

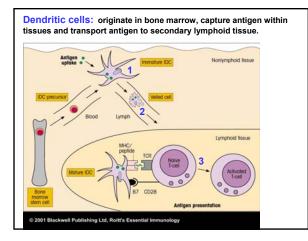
Lymphatic vessels

- Collect interstitial fluid and carry It (lymph), via a system of progressively larger vessels, into regional lymph nodes.
 (via afferent lymphatic vessels).
- -Lymph leaves the lymph nodes via efferent lymphatic vessels, which eventually drain back into the circulatory system (via the thoracic duct).

CHOICES:

- 1) If no antigen is present: lymphocytes routinely enter and leave secondary lymphoid tissues
- 2) If antigen enters the secondary lymphoid tissue:

Lymphocyte proliferation in response to antigen occurs within the lymphoid tissue.

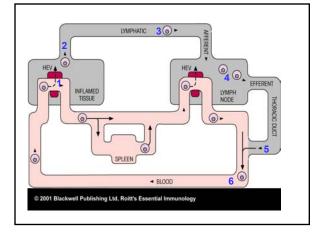

After several days, antigen-activated lymphocytes begin leaving the lymphoid tissue.

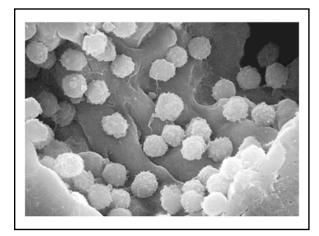
Antigen capture: (APC) or

Macrophages: capture and process particulate antigens (via phagocytosis)

Dendritic cells: capture and process nonparticulate antigens (via endocytosis)

B cells: capture and process antigens that bind to surface BCR (via endocytosis)



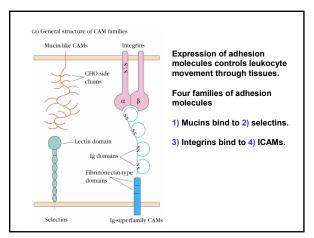

Lymphocytes can enter lymphoid tissues in two ways:

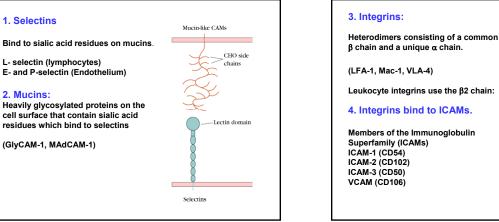
- 1) Direct entry into lymph nodes via afferent lymphatics
- 2) Entry from blood capillaries across specialized endothelial cells (high-walled endothelial cells) present in the postcapillary venules (High Endothelial Venules= HEV) within the secondary lymphoid tissue.

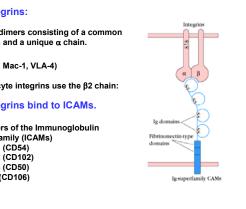
Why?

- For lymphocytes access to potential antigens.
- Migration of lymphocytes is determined by the pattern of expression of adhesion molecules on lymphocytes and on endothelial cells.

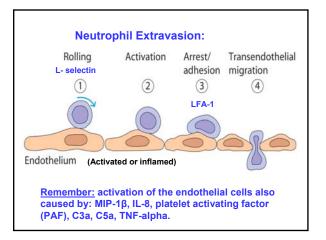
Cell-Adhesion Molecules (CAMs)

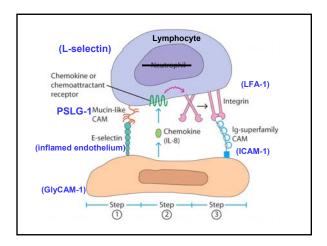

- Vascular endothelium in the blood vessels and posses CAMs that interact with leukocytes to allow extravasion.
- · CAMs are either expressed CONSTITUTIVELY or in INDUCED by cytokines during inflammation
- CAMs belong to four families of proteins:

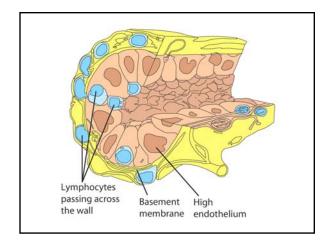

1. Selectins


2. Mucins:

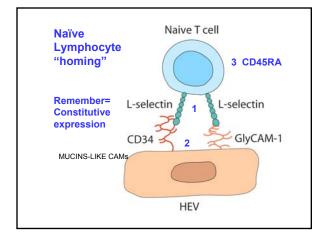
L-selectin (lymphocytes)

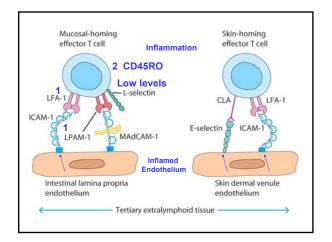

(GlyCAM-1, MAdCAM-1)

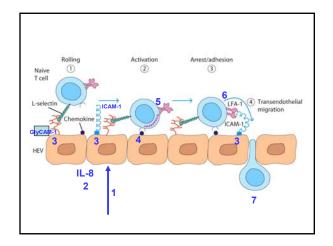




Mucin-like CAMs:	Selectins:
*GlyCAM-1	* L-selectin
CD34	P-selectin
PSGL-1	E-selectin
*MAdCAM-1	
Ig-superfamily CAMs:	Integrins:
*ICAM-1, -2, -3	*α4β1 (VLA-4, LPAM-2)
*VCAM-1	α4β7 (LPAM-1)
*LFA-2 (CD2)	*α.6β1 (VLA-6)
LFA-3 (CD58)	αLβ2 (LFA-1)
MAdCAM-1	α.Mβ2 (Mac-1)
	αXβ2 (CR4, p150/95)

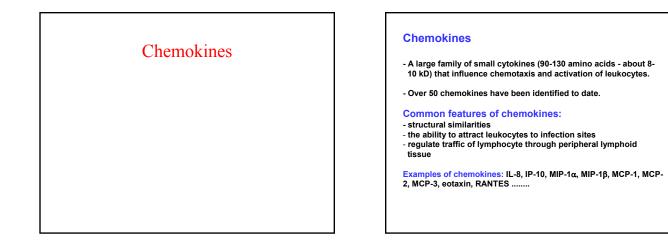



Receptor on cells	Expression	Ligands on endothelium	Step involving interaction ¹	Main function
CLA or ESL-1	Effector T cells	E-selectin	Tethering/rolling	Homing to skin and migration into inflamed tissue
Liselectin	All leukocytes	CIYCAM-1, CD34, MAdCAM-1	Tethering/rolling	Lymphocyte recirculation via HEVs to peripheral lymph nodes and migration into inflamed tertlary sites
LFA-1 (nLβ2)	Leukocyte subsets	ICAM-1, 2, 3	Adhesion/arrest	General role in lymphocyte estravasation via HEVs and leukocyte migration into inflamed tissue
LPAM-1 (α4β7)	Effector T cells, monocytes	MAdCAM-1, VCAM-1	Rolling/adhesion	Homing of T cells to gut via mucosal HEV; migration into inflamed tissue
Mac-1 (αMβ2)	Monocytes	VCAM-1	-	Monocyte migration into inflamed tissue
PSGL-1	Neutrophils	E- and P-selectin	Tethering/rolling	Neutrophil migration into inflamed tissue
VLA-4 (w4(k1)	Neutrophils, T cells, monocytes	WCAM-1 MAdCAM-1, fibronectin	Rolling/adhesion	Ceneral role in leukocyte migration into inflamed tissue
VLA-6 (x6(31)	T cells	Laminin	-	Homing of progenitor T cells to thymus; possible role in T-cell homing to nonmucosal sites
bind to Ig-superfamily	CAMs, and molecules in leukocytes and endothelia	the selectin family bind t	o mucin-like CAMs. Members	eneral, inclecules in the integrin family of the selectin and mucin-like families ca tes, and Ig-superfamily CAMs are



Lymphocyte Homing:

- Naïve lymphocytes re-circulate into secondary lymphoid tissue where they can be activated to become effector cells.
- Able to re-circulate into secondary lymphoid tissues through interaction with HEV
- Naïve lymphocytes express L-selectin (homing receptor) that interacts with GlyCAM-1 and CD34 on HEVs.



Steps in Extravasion of Naïve T cells to inflammatory sites

- 1) Inflammatory mediator (IL-8, MIP-1 β , PAF, C3a, C5a) acts on the vascular endothelium
- 2) Vascular endothelium responds by expressing CAMs: GlyCAM-1, ICAM-1, (and E/P-selectins)
- 3) "Activated T cell" expresses LFA-1
- 4) From rolling to "tight" adhesion
- 5) The chemokine IL-8 acts on his receptor on the T cell
- 6) This interaction signals re-arrangement of LFA-1
- 7) LFA-1 on T cells interacts with ICAM-1 (tight adh.)
- 8) Extravasion and chemotaxis to inflammatory site

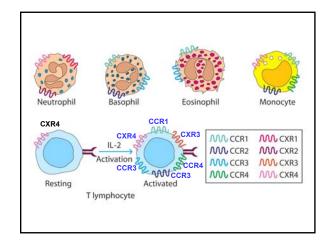
Chemokine receptors:	Chemokine receptors	Chemokines bound by receptor
		CXC subgroup
Chemokines mediate their	CXCR1	IL-8, GCP-2
effects by binding to surface	CXCR2	IL-8, Gro-α, Gro-β, Gro-γ, NAP-2, ENA-78
receptors on responding cells.	CXCR3	IP-10, Mig, I-TAC
	CXCR4	SDF-1, PBSF
 A significant number of 	CXCR5	BCA-1
chemokine receptors have been		CC subgroup
aiscoverea.	CCRI	MIP-1, RANTES, MCP-2, MIP-5
	CCR2	MCP-1, MCP-2, MCP-3
Two types: CXCR and CCR	CCR3	Eotaxin, RANTES, MCP-2, MCP-3, MCP-4, Eotaxin-2,
Most chemokine receptors		MIP-5
bind more than one chemokine.	CCR4	TARC, RANTES
bind more than one chemokine.	CCR5	MIP-1α RANTES, MIP-1β
	CCR6	Exodus-1
Many chemokines can bind	CCR7	ELC
more than one receptor.	CCR8	1-309
	CCR10	MCP-1, MCP-2, MCP-3, RANTES
Th1= CCR5, CXCR3	B-ch.C	C and CXC subgroups
Th2= CCR3, CCR4		
	DARC (the Duffy antigen of RBCs)	Binds to a number of CC and CXC chemokines

Chemokines may have many different effects on cells:

- changes in cell shape
- changes in cell adhesiveness (by activation of leukocyte integrins)
- induction of the respiratory burst
- induction of degranulation
- other

In immunologic diseases and infections, chemokines influence the accumulation and activation of leukocytes in tissues.

The type of inflammatory infiltrate that characterizes a specific disease or infection is controlled, in part, by the subgroup of chemokines expressed in the diseased tissue.


Examples:

Eotaxin - promotes eosinophil accumulation

IL-8 - neutrophils

MCP-1 - monocytes

IP-10 - T cells

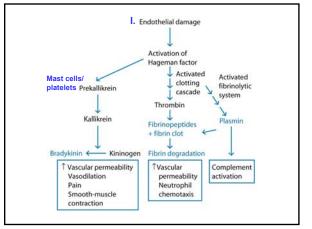
Inflammation A rapid, nonspecific reaction triggered in response to tissue damage and/or infection.

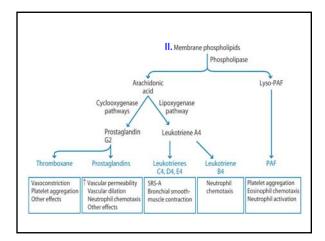
Consists of three major events:

1) Vasodilation - blood vessels at the site become dilated - results in redness at the site - allows increased blood flow to the area.

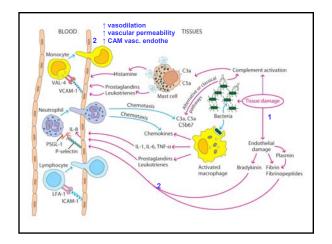
2) Increase in capillary permeability - results in swelling at the site - allows fluid to move from blood vessels into the tissues at the site

3) Accumulation of cells of the immune system - particularly neutrophils - at the site. These phagocytose bacteria and release lytic enzymes and other substances that damage BOTH invading microorganisms and the cells of the host at the site.


Excess fluid, dead cells and digested material forms pus at the site of infection.


Inflammatory mediators

Factors released by various cells during an inflammatory response which trigger or enhance the inflammatory response.


Include:

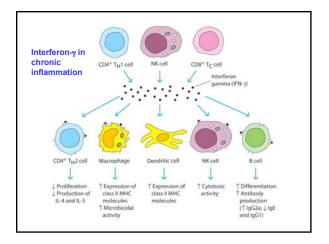

- Chemokines
- Plasma enzyme mediators of inflammation
- Lipid inflammatory mediators
- Cytokines

TABLE 15-3	Redundant of IL-1, TNF			effects
Effect		IL-1	TNF-a	IL-6
Endogenous pyro	gen fever	+	+	+*
Synthesis of acute proteins by live		+	+	+*
Increased vascula	r permeability	+	+	+*
Increased adhesi on vascular end		+	+	_*
Fibroblast prolife	ration	+	+	-
Platelet productio	m	+	-	+
Chemokine induc	tion (e.g., IL-8)	+	+	-
Induction of IL-6		+	+	-
T-cell activation		+	+	+*
B-cell activation		+		+*
Increased immur synthesis	oglobulin	12	2	+

		Plump	Mucin-like CAMs	
Disease	Affected organ	endothelium	on endothelium*	
rohn's disease	Gut	+		
Diabetes mellitus	Pancreas	+	+	
Traves' disease	Thyroid	+	+	
lashimoto's thyroiditis	Thyroid	+	+	
theumatoid arthritis	Synovium			
Ilcerative colitis	Gut	+		
Includes GlyCAM-1, MAdCAM-1	and CD24			
	rd and T. A. Springer, 1995, Imm	und Today 16:140		
OURCE: Adapted from J. P. Gira	ind and I. A. Springer, 1995, Imm	unor, roday roowy.		