Particle Physics Detectors

or
Experimental Electrodynamics

- Elementary particles are detected via their interaction with matter
- Mainly electromagnetic interactions:
ionization and excitation of matter
- "Applied QED", but lots of other interesting physics involved
particle physics detectors today are the biggest microscopes in the world looking into the smallest structures

SUPA Graduate Lecture, Oct 2010

Outline

- Classic detectors
- Detector concepts
- Interaction with matter lecture 2
\square Tracking detectors lecture 3
- Photon detection
- Calorimeters
- Particle identification
\square Trigger concepts
- Modern detectors
lecture 1
lecture 4
lecture 5
lecture 6
not presented
each new sensor technology increases our experimental reach
extension of our senses:
sense of touch
visual sense heat sense smell
every increase in experimental reach opens a window for new insight into the structure of the world

Classic Detectors

new techniques provided new insight \Longleftrightarrow physics needs drove development

classic experiments defined our modern picture of the fundamental principles

- Measured parameters:
- particle multiplicity
(prong number)
- vertex position \square Derived parameters
- decay angles
- momentum
- Particle properties
- ionisation of track
- energy loss / deposition
- kinetic energy
- mass
- track curvature in mag. field
- particle ID (hypothesis)
- charge
- velocity - spin
- helicity
- photon production
- charge production
- life time / decay width
- time
these basic parameters remain the same today...

Cloud Chamber

invented 1929-31(?) by Wilson (born in Edinburgh)

Anderson 1933
口 "Wilson chamber"

- chamber with supersaturated vapor
- droplets formed along trail of ionisation
- 6 mm lead plate separating upper and lower chamber
- placed in magnetic field
- proper illumination \rightarrow photograph

6 mm lead
\rightarrow momentum measured from radius of curvature
Discovery of positron:

- using cosmic rays
- track enters from below (radius!)
- positive charge (bending direction)
- $\mathrm{Q}_{\mathrm{e}+}<2 \times \mathrm{Q}_{\mathrm{e}}$
- $M_{e+}<20 x M_{e}$
- out of 1300 photographs 15 with e^{+}

15 kG \bigoplus is at least ten mes greater than the possible length of a proton path of this curvature.

Cloud Chamber

- stereoscopic photographs
- 5000 photographs / 1500 hours (3.3 per hour)
- 2 with new features ..

3cm lead

Discoveries:

- using cosmic rays

Modern candidates:
$\mathrm{K}_{\mathrm{S}}{ }^{0} \rightarrow \pi^{+} \pi^{-}$

Nuclear Emulsion

- emulsion with photographic silver-bromide crystals
- charged tracks give 'latent images' which become visible from standard photo-processing
- single layer: $25-200 \mu \mathrm{~m}$ thick
- several hundred packed in a stack
- correlation via fiducial marks
- $1 \mu \mathrm{~m}$ resolution \rightarrow microscope measurements
- density $3.8 \mathrm{~g} / \mathrm{cm}^{3} \rightarrow$ max. energy limited

Modern picture:

Discovery of pion decay into muon:

- large ionisation at slow velocity
- decay at rest
- constant muon track length
\rightarrow constant energy
\rightarrow 2-body decay!
Lattes, Muirhead, Occhialini, Powell 1947
\rightarrow constant energy

$$
\begin{aligned}
\pi^{+} \rightarrow & \mu^{+}+v_{\mu} \\
& \mu^{+} \rightarrow \mathrm{e}^{+}+v_{\mathrm{e}}+\bar{v}_{\mu}
\end{aligned}
$$

- neutrinos not captured
- electron is relativistic \rightarrow leaves emulsion

Fig. 1.3 Examples of the decay sequence $\pi^{+} \rightarrow \mu^{+} \rightarrow e^{+}$in G5 emulsion exposed at Pic du Midi. The constancy of range ($\approx 600 \mu \mathrm{~m}$) of the muon implies two-body decay at rest of the pion: $\pi^{+} \rightarrow \mu^{+}+v_{c}$. The first examples of pion decay were observed by Lattes, Muirhead,
Occhialini, and Powell in 1947 . The electron emitted in muon decay, $\mu^{+} \rightarrow e^{+}+v_{c}+v_{\text {, }}$, was not Occhialini, and Powell in 1947. The electron emittod in muon decay, $\mu^{+} \rightarrow \theta^{+}+v_{\mathrm{c}}+v_{\text {, }}$, was not
observed in the early experiments employing less sensitive emulsions. (Photograph courtesy University of Bristol).

Bubble Chamber

- invented by Glaser in 1952
- filled with liquefied gas at 5-20 atm
- $\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{He}, \mathrm{C}_{3} \mathrm{H}_{8}$, $\mathrm{Ar}, \mathrm{Ne}, \mathrm{Xe}$
$\square \quad$ close to boiling T
- tracks pass \rightarrow expand volume (1ms)
\rightarrow superheating
\rightarrow bubbles grow (2ms)
\rightarrow relax: bubbles stop growing
\rightarrow photograph (stereo, even holographic: HOBC)
- cycle time $\sim 1 s$
- homogeneous field: up to $B=2-3.5 T$
\rightarrow track bending ($\int \mathrm{Bdl}=10 \mathrm{Tm}$): particle momentum
\rightarrow bubble density ~ energy loss dE/dx
\rightarrow for $P /(m c)<3$: mass measurement $m=\sqrt{1-\beta^{2}} P /(\beta c)$
- advantage: great detail in complex reactions
- disadvantage: not usable at collider, energy limited

Figure 2.14 Elevation and plan views of the 3.7-m-diameter bubble chamber (BEBC) at CERN The chamber is filled with liquid hydrogen, deuterium, or neon-hydrogen mixture and is equipped for neutrino experiments with an external muon identifier. This consists of $150 \mathrm{~m}^{2}$ of multiwire proportional chambers placed outside the magnet yoke.

Bubble Chamber

Powell, Segrè et.al. 1958

30 inch, propane

Figure 4.2: An antiproton enters the bubble chamber from the top. Its track disappears at the arrow as it charge exchanges, $p \bar{p} \rightarrow n \bar{n}$. The antineutron produces the star seen in the lower portion of the picture. The energy released in the star was greater than 1500 MeV . (Ref. 4.7)

Button et.al. 1961

72 inch, hydogen

Figure 4.3: Production of a $\Lambda \bar{\Lambda}$ pair by an incidel t antiproton. The antiproton enters the chamber at the bottom and annihilates with a proton. The Λ and $\bar{\Lambda}$ decay nearby. The antiproton from the antilambda annihilates on the left-hand side of the picture and gives rise to a 4 prong star. The picture is from the 7 -inch bubble chamber at the Bevatron. (Ref. 4.9)

$$
\mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{n} \overline{\mathrm{n}} \quad \begin{aligned}
& \text { first: Cork, Lambertson, } \\
& \text { Piccioni, Wenzel, } \\
& \text { Pr }
\end{aligned} 1956
$$

$\mathrm{pp} \rightarrow \Lambda \Lambda \quad$ first: Prowse,
Baldo-Ceolin, 1958

Bubble Chamber

Samios, Shutt 1964

- Ω^{-}production
- J ${ }^{\mathrm{P}}=3 / 2^{+}$decuplet complete

Gargamelle chamber 1973 (-1978)

Figure 1.6 First example of weak neutral-current process $\bar{v}_{\mu}+e \rightarrow \bar{v}_{\mu}+e$ observed in heavy-liquid bubble chamber Gargamelle at CERN irradiated with a \bar{v}_{μ} beam (Hasert et al., 1973). A single electron of energy 400 MeV is projected at a small angle $\left(1.5 \pm 1.5^{\circ}\right)$ to the beam, and is identified by bremsstrahlung and pair production along the track (see Chapter 2). About $10^{9} \bar{v}_{\mu}$'s traverse the chamber in each pulse and three such events were observed in 1.4 million pictures. (Courtesy CERN.)

$$
\bar{v}_{\mu} e \bar{v}_{\mu} e
$$

- $\mathrm{E}_{\mathrm{e}}=400 \mathrm{MeV}$, angle: $1.5^{\circ} \pm 1.5^{\circ}$
- bremsstrahlung \& pair-production
- 3 events / 1.4 M pictures, $10^{9} \mathrm{v} / \mathrm{pulse}$

Bubble Chamber

Figure 2.15 Example of charmed-particle production and decay in the hydrogen bubble chamber BEBC exposed to a neutrino beam at the CERN SPS. (Courtesy CERN.)

Scintillation Counter

- liquid organic scintillator (here doped by cadmium)
- charged track excites matrix
\rightarrow UV light emission (absorption length: few mm!)
Cowan, Reines 1956+58 / $\begin{aligned} & \bar{v}_{\mathrm{e}} \text { from } \\ & \text { reactor }\end{aligned}$
ANTINEUTRINO ($\overline{\text { I }}$
FROM REACTOR
\rightarrow absorption by fluorescent agent
\rightarrow re-emission in the visible
\rightarrow photon detection
- time resolution: O(ns)

First neutrino induced reaction:

- inverse neutron decay
- Cd dopant to capture moderated neutrons

$$
\begin{array}{rlr}
\bar{v}_{\mathrm{e}} \mathrm{p} \rightarrow & \mathrm{e}^{+} \mathrm{n} & \text { prompt } \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma & \\
& \mathrm{n} \mathrm{Cd} \rightarrow \mathrm{Cd}^{*} \rightarrow \mathrm{Cd} \gamma & \text { delayed }
\end{array}
$$

- rate with reactor on higher!!

Figure 6.3: A schematic diagram of the experiment of Reines and Cowan in which antineutrinos from a nuclear reactor were detected. The dashed line entering from above indicates the antineutrino. The antineutrino transmutes a proton into a neutron and a positron. The annihilation of the positron produces two prompt gamma rays, which are detected by the scintillator. The neutron is slowed in the scintillator and eventually captured by cadmium, which then also emits delayed gamma rays. The combination of the prompt and delayed gamma rays is the signature of the antineutrino interaction (Ref. 6.7).

Time of Flight

- particle identification through flight time:
$\Delta t=L / c\left(1 / \beta_{1}-1 / \beta_{2}\right), \quad P=m \gamma c$
\square time resolution: $\sigma_{\mathrm{t}}=0.3 \mathrm{~ns}$ (organic scintillation counter)
- $4 \sigma_{\mathrm{t}}$ separation: $\pi-\mathrm{K} @ 1 \mathrm{GeV}$ needs 3.4 m flight path e- π @ 200MeV needs 1m flight path
- method limited to low momenta (<2GeV/c)

10 days after 'November revolution':
(discovery of J/ J)

- discovery of Ψ^{*}

SLAC-LBL MARK [1974

$$
\begin{array}{rlr}
\Psi^{*} \rightarrow & \Psi \pi^{+} \pi^{-} & \pi: 150 \mathrm{MeV} \\
\Psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} & \mathrm{e}: 1.5 \mathrm{GeV}
\end{array}
$$

- subsequent discovery of decay $\Psi^{*} \rightarrow \Psi \pi^{+} \pi^{-}$
- π identification possible due to their low momentum (150 MeV)

Cherenkov Counter

- particle identification through velocity measurement:
\square charged particle: $\quad \beta c=v>c / n$
\square 'shock-wave': coherent wave front with angle

$$
\cos \Theta_{C}=1 / \beta n(\omega)
$$

(+ finite radiator effects)
\rightarrow directed photon signal

- use: $p=m v$
\square concepts:
- threshold counter
- differential counter

- ring imaging
mirror

Figure 2.18 Early design of differential Cerenkov counter. The arrangement is intended to select light from one of three components of the beam (K-mesons, in the case shown).
'CherenkOV ${ }^{\text {Fig. 5.1.12. Differential Cherenkov counter with fixed diaphragm and }}$

variable pressure: $\mathrm{n}(\mathrm{P})$

Gaseous Ionisation Counters

- ionisation in (noble) gas volume
- electrostatic field to separate electrons and ions
- Ionisation chamber
- collect (small) charge
- Proportional counter
- avalanche from secondary ionisation
- gain up to 10^{6}
- Geiger-Müller counter
- chain reaction of avalanches, needs quenching
- saturated output

Fig. 6.2. Number of ions collected versus applied voltage in a single wire gas chamber (from Melissinos [6.1])

Spark Chamber

- planar electrodes with noble gas filling
- alternate connection to pulsed HV (E>20kV/cm) and GND
- charged particle passes
- trigger turns field on
- e-avalanches \& streamers are formed \rightarrow spark
- reach electrodes in $\sim 10 n s$
- spark discharge photographed or electronically registered

Fig. 3.35. Principle of the spark chamber. PM, photomultiplier; F, pulse shaper; C, coincidence unit; V, amplifier; SG, spark gap. The arrow shows the path of an ionizing particle.

- inverted static clearing field: to remove generated charge between discharges \rightarrow dead time up to $100 \mu \mathrm{~s}$
- efficiency depending on time delay and clearing field
\square dead time for HV pulser recharge: 1-10ms

Spark Chamber

First evidence for two neutrinos:

- 15 GeV protons from AGS on Be target

$$
\pi \rightarrow \mu \nu
$$

- μ shielded by 13.5 m iron wall
- 10 ton spark chamber (Al plates)
- μ-appearance with $\mathrm{E}>300 \mathrm{MeV}$:

34: $\quad v \mathrm{n} \rightarrow \mathrm{p} \mu^{-} \quad$ or $\bar{v} \mathrm{p} \rightarrow \mathrm{n} \mu^{+}$
22: $v n \rightarrow \mathrm{n} \pi^{+} \mu^{-}$or $\nu \mathrm{n} \rightarrow \mathrm{p} \mu^{-}$
8: shower-like (unlikely due to e^{-})

- conclusion: v_{μ} and v_{e} exist!!

FIG. 1. Plan view of AGS neutrino experiment.

Schwatz, Ledermann, Steinberger 1962

Streamer Chamber

- planar electrodes with noble gas filling
- charged particle passes
\square trigger switches strong, short field, \perp to track:

$$
\text { E>40kV/cm for } \sim 1 \mathrm{~ns}
$$

\square generates e-avalanches: gas amplification $>10^{8}$

- short discharge channels: 0.2-1mm

Fig. 3.32. Spatial development of a streamer in a time sequence from left to right [AL 69].
cathode

- extremely good space resolution:
\square Yale chamber: E>330kV/cm for $0.5 \mathrm{~ns} \rightarrow$ resolution: $32 \mu \mathrm{~m}$ used e.g. in charmed particle lifetime studies $\left(10^{-13} \mathrm{~s}\right)$

Streamer Chamber

NA5 1980

Fig. 3.33. Interaction of a π^{-}meson at 300 GeV energy in a liquid hydrogen target. The tracks of the reaction products are recorded in a streamer chamber of dimensions $200 \times 120 \times 72 \mathrm{~cm}^{3}$ [EC 80].

Early Spectrometers

Panofsky, Aamodt, Hadley 1951

precise measurement of π masses:

Figure 2.4: The pair spectrometer used by Panofsky, Aamodt, and Hadley in the study of $\pi^{-} p$ and $\pi^{-} d$ reactions. A magnetic field of 14 kG perpendicular to the plane shown bent the positrons and electrons into the Geiger counters on opposite sides of the spectrometer. (Ref. 2.9)

Early Spectrometers

McAllister, Hofstadter 1956
elastic ep scattering \rightarrow structure function - form factor:

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{q}^{2}\right) & =\int \mathrm{d}^{3} r \exp (\mathrm{i} q \cdot r) \rho(r) \\
& =1-\mathrm{q}^{2} / 6<r^{2}>+\ldots
\end{aligned}
$$

$\cdot\left\langle r^{2}\right\rangle=0.74 \pm 0.24 \mathrm{fm}$

- 'root-mean-square charge radius'
measuring structure functions
in inelastic scattering became big business in the late 60's, early 70's
$\cdot d \sigma / d \Omega d E=f\left(F_{1}\left(q^{2}\right), F_{2}\left(q^{2}\right), \ldots\right)$
or

Fig. 2. Arrangement of parts in experiments on electron scattering from a gas target.

Early Spectrometers

Christenson, Cronin, Fitch, Turlay 1964
spectrometer uses:

- spark chambers
- magnet
- scintillator
- water Cherenkov
first observation of: $\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \pi^{-}$
- forbidden if CP symmetry is good
57 Ft to 4
57 Ft to 4 internal target
He bag
- but found: $B R=2 \times 10^{-3}$

FIG. 1. Plan view of the detector arrangement.

- so in fact: $\left|K_{L}^{0}\right\rangle=\left|K_{2}^{0}\right\rangle+\varepsilon\left|K_{1}^{0}\right\rangle$
with $\mid \mathrm{K}_{1}^{0}>\mathrm{CP}$ even $\rightarrow 2 \pi$

$$
\mid \mathrm{K}_{2}^{0}>\mathrm{CP} \text { odd } \rightarrow 3 \pi
$$

Detector Concepts

- Single technology detectors:
- cloud chamber
- bubble chamber
- nuclear emulsion
- liquid scintillator
- spark/streamer chamber
- Spectrometers:
- double arm, fixed angle
- single arm, movable
- combine tracking, energy measurement, triggering and vetoing
- Signal sources:
- cosmic rays
- reactors
- accelerators - fixed target
- accelerators with beam-beam interactions
\square Drive to develop detectors which:
- cover more phase space
- solid angle
- energy range
- provide better resolution
- position
- momentum
- energy
- time
- measure more parameters simultaneously
- integration of technologies
- acquire data faster / more automated
- electronics development
- trigger
\rightarrow General purpose detector: the "egg-laying wool-milk-pig"
\rightarrow you always fight: money, manpower, space, time

Quark Confinement

- Poses an additional Dilemma:
- Theory predicts distributions for quarks and partons to:
- Leading Order (LO)
- Next-to Leading Order (NLO)
- Next-to-Next-to Leading Order (NNLO)
- Leading Logarithms (LL)
- Next-to Leading Logarithms (NLL)
- Experiment/detector measures hadrons
- Hadronisation not well understood:
- theorists develop phenomenological descriptions
- PYTHIA, HERWIG
- experimentalist resort to Monte Carlo methods using these hadronisation models and knowledge about particle interaction with matter to predict the detector response

Underlying Physics....

...Traces in Detector

\square

