

Figure 1: Architecture of a production system

Production rules

Format:

$\mathbf{IF} \ \mathtt{Condition}(\mathtt{s}) \ \mathbf{THEN} \ \mathtt{ACTION} \ [\mathtt{weight}]$

A production rule is :

- Atomic.
- Independent.
- Declarative
- Natural.
- Evolutive.

The interpreter

Goal: Given a set of facts, proof a preposition or deduce (infer) new information.

- Forward chaining: data-driven strategy.
- Backward chaining: goal-driven strategy.
- Forward-Backward chaining.

Data-driven strategy: the recognize-act cycle

- Detect the subset of *enabled* production rules (conflict set) by matching the facts describing the actual state against the **conditions** of the production rules. If there is no *enabled* rules then **exit**.
- 2. Conflict resolution : select one of the productions in the conflict set using one of the following ways :
 - Arbitrary choice.
 - Choose the most specific rule (containing the largest number of conditions).
 - Choose the least recently used rule.
 - Choose a rule where the condition is a new fact.
 - Choose the rule with the highest priority (weight).
 - Use Meta-Rules.
- 3. Fire the selected rule: the action of the selected rule is performed, changing the contents of the actual state.
- 4. If the goal is not reached Goto 1.

Example 1 : The 3 x 3 knight's tour problem

Goal : Determine whether a path exists from square 1 to square 2.

Production rules : Move rules where the **condition** of each rule specifies the square the piece must be on to make the move and the **action** the square to which it can move.

Strategy used : Forward chaining.

Conflict resolution strategy: Select and fire the first move rule encountered in the conflict set that does not lead to a repeated state.

1	2	3
4	5	6
7	8	9

Example 1 : The 3 x 3 knight's tour problem

RULE #	CONDITION		ACTION	
1	knight on square 1	\rightarrow	move knight to square 8	
2	knight on square 1	\rightarrow	move knight to square 6	
3	knight on square 2	\rightarrow	move knight to square 9	
4	knight on square 2	\rightarrow	move knight to square 7	
5	knight on square 3	\rightarrow	move knight to square 4	
6	knight on square 3	\rightarrow	move knight to square 8	
7	knight on square 4	\rightarrow	move knight to square 9	
8	knight on square 4	\rightarrow	move knight to square 3	
9	knight on square 6	\rightarrow	move knight to square 1	
10	knight on square 6	\rightarrow	move knight to square 7	
11	knight on square 7	\rightarrow	move knight to square 2	
12	knight on square 7	\rightarrow	move knight to square 6	
13	knight on square 8	\rightarrow	move knight to square 3	
14	knight on square 8	\rightarrow	move knight to square 1	
15	knight on square 9	\rightarrow	move knight to square 2	
16	knight on square 9	\rightarrow	move knight to square 4	

Example 1 : The 3 x 3 knight's tour problem

Iteration #	Current square	Conflict set	Fire rule
0	1	1,2	1
1	8	13,14	13
2	3	5,6	5
3	4	7,8	7
4	9	15,16	15
5	2		Halt

- Goal-driven strategy:
 - 1. Consider the goal as the initial state.
 - 2. Detect the subset of *enabled* production rules (conflict set) by matching the facts describing the actual state (goal) against the **actions** of the production rules.
 - 3. When the action of a rule is matched, the condition(s) are added to the actual state.
 - 4. The process continues until a fact is found, usually in the problem initial description or, as is often the case in expert systems, by directly asking the user for specific information.
 - 5. The search stops when the condition(s) of all the productions fired in the backward fashion are found to be true.
 - 6. These conditions and the chain of rule firings leading to the original goal form a proof of its truth through successive inferences.

Example 2: Diagnosing automotive problems

Rule 1: IF

the engine is getting gas, and

the engine will turn over,

THEN

the problem is spark plugs

Rule 2: IF

the engine does not turn over, and

the lights do not come on

THEN

the problem is battery or cables

Rule 3: IF

the engine does not turn over, and

the lights do come on

THEN

the problem is the starter motor

Rule 4: IF

there is gas in the fuel tank, and

there is gas in the carburator

THEN

the engine is getting gas

For any fact F: $-1 \leq \text{Weight}(F) \leq +1$.

- Weight(F) = +1: Sure that F is true.
- Weight(F) = -1 : Sure that F is false.
- Weight(F) = 0 : F is unknown.

Rules for propagating the different weights :

- R1 : If A[C1] and B[C2] Then C [C3]
 - WC1 = Weight(C) = min(weight(A),weight(B)) * weight(R1) = min(C1,C2) * C3.
- R2 : If A[C1] or B[C2] Then C [C3]
 - WC2= Weight(C) = max(weight(A), weight(B)) * weight(R2) = max(C1,C2) * C3.
- Using the two rules :

$$Weight(C) = \begin{cases} WC1 + WC2 - WC1 * WC2 & \text{if } WC1, WC2 \ge 0 \\ WC1 + WC2 + WC1 * WC2 & \text{if } WC1, WC2 \le 0 \\ (WC1 + WC2)(1 - min(|WC1|, |WC2|) & \text{if } WC1 * WC2 \le 0 \end{cases}$$