By-catch Discards from a bottom trawl in the East China Sea

Kimiaki Nagamatsu*1

Abstract: The East China Sea is one of the best fishing grounds in the world based on high productivity and has been utilized cooperatively by the surrounding countries. The fisheries resources are, however, decreasing and an effective resource management strategy is required. However, the species composition of the catch and discards of the by-catch from the bottom trawl fishery in the East China Sea have not yet been fully understood. For sustainable utilization of the demersal resources, the experiments with a bottom trawl were carried out to investigate this quantitatively. Forty one experimental trawling with the gear were carried out in the East China Sea aboard the training vessel Koyo-maru in every April from 1997 to 2003. A total of 30,425 individuals composed of 180 species were caught during the research period. The numerically dominant species were *Trachurus japonicus* (7,800 individuals, 25.6%), Photololigo edulis (4,017 individuals, 13.2%), Argyrosomus argentatus (2,470 individuals, 8.1%). Of the total catch in number, the discards accounted for 20.4%. The main discarded species with no commercial values were Acanthocepola krusensterni and Macrorhamphosus scolopax, while those with commercial value was a swimming crab (Ovalipes punctatus), which is a target fish of bottom trawl fishery in the East China Sea. To manage resources and promote a sustainable fishery in the fishing grounds, Japan and surrounding countries should create opportunities of discussing the survey fishing gear and techniques and for conducting surveys to assess catches accurately.

Key words: By-catch, Catch composition, Bottom trawls, East China Seavessels

INTRODUCTION

The East China Sea is one of the best fishing grounds in the world based on high productivity and has been utilized cooperatively by the surrounding countries. Japan's bottom trawl fishery production in the area, however, peaked in 1961 and had decreased to approximately 9,000 tons by 2001^{1,2}). The decrease in the fishery resources that has led to this drop in catch may have been caused by catch pressure by Japan and the surrounding countries or irrational fishing behaviors.

The bottom trawl fishery tends to catch multiple species in small quantities. A large proportion of the fish are discarded at sea without. The by-catch, or fish discarded at sea are not limited to unmarketable fish but also include individuals of marketable fish species that are too small to fetch a price on the markets that is comparable to those

brought into market.

Large by-catches mean a waste in time spent sorting and discarding fish on the fishing vessel, thus reducing work efficiency³⁾. The by-catch of fish to be discarded wastes resources and may adversely affect the ecosystems of the fishing grounds⁴⁾.

In the fishing grounds of the East China Sea, a mesh size regulation on the cod-end was enacted in 1963⁵⁾. The mesh size regulations are thought to be effective for allowing the escape of small individuals from the net. However, these regulations also have many problems, such as reducing the catch of small but marketable fish and also the survival rate of small fish that escape through the codend mesh³⁾.

To maintain the demersal fish resources, many research organizations have been studying technologies for selective fishing to reduce the by-catch of fish that would be discarded ⁶⁻¹⁰⁾. The research and development of fishing gear to reduce the by-catch will promote the rational use of resources and a reduction in time spent sorting on the fishing vessel. This is essential for the sustainability of the fishery.

Since the fish fauna in the demersal fishing grounds of the East China Sea is rich in species diversity, the composition of the catches is also predicted to be diverse. There are many references on the volume of catches from the fishing grounds ^{1,2}, but the reports on catches, including discards, are limited. To provide basic data for the protection of resources in the demersal fishing grounds of the East China Sea, we surveyed the species composition of catches and by-catches.

MATERIALS AND METHODS

Fishing Gear Used for the Experimental Trawling

For the experimental trawling survey, we used a bottom trawl net based on the design of a trawl net used by the training vessel Koyo-maru. This trawl net was 44.8 m in full length, 29.6 m in head rope length, and 60 mm in codend mesh size. The mouth of the trawl net had a vertical span (net mouth height) of 10.5 m and a horizontal span (net mouth span) of 13.5 m.

Outline of the Experimental Trawling

In April from 1997 to 2003, the experimental trawling was conducted on a continental shelf area at a depth of 60 to 150 m in the East China Sea (Fig. 1). Table 1 shows an outline of the sample areas and trawl net conditions. The area was investigated 41 times in daytime only. Towing speed was 2.3 to 3.8 knots and the duration of towing was 60 to 180 minutes for each tow. The total towing distance was 267 miles and the total sampled area was 6.68 km^2 .

Handling of Catch

After trawling, the catch was identified to species level and the individuals of each species were counted and weighed¹¹⁾. For a species with fewer than 100 individuals, body measurement was conducted on all individuals. For species with 100 or more individuals, body measurement was conducted on about 100 individuals per tow following

a sampling method. The total length, fork length, or snoutanus length was measured for fish, the carapace width for crustaceans, and the mantle length for cephalopods. Hereafter, these parameters are referred to as body size. Using reference materials of Yamada Fishery Co., Ltd. (Nagasaki City, Japan), the catch was classified into marketable fish and unmarketable fish.

RESULTS

Outline of the Composition of Catches

The catches in the experimental trawling were roughly classified into fish, crustaceans, and cephalopods. Table 2 gives the numbers of individuals and the weight of the catches. The catches over 41 tows totaled 180 species, 30,425 individuals, and 2,673 kg.

Fish accounted for 140 species (22,901 individuals, 2,196.5 kg), crustacean accounted for 34 species (2,671 individuals, 241.9kg), and cephalopods accounted for 6 species (4,853 individuals, 234.6 kg). Fig. 2 shows the composition of catches by number of individuals per species.

The fish species for which more than 1,000 individuals (percent of total catch is shown in parentheses) were caught are *Trachurus japonicas* (7,800 individuals, 25.6%), *Photololigo edulis* (4,017 individuals, 13.2%), *Argyrosomus argentatus* (2,470 individuals, 8.1%), *Thamnaconus*

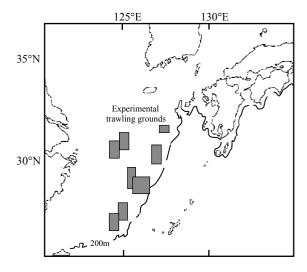


Fig. 1. Study areas for the bottom trawl.

Table 1. Outline of experimental operations

Haul	Date	Position to start	Time to start	Towing	Depth	Towing speed	Towing distance
No.	Date	towing	towing	duration (min)	()		
1	11 Apr. 1997	31-15.8N, 127-43.3E	07:00	126	140.5	3.1	6.2
2		31-11.2N, 127-50.9E	10:01	120	148.0	3.2	6.3
3		31-08.0N, 127-57.1E	12:57	120	149.5	3.1	6.3
4		31-15.7N, 127-54.6E	15:50	60	140.5	3.1	3.5
5	12 Apr. 1997	30-09.8N, 127-20.0E	07:05	120	120.0	3.1	6.3
6	_	30-01.2N, 127-20.4E	10:08	120	123.0	3.1	6.4
7		29-56.0N, 127-20.1E	12:55	120	124.0	3.2	6.5
8	14 Apr. 1998	28-54.1N, 125-43.9E	07:10	120	117.0	3.2	6.7
9		28-48.6N, 125-40.4E	09:59	155	107.0	3.7	8.7
10		29-02.4N, 125-41.6E	13:59	120	105.0	3.7	6.5
11	15 Apr. 1998	27-56.3N, 125-27.2E	06:51	120	110.0	3.3	6.5
12	_	27-47.2N, 125-26.8E	09:36	150	113.0	3.5	8.6
13		27-36.1N, 125-28.6E	12:57	120	113.0	3.5	7.0
14	14 Apr. 1999	28-42.2N, 126-24.6E	07:42	123	123.0	3.2	6.9
15		28-32.8N, 126-29.6E	10:16	124	134.0	3.1	7.3
16		28-24.4N, 126-28.0E	13:08	122	136.0	3.0	7.1
17	15 Apr. 1999	27-08.0N, 125-04.5E	06:55	125	112.0	3.5	7.0
18		27-08.5N, 124-54.9E	09:41	139	107.0	2.7	5.6
19		26-58.5N, 124-52.7E	13:28	122	111.0	3.5	7.7
20	15 Apr. 2000	28-52.5N, 126-40.2E	07:03	129	131.0	3.5	7.4
21		28-48.9N, 126-38.5E	10:01	119	137.0	3.5	6.9
22		28-50.1N, 126-41.6E	12:54	120	139.0	3.5	7.1
23	16 Apr. 2000	27-47.0N, 125-23.7E	06:55	120	110.0	3.3	5.9
24	_	27-38.1N, 125-23.5E	09:38	137	112.0	3.6	8.6
25		27-26.3N, 125-24.3E	12:43	137	115.0	3.0	7.2
26	14 Apr. 2001	30-15.6N, 125-16.5E	06:54	126	59.6	3.8	8.0
27		29-54.8N, 125-14.5E	10:54	91	62.6	3.5	5.6
28	15 Apr. 2001	27-40.0N, 125-09.0E	06:55	120	105.0	3.3	6.6
29		27-29.5N, 125-07.5E	09:58	120	105.0	3.1	6.2
30		27-19.7N, 125-04.7E	12:57	107	107.0	2.8	6.1
31	13 Apr. 2002	30-25.3N, 125-52.5E	06:38	179	78.5	3.5	7.0
32		30-31.2N, 125-45.4E	10:42	120	72.3	2.1	4.5
33	14 Apr. 2002	27-16.2N, 125-14.3E	06:55	120	115.0	2.7	5.3
34		27-11.2N, 125-05.7E	09:54	120	112.0	2.3	5.2
35		27-03.9N, 124-59.8E	13:04	120	114.0	2.7	5.8
36	15 Apr. 2003	30-15.6N, 125-39.9E	06:53	120	74.7	3.0	6.8
37		30-23.4N, 125-41.5E	09:56	128	67.0	3.0	5.0
38		30-23.0N, 125-48.6E	13:13	122	73.3	3.2	6.5
39	16 Apr. 2003	27-16.9N, 125-10.5E	06:45	120	114.0	2.8	4.8
40	•	27-11.1N, 125-08.0E	09:44	136	116.0	3.4	7.5
41		27-07.1N, 125-12.0E	12:58	122	116.0	3.0	5.9

Table 2. Catches in the two-level trawl and their landing sizes for those with commercial values. The landing sizes are based on the landing standard table of Yamada Fishery Co. Ltd., Nagasaki.

Category	English name	Scientific name	Number of individual	Weight (kg)	Landing size (mm)
Fish	Japanese horse mackerel	Trachurus japonicus	7800	626.0	140(FL)*1
1 1511	Silver croaker	Argyrosomus argentatus	2470	82.1	110(TL)
	Lesser-spotted leatherjacket	Thamnaconus hypargyreus	2217	148.8	100(TL)
	Gurnard	Lepidotrigla microptera	1276	45.2	100(TL)
	Yellowback seabream	Dentex tumifrons	1187	109.3	80(FL)
	Butterfish	Pampus argenteus	1157	155.4	150(FL)
	Whitefin kingfish	Kaiwarinus equula	713	49.1	100(FL)
	Bandfish	Acanthocepola krusensterni	653	124.0	Uncommerci
	Longspine snipefish	Macrorhamphosus scolopax	404	5.8	Uncommerci
	Deepsea smelt	Glossanodon semifasciatus	386	9.6	all*2
	Japanese aulopus	Aulopus japonicus	359	18.9	all
	Verticalstriped cardinalfish	Apogon lineatus	326	3.0	Uncommerci
	Red spikefish	Triacanthodes anomalus	299	5.3	Uncommerci
	Black scraper	Thamnaconus modestus	299	3.3 41.1	all
	John dory			94.2	
	•	Zeus faber	261 254		180(TL)
	Rad bigeye Hairtail	Priacanthus macracanthus	254	39.2	all
		Trichiurus lepturus	232	30.3	150(SAL)
	Blackmouth angler	Lophiomus setigerus	227	163.5	all
	Belanger's croaker	Johnius belengerii	222	13.6	110(TL)
	Japanese Spanish mackerel	Scomberomorus niphonius	184	116.9	all
	Pacific mackerel	Scomber japonicus	162	31.1	150(FL)
	Yellow croaker	Pseudosciaena polyactis	148	11.0	110(TL)
	Red tongue sole	Cynoglossus joyneri	129	16.5	all
	Nibe croaker	Nibea mitsukurii	126	17.1	110(TL)
	Frog flounder	Pleuronichthys cornutus	115	10.9	120(TL)
	Lizardfish	Saurida wanieso	99	18.4	all
	Gurnard	Lepidotrigla abyssalis	81	3.4	100(TL)
	Lantern-belly	Acropoma japonicum	70	0.5	Uncommerci
	Skate	Raja acutispina	69	22.7	all
	Stripedfin goatfish	Upeneus bensasi	61	6.1	all
	Spearnose grenadier	Coelorinchus multispinulosus	48	3.6	Uncommerci
	Pinkgray goby	Amblychaeturichthys hexanema	47	1.0	Uncommerci
	Tile-colored righteye flounder		40	1.3	200(TL)
	Jellynose fish	Ateleopus japonicus	35	9.0	Uncommerci
	Brush-tooth lizardfish	Saurida undosquamis	34	4.4	all
	Izu scorpionfish	Scorpaena neglecta	33	6.4	all
	Cinnamon flounder	Pseudorhombus cinnamoneus	32	1.8	200(TL)
	Gurnard	Lepidotrigla guentheri	31	2.6	100(TL)
	Largescale flounder	Engyprosopon grandisquama	27	1.2	Uncommerci
	Japanese stargazer	Uranoscopus japonicus	26	3.1	all
	Brotula	Hoplobrotula armata	25	7.8	all
	Devil searobin	Lepidotrigla kishinouyei	25	0.8	100(TL)
	Gurnard	Pterygotrigla hemisticta	23	2.8	Uncommerci
	Grey goblinfish	Minous monodactylus	21	1.1	Uncommerci
	Japanese splitfin	Synagrops japonicus	21	1.0	Uncommerci
	Shortnose dogfish	Squalus brevirostris	20	6.1	all

Sea toad	Chaunax abei	19	3.9	Uncommercial
Red flathead	Bembras japonica	17	1.6	Uncommercial
Brown-spotted catshark	Halaelurus buergeri	15	4.2	all
Gurnard	Lepidotrigla kanagashira	15	0.7	100(TL)
Comb goby	Ctenotrypauchen microcephalus	14	0.3	Uncommercial
Graceful catshark	Proscyllium habereri	13	5.3	all
Sepia stingray	Urolophus aurantiacus	13	3.5	Uncommercial
Largescale flounder	Psettina tosana	13	0.9	Uncommercial
Purple flying gurnard	Dactyloptena orientalis	12	2.2	Uncommercial
Marbled rockfish	Sebastiscus marmoratus	12	0.9	all
Fivespot flounder	Pseudorhombus pentophthalmus	12	0.7	Uncommercial
Gurnard	Lepidotrigla japonica	12	0.4	100(TL)
Brotula	Neobythites sivicola	11	3.6	all
Mi-iuy croaker	Miichthys miiuy	10	11.6	110(TL)
Acutenose skate	Raja tengu	9	5.0	all
Gurnard	Lepidotrigla hime	9	0.3	100(TL)
Brown-backed toadfish	Lagocephalus wheeleri	8	4.4	100(TL)
Large-scale flounder	Citharoides macrolepidotus	8	0.6	Uncommercial
Blackfoot firefish	Parapterois heterurus	8	0.3	Uncommercial
Red tilefish	Branchiostegus japonicus	7	3.8	all
Pacific rudderfish	Psenopsis anomala	7	1.4	130(FL)
Japanese barracuda	Sphyraena japonica	7	1.0	all
Pineconefish	Monocentris japonica	7	0.7	300(TL)
Japanese sillago	Sillago japonica	7	0.4	all
Greater amberjack	Seriola dumerili	6	12.0	all
Banjo fish	Banjos banjos	6	2.0	all
Kwangtung skate	Dipturus kwangtungensis	6	2.0	all
Cornetfish	Fistularia commersonii	6	0.9	all
Sabre-gills	Champsodon snyderi	6	0.6	Uncommercial
Rat-tail	Hoplichthys gilberti	6	0.4	Uncommercial
Striated frogfish	Phrynelox tridens	6	0.4	Uncommercial
Daggertooth pike conger	Muraenesox cinereus	5	5.8	all
Blunthead puffer	Sphoeroides pachygaster	5	2.2	100(TL)
Starry handfish	Halieutaea stellata	5	0.5	Uncommercial
Grouper	Chelidoperca hirundinacea	5	0.3	all
Largescale flounder	Engyprosopon multisquama	5	0.3	Uncommercial
Red dragonet	Foetorepus altivelis	5	0.3	100(TL)
Bluefin searobin	Chelidonichthys spinosus	4	1.1	100(TL)
Japanese sleeper ray	Narke japonica	4	0.8	Uncommercial
Sailfin armourhead	Histiopterus typus	4	0.6	all
Black-throat seaperch	Doederleinia berycoides	4	0.4	120(FL)
Red firefish	Pterois lunulata	4	0.4	Uncommercial
Velvetfish	Erisphex potti	4	0.3	Uncommercial
Whitespotted conger	Conger myriaster	3	1.2	all
Japanese bullhead shark	Heterodontus japonicus	3	0.9	all
Japanese anchovy	Engraulis japonicus	3	0.3	all
Cockscomb firefish	Ebosia bleekeri	3	0.2	Uncommercial
Longnose seabat	Malthopsis annulifera	3	0.1	Uncommercial
Hammerhead shark	Sphyrna zygaene	2	13.0	all
Bull eye	Cookeolus boops	2	0.8	150(TL)

	Flying gurnard	Daicocus peterseni	2	0.8	Uncommercial
	White flower croaker	Nibea albiflora	2	0.8	110(TL)
	Ocellate spot skate	Raja kenojei	2	0.7	all
	Scorpionfish	Sebastiscus tertius	2	0.6	all
	Japanese parrotfish	Oplegnathus fasciatus	2	0.5	130(FL)
	Dragonets	Bathycallionymus kaianus	2	0.2	Uncommercial
	Redtail scad	Decapterus Akaadsi	2	0.2	140(FL)
	Stonefish	Minous quincarinatus	2	0.2	all
	Tongue flounder	Plagiopsetta glossa	2	0.2	Uncommercial
	Roughscale flounder	Pseudorhombus oligodon	2	0.2	200(TL)
	Dragonet	Repomucenus richardsonii	2	0.2	Uncommercial
	Snake mackerel	Rexea prometheoides	2	0.2	all
	Scalloped hammerhead	Sphyrna lewini	1	5.0	all
	Atlantic Bonito	Sarda orientalis	1	2.1	all
	Striped jack	Pseudocaranx dentex	1	1.2	all
	Brown-backed toadfish	Lagocephalus gloveri	1	1.0	100(TL)
	Bamboo sole	Heteromycteris japonicus	1	0.4	all
	Cobia	Rachycentron canadum	1	0.3	all
	Japanese codlet	Bregmaceros japonicus	1	0.2	Uncommercial
	Belted beard grunt	Hapalogenys mucronatus	1	0.2	all
	Stripey	Microcanthus strigatus	1	0.2	all
	Striped eel catfish	Plotosus lineatus	1	0.2	Uncommercial
	Triangular boxfish	Tetrosomus concatenatus	1	0.2	Uncommercial
	Stargazer	Uranoscopus tosae	1	0.2	all
	Dragonets	Bathycallionymus formosanus	1	0.1	Uncommercial
	Croaker	Collichthys niveatus	1	0.1	all
	Genko sole	Cynoglossus interruptus	1	0.1	all
	Lizardfish	Harpadon microchir	1	0.1	Uncommercial
	Redfin velvetfish	Hypodytes rubripinnis	1	0.1	Uncommercial
	Devil stringer	Inimicus japonicus	1	0.1	all
	Lance flounder	Laeops kitaharae	1	0.1	all
	Lumpfish	Lethotremus awae	1	0.1	Uncommercial
	Saddled weever	Parapercis sexfasciata	1	0.1	all
	Threeband sweetlip	Plectorhynchus cinctus	1	0.1	all
	Frog flounder	Pleuronichthys sp.	1	0.1	120(TL)
	Wavyband sole	Pseudaesopia japonica	1	0.1	Uncommercial
	Largetooth flounder	Pseudorhombus arsius	1	0.1	Uncommercial
	Dragonet	Repomucenus huguenini	1	0.1	Uncommercial
	Oilfish	Ruvettus pretiosus	1	0.1	all
	Slender lizardfish	Saurida elongata	1	0.1	all
	Bigeye scad	Selar crumenophthalmus	1	0.1	140(FL)
	Deepwater scorpionfish	Setarches guentheri	1	0.1	all
	Red barracuda	Sphyraena pinguis	1	0.1	all
	Crossmark lizardfish	Synodus macropus	1	0.1	Uncommercial
Crustacean	Swimming crab	Ovalipes punctatus	1579	163.9	100(CW)
Crustaccan	Mantis shrimp	Squilla oratoria	267	9.3	all
	Crab	Carcinoplax longimanus	266	16.8	Uncommercial
	Japanese fan lobster	Ibacus ciliatus	247	27.6	all
	Crimson swimming crab	Charybdis miles	84	7.6	Uncommercial
	Whiskered velvet shrimp	Metapenaeopsis barbata	24	0.5	all
	ministered vervet similip	тетренисорых от они	27	0.5	uii

	Southern velvet shrimp	Metapenaeopsis palmensis	24	0.4	Uncommercial
	Chinese mud shrimp	Solenocera koelbeli	23	0.6	Uncommercial
	Shrimp	Solenocera melantho	20	0.4	all
	Spider crab	Leptomithrax edwardsi	19	1.0	Uncommercial
	Shrimp	Plesionika narval	16	1.5	all
	Fleshy prawn	Penaeus orientalis	15	0.5	all
	Mantis shrimp	Squilla raphidea	13	0.5	all
	Crab	Calappa lophos	12	4.5	Uncommercial
	Mantis shrimp	Odontodactylus japonicus	11	3.2	Uncommercial
	Japanese swimming crab	Charybdis japonica	8	0.3	Uncommercial
	Morotoge shrimp	Pandalopsis japonica	8	0.2	all
	Swimming crab	Charybdis riversandersoni	7	0.4	Uncommercial
	Swimming crab	Portunus trituberculatus	6	0.9	all
	Mantis shrimp	Kempina mikado	3	0.2	all
	Swiminng crab	Portunus hastatoides	3	0.2	Uncommercial
	Spotted swimming crab	Charybdis bimaculata	2	0.2	Uncommercial
	Red banded lobster	Metanephrops thomsoni	2	0.1	all
	Japanese sand shrimp	Crangon affinis	1	0.2	Uncommercial
	Spider crab	Achaeus japonicus	1	0.1	Uncommercial
	Crab	Actaea orientalis	1	0.1	Uncommercial
	Crab	Actaea savignyi	1	0.1	Uncommercial
	Crab	Dromia dehaani	1	0.1	Uncommercial
	Crab	Hepatoporus orientalis	1	0.1	Uncommercial
	Crab	Leucosia sp.	1	0.1	Uncommercial
	Crab	Myra fugax	1	0.1	Uncommercial
	Kuruma prawn	Penaeus japonicus	1	0.1	all
	Kinglet rock shrimp	Sicyonia cristata	1	0.1	Uncommercial
Cephalopod	Swordtip squid	Photololigo edulis	4017	149.3	70(ML)
	Pacific flying squid	Todarodes pacificus	408	50.8	70(ML)
	Golden cuttlefish	Sepia esculenta	377	14.5	50(ML)
	Common octopus	Octopus vulgaris	34	15.4	all
	Grass octopus	Octopus minor	13	1.4	Uncommercial
	Bigfin squid	Sepioteuthis lessoniana	3	2.2	all
	Kisslip cuttlefish	Sepia lycidas	2	1.0	all

 $*1: FL: Fork \ length, \ TL: \ Total \ length, \ SAL: \ Snout-anus \ length, \ CW: \ Carapace \ width, \ ML: \ Mantle \ length$

hypargyreus (2,217 individuals, 7.3%), Ovalipes punctatus (1,579 individuals, 5.2%), Lepidotrigla microptera (1,276 individuals, 4.2%), Dentex tumifrons (1,187 individuals, 3.9%), and Pampus argenteus (1,157 individuals, 3.8%). These eight species accounted for about 70% of the total catches.


The 100 species with the number of individuals caught being less than 10 accounted for about half of the total catch. The diversity of catches was investigated from the number of individuals by species (Table 2). The Simpson's index of diversity was 0.105^{12}).

Catch of Unmarketable Fish

The catches were classified into marketable fish and unmarketable fish and evaluated by numbers of individuals and weights of catches. Fig. 3 shows the composition of catches by weight per species.

Of the 180 species caught, 113 species were marketable fish totaling 28,000 individuals and 2,500 kg. While 67 species were unmarketable fish totaled 2,600 individuals and 220 kg. Unmarketable fish accounted for 8.7% in the number of individuals and 8.1% of the total weight of the catches. The main species of unmarketable fish by number

^{*2:} All in the column of landing size means that all catches are brought to market.

Fig. 2. Catch composition in number of individuals. Data were complied from every year.

of individuals were *Acanthocepola krusensterni* (653 individuals, 2.1%) and *Macrorhamphosus scolopax* (404 individuals, 1.3%). These two species accounted for about 40% of the unmarketable fish by number of individuals.

Catch of Marketable Fish Discarded

Based on the landing body size, individuals of the main marketable fish species were classified into individuals to be landed and those to be discarded and the ratios were investigated.

Of the 113 species of marketable fish, 12 species comprised a comparatively large proportion of the number of individuals: Trachurus japonicus, Argyrosomus argentatus, Thamnaconus hypargyreus, Lepidotrigla microptera, Pampus argenteus, Kaiwarinus equula, Zeus faber, Trichiurus lepturus, Ovalipes punctatus, Photololigo edulis, Todarodes pacificus, and Sepia esculenta.

Fig. 4 shows the body size composition of these 12 species. In the figure, the broken line indicates the marketable size. Individuals of marketable size or greater were landed and ones smaller than this size were discarded. Based on this standard, the discard rate of each species was investigated. Here, the discard rate equals the percentage of discarded individuals among the total number of individuals by species.

The species with discard rates over 50% were *Ovalipes* punctatus (95.0%) and *Trichiurus lepturus* (62.5%). The

species with discard rates below 10% were *Trachurus* japonicus, Argyrosomus argentatus, Thamnaconus hypargyreus, Lepidotrigla microptera, Kaiwarinus equula, and Todarodes pacificus.

For the 113 species of marketable fish, the number of discarded individuals was investigated by the same method. The individuals too small for landing totaled 3,559 and accounted for 12.8% of the total number of marketable fish.

DISCUSSION

Compared with other fishing grounds, the fishing grounds of the East China Sea have a diversity of species. According to other reports, the fishing grounds have complicated ecosystems resulting from this diversity of species.

We investigated species diversity by using Simpson's index to characterize the composition of the fish catch. Kishida et al. (1980) reported great diversity at 0.2 or less on Simpson's index of diversity¹³⁾. Judging from this report, the shoal distribution is complicated and the catch diversity is very great in the area of the sea surveyed this time

This survey clarified that of the total 6,200 individuals

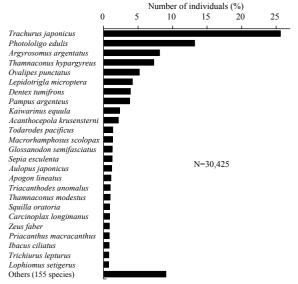


Fig. 3. Catch composition in weight. Data were complied from every year.

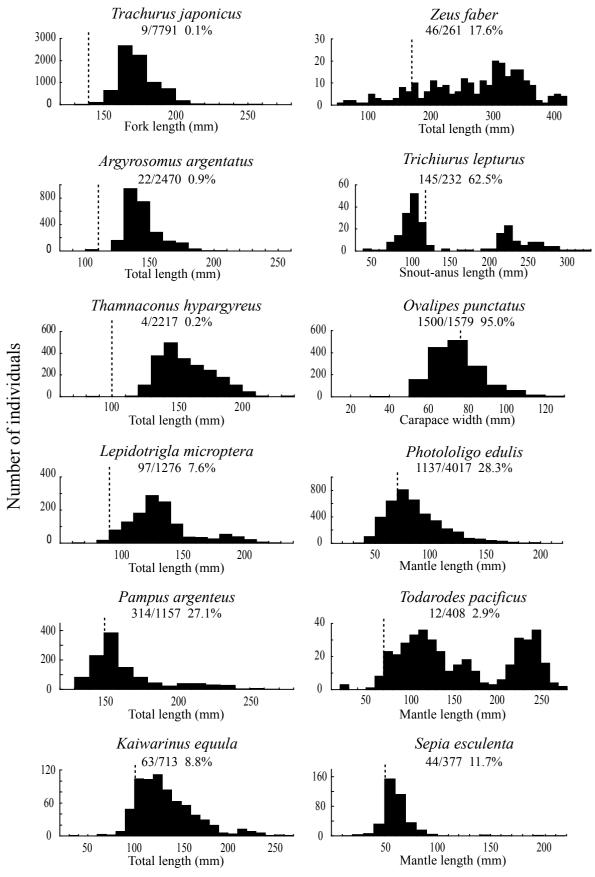


Fig. 4. Body size distribution for major marketable species. Data were compiled from every year.

discarded, which account for 20% of the total number of individuals caught, 2,600 were unmarketable and 3,600 were too small for landing. In the sea area, however, the fish fauna changed seasonally and the composition of catches changed accordingly. As the composition of catches changes, the volume of discarded and the composition of discarded species also changed. In particular, the discard rate of marketable fish is predicted to fluctuate by season, according to the stage of growth. To clarify the actual conditions of discard in the East China Sea, a year-round survey is necessary.

Among the species of marketable fish, *Ovalipes punctatus* and Trichiurus lepturus showed high discard rates.

In particular, the discard rate of *Ovalipes punctatus* was 95%, indicating a waste of resources. Individuals discarded at sea are expected to survive. However, considering temperature differences between habitats near the seabed and on the fishing vessels and also damage to fish during sorting, the survival rate of discarded individuals may be low.

If these individuals can escape from a trawl net during towing, they will grow to landing body sizes and increase the fishery production. In addition to the mesh size regulation, which is expected to result in size selectivity by the cod-end size, the research and development of fishing gear for species and size selectivity are expected to be promoted and implemented.

The East China Sea is shared by Japan and surrounding countries. To manage resources and promote a sustainable fishery in the fishing grounds, these countries should create opportunities of discussing the survey fishing gear and techniques and for conducting surveys to assess catches accurately.

REFERENCES

 Ministry of Agriculture, Forestry and Fisheries Economic Affairs Bureau Statistics and Information Department: Fishery/cultured work production statistics annual report (1965).

- 2) Ministry of Agriculture, Forestry and Fisheries Economic Affairs Bureau Statistics and Information Department: Fishery/cultured work production statistics annual report (2003).
- Tokai T, Omoto S et al.: Mesh Selectivity of Unmarketable Fish by a Small Trawl Fishery in the Seto Inland Sea. Nippon Suisan Gakkaishi, 60, 347–352 (1994)
- 4) FAO: Discards in the world's marine fisheries, FAO
 Fisheries Technical Paper, 470 (2005)
- Aoyama T: Selective Action of Trawl Nets on Fish.
 Bulletin of the Japanese Society of Scientific Fisheries,
 31,848–861 (1965)
- 6) Main J and Sangster GI: Trawling experiments with a Two-level net to minimize the undersized gadoid by-catch in a *Nepfhrops* fishery. *Fish Res.*, 3, 131-145 (1985)
- 7) Isaksen B, Valdemarsen JW et al.: Reduction of fish by-catch in shrimp trawl using a rigid separator. Fish Res., 13, 335-352 (1992)
- 8) Nagamatsu K, Kubota K et al.: Separation Efficiency of a Two-level Trawl with a Separation Device. J Nat Fish Univ. 46, 155-162 (1998)
- 9) Nagamatsu K, Kubota K et al.: Separation Efficiency and Size-selectivity of a Two-level Trawl with a Separation Grid-panel. J Nat Fish Univ, 47, 93-102 (1999)
- 10) Nagamatsu K, Kubota K et al.: Separation Efficiency of a Two-level Trawl Using a Separation Girid-Panel with Different Mesh Sizes. J Nat Fish Univ, 48, 1-10 (1999)
- 11) Masuda H, Amaoka et al.: The Fishes of the Japanese Archipelago. Tokai University Press, Tokyo (1988)
- 12) Kinoshita S and Takeda K : Gunsyu Seitaigaku Nyumon. Kyoritsu Syuppan, Tokyo, 123-124 (1989)
- 13) Kishida S, Kitajima T: On the Species-area Relation and Diversity of Demersal Fishes in the East China Sea. Bulletin of the Seikai Regional Fisheries Research Laboratory, 50, 53-63 (1980)