Crocus adamii Gay (Liliiflorae, Iridaceae) and some of its relatives in Iran

Helmut Kerndorff ${ }^{1}$, Erich Pasche ${ }^{2}$ \& Dörte Harpke ${ }^{3}$

Abstract

Crocus adamii Gay and its relatives belong to one of the largest and complex groups of associated species in section Nudiscapus in the genus Crocus. The group is known to have members in the Anatolian Diagonal (Turkey) and in the Caucasus. New findings support the suggestion that it is also widely distributed in Iran. Our findings shed some light on this situation and revealed new species which are described here.

Zusammenfassung: Crocus adamii Gay und seine Verwandten gehören zu einer der größten und kompliziertesten Gruppen zusammengehörender Arten in Sektion Nudiscapus in der Gattung Crocus. Neuere Ergebnisse unterstützen die Vermutung, dass die „adamii-Gruppe" auch im Iran weit verbreitet ist. Unsere Ergebnisse bringen einige neue Erkenntnisse in diesem Zusammenhang, inklusive neuer Arten, die hier beschrieben werden.

Key words: Crocus adamii species group, Iran.
${ }^{1}$ Correspondence to: helmutkerndorff@sapo.pt
Casa da Eira, São Romão, Cx 548 A, 8150-058 São Bras de Alportel Portugal; ${ }^{2}$ Feldstraße 71,42555 Velbert, Germany; ${ }^{3}$ Leibniz-Institute of Plant Genetics and Crop Research (IPK), 06466 Gatersleben, Germany.

INTRODUCTION

Results of molecular analyses in the genus Crocus show a rather complex situation in the relationship of species belonging to Crocus adamii Gay. The distribution of this species-group has a large extension all along the Turkish Anatolian Diagonal, from there north-eastwards into the Caucasus range, eastwards into Armenia and Azerbaijan and south-eastwards into Iran where they can be found southwards along the Zagros mountains at least down to Sanandaj and eastwards along different mountain stocks belonging to the Elburz mountains as far as Almeh. The entire group turned out to be one of the genetically most distinct and largest in the genus and will be defined later as series Adami.

PLANT MATERIAL

For molecular analysis we investigated two to five individuals per population. For morphological analyses a minimum set of characters was measured or determined in the field of 24 to 49 individuals (Tab. 1). In some cases for different parameters also dried material from type locality was used. Voucher specimens of all analyzed individuals were deposited at the herbaria of the IPK Gatersleben (GAT). The distribution of the investigated material is shown in Fig. 1. The map was generated using a 1 arcminute global relief model of Earth's surface integrating land topography (ETOPO1; Amante and Eakins 2009), and the raster package (Hijmans and van Etten 2012) in R v.3.2 (R Develop-

Table 1: Investigated Iranian Crocus populations belonging to the "adamii-group".

Population identity	Taxon	Investigated specimens	Geographical distribution in Iran
HKEP1638	C. cf. reinhardii	49	Semnan, north of Damghan, 2090 m
HKEP1555	C. cf. reinhardii	41	Zanjan, pass east northeast of Zanjan, 2100 m
HKEP1636	C. iranicus type	33	Kordestan, near Saqqez, 1560 m
HKEP1548	C. sanandajensis sp. nova	35	Kordestan, east of Sanandaj, 2100 m
HKEP1637	C. zagrosensis sp. nova	44	Kordestan, Divandarreh, 2070 m
HKEP1628	C. zanjanensis sp. nova	38	Zanjan, Qedar, 2160 m
HKEP1629	C. cf. hybrid	44	Azarbayjan-E-Sharoi, S of Ahar, 1850 m
HKEP1630	undefined, no molecular	24	Azarbayjan-E-Sharoi, S of Varzaghan, 1850 m
HKEP1631	analysis possible	C. cf. roopiae	41

ment Core Team 2008). Important morphological (continuous parameters) values, results of statistical calculations, as well as phenotypical characters of the investigated populations are compiled for differentiation and comparison in Tab. 2.

MOLECULAR METHODS AND RESULTS

To infer the affiliation of the Iranian crocuses also other taxa of the C. adamii group were included. Five other species of section Nudiscapus and five species of section Crocus were molecularly investigated as outgroups. For each of the internal transcribed spacer region (ITS) the nuclear ribosomal DNA (rDNA) was investigated. DNA extraction, PCR and sequencing were done according to Harpke et al. (2014). All sequences newly obtained
in this project were deposited in the EMBL nucleotide database under accession numbers (for all others see Harpke et al. 2013; 2016).

Sequence alignments and phylogenetic analyses

Sequences for all loci were manually aligned. If sequences were identical within the same population, only one sequence per population was included in the phylogenetic analysis. Bayesian inference (BI) was conducted in MrBayes 3.2 (Ronquist et al. 2012) using the GTR $+\Gamma+$ I model. In BI two times four chains were run for two million generations each, sampling a tree every 100 generations. Converging log-likelihoods, potential scale reduction factors for each parameter and inspection of

Fig. 1: Map of geographical distribution of the investigated population of C. adamii group. Elevation levels are indicated in different shades of grey. The Anatolian Diagonal is indicated in red.
Table 2: Continuous parameters and phenotypic characteristics of some Iranian Crocus populations belonging to the "C. adamii-Komplex"

$\begin{gathered} \text { Parameter } \\ \text { group } \\ \hline \end{gathered}$	annulate corm tunic						colour ofsheathing leaves		segm prop.	true leaves					stamen and styles							
population identity	outer	inner	splits (mm)	subsplits	necklength (mm)	teeth on rings (length, mm)	cataphylls	bract/ bracteoles		$\begin{gathered} \text { leaf- } \\ \text { no. } \\ \text { mean }{ }^{3} \end{gathered}$	$\begin{gathered} \text { col } \\ \text { leaves } \end{gathered}$	white stripe ${ }^{1}$	leafdiam. (mm)	leafribs no. ${ }^{2}$	$\begin{aligned} & \text { length } \\ & \text { fila } \\ & (\mathrm{mm})^{3} \end{aligned}$	$\begin{gathered} \text { length } \\ \text { anth }(\mathrm{mm})^{3} \end{gathered}$	length stylebran. (mm) ${ }^{3}$	$\begin{gathered} \text { col } \\ \text { fila } \end{gathered}$	col anth	col conn	$\begin{gathered} \text { col } \\ \text { style } \end{gathered}$	style acc. stam.
HKEP1638	c	c	2-5	ab	5-7	ab to ma $\ll 0.5$	silv tbr	silv	3.0	3-5.4-7	g gr	1/5-1/4	2-3	(2)3(5)	4-5.1-7	8.5-11.7-14	5.9	dy	dy	dy	or	80el
HKEP1555	c	so	$\begin{aligned} & \text { none } \\ & \text { or }>5 \end{aligned}$	ab	5-10	$\begin{aligned} & \text { f-dist } \\ & \ll 0.5 \end{aligned}$	silv, tytgr	silv	2.7	3-5.5-7	g gr	$1 / 3$ to $>1 / 3$	1.5-2	(1)2(3)	4-5.5-7	7-10.4-13	5.2	dy-or	dy	dy	or	100el
HKEP1636	c	c	$\begin{aligned} & \text { none } \\ & \text { or }>5 \end{aligned}$	ab	10-13	ab to ma dist <1	silv	silv	-	3-4.5-7	g gr	<1/3-1/3	1.5-2.5	(3)4(5)	-	-	-	-	-	-	-	-
HKEP1548	c	so	>5	ab	8-10	$\begin{aligned} & \mathrm{ab} \text { to } \mathrm{f} \\ & \ll 0.5 \end{aligned}$	silv, tbr	silv	2.7	3-4-7	dgr	$<1 / 3-1 / 3$	2-4	(3)4(5)	4-5.9-7	9-11.5-17	6.6	y-dy	dy	c	or	91se
HKEP1637	c	so	>5	ab	9-13	ab	silv	silv, tbr	2.5	3-4-6	g	1/5-1/3	1.5-2	(4) 5	4-5.3-6.5	7.5-11-15.3	6.2	dy	dy	c-ly	or	86 el
HKEP1628	c / m	c / m	2-5	pr (r)	8-10	ab	$\underset{\mathrm{r}}{\text { silv,ty/b }}$	silv, long	2.8	2-3.7-5	g	1/5-1/3	1.5-3	(2)3(5)	4-5.9-9.5	10-12.5-17	6.0	c-ly	dy	c-ly	dy	97le
HKEP1629	c	so	2-5	r	6-10	ab	silv ty	silv	3.0	-	-	-	-	-	2.5-4.2-6	7-10.8-13	5.2	dy	dy	c-ly	or	91 el
HKEP1630	c	so	2-5	$\begin{gathered} \mathrm{pr} \\ (\mathrm{occ}) \end{gathered}$	5-8	ab	silv	silv	3.2	-	-	-	-	-	3-4-5	8.9-10.8-13.5	6.7	dy	dy	c-ly	dy-or	78 el
HKEP1631	c / m	c / m	>5	ab	5-10	ab	$\begin{gathered} \text { silv/br } \\ \text { ty } \end{gathered}$	silv	2.6	-	-	-	-	-	5.5-7.4-9	8-11.7-14	6.0	c-ly	dy	ly-dy	dy-or	90le

Explanatory notes:
corm tunic: $\mathrm{c}=$ coriaceous, $\mathrm{m}=$ membranous, $\mathrm{so}=$ softer, $\mathrm{ab}=\mathrm{absent}, \mathrm{pr}=$ present, $\mathrm{r}=\mathrm{rare}, \mathrm{ma}=$ many, $\mathrm{f}=$ few, dist $=$ distant, up $=$ on upper rings; <smaller than, $\ll \mathrm{much}$ smaller than;
color of sheathing leaves at flowering time: silv $=$ silvery ((kinny); $\mathrm{br}=$ brownish, tips yellow $=$ ty, tips greenish $=$ tgr, tips brownish $=$ tbr
segmprop.: segment proportion (= average length of outer segments/average width of outer segments) as a rule: 2-2.5 bowl-shaped flowers, 2.5-3.5 "normal" flowers, $3.5-5$ rather starry star-like flowers;
 stamen and styles: fila $=$ filaments, anth $=$ anthers, conn $=$ connectives, $c o l=$ colour; colours of filaments
$c=$ colourless, ly $=$ light yellow; colours of styles: y-or $=$ yellow to orange, or $=$ orange, orr $=$ orange-red; style acc. stam $=$ length of style according to stamen (numbers are $\%$ of investigated specimens of a population, le longer to equal, se $=$ shorter to equal.
${ }^{1}$ in dimension of the leaf-diameter
${ }^{2}$ on both sides of the groves
${ }^{3}$ average of investigated specimens

Fig. 2: Phylogenetic tree of the C. adamii group and outgroup taxa derived from a Bayesian analysis of the ITS region. Numbers at nodes give posterior probabilities for the clades. Different ITS types observed within one individual are indicated by small letter..
${ }^{-} \mathrm{C}$
C. geghartii 7183
C. geghartii 7184 0.95
0.6 0.6
C. roopiae HKEP1631 HKEP1629 lb
C. roopiae HKEP1037
0.93 C. zanjanensis HKEP1628

HKEP1629 la
C. adamii 2505a HKEP1036
$\left[\begin{array}{l}0.92 \\ 0.83 \\ \text { C. cf. aerius HKEP1018 } \\ 0.97 \\ \text { HKEP0618 } \\ \text { HKEP9917 }\end{array}\right.$
C. almehensis C. reinhardii 2516
C. cf. reinhardii HKEP1638
C. cf. reinhardii HKEP1555
0.83
C. sivasensis
${ }^{0.52}$ C. albocoronatus C. iranicus HKEP1636 a C. iranicus HKEP1636 b C. sanandajensis HKEP1548
C. gunae WHIR100
C. zagrosensis HKEP1637
C. adamii CMGG 021
C. marasensis C. romuleoides C. kartaldagensis
${ }^{0.53} \mathrm{C}$
C. pseudonubigena
C. schneideri
C. ponticus
C. cf. tauri HKEP1034
-C.C. cf. tauri HKEP1035
 C. tauri a
C. kangalensis

1 - C. cf. munzurense HKEP9910 b
C. munzurense
C. berytius
$0.52 —$ C. fibroannulatus
C. artvinensis

1

tabulated model parameters in MrBayes suggested that stationarity had been reached in all analyses. The first 25% of trees of each run were discarded as burn-in. Three independent runs of BI analysis were performed to confirm that separate analyses converged on the same result. In each of these analyses, the same topology and similar posterior probabilities (pp) of nodal support were found.

PHYLOGENY

Although the evolutionary linage of the "Crocus adamii group" is one of the oldest in section Nudiscapus (Harpke et al., 2013), most species originated within the last few Mya. The Iranian crocuses cluster together with C. adamii (Georgia), C. alboconoratus (Kernd.) Kernd. et al. (Anatolian Diagonal, Turkey), C. geghartii Sosn. (Armenia), C. roopiae Woronow (Palandöken mountains, eastern Turkey). It is probably a recently evolved group with rapid radiation, which is reflected (i) by the low degree of differences in the used phylogenetic marker (nrITS region), and (ii) the comparatively large distribution area.

As a result of low genetic variability branch supports and resolution are low in the phylogenetic tree, too (Fig. 2). However, although the molecular data do not reflect the clear morphological differentiation it also supports that some of the investigated Iranian populations clearly represent new species.

In Crocus genetic distances correlate often with geographical distances. It is therefore surprising to find C. gunae Rukšāns to be molecular identical to C. zagrosensis, growing 650 km away from each other. Also, C. reinhardii (north-east of Zanjan), identical to C. cf. reinhardii (population HKEP1555, some 10 km apart from the location north-east of Zanjan) is geographically far apart (450 km) from the molecular also identical population HKEP1638 (north of Damghan). In both cases not only distance, but also different mountain stocks are separating these populations. Here more sampling and additional markers and the application of population genetic methods can provide a better understanding of this finding.

Another point which yet needs to be investigated more intensely concerns the population HKEP1629. The presence of two different ITS types (HKEP1629a and b in Fig. 2) indicates that it might represent a hybrid probably involving C. zanjanensis. To evaluate the status of the HKEP1629 further and extended molecular and karyological analyses are necessary. We, therefore, refrain from describing it as a new species at present.

DESCRIPTION OF NEW SPECIES

1. Crocus sanandajensis Kerndorff \& Pasche, species nova

Holotypus: Iran, Province Kordestan, Zagros mountains, east of Sanandaj, $2100 \mathrm{~m}, 13.4 .2015$, HKEP 1548 (GAT, Gatersleben).

Corm subglobose, flattened at base, $15-20 \mathrm{~mm}$ in diameter; outer tunics coriaceous, inner tunics somewhat softer, neck conspicuous, $8-10 \mathrm{~mm}$ long, bristly; tunics split into broad seg-
ments of $>5 \mathrm{~mm}$, sub-splits absent; rings well developed, predominantly whole-edged or slightly saw-toothed, very rarely with tiny teeth of $\ll 0,5 \mathrm{~mm}$. Cataphylls $3-4$, white at flowering time but often with brownish tips. Leaves 3-4-7 ($\mathrm{n}=31$), slightly lanceolate, dark green, 2-4 mm in diameter at broadest position, glabrous, white stripe small, $1 / 5$ to $<1 / 3$ of leaf-diameter, 3-4(5) ribs underneath of each side of the blade. Leaves often reach the flowers at anthesis. Throat is deep yellow without hair. Perianth tube white or light blue, near the apex striped or spotted brownish, bluish or violet. Outer segments between 25 and 35 mm but usually 30.2 mm long $(\mathrm{n}=35)$, between 7.5 and 14.7 mm but usually 11.2 mm wide ($\mathrm{n}=35$). Inner segments between 22.8 and 34.6 mm but usually 28.7 mm long, between 7 and 14 mm but usually 10 mm wide $(\mathrm{n}=35)$. Inside all segments are evenly white with the striping of the outside sometimes shining through on outside. Outside of outer segments finely striped or feathered bluish or slightly violet, more intense at base. Outside of inner segments plain whitish-blue, towards perianth tube more or less brownish or bluish-violet spotted. Prophyll absent. Bract and bracteole present, silvery, not conspicuous. Length of filaments $4-5.9-7 \mathrm{~mm}(\mathrm{n}=35)$, yellow to dark-yellow, no hairs. Anthers 9-11.5-17 mm long ($\mathrm{n}=35$), always yellow. Connective colourless or yellowish. Pollen yellow. Style divided into 3 branches stiffly upright and closely hold together, broadly trumpet-shaped at apex mostly orange sometimes deep yellow, branches 4-6.612 mm long $(\mathrm{n}=35)$. Style length according to stamen is 91% shorter to equal, and 9% longer $(\mathrm{n}=35)$. Capsule and seed not seen. Chromosome number unknown.

Remarkable of C. sanandajensis are the more or less uniformly white and large flowers with long segments of around 3 cm on average, relatively broad lanceolate leaves with a very narrow white stripe, many ribs in both grooves of the leaves underneath and long anthers which can reach up to 17 mm . The outside of the outer segments has a fine bluish feathering or faint striping but is never speckled (see also parameter compilation in Tab. 2). Crocus sanandajensis is a close relative to Crocus reinhardii (HKEP 1555, Fritsch 2516) and C. almehensis.
Distribution and habitat: C. sanandajensis is until now only known from the type locality east of Sanandaj, Province Kordestan, Iran. The plant grows in rocky and grassy areas without trees, together with Astragalus, Hypericum, Anemone, Iris, Fritillaria, Alysssum, Gagea, Muscari, Scilla, Allium.

2. Crocus zanjanensis Kerndorff \& Pasche, species nova

Holotypus: Iran, Province Zanjan, Qedar, $2160 \mathrm{~m}, 7.3 .2016$, HKEP 1628 (GAT, Gatersleben).

Corm subglobose, somewhat flattened at base, $13-20 \mathrm{~mm}$ in diameter, outer and inner tunics coriaceous to membranous, neck conspicuous, bristly, $8-10 \mathrm{~mm}$ long; tunics split into segments of 2-5 mm, sub-splits rarely present; rings well developed but mostly rather narrow, all smooth-edged. Cataphylls 3-4, silvery at flowering time often with yellowish or brownish tips. Leaves 2-3.7-5 $(\mathrm{n}=21)$, green, poorly developed at anthesis mostly much shorter than flowers $1.5-3 \mathrm{~mm}$ in diameter, glabrous, apex obtuse, white stripe small $1 / 5$ to maximal $1 / 3$ of leafdiameter; variable no. of ribs underneath (2)3(5) on both sides of the keel. Throat without hair, yellow. Perianth tube white

1637-3

1628-4

1637-4

Fig. 3: Selection of four photographs of each investigated population to document their variability.

Fig. 3 (continued): Selection of four photographs of each investigated population to document their variability.
but near the apex rarely with small bluish or violet spots. Outer segments between 23.3 and 33 mm but usually 27.9 mm long $(\mathrm{n}=33)$, between 7.7 and 12 mm but usually 9.9 mm wide ($\mathrm{n}=$ 33). Inner segments between 21.6 and 32 mm but usually 26.4 mm long, between 7 and 12.5 mm but usually $9,6 \mathrm{~mm}$ wide $(\mathrm{n}=33)$. Outsides and insides of all segments are light bluish lilac. The outside of the outer and inner segments is in general not much different and often without any markings. The outer ones have sometimes bluish-violet spots near the base which are extended into faint radial stripes up to half of the segments. Prophyll absent. Bract and bracteole present, silvery, conspicuous. Length of filaments $4-5.9-9.5 \mathrm{~mm}(\mathrm{n}=36)$, colourless to lightyellow, no hair. Anthers $10-12.5-17 \mathrm{~mm}$ long $(\mathrm{n}=36)$ and narrow, deep yellow. Connective is colourless to yellowish, pollen yellow. Style deep yellow divided into 3 branches, not extended or trumpet-shaped at the upper end, branches $3.5-6-9.5 \mathrm{~mm}$ long
$(\mathrm{n}=36)$ Style length according to stamen is $(\mathrm{n}=36)$. Capsule and seeds not seen. Chromosome number unknown.

Crocus zanjanensis is characterised by its medium-sized flowers having a soft bluish-lilac ground colour without conspicuous markings. Remarkable are the long narrow anthers with an average length of 12.5 mm . Its near relatives are HKEP 0616 from Güllü dağları and C. roopiae (HKEP1037) from Palandöken dağları, both in eastern Turkey (Kerndorff et al., 2013), HKEP1629 (see Tab. 1 and 2 of this paper), C. geghartii, C. adamii of collection CMGG021 and the plants defined as type of C. adamii by Ruksans (2015).
Distribution and habitat: C. zanjanensis is until now only known from the type locality in the mountains south of Zanjan, Zanjan Province, Iran. The plant grows in rocky and grassy areas without trees on limestone among Iris hymenospatha, I. reticulata, Astragalus, Colchicum, Muscari.

3. Crocus zagrosensis Kerndorff \& Pasche, species nova

Holotypus: Iran, Province Kordestan, Zagros mountains, near Divandarreh, 2100 m, 12.3.2016, HKEP 1637 (GAT, Gatersleben).

Corm subglobose slightly flattened at base, about 14 to 20 mm in diameter, tunics coriaceous, the inner ones softer, neck conspicuous, $9-13 \mathrm{~mm}$ long, very bristly; tunic splits into broad segments $>5 \mathrm{~mm}$, sub-splits absent; rings well developed more or less smooth-edged. Cataphylls 3-4, white even at tips. Leaves 3-4-6 green, $1.5-2 \mathrm{~mm}$ in diameter at flowering time, glabrous, white stripe small $1 / 5$ to $1 / 3$ of leaf-diameter, 5 rarely 4 ribs underneath of each side of the keel. Leaves poorly developed at anthesis shorter than flowers. Throat deep yellow without hairs. Perianth tube white, near the apex sometimes coloured or striped bluish.

Outer segments between 21.4 and 31.2 mm but usually 26.4 mm long $(\mathrm{n}=33)$, between 6.5 and 13 mm but usually 10.5 mm wide $(\mathrm{n}=33)$. Inner segments between 18.6 and 30 mm but usually 24.7 mm long, between 7 and 13.2 mm but usually 10 mm wide $(\mathrm{n}=36)$. Inside all segments are white. The same is observable for the outside of the inner segments. Outside of outer segments is finely striped, feathered or speckled light blue or bluish-lilac or rarely without markings. Both, outer and inner segments may have bluish zones near the apex of the perianth tube. Prophyll absent. Bract and bracteole present, silvery, sometimes with light brownish tips. Length of filaments 4-5.3-6.5 $\mathrm{mm}(\mathrm{n}=36)$, yellow to orange-yellow, no hairs. Anthers 7.5-1115.3 mm long $(\mathrm{n}=36)$, yellow, with rounded tips. Connective colourless to yellowish, pollen yellow. Style orange divided into 3 branches hold stiffly upright and closely together, expanded and fringed at the upper end, branches 4-6.2-10.4 mm long $(\mathrm{n}=$ 36). Style length according to stamen is 84% equal (56%) and shorter (28%), and 16% longer ($n=36$). Capsule and seeds not seen. Chromosome number unknown.

Crocus zagrosensis is characterised e. g. by white flowers with faint light blue stripes, feathers or speckles on the outside of the outer segments. Remarkable are the stiffly upright stylebranches which are expanded and fringed at the apex, and the unusually high number of ribs in both sides of the grooves of the leaves. The closest relatives of C. zagrosensis is C. reinhardii
(HKEP 1548, HKEP $1638 \equiv$ HKEP $1555 \equiv$ C. reinhardii 2516
(Dr. Fritsch) and C. almehensis.
Distribution and habitat: C. zagrosensis is a plant of alpine meadows. It is until now only known from the type locality in the Zagros Mountains around Divandarreh, Kordestan Province, Iran. The plant grows in rocky and grassy areas (short alpine turf) among Astragalus, Verbascum, Allium, Colchicum, Corydalis, Ranunculus, thistles.

REFERENCES

Amante C. \& Eakins B.W. (2009): ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. - NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M
Harpke D., Meng S., Rutten T., Kerndorff H. \& Blattner F.R. (2013): Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: Ancient hybridization and chromosome number evolution. - Molecular Phylogenetics and Evolution 66: 617-627.
Harpke, D., Peruzzi L., Kerndorff H., Karamplianis T., Costantinidis T., Randelovic V., Randelovic N., Juskovic M., Pasche E. \& Blattner F.R. (2014): Phylogeny, geographic distribution, and new taxonomic circumscription of the Crocus reticulatus species group (Iridaceae). - Turk. J. Bot. 38: 1182-1198.
Harpke D., Kerndorff H., Pasche E. \& Peruzzi, L. (2016): Neotypification of the name Crocus biflorus Mill. (Iridaceae) and its consequences in the taxonomy of the genus. - Phytotaxa 260: 131-143.
Hijmans R.J. \& van Etten, J. (2012): raster: Geographic analysis and modeling with raster data. R package version 2.0-12. - http:// CRAN.R-project.org/package=raster
Kerndorff H., Pasche E., \& Harpke D. (2013): Crocus biflorus Miller (Liliiflorae, Iridaceae) in Anatolia. Part IV. - Stapfia 99: 159-186.
R Development Core Team (2008): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, - http://www.R-project. org.
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J.P. (2012): MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. - Syst. Biol. 61:539-542.
RuKšāns J. (2015): The genus Crocus (Iridaceae) in Iran - three new species from the so-called "Crocus biflorus" aggregate. International Rock Gardener 61: 2-26.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database
Digitale Literatur/Digital Literature
Zeitschrift/Journal: Stapfia
Jahr/Year: 2017
Band/Volume: 0107
Autor(en)/Author(s): Kerndorff Helmut, Pasche Erich, Harpke Dörte
Artikel/Article: Crocus adamii Gay (Liliiflorae, Iridaceae) and some of its relatives in Iran 3-10

