Biological Benefit Evaluation of Entrainment Reducing Technologies at Merrimack Station

Prepared For
PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE
D.B.A. Eversource Energy

780 North Commercial Street
Manchester, NH 03101

Prepared By
NORMANDEAU ASSOCIATES, INC.
30 International Drive, Suite 6
Portsmouth NH 03801
www.normandeau.com

12 December 2017
Project No. 22240.061

Table of Contents

List of Tables iv
List of Figures viii
List of Appendix Tables ix
Acronyms and Abbreviations x
1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives 2
2 METHODS 2
2.1 Technical Approach 2
2.2 Input Data Description 3
2.2.1 Entrainment Monitoring Data 3
2.2.2 Impingement Monitoring Data 5
2.2.3 Intake Flow Data 6
2.2.4 Wedgewire Screen Performance 6
2.3 Species Classification 6
2.3.1 Taxonomy 6
2.3.2 Species Apportionment 7
2.3.3 Economic and Ecological Importance of Species Entrained and Impinged 7
2.4 Entrainment and Impingement Abundance Estimation. 8
2.4.1 Differentiation between Entrainment and Impingement Abundance 8
2.4.2 Baseline Calculations for Existing Cooling Water Intake Structure 8
2.4.3 Wedgewire Screen Calculations of Entrainment and Impingement Abundance 9
2.4.4 Closed-Cycle Cooling Tower Calculations of Entrainment and Impingement Abundance 9
2.5 Equivalent Recruit Model for Estimating Direct Use Benefits 9
2.6 Estimation of Indirect Use of Forage Benefits 10
2.6.1 Production Foregone of Forage Species 10
2.6.2 Natural Mortality Biomass of Recreational Fishery Species 12
2.6.3 Equivalent Predator 13
2.7 Equivalent Recreational Catch 13
2.8 Summary of Assumptions 14
3 RESULTS 24
3.1 Entrainment Abundance 24
3.2 Impingement Abundance 24
3.3 Equivalent Loss of Recruits the Recreational Fishery 25
3.3.1 Equivalent Recruits due to Entrainment Losses. 25
3.3.2 Equivalent Recruits due to Impingement Losses 25
3.4 Indirect Forage Benefits 25
3.4.1 Production Foregone from Entrainment Losses. 25
3.4.2 Production Foregone from Impingement Losses 25
3.4.3 Entrainment Loss of Forage Biomass of Recreational Fishery Species 25
3.4.4 Impingement Loss of Forage Biomass of Recreational Fishery Species 26
3.5 Equivalent Catch 26
4 LITERATURE CITED 89
5 APPENDICES 96
Appendix A. Life History Tables 97
Appendix B. Monthly Impingement Estimates 127

List of Tables

Table 2-1. Estimated flow rate (million gallons per day, MGD) and volume (million cubic meters, Mm^{3}) of water withdrawn by cooling water intake structure units 1 and 2 at Merrimack Station based on a 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF), and 50% capacity factor at DIF for baseline conditions, installed 3-mm wedgewire screen (WWS), and closed-cycle cooling towers.
Table 2-2. Efficacy of a 3-mm wedgewire half-screen for reducing entrainment by taxon and life stage at Merrimack Station, Unit 1, based on the 3-mm wedgewire test screen performance study from 22 May 2017 through 3 September 2017 at Unit 1 (Normandeau 2017a).
Table 2-3. Common and scientific names of all fish taxa identified from entrainment samples collected at Units 1 and 2 at Merrimack Station from May 2006 through September 2006 and April 2007 through June 2007 at Units 1 and 2 combined, and May through September 2017 at Unit 1 (Normandeau 2007, Normandeau 2017a).
Table 2-4. Common and scientific names of all fish taxa identified in 24 -hour impingement samples collected at Merrimack Station Units 1 and 2 combined from 29 June 2005 through 28 June 2007 (Normandeau 2007) and electrofishing catch in Hooksett Pool during August and September from 1972 through 2013 ${ }^{\text {a }}$ (Normandeau 2017b)

Table 2-5. Species importance, economic value categories, and age of equivalence for species
identified from entrainment and impingement samples at Merrimack Station
(Normandeau 2007, Normandeau 2017a). 23

Table 3-1. Relative composition (\%) of ichthyoplankton density by life stage and lowest
taxon identified in entrainment samples collected at Units 1 and 2 at Merrimack
Station from 31 May 2006 through 30 August 2006 and 4 April 2007 through 27
June 2007 at Unit 1 (Normandeau 2007), 24 May 2006 through 13 September
2006 and 4 April 2007 through 27 June 2007 at Unit 2 (Normandeau 2007), and 22
May through 3 September 2017 at Unit 1 (Normandeau 2017a). 27

Table 3-2. Monthly mean density (number per $100 \mathrm{~m}^{3}$) of ichthyoplankton identified to the
lowest taxon possible and life stage from entrainment samples collected at
Merrimack Station, Unit 1 and 2 combined, from May through September 2006,
April through June 2007 and May through early September 2017. 30

Table 3-3. Monthly mean density (number per $100 \mathrm{~m}^{3}$) and relative abundance (\%) of
ichthyoplankton collected in entrainment samples collect at Units 1 and 2 at
Merrimack Station from 31 May 2006 through 30 August 2006 and 4 April 2007
through 27 June 2007 at Unit 1 (Normandeau 2007), 24 May 2006 through 13
September 2006 and 4 April 2007 through 27 June 2007 at Unit 2 (Normandeau
2007), and 22 May through 3 September 2017 at Unit 1 (Normandeau 2017a). 33

Table 3-4. Density of yolk-sac larvae (YSL) identified to taxon complexes (e.g., family or genus) were apportioned to species by monthly YSL density (D) and percent (\%) composition of identified species within each taxon complex identified in ichthyoplankton collected in entrainment samples collect at Units 1 and 2 combined at Merrimack Station during May 2006 through September 2006, April 2007 through June 2007 at May through early September 2017.

Table 3-10. Estimated monthly entrainment abundance by life stage and species at Merrimack
Station, Units 1 and 2 combined, with April through July operation of a 3-mm
wedgewire half screen at the existing cooling water intake structure (CWIS) based
on 10-year (2007-2016) actual intake flow (AIF). 45

Table 3-11. Estimated monthly entrainment abundance by life stage and species at Merrimack
Station, Units 1 and 2 combined, with closed-cycle cooling towers based on 10
year (2007-2016) actual intake flow (AIF). 47

Table 3-12. Estimated monthly entrainment abundance by life stage and species at Merrimack
Station, Units 1 and 2 combined, under the existing cooling water intake structure
(CWIS) based on design intake flow (DIF). 49

Table 3-13. Estimated monthly entrainment abundance by life stage and species at Merrimack
Station, Units 1 and 2 combined, with April through July operation of a $3-\mathrm{mm}$
wedgewire half screen at the existing cooling water intake structure (CWIS) based
on design intake flow (DIF). 51

Table 3-14. Estimated monthly entrainment abundance by life stage and species at Merrimack
Station, Units 1 and 2 combined, with closed-cycle cooling towers based on design
intake flow (DIF). 53

Table 3-15. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS) based on 50% design intake flow (DIF).55

Table 3-16. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with April through July operation of a 3-mm wedgewire half screen at the existing cooling water intake structure (CWIS) based on 50% design intake flow (DIF).
Table 3-17. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with closed-cycle cooling towers based on 50\% design intake flow (DIF).

Table 3-18. Monthly mean adjusted 24-hour impingement density (number per million m^{3}) of
fish identified to lowest taxon possible in samples collected from June 2005
through June 2007 at Merrimack Station Units 1 and 2 combined 61

Table 3-19. Percent composition of taxa impinged at Merrimack Station Units 1 and 2 combined from June 2005 through June 2007 based on monthly mean adjusted 24hour impingement densities.
Table 3-20. Monthly mean adjusted 24 -hour impingement density (number per million m^{3}) of Sunfish family identified to species for apportioning impingement of unidentified Sunfish family.
Table 3-21. Monthly mean adjusted 24 -hour impingement density (number per million m^{3}) apportioned to species based on samples collected from June 2005 through June 2007 at Merrimack Station Units 1 and 2 combined.
Table 3-22. Monthly age distribution (\%) of species impingement estimates at Merrimack Station Units 1 and 2 combined from June 2005 through June 2007.
Table 3-23. Monthly mean adjusted 24 -hour impingement density (number per million m^{3}) apportioned to species and length-based age class for samples collected from June 2005 through June 2007 at Merrimack Station Units 1 and 2 combined.
Table 3-24. Estimated annual impingement abundance (number of individuals) at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS) , 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-25. Estimated equivalent loss of recruitment (number of fish) to the recreational fishery due to annual entrainment at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3 -mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.72

Table 3-26. Estimated age-1 equivalent loss (number of fish) of recreational fishery species due to annual entrainment at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3 -mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at 50% DIF.
Table 3-27. Estimated equivalent loss of recruitment (number of fish) to the recreational fishery due to annual impingement at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016)
actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and
50% capacity factor at 50% DIF. ... 74
Table 3-28. Estimated age-1 equivalent loss (number of fish) of recreational fishery species due to annual impingement at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at 50% DIF. 75
Table 3-29. Total production foregone (kg) of forage species entrained annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-30. Number of equivalent Age-2 Largemouth Bass supported by total production foregone of forage species entrained annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-31. Total production foregone (kg) of forage species impinged annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-32. Number of equivalent Age-2 Largemouth Bass supported by total production foregone of forage species impinged annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-33. Biomass (kg) lost as forage from natural mortality (predation) of early life stages of recreationally important fishery species entrained annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3 -mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-34. Equivalent Age-2 Largemouth Bass from predation of the biomass lost accrued from natural mortality from the entrained life stage to age of first recruitment annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closedcycle cooling towers based on 10 -year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-35. Biomass (kg) lost as forage from natural mortality (predation) of early life stages of recreationally important fishery species impinged annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers
based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-36. Equivalent Age-2 Largemouth Bass from predation of the biomass lost accrued from natural mortality from the impinged life stage to age of first recruitment annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3 -mm wedgewire half screen (WWS) and closedcycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at 50\% DIF.83

Table 3-37. Number of equivalent recruits ${ }^{1}$ from annual entrainment reductions from the existing cooling water intake structure at Merrimack Station, Units 1 and 2 combined, with April through July operation of 3-mm wedgewire half screens (WWS) and year-round operation of closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-38. Number of equivalent recruits ${ }^{1}$ from annual impingement reductions from the existing cooling water intake structure at Merrimack Station, Units 1 and 2 combined, with April through July operation of 3-mm wedgewire half screens (WWS) and year-round operation of closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.
Table 3-39. Number of equivalent recruits ${ }^{1}$ from annual entrainment and impingement reductions from the existing cooling water intake structure at Merrimack Station, Units 1 and 2 combined, with April through July operation of 3-mm wedgewire half screens (WWS) and year-round operation of closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Table 3-40. Comments on catch-and-release and exploitation of selected fishery species based
on literature review. 87

List of Figures

Figure 2-1. General approach used to evaluate annual entrainment and impingement abundance expressed as equivalent recruit loss to the recreational fishery at three water withdrawal scenarios under three cooling water intake structure configurations at Merrimack Station.

List of Appendix Tables

Table A-1. Life history parameters for an Alewife population at equilibrium 98
Table A-2. Life history parameters for an American Eel population at equilibrium. 99
Table A-3. Life history parameters for an American Shad population at equilibrium. 101
Table A-4. Life history parameters for a Banded Sunfish population at equilibrium. 102
Table A-5. Life history parameters for a Black Crappie population at equilibrium. 103
Table A-6. Life history parameters for a Blacknose Dace population at equilibrium. 104
Table A-7. Life history parameters for a Bluegill population at equilibrium. 105
Table A-8. Life history parameters for a Brown Bullhead population at equilibrium. 106
Table A-9. Life history parameters for a Chain Pickerel population at equilibrium. 107
Table A-10. Life history parameters for a Common Shiner population at equilibrium. 108
Table A-11. Life history parameters for an Emerald Shiner population at equilibrium. 109
Table A-12. Life history parameters for a Fallfish population at equilibrium. 110
Table A-13. Life history parameters for a Golden Shiner population at equilibrium 111
Table A-14. Life history parameters for a Largemouth Bass population at equilibrium. 112
Table A-15. Life history parameters for a Margined Madtom population at equilibrium. 114
Table A-16. Life history parameters for a Pumpkinseed population at equilibrium. 115
Table A-17. Life history parameters for a Rainbow Smelt population at equilibrium. 116
Table A-18. Life history parameters for a Redbreast Sunfish population at equilibrium. 117
Table A-19. Life history parameters for a Rock Bass population at equilibrium. 118
Table A-20. Life history parameters for a Smallmouth Bass population at equilibrium. 119
Table A-21. Life history parameters for a Spottail Shiner population at equilibrium. 120
Table A-22. Life history parameters for a Tessellated Darter population at equilibrium. 121
Table A-23. Life history parameters for a Walleye population at equilibrium 122
Table A-24. Life history parameters for a White Perch population at equilibrium. 123
Table A-25. Life history parameters for a White Sucker population at equilibrium. 124
Table A-26. Life history parameters for a Yellow Bullhead population at equilibrium. 125
Table A-27. Life history parameters for a Yellow Perch population at equilibrium. 126
Table B-1. Estimated monthly impingement abundance (number) at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS , $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF 127

Acronyms and Abbreviations

AE1	Age-1 Equivalent
AIF	Actual intake flow
BTA	Best Technology Available
CWA	Clean Water Act
CWIS	Cooling Water Intake Structure
DIF	Design intake flow
F	Instantaneous fishing mortality rate
gpm	Gallons per minute
GSI	Gonadosomatic index
h	hour
kg	kilograms
M	Instantaneous natural mortality rate
m^{3}	cubic meters
MGD	Million gallons per day
ml	milliliters
mm	Millimeters
Mm	
MW	Million cubic meters
NERA	Megawatts
Normandeau	NERA Economic Consulting, Inc.
NPormandeau Associates, Inc.	
NPDE	National Pollutant Discharge Elimination System
psig	pounds per square inch
PSNH	Public Service of New Hampshire
PYSL	Post Yolk-Sac Larvae
TL	Total length
UNID	Unidentified larval stage
USEPA	U.S. Environmental Protection Agency
WWS	Wedgewire Screen
YOY	Young of the Year
YROL	Yearling or older
YSL	Yolk-Sac Larvae
Z	Total instantaneous mortality rate

1 INTRODUCTION

1.1 Background

Public Service Company of New Hampshire ("PSNH") owns and operates two separate steam electric power generating units, Unit 1 and Unit 2, known together as Merrimack Station, in Bow, New Hampshire. Merrimack Station is located on the west bank of the Merrimack River, approximately 2.9 miles upstream from the Hooksett Dam and Hydroelectric Station and about 2.9 miles downstream from the Garvins Falls Dam and Hydroelectric Station. The Station withdraws and discharges non-contact cooling water from the Merrimack River subject to and with the benefits of National Pollutant Discharge Elimination System ("NPDES") Permit NH0001465 (the "Permit"). Unit 1, which became operational in 1960, generates at a rated capacity of 120 MW , and withdraws once-through cooling water from the waters of the Merrimack River using a cooling water intake structure ("CWIS") located in a bulkhead at the shoreline of Hooksett Pool. Unit 2, which became operational in 1968, generates at a rated capacity of 350 MW, and withdraws once-through cooling water from the Merrimack River using a separate CWIS located in a bulkhead approximately 120 feet downstream from the Unit 1 CWIS. The United States Environmental Protection Agency ("USEPA") last renewed the Permit in 1992. PSNH submitted a timely NPDES permit renewal application to USEPA in 1997. On September 30, 2011, USEPA issued a new draft NPDES permit (the "Draft NPDES Permit") and Fact Sheet (USEPA 2011) for the continued operation of the Station.

In the Fact Sheet, USEPA determined seasonal use of closed-cycle (wet) cooling towers was the best technology available ("BTA") for reducing entrainment and impingement mortality at Unit 1 and Unit 2 at Merrimack Station, while screening technologies and variable speed pumps were either deemed not feasible or offered inadequate reductions (USEPA 2011). In response to USEPA's BTA determination and economic assessment, NERA Economic Consulting, Inc. ("NERA", NERA 2012), on behalf of PSNH, provided a preliminary benefit-cost analysis of five BTA alternatives (Ristroph traveling screens, Multi-Disc traveling screens, cylindrical wedgewire screens, Gunderboom Marine Life Exclusion System, and seasonally operated mechanical draft close-cycle cooling towers). NERA (2012) determined the cooling tower alternative was not BTA based on costs ($\sim \$ 99$ million, 2010 US dollars) that were wholly disproportionate and significantly greater than its benefits ($\$ 102,000,2010$ US dollars). NERA's estimates of benefits for each BTA alternative were based on classifying increases in harvest (pounds) of 11 target species estimated by ASA (2012) using 2005-2007 impingement and entrainment data (Normandeau 2007). In that study, panfish and bass biomass from those 11 target species was converted to individuals by dividing an average panfish or bass weight, and multiplying the number of fish by price per fish.

Subsequent to the preliminary economic assessment by NERA (2012), USEPA issued a revised draft NPDES Permit and Fact Sheet on 18 April 2014. Shortly thereafter, the Federal Clean Water Act ("CWA") Section 316(b) Final Regulations to Establish Requirements for CWISs at Existing Facilities were published on 15 August 2014 in the Federal Register (79 Fed. Reg. 48300-439)("final §316(b) regulations"). Most recently, the comment period on the draft NPDES Permit for Merrimack Station was reopened on 4 August 2017 and on 17 August 2017 was extended to 4 December 2017, and then further extended to 18 December 2017. The comment period provided an opportunity for the public and PSNH to provide comment or information on selected issues such as compliance with the final §316(b) regulations and evaluations of efficacy of wedgewire half-screens at reducing entrainment at Merrimack Station.

For 15 consecutive weeks from 22 May 2017 through 3 September 2017, Normandeau Associates, Inc. ("Normandeau") tested the performance of a 3 -mm wedgewire test screen at reducing entrainment relative to coincidental control samples collected at Unit 1 at Merrimack Station (Normandeau 2017a). Given the observed high (89\%) overall effectiveness of reducing entrainment by operating 3-mm wedgewire half-screens at Unit 1 during the study period, the seasonal use of 3-mm half-screen wedgewire screens at Merrimack Station will be considered as a potential BTA for reducing entrainment at Merrimack Station. Consistent with the Comprehensive Technical Feasibility and Cost Evaluation Study and Benefits Valuation Study required by 40 C.F.R. §122.21 (r) (10) and $\S 122.21$ (r)(11) of the final §316(b) regulations, the wedgewire screen performance study (Normandeau 2017a) and a full benefit-cost analysis will evaluate 3 -mm wedgewire half-screens as a potential BTA alternative to closedcycle cooling towers for reducing entrainment at Merrimack Station (Units 1 and 2). In this report, the biological benefits of potentially implementing either seasonal use of 3-mm wedgewire half screens or year-round use of closed-cycle cooling towers as BTA (ENERCON and Normandeau 2007) were estimated in terms of additional equivalent number of fish recruited to the recreational fishery in Hooksett Pool as input data for monetizing the benefits in a comprehensive economic assessment to be done by NERA.

1.2 Objectives

The purpose of this evaluation was to provide estimates of additional equivalent number of fish recruited to the recreational fishery in Hooksett Pool, Merrimack River as input data for NERA to monetize the benefits of implementing two potential entrainment-reducing technologies as potential BTA alternatives. Specifically, the equivalent number of fish potentially recruited to the recreational fishery in Hooksett Pool lost due to annual entrainment and impingement mortality was estimated for three cooling water withdrawal scenarios:

1) recent 10 -year actual intake flow ("AIF"),
2) design intake flow ("DIF") at 100% capacity factor, and
3) 50% DIF (50% capacity factor);
and under three CWIS configurations:
4) existing CWIS for Units 1 and 2 combined,
5) seasonal (April through July) operation of 3-mm wedgewire half-screens at Units 1 and 2 combined, and
6) year-round operation of closed-cycle cooling towers for Units 1 and 2 combined.

2 METHODS

2.1 Technical Approach

The technical approach used in this assessment to evaluate the non-monetized biological benefits from entrainment-reducing technologies at Merrimack Station is described by the flow chart in Figure 2-1. In most benefit evaluations where commercial fisheries are present, an equivalent fishery yield model (also known as harvest foregone model) is used to estimate the loss in commercial catch in pounds (EPRI 2012; USEPA 2006, 2014) and often relies on regional fishing mortality rates derived from stock assessments. This approach was considered inappropriate and not relevant because most fish caught are released (i.e.
few fish kept or "harvested"). Furthermore, data on catch-and-release rates, catch rates, individual recapture rates, fishing effort, and population size in the recreational fisheries within Hooksett Pool are unavailable to adequately model recreational catch as number of fish harvested and number of fish caught and released (potentially multiple times).

Instead of estimating equivalent fishery yield for a predominantly catch-and-release recreational fishery, this assessment uses a method similar in concept to the one used by USEPA (2014) for the Inland Region. This method estimated the number of equivalent "harvestable" fish due to entrainment-reducing technologies at Merrimack Station, where the "harvestable" age of equivalence is defined as the age first susceptible to angling gear (i.e., initially recruited to the fishery) since the goal is to provide input estimates of fish for valuing each time an angler catches a fish putatively for sport in Hooksett Pool. The estimate of the number of equivalent recruits to the fishery involves two assumptions with offsetting biases: (1) all of the incremental equivalent number recruited to the fishery (i.e., harvestable or catchable fish) are caught and valued when in reality perhaps only a portion of a particular cohort of fish would ever be caught (overestimates benefit); and (2) there are no multiple captures of individual fish, when it is possible that fish are caught multiple times in a year (underestimates benefit).

The benefit to the recreational fishery from reductions in entrainment and impingement abundance (and mortality) if entrainment-reducing technologies (3-mm wedgewire half screens or closed-cycle cooling towers) were implemented at Merrimack Station considers direct and indirect estimates of equivalent recruits. Direct estimates were defined as the number of each recreationally important fish species at an age susceptible to anglers that would have resulted if individuals at a particular early life stage were not entrained or impinged. The biomass from natural mortalities (assuming 100% due to predation) that would have resulted from the entrained or impinged life stage to the age first recruited to the fishery provided an indirect forage benefit to predatory species (assumed to be Age-2 Largemouth Bass) at 10:1 forage-to-predator biomass conversion. The number of equivalent Age-2 Largemouth Bass was also estimated from the lifetime total production foregone from entrainment and impingement of forage species.

2.2 Input Data Description

2.2.1 Entrainment Monitoring Data

Representative monthly mean entrainment densities at Merrimack Station Units 1 and 2 combined used in this assessment were based on entrainment abundance data collected from two sampling programs completed about a decade apart between 2006-2007 (Normandeau 2007) and 2017 (Normandeau 2017a).

2006-2007 Study

The scheduled sampling occurred weekly from late May through August (15 sampling weeks) and biweekly during the first half of September (1 sampling week). Sampling restarted during early April of 2007 and continued through June 2007. The scheduled sampling occurred biweekly from early April to mid-May (4 sampling weeks) and weekly during the remainder of the 2007 period (9 sampling weeks). Entrainment sampling was completed from 31 May 2006 through 30 August 2006 and 4 April 2007 through 27 June 2007 at Unit 1, and 24 May 2006 through 13 September 2006 and 4 April 2007 through 27 June 2007 at Unit 2. A total of 48 valid entrainment samples were collected at Unit 1 and 47 were collected at Unit 2.

Entrainment sampling was not conducted at an individual unit on days when one or both of the two circulating pumps were not operating. On each sampling day, one daytime sample and one nighttime
sample were collected. For sampling purposes, daytime was defined as occurring between one hour after local sunrise and one hour before local sunset as observed at the plant site. Nighttime was defined as occurring between one hour after local sunset and one hour before local sunrise as observed at the plant site. Entrainment samples were collected through a $0.300-\mathrm{mm}$ mesh plankton net suspended over a barrel sampler located outside of the pumphouses at Units 1 and 2. Water was supplied to each tank from a 3 -inch raw-water tap drawing un-chlorinated ambient cooling water from the condenser supply line at a point after the supply (discharge) lines from each intake pump have joined into a common line within the CWIS. Water in the 3-inch tap at ambient condenser pressure ($15-22$ psig) flowed from the condenser supply line located in the basement of each pumphouse, up and out through the upper floor of the pumphouse in a rigid 3-inch PVC pipe to the sampling tank located at ground level. Flow was calculated for each sample using a timed volumetric method to ensure that a sample volume of at least $100 \mathrm{~m}^{3}$ was filtered and collected.

Entrainment samples were preserved in 10\% buffered-formalin and processed in Normandeau's biological laboratory in Bedford, New Hampshire. Entrainment samples were manually sorted and eggs and larvae were enumerated and identified to the lowest distinguishable taxon. Samples with high abundances were subsampled in the laboratory using a plankton splitter such that a minimum of 200 eggs and larvae were analyzed. If numbers of eggs and larvae were low but the amount of detritus in the sample was high (more than 400 ml settled volume), then a maximum of one-half of the sample was sorted. Ichthyoplankton was enumerated into the following life stages: eggs, yolk-sac larvae, post-yolksac larvae, young of the year and yearling (and older). Yolk-sac larvae ("YSL") were defined as the transition stage from hatching through the development of a complete, functional digestive system. Post yolk-sac larvae ("PYSL") were defined as the transitional life stage of larval development occurring from the time when a complete functional digestive system has been fully developed to the time when the organism transforms into a fully formed juvenile fish. Young of year ("YOY") were defined as the stage from completed transformation into a juvenile fish to Age 1 (12 months). Larvae that could not be staged due to the damaged condition of the individuals in the sample were enumerated as unidentified larvae. The total length to the nearest 0.1 mm was measured for up to 30 individuals of each ichthyoplankton life stage (except eggs) per sample. If more than 30 ichthyoplankton larvae were present in a sample, measurements from a random subsample of 30 specimens provided statistically sufficient precision and were considered representative of the entire sample (Garner 1997; Normandeau 2006).

2017 Wedgewire Test Screen Performance Study

Normandeau evaluated the entrainment reduction performance of a single 3-mm slot width wedgewire ("test") screen (z-alloy Johnson Screens model T-12), measuring 12.5 inches in diameter and 35 inches long, by contrasting ichthyoplankton densities from paired test and in-plant control samples ("control") collected at Merrimack Station Unit 1 from 15 consecutive weeks of testing (weeks 3 through 17) beginning 22 May 2017 and continuing through 3 September 2017 (Normandeau 2017a). Control samples were paired in two-hour time intervals throughout each sampling day with the test 3-mm wedgewire screen samples and collected from the Unit 1 CWIS using the same sampling equipment and procedures from the May 2006 through June 2007 entrainment study (Normandeau 2007) and as used for the test wedgewire screen samples.

Control samples were taken from a 3-inch raw-water tap drawing un-chlorinated ambient cooling water from the condenser supply/circulating water pump discharge within the Unit 1 CWIS. Water in the 3 -inch diameter tap, at ambient circulating water pressure, flowed from the tap into a sample collection tank located on the floor of the Unit 1 pump house. The control sampling flow discharged from the collection tank into a sump where it was pumped to drain into the Unit 1 CWIS traveling screen wash water sluice located on the south side of the Unit 1 CWIS. Volume sampled by the control system was
measured by a second factory-calibrated Signet flowmeter mounted in a straight run of pipe between the tap valve and the collection tank. As with the 3-mm wedgewire screen test samples, a target control sample volume of about $100 \mathrm{~m}^{3}$ was filtered for the control samples and the contents were collected in each two-hour interval at a flow rate of about 220 gpm to 240 gpm . Also, as with the $3-\mathrm{mm}$ wedgewire screen test samples, control samples were filtered through a $0.300-\mathrm{mm}$ mesh cylindrical collection net with a short conical section at the lower end tapering to the cod end collection cup in a tank sampler filled with ambient water to buffer the flow and help ensure that ichthyoplankton were in good condition for identification and enumeration. Each net was changed out frequently (about every 20 minutes) with a clean net and washed into a collection jar during each two-hour sample to help minimize damage to the collected ichthyoplankton due to turbulence in the net. At the end of each two-hour sampling interval, the remaining material in the collection net was washed into the sample jar to terminate the two-hour sample, and replaced with a clean net to begin the next two-hour sample collection. Each net removed from the collection tank was washed down from the outside with filtered water to concentrate the sample material in the cod end collection cup, the sample was then rinsed into one or more labeled jars and preserved with a final concentration of 6% buffered formalin. Sampling was nearly continuous during each sampling day, with only about one minute needed to switch nets between the end of each two-hour interval and the beginning of the next.

Laboratory analyses were similar to the 2006-2007 entrainment study with a few exceptions. Instead of a 200-specimen subsampling quota used in 2006 and 2007, the 2017 screen test and control samples with high abundances (at least 400 eggs and 400 larvae) were subsampled in the laboratory for eggs or larvae (or both). In addition to measuring total length for up to 30 eggs and 30 larvae per taxon, limiting dimension, referred to as "Body Depth", was also measured. Body Depth for larvae was defined as the largest limiting dimension besides total length from each larva among the following: body depth, head depth, head width, and body width. Body depth for eggs was the diameter for a round egg, and if the egg was oval, both maximum and minimum lengths were measured.

2.2.2 Impingement Monitoring Data

Impingement sampling was conducted at the Merrimack Station Unit 1 and Unit 2 CWISs beginning on 29 June 2005 and continuing for two years through 28 June 2007 (Normandeau 2007). Impingement sampling was conducted one day per week from late-June 2005 through mid-December of 2005 (25 sampling weeks), from mid-March of 2006 through November of 2006 (34 sampling weeks) and from mid-March of 2007 through the end of June 2007 (15 sampling weeks). During the intervening time periods, 24 -hour impingement samples were collected one day every other week (14 sampling weeks). Weekly impingement sampling consisted of one 24 -hour sample followed by one six-day sample, and biweekly sampling consisted of one 24 -hour sample followed by one 13 -day sample. The 24 -hour impingement samples were considered the primary sampling units, and "long interval" samples of six or 13 days were considered secondary sampling units.

Impingement sampling at each Merrimack Station CWIS was conducted by placing a basket with standard $3 / 8$-inch (0.375 -inch) square stainless-steel wire mesh in the fish and debris return sluice of Unit 1 and Unit 2 to catch all fish and debris washed off of the operating traveling screens during the sampling interval. Impingement collection efficiency was determined during one 24 -hour sampling period in each month to adjust each 24-hour sample for fish that are lost between the time they are impinged on the operating intake screens and their collection in the sampling device. These impingement collection efficiency factors were applied to other 24-hour impingement collections from each period centered on the date of the collection efficiency test. Collection efficiency adjustments were not applied to the "long interval" samples. The primary estimates of adjusted 24 -hour impingement density were used to estimate the monthly mean impingement density and the secondary long-interval samples were not used in this assessment because Normandeau (2007) found the 24-hour impingement samples led to significantly
higher (and therefore more conservative, i.e., overestimate) impingement rates than those based on the long-interval impingement samples.

2.2.3 Intake Flow Data

The three case scenarios of monthly water withdrawal volumes used for extrapolating entrainment and impingement density to entrainment and impingement abundance estimates were based on 10 years of monthly actual intake flows at Merrimack Station Units 1 and 2 combined from 2007 through 2016; design intake flow of 287.3 million gallons per day ("MGD") assuming 100% capacity factor; and 50% of DIF (143.65 MGD) assuming 50% capacity factor as specified by the memorandum, dated 15 December 2017, from ENERCON to NERA. For the year-round closed-cycle cooling tower BTA alternative, the water withdrawal case scenarios were reduced by 95%. Table $2-1$ presents the monthly mean intake flow rate and total monthly water withdrawal volumes used in this assessment.

2.2.4 Wedgewire Screen Performance

The overall reduction (efficacy) in entrainment of ichthyoplankton at the Merrimack Station Unit 1 CWIS due to the operation of the $3-\mathrm{mm}$ wedgewire test screen was estimated for weeks 3 through 17 (Monday, 22 May through Sunday, 3 September 2017) for each life stage and taxon group (Normandeau 2017a). Based on paired t-tests using concurrently collected (i.e., pairs) of valid Unit 1 control and 3-mm wedgewire screen test samples during each of the survey weeks 3 through 17, entrainment density for the 3 -mm wedgewire test screen was significantly lower ($p<0.01$) than the control entrainment density for each week 3 through 14. The proportion entrained from the results of this study (Normandeau 2017a) and shown in Table 2-2 was used to estimate entrainment abundance from water withdrawal through a 3-mm wedgewire screen at Merrimack Station Units 1 and 2 combined during April through July, assuming this proportion was representative for future April through July periods. In some cases, the data were lacking or unavailable for some species and life stages in which case other species or life stage data were used as surrogates (e.g., Margined Madtom PYSL for Brown Bullhead PYSL, Common Shiner PYSL for Spottail Shiner PYSL, and Golden Shiner YROL for Spottail Shiner YOY). Outside of the April-July entrainment season, the proportion entrained was assumed to be 1 (i.e., 0% exclusion) if the wedgewire half-screens are bypassed during water withdrawal.

2.3 Species Classification

2.3.1 Taxonomy

While there were differences in presence and absence of some taxa identified between the 2006-2007 and 2017 entrainment sample collections, there were also differences in taxonomic resolution (Table 2-3). The presence of damaged specimens could cause a taxon to be assigned to a higher category than species if one or more distinguishing features were absent and more than one similar species were identified in the samples. Furthermore, the ichthyoplankton identification using traditional morphological features and meristics for some species did not allow identification to the species level of taxonomy, e.g., Carp and Minnow family (Cyprinidae), Blueback Herring/Alewife (Alosa aestivalisAlosa pseudoharengus), or Sunfish family (Centrarchidae, including Lepomis sp.). Damaged herring or sunfish larvae without identifying characteristics were identified to the family level in 2006, 2007, and 2017 (e.g., Clupeidae, Centrarchidae). Laboratory identification criteria, supplementary information and level of acceptable uncertainty changed from the 2006-2007 study to provide finer taxonomic resolution in 2017 that led to differences in taxonomic resolution rather than changes in biodiversity. For example, instead of a clupeid larvae without identifying characteristics for speciation being classified as Herring family (Clupeidae) as would have been done in 2006 or 2007, the knowledge of Atlantic Herring or Gizzard Shad being absent in Hooksett Pool would lead to a more specific identification as Alosa sp. in 2017. The Lepomis sp. and Lepomis sp./Pomoxis sp. taxa identified in 2017 would have been classified as Sunfish family in 2006 and

2007, along with other Sunfish species not identifiable to species (presumably due to damage of key characteristics). In addition, some entrained specimens were identified as simply "Unidentified" taxon in 2006 and 2007 but were re-classified to the taxon of "Unidentified Osteichthyes" (bony fish) used in 2017 since such specimens in Hooksett Pool would not likely belong to Chondrichthyes (sharks and rays) or Agnatha (jawless fishes).
Taxonomy of juvenile and adult fish collected in the 24-hour impingement samples was straightforward, unless severely damaged or decomposed. Only two species (Banded Sunfish and Rainbow Smelt) identified in impingement samples were not identified in the electrofishing samples collected during the 1972 through 2013 period, lending credence to laboratory identification results (Table 2-4).

2.3.2 Species Apportionment

The monetization of the benefits of implementing entrainment-reducing technologies at Merrimack Station requires the comparison in equivalent loss of recreationally important species (i.e., equivalent catch), directly or indirectly via trophic transfers, between a candidate technology and the existing CWIS. In contrast to the preliminary assessment of a selected target species (ASA 2012), this assessment estimates the losses and benefits from annual entrainment and impingement of all identified taxa, but to do so, required several abundant taxa identified to genus or family or species complexes to be apportioned to species level for modelling and ultimately to provide benefit data as input for monetization. These taxa identified to higher-than-species level were apportioned to species proportionally by month based on the monthly mean densities among member species identified in the respective month and by the most similar life stage. As a hypothetical example, if entrainment density of Sunfish family PYSL for a particular month was 10 larvae per $100 \mathrm{~m}^{3}$ and the only entrained sunfish PYSL identified to species in that month were Bluegill (4 larvae per $100 \mathrm{~m}^{3}$) and Largemouth Bass (1 larvae per $100 \mathrm{~m}^{3}$) then the Sunfish family PYSL density would be apportioned 80% to Bluegill (8 larvae per $100 \mathrm{~m}^{3}$) and 20% to Largemouth Bass (2 larvae per $100 \mathrm{~m}^{3}$).

There were some exceptions where other information was used to make an assignment to a species or taxon. The entrainment densities identified as Blueback Herring/Alewife taxon were assigned to Alewife since there is no record of Blueback Herring in Hooksett Pool from entrainment, impingement and electrofishing (Normandeau 2007, 2017a; Table 2-4). The taxon identified as Lepomis sp. were classified 100% to Bluegill because no other Lepomis species were identified in entrainment and there was no objective basis to apportion to other potentially entrained Lepomis species (e.g., Pumpkinseed identified in impingement). Because entrained eggs were identified as Carp and Minnow family or as Unidentified Osteichthyes, all entrained eggs were classified as Carp and Minnow family. Densities of damaged or unidentified eggs and larvae were allocated proportionally to identifiable taxa.

2.3.3 Economic and Ecological Importance of Species Entrained and Impinged

All taxa identified or apportioned to species in entrainment and impingement samples from Merrimack Station were classified as either "recreationally important" fishery species (i.e., game or sport fish) or as "forage" species largely based on the classifications made by USEPA for freshwater source waterbodies in inland regions (Appendix G1 in USEPA 2016). The recreationally important fishery species included in this assessment were further classified by economic value categories ("Bass", "Panfish", "Small Game", and "Walleye/Pike") consistent with USEPA (Appendix I-25 in USEPA 2014) and are listed in Table 2-5. Commercial harvest was excluded from this assessment due to the lack of commercial fisheries in Hooksett Pool and other regions of the Merrimack River. Exclusion of commercial fisheries in this assessment is consistent with the USEPA's exclusion of commercial fishing benefits evaluation for the inland regions (USEPA 2014).

Based on the species identified from entrainment and impingement sampling from 2005 through 2007 (Normandeau 2007) and electrofishing during selected years in the period from 1972 through 2013 (Normandeau 2011, 2017b), there is no evidence of federally listed threatened or endangered fish species in Hooksett Pool that are protected under the Endangered Species Act. However, three state-listed threatened Bridle Shiner (Notropis bifrenatus) specimens were collected in the six-day impingement samples collected at Merrimack Station (NHFG 2017a; Normandeau 2007). In addition, three species (American Eel, American Shad, and Banded Sunfish) were collected in entrainment and/or impingement samples at Merrimack Station that are currently considered by NHFG (2017b) as state-listed category-1 (near-threatened) species of concern. Alewife and Rainbow Smelt have been observed in Hooksett Pool, but the absence of a fish ladder implies these populations are not considered sea-run and as such, should not be considered NH-listed species of concern.

2.4 Entrainment and Impingement Abundance Estimation

2.4.1 Differentiation between Entrainment and Impingement Abundance

Entrainment is defined as those life stages of fish and shellfish in the intake water flow entering and passing through a CWIS, but excluding those organisms retained on a sieve with a maximum opening of 0.56 inches (14.2 mm), equivalent to the diagonal opening of a $1 / 2 \times 1 / 4$ inch mesh screen or $3 / 8$-inch square mesh screen as specified by $\S 125.92(\mathrm{~h})$ of the final $\S 316$ (b) regulations. Organisms that are larger than this 0.56 -inch sieve opening and would be retained on a $3 / 8$-inch square mesh travelling screen at Merrimack Station were defined as impinged. Entrainment samples from 2006, 2007 and 2017 (control samples) were collected downstream of the $3 / 8$-inch square mesh travelling screens at Merrimack Station so sample densities should reflect entrainable organisms. A $55-\mathrm{mm}$ TL Bluegill with limiting body dimensions of 9.0 mm width and 1.0 mm depth, and an $85-\mathrm{mm}$ TL Margined Madtom with limiting body dimensions of 16.5 mm width and 14.3 mm depth were excluded from the 2017 control samples based on this 0.56 -inch (14.2 mm) limit for entrainable-sized organisms. Based on the size distribution of ichthyoplankton collected in the 2006 and 2007 entrainment samples and the morphometrics (total length, maximum body depth, and maximum body width) measured in the control entrainment samples during the 2017 wedgewire screen performance study (Normandeau 2017a), no further exclusions were needed to meet the definition of entrainment.

When fine mesh screen technologies are used, the portion of organisms that would normally be entrained with a $3 / 8$-inch mesh, but instead become impinged, are called impingeable entrainables or "converts". For this assessment, the impingeable entrainables excluded from entering and passing through the CWIS by the $3-\mathrm{mm}$ wedgewire half screens were assumed to have 100% survival.

2.4.2 Baseline Calculations for Existing Cooling Water Intake Structure

The weekly entrainment and adjusted 24-hour impingement densities by life stage for each apportioned species from Normandeau (2007 and 2017a) were first used to estimate monthly mean densities by year and unit and then used to calculate monthly mean densities for a "typical" 12-month impingement season and 6-month (April through September) entrainment sampling season. Based on the assumptions in the final §316(b) regulations and by USEPA (2014), entrainment and impingement density (and abundance) was considered to be directly proportional to CWIS flow. Entrainment and impingement densities from samples were assumed representative of the density within a given week and month, and were assumed to be equal between Units 1 and 2. For this assessment, 100\% mortality was assumed for impingement and entrainment (i.e., entrainable organisms that pass through the cooling water system). Entrainment and impingement densities from sampled years (2005 through 2007, and 2017) were assumed to be representative of the 2007 through 2016 period and during future periods of operation if entrainmentreducing technologies were implemented.

The monthly entrainment abundance ($E_{t, i m}$) for taxon t and life stage i at Merrimack Station was calculated as:

$$
\begin{equation*}
E_{t, s, m}=D_{E N T, t, i, m} V_{m} \tag{Equation1}
\end{equation*}
$$

where $\quad D_{E N T, t, i, m}=\quad$ entrainment density $\left(\mathrm{n}\right.$ per $\left.\mathrm{m}^{3}\right)$ of taxon t and life stage i at month m, and $V_{m}=$ water withdrawal volume $\left(\mathrm{m}^{3}\right)$ for Units 1 and 2 combined at month m.

The monthly impingement abundance and mortality ($I_{t, i, m}$) for taxon t and life stage i at Merrimack Station was calculated as:

$$
\begin{equation*}
I_{t, i, m}=D_{I M P, m} V_{m} \tag{Equation2}
\end{equation*}
$$

where $\quad D_{\text {IMP }, \text { t } \text { im }}=\quad$ impingement density $\left(\mathrm{n}_{\mathrm{per}} \mathrm{m}^{3}\right)$ of taxon t and life stage i at month m, and $V_{m}=\quad$ water withdrawal volume $\left(\mathrm{m}^{3}\right)$ for Units 1 and 2 combined at month m.

For baseline impact calculations under existing CWIS configuration, monthly entrainment and impingement abundance was estimated using Equation 1 for three withdrawal case scenarios of V_{m} (10-year AIF, DIF, and 50% DIF) based on Table 2-1. Annual entrainment and impingement abundance of taxon t and life stage $i\left(E_{t, i}\right.$ and $I_{t, i}$, respectively) at Merrimack Station Units 1 and 2 combined under existing CWIS configurations was estimated for each of the three water withdrawal case scenarios by summation of $E_{t, i, m}$ and $I_{t, i m}$, respectively as:

$$
\begin{align*}
& E_{t, i}=\sum_{m=1}^{N_{m}} E_{t, i, m} \text { and } \tag{Equation3}\\
& I_{t, i}=\sum_{m=1}^{N_{m}} I_{t, i, m} \tag{Equation4}
\end{align*}
$$

2.4.3 Wedgewire Screen Calculations of Entrainment and Impingement Abundance

Annual and monthly entrainment and impingement abundance by taxon and life stage with 3-mm slotwidth wedgewire half screens at Merrimack Station Units 1 and 2 were estimated using Equations 1 through 4 except a taxon-species proportion entrained ($P_{w w s}$) was first applied to densities identified at the lowest identifiable taxon prior to species apportionment. For August through March, $P_{w w s}=1$ was used and values shown in Table 2-2 were used for the April through July period.

2.4.4 Closed-Cycle Cooling Tower Calculations of Entrainment and Impingement Abundance

Annual and monthly entrainment and impingement abundance by taxon and life stage with closed-cycle cooling towers at Merrimack Station Units 1 and 2 were estimated using Equations 1 through 4 except the water withdrawal volumes were 95% less as shown in Table 2-1.

2.5 Equivalent Recruit Model for Estimating Direct Use Benefits

The number of equivalent recruits to the recreational fishery from entrained ichthyoplankton or impinged juveniles at Merrimack Station was estimated following methods of the equivalent adult model established by Saila et al. (1997), USEPA (2004), EPRI (2004, 2012), and Barnthouse (2005). Instead of estimating equivalent adults, this analysis estimates the number of equivalent recruits (i.e., "catchable fish"), defined as the equivalent number that would reach the age at first recruitment to the recreational fishery (i.e., age first susceptible to hook-and-line gear), that would have resulted if the early life stages
had not been entrained or impinged (Horst 1975; Goodyear 1978). It was conservatively assumed that entrainment mortality was 100%, and all entrained species were lost from the environment. The number of equivalent recruits (N_{R}) for each taxon t and life stage i entrained or impinged fish younger than the age of recruitment in month m was estimated as follows:

$$
\begin{align*}
& N_{R, t, i, m}=E_{t, s, m} S_{t, i \rightarrow R} \text { for entrainment and } \tag{Equation5}\\
& N_{R, t, i, m}=I_{t, i, m} S_{t, i \rightarrow R} \text { for impingement } \tag{Equation6}
\end{align*}
$$

where $S_{t, i \rightarrow R}=\quad$ fraction of fish expected to survive from life stage i to recruitment to the recreational fishery (age of equivalence) as determined by age at initial recruitment (i.e., age first susceptible to hook-and-line gear) as shown in Table 2-5,
$E_{t, i, m}$ is defined as in Equation 1 and $I_{t, i, m}$ is defined as in Equation 2. For impinged fish at age of recruitment or older, $S_{t, i \rightarrow R}$ was equal to 1.
The $S_{t, i \rightarrow R}$ parameter was estimated as follows:

$$
\begin{equation*}
S_{t, i \rightarrow R}=S_{\mathrm{adj}, i} \prod_{j=i+1}^{j_{\max }} S_{j} \tag{Equation7}
\end{equation*}
$$

where:

$$
\begin{array}{ll}
S_{\mathrm{adj}, i}= & \begin{array}{l}
\text { survival fraction adjusted for mixed ages within the entrained or impinged life } \\
\text { stage } i \text { and calculated as } 2 S_{i} \exp \left(-\log \left(1+S_{i}\right)\right)(\text { EPRI 2004, 2012), }
\end{array} \\
S_{j}= & \text { survival fraction from life stage } j \text { to } j+1, \text { and } \\
j_{\max }= & \text { the life stage immediately prior to age of recruitment }(=R-1) .
\end{array}
$$

The survival fractions were calculated from the instantaneous total mortality rate (Z) for each life stage by $S=\exp (-Z)$ or $\exp (-(M+F))$ where M is the instantaneous natural mortality rate and F is the instantaneous fishing mortality rate. Since $F=0$ for ages or life stages younger than age of recruitment, $S=\exp (-M)$. Age of recruitment, unless otherwise noted, was determined as the age where v, the fraction vulnerable to the fishery, was greater than zero from life history tables in USEPA (2006) and EPRI (2012) and is shown in Table 2-5.
Balanced life history tables for fish were constructed and lifetime average fecundities were estimated to provide reasonable species-specific survival fractions (S) for each life stage using the methods of Saila et al. (1997) and EPRI (2012). The age with the highest uncertainty in mortality, often YOY, was derived by subtracting the Z for each pre-adult life stage from the total Z from egg to adulthood, assuming the population was at equilibrium such that two eggs from a female survive to reproductive age (i.e., each female produces two offspring to replace herself and a male). The life-history parameters based on an equilibrium population are presented by life stage or age in Appendix A. Life History Tables.
In addition to equivalent recruits, age-1 equivalents were estimated following Equations 5 through 7 except the terminal age was Age 1 instead of age of recruitment (R).

2.6 Estimation of Indirect Use of Forage Benefits

2.6.1 Production Foregone of Forage Species

The production foregone of nine entrained and impinged forage species listed in Table 2-5 was estimated following standard methods established by USEPA (2004) and EPRI (2004, 2012). Production forgone is the reduction in prey biomass available to predators due to, in this case, entrainment or impingement at

Merrimack Station, and includes the expected future growth prior to consumption by predators if the fish was not entrained or impinged. In this assessment, 100% of foregone production was conservatively assumed to be consumed by recreationally valuable predator species. Specifically, the Rago (1984) model was used to estimate production foregone of a particular species due to fish entrained at any given life stage by integrating the instantaneous growth and mortality rates over the life stage i as follows:

$$
\begin{equation*}
P_{i}=\frac{G_{i} N_{i} W_{i}\left[\exp \left(G_{i}-Z_{i}\right)-1\right]}{\left(G_{i}-Z_{i}\right)} \tag{Equation8}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \quad P_{i}=\quad \text { production forgone (number of individuals) for age or life stage } i \text {, } \\
& G_{i}=\quad \text { instantaneous growth rate for individuals of age or life stage } i \text {, } \\
& Z_{i}=\quad \text { instantaneous total mortality rate for individuals of age or life stage } i, \\
& W_{i}=\quad \text { average weight of individuals at start of age or life stage } i \text {, and } \\
& N_{i}=\quad \text { number of individuals lost due to entrainment or impingement (assuming 100\% } \\
& \text { mortality) of age or life stage } i \text {. }
\end{aligned}
$$

While Equation 8 estimates the production foregone for the entrained or impinged life stage i, the equation may also be used to estimate production foregone at a later life stage j instead of i by accounting N_{i} for mortality from stage i to j. Therefore, production foregone at any future life stage j, for a fish entrained or impinged at life stage $i\left(P_{i, j}\right)$ is equal to:

$$
\begin{equation*}
P_{i, j}=\frac{G_{j} N_{i} s_{i, j} W_{j}\left[\exp \left(G_{j}-Z_{j}\right)-1\right]}{\left(G_{j}-Z_{j}\right)}, \tag{Equation9}
\end{equation*}
$$

where $S_{i j}=\quad$ proportion of individuals that survive from entrained or impinged stage i to later stage j, and by analogy to Equation 8 is calculated as:

$$
\begin{equation*}
S_{i, j}=S_{\mathrm{adj}, i} \prod_{k=i+1}^{j-1} S_{j}, \tag{Equation10}
\end{equation*}
$$

Analogous to the adjustment to survival fraction for the entrained or impinged life stage to account for individuals entrained or impinged at any age within the life stage (i.e., median age-at-entrainment) rather than assuming individuals were entrained at the beginning of the stage, Equation 8 is similarly adjusted to account for a median life-stage length over which production can occur:

$$
\begin{equation*}
P_{i}=\frac{G_{i} N_{i} W_{i}\left[\exp \left\{\left(g_{i}-z_{i}\right)\left(d_{i}-\widetilde{d_{i}}\right)\right\}-1\right]}{\left(G_{i}-z_{i}\right)} \tag{Equation11}
\end{equation*}
$$

where $\quad P_{i}=\quad$ production forgone for age or life stage i,
$G_{i}=\quad$ instantaneous growth rate for individuals of age or life stage i,
$Z_{i}=\quad \quad$ instantaneous total mortality rate for individuals of age or life stage i,
$d_{i}=\quad \quad$ duration (in days) of age or life stage i with $d_{i} / 2$ equal to time interval between assumed median age-at-entrainment and end of the life stage,

```
\widehat{d}
g}=\quad daily instantaneous growth rate for individuals of age or life stage i (=G; / d d )
zi= daily instantaneous total mortality rate for individuals of age or life stage i
    (=Zi/ }\mp@subsup{d}{i}{}\mathrm{ ),
Wi= average weight of individuals at start of age or life stage i, and
N}=\quad number of individuals lost due to entrainment (assuming 100% mortality) of ag
or life stage i.
```

The total production foregone (P_{T}) of all life stages entrained for a given species is then estimated by the adjusted Rago (1984) model as:

$$
\begin{equation*}
P_{T}=\sum_{i=t_{\min }}^{t_{\max }} \sum_{j=i}^{A_{\max }} P_{i, j} \tag{Equation12}
\end{equation*}
$$

where $\quad P_{i, j}=\quad P_{i}$ for entrained stage (i.e., $j=i$) as calculated by Equation 11 otherwise by Equation 9 for later stages,
$A_{\max }=\quad$ theoretical maximum age,
$t_{\text {min }}=\quad$ the earliest entrained life stage, and
$t_{\max }=\quad$ the oldest entrained life stages (i.e., number of life stages entrained).
The Rago (1984) model for production forgone estimates the biomass production lost but does not include biomass lost at time of entrainment or impingement that is not consumed by predators. To correct for this bias, the entrained or impinged biomass lost $\left(B_{L}\right)$, as calculated by Equation 13 below, was added to the total production foregone estimate from Equation 12.

$$
\begin{equation*}
B_{L}=N_{i} \widehat{W}_{i} \tag{Equation13}
\end{equation*}
$$

where $\quad B_{L}=$ direct biomass lost (in pounds) of individuals at entrained stage i,

$$
\widehat{W}_{i}=\text { median weight at stage } i \text { calculated as } W_{i} \mathrm{e}^{g_{i} \hat{d}_{i}} .
$$

Herein, the adjusted total production forgone model estimate (P_{F}) is defined as

$$
\begin{equation*}
P_{F}=P_{T}+B_{L} \tag{Equation14}
\end{equation*}
$$

To evaluate the reduction of economically valuable predators as a result of the foregone production that would be consumed, the P_{F} estimate for entrained or impinged forage species was then converted to predator biomass lost due to entrainment or impingement of forage species $\left(B_{P}\right)$ by

$$
\begin{equation*}
B_{P}=(k)\left(P_{\mathrm{F}}\right) \tag{Equation15}
\end{equation*}
$$

where $k=$ trophic transfer efficiency of 0.1 (USEPA 2004, 2006; EPRI 2012).

2.6.2 Natural Mortality Biomass of Recreational Fishery Species

A fraction of recreationally important fishery species can also provide indirect benefit as prey biomass before they mature and enter the fishery. This indirect benefit was estimated as the biomass of the natural mortalities of recreationally important fishery species before reaching recruitment age that would have resulted if the early life stage had not been entrained or impinged. The biomass associated with natural mortality from the entrained or impinged stage $i\left(B_{M, i}\right)$ and later stage $j\left(B_{M, j}\right)$ for a particular recreational fishery species was assumed to serve as forage biomass by predation and was calculated as

$$
\begin{equation*}
B_{M, i}=N_{i}\left(1-S_{a d j, i}\right) \widehat{W}_{i} \tag{Equation16}
\end{equation*}
$$

$$
\begin{align*}
& B_{M, j}=N_{i} S_{i, j}\left(1-S_{j}\right) \widehat{W}_{j} \tag{Equation17}\\
& B_{M}=\sum_{j=i}^{R-1} B_{M, j} \tag{Equation18}
\end{align*}
$$

where $\quad B_{M, j}=\quad B_{M, i}$ for entrained or impinged stage (i.e., $j=i$) as calculated by Equation 16 otherwise by Equation 17 for later stages to and including the age prior to recruitment ($R-1$),
$N_{i}=\quad$ number of individuals lost due to entrainment (assuming 100\% mortality) of age or life stage i,
$S_{\text {adj }, i}=\quad$ survival fraction adjusted for mixed ages within the entrained or impinged life stage i as defined in Equation 7,
$S_{i j}=\quad$ proportion of individuals that survive from entrained or impinged stage i to later stage j as defined by Equation 10,
$S_{j}=\quad$ proportion of individuals that survive from stage j to next stage $j+1$, and
\widehat{W}_{i} and \widehat{W}_{j} is the median weight at life stage i and j as defined in Equation 13.
The indirect (secondary) benefit of a fraction of recreational fishery species serving as forage to a predator is quantified by converting the total biomass associated with natural mortalities of fishery species (from summation of the B_{M} estimates from each species) to predator biomass (B_{P}) by applying a 10% trophic transfer efficiency similar to Equation 15.

2.6.3 Equivalent Predator

Largemouth Bass (Age 2) was selected as the equivalent predator for modeling indirect recreational fisheries benefit from the production foregone from forage species and the natural mortality biomass of recreational fishery species prior to recruitment. Largemouth Bass was selected because it was one of the most abundant fish species in Hooksett Pool (Normandeau 2012, 2017b) and was the single most preferred fish species targeted by recreational anglers (Responsive Management 2016). Based on the smallest size of 279-305 mm TL (11-12 inches) valued by anglers (Responsive Management 2016), mean length at age of Largemouth Bass (Normandeau 2017b), and age with some vulnerability to fishing (age at first recruitment) used by USEPA (2006), Age 2 was selected as the age of Largemouth Bass to serve as the equivalent predator for converting forage benefits to the equivalent number of fish with economic value. The equivalent number of Age-2 Largemouth Bass from the predator biomass (B_{P}), which was derived from adjusted total production foregone of forage species and forage biomass associated with natural mortalities of all recreational fishery species prior to age of recruitment, was estimated as:

$$
\begin{equation*}
N_{B \rightarrow R, L M B}=B_{P} / \widehat{W}_{A g e ~} 2 \tag{Equation19}
\end{equation*}
$$

where $\widehat{W}_{\text {Age } 2}=$ median weight at age $2(140$ grams $)$ based on start weight and growth rate shown in the life history tables in Appendix A.

2.7 Equivalent Recreational Catch

The additional fish (equivalent recreational catch) that would result from implementing each entrainmentreducing technology at Merrimack Station was quantified by the change in number of equivalent recruits (Section 2.5) of each recreational fishery species and Largemouth Bass recruits from production foregone of forage species (Section 2.6.1) and biomass lost due to predation (natural mortality) of early life stages
of recreational fishery species (Section 2.6.2) due to entrainment and impingement losses with and without the entrainment-reducing technology.

2.8 Summary of Assumptions

In no particular order of importance, the principal assumptions of the methods used to estimate the benefit, in number of fish of recreational importance, from entrainment-reducing technologies at Merrimack Station were the following:

1. This assessment is based on entrainment and impingement abundance directly linked to three flow regimes: (1) 10 -year AIF, (2) 100% DIF, and (3) 50% DIF.
2. This assessment estimates the recreational benefit (number of fish) that would result from reductions in entrainment and impingement from implementing one of two entrainment-reducing technologies compared to the existing CWIS at Merrimack Station. Specifically, this assessment evaluates a 3 -mm wedgewire half screen operational from April through July (the period representing about 99% of annual entrainment) and year-round operation of closed-cycle cooling towers that reduces intake flow by 95\%.
3. Entrainment and impingement of fish at Merrimack Station has zero to negligible direct impact to commercial fisheries because there are no known commercial fisheries in Hookset Pool and zero to little downstream contribution to marine fisheries.
4. Recreational harvest was assumed to be negligible in Hooksett Pool because of the common practice of catch-and-release angling; therefore, an equivalent fishery yield model was not used to estimate harvest foregone due to entrainment and impingement since it would be inappropriate to use instantaneous fishing mortality rates available for all inland regions (USEPA 2006; EPRI 2012) and lead to an overestimate of recreational harvest for a catch-and-release fishery.
5. The number of equivalent fish at the age first susceptible to recreational fishing, as defined by the age initially or partially vulnerable to fishing (USEPA 2006; EPRI 2012; life history tables in Appendix A), is considered representative of the equivalent catch by anglers from reductions in annual entrainment and impingement at Merrimack Station.
6. The number of equivalent recruits to the fishery involves two assumptions with offsetting biases: (1) all of the incremental equivalent number recruited to the fishery (i.e., harvestable or catchable fish) are caught and valued when in reality perhaps only a portion of a particular cohort of fish would ever be caught (overestimates benefit); and (2) there are no multiple captures of individual fish, when it is possible that fish are caught multiple times in a year (underestimates benefit).
7. All of the production foregone of forage species and biomass lost due to predation on early life stages of fishery species (assuming 100% of natural mortality is due to predation) would be transferrable to predatory species of economic value at a 10% trophic transfer efficiency (USEPA 2004, 2006; EPRI 2012).
8. The selection of Age-2 Largemouth Bass as the single predator species converted from lost forage biomass has the bias to overestimate the recreational benefit because Age 2 has the lowest individual weight among ages vulnerable to fishing, overestimates predation by this species alone when in reality there are many predatory species, and Largemouth Bass has the highest economic value in Hooksett Pool.
9. Production foregone models assume no trophic dead ends from species reaching a size too large for consumption by predators.
10. The life-history parameters were based on an equilibrium population such that two eggs from a female survive to reproductive age (i.e., each female produces two offspring to replace her and a male). The life-history parameters based on an equilibrium population are presented by life stage or age in Appendix A. Life History Tables.
11. Equivalent recruit model and production foregone model assumes constant year-to-year mortality for each life stage/age.
12. Taxa identified to higher-than-species level could be appropriately apportioned to species proportionally by month based on the monthly mean densities among member species identified in the respective month and by the most similar life stage.
13. Densities of damaged or unidentified eggs and larvae could be allocated proportionally to identifiable taxa.
14. The classification of species as recreationally important fishery species and forage species based on USEPA (2006) was considered representative of the fishery in Hooksett Pool.
15. For this assessment, the impingeable entrainables excluded from entering and passing through the CWIS by $3-\mathrm{mm}$ wedgewire half screens were assumed to have 100% survival.
16. Entrainment and impingement density (and abundance) was assumed to be directly proportional to CWIS flow.
17. Entrainment and impingement densities from samples were assumed representative of the density within a given week and month, and were assumed to be equal between the Units 1 and 2.
18. One-hundred percent (100%) mortality was assumed for impingement and entrainment.
19. Entrainment and impingement densities from sampled years (2005 through 2007, and 2017) were assumed to be representative of the 2007 through 2016 period and during future periods of operation if entrainment-reducing technologies were implemented.
20. The proportion entrained from the results of 2017 wedgewire screen performance study (Normandeau 2017a) and presented in Table 2-2 was used to estimate entrainment abundance from water withdrawal through a 3-mm wedgewire screen at Merrimack Station Units 1 and 2 combined during April through July, assuming this proportion was representative for future April through July periods. No exclusion was assumed from August through March when wedgewire screen ("WWS") would not be in use.

Biological Benefit Evaluation of Entrainment Reducing Technologies at Merrimack Station

Figure 2-1. General approach used to evaluate annual entrainment and impingement abundance expressed as equivalent recruit loss to the recreational fishery at three water withdrawal scenarios under three cooling water intake structure configurations at Merrimack Station.

Table 2-1. Estimated flow rate (million gallons per day, MGD) and volume (million cubic meters, $\mathbf{M m}^{3}$) of water withdrawn by cooling water intake structure units 1 and 2 at Merrimack Station based on a 10 -year (2007-2016) actual intake flow (AIF), $\mathbf{1 0 0 \%}$ capacity factor at design intake flow (DIF), and 50\% capacity factor at DIF for baseline conditions, installed $3-\mathrm{mm}$ wedgewire screen (WWS), and closed-cycle cooling towers.

Month	10-year AIF				100\% DIF				50\% DIF			
	Baseline \& 3mm WWS		Closed-cycle Cooling Towers		Baseline \& 3mm WWS		Closed-cycle Cooling Towers		Baseline \& 3mm WWS		Closed-cycle Cooling Towers	
	MGD	Mm ${ }^{3}$										
Jan	199.6	23.4	10.0	1.2	287.3	33.7	14.4	1.7	143.7	16.9	7.2	0.8
Feb	206.3	21.9	10.3	1.1	287.3	30.5	14.4	1.5	143.7	15.2	7.2	0.8
Mar	191.4	22.5	9.6	1.1	287.3	33.7	14.4	1.7	143.7	16.9	7.2	0.8
Apr	89.4	10.2	4.5	0.5	287.3	32.6	14.4	1.6	143.7	16.3	7.2	0.8
May	82.7	9.7	4.1	0.5	287.3	33.7	14.4	1.7	143.7	16.9	7.2	0.8
Jun	127.8	14.5	6.4	0.7	287.3	32.6	14.4	1.6	143.7	16.3	7.2	0.8
Jul	173.6	20.4	8.7	1.0	287.3	33.7	14.4	1.7	143.7	16.9	7.2	0.8
Aug	119.2	14.0	6.0	0.7	287.3	33.7	14.4	1.7	143.7	16.9	7.2	0.8
Sep	78.1	8.9	3.9	0.4	287.3	32.6	14.4	1.6	143.7	16.3	7.2	0.8
Oct	59.4	7.0	3.0	0.3	287.3	33.7	14.4	1.7	143.7	16.9	7.2	0.8
Nov	111.8	12.7	5.6	0.6	287.3	32.6	14.4	1.6	143.7	16.3	7.2	0.8
Dec	179.8	21.1	9.0	1.1	287.3	33.7	14.4	1.7	143.7	16.9	7.2	0.8
Total	134.9	15.5	6.7	0.8	287.3	33.1	14.4	1.7	143.7	16.5	7.2	0.8

Table 2-2. Efficacy of a 3-mm wedgewire half-screen for reducing entrainment by taxon and life stage at Merrimack Station, Unit 1, based on the 3-mm wedgewire test screen performance study from 22 May 2017 through 3 September 2017 at Unit 1 (Normandeau 2017a).

Lowest Taxon Identified	Life Stage	\% Exclusion	Proportion Entrained
Alosa Species	PYSL	100.0	0.000
	Unid Larvae	90.8	0.092
American Eel	YROL	100.0	0.000
American Shad	YSL	65.6	0.344
	PYSL	100.0	0.000
Black Crappie	YSL	100.0	0.000
	PYSL	99.2	0.008
	YOY	100.0	0.000
	Unid Larvae	100.0	0.000
Blacknose Dace	PYSL	100.0	0.000
	Unid Larvae	100.0	0.000
Blueback Herring/Alewife	PYSL	100.0	0.000
	Unid Larvae	85.3	0.147
Bluegill	PYSL	100.0	0.000
	YROL	100.0	0.000
Brown Bullhead	PYSL	0.0	1.000
Carp and Minnow Family	Eggs	-2164	1.000
	YSL	-3.5	1.000
	PYSL	87.5	0.125
	Unid Larvae	81.2	0.188
Common Shiner	PYSL	100.0	0.000
Fallfish	PYSL	99.4	0.006
	Unid Larvae	100.0	0.000
Golden Shiner	PYSL	100.0	0.000
	YROL	100.0	0.000
Herring Family	PYSL	0.0	1.000
	Unid Larvae	100.0	0.000

(Continued)

Table 2-2. Continued.

Lowest Taxon Identified	Life Stage	\% Exclusion	Proportion Entrained
Largemouth Bass	YSL	100.0	0.000
	PYSL	66.7	0.333
	YOY	100.0	0.000
	Unid Larvae	100.0	0.000
Lepomis Species	YSL	77.5	0.225
	PYSL	96.0	0.040
	Unid Larvae	91.6	0.084
Lepomis Species/Crappie Species	YSL	100.0	0.000
	PYSL	96.1	0.039
	Unid Larvae	97.8	0.022
Margined Madtom	PYSL	0.0	1.000
	YOY	51.3	0.487
Rock Bass	PYSL	100.0	0.000
	Unid Larvae	100.0	0.000
Smallmouth Bass	PYSL	100.0	0.000
Spottail Shiner	PYSL	100.0	0.000
	YOY	100.0	0.000
Sucker Family	PYSL	100.0	0.000
	Unid Larvae	100.0	0.000
Sunfish Family	YSL	0.0	1.000
	PYSL	100.0	0.000
Tessellated Darter	YSL	89.6	0.104
	PYSL	63.1	0.369
	Unid Larvae	92.5	0.075
Unidentified Osteichthyes	Eggs	6.6	0.934
	PYSL	92.3	0.077
	Unid Larvae	86.3	0.137
Walleye	PYSL	100.0	0.000
(Continued)			

Table 2-2. Continued.

Lowest Taxon Identified	Life Stage	\% Exclusion	Proportion Entrained
	YSL	97.5	0.025
	PYSL	98.8	0.012
	YOY	0.0	1.000
	Unid Larvae	94.2	0.058
Yellow Bullhead	YOY	51.0	0.490
Yellow Perch	YSL	100.0	0.000
	PYSL	87.5	0.125
	Eggs	-3471	1.000
	YSL	64.1	0.359
	PYSL	96.4	0.036
	YOY	56.2	0.438
	YROL	100.0	0.000
	Unid Larvae	86.8	0.132
	Total	89.0	0.110

Table 2-3. Common and scientific names of all fish taxa identified from entrainment samples collected at Units 1 and 2 at Merrimack Station from May 2006 through September 2006 and April 2007 through June 2007 at Units 1 and 2 combined, and May through September 2017 at Unit 1 (Normandeau 2007, Normandeau 2017a).

Common Taxon Name	Scientific Name	2006	2007	2017
Anguillidae (Freshwater Eels)				
American Eel	Anguilla rostrata			X
Clupeidae (Herrings)				
Alosa Species	Alosa sp.			X
American Shad	Alosa sapidissima			X
Blueback Herring/Alewife	Alosa aestivalis/A. pseudoharengus			X
Herring Family	Clupeidae		X	X
Cyprinidae (Carps and Minnows)				
Blacknose Dace	Rhinichthys atratulus			X
Carp and Minnow Family	Cyprinidae	X	X	X
Common Shiner	Luxilus cornutus			X
Fallfish	Semotilus corporalis			X
Golden Shiner	Notemigonus crysoleucas			X
Spottail Shiner	Notropis hudsonius	X	X	
Catostomidae (Suckers)				
Sucker Family	Catostomidae			X
White Sucker	Catostomus commersonii	X	X	X
Ictaluridae (North American catfishes)				
Brown Bullhead	Ameiurus nebulosus	X		
Margined Madtom	Noturus insignis	X		X
Yellow Bullhead	Ameiurus natalis			X
Moronidae (Temperate Basses)				
White Perch	Morone americana			X
Centrarchidae (Sunfish Family)				
Black Crappie	Pomoxis nigromaculatus			X
Bluegill	Lepomis macrochirus			X
Largemouth Bass	Micropterus salmoides			X
Lepomis Species	Lepomis sp.			X
Lepomis Species/Crappie Species	Lepomis sp./Pomoxis sp.			X
Rock Bass	Ambloplites rupestris	X		X
Smallmouth Bass	Micropterus dolomieu			X
Sunfish Family	Centrarchidae	X	X	X
Percidae (Perches and Darters)				
Tessellated Darter	Etheostoma olmstedi	X	X	X
Walleye	Sander vitreus			X
Yellow Perch	Perca flavescens	X	X	X
Unidentified Osteichthyes		X	X	X

Biological Benefit Evaluation of Entrainment Reducing Technologies at Merrimack Station

Table 2-4. Common and scientific names of all fish taxa identified in 24-hour impingement samples collected at Merrimack Station Units 1 and 2 combined from 29 June 2005 through 28 June 2007 (Normandeau 2007) and electrofishing catch in Hooksett Pool during August and September from 1972 through 2013 ${ }^{\text {a }}$ (Normandeau 2017b).

Common Name	Scientific Name	2005-2007 Impingement Study	1972-2013 Electrofishing Program
Alewife	Alosa pseudoharengus		X
American Eel	Anguilla rostrata	X	X
American Shad	Alosa sapidissima		X
Banded Sunfish	Enneacanthus obesus	X	
Black Crappie	Pomoxis nigromaculatus	X	X
Bluegill	Lepomis macrochirus	X	X
Brown Bullhead	Ameiurus nebulosus	X	X
Carp and minnow family	Cyprinidae		X
Chain Pickerel	Esox niger	X	X
Common Shiner	Luxilus cornutus		X
Blacknose Dace	Rhinichthys atratulus		X
Eastern Silvery Minnow	Hybognathus regius		X
Fallfish	Semotilus corporalis	X	X
Golden Shiner	Notemigonus crysoleucas	X	X
Largemouth Bass	Micropterus salmoides	X	X
Margined Madtom	Noturus insignis	X	X
Pumpkinseed	Lepomis gibbosus	X	X
Rainbow Smelt	Osmerus mordax	X	
Redbreast Sunfish	Lepomis auritus	X	X
Rock Bass	Ambloplites rupestris	X	X
Smallmouth Bass	Micropterus dolomieu	X	X
Spottail Shiner	Notropis hudsonius	X	X
Sunfish family	Centrarchidae	X	X
Tessellated Darter	Etheostoma olmstedi	X	X
White Perch	Morone americana	X	X
White Sucker	Catostomus commersonii	X	X
Yellow Bullhead	Ameiurus natalis	X	X
Yellow Perch	Perca flavescens	X	X

${ }^{\text {a }}$ Electrofishing catch from Hooksett Pool (Stations 9-18) during 1972, 1973, 1974, 1976, 1995, 2004, 2005, 2010, 2011, 2012, and 2013 (Normandeau 2017b).

Table 2-5. Species importance, economic value categories, and age of equivalence for species identified from entrainment and impingement samples at Merrimack Station (Normandeau 2007, Normandeau 2017a).

Species	Species Importance ${ }^{\text {a }}$	Economic Value Category ${ }^{\text {b }}$	Age at Initial Recruitment to Angling ${ }^{\text {c }}$	Age at Adulthood ${ }^{\text {d }}$	$\begin{array}{\|c} \text { Maximum } \\ \text { Age }^{\text {e }} \end{array}$
Alewife	Forage			4	8
American Eel	Recreational Fishery	Panfish	3	6	25
American Shad	Recreational Fishery	Small Game	4	4	10
Banded Sunfish	Recreational Fishery	Panfish	2	2	4
Black Crappie	Recreational Fishery	Panfish	2	2	9
Blacknose Dace	Forage			1	3
Bluegill	Recreational Fishery	Panfish	2	2	7
Brown Bullhead	Recreational Fishery	Panfish	2	2	7
Chain Pickerel	Recreational Fishery	Walleye/Pike	2	1	9
Common Shiner	Forage			1	6
Fallfish	Forage			2	6
Golden Shiner	Forage			1	9
Largemouth Bass	Recreational Fishery	Bass	2	2	17
Margined Madtom	Forage			1	4
Pumpkinseed	Recreational Fishery	Panfish	2	2	7
Rainbow Smelt	Recreational Fishery	Panfish	2	2	7
Redbreast Sunfish	Recreational Fishery	Panfish	2	2	7
Rock Bass	Recreational Fishery	Panfish	2	2	7
Smallmouth Bass	Recreational Fishery	Bass	3	3	12
Spottail Shiner	Forage			1	4
Tessellated Darter	Forage			1	4
Walleye	Recreational Fishery	Walleye/Pike	3	2	11
White Perch	Recreational Fishery	Panfish	2	2	10
White Sucker	Forage			3	8
Yellow Bullhead	Recreational Fishery	Panfish	2	2	7
Yellow Perch	Recreational Fishery	Panfish	2	2	7

${ }^{\text {a }}$ USEPA 2006.
${ }^{\text {b }}$ USEPA 2014.
${ }^{\text {c }}$ See life history tables for citations on age at first recruitment to the recreational fishery (i.e., age first susceptible to angling gear) for individual species in Appendix A.
${ }^{\mathrm{d}}$ See life history tables for citations on age at first sexual maturity (i.e., earliest age of adulthood) for individual species in Appendix A.
${ }^{\mathrm{e}}$ See life history tables for citations on maximum age in Appendix A.

3 RESULTS

3.1 Entrainment Abundance

Fish entrained at Merrimack Station consisted primarily of larvae from forage fish species and, to a lesser extent, fishery species, and not many eggs and YOY or older. The most abundant taxa identified in entrainment samples were White Sucker PYSL (33.0\%), Carp and Minnow family PYSL (13.6\%), Sunfish Family PYSL (10.9\%), and Yellow Perch PYSL (9.3\%) at Unit 1 during 2006, 2007 and 2017 (Table 3-1). At Unit 2, the most abundant taxa in 2006 and 2007 entrainment samples were White Sucker PYSL (53.9\%), Carp and Minnow family PYSL (20.7\%) and YSL (5.7\%), Sunfish Family PYSL (5.0\%) and YSL (4.5\%), and Yellow Perch PYSL (2.5\%)(Table 3-1). The monthly entrainment densities at the taxon and life stage identified by the laboratory are presented in Table 3-2.

Annual entrainment at Merrimack Station is essentially limited to late spring through summer seasons. About 99% of entrainment occurs from April through July when the wedgewire screen operation was proposed (Table 3-3). The timing of spawning may shift from year to year largely dependent on flows and water temperature, but April (0.5% of annual entrainment) was included in the WWS operational season to capture the potential onset of early spawning in response to changes in environmental conditions associated with climate change. June (52.5\%) followed by May (38.1\%) were the peak months of entrainment.

Entrainment density was estimated to species level after apportioning taxa identified at higher taxonomic levels to species level based on monthly mean densities of identified member species. Sunfish family YSL densities were apportioned to Black Crappie, Bluegill and Largemouth Bass and Lepomis/Pomoxis sp. densities were apportioned to Black Crappie and Bluegill (Table 3-4). Larvae identified to Alosa sp., Carp and Minnow family, Herring family, Sucker family, Sunfish family, Lepomis/Pomoxis sp, and unidentified osteichthyes were apportioned to species on a monthly basis (Table 3-5). Higher-level taxa of larvae not identifiable to YSL or PYSL stages, presumably from damage, were also apportioned to species (Table 3-6). Due to data limitations, some higher-level taxa were apportioned based on the next stage or from densities in adjacent months. Based on the monthly proportional density, monthly mean entrainment density was apportioned to species level as shown in Table 3-7.

Based on the species-apportioned entrainment density averaged by month, annual entrainment abundance at the 10 -year AIF was estimated to be 416,279 individuals for 3-mm WWS and 158,589 for closedcycled cooling which was substantially lower than the expected 3,171,776 to be entrained at the existing CWIS (Table 3-8). The highest annual entrainment abundance estimated was 7,789,245 organisms for existing CWIS under DIF. Table 3-9 through Table 3-17 show the monthly breakdown by species for each cooling water withdrawal and technology scenario.

3.2 Impingement Abundance

Monthly mean impingement densities at the lowest taxon possible were estimated for each calendar month based on 24-hour samples adjusted for collection efficiency and collected from June 2005 through June 2007 (Table 3-18). The dominant species collected in impingement samples at Merrimack Station Units 1 and 2 combined were Bluegill (54.0\%), Spottail Shiner (9.7\%), Black Crappie (6.5\%) and Yellow Perch (5.9\%) (Table 3-19). Presumably damaged impinged juveniles were identified to Sunfish Family so when present (July and September), densities were apportioned to identified sunfish species in July and September proportional to monthly densities (Table 3-20; Table 3-21).

To estimate equivalent recruits from individuals impinged at earlier life stages (e.g., YOY or Age 1), the species-apportioned monthly densities were further apportioned into age classes determined by applying proportion at age (determined from length measurements) to density on a monthly basis (Table 3-22; Table 3-23). Annual impingement abundance ranged from 2,285 to 4,902 individuals for the existing CWIS, 949 to 1,898 individuals for the $3-\mathrm{mm}$ wedgewire half screens and 114 to 245 individuals with a 95% water withdrawal reduction from closed-cycle cooling towers (Table 3-24).

3.3 Equivalent Loss of Recruits the Recreational Fishery

3.3.1 Equivalent Recruits due to Entrainment Losses

At the 10 -year AIF, annual entrainment losses at Merrimack Station Units 1 and 2 combined with the existing CWIS were equivalent to 449 Bluegill, 383 American Eel and 236 Yellow Perch among the most abundant three species (Table 3-25). These same species would amount to an equivalent recruitment loss of 23 Bluegill, no American Eel, and 29 Yellow Perch due to annual entrainment with an April through July operation of 3-mm wedgewire half screens and 22 Bluegill, 19 American Eel, and 12 Yellow Perch due to entrainment with closed-cycle cooling towers. These estimates were higher at 100% DIF. Age-1 equivalent loss under the 10 -year AIF for the existing CWIS was 1,383 Bluegill, 711 Yellow Perch, and 530 American Eel (Table 3-26).

3.3.2 Equivalent Recruits due to Impingement Losses

At the 10 -year AIF, annual impingement losses at Merrimack Station Units 1 and 2 combined with the existing CWIS were equivalent to 92 Yellow Perch, 76 Bluegill, and 31 Pumpkinseed among the most abundant three species (Table 3-27). These same species would amount to an equivalent recruitment loss of 84 Yellow Perch, 46 Bluegill, and 25 Pumpkinseed due to annual impingement with an April through July operation of $3-\mathrm{mm}$ wedgewire half screens and 5 Yellow Perch, 4 Bluegill, and 2 Pumpkinseed due to impingement with closed-cycle cooling towers. These estimates were higher at 100\% DIF. Age-1 equivalent loss under the 10-year AIF for the existing CWIS was 163 Yellow Perch, 125 Bluegill, and 35 Pumpkinseed (Table 3-28).

3.4 Indirect Forage Benefits

3.4.1 Production Foregone from Entrainment Losses

Total production foregone of forage species due to annual entrainment at the existing Merrimack Station Units 1 and 2 CWISs under the 10 -year AIF was about 726 kg of forage biomass, equivalent to 519 Age-2 Largemouth Bass (Table 3-29; Table 3-30). The implementation of 3-mm wedgewire half screens or closed-cycle cooling towers would result in a lower total production foregone of 208 kg or 36 kg and 149 or 26 equivalent Largemouth Bass, respectively.

3.4.2 Production Foregone from Impingement Losses

Total production foregone of forage species due to annual impingement at the existing Merrimack Station Units 1 and 2 CWISs under the 10-year AIF was about 13 kg of forage biomass, equivalent to 9 Age-2 Largemouth Bass (Table 3-31; Table 3-32). The implementation of 3-mm wedgewire half screens or closed-cycle cooling towers would result in a lower total production foregone of 6 kg or $<1 \mathrm{~kg}$ and 5 or <1 equivalent Age-2 Largemouth Bass, respectively.

3.4.3 Entrainment Loss of Forage Biomass of Recreational Fishery Species

The biomass that would have resulted from predation (natural mortality) of recreationally important fishery species from an entrained early life to age of recruitment if entrainment did not occur at

Merrimack Station Units 1 and 2 combined was presented in Table 3-33. The total biomass associated with natural mortality under the 10 -year AIF was 56 kg for the existing CWIS, 9.0 kg for the WWS, and 2.8 kg for the closed-cycle cooling towers corresponding to 40, 6, and 2 equivalent Age-2 Largemouth Bass, respectively (Table 3-34).

3.4.4 Impingement Loss of Forage Biomass of Recreational Fishery Species

The biomass that would have resulted from predation (natural mortality) of recreationally important fishery species from an impinged early life to age of recruitment if impingement did not occur at Merrimack Station Units 1 and 2 combined was presented in Table 3-35. The total biomass associated with natural mortality under the 10-year AIF was 3.4 kg for the existing CWIS, 2.6 kg for the WWS, and 0.2 kg for the closed-cycle cooling towers corresponding to 2,2 , and <1 equivalent Age-2 Largemouth Bass, respectively (Table 3-34).

3.5 Equivalent Catch

The number of equivalent recruits that would have entered the recreational fishery in Hooksett Pool either directly or indirectly through foraging if entrainment and impingement did not occur under the two entrainment-reducing technologies and three flow case scenarios are presented in Table 3-37 and Table 3-38. The benefit of additional gains to the recreational fishery from reductions of entrainment and impingement as a result of implementing either $3-\mathrm{mm}$ wedgewire half screens or closed-cycle cooling towers were quantified by the change in number of equivalent recruits relative to the baseline scenarios of the existing CWISs (Table 3-39). Based on the 10 -year AIF scenario, the 3 -mm wedgewire half screens would reduce annual entrainment and impingement that would result in a gain of 456 Bluegill, 418 Largemouth Bass, 383 American Eel and 216 Yellow Perch to the recreational fishery in Hooksett Pool. These benefits were not substantially greater with closed-cycle cooling towers: 498 Bluegill, 554 Largemouth Bass, 368 American Eel, and 312 Yellow Perch.

This assessment quantified the recreational fishery benefits of entrainment-reducing technologies at Merrimack Station Units 1 and 2 by estimating the equivalent number of fish that would reach the first age susceptible to anglers (recruitment to the fishery) as a result of any entrainment and/or impingement reductions. This approach was taken in absence of adequate catch-and-release and harvest information for modeling recreational harvest and catch in the predominantly catch-and-release recreational fishery in Hooksett Pool. Recapture rates ranging from 4 to 15% and catch rates ranging from about 5% to 60% depending on species and waterbody observed in other studies (Table 3-40) for some common sport fish in Merrimack River indicate the estimates of equivalent catch or additional gains were likely to be overestimates.

Table 3-1. Relative composition (\%) of ichthyoplankton density by life stage and lowest taxon identified in entrainment samples collected at Units 1 and 2 at Merrimack Station from 31 May 2006 through 30 August 2006 and 4 April 2007 through 27 June 2007 at Unit 1 (Normandeau 2007), 24 May 2006 through 13 September 2006 and 4 April 2007 through 27 June 2007 at Unit 2 (Normandeau 2007), and 22 May through 3 September 2017 at Unit 1 (Normandeau 2017a).

Lowest Taxon Identified	Life Stage	Unit 1				Unit 2		
		2006	2007	2017	Mean	2006	2007	Mean
Alosa species	PYSL	0	0	<0.1	<0.1	0	0	0
	Unid Larvae	0	0	0.1	<0.1	0	0	0
American Eel	YROL	0	0	<0.1	<0.1	0	0	0
American Shad	YSL	0	0	<0.1	<0.1	0	0	0
	PYSL	0	0	0.1	<0.1	0	0	0
Black Crappie	YSL	0	0	<0.1	<0.1	0	0	0
	PYSL	0	0	1.6	0.5	0	0	0
	YOY	0	0	<0.1	<0.1	0	0	0
	Unid Larvae	0	0	0.1	<0.1	0	0	0
Blacknose Dace	PYSL	0	0	0.1	<0.1	0	0	0
	Unid Larvae	0	0	<0.1	<0.1	0	0	0
Blueback Herring/Alewife	PYSL	0	0	0.2	0.1	0	0	0
	Unid Larvae	0	0	0.1	<0.1	0	0	0
Bluegill	PYSL	0	0	<0.1	<0.1	0	0	0
	YROL	0	0	<0.1	<0.1	0	0	0
Brown Bullhead	PYSL	1.8	0	0	0.6	1.4	0	0.7
Carp and Minnow Family	Eggs	0	0.6	<0.1	0.2	0	0	0
	YSL	0	4.4	2.2	2.2	1.7	9.8	5.7
	PYSL	20.5	17.7	2.8	13.6	26.9	14.6	20.7
	Unid Larvae	0	0	11.4	3.8	0	0	0
Common Shiner	PYSL	0	0	<0.1	<0.1	0	0	0
Fallfish	PYSL	0	0	3.6	1.2	0	0	0
	Unid Larvae	0	0	0.1	<0.1	0	0	0
Golden Shiner	PYSL	0	0	<0.1	<0.1	0	0	0
	YROL	0	0	<0.1	<0.1	0	0	0
Herring Family	PYSL	0	0	0	0	0	2.5	1.2
	Unid Larvae	0	0	<0.1	<0.1	0	0	0

(continued)

Table 3-1. Continued.

Lowest Taxon Identified	Life Stage	Unit 1				Unit 2		
		2006	2007	2017	Mean	2006	2007	Mean
Largemouth Bass	YSL	0	0	<0.1	<0.1	0	0	0
	PYSL	0	0	<0.1	<0.1	0	0	0
	YOY	0	0	<0.1	<0.1	0	0	0
	Unid Larvae	0	0	<0.1	<0.1	0	0	0
Lepomis Species	YSL	0	0	0.1	<0.1	0	0	0
	PYSL	0	0	9.9	3.3	0	0	0
	Unid Larvae	0	0	1.7	0.6	0	0	0
Lepomis Species/Crappie Species	YSL	0	0	<0.1	<0.1	0	0	0
	PYSL	0	0	2.6	0.9	0	0	0
	Unid Larvae	0	0	4.1	1.4	0	0	0
Margined Madtom	PYSL	0.9	0	0	0.3	0.7	0	0.3
	YOY	1.7	0	<0.1	0.6	0	0	0
Rock Bass	PYSL	7.4	0	0.3	2.6	0	0	0
	Unid Larvae	0	0	<0.1	<0.1	0	0	0
Smallmouth Bass	PYSL	0	0	<0.1	<0.1	0	0	0
Spottail Shiner	PYSL	0	0.3	0	0.1	0	0	0
	YOY	3.5	0	0	1.2	0	0	0
Sucker Family	PYSL	0	0	0.1	<0.1	0	0	0
	Unid Larvae	0	0	0.1	<0.1	0	0	0
Sunfish Family	YSL	1.8	0	0	0.6	0.9	8.2	4.5
	PYSL	26.4	6.4	0.1	10.9	5.1	4.9	5.0
Tessellated Darter	YSL	1.2	1.7	6.0	3.0	0	0	0
	PYSL	1.4	0.3	0.7	0.8	0	4.9	2.4
	Unid Larvae	0	0	1.6	0.5	0	0	0
Unidentified Osteichthyes	Eggs	1.1	0.6	<0.1	0.6	1.7	0	0.9
	PYSL	0	0	0.3	0.1	0	0	0
	Unid Larvae	6.3	2.2	12.6	7.0	1.7	0	0.8
Walleye	PYSL	0	0	0.3	0.1	0	0	0
White Perch	YSL	0	0	<0.1	<0.1	0	0	0
	PYSL	0	0	<0.1	<0.1	0	0	0

(continued)

Table 3-1. Continued.

Lowest Taxon Identified	Life Stage	Unit 1				Unit 2		
		2006	2007	2017	Mean	2006	2007	Mean
White Sucker	YSL	0	0	0.7	0.2	0	0	0
	PYSL	26.0	40.2	32.9	33.0	57.5	50.3	53.9
	YOY	0	0.6	0	0.2	0	2.4	1.2
	Unid Larvae	0	0	0.3	0.1	0	0	0
Yellow Bullhead	YOY	0	0	0.1	<0.1	0	0	0
Yellow Perch	YSL	0	0	0.1	<0.1	0	0	0
	PYSL	0	25.2	2.8	9.3	2.6	2.5	2.5
Total	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0

YSL = Yolk-Sac Larvae; PYSL = Post Yolk-Sac Larvae; YOY = Young of the Year; YROL = Yearling or older

Table 3-2. Monthly mean density (number per $100 \mathrm{~m}^{3}$) of ichthyoplankton identified to the lowest taxon possible and life stage from entrainment samples collected at Merrimack Station, Unit 1 and 2 combined, from May through September 2006, April through June 2007 and May through early September 2017.

Taxon	Life Stage	Apr	May	Jun	Jul	Aug	Sep	Season
Alosa Species	PYSL			<0.01				<0.01
	Unid Larvae			<0.01	0.02			<0.01
	Total			<0.01	0.02			<0.01
American Eel	YROL			<0.01	<0.01			<0.01
	Total			<0.01	<0.01			<0.01
American Shad	YSL			<0.01	<0.01			<0.01
	PYSL			<0.01	0.01			<0.01
	Total			<0.01	0.01			<0.01
Black Crappie	YSL			<0.01				<0.01
	PYSL		0.04	0.13	0.01			0.03
	YOY				<0.01			<0.01
	Unid Larvae		0.01	<0.01				<0.01
	Total		0.05	0.14	0.01			0.03
Blacknose Dace	PYSL			0.01				<0.01
	Unid Larvae			<0.01				<0.01
	Total			0.01				<0.01
Blueback Herring/Alewife	PYSL			0.02	0.02			0.01
	Unid Larvae		<0.01	<0.01	<0.01	<0.01		<0.01
	Total		<0.01	0.02	0.02	<0.01		0.01
Bluegill	PYSL				<0.01			<0.01
	YROL			<0.01				<0.01
	Total			<0.01	<0.01			<0.01
Brown Bullhead	PYSL				0.13			0.02
	Total				0.13			0.02
Carp and Minnow Family	Eggs		<0.01	0.02				<0.01
	YSL		0.12	0.48	<0.01			0.10
	PYSL		0.09	2.18	0.34	0.04		0.44
	Unid Larvae		0.19	1.07	0.06	<0.01		0.22
	Total		0.40	3.75	0.40	0.05		0.77
Common Shiner	PYSL			<0.01				<0.01
	Total			<0.01				<0.01
Fallfish	PYSL			0.41	0.01			0.07
	Unid Larvae			0.01				<0.01
	Total			0.42	0.01			0.07
Golden Shiner	PYSL			<0.01				<0.01
	YROL				<0.01			<0.01
	Total			<0.01	<0.01			<0.01

(continued)

Table 3-2 Continued.

Taxon	Life Stage	Apr	May	Jun	Jul	Aug	Sep	Season
Herring Family	PYSL			0.03				<0.01
	Unid Larvae			<0.01				<0.01
	Total			0.03				<0.01
Largemouth Bass	YSL			<0.01	<0.01			<0.01
	PYSL			<0.01	<0.01			<0.01
	YOY			<0.01	<0.01			<0.01
	Unid Larvae			<0.01				<0.01
	Total			0.01	0.01			<0.01
Lepomis Species	YSL			0.01	<0.01	<0.01		<0.01
	PYSL			0.73	0.65	<0.01		0.23
	Unid Larvae			0.04	0.22	0.02		0.05
	Total			0.78	0.87	0.03		0.28
Lepomis Species/Crappie Species	YSL			<0.01				<0.01
	PYSL		0.01	0.23	0.09			0.05
	Unid Larvae		0.02	0.41	0.06			0.08
	Total		0.03	0.64	0.15			0.14
Margined Madtom	PYSL				0.07			0.01
	YOY			0.04	0.01			0.01
	Total			0.04	0.07			0.02
Rock Bass	PYSL			0.10	0.11	0.04		0.04
	Unid Larvae				<0.01			<0.01
	Total			0.10	0.11	0.04		0.04
Smallmouth Bass	PYSL				<0.01			<0.01
	Total				<0.01			<0.01
Spottail Shiner	PYSL			0.02				<0.01
	YOY			0.07				0.01
	Total			0.09				0.02
Sucker Family	PYSL			0.01				<0.01
	Unid Larvae			0.01				<0.01
	Total			0.02				<0.01
Sunfish Family	YSL	0.15	0.02	0.03	0.07			0.04
	PYSL		0.05	0.68	0.52	0.04		0.22
	Total	0.15	0.07	0.71	0.58	0.04		0.26
Tessellated Darter	YSL		0.52	0.26				0.13
	PYSL		0.04	0.10	0.05			0.03
	Unid Larvae		0.12	0.06				0.03
	Total		0.68	0.42	0.05			0.19
Unidentified Osteichthyes	Eggs		0.05	0.02	<0.01	0.04		0.02
	PYSL		0.01	0.02	0.01			0.01
	Unid Larvae		0.29	1.09	0.52	0.03		0.32
	Total		0.35	1.14	0.53	0.07		0.35

(continued)

Table 3-2 Continued.

Taxon	Life Stage	Apr	May	Jun	Jul	Aug	Sep	Season
Walleye	PYSL		0.03					0.01
	Total		0.03					0.01
White Perch	YSL			<0.01				<0.01
	PYSL			<0.01				<0.01
	Total			<0.01				<0.01
White Sucker	YSL		0.07	0.02				0.01
	PYSL	0.10	5.21	3.06	0.03			1.40
	YOY			0.05				0.01
	Unid Larvae		0.04	<0.01				0.01
	Total	0.10	5.31	3.13	0.03			1.43
Yellow Bullhead	YOY				0.02			<0.01
	Total				0.02			<0.01
Yellow Perch	YSL		0.01	<0.01				<0.01
	PYSL		1.47	0.09				0.26
	Total		1.47	0.10				0.26
Total	Eggs		0.05	0.05	<0.01	0.04		0.02
	YSL	0.15	0.74	0.80	0.08	<0.01		0.30
	PYSL	0.10	6.95	7.83	2.06	0.13		2.84
	YOY			0.16	0.03			0.03
	YROL			<0.01	<0.01			<0.01
	Unid Larvae		0.66	2.70	0.88	0.06		0.72
	Total	0.25	8.40	11.55	3.05	0.24		3.91

YSL = Yolk-Sac Larvae; PYSL = Post Yolk-Sac Larvae; YOY = Young of the Year; YROL $=$ Yearling or older

Table 3-3. Monthly mean density (number per $100 \mathrm{~m}^{3}$) and relative abundance (\%) of ichthyoplankton collected in entrainment samples collect at Units 1 and 2 at Merrimack Station from 31 May 2006 through 30 August 2006 and 4 April 2007 through 27 June 2007 at Unit 1 (Normandeau 2007), 24 May 2006 through 13 September 2006 and 4 April 2007 through 27 June 2007 at Unit 2 (Normandeau 2007), and 22 May through 3 September 2017 at Unit 1 (Normandeau 2017a).

	Unit 1								Unit 2						Mean	
	2006		2007		2017		Mean		2006		2007		Mean			
Month	N/100 m ${ }^{3}$	\%														
Apr	-	-	0	0	-	-	0	0	-	-	0.50	9.7	0.50	2.5	0.25	0.5
May	0	0	8.09	35.7	25.53	45.0	11.21	37.3	7.74	52.6	0.62	12.1	4.18	42.2	8.40	38.1
Jun	6.70	61.8	14.61	64.3	25.96	45.8	15.76	52.4	6.48	44.0	4.00	78.2	5.24	52.8	11.55	52.5
Jul	3.65	33.6	-	-	5.00	8.8	4.33	9.6	0.50	3.4	-	-	0.50	2.5	3.05	8.3
Aug	0.50	4.6	-	-	0.22	0.4	0.36	0.8	0	0	-	-	0	0	0.24	0.6
Sep	-	-	-	-	-	-	-	-	0	0	-	-	0	0	0	0
Total	2.71	100.0	7.57	100.0	14.18	100.0	8.21	100.0	2.94	100.0	1.70	100.0	2.48	100.0	5.79	100.0

Not Sampled represented by "-"

Table 3-4. Density of yolk-sac larvae (YSL) identified to taxon complexes (e.g., family or genus) were apportioned to species by monthly YSL density (D) and percent (\%) composition of identified species within each taxon complex identified in ichthyoplankton collected in entrainment samples collect at Units 1 and 2 combined at Merrimack Station during May 2006 through September 2006, April 2007 through June 2007 at May through early September 2017.

Taxon Complex	Species	Apr		May		Jun		Jul		Aug		Sep	
		D	\%										
Sunfish Family	Black Crappie	0	0	0	0	0.001	13.9	0	0	0	0	0	0
	Bluegill	0	0	0	0	0.005	57.5	0.005	72.3	0.005	100.0	0	0
	Largemouth Bass	0	0	0	0	0.003	28.7	0.002	27.7	0	0	0	0
	Total	0	100.0	0	100.0	0.009	100.0	0.007	100.0	0.005	100.0	0	100.0
Lepomis/Pomoxis sp.	Black Crappie	0	0	0	0	0.001	19.4	0	0	0	0	0	0
	Bluegill	0	0	0	0	0.005	80.6	0.005	100.0	0.005	100.0	0	0
	Total	0	100.0	0	100.0	0.006	100.0	0.005	100.0	0.005	100.0	0	100.0

Table 3-5. Density of post yolk-sac larvae (PYSL) identified to taxon complexes (e.g., family or genus) were apportioned to species by monthly PYSL density and percent (\%) composition of identified species within each taxon complex identified in ichthyoplankton collected in entrainment samples collect at Units 1 and 2 combined at Merrimack Station during May 2006 through September 2006, April 2007 through June 2007 at May through early September 2017.

Taxon Complex	Species	Apr		May		Jun		Jul		Aug		Sep	
		D	\%										
Alosa sp.	Alewife	0	0	0	0	0.017	87.0	0.019	64.0	0	0	0	0
	American Shad	0	0	0	0	0.002	13.0	0.011	36.0	0	0	0	0
	Total	0	100.0	0	100.0	0.019	100.0	0.029	100.0	0	100.0	0	100.0
Carp and Minnow Family	Blacknose Dace	0	0	0	0	0.013	2.9	0	0	0	0	0	0
	Common Shiner	0	0	0	0	0.001	0.3	0	0	0	0	0	0
	Fallfish	0	0	0	0	0.410	93.0	0.005	100.0	0	0	0	0
	Golden Shiner	0	0	0	0	0.001	0.3	0	0	0	0	0	0
	Spottail Shiner	0	0	0	0	0.015	3.5	0	0	0	0	0	0
	Total	0	100.0	0	100.0	0.441	100.0	0.005	100.0	0	100.0	0	100.0
Herring Family	Alewife	0	0	0	0	0.017	87.0	0.019	64.0	0	0	0	0
	American Shad	0	0	0	0	0.002	13.0	0.011	36.0	0	0	0	0
	Total	0	100.0	0	100.0	0.019	100.0	0.029	100.0	0	100.0	0	100.0
Sucker Family	White Sucker	0.100	100.0	5.205	100.0	3.061	100.0	0.033	100.0	0	0	0	0
	Total	0.100	100.0	5.205	100.0	3.061	100.0	0.033	100.0	0	100.0	0	100.0
Sunfish Family	Black Crappie	0	0	0.042	100.0	0.132	13.6	0.007	0.9	0	0	0	0
	Bluegill	0	0	0	0	0.732	75.7	0.654	83.9	0.002	5.2	0	0
	Largemouth Bass	0	0	0	0	0.003	0.3	0.002	0.2	0	0	0	0
	Rock Bass	0	0	0	0	0.101	10.4	0.112	14.4	0.042	94.8	0	0
	Smallmouth Bass	0	0	0	0	0	0	0.005	0.6	0	0	0	0
	Total	0	100.0	0.042	100.0	0.967	100.0	0.780	100.0	0.044	100.0	0	100.0

Table 3-5. Continued.

Taxon Complex	Species	Apr		May		Jun		Jul		Aug		Sep	
		D	\%										
Lepomis/Pomoxis sp.	Black Crappie	0	0	0.042	100.0	0.132	15.2	0.007	1.0	0	0	0	0
	Bluegill	0	0	0	0	0.732	84.8	0.654	99.0	0.002	100.0	0	0
	Total	0	100.0	0.042	100.0	0.864	100.0	0.661	100.0	0.002	100.0	0	100.0
Unidentified Osteichthyes	Alewife	0	0	0	0	0.017	0.4	0.019	1.7	0	0	0	0
	American Shad	0	0	0	0	0.002	0.1	0.011	1.0	0	0	0	0
	Black Crappie	0	0	0.042	0.6	0.132	2.8	0.007	0.6	0	0	0	0
	Blacknose Dace	0	0	0	0	0.013	0.3	0	0	0	0	0	0
	Bluegill	0	0	0	0	0.732	15.6	0.654	59.5	0.002	5.2	0	0
	Brown Bullhead	0	0	0	0	0	0	0.133	12.1	0	0	0	0
	Common Shiner	0	0	0	0	0.001	<0.1	0	0	0	0	0	0
	Fallfish	0	0	0	0	0.410	8.8	0.005	0.5	0	0	0	0
	Golden Shiner	0	0	0	0	0.001	<0.1	0	0	0	0	0	0
	Largemouth Bass	0	0	0	0	0.003	0.1	0.002	0.2	0	0	0	0
	Margined Madtom	0	0	0	0	0	0	0.067	6.1	0	0	0	0
	Rock Bass	0	0	0	0	0.101	2.2	0.112	10.2	0.042	94.8	0	0
	Smallmouth Bass	0	0	0	0	0	0	0.005	0.5	0	0	0	0
	Spottail Shiner	0	0	0	0	0.015	0.3	0	0	0	0	0	0
	Tessellated Darter	0	0	0.040	0.6	0.099	2.1	0.052	4.7	0	0	0	0
	Walleye	0	0	0.034	0.5	0	0	0	0	0	0	0	0
	White Perch	0	0	0	0	0.001	<0.1	0	0	0	0	0	0
	White Sucker	0.100	100.0	5.205	76.7	3.061	65.4	0.033	3.0	0	0	0	0
	Yellow Perch	0	0	1.466	21.6	0.094	2.0	0	0	0	0	0	0
	Total	0.100	100.0	6.787	100.0	4.683	100.0	1.099	100.0	0.044	100.0	0	100.0

Table 3-6. Density of fish larvae (unidentifiable to YSL or PYSL stage) identified to taxon complexes (e.g., family or genus) were apportioned to species by monthly unidentified larval density (D) and percent (\%) composition of identified species within each taxon complex identified in ichthyoplankton collected in entrainment samples collect at Units 1 and 2 combined at Merrimack Station during May 2006 through September 2006, April 2007 through June 2007 at May through early September 2017.

Taxon Complex	Species	Apr		May		Jun		Jul		Aug		Sep	
		D	\%										
Alosa sp.	Alewife	0	0	0.003	100.0	0.004	100.0	0.003	100.0	0.002	100.0	0	0
	Total	0	100.0	0.003	100.0	0.004	100.0	0.003	100.0	0.002	100.0	0	100.0
Carp and Minnow Family	Blacknose Dace	0	0	0	0	0.001	12.2	0	0	0	0	0	0
	Fallfish	0	0	0	0	0.009	87.8	0	0	0	0	0	0
	Total	0	100.0	0	100.0	0.011	100.0	0	100.0	0	100.0	0	100.0
Herring Family	Alewife	0	0	0.003	100.0	0.004	100.0	0.003	100.0	0.002	100.0	0	0
	Total	0	100.0	0.003	100.0	0.004	100.0	0.003	100.0	0.002	100.0	0	100.0
Sucker Family	White Sucker	0	0	0.035	100.0	0.003	100.0	0	0	0	0	0	0
	Total	0	100.0	0.035	100.0	0.003	100.0	0	100.0	0	100.0	0	100.0
Lepomis/Pomoxis sp.	Black Crappie	0	0	0.008	100.0	0.003	5.5	0	0	0	0	0	0
	Bluegill	0	0	0	0	0.044	94.5	0.215	100.0	0.025	100.0	0	0
	Total	0	100.0	0.008	100.0	0.047	100.0	0.215	100.0	0.025	100.0	0	100.0
Unidentified Osteichthyes	Alewife	0	0	0.003	1.6	0.004	3.1	0.003	1.5	0.002	9.0	0	0
	Black Crappie	0	0	0.008	4.7	0.003	2.1	0	0	0	0	0	0
	Blacknose Dace	0	0	0	0	0.001	1.1	0	0	0	0	0	0
	Bluegill	0	0	0	0	0.044	35.8	0.215	97.7	0.025	91.0	0	0
	Fallfish	0	0	0	0	0.009	7.6	0	0	0	0	0	0
	Largemouth Bass	0	0	0	0	0.001	1.0	0	0	0	0	0	0
	Rock Bass	0	0	0	0	0	0	0.002	0.7	0	0	0	0
	Tessellated Darter	0	0	0.120	72.6	0.059	47.3	0	0	0	0	0	0
	White Sucker	0	0	0.035	21.1	0.003	2.1	0	0	0	0	0	0
	Total	0	100.0	0.166	100.0	0.124	100.0	0.220	100.0	0.027	100.0	0	100.0

Table 3-7. Monthly mean density (number per $100 \mathrm{~m}^{3}$) by life stage of ichthyoplankton identified or apportioned to species from entrainment samples collected at Merrimack Station, Unit 1 and 2 combined, from May through September 2006, April through June 2007 and May through early September 2017.

Species	Life Stage	Apr		May		Jun		Jul		Aug		Sep		Season	
		D	\%												
Alewife	PYSL					0.04	0.3	0.02	0.6					0.01	0.3
	Unid Larvae			0.01	0.1	0.04	0.4	0.03	0.9	0.01	2.3			0.01	0.3
	Total			0.01	0.1	0.08	0.7	0.05	1.6	0.01	2.3			0.02	0.6
American Eel	YROL					<0.01	<0.1	<0.01	0.1					<0.01	<0.1
	Total					<0.01	<0.1	<0.01	0.1					<0.01	<0.1
American Shad	YSL					<0.01	<0.1	<0.01	0.1					<0.01	<0.1
	PYSL					0.01	0.1	0.01	0.3					<0.01	0.1
	Total					0.01	0.1	0.01	0.5					<0.01	0.1
Black Crappie	YSL	0.15	59.8	0.02	0.3	<0.01	<0.1							0.03	0.8
	PYSL			0.10	1.2	0.26	2.2	0.01	0.4					0.06	1.6
	YOY							<0.01	0.1					<0.01	<0.1
	Unid Larvae			0.04	0.4	0.05	0.4							0.01	0.4
	Total	0.15	59.8	0.16	1.9	0.31	2.7	0.01	0.5					0.11	2.7
Blacknose Dace	Eggs			<0.01	<0.1	<0.01	<0.1							<0.01	<0.1
	YSL			<0.01	<0.1	0.01	0.1							<0.01	0.1
	PYSL			<0.01	<0.1	0.08	0.7							0.01	0.3
	Unid Larvae			0.02	0.3	0.14	1.2	0.01	0.2	<0.01	0.1			0.03	0.7
	Total			0.03	0.4	0.24	2.0	0.01	0.2	<0.01	0.1			0.05	1.2
Bluegill	YSL					0.02	0.2	0.05	1.7	<0.01	1.9			0.01	0.3
	PYSL					1.44	12.5	1.18	38.8	<0.01	1.9			0.44	11.2
	YROL					<0.01	<0.1							<0.01	<0.1
	Unid Larvae					0.83	7.2	0.79	25.8	0.06	23.2			0.28	7.1
	Total					2.29	19.8	2.02	66.3	0.06	27.0			0.73	18.6
Brown Bullhead	PYSL							0.13	4.4					0.02	0.6
	Total							0.13	4.4					0.02	0.6

Table 3-7. Continued.

Species	Life Stage	Apr		May		Jun		Jul		Aug		Sep		Season	
		D	\%												
Brown Bullhead	PYSL							0.13	4.4					0.02	0.6
	Total							0.13	4.4					0.02	0.6
Common Shiner	Eggs			<0.01	<0.1	<0.01	<0.1							<0.01	<0.1
	YSL			<0.01	<0.1	<0.01	<0.1							<0.01	<0.1
	PYSL			<0.01	<0.1	0.01	0.1							<0.01	<0.1
	Total			<0.01	<0.1	0.01	0.1							<0.01	<0.1
Fallfish	Eggs			0.05	0.6	0.05	0.4	<0.01	0.1	0.04	17.5			0.02	0.6
	YSL			0.11	1.3	0.45	3.9	<0.01	0.1					0.09	2.4
	PYSL			0.08	1.0	2.44	21.1	0.35	11.3	0.04	18.5			0.49	12.4
	Unid Larvae			0.16	2.0	1.03	8.9	0.05	1.7	<0.01	0.8			0.21	5.3
	Total			0.41	4.9	3.96	34.3	0.40	13.1	0.09	36.8			0.81	20.7
Golden Shiner	Eggs			<0.01	<0.1	<0.01	<0.1							<0.01	<0.1
	YSL			<0.01	<0.1	<0.01	<0.1							<0.01	<0.1
	PYSL			<0.01	<0.1	0.01	0.1							<0.01	<0.1
	YROL							<0.01	0.1					<0.01	<0.1
	Total			<0.01	<0.1	0.01	0.1	<0.01	0.1					<0.01	<0.1
Largemouth Bass	YSL					0.01	0.1	0.02	0.7					0.01	0.1
	PYSL					<0.01	<0.1	<0.01	0.1					<0.01	<0.1
	YOY					<0.01	<0.1	<0.01	0.1					<0.01	<0.1
	Unid Larvae					0.01	0.1							<0.01	0.1
	Total					0.03	0.2	0.03	0.9					0.01	0.2
Margined Madtom	PYSL							0.07	2.2					0.01	0.3
	YOY					0.04	0.3	0.01	0.2					0.01	0.2
	Total					0.04	0.3	0.07	2.4					0.02	0.5

Table 3-7. Continued.

Species	Life Stage	Apr		May		Jun		Jul		Aug		Sep		Season	
		D	\%												
Rock Bass	YSL														
	PYSL					0.17	1.5	0.19	6.2	0.08	33.8			0.07	1.9
	Unid Larvae							0.01	0.2					<0.01	<0.1
	Total					0.17	1.5	0.19	6.3	0.08	33.8			0.07	1.9
Smallmouth Bass	YSL														
	PYSL							0.01	0.3					<0.01	<0.1
	Total							0.01	0.3					<0.01	<0.1
Spottail Shiner	Eggs			<0.01	<0.1	<0.01	<0.1							<0.01	<0.1
	YSL			<0.01	<0.1	0.02	0.1							<0.01	0.1
	PYSL			<0.01	<0.1	0.09	0.8							0.02	0.4
	YOY					0.07	0.6							0.01	0.3
	Total			0.01	0.1	0.18	1.6							0.03	0.8
Tessellated Darter	YSL			0.52	6.2	0.26	2.3							0.13	3.3
	PYSL			0.04	0.5	0.10	0.9	0.05	1.7					0.03	0.8
	Unid Larvae			0.33	3.9	0.57	5.0							0.15	3.8
	Total			0.89	10.6	0.94	8.1	0.05	1.7					0.31	8.0
Walleye	PYSL			0.03	0.4									0.01	0.1
	Total			0.03	0.4									0.01	0.1
White Perch	YSL					<0.01	<0.1							<0.01	<0.1
	PYSL					<0.01	<0.1							<0.01	<0.1
	Total					<0.01	<0.1							<0.01	<0.1
White Sucker	YSL			0.07	0.8	0.02	0.1							0.01	0.4
	PYSL	0.10	40.2	5.21	62.1	3.08	26.7	0.03	1.1					1.41	35.9
	YOY					0.05	0.4							0.01	0.2
	Unid Larvae			0.10	1.1	0.03	0.3							0.02	0.5
	Total	0.10	40.2	5.38	64.0	3.18	27.6	0.03	1.1					1.45	37.0

(Continued).

Table 3-7. Continued.

Species	Life Stage	Apr		May		Jun		Jul		Aug		Sep		Season	
		D	\%												
Yellow Bullhead	YOY							0.02	0.6					<0.01	0.1
	Total							0.02	0.6					<0.01	0.1
Yellow Perch	YSL			0.01	0.1	<0.01	<0.1							<0.01	<0.1
	PYSL			1.47	17.5	0.09	0.8							0.26	6.7
	Total			1.47	17.6	0.10	0.8							0.26	6.7
Total	Total	0.25	100.0	8.40	100.0	11.55	100.0	3.05	100.0	0.24	100.0			3.91	100.0

YSL = Yolk-Sac Larvae; PYSL = Post Yolk-Sac Larvae; YOY = Young of the Year; YROL = Yearling or older; Unid. Larvae =damaged YSL or PYSL

Table 3-8. Estimated monthly entrainment abundance (number and \%) at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS, $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10year (2007-2016) actual intake flow (AIF), $\mathbf{1 0 0 \%}$ capacity factor at design intake flow (DIF) and 50\% capacity factor at $\mathbf{5 0 \%}$ DIF.

Intake Flow	Month	Existing CWIS		3-mm WWS		Closed-cycle Cooling Towers	
		N	\%	N	\%	N	\%
10-year AIF	Apr	25,260	0.2	15,227	0.8	1,263	0.2
	May	815,215	5.5	59,281	3.2	40,761	5.5
	Jun	1,676,497	11.3	210,352	11.2	83,825	11.3
	Jul	621,545	4.2	98,160	5.2	31,077	4.2
	Aug	33,260	0.2	33,260	1.8	1,663	0.2
	Sep	0	0	0	0	0	0
	Total	3,171,776	100.0	416,279	100.0	158,589	100.0
100\% DIF	Apr	81,140	0.5	48,912	2.6	4,057	0.5
	May	2,831,031	19.1	205,867	11.0	141,552	19.1
	Jun	3,768,249	25.4	472,807	25.3	188,412	25.4
	Jul	1,028,628	6.9	162,450	8.7	51,431	6.9
	Aug	80,197	0.5	80,197	4.3	4,010	0.5
	Sep	0	0	0	0	0	0
	Total	7,789,245	100.0	970,233	100.0	389,462	100.0
50\% DIF	Apr	40,570	0.3	24,456	1.3	2,029	0.3
	May	1,415,516	9.5	102,934	5.5	70,776	9.5
	Jun	1,884,124	12.7	236,403	12.6	94,206	12.7
	Jul	514,314	3.5	81,225	4.3	25,716	3.5
	Aug	40,099	0.3	40,099	2.1	2,005	0.3
	Sep	0	0	0	0	0	0
	Total	3,894,622	100.0	485,116	100.0	194,731	100.0

Table 3-9. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS) based on 10-year (2007-2016) actual intake flow (AIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	149	212	0	0	0	361
	Common Shiner	0	15	21	0	0	0	36
	Fallfish	0	4,764	6,746	373	5,816	0	17,698
	Golden Shiner	0	15	21	0	0	0	36
	Spottail Shiner	0	177	251	0	0	0	428
	Total	0	5,120	7,251	373	5,816	0	18,559
Larvae	Alewife	0	697	11,686	9,747	759	0	22,890
	American Shad	0	0	1,051	2,859	0	0	3,910
	Black Crappie	15,105	15,875	45,316	2,483	0	0	78,780
	Blacknose Dace	0	2,834	33,956	1,448	38	0	38,277
	Bluegill	0	0	332,381	411,977	8,966	0	753,324
	Brown Bullhead	0	0	0	27,366	0	0	27,366
	Common Shiner	0	60	1,317	0	0	0	1,377
	Fallfish	0	35,164	568,406	81,242	6,425	0	691,236
	Golden Shiner	0	60	1,313	0	0	0	1,373
	Largemouth Bass	0	0	3,817	4,702	0	0	8,519
	Margined Madtom	0	0	0	13,689	0	0	13,689
	Rock Bass	0	0	25,050	39,414	11,256	0	75,720
	Smallmouth Bass	0	0	0	1,694	0	0	1,694
	Spottail Shiner	0	713	15,596	0	0	0	16,308
	Tessellated Darter	0	86,312	136,038	10,660	0	0	233,009
	Walleye	0	3,298	0	0	0	0	3,298
	White Perch	0	0	391	0	0	0	391
	White Sucker	10,155	521,977	454,738	6,833	0	0	993,702
	Yellow Perch	0	143,105	13,881	0	0	0	156,986
	Total	25,260	810,095	1,644,936	614,115	27,444	0	3,121,850
YOY	Black Crappie	0	0	0	340	0	0	340
	Largemouth Bass	0	0	190	699	0	0	889
	Margined Madtom	0	0	5,439	1,505	0	0	6,944
	Spottail Shiner	0	0	10,878	0	0	0	10,878
	White Sucker	0	0	7,252	0	0	0	7,252
	Yellow Bullhead	0	0	0	3,822	0	0	3,822
	Total	0	0	23,759	6,366	0	0	30,125
YROL	American Eel	0	0	181	349	0	0	530
	Bluegill	0	0	370	0	0	0	370
	Golden Shiner	0	0	0	342	0	0	342
	Total	0	0	550	691	0	0	1,241

(Continued)

Table 3-9 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	697	11,686	9,747	759	0	22,890
	American Eel	0	0	181	349	0	0	530
	American Shad	0	0	1,051	2,859	0	0	3,910
	Black Crappie	15,105	15,875	45,316	2,823	0	0	79,120
	Blacknose Dace	0	2,983	34,168	1,448	38	0	38,638
	Bluegill	0	0	332,751	411,977	8,966	0	753,694
	Brown Bullhead	0	0	0	27,366	0	0	27,366
	Common Shiner	0	75	1,338	0	0	0	1,413
	Fallfish	0	39,927	575,152	81,615	12,240	0	708,934
	Golden Shiner	0	75	1,334	342	0	0	1,751
	Largemouth Bass	0	0	4,006	5,401	0	0	9,408
	Margined Madtom	0	0	5,439	15,194	0	0	20,633
	Rock Bass	0	0	25,050	39,414	11,256	0	75,720
	Smallmouth Bass	0	0	0	1,694	0	0	1,694
	Spottail Shiner	0	890	26,725	0	0	0	27,615
	Tessellated Darter	0	86,312	136,038	10,660	0	0	233,009
	Walleye	0	3,298	0	0	0	0	3,298
	White Perch	0	0	391	0	0	0	391
	White Sucker	10,155	521,977	461,989	6,833	0	0	1,000,954
	Yellow Bullhead	0	0	0	3,822	0	0	3,822
	Yellow Perch	0	143,105	13,881	0	0	0	156,986
	Total	25,260	815,215	1,676,497	621,545	33,260	0	3,171,776

Table 3-10. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with April through July operation of a 3-mm wedgewire half screen at the existing cooling water intake structure (CWIS) based on 10-year (2007-2016) actual intake flow (AIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	140	205	0	0	0	345
	Common Shiner	0	14	20	0	0	0	35
	Fallfish	0	4,465	6,524	348	5,816	0	17,152
	Golden Shiner	0	14	20	0	0	0	34
	Spottail Shiner	0	166	243	0	0	0	409
	Total	0	4,799	7,012	348	5,816	0	17,975
Larvae	Alewife	0	98	3,965	656	759	0	5,478
	American Shad	0	0	540	239	0	0	779
	Black Crappie	15,105	2,689	1,381	19	0	0	19,194
	Blacknose Dace	0	794	6,988	272	38	0	8,093
	Bluegill	0	0	17,182	34,301	8,966	0	60,448
	Brown Bullhead	0	0	0	27,139	0	0	27,139
	Common Shiner	0	37	320	0	0	0	358
	Fallfish	0	14,947	129,466	11,019	6,425	0	161,857
	Golden Shiner	0	37	319	0	0	0	357
	Largemouth Bass	0	0	1,385	3,869	0	0	5,254
	Margined Madtom	0	0	0	13,576	0	0	13,576
	Rock Bass	0	0	5	124	11,256	0	11,385
	Smallmouth Bass	0	0	0	1	0	0	1
	Spottail Shiner	0	444	3,792	0	0	0	4,236
	Tessellated Darter	0	10,321	20,178	3,905	0	0	34,405
	Walleye	0	<1	0	0	0	0	<1
	White Perch	0	0	193	0	0	0	193
	White Sucker	122	7,298	6,015	86	0	0	13,521
	Yellow Perch	0	17,814	1,710	0	0	0	19,524
	Total	15,227	54,482	193,440	95,206	27,444	0	385,798
YOY	Black Crappie	0	0	0	0	0	0	0
	Largemouth Bass	0	0	0	0	0	0	0
	Margined Madtom	0	0	2,649	733	0	0	3,382
	Spottail Shiner	0	0	0	0	0	0	0
	White Sucker	0	0	7,252	0	0	0	7,252
	Yellow Bullhead	0	0	0	1,873	0	0	1,873
	Total	0	0	9,901	2,606	0	0	12,506
YROL	American Eel	0	0	0	0	0	0	0
	Bluegill	0	0	0	0	0	0	0
	Golden Shiner	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	0

(Continued)

Table 3-10 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	98	3,965	656	759	0	5,478
	American Eel	0	0	0	0	0	0	0
	American Shad	0	0	540	239	0	0	779
	Black Crappie	15,105	2,689	1,381	19	0	0	19,194
	Blacknose Dace	0	934	7,193	272	38	0	8,438
	Bluegill	0	0	17,182	34,301	8,966	0	60,448
	Brown Bullhead	0	0	0	27,139	0	0	27,139
	Common Shiner	0	52	341	0	0	0	392
	Fallfish	0	19,412	135,990	11,367	12,240	0	179,009
	Golden Shiner	0	51	340	0	0	0	391
	Largemouth Bass	0	0	1,385	3,869	0	0	5,254
	Margined Madtom	0	0	2,649	14,309	0	0	16,957
	Rock Bass	0	0	5	124	11,256	0	11,385
	Smallmouth Bass	0	0	0	1	0	0	1
	Spottail Shiner	0	610	4,035	0	0	0	4,645
	Tessellated Darter	0	10,321	20,178	3,905	0	0	34,405
	Walleye	0	<1	0	0	0	0	<1
	White Perch	0	0	193	0	0	0	193
	White Sucker	122	7,298	13,267	86	0	0	20,773
	Yellow Bullhead	0	0	0	1,873	0	0	1,873
	Yellow Perch	0	17,814	1,710	0	0	0	19,524
	Total	15,227	59,281	210,352	98,160	33,260	0	416,279

Table 3-11. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	7	11	0	0	0	18
	Common Shiner	0	1	1	0	0	0	2
	Fallfish	0	238	337	19	291	0	885
	Golden Shiner	0	1	1	0	0	0	2
	Spottail Shiner	0	9	13	0	0	0	21
	Total	0	256	363	19	291	0	928
Larvae	Alewife	0	35	584	487	38	0	1,144
	American Shad	0	0	53	143	0	0	196
	Black Crappie	755	794	2,266	124	0	0	3,939
	Blacknose Dace	0	142	1,698	72	2	0	1,914
	Bluegill	0	0	16,619	20,599	448	0	37,666
	Brown Bullhead	0	0	0	1,368	0	0	1,368
	Common Shiner	0	3	66	0	0	0	69
	Fallfish	0	1,758	28,420	4,062	321	0	34,562
	Golden Shiner	0	3	66	0	0	0	69
	Largemouth Bass	0	0	191	235	0	0	426
	Margined Madtom	0	0	0	684	0	0	684
	Rock Bass	0	0	1,252	1,971	563	0	3,786
	Smallmouth Bass	0	0	0	85	0	0	85
	Spottail Shiner	0	36	780	0	0	0	815
	Tessellated Darter	0	4,316	6,802	533	0	0	11,650
	Walleye	0	165	0	0	0	0	165
	White Perch	0	0	20	0	0	0	20
	White Sucker	508	26,099	22,737	342	0	0	49,685
	Yellow Perch	0	7,155	694	0	0	0	7,849
	Total	1,263	40,505	82,247	30,706	1,372	0	156,093
YOY	Black Crappie	0	0	0	17	0	0	17
	Largemouth Bass	0	0	9	35	0	0	44
	Margined Madtom	0	0	272	75	0	0	347
	Spottail Shiner	0	0	544	0	0	0	544
	White Sucker	0	0	363	0	0	0	363
	Yellow Bullhead	0	0	0	191	0	0	191
	Total	0	0	1,188	318	0	0	1,506
YROL	American Eel	0	0	9	17	0	0	26
	Bluegill	0	0	18	0	0	0	18
	Golden Shiner	0	0	0	17	0	0	17
	Total	0	0	28	35	0	0	62

(Continued)

Table 3-11 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	35	584	487	38	0	1,144
	American Eel	0	0	9	17	0	0	26
	American Shad	0	0	53	143	0	0	196
	Black Crappie	755	794	2,266	141	0	0	3,956
	Blacknose Dace	0	149	1,708	72	2	0	1,932
	Bluegill	0	0	16,638	20,599	448	0	37,685
	Brown Bullhead	0	0	0	1,368	0	0	1,368
	Common Shiner	0	4	67	0	0	0	71
	Fallfish	0	1,996	28,758	4,081	612	0	35,447
	Golden Shiner	0	4	67	17	0	0	88
	Largemouth Bass	0	0	200	270	0	0	470
	Margined Madtom	0	0	272	760	0	0	1,032
	Rock Bass	0	0	1,252	1,971	563	0	3,786
	Smallmouth Bass	0	0	0	85	0	0	85
	Spottail Shiner	0	44	1,336	0	0	0	1,381
	Tessellated Darter	0	4,316	6,802	533	0	0	11,650
	Walleye	0	165	0	0	0	0	165
	White Perch	0	0	20	0	0	0	20
	White Sucker	508	26,099	23,099	342	0	0	50,048
	Yellow Bullhead	0	0	0	191	0	0	191
	Yellow Perch	0	7,155	694	0	0	0	7,849
	Total	1,263	40,761	83,825	31,077	1,663	0	158,589

Table 3-12. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS) based on design intake flow (DIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	519	476	0	0	0	994
	Common Shiner	0	52	48	0	0	0	100
	Fallfish	0	16,543	15,164	616	14,023	0	46,346
	Golden Shiner	0	52	48	0	0	0	99
	Spottail Shiner	0	615	564	0	0	0	1,180
	Total	0	17,781	16,299	616	14,023	0	48,719
Larvae	Alewife	0	2,422	26,266	16,131	1,830	0	46,650
	American Shad	0	0	2,363	4,731	0	0	7,094
	Black Crappie	48,521	55,130	101,857	4,110	0	0	209,618
	Blacknose Dace	0	9,841	76,324	2,397	93	0	88,654
	Bluegill	0	0	747,091	681,803	21,618	0	1,450,512
	Brown Bullhead	0	0	0	45,290	0	0	45,290
	Common Shiner	0	209	2,960	0	0	0	3,169
	Fallfish	0	122,114	1,277,601	134,452	15,492	0	1,549,659
	Golden Shiner	0	208	2,952	0	0	0	3,160
	Largemouth Bass	0	0	8,578	7,782	0	0	16,361
	Margined Madtom	0	0	0	22,655	0	0	22,655
	Rock Bass	0	0	56,304	65,229	27,142	0	148,674
	Smallmouth Bass	0	0	0	2,803	0	0	2,803
	Spottail Shiner	0	2,474	35,054	0	0	0	37,529
	Tessellated Darter	0	299,738	305,771	17,641	0	0	623,151
	Walleye	0	11,453	0	0	0	0	11,453
	White Perch	0	0	878	0	0	0	878
	White Sucker	32,620	1,812,692	1,022,110	11,308	0	0	2,878,730
	Yellow Perch	0	496,967	31,201	0	0	0	528,168
	Total	81,140	2,813,250	3,697,310	1,016,332	66,174	0	7,674,208
YOY	Black Crappie	0	0	0	562	0	0	562
	Largemouth Bass	0	0	427	1,157	0	0	1,584
	Margined Madtom	0	0	12,226	2,491	0	0	14,716
	Spottail Shiner	0	0	24,451	0	0	0	24,451
	White Sucker	0	0	16,300	0	0	0	16,300
	Yellow Bullhead	0	0	0	6,326	0	0	6,326
	Total	0	0	53,403	10,536	0	0	63,939
YROL	American Eel	0	0	406	578	0	0	984
	Bluegill	0	0	831	0	0	0	831
	Golden Shiner	0	0	0	566	0	0	566
	Total	0	0	1,237	1,143	0	0	2,380

(Continued)

Table 3-12 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	2,422	26,266	16,131	1,830	0	46,650
	American Eel	0	0	406	578	0	0	984
	American Shad	0	0	2,363	4,731	0	0	7,094
	Black Crappie	48,521	55,130	101,857	4,672	0	0	210,180
	Blacknose Dace	0	10,360	76,799	2,397	93	0	89,649
	Bluegill	0	0	747,922	681,803	21,618	0	1,451,343
	Brown Bullhead	0	0	0	45,290	0	0	45,290
	Common Shiner	0	261	3,008	0	0	0	3,269
	Fallfish	0	138,657	1,292,765	135,068	29,514	0	1,596,004
	Golden Shiner	0	260	2,999	566	0	0	3,825
	Largemouth Bass	0	0	9,005	8,939	0	0	17,944
	Margined Madtom	0	0	12,226	25,146	0	0	37,371
	Rock Bass	0	0	56,304	65,229	27,142	0	148,674
	Smallmouth Bass	0	0	0	2,803	0	0	2,803
	Spottail Shiner	0	3,090	60,070	0	0	0	63,159
	Tessellated Darter	0	299,738	305,771	17,641	0	0	623,151
	Walleye	0	11,453	0	0	0	0	11,453
	White Perch	0	0	878	0	0	0	878
	White Sucker	32,620	1,812,692	1,038,410	11,308	0	0	2,895,030
	Yellow Bullhead	0	0	0	6,326	0	0	6,326
	Yellow Perch	0	496,967	31,201	0	0	0	528,168
	Total	81,140	2,831,031	3,768,249	1,028,628	80,197	0	7,789,245

Table 3-13. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with April through July operation of a 3-mm wedgewire half screen at the existing cooling water intake structure (CWIS) based on design intake flow (DIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	486	460	0	0	0	946
	Common Shiner	0	49	46	0	0	0	95
	Fallfish	0	15,506	14,663	576	14,023	0	44,768
	Golden Shiner	0	49	46	0	0	0	95
	Spottail Shiner	0	577	545	0	0	0	1,122
	Total	0	16,666	15,761	576	14,023	0	47,025
Larvae	Alewife	0	341	8,912	1,086	1,830	0	12,169
	American Shad	0	0	1,213	396	0	0	1,609
	Black Crappie	48,521	9,339	3,104	32	0	0	60,995
	Blacknose Dace	0	2,758	15,707	451	93	0	19,008
	Bluegill	0	0	38,620	56,766	21,618	0	117,004
	Brown Bullhead	0	0	0	44,914	0	0	44,914
	Common Shiner	0	130	720	0	0	0	850
	Fallfish	0	51,906	291,001	18,236	15,492	0	376,634
	Golden Shiner	0	130	718	0	0	0	848
	Largemouth Bass	0	0	3,113	6,403	0	0	9,515
	Margined Madtom	0	0	0	22,467	0	0	22,467
	Rock Bass	0	0	11	205	27,142	0	27,357
	Smallmouth Bass	0	0	0	1	0	0	1
	Spottail Shiner	0	1,542	8,523	0	0	0	10,065
	Tessellated Darter	0	35,843	45,355	6,463	0	0	87,661
	Walleye	0	2	0	0	0	0	2
	White Perch	0	0	433	0	0	0	433
	White Sucker	391	25,345	13,520	142	0	0	39,400
	Yellow Perch	0	61,865	3,843	0	0	0	65,708
	Total	48,912	189,201	434,792	157,562	66,174	0	896,641
YOY	Black Crappie	0	0	0	0	0	0	0
	Largemouth Bass	0	0	0	0	0	0	0
	Margined Madtom	0	0	5,954	1,213	0	0	7,167
	Spottail Shiner	0	0	0	0	0	0	0
	White Sucker	0	0	16,300	0	0	0	16,300
	Yellow Bullhead	0	0	0	3,100	0	0	3,100
	Total	0	0	22,254	4,313	0	0	26,566
YROL	American Eel	0	0	0	0	0	0	0
	Bluegill	0	0	0	0	0	0	0
	Golden Shiner	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	0

(Continued)

Table 3-13 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	341	8,912	1,086	1,830	0	12,169
	American Eel	0	0	0	0	0	0	0
	American Shad	0	0	1,213	396	0	0	1,609
	Black Crappie	48,521	9,339	3,104	32	0	0	60,995
	Blacknose Dace	0	3,244	16,167	451	93	0	19,955
	Bluegill	0	0	38,620	56,766	21,618	0	117,004
	Brown Bullhead	0	0	0	44,914	0	0	44,914
	Common Shiner	0	179	766	0	0	0	945
	Fallfish	0	67,412	305,664	18,812	29,514	0	421,401
	Golden Shiner	0	178	764	0	0	0	942
	Largemouth Bass	0	0	3,113	6,403	0	0	9,515
	Margined Madtom	0	0	5,954	23,680	0	0	29,634
	Rock Bass	0	0	11	205	27,142	0	27,357
	Smallmouth Bass	0	0	0	1	0	0	1
	Spottail Shiner	0	2,119	9,068	0	0	0	11,187
	Tessellated Darter	0	35,843	45,355	6,463	0	0	87,661
	Walleye	0	2	0	0	0	0	2
	White Perch	0	0	433	0	0	0	433
	White Sucker	391	25,345	29,820	142	0	0	55,699
	Yellow Bullhead	0	0	0	3,100	0	0	3,100
	Yellow Perch	0	61,865	3,843	0	0	0	65,708
	Total	48,912	205,867	472,807	162,450	80,197	0	970,233

Table 3-14. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with closed-cycle cooling towers based on design intake flow (DIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	26	24	0	0	0	50
	Common Shiner	0	3	2	0	0	0	5
	Fallfish	0	827	758	31	701	0	2,317
	Golden Shiner	0	3	2	0	0	0	5
	Spottail Shiner	0	31	28	0	0	0	59
	Total	0	889	815	31	701	0	2,436
Larvae	Alewife	0	121	1,313	807	92	0	2,332
	American Shad	0	0	118	237	0	0	355
	Black Crappie	2,426	2,757	5,093	205	0	0	10,481
	Blacknose Dace	0	492	3,816	120	5	0	4,433
	Bluegill	0	0	37,355	34,090	1,081	0	72,526
	Brown Bullhead	0	0	0	2,265	0	0	2,265
	Common Shiner	0	10	148	0	0	0	158
	Fallfish	0	6,106	63,880	6,723	775	0	77,483
	Golden Shiner	0	10	148	0	0	0	158
	Largemouth Bass	0	0	429	389	0	0	818
	Margined Madtom	0	0	0	1,133	0	0	1,133
	Rock Bass	0	0	2,815	3,261	1,357	0	7,434
	Smallmouth Bass	0	0	0	140	0	0	140
	Spottail Shiner	0	124	1,753	0	0	0	1,876
	Tessellated Darter	0	14,987	15,289	882	0	0	31,158
	Walleye	0	573	0	0	0	0	573
	White Perch	0	0	44	0	0	0	44
	White Sucker	1,631	90,635	51,105	565	0	0	143,937
	Yellow Perch	0	24,848	1,560	0	0	0	26,408
	Total	4,057	140,663	184,866	50,817	3,309	0	383,710
YOY	Black Crappie	0	0	0	28	0	0	28
	Largemouth Bass	0	0	21	58	0	0	79
	Margined Madtom	0	0	611	125	0	0	736
	Spottail Shiner	0	0	1,223	0	0	0	1,223
	White Sucker	0	0	815	0	0	0	815
	Yellow Bullhead	0	0	0	316	0	0	316
	Total	0	0	2,670	527	0	0	3,197
YROL	American Eel	0	0	20	29	0	0	49
	Bluegill	0	0	42	0	0	0	42
	Golden Shiner	0	0	0	28	0	0	28
	Total	0	0	62	57	0	0	119

(Continued)

Table 3-14 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	121	1,313	807	92	0	2,332
	American Eel	0	0	20	29	0	0	49
	American Shad	0	0	118	237	0	0	355
	Black Crappie	2,426	2,757	5,093	234	0	0	10,509
	Blacknose Dace	0	518	3,840	120	5	0	4,482
	Bluegill	0	0	37,396	34,090	1,081	0	72,567
	Brown Bullhead	0	0	0	2,265	0	0	2,265
	Common Shiner	0	13	150	0	0	0	163
	Fallfish	0	6,933	64,638	6,753	1,476	0	79,800
	Golden Shiner	0	13	150	28	0	0	191
	Largemouth Bass	0	0	450	447	0	0	897
	Margined Madtom	0	0	611	1,257	0	0	1,869
	Rock Bass	0	0	2,815	3,261	1,357	0	7,434
	Smallmouth Bass	0	0	0	140	0	0	140
	Spottail Shiner	0	154	3,003	0	0	0	3,158
	Tessellated Darter	0	14,987	15,289	882	0	0	31,158
	Walleye	0	573	0	0	0	0	573
	White Perch	0	0	44	0	0	0	44
	White Sucker	1,631	90,635	51,920	565	0	0	144,751
	Yellow Bullhead	0	0	0	316	0	0	316
	Yellow Perch	0	24,848	1,560	0	0	0	26,408
	Total	4,057	141,552	188,412	51,431	4,010	0	389,462

Table 3-15. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS) based on 50% design intake flow (DIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	259	238	0	0	0	497
	Common Shiner	0	26	24	0	0	0	50
	Fallfish	0	8,271	7,582	308	7,011	0	23,173
	Golden Shiner	0	26	24	0	0	0	50
	Spottail Shiner	0	308	282	0	0	0	590
	Total	0	8,890	8,149	308	7,011	0	24,359
Larvae	Alewife	0	1,211	13,133	8,066	915	0	23,325
	American Shad	0	0	1,182	2,366	0	0	3,547
	Black Crappie	24,260	27,565	50,928	2,055	0	0	104,809
	Blacknose Dace	0	4,921	38,162	1,198	46	0	44,327
	Bluegill	0	0	373,545	340,902	10,809	0	725,256
	Brown Bullhead	0	0	0	22,645	0	0	22,645
	Common Shiner	0	104	1,480	0	0	0	1,585
	Fallfish	0	61,057	638,801	67,226	7,746	0	774,829
	Golden Shiner	0	104	1,476	0	0	0	1,580
	Largemouth Bass	0	0	4,289	3,891	0	0	8,180
	Margined Madtom	0	0	0	11,328	0	0	11,328
	Rock Bass	0	0	28,152	32,614	13,571	0	74,337
	Smallmouth Bass	0	0	0	1,401	0	0	1,401
	Spottail Shiner	0	1,237	17,527	0	0	0	18,764
	Tessellated Darter	0	149,869	152,886	8,821	0	0	311,576
	Walleye	0	5,727	0	0	0	0	5,727
	White Perch	0	0	439	0	0	0	439
	White Sucker	16,310	906,346	511,055	5,654	0	0	1,439,365
	Yellow Perch	0	248,483	15,600	0	0	0	264,084
	Total	40,570	1,406,625	1,848,655	508,166	33,087	0	3,837,104
YOY	Black Crappie	0	0	0	281	0	0	281
	Largemouth Bass	0	0	213	578	0	0	792
	Margined Madtom	0	0	6,113	1,245	0	0	7,358
	Spottail Shiner	0	0	12,226	0	0	0	12,226
	White Sucker	0	0	8,150	0	0	0	8,150
	Yellow Bullhead	0	0	0	3,163	0	0	3,163
	Total	0	0	26,702	5,268	0	0	31,969
YROL	American Eel	0	0	203	289	0	0	492
	Bluegill	0	0	415	0	0	0	415
	Golden Shiner	0	0	0	283	0	0	283
	Total	0	0	618	572	0	0	1,190

(Continued)

Table 3-15 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	1,211	13,133	8,066	915	0	23,325
	American Eel	0	0	203	289	0	0	492
	American Shad	0	0	1,182	2,366	0	0	3,547
	Black Crappie	24,260	27,565	50,928	2,336	0	0	105,090
	Blacknose Dace	0	5,180	38,400	1,198	46	0	44,824
	Bluegill	0	0	373,961	340,902	10,809	0	725,671
	Brown Bullhead	0	0	0	22,645	0	0	22,645
	Common Shiner	0	130	1,504	0	0	0	1,634
	Fallfish	0	69,329	646,382	67,534	14,757	0	798,002
	Golden Shiner	0	130	1,500	283	0	0	1,913
	Largemouth Bass	0	0	4,503	4,470	0	0	8,972
	Margined Madtom	0	0	6,113	12,573	0	0	18,686
	Rock Bass	0	0	28,152	32,614	13,571	0	74,337
	Smallmouth Bass	0	0	0	1,401	0	0	1,401
	Spottail Shiner	0	1,545	30,035	0	0	0	31,580
	Tessellated Darter	0	149,869	152,886	8,821	0	0	311,576
	Walleye	0	5,727	0	0	0	0	5,727
	White Perch	0	0	439	0	0	0	439
	White Sucker	16,310	906,346	519,205	5,654	0	0	1,447,515
	Yellow Bullhead	0	0	0	3,163	0	0	3,163
	Yellow Perch	0	248,483	15,600	0	0	0	264,084
	Total	40,570	1,415,516	1,884,124	514,314	40,099	0	3,894,622

Table 3-16. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with April through July operation of a 3-mm wedgewire half screen at the existing cooling water intake structure (CWIS) based on 50\% design intake flow (DIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	243	230	0	0	0	473
	Common Shiner	0	24	23	0	0	0	47
	Fallfish	0	7,753	7,332	288	7,011	0	22,384
	Golden Shiner	0	24	23	0	0	0	47
	Spottail Shiner	0	288	273	0	0	0	561
	Total	0	8,333	7,880	288	7,011	0	23,513
Larvae	Alewife	0	170	4,456	543	915	0	6,084
	American Shad	0	0	607	198	0	0	805
	Black Crappie	24,260	4,669	1,552	16	0	0	30,498
	Blacknose Dace	0	1,379	7,854	225	46	0	9,504
	Bluegill	0	0	19,310	28,383	10,809	0	58,502
	Brown Bullhead	0	0	0	22,457	0	0	22,457
	Common Shiner	0	65	360	0	0	0	425
	Fallfish	0	25,953	145,500	9,118	7,746	0	188,317
	Golden Shiner	0	65	359	0	0	0	424
	Largemouth Bass	0	0	1,556	3,201	0	0	4,758
	Margined Madtom	0	0	0	11,234	0	0	11,234
	Rock Bass	0	0	5	102	13,571	0	13,679
	Smallmouth Bass	0	0	0	1	0	0	1
	Spottail Shiner	0	771	4,261	0	0	0	5,033
	Tessellated Darter	0	17,922	22,677	3,232	0	0	43,831
	Walleye	0	1	0	0	0	0	1
	White Perch	0	0	216	0	0	0	216
	White Sucker	196	12,673	6,760	71	0	0	19,700
	Yellow Perch	0	30,933	1,922	0	0	0	32,854
	Total	24,456	94,600	217,396	78,781	33,087	0	448,321
YOY	Black Crappie	0	0	0	0	0	0	0
	Largemouth Bass	0	0	0	0	0	0	0
	Margined Madtom	0	0	2,977	606	0	0	3,583
	Spottail Shiner	0	0	0	0	0	0	0
	White Sucker	0	0	8,150	0	0	0	8,150
	Yellow Bullhead	0	0	0	1,550	0	0	1,550
	Total	0	0	11,127	2,156	0	0	13,283
YROL	American Eel	0	0	0	0	0	0	0
	Bluegill	0	0	0	0	0	0	0
	Golden Shiner	0	0	0	0	0	0	0
	Total	0	0	0	0	0	0	0

(Continued)

Table 3-16 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	170	4,456	543	915	0	6,084
	American Eel	0	0	0	0	0	0	0
	American Shad	0	0	607	198	0	0	805
	Black Crappie	24,260	4,669	1,552	16	0	0	30,498
	Blacknose Dace	0	1,622	8,084	225	46	0	9,977
	Bluegill	0	0	19,310	28,383	10,809	0	58,502
	Brown Bullhead	0	0	0	22,457	0	0	22,457
	Common Shiner	0	89	383	0	0	0	472
	Fallfish	0	33,706	152,832	9,406	14,757	0	210,701
	Golden Shiner	0	89	382	0	0	0	471
	Largemouth Bass	0	0	1,556	3,201	0	0	4,758
	Margined Madtom	0	0	2,977	11,840	0	0	14,817
	Rock Bass	0	0	5	102	13,571	0	13,679
	Smallmouth Bass	0	0	0	1	0	0	1
	Spottail Shiner	0	1,059	4,534	0	0	0	5,594
	Tessellated Darter	0	17,922	22,677	3,232	0	0	43,831
	Walleye	0	1	0	0	0	0	1
	White Perch	0	0	216	0	0	0	216
	White Sucker	196	12,673	14,910	71	0	0	27,850
	Yellow Bullhead	0	0	0	1,550	0	0	1,550
	Yellow Perch	0	30,933	1,922	0	0	0	32,854
	Total	24,456	102,934	236,403	81,225	40,099	0	485,116

Table 3-17. Estimated monthly entrainment abundance by life stage and species at Merrimack Station, Units 1 and 2 combined, with closed-cycle cooling towers based on 50\% design intake flow (DIF).

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Eggs	Blacknose Dace	0	13	12	0	0	0	25
	Common Shiner	0	1	1	0	0	0	2
	Fallfish	0	414	379	15	351	0	1,159
	Golden Shiner	0	1	1	0	0	0	2
	Spottail Shiner	0	15	14	0	0	0	29
	Total	0	445	407	15	351	0	1,218
Larvae	Alewife	0	61	657	403	46	0	1,166
	American Shad	0	0	59	118	0	0	177
	Black Crappie	1,213	1,378	2,546	103	0	0	5,240
	Blacknose Dace	0	246	1,908	60	2	0	2,216
	Bluegill	0	0	18,677	17,045	540	0	36,263
	Brown Bullhead	0	0	0	1,132	0	0	1,132
	Common Shiner	0	5	74	0	0	0	79
	Fallfish	0	3,053	31,940	3,361	387	0	38,741
	Golden Shiner	0	5	74	0	0	0	79
	Largemouth Bass	0	0	214	195	0	0	409
	Margined Madtom	0	0	0	566	0	0	566
	Rock Bass	0	0	1,408	1,631	679	0	3,717
	Smallmouth Bass	0	0	0	70	0	0	70
	Spottail Shiner	0	62	876	0	0	0	938
	Tessellated Darter	0	7,493	7,644	441	0	0	15,579
	Walleye	0	286	0	0	0	0	286
	White Perch	0	0	22	0	0	0	22
	White Sucker	815	45,317	25,553	283	0	0	71,968
	Yellow Perch	0	12,424	780	0	0	0	13,204
	Total	2,029	70,331	92,433	25,408	1,654	0	191,855
YOY	Black Crappie	0	0	0	14	0	0	14
	Largemouth Bass	0	0	11	29	0	0	40
	Margined Madtom	0	0	306	62	0	0	368
	Spottail Shiner	0	0	611	0	0	0	611
	White Sucker	0	0	407	0	0	0	407
	Yellow Bullhead	0	0	0	158	0	0	158
	Total	0	0	1,335	263	0	0	1,598
YROL	American Eel	0	0	10	14	0	0	25
	Bluegill	0	0	21	0	0	0	21
	Golden Shiner	0	0	0	14	0	0	14
	Total	0	0	31	29	0	0	60

(Continued)

Table 3-17 Continued.

Life Stage	Species	Apr	May	Jun	Jul	Aug	Sep	Season
Total	Alewife	0	61	657	403	46	0	1,166
	American Eel	0	0	10	14	0	0	25
	American Shad	0	0	59	118	0	0	177
	Black Crappie	1,213	1,378	2,546	117	0	0	5,254
	Blacknose Dace	0	259	1,920	60	2	0	2,241
	Bluegill	0	0	18,698	17,045	540	0	36,284
	Brown Bullhead	0	0	0	1,132	0	0	1,132
	Common Shiner	0	7	75	0	0	0	82
	Fallfish	0	3,466	32,319	3,377	738	0	39,900
	Golden Shiner	0	7	75	14	0	0	96
	Largemouth Bass	0	0	225	223	0	0	449
	Margined Madtom	0	0	306	629	0	0	934
	Rock Bass	0	0	1,408	1,631	679	0	3,717
	Smallmouth Bass	0	0	0	70	0	0	70
	Spottail Shiner	0	77	1,502	0	0	0	1,579
	Tessellated Darter	0	7,493	7,644	441	0	0	15,579
	Walleye	0	286	0	0	0	0	286
	White Perch	0	0	22	0	0	0	22
	White Sucker	815	45,317	25,960	283	0	0	72,376
	Yellow Bullhead	0	0	0	158	0	0	158
	Yellow Perch	0	12,424	780	0	0	0	13,204
	Total	2,029	70,776	94,206	25,716	2,005	0	194,731

Table 3-18. Monthly mean adjusted 24 -hour impingement density (number per million \mathbf{m}^{3}) of fish identified to lowest taxon possible in samples collected from June 2005 through June 2007 at Merrimack Station Units 1 and 2 combined.

Taxon	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		0.22											0.02
Banded Sunfish				0.83	0.31								0.10
Black Crappie				0.71	2.36	0.13			0.99	2.51	1.99	0.92	0.80
Bluegill	0.21		1.37		7.19	62.29	2.52	0.43	0.72	1.04	1.65	2.59	6.67
Brown Bullhead						0.51	0.32						0.07
Chain Pickerel	0.58												0.05
Fallfish	1.12												0.09
Golden Shiner	0.27		0.43	0.71	0.26	0.37	0.15				0.08		0.19
Largemouth Bass		0.77				0.37	0.27			2.36	1.71	0.49	0.50
Margined Madtom	0.58		0.80	1.76	0.85	1.45	0.12			0.33			0.49
Pumpkinseed			0.28		1.82	0.99				2.41	0.71	0.72	0.58
Rainbow Smelt	0.82	1.00										1.69	0.29
Redbreast Sunfish			0.28		0.29	0.38			0.58				0.13
Rock Bass						0.43						0.36	0.07
Smallmouth Bass			0.28			0.12	0.31	0.19			0.27	0.14	0.11
Spottail Shiner	2.03	1.00	0.23		0.29	0.60	0.56			0.30	0.08	9.25	1.20
Sunfish Family							0.24		0.23				0.04
Tessellated Darter			1.43				0.12						0.13
White Perch	0.22										0.08		0.03
White Sucker						0.17	0.39						0.05
Yellow Bullhead			0.50				0.15						0.05
Yellow Perch	1.16		2.01		0.51	0.58						4.46	0.73
Total	6.98	3.00	7.61	4.00	13.88	68.38	5.15	0.62	2.52	8.95	6.57	20.63	12.36

Table 3-19. Percent composition of taxa impinged at Merrimack Station Units 1 and 2 combined from June 2005 through June 2007 based on monthly mean adjusted 24-hour impingement densities.

Taxon	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		7.3											0.1
Banded Sunfish				20.8	2.3								0.8
Black Crappie				17.7	17.0	0.2			39.3	28.0	30.3	4.5	6.5
Bluegill	3.0		18.0		51.8	91.1	49.0	69.7	28.7	11.7	25.2	12.5	54.0
Brown Bullhead						0.7	6.3						0.6
Chain Pickerel	8.3												0.4
Fallfish	16.0												0.8
Golden Shiner	3.9		5.7	17.7	1.9	0.5	2.9				1.3		1.5
Largemouth Bass		25.8				0.5	5.2			26.4	26.0	2.4	4.0
Margined Madtom	8.3		10.5	43.8	6.1	2.1	2.3			3.7			4.0
Pumpkinseed			3.7		13.1	1.4				26.9	10.7	3.5	4.7
Rainbow Smelt	11.7	33.4										8.2	2.4
Redbreast Sunfish			3.7		2.1	0.6			22.8				1.0
Rock Bass						0.6						1.8	0.5
Smallmouth Bass			3.6			0.2	6.1	30.3			4.0	0.7	0.9
Spottail Shiner	29.0	33.4	3.1		2.1	0.9	10.8			3.4	1.3	44.9	9.7
Sunfish Family							4.6		9.2				0.3
Tessellated Darter			18.8				2.3						1.0
White Perch	3.1										1.3		0.2
White Sucker						0.2	7.5						0.4
Yellow Bullhead			6.6				3.0						0.4
Yellow Perch	16.6		26.4		3.7	0.8						21.6	5.9
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3-20. Monthly mean adjusted 24-hour impingement density (number per million \mathbf{m}^{3}) of Sunfish family identified to species for apportioning impingement of unidentified Sunfish family.

Species	July		September	
	D	\%	D	\%
Banded Sunfish	0	0.0%	0	0.0%
Black Crappie	0	0.0%	0.992	43.3%
Bluegill	2.523	81.3%	0.724	31.6%
Largemouth Bass	0.267	8.6%	0	0.0%
Pumpkinseed	0	0.0%	0	0.0%
Redbreast Sunfish	0	0.0%	0.575	25.1%
Rock Bass	0	0.0%	0	0.0%
Smallmouth Bass	0.314	10.1%	0	0.0%
Identified Sunfish Species Total	3.104	100.0%	2.291	100.0%

Table 3-21. Monthly mean adjusted 24 -hour impingement density (number per million \mathbf{m}^{3}) apportioned to species based on samples collected from June 2005 through June 2007 at Merrimack Station Units 1 and 2 combined.

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		0.22											0.02
Banded Sunfish				0.83	0.31								0.10
Black Crappie				0.71	2.36	0.13			1.09	2.51	1.99	0.92	0.81
Bluegill	0.21		1.37		7.19	62.29	2.72	0.43	0.80	1.04	1.65	2.59	6.69
Brown Bullhead						0.51	0.32						0.07
Chain Pickerel	0.58												0.05
Fallfish	1.12												0.09
Golden Shiner	0.27		0.43	0.71	0.26	0.37	0.15				0.08		0.19
Largemouth Bass		0.77				0.37	0.29			2.36	1.71	0.49	0.50
Margined Madtom	0.58		0.80	1.76	0.85	1.45	0.12			0.33			0.49
Pumpkinseed			0.28		1.82	0.99				2.41	0.71	0.72	0.58
Rainbow Smelt	0.82	1.00										1.69	0.29
Redbreast Sunfish			0.28		0.29	0.38			0.63				0.13
Rock Bass						0.43						0.36	0.07
Smallmouth Bass			0.28			0.12	0.34	0.19			0.27	0.14	0.11
Spottail Shiner	2.03	1.00	0.23		0.29	0.60	0.56			0.30	0.08	9.25	1.20
Tessellated Darter			1.43				0.12						0.13
White Perch	0.22										0.08		0.03
White Sucker						0.17	0.39						0.05
Yellow Bullhead			0.50				0.15						0.05
Yellow Perch	1.16		2.01		0.51	0.58						4.46	0.73
Total	6.98	3.00	7.61	4.00	13.88	68.38	5.15	0.62	2.52	8.95	6.57	20.63	12.36

Table 3-22. Monthly age distribution (\%) of species impingement estimates at Merrimack Station Units 1 and 2 combined from June 2005 through June 2007.

Species	Month	Age								
		0	1	2	3	4	5	6	7	8
American Eel	Feb									100.0
Banded Sunfish	Apr	75.0	12.5	12.5						
	May	100.0								
Black Crappie	Apr	82.4	11.8		5.9					
	May	95.1	4.9							
	Jun	73.3	26.7							
	Sep	51.5	36.3				12.1			
	Oct	90.0	10.0							
	Nov	74.1	25.9							
	Dec	66.7	33.3							
Bluegill	Jan	52.9	23.5	11.8		5.9	5.9			
	Mar	80.0	5.0	10.0	5.0					
	May	96.8	2.6				0.6			
	Jun	96.3	2.2	0.4			1.1			
	Jul	93.8	4.1	2.1						
	Aug		28.6	14.3	14.3	14.3	28.6			
	Sep	60.6	27.2			9.1	3.1			
	Oct	80.5	18.0	0.8			0.8			
	Nov	32.9	48.2	12.9	2.4		3.5			
	Dec	30.9	49.1	16.4	1.8	1.8				
Brown Bullhead	Jun	33.3		33.3	33.3					
	Jul	50.0	25.0	25.0						
Chain Pickerel	Jan		100.0							
Fallfish	Jan			66.7	33.3					
Golden Shiner	Jan			40.0	60.0					
	Mar			25.0	75.0					
	Apr				100.0					
	May			50.0	50.0					
	Jun		15.4	46.2	38.5					
	Jul			100.0						
	Nov				100.0					

(Continued)

Table 3-22 Continued.

Species	Month	Age								
		0	1	2	3	4	5	6	7	8
Largemouth Bass	Feb	100.0								
	Jun	100.0								
	Jul	100.0								
	Oct	100.0								
	Nov	100.0								
	Dec	100.0								
Margined Madtom	Jan		100.0							
	Mar		33.3	12.5	25.0	29.2				
	Apr		20.5	13.6	29.5	36.4				
	May		47.6	23.8	9.5	19.0				
	Jun		39.1	21.7	13.0	26.1				
	Jul		25.0	50.0	25.0					
	Oct		100.0							
Pumpkinseed	Mar	100.0								
	May	60.0	10.0	25.0		5.0				
	Jun	100.0								
	Oct	59.6	12.8	25.5	2.1					
	Nov	20.0	10.0	45.0	22.5	2.5				
	Dec	10.5	15.8	52.6	10.5	5.3	5.3			
Rainbow Smelt	Jan	100.0								
	Feb	100.0								
	Dec	100.0								
Redbreast Sunfish	Mar						50.0			50.0
	May				50.0					50.0
	Jun	16.7		16.7	16.7	16.7	16.7			16.7
	Sep	6.1			30.3	30.3	3.1			30.3
Rock Bass	Jun	100.0								
	Dec		40.0	60.0						

(Continued)

Table 3-22 Continued.

Species	Month	Age								
		0	1	2	3	4	5	6	7	8
Smallmouth Bass	Mar	66.7	16.7				16.7			
	Jun	50.0	25.0				25.0			
	Jul	44.2	37.2				18.6			
	Aug		25.0	25.0	25.0		25.0			
	Nov	50.0					50.0			
	Dec	87.5					12.5			
Spottail Shiner	Jan	24.1	3.4	51.7	20.7					
	Feb	33.3	8.3	41.7	16.7					
	Mar	100.0								
	May	25.0	75.0							
	Jun	75.0	25.0							
	Jul	80.0	20.0							
	Oct	100.0								
	Nov	100.0								
	Dec	22.0	4.0	44.0	20.0	10.0				
Tessellated Darter	Mar				100.0					
	Jul			100.0						
White Perch	Jan				100.0					
	Nov		100.0							
White Sucker	Jun							33.3	66.7	
	Jul								100.0	
Yellow Bullhead	Mar	20.0	40.0	20.0	20.0					
	Jul		100.0							
Yellow Perch	Jan	27.1	62.7	3.4	1.7	3.4	1.7			
	Mar	33.3	61.9	4.8						
	May		42.9	42.9	14.3					
	Jun	50.0		16.7		16.7	16.7			
	Dec	6.7	76.7	10.0	6.7					

Table 3-23. Monthly mean adjusted 24 -hour impingement density (number per million \mathbf{m}^{3}) apportioned to species and length-based age class for samples collected from June 2005 through June 2007 at Merrimack Station Units 1 and 2 combined.

Species	Month	Age									Total
		0	1	2	3	4	5	6	7	8	
American Eel	Feb									0.22	0.22
Banded Sunfish	Apr	0.62	0.10	0.10							0.83
	May	0.31									0.31
Black Crappie	Apr	0.58	0.08		0.04						0.71
	May	2.24	0.11								2.36
	Jun	0.10	0.04								0.13
	Sep	0.56	0.40				0.13				1.09
	Oct	2.26	0.25								2.51
	Nov	1.47	0.52								1.99
	Dec	0.62	0.31								0.92
Bluegill	Jan	0.11	0.05	0.02		0.01	0.01				0.21
	Mar	1.09	0.07	0.14	0.07						1.37
	May	6.96	0.18				0.05				7.19
	Jun	60.00	1.37	0.23			0.69				62.29
	Jul	2.55	0.11	0.06							2.72
	Aug		0.12	0.06	0.06	0.06	0.12				0.43
	Sep	0.48	0.22			0.07	0.02				0.80
	Oct	0.84	0.19	0.01			0.01				1.04
	Nov	0.54	0.80	0.21	0.04		0.06				1.65
	Dec	0.80	1.27	0.42	0.05	0.05					2.59
Brown Bullhead	Jun	0.17		0.17	0.17						0.51
	Jul	0.16	0.08	0.08							0.32
Chain Pickerel	Jan		0.58								0.58
Fallfish	Jan			0.74	0.37						1.12

(Continued)

Table 3-23 Continued.

Species	Month	Age									Total
		0	1	2	3	4	5	6	7	8	
Golden Shiner	Jan			0.11	0.16						0.27
	Mar			0.11	0.32						0.43
	Apr				0.71						0.71
	May			0.13	0.13						0.26
	Jun		0.06	0.17	0.14						0.37
	Jul			0.15							0.15
	Nov				0.08						0.08
Largemouth Bass	Feb	0.77									0.77
	Jun	0.37									0.37
	Jul	0.29									0.29
	Oct	2.36									2.36
	Nov	1.71									1.71
	Dec	0.49									0.49
Margined Madtom	Jan		0.58								0.58
	Mar		0.27	0.10	0.20	0.23					0.80
	Apr		0.36	0.24	0.52	0.64					1.76
	May		0.40	0.20	0.08	0.16					0.85
	Jun		0.57	0.31	0.19	0.38					1.45
	Jul		0.03	0.06	0.03						0.12
	Oct		0.33								0.33
Pumpkinseed	Mar	0.28									0.28
	May	1.09	0.18	0.46		0.09					1.82
	Jun	0.99									0.99
	Oct	1.43	0.31	0.61	0.05						2.41
	Nov	0.14	0.07	0.32	0.16	0.02					0.71
	Dec	0.08	0.11	0.38	0.08	0.04	0.04				0.72
Rainbow Smelt	Jan	0.82									0.82
	Feb	1.00									1.00
	Dec	1.69									1.69

(Continued)

Table 3-23 Continued.

Species	Month	Age									Total
		0	1	2	3	4	5	6	7	8	
Redbreast Sunfish	Mar						0.14			0.14	0.28
	May				0.14					0.14	0.29
	Jun	0.06		0.06	0.06	0.06	0.06			0.06	0.38
	Sep	0.04			0.19	0.19	0.02			0.19	0.63
Rock Bass	Jun	0.43									0.43
	Dec		0.14	0.22							0.36
Smallmouth Bass	Mar	0.18	0.05				0.05				0.28
	Jun	0.06	0.03				0.03				0.12
	Jul	0.15	0.13				0.06				0.34
	Aug		0.05	0.05	0.05		0.05				0.19
	Nov	0.13					0.13				0.27
	Dec	0.12					0.02				0.14
Spottail Shiner	Jan	0.49	0.07	1.05	0.42						2.03
	Feb	0.33	0.08	0.42	0.17						1.00
	Mar	0.23									0.23
	May	0.07	0.21								0.29
	Jun	0.45	0.15								0.60
	Jul	0.45	0.11								0.56
	Oct	0.30									0.30
	Nov	0.08									0.08
	Dec	2.04	0.37	4.07	1.85	0.93					9.25
Tessellated Darter	Mar				1.43						1.43
	Jul			0.12							0.12
White Perch	Jan				0.22						0.22
	Nov		0.08								0.08
White Sucker	Jun							0.06	0.11		0.17
	Jul								0.39		0.39
Yellow Bullhead	Mar	0.10	0.20	0.10	0.10						0.50
	Jul		0.15								0.15
Yellow Perch	Jan	0.31	0.73	0.04	0.02	0.04	0.02				1.16
	Mar	0.67	1.24	0.10							2.01
	May		0.22	0.22	0.07						0.51
	Jun	0.29		0.10		0.10	0.10				0.58
	Dec	0.30	3.42	0.45	0.30						4.46

Table 3-24. Estimated annual impingement abundance (number of individuals) at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS) , 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at 50\% DIF.

Species	10-year AIF			100\% DIF			50\% DIF		
	Existing CWIS	3-mm WWS	Cooling Towers	Existing CWIS	3-mm WWS	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers
American Eel	5	5	<1	7	7	<1	3	3	<1
Banded Sunfish	12		1	38		2	19		1
Black Crappie	104	72	5	323	216	16	162	108	8
Bluegill	1,161	132	58	2,637	270	132	1,318	135	66
Brown Bullhead	14		1	28		1	14		1
Chain Pickerel	14	14	1	20	20	1	10	10	<1
Fallfish	26	26	1	38	38	2	19	19	1
Golden Shiner	35	17	2	75	26	4	38	13	2
Largemouth Bass	77	66	4	197	176	10	99	88	5
Margined Madtom	83	34	4	195	58	10	97	29	5
Pumpkinseed	79	47	4	232	138	12	116	69	6
Rainbow Smelt	77	77	4	115	115	6	58	58	3
Redbreast Sunfish	20	12	1	52	30	3	26	15	1
Rock Bass	14	8	1	26	12	1	13	6	1
Smallmouth Bass	24	15	1	44	29	2	22	14	1
Spottail Shiner	296	273	15	480	432	24	240	216	12
Tessellated Darter	35	32	2	52	48	3	26	24	1
White Perch	6	6	<1	10	10	1	5	5	<1
White Sucker	10		1	19		1	9		<1
Yellow Bullhead	14	11	1	22	17	1	11	8	1
Yellow Perch	180	166	9	293	257	15	147	129	7
Total	2,285	1,012	114	4,902	1,898	245	2,451	949	123

Table 3-25. Estimated equivalent loss of recruitment (number of fish) to the recreational fishery due to annual entrainment at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), $\mathbf{1 0 0 \%}$ capacity factor at design intake flow (DIF) and 50% capacity factor at $\mathbf{5 0 \%}$ DIF.

Species	10-year AIF			100\% DIF			50\% DIF		
	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closedcycle Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed- cycle Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closedcycle Cooling Towers
American Eel	383	0	19	711	0	36	356	0	18
American Shad	<1	<1	<1	<1	<1	<1	<1	<1	<1
Black Crappie	101	21	5	256	68	13	128	34	6
Bluegill	449	23	22	917	44	46	458	22	23
Brown Bullhead	15	15	1	24	24	1	12	12	1
Largemouth Bass	13	3	1	23	5	1	12	3	1
Rock Bass	29	4	1	56	10	3	28	5	1
Smallmouth Bass	<1	<1	<1	<1	<1	<1	<1	<1	<1
Walleye	1	<1	<1	2	<1	<1	1	<1	<1
White Perch	<1	<1	<1	1	<1	<1	<1	<1	<1
Yellow Bullhead	44	22	2	73	36	4	37	18	2
Yellow Perch	236	29	12	794	99	40	397	49	20

Table 3-26. Estimated age-1 equivalent loss (number of fish) of recreational fishery species due to annual entrainment at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), $\mathbf{1 0 0 \%}$ capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Species	10-year AIF			100\% DIF			50\% DIF		
	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed- cycle Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed- cycle Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed- cycle Cooling Towers
American Eel	530	0	26	984	0	49	492	0	25
American Shad	<1	<1	<1	<1	<1	<1	<1	<1	<1
Black Crappie	232	49	12	587	156	29	293	78	15
Bluegill	1,383	81	69	2,781	157	139	1,391	79	70
Brown Bullhead	33	33	2	55	55	3	28	27	1
Largemouth Bass	30	7	1	54	13	3	27	6	1
Rock Bass	102	15	5	200	37	10	100	18	5
Smallmouth Bass	<1	<1	<1	1	<1	<1	<1	<1	<1
Walleye	2	<1	<1	5	<1	<1	3	<1	<1
White Perch	1	<1	<1	2	1	<1	1	<1	<1
Yellow Bullhead	100	49	5	166	81	8	83	41	4
Yellow Perch	711	88	36	2,392	298	120	1,196	149	60

Table 3-27. Estimated equivalent loss of recruitment (number of fish) to the recreational fishery due to annual impingement at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), $\mathbf{1 0 0 \%}$ capacity factor at design intake flow (DIF) and 50\% capacity factor at 50% DIF.

Species	10-year AIF			100\% DIF			50\% DIF		
	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed-cycle Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed-cycle Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed-cycle Cooling Towers
American Eel	4	4	<1	6	6	<1	3	3	<1
Banded Sunfish	2	0	<1	5	0	<1	3	0	<1
Black Crappie	17	14	1	50	40	3	25	20	1
Bluegill	76	46	4	158	91	8	79	45	4
Brown Bullhead	8	0	<1	16	0	1	8	0	<1
Chain Pickerel	8	8	<1	11	11	1	6	6	<1
Largemouth Bass	1	1	<1	2	2	<1	1	1	<1
Pumpkinseed	31	25	2	86	64	4	43	32	2
Rainbow Smelt	3	3	<1	4	4	<1	2	2	<1
Redbreast Sunfish	19	12	1	49	29	2	24	14	1
Rock Bass	6	6	<1	10	9	<1	5	5	<1
Smallmouth Bass	7	4	<1	13	9	1	7	5	<1
White Perch	6	6	<1	9	9	<1	5	5	<1
Yellow Bullhead	9	7	<1	14	11	1	7	5	<1
Yellow Perch	92	84	5	154	130	8	77	65	4

Table 3-28. Estimated age-1 equivalent loss (number of fish) of recreational fishery species due to annual impingement at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), $\mathbf{1 0 0 \%}$ capacity factor at design intake flow (DIF) and 50\% capacity factor at $\mathbf{5 0 \%}$ DIF.

Species	10-year AIF			100\% DIF			50\% DIF		
	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed-cycle Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Closed-cycle Cooling Towers	Existing CWIS	3-mm WWS	Closed-cycle Cooling Towers
American Eel	5	5	<1	7	7	<1	3	3	<1
Banded Sunfish	2	0	<1	7	0	<1	4	0	<1
Black Crappie	30	24	1	86	68	4	43	34	2
Bluegill	125	71	6	265	143	13	133	71	7
Brown Bullhead	8	0	<1	17	0	1	8	0	<1
Chain Pickerel	14	14	1	20	20	1	10	10	<1
Largemouth Bass	2	1	<1	4	4	<1	2	2	<1
Pumpkinseed	35	28	2	100	74	5	50	37	2
Rainbow Smelt	13	13	1	19	19	1	9	9	<1
Redbreast Sunfish	19	12	1	49	29	2	24	14	1
Rock Bass	8	8	<1	12	12	1	6	6	<1
Smallmouth Bass	11	7	1	23	14	1	11	7	1
White Perch	6	6	<1	10	10	1	5	5	<1
Yellow Bullhead	12	9	1	19	14	1	9	7	<1
Yellow Perch	163	151	8	266	235	13	133	117	7

Biological Benefit Evaluation of Entrainment Reducing Technologies at Merrimack Station

Table 3-29. Total production foregone (kg) of forage species entrained annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3 -mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at 50\% DIF.

Species	Life Stage	10-year AIF			100\% DIF			50\% DIF		
		Existing CWIS	3-mm WWS	Cooling Towers	Existing CWIS	3-mm WWS	Cooling Towers	Existing CWIS	3-mm WWS	Cooling Towers
Alewife	Larvae	1.5	0.4	0.1	3.1	0.8	0.2	1.5	0.4	0.1
Blacknose Dace	Eggs	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Larvae	0.8	0.2	<0.1	1.9	0.4	0.1	1.0	0.2	<0.1
Common Shiner	Eggs	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Larvae	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fallfish	Eggs	2.2	2.1	0.1	5.8	5.6	0.3	2.9	2.8	0.1
	Larvae	641.9	150.3	32.1	1,438.9	349.7	71.9	719.5	174.9	36.0
Golden Shiner	Eggs	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Larvae	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	YROL	0.6	0	<0.1	1.0	0	<0.1	0.5	0	<0.1
Margined Madtom	Larvae	2.9	2.8	0.1	4.7	4.7	0.2	2.4	2.4	0.1
	YOY	1.6	0.8	0.1	3.5	1.7	0.2	1.7	0.8	0.1
Spottail Shiner	Eggs	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Larvae	0.4	0.1	<0.1	0.8	0.2	<0.1	0.4	0.1	<0.1
	YOY	1.8	0	0.1	4.0	0	0.2	2.0	0	0.1
Tessellated Darter	Larvae	6.6	1.0	0.3	17.8	2.5	0.9	8.9	1.2	0.4
White Sucker	Larvae	15.5	0.2	0.8	44.8	0.6	2.2	22.4	0.3	1.1
	YOY	50.4	50.4	2.5	113.3	113.3	5.7	56.7	56.7	2.8
Total		726.2	208.3	36.3	1,639.7	479.6	82.0	819.9	239.8	41.0

Table 3-30. Number of equivalent Age-2 Largemouth Bass supported by total production foregone of forage species entrained annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Species	Life Stage	10-year AIF			100\% DIF			50\% DIF		
		Existing CWIS	$3-\mathrm{mm}$ WWS	Cooling Towers	Existing CWIS	3-mm WWS	Cooling Towers	Existing CWIS	3-mm WWS	Cooling Towers
Alewife	Larvae	1	<1	<1	2	1	<1	1	<1	<1
Blacknose Dace	Eggs	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Larvae	1	<1	<1	1	<1	<1	1	<1	<1
Common Shiner	Eggs	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Larvae	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fallfish	Eggs	2	2	<1	4	4	<1	2	2	<1
	Larvae	458	107	23	1,028	250	51	514	125	26
Golden Shiner	Eggs	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Larvae	<1	<1	<1	<1	<1	<1	<1	<1	<1
	YROL	<1	0	<1	1	0	<1	<1	0	<1
Margined Madtom	Larvae	2	2	<1	3	3	<1	2	2	<1
	YOY	1	1	<1	2	1	<1	1	1	<1
Spottail Shiner	Eggs	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Larvae	<1	<1	<1	1	<1	<1	<1	<1	<1
	YOY	1	0	<1	3	0	<1	1	0	<1
Tessellated Darter	Larvae	5	1	<1	13	2	1	6	1	<1
White Sucker	Larvae	11	<1	1	32	<1	2	16	<1	1
	YOY	36	36	2	81	81	4	40	40	2
Total		519	149	26	1,171	343	59	586	171	29

Table 3-31. Total production foregone (kg) of forage species impinged annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at 50\% DIF.

Species	Age	10-year AIF			100\% DIF			50\% DIF		
		Existing CWIS	$3-\mathrm{mm}$ WWS	Cooling Towers	Existing CWIS	$3-\mathrm{mm}$ WWS	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers
Fallfish	2	2.4	2.4	0.1	3.5	3.5	0.2	1.8	1.8	0.1
	3	2.1	2.1	0.1	3.0	3.0	0.1	1.5	1.5	0.1
Golden Shiner	1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1
	2	0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1
	3	0.2	0.1	<0.1	0.5	0.2	<0.1	0.2	0.1	<0.1
Margined Madtom	1	0.4	0.2	<0.1	0.8	0.4	<0.1	0.4	0.2	<0.1
	2	0.2	<0.1	<0.1	0.5	0.1	<0.1	0.3	<0.1	<0.1
	3	0.3	0.1	<0.1	0.8	0.2	<0.1	0.4	0.1	<0.1
	4	0.5	0.1	<0.1	1.2	0.2	0.1	0.6	0.1	<0.1
Spottail Shiner	0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	2	0.6	0.6	<0.1	0.9	0.9	<0.1	0.4	0.4	<0.1
	3	0.4	0.4	<0.1	0.6	0.6	<0.1	0.3	0.3	<0.1
	4	0.2	0.2	<0.1	0.2	0.2	<0.1	0.1	0.1	<0.1
Tessellated Darter	2	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1
	3	0.1	0.1	<0.1	0.2	0.2	<0.1	0.1	0.1	<0.1
White Sucker	6	0.4		<0.1	0.8		<0.1	0.4		<0.1
	7	4.9		0.2	8.6		0.4	4.3		0.2
Total		12.7	6.4	0.6	21.8	9.4	1.1	10.9	4.7	0.5

Table 3-32. Number of equivalent Age-2 Largemouth Bass supported by total production foregone of forage species impinged annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), $3-\mathrm{mm}$ wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at $\mathbf{5 0 \%}$ DIF.

Species	Age	10-year AIF			100\% DIF			50\% DIF		
		Existing CWIS	3-mm WWS	Cooling Towers	Existing CWIS	3-mm WWS	Cooling Towers	Existing CWIS	3-mm WWS	Cooling Towers
Fallfish	2	2	2	<1	3	3	<1	1	1	<1
	3	1	1	<1	2	2	<1	1	1	<1
Golden Shiner	1	<1		<1	<1		<1	<1		<1
	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	3	<1	<1	<1	<1	<1	<1	<1	<1	<1
Margined Madtom	1	<1	<1	<1	1	<1	<1	<1	<1	<1
	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	3	<1	<1	<1	1	<1	<1	<1	<1	<1
	4	<1	<1	<1	1	<1	<1	<1	<1	<1
Spottail Shiner	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	2	<1	<1	<1	1	1	<1	<1	<1	<1
	3	<1	<1	<1	<1	<1	<1	<1	<1	<1
	4	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tessellated Darter	2	<1		<1	<1		<1	<1		<1
	3	<1	<1	<1	<1	<1	<1	<1	<1	<1
White Sucker	6	<1		<1	1		<1	<1		<1
	7	3		<1	6		<1	3		<1
Total		9	5	<1	16	7	1	8	3	<1

Table 3-33. Biomass (kg) lost as forage from natural mortality (predation) of early life stages of recreationally important fishery species entrained annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at $\mathbf{5 0 \%}$ DIF.

Species	Life Stage	10-year AIF			100\% DIF			50\% DIF		
		Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers
American Eel	YROL	2.8	0	0.1	5.3	0	0.3	2.6	0	0.1
American Shad	Larvae	0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Black Crappie	Larvae	7.7	1.9	0.4	20.4	5.9	1.0	10.2	3.0	0.5
	YOY	1.1	0	0.1	1.8	0	0.1	0.9	0	<0.1
Bluegill	Larvae	24.1	1.9	1.2	46.5	3.7	2.3	23.2	1.9	1.2
	YROL	2.1	0	0.1	4.7	0	0.2	2.4	0	0.1
Brown Bullhead	Larvae	1.6	1.5	0.1	2.6	2.5	0.1	1.3	1.3	0.1
Largemouth Bass	Larvae	0.3	0.2	<0.1	0.5	0.3	<0.1	0.3	0.2	<0.1
	YOY	0.4	0	<0.1	0.7	0	<0.1	0.3	0	<0.1
Rock Bass	Larvae	2.4	0.4	0.1	4.8	0.9	0.2	2.4	0.4	0.1
Smallmouth Bass	Larvae	0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Walleye	Larvae	0.3	<0.1	<0.1	1.1	<0.1	0.1	0.5	<0.1	<0.1
White Perch	Larvae	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Yellow Bullhead	YOY	4.0	2.0	0.2	6.7	3.3	0.3	3.3	1.6	0.2
Yellow Perch	Larvae	9.2	1.1	0.5	30.8	3.8	1.5	15.4	1.9	0.8
Total		56.1	9.0	2.8	126.0	20.6	6.3	63.0	10.3	3.1

Table 3-34. Equivalent Age-2 Largemouth Bass from predation of the biomass lost accrued from natural mortality from the entrained life stage to age of first recruitment annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3 -mm wedgewire half screen (WWS) and closedcycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Species	Life Stage	10-year AIF			100\% DIF			50\% DIF		
		Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers
American Eel	YROL	2	0	<1	4	0	<1	2	0	<1
American Shad	Larvae	<1	<1	<1	<1	<1	<1	<1	<1	<1
Black Crappie	Larvae	5	1	<1	15	4	1	7	2	<1
	YOY	1	0	<1	1	0	<1	1	0	<1
Bluegill	Larvae	17	1	1	33	3	2	17	1	1
	YROL	2	0	<1	3	0	<1	2	0	<1
Brown Bullhead	Larvae	1	1	<1	2	2	<1	1	1	<1
Largemouth Bass	Larvae	<1	<1	<1	<1	<1	<1	<1	<1	<1
	YOY	<1	0	<1	<1	0	<1	<1	0	<1
Rock Bass	Larvae	2	<1	<1	3	1	<1	2	<1	<1
Smallmouth Bass	Larvae	<1	<1	<1	<1	<1	<1	<1	<1	<1
Walleye	Larvae	<1	<1	<1	1	<1	<1	<1	<1	<1
White Perch	Larvae	<1	<1	<1	<1	<1	<1	<1	<1	<1
Yellow Bullhead	YOY	3	1	<1	5	2	<1	2	1	<1
Yellow Perch	Larvae	7	1	<1	22	3	1	11	1	1
Total		40	6	2	90	15	4	45	7	2

Table 3-35. Biomass (kg) lost as forage from natural mortality (predation) of early life stages of recreationally important fishery species impinged annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10year (2007-2016) actual intake flow (AIF), $\mathbf{1 0 0 \%}$ capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Species	Age	10-year AIF			100\% DIF			50\% DIF		
		Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers	Existing CWIS	$\begin{aligned} & \text { 3-mm } \\ & \text { WWS } \end{aligned}$	Cooling Towers
Banded Sunfish	0	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1
	1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1
Black Crappie	0	0.3	0.2	<0.1	0.8	0.5	<0.1	0.4	0.3	<0.1
	1	0.5	0.4	<0.1	1.3	1.1	0.1	0.6	0.6	<0.1
Bluegill	0	0.2	<0.1	<0.1	0.5	<0.1	<0.1	0.3	<0.1	<0.1
	1	0.4	0.3	<0.1	0.8	0.5	<0.1	0.4	0.3	<0.1
Brown Bullhead	0	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1
	1	<0.1		<0.1	0.1		<0.1	<0.1		<0.1
Chain Pickerel	1	0.3	0.3	<0.1	0.4	0.4	<0.1	0.2	0.2	<0.1
Largemouth Bass	0	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Pumpkinseed	0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	0.1	<0.1	<0.1
Rainbow Smelt	0	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Redbreast Sunfish	0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Rock Bass	0	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1
	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Smallmouth Bass	0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1	0.1	<0.1	<0.1	0.2	0.1	<0.1	0.1	<0.1	<0.1
	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
White Perch	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Yellow Bullhead	0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1	0.2	0.1	<0.1	0.3	0.2	<0.1	0.1	0.1	<0.1
Yellow Perch	0	0.2	0.2	<0.1	0.3	0.3	<0.1	0.2	0.1	<0.1
	1	1.1	1.0	0.1	1.7	1.6	0.1	0.8	0.8	<0.1
Total		3.4	2.6	0.2	6.9	5.0	0.3	3.4	2.5	0.2

Table 3-36. Equivalent Age-2 Largemouth Bass from predation of the biomass lost accrued from natural mortality from the impinged life stage to age of first recruitment annually at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS), 3 -mm wedgewire half screen (WWS) and closedcycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Species	Age	10-year AIF			100\% DIF			50\% DIF		
		Existing	3-mm	Cooling	Existing	3-mm	Cooling	Existing	3-mm	Cooling
Banded Sunfish	0	<1		<1	<1		<1	<1		<1
	1	<1		<1	<1		<1	<1		<1
Black Crappie	0	<1	<1	<1	1	<1	<1	<1	<1	<1
	1	<1	<1	<1	1	1	<1	<1	<1	<1
Bluegill	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1	<1	<1	<1	1	<1	<1	<1	<1	<1
Brown Bullhead	0	<1		<1	<1		<1	<1		<1
	1	<1		<1	<1		<1	<1		<1
Chain	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Largemouth	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
Pumpkinseed	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Rainbow	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
Redbreast	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
Rock Bass	0	<1		<1	<1		<1	<1		<1
	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Smallmouth Bass	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
White Perch	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Yellow Bullhead	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Yellow Perch	0	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1	1	1	<1	1	1	<1	1	1	<1
Total		2	2	<1	5	4	<1	2	2	<1

Table 3-37. Number of equivalent recruits ${ }^{1}$ from annual entrainment reductions from the existing cooling water intake structure at Merrimack Station, Units 1 and 2 combined, with April through July operation of $3-\mathrm{mm}$ wedgewire half screens (WWS) and year-round operation of closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Species	Model	Entrainment					
		10-year AIF		100\% DIF		50\% DIF	
		3-mm CWW	Cooling Towers	$\begin{aligned} & \text { 3-mm } \\ & \text { CWW } \end{aligned}$	Cooling Towers	$\begin{aligned} & \text { 3-mm } \\ & \text { CWW } \\ & \hline \end{aligned}$	Cooling Towers
American Eel	Equivalent Recruit	383	364	711	676	356	338
American Shad	Equivalent Recruit	<1	<1	<1	<1	<1	<1
Banded Sunfish	Equivalent Recruit	0	0	0	0	0	0
Black Crappie	Equivalent Recruit	80	96	188	243	94	122
Bluegill	Equivalent Recruit	426	427	873	871	436	436
Brown Bullhead	Equivalent Recruit	<1	14	<1	23	<1	12
Chain Pickerel	Equivalent Recruit	0	0	0	0	0	0
Largemouth Bass	Equivalent Recruit	10	12	18	22	9	11
Largemouth Bass	Production Foregone	370	493	829	1113	414	556
Largemouth Bass	Natural Mortality Biomass	34	38	75	85	38	43
Largemouth Bass	Total	413	543	922	1220	461	610
Pumpkinseed	Equivalent Recruit	0	0	0	0	0	0
Rainbow Smelt	Equivalent Recruit	0	0	0	0	0	0
Redbreast Sunfish	Equivalent Recruit	0	0	0	0	0	0
Rock Bass	Equivalent Recruit	24	27	46	54	23	27
Smallmouth Bass	Equivalent Recruit	0	0	0	<1	<1	0
Walleye	Equivalent Recruit	1	1	2	2	1	1
White Perch	Equivalent Recruit	<1	0	<1	1	0	<1
Yellow Bullhead	Equivalent Recruit	23	42	37	70	19	35
Yellow Perch	Equivalent Recruit	207	224	696	755	49	50

${ }^{1}$ Number of equivalent fish at age first susceptible to angling as a proxy for equivalent catch (harvest and catch-and-release).

Table 3-38. Number of equivalent recruits ${ }^{1}$ from annual impingement reductions from the existing cooling water intake structure at Merrimack Station, Units 1 and 2 combined, with April through July operation of $3-\mathrm{mm}$ wedgewire half screens (WWS) and year-round operation of closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at 50% DIF.

Species	Model	Impingement					
		10-year AIF		100\% DIF		50\% DIF	
		$\begin{aligned} & \text { 3-mm } \\ & \text { CWW } \\ & \hline \end{aligned}$	Cooling Towers	3-mm CWW	Cooling Towers	3-mm CWW	Cooling Towers
American Eel	Equivalent Recruit	0	4	0	6	0	3
American Shad	Equivalent Recruit	0	0	0	0	0	0
Banded Sunfish	Equivalent Recruit	2	1	5	5	3	2
Black Crappie	Equivalent Recruit	3	17	10	48	5	24
Bluegill	Equivalent Recruit	30	72	67	150	34	75
Brown Bullhead	Equivalent Recruit	8	7	16	15	8	7
Chain Pickerel	Equivalent Recruit	0	7	0	11	0	5
Largemouth Bass	Equivalent Recruit	<1	1	0	2	<1	1
Largemouth Bass	Production Foregone	4	9	9	15	4	7
Largemouth Bass	Natural Mortality Biomass	1	2	1	5	1	2
Largemouth Bass	Total	5	12	10	21	5	11
Pumpkinseed	Equivalent Recruit	6	29	21	81	11	41
Rainbow Smelt	Equivalent Recruit	0	2	0	4	0	2
Redbreast Sunfish	Equivalent Recruit	7	18	20	47	10	23
Rock Bass	Equivalent Recruit	<1	6	<1	9	0	5
Smallmouth Bass	Equivalent Recruit	2	6	4	13	2	6
Walleye	Equivalent Recruit	0	0	0	0	0	0
White Perch	Equivalent Recruit	0	6	0	9	0	4
Yellow Bullhead	Equivalent Recruit	2	9	3	13	2	7
Yellow Perch	Equivalent Recruit	9	88	25	147	12	73

${ }^{1}$ Number of equivalent fish at age first susceptible to angling as a proxy for equivalent catch (harvest and catch-and-release).

Table 3-39. Number of equivalent recruits ${ }^{1}$ from annual entrainment and impingement reductions from the existing cooling water intake structure at Merrimack Station, Units 1 and 2 combined, with April through July operation of $3-\mathrm{mm}$ wedgewire half screens (WWS) and year-round operation of closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50\% capacity factor at 50% DIF.

Species	Model	Benefit of Entrainment \& Impingement Reductions					
		10-year AIF		100\% DIF		50\% DIF	
		3-mm CWW	Cooling Towers	3-mm CWW	Cooling Towers	3-mm CWW	Cooling Towers
American Eel	Equivalent Recruit	383	368	711	681	356	341
American Shad	Equivalent Recruit	<1	<1	<1	0	0	<1
Banded Sunfish	Equivalent Recruit	2	1	5	5	3	2
Black Crappie	Equivalent Recruit	83	113	198	291	99	145
Bluegill	Equivalent Recruit	456	498	940	1021	470	511
Brown Bullhead	Equivalent Recruit	8	21	16	38	8	19
Chain Pickerel	Equivalent Recruit	0	7	0	11	0	5
Largemouth Bass	Equivalent Recruit	10	13	18	23	9	12
Largemouth Bass	Production Foregone	374	501	837	1127	419	564
Largemouth Bass	Natural Mortality Biomass	34	40	77	90	38	45
Largemouth Bass	Total	418	554	932	1241	466	621
Pumpkinseed	Equivalent Recruit	6	29	21	81	11	41
Rainbow Smelt	Equivalent Recruit	0	2	0	4	0	2
Redbreast Sunfish	Equivalent Recruit	7	18	20	47	10	23
Rock Bass	Equivalent Recruit	24	33	46	63	23	31
Smallmouth Bass	Equivalent Recruit	2	6	4	13	2	6
Walleye	Equivalent Recruit	1	1	2	2	1	1
White Perch	Equivalent Recruit	<1	6	0	10	<1	5
Yellow Bullhead	Equivalent Recruit	24	51	41	83	20	41
Yellow Perch	Equivalent Recruit	216	312	720	901	62	124

${ }^{1}$ Number of equivalent fish at age first susceptible to angling as a proxy for equivalent catch (harvest and catch-and-release).

Table 3-40. Comments on catch-and-release and exploitation of selected fishery species based on literature review.

Species	Catch and Release/Exploitation Summary	Citation
Largemouth Bass (B. Everett Jordan Lake, North Carolina)	In 1989, 529 age-0 largemouth bass were tagged, of which 40 were recaptured (7.6\%); In 1990, 1,090 age-0 largemouth bass were tagged, of which 47 were recaptured (4\%);	Copeland and Noble 1994
(unknown waterbody)	From 1979 to 1983, author angled, tagged, and released 339 largemouth bass and recaptured 74 of them (22% or 4.4% per year). There was no statistically significant relationship between fish size and probability of recapture.	Quinn 1989
(nationwide)	Total mortality declined with the decline in u (annual exploitation), suggesting that changes in u caused lower overall total mortality rates. The evidence further suggests that the decline in u was caused by the voluntary release of fish by anglers rather than by changes in overall fishing effort. The simulation model showed that the decline in exploitation increased adult largemouth bass abundance but reduced the ability of size and bag regulations to improve population metrics owing to low rates of directed harvest. Discard mortality (i.e., the mortality of fish caught and released) would not negate the benefits of lower exploitation unless the mortality of fish caught and released was 0.3 or higher. Changes in angler behavior have substantially reduced fishing mortality for largemouth bass fisheries, which should be considered when developing management plans for this species and others with high rates of voluntary release.	Allen et al 2008
Smallmouth Bass	Only 8\% of the tagged fish recaptured were taken by anglers;	Munther 1970
(Zumbro River)	For all areas combined, an average of 16% of the fish that were caught at least one time and released were recaught by anglers during the 2 years the fishery was studied.	Hayes et al. 1997
Black Crappie (three Georgia Reservoirs)	Annual survival estimates ranged from 8 to 18% at all reservoirs; exploitation estimates ranged from 40 to 68%.	Larson et al. 1991
(four Minnesota Lakes)	Rates of exploitation of black crappie were consistent across years in Lake Le Homme Dieu (26\%) and Maple Lake (28\%), increased from 9\% in 1994 to 34\% in 1996 on Lake Andrew, and declined from 33\% in 1994 to 7\% in 1996 on Lake Victoria.	Parsons and Reed 1998
(Weiss Reservoir, Alabama)	Fishing mortality ($\mathrm{F}=34 \%$) accounted for only 20% of total annual mortality. Because of the high natural mortality and low exploitation, harvest restrictions on the Weiss Reservoir crappie fishery do not appear warranted at this time.	Reed and Davies 1991
Walleye (Seven sites in VA)	Anglers were offered a US $\$ 20$ reward for the return of each tag, and 530 tags (17\%) were returned. Adjusted annual catch rates ranged from $15 \%-61 \%$, with a mean of 29%. Annual exploitation ranged from $2 \%-29 \%$ with a mean of 12%.	Owens et al. 2014
(Lake Erie and Grand River, OH)	Exploitation rates adjusted for tag loss ranged from 14\% to 39\%	Isermann and Knight 2005
Escanaba Lake and Northern WI	We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.	Hansen and Nate 2014

Table 3-40. Continued

Species	Catch and Release/Exploitation Summary	Citation	
Bluegill (four Minnesota Lakes) Literature review	Rates of exploitation of bluegill varied among lakes and years and ranged from 8\% on Lake Le Homme Dieu in 1994to 32\% on Maple Lake in 1996.	Parsons and Reed 1998	
	Data from the literature indicate that angling commonly affects populations of bluegills Lepomis macrochirus. Substantial exploitation rates (mean, 27\%) are not unusual; exploitation is directly related to fishing effort, and angling reduces average size and increases total mortality.	Coble 1988	
Lake Panasoffkee, Florida	The average u of 15.0-cm total length (TL) or larger fish was 0.14 for bluegills and redear sunfish during the 2-year period. For both species, exploitation increased up to threefold as fish size increased (e.g., u = 0.37 for bluegills ≥ 23.0 cm TL in 1999). Separation of fishing mortality and natural mortality allowed us to conclude that natural mortality had a greater influence on Lake Panasoffkee sunfish population abundance and fishing quality than did fishing mortality, so a minimum size limit was not recommended.	Crawford and Allen 2006	

4 LITERATURE CITED

List of literature cited includes references from Appendix A.
Ahn, H. Y. Yamada, A. Okamura, N. Horie, N. Mikawa, S. Tanaka, and K. Tsukamoto. 2012. Effect of water temperature on embryonic development and hatching time of the Japanese eel Anguilla japonica. Aquaculture 330-333:100-105.

Allen, M.S., C.J. Walters, and R. Myers. 2008. Temporal Trends in Largemouth Bass Mortality, with Fishery Implications. North American Journal of Fisheries Management 28(2):418-427.

Altman, P.L. and D.S. Dittmer. 1962. Growth, including reproduction and morphological development. Federation of American Societies for Experimental Biology Washington, D.C., 1962. xiv + 608 pp. Illus.

ASA (ASA Analysis and Communications, Inc.). 2012. Estimates of the equivalent loss of entrainment and impingement at the Merrimack Generating Station. Prepared for NERA Economic Consulting. February 2012.
Atkinson, T., S. Desrosiers, T. Townsend, and T.P. Simon. 2015. Length-weight relationships of the Emerald Shiner (Notropis atherinoides - Rafinesque, 1818) in the Western Basin of Lake Erie. Ohio J Sci 114(2): 27-35.

ASMFC (Atlantic States Marine Fisheries Commission). 2007. American Shad Stock Assessment Report for Peer Review Volume II. Stock Assessment Report No. 07-01 (Supplement), 422pp.

ASMFC. 2012. American Eel Benchmark Stock Assessment. Atlantic States Marine Fisheries Commission, Stock Assessment Report No. 12-01.

ASMFC. 2017. River Herring Stock Assessment Update Volume II: State Specific Reports. August 2017.
Barnthouse, L.W. 2005. Parameter development for equivalent adult and production foregone models. EPRI report 1008832 (draft).

Barbin, G.P. and J.D. McCleave. 1997. Fecundity of the American eel Anguilla rostrata at $45^{\circ} \mathrm{N}$ in Maine, USA. J. Fish Biol. 51(4):840-847.

Beamesderfer, R.C.P. and J.A. North. 1995. Growth, natural mortality, and predicted response to fishing for largemouth bass and smallmouth bass populations in North America. N. Am. J. Fish. Manage. 15:688-704.

Begley, M., S.M. Coghlan,Jr., and J. Zydlewski.2017. A comparison of age, size, and fecundity of harvested and reference White Sucker populations. North American Journal of Fisheries Management. 37(3):510-523, DOI:10.1080/02755947.2017.1290719.

Brokaw, R.K. and J. Lucas. 2008. Chain Pickerel assessment. Report from the Mane Department of Inland Fisheries and Wildlife, Divisions of Fisheries and Planning. Brokaw (2001) report apparently updated by Lucas in 2008. 17pp.

Brown, S. J. and M. J. Maceina. 2002. The influence of disparate levels of submersed aquatic vegetation on largemouth bass population characteristics in a Georgia reservoir. J. Aquat. Plant Manage. 40:2835.

Carlander, K.D. 1969. Handbook of freshwater fishery biology, volume 1. The Iowa State University Press, Ames. Iowa. 752 p.

Carlander, K. D. 1997. Handbook of Freshwater Fishery Biology, Vol. 3. The Iowa State University Press, Ames, IA. X.

Caron, F. and G. Verreault. 1997. Le reseau sentinelle de l'anguille. Pages 144-160 In: R.H. Petersen (editor), The American eel in Eastern Canada: Stock Status and Management Strategies. Proceedings of Eel Workshop, January 13-14, 1997, Quebec City, QC. Biological Station, St. Andrews, NB. Canadian Technical Report of Fisheries and Aquatic Sciences No. 2196. 191p.

Carrier, J. and G. Gries. 2014. Assessment of Black Crappie and White Perch in Highland Lake, Stoddard-Washington, NH. Anadromous and Inland Fisheries Operational Management Investigations. Job 9. Warmwater and Coolwater Fisheries Population Assessments, F-50-R-31.

Coble, D.W. 1988. Effects of Angling on Bluegill Populations: Management Implications. North American Journal of Fisheries Management 8(3):277-283.

Conard, W.M. 2015. A Population Study of Northern Madtom in the St. Clair-Detroit River System, Michigan. Master of Science thesis, Natural Resources and Environment, University of Michigan. April 2015.

Copeland, J.R., and R.L. Noble. 1994. Movements by Young-of-Year and Yearling Largemouth Bass and Their Implications for Supplemental Stocking. North American Journal of Fisheries Management 14(1):119-124.

Crawford, S., and M.S. Allen. 2006. Fishing and Natural Mortality of Bluegills and Redear Sunfish at Lake Panasoffkee, Florida: Implications for Size Limits. North American Journal of Fisheries Management 26(1):42-51. DOI: 10.1577/M04-109.1

Dahlburg, M.D. 1979. A review of survival rates of fish eggs and larvae in relation to impact assessments. Marine Fisheries Review (March):1-12.

Dicenzo, V. and D.A Garren. 2001. Trophy largemouth bass abundance and harvest in a central Virginia impoundment: implications for restrictive slot limits. Conference: Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies 55:194-207.

ENERCON and Normandeau (Enercon Services, Inc. and Normandeau Associates, Inc.) 2007. Response to United States Environmental Protection Agency CWA § 308 Letter. November 2007.

EPRI (Electric Power Research Institute). 2012. Fish Life History Parameter Values for Equivalent Adult and Production Foregone Models: Comprehensive Update. EPRI, Palo Alto, CA: 2012. 1023103.

Finger, B. L. 2001. Life history and range of Pennsylvania's endangered bridle shiner, Notropis bifrenatus (Cope). M.S. thesis, Pennsylvania State University. xii +54 pp.

Fuchs, E.H. 1966. Life History of the Emerald Shiner in Lewis and Clark Lake, South Dakota.Theses and Dissertations. South Dakota State University. Paper 91.

Garner, P. 1997. Sample sizes for length and density estimation of $0+$ fish when using point sampling by electrofishing. Journal of Fish Biology. 50: 95-106

Ganias, K., J.N. Divino, K.E. Gherard, J.P. Davis, F, Mouchlianitis, and E.T. Schultz. 2015. A reappraisal of reproduction in anadromous alewives: determinate versus indeterminate fecundity, batch size, and batch number. Transactions of the American Fisheries Society, 144(6):1143-1158, DOI:10.1080/00028487.2015.1073620.

Gilbert, C.R. 1992. Southern tessellated darter, Etheostoma olmstedi maculaticeps. Pp. 88-92. In: C.R. Gilbert, ed., Rare and Endangered Biota of Florida. Vol. II. Fishes. University Press of Florida, Gainesville.

Goodyear, C.P. 1978. Entrainment Impact Estimates using the Equivalent Adult Approach. U.S. Fish and Wildlife Service, Biological Services Program. FWS/OBS-78/65.

Hansen, M.J., and N.A. Nate. 2014. Effects of recruitment, growth, and exploitation on walleye population size structure in northern Wisconsin lakes. Journal of Fish and Wildlife Management 5(1):99-108.

Hayes, M.C., L.F. Gates, and S.A. Hirsh. 1997. Multiple Catches of Smallmouth Bass in a Special Regulation Fishery. North American Journal of Fisheries Management 17(1):182-187.

Herke, W.H. 1959. Comparison of the length-weight relationship of several species of fish from two different, but connected, habitats. Proc. S.E. Assoc. Game Fish Comm. 13:299-313.

Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82:898-903.
Höök, T.O., E.S. Rutherford, D.M. Mason, and G.S. Carter. 2007. Hatch dates, growth, survival, and overwinter mortality of age-0 alewives in Lake Michigan: implications for habitat-specific recruitment success. Transactions of the American Fisheries Society, 136(5):1298-1312, DOI: 10.1577/T06-194.1

Horst, T.J. 1975. The assessment of impact due to entrainment of ichthyoplankton. Pages 107-118 in S.B. Saila, ed. Fisheries and energy production: a symposium. D.C. Heath, Lexington MA.

Hugg, D.O. 1996. MAPFISH georeferenced mapping database. Freshwater and estuarine fishes of North America. Life Science Software. Dennis O. and Steven Hugg, 1278 Turkey Point Road, Edgewater, Maryland, USA.

Isermann, D.A., and C.T. Knight. 2005. Potential Effects of Jaw Tag Loss on Exploitation Estimates for Lake Erie Walleyes. North American Journal of Fisheries Management 25(2):557-562.

Jackson, Z. J., M. C. Quist, and J. G. Larscheid. 2008. Growth standards for nine North American fish species. Fisheries Management and Ecology 15:107-118.

Jessop, B.M., J. C. Shiao, and Y. Iizuka. 2009. Life History of American Eels from Western Newfoundland, Transactions of the American Fisheries Society, 138:4, 861-871, DOI:10.1577/T08190.1.

Jones, P.W., F.D. Martin and J.D. Hardy Jr. 1978. Development of fishes of the Mid-Atlantic Bight. An atlas of eggs, larval and juvenile stages. Vol. 1. Acipenseridae through Ictaluridae. U.S. Fish Wildl. Ser. Biol. Serv. Program FWS/OBS-78/12. 336 p.

Kottelat, M. and J. Freyhof, 2007. Handbook of European freshwater fishes. Publications Kottelat, Cornol and Freyhof, Berlin. 646 pp.

Larson, M.C., B. Saul, and S. Schleiger. 1991. Exploitation and Survival of Black Crappies in Three Georgia Reservoirs. North American Journal of Fisheries Management 11(4):604-613.

Layzer, J.B. and R.J. Reed. 1978. Age and Growth of the Tessellated Darter, Etheostoma olmstedi, in Massachusetts. The American Midland Naturalist 100,(2):459-462.

Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of Fish Biology 49:627-647.

Mattson, M.T., P. Lindsay, J. Young, and J. Black. 2011. Larval avoidance enhances the entrainment reduction performance of cylindrical wedgewire screens. August 2011. Presentation to the American Fisheries Society annual meeting in Seattle, WA on behalf of Entergy's Indian Point Energy Center, Buchanan, NY.
Mattson, M.T., P. Lindsay, J. Young, D. Heimbuch, and L. Barnthouse. 2014. In-river Performance of a 2-mm slot wedgewire screen for reducing entrainment at Indian Point Station. August 2014. Presentation to the American Fisheries Society annual meeting in Quebec City, Quebec, Canada on behalf of Entergy's Indian Point Energy Center, Buchanan, NY.
Mosel, K.J., D.A. Isermann, and J.F. Hansen. 2015. Evaluation of daily creel and minimum length limits for Black Crappie and Yellow Perch in Wisconsin. North American Journal of Fisheries Management, 35(1):1-13. DOI: 10.1080/02755947.2014.963752

Mukhaysin, A.A and L.A. Jawad. 2012. Larval Development of the Cyprinid Fish Barbus sharpeyi (Gunther, 1874). Journal of Fisheries and Aquatic Science 7: 307-319.

Munther, G.L. 1970. Movement and Distribution of Smallmouth Bass in the Middle Snake River. Transactions of the American Fisheries Society 99(1):44-53.

Murawski, S.A. and C.F. Cole. 1978 Population dynamics of anadromous rainbow smelt Osmerus mordax, in a Massachusetts River system. Transactions of the American Fisheries Society Vol. 107(4):535-542.

Murdy, E.O. and J.A. Musick, 2013. Field guide to fishes of the Chesapeake Bay. JHU Press, 360 p.
NERA (NERA Economic Consulting). 2012. Preliminary Economic Analysis of Cooling Water Intake Alternatives at Merrimack Station. Prepared for Public Service of New Hampshire. February 2012.

NHFG (New Hampshire Fish and Game). Undated. Eastern Silvery Minnow. http://www.wildlife.state.nh.us/fishing/profiles/eastern-silvery-minnow.html.

NHFG. 2017a. Endangered and Threatened Wildlife of NH http://www.wildlife.state.nh.us/nongame/endangered-list.html. Accessed on 11 November 2017.

NHFG. 2017b. Wildlife Species of Concern. http://www.wildlife.state.nh.us/nongame/documents/species-special-concern.pdf. Accessed on 11 November 2017.

Normandeau (Normandeau Associates, Inc.). 2006. Merrimack Station Quality Assurance Plan and Standard Operating Procedures for Entrainment Monitoring. March 2006.

Normandeau. 2007. Entrainment and Impingement Studies Performed at Merrimack Generating Station from June 2005 through June 2007. Report October 2007.

Normandeau. 2011. Merrimack Station fisheries survey analysis of 1972 through 2011 catch data. Report December 2011.

Normandeau. 2017a. Evaluation of the Entrainment Reduction Performance of a 3-mm Wedgewire Screen at Merrimack Station October 2017.

Normandeau. 2017b. 2012-2013 Data Supplement to the Merrimack Station Fisheries Survey Analysis of 1972-2011 Catch Data. August 2017

Novomeska, A. and V. Kovac. 2009. Life-history traits of non-native black bullhead Ameiurus melas with comments on its invasive potential. J. Appl. Ichthyol. 25:79-84.

Odenkirk, J. 2016. Lake Anna Fisheries Management Report. Federal Aid Project-F111R. March 2016. https://www.dgif.virginia.gov/wp-content/uploads/Lake-Anna-Popular-Report-2016.pdf

Owens, S.J., G. Palmer, T. Hampton, D. Wilson, and J. Harris. 2014. Differences in Angler Catch and Exploitation of Walleye from Virginia Waters. Journal of the Southeastern Association of Fish and Wildlife Agencies 1:14-19

Palomares, M.L.D., 1991. La consommation de nourriture chez les poissons: étude comparative, mise au point d'un modèle prédictif et application à l'étude des réseaux trophiques. Thèse de Doctorat, Institut National Polytechnique de Toulouse, 211 p.

Panek, F.M. and C.R. Cofield. 1978. Fecundity of Bluegill and Warmouth from a South Carolina Blackwater Lake. The Progressive Fish-Culturist 40(2):67-68.

Parsons, B.G., and J.R. Reed. 1998. Angler Exploitation of Bluegill and Black Crappie in Four WestCentral Minnesota Lakes. Minnesota Department of Natural Resources, Investigation Report 468. 35 pp.

Partridge, D.G. and D.R. DeVries. 1999. Regulation of growth and mortality in larval Bluegills: implications for juvenile recruitment. Transactions of the American Fisheries Society, 128(4):625638. DOI: 10.1577/1548-8659(1999)128<0625:ROGAMI>2.0.CO;2

Paukert, C.P, D.W. Willis, and A.L Glidden. 2001. Growth, condition, and mortality of Black Crappie, Bluegill, and Yellow Perch in Nebraska Sand Hills lakes. Great Plains Research 11:264-271.

Priegel, Gordon R. 1966. Age-length and length-weight relationship of bullheads from Little Lake Butte Des Morts, 1959.

Quinn, S.P. 1989. Recapture Rates of Voluntarily Released Largemouth Bass. North American Journal of Fisheries Management 9(1):86-91.

Rago, P.J., 1984. Production forgone: an alternative method for assessing the consequences of fish entrainment and impingement losses at power plants and other water intakes. Ecological Modelling, 24(1), pp.79-111.

Reed, J.R., and W.D. Davies. 1991. Population Dynamics of Black Crappies and White Crappies in Weiss Reservoir, Alabama: Implications for the Implementation of Harvest Restrictions. North American Journal of Fisheries Management 11(4):598-603.

Reid, S. M. 2009. Age, growth, and mortality of black redhorse (Moxostoma duquesnei) and shorthead redhorse (Moxostoma macrolepidotum) in the Grand River, Ontario. Journal of Applied Ichthyology 25:178-183.

Responsive Management. 2016. New Hampshire Freshwater Anglers' Fishing Participation and Preferences. Conducted for the New Hampshire Fish and Game Department.

Saila, S.B. and D. Horton. 1957. Fisheries investigations and management in Rhode Island lakes and ponds. R.I. Div. Fish., Game Fish Publ. 3:1-134.

Saila, S.B., E. Lorda, J.D. Miller, R.A. Sher, and W.H. Howell. 1997. Equivalent adult estimates for losses of fish eggs, larvae, and juveniles at Seabrook Station with use of fuzzy logic to represent parametric uncertainty. North American Journal of Fisheries Management 17:811-825.

Scheibly, J.F., D.J. Eisenhour, and L.V. Eisenhour. 2008. Reproductive Biology of the Northern Madtom, Noturus stigmosus (Siluriformes: Ictaluridae) from the Licking River, Kentucky. Journal of the Kentucky Academy of Science 69(2):178-186.

Scott, W.B. and E.J. Crossman, 1998. Freshwater fishes of Canada. Oakville (Ontario, Canada): Galt House Publications. xx+966 p.

Simon, T. and B. Burr. 2004. Description of developmental stages of the stonecat, Noturus flavus and the slender madtom, Noturus exilis (Siluriformes: Ictaluridae). Proceedings of the Indiana Academy of Science. 113. 123-132.

Snyder, D.J. and M.S. Peterson. 1999. Life history of a peripheral population of bluespotted sunfish Enneacanthus gloriosus (Holbrook) with comments on geographic variation. Am. Midland Naturalist 141:345-357.

Stuber, R.J., Gebhart, G. and Maughan, O.E., 1982. Habitat suitability index models: largemouth bass (No. 82/10.16). US Fish and Wildlife Service.

Swingle, W.E., 1965. Length-weight relationships of Alabama fishes. Auburn Univ. Agric. Exp. Sta. Zool.-Ent. Ser. Fish. 3:87 p.

Thomas, M.V., and R.C. Haas. 2000. Status of Yellow Perch and Walleye Populations in Michigan Waters of Lake Erie, 1994-98. Michigan Department of Natural Resources Fisheries Research Report No. 2054. 39 pp.

Trial, J. G, C. S. Wade, J. G. Stanley, and P. C. Nelson. 1983. Habitat suitability information: Fallfish. U.S. Dept. Int., Fish Wildl. Serv., FWS/OBS-82/10.48. 15 pp.

Tsai, C. 1972. Life history of the eastern johnny darter, Etheostoma olmstedi Storer, in cold tailwater and sewage-polluted water. Transactions of the American Fisheries Society 101(1): 80-88.

USEPA (U.S. Environmental Protection Agency). 2004. Regional Benefits Analysis for the Final Section 316(b) Phase III Existing Facilities Rule. Office of Water (4303T), Washington, DC 20460. EPA-821-R-02-003

USEPA. 2006. Regional Benefits Analysis for the Final Section 316(b) Phase III Existing Facilities Rule. Office of Water (4303T), Washington, DC 20460. EPA-821-R-04-007.

USEPA. 2011. Fact Sheet. Draft National Pollutant Discharge Elimination System (NPDES) Permit To Discharge To Waters Of The United States Pursuant To The Clean Water Act (CWA). https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ MerrimackStationFactSheet.pdf

USEPA. 2014. Revised Draft Permit. Authorization To Discharge Under The National Pollutant Discharge Elimination System (NPDES). https://www3.epa.gov/region1/npdes/permits/draft/2014/draftnh0001465permit.pdf

USEPA. 2014. Technical Development Document for the Final Section 316(b) Existing Facilities Rule. Office of Water (4303T), Washington, DC 20460. EPA-821-R-14-002

Victor, B.C. and G.B. Brothers. 1982. Age and growth of the fallfish Semotilus corporalis with daily otolith increments as a method of annulus verification. Can. J. Zool. 60: 2543-2550.

Young, J, M.T. Mattson, L. Barnthouse, D. Heimbuch, and D. Gessler. 2014. Evaluating 2 mm Slot Wedgewire Screens for Reducing Entrainment at a High-Volume Cooling Water Intake. August 2014. Presentation to the American Fisheries Society annual meeting in Quebec City, Quebec, Canada on behalf of Entergy's Indian Point Energy Center, Buchanan, NY.

Wilk, S.J., W.W. Morse and D.E. Ralph. 1978. Length-weight relationships of fishes collected in the New York Bight. Bull. New Jersey Acad. Sci. 23(2):58-64.

Wilk, S.J., W.M. Morse, and L.L Stehllk. 1990. Annual cycles of gonad-somatic indices as indicators of spawning activity for selected species of finfish collected from the New York Bight. Fishery Bulletin, U.S. 88:775-786.

Wilson, K.L., B.G. Matthias, A.B. Barbour, R.N. M. Ahrens, T. Tuten, and M.S. Allen. 2015. Combining samples from multiple gears helps to avoid fishy growth curves. North American Journal of Fisheries Management, 35(6):1121-1131, DOI:10.1080/02755947.2015.1079573

Zipkin, E.F., P.J. Sullivan, E.G. Cooch, C.E. Kraft, B.J. Shuter, and B.C. Weidel. 2008.
Overcompensatory Response of a Smallmouth Bass (Micropterus dolomieu) Population to Harvest: Release from Competition? Canadian Journal of Fisheries and Aquatic Sciences 65(10):2279-2292.

5 APPENDICES

Appendix A. Life History Tables

Table A-1. Life history parameters for an Alewife population at equilibrium

Stage	$\mathbf{M i}^{\mathbf{a}}$	Post$\operatorname{spawnM}_{\mathrm{i}}{ }^{\text {a }}$	$F_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathbf{Z}_{\mathbf{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\operatorname{Ln}(1+S)}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\text {h }} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{\mathbf{i}}$
Egg	0.900	0.000	0.000	0.00	0.90	0.40657	0.57810	0.00094	6	0.000
Larvae	4.265	0.000	0.000	0.00	4.27	0.01405	0.02771	0.00094	53	4.173
YOY	3.007	0.000	0.000	0.00	3.01	0.04943	0.09421	0.06120	306	4.873
Age 1	1.285	0.000	0.000	0.00	1.28	0.27670	0.43346	8	365	1.322
Age 2	0.941	0.000	0.000	0.00	0.94	0.39019	0.56135	30	365	1.006
Age 3	0.772	0.000	0.000	0.00	0.77	0.46218	0.63218	82	365	0.542
Age 4	0.686	1.500	0.000	0.00	1.01	0.36325	0.53291	141	365	0.319
Age 5	0.638	1.500	0.000	0.00	1.50	0.22313	0.36485	194	365	0.200
Age 6	0.610	1.500	0.000	0.00	1.50	0.22313	0.36485	237	365	0.127
Age 7	0.582	1.500	0.000	0.00	1.50	0.22313	0.36485	269	365	0.186
Age 8	0.582	1.500	0.000	0.00	1.50	0.22313	0.36485	324	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Natural instantaneous mortality rates for eggs and post-spawning were based on an equilibrium population (EPRI 2012, Table 5-4,5-5). Larval mortality based on weighted average of mean estimates for yolk-sac larvae (Höök et al. 2007) and post yolk-sac larvae (EPRI 2012, Table 5-5). Natural mortality of immature fish was derived from Lorenzen (1996) relation using mid-age weights and were roughly in agreement with the constant $\mathrm{M}=0.7$ used in ASMFC (2017).
${ }^{\mathrm{b}}$ Age-specific fishing mortality assumed zero for New Hampshire stocks
${ }^{\text {c }}$ No vulnerability to fishing inferred for New Hampshire river stocks assumed.
${ }^{\mathrm{d}}$ Total instantaneous mortality, Z, as $-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for maturity associated mortality
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012, Eq 3-4).
${ }^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-6), fecundity based on 898 eggs/g gonad-free body weight (Ganias et al. 2015) and 5\% GSI (Wilk et al. 1990) to estimate total-body ${ }_{h}$ weight equivalent. Linear extrapolation made for start weight to age-8.
${ }^{\text {h }}$ Egg and yolk-sac larvae stage duration (days) and maturity was based on EPRI (2012, Table 5-6). Höök et al. (2007) provided post yolk-sac larvae stage duration.
${ }^{i}$ Growth rate (G) was estimated as $\log _{e}\left(\mathrm{~W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{\mathrm{j}}$ Fecundity bases on estimated weights multiplied by mean relative fecundity (Ganais et al. 2015).
Maturity is based on EPRI (2012, Table 5-6).

Table A-2. Life history parameters for an American Eel population at equilibrium.

Stage	$\mathbf{M i}_{i}{ }^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{i}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+5)}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate
Egg	1.040	0.000	0.00	1.04	0.35345	0.52230	0.00001	2	4.442
Larvae	7.700	0.000	0.00	7.70	0.00045	0.00091	0.00072	365	5.718
YOY	1.689	0.000	0.00	1.69	0.18467	0.31176	0.21818	365	3.590
Age 1	0.237	0.000	0.00	0.24	0.78883	0.88195	8	365	0.854
Age 2	0.199	0.000	0.00	0.20	0.81983	0.90100	19	365	0.616
Age 3	0.173	0.260	0.50	0.29	0.74458	0.85359	34	365	0.473
Age 4	0.156	0.260	1.00	0.42	0.66001	0.79519	55	365	0.378
Age 5	0.142	0.260	1.00	0.40	0.66883	0.80156	80	365	0.310
Age 6	0.132	0.260	1.00	0.39	0.67571	0.80648	110	365	0.259
Age 7	0.124	0.260	1.00	0.38	0.68122	0.81038	142	365	0.220
Age 8	0.117	0.260	1.00	0.38	0.68571	0.81356	177	365	0.189
Age 9	0.112	0.260	1.00	0.37	0.68944	0.81617	214	365	0.164
Age 10	0.107	0.260	1.00	0.37	0.69257	0.81836	252	365	0.144
Age 11	0.104	0.260	1.00	0.36	0.69523	0.82022	291	365	0.126
Age 12	0.100	0.260	1.00	0.36	0.69751	0.82180	331	365	0.112
Age 13	0.097	0.260	1.00	0.36	0.69948	0.82317	370	365	0.099
Age 14	0.095	0.260	1.00	0.35	0.70120	0.82436	408	365	0.089
Age 15	0.093	0.260	1.00	0.35	0.70271	0.82540	446	365	0.079
Age 16	0.091	0.260	1.00	0.35	0.70403	0.82631	483	365	0.071
Age 17	0.089	0.260	1.00	0.35	0.70520	0.82712	519	365	0.064
Age 18	0.088	0.260	1.00	0.35	0.70624	0.82783	553	365	0.058
Age 19	0.086	0.260	1.00	0.35	0.70716	0.82847	586	365	0.052
Age 20	0.085	0.260	1.00	0.35	0.70799	0.82903	617	365	0.047

Table A-2. Continued.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$F_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathbf{S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\operatorname{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Age 21	0.084	0.260	1.00	0.34	0.70873	0.82954	647	365	0.043
Age 22	0.083	0.260	1.00	0.34	0.70939	0.82999	675	365	0.039
Age 23	0.083	0.260	1.00	0.34	0.70999	0.83040	702	365	0.035
Age 24	0.082	0.260	1.00	0.34	0.71053	0.83077	727	365	0.032
Age 25	0.082	0.260	1.00	0.34	0.71053	0.83077	751	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on an literature-derived values: USEPA (2006; Table G1-36), for egg and larval stages; and based on Lorenzen (1996) relation with mid-age weight for ages 1-25.
${ }^{\mathrm{b}}$ Age-specific fishing from estimate made in St. Lawrence River (Caron and Verrealt 1997).
${ }^{\text {c }}$ Vulnerability to fishing inferred from ASMFC (2012).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on USEPA (2006) for egg, larvae, and YOY; for ages 1-25 weights were calculated as lengths (Jessop et al. 2009) converted to weights (Wilk et al. 1978).
${ }^{\text {h }}$ Stage duration (days) was based on Ahn et al. (2012) for eggs and general life history information on leptocephalus stage for anguilid larvae.
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{j}$ Mean fecundity calculated from applying Barbin and McCleave (1997) fecundity relation to predicted lengths at age (Jessop et al. 2009).
${ }^{\mathrm{k}}$ Maturity taken from ages associated with Murdy and Musick (2013) report on size at maturity.

Table A-3. Life history parameters for an American Shad population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\begin{gathered} \text { Post- } \\ \text { spawnM }_{i}{ }^{\text {a }} \end{gathered}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathbf{Z}_{\mathbf{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{t}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S}}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate
Egg	0.944	0.000	0.000	0.00	0.94	0.38907	0.56019	0.00188	2	0.000
Larvae	2.565	0.000	0.000	0.00	2.57	0.07692	0.14285	0.00188	27	1.609
YOY	7.619	0.000	0.000	0.00	7.62	0.00049	0.00098	0.00940	336	8.174
Age 1	0.603	0.000	0.000	0.00	0.60	0.54708	0.70724	33	365	1.883
Age 2	0.474	0.000	0.000	0.00	0.47	0.62277	0.76754	219	365	0.970
Age 3	0.403	0.000	0.000	0.00	0.40	0.66860	0.80139	578	365	0.602
Age 4	0.359	1.500	0.087	0.45	0.54	0.58051	0.73458	1056	365	0.406
Age 5	0.331	1.500	0.115	0.90	0.97	0.37991	0.55063	1584	365	0.287
Age 6	0.312	1.500	0.134	1.00	1.63	0.19510	0.32650	2111	365	0.209
Age 7	0.298	1.500	0.148	1.00	1.65	0.19245	0.32279	2601	365	0.155
Age 8	0.288	1.500	0.158	1.00	1.66	0.19056	0.32011	3037	365	0.117
Age 9	0.279	1.500	0.167	1.00	1.67	0.18884	0.31768	3413	365	0.089
Age 10	0.275	1.500	0.171	1.00	1.67	0.18797	0.31646	3730	365	0.000

${ }^{\text {a }}$ Natural instantaneous mortality rates for eggs and larvae were based on an equilibrium population (EPRI 2012,Table 5-2). For ages $1-10$, estimates of M were made using Lorenzen (1996) relation with mid-age weight.

Age-specific fishing mortality uses geometric mean Z from ASMFC (2007) for New Hampshire rivers with F = Z-immatureM.
c Vulnerability to fishing from EPRI (2012, Table 5-1).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-3).
Stage duration (days) was based on EPRI (2012 Table 5-3).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }_{\mathrm{k}}^{\mathrm{j}}$ Fecundity was based on EPRI (2012 Table 5-1).
${ }^{\mathrm{k}}$ Maturity was based on EPRI (2012 Table 5-1).

Table A-4. Life history parameters for a Banded Sunfish population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathbf{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\text {h }} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{\mathbf{i}}$
Egg	0.044	0.000	0.000	0.04	0.95676	0.97790	0.00094	2	0.000
Larvae	2.338	0.000	0.000	2.34	0.09652	0.17605	0.00094	28	4.173
YOY	4.683	0.000	0.000	4.68	0.00925	0.01833	0.06120	335	4.442
Age 1	1.264	0.000	0.000	1.26	0.28248	0.44052	5	365	1.907
Age 2	0.918	0.223	1.000	1.14	0.31948	0.48425	35	365	0.914
Age 3	0.758	0.223	1.000	0.98	0.37471	0.54515	87	365	0.541
Age 4	0.683	0.223	1.000	0.91	0.40398	0.57547	150	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based Bluegill life history (this workbook) but shortened to maximum age of 4 years for closely related blue-spotted sunfish (Snyder and Peterson 1999).
${ }^{\text {b }}$ Age-specific fishing derived from Crawford and Allen (2006) catch-curve and tag-recapture studies in Florida lake for Bluegill.
${ }^{\text {c }}$ Vulnerability to fishing inferred from Bluegill population dynamics.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based multiple studies reviewed in EPRI (2012, Table 5-122).
${ }_{i}^{\mathrm{h}}$ Stage duration (days) was based on EPRI (2012, Table 5-123).
${ }^{1}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{j}$ Mean fecundity calculated from length-at-age using Paneck and Cofield (1978) length-fecundity relation.
${ }^{\mathrm{k}}$ Maturity taken from EPRI (2012, Table 5-123).

Table A-5. Life history parameters for a Black Crappie population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted } \left.{ }^{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}=2 \mathrm{Se}^{-\mathrm{Ln}(1+5)}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.750	0.000	0.00	0.75	0.47237	0.64164	0.00094	5	0.000
Larvae	3.600	0.000	0.00	3.60	0.02732	0.05319	0.00094	40	4.173
YOY	3.037	0.000	0.00	3.04	0.04800	0.09160	0.06120	320	6.264
Age 1	0.830	0.000	0.00	0.83	0.43606	0.60730	32	365	1.479
Age 2	0.650	0.429	1.00	1.08	0.34000	0.50746	141	365	0.625
Age 3	0.574	0.505	1.00	1.08	0.34000	0.50746	264	365	0.314
Age 4	0.536	0.542	1.00	1.08	0.34000	0.50746	361	365	0.170
Age 5	0.517	0.562	1.00	1.08	0.34000	0.50746	428	365	0.095
Age 6	0.506	0.573	1.00	1.08	0.34000	0.50746	470	365	0.054
Age 7	0.500	0.579	1.00	1.08	0.34000	0.50746	496	365	0.031
Age 8	0.496	0.582	1.00	1.08	0.34000	0.50746	512	365	0.018
Age 9	0.495	0.584	1.00	1.08	0.34000	0.50746	521	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Natural instantaneous mortality rates were based on an equilibrium population (EPRI 2012, p.5-124). Egg stage includes a very short yolk-sac larvae development stage. Mortality for ages 1-9 are derived from the Lorenzen (1996) equation predicting mortality from mid-age weight.
Age-specific fishing mortality based on Paukert et al. (2001) Z's for midwest lakes and given age-specific M, F=Z-M.
${ }^{\text {c }}$ V Vulnerability to fishing inferred from Carrier and Greis (2014) size frequencies for New Hampshire landings and predicted size at age.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights are based on Wilson et al. (2014) predicted lengths and Mosel et al. (2014) length-weight relation.
${ }^{\mathrm{h}}$ Stage duration (days) was based on EPRI (2012, 5-125).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{\mathrm{j}}$ Mean fecundity taken from EPRI (2012, Table 5-124).

Table A-6. Life history parameters for a Blacknose Dace population at equilibrium.

Stage	$\mathbf{M i}_{i}{ }^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{c}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{t}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S}}\right) \end{aligned}$	Start Weight $^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.183	0.000	0.00	0.18	0.83277	0.90875	0.00182	3	0.000
Larvae	2.562	0.000	0.00	2.56	0.07715	0.14325	0.00182	42	3.241
YOY	3.964	0.000	0.00	3.96	0.01899	0.03728	0.04650	320	2.666
Age 1	2.511	0.000	0.00	2.51	0.08122	0.15024	0.66883	365	1.515
Age 2	1.960	0.000	0.00	1.96	0.14081	0.24686	3.04298	365	0.631
Age 3	1.729	0.000	0.00	1.73	0.17754	0.30155	5.72021	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on Emerald Shiner population dynamics reported elsewhere in this workbook, except a maximum age was assumed 3 years (Hugg 1996).
${ }^{\mathrm{b}}$ No age-specific fishing mortality, assumed $\mathrm{F}=0$.
${ }^{\text {c }}$ No vulnerability to fishing assumed.
${ }^{\mathrm{d}}$ Total instantaneous mortality $Z=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based growth curve developed for Fuchs (1966) observed lengths and length-weight relationship from Atkinson et al. (2015) for Emerald Shiner.
${ }_{i}$ Stage duration (days) was based on EPRI (2012).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{\mathrm{j}}$ Fecundity bases on EPRI (2012, Table 5-91).
${ }^{\mathrm{k}}$ Maturity is based on EPRI (2012, Table 5-91).

Table A-7. Life history parameters for a Bluegill population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathbf{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{\mathrm{i}}$
Egg	0.044	0.000	0.00	0.04	0.95676	0.97790	0.00094	2	0.000
Larvae	2.338	0.000	0.00	2.34	0.09652	0.17605	0.00094	28	4.173
YOY	4.875	0.000	0.00	4.87	0.00764	0.01516	0.06120	335	4.442
Age 1	1.264	0.000	0.00	1.26	0.28248	0.44052	5	365	1.907
Age 2	0.918	0.223	1.00	1.14	0.31948	0.48425	35	365	0.914
Age 3	0.758	0.223	1.00	0.98	0.37471	0.54515	87	365	0.541
Age 4	0.671	0.223	1.00	0.89	0.40890	0.58045	150	365	0.350
Age 5	0.618	0.223	1.00	0.84	0.43116	0.60253	213	365	0.238
Age 6	0.583	0.223	1.00	0.81	0.44624	0.61710	270	365	0.167
Age 7	0.557	0.223	1.00	0.78	0.45829	0.62853	319	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on an literature-derived values: EPRI (2012, Table 5-121) for egg stage, Partridge and DeVries (1999) for larvae, and based on Lorenzen (1996) relation with mid-age weight for ages 1-7.
${ }^{\mathrm{b}}$ Age-specific fishing derived from Crawford and Allen (2006) catch-curve and tag-recapture studies in Florida lake.
${ }^{\text {c }}$ Vulnerability to fishing inferred from Crawford and Allen (2006) observation of near-constant exploitation larger than 13cm and this size representative of age 2 (Jackson et al. 2008).
${ }_{e}^{d}$ Total instantaneous mortality Z $=-\ln (S)$.
${ }_{f}^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
f Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based multiple studies reviewed in EPRI (2012, Table 5-123).
${ }_{\text {i }}^{\text {h }}$ Stage duration (days) was based on EPRI (2012, Table 5-123).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{j}$ Mean fecundity calculated from length-at-age using Paneck and Cofield (1978) length-fecundity relation.
${ }^{\mathrm{k}}$ Maturity taken from EPRI (2012, Table 5-123).

Table A-8. Life history parameters for a Brown Bullhead population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{gathered} \text { Duration }^{\mathrm{h}} \\ \text { (days) } \end{gathered}$	Instant. Growth Rate ${ }^{i}$
Egg	1.104	0.000	0.00	1.10	0.33154	0.49798	0.00170	8	0.000
Larvae	3.174	0.000	0.00	3.17	0.04184	0.08031	0.00170	23	3.298
YOY	4.191	0.000	0.00	4.19	0.01513	0.02981	0.04600	334	6.663
Age 1	0.817	0.000	0.00	0.82	0.44196	0.61300	36	365	1.408
Age 2	0.642	0.200	0.50	0.74	0.47863	0.64740	147	365	0.627
Age 3	0.565	0.200	1.00	0.76	0.46554	0.63532	276	365	0.333
Age 4	0.525	0.200	1.00	0.72	0.48434	0.65260	385	365	0.190
Age 5	0.503	0.200	1.00	0.70	0.49513	0.66232	465	365	0.113
Age 6	0.490	0.200	1.00	0.69	0.50153	0.66802	521	365	0.069
Age 7	0.481	0.200	1.00	0.68	0.50597	0.67195	558	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on an literature-derived values (EPRI 2012, Table 5-78,egg/larvae for channel catfish) and from Lorenzen (1996) estimated M at mid-age weight for ages 1-7.
${ }_{\mathrm{c}}$ Age-specific fishing from (EPRI 2012, Table 5-74).
c Assumed vulnerability to fishing from (EPRI 2012, Table 5-74).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for egg/larvae and YOY based on EPRI (2012, Table 5-75). Start weights for ages 1-7 included growth curve estimated lengths (Palomares 1991) converted to weight (Swingle 1965, Priegel 1966).
${ }_{i}$ Stage duration (days) on EPRI (2012).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{\mathrm{j}}$ Fecundity bases on estimated weights multiplied by mean relative fecundity of Black Bullhead (Novomesca and Kovac 2009). k Maturity is based on ages reported by Kottelat and Freyhof (2007).

Table A-9. Life history parameters for a Chain Pickerel population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{t} \mathrm{~S}_{\mathrm{i}}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	2.301	0.000	0.00	2.30	0.10016	0.18208	0.00094	18	0.000
Larvae	1.921	0.000	0.00	1.92	0.14646	0.25550	0.00094	30	4.173
YOY	3.554	0.000	0.00	3.55	0.02862	0.05565	0.06120	317	5.956
Age 1	0.898	0.000	0.00	0.90	0.40758	0.57913	24	365	1.798
Age 2	0.623	0.351	0.50	0.78	0.45669	0.62702	143	365	0.921
Age 3	0.506	0.351	1.00	0.86	0.42433	0.59583	358	365	0.571
Age 4	0.442	0.351	1.00	0.79	0.45245	0.62302	634	365	0.385
Age 5	0.402	0.351	1.00	0.75	0.47072	0.64012	932	365	0.273
Age 6	0.376	0.351	1.00	0.73	0.48323	0.65159	1,225	365	0.199
Age 7	0.358	0.351	1.00	0.71	0.49212	0.65963	1,494	365	0.148
Age 8	0.345	0.351	1.00	0.70	0.49860	0.66542	1,732	365	0.112
Age 9	0.338	0.351	1.00	0.69	0.50187	0.66833	1,936	365	0.000

YOY= young of the year
a
Natural instantaneous mortality rates were based on daily survival rate estimates for eggs and larvae, compiled by Dahlburg (1979). Lorenzen (1996) relation was used to predict M from mid-age weight for ages 1-9.
${ }^{\mathrm{b}}$ Age-specific fishing mortality inferred from Brokaw and Lucas (2008) observation that a $10-15 \%$ increase in harvest would lead to overfishing in Maine and the assumption that the overfishing threshold is when $\mathrm{F}=\mathrm{M}$. Therefore, fishing mortality was calculated as average M for fully recruited ages divided by 1.125 .
${ }^{c}$ Vulnerability to fishing inferred from average size harvested in Maine (17" or 432mm) and growth curve predicting size at age, FishBase cited from Carlander (1969).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on FishBase reported growth in length from Carlander (1969) and weight-length relation (Herke 1959).
${ }^{\text {h }}$ Stage duration (days) for eggs and larvae from Dahlburg (1979).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }_{k}^{\mathrm{j}}$ Fecundity as linear relation with weight using endpoints of 936 eggs at age-1 predicted weight and 30,000 eggs at age-9 predicted weight; fecundity range from Jones et al. (1978).
${ }^{k}$ Maturity reported by age and size (Jones et al. 1978) .

Table A-10. Life history parameters for a Common Shiner population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$		Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.183	0.000	0.00	0.18	0.83277	0.90875	0.00182	3	0.000
Larvae	2.562	0.000	0.00	2.56	0.07715	0.14325	0.00182	42	3.241
YOY	4.932	0.000	0.00	4.93	0.00721	0.01433	0.04650	320	2.666
Age 1	2.511	0.000	0.00	2.51	0.08122	0.15024	1	365	1.515
Age 2	1.960	0.000	0.00	1.96	0.14081	0.24686	3	365	0.631
Age 3	1.729	0.000	0.00	1.73	0.17754	0.30155	6	365	0.316
Age 4	1.623	0.000	0.00	1.62	0.19735	0.32964	8	365	0.279
Age 5	1.482	0.000	0.00	1.48	0.22725	0.37034	10	365	0.210
Age 6	1.403	0.000	0.00	1.40	0.24589	0.39472	13	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on an literature-derived values from Emerald Shiner (EPRI 2012, Table 5-92,egg and larvae) and Lorenzen (1996) M relation at mid-age Emerald shiner weights for ages 1-6. Weights were linearly extrapolated to age 6 from Emerald shiner weight at age.
${ }^{\mathrm{b}}$ No age-specific fishing mortality, assumed $\mathrm{F}=0$.
${ }^{\text {c }}$ No vulnerability to fishing assumed.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage.
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based growth curve developed for Fuchs (1966) observed lengths and length-weight relationship from Atkinson et al. (2015) for Emerald Shiner.
${ }^{\text {h }}$ Stage duration (days) was based on EPRI (2012).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\mathrm{j}}$ Fecundity bases on EPRI (2012, Table 5-91).
Maturity is based on EPRI (2012, Table 5-91).

Table A-11. Life history parameters for an Emerald Shiner population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{T}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\operatorname{LLn}(1+5)}\right) \end{aligned}$	Start Weight (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.183	0.000	0.00	0.18	0.83277	0.90875	0.00182	3	0.000
Larvae	2.562	0.000	0.00	2.56	0.07715	0.14325	0.00182	42	3.241
YOY	3.953	0.000	0.00	3.95	0.01919	0.03766	0.04650	320	2.666
Age 1	2.511	0.000	0.00	2.51	0.08122	0.15024	0.66883	365	1.515
Age 2	1.960	0.000	0.00	1.96	0.14081	0.24686	3.04298	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on population dynamics of Emerald Shiner but limited to maximum age of about 2 years (Finger 2001).
${ }^{\mathrm{b}}$ No age-specific fishing mortality, assumed $\mathrm{F}=0$.
${ }^{\text {c }}$ No vulnerability to fishing assumed.
${ }_{e}^{d}$ Total instantaneous mortality Z $=-\ln (S)$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based growth curve developed for Fuchs (1966) observed lengths and length-weight relationship from Atkinson et al. (2015).
${ }^{\text {h }}$ Stage duration (days) was based on EPRI (2012, Table 5-92).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{\mathrm{j}}$ Fecundity bases on EPRI (2012, Table 5-91).
${ }^{\mathrm{k}}$ Maturity is based on EPRI (2012, Table 5-91).

Table A-12. Life history parameters for a Fallfish population at equilibrium.

Stage	$\mathbf{M i}_{i}{ }^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathbf{Z}^{\mathbf{d}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S}}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{gathered} \text { Duration }^{\text {h }} \\ \text { (days) } \end{gathered}$	Instant. Growth Rate ${ }^{i}$
Egg	2.016	0.000	0.00	2.02	0.13319	0.23507	0.00182	6	0.000
Larvae	2.150	0.000	0.00	2.15	0.11648	0.20866	0.00182	50	3.241
YOY	2.710	0.000	0.00	2.71	0.06653	0.12475	0.04650	309	6.114
Age 1	1.5	0.000	0.00	1.46	0.23227	0.37698	21	365	0.876
Age 2	1.1	0.000	0.00	1.07	0.34265	0.51041	50	365	0.749
Age 3	0.9	0.000	0.00	0.85	0.42585	0.59733	107	365	0.549
Age 4	0.7	0.000	0.00	0.71	0.48938	0.65716	185	365	0.476
Age 5	0.6	0.000	0.00	0.62	0.53889	0.70036	297	365	0.329
Age 6	0.6	0.000	0.00	0.55	0.57527	0.73038	413	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on an literature-derived values (EPRI 2012, Table 5-115 for eggs survival in Yellow Perch; Carlander (1997) for survival of Yellow Perch larvae. Lorenzen M at mid-age weight was used to determine M for ages 1-6.
b Age-specific fishing mortality was assumed to be zero (forage species).
${ }^{\text {c }}$ d Vulnerability to fishing assumed zero.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on Victor and Brothers (1982) growth in length and length-weight conversion.
${ }^{\text {h }}$ Stage duration (days) was based on EPRI (2012, Table 5-115) for eggs (Yellow Perch), Muykaysen and Jawad (2012) for Barbus Sharpeyi larval duration.
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{j}$ Fecundity from Hugg (1996) estimate of Fallfish fecundity.
Maturity from Trial et al. (1983) - some fallfish reach maturity at age 2 or three and all by age 4.

Table A-13. Life history parameters for a Golden Shiner population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate
Egg	0.183	0.000	0.00	0.18	0.83277	0.90875	0.00182	3	0.000
Larvae	2.562	0.000	0.00	2.56	0.07715	0.14325	0.00182	42	3.241
YOY	8.859	0.000	0.00	8.86	0.00014	0.00028	0.04650	320	2.666
Age 1	2.511	0.000	0.00	2.51	0.08122	0.15024	1	365	1.515
Age 2	1.960	0.000	0.00	1.96	0.14081	0.24686	3	365	0.631
Age 3	1.729	0.000	0.00	1.73	0.17754	0.30155	6	365	0.316
Age 4	1.457	0.000	0.00	1.46	0.23290	0.37780	8	365	0.756
Age 5	1.250	0.000	0.00	1.25	0.28637	0.44524	17	365	0.405
Age 6	1.135	0.000	0.00	1.13	0.32143	0.48649	25	365	0.288
Age 7	1.056	0.000	0.00	1.06	0.34794	0.51625	33	365	0.223
Age 8	0.996	0.000	0.00	1.00	0.36919	0.53928	42	365	0.182
Age 9	0.951	0.000	0.00	0.95	0.38639	0.55740	50	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Natural instantaneous mortality rates were based on daily survival rate estimates for eggs and larvae, compiled by Dahlburg (1979) and Lorenzen (1996) relation predicting M from midage weight for ages 1-9. Maximum age reported to nine years (Altman and Dittmer 1962).
Age-specific fishing mortality assumed zero.
${ }^{\text {c }}$ No vulnerability to fishing assumed.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on Emerald Shiner and extrapolated for age 4-9.
${ }^{h}$ Stage duration (days) for eggs and larvae from EPRI (2012, Table 5-92).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{e}\left(\mathrm{~W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\mathrm{j}}$ Fecundity taken as the maximum reported by Huggs (1996).
${ }^{k}$ Maturity as reported for Emerald Shiner.

Table A-14. Life history parameters for a Largemouth Bass population at equilibrium.

Stage	$\mathbf{M}_{i}{ }^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{c}$ (v)	$\mathbf{Z}_{\mathbf{i}}{ }^{\text {d }}$	$\mathrm{S}_{\mathrm{i}}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\text {h }} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{\text {i }}$
Egg	1.900	0.000	0.00	1.90	0.14957	0.26022	0.00077	5	0.000
Larvae	2.700	0.000	0.00	2.70	0.06721	0.12595	0.00077	10	3.594
YOY	4.560	0.000	0.00	4.56	0.01046	0.02071	0.02800	350	6.229
Age 1	0.860	0.000	0.00	0.86	0.42316	0.59468	14	365	1.845
Age 2	0.290	0.049	0.50	0.31	0.73037	0.84418	90	365	0.957
Age 3	0.261	0.049	1.00	0.31	0.73345	0.84623	234	365	0.600
Age 4	0.261	0.049	1.00	0.31	0.73345	0.84623	426	365	0.410
Age 5	0.261	0.049	1.00	0.31	0.73345	0.84623	642	365	0.294
Age 6	0.261	0.049	1.00	0.31	0.73345	0.84623	862	365	0.218
Age 7	0.261	0.049	1.00	0.31	0.73345	0.84623	1072	365	0.164
Age 8	0.261	0.049	1.00	0.31	0.73345	0.84623	1263	365	0.126
Age 9	0.261	0.049	1.00	0.31	0.73345	0.84623	1432	365	0.098
Age 10	0.261	0.049	1.00	0.31	0.73345	0.84623	1579	365	0.076
Age 11	0.261	0.049	1.00	0.31	0.73345	0.84623	1704	365	0.060
Age 12	0.261	0.049	1.00	0.31	0.73345	0.84623	1809	365	0.047
Age 13	0.261	0.049	1.00	0.31	0.73345	0.84623	1896	365	0.037
Age 14	0.261	0.049	1.00	0.31	0.73345	0.84623	1968	365	0.030
Age 15	0.261	0.049	1.00	0.31	0.73345	0.84623	2028	365	0.024
Age 16	0.261	0.049	1.00	0.31	0.73345	0.84623	2076	365	0.019
Age 17	0.261	0.049	1.00	0.31	0.73345	0.84623	2115	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Egg and larval instantaneous mortality rate was based on bass species (Micropterus sp.) (USEPA 2004). YOY mortality was adjusted to balance the life history table assuming population is at equilibrium by subtracting mortalities for eggs, larvae, and Age 1 from the total mortality from egg to Age $12=2 / \mathrm{fa}$ where fa =lifetime average fecundity (Saila et al. 1997; EPRI 2012). Age-1 natural mortality was based on USEPA (2004). Instantaneous fishing mortality ($\mathrm{F}=0.049$) was based on apportioning Z ($=0.315$) from a catch-curve estimate equivalent to a constant 73% survival for Ages 2-12 (Odenkirk 2016) by subtraction of instantaneous natural mortality (M), which was equally estimated as a constant natural mortality (=0.261) over Ages 2-12 using Hoenig's equation (1983), $\log _{e}(\mathrm{M})=1.44-0.982\left(\log _{e}\left(\mathrm{t}_{\max }\right)\right)$ where the theoretical maximum age $\left(\mathrm{t}_{\max }\right)$ for Virginia reservoirs is accepted as 17 years of age (DiCenzo and Garren 2001). Mortality rates for Ages 13-17 were assumed equal to Ages 2-12.
${ }^{\mathrm{b}}$ Age-specific fishing mortality was based on based on total survival of 73\% (Odenkirk 2016) and the average contribution of M and F to Z from USEPA (2004).
${ }^{\text {c }}$ Vulnerability to fishing based on USEPA (2004)
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=\mathrm{M}+\mathrm{F}$
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage $=e^{-z}$
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on smallmouth bass for eggs, larvae, and YOY (EPRI (2012) and converted lengths-at-age (Beamesderfer and North 1995) using length-weight relation (Saila and Horton 1957).
${ }_{i}^{\text {h }}$ Stage duration (days) was based on Stuber et al. (1982) and EPRI (2012) information on smallmouth bass.
Growth rate (G) was estimated as Loge($\mathrm{Wi}+1 / \mathrm{Wi}$) where W_{i} is the weight at start of stage i .
${ }^{\text {j }}$ Mean fecundity for Ages 3-10 based on Figure 7 in Brown and Maceina (2002); Age 2 was estimated as half of Age 3 fecundity, and Ages 11-12 were based on the fitted trend of the Age
3-10 data given by Fecundity=29731Log(age)-31746.
${ }^{\mathrm{k}}$ Proportion at age that are sexually mature was based size and age expected to be first mature (assumed 50\%) from Odenkirk (2016).

Table A-15. Life history parameters for a Margined Madtom population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted } \left.{ }^{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}=2 \mathrm{Se}^{-\mathrm{Ln}(1+5)}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.109	0.000	0.00	0.11	0.89702	0.94571	0.00180	13	0.000
Larvae	0.142	0.000	0.00	0.14	0.86752	0.92906	0.00180	17	0.000
YOY	4.020	0.000	0.00	4.02	0.01795	0.03527	0.00180	335	7.704
Age 1	1.504	0.000	0.00	1.50	0.22224	0.36366	4	365	1.007
Age 2	1.297	0.000	0.00	1.30	0.27336	0.42936	11	365	0.527
Age 3	1.187	0.000	0.00	1.19	0.30516	0.46762	19	365	0.308
Age 4	1.119	0.000	0.00	1.12	0.32668	0.49248	25	365	0.000

YOY= young of the year
Instantaneous mortality rates were based on an literature-derived values (EPRI 2012, Table 5-92, Slimy Sculpin egg and larvae); and Lorenzen (1996) M for mid-age weights, ages 1-4
${ }^{\mathrm{b}}$ No fishing assumed for this group.
${ }^{\text {c }}$ No vulnerability to fishing assumed for this group.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-92 for Slimy Sculpin eggs, larvae; for ages 1-4 from Conard (2015) study of Northern Madtom in Michigan).
${ }^{\text {h }}$ Stage duration (days) from Simon and Burr (2004) for Stoncats egg stage. Larval stage duration from Northern Madtom study (Scheibly et al. 2008).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\mathrm{j}}$ Fecundity from maximum eggs seen in Northern Madton study (Scheibly et al. 2008).
${ }^{\mathrm{k}}$ Maturity reported for Northern Madtom at 60 mm study (Scheibly et al. 2008)., implying full maturity at age 1.

Table A-16. Life history parameters for a Pumpkinseed population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{t} \mathrm{~S}_{\mathrm{i}}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{gathered} \text { Duration }^{\mathrm{h}} \\ \text { (days) } \end{gathered}$	Instant. Growth Rate ${ }^{i}$
Egg	0.044	0.000	0.00	0.04	0.95676	0.97790	0.00094	2	0.000
Larvae	2.338	0.000	0.00	2.34	0.09652	0.17605	0.00094	28	4.173
YOY	4.875	0.000	0.00	4.87	0.00764	0.01516	0.06120	335	4.442
Age 1	1.264	0.000	0.00	1.26	0.28248	0.44052	5	365	1.907
Age 2	0.918	0.223	1.00	1.14	0.31948	0.48425	35	365	0.914
Age 3	0.758	0.223	1.00	0.98	0.37471	0.54515	87	365	0.541
Age 4	0.671	0.223	1.00	0.89	0.40890	0.58045	150	365	0.350
Age 5	0.618	0.223	1.00	0.84	0.43116	0.60253	213	365	0.238
Age 6	0.583	0.223	1.00	0.81	0.44624	0.61710	270	365	0.167
Age 7	0.557	0.223	1.00	0.78	0.45829	0.62853	319	365	0.000

YOY= young of the year
a Instantaneous mortality rates were based on Bluegill found elsewhere in this workbook.
${ }^{\mathrm{b}}$ Age-specific fishing derived from Crawford and Allen (2006) catch-curve and tag-recapture studies in Florida lake.
${ }^{\text {c }}$ Vulnerability to fishing inferred from Crawford and Allen (2006) observation of near-constant exploitation larger than 13cm and this size representative of age 2 (Jackson et al. 2008).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based multiple studies reviewed in EPRI (2012, Table 5-122).
${ }^{\mathrm{h}}$ Stage duration (days) was based on EPRI (2012, Table 5-121).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\text {j }}$ Mean fecundity calculated from length-at-age using Paneck and Cofield (1978) length-fecundity relation.
${ }^{\mathrm{k}}$ Maturity taken from EPRI (2012, Table 5-123).

Table A-17. Life history parameters for a Rainbow Smelt population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{c}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{h} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	3.480	0.000	0.00	3.48	0.03081	0.05977	0.00086	20	0.000
Larvae	2.340	0.000	0.00	2.34	0.09633	0.17573	0.00086	90	4.238
YOY	2.420	0.000	0.00	2.42	0.08892	0.16331	0.05980	255	3.153
Age 1	1.583	0.000	0.00	1.58	0.20531	0.34067	1	365	2.497
Age 2	1.257	0.016	1.00	1.27	0.28000	0.43750	17	365	0.345
Age 3	1.041	0.232	1.00	1.27	0.28000	0.43750	24	365	0.829
Age 4	0.914	0.359	1.00	1.27	0.28000	0.43750	55	365	0.227
Age 5	0.857	0.416	1.00	1.27	0.28000	0.43750	69	365	0.220
Age 6	0.757	0.516	1.00	1.27	0.28000	0.43750	86	365	0.576
Age 7	0.683	0.590	1.00	1.27	0.28000	0.43750	153	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on an literature-derived values (EPRI 2012, Table 5-101) for eggs and larvae and using mid-age weights and the Lorenzen (1996) M function for ages 1-7.
${ }^{\mathrm{b}}$ Age-specific fishing mortality was calculated as Z-M.
${ }^{\text {c }}$ V Vulnerability to fishing assumed complete at age 2 (Murawski and Cole 1978).
${ }^{d}$ Total instantaneous mortality $Z=-\ln (S)$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-101).
${ }^{\text {h }}$ Stage duration (days) and maturity was based on EPRI (2012, Table 5-101).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{\mathrm{j}}$ Fecundity from USEPA (2012, Table 5-101).
${ }^{\mathrm{k}}$ Maturity from USEPA (2012, Table 5-101).

Table A-18. Life history parameters for a Redbreast Sunfish population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{gathered} \text { Duration }^{\mathrm{h}} \\ \text { (days) } \end{gathered}$	Instant. Growth Rate ${ }^{i}$
Egg	0.044	0.000	0.00	0.04	0.95676	0.97790	0.00094	2	0.000
Larvae	2.338	0.000	0.00	2.34	0.09652	0.17605	0.00094	28	4.173
YOY	4.875	0.000	0.00	4.87	0.00764	0.01516	0.06120	335	4.442
Age 1	1.264	0.000	0.00	1.26	0.28248	0.44052	5	365	1.907
Age 2	0.918	0.223	1.00	1.14	0.31948	0.48425	35	365	0.914
Age 3	0.758	0.223	1.00	0.98	0.37471	0.54515	87	365	0.541
Age 4	0.671	0.223	1.00	0.89	0.40890	0.58045	150	365	0.350
Age 5	0.618	0.223	1.00	0.84	0.43116	0.60253	213	365	0.238
Age 6	0.583	0.223	1.00	0.81	0.44624	0.61710	270	365	0.167
Age 7	0.557	0.223	1.00	0.78	0.45829	0.62853	319	365	0.000

YOY= young of the year
a Instantaneous mortality rates were based on Bluegill found elsewhere in this workbook.
${ }^{\mathrm{b}}$ Age-specific fishing derived from Crawford and Allen (2006) catch-curve and tag-recapture studies in Florida lake.
${ }^{\mathrm{c}}$ Vulnerability to fishing inferred from Crawford and Allen (2006) observation of near-constant exploitation larger than 13cm and this size representative of age 2 (Jackson et al. 2008).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based multiple studies reviewed in EPRI (2012, Table 5-122).
${ }^{\mathrm{h}}$ Stage duration (days) was based on EPRI (2012, Table 5-121).
${ }^{i}$ Growth rate (G) was estimated as $\log _{e}\left(\mathrm{~W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\text {j }}$ Mean fecundity calculated from length-at-age using Paneck and Cofield (1978) length-fecundity relation.
${ }^{\mathrm{k}}$ Maturity taken fr om EPRI (2012, Table 5-123).

Table A-19. Life history parameters for a Rock Bass population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{gathered} \text { Duration }^{\mathrm{h}} \\ \text { (days) } \end{gathered}$	Instant. Growth Rate ${ }^{i}$
Egg	0.044	0.000	0.00	0.04	0.95676	0.97790	0.00094	2	0.000
Larvae	2.338	0.000	0.00	2.34	0.09652	0.17605	0.00094	28	4.173
YOY	4.875	0.000	0.00	4.87	0.00764	0.01516	0.06120	335	4.442
Age 1	1.264	0.000	0.00	1.26	0.28248	0.44052	5	365	1.907
Age 2	0.918	0.223	1.00	1.14	0.31948	0.48425	35	365	0.914
Age 3	0.758	0.223	1.00	0.98	0.37471	0.54515	87	365	0.541
Age 4	0.671	0.223	1.00	0.89	0.40890	0.58045	150	365	0.350
Age 5	0.618	0.223	1.00	0.84	0.43116	0.60253	213	365	0.238
Age 6	0.583	0.223	1.00	0.81	0.44624	0.61710	270	365	0.167
Age 7	0.557	0.223	1.00	0.78	0.45829	0.62853	319	365	0.000

YOY= young of the year
a Instantaneous mortality rates were based on Bluegill found elsewhere in this workbook.
${ }^{\mathrm{b}}$ Age-specific fishing derived from Crawford and Allen (2006) catch-curve and tag-recapture studies in Florida lake.
${ }^{\text {c }}$ Vulnerability to fishing inferred from Crawford and Allen (2006) observation of near-constant exploitation larger than 13cm and this size representative of age 2 (Jackson et al. 2008).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based multiple studies reviewed in EPRI (2012, Table 5-122).
${ }^{\mathrm{h}}$ Stage duration (days) was based on EPRI (2012, Table 5-121).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{j}$ Mean fecundity calculated from length-at-age using Paneck and Cofield (1978) length-fecundity relation.
${ }^{\mathrm{k}}$ Maturity taken from EPRI (2012, Table 5-123).

Table A-20. Life history parameters for a Smallmouth Bass population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{c}$ (v)	$\mathbf{Z}_{\mathbf{i}}{ }^{\text {d }}$	$\mathrm{S}_{\mathrm{i}}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f} S_{i}} \\ & \left(=2 \mathrm{Se}^{-\operatorname{Ln}(1+S)}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.060	0.000	0.00	0.06	0.94176	0.97001	0.00077	5	0.000
Larvae	0.695	0.000	0.00	0.70	0.49885	0.66564	0.00077	10	3.594
YOY	7.858	0.000	0.00	7.86	0.00039	0.00077	0.02800	350	5.521
Age 1	0.702	0.000	0.00	0.70	0.49562	0.66276	7	365	1.966
Age 2	0.584	0.000	0.00	0.58	0.55764	0.71600	50	365	1.051
Age 3	0.510	0.390	0.50	0.69	0.50342	0.66970	143	365	0.686
Age 4	0.460	0.390	1.00	0.85	0.42721	0.59866	284	365	0.489
Age 5	0.425	0.390	1.00	0.82	0.44254	0.61356	463	365	0.365
Age 6	0.399	0.390	1.00	0.79	0.45420	0.62468	667	365	0.281
Age 7	0.379	0.390	1.00	0.77	0.46328	0.63320	883	365	0.221
Age 8	0.364	0.390	1.00	0.75	0.47044	0.63986	1101	365	0.178
Age 9	0.352	0.390	1.00	0.74	0.47616	0.64514	1315	365	0.144
Age 10	0.344	0.390	1.00	0.73	0.47979	0.64846	1518	365	0.117
Age 11	0.340	0.390	1.00	0.73	0.48172	0.65022	1707	365	0.097
Age 12	0.333	0.390	1.00	0.72	0.48546	0.65361	1880	365	0.000

YOY= young of the year
Natural instantaneous mortality rates for eggs and larvae were based on an equilibrium population (EPRI 2012,Table 5-119). For ages 1-12, estimates of M were made using Lorenzen (1996) relation with mid-age weight.
${ }^{\text {b }}$ Age-specific fishing mortality from EPRI (2012, Table 5-118).
${ }^{\text {c }}$, Vulnerability to fishing from EPRI (2012, Table 5-118).
${ }_{e}^{d}$ Total instantaneous mortality $Z=-\ln (S)$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }_{\mathrm{h}}^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-119).
${ }_{i}$ Stage duration (days) was based on EPRI (2012 Table 5-119).
Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }_{k}^{\mathrm{j}}$ Fecundity was based on Scott and Crossman (1998) fecundity range and assumption of linear relation between fecundity and weight.
${ }^{\mathrm{k}}$ Maturity was based on EPRI (2012 Table 5-119).

Table A-21. Life history parameters for a Spottail Shiner population at equilibrium.

Stage	$\mathbf{M i}^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{c}$ (v)	$\mathrm{Z}^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\operatorname{LLn}(1+5)}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.183	0.000	0.00	0.18	0.83277	0.90875	0.00182	3	0.000
Larvae	2.562	0.000	0.00	2.56	0.07715	0.14325	0.00182	42	3.241
YOY	3.966	0.000	0.00	3.97	0.01896	0.03721	0.04650	320	2.666
Age 1	2.511	0.000	0.00	2.51	0.08122	0.15024	0.7	365	1.515
Age 2	1.960	0.000	0.00	1.96	0.14081	0.24686	3.0	365	0.631
Age 3	1.729	0.000	0.00	1.73	0.17754	0.30155	5.7	365	0.316
Age 4	1.623	0.000	0.00	1.62	0.19735	0.32964	7.8	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on Emerald Shiner.
${ }^{\mathrm{b}}$ No age-specific fishing mortality, assumed $\mathrm{F}=0$.
${ }^{\text {c }}$ No vulnerability to fishing assumed.
${ }^{\mathrm{d}}$ Total instantaneous mortality Z $=-\ln (\mathrm{S})$.
${ }^{\text {e }} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based growth curve developed for Fuchs (1966) observed lengths and length-weight relationship from Atkinson et al. (2015).
${ }^{\text {h }}$ Stage duration (days) was based on EPRI (2012).
${ }^{i}$ Growth rate (G) was estimated as $\log _{e}\left(\mathrm{~W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\mathrm{j}}$ Fecundity bases on EPRI (2012, Table 5-91).
Maturity is based on EPRI (2012, Table 5-91).

Table A-22. Life history parameters for a Tessellated Darter population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	0.183	0.000	0.00	0.18	0.83277	0.90875	0.00182	3	0.000
Larvae	2.562	0.000	0.00	2.56	0.07715	0.14325	0.00182	42	3.241
YOY	3.178	0.000	0.00	3.18	0.04166	0.07998	0.04650	320	2.893
Age 1	2.572	0.000	0.00	2.57	0.07635	0.14186	1	365	0.753
Age 2	2.180	0.000	0.00	2.18	0.11300	0.20306	2	365	0.478
Age 3	1.957	0.000	0.00	1.96	0.14131	0.24762	3	365	0.307
Age 4	1.832	0.000	0.00	1.83	0.16005	0.27593	4	365	0.000

YOY= young of the year
a Instantaneous mortality rates were based on an literature-derived values (EPRI 2012, Table 5-92, for Emerald shiner egg and larvae) and Lorenzen (1996) M relation at mid-age weight (derived from Layzer and Reed (1972)) Tessellated darter back-calculated sizes) for ages 1-4.
${ }^{\mathrm{b}}$ No fishing assumed for this group.
${ }^{\text {c }}$ No vulnerability to fishing assumed for this group.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\text {e }} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights from weights calculated for Layzer and Reed (1972) average back-calculated size at age for tessellated darter, using Emerald shiner length weight relation reported in Carlander (1969).
${ }^{\mathrm{h}}$ Stage duration (days) based on Emerald shiner from EPRI (2012).
Growth rate (G) was estimated as $\log _{e}\left(\mathrm{~W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{j}$ Fecundity from maximum eggs in Tsai (1972) for Eastern Johnny Darter.
${ }^{\mathrm{k}}$ Maturity is derived from Gilbert (1992) reported maturity at 40 mm TL for Tessellated Darter.

Table A-23. Life history parameters for a Walleye population at equilibrium.

Stage	$\mathbf{M i}_{i}{ }^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	$\begin{gathered} \text { Fraction } \\ \text { Vulnerable to } \\ \text { Fishing }^{\text {c (v) }} \\ \hline \end{gathered}$	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }^{\mathrm{I}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	2.622	0.000	0.00	2.62	0.07266	0.13547	0.00055	6	0.000
Larvae	6.400	0.000	0.00	6.40	0.00166	0.00332	0.00055	25	3.776
YOY	1.968	0.000	0.00	1.97	0.13980	0.24531	0.02400	334	7.927
Age 1	0.607	0.000	0.00	0.61	0.54480	0.70534	67	365	1.903
Age 2	0.448	0.000	0.00	0.45	0.63867	0.77950	446	365	0.831
Age 3	0.380	0.250	0.50	0.50	0.60820	0.75638	1024	365	0.437
Age 4	0.341	0.250	1.00	0.59	0.55354	0.71261	1586	365	0.327
Age 5	0.315	0.250	1.00	0.56	0.56855	0.72494	2200	365	0.251
Age 6	0.295	0.250	1.00	0.54	0.57997	0.73415	2827	365	0.207
Age 7	0.280	0.250	1.00	0.53	0.58833	0.74082	3478	365	0.144
Age 8	0.269	0.250	1.00	0.52	0.59507	0.74613	4017	365	0.144
Age 9	0.260	0.250	1.00	0.51	0.60040	0.75032	4638	365	0.094
Age 10	0.258	0.250	1.00	0.51	0.60193	0.75151	5093	365	-0.023
Age 11	0.258	0.250	1.00	0.51	0.60167	0.75130	4975	365	0.000

${ }^{\text {a }}$ Natural instantaneous mortality rates for eggs and larvae were based on an equilibrium population (EPRI 2012,Table 5-117). For ages 1-11, estimates of M were made using Lorenzen (1996) relation with mid-age weight.
${ }^{5}$ Age-specific fishing mortality from EPRI (2012, Table 5-116).
${ }^{\text {c }}$ Vulnerability to fishing from EPRI (2012, Table 5-116).
${ }^{\mathrm{d}}$ Total instantaneous mortality Z $=-\ln (\mathrm{S})$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-117).
${ }_{i}^{\mathrm{h}}$ Stage duration (days) was based on EPRI (2012 Table 5-117).
Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\mathrm{j}}$ Fecundity was based on EPRI (2012 Table 5-117).
${ }^{\mathrm{k}}$ Maturity was based on EPRI (2012 Table 5-117).

Table A-24. Life history parameters for a White Perch population at equilibrium.

Stage	$\mathbf{M}_{i}{ }^{\text {a }}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{c}$ (v)	$\mathbf{Z}_{\mathbf{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{\text {i }}$
Egg	3.120	0.000	0.00	3.12	0.04416	0.08458	0.00037	4	0.000
Larvae	5.120	0.000	0.00	5.12	0.00598	0.01188	0.00037	30	5.946
YOY	1.779	0.000	0.00	1.78	0.16873	0.28874	0.14300	331	3.990
Age 1	0.630	0.000	0.00	0.63	0.53259	0.69502	8	365	0.945
Age 2	0.640	0.150	0.10	0.65	0.51995	0.68417	20	365	0.681
Age 3	0.630	0.150	0.20	0.66	0.51775	0.68226	39	365	0.523
Age 4	0.630	0.150	0.40	0.69	0.50292	0.66925	66	365	0.419
Age 5	0.640	0.150	0.50	0.71	0.49057	0.65823	101	365	0.345
Age 6	0.630	0.150	0.60	0.72	0.48808	0.65599	142	365	0.290
Age 7	0.630	0.150	0.84	0.75	0.47028	0.63971	190	365	0.248
Age 8	0.630	0.150	1.00	0.78	0.45841	0.62864	244	365	0.214
Age 9	0.630	0.150	1.00	0.78	0.45841	0.62864	302	365	0.187
Age 10	0.630	0.150	1.00	0.78	0.45841	0.62864	365	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Natural instantaneous mortality rates for eggs, larvae, and age 1-11 were based on an equilibrium population (EPRI 2012,Table 5-26 and Table 5-27).
${ }^{\mathrm{b}}$ Age-specific fishing mortality from EPRI (2012, Table 5-26).
${ }^{\text {c }}$ V Vulnerability to fishing from EPRI (2012, Table 5-26).
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-28).
${ }^{\mathrm{h}}$ Stage duration (days) was based on EPRI (2012 Table 5-28)
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\mathrm{j}}$ Fecundity was based on EPRI (2012 Table 5-28)
${ }^{\mathrm{k}}$ Maturity was based on EPRI (2012 Table 5-28).

Table A-25. Life history parameters for a White Sucker population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{c}$ (v)	$\mathbf{Z}_{\mathbf{i}}{ }^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\operatorname{Ln}(1+S)}\right) \end{aligned}$	$\begin{gathered} \text { Start } \\ \text { Weight }^{g}(g) \end{gathered}$	$\begin{aligned} & \text { Duration }^{h} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{\text {i }}$
Egg	0.552	0.000	0.00	0.55	0.57580	0.73080	$1.80 \mathrm{E}-03$	4	0.00000
Larvae	6.348	0.000	0.00	6.35	0.00175	0.00349	$1.80 \mathrm{E}-03$	46	1.41218
YOY	2.610	0.000	0.00	2.61	0.07356	0.13704	4.65E-02	315	1.43053
Age 1	0.505	0.000	0.00	0.51	0.60345	0.75269	1	365	1.89015
Age 2	0.382	0.000	0.00	0.38	0.68226	0.81112	97	365	0.22090
Age 3	0.337	0.000	0.00	0.34	0.71377	0.83298	162	365	0.16943
Age 4	0.306	0.000	0.00	0.31	0.73632	0.84814	239	365	0.12935
Age 5	0.284	0.000	0.00	0.28	0.75267	0.85888	322	365	0.09907
Age 6	0.268	0.000	0.00	0.27	0.76470	0.86666	404	365	0.07642
Age 7	0.257	0.000	0.00	0.26	0.77370	0.87241	482	365	0.05940
Age 8	0.248	0.000	0.00	0.25	0.78053	0.87674	553	365	0.00000

YOY= young of the year
${ }^{\text {a }}$ Egg and larval instantaneous mortality rate was Sucker family life history found elsewhere in the workbook.
${ }^{\mathrm{b}}$ No fishing assumed for this group though some catastomids are harvested for bait.
${ }^{\text {c }}$ No vulnerability to fishing assumed for this group.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage $=\mathrm{e}^{-z}$
${ }^{f}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on growth and length-weight relations reported for black and shorthead redhorse (Reid 2009).
${ }^{\text {h }}$ Stage duration (days) from USEPA (2012, Table 5-106) for shorthead redhorse.
Growth rate (G) was estimated as $\log _{e}\left(\mathrm{~W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i .
${ }^{\mathrm{j}}$ Mean fecundity for was taken as a linear relation with predicted weight, starting at 5,000 eggs for age 3 and 59,000 for age 17 (Begley et al. 2017).
${ }^{\mathrm{k}}$ Proportion at age that are sexually mature was based Begley et al. (2017) White Sucker age at maturity.

Table A-26. Life history parameters for a Yellow Bullhead population at equilibrium.

Stage	$\mathbf{M}_{i}{ }^{\text {a }}$	$\mathrm{F}_{i}^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}_{\mathrm{i}}{ }^{\text {d }}$	$\mathrm{S}_{\mathrm{i}}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{f}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\operatorname{Ln}(1+\mathrm{S})}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{aligned} & \text { Duration }^{\mathrm{h}} \\ & \text { (days) } \end{aligned}$	Instant. Growth Rate ${ }^{i}$
Egg	1.104	0.000	0.00	1.10	0.33154	0.49798	0.00170	8	0.000
Larvae	3.174	0.000	0.00	3.17	0.04184	0.08031	0.00170	23	3.298
YOY	4.322	0.000	0.00	4.32	0.01327	0.02620	0.04600	334	6.663
Age 1	0.817	0.000	0.00	0.82	0.44196	0.61300	36	365	1.408
Age 2	0.642	0.100	0.50	0.69	0.50129	0.66782	147	365	0.627
Age 3	0.565	0.100	1.00	0.66	0.51450	0.67943	276	365	0.333
Age 4	0.525	0.100	1.00	0.62	0.53528	0.69731	385	365	0.190
Age 5	0.503	0.100	1.00	0.60	0.54720	0.70735	465	365	0.113
Age 6	0.490	0.100	1.00	0.59	0.55427	0.71323	521	365	0.069
Age 7	0.481	0.100	1.00	0.58	0.55918	0.71728	558	365	0.000

YOY= young of the year
a Instantaneous mortality rates were based on Brown Bullhead found elsewhere in workbook
b Age-specific fishing assumed zero.
${ }^{c}$ Assumed no vulnerability to fishing.
${ }^{\mathrm{d}}$ Total instantaneous mortality $\mathrm{Z}=-\ln (\mathrm{S})$.
${ }^{\mathrm{e}} \mathrm{S}_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability and maturity associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for egg/larvae and YOY based on EPRI (2012, Table 5-78). Start weights for ages 1-7 included growth curve estimated lengths (Palomares 1991) converted to weight (Swingle 1965, Priegel 1966).
${ }_{i}^{\text {i }}$ Stage duration (days) on EPRI (2012).
${ }^{\mathrm{i}}$ Growth rate (G) was estimated as $\log _{\mathrm{e}}\left(\mathrm{W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
${ }^{\mathrm{j}}$ Fecundity bases on estimated weights multiplied by mean relative fecundity (Novomesca and Kovac 2009). k Maturity is based on ages reported by Kottelat and Freyhof (2007).

Table A-27. Life history parameters for a Yellow Perch population at equilibrium.

Stage	$\mathbf{M i}^{\mathbf{a}}$	$\mathrm{F}_{i}{ }^{\text {b }}$	Fraction Vulnerable to Fishing ${ }^{\text {c }}$ (v)	$\mathrm{Z}^{\text {d }}$	$S_{i}{ }^{\text {e }}$	$\begin{aligned} & \text { Adjusted }{ }^{\mathrm{t}} \mathrm{~S}_{\mathrm{i}} \\ & \left(=2 \mathrm{Se}^{-\mathrm{Ln}(1+\mathrm{S}}\right) \end{aligned}$	Start Weight ${ }^{\text {g }}$ (g)	$\begin{gathered} \text { Duration }^{\mathrm{h}} \\ \text { (days) } \end{gathered}$	Instant. Growth Rate ${ }^{i}$
Egg	2.016	0.000	0.00	2.02	0.13319	0.23507	0.00057	6	0.000
Larvae	4.925	0.000	0.00	4.93	0.00726	0.01442	0.00057	25	4.623
YOY	1.158	0.000	0.00	1.16	0.31407	0.47801	0.05800	334	5.056
Age 1	1.102	0.000	0.000	1.10	0.33213	0.49864	9	365	1.810
Age 2	0.826	0.016	1.000	0.84	0.43070	0.60208	56	365	0.772
Age 3	0.707	0.232	1.000	0.94	0.39071	0.56189	120	365	0.411
Age 4	0.647	0.359	1.000	1.01	0.36570	0.53554	181	365	0.238
Age 5	0.613	0.416	1.000	1.03	0.35739	0.52658	230	365	0.145
Age 6	0.593	0.516	1.000	1.11	0.32976	0.49597	266	365	0.089
Age 7	0.577	0.590	1.000	1.17	0.31132	0.47482	291	365	0.000

YOY= young of the year
${ }^{\text {a }}$ Instantaneous mortality rates were based on an literature-derived values (EPRI 2012, Table 5-115,egg and larvae; Lorenzen M at mid-age weight for ages 1-7). Carlander (1997) mean larval Z used.
${ }^{\mathrm{b}}$ Age-specific fishing mortality was assumed equal to that of Rainbow Smelt.
${ }^{\text {c }}$ Vulnerability to fishing assumed equal to that of Rainbow Smelt.
${ }^{d}$ Total instantaneous mortality $Z=-\ln (S)$.
${ }^{e} S_{i}=$ Probability of survival of stage i to the next stage accounting for vulnerability associated mortality.
${ }^{\mathrm{f}}$ Adjustment to the survival for the stage at which entrainment occurs to account for multiple ages within a stage, with the assumption of equal vulnerability throughout a stage (EPRI 2012).
${ }^{\mathrm{g}}$ Start weights for based on EPRI (2012, Table 5-115).
${ }^{\text {h }}$ Stage duration (days) and maturity was based on EPRI (2012, Table 5-115).
${ }^{i}$ Growth rate (G) was estimated as $\log _{e}\left(\mathrm{~W}_{\mathrm{i}+1} / \mathrm{W}_{\mathrm{i}}\right)$ where W_{i} is the weight at start of stage i.
Fecundity from USEPA (2012) cited relation, $\log _{10} \mathrm{~F}=1.88057+1.10369 \log _{10} \mathrm{~W}$
${ }^{k}$ Maturity from USEPA (2012, Table 5-115).

Appendix B. Monthly Impingement Estimates

Table B-1. Estimated monthly impingement abundance (number) at Merrimack Station, Units 1 and 2 combined, under the existing cooling water intake structure (CWIS, 3-mm wedgewire half screen (WWS) and closed-cycle cooling towers based on 10-year (2007-2016) actual intake flow (AIF), 100\% capacity factor at design intake flow (DIF) and 50% capacity factor at $\mathbf{5 0 \%}$ DIF.

10-year AIF, Existing CWIS

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		5											5
Banded Sunfish				8	3								12
Black Crappie				7	23	2			10	17	25	19	104
Bluegill	5		31		70	904	55	6	7	7	21	55	1,161
Brown Bullhead						7	7						14
Chain Pickerel	14												14
Fallfish	26												26
Golden Shiner	6		10	7	3	5	3				1		35
Largemouth Bass		17				5	6			16	22	10	77
Margined Madtom	14		18	18	8	21	2			2			83
Pumpkinseed			6		18	14				17	9	15	79
Rainbow Smelt	19	22										36	77
Redbreast Sunfish			6		3	5			6				20
Rock Bass						6						8	14
Smallmouth Bass			6			2	7	3			3	3	24
Spottail Shiner	48	22	5		3	9	11			2	1	195	296
Tessellated Darter			32				2						35
White Perch	5										1		6
White Sucker						2	8						10
Yellow Bullhead			11				3						14
Yellow Perch	27		45		5	8						94	180
Total	164	66	171	41	135	993	105	9	22	62	83	435	2,285

10-year AIF, 3-mm WWS

Species	Jan	Feb	Mar	Aug	Sep	Oct	Nov	Dec	Total
American Eel		5							5
Black Crappie					10	17	25	19	72
Bluegill	5		31	6	7	7	21	55	132
Chain Pickerel	14								14
Fallfish	26								26
Golden Shiner	6		10				1		17
Largemouth Bass		17				16	22	10	66
Margined Madtom	14		18			2			34
Pumpkinseed			6			17	9	15	47
Rainbow Smelt	19	22						36	77
Redbreast Sunfish			6		6				12
Rock Bass								8	8
Smallmouth Bass			6	3			3	3	15
Spottail Shiner	48	22	5			2	1	195	273
Tessellated Darter			32						32
White Perch	5						1		6
Yellow Bullhead			11						11
Yellow Perch	27		45					94	166
Total	164	66	171	9	22	62	83	435	1,012

10-year AIF, Cooling Towers

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		<1											<1
Banded Sunfish				<1	<1								1
Black Crappie				<1	1	<1			<1	1	1	1	5
Bluegill	<1		2		3	45	3	<1	<1	<1	1	3	58
Brown Bullhead						<1	<1						1
Chain Pickerel	1												1
Fallfish	1												1
Golden Shiner	<1		<1	<1	<1	<1	<1				<1		2
Largemouth Bass		1				<1	<1			1	1	1	4
Margined Madtom	1		1	1	<1	1	<1			<1			4
Pumpkinseed			<1		1	1				1	<1	1	4
Rainbow Smelt	1	1										2	4
Redbreast Sunfish			<1		<1	<1			<1				1
Rock Bass						<1						<1	1
Smallmouth Bass			<1			<1	<1	<1			<1	<1	1
Spottail Shiner	2	1	<1		<1	<1	1			<1	<1	10	15
Tessellated Darter			2				<1						2
White Perch	<1										<1		<1
White Sucker						<1	<1						1
Yellow Bullhead			1				<1						1
Yellow Perch	1		2		<1	<1						5	9
Total	8	3	9	2	7	50	5	<1	1	3	4	22	114

100\% DIF, Existing CWIS

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		7											7
Banded Sunfish				27	11								38
Black Crappie				23	79	4			36	84	65	31	323
Bluegill	7		46		242	2,032	92	15	26	35	54	87	2,637
Brown Bullhead						17	11						28
Chain Pickerel	20												20
Fallfish	38												38
Golden Shiner	9		15	23	9	12	5				3		75
Largemouth Bass		24				12	10			80	56	17	197
Margined Madtom	20		27	57	29	47	4			11			195
Pumpkinseed			10		62	32				81	23	24	232
Rainbow Smelt	28	31										57	115
Redbreast Sunfish			10		10	12			21				52
Rock Bass						14						12	26
Smallmouth Bass			9			4	11	6			9	5	44
Spottail Shiner	68	31	8		10	19	19			10	3	312	480
Tessellated Darter			48				4						52
White Perch	7										3		10
White Sucker						6	13						19
Yellow Bullhead			17				5						22
Yellow Perch	39		68		17	19						150	293
Total	235	91	256	131	468	2,231	174	21	82	302	214	695	4,902

Species	Jan	Feb	Mar	Aug	Sep	Oct	Nov	Dec	Total
American Eel		7							7
Black Crappie					36	84	65	31	216
Bluegill	7		46	15	26	35	54	87	270
Chain Pickerel	20								20
Fallfish	38								38
Golden Shiner	9		15				3		26
Largemouth Bass		24				80	56	17	176
Margined Madtom	20		27			11			58
Pumpkinseed			10			81	23	24	138
Rainbow Smelt	28	31						57	115
Redbreast Sunfish			10		21				30
Rock Bass								12	12
Smallmouth Bass			9	6			9	5	29
Spottail Shiner	68	31	8			10	3	312	432
Tessellated Darter			48						48
White Perch	7						3		10
Yellow Bullhead			17						17
Yellow Perch	39		68					150	257
Total	235	91	256	21	82	302	214	695	1,898

100\% DIF, Cooling Towers

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		<1											<1
Banded Sunfish				1	1								2
Black Crappie				1	4	<1			2	4	3	2	16
Bluegill	<1		2		12	102	5	1	1	2	3	4	132
Brown Bullhead						1	1						1
Chain Pickerel	1												1
Fallfish	2												2
Golden Shiner	<1		1	1	<1	1	<1				<1		4
Largemouth Bass		1				1	<1			4	3	1	10
Margined Madtom	1		1	3	1	2	<1			1			10
Pumpkinseed			<1		3	2				4	1	1	12
Rainbow Smelt	1	2										3	6
Redbreast Sunfish			<1		<1	1			1				3
Rock Bass						1						1	1
Smallmouth Bass			<1			<1	1	<1			<1	<1	2
Spottail Shiner	3	2	<1		<1	1	1			1	<1	16	24
Tessellated Darter		2				<1						3	
White Perch	<1										<1		1
White Sucker						<1	1						1
Yellow Bullhead			1				<1						1
Yellow Perch	2		3		1	1						8	15
Total													

50\% DIF, Existing CWIS

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		3											3
Banded Sunfish				14	5								19
Black Crappie				12	40	2			18	42	32	16	162
Bluegill	4		23		121	1,016	46	7	13	18	27	44	1,318
Brown Bullhead						8	5						14
Chain Pickerel	10												10
Fallfish	19												19
Golden Shiner	5		7	12	4	6	3				1		38
Largemouth Bass		12				6	5			40	28	8	99
Margined Madtom	10		13	29	14	24	2			6			97
Pumpkinseed			5		31	16				41	12	12	116
Rainbow Smelt	14	15										28	58
Redbreast Sunfish			5		5	6			10				26
Rock Bass						7						6	13
Smallmouth Bass			5			2	6	3			4	2	22
Spottail Shiner	34	15	4		5	10	9			5	1	156	240
Tessellated Darter		24				2						26	
White Perch	4										1		5
White Sucker						3	7						9
Yellow Bullhead			8				3						11
Yellow Perch	20		34		9	9						75	147
Total	118	46	128	65	234	1,115	87	10	41	151	107	348	2,451

50\% DIF, 3-mm WWS

Species	Jan	Feb	Mar	Aug	Sep	Oct	Nov	Dec	Total
American Eel		3							3
Black Crappie					18	42	32	16	108
Bluegill	4		23	7	13	18	27	44	135
Chain Pickerel	10								10
Fallfish	19								19
Golden Shiner	5		7				1		13
Largemouth Bass		12				40	28	8	88
Margined Madtom	10		13			6			29
Pumpkinseed			5			41	12	12	69
Rainbow Smelt	14	15						28	58
Redbreast Sunfish			5		10				15
Rock Bass								6	6
Smallmouth Bass			5	3			4	2	14
Spottail Shiner	34	15	4			5	1	156	216
Tessellated Darter			24						24
White Perch	4						1		5
Yellow Bullhead			8						8
Yellow Perch	20		34					75	129
Total	118	46	128	10	41	151	107	348	949

50\% DIF, Cooling Towers

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
American Eel		<1											<1
Banded Sunfish				1	<1								1
Black Crappie				1	2	<1			1	2	2	1	8
Bluegill	<1		1		6	51	2	<1	1	1	1	2	66
Brown Bullhead						<1	<1						1
Chain Pickerel	<1												<1
Fallfish	1												1
Golden Shiner	<1		<1	1	<1	<1	<1				<1		2
Largemouth Bass		1				<1	<1			2	1	<1	5
Margined Madtom	<1		1	1	1	1	<1			<1			5
Pumpkinseed			<1		2	1				2	1	1	6
Rainbow Smelt	1	1										1	3
Redbreast Sunfish			<1		<1	<1			1				1
Rock Bass						<1						<1	1
Smallmouth Bass			<1			<1	<1	<1			<1	<1	1
Spottail Shiner	2	1	<1		<1	<1	<1			<1	<1	8	12
Tessellated Darter			1				<1						1
White Perch	<1										<1		<1
White Sucker						<1	<1						<1
Yellow Bullhead			<1				<1						1
Yellow Perch	1		2		<1	<1						4	7
Total													

