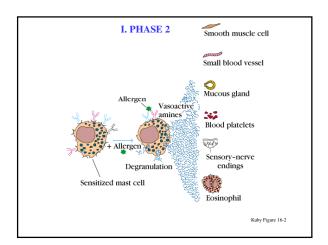
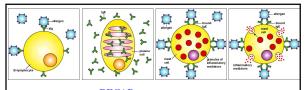
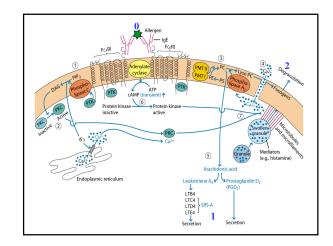

Hypersensitivity - an inappropriate immune response that causes damage to the individual Type I hypersensitivity - mediated by IgE Type II hypersensitivity - mediated by IgG Type III hypersensitivity - mediated by immune complexes Type IV hypersensitivity - cell-mediated Immediate hypersensitivity - Types I, II and III


Delayed hypersensitivity - Type IV

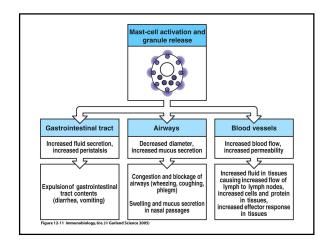

	promote the pr	aled allergens that may iming of T _H 2 cells that gE responses
What makes	Protein	Only proteins induce T-cell responses
an antigen to	Enzymatically active	Allergens are often proteases
be an allergen?	Low dose	Favors activationof IL-4- producing CD4 T cells
uner gen.	Low molecular weight	Allergen can diffuse out of particle into mucus
	Highly soluble	Allergen can be readily eluted from particle
	Stable	Allergen can survive in desiccated particle
	Containspeptides that bind host MHC class II	Required for T-cell priming



RECAP:

- 1) The allergen enters the body and is recognized by slg on a B-lymphocyte 2) The B-lymphocyte then proliferates and differentiates into plasma cells
- 3) The plasma cells produce and secrete IgE which binds to receptors on mast cells and basophils.

- other inflammatory mediators. 7) The inflammatory mediators are now able to bind to receptors on target
- cells which leads to dilation of blood vessels, constriction of bronchioles, excessive mucus secretion, and other symptoms of allergy.


TABLE 16-3 PRINCIPAL MEDIATORS INVOLVED IN TYPE I HYPERSENSITIVITY

Mediator	Effects
	Primary
Histamine	Increased vascular permeability; smooth-muscle contraction
Serotonin	Increased vascular permeability; smooth-muscle contraction
Eosinophil chemotactic factor (ECF-A)	Eosinophil chemotaxis
Neutrophil chemotactic factor (NCF-A)	Neutrophil chemotaxis
Proteases	Bronchial mucus secretion; degradation of blood-vessel basement membrane; generation of complement split products
	Secondary
Platelet-activating factor	Platelet aggregation and degranulation; contraction of pulmonary smooth muscles
Leukotrienes (slow reactive substance of anaphylaxis, SRS-A)	Increased vascular permeability; contraction of pulmonary smooth muscles
Prostaglandins	Vasodilation; contraction of pulmonary smooth muscles; platelet aggregation
Bradykinin	Increased vascular permeability; smooth-muscle contraction
Cytokines	
IL-1 and TNF-α	Systemic anaphylaxis; increased expression of CAMs on venular endothelial cells
IL-2, IL-3, IL-4, IL-5, IL-6, TGF-B, and GM-CSF	Various effects (see Table 12-1)

Effector Mechanisms

- Immediate Allergic Reaction caused by mast cell degranulation
- Late-phase response involves the recruitment of Th2 cells, eosinophils, and basophils

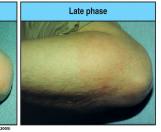
Class of product	Examples	Biological effects
Enzyme	Tryptase, chymase, cathepsin G, carboxypeptidase	Remodel connective tissue matrix
Toxic mediator	Histamine, heparin	Toxic to parasites Increase vascular permeability Cause smooth muscle contraction
	IL-4, IL-13	Stimulate and amplify T _H 2 cell response
Cytokine	IL-3, IL-5, GM-CSF	Promote eosinophilproduction and activation
	TNF- α (some stored preformed in granules)	Promotes inflammation, stimulates cytokine production by many cell types, activates endothelium
Chemokine	CCL3 (MIP-1a)	Attracts monocytes, macrophages, and neutrophils
Lipid mediator	Leukotrienes C4, D4, E4	Cause smooth muscle contraction Increase vascular permeability Stimulate mucus secretion
Lipid mediator	Platelet-activating factor	Attracts leukocytes Amplifies production of lipid mediators Activates neutrophils, eosinophils, and platelets

Localized allergic reactions - symptoms depend on the location of mast cell/basophil degranulation

- Skin ---> eczema
- Nasal mucosa ---> allergic rhinitis (hay fever)
- Respiratory tract ---> asthma
- Gastrointestinal tract ---> vomiting, diarrhea (food allergies)

Systemic allergic reaction = systemic anaphylaxis

- Systemic vasodilation results in an acute loss of blood pressure.


- Bronchoconstriction causes asphyxiation.
- Death can occur within minutes.

Epinephrine counteracts the effects of allergic mediators on smooth muscle and vasculature.

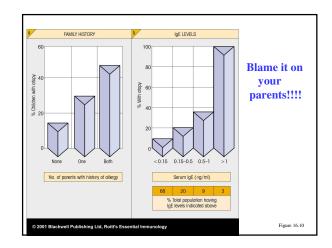
-Due to histamine, prostaglandins, and other preformed mediators that cause rapid increase in vasc. Permeability and contraction of smooth muscle

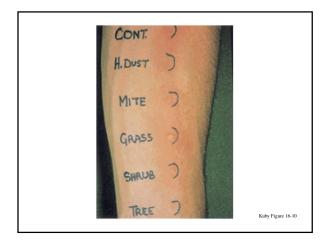
Immediate

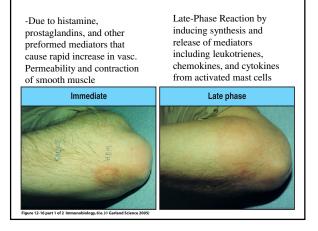
Late-Phase Reaction by inducing synthesis and release of mediators including leukotrienes, chemokines, and cytokines from activated mast cells

Causes of allergic reactions (factors predisposing to IgE responses):

Characteristics of the antigen

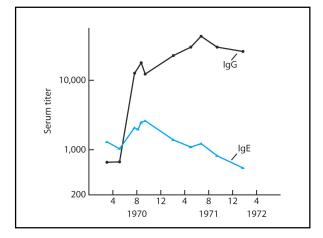

- Certain antigens are more likely to induce IgE responses (e.g. ragweed pollen)

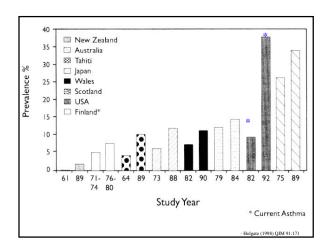

Mode of presentation of the antigen

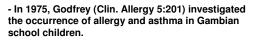

- Dosage, adjuvant may influence the IgE vs IgG response

Genetics of the individual

- Certain mouse strains are more likely to make IgE responses
- Parents with allergies are more likely to have children with allergies

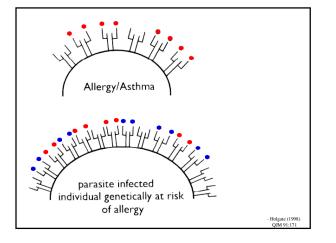

Therapeutic approaches - Allergen immunotherapy

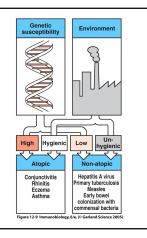

 The practice of administering gradually increasing quantities of an allergen extract to an allergic subject to ameliorate the symptoms associated with subsequent exposure to the causative allergen.


- Introduced in 1911

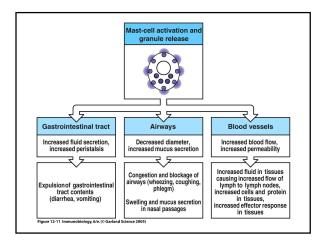
"The mechanisms of immunotherapy are complex....newer studies suggest that immunotherapy acts by modifying T-cell responses either by immune deviation [shift from Th2 to Th1], Tcell anergy, or more likely both." - WHO, 1998.

Risk: systemic anaphylaxis (potentially fatal)

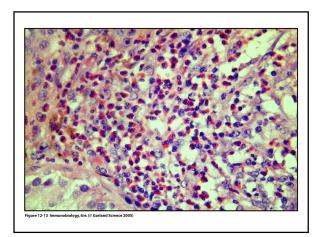


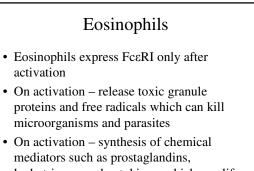

- Showed their association with urban dwelling, higher socioeconomic status and lower total circulating IgE levels.

- Suggested that in the rural setting, parasite infection was protective against the development of allergy and asthma.

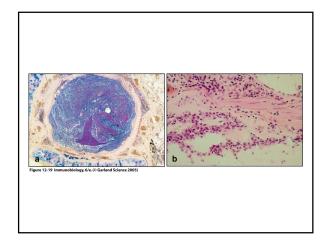


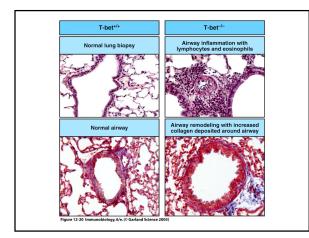
gs - Lynch et al	(1993) J. Allerg	y Clin. Immunol. 92
	Change in parasite load	Change in reactivity to house dust mite
Treatment group	68%> 5%	17%> 68%
Control group	43%> 70%	26%> 16%

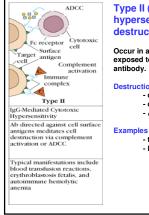

- 1) Exposure to infectious diseases in early childhood
- 2) Environmental pollution
- 3) Allergen levels
- 4) Dietary changes



Gene	Nature of polymorphism	Possible mechanism of association
IL-4	Promoter variant	Variation in expression of IL-4
IL-4 receptor α chain	Structural variant	Increased signaling in response to IL-4
High-affinity IgE receptor β chain	Structural variant	Variation in consequences of IgE ligation by antigen
MHC class II genes	Structural variants	Enhanced presentation of particular allergen-derived peptides
T-cell receptor α locus	Microsatellite markers	Enhanced T-cell recognition of certain allergen-derived peptides
ADAM 33	Structural variants	Variation in airway remodeling
β_2 -Adrenergic receptor	Structural variants	Increased bronchial hyperreactivity*
5-Lipoxygenase	Promoter variant	Variation in leukotriene production [†]

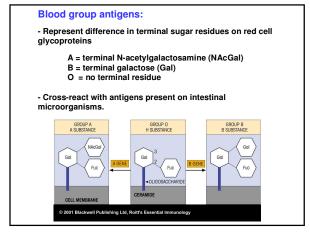

Class of product	Examples	Biological effects
Enzyme	Tryptase, chymase, cathepsin G, carboxypeptidase	Remodel connective tissue matrix
Toxic mediator	Histamine, heparin	Toxic to parasites Increase vascular permeability Cause smooth muscle contraction
	IL-4, IL-13	Stimulate and amplify T _H 2 cell response
Cytokine	IL-3, IL-5, GM-CSF	Promote eosinophilproduction and activation
	TNF-α (some stored preformed in granules)	Promotes inflammation, stimulates cytokine production by many cell types, activates endothelium
Chemokine	CCL3 (MIP-1a)	Attracts monocytes, macrophages, and neutrophils
Lipid mediator	Leukotrienes C4, D4, E4	Cause smooth muscle contraction Increase vascular permeability Stimulate mucus secretion
Lipid mediator	Platelet-activating factor	Attracts leukocytes Amplifies production of lipid mediators Activates neutrophils, eosinophils, and platelets

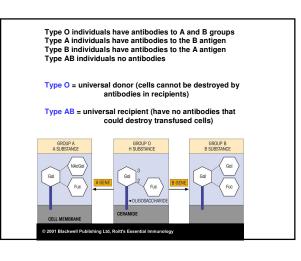


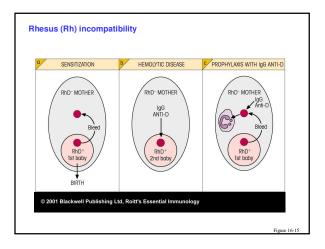


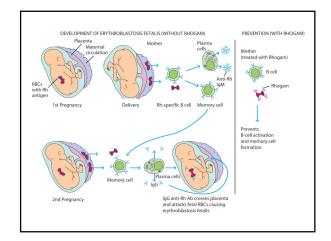
leukotrienes, and cytokines which amplify the inflammatory response

Class of product	Examples	Biological effects
Enzyme	Eosinophil peroxidase	Toxic to targets by catalyzing halogenation Triggers histamine release from mast cells
,	Eosinophil collagenase	Remodels connective tissue matrix
	Major basic protein	Toxic to parasites and mammalian cells Triggers histamine release from mast cells
Toxic protein	Eosinophil cationic protein	Toxic to parasites Neurotoxin
	Eosinophil-derived neurotoxin	Neurotoxin
Cytokine	IL-3, IL-5, GM-CSF	Amplify eosinophil production by bone marrow Cause eosinophil activation
Chemokine	CXCL8 (IL-8)	Promotes influx of leukocytes
Lipid mediator	Leukotrienes C4, D4, E4	Cause smooth muscle contraction Increase vascular permeability Increase mucus secretion
Lipiu mediator	Platelet-activating factor	Attracts leukocytes Amplifies production of lipid mediators Activates neutrophils, eosinophils, and platelets

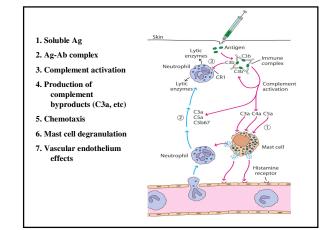



Type II (antibody-dependent) hypersensitivity = IgG-mediated destruction of cells


Occur in any circumstance in which cells are exposed to high levels of cell-reactive IgG


Destruction via: - complement-mediated lysis - opsonization - ADCC

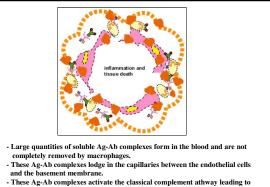
Examples include: - transfusion reactions - Rh syndrome


Type III hypersensitivity = immune complex-mediated hypersensitivity Drug-induced hemolytic anemia: - Binding of antibody to soluble antigen creates immune complexes. - Immune complexes are normally removed from circulation (remember, C3b - Some drugs bind to erythrocyte proteins and create novel binding to receptors on erythrocytes). - High levels of immune complexes may result in adverse effects as a result of complement activation and localized inflammation. - An individual may make an IgG response to the novel ANTIGEN-ANTIB DY COMPLEX - The resulting IgG antibody may mediate complementmediated lysis of red cells - leading to hemolytic anemia Mac act Platelet aggre Complement activation Treatment - cease using the drug Attract Angr RELEAS TNF, ROI MICRO-THROMBI VASOACTIVE AMINE RELEASE 2001 E ng Ltd, Re

Localized Type III reaction (Arthus reaction) - Injection of antigen into the skin of an individual with high levels of antibody to the antigen (eg: insect bites [types I and III possible]).

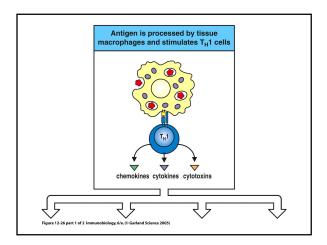
epitopes

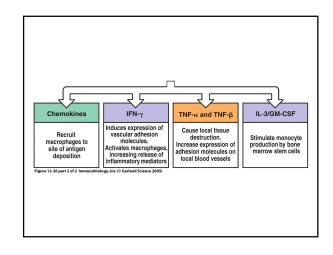
epitopes

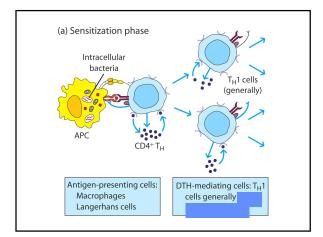

- Intense localized inflammatory reaction characterized by influx of neutrophils.

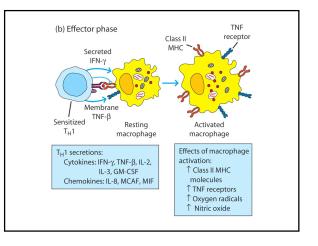
Generalized Type III reactions:

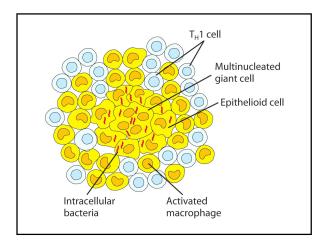
- (sytemic lupus erythematosus, Rheumatoid arthritis)
- injection of antigen intravenously into an individual with high levels of antibody to the antigen.
- e.g. injection of horse antitoxins into an individual previously sensitized to horse immunoglobulin
- -"serum sickness" various symptoms including fever, rashes and sometimes glomerulonephritis as a result of immune complex deposition in the kidneys; vasculitis (deposition in arteries) or arthritis (deposition on synovial joints)
- -Damage of tissue due to enzymes from "angry" cells

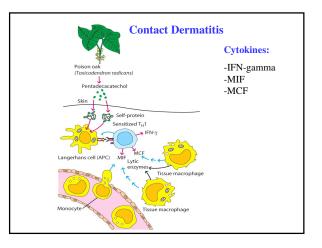


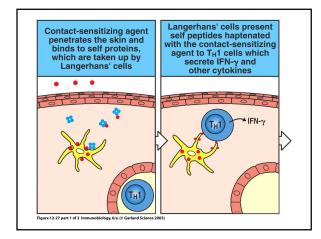

- vasodilation and attraction of leukocytes to the area. The leukocytes discharge their killing agents and prom ote massive inflammation.
- This can lead to tissue death and hemorrhage.

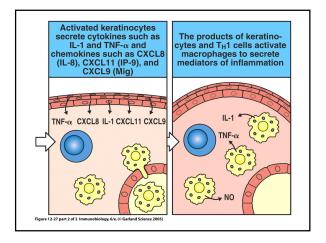


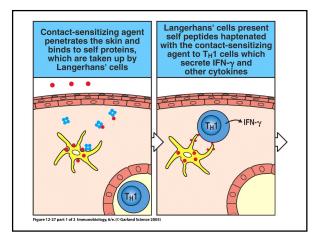

- Macrophages
- Th1 T cells (DTH)
- Cytokines
- Examples: contact dermatitis (formaldehyde, nickel, cosmetics, jewelry, poison oak, poison ivy)

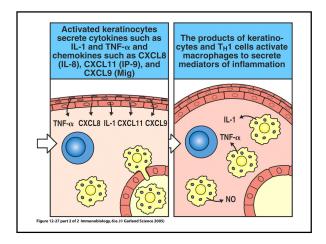

Syndrome	Antigen	Consequence
Delayed-type hypersensitivity	Proteins: Insect venom Mycobacterial proteins (tuberculin, lepromin)	Local skin swelling: Erythema Induration Cellular infiltrate Dermatitis
Contact hypersensitivity	Haptens: Pentadecacatechol (poison ivy) DNFB Small metal ions: Nickel Chromate	Local epidermal reaction: Erythema Cellular infiltrate Vesicles Intraepidermal abscesses
Gluten-sensitiveenteropathy (celiac disease)	Gliadin	Villous atrophy in small bowe Malabsorption

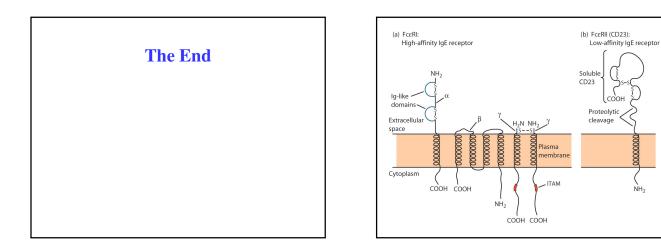


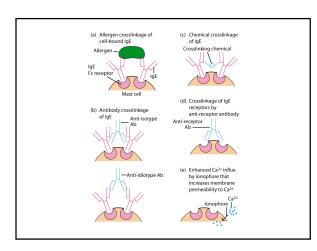












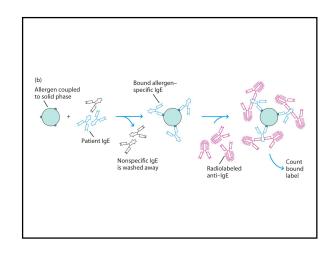


TABLE 16-4	Mechanism of action of some drugs used to treat type I hypersensitivity
Drug	Action
Antihistamines	Block H ₁ and H ₂ receptors on target cells
Cromolyn sodium	Blocks Ca ²⁺ influx into mast cells
Theophylline	Prolongs high cAMP levels in mast cells by inhibiting phosphodiesterase, which cleaves cAMP to 5′-AMP*
Epinephrine (adrenalin)	Stimulates cAMP production by binding to β-adrenergic receptors on mast cells*
Cortisone	Reduces histamine levels by blocking conversion of histidine to histamine and stimulates mast-cell production of cAMP*
	ses transiently during mast-cell activation, evented if cAMP levels remain high.

0000000

(NH₂