DEPARTMENT OF COMMERCE
 BUREAU OF THE CENSUS
 WASHINGTON

 FOURTEENTH CENSUS OF THE UNITED STATES

 FOURTEENTH CENSUS OF THE UNITED STATES MANUFACTURES: 1919 MANUFACTURES: 1919
 CHEMICALS SULPHURIC, NITRIE, AND MIXED ACIDS, AND COAL-TAR PRODUCTS
 TOGETHER WITH
 THE COKE AND SALT INDUSTRIES

Prepared under the supervision of EUGENE F. HARTLEY, Chief Statistician for Manufactures

WASTIINGTON

EXPLANATION OF TERMS.

Scope of census.-Census statistics of manufactures are compiled pirimarily for the purpose of showing the absflute and relative magnitude of the different branches of industry covered and their growth or decline. Incidentally, the effort is made to present data throwing light upon character of ownership, size of establishments, and similar subjeots. When use is made of the statistics for these purposes it is imperative that due attention be given to their limitations, particularly in gonnection with any attempt to derive from them figures purporting to show average wages, cost of production, or profits.
The census did not eover establishments which wereide during the entire year or for which products were valued at less than $\$ 500$, or the manufacturing done in oducational, eleemosynary, and penalinstitutions.
Period covered.-The returns relate to the calendar year 1919, or the business year which corresponded most nearly to that calendar year, and cover a year's operations, except for establishments which began or discontinued business during the year.
The establishment.-As a rule, the term "establishment" represelits a single plant or factory, but in some oases it represents two or more plants which wer o operated under a common ownership or for which one set of books of account was kept. If, however, the plants constituting an establishment as thus defned vere, not all pocated within the same city, county, or state, separate reports were secured in order that the figures for each plant might be included in the statisties for the city, county, or state in which it was located. In some instances separate reports were secured for different industries carried on in the same establishment.
Classification by industries.-The establishments were assigned to the several classes of industries aceording to their products of chief value. The products roported for a given industry may thus, on the one hand, include minor products different from those covered by the class designation, and, on the other hand, may not represent the total product covered by this designation, because some products of this class may be made in establishments in which it is not the product of ohief value.
Infinence of increased prices.- In comparing figures for cost of materials, value of products, and value added by manufature in 1919 with the corresponding figures for earlier consuses, account should be taken of the general increase in the prices of commodities during recent years. To the extent to whioh this factor has beon influential the figures fail to afford an exact measure of the increase in the volume of business.
Persons engaged in the industry..-The following general classes of persons ongaged in the manufacturing industries were distinguished: (1) Proprittors and firm members, (2) salaried oflicers of corporations, (3) superintendents and nanagers, (4) clerks (including other subordinate salaried employees), and (5) wage earners. The number of persons engaged in each industry, segregated by sex, and, in the case of wage earners, also by age (whather under 16 or 16 and over), was reported for a single representative day. The 15th of December was selected as representing for most industries normal conditions of employment, but where this date did not portray such conditions, an earlier date was requested.
In the case of employess other than wage earners the number thus reported for the representative date has been treated as equivalent to the average for the year, since the number of employees of this class does not ordinarily vary muoh from month to month. In the case of wage earners the average has been obtained in the manner explained in the next paragraph.
In addition to the more detailed report by sox and age of the number of wage earners on the representative date, a report was obtained of the number employed on the 15th of each month, by sex, withont distinction of age. From these figures the average number of wage earners for the year has been calculated by dividing the sum of the numbers reportod for the several months by 12 . The importanee of the industry as an employar of labor is believed to be more aceurately mensured by this average than by the number employed at any one time or on a given day.
The number of wage earners reportod for the representative day, though given in cortain tables for each separato industry, is not totaled for all industrias combined, because, in view of the variations of date, such a total is not beliaved to be significant. It would involve more or less duplication of persons working in diferent industries at differont times, would not represent the tetal number smployed in all industries at any one time, and would give an undue weight to seasonal industries as compared with industries in continual operation.
in order to determine as nearly as possible the age distribution of the average number of wage earners for an industry, the per cent distribution by age of tho Wage earners for December 15, ot the nearest representative day, has been calculated from the actual numbers reported for that date. The percentages thus obtained have been applied to the average number of wago earners for the year to determine the average numbers 10 years and over, and under 10 , employed.
Salaries and wages.-Under these heads are given the total payments during the year for salariss and wages, respectively. The Census Bureau has not undertaken to calculate the average annual earnings of either salaried omployees or wage earners. Such averages would possess little real value, because they would be based on the earnings of employees of both sexes, of all ages, and of widely varying degrees of skill. f'luthermore, so far as wage earners are concerned, it would be impossible to calcu-
laté accurately oven so simple an average as this, since the number of wage earnors fluctuates from month to month in every industry, and in some cases to a very great extent. The Consus Bureau's figures for wage earners, as already explained, are averages based on the number employed on the 15th of each month, and whillo. represonting the number according to the pay rolls to whom wages were pald ond that date, no doubt represont a larger number than would be required to perfornd tho work in any industry if all were continuously employed during the year.
Prevailing hours of labor.-No attempt was made to ascertain the number of wage earners working a given number of hours per week. The inquiry called meraly for the prevailing practice followed in each establishment. Occasional variations in hours in an establishment from one part of the year to another were disregarded; and no attention was paid to the fact that a fow wage earners might have hours differing from those of the majority. All the wage earners of each establishment. are therefore counted in the class within which the establishment itself falls. In most establishments, however, practically all the wage earners work the same number of hours, so that the figures give a substantially correct representation: of the hours of labor.
Capital (amount actually invested).-The instructions on the sohedule for se ouring data relating to capital were as follows:
"The'answer should show the total amount of capital, both owned and borrowed, on the last day of the business year reported. All the tems of flxed and live capital may be taken at the amounts carried on the books. If land or buildings are rented, that fact should be stated and no value given. If a part of the land or buildingslif owned, the romainder being rented, that fact should be so stated and only the value of the ownod property given. Do not include seourities and loans representigg investmelts in other enterprises."
These instructions were identical with those employed at the oensuses of 1014 and 1909. The data compiled in respeat to capital, however, at both censuses, as well as at all preceding censuses of manufacturos, have been so defective as to be of little value except as indicating general conditions. In fact, it has been repeatedly recommended by the census authoritios that this inquiry be omitted from the schedule. While there are some establishments whose accounting systems are such that an acourate return for capital could be made, this is not true of the great majerity, and the figures therefore do not show the aotual amount of capital invested.
Materials.-The statistios as to cost of materials relate to the matarials used during the year, whioh may be more or less than the materials purchased during the year. The term "materials" covers fuel, rent of power and heat, mill supplies; and containers, as well as materials which form a constituent part of the produot,
Rent and tazes.-The taxes inolude certain Federal taxes and state, county and local taxes. Tnder "Federal taxes" there are included the internal revenno tax on manufactures (tobaceo, beverages, etc.), exclse taxes when included in values reported for products, corporation capital stocir tax, and corporation income tax, but not the income tax for individuals and partners.

Value of products.-The amounts given under this heading represont the selling value or price at the factory of all products manufactured durlng the year, whioh may differ from the value of the products sold.
Value addsd by manufacture.-The value of products is not always a satib factory measure of either the absolute or the relative importance of a given industry, because only a part of this value is actually created by the manufacturing processes carried on in the industry itself. Another part, and often by far the larger one, represents the value of the materials used. For many purposes, therefore, the best measure of the importance of an industry, from a manufacturing standpoint is the value oreated by the manufacturing operations carried on within the indure try. This value is calculated by deducting the cost of the materials used from the value of the products. The flgure thus obtained is termed in the census reports "value added by manufacture."
Cost of manufacture and profts.-The census data do not show the entire cost of manufacture, and consequentiy can not be used for the calculation of profth No account has been taken of depreciation or interest, rent of offices and bulldingl. other than factory or works, insurance, ordinary repairs, advertising, and othor sundry expenses.

Primary horsopower.-Thisitem represents the total primary power equipment of tha manufacturing ostablishments plus the amount of power, prinoipally eleo tric, rented from other concerns. It doos not cover the power of electric motori taking their current from dynamos driven by primary power machines oparated by the same establishment, because the inclusion of such power would obviously, result in duplication. The figures for primary horsepower represent the rated capacity of the engines, motors, etc., and not the amount of power in actual dally use.

Ftuel--Statisties of the quantity of fuel used are shown only for anthracite and bituminous coal, coke, fuel oils, gasoline and other volatile oils, and gas, and represent the quantity used during the yoar. As only the principal kinds of fual are shown, comparison as to the tatal cost of all fuel is impracticable.

CONTENTS.

Explanation of termsPage.
Chemicals:
General statistics-
General character of the industry 4
Comparative summary. 5
Principal states, ranked by value of products 5
Persons engaged in the industry. 6
Wage earners, by months, for states. 6
Average number of wage earners, by prevailing hours of labor, per week, for selected states 7
Size of establishments, by average number of wage earners, for selected states 7
Size of establishments, by value of products. 8
Character of ownership, by states. 8
Number of horsepower of types of prime movers.
Fuel consumed, by states.
Special statistics-
Materials. 10
Principal materials, by industries 10
Products. 11
Group I-Acids 12
Group II-Ammonium and cyanogen com- pounds. 20
Group III-Sodas, sodium, and compounds. 21
Group IV--Potash, potassium, and compounds 26
Group V-Alums, aluminum, and compounds. 28
Group VI-Bleaching compounds 29
Group VII-Coal-tar chemicals. 30
Group VIII-Plastics. 32
Group IX-Compressed and liquefied gases 32
Group X-Chemicals, not elsewhere specified 33
Chemicals made by the aid of electricity 42
General tables-
Comparative summary, by states 43
Detailed statement, by states. 44
Sulphuric, nitric, and mixed acids:
General statistics-
General character of the industry 46
Comparative summary 47
Principal states, ranked by value of products 47
Persons engaged in the industry. 47
Wage earners, by months, for statas. 48
Average number of wage earners, by prevailing hours of labor, per week, for selected states 48
Size of establishments, by average number of wage earners, for selected states 48
Size of establishments, by value of products. 48
Number and horsepower of types of prime movers 49
Fuel consumed 49
Special statistics-
Establishments, materials, and products 49
General tables-
Comparative summary, by states 50
Detailed statement, by states. 50
Coal-tar products: Page.
General statistics-
Principal states, ranked by value of products. 51
Persons engaged in the industry 52
Wage earners, by months, for states 52
A verage number of wage earners, by prevailing hoursof labor, per week, for selected states.52

- earners, for selected states 52
Size of establishments, by value of products 53
Character of ownership 53
Number and horsepower of types of prime movers 53
Fuel consumed, by states 53
Special statistics-
Materials and products 54
General table-
Detailed statement, by states 54
Coke:
General statistics-
General character of the industry 55
Comparative summary 56
The coke industry, by industry groups 50
Principal states, ranked by value of products. 56
Persons engaged in the industry 57
Wage earners, by months, for states 57
Average number of wage earners, by prevailing hours of labor, per week, for states 57
Size of establishments, by average number of wage earners, for states 58
Size of establishments, by value of products, by in- dustry groups 58
Character of ownership. 59
Number and horsepower of types of prime movers. 59
Fuel consumed, by states. 59
Special statistics-
Products 60
General tables-
Comparative summary, by states 60
Detailed statement, by states 61
Salt:
General statistics-
General character of the industry. 62
Comparative summary 62
Principal states, ranked by value of products. 63
Persons engaged in the industry 63
Wage earners, by months, for states 63
Average number of wage earners, by prevailing hours of labor, per week, for selected states 63
Size of establishments, by average number of wage earners, for selected states. 64
Size of establishments by value of products 64
Oharacter of ownership 64
Number and horsepower of types of prime movers 65
Fiel consumed, by states 65
Special statistics-
Products. 65
General tables-
Comparative summary, by states 66
Detailed statement, by states. 66

CHEMICALS; SULPHURIC, NITRIC, AND MIXED ACIDS; AND COAL-TAR PRODUCTS;

TOGETHER WITH
THE COKE AND SALT INDUSTRIES.

The statistics for the industries Chemicals; Sulphuric, nitric, and mixed acids; and Coal-tar products are here presented as a group on account of the extensive overlapping of products, and following these industries
are presented the statistics for the Coke and Salt industries, which supply important basic materials for the group.

CHEMICALS.

GENERAL STATISTICS.

General character of the industry.-The industry, "chemicals," according to the census classification, embraces establishments engaged in the manufacture of products grouped under the following heads: I, Acids; II, Ammonium and cyanogen compounds; III, Sodas, sodium, and compounds; IV, Potash, potassium, and compounds; V, Alums, aluminum, and compounds; VI, Bleaching compounds; VII, Coaltar chemicals; VIII, Plastics; IX, Compressed and liquefied gases; and X , Chemicals, not elsewhere specified.

This classification does not include all chemicals in the broad sense of the word, as some are included under distinctive titles. Establishments engaged primarily in the manufacture of sulphuric acid, nitric acid, or mixed acid are segregated under the title "Sulphuric, nitric, and mixed acids." However, in presenting the statistics for a specific chemical product, the information given, unless otherwise stated, refers to total production, irrespective of the classification of the producing establishment.

Comparative summary.-Table 2 presents the comparative statistics for the census years 1899 to 1919, inclusive, for the chemical industry, with percentages of increase for the respective census periods.

Principal states, ranked by value of products. Table 3 summarizes the more important statistics for the industry, by states, ranked according to value of products. Though establishments were reported from 38 states, including the District of Columbia, the industry is largely centralized; New York, New Jersey, and Pennsylvania, constituting the Middle Atlantic division, reporting 55.9 per cent of the products, 52.7 per cent of the wage earners, and 222 establishments, or 37.1 per cent of the total number.

Persons engaged in the industry:-The age classification of the average number of wage earners in Table 4, is an estimate obtained by the method described in the "Explanation of terms.". Figures for states will be found in Table 36. The female wage earners increased from 4.5 per cent of all wage earners in 1909 to 5.3 per cent in 1914 and to 8.3 per cent in 1919; and in the case of clerks and other subordinate salaried employees, females constituted 34.5 per cent in 1919 as compared with 16.7 per cent in 1909.
Wage earners, by months-Table 5 is designed to show the regularity of employment, or the reverse, in accordance with the industrial conditions existing during the census year. Females constituted 8.5 per cent of the average number of wage earners in 1919. The statistics show a somewhat greater range between the minimum and maximum months in 1919 than was the case with the earlier censuses, the number reported for the minimum month, May, in 1919, being 84 per cent of the number reported for the maximum month, January. In 1914 the minimum month was 97.1 per cent of the maximum month, and in 1909, 90.2 per cent. Of the states reporting 1,000 or more wage earners, the monthly fluctuation ranged from 66.5 per cent, minimum month of maximum month, for Indiana and Michigan, to 95.2 per cent for Missouri.
Prevailing hours of labor.--The statistics in Table 6 show a very marked movement towards shorter hours of labor. In 1909, 56.2 per cent of the wage earners were employed in establishments where the prevailing hours of labor per week were 60 or more, and in 1914 51.3 per cent were within this class. In 1919, however, the proportion dropped to 13.9 per cent. On the other hand, in 1909 the number employed in establish-
ments where the prevailing hours of labor per week were 48 or less was negligible，only four－tenths of 1 per cent；and in 1914 the number so employed was 2.9 per cent，but in 1919， 38.4 per cent of the wage earners came within this group．

Size of establishments，by average number of wage earners．－In 1914 the establishments averaged 82 wage earners per establishment，and in 1919， 93 wage earners．In 1914 there were 17 establishments each of which employed over 500 wage earners，the number constituting 52.1 per cent of all wage earners in the industry．In 1919 Table 7 shows that the number of establishments of this class had increased to 28，and the wage earners constituted 57.7 per cent of the total．
Size of establishments，by value of products．－The grouping based upon value of products in Table 8 is necessarily affected by the general increase in values since the census of 1914，and this rise is reflected in the changes from lower to higher groups，as well as in the increase in aterage value of products per establishment．In 1909 the establishments averaged $\$ 328,000$ in value of products，in 1914，$\$ 400,000$ ， and in 1919，$\$ 734,000$ ；the increase from 1914 to 1919 being to a considerable extent due to the increase in values，for though the increase in value of products for all establishments for the period 1914－1919 was
177.5 per cent，the increase in average number of wage earners，an index of normal growth，was but 72 per cent．

Character of ownership．－Table 9 presents statistics concerning the character of awnership，or legal organization，of establishments in the industry for 1919，1914，and 1909，and for the leading states for 1919 and 1914．The figures show growth for the corporation group，and although establishments under other forms of ownership still constitute a considerable number，the corporations account for 98.7 per cent of the products and 99．1 per cent of the wage earners．

Number and horsepower of types of prime movers．－ Table 10 presents the power statistics for the industry． There is shown a material increase in electric power． Though the equipment operated with purchased electric current in 1919 is somewhat less in rated capacity than in 1914，yet the motor equipment using current generated by the establishment from prime movers，was materially greater，and in the aggre－ gate the electric power equipment was equal in capacity to 62.6 per cent of the total primary power rating in 1919，as compared with 61.1 per cent in 1914 and 75.1 per cent in 1909.

Fuel consumed．－Table 11 presents the statistics for fuel consumed，by kinds and by states，for 1919 and for 1914．The figures for gas include both natural and manufactured gas．

Table 2．－COMPARATIVE SUMMARY：1919，1914，1909，1904，AND 1899.

	1019	1914	1909	1904	1899	per cent of nacrease．${ }^{\text {a }}$			
						$\begin{aligned} & 1914- \\ & 1919 \end{aligned}$	$\begin{gathered} 1909- \\ 1914 \end{gathered}$	$\begin{aligned} & 1904 \\ & 1909 \end{aligned}$	$\begin{aligned} & 1899 \\ & 1904 \end{aligned}$
Number of establishments．	598	395	359	297	316	51.4	10.0	20.8	-6.0
Persons engaged．．．．．．．．．．．．．．．．	66，947	37，881	27，817			76.7	36．2		
Proprietors and firm members Salaried employees．．．．．．．．．．．			27,8181 3.927 3	$\begin{array}{r}22,151 \\ 2,794 \\ \hline\end{array}$		23.2 105.0	$\begin{array}{r}\text {－38．5 } \\ -39.3 \\ \hline\end{array}$	$\begin{array}{r}6.6 \\ 40.6 \\ \\ \hline 1\end{array}$	
Wage earners（average number）	55，586	32， 311	23，729	2，784 19,847	15，163	105.0 72.0	39.3 36.2	19.6	75．9
Primary horsepower． Cspital．	$\begin{array}{r} 376,940 \\ \$ 484,488,412 \end{array}$	$\begin{array}{r} 282,385 \\ \$ 224,345,921 \end{array}$	$\begin{array}{r} 208,657 \\ 8155,198,945 \end{array}$	$\begin{array}{r} 132,394 \\ 396,704,847 \end{array}$	\＄68，453，931	33.5 116.0	35.3 44.6	57.6 60.4	41.4
Salaries and wages．	97，188， 958	31，086， 615	20，230， 551	14，873，791	9，717，475	213.0	53.6	36.1	53.1
Salaries．．	24， 340,634	9，020， 703	6， 140,628	4，060， 033	2，327， 854	170.0	46.9	51.2	74.4
Wages．．	72，848，324	22，066，212	14，095， 023	10， 812,758	7，389，621	230.0	56.5	30.4	46.3
Paid for contract work．	1，321，738	375，435	181， 011	155，558	$\left.{ }^{2}\right)$	252.0	107.4	16.4	
Rent and taxes．．．	32， 228,130	1，733， 251	8460，490	${ }^{2}$ 545， 264	（2）	1，777．0	101.4		
Cost of materials．	216，301，${ }^{438}$	89，450，694	64，145， 429	42，097，957	27，092，591	142.0	39.4	52.4	55．4
Vaiue of products．．．．．．．	$438,658,869$ $222,357,590$	158,053, $68,602,908$	$117,741,103$ $53,595,674$	$75,357,495$ $33,259,538$	$48,158,261$ 21,065,	178.0 224.0	34.2 28.0	56.2 61.1	56． 5
Value added by manufac	222，357，540	68，602，908	53，595， 674	33，259，538	21，065， 670	224.0	28.0	61.1	57.8

${ }^{1}$ A minus sign（－）denotes decrease．\quad＇Tigures not available．${ }^{2}$ Exclusive of internal revenue．＂Value of products less cost of materials．
Table 3．－PRINCIPAL STATES，RANKED BY VALUE OF PRODUCTS： 1919.

state．		wage earners．			Value or PRODUCTS．			VALUE ADDED BY manufacture．			\＆State．		Wage earnerts．			VALUE OF products．			VAITJE ADDED BY Mantifacture．		
				$\begin{aligned} & \text { 总 } \\ & \text { 品 } \end{aligned}$			$\begin{aligned} & \text { 热 } \\ & \text { 品 } \end{aligned}$			亲								$\begin{aligned} & \text { 总 } \\ & \text { 品 } \end{aligned}$			
United States．	598	55，585	100．0		\＄438， 060	100.0	．	\＄222，358	100.0	．．	Nebras	12	300	0.5	18	\＄2，305	0.5	16	\＄1，335	0.6	1
New York．	88	9,68	17.	2		20.0	1		10，7	3	Wisco	30	${ }_{4}^{187}$	0.3	20 16	2，074	0.5 0.4	17	${ }_{922}^{945}$	0.4	18
Now Jersey	78	12， 472	22，4	1	84， 03	18.2	2	38， 860	17.5	2	Minnesots	9	162	0.3	21	1， 456	0.3	20	832	0.4	20
Pennsylvani	56	7，134	12.8	3	73，333	16.7		46， 552	20.9	1	Rhode Is	4	287	0.5	19	1，299	0.3	21	454	0.2	25
Michigan．	36	5， 712	10.3	4	37，851	8.6	4	22， 107	9.9	4	Texas．		150			1，394	0.3	22	822	0.4	2
Ohio．．	37	3，670	6.6	5	32，719	7.5	5	17， 424	7.8	5	Wexas．	8	100	0.2	25	1，363	0.3	23	828	0.4	21
Tlinois．．	33	3，004	5.4	6	22，081	5.0	6	10， 058	4.5	0	colorad	7	98	0.2	24	1，301	0.3	24°	657	0.3	2
Massachus	27	2， 483	4.5	7	17，305	4.0	7	9， 204	4.1	7	Georgis	7	107	0.2	23	957	0.2	25	578	0.3	2
Mirsinini．	22	1，253	2.3	10	13，538	3.1	8	［5， 821	2.6	9			72	01	27	558	0.1	27	237	0.1	
Virginia．．	12	1，847	3.3	8	12，765	2.0	9	9，030	4.	8	Louisia	5	54	0.1	28	313	0.1	29	232	0.1	
California	49	1，486	2.6	－	10，539	－2．4	10	4，409	2.0	11	Kentucky	4	13	（1）	33	177	（1）	33	113	0.1	
Mardiana	9	1，026	1.9	12	8，649	2.0	11	4，679	2.1	10	All other states	28	2，527	4， 6		14， 199	3.3		5，752	2.6	
West Virginia．	8	${ }^{797}$	1.4	13	5,277 3,281	1.2	1	2,079 1,158	0.9 0.5	13											

[^0]Table 4.-PERSONS ENGAGED IN THE INDUSTRY: 1919, 1914, AND 1909.

class.	$\begin{aligned} & \text { Cen- } \\ & \text { sus } \\ & \text { year. } \end{aligned}$	Total.	Male.	$\begin{gathered} \text { Fe- } \\ \text { male. } \end{gathered}$	PER CENTOF TOTAL.		class.	$\begin{aligned} & \text { Cen- } \\ & \text { year } \end{aligned}$	Tatal.	Male.	$\begin{gathered} \text { Fe- } \\ \text { male. } \end{gathered}$	per cent or total.	
					Male.	$\begin{gathered} \text { Fe- } \\ \text { male. } \end{gathered}$						Male.	
All classes.....................	1919	66, 947	59,240	7,707	88.5	11.5	Clerks and other subordinate salaried employees.	1919	8,334	5,460	2,874	65.5	34.5
	1914				93.3	6.7		1914	4, 2200 2	3, 2 2	704 501	81.5 8.3	18.5
	1999	27,817	26,239		94.3	5.7			2,093	2, 192	501	83.3	18.7
Proprietors and officials.............	1919	3,027	2,946	81	97.3	2.7	Wage earners (average number)......						
	1914	1,280	1,256	24 14	98.1 98.7	1.9 1.3		1910	35,586 32,311 20,	50,834	4,752 1.714	91.5 94.7	8.5
	1909	1,095	1,081					1009	23,729	22,666	1,063	$\stackrel{9}{94.7}$	8.3 4.5
Proprietors and firm members...	1919 1914	122 99 191	111 89	110	91.0 89.9	9.0 10.1 5	16 years of age and over..........	1919	55, 420	50, 753	4,667	${ }^{01.6}$	8.4
	1909	1.61	153	8	95.0	5.0		1914	32, 023	30, 411	1,612	8.95 .0	5,0
Salaried officers of corporations...		673				2.8	Under 16 years of age.............					P. 8	4.2
	1914	473	462	11	97.7	2.3		1919	168	81	85	48.8	51.2
Superintendents and managers...	1909	367	361	6	98.4	1.6		1914	288	1815 07	102	64.6 58.1	35.2 41.9
	1919	2,232	2,181	51	97.7	2.3				.			
	11909	708 567	$\begin{array}{r}705 \\ \hline 567\end{array}$		99.6 100.0	0.4							

Table 5.-WAGE EARNERS, BY MONTHS, FOR STATES: 1919.
[The month of maximum employment is indicated by bold-faced figures and that of minimum employment by italic figures.]

state.	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { num- } \\ & \text { ber cm- } \\ & \text { ployed } \\ & \text { during } \\ & \text { year. } \end{aligned}$	number employed on 15th day of the month or nearest representative day.												Percentmini-mumis ofmaxi-mum.
		January.	February.	March.	April.	May.	June.	July.	August.	Septem- ber.	October.	November.	December.	
United States:														
1919...	55,586	60,754	57,339	53, 281	51,100	61,050	51,651	53,509	55,014	57,089	58, 007	59,086	58,552	84.0
Males.	50, 834	55, 865	52,502	48,790	46,399	46, 472	47, 140	48, 906	50,310	52, 250	53, 677	54, 047	53, 656	8.0
1914.......	4,752 32,311	$\begin{array}{r}4,889 \\ 32,634 \\ \hline\end{array}$	4,837 32,172	4,491 32.681	$\begin{array}{r}4,707 \\ 32,442 \\ \hline\end{array}$	4,578 31,959	4,511 31,876	$\begin{array}{r}4,603 \\ 31 \\ \hline 15\end{array}$	4, 704 32 32	4,839 32,813	4,030 32,451	5, ${ }^{\text {52, }}$	4,896 32	89.1
1909.	23,714	32,809 22,609	32,772	- 22,968	31,241	23,661	31,782 23,782	23, 747	32, 23,540	32,813 23,943	32,451 24,355	32,284 24,873	32,216 25,073	97.1 90.2
California.	1,466	1,886	1,728	1,622	1,463	1,337	1,273	1,275	1,346	1,302	1,400	1,429	1,441	67.5
Colorado.								100	100	100	125	107	103	71.2
Georgia.	107	90	100	93	101	99	121	126	124	113	111	110	98	71.4
Illinois.	3,004	3,039	2,812	2,647	2,570	2,572	${ }^{-} 2,694 \cdot$	2,831	3,280	3,391	3,544	3,452	3,210	72.5
Indiana	1,026	1,244	1,108	993	994	889	827	913	${ }^{9} 98$	1,105	1,075	1,094	1,072	66.5
Iowa..	72	39	36	37	32	38	109	105	102	88	100	105	63	29.4
Kentucky.	13	14	14	14	12	12	13	12	11	14	12	14	14	78.6
Louisiana.	54	58	62	62	51	52	54	55	55	56	47	49	47	75, 8
Maryland.	797	651	740	769	710	764	814	771	803	857	920	975	784	80, 8
Massachusetts	2,433	2,526	2,415	2,329	2,346	2,367	2,371	2, 431	2,463	2, 530	2,623	2,666	2,729	85.3
Michigan..	5,712	7,494	6,697	5,768	5,042	4,980	5,077	5,083	5,123	5,482	5, 720	5, 962	0,116	66.5
Minnesota			140	171	193	188	195	178	153	143	147	180	185	50.3
Missouri.	1,253	1,234	- $\begin{array}{r}1,241 \\ 411\end{array}$	1,218	$\begin{array}{r}1,243 \\ 58 \\ \hline\end{array}$	1,263	1,280	1,256	1,204	1,264	1, 257	1,206	1,250	95.2
New Jersey	12,472	12,911	12,846	11,734	11,277	11,765	11,946	12, 469	12,706	12,818	12,988	13,077	13, 127	85.1
New York.	9,687	11,461	10, 829	9,995	9,405	8,926	8,220	9,015	9,152	9,356	9,647	0,765	9,773	778
Ohio.	3,670	3,901	3, 462	3,315	3,098	3, 062	3,247	3,569	3,762	4, 155	4, 210	4,138	4, 197	71.8
Pennsylvania	7,134	6,891	6,603	6, 002	6,921	6,929	6,998	7,186	7,212	7,470	7,585	7,578	7,683	85\% 5
Rhode Island.	287	2268	239	262	276	272	281	318	319	299	305	299	298	80.3
Texas.	150	123	137	133	158	154	145	151	146	151	169	168	165	72.8
Utah..	454	492	453	547	437	351	342	455	486	496	401	449	449	82.5
Virginia.-	1,847	1,765	1,769	1,6144	1,550	1,745	1,739	1,827	2,004	2,032	2,075	2, 118	1,996	72.9
Washington. West Virgin	90 534	$\begin{array}{r}87 \\ 562 \\ \hline\end{array}$	89 517	89 480	76	76		-83	99	95	101	103	108	70.4
Wisconsin.	187	219	198	188	174	480	171	168	567 178	${ }^{624}$	${ }^{635}$	615	478	71.2 77.2

TABLE 6．－AVERAGE NUMBER OF WAGE EARNERS，BY PREVALLING HOURS OF LABOR PER WEEK，FOR SELECTED STATES： 1919 AND 1914.

1 Includes 48 and under for 1914 and 1900.
2 Corresponding figures not available．
Table 7．－Size of establishments，by average number of wage earners，for selected states： 1919.

state．	тотas．		esmanishanemts marloytico－																
		$\begin{aligned} & \text { Wage earners anerage } \\ & \text { number). } \end{aligned}$		$\begin{gathered} 1 \text { to }{ }^{\text {tage }} \\ \text { aearaf } \\ \text { inctusive. } \end{gathered}$				$\begin{gathered} 21 \text { to } 50 \\ \text { wage } \\ \text { earners, } \\ \text { indrive } \end{gathered}$inclusive				$\begin{gathered} \text { 101 to to } 250 \\ \text { waige } \\ \text { aninis } \\ \text { inclusive. } \end{gathered}$						$\underset{\substack{\text { Over 1，000 } \\ \text { wage }}}{ }$ earcers．	
														窓至				妾景	
United States： 1919．．．．．．．．．	${ }_{395}^{598}$	${ }_{\substack{52 \\ 32,586 \\ \hline 11}}$	${ }_{11}^{18}$	${ }_{120}^{153}$	${ }_{302}^{399}$	103	${ }_{2}^{2,230} 1$	121 52	3，${ }_{1}^{3} 721$	${ }_{44}^{50}$	$\xrightarrow{3,773}$3064	${ }_{28}^{47}$	${ }_{\substack{7,408 \\ 4,407}}^{\text {20，}}$	${ }_{14}^{18}$		${ }^{17}$	$\xrightarrow{11,619} 6$	${ }_{8}^{11}$	${ }^{20,455}$
California Georgia Indiana． Maryland	$\begin{gathered} 49 \\ \hline 83 \\ \hline 8 \\ \hline 8 \end{gathered}$			$\begin{array}{r}15 \\ 3 \\ 3 \\ 8 \\ 2 \\ 1\end{array}$		－${ }^{14}$	$\begin{aligned} & 101 \\ & \hline 91 \\ & 9 . \\ & 97 \\ & 67 \\ & 37 \end{aligned}$	$\begin{array}{r} 12 \\ { }_{2}^{2} \\ \frac{7}{2} \\ 2 \end{array}$	$\xrightarrow[\substack{48 \\ 18 \\ 18 \\ 18 \\ 41}]{ }$	$\begin{gathered} 9 \\ \hdashline \\ \hline 6 \\ 1 \end{gathered}$	247	$\because 2$	273 234 3245 324	$\overline{1}$	$\begin{array}{r}319 \\ 478 \\ 488 \\ 384 \\ \hline\end{array}$	\cdots	${ }_{\text {\％}}$	i	1，599
	$\begin{aligned} & 27 \\ & 36 \\ & 32 \\ & 22_{1}^{2} \end{aligned}$		3 ..		$\begin{aligned} & 20 \\ & 20 \\ & 210 \\ & 10 \\ & 10 \end{aligned}$		62 64 64 787 87 87		105 223 166 96	$\frac{1}{1}$	$\begin{gathered} 72 \\ 90 \\ 90 \\ 200 \\ 200 \\ 157 \end{gathered}$	1 \cdots i	113 10.9 $i 0$.	3	1，${ }_{\text {，} 263}^{340}$	＋ $\begin{array}{r}1 \\ 1 \\ \hline-1\end{array}$	788	3	${ }_{4}^{4,278}$
New Jersey New York． Ohio Rhode Island	$\begin{aligned} & 12 \\ & 78 \\ & \hline 88 \\ & .87 \\ & 56 \\ & 46 \end{aligned}$		i°	$\begin{gathered} 13 \\ 21 \\ 5 \\ 5 \\ 8 \\ 1 \end{gathered}$	$\begin{aligned} & 30 \\ & 35 \\ & 140 \\ & 28 \\ & 28 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 21 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 213 \\ & .274 \\ & .178 \\ & \hline 198 \\ & 28 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 10 \\ & 14 \\ & 14 \end{aligned}$		9		$\left.\begin{array}{r} 15 \\ 10 \\ 10 \\ 1 \\ 8 \end{array} \right\rvert\,$	$\begin{aligned} & 2,468 \\ & 1,567 \\ & 1,267 \end{aligned}$			退 $\begin{aligned} & 1 \\ & 5 \\ & 2 \\ & 2\end{aligned}$		1 1 1 1	
Texas． Utah．． West Virginia Wisconsin	$\left.\begin{array}{r} 9 \\ 18 \\ 30 \\ 30 \end{array} \right\rvert\,$	$\begin{gathered} 150 \\ \hline \end{gathered}$		$\left.\begin{array}{r} 1 \\ \frac{2}{3} \\ \frac{3}{2} \\ \frac{2}{2} \end{array} \right\rvert\,$	5 12 4 4 3 36	，	$\begin{gathered} 66 \\ 68 \\ -69 \\ -69 \end{gathered}$	$\begin{gathered} 3 \\ 2 \\ 3 \\ 3 \end{gathered}$	${ }_{88}^{88}$	$\ddot{2}]$	$\begin{array}{r}136 \\ 1060 \\ \hline 108\end{array}$	2 1 2 2				2	i， 512		

Table 8.-SIZE OF ESTABLISHMENTS, BY VALUE OF PRODUOTS: 1919, 1914, AND 1909.

value of product.	number of establistments.			average number of wage earners.			value of productis.			value added by manufacture.		
	1919	1914	1900	1919	1914	1909	1919	1914	1909	1919	1914	1909
All classes.	598	395	359	55,586	32,311	23,729	\$438, 658,869	8158,053, 002	\$117, 741, 103	\$222,357,590	\$68, 002,008	\$53, 595,674
Less than $85,000$.	$\stackrel{41}{4}$	${ }_{5}^{53}$	56	30	69		98, 181	137, 979	124,959	36,026	$\begin{array}{r}84,675 \\ 299 \\ \hline 293\end{array}$	57,890
\$5,000 to \$20,010.	132	$\begin{array}{r}51 \\ 103 \\ \hline\end{array}$	97	1,044	1,066	$\begin{array}{r}\text { 1,337 } \\ \hline 2 \\ \hline 8\end{array}$	6, 881, 161	5,719,359	4, 9850,195	3,582,111	3, 162,556	2, 748,341
\$100,000 to $\$ 5000000$	226	110		6,559	7,900	6,882	$\{56,121,842$	25, 668 , 6566	41,227, 479	28, 589,161 18,081 151	\} 19, 017, 206	16, 870,084
	${ }_{8}^{58}$	44	31	4,821 42,373	23,105	15, 236	- $335,568,414$	102,077,456	70, 800, 560	171, 325,019	46, 030, 118	33, 652, 530
	fer cent distmbution.											
All classes.	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	00.0	100.0	103.0	107.0
Less than \$5,00\%.	6.7	13.4	15.6	0.1	0.2	0.3	(1)	0.1	0.1	(1)	0.1	0.1
\$5,000 to \$20,400]..	9.7	12.9	15.3	0.3	0.5	1.0	0.1	0.4	0.5	0. 1.	0.1	0.5
220,000 to \$100,000.	22.1	26.1	27.0	1.9	3.3	5.5	1.6	3.6	4.2	1.6	4.6	5.1
\$100,000 to \$500,000.	37.8	27.9		11.8	24.4	29.0	\{ 12.8	16.2	35.0	12.9	27.7	31.5
\$500,000 to \$1,000,000.	9.6	8.6		8.7	24.4	64.	1 - 9.0	15. 1		87.1	67.1	31.5
\$1,000,000 and over...	13.9	11.1	8.6	77.3	71,5	64.2	76.5	61.6		77.3	67.1	62.8

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-CIARACTER OF OWNERSHIP, BY STATES: 1919 AND 1914.

Table 10.-NUMBER AND HORSEPOWER OF TYPES OF PRIME MOVERS: 1919, 1914, AND 1909.

1 Figures for horsepower include for 1909 the amount reported under the head of "Other" owned power.
${ }^{2}$ Less than one-tenth of 1 per cent.
Table 11.-FUEL GONSUMED, BY. STATES: 1919 AND 1914.

State.	$\begin{aligned} & \text { Cen- } \\ & \text { sus } \\ & \text { year. } \end{aligned}$		AL. Bitumi- nous (tons, 2,000 pounds).	Coke (tons. 2,000 pounds)	$\begin{aligned} & \text { Fuel } \\ & \text { (hils } \\ & \text { (har- } \\ & \text { rels). } \end{aligned}$	Gaso- line and other vola- tile oils (bar- rels).	$\begin{aligned} & \text { Gas } \\ & \text { (1,000 } \\ & \text { cublic } \\ & \text { fect). } \end{aligned}$	STATE.	$\begin{gathered} \text { cen- } \\ \text { sus } \\ \text { sear. } \end{gathered}$		Bitumi- nous (tons, 2,000 pounds).	$\begin{gathered} \text { Coke } \\ \text { (toons, } \\ 2,000 \\ \text { pounds). } \end{gathered}$	Fuel (bar. rels).		$\begin{aligned} & \text { Gas } \\ & \text { (1,0010) } \\ & \text { culte } \\ & \text { fect) } \end{aligned}$
United States.	1919	$\begin{aligned} & 389,356 \\ & 491,603 \end{aligned}$	$\begin{aligned} & 3,844,667 \\ & 2,667,248 \end{aligned}$	$\begin{aligned} & 457,259 \\ & 275,440 \\ & \hline \end{aligned}$	$\begin{aligned} & 789,347 \\ & 500,668 \end{aligned}$	$\underset{\left({ }^{2}\right)}{18,427}$	$\begin{aligned} & 1,836,998 \\ & 2,744,939 \\ & \hline \end{aligned}$	Nebraska ${ }^{3}$	1919		48,988		73,702	1,325	
Cailiornia ${ }^{2}$	1919	17	56	1,716	496, 136	60	24,352	New Jersey	1919	283, 280	221,877 125,990	8,189 9,799	$\begin{aligned} & 61,805 \\ & 10,892 \end{aligned}$	${ }_{\text {(1) }}^{5,609}$	$\begin{array}{r} 16,887 \\ 8,900 \end{array}$
Colorado ${ }^{\text {a }}$..........	1919		4, 877		12		60	New York.	1919	$\begin{array}{r} 64,883 \\ 125,066 \end{array}$	$\begin{aligned} & 483,708 \\ & 363,440 \end{aligned}$	$\begin{aligned} & 95,439 \\ & 75,052 \end{aligned}$	$\begin{aligned} & 5,210 \\ & 7,344 \end{aligned}$	$\underset{(358}{35}$	$\begin{aligned} & 23,8666 \\ & 31,440 \end{aligned}$
Georgia ${ }^{\text {a }}$...........	1919	10	2,569	1,640				Ohio	1919	596	714,592	96, 108	226		75,086
Illinois.	1919	132	407,312 204457	$20,353$	11, 110	${ }^{610}$	15,359		1914		381,767	56,168	502	(2)	1,525, 141
	1914		254, 457	$7,072$				Pennsylvania,	1919	17,872	441, 199	7,893	48, 507	734	99, 050
Indians ${ }^{\text {a }}$	1919	286	138, 218	3,311	5,003				1814	51,836	338, 040	5,247	12,731	(3)	335, 137
Iowa ${ }^{\text {a }}$	1919		1,287	2,500	105	25		Rhode Island.	1919		6,016	77	2,052		...
Kentucky ${ }^{\text {. }}$.	1919		613	607				Texas ${ }^{3}$	1919	5	22	2,507	14,804	35	643
Louisiana.	1919		1	1,500			4,014	Utah	1919		30,101		12,086	822	
Maryland ${ }^{\text {a }}$.	1918		66,705	42	15,003		7,200	Virginia ${ }^{\text {a }}$	1919	60	146, 051	21,510	130		
Massachusetts.	1919	$\begin{array}{r} 16,157 \\ 3,292 \end{array}$	$\begin{aligned} & 44,699 \\ & 46,570 \end{aligned}$	$\begin{array}{r} 133 \\ 8,782 \end{array}$	$\begin{array}{r} 6,775 \\ 50 \end{array}$	(${ }^{2}$)	751 860	Washington ${ }^{\text {3 }}$.	1019		715 13,157	3,670	4,579 30	10	1,426,406
Michigan...........	$\begin{array}{\|l\|} 1919 \\ 1914 \end{array}$	$\begin{array}{r} 190 \\ 16,321 \end{array}$	$\begin{aligned} & 987,341 \\ & 854,567 \end{aligned}$	$\begin{array}{r} 161,828 \\ 80,534 \end{array}$	$\begin{array}{r} 14,2288 \\ 36 \end{array}$	${ }_{(2)}^{205}$	464,640	Wisconsin	1919		5,941	10		11	
Minnesota.	1919	5,801	5,141	1,040	6,198	106	740	All other states	$\begin{aligned} & 1919 \\ & 1914 \end{aligned}$	$\begin{array}{r} 52 \\ 7,892 \end{array}$	$\begin{array}{r} 55,917 \\ 260,453 \end{array}$	$\begin{aligned} & 23,740 \\ & 29,897 \\ & \hline \end{aligned}$	$\begin{array}{r} 7,232 \\ 467,236 \end{array}$	$\left(^{2}\right)^{3}$	$\begin{aligned} & 137,904 \\ & 375,796 \end{aligned}$
Missouri.	$\begin{aligned} & 1919 \\ & 1914 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 37,564 \\ & 41,964 \end{aligned}$	$\begin{aligned} & 3,446 \\ & 1,879 \end{aligned}$	$\begin{aligned} & 3,764 \\ & 1,555 \end{aligned}$	(i)	$\begin{aligned} & 4,480 \\ & 2,949 \end{aligned}$								

1 Includes some semianthracite.
${ }^{2}$ Included with figures for fuel oils.
${ }^{3}$ Included in "All other states" in 1914.

SPECIAL STATISTICS.

MATERIALS.

Table 12 presents comparative statistics for materials used in the chemical industry, inclusive of "Coaltar products" and "Sulphuric, nitric, and mixed acids," for 1919, 1914, 1909, and 1904. Establishments assigned to other industries but manufacturing chemicals as subsidiary products, did not, as a rule, report
the consumption of the materials called for by the chemical schedule, and hence the figures do not represent total consumption of the specified materials.

Principal materials, by industries.-The consumption of certain of the leading materials asked for specifically in the various special schedules are given in Table 13 by industries.

Table 12.-MATERIALS: 1919, 1914, 1909, AND 1904.
[Tons, 2,000 pounds.]

${ }^{1}$ A minus sign (-) denotes descrease.
Table 18.-SPECTFIED MATERIAL,S, BY INDUSTRIES: 1919 AND 1914.

nndustry.	1919		1914		industry.	1919		1914	
	Quantity.	Cost.	Quantity.	Cost.		Quantity.	Cost.	Quantity.	Cost.
sulphur. Total, tons......	570,769	\$13, 671,065	82,248	\$1,730,647	mitrate of soda. Total, tons.	418,371	$\frac{531,233,537}{2188}$	412,748	\$19,264,181
Chemicals.	153,018	3,599,968			Chemicals.......	$\begin{gathered} 35,6331 \\ 7,632 \end{gathered}$	$\begin{array}{r} 2,188,039 \\ 656,233 \end{array}$	25,715	1,176,733
Coal-tar chemicals...............-	10,308	, 218,162	52,679	1,085, 877	Sulphuric, nitric, and mixed acids.	35, 545°	2,487,168	32,386	1, 519,439
Sulphuric, nitric, and mixed acids. Explosives......................	99,930 25	$2,244,785$ 659,219	3,617 15,832	78,755 372,763	Explosives..........................	174, 742	13, 154, 333	190,960	8, 979,877
Fertilizers..	221,558	5,669,331	15,832 2,041	342,716 42	Fortizers:	21,732	1,692,614	15,134	
Petroleum, refining	5,241	136, 828	2,035	42,423	For mixed lertilizers.	130, 683	10,091, 790	147,050	6, 807,228
Other industries...	54,917	1,142,772	6,044	110,113	Other industries..	12,404.	863,360	1,503	76,323
frite.					sulf				
Total, tons.	1,146,958	8,757,002	1,581,607	7,822,030	Total, tons.	1,850,828	25,277,462	1,359,519	10, 278, 813
Chemicais.	192,851	1,321,24	357,385.	1,522,1	Chemicals........	219,676 57 512	$2,573 ; 730$	146, 415	1,287,129
Sulphuric, nitric, and mixed acids.	503, 123	3, 058,943	532, 310	2,247,302	Sulphuric, nitrie, snd mixed acids.	175, 257	840,115	118, 359	
fexplosives..........................	6,812 398,602	- ${ }^{46,147}$	25,885 613,842	139,496 3,599 235	Fxplosives........................	62, 089	976, 2195	52,398 788,889	$\begin{array}{r} 72,795 \\ 4387.317 \end{array}$
Petroleum, refining	26, 275	- 224,700	${ }_{23,669}$	3, 163, 630	Petroleum, refinin	756,818 503,923	10, $8,227,210$	280,455	${ }_{3}^{4}, 519,585$
Other industries.	19,285	186,820	28,516	158, 202	Other industries..	75,573	-816,464	23,003	131,997

TAble 13.-SPECIFIED MATERIALS, BY INDUSTRIES, 1919 AND 1914 -Continued.

industry.	1919		1914		INDUSTRY.	1919		1914	
	Quantity.	Cost.	Quantity.	Cost.		Quantity.	Cost.	Quantty.	Cost.
Totai, tons.	32,940	\$1,490,546	12, 612	\$1,148,850	ASCOHOL, GRAN (ETHYL).				
Chemicals..	21,957	295,311			Total, gallons	8,483,351	\$17, 553, 806	1,440,443	\$647, 321
Coal-tar chemicais.................	1,039 4,000	194,402 200,000			Chemicols.....	$1,392,157$ 425,619	74,635 255 259	379,119	210,812
Explosives........................	1,537	200, 267	4,347	477, 404	Sulphuric, nitric, and mixed acids.	- 425,619	235, 779		
Other industries. \qquad MIXED ACID.	4,407	600,566	446	31,041	Explosives. Paint and varnish	$\begin{array}{r} 39,884 \\ 2.086,735 \end{array}$	$\begin{array}{r} 167,447 \\ 1,724,112 \end{array}$	1,061, 324	436, 509
Total, tons...	47	4,706,895	25, 273	1,746,141	Druggists preparations, etc.	2,962,842	14,379,871		
Chemicals.,	4,078	446,332			ALCOHOL, WOOD (METHYL).				
Coal-tar chemicals.	24,893	2,475, 550							
Explosives...........................-	16,637 1,779	$1,567,691$ 217	19,255	1,047, 377	Total, galions.	10,653, 665	10,095,253	2,454, 224	1,000, 119
ammontum sulphate.					Chemicals.......................	2,302,617	2,793,080	1,466,73	577,997
Total, tons.	140,368	13,121,408	159,534	9,584, 062	Sulphuric, nitric, and mixedaciars.	58.068			
Chemicals.		339,431			Paint and varnish..................	244, ${ }_{73}$	303, 1098		
Coalter chemicals.		26,582	9,610	568,899	Wood distulation....................	7,360, 300	5, 898, 175	987,451	422,122
other industries.	136,026	12,755,395	148, 924	0,015,163	Gther industries....................	86,720	155,780		

PRODUCTS.

No important changes have been made in the classification of chemicals since the census of 1914, but additional delimitation of the groups has been found advisable, and some rearrangement of items. So far as practicable 1914 figures have been grouped to correspond with the statistics for 1919 so that comparisons may be fairly made.

The products are classified under 10 groups, and Table 14 presents the figures for group totals for 1919, 1914, and 1909.

Table 14.-Probucts, Group Totals: 1919, 1914, and 1909.

1. Comparable flgures not available.
${ }^{2}$ Alums- $1919,817,055,891$; 1914, $\$ 3,467,969 ; 1909, \$ 3,022,355$.

Group I is devoted exclusively to acids. Three groups, II, III, and IV, are built upon the most important alkalies-ammonium, sodium, and potassiumand include elements, oxides, hydroxides, and salts; while Group X gathers in all of the less important metals and basic elements, derivatives of both, and organic compounds. Salts in Groups II, III, IV, and X in a measure duplicate the acids of Group I.

Five groups depend upon other than chemical separations. Group V, alums, aluminum, and compounds, concerns chiefly a class of mordanting compounds, and Group VI, bleaching agents. Group VII is differentiated by the basic material. Group VIII, plastics, expresses by the title the character of the chemical products. Group IX is dependent upon physical state and method of marketing. The members of these five groups belong within one or more of the other subdivisions. It is designed to make each group, so far as possible, comprehensive of the products within its scope.

This duplication exists only to a small degree in the statistics for the prior censuses, and the amount of duplication in the statistics for 1919 is noted.

Owing to the fact that the term "Fine chemicals" is applied not only to compounds that are rare and of high unit value, but also to specially refined grades of other chemicals, a separation on this basis has not been attempted. It would imply another basis of separation, namely, that of purity or value, and with fine chemicals any conclusions drawn from the figures would be open to question on account of the large percentage of these products concealed in lump sums of unenumerated items.

The aggregate figures necessarily include the byproducts and residues of chemical operations and the income from other sources of the establishments reporting. The total value of products, $\$ 685,268,285$, includes chemicals to the amount of $\$ 643,992,900$. The groups as presented involve a gross total of $\$ 694,097,973$, of which amount $\$ 50,105,073$ is intergroup duplications. For example, carbonic acid (carbon dioxide) value $\$ 6,574,250$, is included in Group I, Acids, and also in Group IX, Compressed and liquefied gases.
The following tabular statement shows the percentages of increase of the several items given in Table 14 for the census periods 1914-1919 and 1909-1914.

GROUP I.-ACIDS.
Chemical substances can be subdivided into four main classes: (1) Acids, including acid oxides or anhydrides; (2) Bases, including basio elements, oxides and hydroxides; (3) Salts or combinations of acids with bases; and (4) Other compounds of neutral character. For purposes of census classification, free acids and their anhydrides are included in Group I, while bases are subdivided into a number of groups each of which includes a basic metal or element and its oxides, hydroxides, and salts, with acids. Thus acids appear as component parts of other groups, and the acids appearing in Group I are largely duplicated in the salts of other groups.

Table 15 presents the detailed statistics for acids for 1919, 1914, and 1909. The table shows the number of establishments reporting specific products, and, where available, the quantity made and consumed in the same establishment has been given in addition to that produced for sale. Average unit values have been carried into the table as an index of the advance in values where the production data for prior years were comparable. With respect to the
major acids, the distribution of the establishments by geographic divisions is given in Table 16.

Table 15.-Group I.-Acids.

Table 15.-Group I.-Acids-Continued.

1 Not reported separately.
Includes a large production under a long-term, low-priced contract.
\& Includes sulphur-trioxide, "Battery acla" and "Electrolyte sulphuric," 74,533
tons. Includes, 1919 chlorsulphonic, chromic, hydrobromic, hydrofluosilicic. hypophosphorous, molybdic, silicic, sulphurous, tungstic, vanadic, etc., and for 1914 suiphurous, hypophosphorous, arsenic, and hydrofuosilicic
${ }^{5}$ Includes, 1919 , butyrie, caproie, carbolic, cresylic, formic, gallic, glycerophosphoric, hydrocyanic, monochloracetic, oxalic, phthalic anhydride, propionic, pyrogallic, thymic, valerianic, etc.

Table 16.-The Major Aolds-Distribution of Number of Establishments, by Geographio Drvisions: 1919.

	United States.	New Eng- land.	Middle Ant-	North Central.	South At- lantic	South Con- tral.	Moun-	$\begin{aligned} & \text { Pa- } \\ & \text { cific- } \end{aligned}$
Sulphuric.....	216	6	42	40°	77	33	7	
Sulphuric (reclaimed)	65		21	19	2	14	4	5
Mixed...	42	3	27 17	15	1	1	5	3
Carbonic.....	42	4	10	15	3	6	\ldots	4
Hydrochloric.	40	. 4	18	9		1	2	4
Acetic...	21	2	0	7	2			1

Sulphuric acid.-Sulphuric acid may be considered the fundamental of the acid group, since nearly all other acids are made through its instrumentality, with the difference that sulphuric acid does not figure
in the final product, but remains with the residual salt or by-product of the process.

To show how extensively sulphuric acid is employed in the production of other acids, a synopsis of methods of manufacture is given-
A.-Direct action of sulphuric acid (usually upon a natural salt or by-product of another process), liberating free acid.

${ }^{2}$ Acetic and phosphorie acids and sometimes chlorine produced by use of sulphuric acia.
D.-Additional methods developed for important acids, largely synthetic.

Acetic........	Bacterial oxidation of alcohol.	
	fombustion, organic material.	
	(Fermentation, organic material.	
Citric.	Fermentation of sugar.	
Hydrobromic	Synthesis from hydrogen and bromine, catalytic. Synthegis from hydrogen and chlorine.	\%
Hydrochlori	By-product, Le Blanc soda process. (Class a.) By-product chlorination processes.	
itric	Synthesis of nitrogen and oxygen, electrolytic.	
	Synthesis from ammonis and oxygen, catalytic.	
Phosphor	Synthesis from white phosphorus and oxygen.	
Stearic	Synthesis from oleic, catalytic hydrogenation.	

Sulphuric acid production.-Table 17 presents the statistics for sulphuric acid production, 1919 and 1914, distributed by industries, by process used in manufacture, and by states; also whether produced for sale or for consumption in the producing establishment. It gives also the weight of platinum in use in the industry.

Table 17.-Sulphuric Acto (Basis 50° Baumé): 1919 and 1914,

${ }^{1}$ Figures not available.
Figures not available. chas reported by 24 establishments in 1919 and 13 in 1914; contact process only was reported by 185 establishments in 1919 and 172 in 1914; while both chamber and contact processes were reported by only 7 establishments in 1919 and 9 in 1914.

Table 17.-Sulphurio Acid (Basis 50Baumé); 1919 and $1914-$ Continued.

	TONS (2,000 POUNDS),		value.	
	1919	1914	1910	1914
Georgia:		20, 151		\$115,220
For sale.	$\begin{array}{r} 19,906 \\ 252,899 \end{array}$		\$325, 958	
Illinois:				
For sale.	470, ${ }^{7292} \mathbf{6 9 1}$	349,252	4, 483, 311	1, 848,031
Made and consumed				
Louisiana: For sale.	$\begin{aligned} & 16,232, \\ & 65,896 \end{aligned}$	(1)	162,572	(1)
Made and consumed				
Maryland: For sale.	$\begin{aligned} & 159,957 \\ & 330,928 \end{aligned}$	187, 937	1,747,830	1,194,801
Made and consumed				
New Jersey:	393,067249,072		$5_{1} 013,063$	3,085,228
For sale...........		399, 667		
New York:				
For sale.	$\begin{aligned} & 69,699 \\ & 52,262 \end{aligned}$	63, 970	1,008, 800	532,938
Made and consumod				
Ohio: For sale.	$\begin{aligned} & 255,27 \mathrm{~L} \\ & 117,085 \end{aligned}$		2,713,108	983,533
For sale. Made and consumad		142,800		
Ponnsylvania:				
For sale..	468,69693,874	362, 270	5, 550, 984	2,498,117
Made and consumed				
All other:	$\begin{array}{r} 1,049,451 \\ 843,827 \end{array}$	650, 802	9, 300, 162	3,898,400
For sale.				
Weight of plalinum used; . .troy ounces.				
Total weight...............	$\begin{array}{r} 41,851 \\ 3,366 \\ 38,485 \end{array}$	29,8858,8298
In stilis or concentration pans.				
In cortact mass................		21,006	…….......
1 Figures not available.				

Table 18.-SULPHURIC ACID, 1919.
(Ton, 2,000 pounds.)

${ }^{1}$ Includes battery acid and electrolyte sulphuric, 4,894 tons.

Table 18.-SULPHURIC AOID, 1919-Continued.

		PRODUCHON ACCORDING TO STRENGTH.										TOTAL ON BASIS OF 50° BAUME.	
		50 0° Baume.		60° Baumé		66° Baumé.		Oleum. .		Trioxide.		Tons.	Value.
		Tons.	Value:	Tons.	Value.	Tons.	Value.	Tons.	Value.	Tons.	Value.		
New York	5	41,280 10											
For sale Made and		10,758 31,068	\$149, 644	8,201 8,145	\$177, 893	20,978 2,325	\$573, 555	9, 4 4,401	\$197,708			69, 699 592	\$1,098, 800
Ohio.	14	128, 049		29,989		125, 759						372,356	
Forsale.		38, 310	380,226	25,790	307,887	110, 361	i, 853,83			$\stackrel{9}{9,421}$	\$17i, 161	255,'271	2,7130, 108
Madeand consume		88,739		4,199		15,398					,	117,085	2,
Pennsylvania.	19					111, 875		504		11, 136		562,570	
For sale. Made and consume		$\begin{aligned} & 90, \\ & 94,820 \\ & 64,264 \end{aligned}$	1, 127, 533	$\begin{array}{r} 105,800 \\ 158,957 \\ 10,898 \end{array}$	$2,273,361$	108,026 3,849	$2,030,308$	498 6	11, 009		112,687	$\begin{array}{r}\text { 468, } \\ \text { 93, } \\ \text { 974 } \\ \hline\end{array}$	5,550,081
All other states ${ }^{1}$	87	871, 820		482, 230		242,349		21,609				1893,278	
For sale.		143, 906	1,574,587	467, 388	3, 485, 893	182, 470	3,682,897	18,975	395, 880	9,408	160,905	1, 049,451	9,300, 162
Made and consu Florida				14, 872 $\ldots .$.		59, 879		2,634			,	$\begin{array}{r}843,827 \\ 47 \\ \hline\end{array}$	
Massachusetts		47, ${ }^{\text {95, }} \mathbf{0 4 1}$				10,451						47, ${ }^{411}$
Mississippi...		33, 352		8,000		10,451						43,352
North Carolina		110, 590										110,590	
South Carolina		164, 835										164,835
Tennessee		${ }^{85}$ 9,236										82,416 95 936	
Other..		102,213		6,872		49,428		2, 634				189,449	

${ }^{1}$ Includes Arizona, 1; Arkansas 1; Colorado, 3; Connecticut, 2; Delaware, 1; Florida, 5; Indiana, 3; Kansas, 1; Kentucky, 1; Massachusetts, 4: Michigan, 3; Mississippl, 5; Missouri, 1; Montana, 1; North Carolina, 12; Oklahoma, 1; South Carolina, 14; Tennessee, 7; Texas, 5; Útah, 2; Virginia, 9; Washington, 1; West Virginia, 2; and Wisconsin, 2 :

Table 19 summarizes the production figures for sulphuric acid for 1919, 1914, and 1909, according to strength, as reported, with the conversion figures for same to basis of 50° acid. It shows also the per cent distribution according to strength, and the per cent distribution of that made and consumed, according to strength.
Table 19.-Distribution of Sulphuric Acid Production: 1919, 1914, and 1909.

distribution acconding to strength.	1919	1914	1909
Total as reported.	$\begin{gathered} \text { Tons. } \\ 4,766,163 \end{gathered}$	$\begin{gathered} \text { Tons. } \\ 3,402,946 \end{gathered}$	Tons. 2,417, 621
	2,750, 112	1,701,233	1,643, 281
	1, 020,052	$\begin{array}{r} 1,795,489 \\ 890486 \end{array}$	$\begin{array}{r} 189, \\ 1844 \\ 552,619 \end{array}$
	$\begin{array}{r}\text { 834, } \\ \hline 195 \\ \hline 151,804\end{array}$	$\begin{array}{r} 888,466 \\ 77,758 \end{array}$	552,619 32,337
Same exprossed as 50°.	5,552,581	4, 071, 566	2,764,455
	2,750,112	1,701,233	1, 643,281
600° as 500° 66° as 50	1, ${ }^{1}, 275,064$	$1,994,361$ $1,242,699$	$\begin{array}{r}236,730 \\ 828,929 \\ \hline 8 .\end{array}$
	$\begin{array}{r} 1,251,293 \\ 276,112 \end{array}$	$\begin{array}{r} 1,242,699 \\ 133,273 \end{array}$	828,929 55,515
Per cent distribution:			
	100.0	100.0	100.0
	57.8	41.8	59.4
	21.4	24.4	8.6
	17.5	30.5	30.0
Oleum and SO_{3}	3.2	3.3	2.0
Fer cent of each strength made and conisuried (total for each strength being 100):			
Total as $50{ }^{\circ}$.............................	39.8	37.0	
$50{ }^{\circ}$	69.3	74.0	68.0
	6.9	31.0	0.0
	15.2	12.0	18.0
Oleum and SO_{3}	11.7	20.0	12.0

${ }^{1}$ Includes battery acid and electrolyte sulphuric, 4,604 tons.
The total for sulphuric acid made and consumed probably includes acid used in making mixed acid. Roughly calculated from the average unit values of the two acids concerned, the sulphuric acid so used,

- expressed as 50°, amounted to about 30,000 tons in 1919 and 27,000 tons in 1914.
Of the 216 establishments making sulphuric acid, 24 used the contact process, 7 both contact and chamber processes, and 185 the chamber process only. That is, 31 concerns, or about one-seventh of the number, employed contact conversion either entirely or partly. Estimating the amount of acid made by contact mass in establishments using both processes from the amounts of platinum reported as used, about 87,200 tons of 50° was so made; so that $1,228,619$ tons, or 22.2 per cent, of all sulphuric acid were made by contact methods and $4,305,735$ tons, or 77.8 per cent, by the chamber method.

Platinum used in contact mass amounted to 38,485 troy ounces. This, together with 3,366 ounces reported in use in stills and pans, gives a total of 41,851 ounces.

The production of sulphuric acid, basis of 50°, as shown in Table 16, is given in the following tabular statement, ranked by states, with percentages of distribution.

	Tons.	Per cent.
Total production.	5,552,581	100.0
Now Jersey	642,139	11.6
Peansylvania	562,570 549 883	10.1
Maryiand	442,783 400,885 4	9.8 8.8
California.	413,817	7.5
Ohio...	372, 356	6.7
Georgiz...	272,805	4.9
Alabama.	157, 829	2.8
New York.	121, 801	${ }_{1} 2.5$
Other states.	1,893,278	34.1

Sulphuric acid is produced by the burning of sulphur or pyrite or pyrrhotite, and as a by-product in the roasting or smelting of zinc and copper ores. The amount of such ores employed as material for sulphuric acid manufacture was not reported. During the war, owing to restrictions in foreign trade in pyrite, there resulted a large incraase in the employment of sulphur as a raw material; and in 1919 acid makers, especially in the interior, continued the use of brimstone. Spanish pyrite was used only at the coast. As the demand for spelter and copper was subnormal, especially in the early months of 1919, tonnage from this source was less.

As material, 570,169 tons of sulphur and $1,146,958$ tons of pyrite were employed in the various industries. Plants using sulphur were as a rule smaller in size, roughly averaging 2,000 tons, whille concerns using pyrite averaged 10,000 tons. The weight of sulphur was 32.2 per cent of the total tonnage, but using the factors $4 \frac{1}{2}$ and $2 \neq$ to estimate the quantity of 50° acid produced from sulphur and pyrite, respectively, we have from sulphur $2,382,746$ tons of 50° acid; that is, 48.7 per cent, or about one-half of the total acid production, was from the burning of sulphur.

Production of sulphuric acid from zinc and copper ores.-Table 20 presents the statistics of production from zinc and copper ores (roasters and smelters), in 1919.

Table 20.-Sulphuric Acio Production From Zine and Copper Ores: 1919.
[Ton, 2,000 pounds.]

	$\left\|\begin{array}{c}\text { Num- } \\ \text { ber } \\ \text { of es- } \\ \text { tab- } \\ \text { lish- } \\ \text { ments }\end{array}\right\|$	Total tion, tons.	$\left\|\begin{array}{c} \text { Made } \\ \text { and } \\ \text { con- } \\ \text { sumed, } \\ \text { tons. } \end{array}\right\|$	PRODUCED FORBALE.	
				Tons.	Value.
Total,	120	882,913	16,008	860,905	\$8,253, 423
Copper smelters, terms of $60^{\circ} \mathrm{Be} .2$... Zinc smelters and roasters, terms of	6	364, 091	410	364, 681	2,084,087
60° Bé	14	517,922	15,598	502, 324	6, 165, $3: 36$
reorted 66° and sulphur trioxide.		$\begin{gathered} 396,901 \\ 79,148 \end{gathered}$	$\begin{aligned} & 7,732 \\ & 5,287 \end{aligned}$	$\begin{array}{r} 389,460 \\ 73861 \end{array}$	$4,698,035$ $1,467,301$

${ }^{1}$ Distribution by states: From copper ores 6-Tennessee, 2 ; and 1 each in Arizona, California, New Jersey, sad Utah. From zine ores 14-Ilinois, 7; Pennsylvania, 3; 2 Includes some production under a prear

Products closely related to sulphuric acid are sulphur trioxide, sulphur dioxide, and sulphurous acid; allso reclaimed acid. Sulphur trioxide was produced as a by-product of the zinc smelting industry, all by the contact process. It is included with oleum and fuming sulphuric acid. Sulphur dioxide, which is marketed as a compressed and liquefied gas, used in the bleaching industry, was made in three plants, all burning sulphur. Sulphurous acid, marketed in carboys, was also manufactured by three companies burning sulphur as the raw material, and like sulphur dioxide, is used for bleaching purposes.

Reclaimed sulphuric acid was reported in large quantities, a total of 473,555 tons, consisting of 426,315
tons, or 90 per cent, from the petroleum industry; 44,657 tons, or 9.4 per cent, from the explosives industry; and the residue from the acid industry. The amount sold as such was 95,119 tons, at an average value of $\$ 8.50$ per ton. In 1914 the average value was $\$ 3.80$ a ton.
In 1919 sulphuric acid was reclaimed in 65 establishments, 90.3 per cent, or 427,421 tons, being reported from 45 plants in nine states (New Jersey, Indiana, New York, California, Texas, Pennsylvania, Illinois, Missouri, and Louisiana). Eight plants in the state of New Jersey reclaimed 161,566 tons, or 34.1 per cent of the total.
Nitric acid.-Nitric acid ranks next to sulphuric in commercial importance.
Table 21 presents the statistics of production for 1919 and 1914.

Table 21.-Nitric Acid: 1919 and 1914.

[^1]Nitric acid was reported in many degrees of strength and purity from dilute to $38^{\circ}, 40^{\circ}, 42^{\circ}$, and 100 per cent, fuming, and chemically pure. Conversions to uniform grade have not been made. As an indication of the grades, prices ranged from $\$ 87$ to $\$ 485$ a ton.

The increase in tonnage from 1914 to 1919 was 10.7 per cent, a large proportion being used in the same establishment, 77.7 per cent in 1919 and 81.3 per cent in 1914. Calculating from the unit values of nitric acid and 66° sulphuric acid, the total weight of mixed acid contained 57 per cent or 65,484 tons of nitric acid in 1919 and 41.9 per cent or 46,980 tons in 1914, which amounts are included in the item made and consumed. At a uniform average value, the total tonnage of nitric acid amounted in value to $\$ 13,310,000$ in 1919 and $\$ 8,488,000$ in 1914.

During the years intervening between 1914 and 1919, the period of the World War, nitric acid must have been made in very large amounts. The 1919 census, however, does not indicate the increases due to the war.
All of the nitric acid reported was made by treatment of nitrate with sulphuric acid, no synthetic nitrogen being included.

The tonnage of the explosives industry was 55.9 per cent of all nitric acid reported. The acid industry shows 79.5 per cent of the acid as made and used in the same works, the chemical industry 37 per cent and the explosives industry 93.8 per cent.

Mixed acid.-Table 22 presents the statistics of production for mixed acid for 1919 and 1914.

Mixed acid increased in quantity 2.4 per cent from 1914 to 1919 but more than doubled in value, for amount sold as such. As with nitric acid, more mixed acid,was consumed in the same plant than was sold as such, 59.6 per cent and 61.9 per cent, respectively, for 1919 and 1914. Prices were less variable than for nitric acid and ranged from $\$ 65$ to $\$ 137$ per ton. Strengths or proportions of the mixture were in no case indicated.

The sulphuric and nitric acids represented in mixed acid are included in the made and consumed items under the respective acids. Estimating the value of all mixed acid from the unit values for that sold as such, we have for $1919, \$ 10,914,000$ and for 1914, $\$ 5,718,000$.

As with nitric acid, the table shows that much the larger part of mixed acid is produced in the explosives industry, 62.8 per cent in 1919.

Table 22.-Mixed Acid: 1919 and 1914.

${ }_{1}$ Distribution, by states: Pennsylvania, 9: New Jersey, 6; Minois, 5; Missouri, 3; 2 each in California, Colorado, Michigan, New York, Ohio, and Utah; $\frac{1}{}$ each in Alabama, Connecticut, Delaware, Indiana, Montana, Washington, and Wisconsin.
2 In order of production, 1919 : California, Missouri, New York, Delaware, Wisconsin, Connecticut, Washington, Utah, Colorado, Ohio, Michigan, Montana, Alabama, and Indiana.

Hydrochloric or muriatic acid.-Table 23 presents statistics for hydrochloric acid for 1919 and 1914.

The total tonnage, 221,749 tons, places it second in rank among the acids, the gain from 1914 to 1919 being 31.5 per cent. While a larger part of the total was made and consumed in 1914 thian in 1919, both years showed considerable amounts so used- 32.3 per cent in 1919 and 49.3 per cent in 1914.

Nearly all of the 40 establishments making hydrochloric acid reported it in 18° and 20° strengths; some was returned as 22° and as 100 per cent, while the purity ranged from commercial to chemically pure. Three astablishments made it synthetically from electrolytic chlorine, three reported it as a by-
product from chlorination processes, while the bulk was made by the usual process from salt and sulphuric acid. The employment of niter cake, with 33 per cent available sulphuric acid, in lieu of sulphuric acid, apparently was not indicated. Prices ranged from $\$ 16$ to $\$ 80 \mathrm{a}$ ton.

The acid and chemical industries produced all of the hydrochloric acid reported in 1919, the total amount being about equally divided between these two branches of chemical manufacture.

Tabie 23.-Hyprochloric Acti: 1919 and 1914.

1 Distribution, by states: Pennsylvania, 8; New Jersey, 5; New York, 5; California, 4; Illinois, 3; Ohio, $3 ; 2$ oach in Colorado, Connecticut, and Massachusetts; and 1 each in Delaware, Indiana, Michigan, Lousiana, Kansas, and West Virginia. Of
these, electrochemical production by 3 ostablishments-New York, 2 , and West Virginia, 1 .
${ }^{2}$ Includes 418 tons produced by manufacturers of other commodities.
s'In order of production, 1919: Illinois, Indiana, Ohio, Delaware, Massachusetts, California, Kansas, Louisiana, Colorado, Connecticut, West Virginia, and Michigan.

By-products from the manufacture of nitric and hydrochloric acids are niter cale and salt cake, included in Group III, Sodium compounds. The production of niter cake, calculated from the nitric acid, with an assumed average of 61 per cent strength, must have been approximately 270,000 tons, valued at $\$ 931,500$, and of dry salt cake from the manufacture of 30 per cent hydrochloric acid approximately 250,000 tons of a value of $\$ 3,800,000$.

Carbonic acid or carbon dioxide.-Carbon dioxide or CO_{2} is the acid anhydride of a hypothetical acid of the composition $\mathrm{CO}(\mathrm{OH})_{2}$, which supposedly exists in water solution but can not be separated as such. Salts of this acid indicate such a formula. The commercial value of free carbonic acid or CO_{2} consists in the fact that at ordinary temperatures it is a gas that
can be compressed and liquefied so as to be readily transported; that the raw materials for its production are plentiful and cheap; that it has a pleasant and slightly acid taste and is not toxic. Its principal use is in effervescing drinks.

Liquefied carbon dioxide is second in rank among acids for the value of product actually sold. None was reported as made and consumed by the same establishment. Second in value and third in amount produced for sale, carbonic acid ranks among the major acids. The statistics of production for the censuses, 1899 to 1919, inclusive, are given in Table 24. Growth in this industry since 1909 has been steady but not phenomenal in number of establishments or in quantity, which increased 5 per cent from 1909 to 1914, and about 20 per cent from 1914 to 1919.

Table 24.-Carbonio Actd Gas, on Carbon Droxide $\left(\mathrm{CO}_{2}\right)$.

		Number of establish. ments.	Tounds.	Value.
United States.	1919.	42	59,771,411	\$6,574,250
	1014..	38	50,445,779	2,320, 885
	1909.	35		2,345,743
	1904.		$35,001,027$	1,343,960
				719,364
By states: ${ }^{1}$				
Illinois. Ohio. Pennsylvania. All other.		45330	$\begin{array}{r} 9,142,204 \\ 5,551,063 \\ 2,534,220 \\ 42,547,164 \end{array}$	$1,051,975$ 597,936 303,137 4, 4, 621,202

${ }^{1}$ States and number of establishments in order of quantity production: New York, 5; Illinois, 4; New Jersey, 2; Ohio, 5; Georgia, 2; Massachusetts, 4; Californis, 4; Missourl, 3; Virginia, 1; Pennsylvania, 3; Texas, 2; Temossee, 2; Louisiana, 1; Minnesota, 1; Kentacky, 1; and Wisconsin, 1.
Minor acids, inorganic.-Arsenic acid production $2,622,389$ pounds, was by oxidation with litharge or nitric acid from 1960 tons of arsenious acid or white arsenic, reported by six establishments in New Jersey, Illinois, Maryland, California, and Michigan. Arsenious acid is a product of the smelting and refining industries. Much of the arsenic used for making arsenical insecticides is derived from the latter sources.
Boric or boracic acid was reported by six plants in five states-New Jersey, Pennsylvania, California, New York, and Missouri. Three concerns produced $12,757,296$ pounds from colemannite or other borate ores and three produced the crude material and refined 696,804 pounds. All of the boric acid reported was of refined grades, prices varying from 11 cents to 20 cents per pound, and averaging 12 cents.
Hydrofluoric acid, made from fluorspar and sulphuric acid, totaling 5,732,198 pounds, was reported by six plants in five states-New York, Pennsylvania, Ohio, New Jersey, and Connecticut. About 25 per cent was made and consumed in further manufacture by the same establishment. Prices ranged from 10 to 44 cents a pound for chemically pure grade. Hydrofluoric acid has been reported in the last three censuses with a decrease in quantity and number of establishments.

Phosphoric acid production, 22,109,302 pounds, was reported by nine establishments in six states-New Jersey, Rhode Island, Illinois, New York, Missouri, and Delaware. A large proportion, 8,729,801 pounds, or 39.5 per cent, was made and reused. All of that reported was made from bone or phosphate rock and sulphuric acid. A number of grades were shown, 40 per cent, 50 per cent, 85 per cent, U.S. P., and the pentoxide or acid anhydride, and prices varied from 8 to 32 cents a pound, averaging 13 cents.

Other inorganic acids, comprising chlorosulphonic, sulphur dioxide (sulphurous acid anhydride), hydrofluosilicie, tungstic, vanadic, molybdic, chromic, hydrobromic, hypophosphorus, silicic, and sulphurous acids, in order of value as named, amounted to $\$ 797,514$, and miscellaneous unenumerated acids to $\$ 39,263$.

Organic acids.-The total value of organic acids for 1919 was $\$ 26,318,237$, and so far as they could be separated the corresponding value for 1914 was $\$ 7,754,381$. Organic acids as a group, therefore constituted 31.1 per cent of the value of all acids. In order of decreasing weight they ranked acetic, oleic, stearic, tartaric, and citric, while in value acetic dropped from first to last place. That is, acetic acid was produced in the largest quantity at much the lowest unit value.

Acetic acid.-Acetic acid was reported in 1919 in the three grades of dilute, including pyroligneous, glacial or 100 per cent, and anhydride. The totals of all grades for three census years are given in the following tabular statement:

	1919	1914	1909
Number of establishments.	18	13	13
Total production......................p. pounds..	64, 175,275	75, 303, 375	58,000, 602
For sale.......................... . pounds..	53, 516, 597	70, 617, 637	56, 923, 770
Value.	\$4,264,014	\$1,272,294	\$1, 336, 874
Unit value..	\$0. 107	80.018	\$ $\$ 0.024$
Made and consumed.	10,658,678	4, 685, 738	1,076,829

The larger number of plants manufactured dilute acetic acid from calcium acetate and sulphuric acid. Production by fermentation of alcohol and by purification of pyroligneous acid was also reported. Strength and quality ranged from crude and commercial to 28 per cent, 36 per cent, 56 per cent, redistilled, and U. S. P., prices for crude to 28 per cent being $2 \frac{1}{2}$ to 5 cents a pound, and for 56 per cent from 7 to $8 \frac{1}{2}$ cents a pound.
All of the glacial acetic acid was made from acetate of lime as the raw material. Acetic anhydride was partly made from acetate, from dilute or glacial acetic acid purchased as such, and from acid derived by fermentation of alcohol or of kelp. Both phosphorus and sulphur chlorides were employed for the dehydration. No synthetic acetic anhydride or acid was reported. Four establishments making glacial acetic also reported the dilute acid, but those pro-
ducing the anhydride made no other form of acetic acid.
Stearic acid retained about the same relative position among acids, in rank, while oleic acid rose relatively. These acids are produced simultaneously from the same raw materials, the production of one being limited by the production of the other; but as liquid fats contain a greater proportion of oleic acid, it is possible to select raw material with the view of increasing one or the other of these two ingredients. Shortage of importation of olive-oil foots within recent years may account in part at least for underproduction and high price of the more liquid fatty acid.

The nine establishments reporting stearic acid also produced oleic, a large proportion of both being derived from animal fats, greases, and tallow, some from soy-bean oil, cottonseed-oil foots, and other regetable sources. The totals included among products in the table are exclusive of oleic and stearic acids made and consumed in the soap industry, which is the largest producer of these fatty acids. In order of production the states rank for stearic acid, Ohio, New York, Pennsylvania, New Jersey, and Montana, while for oleic acid the order is Ohio, Pennsylvania, New Jersey, New York, Indiana, Montana, and Rhode Island. The proportion of stearic to the total in the nine establishments making both acids varied from 21 to 50 per cent, the average being 33 per cent, or about one-third of the total.

Tartaric, citric, and lactic acids are used for many of the same purposes-as components of soft drinks and effervescing salts or in the textile industries. The four establishments making tartaric acid were located in New York, Ohio, and California and employed argols as raw material.

Six plants in four states-New York, Pennsylvania, New Jersey, and California-produced citric actd from citrate of lime in the East and from cull lemons.in the West.

Four establishments in three states-Massuchusetts, Pennsylvania, and Missouri-produced lactic acid from various organic materials by specific bacterial fermentation.

Tannic acid was produced by four establishments in three states-New York, Missouri, and Pennsylvaniatwo of these being refiners and manufacturers of medicinal or U.S. P. grades, and two engaged primarily in the manufacture of dyestuffs and extracts from original sources.

Other organic acids consisted of hydrocynnic, gallic, oxalic, pyrogallic, creosote, carbolic, monochloracetic, thymol or thymic, formic, butyric, phthalic anhydride, cresol or cresylic, valerianic or valeric, propionic, and glycerophosphoric, in order of value as named.

Hydrocyanic or prussic acid is used for fumigating citrus fruits and was practically all reported frow

California, except small amounts refined in the East. Although as an acid it is included in Group I, it is also a cyanogen derivative, and its principal value depends upon the properties of the cyanogen present; so that it is included primarily in Group II, Cyanogen compounds. Sodium cyanide and fruit pits were used as raw materials.

Gallic and pyrogallic acids were produced in refined and medicinal qualities only, from tannic and gallic acids, respectively. Formic and oxalic acids resulted in part from synthetic processes, from caustic and sawdust, and two establishments refined only. The carbolic acid reported includes only that made in establishments engaged in the chemical industries and does not cover that made and used in the coal-tar industries. It resulted from synthetic processes by the usual method of sulphonation and fusion in caustic. One establishment refined only, to 100 per cent grade. Monochloracetic acid was made by use of acetate of lime and electrolytic chlorine.

Creosote was of refined quality for medicinal purposes and was derived from wood tar; thymol or thymic acid was derived by the usual method from thyme oil; butyric and propionic acids by specific bacterial fermentation of starch, corn sugar, molasses, or other carbohydrate material; phthatic acid anhydride resulted from catalytic processes, using naphthalene and toluene as raw material; cresol or cresylic acid was a refined product; valerianic acid was the result of oxidation of fusel oil with bichromate and sulphuric acid, and glycerophosphoric acid by the combination of glycerine with phosphoric acid.

GROUP II-AMMONIUK AND OYANOGEN GOMPOUNDS,

Ammonium and cyanogen compounds, presented in Table 25, constitute an important chemical group, particularly when all forms of commercial nitrogen and its combinations are considered. The following is a summary of some of the values reported in 1919, that might be enumerated as "Nitrogen and fixed nitrogen compounds."

: \quad. . . .	Group No.	Value.
Total nitrogen compounds.		\$88,070,732
Ammonium and cyanogen compounds.	II.	23,067, 553
Nitrogen compounds, other groups:		
Nitrogen gas.	IX	- 45,416
Nitrous oxide gas. Nitric acid	IX	515, 164
Mixed acid, 57 per cent nitric	I	$2,976,095$ $3,648,658$
Nitrates, nitrites...	I to X	5,971,823
Ammonic alum, amines, cyanides	V and x	, 751,441
Pyroxylin, nitrocellulose..	VIII	33, 979, 217
Ammonia and ammonium salphate-Gas and coke industries.		27, 124, 365

If to the above there is added the values of the nitro, nitroso, amido and amino compounds, proteins and alkaloids, of the coal-tar, explosives, fertilizer, textile, pharmaceutical and other primary industries, the total would inadequately express the value of nitrogen in the cycle of industrial operations.

With the exception of some ammonia, ammonium chloride and sulphate, and cyanide, made from cyanamid and metallic sodium produced electrolytically, no nitrogen reported for the year 1919, was fixed by synthetic processes.

Table 25.-Group II.-Ammonium and Cyanogen Compounds,

	1919	1914	1009
Value of products....................	$\stackrel{\text { 823,067, } 553}{ }$	88,044,913	
Ammo			
Totala production, pound	27,957,000		
${ }_{\text {For sile }}^{\substack{\text { siold } \\ \text { Pound. }}}$	${ }^{277}$ 27, 330,000	${ }^{10}$	
Value Unit vilue, pound	s, 22 t		
Made and consumed, pounds........- ${ }^{427,000}$			
Numiler of estallishments			
For siale-			
	,		
Made and Comistumed, paud pounds.:	11,510, ${ }^{\text {so, }}$		
Ammoninm chloride (sal ammoniac): Number of establishments Value.			
	$81,505,3,30$	Scis	\%"
Unit value, pound Ammo Nume silphette: , Number of estalishments			
	33,401,000		
For sale-			
		coin	(1)
Made and eonsumad pounds mmonitu hromide and iodide Number of establishments			
		(1)	(1)
mumpinm inorde: Number establishments Pounds.	340, 156	(1)	(1).
Cyanogen compoind...........................Forro and ferricyanides of sodium, potas-			
	4, 684, 141		
othalua			
potassium, siver, sodiumb, and zituccranogenchloride,dicyandiamine thiogyanates of ammonium, bariumand sodium, value.......		\$82, 398, 674	$81,941,80$
phosphite, nitrate, persulphate, phosPhate, supphide,			
	82,759, 616		
Orgnic-Acetate mine, mienzoate, diphenylavalerate, value			(1)

${ }^{1}$ Figures not available.
${ }_{2}$ Proruct of the chemical and manufactured gas industules. Tho production of anhydrous ammonia by the hy-product coke ovens, as reported by the Geologital Survey (mainly ammonigcal liquor and snlphate sold on pound hasts Φ NH4 Fis as follows: 1919, 34 establishments, $51,646,764$ nommls; value; $95,692,050$ (unit value 11 cents a pound); 1914, $25,370,509$ pounds, value, 82,301 , 137 (unit value, 0 centsa pound).
${ }_{8}$ Product of the chomical, fertilizer, aud manufacture 1 , pas industries. The pro duction of ammonilum salphate by the hy-product coke ovens, as reported by the Geological survey, was as follows: 1919, 30 esta' lishmentis, i4t, 231,985 pounds,
 ammonia sulphate or relucel to equivale
$\$ 4,090,500$ (unit value, 29 cents a pound).

Ammonium compounds, as shown in Group II, were valued at $\$ 15,952,111$, and cyanogen compounds $\$ 7,115,442$. Aqua and anhydrous ammonia constituted 59.3 per cent of all ammonium compounds, and the sulphate 10 per cent. If ammonia and ammonium sulphate of the coke and gas industries be included, however, the total for ammonium compounds is $\$ 43,076,476$, of which aqua and anhydrous ammonia form 379 per cent and the sulphate 51.6 per cent. Some duplication is shown in the figures for aqua ammonia

Since 1914 aqua ammonia has increased 28 per cent in amount produced but decreased in amount sold, while the production of anhydrous ammonia has increased 68 per cent.

The materials reported as employed for aqua and anhydrous ammonia were ammoniacal liquor, ammonium sulphate with lime to liberate the fixed ammonia, and cyanamid. The strengths of solutions were not reported with sufficient clearness to make an estimate of total NH_{3} possible. Among products some reports gave the strength of aqua ammonia as $16^{\circ}, 20^{\circ}$, and 26°, the prices being $2-3$ cents, $4-5$ cents, 6 cents and above, respectively. Using the price as a basis of estimating the strength when not stated, the total of $45,466,904$ pounds of aqua ammonia reported by the chemical industry consisted of $16,163,315$ pounds of 20° (including a very small amount of 16°), or about 36 per cent of the total, and $29,303,589$ pounds of 26°, or 64 per cent. Taking the 20° liquor as 17 per cent NH_{3} and 26° as 24 per cent NH_{3}, the ammonia content of aqua ammonia reported by chemical establishments was $10,952,770$ pounds. This amount, together with $27,529,599$ pounds of anhydrous ammonia of the chemical industry and 51,646,764 pounds from the colking industry makes the equivalent of $90,129,133$ pounds of auhydrous ammonia produced in 1919.

Aqua ammonia was reported by 27 establishments in 14 states. Eight states-Pennsylvania, Washington, New Jersey, Rhode Island, Ohio, Michigan, Missouri, and Massachusetts-each produced over 2,000,000 pounds, and aggregated 90.7 per cent of the total. Four establishments in Pennsylvania alone produced 49.7 per cent of the total.

Anhydrous ammonia, $27,529,599$ pounds, was produced by 39 establishments in 21 states. Eighteen plants in 6 states-Missouri, Illinois, Pennsylvania, New York, Ohio, and Washington-totaled 91.9 per cent of the whole, while the first 3 states, in 8 establishments, produced 75.7 per cent.

Ammonium sulphate produced by the chemical, gas, and fertilizer industries, exclusive of coke, aggregated $33,400,598$ pounds made by 16 establishments in 10 states. Seven establishments in New Jersey, Massachusetts, and Pennsylvania reported 93.3 per cent of the total. The coke industry produced $557,619,631$ pounds, so that a total of $591,020,229$ pounds, or 295,510 tons, of ammonium sulphate was manufactured in 1919.
Other salts of ammonium were derived by neutralization of an acid by ammonium hydroxide. The latter was obtained from ammoniacal liquors, aqụa ammonia, ammonium sulphate and caustic alkali or cyanamid. The acids were made by the usual methods-hydrobromic and hydrochloric acids largely from electrolytic bromine and chlorine, valerianic acid
by the oxidation of fusel oil with bichromate and sulphuric acid, and vanadic acid from carnotite ore. Ammonium salts, excepting the sulphate, were 30.6 per cent of ammonium compounds, the chloride and phosphate constituting a large part.

Cyanogen compounds included within the chemical industry amounted in value to $\$ 7,115,442$, or an increase of 196 per cent over 1914. Part, was derived from electrolytic sodium or cyanamid. The greater proportion of the ferrocyanide group consisted of Prussian blue and the larger part of the cyanides of the sodium derivative, and hydrocyanic acid. Cyanogen chloride and dicyandiamine were derived from electrolytic chlorine and cyanamid, respectively. A large part of the cyanogen compounds were produced from cyanogen press-cake.

GROUP III.-SODAS, SODIUM, AND COMPOUNDS.

Table 26 presents the statistics for the sodium group for 1919,1914 , and 1909.

Table 26.-Group III.-Sodas, Sodim, and Compounde.

(See foot notes at end of table.)

Table 26.-Group III--Sodas, Sotium, and Compounds-Con.

(See footnotes at end of table.)

Table 26.-Group III.-Sodas, Sodium, and Compounds-Con.
diftribution of number of establishments, by alographic mivisions: 1919.

*	Total number.	Now Eng- land.	Mirl- d1e. At- lan- tic.	East North Central.	West North Cen- tral.	$\left\lvert\, \begin{gathered} \text { South } \\ \text { Atm- } \\ \ln - \\ \text { tic. } \end{gathered}\right.$	South Contral.	Moun tain,	$\begin{aligned} & \text { Pacil } \\ & 10 . \end{aligned}$
INORGANIC									
Sodium:									
Borate.	8		4	1					
Bichromate.	5		3	1		1			
Bromirle...	5		1	2	1	1			
Carbonate-									
Sodn ash.......	18		11	4	2 3	4		3	
Strarbonato...-	10		1	2	1	2		3	
Sesciuicarbonate	5		2	1					
Fluoride............	4		3	1					
Hydroxide (caustie)	29	4	12	7	2	3			
Iodide:-	7		6	--.- ${ }^{-1}$	1				
Nitrate...............	7		3	1	2				
Phosphate...........	10		7		1	2			
Silicate.	17		0	7	1				
Sulphate-									
Niter cakc......	38	3	15	9 8	2	3	1	4	
Salt care.......	34	3	15	8 8	1	2	2	2	
Glauber's salt. .	27	3	12	3	4	2			
Ref.anhydrous.	6		5	…...	1				
Thiosulphate...	9		5	…1	1	$\stackrel{1}{2}$			
Sulphide.*.........	17	1	7	4	2	2	1		
Sulphito............	8		5		1.	1			
Washing compounds.............	3		1			1			
organic.									
Sodium:									
- Acetate.............	12		9	2	1				
Benzoate...........	4		3		1.				
Citrate.............	6		5		1.				

1 The totals for items reported 1914, \$32,62:335, and 1,909, \$25,048,019, are not comparable with total for 1919 . The total for 1008 ($\$ 25,048,010$) includes $\$ 3.7$ of unclassified sodium products not shown in detail.
${ }_{2}$ Includes neutral chromate.
${ }^{3}$ Figures not available.
4 Includes caustic liquor and soda lyo.
© Includes, 1919 , sodium metal, sodium chlorato, hypophosphice, manganate, nitrate, silicofloride, burnt, chrome and sodium alums, aluminate, aluminum fluoride (refined cryolite), arsenate, arsenite, bisulphite, gold chloride, hypochlorite, perborate, peroxide, titanlum sulphate, uranate, uranium nitrate, etc. ryida and cyanide and ferrocyanide, formaldehyde-hydrosulphite, potassium lat trate, thiocyanate, uranium acetate, ete.
The manufacture of sodium compounds for the year 1919, exclusive of common salt, rock salt, and brines and of sodium salts produced in other special industries such as coal-tar chemicals and dyestuffs, amounted to more than three times the value of the previous census, and reached the grand total of nearly $3,000,000$ tons and $\$ 100,000,000$, of which products to the value of $\$ 9,042,986$ have also been included within other classifications in this report. Sodium cyanides, alums, bleaching compounds, and electrolytic products appear here and elsewhere in these tables.

The increase in the use of sodium compounds is probably in part due to the substitution of sodium for potassium in bichromates, cyanides, nitrates, prussiates, hydroxide, and other salts, which, previous to the shortage caused by the war, were considered inferior for certain industrial applications, notably in the making of nitrate explosives, the oxidation of aniline black and the production of Prussian blue. After being subjected to more careful methods of purification in order to remove deliquescent salts and other impurities, sodium compounds have been found in many instances to be fully equal or better than potassium, the forced recognition of which fact will be of lasting benefit to industry.

Demand for the principal soda products-soda ash, bicarbonate, caustic, and bleaching powder-slumped in the early part of 1919, factories running at from 25 to 30 per cent capacity until June, but from then on until October and November, though manufacturing costs continued high, demand and activities increased until they reached pre-war conditions. Extensive exports of finished goods dependent upon alkalies for their preparation, glass, soap, petroleum products, textiles, and various sodium chemicals, at least in part caused this increased output.

Sodium compounds are very largely used in the textile, leather, and paper industries, as the following statement will show:

sodium salt.	Employed in-
Acetat	Mordant manufacture.
Alum.	Mordanting of paper and textiles, loading, sizing.
Aluminat	Mordanting.
Arsenate................-	Dyeing.
Bichromate and chromate	Chrome tanning, textile mordant, printing, bleaching.
Bisulphate.	Dyeing (substituto for sulphuric acid).
Bisulphite	Dyeing, paper blearhing, source of SO2.
Borate.	Tanning, sizing, mordanting, fireproofing.
chiorate.	Dyeing, printing, oxidizing agent.
Formaldehyde-hydrosul-	Reducing agent in vat dyeing, bleaching, discharging,
phite. ${ }^{\text {pra }}$ (roxide (caustic)	printing. ${ }_{\text {channing }}$ mercerizing, manfacturing of dyos, wood
Hydroxide (caustic).	Tanning, mercerizing, manfacturing of dyos, wood pulp, and paper.
Hypochlorite	Bleaching, other oxidizing processes.
Nitrite.	Diazotizing in the manufacture of azo dyes, nitroso compounds, and in dyeing textiles.
Oxalate.	Textile processes.
Perborate	Bleaching, oxidizing.
Peroxide.	Bleathing, oxidizing.
Phosphate.	Textles, eyperially silk weighting and dyeing.
Prussiate	Manufarturing of Prussian blue for calico dyeing, printing.
Sillicate.	Fireproofing, dyeing, bleaching adhesive in fiber and paper board, sizing, weighting.
Sulphates..	Dyeing (fixing and equalizing agent), manufacture of ultramarine and sodium sulphide.
Sulphide.	Dyeing sulphur colors, tanning, artificial silk manu-
	facture, sulphido colors, dopilatory agent.
Thiosulphate.	Chrome tanning, antichlor in bleaching, paper manufacture, mordanting, manufacture of coal-tar green.
Titanium sulphate.	Mordanting. - ,
Washing compound	Cleansing.

In the paper industry, for instance, for the production of sulphite, soda and sulphate pulps, large amounts of soda ash, salt cake, and niter cake are employed; alum serves as a sizing or fixing agent for dyes, the silicate acts as an adhesive in laminated papers like wall boards. For boiling rags, caustic or carbonate is employed, and, for bleaching of rags or pulp, the hypochlorite is used.
Of those compounds which have been included in "Other sodium compounds," the outstanding items arranged in the order of their value are cyanide, metal, prussiate, chlorate, aluminum fluoride, formaldehydehydrosulphite, peroxide, alums, potassium tartrate, and hypophosphite.
The two important sodium compounds, soda ash and caustic, are preeminently in the lead both in quantity and value of production and together constitute 61 per cent of the quantity and 52 per cent of the value of the entire group.
It can readily be seen that the total of 49,338 tons of bicarbonate of soda reported as made and con-
sumed in further manufacture is but a fraction of that required for the manufacture of the soda ash, crystalline carbonate and sesquicarbonate reported. Making the necessary calculations from the formulas of these salts (soda ash, $\mathrm{Na}_{2} \mathrm{CO}_{3}$; sesquicarbonate, $\mathrm{Na}_{4} \mathrm{H}_{2}$ $\left(\mathrm{CO}_{3}\right)_{3} .3$ aq., and $\mathrm{Na}_{2} \mathrm{CO}_{3} 10$ aq., with factors of 1.60 , 1.03 , and 0.59 , respectively) and adding the weight of bicarbonate reported sold as such, the total amount of bicarbonate made amounted to 2,691 thousand-ton units.

Salt cake and niter cake, at one time considered as by-products and more or less a drug upon the market, advanced in both price and value, niter cake showing phenomenal gains, to more than double the quantity and nearly three times the price. This would indicate that many new uses have been found for niter cake as a substitute for sulphuric acid and other acids and acid salts in the explosives, soap, fertilizer, paper, dyeing, tanning, and other industries.

The manufacture of bichromate and sulphide, both used largely in the textile and leather industries, has increased very considerably so that these salts rank among the more important sodium compounds judging by the amounts and value of their output.
More than 50 separate compounds of sodium were reported in the 1919 census, some of which were derived by simple processes and others by involved methods, especially from the engineering standpoint. Briefly, they were derived in the following ways:

Many of these processes are dependent on the production of the necessary acid and of sodium carbonate, hydroxide, nitrate and sulphate or calcium salts such as the acetate, citrate, ferrocyanide, hydroxide and phosphate that are derived as by-products in other industries (wood distillation, citrus products, gas industry, lime or fertilizer industries). Other salts resulting from the use of by-products are the tartrate, from the wine industry, bisulphate and sulphate from the acid industry, arsenite and arsenate from the smelting and refining industry, and thiosulphate from the Leblanc soda process. Some are directly dependent upon natural sources other than soda salts, such being the borate, chromates, manganate, and silicate from calcium, borate, chrome ore, manganese, and sand.

Of the natural sources of sodium compounds the chloride, nitrate and borate are the most important.

Carbonates of sodium. - The four forms of carbonate of soda reached an aggregate total of $\$ 37,848,836$. Bicarbonate of sodium, being the basis for all the other carbonates, was produced in much greater
amounts than is indicated by the tabulation, the production being estimated at 2,691 thousand tons, and at the average price of $\$ 26$ a ton would have approximated a value of $\$ 70,000,000$. The amount reported was 190,894 tons and the value of portion sold was $\$ 3,695,417$ produced by 10 establishments in 8 states of which 4 states-Michigan, New York, Virginia, and California-produced 99.2 per cent of the total amount. Of this a very small part resulted from refining or recovery processes and less than 5 per cont from natural brines in California. Over 95 per cent was made by the Solvay ammonia-brine process.

Similarly, about 98.5 per cent of the total amount of soda ash reported ($1,507,424$ tons), was produced by the Solvay process. Eighteen establishments in 12 states were concerned in the manufacture of soda ash, of which 5 states-Michigan, Ohio, New York, Virginia and Kansas-produced 90 per cent. The cost per ton varied from $\$ 24$ to $\$ 40$ with an average of $\$ 30.20$. Grades of strength and purity were not reported.

Carbonates from natural brines in California are made by burning coke and limestone in kilns to produce CO_{2} gas which is charged into the brine waters. Crystals of bicarbonate that form are separated by filters and calcined in oil burning furnaces which produce dense soda ash. By-products reported included lime which is usually employed further for the production of caustic liquor.
The production of crystalline carbonates of soda, known as sal soda, washing compounds and sesquicarbonate, increased but slightly. The alkali strengths of sal soda and soda ash bear the ratio of 21.7 to 48 (or 58) per cent $\mathrm{Na}_{2} \mathrm{O}$, so that instead of $\$ 27$ to $\$ 30$, per ton the actual cost of the crystals to the consumer was $\$ 60$ to $\$ 74$ a ton. The ash averaged $\$ 30$, Since soda ash is sufficiently pure to be used for almost every purpose it is not surprising that the production of-crystal compounds has failed to keep step with that of the calcined ash. This comparison does not include washing compounds which are of more or less unknown composition and command much higher prices.
Crystal compounds were derived from the same sources and were made by many of the same establishments as other carbonates. Thirteen establishments reported soda ash as the source of crystal soda.
Sodium hydroxide.-Twenty-nine concerns in 13 states reported the production of 333,361 tons of caustic soda. Of these, 15 establishments in Michigan, Now York, and Ohio, unitedly produced naarly 89 per cent. Seven companies merely repacked and sold about 6 per cent of the total. Production by the electrolytic method from common salt was reported by 15 establishments with 28 per cent of the total.

Sodium silicate.-Seventeen establishments in nine states produced 286,791 tons of silicate of soda, none being used for further processes in the same works. Indiana, Ohio, New Jersey, Illinois, and Pennsylvania in the order named produced nearly 84 per cent of the total, two states in the far west (California, Washington), produced less than 6 per cent, four in the middle west 61 per cent and three on the east coast 33 per cent.

Sodium sulphate.-Sulphate of sodium in its several forms reached a value of $\$ 4,838,198$. Previous to 1914 niter cake was used to a limited extent only for its acid value, and the sulphato content was wasted. It now has important applications in the sulphate pulp industry and in gas recovery. Twothirds was produced in seven Eastern states, and nearly one-third in seven Middle states, a very small fraction in the West. More than half of the niter cake was made in the production of nitric acid for the explosives industry.

Theoretically the 86,992 tons of nitric acid reported under Group I, and the additional nitric acid used for making mixed acid (about 57 per cent of 114,886 tons), required the production of 240,000 tons of niter cake, of which 67,556 tons were made and consumed, leaving about 172,000 tons as the probable production of niter cake, much of which was waste product.

Salt calee was produced in 15 states and 34 establishments, the total weight being 179,000 tons, of which 8 states-New Jersey, Illinois, Indiana, Ohio, Delaware, Pennsylvania, Massachusetts, and New York-made 89.5 per cent. An unusually large proportion of the total salt cake manufactured, 31.3 per cent, was used by manufacturers themselves in further processes of manufacture, of sodium sulphide, Glauber's salt and anhydrous sulphate.

Glauber's salt, or crystallized sodium sulphate, totaled 42,206 tons, made in 15 states by 27 establishments, 13 plants in 5 states-New Jersey, Massachusetts, Pennsylvania, Indiana, and Delaware-producing 74 per cent. Six companies produced 2,776 tons of anhydrous sodium sulphate, refined. A total of 29,818 tons of thiosulphate or "hyposulphite" was reported by 9 establishments in 7 states, 4 of whichNew Jersey, Delaware, Indiana, and Pennsylvaniaproduced 29,799 tons, or nearly the entire amount.

Sulphides and sulphites.-Sodium sulphide was produced by 17 establishments in 11 states; and totaled 39,735 tons of all grades, or 57,000 tons when calculated to a basis of 30 per cent, or sodium sulphide erystals. About 99.4 per cent of the total was made in 8 states and nearly 80 per cent in New Jersey, Indiana, Delaware, and Massachusetts. With the exception of a small amount merely subjected to refining methods, the great bulk, or about 88.3 per cent, was made from salt cake by reduction, and 11.7 per cent by conversion from barium sulphide.

Sodium sulphite is made by saturating a solution of soda ash with sulphur dioxide to form the bisulphite, then adding more soda to form the normal salt. It also results as a by-product in the manufacture of phenol, cresol, etc. A total of 8,666 tons was made by eight firms in six states, and of this amount, 8,278 tons, or nearly 96 per cent, were made in two statesNew Jersey and Maryland.

Several grades of sodium sulphite are included in the total, crystals, ground, anhydrous, dry powdered, and pure. Crystal sulphite equaled 83 per cent of the total weight.

Borax, otherwise called biborate or tetraborate of soda, amounting to 29,635 tons, was produced in eight establishments in six states, of which 27,744 tons, or 93 per cent, originated in California. Of the total amount produced 25,807 tons, or 87 per cent, was obtained from the mineral colemanite, a crude borate of calcium. The colemanite is calcined, which causes the borate portion to lose water of crystallization and form a powder easily separated from contaminating minerals by mechanical means. When boiled with sodium carbonate solution, this powder forms borax and calcium carbonate, which is removed by filtration, and the solution is concentrated to crystallization.

Borax is used in large amounts for enameling, glazing, for making borosilicate glass which has many applications, in laundry and kitchen, in tanning, dyeing and paper industries, as a flux, larvicide, antiseptic, etc.

Sodium bichromate and chromate were produced in five establishments in four states, a total of 24,081 tons, by the usual method using chrome ore, lime, soda ash, and an acid for the final neutralization of excess alkali.

Ten companies reported a total of 23,867 tons of phosphate of sodium, of which 4,321 tons were monosodium phosphate, reported by four establishments; 9,663 tons disodium salt reported by nine, and 9,883 tons trisodium salt reported by five. Several grades of purity were reported-commercial, technical dry, U.S. P. granular, and U.S. P. anhydrous. The monosodium salt shows the highest unit value. Five firms in New Jersey produced 19,006 tons, or about 80 per cent of the total.

Other sodium compounds are considered in connection with other groups-cyanides in Group II; alums in Group V; perborate, hypochlorite, bisulphite, and hydrosulphite in Group VI; and arsenate and arsenite in Group X.

Sodium compounds produced by aid of electricity.Sodium hydroxide, cyanide, metal, chlorate, peroxide, hypochlorite, and nitrite, valued at $\$ 13,919,315$ were produced by electrolytic processes. All originate from common salt, which when electrolyzed in molten condition yields metallic sodium from which is derived the cyanide and peroxide; when electrolyzed in warm aqueous solution produces the hydroxide, in cold dilute solution the hypochlorite, and in concen-
trated alkaline solution the chlorate. The nitrite is formed by synthetic processes. The amounts used by the coal-tar industry do not appear here.

Other figures are for the production of bromide, fluoride, and iodide of sodium. With "Other compounds" are included sodium hypophosphite, manganate, and silicofluoride. Of these, sodium bromide was derived from original sources, three establishments in Michigan and West Virginia mining and purifying the crude salt, and two others refining and producing the chemically pure product.

Organic solium compounds.-The present census, in addition to sodium benzoate, has segregated the acetate and citrate and with "Other organic compounds" has included the butyrate, formate, oxalate, propionate, and sulphocarbolate, the total value of which reached $\$ 6,083,258$. A comparison with the total for inorganic sodium salts would seem to show great disproportion, but in fact the chemical industry, as such, includes a very small proportion of sodium compounds of organic nature, produced in bulk, these appearing under drugs and medicinals, coal-tar chemicals, and other industries.

Five states and 11 concerns produced an aggregate of $2,260,459$ pounds of acetate of soda (New Jersey, Missouri, New York, Pennsylvania, and Michigan), of which New Jersey turned out about 90 per cent.

Benzoate of soda, 120,447 pounds, was made by five establishments in three states-New York, Missouri, and Pennsylvania. This was but a small part of the total benzoate as the bulk is included under the coal-tar industry.

Three states and six establishments were concerned in the production of 118,417 pounds of sodium citrate.

Many alkali salts of organic character are formed by simple neutralization of an aid by an alkali, or by interchange of acid components between a calcium salt of the organic acid and an alkali sulphate (acetate, benzoate, butyrate, citrate, oxalate, propionate, sulphocarbolate, tartrate) so that the manufacture becomes a question closely dependent upon the derivation of the corresponding acid. Calcium acetate, a by-product of wood distillation, calcium citrate from the citrus fruit, and acid tartrate from fermentation industries, supply the original material for three organic salts. Other organic acids are made only by synthetic methods (benzoic, formic, oxalic, sulphocarbolic) or by carefully controlled bacterial action (acetic, butyric, propionic).

GROUP IV.-POTASH, POTASSIUM, AND COMPOUNDE.

Potash is a term indiscriminately used in the trade, so the special schedule designed to collect data on the production of "Potash from original sources" included the carbonate, chloride, sulphate, hydroxide, and even alum and borate, from lake brines, potashbearing rocks, cement and blast-furnace dust and ashes of beet pulp, kelp, distillery wash and wood.

All of these products were marketed as "Potash" and were used primarily as components of fertilizers, frequently irrespective of the kind of salt.

In tabulating the information the salts have been recorded as crude carbonate, chloride, and sulphate. Table 27 presents the statistics of production for potash and potassium compounds.
Table 27.-Group IV.-Potash, Potassium, and Compounds.

1 Figures not available.
2 Potash from original sources as reported to the Geological Survey, 1019:

a A considerable portion lost through accident at plant.

The reports gave the $\mathrm{K}_{2} \mathrm{O}$ content of the brines as varying from 0.2 per cent to 2.4 per cent; wood ashes from 1.7 per cent to 5 per cent; kelp as having a $\mathrm{K}_{2} \mathrm{O}$ content of 1.75 per cent; sugar-beet pulp, 0.32 per cent; blast-furnace flue dust, 7.5 to 9 per cent; cement dust 2.7 to 4.4 per cent; alunite, 4.5 per cent.
A summary of methods of manufacture is given:

1. The acetate, bicarbonate, binoxalate, bisulphate, bisulphite, metabisulphite, bromide, chromate, citrate, iodide, oxalate, and phosphate are made by neutralization or combination of the desired acid, its acid salt or oxide, with potassium carbonate or hydroxide,
2. The bichromate, bromate, ferrocyanide, a portion of the hydroxide, and the nitrate are formed by interchange of a compound of another base than potassium having the desired negative groups, with crude potassium chloride, carbonate, or sulphate usually a precipitate being formed and removed.
3. The carbonate, chloride, and sulphate not included in crude salts result by refining of the crudes.
4. The chlorate, a portion of the hydroxide, and possibly of the permanganate and persulphate, are made from the chloride, sulphate, or hydroxide, by electrolytic methods.
5. The ferricyanide and permanganate are made by neutralization of the corresponding acid with crude carbonate and subsequent oxidation with chlorine or ozone.
6. The cyanide and sulphide result from reduction of the carbonate (and ammonia) or of the sulphate by means of carbon at a high heat.
7. Finally, the double tartrates with sodium (Rochelle salt) and antimony (tartar emetic) result from potassium, bitartrate by treatment with an excess of the respective cobase.
It may be noted that in the formation of all these potassium compounds there is the constant recurrence of the use of one or another of the crude potashes, either as bitartrate, carbonate, chloride, or sulphate.
Aside from crude potash salts for fertilizer purposes and for further manufacture, the most important products manufactured were the halogens as a group, especially the iodide, and the hydroxide. The refinement of crude carbonate as such did not reach a high figure, although seven establishments made reports. Neither did the eight establishments reporting various forms of sulphur derivatives such as alum, the refined sulphate, persulphate, sulphide, and bisulphide produce these in large amounts, the sulphites and alum covering nearly the whole. Potassium nitrate is being separated from Chile saltpeter-a natural source of nitrates, consisting mainly of sodium nitrate with a small percentage of the potassium salt-by more than one concern. Usually this salt and the bichromate are made by interchange of bases between potassium chloride and
the corresponding sodium salts in water solution in which the resulting sodium chloride is more soluble, so that the potassium compound may be recovered by fractional crystallization.
Potassium hydroxide or caustic potash was produced by 13 establishments, the greater part by electrolytic decomposition of the chloride.
The bromide, iodide and refined chloride of potassium in order of value as named, were produced in 11 establishments, a total of $1,736,422$ pounds ralued at $\$ 1,909,224$. The oxidized forms as chlorate, bromate and iodate were reported by 5 plants producing $2,976,524$ pounds valued at $\$ 648,263$. Electrolytic methods were employed for the latter salts, while the former group of bromide, iodide and chloride, even though refined, should rightly be considered as salts derived from original sources, bromide and chloride both originating in the salt mines of Michigan and West Virginia and the iodide produced from caustic potash and iodine which is obtained from the ash of seaweed or mother liquors of Chile saltpeter refining.
Organic salts of potassium included the bitartrate, Rochelle salts, tartar emetic, citrate, oxalate, etc., in the order named, the total production being valued at $\$ 3,624,885$. The bitartrate was made by six companies in three states-New York, California, and Ohio-from pomace or argols. The double tartrate was derived from the same sources. Six establishments in Missouri, New York and Pennsylvania produced refined qualities of potassium acetate, at prices ranging from 45 cents to $\$ 1.05$ and averaging 68 cents. There was no indication of quality, except prices.

Potassium citrate was produced only in refined grades, U. S. P., and chemically pure, six establishments reporting 64,088 pounds, value $\$ 100,754$.
Potassium comporunds as a whole have been restricted in growth on account of the difficulty in obtaining basic salts.

GROUP V.-ALUMS, ALTMINUK, AND COMPOUNDS.
Table 28 presents the statistics for the aluminum group. The usual separation of aluminum compounds into alums as distinct from aluminum and its other salts has been made as heretofore, except that aluminum sulphate is classed as a simple aluminum salt and not as alum. For convenience of comparison, and owing to the similarity of their applications, burnt and chrome alum areincluded in the subgroup "Alums," although they contain no aluminum.
Practically all aluminum salts find applications as mordants, paper sizes, and dye-lake bases. Chrome alum, however, is especially adapted to chrome tanning, and aluminum sulphate to white tanning of leather; alumiaum acetate to water proofing and as an embalming fluid; aluminum chloride for use in petroleum refining and as a catalytic agent in organic syntheses; and ammonium alum for medicinal pur-
poses. For water purification, aluminum sulphate and soda alum are mainly used.

Table 28.-Group V.-Altims, Auuminum, and Compounds.

	1919	1914	1909
Value of products.	843, 433,482	(1)	(1)
Alums. ammonium inio.	\$17,055, 891	\$3,467,969	\$3, 022,355
Number of establishments	8		
Total production, tons.	3,949		
For sale-			
Tons..............................	3,797 $\$ 304,018$	${ }^{1}$)	$\left.{ }^{1}\right)$
Made and consumed, tons............	8304, 152		
Potash alum-			
Number of establishments.	4		
Value.	- $\begin{array}{r}393 \\ \hline 63,745\end{array}$		
Unit value, tor		-219, ${ }^{\mathbf{8 1 3}}$	\$155, 319
Sulphate (concentrated alum)--			
Number of ostablishments. .	19	11	
Total production, tons.	312,872		
For Tons.	312,759	92,500	77,737
Value...	315, 665, 526		
Unit value, ton	-10, ${ }^{\text {ras, }} 850$	- ${ }^{\text {1, }}$	31,012, 817
Made and consumed, tons...........	113		
Number of establishments.	12		
Total production, tons.	15,337		
For sale-			
Tons...	\$1,020,602	57,973 $\$ 1,419,435$	55,283 $\$ 1,554,285$
Value Unit value, ton	\$1,020, 602	\$1, 419,435	\$1, 554, ${ }^{285}$
Made and consumed, tons	15		
Aluminous abrasives:			
Tons...............	11306		
Value............	\$2, 032, 588		
Aluminum chioride:			
Number of establishments.	7		
Total production, tons. For sale-	4,411	(1)	
For sale- Tons...	4,265		
Value.	\$362,445		
Made and consumed, tons	146		
Aluminum hydroxide and oxide, refined:			
Number of establishments.			
Total production, tous.	0,375		
Forsale-			
Tons...	3,817	(1)	(1)
Vade and consumed.	$\$ 514,649$ 2,528		
All other-Aluminum and alloys, aluminum nitrate, calciued bauxite, refined cryolite, etc., value.	823, 467,909		
etc., value.	\$23, 467, 909	(1)	(1)

1 Figures not available.
3 191a-Burnt, chroma
${ }^{2} 1919-B u r n t$, chroma and song alums; 1914 -Burnt and soda alims, porous,
oxcelsior and pgarl, aminonium, alum cake, etc. oxcelsior a ail psarl, aminonium, alum cake, ete.

Simple salts of aluminum, such as the sulphate, chloride, hydrate, and sodium aluminate, being stronger in the essential ingredient per unit of weight and also cheaper, have almost replaced alums.
In no other group are so many products derived primarily from one raw material. Witil few exceptions, all originate in the mineral bauxite, a natural hydrate or hydrous oxide containing from 30 to 60 per cent $\mathrm{Al}_{2} \mathrm{O}_{3}$. Arkansas leads in its production. From it directly or indirectly, are derived the metal, the acetate, chloride, fluoride, hydroxide, oxide and sulphate, calcium and sodium aluminates, and ammonilum, burnt and sodium alums, or 93 per cent of all aluminum products.

Among other sources of aluminum compounds we find alunite, a hydrous sulphate of aluminum and potassium, mined principally in Utah, which has been developed since 1914 mainly as a source of potassium sulphate, aluminum compounds appearing as a byproduct. Potash alum is derived only in part from alunite.

Clay, a hydrous silicate of aluminum, is the source of aluminous abrasives and alum cake (for which no figures were reported in 1919). Especially pure clay, or kaolin, is sometimes used instead of bauxite.
The following scheme, giving in brief detail the methods of manufacture, illustrates the relative dependency of aluminum compounds upon bauxite, alunite, or clay as a material:

material.	Product.
Bauxite:	
Calcined, leached, and solution treated with CO_{2} or air.	Hydrate.
Oxide electrolyzad.	Metal.
Oxide or clay electrolyzed	Abrasives.
Hydrate with acetic, hydrochloric, hydrofluoric, nitric, or sulphuric acids.	Salts-A cetste, chloride, fluoride, nitrate, sulphate.
Sulphate and alkali sulphate.	Alums.
Alum calcined.	Buint alum,
Hydrate or ore calcined with soda ash or lime.............	Sodium or calcium aluminates.
Alunite:	
Clay:	
Electrolyzed Cryolite:	Abrasives.
Rnasted, etc. ...	Refined cryolte.
Ferrous and ammonium sulphate solutions mixed and double salt crystallized.	Iron alum.
Alkali bichromate in dilute sulphuric acid reduced with sulphurous acid.	Chrome alum.

Aluminum hydroxide, or refined bauxite, and the oxide derived by calcination, were made in large quantities and consumed in the further manufacture of the metal and its salts, but the figures are not available. Amounts reported as sold form but a small part of the total production.

Aluminum sulphate consists of from 50 per cont to nearly 100 per cent aluminum sulphate, according to its state of hydration. Alums contain from 34 to 38 per cent or less of aluminum sulphate. All establishments with ono exception gave bauxite and sulphuric acid as raw materials. Calculated as crystallized salt containing 50 per cent aluminum sulphate, the 312,872 tons reported in 1919 required about 160,000 tons of 30 per cent bauxite ore. For the 6,375 tons of alumina and hydroxide reported, an additional 21,250 tons were required. The total bauxite required for the three items of aluminum metal, its oxide or hydroxide, and sulphate, irrespective of other compounds, would be 560,000 tons of 30 per cent ore.

The manufacture of aluminum chloride difiers from the usual union of an hydroxide or oxide with an acid in solution in water, in that chlorine or hydrochloric acid is allowed to react upon the metal itself, the carbide, or a mixture of the oxide and carbon, all heated to high temperature. Of the other compounds of aluminum, refined cryolite and bauxite are of most importance, only small amounts of acetate, nitrate, and sodium aluminate being produced.

The figures for alums in 1914 included several salts of aluminum which in the present census are to be found in the subgroup "Aluminum and its compounds, other than alum." To this extent comparisons of the two groups are not correct.

GROUP VI.-BLEAOHING COMPOUNDS.

Bloaching compounds are of three principal kinds, and may be classified as chlorine, peroxide, and sulphur bleaches. Chlorine and peroxide bleaches are similar in that they are oxidizing agents and decompose the impurities by the addition of oxygen or removal of hydrogen to form water, while sulphurbleaches abstract oxygen or act as reducing agents. The latter effect is not so stable, the tendency being for the bleached material to take up oxygen from the air and, in part at least, regain its former state.

All bleaches act in presence of water. Chlorine and hypochlorites (by virtue of the chlorine set free by acids) attack the water, freeing oxygen, the active agent, in the nascent or extremely reactive state. Peroxides in themselves are very unstable, readily giving up oxygen, also in the nascent condition. Sulphur dioxide, either as such or liberated from bisulphites and sulphites by acids, is the active agent in all sulphur bleaches. It removes oxygen from the more unstable impurities forming sulphuric acid with the water present.

Table 29.-Group VI.-Bleaghing Compounds.

	1919	1914	1909
Value of products.	\$12,392, 806	\$5,302,359	53,215,728
Chlorine bleaches:			
Chlorine-			
Number of establishments ${ }^{1}$		7	
Total production, pounds...............	91,141,000		
For sale- Pounds \qquad	34, 392,000	12,217,000	${ }^{2}$)
Value.	\$1, 425, 917	-\$472,836	(
Unit value, 100 pounds....	\$1, \$4.15	\$3,87	
Hypoulorites (calcium and sodium) -	56,749,000		
Hypochlorites (calcium and sodium)- Number of establishments 1	16	14	9
Pounds..............	252, 850,000	310,380,000	110,802, 000
Value...............	\$4,781, 350	\$2,916,225	\$1,786, 846
Peroxide bleaches:			\$1. 53
Barium peroxide-			
Number of establishments ${ }^{1}$	3		
Pounds..............---.	3,134,000	(2)	(2)
Value.	\$569,483		
Hydrogen peroxide-			
Number of establishments ${ }^{1}$.	11	20	17
Painds.	31, 515,000	32, 595,000	9, 926,000
	\$2, 257, 282	\$1,303,596	\$870, 541
Sulphur bleaches:			
Bisulphite of calcium, soda, potassium, ete. -			
	14	14	15
	39,225,000	26,340,000	31,718,000
Value.	\$961, 284	\$243, 559	\$226,154
Unit value, 100 pounds	- \$2,49	\$0.92	\$0.71
Salphur dioxide-			
Number of esta? lishments	3		
Pounds.	856,000		
Value....-.-.............................	899,896		
Other sulphur bleaches, value..............	\$1,073,464	9366, 143	\$332,187
value.-.............-.........................	\$012,085		

1 States and number of estarlishments in order of protuction, 1919:
Chlotine (14): New Hampshire, 1 ; New York, 5 ; Michigan, $3 ;$ Maine, 1 ; Pemnsyl-
vania, 1; Fest Virginia, 2; and Missomi, 1. ork, 5 ; Michigan, 3; Maine, 1; Pennsy1-
Hypochlorites (16): New York, 5 ; Michigan, 2 ; California, 2; Virginia, 1; Rhode
Inland, 2; Pennsylvania, 2; Moryland, I: ard West Virginia, ${ }^{2}$;
Barium peroxide (3): Ohio, 1; New York, 1; and West Virginia, I
Hyampegen peroxide (11): New York, 4; New Jersey, 2; Missouri, 2; Hinois, 1 ;
Ohio, I; and California, 1.
Bisulphites (14): Massachusetts, 3; Delaware, 1; New Jersey, 2; New York, 2;
Maryland, I: Ponnslyania, 1; Missouri 3; and Caliornia Maryland, I; Pennswlyania, $1 ;$ Missouri, 3 ; and California, 1 .
Sulphur doxide (3): New Jersey, 1 ; Wisconsin, 1 and Virgi
Sulphur diozide (3): New Jersey, 1; Wisconsin, 1; and Virginia, 1.
e Figures not available.
While in amounts produced the order is chlorine, peroxide, and sulphur bleaches, in ratio of increase the order is reversed. Hypochlorites and hydrogen peroxide have decreased in tonnage, liquid chlorine
apparently having displaced both. The electrolytic production of sodium and potassium hydroxides, developed as a result of the necessities of war, required an outlet for excess chlorine, with consequent reduction in price below other bleaches. Liquid chlorine was practically the same price in 1919 as in 1914.
Chlorine bleaches were produced by electrolytic decomposition of common salt, the resultant gas being compressed and cooled to a liquid and marketed in steel cylinders, or conducted into caustic lime or soda to form "Chloride of lime" or soda; that is, hypochlorites of calcium and sodium.
Liquid chlorine within five years increased from 6,000 tons to more than 17,000 tons, marketed, and in addition in 1919, 28,000 tons were used in the producing plants for further manufacture of chlorine products such as chloracetic acid, sulphur chloridés, carbon tetrachloride, chloroform, hydrochloric acid, tin salts, and other metallic chlorides, exclusive of that used for the production of bleaching powder.
Fourteen establishmentsinsevenstates-New Hampshire, New York, Michigan, Maine, Pennsylvania, West Virginia, and Missouri-manufactured liquid chlorine. Since it is a by-product of that portion of the caustic soda and caustic potash industries employing electrolysis, and must have been produced in equi-molecular amounts, the actual production must have been 85,212 tons. That is, more than 85,000 tons of chlorine were made, and since 45,000 tons were reported and either used directly as a bleaching agent or for the manufacture of the various chlorine compounds enumerated above, there remains about 40,000 tons which must have been consumed in the manufacture of bleaching powders or lost.

Hypochlorites included but 2,400 tons of sodium salt. The total production of calcium and sodium hypochlorites amounted to 126,425 tons, made by 16 concerns in 8 states, New York and Michigan producing 82 per cent of the whole. At an average of 30 to 35 per cent chlorine, this weight of bleaching powder required from 38,000 to 45,000 tons of chlorine for its manufacture, which agrees fairly well with the above estimate based on the caustic produced.
Peroxide bleaches, second in importance, gained in favor for special applications and in spite of competition with the cheaper chlorine and its derivatives. Eleven plants in six states--New York, New Jersey, Missouri, Illinois, Ohio, and California-made hydrogen peroxide, 77.6 per cent of the total amount being attributable to six establishments in the first two states.

Barium peroxide, while not the most important of the peroxide bleaches when the amount sold is considered, is in fact the primary compound from which hydrogen peroxide is derived. Approximately 80,000 tons of barium peroxide were required to produce the hydrogen peroxide reported.

A considerable amount of sodium perborate was made and the value is included among other peroxide bleaches as the action is due to the liberation of hydrogen peroxide or nascent oxygen.

Among sulphur bleaches bisulphite of sodium (including a small amount of the calcium salt), was the most important product, for although sulphur dioxide is the active ingredient the sodium compound, being a dry powder, is a more convenient method of transporting it.

Five states--Delaware, Massachusetts, New Jersey, New York, and Maryland-produced 98.8 per cent of the total. As in the case of sulphites, bisulphite of soda was reported in a number of grades, as solution, liquid 38°, anhydrous, metabisulphite, dry, and dry powdered. Low-grade material totaled 11,377 tons arid ranged in price from $\$ 20$ to $\$ 40$ per ton, while the higher grades ranged from $\$ 67$ per ton upward, according to purity and strength, and averaged $\$ 72$ per ton.

A notable amount of formaldehyde hydrosulphite bleaching compound was made and is included in the value of other sulphur bleaches. Prior to 1914 this was imported.

GROUP VII.-COAL-TAR CHEMICALS.

This branch of the industry includes establishments distilling tars for the production of crudes, those synthesizing intermediates from crudes and those building up from these intermediates a variety of finished products. Coal-tar intermediates may be fashioned into dyes or dye-lakes, photographic chemicals, medicinals, perfumes, flarors, synthetic tanning materials, synthetic phenolic resins, and other synthetics. The general statistics for this branch of the chemical industry are presented as a separate section of this report on chemicals and allied products entitled "Coal-tar products." Table 30 presents the statistics for products, by groups. ${ }^{1}$

Coal or oil when dry distilled yields volatile combustible compounds and a solid residue. Part of the volatile portion is utilized in the gas industry, and the residual coke by the metallurgical industries, distillation being so regulated that in the one case the largest possible proportion of volatile matter results, while the other aims to produce the greatest amount of solid residue.

An average distribution of the three main distillation products from coal is shown to be 16 per cent gas, 19 per cent vapors including 2 per cent water, and 65 per cent coke. Gas and coke are used without material change. The vapors are condensed by cooling or recovered in solvents and are usually retreated for a partial separation of individual components. Aside from about, 2 per cent ammoniacal water the liquefied

[^2]compounds are primarily tar and light oils. Either or both may be redistilled or sold as such. A large part of the oils and some tar are in fact fractionated in the establishment where produced, so that the by-products of the gas and coke industries are not the original crude tar and light oils but are the several fractions resulting from further distillations and separations, such as crude benzol, toluol, xylol, phenols, cresols, carbazol, pyridine, naphthalene, solvent naphtha, dead or creosote oil, anthracene oil, pitch, refined or prepared tar and sometimes tar-coke.

Table 30.-Group VII.-Goal-Tar Chemicals.

	1919	1914	1909
Total value.	\$133, 499,742	813, 492, 433	\$7,969,672
Crudes:			
Numler of estal lishments.	421, $148{ }^{56}$	40	42
Intermediates:			
Pounds.	117,470, 201	-	1,007,591
Dges and color lakes:......................... ${ }^{\text {Value. }}$ (28,20,017			
Number of esta!:lishments.	65, $\begin{array}{r}1009 \\ 250\end{array}$		
Pounds.	$65,909,250$ $\$ 69,318,785$	$\left\{\begin{array}{r} 1,652,947 \\ 84 \end{array}\right.$	$\begin{aligned} & 12,68,70 \\ & 83,68,553 \end{aligned}$
Photographic ehemicals:			
Number of estalishments.			
Pounds.	384, 181		
Value..	\$1, 189,995		
Medicinals:			
Number of estalilishments	25		
Poands.	5,724, 245		
	\$8,670,277		
Flavors and perfumes:Numplier of estakishments		${ }^{3} \$ 774,350$	${ }^{3} \$ 228,528$
Pounds.	861, 143		
Value..	\$2, 643, 698		
Synthetic phenolie resins:			
Number of estallishments.	$\begin{array}{r} 6 \\ 3.400 \quad 757 \end{array}$		
Pounds. Value.	$3,696,757$ $\$ 2,268,6=6$		
Valie.	\$2,268, 6 c 6		

DISTRIBUTION OF NUMBER OF ESCABLISITIENIS; BY STATES.

" Reporter as "Coal-tar distillery products."
${ }^{2}$ Coal-tar dyes and intermediates made largely from stock of foreign origin.
3 Reported as "Chemicais or medicinal preparations from coal tar."

Much crude tar, especially of the gas industry, is purchased by distillers who make a specialty of the fractionation of light oils and tar. These distillers, who do not properly form part of either the gas or the coke industry, are included for census purposes with the coal-tar chemical industry, under the group "Crudes." Products of the distillation of tar by these special distillers are the same but differ in relative quantities of ingredients separated by treatment of tar and oils in the original establishments. Basic materials for coal-tar chemicals are derived therefore from two sources, (1) from the gas and coke industries where light oils and some tar are worked up as by-products, and (2) from tar distillers within the industry proper. Tar as such and much of the heavier fractions from various distillations are used for many purposes, as fuel, insecticides, wood preserratives, and roofing materials, only a small part of the total bulk of material being employed for the synthesis of coal-tar compounds.
Upon redistillation tar leaves a semisolid carbonaceous residue of "pitch," almost equal in percentage weight to the proportion of coke in the original coal. Water vapor amounts to about 4 per cent, heavy oils to 20 per cent, and loss as gas about 1 per cent, leaving approximately 13 per cent of the distillate which may be available for coal-tar syntheses. This distillate consists of benzol and its homologs, 2.5 per cent; phenol and homologs, 2 per cent; pyridine and quinoline, 0.25 per cent; naphthalene and acenaphthene, 6 per cent; and anthracene and phenanthrene, 2 per cent.

Coal therefore upon distillation yields 17 per cent light oils and tar, in about the proportion of 1 to 4 , and when the tar is redistilled it yields nearly 13 per cent material that may in part be used for organio syntheses, to the extent of 1.5 per cent of the original coal.
In the same way the light oils are fractionated into a number of distillates, all of which separations are extremely variable, and repeated fractionations are required to isolate the individual chemicals required as "crudes" for synthesis of coal-tar intermediates.

The coal-tar chemical group includes crudes, intermediates and finished compounds.
Commercially it is customary to apply the term. "crudes," to the basic hydrocarbons, with slight regard to their condition of purity. Benzols, toluols, xylols, naphthalenes in the unrefined states as well as benzene, toluene, and other refined products are spoken of as crudes. A crude remains a crude until chemical change has been brought about, only an alteration in composition denoting the change from crude to intermediate.

For census and tariff purposes, however, a distinction is made between grades of naphthalene and of anthracene, more refined grades being taken out of the class of crudes and included with intermediates. So also the phenols, cresols, and other tar acids of defined strengths produced by distillation of tar, which by general usage are classed with crudes, are
put for tariff reasons with synthetic phenol as intermediates, whether of technical or pure quality.
The statistics concerning products were collected on a joint schedule in cooperation with the United States Tariff Commission, the Bureau of the Census section being confined to group totals for production. The values as reported by the census and those by the Tariff Commission necessarily will not agree since the latter include intermediates reported to have been made and consumed in the same works, while the census figures are confined to the marketed products of the establishments, or products in form and condition to be marketed. Table 30 covers establishments making coal-tar derivatives only, while the totals in the text which follows also include contributing industries where coal-tar chemicals were of secondary importance.

Crudes.-The materials used for the production of coal-tar "crudes" were distributed as follows:

Coal tar.	gals.)	3, 478, 884
Oil tar.	barrels (50 gals.).	669, 561
Gas-house tar	. barrels (50 gals.).	104, 175
		4, 252, 620
Other organic materials:		
Liquids.	. barrels (50 gale.)..	148,110
Solids.	.tons (2,000 lbs.)..	72,000

The liquids under "Other organic materials" included solvent naphtha, benzol, toluol, cresols, creosote oil, drip and holder oil, gasoline and other distillates, while the solids consisted of phenol, naphthalene, pitch, and coal. Converting all of these to a weight basis makes a total of over $1,000,000$ tons of material.

From this amount of material a total of 926,000 tons of distillates and residues was obtained with a value of $\$ 22,000,000$, and together with tarred felt, roofing, and other products the total value of products from 60 establishments distilling crude tar and related coal-tar distillates was $\$ 33,000,000$. If with this is combined the value of similar distillates in the gas and coke industries the total value reached over $\$ 70,000,000$.
The distribution of these products was not made in census reports. If the figures reported from the gas and coke schedules are combined with those in the report of the Tariff Commission for the various distillates we find:

Liquid distillates:	Gallons.	Value.
Tar.	338, 507, 667	\$11, 579, 801
Light oil	98, 304, 718	10, 608,880
Benzene.	68, 152, 464	12, 697, 474
Toluene.	2, 034, 542	687, 181
Solvent naptha	4,079, 025	675,359
Other refined oils.	$54,146,434$	6,668, 862
Total.	560, 224, 850	\$42,917,557
Solid distillates:	Pounds.	
Naphthalene.	38,372,647	\$1,731,806
Anthracene..	1,381,944	238, 977
Other distillates.	1,309, 927,746	10,907, 617
Total.	1,349, 682, 337	\$12, 878,400
Grand total,		. $\$ 55,795,957$

Intermediates.-In the absence of detailed statistics for intermediates only totals can be given, namely, that 112 establishments in the coal-tar and related industries produced $137,763,929$ pounds, with a value of $\$ 43,788,510$.

Finished products.-One hundred and seventy-six establishments in the coal-tar and related industries made finished products which were distributed as follows:

Table 31 presents the statistics for plastics, 1919 and 1914.

Table 31.-Grour Vili-Plastics: 1919 and 1914.

${ }_{2}$ Production in 1909. Number of establishments, 24; value of products, $\$ 7,472,732$. ${ }^{2}$ Distribution by states:

All establishments, 35; New Jersey, 10; Massachusetts, 9; New York, 5; 2 each in Itinois, Connecticut, Ohio, and Pennsylvania; and 1 each in Missouri, Maryland, and Virginia,
Pyroxylin, 4, New Jersey, 2; and Massachusetts, 2.
Collodion, 10 . New Jersay, 5; and 1 each in Connecticut, Illinots, Missouri, New York, and Pennsylvania.
Rubber Substifutes, II, Massachusetts, 4; New Jersey, 2; New York, 2;
and I each in Connecticut, Ilinois, and Maryand and I each in Coninecticut, Tlinois, and Maryland.
picture films (net exphishments engaged primatily in the manafacture of motionpicture films (not exposed), viz: 18 establishments in 1919, with products valued at $\$ 72,152,797$.

This group embraces the pyroxylin plastics sold under such trade names as celluloid, fiberloid, xylonite, etc., and fabrications thereof; pyroxylin or soluble cotton, collodion, and liquid solutions of pyroxylin; phenolic condensation plastics, such as bakelite and condensite; rubber substitutes; viscose, artificial silk; and plastics formed by using a cementing material,
caoutc̣houc, casein, gums, etc., and a filler, which may be molded or shaped. The total value includes the value of finished goods manufactured in the producing establishments, as well as the value of stock sold for further manufacture.

Artificial silk ranked first in value, with viscose as the predominating basic material for its manufacture. Cellulose acetate silk is a growing product. Only three companies reported artificial silk manufacture in 1919.

Pyroxylin plastics constituted 45 per cent of the total-value of the group. Collodion, or liquid solution of pyroxylin, was made in 10 establishments; dry nitrocellulose in 4. Rubber substitutes have kept pace with other plastics in growth.

GROUP IX.-COMPRESSED AND LIQUEFIED GASES.

Table 32 presents the statistics for compressed and liquefied gases. Certain gases, anhydrous ammonia, carbon dioxide, and chlorine, are primarily classed in other groups, where the detailed statistics will be found.

Table 32.-Grour IX.-Compresbed and Liquefied Gasms.

${ }^{2}$ Figures not available.

Not including acetylene distributed through mains by public ser vice companies. 1919, 37 establishments, $5,077,000$ cubic feet, valuo $\$ 39,647$; and 1914,125 establishments, $14,868,000$ cubic feet, $\$ 194,019$.
in Distribution by states, Ohio 4; Pennsylyania, 4; Mtchigan, 3; Missouri, $3 ; 2$ each in Arkansas, Colorado, Connecticut, Now York, Okis. Iowa, Kontucky, Louisiava, Nassain Arkansas, Colorato, Connecticut, Utinois, Lowa, kentucky, Lous, Virginia, and Wiseonsin.
4 Equivalants in cubic feet; 1919, $3,432,000 ; 1914,2,378,400$.

- Quantity reported in pounds.

Hydrogen employed for the hydrogenation of oils, generated in situ in the nascent condition and immediately absorbed, was not measured nor reported. Argon finds employment as a filler for electric incandescent lamps and the demand has increased gueatly within the last five years in consonance with the growth of the primary industry. Its employment commercially is only recent and a direct result of the demand for oxygen, with consequent refinement of the methods for the fractionation of liquid air. Five establishments in four states reported production.
Liquid air must have been prepared in very large quantities to supply the requirements for argon, nitrogen, and oxygen. Twenty-three states and 49 establishments produced acetylene; 29 states and 94 plants, oxygen; and 25 states and 40 plants hydrogen, made electrolytically from water.

GROUP X.-CHEMICALS NOT ELSEWHERE SPECIFIED.

The group carries the two major subdivisions, organic and inorganic. Distinction should be made between the purely organic and inorganic compounds, and the composites, such as the salts of metals with organic acids. Much depends upon which is the valuable constituent. As a rule compounds containing both organic and inorganic constituents have been classed as organic.
Table 33 presents the statistics of production for 1919, 1914, and 1909

I'able 33.-Group X.-Chemicals, not Elsewhere Specified.

	1919	1914	1909
Value of products.	\$156, 672, 155	\$52,898, 172	\$48,851,270
Organic	\$72, 141, 542	\$16,377,955	\$14,039,748
Alcohols: ${ }^{1}$			
Amyl alcohol-			
Total production, gallons............			
For salo- Gallons		(2)	(${ }^{\text {a }}$
Value.	\$497, 906		
Made and consumed, gailons...	99, 719		
Glycerin (glycerol)-Crude-			
Number of establishments.	01		
For sale-	21,402,735		
Value....................	\$2,961,583	\$2, 278,976	
Unit vaiue, pound .	\$2, \$0.14	- $\mathbf{+} \mathbf{8} \mathbf{1}$	
Made and consumed in soap industry, pounds........	38,350,984		
Reflned-			
Number of establishments.	31		79,677,490
Total production, pounis...... For sale- $69,464,288$			
Pounds................ $67,342,822$ 69, 610,405			
Value.................... $820,724,033$ $\mathbf{8 1 0 , 7 9 , 2 0 4}$ Unit value, poud. $\$ 0.31$ $\$ 0.18$			
Made and consumed, pounds.	2,121,476	1,134, 394	
Other-butyl, diacetone, limone, and propyl alcohols; dextrp citronellol, geraniol, gusiacol, iso-eugenol, lins-			
neol, some ethyl alcohol ($\$ 126,299$),			
in chemical establishments, value...	\$553, 234	(2)	(${ }^{2}$
Aldehydes: ()			
Formaldehyde-			
Number of establishments.		3	3
For sale-			
Value.............................	19, ${ }^{\text {a }}$, 938,322	8, $\$ 655,174$	- \$363, 717
Unit value, pound.....	, 80.20	\$0.08	\$0. 10
Made and consumed, pounds..-1	5,343, 062		

[^3]Table 33.-Group X.-Ghemicals, not Elsewhere SpecifiedContinued.

	1919	1914	1449					
Aldehydes-Continued.								
Number of establishmen	4							
Pounds........	134, 687	120,619						
Value..........	\$1,385, 941	\$525,219						
Other, Unituding acetic anisic, ${ }^{\text {a }}$,	\$10.14	8.35						
and decy aldehydes; chloral hydrate; formaldehyde; hydrosulphite; heliotropin: and miscellaneous.	\$1.794, 268		(${ }^{\text {(}}$					
Carbon and hydrocarbon compounds:Carbon bisulphide-		(1)						
Number of establishments.........Total production, pounds........15, 469, 667								
Forsale-		(1)	(1)					
Value...	\$640, 346							
Made and consumed, pounds Other-acetylene, blag gas, oil gas, calcium carbide, silicon carblde, thymene, etc	3, 863, 374 $\$ 28,362,198$							
Fsters: $\begin{gathered}\text { AInylacetate- }\end{gathered}$								
A $\begin{aligned} & \text { Inylacetate- } \\ & \text { Number of establishmen }\end{aligned}$								
Totalproduction, gallons......... ${ }_{\text {For sale- }}$ 125, 725								
Gailons.		180, 237	$\begin{array}{r} 235,74 \\ \$ 44,74 \\ \$ 1 . \times 5 \end{array}$					
Value.....		\$465, 664						
Unit value, rallo		S2. is						
Sthyl acetate- Number of ostablishments								
Totalproduction, pounds..........- 5,78								
Pounds.	$\begin{array}{r} 2,657,947 \\ 3300,011 \\ 3,122,002 \end{array}$	(1)	(1)					
Value...								
Made and consumed, pounds Other- arnviand cthyl butyrate, ampl								
valerate, butylacetate, ethyl formate, etc.	\$1,007,794	(1)	(1)					
Ethers: Ethyl ether (sulphuric ether)-								
Total production, pounds...								
For sale-								
Pounds.....	$\begin{array}{r} 4,111,755 \\ \$ 1,103,676 \\ 80.27 \\ 763,500 \end{array}$	$\begin{array}{r} 2,120,082 \\ 828,816 \\ \$ 0.13 \end{array}$	$\begin{array}{r} 1,168,631 \\ \$ 190,164 \\ \$ 0.16 \end{array}$					
Value...............d								
Ethyl nitrite (nitrous ether)-								
Number of establishments pounds.	$\begin{array}{r} 5 \\ 43,153 \\ \$ 30,856 \\ \$ 22.575 \end{array}$	($)$	(1)					
		(1)	(1)					
Halogen compounds: Carbon tetrachloride-								
				Number of establishments.				
Total production, pounds...........								
For sole-ms.	$\left.\begin{array}{r}9,811,779 \\ 2,8803,648 \\ 2,096,625\end{array}\right\}$							
Value...								
Made and consumed, pounds. . 2,006,825 Chloroform-								
Number of establishments..........	1,677,641 ${ }^{6}$		$\begin{array}{r} 1,89,685 \\ \$ 47,538 \\ 80.26 \end{array}$					
Pounds...	1,677,641	1 82395,317						
Ethyl chloride-								
Number of establishments. Pounds.	$\begin{array}{r} 6 \\ 248,103 \\ \$ 166,235 \end{array}$	(1)	(1)					
Other-chlor acetyl and ethylene chloride, ethyl bromide, ethyl iodide, lodoform, monobrom benzene, monobromeamphor, tetrachlorethane, and thymol iodide.		(2)						
Ketones:			(1)					
Acetone- Number of establishm	$\begin{array}{r} 4 \\ 6,045,914 \\ \$ 767,042 \\ \$ 0.13 \end{array}$	$\begin{array}{r} 10,425,817 \\ \$ 1,099.585 \\ \$ 0.11 \end{array}$						
Pounds....			$\begin{array}{r} 7,761,698 \\ \$ 812,978 \\ \mathbf{8 0 . 1 0} \end{array}$					
Value..............................								
Number of establishments.	$\begin{array}{r} 99,692 \\ \mathbf{\$ 1 2 7 , 8 3 1} \end{array}$	(${ }^{\text {d }}$	(1)					
Gbilons............................								
Vethylethyl ketome (methylacetore) -								
				(1)				
Pounds.		(1)						
Vther-violetetoneand miscollaneous.		(1)	(1)					
Other-violet ketoneand miscellaneous. varioneched organicheminamines, various coal-tar products, alcogas, refined sulphonal. \qquad ...								
	$\begin{aligned} & \$ 1,409,158 \\ & \$ 4,138,359 \end{aligned}$							
		(1)	(1)					
Other unclassified organic chemicals.								
Inorga	884,530,613	\$36,520, 217	\$34, 811, 522					
Antimony:								
Chlorido-	$\begin{aligned} & 4 \\ & 103,466 \\ & \$ 15,554 \end{aligned}$							
Number of establishments		(1)	(1)					
Value...................................								

${ }^{1}$ Figures not available; included with unclassifled.

Table 33.-Group X.-Chemicals, not Elsewhere SpectfiedContinued.

	1919	1914	1909
Antimony-Continued. Sulphide- Number of establishments. vaunds Other-oxide, oxyehtoride, potassiam, Arsenic: antimonyl tartrate.	$\begin{array}{r} 2,983,5 \\ \substack{5 \\ 3808,433 \\ \hline} \end{array}$	(1)	(1)
	\$366, 040	(1)	(1)
Arsenate of calcinm- Number of establislments. Pounds Falue	$\begin{gathered} 1,191,858 \\ 8248,459 \end{gathered}$		
		(1)	(1)
Arsenate of iead Number of estahlishments	$11,514,275$	$\begin{array}{r} 11 \\ 8,847,656 \end{array}$	
Total production, pounds. For sale-			
For sale-	$\begin{array}{r} 11,465,788 \\ 82,09031 \\ 80,18 \\ 48,487 \\ 48 \end{array}$	$\begin{array}{r} 8,641,886 \\ 851,888 \\ \hline 80.06 \\ 205,800 \end{array}$	(1)
Value			
Made and consumed, pounds. Other-arsanous and arsmic acid, arsmea sats or copper, magnesiam, and sulphide.			(1)
Barum: \qquad Number of establishmonts \qquad Pounds. Value	31,150,567	\$134,294	
		(1)	(1)
chioride-			(1)
Number ofest		(1)	
For Sale-			
Value...	5, 8229,544		
Made and consumed, pounds..	2,931,519		(1)
Number ofestablishments		(1)	
Total production...	2,025, 185		
Forsan Pronds. Value.	903,377		
$\xrightarrow{\text { Value.....iu }}$	\$85, 319		
Madeand consumed, pounds. Sulphate (blanc fixe)-	1,121,808	${ }^{18} 87811$	8 8,152,000
Number ofestabishments.........................			
Value Unit $^{\text {value, }}$, 100 poind...........		$\begin{gathered} 327,415 \\ 31,41 \end{gathered}$	+886986
Sulphide- Number of establishments.	21,908,754 ${ }^{7}$	(1)	
			(1)
Vounds..........	$\begin{array}{r} 5,884,831 \\ 16,506,317 \\ 16,823,823 \end{array}$		
Made and consumed, pounds. Other-barium chlorate, dioxide fluor-		3103, 204	(1)
ide, phosphate, thiocyanate, etc......	\$686,758		
Subnitrate	283,283		(1)
Number of ostabishmonts		(1)	
Forssle Pounds.			
Pounds.			
Other, Made andicical	3,500		
Other, nitrate o	5424,015	(1)	(1)
Bromine:			
Liquid-	$\begin{aligned} & 211,555 \\ & 382,2047 \\ & \\ & \hline \end{aligned}$	(1)	(1)
Pouds.			
Value...			
Other- nmmonium, calcium,		(1)	(1)
mates, organic bromides, otc., (8ee	81, 425,684		
Calcium: the respective groups)..			
tato-			
		83, 748	
Total production, tons Forsale-			
Tons..		81,781	
Value Unit value, ton.		32, 3888,009	18, 443
Chlorido- Madeand consumed, ton		1,781	
Chloride- Number of establishmants.	$\begin{array}{r} 74,699 \\ 81,043,301 \\ 514,00 \end{array}$	$\begin{gathered} 44,783 \\ \$ 332,271 \\ \$ 27250 \end{gathered}$	(i) ${ }^{\text {a }}$
Tons....................			
Value..........			
Phosphate-			
Number of establishmon	$\begin{array}{r} 44,270,166 \\ 81,727,364 \\ 810.72 \end{array}$	$\begin{aligned} & 24,192,974 \\ & 81,298,566 \\ & 85067 \end{aligned}$	
Pounds.......................			(i) ${ }^{\text {a }}$
Otheraverage value, 100 poinds.		(1)	
Other-calceum bisuphite, bromide, carbonate, hypollorite, sulphid andsulpháte, etc., $85,17,241$;carbide, citrate, ferrocyanide, lactate, lactophosphate, sulphocarbolate, etc,	\% $\begin{array}{r}\text { 315,609, } 157 \\ \end{array}$		(1)
\$10,436,916,			
Cerium campounds-carbonate, chlordde	\$132, 283	(1)	()
Caro :hmm sulphate, and chronium com-			
pounds, n. e. s. (see Group V) Cobalt, salts and compounds.	8610,833 s217, 88	$\binom{11}{12}$	(1)

${ }^{1}$ Figures not available; included with unclassified.

Table 33.-Group X.-Chemicals, not Elsewherd SpecimedContinued.

${ }^{2}$ Iron sulphate produced by chemical plants 12,898 tons, by rolling mills 9,738 tons, and by wire mills 36,747 tons,
Holdes (1909) 0,845 tons made and consumed.
4 Nor inclading ferromanganese alloys.

Table 33.-Group X.-Chemionls, now Elsfewhere SpecthiedContinued.

[^4]Organic (Group X).-A separate presentation of amyl alcohol was possible though the total of 241,254 pounds is but a portion of the fusel oil produced, the bulk being made by the distilling industries and not here included.
Alcohols used for flavoring and perfumery, including a small amount of ethyl and methyl alcohols reported by chemical establishments, amounted to $\$ 538,540$.

Among aldehydes, formaldehyde still takes leading place, the production being $25,006,815$ pounds or nearly three times the weight reported in 1914. Six companies, in five states-New Jersey, Michigan, Pennsylvania, Now York, and Missouri-represent the combined production.

Under miscellaneous aldehydes, certain items reported as "Formaldehyde products" or as "Aldehyde products," that might have been more properly placed with synthetic resins or plastics, in the absence of further information are included. These, together with formaldehyde-hydrosulphite, of Group VI, amounted to $\$ 1,663,784$, so that formaldehyde and its compounds totaled 5 多,602,100.

Four establishments produced vanillin, almost all originating in New Jersey.

The subgroup, "Carbon and hydrocarbon compounds," was difficult to delimit, as some items were of rather indefinite character. Calcium carbide was reported by six establishments in five states-Michigan, New York, Minnesota, Virginia, and Iowa. The production of $15,469,567$ pounds of carbon bisulphide is a notable increase over 1914. Eight plants in five states-New York, Michigan, Pennsylvania, California, and West Virginia-made this chemical, a large proportion, nearly 25 per cent, being consumed in the works where made.

Apparently the production of amyl acetate is decreasing, a cheaper substitute having been found. In 1909 the production was $1,470,568$ pounds; in 1914 it was $1,300,052$ pounds, and in 1919, including that made and used in the same works, 906,764 pounds. On the other hand, the production of ethyl acetate or acetic ether in 1919 was $5,780,549$ pounds, of which 54 per cent was used in the same works for further manufacture.

Acetone, acetone oil, and methyl acetone were made largely by the old process of dry distillation of acetate of lime. One firm reported acetone made from fermentation acetic acid. During the war molasses was fermented and the alcohol converted to acetic acid and acetone, but no production was reported for 1919. Butyl alcohol, a by-product of fermentation processes is now much in demand as a solvent.

Other alcohols, aldehydes, hydrocarbons, esters, ethers, halogen compounds, ketones, and miscellaneous organic chemicals were made in great variety and in some instances in large quantities. Sulphuric ether has doubled in quantity and price. Nitrous
ether, carbon tetrachloride, ethyl chloride, acetone oil, and methyl ethyl ketone are reported separately for the first time. Comparisons with 1914 are therefore not possible, but a large increase in production is at least indicated.
A summary of the chemicals under the heading "Other" in each subgroup follows, the most important being given in order of their value:

> Alcohols.-Resorcinol, terpineol, guaiacol, geraniol, iso-eugenol. Aldehydes.-Chloral hydrate, heliotropin, anisic aldehyde, decyl aldehyde, citral.
> Carbon and hydrocarbons.-Carbon electrodes, condensed smoke, retined carbon, stearin pitch, parafin wax.
> Esters.-Ethyl butyrate, butyl acetate, amyl butyrate, amyl valerate, ethyl formate.
> Ethers.-methyl ether and miscellaneous (can not separate).
> Halogen compounds.---Iodolorm, brom camphor, ethyl bromide, acetyl chloride, tetrachlorethane.

Ketones.-Violet ketone and miscellaneous (can not separate). Miscellaneous.-Camphor, sulphone methanes, diphenylamine, osseine, oleo resin vanillin.
Inorganic (Groap X).-The totals for the subgroups have been made to cover all chemicals containing the characteristic element, and therefore include some items appearing in other places in this group or in other groups which because of their composition belong in more than one class. For instance, arsenic compounds would not be complete without arsenous and arsenic acid anhydrides; barium compounds without the dioxide; nor calcium compounds without the carbide and hypochlorite. Each group within itself is a unit, so far as possible, but as a result there are duplications and the grand totals can not be used for comparisons without limitation.

The summary which follows involves many omissions and inequalities. Sulphur, for instance, does not include sulphuric and sulphurous acids, and the infinite number of other sulphur combinations. Chromium does not include its ferroalloys, nor have ferroalloys been considered except as reported to the chemical industries proper.

The inorganic products of this group may be further classified into (a) nonmetals or negative elements, such as chlorine, bromine, iodine, phosphorus, silicon, and sulphur; (b) alkali earths, barium, calcium, lithium, magnesium, and strontium; (c) rare earths, cerium, thorium, and other (beryllium, neodymium, zirconium); (d) common metals (forming basic salts)-cobalt, copper, iron, lead, mercury, nickel, and zinc; (forming basic and acid salts)-antimony, arsenic, bismuth, chromium, manganese, and tin; (e) rare metals (forming basic salts)-gold, platinum, radium, silver; (forming basic and acid salts)-molybdenum, titanium, tungsten, uranium, and ranadium.

Potassium and sodium, which would naturally form a separate group as alkalies, closely related to alkali earths, and aluminum, which would belong in (d), have been considered as separate groups.

Arranged in order of decreasing value the totals of the subgroups as shown in Table 33, combinad with chemicals containing the characteristic element from other groups, stand as follows:

subgroup.	1919	SUBCRROUP.	1910
Calcium.	\$24,062,054	Bromitio.	\$1,409,738
Silicon.	18, 407, 429	bismuth.	1,235,502
Iron.	11, 641, 530	Antimony	1,190, 027
Phosphoris..	10, 877, 547	Lend...	888, 341
Other rare metals	9, 614,001	thorium.	604, 843
Chromium.	7, 122, 230	Nickel.	641,045
Zine.	$5,449,710$	Lithinm...	502, 512
Copper	4,071, 650	Strontium.	310,373
Tin..	3,880,760	Cobalt.	217, 088
Magnesium	3,013, 204	Gold...	143,069
Arsenic.	3,527,740	Corium. .	132,283
Radium	2,985, 777	Vmadium.	102,678
Sulphur	2, 852,058	Manganeso.	09, 385
Silver..	2, 441,773	Tritanium.	08,188
Iodine	1, 004,130	Other rare oarths	42,171
Mercury	1,775,018	Uranitum.	6,233
Barium.	1,683,503	All othor.	4,690,105

Nonmetals or negative elements.-The nonmetals are found or produced in the elemental form and appaar as such in Group X. They also occur as acids, shown in Group I, or salts of these acids, found in all groups.

Chlorine has been considered in Group VI as a bleaching agent, and its compounds as hypochlorites also. Chlorates are chiefly used in the explosives industry or medicinally. Chlorides are so plentiful in nature that their production is confined mainly to refining methods. The largest production of chlorides is in the form of sodium chloride or common salt, included elsewhere as a separate industry.

Bromine was produced from the mother liquors of salt deposits partly by direct eloctrolysis, partly by treatment of the liquors with electrolytic chlorine, and partly by chemical processes. Five establishments in Michigan and Ohio made liquid bromine, which is a valuable assistant in organic syntheses and is used medicinally and for photographic purposes. Its principal ralue, however, lies in its combinations as bromides and bromates, which, although they have been included in other groups, are gathered under the heading "Bromine" to complete this item.

Calculating each salt to its bromine content, assuming 95 per cent purity, the total amount of bromine represented on the chemical tabulation for 1919 was $2,165,000$ pounds. These figures do not include bromine compounds produced by the coal-tar, pharmaceutical, perfume, and other synthetic organic chemical industries, which employ large quantities.

Iodine is found in the form of iodates in Chile saltpeter and as the iodide in ashes of sea plants. Firms reporting iodine, resublimed, and various organic and inorganic iodides, were manufacturers of fine chemicals, some giving crude iodine as material. In all, 438,000 pounds of iodides, valued at $\$ 1,499,976$, were produced, and included potassium iodide, sodium iodide, iodoform, thymol iodide, potassium iodate, ethyl iodide, and cadmium iodide. These with resublimed iodine made the value of the whole group
$\$ 1,904,130$. Calculating the iodides to their iodine content, the total iodine represented on the table was 438,878 pounds, three-fourths of which was combined.
Phosphorus, as phosphates, finds its largest use in the fertilizer industry, which is elsewhere reported. As an element it is widely used in technical processes and in alloys, while in combination with oxygen it forms acids and salts. It has the additional power of combination with more negative elements as phosphorus sulphides and chlorides, and in conjunction with hydrogen may act as a base, as in phosphonium compounds. Five concerns made elemental phosphorus, the oxychloride, sesquisulphide, trichloride, and pentachloride, in order of value. A little more than 2 per cent of the element was in the form of red phosphorus. Nearly all of the derivatives were made from phosphorus, which T ? derived from phosphate rock largely or entirely ble alectrothermic processes.
, Combinations of phosphorus occur cisewhere in the table as glycerophosphoric, hypophosphorous, and phosphoric acids, in Group I; as ammonium, potassium, and sodium hypophosphites and phosphates, in Groups II, III, and IV; and as barium and calcium phosphates in Group X, alkali earth compounds. The total for all of these was $126,226,000$ pounds, of a value $\$ 10,877,547$, the most valuable being calcium phosphate, sodium phosphate, phosphoric acid, and ammonium phosphate.

* Although silicon in the form of the oxide and of silicate rocks is the commonest mineral known, and its employment as an ingredient of resistant materials and apparatus is very extensive, in the chemical industry as such it has appeared to a limited extent only as soluble silicates used in the paper and textile industries. Since the production of elemental silicon and its alloys by electrolytic processes, however, this chemical and its compounds have become of much greater importance. The total amount as derived from the tables including silicon carbide and derivatives, sodium silicate, ferrosilicon, sodium silico fluoride, copper-silicon, silicon metal, and silicic acid, represents more than 312,000 tons, and $\$ 18,407,429$.

Nine establishments in six states-New Jersey, New York, California, Texas, Maryland, and Missouri--refined 52,099 tons of sulphur, none of these plants producing the chlorides. Eight concerns in five statesMichigan, West Virginia, New York, California, and New Jersey-produced 4,648,066 pounds of sulphur chlorides, largely of the yellow variety, almost 50 per cent of the total production being used in the same plant for further processes of manufacture. All of these chlorides were made from sulphur and electrolytic chlorine.

Alkali earths.-The alkali earths occur in Group X as elements, alloys, or salts, and in other groups as bleaching compounds and electrolytic products.

The figures for barium compounds are exclusive of the paint and pigment industry which is the largest producer of sulphide, sulphate, carbonate, and chloride. In order of decreasing weight, including made and consumed, the items reported separately in 1919 are the sulphide, sulphate, carbonate, chloride, dioxide (for detail, see Group VI), and nitrate; while in order of value for the part sold this becomes dioxide, carbonate, sulphate, chloride, sulphide, and nitrate. That is, the sulphide and dioxide exchange places, since the latter had a high value as the basis for peroxide bleaches and the former was about 77 per cent by weight made and reused in the same plant, with no value assigned. About 55 per cent. of the nitrate was made and reused.

Barium compounds are derived from the sulphate and carbonate minerals, large quantities of the former being mined in the United States. These may be ground and used directly as pigments but are even more valuable when first converted to soluble salts and reprecipitated in very finely divided condition as the sulphate or carbonate. The peroxide is made by roasting the carbonate to the oxide and further roasting it with excess oxygen. The sulphide is produced from the sulphate by roasting with a reducing agent such as coal. It is used largely for the manufacture of sodium sulphide, a chemical much in demand in the application of sulphide colors in the dyeing industry. Barium chloride and nitrate, both water soluble, find many applications in ceramics, explosivies, as source of green light, and in solution for the precipitation of finely divided barium pigments and color lakes.
Other barium compounds in the table consist of the phosphate, chlorate, fluoride, thiocyanate, and miscellaneous salts, the phosphate forming a very large proportion of these. The total production of barium compounds was 31,503 tons, the part reported for sale being valued at $\$ 1,683,503$.

A great variety of calcium compounds are represented, the arsenate, bisulphite, bromide, carbide, ferrocyanide, and hypochlorite being duplicated in other groups or subgroups of Group X. Including these, a total of 451,690 tons of calcium compounds valued at $\$ 24,062,054$ were produced, not including 26,123 tons of calcium-magnesium chloride of a value of $\$ 321,596$ reported by the salt industry, nor does it cover the use of calcium in the organic chemical industries. Calcium may be said to rival sodium and potassium in importance as a chemical base.

In order of value the compounds of calcium rankcarbide, phosphate, hypochlorite, acetate, chloride,
arsenate, precipitated sulphate, citrate, precipitated carbonate, lactate, ferrocyanide, sulphocarbolate, bromide, etc. The carbide and hypochlorite constitute 90 per cent of the whole. Carbide is included with the electrolytic chemicals, the bisulphite and hypochlorite in Group VI, the arsenate is valuable for its arsenic content and is shown in Group X with arsenic; the sulphate, carbonate, sulphide, and oxide in bulk are used as pigments, cements, in metallurgy and ceramics and do not appear here, but in purified condition are used as dentiffices, medicinally, and as reagents, and are included among chemicals. The ferrocyanide is a by-product of the gas and colke industries and in bulk is employed for the production of ferrocyanogen pigments, referred to under Group II. Bromide, citrate, lactate, lactophosphate, and sulphocarbolate of calcium are mainly useful medicinally and for photographic purposes.

Calcium compounds are derived from carbonate, phosphate, and sulphate mineral deposits. The former when burned to the oxide or ${ }^{\circ}$ quicklime and then dissolved in water or "slaked" to form the hydroxide, is the basis for many of the salts.

Calcium acetate is the basis for production of acetic acid in all three forms, and of acetone. The amount shown in the table was produced by the wood distillation industry, 86 establishments in 11 states reporting 84,478 tons, 1 establishment reporting brown acetate, the others the gray variety. Three plants made and consumed part of their product. Fourteen concerns in Michigan made 47.2 per cent of the total. Seventy-five plants in Michigan, Pennsylvania, and New York produced 89 per cent and 11 others in Wisconsin, Missouri, Temnessee, West Virginia, Connecticut, Kentucky, Alabama, and Mississippi the remaining 11 per cent.

Calcium chloride was made in 15 plants in 6 states-New York, Michigan, West Virginia, Ohio, California, and Missouri-a total of 74,699 tons, valued at $\$ 1,043,301$, the unit values running from $\$ 5$ to $\$ 32$ a ton, and averaging $\$ 14$. Seven establishments in New York and Michigan produced 92 per cent of the whole. The increase from 1914 to 1919 was 67 per cent in weight and about double in price and number of establishments.
One establishment obtained calcium chloride from natural brines by evaporation; three were refiners; others produced it from lime and hydrochloride acid; others from electrolytic chlorine, probably as a byproduct; and a large part was the by-product of the Solvay soda process. Calcium chloride is valuable in the dry and wet condition, and was sold both ways. In dehydrated form it is used as a drying agent and preservative, for fireproof paint and sizing. In solution as brine, it finds application in freezing and cooling operations, as an antifreezing solution in automobile and airplane radiators, and as a dust preventive.

Seven establishments in Illinois, Misouri, New Jersey, and New York made 44,270,166 pounds of calcium phosphate, valued at $\$ 4,727,364$. three in Illinois producing 72.3 per cent of the total amount. None was reported as made and consumed in the same plant. The total does not include crude acid calcium phosphates of the fertilizer industry. It was all, however, the acid phosphate or dicalcium phosphate. Like the chloride, the phosphate is marketed both dry and in solution.

Lithium salts were not reported separately in suff. cient detail to indicate accurately the relative proportions of the different salts. As shown, the carbonate, bromide, and chloride were made in the order named. The total of $\$ 502,542$ was the value of 466,595 pounds sold, 277,185 pounds in addition being made and used in the same establishment, or a total of 743,780 pounds of miscellaneous lithium salts.

A total of $\$ 3,613,203$ for mannesium and its salts in 1919 represents several items not reported separately in previous years. The carbonate was largely of the light precipitated variety, and the rest of highly refined grade. Four establishments in Pennsylvania, California, and New York produced it. Seven plants in Michigan, California, Ohio, and Pennsylvania made 13,141 tons of the chloride largely from brines, about 91 per cent being produced in three plants in Michigan. Six concerns reported $9,031,650$ pounds of the oxide of magnesium. The states represented were Pennsylvania, California, and New York.
Magnesium sulphate or Epsom salts was the most ${ }^{3}$ valuable of the magnesium compounds. A total of $59,067,335$ pounds was reported by 20 establishments in 10 states-Ohio, Michigan, Maryland, Illinois, Georgia, Washington, Pennsylvania, California, New York, and Missouri-4 plants in Ohio making 40 per cent of the total. Prices varied greatly, the average being 2.5 cents per pound. Increases in the periods 1909 to 1914 and 1914 to 1919 were 35.3 per cent and 101.8 per cent, respectively.

All other magnesium compounds consisted in large part of the metal, the fluosilicate, arsenite, and alloys, with a considerable amount of unspecified salts. Magnesium compounds are derived mainly from the carbonate, which exists plentifully as a mineral, by calcination or solution. It has many applications technically which require production in large bulk and is not considered nor reported with chemicals.

Strontium salts were reported in considerable varietr, as nitrate, carbonate, bromide, chloride, iodide, lactate, salicylate, and sulphate, the first three comprising 98.6 per cent of the quantity and 92.8 per cent of the total value of all strontium salts. Almost all were produced by manufacturers of fine chemicals, as strontium and its salts are employed usually for their medicinal qualities, or as the source of red signal lights, or flares and
other pyrotechnics, and for coloring iridescent glass. Qualities ranged from crude to chemically pure.
Rare earths.--Rare earths, so-called, have been distributed through the table in three items, cerium compounds, thorium compounds, and other rare earths, including beryllium, neodymium, and zirconium.oxides and salts. The total value of these earths was $\$ 839,297$, of which thorium derivatives constituted nearly 80 per cent.
Thorium compounds, value $\$ 664,843$, consisted of several derivatives of which thorium nitrate and mesothorium together amounted to over 99 per cent in value. Four plants in New Jersey produced all of it, from monazite sand. Cerium compounds were valued at $\$ 132,283$, and were reported as the fluoride, chloride, oxalate, nitrate, carbonate, dioxide, and miscellaneous products. Other rare earths, $\$ 42,171$, included zirconium oxide, beryllium nitrate, neodymium chloride, and miscellaneous products.
Common metals.-Many of the common metals are useful as such and as salts in which they appear as the basic element, and in addition may be combined with oxygen to form negative groups or acid rests which, with more basic elements, find extensive employment technically. Those metals which, from a commercial standpoint, are usually basic or electrolytically positive, appearing only as metals, alloys, or in salts as the positive element, are cobalt, copper, iron, lead, mercury, nickel, and zinc, while those metals which are not only useful as above but also form salts in which they are part of the negative group are antimony, arsenic, bismuth, chromium, manganese, and tin. These metals, giving a greater variety of combinations, gre to be found, like the acids, in other groups as antimoniates, arsenates, bismuthates, chromates, manganates, and stannates, of sodium, potassium, calcium, etc.
Antimony metal and its alloys were not reported on the chemical schedule. Its compounds are used mainly as pigments, precipitated as the sulphide or as dye lakes, or as mordants in the leather and textile industries. A total of. 4,045,619 pounds having a value of $\$ 1,190,027$, of antimony derivatives were reported by 11 establishments in 5 states-New York, New Jersey, Massachusetts, Connecticut, and Missouri. Potassium antimonyl tartrate is also classed with Group IV. The sulphide ore stibnite or antimony needles, either directly or after conversion to the metal or oxide, was the raw material used.
Arsenic and its compounds as reported here are exclusive of arsenical insecticides as such, nor are returns from the mining and metallurgical industries included. Arsenic compounds originate with the sulphide ores, arsenical pyrites, orpiment or related ores, which when roasted give a sublimate of the oxide (white arsenic or arsenious acid anhydride), which may be (a) reduced
to the metal, (b) combined directly with hydrogen sulphide in acid solution with or without oxidizing agents to form the sulphide pigments, (c) combined directly with copper acetate to form copper acetoarsenite, (d) combined with a soluble salt of sodium to form sodium arsenite or, under oxidizing conditions, sodium arsenate, (e) which latter salts are further treated with soluble salts of metals to form calcium lead, copper or zinc arsenic compounds. The principal value of arsenic compounds is as germicides and insecticides.

As the oxide, white arsenic, derived from the sulphide ore by roasting, is the basis for many arsenic salts, naturally large quantities were reported as made and consumed. All plants making the oxide also produced calcium and lead arsenates and altogether 16 plants in 11 states were engaged in making arsenical products. Michigan, Illinois, Indiana, Maryland, California, and Wisconsin each produced more than $1,000,000$ pounds of lead arsenate or together about 84 per cent of the total amount of $11,514,275$. Indiana, Illinois, and Wisconsin each turned out over 200,000 pounds of calcium arsenate. Some of the arsenical products reported in "other" were in large amounts, copper acetoarsenite, the acid anhydrides, sodium arsenate, and zinc arsenite comprising 95 per cent of the entire value of this item.
The total value of bismuth salts was $\$ 1,235,502$, eight ostablishments in four states-New Jersey, Missouri, Pennsylvania, and New York-which claimed nearly equal amounts, reporting the subnitrate, metal, subgallate, nitrate, and oxide, in order as named. As over 9 per cent of miscellaneous, unenumerated salts were included, however, the order is uncertain. All of the companies, except one mining concern, were manufacturers of fine chemicals in grades suitable for medicinal purposes.
Inasmuch as chromium compounds are valuable in all combinations for their chromium content, the total as shown in the table may be extended to include chromic acid, and chromates and bichromates of sodium and potassium. Chromates of sodium, potassium, chromium alum, chromium sulphate, chromic acid, and unspeciffed chromium compounds altogether amounted to $54,774,818$ pounds, valued at $\$ 7,122,230$, and were made by 11 establishments in 7 states-New Jersey, Maryland, New York, Illinois, Massachusetts, Missouri, and Pennsylvania. Chromium metal and its alloys are not included.

Sodium chromate or bichromate, obtained by fusion of chrome iron ore with soda, is the basis of all other chromium salts which as a class are used principally as textile mordants, for tanning leather, printing, bleaching, making inks, varnishes, for medicinal purposes, photography, fireworks, and minor applications.

Some sodium chromate, about 4 per cent, was reported as made and reused in the same establishment, but not in sufficient amounts for the derived salts. Potassium chromate was made by establishments reporting the sodium salt.

Chromium sulphate and the double salt, ammoniumchromium sulphate or chrome alum, are closely related to each other in composition and to the chromates, so far as their applications are concerned, although the metal as stated above exists as a relatively basic element in the former and as an acidic one in the latter salts.

The most important compound of cobalt is the oxide, which is used as a component of driers for paints and as a blue coloring agent for materials that are subjected to high temperatures while in preparation, such as metals and products of the ceramic industries. A peculiar trade fashion has obtained, which is to name several compounds of cobalt, the carbonate, phosphate, and arsenate as the "oxide," with letters to designate or differentiate them. All are used for about the sarne purpose. It is not known how much of the oxide reported in 1919 consisted of these other compounds. Four establishments reported. cobalt salts, $\$ 217,689$, twa of which employed the original ore, while the chloride, nitrate, sulphate, acetate, linoleate, resinate, and others were produced from the oxide, purchased as such.
Statistics of copper chemicals should include blue vitriol or copper sulphate, which is the basis of many of the other salts, but is produced as a by-product of the smelting and refining industries. Five concerns were reported by the Geological Survey as making bluestone, of copper content $7,882,574$ pounds, which sold for $\$ 2,825,557$. Using a factor for conversion, this amounted to $31,081,289$ pounds of crystallized sulphate and has been included in the totals on the table. All copper compounds aggregated $39,197,000$ pounds and $\$ 4,671,656$ and consisted of the sulphate, arsenic compounds, cyanide, carbonate, nitrate, chloride, acetate, oxides, and miscellaneous unenumerated salts. The first five mentioned equaled over 99 per cent and the sulphate alone nearly 70 per cent of the total value.

As with copper, the great bulk of iron compounds was not reported by chemical manufacturers, but as products of metallurgical industries.

Ferroalloys reported by the chemical industry formed but a portion of the total production, blastfurnace alloys not being included. Separate figures are not given, but the kinds were ferrosilicon, ferrochrome, ferrovanadium, ferromolybdenum, ferrotungsten, and ferromagnesite, in the order named.

Iron chloride, crystalline and liquid, made by manufacturers of fine chemicals, amounted to $1,894,982$ pounds and $\$ 136,431$. Twelve establishments in six
states, Michigan, New York, Pennsylvania, Missouri, Ohio, and New Jersey, reported; seven of these, in Michigan and Pennsylvania, made 70 per cent of the total.

Iron oxide was made by six plants in six statesIllinois, New Jersey, Pennsylvania, California, New York, and Ohio. Two of these produced "iron sponge" for gas purification from iron borings and sharings; two used pyrites for minking sulphuric acid and reported gas ore or burnt pyrites, desulphurized; and two produced refined oxide.

Ferrous sulphate or copperas figures were collected from steel works, rolling mills; and wire mills and from the chemical industries. Thirty-two plants in 12 states made 59,393 tons of copperas, which sold for $\$ 993,939$. Five states--Pennsylvania, Illinois, Rhode Island, Ohio, and Massachusetts--made 50,646 tons, or 85 per cent. Thirteen wire mills reported 36,747 tons at an average of $\$ 18.20$ a ton, seven steel works and mills returned 9,738 tons averaging $\$ 12.40 \Omega$ ton, and chemical establishments reported 12,907 tons at $\$ 15.60$ a ton. Part of the ferrous sulphate of the chemical industry was made by refining crude salts, part from pyrite and waste pickling liquor, and a part from metallic iron with acid.

Other iron compounds included ferro-alloys, ferrocyanide, iron mix, the vanadate, ferric sulphate, the sulphide, iron by hydrogen, the acetate, nitrate, valerate, oxalate, ferrous chloride, and miscellaneous unspecified salts. Excepting the first three, all were made in grades classed as fine chemicals. Metallic iron and pyrite with the respective acids were used very largely as materials.

Lead salts from the purely chemical industries were apparently reported in less quantity in 1919 than in 1914. Large amounts of acetate, nitrate, and monoxide were made and consumed in further processes. A total of $5,131,133$ pounds of the acetate were reported by nine establishments in six states. Other salts included the peroxide, nitrate, monoxide, sulphate, resinate, and miscellaneous salts, which totaled $3,697,892$ pounds, having a value of $\$ 335,906$. If amounts made and reused in the same establishments are considered the total weight manufactured was $20,343,300$ pounds, with an assigned value of \$2,978,682.

The largest use for manganese is in metallic form alloyed with iron. Exclusive of this, a variety of manganese compounds were reported in 1919, the borate, resinate, carbonate, dioxide, hypophosphite, sulphate and other salts and driers, making in all 549,891 pounds and $\$ 99,395$. Seven plants in five states--Pennsylvania, Missouri, Ohio, New Jersey and New York-made these salts of a quality used for varnish and oil driers, or of medicinal grade. They
were derived mainly from the hydroxide which is precipitated by caustic alkali from solution of a soluble salt derived from the oxide ore.

A total of $1,145,500$ pounds with a value of $\$ 1,775,018$ represents mercury salts for 1919, including in addition to the two chlorides, calomel and corrosive sublimate, the oxide, white precipitate (ammonium mercury chloride), nitrate, blue mass, iodide, cyanide, and miscellaneous mercurials. Eight establishments in four states--New Jersey, New York, Pennsylvania, and Missouri-produced these mercury salts, all being manufacturers of fine chemicals.
The production of nickel salts since 1914 has increased greatly. The hydrate, refined salts, sulphate, oxide, cyanide and carbonate were produced in order of value as named, by eight plants in four states, making a total of $1,062,047$ pounds valued at $\$ 641,645$. A very large part consisting of the hydrate is employed for the production of catalysts.
Ten companies in four states-New Jersey, Pennsylvania, Ohio, and Massachusetts-produced tin compounds in the form of chlorides or as oxide. Grades and prices varied widely in both. A considerable proportion of the tin for the chlorides was derived from the detinning of scrap, using electrolytic chlorine in large quantity, either produced at the plant or purchased as liquid chlorine. For the oxide, flue dross or pig tin was employed. The distinction between so-called bichloride of tin and the other chlorides was not clearly made in the reports, so the figures for stannic chloride were made to include both "bichloride" and tetrachloride, while stannous chloride covers tin crystals only. The sum of all tin compounds was $10,351,761$ pounds, valued at $\$ 3,886,760$.
Zinc, in common with many other metals included in Group X, has large uses outside of the chemical industries proper. Zinc oxide, produced directly from the sulphide ores, the carbonate, and the sulphide especially in combination as lithopone, are reported in large quantities by the paint and pigment industry. "Almost half the composition of the best auto tires on the market to-day is said to be lead-free zinc oxide. This filler gives white color and resiliency and increases tensile strength and durability. The mining and smelting industries give returns for metallic zine and zinc sulphate as a by-product of these industries but this is not included in this report. Zinc sulphate finds its largest use as a soluble salt for the precipitation of finely divided zinc pigments, and it is also the origin of a large proportion of the zinc salts. It is in fact the most important salt of zinc, being made and consumed. in large quantities for further manufacture. Over 43 per cent of the total amount reported was made and reused but this does not account for all the purposes for which it was used.

The total for all zinc compounds reported to the chemical industries, not including returns from smelting, paint and pigments, amounted to $87,833,780$ pounds and a value of $\$ 5,449,710$. In addition to the salts shown separately, this includes the stearate, cyanide, arsenate, silicate, sulphocarbolate, valerate, borate, rosinate, and nitrate. The chloride formed about 78 per cent of the weight and 80 per cent of the total value of the entire group but this does not present a fair comparison with the sulphate, for which returns were not complete. The chloride is used largely as a wood preservative, in dyeing silks and as a dehydrating and condensing agent in the synthetic dye and organic chemicals industries. As dust, or in granular form zinc is used for the generating of nascent hydrogen in reduction processes. The great variety of zine salts that are produced in smaller quantities are mainly of importance medicinally.

Rare metals.--Like the commoner metals, rare metals function in more than one relation, most of them appearing in alloys with more common metals to which they impart some special and valuable property, and also in salts in which they may be either positive or negative to other elements present. The metals usually classed as the precious metals, gold, silver, and platinum, as such, are not reported in chemical totals. Their salts show the metals as basic. Radium also is isolated only as basic salts. Molybdenum, titanium, tungsten, uranium, and vanadium, however, are found technically as metallic alloys, as the metal and its basic salts, which are primarily found in Group X, and in combinations as negative elements in molybdates, alkali titanium oxalates or acetates, tungstates, and phosphotungstates, uranates; and vanadates. These latter therefore are to be found in other groups in addition to Group X.

Gold chloride, cyanide, gold sodium chloride, the bromide and some refined metal were reported as a total of 14,844 ounces, valued at $\$ 143,069$ by six concerns in New Jersey, Missouri, and Pennsylvania.

Silver salts increased in weight 26 per cent from 1909 to 1914, and about 20 per cent in the subsequent five years. Besides the nitrate, the protein salts and cyanide were mainly the cause of this growth. The average price was slightly lower in 1914 but doubled in the later census. Ten establishments made silver salts, totaling $3,669,000$ ounces, and $\$ 2,441,773$, in the four states of Pennsylvania, New Jersey, New York, and Missouri. Seven plants in four statesPennsylvania, New York, Missouri, and New Jerseymade silver nitrate.

All of the other rare metals are employed in valuable alloys with iron and other commoner metals. Molybdenum, titanium, tungsten, uranium, and vanadium in conjunction with radium and the precious metals, have been classed as rare metals, although they are no
longer rare in the sense of being scarce and little known. They are in fact widely known and used, although in small quantities as yet because of the difficulty and cost of separating them from their ores. They are usually derived from the oxide or sulphide ores.

A statement of the quantity and value of 1919 production follows:

	Weight.	Value.
	Pounds.	
Molybdenum and compounds metal, oxide, alloys.	$605,094$	\$880, 166
Titanium and compounds salis, sulphate, oxilate.	1, 049,820	$08,188$
Tungsten and compounds metal, alloys, oxide...	1, 578, 630	1,527, 845
Uranium and compounds salts, acelate, uranate..	2,572	-6,233
V anadium and compounds metal, alloys, oxide, sal	641,749	1, 519,679
Radium salts, gold and silver...		5,570,610
Total.		9,605,730

Molybdenum and its compounds include the metal, its oxide or acid anhydride of molybdic acid, and alloys with tungsten and iron. Titanium figures include the salts, titanium sodium sulphate, and titanium potassium oxalate, which were made by three companies in Pennsylvania, Illinois, and New York. Titanium compounds are used as mordants and the metal in alloys, none of which were reported to the chemical industry. Rutile, a dioxide of titanium occurring as a mineral in several of the states, is the main source of titanium.

Tungsten and compounds were returned as the acid anhydride, as metal and as alloys with iron, chronium, and molybdenum. Uranium and its compounds, like titanium, appeared only as salts, sodium uranium acetate, sodium uranium nitrate, sodium uranate, and others. Vanadium reports covered the acid anhydride or oxide, the metal, alloys with iron and salts, such as iron vanadate.

Radium salts were reported by seven establishments, a total of 27,627 milligrams, with a value of $\$ 2,985,777$ from four states-Pennsylvania, Colorado, Illinois, and New Jersey. With the exception of the bromide, the kind of salts was not indicated. The unit value averaged about $\$ 108$ per milligram.

The total of "Unclnssified," crude, commercial, and fine chemicals, may be subdivided into chemicals sold in bulk, usually about 5 cents a pound or less, valued at $\$ 110,778$, and fine chemicals at 25 cents a pound and above, which amounted to $\$ 4,588,417$ so far as could be determined from the class of products otherwise reported, and the general character of the establishment. The latter class consisted of a very large number of separate items which could not well be distributed by the manufacturer making the report, but is incomplete in that some manufacturers of corresponding grades of fine chemicals did make sucb separations.

CHEMICALS MADE BY THE ADD OF ELECTRICITY.

Inasmuch as a classification of chemicals made by the aid of electricity depends upon methods of manu-
facture, and not upon the chemical composition of the product, they appear in the various groups of chemicals according to composition.

The electrolytic and electrothermic processes have developed greatly, especially within the period covered by the war. Bridgeport, Conn., is said to have installed 52 electric brass furnaces during 1919; 26,000 tons of electrolytic zinc were reported, and an electrolytic process for the deposition of iron in the form of tubes from a solution of iron in hydrochloric acid, was developed. These and other of the most important products made by the aid of electricity are not included within the chemical industry. Aluminum, which ranks fifth in importance among metals, being surpassed only by iron, copper, zinc, and lead, and some of the less important metals and alloys, abrasives, carbides, some of the ferroalloys, and a variety of purely chemical compounds, however, are within the chemical industry.

Table 34 presents the statistics for this class of products.

Table 34.-Chemicale Pronuced by tee Am of Electricity: 1919.

	Num. ber of estab-lishments.	Quantity.	Value.
Total:			
1919.	1114		\$82, 500,005
1914	30		29,661,049
1909.	19		18,451,401
1904.	21		7,068,246
1890.	14		2,045,535
Chlorine bleaches (Group VI) :			
Chlorine.-.................... pounds. .	14	91, 141, 000	
For sule-...pounds..		34, 392,000	1,425,917
Made and consumed............pounds. .		-56,749,000	
Hypochlorites (calcium and sodium, chiefly calcium)........................ pounds			
Hydrogen (Group IX)........................cubic feat..	16 40	$252,850,000$ $137,082,000$	4, 781,348
Oxygen (Group IX)cubic feet..	39	131, 477, 000	1,855,911
Potassium hydroxide ${ }^{2}$ (caustic, Group IV), pounds.	3	7,460, 000	1,892,438
Sodium hydroxide ${ }^{2}$ (caustic, Group III pounds..	15	180, 680, 000	1,
Far sale. Made and consumed \qquad pounds.		173, 021, 000	0,228, 682
Made and consumed. \qquad pounds.-		16,665, 000	
Other commodities in order of value, with num- ber of establishments: Aluminum, 4 abrasives			
ber ofestablishments: Aluminum, 4 ; abrasives (silieon carbide and aluminous, including			
f.rms) 9; ferroalloys, 7 ; sodium and sodium cyanide, 4 ; chilorates, 5 ; phosphorus, 2 ; carbon		\%	
cyanide, 4 chiorates, 5 ; phosphorus, 2 ; carbon bisulphide, 8; vanadium, $1 ;$ tungsten and		*	
molybdemum, 3 ; hydrochloric acid, 3 ; magnesium metal, 4; bromine, 5; other metals and alloys, 4; and miscellaneous, 10.			65, 554,312

Electrolytic and electrothermic products may be subdivided into four principal groups: (1) Chlorine and its derivatives, together with caustic alkalies which are interdependent or by-products of great importance; (2) oxygen and hydrogen, which are also produced simultaneously; (3) elements or metals and their alloys, including carbides; and (4) organic products and salts other than the foregoing, including cyanides, chlorates, carbon bisulphide and persulphates. The first two are electrolytic, the third electrothermic, and the fourth may be either.

The value of the products produced by the aid of electricity in 1919, shows an increase of 178 per cent over the production as reported in 1914, the per cent of increase for the preceding periods being 61 por cent for 1909-1914, 161 per cent for 1904-1909, and 246 per cent for the period 1899-1904.
The nine leading states in 1919, in order of ralue of electro products, were New York, Michigan, North

Carolina, New Jersey, Tennessee, Pennsylvania, West Virginia, Virginia, and California, which altogether produced 96.3 per cent of the total value of products. The remaining 3.7 per cent was distributed among 24 states.

Chlorine and hypochlorites have been considered in detail under Group VI; hydrogen and oxygen under Group IX, and sodium and potassium hydroxide under their respective Groups III and IV.

The item of other commodities may be subdivided as follows: Metals and alloys or basic elements, including aluminum, iron, tungsten, molybdenum, sodium, vanadium, magnesium, copper, and manganese and their alloys, $\$ 36,000,000$; abrasives and carbides, $\$ 22,000,000$; salts and organic products such as cyanides, chlorates, persalts and carbon bisulphide, $86,000,000$; and negative elements and their derivatives, phosphorus, bromine, silicon, and hydrochloric acid, $\$ 1,000,000$.

GENERAL TABLES.

Comparative summary, by states.-Table 35 gives the comparative statistics for the principal items, number of establishments, average number of wage earners, primary horsepower, cost of materials, and
value of products for the census years 1919, 1914, and 1909.

Detailed statement, by states.-Table 36 is a detailed statement, by states, for the census of 1919.

Tabre 35.-COMPARATIVE SUMMARY, BY STATES: 1919, 1914, AND 1909.

State.	$\begin{gathered} \mathrm{Cen-1} \\ \text { sas } \\ \text { year. } \end{gathered}$	Number of estab-lishments.	Wagecarnersaver-age.num-ber).	Primaryhorsepower.	Wages.	Cost of mateHials.	$\begin{aligned} & \text { Value of } \\ & \text { prod- } \end{aligned}$	state.	$\begin{aligned} & \text { Con- } \\ & \text { sus } \\ & \text { year. } \end{aligned}$	Number of estabments.	Wage (aver- Primary age horse-numpower.		Wages.	Cost of matorials.	Value of produets.
					Expressed in thousands.								Fxpressed in thousands.		
United States.	1910	598	55, 580	376,940	\$72,848	\$216, 301	18438,659	New Yow.	1919	88	9,687	59,043	\$13,149	850,871	
	1914	395	32, 311	282, 385	22,066	89,451	158, 054		1914	70	7,780	131, 928	5,380	26, 252	42,877
	1800	359	23,729	208, 657	14, 096	64, 140	227,'741		1909	74	5,746	116, 197	3,376	19,709	35,340
California.	1919	49	1,466	15,980	1,974	6,131	10,539	Onlo	$\begin{array}{\|l\|l\|} \hline 1919 \\ 1914 \\ 1909 \end{array}$	$\begin{aligned} & 37 \\ & 29 \\ & 33 \end{aligned}$	$\begin{aligned} & 3,670 \\ & 2,017 \\ & 1,132 \end{aligned}$	$\begin{aligned} & 35,049 \\ & 18,751 \\ & 11,715 \end{aligned}$	5,4731,480749	14,7286,7284,748	32,71911,38887,742
	1914	20	257	1,521	184	933	1,524								
	1909	13	244	1,308	168	762	1,306								
Illinois	1919	33	3,00.4	23,393	3,836	12,003	22,061	Pemsylvania.	$\begin{aligned} & 1919 \\ & 1914 \\ & 1909 \end{aligned}$	$\begin{array}{r} 56 \\ \begin{array}{c} 38 \\ 137 \end{array} \end{array}$	$\begin{aligned} & 7,134 \\ & 4,748 \\ & 3,185 \end{aligned}$	$\begin{gathered} \begin{array}{c} 30,334 \\ 16,570 \\ 0,771 \end{array} \end{gathered}$	$\begin{aligned} & 9,854 \\ & 2,928 \\ & 1,692 \end{aligned}$	$\begin{aligned} & 20,751 \\ & 12,615 \\ & 10,200 \end{aligned}$	$\begin{aligned} & 73,338 \\ & 22,388 \\ & 15,978 \end{aligned}$
	1914	26	1, 682	8,590	1, 164										
	1909	22	${ }^{1} 843$	5,917	${ }^{1} 536$	2,915	4,683								
Massachusetts.	1919	27	2,483	9,223.	3,044	8,101	17,305	Washington.	1919	844	9032	$\begin{array}{r}1,165 \\ \hline 89\end{array}$	12325	${ }_{259}^{535}$	1,393
	1914	24	1,395	5, 405	${ }^{3} 955$	3,355	6, 685								
Michigan.	1909	24	1,358	3,731	811	3,048	5,916	Wisconsin				$\begin{array}{r} 1,376 \\ 362 \\ 495 \end{array}$	$\begin{gathered} 204 \\ 36 \\ 41 \\ 41 \end{gathered}$	$\begin{array}{r} 1,129 \\ 230 \\ 242 \end{array}$	2,074436513
	$\begin{aligned} & 1919 \\ & 1914 \\ & 1909 \end{aligned}$	$\begin{array}{r}86 \\ 36 \\ 136 \\ \hline\end{array}$	5,712 4,509	74,94345,944	8,9503,405	$\begin{array}{r}15,744 \\ 6,373 \\ \hline, 07\end{array}$	37,85113,89112,801		$\begin{aligned} & 1919 \\ & 1914 \\ & 1909 \end{aligned}$	3075	$\begin{array}{r} 187 \\ 60 \\ 76 \end{array}$				
			3,174	26,584,	2,012	5,072	12,890	All other states.	1919				$\begin{array}{r} 10,175 \\ 1,907 \\ 1,283 \end{array}$		
Missouri.................	191919141909	222229	$\begin{array}{r} 1,253 \\ 842 \\ 619 \end{array}$	$\begin{aligned} & 4,149 \\ & 1,764 \\ & 886 \end{aligned}$	$\begin{array}{r} 1,162 \\ 498 \\ 333 \end{array}$	$\begin{aligned} & 7,717 \\ & 4,764 \\ & 2,224 \end{aligned}$	$\begin{array}{r} 13,538 \\ 6,936 \\ 3,640 \end{array}$		$\begin{aligned} & 1914 \\ & 1902 \end{aligned}$	$\begin{gathered} 134 \\ 54 \\ 56 \end{gathered}$	$\begin{aligned} & 8,428 \\ & \mathbf{2}, 713 \\ & \mathbf{2}, 308 \end{aligned}$	$\begin{aligned} & 85,478 \\ & 32,898 \\ & 18,183 \end{aligned}$		$\begin{gathered} 26,818 \\ 6,130 \\ 2,800 \end{gathered}$	$\begin{array}{r} 55,740 \\ 11,250 \\ 6,003 \end{array}$
NewJersey.............	191919141909	7864450	$\begin{gathered} 12,472 \\ 6,276 \\ 5,046 \end{gathered}$	$\begin{aligned} & 36,807 \\ & 18,563 \\ & 13,880 \end{aligned}$	$\begin{array}{r} 14,904 \\ 4,124 \\ 2,895 \end{array}$	$\begin{aligned} & 45,174 \\ & 17,054 \\ & 12,257 \end{aligned}$	$\begin{aligned} & 81,034 \\ & 31,687 \\ & 22,6824 \end{aligned}$								

1 Exeludes statistics for 1 estabiishment, to avoid disclosure of individual operations.
2 Excludes statistics for 2 establishments, to avoid disclosure of individual operations.

Table 36.-DETAILED STATEMENT,

1 Includes water wheels and turbines (irrespective of ownership of water supply) and water motors (operated by water from city mains).
S Cheny electric motors operated by rented (or purchased) current; other power included (chielly shatt-belt or transmitted power from neighboring power plants). ${ }^{3}$ Same number reported for one or more other months.

BY STATES: 1919.

Expenses.								Value of products.	$\begin{aligned} & \text { Value } \\ & \text { added by } \\ & \text { manufac- } \\ & \text { ture. } \end{aligned}$	POWER.							
Salaries and wages.			$\underset{\substack{\text { For } \\ \text { contract } \\ \text { work }}}{\text {. }}$ work.	Rent and taxes.		For materials.				Primary horsepower.						Electric horsepower generated in lishments report	
												Owned					
Officials.	Clerks, etc.	Wage earners.		Rent of lactory.	Federal, state, county, and local:	Principal materials.	Fuel and rent of power.			Total.	$\left\lvert\, \begin{gathered} \text { Steam } \\ \text { engines } \\ \text { (nottrur- } \\ \text { bines) } \end{gathered}\right.$	Steam bines.	Inter- nal- com- bus- tion en- gines.	Water power. ${ }^{\text {b }}$	Rented. ${ }^{2}$		
$\begin{gathered} \text { Dollars. } \\ 12,540,127 \end{gathered}$	Dollars. 11,794,507	$\begin{array}{r} \text { Dollars. } \\ 72,848,324 \end{array}$	$\begin{array}{\|c} \text { Dollars. } \\ 1,321,738 \end{array}$	Dollars. 506,741	Dollars. $31,931,389$	$\begin{gathered} \text { Dollars. } \\ 183,558,969 \\ \hline \end{gathered}$	$\begin{array}{\|} \text { Dollars. } \\ 32,742,310 \\ \hline \end{array}$	Dollats. 438, 658, 809	$\begin{gathered} \text { Dollars. } \\ 222,357,590 \end{gathered}$	376,940	127, 164	114,585	5,004	3,692	123,495	109,554	1
283,367 46,193	255,686 24,178	$1,973,938$ 101,348 188	27,885	10,289 3,296	233,679 35,531 002	4, 8 830, 172	$1,300,728$ 43,381	$10,539,416$ $1,501,141$	$4,408,516$ 667,358	15, 988	1,437	2,790	80	2	11,673 746	417	2
${ }_{41}{ }^{46}, 624$	94,019	104, 105		10, 600	60,545	323,907	55, 5	1,057, 293	577, 533	547	150			2	3497	10	4
761, 867	573, 888	3, 830, 5004	68, 941	55,900	647, 408	10, 408,691	1, 594, 383	22,040, 803	10, 057, 729	23,393	16,613	2,743	50°	1	3,986	24,550	5
192, 862	364, 575	1, 732, 003		1,440	381, 077	3, 378, 886	591, 716	8, 649, 304	4, 678,702	8,574	6,693	180	210		1,488	698	6
25,194	21,694	76, 927			17,0088	250, 669	70,076	558,084	237,339	834	225				009		7
7, 220	9,374	14, 619		780 144	7, 313	50, 398	13, 551	177,018	113, 0639	359	100				259		
19,680	28,221 152,122	64,288 1090,437	2,500	1,344	30, 916	32,537 $2,815,59$	48, 182	\% 312,8083	- 232, 087	402	$8:$				317		
404, 214	152,122 457,835	1, $3,043,578$		3,600 30,402	738, 198	2, $7,5151,788$	382,629 539,679	5, $277,426 ~$ $17,305,165$	$2,079,268$ $9,203,749$	6, 5,268 9,238	1,435	$\begin{array}{r} 3,425 \\ 3,225 \end{array}$	${ }^{17} 10$	i	1,698	3,439 3,064	10
1,121,081	957, 780	8,949, 577	1,940	20,950	2,399, 240	9, 292,545	9, 451, 534	37, 850, 834	22, 108,759	74,943	22,710	37, 237	22	100	14,874	20,541	12
- 68,107	126,364	188, 223		51,732	660,572	7 484, 624	138,908	1,455, 6558	832, 123	1,105	2, 75		100		${ }^{1} 930$	10	13
386, 977	559,820	$1,162,182$		49, 162	$1,093,445$	$7,429,202$	287, 593		5, 821, 104	4,149	1,767				2,382	1,020	14
90,379 $3,122,104$	51,457 $2,753,623$	(14, 39093,593	80.4, 079	7,892 55,900	3, 22,121	42, 1614,314	- $\begin{array}{r}455, \\ 3,003,988 \\ \hline\end{array}$	2, ${ }^{2} 804,7931$	3, 335,181	6,057 36,807	4,381 18,201	760 9.923	1,088		7,595	1,182 16,867	15
3,122,104			- 6 ,								18,201	9, 223	1,083		7,095		
2, 807, 754	2,352, 744	13, 148,889	33,828 45874	142,664	$\begin{aligned} & 5,413,813 \\ & 1 \end{aligned}$		$\begin{aligned} & 8,270,026 \\ & 100 \end{aligned}$	$\begin{gathered} 880,101,532 \\ 30 \\ 719 \\ \hline 186 \end{gathered}$	37,230,140	59,043			188	2,688			17
	7, 742, 760 $1,191,699$	5, 473, 508	45, 874 85,369	34,695 18,496	12, $1,740,048,417$	12, 1246,385	$3,149,144$ $2,058,100$	32, 719,468	$17,423,937$ $46,551,782$	35,049 30,334	13,838 9,741	16,320 5,557	433 400	20	4,438 14,430	10,676 8,578	18
, 35,673	1, 4,779	\checkmark-335, 240		1,335	21, 823	851, 605	-93, 815	1, 399,346	-453,925	${ }^{886}$	-295				${ }^{591}$	167	20
57,294	106, 398	155, 749	12,667	6, 188	67, 144	486,781	85,581	1,394, 354	821,992	1,057	291				766	5	21
44, 101	64, 054	658, 925	93, 038	3,000	31,001	551,067	235,524	1,708,957	922,366	4,735	2,119	714	493	500	909	320	22
238, 2004	166,410 64,637	1, 9422,627		7,405	2,838,916	2, 736,939	968,469 66,825	12,765, 281	9, $\begin{array}{r}\text { 020, } \\ 827 \\ 8273 \\ \hline 10\end{array}$	11, 862	4,240	2,900	……		4,722	5,300	24
69,473 181,747	64,637 46,188	123,135 752,936		2, 334	128, 115 ,411	1,896, ${ }^{4682}$	66,825 265,785	1, 3,280, 657	1,158,190	${ }_{8}^{1,165}$	1,330	5,850	655		1,590	1,520	25
80, 214	98, 029	204, 095	1,170	5, 147	60, 002	$1,063,99.5$	65,378	2,074, 299	1,945, 926	1,376	140		10		1,226		26
311,182	528, 672	2, 557,928	15,643	72, 130	579, 490	5, 898,724	[2,546, 224	14, 196,099	5,752,051	33,279	2,205	15, 100	360	380	15,234	1,400	27

4 All other states embrace: Alabama, 2 establishments; Arkansas, 2; Connesticut, 3; District of Columbia, 1; Kansas, 4; Maine, 2; Montana, 2; North Carolina, 1; Oklahoma, 2; Oregon, 1; South Dakota, 1: Tennessee, 5; West Virginia, 7; and Wyoming, 2.

SULPHURIC, NITRIC, AND MIXED ACIDS.

GENERAL STATISTICS.

General character of the industry.-.-The statistics for establishments engaged primarily in the manufacture of sulphuric, nitric, and mixed acids were first presented separately at the census of 1904. Prior thereto they were included in the general chemical industry. It is to a considerable extent a specialized branch of the chemical industry, and the statistics here presented embrace the establishments specializing in the production of these acids.

Comparative summary.-Table 37 presents the comparative statistics for the industry for the census years 1899 to 1919 , inclusive, the reports for 1899 having been segregated from chemicals in general.

Principal states, ranked by value of products.-Table 38 shows the number of establishments, wage earners, value of products, and value added by manufacture, by states, ranked according to value of products in 1919.

Persons engaged in the industry.-The age classification of the average number of wage earners in Table 39 is an estimate obtained by the method described in the "Explanation of terms." Figures for states will be found in Table 47.

Wage earners, by months.-The statistics for wage earners, Table 40, are intencled to show the steadiness of employment, or the reverse, in accordance with the industrial conditions existing during the year. A few females were reported as wage earners, but they constituted only one-half of 1 per cent of the total number.

Prevailing hours of labor.-The statistics in Table 41 show a relatively large per cent of the employees in establishments where the prevailing hours of labor per week were 60 and over, though the percentage has dropped from 88.7 per cent in 1909 and 79.8 in 1914 to 18 per cent in 1919. In 1914 and 1909 practically no establishments operated on less than a 54 -hour per week schedule, the few reported in 1914 on a 48 -hour
basis being negligible, but in 1919, 33 per cent were employed in establishments where the prevailing hours were 48 per week.

Size of establishments, by average number of wage earners.-The industry is one of relatively large units, as shown in Table 42, the average number of wage earners per establishment being 96 in 1914 and 127 in 1919, a moderate increase in average size. In 1919 the establishments employing over 100 wage earners included 64.1 per cent of the total number of establishments and reported 93.9 per cent of the wage earners, as compared with 53.1 per cent of the establishments and 85.4 per cent of the wage earners in 1914.

Size of establishments, by value of products.-The grouping by value of products as shown in Table 43, reflects the general increase in values. The average value of products per establishment increased from $\$ 235,000$ in 1909 to $\$ 475,000$ in 1914 and to $\$ 807,000$ in 1919 , but the increase is to a large degree due to high prices. This condition accounts for the changes from lower to higher groups.

Character of ownership.-The establishments in this branch of the chemical industry were all owned by corporations in 1919, and likewise in 1914 and 1909.

Number and horsepower of types of prime movers.Table 44 presents the power statistics for the industry for 1919, 1914, and 1909. Electric power is a growing factor, and of the total primary power 91.7 per cent was utilized in the form of electric power in 1919, this including electric motor equipment operated with purchased electric current, 这pecified as rented, and secondary electric or that generated by the establishment, as compared with 52.1 per cent in 1914 and 34.3 per cent in 1909.

Fuel consumed.-Table 45 presents the statistics for fuel, by kinds and by states, for 1919 and 1914. The figures for gas include both natural and manufactured gas.

Table 37.-COMPARATIVE SUMMARY: 1919, 1914, 1909, 1904, AND 1899.

Table 38.-PRINCIPAL STATES, RANKED BY VaLUE OF PRODUCTS: 1919.

state,	Number of estab-lishments.	Wage earners.			value of products.			valce ajded by manufacturs.		
		Average number.	Per cent distribution.	Rank.	Amoznt (expressed in thousands).	Per cent distribntion.	Rank.	Amount (expressed in thousands).	Per cent distribution.	Rank.
United States..	39	4,961	100.0		531,470	100.0		\$15,613	100.0	
Caitornia.		576	11.6	1	5.440	17.3	1	3,381	21.7	
Iminois.....	3 5	8501	17.6	1 4	5, ${ }^{\text {2, }}$, 804	16.1 8.9	3 4 4	2,829 1,208	18.1 7	$\frac{3}{8}$
New York.	3	398	8.0	5	2,670	8.5	5	1,416	9.1	4
All other states	24	2,551	51.4		15,409	49.2		6,779	43.4	

Table 39.-PERSONS ENGAGED IN THE INDUSTRY: 1919, 1914, AND 1909.

class.	Census year.	Total.	Male.	$\begin{gathered} \mathrm{Fe}- \\ \text { male. } \end{gathered}$	PER CENTOF TOTAL.		CLAss.	$\begin{aligned} & \text { Cen. } \\ & \text { sus } \\ & \text { year. } \end{aligned}$	Total.	Male.	Fer	PRR CENT OF TOTAL.	
					Male.	Fe male						Male:	$\underset{\text { Fe- }}{\text { male. }}$
All classes.	1919	5,880	5,627	233	96.0	4.0	Clarks and other subordinate salaried employees.	1919	605	407	198	67.3	32.7
	1914					2.1		1914	405	330			
	1009	2,582	2,547	35	98.6	1.4		1909	224	190	34	84.8	15.2
Proprietors and officials l	$\begin{aligned} & 1919 \\ & 1914 \end{aligned}$	294 135		9	96.8 100.0	3.1	Wage earners(averagenumber).......	1919	4,961 3,064 2,	4,935	26 1	89.5 100.0	(3) ${ }^{\text {c }}$
	$\begin{array}{\|l\|l\|} 1914 \\ 1909 \end{array}$	106	106		100.0	.		$\begin{aligned} & 1914 \\ & 1909 \end{aligned}$	2,252	3,251	1	100.0	(1)
Salaried officers of corporations....	1919	40	40		100.0	...	16 years of age and over...........	1019	4,959	4,833	26	99.5	
	1914	35 27	35 27	...	100.0 100.0		$\begin{aligned} & 1914 \\ & 1909 \end{aligned}$	3,084	3,083 2,248	1	100.0 100.0	(2)
Superintendents and managers....	1919	254	245	9	96.5	3.5	Under 16 years of age.............	1919	2	2		100.0
	1914	100	100		100.0			1914					
	1909	79	79	.	100.0			1909				100.0

${ }^{1}$ No propriators; officials only.
${ }^{2}$ Less than one-tenth of 1 per cent.

Table 40.-WaGE EARNERS, BY MONTHS, FOR STATES: 1919.
[The month of maximum employment is mdicated by bold-faced figures and that of minimum employment by italic figures.!

stars.	Average number ployed during year.	number emploted on 15th day of the month or nearest represtentative day.												$\begin{aligned} & \text { Por } \\ & \text { cent } \\ & \text { mini. } \\ & \text { murn } \\ & \text { is of } \\ & \text { maxi- } \\ & \text { mum. } \end{aligned}$
		January.	February.	March.	April.	May.	June.	July.	August.	Septom-	October.	$\begin{aligned} & \text { Novem- } \\ & \text { bor, } \end{aligned}$	$\begin{aligned} & \text { Decem- } \\ & \text { ber. } \end{aligned}$	
United States:											5, 425			
${ }^{1019}$ Mailes.	4,961	5,529 5,487	5,301 5,205	4,670	4,438 4,422	4,430	4,415 4,400	4,514	4, 4,878	4,916	5,401	5,343	5,737	75.1
Females	, 26	, 42	36	, 20	16	62	15	17	$1 \overline{0}$	10	21	25	27	24.2
1914.......		2,858	2,903	2,900	2,898	2,926	3,007	2,952	3,090	3,049 3	3, 312	3,346 2,288	$\stackrel{3}{4} 527$	81.0
1909.	2,252	2,227	2,191	2,212	2,129	2,279	2,246	2,300	2,213	2,291	2,327	2,288	2,315	01.5
Callfornis.	576	613	670	634	597	636	566	547	501	568	588	494	488	77.7
milinvis...	875	927	878	804	711	727	- 811	852	939	922	1, 008	1,000	921	70.5
New Jersey	56 L	600	587	596	634	567	359	8852	392	407	439	436	442	89.0 79.6
New York.	398	431	402	395	360	361								79,6

Table 41.-AVERAGE NUMBER OF WAGE EARNERS, BY PREVAILING HOURS OF LABOR PER WEEK, FOR SELEGTED STATES: 1919.

Table 42.-SIZE OF ESTABLISGMENTS, BY AVERAGE NUMBER OF WAGE EARNERS, FOR SELEOTED STATES: 1919.

state.	rotal.		establighments emploting-													
	Estab-lishments.	$\begin{gathered} \text { Wage } \\ \text { earners } \\ \text { (average } \\ \text { number. } \end{gathered}$	I to 5 wage earners, inclusive.		6 to 20 wage earners, inclusive.		21 to 50 wage earners, inclusive.		51 to 100 wage earners, inclusive.		101 to 250 wage earners, inclusive.		251 to 500 wage earners, inclusive.		501 to 1,000 wage earnere, nclusive.	
			Estab-Iishments	$\begin{gathered} \text { Wage } \\ \text { earners. } \end{gathered}$	Estab-lishments.	Wage carners.	Estab-lishments.	Wage earners.	Estab-lishments.	$\begin{array}{\|c} \text { Wage } \\ \text { earners. } \end{array}$	Estah-lishments.	Wage earners.	Estal2-lish1ments	Wage orners.	Estab-lishments.	$\begin{gathered} \text { Wage } \\ \text { earners } \end{gathered}$
United States. 1919 1914.	$\begin{aligned} & 39 \\ & 32 \end{aligned}$	$\begin{aligned} & 4,961 \\ & 3,064 \\ & \hline \end{aligned}$	1	1	7	$\begin{aligned} & 97 \\ & 64 \end{aligned}$	$\begin{array}{r}6 \\ 10 \\ \hline 1\end{array}$	$\begin{aligned} & 206 \\ & 381 \end{aligned}$	8 5	$\begin{aligned} & 521 \\ & 405 \end{aligned}$	12	$\begin{aligned} & 1,953 \\ & 1,571 \end{aligned}$	4	$\begin{array}{r}1,371 \\ \hline 643 \\ \hline\end{array}$	1	812
California.	4	576			1	8	1	40			$\frac{1}{1}$	164	1	364		
Mew Jersey..................	3 5	875			1	10			1	54	$\stackrel{1}{3}$	134	2	741		
New York...............	3	398							1	56	2	342				

Table 43.-SIZE OF ESTABLISHMENTS, BY VALUE OF PRODUCTS: 1919, 1914, AND 1009.

TABLE 44.-NUMBER AND HORSEPOWER OF TYPES OF PRIME MOVERS: 1919, 1914, AND 1909.

" Figures for horsepower include for 1909 the amount reported under the head of "Other" owned power.
:Not reported separately.
Table 45.-FUEL CONSUMED, BY STATES: 1919.

:Included in figures for fuel oils.

SPECIAL STATISTICS.

Establishments.-The special statistics for sulphuric, nitric, and mixed acids are given in detail in the section of this report pertaining to chemicals in Tables 15 to 22 , which include figures for the entire industry.
There were 39 establishments in 1919 and 32 in 1914 that manufactured these acids as their chief product.
Materials.-The consumption of sulphur, pyrite, and nitrate of soda in the manufacture of these acids was not reported separately. The total consumption
of these materials by all chemical establishments is given in Table 13 of the section on chemicals.
Products.-In the acid industry the total production of sulphuric acid in 1919, expressed in terms of 50° Baume was $5,552,581$ tons, compared with $4,071,566$ tons in 1914, an increase of 36.4 per cent. The production of nitric acid in 1919 amounted to 86,992 tons, as compared with 78,589 tons in 1914, an increase of 10.7 per cent; and mixed acid to 114,886 tons in 1919 and 112,124 tons in 1914, an increase of 2.5 per cent.

GENERAL TABLES.

Comparative summary, by states.-Table 46 gives the comparative statistics for the principal items, number of establishments, average number of wage earners, primary horsepower, cost of materials, and
value of products, for the census year's 1919, 1914, and 1909.

Detailed statement, by states.-Table 47 is a detailed statement, by states, for the census of 1919.

Table 46.-COMPARATIVE SUMMARY, BY STATES: 1919, 1914, AND 1909.

Tadle 47.-DETAILED Statement, By States: 1919.

${ }_{1}$ All other states embrace: Alabama, 1 establishment; Arkansas, 1 ; Colorado, 2; Connecticut, 1 ; Delaware, 1 ; Kansas, 1; Louisiana, 1; Maryland, 1 ; Massachusetts, 1; Ohio, 5 ; Chlahoma, 1 ; Pennsylvania, 4; Tennessee, 1; Texas, 1 ; Vtah, $1 ;$ and Virginia, 1 ,
' Includes water wheels and turbines (irrespective of ownership of water supply).

COAL-TAR PRODUCTS.

GENERAL STATISTICS.

At prior censuses the coal-tar industry has been carried as a group of the general chemical industry. Comparative figures, therefore, with respect to the general statistics are $0^{\text {pt available, as the establish- }}$ ments at the census of 1914 and prior censuses were included with other chemical establishments.
Principal states, ranked by value of products.Table 48 presents certain general statistics, namely, number of establishments, average number of wage earners, talue of products, and value added by manufacture for states, ranked according to value of products. In this and other tables certain states which are substantial producers of these products can not be shown separately and are included in the group of "All other states."
Persons engaged in the industry.-The age classification of the average number of wage earners in Table 49 is an estimate obtained by the method described in the "Explanation of terms." Figures for states will be found in Table 57.

Wage earners, by months.-The statistics for wage earners by months, Table 50, are intended to show the steadiness of employment, or the reverse, in accordance with the industrial conditions existing during the year. Females constituted but 3.5 per cent of the total number of wage earners employed.

Prevailing hours of labor:-Comparative figures are not available to show the movement toward shorter hours of labor, but the distribution of the wage earners by hour groups in this branch of the chemical industry is in harmony with conditions in other lines of chemical products. In 1919, as shown in Table 51, only 11.3 per cent of the total number of wage earners were employed in establishments where the prevailing hours of labor per week were 60 or over, the corre.sponding percentage in the general chemical industry being 13.9 per cent. In like manner 40.4 per cent of
the wage earners were employed in establishments operating on a basis of 48 hours per week or less in this branch of the industry, as compared with 38.4 per cent in the general chemical industry.

Size of establishments, by average number of wage earners.-Table 52 shows that the industry includes some large units. The a verage number of wage earners per establishment was 86 , but 56.6 per cent of the wage earners were reported by 8 establishments, each of which employed in excess of 500 wage earners.

Size of establishments, by value of products.-The average value of products per establishment, Table 53, was $\$ 740,000$, as compared with $\$ 734,000$ for establishments in the general chemical industry. The group, " $\$ 1,000,000$ and over," carrying 14.2 per cent of the establishments, reported 76.1 per cent of the wrage earners and 76.1 per cent of the value of products.
Character of ownership.-Table 54 presents the general statistics for the establishments, classified by character of ownership. Corporations embraced 91.8 per cent of the establishments and accounted for 98.9 per cent of the wage earners and the value of products.

Number and horsepower of types of prime movers. Table 55 presents the statistics concerning power. Of the total primary power, 40.1 per cent was purchased power, and of the owned power the bulk of the capacity was utilized in electric generation. As a result 78.6 per cent of the primary power rated capacity is represented by electric-power equipment, either operated with purchased or rented current or with generated current.
Fuel consumed.-Table 56 presents the statistics for fuel, by kind and by states. The gas reported includes both natural and manufactured gas.

Table 48.-PRINCIPAL STATES, RANKED BY VALUE OF PRODUCTS: 1919.

Table 49．－PERSONS ENGAGED IN THE INDUSTRY： 1919.

class．	Total，	Male．	Fe－male．	PER CENTof total．		CLASS．	Total．	Male．	Fe－ male．	PER CRNT of toral	
				Male．	$\mathrm{Fe}-$ male.					Male，	Fe male
All classes．	21，543	19，813	1，730	92.0	7.0	Clerks and other subordinate salaried em－ ployces．	4，09615,083	2,93115,120	$\begin{array}{r} 1,165 \\ 543 \end{array}$	$71.5$$86.5$	28.53.5
Proprietors and officials．	1，784	1，762	22	98.7	1.3						
Proprietors and firm members． Salaried offlers of corporations	$\begin{array}{r}23 \\ 235 \\ \hline\end{array}$	23 230		88.5 98.0 8.1	11.5 2.0 0.0	Wage earners（average number） 16 years of age and over． Under 16 years of age．	15,63720	15,10713	53013	${ }^{90.6}$	3.4
Superintendents and managers．	1，523	1，509	14	99.1	0.9					50.0	50.0

Table 50．－WAGE EARNERS，BY MONTHS，FOR STATES： 1919.
［The month of maximum employment is indicated by bold－faced figures and that of minmum employment by italic figures．］

STATE．	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { number } \\ \text { em- } \\ \text { ployed } \\ \text { during } \\ \text { Fear. } \end{gathered}$													Percontmini－mumis ofmax！－mum，
		Jan－ uary．	Febru－ ary．	March．	April．	May．	June．	July，	August．	Septem－ ber．	Octo－ ber．	Novem－ ber．	$\begin{gathered} \text { Decem- } \\ \text { ber. } \end{gathered}$	
United States．	15， 663	15，967	15,323	14，695	14，811	14，539	14，699	14， 501	15， 827	16，385	16，760	17，082	17，887	80.0
Males．．	15， 120	15，319	14， 742	14， 173	15，794	14， 040	14， 193	14， 027	15，312	15，815	16，192	10，507	17，326	79.6
Fernales．	543	648	581	522	517	499	506	474	515	550	－ 588	575	501	73，1
Illinois．	186	180	170	169	175	182	198	196	206	194	187	189	186	82.0
Massachusetts．	444	399	407	966	371	433	422	440	456	480	495	524	535	68.4
New Jorsey．	6， 495	6，084	5， 689	5，822	6，165	6，459	6，487	5，970	6， 943	7，010	7，017	7，118	7，276	76.8
New York．	3，758	4，377	4，440	4，067	3，411	3，228	3，282	3，374	3，432	3，601	3，814	3，880	4，181	72.7
Ohio．．．．	834	， 858	924	811	${ }^{7} 11$	739	711	768	862	906	914	890	916	77，0
Pennsylvania	1，333	1，850	1，414	1，058	986	1，005	1，106	1，267	1，345	1，398	1，562	1，684	1，621	60.0
Wisconsin．．．．	827	413	408	449	493	－619	770	957	1，029	1，118	1，109	1，160	1，399	29.1

Table b1．－AVERAGE NUMBER OF WAGE EARNERS，BY PREVAILING HOURS OF LABOR PER WEEK，FOR SELEGTED STATES： 1919.

state．	Total．	IN ESTABLISHMENTS WHERE THE PREVALING HOURS of habor per week were－								State．	Total．	IN ESTABLLSHMENTS WHERE THTP PREYATLING HOURS of labor per week were－							
		$\begin{gathered} \text { 44 } \\ \text { and } \\ \text { and } \\ \text { der. } \end{gathered}$	$\begin{gathered} \text { Be- } \\ \text { twen } \\ \text { 4if } \\ \text { and } \\ 48 . \end{gathered}$	48.	Be－ tween and and 54.	54.	$\begin{array}{\|c\|} \text { Be- } \\ \text { twen } \\ 54 \\ \text { and } \\ 60 . \end{array}$	60.	Oyer $60 .$			$\begin{aligned} & 44 \\ & \text { and } \\ & \text { nn } \end{aligned}$ der.	$\begin{gathered} \text { Be- } \\ \text { twen } \\ \text { 44 } \\ \text { and } \\ 48 . \end{gathered}$	48.	$\begin{gathered} \text { Be } \\ \text { twoen } \\ 48 \\ \text { and } \\ 54 . \end{gathered}$	54.	Be－ tween 54 and 60.	60.	$\begin{aligned} & 0 \text { yer } \\ & 60 . \end{aligned}$
United States．．．	15，663	94.1	182	5，205	1， 588	3，805	2，171	742	1，028	New York．	3，758	871	80	134	449	1，545	544	97	38
Illinois．．．	186	7			12	30	54	83		Pennsylvani	1，333	24	38	136	${ }^{6} 5{ }^{\circ}$	37	62	15	370
New Jersey．．．．．．．．．．．．．	6，495		$2{ }^{12}$	4，300	254	$\bigcirc{ }^{6} 7{ }^{\circ}$	956	\cdots	59	Wisconsin．．				7		7		4	

Table 52．－SIZE OF EStablishments，BY AVERAGE NUMBER OF WaGE EARNERS，FOR SELECTED STATES： 1919

state．	totaz．		establibhments mmploying－																
	$\begin{aligned} & \begin{array}{l} \text { Sstab- } \\ \text { lish- } \\ \text { mants. } \end{array} . \end{aligned}$	Wage earners （average number）．	No wage carm－ ers．	$\begin{gathered} 1 \text { to } 5 \\ \text { wage } \\ \text { earners, } \\ \text { inclusive. } \end{gathered}$		$\begin{gathered} \text { B to } 20 \\ \text { wage } \\ \text { earners, } \\ \text { inclusive. } \end{gathered}$		$\begin{gathered} 21 \text { to } 50 \\ \text { wage } \\ \text { earners, } \\ \text { inclusive. } \end{gathered}$		51 to 100 wage earners，inclusive．		101 to 250 wage earners， inclusive．		$\begin{aligned} & 251 \text { to } \begin{array}{c} \text { wage } \\ \text { eargers, } \\ \text { inclusive. } \end{array} \end{aligned}$		501 to 1,000 wage barners， inclusive		$\begin{aligned} & \text { Over } 1,000 \\ & \text { wage } \\ & \text { earners. } \end{aligned}$	
											$\begin{aligned} & \text { 曷总 } \\ & \text { E } \end{aligned}$							总品	
United States．	183	15，663	3	42	142	63	745	28	922	23	1，632	12	2，051	4	1，300	1	3， 862	2	3，003
117nois．．．．．．．．．．．	8	180	1	1	1	4	54	2	68	1	${ }^{63}$								
Massachusetts．．．．．	$\begin{array}{r}8 \\ 48 \\ \hline\end{array}$	${ }_{6}{ }^{444}$		1	4	3	30			2	143		207						
New York．．．．．．．．．	48 46	6,495 3,758		${ }_{15}^{9}$	45 51	17	187	6 6	${ }_{203}^{183}$	8 5	${ }_{6}^{604}$	5 2	839 427	1	37	$\frac{1}{2}$	1， 110	1	3， 1,48
Ohio．．．	15	834		5	12	1	8	4	134	3	197	1	188	1	315				
Pennsylvania	19	1，333	$1{ }^{-1}$	3	5	9	125	3	134 98	3	189		1×8	1	370	1	645		
Wisconsin．．．．．．．．	5	827		1	4	2	21	1	35							1	767		

TABLE 53.-SIZE OF ESTABLISHMENTS, BY VALUE OF PRODUCTS: 1919.

${ }^{1}$ Less than ono-tenth of 1 per cent.
Table 54.-CHARACTER OF OWNERSHIP: 1919.

character of ownership.	$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { estab- } \\ & \text { lish- } \\ & \text { ments. } \end{aligned}$	Average number of wago earners.	Value of products.	character of ownership.	Number of estab-Hishments.	Average number of wage earners.	Value of products.
Total.	183	15,663	\$135, 482, 161	Per cent of total:			
Individual.	9	70	397, 313	Individual.	4.9 91.8	0.5 98.9	0.3
Corporation.	168 6	15,496 97	$\begin{array}{r}133,976,720 \\ 1,108 \\ \hline 128\end{array}$	All other..	3.3	0.6	0.8

Table 55.-NUMBER AND HORSEPOWER OF TYPES OF PRIME MOVERS: 1919.

Table 56.-FUEL CONSUMED, BY STATES: 1919.

state.	.	coal.		$\begin{gathered} \text { Coke } \\ \text { (tons, } 2,000 \\ \text { pounds). } \end{gathered}$	Fuel oils (barrels).	Gasoline and other volatile oils (barrels).	$\begin{gathered} \text { Gas } \\ \text { cubico feet). } \end{gathered}$
		Anthracite (tons, 2,240 pounds).	$\begin{aligned} & \text { Bituminous } \\ & \text { (tons, 2,000 } \\ & \text { pounds). } \end{aligned}$				
United States.		62, 582	721,882	16,855	142,029	1,647	148,005
Illinois....		10	15, 223		12	230	
Massachusetts.			10,985 265,140	2, 861	76, 647	$\begin{array}{r}43 \\ 205 \\ \hline\end{array}$	3,187 22,951
New York......		11, 003	188, 783	153	9, 620	855	39,345
Ohio..					811		7,269
Pennsylvania..		3,697	52, 925		23, 379	114	17, 962
Wisconsin....... All other states..		140	35,267 106,815	10,409 2,932	743 30,817	200	2,000 55,311

SPECIAL STATISTICS.

Materials and products.-The value of the products reported for this branch of the chemical industry, $\$ 135,482,161$, is the value of all products reported by the 183 establishments engaged primarily in the manufacture of coal-tar products. In addition there
was a considerable production by establishments classified under other industries. A detailed presentation of products has been given in the section on chemicals, Group VII, coal-tar chemicals.

Detailed statement, by states.-Table 57 is a detailed statement, by states, for the census of 1919.
Table 57.-DETAILeD STATEMENT, BY STATES: 1919.

1 Same number reported for one or more other months.
2'All other states comprise: Alabama, 2 establishments; California, 1 ; Connecticut, 2; District of Columbia, 1; Georgia, 1; Indiana, 1; Michigan, 4; Minnesota, 2; Missouri, 5; Rhode Island, 2; Tennessee, 2; Utah, 1; Virginia, 3: West Virginia, 3.

COKE.

GENERAL STATISTICS.

General character of the industry.-This industry embraces the establishments engaged primarily in the carbonization of coal, subdivided into (1) the plants equipped with ovens other than retort or by-product orens, known as beehive ovens, and (2) those using retort or by-product ovens-with a recovery of the products of distillation. The statistics refer to the industry as a whole, except as otherwise stated. It does not include the coke products of the manufactured gas industry, known as gas-house coke, which will be found in the report on manufactured gas.

Comparative summary.-Table 1 presents the statistics for the census years 1899 to 1919 inclusive, with percentages of increase for the census periods, and Table 2 the general statistics for the industry and the two groups, A and B, for the census of 1919 .

Principal states, ranked by value of products.-Table 3 shows the number of establishments, wage earners, value of products, and value added by manufacture, by states, ranked according to the value of products in 1919.

Persons engaged in the industry,-The age classification of the average number of wage earners in Table 4 is an estimate obtained by the method described in the "Explanation of terms". Figures for states will be found in Table 15.

Wage earners, by months.-The statistics for wage earners, Table 5, are intencled to show the steadiness of employment, or the reverse, in accordance with the industrial condition existing during the year. The wage earners employed in the industry are essentially males. Only 8 females were reported.

Prevailing hours of labor.-The comparative statistics for 1919,1914 , and 1909 in Table 6 indicate a movement toward shorter hours of labor per week. In 1909, 64.3 per cent of the wage earners were employed in plants where the prevailing hours of labor per week were 60 or over, and in 19.14, 52.1 per cent, while in 1919 this proportion dropped to 45.8 per cent. On the other hand, in 1919, 32.8 per cent were reported for establishments where the prevailing hours of labor were 48 per week or less, compared with 7.5 per cent in 1914 and 6.8 per cent in 1909.
Size of establishments, by average number of wage earners.-The industry is one of relatively large units, the average number of wage earners per establishment being 106 in 1919 and 91 in 1914. In 1919, as
shown in Table 7, 10 establishments each employed over 500 wage earners, 33.5 per cent of the total number of wage earners, as compared with 5 establishments which employed 23.8 per cent in 1914.

Size of establishments, by value of products.-The classification by value of products in Table 8 necessarily reflects the general increase in values. The average value of products per establishment increased from $\$ 304,000$ in 1909 to $\$ 430,000$ in 1914 and to $\$ 1,139,000$ in 1919, but the increase in 1919 is due primarily to high prices, for on a quantity basis the production of coke in 1919 was but 28 per cent greater than in 1914 and the wage earners employed were but 39 per cent more than in 1914.

Table 9 shows the distribution of the establishments by value of products for the two industry groups, in 1919 . The smaller value groups are confined to the beehive oven group. The average value of products per establishment for this group was $\$ 505,000$ and for the by-product oven group $\$ 3,650,000$.

Character of ownership.-Table 10 presents the statistics for establishments classified according to form of ownership. The corporation group employed 97.8 per cent of the wage earners and accounted for the same proportion of the value of products, a slight increase over the percentages for 1914, and the latter were in like manner slightly greater than the percentages for 1909. The 20 individual establishments and the 7" All others" are beehive oven plants.

Number and horsepower of types of prime movers.Table 11 presents the power statistics for the establishments. Electric power is employed very extensively, either purchased from hydroelectric companies or from other sources of supply, or generated at the plants. Of the total primary power, 93 per cent was utilized in the form of electric power in 1919, this including electric motor equipment operated with purchased current, specified as rented, and secondary electric or that generated by the establishment. In 1914 the ratio of total electric power to primary power was 73.5 per cent, and in 1909 it was 65.6 per cent.

Fuel consumed.-Table 12 presents the statistics for fuel, by kinds and by states. The figures for bituminous coal include the coal charged into the ovens and used as material, as well as that otherwise used at the plants.

Table 1．－COMPARATIVE SUMMARY：1919，1914，1909，1904，AND 1899.

${ }^{1}$ A minus sign（ - ）denotes decrease．
a Exclusive of internal revenue．
${ }^{3}$ Value of prodncts less cost of materials．
Table 2．－THE COKE INDUSTRY，BY INDUSTRY GROUPS： 1919.

1 Value of products less cost of materials．
Table 3．－PRINCIPAL STATES，RANKED BY VALUE OF PRODUCTS： 1919.

STATE．		wage marners．			vaide of pronucts．			Value added by manugacture．			STATE．		Wage marners．			value or products．			Yalue added by manubacture．		
				$\begin{aligned} & \text { 咅 } \\ & \text { 品 } \end{aligned}$			咸			总					$\begin{aligned} & \text { 咨 } \\ & \text { 总 } \end{aligned}$			$\begin{aligned} & \text { 肖 } \\ & \text { 品 } \end{aligned}$			坔
United States．．	278	29，310	100.0		\＄310，516	100.0	．	\＄02， 240	100.0		Now York	3	643	2.2	10	37， 213	2.3	10	\＄2， 097	2.8	仡
Pennsylvania	123	11， 586	39.3	1	119，730	37.8	1	30， 377	42.7	1	Virgesia．	13	420	1.5 2.9	10 7	6，469 5,524	2.1	${ }_{13}^{11}$	1， 1,589	1.6	12
Ohio．．．	13	3，407	11.6	3	46， 614	14.7	2	13，342	14.5	2	Kentucky．	4	568	1.9	12	4，453	1，4	15	974	1.1	14
Alabama	28	3， 533	12.1	2	24， 669	7.8		6，041	6.5	4	Tennessee	6	272	0.9	15	2，017	0.6	17	553	0.6	17
Ihlnots．．．．．．．．．．．．	4	1，393	4.8	5	10， 837	5.3	5	4，209	4.6	5	All other states ${ }^{1} . .$.	24	5，400	18.4	1	74， 721	23.6		20， 239	21.8	
West Virginia．．．．．	57	1，283	4.4	6	8，369	2.6	8	2，331	2.5	7											

${ }^{1}$ Includes Indiana，rank 3，according to value of products；Wisconsin，rank 6；and New Jersey，rank 7.

Table 4.-PERSONS ENGAGED IN THE INDUSTRY: 1919, 1914, AND 1909.

class.	$\begin{aligned} & \text { Cen- } \\ & \text { sus } \\ & \text { yoar. } \end{aligned}$	Total.	Male.	$\mathrm{Fe}-$ malo.	PER CENTOf TOTAL.		class.	$\left\lvert\, \begin{gathered} \text { Can- } \\ \text { sus } \\ \text { year. } \end{gathered}\right.$	Total.	Malc.	$\mathrm{Fe}-$ male.	Pen cent Of TOTAL.	
					Male.	$\begin{gathered} \text { Fe- } \\ \text { male. } \end{gathered}$						Male.	$\mathrm{Fe}-$ male.
All classes..	1919	32,882	32, 460	422	98.7	1.3	Clorks and other subordinate salaried omployees.	1019	2,478	2,068	410	83.5	16.5
	1014	23, 463	23, 23.4	209	99.1	0.9		1914	1,746	1,540	206	88.2	11.8
	1909	-31,223	31,112	114	09.6	0.4		1909	1,139	1,037	102	91.0	9.0
Proprietors and officials...............			1,080	5	99.5	0.5	Wage earners (average number)........	$\begin{aligned} & 1019 \\ & 1914 \\ & 1909 \end{aligned}$					
	1914	610 814	$\begin{array}{r}610 \\ 807 \\ \hline\end{array}$		100.0	100.0			29,319	29,311	8	(1)
			807		90.1	0.9			21,107 29,273	21,104 29,268	3 5		(1)
Proprietors and firm memhors....	1919	41	40	1	97.6	2.4							
	1914	36	336		100.0		10 years of age and ovor...........	1919	28,908	28,901	8		(1)
	1009	101	96	5	95.0	5.0		1914	20, 988	20, 985	3		(1)
Salaried oficers of corporations....	1010	165	101	4	97.0	2.4		1909	29,187	29,182	5		(1)
	1914	149	149		100.0		Under 16 years of age..............	1919	410	410		100.0	
	1909	174	172	2	08.8	1.2		1914	119	119		100.0
Superintondents and managers....	1919	879	879		100. 0			1009	80	80		100.0	\ldots
	1014	425	125		100.0	-....							
	1000	530	530		100.0								

1 Loss than one-tenth of 1 per cont.
Tame 5.-WAge marners, By Monthis, For states: 1919.
[The month of maximum omployment is indicated by bold-faoed figures and that of minimum employment by italic flgures.]

Table 6.-AVERAME NUMBER Of WAGE EARNERS, BY PREVAILING HOURS OF LABOR PER WEET, FOR STATES: 1919 AND 1914.

state.	Total.	in facabithiments winge the prifyailing hours of labor mer were whra-								STATt.	Total.	in establighments where the prevailing hours of Labor per week werem							
		44 nnd und der.			Be- tweon 48 and 54.	54.	$\begin{gathered} \mathrm{Be}- \\ \text { cwoen } \\ 54 \\ \text { and } \\ 60 . \end{gathered}$	60.	$\begin{aligned} & \text { Over } \\ & 60 . \end{aligned}$			$\xrightarrow[\substack{44 \\ \text { and } \\ \text { nur } \\ \text { der } \\ \text { der }}]{ }$	$\begin{gathered} \text { Be- } \\ \text { tween } \\ 44 \\ \text { nud } \\ 48 . \end{gathered}$	48.	$\left.\begin{gathered} \text { Be- } \\ \text { creon } \\ 48 \\ \text { and } \\ 54 . \end{gathered} \right\rvert\,$	54.	$\left\lvert\, \begin{gathered} \text { Be- } \\ \text { tween } \\ 54 \\ \text { and } \\ 60 . \end{gathered}\right.$	60.	Over 00.
United Statos..1910..	29,310	342		1),250	112	1,854	1,307	2,010	11, 427	Minnesota..									426
1914.	21, 107		(2)	1,582		6,637	1,809	4, 702	0,231	New York. .									848
1009..	20,273	(a)	(2)	1,987	359	7,065	148	11, 620	7,184.	Ohio......	3,407						1,094		2, 313
Alabama.	3,533			141			277		1,953	Tannessiog.	${ }^{1,}{ }_{272}$			${ }^{53}$				35	3,742 107
Iminois.	1,300			28			1,036		${ }^{3} 82$	Virghia.				706			46	50	15
Kentucky..	${ }^{1} 508$			25			304			West Virginia	1,283		2	568	3			160	310

[^5]${ }^{2}$ Corresponding figures not available.

Table 7.-SIZe of establishments, By average number of wage earners, for states: 1919.

STATE.	TOTAL.		ESTABLISHMENTS EMPLOYING-																
	Estab-lishments.	Wage carners (average number).		1 to 5 wage enmers, inclusive		$\begin{gathered} 6 \text { to } 20 \\ \text { Wage } \\ \text { earnors, } \\ \text { incusive. } \end{gathered}$		21 to 50 wage carners inclusive.		$\begin{gathered} 51 \text { to } 100 \\ \text { wage } \\ \text { carners, } \\ \text { inclusive. } \end{gathered}$		$\begin{gathered} 101 \text { to } 250 \\ \text { wage } \\ \text { earners, } \\ \text { incinsive. } \end{gathered}$		$\begin{gathered} 251 \text { to } 500 \\ \text { wage } \\ \text { enrigers, } \\ \text { inelusive. } \end{gathered}$		$\begin{gathered} 501 \text { t:o } 1,000 \\ \text { wage } \\ \text { carngrs, } \\ \text { inclusive. } \end{gathered}$		Over 1,000 wage carners.	
								\qquad	$\begin{aligned} & \dot{4} \\ & \stackrel{4}{0} \\ & E \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { Establish- } \\ & \text { ments. } \end{aligned}$					$\begin{aligned} & \text { 发 } \\ & e \\ & E \\ & E \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
United States.1919..	278 231	29,319 21,107	2	48 15	145 70	64	818 603	56 75	1,906 2,417	35	2,574 2,689	44 40	$\begin{array}{r}6,965 \\ 4,660 \\ \hline\end{array}$	19	$\begin{array}{r}7,076 \\ 6,040 \\ \hline\end{array}$	5 4	3,017 2,483	5 1	6,818 2,133
Alabama.	28	3, 1383		3	5	0	94	8	239	5	398	2	368	3	1,352			1	1,077
Illinois.	4	1,396						1	28			1	170	1	332	1	857		
Kentucky.................	4.	568						1	20	2	149			1	394				
Minnesota................	3	426								1	01	2	335						
Now York.	3	643										1	110	2	624				
Ohlo.	13	3,407								3	214	4	745	5	1,044	1	504		
Pennsylvania	123	11, 576	I	24	78	32	426	25	897	17	1,232	16	2, 176	5	1,701			3	4,726
Tennessee..	0	272				2,	17	2	71	1	77	$!$	107						
Virginia.	13	849			2	1	13	6	210	2	145	3	474						
West Virginia.	57	1,28:3		20	60	21	248	11	359	2	136	3	480						

Table 8.--SIZE OF ESTABLISHMENTS, BY VAlue OF Products: 1910, 1914, AND 1009.

Value of product.	NUMBER OF Establishments.			average number of wage matriers.			Value of products.			value added by manuracture.		
	1019	1914	1909	1919	1914	1909	1919	1914	1909	1910	1914	1909
All classes	278	231	315	29,319	21,107	29,273	\$316,515, 838	\$39, 275, 020	\$95, 0960,022	\$412, 249, 10.1	\$30, 130, 692	\$31, 672,095
Less than 85,000 $\$ 5,000$ to $\$ 20,000$ $\$ 20,000$ to $\$ 100,000$ $\$ 100,000$ to 8500,000 . $\$ 500,000$ to $\$ 1,000,0000$. $\$ 1,000,000$ and over ..	$\begin{aligned} & 61 \\ & 38 \\ & 58 \\ & 80 \\ & 34 \\ & 69 \end{aligned}$	$\begin{aligned} & 7 \\ & 18 \\ & 91 \\ & 70 \\ & 22 \\ & 23 \end{aligned}$	$\begin{array}{r} 11 \\ 40 \\ 127 \\ 120 \\ 17 \end{array}$	$\begin{array}{r} 5 \\ 93 \\ 663 \\ 2,545 \\ 3,402 \\ 22,551 \end{array}$	$\begin{array}{r} 20 \\ 129 \\ 2,88 \\ 8,045 \\ 10,725 \end{array}$	$\begin{array}{r} 23 \\ 530 \\ 3,524 \\ 13,460 \\ 11,730 \end{array}$	19,122387,294$3,180,636$$19,048,517$$25,206,933$$268,073,336$	$\begin{array}{r} 20,107 \\ 2,58,366 \\ 4,788,905 \\ 16,74,238 \\ 14,211,972 \\ 04,151,647 \end{array}$	21,280$1,202,249$$6,780,743$$30,845,740$$50,780,5018$			$\begin{array}{r} 2,566 \\ 393,912 \\ 2,143,327 \\ 10,901,357 \\ 18,230,933 \end{array}$
	per cent mismmution.											
All classes		$100.0 \quad 100.0$		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Less than 55,000 . $\$ 5,000$ to $\$ 20,000$. $\$ 20,000$ to $\$ 100,000$ $\$ 100,000$ to $\$ 500,000$ $\$ 500,000$ to $\$ 1,000,000$. $\$ 1,000,000$ and ọver.	$\begin{array}{r} 2.2 \\ 11.2 \\ 20.9 \\ 28.8 \\ 12.2 \\ 24.8 \end{array}$	3.0 3.5 7.8 12.7 39.4 40.3 30.3 38.1 9.5 38.1 10.0 5.4		$\begin{array}{r} \hline(1) \\ 0.3 \\ 2.3 \\ 8.7 \\ 11.8 \\ 76.0 \end{array}$	$\begin{array}{r} 1)^{0} \\ 0.6 \\ 9.3 \\ 34.3 \\ 45.7 \end{array}$	$\begin{array}{r} 0.1 \\ 1.8 \\ 12.0 \\ 46.0 \\ 40.1 \end{array}$	$\text { (1) } \begin{array}{r} 0.1 \\ 1.0 \\ 6.0 \\ 8.0 \\ 8.9 \end{array}$	$\text { (1) } \begin{array}{r} 0.2 \\ 4.7 \\ 16.2 \\ 14.3 \\ 64.0 \end{array}$	(1) $\begin{array}{r}1.3 \\ 7.1 \\ 38.5 \\ 53.1\end{array}$			
				5.3							8.8	
				30.3							34.4	
				03.8							57.6	

${ }^{1}$ Less than one-tenth of 1 per cent.
Tame 9.-SIZE OF ESTABLISHMENTS, BY VALUE OF PRODUUTS, BY INDUSTRY GROUPS: 1919.

industay and valub of product.	Num-berofestab-lish-ments	WAGE Earners.		Vatiofe of products.		Vazue added byManduacturk.		INDUSTRY AND VALUEof product.	$\left\|\begin{array}{c} \text { Num } \\ \text { bor } \\ \text { of } \\ \text { ostab- } \\ \text { lish- } \\ \text { monts } \end{array}\right\|$	wrage barners.		Yatome of PRODUCTR.		valueapdeday manupacture.	
		$\begin{aligned} & \text { Aver- } \\ & \text { nue } \\ & \text { num- } \\ & \text { bor. } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { cent } \\ \text { of } \\ \text { total. } \end{gathered}$	Amomit.	$\begin{gathered} \text { Per } \\ \text { cent } \\ \text { of } \\ \text { total. } \end{gathered}$	Amount.	$\begin{gathered} \text { Per } \\ \text { cent } \\ \text { of } \\ \text { total. } \end{gathered}$			$\begin{array}{\|l\|l} \text { Aver- } \\ \text { gge } \\ \text { nulum- } \\ \text { ber. } \end{array}$	$\begin{array}{\|c} \text { Por } \\ \text { cout } \\ \text { of } \\ \text { total. } \end{array}$	Amonit.	$\begin{gathered} \text { Per } \\ \text { cont } \\ \text { of } \\ \text { total. } \end{gathered}$	Amomit.	Per cent of oflal.
The coke Industry.	278	29,319.	100.0	\$316,515,838	100.0	\$92,249,104	1000	Other than by-prod-							
Less than 85,000	6	5	(1)	18,122	(1)	'5,873	(${ }^{\text {d }}$	hive)-Contimued.							
\$5,000 to \$20,000.	31	93	0.3	387, 20.1	0.1	120, 835	0.1	\$100,000 to \$500,000.......	70	2, 435	17.7	\$18,081, 010	16.1	(55, 092, 314	15,0
\$20,000 to \$100,000.		683		3, 100, 638	1.0	1, 014,412	1. 17	\$500,000 to \$1,000.0n0.	30	3,087	22.4	22,253, 5156	19.9	6, 321,243	18.7
\$100,000 to \$500,000.....	80	2, 545	8. 7	19, 048,517	6. 0	5, 248, 741	5.7	\$1,000,000 and bver......	23	7,539	54.8	08, 262, 004	60.0	21, 358,520	63.1
$\$ 500,000$ to $\$ 1,000,000 . .$. $\$ 1,000,000$ and over....	$\begin{array}{r}34 \\ 69 \\ \hline\end{array}$	-3,462	11.8	25, ${ }^{2066,033} \mathbf{2 0 8 , 6 7 3 , 3 3 6}$	8.0 84.9	78, 744,521	$\begin{array}{r}7.7 \\ 85.3 \\ \hline\end{array}$	By-product oven	56	15, 503	100. 0	204, 402, 372	100.0		00.0
Other than by-prodnetovens(beehive).															
	222	13,766	100.0	112,023,466	100.0	33, 867, 571	100.0	Less than \$5,000. $\$ 5,000$ to $\$ 20,000$.							
								\$20,000 to \$100.000.	2	50	0.4	161, 70.	0.1	44, 635	0.1
Lass than 8if,00n......... 85,000 to $\$ 20,000$. $\$ 20,000$ to $\$ 100,000$.	,	5	(1)	19,122	(1)	5, 873	${ }^{(1)}$	\$100,000 to \$530 00)	+	110	0.7	0196, 877	0.6	2010, 427	0.4
	31	93	0.7	387, 294	0.3	129, 838	0.4	\$500,000 to \$1,000,000	4	15,375	2.4	2, 903, 307	1.4	- 823, 278	98. ${ }^{1.4}$
	56	607	4.4	3,018,880	2.7	960, 777	2.9	\$1,000,000 and over	46	15,012	06.5	200, 410,372	98.0	57, 307, 258	98.2

${ }^{1}$ Lass than one-tenth of 1 per cent.

Table 10.-CHARAOTER OF OWNERSHIP: 1919, 1914, AND 1909.

industry and state.	NUMBER OF ESTABLISIEMENTS OWNED BY-			average numbitr of wage marners.							VALUE Of pronucts.						
				Total.	In ostablishmontsowned by-			Por cent of total.			Total.	Of establishments owned by-			Per cent of total.		
	$\begin{array}{\|c} \text { rndi- } \\ \text { vid- } \\ \text { uals. } \end{array}$	Cor-porations.	$\begin{aligned} & \text { All } \\ & \text { oth- } \\ & \text { ers. } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { Indi- } \\ & \text { vid- } \\ & \text { uals. } \end{aligned}\right.$	Corporam tions.	$\begin{aligned} & \text { All } \\ & \text { oth- } \\ & \text { ers. } \end{aligned}$	$\begin{aligned} & \text { Indi- } \\ & \text { vid- } \\ & \text { inals. } \end{aligned}$	Cor-porations.	$\begin{aligned} & \text { All } \\ & \text { oth- } \\ & \text { ers. } \end{aligned}$		Individtals.	Corporations.	$\begin{aligned} & \text { All } \\ & \text { others. } \end{aligned}$	Indi-viduals.	Cor-porations.	$\begin{aligned} & \text { All } \\ & \text { oth. } \\ & \text { ers. } \end{aligned}$
United States: 1919.	20	251	7	29,319	507	28,064	148	1.7	97.8	0.5	\$316, 515, 838	86,037, 170	8309, 411, 015	\$1,037, 053	1.9	97.8	0.3
product ovens	20	195	7	13,766	507	13,111	148	3.7	95.2	1.1	112,023,400	6,037, 170	104, 948,643	1,037,653	5.4	93.7	0.9
ovens.		66 205							100.0		20., 492, 372		204, 492, 372			100.0	
1914....	10 21	205 277	7	21,107 20,273	- 1,241	20,433 27,470	171 582	4.4	96.8 93.8	0.8 2.0	99, 275,000 $95,690,622$	2,998,000	$95,659,000$ $91,280,407$	618,000 $1,258,017$	3.0 3.3	90.4 90.4	0.6 1.3
Pennsylvanin.	17	90	7	11, 5130	49.	10, 894	148	4.3	04.4	1.3	110,730, 559	5,975,411	112,717, 525	1,037, 053	4.0	94.2	1.8
other than by-product ovens (bechivo).	17	88	7	7,969	491	7,327	148	6.2	01.9	1.9	70, 169, 342	5,075,411	63,156,278	1,037, 553	8.5	9.0	1.5
By-product ovens..............		1.1		3,267		3,207			100.0		49,561,247		40,561,247			10.0	
All other states.	3	152		17,783	13	17,770		0 俞	99.0		106, 785, 249	01,759	196, 723, 490		0.3	00.7	\ldots
Other than by-product ovens (bechive).	3	107		5,797	13	5,784		0.2	99.8		41,854, 124	61,759	41,792, 365		0.1	0.9
By-product ovens..		45		11,980		11,080			100.0		154, 931, 1.25		154, 931,125			100.0	

Table 11.-NUMBER AND IORSEPOWER OF TYPES Of PRme MOVERS: 1919, 1914, AND 1909.

POWER.	number óf engines or motors.			HORSETOWER.					
	1010	1914	1909	Amount.			Per cent distribution.		
				1919	1014	1909	1919	1914	1909
Primary power, total......................................	2, 897	1,766	1, 002	224, 879	120,327	62,602	100.0	100.0	100.0
Owned. Steaml	9.47 9.41	755 743	496 486	1150, 328	82,687 80,567	47,963 44,591	60.8 60.0 8.	67.9 66.1	76.6 71.2
	${ }^{348}$			148,488			33.5		
	155	(3)		73, 222			32.6		
Internal-combustion engines Water wheels, turbines, and motors. Ronted, electric	6	12	${ }_{4}^{8}$	1, 850	2,120	1,212	0.8	1.8	1.9
	1,050	1,0i1	500	74,551	37, 010	314,03:	33.2	32.1	00.8 23.4
Electric Ronted. Generated by estabishments roporting.	5,919	2,735	1,538	200, 163	88, 409	41, 094	100.0	100.0	100.0
	1,950	1,011		74,551	37, 810	13,754	35.6	42.6	33.5
	3, 060	1,724	1,032	134,012	50,769	27, 310	64.4	57.4	66.5

${ }^{1}$ Figures for horsepowor include for 1909 the amount roported ander the head of "Other" owned power.
"Includes 885 of "Other" rented power.
Table 12.-TVUET, CONSUMED, BY STATES: 1919.

grate.	corat.		$\begin{aligned} & \text { Coke } \\ & \text { (tons, } 2,000 \\ & \text { pounds). } \end{aligned}$	Fuel oils (barrels).	Gasoline and othor voltatile oils (barrels).	$\begin{gathered} \text { Gas } \\ (1,000 \mathrm{cuble} \\ \text { feot }) . \end{gathered}$
	Anthracite (tons, 2,240 pounds).	Bitaminous (tons, 2,000 pounds).				
Unlted Statos:						
	6,808	64, 30,639, 308	187, 249		80,349	6, 175
	3,577	33, 31055,691	373, 236	15,211	3,383	052,515
Alabama						
Illinois.		- $2,477,629$		8,086	-	
Kenlucky...		870,773				
Minnesota.. New York		818,288 $1,010,991$		408		2,288 2,306
Ohio.......		$7,995,889$	53			37, 951
Pennsylvania.	5,308	30, 512,831	500, 182	6,717	3,383	606, 885
Tennessee..		447,003				
Virginia. West Virginia		$1,482,814$ $2,242,720$				
All other states.	500	11, 0 in, 142	14,773		80,337	0,200

SPECIAL STATISTICŚ.

Produots.-Table 13 presents comparative statistics for products for 1919, 1914, and 1909, including figures for coking coal consumption. The products as compiled and reported by the Geological Survey represent total production inclusive of subsidiary colke and coke-oven by-products produced by establish-
ments not engaged primarily in the manufacture of coke, and exceed in the aggregate the value of the products reported for the establishments constituting the classified industry, to the amount of $\$ 5,540$,870 in 1919, $\$ 6,338,285$ in 1914, and $\$ 2,381,761$ in 1909.

Table 13.-PRODUCTS: ${ }^{1} 1919,1914$, AND 1909.
[Tons, 2,000 pounds.]

	1919	1014	1909		1919	1914	1909
COAL. Coal used for coking, all establishments, tons.	65, 5187,018	$51,623,750$	59,354, 037	Productswe continuerl. By-products from rotort or by-product ovens:			
products.				Production, M cubis feet.	415,642, 205		
The classified industry (establishments engaged primarily in the					103, 073, 079	61,364, 375	15,701,220
$\underset{\text { manufacture of coke), all products, }}{\text { vinlue...................... }}$	\$316, 515, 83	\$99, 275, 020			$5,288,481$ $138,179,761$		
		11, 27, 20	30, 000,022	Ta public servieo corporations.....	49, 6555,732		
Coke and coking by-products, all establishments including subsidiary coke products of estabilish-				Valuc. Tar- Production, gallons	\$16, 685,007 $288,808,764$	\$0,000, 583	\$2, 609,2ii
ments in other inductries, value ${ }^{\text {a }}$.	\$322, 050, 708	\$105, 863, 305	\$98, 078, 38.3	Salos-			
Coke:				Value.	$\begin{aligned} & 87,980,283 \\ & \$ 8,910,265 \end{aligned}$	109, 8207,274	$\begin{aligned} & 60,126,006 \\ & \$ 1,408,611 \end{aligned}$
Tons.	44, 180, 567	34, 555, 914	30,315, 065	Ammonia (sales)			
Value.	3258, 330, 740	\$88, 334, 217	\$80,965,483	Sulphato-			
Made in- ${ }_{\text {Beehive }}$ ovens-					$\begin{aligned} & 557,619,631 \\ & 322,070,718 \end{aligned}$	$\begin{array}{r} 170,703,900 \\ \$ 1,606,500 \end{array}$	
Tons..........	19,042,936	23,335, 971	33,000, 421	Anhydrous or freo ammonia -			\$3, 675,771
Value...............................	308, 094, 972	\$50, 254, 0.50	\$90, 530,794	Pounds	$51,046,744$ 8,51629		
Retort or by-product ovens- Tons. .	25, 137, 621	11,219,943	6,254,044	value..................................	$8,2,692,950$ $\$ 12,078,886$	2,058,034	
Volue.	\$160, 244, 768	\$38,080, 167	\$20, 434, 689	Other coking products, value	\$005, 142	\$097,007	\$419,307

${ }^{1}$ From report of Geological Survey.
2 Includes liquar and sulphate sold on pound basis NIIs.

GENERAL TABLES.

Comparative summary, by states.-Table 14 gives comparative statistics for the principal items, number of establishments, average number of wage earners, primary horsepower, wages, cost of materials, and
value of products for the census years 1919, 1914, and 1909.

Detailed statement, by states.-Table 15 is a detailed statement, by states, for the census of 1919.

Table 14.-COMPARative SUMMARY, BY STATES: 1919, 1914, AND 1909.

state.	$\begin{gathered} \text { Con- } \\ \text { sus } \\ \text { yorr. } \end{gathered}$	Number of estabments	$\begin{aligned} & \text { Wage } \\ & \text { aarners } \\ & \text { (aver- } \\ & \text { age } \\ & \text { num- } \\ & \text { ber). } \end{aligned}$	$\left\|\begin{array}{c} \text { Primary } \\ \text { horse- } \\ \text { power. } \end{array}\right\|$	Wages.	Cost of materials.	Value of products.	state.	$\begin{aligned} & \text { Cen- }-1 \\ & \text { sus } \\ & \text { year. } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { ertab- } \\ & \text { lishi- } \\ & \text { ments } \end{aligned}\right.$	$\begin{gathered} \text { Wage } \\ \text { ennors } \\ \text { (avol'm } \\ \text { nge } \\ \text { nimm- } \\ \text { ber). } \end{gathered}$	Primary horsepower.	Wages.	Cost of materials.	Value of products.
					Expressed in thousands.								Expressed in thousands.		
All indus.ries......	1919	278	29,319	224, 879	\$42, 209	2224, 267	\$316,516	Pennsylvania	1919 1914 1909	$\begin{aligned} & 123 \\ & 108 \\ & 146 \end{aligned}$	$\begin{array}{r} 11,536 \\ 0,871 \\ 15,381 \end{array}$	$\begin{aligned} & 72,752 \\ & 30,213 \\ & 20,091 \end{aligned}$	$\begin{array}{r} \$ 15,564 \\ 6,635 \\ 8,436 \end{array}$	$\begin{array}{r} \$ 80,354 \\ 29,820 \\ 33,762 \end{array}$	$\begin{array}{r} 8119,730 \\ 42,980 \\ 51,810 \end{array}$
	1914					69, 138	-99,275								
	1009	31.5	29, 273	62,002	15, 454	64, 025	95,697								
Alabama.................	1019	28	3,5833	13,147	3,484	18,028	24,669	Tennossce.	$\begin{array}{\|l\|l} 1919 \\ 1.914 \\ 1909 \end{array}$	6 5 8 8	$\begin{aligned} & 2727 \\ & 170 \\ & 250 \end{aligned}$	$\begin{array}{r} 2,345 \\ 493 \\ 370 \end{array}$	$\begin{gathered} 260 \\ 74 \\ 74 \\ 87 \end{gathered}$	$\begin{array}{r} 1,464 \\ 513 \\ 478 \end{array}$	2,017 605 586
	1914	18	2,209	11,728		7,303	10,353								
	1909	35	2,580	5,760	1,283	6,371	8,843								
Mlinois...................	$\begin{aligned} & 1910 \\ & 1914 \end{aligned}$	43	$\begin{aligned} & 1,396 \\ & 1,178 \end{aligned}$	$\begin{gathered} 9,015 \\ 13,055 \end{gathered}$	2,400	$\begin{array}{r} 12,628 \\ 5,828 \end{array}$	$\begin{array}{r} 16,887 \\ 7,840 \end{array}$	Virginia.	$\begin{aligned} & 1019 \\ & 1014 \\ & 1000 \end{aligned}$	13111616	$\begin{array}{r} 849 \\ 852 \\ 1,425 \end{array}$	$\begin{aligned} & 1,243 \\ & 2,057 \\ & 1,760 \end{aligned}$	$\begin{array}{r} 1,081 \\ 384 \\ 543 \end{array}$	3,$\mathbf{3} 235$1,0701,818	5,5241,6072,416
Kontucky................	$\begin{aligned} & 1919 \\ & 1914 \end{aligned}$	$\stackrel{4}{5}$	$\begin{aligned} & 568 \\ & 472 \end{aligned}$	$\begin{aligned} & 3,308 \\ & 3,366 \end{aligned}$	$\begin{aligned} & 760 \\ & 269 \end{aligned}$	$\begin{array}{r} 3,479 \\ \hline 820 \end{array}$								1,818	
							$\begin{aligned} & 4,453 \\ & 1,255 \end{aligned}$	West Virginia.	$\begin{aligned} & 1919 \\ & 1914 \\ & 1909 \end{aligned}$	575471	$\begin{aligned} & 1,283 \\ & 1,302 \\ & 1,426 \end{aligned}$	$\begin{aligned} & 9,493 \\ & 2,420 \\ & 5,307 \end{aligned}$	$\begin{aligned} & 1,420 \\ & 1,602 \\ & 1,664 \end{aligned}$	6,03715,8935,012	8,3692,9787,563
	1919	$\begin{array}{r} 13 \\ 5 \\ 4 \end{array}$	$\begin{array}{r} 3,407 \\ 489 \\ 246 \end{array}$	$\begin{array}{r} 43,119 \\ 2,325 \\ 1,250 \end{array}$	$\begin{array}{r} \dot{B}, 559 \\ 352 \\ 120 \end{array}$	$\begin{array}{r} 33,172 \\ 1,607 \\ 0.640 \end{array}$	$\begin{array}{r} 46,514 \\ 2,187 \\ 8.51 \end{array}$	All other states..							
	1909								$\begin{aligned} & 1919 \\ & 1914 \\ & 1909 \end{aligned}$	$\begin{aligned} & 30 \\ & 22 \\ & 32 \end{aligned}$	$\begin{aligned} & 6,475 \\ & 4,474 \\ & 5,015 \end{aligned}$	$\begin{aligned} & 69,557 \\ & 48,171 \\ & 22,058 \end{aligned}$	$\begin{array}{r} 10,778 \\ 3,680 \\ 3,321 \end{array}$	$\begin{aligned} & 64,570 \\ & 20,224 \\ & 15,044 \end{aligned}$	$\begin{aligned} & 88,403 \\ & 29,484 \\ & 23,222 \end{aligned}$

Table 15.-DETAILED STATEMENT, BY STATES: 1919.

[^6]
GENERAL STATISTICS.

General character of the industry.-This industry embraces the establishments engaged primarily in the production of salt.

The major part of the salt industry pertains to manufacturing, although it is closely related to mining or the extraction of materials from the earth, which statistics of materials and products are collected annually by the Geological Survey. The production figures are as compiled by the Geological Survey and have been coordinated with the general statistics for the industry.

Comparative summary.-Table 1 presents the general statistics for the census years 1879 to 1919, inclusive.

Principal states, ranked by value of products.Table 2 summarizes the more important statistics for the industry, number of establishments, average number of wage earners, value of products, and value added by manufacture, by states, ranked according to value of products.

Persons engaged in the industry.-The age classification of the average number of wage earners in Table 3 is an estimate obtained by the method described in the "Explanation of terms." Figures for states will be found in Table 13.

Wage earners, by months.-The statistics for wage earners, Table 4, are intended to show the steadiness of employment, or the reverse, in accordance with the industrial conditions existing during the year. Females constituted but 6.5 per cent of the average number of wage earners employed in 1919.

Prevailing hours of labor.-The figures in Table 5 show a movement toward shortening of the hours of employment. In 1919, 20.1 per cent of the wage earners were employed in establishments where the
prevailing hours of labor per week were 48 or less, whereas in 1914 but 6.7 per cent were in establishments of this character, and in 1909, 4.4 per cent. On the other hand, in 1909, 83.6 per cent of all wage earners were in establishments whore the hours of labor were 60 or more per week, this percentage decreasing to 62.6 per cent in 1914 , and to 33.1 per cent in 1919.

Size of establishments, by average number of wage earners.-In 1919 the average number of wage earners for all plants was 76 as compared with 52 in 1914. In 1919, as shown in Table 6, 22 establishments each employed over 100 wage earners, in the aggregate, 68.4 per cont of all wage earners, as compared with 15 establishments of the same class in 1.914 with 56.9 per cent of all wage carners.

Size of establishments, by value of products.-The average value of products per establishment increased from $\$ 144,000$ in 1914 to $\$ 436,000$ in 1919 , though this increase is largely due to enhanced values, and this condition accounts in the main for the changes from lower to higher groups shown in Table 7.

Character of ownership.-Table 8 presents statistics showing the character of ownership. Although a considerable number of establishments are owned by individuals or firms, yet the corporation group controls the bulk of the industry. These establishments reported 97.6 per cent of the value of all products in 1919, 97 per cent in 1914, and 91.3 per cent in 1909.

Number and horsepower of types of prime movers.Table 9 presents the statistics concerning power.

Fuel consumed.-Table 10 presents statistics for fuel, by kinds and by states. The figures for gas include both natural and manufactured gas, chiefly natural gas.

Table 1.-COMPARATIVE SUMMARY: 1919, 1914, 1909, 1904, 1899, 1889, AND 1879.

${ }^{1}$ A minus sign (-) denotos decrease.
62

TABLE 2．－PRINGIPAL STATES，RANKED BY VALUE OF PRODUCTS： 1019.

STATE．	$\begin{aligned} & \text { Number of establish- } \\ & \text { ments. } \end{aligned}$	Wage marners．		value of products．			valut added by manufac－ture．			state．		Wage earners．			value of products．			value added by manUFAC－ture．		
						总			首			$\begin{aligned} & \text { 皆范 } \\ & \text { 曾首 } \end{aligned}$		鲎\|			总			音
United States．：	86	6，495	$1000.0{ }^{1}$	\＄17，51．4	100.0		321，480	100.0	\cdots	Ohio．	5	535	8.2	4	\＄2，668	7.1	4	\＄1，287	6.0	
		2，0133	31．8：	14，054	37.5	1	7，715	35.9	1	California．	24	446 277	6.9 4.3	5	2， 2,286	${ }^{6.1}$	5	1，201	5.6	7
New York．．．．．．．．．．	11^{16}	1，723	20．5， 2	0， 0109	24.3	2	5，188	24.1	2	West Virginia	$\stackrel{3}{4}$	771	4， 1	${ }_{9}$	1，016	2.7 0.6	7	536 92	2.8	7
Kansas．．．	12	1， 172	16.5	6，193	16.5		3，986	18.0	3	All other states．	10	303	4.6	9	1，985	0.6 5.3		1，481	0.9	9

TABLE 3．－PERSONS ENGAGED IN THE INDUSTRY：1919，1914，AND 1909.

CLASss．	$\begin{aligned} & \text { Cen- } \\ & \text { sus } \\ & \text { your. } \end{aligned}$	Total．	Male．	Fe-malo.	per cent or toral．		CLASSS．	$\begin{aligned} & \text { Cen- } \\ & \text { sus } \\ & \text { year. } \end{aligned}$	Total．	Male．	Fo-	PER CENT of TOTAL．	
					Mnle．	Fo－ male．						Male．	$\begin{gathered} \text { Fo- } \\ \text { male } \end{gathered}$
All classes．	1919	7.1082	7，012	670	91.3	8.7	Clerks and other subordinate salarled employees．	1919	830	595	235	71.7	28.3
	1014			480	91.0	8.4		1914	370	266	104	71.9	28.1
	1909	5，580	5，132	418		8.0		1909	353	276	77	78.2	21.8
Proprietors and offleinls．．．．．．．．．．．．．．	1919	357	341	16	95.5	4.5	Wage earnars（average number）．．．．．．．						
	1014	277	257	20	92.8	7.2		1919	6，405	6，076	419	93.5	6.5
	1909	201	276	15	04．8	5.2		1914	8，089	4，733	356	93.0	7.0
Proprictors and firm mombers．．．．．	1919						16 years of age and over．．．．．．．．．．．	1908	4，936	4，580	356	92.8	7.2
	1914	60	42	18	70.0	25.0 30.0		1919	6，470	6，080	410	93.7	6.3
	1500	74	59	15	79.7	20.3		1914	5，076	4，720	356	93.0	7.0
Salaried officors of corporations．．．．								1909	4，829	4，575	354	92.8	7.2
	1919	109 88 8	104 80 80	5	$\begin{array}{r}05.4 \\ 07.7 \\ \hline 0.7\end{array}$	4.6 2.3	Undor 10 years of nge．．．．．．．．．．．．．．	1919	25	16	9	64.0	36.0
	1909	04	94		100.0			1914	13	13		100.0	
Superintendents and manngers．．．．	1019	208	207	1		0.5		1909	7		2	71.4	2.6
	1914	129	129		100.0								
	1900	123	123		100.0								

Table d．－WAGE EARNERS，BY MONTHS，FOR STATES： 1919.
［＇The month of maximum omplogmont is indicated by bold－faced figures and that of minimum employment by fatic figures．］

stata．	Aver－	number mmploytd on 1.5 tif day of the month or nearest representative day．												Percentmini－mumis ofmaxi－mum．
		$\begin{aligned} & \text { Jan- } \\ & \text { uary. } \end{aligned}$	Fib－ ruary．	March，	April．	May．	June．	July．	August．	Septern－ ber．	Octo－ ber．	$\begin{aligned} & \text { Novem- } \\ & \text { ber. } \end{aligned}$	Decem－ ber．	
United States：														
1018	0，405	6， 433	0，220	0，170	6，101	5，094	6，114	6，443	6，900	6，771	7，110	6， 8288	6，789	
Males．	$\begin{array}{r}0,078 \\ \hline 10\end{array}$	8，051		5，820	$\begin{array}{r}5,773 \\ 588 \\ \hline\end{array}$	5,688 300	5，725	8，${ }^{6000}$	6，446	6,326 445	6，626	6， 339		84.9 71.9
1914.	5,080	4，731	4,054	4，875	5，096	5， 128	5， 128	5， 167	5，221	8，448	5， 492	5，159	4，971	84.7
1909.	4，030	4，340	1，402	4， 818	4，077	4，984	5，132	5，220	5，198	5，192	5，158	5，070	4，636	83.0
California．	410	407	412	424	423	436	418	404	507	519	522	515	473	78.0
Kansas．．	1，072	1，051	1，081．	1，079	1，068	1，044	1，048	1，021	1，127	1，123	1，154	1，082		85.4
Michigan．	$2{ }^{2}, 063$	2，017	1， 064	1， 988	1，081	1，925	2，010	2， 060	2， 178	2,125	2，143	2， 169	$\stackrel{2,755}{ }$	69.8
New York	1，728	1，630	1， 698	1，068	1，608	1，015	1，617	1，811	1，917	1，866	1，793	1，709	1，814	83.4
Ohio．	， 585	575		484	， 450	$\stackrel{4}{4} 9$	508	530	564	${ }^{551}$	604	604	570	74.5
Texas．	277	289	－ 200	263	252	208	285	284	330	336	331	280	224	66． 1
West Virginia．	71	84	99	43	64	71	75	88	96	94	90	50	58	40． 3

Tabre 5．－AVIGRAGE NUMber of Wage Earniers，by prevailing hours of Labor per week，for selected STATES： 1919.

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{State．} \& \multirow[b]{2}{*}{Total．} \& \multicolumn{8}{|l|}{IN ESTADIISIMENTS WIERE TILT PREVALLING HOURS OF LABOR PER WRHK WLRE－} \& \multirow[b]{2}{*}{state．} \& \multirow[t]{2}{*}{Total．} \& \multicolumn{8}{|l|}{In EATABLISHMENTS WHERE TTYE PREVALLING HOURS OT LADOR PER WEEK WGRE－} \\
\hline \& \& and
and
mat
dor． \& \[
\begin{gathered}
\text { Bo- } \\
\text { tweon } \\
44 \\
\text { and } \\
48 .
\end{gathered}
\] \& 48.1 \& \[
\begin{gathered}
\text { Be- } \\
\text { tween } \\
48 \\
\text { and } \\
54 .
\end{gathered}
\] \& 54. \& Bo－ twoen 64. and 60. \& 60. \& \[
\begin{aligned}
\& \text { Oyor } \\
\& 60 .
\end{aligned}
\] \& \& \& \[
\begin{gathered}
\text { 44 } \\
\text { and } \\
\text { un- } \\
\text { der. }
\end{gathered}
\] \& \[
\left|\begin{array}{c}
B \theta- \\
\text { Buven } \\
44 \\
\text { and } \\
48 .
\end{array}\right|
\] \& 48. \& （ \(\begin{gathered}\text { Be－} \\ \text { tween } \\ 48 \\ \text { and } \\ 54 .\end{gathered}\) \& 54. \& \[
\begin{gathered}
\text { Be- } \\
\text { tween } \\
54 \\
\text { and } \\
60 .
\end{gathered}
\] \& 60. \& \[
\begin{aligned}
\& \text { Over } \\
\& 80 .
\end{aligned}
\] \\
\hline United States：
\(1919 \ldots\).
\(1914\).
\(1909 \ldots . .\). \& \[
\begin{aligned}
\& 0,405 \\
\& 5,489 \\
\& 4,936
\end{aligned}
\] \& （2）\({ }_{(2)}\) \& \(\left(\begin{array}{l}12 \\ (2) \\ (2)\end{array}\right.\) \& \[
\begin{gathered}
1,291 \\
\substack{24.0 \\
214 \\
214}
\end{gathered}
\] \& 547 \& \[
\begin{array}{r}
1,021 \\
772 \\
459
\end{array}
\] \& \[
\begin{array}{r}
1,470 \\
792 \\
135
\end{array}
\] \& \[
\begin{aligned}
\& 1,416 \\
\& 2,538 \\
\& 2,991
\end{aligned}
\] \& 736
647
1,137 \& Mtohigan
Nexy York．
Ohio．．．．．．．
TTexas \& 2,063
1,728
635
277
7 \& \& 2 \& 541
276
227 \& \begin{tabular}{|}
169 \\
378
\end{tabular} \& \begin{tabular}{l}
411 \\
395 \\
\hline
\end{tabular} \& 587
446
66
50
50 \& 428
206 \& 94

236
91

\hline California． Kansas．．． \& 1，072 \& \& \& 157 \& \& \& － 288 \& | 92 |
| :---: |
| 503 | \& 285 \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

[^7]2 Corresponding figures not available．

TAble 6.-SIZE OF ESTABLISEMENTS, BY AVERAGE NUMBER OF WAGE EARNERS, FOR SELEGTED STATES: 1919.

Table 7.-SIZE OF ESTABLISHMENTS, BY VALUE OF PRODUCTS: 1019 AND 1914.

Table 8.-CHARAOTER OF OWNERSHIP: 1919, 1914, AND 1909.

character of ownersiip.	$\begin{aligned} & \text { Cent } \\ & \text { Sus } \\ & \text { year. } \end{aligned}$	$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { bestah)- } \\ & \text { lish- } \\ & \text { ments. } \end{aligned}$	Average number of wage earners.	Value of products.	charactir of ownership.	$\begin{aligned} & \text { con- } \\ & \text { sins } \\ & \text { year. } \end{aligned}$	$\left\|\begin{array}{c} \text { Num- } \\ \text { ber of } \\ \text { estab } \\ \text { lish- } \\ \text { ments. } \end{array}\right\|$	Avorage number of wage oarners.	Value of products.
All classos...	1919	80	6,405	\$37, 513, 82.1	Per cont distribution:				
	1914	98	5, 089	14, 1270,333	Individual........	1019	10.5	0.8	0.3
	1909	124	4, 930	11, 327, 834		1914	13.3	1.8	1.1
Individual.	1919.	9	50	109, 171		1009		
	1914	13	${ }^{98}$	160,000	Corporation.	1919	77.9	95.2	97.6
	1909	25	(1)	637, 438		1914	71.4	95.5	97.0
Corporation.	1919	67	6,180	36,604, 513		1909	67.8	2.11.83.0
	1914	70	4, 860	13, 655, 000	All other.	1919	11.6	4.1	
	1909	84	(1)	10, 345,414		1914	15.3	2.0	
All other.	1919	10	265			-1009	12.1		
	1914	15	131	255, 000					
	1009	15	(1)	344,982					

${ }^{1}$ Figures not available.

Table 9.-NUMBER AND HORSEPOWER OF TYPES OF PRIME MOVERS: 1919, 1914, AND 1909.

POWER.	number of engines ofe motors.			HORSEROWER.					
	1919	1914	1909	Amount.			For cent distribution.		
				1919	1914	1909	1919	1914	1909
Primary power, total...	807	549	478	43,187	29,007	27,263	100.0	100.0	100.0
Owned..............	420	354	307	35,345	25,757	26,008	81.8	88.8	95.4
Steam	370 320	309 300	345 345	34,309 20,309	24,900	25, 118	79.4	85.8 85.8	92, 1
Engines.	320 50	300	345	29,300 4,910	24, 900	(25,118	68.1	85.8	92.1
Internal-combustion engines	49	42	51	1,981	79	(2) 782	11.4 2.3	- 2.7	29
	7	3	1	55	78	108	0.1	- 0.3	0.4
Rented...	381	195	81	7,842	3,250	1,205	18.2	11.2	
Electric	381	195	81	6,706	3,250	1,241	15.5	11.2	4.5
				1,130		14	2.6		0.1
	1,126	508195358	$\begin{array}{r} 239 \\ 81 \\ 168 \end{array}$	2,842	7,742	3,425	100.0	100.0	100.0
	$\begin{array}{r} 381 \\ 745 \end{array}$			6,706	3,240	1,241	80.5	42. 0	38.2
- Generated by establishments roporting-..................				1,136	4,492	2,184	14.5	58.0	63.8

1 Figures for horsepower Inciude for 1009 the amount roported under the head of "Other" owned power.
${ }^{2}$ Not reported separately.
Table 10.-FUEL oONSUMED, BY STATES: 1919.

SPECIAL STATISTICS.
Products.-Table 11 presents comparative statistics of products for 1919, 1914; and 1909.
Table 11,-PRODUOTS: 1919, 1914, AND 1909.

	1010	1914	1909		1019	1914	1909
Number of establishments.	80	98	124	Bromine:			
Products, total value.	\$37, 513, 821	\$14,070, 333	\$11,327, 834	Pounds...................................	$1,854,971$ $\$ 1,234,969$	\$776, 901	509, 725 $\mathbf{8 5 7}, 600$
Salt:Tons (2,000 poundsValue $\ldots ~$	$\begin{array}{r} 6,882,002 \\ \$ 27,074,094 \\ \$ 3.03 \end{array}$	$\begin{array}{r} 14,872,050 \\ \$ 10,271,358 \\ \$ 2.11 \end{array}$	$\begin{array}{r} 4,195,628 \\ \$ 8,311,729 \\ \$ 1.89 \end{array}$	Calcium Averrage value, pound................	\$0.67	\$0.35	\$0.10
				Taichans (2,000 pounds)			
				Value. Average value, ton.	$\begin{array}{r} 230,150 \\ \$ 321,506 \\ \$ 12.31 \end{array}$	$\begin{array}{r} 19,400 \\ \$ 121,786 \\ \$ 0.28 \\ \$ 0 . \end{array}$	$\begin{array}{r} 12,003 \\ \$ 63,108 \\ \$ 4.92 \end{array}$
				All other products, value	\$8,882, 562	83,474,115	\$2,885, 307

${ }^{1}$ Inoludes solar salt, Porto Rlco,
2 Calolum-magnesium chiorlde marketed in the Unitod States, production from natural brine; not including that obtained in the manufacture of soda.

GENERAL TABLES.

Comparative summary, by states.-Table 12 gives comparative statistics for the principal itoms, number of establishments, average number of wage earners, primary horsepower, wages, cost of materials and
value of products for the census years 1919, 1914, and 1909.

Detailed statement, by states.-Table 13 is a detailed statement, by states, for the year 1919.

Table 12.-COMPARATIVE summary, BY STATES: 1919, 1914, AND 1909.

Table 13.-DETAILED STATEMENT, BY STATES: 1919.

[^8], All other states ombrace: Louistiana, 2 establishments; Nevadi, $1 ;$ Now Mexico, $1 ;$ and Utah,, .
Chiefly dlectric motors opergted by rented (or purchased) curront; other power included (chioly shatt-belt or transmitteded power from nolghboring power plants),

[^0]: ${ }^{1}$ Less than one－tenth of 1 per cent．
 z In order of Value of products－North Carolina，Tennessee，Kansas，Connecticut，Alabama，Montana，Maine，Arkanas，Oregon，Oklahoma，District of Columbis，
 Wyoming，and South Dakota．

[^1]: ${ }^{1}$ Distribution by states: Pennsylvania, 11; New Jersey, 11; Calitornia, 0; Illinois 5; New York, 5; Missouri, 3; Colorado, 3; Michigan, 3; Connecticut 2; Ohio, 2; and 1'each in Alabama, Delaware, Indiana, Massachusetts, Montana, Utah, Waslionton, and Wisconsin.
 ${ }^{2}$ In order of production, 1919: Massachusetts, Missouri, Wisconsin, California, Delaware, Ohio, Indiana, Colorado, Washington, Connecticut, Michigan, Utah, Montana, and Alabama.

[^2]: ${ }^{1}$ See report of United States Tariff Commission, Census of dyes and coal-tar chemicals, 1919, for detailed statistics of production.

[^3]: ${ }^{1}$ Not including (except as noted under "Other aleohols") ethyl or grain alcohol,
 the product of distilleries; nor methyl or wood alcoliol, for which see "Wood distilthe product of distilleries; nor methyl or wood alcohol, for which see "Wood distil-
 "Figures not available; included with unclassified.

[^4]: ${ }^{1}$ Figures not available; included with unclassified.
 ${ }^{2}$ Not including ferrcalloys (of Ti. or V., as the case may bo).
 ${ }^{3}$ Not including zinc oxide reported in the paint industry 139,661 tons; value, 24, 082,299 . Total production from all sources, 142,753 net tons.

[^5]: ${ }^{1}$ Includes 48 and under for 1014 and 1009.

[^6]: ${ }^{1}$ All other stalos ondbraco; Colorado, $3(A, 2 ; B, 1)$ establishments; Georgla, 1 (A); Indiana, 5 (B); Maryland, 1 (B); Massachusetts, 1 (A); Michigan, 2 (B); New Jersey, $2(A, 1 ; B, 1)$; New Mexico, $2(A)$; Oklahoma, $1(B)$; Utah, $1(A)$; Washington, $3(A)$; and Wisconsin, $2(A, 1 ; B, 1)$.

[^7]: 1 Includes 48 and under for 1914 and 1009.

[^8]: ${ }^{1}$ Sama number reported for one or more other months.

