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particle physics detectors today
are the biggest microscopes in the world
looking into the smallest structures

Elementary particles are detected via their
interaction with matter

Mainly electromagnetic interactions:
ionization and excitation of matter

“Applied QED”, but lots of other
interesting physics involved
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extension of our senses:

sense of touch

visual sense
heat sense
smell

each new sensor technology increases
our experimental reach

every increase in experimental reach
opens a window for new insight into
the structure of the world
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Classic Detectors
physics needs drove developmentnew techniques provided new insight

classic experiments defined our modern picture of the fundamental principles
Measured parameters:

– particle multiplicity 
(prong number)

– vertex position
– decay angles
– ionisation of track
– track curvature in 

mag. field
– radius
– photon production
– charge production
– time

Derived parameters
– momentum
– energy loss / deposition
– kinetic energy
– particle ID (hypothesis)
– velocity

Particle properties
– mass
– charge
– angular momentum
– spin
– helicity
– life time / decay width
– decay channels

Process properties
– cross-section
– branching ratios
– symmetry conservation

these basic parameters remain the same today…
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Cloud Chamber

“Wilson chamber”
chamber with supersaturated vapor
droplets formed along trail of ionisation

6mm lead plate separating upper and lower chamber
placed in magnetic field

proper illumination → photograph
momentum measured from radius of curvature

e+

Anderson 1933

6mm lead

15 kG

Discovery of positron:
• using cosmic rays
• track enters from below (radius!)
• positive charge (bending direction)
• Qe+ < 2x Qe-
• Me+ < 20x Me-
• out of 1300 photographs 15 with e+

invented 1929-31(?) by Wilson
(born in Edinburgh)
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Cloud Chamber
Rochester & Butler 1947stereoscopic photographs

5000 photographs / 1500 hours
(3.3 per hour)
2 with new features …

• neutral particle decay
into two charged

0

-

+

+

+

0

3cm lead

Discoveries:
• using cosmic rays

• charged particle decay
into charged and neutral

3.5 kG 7.2 kG

Modern candidates: KS
0 → π+π- K+ → π+π0
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Nuclear Emulsion
emulsion with photographic silver-bromide crystals
charged tracks give ‘latent images’ which become 
visible from standard photo-processing
single layer: 25-200μm thick
several hundred packed in a stack
correlation via fiducial marks
1μm resolution → microscope measurements
density 3.8 g/cm3 → max. energy limited

e

μ

π

~
60

0μ
m

Lattes, Muirhead, Occhialini, Powell 1947

Discovery of pion decay into muon:
• large ionisation at slow velocity
• decay at rest
• constant muon track length

→ constant energy
→ 2-body decay!

• neutrinos not captured
• electron is relativistic → leaves emulsion

Modern picture:

π+→ μ++νμ
μ+→ e++νe+νμ
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Bubble Chamber
BEBC, 1976-83

ν beam

piston

3.7m

μ filter

MWPC

side

top

ν beam

invented by Glaser in 1952
filled with liquefied gas at 5-20 atm
H2,D2, He, C3H8 ,Ar, Ne, Xe
close to boiling T
tracks pass → expand volume (1ms)
→ superheating
→ bubbles grow (2ms)
→ relax: bubbles stop growing
→ photograph (stereo, even holographic: HOBC)
cycle time ~ 1s
homogeneous field: up to B=2-3.5T
→ track bending (∫Bdl=10Tm): particle momentum
→ bubble density ~ energy loss dE/dx
→ for P/(mc)<3: mass measurement m=√1-β2 P/(βc)

advantage: great detail in complex reactions
disadvantage: not usable at collider, energy limited
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Bubble Chamber
Powell, Segrè et.al. 1958

pp→ nn

p

n

p

p

p

p
p

pp→ ΛΛ

Button et.al. 1961

first: Cork, Lambertson,
Piccioni, Wenzel, 1956

first: Prowse,
Baldo-Ceolin, 1958

30 inch,
propane

72 inch,
hydogen



I/9Particle Physics Detectors, 2010 Stephan Eisenhardt

Bubble Chamber
Gargamelle chamber 1973 (-1978)

νμe→νμe

• Ee=400MeV, angle: 1.5°± 1.5°
• bremsstrahlung & pair-production
• 3 events / 1.4M pictures, 109 ν/pulse

νμ e

Samios, Shutt 1964

80 inch,
hydogen

• Ω- production
• JP=3/2+ decuplet complete
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Bubble Chamber
BEBC

• charm production
• … after 1974 …

νμ
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Scintillation Counter

Cowan, Reines 1956+58
νe from
reactor

liquid organic scintillator (here doped by cadmium)

charged track excites matrix
→ UV light emission (absorption length: few mm!)
→ absorption by fluorescent agent
→ re-emission in the visible
→ photon detection
time resolution: O(ns)

νep → e+n
e+e- → γγ prompt
n Cd → Cd* → Cd γ delayed

First neutrino induced reaction:
• inverse neutron decay
• Cd dopant to capture moderated neutrons

• rate with reactor on higher!!
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Time of Flight

SLAC-LBL MARK I 1974
particle identification through flight time:
Δt=L/c (1/β1-1/β2),   P = m γc
time resolution: σt=0.3ns
(organic scintillation counter)
4σt separation:
π-K @ 1GeV needs 3.4m flight path
e-π @ 200MeV needs 1m flight path
method limited to low momenta (<2GeV/c)

10 days after ‘November revolution’:
(discovery of J/Ψ)
• discovery of Ψ*
• subsequent discovery of decay Ψ*→Ψπ+π-

• π identification possible due to their low momentum (150MeV)

Ψ*→ Ψπ+π- π: 150MeV
Ψ→ e+e- e: 1.5GeV

ToF

el.mag. shower counters

spark
chamber
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particle identification through velocity measurement:
charged particle: βc = v > c/n
‘shock-wave’: coherent wave front with angle

cos ΘC = 1/βn(ω)
(+ finite radiator effects)
directed photon signal
use: p=mv
concepts:

– threshold counter
– differential counter
– ring imaging

Cherenkov Counter

Θ

γ

γ

beam
fixed n

mirror

PMT

beam

variable pressure: n(P)

PMT

optical
collimation

15GeV/c

1   0.998  0.996   β

π-

K-

p Σ-

Ξ-

γ

‘Cherenkov
spectroscopie’
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Gaseous Ionisation Counters
ionisation in (noble) gas volume
electrostatic field to separate electrons and ions

Ionisation chamber
– collect (small) charge

Proportional counter
– avalanche from secondary ionisation
– gain up to 106

Geiger-Müller counter
– chain reaction of avalanches, needs quenching
– saturated output

+V0

GND

space
charge

V

Q
 [

e]
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Spark Chamber

planar electrodes with noble gas filling
alternate connection to pulsed HV (E>20kV/cm) and GND
charged particle passes
trigger turns field on
e-avalanches & streamers are formed → spark
reach electrodes in ~10ns
spark discharge photographed or electronically registered

inverted static clearing field: to remove generated charge 
between discharges → dead time up to 100μs
efficiency depending on time delay and clearing field
dead time for HV pulser recharge: 1-10ms

20kV
gap: O(1cm) t [μs]
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Spark Chamber
Schwatz, Ledermann, Steinberger 1962

First evidence for two neutrinos:
• 15GeV protons from AGS on Be target

π → μν
• μ shielded by 13.5m iron wall
• 10 ton spark chamber (Al plates)
• μ-appearance with E>300MeV:
34:   νn → pμ- or  νp → nμ+

22:   νn → nπ+μ- or  νn → pμ-

8:   shower-like (unlikely due to e-)
• conclusion: νμ and νe exist!!

AGStarget

13.5m ion

spark chamber

single μ
μ and e?

2μ

μ from 4-prong star

ν

>540MeV

>700MeV

>440MeV
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planar electrodes with noble gas filling
charged particle passes
trigger switches strong, short field, ⊥ to track:

E>40kV/cm for ~1ns
generates e-avalanches: gas amplification >108

short discharge channels: 0.2-1mm

extremely good space resolution:
Yale chamber: E>330kV/cm for 0.5ns → resolution: 32μm
used e.g. in charmed particle lifetime studies (10-13s)

Streamer Chamber
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Streamer Chamber
NA5 1980

π- beam

300GeV

200cm

12
0c

m

liquid hydrogen
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precise measurement of π masses:

• mπ = 275.2 ± 2.5 me
• mπ-- mπ0 = 10.6 ± 2.0 me

determination of quantum numbers:

• from symmetries: 
• π is vector
• π- and π0 have same parity

Early Spectrometers

γ

e+ e-

14 kG

Panofsky, Aamodt, Hadley 1951

π-p→ π0n
π0→ γγ

π-p→ γn

π-d→ nn    seen (inferred from π-p)
π-d→ nnγ
π-d→ nnπ0 not seen
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Early Spectrometers
McAllister, Hofstadter 1956

elastic ep scattering → structure function
• form factor:

F(q2) = ∫d3r exp(i q⋅r) ρ(r)
= 1 – q2/6 <r2>+…

• <r2> = 0.74 ± 0.24 fm
• ‘root-mean-square charge radius’

beam

hydrogen target chamber

28cm

188MeV e-

movable
spectrometer

measuring structure functions
in inelastic scattering
became big business
in the late 60’s, early 70’s
• dσ/dΩdE = f(F1(q2), F2(q2),…)
or

• e±p, e±n, e±d, νp, νn, νd, …
(-)     (-)     (-)
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Early Spectrometers

Christenson, Cronin, Fitch, Turlay 1964

K0
L beam

π

π
first observation of: K0

L→π+π-

• forbidden if CP symmetry is good

• but found: BR = 2x10-3

• so in fact: |K0
L> = |K0

2> + ε|K0
1>

with |K0
1> CP even → 2π

|K0
2> CP odd → 3π

spectrometer uses:
• spark chambers
• magnet
• scintillator
• water Cherenkov

He bag
to minimise iteractions
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Detector Concepts
Single technology detectors:

– cloud chamber
– bubble chamber
– nuclear emulsion
– liquid scintillator
– spark/streamer chamber

Spectrometers:
– double arm, fixed angle
– single arm, movable
– combine tracking, energy 

measurement, triggering and vetoing

Signal sources:
– cosmic rays
– reactors
– accelerators - fixed target
– accelerators with beam-beam

interactions

Drive to develop detectors which:
– cover more phase space

• solid angle
• energy range

– provide better resolution
• position
• momentum
• energy
• time

– measure more parameters
simultaneously

• integration of technologies
– acquire data faster / more

automated
• electronics development
• trigger

General purpose detector:
the “egg-laying wool-milk-pig”

you always fight: money, manpower, space, time
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Quark Confinement
Poses an additional Dilemma:
– Theory predicts distributions for quarks and partons to:

• Leading Order (LO)
• Next-to Leading Order (NLO)
• Next-to-Next-to Leading Order (NNLO)
• Leading Logarithms (LL)
• Next-to Leading Logarithms (NLL)

– Experiment/detector measures hadrons 

Hadronisation not well understood:
– theorists develop phenomenological descriptions

• PYTHIA, HERWIG
– experimentalist resort to Monte Carlo methods using these 

hadronisation models and knowledge about particle interaction with 
matter to predict the detector response
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Underlying Physics…
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…Traces in Detector
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