

Particle Physics Detectors

or Experimental Electrodynamics

- Elementary particles are detected via their interaction with matter
- Mainly electromagnetic interactions: ionization and excitation of matter
- "Applied QED", but lots of other interesting physics involved

particle physics detectors today are the biggest microscopes in the world looking into the smallest structures

SUPA Graduate Lecture, Oct 2010

22 m

Outline

 Classic detectors Detector concepts 	lecture 1	each new sensor technology increases our experimental reach
Interaction with matter	lecture 2	extension of our senses:
Tracking detectors	lecture 3	sense of touch
Photon detection	lecture 4	visual sense
Calorimeters	lecture 5	smell
 Particle identification Trigger concepts 	lecture 6	every increase in experimental reach opens a window for new insight into the structure of the world
Modern detectors	not presented	
Particle Physics Detectors, 2010	Stephan Eise	enhardt I/2

Classic Detectors

new techniques provided new insight < physics needs drove development

classic experiments defined our modern picture of the fundamental principles

- Measured parameters:
 - particle multiplicity (prong number)
 - vertex position
 - decay angles
 - ionisation of track
 - track curvature in mag. field
 - radius
 - photon production
 - charge production
 - time

– momentum

Derived parameters

- energy loss / deposition
- kinetic energy
- particle ID (hypothesis)

these basic parameters remain the same today...

- velocity

- Particle properties
 - mass
 - charge
 - angular momentum

- spin
- helicity
- life time / decay width
- decay channels

Process properties

- cross-section
- branching ratios
- symmetry conservation

Particle Physics Detectors, 2010

Cloud Chamber

invented 1929-31(?) by Wilson (born in Edinburgh)

- "Wilson chamber"
- chamber with supersaturated vapor
- droplets formed along trail of ionisation
- 6mm lead plate separating upper and lower chamber
- placed in magnetic field
- 6mm lead proper illumination \rightarrow photograph
- momentum measured from radius of curvature

Discovery of positron:

- using cosmic rays
- track enters from below (radius!)
- positive charge (bending direction)
- $Q_{e_{+}} < 2x Q_{e_{-}}$
- M_{e+} < 20x M_{e-}
- out of 1300 photographs 15 with e⁺

FIG. 1. A 63 minor volt positron $(H_{\rho}=2.1\times10^8 \text{ gauss-cm})$ passing through a 6 mm lead plate and emerging at a 23 million volt positron $(H_{\rho}=7.5\times10^4 \text{ gauss-cm})$. The length of this latter path is at least ten mmes greater than the possible length of a proton path of this curvature.

Cloud Chamber

Particle Physics Detectors, 2010

Nuclear Emulsion

Fig. 1.3 Examples of the decay sequence $\pi^* \rightarrow \mu^* \rightarrow e^+$ in G5 emulsion exposed at Pic du Midi. The constancy of range (\$\$600 µm) of the muon implies two-body decay at rest of the pion: $\pi^* \rightarrow \mu^* + \gamma_p$. The first examples of pion decay were observed by Lattes, Muirhead, Occhialini, and Powell in 1947. The electron emitted in muon decay, $\mu^+ \rightarrow \sigma^+ + v_e + \bar{v_s}$, was not observed in the early experiments employing less sensitive emulsions. (Photograph courtesy University of Bristol).

- charged tracks give 'latent images' which become visible from standard photo-processing
- single layer: 25-200µm thick
- several hundred packed in a stack
- correlation via fiducial marks
- $1\mu m$ resolution \rightarrow microscope measurements
- density 3.8 g/cm³ \rightarrow max. energy limited

Discovery of pion decay into muon:

- large ionisation at slow velocity
- decay at rest
- constant muon track length
 - \rightarrow constant energy
 - \rightarrow 2-body decay!
- neutrinos not captured
- electron is relativistic \rightarrow leaves emulsion

Lattes, Muirhead, Occhialini, Powell 1947

Bubble Chamber

- □ invented by Glaser in 1952
- □ filled with liquefied gas at 5-20 atm
- $\Box \quad H_2, D_2, He, C_3H_8, Ar, Ne, Xe$
- close to boiling T
- \Box tracks pass \rightarrow expand volume (1ms)
 - \rightarrow superheating
 - \rightarrow bubbles grow (2ms)
 - \rightarrow relax: bubbles stop growing
 - \rightarrow photograph (stereo, even holographic: HOBC)
- □ cycle time ~ 1s
- □ homogeneous field: up to B=2-3.5T
 - \rightarrow track bending (JBdl=10Tm): particle momentum
 - \rightarrow bubble density ~ energy loss dE/dx
 - \rightarrow for P/(mc)<3: mass measurement m= $\sqrt{1-\beta^2}$ P/(β c)
- advantage: great detail in complex reactions
- □ disadvantage: not usable at collider, energy limited

Figure 2.14 Elevation and plan views of the 3.7-m-diameter bubble chamber (BEBC) at CERN. The chamber is filled with liquid hydrogen, deuterium, or neon-hydrogen mixture and is equipped for neutrino experiments with an external muon identifier. This consists of 150 m² of multiwire proportional chambers placed outside the magnet yoke.

Bubble Chamber

Powell, Segrè et.al. 1958

30 inch, propane

Figure 4.2: An antiproton enters the bubble chamber from the top. Its track disappears at the arrow as it charge exchanges, $p\overline{p} \rightarrow n\overline{n}$. The antineutron produces the star seen in the lower portion of the picture. The energy released in the star was greater than 1500 MeV. (Ref. 4.7)

Button et.al. 1961

Figure 4.3: Production of a $\Lambda\overline{\Lambda}$ pair by an incident antiproton. The antiproton enters the chamber at the bottom and annihilates with a proton. The Λ and $\overline{\Lambda}$ decay nearby. The antiproton from the antilambda annihilates on the left-hand side of the picture and gives rise to a 4 prong star. The picture is from the 72-inch bubble chamber at the Bevatron. (Ref. 4.9)

 $p\overline{p} \rightarrow n\overline{n}$ first: Cork, Lambertson, Piccioni, Wenzel, 1956

 $p\overline{p} \rightarrow \Lambda \overline{\Lambda}$ first: Prowse, Baldo-Ceolin, 1958

Particle Physics Detectors, 2010

Stephan Eisenhardt

72 inch,

hydogen

Bubble Chamber

Samios, Shutt 1964

FIG. 2. Photograph and line diagram of event showing decay of Ω^- .

Ω⁻ production
J^P=3/2⁺ decuplet complete

Gargamelle chamber 1973 (-1978)

Figure 1.6 First example of weak neutral-current process $\bar{\nu}_{\mu} + e \rightarrow \bar{\nu}_{\mu} + e$ observed in heavy-liquid bubble chamber Gargamelle at CERN irradiated with a $\bar{\nu}_{\mu}$ beam (Hasert *et al.*, 1973). A single electron of energy 400 MeV is projected at a small angle $(1.5 \pm 1.5^{\circ})$ to the beam, and is identified by bremsstrahlung and pair production along the track (see Chapter 2). About 10⁹ $\bar{\nu}_{\mu}$'s traverse the chamber in each pulse and three such events were observed in 1.4 million pictures. (Courtesy CERN.)

$$\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$$

- E_e =400MeV, angle: 1.5° ± 1.5°
- bremsstrahlung & pair-production
- 3 events / 1.4M pictures, 10⁹ v/pulse

Particle Physics Detectors, 2010

Figure 2.15 Example of charmed-particle production and decay in the hydrogen bubble chamber BEBC exposed to a neutrino beam at the CERN SPS. (Courtesy CERN.)

Particle Physics Detectors, 2010

Scintillation Counter

liquid organic scintillator (here doped by cadmium)

Cd dopant to capture moderated neutrons

$$\begin{array}{c} \overline{\nu}_e p \rightarrow e^+ n \\ e^+ e^- \rightarrow \gamma \gamma & \text{prompt} \\ n \ \text{Cd} \rightarrow \text{Cd}^* \rightarrow \text{Cd} \ \gamma & \text{delayed} \end{array}$$

• rate with reactor on higher!!

Particle Physics Detectors, 2010

Figure 6.3: A schematic diagram of the experiment of Reines and Cowan in which antineutrinos from a nuclear reactor were detected. The dashed line entering from above indicates the antineutrino. The antineutrino transmutes a proton into a neutron and a positron. The annihilation of the positron produces two prompt gamma rays, which are detected by the scintillator. The neutron is slowed in the scintillator and eventually captured by cadmium, which then also emits delayed gamma rays. The combination of the prompt and delayed gamma rays is the signature of the antineutrino interaction (Ref. 6.7).

132 cm

GAMMA RAYS (0.51 MEV EACH)

Stephan Eisenhardt

 \overline{v}_e from reactor

56 60

Time of Flight

- particle identification through flight time: $\Delta t = L/c (1/\beta_1 - 1/\beta_2), P = m \gamma c$
- time resolution: σ_t =0.3ns (organic scintillation counter)
- $4\sigma_t$ separation:

 π -K @ 1GeV needs 3.4m flight path $e-\pi$ @ 200MeV needs 1m flight path

method limited to low momenta (<2GeV/c)

SLAC-LBL MARK | 1974

Figure 9.1: An example of the decay $\psi' \rightarrow \psi \pi^+ \pi^-$ observed by the SLAC-LBL Mark I Collaboration. The crosses indicate spark chamber hits. The outer dark rectangles show hits in the time-of-flight counters. Ref. 9.5.

10 days after 'November revolution': (discovery of J/Ψ)

- discovery of Ψ^*
- subsequent discovery of decay $\Psi^* \rightarrow \Psi \pi^+ \pi^-$
- π identification possible due to their low momentum (150MeV)

$$\Psi^* \rightarrow \Psi \pi^+ \pi^ \pi$$
: 150MeV
 $\Psi \rightarrow e^+ e^ e$: 1.5GeV

Cherenkov Counter

Gaseous Ionisation Counters

- □ ionisation in (noble) gas volume
- electrostatic field to separate electrons and ions

- Ionisation chamber
 - collect (small) charge
- Proportional counter
 - avalanche from secondary ionisation
 - gain up to 10^6

Geiger-Müller counter

- chain reaction of avalanches, needs quenching
- saturated output

Fig. 6.2. Number of ions collected versus applied voltage in a single wire gas chamber (from *Melissinos* [6.1])

Spark Chamber

- planar electrodes with noble gas filling
- □ alternate connection to pulsed HV (E>20kV/cm) and GND
- □ charged particle passes
- □ trigger turns field on
- \Box e-avalanches & streamers are formed \rightarrow spark
- reach electrodes in ~10ns
- spark discharge photographed or electronically registered.

Fig. 3.35. Principle of the spark chamber. PM, photomultiplier; F, pulse shaper; C, coincidence unit; V, amplifier; SG, spark gap. The arrow shows the path of an ionizing particle.

Fig. 3.36. Detection efficiency of a spark chamber as a function of the time delay between the passage of the particle and the application of the high-voltage pulse to the chamber electrodes; the parameter labelling the curves is the voltage used for clearing the chamber after a spark [CR 60].

- inverted static clearing field: to remove generated charge between discharges \rightarrow dead time up to 100µs
- efficiency depending on time delay and clearing field
- □ dead time for HV pulser recharge: 1-10ms

Spark Chamber

First evidence for two neutrinos:

15GeV protons from AGS on Be target

 $\pi \to \mu \nu$

- $\bullet~\mu$ shielded by 13.5m iron wall
- 10 ton spark chamber (Al plates)
- μ-appearance with E>300MeV:
 - 34: $\nu n \rightarrow p\mu^{-}$ or $\overline{\nu}p \rightarrow n\mu^{+}$
- 22: $\nu n \rightarrow n\pi^+\mu^- \text{ or } \nu n \rightarrow p\mu^-$
 - 8: shower-like (unlikely due to e⁻)
- conclusion: ν_{μ} and ν_{e} exist!!

Schwatz, Ledermann, Steinberger 1962

FIG. 5. Single muon events. (A) $p_{\mu} > 540$ MeV and δ ray indicating direction of motion (neutrino beam incident from left); (B) $p_{\mu} > 700$ MeV/c; (C) $p_{\mu} > 440$ with δ ray.

FIG. 6. Vertex events. (A) Single muon of p_{μ} 500 MeV and electron-type track; (B) possible example of two muons, both leave chamber; (C) four prong star with one long track of $p_{\mu} > 600 \text{ MeV}/c$.

Particle Physics Detectors, 2010

Streamer Chamber

- planar electrodes with noble gas filling
- charged particle passes
- □ trigger switches strong, short field, \perp to track:

E>40kV/cm for ~1ns

- □ generates e-avalanches: gas amplification >10⁸
- □ short discharge channels: 0.2-1mm

Fig. 3.32. Spatial development of a streamer in a time sequence from left to right [AL 69].

CATHODE

- extremely good space resolution:
- □ Yale chamber: E>330kV/cm for 0.5ns \rightarrow resolution: 32µm used e.g. in charmed particle lifetime studies (10⁻¹³s)

Fig. 3.31. Principle of streamer chamber (schematic).

VIEW PARALLEL TO E-FIELD

Particle Physics Detectors, 2010

Streamer Chamber

NA5 1980

Fig. 3.33. Interaction of a π^- meson at 300 GeV energy in a liquid hydrogen target. The tracks of the reaction products are recorded in a streamer chamber of dimensions $200 \times 120 \times 72 \text{ cm}^3$ [EC 80].

 π^{-} beam 300GeV

> 200cm Stephan Eisenhardt

Particle Physics Detectors, 2010

I/18

Early Spectrometers

- π is vector
- π^{-} and π^{0} have same parity

 $\pi^- p$ and $\pi^- d$ reactions. A magnetic field of 14 kG perpendicular to the plane shown bent the positrons and electrons into the Geiger counters on opposite sides of the spectrometer. (Ref. 2.9)

Early Spectrometers

McAllister, Hofstadter 1956

Early Spectrometers

Christenson, Cronin, Fitch, Turlay 1964

• but found: BR = $2x10^{-3}$

• so in fact: $|K_{L}^{0}\rangle = |K_{2}^{0}\rangle + \varepsilon |K_{1}^{0}\rangle$ with $|K_{1}^{0}\rangle$ CP even $\rightarrow 2\pi$ $|K_{2}^{0}\rangle$ CP odd $\rightarrow 3\pi$

Particle Physics Detectors, 2010

Detector Concepts

□ Single technology detectors:

- cloud chamber
- bubble chamber
- nuclear emulsion
- liquid scintillator
- spark/streamer chamber
- □ Spectrometers:
 - double arm, fixed angle
 - single arm, movable
 - combine tracking, energy measurement, triggering and vetoing

□ Signal sources:

- cosmic rays
- reactors
- accelerators fixed target
- accelerators with beam-beam interactions

Drive to develop detectors which:

- cover more phase space
 - solid angle
 - energy range
- provide better resolution
 - position
 - momentum
 - energy
 - time
- measure more parameters simultaneously
 - integration of technologies
- acquire data faster / more automated
 - electronics development
 - trigger
- General purpose detector: the "egg-laying wool-milk-pig"
- ➔ you always fight: money, manpower, space, time
- Stephan Eisenhardt

Quark Confinement

Poses an additional Dilemma:

- Theory predicts distributions for quarks and partons to:
 - Leading Order (LO)
 - Next-to Leading Order (NLO)
 - Next-to-Next-to Leading Order (NNLO)
 - Leading Logarithms (LL)
 - Next-to Leading Logarithms (NLL)
- Experiment/detector measures hadrons
- Hadronisation not well understood:
 - theorists develop phenomenological descriptions
 - PYTHIA, HERWIG
 - experimentalist resort to Monte Carlo methods using these hadronisation models and knowledge about particle interaction with matter to predict the detector response

Particle Physics Detectors, 2010

... Traces in Detector

Particle Physics Detectors, 2010

Particle Physics Detectors, 2010