

June 8, 2017

Permit Coordination U.S. Environmental Protection Agency EPA-Region 1 5 Post Office Square Mail Code OEP06-4 Boston, MA 02109-3912

 RE: Notice of Intent for Remediation General Permit M4 Services LLC
 261 Boston Road, Billerica, MA 01862
 MassDEP RTN 3-13002

Dear Permit Coordination:

ATC Group Services, LLC (ATC) provides the following Notice of Intent (NOI) for a Remediation General Permit (RGP) for construction dewatering, treatment, and discharge needed for an underground storage tank (UST) replacement project at 261 Boston Road, in Billerica, Massachusetts. Based upon the RGP Table 1, the proposed discharge activity would be considered "Type I" Petroleum-Related Site Remediation.

M4 Services LLC, is the owner and operator of the gasoline station. They are in the process of upgrading their three single-walled gasoline-containing USTs. Massachusetts Department of Environmental Protection (MassDEP) regulation requires the removal of single-walled gasoline USTs by August 8, 2017. For this permit application, ATC will be the "operator" of the treatment system.

Background

The property at 261 Boston Road is an existing MassDEP waste site identified by release tracking number RTN 3-13002. RTN 3-13002 was issued in 1995 after gasoline-related soil and groundwater contamination was discovered during an environmental investigation. In the summer of 1996, a soil vapor extraction (SVE) system and air sparging remediation system was installed to mitigate the gasoline release. The SVE remained in operation until 2007 (nine year). Groundwater has been monitored on a periodic basis since 2007, to assess the progress of monitored natural attenuation to reach drinking water standards. Groundwater samples analyzed for volatile petroleum hydrocarbons (VPH) have been compliant with Massachusetts GW-3 surface water discharge criteria since at least 2007, and the achievement of drinking water standards is nearly complete.

The depth to groundwater is approximately four to five feet below grade. Previous hydrogeological assessments indicate the underlying sediments consist of coarse to fine sand, with some gravel and silt. Well gauging data indicates the water table is shallow, and varies from three to four feet below grade. Estimates of hydraulic conductivity based upon sieve grain size analysis and slug testing range from 2.6×10^{-2} to 9.5×10^{-2} cm/sec. Well gauging data indicates a hydraulic gradient of 0.004 directed to the east. As excavations are proposed to a depth of approximately thirteen (13) feet, temporary dewatering activities are required to facilitate removal and reinstallation installation of the USTs.

Ground water and surface water samples were obtained from monitoring well MW-8, which is located immediately adjacent to the three existing gasoline tanks to characterize the effluent, and a surface water sample was obtained from the wetland behind and west of the property building. The samples were analyzed following the method guidance listed in the March 9, 2017 RGP. Method detection limits were generally compliant with the requirements, however, some reporting limits were not. Please see the attached data summary table for the details.

Google Earth indicates the existing and proposed USTs are located at 71°17'02.09" west longitude, and 42°34'34.95" north latitude. A Site Locus map is presented in **Figure 1**. A Site Plan showing the existing and proposed UST layout is provided as **Figure 2**. **Figure 3** depicts the USGS StreamStat image showing the Boston Road property. A schematic line drawing of a typical treatment system is provided as **Figure 4**. The wetlands east and west of the property ultimately discharge to the north-flowing Concord River. A copy of the NOI application form and Best Management Practices for the operation of the temporary dewatering and treatment system are provided in **Attachment A**.

Treatment System Design

The groundwater treatment system will be composed of the following: one or more submersible pneumatic or electric pumps to lift groundwater from the sheet pile lined excavation into two aboveground temporary storage tanks, plumed in series. The aboveground tanks have an approximate 20,000-gallon capacity. As needed, aeration will be supplied to the first tank to aid iron oxidation/flocculation. The first tank will be plumed to the second frac tank or weir tank by quick-connect hose. Suspended solids will settle out in both tanks. A skid-mounted transfer pump will be used to push the effluent through dual, parallel-oriented six-bag particulate filters capable of removing down to 5 micron-sized particles. Construction dewatering under this RGP will include piping and discharging the treated effluent to a gravel area bounding woods west of the paved parking lot, behind the property building. The sheet flow will enter a wetland 250 to 300 feet further to the west. ATC estimates the area covered by standing water in the wetland is 1,000 feet by 400 feet by 1.5 feet deep (a volume of 4.4 million gallons). The actual volume is likely much larger. To be conservative, ATC intentionally underestimated the area of standing water. These wetlands ultimately discharge to the Concord River downgradient of the Billerica Concord River drinking water intake. The location of Outfall 001 is depicted on **Figure 1** and **Figure 3**. Google Earth indicates the outfall coordinates are 71°17'04.14" west longitude, 42°34'34.38" north latitude.

The design capacity of the groundwater treatment system is 250 gpm based upon the opinions of dewatering treatment contractors that have furnished bids to ATC for dewatering and effluent treatment. The average flow is expected to be less, perhaps 100 to 150 GPM. Due to the short duration of this project, the discharge will likely not last for more than two weeks. The new tanks will be set and installed over a two to three-day period. Water pumped into the tanks as ballast will be pumped through the treatment system. Once the tanks are backfilled and installed, further dewatering will be unnecessary, and the discharge will be terminated.

Receiving Waters Information

The proposed discharge location for the treated groundwater is a wooded area behind the property that drains into a nearby wetland. The wetland ultimately discharges to the Concord River, downstream of the Billerica Water Department drinking water intake. ATC attaches the MassDEP Phase I Primary Resources Map, which identifies nearby sensitive environmental receptors.

According to the online MassDEP 2014 Integrated List of Waters, the Concord River is located in the Sudbury-Assabet-Concord Rivers watershed. Its 2014 Assessment Unit ID was MA82A-08. In the property area, the Concord River is a Category 5, impaired water. The Concord River has TMDLs for phosphorous (nutrients) and metals. Background documentation on the receiving waters is provided in **Attachment B**. Because the wetland has essentially no flow, no dilution factors are requested from MassDEP or applied to effluent calculations.

Using an MS Excel spreadsheet made available by USEPA, ATC calculated water quality based effluent limits (WQBELs) for the discharge, to assess whether the RGP technology based effluent limits (TBEL) or WQBEL apply. Based upon ATC's calculation the only WQBEL that applies is total residual chlorine of 145 ug/L applies. ATC's spreadsheets are presented in **Attachment C**.

Influent Sample Analysis

Groundwater samples were collected from monitoring well MW-8, which is located very near the existing USTs May 31, 2017. The samples were analyzed at the Eurofins Laboratory of Agawam, Massachusetts. The samples were handled under standard chain of custody protocol. Chemical analyses of the influent included all RGP Category A through F parameters. The receiving water was analyzed for ammonia and hardness. Copies of the laboratory reports and chain of custody are provided in **Attachment C**. A summary table of the data is included.

In 1996, a former fuel oil and waste oil UST (both 550-gallons) were removed. The results of confirmatory soil sampling beneath the tanks indicated petroleum hydrocarbons were non-detect. Therefore, Group I and Group II polynuclear hydrocarbons are marked "absent" on the NOI application. None were present above lab reporting limits. There has been no known industrial activity at or near the property that involved the use of the heavy metals antimony, cadmium, chromium III and chromium VI, mercury, selenium, and silver and they have been marked absent. Iron and arsenic are somewhat abundant in Massachusetts soils, and they have been marked present, as have nickel and zinc. Lead is present at very low levels and may be attributed to tetraethyl lead gasoline additive. There have been no known uses of selenium and cyanide; they are absent. PCBs have also been marked absent. There is no know source of PCBs on the property.

Although petroleum fuels have been stored at the property for many years, prior environmental remediation by excavation and soil vapor extraction has mitigated the historical release. Gasoline derived VOCs were not detected in the influent sample (from MW-8) in May 2017. Likewise, other halogenated and non-halogenated VOCs and SVOCs were not detected and they have been marked absent. TPH was reported non-detect at 1 mg/L using EPA Method 1664.

Evaluation of Threatened or Endangered Species or Critical Habitats

ATC reviewed United States Department of the Interior, Fish and Wildlife Service, New England Ecological Services Field Office data via internet and telephone regarding the endangered species consultation required for the RGP application. We spoke by telephone with Ms. Maria Tur. Ms. Tur indicated our short duration project would not affect any endangered or threatened species, and showed ATC how to download a letter affirming this determination. A copy of the determination is provided in **Attachment D**.

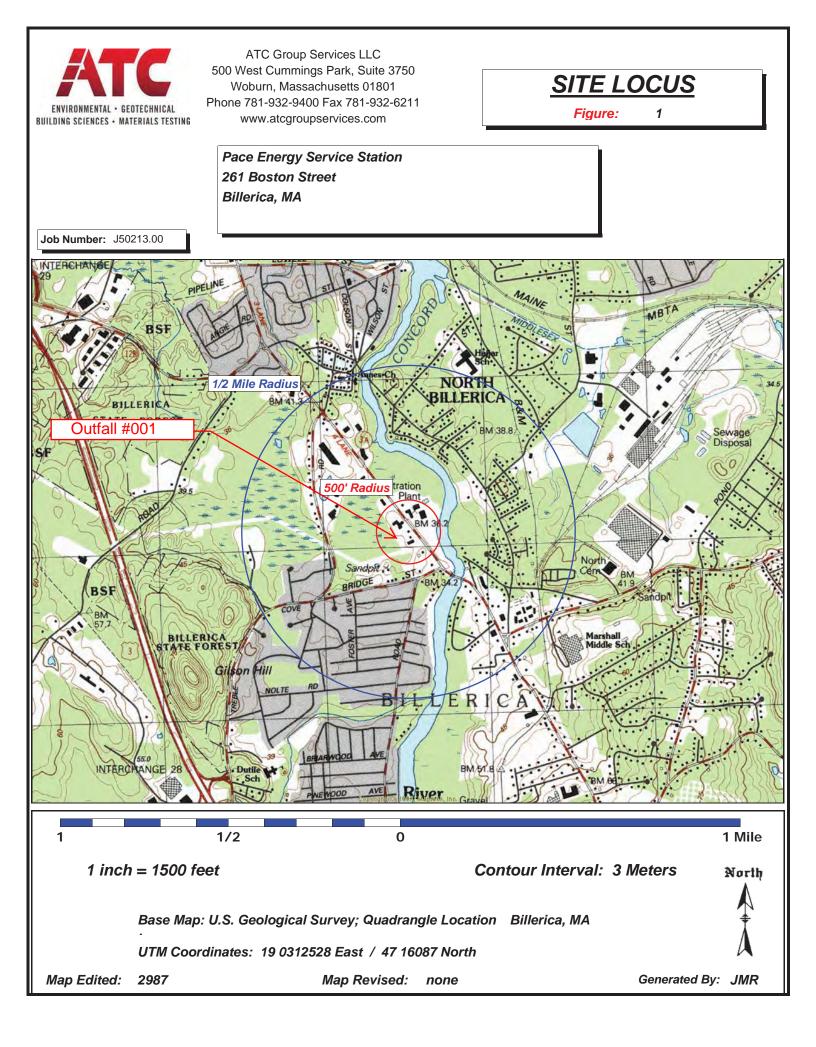
Review of National Register of Historic Places

This project does not involve the demolition or rehabilitation of historic properties. ATC has reviewed Massachusetts Historical Commission databases and found there are no nearby historical assets that will be negatively impacted by the project. The Billerica Pump House (a Concord River drinking water pump house) at 350 Boston Road is the nearest relevant property. It is ATC's opinion the scope, location, and short duration of this project will not have any long-term negative effects on the historical attributes of the nearest historical properties. The Pump House information is provided in **Attachment D**.

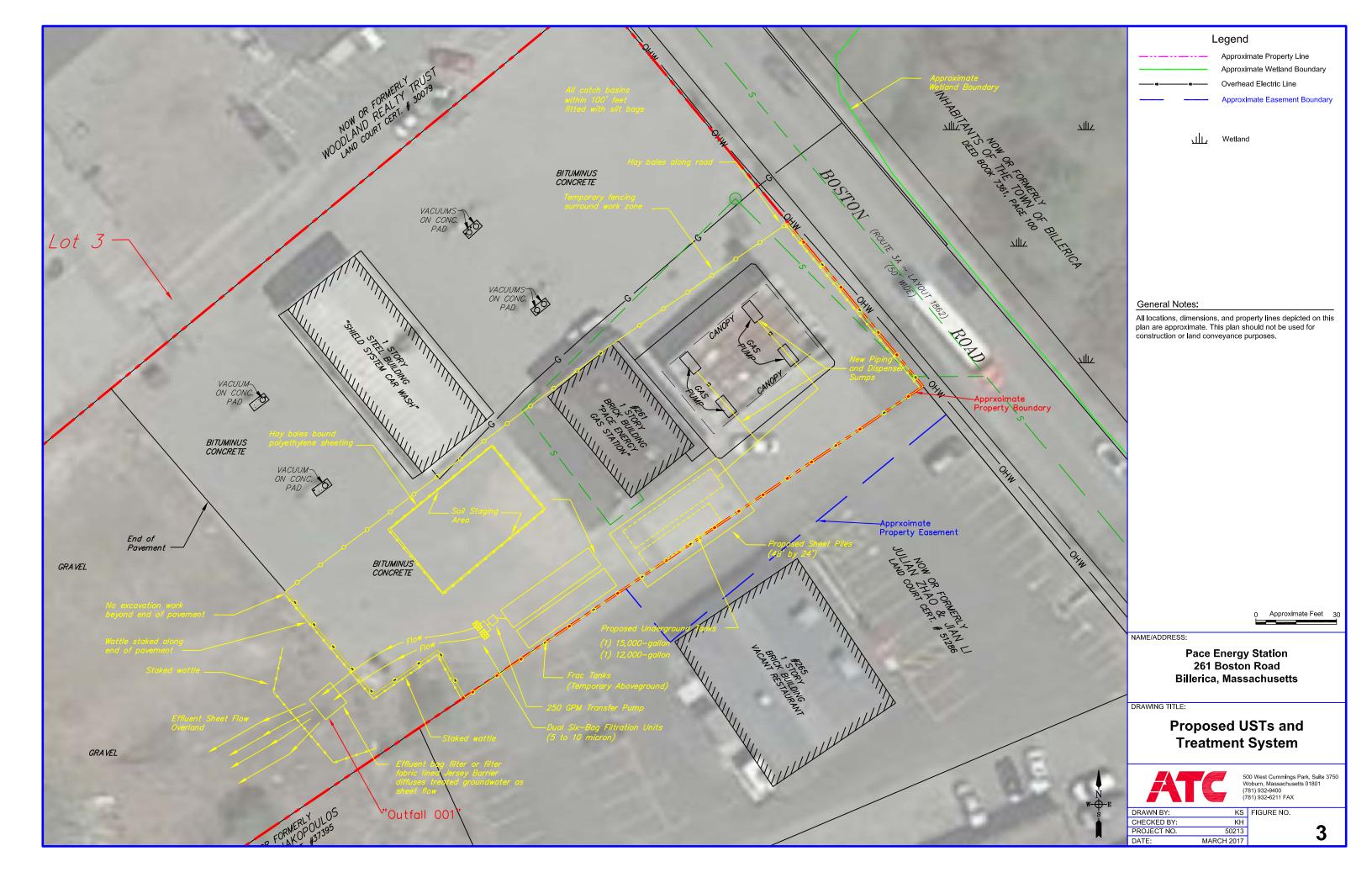
Notification of Local Officials

ATC has provided copies of this RGP application to the Town of Billerica Public Works and Conservation Department, and to the two downstream property owner(s).

Regulation by the Massachusetts Contingency Plan


Lastly, the work being completed is also governed by Massachusetts Contingency Plan (310 CMR 40.0000) under MassDEP RTN 3-13002. A Release Abatement Measure Plan will be provided to the MassDEP before the work is initiated. Discharges subject to the MCP do not require the completion of state application form BRPWM 12 or to pay state fees.

Should you have any questions regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (401) 714-0306, extension 142.


Sincerely, ATC Group Services LLC

Keith Sullivan, CHMM, LSP #1259 Senior Project Manager

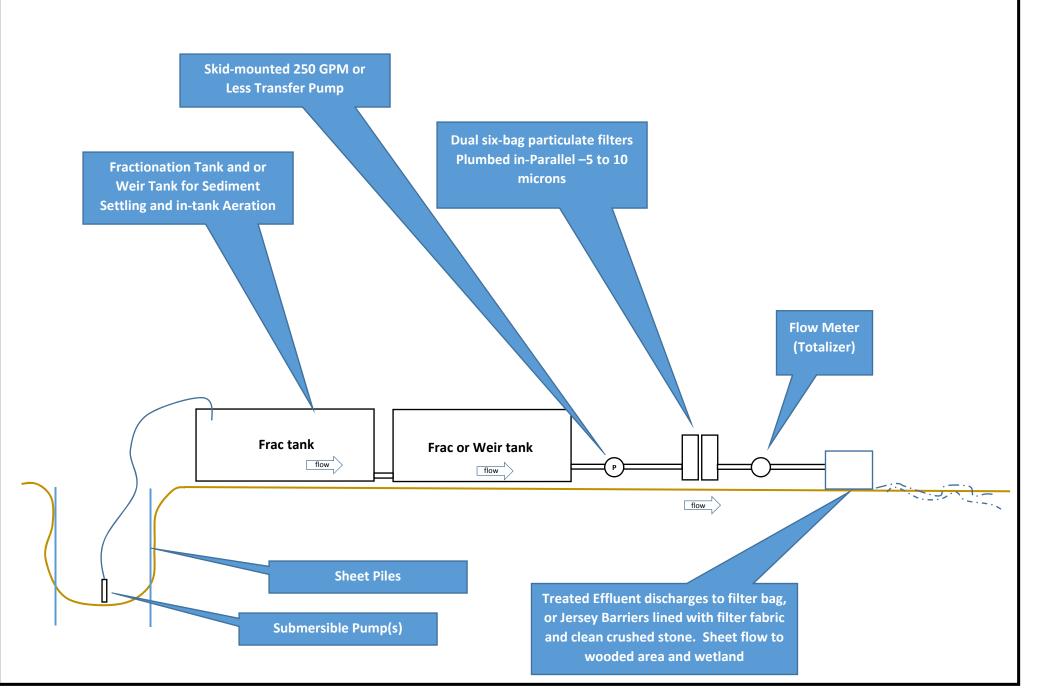

cc: Moses Lawrence Billerica Conservation and DPW Catherine Vakalopoulos (MassDEP) RAM Management Co. LLC Resident, 5 Alison Drive, Westford, MA Figures

FIGURE 4 - SCHEMATIC LINE DRAWING OF TREATMENT SYSTEM

Attachment A RGP NOI Application Form and Best Management Practices Temporary Construction Dewatering

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:					
	Street:					
	City:	State:	Zip:			
2. Site owner	Contact Person:					
	Telephone:					
	Mailing address:					
	Street:					
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	City:		State:	Zip:		
3. Site operator, if different than owner	Contact Person:					
	Telephone:	Email:				
	Mailing address:					
	Street:		P			
	City:		State:	Zip:		
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):			
	□ MA Chapter 21e; list RTN(s):	□ CERCI	LA			
NPDES permit is (check all that apply: \Box RGP \Box DGP \Box CGP	□ NH Groundwater Management Permit or	□ UIC Program				
\square MSGP \square Individual NPDES permit \square Other; if so, specify:	Groundwater Release Detection Permit:	POTW Pretreatment CWA Service 404				
	□ CWA Section 404					

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):						
Receiving water is (check any that apply): Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □ V	Wild and Scenic River						
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): \Box Yes \Box	No						
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes □ No							
	3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.							
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		ctions in						
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in								
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received:	riate State for the 7Q10and dilution factor indicated? (che	eck one): □ Yes □ No						
7. Has the operator attached a summary of receiving water (check one): \Box Yes \Box No	sampling results as required in Part 4.2 of the RGP in acc	cordance with the instruction in Appendix VIII?						

C. Source water information:

1. Source water(s) is (check any that apply):							
Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:				
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other					
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	□ Other; if so, specify:				
\Box Yes \Box No	□ Yes □ No						

2. Source water contaminants:					
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance				
the RGP? (check one): \Box Yes \Box No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No				
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): Yes No					

D. Discharge information

1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \Box New discharge \Box New source				
Outfall(s):	Outfall location(s): (Latitude, Longitude)			
Discharges enter the receiving water(s) via (check any that apply): Direct discharges	ge to the receiving water \Box Indirect discharge, if so, specify:			
\Box A private storm sewer system \Box A municipal storm sewer system				
If the discharge enters the receiving water via a private or municipal storm sewer sys	otem:			
Has notification been provided to the owner of this system? (check one): \Box Yes \Box N	Ňo			
Has the operator has received permission from the owner to use such system for disc obtaining permission:	harges? (check one): \Box Yes \Box No, if so, explain, with an estimated timeframe for			
Has the operator attached a summary of any additional requirements the owner of the	is system has specified? (check one): \Box Yes \Box No			
Provide the expected start and end dates of discharge(s) (month/year):				
Indicate if the discharge is expected to occur over a duration of: \Box less than 12 months \Box 12 months or more \Box is an emergency discharge				
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): Ves No				

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	3. Contamination Type Category: (check all that apply)			
	a. If Activity Category I or II: (check all that apply)				
 I – Petroleum-Related Site Remediation II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation 	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 				
	□ G. Sites with Known	7, V, VI, VII or VIII: (check either G or H) □ H. Sites with Unknown Contamination			
	Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			
	 □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				

4. Influent and Effluent Characteristics

	Known	Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 µg/L	
Arsenic								104 µg/L	
Cadmium								10.2 µg/L	
Chromium III								323 µg/L	
Chromium VI								323 µg/L	
Copper								242 µg/L	
Iron								5,000 µg/L	
Lead								160 µg/L	
Mercury								0.739 μg/L	
Nickel								1,450 µg/L	
Selenium								235.8 µg/L	
Silver								35.1 µg/L	
Zinc								420 µg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOC	s								
Total BTEX								100 µg/L	
Benzene								5.0 µg/L	
1,4 Dioxane								200 µg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known			_	Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 µg/L	
1,2 Dichlorobenzene								600 µg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 µg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 µg/L	
1,2 Dichloroethane								5.0 µg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 µg/L	
Methylene Chloride								4.6 µg/L	
1,1,1 Trichloroethane								200 µg/L	
1,1,2 Trichloroethane								5.0 µg/L	
Trichloroethylene								5.0 µg/L	
Tetrachloroethylene								5.0 µg/L	
cis-1,2 Dichloroethylene								70 µg/L	
Vinyl Chloride								2.0 µg/L	
D. Non-Halogenated SVOC	Cs								
Total Phthalates								190 µg/L	
Diethylhexyl phthalate								101 µg/L	
Total Group I PAHs								1.0 µg/L	
Benzo(a)anthracene									
Benzo(a)pyrene									
Benzo(b)fluoranthene									
Benzo(k)fluoranthene								As Total PAHs	
Chrysene									
Dibenzo(a,h)anthracene									
Indeno(1,2,3-cd)pyrene									

	Known	own Known			Influent		Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 µg/L	
Naphthalene								20 µg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 µg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

 \Box Adsorption/Absorption \Box Advanced Oxidation Processes \Box Air Stripping \Box Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption \Box Ion Exchange \Box Precipitation/Coagulation/Flocculation \Box Separation/Filtration \Box Other; if so, specify:

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Identify each major treatment component (check any that apply):

 \Box Fractionation tanks \Box Equalization tank \Box Oil/water separator \Box Mechanical filter \Box Media filter

 \Box Chemical feed tank \Box Air stripping unit \Box Bag filter \Box Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

 \Box Chlorination \Box De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component:

Is use of a flow meter feasible? (check one): \Box Yes \Box No, if so, provide justification:

Provide the proposed maximum effluent flow in gpm.

Provide the average effluent flow in gpm.

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): \Box Yes \Box No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □

scavengers \Box pH conditioners \Box Bioremedial agents, including microbes \Box Chlorine or chemicals containing chlorine \Box Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary:

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \Box Yes \Box No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No; if no, is consultation underway? (check one): □

 $Yes \ \square \ No$

□ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the EWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so specify:

FWS. This determination was made by: (check one) \Box the operator \Box EPA \Box Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): \Box Yes \Box No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \Box Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \Box Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

As part of the NOI, as required by Section 2.5.1.c., a BMPP meeting the requirements of this general permit will be developed and implemented upon initiation of discharge.

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes 🔳	No 🗆
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □	No 🗆 NA 🔳
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes 🗆	No 🗆 NA 🔳
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES permit \Box Other; if so, specify:	Check one: Yes 🗆	No 🗆 NA 🛢
Signature: 720 Dat	te: June 8, 2017	

Print Name and Title: Keith Sullivan, Project Manager

Best Management Practices

Remediation General Permit Temporary Construction Dewatering 261 Boston Road, Billerica, MA

A Notice of Intent for a Remediation General Permit (RGP) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that may occur when three existing underground storage tanks (USTs) are removed from the ground and replaced with two new USTs. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

The groundwater treatment system will be composed of the following: submersible pneumatic or electric pump(s) to lift groundwater from a sheet-piled excavation into an approximate frac tanks. The first frac tank will employ an aeration system to aid with iron oxidation. The first frac tank will be plumed to a second 21,000 frac tank by quick connect hose. Suspended solids will settle out in both tanks. A skid-mounted transfer pump will be used to push the effluent from the second tank through dual 6-bag, parallel-oriented particulate filters. Filtration will be to 5 to 10 microns. The total flow will be monitoring using a meter. The effluent will be dispersed as sheet flow to the ground surface by large filter bag, or Jersey Barriers lined with filter fabric and clean crushed stone. A line diagram of the groundwater treatment system is provided as **Figure Four**.

The average discharge rate into the wetland is expected to be approximately 150 gallons per minute (gpm). The design capacity of the groundwater treatment system is 250 gpm based upon the opinions of dewatering treatment contractors that have furnished bids to ATC for dewatering and effluent treatment.

The treatment system will be designed and operated by ATC. ATC will obtain and test all influent and effluent samples for compliance monitoring. The Proposed Treatment System Schematic is depicted as Figure Four in the RGP Application. Construction dewatering under this RGP will include piping and discharging the treated effluent to a wooded area west of the paved parking lot, behind the property building. The outfall is labelled "Outfall 001" on Figure One and Three of the RGP Application. The sheet flow will flow into a wetland that ultimately discharges to the Concord River downgradient of the Billerica Concord River drinking water intake.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted by the Environmental Consultant at the treated effluent as required by the RGP. Due to the short duration of this project, the discharge will likely not last for more than two weeks. Daily monitoring to be completed by the Contractor / Operator will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent. The total daily flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the frac and weir tanks, bag filters, hoses, pumps, and flow meter. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

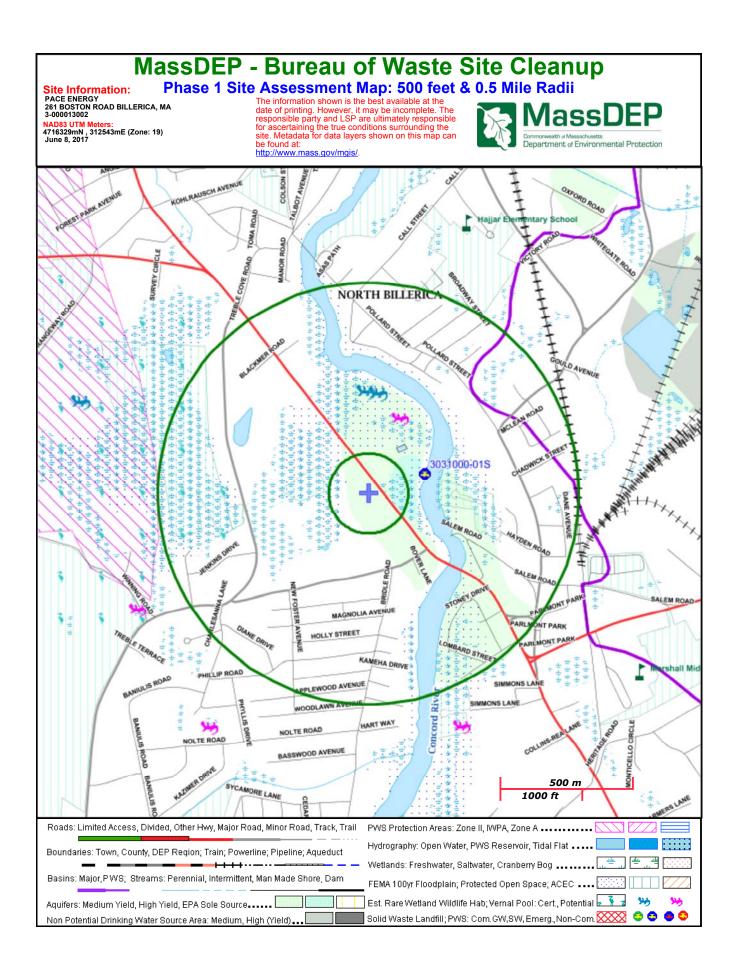
Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor / Operator.

Miscellaneous Items

It is anticipated that the sheet-pile excavation support system, erosion control measures, and the nature of the site and surrounding infrastructure will minimize potential runoff to or from the site. The Contractor will include Best Management Practices for the prevention of sediment entrainment in storm water runoff. Wattle and hay-bales will be deployed around critical areas, and at the end of pavement west of the property building.

Site security for the treatment system will be covered within the overall Contractor site security plan.

No adverse effects are expected for downgradient surface water bodies. Dewatering effluent will be sufficiently treated prior to discharge to the woodland and wetland.


Management of Treatment System Materials

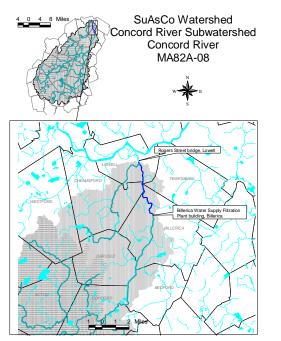
With the exception of total suspended solids, untreated groundwater analytical data obtained for the RGP application was below the applicable Technology Based Effluent Limits, as they are currently written in the March 2017 RGP.

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses to minimize handling. The contractor will establish staging areas on the property for any equipment or materials storage which may be possible sources of pollution away from any dewatering activities.

Sediment from the fractionalization tank used in the treatment system will be characterized and disposed of as soil at an appropriate receiving facility in accordance with applicable laws and regulations. Bag filters will be placed in drums and manifested for off-site disposal.

Attachment B Background Documentation on the Concord River and Sensitive Receptors

CONCORD RIVER (SEGMENT MA82A-08)


Description: From the Billerica Water Supply Intake, Billerica, to Rogers Street bridge, Lowell Segment Length: 5.1 miles Classification: Class B, Warm Water Fishery

Land-use estimates (top 3, excluding water) for the 399.6 mi² watershed (map inset, gray shaded area, includes the entire Assabet and Sudbury subwatersheds) are presented below. An estimate of the impervious area within this subwatershed is 48.4 mi² and the percentage of the imperviousness is 12.1%.

Forest44% Residential31% Open land......7%

Based on the last evaluation of water quality conditions this segment of the Concord River is listed on the 2002 Integrated List of Waters in Category 5. This segment was assessed as impaired and requires a TMDL for metals and nutrients (MA DEP 2003a).

The history of the 27-mile long Middlesex Canal, completed in December of 1803 as a means of transporting freight from Boston to Merrimack, and

Faulkner/Talbot's Dam in Billerica is available in the Middlesex Canal Association's September 2000 Towpath Topics newsletter (Middlesex Canal Association 2000). Additional information on the canal can be also obtained from the association's websites at http://www.middlesexcanal.org/.

WMA WATER WITHDRAWAL SUMMARY

Based on the available information there are no registered or permitted WMA withdrawals from this subwatershed.

NPDES WASTEWATER DISCHARGE SUMMARY (APPENDIX E, TABLE E1-E4)

The Town of Billerica (MA0101711) is permitted (2 November 2001) to discharge 5.4 MGD (annual average, not monthly average) of treated sanitary wastewater via outfall 001 to the Concord River. The permit expired in 2003. A new permit is being developed. The facility's whole effluent toxicity limit is C-NOEC \geq 24% effluent and LC₅₀ \geq 100% effluent. There are seasonal limits for phosphorus (May 1-October 31 = 0.75 and November 1- April 31 = report) and ammonia-nitrogen (June 1 to September 30 =6 mg/L and October 1 – May 31 = report). Ammonia-nitrogen concentrations in the effluent ranged from a low of <0.05 to a high of 17 mg/L. The facility's TRC limit is 0.045 mg/L. TRC concentrations in the effluent ranged between <0.02 and 0.08 mg/L and of the 27 measurements only one exceeded the limit. The Billerica WWTP is a secondary WWTP that serves 37,000 people and receives wastewater from approximately 19 industrial users. The facility has requested an increase in flow rate due to the planned tie-in of the Billerica House of Corrections (MCI-Billerica). Following the tie-in the Town plans to take over the MCI-Billerica WWTP, rehabilitate it, and resume treating flow from the facility and a planned industrial park. The NPDES Permit for any future facility will be issued such that it is consistent with all other NPDES Permits issued in this segment of the Concord River (Casella 2005).

Baker Commodities, Incorporated (MAG250026) is permitted (4 June 2003) to discharge 0.1 MGD of NCCW to a tributary to this segment of the Concord River. Baker Commodities (MAR05C532) is also permitted to discharge storm water. The facility's individual permit (MA0031585) was closed.

FERC

In September of 1981 the Mass Bay Power Company was issued a FERC- exemption (Project No. 2998) to operate the Centennial Island Hydroelectric Project. The project consists of a 320-foot long masonry

and concrete dam with 8-inch high flashboards, a headpond, and a 2,300-foot long, 36-foot wide, and 8foot deep canal that transports water to the powerhouse. The project is required to release a continuous minimum flow of 57 cfs, or inflow, into the bypass reach, between the dam and the tailrace (Grader 2004). The 57 cfs is released, in part, over the dam and thru the fishways (upstream and downstream - although only one may be operational at any particular point in time). The Denil fishway would normally be passing about 12 cfs (Quinn 2004). They also must always release a minimum below-project flow of 142 cfs (Grader 2004). However, the owner operates the project as true run-of-river (inflow = outflow, maintaining a stable headpond at the top of the flashboards) (Grader 2004). In 1994 the exemptee was required to install streamflow monitoring equipment that records minimum flow discharged to the bypass reach after a site visit by FERC, which was prompted by reports that showed that the minimum flows were not met (as low as 5 cfs in Nov 93 and June 94 completely dewatered). The fishway is adjacent to the dam and includes an upstream fish ladder and downstream chute for fish migration. The fishway also operates as the structure for the release of minimum flow. Depending on the upstream or downstream migration season flows are regulated or controlled by stoplogs (FERC undated). The upstream fish ladder typically begins operating one week after clupeids pass the Lawrence fish lift and closes July 31. The downstream ladder is opened for spent adults two weeks after the upstream passage begins and closes July 31. For juveniles the bypass operates from September 1 through November 15.

LANDFILLS (APPENDIX K)

The Corenco Industrial Landfill is located within this subwatershed.

USE ASSESSMENT

AQUATIC LIFE

Habitat and Flow

The estimated 7Q10 at the USGS streamflow gage (01099500) located downstream from this segment (300 feet downstream from Rogers Street in Lowell) is estimated to be 32.2 cfs (Wandell and Fontaine 1984). The USGS remarks that the discharge includes water released from the Sudbury River basin and Lake Cochituate and that low flow is regulated by mills in Lowell. Evidence of regulation at this stream gaging location can be observed using on-line real-time USGS gaging data (USGS 2004).

On 23 July 2001, ENSR measured streamflow in the Concord River at Station CR03, upstream from the Faulkner Dam in Billerica, to be 143.2 cfs (ENSR 2003). Additionally, on 23 August 2001 ENSR conducted a time-of-travel survey through five miles of the Concord River, beginning in Bedford, downstream from Ball Hill Road at river mile 13, and ending at River Street in Billerica at river mile 8. The estimated mean time-of-travel was 3.8 days (90 hours and 48 minutes) and the average velocity was estimated to be 0.08 ft/sec. On 10 September 2001 another time-of-travel study was again conducted using Rhodomine dye through the same five-mile reach. The estimated time-of-travel was 3.6 days (86 hours and 40 minutes) and the average velocity was estimated to be 0.09 ft/sec (ENSR 2003). The average streamflow at the USGS gage over the time-of-travel study in August was 97 cfs (3 times the 7Q10) and in September was 40 cfs (1.2 times the 7Q10).

Although the Concord River is not specifically mentioned in the *Strategic Plan for the Restoration of Atlantic Salmon for the Merrimack River 1990 through 2004* (Merrimack River Policy and Technical Committee 1990) it is mentioned in the Merrimack River Basin Fish Passage Action Plan for Anadromous Fish (Merrimack River Policy Committee 1988). The latter plan specifically identifies two dams on this segment of the Concord River requiring fish passage- Centennial Island in Lowell and Faulkner Dam (also referred to as the Talbot Mills or Billerica Dam) in East Billerica. The plan further states that "Construction of the Centennial Island and East Billerica fish passage facilities will provide anadromous fish access to the base of the Saxonville dam on the Sudbury River and to the base of the Damondale dam on the Assabet River". The fish passage facility at Faulkner Dam was to be operational five years following the passage of 500 shad at Centennial Island (Merrimack River Policy and Technical Committee 1990). At this time there are no functional plans for any upstream or downstream fishway at the Talbot/Billerica dam (Quinn 2004).

Mass Bay Power Company owns and operates the FERC exempt Centennial Island Hydroelectric Project No. 2998. The project is supposed to release a continuous minimum flow of 57 cfs, or inflow, into the bypass reach. The bypass reach extends from the dam to the confluence with the tailrace (approximately

0.4 river miles). FERC has received reports that flows in the bypass reach have been below the required minimum 57 cfs. In May 2002 a compliance investigation of Centennial Island was requested by a third party. During the spring of 2002 flashboards, approximately 16 inches high, were noted along the top of the falls and an adjacent fish ladder diverting water to the supply canal. The US Fish & Wildlife Service noted deficiencies at the fish ladder during a site visit in the summer of 1999. The fish ladder is to begin operating one week after clupeids pass the Lawrence fish lift and closes 31 July. For spent adults the bypass channel is opened two weeks after upstream passage begins and closes 31 July. For juveniles the bypass operates 1 September through 15 November. The USF&W Service initiated an alewife stocking program in 2000 above the Faulkner Dam (Talbot Mill Dam/Billerica Dam) in Billerica that was expected to last at least three years. As such the downstream bypass sluice should be opened earlier than in the past, around April 7 (FERC undated).

On 24 March 2004 DWM staff toured the Centennial Island Dam and fish ladder in Lowell. The eight foot high dam, located downstream from Lawrence Street, seemed to be in need of maintenance; logs and branches accumulated against the flash boards and some rooted shrubs appeared to be growing out of the dam. There were also three large deciduous trees growing out of the center of the stream below the dam. Water flows under the Flotsam Bridge and then encounters the Centennial Dam Project. Water may flow by the project in any of three courses. Water may pour over the dam and then travel down the right side of the island. Or, water may flow through the fish ladder and then mix with the water that has poured over the dam. Or, water may enter the canal that flows down the left side of the island. It did not appear that the hydroelectric facility was operating. The fish ladder did not appear to be operating as water levels were insufficient to allow upstream migration. Instream cover downstream from the dam was good with the substrate in the main river channel consisting primarily of boulders and cobble. Less than 10% of the reach had submerged snags or logs. The bank on the left bank (facing downstream) was a cement wall. The right bank consisted mostly of large boulders. Undercut banks for habitat were minimal. Filamentous green algae were attached to the boulders and cobble. Current velocities were greater than 5 feet per second and water reached both banks. The width of the riparian zone on the right bank was less than six meters, with obvious human impacts (old warehouse and hydro facility), while on the right the riparian zone is 6-12 meters.

Biology

In July and September of 2001 ENSR conducted aquatic weed mapping along one reach of this segment of the Concord River upstream of the Faulkner Mills Dam in Billerica. These studies were conducted as part of the Phase I assessment for the Concord River nutrient TMDL development (ENSR 2003).

In July the estimated biomass was 110,000 kg, while in September the estimated biomass was 140,000 kg. It should be noted that ESNR believes that the estimated biomass is artificially inflated due to the presence of high-density plants. Aquatic vegetation was limited to the areas along the stream banks in the main river. However, the impounded area behind the dam was 75-95% covered with dense to very dense aquatic vegetation. The non-native *Trapa natans* (water chestnut) dominated the aquatic vegetation (27%, 31,000 kg) in July. Filamentous green algae (22% and 3.7%), *Cladophora* sp. (23% and 14%), the non-native *Cabomba caroliana* (0.4% in July), and *Myriophyllum spicatum* (1.3% in September) were also identified. Duckweed (*Lemna minor*) was also identified in July (2.4%, 2,800kg) and was the dominant species identified during the September survey (37%, 52,000 kg).

As part of the USFWS river herring/alewife restoration program the Lowell Parks and Conservation Trust started a volunteer fish counting program at Wamesit Falls and Centennial Island Fish Ladder in Lowell in 2002. As of 2004 USFWS was not aware of any fish counted at Centennial Island by the Lowell volunteers (Quinn 2004).

MDFW conducted fish population sampling at one station on this segment of the Concord River, behind the fire station off of Lowell Street in Billerica, on 21 May 2001 using boat electroshocking equipment (Richards 2003a). One hundred thirty-eight bluegill, 71 pumpkinseed, 63 white perch, 56 common carp, 29 yellow perch, 30 black crappie, 21 largemouth bass, 16 white sucker, nine golden shiner, nine chain pickerel, eight brown bullhead, five alewife, four redfin pickerel, three American eel, two green sunfish, two smallmouth bass, one northern pike, and one yellow bullhead were collected. The total number of

fish collected was high. Macrohabitat generalists dominated the sample. Only one species, white sucker, is considered a fluvial specialist. All species present are considered moderately tolerant or tolerant to pollution. This segment of the Concord River is predominantly slow-moving and meandering. Given the nature of this segment the dominance by a diverse mix of tolerant and moderately tolerant macrohabitat generalists is to be expected. Few anadromous fish (alewife) and catadromous fish (American eel) were found.

Toxicity

Effluent

Between 14 July 1997 and 15 March 2004 the Town of Billerica conducted 23 whole effluent toxicity tests using the water flea (*Ceriodaphnia dubia*) and 25 tests using the fathead minnow (*Pimephales promelas*). The effluent was acutely toxic to the water flea on only two occasions, once in February 2000 ($LC_{50} = 58.8\%$ effluent) and once in March 2002 ($LC_{50} = 70.7\%$ effluent). The effluent was never acutely toxic to the minnow ($LC_{50} > 100\%$ effluent). The C-NOEC ranged from 12.5% effluent to 100% effluent for the *Ceriodaphnia* tests and from 24 to 100% effluent for the *Pimephales* tests. Of the tests conducted *C. dubia* was generally the more sensitive test species.

Ambient

The Town of Billerica collected water from the Concord River at the Pollard Street bridge (~one mile upstream from the discharge) for use as diluent in their whole effluent toxicity tests. Survival of *Ceriodaphnia* exposed to river water for seven days was good (\geq 80%). Survival of *Pimephales* was fair and ranged between 38 and 100% survival and was less than 75% in seven of the 25 tests conducted. It should be noted that survival of the minnows from July 2001 to present has not been less than 75%.

Chemistry - water

As part of their whole effluent toxicity tests the Town of Billerica collected water from the Concord River. The water was analyzed for hardness, alkalinity, conductivity, ammonia-nitrogen, pH, and suspended solids.

pН

pH in the Concord River as measured in the Billerica toxicity tests ranged between 6.6 and 7.75 SU (n=27).

Hardness

Hardness in Concord River water as measured in the Billerica toxicity tests ranged between 27 and 100 mg/L)(n=27).

Alkalinity

The Billerica toxicity tests reported alkalinity of the Concord River between <10 and 80 mg/L (n=25).

Conductivity

Concord River conductivities, as reported in the Billerica toxicity tests, ranged between 254 and 587 μ S/cm (n=27).

Total Suspended solids

TSS concentrations, according to the Billerica toxicity tests, ranged between <5 and 23 mg/L (n=24).

Ammonia-nitrogen

Concentrations of ammonia-nitrogen in Concord River water ranged between <0.05 and 0.580 mg/L (n=25).

Total Residual Chlorine

With the exception of one elevated TRC measurement (July 1997) of 0.12 mg/L, all TRC measurements were less than the minimum quantification level of 0.05 mg/L.

Chemistry-sediment

ENSR collected sediment samples from the Concord River at the Faulkner Dam forebay. Samples were analyzed for nutrient concentrations, total carbon, and Toxicity Characteristic Leaching Procedure (TCLP) metal analysis. Although the total phosphorus concentration did not exceed the L-EL guidance of 600 ppm (32.2 ppm) the sediment sample exceeded the S-EL guidance of 10 ppm for TOC by a factor of 2,500 (Persuad *et al.* 1993). TCLP analysis did not detect concentrations of arsenic, barium, cadmium, chromium, mercury, lead, selenium, or silver in the sediments from the Faulkner Dam forebay (ENSR 2003).

Based on the presence of the non-native macrophyte species, which compromise the native, naturally diverse community of aquatic flora, the Aquatic Life Use is assessed as impaired. It should also be noted that the Concord River is specifically listed in Table 1 (Upstream Fish Passage Requirements For Anadromous Fish in The Merrimack River Basin, 1988-2005) of Appendix III (Merrimack River Basin Fish Passage Action Plan for Anadromous Fish) within the Strategic Plan for the Restoration of Atlantic Salmon for the Merrimack River 1990 through 2004 (Policy Committee for Anadromous Fishery Management of the Merrimack River 1990). Goals include an operational fish passage facility coincident with completion of hydroelectric facility at Centennial Island and an operational fish passage facility at East Billerica within five years of the passage of 500 shad at the Centennial Island ladder. According to the Strategic Plan fish passage facilities at these locations would "provide anadromous fish access to the base of the Saxonville dam on the Sudbury River and to the base of the Damondale dam on the Assabet River." The current lack of passage at Faulkner Dam also contributes to the impairment noted above. The USFWS is currently working with the owners of both the Centennial Island and Faulkner Dam to either improve (Centennial) or establish (Faulkner) fish passage facilities at these locations. There may also be issues with the hydropower project (e.g., lack of water in the bypass reach, evidence of stream flow fluctuations). Poor survival of minnows exposed to river water collected near the Pollard Street bridge prior to July 2001 was also documented.

FISH CONSUMPTION

Because of elevated mercury in fish tissue documented in the Concord and Sudbury rivers MDPH issued a fish consumption advisory for the Concord River in the towns of Concord, Carlisle, Bedford, and Billerica.

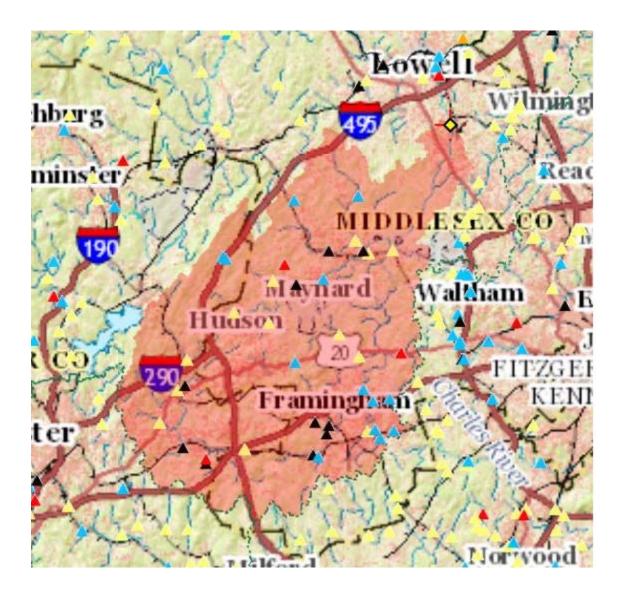
- 1. Children younger than 12 years, pregnant women, and nursing mothers should not eat any fish from this waterbody.
- 2. The general public should not consume any largemouth bass from this waterbody.
- 3. The general public should limit consumption of non-affected fish from this waterbody to two meals per month.

Currently, the MDPH advisory does not include the portion of the Concord River through the towns of Chelmsford and Lowell so the *Fish Consumption Use* is assessed as impaired for the upper 3.2 miles and not assessed for the lower 1.8 miles. Mercury contamination from the Nyanza Superfund Site is considered the primary cause of impairment but other potential sources include atmospheric deposition.

PRIMARY CONTACT AND SECONDARY CONTACT RECREATION AND AESTHETICS

As part of a reconnaissance of this segment downstream from the Lawrence Street bridge on 24 March 2004 DWM staff noted that there were very small amounts of trash and debris actually in the watercourse. However, the potential exists for large amounts of discarded materials (roof shingles, pipes, glass, wood, etc) from the abandoned factory buildings on the left bank to end up in the water. These materials were lying atop the cement retaining wall and could easily blow into the stream. There was also a footpath along this wall that provides potential access to the stream for recreation. The Massachusetts Community Water Watch conducted a shoreline survey on two miles of this segment of the Concord River upstream from the Lowell Cemetery on Lawrence Street. They noted improper disposal of yard waste, lack of erosion and sediment controls at the site of new dock construction, and concerns over the storage of trains over the river. With the exception of sporadic trash on the stream banks this section of the Concord River was aesthetically pleasing (Cornwell 2004).

Due to the lack of quality assured bacteria data the *Recreational* uses are currently not assessed. The *Aesthetics Use* is assessed as support. However, the Aesthetics Use is identified with an "Alert Status" due to the isolated areas of trash and debris along the streambanks and the urbanized nature of this segment.


Concord River (MA82A-08) Use Summary Table

Designated Uses		Status
Aquatic Life		IMPAIRED Causes: Non-native aquatic plants (Suspected Causes: Fish barriers) (Suspected Sources: Hydrostructure impacts on fish passage, impacts from hydrostructure flow regulation/ modification)
Fish Consumption		IMPAIRED upper 3.2 miles NOT ASSESSED lower 1.9 miles Causes: Mercury Sources: Nyanza Superfund Site (Suspected Sources: Atmospheric deposition)
Primary Contact		NOT ASSESSED
Secondary Contact		NOT ASSESSED
Aesthetics	WA	SUPPORT*

* Alert Status issues identified—see details in use assessment section.

RECOMMENDATIONS

- Water quality and biological monitoring should be conducted to better evaluate the status of the *Aquatic Life Use*. Monitor the fish community along this segment of the Concord River to evaluate any changes resulting from efforts to improve/mimic natural flow regimes.
- Instream flow regimes along this segment of the Concord River (as affected by operation of the FERC-exempt hydropower projects) should be documented and attempts should be made to mimic natural flow regimes to the extent possible. Investigate the operating conditions at the Centennial Island Dam during periods of low flow. Determine if this project releases its required minimum flows. Evaluate and monitor operations for compliance with run-of-river requirements.
- A habitat assessment for anadromous fish should be conducted upstream and downstream from the Talbot/Billerica dam. An anadromous fish target species should be selected. Depending on the target species and returns expected a Denil fishway or a steeppass fishway would be appropriate. Funding sources should be explored to install and maintain the fishway. The possibility/feasibility of dam removal should also be explored
- A non-native aquatic macrophyte management plan should be developed for the Concord River aimed at controlling the populations and preventing the spread to waters downstream.
- The Town of Billerica WWTP NPDES permit should be renewed with appropriate limits and monitoring requirements. The toxicity testing requirements should be reduced to testing with *C. dubia* only since it has been the more sensitive test organism.
- Additional instream studies (ambient toxicity testing, benthic macroinvertebrate sampling bracketing the discharge, fish population sampling, habitat assessment) should be conducted due to the frequency of reduced survival of *P. promelas* in the Concord River upstream from the Billerica WWTP. If significant toxicity is detected determine cause(s) and source(s).
- MDPH should re-evaluate the fish consumption advisory for the Concord River to include all towns from the confluence with the Assabet and Sudbury rivers to the confluence with the Merrimack River.
- Bacteria monitoring should be conducted at multiple stations along this five-mile segment to assess status of the *Recreational* uses.
- Work with Massachusetts Community Water Watch to conduct a stream cleanup along this segment of the Concord River and continue performing shoreline surveys to document the aesthetic quality of this segment for use in assessing the *Aesthetics Use*.

From StreamStats 3

Flow Statistics Ungaged Site Report

Date: Tues June 6, 2017 3:52:14 PM GMT-4 Study Area: Massachusetts NAD 1983 Latitude: 42.581 (42 34 52) NAD 1983 Longitude: -71.2847 (-71 17 05) Drainage Area: 368 mi2

Low Flows Basin Characteristics							
100% Statewide Low Flow WRIR00 4135 (368 n	ni2)						
Parameter Value Regression Equation Va							
		Min	Max				
Drainage Area (square miles)	368 (above max value 149)	1.61	149				
Mean Basin Slope from 250K DEM (percent)	2.705	0.32	24.6				
Stratified Drift per Stream Length (square mile per mile)	0.21	0	1.29				
Massachusetts Region (dimensionless)	0	0	1				

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Probability of Perennial Flow Basin Characteristics							
100% Perennial Flow Probability (368 mi2)							
Parameter Value Regression Equation Range							
		Min	Max				
Drainage Area (square miles)	368 (above max value 1.99)	0.01	1.99				
Percent Underlain By Sand And Gravel (percent)	45.19	0	100				
Percent Forest (percent)	47.41	0	100				
Massachusetts Region (dimensionless)	0	0	1				

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Bankfull Flows Basin Characteristics							
100% Bankfull Statewide SIR2013 5155 (368 mi2)							
Parameter	Value	Regression Equation Valid Range					
		Min	Max				
Drainage Area (square miles)	368 (above max value 329)	0.6	329				
Mean Basin Slope from 10m DEM (percent)	5.931	2.2	23.9				

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Peak Flow Regions Basin Characteristics							
100% Peak Statewide 2016 5156 (368 mi2)							
Parameter	Value	Regression Equation Valid Range					
		Min	Max				
Drainage Area (square miles)	368	0.16	512				
Mean Basin Elevation (feet)	273	80.6	1948				
Percent Storage from NLCD2006 (percent)	14.21	0	32.3				

Low Flows Statistics							
Statistic Valu	Value	Unit	Prediction Error	Equivalent years of record	90-Percent Prediction Interval		
			(percent)		Min	Max	
D50	396	ft3/s					
D60	327	ft3/s					
D70	222	ft3/s					
D75	181	ft3/s					
D80	143	ft3/s					
D85	116	ft3/s					
D90	90.9	ft3/s					
D95	62.5	ft3/s					
D98	41.5	ft3/s					
D99	34.7	ft3/s					
M7D2Y	65.9	ft3/s					
AUGD50	123	ft3/s					
M7D10Y	33.7	ft3/s					

http://pubs.usgs.gov/wri/wri004135/ (http://pubs.usgs.gov/wri/wri004135/) Ries_ K.G._ III_ 2000_ Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135_ 81 p.

Probability of Perennial Flow Statistics								
Statistic	Value Unit	Unit	Standard Error	Equivalent years of record	90-Percent Prediction Interval			
		(percent)	record	Min	Max			
PROBPEREN	1	dim						

http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf) Bent_G.C._ and Steeves_P.A._ 2006_ A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006-5031_107 p.

Bankfull Flows Statistics								
Statistic Valu	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval			
					Min	Max		
BFWDTH	149	ft						
BFDPTH	5.08	ft						
BFAREA	759	ft2						
BFFLOW	2780	ft3/s						

http://pubs.usgs.gov/sir/2013/5155/ (http://pubs.usgs.gov/sir/2013/5155/)

Bent_G.C._ and Waite_A.M._ 2013_ Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013-5155_ 62 p._

	Peak Flow Regions Statistics							
Statistic Val	Value	Unit		Equivalent years of	90-Percent Prediction Interval			
	(percent) record	record	Min	Max				
PK2	3750	ft3/s	42					
PK5	5860	ft3/s	43					
PK10	7450	ft3/s	45					
PK25	9700	ft3/s	47					
PK50	11500	ft3/s	49					
PK100	13400	ft3/s	52					
PK200	15500	ft3/s	54					
PK500	18400	ft3/s	58					

https://dx.doi.org/10.3133/sir20165156 (https://dx.doi.org/10.3133/sir20165156)

Zarriello_ P.J._ 2017_ Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156_ 99 p.

AccessibilityFOIAPrivacyPolicies and NoticesU.S. Department of the Interior | U.S. Geological SurveyURL: http://streamstatsags.cr.usgs.gov/v3_beta/FTreport.htmPage Contact Information: StreamStats HelpStreamstatPage Last Modified: 08/09/2016 14:34:10 (Web2)

Streamstats Status News

USA.gov

Attachment C Data Summary Table, WQBEL Calculations and Laboratory Reports

Analytical Parameter		RGP TBEL (in mg/L)	RGP WQBEL (in mg/L)	Method Dectection Limit (mg/L)	RGP-1 Reporting Limit 6/1/2017	SW-1 Reporting Limit 6/1/2017
INORGANICS						
E350.1 (mg/L) 7664-41-7	Ammonia as Nitrogen	Report mg/L	Report mg/L	0.05	0.16	0.10
EPA 300.0 (mg/						
16887-00-6	Chloride	Report ug/L	Report ug/L	0.987	260	-
SM4500-CI-G (1	1) (mg/l)					
7782-50-5	Total Residual Chlorine	0.2	0.011	0.006	<0.020	-
SM2540D (11) (ma/l)					
TSS	Total Suspended Solids	30	30	0.4	5.2	-
EPA 200.8 (mg/	7)					
7440-36-0	Antimony	0.206	0.640	0.0007	<0.00045	-
7440-38-2	Arsenic	0.104	0.01	0.00006	0.00418	-
7440-43-9	Cadmium	0.01	0.00025	0.00004	<0.00025	-
7440-47-3	Chromium	0.323	0.074	0.00015	<0.00120	-
7440-50-8	Copper	0.242	0.009	0.00004	0.00474	-
7439-89-6	Iron	5.0	5.0	0.001	0.642	-
7439-92-1	Lead	0.16	0.0025	0.00002	0.00109	-
7440-02-0	Nickel	1.45	0.052	0.00005	0.00250	-
7782-49-2	Selenium	0.235	0.005	0.00012	<0.00305	-
7440-22-4	Silver	0.351	0.0032	0.0001	< 0.00030	-
7440-66-6	Zinc	0.42	0.12	0.00116	0.0110	-
EPA 245.1/7470)A (mg/l)					
7439-97-6	Mercury	0.739	0.77	0.00013	<0.00020	-
SM3500-Cr-B (1	I1)/7196A (mg/l)					
18540-29-9	Hexavalent Chromium	0.323	0.11	0.002	<0.005	-
Calculation (mg	a/l)					
16065-83-1	Trivalent Chromium	0.323	0.074	0.0053	<0.0024	-
FPA 335.4 / SW	/846 9012B (mg/l)					
57-12-5	Cyanide (total)	0.178	0.0052	0.00426	<0.00500	-

= Orange highlight: Method Dection Limit Exceeds RGP Effluent Limit

A	nalytical Parameter	RGP TBEL (in ug/L)	RGP WQBEL (in ug/L)	Method Dectection Limit (ug/L)	RGP-1 Reporting Limit 6/1/2017	SW-1 Reporting Limit 6/1/2017
NON-HALOGENA	TED VOCS					
EPA 624 (µg/l)						
	Total BTEX	100	100		<2.0	-
71-43-2	Benzene	5.0	5.0	0.3	<1.0	-
108-88-3	Toluene			0.3	<1.0	-
100-41-4	Ethylbenzene			0.3	<1.0	-
179601-23-1	m,p-Xylene			0.4	<2.0	-
95-47-6 123-91-1	o-Xylene 1,4-Dioxane	200	200	0.3 11.4	<1.0 <20.0	-
67-64-1	Acetone	7.97	7.97	0.8	<20.0 <10.0	-
07-04-1	Acelone	1.51	1.51	0.0	<10.0	-
EPA 625 (µg/l)						
108-95-2	Phenol	1,080	300	0.658	<5.10	-
HALOGENATED V	OCS					
EPA 624 (µg/l) H	alogenated VOCs					
56-23-5	Carbon tetrachloride	4.4	1.6	0.4	<1.0	-
95-50-1	1,2-Dichlorobenzene	600	600	0.4	<1.0	-
541-73-1	1,3-Dichlorobenzene	320	320	0.3	<1.0	-
106-46-7	1,4-Dichlorobenzene	5	5	0.3	<1.0	-
75-34-3	1,1-Dichloroethane	70	70	0.3	<1.0	-
107-06-2	1,2-Dichloroethane	5	5	0.3	<1.0	-
75-35-4	1,1-Dichloroethene	3.2	3.2	0.7	<1.0	-
156-59-2	cis-1,2-Dichloroethene	70	70	0.3	<1.0	-
75-09-2	Methylene chloride	4.6	4.6	0.7	<10.0	-
127-18-4	Tetrachloroethene	5.0	3.3	0.8	<1.0	-
71-55-6	1,1,1-Trichloroethane	200	200	0.5	<1.0	-
79-00-5	1,1,2-Trichloroethane	5.0	5.0	0.3	<1.0	-
79-01-6	Trichloroethene	5.0	5.0	0.5	<1.0	-
75-01-4	Vinyl chloride	2.0	2.0	0.5	<1.0	-
SW846 8011 (µg	/1)					
106-93-4	1,2-Dibromoethane (EDB)	0.05	0.05	0.00336	<0.0100	-
NON-HALOGENA	TED SVOCS					
EPA 625 (µg/l) N	Ion-Halogenated VOCs					
	Total Phthalate	190	190		<5.10	
85-68-7	Butyl benzyl phthalate			0.447	<5.10	-
84-66-2	Diethyl phthalate			0.636	<5.10	-
131-11-3	Dimethyl phthalate			0.773	<5.10	-
84-74-2	Di-n-butyl phthalate			0.466	<5.10	-
117-84-0	Di-n-octyl phthalate			0.414	<5.10	-
117-81-7	Bis(2-ethylhexyl)phthalate	101	2.2	0.651	<5.10	-
	Total Group I PAHs	1.0	1.0			
56-55-3	Benzo (a) anthracene		0.0038	0.547	<5.10	-
50-32-8	Benzo (a) pyrene		0.0038	0.573	<5.10	-
205-99-2	Benzo (b) fluoranthene	As Total	0.0038	0.446	<5.10	-
207-08-9	Benzo (k) fluoranthene	Group I PAH	0.0038	0.49	<5.10	-
218-01-9	Chrysene		0.0038	0.543	<5.10	-
53-70-3	Dibenzo (a,h) anthracene		0.0038	0.459	<5.10	-
193-39-5	Indeno (1,2,3-cd) pyrene		0.0038	0.592	<5.10	-

= Orange highlight: Method Dection Limit Exceeds RGP Effluent Limit

Summary of Analytical Test Results

Ar	alytical Parameter	RGP TBEL (in ug/L)	RGP WQBEL (in ug/L)	Method Dectection Limit (ug/L)	RGP-1 Reporting Limit 6/1/2017	SW-1 Reporting Limit 6/1/2017
NON-HALOGENAT	ED SVOCS				0/1/2011	0/112011
EPA 625 (µg/l) N	on-Halogenated VOCs Total Group II PAHs	100	100			
91-20-3 83-32-9 208-96-8 120-12-7 206-44-0 86-73-7 85-01-8 129-00-0	Naphthalene Acenaphthene Acenaphthylene Anthracene Fluoranthene Fluorene Phenanthrene Pyrene	20	20	0.699 0.705 0.697 0.62 0.651 0.624 0.598 0.622	<5.10 <5.10 <5.10 <5.10 <5.10 <5.10 <5.10 <5.10	-
HALOGENATED S	/ocs					
EPA 608 (µg/l) Po	lychlorinated Biphenyls					
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Total PCB Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1250 Aroclor-1260 Aroclor-1260	0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064	0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064	0.106 0.117 0.113 0.109 0.139 0.118 0.0868 0.0914 0.0934	<0.204 <0.204 <0.204 <0.204 <0.204 <0.204 <0.204 <0.204 <0.204	
ΕΡΑ 625 (μg/l) 87-86-5	Pentachlorophenol	1	1	0.381	<5.10	-
	nalytical Parameter	RGP TBEL (in parentheses)	RGP WQBEL (in parentheses)	Dectection Limits	RGP-1 Reporting Limit 6/1/2017	SW-1 Reporting Limit 6/1/2017
FUELS PARAMETE	RS					
EPA 1664B (mg/l) TPHSGTHEM	Non-polar material (SGT-HEM)	5.0 (mg/L)	5.0 (mg/L)	0.9 (mg/L)	<1.0 (mg/L)	-
ΕΡΑ 624 (μg/l) 1634-04-4	Methyl tert-butyl ether	0.07 (ug/L)	0.02 (ug/L)	0.2 (ug/L)	<1 (ug/L)	-
SW846 8015 Mod 64-17-5 75-65-0	(mg/l) Ethanol Tert-Butanol / butyl alcohol	Report mg/L 0.12 (mg/L)	Report mg/L 0.12 (mg/L)	0.447 (mg/L) 0.473 (mg/L)	<1.00 (mg/L) <1.00 (mg/L)	-
ΕΡΑ 524.2 (μg/l) 994-05-8	Tert-amyl methyl ether	90 (ug/L)	90 (ug/L)	0.49 (ug/L)	<0.5 (ug/L)	-
OTHER PARAMET	ERS					
EPA 200.7 (mg/l) 7440-70-2 7439-95-4	Calcium Magnesium			0.034 0.0074	57.4 3.99	11.5 2.56
SM 2340B (11) (m pH by YSI (Stand	Hardness	6.5 - 8.3	6.5 - 8.3	0.01 SU	160 6.71	39.3 6.34
Temp by YSI		83 F (Class B Warm Water Fishery)	83 F (Class B Warm Water Fishery)	0.1 F	60.8 F	62.1

= Orange highlight: Method Dection Limit Exceeds RGP Effluent Limit

Enter number values in green boxes below

Enter values in the units specified

 $\begin{array}{c} \downarrow \\ \hline 4.4 & Q_R \\ \hline 0.36 & Q_P \\ \hline 0 & Do \end{array}$

 Q_R = Enter upstream flow in MGD Q_p = Enter discharge flow in MGD Downstream 7Q10

Enter a dilution factor, if other than zero

1

Enter values in the units specified

 $\begin{array}{l} \hline 160 \\ \hline 39.3 \\ \hline C_{\rm d} = \text{Enter influent hardness in } \mathbf{mg/L} \ \text{CaCO}_{3} \\ \hline \text{Cs} = \text{Enter receiving water hardness in } \mathbf{mg/L} \ \text{CaCO}_{3} \end{array}$

Enter receiving water concentrations in the units specified

\checkmark	
6.3	pH in Standard Units
16.7	Temperature in °C
0.16	Ammonia in mg/L
39.3	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in µg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L

Enter influent concentrations in the units specified

Enter min	dent concentrations in the units s
\downarrow	
0	TRC in µg/L
0.1	Ammonia in mg/L
0	Antimony in µg/L
4.18	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
4.74	Copper in µg/L
642	Iron in µg/L
1.09	Lead in µg/L
0	Mercury in µg/L
2.5	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
11	Zinc in µg/L
0.01	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in $\mu g/L$
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

Dilution Factor	13.2					
A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	145	μg/L		μg/L
Total Suspended Solids	30	mg/L		r8-2		r8/2
Antimony	206	-	8462	ца/І		
Arsenic		μg/L	132	μg/L		
	104	μg/L		μg/L		
Cadmium	10.2	μg/L	2.0910	μg/L		
Chromium III	323	μg/L	629.2	μg/L		
Chromium VI	323	μg/L	151.2	μg/L		
Copper	242	μg/L	66.4	μg/L		
Iron	5000	μg/L	13222	μg/L		
Lead	160	μg/L	16.71	μg/L		
Mercury	0.739	μg/L	11.98	μg/L		
Nickel	1450	μg/L	373.5	μg/L		
Selenium	235.8	μg/L	66.1	μg/L		
Silver	35.1	μg/L	14.4	μg/L		
Zinc	420		857.1			
		μg/L		μg/L		σ
Cyanide B Nor Helegensted VOCa	178	mg/L	68.8	μg/L		µg/L
B. Non-Halogenated VOCs Total BTEX	100	μg/L				
Benzene	5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	3967	μg/L		
C. Halogenated VOCs		10		10		
Carbon Tetrachloride	4.4	μg/L	21.2	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70 5.0	μg/L				
1,2 Dichloroethane 1,1 Dichloroethylene	3.2	μg/L μg/L				
Ethylene Dibromide	0.05	μg/L μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	43.6	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	29.1	μg/L		

Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0502	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0502	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0502	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0502	μg/L		μg/L
Chrysene	1.0	μg/L	0.0502	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0502	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0502	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	264	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

Spectrum Analytical

□ Final Report Revised Report

Report Date: 07-Jun-17 14:14

Laboratory Report SC35291

Project: 261 Boston Rd - Billerica, MA Project #: 95-5021321

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

🛟 eurofins

ATC Group Services, LLC

Attn: Keith Sullivan

400 Reservoir Ave, Suite 2C Providence, RI 02907

Authorized by:

Rebecca Merz Quality Services Manager

Rebeard Merry

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 28 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc, is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

830 Silver Street

Agawam, MA 01001

Sample Summary

Work Order:SC35291Project:261 Boston Rd - Billerica, MA

Project Number: 95-5021321

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	
SC35291-01	RGP-1	Ground Water	01-Jun-17 11:45	(
SC35291-02	SW-1	Surface Water	01-Jun-17 12:30	(

Date Received 01-Jun-17 19:35 01-Jun-17 19:35

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: E	urofins Spectrum Analytic	al, Inc.	Project #: 95-5021321				
Proje	ct Location: 26	1 Boston Rd - Billerica, M	A	RTN:				
This	form provides c	ertifications for the follow	ving data set:	SC35291-01 through SC	35291-02			
Matr	ices: Ground W	Vater						
	Surface W	Vater						
CAM	[Protocol	- I	1	-		1		
	260 VOC AM II A	✓ 7470/7471 Hg ✓ CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	✓ 7196 Hex Cr ✓ CAM VI B	MassDEP APH CAM IX A		
	8270 SVOC7010 MetalsMassDEP EPH8151 Herbicides8330 ExplosivesCAM II BCAM III CCAM IV BCAM V CCAM VIII A				TO-15 VOC CAM IX B			
	6010 Metals6020 Metals8082 PCBCAM III ACAM III DCAM V A			9012 Total ✓ Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B		
		Affirmative response	s to questions A through		sumptive Certainty'status			
A Were all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?					✓ Yes No			
B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?					✓ Yes No			
C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?					✓ Yes No			
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?						✓ Yes No		
E a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?						Yes No Yes No		
F		able CAM protocol QC ar aboratory narrative (includ				✓ Yes No		
		Responses to que	stions G, H and I below	are required for P resum	ptive Certainty'status			
G	Were the report	ting limits at or below all (CAM reporting limits sp	ecified in the selected CA	AM protocol(s)?	✓ Yes No		
		hat achieve P resumptive Cer in 310 CMR 40. 1056 (2)(k)		ssarily meet the data usabil	ity and representativeness			
Н	Were all QC pe	erformance standards speci	fied in the CAM protoco	ol(s) achieved?		Yes 🗸 No		
Ι	Were results rej	ported for the complete an	alyte list specified in the	selected CAM protocol	(s)?	Yes 🗸 No		
All ne	gative responses a	are addressed in a case narra	tive on the cover page of t	his report.				
		st under the pains and penal al contained in this analytice			of those responsible for obtain curate and complete.	ning the		
					Christin	al.White		
					Christina A. White Laboratory Directo Date: 6/7/2017			

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.1 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

June 6, 2017 Report Revision Narrative:

This report has been revised to include all BTEX compounds.

June 7, 2017 Report Revision Case Narrative:

This report has been revised to include the customzed analyte list.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 200.7

Duplicates:

1709133-DUP1	Source: SC35291-02
MRL raised to correl	ate to batch QC reporting limits.
Iron	
Magnesium	
Samples:	
SC35291-01	RGP-1
MRL raised to correl	ate to batch QC reporting limits.
Iron	
Magnesium	
SC35291-02	SW-1
MRL raised to correl	ate to batch QC reporting limits.
Magnesium	

EPA 200.8

Spikes:

1709132-MS1 Source: SC35291-01

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

Antimony Chromium Selenium

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Arsenic Lead Zinc

Duplicates:

1709132-DUP1 Source: SC35291-01

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Antimony Selenium

MRL raised to correlate to batch QC reporting limits.

Antimony Chromium Selenium Silver

Samples:

SC35291-01

MRL raised to correlate to batch QC reporting limits.

RGP-1

Antimony Chromium Selenium Silver

EPA 300.0

Duplicates:

1709275-DUP1 Source: SC35291-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Chloride

Samples:

SC35291-01 RGP-1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range. Chloride

EPA 625

Calibration:

1705033

EPA 625

Calibration:

1705033

Analyte quantified by quadratic equation type calibration.

Pentachlorophenol

This affected the following samples:

1709122-BLK1 1709122-BS1 1709122-BSD1 RGP-1 S705020-CCV1

Samples:

S705020-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Benzo (g,h,i) perylene (20.8%)

This affected the following samples:

1709122-BLK1 1709122-BS1 1709122-BSD1 RGP-1

SC35291-01 RGP-1

Acid surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two acid surrogates.

Phenol-d5

Base/Neutral surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two base/neutral surrogates.

Nitrobenzene-d5

Sample Acceptance Check Form

Client: ATC Group Services, LLC - Providence, RI Project: 261 Boston Rd - Billerica, MA / 95-5021321 Work Order: SC35291 Sample(s) received on: 6/1/2017

Were samples received within method-specific holding times?

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	<u>No</u>
Were custody seals present?		\checkmark
Were custody seals intact?		
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark	
Were samples refrigerated upon transfer to laboratory representative?	\checkmark	
Were sample containers received intact?	\checkmark	
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark	
Were samples accompanied by a Chain of Custody document?	\checkmark	
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		
Did sample container labels agree with Chain of Custody document?	\checkmark	
Were samples received within method-specific holding times?	\checkmark	

N/A

 \checkmark

Summary of Hits

Lab ID: SC35291-01			Client ID: RGP-1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ammonia as Nitrogen	0.16		0.05	mg/L	E350.1
Calcium	57.4		0.100	mg/l	EPA 200.7
Iron	0.642	R06	0.0400	mg/l	EPA 200.7
Magnesium	3.99	R06	0.0500	mg/l	EPA 200.7
Arsenic	0.00418		0.00025	mg/l	EPA 200.8
Copper	0.00474		0.00025	mg/l	EPA 200.8
Lead	0.00109		0.00025	mg/l	EPA 200.8
Nickel	0.00250		0.00025	mg/l	EPA 200.8
Zinc	0.0110		0.00250	mg/l	EPA 200.8
Chloride	260	D, GS	110.0	mg/l	EPA 300.0
Hardness	160		0.456	mg/l CaCO3	SM 2340B (11)
Total Suspended Solids	5.2		1.0	mg/l	SM2540D (11)
Lab ID: SC35291-02			Client ID: SW-1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ammonia as Nitrogen	0.10		0.05	mg/L	E350.1
Calcium	11.5		0.100	mg/l	EPA 200.7
Magnesium	2.56	R06	0.0500	mg/l	EPA 200.7
Hardness	39.3		0.456	mg/l CaCO3	SM 2340B (11)

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

<u>Sample Id</u> RGP-1 SC35291-	entification 01				<u>Project #</u> 21321		<u>Matrix</u> Ground Wa		ection Date 1-Jun-17 11			<u>cceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
	Organic Compounds												
994-05-8	Tert-amyl methyl ether	< 0.50		µg/l	0.50	0.49	1	EPA 524.2	02-Jun-17	02-Jun-17	EK	1709154	
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	89			80-12	20 %		"			"		
2037-26-5	Toluene-d8	98			80-12	20 %		"			"		
17060-07-0	1,2-Dichloroethane-d4	102			80-12	20 %		"			"		
1868-53-7	Dibromofluoromethane	102			80-12	20 %		"			"	"	
Volatile Or	rganic Compounds by GCI	MS											
67-64-1	Acetone	< 10.0		µg/l	10.0	0.8	1	EPA 624		"	EK	"	
71-43-2	Benzene	< 1.0		µg/l	1.0	0.3	1	"	"	"	"	"	х
56-23-5	Carbon tetrachloride	< 1.0		µg/l	1.0	0.4	1	"	"	"	"	"	х
95-50-1	1,2-Dichlorobenzene	< 1.0		µg/l	1.0	0.3	1	"	"	"	"	"	х
541-73-1	1,3-Dichlorobenzene	< 1.0		µg/l	1.0	0.3	1	"			"	"	х
106-46-7	1,4-Dichlorobenzene	< 1.0		µg/l	1.0	0.3	1	"	"		"	"	х
75-34-3	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	"	"		"	"	х
107-06-2	1,2-Dichloroethane	< 1.0		µg/l	1.0	0.3	1	"		"	"		х
75-35-4	1,1-Dichloroethene	< 1.0		µg/l	1.0	0.7	1	"	"		"		х
156-59-2	cis-1,2-Dichloroethene	< 1.0		µg/l	1.0	0.3	1	"	"		"		
100-41-4	Ethylbenzene	< 1.0		µg/l	1.0	0.3	1	"	"		"		х
1634-04-4	Methyl tert-butyl ether	< 1.0		µg/l	1.0	0.2	1	"	"		"	"	
75-09-2	Methylene chloride	< 10.0		µg/l	10.0	0.7	1	"	"		"		х
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.8	1	"	"		"		х
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	"	"		"		х
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.5	1	"	"		"		х
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.3	1	"	"		"		х
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.5	1	"	"		"	"	х
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	0.5	1	"	"		"		х
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.4	1	"	"		"		х
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.3	1	"	"		"	"	х
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	11.4	1	"		"	"		
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	89			70-13	30 %		"			"		
2037-26-5	Toluene-d8	98			70-13			"			"	"	
17060-07-0	1,2-Dichloroethane-d4	102			70-13			"			"	"	
1868-53-7	Dibromofluoromethane	102			70-13	80 %		"			"	"	
	actable Organic Compounds by method General Prepa												
106-93-4	1,2-Dibromoethane (EDB)	< 0.0100		µg/l	0.0100	0.00336	1	SW846 8011	05-Jun-17	05-Jun-17	DS	1709212	
Organic C	ompounds by Modified SW	846 8015											
Alcohol Ar Prepared	nalysis by method General Prepa	ration SVOC											
64-17-5	Ethanol	< 1.00		mg/l	1.00	0.447	1	SW846 8015 Mod	03-Jun-17	03-Jun-17	SM	1709211	
75-65-0	Tert-Butanol / butyl alcohol	< 1.00		mg/l	1.00	0.473	1	u	"	"	"	"	
Surrogate r	ecoveries:												
71-41-0	1-Pentanol	109			40-14	40 %		"		"	"	"	

Sample Id RGP-1 SC35291-	entification 01			<u>Client F</u> 95-50	<u>Project #</u> 21321		<u>Matrix</u> Ground Wa		ection Date 1-Jun-17 11			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by (GCMS											
Semivolat	ile Organic Compounds												
83-32-9	Acenaphthene	< 5.10		µg/l	5.10	0.705	1	EPA 625	02-Jun-17	05-Jun-17	MSL	1709122	2 X
208-96-8	Acenaphthylene	< 5.10		µg/l	5.10	0.697	1	"	"	"	"		х
120-12-7	Anthracene	< 5.10		µg/l	5.10	0.620	1		"	"	"	"	х
56-55-3	Benzo (a) anthracene	< 5.10		µg/l	5.10	0.547	1	"	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 5.10		µg/l	5.10	0.573	1		"	"	"	"	х
205-99-2	Benzo (b) fluoranthene	< 5.10		µg/l	5.10	0.446	1		"	"	"	"	х
191-24-2	Benzo (g,h,i) perylene	< 5.10		µg/l	5.10	0.541	1	"	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 5.10		µg/l	5.10	0.490	1	"	"	"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	< 5.10		µg/l	5.10	0.651	1	"	"		"		х
85-68-7	Butyl benzyl phthalate	< 5.10		µg/l	5.10	0.447	1	"	"		"		х
218-01-9	Chrysene	< 5.10		µg/l	5.10	0.543	1	"	"	"	"	"	х
53-70-3	Dibenzo (a,h) anthracene	< 5.10		µg/l	5.10	0.459	1	"	"		"		х
84-66-2	Diethyl phthalate	< 5.10		μg/l	5.10	0.636	1	"	"		"		х
131-11-3	Dimethyl phthalate	< 5.10		μg/l	5.10	0.773	1	"	"		"		х
84-74-2	Di-n-butyl phthalate	< 5.10		μg/l	5.10	0.466	1	"	"		"		х
117-84-0	Di-n-octyl phthalate	< 5.10		µg/l	5.10	0.414	1	"	"		"		х
206-44-0	Fluoranthene	< 5.10		µg/l	5.10	0.651	1		"		"		х
86-73-7	Fluorene	< 5.10		µg/l	5.10	0.624	1		"		"		х
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.10		µg/l	5.10	0.592	1		"		"		х
91-20-3	Naphthalene	< 5.10		µg/l	5.10	0.699	1	"	"		"		х
87-86-5	Pentachlorophenol	< 5.10		µg/l	5.10	0.381	1	"	"		"		х
85-01-8	Phenanthrene	< 5.10		µg/l	5.10	0.598	1	"	"		"		х
108-95-2	Phenol	< 5.10		µg/l	5.10	0.658	1	"	"		"		х
129-00-0	Pyrene	< 5.10		µg/l	5.10	0.622	1	"	"		"	"	х
Surrogate r	ecoveries:												
321-60-8	2-Fluorobiphenyl	30			30-13	30 %			"		"		
367-12-4	2-Fluorophenol	22			15-11						"		
4165-60-0	Nitrobenzene-d5	29	SBN		30-13						"		
4165-62-2	Phenol-d5	14	SAC		15-11						"		
1718-51-0	Terphenyl-dl4	42	0,10		30-13				"		"		
118-79-6	2,4,6-Tribromophenol	38			15-11						"	"	
	le Organic Compounds by (10 11	0 /0							
	nated Biphenyls	к											
	Aroclor-1016	< 0.204		µg/l	0.204	0.106	1	EPA 608	02-Jun-17	05-Jun-17	EAB	1709121	х
11104-28-2	Aroclor-1221	< 0.204		μg/l	0.204	0.117	1	"	"	"	"	"	x
11141-16-5	Aroclor-1232	< 0.204		µg/l	0.204	0.117	1				"	"	x
53469-21-9	Aroclor-1242	< 0.204		μg/l	0.204	0.109	1				"	"	x
12672-29-6	Aroclor-1248	< 0.204		μg/l	0.204	0.139	1				"	"	x
11097-69-1	Aroclor-1254	< 0.204		µg/l	0.204	0.118	1				"	"	x
11096-82-5	Aroclor-1260	< 0.204		μg/l	0.204	0.0868	1				"	"	x
37324-23-5	Aroclor-1262	< 0.204		μg/l	0.204	0.0000	1				"	"	~
11100-14-4	Aroclor-1268	< 0.204		µg/l	0.204	0.0914	1				"	"	
		<u>> 0.∠04</u>		μθιι	0.204	0.0904	I						
Surrogate r 10386-84-2	ecoveries: 4,4-DB-Octafluorobiphenyl (Sr)	50			30-15	50 %		n	"	"	"	"	

Sample Id RGP-1 SC35291-	lentification 01				<u>Project #</u> 21321		<u>Matrix</u> Ground Wa		ection Date -Jun-17 11			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by G	έC											
Polychlori	nated Biphenyls												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	55			30-15	50 %		EPA 608	02-Jun-17	05-Jun-17	EAB	1709121	
2051-24-3	Decachlorobiphenyl (Sr)	75			30-15	50 %		"			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		"	"	"	"	"	
	e Petroleum Hydrocarbons by method SW846 3510C												
	Non-polar material (SGT-HEM)	< 1.0		mg/l	1.0	0.9	1	EPA 1664B	05-Jun-17	05-Jun-17	KK	1709217	
	lls by EPA 200/6000 Series M by method General Prep-N												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	02-Jun-17		ВК	1709139	
Total Meta	als by EPA 200 Series Method	ls											
7440-22-4	Silver	< 0.00030	R06	mg/l	0.00030	0.00010	1	EPA 200.8	02-Jun-17	02-Jun-17	edt	1709132	х
7440-38-2	Arsenic	0.00418		mg/l	0.00025	0.00006	1	"			"		Х
7440-70-2	Calcium	57.4		mg/l	0.100	0.0340	1	EPA 200.7		02-Jun-17	tbc	1709133	Х
7440-43-9	Cadmium	< 0.00025		mg/l	0.00025	0.00004	1	EPA 200.8		02-Jun-17	edt	1709132	х
7440-47-3	Chromium	< 0.00120	R06	mg/l	0.00120	0.00015	1				"		х
7440-50-8	Copper	0.00474		mg/l	0.00025	0.00004	1				"		х
7439-89-6	Iron	0.642	R06	mg/l	0.0400	0.0100	1	EPA 200.7		02-Jun-17	EDT/TBC	1709133	х
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00013	1	EPA 245.1/7470A	"	02-Jun-17	LNB	1709134	Х
7439-95-4	Magnesium	3.99	R06	mg/l	0.0500	0.0074	1	EPA 200.7		02-Jun-17	EDT/TBC	1709133	Х
7440-02-0	Nickel	0.00250		mg/l	0.00025	0.00005	1	EPA 200.8		02-Jun-17	edt	1709132	Х
7439-92-1	Lead	0.00109		mg/l	0.00025	0.00002	1				"	"	Х
7440-36-0	Antimony	< 0.00045	R06	mg/l	0.00045	0.00007	1				"	"	Х
7782-49-2	Selenium	< 0.00305	R06	mg/l	0.00305	0.00012	1	"			"		х
7440-66-6	Zinc	0.0110		mg/l	0.00250	0.00116	1	"	"	02-Jun-17	"	"	х
	hemistry Parameters by method EPA 200 Series												
16065-83-1	Trivalent Chromium	< 0.0024		mg/l	0.0024	0.0053	1	Calculation		02-Jun-17		1709132	
	Hardness	160	HD	mg/l CaCO3	0.456	0.115	1	SM 2340B (11)	"	02-Jun-17	EDT/TBC		
7782-50-5	Total Residual Chlorine	< 0.020	CIHT	mg/l	0.020	0.006	1	SM4500-CI-G (11)	09:26	02-Jun-17 13:12	RLT	1709142	
16887-00-6	Chloride	260	D, GS1	mg/l	10.0	0.897	10	EPA 300.0		05-Jun-17	CAW	1709275	
18540-29-9	Hexavalent Chromium	< 0.005		mg/l	0.005	0.002	1	SM3500-Cr-B (11)/7196A	09:13	02-Jun-17 09:54	RLT	1709140	
57-12-5	Cyanide (total)	< 0.00500		mg/l	0.00500	0.00426	1	EPA 335.4 / SW846 9012B		03-Jun-17	RLT	1709210	
6.1	Total Suspended Solids	5.2		mg/l	1.0	0.4	1	SM2540D (11)	02-Jun-17	03-Jun-17	СМВ	1709141	Х
Prepared	cted Analyses by method 388655												
	erformed by Phoenix Environn		nc. * - MACI										
7664-41-7	Ammonia as Nitrogen	0.16		mg/L	0.05	0.05	1	E350.1		05-Jun-17 11:20	MACT0	388655A	

	dentification			Client F	Project #		Matrix	Colle	ection Date	/Time	Re	ceived	
SW-1 SC35291	-02			95-50	21321		Surface Wa	ater 01	-Jun-17 12	:30	01-	Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	als by EPA 200/6000 Serie by method General Prep												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	02-Jun-17		ВК	1709139	
Total Met	als by EPA 200 Series Met	thods											
7440-70-2	Calcium	11.5		mg/l	0.100	0.0340	1	EPA 200.7	02-Jun-17	02-Jun-17	tbc	1709133	Х
7439-95-4	Magnesium	2.56	R06	mg/l	0.0500	0.0074	1	"		02-Jun-17	"		Х
General C	Chemistry Parameters												
	Hardness	39.3	HD	mg/l CaCO3	0.456	0.115	1	SM 2340B (11)	02-Jun-17	02-Jun-17	EDT/TBC	[CALC]	
	acted Analyses by method 388655												
Analysis p	erformed by Phoenix Enviro	onmental Labs, It	nc. * - MAC	T007									
7664-41-7	Ammonia as Nitrogen	0.10		mg/L	0.05	0.05	1	E350.1		05-Jun-17 11:21	MACT0	388655A	

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	Ting	Onits	RDL	Level	Kesun	/orcle	Linits	KI D	LIIII
EPA 524.2										
Batch 1709154 - SW846 5030 Water MS					-					
Blank (1709154-BLK1)				0.50	Pre	epared & Ar	nalyzed: 02-	<u>-Jun-17</u>		
Tert-amyl methyl ether	< 0.50		µg/l	0.50						
Surrogate: 4-Bromofluorobenzene	44.6		µg/l		50.0		89	80-120		
Surrogate: Toluene-d8	46.9		µg/l		50.0		94	80-120		
Surrogate: 1,2-Dichloroethane-d4	50.2		µg/l		50.0		100	80-120		
Surrogate: Dibromofluoromethane	51.2		µg/l		50.0		102	80-120		
<u>LCS (1709154-BS1)</u>						epared & Ar	nalyzed: 02			
Tert-amyl methyl ether	17.1		µg/l		20.0		86	70-130		
Surrogate: 4-Bromofluorobenzene	51.2		µg/l		50.0		102	80-120		
Surrogate: Toluene-d8	47.9		µg/l		50.0		96	80-120		
Surrogate: 1,2-Dichloroethane-d4	47.7		µg/l		50.0		95	80-120		
Surrogate: Dibromofluoromethane	49.0		µg/l		50.0		98	80-120		
LCS Dup (1709154-BSD1)					Pre	epared & Ar	nalyzed: 02-	-Jun-17		
Tert-amyl methyl ether	16.9		µg/l		20.0		84	70-130	1	30
Surrogate: 4-Bromofluorobenzene	50.4		µg/l		50.0		101	80-120		
Surrogate: Toluene-d8	48.6		µg/l		50.0		97	80-120		
Surrogate: 1,2-Dichloroethane-d4	47.6		µg/l		50.0		95	80-120		
Surrogate: Dibromofluoromethane	53.8		µg/l		50.0		108	80-120		
PA 624										
atch 1709154 - SW846 5030 Water MS										
Blank (1709154-BLK1)					Dro	pared & Ar	nalyzed: 02-	lup 17		
Acetone	< 10.0		µg/l	10.0	<u>r 16</u>			<u>-Juli-17</u>		
Benzene	< 1.0		μg/l	1.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		µg/l	1.0						
1,1-Dichloroethane	< 1.0		µg/l	1.0						
1,2-Dichloroethane	< 1.0		µg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		µg/l	1.0						
Ethylbenzene	< 1.0		µg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
Methylene chloride	< 10.0		μg/l	10.0						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		µg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		µg/l	1.0						
m,p-Xylene	< 2.0		µg/l	2.0						
o-Xylene	< 1.0		µg/l	1.0						
1,4-Dioxane	< 20.0		µg/l	20.0						
Surrogate: 4-Bromofluorobenzene	44.6		µg/l		50.0		89	70-130		
Surrogate: Toluene-d8	46.9		µg/l		50.0		94	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.2		µg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	51.2		µg/l		50.0		102	70-130		
LCS (1709154-BS1)			10			epared & Ar	nalyzed: 02-			
Acetone	16.7		µg/l		20.0		84	70-130		

Volatile Organic Compounds - Quality Control

	- ·				Spike	Source	0/===	%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
EPA 624										
Batch 1709154 - SW846 5030 Water MS										
LCS (1709154-BS1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
Benzene	19.9		µg/l		20.0		99	70-130		
Carbon tetrachloride	23.8		µg/l		20.0		119	70-140		
1,2-Dichlorobenzene	21.9		µg/l		20.0		110	18-190		
1,3-Dichlorobenzene	23.3		µg/l		20.0		116	59-156		
1,4-Dichlorobenzene	20.7		µg/l		20.0		104	18-190		
1,1-Dichloroethane	17.9		µg/l		20.0		89	59-155		
1,2-Dichloroethane	18.8		µg/l		20.0		94	49-155		
1,1-Dichloroethene	17.9		µg/l		20.0		89	70-130		
cis-1,2-Dichloroethene	17.7		µg/l		20.0		88	70-130		
Ethylbenzene	21.9		μg/l		20.0		110	37-162		
Methyl tert-butyl ether	18.4		μg/l		20.0		92	70-130		
Methylene chloride	17.7		μg/l		20.0		89	1-221		
Tetrachloroethene	20.1		µg/l		20.0		101	64-148		
Toluene	18.8		μg/l		20.0		94	70-130		
1,1,1-Trichloroethane	21.6		µg/l		20.0		108	52-162		
1,1,2-Trichloroethane	19.8		μg/l		20.0		99	52-150		
Trichloroethene	19.2		μg/l		20.0		96	71-157		
Vinyl chloride	15.5		μg/l		20.0		78	1-251		
m,p-Xylene	21.0		μg/l		20.0		105	70-130		
o-Xylene	21.2		μg/l		20.0		106	70-130		
1,4-Dioxane	188		μg/l		200		94	70-130		
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	47.9		µg/l		50.0		96	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.7		μg/l		50.0		95	70-130		
Surrogate: Dibromofluoromethane	49.0		µg/l		50.0		98	70-130		
LCS Dup (1709154-BSD1)			P9.			anared & Ar	nalyzed: 02-			
Acetone	17.8		µg/l		20.0	pareu & Ai	89	70-130	6	30
Benzene	18.9		μg/l		20.0		95	70-130	5	30
Carbon tetrachloride	21.9				20.0		95 110	70-130 70-140	8	30
1,2-Dichlorobenzene			µg/l		20.0		105	18-190	5	30
1.3-Dichlorobenzene	20.9 22.3		µg/l		20.0		105	59-156	4	30
1,4-Dichlorobenzene			µg/l		20.0		98	18-190	4 6	30
1,1-Dichloroethane	19.6 17.0		µg/l		20.0		98 85	59-155	5	30
1.2-Dichloroethane	17.0		µg/l µg/l		20.0		90	49-155	5	30
1,1-Dichloroethene	17.1		μg/l		20.0		90 86	49-133 70-130	4	30
cis-1,2-Dichloroethene	17.1		μg/l		20.0		85	70-130	4	30
Ethylbenzene	20.7				20.0		103	37-162	4 6	30
Methyl tert-butyl ether			µg/l		20.0		95	70-130	3	30 30
	19.0		µg/l							
Methylene chloride Tetrachloroethene	17.1		µg/l		20.0		86 07	1-221	4	30 30
	19.4		µg/l		20.0 20.0		97 03	64-148 70-130	4	30 30
Toluene	18.7		µg/l		20.0 20.0		93 100	70-130 52-162	0.6 8	30 30
1,1,1-Trichloroethane	20.0		µg/l				100		8	
1,1,2-Trichloroethane	19.9		µg/l		20.0 20.0		99	52-150 71 157	0.5	30 30
Trichloroethene	18.6		µg/l				93 72	71-157	3	
Vinyl chloride	14.5		µg/l		20.0		73	1-251	7	30
m,p-Xylene	19.6		µg/l		20.0		98	70-130	7	30
o-Xylene 1,4-Dioxane	20.5 212		µg/l		20.0 200		103 106	70-130 70-130	3 12	30 25
			µg/l						١Z	20
Surrogate: 4-Bromofluorobenzene	50.4		µg/l		50.0		101	70-130		
Surrogate: Toluene-d8	48.6		µg/l		50.0		97	70-130		

Volatile Organic	Compounds -	Quality Control
-------------------------	--------------------	------------------------

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>EPA 624</u>										
Batch 1709154 - SW846 5030 Water MS										
LCS Dup (1709154-BSD1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
Surrogate: 1,2-Dichloroethane-d4	47.6		µg/l		50.0		95	70-130		
Surrogate: Dibromofluoromethane	53.8		µg/l		50.0		108	70-130		

Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				Pre	epared & Ar	nalyzed: 05-	Jun-17		
< 0.0100		µg/l	0.0100						
				Pre	epared & Ar	nalyzed: 05-	Jun-17		
0.214		µg/l	0.0100	0.200		107	60-140		
				Pre	epared & Ar	nalyzed: 05-	Jun-17		
0.201		µg/l	0.0100	0.200		100	60-140	6	50
		Source: SO	C35291-01	Pre	epared & Ar	nalyzed: 05-	Jun-17		
< 0.0100		µg/l	0.0100		BRL				30
	< 0.0100 0.214 0.201	< 0.0100 0.214 0.201	< 0.0100 μg/l 0.214 μg/l 0.201 μg/l <u>Source: St</u>	< 0.0100 μg/l 0.0100 0.214 μg/l 0.0100 0.201 μg/l 0.0100 <u>Source: SC35291-01</u>	Result Flag Units *RDL Level -	Result Flag Units *RDL Level Result Prepared & Ar 0.0100 Prepared & Ar Prepared & Ar < 0.0100	Result Flag Units *RDL Level Result %REC Prepared & Analyzed: 05- 0.0100 μg/l 0.0100 Prepared & Analyzed: 05- 0.214 μg/l 0.0100 0.200 107 Prepared & Analyzed: 05- 0.200 100 0.201 μg/l 0.0100 0.200 100 Source: SC35291-01 Prepared & Analyzed: 05-	Result Flag Units *RDL Level Result %REC Limits < 0.0100	Result Flag Units *RDL Level Result %REC Limits RPD < 0.0100

Microextractable Organic Compounds - Quality Control

-	-	-				-				
analyte(s)	Result	Flag (Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8015 Mod										
atch 1709211 - General Preparation SVOC										
Blank (1709211-BLK1)					Pre	epared & Ai	nalyzed: 03-	-Jun-17		
Ethanol	< 1.00		mg/l	1.00						
Tert-Butanol / butyl alcohol	< 1.00		mg/l	1.00						
Surrogate: 1-Pentanol	50.6		mg/l		50.0		101	40-140		
LCS (1709211-BS1)					Pre	epared & Ar	nalyzed: 03-	-Jun-17		
Ethanol	98.7		mg/l	1.00	100		99	40-140		
Tert-Butanol / butyl alcohol	94.5		mg/l	1.00	100		95	40-140		
Surrogate: 1-Pentanol	40.3		mg/l		50.0		81	40-140		
LCS Dup (1709211-BSD1)					Pre	epared & Ar	nalyzed: 03-	-Jun-17		
Ethanol	98.0		mg/l	1.00	100		98	40-140	0.7	200
Tert-Butanol / butyl alcohol	93.8		mg/l	1.00	100		94	40-140	0.7	200
Surrogate: 1-Pentanol	40.3		mg/l		50.0		81	40-140		
Duplicate (1709211-DUP1)		Sou	urce: SC	35291-01	Pre	epared & Ar	nalyzed: 03-	-Jun-17		
Ethanol	< 1.00		mg/l	1.00		BRL				200
Tert-Butanol / butyl alcohol	< 1.00		mg/l	1.00		BRL				200
Surrogate: 1-Pentanol	61.3		mg/l		50.0		123	40-140		

Organic Compounds by Modified SW846 8015 - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
EPA 625										
Batch 1709122 - SW846 3510C										
Blank (1709122-BLK1)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	un-17	
Acenaphthene	< 5.00		µg/l	5.00	<u></u>				<u></u>	
Acenaphthylene	< 5.00		μg/l	5.00						
Anthracene	< 5.00		μg/l	5.00						
Benzo (a) anthracene	< 5.00		μg/l	5.00						
Benzo (a) pyrene	< 5.00		μg/l	5.00						
Benzo (b) fluoranthene	< 5.00		μg/l	5.00						
Benzo (g,h,i) perylene	< 5.00		μg/l	5.00						
Benzo (k) fluoranthene	< 5.00		μg/l	5.00						
Bis(2-ethylhexyl)phthalate	< 5.00		μg/l	5.00						
Butyl benzyl phthalate	< 5.00		μg/l	5.00						
Chrysene	< 5.00		μg/l	5.00						
Dibenzo (a,h) anthracene	< 5.00			5.00						
Diethyl phthalate	< 5.00		µg/l µg/l	5.00						
Dimethyl phthalate	< 5.00			5.00 5.00						
Dimethyl phthalate	< 5.00 < 5.00		µg/l	5.00 5.00						
			µg/l							
Di-n-octyl phthalate	< 5.00		µg/l	5.00						
Fluoranthene	< 5.00		µg/l	5.00						
Fluorene	< 5.00		µg/l	5.00						
Indeno (1,2,3-cd) pyrene	< 5.00		µg/l	5.00						
Naphthalene	< 5.00		µg/l	5.00						
Pentachlorophenol	< 5.00		µg/l	5.00						
Phenanthrene	< 5.00		µg/l	5.00						
Phenol	< 5.00		µg/l	5.00						
Pyrene	< 5.00		µg/l	5.00						
Surrogate: 2-Fluorobiphenyl	42.5		µg/l		50.0		85	30-130		
Surrogate: 2-Fluorophenol	42.9		µg/l		50.0		86	15-110		
Surrogate: Nitrobenzene-d5	43.6		µg/l		50.0		87	30-130		
Surrogate: Phenol-d5	42.2		µg/l		50.0		84	15-110		
Surrogate: Terphenyl-dl4	43.3		µg/l		50.0		87	30-130		
Surrogate: 2,4,6-Tribromophenol	41.0		µg/l		50.0		82	15-110		
LCS (1709122-BS1)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	<u>un-17</u>	
Acenaphthene	37.0		µg/l	5.00	50.0		74	47-145		
Acenaphthylene	36.0		μg/l	5.00	50.0		72	33-145		
Anthracene	38.1		μg/l	5.00	50.0		76	27-133		
Benzo (a) anthracene	38.4		μg/l	5.00	50.0		77	33-143		
Benzo (a) pyrene	38.6		μg/l	5.00	50.0		77	17-163		
Benzo (b) fluoranthene	37.6		μg/l	5.00	50.0		75	24-159		
Benzo (g,h,i) perylene	38.7		μg/l	5.00	50.0		77	1-219		
Benzo (k) fluoranthene	36.7		μg/l	5.00	50.0		73	11-162		
Bis(2-ethylhexyl)phthalate	37.3		μg/l	5.00	50.0		75	8-158		
Butyl benzyl phthalate	34.9		μg/l	5.00	50.0		70	1-152		
Chrysene	37.4		μg/l	5.00	50.0		75	17-168		
Dibenzo (a,h) anthracene	42.6		μg/l	5.00	50.0		85	1-227		
Diethyl phthalate	36.6		μg/l	5.00	50.0		73	1-114		
Dimethyl phthalate	33.3		μg/l	5.00	50.0		67	1-112		
Di-n-butyl phthalate	33.3		μg/i μg/l	5.00	50.0		75	1-112		
Di-n-octyl phthalate	35.3		μg/i μg/l	5.00	50.0		75	4-146		
Fluoranthene	35.3 39.0			5.00	50.0		78	26-137		
Fluoranmene			µg/l	5.00 5.00	50.0 50.0		78	26-137 59-121		
Indeno (1,2,3-cd) pyrene	36.2 39.8		µg/l	5.00 5.00	50.0		80	1-171		

Semivolatile Organic Compounds by GCMS - Quality Control

This laboratory report is not valid without an authorized signature on the cover page.

					Spike	Source		%REC	_	RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
PA 625										
atch 1709122 - SW846 3510C										
LCS (1709122-BS1)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	un-17	
Naphthalene	34.9		µg/l	5.00	50.0		70	21-133		
Pentachlorophenol	36.8		μg/l	5.00	50.0		74	14-176		
Phenanthrene	37.5		µg/l	5.00	50.0		75	54-120		
Phenol	34.5		µg/l	5.00	50.0		69	5-112		
Pyrene	35.5		µg/l	5.00	50.0		71	52-115		
Surrogate: 2-Fluorobiphenyl	42.9		µg/l		50.0		86	30-130		
Surrogate: 2-Fluorophenol	43.2		µg/l		50.0		86	15-110		
Surrogate: Nitrobenzene-d5	44.1		µg/l		50.0		88	30-130		
Surrogate: Phenol-d5	36.8		µg/l		50.0		74	15-110		
Surrogate: Terphenyl-dl4	43.1		µg/l		50.0		86	30-130		
Surrogate: 2,4,6-Tribromophenol	53.4		µg/l		50.0		107	15-110		
LCS Dup (1709122-BSD1)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	un-17	
Acenaphthene	40.0		µg/l	5.00	50.0		80	47-145	8	20
Acenaphthylene	41.9		µg/l	5.00	50.0		84	33-145	15	20
Anthracene	41.8		µg/l	5.00	50.0		84	27-133	9	20
Benzo (a) anthracene	39.0		µg/l	5.00	50.0		78	33-143	2	20
Benzo (a) pyrene	40.1		µg/l	5.00	50.0		80	17-163	4	20
Benzo (b) fluoranthene	38.8		µg/l	5.00	50.0		78	24-159	3	20
Benzo (g,h,i) perylene	41.0		µg/l	5.00	50.0		82	1-219	6	20
Benzo (k) fluoranthene	39.1		µg/l	5.00	50.0		78	11-162	6	20
Bis(2-ethylhexyl)phthalate	38.2		µg/l	5.00	50.0		76	8-158	2	20
Butyl benzyl phthalate	38.5		µg/l	5.00	50.0		77	1-152	10	20
Chrysene	40.3		µg/l	5.00	50.0		81	17-168	8	20
Dibenzo (a,h) anthracene	41.9		µg/l	5.00	50.0		84	1-227	2	20
Diethyl phthalate	38.3		µg/l	5.00	50.0		77	1-114	5	20
Dimethyl phthalate	38.8		µg/l	5.00	50.0		78	1-112	15	20
Di-n-butyl phthalate	42.3		µg/l	5.00	50.0		85	1-118	11	20
Di-n-octyl phthalate	33.6		µg/l	5.00	50.0		67	4-146	5	20
Fluoranthene	44.0		µg/l	5.00	50.0		88	26-137	12	20
Fluorene	39.6		µg/l	5.00	50.0		79	59-121	9	20
Indeno (1,2,3-cd) pyrene	40.7		µg/l	5.00	50.0		81	1-171	2	20
Naphthalene	36.1		µg/l	5.00	50.0		72	21-133	3	20
Pentachlorophenol	37.1		µg/l	5.00	50.0		74	14-176	0.8	20
Phenanthrene	38.9		µg/l	5.00	50.0		78	54-120	4	20
Phenol	36.9		µg/l	5.00	50.0		74	5-112	7	20
Pyrene	40.8		µg/l	5.00	50.0		82	52-115	14	20
Surrogate: 2-Fluorobiphenyl	47.7		µg/l		50.0		95	30-130		
Surrogate: 2-Fluorophenol	42.2		µg/l		50.0		84	15-110		
Surrogate: Nitrobenzene-d5	49.3		µg/l		50.0		99	30-130		
Surrogate: Phenol-d5	40.2		µg/l		50.0		80	15-110		
Surrogate: Terphenyl-dl4	45.1		µg/l		50.0		90	30-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
•	Result	1 105	Onito	KDL	LUVUI	Result	JUILL	Liniits		
<u>PA 608</u>										
atch 1709121 - SW846 3510C										
Blank (1709121-BLK1)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	un-17	
Aroclor-1016	< 0.200		µg/l	0.200						
Aroclor-1016 [2C]	< 0.200		µg/l	0.200						
Aroclor-1221	< 0.200		µg/l	0.200						
Aroclor-1221 [2C]	< 0.200		µg/l	0.200						
Aroclor-1232	< 0.200		µg/l	0.200						
Aroclor-1232 [2C]	< 0.200		µg/l	0.200						
Aroclor-1242	< 0.200		µg/l	0.200						
Aroclor-1242 [2C]	< 0.200		µg/l	0.200						
Aroclor-1248	< 0.200		µg/l	0.200						
Aroclor-1248 [2C]	< 0.200		µg/l	0.200						
Aroclor-1254	< 0.200		µg/l	0.200						
Aroclor-1254 [2C]	< 0.200		µg/l	0.200						
Aroclor-1260	< 0.200		µg/l	0.200						
Aroclor-1260 [2C]	< 0.200		µg/l	0.200						
Aroclor-1262	< 0.200		µg/l	0.200						
Aroclor-1262 [2C]	< 0.200		µg/l	0.200						
Aroclor-1268	< 0.200		µg/l	0.200						
Aroclor-1268 [2C]	< 0.200		µg/l	0.200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.180		µg/l		0.200		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.190		µg/l		0.200		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.240		µg/l		0.200		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.250		µg/l		0.200		125	30-150		
LCS (1709121-BS1)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	un-17	
Aroclor-1016	2.17		µg/l	0.200	2.50		87	50-114		
Aroclor-1016 [2C]	2.34		µg/l	0.200	2.50		94	50-114		
Aroclor-1260	2.30		µg/l	0.200	2.50		92	40-127		
Aroclor-1260 [2C]	2.59		µg/l	0.200	2.50		104	40-127		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.160		µg/l		0.200		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.170		µg/l		0.200		85	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.210		µg/l		0.200		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.240		µg/l		0.200		120	30-150		
LCS Dup (1709121-BSD1)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	<u>un-17</u>	
Aroclor-1016	1.98		µg/l	0.200	2.50		79	50-114	9	20
Aroclor-1016 [2C]	2.16		µg/l	0.200	2.50		86	50-114	8	20
Aroclor-1260	2.05		µg/l	0.200	2.50		82	40-127	11	20
Aroclor-1260 [2C]	2.36		µg/l	0.200	2.50		94	40-127	9	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.150		µg/l		0.200		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.160		µg/l		0.200		80	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.170		µg/l		0.200		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.220		µg/l		0.200		110	30-150		

Semivolatile Organic Compounds by GC - Quality Control

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>EPA 1664B</u>										
Batch 1709217 - SW846 3510C										
Blank (1709217-BLK1)					Pre	epared & An	alyzed: 05-	Jun-17		
Non-polar material (SGT-HEM)	< 1.0		mg/l	1.0						
LCS (1709217-BS1)					Pre	epared & An	alyzed: 05-	Jun-17		
Non-polar material (SGT-HEM)	27.1		mg/l	1.0	39.7		68	64-132		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
EPA 200.7										
Batch 1709133 - EPA 200 Series										
Blank (1709133-BLK1)					Pre	epared & Ai	nalyzed: 02-	Jun-17		
Iron	< 0.0400		mg/l	0.0400						
Calcium	< 0.100		mg/l	0.100						
Magnesium	< 0.0500		mg/l	0.0500						
LCS (1709133-BS1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
Iron	1.20		mg/l	0.0400	1.25		96	85-115		
Calcium	6.26		mg/l	0.100	6.25		100	85-115		
Magnesium	1.40		mg/l	0.0500	1.25		112	85-115		
				C35291-02	Pre	enared & Ar	nalyzed: 02-	Jun-17		
Magnesium	2.50	R06	mg/l	0.0500	<u></u>	2.56	10.17200.02	0011 11	2	20
Calcium	10.7		mg/l	0.100		11.5			7	20
Matrix Spike (1709133-MS1)			0	C35291-02	Pre		nalyzed: 02-	.lun_17	-	
Magnesium	3.82		mg/l	0.0500	1.25	2.56	101	70-130		
Calcium	16.9		mg/l	0.100	6.25	11.5	85	70-130		
Post Spike (1709133-PS1)	10.5			C35291-02			nalyzed: 02-			
Magnesium	3.90		mg/l	0.0500	1.25	2.56	108	85-115		
Calcium	3.90 18.4		mg/l	0.0500	6.25	2.50 11.5	108	85-115		
	10.4		mg/i	0.100	0.25	11.5	110	00-110		
EPA 200.8										
Batch 1709132 - EPA 200 Series										
Blank (1709132-BLK1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
Antimony	< 0.00045		mg/l	0.00045						
Selenium	< 0.00305		mg/l	0.00305						
Lead	< 0.00025		mg/l	0.00025						
Zinc	< 0.00250		mg/l	0.00250						
Silver	< 0.00030		mg/l	0.00030						
Nickel	< 0.00025		mg/l	0.00025						
Copper	< 0.00025		mg/l	0.00025						
Chromium	< 0.00120		mg/l	0.00120						
Arsenic	< 0.00025		mg/l	0.00025						
Cadmium	< 0.00025		mg/l	0.00025						
LCS (1709132-BS1)					Pre	epared & Ar	nalyzed: 02-	Jun-17		
Lead	0.0527	D	mg/l	0.00250	0.0500		105	85-115		
Antimony	0.0494	D	mg/l	0.00450	0.0500		99	85-115		
Selenium	0.226	D	mg/l	0.0305	0.250		90	85-115		
Zinc	0.0540	D	mg/l	0.0250	0.0500		108	85-115		
Arsenic	0.0508	D	mg/l	0.00250	0.0500		102	85-115		
Silver	0.0502	D	mg/l	0.00300	0.0500		100	85-115		
Nickel	0.0498	D	mg/l	0.00250	0.0500		100	85-115		
Chromium	0.0524	D	mg/l	0.0120	0.0500		105	85-115		
Cadmium	0.0508	D	mg/l	0.00250	0.0500		102	85-115		
Copper	0.0520	D	mg/l	0.00250	0.0500		104	85-115		
Duplicate (1709132-DUP1)			Source: So	C35291-01	Pre	epared & Ar	nalyzed: 02-	<u>Jun-17</u>		
Zinc	0.0124		mg/l	0.00250		0.0110			12	20
Lead	0.00116		mg/l	0.00025		0.00109			6	20
Antimony	0.00042	J,QR8, 806	mg/l	0.00045		0.00035			19	20
Selenium	0.00114	R06 J,QR8, R06	mg/l	0.00305		0.00301			90	20
Cadmium	0.00015	J	mg/l	0.00025		0.00015			4	20
Arsenic	0.00421		mg/l	0.00025		0.00418			0.7	20
Alsenic			IIIQ/I	0.00020						

Total Metals by EPA 200 Series Methods - Quality Control

07-Jun-17 14:14

This laboratory report is not valid without an authorized signature on the cover page.

Total Metals	s by EPA 200	Series Methods -	Quality Control
---------------------	--------------	------------------	-----------------

	_	_			Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
<u>EPA 200.8</u>										
Batch 1709132 - EPA 200 Series										
Duplicate (1709132-DUP1)			Source: S	C35291-01	Pre	epared & Ar	nalyzed: 02-	-Jun-17		
Nickel	0.00265		mg/l	0.00025		0.00250			6	20
Copper	0.00510		mg/l	0.00025		0.00474			7	20
Chromium	0.00116	J,R06	mg/l	0.00120		0.00101			14	20
<u> Matrix Spike (1709132-MS1)</u>			Source: S	C35291-01	Pre	epared & Ar	nalyzed: 02-	-Jun-17		
Antimony	0.0661	QC2, D	mg/l	0.00450	0.0500	BRL	132	70-130		
Zinc	0.0778	QM7, D	mg/l	0.0250	0.0500	BRL	156	70-130		
Lead	0.0686	QM7, D	mg/l	0.00250	0.0500	0.00109	135	70-130		
Selenium	0.335	QC2, D	mg/l	0.0305	0.250	0.00301	133	70-130		
Arsenic	0.0773	QM7, D	mg/l	0.00250	0.0500	0.00418	146	70-130		
Copper	0.0680	D	mg/l	0.00250	0.0500	0.00474	126	70-130		
Chromium	0.0661	QC2, D	mg/l	0.0120	0.0500	BRL	132	70-130		
Cadmium	0.0650	D	mg/l	0.00250	0.0500	BRL	130	70-130		
Nickel	0.0626	D	mg/l	0.00250	0.0500	0.00250	120	70-130		
Silver	0.0618	D	mg/l	0.00300	0.0500	BRL	124	70-130		
Post Spike (1709132-PS1)			Source: S	C35291-01	Pre	epared & Ar	nalyzed: 02-	-Jun-17		
Antimony	0.0518	D	mg/l	0.00450	0.0500	BRL	104	85-115		
Selenium	0.362	QC2, D	mg/l	0.0305	0.250	0.00301	144	85-115		
Cadmium	0.0649	QC2, D	mg/l	0.00250	0.0500	BRL	130	85-115		
Silver	0.0615	D, QC2	mg/l	0.00300	0.0500	BRL	123	85-115		
Chromium	0.0672	QC2, D	mg/l	0.0120	0.0500	BRL	134	85-115		
EPA 245.1/7470A										
Batch 1709134 - EPA200/SW7000 Series										
Blank (1709134-BLK1)					Pre	epared & Ar	alvzed: 02-	-Jun-17		
Mercury	< 0.00020		mg/l	0.00020	<u> </u>					
LCS (1709134-BS1)					Pre	epared & Ar	alvzed: 02.	- lun-17		
Mercury	0.00452		mg/l	0.00020	0.00500		90	85-115		
2	0.00402		Ũ			epared & Ar				
Duplicate (1709134-DUP1)	< 0.00020			<u>C35291-01</u> 0.00020	<u>P10</u>	BRL		<u>-Jun-17</u>		20
Mercury	< 0.00020		mg/l		D			hum 47		20
Matrix Spike (1709134-MS1)			-	<u>C35291-01</u>		epared & Ar				
Mercury	0.00485		mg/l	0.00020	0.00500	BRL	97	80-120		
Post Spike (1709134-PS1)			-	C35291-01		epared & Ar				
Mercury	0.00437		mg/l	0.00020	0.00500	BRL	87	85-115		

General Chemistry Parameters - Quality Control

					0.1	9		0/DEC		DDD
Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		-								
<u>EPA 300.0</u>										
Batch 1709275 - General Preparation										
<u>Blank (1709275-BLK1)</u>					Pre	epared & Ar	nalyzed: 05-	<u>-Jun-17</u>		
Chloride	< 1.00		mg/l	1.00						
<u>LCS (1709275-BS1)</u>						epared & Ai	halyzed: 05-			
Chloride	21.4		mg/l	1.00	20.0		107	90-110		
Duplicate (1709275-DUP1)			Source: So		Pre		nalyzed: 05	<u>-Jun-17</u>		
Chloride	261	GS1, D	mg/l	10.0		260			0.5	20
<u>Matrix Spike (1709275-MS1)</u>			Source: So				nalyzed: 05			
Chloride	340		mg/l	10.0	80.0	260	100	90-110		
<u>Matrix Spike Dup (1709275-MSD1)</u>			Source: So	C35291-01	Pre	epared & Ar	nalyzed: 05-	-Jun-17		
Chloride	340		mg/l	10.0	80.0	260	101	90-110	0.2	20
Reference (1709275-SRM1)					Pre	epared & Ai	nalyzed: 05	-Jun-17		
Chloride	25.2		mg/l	1.00	25.0		101	90-110		
<u>EPA 335.4 / SW846 9012B</u>										
Batch 1709210 - General Preparation										
Blank (1709210-BLK1)					Pre	pared & Ar	nalyzed: 03-	-Jun-17		
Cyanide (total)	< 0.00500		mg/l	0.00500						
Blank (1709210-BLK2)					Pre	epared & Ai	nalyzed: 03-	-Jun-17		
Cyanide (total)	< 0.00500		mg/l	0.00500						
LCS (1709210-BS1)			0		Pre	epared & Ar	nalyzed: 03-	-Jun-17		
Cyanide (total)	0.301		mg/l	0.00500	0.300		100	90-110		
LCS (1709210-BS2)						enared & Ai	nalyzed: 03-			
Cyanide (total)	0.241	QC3	mg/l	0.00500	0.300		80	90-110		
<u>Duplicate (1709210-DUP1)</u>			Source: S			nared & A	nalyzed: 03-			
Cyanide (total)	< 0.00500		mg/l	0.00500	<u>- 10</u>	BRL	lalyzea. oo			20
<u>Matrix Spike (1709210-MS1)</u>	0.00000		Source: S		Pre		nalyzed: 03-	- lun-17		
Cyanide (total)	0.323		mg/l	0.00500	0.300	BRL	108	90-110		
• • •	0.020		Source: S				nalyzed: 03-			
<u>Matrix Spike Dup (1709210-MSD1)</u> Cyanide (total)	0.327		mg/l	0.00500	0.300	BRL	109	90-110	1	20
	0.521		iiig/i	0.00000					I	20
Reference (1709210-SRM1)	0.224		ma/l	0.00500		epareu & Ar	<u>nalyzed: 03-</u> 99			
Cyanide (total)	0.334		mg/l	0.00500	0.336		99	73.5-126		
<u>SM2540D (11)</u>										
Batch 1709141 - General Preparation										
Blank (1709141-BLK1)					Pre	epared: 02-	Jun-17 An	alyzed: 03-Ju	<u>ın-17</u>	
Total Suspended Solids	< 0.5		mg/l	0.5						
<u>LCS (1709141-BS1)</u>					Pre	epared: 02-	Jun-17 An	alyzed: 03-Ju	<u>ın-17</u>	
Total Suspended Solids	96.0		mg/l	10.0	100		96	90-110		
<u>SM3500-Cr-B (11)/7196A</u>										
Batch 1709140 - General Preparation										
Blank (1709140-BLK1)					Pre	epared & Ai	nalyzed: 02-	-Jun-17		
Hexavalent Chromium	< 0.005		mg/l	0.005						
LCS (1709140-BS1)					Pre	epared & Ar	nalyzed: 02-	-Jun-17		
Hexavalent Chromium	0.050		mg/l	0.005	0.0500		99	90-111		
Duplicate (1709140-DUP1)			Source: S		Pre	epared & Ai	nalyzed: 02-	-Jun-17		
Hexavalent Chromium	0.003	J	mg/l	0.005		BRL	,			20
Matrix Spike (1709140-MS1)	0.000		Source: S		Pre		nalyzed: 02-	Jun-17		
Hexavalent Chromium	0.054		mg/l	0.005	0.0500	BRL	108	85-115		
Matrix Spike Dup (1709140-MSD1)	0.004		Source: S				nalyzed: 02-			
Hexavalent Chromium	0.054		mg/l	0.005	0.0500	BRL	109	<u>-Jun-17</u> 85-115	0.4	20
Hexavalent Onronnulli	0.004		my/i	0.000	0.0000	DILL	109	00-110	0.4	20

This laboratory report is not valid without an authorized signature on the cover page.

General Chemistry Parameters - Quality Control

Analyta(a)	Result	Flag	Units	*RDL	Spike	Source Result	%REC	%REC	RPD	RPD
Analyte(s)	Kesuit	Flag	Units	·KDL	Level	Result	70KEU	Limits	KPD	Limit
<u>SM3500-Cr-B (11)/7196A</u>										
Batch 1709140 - General Preparation										
Reference (1709140-SRM1)					Pre	epared & A	nalyzed: 02	-Jun-17		
Hexavalent Chromium	0.026		mg/l	0.005	0.0250		105	85-115		
<u>SM4500-Cl-G (11)</u>										
Batch 1709142 - General Preparation										
Blank (1709142-BLK1)					Pre	epared & A	nalyzed: 02	-Jun-17		
Total Residual Chlorine	< 0.020		mg/l	0.020						
LCS (1709142-BS1)					Pre	epared & A	nalyzed: 02	-Jun-17		
Total Residual Chlorine	0.045		mg/l	0.020	0.0500		90	90-110		
Reference (1709142-SRM1)					Pre	epared & A	nalyzed: 02	-Jun-17		
Total Residual Chlorine	0.097		mg/l	0.020	0.105		92	85-115		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E350.1</u>										
Batch 388655A - 388655										
<u>BLK (BY31536-BLK)</u>					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	un-17	
Ammonia as Nitrogen	< 0.05		mg/L	0.05				-		
DUP (BY31536-DUP)		<u>s</u>	ource: BY	<u>′31536</u>	Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	un-17	
Ammonia as Nitrogen	26.8		mg/L	0.50				-	2.3	20
LCS (BY31536-LCS)					Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	<u>un-17</u>	
Ammonia as Nitrogen	3.570		mg/L	0.05	3.74		95.5	90-110		20
<u>MS (BY31536-MS)</u>		<u>S</u>	ource: BY	<u>′31536</u>	Pre	epared: 02-	Jun-17 An	alyzed: 05-Ju	<u>un-17</u>	
Ammonia as Nitrogen	47.70		mg/L	0.05	20		108	90-110		20

Notes and Definitions

- Data reported from a dilution D GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample. QC3 The spike recovery is outside acceptable limits for the LCS. The batch was accepted based upon the MS and/or MSD meeting the LCS limits criteria. QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery. QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit. R06 MRL raised to correlate to batch QC reporting limits. SAC Acid surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two acid surrogates. Base/Neutral surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two SBN base/neutral surrogates. dry Sample results reported on a dry weight basis NR Not Reported RPD Relative Percent Difference
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are considered out of hold time at the time of sample receipt.
- HD Total Hardness is a calculation based on the reported values of Ca and Mg.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes wirgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

÷

Batch Summary

[CALC]

<u>General Chemistry Parameters</u> SC35291-01 (RGP-1) SC35291-02 (SW-1)

<u>1709121</u>

<u>Semivolatile Organic Compounds by GC</u> 1709121-BLK1 1709121-BS1 1709121-BSD1 SC35291-01 (RGP-1)

<u>1709122</u>

<u>Semivolatile Organic Compounds by GCMS</u> 1709122-BLK1 1709122-BS1 1709122-BSD1 SC35291-01 (RGP-1)

<u>1709132</u>

<u>Total Metals by EPA 200 Series Methods</u> 1709132-BLK1 1709132-BS1 1709132-DUP1 1709132-MS1 1709132-PS1 SC35291-01 (RGP-1) SC35291-01 (RGP-1)

<u>1709133</u>

<u>Total Metals by EPA 200 Series Methods</u> 1709133-BLK1 1709133-BS1 1709133-DUP1 1709133-MS1 1709133-PS1 SC35291-01 (RGP-1) SC35291-02 (SW-1)

<u>1709134</u>

Total Metals by EPA 200 Series Methods

1709134-BLK1 1709134-BS1 1709134-DUP1 1709134-MS1 1709134-PS1 SC35291-01 (RGP-1)

<u>1709139</u>

<u>Total Metals by EPA 200/6000 Series Methods</u> SC35291-01 (RGP-1) SC35291-02 (SW-1)

<u>1709140</u>

<u>General Chemistry Parameters</u> 1709140-BLK1 1709140-BS1 1709140-DUP1 1709140-MS1 1709140-MSD1 1709140-SRM1 SC35291-01 (RGP-1)

<u>1709141</u>

<u>General Chemistry Parameters</u> 1709141-BLK1 1709141-BS1 SC35291-01 (RGP-1)

<u>1709142</u>

<u>General Chemistry Parameters</u> 1709142-BLK1 1709142-BS1 1709142-SRM1 SC35291-01 (RGP-1)

<u>1709154</u>

<u>Volatile Organic Compounds</u> 1709154-BLK1 1709154-BS1 1709154-BSD1 SC35291-01 (RGP-1)

<u>1709210</u>

<u>General Chemistry Parameters</u> 1709210-BLK1 1709210-BLK2 1709210-BS1 1709210-BS2 1709210-DUP1 1709210-MS1 1709210-MSD1 1709210-SRM1 SC35291-01 (RGP-1)

<u>1709211</u>

<u>Organic Compounds by Modified SW846 8015</u> 1709211-BLK1 1709211-BS1 1709211-BSD1 1709211-DUP1 SC35291-01 (RGP-1)

<u>1709212</u>

<u>Microextractable Organic Compounds</u> 1709212-BLK1 1709212-BS1 1709212-BSD1 1709212-DUP1 SC35291-01 (RGP-1)

<u>1709217</u>

Extractable Petroleum Hydrocarbons 1709217-BLK1 1709217-BS1 SC35291-01 (RGP-1)

<u>1709275</u>

<u>General Chemistry Parameters</u> 1709275-BLK1 1709275-BS1 1709275-DUP1 1709275-MS1 1709275-MSD1 1709275-SRM1 SC35291-01 (RGP-1)

<u>388655A</u>

<u>Subcontracted Analyses</u> BY31536-BLK BY31536-DUP BY31536-LCS BY31536-MS SC35291-01 (RGP-1) SC35291-02 (SW-1)

<u>S605424</u>

Organic Compounds by Modified SW846 8015

S605424-CAL1 S605424-CAL2 S605424-CAL3 S605424-CAL4 S605424-CAL5 S605424-CAL6 S605424-CAL7 S605424-CAL7 S605424-ICV1

<u>8702336</u>

<u>Semivolatile Organic Compounds by GC</u> S702336-CAL1 S702336-CAL2 S702336-CAL3 S702336-CAL3 S702336-CAL4 S702336-CAL5 S702336-CAL6 S702336-CAL7 S702336-CAL8 S702336-CAL9 S702336-CALA S702336-CALB S702336-CALC S702336-CALD S702336-CALE S702336-CALF S702336-CALG S702336-CALH S702336-CALI S702336-CALJ S702336-CALK S702336-CALL S702336-CALM S702336-CALN S702336-CALO S702336-CALP S702336-CALQ S702336-CALR S702336-CALS S702336-CALT S702336-CALU S702336-ICV1 S702336-ICV2 S702336-ICV3 S702336-ICV4 S702336-ICV5 S702336-ICV6 S702336-LCV1 S702336-LCV2 S702336-LCV3 S702336-LCV4 S702336-LCV5 S702336-LCV6

<u>S704664</u>

Volatile Organic Compounds S704664-CAL1 S704664-CAL2 S704664-CAL3 S704664-CAL4 S704664-CAL5 S704664-CAL6 S704664-CAL7 S704664-CAL8 S704664-CAL9 S704664-CALA S704664-CALB S704664-ICV1 S704664-LCV1 S704664-LCV2 S704664-TUN1

<u>S704839</u>

Semivolatile Organic Compounds by GCMS

S704839-CAL1 S704839-CAL2 S704839-CAL3 S704839-CAL4 S704839-CAL5 S704839-CAL6 S704839-CAL6 S704839-CAL8 S704839-CAL8 S704839-CAL9 S704839-CALA S704839-CALA S704839-ICV1 S704839-ICV1 S704839-LCV1 S704839-LCV2 S704839-TUN1

<u>8704994</u>

<u>Volatile Organic Compounds</u> S704994-CCV1 S704994-TUN1

<u>8705014</u>

<u>Microextractable Organic Compounds</u> S705014-CAL1 S705014-CAL2 S705014-CAL3 S705014-CAL4 S705014-CAL5 S705014-CAL5 S705014-CAL7 S705014-CAL7 S705014-ICV1 S705014-LCV1

<u>S705020</u>

Semivolatile Organic Compounds by GCMS S705020-CCV1 S705020-TUN1

<u>8705024</u>

Organic Compounds by Modified SW846 8015 S705024-CCV1 S705024-CCV2

<u>8705025</u>

<u>Semivolatile Organic Compounds by GC</u> S705025-CCV1 S705025-CCV2 S705025-IBL1 S705025-IBL2

<u>8705046</u>

<u>Microextractable Organic Compounds</u> S705046-CCV1 Attachment D Review of Threatened or Endangered Species And National Historic Preservation Act Review

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours.

Thomas R. Chapman Supervisor New England Field Office

Massachusetts Cultural Resource Information System Scanned Record Cover Page

Inventory No:	BIL.132
Historic Name:	Billerica Town Water Supply Pumping Station
Common Name:	
Address:	250 Boston Rd
City/Town:	Billerica
Village/Neighborhood:	North Billerica
Local No:	244
Year Constructed:	1898
Architect(s):	Boyden, Ernest Niebuhr
Architectural Style(s):	Victorian Eclectic
Use(s):	Parking Garage; Pumping Station
Significance:	Architecture; Community Planning; Engineering
Area(s):	
Designation(s):	
Building Materials(s):	Roof: Slate Wall: Brick; Wood; Wood Shingle

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

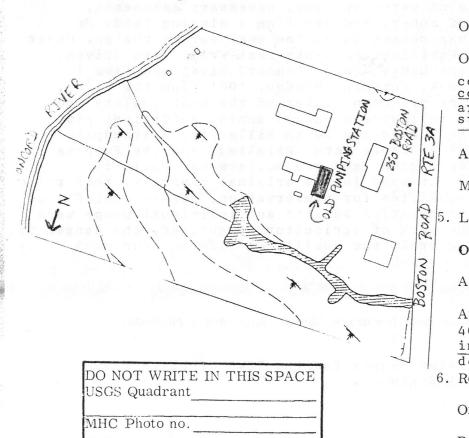
The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (<u>http://mhc-macris.net/macrisdisclaimer.htm</u>)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."

Commonwealth of Massachusetts Massachusetts Historical Commission 220 Morrissey Boulevard, Boston, Massachusetts 02125 www.sec.state.ma.us/mhc

This file was accessed on: Tuesday, June 6, 2017 at 6:10: PM


PI-N. B.II BIL. 132 1565 BIN 500 A

FORM B - BUILDING

MASSACHUSETTS HISTORICAL COMMISSION Office of the Secretary State House Roston

4. Map. Draw sketch of building location in relation to nearest cross streets and other buildings. Indicate north.

BILLE	rica quad	r		
ASSES	sor's #	In Area no.	Form no.	
PA	WE 22 LOT 18		244 132	
	1		100	
0	n <u>Biller</u>	ica, Massach	nusetts	
	ess 250	Boston Road		
	e Pumpin	g Station ((Driginal)	_
	ent use G	arage for DI	2 W	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
K	sent owner	Town of Bil	llerica	
	cription:	1		
R P	1898			
Chevi	ource Wat	ort of the ( er Supply fo lerica 1897,	Committee fo or the Town /1898	r of
1.17.5	<u>Unique</u> Ern	78'x37'x34 est M. Boyde	en reet, Boston	
	Architect 35			
	Exterior wall	fabric <u>clapboa</u>	ick with <u>rd clerestor</u>	у
	Outbuildings (o	lescribe) from		
	Other features	similarly y	slate roof w proportioned	
	column main	entrance w:	Detailed s ith two half ing; segment	
71			lusive of cl	
E3A	Altered Yes		1933 coal ateoil conve	to
R	Moved No	ALL CLASS C	again in 195 Date	0's?
95.		0.000		yard
20	Pag Map One acre or le		en acre DPW 18 Accessor cone acre x	's
BOSTON ROAD	Approximate fi			
	400' feet f immediately	rom Concord behind the office at 2	current wat 50 Boston Ro	er ad
		and the second	storical 🔿 🔊	
	Date May 26,	ommission 1993	év togaí	

(over)

BIL. 132"

BILLERICA QUAD

2018 20

对于1966年1966年

7. Original owner (if known) Town of Billerica

Original use Coal fired Pumping Station

Subsequent uses (if any) and dates Garage for Water Department Vehicles

8. Themes (check as many as applicable)

Aboriginal Agricultural Architectural The Arts		Conserva Education Explorati settlem	on/	Recreation Religion Science/ invention	- 1 <u>- 8</u> - 01 10 - <u></u> 03 13 h 10 10 h
Commerce Communication Community development	<u>x</u> 	Industry Military Political		Social/ humanitarian Transportation	
0			2 8 1993	A111	

9. Historical significance (include explanation of themes checked above)

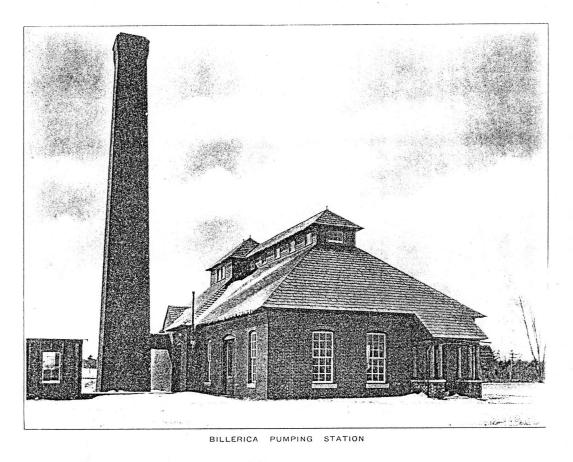
The Pumping Station is in a sense symbolic of a monumentous step taken by the Town of Billerica on September 16, 1897. Briefly, on that date at a special town meeting it was voted under the provisions of Act 471 of the Massachusetts State Legislature of 1897 to obtain the right to proceed with the necessary steps to procure a permanent supply of water "for domestic and fire purposes for general use in the town." Three water commissioners were appointed to act for the townspeople. Their authority included any land taking, use of water sourses, necessary easements, issuing of bonds, borrowing of money, and creating a sinking fund. Mr. Percy M. Blake of Hyde Park was chosen to be the engineer in charge. Under his direction and that of E. Worthington, twenty test wells were driven, of which thirteen were near the banks of the Concord River and five in the meadowlands of Content Brook. Hutchins Meadow, 400' from the river, was determined to be capable of producing water of the best quality and greatest quantity. During the following eighteen months sufficient pipe was laid to serve parts of the Center and North Billerica, a standpipe was erected on Crosby Hill, 94 hydrants were installed, and the Pumping Station containing two pumping engines and two boilers was built in Hutchins Meadow. Though no longer used in its original capacity, this relic of nearly one hundred years qualifies for preservation, perhaps chiefly as a reminder that along with its creation buckets and individual pumps were outmoted, health improved, the work of agriculture lightened, the danger of fire loss lessened, and, in general, the quality of life in town much improved.

10. Bibliography and/or references (such as local histories, deeds, assessor's records, early maps, etc.)

"Report of the Committee of Water Supply for the Town of Billerica, 1897/8", Percy M. Blake, Civil Engineer.

Billerica Town Report of 1898.

Interview with John McGovern current Water Department Superintendent May 25, 1993


INVENTORY FORM CONTINUATION SHEET

MASSACHUSETTS HISTORICAL COMMISSION Office of the Secretary, Boston

Community:	Form No:	
Billerica	244	
Property Name: Pumping Stat	tion	

BIL. 132

Indicate each item on inventory form which is being continued below.



This is an early photo showing the chimney.