
CSE 306 Operating Systems
Processes

YoungMin Kwon



What is a Process

 A process consists of
 Program code
 Set of data associated with the code
 Process Control Block (PCB)

 Process Id
 State (running, ready, blocked…)
 Program counter
 Memory pointers
 Context data (registers)
 I/O status (I/O devices assigned to, files in use…)
 Accounting info. (processor time, time limits…)



Some Entries of PCB



Execution of Programs

 Processor’s view
 Executions of instructions from multiple programs

 Process’s view
 Executions of a sequence of instructions within that 

program



Execution of Programs



A Two-State Process Model



A Two-State Process Model

 Process Creation
 OS builds the data structures to manage the process
 Allocates address space for the process

 Reasons for Process Creation
 New Batch job
 Interactive log-on
 Created by OS to provide service
 Spawned by existing process



A Two-State Process Model

 Process Termination
 Halt instruction generates an interrupt to alert the 

OS
 Action of a user

 log off, turn off a terminal, quit an application
 Result in a service request to OS to terminate the 

process

 Errors or Faults



A Five-State Model
 A problem with the two-state model

 Some processes in Not-running sate are blocked, 
waiting for an I/O to complete

 The dispatcher has to scan the queue looking for 
the process that is
 Not blocked
 Has been in the queue the longest



A Five-State Model
 Solution

 Split the Not-Running state into Ready and Blocked states

 Five states
 Running: the process is currently being executed
 Ready: the process can execute, given the opportunity
 Blocked/Waiting: the process cannot execute until some 

event occurs (I/O completion)
 New: the PCB is created, but the process is not yet loaded 

into memory
 Exit: the process has been released from the pool of 

executable processes



A Five-State Model



A Five-State Model

 New processes are placed in the ready queue

 The next process to run are chosen from the ready queue

 A running process can exit or be moved to either the ready 
queue or the blocked queue

 An event can move processes in the blocked queue waiting 
for the event to the ready queue



A Five-State Model

 Multiple blocked queues
 Single blocked queue: OS has to scan the blocked queue 

for every event
 The processes in a certain event queue are moved to the 

ready queue



Process Description

 OS manages the use of system resources by 
processes
 What information does the OS need to control 

processes and manage resources?
 Tables for memory, I/O, file, and process

Blocked



Operating System Control Structures



Typical Functions of an OS Kernel
 Process management

 Process creation and termination
 Process scheduling and dispatching
 Process switching
 Process synchronization and inter-process 

communication
 PCB management

 Memory management
 Allocating address space to processes
 Swapping
 Page and segment management



Typical Functions of an OS Kernel
 I/O management

 Buffer management
 Allocation of I/O channels and devices to 

processes

 Support functions
 Interrupt handling
 Accounting
 Monitoring



Process Control Structures

 Typical elements of a process image
 User Data

 The modifiable part of the user space: program data, user 
stack, and programs that may be modified

 User Program
 Instructions to be executed

 Stack
 Store parameters, return addresses for function calls

 Process Control Block
 Data needed by the OS to control process



Process Control Structures
Typical Elements of a PCB

 Process identification
 IDs: PID of this and the parent process, User ID

 Processor status information
 General purpose registers
 Program Counter,
 Program Status Word (PSW)

 Condition flags: CF, ZF, OF…
 Status information: interrupt enabled, current privilege 

level (CPL)…



Process Control Structures
Typical Elements of a PCB

 Process control information
 Scheduling and State information

 Process state (running, ready, blocked…)
 Priority
 Scheduler dependent information (processor time…)
 Event (ID of the event the process is waiting)

 Data structuring (e.g. link to other process in a queue)
 Processor privilege

 Memory access, types of instructions that can execute
 Memory management (e.g. pointers to page tables)
 Resource ownership and utilization
 Interprocess communication



Process Control

 Modes of execution
 User mode and Kernel mode (aka system mode, 

control mode)

 Bits in the PSW indicates the mode of execution
 CPL (Current Privilege Level): 0 for kernel mode, others 

for user mode
 On interrupt, CPL is set to 0
 On IRT (interrupt return), CPL is restored



Process Control: Process Creation
 Assign a unique PID to the new process

 Allocate space for the process 
 Process Image (text, data, stack, …) and PCB

 Initialize the PCB
 PID, registers, PC, stack pointers, status (Ready), priority, 

inherited resources, …

 Set the appropriate linkage
 Ready queue

 Create or expand other data structures
 Accounting for billing, performance assessment, …



Process Control: Process Switching

 When to switch process
 A process switch may occur any time when the OS has 

gained the control

 Mechanisms for interrupting the execution of a 
process
 Interrupt: external to the current instruction
 Trap: associated with the execution of the current 

instruction
 Supervisor call: explicit request



Process Control: Process Switching
 Mode switching on an interrupt

 Sets the PC to the interrupt handler

 Switches from user mode to kernel mode if necessary
 Compare the CPL (Current Privilege Level) with DPL

(Descriptor Privilege Level) of interrupt code
 If CPL != DPL, load ss and esp from TSS and save the previous 

ss and esp to the new stack

 Saves the PC, flags, and other registers

 Mode switch does not necessarily mean process 
switch



Side Note: Address Translation



Process Control: Change of Process State
 If the currently running process is to be moved to 

another state (Ready, Blocked)

 Save the context of the processor (PC, other registers)
 Update the PCB (state, accounting info…)
 Move the PCB of this process to the appropriate 

queue
 Select another process to execute
 Update the PCB of the process (state to running)
 Update the memory management data structure
 Restore the context of the processor



Execution of the Operating System

 Nonprocess Kernel
 Execute the kernel outside of any process
 OS has its own memory to use and its own stack 

for procedure calls



Execution of the Operating System

 Execution within User Processes
 Execute virtually all OS software in the context of 

a user process
 Program data and stack for kernel are included in 

each process image



Execution of the Operating System

 Execution within User Processes
 A separate kernel stack is used in the kernel 

mode
 OS code and data are in the shared address 

space

 To pass control to OS
 Mode switch occurs
 Process switch is not performed: execution 

continues within the current user process



Execution of the Operating System

 Process-based Operating System
 Implement the OS as a collection of system 

processes
 Modular OS
 Noncritical OS functions are implemented as 

separate processes


