rutt. Bot. Minchen 18	p. $231-288$	15.12 .1982	ISSN 0006-8179

A TAXONOMIC REVISION OF THE GENERA
 SEGUIERIA LOEFL. AND GALLESIA CASAR.

by
JENS ROHWER

Sunmary

The study of the complete collections of the genera Seguieria and Galleaia from 19 American and European herbaria has led to the recognition of a largely continuous pattern of variation in each genus. Therefore in Seguieria 16 in the most recent revision (NOWICKE 1968) to only six. of which three are highly polymorphic. Two additional correlated diagnostic characters (structure of the seed coat and indumentum) are introduced, which strongly plead against the sectional division proposed by WALTER (1909).
Purthermore the real identity of the type species,
S. americana L., which has long been misinterpreted, is eludicated, and the reduction of S. aouleata Jacq. to 5. ame ricana L. by Linnaeus himself is shown to have been erroneous. This brings about nomenclatural changes in the most widespread and most frequent species.
Since Galtesia has already been treated as being monotypic by NOWICKE, only a minor change, the reduction of var. ovata is made in this genus.

Introduction

Within the Phytolaccaceae the neotropical genera Seguioria and Galleaia are best characterized by their unique samara fruits. There has never been any doubt about their close relationship, which was already recognized by CASARETTO (1843) when he first described the genus Gallesia. Therefore the present revision is concerned with both genera although Only Seguieria was, as NOWICKE (1968) put it "badly in need of monographic revision". The monotypic Gattesia did not present taxonomic problems.

The first comprehensive account of this group, including keys to the species, was that by H. WALTER (1909) in ENGLER, Pflanzenreich. WALTER described the genus Seguigric with 23 species in two sections. Twelve of his species vere based on only one collection, and of just as many species he did not see fruits. Because the flowers yield hardly any distinguishing characters, he had to rely heavily upon vegetative characters for classification. Since there are often considerable differences between duplicates of the same collection and variable species are quite frequent in the Phytolaccaceae, WALTER's specific delimitation rested on a rather weak basis.
In her revision of the Phytolaccaceae NOWICKE (1968) recognized this shortcoming very well, but due to lack of material her own treatment had to remain provisional. She even accepted WALTER's concept of the type species, s. americana L., although this was clearly a misinterpretation, as already HEIMERL (1934) had pointed out. The present study not only attempts to eludicate the real identity of S. americana, it also suggests a drastically changed subdivision of the genus Seguisria, based on the much enlarged amount of material now avallable.
This work has been based on the study of the material of the following institutions: $B, B A P, B M, B R, C, G$, HBG, IPA, K, M, MO, NY, R, RB, S, SP, US, VEN, W. The author is indebted to the curators of these herbaria for arranging loans of their specimens. Many thanks are also due to Prof. Dr. V. I. Grubov of the LE-herbarium for sending photographs of type specimens and to Mr. G. Hatschbach, Curitiba, and \mathbb{M}. Valério Flechtmann Ferreira, Rio de Janeiro, grazil for sending viable seeds. Prof. Dr. K. Kubitzki, University of Hamburg, is gratefully acknowledged for constant encourage* ment and steady interest in the progress of this work. To J. Kadereit, Cambridge, I am grateful for correcting the English.

General Part

Vegetative characters. - The species of the genus Segwisrif are lianas, shrubs or trees up to about 20 m , rarely 30 m high. Transitional stages, e.g. semiscandent shrubs, tree like lianas, are common. Galleeia is a tall tree, often des cribed as 30 m high with a trunk diameter of 1 m . Accordin9 to METCALFE and CHALK (1957) both genera show anosalous secondary thickening.
The leaves are - as in all other Phytolaccaceae - alteroatf petiolate, entire and mostly mucronulate at the tip. Above the base of the petiole, i.e. at either side of the axillar bud, there usually is a pair of stipule-like excrescences. In Galleaia these are minute and ephemeral, in Seguieris they are transformed into thorns which are either straight
tage Library, http://www biodiversitylibrary org/)
(in trees and shrubs) or recurved (in shrubs and iianas). Kostly these organs have been interpreted as stipules, but there is some evidence pleading in favor of ECKARDT's (1964) view that they are the prophylls of the axillary bud:

1. According to WEBERLING (e.g. 1958) stipules normally show proleptic development - these effigurations do not.
2. They usually fit into the phyllotactic spiral of the axillary bud (fig. 1).
3. There are no other organs which could be interpreted as prophy11s.
4. There are all transitional forms between thorns and budscales in Seguieria (fig. 2).
The shape of the leaf blade ist especially in Seguieria rather variable. In the past a number of species have been based essentially on leafshape variants, but as leaf varlation proved to be continuous, it cannot be used for the delimitation of species.
Inflorescences. - The structure of the inflorescences of Soguibria is exceptional among the Phytolaccaceae in that it develops distinct terminal flowers. Gaitesia on the contrary shows the common condition, i.e. indeterminate inflorescences. In both genera the inflorescences are generally paniculate, but the degree of branching is rather Varlable, mostly even within the species. Only S. brevithyraa Invariably has simple racemes. In Gallssia the pedicels are frequently very short, so that the inflorescences could Vell be described as branched spikes. Bracts are always present. In the lower part of the main axis they are often leaflike but rapidiy decrease in size towards the apex. In most species there are bracteoles as well, only in 4. brevithyraa and S. paraguayenais (but see p. 240) they
are absent.

A closer look at the indumentum of the inflorescence offered thteresting new aspects. Besides unicellular hairs there are essentially two types of multicellular trichomes. In and S. and 3 . macrophy $t t a$ they are unbranched or rarely branched Hhply and consist of usually non-collapsed cells (fig. 3), whereas in S, amerioana and S. aculeata the hairs are mostly and often repeatedly branched and consist for the larger Part of collapsed cells (fig. 4). In all species the hairof ring may become sparser after flowering. Only the racemes of S, brevithyraa are completely glabrous or, at the most, having few hairs at the base.
Flowers. - Another important difference between Seguieria and Galleaia is found in the structure of the perianth. thlike all other Rivinoideae but rather in agreement with the other subfamilies of the Phytolaccaceae Seguieria has ive tepals in quincuncial arrangement which are more or less petaloid. The calyx like perianth of Galtedia on the other hand is tetramerous, like in the other Rivinoideae. In seguieria, but not in Gallesia, there are sometimes

age L devations $f r o i n$ the normal numbers.

In both genera there are numerous stamens, about 15 to 65 have been found. Their number is rather variable even vithin the same inflorescence. Nevertheless, the species nay be assigned to two overlapping, but statistically different groups (Tab, I).

Tab. I stamen numbers

	range	\bar{x}	n	s	
Gallesia intagrifolia	$23-44$	31.2	12	6.3	
Seguieria langadorffii	$18-45$	31.5	65	6.5	
S. paraguayenaia	$21-35$	26.8	12	4.6	Group 1
S. maarophylla	$17-38$	28.3	19	5.4	
S. brevithyrba	20	-	1	-	
S. americana	$33-62$	45.7	39	7.0	Group 2
S. aouleata	$28-56$	41.3	123	6.3	

* no statistical treatment possible due to lack of material $\bar{x}=$ mean stamen number, $n=$ number of flowers examined, $s=s t a n d a r d$ deviation

Although there also is a significant difference (0.1 i) p ? 0.01 8) between the mean stamen number of S. amerioana and s. aculeata, I prefer to unite them in one group for two reasons: (1) the difference between them is much smaller than the distance to the others ($p \ll 0.018$) and (2) the ranges of numbers of these species overlap almost completely. All Rivinoldeae are unicarpellate. Because of its leaf-like appearance and its decurrent stigna the carpel of seguioris and Gallesia is somewhat reminiscent of the primitive one of Degeneria. This similarity, however, is purely superficial. A closer look especially at the vascular supply shows that the shape is not achieved by folding a leaf along its midrib but rather by an outgrowth of the style, preforming the wing of the fruit (fig. 5). Bicarpellate ponstrosities may occur in Saguieria, but they are extrenely
rare.

In S, americana the ovary bears primordial lateral winglets. This is the only useful character found in the flowers. Nevertheless it can only be used with caution, since at lust in herbarium material the ovaries of the other species nay show deep impressions from the filaments, thus looking life bearing winglets as well.
Fruit and seed. - In the fruit again the perianth yields a differential character to separate Seguioria and Gallesid. In the latter the tepals enlarge considerably and become lignified, enclosing the basal part of the samara, in the former they are simply reflexed.
Apart from the lateral winglets of S. americana morphologicel characters of the fruits are unreliable for specific delim: tation because their variation is continuous and they are so-called "weak" character "colour of the dried fruits" proved to be useful.
In S. langsdorffit, S. maorophylla and S. brevithyraa the samaras become rather dark to pure black on drying (in S. langadorffit, however, this tendency seems to diminish with maturity), in S. paraguayenats they get pale yellowish or at most very light brown. S. americana and S. aculeata are more variable in this respect as well as in others, but their frults never become black.
The structure of the seed-coat is of prime importance for the subdivision of the genus Seguieria, and it is in clear contradiction to the sectional division of WALTER. The testa always consists of a thick-walled epidermis and a number of layers of collapsed cells below it. With this pattern is common, two very different types exist.
In S, langedorffit, S. paraguayensid, S. maerophylla and
s, brevithyrsa the epidermal cells are elongated radially, as they are in other Phytolaccaceae (CORNER 1976). Their height always exceeds $40 \mu \mathrm{~m}$ and their walls are enormously thickened, leaving only very small lumina (fig. 6). They are heavily pigmented so that the whole seed-coat is deep black in colour. The testa is very brittle and keeps its form on drying. Its outer surface shows a cell-like structure much coarser than the pattern of the epidermal cells. In S. amerioana and S. aouleata the cells of the epidermis leem to be elongated tangentially (fig. 7), but the presence of bended radial walls suggests that this might be an artefact. Originally, the cells may as well have been radially elongated, but not thick walled in their lower part which therefore collapsed. The development of the seed-coad will have to be studied in fresh or liquid-fixed material in order to decide this question. The thick walled part of the cells, however, only rarely exceeds $40 \mu \mathrm{~m}$ a little. The valls are thinner and less pigmented, giving a red-brown colour to the entire seed-coat. The testa is somewhat more elastic and mostly shrivels on drying. Its outer surface shows the pattern of the epidermal cells.
The seed coat of Gallsaia is essentially of this second type, but its epidermal cells are smaller and its surface is more irregular.
Phytochemistry. - Both genera still await phytochemical investigation. The results would certainly be interesting especially in Gallesia, which smells strongly of garlic and has long been used in local medicine (Martius 1843 j Hatschbach a buimarães 1973).
Taxonomic history, specific delimitation and chorology. Sequieria. - The taxonomic history of Seguieria is marked by erros right from the very beginning. Already LINNABUS (1767) himself made the first mistake when reducing

age JACQUIN's S. aouleata into synonymy of his S. americanal.

Type material of both species - if it has ever existed has probably never come to Europe; at least it has never been cited nor does it exist in the Linnaean herbarium ${ }^{2}$ or in any of the herbaria mentioned above.
Nevertheless it can be ascertained that LINNAEUS was wrong: The original description of the genus Seguieria by LOEFLING (1758), on which LINNAEUS based his S. americana, reads "capsula ... basi lateraliter utrinque notata alulis tribus membranaceis". So LOEFLING has seen a plant with lateral winglets at the base of the fruit. Today we know that such plants do not occur within a radius of several hundred kilometers around Cartagena, the type locality of S. aouleata Jacq. Moreover JACQUIN (1763) describes the fruit - which, however, he has seen only immature as similar to that of Seouridaca (Polygalaceae), which does not bear lateral winglets ${ }^{3}$.
None of the later authors doubted the Linnaean interpretation. They rather included the description of S. aculeato in that of S. amerieana, which originally did not contain any statement about the leaves. Later BENTHAM (1841) used a leaf-character to separate his species from what he thought to be S. americana. Obviously he neither saw material of that species nor of S. aeuleata.
MOQUIN-TANDON (1849) Was the first to name a certain herbarium specimen S. americana. Unfortunately, his choice was erroneous. The collection Karsten 38 he cited lacks lateral winglets at the base of the fruit, though he described the species as possessing them. Therefore we must assume that he only saw the flowering parts of this collection.
H. WALTER (1909) saw the fruiting material as well. Instead of recognizing MOQUIN's mistake and looking for the real identity of s. americana, he based his concept of this species on the collection cited by MOQUIN.
HETMERL (1934) recognized this misinterpretation, but did not solve the problem himself. So WALTER's faulty concept became established.

As will be seen in the following, there are indeed some facts pleading in favour of treating these two taxa only as subspecies of but one species, thus applying a very much wider species concept than has ever been used in the genus. Even so, the considerations concerning theif typification would remain valid.

For this information thanks are due to prof. Dr. P. Hiepko, Berlin.
3
Nevertheless this description was also adopted by authors who had themselves only seen fruits with lateral winglets.

It was also adopted by NOWICKE (1968) in her recent revision of the Phytolaccaceae. She even selected a neotype in accordance with WALTER's interpretation. This neotype, of course, has to be rejected because its distinctness from the protologue is provable (Code 1979, Art. 8).
So it is the task of this work to find out which plants LIMEAEUS and JACQUIN really meant when describing s. americana and S. aouteata, respectively.

In the case of s. americana this is a fairly easy. LOEFLING did not only stay within the borders of the Venezuela of today, he visited "Guayana" as well (RYDEN 1957). Later on parts of this Spanish colony became (British) Guyana. So the only Seguieria with lateral winglets at the base of the fruit he can have seen is the group later described as S. folioal by Bentham. Especially one specimen from this region, coll. Irwin 797 (US), comes rather close to LDEFLING's description. I therefore propose this specimen as neotype for S. americana L.
Such an unequivocal decision is not possible in S. aouleata. Near Cartagena two species occur, S. macrophylla Benth. and the group taken for S. amerieana up to now. The description by JACQUIN does not include any constant differential character (these are very rare throughout the genus), but altogether it agrees better with the second group. The plant JACguin describes, and especially its leaves, are unusually snall for a S. macrophylla. The description of the habit also fits better a semiscandent shrub than a true liana. Oval leaves are frequent in both species, but lanceolateovate ones are rare in 5 . macrophylia. Only what JACQUIN Wrote about the leaf-tip, "emarginata cum acumine", fits s. maorophylla a little better. Emarginate leaf-tips do not occur in the group treated as "s. amerioana" up to now, in 3 . maorophyzla they do, though very rarely and only in considerably larger leaves than those described. This character, however, should not be taken as decisive because the use of the terms in the 18 th century was not as fixed as It is today (STEARN 1967). "Emarginata" could well have been meant to describe retuse tips 4 , and these are occasionally found in both species.
At last there is also a rather pragmatic reason for giving the name S. aculeata to the group up to now called " S. americana": This will cause the smallest possible extent of confusion, since S. aouleata has always been treated as a synonym of this polymorphous species.
Unfortunately there is no collection in complete agreement with the protologue, so that the selection of a neotype (p. 248) among several specimens which are deviating in one character or another has to remain somewhat arbitrary.

[^0]
Another serious flaw in the existing classification of the

 genus Seguieria is the sectional division introduced by WALTER. This division was based on the presence or absence of decurrent tubercules on the ovary and decurrent winglets on the fruit. In flowering material WALTER several times mixed up these winglet-primordia on the ovary with the deep impressions left by the filaments, thus often assigning very similar collections to different sections. The group with winglets he called sect. Eueeguieria, the one without Sect. Seguieriella.NOWICKE thought she was bringing the nomenclature in accordance with the code when changing the name Sect. Seguierielta to Sect. Seguieria and Sect. Euseguieria to Sect. Kalteria, But since according to the original description the type species bears lateral winglets, a further name-change would be inevitable, if a sectional division is maintained at all. Furthermore the delimitation of the sections had to be newly defined. Looking at the variational pattern, which below will be discussed, and its impact on the classification I prefer not to discriminate any sectioss
Even the clear delimitation of the species is difficult within this genus. The 23 species in WALTER's treatment were for a large part separated by characters variable even on the same plant, such as "inflorescentiae foliis subaequales vel breviores - inflorescentlae quam folia longlorel or "aculei conspicui, recurvati - aculei inconspicui, minutissimi, tuberculiformes". NOWICKE had to use similar characters as well, with the result that for instance the type-specimen of S. langadorffii from kew would not key out as the right species in her key.
Further increase in the amount of material examined led to a breakdown of nearly all differential characters used up to now. New collections mostly had to be placed somewhere between the old species. A search for new diagnostic characts revealed differences in the indumentum (p. 233) and in the seed-coat (p. 235), but beyond that only showed more clearly the absence of real discontinuities. However, it eludicated the variational pattern. only six taxa were found to be separable within the genus:

1. One narrowly circumscribed and therefore well delimited species, S. brevithyrsa, represented by two collections only.
2. Two species with a wider circumscription, which are pevtr theless relatively homogeneous and fairly well definable.
3. Three extremely heterogeneous complexes, which in spite of their heterogeneity cannot be split up further, of ous by means of rather artificial constructions, which siwil leave indeterminable a number of intermediate specinens.
EXELL (1953) commented on the handling of such complexes ig combretum. Since his considerations exactly fit this case ${ }^{15}$ well, the paragraph concerned will be quoted here in full length (omitting the first sentence) : of a presumably heterogeneous population in which there appears to be a constant reshuffling of genes, so that a number of characters occur in nearly every possible combination, is to give the "complex" the earliest legitimate name available and append a synonymy that is nearly always a long one, due to the many diverse elements included. It should be realized that the synonyms fall into three categories: (1) nomenclatural synonyms indissolubly linked with the accepted name; (2) names given to plants which appear to be identical with the type; and (3) names given to plants which differ in certain characters from the type but each of which represents one combination of a number of characters that combine in numerous ways within a heterogeneous population.
Whether or not any particular instance in this third category should be considered worthy of specific or infra-specific rank must be a matter of individual judgement or even of convenience; but it should be borne in mind that we are at present completely ignorant of the genetic structure and it seems better not to propose a classification which implies far more knowledge than we possess. Many such combinations of characters have been given specific or infra-specific epithets by various authors, but it is often evident that there is almost no end to such a process and that a synthesis is more convenient and perhaps more in accordance with the truth. Such a synthesis is no reflexion on the work of the original authors, who described the differences that they saw. The words "convenience" and "convienient" are used deliberately. Until it becomes possible (if ever) to give plants "chromosome maps", equivalent, in a way, to the formulae employed by chemists, it seems best to deal with these heterogeneous populations, within the framework of the International Rules of Nomenclature, in whatever manner seems sost practically convenient".
In this way the naming of the three complexes as \bar{s}. langadorffii, S. aouleata and S. amerioana should be understood. Being familiar with the genus, it is usually easy to recognize the nembers of the groups now treated as species by many characters which are most frequent in one or two taxa, but

- and that is typical for the variational pattern - are neither confined to, nor constant within, any species or group of species. Therefore these characters cannot be used for diagnostic purposes. The characters in the key given below are those which appear most constant. However, in rare cases even they may be misleading. It is recommended to read the descriptions carefully, paying special attention to rare and frequent character-states.
Pollowing van steenis (1957), the only possible taxonomic expression of such a variational pattern were infra-specific categories of only a single species. Here, however, some facts plead against such a treatment. The groups recognized
remain distinct even in the overlapping parts of their ranges and they do so without any perceivable ecological differentiation. The discontinuities between them are bridged by only a few characters in each case, though nearly any character can be involved principally.
Because of the reticulate variation, it is hardly possible to establish any progressional lines within the genus, the only unequivocally derived condition found is the absence of bracteoles. By their reduction in the first-order branches of the inflorescence S. brevithyrad (with racemes) can easilf be derived from S. maorophylla (with panicles). The indomentum has been reduced as well, only the fruit seems to have undergone some further differentiation. If variation should be found in the degree of branching of the inflores* cence, as it has been found in S. paraguayensis (see belovli then S. brevithyrsa will have to be treated as an infraspecit taxon of S. maorophylla. Vegetatively there has been aloost no progress, apart from a possibly more intense blackening of all parts in S. brevithyroa. This points to a relatively recent separation of this latter species, as does the restricted range of S, brevithyraa compared with the wide range of S. macrophylla (fig. 8).
S. paraguayenais lacks bracteoles as well, but sometimes not before the second order of branching. In a few cases there seem to be bracteoles, but these are always carrying another but in their axil. So the character "bracteoles absent" is less clear here than it is in S. brovithyrsa. Nevertheless S. paraguayenais must be regarded as being older as a spelis. for there is no existing species from which it could be derived. Furthermore, its range (fig. 9) is much larger that that of S. brevithyrea. S. paraguayensis occurs within the South American continent in the drier to moderately humid parts. Unfortunately the notes of the collectors are too scarce to give a clear picture of its ecological requirements ${ }^{5}$.
S. langedorffit is more or less confined to the area of the southern costal rainforest (fig. 10). HATSCHBACH and GUIMARÃES (1973) regard it as an element of this rainforest, but much more frequently it has been collected on pastures, roadsides and in secondary vegetation. Although it sometimes may reach a height of 30 m , it obviously can compete only slightly better in closed forest formations than the smaller species. Its enormous variation does not show any geographical component within its relatively small range.
As mentioned above, the geographical range of S. maorophyti is rather large (fig. 8), extending from $11^{\circ} \mathrm{N}$ to $12^{\circ} \mathrm{s}$. S. maorophylla has been collected most frequently in galler forest and secondary vegetation. Sometimes it is found in

5
All statements concerning the ecology of the species in ty following are based on the notes of the collectors.
the "varzea", and there it penetrates farthest of all Seguieria species into the Amazonian forest. Being a tall liana, it is probably a better competitor than the smaller and/or arborescent species. On the other hand it seems less drought-resistant.
Widely distributed throughout South America with the exception of the Amazon Basin are S. acuteata (fig. 11) and S. ameriaana (fig. 12). These two species are very close to each other and, as far as this is possible in such a homogeneous genus, a little removed from the other four species by another type of indumentum ($\mathrm{p}, 233$), higher stamen-numbers (p. 234) and completely different testas (p, 235). If there had to be made a sectional division, the boundary would have to separate S. aouleata and S. americana from the rest of the genus.
Because both species are extremely variable, there is hardiy any difference between them when only the total range of variation of each character is considered. Only the keycharacter "fruit with/without lateral winglets" is discontinuous, and even this may not be totally clear in a few cases. In S. americana the breadth of the winglets is variable, so that in some cases they are only narrow ridges on the fruit ("S. pachyaarpa"). On the other hand, S. aculeata very occasionally may have fruits with a few irregular winglike excrescences besides normal fruits in the same infructescence.
Different character frequency nearly always allows their recognition even without fruits and thus pleads against reduction to one species. Only three collections were found to be intermediate.
8. aculeata grows in different habitats, in shrubby xerophytic vegetation as well as in gallery-forest or in the Coastal rainforest. In the north it seems to prefer the drier, in the south the moister habitats, but even in the south it is only rarely found in the undisturbed lowland rainforest, but rather at higher elevation or, as very frequently throughout its range, in secondary vegetation. EWEL (1980) described such a colonisation of disturbed rainforest habitats by species from drier sites as characteristic of ruderal elements. S. aculeata - even more than the other apecies - could be called a facultative ruderal. Probably its abundance in southern Brasil is partly due to this property.
Apart from the still weakly documented ecological preferenCes, there also exist statistical differences in some characters between the northern (Venezuela, Colombia) and the southern population (Paraguay, Argentina-Nisiones, southern Brasil). The northern population has usually shorter petioles, more frequently ovate leaves and in general less halry inflorescences. But these characters vary completely independently from each other. Therefore they do not allow an infra-specific division.
S. americana as well has mostly been collected from forestmargins and gallery forests. It also shows geographic differentiation, but of another kind. The northern population (British Guiana, four collections) is deviating from the others (Peru and Brazil) by a much more restricted variational range rather than by different character frequencles within the same range. At least when fruiting its members ars much closer to each other than to any of their conspecifics elsewhere. But their characters all occur as well in the rather heterogeneous Peruvian and Brazilian populations. Therefore the northern group is closer to some members of these populations than they are to each other. It is sonewhat comparable to an island population, where an elsewhere rare combination of characters has become established without creating anything really new. Long-distance dispersal is one possibility to explain the restriced variational range, but it is not the only one. Isolation of a marginal population during changes in the range of a species may have the sane effect. Today we know from a number of investigations (cf. SIMPSON-VUILLEUMIER 1971; PRANCE 1973; SIMPSON and HAPFER 1978) that also in South America the ranges of many groups of organisms have undergone drastic changes during the pleistocence as a result of climatic changes. In this contert PRANCE suggested a way in which extremely polymorphous species (ochlospecies) may arise. The genus Seguieria seens to have followed this way very successfully, Since it mainls occurs in half-open formations such as gallery-forest and forest margins, it certainly will have spread further into the drier regions when the climate was moister and further Into the rainforest regions of today when the climate was drier. Particularly two factors will have contributed to the quick colonisation of new sites becoming availablet dispersal of its fruits, which is especially effective in times of low forest density. Repeated phases of enlargenent and shrinkage of the range probably have led several times to the isolation of some populations, which subsequently developed divergently. Mostly they will have been united agdil in a later climatic change, either before sterility barflets developed or with subsequent breakdown of these barriers, e.fi by polyploidy ${ }^{6}$.

6
Polyploidy seems not to be rare within the Rivinoideae. Eitieria has $\mathrm{n}=18$, Rivina $\mathrm{n}=54$ (FEDOROV 1969), Petiveria $\mathrm{n}=18$ and $\mathrm{n}=36$ (ORMOND et al. 1978). No chromo some numbers are known in Seguieria. Whether the consider able variability in the volume of the pollengrains which can be calculated from the data of BORTENSCHLAGER (1973) should be considered as a clue to polyploidy still awalts investigation.

If the enormous variability is explained this way, then the present ranges have to be interpreted as the result of numerous different migrations, particularly influenced by the more recent climatic changes. So we cannot explain the present ranges in terms of "speciation centres" and simple "nigration routes" without producing even more "unwarranted speculations" in the sense of WHITE (1971) than are contained in the above considerations. In Seguieria this may be said so sharply because the absence of progressions not even allows to find any evolutionary trend in the geographic differentiation. Regional differences only concern the widh of the variational range. It is widest in the surroundings of Rio de Janeiro, since only there the three nost variable species occur together. This constitutes a parallel to a number of other plant taxa which have their centre of variation in the same region (L. B. SMITH 1968). SHITH calles this region "centre of speciation", but if we accept that there were climatic changes, we have to be more cautions. The present diversity need not have arisen "in situ" but many of its elements may have come to the surroundings of Rio de Janeiro by migration. Certainly the southern Brazilian coastal region was well suited for providing refuge and promoting differentiation as it allows horizontal and vertical migration and the distances between dry and moist habitats are relatively small. Nevertheless It is unlikely to have been the only region of differentiation or the only refuge in Seguieria, because at least 8. aouleata seems to possess a second centre of variation In the north of its range and because three Seguieriaspecies do not occur near Rio de Janeiro.
There is a second parallel to other plant taxa, also to be seen from the work of L. B. SMITH. The characteristic extra hmazonian pattern of distribution is not only confined to seguieria and Gallesia (see below), it is also found in Paychotria oarthagenensia (Rublaceae), Polygonum punotatum (Polygonaceae) and Tillandeia ueneoides (Bromeliaceae), as vell as in the genus Rhamnue (JOHNSTON and JOHNSTON 1978), particularly in R. sphaerosperma, SMITH interprets these distributional patterns as the result of distinct migrational novements, "Amazonian-andean migration" in P. purctatum and "recent andean migration" in T. weneoides. Following the above considerations, the explanation cannot be carried thus far in Seguieria. However, it is notable that all these very different plants obviously prefer less dense, less shaded habitats, or habitats with less competition. On the other hand they are unable to colonize dry regions. Although the reasons for this cannot be the same in tall trees, lianas, herbs and epiphytes, the resulting distributional patterns are very similar.
Gallesia. In contrast to Seguioria, Galtaaia does not pose any taxonomic problems. In spite of its wide geographic range (fig. 13) the variation of the only species, 0 . inteprifolia (Spreng.) Harms, is comparatively small and its
continuity is well documented. However, if the type specimen of Thouinia integrifolia Sprengel really had been destroyed, as NOWICKE thought it to be, there easily could have arisen nomencltural difficulty, because SPRENGEL's (1821) description of the flower is completely wronginallimportant characters GARCKE (1891) had recognized SPRENGEL's specimen as a Gailseia, but his comment on it is only concerned with SPRENGEI's statement that there were three carpels. Therefore it is insufficient, as other details in the protologen are wrong as well (e.g. the presence of calyx and corolla, eight stamens only). So a critical evaluation of the origine description in case the type was lost would inevitably baw led to the exclusion of th. integrifolia from callesia.
As already mentioned, Gallesia shows an extra-Amazonian distribution, too. In contrast to Seguieria it is confined to regions south of the equator. In the western part of the Amazon basin in Peru and in southern Brazil it may occur within the rainforest. With the gallery forest it penetrats far into the drier regions. Sometimes it is grown for shabt. Since Gallesia generally has similar ecological requirenents as Seguieria, it probably has undergone similar changes in distribution. Nevertheless it is lacking any geographic differentiation. Therefore is must be assumed that its evolutionary plasticity is smaller than that of Seguierio. This may be explained at least partly by the apparently longer generation time in Gallesia.

Systematic part

1. Seguieria

Loefling, Iter Hispan. (1758) 191
Segulera Adans., Fam. P1. 2 (1763) 443
Segueria Endl. 7, Ench. (1841) 508
Albertokuntzea O. Kuntze, Revis. Gen. Pl. 2 (1891) 550 'Type: S. amerioana L.

Trees, \pm scandent shrubs or lianas. Branches terete or subterete, glabrous, mostly lengthwise \pm striate by small furrows, younger branches round or angled, rarely sparsely pubescent, above the bases of the petioles mostly provided with paired thorns (resembling stipular thorns), these sob times minute or apparently absent (caducous?). Leaves alter nate, petiolate. Leaf-blade entire, variable in shape, at the apex mostly mucronulate, glabrous, in very young leaves sometimes sparsely pubescent. Inflorescences axillary or

[^1]This was obviously only a misprint. In the index this genus is spelt correctly, Seguieria Loefling.

age terminal, few-flowered racemes to profusely flowering

 panicles, normally \pm pubescent. Bracts on the axis of the inflorescence sometimes leaf-like, otherwise membranaceous and lanceolate to triangular. Bracteoles similar to the latter, smaller, less often absent. Flowers pedicellate, hermaphrodite, \pm actinomorphous. Perianth simple. Tepals five, quincunciālly imbricate, subequal, \pm petaloid, white to yellow to green, sometime blackening ōn drying, in fruit reflexed. Stamens about 15 to 65 . Filaments \pm threadlike, shorter than the tepals or of nearly equal length, sometimes slightly narrowed towards the tip. Anthers linear, dorsifixed, extrorse, opening by longitudinal slits, deeply incised at the base, at the tip less or not at all incised, sometimes with a small process of the connective. Ovary superior, unicarpellate, one-locular, consisting of a subqlobose or laterally compressed basal part which contains the only ovule and may bear primordia of lateral winglets, and of a winglike, asymmetrically flattened style.Stigma papillose, decurrent on the thicker margin of the style, often covering as well its terminal edge. Ovule one, basal, campylotropous. Fruit winged, with a globular to \pm pear-shaped, often laterally compressed basal part which sonetimes bears lateral winglets, apically expanded into a large nerved wing which is thicker at one edge. Seed one, erect, in the mature state exalbuminous. Seed-coat \pm brittle, glabrous, \pm shining, either black or red-brown. Embryo extremely curved.

Key to the species:

1. Seed-coat red-brown. Hairs of the pedicels for the larger part collapsed, usually branched, mostly repeatedly. -Plower or fruit never becoming black. Bracteoles always present
2. Seed-coat black. Hairs of the pedicels consisting of normally non-collapsed cells, rarely branched simply. -Ovary or fruit never bearing lateral winglets 3
3. Ovary at the base with primordia of lateral winglets? fruit at the base with lateral winglets (rarely winglets only very narrow) 1. S. amerioana L.
4. Ovary without primordia of lateral winglets; fruit without lateral winglets. (Only very rarely the fruit may thow a few \pm winglike irregular processes, which never cover the basal part completely)... 2. S. aouleata Jacq.
5. Trees, rarely shrubs, never climbing. Thorns, if present,
stralght, \pm directed to the tip of the branch or more
rarely spreading perpendicularly.
6. Llanas or climbing shrubs. Thorns normally present, recurved.
7. Fruit normally becoming black on arying, otherwise at least becoming brown. Bracteoles present 3. S. Zangsdorpfii Mog.
8. Fruit becoming very pale yellowish to brownish on dryitg. Bracteoles normally absent, if present always subtendig an axillary bud. 4. S. paraguayereie Morong
9. Inflorescences panicles, \pm pubescent. Bracteoles present. 5. S. macrophylla Benth.
10. Inflorescences racemes, glabrous (rarely with a fev hairs). Bracteoles absent.... 6. S. brevithyrea Walter.
11. Seguieria amerioana L.., Syst. Nat. ed. 10 (1759) 1074: I herewith propose the collection Irwin 797 (US) as neotype for this species, see discussion on p. 237
S. floribunda Benth. in Trans, Linn. Soc. London 18 (1841) 235; TYpe: Gardner 722 (BM, G, K, US, Fragm. B).
S. foliosa Benth. 1.c. p. 236; Type: Schomburgk 661^{8},
S. Longifolia Benth. 1.c. P. 235; rType: Pohl 5.n. (Holo K),
S. vauthieri Moq. in DC., Prodromus XIII, 2 (1849) 7:

- Type: Vauthier 29 (Holo K, Photo B).

Albertokuntzea amerioana (L.) O. Kuntze, Revis. Gen. P1. 2 (1891) 550
A. floribunda (Benth.) O. Kuntze, 2.c. p. 550
A. foliosa (Benth.) 0. Kuntze, 1.c. P. 550
A. longifotia (Benth.) O. Kuntze, 1.c. p. 550
A. vauthieri (Moq.) O. Kuntze, I.c. p. 550

Seguieria emargingta H. Walter in Engler, Pflanzenrelch IV, 83 (1909) 89, Type: Glaziou 5730 (B, C, K, MO).
S. laurifolia H. Walter, l.c. P. 921 ,Type: Glaziou 2488 $(B, B M, B R, C, K)$.
S. pachyoarpa H. Walter, 1.c. p. 93; Type: Riedel s.n. (B, K , Photo LE).
S. wangerinit H. Walter, 1.c. P. 92; Syntypest Beyrich 422 (B, M), Schenck 2914 (B).
S. alberti h. Walter in Fedde, Repert. spec. nov. reg. veg. 8 (1910) 79, based on:
S. elliptioa H. Walter (non R.E. Pries) in Engler, Pflanzer reich IV, 83 (1909) 89; Type: Glaziou 8260 (B, C, G1.
S. ooriacea auct. non Benth., Nowicke in Ann. Missouri Bot. Gard. 55 (1968) 326; cf. S. aowleata.

8
Probably this number has usually been read upside dont. In some of the original labels the number is preceeded by a point (661), suggesting that it should better be read 199. It actually has been interpreted this way in one specimen at G.

tage

shrub, very often scandent, or small tree (to 10 m high?). Thorns very often recurved, more rarely straight and spreading perpendicularly, very rarely directed to the tip of the branch, well-developed (to 11 mm long on a twig of 4 mm in diametre) to rather small, rarely absent. Petiole 1.5 to 10 mm long. Leaf-blade rather variable in shape, often \pm elliptic to ovate, up to 15 cm long and 7 cm wide, 1.3 to ${ }^{-1}$ times (rarely 5 times) longer than wide, chartaceous to coriaceous, matt to shining, at the base attenuate to obtuse, more rarely rounded or nearly truncate, to the tip acuminate to \pm rounded, rarely nearly truncate or distinctly emarginate, the tip itself narrowly rounded or often a little retuse, mostly distinctly mucronulate. Inflorescences axillary or terminal panicles, up to 40 cm long, about 15 to >100-flowered, sparsely pubescent to densely lanate (hairs one- to many-celled, normally branched, mostly repeatedly, normally for the larger part collapsed), glabrescent in fruit, unicellular hairs for the larger part persistent. Bracts in the basal part of the axis of the inflorescence mostly leaf-like, diminishing in size towards the tip and often falling off in fruit. Bracteoles up to 1.3 mm long. Pedicels $3-10 \mathrm{~mm}$ long. Buds up to 4 mm in diametre. Tepals up to 7.5 mm long and 5 mm wide. Stamens about 30 to 65 . Filaments up to 6.5 mm long. Anthers up to 2.4 mm long. Ovary with distinct primordia of lateral winglets. Stigma often covering the tip of the style, sometimes only half. Fruit not becoming black, to 50 mm long. Basal part up to 11 mm in diametre, with winglets up to 4 mm wide, rarely only rather narrow. Terminal wing up to 20 mm wide, of variable shape. Testa red-brown.
s. loc.: ex Herb. J. Miers 4502 (BM; non K!) ; Botanic Garden, Victoria, Cameroons: H. Winkler 81 (G).

BRITISH GUIANA:

s. Prov.: C. Appun 1787 (K) , R. Schomburgk 199 (G) $=661$ (B, BM, G, K). R u p u n u n i D i st.i D. H. Davis 893 (WY) ; south of Lethem, Takutu River: H. S. Irwin 797 (US) . PERU:
Dpt. S a $n M$ a $r t i n$: Prov. Mariscal Caceres, Dtto. Tocache Nuevo: J. Schunke V. 3774 (G, NY, US).
Dpt. H u a n c a v e 1 i c a : Prov. Tayacaja: Vuelo-Pata: O. Tovar 4618 (US).

Dpt. Madre de D 16 s : Rlo Acre, Seringal Auriatella: Ule $9486(G, K), 9487(B, G, K)$.
BRAZIL:
5. Prov.: Pohl s.n. (M) ; Riedel s.n. (B); F. Sello s.n. (BM); Yauthier 29 (K) ; "Sta. Tereza, Valança": Neves Armond s.n. (R) I "Canta Gallo": Peckolt 182 (BR); "Tocaja": Pohl s.n. (BR, M) ; Mikan s.n. (B).
Cears : Prei Allemão 1306 s M. de Cysneiros (R) ;
Maracanad, road Fortaleza-Maranguape: A. Ducke 2576 (NY, R).

B a h i a : ex Herb. Kegel 12335 (W): Blanchet 464 (G), 755 (BM, G) ; Jitâna, road to Jequié t R. P. Belém a R. S. Pinheiro 3381 (NY) ; ItajurG, Rio de Contas: R. P. Belên b R. S. Pinheiro 3410 (NY) ; Rio São Francisco, Serra Acura, Utinga: Blanchet 2908 (BM, non B, G, K1) ; Vitória: F. Sello s.n. (B, BM, K), 333 (B) ; Itabuna, Jussari Experimental Station: N. T. Silva 58361 (K, NY, US).
Min as Gerais:A. F. Regnell s.n. (US); Campo Belo: ex Herb. J. de Saldanha 5092 (R) ; Juiz de Fora: A. Glaziou 2488 ($\mathrm{B}, \mathrm{BM}, \mathrm{BR}, \mathrm{C}, \mathrm{K}$) , $8260(\mathrm{~B}, \mathrm{C}, \mathrm{G})$, 11438 (B , C, K); Ibitipocá: H. de Magalhães 1296 (R); Caldas, Capivart Rio Pardo: H, Mosén 1928 (S); Matias Barbosa ("Matthea Barbozo") : Pohl s.n. (K), 3747 (B); Caldas: A.F. Regnell III 1012 (US), III 1013 (1845 US, 1855: B, K, M, 1862: S, 1864: S, US, 1866: B, C, R, 1870: S, 1873: S, 1877: US), III 1011 b and g (S).
R io de J a ne iro (incl. Guanabara) : A. Glazion 5730 (B, Ce K, MO1, 5731 (S) ; Riedel s.n. (B, K) ; Jacarepagua: Hoehne 141 (SP); Restinga de Cabo Frio: D. Sucre 1409 (BBG_{2} R, RB) ; Serra dos Orgăos: Beyrich B.n. (B) $=161$ (M) $=\mathbf{1 2 2}$ (B) ; G. Gardner s.n. (BM) , 722 (B, BM, G, K, US) ; H. Schent 2914 (B); Barra Mansa, Pazenda Paraizo: A. P. Duarte 5483 (RB); Silvestre: A. P. Duarte 5529 (HBG, RB); Caitita, petro polis: D. C. Goes a Dionisio Constantino 14 (RB), 144 (RB). S Xo p a u 1 o : Serra da Mantiqueira, Cruzeiro: ex Ferb. J. de Saldanha $8518(R)$; Iha de São Sebastião: Edwall 17 a (B, C, SP).

For plants collected by Glaziou localities were mostly taks from A. F. M. Glaziou, Plantes du Bresil Central, in Mér. Soc. Bot. France 3 (1905-13).

This species is the most heterogeneous complex within the genus. It comprises all former "species" with lateral wing" lets at the base of the fruit.
In WALTER's account these were nine in number (further fouf he erroneously attributed to his sect. 1), based on 18 collections of which six were included in the variably ciri scribed S, floribunda. NOWICKE saw only 17 collections and distributed them to eight species (including what she thougt to be S. coriacea, see discussion of S. aculeata). In spit of the small amount of material both authors several tmei had to use characters in their keys which are variable in single plant. The enlarged number of collections now avall able shows that there is no correlation between fruit and vegetative characters.
2. Sequieria aculeata Jacq., Select. strip. ame hist. (1763)

I herewith propose the collection Dugand 6485 as neotyp for this species, see p. 237

Pge Library, http://www biodiversitylibrary org/ www. amerioana auct. non L.s Walter in Engler, Pflanzenrefch IV, 83 (1909) 95; Nowicke in Ann. Missouri Bot. Gard. 55 (1968) 331 \& auct. plur.

S. ooriacea Benth. in Trans, Linn. Soc. London 18 (1841) 235; Type: Blanchet 2908 (Holo K, Iso B, G, K; non BM1). 3. parvifolia Benth. 1.c. p. 235; Type: Tweedie s.n. (Holo K , Iso ? K, Photo B).
5. guaranitica Speg. In Ann. Soc. Scient. Argentina 16 (1883) 88, TYpe: v. GUlich s.n. (n.v.).

Llbertokuntzea coriacea (Benth.) O. Kuntze, Revis. Gen. P1. 2 (1891) 550.
h. parpifolia (Benth.) O. Kuntze, 1.c. P. 550

Seguieria floribunda (non Benth.) f. alutacea Chod. in Bull. Herb. Boissier 7 (1899) 65; Type: Hassler 1847 a ($G, \mathrm{~K}$).
S, elliptiog R. E. Fries (non H. Walter) in Ark. Botanik 8 (8) (1909) 20ivSyntypes: Fries 313, 455 (S, US).
S. votachii H. Walter in Engler, Pflanzenreich IV, 83 (1909) 97 , TYpe: Sello 2466 (B).
S. guaranitica Speg. var. microphyita Heimerl in Verh. zool. -Bot. Ges. Wien 62 (1912) 11; Type: Herb. Hassler 10906 (G).
s. securigera Heimerl, 1.c. p. 11; Type: Hassler 587 (Holo G, Iso G).

Scandent shrub, up to 15 m high, rarely small tree (up to 10 n) With scandent or decumbent branches. Thorns mostly recurved, rarely straight and perpendicularly spreading, vell-developed (up to 11 mm long on a twig of 3 mm diaaetre) to rather small, rarely completely absent. Petiole 1.5 to 11 mm long. Leaf-blade rather variable in shape, of ten + elliptic to \pm ovate, with all transitional stages towards lanceolate, oblanceolate or oblong, up to 18 cm long and 7.5 cm wide, but normally not more than 12 cm long, 1.2 to 4 times longer than wide, chartaceous to coriaceous, matt to shining, at the base attenuate to rounded, at the tip acuninate to obtuse, rarely rounded or retuse, mostly distinctly mucronulate. Inflorescences axillary or terminal panicles, up to 50 cm long, about 20 to >100-flowered (instly with a large number of flowers), in flower mostly lanate or densely pubescent, rarely only sparsely pubescent (hairs one- to many-celled, normally branched, mostly repeatedly, normally for the larger part collapsed), in fruit glabrescent, unicellular hairs for the larger part persistent. Bracts at the base of the axis of the infloresCence normally leaf-like, diminishing in size towards the tip, often falling off in fruit. Bracteoles up to 1.7 mm long. Pedicels 2.5 to 8 mm long, buds up to 5 mm in diametre. Tepals up to 7.5 mm long and 5.5 mm wide. Stamens about 25 to 60 , filaments up to 6 mm long, anthers up to 2.8 mm long. Ovary without primordia of lateral winglets, gmooth or at the base nerved or bearing small tubercules, when dried Honetimes impressed by the fillaments. Stigma mostly covering the tip of the style, sometimes only half, very rarely completely the styl.
ibrary, http://www.biodiversitylibrary.org/; www
Fruit not becoming black, up to 47 mm long. Basal part up to 9 mm in diametre (in one collection monstruosly deformed with 13 mm diametre) \pm globular to obliquely pear-shaped, mostly with tubercules surrounding the petiole, extremely rarely laterally with a few winglike processes which never run down the whole basal part. Terminal wing up to 20 Hm wide, of variable shape. Testa red-brown.
s. prov.: "Rio Seco": I. F. Holton s.n. (K)

VENEZUELA:
s. prov.: Moritz s.n. (BM); "Mariara": Preuss 1544 (B). Est. B O 11 V a r i central Rio Caura, Temblador: Ll. Williams 11593 (S, US, VEN).
Est. M 1 r a n d a : R1o Tuy valley, near Guayas: E . Pittier 12201 (VEN) : road Carenero-Chirimena, 2 km NW of Chirimena: J. A. Steyermark i G. Bunting 102310 (MO, VEs, II). Distrito Federal: 3 km from Las Caracas: M. Nee \& S. Mor1 4029 (MO, VEN) ; Caruao: H. Pittler 11923 (G, US, VEN) ; Cerro Nalguata, northern slopes: J. A. Steyer mark 91932 (NY, VEN) ; between Las Caracas and Todasana: J. A. Steyermark, L. Aristeguieta \& T. Koyama 102335 (M, US, VEN) Dep. Libertador, on Rio Chichiriviche, $1-2 \mathrm{~km}$ S of Chichirivichet J. A. Steyermark \& V. Carreño Espinoza 112701 (NO, NY, VEN) ; Fila de E1 Morrocoy: J. M. VIvas 14 (VEN); betwees Caracas and La Guaira: L1. Williams 12268 (US, VEN). Est. C a r a b o b o : Puerto Cabello: Karsten 38 (B, G)i O. Kuntze $1728(\mathrm{~K})$; above Las Trincheras; H. Pittier 8182 (G, MO) .
Est. Pal c 6 n : Pila de Barigua, near Gualbacoa: "plord Falcon" 109 (MO) : Fila Barigua, near Chiparet H. V. d. Werff 3311 (MO), Sierra de San Luls, between La Negrita and La Chapa: H. V. d. Werff \& R, Wingfield 3169 (MO).
Est. M é r 1 d a s near Tovar: A. Fendler 188 (K); E1 Bato do Estanques: S. Lopéz-Palacios 1496 (US); tributary of Rlo Chama, road to Chiguara: J. A. Steyermark \& M. Rabe 97014 (NY, US).
Est. Tachira:Sierra El Casadero, $13 \mathrm{~km} N$ of Rublo, between Las Dantas and Las Adjuntas: J. A. Steyermark, R. Liesner 1 A. Gonzales 120091 (HBG, MO) ; between Tienditas ab Ureña, near the Colombian border: J. A. Steyermark, R. Jiesto A. Gonzáles 120212 (HBG, MO, VEN)) S of La Mulata, near the Colombian border: J. A. Steyermark, R. Liesner is. Gonzáles 120238 (HBG, MO).
PANAMA:
Prov. D a i e n i near Refugio, 15-21 miles N of sante $\mathrm{N}:$ J. A. Duke 10289 (3) (MO).

tage Library, http://www. biodiversitylibrary.org/; www.
 COLOMBIA:

B. prov.: Karsten s.n. (G), $10(2)$ (B); J. C. Mut is 3601 (OS) .
Com. Gu a j 1 r a : near Carralpia: O. Haught 4370 (US).
Dep. Nag dal en a : Rio Cesare valley, western part near Caño Sagarriga, W of Los Venados: A. Dugand 5802 (US) ; La Paz: O. Haught 2330 (5 , US) ; Rio Rancheria valley, S of Fonseca: O. Haught 4302 (US) ; Cerrejón, near Rlo Rancheria: 0. Haught 6578 (US, VEN) ; Santa Marta: H. H. Smith 342 (B, $B M, B R, G, K, M O, S)$.
Dep. At 1 i n t i c o : A. Dugand 272 (US); near the road "El Limbn": A. Dugand 106 a 272 (US): Barranquilla, El Prado: A. Dugand 1112 (US); near Barranquilla: A. Dugand 5190 (US, W), 5482 (W), 5912 (US) ; Bro. Elias 350 (US), 598 (US), 601 (US), 1262 (US) ; road to Puerto Colombia, km 6: A. Dugand NT 6485 (US, VEN); Usiacuri, Arroyo del Higuerón: A. Dugand a有. Garcia Barriga 2295 (US, VEN) ; Puerto Colombia: Bro. Elias 1020 ($\mathrm{B}, \mathrm{G}, \mathrm{US}$), 1262 (G).
Dep. Bo 11 v a r : near Turbaco: E. P. Killip a A. C.
Saith 14696 (US), near Cartagena: Gondon 1845 (G); Bro. Beriberto 195 (US).
Dep. $\mathrm{C} u \mathrm{nd} i \mathrm{n}$ a marca:E of Apulo, on trail to Anapoima: E. P. Killip, A. Dugand a R. Jaramillo 38156 (S, US).

PERU:

Dep. S a n M a $r t i n$: Juan Juif Alto Rio Huallaga: G. KIug 4318 (BM, K, MO, S, US).

Dep. C a f a m a r c a : Jaen: P. Woytkowski 5603 (MO, US). BOLIVIA:
8. prov.: "Yuri": R. S. Williams 249 (BM, K, NY, US).

Dep. S a n t a C r u z , Prov, Cordillera: Rio Seco,
100 km S of Sta. Cruz de la Sierra: A. Krapovickas a A. Schinini 32472 (G, MO); La Morita, Cabezas: J. Peredo 57 (NY, W)) Cabezas: J. Peredo 249 (NY).
Prov. Velasco: O. Kuntze 5.n. (US).

ARGENTINA:

Prov. Ju ju y: Dep. El Carmen, Abra de Santa Laura: A.
L. Cabrera, J. Frangi, A. M. de Frangi, R. Kiesling \& E. M. Zardini 22077 (K) ; Moralitos: A. Castellanos s.n. (BAF)t Quinta near Laguna de la Breat R. E. Fries 455 (S, US) i Aroyo del Medio: R. E. Fries 313 (S, US).
Prov. s a l t a : Pearce s.n. (BM, K) f Dep. Oran: orán:
C. A. O'Donell 3136 (BM, S); Quebrada del Diablo, NW of (W) Whdel: E. P. Killip 39062 (US)) Urundel: T. Meyer 8402 (W)) E1 Bananal: T. Meyer 8455 (W); La Calera: S. A. Pierotti 203 (NY, W) ; Rio Pescado: S. A. Pierotti 6526 (C); A. V. de la Sota 4584 (NY); Rio Bermejo: A. V. de la Sota 4609 (W), 14 spanish miles N of Orán: J. Steinbach 1760 (BAF, G, $\mathrm{K}^{\text {) ; Kmbaracion: miles } \mathrm{N} \text { of Oran: } \mathrm{S} \text {. Venturi } 5149 \text { (S, US) ; Campo Grande: }}$ S. Venturi 7633 (US); RIo Blanco: S. Venturi 7635 (US); $\begin{array}{ll}\text { Santa Mariat Willink } 30 & \text { (S). }\end{array}$

ge
 Dep. San Martin: Pocitos: T. Meyer 18316 (W). Dep. Metån:

 Metán: C. H. O'Donell 2442 (NY, W).Terr. Formos a : Guaiculé: P. Jorgensen 3078 (MO, ט5).
Gob. Misiones : Puerto Alguirre: Rojas 81-4478 (BM)
Parque nacional de Iguazh: Del Puerto arescia 2614 (US):
Puerto Irigoyen: Rojas 83-4410 (BAP); Eldorado: Bertonl
1050 (NY, W) ; T. Meyer 6783 (S, W) ; Dep. San Pedro: Monte Carlo: E. Schwindt 1256 (C, W) ; Fracrán a San Pedro, Ruta 14: E. Schwindt 3909 (K, MO).
Dep. Cainguás: Campo Ramon: Bertoni 3317 (G, W); Campo Grande: G. J. Schwarz 4419 (MO), 4420 (W); Puerto Rico: E. Schwindt 578 (MO); Nineral: E. Schwindt 657 (W). Dep. San Ignacio: Santo Pips: G. J. Schwarz 4627 (MO) ; Arroyo Nancanguazf: G. J, Schwarz 6103 (C, K).
Dep. Candelarıa: Jabelbyry: J. E. Montes 786 (W); Arroyo Bonito: G. J. Schwarz 965 (BM, S, W). Posadas: Picada: Bertoni 852 (NY, W) ; Bonpland: E. L. Ekman 1977 (S). Dep. San. Javier: Arroyo Ramon: Bertoni 3802 (US), 3808 (G), San Javiert A. G. Schulz 7015 (BR, K, NY, S); Alba Posse: G. J. Schwarz 4043 (BR) : Tres Bocas: G. J. Schwarz 4096 (C) ; Santa Rita: G. J. Schwarz 4204 (C); Durañona: G. J. Schwarz 4256 (C, MO).

PARAGUAY:

B. prov.: E. Hassler 1849 e (NY) ; G. W. Teague s.n. (BM) ; Rio Apa region: Hassler s.n. (B); between Rio Apa and Rio Aquidabán: Fiebrig 4839 (BM, G, K), 4932 (BM, G, K); near Tobat1: E. Hassler 1847 (BM, G, K, NY) ; near Sapucay: E. Hassler 1847 a (G, K) / near Villa Occidental: P. G. Lorenti 116 (B), 118 (B, US), 121 (B, US)) Rlo Y-aca valley: E . Hassler 7055 (BM, G, MO, NY, S).
Dep. A m a m b a Y : near Bellavista: Hassler 8393 (B, BHi) $\mathrm{G}, \mathrm{K}, \mathrm{MO}, \mathrm{NY}, \mathrm{S})$.
Dep. Conce p cis n : Concepcion: T. Rojas 54 (BAF), 10906 (= Herb. Hassler) (G).
Dep. S a n P e d r o : near Lima: A. Krapovickas; C. L. Crist6bal \& L. Z. Ahumada 14263 (C); Alto Paraguay; Primavera: A. L. Woolston 424 (C, K, NY, S), 473 (C, K, NY, S, US).
Dep. Centra 1 : T. Morong 645 (BM, G, K, MO); Asuncibs: Anisits 301 (S): B. Balansa 2413 (B, BM, G, K, S), 2413 a (B, G) ; Gibert 1024 (B, K) ; T. Rojas s.n. (BAF); G. W. Teague s.n. (BM); V11la Elisat T. M. Pedersen 3152 (BR, C, $G, M O, N Y, S$, US).
Dep. N e embu c u : near Tebicuary: E. Hassler 1847 b (G, K) ; near Azucarera, Tebicuary: C. V. Pavetti Morin 3591 (BAF).
Dep. L a Cordillera:Cordillera de Altos: \mathbb{K}. Fiebrig s.n. (B), 776 (BM, G, K, M)) E. Hasslex 3665 (BM , $\mathrm{G}, \mathrm{K}, \mathrm{NY}), 3786(\mathrm{~B}, \mathrm{BM}, \mathrm{G}, \mathrm{K}, \mathrm{NY}, \mathrm{S})$) $2,5 \mathrm{~km} \mathrm{E}$ of Caacupê, A. Schinini 14797 (MO), Caacupt W. A. Archer 4819 a T. Rojas (US) ; near Altos: E. Hassler 587 (G); Lago Ypacarai region: E. Hassler 11502 (BM, C, Gt $\mathrm{K}, \mathrm{MO}, \mathrm{NY}, \mathrm{S})$; San Bernardino: R. Endlich $34(\mathrm{G}), 211$ (B) ;
8. Hassler 1102 (G), 1214 (G), 1502 (G), 1608 (G); T. Rojas 13291 (C); G. W. Teague 671 (BM).
Dep. C a a g u a $z \mathrm{G}$: Coronel Oviedo : T. Rojas 14438 (BAF) .
Dep. Gu a 1 r a : V1llarrica: P. J8rgensen 3758 (C, MO) ; Monte Santa Clara: J. E. Montes 15868 (BR, S, US).
Dep. C a a z a p \& : Cordillera de Caaguazf: J. West 8535 (MO) .
Dep. A 1 to Paran a t K. Fiebrig 5800 (G, K , US), 5818 (BM, G, K, US).

BRAZIL:

5. prov.: Sello 2466 (B) ; "Oliveiras, Linha Rio Claro": A. L8fgren 681 (SP).

R 10 Grande do S u 1 f Cerro Largo, near S. Luiz: P. Buck 10936 (B) ; S. Francisco de Paula, Vila Oliva: P. luck 28038 (MO); S. Leopoldo: J. Dutra 826 (R); Caracol near Canela: K. Emrich 50176 (B) ; Porto Alegre: Fox 287 (B, K); Porto Alegre, near Navegantes: Reineck \& Czermak 706 (G); Rio Jacui near pôrto Alegre: Tweedie s.n. (K); Cruz Alta: 6. O. A. Malme 1125 (S): Ipanema near Pôrto Alegre: G. Pabst 7280 (BM) ; B. Rambo 60 (SP); Belém Novo, on Rio Guaibaz M. A. Palacios \& A. R. Cuezzo 417 (G); Chachoeirinha near Gravatal: B. Rambo 39569 (B, W) ; Sapucaia: B. Rambo 40448 (W) : Esteio: B. Rambo 40602 (BR, G) ; Morretes near Canoas, Vasconcellos Jardim: B. Rambo 41372; Schwabenschneis near Kovo Hamburgo: B. Rambo 41680 (B, US); Vila Elsa on Rio Gualba: B. Rambo 41919 (BR, MO, W)t on Rio Pial near Caxias: B. Rambo 47162 (B, BR) ; Sta. Maria: W. Rau s.n. (RB); Cerro Largo: A. Sehmen 3599 (B); Montenegro, Parecl Novo: Strieder 33067 (C, K, US).
Santa catarina:Mun. Descanso, Belmonte: A. Castellanos 24812 (MO) ; Herval: P. Dusén 11825 (NY, S); Coqueiro, Itapiranga: R. M. Klein 5161 (NY, R) ; Aguas de Chapec6: R. M. Klein 5285 (R); Nova Teutonia: F. Plaumann 22 (RB) ; Passo do Socorro, Lajes: P. R. Reitz 6552 (R, US)) Itajal, Luis Alves, Braço Joaquim: Reitz a Klein 2722 (B, My, R, US) : Sabia, Vidal Ramos: Reitz \& Klein 6315 (B, G, K, NY, R, S, US) ; Serra do Espigão, Monte Castelo: Reitz o Klein 12495 (R) ; Lacerafpolis, Capinzal: Reitz a Klein 14686 (NY, R, US) ; Blumenau: Schwacke 97 coll. IV (R) ; Mun. Mondal-Itapiranga, $29 \mathrm{~km} S$ of Iporã: L. B. Smith \& R, Klein 11725 (NY, R, US) ; Mun. Joaçaba, 2 km S of Joaçaba, west bank of Rio Peixe: L. B. Smith a R. Klein 11893 (R, NY, US)) Mun. Chapec6, 3 km E of Rio Urugual Station: L. B. Smith 1 P. R. Reitz 9764 (R, US) ; near Tubaräot E. Ule 1006 (HBG, US).
Parane: Gil da Rocha 34 (HBG, RB): Vila Velhat A. Castellanos 22275 (HBG, R) ; Dusên 14286 (NY), 14826 (K, MO, S); G. JOnsson 1255 a pro partel (S) ; Parque Nacional do Iguaç: A. P. Duarte 1641 : E. Pereira (HBG, R, RB); G. Hatschbach 9760 (US); J. G, Kuhlmann s.n. (RB); E. Pereira $5324(\mathrm{~B}, \mathrm{RB})$; A. Duarte a E. Pereira s.n. (W) ; Therezina: P. Dusén 11179 ($\mathrm{K}, \mathrm{NY}, \mathrm{S}$) ; Ipiranga: P. Dusên 12079 (S) ;

Serra do Mar near Ipirariga: P. Dusên 12151 (S); Patrinonio: P. Dusén 16860 (MO, NY, S) ; Mun. Cianorte, Fda. Lagoa: G. Hatschbach 14371 (US) ; Mun. Icaraima, road to Pto. Camargo: G. Hatschbach 15769 (NY, US) ; Mun. Guaraqueçaba, Rio do Cedro: G, Hatschbach 18518 (C): Mun. Mal. Candido Rodon, Dois Irmăos: G. Hatschbach 19156 : O. Guimaraes (C, HBG, K_{F} M, MO, SP) ; Porto Sta. Helena: G. J. Schwarz 7437 (BR, NY, S).

S a o P a 1 : Capital, Chacara dos Morrinhoa: F. Glasauer, Herb. Pickel 4564 (HBG, IPA, SP) ; Santa Rita do Passt Quatro: E. Hemmendorff 68 (S), Paranapanema valley: A. ISFgren 4462 (SP) ; Ytf: Martius $615(\mathrm{M})$; Serra do Caracol: H. Mosen 1572 (S); Loreto: O. Vecchí II 164 (R). R i o de J a n e iro (incl. Guanabara) i Widgren s.n. (S) ; Carmo: Neves Armond 149 (R); Angra dos Rels, Fazenda Japuhyba: M. Kuhlmann 2626 (SP); Campos: A. Sampaio s.n. (B), Espirito Santo : plateau of Macuco, Reserva de Sooretama: D. Sucre 5677 (HBG, RB).
M in as Gera 1 s : Catueiro, Goianá: Vasco Gomes 2411 (R, RB).
B a h i a : Rio S. Francisco, Serra Açurua, Utinga: Blanchet 2908 (B, G, K; non BM!) ; Pituba do Caraiba: P. Campos Porto 2499 (R, RB).
The following collections are "mixta composita" with S. maorophylia. For that species the given localities nay be correct, but they are probably wrong for S, aculeata:
Amazon a s : Rio Branco, Jani: J. G. Kuhlmann 358 (EBC, RB). W).

This last collection is represented in R and W only by its s. aculeata-part, as No. RB 3104 (without collector).

The following collections are aberrant by showing unusually many rare characters in the same plant:
Rio de Janeirot Souza Brito 28 (R),
Asuncións B. Balansa 2414 ($\mathrm{B}, \mathrm{G}, \mathrm{K}$) ; in this collection especially the thorns are striking, as they are directed slightly towards the tip of the branch. The leaf-shape and the relatively short inflorescences are reminiscent of s. paraguayenois, but the indumentum and the bracteoles art fairly typical of S. aouzeata.
In this group the number of collections is now large enough to show nearly every imaginable transition, so that the far-reaching reductions appear justified.
Already H. WaLTER (1910) doubted whether S. altiptiod R. S. Fries was aeparable from S, parvifotia Benth. and he notion as well that both were rather close to S. guaranitioa spes. As can be seen from the notes on the type specimen REINER recognized his S. eeaurigera, published in 1912, as being conspecific with S. guaranitiad Speg. only two years later. (1968) reduced S. elliptioa R. E. Fries, S. guaranitica Speg, and S, votaohii H. Walter to S. parvifolia Benth., neglecting S. securigera Heimerl. She still kept separate what she thought to be "S. americana". These two taxa she noticed to be the "catch-alls" of the genus, being "very variable" and "very difficult to define". She separated then by "samara wing with protuberance, leaves generally elliptic or ovate-elliptic, the stipules \pm straight" as opposed to "samara wing without protuberañce; leaves more ovate, or ovate-rounded, the stipules recurved". With the increase of material this already weak borderline vanished completely, not only because of a lack of correlation between these characters but also because of transitions within the same collection.
Why the complex thus arising must be called S. aculeata instead of S. americana has already been explained on p. 235-237
The only really new element added to the synonymy is s, coriacea Benth. At first sight this may be astonishing because WALTER as well as NOWICKE placed this "species" in the group with lateral winglets at the base of the fruft. But these two authors examined very different material. WOWICKE saw a specimen with the type number, Blanchet 2908 , from BM, and only this specimen really has those winglets. She commented on the perplexing deviation of this plant from the original description without recognizing that this vas not the same species as the one she saw in a photograph of the specimen of the same number at G. This latter had been examined by WALTER, who certainly had removed from it the fragments preserved in B. As in other cases, he must have mixed up filament-impressions on the ovary with primordia of winglets; of the latter there is not any trace here.

BENTHAM has based his description of S. qoriacea on one of

 the specimens of Blanchet 2908 at Kew ${ }^{9}$, and these are identical with the material at B and G, but very different from that at BM. Therefore I cannot accept the latter as an isotype. So S. ooriacea has to be transferred to the group without lateral winglets. Within that group, however, it cannot be satisfactorily separated from the variable S. qouleata. The variational range of this species includes all characters of the type of S. coriaged.[^2]3. Sequieria langedorffit Moq. in DC., Prodromus XIII, 2 (1849) 6; Type: Langsdorff $\mathrm{s} \cdot \mathrm{n}$. (Holo K).

Albertokuntasa Zangsdorffit (Moq.) O. Kuntze, Revis. Gen. P1. 2 (1891) 550
Seguieria glasiovii Briq. In Ann. Conserv, et Jard. Bot. Genéve 4 (1900) 214; fype: Glaziou 13126 (Holo G, Iso B, $B R, C, K)$.
S. affinis Helmerl in Denkschr. Akad. Wien Math.-Nat. 79 (1908) 232; Syntypes: Campos Novaes 1026 and 1027 (W); Lectotype ex Isosyntypes: Campos Novaes 1027 US, select. Nowicke in Ann. Missouri Bot. Gard. 55 (1968), Isosyntypes No. 1026 SP, US).
S. mammifera H. Walter in Engler, Pflanzenreich IV, 83 (1909) 99; Vype: Riedel s.n. (Holo LE (Photo), Iso B). S. rigida H. Walter, l.c. p. 98; Syntypes: de Moura 985 , Riedel s.n. (LE n.v., B).
Tree up to 30 m high (but usually not more than 20 m), rarely shrub, never scandent. Thorns straight, + directed towards the tip of the branch, sometimes well developed (4 to 14 mm long on a twig of 4 mm diametre, on older branches or on suckers even up to 50 mm long and perpendicularly spreading), sometimes very small, sometimes absent. Petioli $2-14 \mathrm{~mm}$ long. Leaf-blade rather variable in shape, of ten \pm elliptic, otherwise lanceolate or ovate, more rarely obovate, up to 15 cm long and 7.5 cm wide but mostly snallet being widest at \pm the middle, $(1.4-) \quad 2-4(-5.7)$ times longr than wide, normaily coriaceous when mature, rarely chartaceous, matt to shining, at the base attenuate to obtuse, rarely rounded, at the tip acuminate to obtuse to slightly emarginate, mostly distinctly mucronulate. Inflorescences often axillary, rarely terminal, racenes to panicles, up to 20 cm long, about 10 to 80 flowered, the terminal ones rarely >100 flowered and about 30 cm long, sparsely to densely pubescent (hairs one- to many-celled, rarely branched simply, rarely partly collapsed). Bracts only rarely leaf-like, otherwise up to 3 mm (rarely 6 mm) long. Bracteoles smaller, up to 2 mm long. Pedicels 2 to 12 mm long, buds up to 4.5 mm diametre. Tepals up to 6.5 long and 5 mm wide, sometimes becoming black on drying. Stamens about 15 to 45 . Filaments up to 4 mm long. Anthers up to 3 mm , Very rarely 3.5 mm long. Ovary very often becoming dark on drying, without primordia of lateral wing lets, but often distinctly nerved or on drying with deep impressions by the filaments. Stigma normally covering half to the tip of the style, more rarely completely laterl or covering the tip completely.
Fruit mostly becoming black on drying, otherwise becoming brown, never pale, up to 50 mm long. Basal part up to 10 mm in diametre, either nerved or papillose, more rarell smooth. Terminal wing up to 70 mm wide, at the thicker margin + straight or convex (very rarely slighty concava)? at the öther rather variable, sometimes slightly constrict next to the basal part. Testa black.

age Library, http://www.biodiversitylibrary.org/: www.
 BRAZIL:

s. prov. : Binot III (BR); Bowie s Cunningham s.n. (BM) , Glaziou 3863 (C) ; M. V. Queluz 7 (SP); Riedel s.n. (B, G, K), 908 a (B) ; F. Sello s.n. (BM) ; Widgren 121 (S).
 KY), $9858(\mathrm{~K}, \mathrm{M})$.
M in a s Geralis: Lanqsdorff $\mathrm{s} . \mathrm{n}$. (K); 31 km from Pott, along road MG-3 to Tebfilo Otōni: G. Davidse, T. P. Ramamoorthy a D. M. Vital 11498 (MO, US); 11 km N of Medina, along road BR 116: G. Davidse, T. P. Ramamoorthy \& D. M. Vital 11566 (MO, US); Curimatai ("Curimotohy"): Glaziou 13126 (B, BR, C, G, K) ; Estacao Experimental de Cafe Coronel Pacheco: E. P. Heringer 526 (RB), 526 a (SP), 956 (SP) : Caratinga: J. G. Kuhimann 3 (R, RB); Tebfilo Otôni: Mendes Magalhàes 16961 (US) ; Vicosa, road to Săo Miguel, near km 11: Ynes Mexia 4358 (BM, G, K, MO, S, US) ; road to Barroso, near km 15: Ynes Mexia 4444 (BM, G, K, MO, S, US). R 10 d e J a n e iro (incl. Guanabara): J. T. de Moura 985 (B); Riedel s.n. (B); Widgren $5 . \mathrm{n}$. (S) ; Petropolis: A. Glaziou 3864 (C), 8259 (B, C, G, K) ; ibid, Castelania: ex Herb. Esc. Polytécnica 6097 (R); ibid, S. Antonio: A. Glaziou 5729 (C); Carmo: Neves Armond 148 (R); Hova Friburgo, Fazenda Dr. Goebel: A. P. Duarte 6268 (HBG, $\mathrm{R}, \mathrm{RB}), 6295(\mathrm{R}, \mathrm{RB})$; Serra dos Orgãos: Gardner $\mathrm{s.n}$. (BM) ; A. Mattos Filho 92 (HBG, R, RB) ; 98 (BM, MO, R, RB) ; J. hiers 4502 (K; non BM!): Jacarepagua: F. C. Hoehne 24737 (US) : E. Pereira 3639 (RB), 5655 (B), 5657 (M, NY) ; E. Pereira 4495 : A. Duarte (HBG, RB) ; Campos: A. Sampaio 8293 (R); 8307 (R), 9017 ($R, R B$).

5 Io P a u 1 o : Riedel s.n. (B); Angatuba, Fazenda do Servicio Florestal: M. Emmerich 2805 \& R. Dressler (HBG, R) : Campos do Jordão: Goro Hashimoto 67 (RB) ; Cubatão: D. lloehne s.n. (SP) ; Serra da Cantareira: M. de Koscinski 125 (SP), M. Koscinsky 359 (SP); Firma Tanandare de Toledo jr. 4 A. C. Brade $7450 \quad(=$ Brade 7450) (R, SP) ; Sta. Isabel: M. Kuhlmann s,n. (HBG, SP) ; Amparo, Monte Alegre: M. Kuhlmann 663 (SP); Limeira: M. Kuhlmann 818 (SP); near Viracopos airport: H. F. Leitão Filho 163 (NY), Campinas: F. de Campos liovaes s.n. (SP), 1026 (US, SP), 1027 (US), 1900 (B)) Chacara dos Morrinhos: B. Pickel $\downarrow 624$ (SP), 4624 a (HBG, 1PA).
Paran a : Serra da Prata, Caixa de Agua: P. Dusén 10225 (S)) Porto Dom Pedro II: P. Dusen 11518 (S); Mun. Bocaiuva do Sul, Descampado: G. Hatschbach 3725 (US); Mun. Guaratuba, Garuva: G. Hatschbach 5524 (US)) Mun. Arapoti, road to W. Braz., 15 km from Arapoti: G. Hatschbach 8363 (B, MO, US) ; ibid, Quebrada Fundai G. Hatschbach 26848 (S); 1bid, Serra do Caete: G. Hatschbach 42199 (HBG, NY)) Mun. Campina Grande Sul, Sitio do Belizario: G. Hatschbach 17815 (C, K), 17826 (C)) Man. Cerro Azul. Estrela: G. Hatschbach 42546 (HBG)) Vila Velha: G. Jonsson 1255 a pro parte! (S).
santa catarina: Blumenau: Ferreira s.n. (R)) P. R. Reitz 4630 (R, US) ; Brusque: Inst. de Malariologia, Eq. Ecologia $143=\mathrm{H}$. Veloso $143=\mathrm{R}$. Klein $288=\mathrm{R}$. Klein
ibrary, http://www biodiversitylibrary.org/; ww
290 (B, NY, R, RB, S, US) ; P. R. Reitz 3464 (R, S, US), Cunhas, Itaja1: R. M. Klein 1183 (B, NY, R, US), 1280 (= Reitz a Klein 1280) (R, US), Serra do Matador, Rio do Sul: P. R. Reitz 6085 (BR, G, M); Ibirama: Reitz a Klein 1563 (NY, R, S, US) ; Braço Joaquim, Luis Alves: Reitz if Klein 2257 (B, NY, R, US): Itajai, Luis Alves: Reitz 4 Klein 2409 ($\mathrm{B}, \mathrm{NY}, \mathrm{R}, \mathrm{US}$).
Two collections look somewhat aberrant within this species but nevertheless seem to belong here:
Serra dos Orgăos: A. C. Brade 11503 (R) ; Glaziou 4 Schwache (?) s.n. (R).

In this species the collections may be arranged in a more or less linear sequence. One extreme of this sequence are the plants labelled as " S. Zangedorffit" by WALTER (they are not identical with the type). Their leaves are very narrow and relatively sharp-pointed. Rather close to then is "S. rigida" which again is continuously linked to "S. affinis". From this form " S. mammifera" is transitonal to "S. glasiovii" at the other extreme. The type of S. glaziovii has rather wide and almost aberrantly large leaves with retuse tips. Only very few collections cannot be placed within this line but rather form a "shortcut", e.g. between "S. rigida" and "S. glasiovii". As already mentioned, this variation is not directed geographically.
4. Seguieria paraguayenois Morong in Ann. New York Acad. Sci. 7 (1892) 210; TYPe: Morong 690 (Holo ?, Iso NO, Fragm. B).
S. inermis H. Walter in Engler, Pflanzenreich IV, 83 (1909) 88; Type: Riedel 908 (Holo LE (Photo), Iso B).
Tree up to 20 m , rarely 25 m high, rarely high shrub, nevef climbing. Thorns often very small or absent, but sometines well developed (up to 7 mm long on a twig of 2 mm diametre) straight, a little directed towards the tip of the branch, sometimes spreading perpendicularly. Petiole $4-18 \mathrm{~mm}$ long. Leaf-blade normally ovate-elliptic to elliptic, rarely lanceolate, up to 9 cm long and $5,5 \mathrm{~cm}$ wide, being videst mostly $1 / 3$ above the base to about at the middle, 1,2 to 2,3 times longer than wide (very rarely young leaves even 4 times longer than wide), chartaceous to coriaceous, normally matt, rarely almost shining, at the base widely wedge-shaped to obtuse, more rarely rounded or narrowly wedge-shaped, at the tip rounded or obtuse, sometimes a little retuse, rarely acute or acuminate, very often strobsl mucronulate.
Inflorescences often axillary, more rarely terminal, syple or compound racemes, up to 10 cm , rarely 20 cm long, up to 20-flowered, sparsely to densely pubescent (hairs one- to many-celled, rarely branched simply, sometimes collapsed). Bracts rarely leaf-1ike, otherwise up to 5 mm long.

Iracteoles absent (but see p. 240). Pedicels 3.5 to 9 rim long, buds up to 4.5 mm in diametre. Tepals (in about $1 / 3$ of the flowers only 41) up to 5.5 mm long and 4.5 mm wide. Stamens about 20 to 35 . Filaments up to 4.5 mm long. Anthers 2 to 3 mm long. Ovary without primordia of lateral winglets, normally smooth. Stigma completely lateral.
Frait pale on drying, up to 30 mm long. Basal part up to 6 in diametre, either smooth or with prominent veins at the base. Terminal wing up to 11 mm wide, at the thicker margin \pm straight or silghtly convex, at the other \pm convex to $\pm s i$ gmoid, being widest $3 / 5$ to $1 / 4$ below the tip. Testa blac̄k.

BOLIVIA:

Dep. S a $n t$ a $C r u z$: road between Sta. Cruz and the R1o Plray: T. Herzog $1452(G, S)$) Prov. Cercado, Barque del Canado del Piray: J. Steinbach 7121 (BM).
Dep. B e n 1 : Prov. Balliviann: near Rlo Yacuma: St. G. Beck 5621 (HBG).

PARAGUAY:

B. prov. : B. Balansa 2415 b (S) ; near "Villa occidental": P. G. Lorentz 106 (B, US). Dep. Cen t i a 1 : Morong 690 (B, MO); Asuncion: B. Balansa 2415 (B, $\mathrm{G}, \mathrm{K}, \mathrm{S}$) T . Rojas $5 . \mathrm{n}$. (BAF); G. W. Teague 656 (BM).
Dep. L a Coratile ra t San Bernardinot R. Endilch 33 (G), 210 (B), E. Hassler 1584 (G) ; 3712 (B, BM, G, K, KY, S), 3887 (B, BM, G, K) ; Cordillera de Altos: K. Fiebrig 869 (BAP, BM, G, K, M, US) ; E. Hassler 1764 (BM, G, K, NY); Lago Ypacaral region: E. Hassler 12400 ($\mathrm{BM}, \mathrm{C}, \mathrm{G}, \mathrm{K}, \mathrm{MO}, \mathrm{NY}$, s , US).

AhGENTINA:

\%. prov. : s. Venturi 222 (BAF).
Terr. $F \circ$ r mo s a $:$ on R10 Salado: P. Jorgensen 1992 (US). BrazIL:
Mato Grosso: near Cuyabá: Riedel 908 (B).
S. inermis has been reduced to S. paraguayensio here.

Mdter placed the two "species" in different sections of the genus, S, inermis in Sect. Buesguioria with decurrent tubercules on the ovary and with lateral winglets at the base of the fruit and S. paraguayensis in Sect. Seguieriella Whout these characters. The type collection of S, incrmia does not include fruits. Its flowers, however, actually do not show the slightest trace of primordia of winglets. WALTER Wal probably deceived by impressions of the filaments. There In only one character in which the type of S. inermia seems to diffor from S. paraguayenois, viz. it seems to possess bracteoles. Upon closer examination this difference cannot be maintained. Not all flowers are provided with bracteoles,
and sometimes there is only one. But each supposed bracteolt always subtends a bud, although this bud may sometines be very small. So there is essentially no difference to the "typical" paraguayensis-inflorescences, since in these ope or rarely two small leafy organs may be found in the position of bracteoles, being bracts of further buds.
The inflorescence of S, inexmis is not glabrous as WALTER has described it, but shows the same hair type as S, pard guayenais. The absence of thorns in some branches also is nothing unusual. All other characters are concordant already in WALTER's description.
5. Seguieria macrophylla Benth. In Trans. Linn. Soc. London 18 (1841) 235, Type: Schomburgk 348 (K).
Albertokuntzea macrophylla (Benth.) O. Kuntze, Revis. Gef. P1. 2 (1891) 550
Seguieria cordata Britton in Bull. Torrey Bot. Club 48 (1921) 331 ;/Type: Broadway s.n., TRIN 9122 (Holo TRIS n. V. . Iso K).

Tall liana or at least climbing shrub. At least older branches hollow. Thorns recurved, mostly well-developed (to 12 mm long on a twig of 4 mm diametre) or very small, rarely absent. Petiole 3 to 14 mm long. Leaf-blade very often elliptic, otherwise ovate-elliptic, very rarely lanceolate or obovate-elliptic, up to 18 cm long an 8.5 cs wide, being widest at about the middle or below, 1.4 to 3.3 times longer than wide, mostly coriaceous, very oftul matt, rarely shining, at the base normally rounded, other wise obtuse, rarely acute, at the tip normally shortly acu minate to obtuse, rarely rounded or retuse, very rarely a little emarginate, mostly distinctly mucronulate.
Inflorescences axillary or terminal panicles, up to 50 cl long, normally profusely flowering, often >100-flowered, sparsely to densely pubescent (hairs mostly many-celled, rarely branched simply, very rarely p.p. collapsed). Bracts very rarely leaflike, otherwise up to 5 mm long (mostly smaller). Bracteoles smaller, up to 1.5 mm long. pedicels 3 to 9 mm long. Buds up to 3 mm , rarely 4 mm in diametre. Tepals up to 4.5 mm (rarely 6 mm) long and 3.5 (rarely 4.5 mm) wide. Stamens about 15 to 40 , filaments up to 3.5 mm (rarely 4.5 mm) long, anthers 1.5 to 2.5 mm long. Ovary without primordia of lateral winglets, becoming darb on drying. Stigma normally completely lateral, very rarelf covering up to the whole tip of the style.
Fruit becoming black on drying, up to 40 mm long. Basal part up to 8 mm in diametre, smooth or a little veined. Terminal wing up to 16 mm wide, at the thicker margin \pm straight or convex or a little concave, at the other normally a little constricted next to the basal part, widened towards the tip, being widest at about the middle to nearly at the tip. Testa black.

tage Library http://www. biodiversitylibrary.org/; www.
 veritish guiana:

R. Schomburgk 347 (BM), 348 (K) ; Lethem, Kupununi Dist. :
V. Graham $375(\mathrm{~K})$; Courantyne Rivert G. S. Jenman $503(\mathrm{~K})$; E. F. Im Thurm s.n. (K) ; NW part of Kanuku-Mountains, Mount Iramalkpang: A. C. Smith 3650 (K, US).
, TRINIDAD:
Los Bajos, near government school: W. E. Broadway s.n. (K) . VENEZUELA:
s. prov. : lower Orinoco, Sacupana: H. H. Rusby A R. W. Squires 57 (B, BM, G, K, M, US).
Est, VD e 1 t a A macuro: Caño del Uricoa, San Antonio:
P. E. Bond, T. S. Gillin \& S. Brown $142(\mathrm{~K})$; Caño de Corisal,

Corisal: F. E. Bond, T. S. Gillin \& S. Brown 208 (US); Dep.
Tucupita, $13-14 \mathrm{~km}$ SE of Placoa, along trail to Rio San
Josêt G. Davidse s A. C. Gonzales 16462 (HBG, MO).
Est. Ni i ran d a : Paparo: H. Pittier 11049 (NY, VEN) ; hills of Bachiller, western part, S of Caño Rico and
Bachiller, 11 km (by air) SSE of E1 Guapo: J. A. Steyermark i G. Davidse 116786 (MO, VEN).
Est. A p u re : Dist. San Fernando, ca. 4.5 miles (by air)
RSE of San Carlos del Meta, on banks of Rio Meta: G. Davidse 4 A. Gonzáles 13805 (MO, VEN) ; ibid, near Las Caracas, 12 km (by air) NW of Puerto Plez, on banks of Rio Meta: G. Davidse (A. Gonzales 14360 (MO, VEN)) Dist. Pedro Camejo, ca. 3 km
I of Mata de Guanabano, on banks of R1o Meta: G. Davidse a
h. Gonzales 14346 (MO, VEN)) ibld, bank of Rlo Orinoco,

35 km (by air) NE of Puerto Páez, just NE of Isla El Gallo:
G. Davidse A A. Gonzales 14470 (MO).

Est. ve a $r i n$ a s : Punta de Piedras, on Rlo Caparo: L.
Bernardi 1161 (K, NY, VEN) ; Reserva Forestal Caparo, unit I, E of Cachicamo camp, E of E1 Canton: J. A. Steyermark, G. Bunting $\& \mathrm{C}$. Blanco 102102 (K , VEN).
Est, $\sqrt{2}$ u 1 i a \ddagger near Machiques, Perija: L. Aristeguieta 4 (?) 2103 (VEN). - PakNMA:

Prov. Darient Pico Piriaque: J. A. Duke 8149 (MO). COLOMBIA:
Dep. At 1 a n t i o o $:$ border of Dep. Bollvar, Los Pendales: A. Dugand \& R, Jaramillo 4127 ($=$ A. Dugand 4127) (HI , US, VEN), 4131 (NY, US).
Dep. Meta i floodplain of Rio Metica, just E of Puerto Loptz: G. Davidse 5471 kF . Llanos (MO, US). - PERU:
${ }^{4}$ oreto: upper Amazonas, Maynas, Yurimaguas: Poeppig 7 (?) (W), 2176 (B). Madre de pi.
Cocha Cas de D 18 s : Parque Nacional de Manu, Rio Manu, (H H O)

Ron d 0 in i a : Guajara-Mirim, Bolivian border: J. G. Kuhlmann 440 (HBG, RB).
A mazon a s i Rio Jurua basin, near mouth of Rio Borin (tributary of Rio Tarauacd) : B. A. Krukoff 4669 (B, G, F, I US), $5206,(\mathrm{G}, \mathrm{K}, \mathrm{S}$, US) ; R1o Branco, Janl: J. G. Kuhlnann 359 pro partel cf. S. aculeata (HBG, RB).
R o r a 1 ma : Road Bota Vista - Caracal, R1o Mucajal: 1 . L. Frbes 23076 (RB), Ilha do Ajarani: J. G. Kuhlmann 359 pro partel cf. S. aculeata (RB).
P a r a : Belem, southern forest of the IAN: W. A. Archer 7936 ($\mathrm{K}, \mathrm{MO}, \mathrm{NY}, \mathrm{S}, \mathrm{US}$) ; Boca do Lago do Faro: A. Ducke 8657 (RB, US) ; road Bragança - Viseu, banks of Rio Piria, S of Curapati: G. T. Prance \& D. T. Pennington 2046 (K, NY, US).
Max a n h a o : Sao Luis, Granja Bareto: R. L. Frbes 28530 (SP) ; Rio Maracaçumé region, Candido Mendes: R. Prob 1924 (under Krukoff) (BM, G, K, MO, S) ; Rio Alto Turiscu, Nova Esperança: J. Jangoux \& R. P. Bahia 286 (NY).
The specimen A. C. Smith 3650 from US is extremely devintir from the normal appearance of this species. A duplicate from K , however, shows that it is a stunted S. macrophylth.
The reduction of S. cordata is based on the examination of the isotype from Kew. NOWICKE labelled this specimen as "insufficient material", and it really is rather scanty. Nevertheless the examination of a bud, poorly developed ai it was, revealed good agreement with S. maorophylla: anthers 25 , incised $2 / 5$ at the base and $1 / 3$ apically ${ }^{10}$ ovary dark-coloured, without winglet-primordia, stigma chij convering a very small part of the apical edge of the flattened style. The indumentum of the pedicels also vas typical of S. macrophyila.
In contrast to this there is rather poor agreement with the original description. The thorns are clearly recurved, not "nearly straight" and the leaves are by no means "cordate or subcordate at the base" but at most widely rounded. If the type collection of S. cordata is not heterogeneous (as is the type collection of S. coriacea) and if other parts of it do not show completely different characterl, there is no reason to separate it from S. maorophylld.

[^3]This deep incision is one of the many characters whicl are neither confined to a species nor constant withis it but which nevertheless may help recognizing speciel because they are much more frequent in some than in others.

tage Library, http://www. biodiversitylibrary.org/; www.
 $\frac{\text { Sequieria Brevithyrsa }}{\mathrm{IV}, 83(1909)} \mathrm{H}$. Walter in Engler Pflanzenreich I, NY, US). 87 ; TYpe: Rusby 1353 (Holo G. Iso B, BM,

Wana or climbing shrub. All parts of the plant becoming dark on drying. Thorns recurved, normally well developed (up to 8 mm long on a twig of 5 mm diametre). Petiole 5 to 15 m long. Leaf-blade elliptic to lanceolate, up to 15 cm long and $6,5 \mathrm{~cm}$ wide, being widest at about the middle or below, 2 to 4 times longer than wide, in younger leaves relatively narrower than in older, firmly chartaceous to coriaceous, matt to almost shining, on drying becoming olive-blackish, at the base acute to rounded, at the tip sormally acuminate, otherwise acute, distinctly mucronulate. Inflorescences axillary (also terminal?) racemes, up to 8 cm long, up to 20-flowered, usually glabrous, rarely with a few bairs. Bracts up to 3 mm long. Bracteoles absent. Pedicels 3 to 8 m long. Buds up to 3.5 mm in diametre. Tepals up to 5 mm long an 3.5 mm wide. Stamens about 20. Filaments up to 3.5 mm long, anthers 2 to 2.5 mm long. Ovary often with a small keel on either ilde, vithout primordia of lateral winglets. Stigma completely lateral. rruit becoming black drying, up to 50 mum long. Basal part with a 10 mm in diametre, at the base somewhat ridged, mostly 20 m vide.inct keel on either side. Terminal wing up to concave, at the other wider margin \pm straight or a little resching its the other widening from the base of the fruit, *OLIVIA:
Sap. L a P a 2 i Prov. S. Yungas, basin of Rlo Ropi, ho, S , US) ; Guanai: Calisaya): B, A. Krukoff 10166 (G, K, S, US) ; Guanai: Rusby 1353 (B, BM, G, K, NY, US).

Species non satis nota :
(1921) 331 T Type: Britt in Bull. Torrey Bot. Club 48

TeIs? n.v., Iso US).
Holucre included this species (sphalm. Inerenaia Nowicke) Ia s, brevithyraa H. Walter. From her citation of the type that itton, Freeman s Nowell 2527, probably NY'. I conclude type fro has not seen it, nor have I. Only a sterile isonot confirm is known to me. This specimen, however, does 11 in this reduction in any way ${ }^{11}$.

This part of the type collection might possibly be a
focker. In this case it could no longer pos for discussion, because suckers longer serve as a basis hormal appearance of suse suckers widely deviate from the other species.

ge

The description of S. iereneis is in even better agreenent With S. macrophylla, S. amerioana and S. aculeata than with s. brevithyrsa, because of the statements "panicles, nanyflowered, puberulent*.
These characters are also found in the collection Smith $2 \pi k$. Like S. ierensis this plant has been collected in Trinidad and it cannot be placed in any of the better documented species. This probably led NowIcke to take it for S. iernii and - because of striking similarity in overall appearanceto reduce this species to S. brevithyrsa. But in spite of all superficial agreement the collection Smith 2706 differs from S. brevithyrsa not only in the characters mentioned above but also in the presence of bracteoles. If this collection really represents S. ierenais, this species is clearly different from S. bravithyrea. But since the isot)p known to me is not in agreement with this collection either, I prefer to treat S, ierensis as "species non satis nota' until further collections are observed.

Specimina incertae sedis

Three collections were found to be intermediate between S. americana and S. aculeata:

Caracas: Gollmer s.n. (B); the rather immature fruits seas to bear only one winglet on either side, this winglet, hor ever, being very distinct. Following vegetative charactera this collection could be placed in both species.
Parat Rio Trombetas, below the rapids of Porteira: A. pucki s.n. ($R, R B$)) only some ovaries seem to have lateral wing lets. Following vegetative characters, this collection would be near the limits of the variational range of both species. Roraima: Rio Apiaf, 30 km from mouth: G. T. Prance; E. Porero, B, S. Pena and J. P. Ramos 4163 (G, K, M, NO, MY, st US) ; the imnature fruits show at their base several ridges is very regular distribution, but these ridges cannot be takes for real winglets. In the flowers there is no trace of win ${ }^{+}$ let-primordia. In overall appearence this plant is closer to S. americana, especially to the type of S. fotiosa.

Species exclusa:

S. asiatica Lour., F1. Cochinch. 1. (1790) 341

There exists no material of this species. In the description the statements "capsula ... 2-valvis" and "semen ... conme ala magna" suggest that this is no seguieria. Apart from that, only once a Seguieria has been collected outsice South America up to now, and this was a cultivated specimen from the Botanical Garden of Victoria, Camerons.

age Library, http://www.biodiversitylibrary.org/: www
 2. Gallesia

Casaretto, Nov. stirp. bras. dec. 5 (1843) 43

- monotypic -

Gatlesia integrifolia (Spreng.) Harms in Engler : Prantl, Nat. Pflanzenfam. Ed. 2, 16 (1934) 144
Thouinia integrifolia Spreng., Neue Entdeck. II (1821) 155; Type: Sello 3.n. (Holo B).
Crataeva gorarema Vell., Fl. Flumin. I (1825) 200
Galleria Gorarema (Vell.) Moq. (sphalm. G. gorazema Noq.) in DC., Prodromus XIII, 2 (1849) 8; Type lost. 12
G. acorododendrum Casar., Nov. stirp. bras. dec. 5 (1843) 44) Syntypes: Casaretto 539 and ? (TO? n.v., Isosyntype No. 539 G) .
G. ovata 0. C. Schmidt in Fedde, Repert. spec. nov. reg. veg. 32 (1933) 97 ; Type: A. Raimonai 11696 (Holo B).
G. integrifolia (Spreng.) Harms var. ovata (O. C. Schmidt) Nowicke in Ann. Missouri Bot. Gard. 55 (1968) 321

Tree, up to 35 m high. Branches terete to somewhat angled, often with lenticels, young branches sometimes sparsely pubescent. Leaves alternate, petiolate. Petioles up to 6 cm (8 cm ?) long, usually more than 2 cm long, with minute and ephemeral stipule-like-prophylls in their axils. Leaf-blade entire, \pm elliptic to ovate, more rarely lanceolate-elliptic, up to 23 cm long and 11 cm wide, about 1.3 to 3 times (often ± 2 times) longer than wide, being widest at about the middle or below, coriaceous (in young leaves chartaceous), either glabrous or on the lower surface with hairs along the midrib and/or in the axils of the nerves, at the base acute to widely rounded, less of ten attenuate, at the tip normally acuminate, rarely obtuse, mucronulate.
Inflorescences axillary or terminal panicles, branches someWhat angled, about 20 to >100-flowered, up to 35 cm long, softly pubescent (hairs usually many-celled, rarely branched aimply, usually not collapsed, directed towards the tip, appressed). Bracts rarely leaf-like, mostly triangular to thate, herbaceous, up to 2.7 mm long but usually not more chan 2 mm . Bracteoles similar, usually smaller, up to 1.7 mm

12
STAFLEU (1967) states that "According to the preface of the Flora fluminensis the types were deposited at the "Cabinet d'Histoire naturelle de Rio de Janeiro". Since there is no material in R or RB today, the type is probably lost. If necessary, G. gorarema (Vell.) Moq. may be typified by plats IV in ARRABIDA, Fl. flum. Icones V (1835). The collection Vauthier 146 , cited as type by NOWICKE, had only been examined by MOQUIN, but not by VELLOZO.
long, very rarely larger and similar to the tepals.
Flowers sessile to subsessile, rarely with pedicels of up to 4 mm lenght, hermaphrodite, \pm actinomorphous. Perianth simple. Buds subglobose, up to $\overline{4} \mathrm{~mm}$ in diametre. Tepals four, imbricate, subequal, up to 5.5 mm long and 5 mm wido but usually smaller, herbaceous, on the outside densely pubescent, enlarged in fruit, erect, \pm woody, up to 8 min long and 5 mm wide, often incised at Ehe tip. Stamens about 20 to 45, irregularly inserted, filaments + thread-like, shorter than the tepals, up to 2.5 mm long. Anthers lineaf, dorsifixed, extrorse, opening by longitudinal slits, up to 2.5 mm long, deeply incised at the base and at the tip. Ovary superior, unicarpellate, unilocular, \pm ovoid, laterally compressed, on drying impressed b \bar{y} the filanents. very often sparsely pubescent. Style very compressed, ${ }^{\dagger}$ winglike, asymmetric. Stigma distinctly papillose, rumios down the thicker margin of the styles. Ovule one, basal, campylotropous.
Fruit winged, up to 40 mm long, often sparsely pubescent when immature. Basal part subglobose to ovate, somewhat compressed, up to 8 mm in diametre. Wing up to 15 mm vide, at the thicker margin 4 straight to convex, rarely a 1 ittlo concave, at the other variable. Seed one, erect, subglobose \pm compressed. Testa thinly crustaceous, + shining, glabrouk red-brown. Embryo extremely curved. Germination epigaeous, cotyledons cordate, about $1,5 \mathrm{~cm}$ long and wide.
8. 10c.: Sello 5.n. (B) .

BRAZIL:

8. prov.: Bowie \& Cunningham s.n. (BM) ; Burchell 5066 (BR_{1} $\mathrm{K})$; Land s.n. (B, C) ; Pohl s.n. (NY) ; R1edel s.n. (G, K); Sello B.n. (B); 651 (M); Vauthier 146 (K) ; Widgren s.n. (S) : "Canta Gallo": Peckolt 301 (BR):

C e a r a : Frei Allemão 1307 (R) ; S. Pedro: Frei Allenio 4 K. de Cysneiros 1308 (R) ; Serra de Maranguape, on R1o Pirapora: A. Ducke 2339 (NY, VEN).
Parai b a : Bananeiras, S1tio Cumati: D. de Andrade Lima 705859 (HBG, IPA).
Pern ambuco: Floresta, Serra Negra: Academia Brasileira de Ciências $966=E$. P. Heringer, D. de Andrad Lima, J. de P. Lanna Sobrinho \& A. Coelho Sarmento 966 (罒ti IPA, RB) ; D. de A. Lima 51920 (HBG, IPA).
B a hia : Blanchet 3491 (BR); Ihêus, Centro de pesquis! do Cacau: R. P. Belem, A. M. Aguiar s J. P. Lana 1378 (MN) R. P. Belém a M. Magalhes 964 (NY) , Jacoubina 50 (BM): Itabuna, Magalhăes 964 (NY) : Jacoubina: Blancoulhis 19743 (M).
Minas Gerals : Freireich 54 (BR); Regnell 59 (8) near Juiz de Fora: A. Glaziou 3671 (C), 13125 (C, G, , s); Caldas: A. F. Regnell III 1014 (BR, C, $\mathrm{K}, \mathrm{M}, \mathrm{R}, \mathrm{S}$, US) Mendanhat ex Herb. de Saldanha 352 (R).

Rio de j a n e iro (incl. Guanabara): Frel Allenao s.n. ($\mathrm{BR}, \mathrm{G}, \mathrm{RB}$) ; ex Herb. J. Gay s.n. (K); A. Glaziou 5753 (K) ; Graham s.n. (K), 9 (G) ; F. C. C. Raben s.n. (C); Weddell s.n. (B), 400 (B, G, NY) ; Botanic Garden: Dionisio S.n. (RB); Praia da Gavea and Botafogo: ex Herb. de Saldanha 5093 (R); Aguas de Raposo, near Coelho Bastos: H. Delforge 33 (RB) ; Jacarepaguá, Guricia: A. P. Duarte 4766 \& E. Pereira (HBG, RB) ; Copacabana: A. Glaziou 4753 (B, C, S) ; Canpos: Humboldt 128 (B) ; A. J. de Sampaio 8508 (HBG, R); Recreio das Bandeirantes: B. Lutz 1427 (HBG, R, US), 1427 a (HBG, R); Restinga da Tifuca: O. Machado E.n. (RB); Paralba do Sul, Fazenda do Sobral: J. de Saldanha i Schwacke s.n. (R); Horto Florestal: F. G. da Silva 346 (RB). sao P a u 1 o : Casaretto 539 (G): Iquape, Morro das Pedras: A. C. Brade 7886 (B, R, RB); Quilombo: A. Gehrt S.n. SP31735 (HBG, NY, SP); Rio Paraná, Mun. Porto Epitacio: Hatschbach a Guimaräes 21746 (MO) ; Ilha de São Sebastiăo, Vila Bela: A. B. Joly 1091 (SP); Mun. Amparo, Monte Alegre do Sult M. Kuhlmann 454 (SP), 1808 (SP); Serra do Caracol: H. Mosén 1571 (S); Campinas: Campos Novaes 942 (SP). P a r a n a : Patrimonio: P. Dusén 16786 (NY, S) ; Mun. Cerro Azul, Capivaras: G. Hatschbach 11153 (B, M, US) : ibid, Barra do Lageado Grande: G. Hatschbach 41566 (C, HBG, MO, NY) : Adrianópolis, Barra Grande, on Rio Ribeira: G. Hatschbach 11309 (B) ; Mun. S. Antonio do Caiua, Rio Paranapanema G. Hatschbach 14454 (NY, US) ; Mun. Icaraima, Vila Nova, Rio Paraná basin: G. Hatschbach 17063 (NY, US); Mun. Terra B8a, Fda. Murure : G. Hatschbach 21535 (C, MO, RB).
Mato Gros so : banks of Rlo Guaporés Rondon 2439 (R). $\mathrm{A}_{\mathrm{c}} \mathrm{r}$ e : Rio Acre, Iracema: A. Ducke $\mathrm{s} . \mathrm{n} .=\mathrm{RB} 24212(\mathrm{G}, \mathrm{K}$, BB, S, US); upper Rio Jurupari: B. A. Krukoff 5216 (BM, G, $\bar{K}, M, M O, N Y, S, S P$, US) ; near mouth of Rio Macauã, tributary of Rio Iaco: B. A. Krukoff 5405 (BM, G, K, M, MO, NY, S, SP, US).
Ail a z on a s : Rio Purfis, below mouth of Rio Acre, Monteverde: A. Ducke s.n. $=$ RB24211 (G, K, RB, S, US).

BOLIVIA:

3. Prov.: Serrania Ricardo Franco: E. Schmidt 59 (M)) Marzon basin, Cobendo: C. E. White 1032 (K).
Dep. I a P a z; Prov. S. Yungas, basin of R1o Bopi, San Byrtolomé (near Calisaya) : B. A. Krukoff 10118 (G, K, MO, WY, S, US): Caranadi in the Coroico valley: E. Schmidt 170 (M).

Dep. B en 1 : Prov. Balliviain, Rlo Matos: A. C. iN. Terceros 17 (MO).
PERU:
Dep. Ma dre de D $1 \delta \mathrm{~s}$: Prov. Manu, near Manus
R. B. Foster 2500 (K, MO), Parque Nacional de Manu, Cocha Cashu camp, on Rio Manus A. Gentry, J. Aronson a R. Ramirez 27134 (MO).
Dep. C u s c o : Prov. La Convencion, Quillabambat J. D. Boeke 1530 : A. Gentry (HBG, NY, RB) 1 ibid, Rosario Mayot

ge Library, http://www. biodiversitylibran
 R. Chávez 3338 (MO) : slopes along Rio Urubamba near Quilla-

 bamba: A. Gentry, J. Revilla, D. Alfaro C. \& D. Daly 19462 (MO) ; valley of RIo Yanatili, Hacienda de Santiago: A. Raimondi 11696 (B) .Dep. J $u n i n$ ni Prov. Jauja, Satipo, forest reserve, Granja: C. Bazán Vásques 8 (G, NY, US, W), 16 (G, NY, NS, W).

Dep. S an Martini near Tarapoto: R. Spruce 4156 (BR, C, G, K, NY) ; Huahuiva near Saposoa: F. Woytkowski 7321 (K, NO, US).
Dep. Tumbes : Prov. Tumbes, Dtto. Pampas de Hospital, El Caucho: J. Vargas A. 13 (NY), 20 (NY).
ECUADOR:
Prov. E 1 O r o : Piedras: E. L. Little 6621 (K , US).
The neotype selected by NOWICKE is superfluous because the holotype still exists. As opposed to the Seguieria species Gallesia integrifolia is very homogeneous. G. ovata 0. C. Schmidt (of which the type still exists, too) cannot be separated, neither as a species nor as an infraspecific taxon. Its large leaves are not unusual, and the deviating shape of the fruit described by SCHMIDT simply is a frequentil observed artefact caused by drying of the immature fruit. Apart from that, there is some variation in the outline of the samara wing within the species, but this variation is continuous.
Index nominum
Accepted names are underlined.
Azbertokurtzea 0 . Kuntze 24
amsrioana (L.) 0. Kuntze 26 26
doriacea (Benth.) 0. Kuntze 269 266
flomlburda (Benth.) 0. Kuntze
flomlburda (Benth.) 0. Kuntze
foliosa (Benth.) O. Kuntze 266 256
zangadorffif (Moq.) 0. Kuntze
zangadorffif (Moq.) 0. Kuntze 266
longifolia (Benth.) 0. Kuntze
longifolia (Benth.) 0. Kuntze 260
macrophy2la (Benth.) 0. Kuntze
macrophy2la (Benth.) 0. Kuntze 249
parvifolia (Benth.) 0. Kuntze
parvifolia (Benth.) 0. Kuntze
vauthieri (Moq.) O. Kuntze 26 26
Crataeva
gorarema Vell. 265
Qazleeia Casaretto 265

Goxarema (Vell.) Moq

Goxarema (Vell.) Moq
goranema Moq. 265 265
intogrifolfia (Spreng.) Harms 265 265 265
var, ovata 10. C. Schmidt)
var, ovata 10. C. Schmidt) pvata 0. C. Schmidt Schmidt) Nowicke 265
eoorododendrum Casar 265
tage Library, http://www. biodiversitylibrary. org. 244
Soguiera Adans. 244
Gagieria Loefling 244
quiteata Jacq. 248
affinis Heimerl 256
aiberti H. Walter 246
amerioand L. 246
Gmaricana auct. non L., Walter, Nowicke s auct. plur. 249
asiatioa Lour. 264
brevithyraa H. Walter 263
cordata Britton 260 260
coridesa Benth.
coridesa Benth. 249 249
ooriaces auct. non Benth., Nowlcke 246 246
alliptica R. E. Fries 249 249
slliptica H. Walter 246 246
smarginata B . Walter
smarginata B . Walter 246 246
floribunda Benth.
floribunda Benth. 246 246
floriburda (non Benth.) f . alutaoea Chod. 249
folioaa Benth. 246
glaniovif Briq. 256 256
guaranitioa Speg.
guaranitioa Speg. 249 249
var. miarophytta Heimerl 249
Semenais Britton 263 263
inerenaia Nowicke 263
finemria H. Walter 258
tangadorffit Moq. 256 256 246

lakifotian. Walter

lakifotian. Walter 246 246
Longifolia Benth.
Longifolia Benth. 260 260
macrophy 2 la Benth.
macrophy 2 la Benth. 256
maminifera H. Walter
maminifera H. Walter 246 246
paohycarpa H . Walter
paohycarpa H . Walter
paraguayenaia Morong 258 249 249
parvifolia Benth
parvifolia Benth 256 256
rigida H. Walter
rigida H. Walter
aaurigora Heimerl 249 249 246
vauthispi Mog.
vauthispi Mog. 249 249
potaohil H . Walter
potaohil H . Walter
Wangerinit 日. Walter 246 246
Thouiniaintegrifolia Spreng.265
LITERATUREBENTHAM, G. (1841): Observations on some genera of plantsConnected with the flora of Guiana. Trans. Linn. Soc.5: 43, 44-Genova.

CORNER, E. J. H. - 43 - 1976): The Seeds of the Dicotyledons, vol. 1 - Cambridge.

ECKARDT, T. (1954): Morphologische und systematische Auswertung der Placentation von Phytolacoaceas. Ber. dt. Bot. Ges. 67: 113-129.
(1964): Centrospermae. In: Engler, Syllabus der Pflanzenfamilien 2: 79-102.
EWEL, J. (1980): Tropical Succession: Manifold Routes to Maturity. Int EWEL, J. (Ed.), Tropical Succession $=$ Supplement to Biotropica 12 (2): 2-7.
EXELL, A. W. (1953): The Combretum species of the New World. J. Linn. Soc. London 55: 103-141.

FEDOROV, A. A. (Ed.) (1966): Chromosome Numbers of Flowering Plants. - Leningrad.
GARCKE, A. (1891): Bot. Jahrb. 13: 470.
HATSCHBACH, G. 4 O. GUIMARAES (1973): Fitolacaceas do estall do Parans. Bol. Mus. Bot. Municipal Curitiba - Parall - Brasil 8: 1-7.

HEIMERL, A. (1934): Phytolaocaoeae. In: A. Engler i K. PRANTL, Nat. Pflanzenfam., ed. 2, 16 c: 135-145.
JACQUIN, N. J. Baron von (1763): Selectarum stirpium americanarum historia, p. 170 - Wien.
JOHNSTON, M.C. \& L. A. JOHNSTON (1978) : Rhamnus. Fl. Neotrop. 20: 1-96.
LINNE, C. (1767): Syst. Nat., ed. 12, 2: 369 - Stockhol. LOEFLING, P. (Ed. LINNE) (1758): Iter hispanicum, plantat americanae, p. 191 - Stockholm; facsimile repr. Ed. RYDEN, S. (1957) - Madrid.
MARTIUS, C. F. P. von (1843): Systema materiae medicae vegetabilis brasiliensis p. 71, 72 - Leipzig, Wien.
METCALPE, C. R. 5 L. CHALK (1957) : Anatomy of the Dicotyle dons, ed. 2, 2: 1086-1091-oxford.
MOQUIN-TAMDON, C. H. A. B, (1849): Phytolaacaoeae. Int A. P. De CANDOLLE, Prodromus 13 (2): 6-8 - Paris.

NOWICKE, J. W. (1968) : Palynotaxonomic study of the Phiff lacoaceqe. Ann. Missouri Bot. Gard. 55: 294-364.
ORMOND, W. T., A. R. CORTELLA DE CASTELLS, M. C. BEZERRA PINHEIRO \& M. C. RODRIGUES CORREIA (1978) : Contribuicao ao estudo anatờmico das populaçoes diplbide e tetraploide de Petiveria alliacea L. Bol. Mus. Whe. Rio de Janeiro, Botanica, nova serie 51 : 1-13.
PRANCE, G. T. (1973): Phytogeographic support for the theot of Pleistocene forest refuges in the Amazon gasin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalaraceae, Diohapotalaceal and Lecythidaceae. Acta Amazonica 3 (3): 5-28.
RYDEN, S. (1957) : Pedro Loefling en Venezuela. - Madrid. SIMPSON-VUILLEUMIER, B. (1971): Pleistocene Changes in the Fauna and Flora of South America. Science 173: 771-780.
SIMPSON, B. B. \& J. HAPFER (1978): Speciation Patterns in the Amazonian Forest Blota. Annu. Rev. Bcol. Syst. 9: 497-518.
SMITH, L. B. (1968): Origins of the Flora of southern Brazil. Contr. US Nat. Herb. 35: 215-249.

Notes added in proof:
(1) In the Index Londinensis the epithet "porfoliata" can be found under Seguieria Loefl. This, however, does not belong here but rather to the pre-Linnaean Seguiera Manetti ($=$ stackstonia Huds., Gentianaceae).
(2) Professor Kubitzki drew my attention to further two cases of extra-amazonian distribution, viz. the genera Vissaduia and Pseudabutilon (Malvaceae) (R. E. Fries 1908 in Kongl. Svenska Vetenskaps Akademiens Handlingar 43 n .4).

Anschrift des Autors:
Institut fur Allgemeine Botanik
und Botanischer Garten
Chahorststraße 18
D-2000 Hamburg 52

Ige Library, http://www.biodiversitylibrary.org/; ww

fig, 1. Position of the thorns in Seguieria. The numbers show the sequence of scales on the axillary shoot. (X 8 ; Regnell III 1013).
fig. 2. Base of a petiole (P) and an axillary shoot (A) is Seguieria. $T=$ initial stage of a thorn on a budscale. (x 16; Riedel s.n.).
fig. 3. Hairs of the non-collapsed type (x 400). In all species possessing this type branched hairs are the exception. A: Gallesia integrifolia (Spruce 4156). B: Seguieria paraguayensis (Endlich 33). C: S. Langadorffit (Hatschbach 17815). D: S. muens phylta (Froes 1924); in this species irregular incrustations on the cell-walls are most frequent.
fig. 4. Hairs of the usually collapsed and repeatedly branched type (x 400). A: Saguieria americand (Kegel 12335). B: S. aculeata (Hatschbach 18518).
fig. 5. Vascular supply in the carpel of Seguieria, $M=$ carpel midrib. (x 16; Mattos Filho 92).
fig. 6. Section through a seed-coat of the black type (about $\times 500$, combined after various sections).
fig. 7. Section through a seed-coat of the brown type (abort x 500, combined after various sections).
fig. 8. Ranges of S. maorophyzza and S. brevithyza
fig. 9. Range of S. paraguayensis.
fig. 10. Range of s. langsdorffit.
fig. 11. Range of S. aouleata.
fig. 12. Range of S. amerioana.
fig. 13. Range of Gallesia integrifolia.
p1. I. Seguieria americana L. At Habit (x $1 / 2$; Schomburg 661). B: Ovary, with primordia of lateral winglets (x 6; Ule 9486). C: Fruit (x 1/2; Edwall 1748). D: Fruit (x $1 / 2$; Vauthier 29). E: Fruit (x 1/2; Gardner 722). F: Fruit (x 1/2; Regnell III 1013). G: Fruit with the least development of winglets ($x \quad 1 / 2$; Riedel s, n.) . H: Fruit ($\mathrm{x} 1 / 2$; Sello 3331-
pl. II. Seguieria aculeata Jacq. A: Habit ($x 1 / 2$; Schwart 6103); this specimen demonstrates best how muck variation in leaf shape can be found in one collection. B: Recurved thorns (x $1 / 2$; Willians 249). Ci Straight thorns (x $1 / 2$; Morong 645): Dt Ovary (x 6; Hasslex 11502). E: Fruit (x $1 / 2 \dagger$ Dugand 5482). F: Fruit (x $1 / 2$; Meyer 18316). C: Fruit with small wing-like excrescences (x i/2;

Endlich 211). H: Two fruits from the same infructescence (x 1/2; Fiebrig 4932).
pl. III. Seguieria Zangsdorffii Moq. A: Habit (x 1/2; Hatschbach 17815); the leaves of the type of S. glaziovii Briq. are very similar in shape, but twice as large. B: Leaf ($x / 1 / 2$; Esc. Polytécnica 6097), these narrow leaves are the other extreme of the variational range in this species. Ci Ovary (x; Hatschbach 8363). Di Fruit ($x 1 / 2$; Klein 290). E: Fruit ($\mathrm{x} 1 / 2$; Davidse, Ramamoorthy s Vital 11566). Fi Fruit (x 1/2; Koscinski 125). G: Extremely curved fruit (x $1 / 2$; Davidse, Ramamoorthy i Vital 11498). H: Fruit (x 1/2; Kuhlmann s.n. SP 36274).
pl. IV. Seguieria paraguayeneis Morong. A: Habit (x $1 / 2$; Balansa 2415). B: Leaf of the rare acuminte form (x 1/2; Hassler 12400). Ci Ovary (x 6; Hassler 3712). D: Fruit (x $1 / 2$; Hassler 3887). E: Frait ($\mathrm{x} 1 / 2$; Steinbach 7121). Gi Fruit (x $1 / 2$; Balansa 2415).
p1. V. Seguieria maorophylla Benth. A: Habit (x, 1/2) Davidse a Gonzáles 14470). B: Leaf ($\mathrm{x}, 1 / 2$; Davidse 4 Gonzales 14346). C: Part of a branch with normally developed thorns (x 1/2; Frbes 1924). D: Bud, with bracteoles (x 3 ; Steyermark os Davidse 116786). E: Ovary (x 6; Davidse Gonzales 13805).
pl. VI. Seguieria brevithyraa H. Walter. A: Habit (x 1/2; Krukoff 10166). B: Leaf (x 1/2; Krukoff 10166). C: Bud, without bracteoles (x 3; Rusby 1353). D: Ovary (x 6 ; Rusby 1353).
p1. VII. Gallesia integrifolia (Spreng.) Harms. A: Habit ($x 1 / 2$; Spruce 4156). B: Leaf ($x \quad 1 / 2$; Gehrt 5.n. SP 31735). C: Buds ($\mathbf{x} 3$; Gehrt s.n. SP 31735). D: Ovary (x 6; Vasquez 8). E: Fruit, straight form ($x 1 / 2$; A. C. \& W. Terceros 17). F: Fruit, curved form (x 1/2; Chavéz 3338).
age Library, http://www. biodivelsitylibradr(org

fig. 3

$$
-275=
$$

tage Library, http://www.biodiversitylibrary.org/; www.

fig. 4

fig. 5

age Library, http://www.biodiversitylibrary.org/; www

fig. 6
fig. 7
ritage Library, http://www.biodiversitylibrary.org/; www.b

if.g. 8
ge Library, http://www.biodiversitylibrary.org/; ww

fig. 9

Eig. 10
tage Library, http://www.biodiversitylibrary.org/; www.

Fig. 11
ge Library, http://www.biodiversitylibrary.org/; ww

fig. 12
ritage Library, http://www.biodiversitylibrary.org/; www.b

5ig. 13

ge Library, http://www.biodiversitylibrary.org/; ww

tage Library, http://www.biodiversitylibrary.org/; www.

ge Library, http://www.biodiversitylibrary.org/; ww
Platc III

age Library, http://www.biodiversitylibrary.org/; www
Plate II

ge Library, http://www.biodiversitylibrary.org/; ww

tage Library, http://www.biodiversitylibrary.org/; www.

Plate III

age Library, http://www.biodiversitylibrary.org/; ww

ZOBODAT www.zobodat.at

Zoologisch-Botanische
Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature
Zeitschrift/Journal: Mitteilungen der

Botanischen Staatssammlung München

Jahr/Year: 1982
Band/Volume: 18
Autor(en)/Author(s): Rohwer Jens
Artikel/Article: A TAXONOMIC REVISION OF THE GENERA SEGUIERIA LOEFL.
AND GALLESIA CASAR. 231-288

[^0]: Obviously MOQUIN used it this way.

[^1]: 7

[^2]: 9
 From his description, however short it may be, it is even possible to tell which one.

[^3]: 10

