmest month expla<strong>in</strong>ed most of model ga<strong>in</strong>. Körner<br />

(2007) also expla<strong>in</strong>ed that precipitation, w<strong>in</strong>d velocity<br />

<strong>and</strong> seasonality may greatly diff er from one region to<br />

Figure 5<br />

Distribution models of three species of <strong>Ecuador</strong>ian horse fl ies (hashed area) superposed to key environmental factors (colour gradient scale, ~ 1 km × 1 km<br />

WorldClim layers, Hijmans et al. 2005, where red colour corresponds to higher values <strong>and</strong> blue colour to lower values). A, Chrysops varians var. tardus <strong>and</strong><br />

mean temperature of the wettest quarter; B, Dicladocera macula <strong>and</strong> maximum temperature of the warmest month; C, Fidena rh<strong>in</strong>ophora <strong>and</strong> precipitation<br />

of the wettest quarter.


Tabanidae of <strong>Ecuador</strong><br />

another. However, the author shows a global tendency<br />

where precipitation <strong>in</strong> temperate latitudes for example,<br />

tends to <strong>in</strong>crease with the <strong>in</strong>creas<strong>in</strong>g of altitude, while<br />

<strong>in</strong> Equatorial latitudes precipitation tends to dim<strong>in</strong>ish.<br />

Th is phenomenon is particularly true for <strong>Ecuador</strong> (fi g.<br />

5C, precipitation of the wettest quarter). Accord<strong>in</strong>g<br />

to Körner (2007), precipitation, w<strong>in</strong>d velocity <strong>and</strong><br />

seasonality are not altitud<strong>in</strong>al-related because gradients<br />

can go <strong>in</strong> any direction depend<strong>in</strong>g on local topography<br />

<strong>and</strong> climatic conditions, but they may aff ect species<br />

distribution due to <strong>in</strong>traspecifi c adaptations to such<br />

conditions at precise sites <strong>and</strong> periods of the year. Th is<br />

probable <strong>in</strong>traspecifi c adaptation seems to be well<br />

illustrated by F. rh<strong>in</strong>ophora potential distribution (fi g.<br />

4C <strong>and</strong> 5C), for which precipitation is probably one of<br />

the most important driv<strong>in</strong>g variables (tab. 2).<br />

To futher <strong>in</strong>vestigate the role of environmental<br />

variables on the distribution of the three horse fl y species<br />

we compared the modeled distribution of the species<br />

<strong>and</strong> the raster map of the most important variables<br />

expla<strong>in</strong><strong>in</strong>g its distribution (fi g. 5). We found that D.<br />

macula prefered habitat with medium to low values<br />

of maximum annual temperatures (fi g. 5B). A similar<br />

pattern was found when compar<strong>in</strong>g its distribution<br />

with the mean temperature of the warmest <strong>and</strong> coldest<br />

quarter variables (results not shown), which probably<br />

represent the develop<strong>in</strong>g <strong>and</strong> dormancy seasons for<br />

this species, respectively. Th is would suggest that<br />

the contribution of the altitud<strong>in</strong>al variable is ma<strong>in</strong>ly<br />

expla<strong>in</strong>ed by low temperature values. A comparison<br />

of F. rh<strong>in</strong>ophora distribution with precipitation of the<br />

wettest quarter showed that the probabilities of fi nd<strong>in</strong>g<br />

F. rh<strong>in</strong>ophora were greater with<strong>in</strong> medium to high<br />

precipitation values dur<strong>in</strong>g the three wettest months of<br />

the year (Fig. 5C). Th is co<strong>in</strong>cides with Fairchild (1986)<br />

who states that Panamanian specimens were distributed<br />

<strong>in</strong> areas of heavy ra<strong>in</strong>fall. F<strong>in</strong>ally, the distribution of<br />

C. varians, which was ma<strong>in</strong>ly expla<strong>in</strong>ed by variables<br />

dependent on both precipitation <strong>and</strong> temperature,<br />

was preferentially limited to areas of medium to<br />

high temperature <strong>and</strong> precipitation values, with low<br />

annual variations (fi g. 5A). Th e altitude contribution<br />

estimated by the Jackknife analysis should therefore<br />

be considered as an eff ect of the thermal characteristic<br />

of lowl<strong>and</strong>s ra<strong>in</strong>forests. All this suggest that the three<br />

modeled species are highly adapted to the altitude<br />

they <strong>in</strong>habit <strong>and</strong> therefore to all of the characteristics<br />

described by Körner (2007), expla<strong>in</strong><strong>in</strong>g why altitude<br />

contributed to all models <strong>in</strong> such a high proportion.<br />

Th e possible presence of the modeled species abroad<br />

the actual collect<strong>in</strong>g sites are not astonish<strong>in</strong>g. Th e three<br />

species are wide distributed <strong>in</strong> Neotropics (Fairchild &<br />

Burger 1994) <strong>and</strong> seemed to be restricted to specifi c<br />

climatic variables. Horse fl ies hold a strong thoracic<br />

fl ight muscular system (Bonhag 1949) <strong>and</strong> are among<br />

the speediest fl y<strong>in</strong>g <strong>in</strong>sects of the world (up to 40 m/s<br />

for large species such as macula or rh<strong>in</strong>ophora). Th is<br />

would allow them to fl y long distances <strong>in</strong> relatively<br />

short time (2.4 km <strong>in</strong> one-two days, see Cooksey &<br />

Wright 1987) what could expla<strong>in</strong> its apparently strong<br />

dispersal capacities.<br />

Conclusions<br />

A taxonomic school of <strong>Ecuador</strong>ian Tabanidae<br />

researchers is <strong>in</strong>dispensable <strong>in</strong> order to document<br />

the family´s complex diversity. Collaboration with<br />

foreigners programs <strong>and</strong> <strong>in</strong>stitutions (e. g. INPA <strong>and</strong><br />

Partnerships for Enhanc<strong>in</strong>g Expertise <strong>in</strong> Taxonomy,<br />

Tabanidae PEET program, Bayless et al. 2008) must<br />

improve Neotropical <strong>and</strong> <strong>Ecuador</strong>ian taxonomical<br />

knowledge of theTabanidae. Likewise, further ecological<br />

research on the tabanid fauna is necessary to underst<strong>and</strong><br />

the role <strong>and</strong> functionality with<strong>in</strong> ecosystems. Macroecological<br />

modell<strong>in</strong>g analyses for example, may help<br />

to answer both biogeographic <strong>and</strong> evolutionary<br />

questions, basic <strong>in</strong>formation for conservation analyses<br />

<strong>and</strong> governmental policy decision-mak<strong>in</strong>g.<br />

Acknowledgements. To Giovanni Onore <strong>and</strong> Cliff ord Keil for<br />

allow<strong>in</strong>g access to the collection of the Museum of Zoology<br />

QCAZ at the Pontifi cal Catholic University of <strong>Ecuador</strong><br />

between years 2006–2009. To the follow<strong>in</strong>g list of colleagues<br />

who assisted with compil<strong>in</strong>g the extensive bibliography: David<br />

Donoso, Inocêncio de Souza Gorayeb, Augusto Loureiro<br />

Henriques, Sixto Coscarón, Guillermo Logarzo, Lloyd Davis,<br />

Marc Desquesnes, , Jonathan Rees, Mary Sears, Nelson<br />

Papavero, Gisele Neves <strong>and</strong> John Burger. To Augusto Loureiro<br />

Henriques <strong>and</strong> Inocêncio de Souza Gorayeb for comments on<br />

the identifi cation of some specimens, <strong>and</strong> to Erica McAlister,<br />

NHM, London, for provid<strong>in</strong>g photographs of the type<br />

specimen of Tabanus hirtitibia. To Augusto Loureiro Henriques<br />

for suggest<strong>in</strong>g <strong>and</strong> mak<strong>in</strong>g possible an exchange of identifi ed<br />

Tabanidae specimens between QCAZ <strong>and</strong> INPA <strong>in</strong>stitutions<br />

(<strong>Ecuador</strong>ian Environmental M<strong>in</strong>istry exportation permission #<br />

0016-071C-FAU-DNBAPVS-MA). To Marco Orozco, Natalia<br />

Andrade <strong>and</strong> Alej<strong>and</strong>ro Janeta who assisted <strong>in</strong> produc<strong>in</strong>g <strong>and</strong><br />

manag<strong>in</strong>g the database fi les. Daniel Chávez for collect<strong>in</strong>g<br />

<strong>and</strong> donate Hemichrysops fascipennis to QCAZ Museum<br />

of Zoology, PUCE. To Keith. M. Bayless for identify<strong>in</strong>g<br />

Phaeotabanus pras<strong>in</strong>iventris. To Belén Liger, Santiago Burneo,<br />

Pablo Menéndez <strong>and</strong> Néstor Acosta for their assistance <strong>and</strong><br />

comments with spatial modell<strong>in</strong>g analyses. Cliff ord Keil <strong>and</strong><br />

Verónica Crespo helped improv<strong>in</strong>g English spell<strong>in</strong>g of the text.<br />

Ronald Navarrete <strong>and</strong> Augusto Loureiro Henriques, provided<br />

valuable comments on previous versions of the manuscript.<br />

Th ree anonym reviewers helped signifi cantly on improv<strong>in</strong>g the<br />

quality of a previous version of the manuscript.<br />

References<br />

Alverson D., Noblet R. 1977. Activity of female Tabanidae (Diptera) <strong>in</strong><br />

relation to selected meteorological factors <strong>in</strong> South Carol<strong>in</strong>a. Journal of<br />

Medical <strong>Entomology</strong> 14: 197-200.<br />

521


Azevedo de Bassi R. A., Costa Itiberê da Cunha M., Coscarón S. 2000.<br />

Estudo do comportamento de tabanídeos (Diptera, Tabanidae) do<br />

Brasil. Acta Biologica Paranaense, Curitiba 29: 101-115.<br />

Barros A. T. M. 2001. Seasonality <strong>and</strong> relative abundance of Tabanidae<br />

(Diptera) captured on horses <strong>in</strong> the Pantanal, Brazil. Memórias do<br />

Instituto Oswaldo Cruz 96: 917-923.<br />

Barros A. T. M., Gorayeb I. S. 1995. Dichelacera (Dichelacera) corumbaensis<br />

n.sp. (Diptera: Tabanidae) from the State of Mato Grosso do Sul, Brazil.<br />

Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 90: 483-485.<br />

Bayless K., Wiegmann B. M., Yeates D. K., Morita S., Kampmeier G.<br />

2008. Announc<strong>in</strong>g the Tabanidae PEET. FlyTimes 40: 13-14.<br />

Bermúdez L. V., Bermúdez E. M. 1999. Immature stages of some Tabanidae<br />

(Diptera) species <strong>in</strong> Mexico. Memoirs of <strong>Entomology</strong> International 14:<br />

257-270.<br />

Bonhag P. F. 1949. Th e Th oracic Mecanism of the Adult Horsefl y (Diptera:<br />

Tabanidae), 285, Cornell University Agricultural Experiment Station,<br />

Ithaca, New York, 39 p.<br />

Brühl C. A. 1997. Flightless <strong>in</strong>sects: a test case for historical relationships<br />

of African mounta<strong>in</strong>s. Journal of Biogeography 24: 233-250.<br />

Buestán J. J. 1980. Identifi cación y distribución estacional de Tabanidae<br />

en las Prov<strong>in</strong>cias de Guayas, Los Ríos y Cañar. Revista Ecuatoriana de<br />

Higiene y Medic<strong>in</strong>a Tropical 33: 101-116.<br />

Buestán J. J. 2006. Chrysops varians var. tardus (Diptera: Tabanidae) como<br />

vector de huevos de Dermatobia hom<strong>in</strong>is en <strong>Ecuador</strong>. Memorias de las<br />

XXX Jornadas Nacionales de Biología, Quito-<strong>Ecuador</strong> 1: 193.<br />

Buestán J. J., Navarrete R., Mejía M. 2007. Lista actualizada de tábanos<br />

(Diptera: Tabanidae) del <strong>Ecuador</strong>. Revista Ecuatoriana de Higiene y<br />

Medic<strong>in</strong>a Tropical 44: 23-78.<br />

Burger J. F. 1996. Description of the male <strong>and</strong> variation <strong>in</strong> Bolbodimyia<br />

gal<strong>in</strong>doi Fairchild (Diptera: Tabanidae), <strong>and</strong> a revised key to species<br />

of Bolbodimyia. Proceed<strong>in</strong>gs of the Entomological Society of Wash<strong>in</strong>gton<br />

98: 390-395.<br />

Burger J. F. 1999. Notes on <strong>and</strong> descriptions of new <strong>and</strong> little-known<br />

species of Neotropical Tabanidae (Diptera). Memoirs on <strong>Entomology</strong><br />

International 14: 51-74.<br />

Burger J. F. 2002. Description of fi ve new species of Tabanidae (Diptera)<br />

from Costa Rica <strong>and</strong> revised keys to species for the genera Fidena<br />

Walker, Scione Walker, <strong>and</strong> Chrysops Meigen <strong>in</strong> Costa Rica. Proceed<strong>in</strong>gs<br />

of the Entomological Society of Wash<strong>in</strong>gton 104: 928-940.<br />

Burger J. F., Zumbado M. A., Granados C., Zumbado E. 2002. Catalogue<br />

of Costa Rican species of Tabanidae, INBio database. Published onl<strong>in</strong>e:<br />

http://darnis.<strong>in</strong>bio.ac.cr/ubis/FMPro Accessed on April 4th 2008.<br />

Campos F. 1952. Las moscas (Brachycera) del <strong>Ecuador</strong>. Revista Ecuatoriana<br />

de Higiene y Medic<strong>in</strong>a Tropical 8-9: 99-106.<br />

Cárdenas R. E. 2007. Diversidad y ecología de Tabanidae (Diptera) en un<br />

bosque remanente del Chocó ecuatoriano. Lic. Dissertation, Pontifi cia<br />

Universidad Católica del <strong>Ecuador</strong>, Quito, 157 p.<br />

Cárdenas R. E., Vieira J. M. 2005. Nuevas citas de Tabánidos (Diptera:<br />

Tabanidae) para <strong>Ecuador</strong>. Boletín de la Sociedad Entomológica Aragonesa<br />

36: 153-156.<br />

Cha<strong>in</strong>ey J. E. 1986. Th e rediscovery of Eristalotabanus violaceus Kröber<br />

(Dipt. Tabanidae). Entomologist´s Monthly Magaz<strong>in</strong>e 122: 205-207.<br />

Cha<strong>in</strong>ey J. E., Hall M. J. R. 1996. A new genus <strong>and</strong> three new species of<br />

Pangoni<strong>in</strong>i (Diptera: Tabanidae) from Bolivia. Memórias do Instituto<br />

Oswaldo Cruz, Rio de Janeiro 91: 307-312.<br />

Cha<strong>in</strong>ey J. E., Hall M. J. R., Aramayo J. L., Bettella P. 1994. A prelim<strong>in</strong>ary<br />

checklist <strong>and</strong> key to the genera <strong>and</strong> subgenera of Tabanidae (Diptera)<br />

of Bolivia with particular reference to Santa Cruz Department.<br />

Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 89: 321-345.<br />

Cha<strong>in</strong>ey J. E., Hall M. J. R., Gorayeb I. S. 1999. Stenotabanus Lutz (Diptera:<br />

Tabanidae): an identifi cation guide to the South American species.<br />

Memoirs on <strong>Entomology</strong> International 14: 75-134.<br />

522<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

Cilek J. E., Schreiber T. 1996. Diel host-seek<strong>in</strong>g activity of Chrysops celatus<br />

(Diptera: Tabanidae) <strong>in</strong> northwest Florida. Th e Florida Entomologist<br />

79: 520-525.<br />

Cooksey L. M., Wright R. E. 1987. Flight range <strong>and</strong> dispersal activity of<br />

the host-seek<strong>in</strong>g horse fl y, Tabanus abactor (Diptera: Tabanidae), <strong>in</strong><br />

north central Oklahoma. Environmental <strong>Entomology</strong> 16: 211-217.<br />

Coscarón S. 1979. Notas sobre tabánidos argent<strong>in</strong>os XVI. El Género Chrysops<br />

Meigen (Diptera, Insecta). Acta Zoologica Lilloana 35: 365-392.<br />

Coscarón S. 1999. Male description of four species of Argent<strong>in</strong>a horse<br />

fl ies (Diptera: Tabanidae). Memoirs of <strong>Entomology</strong> International 14:<br />

239-247.<br />

Coscarón S. 2000. El género Scione en la Argent<strong>in</strong>a (Diptera: Tabanidae).<br />

Revista de la Sociedad Entomológica Argent<strong>in</strong>a 59: 85-90.<br />

Coscarón S. 2001. El género Fidena Walker 1850 en Argent<strong>in</strong>a y Chile<br />

(Diptera: Tabanidae). Acta Entomológica Chilena 25: 51-72.<br />

Coscarón S. 2002. Clave ilustrada de larvas y pupas de Tabanidae de Argent<strong>in</strong>a<br />

(Diptera, Insecta), p. 11-21 <strong>in</strong>: Salomón O. D. (comp.), Actualizaciones<br />

en artropodología sanitaria argent<strong>in</strong>a. RAVE, Serie Enfermedades<br />

transmisibles, Fundación Mundo Sano, Buenos Aires, Argent<strong>in</strong>a.<br />

Coscarón S., Coscarón-Arias L. C., Mancebo O. A. 1996. Th e immature<br />

stages of Myiotabanus barrettoi Fairchild (Tabanidae-Diptera-Insecta).<br />

Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 91: 21-26.<br />

Coscarón S., González C. R. 1991. Tabanidae de Chile: lista de especies<br />

y clave para los géneros conocidos de Chile (Diptera: Tabanidae). Acta<br />

Entomológica Chilena 16: 125-150.<br />

Coscarón S., González C. R. 2001. Posición sistemática y redescripción de<br />

Scaptia (Pseudomelpia) horrens Enderle<strong>in</strong>, 1925 (Diptera: Tabanidae:<br />

Pangoni<strong>in</strong>ae). Acta Entomológica Chilena 25: 31-40.<br />

Coscarón S., Iide P. 2003. Th e subgenus Scaptia (Lepmia) Fairchild:<br />

redescription of females <strong>and</strong> description of a male (Diptera: Tabanidae:<br />

Pangoni<strong>in</strong>ae). Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 98:<br />

757-760.<br />

Coscarón S., Mancebo, O. A., Coscarón-Arias C. L. 1998. Th e preimag<strong>in</strong>al<br />

stages of Cryptotylus unicolor (Wiedemann) <strong>and</strong> Tabanus nebulosus<br />

ornativentris Kroeber (Tabanidae-Diptera-Insecta). Memórias do Instituto<br />

Oswaldo Cruz, Rio de Janeiro 93: 91-97.<br />

Coscarón S., Mancebo O. A., Coscarón-Arias C. L. 1999. Description of<br />

male, larva, <strong>and</strong> pupa of Stibasoma theotaenia (Wiedemann) (Diptera-<br />

Tabanidae). Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 94:<br />

619-623.<br />

<strong>Dangles</strong> O., Barragán A. R., Cárdenas R. E., Onore G., Keil, C. 2010.<br />

<strong>Entomology</strong> <strong>in</strong> <strong>Ecuador</strong>: <strong>Recent</strong> <strong>developments</strong> <strong>and</strong> future challenges.<br />

Annales de la Société Entomologique de France (N. S.) 45(4): 424-436.<br />

Davies C. R. 1990. Interrupted feed<strong>in</strong>g of blood-suck<strong>in</strong>g <strong>in</strong>sects: causes<br />

<strong>and</strong> eff ects. Parasitology Today 6: 19-22.<br />

Desquesnes M., Dia M. L., Acapovi G., Yoni W. 2005. Les vecteurs<br />

mécaniques des trypanosomes animales; généralités, morphologie, biologie,<br />

impacts et contrôle. Identifi cation des espèces les plus abondantes en<br />

Afrique de l´Ouest. Editions CIRDES, BP454 01 Bobo-Dioulasso,<br />

Burk<strong>in</strong>a Faso, 68 p.<br />

Donoso D. A., Salazar F., Maza F., Cárdenas R. E., <strong>Dangles</strong> O. 2010.<br />

Diversity <strong>and</strong> distribution of type specimens deposited <strong>in</strong> the<br />

Invertebrate section of the Museum of Zoology QCAZ, Quito,<br />

<strong>Ecuador</strong>. Annales de la Société Entomologique de France (N. S.) 45(4):<br />

437-454.<br />

Elith J., Graham, C. H., Anderson R. P., Dudík M., Ferrier S., Guisan<br />

A., Hijmans R. J., Huettmann F., Leathwick J. R., Lehmann A., Li<br />

J., Lohmann G., Loiselle B. A., Manion G., Moritz C., Nakamura<br />

M., Yosh<strong>in</strong>ori N., Overton J. McC., Peterson A. T., Phillips S. J.,<br />

Richardson K., Scachetti-Pereira R., Schapire R. E., Soberón J.,<br />

Williams S., Wisz M. S., Zimmermann, N. E. 2006. Novel methods<br />

improve prediction of species´ distributions from occurrence data.<br />

Ecography 29: 129-151.<br />

Fall<strong>in</strong>g Ra<strong>in</strong> Genomics, Inc. 2006. Global Gazetteer ver. 2.1. Available<br />

onl<strong>in</strong>e: http://www.fall<strong>in</strong>gra<strong>in</strong>.com/world/


Tabanidae of <strong>Ecuador</strong><br />

Fairchild G. B. 1942. Notes on Tabanidae (Dipt.) from Panamá VIII. Th e<br />

genera Pityocera, Scione, <strong>and</strong> Esenbeckia. Annals Entomological Society of<br />

America, 35: 183-199.<br />

Fairchild G. B. 1966. Notes on neotropical Tabanidae (Diptera) V. Th e species<br />

described by G. Enderle<strong>in</strong>. Journal of Medical <strong>Entomology</strong> 3: 1-19.<br />

Fairchild G. B. 1969a. Climate <strong>and</strong> the phylogeny <strong>and</strong> distribution of<br />

Tabanidae. Bullet<strong>in</strong> of the Entomological Society of America 15: 7-11.<br />

Fairchild G. B. 1969b. Notes on Neotropical Tabanidae XII. Classifi cation<br />

<strong>and</strong> distribution, with keys to genera <strong>and</strong> subgenera. Arquivos de Zoologia<br />

de São Paulo 17: 199-255.<br />

Fairchild G. B. 1971. Familiy Tabanidae, p. 1-163 <strong>in</strong>: Papavero N. (ed.),<br />

A Catalogue of the Diptera of the Americas South of the United States.<br />

Fascicle 28, Museu de Zoologia, Universidade de São Paulo.<br />

Fairchild G. B. 1973. Notes on neotropical Tabanidae (Diptera) XIV. Two<br />

new species of Tabanus from Panama <strong>and</strong> Colombia. Proceed<strong>in</strong>gs of the<br />

Entomological Society of Wash<strong>in</strong>gton 75: 319-330.<br />

Fairchild G. B. 1975a. Notes on Neotropical Tabanidae XVII. Genus<br />

Philipotabanus Fchld., Subgenus Mimotabanus Fchld. Annals of the<br />

Entomological Society of America 68: 689-694.<br />

Fairchild G. B. 1975b. Notes on Neotropical Tabanidae: (Dipt.) XV.<br />

Some species described by O. Kröber, formerly <strong>in</strong> the Stett<strong>in</strong> Museum.<br />

Proceed<strong>in</strong>gs of the Entomological Society of Wash<strong>in</strong>gton 77: 258-265.<br />

Fairchild G. B. 1983. Notes on Neotropical Tabanidae XIX. Th e Tabanus<br />

l<strong>in</strong>eola complex. Miscellaneous Publications of the Entomological Society<br />

of America 57: 1-51.<br />

Fairchild G. B. 1985. Notes on Neotropical Tabanidae (Diptera). XVIII.<br />

Th e genus Leucotabanus Lutz. Myia, 3: 299-331.<br />

Fairchild G. B. 1986. Th e Tabanidae of Panamá. Contributions of the<br />

American Entomological Institute 22: 1-139.<br />

Fairchild G. B., Burger J. F. 1994. A Catalog of the Tabanidae (Diptera)<br />

of the Americas South of the United States. Memoirs of the American<br />

Entomological Institute 55: 1-249.<br />

Fairchild G. B., León L. A. 1986. Lista provisional de Tabanidae (Diptera)<br />

del <strong>Ecuador</strong>. Publicación del Museo Ecuatoriano de Ciencias Naturales<br />

5: 97-122. [Publication prepared <strong>in</strong> English <strong>in</strong> 1957, translated <strong>and</strong><br />

published <strong>in</strong> 1986]<br />

Fairchild G. B., Wilkerson R. C. 1986. A review of the neotropical Genus<br />

Stypommisa (Diptera:Tabanidae). Contributions of the American Entomological<br />

Institute 22: 1-61.<br />

Garzione C. N., Hoke G. D., Libark<strong>in</strong> J. C., Withers S., MacFadden B.,<br />

Eiler J., Ghosh P., Mulch A. 2008. Rise of the Andes. Science 320:<br />

1304-1307.<br />

Godoi F. S. P., Rafael J. A. 2007. Descrição da larva, exúvia pupal e macho<br />

de Leucotabanus albovarius (Walker) (Diptera, Tabanidae) da Amazônia<br />

Central. Revista Brasileira de Entomologia 51: 101-106.<br />

González C. R. 1998. Th e immature stages of Protodasyapha (Protodasyapha)<br />

hirtuosa (Philipi) <strong>and</strong> their comparison with the immature stages of<br />

other Pangoni<strong>in</strong>i (Diptera-Tabanidae-Pangoni<strong>in</strong>ae). Memórias do<br />

Instituto Oswaldo Cruz, Rio de Janeiro 93: 465-470.<br />

González C. R. 1999. A revision of southern Neotropical genera related to<br />

Dasybasis Macquart, 1847 (Diptera: Tabanidae: Diachlor<strong>in</strong>i). Memoirs<br />

of <strong>Entomology</strong> International 14: 137-194.<br />

González C. R. 2000. Dasybasis elquiensis, a new species of horse fl y from<br />

northern Chile (Diptera: Tabanidae: Diachlor<strong>in</strong>i). Memórias do Instituto<br />

Oswaldo Cruz, Rio de Janeiro 95: 629-632.<br />

González C. R. 2001. Redescripción de la hembra y macho de Scaptia<br />

(Scaptia) varia (Walker) y descripción del macho de Scaptia (Pseudoscione)<br />

atra (Philippi) (Diptera: Tabanidae: Pangoni<strong>in</strong>ae). Revista Chilena<br />

de Entomología 28: 47-54.<br />

González C. R. 2004a. Agelanius verai, a new species of horse fl y from<br />

Chile (Diptera: Tabanidae). Zootaxa 571: 1-5.<br />

González C. R. 2004b. Description of adults <strong>and</strong> immature stages of<br />

Agelanius fuscus, a new horse fl y species from Central Chile (Diptera:<br />

Tabanidae: Diachlor<strong>in</strong>i). Studia Dipterologica 11: 211-217.<br />

González C. R. 2004c. Th e immature stages of Dasybasis (Dasybasis) pru<strong>in</strong>ivitta<br />

(Kröber), from central Chile (Diptera: Tabanidae). Zootaxa<br />

573: 1-7.<br />

González C. R. 2006a. Agelanius burgeri, a new species of horse fl y from<br />

south Chile (Diptera: Tabanidae). Zootaxa 1364: 59-64.<br />

González C. R. 2006b. Descripción del macho y redescripción de la<br />

hembra de Veprius fulvus Coscarón, Philip & Fairchild, 1979 (Diptera:<br />

Tabanidae: Pangoni<strong>in</strong>i). Acta Entomológica Chilena 30: 39-42.<br />

González C. R. 2007. Description of immature stages of Agelanius cortesi<br />

(González) from central Chile (Diptera: Tabanidae). Studies on<br />

Neotropical Fauna <strong>and</strong> Environment 42: 5-9.<br />

González C. R., Flores P. 2004. Comparative study of mouthparts of three<br />

species of horse fl ies of the tribe Pangoni<strong>in</strong>i of Chilean distribution<br />

(Diptera: Tabanidae). Zootaxa 579: 1-15.<br />

González C. R., Henry A. A. 1996. Dasybasis (Agelanius) cortesi, a new<br />

species of horse fl y from Chile (Diptera: Tabanidae: Diachlor<strong>in</strong>i).<br />

Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 91: 733-737.<br />

González C. R., Sanhueza Y. 2003. Estudio comparativo de la armadura bucal<br />

en hembras de 8 especies de Scaptia (Pseudoscione) Macquart de distribución<br />

chilena (Diptera: Tabanidae). Acta Entomológica Chilena 27: 7-24.<br />

González C. R., Sanhueza Y., Flores P., Vargas D. 2004. Estudio comparativo<br />

de la armadura bucal en hembra y macho adultos de Chaetopalpus<br />

annulicornis Philippi (Diptera: Tabanidae). Revista Chilena de<br />

Entomología 30: 11-16.<br />

Goodw<strong>in</strong> J. T. 1999. Dicladocera fairchildi, a new species of Tabanidae (Diptera)<br />

from Peru. Memoirs on <strong>Entomology</strong> International 14: 135-136.<br />

Gorayeb I. S., Barros A. T. M. 2006. Tabanidae (Diptera) of Amazônia<br />

XX. Description of Tabanus pseudonebulosus n. sp. Memórias do<br />

Instituto Oswaldo Cruz, Rio de Janeiro 101: 213-217.<br />

Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. 2004.<br />

New <strong>developments</strong> <strong>in</strong> museum-based <strong>in</strong>formatics <strong>and</strong> applications <strong>in</strong><br />

biodiversity analysis. Trends <strong>in</strong> Ecology <strong>and</strong> Evolution 19: 497-503.<br />

Henriques A. L. 1993. Tabanidae (Diptera) da Amazônia. XII. Descrição<br />

de quatro espécies novas de Dichelacera (Dichelacera) Macquart.<br />

Boletim do Museu Paraense Emílio Goeldi, Série Zoologia 9: 219-228.<br />

Henriques A. L. 1995. A coleção de Tabanidae (Insecta: Diptera) do<br />

Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus,<br />

Amazonas, Brasil. Boletim do Museu Paraense Emílio Goeldi, série<br />

Zoologia 11: 57-99.<br />

Henriques A. L. 2006. O gênero Philipotabanus Fairchild (Insecta: Diptera:<br />

Tabanidae) na Amazônia, com chave para as fêmeas das espécies e<br />

descrição de P. obidensis sp. nov. Acta Amazonica 36: 549-556.<br />

Henriques A. L., Gorayeb I. S. 1993. A coleção de Tabanidae (Insecta:<br />

Diptera) do Museu Paraense Emílio Goeldi, Belém, Pará, Brasil.<br />

Goeldiana Zoologia 20: 1-23.<br />

Henriques A. L., Gorayeb I. S. 1997. Tabanidae (Diptera) da Amazônia.<br />

XIII. Descrição de Catachlorops (Psarochlorops) amazonicus sp. n. e<br />

C. (Amphichlorops) mellosus sp. n. Boletim do Museu Paraense Emílio<br />

Goeldi, Série Zoologia 13: 11-19.<br />

Henriques A. L., Rafael J. A. 1995. Revisão do gênero Neotropical Acanthocera<br />

Macquart (Diptera: Tabanidae). Acta Amazonica 23: 403-440.<br />

Henriques A. L., Rafael J. A. 1999. Tabanidae (Diptera) from Parque Nacional<br />

do Jaú, Amazonas, Brazil, with description of two new species of Diachlorus<br />

Osten Sacken. Memoirs of <strong>Entomology</strong> International 14: 195-222.<br />

Hern<strong>and</strong>ez P. A., Graham C. H., Master L. L., Albert D. L. 2006. Th e eff ect<br />

of sample size <strong>and</strong> species characteristics on performance of diff erent<br />

species distribution modell<strong>in</strong>g methods. Ecography 29: 773-785.<br />

Herrera H. M., Dávila A. M. R., Norek A., Abreu U. G., Souza S. S.,<br />

D´Andrea P. S., Jansen A. M. 2004. Enzootiology of Trypanosoma<br />

evansi <strong>in</strong> Pantanal, Brazil. Veter<strong>in</strong>ary Parasitology 125: 263-275.<br />

Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. 2005.<br />

Very high resolution <strong>in</strong>terpolated climate surfaces for global l<strong>and</strong> areas.<br />

International Journal of Climatology 25: 1965-1978.<br />

IGM-Instituto Geográfi co Militar 1978-1982. Índice Toponímico de la<br />

República del <strong>Ecuador</strong>, Publicación del Instituto Geográfi co Militar (A-<br />

Q), Quito, <strong>Ecuador</strong>.<br />

IGM-Instituto Geográfi co Militar 1982-1996. Índice Toponímico de la<br />

República del <strong>Ecuador</strong>, Publicación del Instituto Geográfi co Militar (Q-<br />

Z), Quito, <strong>Ecuador</strong>.<br />

523


Jørgensen P. M., León-Yánez S. (eds.) 1999. Catalogue of the vascular<br />

plants of <strong>Ecuador</strong>. Monographs <strong>in</strong> Systematic Botany from the Missouri<br />

Botanical Garden 75: 1-1182.<br />

Kearney M., Porter W. 2009. Mechanistic niche modell<strong>in</strong>g: comb<strong>in</strong><strong>in</strong>g<br />

physiological <strong>and</strong> spatial data to predict species ranges. Ecology Letters<br />

12: 334-350.<br />

Körner C. 2007. Th e use of altitude <strong>in</strong> ecological research. Trends <strong>in</strong> Ecology<br />

<strong>and</strong> Evolution 22: 569-574.<br />

Kröber O. 1931a. Neue neotropische Tabaniden aus den Unterfamilien<br />

Bellard<strong>in</strong>ae und Taban<strong>in</strong>ae. Revista de Entomologia, Rio de Janeiro 1:<br />

400-417.<br />

Kröber O. 1931b. Neue südamerikanische Tabaniden des ungarischen<br />

national-museums und E<strong>in</strong>iger Anderer Institute, Annales Musei<br />

Nationalis Hungarici 27: 329-350.<br />

Kröber O. 1934. Catalogo dos Tabanidae da America do Sul e Central,<br />

<strong>in</strong>clu<strong>in</strong>do o Mexico e as Antilhas. Revista de Entomologia, Rio de<br />

Janeiro 4: 222-276, 291-333.<br />

Krolow T. K., Henriques A. L. 2008. Descrição do macho de Chlorotabanus<br />

leucochlorus Fairchild (Diptera, Tabanidae). Revista Brasileira de<br />

Entomologia 52: 269-271.<br />

Krolow T. K., Krüger R. F., Ribeiro P. B. 2007. Chave pictórica para os<br />

gêneros de Tabanidae (Insecta: Diptera) do bioma Campos Sul<strong>in</strong>os,<br />

Rio Gr<strong>and</strong>e do Sul, Brasil. Biota Neotropica 7: 253-264.<br />

Kr<strong>in</strong>sky W. L. 1976. Animal disease agents transmitted by horse fl ies <strong>and</strong><br />

deer fl ies (Diptera: Tabanidae). Journal of Medical <strong>Entomology</strong> 13:<br />

310-316.<br />

Limeira-de-Oliveira F. 2008. Tabanidae (Diptera) do Estado de<br />

Maranhão, Brasil II. Descrição de Esenbeckia (Esenbeckia) rafaeli, sp.<br />

nov. Neotropical <strong>Entomology</strong> 37: 426-428.<br />

Limeira-de-Oliveira F., Gorayeb I. S., Henriques A. L. 2009. Tabanidae<br />

(Diptera) do Estado de Maranhão, Brasil IV. Descrição de Dichelacera<br />

(Dichelacera) gemmae, sp.n. Neotropical <strong>Entomology</strong> 38: 104-107.<br />

Limeira-de-Oliveira F., Rafael J. A. 2005. Tabanidae (Diptera) from the<br />

State of Maranhão, Brazil I. Description of Stibasoma (Stibasoma) bella<br />

n. sp. Brazilian Journal of Biology 65: 639-642.<br />

Liu C., Berry P. M., Dawson T. P., Pearson R. G. 2005. Select<strong>in</strong>g thresholds<br />

of occurrence <strong>in</strong> the prediction of species distributions. Ecography<br />

28: 385-393.<br />

Lutz A. 1911. Novas contribuições para o conhecimento das Pangon<strong>in</strong>as<br />

e Chrysop<strong>in</strong>as do Brazil. Memórias do Instituto Oswaldo Cruz, Rio de<br />

Janeiro 3: 65-85.<br />

Lutz A. 1913. Tabanidas do Brazil e de alguns Estados vis<strong>in</strong>hos. Memórias<br />

do Instituto Oswaldo Cruz, Rio de Janeiro 5: 142-191.<br />

Lutz A., Castro G. M. O. 1935. Sobre algumas novas espécies de motucas<br />

do gênero Esenbeckia Rondani. Memórias do Instituto Oswaldo Cruz,<br />

Rio de Janeiro 30: 543-562.<br />

Mackerras I. M. 1961. Th e zoogeography of western Pacifi c Tabanidae.<br />

Pacifi c Insects Monographs 2: 101-106.<br />

Macquart J. 1848. Diptères exotiques nouveaux ou peu connus. Suite<br />

de 2me. supplément. Mémoires de la Société Royale des Sciences, de<br />

l´Agriculture et des Arts de Lille, [1847]: 161-237.<br />

Manrique-Saide P., Delfín-González H., Ibáñez-Bernal S. 2001. Horsefl<br />

ies (Diptera: Tabanidae) from protected areas of the Yucatán Pen<strong>in</strong>sula,<br />

Mexico. Th e Florida Entomologist 84: 352-362.<br />

McElligott P. E. K., Galloway T. D. 1991. Daily activity patterns of horse<br />

fl ies (Diptera: Tabanidae: Hybomitra spp.) <strong>in</strong> northern <strong>and</strong> southern<br />

Manitoba. Th e Canadian Entomologist 123: 371-378.<br />

Morrone J. J. 2001. Biogeografía de América Lat<strong>in</strong>a y el Caribe, 3, Manuales<br />

& Tesis SEA, Zaragoza, Spa<strong>in</strong>, 148 p.<br />

Morrone J. J. 2006. Biogeographical areas <strong>and</strong> transition zones of Lat<strong>in</strong><br />

America <strong>and</strong> the Caribbean Isl<strong>and</strong>s based on panbiogeographic <strong>and</strong><br />

cladistic analyses of the entomofauna. Annual Review of <strong>Entomology</strong><br />

51: 467-494.<br />

Oliveira A. F., Ferreira R. L. M., Rafael J. A. 2007. Sazonalidade e atividade<br />

diurna de Tabanidae (Diptera: Insecta) de dossel na Reserva Florestal<br />

Adolpho Ducke, Manaus, AM. Neotropical <strong>Entomology</strong> 36: 790-797.<br />

524<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

Otte M. J., Abuabara J. Y. 1990. Transmission of South American Trypanosoma<br />

vivax by the neotropical horsefl y Tabanus nebulosus. Acta Tropica<br />

49: 173-176.<br />

Patrick C. R., Hays K. L. 1968. Some Tabanidae (Diptera) from eastern<br />

<strong>Ecuador</strong>. Th e Florida Entomologist 51: 219-221.<br />

Pearson R. G., Raxworthy C. J., Nakamura M., Peterson A. T. 2007.<br />

Predict<strong>in</strong>g species distributions from small numbers of occurrence<br />

records: a test case us<strong>in</strong>g cryptic geckos <strong>in</strong> Madagascar. Journal of<br />

Biogeography 34:102-117.<br />

Pearce J. L., Boyce, M. S. 2006. Modell<strong>in</strong>g distribution <strong>and</strong> abundances<br />

with presence-only data. Journal of Applied Ecology 43: 405-412.<br />

Peterson A. T. 2006. Ecologic niche modell<strong>in</strong>g <strong>and</strong> spatial patterns of<br />

disease transmission. Emerg<strong>in</strong>g Infectious Diseases 12: 1822-1826.<br />

Philip C. B. 1960. Further records of Neotropical Tabanidae (Diptera)<br />

mostly from Peru. Proceed<strong>in</strong>gs of the California Academy of Sciences 31:<br />

69-102.<br />

Philip C. B. 1969. Descriptions of new Neotropical Tabanidae <strong>and</strong> new<br />

records for Argent<strong>in</strong>a. Acta Zoologica Lilloana 22: 105-132.<br />

Phillips S. J., Anderson R. P., Schapire R. E. 2006. Maximum entropy<br />

modell<strong>in</strong>g of species geographic distributions. Ecological Modell<strong>in</strong>g<br />

190: 231-259.<br />

Phillips S. J., Dudík, M. 2008. Modell<strong>in</strong>g of species distributions with<br />

Maxent: new extensions <strong>and</strong> a comprehensive evaluation. Ecography<br />

31: 161-175.<br />

Rafael J. A., Ferreira, R. L. M. 2004. Revisão do gênero Neotropical<br />

Myiotabanus Lutz (Diptera, Tabanidae) com descrição de uma espécie<br />

nova. Revista Brasileira de Zoologia 21: 325-331.<br />

Ribas C. C., Moyle R. G., Miyaki C. Y., Cracraft J. 2007. Th e assembly of<br />

montane biotas: l<strong>in</strong>k<strong>in</strong>g Andean tectonics <strong>and</strong> climatic oscillations to<br />

<strong>in</strong>dependent regimes of diversifi cation <strong>in</strong> Pionus parrots. Proceed<strong>in</strong>gs of<br />

the Royal Society, Series B 274: 2399-2408.<br />

Roberts R. H. 1974. Diurnal activity of Tabanidae based on collections <strong>in</strong><br />

Malaise traps. Mosquito News 34: 220-223.<br />

Sjöstedt A. 2007. Tularemia: history, epidemiology, pathogen physiology,<br />

<strong>and</strong> cl<strong>in</strong>ical manifestations. Annals of the New York Academy of Sciences<br />

1105: 1-29.<br />

Stone A. 1934. Notes on Bolbodimyia <strong>and</strong> Himantostylus with a new species<br />

(Diptera, Tabanidae). Revista de Entomologia, Rio de Janeiro 4: 190-192.<br />

Surcouf J. M. R. 1919. Brachycères piqueurs (Tabanidae), p. 217-233 <strong>in</strong>:<br />

Gauthier-Villars et al. (ed.), Mission du service géographique de l´armée<br />

pour la mesure d´un arc de méridien équatorial en Amérique du Sud, sous<br />

le contrôle scientifi que de l´académie de sciences (1899–1906), Tome 10,<br />

Fascicule 2, (Diptères), M<strong>in</strong>istère de l´<strong>in</strong>struction publique.<br />

Tiape Gómez Z., Velásquez de Rios M., Gorayeb I. S. 2004. Lista prelim<strong>in</strong>ar<br />

de tabánidos (Diptera: Tabanidae) del noroccidente de Guárico<br />

y sur de Aragua, Venezuela. Entomotropica 19: 59-63.<br />

Turcatel M., Carvalho C. J. B., Rafael J. A. 2007. Mutucas (Diptera: Tabanidae)<br />

do estado do Paraná, Brasil: chave de identifi cação pictórica<br />

para subfamílias, tribos e gêneros. Biota Neotropica 7: 1-14.<br />

Velásquez de Ríos M., Gómez Z. T., Gorayeb I. S., Tamasaukas R. 2004.<br />

Abundancia estacional de tabánidos (Diptera: Tabanidae) en el sector<br />

Las Lajas, Municipio Mir<strong>and</strong>a, estado Guárico, Venezuela. Entomotropica<br />

19: 149-152.<br />

Walker F. 1848. List of the specimens of dipterous <strong>in</strong>sects <strong>in</strong> the collection of the<br />

British Museum, 1, London, Engl<strong>and</strong>, 229 p.<br />

Wieczorek J., Guo Q., Hijmans R. J. 2004. Th e po<strong>in</strong>t-radius method for georeferenc<strong>in</strong>g<br />

locality descriptions <strong>and</strong> calculat<strong>in</strong>g associated uncerta<strong>in</strong>ty.<br />

International Journal of Geographical Information Science 18: 745-767.<br />

Wiens J. J., Donoghue M. J. 2004. Historical biogeography, ecology <strong>and</strong><br />

species richness. Trends <strong>in</strong> Ecology <strong>and</strong> Evolution 19: 639-644.<br />

Wilkerson R. C. 1979. Tábanos (Diptera: Tabanidae) de los departamentos<br />

colombianos del Chocó, Valle, y Cauca. Cespedesia (Cali, Colombia)<br />

7: 87-433.


Tabanidae of <strong>Ecuador</strong><br />

Wilkerson R. C., Fairchild G. B. 1982. Five new species of Diachlorus<br />

(Diptera: Tabanidae) from South America with a revised key to species<br />

<strong>and</strong> new locality records. Proceed<strong>in</strong>gs of the Entomological Society of<br />

Wash<strong>in</strong>gton 84: 636-650.<br />

Wilkerson R. C., Fairchild G. B. 1983. A review of the South American<br />

species of Esenbeckia subgenus Esenbeckia (Diptera: Tabanidae). Journal<br />

of Natural History 17: 519-567.<br />

W<strong>in</strong>ston J. E. 2007. Archives of a small planet: Th e signifi cance of museum<br />

collections <strong>and</strong> museum-based research <strong>in</strong> <strong>in</strong>vertebrate taxonomy.<br />

Zootaxa 1668: 47-54.<br />

Appendix 1.<br />

Bibliographic references of taxonomic <strong>and</strong> geographic publications<br />

s<strong>in</strong>ce the last catalogue of Neotropical Tabanidae<br />

published by Fairchild & Burger (1994).<br />

Lists are chronologically ordered.<br />

Genus or Subgenus descriptions. Cha<strong>in</strong>ey & Hall (1996);<br />

Burger (1999); González (1999).<br />

Species descriptions. Henriques (1993); Barros & Gorayeb<br />

(1995); Henriques & Rafael (1995); Cha<strong>in</strong>ey & Hall (1996);<br />

González & Henry (1996); Henriques & Gorayeb (1997);<br />

Burger (1999); Cha<strong>in</strong>ey et al. (1999); González (1999);<br />

Goodw<strong>in</strong> (1999); Henriques & Rafael (1999); González (2000);<br />

Coscarón (2001); Burger (2002); González (2004a); González<br />

(2004b); Rafael & Ferreira (2004); Limeira-de-Oliveira &<br />

Rafael (2005); González (2006a); Gorayeb & Barros (2006);<br />

Henriques (2006); Limeira-de-Oliveira (2008); Limeira-de-<br />

Oliveira et al. (2009).<br />

Other taxonomical descriptions such as immature stages,<br />

unknown adults, type <strong>and</strong> rare specimens redescriptions<br />

<strong>and</strong>/or ultrastructure body parts descriptions. Henriques &<br />

Rafael (1995); Burger (1996); Coscarón et al. (1996); Coscarón<br />

et al. (1998); González (1998); Bermúdez & Bermúdez (1999);<br />

Burger (1999); Coscarón (1999); Coscarón et al. (1999);<br />

Coscarón (2000); Coscarón (2001); Coscarón & González<br />

(2001); González (2001); Burger (2002); Coscarón (2002);<br />

Coscarón & Iide (2003); González & Sanhueza (2003);<br />

González (2004c); González & Flores (2004); González et al.<br />

(2004); Rafael & Ferreira (2004); González (2006b); Godoi &<br />

Rafael (2007); González (2007); Krolow & Henriques (2008).<br />

Taxonomical rearrangements. Henriques & Rafael (1995);<br />

Cha<strong>in</strong>ey et al. (1999); González (1999).<br />

Checklists <strong>and</strong> occurrence reports. Henriques & Gorayeb<br />

(1993); Cha<strong>in</strong>ey et al. (1994); Henriques (1995); Cha<strong>in</strong>ey &<br />

Hall (1996); Henriques & Rafael (1999); Coscarón (2000);<br />

Coscarón (2001); Manrique-Saide et al. (2001); Burger et al.<br />

(2002); Tiape Gómez et al. (2004); Cárdenas & Vieira (2005);<br />

Buestán et al. (2007); Krolow et al. (2007); Turcatel et al.<br />

(2007).<br />

Appendix 2.<br />

Catalogue of <strong>Ecuador</strong>ian species of Tabanidae.<br />

Th is catalogue is based on Fairchild & Burger (1994)<br />

classifi cation <strong>and</strong> new taxonomical rearrangements listed <strong>in</strong><br />

Table 1. Specimens reported for the fi rst time for <strong>Ecuador</strong> are<br />

marked with *.<br />

We do not <strong>in</strong>clude the next list of species apparently wrongly<br />

labeled as present <strong>in</strong> <strong>Ecuador</strong> due to possible nomenclaturaltaxonomical<br />

confusions, misidentifi cations, uncerta<strong>in</strong>ities, <strong>and</strong><br />

lack of voucher specimens as stated by Fairchild & León (1986)<br />

<strong>and</strong> other publications: (1) Esenbeckia vulpes cited by Campos<br />

(1952) from San Eduardo, Azogues (Cañar? - Guayas? prov.),<br />

(2) Tabanus l<strong>in</strong>eola cited by Campos (1952) from Guayaquil,<br />

El Salado, Durán, Bucay, (Guayas prov.), San Rafael (Guayas<br />

prov.?), Azogues (Cañar prov.), (3) Tabanus tril<strong>in</strong>eatus cited by<br />

Campos (1952) from Guayaquil, El Salado, Durán, (Guayas<br />

prov.), San Eduardo (Cañar? - Guayas? prov.). (4) Catachlorops<br />

castanea cited by Bigot (1892) <strong>in</strong> Fairchild & León (1986) from<br />

Santa Inés (Pich<strong>in</strong>cha prov.). (5) Dasychela limbativena cited<br />

by Kröber (1940) <strong>in</strong> Fairchild & León (1986) from <strong>Ecuador</strong>,<br />

Cordillera. (6) Tabanus subruber cited by Surcouf (1919) from<br />

Santo Dom<strong>in</strong>go de los Colorados (Santo Dom<strong>in</strong>go prov.). (7)<br />

Catachlorops nigripalpis cited by von Röder (1886) <strong>in</strong> Fairchild<br />

& León (1986) from Río C<strong>in</strong>to, M<strong>in</strong>do (Pich<strong>in</strong>cha prov.). (8)<br />

Esenbeckia subvaria cited by Buestán et al. (2007) from Cumbe<br />

(Azuay prov.); this specimen deposited <strong>in</strong> CAS collection is not<br />

well preserved <strong>and</strong> Wilkerson & Fairchild (1983) found great<br />

diff erences from Venezuelan type; Fairchild & Burger (1994)<br />

did not record this species to the country. (9) Fidena atripes<br />

cited by Kröber (1933) <strong>in</strong> Fairchild & León (1986) is apparently<br />

misidentifi ed sensu the authors who had never seen any other<br />

specimen belong<strong>in</strong>g to that species. (10) Fidena basilaris cited<br />

by von Röder (1886) <strong>in</strong> Fairchild & León (1986) <strong>and</strong> then by<br />

Buestán et al. (2007) from Río C<strong>in</strong>to, M<strong>in</strong>do (Pich<strong>in</strong>cha prov.)<br />

is not well preserved <strong>and</strong> there is a confusion at generic level<br />

(Esenbeckia?). (11) Scione claripennis from “Sta. Inez, <strong>Ecuador</strong>”<br />

cited by Kröber (1930) <strong>in</strong> Fairchild (1942), Fairchild & León<br />

(1986), <strong>and</strong> Buestán et al. (2007); Fairchild & Burger (1994)<br />

stated this specimen as costaricana, but they did not <strong>in</strong>clude it <strong>in</strong><br />

<strong>Ecuador</strong>. We have never seen voucher specimens of any of both<br />

species. (12) Scione fulva from “Azogues”, cited by Campos<br />

(1952), has never been seen by entomologists. (13) A s<strong>in</strong>gle<br />

specimen of Fidena mattogrossensis from “Napo, Archidona” is<br />

not preserved <strong>in</strong> BMNH as stated by Kröber (1933) <strong>in</strong> Fairchild<br />

& León (1986). (14) Th e only Chrysops laetus voucher specimen<br />

from “Baeza, Napo-Pastaza prov<strong>in</strong>ce” seen by Fairchild & Léon<br />

(1986) is currently lost. (15) Stenotabanus maculipennis Kröber<br />

1914 is an <strong>in</strong>valid name cited <strong>in</strong> Fairchild & Léon (1986);<br />

we believe they referred to Bolivian Stypommisa furva (=<br />

maculipennis) Kröber 1929, however voucher specimen is lost.<br />

(16) “Esenbeckia arcuata (Williston) 1895” has been reported<br />

by Buestán et al. (2007), by error.<br />

Subfamily Pangoni<strong>in</strong>ae<br />

Tribe Pangoni<strong>in</strong>i<br />

Genus Esenbeckia Rondani<br />

Esenbeckia (Esenbeckia) acc<strong>in</strong>cta Wilkerson & Fairchild 1983<br />

Esenbeckia (Esenbeckia) balzapambana Enderle<strong>in</strong> 1925<br />

Esenbeckia (Esenbeckia) dressleri Wilkerson & Fairchild 1983<br />

Esenbeckia (Esenbeckia) laticlava Wilkerson & Fairchild 1983<br />

Esenbeckia (Esenbeckia) melanogaster Lutz & Castro 1935<br />

Esenbeckia (Esenbeckia) parishi (H<strong>in</strong>e 1920)<br />

Esenbeckia (Esenbeckia) pras<strong>in</strong>iventris (Macquart 1846)<br />

Esenbeckia (Esenbeckia) re<strong>in</strong>burgi Surcouf 1919<br />

525


Esenbeckia (Esenbeckia) testaceiventris (Macquart 1848)<br />

Esenbeckia (Esenbeckia) tigr<strong>in</strong>a Wilkerson 1979<br />

Esenbeckia (Esenbeckia) translucens (Macquart 1846)<br />

Esenbeckia (Esenbeckia) xanthoskela Wilkerson & Fairchild<br />

1983<br />

Esenbeckia (Proboscoides) ecuadorensis Lutz & Castro 1935<br />

Esenbeckia (Proboscoides) gem<strong>in</strong>orum Fairchild & Wilkerson<br />

1981<br />

Esenbeckia (Proboscoides) schl<strong>in</strong>geri Philip 1960<br />

Tribe Scion<strong>in</strong>i<br />

Genus Scaptia Walker<br />

Scaptia (Scaptia) aureopygia Phlip 1969<br />

Scaptia (Scaptia) rubriventris (Kröber 1930)<br />

Scaptia (Scaptia) sublata Philip 1969<br />

Genus Fidena Walker<br />

Fidena (Fidena) aureopygia Kröber 1931<br />

Fidena (Fidena) auribarba (Enderle<strong>in</strong> 1925)<br />

Fidena (Fidena) castanea (Perty 1833)<br />

Fidena (Fidena) castaneiventris Kröber 1934<br />

Fidena (Fidena) eriomeroides (Lutz 1909)<br />

Fidena (Fidena) fl avipennis Kröber 1931<br />

Fidena (Fidena) later<strong>in</strong>a (Rondani 1850)<br />

Fidena (Fidena) ochrapogon Wilkerson 1979<br />

Fidena (Fidena) pallidula Kröber 1933<br />

Fidena (Fidena) rh<strong>in</strong>ophora (Bellardi 1859)<br />

Fidena (Fidena) zonalis Kröber 1931<br />

Genus Scione Walker<br />

Scione albifasciata (Macquart 1846)<br />

Scione bil<strong>in</strong>eata Philip 1969<br />

Scione brevibeccus Wilkerson 1979<br />

Scione brevistriga Enderle<strong>in</strong> 1925<br />

Scione costaricana Szilády 1926<br />

Scione equatoriensis Surcouf 1919<br />

Scione equivexans Wilkerson 1979<br />

Scione fl avescens (Enderle<strong>in</strong> 1930)<br />

Scione fl avohirta Ricardo 1902<br />

Scione maculipennis (Sch<strong>in</strong>er 1868)<br />

Scione obscurefemorata Kröber 1930<br />

Scione strigata (Enderle<strong>in</strong> 1925)<br />

Genus Pityocera Giglio-Tos<br />

Pityocera (Pityocera) festae Giglio-Tos 1896<br />

Pityocera (Elaphella) cervus (Wiedemann 1828)<br />

Pityocera (Pseudelaphella) nana (Walker 1850)<br />

Subfamily Chrysops<strong>in</strong>ae<br />

Tribe Chrysops<strong>in</strong>i<br />

Genus Chrysops Meigen<br />

*Chrysops bulbicornis Lutz 1911<br />

Chrysops ecuadorensis Lutz 1909<br />

Chrysops fl avipennis Kröber 1925<br />

Chrysops latitibialis Kröber 1926<br />

Chrysops leucospilus Wiedemann 1828<br />

526<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

Chrysops varians var. tardus Wiedemann 1828<br />

Chrysops variegatus (DeGeer 1776)<br />

Subfamily Taban<strong>in</strong>ae<br />

Tribe Diachlor<strong>in</strong>i<br />

Genus Acellomyia González<br />

Acellomyia lauta (H<strong>in</strong>e 1920)<br />

Genus Dasybasis Macquart<br />

Dasybasis (Dasybasis) excelsior Fairchild 1956<br />

Dasybasis (Dasybasis) montium (Surcouf 1919)<br />

Dasybasis (Dasybasis) sch<strong>in</strong>eri (Kröber 1931)<br />

Genus Hemichrysops Kröber<br />

*Hemichrysops fascipennis Kröber 1930<br />

Genus Stenotabanus Lutz<br />

Stenotabanus (Aegialomyia) aberrans Philip 1966<br />

Stenotabanus (Aegialomyia) bruesi (H<strong>in</strong>e 1920)<br />

Stenotabanus (Stenotabanus) albil<strong>in</strong>earis Phlip 1960<br />

Stenotabanus (Stenotabanus) detersus (Walker 1850)<br />

Stenotabanus (Stenotabanus) <strong>in</strong>cipiens (Walker 1860)<br />

Stenotabanus (Stenotabanus) obscurus Kröber 1929<br />

Stenotabanus (Stenotabanus) obscurus var. fl avofemoratus Kröber<br />

1929<br />

*Stenotabanus (Stenotabanus) penai Cha<strong>in</strong>ey 1999<br />

Stenotabanus (Stenotabanus) peruviensis Kröber 1929<br />

Stenotabanus (Stenotabanus) wilkersoni Cha<strong>in</strong>ey 1999<br />

Genus Himantostylus Lutz<br />

Himantostylus <strong>in</strong>termedius Lutz 1913<br />

Genus Diachlorus Osten Sacken<br />

Diachlorus <strong>and</strong>uzei Stone 1944<br />

Diachlorus bimaculatus (Wiedemann 1828)<br />

Diachlorus curvipes (Fabricius 1805)<br />

Diachlorus fuscistigma Lutz 1913<br />

Diachlorus habecki Wilkerson & Fairchild 1982<br />

Diachlorus jobb<strong>in</strong>si Fairchild 1942<br />

Diachlorus leucotibialis Wilkerson & Fairchild 1982<br />

Diachlorus nuneztovari Fairchild & Ortiz 1955<br />

*Diachlorus scutellatus (Macquart 1838)<br />

Diachlorus trevori Wilkerson & Fairchild 1982<br />

Genus Bolbodimyia Bigot<br />

Bolbodimyia bicolor Bigot 1892<br />

Bolbodimyia celeroides Stone 1954<br />

Bolbodimyia erythrocephala (Bigot 1892)<br />

Bolbodimyia nigra Stone 1934<br />

Genus Selasoma Macquart<br />

Selasoma tibiale (Fabricius 1805)<br />

Genus Chlorotabanus Lutz<br />

Chlorotabanus <strong>in</strong>anis (Fabricius 1787)<br />

Chlorotabanus mexicanus (L. 1758)<br />

Genus Phaeotabanus Lutz<br />

Phaeotabanus cajennensis (Fabricius 1787)<br />

Phaeotabanus fervens (L. 1758)


Tabanidae of <strong>Ecuador</strong><br />

Phaeotabanus nigrifl avus (Kröber 1930)<br />

Phaeotabanus phaeopterus Fairchild 1964<br />

*Phaeotabanus pras<strong>in</strong>iventris (Kröber 1929)<br />

Phaeotabanus serenus (Kröber 1931)<br />

Genus Spilotabanus Fairchild<br />

Spilotabanus multiguttatus (Kröber 1930)<br />

Genus Eutabanus Kröber<br />

Eutabanus pictus Kröber 1930<br />

Genus Acanthocera Macquart<br />

Acanthocera (Acanthocera) marg<strong>in</strong>alis Walker 1854<br />

Acanthocera (Querbetia) cha<strong>in</strong>eyi Fairchild & Burger 1994<br />

Genus Dichelacera Macquart<br />

Dichelacera (Dichelacera) chocoensis Fairchild & Philip 1960<br />

Dichelacera (Dichelacera) fasciata Walker 1850<br />

Dichelacera (Dichelacera) marg<strong>in</strong>ata Macquart 1847<br />

Dichelacera (Dichelacera) reg<strong>in</strong>a Fairchild 1940<br />

Dichelacera (Dichelacera) rubrofemorata Burger 1999<br />

Dichelacera (Dichelacera) submarg<strong>in</strong>ata Lutz 1915<br />

Dichelacera (Dichelacera) villavoensis Fairchild & Philip 1960<br />

Dichelacera (Idiochelacera) subcallosa Fairchild & Philip 1960<br />

Dichelacera (Desmatochelacera) albitibialis Burger 1999<br />

Dichelacera (Desmatochelacera) transposita Walker 1854<br />

Genus Catachlorops Lutz<br />

Catachlorops (Amphichlorops) vespert<strong>in</strong>us (Bequaert & Renjifo-<br />

Salcedo 1946)<br />

Catachlorops (Psarochlorops) diffi cilis (Kröber 1931)<br />

Catachlorops (Psarochlorops) ecuadoriensis (Enderle<strong>in</strong> 1925)<br />

Catachlorops (Psalidia) fulm<strong>in</strong>eus var. ocellatus Enderle<strong>in</strong> 1925<br />

Genus Dasychela Enderle<strong>in</strong><br />

Dasychela (Dasychela) amazonensis (Barretto 1946)<br />

Dasychela (Dasychela) badia (Kröber 1931)<br />

Dasychela (Dasychela) fulvicornis (Kröber 1931)<br />

Dasychela (Dasychela) ocellus (Walker 1848)<br />

Dasychela (Dasychela) peruviana (Bigot 1892)<br />

Dasychela (Triceratomyia) mac<strong>in</strong>tyrei (Bequaert 1937)<br />

Genus Eristalotabanus Kröber<br />

Eristalotabanus violaceus Kröber 1931<br />

Genus Dicladocera Lutz<br />

Dicladocera argenteomaculata Wilkerson 1979<br />

Dicladocera basirufa (Walker 1850)<br />

Dicladocera bellicosa (Brèthes 1910)<br />

Dicladocera clara (Sch<strong>in</strong>er 1868)<br />

Dicladocera distomacula Wilkerson 1979<br />

Dicladocera exilicorne Fairchild 1958<br />

Dicladocera hirsuta Wilkerson 1979<br />

Dicladocera macula (Macquart 1846)<br />

Dicladocera m<strong>in</strong>os (Sch<strong>in</strong>er 1868)<br />

Dicladocera ?neosubmacula Kröber 1931<br />

Dicladocera nigrocoerulea (Rondani 1850)<br />

Dicladocera ornatipenne (Kröber 1931)<br />

Dicladocera pru<strong>in</strong>osa Wilkerson 1979<br />

Dicladocera riveti (Surcouf 1919)<br />

Dicladocera tribonophora Fairchild 1958<br />

Genus Stibasoma Sch<strong>in</strong>er<br />

Stibasoma (Stibasoma) fl aviventre (Macquart 1848)<br />

Stibasoma (Stibasoma) fulvohirtum (Wiedemann 1828)<br />

Stibasoma (Stibasoma) panamensis Curran 1934<br />

Stibasoma (Rhabdotylus) venenata (Osten Sacken 1886)<br />

Genus Cryptotylus Lutz<br />

Cryptotylus unicolor (Wiedemann 1828)<br />

Genus Philipotabanus Fairchild<br />

Philipotabanus (Philipotabanus) magnifi cus (Kröber 1934)<br />

Philipotabanus (Philipotabanus) nigr<strong>in</strong>ubilus (Fairchild 1953)<br />

Philipotabanus (Philipotabanus) pallidet<strong>in</strong>ctus (Kröber 1930)<br />

Philipotabanus (Philipotabanus) pterographicus (Fairchild 1943)<br />

Philipotabanus (Philipotabanus) tenuifasciatus (Kröber 1930)<br />

Philipotabanus (Mimotabanus) opimus Fairchild 1975<br />

*Philipotabanus (Mimotabanus) porteri Fairchild 1975<br />

Philipotabanus (Melasmatabanus) criton (Kröber 1934)<br />

Philipotabanus (Melasmatabanus) fascipennis ssp. ecuadoriensis<br />

(Kröber 1930)<br />

Philipotabanus (Melasmatabanus) nigripennis Wilkerson 1979<br />

Genus Stypommisa Enderle<strong>in</strong><br />

Stypommisa anoriensis Fairchild & Wilkerson 1986<br />

Stypommisa captiroptera (Kröber 1930)<br />

Stypommisa changena Fairchild 1986<br />

Stypommisa fl avescens (Kröber 1930)<br />

Stypommisa gl<strong>and</strong>icolor (Lutz 1912)<br />

Stypommisa hypographa (Kröber 1930)<br />

Stypommisa hypographa ssp. neofurva Philip 1969<br />

Stypommisa maruccii (Fairchild 1947)<br />

Stypommisa modica (H<strong>in</strong>e 1920)<br />

Stypommisa pequeniensis (Fairchild 1942)<br />

Stypommisa venosa (Bigot 1892)<br />

Genus Leucotabanus Lutz<br />

Leucotabanus albovarius (Walker 1854)<br />

Leucotabanus cornelianus Fairchild 1985<br />

Leucotabanus exaestuans (L. 1758)<br />

Leucotabanus weyrauchi Fairchild 1951<br />

Genus Lepiselaga Macquart<br />

Lepiselaga (Lepiselaga) crassipes (Fabricius 1805)<br />

Tribe Taban<strong>in</strong>i<br />

Genus Poeciloderas Lutz<br />

Poeciloderas quadripunctatus (Fabricius 1805)<br />

Genus Phorcotabanus Fairchild<br />

Phorcotabanus c<strong>in</strong>ereus (Wiedemann 1821)<br />

Genus Tabanus L.<br />

Tabanus albocirculus H<strong>in</strong>e 1907<br />

Tabanus aniptus Fairchild 1976<br />

Tabanus antarcticus L. 1758<br />

Tabanus argentivittatus Fairchild 1976<br />

Tabanus cicur Fairchild 1942<br />

Tabanus claripennis (Bigot 1892)<br />

Tabanus colombensis Macquart 1846<br />

Tabanus cyclopus Philip 1961<br />

527


Tabanus discifer Walker 1850<br />

Tabanus discus Wiedemann 1828<br />

Tabanus eldridgei Fairchild 1973<br />

Tabanus guyanensis Macquart 1846<br />

Tabanus hirtitibia Walker 1850<br />

Tabanus importunus Wiedemann 1828<br />

Tabanus macquarti Sch<strong>in</strong>er 1868<br />

Tabanus nereus Fairchild 1943<br />

Tabanus occidentalis L. 1758<br />

Tabanus occidentalis var. dorsovittatus Macquart 1855<br />

Tabanus occidentalis var. modestus Wiedemann 1828<br />

Tabanus pachypalpus (Bigot 1892)<br />

Tabanus pellucidus Fabricius 1805<br />

Tabanus perplexus Walker 1850<br />

Tabanus peruvianus Macquart 1848<br />

Tabanus piceiventris Rondani 1848<br />

Tabanus platycerus Fairchild 1976<br />

Tabanus pseudoculus Fairchild 1942<br />

Tabanus pungens Wiedemann 1828<br />

Tabanus restrepoensis Fairchild 1942<br />

Tabanus rixator Fairchild 1943<br />

Tabanus rubig<strong>in</strong>ipennis Macquart 1846<br />

Tabanus rubripes Macquart 1838<br />

Tabanus sannio Fairchild 1956<br />

Tabanus secundus Walker 1848<br />

Tabanus sorbillans Wiedemann 1828<br />

Tabanus surifer Fairchild 1964<br />

Tabanus thiemeanus (Enderle<strong>in</strong> 1925)<br />

Tabanus unimaculus Kröber 1934<br />

Tabanus unistriatus H<strong>in</strong>e 1906<br />

Tabanus vittiger Th omson 1869<br />

Tabanus xuthopogon Fairchild 1984<br />

528<br />

R. E. Cárdenas, J. Buestán & O. <strong>Dangles</strong><br />

Appendix 3.<br />

Acronyms of reference collections<br />

AMNH: American Museum of Natural History, New York,<br />

USA; AUEM: Auburn University, <strong>Entomology</strong> Museum,<br />

Alabama, USA; BMNH: British Museum of Natural History,<br />

London, UK; C-JB: Jaime Buestán Personal Collection,<br />

Guayaquil, <strong>Ecuador</strong>; CAS: California Academy of Sciences,<br />

San Francisco, USA; CBP: Cornelius Becker Philip Personal<br />

Collection, Hamilton, USA; CUIC: Cornell University Insect<br />

Collection, Ithaca, USA; FIOC: Fundação Instituto Oswaldo<br />

Cruz <strong>Entomology</strong> Collection, Rio de Janeiro, Brazil; FSCA:<br />

Florida State Collection of Arthropods, Ga<strong>in</strong>esville, USA;<br />

INPA: Instituto Nacional de Pesquisas da Amazônia-Coleção<br />

Sistemática da Entomologia, Manaus, Brazil; LACM: Natural<br />

History Museum of Los Angeles County, Los Angeles, USA;<br />

MCZ: Harvard University Museum of Comparative Zoology,<br />

Cambridge, USA; MEPN: Museo de la Escuela Politécnica<br />

Nacional, Quito, <strong>Ecuador</strong>; MLPA: Universidad Nacional de La<br />

Plata-Museo de la Plata, La Plata, Argent<strong>in</strong>a; MLUH: Mart<strong>in</strong>-<br />

Luther-Universität, Wissenschaftsbereich Zoologie, Halle,<br />

Germany; MNHN: Muséum National d’Histoire Naturelle,<br />

Paris, France; MPEG: Museu Paraense Emílio Goeldi, Belém,<br />

Brazil; MTD: Museum für Tierkunde, Dresden, Germany;<br />

OSUC: Ohio State University Collection, Columbus, USA;<br />

MZPW: Warsaw Museum of the Institute of Zoology, Warsaw,<br />

Pol<strong>and</strong>; NHRS: Naturhistoriska riksmuseet, Stockholm,<br />

Sweden; QCAZ: Quito Catholic University Zoology Museum,<br />

Quito, <strong>Ecuador</strong>; UMMZ: University of Michigan Museum<br />

of Zoology, Ann Arbor, USA; USNM: Smithsonian National<br />

Museum of Natural History, Wash<strong>in</strong>gton, USA; ZMHB<br />

(=ZMFHU): Berl<strong>in</strong> Museum für Naturkunde der Humboldt-<br />

Universität, Berl<strong>in</strong>, Germany; ZMUH: Universität von<br />

Hamburg Zoologisches Institut und Zoologisches Museum,<br />

Hamburg, Germany.<br />

On l<strong>in</strong>e appendices.<br />

Appendix 4. Complete catalogue of <strong>Ecuador</strong>ian species of<br />

Tabanidae.<br />

Appendix 5. Gazetteer of known localities of <strong>Ecuador</strong>ian<br />

specimens of Tabanidae.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 1<br />

Appendix 4.<br />

Complete catalogue of <strong>Ecuador</strong>ian species of Tabanidae.<br />

We present a full list of known species localities distribution. We omitted specimens labels<br />

<strong>in</strong>formation unless they are reported for the first time for <strong>Ecuador</strong> (marked with *).<br />

Acronyms of reference collections are detailed <strong>in</strong> Appendix 3. A gazetteer of known<br />

localities is provided <strong>in</strong> Appendix 4. Type-localities have been underl<strong>in</strong>ed.<br />

SUBFAMILY PANGONIINAE<br />

Tribe Pangoni<strong>in</strong>i<br />

Esenbeckia (Esenbeckia) acc<strong>in</strong>cta Wilkerson & Fairchild 1983<br />

PICHINCHA: Quito (Carretas) (FSCA <strong>in</strong> Fairchild & Burger 1994); Pifo (C-JB).<br />

GUAYAS: Vía a Balao Chico (CUIC sensu Fairchild & Burger 1994).<br />

Esenbeckia (Esenbeckia) balzapambana Enderle<strong>in</strong> 1925<br />

BOLIVAR: Río Cristal (Balzapamba), Km 7 Vía Bucay-Chillanes (C-JB);<br />

Balzapamba (ZMFHU <strong>in</strong> Fairchild & Burger 1994). CHIMBORAZO: Río<br />

Sacramento, Buenos Aires-5 Km O de Cum<strong>and</strong>á (C-JB). IMBABURA:<br />

Peñaherrera (Wilkerson & Fairchild 1983). LOJA: Quebrada Chipiango (C-JB).<br />

Esenbeckia (Esenbeckia) dressleri Wilkerson & Fairchild 1983<br />

SANTO DOMINGO: “Santo Dom<strong>in</strong>go to Chiriboga” (FSCA <strong>in</strong> Wilkerson &<br />

Fairchild 1983).<br />

Esenbeckia (Esenbeckia) laticlava Wilkerson & Fairchild 1983<br />

GUAYAS: “20 mi West of Guayaquil” (CAS, CUIC <strong>in</strong> Fairchild & Burger 1994).<br />

Esenbeckia (Esenbeckia) melanogaster Lutz & Castro 1935<br />

LOJA: San Vicente (C-JB).<br />

Esenbeckia (Esenbeckia) parishi (H<strong>in</strong>e 1920)<br />

CHIMBORAZO: Río Sacramento (C-JB). EL ORO: Bosque Puyango (C-JB).<br />

LOJA: Catacocha, Quebrada Chipiango (C-JB). LOS RÍOS: EBFD Jauneche (C-<br />

JB). “<strong>Ecuador</strong>” as locality datum (OSUC <strong>in</strong> Fairchild & Burger 1994).<br />

Esenbeckia (Esenbeckia) pras<strong>in</strong>iventris (Macquart 1846)<br />

LOJA: Sta Ruf<strong>in</strong>a (QCAZ).<br />

Esenbeckia (Esenbeckia) re<strong>in</strong>burgi Surcouf 1919<br />

CHIMBORAZO: Riobamba (Campos 1952). LOJA: Catacocha, San Vicente (C-<br />

JB). LOJA: Loja (<strong>in</strong> Fairchild & Burger 1994). PICHINCHA: Quito (MNHN <strong>in</strong><br />

Surcouf 1919); Machachi (Campos 1952).<br />

Esenbeckia (Esenbeckia) testaceiventris (Macquart 1848)<br />

AZUAY: Río Zaracay (C-JB). COTOPAXI: 4 Km al Este de la Esperanza, La<br />

Gaviota (C-JB); San Fco. de las Pampas (QCAZ); Calupiña (C-JB) (QCAZ).<br />

IMBABURA: Los Cedros (EC), Los Cedros E1:T,T1 (R.B., B.P.), Los Cedros<br />

E2:T, T1, T2 (R.B., B.P.), Los Cedros E3:T2, T3 (R.B., B.P.) (QCAZ); Azabí


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 2<br />

(Intag) (Wilkerson & Fairchild 1983). LOJA: Cord. Sabanilla (C-JB). MORONA<br />

SANTIAGO: Arenillas (C-JB). PICHINCHA: M<strong>in</strong>do (QCAZ); Hda (Eco) Bomboli<br />

(C-JB); Palmeras (QCAZ) (C-JB); Via Quito-Chiriboga (Wilkerson & Fairchild<br />

1983); Nanegal (Fairchild & León 1986); Quito (BMNH <strong>in</strong> Fairchild & Burger<br />

1994). SANTO DOMINGO: E.C. Río Guajalito (QCAZ), Via Santo Dom<strong>in</strong>go-<br />

Chiriboga (Wilkerson & Fairchild 1983). ZAMORA CHINCHIPE: Zamora<br />

(Fairchild & León 1986).<br />

Esenbeckia (Esenbeckia) tigr<strong>in</strong>a Wilkerson 1979<br />

COTOPAXI: San Fco. De las Pampas (QCAZ). CHIMBORAZO: Río Sacramento<br />

(C-JB). SANTA ELENA: 2.6 Km de "Dos Mangas" (C-JB). LOJA: Quebrada<br />

Chipiango (C-JB). LOS RÍOS: EBFD Jauneche (C-JB).<br />

Esenbeckia (Esenbeckia) translucens (Macquart 1846)<br />

ESMERALDAS: Kumanii Lodge, Kumanii Lodge T, T1,T2,T3, E.C. Río Can<strong>and</strong>é<br />

(Reserva - Jocotoco), E.C. Río Can<strong>and</strong>é T (Reserva - Jocotoco) (QCAZ); Playa de<br />

Oro (Río Santiago), Hda (Eco) Bomboli (C-JB). IMBABURA: Intag (Fraichild &<br />

León 1986). MANABÍ: Río Mache (C-JB). SANTO DOMINGO: Santo Dom<strong>in</strong>go<br />

(Fraichild & León 1986).<br />

Esenbeckia (Esenbeckia) xanthoskela Wilkerson & Fairchild 1983<br />

MORONA SANTIAGO: Cerro Chuark Wihp, Coangos (C-JB). NAPO: Río Hollín<br />

(C-JB). ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ); E. C.<br />

Tiput<strong>in</strong>i USFQ (TBS) (QCAZ) (MEPN). SUCUMBÍOS: Lumbaqui (QCAZ).<br />

Esenbeckia (Proboscoides) ecuadorensis Lutz & Castro 1935<br />

CAÑAR: Cochancay (El chorro; El Chorro, Cochancay), Manuel J.Calle (C-JB).<br />

GUAYAS: Naranjal (FIOC <strong>in</strong> Lutz & Castro 1935); “20 mi West of Guayaquil”<br />

(CAS <strong>in</strong> Philip 1961); Hda. San Joaquín (San Joaquín) (QCAZ); Vía a Balao<br />

Chico, Balao-Hacienda Santa Rita (C-JB). LOS RÍOS: “Near Quevedo” (UMMZ <strong>in</strong><br />

Philip 1960). SUCUMBÍOS: Limoncocha (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Esenbeckia (Proboscoides) gem<strong>in</strong>orum Fairchild & Wilkerson 1981<br />

SANTA ELENA: Colonche (QCAZ) (C-JB) (FSCA <strong>in</strong> Fairchild & Wilkerson<br />

1981); Zapotal (C-JB).<br />

Esenbeckia (Proboscoides) schl<strong>in</strong>geri Philip 1960<br />

NAPO: Río Umbuni (C-JB).<br />

Tribe Scion<strong>in</strong>i<br />

Scaptia (Scaptia) aureopygia Phlip 1969<br />

IMBABURA: Los Cedros E2:T, Los Cedros E3:T2(R.B., B.P.) (QCAZ).<br />

MORONA SANTIAGO: Arenillas (C-JB).<br />

Scaptia (Scaptia) rubriventris (Kröber 1930)<br />

MORONA SANTIAGO: Arenillas (C-JB).<br />

Scaptia (Scaptia) sublata Philip 1969<br />

MORONA SANTIAGO: Arenillas (C-JB).<br />

Fidena (Fidena) aureopygia Kröber 1931


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 3<br />

BOLIVAR: La Moya (C-JB). CAÑAR: La Carbonería (QCAZ). CHIMBORAZO:<br />

Quebrada Bodega Pamba, Río Pangor (C-JB). IMBABURA: Atuntaqui (QCAZ).<br />

NAPO: Río Hollín. PICHINCHA: Quito (P. Metropolitano), Quito, Cumbayá, Vía<br />

M<strong>in</strong>do, Fald. Pich<strong>in</strong>cha, Pululahua, Moraspungo, Palmeras, El T<strong>in</strong>go, Yanacocha-<br />

Reserva (Pastizal arbolado y BMA) (QCAZ); Conocoto, Quito, San Antonio<br />

(Volcán Pululahua), Yaruquí (C-JB). SUCUMBÍOS: El Reventador (QCAZ).<br />

Fidena (Fidena) auribarba (Enderle<strong>in</strong> 1925)<br />

ESMERALDAS: E.C. Río Can<strong>and</strong>é T, T3 (Reserva - Jocotoco) (QCAZ).<br />

MORONA SANTIAGO: Río Pau Gr<strong>and</strong>e (Tarapoa) (C-JB).<br />

Fidena (Fidena) castanea (Perty 1833)<br />

NAPO:Pozo Daimi, Río Umbuni (C-JB). ORELLANA: Coca (C-JB).<br />

SUCUMBÍOS: Shushuf<strong>in</strong>di, Río Aguarico (C-JB).<br />

Fidena (Fidena) castaneiventris Kröber 1934<br />

PICHINCHA: Casitagua (MNHN <strong>in</strong> Surcouf 1919), Valle de los Chillos (Fairchild<br />

& León 1986).<br />

Fidena (Fidena) eriomeroides (Lutz 1909)<br />

NAPO: Río Hollín, Misahuallí (QCAZ) MORONA SANTIAGO: Cord. del Cóndor<br />

Río Coangos-Río Tsuir<strong>in</strong> (QCAZ). ORELLANA: Ávila Viejo (QCAZ), Yasuní<br />

(SC - Res. Sta. - EC - PUCE) (QCAZ) (C-JB). PASTAZA: Villano (QCAZ).<br />

Fidena (Fidena) flavipennis Kröber 1931<br />

ESMERALDAS: Caimito (estero salado mangle) (QCAZ). MANABÍ: Río de<br />

Mache (C-JB).<br />

Fidena (Fidena) later<strong>in</strong>a (Rondani 1850)<br />

NAPO: Pozo Daimi (QCAZ); Limoncocha (C-JB), Río Napo (<strong>in</strong> Fairchild &<br />

Burger 1994). ORELLANA: Est. Chiruisla T, Est. Río Huiririma (QCAZ); Yasuní<br />

(SC - Res. Sta. - EC - PUCE) (QCAZ) (C-JB); E. C. Tiput<strong>in</strong>i USFQ (TBS)<br />

(MEPN). PASTAZA: Villano (QCAZ).<br />

Fidena (Fidena) ochrapogon Wilkerson 1979<br />

AZUAY: Cuenca (Wilkerson 1979); Río Zaracay (C-JB). CHIMBORAZO:<br />

Quebrada Bodega Pamba (C-JB).<br />

Fidena (Fidena) pallidula Kröber 1933<br />

NAPO: Zatzayacu (Fairchild & León 1986).<br />

Fidena (Fidena) rh<strong>in</strong>ophora (Bellardi 1859)<br />

CAÑAR: Cochancay (El chorro; El Chorro, Cochancay) (QCAZ) (C-JB); Azogues<br />

(Azoguez) (Campos 1952). COTOPAXI: San Fco. de las Pampas (QCAZ) (C-JB);<br />

B. I. Otonga (El Corcovado) (QCAZ). GUAYAS: Hda. San Joaquín (San Joaquín),<br />

Chilcales (Río Chilcales, M. J. Calles) (C-JB). IMBABURA: Los Cedros (EC)<br />

(R.B., B.P.) (QCAZ). MORONA SANTIAGO: Indanza, Puerto Yuquianza, Río<br />

Pau Gr<strong>and</strong>e (Tarapoa), Coangos (C-JB). NAPO: Cascada San Rafael (QCAZ) (C-<br />

JB); Río Hollín, Km 6 Vía Narupa - Coca, Vía Loreto-Coca 20.7 Km (Este de<br />

Tena) (C-JB). PICHINCHA: Nanegalito, Maquipucuna (QCAZ); M<strong>in</strong>do (QCAZ)


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 4<br />

(C-JB); Río del C<strong>in</strong>to (M<strong>in</strong>do) (Fairchild & León 1986). SUCUMBÍOS: El<br />

Reventador (QCAZ). TUNGURAHUA: El Topo (C-JB). ZAMORA CHINCHIPE:<br />

Río Bombuscara, Río Valladolid (C-JB).<br />

Fidena (Fidena) zonalis Kröber 1931<br />

“<strong>Ecuador</strong>” as locality datum (Fairchild & Burger 1994).<br />

Scione albifasciata (Macquart 1846)<br />

LOJA: Mamanuma (QCAZ); Cord. Sabanilla (C-JB). MORONA SANTIAGO:<br />

T<strong>in</strong>ajillas (QCAZ); Arenillas (C-JB). NAPO: Santa Bárbara de Sucumbíos<br />

(Fairchild & León 1986). SUCUMBÍOS: La Fama (QCAZ).<br />

Scione bil<strong>in</strong>eata Philip 1969<br />

MORONA SANTIAGO: “E. <strong>Ecuador</strong>; Limón” (AMNH, CBP <strong>in</strong> Philip 1969).<br />

Scione brevibeccus Wilkerson 1979<br />

IMBABURA: Los Cedros E3:T, T1,T2 (R.B., B.P.) (QCAZ). LOJA: Cord.<br />

Sabanilla (C-JB). MORONA SANTIAGO: Arenillas (C-JB).<br />

Scione brevistriga Enderle<strong>in</strong> 1925<br />

TUNGURAHUA: Baños (Fairchild & León 1986).<br />

Scione costaricana Szilády 1926<br />

“Santa Inez, <strong>Ecuador</strong>” as locality datum (Kröber 1930 <strong>in</strong> Fairchild 1942 as<br />

claripennis). Not taken account by Fairchild & Burger (1994).<br />

Scione equatoriensis Surcouf 1919<br />

AZUAY: Maylas (C-JB). CAÑAR: Azogues (Azoguez) (Campos 1952).<br />

IMBABURA: P<strong>in</strong>ular (MNHN <strong>in</strong> Scurcouf 1919). MANABÍ: Río Mache (C-JB);<br />

Chone (Fairchild & León 1986). PICHINCHA: Quito (Carretas), Pifo 9 Km al este,<br />

San Antonio (Volcán Pululahua) (C-JB), Casitagua (MNHN <strong>in</strong> Surcouf 1919).<br />

TUNGURAHUA: Ambato (Campos 1952).<br />

Scione equivexans Wilkerson 1979<br />

MORONA SANTIAGO: Potrerillo, Arenillas (C-JB). PICHINCHA: Volcán<br />

Pich<strong>in</strong>cha (QCAZ); Quito, Conocoto (QCAZ) (C-JB).<br />

Scione flavescens (Enderle<strong>in</strong> 1930)<br />

PICHINCHA: Santa Inés (Wilkerson 1979). “<strong>Ecuador</strong>” as type locality <strong>in</strong> Fairchild<br />

& Burger (1994).<br />

Scione flavohirta Ricardo 1902<br />

AZUAY: Maylas, Río Zaracay, Miguir, Huasipamba (Guasipamba) (C-JB); Valle<br />

de Azuay (MLPA <strong>in</strong> Coscarón 2000). BOLIVAR: La Moya, Cerro Pumín (C-JB).<br />

MORONA SANTIAGO: Potrerillo (C-JB).<br />

Scione maculipennis (Sch<strong>in</strong>er 1868)<br />

MORONA SANTIAGO: T<strong>in</strong>ajillas (QCAZ); Arenillas (C-JB).<br />

Scione obscurefemorata Kröber 1930<br />

AZUAY: Maylas (C-JB). IMBABURA: Nangulví (Fairchild & León 1986). LOJA:<br />

Cord. Sabanilla (C-JB). MORONA SANTIAGO: T<strong>in</strong>ajillas (QCAZ); Arenillas,


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 5<br />

San Vicente (Limite Azuay prov.), Potrerillo (C-JB). TUNGURAHUA:<br />

Llanganates (C-JB).<br />

Scione strigata (Enderle<strong>in</strong> 1925)<br />

PICHINCHA: Hda (Eco) Bomboli (C-JB); Santa Inéz (Kröber 1930 <strong>in</strong> Fairchild<br />

1942)<br />

Pityocera (Pityocera) festae Giglio-Tos 1896<br />

ESMERALDAS: Kumanii Lodge, Kumanii Lodge T1 (QCAZ); Playa de Oro (Río<br />

Santiago (C-JB). SANTO DOMINGO: Santo Dom<strong>in</strong>go (Fairchild & León 1986).<br />

Pityocera (Elaphella) cervus (Wiedemann 1828)<br />

NAPO: Río Umbuni (C-JB). SUCUMBÍOS: Limoncocha (AUEM <strong>in</strong> Patrick &<br />

Hays 1968). ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ).<br />

PASTAZA: Villano, Villano (Tarangaro) (QCAZ).<br />

Pityocera (Pseudelaphella) nana (Walker 1850)<br />

GUAYAS: San Eduardo (Guayaquil - El Salado) (Campos 1952).<br />

SUBFAMILY CHRYSOPSINAE<br />

Tribe Chrysops<strong>in</strong>i<br />

*Chrysops bulbicornis Lutz 1911<br />

ECUADOR, ORELLANA: Vía Coca - Loreto Km 26, 300m., 00º29’42’’S<br />

77º08’00’’W, 21.VII.2005, J.M. Vieira Leg., 1£, R. Cárdenas Det. (II.2008),<br />

QCAZI14816; Dayuma, 290m., 22.III.1996, G. Piedra Leg., 1£, R. Cárdenas det.<br />

(II.2008), QCAZI44715. Both specimens deposited at QCAZ Museum of Zoology.<br />

Chrysops ecuadorensis Lutz 1909<br />

ORELLANA: Chiruisla T1 (QCAZ); PASTAZA: Curaray (San Antonio de<br />

Curaray) (Fairchild & León 1986); Lorocachi (QCAZ).<br />

Chrysops flavipennis Kröber 1925<br />

“<strong>Ecuador</strong>, Santa Inez” as locality datum (ZMHB <strong>in</strong> Fairchild & Burger 1994).<br />

ZAMORA CHINCHIPE: Zamora (Fairchild & León 1986).<br />

Chrysops latitibialis Kröber 1926<br />

“<strong>Ecuador</strong>, Litoral”as locality datum (MPEG <strong>in</strong> Henriques & Gorayeb 1993) <strong>and</strong><br />

“<strong>Ecuador</strong>” as locality datum (INPA <strong>in</strong> Henriques 1995).<br />

Chrysops leucospilus Wiedemann 1828<br />

ORELLANA: Est. Chiruisla T3 (QCAZ). LOJA: Cola (Kröber 1925 <strong>in</strong> Fairchild &<br />

León 1986).<br />

Chrysops varians var. tardus Wiedemann 1828<br />

MORONA SANTIAGO: 6.6 Km N vía Limón - Macas, Logroño (QCAZ); Indanza<br />

(QCAZ) (C-JB); Kalaglas, Méndez, San Luis de El Hacho, Puerto Yuquianza,<br />

Patuca, Unión Río Upano-Paute (C-JB). NAPO: Cascada San Rafael, Archidona,<br />

Misahuallí, Río Hollín, Aliñahui (cabañas), Jatún Sacha, Jum<strong>and</strong>i, Joya de los<br />

Sachas (QCAZ); Baeza, Río Umbuni, Km 6 Vía Narupa - Coca (C-JB).<br />

ORELLANA: Coca, Vía Coca - Loreto Km 26 (QCAZ); Est. Exp. Napo (C-JB); E.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 6<br />

C. Tiput<strong>in</strong>i USFQ (TBS) (MEPN). PASTAZA: Mera, Puyo (El) (QCAZ); Santa<br />

Clara, Shell-Mera (C-JB). SANTO DOMINGO: E. C. Río Guajalito (QCAZ).<br />

SUCUMBÍOS: Santa Cecilia (AUEM <strong>in</strong> Patrick & Hays 1968), R. P. F. Cuyabeno<br />

(C-JB). TUNGURAHUA: El Topo (C-JB). ZAMORA CHINCHIPE: Río<br />

Valladolid (C-JB).<br />

Chrysops variegatus (DeGeer 1776)<br />

CHIMBORAZO: Buenos Aires (C-JB). EL ORO: Limón Playas-Sta. Rosa (C-JB).<br />

ESMERALDAS: E.C. Río Can<strong>and</strong>é (Reserva - Jocotoco) (QCAZ). GUAYAS: San<br />

Carlos, Hda. San Joaquín (San Joaquín) (C-JB). LOS RÍOS: Peniel - Quevedo<br />

(QCAZ); EBFD Jauneche, Quevedo (C-JB). SANTO DOMINGO: E. Santo<br />

Dom<strong>in</strong>go (QCAZ) (C-JB). SUCUMBÍOS: R. P. F. Cuyabeno (C-JB).<br />

SUBFAMILY TABANINAE<br />

Tribe Diachlor<strong>in</strong>i<br />

Acellomyia lauta (H<strong>in</strong>e 1920)<br />

AZUAY: Cumbe (González 1999). SUCUMBÍOS: El Reventador (QCAZ).<br />

Dasybasis (Dasybasis) excelsior Fairchild 1956<br />

CHIMBORAZO: Danas (Fairchild & León 1986). LOJA: Catacocha (C-JB).<br />

Dasybasis (Dasybasis) montium (Surcouf 1919)<br />

AZUAY: Maylas, Río Zaracay, Miguir (C-JB); Cumbe (Coscarón & Philip 1967).<br />

BOLIVAR: Sal<strong>in</strong>as (QCAZ) (C-JB); Cerro Pumín, La Moya (C-JB). CAÑAR: Río<br />

Yanacachi (C-JB). CHIMBORAZO: Quebrada Bodega Pamba (C-JB).<br />

COTOPAXI: Rumiñahui faldas volcán (QCAZ). LOJA: Cord. Sabanilla (C-JB).<br />

MORONA SANTIAGO: San Vicente (Limite Azuay prov.), Arenillas (C-JB).<br />

PICHINCHA: Casitagua (MNHN <strong>in</strong> Surcouf 1919); R.B. Yanacocha, Yanacocha-<br />

Reserva (Pastizal arbolado y BMA), Lloa (QCAZ); Pifo, Hda (Eco) Bomboli (C-<br />

JB);. TUNGURAHUA: Llanganates (C-JB).<br />

Dasybasis (Dasybasis) sch<strong>in</strong>eri (Kröber 1931)<br />

AZUAY: Maylas, Río Zaracay, Miguir (C-JB); Cumbe (Coscarón & Philip 1967).<br />

BOLIVAR: Cerro Pumín (C-JB). CAÑAR. Río Yanacachi (C-JB). IMBABURA:<br />

Machetes (Fairchild & León 1986). MORONA SANTIAGO: San Vicente (Limite<br />

Azuay prov.) (C-JB).<br />

*Hemichrysops fascipennis Kröber 1930<br />

ECUADOR, IMBABURA, 10 Km W Santa Rosa, 700m., 00º19’51’’N<br />

78º55’55’’W, 21-25.VII.2008, D. Chávez Leg., 1£, R. Cárdenas Det. (VIII.2008).<br />

Ojos bicolores en vida, verde abajo y negro arriba. QCAZI44767. Deposited at<br />

QCAZ Museum of Zoology.<br />

Stenotabanus (Aegialomyia) aberrans Philip 1966<br />

SANTA ELENA: Santa Elena (CAS <strong>in</strong> Fairchild & Burger 1994).<br />

Stenotabanus (Aegialomyia) bruesi (H<strong>in</strong>e 1920)<br />

BOLIVAR: Río Cristal (Balzapamba) (C-JB). CHIMBORAZO: Buenos Aires (C-<br />

JB). LOJA: Quebrada Chipiango, Río Catamayo (C-JB). MANABÍ: Julcuy, Río<br />

Mache (C-JB).


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 7<br />

Stenotabanus (Stenotabanus) albil<strong>in</strong>earis Phlip 1960<br />

MORONA SANTIAGO: San Luis de El Hacho (C-JB). NAPO: Río Umbuni (C-<br />

JB). ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ). PASTAZA:<br />

Shell-Mera (C-JB). TUNGURAHUA: El Topo (C-JB).<br />

Stenotabanus (Stenotabanus) detersus (Walker 1850)<br />

CHIMBORAZO: Río Sacramento (C-JB). LOJA: San Vicente (C-JB). MORONA<br />

SANTIAGO: Kalaglas, Indanza, Arenillas (C-JB). SANTO DOMINGO: M<strong>in</strong>do,<br />

Alluriquín (C-JB).<br />

Stenotabanus (Stenotabanus) <strong>in</strong>cipiens (Walker 1860)<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (C-JB).<br />

Stenotabanus (Stenotabanus) obscurus Kröber 1929<br />

MORONA SANTIAGO: Puerto Yuquianza (C-JB). NAPO: Río Hollín (QCAZ);<br />

Río Umbuni, Km 6 Vía Narupa - Coca, Cocodrilo (C-JB). PAZTASA: Shell-Mera<br />

(C-JB). TUNGURAHUA: El Topo (QCAZ) (C-JB). ZAMORA CHINCHIPE: Río<br />

Bombuscara, Río Valladolid (C-JB).<br />

Stenotabanus (Stenotabanus) obscurus var. flavofemoratus Kröber 1929<br />

NAPO: Río Hollín (QCAZ).<br />

*Stenotabanus (Stenotabanus) penai Cha<strong>in</strong>ey 1999<br />

ECUADOR, ESMERALDAS: Caimito, 5m., 00º42’07.26’’N 80º05’50.82’’W,<br />

06.IV.2007, R. Cárdenas Leg., 11££, R. Cárdenas Det. (IX.2008). Dos líneas verdes<br />

transversales en ojos. QCAZI44703, QCAZ44704, QCAZI44706–QCAZI44714;<br />

Caimito, 50m., 00º41’56.88’’N 80º05’34.02’’W, 07.IV.2007, R. Cárdenas Leg., 1£,<br />

R. Cárdenas Det. (IX.2008). QCAZI44704. Deposited at QCAZ Museum of<br />

Zoology.<br />

Stenotabanus (Stenotabanus) peruviensis Kröber 1929<br />

SUCUMBÍOS: “Santa Cecilia” (AUEM <strong>in</strong> Patrick & Hays 1968). “<strong>Ecuador</strong>” as<br />

locality datum <strong>in</strong> Fairchild & Burger 1994 (as pallidicornis).<br />

Stenotabanus (Stenotabanus) wilkersoni Cha<strong>in</strong>ey 1999<br />

ESMERALDAS: Playa de Oro (Río Santiago) (C-JB).<br />

Himantostylus <strong>in</strong>termedius Lutz 1913<br />

From “Panama to Bolivia” <strong>in</strong> Fairchild & Burger (1994).<br />

Diachlorus <strong>and</strong>uzei Stone 1944<br />

SUCUMBÍOS: Limoncocha (Wilkerson & Fairchild 1982).<br />

Diachlorus bimaculatus (Wiedemann 1828)<br />

LOJA: La Toma (Fairchild & León 1986). MORONA SANTIAGO: Mayaico<br />

(Fairchild & León 1986). ORELLANA: Nuevo Rocafuerte (Fairchild & León<br />

1986). PASTAZA: Curaray (San Antonio de) (Fairchild & León 1986).<br />

SUCUMBÍOS: Santa Cecilia (AUEM <strong>in</strong> Patrick & Hays 1968). ZAMORA<br />

CHINCHIPE: Río Nangaritza, Zamora (Fairchild & León 1986).<br />

Diachlorus curvipes (Fabricius 1805)<br />

ESMERALDAS: Playa de Oro (Río Santiago) (C-JB). NAPO: Río Umbuni (C-JB).


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 8<br />

ORELLANA: Est. Chiruisla T1,T2, Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ);<br />

Coca (C-JB). PASTAZA: Shell (QCAZ), Shell-Mera (C-JB).<br />

Diachlorus fuscistigma Lutz 1913<br />

“<strong>Ecuador</strong>” as locality datum (Henriques & Rafael 1999).<br />

Diachlorus habecki Wilkerson & Fairchild 1982<br />

SUCUMBÍOS: R. P. F. Cuyabeno (C-JB); Limoncocha (Playaco river) (FSCA <strong>in</strong><br />

Wilkerson & Fairchild 1982).<br />

Diachlorus jobb<strong>in</strong>si Fairchild 1942<br />

ESMERALDAS: Limones (Fairchild & León 1986).<br />

Diachlorus leucotibialis Wilkerson & Fairchild 1982<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ); E. C. Tiput<strong>in</strong>i USFQ<br />

(TBS) (MEPN); Primavera (La) (FSCA <strong>in</strong> Wilkerson & Fairchild 1982).<br />

Diachlorus nuneztovari Fairchild & Ortiz 1955<br />

ORELLANA: Est. Chiruisla T (QCAZ). SUCUMBÍOS: Sacha Lodge (QCAZ).<br />

“East of <strong>Ecuador</strong>” as locality datum <strong>in</strong> Fairchild & Burger (1994).<br />

*Diachlorus scutellatus (Macquart 1838)<br />

ECUADOR, ORELLANA, Est. Chiruisla T, 204m., 00º41’09’’S 75º56’27’’W,<br />

25.II.2006, R. Cárdenas Leg., 1£, R. Cárdenas Det. (III.2006). QCAZI36299.<br />

Deposited at QCAZ Museum of Zoology.<br />

Diachlorus trevori Wilkerson & Fairchild 1982<br />

SUCUMBÍOS: Limoncocha (Playaco river) (FSCA <strong>in</strong> Wilkerson & Fairchild<br />

1982).<br />

Bolbodimyia bicolor Bigot 1892<br />

IMBABURA: Los Cedros E1:T,T1 (R.B., B.P.) (QCAZ). MANABÍ: Río Mache<br />

(C-JB).<br />

Bolbodimyia celeroides Stone 1954<br />

IMBABURA: Los Cedros (EC) (R.B., B.P.) (QCAZ). MORONA SANTIAGO:<br />

Unión Río Upano-Paute, Puerto Yuquianza (C-JB). NAPO: Aliñahui (cabañas)<br />

(QCAZ).<br />

Bolbodimyia erythrocephala (Bigot 1892)<br />

ESMERALDAS: Playa de Oro (Río Santiago) (C-JB).<br />

Bolbodimyia nigra Stone 1934<br />

BOLIVAR: Km 7 Vía Bucay - Chillanes (C-JB). GUAYAS: Guayaquil (USNM <strong>in</strong><br />

Stone 1934). NAPO: Cascada San Rafael (QCAZ).<br />

Selasoma tibiale (Fabricius 1805)<br />

From “Mexico (Oaxaca) to n. Argent<strong>in</strong>a” <strong>in</strong> Fairchild & Burger (1994).<br />

Chlorotabanus <strong>in</strong>anis (Fabricius 1787)<br />

ESMERALDAS: Kumanii Lodge, Kumanii Lodge T, T2 (QCAZ). GUAYAS: Hda.<br />

Santa Rita (Balao) (C-JB). NAPO: Aliñahui (cabañas) (QCAZ); Río Napo, Río


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 9<br />

Umbuni, Misahuallí, Juturi (C-JB). ORELLANA: Yasuní (SC - Res. Sta. - EC -<br />

PUCE), Est. Chiruisla T (QCAZ); Est. Exp. Napo (C-JB); E. C. Tiput<strong>in</strong>i USFQ<br />

(TBS) (MEPN). SANTO DOMINGO: Santo Dom<strong>in</strong>go (C-JB). SUCUMBÍOS:<br />

Lago Agrio (QCAZ) (C-JB), Limoncocha (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Chlorotabanus mexicanus (L. 1758)<br />

ESMERALDAS: Qu<strong>in</strong><strong>in</strong>dé, San Francisco (Muisne), Mayronga (La) (QCAZ); Alto<br />

Cayapa (C-JB); San Lorenzo (QCAZ) (C-JB). GUAYAS: Balao Chico, Hda. Santa<br />

Rita (Balao), Bucay (1 Km NO Cum<strong>and</strong>á), El Empalme (C-JB). LOS RÍOS: Hda.<br />

Clement<strong>in</strong>a, Pichil<strong>in</strong>gue, EPFD Jauneche (C-JB).<br />

Phaeotabanus cajennensis (Fabricius 1787)<br />

ORELLANA: Est. Exp. Napo (C-JB); Yasuní (SC - Res. Sta. - EC - PUCE)<br />

(QCAZ). SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Phaeotabanus fervens (L. 1758)<br />

From “Venezuela to Argent<strong>in</strong>a” <strong>in</strong> Fairchild & Burger (1994).<br />

Phaeotabanus nigriflavus (Kröber 1930)<br />

ORELLANA: Est. Río Huiririma, Coca (C-JB). SUCUMBÍOS: “Limoncocha”<br />

(AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Phaeotabanus phaeopterus Fairchild 1964<br />

PICHINCHA: T<strong>and</strong>api (Manuel Cornejo Astorga) (C-JB).<br />

*Phaeotabanus pras<strong>in</strong>iventris (Kröber 1929)<br />

ECUADOR, SUCUMBÍOS, Nueva Loja, 450m., 00º05’00’’N 76º52’00’’W,<br />

11.IV.2007, J. Prado Leg., 1£, K. M. Bayless Det. (2009). QCAZI36347. Deposited<br />

at QCAZ Museum of Zoology.<br />

Phaeotabanus serenus (Kröber 1931)<br />

NAPO: Río Umbuni (C-JB). MORONA SANTIAGO: Puerto Yuquianza (C-JB).<br />

Spilotabanus multiguttatus (Kröber 1930)<br />

COTOPAXI: Vía Salcedo-Tena (QCAZ). LOJA: Vía Zamora Puerto, P. N.<br />

Podocarpus (QCAZ); Cord. Sabanilla (C-JB). MORONA SANTIAGO: T<strong>in</strong>ajillas<br />

(QCAZ); Arenillas, Potrerillo (C-JB); San Vicente (QCAZ) (C-JB). NAPO: La<br />

Alegría (C-JB). PICHINCHA: R. B. Yanacocha. (QCAZ). SUCUMBÍOS: Vía La<br />

Bonita - La Fama (QCAZ). TUNGURAHUA: Runtún (C-JB).<br />

Eutabanus pictus Kröber 1930<br />

“<strong>Ecuador</strong>” as locality datum <strong>in</strong> Fairchild & Burger (1994).<br />

Acanthocera (Acanthocera) marg<strong>in</strong>alis Walker 1854<br />

NAPO: Río Umbuni, Jatún Sacha (C-JB). ORELLANA: Bloque 31, Estación<br />

Huiririma, Yasuní (SC - Res. Sta. - EC - PUCE), (QCAZ). MORONA<br />

SANTIAGO: Puerto Yuquianza (C-JB).<br />

Acanthocera (Querbetia) cha<strong>in</strong>eyi Fairchild & Burger 1994<br />

NAPO: Río Umbuni (C-JB).<br />

Dichelacera (Dichelacera) chocoensis Fairchild & Philip 1960


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 10<br />

ESMERALDAS: Playa de Oro (Río Santiago) (C-JB). GUAYAS: Balao Chico (C-<br />

JB); Hda. San Joaquín (San Joaquín) (C-JB) (QCAZ). MANABÍ: Río Mache (C-<br />

JB).<br />

Dichelacera (Dichelacera) fasciata Walker 1850<br />

ESMERALDAS: Kumanii Lodge, Kumanii Lodge T, T1, T2, T3, E.C. Río<br />

Can<strong>and</strong>é T, T1, T3 (Reserva - Jocotoco) (QCAZ); Playa de Oro (Río Santiago) (C-<br />

JB). MANABÍ: Río Mache (C-JB). NAPO: Latas (Misahuallí) (QCAZ); Río<br />

Umbuni (C-JB). SANTO DOMINGO: Santo Dom<strong>in</strong>go (C-JB) (Fairchild & León<br />

1986). ZAMORA CHINCHIPE: Río Valladolid (C-JB).<br />

Dichelacera (Dichelacera) marg<strong>in</strong>ata Macquart 1847<br />

ESMERALDAS: Alto Cayapa (C-JB). MANABÍ: Palmar (C-JB). NAPO: Río<br />

Umbuni, Jatún Sacha (C-JB). ORELLANA: Coca, Payam<strong>in</strong>o, Est. Exp. Napo (C-<br />

JB). PASTAZA: Villano (Tarangaro, Kur<strong>in</strong>tza) (QCAZ); Shell-Mera (C-JB).<br />

SUCUMBÍOS: Limoncocha (C-JB), Santa Cecilia (AUEM <strong>in</strong> Patrick & Hays<br />

1968).<br />

Dichelacera (Dichelacera) reg<strong>in</strong>a Fairchild 1940<br />

From “Honduras to <strong>Ecuador</strong>” <strong>in</strong> Wilkerson (1979) <strong>and</strong> Burger & Fairchild (1994).<br />

Dichelacera (Dichelacera) rubrofemorata Burger 1999<br />

NAPO: Misahuallí (QCAZ), Latas (Misahuallí) (FSCA <strong>in</strong> Burger 1999); La Selva<br />

(E. of Limoncocha) (FSCA <strong>in</strong> Burger 1999). ORELLANA: Coca (FSCA <strong>in</strong> Burger<br />

1999). PASTAZA: Villano (QCAZ). SUCUMBÍOS: Sacha Lodge (LACM <strong>in</strong><br />

Burger 1999), Limoncocha, 8 Km W Lago Agrio (FSCA <strong>in</strong> Burger 1999).<br />

Dichelacera (Dichelacera) submarg<strong>in</strong>ata Lutz 1915<br />

CAÑAR: Chilcales (Río Chilcales, M. J. Calles), Joyapal (Joyapal - Cochancay),<br />

Cochancay (El chorro; El Chorro, Cochancay) (C-JB). MORONA SANTIAGO:<br />

Río Pau Gr<strong>and</strong>e (Tarapoa) (QCAZ), Unión Río Upano-Paute (C-JB). NAPO: Vía<br />

Puyo-Tena, Río Umbuni (C-JB). ORELLANA: E. C. Tiput<strong>in</strong>i USFQ (TBS)<br />

(MEPN). PASTAZA: Santa Clara (C-JB); Puyo C. E. Fátima (MEPN). SANTO<br />

DOMINGO: T<strong>in</strong>al<strong>and</strong>ia(C-JB). SUCUMBÍOS: R. P. F. Cuyabeno (QCAZ) (C-JB).<br />

TUNGURAHUA: El Topo (C-JB). ZAMORA CHINCHIPE: Pal<strong>and</strong>a (C-JB).<br />

Dichelacera (Dichelacera) villavoensis Fairchild & Philip 1960<br />

MORONA SANTIAGO: Puerto Yuquianza (C-JB). NAPO: Misahuallí (QCAZ);<br />

Río Umbuni, Jatún Sacha (C-JB). SUCUMBÍOS: R. P. F. Cuyabeno (C-JB).<br />

TUNGURAHUA: El Topo (C-JB).<br />

Dichelacera (Idiochelacera) subcallosa Fairchild & Philip 1960<br />

GUAYAS: Hda. San Joaquín (San Joaquín) (QCAZ).<br />

Dichelacera (Desmatochelacera) albitibialis Burger 1999<br />

NAPO: Misahuallí (QCAZ); Río Umbuni, Jatún Sacha (C-JB). MORONA<br />

SANTIAGO: Puerto Yuquianza (C-JB). PASTAZA: Villano (Tarangaro, Kur<strong>in</strong>tza),<br />

Shell (LACM <strong>in</strong> Burger 1999).<br />

Dichelacera (Desmatochelacera) transposita Walker 1854


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 11<br />

BOLIVAR: Km 7 Vía Bucay - Chillanes (C-JB). ESMERALDAS: Playa de Oro<br />

(Río Santiago) (C-JB). NAPO: Daimi (QCAZ).<br />

Catachlorops (Amphichlorops) vespert<strong>in</strong>us (Bequaert & Renjifo-Salcedo 1946)<br />

MORONA SANTIAGO: Puerto Yuquianza (C-JB). PASTAZA: Abitagua<br />

(Fairchild & León 1986). TUNGURAHUA: El Topo (QCAZ) (C-JB); Baños<br />

(Fairchild & León 1986). ZAMORA CHINCHIPE: Río Bombuscara, El Pangui (C-<br />

JB); Zamora (Fairchild & León 1986).<br />

Catachlorops (Psarochlorops) difficilis (Kröber 1931)<br />

ORELLANA: Est. Chiruisla T1, T2, T3 (QCAZ). SUCUMBÍOS (PASTAZA <strong>in</strong><br />

error): Limoncocha (MPEG <strong>in</strong> Henriques & Gorayeb 1993).<br />

Catachlorops (Psarochlorops) ecuadoriensis (Enderle<strong>in</strong> 1925)<br />

MORONA SANTIAGO: Puerto Yuquianza (C-JB). NAPO: Baeza (<strong>in</strong> Fairchild<br />

1966), Río Hollín, Cascada San Rafael, Vía Jondachi-Loreto Río Hollín, Hollín-<br />

Loreto (QCAZ); El Salado, Cocodrilo (C-JB); Campanacocha (QCAZ) (C-JB);<br />

Baeza, Boyayaco (Panyagacu) (Fairchild & León 1986). PASTAZA: Shell, Puyo<br />

(El) (C-JB). PICHINCHA: Santa Inéz (ZMHB <strong>in</strong> Fairchild & Burger 1994).<br />

SANTO DOMINGO: Santo Dom<strong>in</strong>go (Fairchild & León 1986). TUNGURAHUA:<br />

El Topo, Río Negro (C-JB).<br />

Catachlorops (Psalidia) fulm<strong>in</strong>eus var. ocellatus Enderle<strong>in</strong> 1925<br />

ESMERALDAS: Kumanii Lodge T2, T3, E.C. Río Can<strong>and</strong>é T (Reserva -<br />

Jocotoco) (QCAZ); Playa de Oro (Río Santiago) (C-JB).<br />

Dasychela (Dasychela) amazonensis (Barretto 1946)<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ); E. C. Tiput<strong>in</strong>i USFQ<br />

(TBS) (MEPN).<br />

Dasychela (Dasychela) badia (Kröber 1931)<br />

BOLIVAR: Guar<strong>and</strong>a (Fairchild & León 1986). IMBABURA: Azabí (Intag)<br />

(Wilkerson & Fairchild 1983)<br />

Dasychela (Dasychela) fulvicornis (Kröber 1931)<br />

PICHINCHA: Santa Inez (Kröber 1931a). TUNGURAHUA: Baños (Kröber<br />

1931a).<br />

Dasychela (Dasychela) ocellus (Walker 1848)<br />

COTOPAXI: San Fco. de las Pampas (C-JB). IMBABURA: Los Cedros (EC)<br />

(R.B., B.P.), Los Cedros E2:T, T2 (R.B., B.P.), Los Cedros E3:T1, T2, (R.B., B.P.)<br />

, García Moreno, 10 Km W Santa Rosa (QCAZ). MANABÍ: Chone (Fairchild &<br />

León 1986). PICHINCHA: Quito (Fairchild & León 1986).<br />

Dasychela (Dasychela) peruviana (Bigot 1892)<br />

IMBABURA: Peñaherrera (Fairchild & León 1986). PICHINCHA: M<strong>in</strong>do<br />

(Nambillo) (QCAZ); M<strong>in</strong>do (C-JB). TUNGURAGUA: Baños (Fairchild & León<br />

1986).<br />

Dasychela (Triceratomyia) mac<strong>in</strong>tyrei (Bequaert 1937)<br />

NAPO: Latas (Misahuallí), Misahuallí (QCAZ); Río Napo – Jatun Yacu (MCZ <strong>in</strong>


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 12<br />

Fairchild & Burger 1994), Río Umbuni (C-JB); Bloque 16 Yasuní (MEPN).<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ). PASTAZA: Villano<br />

(QCAZ).<br />

Eristalotabanus violaceus Kröber 1931<br />

AZUAY: Maylas (C-JB), Pucay-W Cordillere (ZMUH <strong>in</strong> Cha<strong>in</strong>ey 1986).<br />

BOLIVAR: Arrayán, carretera Sal<strong>in</strong>as a Arrayán (Burger 1999). CAÑAR: Río<br />

Yanacachi (C-JB). LOJA: (Loja locality?) (QCAZ); Cord. Sabanilla (C-JB).<br />

MORONA SANTIAGO: San Vicente (Limite Azuay prov.), Potrerillo (C-JB).<br />

PICHINCHA: Yanacocha-Reserva (Pastizal arbolado y BMA) (QCAZ); Hda (Eco)<br />

Bomboli (C-JB). TUNGURAHUA: Patate (QCAZ); Runtún (C-JB); Baños<br />

(BMNH <strong>in</strong> Cha<strong>in</strong>ey 1986).<br />

Dicladocera argenteomaculata Wilkerson 1979<br />

CHIMBORAZO: Río Sacramento (C-JB). IMBABURA: Los Cedros (EC) (R.B.,<br />

B.P.), Los Cedros E1:T, T1, T2 (R.B., B.P.) (QCAZ). PICHINCHA: Cabecera Río<br />

Pachijal (7.3 Km S Nanegalito), M<strong>in</strong>do (QCAZ).<br />

Dicladocera basirufa (Walker 1850)<br />

LOJA: Cord. Sabanilla (C-JB). MORONA SANTIAGO: Arenillas (C-JB).<br />

Dicladocera bellicosa (Brèthes 1910)<br />

AZUAY: Guarumales (Guarumales-Paute) (QCAZ) (C-JB).<br />

Dicladocera clara (Sch<strong>in</strong>er 1868)<br />

CHIMBORAZO: Río Sacramento (C-JB). COTOPAXI: San Fco. de las Pampas<br />

(QCAZ); El T<strong>in</strong>go (C-JB). IMBABURA: Los Cedros E1:T1, T2 (R.B., B.P.)<br />

(QCAZ). MORONA SANTIAGO: T<strong>in</strong>ajillas (QCAZ), Arenillas (C-JB).<br />

Dicladocera distomacula Wilkerson 1979<br />

LOJA: Cord. Sabanilla (C-JB). MORONA SANTIAGO: T<strong>in</strong>ajillas (QCAZ);<br />

Arenillas (C-JB). TUNGURAHUA: Runtún (C-JB).<br />

Dicladocera exilicorne Fairchild 1958<br />

COTOPAXI: B. I. Otonga (El Corcovado) (C-JB). IMBABURA: Machetes<br />

(Fairchild 1958, MCZ <strong>in</strong> Fairchild & Burger 1994). PICHINCHA: Palmeras<br />

(QCAZ); Cordero (C-JB).<br />

Dicladocera hirsuta Wilkerson 1979<br />

AZUAY: Maylas (C-JB). MORONA SANTIAGO: Loja (QCAZ); Potrerillo, San<br />

Vicente (C-JB).<br />

Dicladocera macula (Macquart 1846)<br />

AZUAY: Maylas, Río Zaracay (C-JB). BOLIVAR: Totoras (QCAZ); Santiago,<br />

Cerro Pumín (C-JB). CARCHI: San Gabriel (Surcouf 1919). COTOPAXI: Pilaló<br />

(C-JB). IMBABURA: Los Cedros E3:T1 (R.B., B.P.) (QCAZ). LOJA: Saraguro<br />

(QCAZ); Cord. Sabanilla (C-JB); PN Podocarpus (Cajanuma) (MEPN). MORONA<br />

SANTIAGO: Arenillas, Potrerillo, San Vicente (Limite Azuay prov.), T<strong>in</strong>ajillas (C-<br />

JB). NAPO: Papallacta (QCAZ); La Alegría (C-JB). PICHINCHA: Nanegalito,<br />

Yanacocha-Reserva (300m Sur del PC) (QCAZ); Nono, Quito (C-JB); Pasochoa<br />

(QCAZ) (C-JB); Hda (Eco) Bomboli (C-JB). SUCUMBÍOS: Vía La Bonita - La


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 13<br />

Fama (QCAZ). TUNGURAHUA: Runtún (C-JB).<br />

Dicladocera m<strong>in</strong>os (Sch<strong>in</strong>er 1868)<br />

TUNGURAHUA: Baños (Fairchild & León 1986).<br />

Dicladocera ?neosubmacula Kröber 1931<br />

See discussion of its status <strong>in</strong> Fairchild & Burger (1994). CAÑAR: <strong>in</strong> Kröber<br />

(1931a). GUAYAS: Bucay (Kröber 1931a). PICHINCHA: Río del C<strong>in</strong>to (M<strong>in</strong>do)<br />

(Kröber 1931a).<br />

Dicladocera nigrocoerulea (Rondani 1850)<br />

COTOPAXI: La Esperanza (C-JB). LOJA: Cord. Sabanilla (C-JB). MORONA<br />

SANTIAGO: T<strong>in</strong>ajillas (QCAZ); Arenillas, Potrerillo (C-JB). TUNGURAHUA:<br />

Runtún (C-JB).<br />

Dicladocera ornatipenne (Kröber 1931)<br />

From “<strong>Ecuador</strong>” <strong>in</strong> Kröber (1931b) (MTD); LOJA: <strong>in</strong> Fairchild & Burger (1994).<br />

Dicladocera pru<strong>in</strong>osa Wilkerson 1979<br />

IMBABURA: Los Cedros E2:T, T1 (R.B., B.P.), Los Cedros E3:T2, T3 (R.B.,<br />

B.P.) (QCAZ). LOJA: San Vicente, Card. Sabanilla (C-BJ). MORONA<br />

SANTIAGO: T<strong>in</strong>ajillas (QCAZ); Arenillas (C-JB). NAPO: Cocodrilo (C-JB).<br />

Dicladocera riveti (Surcouf 1919)<br />

PICHINCHA: M<strong>in</strong>do (QCAZ); “Faldas del Volcán Corazón-Oeste” (Surcouf<br />

1919). SANTO DOMINGO: Santo Dom<strong>in</strong>go (Surcouf 1919). GUAYAS: “Chem<strong>in</strong><br />

entre Guanasilla et San Nicolás” (MNHN <strong>in</strong> Surcouf 1919).<br />

Dicladocera tribonophora Fairchild 1958<br />

“Río Blanco-Oriente” (TUNGURAHUA?, MCZ <strong>in</strong> Fairchild 1958).<br />

CHIMBORAZO: Río Sacramento (QCAZ) (C-JB). IMBABURA: Nangulví (FSCA<br />

<strong>in</strong> Fairchild 1958). PICHINCHA: Bellavista (Reserva Biológica, Ecológica-Est.<br />

Científica) (QCAZ).<br />

Stibasoma (Stibasoma) flaviventre (Macquart 1848)<br />

ESMERALDAS: Kumanii Lodge T2 (QCAZ).<br />

Stibasoma (Stibasoma) fulvohirtum (Wiedemann 1828)<br />

SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Stibasoma (Stibasoma) panamensis Curran 1934<br />

From “Honduras to <strong>Ecuador</strong>” <strong>in</strong> Burger & Fairchild (1994). ESMERALDAS:<br />

Qu<strong>in</strong><strong>in</strong>dé (QCAZ).<br />

Stibasoma (Rhabdotylus) venenata (Osten Sacken 1886)<br />

BOLIVAR: Río Cristal (Balzapamba), Km 7 Vía Bucay - Chillanes (C-JB). EL<br />

ORO: Río Calera (C-JB). NAPO: Río Hollín (QCAZ). PICHINCHA: Palmeras,<br />

Puerto Quito, Km Vía Nanegalito R. Maquip., Nanegalito, Maquipucuna, Río<br />

Umachaca, Aloag-Sto. Dom<strong>in</strong>go Km 40 (QCAZ); Río Cambugán (MEPN); M<strong>in</strong>do<br />

(QCAZ) (MEPN).<br />

Cryptotylus unicolor (Wiedemann 1828)


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 14<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE), Est. Chiruisla T (QCAZ).<br />

SUCUMBÍOS: Limoncocha (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Philipotabanus (Philipotabanus) magnificus (Kröber 1934)<br />

BOLIVAR: Balzapamba, Km 7 Vía Bucay - Chillanes (C-JB). CAÑAR:<br />

Cochancay (El chorro; El Chorro, Cochancay) (QCAZ); Joyapal (Joyapal -<br />

Cochancay), Chilcales (Río Chilcales, M. J. Calles) (C-JB). ESMERALDAS:<br />

Kumanii Lodge T1, T2, T3, E.C. Río Can<strong>and</strong>é (Reserva - Jocotoco), E.C. Río<br />

Can<strong>and</strong>é T, T3 (Reserva - Jocotoco), Caimito (estero salado mangle) (QCAZ);<br />

Playa de Oro (Río Santiago) (C-JB); Alto Cayapa (Fairchild & León 1986).<br />

GUAYAS: Balao Chico, Hda. San Joaquín (San Joaquín) (C-JB); Guayaquil<br />

(Fairchild & León 1986). IMBABURA: 10 Km W Santa Rosa (QCAZ). LOJA:<br />

Loja, Vía Catamayo (QCAZ). MANABÍ: Río Mache (C-JB). PICHINCHA:<br />

Chiriboga (QCAZ). PICHINCHA?: “Pucay-Santo Dom<strong>in</strong>go” (Holotype lost <strong>in</strong><br />

Fairchild & Burger 1994). SANTO DOMINGO: La Unión del Toachi, Otongachi<br />

(QCAZ); Santo Dom<strong>in</strong>go (Fairchild & León 1986). SUCUMBÍOS: “Limoncocha”<br />

(AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Philipotabanus (Philipotabanus) nigr<strong>in</strong>ubilus (Fairchild 1953)<br />

CAÑAR: Cochancay (El chorro; El Chorro, Cochancay) (C-JB). ESMERALDAS:<br />

E.C. Río Can<strong>and</strong>é (Reserva - Jocotoco) (QCAZ); Playa de Oro (Río Santiago) (C-<br />

JB).<br />

Philipotabanus (Philipotabanus) pallidet<strong>in</strong>ctus (Kröber 1930)<br />

“<strong>Ecuador</strong> as locality datum” <strong>in</strong> Fairchild & Burger (1994).<br />

Philipotabanus (Philipotabanus) pterographicus (Fairchild 1943)<br />

CHIMBORAZO: Río Sacramento (C-JB). GUAYAS: Hda. San Joaquín (San<br />

Joaquín) (QCAZ).<br />

Philipotabanus (Philipotabanus) tenuifasciatus (Kröber 1930)<br />

MORONA SANTIAGO: Puerto Yuquianza, Río Pau Gr<strong>and</strong>e (Tarapoa) (C-JB).<br />

NAPO: Misahuallí, Aliñahui (cabañas) (QCAZ); Jatún Sacha, Río Umbuni (C-JB).<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ). “East of <strong>Ecuador</strong> as<br />

locality datum” <strong>in</strong> Fairchild & Burger (1994) <strong>and</strong> Henriques (2006). C-JB<br />

specimens as P. nigr<strong>in</strong>ubilus <strong>in</strong> Cárdenas & Vieira (2005). PASTAZA: Villano,<br />

Villano (Tarangaro) (QCAZ).<br />

Philipotabanus (Mimotabanus) opimus Fairchild 1975<br />

BOLIVAR: Balzapamba (Fairchild 1975a).<br />

*Philipotabanus (Mimotabanus) porteri Fairchild 1975<br />

ECUADOR, ESMERALDAS, Kumanii Lodge: 59m., 00º45’23’’N 78º55’01,4’’W,<br />

14.IV.2006, 15.IV.2006, R. Cárdenas Leg., 2££, R. Cárdenas Det. (III.2007),<br />

QCAZI35819, QCAZI35815; 38m., 00º45’19,8’’N 78º55’06’’W, 14.IV.2006, R.<br />

Cárdenas Leg., 2££, R. Cárdenas Det. (III.2007), QCAZI35814, QCAZI35816;<br />

41m., 00º45’14’’N 78º55’15’’W, 14.IV.2006, R. Cárdenas Leg., 1£, R. Cárdenas<br />

Det. (III.2007), QCAZI35817; 69m., 00º45’21,9’’N 78º54’59,4’’W, 14.IV.2006, R.<br />

Cárdenas Leg., 1£, R. Cárdenas Det. (III.2007), QCAZI35818. All specimens<br />

deposited at QCAZ Museum of Zoology.


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 15<br />

Philipotabanus (Melasmatabanus) criton (Kröber 1934)<br />

From “e. <strong>Ecuador</strong>” <strong>in</strong> Fairchild & Burger (1994)<br />

Philipotabanus (Melasmatabanus) fascipennis ssp. ecuadoriensis (Kröber 1930)<br />

AZUAY: Cordillera-Pucay (Holotype lost? MLUH <strong>in</strong> Fairchild & Burger 1994).<br />

BOLIVAR: Balzapamba (MZPW <strong>in</strong> Fairchild 1975b). EL ORO: Zaruma-Machala<br />

(L. L. Pechuman collection, <strong>in</strong> CUIC?, Fairchild 1975b). PICHINCHA: M<strong>in</strong>do<br />

(QCAZ). SANTO DOMINGO: Otongachi, Unión del Toachi (QCAZ).<br />

Philipotabanus (Melasmatabanus) nigripennis Wilkerson 1979<br />

From “<strong>Ecuador</strong>” <strong>and</strong> “<strong>Ecuador</strong> e. of Andes” as locality data <strong>in</strong> Wilkerson (1979)<br />

<strong>and</strong> Fairchild & Burger (1994) respectively.<br />

Stypommisa anoriensis Fairchild & Wilkerson 1986<br />

ZAMORA CHINCHIPE: Río Bombuscara (C-JB).<br />

Stypommisa captiroptera (Kröber 1930)<br />

ESMERALDAS: Kumanii Lodge (QCAZ). MANABÍ: Río Mache (C-JB). NAPO:<br />

Río Umbuni (C-JB); Río Hollín (QCAZ). PASTAZA: Shell-Mera (C-JB).<br />

PICHINCHA: Quito (Fairchild & Wilkerson 1986). SUCUMBÍOS: “Limoncocha”<br />

(AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Stypommisa changena Fairchild 1986<br />

CARCHI: Cabecera del Río Baboso (C-JB). PICHINCHA: M<strong>in</strong>do (C-JB).<br />

Stypommisa flavescens (Kröber 1930)<br />

AZUAY: Guarumales (Guarumales-Paute) (C-JB). PASTAZA: 17.2 Km SE Puyo<br />

(Fairchild & Wilkerson 1986). PICHINCHA: Sta. Inéz (MZPW <strong>in</strong> Fairchild<br />

1975b). ZAMORA CHINCHIPE: 12 Km S Zamora (Fairchild & Wilkerson 1986).<br />

Stypommisa gl<strong>and</strong>icolor (Lutz 1912)<br />

CAÑAR: Cochancay (El chorro; El Chorro, Cochancay) (C-JB).<br />

Stypommisa hypographa (Kröber 1930)<br />

TUNGURAHUA: El Topo (C-JB). NAPO: Río Umbuni, Km 6 Vía Narupa - Coca<br />

(C-JB).<br />

Stypommisa hypographa ssp. neofurva Philip 1969<br />

From “<strong>Ecuador</strong>, no further data (L. Leon)” <strong>in</strong> Fairchild & Wilkerson (1986).<br />

Stypommisa maruccii (Fairchild 1947)<br />

From “Nicaragua to <strong>Ecuador</strong>” <strong>in</strong> Fairchild & Wilkerson (1986) <strong>and</strong> confirmed by<br />

Fairchild & Burger (1994).<br />

Stypommisa modica (H<strong>in</strong>e 1920)<br />

MORONA SANTIAGO: Unión Río Upano-Paute, Río Pau Gr<strong>and</strong>e (Tarapoa),<br />

Yunkumas-Centro Shua (C-JB). NAPO: Río Hollín (QCAZ); Río Umbuni (C-JB).<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ) PASTAZA: Río<br />

Liqu<strong>in</strong>o (QCAZ). SANTO DOMINGO: E. C. Río Guajalito (QCAZ).<br />

SUCUMBÍOS: “Santa Cecilia” (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Stypommisa pequeniensis (Fairchild 1942)


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 16<br />

ESMERALDAS: Playa de Oro (Río Santiago) (C-JB). GUAYAS: Hda. San<br />

Joaquín (San Joaquín) (C-JB). MORONA SANTIAGO: Puerto Yuquianza, Río<br />

Yananas (C-JB). NAPO: Latas (Misahuallí), Misahuallí (QCAZ); Río Umbuni,<br />

Jatún Sacha, Km 6 Vía Narupa - Coca, Cocodrilo (C-JB). ORELLANA: Est. Exp.<br />

Napo (C-JB). PASTAZA: Villano (Tarangaro) (QCAZ); Shell-Mera (C-JB).<br />

SUCUMBÍOS: “Santa Cecilia” (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Stypommisa venosa (Bigot 1892)<br />

CAÑAR: Javín (C-JB). CHIMBORAZO: Río Sacramento (QCAZ)(C-JB).<br />

COTOPAXI: San Fco. de las Pampas (C-JB). NAPO: Río Hollín (C-JB).<br />

PASTAZA: Shell-Mera (C-JB). PICHINCHA: Quito, Palmeras (C-JB).<br />

TUNGURAHUA: Patate (C-JB).<br />

Leucotabanus albovarius (Walker 1854)<br />

NAPO: Latas (Misahuallí) (QCAZ); Río Umbuni (C-JB). ORELLANA: E. C.<br />

Yasuní (QCAZ) ; Est. Exp. Napo (C-JB); E. C. Tiput<strong>in</strong>i USFQ (TBS) (MEPN).<br />

Leucotabanus cornelianus Fairchild 1985<br />

SANTO DOMINGO: “Río Mulaute 15 Km NE Sto. Dom<strong>in</strong>go” (CUIC <strong>in</strong> Fairchild<br />

1985).<br />

Leucotabanus exaestuans (L. 1758)<br />

ESMERALDAS: Mayronga (La), Kumanii Lodge (QCAZ). GUAYAS: Hda. Santa<br />

Rita (Balao), Hda. San Joaquín (San Joaquín) (C-JB). LOS RÍOS: EBFD Jauneche<br />

(C-JB). MANABÍ: Pedernales (QCAZ); Río Mache (C-JB). MORONA<br />

SANTIAGO: Puerto Yuquianza (C-JB). NAPO: Aliñahui (cabañas) (QCAZ); Río<br />

Umbuni, Misahuallí (C-JB). ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE)<br />

(QCAZ), Coca (QCAZ) (C-JB); Est. Exp. Napo (C-JB); E. C. Tiput<strong>in</strong>i USFQ<br />

(TBS) (MEPN). PASTAZA: Villano (QCAZ). SUCUMBÍOS: El Eno (QCAZ);<br />

Limoncocha, Santa Cecilia (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

Leucotabanus weyrauchi Fairchild 1951<br />

MORONA SANTIAGO: Río Yananás (C-JB). NAPO: Misahuallí (C-JB).<br />

ZAMORA CHINCHIPE: Río Bombuscara (C-JB); Zamora (MCZ <strong>in</strong> Fairchild &<br />

Burger 1994).<br />

Lepiselaga (Lepiselaga) crassipes (Fabricius 1805)<br />

GUAYAS: Nobol (QCAZ) (C-JB); Hda. Santa Rita (Balao), San Carlos, Cerecita<br />

(C-JB). LOS RÍOS: EBPFD- Jauneche (C-JB). ORELLANA: Primavera (La)<br />

(QCAZ); Est. Exp. Napo (C-JB). SUCUMBÍOS: Limoncocha (AUEM <strong>in</strong> Patrick &<br />

Hays 1968).<br />

Tribe Taban<strong>in</strong>i<br />

Poeciloderas quadripunctatus (Fabricius 1805)<br />

AZUAY: Huasipamba (Guasipamba) (C-JB). BOLIVAR: Río Cristal (Balzapamba)<br />

(C-JB). CHIMBORAZO: Río Sacramento (C-JB). ESMERALDAS: Mayronga<br />

(La) (QCAZ). GUAYAS: Hda. San Joaquín (San Joaquín) (C-JB). LOJA: Loja<br />

locality? (QCAZ); San Vicente (C-JB). MORANA SANTIAGO: Puerto Yuquianza<br />

(C-JB). NAPO: Río Hollín, Aliñahui (cabañas) (QCAZ); Río Umbuni, Km 6 Vía


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 17<br />

Narupa - Coca (C-JB). ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE)<br />

(QCAZ), Est. Exp. Napo (C-JB); E. C. Tiput<strong>in</strong>i USFQ (TBS) (MEPN). PASTAZA:<br />

Shell-Mera (C-JB). SUCUMBÍOS: “Santa Cecilia” (AUEM <strong>in</strong> Patrick & Hays<br />

1968). TUNGURAHUA: El Topo (C-JB). ZAMORA CHINCHIPE: Río<br />

Bombuscara, Río Valladolid (C-JB).<br />

Phorcotabanus c<strong>in</strong>ereus (Wiedemann 1821)<br />

From “<strong>Ecuador</strong>” as locality datum <strong>in</strong> Fairchild & Burger (1994).<br />

Tabanus albocirculus H<strong>in</strong>e 1907<br />

ESMERALDAS: Kumanii Lodge (QCAZ); Playa de Oro (Río Santiago) (C-JB).<br />

GUAYAS: Balao Chico (QCAZ); Hda. Santa Rita (Balao), Hda. La María-25 Km<br />

N Guayaquil (C-JB). LOS RÍOS: EBFD Jauneche, Hda. Clement<strong>in</strong>a (C-JB).<br />

Tabanus aniptus Fairchild 1976<br />

From “<strong>Ecuador</strong>” as locality datum <strong>in</strong> Wilkerson (1979).<br />

Tabanus antarcticus L. 1758<br />

GUAYAS: Reserva Churute (C-JB).<br />

Tabanus argentivittatus Fairchild 1976<br />

NAPO: Archidona, Jatún Sacha, Río Umbuni (C-JB). ORELLANA: Yasuní (SC -<br />

Res. Sta. - EC - PUCE), Est. Chiruisla T (QCAZ). PASTAZA: Diez de Agosto (C-<br />

JB).<br />

Tabanus cicur Fairchild 1942<br />

NAPO: Latas (Misahuallí) (QCAZ); Río Umbuni (C-JB). ORELLANA: Est. Exp.<br />

Napo (C-JB). PASTAZA: Shell-Mera (C-JB).<br />

Tabanus claripennis (Bigot 1892)<br />

PICHINCHA: Santa Inez (Fairchild 1942).<br />

Tabanus colombensis Macquart 1846<br />

CAÑAR: Cochancay (El chorro; El Chorro, Cochancay), La Troncal (C-JB).<br />

CHIMBORAZO: Buenos Aires, Río Sacramento (C-JB). GUAYAS: Balao Chico,<br />

Hda. Santa Rita (Balao), Hda. La María-25 Km N Guayaquil, Milagro, Nobol, Hda.<br />

San Joaquín (San Joaquín) (C-JB). LOJA: Quebrada Chipiango, Río Catamayo (C-<br />

JB). LOS RÍOS: Hda. Clement<strong>in</strong>a, Pichil<strong>in</strong>gue (C-JB). MANABÍ: Julcuy (C-JB).<br />

NAPO: Río Umbuni (C-JB). ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE)<br />

(C-JB). PASTAZA: Shell-Mera (C-JB). SANTA ELENA: 2.6 Km de "Dos<br />

Mangas" (C-JB). SANTO DOMINGO: Santo Dom<strong>in</strong>go (C-JB).<br />

Tabanus cyclopus Philip 1961<br />

GUAYAS: “20 mi West of Guayaquil” (CAS <strong>in</strong> Philip 1961).<br />

Tabanus discifer Walker 1850<br />

ORELLANA: Est. Chiruisla T, Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ);<br />

Nuevo Rocafuerte (Fairchild & León 1986). PASTAZA: Lorocachi (QCAZ).<br />

PASTAZA: Villano (QCAZ). SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick &<br />

Hays 1968).<br />

Tabanus discus Wiedemann 1828


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 18<br />

ORELLANA: Est. Exp. Napo (C-JB).<br />

Tabanus eldridgei Fairchild 1973<br />

ESMERALDAS: Esmeraldas (Fairchild 1973).<br />

Tabanus guyanensis Macquart 1846<br />

ORELLANA: Est. Exp. Napo (C-JB); “Nuevo Rocafuerte” (Fairchild & León<br />

1986). SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick & Hays 1968 <strong>and</strong><br />

Fairchild 1984).<br />

Tabanus hirtitibia Walker 1850<br />

MORONA SANTIAGO: Río Yananás, Río Pau Gr<strong>and</strong>e (Tarapoa), Puerto<br />

Yuquianza (C-JB). NAPO: Cascada San Rafael, Cercanías Río Aguarico,<br />

Misahuallí, Latas (Misahuallí) (QCAZ), Río Umbuni, Jatún Sacha, Cocodrilo, Km<br />

6 Vía Narupa - Coca (C-JB). ORELLANA: Coca, Pozo Ishp<strong>in</strong>go (QCAZ).<br />

PASTAZA: Puyo, Villano (Tarangaro) (QCAZ); Santa Clara, Shell-Mera (C-JB).<br />

SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick & Hays 1968). Shushuf<strong>in</strong>di<br />

(QCAZ). TUNGURAHUA: El Topo (C-JB). ZAMORA CHINCHIPE: Río<br />

Bombuscara, Río Valladolid (C-JB).<br />

Tabanus importunus Wiedemann 1828<br />

From “Panama to Brazil” <strong>in</strong> Fairchild & Burger (1994).<br />

Tabanus macquarti Sch<strong>in</strong>er 1868<br />

MORONA SANTIAGO: Río Yananás, Puerto Yuquianza (C-JB). NAPO:<br />

Misahuallí (QCAZ); Río Umbuni, Jatún Sacha (C-JB). ORELLANA: Est. Exp.<br />

Napo (C-JB). PASTAZA: Santa Clara, Shell-Mera (C-JB). SUCUMBÍOS:<br />

“Limoncocha” (AUEM <strong>in</strong> Patrick & Hays 1968). ZAMORA CHINCHIPE: Río<br />

Bombuscara (C-JB).<br />

Tabanus nereus Fairchild 1943<br />

GUAYAS: Guayaquil (Fairchild 1973); “<strong>Ecuador</strong> <strong>in</strong> coastal mangrove habitats”<br />

(Fairchild 1983).<br />

Tabanus occidentalis L. 1758<br />

BOLIVAR: Río Cristal (Balzapamba) (C-JB). CHMBORAZO: Río Sacramento (C-<br />

JB). EL ORO: Buenos Aires, Los Rosales de Machay (C-JB). ESMERALDAS:<br />

Playa de Oro (Río Santiago). GUAYAS: Daule, La Toma, Guayaquil, Guayaquil<br />

(Cerro Blanco), Hda. San Joaquín (San Joaquín). LOJA: Quebrada Chipiango, San<br />

Vicente (C-JB). LOS RÍOS: EBFD Jauneche (C-JB). MANABÍ: Río Mache (C-<br />

JB). MORONA SANTIAGO: Indanza, Río Pau Gr<strong>and</strong>e (Tarapoa), Puerto<br />

Yuquianza. NAPO: Archidona, Jatun Sacha, Km. 6 Vía Narupa-Coca, Río Umbuni<br />

(C-JB). ORELLANA: Coca, Est. Exp. Napo (C-JB); E. C. Tiput<strong>in</strong>i USFQ (TBS)<br />

(MEPN). PASTAZA: Costa Azul, Santa Clara, Shell-Mera (C-JB). PICHINCHA:<br />

M<strong>in</strong>do (C-JB). SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick & Hays 1968).<br />

TUNGURAHUA: El Topo (C-JB). ZAMORA CHINCHIPE: Río Valladolid (C-<br />

JB).<br />

Tabanus occidentalis var. dorsovittatus Macquart 1855<br />

CARCHI: Maldonado (QCAZ). NAPO: Río Hollín (QCAZ). ORELLANA: Coca,


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 19<br />

Yasuní (SC - Res. Sta. - EC - PUCE), Taracoa (QCAZ). PASTAZA: Lorocachi,<br />

Villano (QCAZ). PICHINCHA: Puerto Quito (QCAZ). SANTO DOMINGO: Santo<br />

Dom<strong>in</strong>go (QCAZ). SUCUMBÍOS: Tarapoa (QCAZ).<br />

Tabanus occidentalis var. modestus Wiedemann 1828<br />

BOLIVAR: Río Cristal (Balzapamba) (C-JB). CAÑAR: Cochancay (El chorro; El<br />

Chorro, Cochancay) (C-JB). CHIMBORAZO: Río Sacramento (C-JB).<br />

COTOPAXI: San Fco. de las Pampas (QCAZ). ESMERALDAS: Kumanii Lodge<br />

(QCAZ); Playa de Oro (Río Santiago) (C-JB). GUAYAS: Hda. San Joaquín (San<br />

Joaquín) (C-JB). LOJA: Virgen del Cisne, Quebrada Chipiango (C-JB). MORONA<br />

SANTIAGO: Río Pau Gr<strong>and</strong>e (Tarapoa), Puerto Yuquianza (C-JB).NAPO: Río<br />

Umbuni (C-JB). ORELLANA: Taracoa, Est. Chiruisla T, Vía Coca - Loreto Km<br />

26, Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ); Est. Exp. Napo (C-JB).<br />

PASTAZA: Villano (Tarangaro, Kur<strong>in</strong>tza) (QCAZ); Santa Clara, Shell-Mera, Diez<br />

de Agosto (C-JB). SANTO DOMINGO: Unión del Toachi (QCAZ); T<strong>and</strong>api<br />

(Manuel Cornejo Astorga), M<strong>in</strong>do (C-JB). SUCUMBÍOS: R. P. F. Cuyabeno<br />

(QCAZ).<br />

Tabanus pachypalpus (Bigot 1892)<br />

PICHINCHA: M<strong>in</strong>do (Fairchild & León 1986). ZAMORA CHINCHIPE: Zamora<br />

(Fairchild & León 1986).<br />

Tabanus pellucidus Fabricius 1805<br />

ORELLANA: Yasuní (SC - Res. Sta. - EC - PUCE) (C-JB). PASTAZA: Puyo (C-<br />

JB). SUCUMBÍOS: R. P. F. Cuyabeno, Limoncocha (C-JB).<br />

Tabanus perplexus Walker 1850<br />

IMBABURA: Azabí (Intag), Nangulví (Fairchild & León 1986). ORELLANA:<br />

Nuevo Rocafuerte (Fairchild & León 1986).<br />

Tabanus peruvianus Macquart 1848<br />

IMBABURA: Nangulví, “Cord. Intag” (Fairchild & León 1986). PICHINCHA:<br />

Quito (BMNH <strong>in</strong> Macquart 1848).<br />

Tabanus piceiventris Rondani 1848<br />

NAPO: Aliñahui (cabañas), (QCAZ); Río Umbuni (C-JB). ORELLANA: Est.<br />

Chiruisla T, Yasuní (SC - Res. Sta. - EC - PUCE), PNY Yasuní Bloque 31 Pozo<br />

petrolero PSCA 2, Río Yasuní Línea 10 y Sub base Bloque 31, Coca-Primavera<br />

(QCAZ); Coca (C-JB). PASTAZA: Villano (Tarangaro, Kur<strong>in</strong>tza) (QCAZ).<br />

SUCUMBÍOS: R. P. F. Cuyabeno (QCAZ) (C-JB); Limoncocha, Tarapoa (C-JB).<br />

Tabanus platycerus Fairchild 1976<br />

NAPO: Río Umbuni, Misahuallí (C-JB). ORELLANA: Est. Chiruisla T (QCAZ);<br />

E. C. Tiput<strong>in</strong>i USFQ (TBS) (MEPN). PASTAZA: Santa Clara, Shell-Mera (C-JB).<br />

Tabanus pseudoculus Fairchild 1942<br />

MORONA SANTIAGO: Unión Río Upano-Paute, Puerto Yuquianza, Río Pau<br />

Gr<strong>and</strong>e (Tarapoa) (C-JB). NAPO: Río Umbuni, Jatún Sacha (C-JB). ORELLANA:<br />

Yasuní (SC - Res. Sta. - EC - PUCE) (QCAZ)<br />

Tabanus pungens Wiedemann 1828


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 20<br />

AZUAY: Yunguilla (QCAZ). CAÑAR: Cochancay (El chorro; El Chorro,<br />

Cochancay), La Troncal (C-JB). CHIMBORAZO: Buenos Aires, Río Sacramento<br />

(C-JB). ESMERALDAS: Qu<strong>in</strong><strong>in</strong>dé (QCAZ) (C-JB). GUAYAS: Guayaquil<br />

(QCAZ) (C-JB); Balao Chico, Cerecita, Guayaquil (Cerro Azul), Hda. Santa Rita<br />

(Balao), Hda. La María 25 Km N Guayaquil, Milagro, Nobol, Samborondón, San<br />

Carlos, San Eduardo (Guayaquil - El Salado), Hda. San Joaquín (San Joaquín),<br />

Santa Lucía (C-JB). IMBABURA: “Nangulví-Cord. Intag” (Fairchild & León<br />

1986). LOJA: San Vicente (C-JB). LOS RÍOS: Hda. Clemencita, Mt. Pich<strong>in</strong>cha,<br />

Pichil<strong>in</strong>gue (C-JB). MANABÍ: Julcuy, Río Mache (C-JB). NAPO: Río Umbuni (C-<br />

JB). PASTAZA: Shell-Mera (C-JB). SANTA ELENA: 2.6 Km de "Dos Mangas",<br />

Colonche (C-JB).<br />

Tabanus restrepoensis Fairchild 1942<br />

NAPO: Río Umbuni, Jatún Sacha (C-JB).<br />

Tabanus rixator Fairchild 1943<br />

ESMERALDAS: Esmeraldas, Limones (Fairchild & León 1986)<br />

Tabanus rubig<strong>in</strong>ipennis Macquart 1846<br />

LOJA: Cord. Sabanilla (C-JB). MORONA SANTIAGO: Arenillas, Potrerillo (C-<br />

JB). NAPO: Km 6 Vía Narupa - Coca, Cocodrilo (C-JB). PASTAZA: Shell-Mera<br />

(C-JB). TUNGURAHUA: El Topo, Runtún (C-JB).<br />

Tabanus rubripes Macquart 1838<br />

From “Panama to Paraguay” <strong>in</strong> Fairchild & Burger (1994).<br />

Tabanus sannio Fairchild 1956<br />

SUCUMBÍOS: “Santa Cecilia” (AUEM <strong>in</strong> Patrick & Hays 1968), Shushuf<strong>in</strong>di (C-<br />

JB).<br />

Tabanus secundus Walker 1848<br />

CAÑAR: Cochancay (El chorro; El Chorro, Cochancay) (C-JB). GUAYAS: Hda.<br />

San Joaquín (San Joaquín) (C-JB). LOS RÍOS: EBFD Jauneche (C-JB). LOJA:<br />

Virgen del Cisne (C-JB). MORONA SANTIAGO: Indanza, Río Yananás, Puerto<br />

Yuquianza (C-JB). NAPO: Río Umbuni, Km 6 Vía Narupa - Coca, Cocodrilo (C-<br />

JB). ORELLANA: Est. Chiruisla T (QCAZ); Est. Exp. Napo (C-JB). PASTAZA:<br />

Shell (QCAZ); Diez de Agosto, Puyo, Nuevo Mundo, Santa Clara (C-JB).<br />

PICHINCHA: M<strong>in</strong>do (C-JB). TUNGURAHUA: El Topo (C-JB). ZAMORA<br />

CHINCHIPE: Río Valladolid (C-JB).<br />

Tabanus sorbillans Wiedemann 1828<br />

ORELLANA: Est. Chiruisla T3 (QCAZ); Est. Exp. Napo, Yasuní (SC - Res. Sta. -<br />

EC - PUCE) (C-JB). SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick & Hays<br />

1968).<br />

Tabanus surifer Fairchild 1964<br />

ESMERALDAS: Playa de Oro (Río Santiago) (C-JB).<br />

Tabanus thiemeanus (Enderle<strong>in</strong> 1925)<br />

CAÑAR: Cochancay (El chorro; El Chorro, Cochancay) (QCAZ). IMBABURA:


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 21<br />

Los Cedros (EC) (R.B., B.P.), Los Cedros E1:T, T1, T2 (R.B., B.P.), Los Cedros<br />

E2:T, T1, T2 (R.B., B.P.), Los Cedros E2-E3 (R.B., B.P.) (QCAZ). PASTAZA:<br />

Puyo (QCAZ). SUCUMBÍOS: “Limoncocha” (AUEM <strong>in</strong> Patrick & Hays 1968), R.<br />

P. F. Cuyabeno (QCAZ).<br />

Tabanus unimaculus Kröber 1934<br />

From “<strong>Ecuador</strong>” as locality datum <strong>in</strong> Fairchild & Burger (1994).<br />

Tabanus unistriatus H<strong>in</strong>e 1906<br />

ESMERALDAS: E.C. Río Can<strong>and</strong>é T, T1, T3 (Reserva - Jocotoco), Kumanii<br />

Lodge T, T1, T2 (QCAZ); Playa de Oro (Río Santiago) (C-JB). GUAYAS: Hda.<br />

San Joaquín (San Joaquín) (C-JB). MANABÍ: Río Mache (C-JB).<br />

Tabanus vittiger Thomson 1869<br />

GALÁPAGOS: “Galápagos Isl<strong>and</strong>s” (NHRS <strong>in</strong> Fairchild & Burger 1994), Santa<br />

Cruz-Playa (QCAZ) (C-JB), Isla San Cristóbal, Puerto Ayora (QCAZ).<br />

Tabanus xuthopogon Fairchild 1984<br />

NAPO: Río Umbuni, Misahuallí (C-JB). ORELLANA: Est. Exp. Napo, Yasuní (SC<br />

- Res. Sta. - EC - PUCE) (C-JB). SUCUMBÍOS: “Alrededores de Limoncocha”,<br />

Limoncocha (Playaco river) (Fairchild 1984) <strong>and</strong> (MPEG) <strong>in</strong> Henriques & Gorayeb<br />

(1993).


Appendix 5.<br />

Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 22<br />

Gazetteer of known localities of <strong>Ecuador</strong>ian specimens of Tabanidae.<br />

Georeferenced error (mean ± SD) = 2.85 ± 4.07 Km. Datum: WGS84; coord<strong>in</strong>ates system:<br />

decimal degrees.<br />

Locality Prov<strong>in</strong>ce Altitude<br />

(m)<br />

Longitude Latitude Error<br />

(Km)<br />

10 Km W Santa Rosa IMBABURA 700 -78.93194 0.33083 0<br />

12 Km S Zamora ZAMORA CHINCHIPE 1200 -78.94139 -4.14300 14.707<br />

17,2 Km SE Puyo PASTAZA 1000 -77.86400 -1.57900 19.807<br />

2.6 Km de "Dos Mangas" SANTA ELENA 60 -80.71556 -1.83333 5.78<br />

6,6 Km N vía Limón - Macas MORONA SANTIAGO 1013 -78.40701 -2.92665 9.636<br />

8 Km W Lago Agrio SUCUMBÍOS 311 -76.97900 0.08500 10.58<br />

Abitagua PASTAZA 1200 -78.17639 -1.44306 1.974<br />

Aliñahui (cabañas) NAPO 410 -77.60194 -1.04861 0<br />

Alluriquín SANTO DOMINGO 750 -78.99347 -0.32031 1.875<br />

Aloag PICHINCHA 2900 -78.58333 -0.45139 1.841<br />

Alto Cayapa ESMERALDAS 11 -78.95833 0.86667 2.215<br />

Amaguaña PICHINCHA 2620 -78.50389 -0.37278 4.167<br />

Ambato TUNGURAHUA 2540 -78.62250 -1.23667 8.369<br />

Archidona NAPO 600 -77.80683 -0.90627 3.624<br />

Arenillas MORONA SANTIAGO 2200 -78.61389 -3.01556 3.135<br />

Arrayán, carretera Sal<strong>in</strong>as a Arrayán BOLIVAR 3600 -79.05889 -1.37194 1.977<br />

Atuntaqui IMBABURA 2500 -78.21402 0.33311 2.479<br />

Ávila Viejo ORELLANA 750 -77.43278 -0.63639 0<br />

Azabí (Intag) IMBABURA 2200 -78.46532 0.32986 1.581<br />

Azogues (Azoguez) CAÑAR 2520 -78.84500 -2.73667 1.612<br />

B. I. Otonga (El Corcovado) COTOPAXI 2000 -79.00020 -0.41673 2.68<br />

Baeza NAPO 1900 -77.88500 -0.46000 1.579<br />

Balao Chico GUAYAS 30 -79.69444 -2.73833 1.583<br />

Balzapamba (Balzpambana) BOLIVAR 750 -79.17600 -1.76600 1.874<br />

Baños TUNGURAHUA 1843 -78.42333 -1.39444 1.857<br />

Bellavista (Reserva Biológica) PICHINCHA 2200 -78.70833 -0.01278 0<br />

Bellavista (Reserva Ecológica-Est.<br />

Científica)<br />

PICHINCHA 2287 -78.68794 -0.01083 0<br />

Bosque Puyango LOJA 300 -80.07905 -3.88281 2.255<br />

Boyayaco (Panyagacu) NAPO 980 -77.81667 -0.80000 1.813<br />

Bucay (1 Km NO Cum<strong>and</strong>á) GUAYAS 300 -79.14100 -2.20200 1.648


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 23<br />

Buenos Aires CHIMBORAZO 300 -79.19528 -2.20361 2.689<br />

Buenos Aires, 5 Km O de Cum<strong>and</strong>á CHIMBORAZO 300 -79.19528 -2.20361 6.59<br />

Cabecera del Río Baboso CARCHI 1500 -78.38200 0.96100 10.069<br />

Cabecera Río Pachijal (7,3 Km S<br />

Nanegalito)<br />

PICHINCHA 2050 -78.68389 -0.00028 1.581<br />

Caimito (estero salado mangle) ESMERALDAS 5 -80.09722 0.70194 0<br />

Caimito (ladera) ESMERALDAS 50 -80.09278 0.69889 0<br />

Calacalí PICHINCHA 2800 -78.51111 0.00083 1.761<br />

Calupiña COTOPAXI 1500 -78.92583 -0.53833 1.588<br />

Campanacocha NAPO 350 -77.50167 -1.02500 4.674<br />

Casitagua PICHINCHA 3500 -78.47667 -0.03000 1.655<br />

Catacocha LOJA 1930 -79.64677 -4.04661 1.632<br />

Cerecita GUAYAS 20 -80.26694 -2.33000 1.606<br />

Cerro Pumín BOLIVAR 3400 -79.03556 -1.44028 2.346<br />

Cerro Toledo LOJA 3484 -79.10861 -4.40139 1.601<br />

Chachimbiro IMBABURA 1600 -78.08910 0.49465 0<br />

Chilcales (Río Chilcales, M. J.<br />

Calles)<br />

CAÑAR 680 -79.22333 -2.20667 1.824<br />

Chiriboga PICHINCHA 1900 -78.76500 -0.22833 1.898<br />

Chone MANABÍ 20 -80.09167 -0.69444 7.269<br />

Coangos MORONA SANTIAGO 670 -78.21406 -3.04337 2.507<br />

Coca ORELLANA 260 -76.98333 -0.46250 1.683<br />

Cochancay (El chorro; El Chorro,<br />

Cochancay)<br />

CAÑAR 500 -79.29444 -2.46389 1.735<br />

Cocodrilo NAPO 1700 -77.78944 -0.64583 1.746<br />

Cola LOJA 1320 -79.86957 -4.09771 1.62<br />

Colonche SANTA ELENA 8 -80.66750 -2.01750 2.326<br />

Conocoto PICHINCHA 2530 -78.47444 -0.29028 10.169<br />

Cord. Sabanilla LOJA 2700 -79.15000 -4.44889 1.774<br />

Costa Azul PASTAZA 490 -77.81021 -1.12151 1.753<br />

Cuenca AZUAY 2527 -79.00111 -2.89278 12.868<br />

Cumbayá PICHINCHA 2400 -78.42667 -0.19806 6.969<br />

Cumbe AZUAY 2700 -79.00889 -3.08361 1.874<br />

Curaray (San Antonio de) PASTAZA 310 -76.96667 -1.37361 30.469<br />

Cuyabeno (Reserva de Producción<br />

Faunística)<br />

SUCUMBÍOS 200 -76.18028 0.01806 4.818<br />

Danas CHIMBORAZO 3300 -78.88333 -2.13333 2.301<br />

Daule GUAYAS 20 -79.97722 -1.85722 4.216<br />

Dayuma ORELLANA 260 -76.87910 -0.66658 1.616<br />

Diez de Agosto PASTAZA 1000 -77.90341 -1.45410 2.003<br />

E. C. Río Guajalito SANTO DOMINGO 1800 -78.81670 -0.23330 2.18


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 24<br />

E. C. Tiput<strong>in</strong>i USFQ (TBS) ORELLANA 240 -76.14944 -0.63639 1.739<br />

E. Santo Dom<strong>in</strong>go SANTO DOMINGO 600 -79.16222 -0.25333 1.681<br />

E.C. Río Can<strong>and</strong>é (Reserva -<br />

Jocotoco)<br />

E.C. Río Can<strong>and</strong>é T (Reserva -<br />

Jocotoco)<br />

E.C. Río Can<strong>and</strong>é T1 (Reserva -<br />

Jocotoco)<br />

E.C. Río Can<strong>and</strong>é T3 (Reserva -<br />

Jocotoco)<br />

ESMERALDAS 389 -79.20111 0.48472 0<br />

ESMERALDAS 400 -79.19694 0.47917 0<br />

ESMERALDAS 400 -79.19833 0.47833 0<br />

ESMERALDAS 400 -79.19750 0.47889 0<br />

EBFD Jauneche LOS RIOS 50 -79.58333 -1.58333 2.967<br />

El Empalme GUAYAS 60 -79.61667 -1.05000 2.075<br />

El Eno SUCUMBIOS 293 -76.87846 -0.06635 0.64<br />

El Pangui ZAMORA CHINCHIPE 800 -78.58651 -3.62449 1.817<br />

El Reventador SUCUMBÍOS 1700 -77.55000 -0.03333 2.904<br />

El Salado NAPO 1280 -77.68846 -0.20097 1.862<br />

El Salado GUAYAS 6 -79.90556 -2.21722 2.535<br />

El T<strong>in</strong>go PICHINCHA 2600 -78.43426 -0.28276 1.882<br />

El T<strong>in</strong>go COTOPAXI 1400 -79.05659 -0.91474 1.595<br />

El Topo TUNGURAHUA 1245 -78.19444 -1.40833 1.909<br />

Est. Chiruisla T ORELLANA 204 -75.94083 -0.68583 0<br />

Est. Chiruisla T1 ORELLANA 204 -75.94167 -0.68583 0<br />

Est. Chiruisla T2 ORELLANA 204 -75.94208 -0.68528 0<br />

Est. Chiruisla T3 ORELLANA 204 -75.94250 -0.68500 0<br />

Est. Exp. Napo ORELLANA 250 -77.02167 -0.43083 3.408<br />

Est. Río Huiririma ORELLANA 220 -75.78400 -0.06610 5.214<br />

García Moreno IMBABURA 1420 -78.62624 0.23415 1.671<br />

Guar<strong>and</strong>a BOLIVAR 3670 -79.00000 -1.59056 1.661<br />

Guarumales (Guarumales-Paute) AZUAY 1860 -78.52252 -2.61065 4.017<br />

Guayaquil GUAYAS 5 -79.89361 -2.19861 31.568<br />

Guayaquil (Cerro Azul) GUAYAS 230 -79.97528 -2.15611 3.993<br />

Guayaquil (Cerro Blanco) GUAYAS 240 -80.08333 -2.11667 3.735<br />

Guayllabamba PICHINCHA 2140 -78.34028 -0.05556 2.985<br />

Hda (Eco) Bomboli PICHINCHA 3000 -78.68167 -0.46361 0<br />

Hda. Clement<strong>in</strong>a LOS RIOS 20 -79.38750 -1.71028 1.593<br />

Hda. La Julia LOS RIOS 9 -79.55166 -1.70334 1.642<br />

Hda. San Joaquín (San Joaquín) GUAYAS 290 -79.16667 -2.22222 1.632<br />

Hda. Santa Rita (Balao) GUAYAS 30 -79.81250 -2.90667 2.167<br />

Huasipamba (Guasipamba) AZUAY 2879 -79.32673 -3.19655 0<br />

Ibarra IMBABURA 2200 -78.12635 0.36035 9.269<br />

Indanza MORONA SANTIAGO 1220 -78.47397 -3.05550 1.874


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 25<br />

Inga PICHINCHA 2700 -78.33333 -0.30000 1.654<br />

Jatún Sacha NAPO 400 -77.61667 -1.06667 1.825<br />

Javín CAÑAR 1500 -79.17876 -2.46756 1.728<br />

Jerusalén PICHINCHA 2280 -78.35667 0.00056 0<br />

Joya de los Sachas NAPO 270 -76.85255 -0.29296 1.824<br />

Joyapal (Joyapal - Cochancay) CAÑAR 700 -79.19722 -2.45694 1.584<br />

Julcuy MANABÍ 300 -80.62406 -1.47559 2.669<br />

Jum<strong>and</strong>i NAPO 620 -77.79694 -0.88833 1.698<br />

Kalaglas MORONA SANTIAGO 1350 -78.53194 -3.24000 1.873<br />

Km 6 Vía Narupa - Coca NAPO 1300 -77.74100 -0.71800 1.619<br />

Km 7 Vía Bucay - Chillanes BOLIVAR 850 -79.12250 -2.13444 10.007<br />

Km 9 Vía Bucay - Chillanes BOLIVAR 300 -79.12250 -2.13444 12.002<br />

Kumanii Lodge ESMERALDAS 43 -78.92083 0.75389 0<br />

Kumanii Lodge T ESMERALDAS 38 -78.91833 0.75550 0<br />

Kumanii Lodge T1 ESMERALDAS 59 -78.91706 0.75639 0<br />

Kumanii Lodge T2 ESMERALDAS 69 -78.91650 0.75608 0<br />

Kumanii Lodge T3 ESMERALDAS 95 -78.91389 0.75556 0<br />

La Carbonería CAÑAR 2850 -79.00299 -2.51707 1.836<br />

La Fama SUCUMBÍOS 2120 -77.48956 0.59914 0.5303<br />

La Moya BOLIVAR 3350 -79.03556 -1.46639 1.817<br />

La Sabana (200m de Bachillero) MANABÍ 4 -80.17111 -0.72222 0<br />

La Selva (E. of Limoncocha) NAPO 235 -76.37349 -0.49839 0<br />

La Toma GUAYAS 100 -79.97917 -1.99778 1.815<br />

La Toma LOJA 1360 -79.35000 -3.98278 1.66<br />

La Troncal CAÑAR 150 -79.33611 -2.42222 1.697<br />

Lago Agrio SUCUMBÍOS 300 -76.88778 0.09278 10.669<br />

Latas (Misahuallí) NAPO 500 -77.73306 -1.03278 1.985<br />

Limón Playas, Sta. Rosa EL ORO 170 -79.93567 -3.57567 1.902<br />

Limoncocha SUCUMBÍOS 300 -76.61667 -0.40000 10.969<br />

Limones ESMERALDAS 15 -78.77167 1.12333 1.636<br />

Lloa PICHINCHA 3060 -78.5757 -0.24791 0<br />

Logroño MORONA SANTIAGO 625 -78.17833 -2.61500 1.644<br />

Loja LOJA 2060 -79.19861 -4.00000 10.567<br />

Loja, Vía Catamayo LOJA 2064 -79.19944 -3.99583 10.567<br />

Lorocachi PASTAZA 220 -75.96667 -1.61639 1.969<br />

Los Cedros (EC) (R.B., B.P.) IMBABURA 1350 -78.77938 0.30879 0<br />

Los Cedros E1:T (R.B., B.P.) IMBABURA 1180 -78.77750 0.30528 0<br />

Los Cedros E1:T1 (R.B., B.P.) IMBABURA 1180 -78.77722 0.30528 0<br />

Los Cedros E1:T2 (R.B., B.P.) IMBABURA 1180 -78.77694 0.30528 0


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 26<br />

Los Cedros E2:T (R.B., B.P.) IMBABURA 1680 -78.78111 0.32167 0<br />

Los Cedros E2:T1 (R.B., B.P.) IMBABURA 1680 -78.78111 0.32139 0<br />

Los Cedros E2:T3 (R.B., B.P.) IMBABURA 1680 -78.78111 0.32194 0<br />

Los Cedros E3:T (R.B., B.P.) IMBABURA 2180 -78.79194 0.33778 0<br />

Los Cedros E3:T1 (R.B., B.P.) IMBABURA 2180 -78.79194 0.33750 0<br />

Los Cedros E3:T2 (R.B., B.P.) IMBABURA 2180 -78.79194 0.33722 0<br />

Los Cedros E3:T3 (R.B., B.P.) IMBABURA 2180 -78.79194 0.33778 0<br />

Los Cedros E2-E3 (R.B., B.P.) IMBABURA 1920 -78.78676 0.32959 0<br />

Lumbaqui SUCUMBÍOS 480 -77.32939 0.04922 1.875<br />

Machachi PICHINCHA 2900 -78.57722 -0.50694 3.361<br />

Machay TUNGURAHUA 1650 -78.27982 -1.39622 1.913<br />

Maldonado CARCHI 1580 -78.10833 0.91083 2.091<br />

Mamanuma LOJA 2400 -79.20833 -3.88778 3.381<br />

Mangahuanta (Mangaguanta) PICHINCHA 2400 -78.36833 -0.16833 1.895<br />

Manuel J. Calle CAÑAR 50 -79.39522 -2.35322 1.874<br />

Maquipucuna PICHINCHA 1600 -78.62160 0.11531 2.378<br />

Mayaico MORONA SANTIAGO 1000 -78.61972 -3.98333 3.447<br />

Maylas AZUAY 3000 -78.68306 -2.98806 1.994<br />

Mayronga (La) ESMERALDAS 100 -79.21722 0.89083 2.162<br />

Méndez MORONA SANTIAGO 420 -78.31536 -2.71452 1.874<br />

Mera PASTAZA 1170 -78.11861 -1.45000 2.302<br />

Miguir AZUAY 3560 -79.30056 -2.79917 1.606<br />

Milagro GUAYAS 13 -79.58833 -2.13139 7.269<br />

M<strong>in</strong>do PICHINCHA 1250 -78.77806 -0.05000 1.947<br />

M<strong>in</strong>do (Nambillo) PICHINCHA 1880 -78.73833 -0.12500 7.469<br />

Misahuallí NAPO 400 -77.66528 -1.04139 2.373<br />

Montalvo LOS RIOS 70 -79.28611 -1.78972 2.793<br />

Moraspungo PICHINCHA 2915 -78.51000 0.03167 1.814<br />

Nanegal PICHINCHA 1100 -78.67667 0.14333 1.769<br />

Nanegalito PICHINCHA 1630 -78.68056 0.06667 2.376<br />

Nangulví IMBABURA 1390 -78.54691 0.32789 0<br />

Naranjal GUAYAS 30 -79.60833 -2.67500 3.377<br />

Nobol GUAYAS 10 -80.00861 -1.90778 1.709<br />

Nono PICHINCHA 2700 -78.57421 -0.06114 1.875<br />

Nueva Loja SUCUMBÍOS 300 -76.88505 0.09143 6.2<br />

Nuevo Mundo PASTAZA 850 -77.90714 -1.58083 2.222<br />

Nuevo Rocafuerte ORELLANA 265 -75.40417 -0.92500 1.752<br />

Otongachi SANTO DOMINGO 960 -78.94800 -0.31667 1.994


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 27<br />

Pal<strong>and</strong>a ZAMORA CHINCHIPE 1044 -79.13233 -4.64367 1.607<br />

Palmar MANABÍ 114 -79.95150 -0.03835 1.602<br />

Palmeras PICHINCHA 1000 -78.92861 -0.30833 1.653<br />

Papallacta NAPO 3300 -78.14648 -0.36516 2.061<br />

Pasochoa PICHINCHA 3350 -78.45861 -0.43083 1.875<br />

Patate TUNGURAHUA 2000 -78.50417 -1.30889 3.719<br />

Patuca MORONA SANTIAGO 720 -78.25998 -2.75302 1.874<br />

Payam<strong>in</strong>o NAPO 270 -77.02800 -0.44700 1.886<br />

Pedernales MANABI 5 -80.05000 0.08306 2.247<br />

Peñaherrera IMBABURA 1750 -78.53139 0.35750 1.594<br />

Peniel - Quevedo LOS RÍOS 40 -79.45000 -1.10000 2.57<br />

Pichil<strong>in</strong>gue LOS RIOS 73 -79.46028 -1.03167 2.33<br />

Pifo PICHINCHA 2550 -78.34444 -0.22250 3.447<br />

Pilaló COTOPAXI 2560 -78.99202 -0.94028 1.875<br />

Playa de Oro (Río Santiago) ESMERALDAS 70 -78.80000 0.88333 2.365<br />

PN Podocarpus (Cajanuma) LOJA 2450 -79.20000 -4.08333 1.856<br />

Potrerillo MORONA SANTIAGO 3230 -78.65444 -3.00333 2.318<br />

Pozo Daimi NAPO 250 -76.18600 -1.01400 1.61<br />

Pozo Ishp<strong>in</strong>go ORELLANA 240 -75.63639 -0.91639 5.14<br />

Primavera (La) ORELLANA 270 -76.76111 -0.41806 7.569<br />

Pucay AZUAY 2220 -79.25000 -3.20000 2.502<br />

Puerto Ayora GALÁPAGOS 30 -90.31286 -0.74313 2.67<br />

Puerto Quito PICHINCHA 180 -79.25242 0.12618 2.586<br />

Puerto Yuquianza MORONA SANTIAGO 920 -78.23028 -2.93944 1.756<br />

Pululahua PICHINCHA 2100 -78.51708 0.06685 1.692<br />

Puyo (El) PASTAZA 950 -77.99111 -1.48861 5.129<br />

Quebrada Bodega Pamba CHIMBORAZO 3200 -78.89861 -1.84944 2.232<br />

Quebrada Chipiango LOJA 750 -79.72972 -3.84750 1.968<br />

Quevedo LOS RIOS 54 -79.46167 -1.03167 6.769<br />

Qu<strong>in</strong><strong>in</strong>dé ESMERALDAS 80 -79.46667 0.33306 3.655<br />

Quito PICHINCHA 2800 -78.50000 -0.16667 38.069<br />

Quito (Carretas) PICHINCHA 3680 -78.45167 -0.10333 3.292<br />

Quito (El Batán) PICHINCHA 2800 -78.46879 -0.16903 3.622<br />

Quito (P. Metropolitano) PICHINCHA 2960 -78.46417 -0.18376 3.392<br />

R. B. Yanacocha PICHINCHA 3521 -78.5847 -0.11155 0<br />

R. P. F. Cuyabeno SUCUMBÍOS 200 -76.18169 -0.00976 1.909<br />

Reserva Churute GUAYAS 7 -79.72000 -2.48000 6.433<br />

Río Bombuscara ZAMORA CHINCHIPE 980 -78.96056 -4.11361 1.799


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 28<br />

Río Calera EL ORO 300 -79.63100 -3.70300 1.601<br />

Río Catamayo LOJA 660 -79.87222 -4.18917 1.677<br />

Río Cristal (Balzapamba) BOLIVAR 810 -79.18778 -1.77333 2.208<br />

Río del C<strong>in</strong>to (M<strong>in</strong>do) PICHINCHA 1500 -78.80694 -0.10778 2.158<br />

Río Hollín NAPO 1100 -77.59040 -0.71502 2.079<br />

Río Liqu<strong>in</strong>o PASTAZA 475 -77.48444 -1.44222 0<br />

Río Mache MANABÍ 5 -79.88472 0.21500 1.654<br />

Río Mulaute 15 Km NE Sto.<br />

Dom<strong>in</strong>go<br />

SANTO DOMINGO 480 -79.11600 -0.08200 1.59<br />

Río Nangaritza ZAMORA CHINCHIPE 950 -78.67389 -3.92944 1.877<br />

Río Napo (not Fidena later<strong>in</strong>a) NAPO 450 -77.80278 -1.05833 1.661<br />

Río Negro TUNGURAHUA 1300 -78.20722 -1.40278 1.777<br />

Río Pangor CHIMBORAZO 2085 -78.97900 -1.93333 1.824<br />

Río Pau Gr<strong>and</strong>e (Tarapoa) MORONA SANTIAGO 720 -78.23556 -2.83278 2.099<br />

Río Pucuno NAPO 1250 -77.61400 -0.67191 2.003<br />

Río Sacramento CHIMBORAZO 1150 -78.02800 -2.14600 1.696<br />

Rio Tendales AZUAY 880 -79.51018 -3.31285 0<br />

Río Umachaca PICHINCHA 1300 -78.62700 0.12600 1.629<br />

Río Umbuni NAPO 460 -77.73167 -1.03194 1.679<br />

Río Valladolid ZAMORA CHINCHIPE 1100 -79.12861 -4.62111 2.115<br />

Río Yanacachi CAÑAR 2700 -79.00750 -2.45444 1.626<br />

Río Zaracay AZUAY 2400 -79.40917 -2.72556 1.663<br />

Riobamba CHIMBORAZO 2796 -78.64583 -1.66667 10.369<br />

Rumiñahui faldas volcán COTOPAXI 1820 -78.52167 0.60500 0<br />

Runtún TUNGURAHUA 2270 -78.41600 -1.40700 2.55<br />

Sacha Lodge SUCUMBÍOS 230 -76.45938 -0.47081 2.319<br />

Sal<strong>in</strong>as BOLIVAR 3500 -79.01611 -1.40222 1.874<br />

Samborondón GUAYAS 20 -79.72306 -1.95889 2.901<br />

San Antonio (Volcán Pululahua) PICHINCHA 2430 -78.44444 -0.00694 4.058<br />

San Carlos LOS RÍOS 60 -79.43333 -1.11667 2.612<br />

San Eduardo (Guayaquil - El Salado) GUAYAS 10 -79.89444 -2.19583 1.894<br />

San Fco. de las Pampas COTOPAXI 1500 -78.96806 -0.42333 1.875<br />

San Francisco (Muisne) ESMERALDAS 50 -80.06278 0.65583 1.875<br />

San Gabriel CARCHI 2842 -77.82798 0.58947 4.14<br />

San Isidro CARCHI 3050 -77.98691 0.60404 1.875<br />

San Juan PICHINCHA 2900 -78.62361 -0.28500 2.429<br />

San Lorenzo ESMERALDAS 5 -78.83522 1.28698 3.756<br />

San Lorenzo (La Boca 16m) ESMERALDAS 5 -78.83500 1.29139 3.756


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 29<br />

San Luis de El Hacho MORONA SANTIAGO 500 -78.30000 -2.74167 2.433<br />

San Rafael PICHINCHA 2500 -78.44194 -0.30583 1.649<br />

Cascada San Rafael NAPO 1500 -77.55833 -0.04556 2.32<br />

San Vicente (Limite Azuay prov.) MORONA SANTIAGO 2770 -78.58333 -3.03056 3.559<br />

San Vicente LOJA 1750 -79.44972 -3.94944 2.056<br />

Santa Cecilia SUCUMBÍOS 317 -76.95419 0.08539 1.692<br />

Santa Clara PASTAZA 500 -77.89167 -1.29722 2.2<br />

Santa Cruz-Playa GALÁPAGOS 0 -90.41639 -0.75611 1.157<br />

Santa Elena SANTA ELENA 10 -80.85611 -2.22167 5.64<br />

Santa Lucía GUAYAS 30 -79.98639 -1.71306 2.863<br />

Santiago BOLIVAR 2500 -78.99735 -1.69758 2.25<br />

Santo Dom<strong>in</strong>go (Sto. Dom<strong>in</strong>go) SANTO DOMINGO 600 -79.17269 -0.25441 6.455<br />

Saraguro LOJA 2520 -79.24333 -3.62167 2.163<br />

Shell PASTAZA 1000 -78.05670 -1.49805 2.949<br />

Shell-Mera PASTAZA 1000 -78.09214 -1.47791 2.863<br />

Shushuf<strong>in</strong>di SUCUMBÍOS 260 -76.64650 -0.18278 4.248<br />

Sta Ruf<strong>in</strong>a LOJA 850 -79.75968 -3.84648 1.873<br />

T<strong>and</strong>api (Manuel Cornejo Astorga) PICHINCHA 1470 -78.79667 -0.41444 1.875<br />

Taracoa ORELLANA 260 -76.77274 -0.49018 1.6<br />

Tarapoa SUCUMBÍOS 230 -76.33753 -0.11617 2<br />

T<strong>in</strong>ajillas MORONA SANTIAGO 2915 -78.55667 -3.03333 2.549<br />

T<strong>in</strong>al<strong>and</strong>ia SANTO DOMINGO 850 -79.05000 -0.30944 1.736<br />

Totoras BOLIVAR 2800 -78.98058 -1.72553 2.942<br />

Unión del Toachi SANTO DOMINGO 850 -78.95441 -0.31383 1.686<br />

Unión Río Upano-Paute MORONA SANTIAGO 420 -78.27500 -2.75300 1.569<br />

Valle de los Chillos PICHINCHA 2900 -78.53333 -0.31667 1.766<br />

Vía a Balao Chico GUAYAS 30 -79.69444 -2.73833 1.713<br />

Vía Coca - Loreto Km 26 ORELLANA 300 -77.18304 -0.54295 1.652<br />

Vía La Bonita - La Fama SUCUMBÍOS 2200 -77.53333 0.53333 2.261<br />

Villano PASTAZA 552 -77.67812 -1.42180 0<br />

Villano (Kur<strong>in</strong>tza) PASTAZA 350 -77.51308 -1.50630 0<br />

Villano (Tarangaro) PASTAZA 340 -77.38208 -1.39552 0<br />

Virgen del Cisne LOJA 2250 -79.41690 -3.84603 1.873<br />

Yanacocha-Reserva (300m Sur del<br />

PC)<br />

Yanacocha-Reserva (Pastizal<br />

arbolado y BMA)<br />

PICHINCHA 3520 -78.58442 -0.11309 0<br />

PICHINCHA 3530 -78.58989 -0.11715 0<br />

Yaruquí PICHINCHA 2570 -78.31667 -0.15806 2.924


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 30<br />

Yasuní (SC - Res. Sta. - EC - PUCE) ORELLANA 250 -76.40050 -0.67131 2.026<br />

Yunkumas, Centro Shuar MORONA SANTIAGO 1150 -78.24639 -3.06250 3.75<br />

Zamora ZAMORA CHINCHIPE 970 -78.95226 -4.06643 3.89<br />

Zapotal SANTA ELENA 30 -80.56335 -2.31770 1.673<br />

The follow<strong>in</strong>g localities could not be georeferenced because of uncerta<strong>in</strong>ity of the<br />

data or lack of voucher material<br />

Cercanías Río Aguarico NAPO<br />

Cerro Chuark Wihp MORONA SANTIAGO<br />

Chem<strong>in</strong> entre Guanasilla et San<br />

Nicolás<br />

GUAYAS<br />

Coca-Primavera ORELLANA<br />

Cord. del Cóndor Río Coangos-Río<br />

Tsuir<strong>in</strong><br />

Cordillera Pucay AZUAY<br />

Hda. La María 25 Km N Guayaquil GUAYAS<br />

Hda. La María-25 Km N Guayaquil GUAYAS<br />

MORONA SANTIAGO<br />

Isla San Cristóbal GALÁPAGOS<br />

Juturi NAPO<br />

Limoncocha (Playaco river) SUCUMBÍOS<br />

Llanganates TUNGURAHUA<br />

Loja MORONA SANTIAGO?<br />

Los Rosales de Machay CHIMBORAZO<br />

Machetes IMBABURA<br />

Peñaherrera IMBABURA<br />

Pifo 9 Km al este PICHINCHA<br />

P<strong>in</strong>ular (P<strong>in</strong>nlar, P<strong>in</strong>ullar) IMBABURA<br />

Plataforma Villano PASTAZA<br />

PNY Yasuní Bloque 31 Pozo<br />

petrolero PSCA 2<br />

ORELLANA<br />

Pucay-W Cordillere AZUAY<br />

Pucay-Santo Dom<strong>in</strong>go PICHINCHA?<br />

Río Napo (Fidena later<strong>in</strong>a) NAPO?<br />

Río Napo - Jatun Yacu NAPO<br />

Río Yananás MORONA SANTIAGO<br />

Río Yasuní Línea 10 y Sub base<br />

Bloque 31<br />

ORELLANA<br />

San Carlos GUAYAS<br />

Santa Bárbara de Sucumbíos NAPO<br />

Santa Inés PICHINCHA<br />

Santa Inéz PICHINCHA


Annales de la Société entomologique de France (N.S.) 45(4)<br />

R.E. Cárdenas, J. Buestán & O. <strong>Dangles</strong> 2009. Tabanidae of <strong>Ecuador</strong>. Appendices 4 - 5. 31<br />

Santo Dom<strong>in</strong>go to Chiriboga SANTO DOMINGO<br />

Valle de Azuay AZUAY<br />

Vía Loreto-Coca 20.7 Km (Este de<br />

Tena)<br />

NAPO<br />

Vía Puyo-Tena NAPO<br />

Volcán Pich<strong>in</strong>cha PICHINCHA<br />

Yunguilla AZUAY<br />

Zaruma-Machala EL ORO


Ann. soc. entomol. Fr. (n.s.), 2009, 45 (4) : 529-536<br />

ARTICLE<br />

Termites (Isoptera: Kalotermitidae, Rh<strong>in</strong>otermitidae, Termitidae)<br />

of <strong>Ecuador</strong><br />

Brian W. Bahder (1) , Rudolf H. Scheffrahn (1),* , Jan Křeček (2) , Clifford Keil (3),* & Susan Whitney-K<strong>in</strong>g (4)<br />

(1) Fort Lauderdale Research & Education Center, University of Florida, FLREC, 3205 College Ave., Davie, FL 33314, USA<br />

(2) Department of <strong>Entomology</strong> & Nematology, University of Florida, FLREC, 3205 College Ave., Davie, FL 33314, USA<br />

(3) Museum of Invertebrates, Pontifi cal Catholic University of <strong>Ecuador</strong>, Quito, <strong>Ecuador</strong><br />

(4) Department of <strong>Entomology</strong> & Wildlife Ecology, University of Delaware, Newark, DE 19716, USA<br />

* Correspond<strong>in</strong>g author<br />

Abstract. Termites are an abundant <strong>and</strong> diverse group <strong>in</strong> the Neotropics with about 500 species<br />

represent<strong>in</strong>g 83 genera. The paucity of the termite fauna recorded from <strong>Ecuador</strong> is due, <strong>in</strong> part, to a<br />

lack of deliberate surveys. We revise the termite fauna of <strong>Ecuador</strong> <strong>and</strong> raise the number of species from<br />

25 species to 72 based on our recent termite surveys. Of the 72 species, 18 could not be conclusively<br />

identifi ed <strong>and</strong> are likely new species. Given the limited area that has been covered <strong>in</strong> surveys of the<br />

<strong>Ecuador</strong>ian termite fauna, there are undoubtedly many more species to be recorded for <strong>Ecuador</strong>,<br />

primarily <strong>in</strong> the eastern lowl<strong>and</strong> areas, cloud forests on both the eastern <strong>and</strong> western slopes of the<br />

Andes, <strong>and</strong> the Amazonian lowl<strong>and</strong> forests.<br />

Résumé. Les termites (Isoptera : Kalotermitidae, Rh<strong>in</strong>otermitidae, Termitidae) de l’Equateur.<br />

Dans la zone néotropicale, le groupe des termites est abondant et diversifi é avec environ 500 espèces<br />

représentées en 83 genres. Le manque de connaissance actuel sur la faune de termites en Equateur<br />

est lié à un manque d’<strong>in</strong>ventaire. Dans cet article, nous révisons la faune équatorienne de termites dont<br />

la diversité est augmentée de 25 à 72 espèces. De ces 72 espèces, 18 n’ont pu être identifi ées de<br />

façon concluante et sont probablement de nouvelles espèces. En raison de l’aire limitée couverte par<br />

l’ensemble des <strong>in</strong>ventaires réalisés sur la faune de termites en Equateur, il existe <strong>in</strong>dubitablement plus<br />

d’espèces à répertorier pour le pays, pr<strong>in</strong>cipalement dans les régions orientales de basses altitude<br />

a<strong>in</strong>si que dans les forêts de nuages sur les fl anc orientaux et occidentaux de la cordillère des Andes.<br />

Keywords: Termites, Diversity, <strong>Ecuador</strong>, Galapagos.<br />

Termites are an abundant <strong>and</strong> diverse, yet often<br />

cryptic order of <strong>in</strong>sects <strong>in</strong> the Neotropics, especially<br />

<strong>in</strong> the savannas <strong>and</strong> ra<strong>in</strong>forests of ma<strong>in</strong>l<strong>and</strong>.<br />

Th ere are currently about 500 species <strong>in</strong> 83 genera recorded<br />

from the Neotropics (Constant<strong>in</strong>o 1998). Currently,<br />

the Neotropical region has the second highest<br />

termite diversity beh<strong>in</strong>d the Ethiopian termite fauna<br />

(Constant<strong>in</strong>o 1992) but the diversity of the former my<br />

ultimately surpass all other regions. Knowledge of the<br />

termite fauna of <strong>Ecuador</strong> is <strong>in</strong>complete due to lack of<br />

deliberate surveys. Th e most recent termite description<br />

from <strong>Ecuador</strong> is that of Caetetermes taquarussu<br />

Fontes 1981 <strong>and</strong> Dolichorh<strong>in</strong>otermes lanciarius Engel<br />

& Krishna 2007 <strong>and</strong> the most updated New World<br />

catalog is that of Constant<strong>in</strong>o 1998, which <strong>in</strong>cludes<br />

Araujo’s 1977 <strong>Ecuador</strong>ian list. Araujo (1977) recorded<br />

E-mail: rhsc@ufl .edu, bugboy1@ufl .edu, jfkr@ufl .edu,<br />

Keil617@yahoo.com, swhitney@udel.edu<br />

Accepté le 28 mai 2009<br />

12 species <strong>in</strong> three diff erent families from <strong>Ecuador</strong> that<br />

<strong>in</strong>clude Rugitermes sp. (Kalotermitidae), Coptotermes<br />

testaceus (L. 1758) (Rh<strong>in</strong>otermitidae), Constrictotermes<br />

lat<strong>in</strong>otus (Holmgren 1910), Cornitermes acignathus<br />

(Silvestri 1901), Embiratermes trans<strong>and</strong><strong>in</strong>us Araujo<br />

1977, Nasutitermes corniger (Motschulsky 1855), Na.<br />

dendrophilus (Desneux 1906), Na. ecuadorianus (Holmgren<br />

1910), Na. peruanus (Holmgren 1910), Na.<br />

tredecimarticulatus (Holmgren 1910), Neocapritermes<br />

talpoides Krishna & Araujo 1968 <strong>and</strong> Rhynchotermes<br />

perarmatus (Snyder 1925) (Termitidae).<br />

Th e aim of this paper is to summarize the currently<br />

known termite fauna of <strong>Ecuador</strong> based on literature<br />

records <strong>and</strong> recent expeditions by Křeček & Warner<br />

collected <strong>in</strong> 2001 <strong>and</strong> Bahder <strong>in</strong> 2006 <strong>and</strong> 2007.<br />

Materials <strong>and</strong> Methods<br />

From 16 to 28 December 2001, 186 termite samples were<br />

collected by Křeček & Warner from 37 diff erent locations<br />

<strong>in</strong> western <strong>Ecuador</strong> (Fig. 1). Specimens collected <strong>in</strong> this<br />

survey were discovered by chopp<strong>in</strong>g dead wood, fence poles,<br />

<strong>and</strong> collect<strong>in</strong>g from under rocks us<strong>in</strong>g an aspirator. Many<br />

529


specimens were collected directly from nests <strong>and</strong> mud tubes.<br />

From 13 February to 16 April 2006, 144 termite samples were<br />

collected by Bahder from one location <strong>in</strong> eastern <strong>Ecuador</strong>,<br />

Yasuni Research Station of the Pontifi cal Catholic University<br />

of <strong>Ecuador</strong> (0° 41’S latitude, 76° 24’ W longitude, Fig. 1). Th is<br />

area is approximately 3,300 meters by 1,100 meters <strong>in</strong> size. At<br />

Yasuni, specimens were primarily taken from nests. When nests<br />

high on the boles or branches of trees were visible from the<br />

ground, the trees were climbed <strong>and</strong> termites were collected from<br />

the nests <strong>and</strong> forag<strong>in</strong>g tubes. From 14 – 19 August 2007, 53<br />

additional samples were collected by Bahder <strong>in</strong> three diff erent<br />

locations at the Yasuni Research Station, <strong>Ecuador</strong>. Additional<br />

samples were collected from the Napo Wildlife Center, <strong>and</strong> at<br />

Sacha Lodge (0° 28’ 15”S latitude, 76° 27’ 35”W longitude Fig.<br />

1) us<strong>in</strong>g the same techniques as <strong>in</strong> the 2006 survey except trees<br />

were not climbed. Additionally, freshly fallen, dry branches<br />

from the canopy were searched. Sacha Lodge was <strong>in</strong>cluded <strong>in</strong><br />

the 2007 survey because it is on the north side of the Napo<br />

River, essentially an extensive fl ood pla<strong>in</strong> reach<strong>in</strong>g to the<br />

Colombian border <strong>in</strong>clud<strong>in</strong>g the dra<strong>in</strong>ages of the Aguarico <strong>and</strong><br />

Putomayo Rivers. Th e area on the south side of the Napo River,<br />

Yasuni National Park, rises to a series of low hills dissected by<br />

smaller rivers. Th e areas surveyed at the Yasuni Research Station<br />

<strong>in</strong>cluded both terra fi rma <strong>and</strong> varzea, seasonally fl ooded forests.<br />

All termites were collected <strong>and</strong> stored <strong>in</strong> 85% ethanol.<br />

Termites were identifi ed us<strong>in</strong>g the keys provided by Constant<strong>in</strong>o<br />

530<br />

B. W. Bahder, R. H. Scheffrahn, J. Křeček, C. Keil & S. Whitney-K<strong>in</strong>g<br />

(2002), the reference collection at the University of Florida, <strong>and</strong><br />

additional authors as cited <strong>in</strong> the text <strong>and</strong> table. Th e specimens<br />

collected dur<strong>in</strong>g these studies were deposited at the University<br />

of Florida Termite Collection at the Fort Lauderdale Research<br />

<strong>and</strong> Education Center <strong>and</strong> <strong>in</strong> the Museum of Invertebrates <strong>in</strong><br />

the School of Biological Sciences of the Pontifi cal Catholic<br />

University of <strong>Ecuador</strong>, Quito, <strong>Ecuador</strong>.<br />

Results<br />

Th e survey by Křeček & Warner yielded 18 species<br />

<strong>in</strong> 12 genera <strong>in</strong>cluded <strong>in</strong> three families, Kalotermitidae,<br />

Rh<strong>in</strong>otermitidae, <strong>and</strong> Termitidae. Species<br />

recorded from this collection <strong>in</strong>clude Calcaritermes<br />

cf. temnocephalus (Silvestri 1901), Cr. brevis (Walker<br />

1853), Cr. fatulus (Light 1935), I. immigrans (Snyder<br />

1922), Neotermes holmgreni Banks 1918, Ru. panamae<br />

(Fig. 2a) (Snyder 1925) from the Kalotermitidae, Co.<br />

testaceus (L. 1758), Heterotermes tenuis (Hagen 1858)<br />

(Fig. 2b) from the Rh<strong>in</strong>otermitidae, Amitermes cf. amifer<br />

Silvestri 1901, two diff erent undeterm<strong>in</strong>ed species<br />

of Anoplotermes s. l. (soldierless termites) morphotyped<br />

by worker enteric valve armature as sp. 1 <strong>and</strong> sp. 5,<br />

an unidentifi ed species of Cyl<strong>in</strong>drotermes labeled sp. 1,<br />

Figure 1<br />

Collection sites (red <strong>and</strong> orange) represented <strong>in</strong> the surveys done by Křeček & Warner <strong>and</strong> Bahder, <strong>and</strong> literature records from previous papers (green).


Termites of <strong>Ecuador</strong><br />

Microcerotermes exiguus (Hagen 1858), Na. glabritergus<br />

(Snyder & Emerson <strong>in</strong> Snyder 1949), Na. guayanae<br />

(Holmgren 1910), <strong>and</strong> Na. nigriceps (Haldeman 1853)<br />

<strong>and</strong> two undeterm<strong>in</strong>ed Nasutitermes <strong>in</strong> the Termitidae.<br />

Th ese species were designated species 1 <strong>and</strong> 2.<br />

Th e survey by Bahder from 13 February 2006 to<br />

16 April 2006 focused on nest build<strong>in</strong>g species <strong>in</strong> one<br />

location <strong>in</strong> Amazonia <strong>and</strong> yielded 34 species <strong>in</strong> 18<br />

diff erent genera from two families, Rh<strong>in</strong>otermitidae<br />

<strong>and</strong> Termitidae (Table 1). Species newly recorded for<br />

<strong>Ecuador</strong> from this survey <strong>in</strong>clude Dolichorh<strong>in</strong>otermes<br />

longilabius (Emerson 1925), Rh<strong>in</strong>otermes nasutus (Perty<br />

1853) <strong>in</strong> the Rh<strong>in</strong>otermitidae, An. cf. banksi Emerson<br />

1925, An. parvus Snyder 1923, six unidentifi ed<br />

species of Anoplotermes, Armitermes cf. holmgreni Snyder<br />

1926, Ar. teevani, Ar. m<strong>in</strong>utus (Emerson 1925),<br />

Cavitermes tuberosus (Emerson 1925), Constrictotermes<br />

cavifrons (Holmgren 1910) (Fig. 2e), Co. pugnax Emerson<br />

1925, Cyl<strong>in</strong>drotermes parvignathus Emerson <strong>in</strong><br />

Snyder 1949, Em. neotenicus (Holmgren 1910) (Fig.<br />

2d), Ereymatermes cf. rotundiceps Constant<strong>in</strong>o 1991,<br />

cf. Grigiotermes Mathews 1977, Labiotermes labralis<br />

(Holmgren 1910), cf. Paraconvexitermes (Cancello <strong>and</strong><br />

Noirot 2003) sp. 1, Rotunditermes bragant<strong>in</strong>us (Fontes<br />

<strong>and</strong> B<strong>and</strong>eira 1979), <strong>and</strong> Syntermes sp<strong>in</strong>osus (Latreille<br />

1804) (Fig. 2f) <strong>in</strong> the Termitidae. Th ere were six additional<br />

species of Nasutitermes that could not be identifi<br />

ed <strong>and</strong> were designated species 2–7 based on morphological<br />

diff erences. Th ree other Nasutitermes were also<br />

found <strong>in</strong> this survey; Na. ephratae (Holmgren 1910),<br />

Na. guayanae (Holmgren 1910), <strong>and</strong> Na. sur<strong>in</strong>amensis<br />

(Holmgren 1910) (Termitidae).<br />

Th e survey by Bahder from 14 August 2007 to 19<br />

August 2007 yielded 12 species of termites from three<br />

families. Species collected dur<strong>in</strong>g this survey <strong>in</strong>cluded<br />

one undeterm<strong>in</strong>ed kalotermitid species, Co. testaceus,<br />

He. tenuis, <strong>and</strong> Rh<strong>in</strong>otermes marg<strong>in</strong>alis (L. 1758) from<br />

the family Rh<strong>in</strong>otermitidae. Species <strong>in</strong> the Termitidae<br />

<strong>in</strong>cluded Armitermes cf. holmgreni, Cornitermes pugnax,<br />

Cyl<strong>in</strong>drotermes sp. 1, Em. neotenicus, Na. sp. 1, Na.<br />

sp. 2, Na. corniger, <strong>and</strong> Na. ephratae. Four species of<br />

termites were found both west of the Andes <strong>and</strong> east<br />

of the Andes; Na. guayanae, Na. corniger, Co. testaceus,<br />

<strong>and</strong> He. tenuis. Species present only <strong>in</strong> the western part<br />

Figure 2<br />

Examples of termite soldiers found <strong>in</strong> <strong>Ecuador</strong>: a, Rugitermes panamae (western <strong>Ecuador</strong>); b, Heterotermes tenuis (eastern <strong>and</strong> western <strong>Ecuador</strong>); c, Nasutitermes<br />

cf. corniger (eastern <strong>and</strong> western <strong>Ecuador</strong>); d, Embiratermes neotenicus (eastern <strong>Ecuador</strong>); e, Constrictotermes cavifrons (eastern <strong>Ecuador</strong>); f, Syntermes sp<strong>in</strong>osus<br />

(eastern <strong>Ecuador</strong>); g, Anoplotermes sp 3 (eastern <strong>Ecuador</strong>); h, dilated foretibia of Anoplotermes sp. 3.<br />

531


532<br />

B. W. Bahder, R. H. Scheffrahn, J. Křeček, C. Keil & S. Whitney-K<strong>in</strong>g<br />

Table 1. Termite species from <strong>Ecuador</strong> listed alphabetically by family, subfamily, <strong>and</strong> genus. Taxa followed by asterisk are new ma<strong>in</strong>l<strong>and</strong> country records.<br />

Taxon <strong>Ecuador</strong> Distribution<br />

Previous<br />

Nearest Locality<br />

Previous<br />

Locality Reference<br />

Kalotermitidae<br />

cf. Calcaritermes sp. 4 Snyder 1949 (workers only)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Calcaritermes cf. temnocephalus 2 (Silvestri 1901)* Western <strong>Ecuador</strong> (coastal) Venezuela Silvestri 1901<br />

Cryptotermes brevis 2 (Walker 1853)*<br />

Structures only, pest species (nonendemic)<br />

Endemic to Chile, Peru Scheff rahn et al. 2008<br />

Cryptotermes darw<strong>in</strong>i 5 (Light 1935) Endemic to Galapagos Light 1935<br />

Cryptotermes fatalus 2 (Light 1935)* Galapagos <strong>and</strong> coastal ma<strong>in</strong>l<strong>and</strong> Light 1935<br />

Incisitermes galapagoensis 7 (Banks 1901) Galapagos Banks 1901<br />

Incisitermes immigrans 2 (Snyder 1922)* West of the Andes Constant<strong>in</strong>o 1998<br />

Incisitermes pacifi cus 5 (Banks 1901) Galapagos El Salvador Banks 1901<br />

Neotermes holmgreni 2 Banks 1918* West of the Andes Guyana Emerson 1925<br />

Rugitermes panamae 2 (Snyder 1925)*<br />

Rh<strong>in</strong>otermitidae<br />

West of the Andes Panama Snyder 1925<br />

Coptotermes testaceus 1,2,3,4 (L. 1758) Western <strong>and</strong> Eastern <strong>Ecuador</strong> Amazonia Constant<strong>in</strong>o 1998<br />

Dolichorh<strong>in</strong>otermes lanciarius 9 Engel & Krishna 2007 Eastern slopes of the Andes<br />

Dolichorh<strong>in</strong>otermes longilabius 3 (Emerson 1925)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Guyana Emerson 1925<br />

Heterotermes convex<strong>in</strong>otatus 5 (Snyder 1924) Western <strong>Ecuador</strong> Panama Constant<strong>in</strong>o 2001<br />

Heterotermes tenuis 2,3,4 (Hagen 1858) Western <strong>and</strong> Eastern <strong>Ecuador</strong> widespread Constant<strong>in</strong>o 2001<br />

Rh<strong>in</strong>otermes marg<strong>in</strong>alis 4 (L. 1758)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Constant<strong>in</strong>o 1991<br />

Rh<strong>in</strong>otermes nasutus 3 (Perty 1833)*<br />

Termitidae<br />

Apicotermit<strong>in</strong>ae<br />

Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Peru Constant<strong>in</strong>o 1998<br />

Anoplotermes cf. banksi 3 Emerson 1925* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Constant<strong>in</strong>o 1991<br />

Anoplotermes parvus 3 Snyder 1923* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Panama Snyder 1923<br />

Anoplotermes sp. 1 2* West of the Andes<br />

Anoplotermes sp. 2 3* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Anoplotermes sp. 3 3* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Anoplotermes sp. 4 3* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Anoplotermes sp. 5 2* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

cf. Grigiotermes 3 Mathews 1977 * Nasutitermit<strong>in</strong>ae<br />

Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Central Brazil Constant<strong>in</strong>o 1998<br />

Caetetermes taquarussu 13 Fontes 1981 Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Fontes 1981<br />

Constrictotermes cavifrons 3 (Holmgren 1910)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Peru Constant<strong>in</strong>o 1998<br />

Constrictotermes lat<strong>in</strong>otus 1 (Holmgren 1910) “<strong>Ecuador</strong>” (all surround<strong>in</strong>g regions) Holmgren 1910<br />

Ereymatermes cf. rotundiceps3 Constant<strong>in</strong>o 1991* Eastern, Lowl<strong>and</strong> <strong>Ecuador</strong> Colombia Constant<strong>in</strong>o 1991<br />

Nasutitermes cf. brevipilus2 Emerson 1925* Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Guyana Emerson 1925<br />

Nasutitermes corniger 1,3,4 (Motschulsky 1855) Eastern <strong>and</strong> Western Scheff rahn et al. 2006<br />

Nasutitermes dendrophilus 1 (Desneux 1906) West of the Andes<br />

Naustitermes ecuadorianus 1 (Holmgren 1910) West of the Andes<br />

Nasutitermes ephratae 3,4 (Holmgren 1910)*<br />

Nasutitermes glabritergus<br />

Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Neotropical Constant<strong>in</strong>o 1998<br />

2 Snyder & Emerson <strong>in</strong> Snyder<br />

1949<br />

Nasutitermes guayanae 2,3 (Holmgren 1910)* Eastern <strong>and</strong> Western Neotropical Holmgren 1910<br />

Nasutiermes m<strong>in</strong>or 12 (Holmgren 1906) Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Fontes & Filho 1998<br />

Nasutitermes nigriceps 2 (Haldeman 1853)* West of the Andes Colombia Holmgren 1910<br />

Nasutitermes peruanus 1 (Holmgren 1910) West of the Andes<br />

Nasutitermes sp. 1 2,4 * West of the Andes<br />

Nasutitermes sp. 2 3,4* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Nasutitermes sp. 3 3* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Nasutitermes sp. 4 3* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Nasutitermes sp. 5 3* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Nasutitermes sp. 6 3* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest


Termites of <strong>Ecuador</strong><br />

Taxon <strong>Ecuador</strong> Distribution<br />

of the country, not <strong>in</strong>clud<strong>in</strong>g species endemic to the<br />

Galapagos Isl<strong>and</strong>s, were Cryptotermes brevis, Cr. fatalus,<br />

In. immigrans, Ne. holmgreni, Ru. panamae (Fig. 2a),<br />

one unidentifi ed species of Anoplotermes labeled sp. 1,<br />

Con. lat<strong>in</strong>otus, Cor. acignathus, Na. dendrophilus,<br />

Na. ecuadorianus, Na. nigriceps, Na. peruanus, Na.<br />

tredecimarticulatis, Amitermes amiger, Cy. parvignathus,<br />

Microcerotermes exiguus, <strong>and</strong> Neo. talpoides. In the<br />

Previous<br />

Nearest Locality<br />

Previous<br />

Locality Reference<br />

Nasutitermes sp. 7 3* Western <strong>Ecuador</strong><br />

Nasutitermes sur<strong>in</strong>amensis 3 (Holmgren 1910)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Constant<strong>in</strong>o 1991<br />

Nasutitermes tredecimarticulatus 1 (Holmgren 1910) West of the Andes<br />

cf. Paraconvexitermes (Cancello & Noirot 2003) sp. 13* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Rotunditermes bragant<strong>in</strong>us 3 (Roonwal & Rathore<br />

1976)*<br />

Syntermit<strong>in</strong>ae<br />

Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Constant<strong>in</strong>o 1998<br />

Armitermes cf. holmgreni 3 Snyder 1926* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Snyder 1926<br />

Armitermes m<strong>in</strong>utus 3 Emerson 1925* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Constant<strong>in</strong>o 1998<br />

Armitermes teevani 3 Emerson 1925* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Bolivia Constant<strong>in</strong>o 1998<br />

Cornitermes acignathus 1 Silvestri 1901 West of the Andes Silvestri 1901<br />

Cornitermes pugnax 3,4 Emerson 1925* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Colombia Constant<strong>in</strong>o 1998<br />

Embiratermes neotenicus 3,4 (Holmgren 1906)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Peru Fontes 1985<br />

Embiratermes trans<strong>and</strong><strong>in</strong>us 1 (Araujo 1977) Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Labiotermes labralis 3 (Holmgren 1906)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Peru Holmgren 1906<br />

Rhynchotermes perarmatus 1 (Snyder 1925) Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Syntermes chaquimayensis 11 (Holmgren 1906) Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Syntermes molestus 11 (Burmeister 1839) Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Constant<strong>in</strong>o 1995<br />

Syntermes sp<strong>in</strong>osus 3 (Latreille 1804)<br />

Termit<strong>in</strong>ae<br />

Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Colombia Emerson 1965<br />

Amitermes n sp cf. amifer 3 (Silvestri 1901)* West of the Andes Brazil Silvestri 1901<br />

Cavitermes tuberosus 3 (Emerson <strong>in</strong> Snyder 1949)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Emerson 1925<br />

Cyl<strong>in</strong>drotermes parvignathus 3 (Emerson <strong>in</strong> Snyder 1949)* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Brazil Snyder 1949<br />

Cyl<strong>in</strong>drotermes sp. 1 4* Eastern, Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Cyl<strong>in</strong>drotermes sp. 2 2* West of the Andes Panama Snyder 1929<br />

Microcerotermes arboreus 2 Emerson 1925* “<strong>Ecuador</strong>” Guyana Constant<strong>in</strong>o 1998<br />

Microcerotermes exiguus 2 (Hagen 1858)* West of the Andes Colombia Holmgren 1912<br />

Neocapritermes opacus 8 (Hagen 1858) Eastern Andean slopes Brazil Krishna & Araujo 1968<br />

Neocapritermes talpoides 1 Krishna & Araujo1968 Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest<br />

Neocapritermes villosus 6 (Holmgren 1906) Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest Peru Krishna & Araujo 1968<br />

1 Araujo (1977)<br />

2 Křeček & Warner expedition, 16 December 2001-28 December 2001<br />

3 Bahder, 3 February 2006 – 15 May 2006<br />

4 Bahder, 14 – 19 August 2007<br />

5 Light (1935)<br />

6 Krishna & Araujo (1968)<br />

7 Banks (1901)<br />

8 Constant<strong>in</strong>o (1991)<br />

9 Engel & Krishna (2007)<br />

10 Snyder (1924)<br />

11Constant<strong>in</strong>o (1995)<br />

12 Fontes (1996)<br />

13 Fontes (1981)<br />

surveys done by Bahder <strong>in</strong> eastern <strong>Ecuador</strong>, two species<br />

were collected at Sacha Lodge north of the Napo River,<br />

which were not collected <strong>in</strong> Yasuni south of the Napo<br />

River. One was an unidentifi ed species of Cyl<strong>in</strong>drotermes<br />

<strong>and</strong> the other was Rh<strong>in</strong>otermes marg<strong>in</strong>alis. All other<br />

species collected north of the Napo River had been<br />

previously been collected south of the Napo River.<br />

533


Discussion<br />

Many regions <strong>and</strong> a variety of habitats <strong>in</strong> <strong>Ecuador</strong><br />

rema<strong>in</strong> either signifi cantly underrepresented <strong>in</strong> museum<br />

collections or have not been collected adequately<br />

for termites. Undoubtedly, there are more species that<br />

have yet to be recorded for <strong>Ecuador</strong> <strong>and</strong> probable, there<br />

are some that have yet to be discovered <strong>and</strong> described,<br />

particularly <strong>in</strong> Amazonian <strong>Ecuador</strong> <strong>and</strong> the eastern<br />

<strong>and</strong> western cloud forests to an elevation of about<br />

1,500 meters. In this report, we list a Calcaritermes that<br />

could not be identifi ed to species, six undeterm<strong>in</strong>ed<br />

species of Anoplotermes s. l., seven undeterm<strong>in</strong>ed Nasutitermes,<br />

an unknown species of Paraconvexitermes,<br />

an unidentifi ed species of Grigiotermes, an unidentifi<br />

ed species of Rhynchotermes, <strong>and</strong> two unidentifi ed<br />

Cyl<strong>in</strong>drotermes. Th ese specimens represent potentially<br />

19 species new to science <strong>and</strong> perhaps a new genus<br />

if exam<strong>in</strong>ed more closely. A recent list of the termites<br />

of Colombia (Madrigal 2003) conta<strong>in</strong>ed references to<br />

45 species of termites from 29 genera representative of<br />

only one family, Termitidae. We collected two species<br />

reported from Colombia, Syntermes sp<strong>in</strong>osus (Latreille<br />

1804) (Constant<strong>in</strong>o 1995) <strong>and</strong> Cornitermes pugnax<br />

(Emerson 1945) (Constant<strong>in</strong>o 1998) but not listed by<br />

Madrigal (2003).<br />

Between the 77 species listed <strong>in</strong> this report from<br />

<strong>Ecuador</strong> <strong>and</strong> the 45 from Colombia, there are only<br />

seven species that overlap, Co. testaceus, He. tenuis,<br />

Cor. acignathus, Na. brevissimus, Na. nigriceps, <strong>and</strong><br />

Micr. exiguus. Madrigal (2003) concentrated on pests<br />

<strong>and</strong> <strong>in</strong>sects <strong>in</strong> forestry practice while Bahder, Křeček,<br />

<strong>and</strong> Warner collected <strong>in</strong> prist<strong>in</strong>e, or less disturbed<br />

ecosystems.<br />

<strong>Ecuador</strong>ian Amazonia has several records that were<br />

collected <strong>in</strong>cidentally (Table 1) but the Bahder 2006<br />

<strong>and</strong> 2007 surveys were done <strong>in</strong> restricted, small areas<br />

that do not fully represent the entire region. Th ese<br />

Amazonian surveys also focused on nest build<strong>in</strong>g<br />

groups so that taxa liv<strong>in</strong>g <strong>in</strong> wood or that forage<br />

underground are underrepresented. Even though the<br />

surveys by Bahder overlooked certa<strong>in</strong> taxa, 34 species <strong>in</strong><br />

18 diff erent genera were recorded <strong>in</strong> a small area (3300<br />

meters long by 1100 meters wide). Clearly, there is<br />

high diversity of termites <strong>in</strong> the eastern lowl<strong>and</strong> forest<br />

of <strong>Ecuador</strong> <strong>and</strong> Yasuni <strong>in</strong> particular. Th e abundance of<br />

termite species <strong>in</strong> a relatively restricted area dem<strong>and</strong>s<br />

an explanation. Th ere are a number of factors that may<br />

contribute to the high diversity of termites found <strong>in</strong><br />

the Amazon region of <strong>Ecuador</strong>. First, there is a high<br />

diversity of woody plants from a variety of families. In<br />

a 50-hectare plot at the Yasuni Scientifi c Station, over<br />

1,200 woody plants, trees, shrubs <strong>and</strong> lianas have been<br />

534<br />

B. W. Bahder, R. H. Scheffrahn, J. Křeček, C. Keil & S. Whitney-K<strong>in</strong>g<br />

counted <strong>in</strong> a systematic survey (Valencia et al. 2004). It<br />

is easy to imag<strong>in</strong>e a similar array of herbivorous <strong>in</strong>sects<br />

specializ<strong>in</strong>g on various plant species, genera or families<br />

<strong>and</strong> a range of feed<strong>in</strong>g sites <strong>and</strong> styles. Consumption of<br />

dead wood is a diff erent matter as many of the diff erences<br />

<strong>in</strong> leaf, fl ower, <strong>and</strong> even woody tissue chemistry <strong>and</strong><br />

morphology that drive specialization by herbivores<br />

are no longer a factor after the death of the woody<br />

plant. Nevertheless, this diversity of woody plants has<br />

a large variety of structural <strong>and</strong> chemical diff erences<br />

<strong>in</strong> their woody tissue that may lead to specialization<br />

by termites. One of the basic dichotomies is palm vs.<br />

dicotyledonous trees. While <strong>in</strong> general, wood from<br />

palms is harder <strong>and</strong> more resistant to decay than<br />

other trees, palm trunks are clearly degraded slowly<br />

over time <strong>in</strong> the forest <strong>and</strong> termites play a role <strong>in</strong> this<br />

degradation. Th e potential specialization of separate<br />

groups of termites on palm wood must be confi rmed<br />

with fi eld observations <strong>and</strong> laboratory studies. <strong>Recent</strong><br />

work suggests that traits of <strong>in</strong>dividual plant species play<br />

a signifi cant role <strong>in</strong> the rate of litter decomposition <strong>in</strong><br />

forests (Cornwell et al. 2008). Termites are important<br />

members of the decomposer community <strong>and</strong> are likely<br />

to be diff erentially aff ected by the species composition<br />

of coarse woody litter. Further, termites are known to<br />

feed on a variety of substrates <strong>in</strong> addition to wood <strong>in</strong><br />

vary<strong>in</strong>g degrees of decay. Th is <strong>in</strong>cludes sound wood, leaf<br />

litter, lichen, humus, soil <strong>and</strong> perhaps even herbaceous<br />

growth (Traniello & Leuthold 2000).<br />

Tropical forests can be classifi ed on a cont<strong>in</strong>uum<br />

from dry to wet with seasonal <strong>in</strong>undations. Soils are<br />

typically fi ne textured sediments but are also classifi ed<br />

<strong>in</strong>to a variety of types. Especially for those termites<br />

that nest or forage underground, these diff erences <strong>in</strong><br />

hydrology <strong>and</strong> soil may result <strong>in</strong> del<strong>in</strong>eation of species.<br />

Th e subterranean species are not well-represented <strong>in</strong><br />

the collections reported <strong>in</strong> this paper. Tropical forests<br />

have multiple levels of canopy <strong>and</strong> it is conceivable<br />

that diff erent species may construct nests at diff erent<br />

levels <strong>in</strong> the canopy. Our sampl<strong>in</strong>g <strong>in</strong> this paper did<br />

not reach much higher than 25m but it is possible<br />

that we captured foragers from nests higher than those<br />

we sampled directly (Roison et al. 2006). Agonistic<br />

<strong>in</strong>teractions with ants may also drive specialization <strong>in</strong><br />

tropical termites. Predatory forag<strong>in</strong>g by ants is a major<br />

factor <strong>in</strong> the ecology of tropical forests (Hölldobler<br />

& Wilson 1990). Th e abundance of the Nasutitermes<br />

group (15 species or about 25% of the species list) is<br />

probably due <strong>in</strong> large part to their ability to chemically<br />

defend their large nests aga<strong>in</strong>st attack by forag<strong>in</strong>g ants.<br />

It is not unreasonable to hypothesize that pressure<br />

from forag<strong>in</strong>g ants has resulted <strong>in</strong> diff er<strong>in</strong>g adaptations<br />

<strong>and</strong> diversifi cation <strong>in</strong> other termite groups.


Termites of <strong>Ecuador</strong><br />

Perhaps the most important factor driv<strong>in</strong>g termite<br />

diversity is the <strong>in</strong>teraction between the diversity<br />

of wood types <strong>and</strong> the microorganisms coloniz<strong>in</strong>g<br />

the wood as the decomposition process beg<strong>in</strong>s. Th e<br />

complex <strong>in</strong>teractions between the type of wood,<br />

the environment, <strong>and</strong> the diversity of compet<strong>in</strong>g<br />

microorganisms that colonize this wood <strong>in</strong> successive<br />

waves can be a signifi cant factor driv<strong>in</strong>g termite diversity.<br />

Some microorganisms might be completely refractory<br />

or repellant to virtually all termites while others are<br />

likely to be completely compatible with termite<br />

feed<strong>in</strong>g. Th e diverse microorganism community is<br />

likely to form a gradient between these extremes. Th is<br />

gradient will vary for each species <strong>and</strong> their associated<br />

h<strong>in</strong>d gut microbial symbiotes. Th e complexity <strong>and</strong><br />

importance of soil <strong>and</strong> litter microbial communities<br />

<strong>in</strong> nutrient cycl<strong>in</strong>g <strong>and</strong> productivity has recently<br />

become more apparent (Van de Heijden et al. 2008).<br />

Th e <strong>in</strong>fl uence of these microorganism communities<br />

on wood degradation <strong>and</strong> termite forag<strong>in</strong>g <strong>in</strong> tropical<br />

systems is likely to be signifi cant.<br />

Th ere is also evidence for classic geographic<br />

isolat<strong>in</strong>g mechanisms promot<strong>in</strong>g species diversity.<br />

Th e two defi nite endemic species listed for <strong>Ecuador</strong><br />

are kalotermitids from the Galápagos Isl<strong>and</strong>s. Th ese<br />

oceanic isl<strong>and</strong>s were formed by volcanism about 3-5<br />

millions years ago <strong>and</strong> are isolated from the ma<strong>in</strong>l<strong>and</strong><br />

by 1000 km of open ocean. Th e degree of endemism<br />

<strong>in</strong> these isl<strong>and</strong>s is well known (Kricher 2002). Th ese<br />

species are similar to ma<strong>in</strong>l<strong>and</strong> species, eg. Cr. brevis<br />

on the ma<strong>in</strong>l<strong>and</strong> <strong>and</strong> Cr. darw<strong>in</strong>ii <strong>in</strong> the Galápagos<br />

(Scheff ran et al. 2008). Th e dom<strong>in</strong>ant physiographic<br />

feature of <strong>Ecuador</strong> is the Andes Mounta<strong>in</strong>s runn<strong>in</strong>g<br />

north – south <strong>and</strong> separat<strong>in</strong>g the country <strong>in</strong>to 3 zones,<br />

the Andean Highl<strong>and</strong>s with a series of <strong>in</strong>ter<strong>and</strong>ean<br />

valleys, the Western Coast, <strong>and</strong> <strong>in</strong> the east, Amazonia.<br />

Th e Andes represent a formidable barrier to gene fl ow<br />

between the east <strong>and</strong> the west for <strong>in</strong>sect populations<br />

<strong>in</strong> general. Only 4 species of termites were found<br />

both east <strong>and</strong> west of the Andes. Not count<strong>in</strong>g the<br />

Galapagos endemic species, 18 termite species are<br />

found exclusively <strong>in</strong> the west of the Andes. Th ere are<br />

27 species that occur exclusively east of the Andes <strong>in</strong><br />

Amazonia. Despite signifi cant collect<strong>in</strong>g eff ort south<br />

of the Napo, there were two species collected north<br />

of the river that were not found <strong>in</strong> the south. Th is is<br />

possibly due to the region north of the Napo River<br />

be<strong>in</strong>g a large fl ood pla<strong>in</strong>. Th e other 10 species collected<br />

north of the Napo were collected <strong>in</strong> the south as well.<br />

It is likely that this discont<strong>in</strong>uity may result from<br />

changes <strong>in</strong> physiography, fl ood pla<strong>in</strong> north of the river<br />

<strong>and</strong> upl<strong>and</strong> habitat south of the Napo, as opposed to a<br />

barrier formed by the river itself.<br />

Acknowledgements. Th e survey from 13 February 2006 – 16<br />

April 2006, was done under the supervision of the Pontifi ca<br />

Universidad Catolica del <strong>Ecuador</strong> through the Yasuni Research<br />

Station. We thank Dow Agrosciences for fund<strong>in</strong>g that aided<br />

<strong>in</strong> the 2006 survey. Dur<strong>in</strong>g the 2007 survey, Sacha Lodge<br />

provided accommodations <strong>and</strong> support. We are grateful to<br />

Jonathan Rutkowski for his help <strong>in</strong> the fi eld.<br />

References<br />

Araujo R. L. 1977. A new species of Armitermes from <strong>Ecuador</strong> (Isoptera,<br />

Termitidae, Nasutitermit<strong>in</strong>ae) with notes on the distribution of other<br />

<strong>Ecuador</strong>ian species. Sociobiology 2: 195-198.<br />

Banks N. 1901. Th ysanura <strong>and</strong> Termitidae. Papers from the Hopk<strong>in</strong>s<br />

Stanford Galapagos Expedition 1898-99. Proceed<strong>in</strong>gs of the Wash<strong>in</strong>gton<br />

Academy of Science 3: 341-346.<br />

Banks N. 1918. Th e termites of Panama <strong>and</strong> British Guiana. Bullet<strong>in</strong> of the<br />

American Museum of Natural History 38: 659-667.<br />

Cancello E. M., Noirot C. 2003. Paraconvexitermes acangapua (Isoptera:<br />

Termitidae, Nasutitermitnae), a new genus <strong>and</strong> new species of the socalled<br />

“small neotropical soil-feed<strong>in</strong>g nasutes” from South America.<br />

Annales de la Société entomologique de France (n.s.) 39: 187-193.<br />

Constant<strong>in</strong>o R. 1991. Termites (Insecta, Isoptera) from the lower Japurá<br />

River, Amazonas State, Brazil. Boletim do Museu Paraense Emílio Goeldi<br />

Série Zoologia 7: 189-224.<br />

Constant<strong>in</strong>o R. 1992. Abundance <strong>and</strong> diversity of termites (Insecta: Isoptera)<br />

<strong>in</strong> two sites of primary ra<strong>in</strong>forest <strong>in</strong> Brazilian Amazonia. Biotropica<br />

24: 420-430.<br />

Constant<strong>in</strong>o R. 1995. Revision of the neotropical termite genus, Syntermes<br />

Holmgren (Isoptera: Termitidae). University of Kansas Science Bullet<strong>in</strong><br />

55: 455-518.<br />

Constant<strong>in</strong>o R. 1998. Catalog of the termites of the New World. Arquivos<br />

de Zoologia 35: 135-230.<br />

Constant<strong>in</strong>o R. 2001. Key to the soldiers of South American Heterotermes<br />

with a new species from Brazil (Isoptera: Rh<strong>in</strong>otermitidae). Insect<br />

Systematics <strong>and</strong> Evolution 31: 463-472.<br />

Constant<strong>in</strong>o R. 2002. An illustrated key to neotropical termite genera<br />

(Insecta: Isoptera) based primarily on soldiers. Zootaxa 67: 1-40.<br />

Cornwell W. K., Cornelissen J. H. C., Amatangelo K., Dorrepaal E.,<br />

Ev<strong>in</strong>er V. T., Godoy O., Hobbie S. E., Hoorens B., Kurokawa H.,<br />

Perez Hargu<strong>in</strong>deguy N., Quested H. M., Santiago L. S., Wardle<br />

D. A., Wright I. J., Aerts R., Allison S. D., van Bodegem P., Brovk<strong>in</strong><br />

V., Chata<strong>in</strong> A., Callaghan T., Díaz S., Garnier E., Gurvich D.<br />

E., Kazakou E., Kle<strong>in</strong> J. A., Read J. P., Reich B., Soudzilovskaia<br />

N. A., Vaieretti M. V., Westoby M. 2008. Plant species traits are the<br />

predom<strong>in</strong>ant control on litter decomposition rates with<strong>in</strong> biomes<br />

worldwide. Ecology Letters 11: 1065-1071.<br />

Desneux J. 1906. Varietés termitologiques. Annales de la Societé<br />

entomologique de Belgique 49: 336-360.<br />

Donovan S. E., Eggleton P ., Bignell D. E. 2001. Gut content analysis <strong>and</strong><br />

a new feed<strong>in</strong>g group classifi cation of termites. Ecological <strong>Entomology</strong><br />

26: 356-366.<br />

Emerson A. E. 1925. Th e termites of Kartabo Bartica District, British<br />

Guiana. Zoologica 6: 291-457.<br />

Emerson A. E. 1945. Th e neotropical genus Syntermes (Isoptera: Termitidae).<br />

Bullet<strong>in</strong> of the American Museum of Natural History 83:<br />

427-472.<br />

Emerson A. E., Banks F. A. 1965. Th e neotropical genus Labiotermes<br />

(Holmgren): its phylogeny, distribution <strong>and</strong> ecology (Isoptera, Termitidae,<br />

Nasutitermit<strong>in</strong>ae). American Museum Novitates 2208: 1-33.<br />

Engel M. E., Krishna K. 2007. New Dolichorh<strong>in</strong>otermes from <strong>Ecuador</strong><br />

<strong>and</strong> <strong>in</strong> Mexican Amber (Isoptera: Rh<strong>in</strong>otermitidae). American Museum<br />

Novitates 3592: 1-8.<br />

535


Fontes L. R. 1979. Atlantitermes, novo genero de cupim, com duas novas<br />

especies do Brasil (Isoptera, Termitidae, Nasutitermit<strong>in</strong>ae). Revista<br />

Brasileira de Entomologia 23: 219-227.<br />

Fontes L. R. 1981. Caetetermes taquarussu, a new genus <strong>and</strong> species of<br />

<strong>Ecuador</strong>ian nasute (Isoptera, Termitidae, Nasutitermit<strong>in</strong>ae). Revista<br />

Brasileira de Entomologia 25: 135-140.<br />

Fontes L. R. 1985. New genera <strong>and</strong> new species of Nasutitermit<strong>in</strong>ae from<br />

the neotropical region (Isoptera, Termitidae). Revista Brasileira de<br />

Zoologia 3: 7-25.<br />

Fontes L. R. 1996. Controle de cup<strong>in</strong>s em ambientes urbanos. Simposio<br />

Lat<strong>in</strong>o-Americano Sobre Controle de Praga Urbanas 2: 53-68.<br />

Fontes L. R., B<strong>and</strong>eira A. G. 1979. Redescription <strong>and</strong> comments on the<br />

neotropical genus Rotunditermes (Isoptera, Termitidae, Nasutitermit<strong>in</strong>ae).<br />

Revista Brasileira de Entomologia 23: 107-110.<br />

Hagen H. A. 1858. Specielle Monographie der Termiten. L<strong>in</strong>nea Entomologica<br />

12: 4-342.<br />

Hölldobler B., Wilson E. O. 1990. Th e Ants. Harvard University Press,<br />

Cambridge.<br />

Holmgren N. 1906. Studien über südamerikanische Termiten. Zoologische<br />

Jahrbücher Abteilung Systematik 23: 521-676.<br />

Holmgren N. 1910. Versuch e<strong>in</strong>er Monographie der amerikanische<br />

Eutermes – Arten. Jahrbüch der Hamburgischen Wissenschaftlichen<br />

Anstalten 27: 171-325.<br />

Holmgren N. 1911. Bemerkungen uber e<strong>in</strong>ige Termiten-Arten. Zoologischer<br />

Anzeiger 37: 545-553.<br />

Holmgren N. 1912. Termitenstudien 3. Systematic der Termiten. Die<br />

Familie Metatermitidae. Kungliga Svenska Vetenskapsakademiens<br />

H<strong>and</strong>l<strong>in</strong>gar 48: 1-166.<br />

Kricher J. 2002. Galapagos. Th is Archipelago. Smithsonian Institution<br />

Press, Wash<strong>in</strong>gton.<br />

Krishna K. 1961. A generic revision <strong>and</strong> phylogenetic study of the family<br />

Kalotermitidae (Isoptera). Bullet<strong>in</strong> of the American Museum of Natural<br />

History 122: 303-408.<br />

Krishna K., Araujo R. L. 1968. A revision of the neotropical genus<br />

Neocapritermes (Isoptera, Termitidae, Nasutitermit<strong>in</strong>ae). Bullet<strong>in</strong> of the<br />

American Museum of Natural History 138: 84-138.<br />

Light S. F. 1935. Th e Templeton Crocker Expedition of the California Academy<br />

of Sciences, 1932. California Academy of Sciences 21: 233-258.<br />

L<strong>in</strong>naeus C. 1758. Systema Naturae. Ed. 10 th . Uppsala.<br />

Madrigal C. A. 2003. Insectos Forestales en Colombia. Universidad Nacional<br />

de Colombia. Facultad de Ciencias, Medellín, 848 p.<br />

Mathews A. G. A. 1977. Studies on termites from the Mato Grosso State,<br />

Brazil. Rio de Janeiro: Academia Brasileira de Ciencias. 267 p.<br />

© Société Entomologique de France<br />

536<br />

B. W. Bahder, R. H. Scheffrahn, J. Křeček, C. Keil & S. Whitney-K<strong>in</strong>g<br />

Motschulsky V. 1855. Études entomologiques 4. Imprimerie de la Societé de<br />

Litérature F<strong>in</strong>noise, Hels<strong>in</strong>gfors, 84 p.<br />

Rois<strong>in</strong> Y., Dejean A., Corbara B., Orivel J., Samaniego M., Leponce M.<br />

2006. Vertical stratifi cation of the termite assemblage<strong>in</strong> a neotropical<br />

ra<strong>in</strong>forest. Oecologia DOI 10.1007/s00442-006-0449-5.<br />

Scheff rahn R. H., Křeček J., Szalanski A. L., Aust<strong>in</strong> J. W. 2005.<br />

Synonymy of the neotropical arboreal termites, Nasutitermes corniger<br />

<strong>and</strong> N. costalis (Isoptera: Termitidae), with evidence from morphology,<br />

genetics, <strong>and</strong> biogeography. Annals of the Entomological Society of<br />

America 98: 273-281.<br />

Scheff rahn R. H., Křeček J., Ripa R., Luppich<strong>in</strong>i P. 2008. Endemic<br />

orig<strong>in</strong> <strong>and</strong> vast anthropogenic dispersal of the West Indian drywood<br />

termite. Biological Invasions 11: 787-799.<br />

Silvestri F. 1901. Nota prelim<strong>in</strong>are sui termitidi sud-americani. Bollett<strong>in</strong>o<br />

dei Musei di Zoologia e Anatomia Comparata della Università di Tor<strong>in</strong>o<br />

16: 1-8.<br />

Snyder T. E. 1923. Th ree new termites from the Canal Zone, Panama.<br />

Proceed<strong>in</strong>gs of the Entomological Society of Wash<strong>in</strong>gton 25: 126-131.<br />

Snyder T. E. 1924. Descriptions of new species <strong>and</strong> hithero unknown<br />

castes of termites from America <strong>and</strong> Hawaii. Proceed<strong>in</strong>gs of the U.S.<br />

National Museum 64: 1- 45.<br />

Snyder T. E. 1925. New American termites <strong>in</strong>clud<strong>in</strong>g a new subgenus.<br />

Journal of the Wash<strong>in</strong>gton Academy of Science 15: 152-162.<br />

Snyder T. E. 1926. Termites collected on the Mulford Biological<br />

Exploration to the Amazon Bas<strong>in</strong> 1921-1922. Proceed<strong>in</strong>gs of the U.S.<br />

National Museum 68: 1-76.<br />

Snyder T. E. 1929. New termites from the Antilles <strong>and</strong> Middle America.<br />

Proceed<strong>in</strong>gs of the Entomological Society of Wash<strong>in</strong>gton 31: 79-87.<br />

Snyder T. E. 1949. Catalog of the termites (Isoptera) of the world.<br />

Smithsonian Miscellaneous Contributions 112: 1-490.<br />

Traniello J. F. A., Leuthold R. H. 2000. Behavior <strong>and</strong> ecology of forag<strong>in</strong>g<br />

<strong>in</strong> termites, p. 141-168 <strong>in</strong> Abe T., Bignell D. E., Higashi M. (eds.),<br />

Termites: evolution, sociality, symbioses, ecology. Kluwer Academic,<br />

Dordrecht, Th e Netherl<strong>and</strong>s<br />

Valencia R., Foster R. B., Villa G., Condit R., Svenn<strong>in</strong>g J.-C., Hern<strong>and</strong>ez<br />

C., Romoleroux K., Losos E., Magard E., Balslev H. 2004. Tree<br />

species distributions <strong>and</strong> local habitat variation <strong>in</strong> the Amazon: Large<br />

forest plot <strong>in</strong> eastern <strong>Ecuador</strong>. Journal of Ecology 92: 214-229.<br />

Van der Heijden M. G. A., Verkade S., de Bru<strong>in</strong> S. J. 2008. Mycorrhizal<br />

fungi reduce the negative eff ects of nitrogen enrichment on plant<br />

community structure <strong>in</strong> dune grassl<strong>and</strong>. Global Change Biology 14:<br />

2626-2635.<br />

La Directrice de la Publication : B. FREROT<br />

Tous droits de traduction, d’adaptation et de reproduction par tous procédés réservés pour tous pays<br />

La loi du 11 mars 1957 n’autorisant, aux termes des al<strong>in</strong>éas 2 et 3 de l’article 41, d’une part, que les « copies ou reproductions strictement<br />

réservées à l’usage privé du copiste et non dest<strong>in</strong>ées à une utilisation collective » et d’autre part, que les analyses et les courtes citations dans un but<br />

d’exemple ou d’illustration, « toute représentation ou reproduction, <strong>in</strong>tégrale ou partielle, faite sans le consentement de l’auteur ou de ses ayants<br />

droit ou ayants cause, est illicite » (al<strong>in</strong>éa 1 er de l’article 40).<br />

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et<br />

suivants du Code pénal.<br />

Imprimé et mis en page en République Tchèque par Document Data Services, Na Klaudiánce 21, 147 00 Prague 4<br />

Dépôt légal : décembre 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!