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Key Points 14 

● The model simulates low interannual variability of net carbon fluxes due to high 15 

covariance of plant productivity and ecosystem respiration 16 

● Dominant modes of variability are characterized by a seasonal amplification and seasonal 17 

redistribution of gross primary productivity  18 

● The seasonal redistribution component of carbon cycle variability is a notable feature that 19 

appears widespread in the model and observations 20 

 21 

Abstract 22 

Earth system models are intended to make long-term projections of carbon pools fluxes in 23 

response to climate trends, but they can be evaluated on their ability to realistically simulate 24 

appropriate carbon cycle sensitivities to climate variability at interannual and seasonal time 25 

scales. The Community Earth System Model (CESM2) showed improvements to the 26 

representation of the cumulative land carbon sink over the historical period, relative to its 27 

predecessor. Our analysis suggests that the interannual variability (IAV) in net terrestrial carbon 28 

fluxes simulated by the model did not show similar improvements. The model simulated low 29 

IAV of net ecosystem productivity, that also has a weaker than observed climate sensitivity 30 

compared to observations. Low IAV likely resulted from a high covariation in gross primary 31 

productivity (GPP) and ecosystem respiration. The IAV of GPP had strong climate sensitivities, 32 
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with positive GPP anomalies associated with warmer and drier conditions in high latitudes, and 33 

with wetter and cooler conditions in mid and low latitudes. We identified two dominant modes of 34 

variability in GPP anomalies that are characterized by seasonal amplification and redistribution. 35 

Climate sensitivities associated with the seasonal amplification of GPP were similar to annual 36 

climate anomalies. Seasonal redistribution of GPP fluxes is initiated by springtime temperature 37 

anomalies, but subsequently negative feedbacks in soil moisture anomalies during the summer 38 

and fall result in negligible changes in the annual GPP flux. These two modes of variability are 39 

also seen in remote sensing products, suggesting that CESM2 appropriately represents regional-40 

to-global sensitivities of terrestrial carbon fluxes to climate variability.  41 

 42 

Plain Language Summary 43 

Earth system models that are intended to make climate change projections also represent the 44 

global exchange of carbon dioxide (CO2) between the atmosphere, ocean and land. As such, the 45 

growth rate and variability of CO2 concentrations in the atmosphere provide a robust 46 

measurement to evaluate the representation of the terrestrial carbon cycle in models. We looked 47 

at the interannual variability of terrestrial carbon fluxes and their sensitivity to variations in 48 

temperature and water that were simulated by the Community Earth System Model (CESM2) 49 

and compared them to observations. We found that the model underestimates the interannual 50 

variability of net terrestrial carbon fluxes. At the same time, we identified two modes of 51 

variability that correspond to an increase in summer productivity (amplification) and a change in 52 

the seasonal timing (redistribution) of productivity. Notably, the seasonal redistribution was 53 

initialized by warmer springs that increased early-season productivity, but subsequent water 54 

limitations in the summer and fall resulted in lower than average productivity and negligible 55 

changes in the annual carbon flux. Similar patterns of seasonal amplification and redistribution 56 

are seen in satellite observations, suggesting that the model is realistically simulating 57 

characteristics of terrestrial ecosystems necessary for capturing carbon-climate feedbacks.  58 

  59 
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1. Introduction 60 

Terrestrial ecosystems continue to provide a sink for about a quarter of anthropogenic 61 

carbon dioxide (CO2) emissions (Ballantyne et al., 2012; Friedlingstein et al., 2019), but the 62 

long-term strength and locations of this sink remain uncertain (Gaubert et al., 2019; Tagesson et 63 

al., 2020). The net terrestrial flux of CO2 to or from the atmosphere depends on the balance 64 

between much larger carbon fluxes that are driven by plant productivity, ecosystem respiration, 65 

and disturbances like fire (Keppel-Aleks et al., 2014). Observational constraints on these gross 66 

fluxes are difficult to make globally, which results in persistently high uncertainty in terrestrial 67 

carbon cycle projections (Anav et al., 2013; Arora et al., 2020; Friedlingstein et al., 2014). Thus, 68 

capturing the appropriate sensitivities to climate driven carbon cycle variability at interannual 69 

and seasonal time scales over the observational record may be important to improving longer-70 

term projections of terrestrial carbon balance.  71 

At decadal- to century-time scales, the net exchange of CO2 between the land and 72 

atmosphere remains one of the more robust benchmarks by which to evaluate the representation 73 

of terrestrial biogeochemistry in land models (Collier et al., 2018; Hoffman et al., 2014; Keppel-74 

Aleks et al., 2013). Indeed, successive generations of the Community Earth System Model 75 

(CESM) and its terrestrial component, the Community Land Model (CLM) show improvements 76 

in the globally integrated net terrestrial carbon flux over the historical period (1850-2014; Bonan 77 

et al., 2019; Danabasoglu et al., 2020; Lawrence et al., 2019). This suggests that on longer 78 

timescales the model adequately represents dominant features influencing in the terrestrial 79 

carbon cycle dynamics, namely land-use and land cover change as well as potential CO2 80 

fertilization effects (Wieder et al., 2019). These longer-term benchmarks, however, offer little 81 

insight into the environmental sensitivities of terrestrial CO2 fluxes, which are important for 82 

understanding carbon cycle responses to future climate change.  83 

Measurements of the atmospheric CO2 growth rate provide an integrated estimate of the 84 

interannual variability (IAV) in global carbon cycle (Keeling et al., 1995; Zeng et al., 2005). 85 

Since much of the observed IAV is driven by terrestrial processes, variability in the atmospheric 86 

CO2 record provides a top-town constraint on the climate sensitivity of land-atmospheric CO2 87 

exchange (reviewed by Piao et al., 2020). Specifically, natural climate variability in temperature 88 

and precipitation over land are the primary drivers of terrestrial carbon cycle variability that can 89 

be inferred from IAV in the atmospheric CO2 growth rate. This includes the temperature 90 
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sensitivity of gross primary productivity (GPP) and ecosystem respiration (Reco) on net 91 

ecosystem exchange (NEE, calculated as GPP - Reco), especially in the tropics (Anderegg et al., 92 

2015; Ballantyne et al., 2017; Cox et al., 2013; Rödenbeck et al., 2018b; Wang et al., 2013). 93 

Meanwhile, other studies emphasize the importance of soil moisture variability on GPP and 94 

NEE, especially in arid and semi-arid ecosystems (Anderegg et al., 2015; Humphrey et al., 2018; 95 

Poulter et al., 2014). Jung et al. (2017) suggest that compensating moisture driven variation in 96 

local-scale gross fluxes (GPP and Reco) as well as spatial compensation in moisture anomalies 97 

among regions leaves a dominant temperature-driven signal in the IAV of land-atmosphere CO2 98 

exchange. Regardless of the mechanism, these findings emphasize the need to understand the 99 

local and regional drivers of carbon cycle variability at finer temporal resolution.  100 

Disentangling the contributions of gross carbon fluxes and their impact on the IAV of 101 

NEE remains a challenge. While GPP and Reco anomalies are strongly auto-correlated, mounting 102 

evidence suggests that variance in NEE is more strongly correlated with variance in GPP than 103 

Reco (Baldocchi et al., 2018; Schwalm et al., 2010). Globally gridded estimates of net and gross 104 

carbon fluxes are derived from upscaled flux tower measurements (Beer et al., 2010; Jung et al., 105 

2011; Jung et al., 2017) or remote sensing (Alemohammad et al., 2017; Köhler et al., 2018; 106 

Running et al., 2004) either have low, or questionable representation of IAV that may limit their 107 

utility in evaluating simulated carbon cycle variability in models (Jung et al., 2020; Piao et al., 108 

2020; Y. Zhang et al., 2018). These remote sensing products, however, do offer promise for 109 

diagnosing seasonal carbon cycle responses to climate variability, especially in the extra-tropics 110 

(Buermann et al., 2018). Notably, Butterfield et al. (2020) found that while local to regional-111 

scale IAV was poorly correlated among observational data products, they could identify seasonal 112 

modes of variability that shared common features and environmental sensitivities. These 113 

included the: 1) Amplification of the seasonal cycle of GPP, which was associated with increases 114 

in summertime soil moisture availability, and 2) Seasonal redistribution of GPP that was initially 115 

driven by warmer springtime temperatures but followed by higher than average soil moisture 116 

stress in the summer and fall.  117 

Given improvements to the representation of the cumulative land carbon sink over the 118 

historical period in CESM2, relative to CESM1 (Danabasoglu et al., 2020), we wanted to 119 

investigate the representation of carbon cycle variability at interannual and seasonal timescales in 120 

the model. Specifically, our aims were to: 1) Quantify both the IAV of land carbon fluxes 121 
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simulated by CESM2-esm-hist and their sensitivity to climate variability; 2) Identify modes of 122 

seasonal variability in simulated GPP and their likely climate drivers; and 3) Compare the 123 

CESM2-esm simulations to results from observational studies, where possible, and identify 124 

strengths and weaknesses in the current model implementation.  125 

 126 

2. Methods 127 

2.1 Model simulations 128 

We analyzed simulations from the Community Earth System Model, version 2 (CESM2) 129 

that couples atmosphere, ocean, land, sea ice, land ice, and river transport components to 130 

simulate physical and biogeochemical conditions over historical and future scenarios 131 

(Danabasoglu et al., 2020). Of greatest importance for the simulations analyzed here are the 132 

atmospheric and land components, which are each briefly described below. The atmosphere 133 

model in CESM2 is the Community Atmosphere Model, version 6 (CAM6) which applies the 134 

same Finite Volume dynamical core as previous versions of the model, but has numerous 135 

changes to the model parameterization (Danabasoglu et al., 2020). Relative to previous versions 136 

of the model, CESM2 shows an improvement in its representation of El Niño Southern 137 

Oscillation (ENSO) events and their effect on precipitation and temperature anomaly patterns 138 

(Meehl et al., 2020). The atmosphere and land models are run at a nominal 1° horizontal 139 

resolution (1.25° longitude by 0.9° latitude) and are coupled every 30 minutes.  140 

The terrestrial component of CESM2 uses the Community Land Model, version 5 141 

(CLM5), which includes a number of updates that are summarized in (Lawrence et al., 2019). 142 

Briefly, these developments simulate transient agricultural expansion and land management 143 

(Lombardozzi et al., 2020), represent plant hydraulic stress (Kennedy et al., 2019), and improve 144 

the representation of plant nitrogen limitation (R. A. Fisher et al., 2019; Wieder et al., 2019). We 145 

used the CESM2-esm historical simulations that has active biogeochemical representation of 146 

terrestrial carbon and nitrogen cycles and that also simulates the prognostic evolution of 147 

atmospheric CO2 concentrations based on fluxes with oceans and terrestrial ecosystems.  148 

As described in Danabasoglu et al. (2020), initial conditions for the land model and ocean 149 

model biogeochemical tracers in the non-ESM piControl experiment were generated using spin-150 

up runs of the land and ocean models, respectively. In these spin-up runs, the active atmospheric 151 

component was replaced with a data atmosphere that repeatedly cycled through twenty-one years 152 
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of surface forcing that were extracted from a fully coupled CESM2 experiment. Twenty-one 153 

years of forcing were used in order to capture some aspects of interannual variability. The land 154 

model spin-up consisted of an accelerated decomposition (AD) mode segment and a subsequent 155 

synchronous spin-up segment. These segments were run for 252 and 1701 years respectively. 156 

The ocean model spin-up was applied to biogeochemical tracers. The ocean spin-up was run for 157 

1029 years and also utilized a Newton-Krylov solver, based on Lindsay (2017) to more 158 

completely spin up a subset of the biogeochemical tracers, including the carbon pools. The esm-159 

piControl was initialized from the piControl experiment using an incremental coupling approach. 160 

In an intermediate experiment, which was initialized from the piControl experiment, the carbon 161 

cycle of the surface components was coupled bidirectionally to a CO2 tracer in the atmospheric 162 

model. This intermediate experiment was run for 80 years, during which the surface 163 

biogeochemical parameterizations adjusted to the prognostic atmospheric CO2. The esm-164 

piControl experiment was initialized with the model state from the end of this intermediate 165 

experiment, and the prognostic CO2 was coupled to the radiative computations in the 166 

atmospheric model. The esm-hist experiments analyzed here were initialized from the esm-167 

piControl experiment.  The CESM2-esm historical simulations used CMIP6 forcings for 168 

anthropogenic emissions, biomass burning, and volcanic SO2 emissions from 1850-2014 169 

described in Danabasoglu et al. (2020) as well as land use and land cover change described in 170 

Lawrence et al. (2019) following CMIP6 protocols outlined by Eyring et al. (2016).  171 

Using a single ensemble member of CESM2-esm, we focused our analysis on global, 172 

regional, and local carbon fluxes that are simulated during the end of the historical period (1960-173 

2014), which overlaps with atmospheric CO2 measurements. We quantified variability in carbon 174 

fluxes at interannual and seasonal time scales and correlated these fluxes with anomalies in 175 

climate drivers (temperature and moisture). The model simulates gross fluxes of GPP and Reco, 176 

with the difference between them representing net ecosystem production (NEP). Positive values 177 

for NEP represent net terrestrial ecosystem uptake of carbon. We focused on NEP instead of net 178 

ecosystem exchange or net biome production (NEE and NBP, respectively), which include fluxes 179 

from fire, land use, and land management, because the CESM2-esm-hist simulations have 180 

unrealistically large fire carbon fluxes from land degradation in the tropics at the end of the 181 

historical period.  182 
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 183 

2.2 Statistical Analyses 184 

We summed monthly carbon fluxes (NEP, GPP, and Reco) that were simulated from 185 

vegetated terrestrial grid cells to calculate accumulated annual fluxes and weighted them by grid 186 

cell area and land fraction to calculate global values. We similarly calculated mean annual 187 

temperature (TBOT) and terrestrial water storage (TWS) that was simulated by the model. The 188 

CESM2-esm results showed strong long-term trends in relevant variables (Fig. S1), so we 189 

subtracted linear trends and focused on the detrended anomalies from the climatological mean 190 

state for both monthly and annual data. The IAV was calculated as the standard deviation of 191 

annual results simulated from 1960-2014. We compared the IAV in global detrended anomalies 192 

of simulated CO2 fluxes, simulated land CO2 fluxes, and NEP to those observed in the 193 

atmospheric CO2 growth rate reported by the Global Carbon Project (Friedlingstein et al., 2019). 194 

As most of the variability in global CO2 fluxes is driven by IAV in terrestrial fluxes (Fig. S2), we 195 

focus on the IAV of NEP and its component fluxes.  196 

To characterize relationships in the data we calculated Pearson’s correlation coefficients 197 

and regression statistics between detrended anomalies in carbon fluxes, moisture, and 198 

temperature. We also calculated the grid cell variance and standard deviation of annual, 199 

detrended carbon fluxes to look at covariation between simulated fluxes (as in Baldocchi et al., 200 

2018). We found a robust correlation in the IAV of NEP and its component fluxes, and a strong 201 

covariance between GPP and Reco variability. Thus, we focus the remainder of our analysis and 202 

discussion on variability in simulated GPP and its environmental sensitivities.  203 

To decompose the annual cycle of GPP simulated in each terrestrial grid cell and identify 204 

modes of variability we used a singular value decomposition (SVD; Golub & Reinsch, 1971 as in 205 

Butterfield et al., 2020). The SVD decomposed the time series of detrended GPP anomalies into 206 

singular vectors (SVi), the elements of which reflect the month (m) of the year (y; Fig. S3). 207 

Vectors are ranked by the fraction of variance they explain in the GPP time series. Each singular 208 

vector also receives a weight wi, one per year per singular vector, that quantifies the contribution 209 

from an individual singular vector to the observed IAV in any given year. Thus, the simulated 210 

IAV time series for a grid cell can be fully reconstructed as the weighted sum of singular vectors: 211 

      212 

IAV(y,m) = Σi wi(y) × SVi(m)      (1) 213 
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 214 

Our SVD had 55 singular vectors (i, corresponding to the number of years in our analysis). We 215 

focused on the first two of these to characterize the dominant modes of variability in GPP that 216 

are simulated by CESM2-esm. We also calculated a redistribution metric, 𝜽, as the sum of 217 

elements from a singular vector divided by the absolute values of the sum of elements from that 218 

vector (Butterfield et al. 2020).  219 

 220 

𝜽 = Σm SVi(m) / Σm |SVi(m)|        (2) 221 

 222 

Thus, when 𝜽 = 0, GPP was redistributed within the growing season without changing the annual 223 

flux. By contrast, values of 𝜽 = 1 (or -1) indicate that every month had a positive (or negative) 224 

anomaly in GPP relative to the multi-year mean.  225 

We identified the mode of variability corresponding to a seasonal amplification of GPP 226 

as the vector whose elements most strongly correlated with annual climatology of GPP. The 227 

other mode of variability corresponded to a seasonal redistribution of GPP, which typically has 228 

both positive and negative phases. The 𝜽 values were used to confirm the appropriate 229 

identification of amplification and redistribution modes of variability in each grid cell (e.g., 230 

|𝜽|amplification > |𝜽|redistribution). To facilitate our analysis, we reversed the sign of singular vector 231 

elements, weights and 𝜽 values so that amplification vectors were positively correlated with the 232 

annual climatology of GPP and the redistribution vector started with a positive phase (Fig. S4). 233 

For visualization we calculated regional means for elements in the seasonal amplification and 234 

redistribution vectors across high, mid, and low latitude bands in both hemispheres (50-80°, 20-235 

50°, and 0-20°, respectively). Finally, to link modes of carbon cycle variability back to climate 236 

anomalies we calculated seasonal means for GPP, air temperature, and terrestrial water storage 237 

anomalies. We looked at Pearson’s correlation coefficients between these seasonal anomalies 238 

and the SVD weights generated for amplification and redistribution vectors.  239 

 240 

3 Results 241 

3.1 Interannual variability 242 

Detrended anomalies of terrestrial net ecosystem production (NEP) that are simulated by 243 

CESM2-esm have low variability, compared to the atmospheric growth rate of CO2 measured 244 
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since 1959 and reported by the Global Carbon Project (Friedlingstein et al., 2019; Figs. 1a, S2). 245 

The standard deviation of modeled NEP fluxes (0.47 Pg C y-1) is roughly half of the standard 246 

deviation in the observed atmospheric CO2 growth rate (0.95 Pg C y-1). Note, for convenience we 247 

inverted the sign of the atmospheric growth rate so that positive anomalies in Fig. 1a show net 248 

land C uptake for both the model and observations. We also note that any temporal correlations 249 

between C flux anomalies in CESM2-esm simulations and atmospheric observations here are 250 

unintended, because CESM2-esm is experiencing a modeled atmosphere that does not 251 

necessarily match local, regional, or global conditions experienced during the historical record of 252 

atmospheric CO2 observations. Figure 1b shows detrended annual anomalies of NEP (as in Fig. 253 

1a using a different scale) along with annual anomalies in terrestrial water storage (over 254 

vegetated grid cells) and tropical air temperatures over land (23°S - 23°N). The magnitude of 255 

terrestrial water storage and tropical air temperature variability simulated in CESM2-esm seems 256 

reasonable, compared to observations (𝜎 = 0.82 Tt H2O and 0.10 K, respectively; Fig. 1b) (Cox 257 

et al., 2013; Humphrey et al., 2018). These atmospheric signals, however, do not translate into 258 

terrestrial carbon cycle variability.  259 

 260 

 261 

 262 
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 263 
Figure 1. Detrended annual anomalies of global carbon fluxes, climate drivers, and their 264 

correlation. Upper panels show: (a) Atmospheric CO2 growth rate reported by the global carbon 265 

project (Friedlingstein et al., 2019) and net ecosystem production (NEP) simulated CESM2-esm 266 

(green and black lines, respectively); and (b) NEP, terrestrial water storage (TWS), and tropical 267 

air temperature anomalies simulated by CESM2-esm (black, blue, and red lines respectively. 268 

Lower panels show correlations between simulated: (c) TWS, which is positively correlated to 269 

simulated NEP anomalies; and (d) Tropical air temperature, which is negatively correlated to 270 

simulated NEP anomalies. Note, for convenience we inverted the sign of the atmospheric growth 271 

rate so that positive anomalies in Fig. 1a show net land C uptake for both the model and 272 

observations. 273 

 274 

Given the low carbon cycle variability simulated by CESM2-esm (Fig. 1a-b), the model 275 

also shows weaker than observed climate sensitivity to global and regional climate anomalies 276 

(Fig. 1c-d). The anomalies between NEP and terrestrial water storage are statistically significant 277 

(r = 0.63, p<0.001), but with relatively modest effect on carbon cycle variability (slope = 0.36 Pg 278 

C y-1 Tt H2O-1), which is weaker than observational estimates from Humphrey et al. (2018; r = 279 

0.85, slope = 1.3 Pg C y-1 Tt H2O-1). We similarly find significant correlations between simulated 280 



manuscript submitted to Global Biogeochemical Cycles 
 

11 

anomalies of NEP and tropical temperature (r = -0.58, p<0.001, slope = -2.6 Pg C y-1 K-1), which 281 

is also weaker than observed estimates [Cox et al. (2013), r = -0.65, slope = -5.1 Pg C y-1 K-1; 282 

Wang et al. (2013), r = -0.7, slope = -3.5 Pg C y-1 K-1] (see also, Ballantyne et al., 2017; 283 

Rödenbeck et al., 2018a).  284 

The aggregated use of globally integrated carbon cycle and climate metrics are 285 

convenient for comparing atmospheric CO2 observations, but they do not provide much insight 286 

into the mechanism responsible for carbon cycle variability or its spatial structure. The mean of 287 

grid cell standard deviations in detrended NEP anomalies simulated from 1960-2015 in CESM2-288 

esm (40.5 g C m-2 y-1) was large, relative to the mean of grid cell NEP simulated over this time 289 

(39.5 g C m-2 y-1). Observed mean and standard deviation of net carbon fluxes from a synthesis 290 

of FLUXNET observations by Baldocchi et al. (2018) are much larger than those that are 291 

estimated by CESM2-esm (observed net ecosystem exchange = 153 +/- 230 g C m-2 y-1; mean ± 292 

𝜎 of annual anomalies). Although the network’s data coverage is improving, the mismatch in 293 

aggregated statistics for the CESM2 and FLUXNET data potentially highlight biases in the 294 

spatial distribution of FLUXNET observations to relatively mesic temperate environments 295 

(Pastorello et al., 2017).  296 

Observed and simulated variability in NEP is driven by variability in component fluxes 297 

gross primary productivity (GPP) and ecosystem respiration (Reco). The mean standard deviation 298 

of detrended GPP and Reco anomalies (102 and 83.8 g C m-2 y-1, respectively) in CESM2 were 299 

about 10% of the mean fluxes (950 and 910 g C m-2 y-1, respectively). The grid cell variance of 300 

NEP was strongly and positively correlated with the variance of component fluxes (Fig. 2a). 301 

Although variance in NEP is slightly better explained by GPP variance (r = 0.79, slope = 0.77) 302 

than Reco variance (r = 0.74, slope = 0.72; Fig. 2a), the anomalies of the component fluxes are 303 

highly correlated with each other (r = 0.94, slope = 0.80; Fig. 2b). By contrast, observations from 304 

FLUXNET show lower correlations between GPP and Reco anomalies (r = 0.70, slope = 0.42; 305 

Baldocchi et al. 2018). The strong simulated correlation between simulated GPP and Reco likely 306 

accounts for some of the low interannual variability in land carbon uptake in CESM2, since years 307 

with large GPP fluxes are necessarily compensated by Reco fluxes that are of nearly the same 308 

magnitude. Given strong correlations between GPP and Reco fluxes, we focus the remainder of 309 

our analysis on patterns in GPP variability and its response to moisture and temperature 310 

anomalies.  311 
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 312 
Figure 2. Correlations of grid cell carbon fluxes simulated by CESM2-esm from 1960-2015: (a) 313 

Variance in NEP versus GPP and Reco (shown in black and green, respectively); and (b) 314 

Autocorrelation of anomalies in Reco and GPP. Pearson correlation coefficients and regression 315 

slopes from each relationship are provided in each panel, all correlations are significant (p < 316 

0.001).  317 

 318 

The standard deviation of detrended annual GPP anomalies shows high variability in 319 

tropical savannah regions, but relatively low variance in highly productive tropical forests (Fig. 320 

S5a). When normalized for mean annual GPP, the low productivity regions show higher 321 

coefficient of variation (CV), while higher productivity forests show relatively low CV in plant 322 

productivity (Fig. S5b-c). In Table S1 we compared the coefficients of variability (defined as the 323 

ratio of the interannual standard deviations to the seasonal amplitude of the multi-year mean) in 324 

four ecoregions of North America as defined in Butterfield et al. (2020) from CESM2 and 325 

several remote sensing products. The various remote sensing products show a factor of two 326 

difference in the range of variability in regional GPP estimates, and the magnitude of GPP 327 

variability simulated by CESM2 is comparable to these observationally derived estimates. This 328 

finding contradicts results reported by Wozniak et al. (2020), who found lower than observed 329 

variability in land-only simulations conducted with CLM5 at flux tower sites.  330 

The IAV of detrended GPP anomalies simulated in CESM2 is positively correlated with 331 

terrestrial water storage anomalies in low and mid latitude regions (50°S - 50°N), whereas high 332 

latitude systems show a negative correlation between GPP and water storage anomalies (Fig. 3a). 333 
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In general, arid and savannah regions on nearly every continent show strong positive correlations 334 

in the IAV of GPP with terrestrial water storage, except for parts of the Western United States. 335 

These patterns are reversed for correlations between GPP and air temperature anomalies (Fig. 336 

3b). Over cold regions, and especially in boreal forests, the IAV of detrended GPP anomalies are 337 

positively correlated with air temperature anomalies. By contrast, over mid and low latitudes, 338 

especially in the Amazon, SE Asia, and N Australia, the IAV of detrended GPP anomalies are 339 

negatively correlated with air temperature anomalies. Finally, although many regions show 340 

strong, negative correlations between terrestrial water storage and temperature anomalies (e.g., 341 

the Americas, SE Asia, and Australia), other regions show positive correlations between these 342 

simulated climate anomalies (e.g., parts of tropical Africa, tropical Asia, and the high Arctic; Fig 343 

3c).  344 

 345 

 346 
Figure 3. Correlations coefficients between detrended annual anomalies that are simulated by 347 

CESM2-esm from 1960-2014. Panels show the correlation between (a) GPP and terrestrial water 348 

storage; (b) GPP and air temperature; and (c) terrestrial water storage and air temperature. Only 349 

statistically significant correlations (p < 0.05, when |r| > 0.226 for 55 years of data) are shown. 350 

 351 

3.2 Seasonal variability  352 

The first two vectors in the singular value decomposition explained 75% (area weighted 353 

mean) of the variance in GPP over the vegetated land surface. In general, the amplification 354 

vector explained the greatest fraction of variance in GPP, especially in arctic and arid regions 355 

(global area weighted mean = 45%; Fig. 4a). The redistribution vector explained the largest 356 

fraction of variation over more mesic regions in the mid latitudes (global weighted mean = 29%; 357 

Fig. 4b). Neither vector explained a large fraction of GPP variance over tropical forests, which 358 

generally showed low variability in detrended GPP anomalies (Fig. S5).  359 

 360 
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 361 
Figure 4. Fraction of variance in detrended GPP anomalies that was explained by (a) seasonal 362 

amplification or (b) seasonal redistribution vectors. 363 

 364 

Figure 5 shows the mean annual climatology of the GPP, as well as the monthly values 365 

for amplification and redistribution vectors (grey, blue, and red lines respectively) for latitudinal 366 

bins. High and mid latitudes are characterized by a strong annual cycle of GPP that is strongly 367 

correlated with the amplification vectors describing GPP variability (Fig. 5a, b, e). The 368 

amplification vector describes 56%, 45%, and 38% of the GPP variability in arctic, northern 369 

hemisphere temperate, and southern hemisphere temperate latitudinal zones, respectively. By 370 

contrast, the redistribution vectors in these regions explain 26-31% of the GPP variability and are 371 

characterized by positive spring-time anomalies that are followed by negative summer and fall 372 

anomalies. In the tropics, the seasonal cycle is more muted, but seasonal amplification and 373 

redistribution vectors describe roughly 40% and 30% of the variability in GPP, respectively (Fig. 374 

5 c, d). The 𝜃 values calculated in the SVD show the net impact on the integrated seasonal signal 375 

of GPP. The mean 𝜃 values associated with the amplification vector are globally positive (Fig. 376 

5). By contrast, the 𝜃 values associated with a seasonal redistribution of GPP are close to zero, 377 

indicating little to no change in integrated seasonal signal of GPP from seasonal redistribution of 378 

GPP. Thus, although the seasonal redistribution of carbon variability is a major source of global 379 

carbon cycle variability in the model, it would not be evident in more aggregated metrics of 380 

variability that only look at annual times-scales (e.g., Fig. 1).  381 

  382 
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 383 
Figure 5. Zonal mean climatology of monthly GPP and singular vectors associated with seasonal 384 

amplification and redistribution of GPP (grey, blue, and red lines respectively) for the northern 385 

hemisphere and southern hemisphere (top and bottom rows, respectively). Panels show: (a) high 386 

latitude ecosystems, 50-80°N; (b) northern temperate mid latitudes, 20-50°N; (c-d) tropics, 0-387 

20°N and 0-20°S, respectively; and (e) southern temperate mid latitudes, 20-50°S. The 388 

magnitude of the singular vectors is arbitrary (y-axis). Mean fraction of variance explained and 𝜃 389 

values, which indicate the net impact on the integrated seasonal signal of GPP for each singular 390 

vector, are also provided. Note x-axis was shifted for southern hemisphere plots to show the 391 

climatology for austral summer.  392 

 393 
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To evaluate the environmental drivers of GPP variability we conducted linear regressions 394 

on the weights from the amplification (Fig. 6) and redistribution (Fig. 7) vectors from SVD 395 

analysis (n = 55, for each year of the simulation) with seasonal anomalies of GPP, terrestrial 396 

water storage, and air temperature. The SVD weights for the amplification vector were strongly 397 

and positively correlated with the GPP anomalies during the peak of the growing season (Fig. 6, 398 

left column). This is expected, since the amplification vector was identified by its correlations 399 

with the climatology of GPP, so correlation coefficients are highest in the summer months (JJA 400 

and DJF for northern and southern hemispheres, respectively). Strong correlations are evident at 401 

other times (e.g., negative correlations between weights and GPP anomalies across high latitudes 402 

in DJF), but the magnitude of these anomalies is small relative to the annual cycle (see also Fig. 403 

5a). Although terrestrial water storage and air temperature are auto-correlated (Fig. 3), high-404 

latitude ecosystems generally show SVD amplification weights that are more positively 405 

correlated with air temperature anomalies and negatively correlated with water storage anomalies 406 

in JJA (Fig. 6, right and middle columns, Table S2). By contrast, SVD amplification weights are 407 

more strongly and positively correlated with wetter-than-average conditions across mid and low 408 

latitudes, and negatively correlated with air temperature anomalies.  409 
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410 
Figure 6. Pearson correlation coefficients between SVD weights from the amplification vector 411 

with seasonal anomalies of GPP, terrestrial water storage (TWS), and air temperature (TBOT) 412 

simulated by CESM2-esm from 1960-2014. Only statistically significant (p < 0.05) correlations 413 

are shown (|r| > 0.26, two-tailed test, n = 55).  414 

 415 

The SVD weights for the redistribution vector were strongly and positively correlated 416 

with the GPP anomalies during the spring, with correlation coefficients that are highest in the 417 

MAM and SON (for northern and southern hemispheres, respectively; Fig. 7, left column). In the 418 

northern hemisphere, the positive phase of the redistribution vector is also more strongly 419 

correlated with warmer spring-time air temperatures (Fig. 7, right column) than terrestrial water 420 

storage. Subsequent GPP anomalies in the summer and fall, however, show negative correlations 421 

with SVD weights (see also Fig. 5). In the summer (JJA) these periods are still characterized by 422 

warmer, but also drier than average conditions (Fig. 7, middle column; Table S3). By fall (SON), 423 

negative GPP anomalies are only associated with drier than average conditions.  424 
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 425 
Figure 7. Pearson correlation coefficients between SVD weights from the redistribution vector 426 

with seasonal anomalies of GPP, terrestrial water storage (TWS), and air temperature (TBOT) 427 

simulated by CESM2-esm from 1960-2014. Only statistically significant (p < 0.05) correlations 428 

are shown (|r| > 0.26, two-tailed test, n = 55).  429 

 430 

4. Discussion 431 

4.1 Interannual variability 432 

Our results show that the magnitude of global carbon cycle variability simulated by 433 

CESM2-esm is low, relative to measurements of IAV in the atmospheric CO2 growth rate (Fig. 434 

1). Observed variation in the atmospheric CO2 growth rate shows strong reductions in land 435 

carbon uptake during the 1987 and 1998 ENSO events, as well as strong increases in land carbon 436 

uptake associated with the 1992 Pinatubo eruption (Fig. 1a). The CESM2 has a good 437 

representation of precipitation and temperature anomaly patterns associated with tropical Pacific 438 

sea surface temperatures (Danabasoglu et al., 2020; Meehl et al., 2020), and is forced with 439 

observed volcanic aerosols during the historical period (Fig. S2). Accordingly, the magnitude of 440 
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terrestrial water storage and air temperature variability agrees reasonably well with observations 441 

(Fig. 1; Cox et al., 2013; Humphrey et al., 2018). This suggests that the model adequately 442 

represents global-scale climate variability, but that this climate variability does not generate 443 

enough terrestrial carbon cycle variability in the model.  444 

Since the atmosphere and land models are coupled in the CESM2-esm simulations, we do 445 

not expect the timing of ENSO events to line up with observations. As such, the comparison 446 

between NEP and terrestrial water storage and NEP and air temperature anomalies are more 447 

illustrative of the relationship between observed atmospheric CO2 growth rates and climate 448 

variability (Fig. 1c, d). Note, the sign of relationships from previously published work was 449 

reversed so that positive carbon flux anomalies reflect terrestrial carbon uptake, as in Figure 1. 450 

We appreciate that all of these studies use slightly different time periods for their calculations, 451 

but we do not expect this to significantly alter the fundamental sensitivities of land carbon fluxes 452 

to climate variability. Indeed, these findings are generally consistent with land-only simulations 453 

using the Community Land Model (CLM5), which also shows weaker than observed carbon 454 

cycle variability when driven by reanalysis climate forcing data that reflects the historical drivers 455 

of the observed carbon cycle variations (Lawrence et al., 2019).  456 

Coupled Earth system models would ideally simulate relationships between the carbon 457 

cycle and climate variations over a range of spatial scales.  Ultimately, the long-term CO2 458 

forcing reflects the global integral of local to regional carbon-climate feedbacks. To diagnose 459 

this global signal, atmospheric CO2 observation and inversion models provide one approach to 460 

evaluating model simulations that can provide insight into regional drivers of CO2 variability 461 

(Keppel-Aleks et al., 2014), but they are characterized by large uncertainties that limit their 462 

utility to detect proximal causes of carbon cycle variability. Our work finds that plant 463 

productivity simulated by CESM2-esm shows distinct regional signatures in climate sensitivity 464 

and variability at annual and seasonal timescales that imprint onto the net land carbon flux. 465 

In contrast, local-scale observations provide a bottom-up perspective on sources of 466 

carbon cycle IAV. Indeed, observations from eddy-covariance towers have long-been used to 467 

evaluate land models (Baldocchi et al., 2001; Bonan et al., 2012; Melaas et al., 2013; Pastorello 468 

et al., 2017). Measurements from multiple tower sites, therefore, provide another means to 469 

evaluate carbon cycle simulations. Syntheses from FLUXNET observations show larger net 470 

carbon fluxes and greater variability than CESM2-esm simulations (Fig. 2a; Baldocchi et al., 471 
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2018). A number of factors – including differences in atmospheric conditions, spatial coverage, 472 

temporal extent, and potential legacy effects – may lead to mismatches in flux tower 473 

observations and coupled Earth system model output (Raczka et al., 2013). Caveats aside, the 474 

FLUXNET observations are consistent with atmospheric CO2 measurements and suggest that 475 

CESM2 underestimates the IAV of land carbon uptake (Figs. 1-2), prompting us to look more 476 

closely at the components of terrestrial carbon fluxes that may be responsible for this feature in 477 

the model.  478 

The IAV in net carbon fluxes results from variability in component fluxes (GPP and Reco) 479 

and their interaction (Baldocchi et al., 2018; Lasslop et al., 2010). Our results suggest that 480 

CESM2-esm shows notably low IAV of GPP fluxes in tropical forests (Fig. S5). Similarly, in 481 

temperate deciduous forests, Wozniak et al. (2020) found that maximum rates of GPP simulated 482 

by CLM were much lower than observations at a number of AmeriFlux sites. Indeed, 483 

measurements from flux towers suggest that brief periods of large photosynthetic uptake appear 484 

to be an important component of the IAV in net carbon exchange, especially in arid ecosystems 485 

(Fu et al., 2019; Kannenberg et al., 2020). The failure of CLM5 to capture this behavior suggests 486 

that the model needs parametric or structural changes in its representation of leaf-level 487 

photosynthesis, stomatal conductance, or canopy scaling to capture photosynthetic variability. 488 

Beyond the site level, however, regional analyses suggest that the variation in GPP fluxes may 489 

be appropriate to a suite remote sensing estimates in the northern hemisphere (Table S1; 490 

Butterfield et al., 2020). Additional work is needed to evaluate the utility of detecting IAV of 491 

carbon cycle metrics in remote sensing products to further evaluate model simulations, especially 492 

in the tropics. 493 

Observations suggest that site-level variance in net carbon fluxes is more tightly 494 

correlated with GPP than Reco (Baldocchi et al., 2018). By contrast, the CESM2-esm results 495 

show strong correlations between NEP and both of its component fluxes (Fig. 2a). Moreover, the 496 

anomalies of GPP and Reco that are simulated by CESM2 are more strongly correlated than 497 

observations suggest (Fig 2b, Baldocchi et al., 2018). This high covariation between GPP and 498 

Reco offsets variance in either of the component fluxes and dampens the IAV of NEP in the 499 

model. These results also suggest that the current structure and parameterization of CESM2-esm, 500 

which dictates the high covariance of simulated GPP and Reco should likely be evaluated and 501 

revised. We suspect that several changes made to the land model for CESM2 are likely 502 
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responsible for the high covariation of GPP and Reco. First, CLM5 reduced the magnitude of 503 

growth respiration fluxes (Atkin et al., 2017) and reduced the total magnitude of growth and 504 

maintenance respiration fluxes, relative to previous versions of the model (Lawrence et al., 505 

2019). Second, the incorporation of the Fixation and Uptake of Nitrogen model (FUN) into 506 

CLM5 makes plants pay the carbon costs of nitrogen uptake (FUN; J. B. Fisher et al., 2010; R. 507 

A. Fisher et al., 2019; Shi et al., 2016). As currently applied in CLM5, the FUN carbon costs 508 

make up a large fraction of autotrophic respiration fluxes and are highly correlated with the 509 

timing of GPP. Finally, the parameterization for soil organic matter turnover uses a higher 510 

minimum water potential, which increases the sensitivity of heterotrophic respiration fluxes to 511 

liquid soil water availability (Carvalhais et al., 2014; Koven et al., 2017; Lawrence et al., 2019). 512 

Independently, these changes seem justified in their aim to more realistically represent terrestrial 513 

ecosystems, but together they likely served to reduce the IAV of net carbon fluxes that are 514 

simulated by CESM2.  515 

The IAV of detrended GPP anomalies in CESM2-esm shows strong latitudinal patterns 516 

(Fig. 3). Notably, correlations between the IAV of GPP and terrestrial water storage anomalies 517 

are particularly strong in many arid, semi-arid and savannah regions (Fig. 3a), a finding that is 518 

consistent with work emphasizing moisture and precipitation controls over carbon cycle 519 

variability in arid regions (Ahlström et al., 2015; Humphrey et al., 2018; Poulter et al., 2014). 520 

Concurrently, correlations between the IAV of GPP and air temperature anomalies are stronger 521 

in arctic, boreal and temperate deciduous forests (Fig. 3b), which again is consistent with 522 

observations (discussed in section 4.2; Hu et al., 2019; Rödenbeck et al., 2018b). We recognize 523 

that inferring the relative importance of climate controls over land-atmosphere carbon exchange 524 

remain actively discussed in the literature (Cox et al., 2013; Humphrey et al., 2018; Jung et al., 525 

2017; Piao et al., 2020; Poulter et al., 2014), but given the spatial and temporal heterogeneity of 526 

climate anomalies and timescales of ecosystem responses (Rödenbeck et al., 2018b; X. Zhang et 527 

al., 2013) we further investigate the seasonal modes of GPP variability that are simulated by 528 

CESM2 and their environmental covariates. 529 

 530 

4.2 Seasonal variability  531 

The timing of climate variations with respect to the climatological annual cycle plays an 532 

important role in the resulting interannual variability of terrestrial carbons fluxes (Buermann et 533 
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al., 2018). Satellite and flux tower observations in North America suggest that carbon cycle 534 

variability can be decomposed into modes of variability that are characterized by the 535 

amplification and redistribution of seasonal fluxes (Butterfield et al., 2020; Byrne et al., 2020). 536 

Results from our SVD analysis identified similar modes of variability in GPP that are simulated 537 

in CESM2; with amplification vectors dominant in high latitude and arid ecosystems (Fig. 4a) 538 

and redistribution vectors that are dominant in temperate forests, boreal forests, and agricultural 539 

regions (Fig. 4b). Qualitatively, these patterns align with findings from (Butterfield et al., 2020) 540 

who found robust patterns in seasonal variability from several satellite datasets that are 541 

correlated with regional anomalies of temperature and soil moisture availability. The seasonal 542 

redistribution vector explains a significant amount of carbon cycle variability in CESM2-esm 543 

(Figs. 4-5) but would not lead to changes in annual C fluxes (𝜽 ~ 0). Thus, climate effects on this 544 

mode of variability would be obscured in quantification of variability on annual time scales. This 545 

also suggests that the representation of plant phenology and water stress in CESM2 are likely 546 

responding in physically and ecologically realistic ways to simulated climate variability.  547 

The nature of carbon cycle variability changes as a function of mean climate, ecosystem 548 

type, and the phase of the annual cycle of GPP. In grid cells where the seasonal amplification of 549 

GPP characterizes most of the flux variability the second vector from the SVD corresponds to a 550 

seasonal redistribution of the fluxes (Figs. 4-5). For example, in high latitude ecosystems the 551 

amplification vector describes more than half of the variability in simulated GPP and is 552 

associated with a net increase (or decrease) in annual carbon fluxes (Fig. 5a). The weights 553 

associated with the amplification vectors are most strongly correlated with summertime GPP 554 

anomalies (Fig. 6, top row; Table S2), which is not surprising since we identified the 555 

amplification vector from the SVD by its correlation with the mean climatology of monthly GPP 556 

fluxes simulated in each grid cell (section 2.2; Fig. S4). The weights from the amplification 557 

vectors in high latitude ecosystems show a strong, positive correlation with summertime air 558 

temperature anomalies and a weaker, but still significant, negative correlation with terrestrial 559 

water storage anomalies. Thus, with warmer (and drier) summertime conditions, CESM2 560 

simulated positive GPP anomalies in Arctic and Boreal ecosystems. Conversely, with cooler (and 561 

wetter) summertime conditions CESM2 simulated negative GPP anomalies in these regions. Our 562 

analysis cannot diagnose the proximal driver of the GPP anomalies, but given their higher 563 

correlation coefficient we assume that summertime temperature anomalies are driving the carbon 564 
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cycle response, with declines in soil moisture subsequently resulting from higher 565 

evapotranspiration fluxes in warmer, more productive years.  566 

The amplification vector also describes a high fraction of the GPP variability in lower 567 

latitudes (Fig. 5b-e). The weights from the amplification vectors in mid and low latitudes shows 568 

a strong positive correlation with regional peak growing season GPP anomalies in their 569 

respective hemispheres (Fig. 6). In contrast to northern high latitudes, weights from 570 

amplification vectors in these regions generally show stronger correlations with terrestrial water 571 

storage anomalies than they do for air temperature (Fig. 6, Table S2). Thus, in mid and lower 572 

latitudes wetter (and cooler) anomalies during the growing season maxima are associated with 573 

positive GPP anomalies, whereas drier (and warmer) anomalies are associated with negative 574 

GPP anomalies. While seasonal amplification vectors do explain a majority of the global 575 

variability in simulated GPP fluxes, some regions are better characterized by a seasonal 576 

redistribution of carbon fluxes that do not necessarily change the annual flux of GPP from the 577 

atmosphere onto land, just its timing. 578 

The seasonal redistribution of plant productivity explains roughly a quarter of global GPP 579 

variability, but this is the dominant form of variability simulated by CESM2-esm in several 580 

regions, including the Canadian Great Plains, temperate forests, and agricultural regions (Fig. 581 

4b). The seasonal redistribution vector is characterized by positive (or negative) GPP anomalies 582 

early in the growing season, followed by GPP anomalies of the opposite sign later in the growing 583 

season (Fig. 5). The spatial cohesiveness of this pattern is most notable in the northern 584 

hemisphere, where SVD weights associated with the redistribution vector are positively 585 

correlated with GPP anomalies and air temperature anomalies in the spring (MAM; Fig. 7). The 586 

SVD weights are negatively correlated with GPP and terrestrial water storage anomalies by 587 

summer and fall (JJA and SON; Fig 7, Table S3). Drier summer and fall conditions could result 588 

from higher evapotranspiration in the spring, or also from increased early runoff due to earlier 589 

snowmelt during warm springs (Buermann et al., 2013). Thus, the potential increases in plant 590 

productivity from an early green-up that were facilitated by warmer spring temperatures are 591 

negated by soil moisture stress later in the growing season, leading to negligible net changes in 592 

the annual land carbon flux (mean 𝜽 values close to zero for the redistribution vector; Fig. 5).  593 

The regions where a seasonal redistribution vector dominates GPP variability in CESM2-594 

esm (Fig. 4) are also regions where native vegetation in the model use a stress deciduous 595 
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phenology scheme, or they are under agricultural management, which is explicitly represented in 596 

CESM2 (Lawrence et al., 2019; Lombardozzi et al., 2020). Both of these phenology modes use a 597 

growing degree day approach to simulate leaf emergence (or planting date and leaf emergence 598 

for the CLM5 crop model), so the strong correlation between air temperature anomalies and 599 

SVD weights are expected (Fig. 7, Table S3). We were more surprised, however, by the negative 600 

GPP anomalies that emerge later in the growing season. These seem to be driven by drier and 601 

warmer than average conditions that are consistent with satellite observations of vegetation 602 

greenness (Buermann et al., 2013; Buermann et al., 2018). Notably, redistribution vectors in SIF 603 

derived GPP in North America are tightly linked with spring (and summer) temperature 604 

anomalies, and tend to be stronger in temperate forests, the Canadian Prairies, and agricultural 605 

regions (Butterfield et al., 2020; Byrne et al., 2020). The larger influence of seasonal 606 

redistribution at lower latitudes that is simulated in CESM2-esm is also consistent with 607 

observations from forests reported in (Butterfield et al., 2020), but the overall importance of 608 

seasonal redistribution vs. amplification on carbon cycle variability remains uncertain. Indeed, 609 

considering the relative importance of these modes of variability may be important in trying to 610 

infer appropriate sensitivities and interactions between seasonal to interannual variability in 611 

climate, phenology, and ecosystem carbon fluxes from both models and observations.    612 

     613 

 614 

5. Conclusion 615 

The interannual variability of terrestrial net carbon exchange with the atmosphere in 616 

CESM2-esm is low. Accordingly, the model also simulates a weaker than observed sensitivity of 617 

net carbon exchange to global climate anomalies. This low variability of net carbon fluxes likely 618 

results from a high covariation in component fluxes of NEP, namely gross primary productivity 619 

and ecosystem respiration. The model also may simulate low variability in GPP, especially in the 620 

tropics, which may be caused by missing the brief periods of high productivity that are evident in 621 

flux tower observations and seem to make an important contribution to carbon cycle IAV. The 622 

variability in GPP that is simulated by the model generally shows a latitudinal gradient in climate 623 

sensitivities whereby positive GPP anomalies are driven by warmer and drier conditions in high-624 

latitude ecosystems but wetter and cooler conditions in mid and low latitudes. 625 
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Our analysis decomposes IAV in GPP fluxes into modes of variability, characterized by 626 

seasonal amplification and redistribution vectors that together explain three quarters of the global 627 

variability in GPP. The seasonal redistribution component to carbon cycle variability is notable 628 

because although it is not apparent in more aggregated (annual) measurements of IAV, it does 629 

seem widespread in both in the model and in observations. Decomposing carbon cycle variability 630 

with the SVD allows us to look at regional patterns that may be consistent with observational 631 

data. For example, both the model and observations show that wetter and cooler springs and 632 

summers lead to an amplification signal in GPP over the western United States, whereas a 633 

temporal redistribution of GPP anomalies is more strongly associated with variability in 634 

springtime temperatures in the eastern US. Thus, while the total magnitude of net and gross 635 

terrestrial carbon flux variability simulated by CESM2 may be too low, the simulated interannual 636 

and seasonal variability does qualitatively capture patterns of regional and global sensitivities to 637 

climate variability. More broadly, we contend this kind of analysis is useful in diagnosing 638 

strengths and weaknesses in biogeochemical models in comparison to observational data. 639 
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