Elena L. Markhaseva

CALANOID COPEPODS
 OF THE FAMILY AETIDEIDAE OF THE WORLD OCEAN

RUSSIAN ACADEMY OF SCIENCES ZOOLOGICAL INSTITUTE

Calanoid copepods of the family Aetideidae of the World Ocean

Elena L. Markhaseva

Труды Зоологического института Российской Академии наук Trudy Zoologicheskogo Instituta Rossiiskoi Akademii Nauk (Proceedings of the Zoological Institute, Russian Academy of Sciences)

TOM 268

Главный редактор директор Зоологического института РАН А.Ф. Алимов

Редакционная коллегия:
Я.И. Старобогатов (редактор серии), Ю.С. Балаиов, Т.А. Асанович, С.Д. Гребельный, И.С. Даревский, В.А. Заславский, С.Ю. Кузнецов, В.А. Тряпицьн, И.М. Фокии, В.В. Хлебович

Редакторы тома:
Я.И. Старобогатов, И.М. Кержнер

Редактор перевода: С.В. Соловьев

УДК 595.341

Мархасева Е.Л. Веслоногие ракообразные (Calanoida: Aetideidae) Мирового океана. Спб, 1996. 331 с. (Труды Зоологического института РАН. Том 268).

Markhaseva E.L. Calanoid copepods of the family Actidcidac of the World Ocean. St. Petersburg, 1996. 331 pp. (Trudy Zoologicheskogo Instituta RAN. Vol. 268).

Книга является продолжением издания "Веслоногие ракообразные морей СССР и сопределыных вод" в серии "Определители по фауне СССР, издаваемыс Зоологическим инстутутом АН СССР". Она содержит оиределительные таблицы и описания 25 родов и 166 видов веслоногих ракообразных Actideidae Мирового океана, сведения по их систематике, географическому и вертикальному распределению. Библиогр. 184 назв. Илл. 249. Табл. 1.

This book is an Identification Manual for calanoid copepods of the family Aetideidae. It is a sequel to the book "Oar-footed crustaceans (Copepoda, Calanoida) of the USSR seas and adjacent waters" in the series (Opredeliteli po faune SSSR, izdavaemye Zoologicheskim Institutom Akademii Nauk SSSR). It includes descriptions and identification keys to 25 genera and 166 species of aetideid calanoid copepods with data on the taxonomy, geographical and vertical distribution. Bibliography: 184 titles, 249 figs., 1 table.

Dedicated to the memory of Konstantin A. Brodsky

Calanoid copepods of the family Aetideidae of the World Ocean

Elena L. Markhaseva
Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1., St.Petersburg, 199034, Russia

Introduction

This book is an Identification Manual for calanoid copepods of the family Aetideidae. It is a sequel to the book "Oar-footed crustaceans (Copepoda, Calanoida) of the USSR seas and adjacent waters" (Brodsky et al., 1983) which includes the "General part" (Brodsky, 1983: 9-138) with data on the morphology, classification, geographical distribution and biology of some species of the Calanoida and the "Systematic part" (Brodsky et al., 1983: 139-356) with descriptions and identification keys of calanoid copepods of the families Calanidae up to and including Spinocalanidae.

From about 180 described species of Aetideidae more than 150 are included in the Manual. Most of the omitted species are poorely described and not examined by the author. The Aetideidae are mostly oceanic inhabitants; they are also found in brackish (Jaschnovia) and fresh (Senecella) waters. Aetideids occur in all vertical zones of the pelagial and near-bottom environments in all biogeographical zones of the World Ocean, but the majority inhabit deep waters.

The work was performed primarily at the Zoological Institute, Russian Academy of Sciences (St.Petersburg) using the museum's collections, but it prove impossible without access to the collections of other museums and institutes. I thank my colleagues for their help in obtaining material for study. 1 am particularly grateful to Academician M.E. Vi-
nogradov (Institute of Oceanology, Moscow) and to Dr. M.V. Heptner (Zoological Museum of Moscow State University) for placing at my disposal the unique collection of deepwater plankton catches obtained during the R/V "Vitjaz" cruises. In this work I also used material from the S.O.S.C. (Smithsonian Institution, Washington, D.C.), and I am very thankful to Dr. F. Ferrari for loaning this collection to me. At the final stage the opportunity arose to examine the collection of Aetideidae identified by G.O. Sars and housed in the Zoological Museum of Oslo. I am very thankful to Prof. M. Christiansen (Zoological Museum, University of Oslo) for making it possible for me to work with this collection.

List of abbreviations:

The following abbreviations are used in the descriptions (Fig. 1): Ce, head, cephalon; Th1-Th5, first-fifth thoracic segments; Gn, genital segment; $A b d l-A b d 4$, first-fourth abdominal segments; $A 1$, antennule; $A 2$, antenna; $M d$, mandible; $M x 1$, maxillule; $M x 2$, maxilla; Mxp, maxilliped; Gntb, gnathobase; P.md, mandibular palp; PI-P5, first-fifth pairs of thoracic (swimming) legs; R, rostrum; Re, exopodite; $R i$, endopodite; B, basipodite; C, coxopodite.

Collection data on the examined material is given in the Table 1; in the descriptions of species, only respective numbers of samples are listed.

Fig. 1. Ce, head, cephalon; Thl-Th5, first-fifth thoracic segments; Gn, genital segment; Abd1-Abd4, first-fourth abdominal segments; A1, antennule; A2, antenna; Md, mandible; Mx1, maxillule; Mx2, maxilla; Mxp, maxilliped; Gntb, gnathobase; P.md, mandibular palp; P1-P5, first-fffh pairs of thoracic (swimming) legs; R, rostrum; Re, exopodite; Ri , endopodite; B , basipodite; C , coxopodite; P , protopodite.

Systematic Index

1 Genus Aetideus Brady, 1883

1. A. acutus Farran, 1929 12
2. A. arcuatus (Vervoort, 1949) 14
3. A. armatus (Boeck, 1872) 14
4. A. bradyi Scott, 1909 17
5. A. divergens Bradford, 1971. 17
6. A. giesbrechti (Cleve, 1904) 18
7. A. mexicanus Park, 1974. 21
8. A. pacificus Brodsky, 1950 21
9. A. pseudarmatus Bradford, 1971 24
10. A. truncatus Bradford, 1971 24
11. Genus Aetideopsis Sars, 1903
12. A. albatrossae Shih \& Maclellan, 1981 . . 27
13. A. armata (Boeck, 1872) 27
14. A. carinata Bradford, 1969 32
15. A. cristata Tanaka, 1957. 32
16. A. minor (Wolfenden, 1911) 32
17. A multiserrata (Wolfenden, 1904) 37
18. A. retusa Grice \& Hulsemann, 1967 37
19. A. rostrata Sars, 1903 42
20. A. tumorosa Bradford, 1969 42
21. Genus Azygokeras Koeller \& Littlepage, 1976
22. A. columbiae Koeller \& Littlepage, 197647 47
23. Genus Batheuchaeta Brodsky, 1950
24. B. anomala Markhaseva, 1981 51
25. B. antarctica Markhaseva, 1986 53
26. B. gurjanovae (Brodsky, 1955) 53
27. B. heptneri Markhaseva, 1981 53
28. B. lamellata Brodsky, 1950 57
29. B. peculiaris Markhaseva, 1983 58
30. B. pubescens Markhaseva, 1986 58
31. B. tuberculata Markhaseva, 1986 61
32. Genus Bradyetes Farran, 1905
33. B. inermis Farran, 1905 64
34. B. matthei Johannessen, 1976. 64
35. Genus Bradyidius Giesbrecht, 1897
36. B. angustus (Tanaka, 1957) 70
37. B. arnoldi Fleminger, 1957. 70
38. B. armatus Giesbrecht, 1897 70
39. B. curtus Markhaseva, 1993 74
40. B. Iuluae Grice, 1972 74
41. B. pacificus (Brodsky, 1950) 74
42. B. rakuma (Zvereva, 1977). 79
43. B. saanichi Park, 1966 79
44. B. similis (Sars, 1902) 79
45. B. subarmatus Markhaseva, 1993 81
46. Genus Chiridiella Sars, 1907
47. Ch. abyssalis Brodsky, 1950 88
48. Ch. bichela Deevey, 1974 88
49. Ch. bispinosa Park, 1970 88
50. Ch. brachydactyla Sars, 1907 92
51. Ch. brooksi Deevey, 1974 92
52. Ch. chainae Grice, 1969 93
53. Ch. gibba Deevey, 1974. 97
54. Ch. kuniae Deevey, 1974 97
55. Ch. macrodactyla Sars, 1907 99
56. Ch. ovata Deevey, 1974 99
57. Ch. pacifica Brodsky, 1950 99
58. Ch reductella Markhaseva, sp.n. 104
59. Ch. sarsi Markhaseva, 1983. 104
60. Ch. smoki Markhaseva, 1983 108
61. Ch. subaequalis Grice \& Hulsemann, 1965108
62. Genus Chiridius Giesbrecht, 1892
63. Ch. gracilis Farran, 1908 111
64. Ch. longispimus Tanaka, 1957 111
65. Ch molestus Tanaka, 1957 113
66. Ch. obtusifrons Sars, 1903 116
67. Ch. pacificus Brodsky, 1950 119
68. Ch. polaris Wolfenden, 1911 119
69. Ch. poppei Giesbrecht, 1982 123
70. Genus Chirundina Giesbrecht, 1895
71. Ch. alaskaensis (Tanaka, 1969). 130
72. Ch. indica Sewell, 1929 130
73. Ch. streetsii Giesbrecht, 1895 130
74. Genus Chirundinella Tanaka, 1957
75. Ch. magna (Wolfenden, 1911) 135
76. Genus Comantenna Wilson, 1924
77. C. brevicornis (Boeck, 1872) 137
78. C. crassa Bradford, 1969. 138
79. C. curtisetosa Alvarez, 1986 138
80. C. recurvata Grice \& Hulsemann, 1970 140
81. Genus Crassantenna Cole et al., 1972
82. C. comosa Bradford, 1969 144
83. C. mimorostrata Bradford, 1969 144
84. Genus Euchirella Giesbrecht, 1888
85. E. amoena Giesbrecht, 1888 147
86. E. bella Giesbrecht, 1888 147
87. E. bitumida With, 1915 149
88. E. curticauda Giesbrecht, 1888 149
89. E. formosa Vervoort, 1949 154
90. E. galeata Giesbrecht, 1888. 154
91. E. grandicornis Wilson, 1950 156
92. E. maxima Wolfenden, 1905 156
93. E messinensis indica Vervoort, 1949. 158
94. E. messinensis messinensis (Claus, 1863) 160
95. E. pseudopulchra Park, 1976 162
96. E. pseudotruncata Park, 1975 162
97. E. pulchra (Lubbock, 1856) 165
98. E. rostrata (Claus, 1866) 167
99. E. similis Wolfenden, 1911 167
100. E. speciosa Grice \& Hulsemann, 1968. 167
101. E. splendens Vervoort, 1963 169
102. E. truncata Esterly, 1911 170
103. E. unispina Park, 1968 173
104. E. venusta Giesbrecht, 1888 175
105. Genus Gaetanus Giesbrecht, 1888
106. G. antarclicus Wolfenden, 1905 178
107. G. armiger Giesbrecht, 1888 180
108. G. brachyurus Sars, 1907 183
109. G. brevicaudatus (Sars, 1907) 183
110. G. brevicornis Esterly, 1906 187
111. G brevirostris Brodsky, 1950 187
112. G. brevispinus (Sars, 1900) 187
113. G. curvicornis Sars, 1905 195
114. G. inermis (Sars, 1907). 196
115. G. simplex Brodsky, 1950. 196
116. G. kruppii Giesbrecht, 1903 196
117. G. latiffons Sars, 1925 201
118. G. miles Giesbrecht, 1888. 204
119. G. minispinus Tanaka, 1969 204
120. G. minor Farran, 1905 205
121. G. minutus Sars, 1907. 207
122. G. paracurvicornis Brodsky, 1950. 211
123. G. pileatus Farran, 1903 211
124. G. pseudolatifrons Markhaseva, sp.n. 213
125. G. pungens Giesbrecht, 1895 214
126. G. robustus (Sars, 1905) 217
127. G. rubellus Markhaseva, sp.n. 217
128. G. secundus Esterly, 1911 217
129. G. tenuispinus (Sars, 1900). 221
130. Genus Jaschnovia Markhaseva, 1980
131. Ja. brevis (Farran, 1936). 226
132. Ja. tolli (Linko, 1913). 226
133. Genus Lutamator Bradford, 1969
134. L. elegans Alvarez, 1984 231
135. L. hurlei Bradford, 1969 231
136. Genus Mesocomantenna Alvarez, 1986
137. M. spinosa Alavarez, 1986 233
138. Genus Paivella Vevoort, 1965
139. P. inaciae Vervoort, 1965 233
140. P. naporai Wheeler, 1970 235
:9 Genus Paracomantenna Campaner, 1978
. acilis Alvarez, 1986 237
: musctuae Campaner, 1978. 237
141. P. minor (Farran, 1905) 238
142. Genus Pseudeuchaeta Sars, 1905
143. P. arctica Markhaseva, 1986 241
144. P. brevicauda Sars, 1905 241
145. P. flexuosa Bradford, 1969 248
146. P. magna Bradford, 1969. 249
147. P. major Wolfenden, 1911. 249
148. P. spinata Markhaseva, 1986 250
149. Genus Pseudochirella Sars, 1920
150. P. accepta Zvereva, 1976 255
151. P. batillipa Park, 1978 255
152. P. bilobata Vervoort, 1949 258
153. P. bowmani Markhaseva, 1986 260
154. P. dentata (A. Scott, 1905) 260
155. P. divaricata (Sars, 1905) 262
156. P. dubia Sars, 1925 262
157. P. fallax (Sars, 1920) 264
158. P. formosa Markhaseva, 1989 264
159. P. gibbera Vervoort, 1949. 264
160. P. hirsuta (Wolfenden, 1911) 266
161. P. limata Grice \& Hulsemann, 1968 268
162. P. lobata (Sars, 1907) 269
163. P. mariana Markhaseva, 1989 271
164. P. mawsoni Vervoort, 1957 272
165. P. notacantha (Sars, 1905). 275
166. P. obesa Sars, 1920 276
167. P. obtusa (Sars, 1905) 278
168. P. pacifica Brodsky, 1950 281
169. P. palliata (Sars, 1907) 285
170. P. pustulifera (Sars, 1905) 285
171. P. scopularis (Sars, 1905) 289
172. P. spectabilis (Sars, 1900) 289
173. P. spinosa (Wolfenden, 1911) 290
174. P. tanakai Markhaseva, 1989 290
175. P. vervoorti Tanaka \& Omori, 1969 293
176. Genus Pterochirella Schulz, 1990
177. P. tuerkayi Schulz, 1990 296
178. Genus Senecella Juday, 1923
179. S. calanoides Juday, 1923 297
180. S. siberica Vyshkvartzeva, 1994 297
181. Genus Sursamucro Bradford, 1969
182. S. spinatus Bradford, 1969. 299
183. Genus Undeuchaeta Giesbrecht, 1888
184. U. incisa Esterly, 1911 302
185. U. intermedia A. Scott, 1909 302
186. U. major Giesbrecht, 1888. 305
187. U. plumosa (Lubbock, 1856) 310

Morphology

Female

Total length 1.19-9.20 mm. Cephalothorax 2-8 (more often 3-4) times longer than abdomen. Cephalon and Thl usually fused (but the line of fusion may be visible). However they are separated more or less clearly in Chirundinella, Pseudochirella, Undeuchaeta, and some species of Bradyetes, Batheuchaeta and Chiridiella. Th4-Th5 are fused in the majority of genera, but in Azygokeras, Aetideopsis, Sursamucro, Crassantenna, Pseudeuchaeta, Paracomantenna, Mesocomantenna, Pseudochirella, and some species of Bradyetes and Comantenna they are completely or incompletely separated. Rosirum, if present, 2-pointed (bifurcate) - (Aetideus, Aetideopsis, Bradyidius, Paivella), or like a blunt plate (Crassantenna, Lutamator, Pseudeuchaeta, etc.), or conic and 1-pointed (Chirundina, Chirundinella, Euchirella, Pseudochirella, Undeuchaeta); in Gaetanus, it is conic but its tip usually bifurcated. The anterior part of cephalon may form a crest (in some species of Euchirella, Chirundina, Chirundinella, Pseudochirella, Undeuchaeta; slightly developed crest in some species of Aetideus and Aetideopsis). Some Gaetanus species have a frontal spine in the anterior part of cephalon. Th5 posterior corners symmetrical or asymmetrical, rounded or pointed, sometimes extended into spines of various size and configuration or in lobes of various shape. Genital segment symmetrical or asymmetrical, of various shape, often with projections at one or both sides (in dorsal view), sometimes with 1-2 spines. Ventral swelling more or less pronounced. Abdomen with 4 free segments. Abd1-Abd3 often with transverse row of spinules along posterior borders. Caudal rami with 4 apical, 1 internal (ventrally) and 1 short external setae. Al 23-24-jointed, of various length: sometimes shorter than cephalothorax; more often longer, reaching the end of caudal rami; sometimes twice longer than body.

A2. Usually, Re A2 1.2-2.0 times longer than Ri , but sometimes both rami of equal length, or Re even shorter than Ri. A2 coxopodite with 1 (in Azygokeras, with 2) setae, basipodite with 2 (in Euchirella, with 1) setae, Ril A2 with 1-2 setae, rarely (Pseudeuchaeta) without setae. Ri2 A2 internal lobe usually with $7-8$ terminal setae (in Euchirella, their number may decrease to 1-2, 4-8); external lobe of Ri2 A2 with 6-7 terminal setae and 1 posterior seta (in Euchirella, the number of terminal setae may decrease to 3). Rel A2 with 1-2 setae or without setae; sometimes Re1 and Re2 (Euchirella) fused completely or incompletely, or Re2 and Re3 (Comantenna, Mesocomantenna) partly fused; Re2 with 1-3 setae, or setae absent (Chiridiella, Comantenna, Euchirella); Re3-Re6 with 1 long seta each, Re7 with 1 medial (rarely absent) and 3 terminal setae (rarely with 1 terminal setae, in Mesocomantenna).

Comantenna and Mesocomantenna with atypically short Re7, which is shorter than the two previous joints together.
Md. P.md base with $2-3$ setae, sometimes with 1 seta or without setae; Ril Md with 1-3 setae or without setae; Ri2 Md with 9 terminal and 1-2 posterior setae, sometimes their number is differing (Chiridiella, Comantenna, Crassantenna, Lutamator, Mesocomantenna, Pseudeuchaeta, Paracomantenna, some species of Aetideopsis, Bradyetes, Bradyidius, Chiridius, and Euchirella).

Mx1. Mx1 gnathobase with 9 terminal setae nearly equal in length, sclerotized, claw-like, 1 shorter terminal seta and 4 setae on the posterior surface (sometimes number of posterior setae is less). Mxl second internal lobe with $3-5$ setae, rarely with 2 setae (in some species of Pseudeuchaeta) or 1 seta (some species of Chiridiella); in Chiridiella, this lobe may be reduced. Mxl third internal lobe usually with 3-4 setae; in some aetideids their number is differing: 5 in Chirundinella and in some species of Bradyidius and Pseudochirella; 1-2 in some species of Chiridiella and Euchirella; 2 in some species of Comantenna, Crassantenna and Lutamator. Protopodite Mx1 near Ri base usually with 3-5 setae, rarely with 2 (some species of Euchirella) or without setae (Chiridiella). MxI Ri commonly with 14-16 setae, this number may be less, for example, 3-5 or 7 in Chiridiella, 10 or 11 in Paivella and 3-5 in Euchirella. Re Mx1 in most of aetideid genera with 11, rarely with $8-10$ setae (Euchirella, Aetideopsis, Bradyetes, Bradyidius, Chiridiella, Chiridius, Chirundinella, Euchirella, Jaschnovia). In Chiridiel$l a$, this number may be 3-6 and Re may be reduced. Mxl external lobe usually with 7 long and 2 short setae.

Mx2. Usually, Mx2 with 5 well developed endites (6 endites in Jaschnovia, Senecella and some species of Aetideopsis), Ri with 6 long setae, sometimes with additional small setae. First-fifth Mx2 endites with 2 long and 1 short setae covered with fan-arranged hairs; one of the two long setae on fifth endite (rarely also on fourth endite) is thickened and transformed into claw-like spine. Two aetideid genera have Mx 2 strongly deviating from typical structure: in Pseudeuchaeta setae at the fourth-fifth endites and setae in distal part of Ri are more sclerotized and saber-like and in Chiridiella Mx 2 are variable within the genus from nearly typical to highly transformed. Mx2 with small spines on external surfaces of endites (in Paracomantenna and Mesocomantenna, with large strongly sclerotized spines).

Mxp. Mxp protopodite with 1 proximal seta (sometimes absent), between proximal and distal part of the joint commonly with groups of 2,3 and 3 setae. At the base of group of distal setae an appendage of various configuration (conic, digital-like, etc.) may be present. Mxp protopodite in many Gaetanus species with a lateral plate. Ril Mxp normally
1.5-2.0 times longer than protopodite (in Aetideus, Re and Ri of nearly equal length). Ri2-Ri6 Mxp combined much shorter than Ril Mxp.

Re/Ri P1-P4 segmentation: 3/1, 3/2, 3/3, 3/3. Deviations from typical segmentation are as following: Re P1 1-jointed (Chiridiella) or 2-jointed (some species of Gaetanus and Euchirella); Re P2 joints incompletely separated (Chiridiella, some Aetideopsis species); in Chiridiella, also Ri P3-P4 often incompletely separated. Re1 P1 with or without external spine, Re2-Re3 P1 with 1 external spine each. P1 basipodite near the base of Ri with curved long seta covered with fine hairs. Ri P1 external lobe normally well developed, with small spinules terminally, rarely with hairs instead of spinules (Pseudeuchaeta); external lobe absent in Chiridiella (except Ch kuniae). Posterior surfaces of Ri and Re sometimes with fine small spinules, larger spinules on lateral surfaces of coxopodite and basipodite (Bradyidius, Jaschnovia). The majority of genera without spines or spinules at P4 coxopodite, but sometimes with spines: 2 parallel transverse rows of 4-6 spines (Paivella); or bush-like spines near the base of internal seta (Gaetanus, Pseudochirella, Euchirella), sometimes there are only few small spinules (some species of Aetideus and Undeuchaeta). Terminal Re3 P2-P4 spines serrated externally, the number of spinules varies from 20 to 90 . P5 absent (except weak P5 in Comantenna recurvata and vestigial P5 found in some specimens of Sursamucro and Aetideopsis).

Male

Total length 1.19-8.80 mm. Cephalothorax 2.4-4.0 times longer than abdomen. Cephalon and Th1 fused; Th4-Th5 usually fused, sometimes incompletely (Aetideopsis, Azygokeras). Rostrum, if present, bifurcate or conic (1-pointed). Crest present or absent. Th5 posterior comers symmetrical, rarely somewhat asymmetrical (some Pseudochirella and Undeuchaeta species), of various shape. Abdomen of 5 free segments; Abd5 sharply reduced; genital opening on the left. A1 usually 23-24-jointed, but sometimes 20-21-jointed (Aetideus), in all the genera, except Azygokeras, not geniculated with aesthetasks in most of species. Left and right A1 may have different number of joints.

A2-Mxp. A2 like in females, but with less num-
ber of setae on $\operatorname{Re} 1, \operatorname{Re} 2$ and Ri , some setae of Md palp reduced in size, Md gnathobase vestigial. Mx1 and Mx2 severely reduced. Mxp less equipped than in females.

P1-P4. P1-P4 segmentation more pronounced than in females (i.e. when female has indistinct division, male has complete division). Re P1 equipment as in female, but sometimes external spines reduced, occasionally absent. P4 coxopodite without spines.

P5. Right and left P5 usually present, sometimes right P5 absent (Aetideus). P5 biramous or uniramous. If biramous, with 3-jointed left and 2-jointed right Re (in Azygokeras, Chirtdiella and Pseudeuchaeta, with 3 -jointed). Both left and right Ri 1-jointed (left Ri P5 2-jointed in Bradyetes matthei, Bradyidius arnoldi and Comantenna brevicornis; their P5 are most primitive in aetideids).

Notes. In descriptions of aetideid males, P5 are usually characterized as legs of "simple" or "complex" structure. Of "simple" structure are considered P5 with joints close to cylindrical shape, without specialized structures (projections, extrusions, teeth, grooves, etc.). But even when configuration of P5 joints is simple, they may be swelled at one side or extended, etc. Therefore this definition is very conventional. In some genera P5 is very complex: in Euchirella (some species), right Re2 and Ri P5 are transformed into tongs and left Re2 together with Re3 P5 has pincer-form shape; in Batheuchaeta, left PS with Re3 of 2 lobes and complex left Ri with deep grooves and projections; in Pseudochirella, left Re2 P5 with teeth and often with projections.

Type genus: Aetideus Brady, 1883.
There are 26 genera in Aetideidae. Wilsonidius Tanaka, 1969 is herein considered as synonym of Chirundina Giesbrecht (see below). Gaidiopsis is not included in the present work due to poor description and loss of the type material. Pseudotharybis T. Scott, 1909 is included by Bradford and Jillett (1980) into Aetideidae, however this genus occupies intermediate position between Aetideidae and Tharybidae and needs further study; the same may refer to Valdiviella which is sometimes included into Aetideidae or into Euchaetidae and for which Zvereva (1975) suggested a new family.

Key to the genera*

Females

1(42) Th5 and genital segment symmetrical.
2(19) Rostrum present, not reduced.
3(10) Rostrum bifurcate.
4(7) Rel P1 without external spine. Mx1 second internal lobe with 3, protopodite near the base of Ri with 4 setae, Re with 11 setae.
5(6) P4 coxopodite near the base of internal seta with two parallel rows of 4-6 spines on posterior surface
.18. Paivella Vervoort
6(5) P4 coxopodite without two parallel rows of 4-6 spines on posterior surface 1. Aetldeus Brady
7(4) Rel P1 with external spine. Mx1 second lobe with 5 (rarely 4) setae, protopodite near the base of Ri with 5 setae, Re with $8-10$ setae.
8(9) External spine on Re2 P1 thicker than on Re1 P1, usually more sclerotized and more obtuse. Ri P2 always 2-jointed 6. Bradyidius Giesbrecht
9(8) External spine on Re2 P1 not thicker than on Rel P1 and not differing from it in sclerotization and shape. Ri P2 1 or not clearly 2-jointed . . .
2. Aetideopsis Sars

10(3) Rostrum uniramous (1-pointed), conic.
11(14) P4 coxopodite without spines near internal seta.
12(13) Ril Mxp with lateral blade along external border. Mx1 second internal lobe with 5 , third with 4 setae, protopodite near the base of Ri with 5 , Ri with 15 and Re with 11 setae . 9. Chirundina Giesbrecht
13(12) Ril Mxp without lateral blade along external border. Mxl second internal lobe with 4, third with 5 , protopodite near the base of Ri with 4, Ri with 11, Re with 10 setae . . . 10. Chirundinella Tanaka
14(11) P4 coxopodite with spines near internal seta.
15(16) Ri A2 more than twice shorter than Re A2. Md palp base without setae. Ri Mx1 with no more than 5 setae . . . 13. Euchirella Giesbrecht (part.)
16(15) Ri A2 less than twice shorter than Re A2. Md palp base with setae. Ri Mxl with no less than 14 setae.
17(18) Th4-Th5 separated (except P. hirsuta). Md palp base with 3 setae. Anterior part of cephalon without frontal spine. Mxp protopodite without lateral plate. Re P1 with 3 external spines.
. 21. Pseudochirella Sars (part.)
18(17) Th4-Th5 fused. Md palp base with 1-2 setae. Anterior part of cephalon often with frontal spine. Mxp protopodite often with lateral plate. Re P1 with 2 or 3 external spines
14. Gaetanus Giesbrecht 19(2) Rostrum absent or reduced to blunt plate.

[^0]20(33) Mxp protopodite without appendage near distal group of 3 setae.
21(22) Re P1 1-jointed. Mx2 atypical (Figs. 64-82). Ri Mx1 with $3-5$ or 7 setae. Ri P1 without external lobe
7. Chiridiella Sars

22(21) Re P1 3-jointed. Mx2 of typical structure. Ri Mxl with 11-16 setae. Ri P1 with external lobe.
23(24) Rel P1 without external spine 15. Jaschnovia Markhaseva
24(23) Rel P1 with external spine.
$25(30)$ Th5 posterior corners with spines or points directed straightly backward or curved to the back of specimens.
26(27) Th5 posterior comers with spines directed straightly backward. Rostrum absent. Th4-Th5 fused
8. Chiridius Giesbrecht

27(26) Th5 posterior corners with spines curved to the back of specimens. Rostrum present, reduced, like blunt plate. Th4-Th5 separated.
28(29) Ri A2 larger than Re A2. Ri2 Md with 4 setae, Md palp base without setae
21. Crassantenna Cole et al.
$29(28) \mathrm{Ri} \mathrm{A} 2$ not larger than Re A2. Ri2 Md with 9 setae, Md palp base with 2 setae
24. Sursamucro Bradford

30(25) Th5 posterior corners without spines (or points), triangular or slightly pointed (in lateral view).
31(32) Rostrum absent. Ri2 Md with 9 terminal and 1 posterior seta; Ril Md and Md palp base with 2 and 3 setae respectively. Ri P1 external lobe with small spinules apically
. 3. Azygokeras Koeller \& Littlepage
32(31) Rostrum present, reduced, in form of a blunt plate. Ri2 Md with $4-5$ setae; Ril Md and Md palp base without setae. Ri P1 external lobe with thin fine hairs apically ... 16. Lutamator Bradford
33(20) Mxp protopodite with appendage near distal group of 3 setae.
34(39) Re A2 shorter than Ri A2.
$35(38)$ Re A2 terminal joint not longer than 2 previous joints together; at least one of terminal setae at this joint much shorter than others.
36(37) Re A2 terminal joint with 3 setae
11. Comantenna Wilson

37(36) Re A2 terminal joint with 1 seta
17. Mesocomantenna Alvarez

38(35) Re A2 terminal joint much longer than 2 previous joints together; terminal setae nearly equal in length
19. Paracomantenna Campaner
$39(34) \mathrm{Re} \mathrm{A} 2$ as long as or longer than Ri A2.
40(41) Setae of Ri2-Ri6 Mxp with small crescent-like appendages. Setae in distal part of Ri and on thirdfifth endites of Mx2 saber-like, none of them transformed into claw-like spine. External lobe of Ri P1 with fine hairs apically. Re1 P1 without external
spine or with sharply reduced one
20. Pseudeuchaeta Sars

41(40) Setae of Ri2-Ri6 Mxp without crescent-like appendages. Setae in distal part of Ri and third fifth endites of Mx2 not saber-like; 1 seta of Mx2 fifth endite transformed into claw-like spine. External lobe of Ri P1 with fine spinules apically. Rel P1 with external spine not reduced
5. Bradyetes Farran

42(1) Th5 or genital segment, or both more or less asymmetrical.
43(44) Rostrum absent or reduced
4. Batheuchaeta Brodsky

44(43) Rostrum present and well developed.
45(48) P4 coxopodite with spines near internal seta. Re P1 with 3 spines.
$46(47) \mathrm{Ri} \mathrm{A} 2$ more than twice, usually three or four times, shorter than $\operatorname{Re} A 2 ; \operatorname{Rel}$ and $\operatorname{Re} 2 A 2$ completely or incompletely fused. Md palp base and Ril Md without seta (rarely with small seta). Ri Mxl with 3-5 setae. Re Pl 2-jointed
13. Euchirella Giesbrecht (part.)

47(46) Ri A2 less than twice shorter than Re A2; Re1 and Re2 A2 completely separated. Md palp base with 3, Ril Md with 2-3 setae. Ri Mxl with 15-16 setae. Re Pl 3-jointed
16. Pseudochirella Sars (part.)

48(45) P4 coxopodite without spines near internal seta. Re P1 with 2 external spines
25. Undeuchaeta Giesbrecht

Males

1(44) Cephalothorax without hump of complex structure.
2(31) Rostrum present.
3(8) Rostrum bifurcate.
4(5) Th5 posterior corners rounded
18. Paivella Vervoort

5(4) Th5 posterior corners pointed.
6(7) P5 legs uniramous. 6. Bradyidius Giesbrecht (part)
7(6) P5 legs biramous
2. Aetideopsis Sars; 6. Bradyidius Giesbrecht (part.).

8(3) Rostrum uniramous.
9(10) Rostrum rudimentary. Right Re P5 3-jointed .
20. Pseudeuchaeta Sars

10(9) Rostrum not rudimentary. Right Re P5 2-jointed.
11(12) Anterior part of cephalon with frontal spine or crest
13. Gaetanus Giesbrecht (part.)

12(11) Anterior part of cephalon without frontal spine.
13(14) Left P5 basipodite with 2 projections on internal border
4. Batheuchaeta Brodsky

14(13) Left P5 basipodite without 2 projections on internal border.

15(16) Right Re2 and Ri P5 transformed into tongs 13. Euchirella Giesbrecht (part.)

16(15) Right Re2 and Ri P5 not transformed into tongs.
17(24) Cephalon with crest.
18(19) Re P1 2-jointed
13. Euchirella Giesbrecht (part.).

19(18) Re P1 3-jointed.
20(21) Re3 P5 left bilobated.
10. Chirundinella Tanaka

21(20) Re3 P5 left non bilobated
22(23) Re3 P5 left distally stylet-like, elongated. . .
25. Undeuchaeta Giesbrecht (part.)

23(22) Re3 P5 left distally not stylet-like, obtuse-triangular.
9. Chirundina Giesbrecht

24(17) Cephalon without crest.
25(26) P5 without teeth on left Re2, no projections, no crests on other joints of Re and Ri , joints of simple configuration.
14. Gaetanus Giesbrecht (part.)

26(25) P5 with teeth on left Re2, or projections or crests on other joints of Re and Ri , or joints of complex configuration.
27(28) Re P1 2-jointed
13. Euchirella Giesbrecht (part.)

28(27) Re P1 3-jointed.
29(30) Re1 P1 with spine . . .21. Pseudochirella Sars
30(29) Rel P1 without spine
25. Undeuchaeta Giesbrecht (part.)

31(2) Rostrum absent.
32(33) Right A1 geniculated (6 distal joints enlarged) 3. Azygokeras Koeller \& Littlepage

33(32) Both A1 without geniculation.
34(35) P5 with only left uniramous leg \qquad 1. Aetideus Brady
35(34) P5 with both left and right, uni- or biramous legs.
36(37) P5 uniramous (except Ch carnosus), left P5
5 -jointed, right 4-jointed. 8. Chiridius Giesbrecht
37(36) P5 biramous.
38(39) Right Re P5 3-jointed . . . 7. Chiridiella Sars
39(38) Right Re P5 2-jointed.
40(41) Left Re3 P5 distally stylet-like, left Ri P5 1jointed and no less than 3 times shorter than left Re1 P5
15. Jaschnovia Markhaseva

41(40) Left Re3 P5 distally not stylet-like, left Ri P5 2-jointed, or, if 1 -jointed, longer than left Rel P5.
42(43) Right Re2 P5 filament-like distally, with thin hairs 11. Comantenna Wilson

43(42) Right Re2 P5 not filament-like distally and without hairs
5. Bradyetes Farran

44(1) Cephalothorax with hump of complex structure
22. Pterochirella Schulz

1. Genus Aetideus Brady, 1883

Type species: Aetideus armatus Brady, $1883=p_{\text {seu }}$ docalanus armatus Boeck, 1872, by monotypy.

Aetidius Brady, 1883: 75; Giesbrecht, 1892: 53.
Aetideus Giesbrecht in Giesbrecht \& Schmeil, 1898: 31. Emendation.
Euaetideus Sars, 1925: 42 (type species: Euaetideus giesbrechit (Cleve, 1904), designated here).
Snelliaetideus Vervoort, 1949: 3 (type-species Snelliaetideus arcuatus Vervoort, 1949, by original designation).

Note. Giesbrecht (Giesbrecht \& Schmeil, 1898: 31) for grammatical reasons changed the original spelling Aetidius in Aetideus. The atter spelling is universally accepted and used in numerous literature; also the family name Aetideidae is formed from it. Therefore it is preferable to retain Giesbrecht's emendation and to request the International Commmission on Zoological Nomenclature to retain Aetideus as correct original spelling.

Description. Fe m a 1 e. Total length $1.40-2.50$ mm . Cephalothorax 2.8-4.7 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused: Anterior part of cephalothorax sometimes with crest. Rostrum bifurcate; rami widely arranged, usually strongly sclerotized; some species with undivided massive rostral base. Body surface often with conspicious chitinous thickenings. Th5 posterior corners symmetrical, rarely rounded, usually prolonged into points extending to distal third of genital segment or exceeding it; Th5 may be transformed into winglike lobes pointed at tops, reaching Abd2-Abd3. Genital segment symmetrical, length 1.1-1.2 times its width. Spermatheca clearly visible, with two parts: oval ventral and rounded dorsal, connected by curved channel of various length and width. Caudal rami 2.0-3.3 times longer than wide. A1 24 -jointed, equal in length to cephalothorax, to body, or even exceeding body by two last joints. Re A2 slightly longer than Ri , coxopodite with 1 seta, basipodite with 2. Ri2 A2 with $14-15$ setae (8 terminal at internal lobe, sometimes with additional 1 dorsal seta, and 6-7 terminal at external lobe). Rel A2 without seta, $\operatorname{Re} 2$ A2 with 3 setae, Re3-Re6 with 1 seta each, $\operatorname{Re} 7$ with 1 medial and 3 terminal setae. Md palp base with 2 setae, Ril Md with 2 setae, Ri2 Md with 9 terminal and 1 (rarely 2) dorsal setae; each joint of Re2-Re4 with 1 long seta, Re5 with 2 terminal setae. Mx1 gnathobase with 9 clawlike terminal and 4 thin surface dorsal setae, second and third internal lobes with 3 and 4 setae respectively, protopodite near Ri base with 4 setae, Ri with 12-14 (Park (1968) noted 15) setae, Re with 11, external lobe with 9 (7 long and 2 short) setae. Mx2 typical of Aetideidae, fourth and fifth endites with 1 thickened seta transformed into claw-like spine. Setation of protopodite and Ril Mxp typical
of Aetideidae (protopodite with 1 proximal seta, and from proximal to distal part of the joint with 2,3 and 3 setae), Ri1 Mxp with 3 medial setae, only sometimes slightly longer than protopodite. P1 with 3 -jointed Re and 1-jointed Ri; Ri external lobe with spinules apically; Re1 P1 without spine; Re2 with short spine usually not reaching the middle of Re3. P2 with one- or incompletely 2 -jointed Ri and 3jointed Re. P3-P4 with 3-jointed rami; in most of species, P4 coxopodite with few small spinules near the base of internal seta.

M a 1 e . Total length $1.22-2.10 \mathrm{~mm}$. Cephalothorax 2.7-3.8 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused. Rostrum and crest absent. Th5 posterior comers prolonged into points, reaching or slightly exceeding posterior border of Abdl (Th5 in A. arcuatus rounded). Length of caudal rami 1.64-3.70 times its width. A1 20-21jointed, as long as or slightly longer than cephalothorax. Oral appendages less developed than in females: setae at gnathobase and second internal lobe of Mxl sometimes absent (in A. acutus, after Park, 1974); number of Mx1 setae and joints may be less than in females ($\operatorname{Re} \mathrm{Mxl}$ in A. acutus, A. arcuatus and A. mexicanus with 10 setae). P1-P4 as in females. P5 with only left uniramous leg, leg 5 -jointed, elongated, sometimes equal in length to abdomen, of simple structure.

Notes. Euaetideus Sars, 1925 was united with Aetideus by Bradford (1971a) on the base of similarity in external morphology and structure of oral appendages. Bradford also believed that Snelliaetideus Vervoort, 1949 should be united with Aetideus. Roe (1975) found the male of Snelliaetideus arcuatus Vervoort, 1949 and determined its structure as typical of Aetideus males and thereby confirmed Bradford's conclusion. Paivella is very close to Aetideus. The type species of the genus, P. inaciae Vervoort, 1965, closely conforms to Aetideus diagnosis in females (differs from them by presence of two parallel rows of 4-6 spines on posterior surface of P4 coxopodite), but male differs in presence of both right and left P5 legs and of rostrum.

The genus Aetideus includes 11 species. All species except A. australis (Vervoort, 1957), most records of which are from subantarctic waters, are included in this work.

Key to species of Aetideus

Females

1(2) Ths posterior corners rounded
2. A. arcuatus Vervoort

2(1) Th5 posterior corners prolonged into points or wing-like lobes pointed at tops.
3(8) Th5 posterior corners prolonged into wing-like lobes pointed at tops, reaching at least the middle of Abd2. Anterior part of cephalon with crest.

4(5) Excavation between rostral rami without thickenings 4. A. bradyi A. Scott
5(4) Excavation between rostral rami with 2 thickenings
6(7) Total length 1.8-2.2 mm. Duct between ventral and dorsal parts of spermatheca strongly narrowed. Rostral base not visible in dorsal view
.
6. A. giesbrechti Cleve

7(6) Total length 1.48-1.80 mm. Duct between ventral and dorsal parts of spermatheca not narrowed. Rostral base visible in dorsal view

1. A. acutus Farran

8(3) Th5 posterior corners not prolonged into wing-like lobes; points of Th5 not reaching the middle of Abd2. Anterior part of cephalon without crest.

9(12) Right P1 basipodite with an external tooth-like projection distally. P4 coxopodite without spinules near the base of internal seta.
10(11) Th5 posterior corners divergent, always exceeding posterior border of genital segment. Rostral excavation 0.8-1.2 times as wide as deep
5. A. divergens Bradford

11(10) Th5 posterior corners not divergent, usually not exceeding posterior border of genital segment. Rostral excavation 1.07-1.16 times as wide as deep .
7. A. mexicanus Park

12(9) Right P1 basipodite without external tooth-like projection distally. P4 coxopodite usually with spinules near the base of internal seta.
13(16) Points of Th5 posterior corners not reaching posterior border of genital segment.
14(15) Rostrum small (Fig. 12), rami short, widely spaced. Total length $1.6-1.8 \mathrm{~mm}$. A1 shorter than body
10. A. truncatus Bradford

15(14) Rostrum long (Fig. 9), rami long. Total length 2,2-2.5 mm. Al longer than body
8. A. pacificus Brodsky

16(13) Points of Th5 posterior corners reaching or exceeding posterior border of genital segment.
17(18) Spermatheca with short duct (Fig. 4) connecting its dorsal and ventral parts
3. A. armatus (Boeck, 1872)

18(17) Spermatheca with long duct (Fig. 11) connecting its dorsal and ventral parts
9. A. pseudarmatus Bradford

Males
 (unknown for A. bradyi and A. pseudarmatus)

1(2) Th5 without points 2. A. arcuatus Vervoort
2(1) Th5 with points.
3(10) Points of Th5 posterior corners not exceeding posterior border of Abd1 (in dorsal view).

4(7) Second P5 joint 3.34-4.2 times as long as wide.
5(6) Ri P2 exceeding border between Re 2 and Re 3

P2. External spine at Re2 P1 exceeding the middle of Re3 P1 6. A. giesbrechti Cleve
6(5) Ri P2 not exceeding border between Re2 and Re3 P2. External spine at Re2 P1 not exceeding the middle of Re3 P1 . . . 7. A. mexicanus Park
7(4) Second P5 joint 2.3-3.1 times as long as wide.
8(9) Re3 P3 with terminal spine shorter than Re3 itself
3. A. armatus (Boeck)

9(8) Re3 P3 with terminal spine longer than Re3 itself 10. A. truncatus Bradford

10(3) Points of Th5 posterior corners exceeding posterior border of Abdl (in dorsal view).
11(12) Caudal rami 1.64-1.83 times as long as wide

1. A. acutus Farran

12(11) Caudal rami 2.35-3.7 times as long as wide.
13(14) Caudal rami 3.5-3.7 times as long as wide. P5 second joint more than 4 times as long as wide. Total length $1.9-2.1 \mathrm{~mm}$. . . 8. A. pacificus Brodsky
14(13) Caudal rami 2.35-2.55 times as long as wide. P5 second joint less than 4 times as long as wide. Total length 1.25-1.43 mm. 5. A. divergens Bradford

1. Aetideus acutus Farran, 1929

(Fig. 2)
Aetideus acutus Farran, 1929: 228, fig. 5; Tanaka, 1957: 36, fig. 25, Bradford, 1971a: 30, fig. 12 (d-h); Park, 1974: 217, fig. 3; Bradford \& Jillett, 1980: 14, fig. 5; Vives, 1982: 290; Brenning, 1983: 2; 1985: 29.
Fuaetideus acutus: Farran, 1936b: 87; Vervoort, 1957: 51, figs 28-30; Brodsky, 1962: 119, fig. 22, Grice, 1962: 190, pl. 9, figs 1-2; Grice \& Hulsemann, 1965: 223; Park, 1968: 545, pl. 5, figs 8-14; Tanaka \& Omori, 1970a: 110; Wheeler, 1970: 4.

Description. Feme ale. Total length $1.48-1.80$ mm . Cephalothorax 3.6-4.0 times longer than abdomen. Body surface with conspicious chitinous thickenings. Rostrum powerful, with rami rising from wide undivided base, well visible. Excavation between rostral rami with 2 thickenings. Width of rostral excavation (in dorsal view) about 1.4 times its depth. Base of rostrum well visible when looking dorsally. Crest present, well visible. Th5 posterior corners extended into wing-like lobes pointed at their tops and exceeding posterior border of Abd2. Spermatheca of bag-like form, duct connecting its ventral and dorsal parts not narrowed. A1 reaching posterior border of Abd3 or even caudal rami. Oral appendages and P1-P4 typical of genus, but Ri P2 1-jointed.

M a 1 e. (Description after Park (1974) with modifications). Total length $1.22-1.58 \mathrm{~mm}$. Cephalothorax about 3.8 times longer than abdomen. Th5 posterior corners much shorter than in female, their points slightly exceeding posterior border of genital

Fig. 2. Aetideus acutus. Female (202). Male (from Park, 1974).
segment (in dorsal view). Second abdominal segment $0.83-0.88$, third $0.75-0.81$ and fourth $0.78-0.81$ times as long as wide. Caudal rami 1.64-1.83 times longer than wide. A1 reaching posterior border of Abd3. Setation of A2 coxopodite and basipodite as in female. Ril A2 with 1 minute seta, Ri2 A2 external lobe with 6 long and 1 short terminal setae, internal lobe with 6 long setae. Re1 and Re2 A2 without setae. Md palp base with 1 minute seta, Ri1 Md with 1 , Ri2 Md with 8 long and 1 shorter terminal setae. Mx1 gnathobase and second internal Mx1 lobe without setae, third internal lobe with 2 setae, protopodite near the base of Ri with 3 setae, Ri with 6 , Re with 10 setae. Mxp protopodite with 3 setae in distal part. Ri P2 1-jointed, reaching distal end of Re2 P2. Re3 P2 and Re3 P3 terminal spines longer than Re3, with 23 and 18 teeth respectively. Re3 P4 terminal spine shorter than Re3 with about 16 teeth. P5 second joint 3.41-3.78; third 6.72-7.33 and fourth $6.00-6.60$ times as long as wide.

Type locality: to the north-west of the northernmost point of New Zealand.

Geographical distribution. Atlantic Ocean: the northeastern part up to $40^{\circ} \mathrm{N}$ (Grice \& Hulsemann, 1965; Wheeler, 1970; Roe, 1972a, 1972b; Brenning, 1983, 1985), the regions off Madeira and the Canary Islands, the Caribbean Sea and the Gulf of Mexico (Park, 1970, 1974; Vives, 1982), Pacific Ocean: widespread from $35^{\circ} \mathrm{N}$ (the Izu region: Tanaka, 1957a; Tanaka \& Omori, 1970a; Brodsky, 1962) to $40^{\circ} \mathrm{S}$ (Farran, 1929). The species is also known from the Malay Archipelago (Vervoort, 1957). Indian Ocean: north-western (Grice \& Hulsemann, 1967) and north-eastern (original data) parts.

Vertical distribution. Mainly epipelagic and upper mesopelagic species. Usually found above 200-500 m (Farran, 1929; Tanaka, 1957a; Brodsky, 1962; Grice, 1962; Park, 1968; Tanaka \& Omori, 1970a; Bradford, 1971a; etc.).

Material: 25 females from samples 45, 49, 54-55, 202, 407, 410-414, 416-417.

2. Aetideus arcuatus (Vervoort, 1949)

(Fig. 3)

Snelliaetideus arcuatus Vervoort, 1949: 3, fig. 7; Park, 1970: 476, 1978: 108, figs 4-5; Bradford, 1971a: 32. Aetideus arcuatus: Roe, 1975: 304, fig. 5 (a-m); Brenning, 1983: 2; 1985: 29.

Description. Fe m a 1 e . Total length 1.43-1.78 mm . Cephalothorax 2.8-2.9 times longer than abdomen. Rostrum with widely spaced rami, crest absent. Rostral excavation usually 1.4 times as wide as deep. Th5 posterior comers rounded. A1 varies in length: reaching posterior border of genital segment or even the end of caudal rami. Ri Mx1 with 12-13 setae. Ri2 Md with 10 setae (Park (1970) noted 9). Ril Mxp by one fourth of its length longer
than protopodite. P4 coxopodite with few small spinules near the base of internal seta. Re3 P2-P4 terminal spines with $15-17$ teeth. Ri P2 incompletely 2-jointed.

Male. (Description after Roe (1975) with modifications). Total length 1.22 mm . Caudal rami 3 times longer than wide. Th5 posterior corners rounded. A1 20 -jointed reaching posterior border of Abd2. Oral appendages reduced in comparison with those of female. Ri P2 incompletely 2-jointed. P4 coxopodite without spinules near the base of internal seta. Second joint of P5 3.75 times, third 6.4 times and fourth 6.2 times longer than wide.

Type locality: the Malay Archipelago.
Geographical distribution. Atlantic Ocean: the north-eastern and tropical parts (Roe, 1975; Brenning 1983, 1985; original data); the Caribbean Sea. Pacific Ocean: south-eastern part ($54-49^{\circ} \mathrm{S} \quad 119-120^{\circ} \mathrm{W}$) (Park, 1970, 1978), north-western part (original data), north-eastern part $\left(27^{\circ} \mathrm{N} 115^{\circ} \mathrm{W}\right)$ (Bradford, 1971a). The species is found from the Malay Archipelago (Vervoort, 1949).

Vertical distribution. Most likely mesopelagic species, found in hauls $690-790$ and $505-1000 \mathrm{~m}$ (Park, 1970; Roe, 1975), also in total hauls.

Material: 3 females from samples 2, 3 and 571.

3. Aetideus armatus (Boeck,1872)

(Fig. 4)

Pseudocalanus armatus Boeck, 1872: 6.
Aetidius armatus Brady, 1883: 76, pl. 10, figs 5-16 (part.) Giesbrecht, 1892: pl. 14, fig. 7.
Aetideus armatus: Sars, 1901: 25, pls. 13-14, 1903: 159; Wolfenden, 1911: 209, text-fig. 4: With, 1915: 75, pl. 2, fig. 1, text-fig. 16; Sars, 1925: 41; Farran, 1926: 246; 1929: 228; 1936b: 879; Ifardy \& Gunther, 1935: 157, Wilson, 1942: 170; Vervoort, 1952b (sheet 42):3, fig. 1; 1957: 44; Matthews, 1964: 24; Bradford, 1971a: 18; Bjornberg, 1973: 326; Motoda \& Minoda, 1974 :232; Park, 1978: 104; Bradford \& Jillett, 1980: 14; Brenning, 1983: 1; 1985: 29.
Aetideus tenuirostris Wolfenden, 1903: 265; 1904: 111, 116.

Description. Female. Total length $1.60-2.00$ mm . Cephalothorax about 3 times longer than abdomen. Crest absent. Rostral rami with wide base. Rostral excavation 0.9-1.2 times as wide as deep. Cephalothorax (Fig. 4) more prominent anteriorly than in A. pacificus. Points of Th5 posterior corners exceeding posterior border of genital segment. A1 about as long as body. Ri Mxl with 13 setae. Oral appendages and P1, as well P3-P4 typical of Aetideus. Ri P2 incompletely 2 -jointed. Re3 P2-P4 with 15-17 teeth at terminal spines. P4 coxopodite with about 4 small teeth near the base of internal seta.

Male. (Description after Bradford (1971a) with modifications). Total length $1.30-1.53 \mathrm{~mm}$. Cepha-

Fig. 3. Aetideus arcuatus. Female. C P4 (from Roe, 1975), other figures (571). Male (from Roe, 1975).

Fig. 4. Aetideus armatus. Female (456). Male (from Bradford, 1971a).
lothorax about 2.73 times longer than abdomen. Points of Th5 posterior corners reaching posterior border of genital segment. Caudal rami 2.58-2.70 times as long as wide. A1 slightly longer than cephalothorax. Oral appendages reduced as compared to female. P1-P4 as in female. Terminal spines of Re P2-P4 with 18-24 teeth. Second joint of P5 2.3-3.1 times, third 5.7-7.0 times, and fourth 5.65-6.80 times as long as wide.

Type locality: off Norwegian coast.
Geographical distribution. Atlantic Ocean: widespread, from $62^{\circ} \mathrm{N}$ (Jespersen, 1934) to $54^{\circ} \mathrm{S}$ (Hardy \& Gunther, 1935), more common in the northern hemisphere. Indian Ocean: the Bay of Bengal, off the Malay Archipelago (Wolfenden, 1911; Sewell, 1929; A. Scott, 1909). As A. armatus might be mixed with 3 species described later (Bradford, 1971a), it is difficult to indicate its distribution in the Pacific Ocean. The northernmost locality is possibly the Bering Sea (Motoda \& Minoda, 1974),
the southernmost is $52^{\circ} 11^{\prime} \mathrm{S} \quad 167^{\circ} 25^{\prime} \mathrm{E}$ (Farran, 1936b).

Vertical distribution. Occurs mainly in lower epipelagial and upper mesopelagic layers, but sometimes is recorded deeper than mesopelagial waters (Jespersen, 1934, etc.). A. armatus was found to be more abundant in the layers 100 and 250 m (Roe, 1984), 183-366 m (Farran, 1936b) and $500-600 \mathrm{~m}$ at day and night time (Roe, 1972a). The species was also found near bottom at 240 m (Matthews, 1964). A. armatus serves food for decapods Systellaspis debilis (A. M. Edwards), Gennades elegans (Smith) and Sergestes arcticus Kroyer (Roe, 1984) and to fish Argyropelecus hemigymnus Cocco (Roe \& Badcock, 1984).

Material: 1 female from sample 456.
Notes. In addition to A.armatus previously recorded from the Pacific Ocean (Farran, 1929; Wilson, 1950; Tanaka, 1957a; Vervoort, 1957; Fleminger, 1967), Bradford (1971a) also described therefrom

Fig. 5. Aetideus bradyi. Female (416).
A. pseudarmatus (from Southwest Pacific), A.truncatus (in the mouth of the Gulf of California) and A. divergens (off British Columbia). She noted identification problems since the distinguishing characters are variable and difficult to measure.

4. Aetideus bradyi A. Scott, 1909

(Fig. 5)
Aetideus bradyi A.Scott, 1909: 38, pl. 5, figs 1-12; Tanaka, 1953: 130; 1957a: 34, fig. 24; Bradford, 1971a: 13, 30, fig. 12 (i-k); Brenning, 1983: 2; 1985: 29.
Euaetideus bradyi: Vervoort, 1957: 48, figs 20b, 21-23, 1963: 122; Grice, 1962: 192, pl. 8, figs 3-4; Tanaka \& Omori, 1970a: 111.

Description. Female. Total length 1.38-1.80 mm . Cephalothorax about 3.5 times longer than abdomen. Rostrum with strong sclerotized rami, without thickenings in the excavation. Crest present, better visible dorsally (as straight line). Body surface with conspicuos chitinous thickenings. Posterior Th5 corners extended into wing-like lobes pointed at ends and usually reaching the end of Abd2. Al almost as long as cephalothorax.

Male unknown.
Type locality: off Malay Archipelago.
Geographical distribution. Atlantic Ocean: the tropical eastern part (Brenning, 1983, 1985; Vervoort, 1963). Pacific Ocean: the equatorial part (Grice, 1962), Californian Current to $38^{\circ} \mathrm{N}$ (Fleminger, 1964), the south-western part (Bradford, 1971a) and off the coast of Chile (Vidal, 1982). In the region
of the Malay Archipelago (A. Scott, 1909). Probably tropical-subtropical species.

Vertical distribution. Epipelagic and upper mesopelagic species, usually found in the upper 500 m , collected in hauls from $72-146 \mathrm{~m}$ (Grice, 1962) and $0-100 \mathrm{~m}$ (Vervoort, 1963).

Material: 6 females from samples 213-215, 416, 419.

Notes. Tanaka (1957a; Tanaka \& Omori, 1970a) recorded A. bradyi from the Izu region. As noted earlier (Vervoort, 1963; Bradford, 1971a) specimens of A. bradyi described by Tanaka differ from typical. Therefore the data from this description is not included into the description of A. bradyi.
5. Aetideus divergens Bradford, 1971.
(Fig. 6)
Aetideus divergens Bradford, 1971a: 24, fig. 9.
? Aetideus armalus (non Boeck, 1872): Tanaka, 1957a: 31, fig. 23.

Description. Female. Total length 1.69-1.90 mm . Rostrum with button in the middle of excavation between rami. In difference from A. armatus, rami with narrow bases. Rostral excavation 0.85-1.2 times as wide as deep (original data and according to Tanaka (1957) and similar to that of A. pseudarmatus). Posterior Th5 points exceeding posterior border of genital segment, slightly divergent (in dorsal view). Spermatheca with moderately long, thick duct between ventral and dorsal parts. Al about as long

Fig. 6. Aetideus divergens. Female (202). Male (from Bradford, 1971a).
as body or reaching the middle of abdomen. Oral appendages basically identical to those of A. armatus, Ri 2 Md with 10 setae (9 terminal and 1 dorsal). Basipodite of right P1 with external tooth-like projection. P4 coxopodite without teeth near the base of internal seta.

M a 1 e . Total length $1.25-1.43 \mathrm{~mm}$. Points of Th5 posterior corners exceeding Abdl. Caudal rami 2.35-2.55 times longer than wide. Re3 P2-P4 terminal spines with 24,22 and 19 denticles respectively.

Type locality: off British Columbia: $52^{\circ} 02^{\prime} \mathrm{N}$ $132^{\circ} 53^{\prime} \mathrm{W}$.

Geographical distribution. Pacific Ocean: the north-eastern part (Bradford, 1971a), the north-western part ('Tanaka, 1957a; original data).

Vertical distribution. The species was found from $150-300 \mathrm{~m}$ and from depths of 150,550 and 1000 m (Tanaka, 1957a; Bradford, 1971a)

Material: 1 female from sample 202.
6. Aetideus giesbrechti (Cleve, 1904)
(Fig. 7)
Aetideus giesbrechti Cleve, 1904: 180; Sars, 1905; 3; 1907 : 3; Farran, 1908: 10, A. Scott, 1909: 36; pl. 4, figs 1-13; Wolfenden, 1511: 209, pl. 24, fig. 8, text-fig. 5; Farran, 1926: 247; 1929: 228; Mori, 1937: 38, pl. 16, figs 11-13; Tanaka, 1957a: 33-34; Bradford, 1971a: 28, figs 11, 12 (a-c); Wheeler, 1970: 8; Park, 1974: 220, fig. 4; Deevey \& Brooks, 1977: 263; Bradford \& Jillett, 1980: 14, fig. 7; Brenning, 1983: 2; 1985. 29.
Euaetideus giesbrechti: Sars, 1924-1925: 42, pl. 14, figs 1-3; Rose, 1933: 90, fig. 52; Vervoort, 1957: 49, figs 24-27; Grice, 1962: 190, pl. 7, figs 9-27; Grice \& Hulsemann, 1965: 223.
Aetideus armatus (non Boeck): Giesbrecht, 1892: 213, pl. 2, fig. 6, pl. 14, figs $2-6,8-16$, pl. 36, figs $6-9$

Description. Fe m a 1 e . Total length $1.80-2.20$

Fig. 7. Aetideus giesbrechti. Female (202). Male (from Park, 1974).
mm. Cephalothorax 4-4.7 times longer than abdomen. Body strongly sclerotized, with chitinous thickenings distincly visible all over the body surface. Rostrum very powerful, with sharply visible rostral rami (in ventral view) rising from the wide undivided base. There are 2 thickenings between rami. Rostral excavation 1.7 times as wide as deep. Crest low, clearly visible (in dorsal and lateral view). Th5 posterior corners extended into wing-like lobes terminating in points reaching posterior border of Abd2. Ventral
and dorsal parts of spermatheca connected by considerably narrowed duct. A1 as long as body. Oral appendages typical of genus.

Male. (Description after Park (1974) with modifications). Total length $1.52-1.60 \mathrm{~mm}$. Cephalothorax 3.4 times longer than abdomen. Th5 posterior corners considerably shorter than in females, points reaching posterior border of genital segment (Abd1). Caudal rami 2.27-2.37 times as long as wide. Second abdominal segment 0.93-0.95 times, third

Fig. 8. Aetideus mexicanus. Female: general view, R, P1, P3 (part.) (207); other figures from Park, 1974.
0.85-0.86 and fourth 0.88-0.89 times as long as wide. Al reaching posterior border of Abd3. Oral appendages as in A. acutus. Ri P2 exceeding border of Re2Re3. Re3 terminal spine longer than joint, with 24 teeth. Second P5 joint 3.35-4.00 times, third 6.00-6.25 times and fourth 5.00-6.65 times as long as wide.

Type locality: "the sea West of South Africa" (Cleve, 1904).

Geographical distribution! The species is widespread in tropical and subtropical waters in all oceans. Atlantic Ocean: the northernmost locality is the region of the Faroe Isls, southernmost $30^{\circ} \mathrm{S}$ (Wolfenden, 1911). Recorded in the Mediterranean, Caribbean and Red Seas (Rose, 1937), in the Gulf of Mexico (Park, 1970, 1974). Pacific Ocean: the northwestern part from Japanese waters (Tanaka, 1957a;
original data), through equatorial part (Grice, 1962) and southward to $40^{\circ} \mathrm{S}$ (Farran, 1929). Malay Archipelago (A. Scott, 1909). Indian Ocean: (Vervoort, 1957).

Vertical distribution. The species is recorded from the upper 500 m , from hauls $200-350 \mathrm{~m}$ (Vervoort, 1957), 0-100 m (Farran, 1929), 250-500 and 0-88 m (Bradford, 1971a).

Material: 11 females from samples 202, 211, 410, 412-413, 416, 420, 421.

Notes. The size of males of A. giesbrechti is close to that of A. mexicanus. A. giesbrechti differs in the higher anterior part of cephalon, comparatively shorter Abd segments and longer Ri2 P2.

7. Aetideus mexicanus Park, 1974

(Fig. 8)

Aetideus mexicanus Park, 1974: 215, figs 1-2.
Description. Fe m a 1 e . Total length $1.66-1.84$ mm . Cephalothorax 3.6 times longer than abdomen. Rostrum of A. armatus type. Rostral excavation 1.071.16 times as wide as deep. Th5 points of variable length, usually reaching posterior border of genital segment, but sometimes exceeding it. Al extending beyond distal end of caudal rami by two last joints or is as long as body. All other appendages like those in A. pacificus. Most specimens with asymmetrical P1 (with tooth-like protrusion at external edge of right basipodite); otherwise P1-P3 similar to A. pacificus. P 4 coxopodite without'spinules near the base of internal seta. Re3 P2-P4 terminal spine with 15-17 teeth.

M a 1 e. (Description after Park (1974) with modifications). Total length $1.58-1.68 \mathrm{~mm}$. Cephalothorax 3 times longer than abdomen. Points of Th5 posterior corners reaching posterior border of Abdl. Second abdominal segment 0.98-1.05 times, third joint 1.08-1.15 times and fourth joint 1.12-1.19 times as long as wide. Caudal rami 1.82-2.00 times as long as wide. Al reaching about distal end of Abd4. Re3 P2-P3 terminal spines longer than their joints, with 23 and 29 teeth respectively. Second P5 joint 3.7-4.2 times, third joint 8.3-8.7 times and fourth joint 9.0-9.7 times as long as wide.

Type locality: the Gulf of Mexico: $25^{\circ} 15^{\prime} \mathrm{N}$, $81^{\circ} 11^{\prime} \mathrm{W}$.

Geographical distribution. Atlantic Ocean: The Gulf of Mexico (Park, 1974). Pacific Ocean: tropical part $\left(13^{\circ} \mathrm{N} 133^{\circ} \mathrm{W}\right)$ (original data).

Vertical distribution: in the Gulf of Mexico in the upper 500 m (Park, 1974), in the Pacific Ocean in $500-1000 \mathrm{~m}$ (original data).

Material: 1 female from sample 207.
Notes. A. mexicanus differs from A. armatus in the slender body, longer A1 exceeding caudal rami by 2 joints and specially by absence of teeth near
the base of internal seta at P 4 coxopodite. The male of A. mexicanus is very similar to that of A. armatus but differs in the width/length ratio of the caudal rami and $\mathrm{Abd} 2-\mathrm{Abd} 4$. The species is very close to A. divergens, differs in the shorter Th5 points (although some specimens with points exceeding posterior border of genital segment were found Park, 1974).

8. Aetideus pacificus Brodsky, 1950

(Figs. 9-10)
Aetıdeus pacıficus Brodsky, 1950: 144, fig. 60; Park, 1968: 542, pl. 4, figs 16-24, pl. 5, figs 1-7; Bradford, 1971a: 18.

Description. Fe m a 1 e . Total length $2.20-2.50$ mm . Cephalothorax 3.4 times longer than abdomen. Crest absent. Rostral rami not wide, depth of rostral excavation nearly equal its width. Points of Th5 posterior corners reaching distal third of genital segment, not divergent. Al exceeding caudal rami by last 1-2 joints. Ri2 Md with 11 (9 terminal and 2 posterior) setac. Ri Mx1 with 12 (Park (1968) recorded 15) setae. Ril Mxp nearly as long as Mxp protopodite with setation typical of the genus. Ri P2 2-jointed with incompletely separated joints, all remaining $\mathrm{P} 2-\mathrm{P} 4$ rami 3 -jointed. Terminal spines of Re3 P2-P4 with about 17 denticles. P4 coxopodite with 4 small spines near the base of internal seta.

Male (first description). Total length 1.90-2.10 mm . Cephalothorax 2.7-3.0 times longer than abdomen. Points of Th5 posterior corners extending the end of proximal third of Abd2. Caudal rami 3.7 times as long as wide. A1 reaching Abd2. A2 rami about equal in length. In comparison to female, setation of oral parts reduced. Second abdominal segment 1.24 times as long as wide, third segment 1.37, and fourth segment 1.47 times as long as wide. P1-P4 as in female but without small spinules at P4 coxopodite. Second P5 joint 4.3 times as long as wide, third joint 8.2 and fourth joint 7.5 times as long as wide.

Type locality: $43^{\circ} 30^{\prime} \mathrm{N} 147^{\circ} 30^{\prime} \mathrm{E}$.
Lectotype: female; N 1/39801; Kurile-Sakhalin expedition; August 28, 1948; layer $500-1000 \mathrm{~m}$; depth 1070 m , station 17 , sample 88 ; kept in the Zoological Insitute, Russian Academy of Sciences, St. Petersburg.

Geographical distribution. Pacific Ocean: northwestern part, the Sea of Okhotsk, the Bering Sea (Brodsky, 1950); the Kurile-Kamchatka Trench area (original data), north-eastern part $\left(42^{\circ} \mathrm{N} 154^{\circ} \mathrm{W}\right)$ (Park, 1968).

Vertical distribution. The species is recorded in epipelagial (Park, 1968; original data). In the KurileKamchatka Trench area it is found at depths above 500 m , usually in layers $100-200$ and $200-500 \mathrm{~m}$,

Fig. 9. Aetideus pacificus. Female (144).

Fig. 10. Aetideus pacificus. Male (specimen from Kurile-Kamchatka Trench region).

Fig. 11. Aetideus pseudarmatus. Female (from Bradford, 1971a).
sometimes in depth range between 500 m and 1000 m (original data).

Material: 34 females and 1 male from samples $3,7,59,71,78,79,89-90,117-118,129-132,143-$ $145,153-155,167-170,185-186,217-218,220-224$, 227, 238, 248-249.
9. Aetideus pseudarmatus Bradford, 1971
(Fig. 11)
Aettdeus pseudarmatus Biadford, 1971a: 23, fig 8, Bradford \& Jillett, 1980: 14, figs 8, 60.
Description. Fe m ale. (Description after Bradford (1971a) with modifications). Total length $1.65-$ 1.80 mm . Rostral rami wide near base. Rostral excavation 0.83-1.07 times as wide as deep. Poincs of Th5 posterior corners reaching posterior border of genital segment. Dorsal and ventral parts of spermatheca connected by narrow duct (in lateral view), its length at least 5 times greater than width. A1 shorter than body. Oral appendages and swimming legs identical to those of A. armatus.

Male unknown.
Type locality: $46^{\circ} 46^{\prime} \mathrm{S} 164^{\circ} 35^{\prime} \mathrm{E}$.
Geographical distribution. Atlantic Ocean: the south-eastern part to $32^{\circ} \mathrm{S}$ (Bradford, 1971a). Pacific Ocean: the south-western part to $39^{\circ} \mathrm{S}$ (Bradford, 1971a). The species is also found off South Africa.

Vertical distribution. The species is recorded in
hauls in epipelagial ($0-50,100-250 \mathrm{~m}$) and upper mesopelagial ($250-500 \mathrm{~m}$) and in total hauls (Bradford, 1971a).

Notes. The species is very similar to A. armatus but is distinguished from the closely related species by the longer and narrower duct connecting dorsal and ventral parts of spermatheca, slightly shorter Th5 points and wider rostral rami bases.

The species is not examined by me.
10. Aetideus truncatus Bradford, 1971
(Fig. 12)
Aetideus truncatus Bradford, 1971a: 26, fig. 10.
Description. F e m a 1 e . Total length $1.60-1.80$ mm . Cephalothorax 3.5 times longer than abdomen. In lateral view, cephalon more prominent near the level of Md and Mx1. Rostrum small, with short widely spaced rami. Rostral excavation 1.46-2.00 times as wide as deep. Rostral rami look very wide (in ventral' view). Points of posterior Th5 corners not exceeding posterior border of genital segment. Duct connecting dorsal and ventral parts of spermatheca sufficiently thick (shorter than those of A. divergens). Al not exceeding posterior border of anal segment. Oral appendages and P1-P4 typical of the genus.

Male. (Description after Bradford (1971) a with modifications). Total length 1.45 mm . Body shape

Fig. 12. Aetideus truncatus. Female (215). Male (from Bradford, 1971a).
very similar to that of A. armatus, points of Th5 not exceeding Abd1. Line of fusion between Th4-Th5 visible in dorsal view. Caudal rami 2.51-2.66 times longer than wide. All appendages of the same structure as in A. armatus. Terminal spines at Re3 P2 and P3 with 23 and 21 denticles respectively, the denticles at P3 more widely spaced, than in A. armatus since terminal spine is longer than Re3. Second P5 joint 2.32-2.86 times, third joint 6.0-6.51 times, and fourth joint 5.4-6.55 times as long as wide.

Type locality: the Gulf of Califomia: $22^{\circ} 59^{\prime} \mathrm{N}$ $107^{\circ} 13^{\prime} \mathrm{W}$.

Geographical distribution. Pacific Ocean: the north-eastern part, to $32^{\circ} \mathrm{N}$ (Bradford, 1971a).

Vertical distribution. The species is found in hauls from 121-238, $350-500$ and $477-594 \mathrm{~m}$ and in total hauls (Bradford, 1971a; original data).

Material: 3 females from samples 209, 214-215.
Notes. Females of this species are distinguished from all other species of the genus by short, widely spaced rostral rami and short Th5 points. Males hardly differ from males of A. armatus (ratio of segments and caudal rami overlapping in both species). The only noticeable distinction is in the widely spaced denticles at terminal spine of Re3 in A. truncatus, in which the terminal spine Re3 P3 is longer than the joint itself.

2. Aetideopsis Sars, 1903

Type species: Aetideopsis rostrata Sars, 1903, by subsequent designation (Brodsky, 1950).

Aetideopsis Sars, 1903: 160
Pseudaetideus Wolfenden, 1904: 115 (type species: Euchaeta armata Boeck, 1872, by monotypy)
Faroella Wolfenden, 1904: 117 (type species: Faroella multiserrata Wolfenden, 1904, by monotypy)

Description. F e m a 1 e. Total length 1.96-4.00 mm . Cephalothorax 2.7-4.0 times longer than abdomen. Cephalon and Th1 completely or incompletely fused, Th4 and Th5 separated, sometimes incompletely (A. armata). Rostrum bifurcate; sometimes small with close spaced rami (A. armata); well developed with heavily sclerotized rami parallel (A. antarctica), or more or less divergent. Some species with slightly elevated crest near rostrum or at the level of A2. Th5 and genital segment symmetrical. Posterior points of Th5 comers are not separated from segment; covering first third of genital segment, reaching its middle length or exceeding it. Body surface sometimes with chitinuos thickenings. Abd1-Abd3 with little spinules along posterior border. Genital segment symmetrical, its length $1.2-$ 1.6 times its width. Caudal rami 1.3-1.5 longer than wide. A1 24 -jointed, extending posterior border of Abd3, reaching the end of the body, or longer than body (A, retusa). Re A2 1.2-1.5 times longer than Ri. Coxopodite A2 with 1 seta, basipodite with 2. Ri1 A2 with 2 (rarely with 1) setae; Ri2 A2 with 13-15 setae (5 long and 3 short terminal at internal lobe and 6 long terminal and 1 short posterior at external lobe). Rel A2 without setae; Re2 A2 with 2 setae (1 medial and 1 distal); sometimes medial seta absent (A. armata, A. multiserrata). Re3-Re6 A2 with 1 strong long seta each, Re7 A2 with 1 medial and 3 terminal setae. Re Md longer than Ri. Md palp base with 2 seta; Bradford (1969a) noted 1 seta. Ril Md with 3 setae, sometimes with 2 (A. carinata, A. antarctica); Ri2 Md with 9-10 setae, commonly 8 terminal and 1 (rarely 2) posterior setae. Mxl gnathobase with 9 terminal claw-like and 1 thin anterior setae and 4 setae on posterior surface. Mx1 second and third internal lobes with 5 and 4 setae respectively; protopodite near Ri base with 5 setae; Ri with 13 setae; Re with $8-10$ setae; external lobe with 9 (7 long and 2 short) setae. Mx2 typical of Aetideidae: fourth and fifth endites with 1 thickened seta transformed into claw-like spine. Mxp protopodite 1.1-1.6 times shorter than Ril Mxp, setation typical of the family; in A, armata there is minute seta present near the base of the joint. From proximal to distal part of Mxp protopodite there are groups of 2,3 and 3 setae. Sometimes in proximal part of protopodite there is more (A. carinata) or less (A. rostrata, A. retusa) developed projection. Re P1 3-jointed, each joint with an ex-

- ternal spine; these spines may be short, not reaching the middle of the next joint (A. cristata), extending to the midlength of the following spine or exceeding it. Ri Pl 1-jointed; its external lobe with minute spinules apically, in A. tumorosa external lobe absent. P2 with 1-, or incompletely 2-jointed Ri (line of separation often visible); Re is 3 -jointed. P3 sometimes with 2-jointed Ri , usually Ri 3 -jointed, but division between joints may be incomplete. P3 with 3-jointed Re. P4 with 3-jointed rami. External surface of swimming legs coxopodites spinulose in the majority of species. Some specimens of A. minor with vestigial P5.

M a 1 e. Total length $2.40-4.20 \mathrm{~mm}$. Cephalothorax 2.5-3 times longer than abdomen. Cephalon and Thl fused, Th4-Th5 incompletely or completely separated. Crest absent. Rostrum less developed than in female of the same species, rami spaced closer in some species (A. armata). Genital segment two or more times longer than next one. Points of Th5 posterior corners shorter than in females, not reaching, reaching, or exceeding the posterior border of Abd1. A1 23-jointed, shorter than in female, or reaching Th3-Th4. A2 as in female, only setation is slightly reduced; coxopodite with 1 seta or no; basipodite with 2 setae; Ril A2 with 1-2 or no setae; Ri2 A2 with 12-14 setae. Re1 A2 without setae; Re2 A2 with 1 seta. Md palp base with 1 seta, or seta is absent. Ril Md with 1 seta; Ri2 Md with 9 (in A. tumorosa with 8) setae. Mxl with reduced setation comaring with female; Ri with 9-11 setae; Re with $9-10$ setae. Mx2 reduced. Mxp protopodite usually without medial setae, or with 1-3 very small ones; distal part of joint with 1-2 setae, Ril with 3 medial setae. Pl with 3 -jointed Re, each joint with an external spine. Spines not reaching the base of the following spine, or excceding their bases. P2-P4 in segmentation and setation are the same as in females. P5 biramous; not exceeding abdomen in length, or longer; Ri 1-jointed; right Re 2 -jointed, left Re 3jointed, of simple structure.

The genus Aetideopsis includes 10 species. The antarctic species A. antarctica (Wolfenden, 1908) is not included in this work.

Key to species of Aetideopsis

Females

1(2) Ri Pl without external lobe \qquad
9. A. tumorosa Bradford

2(1) Ri P1 with external lobe.
3(4) Posterior corners of Th 5 wing-like, divergent (dorsal view). Genital segment (dorsal view) with lateral swellings .
3. A. carinata Bradford

4(3) Posterior comers of Th5 not wing-like, not divergent (dorsal view). Genital segment (dorsal view) barrel-like without lateral swellings.
5(6) Crest present, beginning from rostrum (lateral
view). First and second external spines of Re1 and Re2 P1 short not reaching the middle lenght of next joint
. 4. A. cristata Tanaka
$6(5)$ Crest absent or, if present, beginning at the level of A2. First and second external spines of Rel and Re 2 Pl reaching the middle length of next joint, or exceeding base of next spine.
7(8) Ri P2 1-jointed. Points of Th5 posterior corners short, covering first one-third of genital segment length1. A. albatrossae Shih \& Maclellan
8(7) Ri P2 2-jointed (though separation between joints may be incomplete). Points of Th5 posterior corners reaching the midlength of genital segment, or exceeding it.
9(10) Anterior part of cephalon (lateral view) evidently prominent over rostrum (in front of it)
6. A. multiserrata Wolfenden

10(9) Anterior part of cephalon (lateral view) fairly smoothly transforming into rostrum, not prominent over base of rostrum.
11(12) Rostrum very small, rami rather close-spaced, nearly parallel
2. A. armata (Boeck)

12(11) Rostrum well developed, rami, if parallel, not close-spaced, usually divergent.
13(16) Proximal part of Mxp protopodite (externally) with well visible projection.
14(15) Total length $1.96-2.8 \mathrm{~mm}$. Crest absent. Ri2 Md with 9 (8 terminal and 1 posterior) setae. A1 as long as or longer than body
7. A. retusa Grice \& Hulsemann

15(14) Total length $3.0-4.0 \mathrm{~mm}$. Crest present, faintly developed. Ri2 Md with 10 (8 terminal and 2 posterior) setae. A1 reaching the middle length, or end of Abd3
8. A. rostrata Sars

16(13) Mxp protopodite without projection in proximal part 5. A. minor (Wolfenden)

Males

(unknown for A. minor; adult male unknown for A. albatrossae).

1(2) Points of Th5 posterior corners not reaching posterior border of Abdl
2. A. armata (Boeck)

2(1) Points of Th5 posterior corners reaching or exceeding posterior border of Abdl.
3(4) Ri Pl without external lobe \qquad 9. A. tumorosa Bradford

4(3) Ri Pl with external lobe.
$5(10)$ Rostral rami spaced closely.
6(7) Rostral rami not divergent
6. A. multiserrata Wolfenden

7(6) Rostral rami more or less divergent.
8(9) Total length over 3 mm ($3.0-4.2 \mathrm{~mm}$). Genital segment over half shorter than Abd2
8. A. rostrata Sars

9(8) Total length less than $3 \mathrm{~mm}(2.35-2.7 \mathrm{~mm})$. Genital segment no more than half shorter than Abd2..
7. A. retusa Grice \& Hulsemann

10(5) Rostral rami widely spaced, divergent.
11(12) Total length about 3.2 mm . External spines of Rel and Re2 P1 not reaching the midlength of next joint
4. A. cristata Tanaka

12(11) Total length about 2.4 mm . External spine of Rel Pl reaching the base of next spine, spine of Re2 Pl reaching the middle length of next joint 3. A. carinata Bradford

1. Aetideopsis albatrossae

Shih \& Maclellan, 1981
(Fig. 13)
Aettdeopsis albatrossae Shih \& Maclellan, 1981: 567, figs 1-2.

Description. Female. (Description after Shih \& Maclellan (1981) with modifications). Total length 2.66-2.78 mm. Cephalothorax 2.7-3.0 times longer than abdomen. Body surface with chitinous thickenings. Rostrum with rather widely spaced rami, their external parts parallel. Th5 posterior corners pointed; shorter than in other species, covering first one-third of genital segment length. Genital segment about as wide as long. A1 reaching posterior border of last Abd segment. Re2 A2 with medial seta. Md palp base with 2 setae; Ril Md with 3 setae; Ri2 Md with 9 (8 terminal and 1 posterior) setae. Re Mx1 with 10 setae, otherwise setation typical of the genus. External spines of Rel and Re2 P1 exceeding base of following spine. Ri P1 with small external lobe. Ri P2 1-jointed. Terminal spine of Re3 P2 with 54 denticles. Separation between Ril and Ri2 P3 incomplete. Ri P4 3-jointed.

M ale. Known after V copepodite stage. Total length $2.20-2.34 \mathrm{~mm}$. Cephalothorax 3.07-3.26 times longer than abdomen.

Type locality: $12^{\circ} 53^{\prime} \mathrm{N} 121^{\circ} 52^{\prime} \mathrm{E}$.
Geographical distribution. The species is known from tropical part of the Philippines region of the Pacific Ocean (Shih \& Maclellan, 1981).

- The species is not examined by me.

2. Aetideopsis armata (Boeck, 1872)

(Figs. 14-16)
Euchaeta armata Boeck, 1872: 39; Giesbrecht, 1892: 301. Aetideopsis armata: Park, 1975a: 276, figs 3-4; Brenning, 1983: 2, 1985: 29; Roe, 1984: 356.
Chiridius armatus: Sars, 1901: 27, pl. 15, 16, 1903: 161, 1925; 45; With, 1915: 77, fig. 17, pl. 2, fig. 3; Farran, 1926: 247; Jespersen, 1934: 55; Rose, 1937: 165; Lysholm, Nordgaard \& Wiborg, 1945: 11; Wilson, 1950: 189, pl. 22, fig. 310; Mathews, 1964: 6; figs 2, 4-6;

Fig. 13. Aetideopsis albatrossae. Female \& male (from Shih \& Maclellan, 1981).

Tanaka \& Omori, 1970a: 114, fig. 2; Bjornberg, 1973: 322.

Pseudaetideus armatus Wolfenden, 1904: 111, 115, pl. 9, fig. 29-31; van Breemen, 1908: 32, fig. 34; Brodsky, 1950: 154, fig. 70; Brodsky \& Nikitin, 1955. 416; Vervoort, 1952c (sheet 44): 3, fig. 4, 1963: 125.

Description. Fe m a l e. Total length $3.28-4.50$ mm . Cephalothorax 3.0-3.8 times longer than abdomen. Crest absent. Rostrum very small, smaller than in other species of the genus, rami spaced closer to each other. Th5 points reaching or exceeding the
middle length of genital segment (dorsal view). A1 exceeding posterior border of Abd 2 . Re A 2 without medial seta (Tanaka \& Omori (1970a) mentioned such seta in , their specimens). Ri2 Md with 10 (8 terminal and 2 posterior) setac. Mxp protopodite without projection. Rel and Re2 P1 with external spines reaching or slightly exceeding base of next spine. P2 with incomplete separation of Ri joints. Re3 P2 external spines short, not reaching base of following spine. Terminal spines of Re3 P2 with 32 denticles. P3-P4 with 3 -jointed rami.

M ale. (Description after Sars (1903) and Park

Fig. 14. Aetideopsis armata. Female: Th5(a) \& Abd(a) (442), other figures (361).

Fig. 15. Aetideopsis armata. Female (361).

(1975a) with modifications). Total length 3.28-4.0 mm . Rostrum, segmentation of body as in female. Points of Th5 slightly not reaching posterior border of Abd1. A1 reaching Th3. Comparing with female oral parts rudimentary. $\mathrm{Pl}-\mathrm{P} 4$ as in female, with only external Re P1 spines shorter. P5 typical of the genus with small terminal spine and 2 thin little spines apically at left Re3.

Type locality: the western coast of Norway.
Geographical distribution. Atlantic Ocean: widespread in the northern part; noted to the North up to $75^{\circ} \mathrm{N}$ in the Baffin Bay (Jespersen, 1934) and in the Barents Sea (Vervoort, 1952c); to the South down to the Gulf of Guinea (Vervoort, 1963); also found in the Gulf of Mexico and the Carribean Sea (Park, 1970, 1975a), in the Mediterranean and Adriatic seas (Rose, 1937); not found to the South of the Equator in Atlantic. Pacific Ocean: of rare occurrence. The nothernmost finding in the north-western part is the Izu region (Tanaka \& Omori, 1970a),
the southernmost: the region of $36^{\circ} \mathrm{S}$ in the eastern part (original data), also recorded from the tropical part (Wilson, 1950). Indian Ocean: for the first time recorded in the north-western part (original data). K.A. Brodsky recorded A. armata ($=P$. armatus) off the central part of the Arctic Ocean: of $78^{\circ} \mathrm{N}$ $166-168^{\circ} \mathrm{W}$ (Brodsky, 1950; Brodsky \& Nikitin, 1955), however during later examination this species was not found in the collection.

Vertical distribution. The species was found in samples collected from meso- and bathypelagial (Farran, 1908; Jespersen, 1934; Lyscholm, Nordgaard \& Wiborg, 1945; Park, 1975a; Roe, 1984), at the depth of 240 m in near bottom layers (Matthews, 1964); also found in epipelagial (Wilson, 1950; Vervoort, 1963). Recorded in total hauls from depths above 3000 m (Sars, 1925, etc.)

Material: 5 females from samples: $361,368,403$, 441-442.

3. Aetideopsis carinata Bradford, 1969

(Figs. 17-18)

Aetideopsis carinata Bradford, 1969a: 81, figs 29-53; Roe, 1975: 306, fig. 5; Vives, 1982: 291; Brenning, 1983: 2, 1985: 29.

Description. Fem a 1 e. Total length 2.66-2.96 mm . Cephalothorax about 3.3 times longer than abdomen. Anterior part of cephalon acute-angled (dorsal view) and obtuse-angled (lateral view). Rostrum with widely spaced and strongly divergent rami. Posterior ThS corners wing-like, strongly divergent (dorsal view). Points of Th5 posterior comers reaching nearly the midlength of genital segment. Anterior half of genital segment with lateral swellings (dorsal view) and well developed ventral swelling (lateral view). A1 reaching Th3-Th4. A2 setation typical of the genus. Re2 A2 with medial seta. Md palp base with 2 setae (Bradford (1969a) noted 1). Ril Md with 2 setae and Ri2 with 9 (7 terminal and 2 posterior setae). Proximal part of Mxp protopodite with external projection. Re1 and Re 2 Pl with external spines exceeding the base of following spinc. Ri P2 1-jointed and Re P2 3-jointed; Re terminal spine with 26 denticles. P3 with 2 -jointed Ri and 3-jointed Re, terminal spine with 29 denticles (Bradford, 1969a). P4 with 3-jointed rami; terminal spine with 30 denticles (Bradford, 1969a).

M ale. (Description after Bradford (1969a) with modifications). Total length 2.4 mm . Cephalothorax 2.7 times longer than abdomen. Th4-Th5 partly fused. Points of Th5 posterior corners reaching posterior border of Abd1, not divergent. A1 exceeding beyond Th3, 23 -jointed. In comparison with female, oral parts rudimentary. Segmentation of P1-P2 as in female, but external spines of Re significantly shorter. P3-P4 with 3-jointed rami; Re3 terminal spines with 30 and 33 denticles respectively. P5 typical of the genus. Left Re2. P5 with 2 thin spines arranged distally.

Type locality: $21^{\circ} 09^{\prime} \mathrm{S} 12^{\circ} 44^{\prime} \mathrm{E}$.
Geographical distribution. Atlantic Ocean: the southeastern part ($18^{\circ} \mathrm{N} 25^{\circ} \mathrm{W}$ and $28^{\circ} \mathrm{N} 14^{\circ} \mathrm{W}$) after Roe (1975); tropical part: region of the Canary Islands (Vives, 1982; Brenning, 1983, 1985).

Vertical distribution. The species was found in vertical hauls of mesopelagial (Roe, 1975) and in total tow from 300 m (Bradford, 1969a).

Material: 5 females, from sample 573.

4. Aetideopsis cristata Tanaka, 1957

(Fig. 19)
Aetideopsis cristata Tanaka, 1957: 42, fig. 28 (a-m)
Description. Fe m ale. (Description after Tanaka (1957a) with modifications). Total length 3.84 mm .

Cephalothorax 3.26 times longer than abdomen. Points of Th5 posterior corners reaching posterior one-third of genital segment length. Body surface with chitinous thickenings. Rostrum with robust widely spaced rami. Crest begins from rostrum (lateral view), covering the first one-third of cephalon length (dorsal view). A1 reaching Abd3 posterior border. Mx2 and Mxp similar to those in A. rostrata. Rel and Re2 Pl external spines short, not reaching the midlength of next joint; Ri with small external lobe. Ril and Ri2 P1 incompletely separated. Re3 P2-P4 terminal spines with 27,30 and 40 denticles respectively.

Male. (Description after Tanaka (1957a) with modifications). Total length 3.25 mm . Cephalothorax 2.7 times longer than abdomen. Th4 and Th5 incompletely separated. Points of Th5 corners exceeding posterior Abdl border. Body surface with chitinous thickenings. Rostrum with wide base, rami divergent. A1 exceeding posterior Th2 border. Ri A2 as long as Re A 2 ; the same refers to Ri and Re Md. Mxl second and third internal lobes with 2(?) setae; protopodite near the Ri base with 4 setae; Ri with 10 setae; external lobe with 9 setac. Mx2 highly reduced. Ril Mxp slightly longer than protopodite. P1-P4 similar to those in female. Re3 P2-P4 terminal spines with 31,34 and 36 denticles respectively. P5 similar to A. armata figured by Sars.

Type locality: the Izu region, Sagami Bay.
Geographical distribution. The species is known from the Izu region only (Tanaka, 1957a).

Vertical distribution. The species was found in vertical total tow from 1000 m (Tanaka, 1957a).

The species is not examined by me.

5. Aetideopsis minor (Wolfenden, 1911)

(Figs. 20-21)
Faroella minor Wolfenden, 1911: 214.
Chiridius minor: Farran, 1929: 230.
Aetideopsis minor: Vervoort, 1951: 72, fig. 40, 1957: 52, fig. 8; Bradford, 1971b: 18, fig. 30; Park, 1978: 115, figs 8-9.
Chiridius modestus With, 1915: 82, fig. 19 (a-c), pl. 2, fig. 5 (syn.n.).
Aetideopsis modesta: Bradford, 1969a: 13; Bradford \& Jillett, 1980: 19; Park, 1978: 111; Shih \& Maclellan, 1981: 567.
Aetideopsis multiserrata (non Wolfenden, 1904): Brodsky, 1950: 146, fig. 62; Markhaseva, 1984: 512.

Description. Fem a 1 e. Total length 2.87-3.90 mm. Cephalothorax 2.7 times longer than abdomen. Rostrum with variously diverging rami. Cephalon with faintly developed crest arranged at A2 level. Points of Th5 posterior corners slightly shorter the midlength, or exceeding the midlength of genital segment (dorsal view). A1 reaching Abd2. Re2 A2 with medial seta. Ri1 Md with 3 ; Ri 2 Md with 10 setae (9 terminal and 1 posterior). Mxp protopodite

Fig. 17. Aetideopsis carinata. Female (573).

Fig. 18. Aetideopsis carinata. Male (from Bradford, 1969a).

Fig. 19. Aetideopsis cristata. Female, male (from Tanaka, 1957a).

Fig 20 Aettdeopsis minor Female $R(a)$ (302), $R(b)$ (542), other figures (467)

Fig. 21. Aetideopsts minor. Female (467).
without projection. Ri P1 with well developed external lobe. Re1-Re2 P1 external spines long, usually exceeding the base of next joint by one third of their length. Ri P2 sometimes incompletely 2 -jointed; segmentation of other limbs typical of the genus. The anterior surface of Ri P2-P4 sometimes with minute denticles (after Wolfenden, 1911).

Notes. A. minor was described briefly, without figures (Wolfenden, 1911). Later the species was redescribed (Vervoort, 1951; Park, 1978; Bradford, 1971b; Bradford \& Jillett, 1980), and considered to be distributed in the Antarctic. Thus, nobody had compared A minor Wolfenden with A modesta ($=$ Chiridius modestus With, 1915) from the North Atlantic. During my examination of Aetideopsis spe-
cimens from the Arctic Ocean, A modesta ($=\mathrm{Ch}$ modestus) was accepted identical to A minor Wolfenden and considered its junior synonym. Features, earlier proposed as distinguishing (shape of rostrum, the degree of rostral rami divergence, length of Th 5 points, length of Re3 P2 external spines) proved rather variable (even in specimens from the same sample), and should be considered mtraspecific variability.

Male unknown.
Type locality. to the South of $60^{\circ} \mathrm{S}$, in region of $85^{\circ} \mathrm{W}$.

Geographical distribution. Atlantic Ocean: to the south of northern part to $61^{\circ} \mathrm{N}$ (With, 1915); the Greenland Sea (original data). Arctic Ocean: the central part. Circumpolar in Antarctic (Wolfenden, 1911;

Farran, 1929; Vervoort, 1951, 1957; Bradford, 1971b; Park, 1978): the northermost records: $47^{\circ} 43^{\prime}$ S (Vervoort, 1957), $50^{\circ} 25^{\prime} \mathrm{S}$ and $58^{\circ} 58^{\prime} \mathrm{S}$ (original data). Species may be characterized as bipolar.

Vertical distribution. In high latitudes of the Antarctic the species is found in epipelagic layers (0-100 m) at temperature $0.9^{\circ} \mathrm{C}$ and $-1.4-1.6^{\circ} \mathrm{C}$ (Vervoort, 1951); the species was also found in hauls from meso-bathypelagial (Vervoort, 1957). In the northern hemisphere the species is known from bathypelagic layers of the Greenland Sea: 1000-3000 and 20002800 m and from mesopelagial of the central part of the Arctic Ocean (original data).

Matertal: 20 females from samples 269, 302, 337 -$338,379,405,429,434,466-467,491,511,523,542$.

6. Aetideopsis multiserrata (Wolfenden, 1904)

(Figs. 22-23)
Faroella multiserrata Wolfenden, 1904: 117, pl. 9, figs 26-28; Farran, 1908: 29.
Aettdeopshs multuserrata: Sars, 1924-25: 43, pl. 14, figs 4-8; Rose, 1933: 91, fig 54; Jespersen, 1934: 373; Vervoort, 1952a (shcet 42): 3, fig. 4, 1963: 123; 「anaka, 1957a: 37, fig. 26; Grice \& Hulsemann, 1965: 231; Tanaka \& Omori, 1970a: 111; Bjornberg, 1973: 322; Park, 1975a 274, figs 1-2, 1978: 111, figs 6-7; Bradford \& Jillett, 1980: 19.
Chiridus multuserratus: Farran, 1926: 248.
Aetideopsis pacifica Esterly, 1911: 315, pl. 28, fig. 24, 25, 30 , pl. 31, fig. 86, 103; pl. 32, fig. 113 (syn n.).
Chiridius nasutus With, 1915: 81, text-fig. 18, pl. 2, fig. 4. Aetideopsts nasuta: Bradford, 1969a: 73; Park, 1978: 111; Shih \& Maclellan, 1981: 567.
Aetudeopsis rostrata (non Sars, 1903): A Scott, 1909: 40, pl. 5, figs 13-24.
non Aetideopsis multiserrata: Brodsky, 1950: 146, fig. 62; Markhaseva, 1984: 512.

Description. Fem a 1 e. Total length 2.52-3.54 mm . Cephalothorax 3.2-3.8 times longer than abdomen. Crest poorely developed, situated at the level of A2. Rostral rami divergent (with varying degree of divergence in different specimens). The species differs well by abrupt line of cephalon in front of rostrum (lateral view). Points of Th5 posterior corners reaching, or not reaching the midlength of genital segment (dorsal view). Position of distal part of spermatheca varying (it is elevated to a different degree in different specimens, and not always globeshaped). A1 reaching Abd2-3. Re2 A2 without medial seta. Ri2 Md with 10 setae. Mxp protopodite without projection. Re1 and Re2 P1 external spines reaching the base of next spine or exceeding it. Ri P2 joints incompletely separated. Segmentation of P3-P4 typical of the genus.

M a 1 e. Total length $2.70-3.25 \mathrm{~mm}$. Cephalothorax 2.5-2.7 times longer than abdomen. Rostrum
with closely spaced no diverging rami. Points of Th5 posterior corners exceeding posterior border of genital segment (dorsal view). A1 not reaching Th4. Comparing to female oral parts rudimentary. Ril Md with 3 setae; base of Md palp without seta. First and second internal lobes of Mx1 without seta; third internal lobe with 2 setae; protopodite near the Ri base with 3 setae; Ri with 10 , Re with 9 (?) setae; external lobe with 6 setae. Mxp protopodite with 1 medial and 2 distal setae. Ril Mxp with 3 medial setae. Distal joint of left Re P5 with terminal spine and minute spine near its apex.

Notes. A. multiserrata is well distinguished from the other species of Aetideopsis by typical shape of anterior part of cephalon in front of rostrum (lateral view). A. pacifica Esterly, 1911 is considered here identical to A. multiserrata due to identical shape of anterior part of cephalon. A. multiserrata was recorded earlier in the Arctic Ocean (Brodsky, 1950; Minoda, 1967; Vidal, 1971; Markhaseva, 1984), but according to the figures (Brodsky, 1950; Vidal, 1971) and the examined original material from the Arctic Ocean, it is A. minor and not A. multiserrata that was found to occur there. Thus the previous recordings of A. multiserrata in the Arctic Ocean are doubtful. Male described here differs from the earlier described (Tanaka, 1957a; Park, 1975a) in some details: structure of rostrum (lateral view), length of Th5 points and details of setation of oral parts.

Type locality: the North Atlantic.
Geographical distribution. Atlantic Ocean: widespread in the northern hemisphere; the northernmost localities $61^{\circ} \mathrm{N}$ (With, 1915) and the Straight of Davis about $62^{\circ} \mathrm{N}$ (Jespersen, 1934). The southernmost locality is the Gulf of Guinea (Vervoort, 1963), Recorded from the Gulf of Mexico (Park, 1975a); the Bay of Biscay (Farran, 1926). Pacific Ocean: in the western and eastern parts; in north-western part up to the Bering Sea (Motoda \& Minoda, 1974); in south-eastern part to $66^{\circ} 19^{\prime} \mathrm{S}$ (original data).

Vertical distribution. The species was found in hauls in meso- more often in bathypelagial (Wolfenden, 1904; With, 1915; Grice \& Hulsemann, 1965; Park, 1975a; Deevey \& Brooks, 1977), in the KurileKamchatka Trench at depth ranging between 2003000 m , most probable between 1000 and 2000 m . Mesobathypelagic species.

Material: 22 females and 1 male from samples: $1,119,124,127-128,140,145,171-172,174,191$, 202, 267, 2274, 343, 370, 426, 447, 449, 451, 456.

7. Aetideopsis retusa

Grice \& Hulsemann, 1967
(Figs. 24-25)
Aetldeopsis retusa Grice \& Hulsemann, 1967' 22, figs 39-45; Wheeler, 1970: 8.

Description. Female. Total length 1.96-2.80

Fig. 22. Aetideosis multiserrata. Female: $\mathrm{Ce}(\mathrm{a}), \mathrm{R}(\mathrm{a}), \mathrm{Th} 5(\mathrm{a}) \& \operatorname{Abd}(\mathrm{a})$ (145), $\mathrm{Ce}(\mathrm{b}), \mathrm{R}(\mathrm{b})$ (456), other figures (172).

Fig. 23. Aetideopsis multiserrata. Male (171).
mm. Cephalothorax 3.2-3.7 times longer than abdomen. Rostrum with robust, divergent, widely spaced rami. Crest absent. Points of Th5 posterior corners reaching the midlength of genital segment (dorsal view). Distal part of spermatheca rounded, medial part rather narrowed. A1 about as long as body, sometimes slightly longer. Rel A2 without setae; Re2 A2 with 2 setae; Ril A2 with 2 setae. Ri2 Md with 9 (8 terminal and 1 posterior) setae. Proximal part of Mxp protopodite with slend projection covered with spinules. Rel and Re2 P1 with external spines exceeding the base of next spine. P2 with incompletely separated Ril and Ri2. P3-P4 with 3jointed rami.

M a 1 e. Total length $2.25-2.70 \mathrm{~mm}$. Cephalothorax 2.7-2.8 times longer than abdomen. A1 23jointed, reaching Th4 (?). Rostral rami spaced closer than in female. Points of Th5 posterior corners exceeding posterior border of genital segment (dorsal view). Oral parts reduced in comparison with fe-
males. P1-P4 as in female. P5 virtually not differing from that of A rostrata.

Type locality: $10^{\circ} 07^{\prime} \mathrm{S} 64^{\circ} 27^{\prime} \mathrm{E}$.
Geographical distribution. Atlantic Ocean: the north-western part; region of $37^{\circ} \mathrm{N} 69^{\circ} \mathrm{W}$ (Wheeler, 1970). Pacific Ocean: the regions of the KurileKamchatka and Aleutian Trenchs (original data). Indian Ocean: the north-western part (Grice \& Hulsemann, 1967)

Vertical distribution. In the Indian Ocean the species was found in tow $1020-1970 \mathrm{~m}$. In the KurileKamchtaka Trench region in hauls between 2000 and 6000 m , more often at depth ranging between $3000-4000 \mathrm{~m}$. In tows $4300-7070 \mathrm{~m}$ and $5065-7140$ m of Aleutian Trench (original data). Evidently abyssopelagic species, but may be recorded in lower bathypelagial.

Material: 59 females and 8 males from samples: $21,68,82-83,85-86,97-100,102,121-124,139$, 147-149, 163-165, 175-176, 180, 193, 197, 198.

Fig. 24. Aetideopsis retusa. Female: general view, Ce, Th5 \& Abd, P2 (193), Gn (163), other figures (86).

Fig 25. Aetideopsss retusa Female (86) Male (164)

8. Aetideopsis rostrata Sars, 1903

(Figs. 26-28)
Aetideopsis rostrata Sars, 1903: 160, suppl. 4, 5; With, 1915: 86, text-fig. 22, pl. 2, fig. 6; Rose, 1933: 90, fig. 53; Jespersen, 1934: 52; Brodsky, 1950: 145, fig. 61; Vervoort, 1952a (sheet 42): 3, fig. 3; Brodsky \& Nikitin, 1955: 416; Grice \& Hulsemann, 1965: 23; Tanaka \& Omori, 1970a: 112, fig. 1; Shih \& Stallard, 1982: 56, fig. 2.
Aetideopsis divaricata Esterly, 1911: 316, pl. 28, figs 27, 29, 31, 32, pl.31, fig.88, 102 (syn.n.).
Aetideopsis trichecus Vervoort, 1949: 7, figs 2-3 (syn.n.). Aettdeopsis divergens Tanaka, 1957a: 40, fig. 27.
Aetideopsis inflata Park, 1978: 118, figs 11-12 (syn.n.).
Description. Fe m a l e. Total length 3.80-4.60 mm (3.01-3.14 after Tanaka \& Omori (1970a)). Cephalothorax 3-4 times longer than abdomen. Rostrum robust, slightly curved ventrally (lateral view), with robust widely spaced rami. Poorly developed crest arranged at the level of A2 (dorsal and lateral view). Points of Th5 posterior corners reaching or exceeding the midlength of genital segment (dorsal view). AI reaching the midlength of Abd, or the distal end of Abd3. Re2 A2 with medial seta. Ri2 Md with 10 (8 terminal and 2 posterior) setae. Mx1 and Mx2 typical of the genus. Mxp protopodite with small projection externally. Re1 and Re2 P1 external spines exceeding the base of next spine. Ri P2 segmentation incomplete. Sometimes separation between Ril and Ri2 P3-P4 incomplete.

Notes. A. divaricata Esterly, 1911, A. inflata Park, 1978 and A. trichecus Vervoort, 1949 are considered here as synonyms of A. rostrata Sars, 1903. I follow the opinion of identity between A. divergens and A. rostrata (Tanaka and Omori (1970a). Park (1978) established A. inflata on the base of shape of genital segment (widest in its anterior part) and total length. The first of the above mentioned features varies in the limits of intraspecific variability examined by us for A. rostrata, the same is with respect to specimens length. Park (1978) also recorded the absence of lamelliform projection at Mxp protopodite of A. inflata, but this projection varies in the degree of development in A. rostrata, and may be visible only at the special position of the joint.

M a 1 e . Total length $3.13-4.20 \mathrm{~mm}$. Cephalothorax 3.1 times longer than abdomen. Rostral rami spaced closer than in female, less robust, sometimes slightly asymmetrical. A1 23 -jointed, reaching the end of Th3-Th4. Points of Th5 posterior comers exceeding posterior border of genital segment (dorsal view). Comparing to females oral parts rudimentary. P1-P4 as in female. P5 biramous, asymmetrical, typical of the genus.

Notes. In comparison to the description of male A. rostrata (Shih \& Stallard, 1982), the examined specimens differ in setation of Re2 A2, Mx1, Md (Fig. 28).

Type locality: between Jan Mayen and Finmark. Geographical distribution. Atlantic Ocean: the north-eastern part (Vervoort, 1952a), southernmost locality is the North Sea (Rose, 1933); the southwestern part: $56^{\circ} 25^{\prime}$ S-61 ${ }^{\circ} 51^{\prime} \mathrm{S}$ (original data). Arctic Ocean: widespread all over the ocean, also in the northern part of the Baffin Bay to about $75^{\circ} \mathrm{N}$ (Jespersen, 1934; Shih \& Stallard, 1982), in the Barents and the Norwegian seas. The record of A. rostrata from the Mediterranean Sea (Kovalev \& Shmeleva, 1982) is doubtful. Pacific Ocean: in the northern part of the Kurile-Kamchatka and Aleutian Trench (original data), the Izu region (Tanaka \& Omori, 1970a); the San-Diego region (Esterly, 1911) as A. divaricata; in the southern part as A. inflata (Park, 1978).

Vertical distribution. The species was found in vertical hauls taken from mesopelagial (Sars, 1903; Jespersen, 1934; Tanaka \& Omori, 1970a). In the Arctic Basin it was found from epi- to bathypelagial, in tow 1000-2700 from the Norwegian Sea (original data). In the Kurile-Kamchatka Trench region it is usually found between 2000 and 4000 m ; in haul $2040-3150 \mathrm{~m}$ of the Aleutian Trench region (original data). Recorded in haul from 200 m from the lzu region (Tanaka \& Omori, 1970a). Assumingly bathypelagic, possibly interzonal species. It may be also found outside the limits of bathypelagial.

Material: 75 females and 9 males from samples: $5,21,66,83,85-86,95-96,102,121,126-128$, $138,161-163,175-176,181,193,196,302,335$, 461, 465-466, 474-475, 486-487, 490, 509, 522, 531, $533,535-536,543-545,547-548,552,554,556-557$.

9. Aetideopsis tumorosa Bradford, 1969

(Fig. 29)
Aetideopsts tumorosa Bradford, 1969a: 74, figs 1-28; Park, 1978: 118, fig. 10.

Description. Fe m a 1 e . Total length 2.50-2.77 mm . Cephalothorax 3-3.5 times longer than abdomen. Rostrum with spaced divergent rami. Points of Th5 posterior corners reaching the last third of genital segment length, slightly divergent (dorsal view). Genital segment with lateral swellings anteriorly (dorsal view). A1 reaching Abd 2 . Re 2 A 2 with medial seta. Ri2 Md with 9 seta. Projection at Mxp protopodite absent. Ri Pl without external lobe. External spine at Rel Pl exceeding the base of next spine; external spine at $\operatorname{Re} 2$ P1 exceeding the middle of following joint. Ri P2 with nearly completely fused joints. P3-P4 rami 3-jointed.

M a 1 e. (Description after Bradford (1969a) with modifications). Total length $2.40-2.60 \mathrm{~mm}$. Cephalothorax 2.9 times longer than abdomen. Points of Th 5 posterior corners reaching the posterior border of genital segment (dorsal view). Al reaching nearly

Fig 26 Aetıdeopsts rostrata Female $\operatorname{Th} 5(\mathrm{a}) \& \operatorname{Abd}(\mathrm{a}), \mathrm{Th} 5(\mathrm{a}) \& \operatorname{Gn}(\mathrm{a})$ (465), other figures (548)

Fig. 27. Aetideopsis rostrata. Female (548).

Fig. 28. Aetideopsis rostrata. Male• Th5 \& Abd, P5(a) (162), other figures (544)

Fig. 29. Aetideopsis tumorosa. Female, male (from Bradford, 1969a).

Th2. Oral parts rudimentary compared to female. Ri PI without external lobe. Re1 and Re2 PI external spines shorter than in female. Segmentation of Ri P2 better developed than in female. P3-P4 as in female. P5 typical of the genus.

Type localtty: $42^{\circ} 26^{\prime} \mathrm{S} 173^{\circ} 52^{\prime} \mathrm{E}$.
Geographical distribution. Southern part of the Pacific Ocean: region of $54^{\circ} \mathrm{S}, 119^{\circ} \mathrm{W}$ (Park, 1978) and region $53-55^{\circ} \mathrm{S} 129-141^{\circ} \mathrm{W}$ (original data). Found off the New Zealand region (Bradford, 1969a; original data).

Vertical distribution The species was found in total hauls from $200-1500 \mathrm{~m}$ and in hauls from 200-500 m (Bradford, 1969a).

Material 14 females and 5 males from samples: 347, 385, 388, 426, 433.

3. Azygokeras

Koeller \& Littlepage, 1976.
TyPE SPECIES: Azygokeras columbiae Koeller \& Littlepage, 1976, by original designation.

Azygokeras Koeller \& Littlepage, 1976: 1548
Description. F e m a le. (Description after Koeller \& Littlepage (1976) with modifications). Total length 2.58-2.87 mm. Cephalothorax 3.5 times longer than abdomen. Cephalon and Thl fused, Th4-Th5 separated. Rostrum and crest absent. Th 5 posterior corners extending into points not separated from Th5, covering the first one third of genital segment length. Th5 and Abdl symmetrical. Abd1-Abd3 with minute denticles along posterior border. A1 24 -jointed, with numerous setae, annulated in their distal part. Re A 2 as long as and Ri A 2 ; coxopodite with 2 setae (instead of 1 in remaining aetideid genera). Basipodite A2 with 2 setae; Ri1 A2 with 2 setae; Ri2 A2 with 14 setae (8 at internal and 6 at external lobe). $\operatorname{Re} 1 \mathrm{~A} 2$ without setae; $\operatorname{Re} 2$ with 3 setae; $\operatorname{Re} 3-$ Re6 with 1 seta each; Re7 with 3 terminal setae. Md palp base with 3 setae, Ril Md with 2 ; Ri2 Md with 9 terminal and 1 posterior setae. Re Md typical of Aetideidae, more than 1.5 times longer than Ri. Mx1 gnathobase with 9 claw-like terminal and 2 small setae on the posterior surface, gnathobase surface with minute spinules. Mx1 second and third internal lobes with 4 setae each, protopodite near Ri base with 5 setae; Ri with 15 ; Re with 11 setae; external lobe with 7 setae. Mx2 typical of Aetideidae.

Mxp protopodite strong, twice longer than wide, with 1 (proximal), 3 medial and 3 distal setae. Ril Mxp with 3 setae distally. P1 with 3-jointed Re and 1jointed Ri, each Re joint with external spine, nearly reaching the base of next spine. Segmentation of P3-P4 typical of Aetideidae. Posterior surfaces of Ri P2-P4 with minute spinules. P2 and P3 with groups of spinules on posterior and anterior surfaces; also with spinules externally at coxopodite and on posterior surface of basipodite near the place of Re.

Male. (Description after Koeller \& Littlepage (1976) with modifications). Total length 2.08-2.10 mm . Cephalothorax 3 times longer than abdomen. Rostrum and crest absent. Segmentation of cephalothorax as in female. Th5 more reduced, but posterior Th 5 corners of triangular shape, reaching nearly Abd1 posterior border. Left A1 22-jointed, right 21jointed, nearly all joints with aestetasks. Right A1 geniculated; last 6 segments enlarged (distal portion bent backward and curled slightly inward) their setae transformed into robust spines. A2 similar to that in female, but Ri2 A2 without setae; setae at Rel and $\operatorname{Re} 2 \mathrm{~A} 2$ reduced. Md without gnathobase; base of mandibular palp without setae; Ril with 1 seta; Ri2 Md with 9 setae. Compared to female Mx1 and Mx2 rudimentary. Mxp more slender than in female, protopodite without setae; Ril Mxp with 1 medial seta. P1 similar to female; external border of basipodite with long thin spinules. P2-P4 as in female. P5 biramous: Ri 1-jointed; Re 3-jointed; legs are of simple structure.

Notes This genus is unique in Aetideidae because of geniculated right A1. in male.

1. Azygokeras columbiae Koeller \& Littlepage, 1976

(Figs. 30-32)
Azygokeras columbiae Koeller \& Littlepage, 1976. 1548, figs 1-3

Male and female typical of the genus.
Type locality: $50^{\circ} 27^{\prime} \mathrm{N} 125^{\circ} 04^{\prime} \mathrm{W}$.
Geographical distributton. British Columbia (Koeller \& Littlepage, 1976).

Vertical distribution. Probably epibenthic species (Koeller \& Littlepage, 1976), usually found in near bottom layers (hauls made to the depths 400-650 m) and never above 300 m .

The species is not examined by me.

Fig. 30. Azygokeras columbiae. Female, male (from Koeller \& Littlepage, 1976).

Fig. 31. Azygokeras columbiae. Female (from Koeller \& Littlepage, 1976).

Fig. 32. Azygokeras columbiae. Male (from Koeller \& Littlepage, 1976).

4. Batheuchaeta Brodsky, 1950

TYPE SPECIES: Batheuchaeta lamellata Brodsky, 1950, by original designation.

Batheuchaeta Brodsky 1950: 189.

Description. Fem a 1 e. Total length 4.10-5.20 mm . Cephalothorax 4.0-4.5 times longer than abdomen. Cephalon and Thl incompletely separated, Th4-Th5 fused. Crest absent. Rostrum absent, or rarely present, vestigial. Posterior Th5 corners rounded, or transformed into asymmetrical lobes of various length and size. Genital segment asymmetrical, or symmetrical. Genital swelling sometimes highly developed. Genital field symmetrical, or asymmetrical, with "spectacle-like" structure. Abd1-Abd3 with small denticles along posterior border. A1 24jointed, reaching $A b d 2$, or exceeding body length by 2-3 distal joints. Re A2 1.2 times longer Ri. A2 coxopodite with 1 seta; basipodite and Ril with 2 setae each; Ri2 with 14 (7 setae at internal and 7 at external lobes), rarely with 15 setae. Re1 A2
without setae; Re2 with 1 distal seta. Md palp base with 3 setae; Ril Md with $2-3$ and Ri 2 Md with 10 (9 terminal and 1 posterior) setae; Re typical of Aetideidae. Mxl gnathobase with 9 claw-like terminal and 4 posterior setae. Mx1 second internal lobe with 5 ; third with 4 setae; protopodite near Ri base with 5 setae; Ri with $14-16$; Re with 11 and external lobe with 9 setae. Mx2 fourth-fifth endites with 1 seta expanding into claw-like spine. Mxp protopodite 1.5-2.0 times longer than Ri with 1 long seta proximally, with groups of 2,3 and 3 setae and small conical appendage (from proximal to distal). Ri P1 1-jointed. Ri P2 2-jointed. Segmentation of P3-P4 typical of Aetideidae. Re1 and Re2 P2 incompletely separated, all Re joints with external spines. Re2 and sometimes Re1 P2-P4 with a row of denticles near the base of external spine on anterior surface. Ri2 P2 and Ri2-Ri3 P3-P4 posterior surface spinulose. Ri2 P3-P4 with a row of denticles near the border of the segment.

M a 1 e. Total length $4.00-4.50 \mathrm{~mm}$. Rostrum present, small, conic, bifid at the apex. Cephalon and Th1 fused as well as Th4-Th5. Posterior Th5
corners rounded or with small prominences. A1 24jointed. Setation of oral parts reduced compared to female. Segmentation of P1-P4 as in female. Rel and Re2, or only $\operatorname{Re} 2 \mathrm{P} 2$ with row of denticles on the anterior surface near the base of following external spine. Re2 P3-P4 also with row of denticles. P5 strong, of complex structure, longer than abdomen. Left basipodite robust, with 2 knobs near internal border. Ri PS 1 -jointed. Right Ri clavate; configuration of left Ri varies. Right Re P5 2-3-jointed. Left $\operatorname{Re} 3$-jointed, Re3 bilobated, or with appendage near base.

The genus Batheuchaeta includes 8 species.
Notes. Batheuchaeta enormis Grice \& Hulsemann, 1968 removed of Batheuchaeta (Von Vaupel Klein, 1984).

Key to the species of Batheuchaeta

Females

1(6) Genital segment symmetrical.
2(3) Lobes of Th5 posterior corners reaching posterior border of genital segment (lateral view)
5. B. lamellata Brodsky

3(2) Lobes of Th5 posterior corners short, usually not reaching even midlength of genital segment (lateral view).
4(5) Genital field symmetrical. Ventral swelling prominent, nose-form (lateral view). Th5 posterior corners with hairs and poorly visible little spines (left view)
7. B. pubescens Markhaseva

5(4) Genital field slightly asymmetrical. Ventral swelling smooth (lateral view). Th5 posterior corners with minute spinules internally and externally, without hairs
2. B. antarctica Markhaseva

6(1) Genital segment symmetrical or slightly asymmetrical.
7(8) The left side of Th5 with pocket-like projection .6. B. peculiaris Markhaseva
8(7) The left side of Th5 without pocket-like projection.
$9(10)$ Genital segment in its middle length with divided projection on the left (dorsal view)
8. B. tuberculata Markhaseva

10(9) Genital segment with undivided projections on both sides, on the right side (dorsal view), or without projections.
11(12) Th5 posterior corners without lobes. Genital segment without projections
4. B. heptneri Markhaseva

12(11) Th5 posterior corners with lobes (lateral view). Genital segment with projections on the right, or on the both sides in its first one-third.
13(14) Genital field asymmetrical. Denticles at Ri P1 external lobe arranged along distal border

1. B. anomala Markhaseva

14(13) Genital field symmetrical. Denticles at Ri P1
external lobe arranged near external border
3. B. gurjanovae (Brodsky)

Males

(unknown for B. antarctica, B. heptneri, B. pubescens and B. tuberculata).

1(2) Re1 and Re2 P2 anterior surfaces with a row of minute denticles near the base of external spine. Denticles of Ri P1 external lobe arranged along its external border. . . 3. B. gurjanovae (Brodsky)
2(1) Re2 P2 anterior surface with a row of minute denticles near the base of external spine. Denticles of Ri P1 external lobe arranged apically.
3(4) Left Ri P5 without excavation
. 8. B. lamellata Brodsky
4(3) Left Ri P5 with excavation, bilobated.
5(6) Left Ri P5 excavation not deeply concave, dividing Ri plate into 2 short lobes
6. B. peculiaris Markhaseva

6(5) Left Ri P5 excavation deep, dividing Ri plate into 2 long widely spaced horns
. 1. B. anomala Markhaseva

1. Batheuchaeta anomala Markhaseva, 1981

(Fig. 33)
Batheuchaeta anomala Markhaseva, 1981: 1155, fig. 4, 1986b: 839, fig. 1.

Description. Fe m a 1 e. Total length 4.70-4.80 mm . Cephalothorax 4.5 times longer than abdomen. Rostrum rudimentary, conic with notch. Lobes of Th5 posterior corners not visible dorsally, they are turned ventrally nearly perpendicularly to the longitudinal body axis (ventral view). Genital segment asymmetrical with hair-covered projection reaching the midlength of the segment on the right (dorsal view); and small hair-covered swelling on the left. Genital segment longer than 3 following segments together. Ventral swelling small, semicircular (lateral view). Genital field asymmetrical. A1 reaching posterior Abd3 border. Ri Mxl with 15 setae. Oral parts typical of the genus. Denticles at Ri P1 external lobe arranged in row along its distal border.

M a 1 e. Total length $4.05-4.20 \mathrm{~mm}$. Cephalothorax 3.5-3.6 times longer than abdomen. Rostrum conic, with small notch at the apex. Th5 posterior corners (dorsal view) with small prominences. Abd2Abd3 with row of minute spinules along posterior border. A1 broken. Ri2 A2 with $14(7+7)$ setae. Md palp base with 1 setae; Ri1 and Ri2 Md with 1 and 9 setae respectively. Spinules on external Ri P1 lobe arranged apically. Rel P1 external spine short. P5 powerful. Left Ri P5 of two-hom shape;

Fig. 33. Batheuchaeta anomala. Female (from Markhaseva, 1981). Male (from Markhaseva, 1986b)

Re2 with 2 beak-like projections distally. Re3 P5 left with a small claw apically. Distal joint of right Re with lateral triangular projection (one specimen with 2-jointed Re , another 3-jointed).

Type locality: $45^{\circ} 28^{\prime} \mathrm{N} 155^{\circ} 04^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: the Ku-rile-Kamchatka Trench (Markhaseva, 1981, 1986b), the Aleutian Trench (original data).

Vertical distribution. Mostly abyssopelagic species (Markhaseva, 1986b), recorded also in lower bathypelagial. Stenothermic and stenohaline species.

Material: 13 females and 2 males from samples: $19,41,85,102-103,105,124,126,148,165,181$, 197.

2. Batheuchaeta antarctica Markhaseva, 1986

(Fig. 34)
Batheuchaeta antarctica Markhaseva, 1986b: 848, fig. 6.
Description. Fe m a 1 e . Total length 4.30 mm . Cephalothorax 4.2 times longer than abdomen. Rostrum absent. Posterior Th5 corners with asymmetrical lobes, right lobe more prolonged than left (dorsal view), internal surfaces of both lobes spinulose (dorsal view), spinules present also on external surfaces (lateral view), lobes small of smooth triangular shape. Genital segment symmetrical. Genital field slightly asymmetrical. Ventral swelling smooth without projections (lateral view). Abdominal segments (except anal one) along posterior border with rows of minute spinules. Al 24 -jointed, exceeding body by $2-3$ joints. Ri2 A2 with 15 setae. Proximal part of Md palp base with surface spinules. Mxl second internal lobe with 4-5 setae, all other features of setation of oral parts typical of the genus. Spinules at Ri P1 external lobe very small, arranged apically in rows parallel to the distal border of lobe. Segmentation of P1-P2 typical of the genus. Re3 P3, Ri and Re P4 broken, Ri P3 3-jointed. Row of minute spinules present only near the base of external spine at Re 2 P 2 .

Male unknown.
Type locality: $62^{\circ} 54^{\prime} \mathrm{S} 118^{\circ} 52^{\prime} \mathrm{E}$.
Geographical distribution. Antarctic part of the Indian Ocean (Markhaseva, 1986b).

Vertical distribution. The species was found in total haul from 3700 m (Markhaseva, 1986b).

Material: 1 female from sample 379.

3. Batheuchaeta gurjanovae (Brodsky, 1955)

(Figs. 35-37)
Pseudochrella gurjanovae Brodsky, 1955: 189, fig. 3. Batheuchaeta gurjanovae. Markhaseva, 1986b: 841, fig. 2.

Batheuchaeta brodskyl Markhaseva, 1981: 1152, figs 1-2
Description. Female. Total length 4.1-4.5 mm . Cephalothorax 3.3 times longer than abdomen. Rostrum sometimes present, vestigial, with small notch at apex, but usually absent. Right Th5 posterior corner with a group of hairs (lateral view). Lobes of Th5 posterior comers short, not visible dorsally, but well visible laterally and turned ventrally, reaching the middle of genital segment. Genital segment asymmetrical, with a small projection densely covered anteriorly with hair-like setae. Genital segment as long as 3 following segments together. Ventral swelling small, of triangular shape (lateral view). Genital field symmetrical. Al reaching the end of Abd3. Oral parts typical of the genus. Ri Mx1 with 14-15 setae. Ri P1 with group of spinules arranged on external lobe laterally. P2-P4 typical of the genus.

M a 1 e. Total length 3.90. Rostrum small, bifid at the apex. Re1 P2 with minute spinules arranged in row near the base of external spine. Ri Pl external lobe with a group of spinules arranged apically.

Type locality. Kurile-Kamchatka Trench area.
Lectotype: male from sample 42.
Geographical distribution. Pacific Ocean: the Ku-rile-Kamchatka Trench (Brodsky, 1955; Markhaseva, 1981; 1986b), Aleutian and Izu-Bonin Trench area (original data).

Vertical distribution. Mostly abyssopelagic species, more common in lower abyssal (6000-8000 m) (Markhaseva, 1986b). Stenothermic and stenohaline species.

Material: 52 females and 4 males from samples: 18-19, 41-42, 86, 99-100, 102, 124, 128, 149-150, 163, 177-179, 181, 197-198, 202.

4. Batheuchaeta heptneri Markhaseva, 1981

(Fig. 38)
Batheuchaeta heptnerl Markhaseva, 1981: 1155, fig. 3, 1986b: 839, 841.

Descruption. F e m a 1 e. Total length 5.00-5.10 mm . Cephalothorax 4.3 times longer than abdomen. Rostrum very small, not bifid on apex. Posterior Th5 corners rounded. Genital segment asymmetrical, widest in midlength, with projection more developed on the left, as long as 2 following segments together (dorsal view). Ventral swelling of semicircular shape. Genital field symmetrical. A1 reaching Abd2. Md palp base with 3 setae. $\mathrm{Ri} \mathrm{Mx1}$ with 14-15 setae; otherwise oral parts typical of the genus. Ri P1 external lobe distal border with row of denticles apically. P2-P4 typical of the genus.

Male unknown.
Type locality: $44^{\circ} 20^{\prime} \mathrm{N} 150^{\circ} 53^{\prime} \mathrm{E}$.

Fig. 34. Batheuchaeta antarctica. Female (from Markhaseva, 1986b).

Fig. 35. Batheuchaeta gurjanovae. Female (from Markhaseva, 1981).

Fig. 36. Batheuchaeta gurjanovae. Male: general view, Th5 \& Abd, Mxp (41), other figures (from Markhaseva, 1986b).

Fig. 37. Batheuchaeta gurjanovae. Male: P5 (from Brodsky, 1955).

Fig. 38. Batheuchaeta heptneri. Female (from Markhaseva, 1981).

Geographical distribution. Pacific Ocean: the Ku-rile-Kamchatka Trench (Markhaseva, 1981, 1986b), Aleutian Trench (original data).

Vertical distribution. Most probably abyssopelagic species.

Material: 9 females from samples: 19, 41, 70, 86, 124, 126, 140, 163, 197.
5. Batheuchaeta lamellata Brodsky, 1950
(Figs. 39-40)
Batheuchaeta lamellata Brodsky, 1950. 189, figs 106, 107, Markhaseva, 1981: 1157, fig 5, 1986b: 843; Grice \& Hulsemann, 196714

Description. Fe m a l e. Total length 4.70-5.20 mm . Cephalothorax 4.0-4.6 times longer than abdomen. Rostrum absent. Th5 lobes large, extremely asymmetrical, lamelliform, varying in shape. When looking ventrally, lobes look as if reaching last third of genital segment, when looking laterally as long as, slightly longer or shorter than the genital segment. Genital segment symmetrical. Ventral swelling strongly prominent with rounded apex. Genital segment is longer than 3 following segments together. Genital field asymmetrical. A1 reaching posterior border of genital segment. Ri Mx1 with 14-16 setae. Oral parts typical of the genus. Ri Pl external lobe with row of spinules along distal border apically. P2-P4 typical of the genus.

M a 1 e. Total length 4.50 mm . Cephalothorax 3.3 times longer than abdomen. Right Ri P5 longer than left, with lateral projection. Left Ri narrowed in proximal part, both Ri rounded at apex. Distal joint of right Re with claw-like appendage at the top.

Type locality: Kamchatka, Shipunsky Peninsula, 90 miles to SE off Shipunsky Cape.

Lectotype: female from sample 474.
Geographical distribution. Atlantic Ocean: the species is found for the first time in the north-eastern Atlantic (original data). Pacific Ocean: the northwestern part, the Kurule-Kamchatka, Aleutian and Marian Trenches Indian Ocean: the western part (Grice \& Hulsemann, 1967), antarctic part (original data).

Vertical distribution. Most probably abyssopelagic species. Stenotherm and stenohalin species.

Material: 57 females and 11 male from samples: $1,9,19,69-70,85-86,97,102,104-105,122,124$, 126-128, 139-140, 147, 163-164, 175-176, 181, 192193, 197, 201, 379, 456, 474.

6. Batheuchaeta peculiaris Markhaseva 1983

(Figs. 41-42)
Batheuchaeta peculiaris Markhaseva, 1983: 1740, fig. 1; 1986: 843, fig. 3.

Description. Female. Total length 4.60 mm . Cephalothorax 4 times longer than abdomen. Rostrum vestigial, conic with small notch and base wider than in B, anomala. On the left of Th5 there is pocket-like projection (lateral view), and similar thickening (dorsal view). Th5 posterior corners rounded, with rounded densely haired borders. Genital segment strongly asymmetrical, with deep excavation in the middle of left side (dorsal view), as long as 3 following segments together. Genital field asymmetrical, "spectacle-like" structure not pronounced. A1 reaching posterior border Abd 3 . Re2 A2 1.2 times longer than Ri . Md palp base with 3 setae and group of minute spinules near the base of setae. Ril Md
with 3 setae. All remaining oral parts typical of the genus. Mxp protopodite 1.5 times shorter Ril Mxp. Ri P1 external lobe with row of spinules apically along external border. P2-P4 typical of the genus.

M a 1 e . Total length 4.15 mm . Cephalothorax 4.1 times longer than abdomen. Rostrum present, very small, similar to that of B. anomala. Th5 posterior corners with faintly developed prominences. Anal segment very small. A1 24 -jointed, reaching Abd 3. Structure of oral parts and swimming legs similar to that in B. anomala, but Ri 2 A 2 with 13 setae. Ril Md without seta; Ri2 Md with 10 setae. Left Ri P5 excavation is not deep, Re3 bilobated.

Type locality: $45^{\circ} 49^{\prime} \mathrm{N} 153^{\circ} 33^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: the Ku-rile-Kamchatka Trench (Markhaseva, 1983a, 1986b). Species found for the first time in the Antarctic sector of the Pacific Ocean (original data).

Vertical distribution. Mostly abyssopelagic syecies, with occurrence probability in lower batypelagial.

Material: 3 females and 2 males from samples: 123, 127, 148, 328.

7. Batheuchaeta pubescens
 Markhaseva, 1986

(Fig. 43)
Batheuchaeta pubescens Markhaseva, 1986b: 846, fig. 5.
Description. Fem a l e. Total length 4.10 mm . Cephalothorax 4.3 times longer than abdomen. Rostrum absent. Posterior Th5 comers prolonged into small rounded lobes of various configuration on the right and left (lateral view). Posterior Th5 corners covered with hairs and very minute spinules (left lateral view). Lateral surfaces of anterior part of genital segment with groups of knobs (dorsal view). Genital segment and genital field symmetrical. "Spec-tacle-like" structure of genital field distinctly visible. Ventral swelling (lateral view) occupying middle of genital segment, protruded as nose. A1 24-jointed, nearly as long as body. Ril A2 with 15 setae. Oral parts typical of the genus. Ri P1 external lobe with denticles arranged in row parallel to distal border of lobe apically. Near Rel and Re2 P2 external spines there are rows of minute spinules. Ri P3 3-jointed, Re and Ri P4 broken.

Male unknown.
Type locality: $62^{\circ} 54^{\prime} \mathrm{S} 118^{\circ} 52^{\prime} \mathrm{E}$.
Geographical distribution. Indian Ocean: the antarctic part (original data).

Vertical distributton. The species was found in total tow from 3700 m (Markhaseva, 1986b).

Material: 1 female from sample: 379.

Fig. 39. Batheuchaeta lamellata. Female (from Markhaseva, 1981).

Fig. 40. Batheuchaeta lamellata. Male (from Brodsky, 1950).

Fig 41. Batheuchaeta peculıatis. Female (from Markhaseva, 1983b)
8. Batheuchaeta tuberculata

Markhaseva, 1986
(Fig 44)
Batheuchaeta tuberculata Markhaseva, 1986 844b, fig 4
Description Female. Total length 4.30 mm . Cephalothorax 4.4 times longer than abdomen. Ros-
trum absent Posterior Th5 corners asymmetrical, the right comer more prominent than left one Gental segment asymmetrical, with protuberance on the right and bifid projection in the midlength on the left and with small semicrrcle projection near border with Abd2 (posteriorly) on the left Genital field symmetrical with "spectacle-like" structure. Al 24-jomted, as long as body. Re A2 15 times longer Ri. R1 Mx1 with $13-14$ setae. Setation of Mx2, Md

Fig. 42. Batheuchaeta peculiaris. Male (from Markhaseva, 1986b).
and Mxp and segmentation of P2-P4 typical of the genus. Spinules of Ri P1 external lobe arranged in rows along distal border. Row of spinules at P2 present only near the base of external spine. Re P3-P4 broken, Ri 3-jointed with spinules on posterior surfaces Ri2-Ri3.

Male unknown.
Type locality: $45^{\circ} 43^{\prime} \mathrm{N} 153^{\circ} 45^{\prime} \mathrm{E}$.
Geographical distributton. Pacific Ocean: the Ku-rule-Kamchatka Trench (Markhaseva, 1986b).

Vertical distribution. The species was found in total haul from 7000 m (Markhaseva, 1986b).

Material: 1 female from sample 128.

5. Bradyetes Farran, 1905

Type species Bradyetes inermis Farran, 1905, by monotypy.

Bradyetes Farran, 1905: 31.
Description. Female. Total length 1.19-3.2 mm. Cephalothorax 3-4 times longer than abdomen. Rostrum absent. Cephalon and Thl, as well as Th4Th5 incompletely or completely fused. Th5 posterior corners rounded or pointed. Genital segment and Th5 symmetrical. Abdominal segments with thin spinules along posterior border. A1 nearly as long as cephalothorax, reaching the midlength of genital segment. Ri A2 about as long as Re, or Re 1.2 times
longer. Coxopodite A2 with 1; basipodite with 1-2 setae; Re1 with 2 setat or no, Re2 with 2 setae; $\operatorname{Re} 3-\operatorname{Re} 6$ with 1 seta each; $\operatorname{Re} 7$ with 1 medial and 3 terminal setae. Ril A2 with 2 setae; Ri2 with 6.7 terminal and 1 posterior setae at external and 6 terminal and 2 posterior setae at internal lobe. Md palp base with 1-2 setae; Ril Md with 1-2 setae; Ri2 Md with 3 or 9 setae. Mx2 of B. matthei with 3 setae at each first to fourth endites; distal part of Ri Mx2 with 5-6 setae. Ril Mxp 1.5-1.7 times longer than protopodite; protopodite with seta proximally and groups of 2,3 and 3 setae (from proximal to distal part of the joint), with digital appendage near the distal group of setae. Setae at Ril Mxp arranged in the middle of joint. P1 with 3-jointed Re; every joint with external spine. Ri P1 1-jointed, external lobe developed. P2 with 2-jointed Ri and 3-jointed Re. P3-P4 with 3-jointed rami.

M a 1 e . Total length $0.90-2.52 \mathrm{~mm}$. Cephalothorax nearly 2.3-4.0 times longer than abdomen. Rostrum absent. Al about as long as cephalothorax. P5 biramous. The right leg with 2-, the left with 3 -jointed Re. Right Ri P5 always 1 -jointed, left Ri P5 1- or 2-jointed. P5 of simple structure.

The genus Bradyetes includes 2 species.
Notes. Bradyetes brevis Farran, 1936a, earlier attributed to Bradyetes should be removed into genus Jaschnovia due to the absence of digital appendage at Mxp protopodite and absence of Re1 Pl external

Fig. 43. Batheuchaeta pubescens. Female (from Markhaseva, 1983b).
spine. In this case Jaschnovia Johnsont Markhaseva, 1980 becomes its junior synonym. As noted by Bradford \& Jillett (1980) Bradyetes florens Grice \& Ilulsemann, 1967 should be removed from Aetideidae.

2(1) Th5 posterior corners pointed. Digital appendage at Mxp protopodite shorter than setae of distal group. Re1 A2 without setae .
. 2. B. matthei Johannessen

Key to species of Bradyetes

Females

1(2) Th5 posterior corners rounded. Digital appendage at Mxp protopodite as long as the longest seta of distal group. Rel A2 with 2 setae

1. B. inermis Farran

Males

1(2) Th5 posterior corners rounded. Left Ri P5 1-jointed 1. B. inermis Farran 2(1) Th5 posterior corners with minute spine each. Right Ri P5 2-jointed
2. B. matthei Johannessen

Fig. 44. Batheuchaeta tuberculata. Female (from Markhaseva, 1986b).

1. Bradyetes inermis Farran, 1905

(Figs. 45-46)
Bradyetes mermis Farran, 1905: 32, pl. 3, figs 13-20, pl 4, figs 13-14; Vervoort, 1952b (sheet 43): 3; Grice, 1972: 224, figs 2-22; Vives, 1982: 291.

Description. Fe m ale. (Description after Grice (1972) and Farran (1905) with modifications). Total length $2.57-3.20 \mathrm{~mm}$. Cephalon and Thl indistinctly separated, Th4-Th5 fused. Th5 posterior corners rounded. Genital segment nearly as long as wide and about as long as 2 following segments together. A2 basipodite with 1; Rel A2 with 2 setae. Md palp base with 1 ; Ril Md with 1 and Ri2 with 3 setae. Mxp protopodite with long digital appendage distally near the setae group, nearly as long as the longest seta of this group. P1 basipodite with 1 short seta near distal angle of external border. Rel P1 external spines long, exceeding the base of following spine.

M a 1 e. Total length $2.44-2.52 \mathrm{~mm}$. Cephalothorax about 2.3 times longer than abdomen. Rostrum
absent. AI slightly longer than cephalothorax. Md palp base with 1 seta; Ril Md with 1 seta; Ri2 Md with 7 setae. Ri P5 1-jointed

Type locality: $53^{\circ} 58^{\prime} \mathrm{N} 12^{\circ} 28^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the west coast of lreland (Farran, 1905), the north-western part $39^{\circ} 46^{\prime} \mathrm{N} 70^{\circ} 34^{\prime} \mathrm{W}$ (Grice, 1972), the region of Madeira (Vives, 1982).

Vertical distribution. Most probably benthopelagic species, found in horizontal hauls at depths $1000-$ 1500 m taken $20-50 \mathrm{~cm}$ from bottom (Grice, 1972), also found in total vertical hauls from $300-700 \mathrm{~m}$ (Farran, 1905; Vives, 1972).

The species is not examined by me.

2. Bradyetes matthei Johannessen, 1976

(Figs. 47-48)
Bradyetes matthei Johannessen, 1976: 19, figs 1-2
Description. Fe m a 1 e. Total length 1.19-1.32 mm . Cephalon and Thl fused (line of fusion slightly

Fig. 45. Bradyetes inermis. Female, male (from Grice, 1972).

Fig. 46. Bradyetes inermis Female, male (from Grice, 1972).

Fig. 47. Bradyetes matther. Female (paratype).

Fig. 48. Bradyetes mathei. Male (paratype).
visible), Th4-Th5 incompletely separated. Th5 posterior corners pointed. Genital segment is longer than 2 following segments together, wider than long. A2 basipodite with 2 setae; $\operatorname{Re} 1$ A2 without setae. Md palp base and Ril Md with 2 setae each; Ri2 Md with 9 terminal setae. Mx1 gnathobase with 9 terminal spines and 4 setae on surface. Mx1 second internal lobe with 5 ; third with 4 setae; protopodite near Ri base with 5 setae, Ri with 15 setae; Re with 10 setae; extemal lobe with 9 setae. Digital appendage near distal setae group is small. Setation and segmentation of P1-P4 typical of the genus. Re P1-P4 with groups of small spinules near external border of joint. Ri2 P2, Ri2-Ri3 P3 and Ri1-Ri3 P4 with surface spinules.

M a 1 e. Total length $0.90-0.92 \mathrm{~mm}$. Cephalothorax 4 times longer than abdomen. Left A1 24jointed and right Al 23-jointed. Comparing to female oral parts poorer developed and equipped. P5 with 2-jointed left Ri P5.

Type locality: $60^{\circ} 46^{\prime} \mathrm{N} 05^{\circ} 10^{\prime} \mathrm{E}$.
Geographical distribution. Fensfjord (Johannessen, 1976).

Vertical distribution. The species was found from depths 548-552 and 570-580 m (Johannessen, 1976).

Material: 3 females and 1 male (paratypes) kept in Zoological Museum of Bergen (Norway) under the number N 57596 were examined.
6. Bradyidius Giesbrecht, 1897

TYPE SPECIES: Bradyidius armatus Giesbrecht, 1897, by monotypy.

Bradyidus Giesbrecht, 1897 (19.VII). 253
Bradyanus Vanhöffen, 1897a (13.IX): 322 (type speciesBradyanus armatus Vanhöffen, 1897), by monotypy Undinopsis Sars, 1902: 31 (type species: Undinopsis bradyt Sars, 1902, by monotypy); Rose, 1933: 91; Brodsky, 1950: 148.

Description. F e m a 1 e. Body length 1.59-4.50 mm (1.2 mm only once recorded in B. tropicus (Wolfenden, 1905)). Cephalothorax 3-4 times longer than abdomen. Crest absent. Rostrum present, robust, bifurcate, with divergent or (rarely) nondivergent
rami. Cephalon and Th1 completely or incompletely fused, line of separation often visible. Th5 and Th4 fused, line of fusion often visible. Th5 posterior corners prolonged into points, usually reaching the first third of genital segment length, points may be longer, even exceeding posterior border of genital segment. Genital segment nearly as long as wide, sometimes longer than wide, or wider than long. Genital segment usually more than 2 times longer than following segment. Abd1-Abd3 with small spinules along posterior border. A1 24 -jointed, exceeding Th3, as long as cephalothorax or even longer. Numerous A1 joints with long setae and aestetasks. Re A2 nearly 1.2 times longer Ri A2. Coxopodite with 1 ; basipodite with 2 ; Ril A2 with 2 ; Ri2 A2 with 6-8 setae at internal and 6-7 setae at external lobe (usually in combination 6 terminal and 1 posterior at external lobe). Re1 A2 without setae or with 1 seta; Re2 with 2 -3 setae; Re3-Re6 with 1 long seta each; Re7 with 1 seta near the middle of joint or removed to its distal part and 3 terminal setae. Md palp base with 2 (B. hirsutus with 1) setae; Ril Md with $2-3 ; \mathrm{Ri} 2$ with 9 , rarely 8 or 11 terminal and often 1-2 little posterior setae. Mx1 gnathobase with 9 terminal claw-like setae, 1 thin seta and and 3-4 setae on posterior surface, there are often also small teeth (near the bases of posterior setae) and hairs. Mx1 second internal lobe with 5 ; third with 4 setae; protopodite near Ri base with 5 ; Ri with 13 , or $15-17$ setae, Re with 10 setae; external lobe with 7 long and 2 short thinner setae. Mx2 typical of Aetideidae. Mx2 fourth and fifth endites with 1 seta thickened into claw-like spine. Mxp typical of family: protopodite in its proximal part usually with 1 seta, and from proximal to distal with 3 groups of 2 (1), 3 and 3 setae. Ril Mxp with 3 medial setae, nearly 1.2-1.3 times longer than protopodite. Re P1 3-jointed with external spine at each joint, external spine of Re 2 usually significantly thicker than of Re1; Ri 1-jointed, external lobe well developed. P2 with 2 -jointed Ri and 3jointed Re. P3-P4 rami 3-jointed. Posterior surfaces of Ri P2-P4 often spinulose. External spines of Re2Re3 longer than in other genera of Aetideidae. P1-P4 coxopodites often with groups of surface spinules.

M a 1 e . Body length $1.19-3.30 \mathrm{~mm}$. Cephalothorax about 2.4-3.0 times longer than abdomen. Crest absent. Rostrum almost as in female, but its rami usually not so divergent, may be nearly parallel. Cephalon and Th1, as well as Th4-Th5 fused, rarely line of fusion visible. Points of Th5 posterior corners short, or reaching, or even exceeding posterior border of genital segment. Abd2 twice or more longer than genital segment. Caudal rami 1.3-1.4 times longer than wide. Al 21-24-jointed on the left and 20-24jointed on the right, it may be shorter, reaching the end of Th2, or much longer, even exceeding caudal rami. As compared to female setation of Rel-Re2 A2 rudimentary, Md gnathobase rudimentary, Md
palp setation also partly reduced. Protopodite Mxp usually with 2 distal setae. Mx1 with partly rudimentary setaion. Mx2 as well as Mx1 rather reduced. P1-P4 with segmentation like in female, only external spines of Re P1 may be considerably shorter. P5 uni-, or biramous, left and right usually of the same length. When uniramous, in both legs are commonly of equal length; sometimes right leg 3 times shorter. When P5 biramous, Ri 1 -jointed (rarely 2 -jointed), usually styliform. In comparison to abdomen, P5 length may be different: shorter, or even twice longer. P5 of "simple" structure.

The genus Bradyidius includes 15 species. Descriptions of B. tropicus (Wolfenden, 1905) that remained inaccessible, and B. hirsutus, B. plinoi, B. spinifer and B. styliformis recorded of the southern hemisphere are not given here.

Key to the species of Bradyidius

Females

(unknown for B. angustus)
1(6) Rostrum with nondivergent or parallel rami.
2(5) Rostrum with nondivergent rami. Specimens $1.67-$ 2.70 mm in length.

3(4) Points of Th5 posterior corners short, hardly reaching the end of first third of genital segment . . .
4. B. curtus Markhaseva

4(3) Points of Th5 posterior corners longer, reaching nearly posterior third of genital segment .
2. B. arnoldi Fleminger

5(2) Rostrum with parallel rami. Specimens 4.40-4.50 mm in length
. 6. B. pacificus Brodsky
6(1) Rostrum with divergent rami.
7(12) Points of Th5 posterior corners reaching and even exceeding posterior border of genital segment. Re2 A2 with 3 setae. Re1 P1 external spine exceeding the base of Re2 P1 external spine, often reaching the middle of Re 2 P 1 length.
8(9) Points of Th5 posterior corner turned up (lateral view)
5. B. Iuluae Grice
$9(8)$ Points of Th5 posterior corner straight.
10(11) Genital segment 1.09 times wider than long. Rel A2 with 1 small seta. Spermatheca elongateoval. 10. B. subarmatus Markhaseva

11(10) Genital segment 1.2-1.3 times wider than long. Rel A2 without seta. Spermatheca rounded
3. B. armatus Giesbrecht

12(7) Points of Th5 posterior corners not reaching posterior border of genital segment. Re2 A2 with 2 setae. Rel Pl external spine not reaching the base of external spine of Re2 P1 (sometimes almost reaching).
13(14) Th5 posterior corners divergent. Points of Th5 posterior corners nearly reaching posterior border of genital segment 7. B. rakuma (Zvereva)

14(13) Th5 posterior corners nondiverging. Points of Th5 posterior corners shorter.
15(16) Rostral rami rather divergent, obtuse angle in their base
8. B. saanichi Park

16(15) Rostral rami not so divergent, acute angle in their base
9. B. similis (Sars)

Males

(unknown for B. rakuma and B. curtus)

1(8) P5 uniramous.
2(5) Right P5 nearly 3 times shorter than left.
3(4) Distal (third) joint of right P5 with 1 terminal small spine 3. B. armatus Giesbrecht
4(3) Distal (third) joint of right P5 with 2 terminal small spines 10. B. subarmatus Markhaseva
5(2) Right P5 nearly as long as left.
6(7) Specimens longer than 2 mm . A1 reaching the end of Th2 5. B. luluae Grice
7(6) Specimens 1.37 mm in length. A1 reaching posterior border of Abd2 . . . 1. B. angustus Tanaka
8(1) P5 biramous.
$9(10) \mathrm{Ri}$ P5 left 2-jointed. A1 reaching caudal rami. Specimens shorter than 2 mm in length \qquad
2. B. arnoldi Fleminger

10(9) Ri P5 left 1-jointed. A1 shorter. Specimens longer than 2 mm .
11(14) Points of Th5 posterior corners short, not reaching posterior Abdl border (dorsal and lateral view). P5 nearly twice longer than abdomen.
12(13) Rel P1 without external spine
6. B. pacificus Brodsky

13(12) Rel Pl with external spine
8. B. saanichi Park

14(11) Points of Th5 posterior comers longer, reaching or even exceeding posterior Abdl border. P5 shorter.
9. B. similis (Sars)

1. Bradyidius angustus (Tanaka, 1957)
(Fig. 49)
Undinopsis angustus Tanaka, 1957a: 45, fig. 29.
Description. M a 1 e. (Description after Tanaka (1957a) with modifications). Total length 1.37 mm . Cephalothorax 3 times longer than abdomen. Rostrum with weakly divergent rami. Points of Th5 posterior corners reaching Abd1 posterior border. Al 22(?)-jointed, reaching Abd2 posterior border. Re P1 external spines short. Ri2-Ri3 P2-P4 posterior surfaces with minute spinules. Terminal spines of Re P2-P4 with $22-24,25$ and 27 teeth respectively. P5 uniramous, 4-, 5-jointed, nearly equal in length.

Female unknown.
Type locality: the Izu region.
Geographical distribution. Pacific Ocean: the Izu region (Tanaka, 1957a).

Vertical distribution. The species was found in total haul from 1000 m (Tanaka, 1957a).

The species is not examined by me.

2. Bradyidius arnoldi Fleminger, 1957

(Fig. 50)
Bradyidus arnoldi Fleminger, 1957: 355, pl. 1, figs 1-13
Description. Female. (Description after Fleminger (1957) with modifications). Total length 1.67 mm . Cephalothorax 4 times longer than abdomen. Rostrum with nondiverging rami. Points of Th5 posterior corners reaching the posterior third of genital segment (dorsal view), directed towards the back side of specimen (lateral view). A1 nearly as long as cephalothorax. Rel P1 external spine very short; Re2 P1 spine thick, reaching the base of next spine. Ri P2-P4 posterior surfaces spinulose.

M a 1 e . Total length $1.19-1.23 \mathrm{~mm}$. Cephalothorax 2.8 times longer than abdomen. Points of Th5 posterior corners not exceeding posterior border of Abd1. Al reaching nearly the end of body, right 20 -, left 21 -jointed. Ri P2-P4 with surface spinules as in female. P5 nearly twice longer than abdomen, biramous. Right Ri P5 1-jointed, left 2-jointed; Right Re P5 2-jointed, left 3-jointed.

Type locality: the Gulf of Mexico.
Geographical distribution. The Gulf of Mexico (Fleminger, 1957).

Vertical distribution. The species was found in surface or near surface hauls, in night samples, between $\mathrm{T} 16.7^{\circ} \mathrm{C}$ and $23.5^{\circ} \mathrm{C}$ (Fleminger, 1957).

The species is not examined by me.

3. Bradyidius armatus Giesbrecht, 1897

(Figs. 51-52)
Pseudocalanus armatus (non Boeck, 1872). Brady, 1878: 46, pl. 4, figs 1-9, 11 (female).
Bradyudius armatus Giesbrecht, 1897: 253; Vervoort, 1952b (sheet 43): 3, fig 1; Markhaseva, 1993: 47, 50, figs 1-10.
Bradyanus armatus Vanhöffen, 1897a: 322.
Undinopsis bradyi Sars, 1902: 32, pl.' 32, pl. 19, 20; Rose, 1933: 92, fig. 55.
Bradydius bradyi: Matthews, 1964: 18, fig. 7; Bradford, 1976: 6; Bradford \& Jillett, 1980: 21

Description. Fe m a 1 e. Total length 2.65-2.70 mm . Cephalothorax about $3-4$ times longer than abdomen. Rostrum with divergent rami. Points of Th5 posterior comers exceeding posterior border of geni-

Fig. 49 Bradyldus angustus Male (from Tanaka, 1957a)

Fig. 50. Bradyidius arnoldi. Female, male (from Fleminger, 1957).
tal segment. Genital segment $1.2-1.3$ times wider than long. Spermatheca rounded. A1 nearly as long as cephalothorax, reaching or exceeding posterior border of genital segment. Re1 A2 without setae; Re2 A2 with 3 setae. Ril Md with 2; Ri2 Md with 9 terminal setae. Re1 P1 external spine somewhat exceeding the base of next spine. Posterior surfaces of Ri P2-P4 spinulose.

M ale. (Description after Sars (1902) and Matthews (1964) with modifications). Total length 1.502.20 mm . Cephalothorax 3 times longer than abdo-
men. Points of Th5 posterior comers exceeding posterior border of Abd1. P5 uniramous. Left P5 long, 5 -jointed; right P5 more than 3 times shorter and 3-jointed, sometimes absent. Its distal joint (third) with 1 terminal and 1 external spine (in all -2 spines).

Geographical distribution. Off the coasts of Great Britain (Brady, 1878) and of Norway (Sars, 1902; Matthews, 1964; original data), the Norwegian and the Barents seas (Vervoort, 1952b).

Vertical distribution. Probably epibenthic species.

Fig. 51. Bradyidius armatus. Female (from Markhaseva, 1993).

Fig. 52. Bradyldius armatus. Male (from Sars, 1902).

Often was found close to the bottom at depths of 36-73 m (Sars, 1902) over muddy bottoms.

Material: 5 females (N 20653) kept in the Zoological Museum of Oslo University.

4. Bradyidius curtus Markhaseva, 1993

(Fig. 53)
Bradydus curtus Markhaseva, 1993: 50, 53; figs 35-43.
Description. Fe m a 1 e . Total length $2.80-2.90$ mm . Cephalothorax 3.0-3.8 times longer than abdomen. Rostrum with nondivergent rami. Points of Th5 posterior corners short, reaching the end of first one third of genital segment (dorsal view), directed to the back of specimen (lateral view). A1 reaching Th4. Re1 A2 without setae; Re2 A2 with 3 (2 medial and 1 distal) setae. Md palp base and Ril Md with 2 setae each; Ri2 Md with 9 setae. Posterior surface of Mx1 gnathobase with 4 thin setae and small teeth near bases. Ri Mxl with 15 setae. Otherwise Mx1, Mx2 and Mxp typical of the genus. External spines of Re1 and Re2 Pl exceeding base of next spine (sometime Rel P1 external spine is not exceeding); spine of Re3 nearly twice longer than its joint. Ri P2-P4 with minute spinules on posterior surface. Terminal spines of Re3 P2-P4 with about 24,24 and 25 denticles respectively.

Male unknown.
Type localtty: $49^{\circ} 53^{\prime} \mathrm{N} 155^{\circ} 38^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: the north-western part of the region of the Kuril Islands.

Vertical distributıon. The species was found in hauls $86-94 \mathrm{~m}, 50-140 \mathrm{~m}, 0-157 \mathrm{~m}$.

Material: 27 females from samples: 43, 260-261.
5. Bradyidius luluae Grice, 1972
(Fig. 54)
Bradyldus luluae Grice, 1972. 224, figs 23-41; Johannessen, 1976•23

Description. F e m a 1 e (Described after Grice (1972) with modifications). Total length 2.55-3.12 mm . Cephalothorax about 4 times longer than abdomen. Rostrum with divergent rami. Points of Th5 posterior comers exceeding posterior border of genital segment (dorsal view), directed upwards (lateral view). A1 reaching Th5. Re1 A2 with 1 seta; $\operatorname{Re} 2$ A2 with 3 (2 medial and 1 distal) setae. Ril Md with 2 setae; Ri2. Md with 8 terminal and 2 posterior setae. Ri Mx1 with 16 setae. Otherwise Mx1, Mx2 and Mxp typical of the genus. External spine of Re1 Pl exceeding the base of next spine.

Male. Total length 2.04-3.25 mm. Cephalothorax nearly twice longer than abdomen. Points of Th5 posterior corners short, not reaching posterior border of Abdl. Al reaching the end of Th2, left 22-jointed, with long (proximally) and short (distally) aestetasks. Comparing to female oral parts rudimentary. External spines of Re P1 shorter than in female. Ri P2-P4 with numerous minute spinules on posterior surface. P5 uniramous, 5 -jointed, shorter than abdomen.

Type locality: $39^{\circ} 46^{\prime} \mathrm{N}, 70^{\circ} 34^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the north-western part, the Norwegian coast (Grice, 1972; Johannessen, 1976).

Vertical distribution. Evidently benthopelagic species. Found at depth about 1500 m in $20-50 \mathrm{~cm}$ above bottom (Grice, 1972) and in direct proximity to the bottom (Johanessen, 1976).

The species is not examined by me.

6. Bradyidius pacificus (Brodsky, 1950)

(Figs. 55-56)
Undinopsis paclficus Brodsky, 1950 149, fig 65
Bradyidus pacificus: Bradford, 1976. 6, Bradford \& Jillett, 1980. 21.

Description. F e m a 1 e. Total length 4.40-4.50 mm . Cephalothorax 3.3 times longer than abdomen. Rostrum with divergent rami. Points of Th5 posterior corners reaching posterior third of genital segment, straight. Al reaching nearly the midlength of ab-

Fig. 53. Bradyidius curtus. Female (from Markhaseva, 1993).
domen. $\operatorname{Re} 1 \mathrm{~A} 2$ without setae; $\operatorname{Re} 2 \mathrm{~A} 2$ with 2 setae. Ril Md with 2 setae; Ri2 Md with 9 terminal and 1 posterior setae. Mx1 gnathobase with 4 setae on posterior surface; Ri Mx1 with 14 setae. Mx2 and Mxp typical of the genus (setae in proximal Mxp group broken). External spines of Re1 and Re2 P1 not reaching the base of next spine; external spine of Re3 P1 long, twice longer than its joint. Terminal spines of P3-P4 exopodites with 32-32 denticles.

M a 1 e . Total length 3.30 mm . Cephalothorax 2.9 times longer than abdomen. Rostrum as in female, rami less divergent. Points of Th5 posterior corners not exceeding posterior border of Abdl. A1 24jointed, reaching Abd5. A2 setation as in female,
only Ri2 A2 with 11 setae. Comparing to female, oral parts rudimentary. Rel P1 without external spine. Ri3 P3-P4 with minute surface spinules. P5 about twice longer than abdomen, biramous, both Ri 1 jointed, styliform. Right Re 2-, left Re 3-jointed.

Type locality; the Sea of Okhotsk.
Lectotype: female from the sample 257.
Geographical distribution. The Sea of Okhotsk, the Bering Sea (Brodsky, 1950; original data).

Vertical distribution. The species was found in hauls from 1000 m (Brodsky, 1950), also 25-50 and $50-100 \mathrm{~m}$ (original data).

Material: about 100 females and 2 males from samples: 1, 231, 243, 245, 251, 253-257.

Fig. 54. Bradyidius luluae. Female, male (from Grice, 1972).

Fig. 55. Bradyidius pacificus. Female (257).

Fig. 56. Bradyidius pacificus. Male (257).

7. Bradyidius rakuma (Zvereva, 1977)

(Figs. 57-58)
Aetideopsis rakuma Zvereva, 1977: 6-8, fig. 1.
Bradyidius rakuma: Bradford \& Jillett, 1980: 19-20.

Description. Fe m a 1 e. Total length $3 \cdot 10-3.30$ mm . Cephalothorax nearly 4 times longer than abdomen. Rostrum with divergent rami. Points of Th5 posterior corners long, slightly divergent, not reaching posterior border of genital segment (lateral and dorsal view). A1 slightly longer than cephalothorax. Re2 A2 without setae; Re2 A2 with 2 setae. Ril Md with 2 setae; Ri2 Md with 9 terminal setae. Posterior surface of Mx1 with 4 setae; Ri with 15 setae. Mx2 and Mxp typical of the genus. External spines of Rel and Re2 Pl exceeding the base of next spine. P2-P4 typical of the genus.

Type locality: Tobuty Bay, Aniva Gulf.
Geographical distribution. The Sea of Okhotsk, Tobuty Bay (Rakuma region), Aniva Gulf (Zvereva, 1977).

Vertical distribution. Evidently benthopelagic species. Found at depth 60 m on sandy bottoms (Zvereva, 1977).

Material: 1 female from sample 240.
8. Bradyidius saanichi Park, 1966
(Fig. 59)
Bradyidus saanichi Park, 1966: 805-811, figs 1-3.
Description. Fe m a 1 e (Described after Park (1966) with modifications). Total length 2.33-2.56 mm . Cephalothorax 3.4 times longer than abdomen. Rostrum with rather divergent rami, with obtuse angle in their base. Points of Th5 posterior corners not reaching posterior border of genital segment, directed obliquely upwards to the back of specimen (lateral view), nondiverging (dorsal view). Al slightly shorter than cephalothorax. Re1 A2 without setae; $\operatorname{Re} 2 \mathrm{~A} 2$ with 2 . Ri2 Md with 9 terminal setae. Mxl gnathobase with 4 posterior setae; Ri with 17 setae. Otherwise oral parts typical of the genus. External spine of Rel P1 nearly reaching base of Re2 P1 external spine, which is slightly longer than that of Rel Pl and somewhat exceeding base of external spine of Re3 P1. Re3 P1 external spine twice longer that of Re2 P1. Segmentation of P3-P4 typical of the genus. P3-P4 with minute spinules.

M a 1 e . Total length $2.01-2.24 \mathrm{~mm}$. Cephalothorax 2.4 times longer than abdomen. Points of Th5 posterior corners not exceeding posterior border of Abd1. Left Al 24 -jointed, right 23 -jointed. Comparing to female, oral parts rudimentary. P1-P4 similar to that in female, only external spines of Re Pl shorter. P5 asymmetrical, biramous. Both Ri P5

1-jointed, styliform. Right Re P5 2-jointed, left 3jointed.

Type locality: $48^{\circ} 40^{\prime} \mathrm{N} \quad 123^{\circ} 30^{\prime} \mathrm{E}$.
Geographical distribution: Saanich Inlet, Vancouver Island, British Columbia (Park, 1966). The species is not examined by me.

9. Bradyidius similis (Sars, 1902)

(Figs. 60-61)
Undinopsis similis Sars, 1902: 34, pl. 21, 1925: 44; Rose, 1933: 92, fig. 56.
Bradyidus similis: Vervoort, 1952b (shcet 43): 3, fig. 2; Shih, Rainville \& Maclellan, 1981: 1079, figs 79-108.
?Bradyanus armatus Vanhoffen, 1897b. 280, fig. 17.
Undinopsis armatus: Vanhöffen, 1907, pl. 21, fig. 24, pl. 22. figs 28-30.

Description. Female. Total length 2.84-3.24 mm. Cephalothorax 3.2-3.3 times longer than abdomen. Rostrum with slightly divergent rami (in some specimens nearly non divergent). Points of Th5 posterior corners reaching or exceeding the midlength of genital segment. Al 24 -jointed, reaching nearly the end of cephalothorax. Re1 A2 without setae; Re2 A2 with 2. Ri1 Md with 2; Ri2 Md with 8 terminal setae. Mxl gnathobase with 4 posterior setae; Ri with 15-17 setae; second internal lobe with 4 (according Shih, Rainville \& Maclellan, 1981 with 5 setae); third with 5 (in our specimen with 4) setae. Mx2 and Mxp typical of the genus. Re1 P1 external spine slightly not exceeding or reaching the base of external spine at Re2 P1. In its turn, the latter exceeds the base of Re3 P1 external spine; twice longer than its joint. Terminal spines of $\mathrm{Re} 3 \mathrm{P} 2-\mathrm{P} 4$ with 24 denticles. Ri P2-P4 with minute surface denticles.

M a 1 e. Total length $2.40-2.77 \mathrm{~mm}$. Cephalothorax 2.39-2.60 times longer than abdomen. Rostrum with slightly divergent rami. Points of Th5 posterior corners reaching posterior border of Abdl or excceding it. Right A1 23 -jointed, left 24 -joifited, reaching Th4. Penultimate joint of right A1 with group of denticles. Comparing to female oral parts rudimentary. Re1 P1 external spine shorter than in female. P2-P4 as in females. P5 biramous. Both Ri 1-jointed. Left Re P5 2-, right 3-jointed.

Type locality: Norwegian fjords.
Geographical distribution. Of Norwegian fjords (Sars, 1902). Saguenay fjord and the adjacent St. Lawrence estuary (Shih, Rainville \& Maclellan, 1981). North-eastern Atlantic, Norwegian Sea (Vervoort, 1952b), found in the north-eastern part of the Barents Sea (original data).

Vertical distribution. The species was found near bottom at depth $91-183 \mathrm{~m}$ (Sars, 1902) and in total haul from 156 m (original data).

Material: 2 females and 2 males from sample 458.

Fig. 57. Bradyidus rakuma. Female: general view, Th2-Th5 \& Abd, Ce, Gn, Mxp, P2 (from Zvereva, 1977 \& unpublished), other figures (240).

Fig. 58. Bradyidius rakuma Female (holotype) (240).

10. Bradyidius subarmatus Markhaseva 1993.

(Figs. 62-63)
Bradyidius subarmatus Markhaseva, 1993: 50, figs 11-34.
Description. Fe m a 1 e . Total length 2.60-2.80 mm. Cephalothorax 4 times longer than abdomen. Rostrum with nondiverging rami. Points of Th5 posterior corners reaching posterior border of genital segment (dorsal and lateral view). Genital segment nearly 1.09 times wider than long. Spermatheca elon-gate-oval. Re1 A2 with 1 seta; Re2 A2 with 3 setae. Ri Md with 2 (sometimes with another small seta); Ri2 Md with 9 long terminal and 1 posterior short setae. Posterior surface of gnathobase with 4 setae, Ri with 16 setae. All other features of Mx2 and Mxp typical of Bradyidius. External spine of Rel P1 long, reaching nearly the midlength of Re2 P1 spine. Ri P2-P4 with minute surface spinules. P4 coxopodite with thickened hairs on internal surface. Terminal spines of P3-P4 with 20-23 denticles.

M a 1 e . Total length 2.00 mm . Cephalothorax nearly 3.3 times longer than abdomen. Rostrum with divergent rami. Points of Th5 posterior corners exceeding posterior border of genital segment, reaching the end of the first third of Abd2 length. A1 reaching posterior border of Abd 4 . Comparing to female oral parts rudimentary, setation partly reduced. Md palp base with 1 seta. Ril Md without seta; Ri2 Md
with 8 setae. Mxp protopodite without setae; Ri1 Mxp with 3 medial setae. External spines of Rel-Re3 P1 shorter than those in female. P2-P4 similar to that in females, but P4 coxopodite without hairs on internal surface. P5 very close to B. armatus, but distal (third) joint of right P5 with 2 terminal short spines and 1 short external spine (overall 3 small, short spines).

Type locality: Raunefjord.
Geographical distribution. Off Norwegian coast in Raunefjord, Langesudsfjord and Fanafjord (Markhaseva, 1993).

Vertical distribution. The species commonly found in near bottom hauls from $140-160 \mathrm{~m}$ (Markhaseva, 1993).

Material: 1 female, holotype 66810 and 37 females, 1 male, paratypes $\mathrm{N} 2 / 66811$ material kept in the Zoological Institute, Russian Academy of Sciences and 2 females, paratypes N 20653 kept in the Zoological Museum of Oslo University (Norway).

7. Chiridiella Sars, 1907

TYPE SPECIES: Chiridiella macrodactyla Sars, 1907, by subsequent designation (Brodsky, 1950).

Chirtdiella Sars, 1907: 7
Description. Fe m ale. Total length 2.30-2.50 mm . Cephalothorax 3.5-5.0 times longer than abdomen. Cephalon and Th1 separated, incompletely separated or fused, Th4-Th5 fused. Crest absent. Rostrum absent. Posterior Th5 corners always rounded, symmetrical. Genital segment symmetrical. A1 23-24-jointed, shorter, or longer than cephalothorax, sometimes longer than body. Re A2 usually longer or sometimes as long as Ri (Ch. subaequalis). Rel$\operatorname{Re} 2 \mathrm{~A} 2$ without setae, Re3-Re6 with 1 seta each, Re7 with 3 terminal setae. A2 coxo- and basipodite usually with 1 seta each; Ril A2 without setae (except Ch. kuniae); Ri2 A2 usually with 6 terminal setae on external and $6-8$ n internal lobe (9 in Ch. chainae (Grice, 1969)). Md palp base without setae, also Ril Md (Sars (1925) figured seta in Ch. macrodactyla), Ri2 Md may possess between 1 (Ch. gibba) and 8 setae (Ch. atlantica). Compared to other genera Aetideidae, Mx1 reduced: second internal lobe, Re or external lobe may be absent, also setation of Mxl may be reduced. Mxl gnathobase with 8-11 or 13 setae; second internal lobe, if present, have from 1 to 3 setae (Ch. subaequalis, Ch. kuniae); third internal lobe with 1 (Ch. ovata) commonly with $2-4$ setae; Ri with $3-5$ or 7 ; Re , if present, with 3-6, $8-10$ setae; external lobe, if present, with 4-9 setae. Mx2 within Chridiella strongly changing from structure close to typical of the genus to completely modified. Setation of endites, and sometimes endites themselves heavily reduced or transformed,

Fig. 59. Bradyidus saanichi. Female, male (from Park, 1966).

Fig. 60. Bradyidius similis. Female (458).

Fig. 61. Bradyidius similis. Male (458).

Fig 62 Bradytdus subarmatus Female (from Markhaseva, 1993)

Fig. 63. Bradyidius subarmatus. Male (from Markhaseva, 1993).
and only a few setae remained of the distal part of Ri. Structure of Mx 2 mostly close to typical of the family may be observed in Ch. bispinosa, Ch. brachydactyla, Ch chainae, Ch. kuniae, Ch. subaequalis (in these species even distal part of Ri is present); in other species setation of first-fifth endites is different through the reduction in number of setae. Further, 2 spines, a bigger and smaller one, both arranged like pincers, appear on third-fourth endites: Ch. bichela. Ch. brooksi. In further transformation of Mx2, the pincers-like spines are present only on one of endites and setation of first-second endites become even more reduced (on second endite only one small seta present): Ch. abyssalis, Ch. atlantica, Ch. gibba, Ch. macrodactyla, Ch. megadactyla, Ch. ovata, Ch sarst. Then one can observe the reduction in number of endites: 4 in Ch. reducta and Ch. smo$k i, 3$ in Ch. pacifica. Mxp protopodite with setation more typical of Aetideidae is observed in Ch. subaequalis $(1+1+3+3)$ (the first figure denotes seta in proximal part of joint, the three following figures denote number of setae in 3 groups from proximal to distal part of the joint); Ch. bispinosa $(0+1+3+3)$; Ch. brachydactyla $(0+1+2+3)$; Ch. kuniae $(1+1+2+3)$; Ch chainae $(0+0+1+3)$, in other species of the genus all groups of setae (except distal group with 1-2 setae) get reduced. Ril Mxp usually with 2 or 3 medial setae. P1 with 1 -jointed rami; Re with 1 or 2 external spines; Ri without external lobe (only in Ch. kuniae it is with external lobe). P2 with 3-jointed Re , separation between Re 1 and Re 2 often incomplete; Ri usually 1-jointed. P3-P4 with 3-jointed Re, sometimes division incomplete, and 3 -jointed, incompletely $2-3$-jointed and even 1 -jointed Ri. P4 without internal seta on coxopodite and without hairs near seta base. M a 1 e s known only for Ch . abyssalis and Ch. pacifica, they are very similar in structure. Body shape, P1-P4 similar to that in females of the corresponding species, but separation of P2-P4 joints may be more complete. Oral parts remarkably reduced. P5 biramous with 1 -jointed Ri and 2-3-jointed Re , of simple structure.

The genus Chiridiella includes 18 species. The descriptions of 15 species (except Ch. trichamata, that is known after fifth copepodite stage; Ch. atlantica known of tropical Atlantic and Ch. megadactyla of the Ross Sea) are given below.

Key to species of Chiridiella

Females

1(24) Mx2 with 5 endites.
2(11) Mx2 not strongly modified in comparison with typical. Setation type of $\mathrm{M} \times 2$ similar to typical, first-fifth endites are nearly of the same size, without pincers-like spines. Mxp protopodite with distal setae group, and with setae at least in one of two other groups.

3(4) Ri Pl with external lobe . 8. Ch. kuniae Deevey
4(3) Ri P1 without external lobe.
5(8) Re P1 with 1 external spine.
6(7) Mx2 first-second endites with 3 setae each . . . 4. Ch. brachydactyla Sars

7(6) Mx2 first-second endites with 2 setae each . . . 6. Ch. Chainae Grice

8(5) Re P1 with 2 external spines
$9(10) \mathrm{Mx1}$ second and third internal lobes with 1 and 4 setae respectively; Ri with 7 setae; Re with 4 setae 15. Ch. subaequalis Grice \& Hulsemann
10(9) Mx1 second internal lobe reduced, third with 2 setae and short filament; Ri with 3 setae; Re with 8-9 setae 3. Ch. bispinosa Park
11(2) Mx2 strongly modified in comparison with typical. M×2 fist-fifth endites of varying size. Setation type of $\mathrm{Mx}^{2} 2$ is not typical, some number of setae on third-fifth endites transformed into pincers-like spines; those on fifth endite are often of vermiform structure. Mxp with distal setae group.
12(15) Setae of third and fourth endites arranged like pincers.
13(14) Re P1 with 1 external spine. A1 longer than body
5. Ch. brooksi Deevey

14(13) Re P1 with 2 external spines. A1 nearly as long as cephalothorax 2. Ch. bichela Deevey
15(12) Setae of fourth endite arranged like pincers.
16(17) Specimens more than 4 mm in length. Ri2 Md with 8-9 terminal setae terminal. Re Mxl with 5 , or 8 setae 13. Ch. sarsi Markhaseva
17(16) Specimens less than 4 mm in length. Ri2 Md with less than 8 setae. Re Mxl with 3-4, or without setae.
18(19) Ri2 Md with 1 seta. Mx1 without Re
7. Ch. gibba Deevey

19(18) Ri2 Md with 3-4 setae. Mx1 with Re , Re with 3-4 setae.
20(21) Mxp protopodite with 1 seta in distal group .
10. Ch. ovata Deevey

21(20) Mxp protopodite with 2 setae in distal group.
22(23) P3-P4 with 3-jointed rami
9. Ch. macrodactyla Sars

23(24) P3-P4 with 1 -jointed Ri, with slight traces of separation between Rel and Re 2

1. Ch. abyssalis Brodsky

24(1) Mx2 with 3-4 endites.
25(26) Mx2 with 3 endites . . 11. Ch. pacifica Brodsky
26(25) Mx2 with 4 endites.
27(28) Rel P2 and Rel P3 with external spines. Second endite of Mx2 with seta. 14. Ch. smoki Markhaseva
28(27) Re1 P2 and Re1 P3 without external spine. Second endite of Mx2 without seta .
. 12. Ch. reductella Markhaseva sp. n.

1. Chiridiella abyssalis Brodsky, 1950

(Figs. 64-65)
Chiridiella abyssalis Brodsky, 1950. 192, fig. 108, Markhaseva, 1983b: 120, figs 1-2
Chiridiella reducta (part) Brodsky, 1950. 194, fig 111 (male only).

Description. Fe m a 1 e. Total length 2.45-2.90 mm . Cephalothorax 3.2-4.0 times longer than abdomen. Anterior part of lateral skeleton structures of genital field wavy (lateral view). A1 24-jointed, as long as cephalothorax, reaching the end of genital segment. Ri A2 about two third of Re in length. External lobe of Ri2 A2 with 6 terminal, internal lobe with 6-7 terminal setae. Coxo- and basipodite A2 with 1 seta each. Ri 2 Md with $3-4$ setae. Mx1 gnathobase with 10 setae; second internal lobe absent; third with 3 setae; Ri with 4 setae; Re with 4 setae; external lobe with 7-8 setae. Mx2 of "macrodactyla" type with 5 endites: first (proximal) with 1-2 setae, second with 1 very small, weak, often poorly visible seta; third endite with 1 long seta. Re P1 with 1 external terminal spine. External lobe of Ri P1 not developed. Ri P2-P4 1-jointed, P3-P4 with traces of separation between Ril and Ri2.

M a 1 e . Total length $2.70-3.00 \mathrm{~mm}$. Cephalothorax (dorsal view) with small projection on top anteriorly. Cephalothorax about 3 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused. A1 24 -jointed, reaching the end of Abd 2 (sometimes with aesthetasks). Ri2 A2 with 6 terminal setae at external lobe and 6-7 terminal setae on internal lobe. Ril A2 without setae; coxo-and basipodite with 1 seta each. Ril Md with 4 setae. Mxl and Mx2, as well as Mxp setation reduced compared to females. P1 with 1 -jointed rami. Re P1 with 1 external terminal spine. P2 with 3 -jointed Re and incompletely 2-jointed Ri, P3-P4 with 2-jointed Ri and 3 -jointed Re. P5 with 1 -jointed Ri and 3-jointed Re. P5 of simple structure. Left and right legs nearly equal in length.

Type locality: North-western part of the Pacific Ocean.

Lectotype: Ch. abyssalis (female) from sample 474.

Geographical distribution. Pacific Ocean: the north-western part (Brodsky, 1950), the Kurile-Kamchatka Trench region and the Aleutian Trench (original data). The central part of Arctic Basin (Markhaseva, 1983b).

Vertical distribution. The species was found of abyssopelagial also in total hauls (original data) of the Kurile-Kamchatka Trench. In the central part of the Arctic Basin from hauls with ranges: 200-750, $250-960,740-1572$ and $1100-4330 \mathrm{~m}$. Most probably the species is meso- and upperbathypelagic in Arctic Basin and abyssopelagic in the north-western part of the Pacific Ocean.

Material: 23 females and 3 males from samples: 138, 176, 196, 460, 477, 483-485, 488, 490, 492-507, $510,512-514,517-520,524,548,554,558,560$, 563.
2. Chiridiella bichela Deevey, 1974
(Fig. 66)
Chiridiella bichela Deevey, 1974: 451, figs 5-6
Description. Fe m a 1 e . Total length 2.50-2.80 mm . Cephalothorax 3.7-4.0 times longer than abdomen. Anterior margin of lateral skeleton structures of genital field wavy. A1 23 -jointed, reaching genital segment, Abd2. Ri A2 is two third of Re length. Coxo- and basipodite A2 with 1 seta each; external lobe of Ri2 A2 with 6 terminal; internal lobe with 7 terminal setae. Ri2 Md with 6 terminal setae. Mxl gnathobase with 10 setae; second internal lobe rudimentary; third internal lobe with 2 ; Ri with 4 ; Re with 8; external lobe with 8 setae. First Mx2 endite with 3 setae; second with 1 short seta, third and fourth endites with 1 long and 1 short spines arranged in pincers-like form; fifth endite with long curved spine; distal part of Ri with only 2 (or 3) setae. Mxp protopodite with groups of 1,2 and 1 setae. Ril Mxp with 3 medial setae. Re Pl with 2 external spines. External lobe of Ri P1 reduced. P2 with incompletely 3 -jointed Re and 1 -jointed Ri. P3-P4 with 1 -jointed Ri and incompletely 3-jointed Re. P4 coxopodite without hairs and seta.

Male known after the fifth stage only.
Type locality: $32^{\circ} 10^{\prime} \mathrm{N} 64^{\circ} 30^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the Sargasso Sea (Deevey, 1974). Pacific Ocean: for the first time recorded in the region of the KurileKamchatka Trench (original data).

Vertical distribution. In hauls between $2300-3400$ m of the Kurile-Kamchatka Trench region (original data). In haul $1500-2000 \mathrm{~m}$ of the Sargasso Sea (Deevey, 1974). Most evidently bathy-, abyssopelagic species.

Material: 2 females from samples: 67, 82.
3. Chiridiella bispinosa Park, 1970
(Fig. 67)
Chirıdella bispınosa Park, 1970 493, 497, fig 78-88
Description. Fe m a 1 e . Total length 2.50 mm . Cephalothorax about 5 times longer than abdomen. A1 24 -jointed, as long as body, or reaching the midlength of genital segment. Re A2 1.5 times longer Ri A2; external lobe of Ri2 A2 with 6 terminal; internal with 5 long and 3 short terminal setae. Coxoand basipodite A2 with 1 seta each. Ri2 Md with 8 (with 6 after Park (1970)) setae. Mx1 gnathobase with 10-11 setae; second internal lobe reduced; third

Fig. 64. Chiridiella abyssalis. Female (from Markhaseva, 1983a with additions after specimens from the corntral part of Arctic Basin).

Fig 65. Chiridiella abyssalls. Male (518).

Fig. 66. Chirtdella bichela Female (67).

Fig. 67. Chiridiella bispinosa. Female (398).
internal lobe with 2 setae and short filament; protopodite near Ri base with 1 seta; Ri with 3; Re with 8-9; external lobe with 9 setae. Fourth and fifth Mx2 endites with thick spine each; distal part of Ri is not reduced, with 4 setae. Mxp protopodite without proximal seta; and with groups of 1,3 and 3 setae. Ril Mxp with 3 medial setae. Both P1 rami 1-jointed, Re with 2 external spines, external lobe of Ri not developed. P2 with 1 -jointed Ri. Re P2 and P2-P3 rami 3-jointed.

Male unknown.
Type locality: $27^{\circ} 08^{\prime} \mathrm{N} 89^{\circ} 55^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the Gulf of Mexico (Park, 1970). Indian Ocean: the western part (original data).

Vertical distribution. The species was found in haul 513-1000 m (Park, 1970).

Material: 1 female from sample 398.

4. Chiridiella brachydactyla Sars, 1907

(Fig. 68)
Chrıdiella brachydactyla Sars, 1907: 9, 1924-25: 52, pl.16, figs 12-17.
non Chiridiella brachydactyla: Grice \& Hulsemann, 1965: 231, fig. 9 (a-p).

Description. Fe m a 1 e. (Description after Sars (1925) with modifications). Total length 3.50 mm .

Cephalothorax about 4.6 times longer than abdomen. A1 24 -jointed, reaching the end of genital segment. Mx2 with first and second endites typical of Aetideidae; third endite with only 2 setae (short and long); fourth endite with claw-like spines (1 short and 1 long); fifth endite ending in short claw-like spine; distal part of Ri reduced to 3 setae. Mxp protopodite with groups of 1,2 and 3 setae. Ri1 Mxp with 3 setae, joint wide, 1.2 times longer than protopodite. P1-P4 of the same structure as in Ch. macrodactyla.

Type locality: the Asore Islands.
Geographical distribution. Atlantic Ocean: the northern part (Sars, 1924).

Vertical distribution. The species was found in total haul from 4800 m (Sars, 1924).

Material. Slides N 5114 and 5115 from collections of the Zoological Museum of Oslo University were studied.

5. Chiridiella brooksi Deevey, 1974

(Fig. 69)
Chiridiella brooksl Deevey, 1974: 444, figs 1-2.
Description. Fem a 1 e . Total length $2.70-2.80$ mm . Cephalothorax about 4 times longer than abdomen. A1 23 -jointed, exceeding body by 3-4 joints. Ri A2 two third of Re length. Coxo- and basipodite A2 with 1 seta each; external and internal lobes of

Fig. 68. Chiridiella brachydactyla. Female (from Sars, 1924).

Ri2 A2 with 6 terminal setae each. Ri2 Md with 3-4 setae. MxI gnathobase with 10-11 setae; second internal lobe reduced; third internal lobe with 3, Ri with 4 , Re with $5-6$ setae and external lobe with 8 setae. Mx2 of Ch macrodactyla type with 5 endites. Mxp protopodite with 1 seta distally. Ril Mxp with 3 medial setae. Re P1 with 1 external terminal spine. Ri P1 without external lobe. P2 with 1-jointed Ri and 2-jointed (incompletely 3-jointed) Re. P3-P4 with 3-jointed Re and incompletely 3-jointed (2jointed) Ri. P4 coxopodite with rudimentary internal seta without hairs.

Male known after the fifth stage only.
Type locality: $32^{\circ} 10^{\prime} \mathrm{N} 64^{\circ} 30^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the Sargasso Sea (Deevey, 1974). Pacific Ocean: the species is found for the first time in the tropical part (original data).

Vertical distribution. The species was found in hauls between 442 and 1500 m (Deevey, 1974; original data). Most evidently lower meso- upper bathypelagic species.

Material: 1 female from sample 206.

6. Chiridiella chainae Grice, 1969

(Fig. 70).
Chridtella chainae Grice, 1969: 446, 449, figs 1-15; Deevey, 1974. 465, figs 16, 17 d .

Descriptıon. F e male. (Description after Grice (1969) with modifications). Total length 3.56 mm . Cephalothorax about 4 times longer than abdomen. A1 23-jointed, slightly exceeding caudal rami. Re A2 about twice longer Ri. Ri2 A2 external lobe

Fig. 69. Chiridiella brooksi. Female: Mx1, Mx2, Mxp \& P1 (206), other figures from Deevey (1974).

Fig. 70. Chirıdiella chainae. Female (from Grice, 1969).

Fig. 71. Chridiella gibba. Female (93).
with 6 terminal setae; internal lobe with 6 long and 3 short terminal setae. Coxo- and basipodite A2 with 1 seta each. Ri2 Md with 6 setae. Mx1 gnathobase with 10 setae; third internal lobe with 4 setae (after Deevey (1974) with 2); Ri with 3 setae; external lobe with 9 setae; second internal lobe and Re reduced. Mx2 third-fifth endites with one of spines thick, sclerotized, fourth-fifth endites with short spines also thickened. P1 with 1 -jointed rami. Re P1 with 1 external terminal spine. P2 with 1 -jointed Ri and 3-jointed Re. After Grice (1969) P3-P4 with 3-jointed, and after Deevey (1974) with 2-jointed rami.

Male unknown.
Type locality: $20^{\circ} 40^{\prime} \mathrm{N} 84^{\circ} 26^{\prime} \mathrm{W}$.
Geographical distribution. The Caribbean Sea, the Sargasso Sea (Grice, 1969; Deevey, 1974).

Vertical distribution. The species was found in haul $500-1000$ and total haul from 3200 m (Grice, 1969; Deevey, 1974).

The species was not examined by me.

7. Chiridiella gibba Deevey, 1974

(Fig. 71)
Chirdiella gibba Deevey, 1974: 445, 448, figs 3-4.
Chirdella macrodactyla (non Sars, 1907): Farran, 1908: 46, pl. 4, figs 6-14.

Description. Fe m a 1 e. Total length $2.58-3.00$ mm . Cephalothorax about 4 times longer than abdomen. Anterior part of cephalon compressed laterally nearly the area of A1 segmentation. Anterior margin of lateral skeleton structures of genital field wavy (lateral view). A1 24 -jointed, reaching the middle of abdomen, or longer than body. Re A2 1.6 times longer than Ri. External lobe of Ri2 A2 with 6 terminal setae; internal lobe with 5 long and 2 short terminal setae. A2 without setae on coxo- and basipodite. Ri2 Md with 1 seta. Mxl gnathobase with 9 setae; second internal lobe reduced; third internal lobe with 2 setae; Ri with 3 setae; Re reduced; external lobe with 7 setae. Mx2 of Ch. macrodactyla type, similar to Ch. gibba (Deevey, 1974), differing from the latter in invisible differs by not visible small additional seta on the first endite. Mxp protopodite with 1 seta in distal part; Ril Mxp with 2 setae in medial group (sometimes there is 1 seta). Re P1 with 1 external terminal spine. Ri P1 external lobe reduced. Ri P2 1-, Re indistinctly 3-jointed. Re P3-P4 3-jointed; Ri indistinctly 3-jointed. P4 protopodite with rudimentary internal seta, hairs absent.

Type locality: $32^{\circ} 10^{\prime} \mathrm{N} 64^{\circ} 30^{\prime} \mathrm{W}$.
Geographical distribution. The Sargasso Sea (Deevey, 1974). The species is recorded for the first time in the Pacific Ocean; the Kurile-Kamchatka area and in the Indian Ocean: the western part (original data).

Vertical distribution. The species was found in the hauls between 500 and 1500 m (Deevey, 1974) and in haul 1050-1500 m from the Kurile-Kamchatka Trench region (original data).

Material: 3 females from samples: 93, 398.

8. Chiridiella kuniae Deevey, 1974

(Figs. 72-73)
Chiridiella kuniae Deevey, 1974: 451, 454, figs 7-8.
Chirldella brachydactyla (non Sars, 1907): Grice \& Hulsemann, 1965: 231, fig. 9 (a-p).

Description. Fe m a 1 e . Total length 4.10 mm . Cephalothorax about 4 times longer than abdomen. A1 about as long as cephalothorax. Re A2 about 1.8 Ri length. Ri2 A2 external lobe with 6 terminal setae; internal lobe with 5 long and 3 short terminal setae. A2 coxo- and basipodite and Ril with 1 seta each. Ri2 Md with 9 setae. Mxl gnathobase with 13 setae; second and third internal lobes with 3 and 4 setae respectively; protopodite near the base of Ri with 3 ; Ri with 7 ; Re with 10 setae; external lobe with 4 setae. Mx2 of Ch. brachydactyla type, with thickened spine on fourth and fifth endites only, on fifth endite spine is shorter; distal part of Ri is not reduced, with 6 setae. Mx2 endites with groups of spinules on external surfaces. Mxp protopodite with 1 seta in proximal part of joint and then with 3 groups of setae: of 1,2 and 3 setae and minute teat. Ril Mxp with 3 medial setae. Re P1 with 2 external spines. Ri P1 with poorly developed external lobe. Ri P2 with 2 -jointed Ri and 3 -jointed Re . P3-P4 with 3 -jointed rami.

M a le known after the fifth copepodite stage only.

Type locality: $32^{\circ} 10^{\prime} \mathrm{N} 64^{\circ} 30^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the north-eastern part, the Sargasso Sea (Grice \& Hulsemann, 1965; Deevey, 1974).

Vertical distribution. The species was found in haul 1000-1500 m (Deevey, 1974).

The species is not examined by me.

Fig. 72. Chiridiella kuniae. Female: Mx2 (from Grice \& Hulsemann, 1965).

Fig 73 Chiridella kuntae Female (from Grice \& Hulsemann, 1965)

9. Chiridiella macrodactyla Sars, 1907

(Figs. 74-75)
Chriduella macrodactyla Sars, 1907.8 , 1924-25: 50, pl. 16, figs 1-11; Deevey, 1974.465, fig 15 non Chirtdella macrodactyla Farran, 1908: 46, pl. 4, figs 6-14; Tanaka, 1957a: 57, fig. 35.
Description. Fe m a 1 e . Total length $2.35-2.65$ mm (3.15 mm after Deevey, 1974). Cephalothorax slightly less than 4 times longer than abdomen. A1 slightly longer than cephalothorax, 24-jointed. Ri A2 somewhat longer than half length of $\mathrm{Re} \mathrm{A} 2 . \mathrm{Ri} 2$ A2 with 5 long and 3 short terminal setae on internal and 6 terminal setae on external lobe. A2 coxoand basipodite with 1 seta each. Ri2 Md with 3 setae. Mx1 with 2 setae on the third internal lobe; Ri with 5 setae; Re with 4 setae, and external lobe with 8 setae; second internal lobe reduced. Mx2 with 1 (Sars, 1907; 1924), 2 (Sars, 1925) setae on first (proximal) endite; 1 long and 1 short setae on the third; fourth endite with 2 different length pin-cer-form spines. The longer of the spines is claw-like, prolonged and abruptly curved near its base with straight terminal part, internally covered with small spinules. The shorter spine is thick and also slightly curved, covered with hairs internally. Fifth Mx2 endite prolonged into spine-like projection, smoothly curved. Distal part of Ri Mx2 rudimentary and represented by 2 thin setae. Ril Mxp by about one fourth of its length exceeding protopodite, the last one with 2 setae in distal group; Ril Mxp with 3 medial setae. P1 with 1-jointed rami. Re P1 with 1 external terminal spine. Ri P1 without external lobe. Re P2-P4 3-jointed. Ri P2 1-jointed. Ri P3-P4 3-jointed.

Male unknown.
Notes. Inadequacy and sometimes contradictory nature of the species description (Sars, 1907; 192425) (e.g. the description of Mx 2 structure) and recent appearance of description of a few closely related species (Deevey, 1974), make the status of Ch. macrodactyla rather obscure. Three females attributed by us as Ch. macrodactyla were found in our collections. Their cephalon and Th1 incompletely separated; Ri P3-P4 3-jointed, subdivision is incomplete. These specimens also differ from Ch. macrodactyla, comprehensively described by Sars (1924-25) and Deevey (1974) with respect to Ri2 Md and Mxp protopodite setation. Further revision of the species may be possible only after receiving more material. Ch. ovata Deevey, 1974 and Ch. abyssalis Brodsky, 1950 are similar to Ch. macrodactyla Ch.sarsi is also very close to Ch. macrodactyla. Ch. macrodactyla differs from Ch abyssalis in 3-jointed P3-P4 rami; from Ch. ovata in presence of 2 (not 1) setae in distal group on Mxp protopodite; from Ch. sarsi in number of setae on Re 2 Md (5 setae) and in smaller size.

Type locality: the Asore Islands.

Geographical distribution. The description of the species distribution presents a problem due to possible confusion with earlier close species. Most probable distribution area is the Atlantic and Indian Oceans.

Material: 3 females from samples: 379, 397, 457.

10. Chiridiella ovata Deevey, 1974

(Fig. 76)
Chiridiella ovata Deevey, 1974: 456, 458, figs 10-11 (e, f); Roe, 1975: 306, fig. 6.

Description. Female. (Description after Deevey (1974) and Roe (1975) with modifications). Total length 2.35 mm . Cephalothorax 4 times longer than abdomen. Al reaching genital segment, 23 -jointed. Ri A2 is two third of Re length; external lobe of Ri2 with 6 terminal setae, internal with 5 long and 2 short terminal setae. A2 coxopodite with 1 seta. Ri2 Md with 4 setae. Mxl gnathobase with 8 (?) setae; second internal lobe reduced; third internal lobe with 1 seta; Ri with 4 setae; Re with 3 setae; external lobe with 8 setae. Mx2 of Ch. macrodactyla type, very close to Ch. abyssalis, differing by absence of small seta on the third endite (Roe (1975) mentioned similar seta). Mxp protopodite with 1 seta in distal group. Ril Mxp with 3 medial setae. Rel P1 with 1 external terminal spine, external lobe is not developed. P2-P4 with 1-jointed Ri and 3-jointed; Re joints with traces of division in P3-P4.

Male unknown.
Notes. The species is very close to Ch. abyssalis, differing in lesser number of setae on third internal lobe of Mx1 (1 seta); lesser number of setae in distal part of protopodite (1) and lesser number of Al joints (23).

Type locality: $32^{\circ} 10^{\prime} \mathrm{N} 64^{\circ} 30^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the Sargasso Sea, the north-eastern part ($18^{\circ} \mathrm{N} 25^{\circ} \mathrm{W}$) (Deevey, 1974; Roe, 1975).

Vertical distribution. The species was found in hauls between 500 and 1500 m (Deevey, 1974) and 1000-1200 m (Roe, 1975). Evidently it is the lower meso- upper bathypelagic species.

The species is not examined by us.

11. Chiridiella pacifica Brodsky, 1950

(Figs. 77-78)
Chirtdiella pacifica Brodsky, 1950: 193, fig. 109; Deevey, 1974: 458, 460, 463, 465, figs 11 (a, b, d), 12-14, 17 (e).
? Chiridiella macrodactyla (non Sars, 1907) Tanaka, 1957a: 57, fig. 35.

Description. Fem a 1 e. Total length 2.50-3.10 mm. Cephalothorax $4-5$ times longer than abdomen. Anterior part of lateral skeleton structures of genital

Fig. 74. Chiridiella macrodactyla. Female (from Sars, 1924).

Fig. 75. Chiridiella macrodactyla. Female (457). ${ }^{\text {az }}$

Fig. 77. Chiridiella pacifica. Female (21).

Fig. 78. Chridella pacifica. Male (from Deevey, 1974)
field is not wavy. A1 24 -jointed, as long as cephalothorax. Ri A2 is about two third of Re length. External lobe of Ri 2 A 2 with 5-6 terminal setae; internal lobe with 6-7 terminal setae. A2 coxo- and basipodite with 1 seta each. Ri2 Md usually with 4 setae. Mx1 guathobase with 10 setae; second internal lobe reduced; third with 2 setae (3 setae after Deevey (1974)); Ri with 4 setae, Re with 6-7 setae; external lobe reduced. First and second Mx2 endites reduced; third endite present, without setae; fourth endite with spines of pincer-form arrangement; fifth endite transformed into single curved spine; distal part of Ri Mx2 represented by 2 setae. Mxp protopodite with 2 setae in distal group. Ril Mxp with 3 setae in medial part, 1.5 times longer than protopodite. Re P1 with 1 external spine. P2 with 1jointed (sometimes with traces of separation) Ri and 3-jointed Re. Re P3-P4 3-jointed; Ri completely or incompletely 3 -jointed.

M a 1 e. (Description after Deevey (1974)). Total length 2.85 mm . Md and Mx2 rudimentary. AI reaching abdomen. Ri A2 slightly longer and wider than Re. Ri2 Md with 8 setae. Mxp and P1 similar to that in females. Ri P2 2-jointed; Ri and Re P3-P4 3-jointed. P4 coxopodite without hairs. P5 biramous; Ri 1-jointed.

Type locality: the north-western part of the Pacific Ocean.

Lectotype: female from sample N 474.
Geographical distribution. Atlantic Ocean: the Sargasso Sea (Deevey, 1974). Pacific Ocean: the north-western part (Brodsky, 1950; original data), regions of the Aleutian, Kurile-Kamchatka and Marian Trenches, Izu region (Tanaka, 1957). Indian Ocean: for the first time recorded in the western part (original data).

Vertical distribution Species was found in hauls between 1000 and 3800 m in the Kurile-Kamchatka and Aleutian Trench area (original data) and between 1000 and 2000 (mostly between 1500 and 2000 m) in the Sargasso Sea (Deevey, 1974).

Material 9 females from samples: $21,63,86$, 96, 139, 196, 201, 395, 401.

12. Chiridiella reductella
 Markhaseva sp. n .

(Fig. 79)
Chirdiella reducta Brodsky, 1950: 195, fig. 110 (part. female only)

Description. F e m a 1 e . Total length 2.40-3.10 mm . Cephalothorax 3 times longer than abdomen. Anterior part of skeleton structures of genital field wavy (lateral view). Al 23 -jointed, shorter than cephalothorax. Re A2 1.7 times longer than Ri. Right A2 Re5-Re6 with groups of minute spinules. Mx1 gnathobase with 10 setae; Ri with 3 ; Re with 1
seta; external lobe with 8 setae (second and third lobes not visible, possibly reduced). Mx2 with absolutely reduced first endite; second endite without equipment; third with 1 long seta; distal part of Ri absent, even setae on the fifth endite absent. Distal part of Mxp protopodite with 1 seta. Ril Mxp with 2 medial setae. Re P1 with 1 small terminal spine. Re1 P2 and Re1 P3 without external spines, 3-jointed (P2 indistinctly 3-jointed). Ri P2-P4 1-jointed.

Male unknown.
Notes. Brodsky (1950) described Ch. reducta after male and female. Female from type series of Ch reducta was lost, according to Brodsky's (1950) figures is identical to the above species. Male designated as lectotype actually exists and should be attributed to Ch abyssalis. Therefore the name Ch. reducta is synonymized with Ch abyssalls (Markhaseva, 1983).

Type locality. $82^{\circ} 28^{\prime} \mathrm{N} 167^{\circ} 38^{\prime} \mathrm{E}$.
Geographical distribution. Arctic Basin: central part (Brodsky, 1950; original data).

Vertical distribution. The species was found in total hauls from 2000 m (Brodsky, 1950) and in haul $250-900 \mathrm{~m}$ (original data).

Holotype, 1 female, $\mathrm{N} 1 / 64822,82^{\circ} 28^{\prime} \mathrm{N} 167^{\circ} 38^{\prime} \mathrm{E}$, "SP-17", Sta 1, 24 June 1968, in haul 250-900 m.

Material: 1 female from sample 521.

13. Chiridiella sarsi Markhaseva, 1983

(Fig. 80)
Chirtdella sarsi Markhaseva, 1983b: 122, fig 3
Description. Female. Total length $4.40-4.50 \mathrm{~mm}$. Cephalothorax 3.1-3.3 times longer than abdomen. Anterior part of skeleton structures of the genital field not wavy (ventral view). Al 24-jointed, reaching Abd2. Ri A2 is two third of Re length. External lobe of Ri2 A2 with 6 terminal setae; internal with 5 long and 2 short terminal setae. A2 coxo- and basipodite with 1 seta. Ri2 Md with $8-9$ setae. Mx1 gnathobase with $8-10$ setae; second internal lobe reduced, third internal lobe with 3 setae; Ri with 4 setae; Re with 5 , often 8 setae; external lobe with 7 setae (examined specimens differed in structure of Mx1). Mx2 similar to Ch. abyssalls: first endite with 2 setae. Distal group of Mxp protopodite with 2 setae and nipple. Ril Mxp with 3 medial setae. P1 with 1-jointed rami. Re P1 with 1 external terminal spine. P2-P4 with 1-jointed Ri. P3-P4 with faint traces of subdivision between Ril and Ri2 as well as Ri2 and Ri3.

Male unknown.
Type locality: $86^{\circ} 34^{\prime} \mathrm{N} 94^{\circ} 20^{\prime} \mathrm{E}$.
Geographical distribution. Arctic Ocean: the central part (Markhaseva, 1983b).

Vertical distribution. The species was found in hauls $750-4350 \mathrm{~m}$ and 1110-4300 (Markhaseva, 1983b).

Material: 2 females from samples: $510,515$.

Fig 79. Chiridella reductella sp.n Female (521)

Fig. 80. Chiridiella sarsi. Female (from Markhaseva, 1983a).

Fig. 81. Chiridiella smoki. Female (from Markhaseva, 1983a).

14. Chiridiella smoki Markhaseva, 1983

(Fig. 81)
Chiridiella smoki Markhaseva, 1983b: 123, fig. 4.
Description. F e m a le. Total length 3.80 mm . Cephalothorax 3.8 times longer than abdomen. Anterior part of skeleton structures of genital field wavy (lateral and ventral view). A1 24 -jointed, not longer than cephalothorax. Ri2 A2 with 6 terminal setae on external lobe and 5 long and 3 short terminal setae on internal lobe. A2 coxopodite with 1 seta. Ri2 Md with 7 setae. Mx2 with 4 endites: first (proximal) with 1 seta; second without seta. Mx1 gnathobase with 9 setae; second internal lobe absent; third with 3 ; Ri with 3 ; Re with 8 setae; external lobe reduced. Distal group of Mxp protopodite with 2 setae and small nipple. Ri Mxp with 3 medial setae. Ri P2 1-jointed. Ri P3-P4 2-jointed (with complete separation between Ri2 and Ri3). P4 coxopodite without hairs.

Male unknown.
Type locality: $45^{\circ} 20^{\prime} \mathrm{N} 153^{\circ} 54^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: the Ku-rile-Kamchatka Trench area (Markhaseva, 1983b).

Vertical distribution. Abyssopelagic species.
Material: 6 females from samples: $105,122,124$, $139,140,163$.

15. Chiridiella subaequalis

Grice \& Hulsemann, 1965
(Fig. 82)
Chiridiella subaequalis Grice \& Hulsemann, 1965: 231, 234, fig. 10 (a-l).

Description. Fem a 1 e. Total length 2.81-3.00 mm . Cephalothorax about 4 times longer than abdomen. Anterior margin of the skeleton structures of the genital field vearly smooth (ventral view). A1 23(?)-jointed, slightly shorter, as long as cephalothorax. Ri2 A2 with 6 terminal setae on external lobe and 6-7 terminal setae on internal lobe. Re A2 as long as Ri A2. A2 basipodite without setae; coxopodite with 1 seta. Ri2 Md with 9 seta. Gnathobase of Mxl with 9 ; second and third internal lobes with 1 and 4 setae respectively; Ri with 7 setae; Re with 4 setae; external lobe with $8-9$ setae. Thirdfifth Mx2 endites each with 1 seta strongly thickened into spine, they are of nearly equal size. Mxp of examined specimen somewhat differing from that described by Grice \& Hulsemann (1965): presence of 3 (instead of 2) medial setae on Ril Mxp; haired external surface of Ri3, Ri4 Mxp. P1 with 1-jointed Ri and Re , the latter of our specimens with external proximal spine not reaching the base of following terminal spine (after Grice \& Hulsemann the spine
exceeds the base of the next spine). P2 with 1 -jointed Ri; Re incompletely 3-jointed. Ri P2-P3 incompletely 3-jointed.

Male unknown.
Notes. Despite minor differences in setation of Mxp, and length of first external spine on Re P1 we attributed the studied species to Ch. subaequalis.

Type locality: $29^{\circ} 57^{\prime} \mathrm{N} 22^{\circ} 53^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the north-eastern part (Grice \& Hulsemann, 1965). Pacific Ocean: for the first time in the region of the Kurile-Kamchatka Trench. In the indooceanic sector of Antarctic, to the South $62^{\circ} \mathrm{S}$ (original data).

Veritical distribution. The species was found in hauls with known sampling ranges: $3000-4000 \mathrm{~m}$ (Grice \& Hulsemann, 1965) and 1500-2000 m (original data).

Material: 2 females from samples: 73, 379.

8. Chiridius Giesbrecht, 1892

Type species: Chiridius poppei Giesbrecht, 1892, by monotypy.

Chiridius Giesbrecht, 1892: 224.
Description. Female. Total length 1.59-4.60 mm . Cephalothorax 2.00-4.00 times longer than abdomen. Rostrum absent. Cephalon and Th1, as well as Th4-Th5 fused. Th5 posterior corners extended into points not separated from segment; symmetrical, reaching the end of first one third of genital segment length, the middle or end of second third of genital segment length (dorsal view). Th5 points directed straightly to the end of the body, sometimes slightly divergent (dorsal view). Distal part of spermatheca oval or rounded, flowing duct thin (in Ch. obtusifrons the duct is slightly narrower than the distal part of spermatheca). Posterior Abd1-3 border with minute spinules. Genital segment symmetrical. Genital segment as long as wide, sometimes slightly longer than wide. Genital segment 1.3-1.6 times longer than Abd2. Caudal rami 1.5 times wider than long. Al 24 -jointed as long as cephalothorax, reaching the middle of genital segment, Abd 2 , or even the posterior border of Abd3 (Ch. mexicanus). Re A2 1.5-2.0 times longer than Ri. A2 coxopodite with 1 ; basipodite with 2 setae; Ri1 A2 with 2 setae; Ri2 with 8 (rarely 7) setae (4-5 of which longer and stronger) on internal lobe, and 6 long and often 1 short posterior setae on external lobe. Rel A2 without setae; Re 2 with 2 (1 medial and 1 distal) setae; $\mathrm{Re} 3-\mathrm{Re} 6$ with long strong seta each; Re7 A2 with 1 medial short and 3 terminal setae. Md palp base with 2 setae; Ril with 2 setae; Ri2 with 8-9 terminal (sometimes 7 terminal and 1 posterior (Ch. polaris, Ch. pacificus) setae: the 1-3 of them thinner and shorter. Re Md nearly 1.5-2.0 times longer Ri. Mxl gnatho-

Fig. 82. Chiridiella subaequalis. Female (73).
base with 9 claw-like terminal, 1 anterior setae and 4 setae on posterior surface; second internal lobe with 5 setae; third internal lobe with 4 setae; protopodite near Ri base with 4 setae (of which 1 strong and long, the remaining short and thin); Ri with $11-13$ setae; Re with 8 or 10 setae; external lobe with 7 (rarely 6) long and 2 short setae. Mx2 typical of the family: 1 seta (of 3) on fourth and fifth endites transformed into claw-form. Ril Mxp 1.2-1.5 times longer than protopodite, protopodite with groups of 2, 3 and 3 setae (from proximal to distal pert of the joint), and with another seta proximally. Lateral surface of Ri2 Mxp sometimes with semicircular row of surface spinules (Ch. polaris). Re P1 \vdots-jointed, each joint with external spine; anterior surface of Re2 P1 often with group of spinules. Ri P2 1-2-jointed. Re P2 2-3-jointed, Ri P2 not reaching, or reaching the border between Re 2 -Re3 P 2 , sometimes even exceeding it (Ch. poppei). Re3 P2 border between second and third external spines sometimes with bulge (Ch. molestus). P3-P4 rami clear, rarely indistinct 3-jointed. Re3 P4 external spines often significantly shorter and thinner than those of P3.

M a 1 e. Total length $1.50-3.80 \mathrm{~mm}$. Cephalothorax nearly 2.5-3.3 times longer than abdomen. Rostrum absent (some specimens of Ch. pacificus have 1 -pointed rostrum). Cephalon and Th1, as well as Th4-Th5 fused, line of fusion poorly visible dorsally. Posterior Th5 corners prolonged into points not separated from the segment, reaching the midlength of genital segment or exceeding its posterior border. Posterior border of Abd2-4 with minute spinules. Abd2 1.4-1.9 times longer than genital segment. A1 23 -jointed, shorter or as long as cephalothorax, reaching the end of genital segment, posterior border of Abd2. Re A2 1.3-1.6 times longer than Ri. Ri2 A2 with 11-12 setae. A2 coxopodite with 1 seta; basipodite with 1-2 setae, Ril A2 with 1 seta, smaller than in female. Md palp base with 1 seta, or seta absent. Setae (usually 1 seta) on Ril Md shorter and thinner than in female; Ri2 Md with 9 setae (Tanaka noted 8 setae for Ch. molestus (Tanaka, 1957a). Mx1 Ri with $8-9$ setae; Re with 9 setae, gnathobase and second internal lobe without setae. Mxp with protopodite 1.06-1.40 times longer than Ril Mxp, the latter usually with 3 medial setae, and with only 1 such seta in Ch. molestus. Segmentation and setation of P1 the same as in female, but first and second external spines smaller. P2 with 2 -jointed Ri , sometimes segmentation indistinct (Ch. poppei), the line of separation better outlined than in female. In other species Ri P2 reaching or not reaching the border between Re 2 and Re 3 P 2 (exceeding the border of Re2-Re3 P 2 in Ch. poppei only). First and second external Re3 spines usually as in female of corresponding species. P3-P4 with 3-jointed rami (in Ch. obtusifrons segmentation in P4 vague). P5 uniramous, only in some specimens
of Ch. pacificus rudimentary Ri present in both rami. If P5 uniramous: usually right leg 4 -jointed and longer than left 5 -jointed leg (in Ch. poppei they are of nearly the same length).

The genus Chiridius includes 8 species, all of them except Ch. mexicanus Park, 1975 (male unknown) are described below. Ch. subantarcticus Park, 1978 is herein considered to be synonym of Ch polaris Wolfenden.

Key to species of Chiridius

Females

(unknown for Ch. longispinus)
1(6) Re Mxl with 8 setae. Posterior points of Th5 comers reaching the midlength of the genital segment, usually longer. Specimens $1.59-2.80 \mathrm{~mm}$ in length.
2 (3) Re3 P2 (often also P3) with bulge near the base of third external spine and excavation near the base of second external spine. Ri2 Md usually with 8 setae 3. Ch. molestus Tanaka

3 (2) Re3 P2 without bulge and excavation between second and third external spines. Ri2 Md commonly with 9 setae.
4 (5) Specimens $1.59-2.20 \mathrm{~mm}$ in length. Cephalothorax 2.7-3.2 times longer than abdomen. Ke1, Re2 P1 external spines not reaching the base of next spine. Ri P2 1-jointed, exceeding Re2-Re3 P2 border . .
7. Ch. poppei Giesbrecht

5 (4) Specimens $2.45-2.80 \mathrm{~mm}$ in length. Cephalothorax 3.2-4.2 times longer than abdomen. Re1, Re2 P1 external spines reaching or exceeding the base of next spine. Ri P2 2-jointed (sometimes separation is obscure), mostly not reaching the border between Re2-Re3 P2 \qquad 1. Ch. gracilis Farran

6(1) Re Mx1 with 10 setae. Posterior points of Th5 reaching to the end of first third of genital segment, rarely reaching, or even exceeding its middle. Specimens $2.8-4.6 \mathrm{~mm}$ in length.
7(8) Ri2 Md with 9 terminal setae. Cephalothorax 2.02.9 times longer than abdomen. Distal part of spermatheca slightly widened. 4. Ch. obtusifrons Sars
8(7) Ri2 Md with 8 (7 terminal and 1 posterior) setae. Cephalothorax 2.7 (2.7-3.6) times longer than abdomen. Distal part of spermatheca significantly wider than flowing duct, bladder-like.
9 (10) Specimens $2.80-3.05 \mathrm{~mm}$ in length. Posterior points of Th5 reaching or exceeding the middle of genital segment. Re3 P1 external spine 1.30-1.47 longer Re 2 P 1 external spine 5. Ch. pacificus Brodsky

10(9) Specimens $3.30-4.25 \mathrm{~mm}$ in length. Posterior points of Th5 reaching the end of first third of genital segment, sometimes reaching or exceeding its midlength. Re3 P1 external spine 1.04-1.26 times
longer than Re2 Pl external spine
6. Ch. polaris Wolfenden

Males

1(2) Posterior points of Th5 corners exceeding the posterior border of genital segment
. 5. Ch. pacificus Brodsky
2(1) Posterior points of Th5 corners not longer than genital segment.
3(4) Right P5 nearly as long as left. Re1 and Re2 P1 external spines very short, not reaching the middle of the next joint . . . 7. Ch. poppei Giesbrecht
4(3) Right P5 longer than left. Rel and Re2 P1 external spines reaching the midlength of the next joint or longer.
5(6) Posterior points of Th5 corners hardly reaching the midlength of Abd1. Ri1 Mxp with 1 medial seta 3. Ch. molestus Tanaka
6(5) Posterior points of Th5 corners usually reaching the posterior border of Abd1. Ril Mxp with 3 medial setae.
7(8) Rel P1 external spine reaching and exceeding the base of following spine
6. Ch. polaris Wolfenden

8(7) Rel P1 external spine not reaching the base of following spine.
$9(10)$ P5 is shorter than half length of P4. Specimens 1.52 mm in length 2. Ch. longispinus Tanaka
$10(9)$ P5 is longer. Specimens more than 1.96 mm in length.
11(12) Terminal joint of left P5 3 times longer than wide 1. Ch. gracilis Farran
12(11) Terminal joint of left P5 4.4-5.0 times longer than wide 4. Ch. obtusifrons Sars

1. Chiridius gracilis Farran, 1908
(Figs. 83-84)
Chiridus gracils Farran, 1908. 30, pl 2, figs 1-3; Vervoort, 1952b (sheet 44) 3, fig. 2; Tanaka, 1957a: 48, fig. 30, Tanaka \& Omor1, 1970a• 117, Park, 1975a: 283, figs $7-8 ; 1978 \cdot 122$, fig. 13, Vives, 1982. 291; Roe, 1984. 356; Brenning, 1983. 2, 1985: 29.

Description. Fe m a 1 e. Total length $2.45-2.80$ mm . Cephalothorax 3.21-4.20 times longer than abdomen. Points of Th5 posterior corners exceeding the midlength of genital segment (usually reaching the end of second third of segment length). Genital segment widest in its midlength. A1 as long as cephalothorax, or reaching the end of genital segment (sometimes to the middle of Abd2 (Park, 1975a)). Ri2 Md with 9 setae (sometimes with 8). Re Mx1
with 8 setae. External spines on Re P1 not reaching (rarely exceeding) the base of following spine. Re P2 3-jointed (sometimes separation between Rel and Re2 incomplete). Ri P2 incompletely 2 -jointed, usually not reaching (rarely reaching) the border between Re2-Re3 P2. Re3 P2 without excavation between second and third external spines; first and second external spines long, reaching the base of next spine.

Male. Total length $1.96-2.32 \mathrm{~mm}$. Cephalothorax 3.1 times longer than abdomen. Points of Th5 posterior corners are not longer than Abdl. A1 23jointed, shorter than cephalothorax. Ri2 Md with 8 long and 1 short seta. Mxl with 2 setae on second (?) internal lobe; Re with 9 setae; Ri also with 9 setae. Ril Mxp with 3 medial setae. External spines of Rel and Re2 P1 not reaching the bases of next spines. P2 with incompletely 2 -jointed Ri. Furst and second external spines of Re3 P2 reaching the base of next spine; Ri P2 reaching the border between Re2-Re3 P2.

Type locality the North Atlantic to the west of Ireland.

Geographical distribution. Atlantic Ocean: the northernmost finding in the Norwegian Sea ($71^{\circ} \mathrm{N}$), the southernmost in the region of the South Sandwich Islands. Pacific Ocean: the northernmost finding from the lzu region (Tanaka \& Omori, 1970a), the southernmost from the antarctic sector of the Pacific Ocean (region of $62^{\circ} 33^{\prime} \mathrm{S} 127^{\circ} 37^{\prime} \mathrm{W}$ original data). Indian Ocean: the species found for the first time in the north-eastern part (original data).

Vertical distribution The species recorded in the majority of total hauls from depths $300-8300 \mathrm{~m}$, and in hauls from $500-1000 \mathrm{~m}$ (Park, 1975b). Evjdently mesopelagic species most common in total hauls from 500 to 1000 m .

Material: 34 females and 3 males from samples: 2, 201, 215, 274, 280, 346-347, 350-352, 354-355, 358-359, 361, 364, 373, 375, 419, 426, 432, 438, 451, 465.

2. Chiridius Iongispinus Tanaka, 1957

(Fig. 85)
Chridrus longispinus Tanaka, 1957a. 51, fig. 32
Description. M a 1 e. (Description after Tanaka (1957) with modifications). Total length 1.52 mm . Cephalothorax 3 times longer than abdomen. Points of Th5 posterior corners as well as Al reaching the end of genital segment. Ri2 Md with 9 setae. Mx1 with 6 setae on external lobe; Re with 9 setae; Ri with 9 setac and 2 setac on protopodite near Ri base; second and third internal lobes with 1 seta each. Mx2 significantly reduced. External spine of Re1 P1 nearly reaching the distal border of Re2 P1. P2 with 2-jointed Ri. P5 shorter than half length of P4.

Fig. 83. Chiridius gracilis. Female: general view, Th5 \& Abd, P2-P4 (438), Gntb Md (427), Gn (451), Th5(a) \& $\mathrm{Abd}(\mathrm{a})$ (375), P1 (352), A2 (573).

Fig. 84. Chiridius gracilis. Male: general view, Th5 \& Abd, P2, P5 (359), P.md, Mxp, Mx1, P1 (364).

Type locality: the Izu region.
Geographical distribution. Pacific Ocean: from the Izu region only (Tanaka, 1957a).

Vertical distribution. The species found in total haul from 1000 m (Tanaka, 1957a).

The species is not examined by me.

3. Chiridius molestus Tanaka, 1957

(Figs. 86-87)
Chiridus molestus Tanaka, 1957a: 53, fig. 33 (a-f) (male). Chirrdius subgracils Park, 1975a: 285, figs 9-10; Bradford \& Jillett, 1980: 23, fig. 12.
${ }^{7}$ Chiridus gracilss (non Farran, 1908): A. Scott, 1909. $42, \mathrm{pl}$. 11, figs $1-9$.

Description. Fe m a 1 e. Total length 2.30-2.70 mm . Cephalothorax 2.8-3.75 times longer than abdomen. Points of Th5 posterior comers slightly exceeding the midlength of genital segment or reaching the end of its last third. Abdl is widest in its second third. Al as long as or shorter than cephalothorax. Ri2 Md with 8 terminal setae. Re Mxl with 8 setae (9 setae after Park (1975a)). Some specimens found with P5 rudiments, and with 9 setae on Ri 2 Md and Re Mxl with 10 setae. External spines of Rel and Re 2 P 1 varying in length: sometimes reaching to or exceeding the base of next spine (or not reaching the base of next spine). P2 with 3 -jointed Re and incompletely 2 -jointed Ri. Edge between second and third Re3 P2 external spines of the characteristic shape: with bulge near the base of third external

Fig. 85. Chiridus longispinus. Male (from Tanaka, 1957a).
spine and with excavation close to the base of second external spine. Ri2 P2 reaching or not reaching the border between $\operatorname{Re} 2-\operatorname{Re} 3 \mathrm{P} 2$; terminal spine with 23-26 denticles. Re3 P3 edge between second and third external spines similar to that in Re3 P2. P3-P4 rami 3-jointed, with 22-28 denticles on terminal spines of Re3.

M a 1 e . Total length $1.80-2.04 \mathrm{~mm}$. Cephalothorax 2.30-3.2 times longer than abdomen. Points of Th5 posterior corners reaching the middle of Abd 1 . Al as long as cephalothorax, reaching the middle of Abd3. Ri2 Md with 9 setae (8 setae after Tanaka (19570). Mxl with 1 seta near Ri base; Ri with 9 setae; Re with 9 setae. Ril Mxp with 1 medial seta. External spines of Re1, Re2 P1 shorter than in the same joint in females. Ri not reaching the border between $\operatorname{Re} 2$ and Re3 P2. Ri P2 2-jointed. Re P3-P4 3-jointed. Left P5 slightly longer than two third of right P5.

Notes. After Bradford \& Jillett (1980) and on the from the examined material, Chiridius subgracilis Park, 1975 is considered identical to Chiridius molestus Tanaka, 1957. The New Zealand authors left the name subgracils (Bradford \& Jillett, 1980). Ac-
cording to the priority rule, it should be considered the junior synonym, and the name Chirldius molestus should be assumed valid.

Type locality: the Izu region.
Geographical distribution Due to possible mixture between Ch. molestus with Ch. gracilis, it is difficult to describe the species distribution area. Atlantic Ocean: the northernmost finding: $48^{\circ} \mathrm{N}$ (original data), known also from the Gulf of Mexico (Park, 1975a) and the region of the Canary Islands (Vives, 1982). Pacific Ocean: from the Izu region (Tanaka, 1957a; Tanaka \& Omori, 1970a), region off the New Zealand (Bradford \& Jillett, 1980; original data), the south-eastern part off South America (original data), southernmost locality not further than 46° S. From the Malay Archipelago? (A. Scott, 1909), Indian Ocean: found for the first time (original data).

Vertical distribution. Evidently mostly mesopelagic species, found in the hauls with known depth ranges 200-500, $500-1000 \mathrm{~m}$ (Bradford \& Jillett, 1980), recorded in epipelagial (A. Scott, 1909; Bradford \& Jillett, 1980); found in total hauls from 4000 m .

Material: 45 females and 2 males from samples: $266,267,313,387-389,422-428,445,447-451,457$.

Fig. 86. Chiridus molestus. Female: general view, Th5(a) \& Abd(a) (428), Th5 \& Abd, Gn(a), Gn(b), P1-P3 (457), Th5(b) \& Abd(b) (426), Th5(c) \& Abd(c), Gn(c) (449), Th5(d) \& Abd(d) (428).

Fig. 87. Chiridius molestus. Male (388).
4. Chiridius obtusifrons Sars, 1902
(Figs. 88-90)
Chiridus obtusifrons Sars, 1902: 29, pl. 17; Damas \& Koefoed, 1907: 408; Van Breemen, 1908. 34, fig. 37; With, 1915: 83; pl 11, fig. 2 (a-b), text-fig. 20 (a-e); Bigelow, 1926: 306; Jespersen, 1934: 56; Brodsky, 1950: 153, fig. 69; Vervoort, 1952c, (sheet 44). 3, fig. 3; Brodsky \& Nikitin, 1955: 423; Johnson, 1963: 92; Grice \& Hulsemann, 1965: 223; ? Bjornberg, 1973: 323; ? Kovalev \& Shmeleva, 1982: 83; Markhaseva, 1984. 511.
Description. Female. Total length 3.50-4.60 mm . Cephalothorax 2.0-2.9 times longer than abdomen. Points of ThS posterior corners reaching the end of first third of genital segment, sometimes almost its midlength. Th5 usually slightly divergent (dorsal view), sometimes not divergent. Spermatheca significantly smaller than in other species of the genus. Genital segment is widest in its middle third. A1 slightly longer than cephalothorax. Ri2 Md with 9 setae. Re Mx1 with 10 setae. External spines of Re 1 and Re 2 P 1 exceeding the base of the next spine. Ri P2 1-jointed, not reaching the border between Re2 and Re3 P2. Re P2 indistinctly 3-jointed; first and second external spines of Re3 P2 short, not reaching the base of next spine, terminal spine with $27-31$ denticles. P3 and P4 with incompletely 3 -jointed rami.

Male. Total length $2.90-3.20 \mathrm{~mm}$. Cephalothorax 2.6-3.0 times longer than abdomen. Points of Th5 posterior corners slightly short of the posterior border of Abd1. A1 about as long as as cephalothorax. Ri2 Md with 9 setae. Mx1 second internal lobe with 1-2 setae; protopodite near the base of Ri with 3 setae; Ri with $8-9$ setae; Re with 9 setae; external lobe with 6 setae. Ril Mxp with 3 medial setae. External spines of Rel and Re2 Pl shorter than in females, short of the base of next spine. P2 with incompletely 3 -jointed Re. P3 with indistinctly 3 -jointed rami. P4 with 3 -jointed rami. Right P5 longer than left.

Geographical distribution. The species is widespread in the Arctic Basin, mostly in its central part. Common in the Strait of Davis, the Norwegian and Greenland Seas, recorded in the Barents Sea (Jespersen, 1934; Vervoort, 1952c; etc). The southernmost finding in the Atlantic Ocean: near the coast of North America in the region $42^{\circ} 24^{\prime} \mathrm{N}$ (Bigelow, 1926). The following records of the species are problematic: the Mediterranean Sea (Kovalev \& Shmeleva, 1982); near South America coast in the region of $52^{\circ} 53^{\prime}$ S (Bjornberg, 1973).

Vertical distribution. The species was found in the Arctic Basin in hauls in epi- and mesopelagial (Brodsky \& Nikitin, 1955), in the Norwegian Sea in haul $200-800 \mathrm{~m}$ (Sars, 1902). Also known in significant number in total hauls from 2000 m . More common in tows from $350-500$ and $600-800 \mathrm{~m}$ (Jes-

Fig. 88. Chiridus obtusifrons. Female (475).

Fig 89 Chridus obtusifrons Female types of Th5 \& Gn in specimens from the Arctic Basin

Fig 90 Chiridus obtustfrons Male (475)
persen, 1934) and in $0-50,50-200 \mathrm{~m}$ in the eastern sector of the central part of Arctic Basin (Markhaseva, 1984).

Material: 72 females and 6 males from samples: 471-472, 475-477, 481-482, 489, 508, 516, 522, 524, 526, 528-529, 533-534, 537, 540-542, 545.

5. Chiridius pacificus Brodsky, 1950

(Figs. 91-93)
Chırıdıus pacificus Brodsky, 1950: 152, fig. 68; Bradford \& Jillett, 1980: 23, fig. 13
Chiridus carnosus Tanaka, 1957a: 55, fig. 34 (syn n.)
Description. Female. Total length 2.70-3.50 mm . Cephalothorax 2.7-3.5 times longer than abdomen. Points of Th 5 posterior corners always reaching the midlength of genital segment or exceeding it. In the majority of specimens Th5 corners not divergent, even slightly converged. Genital segment is widest on a border between first and second third of its length, or in its second third. Al reaching the midlength of genital segment, or the midlength of Abd2. Ri2 Md with 7 long terminal and 1 small thin posterior seta. Re Mx1 with 10 setae. External spines of Rel-Re3 P1 long, usually exceeding the base of next spine; third external spine of Re P1 1.30-1.47 times longer than second one. P2 usually with 3 -jointed Re and 2 -jointed Ri , in some specimens division is incomplete. First and second external spines of Re3 P2 relatively long: reaching, or even exceeding the base of next spine, terminal spine with 32-35 denticles. P3 and P4 with 3-jointed rami, terminal spines with 25-34 denticles. First, second and third external spines of Re3 P4 significantly thinner and smaller than in P3.

M a 1 e. Total length $2.36-2.65 \mathrm{~mm}$. Cephalothorax 3.2-3.5 times longer than abdomen. Points of Th5 posterior corners longer than Abd1. A1 slightly shorter than cephalothorax. Ri 2 Md with 8 long terminal, and 1 short thin posterior seta. Mxl rudimentary, third (?) internal lobe with 3 setae; protopodite near Ri base with 3 setae; Ri with 9 setae; Re with 9 setae. P2 with 2 -jointed Ri. First and second external spines of Re3 are as long as in females. P3 and P4 with 3 -jointed rami. P5 sometimes with rudimentary Ri in both legs.

Notes. Females are similar to Ch. polaris. Difficulties in distinguishing between these species arise from their high variability. Ch. pacificus differs from Ch. polaris in: smaller size; longer points of Th5 posterior corners and high ratio in length of second and third external spines of P1. The assumption of identity between males of Ch. pacificus and Ch. carnosus (Bradford \& Jillett, 1980) has been confirmed. Ch. pacificus is also similar to Ch. mexicanus, differing in: larger size, longer Th5 points, A1 and external spines of $\operatorname{Re} 1$ and $\operatorname{Re} 2 \mathrm{P} 1$ and $\operatorname{Re} \mathrm{P} 2$:

Type locality: the southern part of the Sea of Okhotsk.

Lectotype: female from sample 246.
Geographical distribution. Pacific Ocean: southern part of the Okhotsk Sea, region of the KurileKamchatka Trench (original data), Sagami region (Tanaka, 1957a), between $41-45^{\circ} \mathrm{S}$ and $168-175^{\circ} \mathrm{E}$ off New Zealand (Bradford \& Jillett, 1980).

Vertical distribution. Most likely meso- upperbathypelagic species; found in hauls with known sampling ranges between 500 and 2000 m in the Kurile-Kamchatka Trench region, more often in 5001000 m (original data). Also found in series of total hauls from 1000 to 1500 m .

Material: 22 females and 1 male from samples: 64, 80, 86, 91-93, 119, 121, 140, 157-158, 171-173, 246.

6. Chiridius polaris Wolfenden, 1911

(Figs. 94-97)
Chirldius polarls Wolfenden, 1911: 211, text-fig. 6, pl. 24, figs 9-12; Farran, 1929: 229; Vervoort, 1957: 53, figs 16, 31-34.
Chirtdus subantarcticus Park, 1978: 125, fig. 14 (syn. n.) Chiridius obtusifrons (non Sars, 1902): A. Scott, 1909 43, pl. 44, figs $1-3$.

Description. Female. Total length 3.30-4.25 mm . Cephalothorax 2.9-3.6 times longer than abdomen. Points of Th5 posterior corners usually reaching the first third of genital segment, sometimes its middle, or even exceeding it. Th5 posterior corners straight (dorsal view), rarely converging, or sometimes slightly divergent. Genital segment widest in the second third of its length, or near the border between first and second thirds. Al reaching the midlength of genital segment or the midlength of Abd2. Ri2 Md with 7 long terminal and 1 small thin posterior seta. Re Mx1 with 10 setae. External spines of Re1 and Re2 P1 exceeding the base of next spines. Ratio between Re3 P1 external spine and that of Re2 P1 is (1.04-1.26):1. P2 with 3-jointed Re and 2-jointed Ri; segmentation of Ri not always complete. First and second Re3 P2 external spines usually long, reaching or exceeding the base of next spines. P3-P4 rami 3-jointed (sometimes with incomplete separation of first and second joints of Re and Ri. Re3 P3 external spines shorter and thinner than of P 2 , not reaching the base of following spines, those of P 4 thinner.

M a 1 e. Total length $3.55-3.80 \mathrm{~mm}$. Cephalothorax 2.5-2.9 times longer than abdomen. Points of Th5 posterior corners not longer than genital segment. A1 slightly shorter than cephalothorax. Ri2 Md with 8 long and 1 short seta. Mx1 third internal lobe with 2 setae; protopodite near Ri base with 3 setae; Ri with 9 setae; external lobe with 7 long and 2 short setae. Rel P1 first external spine exceeding the base of next spine. P2 with 2 -jointed

Fig. 91. Chiridius pacificus. Female: general dorsal and left lateral view (after specimen from type locality), right lateral view and M×2 (119).

Fig. 92. Chiridius pacificus. Female: Th5(a) \& Gn(a) (86), Th5(b) \& Gn(b) (119), Th5(c) \& Gn(c) (157), Th5(d) \& $\mathrm{Gn}(\mathrm{d})(172), \mathrm{Th} 5(\mathrm{e}) \& \mathrm{Gn}(\mathrm{e}) \& \mathrm{Th} 5(\mathrm{e}) \& \mathrm{Abd}(\mathrm{e})$ and other figures (246).

Fig. 93. Chiridius pacificus. Male (119).

Ri; Re3 first and second external spines as in females. P3 and P4 with 3-jointed rami.

Notes. Description (Wolfenden, 1911) and redescription of the species (Vervoort, 1957) were from the single female. so far only few Ch. polaris males are known. In literature the species is mentioned without descriptions and figures. The examination of Ch. polaris demonstrated the significant variability in body size; length and shape of points of Th5 posterior corners; i.e. the features used in distinguishing Ch. polaris and Ch. pacificus and Ch. subantarcticus Park, 1978. The latter species is considered here to be identical to Ch polaris. It was established (Park, 1978) after the study of 2 females on the base of characters (lesser size and than in Ch. polaris and differing shape and length of Th5) found by me within range of variability in Ch. polaris. One of the characters reasonable for establishing Ch. subantarcticus as a new species is settation of Mx1: 4 setae on protopodite near the Ri base (after Vervoort (1957) with 5 setae). The other reason was Mx1 setation with 5 setae on second internal lobe (Park, 1978) in contrast to 4 setae recorded by Vervoort (1957) for Ch. polaris in the redescription. It may seem to be an occasional mistake in the text and figures of the redescription (Vervoort, 1957). Such setation, untypical for Chiridius, is not found either in the first description (Wolfenden, 1911), or in the original material. Park (1978) also noted the presence of slightly divergent points of Th5 posterior corners, exceeding the midlength of genital segment and longer than in Ch. polaris. In records by Wolfenden (1911) and Vervoort (1957) Th5 points cover only the first third of genital segment. It may result from insufficient material for comparison, whereas our examination was based on the analysis of significant number of specimens from various geographical areas. This examination showed remarkable variability of length of Th5 posterior points: there were specimens with Th5 points covering the first third of the genital segment, also (rarely) covering its midlength and sometimes exceeding the midlength. In some specimens Th5 points were divergent, in others not divergent. Slight differences in the number of denticles in Re terminal spines may hardly be considered adequate for distinguishing the species. Therefore Ch. subantarcticus Park, 1978 and Ch. polaris Wolfenden, 1911 are considered identical in this publication.

Type locality: to the south of $60^{\circ} \mathrm{S}$ in the indooceanic sector of Antarctic.

Geographical distribution. Bipolar species: circumpolar in Antarctic, found in Subantarctic with the northernmost finding: $49^{\circ} 19^{\prime} \mathrm{S} 120^{\circ} 19^{\prime} \mathrm{W}$ (Park, 1978), was recorded to the South from $60^{\circ} \mathrm{S}$ (66 $69^{\circ} \mathrm{S}$) (Farran, 1929; Vervoort, 1957). Also found in the region of the Kurile-Kamchatka Trench.

Vertical distribution. Probably belowbathypela-gic-upperabyssopelagic species. In high latitudes evi-
dently mesopelagic. It was found in the region of the Kurile-Kamchatka Trench between 2000 and 4000 m (original data), in Antarctic in mesopelagial (Vervoort, 1957). In total hauls from mesopelagial (Farran, 1929; original data).

Material. 25 females and 4 males from samples: $18,65,67,81,85,102,140,163,175,218,277$, 283, 286, 290(?), 292, 301-302, 311, 344, 384, 430, 474.

7. Chiridius poppei Giesbrecht, 1892

(Fig. 98)
Chiridus poppel Giesbrecht, 1892: 224, Taf 14, figs 14-18, Taf. 36, figs 10-12; A. Scott, 1909: 41, pl. 11, figs 10-17; Sars, 1924-25: 45, pl. 15, figs 16-18; Farran, 1929: 229; Jespersen, 1934: 55; Tanaka, 1937: 254, fig. 5; Lysholm, Nordgaard \& Wiborg, 1945: 13; Brodsky, 1950: 152, fig. 67; Vervoort, 1952c (sheet 42): 3, fig. 1; Tanaka, 1957a: 55; Grice, 1962 192, pl. 8, figs 5-7; Vervoort, 1963: 124; Grice \& Hulsemánn, 1967: 14; Park, 1975a: 280, figs 5-6; Tanaka \& Omori, 1970: 118; Bjornberg, 1973: 323: Park, 1978: 124; Bradford \& Jillett, 1980: 24, 26, fig. 14; ChahsavarArchard \& Razouls, 1982: 28, 39, fig. 7 (i); Vives, 1982: 291; Roe, 1984: 356; Brenning, 1983: 3, 1985: 29.

Description. Female. Total length 1.59-2.20 mm . Cephalothorax 2.7-3.2 times longer than abdomen. Points of Th5 posterior corners reaching, or slightly exceeding the midlength of genital segment. Al nearly as long as cephalothorax, or reaching the posterior border of genital segment, posterior border of Abd2. Ri2 Md with 9 terminal setae. Re Mx1 with 8 setae. Rel and Re2 P1 external spines shorter than in other species of genus, not reaching the base of next spine. P2 with 3 -jointed Re (in original material the separation between Rel and Re 2 incomplete) and 1 -jointed Ri (with traces of separation), reaching the line of division between Re2 and Re3 P2. Re3 P2 external spines short, not reaching the base of next spine; terminal spine with 23-27 denticles. P3 and P4 with 3-jointed rami; terminal spines with 24-26 denticles.

M a 1 e. (Description after Tanaka (1957a) and Park (1975a) with modifications). Total length 1.50 1.58 mm . Cephalothorax 2.5-2.7 times longer than abdomen. Th5 points reaching the midlength of Abdl. A1 reaching the posterior border of Abd1, or posterior border of Abd2. Md palp base with 1 seta. Ri2 Md with 9 setae. Mx1 third internal lobe with 1 seta; protopodite near Ri base with 3 setae; Ri with 8 (Tanaka noted 9 setae), 9 setae on Re and 6 (7 mentioned by Tanaka) on external lobe. Ril Mxp with 3 setae in its middle part, 2 of them very short and small. External spines of Rel and Re2 P1 shorter and thiner than in female. P2 with

Fig. 94. Chiridius polaris. Female: Th5 \& $\mathrm{Gn}, \mathrm{Ce}(384)$, other figures (102, 163).

Fig 95. Chiridus polaris Female: A2, P. md, Gntb Md, P4 (384, 430), Mx1, Mx2, Re1-Re2 P1 (163), P1-P4 (102)

Fig. 96. Chridus polarıs. Female' a (65), b (81), c (85), d (102), e (140), f (163), g (294), h (384), i (430).

Fig. 97. Chiridius polaris. Male (67, 85, 175).

Fig. 98. Chiridius popper. Female: general view (from Bradford \& Jillett, 1980), Gn, P1-P4 (573). Male (from Park, 1975), P5 (from Tanaka, 1957).
separation of Ri joints more pronounced than in female; in other features it is as in female; terminal spine with 27 denticles. P3 and P4 with 3-jointed rami, terminal spines with 25 and 20 denticles respectively. P5 of almost the same length.

Type locality the Mediterranean Sea.
Geographical distribution: the is species found in the Atlantic, Pacific and Indian Oceans. The northernmost locality in the Atlantic Ocean is the Strait of Davis (Jespersen, 1934), the sothernmost is the Gulf of Guinea (Vervoort, 1963). In the Gulf of Mexico (Park, 1975a), in the region of Florida (Owre, 1962), the Mediterranean and Adriatic seas (Giesbrecht, 1892; Sars, 1925; Hure, 1955). Pacific Ocean: in the region of Marian Trench (original data), the northernmost finding: the Izu region (Tanaka \& Omori, 1970a), the southernmost: near the coast of South America ($45^{\circ} 01^{\prime} \mathrm{S} 76^{\circ} 33^{\prime} \mathrm{W}$) (Bjornberg, 1973), near New Zealand (Bradford \& Jillett, 1980; original data), in tropical part. Indian Ocean: (Grice \& Hulsemann, 1967, original data). In the Malay Archipelago region (A. Scott, 1909).

Vertical distribution: The species was found in series of hauls from mesopelagial (Lyscholm, Nordgaard \& Wiborg, 1945; Tanaka, 1957a; Bradford \& Jillett, 1980), also recorded from epipelagial (Vervoort, 1963; Grice, 1962; Chahsavar-Archard, C. \& Razouls, 1982; Roe 1984; etc.), and also in total hauls from depths of few km .

Material: 16 females from samples: $\mathrm{N} 202,360$, 367, 386, 399, 575.

9. Chirundina Giesbrecht, 1895

Type species: Chirundina streetsii Giesbrecht, 1895, by monotypy.

Chirundina Giesbrecht, 1895: 249

Wilsontdius Tanaka, 1969: 266 (syn. n.) (type species: Wllsonidius alaskaensis Tanaka, 1969, by monotypy); Bradford \& Jillett, 1980: 92

Description. Fema 1 e. Total length slightly less than 4.00 and to 5.50 mm . Cephalothorax $3-4$ times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused (line of fusion is often visible). Rostrum present, well developed, 1-pointed. Crest present or absent. Posterior Th5 corners symmetrical, rounded, or slightly prolonged; often with small knob or tooth at the top. Genital segment symmetrical, widest in its posterior half. Caudal rami nearly as long as wide. Posterior borders of Abd2-3 with rows of minute spinules. Al 24 -jointed, longer than cephalothorax, often reaching the end of caudal rami. Re A2 1.5-2.0 times longer than Ri; Re1 A2 with 1; $\operatorname{Re} 2 \mathrm{~A} 2$ with 3 setae; Re3-Re6 with 1 long seta each; Re7 with 1 medial and 3 terminal setae. Ril A2 with 2 setae distally; Ri2 A2 with 8 setae on the internal and $6-7$ setae on external lobes. A2 coxopodite with 1; basipodite with 2 setae. Md palp
base with 3 setae; Ri1 Md with 2 , Ri2 Md with 10 (9 terminal and 1 posterior) setae. MxI with 14 setae on gnathobase (9 claw-like terminal setae; 1 thin anterior seta and 4 setae on the posterior surface). Second and third internal Mx1 lobes with 5 and 4 setae respectively; protopodite near Ri base with 5 setae; Ri with 15 setae; Re with 11 setae and external lobe with 9 setae. Mx2 fourth and fifth endites with 1 setae transformed in thickened spine. Mxp protopodite with 1 seta proximally, with 2,3 and 3 setae (from proximal to distal end of the joint), distal setae group with small knob near setae bases. Ril Mxp about twice longer than protopodite and with "lamella" along external surface of joint. P1 with complete or incomplete separation between Rel and Re2. Re1 P1 with external spine, or spine absent. P2 with 1-jointed, or indistict 2-jointed Ri. All other rami of swimming legs 3 -jointed.

M a 1 e. Total length $3.75-5.20 \mathrm{~mm}$. Cephalothorax about 3-4 times longer than abdomen. Cephalon usually with crest, lower than in females. Posterior Th5 corners rounded. A1 right 20-, left 21jointed. Rel A2 without setae; Re2 A2 with 1 seta. Md palp base without setae; Ril Md with 1 seta; Ri2 Md with 9 setae. Mx1 and Mx2 rudimentary. Mxp close to that in Undeuchaeta. Segmentation and setation of P1-P4 as in females, only the Rel P1 spine may be shorter. P5 biramous, with 1-jointed Ri. Left Re P5 3-jointed, right Re 2-jointed. P5 very close to that in Undeuchaeta.

The genus Chirundina includes 3 species.
Notes. Tanaka (1969) described monotypic genus Wilsonidius and noted that W. alaskaensis is close to Undeuchaeta. It is considered here that W. alaskaensis should removed to Chirundina. The only distinction between Wilsonidius and Chirundina is the absence of crest on cephalon. This character in Aetideidae may vary within one genus, crest may be present or absent in Euchirella, Aetideus, Aetideopsis, etc.

Key to species of Chirundina

Females

1(2) Crest on cephalon absent
. l. Ch. alaskaensis (Tanaka)
2(1) Crest on cephalon present.
3(4) Re1 P1 with external spine
3. Ch. streetsii Giesbrecht

4(3) Rel P1 without external spine
2. Ch. indica Sewell

Males
(unknown for Ch. alaskaensis)
1 (2) Rel P1 with external spine
3. Ch. streetsii Giesbrecht

2 (1) Rel PI without external spine
2. Ch. indica Sewell

1. Chirundina alaskaensis
 (Tanaka, 1969), comb. n.

(Fig. 99)
Wilsonidtus alaskaensis Tanaka, 1969: 268, figs 8-9; Bradford \& Jillett, 1980: 92.

Description. Fe m ale. (Description after Tanaka (1969) with modifications). Total length 3.70 mm . Cephalothorax slightly less than 3 times longer than abdomen. Segmentation, shape of the body and A1 typical of the genus. A1 reaching the end of Abd3. Re P1 3-jointed. Re1 P1 without external spine. Ri P2 1-jointed. Other rami of swimming legs 3-jointed. P4 coxopodite without internal seta.

Male unknown.
Type locality: $55^{\circ} 35^{\prime} \mathrm{N} 132^{\circ} 33^{\prime} \mathrm{W}$.
Geographical distribution. Pacific Ocean: the region of the south coast of Alaska (Tanaka, 1969).

Vertical distribution. The species was found in haul between 530 and 622 m (Tanaka, 1969).

The species is not examined by me.

2. Chirundina indica Sewell, 1929

(Fig. 100)
Chirundina indica Sewell, 1929: 119, fig. 45, 1947: 92, fig. 20; Grice, 1962: 196, pl. 11, figs 5-20; Tanaka, 1969: 262 , fig. 5.

Description. F e m a 1 e . (Description after Sewell $(1929,1947)$ and Tanaka (1969) with modifications). Total length $4.05-5.00 \mathrm{~mm}$. Cephalothorax nearly 3.8 times longer than abdomen. Anterior part of cephalon with low crest, much lower than in Ch. streetsii. Posterior comers of Th5 smooth; without knob. Al reaching Abd3. Oral parts typical of the genus. Re Pl indistinctly 3-jointed, with traces of separation between Rel and Re2; Rel without external spine; Ri 1-jointed. P2 with 3 -jointed Re ; Ri with traces of subdivision into 2 joints. P3-P4 with 3-jointed rami.

M a 1 e . Total length $3.75-4.10 \mathrm{~mm}$. Cephalon with well outlined crest, lower than in Ch. streetsii. Al right 20 -, left 21 -jointed, reaching the end of the body. Re A2 1.25-1.50 times longer than Ri A2; Ri2 A2 with 8 setae on each lobe (after Tanaka (1969) with 6 setae on external and 7 setae on internal lobes). Mxl without setae on first and second internal lobes, third internal lobe with 1 seta; protopodite near Ri base with 5 setae (with 3 after Tanaka (1969)); Ri with 5 setae (with 8 setae after Tanaka (1969)); Re with 10 setae (11 setae after
'Tanaka (1969)); external lobe with 5 setae. Comparing to female setation of other oral parts reduced. Re1 and Re2 P1 separated; Re1 without spine. P2-P4 as in female. P5 very close to that in Ch.streetsii.

Type locality: $5^{\circ} 56^{\prime} \mathrm{N} 76^{\circ} 22^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: equatorial part, (Grice, 1962), the region of Philippines (Tanaka, 1969). Indian Ocean: the Arabian Sea, the Gulf of Aden (Sewell, 1929, 1947),

Vertical distribution. The species was found in total hauls from 146-549 m (Sewell, 1929, 1947; Grice, 1962; Tanaka, 1969).

The species is not examined by me.

3. Chirundina streetsii Giesbrecht, 1895

(Figs. 101-102)
Chirundina streetsii Giesbrecht, 1895: 246, 249, pl. 1, figs 5-10; A. Scott, 1909: 43, pl. 12, figs 1-11; With, 1915: 141 , pl. 5 , fig. 4 (a-f), pl. 8, fig. 5 (a-b), text-fig. 38 (a-k); Sars, 1924-25: 77, pl. 22, figs 8-13; Tanaka, 1957b: 190, fig. 53 (a-i), 1969: 262; Vervoort, 1963. 152; Tanaka \& Omori, 1970b: 143; Park, 1978: 179, figs 52-53; Bradford \& Jillett, 1980: 27, fig. 15 (A-E); Roe, 1984: 357; Von Vaupel Klein, 1984: 51, figs 3 (f), 6 (a), 7 (a, m), 11 (f), 13 (f), 16 (a-b), 17 (c), 18 (b), 25(b); Brenning, 1985; 29.

Description. Fe male. Total length 4.15-5.55 mm . Cephalothorax about 3-4 times longer than abdomen. High crest present. Posterior Th5 corners slightly prolonged, often ending in small knob or teeth, their shape may vary (With, 1915, text-fig. 38 (b, c, d, e, j)) especially in lateral view. Al 24-jointed, longer than cephalothorax, often reaching the distal end of caudal rami. Re A2 1.5 times longer than Ri A2. P1 with indistinct separation between Rel and Re2; each joint with external spine, Ri 1-jointed. P2 with 1-jointed Ri with faint traces of separation, and 3-jointed Re. P3-P4 rami 3-jointed.

M a 1 e. (Description after Tanaka (1957b); Tanaka \& Omori (1970b) and With (1915) with changes). Total length $3.80-5.20 \mathrm{~mm}$. Cephalothorax 2.7-3.8 times longer than abdomen. Cephalon with crest, lower than in female. Posterior Th5 corners rounded. Abd2-4 with row of spinules along posterior border. A1 reaching the midlength of Abd, left 21-, right 20 -jointed. Mx1, Mx2 and Mxp rudimentary. P1-P4 with same segmentation as in female. Rel P1 external spine shorter than in female. P5 similar to that in Undeuchaeta plumosa. Both Ri P5 1jointed. Right Ri slightly shorter than right Re1. Left Ri slightly longer than right Re1. Rel P5 right with 2 big and 1 small teeth proximally on the external edge. Right Re2 P5 with groove and terminal spine, the latter is equalling two third of joint in length. Re of left leg 3-jointed, Re2 comparatively

Fig. 99. Chrundina alaskaensis. Female (from Tanaka, 1969).

Fig. 100. Chirundina indica. Female (from Sewell, 1929). Male (from Tanaka, 1969).
short with short spine and with obtuse tooth and rounded projection.

Type locality: $35^{\circ} \mathrm{N} 125^{\circ} \mathrm{E}$.
Geographical distribution. Atlantic Ocean: widespread in the North Atlantic, the northernmost finding: $63,5^{\circ} \mathrm{N}$ (With, 1915), the Gulf of Guinea (Vervoort, 1963), to the South of the Equator found up to $35^{\circ} \mathrm{S}$ (Wolfenden, 1911). Pacific Ocean: the northernmost finding $35^{\circ} \mathrm{N}$ (Tanaka \& Omori, 1970b; Giesbrecht, 1895), in equatorial. zone (Grice, 1962), in the western part found from the Japanese waters to New Zealand (Bradford \& Jillett, 1980), in eastern part from $35^{\circ} \mathrm{N}$ to $32-33^{\circ} \mathrm{S}$ (Bjornberg, 1973; original data), in the antarctic sector in the region of $54^{\circ} \mathrm{S}$
(Park, 1978). Indian Ocean: from the Arabian Sea (Sewell, 1947) up to $31^{\circ} \mathrm{S}$ in the western and up to $43^{\circ} \mathrm{S}$ in the eastern (original data) part of the Ocean.

Vertical distribution. The species was found in the hauls from epi- and mesopelagial (Grice, 1962; Park, 1970; Tanaka \& Omori, 1970b; Roe, 1984), single findings are known from bathypelagial (Grice \& Hulsemann, 1967). Also in total hauls from 8000 m . Roe noted that species may commit vertical migrations and serve as a food for few decapod species (Roe, 1984).

Material: 41 female from samples: $49,201-202$, 390-392, 395, 400-401, 444.

Fig. 101. Chirundina streetsu Female (574)

Fig. 102 Chirundina streetstr. Male: P5, Ce (from Tanaka, 1957b), P5(a) (from With, 1915).

10. Chirundinella Tanaka, 1957

Type species: Chirundinella cara Tanaka, 1957, by monotypy.

Chrundinella Tanaka, 1957b: 197; Bradford \& Jillett, 1980: 27; Von Vaupel Klein, 1984: 51.

Description. Fem a 1 e. Total length 7.44-8.10 mm . Cephalothorax about 4.2 times longer than abdomen. Cephalon and Thl separated, Th4-Th5 fused. Crest present. Rostrum present, 1-pointed. Posterior Th5 corners rounded. One of setae of caudal rami very long, 3 times longer than others. A1 24 -jointed. Re A2 longer than Ri. Ri Md slightly longer than half Re Md length. Mx 1 with 4 setae on protopodite near Ri base; Re with 10 setae and 3 setae on the posterior surface of gnathobase. Mx2 and Mxp similar to that of Pseudochirella. P1 with 1-jointed Ri and 3-jointed Re. Rel with spine (figured by Tanaka (1957b), but not mentioned in the description (Tanaka, 1969)). P2 with 2 -jointed Ri and 3 -jointed Re. Segmentation of P3-P4 typical of Aetideidae.

M a 1 e. Total length 6.7 mm . Cephalothorax 2.67 times longer than abdomen. Cephalon and Th1, as well as Th4-Th 5 fused. Very low crest and robust rostrum present. Posterior Th5 comers rounded. Abd2-4 with minute spinules along posterior border. Oral parts and P1-P4 similar to those in females. P5 similar to that in Pseudochirella, but left Re3 P5 bilobated.

Monotypic genus.

1. Chirundinella magna (Wolfenden, 1911)

(Figs. 103-104)
Chirundinella magna Tanaka, 1969: 265, fig. 6 (a-f); Bradford \& Jillett, 1980: 27; Von Vaupel Klein, 1984: 51.
Chirundina magna Wolfenden, 1911: 241, pl. 28, figs 10-13, text-fig. 27 (a-b); Park, 1978: 176.
Pseudochirella magna: Sewell, 1929: 129, fig. 49, 1947: 12, 96, text-fig. 21 (a-c); Vervoort, 1949: 48, figs 22-23, 1963: 151.
Chrundinella cara Tanaka, 1957b: 197, fig. 57 a-j; Grice \& Hulsemann, 1967: 14.
Chrundinella cara Tanaka, 1953: 131 (nomen nudum).
Description. F e m a e . (Description after Tanaka (1969) and Vervoort (1949) with modifications). Total length $7.44-8.10 \mathrm{~mm}$. Shape and body segmentation, as well as cephalon structure, typical of the genus. Caudal rami are about as long as wide. A1 exceeding the caudal rami by 3 last joints. Ri2 A2 with 7 setae on the internal and 7 setae on the external lobes; coxopodite with 1 seta; basipodite and Ri1 A2 with 2 setae each; Re1 A2 without seta; $\operatorname{Re} 2 \mathrm{~A} 2$ with 1 seta. Md palp base with 2 setae. Mxl gnathobase with 9 claw-like terminal
setae, 1 thinner short and 3 setae on the posterior surface. Second and third Mx1 internal lobes with 4 and 5 ? setae respectively; protopodite near Ri base with 4 setae; Re with 10 setae; external lobe with 9 setae. Re1 Pl with external spine. Coxopodite P4 with row of thin setae along internal edge.

Male. (Description after the same authors). Total length 6.70 mm . Cephalothorax 2.67 times longer than abdomen. Shape and segmentation of the body typical of the genus. Caudal rami as long as wide. $\Lambda 1$ reaching the midlength of Th4-Th5, 24 -jointed. A2 similar to that in females. Oral parts and swimming legs similar to those in female. P5 biramous. Both Ri 1-jointed. Left Re 3-jointed, Re3 bilobated. Right Re 2-jointed.

Type locality: Sagami Bay.
Geographical distribution. Atlantic Ocean: tropical part (Vervoort, 1949). Pacific Ocean: the southeastern and north-western parts (Tanaka, 1957b, 1969). Indian Ocean: tropical part, the Arabian Sea (Sewell, 1929; Grice \& IUulsemann, 1967). Malay Archipelago (Vervoort, 1949).

Vertical distribution. In the Arabian Sea in haul 275-817 m (Grice \& Hulsemann, 1967), in other regions in total hauls from depths $1000-3000 \mathrm{~m}$.

The species is not examined by me.

11. Comantenna Wilson, 1924

TYpe species: Bryaxis brevicornus Sars, 1902, by monotypy.

Bryaxis Sars, 1902: 35 (nom. praeocc., non Kugelann, 1794, Coleoptera, Pselaphidae) (type species: Bryaxis brevicornis Sars, 1902, by monotypy)
Comantenna Wilson, 1924: 1 (nom.n. pro. Bryaxis Sars); Mathews, 1964: 27; Campaner, 1978: 872; Alvarez, 1986: 858.
Bryaxona Strand, 1929: 10 (nom n. pro Bryaxis Sars)
Description. Fem a 1 e. Total length $1.70-4.00$ mm . Cephalothorax about 3-4 times longer than abdomen. Cephalon and Th1 fused, as well as Th4-Th5; the latter may be separated. Rostrum absent. Th5 posterior corners extending into points, directed backwards (lateral view). Genital segment symmetrical. A1 23-24-jointed, usually shorter than body. A2 coxopodite with 1 and basipodite with 2 setae. Ril A2 with 1 seta; Ri2 with 14-15: (8-9 setae on internal lobe (of which 4-5 longer ones) and 6 setae (sometimes with 1 more posterior seta) on external lobe. Re A2 shorter than Ri. Re2-Re3 A2 sometimes fused. Re1 A2 without setae. Re2 A2 with 1 seta or without seta. Terminal joint of Re A2 very short; at least 1 of 3 terminal setae short. Ri Md short, not longer than Rel Md; Ri2 with 4-5 setae and Ril Md with 1. Md palp base with 2 setae (or they are absent). Re Mx1 with 11 setae. Mx2 typical of Aetideidae. Fifth Mx2 endite with 1 setae transformed into thick, claw-like spine. First-fourth Mx2 endites with groups

Fig. 103. Chirundinella magna. Female (from Tanaka, 1957b).

Fig. 104. Chirundinella magna. Female: A2, Mx1 and male: Ce, P1 (from Tanaka, 1969), P5 (from Vervoort, 1949).
of minute spines, some of them may be enlarged. Map robust, protopodite in its proximal part sometimes with 1 small, thin seta, then (from proximal to distal end of the joint) with groups of 2,3 and $2-3$ setae, near the base of distal setae group with digital appendage. Nil Mxp with 2-3 medial setae. Setae of Ri2-Ri6 Mxp comparatively short and not highly sclerotized. Ri P1 1-jointed, its external lobe often reduced. Ri P2 2-jointed. All other rami of swimming legs 3-jointed. Rel-Re3 Pl external spines long, significantly longer than joints themselves; seta on basipodite near Ri base present (C. brevicornis), or absent. P5 usually absent, but some specimens of C. recurvata has vestigial P5 (Grice \& Hulsemann, 1970).

Ma 1 e . Total length 1.20 mm . Th posterior points are straight. A1 23 -jointed. A2 as in female. Comparing to female oral parts rudimentary. Map protopodite without digital appendage. P5 biramous: left Ri 2-jointed, right Ri 1-jointed. Re P5 left Re 3-jointed: terminal joint short. Right Re 2 -jointed with terminal joint prolonged in its distal half, ending in curved thread-like filament, supplied with thin hairs.

Male is known for C. brevicornis only, for C. crass, C. curtisetosa, and C. recurvata unknown.

The genus Comantenna includes 4 species.
Description of C. curtisetosa is given below, but the species is not included into the key for identifiction because P1-P4 are damaged and therefore non described. The species status evidently needs specifcation.

Key to species of Comantenna

Females

1(2) Ri P1 external lobe well developed. P1 basipodite with seta near Ri base. Specimens less than 3 mm in length 1. C. brevicornis (Sars)

2(1) Ri P1 external lobe slightly developed, or absent. P1 basipodite without seta near Ri base. Specimens over 3 mm in length.
3(4) Right Th posterior corner slightly shorter than left (dorsal view). Map protopodite with 2 setae in distal group. Ri Map with 2 medial setae. Ri Md with 5 setae
4. C. recurvata Grice \& Hulsemann

4(3) Right Th posterior corner as long as left (dorsal view). Map protopodite with 3 setae in distal group. Rid Map with 3 medial setae. Ri Md with 4 setae
2. C. crass Bradford

1. Comantenna brevicornis (Sars, 1902)

(Fig. 105-106)
Bryaxis brevicorns Sars, 1902: 35, pl. 22-23; Farran, 1905: 32, pl 4, fig. 6; Rose, 1933: 102, fig. 74; Vervoort, 1952b (sheet 43): 3, fig 5 .
Comantenna brevicornis: Matthews, 1964 26, fig. 8.
Description. Fe ma 1 e . Total length 1.70-2.60 mm . Cephalothorax about 3 times longer than $a b-$
domen. Points of Th5 posterior corners sharpened, upturned and directed backward (lateral view). Al 24-jointed, significantly shorter than cephalothorax. Re 2 and $\operatorname{Re} 3 \mathrm{~A} 2$ fused. Md, Mx2 typical of the genus. Mxl gnathobase with 9 setac. Second and third Mx1 internal lobes with 2 and 3 setae respectively; protopodite near Ri base with 4 setae; Ri with 9 setae; Re with 11 setae and external lobe with 6 setae. Mxp protopodite typical of the genus. Ril Mxp with 3 medial setae. Ri Pl external lobe better developed than in other species of the genus. Pl with setae near Ri base.

M a 1 e . Total length 1.2 mm . Body robust, smoothly rounded in anterior part and widest at the level of Th2. Th4 and Th5 fused. Points of Th5 posterior corners reduced to obtuse angles, not directed backward as in females. Abd2 slightly longer than Abd1, anal segment very short. A1 23-jointed, nearly as long as cephalothorax A1 proximal part with numerous aesthetasks. A2 similar to that in females, but 3 terminal setae of distal Re joint better developed. Md gnathobase absent. Md palp base and Re as in females; Ri setae comparatively longer, than those in females. Mxl with rudimentary lobes, without setae and chewing spines; Ri comparatively well developed, with 8 setae. Mx2 reduced to small single lobe with 1 rudimentary spine. Mxp evidently poorer developed than in females, protopodite significantly thinner. Ril Mxp without setae, thin, with single setae. Setae of 5 terminal Ri Mxp joints comparatively longer than in females. P1-P4 as in females. Left Ri PS 2-jointed. Right Ri 1-jointed. Left Re 3-jointed, its terminal joint short. Right Re 2 -jointed, distal part of Re 2 prolonged, curved in its terminal part and covered with thin hairs.

Type locality: the Norwegian coast.
Geographical distribution. The Norwegian coasst, the Barents Sea, the northern part of the North Sea, Irish waters, the north-eastern Atlantic (Sars, 1902; Vervoort, 1952c).

Vertical distribution. Most probably benthopelagic species. Recorded at depths from 91 to 274 m near bottom (Sars, 1902).

Color: bright yellow.
Matertal. Female and male that are kept in Zoological Museum, of Oslo University (Norway) were examined.

2. Comantenna crassa Bradford, 1969

(Fig. 107)
Comantenna crassa $B \mathrm{radford}, 1969 \mathrm{~b}$: 484, 486, figs 70-81; Bradford \& Jillett, 1980: 29, fig. 16.

Description. Female. (Description after Brad-
ford (1969b) with modifications). Total length 3.80 mm . Cephalothorax nearly 4 times longer than abdomen. Thl and cephalon fused, Th4 and Th 5 separated. Re2 A2 and Re3 fused. Ri2 Md with 4 setae. In other features Md and Mx2 typical of the genus. Ril Mxp with 3 medial setae. Mx1 gnathobase with 14 setae (9 terminal large, 1 small and 4 setae on the posterior surface). Second and third internal Mxl lobes with 4 and 3 setae respectively; protopodite with 4 setae near Ri base; Ri with 12 setae; Re with 11 setae and external lobe with 4 setae. Ri P1 external lobe reduced; protopodite near Ri base without setae. P1-P4 typical of the genus.

Male unknown.
Notes. C. recurvata Grice \& Hulsemann 1970 very similar, if not identical, to the above descibed species.

Type locality. $37^{\circ} 07^{\prime} \mathrm{S} 177^{\circ} 14^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: the south-eastern part, off New Zealand, off the Bay of Plenty (Bradford, 1969b).

Vertical distribution. Most possibly benthopelagic species, found at depths $1260-1234 \mathrm{~m}$ at $\mathrm{T}^{\circ} 3.9^{\circ} \mathrm{C}$ (Bradfrod, 1969b).

The species is not examined by me.

3. Comantenna curtisetosa Alvarez, 1986

(Fig. 108)
Comantenna curtisetosa Alvarez, 1986: 859, figs 1-11.
Description. Fem a 1 e. (Description after Alvarez (1986) with modifications). Total length 2.2 mm . Cephalothorax 4 times longer than abdomen. Re A2 terminal joint short; its seta short. Ri2 A2 external lobe with 6 long and 1 short posterior seta. Ri2 A2 internal lobe with 4 long and 4 short setae. MxI gnathobase with 9 thick and 1 small thin terminal seta and 4 setae on its posterior surface. Mx1 second internal lobe with 4 setae; third with 2 setae; protopodite near Ri base with 3 setae; Ri with 12; Re with 11; external lobe with 5 setae. Mx2 fifth endite with 1 seta transformed into thick spine, firstthird endites with groups of surface spines. Mxp typical of the genus. Md palp base and P1-P4 damaged and therefore non-described. Vestigial P5 presents.

Male unknown.
Type locality: $21^{\circ} 37^{\prime} \mathrm{S} 40^{\circ} 03^{\prime} \mathrm{W}$.
Geographical distributton. The species was found off Brazilian continental shelf and slope (Alvarez, 1986).

Vertical distribution The species was found at depth 900 m near bottom (Alvarez, 1986).

The species is not examined by mc.

Fig. 105. Comantenna brevicornis. Female (N 20648 is kept in the Zoological Museum of Oslo University).

Fig. 106. Comantenna brevicornis. Male (from Matthews, 1964).

4. Comantenna recurvata
 Grice \& Hulsemann, 1970

(Fig. 109)
Comantenna recurvata Grice \& Hulsemann, 1970: 188, pl. 1, figs 20-24, pl. 2, figs 25-35; Alvarez, 1986: 862, figs 12-24.

Description. F e m a le. (Description after Grice \& Hulsemann (1970) and Alvarez (1986) with modifications). Total length $3.50-4.00 \mathrm{~mm}$. Cephalothorax about 3.7 times longer than abdomen. Th4 and Th5 separated. A1 23-jointed, reaching Th3. Re A2 three fourth of Ri A2 length; Re1, Re2 and Re3 A2 separated (Grice \& Hulsemann, 1970) (after Alvarez (1986) fused). Re A2 7-jointed; 2 terminal setae long, 1 short. Ri2 Md with 5 setae, in other features Md typical of the genus. MxI gnathobase with 9 thick and 1 thiner terminal setae and 4 posterior
setae. Mxl second lobe with 4 or 3 setae and third internal lobe with 3 setae, protopodite near Ri base with 4 setae; Ri as well as Re with 11 setae. Mxp protopodite with groups of 2,3 and 3 setae (from proximal to distal part of joint). Ril Mxp with $2-3$ medial setae. P1-P4 segmentation typical of the genus. Ri Pl external lobe reduced, terminal setae on basipodite near Ri base absent. In some specimens vestigial P5 present (Grice \& Hulsemann, 1970).

Male unknown.
Type locality: $39^{\circ} 45^{\prime} \mathrm{N} 70^{\circ} 34^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: to the South of Woods Hole, Massachusetts (Grice \& Hulsemann, 1970), off Brazilian coast in the region of 25° S (Alvarez, 1986).

Vertical distribution. The species was collected at depths $1750-1822 \mathrm{~m}$ in a 30 cm layer over bottom surface, at the $\mathrm{T}^{\circ} 3^{\circ} \mathrm{C}$ (Grice \& Hulsemann, 1970), and also near bottom at depth 1100 m (Alvarez, 1986).

The species is not examined by me.

Fig 107. Comantenna crassa Female (from Bradford, 1969b)

Fig 108 Comantenna curtisetosa. Female (from Alvarez, 1986).

Fig. 109. Comantenna recurvata. Female (from Grice \& Hulsemann, 1970).

Fig. 110. Crassantenna comosa. Female (from Bradford, 1969b).

12. Crassantenna Cole \& al., 1972

Crassantenna [Bradford, 1969b: 493, unavailable name] Cole \& al., 1972. 194; Bradford \& Jillett, 1980: ,29.

TYPE SPECIES: Crassantenna comosa Bradford, 1969, by original designation (in Cole \& al., 1972).
Notes. The genus Crassantenna was described (Bradford, 1969b) including 2 species neither of which was designated as the type species. According to Article 13b of the International Code of Zoological Nomenclature, this name of the genus is unavailable. The authorship of the genus should belong to the compilers of the Section Crustacea in the Zoological Record (Vol. 106, Section 10, part 1), who were the first to designate the type species (C. comosa). The same species was designated later as the type species by Bradford \& Jillett (1980).

Description Fe m ale. (Description after Bradford (1969b) with modifications). Total length 3.303.70 mm . Cephalothorax about 4 times longer than abdomen. Cephalon and Th1 fused (line of fusion visible), Th4 and Th5 separated. Rostrum rudimentary, in form of a blunt rounded plate. Crest absent.

Th5 and genital segment symmetrical. Th5 posterior corners extending into points upturned backward. Al 24 -jointed, reaching nearly Th 3 , with long annulate setae. Re A2 longer than Ri A2, but later more massive; coxopodite with 1; basipodite with 1-2 setae; Ril A2 with 1 seta. Ri2 A2 internal lobe with 7 setae (5 long and 2 short setae); external lobe with 6 setae, possibly 1 more posterior small seta. Re1 A2 with 2 setae, or they are absent. Re2 A2 with 2 setae. Re3-Re6 A2 with 1 seta each, Re7 typical of Aetideidae with 3 terminal setae. Mx1 gnathobase with 12 setae (only 2 of them are on the posterior surface). Mx1 second internal lobe with 4 setae; third internal lobe with 2-3 setae; protopodite near Ri base with with $4-5$ setae; Ri with 11 or 15 setae; Re with 11 setae; external lobe with 8 setae. Mxp protopodite without seta in proximal part; in other features typical of Aetideidae. Re P1 3-jointed, Re1 P1 with external spine. Ri P1 1-jointed, external lobe well developed with small minute denticles apically. Ri P2 2-jointed, all other swimming leg rami 3 -jointed. P4 coxopodite without spines.

Male unknown.

The genus Crassantenna includes 2 species.

Fig. 111. Crassantenna mimorostrata. Female (from Bradford, 1969b).

Key to specics of Crassantenna

Females

1(2) Rel A2 without setae. Third Mx1 internal lobe with 2 setae 1. C. comosa Bradford
2(1) Re1 A2 with 2 setae. Third Mx1 internal lobe with 3 setae 2. C. mimorostrata Bradford

1. Crassantenna comosa Bradford, 1969

(Fig. 110)
Crassantenna comosa Bradford, 1969b-493, figs 143-157; Bradford \& Jillett, 1980: 29, fig. 17, 70.

Description. Fe m a le. (Description after Bradford (1969b) with modifications). Total length 3.7 mm . Cephalothorax more than 3 times longer than abdomen. Rostrum present in form of a blunt plate. Th5 posterior corners upturned backward. A1 reaching Th5. Re A2 almost as wide as Ri A2. Re1 A2 without seta; Re2 A2 with 2 setae. Md palp base without setae; Ril Md with 1; Ri2 Md with 4 setae. Second Mx1 internal lobe with 4 setae; third with 2 setae. P1-P4 damaged.

Male unknown.
Type locality. $34^{\circ} 56^{\prime} \mathrm{S} 175^{\circ} 23^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: cast of North Cape, north of New Zealand (Bradford, 1969b). Vertical distribution. The species found in trawl
at $1383-1397 \mathrm{~m}$, most likely benthopelagic species (Bradford, 1969b).

The species was not examined by me.

2. Crassantenna mimorostrata
 Bradford, 1969

(Fig. 111)
Crassantenna mimorostrata Bradford, 1969b 495, figs 158-170.

Description. Fe m a le. (Description after Bradford (1969b) with modifications). Total length 3.1-3.3 mm . Rostrum present in a form of a very small point. Cephalothorax about 3 times longer than abdomen. Th5 posterior comers upturned backward. A1 reaching Th3. Re A2 slender than Ri A2. Rel A2 with 2 setae; Re2 A2 with 2 setae. Md palp base without setae; Ril Md with 1; Ri2 Md with 4 setae. Second and third Mxl internal lobes with 4 and 3 setae respectively; gnathobase with one of posterior setae rudimentary. Re P1 with external spine on each joint.

Male unknown.
Type locality: $34^{\circ} 38^{\prime} \mathrm{S} 174^{\circ} 36^{\prime} \mathrm{E}$.
Geographical distribution Pacific Ocean: continental slope off north-east of New Zealand (Bradford, 1969b).

Vertical distribution The species was found at depth 1234-1697 m and assumed benthopelagic (Bradford \& Jillett, 1980).

The species was not examined by me.

13. Euchirella Giesbrecht, 1888

Type species Undina messinensis Claus, 1863, by monotypy.

Euchirella Giesbrecht, 1888: 336.
Description. F e m a 1 e. Total length about $3-8 \mathrm{~mm}$. Cephalothorax 3.5-7.0 times longer than abdomen. Cephalon and Th1 completely, or incompletely fused (line of fusion sometimes visible), Th4Th5 fused. Crest present, or absent. Rostrum 1-pointed, usually well developed, rarely rudimentary (E. curticauda). Th5 posterior corners usually rounded (lateral and dorsal view), sometimes rounded-rectangular (dorsal view), rarely slightly prolonged. They may be symmetrical, rarely asymmetrical and poorly prolonged. Genital segment symmetrical, or asymmetrical; asymmetry may be slight (E. unispi$n a$), or rather outlined. Caudal rami nearly as long as wide, sometimes 1.3-1.4 wider than long. A1 23 -jointed, usually longer than cephalothorax, sometimes exceeding caudal rami. A2 with typical of the genus short Ri: less than half Re length; more often about one third, or fourth of Re length. A2 coxopodite with 1 seta; basipodite usually with 1 , sometimes with 2 (E. rostrata) setae, or seta absent (E. maxima). Ri1 A2 usually with 1 seta, rarely seta absent. Internal Ri2 A2 lobe with 1-2 or 4-8 setae; external with 3-6 (7) setae, often its lateral border with fine spinules. Re1 A2 and Re2 A2 completely or not completely fused, lacking setae, sometimes tooth-like projection present (from 1 to 3). Structure and setation of $\operatorname{Re} 2-\operatorname{Re} 7$ A2 typical of Aetideidae. Md palp base usually without setae, sometimes with 1 seta (E. curticauda), or sclerotized sharp projection (E. amoena). Ril Md, usually, without setae, rarely with 1 seta (E. curticauda, E. messinensis). Ri 2 Md usually with 9 setae (in E. bitumida with $7-8$ setae). Mx1 gnathobase with $2-4$ setae on posterior surface, 9 terminal claw-like setae, and often 1 thin setae. Mxl second internal lobe with 3-4 setae; third internal lobe with 1 (E. bella), or 2,3 setae, often 1 small, possibly sensory knob present. Mxl protopodite near Ri base, usually with 3 setae, sometimes 2 ; Ri with 3-5 setae; Re with 11, rarely with 10 , or 8 setae; external lobe with 6,8 or 9 setae. Mx2 with 1 seta transformed into claw-like spine on fourth and fifth endites; distal part of Ri with 6 long setae. Mxp protopodite shorter than Ril Mxp, with seta proximally (near the base of the joint), or this seta absent, and with 3 groups of 2,3 and 3 setae (looking from proximal to distal part of the joint), with a group of minute spinules near the base of distal setae group. Ril Mxp with 3 medial setae. P1 with 2 -jointed Re; with 2 external spines and 1-jointed Ri with well developed external lobe. P2 with 3 -jointed Re and 1-jointed Ri. P3-P4 rami 3-jointed. P4 coxopodite with sclerotized spines
of different size and number (usually from 1 to 5 , or from 8 to 13 spines) near the base of internal seta on the posterior surface: instead of spines there may be 5 minute spinules (E. amoena) or 1 big sclerotized spine containing of $5-8$ fused smaller ones (E. maxima).

M a 1 e. Total length $2.50-7.35 \mathrm{~mm}$. Cephalothorax 3.5-4.0 times longer than abdomen. Rostrum present, sometimes virtually absent (E. curticauda). Crest present (high, or low), or absent. Cephalon and Th1 as well as Th4-Th5 fused. Posterior Th5 corners usually rounded. A1 longer than cephalothorax, reaching the end of Abd 2 or the end of caudal rami, often with aesthetasks. Re A2 usually 1.4-1.5 times longer than Ri. Comparing with that in females setation reduced, when described, then: for Ri 2 A 2 usually 6 setae on external and 6-7 setae on internal lobes; 8 setae on Ri2 Md and $10-11$ setae on Re and Ri Mxl each; 5-7 setae on external Mx1 lobe. Mx2 strongly reduced. Re P1 usually 2-jointed (Re1 and $\operatorname{Re} 2$ fused, but the division between joints is much more pronounced than in females); usually Rel-Re2 P1 external spines strongly reduced; 1 of the spines may absent, terminal external spine usually present. P2-P4 segmentation close to that in females. P5 biramous, or only right P5 biramous. Re P5 left 3-jointed, Ri P5 left, if present, 1-jointed, more often present as rudiment, rarely well developed. Fixed projection between left Re2 and Re3 P5 left form nippers (tongs) with parts equal, or unequal length. Re P5 right 2-jointed; Ri P5 right 1-jointed; sometimes nearly as long as Rel of its leg, forming or not forming tongs with Re. P5 right basipodite enlarged in the majority of species. Right Re P5 significantly longer, than left Re.

The genus Euchirella includes 25 species.
20 species of Euchirella are described below, except: species with unclear status (E, orientalis Sewell, 1929 and E. tanseii Omori, 1965)), E. paulinae, known off the tropical part of the Indian Ocean and E. lisettae found in the eastern Pacific and off the coasts of South and Central America. Two species from antarctic and subantarctic waters E. latirostris and E. rostromagna, which, following Park (1978) and Bradford \& Jillett (1980) may be identical are not described here either.

Notes. The synonymy to Euchirella species is given below in brief version from Von Vaupel Klein's (1984) detailed synonymy.

Key to species of Euchirella.

Females

1(6) Genital segment symmetrical.
2(3) Crest present; rostrum rudimentary
. 4. E. curticauda Giesbrecht
3(2) Crest absent; rostrum not rudimentary.

4(5) Md palp base with chitinous projection. P4 coxopodite with 5 very poorly visible small spines. Ri2 A2 with 3 setae on external lobe and 1 seta on internal lobe. Rostrum small

> 1. E. amoena Giesbrecht

5(4) Md palp base without chitinous projection. P4 coxopodite with 8-9 clearly recognizable spines. Ri2 A2 with 6 setae on external and 8 setae on internal tobes. Rostrum large
14. E. rostrata (Claus)

6(1) Genital segment asymmetrical.
7(16) Crest present.
8(9) P4 coxopodite with $2-3$ spines
11. E. pseudopulchra Park

9(8) P4 coxopodite with 1 spine.
10(I1) Th5 posterior corners slightly asymmetrical, not rounded (dorsal and lateral view). Ri2 A2 with 5 setae on each (internal and external) lobe
8. E. maxima Wolfenden

11(10) Th5 posterior corners symmetrical, rounded, or rounded-rectangular (dorsal and lateral view). Ri2 A2 with 6 setae on each lobe.
12(13) Crest low
7. E. grandicornis Wilson

13(12) Crest high.
14(15) Genital segment with 2 projections: to the right and left (dorsal view). Re1 A2 with small projection 3. E. bitumida With

15(14) Genital segment with only 1 projection: to the left (dorsal view), occupying all length of the segment. Rel A2 without projection
6. F. galeta Giesbrecht

16(7) Crest absent.
17(34) Genital segment with left lateral side swelled (dorsal view), or with large projection in the left half of the segment dorsally; if the right projection also present, it is significantly smaller than the left one (dorsal view).
18(23) P4 coxopodite with 1 spine.
19(20) Posterior border of genital segment with projection on the right, exceeding the anterior border of Abd2. Left projection absent (dorsal view) . .
19. E. unispina Park

20(19) Posterior border of genital segment without projection on the right. The projection of left lateral margin of segment, occupying nearly all segment's length (dorsal view).
21(22) Genital segment with ear-like, small, nearly symmetrical projections on the right and on the left in the anterior part of segment (dorsal view). Specimens longer than 5 mm . 20. E. truncata Esterly
22(21) Genital segment without ear-like projections. Specimens less than 5 mm in length
12. E. pseudotruncata Park

23(18) P4 coxopodite with 2 spines.
24(27) Left and right lateral sides of genital segment
(dorsal view) without swellings. Projection present on the dorsal side in the left half of genital segment. Ril Md with 1 small seta.
25(26) Projection on the dorsal side of genital segment highly large, exceeding the posterior border of genital segment and covering 2 following abdominal segments . . 10. E. messinensis messinensis (Claus)
26(25) Projection on the dorsal side of genital segment small only slightly exceeding the posterior border of genital segment
9. E. messinensis indica Vervoort

27(24) Left lateral side of genital segment (dorsal view) with swelling, or bilobated, or non-lobated projection. Ril Md without seta.
28(29) The posterior part of dorsal side of genital segment with 3 projections (left lateral view) 5. E. formosa Vervoort
29(28) The posterior part of genital segment without projections (left lateral view).
30(31) Ri2 A2 lobes with not less than 6 setae each 13. E. pulchra (Lubbock)

31(30) Ri2 A2 with 5 setae on external lobe and 4 setae on internal lobe.
32(33) Projection on the left of genital segment bilobated (dorsal view)
16. E. speciosa Grice \& Hulsemann

33(32) Projection on the left of genital segment not bilobated (dorsal view) . . 20. E. venusta Giesbrecht
34(17) Genital segment with large projection on the right side (dorsal view), left side without sweeling or projection.
35(36) Projection on the right of genital segment smooth, covering nearly all length of segment (dorsal view). P4 coxopodite with 3-4 (5) spines
2. E. bella Giesbrecht

36(35) Projection on the right of genital segment abruptly prominent, covering its posterior part only; or ear-like. P4 with 2-3 spines.
37(38) Projection on genital segment is ear-like, arranged in its anterior half . . 15. E. similis Wolfenden
38(37) Projection on genital segment is not ear-like, but abruptly prominent, arranged in its posterior half 17. E. splendens Vervoort

Males

(unknown for E. grandicornis, E. pseudopulchra,

 E. similis \& E. speciosa)1(6) P5 always biramous. Ri P5 left well developed, nearly as long as Rel P5, or equal to its half length. Re2 and Ri P5 right are not clongated and not sharpened into their distal parts; do not form tongs. Ri P5 right not exceeding distal border of right Re1 P5.
2(3) Crest absent. Rostrum large
15. E. rostrata (Claus)

3(2) Crest present. Rostrum not large.
4(5) Terminal part of right Re2 P5 with teeth 4. E. curticauda Giesbrecht

5(4) Terminal part of tight Re2 P5 without tooth . . 8. E. maxima Wolfenden

6(1) P5 not always biramous, if left P5 with Ri, then Ri rudimentary. Re2 and Ri P5 right elongated and sharpened in their distal parts forming tongs; Ri P5 right significantly exceeding distal border of right Rel P5.
7(18) Crest present.
8(9) Crest high
. . 3. E. bitumida With; 6. E. galeata Giesbrecht

9(8) Crest low.

10(15) Left P5 basipodite shorter than right coxopodite P5.
11(12) Right Rel P5 with less than 4 tooth-like projections 13. E. pulchra (Lubbock)
12(11) Right Re1 P5 with 4 tooth-like projections.
13(14) Left Re3 P5 not reaching the first projection of right Ri P5 10. E. messinensis messinensis (Claus)
14(13) Left Re3 P5 exceeding the first projection of right Ri P5
2. E. bella Giesbrecht

15(10) Left P5 basipodite nearly as long as right P5 coxopodite.
16(17) Specimens less than 4.7 mm in size. Parts of left Re3 P5 tongs equal in length
9. E. messinensis indica Vervoort

17(16) Specimens more than 4.7 mm in size. Parts of left Re3 P5 tongs not equal in length
. 5. E. formosa Vervoort
18(7) Crest absent.
19(20) Robust spine present near place wherefrom right Re P5 begins \qquad 1. E. amoena Giesbrecht

20(19) No spine present near place wherefrom right Re P5 begins.
21(26) P5 left without rudimentary Ri. When closed tongs of Re P5 left compact, rounded, clavate-like.
22(25) Proximal part of right Re1 P5 with 1 big tooth.
23(24) Specimens less than 3.8 mm in length. Proximal part of right Ril P5 with robust tooth 12. E. pseudotruncata Park
24(23) Specimens over than 3.8 mm in length. Proximal part of right Ri1 P5 without tooth, but closer to the midlength of joint with 1 medium sized tooth
. 19. E. unispina Park
25(22) Proximal part of right Rel P5 with 1 middle sized tooth it is not larger than the three following ones
18. E. truncata Esterly

26(21) Rudimentary Ri at P5 left present. When closed tongs of Re P5 left not compact, oblong, not clavate 17. E. splendens Vervoort, 20. E. venusta Giesbrecht

1. Euchirella amoena Giesbrecht, 1888

(Fig. 112)
Euchirella amoena Giesbrecht, 1888.336, 1892: 233, 242, 244, 743, pl. 15, fig. 20 ("amona"); Grice, 1962; 194, pl. 10, figs 5-10; Von Vaupel Klein, 1972: 506, pl. 4 (a-c), tabs. 1, 2, 1984: 36; Park, 1976b: 107, fig. 1 (a-1); Bradford \& Jillett, 1980: 32, fig. 19.
Euchirella brevis Sars, 1905a: 12, 1924-25: 71, pl 21, figs 1-7.
Description. Female. Total length 2.70-4.00 mm . Cephalothorax 4-5 times longer than abdomen. Rostrum comparatively small. Posterior Th5 corners of nearly rectangular shape (dorsal view) with small knobs in distal part. Genital segment symmetrical. Al reaching the midlength of Abd. Ri A2 very short about fifth of Re A2 length; coxopodite and Ri1 A2 with 1 seta each; basipodite without setae (after Park (1976b) with 1 seta). Ri2 A2 with 1 seta on internal and 3 on external lobes. Md palp base with spine-like robust projection, typical of the species. Ril Md without setae; Ri2 Md with 9 setae. Mxl gnathobase with 2 setae on posterior surface. Mxl second internal lobe with 4 ; third with 2 setae; protopodite near place where Ri comes from with 2 (with 3 setae after Park (1976)); Ri with 4 ; Re with 8 and external lobe with 8 setae. Rel P1 with 2 spines; first external spine reaching the middle of second spine. P2 with 1 -jointed Ri, Re terminal spine with about 21 teeth. P3-P4 typical of the genus. P4 coxopodite with 5 very poorly visible small teeth.

M a 1 e. Total length $3.00-3.85 \mathrm{~mm}$. In general appearance similar to female. Crest absent. P5 with uniramous left leg and large biramous right one. Ri P5 left absent; Ri right P5 longer than Re. Rel P5 right with large spine-like projection in the middle of internal margin; $R \in 2$ is about one third of Rel P5 right.

Type locality: the equatorial Pacific.
Geographical distribution. The species widespread in tropical, subtropical and temperate zones of the Atlantic, Pacific and Indian oceans (Vervoort, 1963). Pacific Ocean: recorded in the south-western part (Farran, 1929; Bradford \& Jillett, 1980; Von Vaupel Klein, 1984), in the south-eastern part off Peru region (Tanaka \& Omori, 1969); in the north-western and tropical parts (Tanaka \& Omori, 1969; Von Vaupel Klein, 1972; original data).

Vertical distribution. The species is known from epipelagial (Tanaka \& Omori, 1969; Bradford \& Jillett, 1980) and from total hauls from 2000 m .

Material: 5 females and 1 male from samples: 395, 400, 573.

2. Euchirella bella Giesbrecht, 1888

(Fig. 113)
Euchirella bella Giesbrecht, 1888: 336, 1892: 233, 241,

Fig. 112. Euchirella amoena. Female (573). Male (from Bradford \& Jillett, 1980).

244, 743, pl. 15, fig. 26; Grice, 1962: 194, pl. 9, figs 1-13; Vidal, 1966: 28, pl. 8, figs 4-9; Tanaka \& Omori, 1969a: 38, fig. 2 (a-l); Von Vaupel Klcin, 1972: 506, fig. 2 (a, b), tabs. 1, 2, 1984:36.
Euchirella bella var. Indica Wolfenden, 1906: 1006, pl.96, figs 17-20.
Euchirella hessei A. Scott, 1909: 54.
Euchirella areata Tanaka, 1957b: 186, fig. 50 (a-h).
non Euchirella bella: Wilson, 1950: 218, pl. 9, figs.92-94, pl. 19, figs 248, 261-265.
Description. Fe m a 1 e . Total length 3.70-4.18
mm. Cephalothorax nearly 3.5-4.4 times longer than abdomen. Crest absent. Rostrum clearly visible, robust. Th5 posterior corners rounded (dorsal and lateral view). Genital segment slightly asymmetrical with smooth projection on the right (dorsal and lateral view). A1 reaching nearly the midlength of abdomen, or exceeding caudal rami. Ri A2 4-5 times shorter than Re. Coxo-, basipodite and Ril A2 with 1 seta each. Ri2 A2 lobes with 5 setae each. Md palp base and Ril Md without setae; Ri2 Md with 9 setae. Mx1 gnathobase with 2 setae on posterior
surface; second and third lobes with 3 and 1 setae respectively; protopodite near Ri base with 2 setae (1 long, robust and 1 small); Ri with 4 setae; Re with 10 setae and external lobe with 7 setae. Mx2 and Mxp typical of the genus. P1 with first external spine slightly exceeding the base of second one. P2-P4 typical of the genus. Terminal Re spines with 20-21 denticles. P4 coxopodite with 3-4 robust, thick spines (with 5 spines after Grice, 1962; Tanaka \& Omori, 1969a; Von Vaupel Klein, 1984), coming from general base.

M a 1 e. (Description after Tanaka \& Omori (1969a) with modifications). Total length 3.26-3.70. Crest present, very low. A2 with 6 setae on each Ri2 lobe. P5 biramous. Left Ri P5 rudimentary, not reaching proximal border of right protopodite. Right Ri P5 with 4 (in original specimen with 3) projections, Re also with 4 projections.

Type locality: $15^{\circ} \mathrm{N} 138^{\circ} \mathrm{W}$.
Geographical distribution. Pacific Ocean: known from the region of Peru and to $20^{\circ} \mathrm{S}$ (Tanaka \& Omori, 1969a), from the equatorial part (Grice, 1962; Von Vaupel Klein, 1972; 1984), the region of Marian Trench (original data), the north-western part of the Izu region (Tanaka, 1957a). Indian Ocean: to the South to $5^{\circ} \mathrm{S}$ (Von Vaupel Klein, 1984),

Vertical distribution. The species is known from epipelagial (Sewell, 1947; Grice, 1962; Von Vaupel Klein, 1984), in total hauls from mesopelagial and depths from 8000 m (original data).

Material: 1 female from sample 201.

3. Euchirella bitumida With, 1915

(Figs. 114-115)
Euchirella bitumida With, 1915: 131, pl. 5, fig. 9 (a-g), pl. 8, fig. 4 (a-e), text-fig. 34; Sars, 1924-25: 74, pl. 21, figs 15-18; Tanaka \& Omori, 1969a: 40, fig. 3 (a-g); Von Vaupel Klein, 1972: 506, fig. 2 (c-d), pl. 5, tabs. 1, 2; 1984: 37; Park, 1976b: 107, 109, fig. 2 (a-1); Bradford \& Jillett, 1980: 32, fig. 20 (A-H).

Description. Fe m a 1 e . Total length 4.70-7.10 mm . Cephalothorax about 4.4-5.0 longer than abdomen. Crest present, as high triangular-rounded plate (lateral view). Rostrum short, robust. Th5 posterior corners slightly rectangular (dorsal view). Genital segment asymmetrical with projections on the left and on the right (dorsal view). Al reaching nearly the end of abdomen. Ri A2 longer than one third of Re length. Ril A2 with 1 seta; Ri2 A2 with 6 setae on each lobe. Coxo- and basipodite A2 with 1 seta each. Md palp base and Ri1 Md without setae; Ri2 Md with 7 setae. Mx1 gnathobase with 3 setae on posterior surface; second and third internal lobes with 4 and 2 setae respectively; protopodite with 3 setae near Ri base; Ri with 4 (after Park (1976b) with 5 setae), Re with 11 and external
lobe with 8 setae. Mx2 and Mxp typical of the genus. First Re P1 external spine exceeding the midlength of the second one. P4 coxopodite with 1 robust spine. Terminal P2-P4 spines with about 20 denticles.

M a 1 e. (Description after Tanaka \& Omori (1969a) and Bradford \& Jillett (1980) with modifications). Total length $4.80-6.10 \mathrm{~mm}$. Cephalothorax less than 4 times longer than abdomen. Cephalon with crest lower than in female, of more or less triangular shape (lateral view). Rostrum as in females. Abd2-4 with thin denticles along posterior border. Al reaching, or exceeding the end of caudal rami. Ri2 A2 with 6 setae on each external and internal lobes. Ri2 Md with 8 setae. Comaparing to female Mxl setation rudimentary: Ri with 10 setae; external lobe with 6 setae (after Bradford \& Jilleit (1980) with 7 setae). Mx2 rudimentary. First 2 spines on Re P1 strongly reduced. Left Re P5 exceeding the first thickening on right Ri. Left Ri very small; Re3 with tongs, configuration varying depending on view. Right P5 with Ri slightly shorter than Re , the latter with denticles in its distal part.

Type locality: the Norwegian Sea.
Geographical distribution. Atlantic Ocean: species widespread in Atlantic up to $63^{\circ} \mathrm{N}$ (Jespersen, 1940) and nearly to the Equator to the South (Vervoort, 1963). Pacific Ocean: up to $52^{\circ} \mathrm{N}$ (Tanaka \& Omori, 1969a, b) to the North and up to New Zealand (Bradford \& Jillett, 1980) to the South. In the region of the Malay Archipelago (Vervoort, 1963).

Vertical distribution. The species was found in hauls from epipelagial (Bradford \& Jillet, 1980), meso- bathypelagial (With, 1915; Park, 1976b), after latter author, at night time the species occurs away from mesopelagial in the upper 100 m . It was also recorded in total haul from $700-2000 \mathrm{~m}$.

Material: 2 females from samples $455,574$.

4. Euchirella curticauda Giesbrecht, 1888

(Fig. 116)
Euchirella curtıcauda Giesbrecht, 1888: 336, 1892: 233, $241,244,743$, pl. 15 , figs $3,13,25$, pl. 36 , figs 19 , 20; With, 1915: 118 , pl.4, fig. 3 (a-m), pl. 8, fig. 2 (a-c), text-fig. 30 (a-e), Tanaka \& Omori, 1969a: 42; Von Vaupel Klein, 1972: 506, fig. 3 (a-b), tabs. 1, 2, 1984: 38; Park, 1976b: 107, 110, fig. 3 (a-m), Bradford \& Jillett, 1980: 32, 35, fig. 21 (A-G); Brenning, 1984: 29.

Description. Female. Total length 3.50-4.55 mm . Cephalothorax 5-6 times longer than abdomen. Crest present, comparatively high, triangular (lateral view). Rostrum rudimentary, nearly absent. Th5 posterior corners rounded, with slightly prolonged tops (lateral and dorsal view). Genital segment symmet-

Fig. 113. Euchirella bella. Female (201). Male P5(a) (212), other figures (from Tanaka \& Omori, 1969a)

rical, nearly 1.5 times longer than wide. Abd3 with conical projection (right view). A1 nearly as long as cephalothorax. Ri A2 about one fourth of Re length; coxo- and basipodite as well as Ril A2 with 1 seta; Ri2 A2 with 2 setae on internal and 3-4 setae on external lobes. Md palp base and Ril Md with 1 seta each. Ri2 Md with 9 setae. Mx1 gnathobase with 3 setae on posterior surface; second internal lobe with 4 setae; third with 2 setae (3 setae after Von Vaupel Klein (1984)); protopodite near Ri base with 3 setae; Ri with 3 setae; Re with 11 setae; external lobe with 9 setae. Mx2 typical of the genus. Mxp protopodite with small projection distally near external border. Re P1 first spine exceeding the midlength of next spine. P 4 coxopodite with 6-8 spines (after Park (1976b) with 13; after Tanaka \& Omori (1969a) with 8-11; after Bradford \& Jillett (1980) with $12-13$ spines).

M a 1 e. (Description after Park (1976b) and Bradford \& Jillett (1980) with modifications). Total length $3.14-4.30 \mathrm{~mm}$. General appearance close to that in female. Crest slightly lower than in female. Rostrum nearly absent. Both P5 of about same length, biramous. Ri P5 left well developed, reaching nearly the middle of its Re1 P5. Re2 P5 right transformed into comb-like structure, with row of teeth. P5 rami are not transformed into tongs.

Type localty: the equatorial part of the Pacific Ocean.

Geographical distribution Atlantic Ocean; the species is widespread in Atlantic, the northernmost locality about $66^{\circ} \mathrm{N}$, southernmost locality $11^{\circ} \mathrm{S}$. Pacific Ocean: to the North up to $55^{\circ} \mathrm{N}$ and to the South to New Zealand (Bradford \& Jillett,1980). Indian Ocean: species recorded in its tropical part (Vervoort, 1963).

Fig. 115. Euchirella bitumida. Male (from Bradford \& Jillett, 1980).

Fig. 116. Euchirella curticauda. Female (170). Mate (from Bradford \& Jillett, 1980).

Vertical distribution. The species was found in epipelagial (Grice, 1962; Tanaka \& Omori, 1969a, b; Bradford \& Jillett, 1980), later some authors, Park (1976b) and the present author, also recorded the species from mesopelagial. Park found the species to 3000 m , but noted the major number of specimens
between $500-1000 \mathrm{~m}$ in daytime and in the upper 100 m at night. The species also found in total hauls from $700-1400 \mathrm{~m}$.

Material: 8 females and 1 male from samples 170, 390, 400-401, 419, 573.

5. Euchirella formosa Vervoort, 1949

(Figs. 117-118)
Euchirella formosa Vervoort, 1949: 29, figs 14-15, 1963 : 134; Bradford \& Jillett, 1980: 35, fig. 22; Von Vaupel Klein, 1984: 38.
Euchirella trigrada Tanaka, 1957b: 184, fig. 49.
Euchirella orientalis Tanaka \& Omori, 1969a: 52, fig. ($7 \mathrm{a}-\mathrm{i}$); Von Vaupel Klein, 1972: 506, fig. 4 (a-b), tabs. 1, 2, 1980: 152.

Description. Fe m a 1 e . Total length 4.80-5.50 mm . Cephalothorax 4.0-5.0 times longer than abdomen. Crest absent. Rostrum well developed. Th5 posterior corners rounded (lateral view), of slightly rectangular shape (dorsal view). Genital segment slightly asymmetrical with 2 (dorsal view) and 3 (lateral view) swellings on the left and 1 swelling on the right. A1 reaching the end of genital segment. Ri A2 is about one fourth of $\operatorname{Re} A 2$ length. Ri2 A2 with 5 setae on external and 4 setae on internal lobe. Coxopodite, basipodite and Ril A2 with 1 seta each. Mx1 gnathobase with 3 setae on posterior surface; second and third internal lobes with 4 and 2 setae respectively; protopodite near Ri base with 3 setae (1 robust long and 2 small, thin setae); Ri with 4 setae; Re with 11 setae, and external lobe with 8 setae. Md palp base and Ril Md without setae; Ri2 Md with 9 setae. Mx2 and Mxp typical of the genus. Re P1 first external spine reaching the middle of the next spine. P2-P4 typical of the genus. Re terminal spines with 23-24 denticles. P4 coxopodite with 2 spines.

M a 1 e. (Description after Tanaka \& Omori (1969a) with modifications). Total length 4.75-5.20 mm . Cephalothorax 4 times longer than abdomen. Cephalon differs from that of female by low crest with lens in its anterior part. Abd2-3 with minute denticles along posterior border. A1 reaching the end of Abd2. External Ri2 A2 lobe with 5 setae; internal lobe with 5 long setae and 1 short setae. Mx1 with strongly reduced first-third internal lobes; external lobe with 6 setae; Re with 10 setae; Ri and protopodite near Ri base with 5 setae together. Re1 A2 with 1 small spine. Left P5 basipodite exceeding right protopodite. Left Rel P5 not reaching proximal border of right Ri . Rel of right P5 with 4 swellings along internal margin.

Notes. E. formosa close to E. orientalis Sewell, 1929. Some authors (Tanaka \& Omori, 1969a; Von Vaupel Klein, 1972, 1980) considered these specics to be synonymous. Von Vaupel Klein in his recent work (1984: 50) noted, that E. orientalis Sewell, 1929 (non Tanaka \& Omori, 1969a), though doubtful species, should be considered as self-dependent.

Type locality: $10^{\circ} 49^{\prime} \mathrm{S} 123^{\circ} 59^{\prime} \mathrm{E}$.
Geographical distribution. Pacific Ocean: the species was found from the north-western (Brodsky, 1962; Tanaka, 1957b; Tanaka \& Omori, 1969a) and
tropical parts (Von Vaupel Klein, 1984), from the region of the Kurile-Kamchatka Trench (original data), in the south-western (Bradford \& Jillett, 1980) and south-eastern (Grice \& Hulsemann, 1968; original data) parts. Indian Ocean: the species was found in the western part to $29^{\circ} S$ (Grice \& Hulsemann, 1967). Known from the region of the Malay Archipelago (Vervoort, 1949; Von Vaupel Klein, 1984).

Vertical distribution: The species was found in epipelagial (Vervoort, 1949; Von Vaupel Klein, 1984; Bradford \& Jillett, 1980), known also from total hauls.

Material: 1 female from sample 169.

6. Euchirella galeata Giesbrecht, 1888

(Fig. 119)

Euchirella galeata Giesbrecht, 1888: 336 (part.), 1892 $233,241,743$, pl. 15 , fig. 18 , pl. 36 , fig. 26 (? part., non pl. 36, fig. 22); Vervoort, 1949: 32, fig. 16 (a-c); Tanaka \& Omori, 1969: 43, fig. 4 (a-k); Von Vaupel Klein, 1972: fig. 3c, tabs. 1-2, 1984: 38; Bradford \& Jillett, 1980: 32.

Description. F e m a 1 e . Total length $5.20-6.70$ mm . Cephalothorax 4-5 times longer than abdomen. Crest present, sufficiently high. Rostrum straight, robust (lateral view). Genital segment slightly wider than long; abruptly asymmetrical, left side (dorsal view) with very large projection along the length of the segment. A1 longer than body by 2 last segments (Vervoort (1949) noted A1 reaching distal Abd3 border). Ri A2 about 3 times shorter than Re. Coxo- and basipodite, as well as Ri1 A2 with 1 seta each; Ri2 A2 with 6 setae on each lobe. Md palp base and Ril Md without setae; Ri2 Md with 9 setae. Mx1 gnathobase with 3 setae on posterior surface; second and third internal lobes with 4 and 2 (?) setae respectively. Mx1 protopodite near Ri base with 3 ; Ri with 4 setae; Re with 11 setae, external lobe with 6 setae. Mx 2 and Mxp typical of the genus. Re Pl first extemal spine long, reaching the last third of the length of second external spine. P2-P4 typical of the genus. P4 coxopodite with 1 spine.

M a 1 e. (Description after Tanaka \& Omori (1969a) with modifications). Total length $4.70-5.33$ mm . Cephalothorax nearly 4 times longer than abdomen. Crest significantly lower than in female, rostrum slightly larger. Oral parts and P1-P4 close to that in E. bitumida.

Type locality: the eastern part of the Pacific Ocean.
Geographical distribution. Most likely the species is distributed in the Pacific and Indian oceans. It is difficult to specify the area of distribution more or less accurately since the species might be mixed with E. grandicornis, as was mentioned earlier (Von Vaupel Klein, 1984).

Vertical distribution. The species is usually found in the upper 500 m (Sewell, 1929; Vervoort, 1949;

Fig. 117. Euchirella formosa. Female (169).

Fig. 118. Euchirella formosa. Male (from Tanaka \& Omori, 1969a).

Tanaka \& Omori, 1969a,b); in the region of the Malay Archipelago it was found near surface (Von Vaupel Klein, 1984).

Material: 2 females from samples 401-402.

7. Euchirella grandicornis Wilson, 1950

(Fig. 120)
Euchirella grandicornis Wilson, 1950: 223, pl. 9, figs 98-100, Tanaka \& Omori, 1969a: 45, fig. 5 (a-i); Bradford \& Jillett, 1980: 32; Von Vaupel Klein, 1980: 153, 1984: 38. ${ }^{?}$ Euchirella galeata Giesbrecht, 1888: 336 (? part); 1892: 233, 241, 743, pl. 15, fig. 18, $\mathrm{pl} \mathrm{36}, \mathrm{fig}$.22 (part. non pl. 36, fig. 26); Wilson, 1950: 221, pl. 9, fig. 90 (female part. non pl 9, fig. 89, pl. 23, fig. 337).

Description. Fem a 1 e. Total length 5.97-6.80 mm. Cephalothorax 4.0-4.6 times longer than ab domen. Anterior part of cephalon with low, rounded crest (lateral view). Rostrum small, pointed. Th5
widely rounded laterally. Genital segment nearly as long as wide, asymmetrical, with small projection on back side in posterior half on the left (dorsal and lateral view). Posterior borders of Abdl-3 with minute spinules. A1 23 -jointed, reaching the end of caudal rami. Re A2 2.6 times longer than $\mathrm{Ri}, \mathrm{Ri} 2$ A2 with 6 setae on each lobe. Ri2 Md with 9 setae. Mx1 with 3 setae on posterior surface of gnathobase and 4 and 2 setae (Tanaka \& Omori (1969a) mentioned 3 setae) on second and third internal lobes respectively; protopodite near Ri base with 3 setae; Ri with 4 setae (3 after Tanaka \& Omori (1969a)); Re with 11 setae; external lobe with 7-8 setae. Mx2 and Mxp, as well as P1-P4 typical of the genus. P4 coxopodite with 1 spine.

Type locality: between Peru and Galapagos Isles.
Geographical distribution. Pacific Ocean: the species was found in the north-eastern part from the region of $14^{\circ} \mathrm{N} 132^{\circ} \mathrm{W}$ (original data) and off the area between Peru and Galapagos Isles (Wilson, 1950; Tanaka \& Omori, 1969a; Von Vaupel Klein, 1984).

Vertical distribution. The species was found in total hauls from 549-4600 m (Wilson, 1950; Tanaka \& Omori, 1969a; Von Vaupel Klein, 1984) and in layer $153-500 \mathrm{~m}$ (original data).

Material: 2 females from sample 203.

8. Euchirella maxima Wolfenden, 1905

(Figs. 121-122)
Euchirella maxima Wolfenden, 1905: 18, pl. 6, figs 9-11, With, 1915: 127, pl. 4, fig. 5 (a-h), text-fig 33 (a-i), Sars, 1924-25: 75, pl. 22, figs 1-7; Tanaka \& Omori, 1969a: 48, 1969b: 157, fig. 1 (a-g); Von Vaupel Klein, 1972: 500, 506, pl. 5c, 6 (a-b), tabs. 1-2, 1984: 41; Park, 1976b: 101, 107, 112, fig. 4 (a-l), tab. 1, 1978 : 149-151, fig. 30; Bradford \& Jillett, 1980: 33.

Description. Female. Total length 6.50-8.70 mm . Cephalothorax nearly 6-7 times longer than abdomen. Crest present, high. Rostrum strongly reduced. Posterior Th5 corners asymmetrical, not rounded. Genital segment asymmetrical, with small projection on the right in anterior half of the segment (dorsal view). Ri2 A2 with 5 setae on each lobe. Ri as long as one third of Re length. A2 basipodite without seta; Ri1 A2 with 1 seta. Mx1 protopodite near Ri base with 3 setae; Ri with 3 setae; Re with 11 setae. P4 coxopodite with 1 powerful spine (formed by fusion of 5-8 spines).

M a 1 e. (Description after Park (1978) with modifications). Total length $6 \cdot 10-7.35 \mathrm{~mm}$. Cephalothorax 3.3 times longer than abdomen. Crest present. Rostrum small, better developed than in females. Th5 posterior corners rounded. Ri A2 is a fourth of $\operatorname{Re} A 2$ length. Ri2 A2 external lobe with 6 setae and internal lobe with 6 long and 1 small short setae. Ri2 Md with 8 setae. Mx1 and Mx2 setation severely reduced. Re Pl with very small

Fig. 119. Euchrella galeata Female (401). Male (from Tanaka \& Omori, 1969a).

Fig. 120. Euchrella grandicornts. Female (203).
first external spine; second external spine is adequately developed. P5 biramous; both Ri well developed. Re P5 right 2 -jointed; Ri nearly as long as Re1, Ri external surface with 2 knobs. P5 right rami do not form tongs.

Type locality tropical Atlantic.
Geographical distribution. Atlantic Ocean: the species was found in the north-eastern, northern and tropical Atlantic up to $63^{\circ} \mathrm{N}$ to $35^{\circ} \mathrm{S}$ (Jespersen, 1940; Wolfenden, 1911), in the Gulf of Mexico, Gulf of Guinea (With, 1915; Sars, 1925; Wolfenden, 1905; Vervoort, 1963; Park, 1976b). Pacific Ocean: northern, western and south-eastern parts (Tanaka \& Omori, 1969a; original data); in the southern part up to $34^{\circ} \mathrm{S}$ (Grice \& Hulsemann, 1968); in the antarctic part from the region of
$55^{\circ} \mathrm{S}$ (Park, 1978). The species is also recorded from the Indian Ocean.

Verttcal distributıon. The species was found in hauls from epipelagial and upper mesopelagial (Vervoort, 1963; Owre \& Foyo, 1967; Tanaka \& Omori, 1969a; Park, 1978; Von Vaupel Klein, 1984), also from total hauls from deeper layers.

Material 2 females from samples 444, 447.

9. Euchirella messinensis indica

Vervoort, 1949
(Fig. 123)
Euchreella messinensts Tanaka, 1957b: 180, fig 46.
Euchirella indica Vervoort, 1949 23, fig 8b, 11, 12

Fig. 121. Euchirella maxima. Female (447).
(a-b); 1963:134; Bradford \& Jillett, 1980: 37, fig. 23. Euchrella messinensis indica Tanaka \& Omori, 1969a: 48, fig. 6 (f-m); Von Vaupel Klem, 1972: 506, pl. 1-2, 5d, tab. 1-2, 1982: 5, 1984: 35.

Description. Female. Total length 3.85-5.30 mm . (After Bradford \& Jillett (1980)). The body shape is similar to E messinensis messinensis. Differs in the shape of genital segment, although asymmetrical, but with projection in left posterior part of the segment smaller than in E. messinensis messinensis (dorsal view). All other features in structure of body and limbs close to that in E m. messinensis.

M a 1 e . Total length $4.00-4.20 \mathrm{~mm}$. Cephalon
with low crest. Body shape close to E. m messinensis. Left Re P5 exceeding the first projection on Ri P5 right.

Type localty: $4^{\circ} 21^{\prime} \mathrm{N} 120^{\circ} 01^{\prime} \mathrm{E}$.
Geographical distribution. Most probably the species is distributed in tropical and subtropical parts of the Indian and Pacific oceans (Vervoort, 1949; Tanaka \& Omori, 1969a; Von Vaupel Klein, 1984), recorded off New Zealand (Bradford \& Jillett, 1980).

Vertical distribution. The species was found mostly in total hauls, rarely from mesopelagial.

Material: 9 females and 1 male from samples 49, 395, 406.

Fig. 122. Euchrella maxima. Male (from Park, 1978).

10. Euchirella messinensis messinensis

(Claus, 1863)
(Fig. 124)
Undina messinensis Claus, 1863: 187, pl. 31, figs 8-17. Euchrella messinensis: Giesbrecht, 1892: 233, 239, 244, 743 , pl 15, figs $1-2,12,14-17,21,24$, pl. 36, figs $14-15,18,24$; Sars, 1924-25: 65, pl. 19, figs 6-13; Tanaka \& Omorı, 1969a' 51, fig 6 (a-e); Von Vaupel Klein, 1972. 506, fig. 4 (b-c), tabs 1, 2, 1982 376, figs 1-2, pl. 1-3; Park, 1976. 113, fig. 5; Bradford \& Jillett, 1980 39, fig. 25.
Euchrella messinensis messinensis: Von Vaupel Klein, 1982: 6, figs 1-16, pl 1-23, 1984: 34.

Description. Fe m a 1 e . Total length $4.40-6.20$ mm. Cephalothotax nearly 4 times longer than abdomen. Rostrum comparatively large. Crest absent. Posterior Th5 comers rounded (lateral view), of slightly rectangular shape (dorsal view). Genital segment abruptly asymmetrical: its left side with large projection, covering 2 next abdominal segments (dorsal and lateral vicw). Genital segment nearly 1.2 times longer than wide. A1 slightly longer than cephalothorax, 24-jointed. Ri A2 about 5 times shorter than Re. Coxo- and basipodite and Ril A2 with 1 seta each. Ri2 A2 with 5 setae on external and 4 on internal lobe. Md palp base without setae; Ril Md with 1 very small seta; Ri2 Md with 9 setae. Mx1 with 3 setae on posterior gnathobase surface

Fig. 123. Euchirella messinensis indica. Female: C P4 (from Braford \& Jillett, 1980). Male: general view, Ce, P5(a) (from Bradford \& Jillett, 1980), other figures (49).
and 4 and 3 setae (1 long and 2 smallthin) on second and third internal lobes respectively; protopodite with 3 setae near Ri base; Ri with 4 setae and Re with 11 setae. Mx2 and Mxp typical of the genus. P1 Re1 with first external spine longer than the second and exceeding two third of its length. P2-P4 typical of the genus. Terminal Re spines with about 19 denticles. P4 coxopodite with 2 spines.

M a 1 e. (Description after Bradford \& Jillett (1980) with modifications). Total length 2.80-5.46 mm . Differs from female in low crest. Rostrum well developed. Re3 P5 left not reaching the first projection of Ri of right leg.

Type locality: the Mediterranean Sea.
Geographical distribution is difficult to describe since the species is very close to E. messinensis
indica and was probably mixed with E. messinensis messinensis. Some authors consider that further investigations would confirm allopatry of these species, and restrict distributional area of $E . m$. messinensis to the Atlantic Ocean and the Mediterranean Sea and E. m. indica to Indo-Pacific region (Von Vaupel Klein, 1984).

Due to the above mentioned reason the vertical distribution is difficult to describe. In the Gulf of Mexico species was found in day time in 500-2000 m , with the richest catches upper than 1000 m , at night the richest catches were in the upper 100 m . This is a good evidence of intensive diurnal migrations (Park, 1976b). The species was also recorded in haul $0-150 \mathrm{~m}$ in the north-western Atlantic (Von Vaupel Klein, 1984).

Material: 1 female from sample 573.

Fig. 124. Euchirella messinensis messinensis Female (573). Male (from Bradford \& Jillett, 1980).
11. Euchirella pseudopulchra Park, 1976
(Fig. 125)
Euchirella pseudopulchra Park, 1976a: 208, 211, fig. 1 (A-L), 1976c: 101; Bradford \& Jillett, 1980: 33; Von Vaupel Klein, 1980: 153, 1984: 41, fig. 2, (b, c, d, e, f).
Euchrella pulchra (non Lubbock, 1856): Davis, 1949: 31, pl. 3, figs 42-43, pl. 4, figs 44-48 (female only).

Description. Fe m a 1 e. Total length $3.55-4.35$ mm . Cephalothorax 4 times longer than abdomen. Anterior part of cephalon of rectangular shape (lateral view), with crest. Rostrum small. Th5 posterior corners rounded (lateral view), close to rectangular shape (dorsal view). Genital segment asymmetrical (dorsal view), with wide round swelling in anterior part of left side and depressed in its midlength on the right. Posterior surface of genital segment depressed (left
lateral view), with low chitinous crease anteriorly on the right side. Genital swelling well pronounced, shifted anteriorly. Al reaching the end of Abd2. A2 with long Re and small Ri that is less than half length of Rel A2. Coxopodite, basipodite and Ri1 A2 with 1 seta each; Ri2 A2 with 6 setae at each lobe. Md palp base and Ril Md without setae. Mx1 with 2(?) setae on posterior surface of gnathobase; second internal lobe with 4 setae; third internal lobe with 2 setae; protopodite near Ri base with 3 setae; Ri with 4 setae; Re with 11 and external lobe with 6 setae. Mx2 and Mxp typical of the genus. Re1 P1 with 2 external spines equal in length. P4 with $2-3$ spines.

Male unknown.
Type locality: the north-eastern part of the Pacific Ocean, Washington Sound.

Geographical distribution. Pacific Ocean: the north-western, northern and south-eastern parts (Park, 1976a; Von Vaupel Klein, 1984; original data).

Fig. 125. Euchirella pseudopulchra. Female (574, 575).

Vertical distribution. The species was found in epipelagial (Park, 1976a), in total hauls between 500 and 2000 m .

Material: 2 females from samples 6, 575.

12. Euchirella pseudotruncata

Park, 1975
(Figs 126-127)
Euchrella pseudotruncata Park, 1975c: 291, 294, figs 1-2, 1976b: 101, 115, fig. 6 (a-i), tab. 1, 2 ; Bradford \& Jillett, 1980: 33; Von Vaupel Klein, 1980: 153, 1984: 43.

Description. F e m a le. (Description after Park (1975c) with modifications). Total length 4.30-4.66 mm . Cephalothorax 4 times longer than abdomen. Rostrum present, small. Crest absent. Posterior corners of Th5 rounded, slightly rectangular (dorsal view). Genital segment slightly asymmetrical, with rounded projection on the left, slightly longer than wide (dorsal view). A1 slightly exceeding the caudal rami. Ri A2 slightly shorter than half Re length; Re1-Re2 A2 incompletely fused; Rel A2 with triangular appendix. Coxopodite, basipodite and Ril A2 with 1 seta each; Ri2 A2 with 7 setae on external and 8 setae on internal lobes. Md palp base and Ril Md without setae. Mx1 with 13 setae on gnatho-

Fig. 126. Euchrella pseudotruncata. Female (from Park, 1975c).
base; 4 and 3 setae on the second and third internal lobes respectively; 3 setae on protopodite near Ri base; Ri with 5 setae; Re with 11 setae and 8 setae on external lobe. Mx2 and Mxp typical of the genus. Re P1 first external spine reaching nearly the midlength of second spine. P2-P4 typical of the genus. P4 coxopodite with 1 long spine.

M a 1 e . Total length $3.32-3.80 \mathrm{~mm}$. Cephalothorax about 3.5 times longer than abdomen Seg.
mentation of cephalothorax as in females. Rostrum present. Crest absent. Th5 posterior corners rounded A1 reaching the distal Abd2 end. Ri A2 well developed and is two third of Re length. Oral parts reduced: Md without gnathobase; Mx1 internal lobes reduced, its protopodite without setae; Ri poorly developed with 5 setae; Re with 11 and external lobe with 7 setae. Mx2 severely reduced. Mxp is extremely faint. Re P1 with single rudimentary spine.

Fig. 127. Euchirella pseudotruncata. Male (from Park, 1975c).

P2-P4 segmentation as in females. P4 coxopodite without spine. P5 with uniramous left leg and well developed biramous right one. Right basipodite reaching about the midlength of Rel P5 left. Right Ri P5 present as curved spine-like projection.

Type locality: the Gulf of Mexico.
Geographical distribution. The Sargasso Sea, the Caribbean Sea, the Gulf of Mexico (Park, 1975c; Von Vaupel Klein, 1984).

Vertical distribution. In the Gulf of Mexico the species was found in all sampled depths between 200 and 2000 m , and not found in the upper 100 m . The species was also recorded in epipelagial in the Sargasso Sea (Park, 1975c).

The species is not examined by me.

13. Euchirella pulchra (Lubbock, 1856)

(Fig. 128)
Undina pulchra Lubbock, 1856: 26, pl. 4, figs 5-8, pl. 7, fig. 6; Claus, 1863: 186.
Euchirella pulchra: Giesbrecht, 1888: 336, 1892: 233, 241, 244,743 , pl. 15 , figs $22-23$, pl.36, figs 13 , 27; Sars, 1924-25: 69, pl. 20, figs 5-7; Vervoort, 1949: 20, fig. 9 (d, h); Tanaka, 1957b: 178, fig. 45; Grice, 1962: 194, pl. 10, figs 1-4; Tanaka \& Omori, 1969a55, fig. 8 (a-f); Von Vaupel Klein, 1972: 506, pl. 3 (a-d), tabs. 1, 2, 1980: 152, 1984: 43, figs 2 (b, c, d-f, 6 j$), 11(\mathrm{c}), 16(\mathrm{j} \mathrm{k}, \mathrm{v})$; Park, 1976a: 210, fig. 2 (A-F), 1976b: 101, 107, 116, fig. 7 (a-1); Bradford \& Jillett, 1980: 33; Brenning, 1985: 29.

Fig. 128. Euchurella pulchra. Female: A2, C P4. Male: Ce, P5 (from Park, 1976a), other figures (573).

Description. Fe m a 1 e . Total length 3.04-4.40 mm . Cephalothorax about 4 times longer than abdomen. Crest absent. Anterior part of cephalon (lateral view) rounded or slightly triangula. Rostrum well developed, Genital segment asymmetrical with large "ear-like" swelling on the left and small depression on the right. Th5 posterior corners symmetrical, rounded. A1 reaching about the end of genital segment, or Abd 3 Ri A 2 nearly 3 times shorter than $\operatorname{Re} A 2$. Coxo- and basipodite A2 with 1 seta each; both lobes of Ri2 A2 with 6 setae. Second and third Mx1 internal lobes with 1 and 2 setae respectively; protopodite near Ri base with 3 setae; Ri with 4 setae; Re with 11 setae and external lobe with 6 setae. Mxp protopodite with 1 seta proxi-
mally (Von Vaupel Klein, 1984). Other oral parts and P1-P4 typical of the genus. P4 coxopodite with 2 spines.

M a 1 e. (Description after Park (1976a) with modifications). Total length $3.06-4.15 \mathrm{~mm}$. Cephalon with low crest. Rostrum well developed. Left P5 without Ri ; Rel not reaching the distal end of right basipodite. Ri P5 right with 4 projections along external margin; 3 projections visible on Rel.

Type localty Tropical Atlantic.
Geographical distribution. The species is widespread in the tropical, subtropical and temperate zones of the World Ocean.

Vertical distribution The species was found in epipelagial (Vervoort, 1949; 1963; Sewell, 1947; Gri-
ce, 1962; Von Vaupel Klein, 1984). The species was recorded at night in the Gulf of Mexico, in the daytime numerous specimens were recorded between 500 and 1000 m , the deepest limit 2000 m (Park, 1976b). The species was found in total hauls from 800-1000 m (Tanaka \& Omori, 1969a).

Material: 3 females from samples 419, 573.

14. Euchirella rostrata (Claus, 1866)

(Fig. 129)
Undina rosirata Claus, 1866: 11, pl. 1, fig. 2
Euchurella rostrata Giesbrecht, 1892: 234, 243, 245, pl. 2 , fig. 11 , pl. 15 , figs $11-12,27,28$, pl 36 , figs 16-17, 23; Sars, 1924-25: 69, pl. 20, figs 8-15; Tanaka \& Omori, 1969a: 56; Von Vaupel Klein, 1972: fig. 5 (a), tab. 1-2, 1984: 44; Park, 1976 101, 117, fig. 8 (a-j), tab. 1-2, 1978: 147, fig. 29 (A-K); Bradford \& Jillett, 1980: 33, 39, figs 3-4; Brenning, 1985: 29.

Description. Fe m a 1 e. Total length 2.95-3.95 mm . Cephalothorax about 4 times longer than abdomen. Crest absent. Rostrum comparatively long. Posterior Th5 corners rounded. Genital segment symmetrical. A1 nearly as long as body. Ri A2 more than 2 times shorter than $\operatorname{Re} A 2$. Ri 2 A 2 with 8 setae on internal and 6 setae on external lobe; basipodite with 2 setae; Ril A2 with 1 setae. Md palp base and Ri1 Md without setae; Ri2 Md with 9 setae. Mx1 gnathobase with 4 setae on posterior surface; second and third internal lobes with 3 (2 long and 1 short) and 2 setae respectively; protopodite near Ri base with 3 setae; Ri with 3; Re with 10 (after Park (1978) with $10-11$) setae; external lobe with 9 setae. Re Pl first external spine long, covering two third of the length of second spine. P4 coxopodite with 7-9 denticles (9 after Von Vaupel Klein (1984)).

M ale. Total length $2.50-3.10 \mathrm{~mm}$. Crest absent. Both spines of Rel P1 well developed. P5 biramous, Ri well developed, right one of clavate shape. Re and Ri right not forming tongs.

Type locality: the western part of the Mediterranean Sea.

Geographical distribution. The species is widespread in tropical, subtropical and temperate regions of the Pacific, Indian and Atlantic oceans (Vervoort, 1957). The species is known from the northwestern and north-eastern, as well as south-western and south eastern parts of the Pacific Ocean, antarctic and subantarctic waters of the Pacific and Indian oceans (Farran, 1929; Brodsky, 1950; Vervoort, 1957; Tanaka \& Omori, 1969a; Bjornberg, 1973; Park, 1978; Bradford \& Jillett, 1980; Von Vaupel Klein, 1984; original data).

Vertical distribution. The species was found in hauls from epipelagial (Farran, 1929; Tanaka \& Omori, 1969a; Bradford \& Jillett, 1980), mesopelagial (Park, 1976b) and total hauls from 1300 m .

Material: 23 females and 4 males from samples 5-6 and 573.

15. Euchirella similis Wolfenden, 1911

(Fig. 130)
Euchirella simlls Wolfenden, 1911: 238, text-fig. 23 (a-d), pl. 28, figs 1-2; Park, 1978: 147, 155, figs 35-36; Bradford \& Jillett, 1980: 33, 43, fig. 27 (A-C); Von Vaupel Klein, 1980: 152, 1984. 46

Description. Fe m a 1 e. Total length 4.00-5.41 mm . Cephalothorax about 4 times longer than abdomen. Rostrum comparatively small. Crest absent. Posterior Th5 corners rounded. Genital segment abruptly asymmetrical with large "ear-like" projection on the right. A1 reaching the Abd 4 . Ri A 2 about a fourth of Re length. Ri2 A2 internal lobe with 4 setae; external lobe with 5 setae. Coxo-, basipodite and Ril A2 with 1 seta each. Mxl gnathobase with 13 setae. Second and third internal lobes with 4 and 3 setae respectively; protopodite with 3 setae near Ri base; Ri with 4 setae; Re with 11 setae and 8 setae on external lobe. Mx2, Mxp and P1-P4 typical of the genus. P4 coxopodite with $2-3$ spines.
? M a 1 e . (Body was damaged, its size is unknown). In the same sample with females a male was found, but its status is doubtful. As male of E. similis is so far unknown, there is high probability that the present male belongs to this species.

Type locality: the Atlantic Ocean between $17^{\circ} 28^{\prime} \mathrm{N}$ and $35^{\circ} 39^{\prime} \mathrm{S}$.

Geographical distribution. The species was found in the Atlantic and Indian oceans (Wolfenden, 1911; Von Vaupel Klein, 1984), in the south-western (Vervoort, 1957; Bradford \& Jillett, 1980) and the southeastern parts of the Pacific Ocean (Grice \& Hulsemann, 1968; Bjornberg, 1973; original data). In Antarctic: region of $54^{\circ} \mathrm{S} 119^{\circ} \mathrm{W}$ (Park, 1978).

Vertical distribution. The species was usually recorded in hauls from depth about 1000 m (Park, 1978; Bradford \& Jillett, 1980), in original material it was found from 500 m .

Material: 1 female and 1 male from sample 449.

16. Euchirella speciosa

Grice \& Hulsemann, 1968
(Fig. 131)
Euchirella speciosa Grice \& Hulsemann, 1968: 324, figs 14-19; Tanaka \& Omori, 1969b: 160; Bradford \& Jillett, 1980: 43, figs 28, 67; Von Vaupel Klein, 1980. 152, 1984: 46.

Description. Female. (Description after Grice \& Hulsemann (1968) with modifications). Total length 4.40-5.10 mm. Cephalothorax about 5 times longer than abdomen. Anterior part of cephalon smoothly

Fig. 129. Euchirella rostrata. Female (574). Male (573).

Fig. 130. Euchirella similis. Female and male (449).
rounded (lateral view), without crest. Posterior Th5 comers rounded (lateral view), rectangular (dorsal view). Genital segment asymmetrical: in dorsal view left side with 2 small projections. A1 reaching caudal rami. Ri A2 is a fourth of Re length. External Ri2 A2 lobe with 5 , internal with 4 setae; basipodite and Ril A2 with 1 seta each. Mxl gnathobase with 3 setae on posterior surface. Re P1 with 3 external spines. P2-P4 segmentation typical of the genus. P4 coxopodite with 2 robust spines.

M a 1 e unknown.
Type locality: $30^{\circ} 57^{\prime}-31^{\circ} 05^{\prime} \mathrm{S} 89^{\circ} 13^{\prime}-89^{\circ} 35^{\prime} \mathrm{W}$.
Geographical distribution. Pacific Ocean: the southwestern and south-eastern parts (Grice \& Hulsemann, 1968; Bradford \& Jillett, 1980; Von Vaupel Klein, 1984).

Verical distribution. The species was found in epipelagial, in total hauls from depths from 1700 m . The species is not examined by me.
17. Euchirella splendens Vervoort, 1963
(Figs. 132-133)
Euchirella splendens Vervoort, 1963: 135, 138, figs 13-16, Von Vaupel Klein, 1972, fig. 4 (d), tab. 1-2, 1980: 152, 1984: 47; Park, 1975c: 291, 296, fig. 4 (A-E), 1976b: 101, 118, 121, fig. 9 (a-k), tab. 1-2, 1978: 147, Bradford \& Jillett, 1980: 33; Brenning, 1985: 29.
Description. Fe m a 1 e . Total length 3.88-5.05 mm. Cephalothorax about 4 times longer than abdomen. Crest absent. Rostrum comparatively small. Th5 posterior corners (lateral view) rounded. Genital segment on the right posteriorly with projection of slightly varying shape. Al reaching Abd 4 . Coxopodite, basipodite and Ril A2 with 1 seta each. Ri A2 is about a fourth of Re length; internal Ri2 A2 lobe with 4 setae; external lobe with 5 setae. Md palp base and Ril Md without setae; Ri2 Md with

Fig. 131. Euchirella speciosa. Female (from Grice \& Hulsemann, 1968).

9 setae. Mxl gnathobase with 13 setae; second and third internal lobes with 4 and 3 setae respectively; protopodite near Ri base with 3; Ri with 4 setae; Re with 11 setae and external lobe with 8 setae. Mx2, Mxp and P1-P4 typical of the genus. P4 coxopodite with 2 spines.

M a 1 e. (Description after Park (1976b) with modifications). Total length $3.40-3.76 \mathrm{~mm}$. Cephalon without crest. Rostrum better developed than in females. Cephalothorax about 3.5 times longer than abdomen. P5 left with Rel reaching the distal end of right basipodite; Ri P5 right with 3 projections along external margin; Re1 P5 right with 4 teeth-like projections along internal margin, third projection of Re 1 is at the level of first projection on Ri (with curved top).

Type locality: the Gulf of Guinea.
Geographical distribution. Atlantic Ocean: tropical part, the Gulf of Mexico, the Caribbean Sea,
the Gulf of Guinea, in the region of the Canary Isles and Cape Verde Islands, (Vervoort, 1963; Park, 1975c; 1976b; Von Vaupel Klein, 1984).

Vertical distribution. In the Gulf of Mexico the species was found in the day time between 200 and 3000 m , at night in large numbers in the upper 100 m (Park, 1976b).

Material: 2 females from sample 573.

18. Euchirella truncata Esterly, 1911

(Fig. 134)
Euchirella truncata Esterly, 1911: 322, pl 26, fig. 5, pl. 28, fig. 35 , pl.29, fig. 63, pl.30, fig 71, pl.31, fig 104; Park, 1968: 545, pl. 5, figs 15-22; Tanaka \& Omori, 1969a: 57, fig. 9 (a-g); Von Vaupel Klein, 1972: fig. 5 (d), pl. 5 (b), tab. 1-2; Park, 1975c: 291, 294, fig. 3, 1976b: 101; Bradford \& Jillett, $1980 \cdot$ 33, 43, fig. 29 (A-F); Von Vaupel Klein, 1984: 47.

Fig. 132. Euchirella splendens. Female (573).

Euchirella propria Esterly, 1911: 321, pl. 27, figs 14, 20 , pl. 30 , figs 67,83 , pl. 31 , fig. 85.
Euchirella gracils Wolfenden, 1911: 237, pl. 27, figs 8-10, text-fig. 22.
Euchirella intermedia With, 1915: 124, pl. 4, fig. 4 (a-c), pl. 8, fig. 3, text-fig. 32 (a-f); Sars, 1924-25: 68, pl. 20, figs 1-4; Tanaka, 1957b: 183, fig. 48 (a-f); Park, 1968: 545.
Description. F e m a 1 e. Total length $5.20-6.80$ mm . Cephalothorax about 3.8-5.0 times longer than abdomen. Crest absent. Rostrum comparatively not large. Genital segment asymmetrical, both sides with small "ear-like" projections anteriorly (dorsal view); with large projection on the left reaching the posterior border of segment (lateral view), oval-rounded with "dotted structure". Genital segment is as long as wide. A1 reaching caudal rami. Ri A2 slightly shorter than half Re length. Coxopodite, basipodite and Ril A2 with 1 seta each; Ri2 A2 with 7 setae on each lobe (after Von Vaupel Klein (1984) internal lobe with 1 more seta). Md palp base and Ril Md without setae; Ri2 Md with 9 setae. Mxl gnathobase with 3 setae on posterior surface; second internal lobe

Fig. 133. Euchirella splendens. Male (from Park, 1975c).
with 4; third with 3 setae; protopodite near Ri base with 2 small and 1 long setae; Ri with 4 long and 1 short thin setae; Re with 11; external lobe with 8 setae. Mx1 and Mxp typical of the genus. Re P1 first external spine short, hardly reaching the base of the second external spine. P2-P4 typical of the genus. P 4 coxopodite with 1 long spine.

M a 1 e. (Description after Tanaka \& Omori (1969a) and Park (1975c) with modifications). Total length 4.50-5.60 mm. Cephalothorax about 4 times longer than abdomen. Crest absent. Rostrum longer than in females. A1 reaching the end of caudal rami. Ri A2 1.4 times shorter than Re, Ri2 A2 with 6 setae on external lobe and 7 setae on internal lobe. Ri Mxl with 11 setae, its external lobe with 6 setae. Re1 P1 external spines reduced. Rel P5 left reaching the distal end of right basipodite; Re3 with 2 large tooth-like projections distally.

Type locality: San Diego region.
Geographical distribution. Atlantic Ocean: northern and southern parts (Wolfenden, 1911; With, 1915; Sars, 1925; etc.). Pacific Ocean: in the southwestern and south eastern parts (Tanaka \& Omori,

Fig. 134. Euchirella truncata. Female: Th5(a) \& $\operatorname{Abd}(a)$ and male (from Park, 1968), other figures (573).

Fig. 135. Euchirella unispina. Female, male (from Park, 1968).

1969a; Bradford \& Jillett, 1980; original data); in the northwestern part (Tanaka \& Omori, 1969a), the northern part (Park, 1968) and the north-eastern part (Esterly, 1911). Indian Ocean: the Arabian Sea. The region of the Malay Archipelago (Sewell, 1947; Vervoort, 1949; Von Vaupel Klein, 1984).

Vertical distribution. The species was found from epipelagial (Vervoort, 1949; Von Vaupel Klein, 1984), mesopelagial (Tanaka \& Omori, 1969a) and total hauls from depths $300-3000 \mathrm{~m}$.

Material: 3 females from sample 573.
19. Euchirella unispina Park, 1968
(Fig. 135)
Euchirella unispina Park, 1968: 546, pl.6, figs 1-21, pl. 7, figs 1-11; Von Vaupel Klein, 1972: fig. 5 (c), tab. 1-2, 1980: 153, 1984: 47; Park, 1976b: 101; 1978: 147, Bradford \& Jillett, 1980: 33.
Euchirella acuta Tanaka \& Omori, 1969a: 34, fig. 1 (a-n); Park, 1976b: 101.

Description. F e m a 1 e. (Description after Park

Fig. 136. Euchırella venusta. Female (403).
(1968) with modifications). Total length 4.28-4.89 mm . Cephalothorax 4.3 times longer than abdomen. Crest absent. Posterior Th5 corners rounded. Genital segment nearly as long as wide, slightly asymmetrical: elongated on the left posteriorly (dorsal view). A1 reaching the end of caudal rami, some joints with aesthetasks. Ri A2 shorter than Re1-Re2 A2 together, latter without setae. Coxopodite, basipodite and Ri1 A2 with 1 seta each; Ri2 A2 with 8 setae on internal and 7 on external lobes. Md palp base with small seta on posterior surface; Ril Md without setae; Ri2 Md with 9 setae. Mx1 with 3 setae on posterior surface of gnathobase; second internal lobe with 4 setae; third with 3 setae; protopodite near Ri base with 3 setae; Ri with 5 setae; Re with 11; external lobe with 8 setae. Mx2 and Mxp typical of the genus. P1-P4 segmentation typical of the genus. Line of fusion between Ri P2 joints sometimes visible. P4 coxopodite with 1 robust spine.

M a 1 e. Total length $3.84-4.03 \mathrm{~mm}$. Cephalothorax 3.7 times longer than abdomen. Body segmentation as in females. Posterior Th5 comers rounded. Posterior border of Abdl-3 with thin spinules. A1 reaching the end of Abd2. Ri A2 better developed than in females, of two third length of Re ; basipodite and Rel without setae. Oral parts in comparison with those in females reduced. P1 with Re1 lacking external spine; Ri P2 with the joints fusion line invisible. P4 coxopodite without spines. P5 with uniramous left leg and well developed biramous right one. Right P5 basipodite well developed, reaching the middle of Rel P5 left.

Notes This species is close to E truncata, but female differs in smaller size and shape of genital segment. Males of this species are characterized by the shape of teeth on left Re3 P5 and number and shape of projections on Re and Ri of right P5.

Type localty: $31^{\circ} 54^{\prime} \mathrm{N} \quad 155^{\circ} 00^{\prime} \mathrm{W}$.

Fig. 137. Euchirella venusta. Male (from Bradford \& Jillett, 1980).

Geographical distribution. Pacific Ocean: the north-eastern part (Park, 1968). The region of the Malay Archipelago (Von Vaupel Klein, 1984).

Vertical distribution. The species was found from epipelagial (Park, 1968; Von Vaupel Klein, 1984). The species is not examined by me.

20. Euchirella venusta Giesbrecht, 1888

(Figs 136-137)
Euchirella venusta Giesbrecht, 1888: 336, 1892: 233, 241, 244,743 , pl. 15, fig. 19, pl. 36, fig. 21; Vervoort, 1949: 20, fig. 10 (a-d); Tanaka, 1957b: 182, fig. 47 (a-g); Grice, 1962: 194, pl. 9, figs 14-25; Omori,

1965: 64, figs 22-24; Tanaka \& Omori, 1969a: 59, fig. 10 (a-i); Von Vaupel Klein, 1972: pl. 4 (d), tab. 1-2, 1980: 152, 1984: 48; Park, 1976b: 101; Bradford \& Jillett, $1980 \cdot 33$, 43, fig. 30 (A-H).
?Euchrella tansen Omori, 1965: 60, figs 1-18; Tanaka \& Omori, 1969a: 33, 61, 1969b: 155, 160; Park, 1976b• 101, 1978: 147; Bradford \& Jillett, 1980: 33, 43; Von Vaupel Klein, 1980: 153, 1984• 48.

Description. Female. Total length $4.25-4.88$ mm . (Description after Bradford \& Jillett (1980) with modifications). Cephalothorax nearly 4 times longer than abdomen. Crest absent. Rostrum well developed. Posterior Th5 corners rounded (lateral and dorsal view). Genital segment asymmetrical, its shape varying. Al reaching the midlength of abdomen. As mentioned by Tanaka \& Omori (1969a), A1 exceeding caudal rami. Coxo-, basipodite, Ri1 A2 with 1 seta each; Ri2 A2 with 5 setae on external and 4 setae on internal lobe. Md palp base and Ril Md without setae; Ri2 Md with 9 setae. MxI gnathobase with 3 setae on posterior surface; second and third internal lobes with 4 and 2(?) setae respectively; protopodite near Ri base with 3 setae (2 long and 1 short); Ri with 4 setae; Re with 11 setae and external lobe with 6 setae. Ril Mxp with 2 small smooth projections distally and externally. In other features, Mxp and Mx2 typical of the genus. Re P1 first external spine reaching the middle of the second external spine. P4 coxopodite with 2 spines.

M a 1 e. (Description after Tanaka \& Omori (1969a) with modifications). Total length 3.57-4.16 mm . Cephalothorax about 3.4 times longer than abdomen. Crest absent. Rostrum faintly developed. Ri2 A2 with 6 setae on external and 7 setae on internal lobes. First-third internal lobes of Mx1 highly reduced; external lobe with 5 setae; Re with 11 setae; Rel with 2 very small spines. Left P5 basipodite reaching the distal border of right coxopodite. Left Re P5 faint, its distal end exceeding the third projection of right Re P5.

Notes. The species is very close to E spectosa Grice \& Hulsemann, 1968. Some authors consider that E. tanseii is an aberrant form of E. venusta (Tanaka \& Omori, 1969a; Von Vaupel Klein, 1984).

Type locality: the tropical part of the Pacific Ocean.

Geographical distribution. Pacific Ocean: tropical and subtropical parts (Grice, 1962), in the northwestern part from the Izu region (Tanaka, Omori, 1969a), the south-western part (Bradford \& Jillett, 1980). Indian Ocean: tropical and subtropical parts (Grice \& Hulsemann, 1967; Sewell, 1947).

Vertical distribution. The species was basically found from epipelagial (Vervoort, 1949; Grice, 1962; Bradford \& Jillett, 1980; Von Vaupel Klein, 1984), also in total hauls from $300-1500 \mathrm{~m}$.

Material: 1 female from sample 403.

14. Gaetanus Giesbrecht, 1888

Type species: Gaetanus miles Giesbrecht, 1888, by subsequent designation (Brodsky, 1950).

Gaetanus Giesbrecht, 1888: 335.
Gaidius Giesbrecht, 1895: 349 (type species: Gaidius pungens Giesbrecht, 1895, by monotypy).
Mesogaidius Wolfenden, 1911: 223 (type species: Gaidius intermedius Wolfenden, 1905, designated here).
Pseudogaetanus Brodsky, 1950: 168 (type species: Gaetanus robustus Sars, 1905, by monotypy).

Description. F e m a l e. Total length 1.70-9.20 mm . Cephalothorax 3-5 times longer than abdomen. Rostrum present, 1-pointed, not large, often with small excavation (notch) on the top. Frontal spine, if present, of different shape and size. Cephalon and Th1 fused (sometimes line of fusion visible). Th4-Th5 fused. Posterior Th5 corners symmetrical, rounded, with spines of different size and shape (absent in G. inermis). Genital segment symmetrical. Posterior borders of Abd1-3 often with rows of minute spinules. Caudal rami slightly longer than wide, or as long as wide. Al of varying length: sometimes slightly longer than cephalothorax, longer than body, or even twice longer than body. Re A2 1.1-1.5 times longer than Ri A2. Re1 A2 without setae, or with 1-2 seta. Re2 A2 with 1-3 setae; Re3-Re6 with 1 seta each; Re7 with 3 terminal and 1 medial seta. Ri1 A2 with $1-2$ setae; Ri2 A2 usually with 7 terminal (rarely with 6) and 1 posterior setae on external and 8 (rarely 7) setae on internal lobe. Md palp base with $1-2$ setae; Ril Md with $1-2$; Ri2 Md with 9 terminal setae; often with $1-2$ small, thin posterior setae. Mxl gnathobase with 9 claw-like spines and 1 small terminal seta and 4 setae on posterior surface of the lobe. Mxl second internal lobe with $4-5$ setae; third internal lobe with 4 setae; protopodite near Ri base with 5 setae; Ri with 14-15 setae; Re with 11 setae, and external lobe with 9 setae. Mx2 fourth and fifth endites with one of setae thickened and stronger sclerotized. Mxp protopodite with lateral plate of different size and configuration (or absent); with 3 groups (from proximal to distal end of joint) of 2,3 and 3 setae (distal group with additional small teat-like appendage), and usually with 1 seta at the base of joint in its proximal part. Ril Mxp with 3 setae. Re P1 2-3-jointed, with 2-3 external spines. Ri P2 2-jointed, rarely the division between joints incomplete. Other P2-P4 rami 3jointed. P4 coxopodite with group of $11-35$ spines, arranged as bush.

Male. Total length $1.86-7.00 \mathrm{~mm}$. Cephalothorax about 3 times longer than abdomen. Rostrum present. Frontal spine, if present, smaller than in females. Spines on posterior Th5 corners reduced in comparison with that in females, rarely absent. Number of A1 joints less than in females, joints are usually with aesthetasks. Setation of oral parts
reduced in comparison with that in females. Lateral plate on Mxp protopodite absent. Number of spines on Re P1 usually less that in females. P2-P4 like that in females, but spines on P4 coxopodite absent. PS asymmetrical, biramous, Ri 1 -jointed. Left Re P5 3-jointed, right 2-jointed. P5 of simple structure.

Notes. In this book I follow Park (1975b) who united Gaetanus Giesbrecht, 1888 and Gaidius Giesbrecht, 1895 and use the name Gaetanus due to the rule of priority.

The genus Gaetanus includes 22 species. Two new species G. pseudolatifrons Markhaseva sp.n. and G. rubellus Markhaseva sp.n. are described below.

Key to species of Gaetanus

Females

1(30) Anterior part of cephalon with frontal spine.
2(13) Rel A2 with 1 seta, Re2 A2 with 3 setae (in one case Rel with 2 and $\operatorname{Re} 2$ with 2 setae). Second internal MxI lobe with 5 setae. Re Pl usually with 3, sometimes with 2 external spines.
3(4) Re P1 indistinctly 3-jointed. Re P1 with 2 external spines. Lateral plate of Mxp protopodite reduced; sometimes there are visible traces of the plate..
17. G. paracurvicornis Brodsky

4(3) Re P1 clearly 3-jointed. Re P1 with 3 external spines. Lateral plate of Mxp protopodite well developed.
5(8) Spines of Th5 posterior corners straight, situated in about the middle of the posterior Th5 border (lateral view).
6(7) Frontal spine strongly curved in direction to rostrum (lateral view). Specimens less than 5 mm in size. Rel and Re2 with 2 setae each 3. G. brachyurus Sars

7(6) Frontal spine directed straight forward and curved to rostrum by its top only. Specimens more than 5 mm in size 8. G. curvicornis Sars
8(5) Spines of Th5 posterior corners curved and removed ventrally (lateral view).
9(10) Frontal spine short. Specimens more than 7 mm in size G. antarcticus Wolfenden
10(9) Frontal spine long. Specimens less than 6 mm in size.
11(12) Frontal spine directed backward from rostrum in its proximal part, and curved to rostrum distally
12. G. latifrons Sars

12(11) Frontal spine directed upward and anterionly in its proximal part, then distally to the rostrum 19. G. pseudolatifrons Markhaseva sp.n.
13(2) Rel A2 without seta; Re2 A2 with 1-2 setae. Second internal Mx1 lobe with 4 setae. Re P1 always with 2 external spines.
14(17) Mxp protopodite without lateral plate.
15(16) Re P1 evidently 3-jointed

16(15) Re P1 2-jointed, or indistinctly 3-jointed . . . 10. G. simplex Brodsky

17(14) Mxp protopodite with lateral plate.
18(25) $\operatorname{Re} 2$ A2 with 1 seta.
19(20) Spines on Th5 posterior comers not exceeding the midlength of genital segment. Frontal spine small 14. G. minispinus Tanaka
20(19) Spines on Th5 posterior corners exceeding at least the midlength of genital segment. Frontal spine large.
21(24) Frontal spine straight, not curved to rostrum by its top.
22(23) Spines on Th5 posterior corners reaching the posterior third of genital segment length. External spine of Re P1 not reaching the midlength of the next segment
18. G. pileatus Farran

23(22) Spines on Th5 posterior corners slightly exceeding the midlength of genital segment. External spine Re P1 exceeding the midlength of following segment
23. G. secundus Esterly

24(21) Frontal spine curved to rostrum by its top . .
13. G. miles Giesbrecht

25(18) Re2 A2 with 2 setae.
26(27) Spines on Th5 posterior corners curved dorsally (lateral view) 5. G. brevicornis Esterly
27(26) Spines on Th5 posterior corners directed straight backward (lateral view).
28(29) Re P1 2-jointed; Ri P2 1-jointed. Specimens less than 3 mm in size . . . 15. G. minor Farran
29(28) Re P1 3-jointed, Ri P2 2-jointed. Specimens more than 4.5 mm in size. 11. G. kruppii Giesbrecht
$30(1)$ Cephalon without frontal spine.
31(32) Th5 posterior corners without spines
9. G. inermis Sars

32(31) Th5 posterior corners with spines of various size and configuration.
33(38) Rel A2 with 1 seta. Re2 A2 with 3 (rarely 2) setae. Second Mx1 internal lobe with 5 setae. Re P1 3-jointed. Re P1 with 3 external spines.
34(35) Re2 A2 with 2 setae. Lateral plate of Mxp protopodite faintly developed. Specimens less than 4 mm in size 4. G. brevicaudatus Sars
35(34) Re2 A2 with 3 setae. Lateral plate of Mxp protopodite well developed. Specimens more than 7 mm in size.
36(37) Th5 posterior corners with I small tooth each, rounded on their tops. Ri1 Md with 1 seta; Re2 Md with 9 terminal and 1 posterior setae 22. G. rubellus Markhaseva sp.n.
37(36) Th5 posterior corners with large spine each, spines slightly curved dorsally. Ril Md with 2 setae; Ri2 Md with 9 terminal and 2 posterior setae..
21. G. robustus Sars

38(33) Rel A2 without setae. Re2 A2 with 2 setae.

Second MxI internal lobe with 4 setae. Re P1 2-3-jointed. Re P1 with 2 external spines.
39(40) Mxp protopodite with lateral plate 7. G. brevispinus (Sars)

40(39) Mxp protopodite without lateral plate.
41(42) Md palp base with 1 seta. Ri P2 1-jointed. 20. G. pungens (Giesbrecht) 42(41) Md palp base with 2 setae. Ri P2 2-jointed.
43(44) Spines on Th5 posterior corners long, reaching the midlength of genital segment
24. G. tenuispinus (Sars)

44(43) Spines on ThS posterior corners significantly shorter.
45(46) Re P1 clearly 3-jointed. Specimens more than 4 mm in size 6. G. brevirostris Brodsky

46(45) Re P1 unclearly 3 -jointed. Specimens less than 4 mm in size
16. G. minutus (Sars)

Males

(unknown for G. brevicaudatus, G. curvicornis, \boldsymbol{G}. inermis, G. minispinus, G. minor, G. paracurvicornis, G. pseudolatifrons and G. rubellus).
1(14) Cephalon with frontal spine.
2(7) Left Re3 P5 is bilobated (with complete or incomplete division into lobes). It is $1.5-2.2$ shorter than left Re2 P5.
3(4) Spines on Th5 posterior corners short, not reaching the posterior border of genital segment. Re3 P5 left bilobated with complete subdivision into lobes G. antarcticus Wolfenden
4(3) Spines on Th5 posterior corners long, exceeding the posterior border of genital segment. Left Re3 P5 bilobated with incomplete subdivision into lobes.
5(6) Left Ri P5 as long as one third of left Re1 P5 length. Left Re3 P5 is less than half of left Re2 P5 length
. 3. G. brachyurus Sars
6(5) Left Ri P5 significantly shorter than one third of left Re1 P5 length. Left Re3 P5 significantly longer than half of left Re2 P5
12. G. latifrons Sars

7(2) Left Re3 P5 prolonged, stylet-like, never bilobated. It is always longer than left Re2 P5.
8(9) Frontal spine removed from anterior part of cephalon dorsally (lateral view), poorly visible .
2. G. armiger Giesbrecht

9(8) Frontal spine is in anterior part of cephalon (lateral view), well visible.
10(11) Spines on Th5 posterior corners long, longer than half length of genital segment
10. G. simplex Brodsky

11(10) Spines on Th5 posterior corners significantly shorter.
12(13) Left Ri P5 longer than haif length of left Rel P5, or even longer 11. G. kruppil Giesbrecht

13(12) Left Ri P5 shorter than half length of left Re1 P5 18. G. pileatus Fantan; 5. G. brevicornis Esterly (Detailed description and figures of G. brevicornis Esterly are missing, therefore convincing differences between males of these species were not obtained).
14(1) Cephalon without frontal spine.
15(16) Cephalon with crest in anterior part
23. G. secundus Esterly

16(15) Cephalon without crest in anterior part.
17(18) Left Re3 P5 bilobated. Specimens about 7 mm in size
21. G. robustus Vervoort

18(17) Left Re3 P5 slylet-like. Specimens not more than 4.1 mm in length.

19(20) Th5 posterior corners without spines
13. G. miles Giesbrecht

20(19) Spines on Th5 posterior corners present.
21 (22) Spines on Th5 posterior corners exceeding posterior border of genital segment
24. G. tenuispinus (Sars)

22(21) Spines on Th5 posterior corners significantly shorter.

23(24) Stylet-like Re3 P5 wide
7. G. brevispinus (Sars)

24(23) Stylet-like Re3 P5 narrow.
25(26) Specimens less than 4 mm in size 6. G. brevirostris Brodsky

26(25) Specimens more than 4 mm in size.
27(28) Left Re2 P5 with uneven internal border with excavation near Re3 base; Re 2 longer than Re3.
20. G. pungens Giesbrecht

28(27) Left Re2 P5 with smooth internal border without excavation near Re3 base, Re2 shorter than Re3.
16. G. minutus (Sars)

1. Gaetanus antarcticus Wolfenden, 1905
(Figs. 138-139)
Gaetanus antarcttcus Wolfenden, 1905: 7, pl. 3, fig. 1, 1908: 30, pl. 3, fig. 6, 1911: 229; Farran, 1929: 233; Hardy \& Gunther, 1935: 159, Sewell, 1947: 65, textfig. 11; Wilson, 1950: 229; Vervoort, 1957: 62, figs 41-43; Grice \& Hulsemann, 1967: 15; 1968. 324; Tanaka \& Omori, 1970a: 131, fig. 8; Bjornberg, 1973: 323; Park, 1975b: 10, 13, 1978: 141, figs 25-26; Vives, 1982: 291.
Gaetanus brevicaudatus Wolfenden, 1911: 227, text-fig. 15 (nom. praeocc, non Sars, 1907) (syn n.).
Gaetanus wolfendent Park, 1975b: 12 (nom. nov pro brevicaudatus Wolfenden).
Gatius robustus (non Sars, 1905) (female only): Grice \& Hulsemann, 1967: figs 60-64.

Description F e male. Total length 7.60-9.08
mm. Cephalothorax about 5 times longer than abdomen. Frontal spine not large, directed forward and slightly curved to rostrum. Spines on Th5 posterior corners curved and removed to ventral part of posterior Th5 border (lateral view), exceeding the middle of genital segment and nearly reaching the posterior border of segment. Al nearly as long as the body. Rel A2 with 1 seta; Re2 A2 with 3 setae. Md palp base with 2 setae; Ri1 Md with 2 setae; Ri2 Md with 9 terminal and 2 very small posterior setae. Second internal Mx1 lobe with 5 setae; third internal lobe with 4 setae and small teat; Ri with 15 setae. Mxp protopodite with lateral plate. P1 with 3-jointed Re, with external spine on each joint. Ri P2 2-jointed. P4 coxopodite with 38 spines.

Male. (Description after Grice \& Hulsemann (1967) with modifications). Under the name G robustus Grice \& Hulsemann (1967) figured a male that I consider to be G. antarcticus. This is because cephalon with frontal spine. It is curved to rostrum (lateral view). Th5 posterior corners with small spine each. P5 very close to that of G. robustus. Re3 P5 left bilobated with clear subdivision into 2 lobes, not stylet-like, shorter than Re2 P5.

Notes. Gaetanus brevicaudatus Wolfenden, 1911 also known under the new name of Gaetanus wolfendeni Park, 1975 should be synonymized with Gaetanus antarcticus Wolfenden, 1905. The only distinction from the species described by Wolfenden (1911) is the lesser size of the specimen (5.9 mm) as compared to G. antarcticus. In other features (frontal spine shape, shape of spines on Th 5 corners, P1 setation and presence of lateral plate on Mxp protopodite) they are identical.

Type locality $64^{\circ} 18^{\prime} \mathrm{S} 90^{\circ} 27^{\prime} \mathrm{E}$.

Geographical distribution Atlantic Ocean: the northernmost locality near the north-western coast of Africa (Vives, 1982) in the region of $30^{\circ} \mathrm{N}$, the southernmost from the region of South Georgia (Hardy \& Gunther, 1935). Pacific Ocean: recorded in the north-western part in the Izu region (Tanaka \& Omori, 1970a) and the Marquesas Islands (Wilson, 1950), in the south-eastern part of the Pacific Ocean (Grice \& Hulsemann, 1968; Bjornberg, 1973; Park, 1978; original data), in the antarctic part of the Pacific Ocean (original data), to the South to $71^{\circ} \mathrm{S}$ (Farran, 1929). Indian Ocean: northernmost are findings in the Gulf of Oman and the Arabian Sea (Sewell, 1947), also found in the south-eastern part (Grice \& Hulsemann, 1967) and in antarctic section South off $60^{\circ} \mathrm{S}$ (Wolfenden, 1905; Vervoort, 1957; original data);

Vertical distribution The species was found from mesopelagial and bathypelagial (Hardy \& Gunther, 1935; Vervoort, 1957), in total hauls from 500-600 m (Grice \& Hulsemann, 1967; Wilson, 1950), however more often in hauls from depths over 1000 m .

Material: 7 females from samples $379,382-383$, 443.

Fig. 138. Gaetanus antarcticus. Female (379).

Fig. 139. Gaetanus antarcticus. Male (from Grice \& Hulsemann, 1967).

2. Gaetanus armiger Giesbrecht, 1888

(Figs. 140-141)
Gaetanus armiger Giesbrecht, 1888: 355, 1892. 219, 224, 744, taf 14, figs $19-20,22-23,26,28-29$, taf 36 , figs $2,4-5$, Vervoort, 1963-129, Tanaka \& Omori, 1970a 133, Park, 1975b 10, 13, 27, figs 10-11, Roe, 1984357
Gaetanus atlantccus Wolfenden, 1904 132, Jespersen, 193461

Description. Female. (Description after Giesbrecht (1892) and Park (1975b) with modifications). Total length $2.70-4.70 \mathrm{~mm}$. Cephalothorax about 3.5 times longer than abdomen Frontal spine present, not large, curved to rostrum. Spines on Th5
are in the middle of posterior border (lateral view), reaching the last fourth of genital segment. A1 by 2-3 last joints longer than body. Re1 A2 without setae; $\operatorname{Re} 2 \mathrm{~A} 2$ with 2 (1 medial situated on conic protrusion and 1 distal) setae. Md palp base with 2 setae; Ril Md with 2 setae: Ri2 Md with 9 setae. Second internal Mx1 lobe with 4 setae, Ri with 14 setae. Mxp protopodite without lateral plate. Re P1 3-jointed. Re1 P1 without spine; $\operatorname{Re} 2$ and R3 with external spine each. Ri P2 2-jointed P4 coxopodite with about 14-17 thin spines.

M a 1 e. Total length $2.60-3.16 \mathrm{~mm}$. Frontal spine very small and close to cephalon (lateral view) and removed posteriorly. Spines on Th5 posterior corners not reaching the posterior border of genital segment. Al reaching posterior border of genital

Fig. 140. Gaetanus armiger Female: P2 (from Glesbrecht, 1892), other figures (from Park, 1975b).

Fig 141 Gaetanus armıger. Male (from Park, 1975b).
segment. Re2 A2 with 2 setae. Md palp base with 2 minute setae. Ri Mxl with 9 long setae and few very small rudimentary setae; Re with 11 setae and external lobe with 9 setae. Mxp protopodite with 1 medial and 3 distal setae. Re P1 3-jointed; only Re3 with well developed external spine. P4 coxopodite without spines, all other features of P2-P4 as in females. Both Re joints of right P5 of about equal length. Left Ri P5 nearly reaching the distal part of Rel; Re3 P5 left is stylet-like, slightly longer than Re2 of its leg.

Notes. Park considered that a male described by Tanaka (1969) supposedly attributed to G. armiger actually belongs to some other species (Park, 1975b).

Type locality: Equatorial part of the Pacific Ocean.
Geographical distribution. Atlantic Ocean: the species was found to the North to $61^{\circ} \mathrm{N}$ (Jespersen, 1934), to the South to the Gulf of Guinea, widespread to the North from the Equator. Pacific Ocean: found in the north-western (Tanaka \& Omori, 1970), northern (Wilson, 1950) and equatorial parts (Giesbrecht, 1888), the southernmost finding in the south-eastern part is the region of $11^{\circ} \mathrm{S}$ (Wilson, 1950). Indian Ocean: in the Bay of Bengal (Sewell, 1929). In the region of the Malay Archipelago (A. Scott, 1909).

Vertical distribution. The species was found in hauls from meso-, bathypelagial (Park, 1975b) and epipelagial (Mori, 1937). In total hauls from depths 500 to 5000 m .

The species is not examined by me.

3. Gaetanus brachyurus Sars, 1907

(Figs. 142-144)
Gaetanus brachyurus Sars, 1907: 10, 1924-25: 62, pl. 18, figs 9-10; Grice \& Hulsemann, 1967: 23, 1968 : 327; Park, 1975b: 14, figs 1-2.

Description. Female. Total length $5.00-7.15$ mm . Cephalothorax about 5 times longer than abdomen. Frontal spine present, not large, curved and directed to rostrum. Spines on Th5 posterior comers straight, reaching nearly the midlength of genital segment (dorsal view), situated in the middle of posterior Th5 border (lateral view). A1 slightly shorter than body, or exceeding it by 2-3 last joints. Rel A2 with 2 setae; Re2 A2 with 2 setae. Md palp base with 2 setae; Ril Md with 2 setae; Ri2 Md with 9 terminal setae and 1 posterior seta. Second Mx1 internal lobe with 5 setae; Ri with 15 setae. Mxp protopodite with lateral plate. P1 Re 3-jointed (in one case 2-jointed (Grice \& Hulsemann, 1967)), with external spines on each joint. Ri P2 2-jointed. P4 coxopodite with $26-30$ spines.

Male. (Description after Park (1975b) with modifications). Total length 5.16 mm . Frontal spine larger than in female. Spines on posterior Th 5 corners exceeding the posterior border of genital segment. A1 slightly longer than body. First 2 ReA2 joints without setae. Md palp base with small seta. Ri

Mx1 with 9 setae; Re Mx1 with 11 setae; external lobe with 9 setae. Mxp protopodite with 3 setae distally. Re P1 3-jointed, each joint with external spine. P2-P4 as in females, but P4 coxopodite without spines. Both Re joints of right P5 of about equal length. Left Ri P5 is about one third of Rel length. Left Re3 P5 not stylet-like, bilobated. It is less than half left Re2 P5 length.

Type locality: North Atlantic, to the North of the Canary Islands.

Geographical distribution. Atlantic Ocean: found to the North to the Strait of Davis (Jespersen, 1934), known from the Gulf of Mexico (Park, 1975b), the southernmost finding in the region of $26^{\circ} \mathrm{N}$ (Sars, 1925). Pacific Ocean: the south-eastern part (Grice \& Hulsemann, 1968), for the first time noted in the north-western part off the Kurile-Kamchatka Trench region (original data). Indian Ocean: recorded from the western part (Grice \& Hulsemann, 1967).

Vertical distribution. The species was found once near surface (Sars, 1925), recorded in hauls from bathypelagial (Grice \& Hulsemann, 1967) and in total hauls from $1500-5000 \mathrm{~m}$.

Material: 1 female from sample 103.

4. Gaetanus brevicaudatus (Sars, 1907)

(Fig. 145).
Chiridius brevicaudatus Sars, 1907: 7.
Gaidius brevicaudatus: Sars, 1924-25: 48, pl.15, figs 1-13; Bjomberg, 1973: 323.
Gaetanus brevicaudatus: Park, 1975b: 13.
Description. Female. Total length 3.90-4.50 mm . Cephalothorax about 3.6 times longer than abdomen. Frontal spine absent. Spines on Th5 posterior corners situated in the middle of Th5 posterior border (lateral view), very short. Al by 3 last joints longer than body. Rel A2 with 1 (after Sars (1925)) seta; $\operatorname{Re} 2 \mathrm{~A} 2$ with 2 (1 medial and 1 distal) setae. Md palp base with 2 setae; Ri1 Md with 2 setae; Ri2 Md with 9 long, robust terminal setae and 1 posterior seta. Mx1 second internal lobe with 5 setae; Ri with 14 setae. Mxp protopodite with thin poorly visible lateral plate. Re P1 3-jointed, each joint with external spine. Re P1 first external spine reaching the base of the second external spine; second external spine not reaching the base of third external spine. Ri P2 2-jointed. P4 coxopodite with about 30 spines.

Male unknown.
Type locality: $27^{\circ} 43^{\prime} \mathrm{N} 18^{\circ} 28^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the species is known only from the Canary Islands region (Sars, 1925). Pacific Ocean: recorded for the first time in the north-western part in the region of IzuBonin Trench (original data), also known from the south-eastern part (Bjornberg, 1973).

Vertical distribution. The species was found in total hauls from depths of more than 1000 m .

Material: 1 female from sample 202.

Fig. 142. Gaetanus brachyurus. Female (103)

Fig. 143. Gaetanus brachyurus. Female (103).

Fig. 144. Gaetanus brachyurus. Male (from Park, 1975b).

Fig. 145. Gaetanus brevicaudatus. Female (202).

5. Gaetanus brevicornis Esterly, 1906

(Figs. 146-147)
Gaetanus brevicorns Esterly, 1906: 56, pl. 11, fig. 4, pl. 12, fig. 55; Vervoort, 1963: 128; Tanaka \& Omori, 1970a: 133; Park, 1975b: 10, 23, fig. 7; Bradford \& Jillett, 1980: 48, fig. 31.
Gaetanus rectus Wolfenden, 1911: 232, fig. 18, pl. 26, figs 14-16; Sewell, 1929: 105.
Gaetanus ascendens Esterly, 1913: 182, pl. 10, figs 1, 3, 6 , pl. 11, fig. 39, pl. 12, fig. 56; Brodsky, 1950 165 , fig. 80.
Gaetanus curvispinus Wilson, 1950: 229, pl. 10, figs 108-113.
Gaetanus hamatus A. Scott, 1909: 50, pl. 9, figs 16-22.
Description. Fe m a 1 e. Total length $3.70-4.98$ mum. Cephalothorax 3.4-4.0 longer than abdomen. Frontal spine present, not large, strongly curved to rostrum. Spines on Th5 posterior corners situated in the middle of posterior border of Th5 (lateral view), abruptly curved dorsally (lateral view), divergent (dorsal view). Al longer than body by 2-3 joints. Re1 A2 without setae; Re2 A2 with 2 setae. Md palp base with 2 setae; Ril Md with 1 ; Ri2 Md with 9 terminal setae. Mxl second internal lobe with 4 setae; Ri with 14 setae. Mxp protopodite with lateral plate. Lateral plate with a deep excavation, elongated towards the distal part of the joint. Re P1 indistinctly 3-jointed. Rel Pl without spine; 2 next joints with external spines. Ri P2 2-jointed. P4 coxopodite with about 20 spines.

M a 1 e. Published descriptions of G. brevicornis male (Wilson (1950); Bradford \& Jillett, (1980)) are brief, therefore the species is not included into the key for identification. Total length 4.25 mm . Frontal spine more powerful than in females. Spines on Th5 posterior corners shorter and less pronounced than in females. Right P5 slightly longer, than left.

Type locality: off the San Diego region.
Geographical distribution. Atlantic Ocean: the northernmost locality region of $32^{\circ} \mathrm{N}$ in the Sargasso Sea (Deevey \& Brooks, 1977), found in the Gulf of Mexico, the Gulf of Guinea, tropical Atlantic (Wolfenden, 1911; Vervoort, 1963; Park, 1975b). Pacific Ocean: found in the north-western part (Tanaka \& Omori, 1970a), in the region of the Marian Trench (original data), the north-eastem (Esterly, 1906; original data), south-western (Bradford \& Jillett, 1980; original data) and south-eastern (original data) parts. Indian Ocean: in the Arabian Sea and the Bay of Bengal (Sewell, 1929, 1947), in the region of $12^{\circ} \mathrm{S}$ (original data). The species was recorded in the region of the Malay Archipelago (A. Scott, 1909).

Vertical distribution. The species was found in hauls $160-500 \mathrm{~m}$ from the tropical part of the Pacific Ocean (original data) also in total hauls from depths $300-7000 \mathrm{~m}$.

Material: 9 females from samples 201, 204, 386, 401, 444, 449.

6. Gaetanus brevirostris (Brodsky, 1950)

(Fig. 148)
Gaidius brevirostris Brodsky, 1950: 159, fig. 73. Gaetanus brevirostris: Park, 1975b. 13.

Description. Fe m a 1 e. Total length 4.00-4.20 mm . Cephalothorax about 3 times longer than abdomen. Frontal spine absent. Spines on Th5 posterior comers short, situated in the middle of posterior Th5 border (lateral view). A1 as long as cephalothorax, or longer than cephalothorax by 1-2 joints. Re1 A2 without setae. Re2 A2 with 2 setae. Md palp base with 2 setae; Ril Md with 2 setae; Ri2 Md with 9 terminal setae. Second Mx1 internal lobe with 4 setae; Ri with 14 setae. Mxp protopodite without lateral plate. Re P1 3-jointed. Rel P1 without external spine. Spine on Re2 P1 exceeding the midlength of the next segment. P4 coxopodite with 19-28 spines.

M a 1 e . Total length 4.0 mm . Frontal spine absent. Spines on Th5 posterior corners shorter than Abdl. Right Re3 not bilobated, stylet-like.

Type locality: the north-western part of the Pacific Ocean.

Lectotype. female from sample 474.
Geographical distribution. Pacific Ocean: the north-western part, the Kurile-Kamchatka Trench region, the region of Aleutian Trench (Brodsky, 1950; original data).

Vertical distribution. The species found in the hauls from bathypelagial-upper abyssopelagial (original data).

Material: more than 10 females from samples: $63-65,81,126,138,161,193,196$.

7. Gaetanus brevispinus (Sars, 1900)

(Figs. 149-152).
Chirıdus brevispinus Sars, 1900: 68, pl. 19.
Gatdius brevispinus: Sars, 1903: 162, suppl. pl. 6, fig. 2; With, 1915: 94, text-fig. 24, pl. 2, fig. 7, pl.3, fig. 1; Brodsky, 1950: 158, fig. 72, Tanaka, 1957a: 62, fig. 38 (a-e) (female only); Tanaka \& Omori, 1970a: 119.
Gaetanus brevispinus: Park, 1975b: 11, 13.
Gaidus affinis Sars, 1905: 9 (syn. n.), 1924-25: 47, pl. 14, figs 9-13, pl. 15, figs 14-15; Vervoort, 1957; 56, figs 35-39; Bradford \& Jillett, 1980. 58, fig. 38.
Gaetanus affins: Park, 1975b: 13
Gaidius intermedius Wolfenden, 1905: 6, pl. 3, figs 4-5 (syn. n.); Farran, 1929: 231; Hardy \& Gunther, 1935: 157; Davis, 1949: 27, Vervoort, 1951. 81, 1957: 60, fig. 40; Park, 1978: 131, 135, figs 18-20.
Gaetanus intermedus. Park, 1975b: 13.
Mesogatdus intermedius: Wolfenden, 1911: 224, text-fig. 12, pl. 26, figs 1-2.
Gaidius major Wolfenden, 1904: 114, pl 9, figs 7-8.

Fig. 146. Gaetanus brevicornis. Female (201).

Fig. 147. Gaetanus brevicornis. Female (201). Male (from Wilson, 1950)

Gaidus robustus (non Sars, 1905). Vervoort, 1949. 12, figs 5 -6

Description F e m a le. Total length 3.60-4.90 mm . Cephalothorax 3.0-3.7 times longer than abdomen. Frontal spine absent. Posterior Th5 corners with moderate spine, covering about one third of genital segment length (dorsal view), directed slightly to the ventral side of specimen (lateral view). A1 length varying: possibly longer than cephalothorax, reaching Abd2 - the end of caudal rami. Re1 A2 without setae; Re2 A2 with 2 setae. Md palp base with 2 setae; Ril Md with 2; Ri2 Md with 9 terminal setae. Second Mx1 internal lobe with 4 setae; Ri with 14-15 setae. Mxp protopodite with lateral plate, its shape varying. Re Pl 3-jointed. Re2 and Re3 P1 with external spines; second external spine not reaching the base of next spine. Ri P2 2-jointed; P2-P4 typical of the genus. P4 coxopodite with about 23-27 spines.

M a 1 e. Total length $2.30-4.10 \mathrm{~mm}$. Frontal spine absent. Cephalothorax about 3-4 times longer than abdomen. Length of spines on Th5 posterior corners varying. A1 slightly shorter than body. Num-
ber of setae on Rel-Re2 A2 reduced. After With's evidence (With, 1915: pl. 3, fig. le) setation of the third internal Mx1 lobe reduced; Ri supplied with 12 setae; Re with 11 setae. Mxp protopodite with only 2 distal setae (With, 1915, pl. 3, fig. 1). Rel P1 without external spine; Re2 P1 with small poorly visible spine. P2-P4 as in females, but P4 coxopodite without spines. Left Re3 P5 not bilobated, elongated, rather triangular then stylet-like, but wide. It is shorter than Re2 of its leg.

Notes. G brevispinus was described from the Arctic Basin (Sars, 1900). Close species G. affinus from the North Atlantic (Sars, 1905a) and G intermedius from Antarctic (Wolfenden, 1905) were later described. The following features were proposed as distinguishing for these species: shape of lateral plate on Mxp protopodite, length of spines on Th5, position of rostrum between A1 in lateral view and body length. These features are highly variable. It seems that in classifying the specimens to particular species the researchess paid more attention to the geographical locality of finds than to the morphological structure. Thus it was considered that G. brevispinus occurs mostly in the Arctic Basin,

Fig. 148. Gaetanus brevirostris Female (126). Male (from Brodsky, 1950)

Fig. 149. Gaetanus brevispinus. Female (530).

Fig. 150 Gaetanus brevispinus. Female (530)
G affinis in temperate Atlantic and tropical waters of the Atlantic and the Pacific oceans and $G \mathrm{in}$. termedus in the Southern Hemisphere mostly to the South from $35^{\circ} \mathrm{S}$ (Sars, 1905; Vervoort, 1952d, 1957, 1963; Park, 1978; Bradford \& Jillett, 1980; etc.). G. affinis and G intermedius were lecognized as very close species (Vervoort, 1957). Park (1978) proposed their identity, but did not synonymize them. The relations between these two species and G brevispinus were not discussed. I have studied the spectmens of these 3 species from regions adjacent to their type localities and falled to verify the validity of earher proposed features as distingishing for the
species. They were found as very much varying not only between specimens from distant localittes, but also in specimens of one population, often in specimens of the same sample. Furthermore the degree of variability was found more pronounced on populational level than between distant populations. No significant differences in body size were found. For groups of specimens from the central part of the Arctic Ocean, the Norwegian Sea and the northwestern part of the Pacific Ocean (localities considered to be typical for G brevispinus) total body length was $440-4.85 \mathrm{~mm}$, for specimens from region of $40^{\circ} \mathrm{N} 66^{\circ} \mathrm{W}$ (close to typical for G affinis locality)

Fig. 151. Gaetanus brevispinus. Female. Types of \mathbf{P} Map configuration, Th 5 \& Kn, R in specimens from: A (1) the central part of Arctic Basin, (2) the Norwegian Sea, (3) the north-western part of the Pacific Ocean; B - Northern Atlantic and C - (1) Antarctica, (2) south-western part of the Pacific Ocean.

Fig. 152. Gaetanus brevispinus. Male (7^{70}).
3.85-4.65 mm and for specimens from Antarctic and south-eastern Atlantic (localities typical for G. intermedius): $4.30-4.90 \mathrm{~mm}$. P5 structure of G. affines and G intermedius males after Park (1975b) is n.early identical, and in my opinion it is identical to that of G. brevispinus. Thus Park's assumption concerning the Identity of G. affinis and G. intermedius is concerned, and in my opinion both species are identical to C . brevispinus.

Type locality: Arctic Basin.
Geographical distribution. Cosmopolitan species (except, Indian Ocean), but in the equatorial and subtropical zones rather infrequent. The species is recorded from the Gulf of Guinea, the region of the Malay Archipelago, the south-castern and tropical parts of the Pacific Ocean (Vervoort, 1949, 1963; Wilson, 1950; Bjornterg, 1973; etc.). However the
species is often recorded in boreal zones of the Atlantic and Pacific oceans as well as to the North up to the central part of the Arctic Ocean $86^{\circ} \mathrm{N}$ (original data); the species is distributed circumpolar, in subantarctic and antarctic zones where it was found mostly to the South between $35^{\circ} \mathrm{S}$ and $76^{\circ} \mathrm{S}$ (Farran, 1929).

Vertical distribution. In high latitudes the species someimes occurs near surface, but usually deeper than 200 m , in other regions of the World Ocean it was found in hauls from meso- and bathypelagial (Jespersen, 1934; Vervoort, 1957; original data, etc.) and in a big number of total hauls from depths from 3000 m .

Material. 72 females and 9 males from samples 18, 61-64, 72.73, 79, 90-94, 118-121, 132, 134-136, 145-146, 156-160, 171-174, 188-191, 195, 218, 251,

Fig. 153. Gaetanus curvicornis. Female: general view (from Sars, 1924), P1, Mxp (part.) (from Sewell, 1947).

294, 359, 376, 384, 393, 429, 431, 435-436, 447, $449,453,456,473,476,525,527,530,532-533$, $535,539,542-543,545-547,551-555,570,574$.

8. Gaetanus curvicornis Sars, 1905

(Fig. 153)
Gaetanus curvicornis Sars, 1905: 11, 1924-25: 55, pl. 17, fig. 2; Jespersen, 1934: 61; Sewell, 1947: 67, text-fig. 12; Bjornberg, 1973: 323; Park, 1975b: 11, 13; Vives, 1982: 291; Deevey \& Brooks, 1977: 263.

Description. Female. (Description after Sars (1924-25), Sewell (1947) and Vervoort (1952) with modifications). Total length $3.70-4.75 \mathrm{~mm}$. Cephalothorax 3-4 times longer than abdomen. Spines on Th5 posterior corners straight, situated in the middle of Th5 posterior border (lateral view), covering nearly one third or a fourth of genital segment length. Frontal spine present; directed upward and anteriorly near its base, but its top curved to rostrum. Posterior borders of Abd2-3 without spinules (Sewell, 1947). A1 as long as body, or longer by 3 last joints
(Sars, 1925; Sewell, 1947). Re2 A2 with 2 first setac rising from the small projections (Sewell, 1947). Second Mx1 internal lobe with 5 setae. Mxp protopodite with lateral plate. Re P1 3-jointed, with external spine on each joint, second external spine not exceeding the midlength of $\mathrm{Re} 3 \mathrm{P} 1 . \mathrm{Ri}$ P2 2jointed. P4 coxopodite with about 12 spines.

Male unknown.
Type locality: $36^{\circ} 46^{\prime} \mathrm{N} 26^{\circ} 41^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the North Atlantic, recorded off the Azores Islands region and between these Islands and the coasts of Spain and Portugal, from the region of Madeira, the Sargasso Sea (Sars, 1925; Jespersen, 1934; Deevey \& Brooks, 1977; Vives, 1982); it was found to the North to the Baffin Bay and the west of Greenland (Jespersen, 1934). Pacific Ocean: the south-eastern part in the region of $38^{\circ} \mathrm{S}$ (Bjornberg, 1973). Indian Ocean: recorded in the Arabian Sea (Sewell, 1947).

Vertical distribution. The species was found in hauls from meso- and meso-bathypelagial (Deevey \& Brooks, 1977; Vives, 1982), in total hauls from $1500-5700 \mathrm{~m}$.

The species is not examined by me.

9. Gaetanus inermis Sars, 1905

(Figs. 154-155)
Gaetanus inermis Sars, 1905: 12, 1924-25: 64, pl. 19 , figs 3-5; Park, 1975b: 11. 13.
Gaidius mermis: Grice \& Hulsemann, 1968: 327.'
Description F e male. Total length 6.20-7.35 mm . Cephalothorax 4 times longer than abdomen. Frontal spine absent. Spines on Th5 posterior corners absent. A1 about as long as cephalothorax. Rel A2 with 1 seta; $\operatorname{Re} 2$ A2 with 3 setae. Md palp base and Ril Md with 2 setae each; Ri2 Md with 9 long terminal and 2 small posterior setae. Second Mxl internal lobe with 5 setae; third with 4 setae and additional teat; Ri Mxl with 14 setae. Lateral plate on Mxp protopodite present. Re Pl 3-jointed, with external spine on each joint; first and second external spines exceeding the distal border of Re2 and Re3. P2 with 2-jointed Ri. P4 coxopodite with about 35 thin spines.

Male unknown.
Type locality: $36^{\circ} 46^{\prime} \mathrm{N} 26^{\circ} 41^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: the north-eastern part (Sars, 1925; Rose, 1929). Pacific Ocean: south-eastern part (Grice \& Hulsemann, 1968), off Peru (Wilson, 1950), found for the first time in the north-western part in the Kurile-Kamchatka Trench region (original data).

Vertical dustribution. The species was found in hauls from abyssopelagial (original data) and in total hauls from 3000 and 6000 m .

Material: 6 females from samples 19, 83, 85, 97, 123, 163, 193.

10. Gaetanus simplex Brodsky, 1950

(Fig. 156)
Gaetanus simplex Brodsky, 1950: 163, fig. 77; Bjornberg, 1973: 324; Deevey \& Brooks, 1977: 263.
Gaetanus intermedius Campbell, 1930: 178, pl. 1, figs 2-3 (nom praeocc., non Wolfenden, 1905); Park, 1973: 1597, figs 1-2.
Gaetanus campbellae Park, 1975b: 12 (nom. nov. pro intermedius Campbell).

Description. Female. Total length $3.20-3.50$ mm . Cephalothorax about 3.5-4.0 times longer than abdomen. Frontal spine present, not large, curved to rostrum. Spines on Th5 posterior corners situated in dorsal part of Th5 posterior border (lateral view), usually exceeding the midlength of genital segment, but may vary in length. A1 shorter than body, usually reaching genital segment. Re1 A2 without seta; Re2 A2 with 2 setae. Md palp base and Ril Md with 2 setae; Ri2 Md with 9 terminal setae. Second internal Mx1 lobe with 4 setae; Ri Mx1 with 14 setae. Lateral plate on Mxp protopodite absent. P1
with 2-jointed Re with external spine on each joint, sometimes indeterminate traces of subdivision of Rel and Re2 visible. P2 with 2-jointed Ri. P4 coxopodite with about $12-17$ spines.

M a 1 e. Total length $2.65-3.10 \mathrm{~mm}$. Cephalothorax about 3 times longer than abdomen. Frontal spine nearly the same as in females. It is not removed from anterior part of cephalon posteriorly as in close species G. armiger. Spines on Th5 slightly not reaching the posterior border of genital segment. Compared to females oral parts reduced. Setation of A2 the same as in females. Ri Mxl with 8-9 setae; Re with 11 setae. Md palp base without setae. Ril Md with 1 seta; Ri2 Md with 9 setae. Mxp protopodite with 2 setae distally. Re P1 indistinctly 3-jointed (after Park (1973) 2-jointed). P2-P4 as in females, but P4 coxopodite without spines. P5 very close to that of G. armiger.

Notes. When genera Gaetanus and Gaidius were united (Park, 1975b) the new name Gaetanus campbellae Park, 1975 was proposed for this species. However, this species already had more earlier name of G. simplex.

Type locality: the north-western part of the Pacific Ocean.

Lectotype: female from sample 474.
Geographical distribution. Atlantic Ocean: the Sargasso Sea region of $32^{\circ} \mathrm{N}$ (Deevey \& Brooks, 1977). Pacific Ocean: the south-eastern part (Bjornberg, 1973), sufficiently widespread in the northern part, in the Sea of Okhotsk and the Sea of Japan, the region of the Kurile-Kamchatka Trench (original data), the Bering Sea (Motoda \& Minoda, 1974) and the northeastern part (Park, 1973).

Vertical distribution. The species was recorded from epipelagial, more often in meso-, upper bathypelagial, single findings known from lower bathyand abyssopelagial (original data).

Material: more than 200 females and 18 males from samples $11,19,61-62,71-72,77-79,89-91$, $118,132,145,156-157,165,169-172,182-186,189-$ 190, 195, 216-218, 222, 227-228, 235, 241-243, 245, 247-248, 250-251, 258-259, 474.

11. Gaetanus kruppii Giesbrecht, 1903

(Figs. 157-158)
Gaetanus kruppil Giesbrecht, 1903: 202, Vervoort, 1963' 126; Mazza, 1965: 285, figs 1-10; Owre \& Foyo, 1967: 44, fig. 119, 134, 243; Tanaka \& Omori, 1970a. 135, fig. 10, Park, 1975b: 11, 24, fig. 8, 1978: 136 , figs 21-22; Bradford \& Jillett, 1980: 48, fig 32.
Gaetanus major Wolfenden, 1903: 125, 1904: 111, 114, 132, 145 , pl. 9, figs 7-8, 1908: 40, fig. 45, 1911. 231; Farran, 1905: 26, 33, 1926: 249.
Gaetanus microcanthus Wilson, 1950: 231, pl. 11, figs 114-116, pl. 19, fig. 246
Description. F e m a 1 e. Total length 4.70-5.70

Fig. 154. Gaetanus inermis. Female (163).

Fig. 155. Gaetanus inermis. Female (163).
mm. Cephalothorax about 3.7-4.0 longer than abdomen. Frontal spine present, not large, curved to rostrum. Spines on Th5 posterior comers in the middle of Th 5 posterior border (lateral view), straight, not reaching the middle of genital segment. A1 longer than body by $3-4$ last joints. Rel A2 without setae; Re2 A2 with 2 setae. Second internal Mx1 lobe with 4 setae; Ri with 15 . Md palp base with 2 setae; Ril Md with 1; Ri2 Md with 9 terminal setae. Lateral plate on Mxp protopodite present, deeply cut. Re P1 with indistinctly 3-jointed Re. Rel P1 without spine; Re2 P1 with spine reaching the
last third of Re 3 , also equipped with external spine. Ri P2 indistinctly 2 -jointed. P4 coxopodite with about 23 spines.

M a 1 e. Total length $4.50-5.20 \mathrm{~mm}$. Cephalothorax about 3.0-3.4 times longer than abdomen. Frontal spine present, varying in shape, longer than in females. Spines on Th5 posterior comers small. A1 reaching the end of cephalothorax - Abd4, or exceeding caudal rami by 2 last joints. Rel A2 without setae; Re2 A2 with 2 setae. Md palp base with 1 seta; Ri2 Md with 9 setae. Re Mxl with $10-11$ setae; Ri with 9 setae. Re P1 incompletely 3 -jointed;

Fig. 156. Gaetanus simplex. Female (170). Male (171).

Fig. 157. Gaetanus kruppu. Female: general view, Ce, Th5 \& Abd, A2, Mxp, P1-P2, C P4 (202), other figures (360).

Fig. 158. Gaetanus krupii. Male (443).

Re1-Re2 without external spines. Ri P2 2-jointed. Left Ri P5 covering two third of Re1 P5 length, and in original specimen even slightly longer than the joint. Re3 left P5 not bilobated, stylet-like, it is longer than Re 2 of its leg.

Type locality: the Mediterranean Sea.
Geographical distribution. The species is widespread in the Atlantic, Pacific and Indian oceans (Vervoort, 1963). In the Atlantic Ocean found to the North till $65^{\circ} \mathrm{N}$ (With, 1915) and to the South to $39^{\circ} \mathrm{S}$ (Wolfenden, 1911). In the Pacific Ocean: in the north-western part to the North up to Japan (Tanaka \& Omori, 1970a), to the South down to the Marian Trench region (original data), in the northeastern part recorded in the region of Vancouver (Esterly, 1906), in the south-eastern part the most southern finding in the region of $59^{\circ} \mathrm{S}$ (Park, 1978), known also from the New Zealand region (Bradford \& Jillett, 1980).

Vertical distribution. The species was found in hauls from lower meso-, upper bathypelagial (Farran, 1926; Park, 1975b), also in total hauls from depths $600-8000 \mathrm{~m}$.

Material: 9 females and 1 male from samples 3-4, 47, 201-202, 360, 443.
12. Gaetanus latifrons Sars, 1905
(Figs. 159-160)
Gaetamus latifrons Sars, 1905: 4, 11; Vervoort, 1957: 61, 1963: 133; Owre \& Foyo, 1967: 44, fig. 244; Grice \& Hulsemann, 1967: 15, 1968: 324; Tanaka \& Omori, 1970a: 138, fig. 11; Park, 1975b: 11, 15, fig. 3, 1978: 144; Bradford \& Jillett, 1980: 51, fig. 33.
Gaetanus holti Farran, 1905: 26, 33, pl. 6, figs 1-12, Wolfenden, 1908: 31, 1911: 232, text-fig. 12.
Gaetanus longispinus Wolfenden, 1905: 7, pl. 3
Description. Fe m a 1 e. Total length $4.40-5.40$ mm (after Wolfenden (1911) 3.75 mm). Cephalothorax about 3-4 times longer than abdomen. Frontal spine present, robust, beginning from anteriordorsal part of cephalon and its base directed forward (lateral view); its top often slightly curved to rostrum. Spines on Th5 posterior comers removed to ventral side of specimen (lateral view), curved, usually longer than genital segment. In dorsal view, they are slightly divergent. A1 reaching the midlength of abdomen, or exceeding caudal rami by 3 last joints. Re1 A2 with 1 seta, Re2 A2 with 3 setae. Md palp base with 2 selae; Ril Md with 2 setae; Ri2 Md with

Fig. 159. Gaetanus latifrons. Female: Ce (from Sars, 1924), other figures (387).

9 terminal and 2 short posterior setae. Mxp protopodite with lateral plate. Re P1 3-jointed, with external spines on each joint. Ri P2 2-jointed. P4 coxopodite with about 15-19-25 spines.

M a 1 e. (Description after Park (1975b) with changes). Total length about 4 mm . Frontal spine small, directed to rostrum. Spines on Th5 posterior corners, as in females, removed to ventral side of specimen (lateral view), long, exceeding the posterior
border of genital segment. A1 reaching distal end of Abd2. Rel and Re2 A2 without setae. Third internal Mxl lobe with 3 small setae; Ri Mx1 with 11 setae; external lobe with 9 setae. Re P1 3-jointed Re1 and Re2 P1 with small external spines; Re3 also with external spine. Re2 P5 right longer than Re1. Ri P5 left is less than a fourth of Rel length. Re3 P5 left bilobated, not stylet-like, short; it is about two third of Re 2 length.

Fig. 160. Gaetanus latifrons. Male (from Park, 1975b)

Type locality North Atlantic.
Geographical distribution. Atlantic Ocean: the species widespread in the northern part, the northernmost finding is in the region of $61-65^{\circ} \mathrm{N}$ (With, 1915), the southernmost: in the Gulf of Guinea (Vervoort, 1963). Pacific Ocean: the most northerm finding in the Japanese waters (Tanaka \& Omori, 1970a), the southernmost region of $47^{\circ} \mathrm{S}$ (Bjomberg, 1973). Indian Ocean: found in the Bay of Bengal (Sewell, 1929; 1947), the southernmost finding in the region of $29^{\circ} \mathrm{S}$ (Grice \& Hulsemann, 1967), and in the south-eastern part to $45-48^{\circ} \mathrm{S}$ (Vervoort, 1957; original data).

Vertical distribution. The species mostly found in meso-, bathypelagial (Farran, 1908, 1926; Park, 1975b; Deevey \& Brooks, 1977, original data).

Material: 10 females from samples 387, 392, 400-401, 403, 419.

13. Gaetanus miles Giesbrecht, 1888

(Figs. 161-162)
Gaetanus mules Giesbrecht 1892 219, 224, 744, pl. 14, figs 21, 24-25, 27, 30, pl. 36, figs 1-3, Grice, 1962. 192, pl 8, figs 8-13, Park, 1975b: 11, 13.
non Gaetamus mules. Park, 1975b-19, figs 4-5.
Description. Fem a 1 e . Total length $3,40-3.80$ mm . Cephalothorax more than 4 times longer than abdomen. Frontal spine present, less than in G. pileatus and G secundus and slightly curved to rostrum. Spines on Th5 posterior corners straight, arranged in the middle of posterior Th5 corncr (lateral view), reaching the midlength of genital segment (dorsal view). A1 twice longer than body. Re1 A2 without setae; Re2 A2 with 1 distal setae. Md palp base with 1? seta; Ril Md with 1 seta; Ri2 Md with 9 terminal setae. Second internal Mx1 lobe with 4 setae; Ri Mx1 with 14 setae. Mxp protopodite with lateral plate, usually strongly cut, its shape variable. Re P1 indistinctly 3 -jointed, with 2 external spines; the former of them exceeding the midlength of Re3 P1. Ri P2 2-jointed.

Male. Total length about 3 mm . Cephalothorax about 3 times longer than abdomen. Frontal spine absent. Spines on Th5 posterior corners were not seen. A1 shorter than body, reaching the last abdominal segment. Rel-Re2 A2 without setae. Md palp base with 1 seta; Ri2 Md with 9 terminal setae; Ri Mx1 with 7 setae; Re with 11 setae. Mxp protopodite without lateral plate, with 2 setae distally. Re P1 indistinctly 3 -jointed; first 2 joints without external spines. P2 with 2-jointed Ri. Re3 P5 left stylet-like, not bilobated.

Type locality the north-eastern part of the Pacific Ocean.

Geographical distribution. Due to mixing of this species with G. secundus Esterly, 1911 it is difficult
to give exact range of the species distributional area. G. mules is distributed in the Atlantic, Indian and Pacific oceans from temperate to tropical waters. Atlantic Ocean: the species known to about $61^{\circ} \mathrm{N}$ (With, 195), in the Baffin Bay found in the region of $74^{\circ} \mathrm{N}$ (Jespersen, 1934), to the South from the Equator recorded only once (Wolfenden, 1911). Pacific Ocean: the northernmost finding region of $35^{\circ} \mathrm{N}$ (Giesbrecht, 1892), the southernmost $32^{\circ} \mathrm{S}$ (original data). Indian Ocean: tropical waters (origmal data), in the Arabian Sea and the Bay of Bengal (Sewell, 1929, 1947).

Vertıcal distribution. The species is one of Gaetanus species regularly found in surface waters (Vervoort, 1963; Bjomberg, 1973; Park, 1975b; Bradford \& Jillett, 1980). In original material the species was found from epi- and mesopelagial, also recorded from total hauls from depths $500-3000 \mathrm{~m}$.

Material: 13 females and 1 male from samples 204-205, 207, 403, 444, 446.

14. Gaetanus minispinus Tanaka, 1969

(Fig. 163)
Gaetanus minispinus Tanaka, 1969. 260, fig. 4, Tanaka \& Omori, 1970a 140; Park, 1975b: 11, 13, Bradford \& Jillett, 1980. 51, fig 35

Description. Female. (Description after Tanaka (1969) with modifications). Total length 5.15-5.56 mm . Cephalothorax about 3.5 times longer than abdomen. Frontal spine present, small, directed to rostrum. Th5 posterior corners with small spines not covering even first third of genital segment. Al by 2 last joints longer than the body. Rel A2 without setae; Re2 A2 with 1 seta near distal margin of joint. Ri2 Md with 9 terminal setae. Mxl second internal lobe with 4 setae; Ri with 14 setae. Mxp protopodite with lateral plate. Re P1 with slight subdivision of 2 first joints; with 2 external spines. First external spine reaching the distal margin of Re3 P1. Ri P2 2-jointed. P4 coxopodite with about 23 spines.

Male unknown.
Notes. According to Tanaka (1969) the species is very close to G. kruppii, but differs in small frontal spine on cephalon; in smaller spines on Th 5 posterior corners, and the shape of lateral plate of Mxp protopodite.

Type locallty: the South China Sca, the region of Bashi Channel.

Geographical distribution. The South China Sea, the New Zealand region (Tanaka \& Omori, 1970a; Bradford \& Jillett, 1980).

Vertical distribution The species was found in haul $500-1000 \mathrm{~m}$ (Bradford \& Jillett, 1980), also in total hauls from $680-915 \mathrm{~m}$.

The species is not examined by me.

Fig. 161. Gaetanus miles. Female (205).

15. Gaetanus minor Farran, 1905

(Fig. 164)
Gaetanus minor Farran, 1905 34, pl. 5, figs 1-11, Vervoort, 1957: 61; Tanaka, 1957b. 172, fig 42 (e-g); Grice, 1962 192, figs 14-20, Owre \& Foyo, 1967 : 45, fig. 246; Tanaka \& Omori, 1970a 140, Park, 1975b: 10, 1978 144, figs 27-28, Bradford \& Jillett, 1980 55, fig. 36
Description Female. Total length $1.70-2.40 \mathrm{~mm}$. Cephalothorax about 4 times longer than abdomen. Frontal spine present, curved to rostrum. Spines of

Th5 posterior corners covering about three fourth of genital segment length, straight and removed to the back side of specimen (lateral view). A1 about as long as body. Re1 A2 without setae; Re2 A2 with 2 setae. Md palp base with 2 setae; Ril Md with 1 ; Ri2 with 9 terminal setae. Second Mx 1 internal lobe with 4 setae; Ri with 13 (?) setae. Mxp protopodite with lateral plate. Re P1 2-jointed, each joint with 1 external spine. Ri P2 1-jointed. P4 coxopodite with $12-15$ spines.

Male unknown.
Type locallty: the Atlantic Ireland Slope.
Geographical distribution. The northernmost dis-

Fig 162. Gaetanus miles. Male (204).
tribution in the Atlantic Ocean: to the south-west of Iceland (Jespersen, 1934), the southernmost; region of $32^{\circ} \mathrm{S}$ (Wolfenden, 1911). Pacific Ocean: the northernmost finding in the Izu region (Tanaka, 1957b), the southernmost in the region of $49^{\circ} \mathrm{S}$ (Park, 1978) Indian Ocean: found in the Arabian Sea and the Bay of Bengal (Sewell, 1929, 1947), the southernmost locality in the region of $27^{\circ} \mathrm{S}$ (Grice \& Hulsemann, 1967). The species is known from tropical waters of all oceans.

Vertical distribution The species was found in samples from meso-, bathypelagial, rarely from
epipelagial (Farran, 1905, 1929, With, 1915; Bradford \& Jillett, 1980) and from total hauls from depths $500-7000 \mathrm{~m}$.

Material 16 females from samples 46, 49-50, 52-$53,201-202,400,413,416,420,443,456-457,573$.
16. Gaetanus minutus (Sars, 1907)
(Figs. 165-166)
Galdus minutus Sats, 1907 10, 1924-25.49, pl 14, figs 14-18, Sewell, 1929 100, Vervoort, 1952d (sheet 45).

Fig. 163. Gaetamus minispinus. Female (from Tanaka, 1969).

3, fig. 4; Wilson, 1950: 234; Tanaka, 1957a: 64, fig. 39 (a-f).
Gaetanus minutus Park, 1975b: 30, fig. 13.
Gaidus moderatus Tanaka, 1957a: 66, fig. 40.
Gaidius columbiae Park, 1967. 231, figs 1-3; Bradford \& Jillett, $1980^{\circ} 58$, figs 39, 62.
Gaidus variabilts Brodsky, 1950. 160, fig 74 (syn.n.); Tanaka \& Omori, 1970a: 127, fig. 6 (a-k); Deevey \& Brooks, 1977: 263.
Gaetanus variablis: Park, 1975b: 13.
Description. Femall e. Total length 2.30-3.70 mm . Cephalothorax 3-4 times longer than abdomen.

Th5 posterior corners with spines of varying size and shape, often asymmetrical, sometimes covering first third of genital segment length, sometimes reduced to small knobs. A1 longer than cephalothorax: reaching the end of genital segment, or the end of caudal rami. Re1 A2 without setae; Re2 A2 with 2 setae. Md palp base with 2 (after Tanaka \& Omori (1970) with 3 setae); Ril Md with 2 (1 of them small, poorly visible) setae; Ri2 Md with 9 terminal setae. Second internal Mxl lobe with 4 setae; Ri with 14 setae. Mxp protopodite without lateral plate. P1 with indistinctly 3-jointed Re. Rel and Re2 P1

Fig 164. Gaetanus minor. Female (202).

Fig. 165. Gaetanus minutus. Female: dorsal view, Th5 \& Abd, Gn, P1 (70), Th5 (a) \& Abd (a) (119), Th5 (b) \& Abd (b) (120), Th5 (c) \& Abd (c) (159), lateral view, Th5 \& Gn: figure made by K.A. Brodsky after specimens from the north-western part of the Pacific Ocean

Fig. 166. Gaetanus minutus. Male: P5 (a): figure made by K.A. Brodsky after specimens from the north-western part of the Pacific Ocean, other figures (70).
incompletely fused, line of fusion visible; Re with 2 external spines. P2 with 2 -jointed Ri and 3 -jointed Re. P4 coxopodite with $17-20$ spines.

- M a 1 e . Total length $1,70-3.40 \mathrm{~mm}$. Cephalothorax about 3.0-3.4 times longer than abdomen. Frontal spine absent. Shape and length of spines of Th5 posterior corners strongly variable as in females, but usually not reaching posterior Abdl border. AI longer than cephalothorax, sometimes they shorter,
often reaching the end of caudal rami. Setation of oral parts reduced in comparison with that in females. Segmentation of P2-P4 as in females. First external Re spine reduced to very small one. P4 coxopodite without spines. Left Re3 P5 not bilobated, stylet-like. P5 similar to that of G tenuispinus.

Notes The species is characterized by high variability. The vast original material on the species was examined for this study, and resulted in a pro-
posal to synonymize Gaidius variabilis Brodsky ($=$ Gaetanus variabilis (Brodsky)) with G. minutus (Sars, 1907). The latter species was recently redescribed by Park (1975b) in details. This detailed redescription has permitted to clarify the status of G variabilis.

Type locality: region of $36-46^{\circ} \mathrm{N}$ and $7-27^{\circ} \mathrm{W}$ (Sars, 1925).

Geographical distribution. Atlantic Ocean: the species was found to the North to $48^{\circ} \mathrm{N}$ (Lysholm, Nordgaard \& Wiborg, 1945), to the South to the Gulf of Mexico (Park, 1975b). Pacific Ocean: the species is known from the Sea of Okhotsk, the Bering Sea and the Sea of Japan, from the Izu region, regions of the Kurile-Kamchatka and Marian Trench (Brodsky, 1950; Tanaka \& Omori, 1970a, original data); in the north-eastern part it is recorded in the region of British Columbia, from the Strait of Georgia (Park, 1967), from the eastern tropical part (Wilson, 1950) and the New Zealand region (Bradford \& Jillett, 1980). Indian Ocean: in the south-western part $10^{\circ} \mathrm{N}$ and $6^{\circ} \mathrm{S}$ (Sewell, 1929; Grice \& Hulsemann, 1967).

Vertical distribution. The species was found in hauls from epipelagial and meso-bathypelagial, also in total hauls from $500-7500 \mathrm{~m}$.

Material: 250 females and 10 males from samples 18, 60-64, 71-73, 78-82, 89-95, 118-120, 123, 132, 134137, 145-146, 156-160, 169-174, 182-186, 188-191, 201, 204-205, 216-219, 221-222, 224-225, 227-229, 230, 232237, 239-240, 242, 244, 246, 248, 250, 474.

17. Gaetanus paracurvicornis

Brodsky, 1950
(Fig. 167)
Gaetanus paracurvicornis Brodsky, 1950: 167, fig. 84, 1952: 49, Park, 1975b: 11, 13; Markhaseva, 1980b: 626, figs 4-11

Description. Fe m a 1 e. Total length 4.60-5.10 mm . Cephalothorax 4.5-5.5 times longer than abdomen. Frontal spine present, robust, directed forward in its base, its top curved to rostrum. Spines of Th5 posterior corners arranged in the middle of lateral border (lateral view), straight, reaching about the midlength of genital segment. Al by 3 last joints longer than body. Rel A2 with 1 seta; Re2 A2 with 2 setae. Md palp base with 2 setae; Ril Md with 2 setae; Ri2 Md with 9 terminal and 1 posterior setae. Second internal Mxl lobe with 5 setae; Ri with 15 setae. Mxp protopodite without lateral plate, but in some specimens traces of the plate visible. P1 with 3-jointed Re; subdivision between Re2 and Re 3 is incomplete; external spines on Re 2 and Re 3 present. Ri P2 2-jointed. P4 coxopodite with about 30 thin spines.

Male unknown.

Type locality: the Kurile-Kamchatka Trench region.

Lectotype: female of fifth copepodite stage from sample 474.

Geographical distribution. Atlantic Ocean: the first finding in the North Atlantic (original data). Pacific Ocean: in the northern part in the regions of KurileKamchatka and Aleutian Trenches; for the first time found in the south-eastern part near the coast of Chile (original data). For the first time in the indooceanic sector of Antarctica: to the South from $62^{\circ} \mathrm{S}$ (original data).

Vertical distribution Abysso-, bathypelagic species, found between 3000 and 5000 m (original data).

Material: 42 females from samples 68, 85, 97-98, $139,147,193,379,444,447,456$.

18. Gaetanus pileatus Farran, 1903

(Figs. 168-169)
Gaetanus pileatus Farran, 1903: 16, pl.17, figs 1-11; Vervoort, 1963: 132; Tanaka \& Omori, 1970a 141; Park, 1975b: 11, 13, 20, fig. 6, 1978. 139, figs 23-24; Bradford \& Jillett, 1980.55 , fig. 37.
Gaetanus caudani Canu, 1896: 442; Giesbrecht \& Schmeil, 1898: 33; Sars, 1905a: 4; Sewell, 1947: 56.
Gaetanus clarus Esterly, 1906: 57, pl. 9, fig. 5, pl. 14, fig. 90; Brodsky, 1950: 166, fig. 81.
Gaetanus recticornis Wolfenden, 1911.288, Taf. 26, fig. 13, text-fig 16 (a-c).
Gaetanus unicornus Esterly, 1906: 57, pl. 9, fig 3, pl.12, fig. 54, pl. 13, fig. 76; Brodsky, 1950: 166, fig. 82.
Gaetanus kruppii (non Giesbrecht, 1903): Sewell, 1947: 62, fig 10 (male only).

Description. F e m a 1 e. Total length 4.90-6.70 mm . Cephalothorax about 5 times longer than abdomen. Frontal spine present in anterior-dorsal part of cephalon (lateral view), directed forward, long, its top not curved to rostrum. Spines on Th5 posterior corners straight, arranged in the middle of posterior Th5 margin (lateral view), exceeding the middle of genital segment, covering nearly two third of its length, slightly divergent (dorsal view). A1 by 5-7 last joints longer than body. Re1 A2 without setae; $\operatorname{Re} 2 A 2$ with 1 seta. Second Mx1 internal lobe with 4 setae; third internal lobe with small sensory teat except setae; Ri with $14-15$ setae. Md palp base with 2 setae; Ril Md with 1 seta; Ri2 Md with 9 terminal setae. Mxp protopodite with lateral plate. P1 with 2 -jointed Re, with external spines on each joint. First external spine not reaching the midlength of the next joint. P4 coxopodite with $17-20$ spines.

M a 1 e. Total length $4.44-5.08 \mathrm{~mm}$. Frontal spine large, strongly curved to rostrum. Spines of Th5 posterior corners small. A1 reaching Abd3-4. Both right Re P5 joints of about equal length. Ri

Fig. 167. Gaetanus paracurvicornis. Female (147).

P5 left is about half, or one third of Re1 P5 length; Re3 P5 nearly two third of Re2 P5 length, stylet-like, not bilobated.

Notes. As noted earlier (Park,1975b) shape and length of frontal spine is highly varying. This variability dependent on the size of specimens: larger specimens usually with larger frontal spine directed further backward. Shape of lateral plate on Mxp protopodite is also varying (Park, 1975b).

Type locality: south and south-western coast of Ireland, Atlantic Ireland slope.

Geographical distribution. Allantic Ocean the northernmost locality is in the region of $65^{\circ} \mathrm{N}$ (With, 1915), the southernmost in the Gulf of Guinea (Ver-
voort, 1963). Pacific Ocean: the northernmost findings in the lzu region (Tanaka \& Omori, 1970a) and San Diego region (Esterly, 1911), the southernmost in the region of $56^{\circ} \mathrm{S}$ (Park, 1978). Indian Ocean: the Arabian Sea and the Bay of Bengal, and the southernmost locality is in the region of $45^{\circ} \mathrm{S} 125^{\circ} \mathrm{E}$ (original data). The species is found in tropical and subtropical zone of all oceans.

Vertical distribution Species is found in mesopelagial (Farran, 1926; Sewell, 1947; Park, 1975b; Bradford \& Jillett, 1980; Vives, 1982) and total hauls from depths from 600 to 5000 m .

Material: 8 females from samples $392,400,403$, 419?, 443-444, 447, 449.

Fig. 168. Gaetanus pileatus. Female (447).

19. Gaetanus pseudolatifrons
 Markhaseva sp. n .

(Fig. 170)
Description. Fe m a 1 e. Total length 3.60-3.70 mm . Cephalothorax about 4 times longer than abdomen. Frontal spine present, slightly curved to rostrum. Th5 posterior corners with long spines, reaching the last fourth of genital segment, they are removed to ventral side (lateral view) and slightly curved. Al longer than body by about 5 last joints. Re1 A2 with 1 seta; $\operatorname{Re} 2$ A2 with 3 setae. Md
palp base with 2 setae; Ril Md with 2 setae; Ri2 Md with 9 long terminal and 2 short posterior setae. Second internal Mx1 lobe with 5 setae; Ri with 15 setae. Mxp protopodite with lateral plate. Re Pl 3 -jointed, with external spines on each joint; each of these spines not reaching the base of the next spine. P4 coxopodite with about 18 spines.

Male unknown.
Notes The species is closely similar to $G l a$ tifrons Sars, 1905, differing in shape of frontal spine and the body of G. latifrons much more sclerotized; specimens of the latter species are larger (4.4-5.4 mm) than G pseudolatifrons

Fig. 169. ? Gaetanus pleatus. Male (419).

Type locality: tropical part of the Pacific Ocean $\left(14^{\circ} \mathrm{N} 132^{\circ} \mathrm{W}\right)$.

Geographical distributıon. Pacific Ocean: the eastern part, the region of Marian Trench (original data).

Vertical distribution The species was found in haul $715-1000 \mathrm{~m}$ and in total haul from 8000 m

Material 3 females from samples 201, 208.
Holotype 1 female $\mathrm{N} 1 / 66263,14^{\circ} \mathrm{N} 132^{\circ} \mathrm{W}$, R/V "Akademik Korolev", 40th cruise, 27.10.1985, St. ABC, layer 715-1000 m, collector A. Korshenko and 1 female paratype $2 / 66264$ (the same locality data).
20. Gaetanus pungens (Giesbrecht, 1895)
(Fig. 171-172)
Gatdus pungens Glesbrecht, 1895. 246, 248, pl 1, figs 1-4, Vervoort, 1949 10, fig 4, Tanaka, 1957a 60, fig. 37 (f-k) (male only), Vervoort, 1957.58; Tanaka \& Omorl, 1970a 119, fig 3, Park, 1975b 13, 1978 130; Bradford \& Jillett, 1980. 61, fig 42
Gaetanus pungens: Park, 1975b 13

Description F e m a 1 e. Total length 2.65-3.20 mm . Cephalothorax slightly more than 3 times longer than abdomen. Spines of ThS posterior corners exceeding the midlength of genital segment and covering about three fifth of its length. The species is very close to G. tenuispinus being only more slender. Oral parts and swimming legs are identical to those in G teniuspinus, with the only difference in that Md palp base with 1 (not 2) setae (Park, 1978, original data).

Male. (Description after Tanaka and Omori (1970a) with modifications). Total length 2.28 mm . Cephalothorax 3.3 times longer than abdomen. Spines of Th5 posterior comers covering about first third of Abd1. A1 exceeding the posterior border of Abd4. Re A2 slightly longer than Ri. Re2 A2 with 2 setae. Md palp base with 1 seta; Ri2 Md with 9 terminal setae. Ri Mx1 with 11 setae; first-third Mx1 internal lobes reduced, and Ri with 10 setae.

Notes The first description of this species is very brief (Giesbrecht, 1895), containing the useful data only on body size and figures of Re P1 2-jointed and Ri P2 1-jointed. Wolfenden (1911:114) suggested the identity of this species with G. tenulspinus (Sars,

Fig. 170. Gaetanus pseudolatufrons sp.n.. Female (208).

Fig 171. Gaetanus pungens. Female (415).

Fig. 172. Gaetanus pungens. Male (from Tanaka \& Omori, 1969a).
1900). Later on the base of this conclusion the species was synonymized with G. tenuispinus (Bradford \& Jillett, 1980). However this decision is premature, because Park (1978:131) found a highly distinguishable feature between these species: the presence of 1 seta on Md palp base in G. pungens and of 2 setae in G. tenuispinus. It may be added that the shape of genital segment (dorsal view) is also useful: the genital segment in G. pungens is narrower in its anterior part than in G. tenuispimus.

Type locality: $35^{\circ} \mathrm{N} 125^{\circ} \mathrm{W}$.
Geographical distribution. Pacific Ocean: the north-western and north-eastern parts (Giesbrecht, 1895; Tanaka \& Omori, 1970a), the New Zealand region (Bradford \& Jillett, 1980): till 61° S. Indian Ocean: the north-eastern part (original data). The Malay Archipelago (Vervoort, 1949).

Vertical distribution. Species is known from total hauls from $500-2000 \mathrm{~m}$.

Material: 2 females from samples $415,418$.

21. Gaetanus robustus Sars, 1905

(Figs. 173-174)

Gaetanus robustus Sars, 1905: 11, 1924-25: 63, pl. 19, figs 1-2; Jespersen, 1934: 63; Park, 1975b: 13.
Gaetanus robustus Grice \& Hulsemann, 1967: 24 (female only); 1968: 324; Tanaka \& Omori, 1970a: 122, fig. 4 (a-h), Bjornberg, 1973: 323.
Pseudogaetanus robustus: Brodsky, 1950. 168, fig. 86. Gaidius validus Farran, 1908: 32, pl. 2, figs 11-17.
Mesogaidlus maximus Wolfenden, 1911: 224, text-fig. 13, pl.26, figs 3-6.
non Galdius robustus' Vervoort, 1949: 12, figs 5-6; Grice \& Hulsemann, 1967 (male only), figs 60-64.

Description. Female. Total length 7.50-9.20 mm . Cephalothorax about 4.5 times longer than abdomen. Spines of Th5 posterior corners robust, slightly curved to the back side of specimen (lateral view), situated in the ventral part of Th5 posterior border, reaching the midlength of genital segment, or even slightly longer (lateral view). Al reaching the end of caudal rami, or slightly shorter. Re1 A2 with 1 seta; Re2 A2 with 3 setae. Md palp base with 2 setae; Ril Md with 2 setae; Ri2 Md with 9 terminal and 2 short posterior setae. Second Mx1 internal lobe with 5 setae; Ri with $14-15$ setae. Mxp protopodite with lateral plate. Re P1 3-jointed, with external spine on each joint. First and second internal spines not reaching the base of the next spine. Ri P2 2-jointed. P4 coxopodite with more than 30 spines.

M a 1 e . Total length 7.00 mm . Frontal spine absent. Posterior Th5 corners with poorly visible spines. Re3 P5 left bilobated, not stylet-like, about 2.5 times shorter then Re2.

Type locality: the Azores Islands region.
Geographical distribution. Atlantic Ocean: to the

North to $62^{\circ} \mathrm{N}$ (Jespersen, 1934), in North Atlantic the southernmost locality $31^{\circ} \mathrm{N}$ (Sars, 1925), found in the southern part (Wolfenden, 1911). Pacific Ocean: in the north-western part from the Kamchatka to the Izu region (Tanaka \& Omori, 1970a; original data) in the south-eastern part between 30° and $40^{\circ} \mathrm{S}$ (Grice \& Hulsemann, 1968; Bjornberg, 1973). Indian Ocean: between $12^{\circ} \mathrm{S}$ and $37^{\circ} \mathrm{S}$ (Grice \& Hulsemann, 1967).

Vertical distribution. The species was found in the Kurile-Kamchatka Trench area from bathy- and upper abyssopelagial, in other regions from hauls from meso- and bathypelagial.

Material: 10 females from samples 7, 18, 47, 73, 94, 134-137, 161, 457, 468, 474.

22. Gaetanus rubellus Markhaseva sp.n.

(Fig. 175)
Description. Fem a l e. Total length 7.30 mm . Cephalothorax 4.5 times longer than abdomen. Frontal spine absent. Th5 posterior corners with moderate spines with thick bases, removed to the ventral side of Th5 posterior border (lateral view). Al reaching the midlength of abdomen. Re1 A2 with 1 seta; Re2 A2 with 3 setae. Md palp base with 2 seta; Ri2 Md with 9 terminal and 1 posterior short seta. Second Mxl internal lobe with 5 setae; Ri with 11 setae. Mxp protopodite with lateral plate. Re Pl 3-jointed, with external spine at each joint. First and second external spines not reaching the distal border of Re2 and Re3 P1. P4 coxopodite with about 35 thin spines.

Male unknown.
Notes. The species is very similar to G. inermis Sars, 1905, differing in the presence of spines on Th5 posterior corners and by longer external spines of Rel and Re2 P1.

Material: 1 female from sample 202.
Holotype: 1 female, N 1/66262, Izu-Bonin Trench region, $29^{\circ} 17^{\prime} \mathrm{N} 142^{\circ} 47^{\prime} \mathrm{E}, \mathrm{R} / \mathrm{V}$ "Vitjaz", 57th crusie, 10.05 .1975 , Sta. 7406 , layer $0-8370 \mathrm{~m}$, ringtrawl.

23. Gaetanus secundus Esterly, 1911

(Fig. 176)
Gaetanus secundus Esterly, 1911: 317, pl.26, fig. 3, pl 28 , figs 38,43, pl. 30 , figs $73,84$.
Gaetanus ferox With, 1915: 111, text-fig. 28 (a-b); Grice \& Hulsemann, 1967: 23, figs 56-59.
Gaetanus miles (non Giesbrecht, 1888): Park, 1975b: 19, figs 4-5.

Description. F e m a 1 e. Total length $3.80-$ 5.20 mm . Cephalothorax about 5 times longer than abdomen. Frontal spine present, long and

Fig. 173. Gaetanus robustus. Female (468).

Fig. 174. Gaetanus robustus. Female (468). Male: figure made by K.A. Brodsky after specimen from the Pacific Ocean

Fig. 175. Gaetanus rubellus sp.n. Female, holotype (202).
robust, directed forward, itstopnotcurved, orweakly curved to rostrum. Spines on Th 5 posterior corners in the middle of posterior Th5 margin (lateral view), straight, exceeding the middle of genital segment. A1 twice longer than body (nearly of the same length as in G. miles). Rel A2 without setae; Re2 A2 with 1 seta. Md palp base with 1 seta; Ril Md with 1 seta; Ri2 Md with 9 terminal setae. Second Mx1 internal lobe with 3 (?) setae; Ri with $14-15$ setae. Mxp protopodite with lateral plate. Re P1 2jointed; with 2 external spines: first exceeding the midlength of last Re P1 joint. Ri P2 1jointed, with traces of subdivision between joints. P4 coxopodite with about 13 spines.

M ale. (Description after Park (1975b) with changes). Total length $3.00-3.55 \mathrm{~mm}$. Frontal spine absent. Medial crest present. Spines of Th5 posterior corners small, hardly visible, often asymmetrical. Rostrum well developed. Al reaching the end of caudal rami. Re1 and Re2 A2 without setae. Md palp base with small setae. $\mathrm{Ri} \mathrm{Mx1}$ with 9 setae; Re with 11 setae; external lobe with 7 setae. Mxp protopodite with 3 setae distally. P1 clearly 3-jointed. Only Re3 P1 with external spine. Re P5 right 2 -jointed, joints of about same length. Ri P5 left nearly reaching the midlength of Rel.

Notes. G. secundus was united with G. miles (Vervoort, 1963:131). I consider it wise to reestablish the species status for G. secundus. The detailed description of G. miles (Giesbrecht, 1892) and a brief, but comprehensive description of G. secundus (Esterly, 1911) give a relevant base to distinguish between these two species (sce the key to Gaetanus species above).

Type locality: the north-eastern part of the Pacific Ocean, San-Diego region.

Geographical distribution. Due to confusion between this species and G. miles, it is difficult to describe its distribution. The localities worth mentioning are: the Gulf of Mexico (Park, 1975b), the Pacific Ocean from the regions of Izu Bonin and Marian Trenches (original data) and off the San Diego region (Esterly, 1911), and the Indian Ocean in the region of $28^{\circ} \mathrm{S}$ (original data).

Vertical distribution. The species was found between 500 and 2000 m (Park, 1975b), also in total hauls from depths of 8000 m .

Material: 11 females from samples 201-202, 403, 410, 413, 416.

24. Gaetanus tenuispinus (Sars, 1900)

(Figs. 177-178)
Chiridius tenuispinus Sars, 1900: 67, pl. 18, 1902: 30, pl. 18.

Gaidius tenuispinus: Brodsky, 1950: 161, fig. 75; Vervoort, 1957: 58, fig. 40; Tanaka, 1957a: 60, fig. 37 (a-e) (female only); Owre \& Foyo, 1967: 43, figs 5, 239-240; Tanaka \& Omori, 1970a: 124, fig. 5; Wheeler, 1970: 10, figs 31-32; Bradford, 1971b: 21, figs 61-63; Bjornberg, 1973: 323; Park, 1978: 127, figs 15-17; Bradford \& Jillett, 1980: 61, fig. 41 (male only).
Gaetanus tenuispinus: Park, 1975b: 13, 30, fig. 12.
Gaidius boreale Wolfenden, 1902: 362, 365, 1903: 265.
Gaidius similis Λ. Scott, 1909: 51, pl. 7, figs 1-11.
Gaidius gracilis Brady, 1918: 19, pl. 7.
Description. Fe m a 1 e . Total length $3.00-3.80$ mm . Cephalothorax about 3.6-3.8 times longer than abdomen. Frontal spine absent. Posterior Th5 corners with spines always exceeding the midlength of genital segment, usually covering three-four fifth of genital segment length, sometimes reaching its posterior border. Al reaching the midlength of abdomen, or the end of caudal rami. Rel A2 without setae, $\operatorname{Re} 2$ A2 with 2 setae. Md palp base with 2 setae; Ril Md with 2 setae (1 of them very small, poorly visible) setae; Ri2 Md with 9 terminal setae. Mxl second internal lobe with 4 setac; Ri with 15 setae. Mxp protopodite without lateral plate. P1 with indistinct subdivision between Rel and $\operatorname{Re} 2$ (some authors noted complete division (Park, 1975b). External spine of Re 2 P 1 covering about one third of the length of the next segment, external spine of Re3 P1 about as long as its joint. Ri P2 2-jointed. P4 coxopodite with group of about 20 thin spines.

M a 1 e. Total length $2.00-3.43 \mathrm{~mm}$. Cephalothorax about 3 times longer than abdomen. Th5 posterior corners with spines strongly varying in length, usually they are longer than Abd1, but sometimes as long as Abd1, or even shorter. A1 reaching about the midlength of abdomen. A2 setation as in females; reduced on Ri2 A2 only; Ri1 A2 much thicker than in females. Md palp base with 1 seta; Ri2 Md with 9 terminal setae. First-third internal Mx1 lobes reduced, protopodite base and Ri together with about $7-8$ setac (12 after Tanaka \& Omori (1970a)); Re with 11 setae, external lobe with 7 setae. Mxp protopodite with 2 setae (3 according to Park (1975b) in distal group. Re P1 incompletely 3-jointed (according to Park (1975b) 3-jointed). Re2 P1 often with rudimentary external spine. Ri P2 2-jointed. P4 coxopodite without spines and hairs. Re3 P5 left stylet-like, not bilobated about as long as Re3 of its leg. Ri P5 left covering about four fifth of Rel P5 left length.

Geographical distribution. Cosmopolitan species. Widespread in the Norwegian and Greenland seas, found in the Central part of Arctic Basin to $86^{\circ} \mathrm{N}$ (Johnson, 1963; original data). Atlantic Ocean: widespread in the northern part, however between $19^{\circ} \mathrm{N}$ and the Equator only single findings are registered (Wheeler, 1970), in the southern part found from 30° S to the South (Wolfenden, 1911) to the region

Fig. 176. Gaetanus secundus. Female (201). Male (from Park, 1975b).

Fig. 177. Gaetanus temuispinus. Female: Ce (a), Th5 (a) \& Abd (a) (134-137), Th5 (b) \& Abd (b) (482), other figures (542).

Fig. 178. Gaetanus tenuispinus. Female (542). Male (Norwegian Sea).
of South Georgia (Hardy \& Gunther, 1935). Pacific Ocean: the Bering Sea, along north-western part, in the region of Aleutian Slope (original data), off California (Wilson, 1950), in the south-eastern and southwestern parts (Bjornberg, 1973; Bradford \& Jillett, 1980; original data). Widespread in the Antarctic to the South down to $68^{\circ} \mathrm{S}$ (original data). Indian Ocean: rarely found: once to the North from the Equator (Grice \& Hulsemann, 1967), more often occurring in subantarctic antarctic part to the South to 65° S (Vervoort, 1957; original data).

Vertical distribution. Mostly meso-bathypelagic species, rare in abyssal (Wheeler, 1970), in the Arctic Basin recorded in hauls from epipelagial (Johnson, 1963; original data), in Antarctic sometimes between 100 and 250 m .

Material: about 200 females and 7 males from samples $62,64,80,90,92,119,134-137,145,158$, $171-173,188,194,201-202,380,404-405,430,432-$ 436, 445-449, 451, 457, 464, 469, 470, 474, 479, $482,522,524,529,534-535,538,542,545-546$, 549, 551, 555.

15. Jaschnovia Markhaseva, 1980

Type species Scolecithrix tolli Linko, 1913, by mo notypy.

Derjugina Jaschnov, 1947: 3-4 (nom praeocc.), non Popov, 1931, Pisces, Zoarcidae Jaschnovia Markhaseva, 1980: 63

Desciption. F e m a 1 e. Total length 2.15-2.50 mm . Cephalothorax 3.1-4.0 times longer than abdomen. Body oval, or elongate-oval, anterior end of cephalon rounded. Crest and rostrum absent. Cephalon and Th1 fused, sometimes indistinctly separated. Between Th4 and Th5 often the suture of fusion is visible. Th5 posterior corners rounded, or pointed. Th5 and genital segment symmetrical. Cephalothorax about 3-4 times longer than abdomen, genital segment with minute spinules dorsally; posterior borders of abdominal segments with minute spinules. Genital segment of female as long as, or slightly longer than 2 following segments together. A1 24-jointed nearly as long as cephalothorax, slightly shorter, or slightly longer than cephalothorax. Re A2 7-jointed, longer than 2 -jointed Ri. A2 coxopodite with 1 seta; basipodite with 2 setae. Rel and $\operatorname{Re} 2 \mathrm{~A} 2$ with 2 setae each; Re3-Re6 with 1 long setae each; Re7 with 3 long terminal setae. Ril A2 with 2 setae, Ri2 A2 with 13-14 (6-7 setae on external and 7 setae on internal lobes). Md palp base with 2 setae; Ri 2-jointed, not more then half shorter Re. Ril Md with 2 setae; Ri2 Md with 9
setae. Mxl gnathobase with 9 claw-like terminal spines and 4 setae on posterior surface, distal part of this lobe with group of spinules. MxI second internal lobe with 5 setae; third internal lobe with 4 setae and surface spinules distally. Mx 1 protopodite near Ri base with 5 setae; Ri with $15-16$ setae; Re with 10 setae. Mx2 with six endites, endites with minute spinules on the surface. One of setae of Mx2 fifth endite thickened into claw-like spine; in distal part of Ri 6 setae. Mxp protopodite with 1 long seta in proximal part, further with groups of 2, 3 and 3 setae; without digital appendage. Ril Mxp slightly longer than protopodite, with 3 setae distally. Re P1-P4 3-jointed. Ri P1 1-jointed. Ri P2 2-jointed. Rel P1 without external spine; Re2-Re3 with external spine each. Posterior surface of Re2Re 3 , of all Ri joints and P4 coxopodite with minute spinules. P4 coxopodite near internal seta base with group of 6-8 larger spines on the posterior surface.

M a 1 e . Total length $1.85-2.30 \mathrm{~mm}$. Cephalothorax 2.7-2.8 times longer than abdomen. Rostrum absent. Posterior Th5 corners rounded (lateral view), slightly pointed and curved externally (dorsal view). A1 23 -jointed, reaching the middle of posterior border of genital segment. Oral parts in comparison with those in females rudimentary. P1-P4 as in females, not so strongly spinulose. P5 biramous. Right Ri unclearly 2 -jointed, left 1 -jointed. P5 of simple structure. Right Re P5 2 -jointed. Right Re2 P5 proximal part with group of spinules on lateral surface and with dense thin hairs along internal margin, with long curved spine distally. Left Re P5 3-jointed. Left Rel P5 with dense thin hairs along internal margin; Re2 P5 swollen, with group of hairs distally; Re3 the shortest and prolonged into spine distally and also with hairs in proximal part of its internal margin.

The genus Jaschnovia includes 2 species.

Key to species of Jaschnovia

Females

1(2) Th5 posterior corners rounded (dorsal and lateral view) I. Ja. brevis (Farran)
2(1) Th5 posterior corners pointed (dorsal and lateral view) 2. Ja. tolli (Linko)

Males

1(2) Th5 posterior corners not curved externally (dorsal view) 1. Ja. brevis (Farran)

2(1) Th5 posterior corners curved externally (dorsal view) 2. Ja. tolli (Linko)

1. Jaschnovia brevis (Farran, 1936)

(Figs. 179-180)
Bradyetes brevis Farran, 1936a: 238, figs 1-12; Vervoort, 1952b (sheet 43): 3, fig. 4; Wheeler, 1970: 8.
Derjugina tollu (non Jaschnov, 1947): Johnson, 1963: 96. Jaschnovia johnsoni Markhaseva, 1980. 68, 75, fig. 3 (syn.n.)

Description. Fe m a 1 e. Total length 2.31-2.45 mm . Cephalothorax 3.1-3.5 times longer than abdomen. Th5 posterior corners rounded. Al nearly as long as cephalothorax, or reaching Th3. Oral parts and P1-P4 typical of the genus.

M a 1 e . Total length $1.85-2.30 \mathrm{~mm}$. Cephalothorax 2.8 times longer than abdomen. Th5 posterior corners rounded, not curved externally (dorsal view). A1 reaching the midlength of genital segment. P1-P4 as in females, only P4 surface setation weaker. P5 typical of the genus.

Notes. Bradyetes brevis Farran, 1936 herein is removed from Bradyetes to Jaschnovia and Ja johnsoni Markhaseva, 1980 is considered its junior synonym. The most important distinguishing features between genera Jaschnovia and Bradyetes are: in Jaschnovia Mxp protopodite without digital appendage distally, Re1 P1 without external spine.

Type locality: $72^{\circ} 55^{\prime} \mathrm{N} 25^{\circ} \mathrm{W}$.
Geographical distribution. The central part of Arctic Basin (Johnson, 1963; original data), the region of New Siberian Islands (Markhaseva, 1980a). Atlantic Ocean: the north-western part: region of $37^{\circ} \mathrm{N}$ (Wheeler, 1970), the Greenland Sea (Farran, 1936a).

Vertical distribution. The ecology of the species is obscure: it was found in total hauls from 50 m when net contacted with bottom (Farran, 1936a) and in near-bottom tows from depths 17 m (Markhaseva, 1980a) which might be considered an evidence of relation the life cycle to the sea bed, on the other hand the species was found in under ice hauls (surface) in the central part of Arctic Basin (Markhaseva, 1980a).

Material: 24 females and 3 males from samples 564-566, 568.

2. Jaschnovia tolli (Linko, 1913)

(Figs. 181-182)
Scolecithrix tolli Linko, 1913: figs 23-25.
Derjuginta toll: Jaschnọ, 1947. 3, fig.1, Brodsky, 1950: 156, fig. 71.
Jaschnova toll: Markhaseva, 1980. 65, figs 1-2.
Description F e male. Total length 2.15-2.50 mm . Cephalothorax about 4 times longer than abdomen. Th5 posterior comers prolonged and pointed, reaching the midlength of genital segment. A1 reaching the midlength of genital segment. Ri2 A2 external
lobe with 6 setae. Ri Mx1 with 16 setae. Oral parts and P1-P4 typical of the genus.

Male. Total length $2.10-2.20 \mathrm{~mm}$. Cephalothorax about 2.7 times longer than abdomen. Th5 posterior corners rounded (lateral view), pointed and curved externally (dorsal view). A1 reaching the posterior border of genital segment. Oral parts in comparison with those in females rudimentary. P1-P4 as in females, but P4 weakly spinulose on their surface. P5 typical of the genus.

Type locality: The East Siberian Sea near New Siberian Islands.

Geographical distribution. The species is widespread in coastal Siberian seas: the Kara Sea, Laptev, East Siberian and Chuckchee seas, in the Baffin Bay and also the White Sea. There are findings in the Barents Sea (Zelikman, 1961), and data on recording outside the Arctic Basin in the Sea of Okhotsk (Brodsky, 1957).

Vertical distribution. The species may be found under desalination. Adult specimens were found in the end of September and in October in the East Siberian Sea and in the Laptev Sea (Jaschnov, 1947). The majority of specimens were found in September in the White Sea in the near bottom tows obtained with Beyer net (original data). It seems highly probable that at some stages of the life cycle the species is connected with near-bottom layers.

Material 2 females and 2 males from sample 459 and some specimens of both sexes in non-catalogued material obtained from the White Sea.

16. Lutamator Bradford, 1969

Type species Lutamator hurleyi Bradford, 1969, by monotypy.

Lutamator Bradford, 1969b-491; Bradford \& Jillett, 1980: 11; Alvarez, 1984: 99

Description Female. (Description after Bradford (1969b) and Alvarez (1984) with changes). Total length 5.15-5.20 mm Cephalothorax 3, or more than 4 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused. Rostrum in form of a blunt rounded plate. Crest absent. Th5 and genital segment symmetrical; Th5 pointed. A1 24 -jointed, some joints with long annulate setae. Re A 2 as long as Ri A2; Ri thicker than Re; coxopodite and basipodite with 1 seta each; Ri1 A2 with 1 seta; Ri2 A2 with 8 setae on internal ($7+1$) and 6 long terminal and 1 posterior setae on external lobe. Rel A2 with 1 seta; Re2 A2 with 2 setae; Re3-Re6 with 1 seta each; Re 7 with 3 terminal setae. Md palp base and Ril Md without setae; Ri2 with 4-5 setae. Mxl gnathobase with 11-12 setae. Mxl second internal lobe with $4-5$ setae; third lobe with 2-3 setae; protopodite near Ri base with 4 setae; Ri

Fig. 179. Jaschnovia brevis. Female (from Markhaseva, 1980a),

Fig. 180. Jaschnovia brevis. Male (from Markhaseva, 1980a).

Fig. 181. Jaschnovia tolli. Female (from Markhaseva, 1980a).

Fig 182 Jaschnovia tollı Male (from Markhaseva, 1980a)
and Re with 11 setae each. Mx2 with 1 spine on fourth and fifth endites thickened and more sclerotized than the rest. Mxp protopodite without seta in the proximal part of joint. Digital appendage absent; in distal setae group there are 2-3 setae; otherwise limb is typical of Aetideidae. Re P1 3-jointed. Re P1 with external spines on each joint. In distal external corner of P1 basipodite small spine present. Ri P1 1-jointed; external lobe well developed and with hairs along external border. Ri P2 2-jointed. All other swimming legs rami 3 -jointed. Spines on P4 coxopodite absent.

Male unknown.
The genus Lutamator includes 2 species.

Key to species of Lutamator

Females

1(2) Mxl second internal lobe with 5 and third internal lobe with 2 setae \qquad 1. L. elegans Alvarez

2(1) Mx1 second internal lobe with 4 setae and third internal lobe with 3 setae 2. L. hurlei Bradford

1. Lutamator elegans Alvarez, 1984

(Fig. 183)
Lutamator elegans Alvarez, 1984: 99-110, 104, figs 13-30.
Description. Fem a 1 e. (Description after Alvarez (1984) with modifications). Total length 5.2 mm . Cepahlothorax nearly 3 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused. Th5 ending with a small point. Rostrum in form of a short blunt plate. A1 24 -jointed, reaching the end of cephalothorax. Ri A2 as long as Re A2. Coxopodite A2, basipodite and Re1 A2 with 1 seta each; Re2 A2 with 2 setae; Ril A2 with 1 seta; external lobe of Ri2 A2 with 7 long terminal and 1 shorter posterior seta; internal lobe with 7 (4 long and 3 short setae). Md palp base and Ril Md without seta; Ri2 Md with 5 setae. Mx1 gnathobase with 12 setae. Mxl second internal lobe with 5 setae; third internal lobe with 2 setae; protopodite near Ri base with 4 setac; Ri and Re with 11 setae each; external lobe with 8 setae. Mx2 with claw-like spine at fifth and fourth endites. First-fourth Mx2 endites with spinules on surface near proximal margin of lobes. Mxp robust with groups of 2, 3 and 3 setae (from proximal to distal end of the joint). Pl-P4 with segmentation typical of the family. Re P1 with external spines on each joint. Ri P1 with well developed external lobe covered with hairs; basipodite with small spine in external distal corner of joint. P2 coxopodite with internal seta. P3 and P4 coxopodites without such seta. Number of teeth on terminal spines of P2-P4 Re3 is 46,50 and 54 respectively.

Male unknown.
Type locality: off the Brazilian coast.
Geographcial distribution. The species is known off the Brazilian coast (Alvarez, 1984).

Vertical distribution. The species was found at depths 900 m and 460 m above the sea bed (Alvarez, 1984).

The species was not examined by me.

2. Lutamator hurlei Bradford, 1969

(Fig. 184)
Lutamator hurlei Bradford, 1969: 491, figs 128-142.
Description F e m a le. (Description after Bradford (1969b) with modifications). Total length 5.15 mm . Cephalothorax about 4 times longer than abdomen. Genital segment with ventral swelling prominent (lateral view). Line of fusion between Th4-Th5 visible. A1 reaching Th3. Rel A2 with 1 seta; $\operatorname{Re} 2$ A2 with 2 setae. Md palp base without setae; Ril Md without seta. Mxl second internal lobe with 4 setae; third internal lobe with 3 setae. Mx2 fifth endite large. P1-P4 typical of the genus.

Male unknown.
Type locality: off East Cape, north-east New Zealand.

Geographical distribution. The species is known from type locality only (Bradford, 1969b).

17. Mesocomantenna Alvarez, 1986

Type species. Mesocomantenna spinosa Alvarez, 1986, by original designation.

Mesocomantenna Alvarez, 1986: 865.
Description. Fem a 1 e. (Description after Alvarez (1986) with modifications). Total length 1.90 mm . Cephalothorax about 3.7 times longer than abdomen. Rostrum absent. Crest absent. Cephalon and Th1 incompletely fused; Th4-Th5 separated. Th5 and genital segment symmetrical. Posterior Th5 corners prolonged into spines directed backward. A1 24jointed, exceeding Th2. Re A2 shorter Ri A2; basipodite with 2 ; Ril with 1 seta. Ri2 A2 internal lobe with 4 long and 4 short terminal setae; external lobe with 6 long terminal seta. Rel A2 without setae; Re2 A2 with 1 seta; latter joint partly fused with Re3 A2; Re3-Re6 A2 with 1 seta each, Re7 A2 short as in genus Comantenna and supplied with 1 terminal short seta. Md palp base with 2 very small setae; Ril Md with 1; Ri2 Md with 5 setae. Mxl gnathobase with 9 terminal claw-like setae and 4 setae on the surface. Second and third Mxl internal lobes with 3 setae each; protopodite near the Ri base with 3 setae; Ri and Re with 11 setae each;

Fig 183 Lutamator elegans Female (from Alvarez, 1984)

Fig 184 Lutamator hurleı Female (from Bradford, 1969b)

6 setae on external lobe. Lateral surfaces of first and second endites of Mx2 near setae bases with thick sclerotized spines similar to that in Paracomantenna. One seta of Mx2 fifth endite is thickened into claw-like spine. Mxp protopodite setation typical of Aetideidae, and in the distal setae group with big digital appendage. Re P1 with external spines at all 3 joints; spines long; exceeding length of next joint. Ri P1 1-jointed with well developed external lobe, with hairs along external border. Ri P2 2 -jointed, other rami of swimming legs 3 -jointed. P4 coxopodite without spines.

Male unknown.
Monotypic genus.

1. Mesocomantenna spinosa
 Alvarez, 1986

(Fig. 185)
Mesocomantenna spinosa Alvarez, 1986: 865, 868-869, figs 25-42.

Description. Fe m a 1 e. (Description after Alvarez (1986) with modifications). Total length 1.9 mm . Cephalothorax about 3.7 times longer than abdomen. Cephalon partly fused with Th1. Rostrum absent. Th5 posterior corners upturned backwards, reaching almost the posterior end of genital segment (dorsal view). A1 24 -jointed, exceeding Th2. Structure of oral parts and P1-P4 typical of the genus.

Male unknown.
Type locality: $26^{\circ} 58^{\prime} \mathrm{S} 46^{\circ} 32^{\prime} \mathrm{W}$.
Geographical distribution. The species is known from type locality only: the continental shelf and slope of Brazil (Alvarez, 1986).

Vertical distribution. The species was found at depth 346 m (Alvarez, 1986).

The species was not examined by me.

18. Paivella Vervoort, 1965

Type species: Paivella inaciae Vervoort, 1965, by original designation.

Pavella Vervoort, 1965' 199; Whecler, 1970: 11.
Description. Female. (Description after Vervoort (1965) with modifications). Total length 1.27 1.42 mm . Cephalothorax $3.0-3.4$ times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused. Rostrum present, bifurcate. Crest absent. Th5 posterior corners pointed, symmetrical, as well as genital segment. Genital segment with lateral projections (P. naporai), or without (P. inaciae) them. A1 23 -jointed, reaching the midlength of abdomen, or the end of caudal rami. Re A2 longer than Ri A2. A2 coxopodite with 1 seta; basipodite with 2
setae. Ril A2 with 1-2 setae; Ri2 with 7-8 terminal setae on internal lobe and 6 terminal and 1 posterior setae on external lobe. Rel A2 with 1 seta; or it is absent; Re2 with $2-3$ setae; Re3-Re6 with 1 seta each; $\operatorname{Re} 7$ with 3 terminal setae. Md palp base and Ril Md with 2 setae. Ri2 Md with 9 terminal and 1 posterior seta. Mxl gnathobase with 9 terminal setae and 4 setae on surface. Second Mxl internal lobe with $3-4$; third internal lobe with 3-4 setae; protopodite with 4-5 setae; Ri with $10-11$ setae; Re with 11 setae; external lobe with 7-9 setae. Fourth and fifth Mx2 endites with 1 seta thickened into claw-like spine. Re P1 3-jointed. Rel PI without external spine; Ri external lobe well developed, with fine spinules along external border apically. Ri P2 1 -jointed, all other swimming leg rami 3 -jointed. P4 coxopodite with 2 parallel rows of 4-6 spines on the posterior surface near the base of internal seta proximally.

M a 1 c . Total length 1.15 mm . Cephalothorax about 3 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 completely fused. Rostrum present, as in female. Crest absent. Th5 posterior corners rounded. A1 reaching the midlength of Abd 2 . A2 as in female. Ri1 and Ri2 A2 without setae. Md as in females; gnathobase strongly reduced. Mxl and Mx2 reduced. Mxp setation in comparison with that in female reduced. P1-P4 as in females, but Ri P2 indistinctly 2 -jointed. P4 coxopodite without internal seta and rows of spines on posterior surface of joint. P5 uniramous. P5 left 5-jointed, apical joint ending with spine, covered with hairs. P5 right 4 jointed, apical joint in its distal part prolonged into needle-shaped appendage and significantly shorter than left P5, reaching the midlength of third joint of left leg.

The genus Paivella includes 2 species.

Key to species of Paivella

Females

1(2) Genital segment without lateral projections . . .
. 1. P. inaciae Vervoort
2(1) Genital segment with lateral projections
2. P. naporai Wheeler

1. Paivella inaciae Vervoort, 1965
(Fig. 186)
Pavella inaciae Vervoort, 1965: 201-210, figs 36-41.
Description. Female. (Description after Vervoort (1965) with modifications). Total length 1.42 1.46 mm . Cephalothorax about 3.4 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 completely fused. Rostrum present, bifurcate. Th5

posterior corners of triangular shape, pointed (dorsal and lateral view), slightly exceeding the midlength of genital segment. Posterior margins of the Abdl-4 without teeth. Caudal rami exactly twice as long as wide. Al 23 -jointed, reaching the end of caudal rami. A2 coxopodite with 1 seta; basipodite with 2 fine setae. Rel A2 without setae; $\operatorname{Re} 2$ with 3 setae; $\operatorname{Re} 7$ with 3 terminal setae. Ril A2 with 2 setae; Ri2 with 8 setae on internal and $6+1$ on external lobe. Md palp base with 2 setae; Ril Md with 2 and Ri 2 Md with 9 terminal and 1 posterior setae. Mxl gnathobase with 9 terminal setae and 4 setae on posterior surface. Second Mx1 internal lobe with 3 setae; third internal lobe with 4 setae; protopodite near Ri base with 4 setae; Ri with 10 setae; Re with 11 setae; external lobe with 9 setae. Mx2 with seta slightly thickened into spine on fourth endite, and rather thickened spine on fifth endite. Mxp typical of the genus. Rel P1 without spine. Ri external lobe well developed, with spinules an-
teriorly. Ri P2 1-jointed. P4 coxopodite with 2 transverse rows of 6 acute spines on posterior surface.

M a 1 e. (Description after Vervoort (1965) with modifications). Total length 1.15 mm . Cephalothorax about 3.1 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 completely fused. Rostrum as in females, but with shorter points. Th5 posterior corners rounded. Genital segment with opening on the left. Caudal rami as in females. A1 reaching the midlength of $A b d 2$: 8-10, 20-21 and 24-25 joints fused. The setation of A2 strongly reduced; Ri1 A2 and Ri2 A2 without setae. Rel A2 with 2 setae of lesser size than in female. Md as in female. Mx1 reduced, gnathobase without setae; third internal lobe with 2 setae; protopodite with 3 setae near Ri base; Ri with 3 setae; Re with 10 setae; external lobe with 5 setae. Mxp as in females, but number of setae reduced. P1-P4 as in females, but Rel and Re2 P1 completely separated. Ri P2 with incomplete segmentation. P4 coxopodite without spines on pos-

Fig. 186. Paivella inaciae. Female, male (from Vervoort, 1965).
terior surface and internal seta. P5 uniramous. Left P5 elongated, 5 -jointed, terminal joint ending into spine with patch of spiniform hairs: Right P5 4jointed, terminal joint ending in fine long point. P5 left and right legs of unequal length.

Type locality: $5^{\circ} 56^{\prime} \mathrm{N} 4^{\circ} 26^{\prime} \mathrm{E}$.
Geographical distribution. The species is known off Nigeria, known from type locality only.

Vertical distribution The species was found between 95 m depth and surface (Vervoort, 1965).

The species was not examined by me.

2. Paivella naporai Wheeler, 1970

(Fig. 187)
Pavella naporal Wheeler, 1970 10-11, figs 33-48.
Description. Female. (Description after Wheeler (1970) with modifications). Total length 1.27 mm . Cephalon and Th1, as well as Th4-Th5 fused. Rostrum present, biramous. Th5 posterior corners
triangular and pointed, covering about one third of length of genital segment. Genital segment produced into 2 distinct protuberances extending ventrally and laterally, visible in dorsal view. Caudal rami twice longer than wide. A1 22 -jointed, reaching the midlength of Abd. A2 coxopodite with 1 seta; basipodite with 2 setae. Re1 A2 with 1 seta; $\operatorname{Re} 2 \mathrm{~A} 2$ with 2 setae; Ri1 A2 with 1 seta; Ri2 A2 with 14 setae (7 on external and 7 on internal lobes). Md palp base with 2 setae; Ril Md with 2 ; Ri2 Md with 9 terminal and 1 posterior seta. Mx1 gnathobase with 9 terminal setae and 4 setae on posterior surface. Second Mx1 internal lobe with 4 setae; third internal lobe with 3 setae; protopodite near Ri base with 5 setae; Ri with 11 setae; Re with 11 setae; external lobe with 7 setae. Mx2 with seta thickened into sclerotized spine on fourth and fifth endites. Mxp protopodite with groups of 2,2 and 2 setae. Re1 Pl without external spine. Ri P1 with well developed external lobe, apically covered by teeth. Ri P2 1jointed. P4 coxopodite with 2 transverse rows of spines on the posterior surface.

Fig. 187. Paivella naporai. Female (from Wheeler, 1970).

Male unknown.

Type localtty: $15^{\circ} 00^{\prime} \mathrm{S} 30^{\circ} 00^{\prime} \mathrm{W}$.
Geographical distribution The species was found from South Atlantic (Wheeler, 1970).

Vertıcal distribution. The species was found between 2755 and 4000 m (Wheeler, 1970).

The species was not examined by me.
19. Paracomantenna Campaner, 1978

Type species Bryaxis minor Farran, 1905, by original designation.

Paracomantenna Campaner, 1978: 871, Alvarez, 1986 858

Description. F e m a 1 e. (Description after Campaner (1978) with modifications). Total length 1.41.9 mm . Cephalothorax $3.0-3.8$ times longer than abdomen. Cephalon and Th1, fused as well as Th4-

Th5, or they are separated. Crest and rostrum absent. Th5 and genital segment symmetrical. Posterior Th5 corners prolonged into points, upturned backward. A1 23 -jointed. Re A2 slightly shorter, or as long as Ri A2. A2 basipodite with $1-2$ setae; Ril A2 with 1 seta; Ri2 A2 with 8 setae on internal and 5 terminal and 1 posterior setae on external lobes. Rel A2 without setae; Re2 A2 with 1 setae; each joint of $\operatorname{Re} 3-\operatorname{Re} 6 \mathrm{~A} 2$ with 1 seta; $\operatorname{Re} 7$ with 3 terminal setae. Length of Re7 A2 typical of Aetideidae. Md palp base with 1 seta; or seta absent, Ril Md with 1 and Ri 2 Md with 4-5 setae. Mxl gnathobase with 9 terminal thickened claw-like spines; 1 seta of lesser size and 4 setae on posterior surface. Second Mx1 internal lobe with 4 setae; third internal lobe with 3 setae; protopodite near Ri base with 4-5 setae; Ri with 12 setae; Re with 11 setae; external lobe with 7 setae. Fourth and fifth endites of Mx2 each with 1 seta thickened into sclerotized spine (after Farran (1905), only seta on the fifth endite is thickened into spine). Surfaces of Mx2 first and second
endites, or first-fourth endites with rows of large foliaceous, thick, strongly sclerotized spines. Mxp protopodite with or without digital appendage near the base of distal setae group, otherwise Mxp protopodite setation typical of Aetideidae, but there may be 2 , not 3 setae in distal setae group. Re P1 3jointed, each joint with external spine. Ri P1 external lobe well developed, with hairs apically. Ri P2 2jointed; all other P2-P4 rami 3-jointed. P4 coxopodite without spines.

Male unknown.
Notes Campaner (1978) established Paracomantenna from the following features: developed terminal setae on Re7 A2, shape of large spines on Mx2 endites surfaces. P minor (Farran, 1905) = Bryaxis minor Farran, 1905 was choosen as the type species, but as properly noted later, (Bradford \& Jillett 1980) it is questionable why P. minor and P. magalyae are attributed to the same genus despite the absence of sensory (digital) appendage on Mxp protopodite in P. minor.

The genus Paracomantenna includes 3 species.

Key to species of Paracomantenna

Femates

1(2) Distal part of Mxp protopodite without tube-like or digital appendage 3. P. minor (Farran)
2(1) Distal part of Mxp protopodite with tube-like or digital appendage.
3(4) Md palp base with 1 small seta; Ri2 Md with 5 setae. Mxp protopodite distally with tube-like appendage. Total length 1.4 mm
. P. gracilis Alvarez
4(3) Md palp base without seta; Ri2 Md with 4 setae. Mxp protopodite distally with digital appendage. Total length 1.8-1.9 mm . 1. P. magalyae Campaner

1. Paracomantenna gracilis

Alvarez, 1986
(Fig. 188)
Paracomantenna graclis Alvarez, 1986: 869, 872, 875, figs 43-58.

Description. Female. (Description after Alvarez (1986) with modifications). Total length 1.4 mm . Cephalothorax about 3 times longer than abdomen. Cephalon and Thl fused, incomplete suture visible dorsally. Rostrum absent. Th5 posterior corners upturned, not reaching the midlength of genital segment (dorsal view). Al 23 -jointed, reaching Th4. Re A2 as long as Ri A2; Rel without seta; Re2 with 1 distal seta; $\operatorname{Re} 7$ longer than 4 previous joints with 3 long terminal setae. A2 basipodite with 2 setae. Ril A2 with 1 seta; Ri2 A2 with 4 long
and 4 small setae on internal lobe and 5 long and 1 small setae on external lobe. Md palp base with 1 small seta. Ril Md with 1 seta; Ri2 Md with 5 setae. Mx1 gnathobase with 8 terminal and 4 surface setae. Second internal Mxl lobe with 4 ; third with 3 setae; protopodite near Ri base with 4 setae; Ri with 12 setae; Re with 11 setae; external lobe with 8 setae. First-fourth Mx2 endites with spines and teeth on the posterior suface, those on the second endite are largest (4 longer and 4 smaller); one of seta on fourth and fifth endites transformed into spine; that on fifth endite strong, with row of 17 laminar spines. Mxp protopodite with 1 proximal seta, and 3 groups (from proximal to distal part of the joint) of 2, 3 and 3 setae and with long tube-like appendage in distal setae group. P1-P4 with segmentation typical of Aetideidae. Re P1 3-jointed with external spine on each joint. Ri Pl external lobe well developed, with hairs apically.

Male unknown.
Type locality $28^{\circ} 36^{\prime} \mathrm{S} 47^{\circ} 55^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: off the Brazilian coast (Alvarez, 1986).

Vertical distribution The species was collected at 135 m depth above sea bottom (Alvarez, 1986). The species was not examined by me.

2. Paracomantenna magalyae
 Campaner, 1978

(Fig. 189)
Paracomantenna magalyae Campaner, 1978: 872, 876, figs 35-36, 38-52; Alvarez, 1986: 875, fig. 61.

Description. Female. (Description after Campaner (1978) with modifications). Total length $1.80-$ 1.90 mm . Cephalothorax nearly 3.8 times longer than abdomen. Cephalon and Th1 separated. Rostrum absent. Th5 with upturned posterior corners varying in shape and length. A1 24 -jointed, reaching Th4. $\operatorname{Re} 2 \mathrm{~A} 2$ with 1 seta. Ril A2 with 1 seta; Ri2 A2 with 4 long and 4 very small setae on internal and 5 long and 1 small posterior seta on external lobes. Re7 A2 longer than Re3-Re6 together. Md palp base without seta. Ril Md with 1 seta; Ri2 Md with 4 setae. Mx1 gnathobase with 9 terminal clawlike, 1 thin spine and 4 setae on posterior surface. Second Mxl internal lobe with 4 setae; third with 3 setae; protopodite near Ri base with 5 setae; Ri with 12 setae; Re with 11 setae; external lobe with 7 setae. Mx2 with row of robust thick short spines along anterior and upper margins of first and second endites. Mxp protopodite with 3 groups of 2,3 and 3 (?) setae (from proximal to distal part of joint); in addition to setae in distal group with digital appendage. Pl-P4 with segmentation typical of Aetideidae. Re P1 with external spine on each joint. Ri P1 external lobe well developed with hairs along

Fig. 188. Paracomantenna gracilis. Female (from Alvarez, 1986).
external border apically. P1 basipodite with small external spine in distal corner.

Type locality: $23^{\circ} 19^{\prime} \mathrm{S} 41^{\circ} 57^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: off Brazilian continental shelf (Campaner, 1978; Alvarez, 1986).

Vertical distribution. The species was found at depth 100 m and 113 m in benthopelagic' locality (Campaner, 1978; Alvarez, 1986).

The species was not examined by me.

3. Paracomantenna minor (Farran, 1905)

(Fig. 190)
Bryaxis minor Farran, 1905: 32, pl.4, figs 1-5, 7-12; Rose, 1933. 102, fig 75; Vervoort, 1952b (sheet 43): 2, fig 6 (a, b, f, g).
Paracomantenna minor: Campaner, 1978: 871.
Description. F e male. (Description after Farran (1905) with modifications). Total length 1.6 mm .

Cephalon and Th1 fused, Th4-Th5 separated. Th5 posterior corners upturned. A1 24-jointed, reaching Th4. Re A2 very short; Re7 longer than Re2 with 3 terminal setae. Mx1 gnathobase with 9 terminal spines. Second Mx1 internal lobe with 4 setae; third internal lobe with 3 setae; protopodite near Ri base with 2 setae; Ri with 10 setae; Re with 11 setae. Mx2 with strong terminal spine on fifth endite, and lesser strong terminal spine on fourth endite. Firstfourth Mx2 endites with short spines along anterior and upper margins. Digital appendage on Mxp protopodite not observed. P1-P4 with segmentation typical of Aetideidae. Re P1 3-jointed with external spine on each joint. Ri P1 with well developed external lobe.

Type locality. $53^{\circ} 58^{\prime} \mathrm{N} 12^{\circ} 28^{\prime} \mathrm{W}$.
Geographical distribution. The species is known off the West coast of Ireland (Farran, 1905).

Vertical distribution. The species was found in tow nets attached to trawl at 382 fath. (Farran, 1905).

The species was not examined by me.

Fig. 189. Paracomantenna magalyae. Female (from Campaner, 1978).

Fig. 190. Paracomantenna minor. Female (from Farran, 1905).

20. Pseudeuchaeta Sars, 1905

Type species Pseudeuchaeta brevicauda Sars, 1905, by monotypy.

Pseudeuchaeta Sars, 1905: 18.
Autanepsius Wolfenden, 1906. 350 (type species' Autanepsius minor Wolfenden, 1906, designated here)

Description. Fe m a 1 e. Total length 4.8-10.5 mm . Cephalothorax 2.8-4.0 longer than abdomen. Crest absent. Rostrum severely reduced, in a form of a blunt rounded plate. Cephalon and Th1, as well as Th4-Th5 partly or completely fused, line of fusion usually well visible. Th5 posterior comers symmetrical, rounded, with small triangular tops, or prolonged into small short points directed exactly backward, or to back side of specimen (lateral view). Posterior borders of abdominal segments with minute thin spinules. Genital segment symmetrical, nearly as long as 2 following abdominal segments together. Distal part of spermatheca small, rising duct rather narrow. A1 24 -jointed, sometimes as long as, or slightly longer, but usually shorter than cephalothorax. Re nearly as long as Ri A2; coxopodite with 1 seta; basipodite with $1-2$ setae (sometimes absent). Re1 and Re2 A2 with 2 setae; Re3-Re6 with 1 long, robust seta each; $\operatorname{Re} 7$ with 3 terminal setae. Ril A2 without setae (Sars (1924) figured 1 seta); Ri2 A2 with 12-13 (6 on external and 6-7 setae on internal lobes). Md palp base with 1 seta; Ril Md with 1 seta; Ri2 Md with 4-8 setae. Ri Md more than half shorter than Re. Mxl gnathobase small; with 11-13 setae; 7-8 of them usually more sclerotized. Second and third internal Mx1 lobes with

2-4 and 3-4 setae respectively; protopodite near Ri base with 5 setae; Ri with $14-16$ setae; Re with 11 setae; external lobe with 8-9 setae. Mx2 fifth endite longer than others; all endites with bushes of spinules; Ri with 6 robust, strongly sclerotized setae. Mxp large with robust setae on Ri distal joints, supplied with setae with sensory bodies in form of new moon (crescent-like). Proximal part of Mxp protopodite with 1 seta; subsequetly groups of 2,3 and 3 setae. Mxp protopodite distally with 1 big digital appendage near group of setae, shorter or longer than those of distal group. Re P1 3-jointed. Rel P1 without spine (in P. spinata spine present); Re2-Re3 P1 with spines. Ri Pl with well developed external lobe, with thin long hairs apically. Ri P2 2-jointed, all other swimming leg's rami 3 -jointed.
' M a 1 e. Total length 5.9-8.8 mm. Cephalothorax 3.1-3.8 times longer than abdomen Rostrum rudimentary, in a form of cone. Posterior Th5 corners rounded (lateral view) and slightly elongated (dorsal view). Abd2 is the longest and widest. Abd2-4 with minute spinules along posterior border. A1 nearly as long as cephalothorax, or reaching Abd3. Ri A2 longer than Re A2. A2 coxopodite and basipodite with 1 seta each; Re1 A2 without seta; Re2 A2 with small projection, or seta proximally (or both absent), otherwise setation as in females. Ri2 Md with $8-9$ setae; gnathobase strongly reduced. Mx1 and Mx2 setation strongly reduced. Mxp protopodite near the base of distal setae group with appendage. P1-P4 as in females. P5 biramous with 1-jointed Ri and 3 -jointed left Re ; right Re 3-jointed. Left Re3 P5 with spinules along internal border.

The genus Pseudeuchaeta includes 6 species.

Key to species of Pseudeuchaeta

Females

1(4) Th5 posterior corners are not prolonged into points, but triangularly rounded, sometimes pointed on tops
2(3) Rel P1 with external spine
6. P. spinata Markhaseva

3(2) Rel Pl without external spine
2. P. brevicauda Sars

4(1) Th5 posterior corners prolonged into small spines
5(6) Mx1 second internal lobe with 2 setae and with 3 on third internal lobe. Ri2 Md with 4 setae..
4. P. magna Bradford

6(5) Mxl second internal lobe with more than 2 and third internal lobe with more than 3 setae. Ri2 Md with no less than 5 setae.
7(8) Mx1 second internal lobe with 3 and third internal lobe with 4 setae. Ri2 Md with 5 setae. Th5 posterior corners with very short points, covering less than one third of genital segment length 5. P. major Wolfenden
8(7) Mx1 second internal lobe with 4 and third internal lobe with 3 setae. Ri2 Md with 7-8 setae. Th5 posterior corners prolonged into points, covering no less than one third of genital segment length (dorsal view).
9(10) Ri2 Md with 8 setae. Total length 10.3-10.5 mm .

1. P. arctica Markhaseva

10(9) Ri2 Md with 7 setae. Total length 6.8 mm . .
3. P. flexuosa Bradford

Males

(unknown for P. flexuosa, P. magna, P. major, P. spinata)

1(2) Left Re3 P5 with small terminal spine. Total length about 6 mm 2. P. brevicauda Sars
2(1) Left Re3 P5 without small terminal spine. Total length about $9 \mathrm{~mm} . \ldots$. P. arctica Markhaseva

1. Pseudeuchaeta arctica Markhaseva, 1986

(Figs. 191-193)
Pseudeuchaeta arctica Markhaseva, 1986c: 1892, figs 1-2.
Description. F e m a e . Total length $10.30-10.50$ mm . Cephalothorax 2.8-3.0 times longer than ab domen. Rostrum in form of a small rounded plate. Th5 posterior corners prolonged into non divergent points (dorsal view), directed backward (lateral view). Genital segment is widest in its anterior third (dorsal view). A1 nearly reaching the end of cephalothorax. A2 typical of the genus (on internal Ri2 A2 lobe

7 setae). Ri2 Md with 8 setae; otherwise setation typical of the genus. Mx1 gnathobase with 12 setae; its second and third internal lobes with 4 and 3 setae respectively; protopodite near Ri base with 5 setae; Ri with 15 sclerotized setae; partly very strong; Re with 11 setae; external lobe with 9 . Mx2 typical of the genus, setae robust, sclerotized. Mxp with digital appendage not exceeding the length of longest seta in the distal group, some Ri setae strongly sclerotized, with minute sensory crescent-like bodies. Rel P1 without external spine. P2-P4 typical of the genus.

M a 1 e . Total length 8.80 mm . Cephalon and Thl fused, line of Th4-Th5 fusion visible. Cephalothorax 3.1 times longer than abdomen. Th5 posterior corners slightly prolonged (dorsal view). Abd2 is the longest among abdominal segments. Abd 2-4 with thin spinules along posterior border. Length and width of caudal rami nearly equal. A1 nearly as long as cephalothorax. Ri A2 1.7 times longer than Re. Ri2 A2 with 12 setae; coxopodite and basipodite with 1 seta each; Re1 A2 without seta; Re2 A2 with 1 short seta; Re3-Re6 with long setae; Re7 with 3 terminal setae. Md palp base and Ril Md without setae; Ri2 Md with 8 setae. Mx1 second internal lobe with 1 seta; third internal lobe with 2 setae; protopodite near Ri base with 4 setae; Ri with 12 ; Re with $10(?)$ setae; external lobe with 6 setae. Mx2 strongly reduced. Mxp protopodite setation reduced; appendage not visible. Swimming legs as in females. P5 biramous. Left and right legs with 3 -jointed Re and 1 -jointed Ri. Terminal left Re3 joint with 2 spines, with short thick spinules together with setae along its internal side.

Type locality: $81^{\circ} 42^{\prime} \mathrm{N} 126^{\circ} 70^{\prime} \mathrm{W}$.
Geographical distribution. Eastern sector of the central part of the Arctic Basin.

Vertical distribution. The species was found in trap to trawl hauls from depths $3300-3500 \mathrm{~m}$. Most likely benthopelagic species.

Material. 2 females and 2 males from samples: 561, 562.

2. Pseudeuchaeta brevicauda Sars, 1905

(Figs. 194-196)
Pseudeuchaeta brevicauda Sars, 1905: 5, 18; Farran, 1908. 31; Sars, 1924-25: 102, pl 29, figs 1-12; Jespersen, 1934: 69; Lysholm, Nordgaard \& Wiborg, 1945: 21, Sewell, 1947: 106, text-fig 22; Wilson, 1950: 316, Vervoort, 1957: 69, 1963: 155, Grice \& Hulsemann, 1965: 223, 1967: 15, 1968 324; Tanaka \& Omori, 1970b: 146, figs 12-13; Bjornberg, 1973: 325; Park, 1978: 187, 190, figs 57-58; Bradford \& Jillett, 1980: 64, 66, fig. 43; Markhaseva, 1986c: 1895.
Autanepsius minor Wolfenden, 1906:350
Description. Female. Total length 4.80-6.58 mm . Cephalothorax 3.4-3.9 times longer than abdomen. Rostrum in form of a rounded plate. Cepha-

Fig. 191. Pseudeuchaeta arctica. Female (from Markhaseva, 1986c).
lon and Th1 incompletely fused (Park (1978) mentioned complete separation between cephalon and Th1). Th5 posterior comers triangular with rounded, or sometimes slightly prolonged tops (Tanaka \& Omori, 1970b). Genital segment nearly as long as 2 following segments, widest in the first third of its length. Al reaching the anterior border of Th 5 , or the end of cephalothorax. A2 rami equal in length; sometimes Ri slightly longer. A2 coxopodite and basipodite usually with 1 seta, Tanaka and Omori (1970b) recorded 2 setae on basipodite, but according to Sewell (1947) and from original data this seta is absent. Rel and Re2 A2 with 2 setae each (according to Sars (1924) figure with 1 seta). Md palp base and Ri1 Md with 1 seta each; Ri2 Md with $8-9$ setae (according to Sars (1925) with 7 setae). Mx1 with 13 setae on gnathobase; second internal lobe with 4 setae; third internal lobe with 3 setae;
protopodite near Ri base with 5 setae (Bradford \& Jillett (1980), Park (1978), Tanaka \& Omori (1970b) mentioned 4 setae); Ri with 13-14 sclerotized setae; Re with 11 (Sewell (1947) noted 10 setae); external lobe with 8 setae. Mx2 typical of the genus. Appendage on Mxp protopodite shorter than the longest seta in distal group. Re P1 without external spine. Swimming legs typical of the genus. Length of Re 2 P1 spine varying: sometimes it reaches the midlength of the next joint, sometimes almost its end (Tanaka \& Omori, 1970b; Park, 1978; Bradford \& Jillett, 1980).

M a le. (Description after Tanaka and Omori (1970b) with modifications). Total length 5.90 mm . Cephalothorax 3.8 times longer than abdomen. $\mathrm{Ce}-$ phalon and Th1 separated, Th4 and Th5 fused. Rostrum in form of a cone. Al reaching the end of Th3. Ri A2 slightly longer than Re A2; Re2 A2 with small projection at proximal border; basipodite

Fig. 192. Pseudeuchaeta arctica. Female (from Markhaseva, 1986c).

Fig. 193. Pseudeuchaeta arctica. Male (from Markhaseva, 1986c).
with small seta; Ri external lobe with 6 setae. Ri2 Md with 9 setae; gnathobase strongly reduced. Re Mx1 with 11 setae; Ri with 8 setae; protopodite with 4 setae near Ri base; third internal lobe with 1 seta; second internal lobe without seta; gnathobase with 1 small seta. Mx2 well developed: first-sixth endites with $2,3,3,3,3$ and 1 setae respectively; Ri with 5 setae. Protopodite and Ril Mxp nearly equal in length; appendage present in distal part of protopodite. Re P1 3-jointed and Ri 1-jointed. Rel Pl without external spine; Re2 Pl with long spine,
reaching the base of Re 3 external spine. Swimming legs rami as in females. Re P2 terminal spine with about 50 spinules. Re3 P5 internal margin spinulose, Ri elongated, swollen in the midlength of the joint. Right leg with 3 -jointed Re; Rel and Re3 with external small spine; Re3 prolonged in saber-like projection. Left Re3 P5 without 2 spinules, but with short tooth terminally and row of minute spinules along internal margin.

Type locality: the north-eastern part of the Atlantic Ocean.

Fig. 194. Pseudeuchaeta brevicauda. Female (140).

Fig 195 Pseudeuchaeta brevicauda Female (140)

Fig. 196. Pseudeuchaeta brevicauda. Male (from Tanaka \& Omori, 1970).

Fig. 197. Pseudeuchaeta flexuosa. Female (from Bradford, 1969b).

Geographical distribution. Atlantic Ocean: widespread in the Northern Hemisphere: up to North till $62^{\circ} \mathrm{N}$ (Jespersen, 1934), to the South down to the Gulf of Guinea (Vervoort, 1963). Pacific Ocean: found in the north-western part: the Izu region, in the Marian and Kurile-Kamchatka Trench area (Tanaka \& Omori, 1970; original data), the south-eastern (Bjornberg, 1973; original data) and south-western parts near New Zealand (Bradford \& Jillett, 1980), proceeding to the South to $59^{\circ} 08^{\prime} \mathrm{S}$ (Park, 1978). Indian Ocean: recorded in the western (Grice \& Hulsemann, 1967) and eastern (original data) parts, in the Arabian Sea (Sewell, 1947). In high latitudes of Antarctic recorded to the South to $60^{\circ} \mathrm{S}$ (Vervoort, 1957; original data).

Vertical distribution. The species is mostly found in bathypelagial (Vervoort, 1957; Grice \& Hulsemann, 1967), rarely outside this vertical zone. Also found in total hauls from depths over 7000 m . Most likely bathypelagic species.

Material. 5 females from samples: 48, 140, 201, 381, 398-399, 447.

3. Pseudeuchaeta flexuosa
 Bradford, 1969

(Fig. 197)
Pseudeuchaeta flexuosa Bradford, 1969b: 488, higs 98-111, Bradford \& Jillett, 1980 66, fig 44.
Description. Fe m a le. (Description after Bradford, 1969b) with modifications). Total length 6.8 mm . Cephalothorax 3.5 times longer than abdomen. Rostrum as in P. magna. Posterior Th5 corners prolonged into points longer than in P. magna and directed backward (lateral view). A1 shorter than cephalothorax. A2, Mx1 and Mx2 typical of the genus. Ri2 Md with 7 setae; otherwise typical of the genus. Appendage of Mxp protopodite shorter than setae in distal group. Second internal Mx1 lobe

Fig. 198. Pseudeuchaeta magna. Female (from Bradford, 1969b).
with 4 setae; third with 3 setae; Ri with 14 setae. Rel P1 without spine. P2-P4 damaged.

Male unknown.
Type locality: $34^{\circ} 38^{\prime} \mathrm{N} 174^{\circ} 36^{\prime} \mathrm{E}$.
Geographical distribution. The species known from the type locality only.

Vertical distribution. The species was found in haul from depth 1700 over bottom surface. Evidently benthopelagic species.

The species was not examined by me.

4. Pseudeuchaeta magna Bradford, 1969

(Fig. 198)
Pseudeuchaeta magna Bradford, 1969b: 486, figs 82-97; Bradford \& Jillett, 1980: 66, fig. 45.

Description. Fe m a le. (Description after Bradford, (1969b) with modifications). Total length 9.4 mm . Cephalothorax 4 times longer than abdomen. Rostrum blunt, rounded, rudimentary. Posterior Th5 corners prolonged into short points, directed strictly backward (lateral view). Al reaching nearly the end of cephalothorax. A2, Mx1 and Mx2 typical of the genus. Ri2 Md with 4 setae; otherwise typical of the genus. Appendage of Mxp protopodite not longer than adjacent setae. Mxl with 1 seta on gnathobase and 2 and 3 setae on second and third internal lobes respectively; Ri with 14 setae; external lobe
with 9 setae. Rel Pl without external spine. Terminal spines of Re3 P2-P4 with 42, 38 and 41 teeth respectively.

Male unknown.
Type locality: $34^{\circ} 38^{\prime} \mathrm{N} 174^{\circ} 34^{\prime} \mathrm{E}$.
Geographical distribution. The species is known of type locality only.

Vertical distribution. The species was found in haul from 1700 m near bottom. Most likely benthopelagic species.

The species was not examined by me.

5. Pseudeuchaeta major
 Wolfenden, 1911

(Fig. 199)
Pseudeuchaeta major: Park, 1978: 187
Autanepsius major Wolfenden, $1911: 351$, text-fıg. 79
Description. Female. (Description after Wolfenden (1911) with modifications). Total length 8.15 mm . Genital segment as long as wide and as long as 3 following abdominal segments together. A1 slightly shorter than cephalothorax. Re A2 slightly longer than Ri. Ri2 Md with 5 setae. Mxl gnathobase with 10 setae; second internal lobe with 3 setae; third internal lobe with 4 setae; Ri with 15 setae; external lobe with 9 setae. Rel P1 without external spine.

Male unknown.

Fig. 199. Pseudeuchaeta major. Female (from Wolfenden, 1911).

Type locality: equatorial Atlantic.
Geographical distribution. The species is known from the type locality only.

The species was not examined by me.

6. Pseudeuchaeta spinata Markhaseva, 1986

(Figs. 200-201)
Pseudeuchaeta spinata Markhaseva, 1986c: 1894, fig. 4.
Description. F e m a 1 e . Total length 6.5 mm . Cephalothorax 3.1 times longer than abdomen. Rostrum in form of a small rounded plate. Th5 posterior comers slightly divergent (dorsal view) and pointed (dorsal and lateral view). Al exceeding cephalothorax. A2 rami of about equal length. Coxo- and basipodite A2 with 1 seta each. Ri1 A2 without setae; Ri2 A2 with $12(6+6)$ setae. Rel and Re2 A2 with 2 setae each. Md palp base with 1 seta; Ril Md more than half shorter Re, Ri2 Md with 3-4 setae. Mx1 gnathobase with 11 setac; second internal lobe with 4 setae; third internal lobe with 3 setae; Mxp protopodite near Ri base with 5 setae;

Ri with $15-16$ setae; Re with 11 setae; external lobe with 9 setae. Mx2 typical of the genus; with 6 strong, strongly sclerotized setae in distal part of Ri. Mxp strong, with setation typical of the genus, setae of Ri2-Ri5 robust, strongly sclerotized, with crescent-like appendages typical of the genus. Mxp protopodite near the base of distal setae group with digital appendage longer than setae. Re Pl with external spines at every joint. Spine on Rel Pl short, less than one third of joint length. Segmentation and setation of P2-P4 typical of the genus, number of teeth on terminal spine of P2 over 60 , on P4 over 50.

Notes. The species is distinguished from other species of the genus in the presence of spine on Rel P1. Digital appendage of Mxp protopodite in P. spinata is significantly longer than in other species of genus. A1 slightly longer than cephalothorax whereas in other species they are shorter than or equal to cephalothorax.

Type locality: $43^{\circ} 42^{\prime} \mathrm{N} \quad 149^{\circ} 39^{\prime} \mathrm{E}$.
Geographical distrıbution. The Kurile-Kamchatka Trench area (Markhaseva, 1986c).

Vertical distribution. Abyssopelagic species, found in haul $5130-6120 \mathrm{~m}$.

Material: 1 female from sample: 179.

Fig. 200. Pseudeuchaeta spinata. Female (from Markhaseva, 1986c).

Fig. 201. Pseudeuchaeta sptnata. Female (from Markhaseva, 1986c).

21. Pseudochirella Sars, 1920

Type species. Pseudochirella obesa Sars, 1920 (designated here).

Pseudochirella Sars, 1920: 5.

Description. Female. Total length 3.6-9.2 mm . Cephalothorax 3.0-4.6 times longer than abdomen. Cephalon and Th1 distinctly or indistinctly separated, Th4 and Th5 separated (except P. hirsuta). Crest absent. Rostrum present, uniramous. Th5 corners rounded, rarely with spines, sometimes prolonged into rounded, or triangular lobes, symmetrical, slightly or abruptly asymmetrical. Genital segment symmetrical, slightly or abruptly asymmetrical, in shape: barrel-like, or with different projections. Genital segment nearly as long as wide, or rarely twice longer (P. divaricata). Ventral swelling developed in different degree: smooth (P. hirsuta), or strongly prominent (P. dubia). Genital field arranged in about the middle of genital segment (ventral view), sometimes removed laterally (P. fallax, P. mariana). Genital segment - Abd3 in the majority of species with minute spinules along posterior border. A1 24 -jointed (rarely 23 -jointed), usually longer than cephalothorax, sometimes longer than body. Re A2 1.5-1.8 times longer than Ri. A2 coxopodite with 1 seta; basipodite with 2 (rarely with 1 seta: P. mariana) setae; Ril with 1-2 setae; Ri2 with 6 long and 1 short posterior setae at external lobe and 6-7 (5 in P. mariana) long and 1-2 (rarely 3) shorter posterior setae at internal lobe. Re1 A2 without setae, or with rudiment of seta, sometimes (P. dubia, P. hirsuta) with well developed seta; in the latter species, in addition to 1 distal seta, Re2 with 2 well developed setae. Re3Re6 A2 with 1 seta each; Re7 with 1 medial and 3 terminal setae. Md palp base with 3 setae; Ril Md with 2 setae; rarely with third additional small seta; Ri2 Md with 9 long terminal and 1-2 short posterior setae. Mxl gnathobase with 9 claw-like and 1 short terminal setae and 4 setae on posterior surface (in P. mariana with 3 posterior setae). Second Mxl internal lobe with 5 setae; third with 4 setae (in P. mariana and P. fallax with 5 setae); protopodite near Ri base with 5 setae; Ri with $15-16$ setae; Re with 11 setae; external lobe with 7 long and 2 shorter setae. Setae of the fourth and fifth Mx2 endites transformed into claw-like spines. Mx2 typical of Aetideidae. Mxp protopodite 1.6-1.9 times shorter than Ril Mxp, with 1 seta in proximal part of joint, further with 3 setae groups: proximal with 1-2 setae, medial of 3 setae and distal group of 3 setae and sensory knob. Pl with 3 -jointed Re, separation between Rel and Re2 possibly incomplete, each joint with an external spine, commonly that on Rel is long, exceeding the base of spine on Re2. Ri Pl 1-jointed. Ri P2 2-jointed, sometimes separation between joints incomplete, other rami of swimming
legs 3-jointed. P4 coxopodite with group of spines sclerotized in various degree, varying in size and number (from 5 to 30).

M a 1 e. Total length $3.20-7.20 \mathrm{~mm}$. Cephalon and Th1, as well as Th4 and Th5 usually fused, rarely separated. Cephalothorax about 3 times longer than abdomen. Rostrum developed poorer than in females. Th5 posterior corners symmetrical, sometimes slightly asymmetrical, rounded, rarely with spines, or teeth. Al 22-24-jointed, may be shorter or longer than body. Comparing to female setation of A2 diminished. Md palp base usually with 1 seta; Ril Md with 1 seta; Ri2 with $8-9$ setae. Mx1, Mx2 and Mxp severely reduced, setation weaker than in females. P1-P4 as that in female. P4 coxopodite without spines. External spines of Re1 P1 and Re2 P1 shorter than in females of relevant species. P5 powerful, of complex structure, usually longer than abdomen, biramous. Right and left basipodites strongly sclerotized, large, wide. Ri P5 1-jointed. Right Re 2-jointed, left 3-jointed.

The genus Pseudochirella includes 27 species described from adults and 2 species: P. calcarata Sars, 1920 and P. cryptospina (Sars, 1920) described from fifth copepodite stage. Their descriptions are given below except of P. semispina Vervoort, 1949 and 2 species described from juveniles.

Key to species of Pseudochirella

Females

1(32) Genital segment symmetrical, or slightly asymmetrical.
2(21) Genital segment symmetrical.
3(18) Th5 posterior corners symmetrical.
4(7) Re2 A2 with 3 setae.
5(6) Th4 and Th5 distinctly separated. Ventral swelling of genital segment strongly protruded. Genital segment (lateral view) nearly twice thicker than Abd2. Total length $4.8-6.1 \mathrm{~mm}$
7. P. dubia Sars

6(5) Th4 and Th5 indistinctly separated. Ventral swelling of genital segment slightly protruded. Genital segment (lateral view) only 1.2 times thicker than Abd2. Total length more than 6 mm
. 11. P. hirsuta (Wolfenden)
7(4) $\operatorname{Re} 2 \mathrm{~A} 2$ with 1 seta.
8(9) Th5 posterior corners with spines reaching about the midlength of genital segment
24. P. spinosa (Wolfenden)
$9(8)$ Th5 posterior corners without spines, rounded, or prolonged into triangular, or rounded lobes.
10(11) Th5 posterior corners protruded into lobes, rounded
18. P. obtusa (Sars)

11(10) Th5 posterior corners protruded into lobes (rounded or triangular).
12(13) Lobes of posterior Th5 corners rounded . . . 13. P. Iobata (Sars)

13(12) Lobes of posterior Th5 corners triangular.
14(17) Total length over than 8 mm .
$15(16)$ Ventral swelling of genital segment well developed, rectangular. P4 coxopodite with 18-20 spines 9. P. formosa Markhaseva

16(15) Ventral swelling of genital segment small, rounded. P4 coxopodite with 5 spines.
17(14) Total length less than 6 mm

> 2. P. batillipa Park

18(3) Th5 posterior corners slightly asymmetrical. (Asymmetry produced by presence of minute spine on the right, or Th5 transformed into wing-like slightly asymmetrical lobes, ending in spines).
19(20) Th5 posterior corners transformed into wing-like lobes ending in spines. Genital segment twice longer than wide 6. P. divaricata (Sars)

20(19) Th5 posterior corners not transformed into winglike lobes, rounded with spine on the right. Genital segment nearly as long as wide
26. P. vervoorti Tanaka \& Omori

21(2) Genital segment slightly asymmetrical.
22(27) Th5 posterior corners rounded.
23(26) Th5 posterior corners slightly asymmetrical with small rounded projection on the right, or small spine on the left (lateral view). Shape of genital segment almost barrel-like (dorsal view).
24(25) Th5 posterior corners with small spine on the left (lateral view), without projection on the right (lateral view). P4 coxopodite with 16 spines. Genital segment broadened in its anterior part (dorsal view)
12. P. limata Grice \& Hulsemann

25(24) Th5 posterior corners without small spines on the left, with small rounded projection on the right (lateral view). P4 coxopodite with 7-10 spines. Genital segment broadened in its middle (dorsal view)
17. P. obesa Sars

26(23) Th5 posterior corners symmetrical. Genital segment with large shoulder-like swellings in its anterior part (dorsal view). 25. P. tanakai Markhaseva
27(22) Th5 posterior corners prolonged into triangular lobes, or ending with spines.
28(29) Th5 posterior corners prolonged into triangular lobes
22. P. scopularis (Sars)

29(28) Th5 posterior corners not prolonged into triangular lobes, ending with spines.
30(31) Spines on Th5 posterior corners upturned (lateral view) 5. P. dentata (A. Scott)
31(30) Spines on Th5 posterior corners stretching directly backward (lateral view). 20. P. palliata (Sars)
32(1) Genital segment abruptly asymmetrical.

33(36) Right Th5 posterior corner with spine, left without spines.
34(35) Total length about 5 mm . Genital segment on the right posteriorly with large bifid projection. .
10. P. gibbera Vervoort

35(34) Total length over than 7 mm . Genital segment on the right posteriorly with small and non bifid projection 23. P. spectabilis Sars
36(33) Both left and right Th5 posterior corners without spines.
37(40) Th5 posterior corners prolonged into triangular lobes.
38(39) Projections of genital segment present in its posterior part
3. P. bilobata Vervoort

39(38) Projections of genital segment present in its anterior part

1. P. accepta Zvereva

40(37) Th5 posterior corners with rounded lobes, symmetrical or slightly asymmetrical.
41(46) Th5 posterior corners symmetrical.
42(45) One sufficiently large projection present on the right of genital segment.
43(44) Projection present in posterior part of genital segment 15. P. mawsoni Vervoort
44(43) Projection present in anterior part of genital segment 21. P. pustulifera (Sars)
45(42) Two small projections present on the left and one small on the right in posterior part of genital segment 16. P. notacantha (Sars)
46(41) Th5 posterior corners slightly asymmetrical.
47(50) Genital field present in near-medial part of genital segment (ventral view). Third internal lobe of Mxl with 4 setae.
48(49) Genital segment with projection only on the right 19. P. pacifica Brodsky
49(48) Genital segment with projections on the left and right 4. P. bowmani Markhaseva
$50(47)$ Genital field removed to the right (ventral view). Third internal Mx1 lobe with 5 setae.
$51(52)$ Genital segment with 2 large projections on the right. Mxl gnathobase posterior surface with 3 setae 14. P. mariana Markhaseva
52(51) Genital segment with 1 projection on both right and left sides. Mxl gnathobase posterior surface with 4 setae
8. P. fallax (Sars)

Males
 (unknown for: P. accepta, P. bilobata, P. bowmani, P. dentata, P. divaricata, P. formosa, P. gibbera,
 P. limata, P. lobata, P. mariana, P. palliata, P. scopularis, P. semispina, P. spinosa, P. tanakai, P. vervoorti)

1(10) Re2 P5 left P5 without tooth, or with 1 tooth in its distal part.

2(3) Th5 posteiror comers with spines. Re3 P5 left only slightly longer than wide

19. P. pacifica Brodsky

3(2) Th5 posterior corners without spines, rounded, or with small teeth on the left and right. Re3 P5 left about 4 times longer than wide.
4(5) Th5 posterior corners with tooth on the right and left, better visible
23. P. spectabilis Sars

5(4) Th5 posterior corners without teeth, rounded.
6(7) Distal part of right Re P5 blade-like

2. P. batillipa Park

7(6) Distal part of right Re P5 of different shape, usually rounded.
8(9) Size of specimens about 4 mm . Re3 P5 left rounded apically, without knob
. 8. P. fallax (Sars)
9(8) Total length more than 7 mm . Re3 P5 left of triangular shape apically with knob
. 12. P. hirsuta (Wolfenden)
10(1) Re2 P5 left with 2-3 teeth in distal part of joint.
11(14) Re2 P5 left with 3 teeth distally.
12(13) Th5 posterior corners with spines 16. P. notacantha (Sars)

13(12) Th5 posterior corners without spines
7. P. dubia (Sars)

14(11) $\operatorname{Re} 2$ P5 left with 2 teeth distally.
15(18) Th5 posterior corners with spines.
16(17) Re3 P5 left 2 times longer, than wide 15. P. mawsoni Vervoort

17(16) Re3 P5 left more than 3 times longer than wide
18. P. obtusa (Sars)

18(15) Th5 posterior corners without spines.
$19(20) \operatorname{Re} 2 \mathrm{P} 5$ right with excavation and rounded swelling proximally
17. P. obesa Sars

20(19) Re2 P5 right smooth, without excavation and swelling
21. P. pustulifera Sars

1. Pseudochirella accepta Zvereva, 1976

(Fig. 202)
Pseudochrrella accepta Zvercva, 1976: 200, figs 1-12; Markhaseva, 1989: 39, figs 7 B (18).

Description. Fe m a 1 e. Total length 7.20-7.60 mm . Cephalothorax about 3.5 times longer than abdomen. Th5 posterior corners prolonged into slightly asymmetrical (dorsal view), triangular (lateral view) lobes. Genital segment asymmetrical with projections on the right and left (dorsal view) anteriorly. Abd1-3 with hairs scattered over segments surface. A1 $24-$ jointed, reaching nearly Abd3. Rel A2 without setae; Re2 A2 with distal seta only; Ril A2 with 2 setae.

Ril Md with 3 setae; Ri2 Md with 9 long terminal and 2 posterior short setae. Otherwise structure of oral parts typical of the genus. Separation between Rel and Re2 P1 complete. P4 coxopodite with 13-14 spines, otherwise structure of swimming legs typical of the genus.

Male unknown.
Type locality: $55^{\circ} 05^{\prime} \mathrm{N} 171^{\circ} 06^{\prime} \mathrm{E}$.
Geographical distributton. The Bering Sea, the Kurile-Kamchatka Trench area (original data). Recorded for the Bering Sea by Motoda and Minoda (1974) in reality, P. spectabilis, probably prove P. accepta.

Vertical distribution. Abyssopelagic species found in hauls from abyssal depths (original data), and also in total hauls from depths of more than 1500 m .

Material: 6 females from samples: 8, 102-103, 124, 193, 197.

2. Pseudochirella batillipa Park, 1978

(Fig. 203)
Pseudochirella batillipa Park, 1978: 176, figs 50-51; Markhaseva, 1982: 106, figs 1-9, 1989: 35, figs 5; 7 A (8); 8 (3 a, b); 12

Description. Female. Total length 5.58-6.10 mm . Cephalothorax about 3.8 times longer than abdomen. Th5 posterior corners symmetrical, reaching the midlength of genital segment, ending very small conically pointed knob. Genital segment symmetrical; Abd2-3 with hairs. A1 nearly as long as body. Ril A2 with 1 seta; Ri2 A2 with $7+7$ setae on each of lobes. Re1 A2 without setae; Re2 with only distal seta. Ril Md with hairs along external border and with 2 setae; Ri2 Md with 9 terminal and 2 posterior setae. Mx1, Mx2, Mxp and P1-P4 typical of the genus. P4 coxopodite with 10-12 (after Park (1978) with 11-13) spines.

M a 1 e . Total length 5.4 mm . Cephalothorax 3.2 times longer than abdomen. Th5 posterior corners without spines. Anterior border of cephalon smooth triangular. A1 reaching Abd4. Re2 P5 distally sa-ber-like; left Re2 without tooth.

Type locality: between $63^{\circ} 48^{\prime} \mathrm{S} 135^{\circ} 02^{\prime} \mathrm{W}$ and $63^{\circ} 57^{\prime} 135^{\circ} 06^{\prime} \mathrm{W}$.

Geographical distribution. Bipolar species. In the northern hemisphere the species was found in the Greenland Sea, the eastern sector of the Arctic Basin and in the Pacific Ocean: in the region of the KurileKamchatka Trench (Markhaseva, 1984; original data). In the southern hemisphere species was found in the antarctic waters in the region of South Sandwich Islands and the antarctic sector of the Pacific Ocean to the South from $60^{\circ} \mathrm{S}$ (Park, 1978).

Vertical distribution. Very likely abyssopelagic species, found in the hauls from abysso- and bathypelagial in the region of the Kurile-Kamchatka Trench, in haul

Fig 202 Pseudochrella accepta Female (103)

Fig. 203. Pseudochirella batillipa. Female (from Markhaseva, 1982). Male (from Markhaseva, 1989).

Fig. 204. Pseudochirella bilobata. Female (from Vervoort, 1949).
$1100-2800 \mathrm{~m}$ in the Greenland Sea (original data), also in total hauls from depths of more than 1 km .

Material 14 females and 1 male from samples: 83, 103, 192-193, 270, 297, 301, 310, 344, 462-463, 540, 554.

3. Pseudochirella bilobata

Vervoort, 1949
(Fig. 204)
Pseudochirella bilobata Vervoort, 1949: 38, fig. 18, Markhaseva, 1989. 39, fig 7 (B 19)

Description. Fe m a 1 e . (Description after Vervoort (1949) with modifications). Total length 5.05 mm . Cephalothorax 3.4 times longer than abdomen.

Th5 symmetrical, posterior corners prolonged into triangular lobes (lateral view). Genital segment slightly asymmetrical; with lateral projections of different shape and size on the right and on the left posteriorly (dorsal view). Ventral swelling strongly protruded (lateral view). Abdl-3 with surface hairs. Al reaching posterior border of Abd1. Re P1 clearly 3-jointed; external Re Pl spine reaching the base of spine of following segment. P4 coxopodite with 14 spines of the same type as in P. palliata and P divaricata.

Male unknown.
Type locality: the Flores Sea ($8^{\circ} 00^{\prime} \mathrm{S} 121^{\circ} 41^{\prime} \mathrm{E}$).
Geographical distribution The species is known from the type locality only (Vervoort, 1949).

Vertical distribution. The species was found in haul from 2500 m (Vervoort, 1949).

The species was not examined by me.

Fig. 205. Pseudochirella bowmani. Female (from Markhaseva, 1986a).

Fig. 206. Pseudochirella dentata. Female (from Bradford \& Jillett, 1980).

4. Pseudochirella bowmani
 Markhaseva, 1986

(Fig. 205)
Pseudochirella bowmani Markhaseva, 1986a: 462, figs 1-2, 1989: 40, fig. 7 (B 25).

Description. Fe m a 1 e . Total length 6.15 mm . Cephalothorax about 4 times longer than abdomen. Posterior Th5 corners prolonged into slightly asymmetrical lobes, rounded at tops. Abdl-3 with bushes of hairs. Genital segment asymmetrical, nearly as long as wide, widest in the second third of its length and nearly as long as 2 following segments together. Genital segment with projections on the right and left. Ventral swelling well developed, of tube-like shape. A1 broken. Ril A2 with 2 setae. Re1 A2 without setae; $\operatorname{Re} 2$ A2 with distal seta only. Md palp base with 3 setae; Ril Md with 9 terminal and 2 posterior setae. Mx1, Mx2 and Mxp typical of the genus. Re P1 3-jointed. Ri P2 2-jointed. P4 coxopodite with 11 fan-shaped spines.

Notes. The species is similar to P. scopularis
and P. accepta, differing in smooth rounded lobes of Th5 posterior corners, configuration of genital segment and number of spines on P4 coxopodite (in P. scopularis with 9 spines, in P. accepta with 13 spines). Ri P2 is distinguished from those in P. scopularis by clearly 2 -jointed structure.

Male unknown.
Type locality: the south-eastern part of the Pacific Ocean: $22^{\circ} 50^{\prime} \mathrm{S} 97^{\circ} 30^{\prime} \mathrm{W}$.

Geographical distribution. The species is known of the type locality only (Markhaseva, 1986a).

Vertical distribution. The species was found in haul from 3090 m .

Material: 1 female from sample 264.

5. Pseudochirella dentata

(A. Scott, 1909)
(Fig. 206)
Euchirella dentata A. Scott, 1909: 59, pl.13, figs 13-21. Pseudochirella dentata: Bradford \& Jillett, 1908: 67, fig. 46; Markhaseva, 1989: 39, fig. 7 (A 15).

Fig. 207. Pseudochirella divaricata Female (398)

Description. F e male. (Description after A. Scott (1909), Bradford \& Jillett (1980) with modifications). Total length $5.70-7.50 \mathrm{~mm}$. Cephalothorax 3.0-3.5 times longer than abdomen. Th5 posterior corners prolonged into moderate spines upturned to the back side of specimen (lateral view), slightly asymmetrical. Genital segment slightly asymmetrical: more swollen on the right side. Abdl-3 surface with hairs. A1 reaching the end of the body. Ril A2 with 1 seta; Re1 A2 with 1 seta. Re2 A2 with the distal seta only. Re P1 indistinctly 3 -jointed. Ri P2 indistinctly 2 -jointed. P4 coxopodite with 7-9 spines.

Male unknown.

Type locality: Manipa Strait, $3^{\circ} 20^{\prime} \mathrm{S} 127^{\circ} 22^{\prime} \mathrm{E}$.
Geographical distribution. The region of Malay Archipelago and New Zealand (Bradford \& Jillett, 1980).

Vertical distribution. The species was found in hauls from 900-1500 m (A. Scott, 1909; Bradford \& Jillett, 1980).

The species was not examined by me.

6. Pseudochirella divaricata (Sars, 1905)

(Fig. 207)
Gaidus divaricatus Sars, 1905: 10.
Pseudochirella divaricata: Sars, 1924-25: 91, pl. 25, figs 5-7; Jespersen, 1934: 66; Grice \& Hulsemann, 1967: 15; Bjornberg, 1973: 325; Decvey \& Brooks, 1977: 263; Markhaseva, 1989• 38, fig. 7 (A 9).

Description. Fe m a 1 e. Total length 4.30-4.40 mm . Cephalothorax about 3.4 times longer than abdomen. Th5 posterior corners wing-like (dorsal view), slightly asymmetrical, widely arranged, each with spine. In lateral view this spine seems to be removed to the back side of specimen. Genital segment symmetrical, with moderate widening in nearly the midlength of segment, twice longer than wide and as long as 3 following segments together. Body surface with chitinous thickenings. Abd2-3 with hairs. A1 nearly as long as cephalothorax, or body. Ril A2 with 1 seta; Rel A2 without setae. Re2 A2 with the distal seta only. Ril Md with 2 setae; Ri2 Md with 9 terminal and 2 posterior setae. Third Mx1 internal lobe with appendage and 4 setae. Re P1 3-jointed. Ri P2 2-jointed. P4 coxopodite with 21 spines (according to Sars (1925), with 8-12 spines).

Male unknown.
Type locality: $36^{\circ} 17^{\prime} \mathrm{N} 28^{\circ} 53^{\prime} \mathrm{W}$.
Geographical distribution. The species was found in the Davis Strait (Jespersen, 1934). Atlantic Ocean: in the region of $32^{\circ} \mathrm{N}-43^{\circ} \mathrm{N} 10^{\circ} \mathrm{W}-42^{\circ} \mathrm{W}$ (Sars, 1925), in the Sargasso Sea (Deevey \& Brooks, 1977). Pacific Ocean: the south-eastern part (Bjornberg, 1973). Indian Ocean: the western part (Grice \& Hulsemann, 1967; original data).

Vertical distribution. Possibly bathypelagic species: found in haul 1500-2000 m (Deevey \& Brooks,

Fig. 208. Pseudochirella dubia. Male (from Sars, 1924).
1977), in haul 225-2600 m (Grice \& Hulsemann, 1967), also in total hauls from depths 2000-5700 m (Sars, 1925; Jespersen, 1934; original data).

Material: 1 female from sample 398.

7. Pseudochirella dubia (Sars, 1905)

(Figs. 208-209)
Undeuchaeta dubia Sars, 1905: 15.
Pseudochirella dubia. Sars, 1924-25: 96, pl.14, figs 10-15; Jespersen, 1934: 67; Grice \& Hulsemann, 1967: 15; Bjornberg, 1973: 325, Markhaseva, 1989: 38, fig. 7 (A 1), 8 (7 a, b).
Euchirella granulata A. Scott, 1909: 58, pl. 13, figs 1-12 (syn. n.).
Pseudochirella obtusa (non Sars, 1905) (male only): Vervoort, 1949: 37, fig. 21c.

Description. Fe m a 1 e . Total length 4.80-6.10 mm . Cephalothorax 3.5-4.0 times longer than abdomen. Th 5 posterior corners rounded, symmetrical. Genital segment symmetrical, nearly as long as wide, and nearly as long as 2 following segments together. Ventral swelling strongly protruded, widest in its posterior part (lateral view). Abd1-3 with hairs on the surface. Body surface of some specimens with chitinous thickenings. Al longer than cephalothorax, reaching Abd2-3, or the end of caudal rami. Ril A2 with 2 setae. Re1 A2 with 1 seta, small (according to A. Scott (1909), this seta is much longer); Re2 A2 except distal seta with 2 more setae: proximal and medial. Ril Md with 2; Ri2 Md with 9 terminal

Fig. 209. Pseudochirella dubia. Female (70).
and 2 posterior setae. Mx1, Mx2 and Mxp typical of the genus. Re P1 3-jointed. Ri P2 indistinctly 2jointed (after Sars (1925) and A. Scott (1909) Ri distincty 2 -jointed). P4 coxopodite with about 30 thin fan-like arranged spines (Sars (1925) noted 14 spines).

M a 1 e. (Description after Sars (1925) with modifications). Total length 4.00 mm . Cephalon and Th1 indistinctly separated. Th5 posterior corners rounded, without spines. Cephalothorax about 3 times longer than abdomen. Left Re2 P5 with 3 teeth in distal part of joint.

Type locality: $36^{\circ} 17 \mathrm{~N} 28^{\circ} 53^{\prime} \mathrm{W}$ (Sars, 1905).
Geographical distribution. The species is known from boreal, subantarctic and tropical-subtropical zones of the World Ocean (A. Scott (1909); Grice \&

Hulsemann (1967); Bjornberg (1973)). The species is registered to the North to $62^{\circ} \mathrm{N}$: the Davis Strait (Jespersen, 1934). Atlantic Ocean: to the South to South Sandwich Islands. Pacific Ocean: to the Kurile Islands (original data). The species was found to the South from $60^{\circ} \mathrm{S}$ in the indooceanic and pacific sectors of the Southern Ocean (original data).

Vertical distribution. Abysso-bathypelagic species, found in hauls in lower bathypelagial-abyssal (Grice \& Hulsemann, 1967; original data), in the Kurile-Kamchatka region (original data). The species was recorded from total hauls from 7000 m .

Material: 36 females and 1(?) male from samples: $66,68-70,82-83,86,97,103,121,124,126,128$, 139-140, 163-164, 181, 192, 200, 270, 339, 379.

8. Pseudochirella fallax Sars, 1920

(Fig. 210-211)
Bradyetes major Sars, 1907. 9.
Pseudochrella fallax Sars, 1920. 6, 1924-25. 96, pl 26, figs 5-9, Grice \& Hulsemann, 1965: 223; Wheeler, 1970. 8, Markhaseva, 1989 40, fig 4, 7 (B 27); 8 (4A)

Description Fe m a 1 e . Total length $3.60-3.80$ mm . Cephalothorax 4.0-4.6 times longer than abdomen. Rostrum developed weaker than in other species of genus. Th5 posterior corners slightly asymmetrical (dorsal view), prolonged into rounded lobes. Genital segment slightly asymmetrical: lateral swelling on the left more prominent than on the right. Genital field removed laterally (ventral view). Abd13 surface with hairs. Al about as long as body. Re1 A2 without setae; Re2 A2 with the distal seta only. Ri1 A2 with 1 seta. Ri1 Md with 2 seta; Ri2 Md with 9 terminal and 2 posterior setae. Second and third Mx1 internal lobes with 5 setae each. Mx2 and Mxp typical of the genus. Re P1 3-jointed. Ri P2 2-jointed. P4 coxopodite with $20-23$ spines (Sars (1925) recorded 14 spines).

M a 1 e . Total length 3.20 mm . Cephalothorax about 3.6 times longer than abdomen. Th5 posterior corners without spines, slightly asymmetrical (dorsal view). A1 longer than body by 2-3 last joints. Mx1, Mx2 and setation of other oral parts reduced in comparison with those in females. $\operatorname{Re} 1-\mathrm{Re} 2 \mathrm{~A} 2$ and Ril A2 without seta. Ri2 A2 with 5 setae on each lobe. Md palp base with 1 seta; Ril Md with 2 small setae; Ri2 Md with 9 terminal setae. Mxl gnathobase without setae; second and third internal Mx1 lobes with 3 and 5 setae respectively; protopodite near Ri base with 3 setae; Ri with 12 setae. Re P1 3-jointed, but 1 external spine significantly shorter than in female. Ri P2 2-jointed. P4 coxopodite without spines and setae. Re2 P5 left with 1 tooth. Lett Re3 P5 nearly 4 times longer than wide.

Notes. The male of this species was once mentioned (Sars, 1925), who recorded its similarity with male of P dubia, but Sars did not describe or figure this male. The male described herein was obtained from the same sample with female and was attributed to the present species; however its structure is not identical to that of P. dubia male normal in the understanding of Sars.

Type locality the central part of North Atlantic.
Geographical distribution. Atlantic Ocean: northern part (Sars, 1925; Grice \& Hulsemann, 1965; Wheeler, 1970; Deevey \& Brooks, 1977). Indian Ocean: the western part (original data).

Vertical distribution. Bathypelagic species, found in hauls from 1500-2000 m (Deevey \& Brooks, 1977), 2000-3000 m (Grice \& Hulsemann, 1965), also in total hauls from $1500-4800 \mathrm{~m}$ (Sars, 1925; original data).

Material: 1 female and 1 male from sample 399.

9. Pseudochirella formosa
 Markhaseva, 1989

(Fig. 212)
Pseudochrella formosa Markhaseva, 1989• 33, figs 1, 7 (A 6).

Description. Fe m a le. Total length 9.20 mm . Cephalothorax 3.6 times longer than abdomen. Th5 posterior comers symmetrical, prolonged into triangular lobes, reaching nearly the midlength of genital segment (lateral and dorsal view). Genital segment symmetrical, with moderate projections (dorsal view) in the midlength of segment. Ventral swelling significantly prominent. Abdl-3 with hairs. A1 as long as body. Rel A2 without setae; Re2 A2 with 1 distal seta. Ri1 A2 with 1 seta; Ri2 A2 internal lobe with $7(6+1)$ terminal setae. Ril Md with 2 setae; Ri2 Md with 9 terminal and 2 posterior setae. Mx1, Mx2 and Mxp typical of the genus. Re P1 3-jointed. Ri P2 incompletely 2-jointed. P4 coxopodite with $18-20$ spines.

Male unknown.
Type locality: $62^{\circ} 54^{\prime} \mathrm{S} 118^{\circ} 52^{\prime} \mathrm{E}$.
Geographical distribution The species is known from type locality only.

Vertical distribution. The species was recorded from total haul from 3700 m (Markhaseva, 1989).

Material: 1 female from sample 379.
11. Pseudochirella gibbera

Vervoort, 1949
(Fig. 213)
Pseudochrella gibbera Vervoort, 1949. 41, fig. 19, (') Grice \& Hulsemann, 1967: 24; Markhaseva, 1989. 39 , fig. 7 (B 17).

Descriptıon. Female. (Description after Vervoort (1949) with modifications). Total length 5.50 mm . Cephalothorax 4.3 times longer than abdomen. Th5 posterior corners asymmetrical: left corner rounded, right one with spine. Genital segment abruptly asymmetrical, much wider than long; right side with large projection covered with hairs distally, with smaller projection on the left (dorsal view). Oral parts similar to those in P obtusa. Re P1 3-jointed. Ri P2 (?) 1-jointed. P4 coxopodite with 5 strong, pointed spines.

Notes. Grice and Hulsemann (1967) had attributed their specimens to the present species, but this attribution may be doubtful, because the authors recorded the absence of spine on Th 5 posterior corner. The latter character is very important for identification of the species Pseudochirella.

Type localtty: the Timor Sea: $10^{\circ} 49^{\prime} \mathrm{S} 123^{\circ} 59^{\prime} \mathrm{E}$.
Geographical distribution. The Timor Sea (Vervoort, 1949).

Fig. 210. Pseudochirella fallax. Female (399).

Fig 211 Pseudochirella fallax Male (from Markhaseva, 1989).

Vertical distributton. The species was found in haul from 1800 m (Vervoort, 1949).

The species was not examined by me.

11. Pseudochirella hirsuta (Wolfenden, 1905)

(Figs. 214-215)
Euchrella hirsuta Wolfenden, 1905 17, pl 6, figs 7-8, 1911 240, pl 28, fig 7-9, Farran, 1929237 Pseudochtrella hirsuta Vervoort, 1957 69; Park, 1978 163, figs 41-42, Markhascva, 1989 36, figs 6, 7 (A 2), 8 ($5 \mathrm{a}, \mathrm{b}$)

Description. Fe m a 1 e. Total length 8.50-9.41 mm . Cephalothorax 4.0-4.2 times longer than $a b$ domen. Cephalon narrower anteriorly, indistinctly separated from Th1, Th4-Th5 virtually completely fused. Th5 posterior corners symmetrical, of smooth triangular shape (lateral view), covering nearly the first third of genital segment, with hairs in available specimens. Th5 posterior corners (dorsal view) with
somewhat bifid tops Genital segment symmetrically widened in its midlength (dorsal view). Ventral swelling not prominent. Abd1-3 surface with hains. A1 by 1-2 last joints longer than body. Ril A2 with 2 setae; Re1 A2 with 1 seta; Re2 A2 with 2 medial and 1 distal seta. Ril Md with 2 setae; Ri2 Md with 9 long terminal and 2 posterior setae. Second Mx1 internal lobe with 4 setae and appendage Mxp protopodite with knob in its proximal third part. Mx2 typical of the genus. Re P1 3-jointed. Ri P2 2-jointed. P4 coxopodite with 15 (after Park (1978) with $10-13$) robust spines.

M a 1 e. Total length 7.20 mm . Cephalothorax 3.4 times longer than abdomen Cephalon and Th1, as well as Th4-Th5 fused A1 reaching nearly Abd2 Oral parts reduced in comparison to those in females Re P1 3-jointed; Rel external spine is very small General type of P5 structure is typical of males of Pseudochirella Re2 P5 left with tooth, Re3 P5 left nearly 4 times longer than wide.

Type locallty: South Atlantic: region of $35^{\circ} \mathrm{S}$ and $2-8^{\circ} \mathrm{E}$.

Geographical distribution The species occurs cr-

Fig. 212. Pseudochirella formosa. Female (from Markhaseva, 1989) with additions after the same specimen).

Fig. 213. Pseudochirella gibbera. Female (from Vervoort, 1949).
cumpolar in Antarctic and Subantarctic, may be characterized as subantarctic-antarctic. Atlantic Ocean: the northernmost locality of $35^{\circ} \mathrm{S}$ (Wolfenden, 1911). Pacific Ocean: the species is distributed to the North to $30^{\circ} \mathrm{S}$ along the coast of South America (Bjornberg, 1973; Grice \& Hulsemann, 1968; original data). According to original data was recorded in the region of $39-42^{\circ} \mathrm{S} 130-144^{\circ} \mathrm{W}$. Indian Ocean: it is known from the region off $30^{\circ} \mathrm{S} 66^{\circ} \mathrm{E}$ (Grice \& Hulsemann, 1967; original data). The northernmost findings of the species in the Indian and Atlantic oceans, probably may be explaned by the fact that the species is transported with meridional water currents from Subantarctic, i.e. the latter localities, do not actually belong to the distribution area proper, but to the zone of the species eviction.

Vertical distribution. Probably meso-bathypelagic species, found in layer $1000-2000 \mathrm{~m}$ (Hardy \& Gunther, 1935), hauls from 350-1786 and 350-2394 m (Grice \& Hulsemann, 1967), also found in total hauls from depths $400-3000 \mathrm{~m}$ (original data), recorded from total hauls from depths $600-5000 \mathrm{~m}$ (Wolfenden, 1911; Farran, 1929; Vervoort, 1957; Bjornberg, 1973; Park, 1978).

Material: 140 females and 11 males from sam-
ples: 266, 268-269, 272, 274-275, 285, 290, 296, 299, 307, 309, 312-313, 316-320, 322-325, 327, 329332, 334, 338-342, 346-348, 353-354, 358, 363-364, 370, 372-376, 379, 383, 395, 434.

12. Pseudochirella limata

Grice \& Hulsemann, 1968
(Fig. 216)
Pseudochirella limata Grice \& Hulsemann, 1968: 327, figs 20-25; Markhaseva, 1989: 39, fig. 7 (A 11).

Description. Female. (Description and figures after Grice \& Hulsemann (1968) with modifications). Total length 7.33 mm . Th5 posterior comers rounded, covering half length of genital segment; left one with very small spine (lateral view). Genital segment with moderate ventral swelling (lateral view), nearly symmetrical (dorsal view), more widened anteriorly. A1 reaching the end of caudal rami. Re Pl incompletely 3-jointed (Re2 and Re3 incompletely separated). Ri P2 2-jointed, P4 coxopodite with 16 not large spines.

Male unknown.

Fig. 214. Pseudochirella hirsuta. Female (434). Male (375).

Type locality: the south-eastern part of the Pacific Ocean: $30^{\circ} 59^{\prime} \mathrm{S} 92^{\circ} 28^{\prime} \mathrm{W}$.

Geographical distribution. The species is known of the type locality only.

Vertical distributıon. The species was found in total haul from 3800 m (Grice \& Hulsemann, 1968).

The species was not examined by me.
13. Pseudochirella lobata (Sars, 1907)
(Fig. 217)
Undeuchaeta lobata Sars, 1907. 11
Pseudochrella lobata Sars, 1924-25 93, pl 25, figs 11-13, Markhaseva, 1989. 38, fig 7 (A 5)

Fig 215 Pseudochrella hirsuta Male (from Markhaseva, 1989)

Fig. 216. Pseudochirella limata. Female (from Grice \& Hulsemann, 1968).

Description. Female. (Description after Sars (1924-25) with modifications). Total length 6.50 mm . Cephalothorax about 4 times longer than abdomen. Lobes of Th5 posterior corners rounded, not reaching the midlength of genital segment. Genital segment symmetrical (dorsal view), more broadened in its midlength. Abd2-3 covered with hairs. A1 reaching the midlength of abdomen. Re P1 3-jointed. Ri P2 2-jointed. P4 coxopodite with row of fan-like 12 little spines.

Male unknown.
Type locality. $38^{\circ} 04^{\prime} \mathrm{N} 26^{\circ} 07^{\prime} \mathrm{W}$.
Geographical distribution. The species is known of the type locality only.

Vertical distribution. The species was found in total haul from 2500 m (Sars, 1925).

The species was not examined by me.

14. Pseudochirella mariana Markhaseva, 1989

(Fig. 218)
Pseudochtrella martana Markhaseva, 1989 34, figs 2, 7 (B 26)

Description Female. Total length 3.60 mm . Cephalothorax 4.7 times longer than abdomen. Th5 posterior corners prolonged into slightly asymmetrical, rounded lobes. Genital segment abruptly asymmetrical with 2 projections on the right (dorsal view). Genital field removed to the right side of specimen. A1 broken. A2 basipodite with 1 seta; Ri1 A2 with 1 seta; Ri2 A2 with 5 long and 1 short posterior setae on internal lobe. Re1 A2 without setae; Re2 A2 with 1 distal seta. Ri1 Md with 2 long and 1

Fig. 217. Pseudochırella lobata. Female (from Sars, 1924).
short setae; Ri2 Md with 9 long terminal and 2 short posterior setae. Mx1 with 3 setae on posterior surface of gnathobase, second and third Mxl internal lobes with 5 setae each. Mx2 typical of Pseudochirella. In proximal group of setae on Mxp protopodite only 1 seta visible. Re P1 3-jointed. Ri P2 2-jointed P4 coxopodite with about 23 spines.

Male unknown
Type localty; the region of the Marian Trench: $11^{\circ} 13^{\prime} \mathrm{N} 141^{\circ} 47^{\prime} \mathrm{E}$.

Geographical distribution. The species is known from the type locality only.

Vertical distribution Species was found in total haul from 7470 m (Markhaseva, 1989).

Material 1 female from sample: 201.

15. Pseudochirella mawsoni
 Vervoort, 1957

(Figs. 219-220)
Pseudochrella mawsoni Vervoort, 1957 64, figs 44-48, Park, 1978 173, 176, figs 48-49, Bjornberg, 1973.

324, Bradford \& Jillett, 1980 68, fig 47, Markhaseva, 1989 40, fig 7 (B 21)
Pseudochirella notacantha (non Sars, 1905) Vervoort, 1957. 67, figs 49-53 (male)

Pseudochirella tuberosa Grice \& IIulsemann, 1968 327, figs 26-33
Description. F e m a 1 e. Total length 5.42-6.75 mm . Cephalothorax 3.3-4.0 times longer than abdomen. Th5 posterior corners rounded Genital segment asymmetrical: right side in its posterior part with significant projection, left one swollen in its midlength (dorsal view). Configuration of genital segment varying (already mentioned (Park, 1978)) A1 reaching the end of genital segment - the end of caudal rami. Re1 A2 with very small seta arranged on the knob; $\operatorname{Re} 2 \mathrm{~A} 2$ with the distal seta only. Ril A2 with 1 (after Park (1978) with 2) setae. Ril Md with 2 ; Ri2 Md with 9 long terminal and 2 posterior setae. Third internal Mx1 lobe with 4 setae and sensory appendage. Mx2 and Mxp typical of Pseudochurella Re P1 3-jomted with indistinct separation between Re1 and Re2. Ri P2 incompletely 2-jointed. P4 coxopodite with $6-10$ spines.

Fig 218. Pseudochirella marıana. Female (from Markhaseva, 1989) with additons

Fig. 219. Pseudochirella mawsoni. Female: Th5 \& Gn (dorsal view) (453), other figures (382).

M a 1 e. Total length $5.20-5.66 \mathrm{~mm}$. Cephalothorax 2.6-3.3 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 completely fused. Th5 posterior corners rounded, with spines on both sides (removed dorsally). A1 reaching Abd2. Oral parts reduced in comparison with those in females. Re P1 3-jointed; external spine on Re l very small. Ri P2 indistinctly 2-jointed. P5: left Re2 with 2 teeth in the distal part of the joint; Re3 about twice longer than wide.

Type locality. Antarctica.
Geographical distribution. The species may be characterized as subantarctic-antarctic. It is distributed circumpolar. To the North from Antarctic Convergence the species was found: Pacific Ocean: widespread along the coast of South America to $31^{\circ} \mathrm{S}$ (Grice \& Hulsemann, 1968; Bjornberg, 1973; original data), also in the region of $40-42^{\circ} \mathrm{S} 124-144^{\circ} \mathrm{W}$ (original data), recorded off the New Zealand region

Fig. 220. Pseudochirella mawsoni. Male (366).
(Bradford \& Jillett, 1980); Indian Ocean: in the region of $45^{\circ} \mathrm{S}$ (Vervoort, 1957).

Vertical distribution. Mesopelagic species found in hauls from 750-550 and 750-1000 m (Vervoort, 1957), 0-183 and 0-366 m (Bjornberg, 1973), 0-313 m (Park, 1978), 0-500 m (Grice \& Hulsemann, 1968), and also in total hauls from depths of 3700 m .

Material: 271 females and 39 males from samples: 266-272, 274-276, 280, 283, 285, 287, 289-290, 298-299, 302-305, 307, 314-317, 319-324, 329-330, 332-334, 338-343, 345-349, 353-354, 357-358, 363, $366,369-371,373,376,382,384,431,435-436$, 447, 453.

16. Pseudochirella notacantha

(Sars, 1905)
(Figs. 221-222)
Gaidius notacanthus Sars, 1905a: 9.
Pseudochirella notacantha: Sars, 1924-25: 86, pl. 24, figs 7-12; Farran, 1929. 323, Sewell, 1929: 128; Jespersen, 1934: 66; Hardy \& Gunther, 1935: 159, Sewell, 1947: 98, text-fig. 21d; Vervoort, 1952g (sheet 48): 3, fig. 2, 1963: 151; Markhaseva, 1989: 37, figs 7 (B 23), 8 (6a, b).
Chirundina parvispina With, 1915: 151, pl. 8, fig. a, textfigs 42 (a-g), 43 (a-h).
Pseudochrella squalida Grice \& Hulsemann, 1967: 24,
figs 65-70, 1968: 324; Bjornberg, 1973: 325; Deevey \& Brooks, 1977. 263; Bradford \& Jillett, 1980: 71, fig. 50; Ferrari, 1980: 537, figs 1-4.
non Gaudus notacanthus. Farran, 1908. 10, 33, pl. 3, fig. 7; Scott, 1909: 52, pl.21, figs 24-33.
non Chirundina notacantha: With, 1915: 148, pl 5, fig. 7, pl. 6, fig. 1, text-fig. 41.
non Pseudochurella notacantha: Vervoort, 1957: 67, figs. 49-53.

Description. Fe m a 1 e. Total length 5.45-6.80 mm . Cephalothorax 3.7-4.2 times longer than abdomen. Th5 posterior corners symmetrical, rounded. Genital segment asymmetrical, with moderate knoblike projections on the left and right, of variable shape. Abdl-3 covered with hairs. A1 as long as cephalothorax - reaching caudal rami. Re1 A2 with 1 very small seta; Re2 A2 with 1 distal seta. Ril A2 with 2 setae; Ri1 Md with 2 (33) setae; Ri2 Md with 9 long terminal and 2 posterior setae. Mx1, Mx2 and Mxp typical of the genus. Re P1 unclearly 3 -jointed. Ri P2 indistinctly 2 -jointed. P4 coxopodite with 6-9 spines.

M a 1 e. Total length $4.90-5.80 \mathrm{~mm}$. Cephalon and Th1, as well as Th4-Th5 fused (Sars (1925) recorded the separation of joints). Th5 posterior corners with spines. Cephalothorax about 3 times longer than abdomen. Oral parts reduced in comparison with those in female. Rel P1 with very small external spine. Ri P2 virtually 2 -jointed. Spines on P4 coxopodite absent. Re2 P5 with 3 teeth in distal part of joint. Re3 P5 with rounded top.

Type locality: North-eastern Atlantic.
Geographical distribution. Atlantic Ocean: northern part (Sars, 1925; Deevey \& Brooks, 1977; Ferrari, 1980), the species is distributed to the North to $62^{\circ} \mathrm{N}$ (With, 1915 ; Jespersen, 1934). Pacific Ocean: it was found in the southern part only; in southeastern part the southernmost findings were in the region of $62-71^{\circ} \mathrm{S}$ (Hardy \& Gunther, 1935; Farran, 1929; Bjornberg, 1973; Park, 1978; original data), and in the south-western part (Bradford \& Jillett, 1980). Indian Ocean: (Sewell, 1947; Grice \& Hulsemann, 1967; original data).

Vertical distribution. Meso-bathypelagic species. In the north-western Atlantic mostly found in hauls between 400 and 1000 m , but also recorded in hauls: $0-200,200-300,300-400$ and 1425-1839 m (Ferrari, 1980), found in hauls $350-1710 \mathrm{~m}$ (Grice \& Hulsemann, 1967), in haul from 300 m (Bjornberg, 1973) and also from total hauls from depths 1000-3000 m (Sars, 1925; Bjornberg, 1973; original data).

Material: 58 females and 6 males from samples: $266,313,353,355-360,362-369,371,375,419,571$.

17. Pseudochirella obesa Sars, 1920

(Figs. 223-224)
Pseudochrella obesa Sars, 1920: 6, 1924-25: 94, pl. 24,
figs 1-4; Jespersen, 1934: 66; Owre \& Foyo, 1967. 27, 49, figs 131-281; Roe, 1975: 307, fig 7; Bradford \& Jillett, 1980: 71, fig 48, Von Vaupel Klein, 1984 52, figs 5 (a), 7 (n), 8 (i, m), 12 (d), 15 (j, k), 16 (i, l, m, n), 17 (d), 18 (c, g, i); Markhaseva, 1989 39 , figs 7 (A 12), 8 (10 b).
Pseudochirella tuberculata Tanaka, 1957b; 195, fig. 56; Tanaka \& Omori, 1969b: 166; Grice \& Hulsemann, 1967: 15.

Description. Fe m a 1 e . Total length $5.00-6.20$ mm . Cephalothorax about 4 times longer than abdomen. Th5 posterior corners slightly asymmetrical, rounded, with knob on the right arranged ventrally (lateral view); this part of segment covered with hairs. Genital segment slightly asymmetrical, more prominent on the left than on the right (dorsal view) and covered with hairs. Genital segment slightly wider than long. A1 reaching the end of genital segment. Re1 A2 and Re2 A2 with 1 seta each. Ri1 A2 with 2 setae. Ril Md with 2 (according to Von Vaupel Klein (1984) with 3) setae, Ri2 Md with 9 long terminal and I short posterior setae (according to Von Vaupel Klein (1984) with 2 setae). Mx1, Mx2 and Mxp typical of the genus. Re P1 3-jointed, separation between Re1 and Re2 incomplete. Ri P2 2-jointed. P4 coxopodite with 7-8 or $7-10$ spines.

M a le. (Description after Roe (1975) with modifications). Total length 5.76 mm . Cephalothorax about 3 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 separated. Th5 posterior comers rounded, without spines. A1 21-jointed, reaching Abd3. Oral parts and their setation reduced in comparison with those in females. Re P1 3-jointed, external spine of Re1 P1 small. Ri P2 1-jointed, but line of fusion poorly visible. P4 coxopodite without spines. Left Re2 P5 with 2 teeth in distal part of joint. Right Re2 P5 with excavation and rounded projection in proximal part of joint.

Type locality: the north-eastern Atlantic, region of the Bay of Biscay.

Geographical distribution. Tropical-boreal species, panoceanic distributed in tropical and subtropical zones of the World Ocean, also found in boreal zone. The northernmost locality in the region of the Strait of Davis (Jespersen, 1934), the southernmost in the region of the New Zealand (Bradford \& Jillett, 1980). The China Sea (original data).

Vertical distribution. More probably mesobathypelagic species. Found in layer $700-1250 \mathrm{~m}$ (Roe, 1975), once recorded near surface (original data), known from total hauls from depths $300-4800 \mathrm{~m}$ (Sars, 1925; Jespersen, 1934; Tanaka, 1957b; Grice \& Hulsemann, 1967; Bradford \& Jillett, 1980; original data).

Material: 3 females from samples: $262,263,265$. Specimens from the collections of the National

Fig. 221. Pseudochirella notacantha. Female: Abd (a) (419), other figures (440).

Museum of Natural History (Washington, D.C.) were examined.

18. Pseudochirella obtusa (Sars, 1905)

(Figs. 225-226)
Undeuchaeta obtusa Sars, 1905a: 4, 13.
Euchrella obtusa Farran, 1908: 40, pl.11, figs 20-21, pl. 4, figs 1-2.
Pseudochrella obtusa Sars, 1924-25: 83, pl.24, figs 1-4; Sewell, 1929: 131, fig. 50, 1947: 101; Jespersen, 1934: 65, 131; Davis, 1949: 32, pl. 4, figs 49-53, pl 5, figs 54-55; Vervoort, 1952g (sheet 48): 3, fig. 3 (a, b, c) (female only), 1963: 150; Grice \& Hulsemann, 1967: 15; Bjornberg, 1973: 324; Bradford \& Jillett, 1980: 71, fig. 49 (female only); Ferrari, 1980: 543, 545; Von Vaupel Klein, 1984: 52, fig. 17 (d); Roe,

1984: 357 ; Markhaseva, 1989: 36, fig 7 (A 4), 8 ($9 \mathrm{a}, \mathrm{b}$).
Euchirella dubia (non Sars, 1905): A. Scott, 1909: 60, pl. 14, figs 1-7.
Chirundina abyssalis With, 1915: 147, pl. 5, fig. 5 (a-f), text-fig. 40 (a-c).
Pseudochirella polyspina Brodsky, 1950. 185, fig. 102; Tanaka, 1957b: 194, fig. 55; Tanaka \& Omori, 1969b: 169 (female only); Grice \& Hulsemann, 1967: 15; Von Vaupel Klein, 1970: 15, fig. 4 (f); Bjornberg, 1973: 324; Deevey \& Brooks, 1977: 263; Park, 1978 : 169, figs 45-47.
Pseudochirella spinfera Brodsky, 1950: 188, fig. 104; Tanaka \& Omori, 1969b: 164, fig. 4.
non Pseudochirella polyspina (male only): Tanaka \& Omori, 1969b: fig. 2.
non Pseudochrella obtusa (male only): Vervoort, 1949: 37, fig. 21 (c), 1952g (sheet 48): 3, fig. 3 (f); Bradford \& Jillett, 1980: 71, fig. 48

Fig. 223. Pseudochirella obesa. Female (263).

Fig. 224 Pseudochirella obesa. Male (from Roe, 1975).

Description Female. Total length 5.25-6.50 mm . Cephalothorax about 3-4 times longer than abdomen. Th5 posterior corners rounded, sometimes covered with hairs, symmetrical. Genital segment barrel shaped; symmetrical; widest in about its midlength, as long as wide. Abdl-3 are covered with hairs to different degree in different specimens. Length of A1 varying: possibly slightly longer than cephalothorax, or reaching the end of caudal rami. Ril A2 with 1 seta, often with 2 setae. Re1 A2 with very small seta arranged on a knob. Re2 A2 with 1 distal seta. Ril Md with 2 setae; Ri2 Md with 9 long terminal setae and 2 posterior setae. Re P1 3-jointed with indistinctly separated Re1 and Re2. Ri P2 2-jointed. P4 coxopodite with $8-15$ spines.

M a 1 e . Total length $4.80-5.50 \mathrm{~mm}$. Cephalothorax slightly less than 3 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused (line of fusion sometimes visible dorsally). Th5 posterior corners rounded, with spines removed to the back side of specimen (lateral view). Oral parts with reduced setation. Re P1 3-jointed, Re P1 external spine not exceeding the midlength of Re2 P1. Ri P2 2jointed. Left Re2 P5 with 2 teeth, left Re3 P5 more than 3 times longer than wide.

Notes. The first description of P. obtusa (Sars, 1905) and subsequent redescription (Sars, 1924-1925) are brief and inadequately documented. This misled Brodsky (1950) in his assumption to originate P. polyspina from the north-western part of the Pacific Ocean. I have examined P. polyspina type series and disclosed that Re P1 of P. polyspina is indistinctly 3 -jointed, not 2 -jointed as considered earlier (Brodsky, 1950). Ri P2 indistinctly 2 -jointed and not 1-jointed (Brodsky, 1950). On the basis of these data (the vast material from numerous geographical sites) and the literature (Sars, 1905, 1924-1925; Park, 1978; Bradford \& Jillett, 1980) I have come to the conclusion on the identity between P. obtusa and P. polyspina. It should be pointed out that the figures of male identified by Vervoort (1949) as P. obtusa and later adduced in the report on aetideids from New Zealand region (Bradford \& Jillett, 1980) should evidently be attributed to the male of P. dubia (Sars, 1905). The male described under the name P. spinifera Brodsky (1950) and later synonymized with P. polyspina (Park, 1978) should probably be considered as a male of P. obtusa.

Type locality: North Atlantic.
Geographical distribution. Atlantic Ocean: the species was recorded to the North to $62^{\circ} \mathrm{N}$ (With, 1915; Jespersen, 1934). Pacific Ocean: to the North up to the Bering Sea (Motoda \& Minoda, 1974; original data), to the South down to $67-68^{\circ} \mathrm{S}$; circumpolar (Park, 1978; original data).

Vertical distribution. Bathy-mesopelagic species: in hauls basically occurs between 1000 and 2000 m (Grice \& Hulsemann, 1967; Deevey \& Brooks, 1977; Ferrari, 1980; etc; original data), was found
in large amounts in total hauls from depths from 5000 m (Sars, 1925; Bjornberg, 1973; Park, 1978; Bradford \& Jillett, 1980; etc.; original data). There are single findings of the species from epipelagial (Vervoort, 1963; Minoda, 1971).

Material: more than 500 females and 50 males from samples: $5,18,20-21,61,63,65,69-73,81$, 86, 92-94, 102-103, 119-121, 126-128, 132, 134-137, 145-146, 156-163, 171, 173-174, 181, 189-191, 195, 199, 218, 226, 246, 267, 269-273, 275-276, 280, 282-283, 285, 287, 293-297, 300-302, 304, 306, 310, $312,314,316-317,322,334,336,338,341,363$, 376, 379, 474, 569.

19. Pseudochirella pacifica Brodsky, 1950

(Figs. 227-228)
Pseudochirella pacifica Brodsky, 1950: 189, fig. 105; Zvereva, 1976: 201, figs 13-20; Markhaseva, 1989: 40, fig. 7 (B 24); 8 ($1 \mathrm{a}, \mathrm{b}$).

Description. Fe m a 1 e. Total length 7.00-7.60 mm . Cephalothorax about 4 times longer than abdomen. Th5 posterior corners rounded, right one covered with hairs distally. Genital segment asymmetrical with significant projection on the right densely covered with hairs (dorsal view). Abd1-3 covered with hairs. A1 reaching the midlength of abdomen. Rel A2 with 1 very small seta; Re 2 A 2 with the distal seta only. Ri1 A2 with 1 seta. Ril Md with 2 setac; Ri2 Md with 9 long terminal setae and 1 posterior seta. Mx1, Mx2, Mxp typical of the genus. Separation between Re 1 and Re 2 P 1 incomplete. Ri P2 incompletely subdivided into 2 joints. P4 coxopodite with $9-10$ spines.

Male. Total length about 6 mm . Cephalothorax about 3 times longer than abdomen. Th5 posterior corners with small spines. Left Re2 P5 with 1 tooth distally.

Type locality: the north-western part of the Pacific Ocean, Kamchatka, 90 miles to the south-east off Cape Shipunsky.

Lectotype: male from sample 474.
Geographical distribution. Evidently the species may be characterized as tropical-boreal. Pacific Ocean: often found in the north-western part; in the Sea of Okhotsk, in the region of the KurileKamchatka and Marian trenches (original data).

Vertical distribution. Bathy-abyssopelagic species. In the region of the Kurile-Kamchatka Trench often found in layer $2000-3000 \mathrm{~m}$, however also found in hauls between $1000-2000 \mathrm{~m}, 3000-4000$ and 4000-5000 m (original data).

Material: 23 females and 6 males from samples: $1,19,21,66,69,73,81,83,95-96,121-123,140$, 161, 175, 181, 201.

Fig. 225. Pseudochtrella obtusa. Female (569).

Fig. 226. Pseudochirella obtusa. Male (94).

Fig. 227 Pseudochirella pacifica Female (1).

Fig. 228. Pseudochirella pacifica. Male (201).

20. Pseudochirella palliata (Sars, 1907)

(Fig. 229)
Undeuchaeta pallata Sars, 1907: 11.
Pseudochirella palliata Sars, 1924-25: 92, pl. 25, figs 8-10; Markhaseva, 1989: 39, fig. 7 (A 16).

Description. Fe m a 1 e. Total length 5.50-7.20 mm . Cephalothorax about 4 times longer than ab domen. Th5 posterior comers prolonged into lobes, ending with short spine, slightly asymmetrical (dorsal and lateral view). Genital segment slightly asymmetrical; lateral swelling on the right slightly more prominent than that on the left (dorsal view); segment is widest in its second third. Al slightly longer than cephalothorax, reaching the end of genital segment. Re1 A2 without setae; $\operatorname{Re} 2 \mathrm{~A} 2$ with the distal seta only. Ril Md with 1 seta. Ri2 Md with 9 terminal setae and 2 posterior setae. Mxl third internal lobe with 4 setae and appendage. Mx2, Mxp typical of the genus. Re P1 3-jointed; Rel and Re2 incompletely separated. Ri P2 2-jointed. P4 coxopodite with 13 spines.

Male unknown.
Type locality: $36^{\circ} 17^{\prime} \mathrm{N} 28^{\circ} 53^{\prime} \mathrm{W}$.
Geographical distribution. Atlantic Ocean: North Atlantic (Sars, 1925). Pacific Ocean; in the region of the Kurile-Kamchatka Trench (Markhaseva, 1989).

Vertical distribution. Evidently abyssopelagic species: in the Atlantic Ocean known from total
haul from 3000 m (Sars, 1925) and from abyssal depths: $4000-5000 \mathrm{~m}$ from the region of the KurileKamchatka Trench (original data).

Material: 1 female from sample 124.

21. Pseudochirella pustulifera

(Sars, 1905)
(Figs. 230-231)
Undeuchaeta pustulffera Sars, 1905: 14.
Chirundina pustulifera: With, 1915: 145, text-fig. 39, pl. 5 , fig. 6.
Pseudochirella pustulfera: Sars, 1924-25: 85, pl. 24, figs 5-6; Jespersen, 1934: 65; Grice \& Hulsemann, 1967: 15, 1968: 324; Bjornberg, 1973: 325; Deevey \& Brooks, 1977: 263; Park, 1978: 165, figs 43-44; Ferrari, 1980: 545; Markhaseva, 1989: 40, fig. 7 (B 22), 8 (11 b).
Euchirella wolfendent Farran, 1908: 38, pl. 2, figs 18-19, pl. 4, fig. 3.
non Chirundina pustulifera: Wilson, 1932: 49, fig. 30 (a-c) (male).
non Pseudochirella pustulifera: Tanaka, 1957b: 192, fig. 54; Tanaka \& Omori, 1969b: 162, fig. 3.

Description. Fe m a 1 e . Total length $6.60-7.40$ mm . Cephalothorax 4.0-4.6 times longer than abdomen. Th5 posterior corners symmetrical and rounded. Genital segment asymmetrical, projection on the right is more prominent than on the left, projections arranged in the midlength of the segment

Fig. 229. Pseudochirella palliata. Female (124).
(dorsal view). Shape of projections variable. A1 as long as body. Rel A2 with small seta arranged on the small knob; $\operatorname{Re} 2 \mathrm{~A} 2$ with 1 seta distally. Ril A2 with 1 seta. Ril Md with 2 setae; Ri2 Md with 9 terminal and 2 posterior setae. Mx1 second internal lobe with 4 setae and minute appendage. Mx2, Mxp typical of the genus. Re P1 3-jointed. Separation between Re1 and Re2 P1 incomplete. Separation of Ri P2 joints is also indistinct. P4 coxopodite with 6-9 (after With (1915) with 11) spines.

Ma 1 e. Total length $6.20-6.50 \mathrm{~mm}$. 'Cephalothorax about 3 times longer than abdomen. Cephalon
and Thl as well as Th4-Th5 fused. Th5 posterior corners rounded, spines absent. Oral parts reduced in comparison with those in females. Al reaching the distal end of Abd3. Re P1 3-jointed. Rel Pl external spine exceeding the midlength of Re 2 Pl (after Park (1978) it is significantly shorter). P4 coxopodite without setae and spines. Left Re2 P5 with 2 teeth distally.

Type locality: North Atlantic.
Geographical distribution. The species may be characterized as antitropical; found in antarctic, subantarctic, boreal and also subtropical zones of

Fig. 230. Pseudochrrella pustulffera. Female: Th5 (a-c) \& Abd (a-c) (267), other figures (447).

Fig. 231. Pseudochirella pustulifera. Male: P5 (from Park, 1978), other figures (271).

Fig. 232. Pseudochirella scopularis. Female (from Vervoort, 1949).
the World Ocean, but not recorded from the tropics. The species is common in the boreal Atlantic (Farran, 1908; With, 1915; Sars, 1925; Jespersen, 1934; Deevey \& Brooks, 1977; Ferrari, 1980) and south-eastern part of the Pacific Ocean (Grice \& Hulsemann, 1968; Bjornberg, 1973). The northernmost finding: in the Norwegian Sea (Østvedt, 1955).

Vertical distribution. Bathy-mesopelagic species, was found from meso- (Ferrari, 1980) and bathypelagial (Deevey \& Brooks, 1977; Ferrari, 1980) and meso-bathypelagial (Grice \& Hulsemann, 1967), recorded once from epipelagial (Park, 1978). Found in total hauls from depths 1000 to 5700 m (Sars, 1925; original data).

Material: 16 females and 1 male from samples: $267,271,300,302,314,336,348,376,447$.

22. Pseudochirella scopularis
 (Sars, 1905)

(Fig. 232)
Undeuchaeta scopularis Sars, 1905: 14-15.
Pseudochirella scopularis Sars, 1924-25: 90, pl. 25, figs 1-4; Vervoort, 1949: 46, fig. 21 (a-b); Ferrari, 1980: 543, 545; Markhaseva, 1989: 39, fig. 7 (A 14).

Description. Fe m a 1 e. (Description after Vervoort (1949) and Sars (1925) with modifications). Total length $5.00-6.40 \mathrm{~mm}$. Cephalothorax $3.5-4.0$ times longer than abdomen. Th5 posterior corners prolonged into triangular lobes, ending with acute
corners (Sars, 1925), or their tops are not pointed (Vervoort, 1949). Genital segment slightly asymmetrical and covered with hairs in its posterior part. Genital segment the widest in its first half. A1 reaching the midlength of abdomen (Sars, 1925), reaching the end of abdomen (Vervoort, 1949). According to Vervoort (1949) oral parts and swimming legs are as in P. obtusa. Ri P2 indistinctly 2-jointed. P4 coxopodite with 9 spines.

Male unknown.
Type locality: $46^{\circ} \mathrm{N} 7^{\circ} 09^{\prime} \mathrm{W}$.
Geographical distribution: Atlantic Ocean: the north-eastern and north-western Atlantic (Sars, 1925; Ferrari, 1980). The Molluccan Sea (Vervoort, 1949).

Vertical distribution. The species is known from haul $500-600 \mathrm{~m}$ (Ferrari, 1980), also from total hauls from depths 3000 m (Sars, 1925).

The species was not examined by me.

23. Pseudochirella spectabilis

(Sars, 1900)
(Figs. 233-235)
Undeuchaeta spectabilis Sars, 1900: 59, pl. 15, 16.
Pseudochirella spectabilis: Brodsky, 1950: 185, fig. 103; Markhaseva, 1989: 38, fig. 7 (A 6).
Euchirella elongata Wolfenden, 1905: 19, pl. 6, figs 12-13, 1911: 239, text-fig. 25, pl. 28, fig. 6.
Pseudochirella elongata: Vervoort, 1957: 69; Park, 1978 : 159, figs 37-40; Markhaseva, 1984: 512, figs 1-2; 1989: 39, fig. 7 (B 18); 8 (2 a, b).

Description F e m a 1 e. Total length 7.17, about 8 mm . Cephalothorax 3.4-4.5 times longer than abdomen. Th5 posterior corners prolonged into asymmetrical lobes ending with small spine. Genital segment asymmetrical, widened more in its posterior half; projection on the right is more developed than that on the left, varying in shape. A1 as long as cephalothorax, or reaching the midlength of abdomen. Re1 A2 without setae, Re2 A2 with the distal setae only. Ri1 A2 with 1 seta. Ri1 Md with 2 setae, Ri2 Md with 9 terminal and 2 posterior setae. Mxl third internal lobe with 4 setae and sensory appendage. Mx2, Mxp typical of the genus. Re P1 3-jointed, separation between Rel and Re2 incomplete. Ri P2 2-jointed. P4 coxopodite with $8-12$ spines, weaker on the left leg than on the right.

M a 1 e. Total length $6.00-6.66 \mathrm{~mm}$. Cephalothorax about 3 times longer than abdomen. Cephalon and Thl, as well as Th4-Th5 fused. Th5 posterior corners with small spine. A1 reaching the middle length of abdomen. Oral parts reduced in comparison with those in females. Re P1 3-jointed. Re1 P1 external spine shorter than in female. P5 powerful, configuration of joints changing in dependance of position of leg.

Notes. Sars (Sars, 1900) never recorded the asymmetry of Th5 posterior corners and genital segment. However, the studied type specimen of Undeuchaeta spectabilus Sars, 1900 (F 2449 deposited in the Zoological Museum of Oslo University) possesses genital segment and Th5 asymmetrical and identical in structure to that in P. elongata (Wolfenden, 1905). Thus my previous assumption concerning the identity between P. elongata (Wolfenden, 1905) and P. spectabills (Sars, 1900) was confirmed, and the former species should be considered the junior synonym of P spectabilis (Sars, 1900).

Type locality: central part of the Arctic Basin (in the region off $84^{\circ} \mathrm{N}$).

Geographical distributton. Bipolar species, distributed circumpolar in Arctic, Antarctic and Subantarctic (Sars, 1900; Wolfenden, 1905, 1911; Brodsky, 1950; Brodsky \& Nikitin, 1955; Vervoort, 1957; Minoda, 1967; Park, 1978; Markhaseva, 1989). The species was found in the Bering Sea (Minoda, 1971; Motoda \& Minoda, 1974), it is most likely that this finding is actually P accepta.

Vertical distribution. Probably mesopelagic species, single findings are known from epipelagial (Sars, 1900; Bjornberg, 1973; original data) In epipelagial of the Arctic Basin under the $\mathrm{T} 1.6^{\circ} \mathrm{C}$ (original data). Recorded in hauls between 500 and 750 m (Vervoort, 1957), 200-750 m and 750-bottom (original data), also in total hauls from depths 3000 m (Wolfenden, 1911; Park, 1978).

Material 103 females and 6 males from samples: 267, 270-272, 276, 278, 281-283, 285, 289, 291, 293, 296-297, 302, 304, 306, 335-338, 344, 376,

378-379, 393, 429, 470, 483, 487, 490, 492, 500-501, 507, 524, 544-545, 547, 554.

24. Pseudochirella spinosa (Wolfenden, 1911)

(Fig. 236)
Euchrella spmosa Wolfenden, 1911. 235, taf 27, figs 3-7 Pseudochirella spinosa Markhaseva, 1989 38, fig 7 (A3)

Description. Female. (Description after Wolfenden (1911) with modifications). Total length 6.20 mm . Cephalothorax 4 times longer than abdomen. Th5 posterior corners prolonged into straight spines reaching about the midlength of genital segment (dorsal view). A1 shorter than body. Ri1 A2 with 1 seta; Re2 A2 without medial seta. Re P1 3-jointed. Ri P2 2-jointed. P4 coxopodite with 13 spines.

Male unknown.
Type localty the Atlantic Ocean between $28^{\circ} \mathrm{S}$ $20^{\circ} \mathrm{W}$ and $18^{\circ} \mathrm{N} 30^{\circ} \mathrm{W}$.

Geographical distributton Species is known of type locality only.

Verical distribution: found in total hauls from 1200 and 3000 m (Wolfenden, 1911).

25. Pseudochirella tanakai Markhaseva, 1989

(Fig. 237)
Pseudochrella tanakal Markhaseva, 1989 34, figs 3, 7 (A 13).
Pseudochrella pustulfera (non Sars, 1905) Tanaka, 1957b: 192, fig 54, Tanaka \& Omorı, 1969b 162, fig 3

Description. Female. Total length 5.70-6.45 mm . Cephalothorax about 3.8-4.4 times longer than abdomen. Th5 posterior corners rounded and symmetrical. Genital segment with projections on the right and left, slightly asymmetrical, forming type of shoulders of the segment. A1 reaching nearly the midlength of abdomen, or about as long as body. Rel A2 with 1 small seta; Re2 A2 with 1 distal seta. Ril A2 with 1 seta Ril Md with 2 setae; Ri2 Md with 9 terminal and 1 posterior setae. Mxl, Mx2, Mxp typical of the genus. Re P1 incompletely 3-jointed. P2 indistinctly 2-jointed. P4 coxopodite with 4-7 spines.

M a 1 e. (Description after Tanaka \& Omori (1969b) with modifications). Total length 5.51 mm . Cephalothorax about 3 times longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused. Th5 posterior corners rounded, spines absent. Al reaching distal border of Abd 2 . Re A 2 as long as Ri A 2

Fig. 233. Pseudochirella spectabilis. Female: general view, Th5 (a) \& Abd (a), A1, Gn (specimens from the Central part of Arctic Basin), Th5 \& Gn (A \& B different specimens), P4 coxopodite (393), Th5 (b) \& Gn (b) (429), Th5 (c) \& Gn (c) (500), Th5 (d) \& Gn (d) (501).

Fig. 234. Pseudochirella spectabilis. Female: P1, P2 (after the specimens from the central part of the Arctic Basin). Male: general view, Th5 \& Abd (507), P5 \& P5 (a) (490).

Fig. 235. Pseudochirella spectabilis. Female: Th5 \& Gn (F 2449 is kept in the Zoological Museum of Oslo University).

Ri2 A2 with 6 long setae on external lobe and 7 long and 1 small setae on internal lobe. Mx1 with 7 setae on external lobe; Re with 11 setae;, Ri with 13, protopodite near Ri base with 5 setae; third internal lobe with 4 setae; second internal lobe with 2 reduced setae and gnathobase with 7 reduced setae. Re P1 3-jointed. Rel P1 external spine very small. Left Re2 P5 with a tooth on distal border.

Notes. The present male was described by Tanaka \& Omori (1969b) under the name Pseudochirella pustulifera (Sars) together with female that was later considered independent species P. tanakai (Markhaseva, 1989). However the status of the male is still doubtful.

Type locality: the Kurile-Kamchatka Trench area.
Geographical distribution. Pacific Ocean: the region of the Kurile-Kamchatka Trench (original data) and from the Izu region (Tanaka \& Omori, 1969).

Vertical distribution. Bathypelagic species. Recorded between 1000 and 2000 m (original data), also known from total hauls from depths 7000 m (Tanaka \& Omori, 1969; original data).

Fig. 236. Pseudochirella spinosa. Female (from Wolfenden, 1911).

26. Pseudochirella vervoorti
 Tanaka \& Omori, 1969

(Fig. 238)
Pseudochirella vervoorti Tanaka \& Omori, 1969b: 166, fig. 5; Markhaseva, 1989: 38, fig. 7 (A 10).

Description. Fe m a 1 e. Total length $5.66-5.71$ mm . Cephalothorax about 4.5 times longer than abdomen. Th5 asymmetrical; with spine on the right. Genital segment symmetrical, barrel-like; this and following segments covered with hairs. A1 reaching the distal border of Abd4. Ril A2 with 1 seta. Rel A2 without setae; Re2 A2 without medial seta. Ril Md with 2 setae; Ri2 Md with 9 terminal and 1 posterior (according to Tanaka \& Omori (1969b) with 11) setae. Mx1, Mx2 and Mxp typical of the genus. Pl with indistinct separation between Rel and Re2 of 3 -jointed Re. P2 with 2-jointed Ri. Left P4 coxopodite with 12 spines, right with 9 spines.

Male unknown.

Fig. 237. Pseudochirella tanakai. Female (from Markhaseva, 1989).

Notes. Tanaka \& Omori (1969b) noted close connection between the present species and P. semispina Vervoort, 1949 but distinguished the species in segmentation of Ri P2 (in semispina Ri P2 1-jointed), in higher number of spines on coxopodite of P 4 (in semispina 7-8), in different proportion of Ri and $\operatorname{Re} \mathrm{A} 2$ (in semispina Re is 1.2 Ri) and in different arrangement of hairs on genital segment.

Type locality: the Izu region.
Geographical distribution. The species is known from the Izu region (Tanaka \& Omori, 1969b) and the Marian Trench region (original data).

Vertical distribution. The species was found in hauls from 1400 m and 1560 m (Tanaka \& Omori, 1969b) and from total haul from 7500 m (original data).

Material: 1 female from sample: 201.

Fig. 238. Pseudochirella vervoorti. Female (from Tanaka \& Omori, 1969b)
22. Pterochirella Schulz, 1990

Type species. Pterochirella tuerkayi Schulz, 1990, by original designation.

Pterochirella Schulz 1990: 182.
Description. M a 1 e. (Description after Schulz (1990) with modifications). Total length 3.28 mm . Cephalothorax about twice longer than abdomen. Cephalon and Th1, as well as Th4-Th5 fused. Th5 posterior comers rounded. Dorsal body wall of cepha-
lothorax transformed into "deep transverse cleft encompassed by number of paired lobe-like structures" (Schulz, 1990: 182). Th1 with two wing-like projections. Rostrum absent, but 2 thin filaments present. Re as long as Ri A2. A1 without geniculation. P1-P4 segmentation typical of Aetideidae. P5 biramous, left and right protopodites of about equal length. Ri 1jointed. Re P5 3-jointed (right Re indistinctly), right Re distal joint long, tapering distally.

Notes. Pterochirella is the unique genus among Aetideidae in the transformation of dorsal body side of cephalon and Th1.

Fig. 239. Pterochirella tuerkayi. Male (from Schulz, 1990).

1. Pterochirella tuerkayi Schulz, 1990

(Fig. 239)
Pterochirella tuerkayl Schulz, 1990. 182-183, 186, figs 1-3

Description Ma 1 e. (Description after Schulz (1990) with modifications). Total length 3.28 mm . Cephalothorax about twice longer than abdomen. Cephalon and Th, as well as Th4-Th5 fused, line of fusion visible (dorsal view). Anterior part of cephalon with hump (lateral view), of acute triangular shape, rounded on the apex. Cephalon constricted behind proximal third (dorsal view). Rostrum absent, but 2 small filaments rising from of A1 level present. Anterior part of cephalon at the level of Md with transverse cleft, accompanied by bilateral symmetrical processes: 1 mediodorsal, digitate structure; 1 lateral lobe pointing dorsal and several lobe-like structures bordered by irregular delicate hair-fringe encompassing area of identation more posteriorly. Th 1 with wing-like projections (dorsal and lateral view). Th 2 with row of strong bristles (dorsal view) Th corners rounded. Genital segment with genital aperture on the left. Caudal rami slightly longer than
wide. A1 reaching distal end of Abd 2; 8th and 9th and 24-25th joints fused; 9th and 10th, as well as 12th and 13th partially fused; 20 and 21 joints fused on the right and separated on the left side. A1 1-9 joints with long aesthetascs, distal segments with short ones. A2 with 1 seta on coxo- and 2 setae on basipodite; Rel and R2 A2 without setae; Re with 3 terminal setae; Ri A2 with 7+6 setae. Md palp base without gnathobase, with 1 seta on the base; Re Md longer than Ri Md; Rill Md with 1 ; Ri 2 Md with 9 setae. Mx1 internal lobes reduced, protopodite near Ri base with 2 setae; Ri with 10 setae; Re with 11 setae and external lobe with 7 setae. Mx2 severely reduced. Map protopodite with distal setae group only. P1-P4 with segmentation and setation typical of Aetideidae. Rel and Re P1 with very small external spines. Ri P1 external lobe present, covered with spinules. Terminal spines of Re P2-P4 with 25,25 and 28 teeth respectively. Ri P3-P4 with minute surface spinules P5 biramous. Right and left coxopodites of equal length; left basipodite slightly longer than right. Right Re very long, indistinctly 3 -jointed; distal (Re) joint slightly longer than Rel and Re2 together and tapering into fine point. Right Ri 1-jointed, spoon-shaped distally. Left Re P5 clearly 3-jointed: Rel with 1 small distal
seta equal in length to $\operatorname{Re} 2-\operatorname{Re} 3$ together; Re2 with spinules distally; Re 3 with rows of hairs along internal margin. Ri P5 left with 1 short small terminal spine.

Female unknown.
Type locality: $12^{\circ} 30,7^{\prime} \mathrm{N} 45^{\circ} 41,6^{\prime} \mathrm{E}$.
Geographical distribution. Indian Ocean: the Gulf of Aden (Schulz, 1990).

Vertical distribution. The species was found at depth 1318 m in 10 cm above sea-bed (Schulz, 1990).

The species was not examined by me.

23. Senecella Juday, 1923

Type species, Senecella calanoides Juday, 1923, by monotypy.

Senecella Juday 1923: 205; 1925: 1; Rylov, 1930: 7; Gurney, 1931: 19; Marsh, 1933: 49; Pirozhnikov, 1958: 626; Borutsky \& Stepanova, 1991: 437.

Description. Female. (Description after Juday (1925) and Marsh (1933) with modifications). Total length $1.98-3.35 \mathrm{~mm}$. Th 5 posterior corners rounded. Genital segment nearly as long as 3 following segments. A1 25-jointed, reaching Abdl-2. Rel P1 without external spine. Posterior surface of P1-P4 without minute spinules.

Male. (Description after Borutsky \& Stepanova (1991) with modifications). Total length 2.45-2.55 mm . A1-25-jointed. Oral parts of male significantly reduced in comparison with those in female. P5 biramous, of simple structure.

The genus Senecella includes 2 species.

Key to species of Senecella

Females

1(2) Re3 P2-P4 with 2 external spines. Genital segment symmetrical

1. S. calanoides Juday

2(1) Re3 P2-P4 with 3 external spines. Genital segment slightly asymmetrical . 2. S. siberica Vyshkvartzeva

Males

1(2) Left Ri P5 with digitiform process as long as Rel I. S. calanoides Juday
2(1) Left Ri P5 with digitiform process significantly longer than Rel 2. S. siberica Vyshkvartzeva

1. Senecella calanoides Juday, 1923
(Fig. 240)
Senecella calanoides Juday, 1923: 205; 1925: 2, pl.1, figs 1-6, pl. 2, figs 7-14, pl. 3, figs 15-20; Marsh, 1933. 49, pl. 24; Borutsky \& Stepanova, 1991: 437-439, fig. 196.

Description. F e m a 1 e. (Description after Borutsky \& Stepanova (1991), Juday (1925) and Marsh (1933) with modifications). Total length 1.98-3.35 mm. A1 25 -jointed. Rel A2 with $1-2$ setae (Juday, 1925; Marsh, 1933). Re2 A2 with 2-3 (Juday, 1925; Marsh, 1933). Ril A2 with 2 setae and Ri2 A2 with 7 setae on both lobes. Md palp base with 2 setae, Ril Md with 2 setae; Ri2 Md with 9 setae. Second and third internal Mxl lobes with 3 (?) setae each; protopodite near Ri base with 5 setae; Ri with 12 and Re with 10 setae; external lobe with 7 setae. Mx2 with sixth endite supplied with 1 long seta (as in Jaschnovia). Re P1 3-jointed; Rel P1 without external spine. Ri PI well developed. Re3 P2-P4 with 2 external spines unique of Aetideidae. P4 coxopodite with 1 robust internal spine.

Male. (Description after Borutsky \& Stepanova (1991) with modifications). Total length 2.45-2.55 mm . Al 25 -jointed. P4 coxopodite without internal spine. P5 biramous. Right Re P5 2-jointed; Rel with 1 small spine distally. Narrow plate emerges from internal distal corner of Rel right extending along internal margin of Re2. Re relatively short with small seta distally; terminal spine long. Right Ri 1-jointed, elongated. Left Re 2 with short terminal spine; Ri l-jointed.

Type locality: Finger lakes, New York.
Geographical distribution. The species was found in the Siberian seas and in the mouth of Siberian rivers (Pirozhnikov, 1958; Borutsky \& Stepanova, 1991), in lakes of Canada and North American States.

Ecology. Mostly brackish-water species, possibly found in marine and fresh waters. In the northern Siberia found in abundance under salinities not higher than $15-20 \%$. The species is common in zooplankton of the North American fresh lakes. Total length of specimens depends on the locality, varying from 3.15-3.35 to 2.62-2.95 in the direction from sea to river mouth (Smirnov, 1938). In North Siberia adult females emerge in the second half of September, become more numerous in January; in summer only naupliar and copepodite stages may be found. In American lakes specimens get matured in July-August (Borutsky \& Stepanova, 1991).

2. Senecella siberica
 Vyshkvartzeva, 1994

(Fig. 241)
Senecella siberica Vyshkvartzeva, 1994: 113-120, figs 1-2

Description. Female. (Description after Vyshkvartzeva, 1994). Total length $3.0-3.3 \mathrm{~mm}$. Cephalothorax about 2.9-3.0 times longer than abdomen. Rostrum absent. Th5 posterior corners rounded, rea-

Fig. 240. Senecella calanordes. Female, male (from Juday, 1923).
ching the anterior third of genital segment's length. Genital segment is nearly as long as 3 following segments together, slightly asymmetrical (ventral view). A1 24 -jointed. Ri A2 slightly shorter than Re. Rel and Re2. A2 with 2 setae each. Md palp base with 2 setae; Ri1 with 2 setae; Ri2 with 10 setae. Mx1 gnathobase with 9 terminal spines and 4 posterior setae; second and third internal lobes with 5 and 4 setae respectively; protopodite near Ri base with 5 setae; Ri with 16 setae; Re with 10 setae. Mx2 with 6 endites; sixth endite with 2 setae. Mxp protopodite with 1 seta proximally and groups of 2, 3 and 3 setae (from proximal to distal part of the joint). Segmentation of P1-P4 typical of Aetideidae. Re1 P1 without external spine; Re2-Re3 P1 with external spine each. Re3 P2-P4 with 3 external spines each.

Male . Total length 2.8-2.88 mm. Cephalothorax nearly 2.5-2.6 times longer than abdomen. Rostrum present, very small, conical. A1 24 -jointed, symmetrical, reaching the end of cephalothorax. A2 similar to female, but the setae of Re1-Re2 are shorter. Md palp base with 1 rudimentary seta; Ril Md without seta; Ri2 with 8 setae. Md gnathobase, Mx1 and Mx2are severely reduced. P1-P4 almost like in
females, but external spines of Re2 P1 and of the 1st and 2nd spines of Re3 P2-P4 are shorter. P5 is large and asymmetrical. Right Ri P5 long clap-per-like, reaching slightly beyond of right Re2; Rel subcylindrical, 2 times as long as wide; a narrow hyaline lamella rises at the inner distal angle of this segment and extends inwards along Re2; Re2 is small, with small spine at its outer distal angle and long terminal hook, not separated from the joint. Left Ri is about trapezoidal with a narrow base and cup-like wide distal edge and with digitiform process at the outer distal angle, reaching far beyond Rel. Rel left is oblong, 1.5 times as long as wide with convex outer edge; Re2 is larger than Re1, distal margin hyaline, wavy with small spine in the inner distal angle and digitiform process near its base.

Type locality: Neelov Bay ($71^{\circ} 46^{\prime} \mathrm{N} 128^{\circ} 51^{\prime} \mathrm{E}$).
Geographical distribution. The Kara and Laptev Sea and their bays and estuaries (Vyshkvarzeva, 1994).

Ecology. The species was found in waters with salinities from 1 to 22% and T° from -0.48 to + $8^{\circ} \mathrm{C}$; possibly may inhabit freshwater bodies of North Siberia. The species seems to reproduce in winter (Vyshkvartzeva, 1994).

Fig. 241. Senecella siberica. Female, male (from Vyshkvartzeva, 1994).

24. Sursamucro Bradford, 1969

Type species: Sursamucro spinatus Bradford, 1969, by monotypy.

Sursamucro Bradford, 1969b: 488; Bradford \& Jillett, 1980: 77.

Description. Female. (Description after Bradford (1969b) with modifications). Total length 6.45 mm . Cephalothorax about 4 times longer than abdomen. Cephalon and Th1 fused, Th4-Th5 separated. Rostrum reduced, in a form of blunt rounded plate. Crest absent. Th5, as well as genital segment symmetrical. Th5 prolonged into spines upturned backward. A1 24-jointed, reaching Th4-Th5. Re A2 nearly as long as Ri A2. A2 coxopodite with 1 seta; basipodite with 2 setae. Ri1 A2 with 2 setae; Ri2 A2 external lobe with 7 terminal setae; Rel and Re 2 with 2 setae each; Re3-Re6 with 1 seta each; $\operatorname{Re} 7$ A2 typical of Aetideidae with 3 terminal setae. Md palp base with 2 setae; Ril Md with 1 seta; Ri2 Md with 9 setae. Mxl gnathobase with 14 setae;
second and third internal lobes and protopodite near Ri base with 4 setae each; Ri and Re with 11 setae each; external lobe with 9 setae. According to Bradford (1969b), Mx2 typical of Aetideidae: one of seta of fifth endite is more spine-like than others. Mxp typical of Aetideidae: proximal part of joint without seta and distal part without appendage. P1 with 3 -jointed Re with external spines at each joint; basipodite with small seta in external distal part of joint. Ri P2 2-jointed. All other rami of swimming legs 3 -jointed. P4 coxopodite without spines. P5 sometimes present, vestigial.

Male unknown.
Monotypic genus.

1. Sursamucro spinatus Bradford, 1969
(Fig. 242)
Sursamucro spinatus Bradford, 1969b: 488, 491, figs 112127.

Description. Fem ale. (Description after Brad-

Fig. 242. Sursamucro spinatus. Female (from Bradford, 1969).
ford (1969b) with modifications). Total length 6.45 mm . Cephalothorax more than 4 times longer than abdomen. Md palp base with 2 setae; Ril Md with 1 seta Second and third Mx1 internal lobes with 4 setae each. Fifth Mx2 endite with spine-like seta. P5 present as chitinious ridge.

Type locallty. off Bay of Plenty, NE New Zealand.

Geographical distribution Continental slope off the West and East coast of North New Zealand (Bradford, 1969b).

Vertical distribution Benthopelagic species (Bradford, 1969b).

The species was not examined by me.

25. Undeuchaeta Giesbrecht, 1888

Type species• Undeuchaeta major Giesbrecht, 1888, by subsequent designation (Brodsky, 1950).

Undeuchaeta Giesbrecht, 1888: 335.
Mesundeuchaeta Wolfenden, 1911: 244 (type species: Mesundeuchaeta asymmetrica Wolfenden, 1911, by monotypy).

Description. Fe m a 1 e . Total length 3.00-6.60 mm . Cephalothorax 3-4 times longer than abdomen. Crest present, or absent. Rostrum present, 1-pointed. Cephalon and Th1 indistinctly separated, or fused; Th4-Th5 fused. Th5 posterior corners prolonged into obtuse triangular, or triangular lobes, one of them sometimes may be rounded. Genital segment asymmetrical: with small projection (U. incisa, U. major), or spine (U. plumosa, U. bispinosa) on the right. Generally genital segment with spinules along posterior border, sometimes groups of minute hairs present in the other parts of segment. A1 23-24-jointed, nearly as long as cephalothorax, or reaching Abd3. Re A2 nearly twice longer Ri A2. Re1 A2 without seta, or with 1 very small reduced seta. $\operatorname{Re} 2 \mathrm{~A} 2$ with 1 poorly visible distal seta (sometimes with 2 very small setae); Re3-Re6 with 1 long seta each; Re7 with 1 medial and 3 terminal setae. Ri1 A2 with 2 distal setae; Ri2 A2 with 6 long and 1 short posterior setae on external and 8 (6 long, 2 short, or 7 long, 1 short) setae on internal lobe. Md palp base with 3 setae; Ril Md with 2 setae (in U. intermedia only 1 seta visible), and Ri2 Md with 9 terminal and 1 short posterior seta. Mxl gnathobase with 9 claw-like and 1 thin terminal setae, and also with 4 setae on posterior surface of Mx1 gnathobase. Second Mx1 internal lobe with 5 setae; third with 3 setae; protopodite near Ri base with 5 setae; Ri with $14-15$ setae; Re with 11; external lobe with 9 setae. Mx2 typical of the genus: setae of the fourth and fifth endites are transformed into sclerotized, claw-like. Mxp protopodite 1.7-1.9 times shorter than Ril Mxp. Re3 Mxp nearly twice wider than each of neighboring joints (Re2 and Re4). Protopodite in its proximal part with 1 seta, and with 2,3 and 3 setae (from proximal to distal part of the joint). Re P1 3-jointed, separation between Rel and Re2 P1 indistinct. Re1 P1 without external spine; other Re P1 joints with spines. Ri P1, Ri P2 1-jointed, remaining rami of swimming legs 3 -jointed. P 4 coxopodite without large spines, rarely with small spinules.

M a 1 e . Total length $2.85-5.58 \mathrm{~mm}$. Cephalothorax about 3 times longer than abdomen. Cephalon and Th1, as well as, Th4 and Th5 fused. Rostrum developed poorer than in females, 1 -pointed. Crest, if present, not large. Th5 posterior corners slightly asymmetrical, rounded. Al 22-23-jointed, reaching the end of cephalothorax, or the distal end of Abd3. A2 setation reduced: coxopodite without setae; basipodite with 1 seta; Rel A2 with 1 very small seta
(or it is absent); Re2 A2 without seta; medial seta of Re 7 , if present, very small. Md palp base with 1 seta; Ril Md with $1 ; \mathrm{Ri} 2 \mathrm{Md}$ with 9 terminal setae, posterior one absent. Mx1 reduced in comparison to females. Re Mx1 with 10 setae. Mx2 and Mxp reduced in comparison to females. Park (1978) described U. incisa Mxp protopodite with 3 groups of 1,2 and 3 setae (from proximal to distal part of the joint). Separation between Rel and Re2 P1 better outlined than in female. Re1 P1 as in female without spine; external spine of Re2 shorter than in female. Ri P2 indistinctly 1 -jointed, with traces of separation into 2 joints. All other joints of P1-P4 3-jointed. P5 powerful, biramous; usually not shorter, sometimes even longer than abdomen, coxopodites fused; basipodites powerful, strongly sclerotized. Left one longer than right by about one third of its length. Left and right Ri P5 1-jointed. Left Re P5 3-jointed; Re3 P5 apically prolonged into stylet-like projection with spine-like top; distal part of Re2 P5 with tooth-like projection. Right Re P5 2-jointed.

Notes. U. major Giesbrecht, 1888 was designated as type species after subsequent indication (Brodsky, 1950; Park, 1978).

The genus Undeuchaeta includes 4 species. Following Vervoort (1957) I am inclined to consider U. bispinosa as junior synonym of U. intermedia.

Key to species of Undeuchaeta

Females

1(4) Cephalon with crest.
2(3) Th5 posterior corners nearly equally prolonged, triangular (lateral and dorsal view). Total length less than 5.5 mm
3. U. major Giesbrecht

3(2) Th5 posterior corners not equally prolonged, one of them shorter and rounded (lateral view). Total length more than 5.5 mm . . . 1. U. incisa Esterly
4(1) Cephalon without crest.
5(6) Th5 posterior corners always triangular (lateral and dorsal view). Genital segment with spine on genital field (lateral view). 2. U. intermedia A. Scott
6(5) Th5 posterior corners not always triangular: right one usually rounded. Genital segment without spine on genital field (lateral view).
. 4. U. plumosa (Lubbock)

Males

1(4) Cephalon without crest.
2(3) Ri P5 left exceeding distal border of left Re2. The second third of Ri external border with 2 teethlike projections
2. U. inermedla A. Scott

3(2) Ri P5 left not reaching the distal border of Re2 left. The second third of Ri external border without teeth-like projections . . . 4. U. plumosa (Lubbock)
4(1) Cephalon with crest.

5(6) Left Re2 P5 twice, or more longer than wide . 1. U. incisa Esterly

6(5) Left Re2 P5 1.5, or less longer than wide . . . 3. U. major Giesbrecht

1. Undeuchaeta incisa Esterly, 1911

(Figs. 243-244)
Undeuchaeta incisa Esterly, 1911: 319, pl. 27, figs 12, 19, pl. 28, fig. 28, pl. 29, fig. 59; Brodsky, 1950: 181, fig. 101; Vervoort, 1957: 72; Park, 1978: 183, figs 54-56; Bradford \& Jillett, 1980: 80, fig. 56; Von Vaupel Klein, 1984: 54-55.
Pseudochirella incisa: Grice, 1964: 262, figs 41-42.
Mesundeuchaeta asymmetrica Wolfenden, 1911: 244, textfig. 28, pl. 29, figs 4-7.
Undeuchaeta superba With, 1915: 137, text-fig. 37, pl. 4, fig. 6, pl. 5 , fig. 1.
Undeuchaeta magna Tanaka, 1957b: 203, fig. 60.
Description. F e m a 1 e. Total length 5.70-6.60 mm . Cephalothorax about 3.4-4.0 times longer than abdomen. Crest present. Th5 posterior corners slightly asymmetrical: left one more prolonged than right one, their shape varying. Genital segment asymmetrical: with small projection on the right (dorsal view). Small spine present near genital field on the right (lateral and ventral view). Genital field with "spec-tacle-like" structure, similar to that in Batheuchaeta. A1 24 -jointed, reaching about the end of genital segment. Rel A2 without setae; Re2 with 2 minute setae. Mx1 protopodite near Ri base with 5 setae; Ri with 14-15 setae. Oral parts and P1-P4 typical of the genus. P4 coxopodite with few small spinules near the base of internal seta (Grice, 1964; Park, 1978; Bradford \& Jillett, 1980), in original material such spinules were not visible.

M a 1 e. Total length $4.08-5.58 \mathrm{~mm}$. Cephalothorax about 3.0-3.2 times longer than abdomen. Crest present, lower than in female. Cephalon and Th1, as well as Th4-Th5 fused. Th5 posterior corners slightly asymmetrical, rounded. A1 slightly shorter than body, 24 -jointed. Oral parts reduced in comparison with female. P1-P4 as in female; separation between Rel and Re2 more complete. Left Ri P5 shorter than Rel nearly by one third of its length. Right Ri as long as Rel with 2 projections proximally.

Type locality: the north-eastern part of the Pacific Ocean, region off California.

Geographical distribution. Atlantic Ocean: the species is widespread: in the North to till $65^{\circ} \mathrm{N}$ (With, 1915), in the South to $35^{\circ} \mathrm{S}$ (Wolfenden, 1911), recorded in the boreal and subtropical zones (Grice, 1964; Wolfenden, 1911). Pacific Ocean: the western part from the Sea of Okhotck to the region of New Zealand (Tanaka, 1957b; Bradford \& Jillett, 1980;
original data); in the eastern part known from the region off California (Esterly, 1911), off Peru (Grice \& Hulsemann, 1968), from southern subtropical zone (original data) and its antarctic sector (Park, 1978; original data).

Vertical distribution. The species was often found in total hauls from mesopelagial (Grice \& Hulsemann, 1968; Park, 1978; Bradford \& Jillett, 1980; original data); once in total haul from 3000 m . Most likely upper bathypelagic, mesopelagic species.

Material: 6 females and 1 male from samples: 201, 390, 432.

2. Undeuchaeta intermedia

A. Scott, 1909
(Fig. 245)
Undeuchaeta intermedia A. Scott, 1909: 63, pl. 23, figs 1-8; Veivoort, 1957: 73; Grice, 1962: 199, pl. 12, figs 15-18; Bjornberg, 1973: 325.
Undeuchaeta bispinosa Esterly, 1911: 318, pl. 26, fig. 4, pl. 29, figs 48, 56; Sewell, 1929: 127, text-figs 47-48, 1947: 103; Brodsky, 1950: 183, fig. 100.

Description. Fe m a 1 e . Total length 3.56-4.50 mm . Cephalothorax slightly less than 4 times longer than abdomen. Crest absent. Th5 posterior corners slightly asymmetrical, sometimes right one rounded (lateral and dorsal view). Right side of genital segment with definitely visible (dorsal view) spine, and with one spine to the left and right from genital field (ventral and lateral view). A1 23-jointed, nearly as long as cephalothorax. Rel A2 without setae. Mx1 protopodite with 4-5 setae near Ri base; Ri with 14 setae; otherwise oral parts typical of the genus. P1-P4 typical of the genus.

M a 1 e. (Description after Sewell (1929) with modifications). Total length $3.62-3.69 \mathrm{~mm}$. Oral parts severely reduced in comparison to females. Re1 P1 3-jointed. P5 right: Rel with sharply visible spine on lateral side (in about first third of joint), and with small projection on the opposite side; internal part of joint covered with wavy lines nearly parallel. Left Ri P5 reaching distal end of Re1. Re2 with spine-like projection on external distal border, internal proximal angle of Re3 extended into spine-like projection.

Type locality: the Malay Archipelago.
Geographical distribution. Pacific Ocean: the equatorial, north-eastern, northern, south-eastern parts (Esterly, 1911; Grice, 1962; Bjornberg, 1973). Indian Ocean: the western part (Grice \& Hulsemann, 1967; original data), the region of Malay Archipelago (A. Scott, 1909).

Vertical distribution. The species was not found in surface layers (Vervoort, 1957), found in total hauls from 1500 m (original data).

Material: 3 females from samples: 400-401, 403.

Fig. 243. Undeuchaeta incisa. Female (201).

Fig. 244. Undeuchaeta incisa. Male (390).

Fig. 245. Undeuchaeta intermedia. Female (401).
3. Undeuchaeta major Giesbrecht, 1888
(Figs. 246-247)
Undeuchaeta major Giesbrecht, 1888: 336, 1892: 227, pl. 37, figs 56-57, 59; With, 1915: 136, pl. 5, fig. 2, text-fig. 36; Sars, 1924-25: 81, pl. 23, figs 7-12; Brodsky, 1950: 182, fig. 99; Vervoort, 1952h (sheet 49): 3, fig. 3, 1957: 71; Tanaka, 1957b: 202, fig.

59; Owre \& Foyo, 1967: 50, fig. 130, 283; Tanaka \& Omori, 1970b: 144; Park, 1978: 182; Bradford \& Jillett, 1980: 80, fig. 57.
Chrundina angulata Sars, 1905: 4, 13.
Description. Fe m a 1 e. Total length 4.15-5.50 mm . Cephalothorax about 4 times longer than abdomen. Crest present. Th5 posterior corners slightly asymmetrical, prolonged into triangular lobes of

Fig. 246. Undeuchaeta major. Female: Gn (574), other figures (202).

Fig. 247. Undeuchaeta major. Male: P5 (a) (202), other figures from (573).
about the same length. Genital segment asymmetrical, similar to that of U. incisa, with small projection on the right (dorsal view). Right part of genital field with spine (lateral view). A1 23 -jointed, reaching the end of Abd2. Rel A2 with 1 small seta. Oral parts and P1-P4 typical of the genus. P4 coxopodite with spinules (Tanaka \& 1957 b ; Bradford \& Jillett, 1980), examined original specimens devoid of such spinules.

M a le. Total length 3.90-4.92 mm (or 6.00-6.60 mm (Esterly, 1911; Farran, 1929; Vervoort, 1952h)). Cephalothorax about 3 times longer than abdomen. Cephalon with crest, slightly lower than in females. Th5 posterior corners rounded. A1 reaching the end of Abd2. Oral parts reduced in comparison with female. P1-P4 as in female. P5 typical of the genus. Re2 P5 1.5 times (or less) longer than wide.

Type locality: $20^{\circ} \mathrm{N} 173^{\circ} \mathrm{E}$.

Fig. 248. Undeuchaeta plumosa. Female (456)

Fig. 249. Undeuchaeta plumosa. Male (456).

Geographical distribution. Atlantic Ocean: widespread: the northernmost finding $63^{\circ} \mathrm{N}$ (Jespersen, 1940), the southernmost about $52^{\circ} \mathrm{S}$ (Hardy \& Gunther, 1935). Widespread in the Pacific Ocean; the northernmost finding in the Sea of Okhotsk (original data); frequent in the Indian Ocean (Wolfenden, 1911; Grice \& Hulsemann, 1967), in the Arabian Sea and the Bay of Bengal (Sewell, 1947). In the

Antarctic the southernmost locality is the Ross Sea (Farran, 1929).

Vertical distribution. Deep-water species, sometimes occuring in surface layers (mostly at night (Vervoort, 1957)). Recorded in total hauls from me-so- and bathypelagial.

Material: 12 females and 4 males from samples: 201-202, 391, 400-401, 573.

4. Undeuchaeta plumosa
 (Lubbock, 1856)

(Figs. 248-249)
Undina plumosa Lubbock, 1856: 24, pl.9, figs 3-5.
Undeuchaeta plumosa: A. Scott, 1909: 62, pl.22, figs 1-8; Sars, 1925: 79; Vervoort, 1957: 70, 1963: 154; Grice, 1962: 199, pl. 12, figs 1-14; Owre \& Foyo, 1967: 50, figs 285-288; Tanaka, 1969b: 265; Tanaka \& Omori, 1970b: 145; Bjornberg, 1973: 325; Park, 1978: 182; Bradford \& Jillett, 1980: 83, fig. 58.
Undeuchaeta minor Giesbrecht, 1888: 336, 1892: 228, 232, 766, pl.14, figs 31-34, pl. 37, figs 55, 58; Esterly, 1905: 149, fig. 17; Van Breemen, 1908: 44, fig. 50; With, 1915: 132, pl. 5, fig. 3, text-fig. 35.

Description. Female. Total length 3.00-4.20 mm . Cephalothorax about 3-4 times longer than abdomen. Crest absent. Th5 posterior corners asymmetrical: in lateral view the right one rounded, the left obtuse-triangular. Their configuration may vary. Genital segment asymmetrical due to presence of spine on the right side. Al nearly as long as cephalothorax, or reaching Abd3. Rel A2 without setae.

Mxp protopodite with 5 setae near Ri base; Ri with 15 setae. Oral parts and P1-P4 typical of the genus.

M a 1 e . Total length $2.85-3.90 \mathrm{~mm}$. Crest absent. Th5 posterior comers rounded. Cephalothorax about 3 times longer than abdomen. Al reaching the end of cephalothorax, or Abd2. Oral parts reduced in comparison to those in female; P1-P5 typical of the genus.

Type locality. the Atlantic Ocean.
Geographical distribution. Widespread in the Atlantic Ocean in the North to $62^{\circ} \mathrm{N}$ (Jespersen, 1940), to the South to $35^{\circ} \mathrm{S}$ (Wolfenden, 1911). Widespread in the Pacific Ocean; the northernmost locality is the Sea of Okhotsk about $49^{\circ} \mathrm{N}$ (original data), the southernmost about $52^{\circ} \mathrm{S}$ (Farran, 1929). The species is also widespread in the Indian Ocean.

Vertical distribution. The main zone of inhabitance is most likely mesopelagial, but often occurs in epipelagial (A.Scott, 1909; Mori, 1937; Grice, 1962; Tanaka \& Omori, 1970b; Vervoort, 1963; Morris, 1970; Bradford \& Jillett, 1980).

Material: more than 70 females and 6 males from samples: 49, 51, 201-202, 390-391, 394, 400, 437, 439, 456-457.

Table 1. Oceanographic station list for examined aetideids

[^1]| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pacific | North-western part | "Vitjaz" 19 cruise 18 October 1954 | 3204 | $\begin{aligned} & 33^{\circ} 11^{\prime} \mathrm{N} \\ & 156^{\circ} 16^{\prime} \mathrm{E} \end{aligned}$ | BR 80 | 0-500 | 45 |
| | | 20 October 1954 | 3206 | $\begin{array}{r} 30^{\circ} 48^{\prime} \mathrm{N} \\ 155^{\circ} 02^{\prime} \mathrm{E} \end{array}$ | | 560-1080 | 46 |
| | | 19 October 1954 | | $\begin{array}{r} 30^{\circ} 48^{\prime} \mathrm{N} \\ 155^{\circ} 02^{\prime} \mathrm{E} \\ \hline \end{array}$ | RT | 0-5500 | 47 |
| | | "Vitjaz" 22 cruise 22 October 1955 | 3515 | $\begin{array}{r} 28^{\circ} 08^{\prime} \mathrm{N} \\ 141^{\circ} 07^{\prime} \mathrm{E} \\ \hline \end{array}$ | RT | 0-4400 | 48 |
| | | "Vitjaz" 22 cruise 28 October 1955 | 3528 | $\begin{array}{r} 27^{\circ} 48^{\prime} \mathrm{N} \\ 130^{\circ} 40^{\prime} \mathrm{E} \\ \hline \end{array}$ | BR 80 | 0-714 | 49 |
| | South-western part | "Vitjaz" 26 cruise 8 December 1957 | 3812 | $\begin{array}{r} 14^{\circ} 499^{\prime} \mathrm{S} \\ 172^{\circ} 56^{\prime} \mathrm{E} \end{array}$ | - | 0-500 | 50 |
| | | 17 December 1957 | 3814 | $\begin{array}{r} 17^{\circ} 57^{\prime} \mathrm{S} \\ 183^{\circ} 15^{\prime} \mathrm{E} \\ \hline \end{array}$ | - | 0-500 | 51 |
| | | 26 December 1957 | 3823 | $\begin{array}{r} 23^{\circ} 17^{\prime} \mathrm{S} \\ .174^{\circ} 13^{\prime} \mathrm{E} \end{array}$ | BR 113 | 0-750 | 52 |
| | | 20 January 1957 | 3842 | $\begin{array}{r} 33^{\circ} 16^{\prime} \mathrm{S} \\ 171^{\circ} 59^{\prime} \mathrm{E} \end{array}$ | BR 113 | 0-500 | 53 |
| | | 22 January 1957 | 3844 | $\begin{array}{r} 29^{\circ} 57^{\prime} \mathrm{S} \\ 172^{\circ} 00^{\prime} \mathrm{E} \\ \hline \end{array}$ | - | 0-500 | 54 |
| | | 13 February 1958 | 3874 | $\begin{array}{r} 16^{\circ} 10^{\prime} \mathrm{N} \\ 173^{\circ} 03^{\prime} \mathrm{E} \end{array}$ | - | 0-100 | 55 |
| | North-western part,
 Kurile-Kamchatka Trench | "Vitjaz" 39 cruise
 14-15 July 1966 | 5603 | $\begin{aligned} & 46^{\circ} 11^{\prime} \mathrm{N} \\ & 153^{\circ} 30^{\circ} \mathrm{E} \end{aligned}$ | BR 113 | $\begin{gathered} 0-50 \\ 50-100 \end{gathered}$ | 56 57 |
| | | | | | | 76-202 | 58 |
| | | | | | | 100-200 | 59 |
| | | | | | | 190-500 | 60 |
| | | | | | | 500-750 | 61 |
| | | | | | | 740-1000 | 62 |
| | | | | | | 1020-1500 | 63 |
| | | | | | | 1510-2030 | 64 |
| | | | | | | 2060-2520 | 65 |
| | | | | | | 2530-3000 | 66 |
| | | | | | | 2920-3460 | 67 |
| | | | | | | 3420-3960 | 68 |
| | | 16 July 1966 | 5605 | $\begin{aligned} & 46^{\circ} 15^{\prime} \mathrm{N} \\ & 153^{\circ} 18^{\prime} \mathrm{E} \end{aligned}$ | - | 0-8200 | 69 |
| | | 19 July 1966 | 5607 | $\begin{aligned} & 46^{\circ} 10^{\prime} \mathrm{N} \\ & 153^{\circ} 13^{\prime} \mathrm{E} \end{aligned}$ | RT | $0-5000$ | 70 |
| | | 20-21 July 1966 | 5608 | $\begin{aligned} & 45^{\circ} 57^{\prime} \mathrm{N} \\ & 153^{\circ} 15^{\prime} \mathrm{E} \end{aligned}$ | BR 113 | $\begin{gathered} 320-490 \\ 1000-1500 \end{gathered}$ | 71 72 |
| | | | | | | 1500-2000 | 73 |
| | | 23-24 July 1966 | 5610 | $45^{\circ} 47^{\prime} \mathrm{N}$ | BR 113 | 0-50 | 74 |
| | | | | $153^{\circ} 18^{\prime} \mathrm{E}$ | | 50-100 | 75 |
| | | | | | | 100-200 | 76 |
| | | | | | | 210-300 | 77 |
| - | | | | | | 300-500 | 78 |
| | | | | | | 500-750 | 79 |
| | | | | | | 750-990 | 80 |
| | | | | | | 1950-2480 | 81 |
| | | | | | | 2380-2890 | 82 |
| | | | | | | 2690-3650 | 83 |
| | | | | | | 3100-4830 | 84 |
| | | | | | | 3876-4900 | 85 |
| | | 25 July 1966 | 5611 | $\begin{array}{r} 45^{\circ} 43^{\prime} \mathrm{N} \\ 153^{\circ} 20^{\prime} \mathrm{E} \end{array}$ | RT | 0-8000 | 86 |
| | | 27-31 July 1966 | 5612 | $45^{\circ} 34^{\prime} \mathrm{N}$ | BR113 | 0-50 | 87 |
| | | | | $152^{\circ} 56^{\prime} \mathrm{E}$ | | 45-100 | 88 |
| | | | | | | 100-200 | 89 |
| | | | | | | $200-500$ | 90 |
| | | | | | | $480-740$ | 91 |
| | | | | | | 730-1000 | 92 |
| | | | | | | 1050-1500 | 93 |
| | | | | | | 1510-2100 | 94 |
| | | | | | | 1990-2500 | 95 |
| | | | | ---3----- | | 2460-2950 | 96 |

1	2	3		5	6	7	8
Pacific	North-western part, Kurle-Kamchatka Trench	"Vitjaz" 39 cruise 28 August 1966		$\begin{aligned} & 44^{\circ} 20^{\prime} \mathrm{N} \\ & 150^{\circ} 53^{\prime} \mathrm{E} \end{aligned}$	RT	0-6940	163
		29-31 August 1966	$5 \overline{628}$	$43^{\circ} 52^{\prime} \mathrm{N}$	BR 113	3090-4100	164
				$149^{\circ} 49^{\prime} \mathrm{E}$		4050-5090	165
					JOMN	0-50	166
						50-97	167
						110-210	168
						200-300	169
						200-510	170
						500-750	171
						690-990	172
						970-1510	173
						1430-1980	174
						1980-2980	175
						2980-3960	176
						4030-6780	177
						5780-7200	178
		3 September 1966	5631	$43^{\circ} 47$ ' N	BR 113	5130-6210	179
				$149^{\circ} 56^{\prime} \mathrm{E}$		5850-6920	180
					RT	? 65500	181
		8 September 1966	5635	$44^{\circ} 25^{\prime} \mathrm{N}$	BR 113	0-50	182
				$149^{\circ} 10^{\circ} \mathrm{E}$		50-100	183
						100-200	184
						200-300	185
						300-500	186
						500-740	187
						740-990	188
						1010-1480	189
						1450-1990	190
						2080-2490	191
						2500-2920	192
						2970-3880	193
	Northern part, Aleutian Trench	"Vitjaz" 45 cruse 16-17 June 1969	6144	$\begin{array}{r} 51^{\circ} 43^{\prime} \mathrm{N} \\ 167^{\circ} 57^{\prime} \mathrm{W} \end{array}$	BR 113	785-1040	
						1030-1520	195
						2040-3150	196
						4300-7070	197
						5065-7140	198
	Japan Trench	28-29 June 1969	6151	$37^{\circ} 38^{\prime} \mathrm{N}$	BR 113	2450-3050	199
				$143^{\circ} 51^{\prime} \mathrm{E}$		3360-3912	200
	Marian Trench	"Vitajz" 57 cruise 25 April 1975	7362	$11^{\circ} 13^{\prime} \mathrm{N}$ $141^{\circ} 47^{\prime} \mathrm{E}$	RT	0-7470	201
	Izu-Bonin Tiench	10 May 1975	7406	$29^{\circ} 177^{\prime} \mathrm{N}$	RT	0-8370	202
	North-eastern part	$\begin{aligned} & \text { "Akademik Korolev" } \\ & 40 \text { cruise } \\ & 13 \text { Octobe } 1985 \end{aligned}$	103	$142^{\circ} 47^{\prime} \mathrm{E}$	$\mathrm{BJ} \times \mathrm{N}$	153-500	
				$\begin{array}{r} 14^{\circ} \mathrm{N} \\ 132^{\circ} 30^{\prime} \mathrm{W} \end{array}$			203
		14 October 1985	106	$13^{\circ} 45^{\prime} \mathrm{N}$		162-501	204
		16 - - 1985		$132^{\circ} 15^{\prime} \mathrm{W}$	---		
		16 October 1985	117	$\begin{array}{r} 13^{\circ} 30^{\prime} \mathrm{N} \\ 132^{\circ} 15^{\prime} \mathrm{W} \end{array}$		205-610	205
		19 October 1985	$13{ }^{-}$	$12^{\circ} 30^{\prime} \mathrm{N}$		442-1000	206
				$134^{\circ} 30^{\prime} \mathrm{W}$			
		21 October 1985	142	$\begin{aligned} & 13^{\circ} \mathrm{N} \\ & 133^{\circ} \mathrm{W} \end{aligned}$		500-946	207
		27 October 1985	${ }^{-} \mathrm{ABC}^{-}$	$\begin{aligned} & 133^{\circ} \mathrm{W} \\ & 14^{\circ} \mathrm{N} \end{aligned}$	JOMN	715-1000	208
				$132^{\circ} 30^{\prime} \mathrm{W}$			
		28 October 1985				$2510-3920$ $3100-4600$	$\stackrel{209}{210}$
		29 October 1985	162	$132^{\circ} 45^{\prime} \mathrm{W}$		3100-4600	210
		1 November 1985	187	$\begin{aligned} & 14^{\circ} 30^{\prime} \mathrm{N} \\ & 134^{\circ} 30^{\prime} \mathrm{W} \end{aligned}$	BJN	151-183	211
			188	$14^{\circ} 10^{\prime} \mathrm{N}$		27-102	212
				$134^{\circ} 30^{\prime} \mathrm{W}$			
		2 November 1985	194	$\begin{aligned} & 12^{\circ} 30^{\prime} \mathrm{N} \\ & 134^{\circ} 30^{\prime} \end{aligned}$		10-100	213
			196	$12^{\circ} \mathrm{N}$		50-100	214
				$134^{\circ} 30^{\prime} \mathrm{W}$			

1	2	3	4	5	6	7	8
Pacific	Equatorial part	"Albatross" 9 September 1899	-	$\begin{gathered} 01^{\circ} 45^{\prime} \mathrm{N} \\ 137^{\circ} 36^{\prime} \mathrm{W} \end{gathered}$	-	surface	262
	Between Peru and Easter Island	"Albatross" 4 December 1904	4679	$\begin{aligned} & 17^{\circ} 26^{\prime} \mathrm{S} \\ & 86^{\circ} 4 \mathbf{}^{\prime} \mathrm{F} \end{aligned}$	-	0-540	263
		"Albatross" 11 December 1904	4687	$\begin{array}{r} 22^{\circ} 50^{\prime} \mathrm{S} \\ 99^{\circ} 30^{\prime} \mathrm{W} \end{array}$	-	0-3600	264
	South China Sea	"Albatross" 9 November 1908	5320	$\begin{array}{r} 20^{\circ} 58^{\prime} \mathrm{N} \\ 120^{\circ} 03^{\prime} \mathrm{E} \end{array}$	--	0-900	265
	South-castern part	"Eltanin" 5 cruise 13 September 1962	213	$\begin{gathered} 41^{\circ} 05^{\prime} \mathrm{S} \\ 74^{\circ} 5{ }^{\prime} \mathrm{W} \end{gathered}$	Isaacs Kidd trawl	606	266
		14 September 1962	215	$\begin{aligned} & 45^{\circ} 01 \mathrm{~S} \\ & 75^{\circ} 33^{\prime} \mathrm{W} \end{aligned}$		1219	267
	Antarctic part	2 October 1962	235	$\begin{array}{r} 59^{\circ} 06^{\prime} \mathrm{S} \\ 67^{\circ} 59^{\prime} \mathrm{W} \end{array}$		1830	268
		5 October 1962	248	$\begin{array}{r} 59^{\circ} 56^{\prime} \mathrm{S} \\ 69^{\circ} \mathrm{W} \end{array}$		1373	269
		19 October 1962	262	$\begin{array}{r} 62^{\circ} 26^{\prime} \mathrm{S} \\ 67^{\circ} 45^{\prime} \mathrm{W} \end{array}$		2428	270
		22 October 1962	275	$\begin{gathered} 66^{\circ} 28^{\prime} \mathrm{S} \\ 72^{\circ} 37^{\prime} \mathrm{W} \end{gathered}$		1885	271
		24 October 1962	282	$\begin{aligned} & 67^{\circ} 04^{\prime} \mathrm{S} \\ & 75^{\circ} 19^{\prime} \mathrm{W} \end{aligned}$		1830	272
		29 October 1962	297	$\begin{array}{r} 63^{\circ} 41 \text { 'S } \\ 71^{\circ} 16^{\prime} \mathrm{W} \end{array}$		2255	273
		4 November 1962	313	$\begin{array}{r} 58^{\circ} \mathrm{S} \\ 70^{\circ} 40^{\prime} \mathrm{W} \end{array}$		802	274
Atlantic	Southern part	$\begin{aligned} & \text { "Eltanin" } 8 \text { cruise } \\ & 7 \text { April } 1963 \end{aligned}$	563	$\begin{array}{r} 48^{\circ} 15^{\prime} \mathrm{S} \\ 40^{\circ} 24^{\prime} \mathrm{W} \\ \hline \end{array}$	Isaacs Kidd trawl	732	275
		13 April 1963	567	$\begin{aligned} & 54^{\circ} 25^{\prime} \mathrm{S} \\ & 27^{\circ} 12^{\prime} \mathrm{W} \end{aligned}$		1135	276
		14 April 1963	570	$\begin{array}{r} 56^{\circ} 04^{\prime} \mathrm{S} \\ 27^{\circ} 24^{\prime} \mathrm{W} \\ \hline \end{array}$		933	277
		15 April 1963	571	$4^{\circ} \mathrm{S} 25^{\circ} \mathrm{W}$		1491	278
		16 April 1963	572	$4^{\circ} \mathrm{S} 25^{\circ} \mathrm{W}$		889	279
		17 April 1963	575	$\begin{array}{r} 55^{\circ} 29^{\prime} \mathrm{S} \\ 24^{\circ} 18^{\prime} \mathrm{W} \end{array}$		1867	280
		19 April 1963	578	$\begin{array}{r} 57^{\circ} 17^{\prime} \mathrm{S} \\ 27^{\circ} 22^{\prime} \mathrm{W} \\ \hline \end{array}$		1464-1867	281
	¢	21 April 1963	580	$\begin{array}{r} 57^{\circ} 23^{\prime} \mathrm{S} \\ 23^{\circ} 11^{\prime} \mathrm{W} \end{array}$		3074	282
		29 April 1963	592	$\begin{array}{r} 55^{\circ} 11 \text { 'S } \\ 25^{\circ} 53^{\prime} \mathrm{W} \\ \hline \end{array}$		2562	283
			593	$\begin{array}{r} 55^{\circ} 21^{\prime} \mathrm{S} \\ 29^{\prime} 20^{\prime} \mathrm{W} \end{array}$		549	284
		1 May 1963	597	$\begin{array}{r} 55^{\circ} 49^{\prime} \mathrm{S} \\ 24^{\circ} 4 \mathrm{c}^{\prime} \mathrm{W} \end{array}$		1922	285
		3 May 1963	601	$\begin{array}{r} 58^{\circ} 18^{\prime} \mathrm{S} \\ 25^{\circ} 38^{\prime} \mathrm{W} \\ \hline \end{array}$		933	286
		5 May 1963	605	$\begin{array}{r} 58^{\circ} 28^{\prime} \mathrm{S} \\ 22^{\prime} 20^{\prime} \mathrm{W} \end{array}$		1812	287
		9 May 1963	611	$\begin{array}{r} 58^{\circ} 53^{\prime} \mathrm{S} \\ 27^{\circ} 03^{\prime} \mathrm{W} \end{array}$		1047	288
		17 May 1963	626	$\begin{array}{r} 60^{\circ} 28^{\prime} \mathrm{S} \\ 29^{\circ} 20^{\prime} \mathrm{W} \\ \hline \end{array}$		1067	289
			627	$\begin{array}{r} 60^{\circ} 40^{\prime} \mathrm{S} \\ 28^{\circ} 54^{\prime} \mathrm{W} \end{array}$		666	290
		18 May 1963	632	$\begin{array}{r} 59^{\circ} 47^{\prime} \mathrm{S} \\ 27^{\circ} 47^{\prime} \mathrm{C} \\ \hline \end{array}$		769-1071	291
		20 May 1963	634	$\begin{array}{r} 59^{\circ} 40^{\prime} \mathrm{S} \\ 24^{\circ} 47^{\prime} \mathrm{W} \end{array}$		664	292
		21 May 1963	635	$\begin{array}{r} 59^{\circ} 3 S^{\prime} \mathrm{S} \\ 24^{\circ} 41^{\prime} \mathrm{W} \\ \hline \end{array}$		1537	293
		23 May 1963	640	$\begin{array}{r} 58^{\circ} 11 ' \mathrm{~S} \\ 23^{\circ} 11^{\prime} \mathrm{W} \\ \hline \end{array}$		1537	294
		24 May 1963	642	$\begin{array}{r} 57^{\circ} 20^{\prime} \mathrm{S} \\ 24^{\circ} 40^{\prime} \mathrm{W} \end{array}$		312	295
			643	$\begin{array}{r} 57^{\circ} 45^{\prime} \mathrm{S} \\ 24^{\prime} 17^{\prime} \mathrm{W} \end{array}$		617-1160	296

1	2	3	4	5	$1 \quad 6$	7	8
Pacific	Antarctic part	25 November 1963	868	$\begin{array}{r} 57^{\circ} 06^{\prime} \mathrm{S} \\ 78^{\circ} 56^{\prime} \end{array}$		987-1230	332
		27 November 1963	874	$\begin{array}{r} 57^{\circ} 06^{\prime} \mathrm{S} \\ 79^{\circ} 04^{\prime} \mathrm{W} \end{array}$		1491	333
		"Eltanin" 10 cruise 29 November 1963	877	$\begin{array}{r} 55^{\circ} 22^{\prime} \mathrm{S} \\ 78^{\circ} 08^{\prime} \mathrm{W} \\ \hline \end{array}$		1940	334
		"Eltanin" 12 cruise 14 March 1964	998	$\begin{array}{r} 61^{\circ} 51^{\prime} S \\ 55^{\circ} 56^{\prime} \mathrm{W} \end{array}$	Isaacs Kidd trawl	732-1373	335
		19 March 1964	1014	$\begin{array}{r} 65^{\circ} 08^{\prime} \mathrm{S} \\ 47^{\circ} 45^{\prime} \mathrm{W} \end{array}$		1025-1153	336
		1 April 1964	1050	$\begin{array}{r} 60^{\circ} 46^{\prime} \mathrm{S} \\ 31^{\circ} 04^{\prime} \mathrm{W} \\ \hline \end{array}$		412-494	337
		4 April 1964	1057	$\begin{aligned} & 59^{\circ} 28^{\prime} \mathrm{S} \\ & 31^{\circ} 20^{\prime} \mathrm{F} \end{aligned}$	-		338
		10 April 1964	1071	$\begin{array}{r} 59^{\circ} \mathrm{S} \\ 36^{\circ} 49^{\prime} \mathrm{W} \\ \hline \end{array}$		1967-2333	339
		$\begin{aligned} & \text { "Eltanin" } 13 \text { cruise } \\ & 29 \text { May } 1964 \end{aligned}$	1121	$\begin{array}{r} 62^{\circ} 14^{\prime} \mathrm{S} \\ 89^{\circ} 55^{\prime} \mathrm{W} \\ \hline \end{array}$	Isaacs Kidd trawl	824-849	340
		7 June 1964	1132	$\begin{array}{r} 66^{\circ} 17 \text { 'S } \\ 93^{\circ} 02^{\prime} \mathrm{W} \end{array}$		1381-1812	341
			1133	$\begin{array}{r} 66^{\circ} 04^{\prime} \mathrm{S} \\ 92^{\circ} 38^{\prime} \mathrm{W} \end{array}$		560-791	342
		9 June 1964	1137	$\begin{array}{r} 66^{\circ} 19^{\prime} \mathrm{S} \\ .98^{\circ} 38^{\prime} \mathrm{W} \end{array}$		567-659	343
		10 June 1964	1141	$\begin{array}{r} 66^{\circ} 15^{\prime} \mathrm{S} \\ 102^{\circ} 37^{\prime} \mathrm{W} \end{array}$		2416-2435	344
		25 June 1964	1162	$\begin{array}{r} 59^{\circ} 37 \text { 'S } \\ 130^{\circ} 19^{\prime} \mathrm{W} \\ \hline \end{array}$		714-933	345
		28 June 1964	1167	$\begin{array}{r} 55^{\circ} 28^{\prime} \mathrm{S} \\ 129^{\circ} 45^{\prime} \mathrm{W} \end{array}$		1047	346
		30 June 1964	1170	$\begin{array}{r} 55^{\circ} 01^{\prime} \mathrm{S} \\ 129^{\circ} 56^{\prime} \mathrm{W} \end{array}$		988-1080	347
		"Eltanin" 21 cruise 3 January 1966	279	$\begin{array}{r} 57^{\circ} 02^{\prime} \mathrm{S} \\ 85^{\circ} 16^{\prime} \mathrm{W} \end{array}$	Isaacs Kidd trawl	700-850	348
Atlantic	Antarctic part	"Eltanin" 22 cruise 8 March 1966	1584	$\begin{array}{r} 56^{\circ} 23^{\prime} \mathrm{S} \\ 35^{\circ} 05^{\prime} \mathrm{W} \\ \hline \end{array}$	Isaacs Kidd trawl	1131-1548	349
Pacific	South-eastern part	"Eltanin" 24 cnuise 16 July 1966	1719	$\begin{array}{r} 39^{\circ} 58^{\prime} \mathrm{S} \\ 150^{\circ} 31^{\prime} \mathrm{W} \end{array}$		1900	350
			1720	$\begin{array}{r} 40^{\circ} \mathrm{S} \\ 150^{\circ} 12^{\prime} \mathrm{W} \\ \hline \end{array}$		350	351
		21 July 1966	1728	$\begin{array}{r} 44^{\circ} 54^{\prime} \mathrm{S} \\ 145^{\circ} 20^{\prime} \mathrm{W} \end{array}$		385	352
		23 July 1966	1734	$\begin{array}{r} 42^{\circ} 41^{\prime} \mathrm{S} \\ 144^{\circ} 41^{\prime} \mathrm{W} \\ \hline \end{array}$		900	353
		25 July 1966	1737	$\begin{array}{r} 40^{\circ} 13 ' \mathrm{~S} \\ 144^{\circ} 44^{\prime} \mathrm{W} \end{array}$		1500	354
		26 July 1966	1740	$\begin{array}{r} 41^{\circ} 10^{\prime} \mathrm{S} \\ 142^{\circ} 43^{\prime} \mathrm{W} \end{array}$		1500	355
			1741	$\begin{array}{r} 41^{\circ} 13 \mathrm{~S} \\ 142^{\circ} 41^{\prime} \mathrm{W} \end{array}$		630	356
		5 August 1966	1753	$\begin{array}{r} 42^{\circ} 47^{\prime} \mathrm{S} \\ 134^{\circ} 35^{\prime} \mathrm{W} \end{array}$		850	357
			1755	$\begin{array}{r} 42^{\circ} 31^{\prime} \mathrm{S} \\ 134^{\circ} 23^{\prime} \mathrm{W} \\ \hline \end{array}$		850-1350	358
		7 August 1966	1761	$\begin{array}{r} 40^{\circ} 32^{\prime} \mathrm{S} \\ 135^{\circ} 29^{\prime} \mathrm{W} \\ \hline \end{array}$		1350	359
		9 August 1966	1766	$\begin{array}{r} 38^{\circ} 17^{\prime} \mathrm{S} \\ 134^{\circ} 32^{\prime} \mathrm{W} \end{array}$		900-1250	360
		10 August 1966	1769	$\begin{array}{r} 36^{\circ} 05^{\prime} \mathrm{S} \\ 134^{\circ} 05^{\prime} \mathrm{W} \\ \hline \end{array}$		520	361
		13 Angust 1966	1773	$\begin{array}{r} 40^{\circ} 16^{\prime} \mathrm{S} \\ 132^{\circ} 32^{\prime} \mathrm{W} \end{array}$		700	362
		14 August 1966	1778	$\begin{array}{r} 41^{\circ} 46^{\prime} \mathrm{S} \\ 130^{\circ} 16^{\prime} \mathrm{W} \end{array}$		800	363
		16 August 1966	1781	$\begin{aligned} & 39^{\circ} 40^{\prime} \mathrm{S} \\ & 130^{\circ} 12^{\prime} \mathrm{W} \end{aligned}$		950	364
		20 August 1966	1793	$\begin{array}{r} 39^{\circ} 44^{\prime} \mathrm{S} \\ 127^{\circ} 05^{\prime} \mathrm{W} \end{array}$		1200	365

1	2	3	4	5	6	7	8
Indian	Antarctic part	"Ob" 2 cruise 12 February 1957	218	$\begin{aligned} & 63^{\circ} 21^{\prime} \mathrm{S} \\ & 39^{\circ} 59^{\prime} \mathrm{E} \\ & \hline \end{aligned}$	K 100	0-500	404
		25 February 1957	243	$\begin{array}{r} 61^{\circ} 33^{\prime} \mathrm{S} \\ 20^{\circ} 00^{\prime} \mathrm{E} \end{array}$			405
Atlantic	South-eastrn part	11-12 March 1957	259	$\begin{aligned} & 37^{\circ} 49^{\prime} \mathrm{S} \\ & 19^{\circ} 45^{\prime} \mathrm{E} \end{aligned}$			406
Indian	Eastern part	23 April 1957	305	$\begin{array}{r} 25^{\circ} 28^{\prime} \mathrm{S} \\ -96^{\circ} 58^{\prime} \mathrm{E} \\ \hline \end{array}$		0-240	407
			306	$\begin{aligned} & 23^{\circ} 40^{\prime} \mathrm{S} \\ & 97^{\circ} 01^{\prime} \mathrm{E} \end{aligned}$		0-518	$\begin{aligned} & 408 \\ & 409 \end{aligned}$
		24 April 1957	307	$21^{\circ} 26^{\prime} \mathrm{S}$ $97^{\circ} 04^{\prime} \mathrm{E}$		0.540	410
				$97^{\circ} 04^{\prime} \mathrm{E}$		$0-200$	411
		25 April 1957	308	$\begin{aligned} & 19^{\circ} 08^{\prime} \mathrm{S} \\ & 96^{\circ} 58^{\prime} \mathrm{E} \end{aligned}$		0-200	412
		26 April 1957	309	$\begin{aligned} & 16^{\circ} 48^{\prime} \mathrm{S} \\ & 96^{\circ} 54^{\prime} \mathrm{E} \end{aligned}$		0-500	413
						0-200	414
Indian	North-eastern part	27 April 1957	310	$\begin{aligned} & 14^{\circ} 41^{\prime} \mathrm{S} \\ & 97^{\circ} 03^{\prime} \mathrm{E} \end{aligned}$		0-577	415
		28 April 1957	311	$12^{\circ} 49^{\prime} \mathrm{S}$		0-610	416
				$96^{\circ} 58^{\prime} \mathrm{E}$		0-244	417
		1 May 1957	312	$\begin{array}{r} 10^{\circ} 54^{\prime} \mathrm{S} \\ 94^{\circ} 57^{\prime} \mathrm{E} \end{array}$		$\begin{aligned} & 0-220 \\ & 0-1000 \end{aligned}$	$\begin{aligned} & 418 \\ & 419 \end{aligned}$
		6 May 1957	319	$\begin{aligned} & 01^{\circ} 58^{\prime} \mathrm{N} \\ & 88^{\circ} 14^{\prime} \mathrm{E} \end{aligned}$	BR 80	0-1000	420
		7 May 1957	320	$\begin{aligned} & 04^{\circ} 01^{\prime} \mathrm{N} \\ & 88^{\circ} 20^{\prime} \mathrm{E} \end{aligned}$		0-200	421
Pacific	South-western	"Ob" 3 cruise 11 March 1958 12 March 1958	344	$\begin{array}{r} 38^{\circ} 30^{\prime} \mathrm{S} \\ 151^{\circ} 40^{\prime} \mathrm{E} \\ \hline \end{array}$	K 100	$0-650$	422
			345	$\begin{gathered} 39^{\circ} 94^{\prime} \mathrm{S} \\ 153^{\circ} 45^{\prime} \mathrm{E} \end{gathered}$		0-500	423
		14 March 1958	348	$\begin{array}{r} 42^{\circ} 34{ }^{\prime} \mathrm{S} \\ \quad 159^{\circ} \mathrm{E} \\ \hline \end{array}$	-	0-100	424
		16 March 1958	351	$\begin{array}{r} 45^{\circ} 30^{\prime} \mathrm{S} \\ 164^{\circ} 38^{\prime} \mathrm{E} \end{array}$	K 100	0-500	425
		17 March 1958	352	$\begin{array}{r} 46^{\circ} 11 \text { 'S } \\ 165^{\circ} 50^{\prime} \mathrm{E} \\ \hline \end{array}$		$\begin{aligned} & 0-1500 \\ & 0-700 \end{aligned}$	$\begin{array}{r} 426 \\ -427 \\ \hline \end{array}$
		18 March 1958	355	$\begin{array}{r} 49^{\circ} 10^{\prime} \mathrm{S} \\ 166^{\circ} 23^{\prime} \mathrm{E} \\ \hline \end{array}$		0-500	428
	Antarctic part	25 March 1958	367	$\begin{array}{r} 63^{\circ} 50^{\prime} \mathrm{S} \\ 165^{\circ} 25^{\prime} \mathrm{E} \end{array}$	BR 80	1100-2200	429
		28 March 1958	371	$\begin{array}{r} 68^{\circ} 16^{\prime} \mathrm{S} \\ 165^{\circ} 16^{\prime} \mathrm{W} \\ \hline \end{array}$	K 100	0-550	430
		2 April 1958	381	$\begin{array}{r} 70^{\circ} \mathrm{S} \\ 160^{\circ} 20^{\prime} \mathrm{W} \end{array}$		0-1000	431
	Southern part	8 April 1958	391	$\begin{array}{r} 52^{\circ} 25^{\prime} \mathrm{S} \\ 159^{\circ} 51^{\prime} \mathrm{W} \end{array}$		0-500	432
Indian	South-eastern part	15 April 1958	397	$\begin{array}{r} 53^{\circ} 09^{\prime} \mathrm{S} \\ 141^{\circ} 26^{\prime} \mathrm{W} \end{array}$		0-500	433
Pacific	Antarctic part	26 April 1958	413	$\begin{gathered} 58^{\circ} 58^{\prime} \mathrm{S} \\ 109^{\circ} 21^{\prime} \mathrm{W} \end{gathered}$		0-2130	434
		28 April 1958	415	$\begin{array}{r} 55^{\circ} 18 \mathrm{~S} \\ 109^{\circ} 20^{\prime} \mathrm{W} \end{array}$		0-1200	435
	South-eastern part	29 April 1958	417	$\begin{array}{r} 51^{\circ} 22^{\prime} \mathrm{S} \\ 109^{\circ} 27^{\prime} \mathrm{W} \end{array}$		0-1200	436
		30 April 1958	419	$\begin{array}{r} 47^{\circ} 366^{\prime} \mathrm{S} \\ 109^{\circ} 20^{\prime} \mathrm{W} \\ \hline \end{array}$		$\begin{aligned} & 0-520 \\ & 0-1100 \\ & \hline \end{aligned}$	$\begin{aligned} & 437 \\ & 438 \end{aligned}$
		1 May 1958	420	$\begin{array}{r} 45^{\circ} 53^{\prime} \mathrm{S} \\ 109^{\circ} 27^{\prime} \mathrm{W} \end{array}$		$0-500$	439
		3 May 1958	423	$\begin{array}{r} 39^{\circ} 44^{\prime} \mathrm{S} \\ 109^{\circ} 16^{\prime} \mathrm{W} \\ \hline \end{array}$		0-1200	440
		7 May 1958	430	$\begin{array}{r} 27^{\circ} 37^{\prime} \mathrm{S} \\ 109^{\circ} 25^{\prime} \mathrm{W} \end{array}$		0-1100	441
		13 May 1958	435	$\begin{array}{r} 29^{\circ} 50^{\prime} \mathrm{S} \\ 93^{\circ} 3{ }^{\prime} \mathrm{W} \end{array}$		0-1050	442
		19 May 1958	440	$\begin{array}{r} 31^{\circ} 59^{\prime} \mathrm{S} \\ 78^{\circ} 27^{\prime} \mathrm{W} \end{array}$		$0-2300$	443

REFERENCES

Alvarez, M.P.J. 1984. Two bottom living Copepoda Aetideidae - Bradyidius plinoi and Lutamator elegans n. sp. collected in Brazilian waters. Bolm. Zool. Univ. S. Paulo 8: 93-106.
Alvarcz, M.P.J. 1986. New calanoid copepods (Aetideidae) of the genera Comantenna, Mesocomantenna and Paracomantenna off the Brazilian coast. J. Crust. Biol. 6(4): 858-877.
Bigelow, H.B. 1926. Plankton of the offshore waters of the Gulf of Maine. Bull. Bur. Fish. Wash. 4O(2): 1-509.
Bjornberg, T.K.S. 1973. The planktonic copepods of the Marchile 1 expedition and of the "Eltanin" cruises 3-6 taken in the SE Pacific. Bolm. Fac. Filos. Ciênc. Univ. S. Paulo, Zool. Biol. mar. (n. ser.) 30: 245-394.

Boeck, A. 1872. Nye Slaegter og Arter af Saltvands Copepoder. Förh. Vidensk. Selsk. Krist.: 35-60.
Borutsky, E.V. \& L.A. Stepanova. 1991. Fam. Pseudocalanidae. In: Manual for identification of the USSR freshwater Calanoida. Opred. Faune SSSR. 157: 436-438. (In Russian).
Bradford, J.M. 1969a. New species of Aetideopsis Sars and Bradyidus Giesbrecht (Copepoda: Calanoida) from the southem hemisphere. N. Z. J. mar. freshw. Res. 3(1): 73-97.
Bradford, J.M. 1969b. New genera and species of the benthic calanoid copepods from the New Zealand slopes. N. Z. J. mar. freshw. Res 3(4): 473-505.

Bradford, J.M. 1971a. Aetideus and Euaetideus (Copepoda: Calanoida) from the Atlantic and Pacific oceans. N. Z. J. mar. freshw. Res. 5(1): 12-40.

Bradford, J.M. 1971b. Pelagic Copepoda, In: The fauna of the Ross Sea. Part 8. Mem. N. Z. oceanogr. Inst. 59: 7-32.
Bradford, J.M. 1976. A new species of Bradyidius (Copepoda, Calanoida) from Mgazana Estuary, Pondoland, South Africa, and a review of the closely related genus Pseudotharybis. Ann. S. Afr. Mus. 72(1): 1-10.
Bradford, J.M. \& J.B. Jillett. 1980. The marine fauna of New Zealand: Pelagic calanoid copepods: family Aetideidae. Mem. N. Z. oceanogr. Inst. 86. 102 pp.
Brady, G.S. 1878. A monograph of the free and semi-parasitic Copepoda of the British Islands 1: 148 pp. London.
Brady, G.S. 1883. Report on the Copepoda collected by H.M.S. "Challenger" during the years 1873-1876. Rep. scient. Results Voy. Challenger, Zool. 8(23). 142 pp.
Brady, G.S. 1918. Copepoda. Scient. Rep. Australas. antarct. Exped. (C) 5(3):1-48.
Breemen, P.J. van, 1908. Copepoden. In: Nord. Plankt, 4(8): 264p.
Brenning, U. 1983. Beträge zur Calanoidenfauna (Crustacea, Copepoda) vor Nordwest- und Sudwestafrica. V. Die Vertreter der Familie Aetideidae. Wiss. Z. Univ. Rostock 32 (Naturwiss. Reihe 5): 1-7.
Brenning, U. 1985. Structure and development of calanoid populations (Crustacea, Copepoda) in the upwelling regions off North West and South West Africa. Beitrage zur Meereskunde 52: 3-33.
Brodsky, K.A. 1950. Oar-footed copepods Calanoida from the Far Eastern seas and Polar Basin. Opred. Faune SSSRR. 35. 443 pp . (In Russian).

Brodsky, K.A. \& M.M. Nikitin 1955. Hydrobiological works. Mat. nauchn. issled. dreyf. stan. 1950/51. 1: 404-410 (In Russian).
Campaner, A.F. 1978. On some new planktonobenthic Aetideidae and Phaennidae (Copepoda, Calanoida) from the Brazilian continental shelf. 1. Aetideidae. Ciênc. Cult., S Paulo 30(7): 863-876.
Camplell, M.H. 1930. Some free-swimming copepods of the Vancouver-island region II. Proc. Trans. R. Soc. Can. 3(24): 177-182.
Canu, E. 1896. Copépodes. In: Koehler, R. Résultats scien-
tifiques de la campagne du "Caudan" dans le Golfe de Gascogne: 421-438.
Chahsavar-Archard, V. \& C. Razouls. 1982. Les Copépodes pelagiques au sud-est des îles du Cap Vert. 1. Aspects qualitatifs (Mission Guidom du N.O. "J.Charcot", septem-bre- octobre 1976). Vie et Milieu 32(1): 25-45.
Chislenko, L.L. 1972. Species composition and distribution of ecological complexes of zooplankton in the Jenisej Bay. Issled. Fauny Morei 12: 239-260. (In Russian).
Claus, C. 1863. Die freilebenden Copepoden mit besoderer Berücksichtigung der Fauna Deutchlands, der Nordsee und des Mittelmeeres. 230 pp. Leipzig.
Claus, C. 1866. Die Copepoden-Fauna von Nizza. Ein Beitrag zur Charakteristik der Formen und deren Abänderungen "im Sinne Darwin's". Schr. Ges. Beford. ges. Naturw Marburg, suppl. 1.: 1-34.
Cleve, P.T. 1904. The plankton of the South African seas. 1. Copepoda. Mar. Invest. S. Afr. 3: 177-210.

Cole, R., M. Green, J. Howcroft \& K. Rawlins. 1972. Crustacea. In: The Zoological Record. The Zool. Soc. of London. Vol. 106. Section 10. Pt. 1: 1-213.
Damas, D. \& E. Koefoed 1907. Le plankton de la Mer de Grönland. In: Duc d'Oléans. Croisiere oceanographique dans la Mer du Gronland, 1905: 347-453.
Davis, C.C. 1949. The pelagic Copepoda of the northeastern Pacific Occan. Univ. Wash. Publ. Biol. (n. ser.) 14. 118 pp.
Deevey, G.B. 1974. Chiridiella Sars (Copepoda: Calanoida): descriptions of nine species, six new, from the Sargasso Sea Bull. mar. Sci. 24: 439-472.
Deevey, G.B. \& A.L. Brooks. 1977. Copepods of the Sargasso Sea off Bermuda: species composition, and vertical and seasonal distribution between the surface and 2000 m . Bull.mar. Sci. 27(2): 256-291.
Esterly, C.O. 1905. The Pelagic Copepoda of the San Diego Region. Univ. Calif. Publ. Zool. 2(4): 113-233.
Esterly, C.O. 1906. Additions to the copepod fauna of the San Diego region. Univ. Calif. Publ. Zool. 3(5): 53-92.
Esterly, C.O. 1911. Third report on the Copepoda of the San Diego region. Univ. Calif. Publ. Zool. 6: 313-352.
Esterly, C.O. 1913. Fourth taxonomic report on the Copepoda of the San Diego region. Univ. Calif. Publ. Zool. 11(10): 181-196.
Farran, G.P. 1903. Record of the Copepoda taken on the mackerel fishing grounds of Cleggan, in 1901. Scient. Invest. Fish. Brch. Ire. 1901(2), App. 7: 105-122.
Farran, G.P. 1905. Report on the Copepoda of the Atlantic slope off counties Mayo and Galway. Ann. Rep. Fish Irel. 1902-1903. (2), App. 2. Sci. Invest.: 23-52.
Farran, G.P. 1926. Biscayan plankton collected during a cruise of H.M.S. "Research", 1900. Pt.14. The Copepoda. J. Linn. Soc. London, Zool. 36: 219-310.

Farran, G.P. 1929. Crustacea. Pt.1O. Copepoda [Brit. Antarctic (Terra Nova) Exped., Zool. 1910]. Nat. Hist Rep Zool. 8(3): 203-306.
Farran, G.P. 1936a. Bradyetes brevis a new species of Copepod from East Greenland. Ann. Mag. nat. Hist. (10)11: 238-241.
Farran, G.P. 1936b. Copepoda [Brit. Mus. (Nat. Hist.), Great Barrier Reef Exped. 1928-1929]. Nat. Llist. Rep. 5(1): 73-142.
Ferrari, F.D. 1980. Pseudochirella squalida Grice \& Hulsemann, 1967, from continental slope waters off Delaware (Copepoda:Calanoida). Proc. biol. Soc. Wash. 93(3): 536550.

Fleminger, A. 1957. New calanoid copepods of the families Aetideidae, Euchaetidae and Stephidae from the Gulf of Mexico. Fish. Bull., Fish. Wildl. Serv. U.S. 57(117): 355-363.
Giesbrecht, W. 1888. Elenco dei Copepodi pelagici raccolti dal Tenente di vascello Gaetano Chierchia durante il viag-
gio della R. Corvetta "Vettor Pisani" negle anni 1882-1885 e dal Tenente di vascello Francesco Orsini nel Mar Rosso, nel 1884. Rend. Acc. Lincei (4), 4(2): 284-287, 330-338.
Giesbrecht, W. 1892. Systematic und Faunistik der pelagischen Copepoden des Golfs von Neapel und der agrenzenden Meeres (Abschnitte). Fauna und Flora Golf. Neapel. 831 S.
Giesbrecht, W. 1895. Die pelagischen Copepoden. In: Report of the dredgigng operations off the west coast of central America to the Galapagos, to the west coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried out by the U.S. Fish. Commission steamer "Albatross", during 1891. Bull. Mus. comp. Zool. Harv. Univ. 25(12): 243-263.
Giesbrecht, W. 1897. Notizen zur Systematik der Copepoden. Zool. Anz. 2O(536): 253-255.
Giesbrecht, W. 1903. In: Lo Bianco, Le pesche abissali eseguite da F. A. Krupp col yacht Puritan nelle adiacenzedi Capri ed in altre localita del Mediterranco. Mitt. zool Stn. Neapel 16(1-2): 202-203.
Giesbrecht, W. \& O. Schmeil. 1898. Copepoda. I. Gymnoplea. Das Tierreich, 6. 169 S .
Grice, G.D. 1962. Calanoid copepods from equatorial waters of the Pacific Ocean. Fish. Bull., Fish. Wildl. Serv. U.S. 61(186): 171-246.
Grice, G.D. 1964. Two new species of calanoid copepods from the Galapagos Islands with remarks on the identity of the other species. Crustaceana 6(4): 255-264.
Grice, G.D. 1969. Calanoid copepods from the Carribean Sea and Gulf of Mexico. 1. New species and new records from midwater trawl samples. Bull. mar. Sci. 19(2): 446-455.
Grice, G.D. 1972. The existence of a bottom-living calanoid copepod fauna in deep water with descriptions of five new species. Crustaceana 23(2): 219-242.
Grice, G.D. \& K. Hulsemann. 1965. Abundance, vertical distribution and taxonomy of calanoid copepods at selected stations in the north-east Atlantic. J. Zool. Lond. 146: 213-262.
Grice, G.D. \& K. Hulsemann. 1967. Bathypelagic calanoid copepods of the western Indian Ocean. Proc. U.S. Nat. Mus. 122(3583): 1-67.
Grice, G.D. \& K. Hulsemann. 1968. Calanoid copepods from midwater trawl collections made in the south-eastern Pacific Ocean, Pacif. Sci. 22(3): 323-335.
Grice, G.D. \& K. Ilulsemann. 1970. New species of bot-tom-living calanoid copepods collected in deep water by the DSRV Alvin, Bull. Mus. Comp. Zool. Harv. Univ. 139(4): 185-227.
Gurney, R. 1931. British fresh-water Copepoda 1. 238 pp. The Ray Society, London.
Hardy, A.C. \& F.R. Gunther. 1935. The plankton of the South Georgia Whaling grounds and adjacent waters, 19261927. Discovery Rep. 11. 456 pp.

Hure, J. 1955. Distribution annuelle verticale du zooplankton sur une station de l'Adriatique méridionale. Acta adriat. 7 (7): 1-72.
Jaschnov, V.A. 1947. Derjuginia - new genus of Copepoda of Polar Basin. Byull. Mosk. Ob. Isp. Prirody. Otd. Biol. 52(4): 3-9. (In Russian).
Jespersen, P. 1934. Godthaab expedition 1928. Copepoda. Meddr. Grönland. 79(10). 166 S.
Jespersen, P. 1940. Non-parasitic Copepoda. In: The zoology of Iceland. 3(33). 116 pp.
Johannessen, P.J. 1976. A new species and a new record of calanoid copepods from western Norway. Sarsia 60: 19-24.
Johnson, M.W. 1963. Zooplankton collections from the high Polar Basin with special reference to the Copepoda. Limnol. Oceanogr. 8(1): 89-102.
Juday, C. 1923. An interesting copepod from the Finger lakes, New York. Science (New York) 58: 205.

Juday, C. 1925. Senecella calanoides, a recently described fresh-water copepod. Proc. U.S. Nat. Mus. 60(4): 1-6.
Kocller, P.A. \& J.L. Littlepage. 1976. Azygokeras columbiae, a new genus and species of marine epibenthic copepod (Calanoida: Aetideidae) from British Columbia. J. Fish. Res. Bd. Can. 33(7): 1547-1552.
Kovalev, A.V. \& A.A. Shmeleva 1982. Fauna of oar-footed crustaceans (Copepoda). Ekologiya Morya 8: 82-87. (In Russian).
Leschinskaya, A. S. 1962. Zooplankton and benthos of Ob Bay as food resource for fishes. Trudy Salekhard. Stats. Ural. Fil. Akad. Nauk SSSR. 2: 1-75. (In Russian).
Lubbock, J. 1856. On some Entomostraca collected by Dr. Sutherland in the Atlantic Ocean. Trans. R. ent. Soc. Lond. 4(2): 8-37.
Lysholm, B.O., O. Nordgaard \& K.F.Wiborg. 1945. Copepoda from the "Michael Sars" North Atlantic Deep-sea expedition 1910. Rep. Scient. Res. "Michael Sars" N. Atlant. Deep-sea Exped. 5(7): 1-60.
Markhaseva, E.L. 1980a. Calanoids of the genus Jaschnovia nom. n. (Derjuginia Jaschnov nom. praeocc.) (Calanoida, Aetideidae). Issled. Fauny Morei 25(33): 63-75. (In Russian).
Markhaseva, E.L. 1980b. Description of female of Gaetanus paracurvicornis (Calanoida, Aetideidac). Zool. Zh. 59(4): 626-629. (In Russian).
Markhaseva, E.L. 1981. New species of the genus Batheuchaeta (Calanoida, Aetideidae) from the KurileKamchatka Trench and redescription of B. lamellata. Zool. Zh. 60(8): 1151-1159. (in Russian).
Markhaseva, E.L. 1982. Rare species Pseudochirella batillipa Park, 1978 (Calanoida, Copepoda), new records. Issled. Fauny Morei 28(36): 106-107. (In Russian).
Markhaseva, E.L. 1983a. New species of Chiridiella (Calanoida, Aetideidae) and redescription of Ch. abyssalis. Zool. Zh. 62(1): 120-125. (In Russian).
Markhaseva, E.L. 1983b. New deep-water species of Batheuchaeta (Copepoda, Calanoida). Zool. Zh. 62(11): 1740-1743. (In Russian)
Markhaseva, E.L. 1984. Copepods Aetideidae (Copepoda, Calanoida) from the eastern sector of the central Arctic Basin. Okeanologiya 29(3): 511-514. (In Russian).
Markhaseva, E.L. 1986a. A new species of Pseudochirella (Copepoda, Calanoida) from the south-eastern part of the Pacific Ocean. Zool. Zh. 65(3): 462-465. (In Rusian).
Markhaseva, E.L. 1986b. Revision of the genus Batheuchaeta (Calanoida, Aetideidae). Zool. Zh. 65(6): 837-850. (In Russian).
Markhaseva, E.l. 1986c. New species of P Seudeuchaeta (Calanoida, Aetideidae) from the Arctic and Pacific Oceans with notes on geographical distribution of P. brevicauda. Zool. Zh. 65(12): 1892-1898, (In Russian).
Markhaseva, E.L. 1989. Review of the genus Pseudochirella (Copepoda, Calanoida). Issled. Fauny Morei 41(49): 33-60. (In Russian).
Markhaseva, E.L. 1993. Two new species of Bradyidius with notes on B. armatus Giesbrecht (Crustacea, Copepoda: Aetideidae). Zoosyst. Rossica 2(1): 47-53.
Marsh, C.D. 1933. Synopsis of the calanoid crustaceans exclusive of the Diaptomidae, found in fresh and barckish waters, chiefly of North America. Proc. U.S. natn. Mus. 82(18). 58 pp .
Matthews, J.B.L. 1964. On the biology of some bottom-living copepods (Aetideidae and Phaennidae) from western Norway. Sarsia 16: 1-46.
Mazza, J. 1965. Le développement de quelques Copépodes en Méditerraneé. II. Les stades jeunes de Gaetanus kruppi Giesbr., Euchirella messinensis Cl ., Chiridius poppei Giesb., Pseudaetideus armatus (Boeck) et Heterorhabdus spinifrons Cl. Revue Trav. Inst. Pêch. marit. 29(3): 285-320.
Minoda, T, 1967. Seasonal distribution of Copepoda in the Arctic ocean from June to December 1964. Rec. oceanogr. Works Japan 9(1): 161-168.

Minoda, T. 1971. Pelagic copepoda in the Bering Sea and the north-western North Pacific with special reference to their vertical distribution. Mem. Fac. Fish, Hokkaido Univ. 18(1): 1-17.
Mori, T. 1937. The pelagic copepoda from the neighbouring waters of Japan. 150 pp . Tokyo.
Morris, B. 1970. Calanoid copepods from midwater trawls in the North Pacific along 160° E. J. Fish. Res. Bd. Can. 27(12): 2297-2321.
Motoda S. \& T. Minoda. 1974. Plankton of the Bering Sea. In: D.W.. Hood \& E.J. Kelley, eds. Oceanography of the Bering Sea: 207-241 (Institute of Mar. Sci. Univ. Alaska, Fairbanks).
Omori, M. 1965. A new species of Euchirella (Copepoda) from Sagami Bay, middle Japan. J. Oceunogr. Soc. Jap. 21(2):60-65.
©stvedt, O.J. 1955. Zooplankton investigations from weather ship M in the Norwegian Sea, 1948-1949. Hvalrad. Skr. 40. 93 pp .

Othman, B.H.R. \& J.G. Greenwood. 1987. A new species of Bradyidius (Copepoda, Calanoida) from the Gulf Carpentaria, Australia. J. Plankt. Res. 9(6): 1133-1141.
Owre, H.B. 1962. Plankton of the Florida Current. Pt. 8. A list of the Copepoda. Bull. mar. Sci. Gulf Caribb. 12(3): 489-495.
Owre, H.B. \& M. Foyo. 1967. Copepods of the Florida Current Fauna Carib., 1 (Crustacea. Pt. 1: Copepoda). 137 pp.
Park, T.S. 1966. A new species of Bradyidius (Copepoda: Calanoida) from the Pacific coast of North America. J. Fish. Res. Bd. Can. 23(6): 805-811.
Park, T.S. 1967. Two new species of calanoid copepods from the Strait of Georgia, British Columbia, Canada. J. Fish. Res. Bd. Can. 24(2): 231-242.
Park, T.S. 1968. Calanoid copepods from the Central North Pacific Ocean. Fish Bull., Fish. Wildl. Serv. U.S. 66(3): 527-572.
Park, T.S. 1970. Calanoid copepods from the Caribbean Sea and Gulf of Mexico. 2. New species and new records from plankton samples. Bull. mar. Sci. 27: 272-546.
Park, T.S. 1973. Redescription of Gaetanus intermedius Campbell (Calanoida: Copepoda), from the type localiliy. J. Fish Res. Bd. Can. 30(10): 1597-1600.

Park, T.S. 1974. Calanoid copepods of the genus Aetideus from the Gulf of Mexico. Fish. Bull., Fish. Wildl Serv. U.S. 72(1): 215-221.

Park, T.S. 1975a. Calanoid copepods of the genera Aetideopsis, Pseudaetideus, and Chiridus from the Gulf of Mexico. Bull. mar. Sci. 25(2): 272-290.
Park, T.S. 1975b. Calanoid copepods of the genera Gaetanus and Gaidius from the Gulf of Mexico. Bull. mar. Sci. 25(1): 9-34.
Park, T.S. 1975c. A new species of Euchirella and the male of Euchirella splendens Vervoort, with notes on Euchirella truncata Esterly (Copepoda, Calanoida). Crustaceana 28(3): 291-297.
Park, T.S. 1976a. A new species of Euchirella (Copepoda, Calanoida) from the Pacific coast of North America, with notes on Euchirella pulchra. Crustaceana 31(2): 208-212.
Park, T.S. 1976b. Calanoid copepods of the genus Euchirella from the Gulf of Mexico. Contr. mar. Sci. 20: 101-122.
Park, T.S. 1978. Calanoid copepods (Aetideidae and Euchaetidae) from Antarctic and Subantarctic waters. Biology of the Antarctic seas, 7. Antarctic Res. Ser. 27: 91-290.
Pirozhnikov, P.L. 1958. On the distribution range and bionomics of the copepod Senecella calanoides Juday. Zool. Zh. 37(4): 625-629. (In Russian).

- Roe, H.S.J. 1972a. The vertical distributions and diumal migrations of calanoid copepods collected on the Sond cruise, 1965 . 1. The total population and general discussion. J. mar. biol. Ass. U.K. 52(2): 277-314.

Roe, H.S.J. 1972b. The vertical distribution and duimal migrations of calanoid copepods collected on the Sond cruise, 1965, 2. Systematic account: families Calanidae up to and including the Aetideidae. J. mar. biol. Ass. U.K. 52(2): 315-343.
Roc, H.S.J. 1975. Some new and rare species of calanoid copepods from the northeastern Atlantic. Bull. Br. Mus. nat Hist., Zool. 28 (7): 295-372.
Roe, II.S.J. 1984. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 4. The Copepods. Prog. Oceanogr. 13: 353-388.
Roe, H.S.J. \& J. Badcock. 1984. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 5. Vertical migrations and feeding of fish. Prog. Oceanogr. 13: 389-424.
Kose, M. 1933. Copépodes pélagiques. Faune de France 26. 374 pp. Paris.
Rose, M. 1937. Copépodes bathypélagiques de la baie d'Alger. Discriptions d'especes nouvelles. Annls. Inst océanogr. Monaco. (Nouv. Ser.) 17(2): 151-174.
Rylov, V.M. 1930. The fresh-water Calanoida of the USSR. 288 pp . Leningrad. (In Russian).
Sars, G.O. 1900. Crustacea. Scient. Res. Norw. North Polar Exped 1893-1896. 1(5). 141 pp .
Sars, G.O. 1901. Copepoda: Calanoida. An account of the Crustacea of Norway 4: 1-28. Bergen.
Sars, G.O. 1902. Copepoda: Calanoida. An account of the Crustacea of Norway 4: 29-144. Bergen.
Sars, G.O. 1903. Copepoda: Calanoida. An account of the Crustacea of Norway 4: 145-171. Bergen.
Sars, G.O. 1905. Liste préliminaire des Calanö̈des recueillis pendant les campagnes de S.A.S. le Prince Albert de Monaco, avec diagnoses des genres et des espèces nouvelles (1-er partie). Bull. Mus. océanogr. Monaco. 26:1-22.
Sars, G.O. 1907. Notes supplémentaires sur les Calanoïdes de le Princesse Alice (Corrections et additions). Bull. Inst. océanogr. Monaco. 101: 1-27.
Sars, G.O. 1920. Calanoidés recucillis pendant les campagnes de S.A.S. le Prince Albert de Monaco (Nouveau supplement). Bull. Inst. océanogr. Monaco. 377: 1-20.
Sars, G.O. 1924-25. Copépodes particulièrement bathypélagiques provenant des campagnes scientifiques du Prince Albert 1 -er de Monaco. Résult. Camp. Sci Prince Albert I-er, 69. 1924 (atlas), 1925 (text). 408 pp.
Schulz, K. 1990. Pterochirella tuerkayi, new genus, now species an unusual calanoid copepod from the deep Gulf of Aden (Indian Ocean). Mitt. hamb. zool Mus. Inst. 87: 181-189.
Scott, A. 1909. The Copepoda of the Siboga expeditions. Part 1. Free-swimming, littoral and semi-parasitic Copepoda. Siboga Exped. 29a. 323 pp.
Scott, T. 1909. On some new and rare Entomostraca from the Scottish Seas. Ann. Mag. Nat. Hist. 8(3): 122-130.
Scotto di Carlo B., A. Ianora, E. Fresi \& J. Hure. 1984. Vertical zonation patterns for Mediterranean copepods from the surface to 3000 m at a fixed station in the Tyrrhenian Sea. J. Plankton Res. 6(6): 1031-1056.
Sewell, S. 1929. The Copepoda of Indian seas. Calanoida. Pt.1. Mem. Ind. Mus. 10. 221 pp.
Sewell, S. 1947. The free-swiming planktonic Copepoda. Systematic account. Scient. Rep. J. Murray Exped. 8(1) 303 pp.
Shih, C.-T. \& D.C. Maclellan. 1981. Aetideopsis albatrossae, new species (Crustacea: Copepoda) from east of Mindoro, the Philippines. J. Crust. Biol. 1(4): 567-572.
Shih, C.-T., L.Rainville \& D.C.Maclellan. 1981. Copepodids of Bradyidius similis (Sars, 1902) (Crustacea: Copepoda) in the Sanguenay fiord and the St. Laurence Estuary. Can. J. Zool. 59(6): 1079-1093.
Shih, C.-T. \& N. Stallard. 1982. Notes on deep-water calanoids (Aetideopsis rostrata and Neoscolecithrix farrani) from Lancaster Sound. Arctic 35(1): 56-60.

Smirnov, S. S. 1938. On the question of the glacial-marine relikts in freshwater fauna. Dokl. Akad. Nauk SSSR 20; 491-494. (In Russian).
Tanaka, O. 1937. Copepoda from the deep water of Suruga Bay. Jap. J. Zool. 7(2): 251-271.
Tanaka, O. 1953. The pelagic copepods of the Izu region. Rec. oceanogr. Works Japan (n. ser.) 1(1): 126-137.
Tanaka, O. 1957a. The pelagic copepods of the lzu region, Middle Japan. Systematic account 3. Family Aetideidae (Part 1). Publs Seto Mar. biol. Lab. 6(1): 31-68.
Tanaka, 0. 1957b. The pelagic copepods of the Izu region, Middle Japan. Systematic account 4. Family Aetideidae (Part 2). Publs Seto Mar. biol. Lab. 6 (2): 169-207.
Tanaka, O. 1969. Some calanoid copepods collected chiefly by the U.S. Steamer Albatross from the Pacific Ocean. Publs Seto Mar. biol. Lab. 17(4): 253-278.
Tanaka O. \& M. Omori. 1969a. On Euchirella (Copepoda, Calanoida) collected chiefly by the U.S. Steamer Albatross from the Pacific Ocean. Publs Seto Mar. biol. Lab. 17(1): 33-65.
Tanaka, O.\& M.Omori. 1969b. Additional report on calanoid copepods from the Izu region. Part 2. Euchirella and Pseudochirella. Publs Seto Mar. biol. Lab. 17(3): 155-169.
Tanaka, O. \& M. Omori. 1970a. Additional report on calanoid copepods from the Izu region. Part 3 A. Euaetideus, Aetideopsis, Chiridius, Gaidius and Gaetanus. Publs Seto Mar. biol. Lab. 18(2): 109-141.
Tanaka, O. \& M. Omori. 1970b. Additional report on calanoid copepods from the Izu region. Part 3 B. Chirundina, Undeuchaeta, Pseudeuchaeta, Valdiviella, and Chiridiella. Publs Seto Mar. Biol. Lab. 18(3): 143-155.
Vanhöffen, E. 1897a. Bradyanus oder Bradyidius. Zool. Anz 20 (540): 322-323.
Vanhöffen, E. 1897b. Die Fauna und Flora von Grönland. Grönland-Expedition der Gesellschaft für Erdkunde zu Berlin 1, 1891-1893. 2(1). 383 pp.
Vanhöffen, E. 1907. Crustaceen aus dem kleinen Karajakfiord in West-Grönland. Zool. Jb. Syst. 25(4): 507-524.
Vaupel Klein, J.K. von. 1972. A new character with systematic value in Euchirella (Copepoda, Calanoida). Zool. Meded. Leiden, 47: 497-512.
Vaupel Klein, J.K, von. 1980. A new species of Euchirella (Fam. Aetideidae) from the "Dana"- collections (Copepoda, Calanoida). Zool. Meded. Leiden, 55(12): 131-157.
Vaupel Klein, J.K. von. 1982. A taxonomic review of the genus Euchirella Giesbrecht, 1888 (Copepoda, Calanoida). II. The type-species, Euchirella messinensis (Claus, 1863). A. The female of E typica. Zool. Verh. Leiden, 198: 1-131.

Vaupel Klein, J.K. von. 1984. A primer of a phylogenetic approach to the taxonomy of the genus Euchirella (Copepoda, Calanoida). Crustaceana, suppl.: 1-194.
Vervoort, W. 1949. Some new and rare Copepoda from East Indian Seas. Zool. Verh. Leiden, 5: 1-53.
Vervoort, W. 1951. Plankton copepods from the Atlantic sector of the Antarctic. Verh. ned. Akad. Wet., Afd. Netuurk., Sect. 2. 47(2): 1-156.
Vervoort, W. 1952a. Copepoda. Sub-order: Calanoida. Family: Aetideidae. Genera: Aetideus, Euaetideus, Aetideopsis. Fich. Ident. Zooplankton. Sheet 42: 1-4.
Vervoort, W. 1952b. Copepoda. Sub-order: Calanoida. Family: Aetideidae. Genera: Bradyidius, Bradyetes, Bryaxis. Fich. Ident. Zooplankton. Sheet 43: 1-4.
Vervoort, W. 1952c. Copepoda. Sub-order: Calanoida. Family: : Aetideidae. Genera: Chiridius, Pseudaetideus, Chiridiella. Fich. Ident. Zooplankton. Sheet 44 :1-5.
Vervoort, W. 1952d. Copepoda. Sub-order: Calanoida. Family: Aetideidae. Genus Gaidius. Fich. Ident. Zooplankton. Sheet 45: 1-4.
Vervoort, W. 1952e. Copepoda. Sub-order: Calanoida. Family: Aetideidae. Genus Gaetanus. Fich. Ident. Zooplankton. Sheet 46: 1-5.

Vervoort, W. 1952g. Copepoda. Sub-order: Calanoida. Family: Aetidcidae. Genus Pseudochirella. Fich. Ident. Zooplankton. Sheet 48: 1-4.
Vervoort, W. 1952h. Copepoda. Sub-order: Calanoida. Family: Aetideidae. Genera: Chirundina, Undeuchaeta, Pseudeuchaeta. Fich. Ident. Zooplankton Sheet 49: 1-4.
Vervoort, W. 1957. Copepods from Antarctic and sub-antarctic plankton samples. Rep. B.A.N.Z. Antarctic Res. Exped. 1929-1931 (ser. B). 3. 160 pp.
Vervoort, W. 1963. Pelagic copepoda Part 1. Copepoda Calanoida of the families Calanidac up to and including Euchactidae. Atlantide Rep. 7: 77-194.
Vervoort, W. 1965. Pelagic Copepoda. Part 2. Copepoda Calanoida of the families Phaennidae up to and including Acartidae, containing the descriptions of a new species of Actideidae. Allantide Rep. 8: 9-216.
Vidal, J. 1971. Taxonomic guides to Arctic zooplankton (IV): Key to the calanoid copepods of the Central Arctic Ocean. Univ. South Calif. Dep. Biol. Sci. Tech. Rep. 5. 128 pp.
Vidal, W. 1966. Los Copépodos Calanoideos epipelagicos e la expedición "Marchile II". Gayana Zool. 15: 1-98.
Vives, F. 1982. Sur les copépodes de la région CINECA (parties nord et centrale). In: G. Hempel. ed., The Canary Current: studies of an upwelling system. A symposium held in Las Palmas. 11-14 April 1978. Rapp. P.-v. Reún. Cons. perm. int. Explor. Mer. 180: 289-296.
Vyshkvartzeva, N. V. 1994. Senecella siberica n. sp. and the position of the genus Senecella in Calanoida classification. Hydrobiologia 292/293: 113-121.
Wheeler, E.H.J. 1970. Atlantic deep-sea calanoid Copepoda Smithson. Contr. Zool. 55: 1-31.
Wilson, C.B. 1924. New North American parasitic copepods, new hosts and notes on copepod nomenclature. Proc. U.S. nat. Mus. 64(17): 1-22.
Wilson, C.B. 1950. Copepods gathered by the United States Fisheries Steamer "Alabatross" from 1887 to 1909, chiefly in the Pacific Ocean. Bull. U.S. nat. Mus. 100(14): 141-441.
With. C. 1915. Copepoda 1. Calanoida. Amphascandria. Dan. Ingolf. Exped. 3(4); 260 pp.
Wolfenden, R.N. 1902. The plankton of the Faroe Channel and Shetlands. Preliminary notes and some Radiolaria and Copepoda. J. mar. Ass. U.K. (n. ser.) 6: 344-372.
Wolfenden, R.N. 1903. On the copepod sub-family Aetideidae, with a proposed revision of the classification. Rep. Br. Ass. Adv. Sci. 72: 263-267.
Wolfenden, R.N. 1904. Notes on the Copepoda of the North Atlantic Sea and the Faroe Channel. J. mar. biol. Ass. U. K. (n. ser.) 7: 110-146.

Wolfenden, R.N. 1905, 1906. Plankton Studies. Part 1. 1905. Copepoda: 1-24; part 2. 1906. Copepoda: 25-44.
Wolfenden, R.N. 1908. Crustacea. 8. Copepoda. Natn. Antarct. Exped. 1901-1904, Nat. Hist. 4: 46.
Wolfenden, R.N. 1911. Die marinen Copepoden der Deutschen Südpolar Expedition 1901-1903. Dt. Südpolar Exped, Zoology 4: 181-380.
Zelikman, E.A. 1961. To the planktic characteristik of the south-western sector of the Barents Sea (after August 1958 data). In: M.M. Kamshilov, ed. Hydrological and biological features of the shore waters of Murman: 39-58. Murmansk (In Russian).
Zvereva, J. 1975. Valdiviella brodskyi sp.n. (Copepoda, Calanoida) from the Pacific Ocean and comparison of genital fields of some species of the genus. Zool. Zh 54(12): 1890-1894.
Zvereva, J. 1976. A new species of Pseudochirella (Copepoda, Calanoida) from the Bering Sea and female of Pseudochirella pacifica Brodsky from the north-east Pacific. Crustaceana 31(2): 200-202.
Zvereva, J. 1977. A new species of Aetideopsis Sars (Copepoda, Calanoida) from Aniva Bay (the Sea of Okhotsk). Issled. Fauny Morei 20(28): 6-8. (In Russian).

The alphabetical index of the Latin names of aetideids
Synonyms are marked by italics, numbers in bold refer to pages with descriptions of taxa, numbers with asterisk refer to pages with illustrations
"amona", Euchirella 147
abyssalis, Chiridiella 88, 89*, 90*
abyssalis, Chirundina 278
accepta, Pseudochirella 255, 256*
acuta, Euchirella 173
acutus, Aetideus 12, 13*, 14
acutus, Euaetideus 12
Aetideopsis 26
Aetideus 11
Aetidius 11
affinis, Gaetanus 187
affinis, Gaidius 187
alaskaensis, Chirundina 130, 131*
alaskaensis, Wilsonidius 130
albatrossae, Aetideopsis 27, 28*
amoena, Euchirella 147, 148*
angulata, Chirundina 305
angustus, Bradyidius 70, 71*
angustus, Undinopsis 70
anomala, Batheuchaeta 51, 52*, 53
antarctica, Batheuchaeta 53, 54*
antarcticus, Gaetanus 178, 179*
arctica, Pseudeuchaeta 241, 242*, 243*, 244*
arcticus, Sergestes 16
arcuatus, Aetideus 14, 15*
arcuatus, Snelliaetideus 14
areata, Euchirella 148
Argyropelecus 16
armata, Aetideopsis 27, 28, 29*, 30*, 31*
armata, Euchaeta 26, 27
armatus, ? Aetideus 17
armatus, ? Bradyanus 079
armatus, Aetideus 14, 16*, 17*
armatus, Bradyanus 68, 70
armatus, Bradyidius 70, 73*, 74*
armatus, Chiridius 27
armatus, Fseudaetideus 28
armatus, Pseudocalanus 14, 70
armatus, Undinopsis 79
armiger, Gaetanus 180, $181^{*}, 182^{*}, 183$
arnoldi, Bradyidius 70, 72*
ascendens, Gaetanus 187
asymmetrica, Mesundeuchaeta 301, 302
atlantica, Chiridiellà 81,87
atlanticus, Gaetanus 180
australis, Aetideus 11
Autanepsius 240
Azygokeras 47
Batheuchaeta 50, 51
batillipa, Pseudochirella 255, 257*, 258*
bella, Euchirella 147, 148, 149, 150*
bichela, Chiridiella 88, 91*
bilobata, Pseudochirella 258*
bispinosa, Chiridiella 88, 92*
bispinosa, Undeuchaeta 302
bitumida, Euchirella 149, 151*
boreale, Gaidius 221
bowmani, Pseudochirella 259*, 260
brachydactyla, Chiridiella 92, 93*
brachyurus, Gaetanus 183, 184*, 185*
Bradyanus 68
Bradyetes 62, 63
bradyi, Aetideus 17*
bradyi, Bradyidius 70
bradyi, Euaetideus 17
bradyi, Undinopsis 68, 70
Bradyidius 68, 69
brevicauda, Pseudeuchaeta $240,241,242,244^{*}, 245^{*}$, $246^{*}, 247^{*}, 248^{*}$
brevicaudatus, Chiridius 183
brevicaudatus, Gaetanus 183, 186*, 187
brevicaudatus, Gaidius 178
brevicornis, Bryaxis 135, 137
brevicornis, Comantenna, 137, 138, 139*, 140*
brevicornis, Gaetanus 187, 188*, 189*
brevirostris, Gaetanus 187, 190*
brevirostris, Gaidius 187
brevis, Bradyetes 226
brevis, Euchirella 147
brevis, Jaschnovia 226, 227*, 228*
brevispinus, Chiridius 187
brevispinus, Gaetanus 187, 189, 191*, 192*, 193*, 194*, 195
brevispinus, Gaidius 187
brodskyi, Batheuchaeta 53
brooksi, Chiridiella 92, 93, 94*
Bryaxis 135
Bryaxona 135
calanoides, Senecella 297, 298*
calcarata, Pseudochirella 253
campbellae, Gaetanus 196
cara, Chrrundinella 135
carinata, Aetideopsis 32, 33*, 34*
carnosus, Chiridius 119
caudani, Gaetanus 211
chainae, Chiridiella 93, 95*, 97*
Chiridiella 81, 87
Chiridius 108, 110
Chirundina 129
Chirundinella 135
clarus, Gaetanus 211
columbiae, Azygokeras 47, 48*, 49*, 50*
columbiae, Gaidius 207
Comantenna 135, 137
comosa, Crassantenna 143*, 144
crassa, Comantenna 138, 141*
Crassantenna 143, 144
cristata, Aetideopsis 32, 34*
cryptospina, Pseudochirella 253
curticauda, Euchirella 149, 151, 153*
curtisetosa, Comantenna 138, 141*
curtus, Bradyidius 74, 75*
curvicomis, Gaetanus 195, 196
curvispinus, Gaetanus 187
dentata, Euchirella 260
dentata, Pseudochirella 260*, 262
Derjuginia 225
divaricata, Aetideopsis 42
divaricatus, Gaidius 262
divaricata, Pseudochirella 261*, 262
divergens, Aetideopsis 42
divergens, Aetideus 17, 18*
dubia, Euchirella 262
dubia, Pseudochirella 262, 263*
dubia, Undeuchaeta 262
elegans, Gennades 16
elegans, Lutamator 231, 232*
elongata, Euchirella 289
elongata, Pseudochirella 289
enormis, Batheuchaeta 51
Euaetideus 11
Euchirella 145
fallax, Pseudochirella 264, 265*
Faroella 26
ferox, Gaetanus 217
flexuosa, Pseudeuchaeta 248*, 249
florens, Bradyetes 63
formosa, Euchirella 154, 155*, 156*
formosa, Pseudochirella 264, 267*
Gaetanus 176
Gaidiopsis 8
Gaidius 176
galeata, Euchirella 154, 156, 157*
gibba, Chiridiella 96*, 97
gibbera, Pseudochirella 264, 266, 268*
giesbrechti, Aetideus 18, 19*, 20, 21
giesbrechti, Euaetideus 18
gracilis, Chiridius 111, 112*, 113*
gracilis, Euchirella 171
gracilis, Gaidius 221
gracilis, Paracomantenna 237, 238*
grandicornis, Euchirella 156, 158*
granulata, Euchirella 262
gurjanovae, Batheuchaeta 53, 55*, 56*
gurjanovae, Pseudochirella 53
hamatus, Gaetanus 187
heptneri, Batheuchaeta 53, 57*,
hessei, Euchirella 148
hirsuta, Pseudochirella 266, 268, 269*, 270*
hirsutus, Bradyidius 69
holti, Gaetanus 201
hurlei, Lutamator 231, 232*
inaciae, Paivella 233, 234, 235*
incisa, Pseudochirella 302
incisa, Undeuchaeta 302, 303*, 304*
indica, Chirundina 130, 132*,
inermis, Bradyetes 64, 65^{*}, 66*
inermis, Gaetanus 196, 197*, 198*
inermis, Gaidius 196
inflata, Aetideopsis 42
intermedia, Euchirella 171
intermedia, Undeuchaeta 302, 305*
intermedius, Gaetanus 189, 196
intermedius, Gaidius 176, 187
intermedius, Mesogaidius 189
Jaschnovia 225
johnsoni, Jaschnovia 226
kruppii, Gaetanus 196, 198, 200*, 201*
kuniae, Chiridiella 97*, 98*
lamellata, Batheuchaeta 57, 58, 59*, 60*
latifrons, Gaetanus 201, 202*, 203*, 204
latirostris, Euchirella 145
limata, Pseudochirella 268, 269, 271*
lisettae, Euchirella 145
lobata, Pseudochirella 269, 271, 272*
lobata, Undeuchaeta 269
longispinus, Chiridius 111, 113, 114*
longispinus, Gaetanus 201
luluae, Bradyidius 74, 76*
Lutamator 226, 231
macrodactyla, Chiridiella 99, 100*
magalyae, Paracomantenna 237, 238, 239*
magna, Chirundinella 135, 136^{*}, 137^{*}
magna, Pseudeuchaeta 249*
magna, Pseudochirella 135
magna, Undeuchaeta 302
major, Bradyetes 264
major, Gaetanus 196
major, Gaidius 189
major, Pseudeuchaeta 249, 250*
major, Undeuchaeta 302, 305, 306*, 307*, 309
mariana, Pseudochirella 271, 272, 273*
matthei, Bradyetes 64, 67*, 68*
mawsoni, Pseudochirella 272, 274*, 275*
maxima, Euchirella 156, 158, 159*, 160*
maximus, Mesogaidius 217
megadactyla, Chiridiella 87
Mesocomantenna 231, 233
Mesogaidius 176
messinensis, Euchirella 158
messinensis indica, Euchirella 158, 159, 161*
messinensis messinensis, Euchirella 160, 161, 162*
messinensis, Undina 145
Mesundeuchaeta 301
mexicanus, Aetideus 20*, 21
microcanthus, Gaetanus 198
miles, Gaetanus 176, 204, 205*, 206*
mimorostrata, Crassantenna 144
minispinus, Gaetanus 204, 205, 207*
minor, Chiridius 32
minor, Aetideopsis 32, 35*, 36*, 37
minor, Autanepsius 240
minor Bryaxis 236, 238
minor, Faroella 32
minor, Gaetanus 205, 206, 207, 208*
minor, Paracomantenna 238, 240*
minor, Undeuchaeta 310
minutus, Gaetanus 206, 207, 209*, 210, 211
minutus, Gaidius 207
moderatus, Gaidius 207
modesta, Aetideopsis 32
modestus, Chiridius 32
molestus, Chiridius $113,114,115^{*}, 116^{*}$
multiserrata, Aetideopsis 37, 38*, 39*
multiserrata, Faroella 26, 37
multiserratus, Chiridius 37
naporai, Paivella 235, 236*
nasuta, Aetideopsis 37
nasutus, Chiridius 37
notacantha, Pseudochirella 275, 276, 277*, 278*
notacanthus, Gaidius 275
obesa, Pseudochirella 276, 279*, 280*
obtusa, Euchirella 278
obtusa, Pseudochirella 278, 281, 282*, 283*
obtusa, Undeuchaeta 278
obtusifrons, Chiridius 116, 117*, 118*, 119
orientalis, Euchirella 154
ovata, Chiridiella 99, 101*
pacifica, Aetideopsis 37
pacifica, Chiridiella 99, 102*, 103*, 104
pacifica, Pseudochirella 281, 284*, 285*
pacificus, Aetideus 21, 22*, 23*, 24
pacificus, Bradyidius 74, 75, 77*, 78*
pacificus, Chiridius 119, $120^{*}, 121^{*}, 122^{*}$
pacificus, Undinopsis 74
Paivella 233
palliata, Pseudochirella 285, 286*
palliata, Undeuchaeta 285
Paracomantenna 236, 237
paracurvicornis, Gaetanus 211, 212*
parvispina, Chirundina 275
paulinae, Euchirella 145
peculiaris, Batheuchaeta 58, 61*, 62*
pileatus, Gaetanus 211, 212, 213*, 214*
plinoi, Bradyidius 69
plumosa, Undeuchaeta 308*, 309*, 310
plumosa, Undina 310
polaris, Chiridius 119, 123, 124*, $125^{*}, 126^{*}, 127^{*}$
polyspina, Pseudochirella 278
poppei, Chiridus 123, 128*, 129
propria, Euchirella 171
Pseudaetideus 26
pseudarmatus, Aetideus 24*
Pseudeuchaeta 240
Pseudochirella 253
Pseudogaetanus 176
pseudolatifrons, Gaetanus 213, 214, 215*
peudopulchra, Euchirella 162, 163*
Pseudotharybis 8
pseudotruncta, Euchirella 163, 164*, 165*

Pterochirella 295, 296
pubescens, Batheuchaeta 58, 63*
pulchra, Euchirella 165, 166*, 167
pulchra, Undina 165
pungens, Gaetanus 214, 216*, 217
pungens, Gaidius 176, 214
pustulifera, Chirundina 285
pustulifera, Pseudochirella 285, 286, 287*, 288*, 289
pustulifera, Undeuchaeta 285
rakuma, Aetideopsis 79
rakuma, Bradyidius 79, 80*, 81*
recticornis, Gaetanus 211
rectus, Gaetanus 187
recurvata, Comantenna 140, 142*
reducta, Chiridiella 88
reductella, Chiridiella 104, 105*
retusa, Λ etideopsis 37, 39, 40*, 41*
robustus, Gaetanus 176, 217, 218*, 219*
robustus, Gaidius 178, 189
robustus, Pseudogaetanus 217
rostarta, Aetideopsis 42, 43*, 44*, 45*
rostrata, Euchirella 167, 168*
rostrata, Undina 167
rotromagna, Euchirella 145
rubellus, Gaetanus 217, 220*
saanichi, Bradyidius 79, 82*
sarsi, Chiridiella 104, 106*
scopularis, Pseudochirella 289*
scopularis, Undeuchaeta 289
secundus, Gaetanus 217, 221, 222*
semispina, Pseudochirella 253
Senecella 297
Sergestes 16
siberica, Senecella 297, 298, 299*
similis, Bradyidius 79, 83^{*}, 84*
similis, Euchirella 167, 169*
similis, Gaidius 221
similis, Undinopsis 79
simplex, Gaetanus 196, 199*
smoki, Chiridiella 107*, 108
Snelliaetideus 11
speciosa, Euchirella 167, 169, 170*
spectabilis, Pseudochirella 289, 290, 291*, 292*, 293*
spectabilis, Undeuchaeta 289
spinata, Pseudeuchaeta 250, 251*, 252*
spinatus, Sursamucro 299, 300*
spinifer, Bradyidius 69
spinifera, Pseudochirella 278
spinosa, Euchirella 290
spinosa, Mesocomantenna 233, 234*
spinosa, Pseudochirella 290, 293*
splendens, Euchirella 169, 170, 171*
streetsii, Chirundina 130, 132, 133*, 134*
styliformis, Bradyidius 69
squalida, Pseudochirella 275
subaequalis, Chriridiella 108, 109*
subantarcticus, Chiridius 119
subarmatus, Bradyidius 81, 85*, 86*
subgracilis, Chiridius 113
superba, Undeuchaeta 302
Sursamucro 299
Systellaspis 16
tanakai, Pseudochirella 290, 294*
tanseii, Euchirella 145
tenuirostris, Aetideus 14
tenuispinus, Chiridius 221
tenuispinus, Gaetanus 221, 223*, 224*, 225
tenuispinus, Gaidius 221
tolli, Derjuginia 226
tolli, Jaschnovia 226, 229*, 230*
tolli, Scolecithrix 225
trichamata, Chiridiella 87
trichecus, Aetideopsis 42
trigrada, Euchirella 154
tropicus, Bradyidius 69
truncata, Euchirella 170, 171, 172*
truncatus, Aetideus 24, 25*
tuberculata, Batheuchaeta 61, 62, 64*
tuberculata, Pseudochirella 276
tuberosa, Pseudochirella 272
tuerkayi, Pterochirella 295, 296*, 297
tumorosa, Aetideopsis 42, 46*
Undeuchaeta 301
Undinopsis 68
unicornis, Gaetanus 211
unispina, Euchirella 173*, 174, 175
Valdiviella 8
validus, Gaidius 217
variabilis, Gaetanus 210
variabilis, Gaidius 207
venusta, Euchirella 174*, 175*
vervoorti, Pseudochirella 293, 294, 295*
Wilsonidius 8, 129
wolfendeni, Euchirella 285
wolfendeni, Gaetanus 178

[^0]: * Senecella as mostly fresh-water genus is not included into the key.

[^1]: * BJN - Big Judey net

 JOMN \& BR 80 - modrfied Judey's nets with mouth square $05 \mathrm{~m}^{2}$
 BR 113 - modified Judey's nets with mouth square $10 \mathrm{~m}^{2}$
 K 100 - modified Nansen's nets with mouth square $075 \mathrm{~m}^{2}$
 RT - Rung trawl

