
CHAPTER 9

Two Proofs of Completeness Theorem

There are many proof systems that describe classical propositional logic, i.e.
that are complete proof systems with the respect to the classical semantics.

We present here a Hilbert proof system for the classical propositional logic and
discuss two ways of proving the Completeness Theorem for it.

Any proof of the Completeness Theorem consists always of two parts. First we
have show that all formulas that have a proof are tautologies. This implication
is also called a Soundness Theorem, or soundness part of the Completeness
Theorem. The second implication says: if a formula is a tautology then it has a
proof. This alone is often called a Completeness Theorem. In our case, we call
it a completeness part of the Completeness Theorem.

The proof of the soundness part is standard. We concentrate here on the com-
pleteness part of the Completeness Theorem and present two proofs of it.

The first proof is straightforward. It shows how one can use the assumption
that a formula A is a tautology in order to construct its formal proof. It is
hence called a proof - construction method.

The second proof shows how one can deduce that a formula A is not a tautology
from the fact that it does not have a proof. It is hence called a counter-model
construction method.

All these proofs and considerations are relative to a proof system whose com-
pleteness we discuss and its semantics.

The semantics is, of course, that for classical propositional logic, so when we
write

|= A

we mean that A is a classical propositional tautology.

As far as the proof system is concerned we define here a certain class S of proof
systems, instead of one proof system. We show that the Completeness Theorem
holds for any system S from this class S. In particular, our system H2 from
chapter 8 is complete, as it belongs to the class of systems S.

1 Classical Propositional System H2

There are many Hilbert style proof systems for the classical propositional cal-
culus. We present here one of them as it was called defined in chapter 8, and

1

prove the Completeness theorem for it.

H2 is the following proof system:

H2 = (L{⇒,¬}, {A1, A2, A3}, MP) (1)

where A1, A2, A3 are axioms of the system defined below, MP is its rule of
inference, called Modus Ponens is called a Hilbert proof system for the classical
propositional logic. The axioms A1−A3 are defined as follows.

A1 (A⇒ (B ⇒ A)),

A2 ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

MP (Rule of inference)

(MP)
A ; (A⇒ B)

B
,

and A,B,C are any formulas of the propositional language L{⇒,¬}.

We write, as before

`H2
A

to denote that a formula A has a formal proof in H2 (from the set of logical
axioms A1, A2, A3), and

Γ `H2
A

to denote that a formula A has a formal proof in H2 from a set of formulas Γ
(and the set of logical axioms A1, A2, A3.

Obviously, the selected axioms A1, A2, A3 are tautologies, and the Modus Po-
nens rule leads from tautologies to tautologies, hence our proof system H2 is
sound i.e. the following theorem holds.

Theorem 1.1 (Soundness Theorem) For every formula A ∈ F ,

if `H2
A, then |= A.

2

The soundness theorem proves that our prove system ”produces” only tautolo-
gies. We show, as the next step, that our proof system ”produces” not only
tautologies, but all of the tautologies. This is called a completeness theorem.

The proof of completeness theorem for a given semantics and a given proof
system is always a main point in any logic creation. There are many ways
(techniques) to prove it, depending on the proof system and on the given se-
mantics.

We present here two proofs of the completeness theorem for our system H2 as
also defined in Chapter 8.

The first proof is presented in the section 3. It is very elegant and simple, but is
only applicable to the classical propositional logic semantics and proof systems.
It is, as the proof of Deduction Theorem, a fully constructive proof.

The technique it uses, because of its specifics can’t even be used in a case of
classical predicate logic, not to mention non-classical logics.

The second proof is presented the section 4. The techniques defined in this proof
are as you will see are much more complicated. Their strength and importance
lies in a fact that they can be applied in an extended version to the proof of
completeness for classical predicate logic and many non-classical propositional
and predicate logics.

The second proof is based on the fact that it provides a method of a construc-
tion of a counter-model for a formula A based on the knowledge that A is not
provable. This means that one can prove that a formula A is not a tautology
from the fact that it does not have a proof.

The way we define a counter-model for any non-provable A is much more general
(and less constructive) then in the case of our first proof in section 3. We hence
call it a a counter-model existence method.

The importance of this method lies, as we mentioned before, in the fact that
it generalizes to the case of predicate logic, and many of non-classical logics;
propositional and predicate. It is hence a much more general method then the
first one and this is the reason we present it here.

2 The System S

In fact, the two proofs of Completeness Theorem can be performed for any proof
system S for classical propositional logic in which the formulas 1, 3, 4, and 7-9
stated in lemma 4.1, Chapter 8 and all axioms of the system H2 are provable.
We assume provability of these formulas as they are formulas used in the proof
of Deduction Theorem, and in both proofs of the Completeness Theorem.

3

It means that both proofs are valid for any proof system define as follows.

Let
S = (L{⇒,¬}, AX, MP)

be a sound proof system with a set of logical axioms AX such that all formulas
listed below are provable in S.

(A⇒ (B ⇒ A)), (2)

((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))), (3)

((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)), (4)

(A⇒ A), (5)

(B ⇒ ¬¬B), (6)

(¬A⇒ (A⇒ B)), (7)

(A⇒ (¬B ⇒ ¬(A⇒ B))), (8)

((A⇒ B)⇒ ((¬A⇒ B)⇒ B)), (9)

((¬A⇒ A)⇒ A), (10)

We present here two proofs of the following theorem.

Theorem 2.1 (Completeness Theorem) For any formula A of S,

|= A if and only if `S A.

OBSERVATION 1
The formulas (2) - (4) are axioms of H2 and formulas (5) - (10) have proofs in it,
by the lemma 4.1, Chapter 8 and we have proved that the system H2 is sound,
hence the Completeness Theorem for the system S implies the completeness of
the system H2. We get, as a particular case of the theorem 2.1 the following
theorem.

Theorem 2.2 (Completeness Theorem for H2) For any formula A of H2,

|= A if and only if `H2
A.

OBSERVATION 2
We have assumed that the system S is sound, i.e. that the following theorem
holds for S.

4

Theorem 2.3 (Soundness Theorem)

For any formula A of S,

if `SA, then |= A.

It means that in order to prove the Completeness Theorem 2.1 we need to prove
only the following implication.

For any formula A of S,

If |= A, then `SA. (11)

Both proofs of the Completeness Theorem relay on the Deduction Theorem, as
discussed and proved in the previous chapter.

This theorem was proved for the system H1 that is different that S, but note,
that only the formulas (2), (3) and (5) were used in its proof, so the proof holds
for the system S as well, as it held for the system H2, i.e. we have the following
theorem.

Theorem 2.4 (Deduction Theorem for S) For any formulas A, B of S
and Γ be any subset of formulas of S,

Γ, A `S B if and only if Γ `S (A⇒ B). (12)

3 Proof 1: Proof Construction Method

The proof presented here is similar in its structure to the proof of the deduction
theorem and is due to Kalmar, 1935. It is a constructive proof. It shows how
one can use the assumption that a formula A is a tautology in order to construct
its formal proof. We hence call it a proof construction method. It relies heavily
on the Deduction Theorem.

In order to prove that any tautology has a formal proof in S, we need first to
present one definition and to prove one lemma. We write ` A instead of `S A,
as the system S is fixed.

Definition 3.1 Let A be a formula and b1, b2, ..., bn be all propositional vari-
ables that occur in A. Let v be variable assignment v : V AR −→ {T, F}. We
define, for A, b1, b2, ..., bn and v a corresponding formulas A′, B1, B2, ..., Bn as
follows:

A′ =

{
A if v∗(A) = T
¬A if v∗(A) = F

5

Bi =

{
bi if v(bi) = T
¬bi if v(bi) = F

for i = 1, 2, ..., n.

Example 1

Let A be a formula
(a⇒ ¬b) (13)

and let v be such that
v(a) = T, v(b) = F. (14)

In this case b1 = a, b2 = b, and v∗(A) = v∗(a ⇒ ¬b) = v(a) ⇒ ¬v(b)=
T ⇒ ¬F = T. The corresponding A′, B1, B2 are:

A′ = A (as v∗(A) = T),

B1 = a (as v(a) = T),

B2 = ¬b (as v(b) = F).

Example 2

Let A be a formula
((¬a⇒ ¬b)⇒ c)

and let v be such that

v(a) = T, v(b) = F, v(c) = F.

Evaluate A′, B1, ...Bn as defined by the definition 3.1.

In this case n = 3 and b1 = a, b2 = b, b3 = c, and v∗(A) = v∗((¬a⇒ ¬b)⇒ c)
=((¬v(a)⇒ ¬v(b))⇒ v(c)) = ((¬T ⇒ ¬F)⇒ F) = (T ⇒ F) = F .

The corresponding A′, B1, B2, B2 are:

A′ = ¬A = ¬((¬a⇒ ¬b)⇒ c) (as v∗(A) = F),

B1 = a (as v(a) = T),

B2 = ¬b (as v(b) = F).

B3 = ¬c (as v(c) = F).

The lemma stated below describes a method of transforming a semantic notion
of a tautology into a syntactic notion of provability. It defines, for any formula
A and a variable assignment v a corresponding deducibility relation `.

6

Lemma 3.1 (Main Lemma) For any formula A and a variable assignment
v, if A

′
, B1 , B2, ..., Bn are corresponding formulas defined by 3.1, then

B1, B2, ..., Bn ` A′. (15)

Example 3

Let A, v be as defined by 13, 14, then the lemma 3.1 asserts that

a,¬b ` (a⇒ ¬b).

Example 4

Let A, v be as defined in example 2, then the lemma 3.1 asserts that

a,¬b,¬c ` ¬((¬a⇒ ¬b)⇒ c)

3.1 Proof of the Main Lemma

The Main Lemma 3.1 states:

For any formula A and a variable assignment v, if A
′
, B1 , B2, ..., Bn are

corresponding formulas defined by definition 3.1, then

B1, B2, ..., Bn ` A′.

The proof is by induction on the degree of A i.e. a number n of logical connec-
tives in A.

Case: n = 0

In the case that n = 0 A is atomic and so consists of a single propositional
variable, say a. We have to cases to consider, v∗(A) = T or v∗(A) = F .
Clearly, if v∗(A) = T then we A′ = A = a, B1 = a, and a ` a holds by the
Deduction Theorem and (5). I.e. ` (a ⇒ a) holds by (5) and applying
the the Deduction Theorem we get a ` a.

If v∗(A) = F then we A′ = ¬A = ¬a, B1 = ¬a, and ` (¬a ⇒ ¬a) holds
by (5). Applying the the Deduction Theorem we get ¬a ` ¬a. So the
lemma holds for the case n = 0.

Now assume that the lemma holds for any A with j < n logical connectives
(any A of the degree j < n). The goal is to prove that it holds for A with the
degree n.
There are several subcases to deal with.

7

Case: A is ¬A1

If A is of the form ¬A1 then A1 has less then n connectives and by the
inductive assumption we have the formulas A

′

1, B1 , B2, ..., Bn corre-
sponding to the A1 and the propositional variables b1, b2, ..., bn in A1, as
defined by the definition 3.1, such that

B1, B2, ..., Bn ` A
′

1. (16)

Observe, that the formulas A and ¬A1 have the same propositional vari-
ables, so the corresponding formulas B1 , B2, ..., Bn are the same for both
of them. We are going to show that the inductive assumption (16) allows
us to prove that the lemma holds for A, ie. that

B1, B2, ..., Bn ` A
′
.

There two cases to consider.

Case: v∗(A1) = T

If v∗(A1) = T then by definition 3.1 A
′

1 = A1 and by the inductive as-
sumption (16)

B1, B2, ..., Bn ` A1. (17)

In this case v∗(A) = v∗(¬A1) = ¬v∗(T) = F and so A
′

= ¬A = ¬¬A1.
Since we have assumed (6), i.e. that ` (A1 ⇒ ¬¬A1) we have by the
monotonicity that also B1, B2, ..., Bn ` (A1 ⇒ ¬¬A1). By (17) and
Modus Ponens also B1, B2, ..., Bn ` ¬¬A1, that is B1, B2, ..., Bn ` ¬A,
that is B1, B2, ..., Bn ` A

′
.

Case: v∗(A1) = F

If v∗(A1) = F then A
′

1 = ¬A1 and v∗(A) = T so A
′

= A. Therefore the
inductive assumption (16) B1, B2, ..., Bn ` ¬A1, that is B1, B2, ..., Bn `
A

′
.

Case: A is (A1 ⇒ A2)

A = A(b1, ... bn) so there are some subsequences c1, ..., ck and d1, ...dm
(k,m ≤ n) of the sequence b1, ..., bn such that A1 = A1(c1, ..., ck) and
A2 = A(d1, ...dm). A1 and A2 have less than n connectives and so by
the inductive assumption we have appropriate formulas C1, ..., Ck and
D1, ...Dm such that

C1, C2, ..., Ck ` A1

′
and D1, D2, ..., Dm ` A2

′

and C1, C2, ..., Ck, D1, D2, ..., Dm are subsequences of formulas B1, B2, ..., Bn

corresponding to the propositional variables in A. By monotonicity we
have

B1, B2, ..., Bn ` A1

′
and B1, B2, ..., Bn ` A2

′
. (18)

Here we have the following subcases to consider.

8

Case: v∗(A1) = v∗(A2) = T

If v∗(A1) = T then A1

′
is A1 and if v∗(A2) = T then A2

′
is A2. We

also have v∗(A1 ⇒ A2) = T and so A
′

is (A1 ⇒ A2). By the above and
() we have that B1, B2, ..., Bn ` A2 and since we have assumed (2) i.e.
` (A2 ⇒ (A1 ⇒ A2)), we have by monotonicity and Modus Ponens, that
B1, B2, ..., Bn ` (A1 ⇒ A2), that is B1, B2, ..., Bn ` A

′
.

Case: v∗(A1) = T, v∗(A2) = F

If v∗(A1) = T then A1

′
is A1 and if v∗(A2) = F then A2

′
is ¬A2. Also we

have in this case v∗(A1 ⇒ A2) = F and so A
′
is ¬(A1 ⇒ A2). By the above

and (3.1) we have that B1, B2, ..., Bn ` A1 and B1, B2, ..., Bn ` ¬A2.
Since we have assumed formula (8), i.e. ` (A1 ⇒ (¬A2 ⇒ ¬(A1 ⇒ A2)))
, we have by monotonicity and Modus Ponens twice, that B1, B2, ..., Bn `
¬(A1 ⇒ A2), that is B1, B2, ..., Bn ` A

′
.

Case: v∗(A1) = F

If v∗(A1) = F then A1

′
is ¬A1 and, whatever value v gives A2, we have

v∗(A1 ⇒ A2) = T and so A
′

is (A1 ⇒ A2). Therefore, by (3.1) and above
B1, B2, ..., Bn ` ¬A1 and since by formula (7) we have ` (¬A1 ⇒ (A1 ⇒
A2)). By monotonicity and Modus Ponens we get that B1, B2, ..., Bn `
(A1 ⇒ A2), that is B1, B2, ..., Bn ` A

′
.

With that we have covered all cases and, by induction on n, the proof of the
lemma is complete.

3.2 Proof 1 of the Completeness Theorem

Now we use the Main Lemma 3.1 to prove the Completeness Theorem 2.1 i.e.
to prove the following implication: for any formula A of S,

if |= A then ` A.

Assume that |= A. Let b1, b2, ..., bn be all propositional variables that occur in
A, i.e. A = A(b1, b2, ..., bn).

Let v : V AR→ {T, F} be any variable assignment, and

vA : {b1, b2,, bn} → {T, F} (19)

its restriction to the formula A, i.e. vA = v|{b1, b2,, bn}. Let

VA = {vA : vA : {b1, b2,, bn} → {T, F}} (20)

By the Main Lemma 3.1 and the assumption that |= A any v ∈ VA defines
formulas B1 , B2, ..., Bn such that

9

B1, B2, ..., Bn ` A. (21)

The proof is based on a method of using all v ∈ VA to define a process of
elimination of all hypothesis B1, B2, ..., Bn in 21) to finally construct the proof
of A in S i.e. to prove that ` A.

Step 1: elimination of Bn.

Observe that by definition 3.1, each Bi is bi or ¬bi depending on the
choice of v ∈ VA. In particular Bn = bn or Bn = ¬bn. We choose two
truth assignments v1 6= v2 ∈ VA such that

v1|{b1, ..., bn−1} = v2|{b1, ..., bn−1} (22)

and v1(bn) = T and v2(bn) = F .

Case 1: v1(bn) = T , by definition 3.1 Bn = bn. By the property (22), assump-
tion that |= A, and the Main Lemma 3.1 applied to v1

B1, B2, ..., Bn−1, bn ` A.

By Deduction Theorem 2.4 we have that

B1, B2, ..., Bn−1 ` (bn ⇒ A). (23)

Case 2: v2(bn) = F hence by definition 3.1 Bn = ¬bn. By the property (22),
assumption that |= A, and the Main Lemma 3.1 applied to v2

B1, B2, ...Bn−1,¬bn ` A.

By the Deduction Theorem 2.4 we have that

B1, B2, ..., Bn−1 ` (¬bn ⇒ A). (24)

By the assumed provability of the formula (9) for A = bn, B = A we have that

` ((bn ⇒ A)⇒ ((¬bn ⇒ A)⇒ A)).

By monotonicity we have that

B1, B2, ..., Bn−1 ` ((bn ⇒ A)⇒ ((¬bn ⇒ A)⇒ A)). (25)

Applying Modus Ponens twice to the above property (25) and properties (23),
(24) we get that

B1, B2, ..., Bn−1 ` A. (26)

and hence we have eliminated Bn.

10

Step 2: elimination of Bn−1 from (26). We repeat the Step 1.
As before we have 2 cases to consider: Bn−1 = bn−1 or Bn−1 = ¬bn−1.
We choose two truth assignments w1 6= w2 ∈ VA such that

w1|{b1, ..., bn−2} = w2|{b1, ..., bn−2} = v1|{b1, ..., bn−2} = v2|{b1, ..., bn−2}
(27)

and w1(bn−1) = T and w2(bn−1) = F .

As before we apply Main Lemma, Deduction Theorem, monotonicity,
proper substitutions of assumed provability of the formula (?? i.e the fact
that ` ((A ⇒ B) ⇒ ((¬A ⇒ B) ⇒ B)), and Modus Ponens twice and
eliminate Bn−1 just as we eliminated Bn.

After n steps, we finally obtain that

` A.

This ends the proof of Completeness Theorem.

Observe that our proof of the fact that ` A is a constructive one. Moreover,
we have used in it only Main Lemma 3.1 and Deduction Theorem 2.4 which
both have a constructive proofs. We can hence reconstruct proofs in each case
when we apply these theorems back to the original axioms of the system S, and
in particular to the oroginal axioms A1 − A3 of H2. The same applies to the
proofs in H2 of all formulas (2) - (10) of the system S. It means that for any
A, such that |= A, the set VA of all v restricted to A provides us a method
of a construction of the formal proof of A in H2, or in any system S in which
formulas (2) - (10) are provable.

3.3 Proof 1: Examples and Exercises

Example 3.1 As an example of how the proof of the Completeness Theorem
works, we consider the case in which A is a following tautology

(a⇒ (¬a⇒ b))

and show how we use them to show that ` A.

We apply the Main Lemma 3.1 to all possible variable assignments v ∈ VA. We
have 4 variable assignments to consider.

Case 1: v(a) = T, v(b) = T .
In this case B1 = a,B2 = b and, as in all cases A

′
= A and by the

lemma 3.1
a, b ` (a⇒ (¬a⇒ b)).

11

Case 2: v(a) = T, v(b) = F .
In this case B1 = a,B2 = ¬b and by the lemma 3.1

a,¬b ` (a⇒ (¬a⇒ b)).

Case 3: v(a) = F, v(b) = T .
In this case B1 = ¬a,B2 = b and by the lemma 3.1

¬a, b ` (a⇒ (¬a⇒ b)).

Case 4: v(a) = F, v(b) = F .
In this case B1 = ¬a,B2 = ¬b and by the lemma 3.1

¬a,¬b ` (a⇒ (¬a⇒ b)).

Applying the Deduction Theorem to the cases above we have that

D1 (Cases 1 and 2)
a ` (b⇒ (a⇒ (¬a⇒ b))),

a ` (¬b⇒ (a⇒ (¬a⇒ b))),

D2 (Cases 2 and 3)
¬a ` (b⇒ (a⇒ (¬a⇒ b))),

¬a ` (¬b⇒ (a⇒ (¬a⇒ b))).

By the monotonicity and formula (9) we have that

a ` ((b⇒ (a⇒ (¬a⇒ b)))⇒ ((¬b⇒ (a⇒ (¬a⇒ b)))⇒ (a⇒ (¬a⇒ b))),

¬a ` ((b⇒ (a⇒ (¬a⇒ b)))⇒ ((¬b⇒ (a⇒ (¬a⇒ b)))⇒ (a⇒ (¬a⇒ b))).

Applying Modus Ponens twice to D1, D2 and these above, respectively, gives
us

a ` (a⇒ (¬a⇒ b)) and

¬a ` (a⇒ (¬a⇒ b)).

Applying the Deduction Theorem to the above we obtain

D3 ` (a⇒ (a⇒ (¬a⇒ b))) and

D4 ` (¬a⇒ (a⇒ (¬a⇒ b))).

Applying Modus Ponens twice to D3 and D4 and the following form of 9,
` ((a⇒ (a⇒ (¬a⇒ b)))⇒ ((¬a⇒ (a⇒ (¬a⇒ b)))⇒ (a⇒ (¬a⇒ b)))) we
get finally (a⇒ (¬a⇒ b)) is provable in S, i.e. we have proved that

` (a⇒ (¬a⇒ b)).

12

Example 3.2 The proof of Completeness Theorem defines a method of effi-
ciently combining v ∈ VA while constructing the proof of A. Let consider the
following tautology A = A(a, b, c)

((¬a⇒ b)⇒ (¬(¬a⇒ b)⇒ c).

We present bellow all steps of Proof 1 as applied to A.

By the Main Lemma 3.1 and the assumption that |= A(a, b, c) any v ∈ VA

defines formulas Ba , Bb, Bc such that

Ba, Bb, Bc ` A. (28)

The proof is based on a method of using all v ∈ VA (there is 16 of them) to
define a process of elimination of all hypothesis Ba, Bb, Bc in (28) to construct
the proof of A in S i.e. to prove that ` A.

Step 1: elimination of Bc.

Observe that by definition 3.1, Bc is c or ¬c depending on the choice of
v ∈ VA. We choose two truth assignments v1 6= v2 ∈ VA such that

v1|{a, b} = v2|{a, b} (29)

and v1(c) = T and v2(c) = F .

Case 1: v1(c) = T , by definition 3.1 Bc = c. By the property (29), assumption
that |= A, and the Main Lemma 3.1 applied to v1

Ba, Bb, c ` A.

By Deduction Theorem 2.4 we have that

Ba, Bb ` (c⇒ A). (30)

Case 2: v2(c) = F hence by definition 3.1 Bc = ¬c. By the property (29),
assumption that |= A, and the Main Lemma 3.1 applied to v2

Ba, Bb,¬c ` A.

By the Deduction Theorem 2.4 we have that

Ba, Bb ` (¬c⇒ A). (31)

13

By the assumed provability of the formula (9) for A = c,B = A we have that

` ((c⇒ A)⇒ ((¬c⇒ A)⇒ A)).

By monotonicity we have that

Ba, Bb ` ((c⇒ A)⇒ ((¬c⇒ A)⇒ A)). (32)

Applying Modus Ponens twice to the above property (32) and properties (30),
(31) we get that

Ba, Bb ` A. (33)

and hence we have eliminated Bc.

Step 2: elimination of Bb from (33). We repeat the Step 1.
As before we have 2 cases to consider: Bb = b or Bb = ¬b. We choose
from VA two truth assignments w1 6= w2 ∈ VA such that

w1|{a} = w2|{a} = v1|{a} = v2|{a} (34)

and w1(b) = T and w2(b) = F .

Case 1: w1(b) = T , by definition 3.1 Bb = b. By the property (34), assumption
that |= A, and the Main Lemma 3.1 applied to w1

Ba, b ` A.

By Deduction Theorem 2.4 we have that

Ba ` (b⇒ A). (35)

Case 2: w2(c) = F hence by definition 3.1 Bb = ¬b. By the property (34),
assumption that |= A, and the Main Lemma 3.1 applied to w2

Ba,¬b ` A.

By the Deduction Theorem 2.4 we have that

Ba ` (¬b⇒ A). (36)

By the assumed provability of the formula (9) for A = b, B = A we have that

` ((b⇒ A)⇒ ((¬b⇒ A)⇒ A)).

By monotonicity we have that

Ba ` ((b⇒ A)⇒ ((¬b⇒ A)⇒ A)). (37)

14

Applying Modus Ponens twice to the above property (37) and properties (35),
(36) we get that

Ba ` A. (38)

and hence we have eliminated Bb.

Step 3: elimination of Ba from (38). We repeat the Step 2.
As before we have 2 cases to consider: Ba = a or Ba = ¬a. We choose
from VA two truth assignments g1 6= g2 ∈ VA such that

g1(a) = T and g2(a) = F. (39)

Case 1: g1(a) = T , by definition 3.1 Ba = a. By the property (39), assumption
that |= A, and the Main Lemma 3.1 applied to g1

a ` A.

By Deduction Theorem 2.4 we have that

` (a⇒ A). (40)

Case 2: g2(a) = F hence by definition 3.1 Ba = ¬a. By the property (39),
assumption that |= A, and the Main Lemma 3.1 applied to g2

¬a ` A.

By the Deduction Theorem 2.4 we have that

` (¬a⇒ A). (41)

By the assumed provability of the formula (9) for A = a,B = A we have that

` ((a⇒ A)⇒ ((¬a⇒ A)⇒ A)). (42)

Applying Modus Ponens twice to the above property (42) and properties (40),
(41) we get that

` A. (43)

and hence we have eliminated Ba, Bb and Bc.

Problem 1

For the formulas Ai and corresponding truth assignments v find formulas
B1, ..Bk, A

′

i as described by the Main Lemma 3.1, i.e. such that

B1, ...Bk ` A
′

i.

15

1. A1 = ((¬(b⇒ a)⇒ ¬a)⇒ ((¬b⇒ (a⇒ ¬c))⇒ c))
v(a) = T, v(b) = F, v(c) = T .

2. A2 = ((a ⇒ (c ⇒ (¬b ⇒ c))) ⇒ ((¬d ⇒ (a ⇒ (¬a ⇒ b))) ⇒ (a ⇒ (¬a ⇒
b))))
v(a) = F, v(b) = F, v(c) = T, v(d) = F

3. A3 = (¬b⇒ (c⇒ (¬a⇒ b)))
v(a) = F, v(b) = F, v(c) = T

4. A4 = (¬a1 ⇒ (a2 ⇒ (¬a3 ⇒ a1)))
v(a1) = F, v(a2) = F, v(a3) = T

5. A5 = ((b⇒ (a1 ⇒ (¬c⇒ b)))⇒ ((¬b⇒ (a2 ⇒ (¬a1 ⇒ b)))⇒ (c⇒ (¬a⇒
b)))
v(a) = F, v(b) = T, v(c) = F, v(a1) = T, v(a2) = F

Problem 2 For any of the formulas A1, A2, A3, A4 listed below construct their
proofs, as described in the proof of the Completeness Theorem. Follow
example 3.1, or example 3.2.

A1 = (¬¬b⇒ b)

A2 = ((a⇒ b)⇒ (¬b⇒ ¬a))

A3 = (¬(a⇒ b)⇒ ¬(¬b⇒ ¬a))

A4 = (¬(¬(a⇒ ¬b)⇒ ¬c)⇒ ¬(b⇒ ¬c))

A5 = ((a⇒ (b⇒ ¬a))⇒ (¬(b⇒ ¬a)⇒ ¬a)).

4 Proof 2: A Counter- Model Existence Method

We prove now the Completeness Theorem 2.1 by proving the opposite implica-
tion:

if 6` A, then 6|= A (44)

instead of the implication 11.

We will show now how one can define of a counter-model for A from the fact
that A is not provable. This means that we deduce that a formula A is not

16

a tautology from the fact that it does not have a proof. We hence call it a a
counter-model existence method.

The definition of the counter-model for any non-provable A is much more general
(and less constructive) then in the case of our first proof in section 3. It can
be generalized to the case of predicate logic, and many of non-classical logics;
propositional and predicate. It is hence a much more general method then the
first one and this is the reason we present it here.

We remind that 6|= A means that there is a variable assignment v : V AR −→
{T, F}, such that v∗(A) 6= T , i.e. in classical semantics that v∗(A) = F . a Such
v is called a counter-model for A, hence the proof provides a counter-model
construction method.

Since we assume in 44 that A does not have a proof in S (6` A) the method
uses this information in order to show that A is not a tautology, i.e. to define v
such that v∗(A) = F . We also have to prove that all steps in that method are
correct. This is done in the following steps.

Step 1: Definition of ∆∗

We use the information 6` A to define a special set ∆∗, such that ¬A ∈ ∆∗.

Step 2: Counter - model definition

We define the variable assignment v : V AR −→ {T, F} as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a.

Step 3: Prove that v is a counter-model

We first prove a more general property, namely we prove that the set ∆∗

and v defined in the steps 1 and 2, respectively, are such that for every
formula B ∈ F ,

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B.

Then we use the Step 1 to prove that v∗(A) = F .

The definition and the properties of the set ∆∗, and hence the Step 1, are
the most essential for the proof. The other steps have only technical character.
The main notions involved in this step are: consistent set, complete set and a
consistent complete extension of a set. We are going now to introduce them and
to prove some essential facts about them.

17

4.0.1 Consistent and Inconsistent Sets

There exist two definitions of consistency; semantical and syntactical. The
semantical uses definition the notion of a model and says:

a set is consistent if it has a model.

The syntactical one uses the notion of provability and says:

a set is consistent if one can’t prove a contradiction from it.

In our proof of the Completeness Theorem we use assumption that a given
formula A does not have a proof to deduce that A is not a tautology. We hence
use the following syntactical definition of consistency.

Consistent set

We say that a set ∆ ⊆ F of formulas is consistent if and only if there is
no a formula A ∈ F such that

∆ ` A and ∆ ` ¬A. (45)

Inconsistent set

A set ∆ ⊆ F is inconsistent if and only if there is a formula A ∈ F such
that ∆ ` A and ∆ ` ¬A.

The notion of consistency, as defined above, is characterized by the following
lemma.

Lemma 4.1 (Consistency Condition)

For every set ∆ ⊆ F of formulas, the following conditions are equivalent:

(i) ∆ is consistent,

(ii) there is a formula A ∈ F such that ∆ 6` A.

Proof The implications: (i) implies (ii) and vice-versa are proved by showing
the corresponding opposite implications. I.e. to establish the equivalence of (i)
and (ii), we first show that not (ii) implies not (i), and then that not (i)
implies not (ii).

18

Case 1

Assume that not (ii). It means that for all formulas A ∈ F we have that
∆ ` A. In particular it is true for a certain A = B and A = ¬B and
hence proves that ∆ is inconsistent, i.e. not (i) holds.

Case 2

Assume that not (i), i.e that ∆ is inconsistent. Then there is a formula
A such that ∆ ` A and ∆ ` ¬A. Let B be any formula. Since
(¬A⇒ (A⇒ B)) is provable in S (formula 7) , hence by applying Modus
Ponens twice and by detaching from it ¬A first, and A next, we obtain
a formal proof of B from the set ∆, so that ∆ ` B for any formula B.
Thus not (ii).

The inconsistent sets are hence characterized by the following fact.

Lemma 4.2 (Inconsistency Condition)

For every set ∆ ⊆ F of formulas, the following conditions are equivalent:

(i) ∆ is inconsistent,

(ii) for all formulas A ∈ F , ∆ ` A.

We remind here the property of the finiteness of the consequence operation.

Lemma 4.3

For every set ∆ of formulas and for every formula A ∈ F , ∆ ` A if and only
if there is a finite subset ∆0 ⊆ ∆ such that ∆0 ` A.

Proof If ∆0 ` A for a certain ∆0 ⊆ ∆, then by the monotonicity of the
consequence, also ∆ ` A. Assume now that ∆ ` A and let A1, A2, ..., An be
a formal proof of A from ∆. Let ∆0 = {A1, A2, ..., An} ∩∆. Obviously, ∆0 is
finite and A1, A2, ..., An is a formal proof of A from ∆0.

The following theorem is a simply corollary of the above lemma 4.3.

Theorem 4.1 (Finite Inconsistency)

If a set ∆ is inconsistent, then there is a finite subset ∆0 ⊆ ∆ which is inconsis-
tent. It follows therefore from that if every finite subset of a set ∆ is consistent,
then the set ∆ is also consistent.

19

Proof If ∆ is inconsistent, then for some formula A, ∆ ` A and ∆ ` ¬A.
By above lemma 4.3, there are finite subsets ∆1 and ∆2 of ∆ such that ∆1 ` A
and ∆2 ` ¬A. By monotonicity, the union ∆1∪∆2 is a finite subset of ∆, such
that ∆1 ∪∆2 ` A and ∆1 ∪∆2 ` ¬A. Hence ∆1 ∪∆2 is a finite inconsistent
subset of ∆. The second implication is the opposite to the one just proved and
hence also holds.

The following lemma links the notion of non-provability and consistency. It will
be used as an important step in our proof of the Completeness Theorem.

Lemma 4.4

For any formula A ∈ F , if 6` A, then the set {¬A} is consistent.

Proof If {¬A} is inconsistent, then by the Inconsistency Condition 4.2 we have
{¬A} ` A. This and the Deduction Theorem 12 imply ` (¬A⇒ A). Applying
the Modus Ponens rule to ` (¬A ⇒ A) and assumed provable formula 10
((¬A⇒ A)⇒ A), we get that ` A, contrary to the assumption of the lemma.

4.0.2 Complete and Incomplete Sets

Another important notion, is that of a complete set of formulas. Complete sets,
as defined here are sometimes called maximal, but we use the first name for
them.

They are defined as follows.

Complete set

A set ∆ of formulas is called complete if for every formula A ∈ F ,

∆ ` A or ∆ ` ¬A. (46)

The complete sets are characterized by the following fact.

Lemma 4.5 (Complete set condition)

For every set ∆ ⊆ F of formulas, the following conditions are equivalent:

(i) ∆ is complete,

(ii) for every formula A ∈ F , if ∆ 6` A, then the set ∆ ∪ {A} is inconsistent.

20

Proof We consider two cases. We show that (i) implies (ii) and vice-versa,
that (ii) also implies (i).

Case 1

Assume that (i) and that for every formula A ∈ F , ∆ 6` A, we have to
show that in this case ∆ ∪ {A} is inconsistent. But if ∆ 6` A, then from
the definition of complete set and assumption that ∆ is complete set, we
get that ∆ ` ¬A. By the monotonicity of the consequence we have that
∆ ∪ {A} ` ¬A as well. Since, by formula 5 we have ` (A ⇒ A), by
monotonicity ∆ ` (A ⇒ A) and by Deduction Theorem ∆ ∪ {A} ` A.
This proves that ∆ ∪ {A} is inconsistent. Hence (ii) holds.

Case 2

Assume that (ii). Let A be any formula. We want to show that the
condition: ∆ ` A or ∆ ` ¬A is satisfied. If ∆ ` ¬A, then the
condition is obviously satisfied.

If, on other hand, ∆ 6` ¬A, then we are going to show now that it must
be , under the assumption of (ii), that ∆ ` A, i.e. that (i) holds.

Assume that ∆ 6` ¬A, then by (ii), the set ∆ ∪ {¬A} is inconsistent. It
means, by the Consistency Condition 4.1, that ∆ ∪ {¬A} ` A. By the
Deduction Theorem 12, this implies that ∆ ` (¬A⇒ A). Since ((¬A⇒
A) ⇒ A) is assumed to be provable in S (formula 4), by monotonicity
∆ ` ((¬A ⇒ A) ⇒ A). Detaching (¬A ⇒ A), we obtain that ∆ ` A,
what ends the proof that (i) holds.

Incomplete set

A set ∆ of formulas is called incomplete if it is not complete, i.e. if there
exists a formula A ∈ F such that

∆ 6` A and ∆ 6` ¬A. (47)

We get as a direct consequence of the lemma 4.5 the following characterization
of incomplete sets.

Lemma 4.6 (Incomplete Set Condition)

For every set ∆ ⊆ F of formulas, the following conditions are equivalent:

(i) ∆ is incomplete,

(ii) there is formula A ∈ F such that ∆ 6` A and the set ∆∪{A} is consistent.

21

4.0.3 Main Lemma: Complete Consistent Extension

Now we are going to prove a lemma that is essential to the construction of
the special set ∆∗ mentioned in the Step 1 of the proof of the Completeness
Theorem, and hence to the proof of the theorem itself. Let’s first introduce one
more notion.

A set ∆∗ of formulas is called an extension of a set ∆ of formulas if the
following condition holds.

{A ∈ F : ∆ ` A} ⊆ {A ∈ F : ∆∗ ` A}.

In this case we say also that ∆ extends to the set of formulas ∆∗.

The Main Lemma states as follows.

Lemma 4.7 (Complete Consistent Extension)

Every consistent set ∆ of formulas can be extended to a complete consistent set
∆∗ of formulas.

Proof Assume that the lemma does not hold, i.e. that there is a consistent
set ∆, such that all its consistent extensions are not complete. In particular, as
∆ is an consistent extension of itself, we have that ∆ is not complete.

The proof consists of a construction of a particular set ∆∗ and proving that it
forms a complete consistent extension of ∆, contrary to the assumption that all
its consistent extensions are not complete.

Construction of ∆∗.

As we know, the set F of all formulas is enumerable. They can hence be put in
an infinite sequence

A1, A2,, An, (48)

such that every formula of F occurs in that sequence exactly once.

We define now, as the first step in the construction of ∆∗, an infinite sequence
{∆n}n∈N of consistent subsets of formulas together with a sequence {B}n∈N of
formulas as follows.

Initial Step

22

In this step we define the sets ∆1,∆2 and the formula B1. We prove that
∆1 and ∆2 are consistent, incomplete extensions of ∆.

We take, as the first set, the set ∆, i.e. we define

∆1 = ∆. (49)

Since, by assumption, the set ∆, and hence also ∆1 is not complete, it
follows from the Incomplete Set Condition 4.6, that there is a formula
B ∈ F such that ∆1 6` B, then and the set ∆1 ∪ {B} is consistent.

Let
B1

be the first formula with this property in the sequence 48 of all formulas;
we then define

∆2 = ∆1 ∪ {B1}. (50)

The set ∆2 is consistent and ∆1 = ∆ ⊆ ∆2, so by the monotonicity, ∆2 is a
consistent extension of ∆. Hence ∆2 cannot be complete.

Inductive Step

Suppose that we have defined a sequence

∆1,∆2, ...,∆n

of incomplete, consistent extensions of ∆, and a sequence

B1, B2, ...Bn−1

of formulas, for n ≥ 2.

Since ∆n is incomplete, it follows from the Incomplete Set Condition 4.6,
that there is a formula B ∈ F such that ∆n 6` B and the set ∆n ∪ {B}
is consistent.

Let
Bn

be the first formula with this property in the sequence 48 of all formulas.

We then define

∆n+1 = ∆n ∪ {Bn}. (51)

By the definition, ∆ ⊆ ∆n ⊆ ∆n+1 and the set ∆n+1 is consistent. Hence ∆n+1

is an incomplete consistent extension of ∆.

23

By the principle of mathematical induction we have defined an infinite sequence

∆ = ∆1 ⊆ ∆2 ⊆ ...,⊆ ∆n ⊆ ∆n+1 ⊆ (52)

such that for all n ∈ N , ∆n is consistent, and moreover, it is an incomplete
consistent extension of ∆.

Moreover, we have also defined a sequence

B1, B2, ..., Bn, (53)

of formulas, such that for all n ∈ N , ∆n 6` Bn, and the set ∆n ∪ {Bn} is
consistent.
Observe that Bn ∈ ∆n+1 for all n ≥ 1.

Definition of ∆∗

Now we are ready to define ∆∗, i.e. we define:

∆∗ =
⋃

n∈N
∆n. (54)

To complete the proof our theorem we have now to prove that ∆∗ is a complete
consistent extension of ∆. Obviously, by the definition, ∆∗ is an extension of
∆. Now we prove (by contradiction) that

FACT 1

∆∗ is consistent.

Proof: assume that ∆∗ is inconsistent. By the Finite Inconsistency
theorem 4.1 there is a finite subset ∆0 of ∆∗ that is inconsistent. By
definition 54 have that

∆0 = {C1, ..., Cn} ⊆
⋃

n∈N
∆n.

By the definition, Ci ∈ ∆ki for certain ∆ki in the sequence 52 and
1 ≤ i ≥ n. Hence ∆0 ⊆ ∆m for m = max{k1, k2, ..kn}. But all sets
of the sequence 52 are consistent. This contradicts the fact that ∆m is
inconsistent, as it contains an inconsistent subset ∆0. Hence ∆∗ must be
consistent.

FACT 2

∆∗ is complete.

Proof: assume that ∆∗ is not complete. By the Incomplete Set Condition 4.6,
there is a formula B ∈ F such that ∆∗ 6` B and the set ∆∗∪{B} is consistent.

24

But, by ‘refdset, the above condition means that for every n ∈ N , ∆n 6` B
holds and the set ∆n ∪ {B} is consistent.

Since the formula B is one of the formulas of the sequence 48 and it would have
to be one of the formulas of the sequence 53, i.e. B = Bj for certain j. Since
Bj ∈ ∆j+1, it proves that B ∈ ∆∗ =

⋃
n∈N . But this means that ∆∗ ` B,

contrary to the assumption.

This proves that ∆∗ is a complete consistent extension of ∆ and completes the
proof out our lemma.

Now we are ready to prove the completeness theorem for the system S.

4.0.4 Proof of the Completeness Theorem

As by assumption our system S is sound, we have to prove only the Completeness
part of the Completeness Theorem 2.1, i.e

If |= A, then ` A

for any formula A.

We prove it by proving the opposite implication

If 6` A, then 6|= A.

We remind that 6|= A means that there is a variable assignment v : V AR −→
{T, F}, such that v∗(A) 6= T . In classical case it means that v∗(A) = F , i.e.
that there is a variable assignment that falsifies A . Such v is also called a
counter-model for A.

Assume that A doesn’t have a proof in S, we want to define a counter-model
for A.

But if 6` A, then by the lemma 4.4, the set {¬A} is consistent. By the Main
Lemma 4.7 there is a complete, consistent extension of the set {¬A}, i.e. there
is a set set ∆∗ such that {¬A} ⊆ ∆∗, i.e.

¬A ∈ ∆∗. (55)

Since ∆∗ is a consistent, complete set, it satisfies the following form of the
consistency condition 45, which says that for any A, ∆∗ 6` A or ∆∗ 6` ¬A. It
also satisfies the completeness condition 46, which says that for any A, ∆∗ ` A
or ∆∗ ` ¬A. This means that for any A, exactly one of the following conditions
is satisfied: ∆∗ ` A, ∆∗ ` ¬A. In particular, for every propositional variable
a ∈ V AR exactly one of the following conditions is satisfied: ∆∗ ` a, ∆∗ ` ¬a.
This justifies the correctness of the following definition.

25

Definition of v

We define the variable assignment

v : V AR −→ {T, F} (56)

as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a.

We show, as a separate lemma below, that such defined variable assignment v
has the following property.

Lemma 4.8 (Property of v)

Let v be the variable assignment defined by (56) and v∗ its extension to the set
F of all formulas. Then for every formula B ∈ F ,

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B.

(57)

Given the above property (57) of v (still to be proven), we prove that the v is
in fact, a counter model for any formula A, such that 6` A as follows. Let A be
such that 6` A. By (55), ¬A ∈ ∆∗ and obviously, ∆∗ ` ¬A. Hence, by the
property (57) of v, v∗(A) = F , what proves that v is a counter-model for A
and hence ends the proof of the completeness theorem.

In order to really complete the proof we still have to show the lemma 4.8.

Proof of the lemma

The proof is conducted by the induction on the degree of the formula A.

If A is a propositional variable, then the lemma is true holds by (56), i.e. by
the definition of v.

If A is not a propositional variable, then A is of the form ¬C or (C ⇒ D),
for certain formulas C,D. By the inductive assumption the lemma, i.e. the
property (57) holds for the formulas C and D.

Case A = ¬C. We have to consider two possibilities: ∆∗ ` A and ∆∗ ` ¬A.

Assume ∆∗ ` A. It means that ∆∗ ` ¬C. Then from the fact that ∆∗ is
consistent it must be that ∆∗ 6` C. This means, by the inductive assumption,

26

that v∗(C) = F , and accordingly

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T.

Assume now that ∆∗ ` ¬A. Then from the fact that ∆∗ is consistent it must
be that ∆∗ 6` A. I.e. ∆∗ 6` ¬C. If so, then ∆∗ ` C, as the set ∆∗ is
complete. Hence by the inductive assumption, that v∗(C) = T , and accordingly

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬T = F.

Thus A satisfies the property 57.

Case A = (C ⇒ D). As in the previous case, we assume that the lemma, i.e.
the property 57 holds for the formulas C,D and we consider two possi-
bilities: ∆∗ ` A and ∆∗ ` ¬A.

Assume ∆∗ ` A. It means that ∆∗ ` (C ⇒ D). If at the same time ∆∗ 6` C,
then v∗(C) = F , and accordingly

v∗(A) = v∗(C ⇒ D) = v∗(C)⇒ v∗(D) = F ⇒ v∗(D) = T.

If at the same time ∆∗ ` C, then, since ∆∗ ` (C ⇒ D), we infer, by Modus
Ponens, that ∆∗ ` D. If so, then

v∗(C) = v∗(D) = T,

and accordingly

v∗(A) = v∗(C ⇒ D) = v∗(C)⇒ v∗(D) = T ⇒ T = T.

Thus, if ∆∗ ` A, then v∗(A) = T .

Assume now, as before, that ∆∗ ` ¬A. Then from the fact that ∆∗ is consistent
it must be that ∆∗ 6` A, i.e.,

∆∗ 6` (C ⇒ D).

It follows from this that
∆∗ 6` D,

for if ∆∗ ` D, then, as (D ⇒ (C ⇒ D)) is assumed to be provable formula 2
in S, by monotonicity

∆∗ ` (D ⇒ (C ⇒ D)).

Applying Modus Ponens we obtain ∆∗ ` (C ⇒ D), which is contrary to the
assumption.

27

Also we must have
∆∗ ` C,

for otherwise, by the fact that ∆∗ we would have

∆∗ ` ¬C.

But this is impossible, since the formula (¬C ⇒ (C ⇒ D)) is is assumed to be
provable formula 10 in S and by monotonicity

∆∗ ` (¬C ⇒ (C ⇒ D)).

Applying Modus Ponens we would get ∆∗ ` (C ⇒ D), which is contrary to
the assumption. This ends the proof of the lemma and completes the counter-
model existence proof of the Completeness Theorem.

28

