Snakes in Space: Limbless Biomimetic Snake Robots for Extraterrestrial

 Exploration

Henry C. Astley
Biomimicry Research \& Innovation Center
University of Akron

Butte 'M9a' in 'Murray Buttes' on Mars

$\sqrt{x} \rightarrow-\infty$
NASA's Curiosity Mars rover

NASA's Curiosity Mars rover

.
2

R

Aistopoda

Adelospondyli

El Dorado Dune Field, Mars
 NASA Spirit Rover

Spirit Mars Rover

Locomotor sensitivity on simple flowing ground

SandBot,
~2 kg

Tuned for hard ground kinematics

Tuned for soft ground kinematics

Fast phase

Differential Turning

Reversal Turning

3x Speed

Butte 'M9a' in 'Murray Buttes' on Mars

$\sqrt{x} \rightarrow-\infty$
NASA's Curiosity Mars rover

Lateral Undulation

Corn Snake (Pantherophis guttatus), Astley Lab

- Snakes use obstacles as "push points" to generate propulsive force
- Increased obstacle density allows snakes to move faster, while limbed animals go slower!
- Most common, but control is least understood.
- Lateral Undulation is a dialogue between the snake and its environment

Murray Buttes, Mars NASA Curiosity Rover NASA Curiosity Rover

=
\qquad -

4

Concertina Locomotion

Corn Snake (Pantherophis guttatus), Astley Lab

- Concertina locomotion allows snakes to move through tunnels effectively across a wide range of diameters
- Slow and expensive (in part due to anchoring forces), but versatile across many situations
- Lateral anchoring can be replaced with medial gripping for narrow arboreal branches.
- Bends in tunnels or obstructions can serve as anchor points to switch to lateral undulation.

Bio-inspired Adaptive Snakebot Concertina Locomotion, 3x speed, Astley Lab

- Rectilinear locomotion can allow snakes to move through any hole or tunnel the body can fit through
- Body scales are cyclically lifted, moved forward, and lowered into static contact with the ground, just like the body segments in sidewinding
- Preliminary trials show no-slip locomotion on loose sand, even at steep inclines
- Alternative to tracks and wheels for rovers?

Swappable head for sensor deployment, gripping actuators, sample retrieval

Slithering Into The Future: Next Steps?

- Biomimetic replication of snake locomotor modes
- Current snakebot can do 3 / 4 modes, but only sidewinding really well
- Need understanding of snake control algorithms
- High DOF system, yet snakes have rapid control including environmental feedback
- Snake nervous system is completely "black box"
- Improved actuators
- Better torque and power
- Smaller/more vertebrae

Carnegie Mellon University
Chaohui Gong
Matthew Travers
Jin Dai
Howie Choset

Georgia Institute of Technology
Mark Lowder
Mohammed Amir
Hamid Marvi (now ASU)
Daniel Goldman

Acknowledgements

Technology

Zoo Atlanta Jason Brock David Brothers Luke Buffardi Brad Lock Robert Hill Wade Carruth Joe Mendelson
Z00 Atlanta

NSF Grants: 1150760, 1205878, and 0848894
Georgia Tech School of Biology Elizabeth Smithgall Watts Endowment GT Physics of Living Systems group

