
MANUAL

Release 09.2023

Application Note
for the SNOOPer Trace

Application Note for the SNOOPer Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 Trace Application Notes ...

 Software Traces ..

 Application Note for the SNOOPer Trace .. 1

 History ... 3

 Introduction .. 4

 SNOOPer Trace Configuration .. 6

 Sampling the Memory .. 8

 Logging a Single Variable 10

 Logging only Data Changes 12

 Logging Multiple Variables 13

 Display the SNOOPer Trace Results 14

 List of Recorded Samples 14

 Graphical Display of SNOOPer Trace Results 16

 Statistical Distributions 18

 SNOOPer Trace Trigger 19

 Sampling the Program Counter .. 20

 Setup 21

 Display Options 21

 Sampling the Program Counter and the Current Task 24

 Data Sampling via Debug Communication Channel ... 27

 Sampling Benchmark Counters .. 29

 Sampling ETM Counters .. 33

 Save and Load .. 37
Application Note for the SNOOPer Trace | 2©1989-2023 Lauterbach

Application Note for the SNOOPer Trace

Version 09-Oct-2023

History

14-Feb-2018 Mayor rework on application note.
Application Note for the SNOOPer Trace | 3©1989-2023 Lauterbach

Introduction

The SNOOPer trace is part of TRACE32 trace framework and is designed to collect samples periodically
while the program execution is running.

The SNOOPer can be used for:

• Sampling the Memory: the SNOOPer trace allows to sample the content of up to 16 data items
while the program execution is running. This feature is especially useful for variable monitoring if
the on-chip trace logic can not generate data trace information or if the TRACE32 tool in use is just a
debugger with no trace capabilities.

The sampling works non-intrusively, thus without stopping the program execution, if the on-chip
debugging interface provides run-time memory access. Otherwise, the debugger will periodically
stop the program execution to read the selected memory (StopAndGo mode). Please refer to
“Run-time Memory Access” (glossary.pdf) and “StopAndGo Mode” (glossary.pdf).

Memory sampling is only recommended for variables whose sizes are smaller or equal to the core
data bus width and which change with a lower frequency than the achievable SNOOPer trace
frequency. Because of the low achievable sampling rates, the intrusive StopAndGo mode is not
recommended.

• Sampling the Program Counter: the SNOOPer trace allows to periodically sample the actual
program counter. This works non-intrusively if the on-chip debugging interface supports one of
the following characteristics:

- The program counter is memory-mapped and the on-chip debugging interface provides run-
time memory access (e.g. TriCore).
Application Note for the SNOOPer Trace | 4©1989-2023 Lauterbach

- The on-chip debugging interface provides the possibility to sample the program counter (e.g.
EDPCSR for Cortex-A/R (Armv8), Quick Access for RH850).

Otherwise, the SNOOPer trace will shortly stop the program execution to read the current
program counter and resume again.

• Data Sampling via Debug Communication Channel (DCC) if the on-chip debugging interface
includes DCC capability.

• Sampling Benchmark Counters if the target processor provides benchmark counters.

• Sampling ETM Counters for Arm processors with an Embedded Trace Macrocell.

• SFT Software Trace via LPD4 Debug Port for RH850 processors. Please refer to “RH850
Debugger and Trace” (debugger_rh850.pdf) for more information.

The sampling rate depends heavily on the sampling object (memory, PC...) and the target processor. If the
SNOOPer trace works non-intrusively then the rate is generally in the range of microseconds. The intrusive
StopAndGo mode is however much more slower with a sampling rate in the range of milliseconds. The
sampling rate might be increased by a higher JTAG clock (SYStem.JtagClock <frequency>). Please refer to
your processor/chip manual to find out what the maximum JTAG clock can be.

The collected data is stored with timestamp information into a buffer allocated by the TRACE32 PowerView
software on the host. The size of the buffer can be set up by the user and is only limited by the resources of
the host. To achieve high SNOOPer trace frequencies, the sampling is performed by the software running on
the TRACE32 Debug Module where the collected sampled are stored on a temporary buffer. The results are
streamed to the host during recording or read by TRACE32 PowerView after the recording is stopped.
Application Note for the SNOOPer Trace | 5©1989-2023 Lauterbach

SNOOPer Trace Configuration

The SNOOPer trace is part of the TRACE32 trace framework. To configure the SNOOPer trace:

1. On the TRACE32 main menu bar, choose Trace menu > Configuration:

2. Under METHOD, click the radio option SNOOPer.

Or execute the following commands on the TRACE32 command line:

Alternatively, execute the SNOOPer.state command:

All commands relative to the SNOOPer trace can be executed using the Trace command group (e.g.
Trace.List) after selecting the SNOOPer method in the Trace.state window or using SNOOPer
command group (e.g. SNOOPer.List). The second form is especially useful if the SNOOPer trace
should be used together with a different trace method. In this application note, the SNOOPer command
group will be used.

Trace.state
Trace.METHOD SNOOPer

SNOOPer.state
Application Note for the SNOOPer Trace | 6©1989-2023 Lauterbach

The following steps are needed to configure the SNOOPer trace:

1. Reset the SNOOPer trace to its default settings using the RESet button [A] from the
SNOOPer.state window or using the command SNOOPer.RESet.

2. You can increase the SNOOPer trace buffer size in the SIZE input box [B] or using the command
SNOOPer.SIZE. The size is specified in number of records (samples).

3. Select the Fifo or Stack mode [C]. This can also be set using the commands SNOOPer.Mode
Fifo or SNOOPer.Mode Stack. In Fifo mode, if the SNOOPer trace is full, new collected samples will
overwrite older records. Therefore the SNOOPer trace memory always contains the last samples
before stopping the trace. In Stack mode however, if the SNOOPer trace is full the recording will be
stopped so that the trace buffer always contains the first samples after starting the trace.

The SNOOPer trace operation mode is set per default to Fifo.

4. Set the SNOOPer trace sampling rate in the Rate input box [D] or using the command
SNOOPer.Rate. The rate can be specified as time interval (e.g. 10us) or as number of samples
per seconds.

The sampling rate is set per default set to 1.us (1000000 samples/s). The defined rate is however
not guaranteed.

5. Select the sampling object [E].

Further configurations may be needed depending on the selected sampling object. This will be explained in
details for each sampling object in the following chapters.

The settings done in the SNOOPer.state window can be saved in the format of a PRACTICE script to an
external file using the STOre command or to the clipboard using the ClipSTOre command.

STOre <file> SNOOP Create a batch to restore the SNOOPer trace settings

ClipSTOre SNOOP Provide the commands to restore the SNOOPer trace settings in the
cliptext

D

A

B C

E

Application Note for the SNOOPer Trace | 7©1989-2023 Lauterbach

Sampling the Memory

The typical use case of the SNOOPer trace is variable monitoring. The SNOOPer trace can be used for this
purpose the on-chip trace logic can not generate data trace information or if the TRACE32 tool in use is just
a debugger with no trace capabilities. Up to 16 data items (e.g. HLL variables) can be monitored using the
SNOOPer trace.

The memory sampling is non-intrusive if the following conditions are met:

• The processor architecture in use allows the debugger to read memory while the program
execution is running.

• Run-time memory access is enabled in TRACE32.

Depending on the above conditions, TRACE32 checks/un-checks the StopAndGo check box in the
SNOOPer.state window automatically as soon as a sampling address is selected.

It is not recommended to force the StopAndGo option when memory access on run-time is possible.

If the StopAndGo mode is used, a red S will then appear in the state line while recording.
Application Note for the SNOOPer Trace | 8©1989-2023 Lauterbach

Application Note for the SNOOPer Trace | 9©1989-2023 Lauterbach

Logging a Single Variable

To set up the SNOOPer trace for memory sampling, the Memory radio option [A] has to be selected under
Mode. This option is selected per default after resetting the SNOOPer trace.

Moreover, the variable or memory address of interest needs to be specified under SELect [B]:

1. In the SNOOPer.state window, click the select... button [C] to open the SNOOPer.SELect dialog.

2. In the SNOOPer.SELect dialog, click the button [E] to get a list of all variables.

3. Select the variable you are interested in from the Browse Symbols window.

The above steps can be achieved using the following command sequence:

SNOOPer.RESet ; Reset the SNOOPer configuration to
 ; its default settings
SNOOPer.Mode Memory ; Set the Memory mode
SNOOPer.SELect %Long mstatic1 ; select the 32bit variable mstatic1

A

C

B

E

Application Note for the SNOOPer Trace | 10©1989-2023 Lauterbach

To inform the debugger about the width of the sampling address, you need to use the %<format> option:

 Alternatively, you can use for variables the Var.RANGE PRACTICE function:

If neither the %<format> option nor the Var.RANGE() PRACTICE function is used, the SNOOPer trace will
only sample one byte from the given sampling address. For more information, please refer to the
documentation of the SNOOPer.SELect command.

After selecting the sampling address, the SNOOPer trace will automatically switch to the OFF state which
means that it is ready for sampling.

The SNOOPer.List window displays the time between two consecutive samples which can give an idea
about the actual used sampling rate. Moreover, the longest sampling interval for the current trace contents is
displayed in the max field of the SNOOPer.state window.

SNOOPer.SELect %Word plot1 ; select the 16bit variable plot1

SNOOPer.SELect Var.RANGE(plot1)
Application Note for the SNOOPer Trace | 11©1989-2023 Lauterbach

Logging only Data Changes

The Mode Changes can be used, if the read variable content should only be stored to the SNOOPer trace
when it has changed.

SNOOPer.Mode Changes ON
Application Note for the SNOOPer Trace | 12©1989-2023 Lauterbach

Logging Multiple Variables

If you use the Add button in the SNOOPer.SELect dialog, additional variables can be selected.

This can be achieved by specifying multiple variables in series using the SNOOPer.SELect command:

Please be aware that the debugger reads one variable after the other. As a result the maximum sampling
rate is always a multiple of the variables logged e.g. 3 variable, 3 times of max. sampling rate. Moreover,
losses are inevitable if the monitored data items are changed at a higher rate by the application
program.

; select the 16bit variables plot1 and plot2
SNOOPer.SELect %Word plot2 %Word plot2
Application Note for the SNOOPer Trace | 13©1989-2023 Lauterbach

Display the SNOOPer Trace Results

List of Recorded Samples

Open the SNOOPer.List window to display a list of the recorded samples. The SNOOPer.List window can
be opened using the List button from the SNOOPer.state window or using the command.

The SNOOPer.List window displays per default for each recorded sample the following information:

• run: displays the core number for SMP systems. This column is empty for single core
processors.

• address: this column displays the sampling address.

• cycle: the cycle type is always snoop.

• data: the sampled data value in hexadecimal.

• symbol: symbolic information with path and offset of the sampled address.

• ti.back: time relative to the previous record.

The ti.back values can give an idea about the actual used sampling rate. Moreover, the longest sampling
interval for the current trace contents is displayed in the max field of the SNOOPer.state window. Please
note that in case the sampling has been started just after resuming the execution, the first ti.back values
can be especially large. The same thing applies for the last ti.back value if the sampling has been
stopped when halting the CPU. These values are thus not used when computing the longest sampling
rate.

The different columns in the window can be rearranged by changing the order of the SNOOPer.List
parameters. Moreover, other columns can be added to the window. You can use for example the keyword
Var to display the recorded variable in its HLL representation or TIme.Zero to display the time relative to the
start of the sampling. Please refer to the documentation of the SNOOPer.List command for a complete list
of the different possible parameters.

SNOOPer.List
Application Note for the SNOOPer Trace | 14©1989-2023 Lauterbach

Using the following command for instance, the recorded variable is listed it its HLL representation together
with the time relative to the previous record:

You can rearrange the column layout by changing the order of the parameters:

Or display the default parameters together with the time relative to the start to the sampling:

SNOOPer.List Var TIme.Back ; list the recorded variable in
; its HLL representation together
; with the time relative to the
; previous record

SNOOPer.List TIme.Back Var Data ; rearrange the column layout to
; fit your requirements

SNOOPer.List DEFault TIme.Zero
Application Note for the SNOOPer Trace | 15©1989-2023 Lauterbach

Graphical Display of SNOOPer Trace Results

You can use the Draw button from the SNOOPer.List window to display the sampled data values
graphically. Please refer to the documentation of the <trace>.DRAW command group for more information.

The SNOOPer.DRAW.Var command visualizes e.g. one or more HLL variables in one graphical chart.
Using this command, you do not need to specify the display format and the access width of the variables.
Moreover, you can superimpose multiple variable in one single graph.

Example: If we display now the results of the plot1 and plot2 variables using the SNOOPer.DRAW.Var
command, we get the following graph:

SNOOPer.DRAW.Var %DEFault plot1 plot2 ; superimpose variables
Application Note for the SNOOPer Trace | 16©1989-2023 Lauterbach

Displaying all variables in one single graph doesn’t always make sense, especially if they have different
value ranges. In this case, it makes more sense to display each variable in a separate window. By adding the
/ZoomTrack Option to the SNOOPer.DRAW.Var command, a time and zoom synchronisation can be
established between the graphical display windows:

SNOOPer.DRAW.Var %DEFault plot1 /ZoomTrack ; the option ZoomTrack
; establishes time- and
; zoom-synchronisation
; between display windows

SNOOPer.DRAW.Var %DEFault plot2 /ZoomTrack

Active window

Windows with the option /ZoomTrack are time- and zoom-synchronized to the cursor
in the active window
Application Note for the SNOOPer Trace | 17©1989-2023 Lauterbach

Statistical Distributions

TRACE32 additionally allows to display the SNOOPer trace results as statistical distributions.

Using the SNOOPer.STATistic.DistriB command it is possible to display a distribution statistic of the
sampled data values.

Example: We sample the element with index three of the flags array of type char (flags[3]). We can use the
following command to display a statistical distribution of the sampled data values:

These results can also be displayed as time chart using the command SNOOPer.Chart.DistriB e.g.:

Using the command SNOOPer.Chart.VarState, you can additionally have a graphical representation in time
for the taking values of the sampled addresses.

; display the statistical distribution of a variable value over the time
; Data advise the command to analyze the recorded data information
; Address informs the command for which address the data
; should be analyzed
SNOOPer.STATistic.DistriB Data /Filter Address Var.RANGE(flags[3])

; display a time chart of the variable values
SNOOPer.Chart.DistriB Data /Filter Address Var.RANGE(flags[3])
Application Note for the SNOOPer Trace | 18©1989-2023 Lauterbach

SNOOPer Trace Trigger

The SNOOPer trace can be used to trigger an action on a specific data value. The trigger can be set by
specifying a trigger value and a trigger. Please be aware that the time interval between the trigger event
(program writes specified data value to variable) and the triggering by TRACE32 is relatively large. At least
max. sampling rate plus reactions time by TRACE32. Thus the trigger can only indicate that the trigger event
has taken place. Which instruction initiated the trigger event can not usually be determined.

To stop for instance the program execution when a certain data value is sampled by the SNOOPer Trace:

1. Enter the trigger value in the Tvalue field [A] of the SNOOPer.state window.

2. Select the trigger action Program under TOut [B].

3. Start the program execution.

The program execution will be stopped as soon as the given value is sampled by the SNOOPer trace.

The SNOOPer trigger can only indicate that the trigger event has been taken.
It is generally not possible to determine the instruction that initiated the
trigger event. The reaction time needed by the debugger to execute the
trigger action is approximately 2x the sampling rate.

A

B

Application Note for the SNOOPer Trace | 19©1989-2023 Lauterbach

Sampling the Program Counter

The SNOOPer trace allows to monitor the actual program counter. This mode can be used e.g. for

• Sample-based flat run-time analysis. Please also consider using the PERF command group for
this purpose.

• Post-mortem debugging: if the target system crashes, it is generally not possible to halt the
processor in order to find the location of the crash. However, it is often still possible in such
situations to sample the program counter. In this case, the SNOOPer trace can give valuable
information about the location of the crash.

Sampling the program counter works non-intrusively if the on-chip debugging interface supports one of the
following characteristics:

• The program counter is memory-mapped and the on-chip debugging interface provides real-time
memory access (e.g. TriCore)

• The on-chip debugging interface provides the possibility to sample the program counter on run-
time (e.g. EDPCSR for Cortex-A/R (Armv8), Quick Access for RH850).

Otherwise, the SNOOPer trace will shortly stop the program execution to read the current program counter
and resume again. A red S will then appear in the state line while recording.

Application Note for the SNOOPer Trace | 20©1989-2023 Lauterbach

Setup

To record the program counter with the SNOOPer trace, you only need to select the PC radio option [A] in
the SNOOPer.state window under Mode or execute the following command:

If sampling the program counter on run-time is not possible, the StopAndGo check box [B] will be
automatically selected in the SNOOPer.state window. Manually setting the StopAndGo option is not
recommended.

Display Options

The SNOOPer.List window displays a list of the recorded program counter values. The SNOOPer.List
window can be opened using the List button from the SNOOPer.state window or using the command

SNOOPer.Mode PC ; Set the PC mode

SNOOPer.List

A

B

Application Note for the SNOOPer Trace | 21©1989-2023 Lauterbach

The SNOOPer.List window displays per default for each recorded sample the following information:

• run: displays the core number for SMP systems. This column is empty for single core
processors.

• address: the sampled program counter value.

• cycle: snoop.

• data: this column is empty.

• symbol: the symbolic information with path and offset corresponding to the sampled program
counter value.

• ti.back: time relative to the previous record.

The ti.back values can give an idea about the actual used sampling rate. Moreover, the longest sampling
interval for the current trace contents is displayed in the max field of the SNOOPer.state window. Please
note that in case the sampling has been started just after resuming the execution, the first ti.back values
can be especially large. The same thing applies for the last ti.back value if the sampling has been
stopped when halting the CPU. These values are thus not used when computing the longest sampling
rate. Please also note that the used sampling rate in the example of the screen shot above is about
1.4ms although the sampling was non-intrusive. This is due to the fact that on some SMP systems the
PC sampling is slower than for single core.

The different columns in the window can be rearranged by changing the order of the SNOOPer.List
parameters. Moreover, other columns can be added to the window. You can use for example the keyword
TIme.Zero to display the time relative to the start of the sampling. Please refer to the documentation of the
SNOOPer.List command for a complete list of the different possible parameters.

Example:

Additionally to the SNOOPer.List window, other display options are available. By selecting the Chart button
from the SNOOPer.List window, the SNOOPer trace results can be displayed as a time chart. The
corresponding command is SNOOPer.Chart.sYmbol.

SNOOPer.List TIme.Back Address sYmbol TIme.Zero
Application Note for the SNOOPer Trace | 22©1989-2023 Lauterbach

Please be aware that the displayed charts are based on periodically collected
samples and thus not 100% accurate.
Application Note for the SNOOPer Trace | 23©1989-2023 Lauterbach

Sampling the Program Counter and the Current Task

If the target processor has a memory management unit (MMU) and a target operating system (e.g. Linux) is
used, several processes/tasks can run at the same logical addresses. In this scenario, the logical address
sampled by the SNOOPer trace is not sufficient to assign the sampled PC to a program location. For a clear
assignment, the information about the current task is also required. The PC+MMU mode can be used for
this purpose: with every sample, the SNOOPer trace will read the actual program counter and the memory
address containing the information about the current task. This mode is however always intrusive since the
current task and the program counter have to be read exactly at the same time which cannot be achieved
without stopping the program execution.

Example: A Linux OS is running on a target with a Cortex-A9 core. The sampled program counter values
are in the user space. Due to the fact that different user tasks can run on the same virtual addresses, these
addresses cannot be assigned to distinct program addresses.

The PC+MMU mode will be used to additionally read the current task with every sampled program counter.
Since an OS Awareness is loaded in TRACE32, the SNOOPer trace automatically knows how to sample the
current task.

SNOOPer.Mode PC+MMU ; Sample the PC and the current task
Application Note for the SNOOPer Trace | 24©1989-2023 Lauterbach

The sampled program counter values are now assigned to the process symbols. The OS Awareness gets
the space ID (e.g. 0x5F in the screenshot below) and thus the process from the sampled task identifier, the
so-called task magic number.

The intrusive StopAndGo mode is used. This can be clearly seen by comparing the ti.back values between
the first and second screen shot of the SNOOPer.List windows.

Sampling the Context ID Register

For Arm processors supporting reading the Context ID register on run-time (e.g. Cortex-A15), by enabling
the SNOOPer.Mode ContextID mode, the Context ID register can be sampled instead of the memory
address containing the current task identifier (task magic number). This way, the sampling can be achieved
without disturbing the program run-time.

Example:

SNOOPer.Mode PC+MMU ; Sample the PC and the current task

SNOOPer.Mode ContextID ON ; Sample the Context ID register
Application Note for the SNOOPer Trace | 25©1989-2023 Lauterbach

The SNOOPer.List window displays in the data column for each record the magic of the task corresponding
to the sampled program counter. The magic number is task unique identifier used by the OS Awareness and
is generally the address of the task control block. The magic numbers of all running tasks care displayed in
the TASK.List.tasks window. In case no OS Awareness is loaded, the value of the sampled Context ID
register is displayed in the data column.
Application Note for the SNOOPer Trace | 26©1989-2023 Lauterbach

Data Sampling via Debug Communication Channel

The Debug Communication Channel - short DCC - is a characteristic of the on-chip debugging support. It
allows to pass information between the application program on the target and the debugger. For details refer
to your CPU manual.

If the SNOOPer trace uses the DCC, the following basic steps are required:

• The application program on the target writes a 32 bit information to the corresponding registers of
the DCC.

• The debugger on the other side checks the DCC registers in a defined sampling rate and enters
the received information into the SNOOPer trace buffer.

In order to check whether your CPU provides a DCC, check if the DCC radio option is available under Mode
in the SNOOPer.state window and that it can be selected:

or enter the following command:

SNOOPer.Mode DCC ; If your debugger accepts this command, DCC
; is provided by your CPU
Application Note for the SNOOPer Trace | 27©1989-2023 Lauterbach

The application program has to provide the data of interest. This requires that special code is added to the
application program. An example for the Arm architecture can be found in the TRACE32 demo folder under
~~/demo/arm/etc/snooper_dcc. You can also get this demo by sending an e-mail to
support@lauterbach.com.

The data that should be sampled by the SNOOPer trace is written to the DCC registers using the following
function:

If you plan to use the SNOOPer via DCC, you have to be aware of the following:

1. New information can only be passed by the application program to the DCC if the debugger has
already read the previous written information. The function T32_TsMon_SendStatus() in the
above example checks the status of the DCC. This behavior allows the user to select one of the
following strategies:

- If DCC is not ready for the next 32 bit information, the application program can wait until DCC
is ready and pass the information then. This way no information is lost, but waiting will
consume CPU time.

- If DCC is not ready for the next 32 bit information, the application program can ignore the
current 32 bit information and continue the program execution. This way information might be
lost, but the CPU doesn't spend CPU time to wait until DCC is ready.

The fastest possible sampling rate by the debugger is approximately 50 µs.

2. For an SMP system, the demo code that writes to the DCC registers has to run on the first core.

The SNOOPer.List window displays for each recorded sample the sampled data value together with the
time relative to the last record.

/* SnoopData may be called by the application */
void SnoopData(unsigned int data) {

while (T32_TsMon_SendStatus()); //get status of the com-channel
T32_TsMon_SendWord(data); //if it‘s free, send data to channel

}

Application Note for the SNOOPer Trace | 28©1989-2023 Lauterbach

Sampling Benchmark Counters

Benchmark counters are on-chip counters that count specific hardware events e.g. the number of executed
instructions or number of cache misses. Please refer to your Processor Architecture Manual to check if
your target processor supports benchmark counters.

The SNOOPer trace can be used to record benchmark counters periodically. This is done non-intrusively if
the target system allows to read these counters while the program execution is running. Otherwise, the
intrusive StopAndGo mode is used. Several benchmark counters can be sampled at the same time. All
counters are read simultaneously in one step.

The benchmark counters can be configured in TRACE32 using the BMC (BenchMark Counter) command
group.

To configure the SNOOPer trace for benchmark counter sampling, the following steps need to be
done:

1. Open the BMC.state window from the TRACE32 menu Perf > Benchmark Counters. This menu
is only visible if benchmark counters are provided by the selected chip.

2. Select the counters that should be sampled from the BMC.state window. You can select one or
several counters.
Application Note for the SNOOPer Trace | 29©1989-2023 Lauterbach

Alternatively, you can assign the event of interest to the benchmark counter using the following
PRACTICE commands.

The syntax of the commands is architecture-specific. Please refer to your Processor
Architecture Manual for more information.

Example (Arm):

3. Configure the SNOOPer trace for benchmark counter recording by selecting the SnoopSet
check box in the BMC.state window or by selecting the BMC mode from the SNOOPer.state
window. When the SnoopSet option is selected in BMC.state, the BMC mode is automatically
selected in SNOOPer.state and vice-versa.

The respective TRACE32 commands are

BMC.<counter1> <event1> ; assign event of interest to
; the event counter

BMC.<counter2> <event2>
...

; several assignments possible

BMC.PMN0 ICMISS ; assign instruction cache miss
; counter to first event counter

BMC.PMN0 DCMISS ; assign data cache miss counter to
; second event counter

BMC.SnoopSet ON
Application Note for the SNOOPer Trace | 30©1989-2023 Lauterbach

 and

Example (TriCore): We can use the following PRACTCE script to sample data cache / data buffer hits and
misses on a TriCore processor:

The SNOOPer.List window displays for each sample the following information:

• core: core number. This column is only visible for SMP systems.

• <counter>: sampled counter values where <counter> is

- bmc<x>: benchmark counter with index <x> e.g. bmc0, bmc1...

- fbmc<x>: delta bmc<x> divided by delta time.

- architecture specific counter name e.g. m1cnt, m2cnt, m3cnt for TriCore

• ti.back: time relative to the previous sample.

If you change the number of the assigned benchmark counters, then you need to refresh the SNOOPer.List
window so that it gets adjusted to the new configuration.

Please be aware that the debugger reads all counters at once. So the number of read counter has nearly no
impact on the maximum sampling rate.

SNOOPer.Mode BMC

BMC.RESet ; reset BMC configuration

BMC.M1CNT DATA_X_HIT ; count data cache / data buffer
; hits

BMC.M2CNT DATA_X_CLEAN ; count data cache / data buffer
; misses

BMC.SnoopSet ON ; configure the SNOOPer trace for
; event counter recording
Application Note for the SNOOPer Trace | 31©1989-2023 Lauterbach

The SNOOPer.PROfileChart.COUNTER command can be used to display a graphical profile statistic of the
sampled benchmark counter values. The result is a stacked graph i.e. the total number of events/s at a given
time represent the sum of the events for all counters at that time.
Application Note for the SNOOPer Trace | 32©1989-2023 Lauterbach

Sampling ETM Counters

The TRACE32 SNOOPer trace allows to sample Embedded Trace Macrocell (ETM) counters on Arm
processors.

The number of available ETM counters [A] is displayed in the ETM.state window that can be accessed from
the TRACE32 PowerView menu Trace > ETM Settings.

The ETM.state window also displays the current values of the ETM counters [B].

You can display the ETM counter registers from the ETM.state window using the Register button [C] or
using the command

Please do not change the register values manually since they are programmed by the debugger.

ETM.Register "Counter"

A

B

C

Application Note for the SNOOPer Trace | 33©1989-2023 Lauterbach

The SNOOPer trace can be used to sample periodically the values of the ETM counters. Two special modes
are provided for this purpose:

• ETM: sample the 16bit value of the first ETM counter.

• ETM32: two ETM counters are used to have a 32bit counter.

•

You can assign an ETM counter to a breakpoint using the Break.Set option /BusCount. On a breakpoint hit,
instead of stopping the program execution, the ETM counter will then be increased. This can be used for
instance to count the number of calls of a certain HLL function or program address:

The SNOOPer trace will then give you a statical distribution of the function calls over the time.

Sampling the ETM counters can be set up using the following PRACTICE script:

The SNOOPer.List window displays the following information:

• core: core number. This column is only visible for SMP systems

• etm1: value of the ETM counter

• fetm1: delta etm1 divided by delta time

• ti.back: time relative to the previous sample

Break.Set <address> /BusCount

SNOOPer.RESet ; reset the SNOOPer

SNOOPer.Mode ETM
; SNOOPer.Mode ETM32

; select mode ETM or ETM32

Break.Set myFunc /BusCount
Application Note for the SNOOPer Trace | 34©1989-2023 Lauterbach

The SNOOPer.PROfileChart.COUNTER command can be used to display a graphical profile statistic of the
sampled counter values over the time. The window displays per default the values of fetm1.

You can display the etm1 values instead using the following command

SNOOPer.PROfileChart.COUNTER etm1
Application Note for the SNOOPer Trace | 35©1989-2023 Lauterbach

NOTE: Advanced setup of the ETM counters is possible using the ETM Programming
dialog accessible from the TRACE32 menu Trace > Trigger Dialog...
Please refer to “Arm ETM Programming Dialog” (trace_arm_etm_dialog.pdf)
for detailed information.
Application Note for the SNOOPer Trace | 36©1989-2023 Lauterbach

Save and Load

It is possible to save the SNOOPer trace results to a file for postprocessing using the command
SNOOPer.SAVE e.g.

The file can then be loaded in TRACE32 PowerView using the command SNOOPer.LOAD:

The SNOOPer.List window will display the loaded SNOOPer trace data. The message “LOAD” is displayed
in red at the lower left of the window to indicate that the displayed data is loaded from a file.

The SNOOPer trace results can also be exported to a file as comma-separated values using the following
commands:

SNOOPer.SAVE file.ad

SNOOPer.LOAD file.ad

PRinTer.FILE snoop_plot1.lst ; specify documentation file name

PRinTer.FileType CSV ; specify comma-separated value as
; output format

WinPrint.SNOOPer.List ; save result of the command
; SNOOPer.List to file
Application Note for the SNOOPer Trace | 37©1989-2023 Lauterbach

	Application Note for the SNOOPer Trace
	History
	Introduction
	SNOOPer Trace Configuration
	Sampling the Memory
	Logging a Single Variable
	Logging only Data Changes
	Logging Multiple Variables
	Display the SNOOPer Trace Results
	List of Recorded Samples
	Graphical Display of SNOOPer Trace Results
	Statistical Distributions

	SNOOPer Trace Trigger

	Sampling the Program Counter
	Setup
	Display Options
	Sampling the Program Counter and the Current Task

	Data Sampling via Debug Communication Channel
	Sampling Benchmark Counters
	Sampling ETM Counters
	Save and Load

