Structure of the ICM and its evolution with redshift: Status from X-ray observations

M.Arnaud (CEA-Sap Saclay France)

Distant clusters of galaxies, Oct 25, 2005, Ringberg

M. Arnaud

- Primordial fluctuations (DM) that growth under the influence of gravity ==> the cosmic ' web ': Voids, Filaments, Blobs : The clusters of galaxies
- Hierarchical clustering:

clusters: forming/growing since z~2 *till now* by merger/accretion along LS filaments

 The cluster population is an evolving population stat prop. vs z => test of structure formation scenario (Dark Matter and Gas) and can be used to constrain the cosmological parameters

The XMM/Chandra capabilities for highz cluster studies

Basic properties up to high z

Crude kT structure for brightest clusters

Distant cluster dynamical state

Distant clusters of galaxies, Oct 25, 2005, Ringberg

M. Arnaud

A variety of clusters

Evolution of (sub)structures

High z (> 0.5) clusters:

more substructures dynamically younger

as expected in hierarchical scenario

The evolution of scaling properties

Distant clusters of galaxies, Oct 25, 2005, Ringberg

Canonical model of cluster formation

Dark matter

⇒ virialized' M(z) : fixed density contrast 3 M/ 4π R³ = $\Delta \rho_c(z)$ $\Delta \sim 200$

 \Rightarrow universal profile

<u>Gas</u>

evolving in the DM gravitational potential \Rightarrow universal profile

 $\Rightarrow f_{gas} = cst$ $\Rightarrow close to HE$ $kT = \beta GM/R$

Self Similarity of the cluster population

- \Rightarrow universal profiles
- \Rightarrow simple scaling laws: Q = A(z)T^{α}
- \Rightarrow evolution via $\rho_c(z) \alpha h^2(z)$

e.g: M α h^-1(z) T^{3/2} ~ ; L_{\chi} \alpha h (z) T^2

Distant clusters of galaxies, Oct 25, 2005, Ringberg

The observed local cluster population

See G. Pratt talk

DM: validity of the modeling of CDM collapse Gas: importance of non gravitat. processes: cooling and/or AGN/SN heating ?

Some trivialities about studying evolution

• Interest:

• Requires:

 \Rightarrow reference theoretical model

 \Rightarrow compare apples with apples

 \Rightarrow (precise) local scaling properties

extract 'same' quantities

- understand physics of structure formation empirical laws when using clusters for cosmology
- Obs and prediction depend on cosmology (Ω,Λ)
- Expected evolution is not large 30% at z=0.5 for ΛCDM; precision essential

obs via def of $R_{y}(z)$; obs. vs theory

use consistent cluster (sub)samples

beware of systematic errors when using different instruments

Many sources of confusion and systematic errors

M. Arnaud

Evolution of the M-T relation (1)

Precise converging calibration of the local M-T relation

- M(r) from the HE equation with kT profile => consistent estimate of R_{δ} and M_{δ}
- effect on non-grav. physics: normalisation offset ; α = 1.5±0.1 (T>3.5 keV) α ~ 1.7 (T>2 keV)
- Some discrepancies with previous ROSAT/ASCA studies (see Arnaud et al, 05)

Evolution of the M-T relation (2)

- Local M-T from Chandra ~ XMM
- High z (0.4 -0.7) relaxed cluster sample
- Mass and <T> from XMM resolved kT profiles as at z=0

Kotov & Vikhlinin, astro-ph/0504233

Evolution as expected $M_{500} = h(z)^{0.81\pm0.21} T^{3/2}$

Evolution of the M-T relation (3)

Maughan et al, 05, astro-ph/0503455

- There is evolution
- Consistent with expected

Larger unbiased (0.6<z< 1; ~ local) sample
M_Δ assuming isothermality; HE valid?
Different definition for M_Δ

See also Ettori et al, 04

Some technalities (1)

Multiple definition of 'virial' radius in literature

 $3 M_v/4\pi R_v^3 = < \rho_{>v} = \Delta_v \rho_c(z)$

1a) Δ_v fixed ~ 200 Numerical simulations 1b) $\Delta_v(z) = 18\pi^2 + 82 \times -39 \times^2$; $x = \Omega_m(z) - 1$

Spherical collapse of top-hat perturbation

Equivalent in SCDM: $\Delta_v(z) = \Delta = 18\pi^2 = 178 \sim 200$ NOT in Λ CDM: $\Delta_v(0) = 110$; increases with z

- 2) For more confusion, use of
 - $-\Delta > \Delta_v$ with $\Delta(0) = 2500, 500, 200 \dots$
 - mean contrast $< \rho > = \Delta \rho_m(z) = \Delta \Omega_m(z) \rho_c(z)$
 - fixed physical radius

Non trivial effect

- global quantities via extraction region
- 'expected' evolution factor : $h(z) \rightarrow h(z) [\Delta(z) / \Delta(0)]^{1/2}$
 - IF self-similarity in $r/R_{\Delta(z)}$ rather than in r/R_{Δ}

Some technalities (2)

Probe universality of ICM structure

⇒Isothermal mass: $A = \beta$ at large r ($\Delta = 200, 500$) std evolution for both def if non-evolving β ⇒Non-isothermal mass:

same if non evolving kT power-law shape

0.1

 R/R_{200}

MA from misc data

 10^{-5}

0.01

The evolution of the L_x -T relation (1)

The L_x-T relation does evolve for a ΛCDM cosmology

Whether it is consistent with expectations is uncertain

The evolution of the L_x -T relation (2)

- Larger evolution of A(z) expected for $\Delta(z)$
- effect on L_{bol} via integration region: minor

• A(z)
$$\neq$$
 (1+z) ^{α} but h(z) Δ (z)^{1/2} ~ (1+z)^{1.2}
h(z) ~ (1+z)^{0.6-0.9}

Caveats $L_{bol} = A(z) T^{\alpha}$

- CF correction local reference: Markevitch 98: CF corrected Arnaud & Evrard 99: weak CF cluster
- Instrument cross-calibration 10% on kT => 30% on A(z) \cong h(0.5)
- Parametrisation of A(z) and reference 'self-similar' model

The evolution of the L_x -T relation (3)

M. Arnaud

Distant clusters of galaxies, Oct 25, 2005, Ringberg

And the entropy evolution ?

may be higher than expected: $h(z)^{4/3}$ S -T = (1+z)^{0.3±0.08} (z>0.6)

Caveats:

- Large scatter
- Strongly depends on radius: S α r thus on definition R'_{200(z)}

Conclusions

With XMM and Chandra

- we can probe the evolution up to high z (>1) down to ROSAT detection limit
- Evolution of substructures qualitatively consistent with hierarchical model
- Stat to correct picture provided by this study of the evolution of the cluster scaling relations is that within the statistical limits of the current data, the evolution of galaxy clusters out to $z \approx 1$ is described well by the self-similar model. The

Maughan et al, 05

and systematic uncertainties.....

For future progress:

- avoid confusion and agree on a reference 'pure grav.' model....
- minimize systematic uncertainties: large unbiased samples (at z=0 and high z) studied with same instrument and methodsmore when on going LP fully analysed