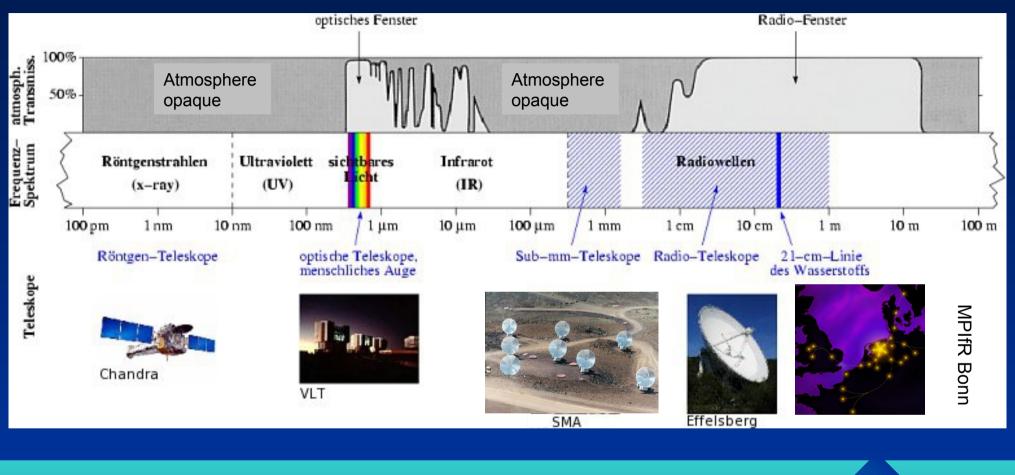

PD Dr. Henrik Beuther and Dr. Hendrik Linz MPIA Heidelberg

An elective lecture course for the winter term 2012/13 at the Ruperto Carola University Heidelberg

PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*

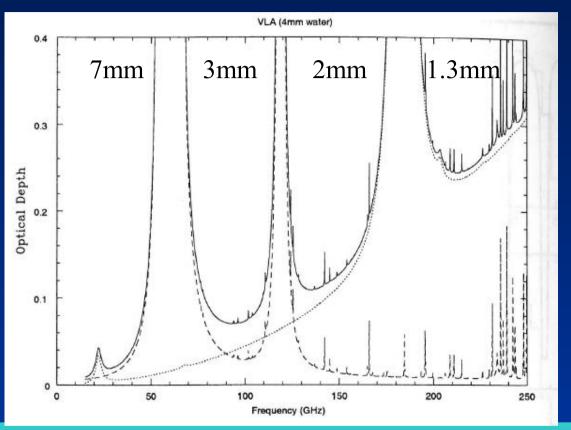
Tentative Schedule: 16.10. Introduction and overview (HL & HB) 23.10. Emission mechanisms, physics of radiation (HB) **30.10. Telescopes – single-dish (HL)** 06.11. Telescopes – interferometers (HB) **13.11.** Instruments – continuum detection (HL) **20.11.** Instruments – line detection (HB) 27.11. Continuous radiation (free-free, synchrotron, dust, CMB) (HL) 04.12. Line radiation (HB) 11.12. Radiation transfer (HL) 18.12. Buffer ... 08.01. Molecules and chemistry (HL) 15.01. Physics and kinematics (HB) 22.01. Applications (HL) 29.01. Applications (HB) **05.02. Exam week**

PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*


Topics for today:

- telescope sites / atmospheric conditions
- spatial resolution and telescope beam
- telescope designs and examples

Radio signals and the Earth atmosphere



Radio Astronomy

10/18/12

Radio signals and the Earth atmosphere

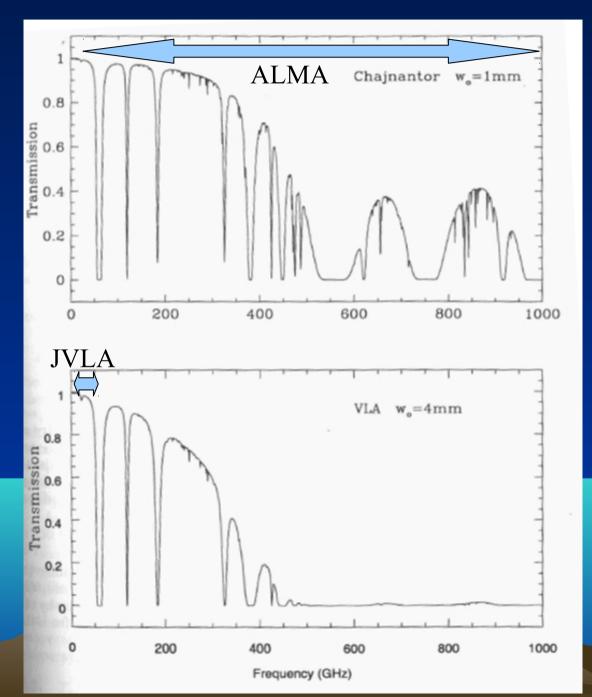
Two principle components in the lower atmosphere that cause transmission losses:

"dry" component: partly CO₂, but mainly O₂ (dashed curve)

"wet" component: water vapor (dotted curve)

Solid curve as combination of the two components

Strong atmospheric features as the historic demarcations between many radio and millimeter bands/windows



Optical depth τ : $I = I_0 \cdot e^{-\tau}$

10/18/12

Radio signals and the Earth atmosphere

←

Atmospheric transmission at high radio frequencies – a good site is important! High water vapor content is a show stopper ... pwv = precipitable water vapor (1mm: very good, 4 mm still fine, Germany: 7-10 mm and more ...)

Atmospheric transmission for the ALMA interferometer site: high plain of Chajnantor in the Atacama desert in Chile, 5100 m

Atmospheric transmission for the JVLA interferometer site: San Augustin high plain in New Mexico, USA, 2100 m Green Bank Telescope 110m NRAO USA Single-dish radio telescopes in operation

305m, Arecibo, Puerto Rico

v_{max} = 100 GHz Altitude = 807m v_{max} = 10 GHZ Altitude = 496m

IRAM 30m, Spain

v_{max} = 360 GHz Altitude = 2950m APEX Telescope, 12m, Chile

V_{max} = 1000 GHz

Altitude = 5100m

James Clerk Maxwell Telescope, 15m, Hawaii

Parkes 64m

Australia

 ν_{max}

Radiotelescope,

= 50 GHz

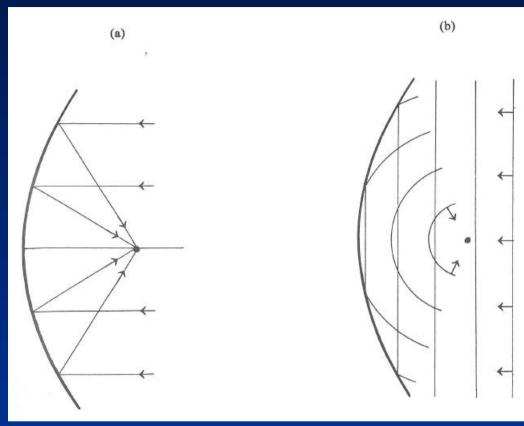
Altitude = 392m

 v_{max} = 900 GHz Altitude = 4200m Radio Astronomy ... what we will cover:

All wavelength ranges where the electromagnetic field can be directly accessed by the measurement equipment:

I.e., field amplitudes and field phases accessible, not only the intensities! (more of that in the Instruments/Receiver lecture)

We have to take care of the wave nature of the incoming radiation ...


Antenna theory ... diffraction effects important.

Radio Astronomy

10/18/12

Radio telescopes

Especially in the frequency range > 1 GHz: collimating reflectors in use

Large collecting areas possible also in case of short wavelengths

Keep in mind: celestial sources very far away → electromagnetic radiation reaching us is to a very good approximation a plane wave

A paraboloidal reflector in terms of:(a) Ray optics(b) wavefronts

10/18/12

A fundamental relation

Reciprocity between transmission and reception in antenna theory -(all relevant equations t-symmetric)

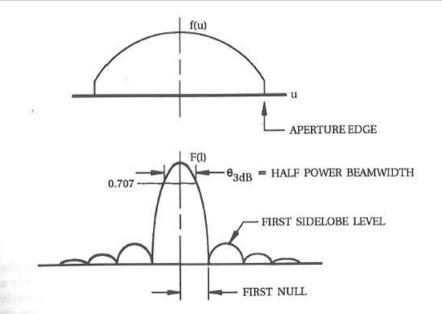


Figure 3-3. The Fourier transform relationship between an antenna aperture distribution and its far-field radiation pattern. The form of the aperture distribution, f(u), and the radiation pattern, F(l), are shown for a one-dimensional example. In general both quantities are complex. Only the amplitudes are shown here.

Consider illumination of the main reflector by the receiver/sender device in the reflector focus

Distribution f(*u*) of electric current strengths along the telescope aperture (upper plot)

Emerging far-field radiation pattern F(l) (in send-mode) is the Fourier transform of the aperture distribution f(u) (lower plot)

F(l) = FT[f(u)]

Note: ratios measured here in dB (deciBel): $10 \cdot lg(F_2/F_1) dB$ 10/18/12 Radio Astronomy

Several effects affecting the antenna pattern

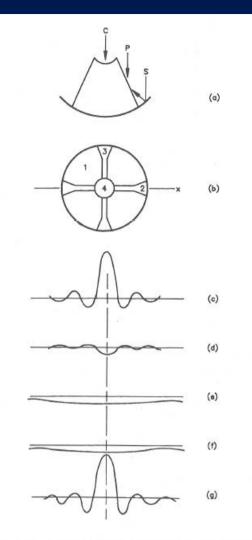


Figure 3-8. Effect of aperture blockage. (a) The three kinds of blockage in a reflector. c is central blockage, p is plane wave blockage on the struts, and a is spherical wave blockage on the struts. (b) The resulting aperture blockage for a quadrupod subreflector support. (c) Unblocked pattern in x-plane. (d) Blocked pattern for area 3. (f) Blocked pattern for area 4. (g) Total pattern with blockage c + d + e + f.

10/18/12

Schematic telescope side view

View onto obstructions from above

Unblocked pattern (in x-plane)

Contributions from obstructions

Total pattern with blockage as sum of all contributions

The power pattern $P(\theta, \varphi)$

Tthe far field pattern F(I) is on the level of the electric fields. But we also want to know the power distribution (energy/time per solid angle)

Power ~ square of field strengths ... $E \cdot E^*$

Fourier Theory ... autocorrelation theorem $f(x) \otimes f^*(-x) \leftrightarrow |F(s)|^2$

The power (gain) pattern $P(\theta, \phi)$ is the Fourier transform of the autocorrelation of the aperture current density distribution (called f(u) in the previous slides).

Two versions of the power reception pattern

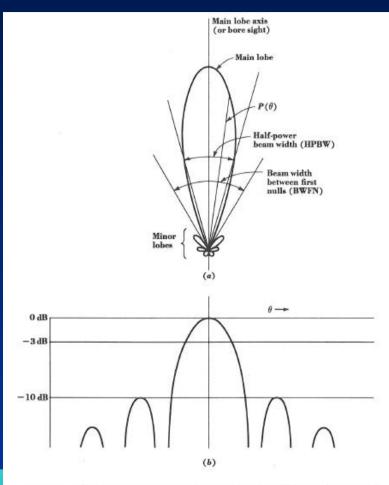
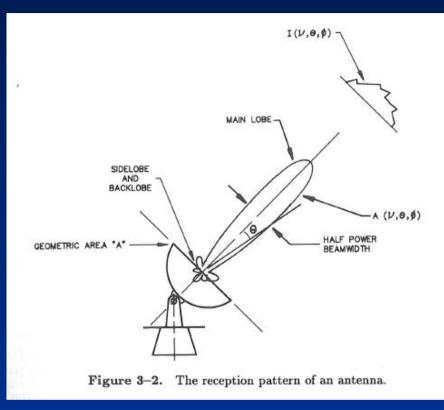


Fig. 6-1. (a) Antenna pattern in polar coordinates and linear power scale; (b) antenna pattern in rectangular coordinates and decibel power scale.


10/18/12

Reception pattern in polar coordinates and linear power scale (This is a 1-dimensional cut through the pattern, shown is the received or emitted power as a function of an angle on the sky, measured from the telescope normal direction)

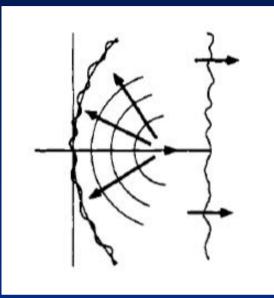
Reception pattern in rectangular coordinates ($u = \sin \theta$) and logarithmic power scale (in decibel) Remember: -3 dB ~ 50% on linear scale

The power pattern (beam) size

Common misconception: half-power beamwidth (HPBW) of antenna power pattern is 1.22 λ / D

This is NOT correct! The above relation gives the angular distance from the direction of maximum power to the first null of that pattern.

The half-power beam width for an antenna with uniform illumination (aperture current strength distribution) is 1.02 λ / D !


However, such an antenna has high side-lobe levels ...

Different designs deviating from uniform reflector illumination can lower the side-lobe, But the diameter of the main lobe (i.e., the "beam") will get larger \rightarrow slightly degraded spatial resolution as a result Usually the HPBW ranges between 1.05 ...1.20 λ / D

10/18/12

Diffraction pattern and error beam

Wave distortion due to diffraction at a rough reflection surface

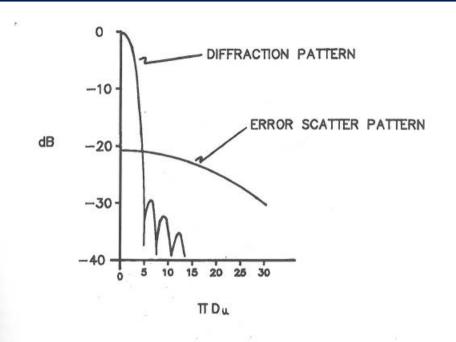
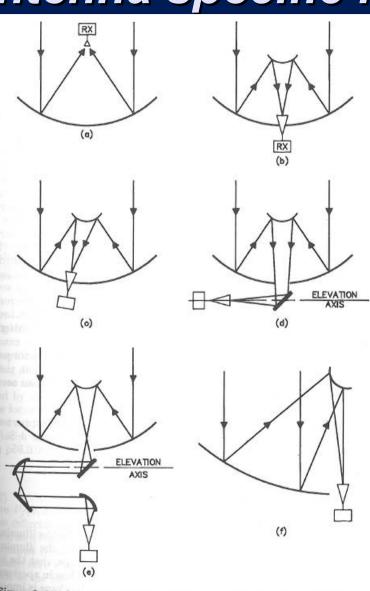


Figure 3-7. Diffraction pattern and surface error scatter pattern for r.m.s. surface errors $\lambda/16$ correlated over distances D/10. The aperture has a -12 dB edge taper. The total pattern is the power sum of the diffraction and error patterns. [From Ruze 1966.]

Common demand on surface accuracy: r.m.s better than wavelength / 10 (but there is larger variety on that number, can go from 8 to 20)

Note: ratios measured here in dB (deciBel): $10 \cdot Ig(F_2/F_1) dB$

10/18/12


Different reflector foci ... not radio antenna specific ...

Prime focus

Off-axis Cassegrain

Beam waveguide

10/18/12

Cassegrain focus

Nasmyth focus

Offset Cassegrain

Figure 3-6. Optical systems for radio telescope reflectors. (a) Prime focus, (b) Cassegrain, (c) Off-axis Cassegrain, (d) Naysmith, (e) Beam waveguide, (f) Offset Cassegrain.

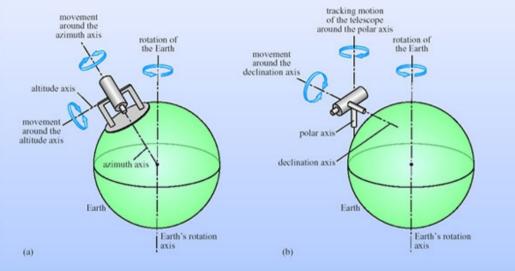
Classical Radio Telescopes

140 foot NRAO telescope (43 m dish diameter)

One of the largest telescopes with a classic equatorial mount (also called polar mount)

Advantage: tracking just around one axis

But: mechanically very demanding for larger telescopes


Classical Radio Telescopes

Parkes 64-m Telescope ("The Dish") in Australia

Designed in the 1960s

Paved the way for large Alt-Az telescopes

Very schematic comparison of altitude-azimuth ("Alt-Az") and Equatorial mounts

Alt-Az challenges:

- tracking accuracy near zenith
- field rotation

10/18/12

Effelsberg 100-m telescope

Main dish diameter: 100 meters secondary reflector: 6.5 meters

surface accuracy in the inner 80 meters: 0.45 mm

Fully steerable telescope

Rotating assembly diameter: 64 meters

16 electro-engines a 17.5 kW for azimuth tracking, further 4 ones for elevation tracking

Total weight: 3200 tons

10/18/12

Effelsberg: the first large homologous telescope

Large heavy telescopes: different degrees of deformation at different elevations due to gravity

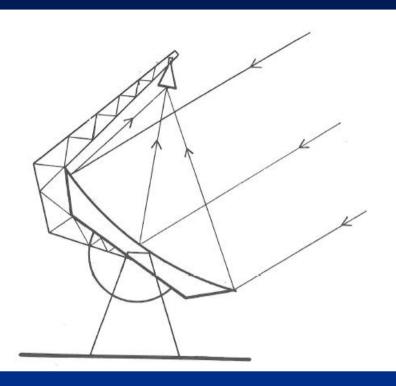
→ Homology: transition from one parabola to another one, aided by special support structure; only focus needs (automatised) adjustment

Larger and larger Antennas (II)

Radio Astronomy

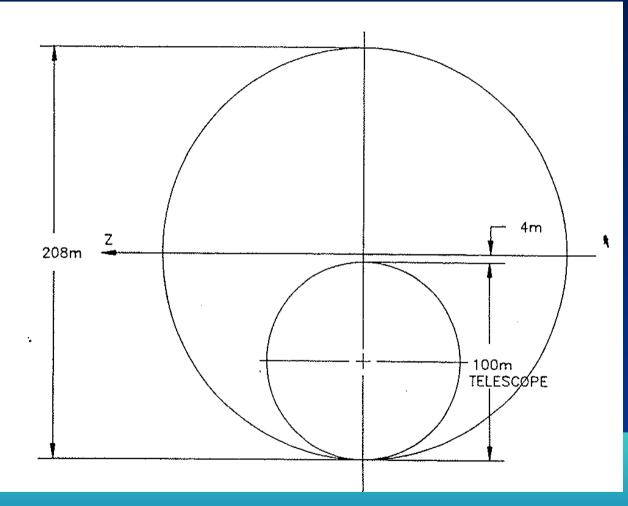
110-m Green-Bank Telescope (GBT) in West Virginia (USA)

10/18/12


Special design with offset focus

Wavelengths as short as 3 mm can be handled ...

GBT and its special offset design


Recurring problem with classic on-axis radio telescopes: standing waves between main and sub-reflector cause "ripples" in signals from strong sources

Solution: offset design

Drawback: Homology can not be implemented easily \rightarrow active surface control loops and piezo adjustment necessary10/18/12Radio Astronomy

GBT and its special offset design

The GBT dish is actually an offset part of a virtual 208 m diameter dish; the 4 m distance to the center is important for the final 100 x 110 m aperture NOT to be partially blocked by the sub-reflector.

10/18/12

Arecibo: 305m telescope with a spherical reflector

Main dish not steerable, celestial objects tracked by moving the secondary mirror

Spherical mirror prevents coma and astigmatism, but spherical aberration occurs \rightarrow special design for receiver and subreflector geometry necessary; huge collecting area (>73,000 m²)

10/18/12

The missing link between single-dish telescopes and interferometers

Kraus-type radio telescopes (after John D. Kraus, 1910-2004):

transit instruments, where the flat primary reflects radio light towards the spherical secondary, which focuses it towards a mobile focal carriage (moving east-west to track objects around transit)

Can be large assemblies of reflecting panels at rather large distances from the central focus \rightarrow mimicking large aperture telescopes

Examples: Ohio State University radio telescope "Big Ear" (USA) Nançay Decimetric Radio Telescope (France) RATAN-600 (USSR/Russia)

Examples: Ohio State University radio telescope "Big Ear" (USA)

RATAN-600 Telescope in КарачаевоЧеркесия (Caucasus, in the south of the European part of Russia)

consists of a 576 m circle of 895 elements (each is 2 m x 11.5 m) and 5 independent focus stations

10/18/12

RATAN-600 Telescope in КарачаевоЧеркесия радиотелескоп РАТАН - 600 (Caucasus, in the south of the European part of Russia) **ПОЧТА СССР** 20 2 of the 5 independent focus stations in the foreground ...

plus some haystacks ... (Photo copyright: P. Boley)

10/18/12

PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*

http://www.mpia.de/homes/beuther/lecture_ws1213.html

Tentative Schedule: 16.10. Introduction and overview (HL & HB) 23.10. Emission mechanisms, physics of radiation (HB) **30.10.** Telescopes – single-dish (HL) **06.11. Telescopes – interferometers (HB)** 13.11. Instruments – continuum detection (HL) **20.11.** Instruments – line detection (HB) 27.11. Continuous radiation (free-free, synchrotron, dust, CMB) (HL) 04.12. Line radiation (HB) 11.12. Radiation transfer (HL) 18.12. Buffer ... or trip to the Effelsberg 100-m telescope?! 08.01. Molecules and chemistry (HL) 15.01. Physics and kinematics (HB) 22.01. Applications (HL) 29.01. Applications (HB) 05.02. Exam week

10/18/12

