

Proactive by Design

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com



July 7, 2017 File No. 01.0171521.52

Ms. Shauna Little
United States Environmental Protection Agency – Region 1
5 Post Office Square, Mail Code OEP06-4
Boston, Massachusetts 02109-3912

Re: Submittal of Notice of Intent (NOI)
Remedial General Permit (RGP)
Wynn Boston Harbor
One Horizon Way
Everett, Massachusetts

Dear Ms. Little:

On behalf of Wynn MA, LLC, GZA GeoEnvironmental, Inc. (GZA) is pleased to submit the attached Notice of Intent (NOI) form (Attachment 1) for the Remedial General Permit (RGP) for the Wynn Boston Harbor casino project (the Site) located in Everett, Massachusetts.

#### **BACKGROUND**

The Site is adjoined to the northeast by a vehicle maintenance and repair facility operated by the Massachusetts Bay Transportation Authority (MBTA); to the southeast by properties along Alford Street, including a vacant commercial building and facilities operated by the Boston Water and Sewer Commission (BWSC) and the Massachusetts Water Resources Authority (MWRA); to the southwest by the Mystic River; and to the northwest by railroad tracks for the MBTA Commuter Rail, beyond which are several large commercial/retail buildings associated with the Gateway Center. A Site Locus plan is included as Figure 1 (Attachment 2), and a Site Plan is shown on Figure 2 (Attachment 3).

#### SITE DEWATERING

During the excavation for the building foundations and utilities, discharge of treated water will be required for the duration of the project. A series of 8-inch diameter water extraction wells were installed inside the deepest area of excavation to draw down the water table within the excavation. The location of the extraction wells are depicted on the Site Plan on Figure 3 (Attachment 4). These dewatering wells will slowly, and systematically be taken off-line as the need to pump from this deep portion of the Site is no longer necessary. The need to manage and treat Site groundwater encountered during the construction of other foundation elements, utilities and improvements will continue at different locations throughout the project.

#### TREATMENT SYSTEM

The extracted groundwater will be treated with sulfuric acid and/or sodium hydroxide if the pH requires adjustment. Following pH adjustment, the water will be pumped into parallel 18,000-gallon sedimentation tanks where a coagulant (LRT E50) and a flocculent (LRT 800) will be added to facilitate settling of suspended solids. The effluent from the settling tanks will be treated with a series of bag filters, liquid-phase granulated activated carbon (LGAC), cation-





exchange media, and an anionic-exchange media for the removal of cyanide. The maximum flow rate of the system is designed to 500 gallons per minute (gpm) and is limited by the flow capacity of the bag filter assembly. The actual pumping rate may vary due to the size and depth of well/sumps, hydrogeologic characteristics of the soil/fill material, and weather events. The limiting component to flow in the treatment system are the bag filters. The bag filters, LGAC, and ion exchange media will be replaced periodically and the tank will be cleaned out as needed to properly managed accumulated sediments and maintain permit compliance. A flow meter will be installed so that the discharge quantity can be observed and documented. Treatment schematics (Figure 4) are shown in Attachment 5. The treatment system will be accessible for maintenance, monitoring, and sampling purposes.

Chemicals and additives will be applied and stored per the manufacturer's instructions. The pH will be adjusted manually and other chemicals will be applied via mechanical metering pumps. The pH adjustment chemical is a solid caustic and will be stored on pallets in covered, dry areas. The coagulant and flocculant are non-toxic. No chemicals will be added which would result in the exceedance of applicable water quality standards or addition of pollutants in concentrations in excess of permit effluent limitations or that are different or absent in this NOI. The attached SDS sheets (Attachment 5) detail chemical additive information.

#### **NOTICE OF INTENT**

This NOI has included a review of literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- Review of Appendix II "Summary of Endangered Species Act Listings" indicated that the Northern Long-eared Bat is located state-wide. However, this species is not likely to be present at the 1 Horizon Way address located in the City of Everett, Massachusetts, due to the densely-developed nature of the Site and lack of habitat. Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Everett, shows that there are no ACECs and no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. Additionally, review of the IPaC online resource of the United States Fish and Wildlife Services (USFWS) indicated that no endangered species or critical habitats are present at the Site. Therefore, permit eligibility meets "Criterion A".
- Review of the "Essential Fish Habitat Designations" for the 10-minute x 10-minute quadrangle encompassing Boston Harbor (Attachment 7), indicated that Essential Fish Habitats for listed species under the jurisdiction of the National Marine Fisheries Service (NMFS) are not present. Therefore, the Site discharge is unlikely to adversely affect listed species or modify critical habitats, and is eligible to select the NMFS criterion.
- Review of the electronic Massachusetts Cultural Resource Information System database, made available through Massachusetts Historical Commission, found no listings for historical areas, buildings, burial grounds, objects, or structures on the Site. Therefore, there is no anticipated impact to historical properties. The documentation of this review can be found in Attachment 8.
- Water Quality Based Effluent Limits (WQBELs) were calculated using the spreadsheet included in Appendix 5 of the RGP (Attachment 9) based on influent and receiving water sampling data. Results applicable to this discharge are included in Section D (4) of the NOI.
- A notice was provided to the City of Everett to notify them of the proposed discharge operating in accordance with an NPDES RGP Permit. A copy of the notification is included as Attachment 10.
- Laboratory analytical results, summarized in Attachment 1, are included as Attachment 11. Groundwater influent samples were collected monthly during discharges conducted under the expired 2010 RGP; the most recent six months of data representing analytes that were required to be sampled under the 2010 RGP, are included in this NOI. Groundwater data for those analytes reported as "Non-Detect" using a sufficiently sensitive test method were



tested on January 8, 2015 and the results submitted to EPA in May 2016, under the expired 2010 permit. Groundwater data for those analytes which were new to the 2016 RGP, (Ammonia, salinity) as well as analytes previously analyzed by a method with insufficient minimum detection levels, were resampled on June 2, 2017. Groundwater influent samples collected during recent discharges and for parameters requiring new or reanalysis, were collected from a sampling port prior to any treatment system component. Groundwater influent samples for parameters with existing data were collected from six locations; GZ-003, GZ-006, GZ-010, GZ-019, and GZ-024. These wells are located within the footprint of the foundation area currently being dewatered.

• A dilution factor for metals does not apply since the discharge is to saltwater .

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Andrew Sargent Engineer I

andre Sagut

/

Matthew Smith P.E., LSP Associate Principal

Randy Meuse

Consultant/Reviewer, Principal

Jans Meine

Attachments: Attachment 1: NOI Form

Attachment 2: Figure 1 – Site Locus Map

Attachment 3: Figure 2 - Site Plan

Attachment 4: Figure 3 – Dewatering Well Layout

Attachment 5: Figure 4 – Process Flow Diagram and SDS's

Attachment 6: Figure 5 – Discharge Outfall Location

Attachment 7: ESA and EFH Documentation

Attachment 8: MHC Report

Attachment 9: WQBEL Calculation Spreadsheet Attachment 10: City of Everett Notification Attachment 11: Laboratory Analytical Reports

cc: MassDEP - Northeastern Region



Attachment 1: NOI Form

# II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

## A. General site information:

| 1. Name of site:                                                                  | Site address:                                         |               |              |      |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------|---------------|--------------|------|--|--|--|
|                                                                                   | Street:                                               |               |              |      |  |  |  |
|                                                                                   | City:                                                 |               | State:       | Zip: |  |  |  |
| 2. Site owner                                                                     | Contact Person:                                       |               |              |      |  |  |  |
|                                                                                   | Telephone:                                            | Email:        |              |      |  |  |  |
|                                                                                   | Mailing address:                                      |               |              |      |  |  |  |
|                                                                                   | Street:                                               |               |              |      |  |  |  |
| Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify: | City:                                                 |               | State:       | Zip: |  |  |  |
| 3. Site operator, if different than owner                                         | Contact Person:                                       |               |              |      |  |  |  |
|                                                                                   | Telephone: Email:                                     |               |              |      |  |  |  |
|                                                                                   | Mailing address:                                      |               |              |      |  |  |  |
|                                                                                   | Street:                                               |               |              |      |  |  |  |
|                                                                                   | City:                                                 |               | State:       | Zip: |  |  |  |
| 4. NPDES permit number assigned by EPA:                                           | 5. Other regulatory program(s) that apply to the site | at apply):    |              |      |  |  |  |
|                                                                                   | ☐ MA Chapter 21e; list RTN(s):                        | □ CERCL       | .A           |      |  |  |  |
| NPDES permit is (check all that apply: $\square$ RGP $\square$ DGP $\square$ CGP  | ☐ NH Groundwater Management Permit or                 | ☐ UIC Program |              |      |  |  |  |
| ☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:                         | Groundwater Release Detection Permit:                 |               | Pretreatment | İ    |  |  |  |
|                                                                                   | □ CWA Section 404                                     |               |              |      |  |  |  |

| В.  | <b>Receiving water information:</b> |  |
|-----|-------------------------------------|--|
| 1 N | lame of receiving water(s).         |  |

| 1. Name of receiving water(s):                                                                                                    | Waterbody identification of receiving water                                                                           | (s): Classific                                       | cation of receiving water(s):                            |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                   |                                                                                                                       |                                                      |                                                          |
| Receiving water is (check any that apply): $\Box$ Outstar                                                                         | nding Resource Water □ Ocean Sanctuary □ territor                                                                     | rial sea □ Wild and Scenic R                         | iver                                                     |
| 2. Has the operator attached a location map in accord                                                                             | lance with the instructions in B, above? (check one)                                                                  | : □ Yes □ No                                         |                                                          |
| Are sensitive receptors present near the site? (check of If yes, specify:                                                         | one): □ Yes □ No                                                                                                      |                                                      |                                                          |
| 3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP. |                                                                                                                       |                                                      |                                                          |
| 4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A                         |                                                                                                                       | the instructions in                                  |                                                          |
| 5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s                      |                                                                                                                       |                                                      |                                                          |
| 6. Has the operator received confirmation from the a If yes, indicate date confirmation received:                                 | ppropriate State for the 7Q10and dilution factor indi                                                                 | cated? (check one): ☐ Yes ☐                          | l No                                                     |
| 7. Has the operator attached a summary of receiving                                                                               | water sampling results as required in Part 4.2 of the                                                                 | RGP in accordance with the                           | instruction in Appendix VIII?                            |
| (check one): □ Yes □ No                                                                                                           |                                                                                                                       |                                                      |                                                          |
| C. Source water information:                                                                                                      |                                                                                                                       |                                                      |                                                          |
| 1. Source water(s) is (check any that apply):                                                                                     |                                                                                                                       |                                                      |                                                          |
| ☐ Contaminated groundwater                                                                                                        | ☐ Contaminated surface water                                                                                          | ☐ The receiving water                                | ☐ Potable water; if so, indicate municipality or origin: |
| Has the operator attached a summary of influent                                                                                   | Has the operator attached a summary of influent                                                                       | ☐ A surface water other                              |                                                          |
| sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):             | sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): | than the receiving water; if so, indicate waterbody: | ☐ Other; if so, specify:                                 |
| □ Yes □ No                                                                                                                        | □ Yes □ No                                                                                                            |                                                      |                                                          |

| 2. Source water contaminants:                                                                                                                                                             |                                                                                                                                                                                    |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in                                      | b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance |  |  |  |  |  |  |
| the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.                          | with the instructions in Appendix VIII? (check one): □ Yes □ No                                                                                                                    |  |  |  |  |  |  |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                                           | dual chlorine? (check one): □ Yes □ No                                                                                                                                             |  |  |  |  |  |  |
| D. Discharge information                                                                                                                                                                  |                                                                                                                                                                                    |  |  |  |  |  |  |
| 1.The discharge(s) is a(n) (check any that apply): $\Box$ Existing discharge $\Box$ New                                                                                                   | w discharge □ New source                                                                                                                                                           |  |  |  |  |  |  |
| Outfall(s):                                                                                                                                                                               | Outfall location(s): (Latitude, Longitude)                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                           |                                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                           |                                                                                                                                                                                    |  |  |  |  |  |  |
| Discharges enter the receiving water(s) via (check any that apply): □ Direct di                                                                                                           | scharge to the receiving water $\Box$ Indirect discharge, if so, specify:                                                                                                          |  |  |  |  |  |  |
| ☐ A private storm sewer system ☐ A municipal storm sewer system  If the discharge enters the receiving water via a private or municipal storm sewer system:                               |                                                                                                                                                                                    |  |  |  |  |  |  |
| Has notification been provided to the owner of this system? (check one): ☐ Ye                                                                                                             | •                                                                                                                                                                                  |  |  |  |  |  |  |
| Has the operator has received permission from the owner to use such system for discharges? (check one):   Yes   No, if so, explain, with an estimated timeframe for obtaining permission: |                                                                                                                                                                                    |  |  |  |  |  |  |
| Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ☐ No                                                        |                                                                                                                                                                                    |  |  |  |  |  |  |
| Provide the expected start and end dates of discharge(s) (month/year):                                                                                                                    |                                                                                                                                                                                    |  |  |  |  |  |  |
| Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge                                                  |                                                                                                                                                                                    |  |  |  |  |  |  |
| Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ☐ Yes ☐ No                                                                            |                                                                                                                                                                                    |  |  |  |  |  |  |

| 2. Activity Category: (check all that apply)                                                                                                                                                                                                                                                                                                                    | 3. Contamination Type Category: (check all that apply)                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                 | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                                                                      |                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>□ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile Organic Compounds</li> <li>□ C. Halogenated Volatile Organic Compounds</li> <li>□ D. Non-Halogenated Semi-Volatile Organic Compounds</li> <li>□ E. Halogenated Semi-Volatile Organic Compounds</li> <li>□ F. Fuels Parameters</li> </ul>                                                     |                                                                                                                                               |  |  |  |  |
| <ul> <li>□ I – Petroleum-Related Site Remediation</li> <li>□ II – Non-Petroleum-Related Site Remediation</li> </ul>                                                                                                                                                                                                                                             | b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)                                                                                                                                                                                                                                                                                   |                                                                                                                                               |  |  |  |  |
| <ul> <li>□ III – Non-Petroleum-Related Site Remediation</li> <li>□ III – Contaminated Site Dewatering</li> <li>□ IV – Dewatering of Pipelines and Tanks</li> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> <li>□ VIII – Dredge-Related Dewatering</li> </ul> | □ G. Sites with Known Contamination  c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)  □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters | □ H. Sites with Unknown Contamination  d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |  |  |  |  |

## 4. Influent and Effluent Characteristics

|                         | Known                    | Known                     | Known           |                       |                              | Infl                       | uent                       | Effluent Limitations |       |
|-------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |
| A. Inorganics           |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Ammonia                 |                          |                           |                 |                       |                              |                            |                            | Report mg/L          |       |
| Chloride                |                          |                           |                 |                       |                              |                            |                            | Report µg/l          |       |
| Total Residual Chlorine |                          |                           |                 |                       |                              |                            |                            | 0.2 mg/L             |       |
| Total Suspended Solids  |                          |                           |                 |                       |                              |                            |                            | 30 mg/L              |       |
| Antimony                |                          |                           |                 |                       |                              |                            |                            | 206 μg/L             |       |
| Arsenic                 |                          |                           |                 |                       |                              |                            |                            | 104 μg/L             |       |
| Cadmium                 |                          |                           |                 |                       |                              |                            |                            | 10.2 μg/L            |       |
| Chromium III            |                          |                           |                 |                       |                              |                            |                            | 323 μg/L             |       |
| Chromium VI             |                          |                           |                 |                       |                              |                            |                            | 323 μg/L             |       |
| Copper                  |                          |                           |                 |                       |                              |                            |                            | 242 μg/L             |       |
| Iron                    |                          |                           |                 |                       |                              |                            |                            | 5,000 μg/L           |       |
| Lead                    |                          |                           |                 |                       |                              |                            |                            | 160 μg/L             |       |
| Mercury                 |                          |                           |                 |                       |                              |                            |                            | 0.739 μg/L           |       |
| Nickel                  |                          |                           |                 |                       |                              |                            |                            | 1,450 μg/L           |       |
| Selenium                |                          |                           |                 |                       |                              |                            |                            | 235.8 μg/L           |       |
| Silver                  |                          |                           |                 |                       |                              |                            |                            | 35.1 μg/L            |       |
| Zinc                    |                          |                           |                 |                       |                              |                            |                            | 420 μg/L             |       |
| Cyanide                 |                          |                           |                 |                       |                              |                            |                            | 178 mg/L             |       |
| B. Non-Halogenated VOCs | 3                        |                           |                 |                       |                              |                            |                            |                      |       |
| Total BTEX              |                          |                           |                 |                       |                              |                            |                            | 100 μg/L             |       |
| Benzene                 |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L             |       |
| 1,4 Dioxane             |                          |                           |                 |                       |                              |                            |                            | 200 μg/L             |       |
| Acetone                 |                          |                           |                 |                       |                              |                            |                            | 7.97 mg/L            |       |
| Phenol                  |                          |                           |                 |                       |                              |                            |                            | 1,080 µg/L           |       |

| Parameter                | Known                    | Known                     |                 | _                     |                              | Infl                       | luent                      | Effluent Limitations |       |  |
|--------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|--|
|                          | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |  |
| C. Halogenated VOCs      |                          |                           |                 |                       |                              |                            |                            |                      |       |  |
| Carbon Tetrachloride     |                          |                           |                 |                       |                              |                            |                            | 4.4 μg/L             |       |  |
| 1,2 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 600 μg/L             |       |  |
| 1,3 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 320 µg/L             |       |  |
| 1,4 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L             |       |  |
| Total dichlorobenzene    |                          |                           |                 |                       |                              |                            |                            | 763 µg/L in NH       |       |  |
| 1,1 Dichloroethane       |                          |                           |                 |                       |                              |                            |                            | 70 μg/L              |       |  |
| 1,2 Dichloroethane       |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L             |       |  |
| 1,1 Dichloroethylene     |                          |                           |                 |                       |                              |                            |                            | 3.2 µg/L             |       |  |
| Ethylene Dibromide       |                          |                           |                 |                       |                              |                            |                            | 0.05 μg/L            |       |  |
| Methylene Chloride       |                          |                           |                 |                       |                              |                            |                            | 4.6 μg/L             |       |  |
| 1,1,1 Trichloroethane    |                          |                           |                 |                       |                              |                            |                            | 200 μg/L             |       |  |
| 1,1,2 Trichloroethane    |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L             |       |  |
| Trichloroethylene        |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L             |       |  |
| Tetrachloroethylene      |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L             |       |  |
| cis-1,2 Dichloroethylene |                          |                           |                 |                       |                              |                            |                            | 70 μg/L              |       |  |
| Vinyl Chloride           |                          |                           |                 |                       |                              |                            |                            | 2.0 μg/L             |       |  |
| D. Non-Halogenated SVO   | Cs                       | _                         |                 |                       |                              |                            |                            |                      |       |  |
| Total Phthalates         |                          |                           |                 |                       |                              |                            |                            | 190 μg/L             |       |  |
| Diethylhexyl phthalate   |                          |                           |                 |                       |                              |                            |                            | 101 μg/L             |       |  |
| Total Group I PAHs       |                          |                           |                 |                       |                              |                            |                            | 1.0 μg/L             |       |  |
| Benzo(a)anthracene       |                          |                           |                 |                       |                              |                            |                            | _                    |       |  |
| Benzo(a)pyrene           |                          |                           |                 |                       |                              |                            |                            | _                    |       |  |
| Benzo(b)fluoranthene     |                          |                           |                 |                       |                              |                            |                            | <u> </u>             |       |  |
| Benzo(k)fluoranthene     |                          |                           |                 |                       |                              |                            |                            | As Total PAHs        |       |  |
| Chrysene                 |                          |                           |                 |                       |                              |                            |                            | _                    |       |  |
| Dibenzo(a,h)anthracene   |                          |                           |                 |                       |                              |                            |                            | _                    |       |  |
| Indeno(1,2,3-cd)pyrene   |                          |                           |                 |                       |                              |                            |                            |                      |       |  |

|                                     | Known                    | Known                |              |                              |                            | Inf                        | luent | Effluent Limitations            |  |  |
|-------------------------------------|--------------------------|----------------------|--------------|------------------------------|----------------------------|----------------------------|-------|---------------------------------|--|--|
| Parameter                           | or<br>believed<br>absent | or or # of samples m | method l     | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL  | WQBEL                           |  |  |
| Total Group II PAHs                 |                          |                      |              |                              |                            |                            |       | 100 μg/L                        |  |  |
| Naphthalene                         |                          |                      |              |                              |                            |                            |       | 20 μg/L                         |  |  |
| E. Halogenated SVOCs                |                          |                      |              |                              |                            |                            |       |                                 |  |  |
| Total PCBs                          |                          |                      |              |                              |                            |                            |       | 0.000064 µg/L                   |  |  |
| Pentachlorophenol                   |                          |                      |              |                              |                            |                            |       | 1.0 μg/L                        |  |  |
|                                     | 1                        |                      |              | •                            |                            |                            |       |                                 |  |  |
| F. Fuels Parameters Total Petroleum |                          | 1                    | 1            | 1                            |                            | 1 1                        |       |                                 |  |  |
| Hydrocarbons                        |                          |                      |              |                              |                            |                            |       | 5.0 mg/L                        |  |  |
| Ethanol                             |                          |                      |              |                              |                            |                            |       | Report mg/L                     |  |  |
| Methyl-tert-Butyl Ether             |                          |                      |              |                              |                            |                            |       | 70 μg/L                         |  |  |
| tert-Butyl Alcohol                  |                          |                      |              |                              |                            |                            |       | 120 μg/L in MA<br>40 μg/L in NH |  |  |
| tert-Amyl Methyl Ether              |                          |                      |              |                              |                            |                            |       | 90 μg/L in MA<br>140 μg/L in NH |  |  |
| Other (i.e., pH, temperatur         | re, hardness,            | salinity, LC         | 50, addition | al pollutar                  | ats present);              | if so, specify:            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |
|                                     |                          |                      |              |                              |                            |                            |       |                                 |  |  |

# E. Treatment system information

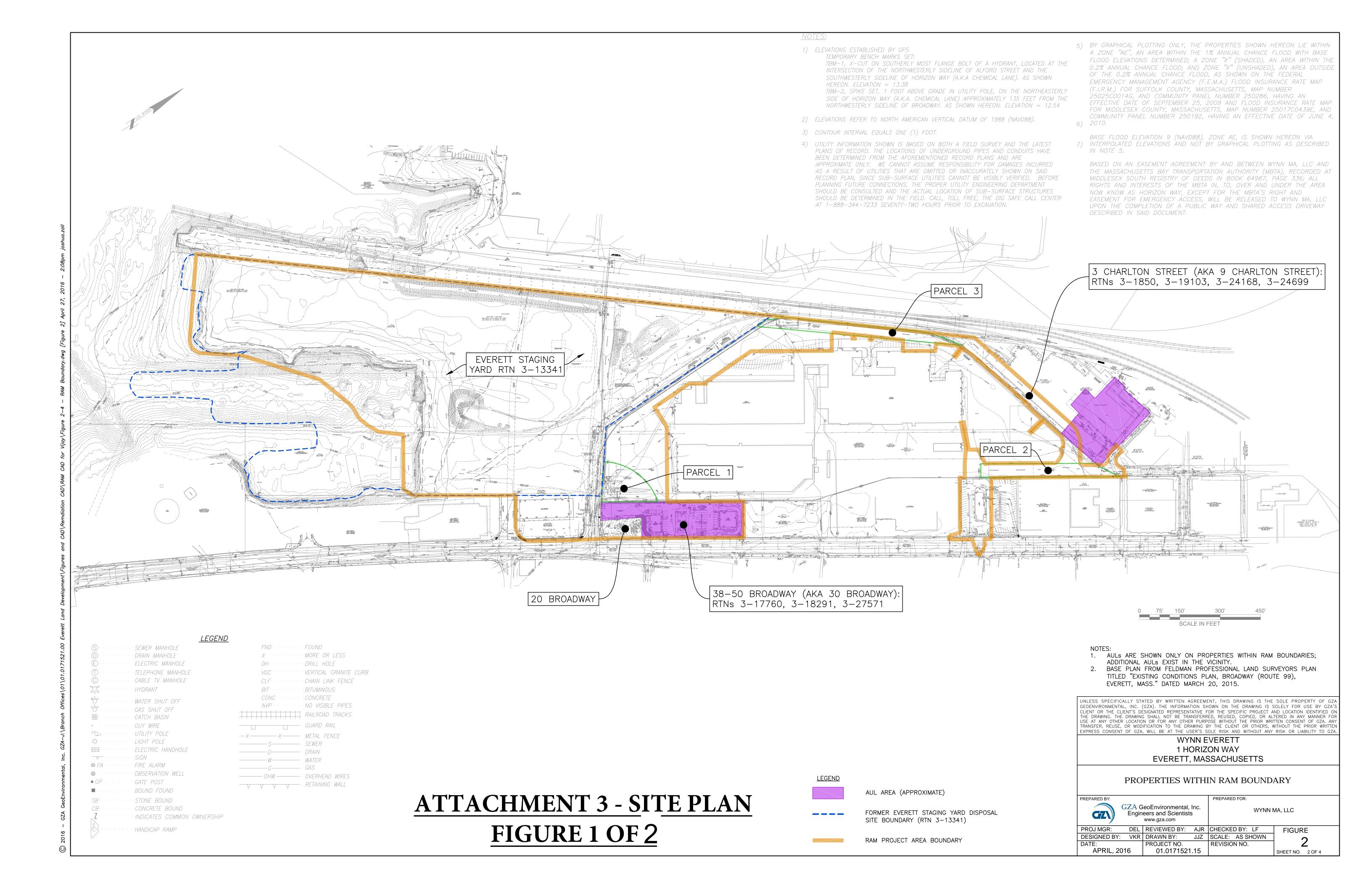
| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| ☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption |  |
| ☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:                                    |  |
|                                                                                                                                             |  |
|                                                                                                                                             |  |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.           |  |
|                                                                                                                                             |  |
|                                                                                                                                             |  |
| Identify each major treatment component (check any that apply):                                                                             |  |
| ☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter                                           |  |
| ☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:                                                             |  |
| Indicate if either of the following will occur (check any that apply):                                                                      |  |
| □ Chlorination □ De-chlorination                                                                                                            |  |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component.                                      |  |
| Indicate the most limiting component:                                                                                                       |  |
| Is use of a flow meter feasible? (check one): $\square$ Yes $\square$ No, if so, provide justification:                                     |  |
| Provide the proposed maximum effluent flow in gpm.                                                                                          |  |
| Trovide the proposed maximum errident now in gpin.                                                                                          |  |
| Provide the average effluent flow in gpm.                                                                                                   |  |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                      |  |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No                   |  |

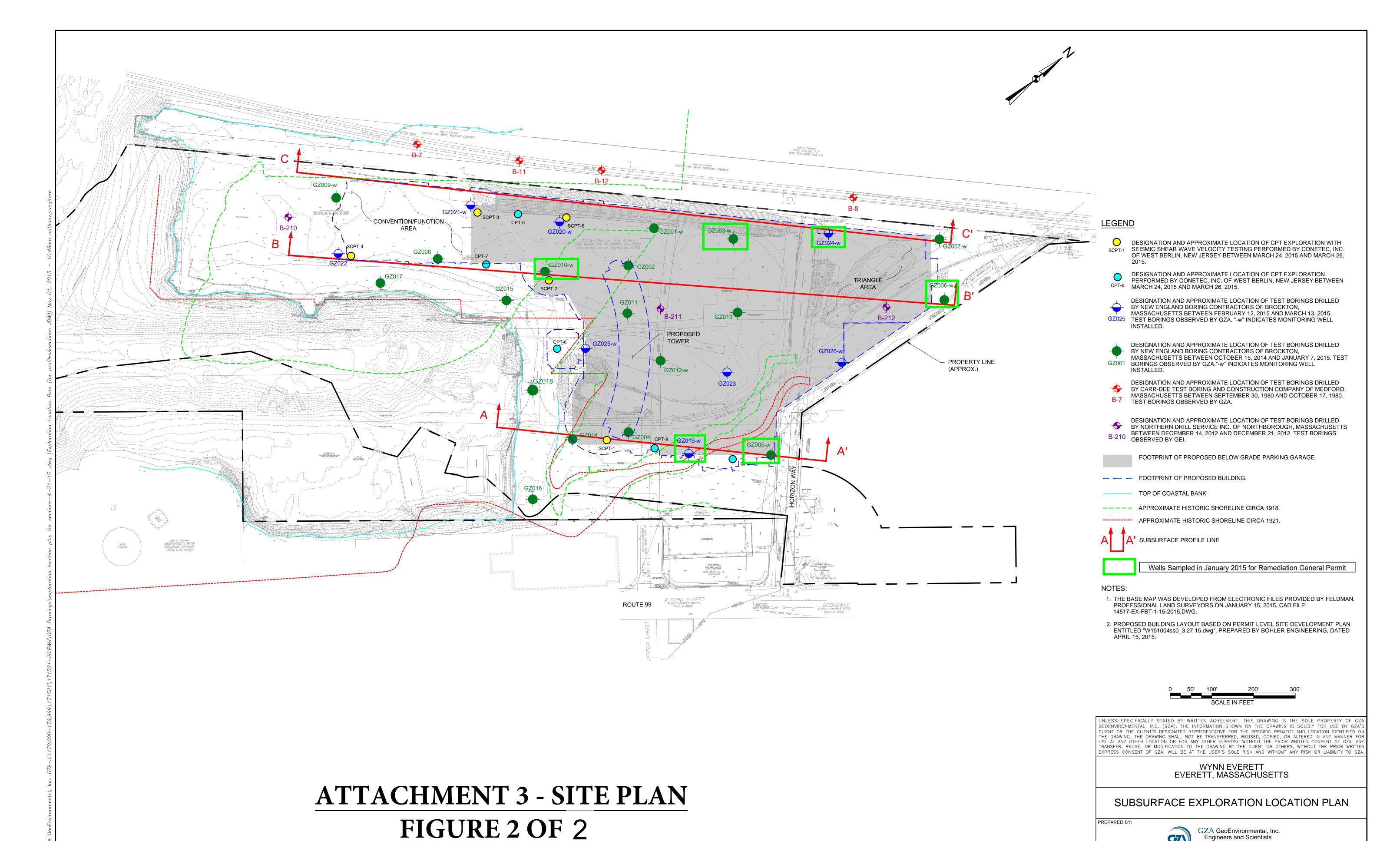
## F. Chemical and additive information

| r. Chemical and additive information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| with the instructions in F, above? (check one): $\square$ Yes $\square$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                      |
| (check one): □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion A</b> : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion B</b> : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat                                                                                                                                                                                                                                                                                                                                 |
| (informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ <b>FWS Criterion C</b> : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the                                                                                                                                                                    |
| FWS. This determination was made by: (check one) $\square$ the operator $\square$ EPA $\square$ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| □ <b>NMFS Criterion</b> : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No                                                                                                                                                                                                                                  |
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): $\square$ Yes $\square$ No                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                        |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):   Yes  No; if yes, attach.                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                        |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                        |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                 |
| □ <b>Criterion A</b> : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                             |
| ☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                         |
| □ <b>Criterion C</b> : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                    |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                        |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or                                                                                                                                                                   |
| other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):   Yes  No                                                                                                                                                               |
| I. Supplemental information                                                                                                                                                                                                                                                                                                            |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                        |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one):   Yes  No                                                                                                                                                                                   |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                        |

## J. Certification requirement


| I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations. | versons who manage the system, or those lief, true, accurate, and complete. I have |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: of this NOI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mented upon the submittal                                                          |
| Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check one: Yes □ No ■                                                              |
| Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Check one: Yes ■ No □                                                              |
| Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.  Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.                                                                                                                                                                                        | Check one: Yes □ No □ NA ■  Check one: Yes □ No □ NA ■                             |
| Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                              | Check one: Yes □ No □ NA ■                                                         |
| Signature: Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/6/17                                                                             |
| Print Name and Title: Thomas Spence Pagar Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                                                                                  |
| Print Name and Title: Thomas Spence Roja Executive Sufficile Const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RX-Try Co-                                                                         |




Attachment 2: Figure 1 – Site Locus Map



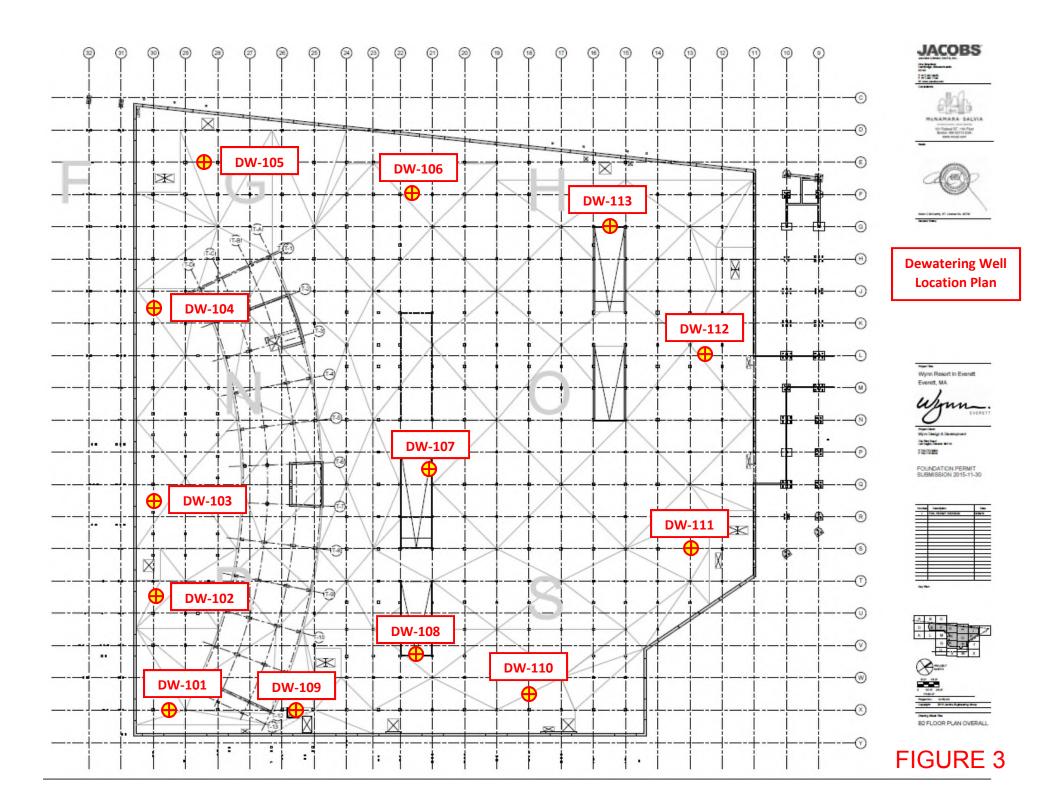
Attachment 3: Figure 2 – Site Plan





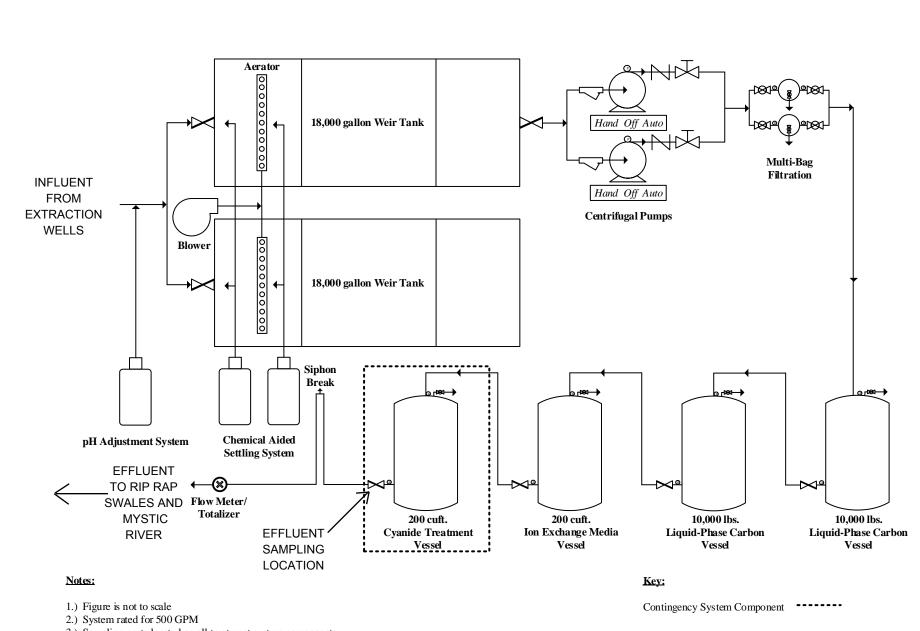
 PROJ MGR:
 RWH
 REVIEWED BY:
 MH
 CHECKED BY:
 MH
 FIGURE

 DESIGNED BY:
 MH
 DRAWN BY:
 CFR
 SCALE:
 AS SHOWN


 DATE:
 PROJECT NO.
 REVISION NO.
 2

 5-1-2015
 01.0171521.20
 0

www.gza.com




Attachment 4: Figure 3 – Dewatering Well Layout





Attachment 5: Figure 4 – Process Flow Diagram and SDS's



3.) Sampling ports located on all treatment system components



Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453 Office: 774-450-7177

CHECKED BY:

DESIGNED BY: LRT DRAWN BY: B. Watkins

**DATE:** May 23, 2016

**Water Treatment System Schematic** 

Wynn Casino One Horizon Way Everett, Massachusetts

FIGURE 4

PROJECT No.

FIGURE No.



## **MATERIAL SAFETY DATA SHEET**

#### I. Chemical Product and Company Identification

Product Name: Nonionic / Anionic Polymer Product #s: LRT- 800 Series Polymers

Distributor: Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774-450-7177 Fax: 885-835-0617

Email: plockwood@Irt-llc.net

For Chemical Emergency - Spill, Leak, Fire, Exposure or Accident

Call **CHEMTEL** - Day or Night - 1800-255-3924

## II. Composition and Ingredient Information

Components: CAS #:

Anionic Polyacrylamide 25085-02-3

Permissible Exposure Limit (PEL): No information available.

Threshold Limit Value (TLV): Information not available.

#### III. Hazard Identification

Primary Routes of Exposure: Skin Contact - Eye Contact - Inhalation

Skin Contact: May cause irritation, especially after prolonged or repeated contact.

Eye Contact: Dust contact and solution may cause irritation.

Ingestion: May cause discomfort or gastrointestinal disturbance. Low oral toxicity.

Inhalation: Dust contact and solution may cause irritation.

Unusual Chronic Toxicity: None Known.

#### **IV. First Aid Measures**

Skin Contact: Flush with plenty of soap and water for at least 15 minutes. If irritation

persists, get medical attention.

Eyes Contact: Immediately flush with water, continuing for 15 minutes. Immediately

contact a physician for additional treatment.

Ingestion: If conscious, immediately give 2 to 4 glasses of water, and induce

vomiting by touching finger to back of throat or giving syrup of Ipecac.

CAUTION: If unconscious, having breathing or in convulsions, do not

induce vomiting or give water.

Inhalation: Remove to fresh air.

### V. Fire-Fighting Measures

Flammability Classification: NFPA - Minimal - Will not burn under normal conditions.

Flash Point: Not flammable.

Flammable and Explosive Limits: UEL: ND LEL: ND

Hazardous Combustion Byproducts:

Thermal decomposition expected to produce carbon monoxide, carbon dioxide, and various nitrous oxides and some HCl vapors.

Extinguishing Media: Foam - Carbon Dioxide - Dry Chemical

#### AVOID USING WATER - MAY CAUSE EXTREMELY SLIPPERY CONDITIONS.

Special Fire-Fighting Procedures: Wear self-contained breathing apparatus.

Solutions of product are extremely slippery.

Unusual Fire and Explosion Hazards: Material and its solutions are extremely slippery.

#### VI. Accidental Release Measures

Procedures: Sweep up or shovel into metal or plastic container. Do not use water to

clean area; product is very slippery when wet.

Waste Disposal: Incineration and/or disposal in a chemical landfill. Disposer must

comply with Federal, State, and Local disposal or discharge laws.

<u>VII. Handling and Storage</u> Avoid contact with skin, eyes, or clothing.

Do not inhale mist if formed.

Use normal personal hygiene and housekeeping.

Store in a cool dry place.

#### VIII. Exposure Controls and Personal Protection

Eye Protection: Safety glasses for normal handling conditions.

Splash-proof goggles when handling solutions.

Do not wear contact lens.

Hand Protection: Rubber gloves.

Ventilation: Local exhaust - if dusting occurs. Natural ventilation adequate in

absence of dust.

Respiratory Protection: If dusty conditions are encountered, wear NIOSH

approved respirator.

Other Protection: Eye wash recommended, full work clothing, add protective

rubber clothing if splashing or repeated contact with solution is

likely.

#### IX. Physical and Chemical Properties

Appearance White granular

State Solid
Specific Gravity (Water = 1) 0.8 - 1.0
Solubility in Water Complete

#### X. Stability and Reactivity

Stability: Product is stable as supplied.

Incompatibility: Oxidizing Agents may cause exothermic reaction.

Hazardous Decomposition or Byproducts:

Thermal decomposition expected to produce carbon oxides, and various nitrous oxides.

Hazardous Polymerization: Will not occur.

XI. Toxicological Information Not listed as a carcinogen by IARC, NTP, OSHA or ACGIH.

XII. Ecological Information This product or a similar product is toxic to fish.

#### XIII. Disposal Considerations

Incineration and/or disposal in chemical landfill. Disposer must comply with federal, state, and local disposal or discharge laws.

RCRA Status of Unused Material if Discarded: Not a hazardous waste.

Hazardous Waste Number: N/A

#### XIV. Transport Information

Not DOT regulated. Not a RCRA hazardous waste.

Label Instructions: Signal Word: "Caution! Products are extremely slippery!"

#### XV. Regulatory Information

Reportable Quantity (EPA 40 CFR 302): N/A

Threshold Planning Quantity (EPA 40 CFR 355): N/A

Toxic Chemical Release Reporting (EPA 40 CFR 372): N/A

SARA TITLE 3: Section 311 Hazard Categorizations (40CFR 370): N/A

SARA TITLE 3: Section 313 Information (40CFR 372): N/A

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Information (40CFR 302.4) N/A

US TSCA: Product is manufactured in compliance with all provisions of the Toxic Substances Control Act, 15 U.S.C.

#### **XVI. Other Information**

Health 0 4 = Severe
Flammability 1 3 = Serious
Reactivity 0 2 = Moderate
Personal Protection F 1 = Slight
0 = Insignificant

### Personal Protective Equipment Guide

A = Safety Glasses, Gloves, and

Vapor Respirator

B = Safety Glasses, Gloves H = Splash Goggles, Gloves,

Apron, Vapor Respirator C =

Safety Glasses, Gloves, Apron I = Safety Glasses, Gloves, and

**Dust & Vapor Respirator** 

D = Gloves, Apron, Face shield J = Splash Goggles, Gloves, Apron,

and Dust & Vapor Respirator

E = Safety Glasses, Gloves, and Dust K = Air Line Hood/Mask, Respirator Gloves, Full Suit, Boots

F = Safety Glasses, Gloves, Apron X = Ask supervisor for special and Dust Respirator handling instructions

#### **ABBREVIATIONS:**

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

TLV - Threshold Limit Value

PEL - Permissible Exposure Limit

TWA - Time Weighted Average

STEL - Short-Term Exposure Limit

ANSI - American National Standard Institute

MSHA - Mine Safety and Health Administration

NIOSH - National Institute for Occupational Safety & Health

NA - Not Applicable

NE - Not Established

NR - Not Required

PPE - Personal Protective Equipment

LEL - Lower Exposure Level

**UEL** - Upper Exposure Level



Product Name: LRT E50 Effective date: 3/15/2004

**MSDS #:** 40 **Page** 1 of 5

## Section 1 - Chemical Product and Company Information

PRODUCT NAME: LRT E50

SYNONYMS: Water And Wastewater Treatment Coagulant/Flocculant

DISTRIBUTOR: Lockwood Remediation Technologies, LLC

89 Crawford Street, Leominster, Massachusetts 01453

Tel: 774-450-7177 Fax: 885-835-0617

NFPA Rating HMIS Rating

HEALTH: 1 HEALTH: 1
FLAMMABILITY: 0 FLAMMABILITY: 0
REACTIVITY: 0 REACTIVITY: 0

EMERGENCY TELEPHONE NUMBER: CHEMTREC 1-800-424-9300

#### **EMERGENCY OVERVIEW**

Clear to slightly hazy, colorless to yellow liquid with no appreciable odor. May cause skin, eye and respiratory irritation.

## **Section 2 - Composition Information**

| <u>INGREDIENTS</u>                   | CAS NO. | <u>% WT/WT</u> | <u>PEL</u>      |               | TLV            |                |
|--------------------------------------|---------|----------------|-----------------|---------------|----------------|----------------|
| Trade Secret IngredientsTrade Secret |         | 100            | *15 mg/m^3 (TD) |               | SOLUBLE SALTS: |                |
| _                                    |         |                | *5              | $ma/m^3$ (RF) | *2             | $ma/m^3$ (TWA) |

## \*Aluminum metal, (as Al) LISTED AS CARCINOGEN BY:

IARC: NO NTP: NO OSHA: NO ACGIH: NO

PEL: OSHA Permissible Exposure Limit TWA: Time Weighted Average, 8-hr TD: Total dust ACGIH Threshold Limit Nuisance dust STEL: Short Term Exposure Limit TLV: ND: HI: Hazardous Ingredient C.LIM: Ceiling Limit INP: Inhalable Particulate Oil mist WF: Wax fume Respirable fraction OM: RF: ST: Skin TWA

Product Name: LRT E50 Effective date: 3/15/2004

**MSDS #:** 40 **Page** 2 of 5

## **Section 3 - Hazards Identification**

**ROUTES OF EXPOSURE** 

INHALATION: Inhalation of mist or spray may irritate respiratory tract.

SKIN CONTACT: May cause skin irritation, especially on prolonged contact.

SKIN ABSORBTION: No Data

EYE CONTACT: Direct eye contact may cause irritation, redness, and swelling. Prolonged exposure to

Aluminum salts may cause conjunctivitis.

INGESTION: May cause gastrointestinal irritation, nausea, vomiting and diarrhea.

**EFFECTS OF OVEREXPOSURE** 

ACUTE OVEREXPOSURE: Possible eye, skin and respiratory tract irritation.

CHRONIC OVEREXPOSURE: May aggravate existing skin, eye, and lung conditions. Persons with kidney

disorders have an increased risk from exposure based on general information

found on aluminum salts.

## **Section 4 - First Aid Measures**

EYES: Immediately flush with plenty of water for at least 15 minutes, holding eyelids apart to ensure

flushing of the entire surface. Washing within one minute is essential to achieve maximum

effectiveness. Seek medical attention.

SKIN: Wash thoroughly with soap and water, remove contaminated clothing and footwear. Wash

clothing before reuse. Get medical attention if irritation should develop.

INHALATION: Remove to fresh air.

INGESTION: Seek medical attention immediately. Give large amounts of water to drink. If vomiting

should occur spontaneously, keep airway clear. Never give anything by mouth to an

unconscious person.

NOTES TO PHYSICIAN: Aluminum soluble salts may cause gastroenteritis if ingested. Treatment includes the

use of demulcents. Note: Consideration should be given to the possibility that

overexposure to materials other an this product may have occurred.

#### **Section 5 - Fire Fighting Measures**

FLASHPOINT: NAPL FLAMMABLE LIMITS IN AIR, % BY VOLUME:

AUTOIGNITION TEMPERATURE: NAPL LOWER FLAMMABILITY LIMIT: NAPL

UPPER FLAMMABILITY LIMIT: NAPL

EXTINGUISHING MEDIA: Water Spray, Carbon Dioxide, Foam, Dry Chemical.

FIRE OR EXPLOSION HAZARDS: May produce hazardous fumes or hazardous decomposition products.

FIRE FIGHTING PROCEDURES: Product is a water solution and nonflammable. In a fire, this product may build

up pressure and rupture a sealed container; cool exposed containers with water spray. Use self-contained breathing apparatus in confined areas; avoid

breathing vapors or dust.

Product Name: LRT E50 Effective date: 3/15/2004

**MSDS #:** 40 **Page** 3 of 5

### **Section 6 - Accidental Release Measures**

Stop leaks. Clean up spill immediately. Build dikes as necessary to contain flow of large spills. Do not allow liquid to enter stream or waterways. For small spills, use soda ash or lime to neutralize, an inert material to absorb, or wash product to a chemical sewer. Place contaminated materials into containers and store in a safe place to await proper disposal. Wear adequate personal protective clothing and equipment. Caution use of soda ash or lime may generate carbon dioxide gas. Provide adequate ventilation to spill area. Approved breathing apparatus may be necessary.

### Section 7 - Handling and Storage

#### PRECAUTIONARY STATEMENTS:

CAUTION!

MAY CAUSE IRRITATION.

Avoid contact with eyes, skin, and clothing.

Avoid breathing mist or spray.

Wear chemical splash goggles, gloves, and protective clothing when handling.

Use with adequate ventilation and employ respiratory protection where mist or spray may be generated.

Wash thoroughly after handling.

May be harmful if swallowed or inhaled.

Keep away from heat and open flame.

Keep container closed when not in use.

FOR INDUSTRIAL USE ONLY.

#### HANDLING/STORAGE REQUIREMENTS:

Store in a cool, dry place away from direct heat. Keep container tightly closed when not in use. Do not store in unlined metal containers. Product may slowly corrode iron, brass, copper, aluminum and mild steel.

## Section 8 - Exposure Controls/Personal Protection

VENTILATION REQUIREMENTS: Local exhaust ventilation recommended.

EYE PROTECTION: Chemical splash goggles and/or face shield.

SKIN PROTECTION: Chemical resistant gloves.

RESPIRATORY PROTECTION: When exposures exceed the PEL, use NIOSH/MSHA approved respirator in

accordance with OSHA Respiratory Protection Requirements under 29 CFR

1910.134.

OTHER REQUIRED EQUIPMENT: Standard work clothing and work shoes. Safety shower and eye wash

located in immediate area.

Product Name: LRT E50 Effective date: 3/15/2004

**MSDS #:** 40 **Page** 4 of 5

## **Section 9 - Physical and Chemical Properties**

lb/gal

APPEARANCE: Clear to slightly hazy, colorless to yellow liquid

ODOR: Odorless

SOLUBILITY IN WATER: Soluble pH: 3.5 (AS IS)

SPECIFIC GRAVITY (WATER=1): 1.33-1.35 DENSITY @ 25°C: 11.0-11.3

**BOILING POINT:** ~220°F(104°C) MELTING POINT: NAV FREEZING POINT: ~19°F(-7°C) **EVAPORATION RATE:** NAV VAPOR PRESSURE: NAV VAPOR DENSITY (AIR=1): NAV VISCOSITY: <50 cps **VOLATILES BY WEIGHT:** 40-50%

### Section 10 - Stability and Reactivity

STABLE: YES HAZARDOUS POLYMERIZATION: NO

CONDITIONS TO AVOID: NONE

IINCOMPATIBLE MATERIALS: Product is incompatible with alkalis.

DECOMPOSITION PRODUCTS: Thermal decomposition may release toxic and/or hazardous gases such as

aluminum, Cl2, and HCl.

### **Section 11 Toxicological Information**

Skin Irritation (human): 150 mg/3D-I Mild irritation effects (1)

(1) "Cutaneous Toxicity" Drill, V. A. and P. Lazar, eds., New York, NY, Academic Press, 1977

**Product Name: LRT E50** Effective date: 3/15/2004

MSDS #: 40 **Page** 5 of 5

## Section 12 - Ecological Information

NAV BOD5: mg 02/mg: NAV ppm:

Biodegradable, %: NAV

BOD28: mg 02/mg: NAV

ppm: NAV

Biodegradable, %: NAV COD: mg 02/mg: NAV

> ppm: NAV

Biodegradable, %: NAV

Aquatic Toxicity:

LC 50 (24 hour, static) 50 mg/L Ceridaphnia dubia (1)

LC 50 (48 hour, static) 5 mg/L Ceridaphnia dubia (1)

LC 50: Lethal concentration at which 50% of the subjects die

Generated from tests conducted by SEAUS Testing Laboratories Nov., 1993 using EPA /600-4-90/027

### **Section 13 - Disposal Considerations**

Dispose of in accordance with all applicable federal, state and local regulations.

#### **Section 14 - Transportation Information**

DOT Proper Shipping Name:

NOT APPLICABLE, NOT RESTRICTED

Harmonized Tariff Schedule Number: 2827.49.50 00

#### Section 15 - Regulatory Information

This product does not contain any ingredients subject to the reporting requirements of SARA Title III, Section 313 (40 CFR Part 372).

SARA Section 311/312: Acute Health Hazard.

TSCA: Components found in TSCA Inventory.



#### **ION EXCHANGE RESINS**

Product Name: CG10-H, CG10-H-ULTRA, CG10-H-LTOC, CG10-H-SC, CG10-H-NG,

CG10-H-C, CG10-H-F, CG10-H-UPS, CG8-H, CG8-H-ULTRA, CG8-H-LTOC, CG8-H-SC, CG8-H-NG, CG8-H-C, CG8-H-F, CG8-H-UPS, CGS-H, CGS-H-C,

CGS-H-F, CGS-H-UPS, CG6-H, GP-SAC-H

Cation Exchange Resin, Hydrogen Form

Effective Date: 11/1/07

1. Company Information:

Company Address: ResinTech, Inc.

1 ResinTech Plaza 160 Cooper Road

West Berlin, NJ 08091 USA

Information Numbers: Phone Number: 856-768-9600

Fax Number: 856-768-9601

Email: ixresin@resintech.com
Website: www.resintech.com

2. Composition/Ingredients:

Sulfonated copolymer of styrene and divinylbenzene

in the hydrogen form. CAS# 69011-20-7 (35 – 65%)

Water CAS# <u>7732-18-5 (35 – 65%)</u>

This document is prepared pursuant to the OSHA Hazard Communication Standard (29CFR 1910.1200). In addition, other substances not 'Hazardous' per this OSHA Standard may be listed. Where proprietary ingredient shows, the identity may be made available as provided in this standard.

3. Physical/Chemical Data:

Boiling Point:

Vapor Pressure (MM HG):

Not Applicable

Not Applicable

Evaporation Rate (water = 1):

Appearance & Odor: Amber solid beads. No to low odor.

Specific Gravity:

Melting Point (deg. F)

Solubility in Water:

1.2 (water = 1)

Not applicable

Insoluble

Thermal: May yield oxides of carbon and nitrogen

Vapor Density: Not Applicable

| Product Hazard Rating | Scale          |  |  |
|-----------------------|----------------|--|--|
| Toxicity = 0          | 0 = Negligible |  |  |
| Fire = 0              | 1 = Slight     |  |  |
| Reactivity = 0        | 2 = Moderate   |  |  |
| Special – N/A         | 3 = High       |  |  |
|                       | 4 = Extreme    |  |  |

#### 4. Fire & Explosion Hazard Data

Flammable Limits: 800 ° Deg. F

Unusual Fire & Explosion Hazards: Product is not combustible until moisture is removed, then resin starts to burn in flame at



## Ion Exchange Resins

**Combustion Products:** 

**Extinguishing Media:** 

**Special Fire Fighting Procedures:** 

5. Reactivity Data

Stability:

Conditions to Avoid: Hazardous by Products:

Materials to avoid contact with: Hazardous Polymerization:

Storage:

6. Health Hazards & Sara (Right to Know)

**Emergency First Aid Procedures:** 

Skin Absorption:

Ingestion:

Inhalation:

Systemic & Other Effects:

Carcinogenicity:

Sara - title 3, sections 311 & 312:

7. First Aid

Eyes:

Skin:

Ingestion:

Inhalation:

8. Control Measures

Respiratory protection:

Eye protection: Ventilation: Protective Gloves:

9. Safe handling procedures

In Case of Spills:

230 C. Autoignition occurs above 500C.

Possible fire.

Hazardous combustion products may include and are not limited to: hydrocarbons, sulfur oxides, organic sulfonates, carbon monoxide, carbon dioxide, benzene compounds.

Water, CO<sub>2</sub>, Talc, Dry Chemical

MSHA/NIOSH approved self-contained breathing

Stable

Temperatures above 400° F

See Section 3 above for possible combustion

products.

Strong oxidizing agents (i.e. nitric acid)

Material does not polymerize Store in a cool dry place

Contact with eyes can and skins can cause irritation. Skin absorption is unlikely due to physical properties. Single dose oral LD50 has not been determined. Single does oral toxicity is believed to be low. No

hazards anticipated from ingestion incidental to

industrial exposure.

Vapors are unlikely due to physical properties.

No specific data available, however, repeated exposures are not anticipated to cause any significant

adverse effects. Not Applicable

All ingredients are non-hazardous

Irrigate immediately with water for at least 5 minutes.

Mechanical irritation only.

No adverse effects anticipated by this route of

exposure.

No adverse effects anticipated by this route of exposure incidental to proper industrial handling.

No adverse effects anticipated by this route of

exposure.

Not required for normal uses if irritation occurs from

breathing-get fresh air!

Splash goggles

Normal

Not required.

Sweep up material and transfer to containers. Use caution – the floor will be slippery!



## Ion Exchange Resins

Disposal Method: Bury resin in licensed landfill or burn in approved Incinerator according to local, state, and federal regulations. For resin contaminated with hazardous material, dispose of mixture as hazardous material according to local, state and federal regulations. 10. Additional Information: Special precautions to be taken in handling and storage: Practice reasonable care and caution. Metal equipment with feed, regenerant, resin form, and effluent of that **TSCA Considerations:** Every different salt or ionic form of an ion-exchange resin is a separate chemical. If you use an ionexchange resin for ion-exchange purposes and then remove the by-product resin from its vessel or container prior to recovery of the original or another form of the resin or of another chemical, the byproduct resin must be listed on the TSCA Inventory (unless an exemption is applicable). It is the responsibility of the customer to ensure that such isolated, recycled by-product resins are in compliance Failure to comply could result in with TSCA. substantial civil or criminal penalties being assessed by the Environmental Production Agency. **MSDS Status:** Canadian regulatory information added. 11. Regulatory Information: (Not meant to be all-inclusive—selected regulations represented.) Notice: The information herein is presented in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ from one location to another; it is the buyer's responsibility to ensure that its activities comply with federal, state or provincial, and local laws. The following specific information is made for the

#### 12. Canadian Regulations:

WHMIS Information:

The Canadian Workplace Hazardous Materials Information System (WHMIS) Classification for this product is:

purpose of complying with numerous federal, state or

provincial, and local laws and regulations.

This product is not a "Controlled Product" under WHMIS.

Canadian TDG Information:

For guidance, the Transportation of Dangerous Good Classification for this product is: Not Regulated.

While this information and recommendations set forth herein are believed to be accurate as of the date hereof, ResinTech, Inc. makes no warranty with respect hereto and disclaims all liability from reliance thereon.

Effective Date: 11/01/01

\\Ressrv5\g\\MSDS2003\\ResinTech\\Anion\\MSSBG1\SBG1P.doc

# Material Safety Data Sheet RESINTECH, Inc.

Product Name: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1P, SBG1P-HP,

SBG1P-UPS, SBG1P-C, GP-SBA

Strong Base Anion Exchange Resin Chloride Form

1. Company Information:

Company Address: ResinTech, Inc.

1 ResinTech Plaza 160 Cooper Road

West Berlin, NJ 08091 USA

Information Numbers: Phone Number: 856-768-9600

Fax Number: 856-768-9601

Email: ixresin@resintech.com
Website: www.resintech.com

2. Composition/Ingredients:

Trimethylamine functionalized chlormethylated copolymer of styrene and divinylbenzene in the chloride form.

CAS# <u>60177-39-1 (35 - 65%)</u>

Water CAS# <u>7732-18-5 (35 – 65%)</u>

This document is prepared pursuant to the OSHA Hazard Communication Standard (29CFR 1910.1200). In addition, other substances not 'Hazardous' per this OSHA Standard may be listed. Where proprietary ingredient shows, the identity may be made available as provided in this standard.

3. Physical/Chemical Data:

Boiling Point: Not Applicable Vapor Pressure (MM HG): Not Applicable

Evaporation Rate (water = 1):

Appearance & Odor:

Light cream to light yellow.

May have amine odor.

Specific Gravity:1.2 (water = 1)Melting Point (deg. F)Not applicableSolubility in Water:Insoluble

Thermal: May yield oxides of carbon and nitrogen

Vapor Density: Not Applicable

| Product Hazard Rating | Scale          |
|-----------------------|----------------|
| Toxicity = 0          | 0 = Negligible |
| Fire = 0              | 1 = Slight     |
| Reactivity = 0        | 2 = Moderate   |
| Special – N/A         | 3 = High       |
|                       | 4 = Extreme    |

#### 4. Fire & Explosion Hazard Data

Flammable Limits: 800 ° Deg. F

Unusual Fire & Explosion Hazards: Product is not combustible until moisture

is removed, then resin starts to burn in flame at 230 C. Autoignition occurs

above 500C. Possible fire.

Combustion Products: Alkylbenzenes, vinylbenzenes, naphthalene,

benzaldehydes, phenol, carbon dioxide, water, organic amines, chlorine, nitrogen oxides,

and the desired of th

ammonia, methyl chloride.

Effective Date: 11/01/01

\\Ressrv5\g\\MSDS2003\\ResinTech\\Anion\\MSSBG1\SBG1P.doc

**Extinguishing Media:** Water, CO<sub>2</sub>, Talc, Dry Chemical **Special Fire Fighting Procedures:** MSHA/NIOSH approved self-contained

breathing gear.

5. Reactivity Data

Stability:

Conditions to Avoid: Hazardous by Products:

Materials to avoid contact with: Hazardous Polymerization:

Storage:

6. Health Hazards & Sara (Right to Know)

**Emergency First Aid Procedures:** 

Skin Absorption:

Ingestion:

Inhalation:

Systemic & Other Effects:

Carcinogenicity:

Sara – title 3, sections 311 & 312:

7. First Aid

Eyes:

Skin:

Ingestion:

Inhalation:

8. Control Measures

Respiratory protection:

Eye protection: Ventilation:

**Protective Gloves:** 

9. Safe handling procedures

In Case of Spills:

**Disposal Method:** 

Stable

Temperatures above 400° F

See Section 3 above for possible combustion

products.

Strong oxidizing agents (i.e. nitric acid)

Material does not polymerize Store in a cool dry place

Contact with eyes can and skins can cause

irritation.

Skin absorption is unlikely due to physical

properties.

Single dose oral LD50 has not been determined. Single does oral toxicity is believed to be low. No hazards anticipated from ingestion incidental

to industrial exposure.

Vapors are unlikely due to physical properties.

No specific data available, however, repeated exposures are not anticipated to cause any

significant adverse effects.

Not Applicable

All ingredients are non-hazardous

Irrigate immediately with water for at least 5 minutes. Mechanical irritation only.

No adverse effects anticipated by this route of

exposure.

No adverse effects anticipated by this route of exposure incidental to proper industrial handling. No adverse effects anticipated by this route of

exposure.

Not required for normal uses if irritation occurs

from breathing-get fresh air!

Splash goggles

Normal

Not required.

Sweep up material and transfer to containers.

Use caution – the floor will be slippery!

Bury resin in licensed landfill or burn in approved Incinerator according to local, state, and federal regulations. For resin contaminated with hazardous material, dispose of mixture as hazardous material according to local, state and

federal regulations.

- -

Effective Date: 11/01/01

\\Ressrv5\g\\MSDS2003\\ResinTech\\Anion\\MSSBG1\ SBG1P.doc

Practice reasonable care and caution.

#### 10. Additional Information:

Special precautions to be taken in handling and storage:

TSCA Considerations:

effluent of that process. Every different salt or ionic form of an ion-

equipment with feed, regenerant, resin form, and

Metal

exchange resin is a separate chemical. If you use an ion-exchange resin for ion-exchange purposes and then remove the by-product resin from its vessel or container prior to recovery of the original or another form of the resin or of another chemical, the by-product resin must be listed on the TSCA Inventory (unless an exemption is applicable). It is the responsibility of the customer to ensure that such isolated, recycled by-product resins are in compliance with TSCA. Failure to comply could result in substantial civil or criminal penalties being assessed by the Environmental Production Agency.

**MSDS Status:** 

Canadian regulatory information added.

11. Regulatory Information: (Not meant to be all-inclusive—selected regulations represented.)

Notice:

The information herein is presented in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ from one location to another; it is the buyer's responsibility to ensure that its activities comply with federal, state or provincial, and local laws. The following specific information is made for the purpose of complying with numerous federal, state or provincial, and local laws and regulations.

12. Canadian Regulations:

WHMIS Information:

The Canadian Workplace Hazardous Materials Information System (WHMIS) Classification for this product is:

This product is not a "Controlled Product" under WHMIS.

Canadian TDG Information:

For guidance, the Transportation of Dangerous Good Classification for this product is: Not Regulated.

While this information and recommendations set forth herein are believed to be accurate as of the date hereof, ResinTech, Inc. makes no warranty with respect hereto and disclaims all liability from reliance thereon.

## **Material Safety Data Sheet**

77% - 100% SULFURIC ACID

**SECTION 1. PRODUCT IDENTIFICATION** 

Trade Name

77 % - 100 % Sulfuric Acid

**Product Code** 

None

Manufacturers/Distributors

NorFalco Inc., 6000 Lombardo Center, The Genesis Blg, suite 650 Seven Hills, OH 44131 NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

André Auger, Administration Assistant

Information Contact Product Information

1-905-542-6901 (Mississauga)

Phone Number (Transportation Emergency)
Phone Number (Transportation Emergency)

Canada 1-877-ERP-ACID (377-2243) U.S.A. 1-800-424-9300 CHEMTREC

Phone Number (Medical Emergency)

1-418-656-8090

Phone Number (Emergency)

CANUTEC 1-613-996-6666

Synonyms

Dihydrogen Sulfate; Oil of Vitriol; Vitriol Brown Oil; Sulphuric Acid.

Acide sulfurique (French) Sulfuric Acid / H<sub>2</sub>SO<sub>4</sub>

Name / Chemical Formula Chemical Family

Acid

Utilization

Chemical industries; Water treatment; Fertilizer; Pulp and Paper.

Manufacturers

CEZinc on behalf of Noranda Income Limited Partnership, Salaberry-de-Valleyfield (Quebec) Canada J6T 6L4

Xstrata Copper, Horne Smelter, Rouyn-Noranda (Quebec) J9X 5B6 Xstrata Zinc, Brunswick Smelting, Belledune, New Brunswick E0B 1G0 Xstrata Copper, Kidd Metallurgical Division, Timmins, Ontario P4N 7K1 Xstrata Nickel, Sudbury Operations, Falconbridge, Ontario P0M 1S0

**SECTION 2. HAZARDS IDENTIFICATION** 

WHMIS (Canada)

CLASS D-1A: Very toxic material causing immediate and serious effects

CLASS E : Corrosive material

Labeling (EEC)

C Corrosive



#### Section 3. Composition/Information on Ingredients

| Name              | CAS#      | Percentage (%) | # CE      | R Phrases <sup>1</sup> |
|-------------------|-----------|----------------|-----------|------------------------|
| Sulfuric (Acid)   | 7664-93-9 | 77 % to 100 %  | 231-639-5 | R35                    |
| 60 Deg Technical  |           | 77.7           |           | ***                    |
| 66 Deg Technical  |           | 93.2           |           |                        |
| 1.835 Electrolyte |           | 93.2           |           |                        |
| 98 % Technical    |           | 98             |           | •••                    |
| 99 % Technical    |           | 99             |           |                        |
| 100 % Technical   |           | 100            |           |                        |
| Water             | 7732-18-5 | 0-22           |           |                        |

Note 1: See section 15 for the complete wording of risk phrases.

#### **SECTION 4. FIRST-AID MEASURES**

**Eye Contact** 

Remove contact lenses if present. Immediately flush eyes with plenty of water, holding eyelids open for at least 15 minutes. Consult a physician. Possibility of conjonctivitis, severe irritation, severe burns, permanent eye damage.

Skin Contact

Remove contaminated clothing and shoes as quickly as possible protecting your hands and body. Place under a deluge shower for 15 minutes. Flush exposed skin gently and thoroughly with running water (Pay particular attention to: Folds, crevices, creases, groin). Call a physician if irritation persists. May irritate skin, cause burns (Highly corrosive) and possibility of some scarring.

Wash contaminated clothing before reusing. While the patient is being transported to a medical facility, continue the application of cold, wet compresses. If medical treatment must be delayed, repeat the flushing with cold water or soak the affected area with cold water to help remove the last traces of sulfuric acid. Creams or ointments SHOULD NOT be applied before or during the washing phase of treatment.

Inhalation

Take precautions to avoid secondary contamination by residual acids. Remove the person to fresh air. If not breathing, give artificial respiration. Difficult breathing: Give oxygen. Get immediate medical attention. Possibility of damage to the upper respiratory tract and lung tissues. Maintain observation of the patient for delayed onset of pulmonary oedema. May cause irritation to the upper respiratory tract: Coughing, sore throat, shortness of breath.

Ingestion

DO NOT INDUCE VOMITING. Conscious and alert person: Rinse mouth with water and give ½ to 1 cup of water or milk to dilute material. Spontaneous vomiting: Keep head below hips to prevent aspiration; Rinse mouth and give ½ to 1 cup of water or milk. UNCONSCIOUS person: DO NOT induce vomiting or give any liquid.

Immediately obtain medical attention.

77% - 100% SULFURIC ACID

Notes to Physicians

Continued washing of the affected area with cold or iced water will be helpful in removing the last traces of sulfuric acid. Creams or ointments should not be applied before or during the washing phase of the treatment.

#### Section 5. Fire-fighting Measures

Flash Point Not available Flammable Limits Not available Not available Auto-Ignition Temperature

**Products of Combustion** 

Releases of sulfur dioxide at extremely high temperatures.

Fire Hazard

Not flammable

**Explosion Hazard** 

Reacts with most metals, especially when dilute: Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed

space/container.

Extinguishing media

ERG (Emergency Response Guidebook): Guide 137

When material is not involved in fire, do not use water on material itself.

Small fire: Dry chemical or CO<sub>2</sub>. Move containers from fire area if you can do it without risk.

Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If

insufficient water supply: knock down vapors only.

Fire involving Tanks or Car/Trailer Loads: Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices

or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.

Protective equipment

Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.

#### **SECTION 6. ACCIDENTAL RELEASE MEASURES**

Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if Spill

possible. Soak up small spills with dry sand, clay or diatomaceous earth.

Methods Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment

system. Prevent liquid from entering sewers, waterways, or low areas.

If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal,

State, and local regulations on reporting releases.

Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean-Protective equipment

up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.

#### **SECTION 7. HANDLING AND STORAGE**

Do not get in eyes, on skin, or on clothing. Avoid breathing vapours or mist. Wear approved respirators if adequate Handling

ventilation cannot be provided. Wash thoroughly after handling, Ingestion or inhalation: Seek medical advice

immediately and provide medical personnel with a copy of this MSDS.

Conditions for storage Sulfuric acid must be stored in containers or tanks that have been specially designed for use with sulfuric acid. DO

NOT add water or other products to contents in containers as violent reactions will result with resulting high heat,

pressure and/or generation of hazardous acid mists.

Keep containers away from heat, sparks, and flame. All closed containers must be safely vented before each opening. For more information on sulfuric acid tanks, truck tanks and tank cars including safe unloading information

#### SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

#### Control parameters

|                   |           | ACGIH (U.S.A.) 2008 | OSHA (U.S.A.)     |
|-------------------|-----------|---------------------|-------------------|
| Name              | # CAS     | TLV-TWA (mg/m³)     | PEL - TWA (mg/m³) |
| Sulfuric (Acid)   | 7664-93-9 | 0.2 (thoracic fr.)  | 1                 |
| 60 Deg Technical  | 7664-93-9 | 0.2 (thoracic fr.)  | 1                 |
| 66 Deg Technical  | 7664-93-9 | 0.2 (thoracic fr.)  | 1                 |
| 1.835 Electrolyte | 7664-93-9 | 0.2 (thoracic fr.)  | 1                 |
| 98 % Technical    | 7664-93-9 | 0.2 (thoracic fr.)  | 1                 |
| 99 % Technical    | 7664-93-9 | 0.2 (thoracic fr.)  | 1                 |
| 100 % Technical   | 7664-93-9 | 0.2 (thoracic fr.)  | 1                 |
| Water             | 7732-18-5 | Not established     | Not established   |

ACGIH: American Conference of Governmental Industrial Hygienists. OSHA: Occupational Safety and Health Administration.

2009

77% - 100% SULFURIC ACID

Sulfuric (Acid): Exposure limits may be different in other jurisdictions. NIOSH REL-TWA (≤10 hours): 1 mg/m³; IDLH: 15 mg/m³. Consult local authorities for acceptable exposure limits.

**Engineering Controls** Individual protection

Good general ventilation should be provided to keep vapour and mist concentrations below the exposure limits. Chemical splash goggles; Full-length face shield/chemical splash goggles combination; Acid-proof gauntlet gloves, apron, and boots; Long sleeve wool, acrylic, or polyester clothing; Acid proof suit and hood; Appropriate NIOSH respiratory protection.



In case of emergency or where there is a strong possibility of considerable exposure, wear a complete acid suit with hood, boots, and gloves. If acid vapour or mist are present and exposure limits may be exceeded, wear appropriate NIOSH respiratory protection.

#### SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Odour Physical State and Appearance Liquid (Oily; Clear to turbid) Odourless Colourless to light grey Molecular Weight 98.08 Colour Volatility < 1 (Butyl Acetate = 1.0) pH (1% soln/water) < 1 193°C to 327 °C (379°F to 621°F) @ 760 mm Hg Vapour Density 3.4 **Boiling Point** Dispersion Yes (Water)

**Melting Point** -35°C to 11°C (-31°F to 52°F) Vapour Pressure < 0.3 mm Hg @ 25°C (77 °F) Solubility Yes (Water) < 0.6 mm Hg @ 38°C (100 °F)

| GRADE             | Boilin | g Point | Freezi | ng Point | Specific Gravity |
|-------------------|--------|---------|--------|----------|------------------|
|                   | DEG °C | DEG °F  | DEG °C | DEG °F   |                  |
| 60 DEG TECHNICAL  | 193    | 380     | - 12   | 10       | 1.706            |
| 66 DEG TECHNICAL  | 279    | 535     | - 35   | - 31     | 1.835            |
| 1.835 ELECTROLYTE | 279    | 535     | - 35   | - 31     | 1.835            |
| 98 % TECHNICAL    | 327    | 621     | - 2    | 29       | 1.844            |
| 99 % TECHNICAL    | 310    | 590     | 4      | 40       | 1.842            |
| 100 % TECHNICAL   | 274    | 526     | 11     | 51       | 1.839            |

#### **SECTION 10. STABILITY AND REACTIVITY**

Stability Yes (Under normal conditions of ambiant temperature)

Reacts violently with water, organic substances and base solutions with evolution of heat and hazardous mists. Reactivity

Heat: Possibility of decomposition. Release of dangerous gases (Sulfur oxides SO<sub>2</sub>, SO<sub>3</sub>) Conditions to avoid

Polymerization Polymerization will not occur.

Vigorous reactions with: Water; alkaline solutions; Metals, metal powder; Carbides; Chlorates; Fulminates; Incompatibilities

nitrates; Picrates; Strong oxidizing, reducing, or combustible organic materials. Hazardous gases are evolved on

contact with chemicals such as cyanides, sulfides, and carbides.

Corrosivity

#### Section 11. Toxicological information

Routes of Entry Ingestion. Inhalation. Skin and eye contacts.

Strong inorganic acid mists containing sulfuric acid (Occupational exposures): PROVEN (Human, Group 1, Carcinogenicity

IARC); SUSPECTED (Human, Group A2, ACGIH); Group X (NTP); Classification not applicable to sulfuric

acid and sulfuric acid solutions.

Not applicable. Mutagenicity Teratogenicity Not applicable.

ORAL (LD50): 2 140 mg/kg (Rat); INHALATION (LC50, 2 hours): 510 mg/m³ (Rat); 320 mg/m³ (Mouse). Acute toxicity

(RTECS).

**Acute Effects** May be fatal if inhaled or ingested in large quantity. Liquids or acid mists: May produce tissue damage: Mucous

membranes (Eyes, mouth, respiratory tract). Extremely dangerous by eyes and skin contact (Corrosive). Severe irritant for eyes: Inflammation (Redness, watering, itching). Very dangerous in case of inhalation (Mists) at high

concentrations: May produce severe irritation of respiratory tract (Coughing, shortness of breath, choking). Target organs for acute and chronic overexposure (NIOSH 90-117): Respiratory system, eyes, skin, teeth.

Chronic Effects

Acid mists: Overexposure to strong inorganic mists containing sulfuric acid: Possibility of laryngeal cancer (HSBD, IARC). Possibility of irritation of the nose and throat with sneezing, sore throat or runny nose. Headache, nausea and weakness. Gross overexposure: Possibility of irritation of nose, throat, and lungs with cough, difficulty breathing or shortness of breath. Pulmonary edema with cough, wheezing, abnormal lung sounds, possibly progressing to severe shortness of breath and bluish discoloration of the skin. Symptoms may be delayed. Repeated

or prolonged exposure to mists may cause: Corrosion of teeth.

77% - 100% SULFURIC ACID

Contact (Skin): Possibility of corrosion, burns or ulcers. Contact with a 1 % solution: Possibility of slight irritation with itching, redness or swelling. Repeated or prolonged exposure (Mist): Possibility of irritation with

itching, burning, redness, swelling or rash.

Contact (Eye): Possibility of corrosion or ulceration (Blindness may result). Repeated or prolonged exposure

(Mist): Possibility of eye irritation with tearing, pain or blurred vision.

Ingestion: Immediate effects of overexposure: Burns of the mouth, throat, esophagus and stomach, with severe pain, bleeding, vomiting, diarrhea and collapse of blood pressure. Damage may appear days after exposure.

Persons with the following pre-existing conditions warrant particular attention:

Sulfuric (Acid): Laryngeal irritation.

Eating, drinking and smoking must be prohibited in areas where this material is handled and processed. Wash hands and face before eating, drinking and smoking.

#### SECTION 12. ECOLOGICAL INFORMATION

Aquatic toxicity: Slightly to moderately toxic. **Ecotoxicity** 

Bluegill Sunfish (LC50; 48 hours): 49 mg/l (Tap water, 20 °C, conditions of bioessay not specified).

(HSBD).

Flounder (LC50; 48 hours): 100-330 mg/l (Aerated water, conditions of bioessay not specified). (HSBD).

EYE: Concentrated compound is corrosive. 10 % solution: Moderate eye irritant. **Toxicity to Animals** SKIN: Concentrated compound is corrosive. 10 % solution: Slight skin irritant.

Single and repeated exposure: Irritation of the respiratory tract; Corrosion of the respiratory tract; Lung damage; Labored breathing; Altered respiratory rate; Pulmonary oedema. Repeated exposure: Altered

red blood cell count.

Easy soil seeping under rain action Mobility (Soil)

Persistence and degradability

Sulfate ion: Ubiquitous in the environment. Metabolized by micro-organisms and plants.

Bioaccumulation

**Toxicity** 

Sulfate ion : Ubiquitous in the environment. Metabolized by micro-organisms and plants whitout

bioaccumulation.

**Biodegradation Products** 

**Biodegradation Products (Toxicity)** 

Not available Not applicable

Remarks on Environment

Due to the product's composition, particular attention must be taken for transportation and storage. Protect

from rain because the run-off water will become acidic and may be harmful to flora and fauna.

Not available **BOD5 and COD** 

#### SECTION 13. DISPOSAL CONSIDERATIONS

Disposal methods

Cleaned-up material may be an hazardous waste on Resource Conservation and Recovery Act (RCRA) on disposal due to the corrosivity characteristic. DO NOT flush to surface water or sanitary sewer system. Comply with Federal, State, and local regulations. If approved, neutralize and transfer to waste treatment

#### SECTION 14. TRANSPORT INFORMATION

TDG (Canada)

PIN

**CLASS 8 Corrosives** UN1830 SULFURIC ACID

None

**Special Provisions (Transport)** 

Proper Shipping Name DOT (U.S.A.)/IMO (Maritime)

SULFURIC ACID

Hazard Class

8 1830

UN Nº **CORROSIVE** DOT/IMO Label

Packing Group

Reportable Quantity

1000 lbs (454 kg)

PG II

Shipping Containers

Tank Cars, Tank Trucks, Vessel

Guide 137 **ERG** 

#### SECTION 15 REGULATORY INFORMATION

Labeling (EEC)

EU (Directive 67/548/EEC):

Sulfuric (Acid): C Corrosive (Pictogram)

Annex I Index number: 016-020-00-8; EU Consolidated Inventories: EC Number 231-639-5

 $C \ge 15 \%$  C; R35; S2, 26, 30, 45.

Risk Phrases (EEC)

R35- Causes severe burns

Safety Phrases (EEC)

S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice

S30- Nerver add water to this product

S36/37/39- Wear suitable protective clothing, gloves and eye/face protection

S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label where

possible).

#### 77% - 100% SULFURIC ACID

CEPA DSL (CANADA) CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA): On the Domestic Substances List

(DSL); Acceptable for use under the provisions of CEPA.

Sulfuric Acid is a Class B Drug Precursor under Health Canada's Controlled Drugs and Substances Act

and Precursor Control Regulations.

CERCLA Section 103 Hazardous substances (40 CFR 302.4); SARA Section 302 Extremely Hazardous Regulations (U.S.A.)

Substances (40 CFR 355): Yes; SARA Section 313, Toxic Chemicals (40 CFR 372.65); US: TSCA

Inventory: Listed:

Sulfuric (Acid) (Final RQ): 1 000 pounds (454 kg)

Sulfuric Acid is subject to reporting requirements of Section 313, *Title III of the Superfund Amendments* and Reauthorization Act of 1986 (SARA), 40 CFR Part 372.

Certain companies must report emissions of Sulfuric Acid as required under The Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA), 40 CFR Part 302

For more information call the <u>SARA Hotline</u> 800-424-9346.

Strong Inorganic Acid Mists Containing Sulfuric Acid: Chemical listed effective March 14, 2003 to the

State of California, Proposal 65.

U.S. FDA Food Bioterrorism Regulations: These regulations apply to Sulfuric Acid when being

distributed, stored or used for Food or Food Processing.

Classifications HCS (U.S.A.)

Corrosive liquid

NFPA (National Fire Protection Association) (U.S.A.)

Health Special Hazard ACID Fire Hazard Reactivity

**NPCA-HMIS Rating** 

Fire Hazard Reactivity Health

#### **SECTION 16. OTHER INFORMATION**

- References TLVs and BEIs (2008). Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. ACGIH, Cincinnati, OH - http://www.acgih.org
  - CCOHS (2008) Canadian Centre for Occupational Health and Safety http://www.ccohs.ca/
  - CSST (2008) Commission de la Santé et de la Sécurité du Travail (Québec). Service du répertoire toxicologique http://www.reptox.csst.qc.ca/
  - ERG (2008). Emergency Response Guidebook, Developed by the U.S. Department of Transportation, Transport Canada, and the Secretariat of Communications and Transportation of Mexico
  - HSDB (2008) Hazardous Substances Data Bank. TOXNET® Network of databases on toxicology, hazardous chemicals, and environmental health. NLM Databases & Electronic Resources, U.S. National Library of Medicine, NHI, 8600 Rockville Pike, Bethesda, MD 20894 - http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
  - IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (collection) http://www-cie.iarc.fr/
  - Merck Index (1999). Merck & CO., Inc, 12th edition
  - NIOSH U.S. (2008) Pocket Guide to Chemical Hazards http://www.cdc.gov/niosh/npg/
  - Patty's Industrial Hygiene and Toxicology, 3rd Revised Edition
  - Règlement sur les produits contrôlés (Canada)
  - RTECS (2008). Registry of Toxic Effects of Chemical Substances, NIOSH, CDC
  - Toxicologie industrielle & intoxication professionnelle, 3e édition, Lauwerys

#### Glossary

: Commission de la Santé et de la Sécurité du Travail (Québec). **CSST** 

**HSDB** : Hazardous Substances Data Bank.

IARC : International Agency for Research on Cancer. NIOSH: National Institute of Occupational Safety and Health.

NTP : U.S. National Toxicology Program.

RTECS: Registry of Toxic Effects of Chemical Substances

#### Note

For further information, see NorFalco Inc. Sulfuric Acid « Storage and Handling Bulletin ».

Because of its corrosive characteristics and inherent hazards, Sulfuric Acid should not be used in sewer or drain cleaners or any similar application; regardless of whether they are formulated for residential, commercial or industrial use. NorFalco will not knowingly sell sulfuric acid to individuals or companies who repackage the product for sale as sewer or drain cleaners, or any other similar use.

The data in this Material Safety Data Sheet relates only to the specific material designated herein and does not relate to use in combination with any other material or in any process.

For additional information, please visited our website: www.norlalco.com

Written by: Groupe STEM Consultants / NorFalco Sales Inc.

Complete revision: 2009-01-24 Partial review: None Previous complete revision: 2008-01-24

5/6 2009

77% - 100% SULFURIC ACID

Verified by: Guy Desgagnés and Eric Kuraitis, Technical Representative - Sulfuric Acid

Request to: André Auger, Administration Assistant Tel.: (905) 542-6901 extension 0 Fax: (905) 542-6914 / 6924

NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

#### Notice to Reader

Although reasonable precautions have been taken in the preparation of the data contained herein, it is offered solely for your information, consideration and investigation. NorFalco Sales Inc. extends no warranty and assumes no responsibility for the accuracy of the content and expressly disclaims all liability for reliance thereon. This material safety data sheet provides guidelines for the safe handling and processing of this product: it does not and cannot advise on all possible situations, therefore, your specific use of this product should be evaluated to determine if additional precautions are required. Individuals exposed to this product should read and understand this information and be provided pertinent training prior to working with this product.

2009



Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Date of issue: 10/15/2013 Version: 1.0

#### SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product form : Mixture

Product name : Sodium Hydroxide, 20% w/v

Product code : LC24090

1.2. Relevant identified uses of the substance or mixture and uses advised against

Use of the substance/mixture : For laboratory and manufacturing use only.

#### 1.3. Details of the supplier of the safety data sheet

LabChem Inc

Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court

Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 info@labchem.com - www.labchem.com

1.4. Emergency telephone number

Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887

#### **SECTION 2: Hazards identification**

#### 2.1. Classification of the substance or mixture

#### **GHS-US** classification

Skin Corr. 1B H314 Eye Dam. 1 H318

#### 2.2. Label elements

#### **GHS-US** labelling

Hazard pictograms (GHS-US)



GHS05

Signal word (GHS-US) : Danger

Hazard statements (GHS-US) : H314 - Causes severe skin burns and eye damage

Precautionary statements (GHS-US) : P260 - Do not breathe mist, spray, vapours

P264 - Wash exposed skin thoroughly after handling

P280 - Wear eye protection, face protection, protective clothing, protective gloves P301+P330+P331 - IF SWALLOWED: rinse mouth. Do NOT induce vomiting

P303+P361+P353 - IF ON SKIN (or hair): Remove/Take off immediately all contaminated

clothing. Rinse skin with water/shower

P304+P340 - IF INHALED: remove victim to fresh air and keep at rest in a position comfortable

for breathing

P305+P351+P338 - If in eyes: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing

P310 - Immediately call a POISON CENTER or doctor/physician

P363 - Wash contaminated clothing before reuse

P405 - Store locked up

P501 - Dispose of contents/container to comply with local, state and federal regulations

#### 2.3. Other hazards

Other hazards not contributing to the

classification

: None

#### 2.4. Unknown acute toxicity (GHS-US)

No data available

#### SECTION 3: Composition/information on ingredients

#### 3.1. Substance

Not applicable

Full text of H-phrases: see section 16

#### 3.2. Mixture

| Name  | Product identifier | %     | GHS-US classification |
|-------|--------------------|-------|-----------------------|
| Water | (CAS No) 7732-18-5 | 83.12 | Not classified        |

10/16/2013 EN (English) Page 1

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

| Name             | Product identifier | %     | GHS-US classification                                                                           |
|------------------|--------------------|-------|-------------------------------------------------------------------------------------------------|
| Sodium Hydroxide | (CAS No) 1310-73-2 | 16.88 | Acute Tox. 4 (Dermal), H312<br>Skin Corr. 1A, H314<br>Eye Dam. 1, H318<br>Aquatic Acute 3, H402 |

#### **SECTION 4: First aid measures**

#### 4.1. Description of first aid measures

First-aid measures general : Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice

(show the label where possible).

First-aid measures after inhalation : Remove to fresh air and keep at rest in a position comfortable for breathing. Immediately call a

POISON CENTER or doctor/physician.

First-aid measures after skin contact : Immediately call a POISON CENTER or doctor/physician. Remove/Take off immediately all

contaminated clothing. Rinse skin with water/shower.

First-aid measures after eye contact : Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to

do. Continue rinsing. Immediately call a POISON CENTER or doctor/physician.

First-aid measures after ingestion : Do NOT induce vomiting. Immediately call a POISON CENTER or doctor/physician. Rinse

mouth.

#### 4.2. Most important symptoms and effects, both acute and delayed

Symptoms/injuries : Causes severe skin burns and eye damage.

Symptoms/injuries after inhalation : Coughing. Irritation of the respiratory tract. Irritation of the nasal mucous membranes.

Symptoms/injuries after skin contact : Caustic burns/corrosion of the skin. Symptoms/injuries after eye contact : Causes serious eye damage.

Symptoms/injuries after ingestion : Abdominal pain. Bleeding of the gastrointestinal tract. Burns to the gastric/intestinal mucosa.

Nausea. Possible esophageal perforation.

Symptoms/injuries upon intravenous

administration

: Not available.

Chronic symptoms : Not available.

#### 4.3. Indication of any immediate medical attention and special treatment needed

Obtain medical assistance.

#### **SECTION 5: Firefighting measures**

#### 5.1. Extinguishing media

Suitable extinguishing media : Carbon dioxide. Dry powder. Water spray. Foam. Sand. Unsuitable extinguishing media : Not available. Do not use a heavy water stream.

#### 5.2. Special hazards arising from the substance or mixture

Fire hazard : Not flammable. Explosion hazard : Not available.

Reactivity : Reacts with (some) metals: release of highly flammable gases/vapours (hydrogen). Thermal

decomposition generates : Corrosive vapours.

#### 5.3. Advice for firefighters

Firefighting instructions : Use water spray or fog for cooling exposed containers. Exercise caution when fighting any

chemical fire. In case of fire: stop leak if safe to do so. When cooling/extinguishing: no water in

the substance. Avoid (reject) fire-fighting water to enter environment.

Protection during firefighting : Do not enter fire area without proper protective equipment, including respiratory protection.

Other information : Not available.

#### **SECTION 6: Accidental release measures**

### 6.1. Personal precautions, protective equipment and emergency procedures

General measures : Eliminate ignition sources. Ensure adequate ventilation. Wear self-contained breathing apparatus

when entering area unless atmosphere is proved to be safe.

#### 6.1.1. For non-emergency personnel

Protective equipment : Wear chemically protective gloves, lab coat or apron to prevent prolonged or repeated skin

contact.

Emergency procedures : Wash contaminated clothes. Evacuate unnecessary personnel. Keep containers closed.

#### 6.1.2. For emergency responders

Protective equipment : Equip cleanup crew with proper protection. Emergency procedures : Stop leak if safe to do so. Ventilate area.

#### 6.2. Environmental precautions

Avoid release to the environment. Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

10/16/2013 EN (English) 2/8

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

#### 6.3. Methods and material for containment and cleaning up

For containment : Take up liquid spill into inert absorbent material.

Methods for cleaning up : Carefully collect the spill/leftovers. Clean contaminated surfaces with an excess of water. Wash

clothing and equipment after handling. Soak up spills with inert solids, such as clay or diatomaceous earth as soon as possible. Collect spillage. Store away from other materials.

#### 6.4. Reference to other sections

See Heading 8. Exposure controls and personal protection.

#### SECTION 7: Handling and storage

#### 7.1. Precautions for safe handling

Additional hazards when processed : May be corrosive to metals.

Precautions for safe handling : Do not get in eyes, on skin, or on clothing. Remove contaminated clothing immediately. Use

corrosionproof equipment. Wash hands and other exposed areas with mild soap and water before eating, drinking or smoking and when leaving work. Provide good ventilation in process

area to prevent formation of vapour. Do not breathe mist, spray, vapours. \\

Hygiene measures : Wash exposed skin thoroughly after handling. Wash contaminated clothing before reuse.

#### 7.2. Conditions for safe storage, including any incompatibilities

Technical measures : Comply with applicable regulations.

Storage conditions : Keep container closed when not in use. Store in original container. Keep only in the original

container in a cool, well ventilated place away from : incompatible materials.

Incompatible products : Strong acids. metals.

Incompatible materials : Sources of ignition. Direct sunlight.

Storage temperature : 5 - 30 °C

Prohibitions on mixed storage : KEEP SUBSTANCE AWAY FROM: (strong) acids. metals. metal powders.

Storage area : Keep locked up. Store in a well-ventilated place. Keep only in the original container.

Special rules on packaging : SPECIAL REQUIREMENTS: corrosion-proof.

Packaging materials : Do not store in corrodable metal.

#### 7.3. Specific end use(s)

No additional information available

#### **SECTION 8: Exposure controls/personal protection**

#### 8.1. Control parameters

| Sodium Hydroxide (1310-73-2) |                        |         |
|------------------------------|------------------------|---------|
| USA ACGIH                    | ACGIH Ceiling (mg/m³)  | 2 mg/m³ |
| USA OSHA                     | OSHA PEL (TWA) (mg/m³) | 2 mg/m³ |

#### 8.2. Exposure controls

Appropriate engineering controls : Emergency eye wash fountains and safety showers should be available in the immediate vicinity

of any potential exposure.

Personal protective equipment : Gloves. Safety glasses. Protective clothing. Head/neck protection. Avoid all unnecessary

exposure.







Hand protection : Wear chemically resistant protective gloves. Wear protective gloves.

Eye protection : Chemical goggles or face shield. Skin and body protection : Wear suitable protective clothing.

Respiratory protection : In case of inadequate ventilation wear respiratory protection. Wear appropriate mask.

Thermal hazard protection : None necessary.

Other information : Do not eat, drink or smoke during use.

#### **SECTION 9: Physical and chemical properties**

#### 9.1. Information on basic physical and chemical properties

Physical state : Liquid

Appearance : Clear, colorless liquid.
Colour : clear. colorless.
Odour : odorless.

Odour threshold : No data available

10/16/2013 EN (English) 3/8

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

: ≥14 Relative evaporation rate (butylacetate=1) : No data available Melting point No data available No data available Freezing point : No data available Boiling point : No data available Flash point No data available Self ignition temperature Decomposition temperature No data available Flammability (solid, gas) : No data available Vapour pressure : No data available Relative vapour density at 20 °C : No data available Relative density : No data available Density : 1.18 g/ml Solubility : No data available Log Pow : No data available

No data available Log Kow

Viscosity, kinematic : 2.8 cSt

Viscosity, dynamic : No data available : No data available. Explosive properties Oxidising properties No data available : No data available Explosive limits

#### Other information

No additional information available

#### **SECTION 10: Stability and reactivity**

Reacts with (some) metals: release of highly flammable gases/vapours (hydrogen). Thermal decomposition generates: Corrosive vapours.

#### 10.2. **Chemical stability**

Stable under normal conditions.

#### Possibility of hazardous reactions 10.3.

Reacts vigorously with strong oxidizers and acids.

#### **Conditions to avoid**

Incompatible materials. Direct sunlight. Extremely high or low temperatures.

#### Incompatible materials

Respiratory or skin sensitisation

metals. Strong acids.

#### **Hazardous decomposition products**

Sodium oxide. Thermal decomposition generates: Corrosive vapours.

#### **SECTION 11: Toxicological information**

#### Information on toxicological effects 11.1.

Acute toxicity : Not classified

| Sodium Hydroxide, 20% w/v   |            |  |
|-----------------------------|------------|--|
| LD50 dermal rabbit          | 7997 mg/kg |  |
| Water (7732-18-5)           |            |  |
| LD50 oral rat ≥ 90000 mg/kg |            |  |

| Water (1732-16-3)            |               |
|------------------------------|---------------|
| LD50 oral rat                | ≥ 90000 mg/kg |
|                              |               |
| Sodium Hydroxide (1310-73-2) |               |

| LD50 dermal rabbit        | 1350 mg/kg (Rabbit; Literature,Rabbit; Literature) |
|---------------------------|----------------------------------------------------|
| Skin corrosion/irritation | : Causes severe skin burns and eye damage.         |

pH: ≥ 14

: Causes serious eye damage.

Serious eye damage/irritation pH: ≥ 14

> : Not classified : Not classified

Germ cell mutagenicity Based on available data, the classification criteria are not met

10/16/2013 EN (English) 4/8

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Carcinogenicity : Not classified Reproductive toxicity : Not classified

Based on available data, the classification criteria are not met

Specific target organ toxicity (single exposure) : Not classified

Specific target organ toxicity (repeated : Not classified

exposure)

Based on available data, the classification criteria are not met

Aspiration hazard : Not classified

> Based on available data, the classification criteria are not met : Based on available data, the classification criteria are not met.

Potential Adverse human health effects and

symptoms

Symptoms/injuries after inhalation : Coughing. Irritation of the respiratory tract. Irritation of the nasal mucous membranes.

Symptoms/injuries after skin contact Caustic burns/corrosion of the skin. Symptoms/injuries after eye contact Causes serious eye damage.

Symptoms/injuries after ingestion Abdominal pain. Bleeding of the gastrointestinal tract. Burns to the gastric/intestinal mucosa.

Nausea. Possible esophageal perforation.

Symptoms/injuries upon intravenous

administration

: Not available.

Chronic symptoms : Not available.

#### **SECTION 12: Ecological information**

#### Toxicity

Ecology - general : The product is not considered harmful to aquatic organisms nor to cause long-term adverse

effects in the environment.

Ecology - water : Toxic to aquatic life.

| Sodium Hydroxide, 20% w/v |          |
|---------------------------|----------|
| LC50 fishes 1             | 269 mg/l |
| EC50 Daphnia 1            | 239 mg/l |

| Sodium Hydroxide (1310-73-2) |                                                                         |
|------------------------------|-------------------------------------------------------------------------|
| LC50 fishes 1                | 45.4 mg/l (96 h; Salmo gairdneri (Oncorhynchus mykiss); SOLUTION >=50%) |
| EC50 Daphnia 1               | 40.4 mg/l (48 h; Ceriodaphnia sp.; NOMINAL CONCENTRATION)               |
| LC50 fish 2                  | 189 mg/l (48 h; Leuciscus idus)                                         |
| TLM fish 1                   | 99 mg/l (48 h; Lepomis macrochirus)                                     |
| TLM fish 2                   | 125 ppm (96 h; Gambusia affinis)                                        |

#### Persistence and degradability 12.2.

| Sodium Hydroxide, 20% w/v     |                  |  |
|-------------------------------|------------------|--|
| Persistence and degradability | Not established. |  |

| Sodium Hydroxide (1310-73-2)                                                                                          |                |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------|--|
| Persistence and degradability Biodegradability: not applicable. No (test)data on mobility of the substance available. |                |  |
| Biochemical oxygen demand (BOD)                                                                                       | Not applicable |  |
| Chemical oxygen demand (COD)                                                                                          | Not applicable |  |
| ThOD                                                                                                                  | Not applicable |  |
| BOD (% of ThOD)                                                                                                       | Not applicable |  |

#### **Bioaccumulative potential** 12.3.

| Sodium Hydroxide, 20% w/v |                  |
|---------------------------|------------------|
| Bioaccumulative potential | Not established. |

| Sodium Hydroxide (1310-73-2) |                                  |
|------------------------------|----------------------------------|
| Bioaccumulative potential    | Bioaccumulation: not applicable. |

#### Mobility in soil

No additional information available

#### 12.5. Other adverse effects

Other adverse effects : May cause pH changes in aqueous ecological systems.

Other information : Avoid release to the environment.

10/16/2013 EN (English) 5/8

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

#### **SECTION 13: Disposal considerations**

#### Waste treatment methods

Waste disposal recommendations : Dispose of contents/container to comply with local, state and federal regulations. Dispose in a

: 8 - Class 8 - Corrosive material 49 CFR 173.136

safe manner in accordance with local/national regulations.

Ecology - waste materials Avoid release to the environment.

#### **SECTION 14: Transport information**

In accordance with DOT

**UN** number 14.1.

UN-No.(DOT) : 1824 DOT NA no. UN1824

#### 14.2. **UN proper shipping name**

**DOT Proper Shipping Name** 

: Sodium hydroxide solution

: 8 - Corrosive substances

Department of Transportation (DOT) Hazard Classes



Packing group (DOT)

Hazard labels (DOT)

: II - Medium Danger

DOT Special Provisions (49 CFR 172.102)

B2 - MC 300, MC 301, MC 302, MC 303, MC 305, and MC 306 and DOT 406 cargo tanks are

not authorized.

IB2 - Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1). Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 C (1.1 bar at 122 F), or 130 kPa at 55 C (1.3 bar at 131 F) are authorized.

N34 - Aluminum construction materials are not authorized for any part of a packaging which is normally in contact with the hazardous material.

T7 - 4 178.274(d)(2) Normal............... 178.275(d)(3) TP2 - a. The maximum degree of filling must not exceed the degree of filling determined by the following: Degree of filling = 95 / (1 + a (tr - tf)) Where: tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius. b. For liquids transported under ambient conditions may be calculated using the formula: a = (d15 - d50) / 35\*d50 Where: d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 C (59 F) and 50 C (122 F), respectively.

DOT Packaging Exceptions (49 CFR 173.xxx) DOT Packaging Non Bulk (49 CFR 173.xxx) : 202 DOT Packaging Bulk (49 CFR 173.xxx) : 242 Marine pollutant : No

#### 14.3. Additional information

Other information : No supplementary information available.

State during transport (ADR-RID) · as liquid

#### Overland transport

No additional information available

Transport by sea

**DOT Vessel Stowage Location** : A - The material may be stowed "on deck" or "under deck" on a cargo vessel and on a

passenger vessel.

**DOT Vessel Stowage Other** : 52 - Stow "separated from" acids

Air transport

DOT Quantity Limitations Passenger aircraft/rail : 1 L

(49 CFR 173.27)

DOT Quantity Limitations Cargo aircraft only (49 : 30 L

CFR 175.75)

### **SECTION 15: Regulatory information**

#### 15.1. US Federal regulations

| Sodium Hydroxide, 20% w/v           |                                 |  |
|-------------------------------------|---------------------------------|--|
| SARA Section 311/312 Hazard Classes | Immediate (acute) health hazard |  |

10/16/2013 EN (English) 6/8

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

| Sodium Hydroxide (1310-73-2)                                              |                                 |  |
|---------------------------------------------------------------------------|---------------------------------|--|
| Listed on the United States TSCA (Toxic Substances Control Act) inventory |                                 |  |
| RQ (Reportable quantity, section 304 of EPA's List of Lists):             | 1000 lb                         |  |
| SARA Section 311/312 Hazard Classes                                       | Immediate (acute) health hazard |  |

#### 15.2. International regulations

Cadium Hudravida 200/ w/w

#### **CANADA**

| Sodium nydroxide, 20% w/v                                       |                              |  |  |
|-----------------------------------------------------------------|------------------------------|--|--|
| WHMIS Classification                                            | Class E - Corrosive Material |  |  |
| Sodium Hydroxide (1310-73-2)                                    |                              |  |  |
| Listed on the Canadian DSL (Domestic Sustances List) inventory. |                              |  |  |
| WHMIS Classification Class E - Corrosive Material               |                              |  |  |

#### **EU-Regulations**

No additional information available

#### Classification according to Regulation (EC) No. 1272/2008 [CLP]

#### Classification according to Directive 67/548/EEC or 1999/45/EC

Not classified

#### 15.2.2. **National regulations**

| Sodium Hydroxide (1310-73-2)                      |  |
|---------------------------------------------------|--|
| Listed on the Canadian Ingredient Disclosure List |  |

#### 15.3. US State regulations

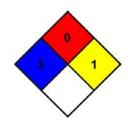
#### Sodium Hydroxide (1310-73-2)

#### SECTION 16: Other information

Indication of changes : Revision - See : \*. Other information : None.

### Full text of H-phrases: see section 16:

| ext of H-phrases: see section 16:                                      |                                               |  |
|------------------------------------------------------------------------|-----------------------------------------------|--|
| Acute Tox. 4 (Dermal) Acute toxicity (dermal), Category 4              |                                               |  |
| Aquatic Acute 3 Hazardous to the aquatic environment — AcuteHazard, Ca |                                               |  |
| Eye Dam. 1                                                             | Serious eye damage/eye irritation, Category 1 |  |
| Skin Corr. 1A                                                          | Skin corrosion/irritation, Category 1A        |  |
| Skin Corr. 1B                                                          | Skin corrosion/irritation, Category 1B        |  |
| H312                                                                   | Harmful in contact with skin                  |  |
| H314                                                                   | Causes severe skin burns and eye damage       |  |
| H318                                                                   | Causes serious eye damage                     |  |
| H402                                                                   | Harmful to aquatic life                       |  |
|                                                                        |                                               |  |


NFPA health hazard : 3 - Short exposure could cause serious temporary or residual injury even though prompt medical attention was

given.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity : 1 - Normally stable, but can become unstable at elevated temperatures and pressures or may react with water with

some release of energy, but not violently.



#### **HMIS III Rating**

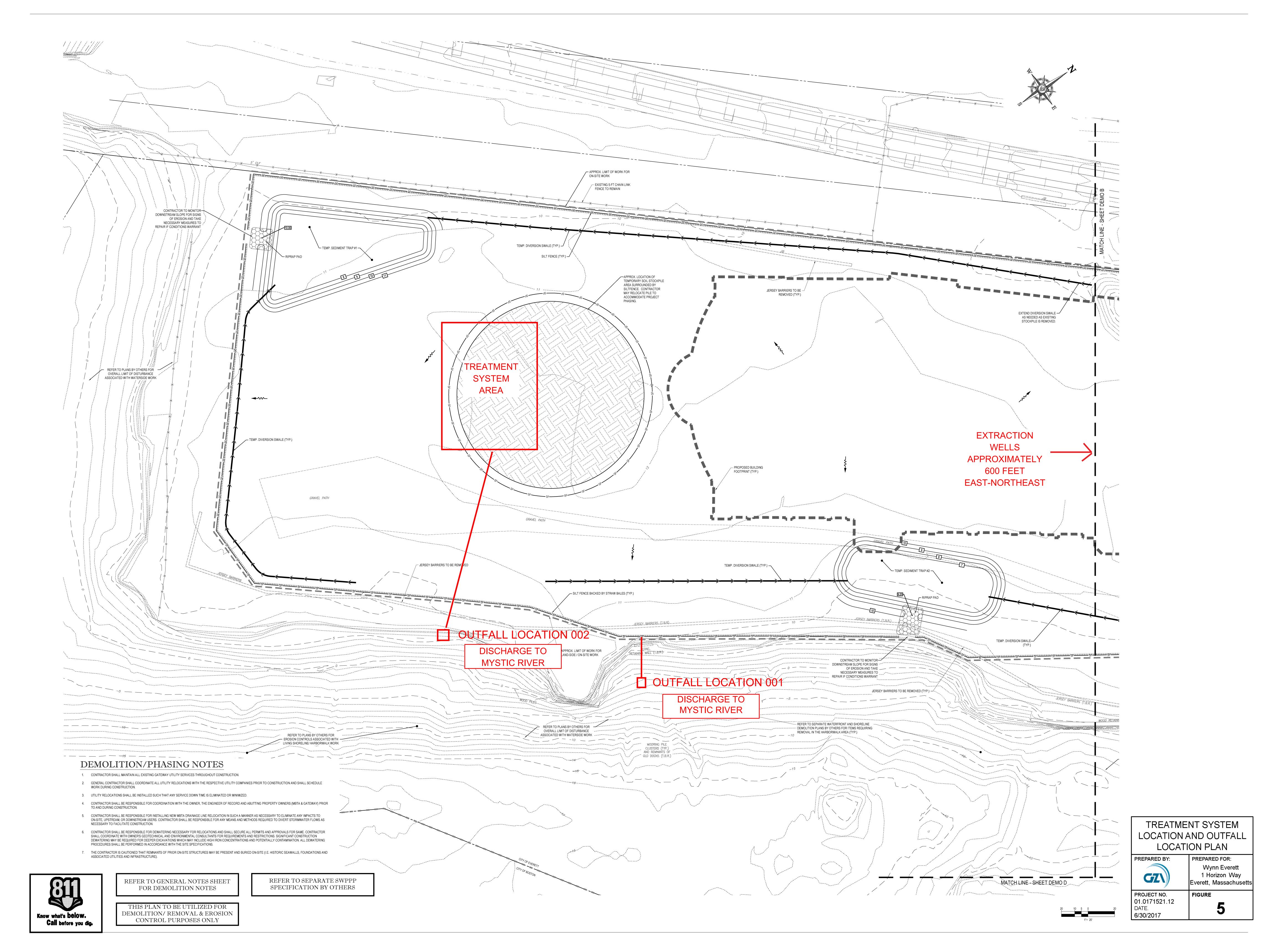
Health : 3 Serious Hazard - Major injury likely unless prompt action is taken and medical treatment is

10/16/2013 EN (English) 7/8

Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Flammability : 0 Minimal Hazard Physical : 1 Slight Hazard

Personal Protection : D


SDS US (GHS HazCom 2012)

Information in this SDS is from available published sources and is believed to be accurate. No warranty, express or implied, is made and LabChem Inc assumes no liability resulting from the use of this SDS. The user must determine suitability of this information for his application.

10/16/2013 EN (English) 8/8



Attachment 6: Figure 5 – Discharge Outfall Location



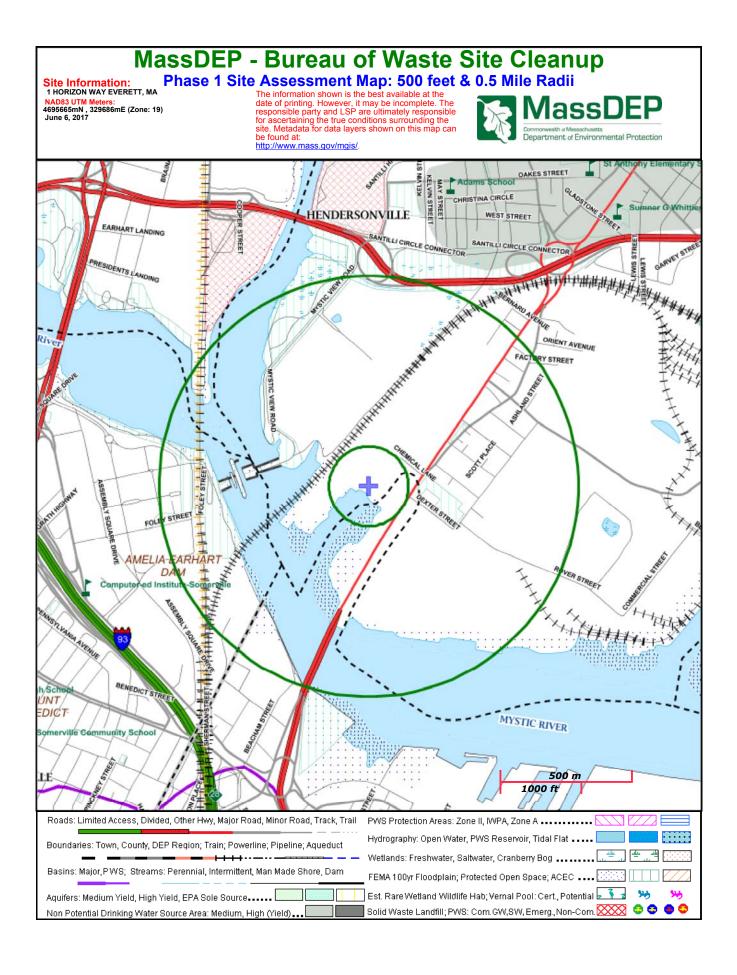


Attachment 7: ESA and EFH Documentation

# FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

| COUNTY     | SPECIES                         | FEDERAL<br>STATUS      | GENERAL LOCATION/HABITAT                                            | TOWNS                                          |
|------------|---------------------------------|------------------------|---------------------------------------------------------------------|------------------------------------------------|
|            | Piping Plover                   | Threatened             | Coastal Beaches                                                     | All Towns                                      |
|            | Roseate Tern                    | Endangered             | Coastal beaches and the Atlantic Ocean                              | All Towns                                      |
|            | Northeastern beach tiger beetle | Threatened             | Coastal Beaches                                                     | Chatham                                        |
| Barnstable | Sandplain gerardia              | Endangered             | Open areas with sandy soils.                                        | Sandwich and Falmouth.                         |
|            | Northern Red-<br>bellied Cooter | Endangered             | Inland Ponds and Rivers                                             | Bourne (north of the Cape Cod Canal)           |
|            | Red Knot <sup>1</sup>           | Threatened             | Coastal Beaches and Rocky Shores, sand and mud flats                | Coastal Towns                                  |
|            | Northern Long-<br>eared Bat     | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats | Statewide                                      |
|            | Bog Turtle                      | Threatened             | Wetlands                                                            | Egremont and Sheffield                         |
| Berkshire  | Northern Long-<br>eared Bat     | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats | Statewide                                      |
|            | Piping Plover                   | Threatened             | Coastal Beaches                                                     | Fairhaven, Dartmouth, Westport                 |
|            | Roseate Tern                    | Endangered             | Coastal beaches and the Atlantic Ocean                              | Fairhaven, New Bedford, Dartmouth,<br>Westport |
| Bristol    | Northern Red-<br>bellied Cooter | Endangered             | Inland Ponds and Rivers                                             | Taunton                                        |
|            | Red Knot <sup>1</sup>           | Threatened             | Coastal Beaches and Rocky Shores, sand and mud flats                | Coastal Towns                                  |
|            | Northern Long-<br>eared Bat     | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats | Statewide                                      |
|            | Roseate Tern                    | Endangered             | Coastal beaches and the Atlantic Ocean                              | All Towns                                      |
|            | Piping Plover                   | Threatened             | Coastal Beaches                                                     | All Towns                                      |
| Dukes      | Northeastern beach tiger beetle | Threatened             | Coastal Beaches                                                     | Aquinnah and Chilmark                          |
|            | Sandplain gerardia              | Endangered             | Open areas with sandy soils.                                        | West Tisbury                                   |
|            | Red Knot <sup>1</sup>           | Threatened             | Coastal Beaches and Rocky Shores, sand and mud flats                | Coastal Towns                                  |
|            | Northern Long-<br>eared Bat     | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats | Statewide                                      |

# FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS


| COUNTY     | SPECIES                     | FEDERAL<br>STATUS      | GENERAL LOCATION/HABITAT                                                        | TOWNS                                                                                |
|------------|-----------------------------|------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|            | Small whorled<br>Pogonia    | Threatened             | Forests with somewhat poorly drained soils and/or a seasonally high water table | Gloucester, Essex and Manchester                                                     |
| Essex      | Piping Plover               | Threatened             | Coastal Beaches                                                                 | Gloucester, Essex, Ipswich, Rowley,<br>Revere, Newbury, Newburyport and<br>Salisbury |
|            | Red Knot <sup>1</sup>       | Threatened             | Coastal Beaches and Rocky Shores, sand and mud flats                            | Coastal Towns                                                                        |
|            | Northern Long-<br>eared Bat | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |
|            | Northeastern<br>bulrush     | Endangered             | Wetlands                                                                        | Montague, Warwick                                                                    |
| Franklin   | Dwarf<br>wedgemussel        | Endangered             | Mill River                                                                      | Whately                                                                              |
|            | Northern Long-<br>eared Bat | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |
|            | Small whorled Pogonia       | Threatened             | Forests with somewhat poorly drained soils and/or a seasonally high water table | Hadley                                                                               |
|            | Puritan tiger beetle        | Threatened             | Sandy beaches along the Connecticut River                                       | Northampton and Hadley                                                               |
| Hampshire  | Dwarf<br>wedgemussel        | Endangered             | Rivers and Streams.                                                             | Hatfield, Amherst and Northampton                                                    |
|            | Northern Long-<br>eared Bat | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |
| Hama dan   | Small whorled<br>Pogonia    | Threatened             | Forests with somewhat poorly drained soils and/or a seasonally high water table | Southwick                                                                            |
| Hampden    | Northern Long-<br>eared Bat | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |
| Middlesex  | Small whorled<br>Pogonia    | Threatened             | Forests with somewhat poorly drained soils and/or a seasonally high water table | Groton                                                                               |
| Wilddiesex | Northern Long-<br>eared Bat | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |
|            | Piping Plover               | Threatened             | Coastal Beaches                                                                 | Nantucket                                                                            |
|            | Roseate Tern                | Endangered             | Coastal beaches and the Atlantic Ocean                                          | Nantucket                                                                            |
| Nantucket  | American burying beetle     | Endangered             | Upland grassy meadows                                                           | Nantucket                                                                            |
|            | Red Knot <sup>1</sup>       | Threatened             | Coastal Beaches and Rocky Shores, sand and mud flats                            | Coastal Towns                                                                        |
|            | Northern Long-<br>eared Bat | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |

# FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

| COUNTY    | SPECIES                         | FEDERAL<br>STATUS      | GENERAL LOCATION/HABITAT                                                        | TOWNS                                                                                   |
|-----------|---------------------------------|------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|           | Piping Plover                   | Threatened             | Coastal Beaches                                                                 | Scituate, Marshfield, Duxbury, Plymouth,<br>Wareham and Mattapoisett                    |
|           | Northern Red-<br>bellied Cooter | Endangered             | Inland Ponds and Rivers                                                         | Kingston, Middleborough, Carver,<br>Plymouth, Bourne, Wareham, Halifax,<br>and Pembroke |
| Plymouth  | Roseate Tern                    | Endangered             | Coastal beaches and the Atlantic Ocean                                          | Plymouth, Marion, Wareham, and Mattapoisett.                                            |
|           | Red Knot <sup>1</sup>           | Threatened             | Coastal Beaches and Rocky Shores, sand and mud flats                            | Coastal Towns                                                                           |
|           | Northern Long-<br>eared Bat     | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                               |
|           | Piping Plover                   | Threatened             | Coastal Beaches                                                                 | Revere, Winthrop                                                                        |
| Suffolk   | Red Knot <sup>1</sup>           | Threatened             | Coastal Beaches and Rocky Shores, sand and mud flats                            | Coastal Towns                                                                           |
|           | Northern Long-<br>eared Bat     | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                               |
| Worsester | Small whorled<br>Pogonia        | Threatened             | Forests with somewhat poorly drained soils and/or a seasonally high water table | Leominster                                                                              |
| Worcester | Northern Long-<br>eared Bat     | Proposed<br>Endangered | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                               |

<sup>&</sup>lt;sup>1</sup>Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.





## United States Department of the Interior

#### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland



In Reply Refer To: June 02, 2017

Consultation Code: 05E1NE00-2017-SLI-1748

Event Code: 05E1NE00-2017-E-03826 Project Name: Wynn Boston Harbor

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

#### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

#### Attachment(s):

Official Species List

## **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

## **Project Summary**

Consultation Code: 05E1NE00-2017-SLI-1748

Event Code: 05E1NE00-2017-E-03826

Project Name: Wynn Boston Harbor

Project Type: DREDGE / EXCAVATION

Project Description: Excavation/ dredging

**Project Location:** 

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/place/42.39654489081289N71.06880146277295W">https://www.google.com/maps/place/42.39654489081289N71.06880146277295W</a>



Counties: Middlesex, MA | Suffolk, MA

## **Endangered Species Act Species**

There is a total of 0 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

#### **Critical habitats**

There are no critical habitats within your project area.



## United States Department of the Interior

### FISH AND WILDLIFE SERVICE



New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

### To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

#### **ATTACHMENT 7**

#### Evaluation of Long-Eared Bat Habitat

#### One Horizon Way

#### **Everett, Massachusetts**

The northern long-eared bat (*Myotis septentrionalis*) has a federal status of Threatened and a state status of Endangered within Massachusetts.

The northern long-eared bat is a migratory species which utilizes a variety of habitats during the year depending on the season. Between early November and April, this species hibernates in crevices in portions of caves and abandoned mine shafts which have high humidity, constant temperatures, and little air flow. Individuals tend to return to the same hibernaculum from year to year although they are also known to sometimes use other hibernacula. Hibernacula are generally located within approximately 35 miles of summer foraging habitat. Between April and October, northern long-eared bats roost and forage in forested areas. Preferred roost sites include clusters of large, live or dead, hardwood trees with cavities or peeling bark. Preferred foraging sites include wooded areas around vernal pools or small ponds or along streams. Thus, transitional zones between forested uplands and wetlands represent prime summer roosting and foraging habitat.

The parcel at 1 Horizon Way in Everett, MA (Site) is located within a busy and densely developed area. The Site is a predominantly open area with few trees and no ponds, vernal pools, caves, or mine shafts. Additionally, there is an active railroad along the northwestern boundary of the Site and a main road, Alford Street, along the southeastern boundary of the Site. The lack of trees for roosting and the regular disturbances from noise from the railroad operation and traffic along Alford Street make this Site a poor habitat for northern long-eared bats. It is unlikely that this species utilizes this area.





## **Northern Long-Eared Bat**

## Myotis septentrionalis

The northern long-eared bat is federally listed as a threatened species under the Endangered Species Act. *Endangered* species are animals and plants that are in danger of becoming extinct. *Threatened* species are animals and plants that are likely to become endangered in the foreseeable future. Identifying, protecting and restoring endangered and threatened species is the primary objective of the U.S. Fish and Wildlife Service's Endangered Species Program.

# What is the northern long-eared bat?

Appearance: The northern longeared bat is a medium-sized bat with a body length of 3 to 3.7 inches and a wingspan of 9 to 10 inches. Their fur color can be medium to dark brown on the back and tawny to pale-brown on the underside. As its name suggests, this bat is distinguished by its long ears, particularly as compared to other bats in its genus, *Myotis*.

Winter Habitat: Northern long-eared bats spend winter hibernating in caves and mines, called hibernacula. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. Within hibernacula, surveyors find them hibernating most often in small crevices or cracks, often with only the nose and ears visible.

Summer Habitat: During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). Males and non-reproductive females may also roost in cooler places, like caves and mines. Northern long-eared bats seem to be flexible in selecting roosts, choosing roost trees based on suitability to retain bark or provide cavities or crevices. They rarely roost in human structures like barns and sheds.

**Reproduction:** Breeding begins in late summer or early fall when males begin to swarm near hibernacula. After



This northern long-eared bat, observed during an Illinois mine survey, shows visible symptoms of white-nose syndrome.

copulation, females store sperm during hibernation until spring. In spring, females emerge from their hibernacula, ovulate and the stored sperm fertilizes an egg. This strategy is called delayed fertilization.

After fertilization, pregnant bats migrate to summer areas where they roost in small colonies and give birth to a single pup. Maternity colonies of females and young generally have 30 to 60 bats at the beginning of the summer, although larger maternity colonies have also been observed. Numbers of bats in roosts typically decrease from the time of pregnancy to post-lactation. Most bats within a maternity colony give birth around the same time, which may occur from late May or early June to late July, depending where the colony is located within the species' range. Young bats start flying by 18 to 21 days after birth. Maximum lifespan for the northern longeared bat is estimated to be up to 18.5 years.

*Feeding Habits:* Like most bats, northern long-eared bats emerge at dusk to feed. They primarily fly through the

understory of forested areas feeding on moths, flies, leafhoppers, caddisflies, and beetles, which they catch while in flight using echolocation or by gleaning motionless insects from vegetation.

Photo by Steve Taylor; University of Illinois

**Range:** The northern long-eared bat's range includes much of the eastern and north central United States, and all Canadian provinces from the Atlantic Ocean west to the southern Yukon Territory and eastern British Columbia. The species' range includes 37 States and the District of Columbia: Alabama, Arkansas, Connecticut, Delaware, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Vermont, Virginia, West Virginia, Wisconsin, and Wyoming.

# Why is the northern long-eared bat in trouble?

White-nose Syndrome: No other threat is as severe and immediate as

this. If this disease had not emerged, it is unlikely that northern long-eared bat populations would be experiencing such dramatic declines. Since symptoms were first observed in New York in 2006, white-nose syndrome has spread rapidly from the Northeast to the Midwest and Southeast; an area that includes the core of the northern long-eared bat's range, where it was most common before this disease. Numbers of northern longeared bats (from hibernacula counts) have declined by up to 99 percent in the Northeast. Although there is uncertainty about the rate that white-nose syndrome will spread throughout the species' range, it is expected to continue to spread throughout the United States in the foreseeable future.

#### Other Sources of Mortality:

Although no significant population declines have been observed due to the sources of mortality listed below, they may now be important factors affecting this bat's viability until we find ways to address WNS.

Impacts to Hibernacula: Gates or other structures intended to exclude people from caves and mines not only restrict bat flight and movement, but also change airflow and microclimates. A change of even a few degrees can make a cave unsuitable for hibernating bats. Also, cave-dwelling bats are vulnerable to human disturbance while hibernating. Arousal during hibernation causes bats to use up their energy stores, which may lead to bats not surviving through winter.

Loss or Degradation of Summer Habitat: Highway construction, commercial development, surface mining, and wind facility construction permanently remove habitat and are activities prevalent in many areas of this bat's range. Many forest management activities benefit bats by keeping areas forested rather than converted to other uses. But, depending on type and timing, some forest management activities can cause mortality and temporarily remove or degrade roosting and foraging habitat.

Wind Farm Operation: Wind turbines kill bats, and, depending on the species, in very large numbers. Mortality from windmills has been documented for northern long-eared bats, although a

small number have been found to date. However, there are many wind projects within a large portion of the bat's range and many more are planned.

# What Is Being Done to Help the Northern Long-Eared Bat?

**Disease Management:** Actions have been taken to try to reduce or slow the spread of white-nose syndrome through human transmission of the fungus into caves (e.g. cave and mine closures and advisories; national decontamination protocols). A national plan was prepared by the Service and other state and federal agencies that details actions needed to investigate and manage white-nose syndrome. Many state and federal agencies, universities and non-governmental organizations are researching this disease to try to control its spread and address its affect. See www.whitenosesvndrome. org/ for more.

### Addressing Wind Turbine

*Mortality:* The Service and others are working to minimize bat mortality from wind turbines on several fronts. We fund and conduct research to determine why bats are susceptible to turbines, how to operate turbines to minimize mortality and where important bird and bat migration routes are located. The Service, state natural resource agencies, and the wind energy industry are developing a Midwest Wind Energy Habitat Conservation Plan, which will provide wind farms a mechanism to continue operating legally while minimizing and mitigating listed bat mortality.

**Listing:** The northern long-eared bat is listed as a threatened species under the federal Endangered Species Act. Listing a species affords it the protections of the Act and also increases the priority of the species for funds, grants, and recovery opportunities.

Hibernacula Protection: Many federal and state natural resource agencies and conservation organizations have protected caves and mines that are important hibernacula for cave-dwelling bats.

# What Can I Do? Do Not Disturb Hibernating Bats:

To protect bats and their habitats, comply with all cave and mine closures, advisories, and regulations. In areas without a cave and mine closure policy, follow approved decontamination protocols (see http://whitenosesyndrome.org/topics/decontamination). Under no circumstances should clothing, footwear, or equipment that was used in a whitenose syndrome affected state or region be used in unaffected states or regions.

#### Leave Dead and Dying Trees

**Standing:** Like most eastern bats, the northern long-eared bat roosts in trees during summer. Where possible and not a safety hazard, leave dead or dying trees on your property. Northern long-eared bats and many other animals use these trees.

Install a Bat Box: Dead and dying trees are usually not left standing, so trees suitable for roosting may be in short supply and bat boxes may provide additional roost sites. Bat boxes are especially needed from April to August when females look for safe and quiet places to give birth and raise their pups.

Support Sustainability: Support efforts in your community, county and state to ensure that sustainability is a development goal. Only through sustainable living will we provide rare and declining species, like the northern longeared bat, the habitat and resources they need to survive alongside us.

Spread the Word: Understanding the important ecological role that bats play is a key to conserving the northern longeared and other bats. Helping people learn more about the northern longeared bat and other endangered species can lead to more effective recovery efforts. For more information, visit www.fws.gov/midwest/nleb and www.whitenosesyndrome.org

Join and Volunteer: Join a conservation group; many have local chapters. Volunteer at a local nature center, zoo, or national wildlife refuge. Many state natural resource agencies benefit greatly from citizen involvement in monitoring wildlife. Check your state agency websites and get involved in citizen science efforts in your area.

## Northern Long-Eared Bat (Myotis septentrionalis) Species Guidance

Family: Vespertilionidae- the evening bats

**State Status: Threatened** 

State Rank: **S1S3** 

Federal Status: None

Global Rank: G4

Wildlife Action Plan Area of Importance Score: 3



Range of the northern long-eared bat in Wisconsin. Source: WI Bat Program 2012



Dave Redell, Wisconsin DNR

#### **Species Information**

**General Description:** The northern long-eared bat, also referred to as the northern bat, is a medium-sized member of the genus *Myotis*. Adults weigh five to nine grams (0.2-0.3 oz). Individual weights vary seasonally and are lowest in the spring as bats emerge from hibernation (WI Bat Program 2010). Total length is 77-92 mm (3.0-3.63 in), adult forearm length is 34-38 mm (1.3-1.5 in), and females are generally larger than males (Kurta 1995). Wingspan is 23-26 cm (9.1-10.2 in; Barbour and Davis 1969). Fur color is light to dark brown. The northern long-eared bat is classified as a cave bat because it uses caves and mines for hibernation.

Similar Species: Three bat species in Wisconsin- the northern long-eared bat, the little brown bat (*Myotis lucifugus*) and the Indiana (*Myotis sodalis*) bat – are best distinguished by close (in-hand) inspection. The northern long-eared bat is most often confused with the little brown bat. The northern long-eared bat has longer ears than the little brown bat, and when folded alongside the head, the tips of the ears should extend 3 mm or more past the tip of the nose. Little brown bat ear length in Wisconsin, however, can be highly variable, and tragus shape and length in relation to the rest of the ear are the two best features to use to distinguish these two species (Fig. 1). The tragus of the northern long-eared bat is more pointed and spear-like than that of the little brown bat. The little brown bat also has a glossier appearance than the northern long-eared. The northern long-eared bat may also be confused with the Indiana bat, but the two can be distinguished much the same way as the little brown bat from the northern long-eared bat. The Indiana bat's keeled calcar, a spur of cartilage extended from the ankle and supporting the interfemoral membrane, is a distinguishing feature that the northern long-eared bat lacks. The northern long-eared bat can be identified by the echolocation call (Fig. 2), however both other *Myotis* species share similar call characteristics, and only trained individuals should positively identify the species through

echolocation calls.



Figure 1. The asymmetrical tragus of the little brown bat (left), and the symmetrical, spear-like tragus of the northern long-eared bat (right). Dave Redell, Wisconsin DNR

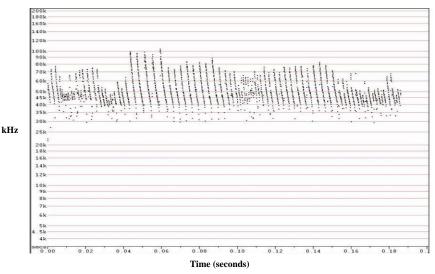



Figure 2. Echolocation call: Northern long-eared bats produce high-frequency calls of a shorter duration, broader bandwidth and lower intensity than other *Myotis* species. The call frequency ranges between 126 and 40 kHz (Caceres and Barclay 2000). The northern long-eared bat sonogram may appear similar to the little brown bat and the Indiana bat.

Associated Species: Northern long-eared bat predators include owls, hawks, occasionally snakes, and raccoons (*Procyon lotor*). As many as 13 feral cats have also been observed congregating at a mine entrance at dusk to prey upon bats as they leave the hibernaculum (D. Redell pers. obs.). Northern long-eared bats often share hibernacula with other bat species such as the tri-colored bat (*Perimyotis subflavus*), the little brown bat, the big brown bat (*Eptesicus fuscus*) and the Indiana bat, but the northern bat rarely, if ever, forms hibernating clusters with other species. Northern long-eared bats forage with other bat species, but there is no evidence of direct competition between species.

**State Distribution and Abundance:** Northern long-eared bats are found throughout the state of Wisconsin (but see "Threats" section below), but they are never abundant (Jackson 1961, WDNR 2013).

**Global Distribution and Abundance:** Northern long-eared bats are widely distributed in the eastern United States and Canada, with the exception of the very southeastern United States and Texas (see Fig. 3, BCI 2012).

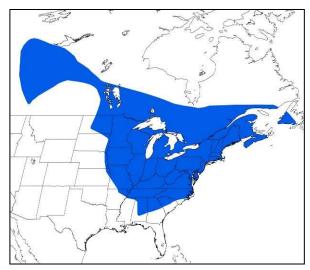
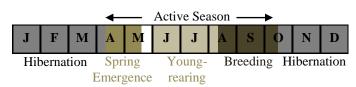




Figure 3. Global distribution of Myotis septentrionalis. (BCI 2012)

**Diet:** The northern long-eared bat is insectivorous and uses echolocation to locate and capture prey. Northern long-eared bat prey includes moths (*Lepidoptera*), flies (*Diptera*) and beetles (*Coleoptera*). This species is commonly referred to as a gleaning bat because it often catches insects that are at rest on leaves or twigs, in addition to catching insects that are flying (Lee and McCracken 2004).

Reproductive Cycle: The reproductive cycle for the northern long-eared bat begins when breeding occurs in the fall and sometimes into winter hibernation. Sperm is stored in the uterus of the female until April or May when the females emerge from hibernation and fertilization occurs. Females form small maternity colonies of up to 30 bats in late spring and females give birth to a single pup in June or early July (Caceres and Barclay 2000, Owen et. al. 2002). Pups are born hairless and flightless. The pup nurses for about a month and is left at the roost nightly while the mother goes out to feed. The pup begins to fly and explore on its own at four to six weeks. Maternity colonies disperse shortly after young are volant (able to fly) and bats move closer to hibernacula in the fall and mate before they hibernate. Young of the year do not usually mate, but some juvenile males appear reproductively active (WI Bat Program 2009, 2010). More research is needed to determine breeding and reproductive behavior of the northern long-eared bat.



Ecology: Female and male northern long-eared bats emerge from hibernation in April and May. In summer, the northern long-eared bat roosts alone, or females may form a colony with some other females. The northern long-eared bat chooses day roosts in tall trees and snags. Night roosts for this species include caves and rock shelters where they will rest between feeding bouts (Caceres and Barclay 2000). Roost fidelity is low in this species, and individual bats switch roosts about every two days in the summer (Foster and Kurta 1999). This species is a relatively long lived mammal for its size, and usually lives up to 8-10 years. Banding records indicated a northern long-eared bat caught in the wild lived up to 18 years (Caceres and Barclay 2000). In the fall, northern long-eared bats will make short migrations from summer habitat to winter hibernacula (caves and abandoned mines), and will often return to the same hibernaculum but not always in sequential seasons (Caceres and Barclay 2000). This species hibernates with other species such as the little brown bat and tri-colored bat, but often in different parts of the hibernaculum. The northern long-eared bat hibernates deep in crevices, rather than clustering on exposed surfaces like other cave bats, which makes it difficult to survey and monitor for this species during the winter (Caceres and Barclay 2000). More research is needed on northern long-eared bats' basic life history and behavior.

#### Natural Community Associations: (WDNR 2005 and WDNR 2009)

Many bat species are associated more with structural features within natural communities than with any particular natural community or group of natural communities (see "Habitat" section).

#### Significant: coldwater streams, coolwater streams, ephemeral pond

*Moderate:* alder thicket, bog relict, boreal rich fen, calcareous fen (southern), central sands pine – oak forest, coastal plain marsh, emergent aquatic, floodplain forest, hemlock relict, inland lakes, northern dry forest, northern dry-mesic forest, northern hardwood swamp, northern mesic forest, northern sedge meadow, oak barrens, oak woodland, open bog, shrub carr, southern dry forest, southern

dry-mesic forest, southern hardwood swamp, southern mesic forest, southern sedge meadow, submergent aquatic, submergent aquaticoligotrophic marsh, warmwater rivers, warmwater streams, white pine – red maple swamp *Minimal*: none

**Habitat:** Northern long-eared bat habitat use changes over the course of the year, and varies based on sex and reproductive status. Reproductive females often use different summer habitat from males and non-reproductive females.

Summer: Northern long-eared bats commonly roost in trees but have been known to roost in man-made structures. This species often roosts under bark or close to the tree trunk in crevices of tree species such as maples and ashes (Foster and Kurta 1999). Northern long-eared bats prefer to roost in tall trees with a dynamic forest structure including old growth and some young trees (Foster and Kurta 1999). Females form small maternity colonies which are located in trees, under shingles, and in buildings. Northern long-eared bats commonly forage within the forest and below the canopy mainly in upland forests on hillsides and ridges (Owen et al. 2003), but have also been noted to forage along paths, ponds and streams, and at forest edges. Foster and Kurta (1999) found all roost trees to be close to wetlands. More information is needed to more fully describe northern long-eared bat foraging habitats and summer roosting in Wisconsin.

*Home range:* Northern long-eared bats use approximately 150 acres for their home range in summer (Owen et al. 2003). More information is needed to accurately describe northern long-eared bat home range and habitat in Wisconsin.

*Winter:* The northern long-eared bat hibernates in caves and abandoned mines in winter and tends to be found in deep crevices (Kurta 1994, Caceres and Barclay 2000). More research is needed to determine what characteristics make suitable caves and mines for northern long-eared bat hibernation.



Northern long-eared bat hibernacula in southwestern Wisconsin: Passage of a mine in Grant County that houses northern bats (left), and solitary northern long-eared bat in a crevice in Pierce County (right). Heather Kaarakka, Wisconsin DNR

Edge habitat (transition zone between two types of vegetation) is important for northern long-eared bats as they migrate and forage. When bats migrate from wintering caves to summer habitat or commute from roosts to feeding grounds, they move through the landscape in a manner that protects them from wind and predators. Instead of flying the shortest distance across a field, for instance, bats will take longer routes that follow edge habitat. In addition to offering protection, this behavior may also allow bats more feeding opportunities because food is more abundant around edge habitat (Limpens and Kapteyn 1991). Commuting along edge habitat may assist the bats with navigation and orientation through use of linear edges as landmarks (Verboom and Huitema 1997).

Threats: Lack of information on bat species' basic ecology is one of the greatest threats to bat conservation in Wisconsin. The northern long-eared bat faces two emerging threats, and several ongoing threats. White-nose syndrome (WNS) was discovered in 2006 in a hibernaculum in New York State, and appears as a white, powdery substance on the bat's face, tail and wings. White-nose syndrome has spread rapidly since 2007 to other hibernacula in neighboring states (USFWS 2012). Infected little brown bat and northern bat hibernacula in New York and surrounding states have experienced mortality rates of over 90%. White-nose syndrome has been called the "most precipitous wildlife decline in the past century in North America" (BCI 2009), and is caused by a fungus called *Geomyces destructans* (Lorch et al. 2011). This fungus grows best in the cool, wet conditions of hibernacula (Verant et al. 2012). Mortality from the fungus appears to come from increased arousals during torpor, which deplete bats' fat reserves and cause starvation (Reeder et al. 2012) and dehydration (Cryan et al. 2010). For up-to-date WNS information, see the USFWS WNS website and the USGS National Wildlife Health Center website (see *Additional Information*). Neither the fungus nor the disease has been found in Wisconsin as of this writing. Cave-hibernating bats, including the northern long-eared bat, should be monitored closely for any

indication of WNS; the Wisconsin Bat Program conducts WNS surveillance and monitoring in the state.

Wind power is another emerging threat to bats – wind turbines have been shown to fatally impact all bat species in Wisconsin (Johnson 2003, Arnett et al. 2008). Wind-turbine blades cause mortality through direct impact or through the pressure differential caused by the motion of the spinning blades. This pressure differential causes a bat's lungs to fill with fluid as it flies near the spinning blades, and this phenomenon (known as barotrauma) kills the bat instantly (Baerwald et. al. 2008). More research is under way to better understand bat wind-turbine vulnerabilities, but current studies suggest that bats face the greatest risk during migration from summer foraging sites to wintering grounds (tree bats) or hibernacula (cave bats) (Johnson 2003, Kunz et al. 2007). Research is needed on all Wisconsin bat species to better understand wind-turbine mortality in the state and the long term population impacts of turbine-related deaths.

Northern long-eared bats also face the ongoing threat of habitat degradation. Habitat degradation is caused by increased agricultural, industrial, and household pesticide use, and it has negative effects on bats through direct exposure and through dietary accumulation (O'Shea et al. 2001). Pesticides are a threat to many taxa, but bats may be more vulnerable than other small mammals due to certain life characteristics (Shore et al. 1996, O'Shea et al. 2001). Bats' longevity and high trophic level means pesticides can concentrate in their body fat (Clark and Prouty 1977, Clark 1988). Even after pesticide exposure ceases, residues can be passed on to nursing young (Clark 1988). Bat species that migrate long distances may be more affected because pesticide residues become increasingly concentrated in the brain tissue as fat reserves are depleted during long-distance flights. This concentration can lead to convulsions and even death (Geluso et al. 1976, Clark 1978).

Northern long-eared bats also face the ongoing threat of hibernaculum disturbance from humans entering hibernacula in winter and waking bats from torpor. Bats in torpor reduce their metabolism and body temperature to low levels that require less energy than being fully awake. Interrupting torpor costs energy; a little brown bat uses up to 100 mg of fat reserves waking and the returning to torpor (and more if the bat starts flying), or the energetic equivalent of up to 67 days of torpor (Thomas et al. 1990, Thomas 1992). This loss clearly represents a large percentage of total body weight of the bat, and repeated arousals may cause bats to run out of energy reserves before spring arrives and therefore starve in the hibernaculum or die from exposure if they seek food outside (Thomas 1995).

Climate Change Impacts: The effects of climate change on the northern long-eared bat are unclear. Predictions suggest a northward expansion in the ranges of all cave-bat species, in pursuit of optimal hibernation (Humphries et al. 2002, USFWS 2007). This prediction assumes an abundance of suitable caves and other hibernaculum structures further north, but this assumption may not hold for karst-free regions at higher latitudes. Bat species may adapt by reducing torpor depth and duration during winter if prey insect species are available for more of the year (Weller et al. 2009), but bats' adaptive capacities in this regard may be limited and are not well known. Shifts in prey insect emergence may also cause mismatches with bat emergence and cause food shortages in the spring or fall.

**Survey Guidelines:** Persons handling northern long-eared bats must possess a valid <u>Endangered and Threatened Species Permit</u>. If surveys are being conducted for regulatory purposes, survey protocols and surveyor qualifications must first be approved by the Endangered Resources Review Program (see *Contact Information*).

Acoustic surveys, which should be done by trained individuals, are performed for all Wisconsin bat species in spring, summer, and fall; and are used to determine presence/absence, phenology, and distribution around the state. The Wisconsin Bat Program's eventual goal is to use acoustic survey data to determine bat population trends in Wisconsin. Northern long-eared bats are ubiquitous around the state, and therefore surveys can be done wherever appropriate habitat exists. Acoustic recording systems that detect echolocation calls can survey bats as they fly through an area. The bat detection system detects and records these acoustic signals as bats fly by, and records the date and time of each encounter. The Wisconsin Bat Program currently uses broadband frequency division ultrasound detection equipment with a PDA (Personal Data Assistant) and a Global Positioning System. Start acoustic surveys half an hour after sunset, but only if the daytime temperature exceeds 50° F, and conduct the survey for at least one hour. There are three seasons for acoustic surveys: spring (April and May), summer (June and July), and fall (August and September). Acoustic surveys record bat passes, which can then be identified to species by trained individuals. These surveys could be used by land managers to create inventories of species distribution and relative abundance. Visit the Wisconsin bat monitoring website for additional information.

Wisconsin DNR also conducts a roost monitoring program to determine abundance of bats roosting in buildings and bat houses. People with bat houses or other roost sites identify species and count bats over the summer at night as bats leave the roost. People who find a bat roost while doing field surveys should contact the <u>Wisconsin Bat Program</u> to report the information.

Summarize results, including survey dates, times, weather conditions, number of detections, detection locations, and behavioral data and submit via the WDNR online report: <a href="http://dnr.wi.gov">http://dnr.wi.gov</a>, keyword "rare animal field report form">

#### **Management Guidelines**

The following guidelines typically describe actions that will help maintain or enhance habitat for the species. These actions are not mandatory unless required by a permit, authorization or approval.

#### Summer Management

Roost availability is thought to limit northern long-eared bat populations, as it does for many bat species, and thus habitat management is important for the continued survival of this species (Duchamp et al. 2007). Northern long-eared bats are forest dwelling bats, and forest management to promote occupation by this species should increase roosting and foraging habitat (see Habitat section above). Northern long-eared bats have been shown to use both live and dead trees for roosting sites (Foster and Kurta 1999). These bats often roost under exfoliating bark, and therefore snags and dying trees may be important for encouraging northern long-eared bats. Forest managers are encouraged to promote mixed-species, mixed-aged plots as the northern long-eared bat chooses trees based on suitability of crevices and bark as roosts, rather than on tree species (Foster and Kurta 1999). The northern long-eared bat is known to switch roost trees frequently (about every 2 days) over the course of the summer, and therefore this species needs a large number of trees (Foster and Kurta 1999). As with many bat species, suitable forested habitat for northern long-eared bats is a multi-species matrix that contains some open areas (Owen et al. 2003).

Linear corridors are important for migrating and commuting bats, and forests may be managed such that suitable foraging habitat is connected by corridors; this may include managing edge habitat along roads, logging trails and riparian habitat. Land managers should also make an effort to reduce or eliminate burdock (*Arctium minus*), an exotic weed that produces seeds that trap bats and cause death from exposure.

Special consideration should be given to protecting snags or dying trees, especially those near known roost locations, particularly from June 1 through August 15 while bats may have pups at the roost.

Seasonal pools in woodlands may be important foraging and water sources for the northern long-eared bat and other Wisconsin bat species because they provide areas for feeding and drinking in an otherwise closed-canopy forest (Francl 2008). Pool size and depth do not appear to determine usage by northern long-eared bats; instead the presence of an opening in the forest is enough to encourage foraging and drinking (Francl 2008).

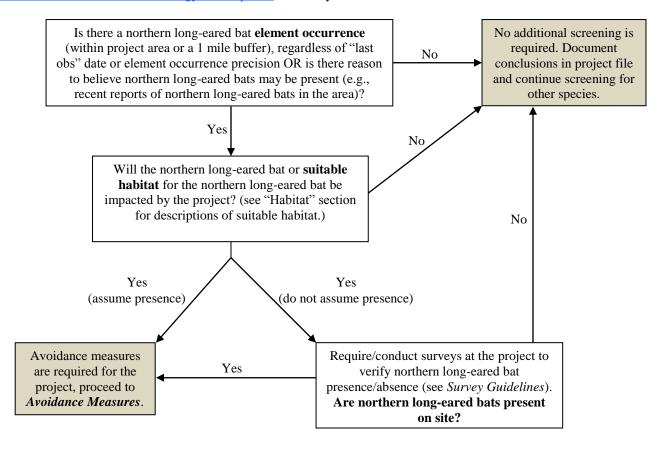
#### Fall Management

During fall swarm, large proportions of Wisconsin's cave bat population gather near entrances of the state's hibernacula (see "Habitat" section), and become concentrated and vulnerable to direct impacts. To avoid disturbance during crucial life history events, management activities such as logging and use of heavy machinery within 0.25 miles of hibernacula entrances should be avoided during fall swarm (August 15-October 15) or during spring emergence (April 1-May 15) because bats may use the surrounding area for roosting during those time periods.

#### Winter Management

Little is known about how northern long-eared bats choose hibernation sites, but suitable Wisconsin hibernacula typically have steady temperatures between 4° C and 12° C (39-53° F), high humidity, and no human disturbance. Artificial sites that can mimic this environment may provide suitable hibernacula. Artificial hibernacula include bunkers, food storage-caves and basements. Contact the Wisconsin Bat Program to inquire about developing artificial hibernacula.

Natural hibernacula can also be managed to encourage bat use. For example, closing but not sealing the entrance to an abandoned mine not only buffers temperature and humidity, but also reduces disturbance from humans and predators. Eliminating disturbance from humans, except for WNS surveillance, is the best management activity for natural cave hibernacula. Contact the <u>Wisconsin Bat Program</u> for more information about managing bat hibernacula.


Northern long-eared bats – and their populations as a whole – are particularly vulnerable during winter hibernation because they are concentrated in just a few major hibernacula and because repeated disturbance during hibernation can lead to mortality (see "Threats" section above). Each time a bat is aroused from torpor, it uses up a substantial proportion of the fat reserves it relies on to hibernate through the winter and faces greater odds of starvation before spring (see "Threats" section above). Therefore, avoid entering hibernacula from October 1 through May 15 unless conducting approved and permitted management, surveillance, or research.

#### **Screening Procedures**

The following procedures must be followed by DNR staff reviewing proposed projects for potential impacts to the species.

Follow the "Conducting Endangered Resources Reviews: A Step-by-Step Guide for Wisconsin DNR Staff" document (summarized below) to determine if northern long-eared bats will be impacted by a project (WDNR 2012):

Those seeking to complete wind farm projects should review and follow the <u>Guidance for Minimizing Impacts to Natural Resources</u> from Terrestrial Commercial Wind Energy Development created by the WDNR.



#### **Avoidance Measures**

The following measures are specific actions required by DNR to avoid take (mortality) of state threatened or endangered species per Wisconsin's Endangered Species law (s. 29.604, Wis. Stats.) These guidelines are typically not mandatory for non-listed species (e.g., special concern species) unless required by a permit, authorization or approval.

According to Wisconsin's Endangered Species Law (s. 29.604, Wis. Stats.), it is illegal to take, transport, possess, process, or sell any wild animal on the Wisconsin Endangered and Threatened Species List (ch. NR 27, Wis. Admin. Code). Take of an animal is defined as shooting, shooting at, pursuing, hunting, catching or killing.

If *Screening Procedures* above indicate that avoidance measures are required for a project, follow the measures below. If you have not yet read through *Screening Procedures*, please review them first to determine if avoidance measures are necessary for the project.

- 1. The simplest and preferred method to avoid take of northern long-eared bats is to avoid directly impacting individuals, known northern long-eared bat locations, or areas of suitable habitat (described above in the "Habitat" section and in *Screening Procedures*). The U.S. Fish and Wildlife Services identifies humans and their equipment as a possible vectors for spores of *Geomyces destructans* the fungus that causes white-nose syndrome (WNS) and therefore simply entering hibernacula at any time of year and moving between them poses threats to bats. Cavers and researchers must observe all cave and mine closures and decontamination protocols (s. NR 40.07, Wis. Admin. Code; see *Additional Information*). In addition, it is illegal to use pesticides and poisons when attempting to evict bats from house roosts (s. 94.708, Wis. Stats.).
- 2. If suitable habitat cannot be avoided, follow these time-of-year restrictions to avoid take:

#### Summer Avoidance (June 1-Aug 15)

Reproductive females and their young are highly vulnerable to mass mortality during the species' maternity period (June 1 – August 15) because they may aggregate in maternity colonies, and because pups cannot fly and therefore cannot leave the roost for several weeks after birth. Maternity colonies may occur in human structures, and those seeking to exclude bats from a building or other roost must follow the <a href="Cave Bat Broad Incidental Take Permit and Authorization">Cave Bat Broad Incidental Take Permit and Authorization</a> (see Additional Information).

- 3. If impacts cannot be avoided during restoration or management activities, including wind projects and forestry management, but activities are covered under the <u>Cave Bat Broad Incidental Take Permit and Authorization</u>; the project is covered for any unintentional take that may occur. For information about natural roost avoidance, see *Management Guidelines* and "Habitat" section above.
- 4. If northern long-eared bat impacts cannot be avoided, please contact the Natural Heritage Conservation Incidental Take Coordinator (see *Contact Information*) to discuss possible project-specific avoidance measures. If take cannot be avoided, an <a href="Incidental Take Permit or Authorization">Incidental Take Permit or Authorization</a> (see *Additional Information*) is necessary.

#### **Additional Information**

#### References

- Arnett, E. B., W. K. Brown, W.P. Erickson, J. K. Fiedler, B. L. Hamilton, T. H. Henry, A. Jain, G. D. Johnson, J. Kerns, R. R. Koford, C. P. Nicholson, T. G. O'Connell, M. D. Piorkowski, R. D. Tankersley, Jr. 2008. Patterns of Bat Fatalities at Wind Energy Facilities in North America. Journal Wildlife Management 72: 61-78.
- Baerwald, E.F., G. H. D'Amours, B. J. Klug, R. M. Barclay. 2008. Barotrauma is a Significant Cause of Bat Fatalities at Wind Turbines. Current Biology 18(16).
- Barbour, R.W, and W.H. Davis. 1969 Bats of America. The University Press of Kentucky.Lexinton, KY.
- Bat Conservation International [BCI]. 2001. Bats in Eastern Woodlands.
- Bat Conservation International [BCI]. 2009. "White Nose Syndrome." <a href="http://batcon.org/index.php/what-we-do/white-nose-syndrome.html">http://batcon.org/index.php/what-we-do/white-nose-syndrome.html</a> (accessed Dec 2009).
- Bat Conservation International [BCI]. "Bat Species Profiles: Myotis septentrionalis." Bat Conservation International, 2012. <a href="http://batcon.org/index.php/all-about-bats/species-profiles.html">http://batcon.org/index.php/all-about-bats/species-profiles.html</a> (accessed Sept 2012).
- Boyles J.G., P.M. Cryan, G.F. McCracken, T.H. Kunz. 2011. Economic importance of bats in agriculture. Science 332:41-42.
- Caceres, M. C., R. M. Barclay. 2000. Myotis septentrionalis. Mammalian Species 634: 1-4
- Clark, D. R. Jr. 1988. Environmental contaminants and the management of bat populations in the United States. Pp. 409-413 in R. C. Szaro, K. S. Severson, and D. R. Patton (eds.), Proceedings of the Symposium on Management of Amphibians and Reptiles and Small Mammals of North America, Flagstaff, AZ. USDA Forest Service, General Technical Report RM-166.
- Clark, D. R. Jr., R. K. LaVal, and D. M. Swineford. 1978. Dieldrin-induced mortality in an endangered species, the Gray bat (*Myotis grisescens*). Science 199:1357-1359.
- Clark, D. R. Jr. and R. M. Prouty. 1977. Experimental feeding of DDE and PCB to female big brown bats (*Eptesicus fuscus*). Journal of Toxicology and Environmental health 2:917-928.
- Cryan, P.M., C.U. Meteyer, J.G. Boyles and D.S Blehert. 2010. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biology 8:135-142.

- Duchamp, J.E., E.B. Arnett, M.A. Larson, R.K. Swihart. 2007. Ecological considerations for landscape-level management of bats. Pp 237-361 in M.J. Lacki, J.P. Hayes, A. Kurta (eds), Bats in Forests: Conservation and management. John Hopkins University press. Baltimore, MD.
- Francl, K. E. 2008. Summer bat activity at woodland seasonal pools in the northern Great Lakes region. Wetlands. 28: 117-124.
- Foster, R. W., A. Kurta. 1999. Roosting ecology of the northern bat (*Myotis septentrionalis*) and comparisons with the endangered Indiana bat (*Myotis sodalis*). Journal of Mammalogy 80: 659-672.
- Geluso, K. N., J. S. Altenbach, and D. E. Wilson. 1976. Bat mortality: Pesticide poisoning and migratory stress. Science, 194(4261): 184-186.
- Humphries, M. M., D. W. Thomas, and J. R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418:313-316
- Indiana Bat (Myotis sodalis) Draft Recovery Plan: First Revision. 2006. USFWS. Fort Snelling, Minnesota.
- Jackson, H. Mammals of Wisconsin. 1961. The University of Wisconsin Press. Madison, WI.
- Johnson, G. D., W. P. Erickson, M.D. Strickland, M. F. Shepherd, D. A. Shepherd. 2003. Mortality of Bats at a Large-scale wind power development at buffalo ridge, Minnesota. American Midland Naturalist 50: 332-342.
- Kunz, T. H., E. B. Arnett, W. P. Erickson, A. R. Hoar, G. D. Johnson, R. P. Larkin, M. D. Strickland, R. W. Thresher, M. D. Tuttle. 2007. Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Front Ecol. Environment 5: 315-324.
- Kurta, A. 1995. Mammals of the great lakes region. Ann Arbor: University of Michigan Press.
- Lacki, M. J., J. P. Hayes, A. Kurta. Bats in Forests: Conservation and management. Baltimore: John Hopkins University Press, 2007. Pp 250.
- Lee, Y. F., G. F. McCracken. 2004. Flight activity and food habits of three species of *Myotis* bats (Chiroptera: Vespertilionidae) in sympatry. Zoological Studies 43: 589-597.
- Limpens, H., K. Kapteyn. 1991. Bats, their behavior and linear landscape elements. Myotis 29: 39-48.
- Lorch, J.M., C.U. Meteyer, M.J. Behr, J.G. Boyles, P.M. Cryan, A.C.Hicks, A.E.Ballmann, J.T.H. Coleman, D.N.Redell, D.M.Reeder and D.S.Blehert. 2011 Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376-378.
- Nowak, R. M. Walker's bats of the world. Baltimore: John Hopkins University Press, 1991.
- O'Shea, T. J., A. L. Everette, and L. E. Ellison. 2001. Cyclodiene Insecticide, DDE, DDT, Arsenic, and Mercury contamination of big brown bats (*Eptesicus fuscus*) foraging at a Colorado superfund site. Archives of Environmental Contamination and Toxicology 40:112-120.
- Owen, S. F., M. Menzel, W. M. Ford, B. R. Chapman, K. V. Miller, J. W. Edwards, P. B. Wood. 2002. Roost tree selection by maternity colonies of northern long-eared myotis in an intensively managed forest. Gen. Tech. Rep. NE-292. Newtown Square, PA: U.S. Department of Agriculture, Forest service, Northeastern Research Station. 6 p.
- Owen, S. F., M. Menzel, W. M. Ford, B. R. Chapman, K. V. Miller, J. W. Edwards, P. B. Wood. 2003. Home-range size and habitat used by the northern Myotis (*Myotis septentrionalis*). American Midland Naturalist 150:352-359.

- Reeder, D., C.L. Frank, G.G. Turner, C.U. Meteyer, A. Kurta, E.R. Britzke, M.E. Vodzak, S.R. Darling, C.W. Stihler, A.C. Hicks, R. Jacob, L.E. Grieneisen, S.A. Brownlee, L.K. Muller, D.S. Blehert. 2012. Frequent arousal from hibernation linked to severity of infection and mortality in bats with White-nose syndrome. PLoS ONE 7: e38920. doi:10.1371/journal.pone.0038920.
- Redell, D. 2005. Behavioral ecology of bats using the Neda mine hibernaculum. Thesis: University of Wisconsin, Madison.
- Shore, R. F., D. G. Myhill, and J. A. Wright. 1996. Comparison of the toxicity to laboratory mice and pipistrelle bats *Pipistrellus pipistrellus* of exposure to remedially-treated timber. Environmental Toxicology and Pharmacology 2:125-129.
- Thomas D. W. 1992. Lack of evidence for a biological alarm clock in bats (*Myotis* spp.) hibernating under natural conditions. Canadian Journal of Zoology 71:1-3.
- Thomas D. W., M. Dorais, J. M. Bergeron. 1990. Winter energy budget and costs of arousals for hibernating little brown bats, *Myotis lucifugus*. Journal Mammalogy 71: 475-479.
- USFWS [United States Fish and Wildlife Service]. 2007. Indiana Bat (*Myotis sodalis*) Draft Recovery Plan: First Revision. < <a href="http://www.fws.gov/midwest/endangered/mammals/inba/pdf/inba\_fnldrftrecpln\_apr07.pdf">http://www.fws.gov/midwest/endangered/mammals/inba/pdf/inba\_fnldrftrecpln\_apr07.pdf</a>>
- USFWS [US Fish and Wildlife Service]. "White nose syndrome in bats: Frequently asked questions" *US Fish and Wildlife Service Northeast Region*. April 2009. USFWS. <a href="http://www.fws.gov/northeast/pdf/white-nosefags.pdf">http://www.fws.gov/northeast/pdf/white-nosefags.pdf</a> (accessed Oct 2009).
- USFWS [US Fish and Wildlife Service]. "White nose syndrome in bats: for cavers" *US Fish and Wildlife Services Northeast Region*. November 2009. USFWS. < http://whitenosesyndrome.org/resources/cavers> (accessed Dec 2009).
- Verboom, B., H. Huitema. 1997. The Importance of linear landscapes for the pipistrelle *Pipistrellus pipistrellus* and the serotine bat *Eptesicus serotinus*. Landscape Ecology 12: 117-125.
- Verant, M.L., J.G. Boyles, W.W. Waldrep Jr, G. Wibbelt, D.S. Blehert. 2012. Temperature-dependant growth of *Geomyces destructans*, the fungus that causes but white-nose syndrome. PLoS ONE 7: e46280. doi:10.1371/journal.pone.0046280
- Weller, T. J., P. M. Cryan, and T. J. O'Shea. 2009. Broadening the focus of bat conservation and research in the USA for the 21<sup>st</sup> century. Endangered Species Research 8:129-145.
- Wisconsin Bat Program. 2008, 2009, 2010, 2012. Unpublished Data.
- WDNR [Wisconsin Department of Natural Resources]. 2005. Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need: A State Wildlife Action Plan. Madison, Wisconsin, USA. <a href="http://dnr.wi.gov">http://dnr.wi.gov</a>, key word "Wildlife Action Plan">
- WDNR [Wisconsin Department of Natural Resources]. 2009. Wisconsin wildlife action plan species profile: Northern Long-eared Bat. (accessed May 27, 2012). Madison, Wisconsin, USA. <material now available on the Natural Heritage Conservation species Web page: <a href="http://dnr.wi.gov">http://dnr.wi.gov</a>, key word "biodiversity">
- WDNR [Wisconsin Department of Natural Resources]. 2012. Conducting Endangered Resources Reviews: A Step-by-Step Guide for Wisconsin DNR Staff. Bureau of Endangered Resources. Wisconsin Department of Natural Resources, Madison, Wisconsin.
- WDNR [Wisconsin Department of Natural Resources]. 2013. Natural Heritage Inventory database. Accessed 29 July 2013.
- WICCI [Wisconsin Initiative on Climate Change Impacts]. 2011. Wisconsin's Changing Climate: Impacts and Adaptation. Nelson Institute for Environmental Studies, University of Wisconsin-Madison and the Wisconsin Department of Natural Resources, Madison, Wisconsin, USA. <a href="http://www.wicci.wisc.edu/report/2011">http://www.wicci.wisc.edu/report/2011</a> WICCI-Report.pdf>

#### **Linked Websites:**

- Cave bat Broad Incidental Take Permit and Authorization: <a href="http://dnr.wi.gov/topic/erreview/itbats.html">http://dnr.wi.gov/topic/erreview/itbats.html</a>
- Natural Communities of Wisconsin: <a href="http://dnr.wi.gov/org/land/er/communities/">http://dnr.wi.gov/org/land/er/communities/</a>
- Natural Heritage Conservation Permit Requirements: <a href="http://dnr.wi.gov/topic/EndangeredResources/permits.html">http://dnr.wi.gov/topic/EndangeredResources/permits.html</a>

- Rare Animal Field Report Form: <a href="http://dnr.wi.gov">http://dnr.wi.gov</a>, key word "rare animal field report form">
- ➤ USFW WNS Website: <a href="http://www.whitenosesyndrome.org">http://www.whitenosesyndrome.org</a>
- USGS National Wildlife Health Center: <a href="http://www.nwhc.usgs.gov/disease\_information/white-nose\_syndrome/">http://www.nwhc.usgs.gov/disease\_information/white-nose\_syndrome/</a>
- Wind Guidance: <a href="http://dnr.wi.gov/topic/Sectors/documents/energy/WindGuidelines.pdf">http://dnr.wi.gov/topic/Sectors/documents/energy/WindGuidelines.pdf</a>
- Wisconsin Bat Program Exclusion Instructions: <a href="http://wiatri.net/inventory/bats/Monitoring/Roosts/docs/BatExclusion.pdf">http://wiatri.net/inventory/bats/Monitoring/Roosts/docs/BatExclusion.pdf</a>
- ➤ Wisconsin Bat Program: < <a href="http://wiatri.net/inventory/bats">http://wiatri.net/inventory/bats</a>>
- ➤ WDNR Decontamination Protocols for Preventing Spread of White-nose syndrome: <a href="http://dnr.wi.gov/topic/WildlifeHabitat/documents/WNS">http://dnr.wi.gov/topic/WildlifeHabitat/documents/WNS</a> DeconProtocols.pdf>
- > Wisconsin Endangered and Threatened Species: <a href="http://dnr.wi.gov">http://dnr.wi.gov</a>, key word "endangered resources">
- Wisconsin Endangered and Threatened Species Permit: <a href="http://dnr.wi.gov">http://dnr.wi.gov</a>, key word "endangered species permit">"</a>">"</a>
- ➤ Wisconsin Initiative on Climate Change Impacts: < <a href="http://www.wicci.wisc.edu/">http://www.wicci.wisc.edu/</a>>
- Wisconsin Natural Heritage Inventory Working List Key: <a href="http://dnr.wi.gov/topic/NHI/WList.html">http://dnr.wi.gov/topic/NHI/WList.html</a>
- Wisconsin's Wildlife Action Plan: <a href="http://dnr.wi.gov/topic/wildlifehabitat/actionplan.html">http://dnr.wi.gov/topic/wildlifehabitat/actionplan.html</a>

#### **Funding**

- Natural Resources Foundation of Wisconsin: <a href="http://www.wisconservation.org/">http://www.wisconservation.org/</a>
- ➤ USFWS State Wildlife Grants Program: <a href="http://wsfrprograms.fws.gov/subpages/grantprograms/swg/swg.htm">http://wsfrprograms.fws.gov/subpages/grantprograms/swg/swg.htm</a>
- Wisconsin Natural Heritage Conservation Fund
- Wisconsin DNR Division of Forestry

#### **Endangered Resources Review Program Contacts**

- ➤ General information (608-264-6057, <u>DNRERReview@wisconsin.gov</u>)
- ➤ Rori Paloski, Incidental Take Coordinator, Wisconsin DNR, Bureau of Natural Heritage Conservation (608-264-6040, rori.paloski@wi.gov)

#### **Bat Contact Information**

- ➤ <u>John Paul White</u> Conservation biologist, Wisconsin DNR, Bureau of Natural Heritage Conservation (John.white@wisconsin.gov)
- Wisconsin Bat Program (608-266-5216, <u>DNRbats@wisconsin.gov</u>)

#### **Suggested Citation**

➤ Wisconsin Department of Natural Resources. 2013. Wisconsin Northern Long-Eared Bat Species Guidance. Bureau of Natural Heritage Conservation, Wisconsin Department of Natural Resources, Madison, Wisconsin. PUB-ER-700.

#### Developed by

- ➤ Heather M. Kaarakka, Emma M. Pelton, David N. Redell primary authors
- > Gregor W. Schuurman, primary editor

Wisconsin Department of Natural Resources Bureau of Natural Heritage Conservation PO Box 7921 Madison, WI 53707-7921 http://dnr.wi.gov, keyword "ER"



## Summary of Essential Fish Habitat (EFH) Designations

## Name of Estuary/ Bay/ River: Boston Harbor, Massachusetts

 $10 \square \times 10 \square$  latitude and longitude squares included in this bay or estuary or river (southeast corner boundaries): 4220/7100; 4210/7050; 4210/7100

| Species                                         | Eggs | Larvae | Juveniles | Adults | Spawning<br>Adults |
|-------------------------------------------------|------|--------|-----------|--------|--------------------|
| Atlantic salmon (Salmo salar)                   |      |        |           |        |                    |
| Atlantic cod (Gadus morhua)                     | S    | S      | M,S       | M,S    | S                  |
| haddock (Melanogrammus aeglefinus)              | S    | S      |           |        |                    |
| pollock (Pollachius virens)                     | S    | S      | M,S       |        |                    |
| whiting (Merluccius bilinearis)                 | S    | S      | M,S       | M,S    |                    |
| offshore hake (Merluccius albidus)              |      |        |           |        |                    |
| red hake (Urophycis chuss)                      |      | S      | S         | S      |                    |
| white hake (Urophycis tenuis)                   | S    | S      | S         | S      |                    |
| redfish (Sebastes fasciatus)                    | n/a  |        |           |        |                    |
| witch flounder (Glyptocephalus cynoglossus)     |      |        |           |        |                    |
| winter flounder (Pleuronectes americanus)       | M,S  | M,S    | M,S       | M,S    | M,S                |
| yellowtail flounder (Pleuronectes ferruginea)   | S    | S      | S         | s      | S                  |
| windowpane flounder (Scopthalmus aquosus)       | M,S  | M,S    | M,S       | M,S    | M,S                |
| American plaice (Hippoglossoides platessoides)  | S    | S      | s         | S      | S                  |
| ocean pout (Macrozoarces americanus)            |      |        | S         | S      |                    |
| Atlantic halibut (Hippoglossus hippoglossus)    | S    | S      | S         | S      | S                  |
| Atlantic sea scallop (Placopecten magellanicus) |      |        |           |        |                    |
| Atlantic sea herring (Clupea harengus)          |      | s      | M,S       | M,S    |                    |
| monkfish (Lophius americanus)                   |      |        |           |        |                    |
| bluefish (Pomatomus saltatrix)                  |      |        | M,S       | M,S    |                    |
| long finned squid (Loligo pealei)               | n/a  | n/a    |           |        |                    |
| short finned squid (Illex illecebrosus)         | n/a  | n/a    |           |        |                    |

| Atlantic butterfish (Peprilus triacanthus) | S   | S   |     |     |  |
|--------------------------------------------|-----|-----|-----|-----|--|
| Atlantic mackerel (Scomber scombrus)       | M,S | M,S | M,S | M,S |  |
| summer flounder (Paralicthys dentatus)     |     |     |     |     |  |
| scup (Stenotomus chrysops)                 |     |     |     |     |  |
| black sea bass (Centropristus striata)     |     |     |     |     |  |
| surf clam (Spisula solidissima)            | n/a | n/a |     |     |  |
| ocean quahog (Artica islandica)            | n/a | n/a |     |     |  |
| spiny dogfish (Squalus acanthias)          | n/a | n/a |     |     |  |
| tilefish (Lopholatilus chamaeleonticeps)   |     |     |     |     |  |



Attachment 8: MHC Report

# Massachusetts Cultural Resource Information System MACRIS

**MACRIS Search Results** 

Search Criteria: Town(s): Everett; Street No: 1; Street Name: chemical Ln;

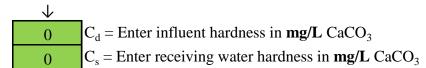
Inv. No. Property Name Street Town Year

Friday, June 2, 2017 Page 1 of 1



Attachment 9: WQBEL Calculation Spreadsheet

## Enter number values in green boxes below


Enter values in the units specified

| $\downarrow$ | _                                   |
|--------------|-------------------------------------|
| 0            | $Q_R = Enter upstream flow in MGD$  |
| 0.72         | $Q_P = Enter discharge flow in MGD$ |
| 0            | Downstream 7Q10                     |

Enter a dilution factor, if other than zero



Enter values in the units specified



Enter receiving water concentrations in the units specified

| $\downarrow$ | _                                         |
|--------------|-------------------------------------------|
| 7.7          | pH in <b>Standard Units</b>               |
| 15.73        | Temperature in °C                         |
| 0.135        | Ammonia in <b>mg/L</b>                    |
| 0            | Hardness in <b>mg/L</b> CaCO <sub>3</sub> |
| 7.7          | Salinity in <b>ppt</b>                    |
| 0            | Antimony in <b>µg/L</b>                   |
| 1.89         | Arsenic in <b>μg/L</b>                    |
| 0            | Cadmium in <b>µg/L</b>                    |
| 0            | Chromium III in µg/L                      |
| 0            | Chromium VI in <b>µg/L</b>                |
| 4.66         | Copper in <b>µg/L</b>                     |
| 362          | Iron in <b>μg/L</b>                       |
| 7.33         | Lead in <b>µg/L</b>                       |
| 0            | Mercury in <b>µg/L</b>                    |
| 0            | Nickel in <b>µg/L</b>                     |
| 0            | Selenium in <b>µg/L</b>                   |
| 0            | Silver in <b>µg/L</b>                     |
| 0            | Zinc in µg/L                              |

## Enter **influent** concentrations in the units specified

| $\perp$ | _                                   |
|---------|-------------------------------------|
| 0       | TRC in <b>µg/L</b>                  |
| 0       | Ammonia in <b>mg/L</b>              |
| 0       | Antimony in <b>μg/L</b>             |
| 323     | Arsenic in μg/L                     |
| 1.8     | Cadmium in <b>µg/L</b>              |
| 0       | Chromium III in µg/L                |
| 0       | Chromium VI in µg/L                 |
| 49.6    | Copper in <b>µg/L</b>               |
| 333000  | Iron in μg/L                        |
| 22.3    | Lead in <b>µg/L</b>                 |
| 0       | Mercury in <b>µg/L</b>              |
| 58.1    | Nickel in <b>μg/L</b>               |
| 0       | Selenium in µg/L                    |
| 0       | Silver in µg/L                      |
| 694     | Zinc in µg/L                        |
| 113     | Cyanide in <b>µg/L</b>              |
| 0       | Phenol in µg/L                      |
| 0       | Carbon Tetrachloride in µg/L        |
| 0       | Tetrachloroethylene in µg/L         |
| 0       | Total Phthalates in µg/L            |
| 0       | Diethylhexylphthalate in µg/L       |
| 0       | Benzo(a)anthracene in µg/L          |
| 0       | Benzo(a)pyrene in µg/L              |
| 0       | Benzo(b)fluoranthene in µg/L        |
| 0       | Benzo(k)fluoranthene in µg/L        |
| 0       | Chrysene in µg/L                    |
| 0       | Dibenzo(a,h)anthracene in μg/L      |
| 0       | Indeno(1,2,3-cd)pyrene in $\mu$ g/L |
| 0       | Methyl-tert butyl ether in μg/L     |

| A. Inorganics                      | TBEL applies if | bolded       | WQBEL applies if bolded |              |  |
|------------------------------------|-----------------|--------------|-------------------------|--------------|--|
| Ammonia                            | Report          | mg/L         |                         |              |  |
| Chloride                           | Report          | μg/L         |                         |              |  |
| Total Residual Chlorine            | 0.2             | mg/L         | 7.5                     | μg/L         |  |
| Total Suspended Solids             | 30              | mg/L         |                         |              |  |
| Antimony                           | 206             | μg/L         | 640                     | μg/L         |  |
| Arsenic                            | 104             | μg/L         | 36                      | μg/L         |  |
| Cadmium                            | 10.2            | μg/L         | 8.9                     | μg/L         |  |
| Chromium III                       | 323             | μg/L         | 100.0                   | μg/L         |  |
| Chromium VI                        | 323             | μg/L         | 50                      | μg/L         |  |
| Copper                             | 242             | μg/L         | 3.7                     | μg/L         |  |
| Iron                               | 5000            | μg/L         |                         | μg/L         |  |
| Lead                               | 160             | μg/L<br>μg/L | 8.5                     | μg/L<br>μg/L |  |
| Mercury                            | 0.739           | μg/L<br>μg/L | 1.11                    | μg/L<br>μg/L |  |
| Nickel                             | 1450            |              | 8.3                     |              |  |
| Selenium                           |                 | μg/L         | 71                      | μg/L         |  |
| Silver                             | 235.8           | μg/L         | 2.2                     | μg/L         |  |
|                                    | 35.1            | μg/L         |                         | μg/L         |  |
| Zinc                               | 420             | μg/L         | 86                      | μg/L         |  |
| Cyanide                            | 178             | mg/L         | 1.0                     | μg/L         |  |
| B. Non-Halogenated VOCs Total BTEX | 100             | ~/I          |                         |              |  |
| Benzene                            | 5.0             | μg/L<br>μg/L |                         |              |  |
| 1,4 Dioxane                        | 200             | μg/L<br>μg/L |                         |              |  |
| Acetone                            | 7.97            | μg/L<br>mg/L |                         |              |  |
| Phenol                             | 1,080           | _            | 300                     | ug/I         |  |
| C. Halogenated VOCs                | 1,000           | μg/L         | 300                     | μg/L         |  |
| Carbon Tetrachloride               | 4.4             |              | 1.6                     | μg/L         |  |
| 1,2 Dichlorobenzene                | 600             | μg/L         |                         | μg/L         |  |
| 1,3 Dichlorobenzene                | 320             | μg/L         |                         |              |  |
| 1,4 Dichlorobenzene                | 5.0             | μg/L         |                         |              |  |
| Total dichlorobenzene              |                 | μg/L         |                         |              |  |
| 1,1 Dichloroethane                 | 70              | μg/L         |                         |              |  |
| 1,2 Dichloroethane                 | 5.0             | μg/L         |                         |              |  |
| 1,1 Dichloroethylene               | 3.2             | μg/L         |                         |              |  |
| Ethylene Dibromide                 | 0.05            | μg/L         |                         |              |  |
| Methylene Chloride                 | 4.6             | μg/L         |                         |              |  |
| 1,1,1 Trichloroethane              | 200             | μg/L         |                         |              |  |
| 1,1,2 Trichloroethane              | 5.0             | μg/L         |                         |              |  |
| Trichloroethylene                  | 5.0             | μg/L         |                         |              |  |
| Tetrachloroethylene                | 5.0             | μg/L         | 3.3                     | μg/L         |  |
| cis-1,2 Dichloroethylene           | 70              | μg/L         |                         |              |  |
|                                    |                 |              |                         |              |  |

| Vinyl Chloride                  | 2.0      | $\mu g/L$ |        |           |
|---------------------------------|----------|-----------|--------|-----------|
| D. Non-Halogenated SVOCs        |          |           |        |           |
| Total Phthalates                | 190      | $\mu g/L$ |        | μg/L      |
| Diethylhexyl phthalate          | 101      | μg/L      | 2.2    | μg/L      |
| Total Group I Polycyclic        |          |           |        |           |
| Aromatic Hydrocarbons           | 1.0      | μg/L      |        |           |
| Benzo(a)anthracene              | 1.0      | μg/L      | 0.0038 | $\mu g/L$ |
| Benzo(a)pyrene                  | 1.0      | μg/L      | 0.0038 | $\mu g/L$ |
| Benzo(b)fluoranthene            | 1.0      | μg/L      | 0.0038 | $\mu g/L$ |
| Benzo(k)fluoranthene            | 1.0      | μg/L      | 0.0038 | $\mu g/L$ |
| Chrysene                        | 1.0      | μg/L      | 0.0038 | $\mu g/L$ |
| Dibenzo(a,h)anthracene          | 1.0      | μg/L      | 0.0038 | $\mu g/L$ |
| Indeno(1,2,3-cd)pyrene          | 1.0      | μg/L      | 0.0038 | $\mu g/L$ |
| Total Group II Polycyclic       |          |           |        |           |
| Aromatic Hydrocarbons           | 100      | μg/L      |        |           |
| Naphthalene                     | 20       | μg/L      |        |           |
| E. Halogenated SVOCs            |          |           |        |           |
| Total Polychlorinated Biphenyls | 0.000064 | μg/L      |        |           |
| Pentachlorophenol               | 1.0      | μg/L      |        |           |
| F. Fuels Parameters             |          |           |        |           |
| Total Petroleum Hydrocarbons    | 5.0      | mg/L      |        |           |
| Ethanol                         | Report   | mg/L      |        |           |
| Methyl-tert-Butyl Ether         | 70       | μg/L      | 20     | $\mu g/L$ |
| tert-Butyl Alcohol              | 120      | μg/L      |        |           |
| tert-Amyl Methyl Ether          | 90       | μg/L      |        |           |
|                                 |          |           |        |           |



**Attachment 10: City of Everett Notification** 



Proactive by Design

EOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.qza.com



#### Notification of Discharge under the 2016 Remediation General Permit

July 6, 2017 GZA File No. 01.0171521.52

Mr. Carlo DeMaria City of Everett Mayor 484 Broadway Everett, Massachusetts 02149

Re: Notification of Discharge under 2017 Remediation General Permit Wynn Boston Harbor One Horizon Way Everett, Massachusetts

Dear Mr. DeMaria:

Federal National Pollutant Discharge Elimination System (NPDES) regulations require operators of discharges permitted under the 2017 Remediation General Permit (RGP) jointly administered by the United States Environmental Protection Agency (USEPA) and the Massachusetts Department of Environmental Protection (MassDEP), to notify the municipality of said discharge. These notice requirements are contained in Part 3.4(7)(a) of the 2017 RGP. An electronic version of the 2017 RGP is available at <a href="https://www3.epa.gov/region1/npdes/rgp.html">https://www3.epa.gov/region1/npdes/rgp.html</a>. In compliance with these requirements, GZA GeoEnvironmental, Inc. (GZA), on behalf of Wynn MA, LLC, is notifying the City of Everett of the discharge of treated water derived from the dewatering of excavations from the property located at One Horizon Way, in Everett Massachusetts.

A copy of the Notice of Intent (NOI) submitted to USEPA can be made available upon request.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Matt Smith, PE., LSP. Associate Principal

J:\170,000-179,999\171521\171521-12.DEL\RGP\Revised RGP\Attachment 10- Notice to City of Everett\City of Everett Notification.docx



**Attachment 11: Laboratory Analytical Reports** 



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

David E Leone GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

**RE:** Wynn Everett - RGP (01.0171521.12)

ESS Laboratory Work Order Number: 1501022

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

## REVIEWED

By ESS Laboratory at 5:18 pm, Jan 28, 2015

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1501022



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

## SAMPLE RECEIPT

The following samples were received on January 05, 2015 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES).

All sample for Hexavalent Chromium and TRC were received outside of the holding time.

| <u>Lab Number</u><br>1501022-01 | Sample Name<br>GZ-003 | <u>Matrix</u><br>Ground Water | Analysis 1664A, 2320B, 2540C, 2540D, 300.0, 353.2, 420.1, 4500 CN CE, 4500-Cl E, 5220D, 6010B, 6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B, 8270D, 8270D SIM, 9014, 9030A, 9038, HACH |
|---------------------------------|-----------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1501022-02                      | GZ-005                | Ground Water                  | 1664A, 2320B, 2540C, 2540D, 300.0, 353.2, 420.1, 4500 CN CE, 4500-Cl E, 5220D, 6010B, 6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B, 8270D, 8270D SIM, 9014, 9030A, 9038, HACH          |
| 1501022-03                      | GZ-006                | Ground Water                  | 1664A, 2320B, 2540C, 2540D, 300.0, 353.2, 420.1, 4500 CN CE, 4500-C1 E, 5220D, 6010B, 6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B, 8270D, 8270D SIM, 9014, 9030A, 9038, HACH          |
| 1501022-04                      | GZ-010                | Ground Water                  | 6010C, 7010, 7196A, 7470A, HACH                                                                                                                                                         |



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1501022



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### PROJECT NARRATIVE

#### 8270C(SIM) Polynuclear Aromatic Hydrocarbons

CA50616-BLK1 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (152% @ 15-110%)

CA50616-BS1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (161% @ 15-110%)

CA50616-BSD1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (124% @ 15-110%)

CYA0050-CCV1 Continuing Calibration recovery is above upper control limit (C+).

2,4,6-Tribromophenol (155% @ 70-130%)

#### **Classical Chemistry**

| 1501022-01 | Estimated value. Sample hold times were exceeded (H). |  |
|------------|-------------------------------------------------------|--|
|            |                                                       |  |

Dissolved Ferrous Iron, Ferrous Iron, Hexavalent Chromium, Nitrate as N, Nitrite as N

1501022-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1501022-02 Estimated value. Sample hold times were exceeded (H).

Dissolved Ferrous Iron, Ferrous Iron, Hexavalent Chromium, Nitrate as N, Nitrite as N

1501022-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1501022-03 Estimated value. Sample hold times were exceeded (H).

Dissolved Ferrous Iron , Ferrous Iron , Hexavalent Chromium , Nitrate as N , Nitrite as N

1501022-03 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1501022-04 Estimated value. Sample hold times were exceeded (H).

Dissolved Ferrous Iron, Ferrous Iron, Hexavalent Chromium

**Total Metals** 

CA50618-BSD1 Blank Spike recovery is above upper control limit (B+).

Cadmium (128% @ 80-120%)

CA50618-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Cadmium (24% @ 20%)

No other observations noted.

**End of Project Narrative.** 



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

#### **DATA USABILITY LINKS**

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

#### **Prep Methods**

3005A - Aqueous ICP and Graphite Furnace Digestion

3020A - Aqueous ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Dissolved Metals**

| <u>Analyte</u> | Results (MRL)       | <b>MDL</b> | Method | <u>Limit</u> | DF | Analyst | <b>Analyzed</b> | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|---------------------|------------|--------|--------------|----|---------|-----------------|------------|-----|--------------|
| Arsenic        | <b>804</b> (10.0)   |            | 6010C  |              | 1  | KJK     | 01/06/15 18:42  | 100        | 20  | CA50618      |
| Iron           | <b>42300</b> (20.0) |            | 6010C  |              | 1  | JP      | 01/06/15 18:42  | 100        | 20  | CA50618      |
| Lead           | ND (4.0)            |            | 6010C  |              | 1  | KJK     | 01/06/15 18:42  | 100        | 20  | CA50618      |
| Nickel         | <b>22.3</b> (10.0)  |            | 6010C  |              | 1  | KJK     | 01/06/15 18:42  | 100        | 20  | CA50618      |
| Zinc           | <b>1170</b> (10.0)  |            | 6010C  |              | 1  | KJK     | 01/06/15 18:42  | 100        | 20  | CA50618      |



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1501022

Sample Matrix: Ground Water

ESS Laboratory Sample ID: 1501022-01



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A

1/02/15 10:18 N/A

Extraction Method: 3005A/200.7

Units: ug/L

#### **Total Metals**

| Analyte      | Results (MRL)       | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | Analyzed       | <u>I/V</u> | F/V | <b>Batch</b> |
|--------------|---------------------|------------|--------|--------------|-----------|---------|----------------|------------|-----|--------------|
| Antimony     | ND (1.0)            |            | 7010   |              | 1         | KJK     | 01/07/15 0:22  | 100        | 20  | CA50618      |
| Arsenic      | <b>782</b> (100)    |            | 7010   |              | 100       | KJK     | 01/08/15 15:00 | 100        | 20  | CA50618      |
| Cadmium      | <b>3.5</b> (2.0)    |            | 7010   |              | 20        | KJK     | 01/09/15 17:18 | 100        | 20  | CA50618      |
| Chromium     | <b>2.4</b> (2.0)    |            | 6010C  |              | 1         | KJK     | 01/06/15 18:05 | 100        | 20  | CA50618      |
| Chromium III | ND (10)             |            | 6010C  |              | 1         | EEM     | 01/06/15 18:05 | 1          | 1   | [CALC]       |
| Copper       | <b>29.8</b> (4.0)   |            | 6010C  |              | 1         | KJK     | 01/06/15 18:05 | 100        | 20  | CA50618      |
| Iron         | <b>47900</b> (20.0) |            | 6010C  |              | 1         | KJK     | 01/23/15 20:39 | 100        | 20  | CA50618      |
| Lead         | ND (8.0)            |            | 7010   |              | 20        | KJK     | 01/10/15 0:08  | 100        | 20  | CA50618      |
| Mercury      | ND (0.20)           |            | 7470A  |              | 1         | BJV     | 01/06/15 14:05 | 20         | 40  | CA50505      |
| Nickel       | <b>21.7</b> (4.0)   |            | 6010C  |              | 1         | KJK     | 01/06/15 18:05 | 100        | 20  | CA50618      |
| Selenium     | ND (40.0)           |            | 7010   |              | 20        | KJK     | 01/10/15 2:11  | 100        | 20  | CA50618      |
| Silver       | ND (0.2)            |            | 7010   |              | 1         | KJK     | 01/06/15 17:33 | 100        | 20  | CA50618      |
| Zinc         | <b>1130</b> (10.0)  |            | 6010C  |              | 1         | KJK     | 01/06/15 18:05 | 100        | 20  | CA50618      |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: [CALC]

## **Total Metals Aqueous**

 Analyte Hardness
 Results (MRL)
 MDL 6010B
 Method 6010B
 Limit 5
 MDL MILE
 Analyst Analyzed MILE
 IV MILE
 F/V ICAL COLUMN

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: TAJ

Prepared: 1/6/15 10:20 Cleanup Method: 3665A

## 8082A Polychlorinated Biphenyls (PCB)

| <u>Analyte</u>                       | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|--------------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| Aroclor 1016                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1221                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1232                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1242                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1248                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1254                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1260                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1262                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
| Aroclor 1268                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 13:49  |                 | CA50525      |
|                                      |               | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
| Surrogate: Decachlorobiphenyl        |               | 70 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Decachlorobiphenyl [2C]   |               | 56 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Tetrachloro-m-xylene      |               | 53 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Tetrachloro-m-xylene [2C] |               | 48 %       |           | 30-150       |           |                 |                 |              |

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

## 8260B Volatile Organic Compounds

| Analyte 1,1,1-Trichloroethane    | Results (MRL) ND (1.0) | <b>MDL</b> | Method<br>8260B | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 01/05/15 22:00 | Sequence<br>CYA0036 | Batch<br>CA50539 |
|----------------------------------|------------------------|------------|-----------------|--------------|------------------|--------------------------------|---------------------|------------------|
| 1,1,2-Trichloroethane            | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| 1,1-Dichloroethane               | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| 1,1-Dichloroethene               | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| 1,2-Dichlorobenzene              | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| 1,2-Dichloroethane               | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| 1,3-Dichlorobenzene              | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| 1,4-Dichlorobenzene              | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Acetone                          | ND (10.0)              |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Benzene                          | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Carbon Tetrachloride             | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| cis-1,2-Dichloroethene           | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Ethylbenzene                     | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Methyl tert-Butyl Ether          | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Methylene Chloride               | ND (2.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Naphthalene                      | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Tertiary-amyl methyl ether       | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Tertiary-butyl Alcohol           | ND (25.0)              |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Tetrachloroethene                | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Toluene                          | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Trichloroethene                  | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Vinyl Chloride                   | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Xylene O                         | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
| Xylene P,M                       | ND (2.0)               |            | 8260B           |              | 1                | 01/05/15 22:00                 | CYA0036             | CA50539          |
|                                  | 9                      | 6Recovery  | Qualifier       | Limits       |                  |                                |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                        | 102 %      |                 | 70-130       |                  |                                |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                        | 85 %       |                 | 70-130       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

98 %

Fax: 401-461-4486

http://www.ESSLaboratory.com

70-130

70-130



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/7/15 19:05

## 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte 1,4-Dioxane       | Results (MRL)<br>ND (0.2) | MDL      | Method<br>8270D | <u>Limit</u> | <b><u>DF</u></b> 1 | <u>Analyzed</u> 01/08/15 23:27 | Sequence<br>CYA0083 | Batch<br>CA50710 |
|---------------------------|---------------------------|----------|-----------------|--------------|--------------------|--------------------------------|---------------------|------------------|
|                           | %                         | Recovery | Qualifier       | Limits       |                    |                                |                     | -                |
| Surrogate: 1,4-Dioxane-d8 |                           | 78 %     |                 | 15-115       |                    |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Fax: 401-461-4486 Quality

http://www.ESSLaboratory.com

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/6/15 13:02

## 8270C(SIM) Polynuclear Aromatic Hydrocarbons

| Analyte                    | Results (MRL)      | MDL Method          | <u>Limit</u> <u>DF</u> | <b>Analyzed</b> | Sequence | <b>Batch</b> |
|----------------------------|--------------------|---------------------|------------------------|-----------------|----------|--------------|
| Acenaphthene               | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Acenaphthylene             | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Anthracene                 | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Benzo(a)anthracene         | ND (0.05)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Benzo(a)pyrene             | ND (0.05)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Benzo(b)fluoranthene       | ND (0.05)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Benzo(g,h,i)perylene       | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Benzo(k)fluoranthene       | ND (0.05)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| bis(2-Ethylhexyl)phthalate | ND (2.34)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Butylbenzylphthalate       | ND (2.34)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Chrysene                   | ND (0.05)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Dibenzo(a,h)Anthracene     | ND (0.05)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Diethylphthalate           | ND (2.34)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Dimethylphthalate          | ND (2.34)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Di-n-butylphthalate        | ND (2.34)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Di-n-octylphthalate        | ND (2.34)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Fluoranthene               | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Fluorene                   | <b>0.21</b> (0.19) | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Indeno(1,2,3-cd)Pyrene     | ND (0.05)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Naphthalene                | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Pentachlorophenol          | ND (0.84)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Phenanthrene               | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
| Pyrene                     | ND (0.19)          | 8270D SIM           | 1                      | 01/07/15 19:48  | CYA0050  | CA50616      |
|                            | 9/                 | SRecovery Qualifier | Limits                 |                 |          |              |

|                                   | %Recovery | Qualifier | LIIIILS |
|-----------------------------------|-----------|-----------|---------|
| Surrogate: 1,2-Dichlorobenzene-d4 | 53 %      |           | 30-130  |
| Surrogate: 2,4,6-Tribromophenol   | 86 %      |           | 15-110  |
| Surrogate: 2-Fluorobiphenyl       | 83 %      |           | 30-130  |
| Surrogate: Nitrobenzene-d5        | 76 %      |           | 30-130  |
| Surrogate: p-Terphenyl-d14        | 97 %      |           | 30-130  |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

## **Classical Chemistry**

| <b>Analyte</b>                | Results (MRL)         | <b>MDL</b> | Method     | <u>Limit</u> | <u>DF</u> | Analyst |                | <u>Units</u> | <b>Batch</b> |
|-------------------------------|-----------------------|------------|------------|--------------|-----------|---------|----------------|--------------|--------------|
| Alkalinity as CaCO3           | ND (2)                |            | 2320B      |              | 1         | MJV     | 01/06/15 10:39 | mg/L         | CA50630      |
| Chemical Oxygen Demand        | <b>25</b> (10)        |            | 5220D      |              | 1         | EEM     | 01/07/15 11:30 | mg/L         | CA50726      |
| Chloride                      | <b>191</b> (25.0)     |            | 300.0      |              | 50        | JLK     | 01/07/15 19:19 | mg/L         | CA50730      |
| Dissolved Ferric Iron         | ND (5000)             |            | 6010C      |              | 100       | JP      | 01/06/15 18:42 | ug/L         | [CALC]       |
| Dissolved Ferrous Iron        | <b>H 59500</b> (5000) |            | НАСН       |              | 100       | EEM     | 01/05/15 17:35 | ug/L         | CA50537      |
| Ferric Iron                   | ND (5020)             |            | НАСН       |              | 100       | KJK     | 01/23/15 20:39 | ug/L         | [CALC]       |
| Ferrous Iron                  | <b>H 60100</b> (5000) |            | НАСН       |              | 100       | EEM     | 01/05/15 17:35 | ug/L         | CA50537      |
| Free Cyanide                  | ND (5)                |            | 9014       |              | 1         | EEM     | 01/09/15 16:35 | ug/L         | CA50926      |
| Hexavalent Chromium           | <b>H</b> ND (10)      |            | 7196A      |              | 1         | EEM     | 01/05/15 17:05 | ug/L         | CA50510      |
| Nitrate as N                  | <b>H</b> ND (0.030)   |            | 353.2      |              | 1         | JLK     | 01/06/15 10:10 | mg/L         | [CALC]       |
| Nitrite as N                  | <b>H</b> ND (0.010)   |            | 353.2      |              | 1         | JLK     | 01/06/15 9:30  | mg/L         | CA50601      |
| Phenols                       | ND (100)              |            | 420.1      |              | 1         | EEM     | 01/07/15 13:30 | ug/L         | CA50729      |
| Sulfate                       | <b>285</b> (125)      |            | 9038       |              | 25        | JLK     | 01/09/15 12:20 | mg/L         | CA50923      |
| Sulfide                       | ND (0.05)             | 0.01       | 9030A      |              | 1         | JLK     | 01/08/15 12:50 | mg/L         | CA50830      |
| Total Cyanide (LL)            | ND (5.0)              |            | 4500 CN CE |              | 1         | JLK     | 01/09/15 11:37 | ug/L         | CA50920      |
| <b>Total Dissolved Solids</b> | <b>1440</b> (10)      |            | 2540C      |              | 1         | JLK     | 01/06/15 16:18 | mg/L         | CA50606      |
| Total Petroleum Hydrocarbon   | ND (5)                |            | 1664A      |              | 1         | CRR     | 01/06/15 11:29 | mg/L         | CA50626      |
| Total Residual Chlorine       | ND (10)               |            | 4500-Cl E  |              | 1         | EEM     | 01/05/15 17:10 | ug/L         | CA50538      |
| Total Suspended Solids        | ND (5)                |            | 2540D      |              | 1         | JLK     | 01/06/15 16:03 | mg/L         | CA50605      |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-003 Date Sampled: 01/02/15 10:18

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: ML

Prepared: 1/6/15 14:45

## 8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

| Analyte 1,2-Dibromoethane    | Results (MRL)<br>ND (0.015) | <u>MDL</u> | <u>Method</u><br>8011 | <u>Limit</u> | <b><u>DF</u></b> | Analyst<br>ML | <b>Analyzed</b> 01/06/15 16:54 | <u>Sequence</u> | Batch<br>CA50632 |
|------------------------------|-----------------------------|------------|-----------------------|--------------|------------------|---------------|--------------------------------|-----------------|------------------|
|                              | %                           | Recovery   | Qualifier             | Limits       |                  |               |                                |                 |                  |
| Surrogate: Pentachloroethane |                             | 89 %       |                       | 30-150       |                  |               |                                |                 |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Quality Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Dissolved Metals**

| <u>Analyte</u> | Results (MRL)      | <b>MDL</b> | Method | <u>Limit</u> | DF | Analyst | Analyzed       | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|--------------------|------------|--------|--------------|----|---------|----------------|------------|-----|--------------|
| Arsenic        | ND (5.0)           | ·          | 7010   |              | 5  | KJK     | 01/13/15 19:57 | 100        | 20  | CA50618      |
| Iron           | <b>1760</b> (20.0) |            | 6010C  |              | 1  | JP      | 01/06/15 18:48 | 100        | 20  | CA50618      |
| Lead           | ND (12.0)          |            | 6010C  |              | 3  | KJK     | 01/07/15 16:49 | 100        | 20  | CA50618      |
| Nickel         | ND (10.0)          |            | 6010C  |              | 1  | KJK     | 01/06/15 18:48 | 100        | 20  | CA50618      |
| Zinc           | <b>17.9</b> (10.0) |            | 6010C  |              | 1  | KJK     | 01/06/15 18:48 | 100        | 20  | CA50618      |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Total Metals**

| <u>Analyte</u> | Results (MRL)      | MDL Method | <u>d Limit D</u> | F Analys | t Analyzed     | <u>I/V</u> | F/V | Batch   |
|----------------|--------------------|------------|------------------|----------|----------------|------------|-----|---------|
| Antimony       | ND (1.0)           | 7010       |                  | KJK      | 01/07/15 0:28  | 100        | 20  | CA50618 |
| Arsenic        | ND (20.0)          | 7010       | 2                | 0 KJK    | 01/08/15 15:06 | 100        | 20  | CA50618 |
| Cadmium        | ND (2.0)           | 7010       | 2                | 0 KJK    | 01/09/15 17:13 | 100        | 20  | CA50618 |
| Chromium       | <b>2.7</b> (2.0)   | 6010C      | 1                | KJK      | 01/06/15 18:11 | 100        | 20  | CA50618 |
| Chromium III   | ND (10)            | 6010C      | ]                | EEM      | 01/06/15 18:11 | 1          | 1   | [CALC]  |
| Copper         | ND (4.0)           | 6010C      | 1                | KJK      | 01/06/15 18:11 | 100        | 20  | CA50618 |
| Iron           | <b>3980</b> (40.0) | 6010C      | 2                | 2 KJK    | 01/23/15 20:45 | 100        | 20  | CA50618 |
| Lead           | ND (8.0)           | 7010       | 2                | 0 KJK    | 01/10/15 0:13  | 100        | 20  | CA50618 |
| Mercury        | ND (0.20)          | 7470A      | 1                | BJV      | 01/06/15 14:07 | 20         | 40  | CA50505 |
| Nickel         | <b>9.6</b> (4.0)   | 6010C      | ]                | KJK      | 01/06/15 18:11 | 100        | 20  | CA50618 |
| Selenium       | ND (40.0)          | 7010       | 2                | 0 KJK    | 01/10/15 2:22  | 100        | 20  | CA50618 |
| Silver         | ND (1.0)           | 7010       | 4                | KJK      | 01/06/15 19:00 | 100        | 20  | CA50618 |
| Zinc           | <b>25.6</b> (10.0) | 6010C      | 1                | KJK      | 01/06/15 18:11 | 100        | 20  | CA50618 |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: [CALC]

#### **Total Metals Aqueous**

 Analyte Hardness
 Results (MRL) 3810 (2.6)
 MDL 6010B
 Method 6010B
 Limit 10 Elimit 10 E

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: TAJ

Prepared: 1/6/15 10:20 Cleanup Method: 3665A

## 8082A Polychlorinated Biphenyls (PCB)

| <u>Analyte</u>                       | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|--------------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| Aroclor 1016                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1221                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1232                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1242                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1248                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1254                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1260                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1262                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
| Aroclor 1268                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:08  |                 | CA50525      |
|                                      |               | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
| Surrogate: Decachlorobiphenyl        |               | 87 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Decachlorobiphenyl [2C]   |               | 90 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Tetrachloro-m-xylene      |               | 44 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Tetrachloro-m-xylene [2C] |               | 42 %       |           | 30-150       |           |                 |                 |              |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

## 8260B Volatile Organic Compounds

| Analyte 1,1,1-Trichloroethane    | Results (MRL) ND (1.0) | <b>MDL</b> | <b>Method</b><br>8260B | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 01/05/15 22:33 | Sequence<br>CYA0036 | Batch<br>CA50539 |
|----------------------------------|------------------------|------------|------------------------|--------------|------------------|--------------------------------|---------------------|------------------|
| 1,1,2-Trichloroethane            | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| 1,1-Dichloroethane               | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| 1,1-Dichloroethene               | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| 1,2-Dichlorobenzene              | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| 1,2-Dichloroethane               | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| 1,3-Dichlorobenzene              | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| 1,4-Dichlorobenzene              | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Acetone                          | ND (10.0)              |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Benzene                          | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Carbon Tetrachloride             | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| cis-1,2-Dichloroethene           | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Ethylbenzene                     | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Methyl tert-Butyl Ether          | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Methylene Chloride               | ND (2.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Naphthalene                      | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Tertiary-amyl methyl ether       | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Tertiary-butyl Alcohol           | ND (25.0)              |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Tetrachloroethene                | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Toluene                          | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Trichloroethene                  | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Vinyl Chloride                   | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Xylene O                         | ND (1.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
| Xylene P,M                       | ND (2.0)               |            | 8260B                  |              | 1                | 01/05/15 22:33                 | CYA0036             | CA50539          |
|                                  | 9                      | 6Recovery  | Qualifier              | Limits       |                  |                                |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                        | 97 %       |                        | 70-130       |                  |                                |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                        | 83 %       |                        | 70-130       |                  |                                |                     |                  |
| Surrogate: Dibromofluoromethane  |                        | 95 %       |                        | 70-130       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

101 %

Fax: 401-461-4486 • Service

70-130

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/7/15 19:05

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | <b>Results (MRL) 0.3</b> (0.2) | MDL      | Method<br>8270D | <u>Limit</u> | <b><u>DF</u></b> 1 | <b>Analyzed</b> 01/09/15 0:17 | Sequence<br>CYA0083 | Batch<br>CA50710 |
|---------------------------|--------------------------------|----------|-----------------|--------------|--------------------|-------------------------------|---------------------|------------------|
|                           | %/                             | Recovery | Qualifier       | Limits       |                    |                               |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                | 85 %     |                 | 15-115       |                    |                               |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/6/15 13:02

### 8270C(SIM) Polynuclear Aromatic Hydrocarbons

| <b>Analyte</b>                    | Results (MRL) | <b>MDL</b> | Method    | Limit  | <u>DF</u> | <b>Analyzed</b> | Sequence | <b>Batch</b> |
|-----------------------------------|---------------|------------|-----------|--------|-----------|-----------------|----------|--------------|
| Acenaphthene                      | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Acenaphthylene                    | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Anthracene                        | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Benzo(a)anthracene                | ND (0.05)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Benzo(a)pyrene                    | ND (0.05)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Benzo(b)fluoranthene              | ND (0.05)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Benzo(g,h,i)perylene              | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Benzo(k)fluoranthene              | ND (0.05)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| bis(2-Ethylhexyl)phthalate        | ND (2.34)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Butylbenzylphthalate              | ND (2.34)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Chrysene                          | ND (0.05)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Dibenzo(a,h)Anthracene            | ND (0.05)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Diethylphthalate                  | ND (2.34)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Dimethylphthalate                 | ND (2.34)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Di-n-butylphthalate               | ND (2.34)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Di-n-octylphthalate               | ND (2.34)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Fluoranthene                      | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Fluorene                          | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Indeno(1,2,3-cd)Pyrene            | ND (0.05)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Naphthalene                       | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Pentachlorophenol                 | ND (0.84)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Phenanthrene                      | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
| Pyrene                            | ND (0.19)     |            | 8270D SIM |        | 1         | 01/07/15 20:37  | CYA0050  | CA50616      |
|                                   |               | %Recovery  | Qualifier | Limits |           |                 |          |              |
| Surrogate: 1,2-Dichlorobenzene-d4 |               | 45 %       |           | 30-130 |           |                 |          |              |

|                                   | TORCCOVERY | Qualifici | Limics |
|-----------------------------------|------------|-----------|--------|
| Surrogate: 1,2-Dichlorobenzene-d4 | 45 %       |           | 30-130 |
| Surrogate: 2,4,6-Tribromophenol   | 68 %       |           | 15-110 |
| Surrogate: 2-Fluorobiphenyl       | 74 %       |           | 30-130 |
| Surrogate: Nitrobenzene-d5        | 62 %       |           | 30-130 |
| Surrogate: p-Terphenyl-d14        | 86 %       |           | 30-130 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

## **Classical Chemistry**

| Analyte Alkalinity as CaCO3   | <b>Results (MRL) 340</b> (50) | <u>MDL</u> | Method<br>2320B | <u>Limit</u> | <u><b>DF</b></u> | Analysi<br>MJV | Analyzed 01/06/15 10:39 | Units<br>mg/L | Batch<br>CA50630 |
|-------------------------------|-------------------------------|------------|-----------------|--------------|------------------|----------------|-------------------------|---------------|------------------|
| Chemical Oxygen Demand        | <b>567</b> (100)              |            | 5220D           |              | 1                | EEM            | 01/07/15 11:30          | mg/L          | CA50725          |
| Chloride                      | <b>7260</b> (1000)            |            | 300.0           |              | 2000             | JLK            | 01/10/15 15:24          | mg/L          | CA51006          |
| Dissolved Ferric Iron         | ND (1250)                     |            | 6010C           |              | 25               | JP             | 01/06/15 18:48          | ug/L          | [CALC]           |
| Dissolved Ferrous Iron        | <b>H 4550</b> (1250)          |            | НАСН            |              | 25               | EEM            | 01/05/15 17:35          | ug/L          | CA50537          |
| Ferric Iron                   | ND (1290)                     |            | НАСН            |              | 25               | KJK            | 01/23/15 20:45          | ug/L          | [CALC]           |
| Ferrous Iron                  | <b>H 4770</b> (1250)          |            | HACH            |              | 25               | EEM            | 01/05/15 17:35          | ug/L          | CA50537          |
| Free Cyanide                  | ND (5)                        |            | 9014            |              | 1                | EEM            | 01/09/15 16:35          | ug/L          | CA50926          |
| Hexavalent Chromium           | <b>H</b> ND (10)              |            | 7196A           |              | 1                | EEM            | 01/05/15 17:05          | ug/L          | CA50510          |
| Nitrate as N                  | <b>H</b> ND (0.030)           |            | 353.2           |              | 1                | JLK            | 01/06/15 10:11          | mg/L          | [CALC]           |
| Nitrite as N                  | <b>H 0.013</b> (0.010)        |            | 353.2           |              | 1                | JLK            | 01/06/15 9:31           | mg/L          | CA50601          |
| Phenols                       | ND (100)                      |            | 420.1           |              | 1                | EEM            | 01/07/15 13:30          | ug/L          | CA50729          |
| Sulfate                       | <b>1050</b> (250)             |            | 9038            |              | 50               | JLK            | 01/09/15 12:20          | mg/L          | CA50923          |
| Sulfide                       | ND (0.05)                     | 0.01       | 9030A           |              | 1                | JLK            | 01/08/15 12:50          | mg/L          | CA50830          |
| Total Cyanide (LL)            | <b>109</b> (5.0)              |            | 4500 CN CE      |              | 1                | JLK            | 01/09/15 11:37          | ug/L          | CA50920          |
| <b>Total Dissolved Solids</b> | <b>8760</b> (10)              |            | 2540C           |              | 1                | JLK            | 01/06/15 16:18          | mg/L          | CA50606          |
| Total Petroleum Hydrocarbon   | ND (5)                        |            | 1664A           |              | 1                | CRR            | 01/06/15 11:29          | mg/L          | CA50626          |
| Total Residual Chlorine       | ND (10)                       |            | 4500-Cl E       |              | 1                | EEM            | 01/05/15 17:10          | ug/L          | CA50538          |
| <b>Total Suspended Solids</b> | <b>18</b> (5)                 |            | 2540D           |              | 1                | JLK            | 01/06/15 16:03          | mg/L          | CA50605          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-005 Date Sampled: 01/02/15 13:40

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: ML

Prepared: 1/6/15 14:45

### 8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

| Analyte 1,2-Dibromoethane    | Results (MRL)<br>ND (0.015) | <u>MDL</u> | <u>Method</u><br>8011 | <u>Limit</u> | <u><b>DF</b></u> | Analyst<br>ML | <b>Analyzed</b> 01/06/15 17:32 | <u>Sequence</u> | Batch<br>CA50632 |
|------------------------------|-----------------------------|------------|-----------------------|--------------|------------------|---------------|--------------------------------|-----------------|------------------|
|                              | 9/                          | 6Recovery  | Qualifier             | Limits       |                  |               |                                |                 |                  |
| Surrogate: Pentachloroethane |                             | 91 %       |                       | 30-150       |                  |               |                                |                 |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Dissolved Metals**

| Analyte<br>Arsenic | Results (MRL)<br>15.9 (5.0) | <u>MDL</u> | <u>Method</u><br>7010 | <u>Limit</u> | <u>DF</u> | Analyst<br>KJK | Analyzed 01/10/15 18:00 | $\frac{\mathbf{I/V}}{100}$ | $\frac{\mathbf{F/V}}{20}$ | Batch<br>CA50618 |
|--------------------|-----------------------------|------------|-----------------------|--------------|-----------|----------------|-------------------------|----------------------------|---------------------------|------------------|
| Iron               | <b>2000</b> (20.0)          |            | 6010C                 |              | 1         | JP             | 01/06/15 18:53          | 100                        | 20                        | CA50618          |
| Lead               | ND (12.0)                   |            | 6010C                 |              | 3         | KJK            | 01/07/15 16:55          | 100                        | 20                        | CA50618          |
| Nickel             | ND (10.0)                   |            | 6010C                 |              | 1         | KJK            | 01/06/15 18:53          | 100                        | 20                        | CA50618          |
| Zinc               | <b>15.7</b> (10.0)          |            | 6010C                 |              | 1         | KJK            | 01/06/15 18:53          | 100                        | 20                        | CA50618          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Total Metals**

| <u>Analyte</u> | Results (MRL)      | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst |                | I/V | F/V | <b>Batch</b> |
|----------------|--------------------|------------|--------|--------------|-----------|---------|----------------|-----|-----|--------------|
| Antimony       | ND (1.0)           |            | 7010   |              | 1         | KJK     | 01/07/15 0:33  | 100 | 20  | CA50618      |
| Arsenic        | <b>13.3</b> (5.0)  |            | 7010   |              | 5         | KJK     | 01/07/15 3:51  | 100 | 20  | CA50618      |
| Cadmium        | ND (0.5)           |            | 7010   |              | 5         | KJK     | 01/09/15 17:41 | 100 | 20  | CA50618      |
| Chromium       | ND (2.0)           |            | 6010C  |              | 1         | KJK     | 01/06/15 18:16 | 100 | 20  | CA50618      |
| Chromium III   | ND (10)            |            | 6010C  |              | 1         | EEM     | 01/06/15 18:16 | 1   | 1   | [CALC]       |
| Copper         | ND (4.0)           |            | 6010C  |              | 1         | KJK     | 01/06/15 18:16 | 100 | 20  | CA50618      |
| Iron           | <b>3080</b> (20.0) |            | 6010C  |              | 1         | KJK     | 01/23/15 20:51 | 100 | 20  | CA50618      |
| Lead           | ND (8.0)           |            | 7010   |              | 20        | KJK     | 01/10/15 0:19  | 100 | 20  | CA50618      |
| Mercury        | ND (0.20)          |            | 7470A  |              | 1         | BJV     | 01/06/15 14:14 | 20  | 40  | CA50505      |
| Nickel         | ND (4.0)           |            | 6010C  |              | 1         | KJK     | 01/06/15 18:16 | 100 | 20  | CA50618      |
| Selenium       | ND (40.0)          |            | 7010   |              | 20        | KJK     | 01/10/15 2:28  | 100 | 20  | CA50618      |
| Silver         | ND (0.4)           |            | 7010   |              | 2         | KJK     | 01/06/15 18:54 | 100 | 20  | CA50618      |
| Zinc           | <b>15.9</b> (10.0) |            | 6010C  |              | 1         | KJK     | 01/06/15 18:16 | 100 | 20  | CA50618      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: mg/L

Extraction Method: [CALC]

### **Total Metals Aqueous**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: ug/L Analyst: TAJ

Prepared: 1/6/15 10:20 Cleanup Method: 3665A

### 8082A Polychlorinated Biphenyls (PCB)

| <u>Analyte</u>                       | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | Sequence | <b>Batch</b> |
|--------------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|----------|--------------|
| Aroclor 1016                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1221                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1232                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1242                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1248                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1254                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1260                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1262                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
| Aroclor 1268                         | ND (0.09)     |            | 8082A     |              | 1         | 01/06/15 14:27  |          | CA50525      |
|                                      |               | %Recovery  | Qualifier | Limits       |           |                 |          |              |
| Surrogate: Decachlorobiphenyl        |               | 96 %       |           | 30-150       |           |                 |          |              |
| Surrogate: Decachlorobiphenyl [2C]   |               | 98 %       |           | 30-150       |           |                 |          |              |
| Surrogate: Tetrachloro-m-xylene      |               | 60 %       |           | 30-150       |           |                 |          |              |
| Surrogate: Tetrachloro-m-xylene [2C] |               | 63 %       |           | 30-150       |           |                 |          |              |

Quality



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

### 8260B Volatile Organic Compounds

| Analyte 1,1,1-Trichloroethane    | Results (MRL) ND (1.0) | <b>MDL</b> | Method<br>8260B | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 01/05/15 23:05 | Sequence<br>CYA0036 | Batch<br>CA50539 |
|----------------------------------|------------------------|------------|-----------------|--------------|------------------|--------------------------------|---------------------|------------------|
| 1,1,2-Trichloroethane            | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| 1,1-Dichloroethane               | ND (1.0)<br>ND (1.0)   |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| 1,1-Dichloroethene               | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| 1,2-Dichlorobenzene              | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| 1,2-Dichloroethane               | <b>11.0</b> (1.0)      |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| 1,3-Dichlorobenzene              | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| 1,4-Dichlorobenzene              | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Acetone                          | ND (10.0)              |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Benzene                          | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Carbon Tetrachloride             | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| cis-1,2-Dichloroethene           | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Ethylbenzene                     | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Methyl tert-Butyl Ether          | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Methylene Chloride               | ND (2.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Naphthalene                      | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Tertiary-amyl methyl ether       | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Tertiary-butyl Alcohol           | ND (25.0)              |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Tetrachloroethene                | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Toluene                          | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Trichloroethene                  | <b>4.0</b> (1.0)       |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Vinyl Chloride                   | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Xylene O                         | ND (1.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
| Xylene P,M                       | ND (2.0)               |            | 8260B           |              | 1                | 01/05/15 23:05                 | CYA0036             | CA50539          |
|                                  | 9                      | 6Recovery  | Qualifier       | Limits       |                  |                                |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                        | 103 %      |                 | 70-130       |                  |                                |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                        | 83 %       |                 | 70-130       |                  |                                |                     |                  |
| Surrogate: Dibromofluoromethane  |                        | 96 %       |                 | 70-130       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

70-130

http://www.ESSLaboratory.com

98 %



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/7/15 19:05

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | <b>Results (MRL)</b> 1.1 (0.2) | MDL      | Method<br>8270D | Limit  | <b><u>DF</u></b> 1 | <b><u>Analyzed</u></b> 01/09/15 1:06 | Sequence<br>CYA0083 | Batch<br>CA50710 |
|---------------------------|--------------------------------|----------|-----------------|--------|--------------------|--------------------------------------|---------------------|------------------|
|                           | 9/                             | Recovery | Qualifier       | Limits |                    |                                      |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                | 87 %     |                 | 15-115 |                    |                                      |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/6/15 13:02

### 8270C(SIM) Polynuclear Aromatic Hydrocarbons

| Analyte Acenaphthene       | Results (MRL) ND (0.19) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | Analyzed<br>01/07/15 21:27 | Sequence<br>CYA0050 | Batch<br>CA50616 |
|----------------------------|-------------------------|------------|---------------------|--------------|------------------|----------------------------|---------------------|------------------|
| Acenaphthylene             | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Anthracene                 | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Benzo(a)anthracene         | ND (0.05)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Benzo(a)pyrene             | ND (0.05)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Benzo(b)fluoranthene       | ND (0.05)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Benzo(g,h,i)perylene       | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Benzo(k)fluoranthene       | ND (0.05)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| bis(2-Ethylhexyl)phthalate | ND (2.34)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Butylbenzylphthalate       | ND (2.34)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Chrysene                   | ND (0.05)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Dibenzo(a,h)Anthracene     | ND (0.05)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Diethylphthalate           | ND (2.34)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Dimethylphthalate          | ND (2.34)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Di-n-butylphthalate        | ND (2.34)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Di-n-octylphthalate        | ND (2.34)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Fluoranthene               | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Fluorene                   | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Indeno(1,2,3-cd)Pyrene     | ND (0.05)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Naphthalene                | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Pentachlorophenol          | ND (0.84)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Phenanthrene               | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
| Pyrene                     | ND (0.19)               |            | 8270D SIM           |              | 1                | 01/07/15 21:27             | CYA0050             | CA50616          |
|                            |                         | %Recovery  | Qualifier           | Limits       |                  |                            |                     |                  |

|                                   | 70Recovery | Qualifier | LIIIICS |
|-----------------------------------|------------|-----------|---------|
| Surrogate: 1,2-Dichlorobenzene-d4 | 51 %       |           | 30-130  |
| Surrogate: 2,4,6-Tribromophenol   | 79 %       |           | 15-110  |
| Surrogate: 2-Fluorobiphenyl       | 83 %       |           | 30-130  |
| Surrogate: Nitrobenzene-d5        | 78 %       |           | 30-130  |
| Surrogate: p-Terphenyl-d14        | 96 %       |           | 30-130  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

## **Classical Chemistry**

| <u>Analyte</u>                | Results (MRL)       | <b>MDL</b> | Method     | <u>Limit</u> | <u>DF</u> | Analyst | <b>Analyzed</b> | <u>Units</u> | <b>Batch</b> |
|-------------------------------|---------------------|------------|------------|--------------|-----------|---------|-----------------|--------------|--------------|
| Alkalinity as CaCO3           | <b>420</b> (50)     |            | 2320B      |              | 1         | MJV     | 01/06/15 10:39  | mg/L         | CA50630      |
| Chemical Oxygen Demand        | <b>146</b> (100)    |            | 5220D      |              | 1         | EEM     | 01/07/15 11:30  | mg/L         | CA50725      |
| Chloride                      | <b>6000</b> (1000)  |            | 300.0      |              | 2000      | JLK     | 01/10/15 15:40  | mg/L         | CA51006      |
| Dissolved Ferric Iron         | ND (250)            |            | 6010C      |              | 5         | JP      | 01/06/15 18:53  | ug/L         | [CALC]       |
| Dissolved Ferrous Iron        | <b>H 2730</b> (250) |            | HACH       |              | 5         | EEM     | 01/05/15 17:35  | ug/L         | CA50537      |
| Ferric Iron                   | <b>326</b> (270)    |            | HACH       |              | 5         | KJK     | 01/23/15 20:51  | ug/L         | [CALC]       |
| Ferrous Iron                  | <b>H 2760</b> (250) |            | HACH       |              | 5         | EEM     | 01/05/15 17:35  | ug/L         | CA50537      |
| Free Cyanide                  | ND (5)              |            | 9014       |              | 1         | EEM     | 01/09/15 16:35  | ug/L         | CA50926      |
| Hexavalent Chromium           | <b>H</b> ND (10)    |            | 7196A      |              | 1         | EEM     | 01/05/15 17:05  | ug/L         | CA50510      |
| Nitrate as N                  | <b>H</b> ND (0.030) |            | 353.2      |              | 1         | JLK     | 01/06/15 10:12  | mg/L         | [CALC]       |
| Nitrite as N                  | <b>H</b> ND (0.010) |            | 353.2      |              | 1         | JLK     | 01/06/15 9:32   | mg/L         | CA50601      |
| Phenols                       | ND (100)            |            | 420.1      |              | 1         | EEM     | 01/07/15 13:30  | ug/L         | CA50729      |
| Sulfate                       | <b>936</b> (250)    |            | 9038       |              | 50        | JLK     | 01/09/15 12:20  | mg/L         | CA50923      |
| Sulfide                       | ND (0.05)           | 0.01       | 9030A      |              | 1         | JLK     | 01/08/15 12:50  | mg/L         | CA50830      |
| Total Cyanide (LL)            | ND (5.0)            |            | 4500 CN CE |              | 1         | JLK     | 01/09/15 11:37  | ug/L         | CA50920      |
| Total Dissolved Solids        | <b>12500</b> (10)   |            | 2540C      |              | 1         | JLK     | 01/06/15 16:18  | mg/L         | CA50606      |
| Total Petroleum Hydrocarbon   | ND (5)              |            | 1664A      |              | 1         | CRR     | 01/06/15 11:29  | mg/L         | CA50626      |
| Total Residual Chlorine       | ND (10)             |            | 4500-Cl E  |              | 1         | EEM     | 01/05/15 17:10  | ug/L         | CA50538      |
| <b>Total Suspended Solids</b> | <b>28</b> (5)       |            | 2540D      |              | 1         | JLK     | 01/06/15 16:03  | mg/L         | CA50605      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-006 Date Sampled: 01/02/15 13:37

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-03

Sample Matrix: Ground Water

Units: ug/L Analyst: ML

Prepared: 1/6/15 14:45

### 8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

| Analyte 1,2-Dibromoethane    | Results (MRL)<br>ND (0.015) | <u>MDL</u> | <u>Method</u><br>8011 | Limit  | <u><b>DF</b></u> | Analyst<br>ML | <b>Analyzed</b> 01/06/15 18:09 | <b>Sequence</b> | Batch<br>CA50632 |
|------------------------------|-----------------------------|------------|-----------------------|--------|------------------|---------------|--------------------------------|-----------------|------------------|
|                              | %                           | Recovery   | Qualifier             | Limits |                  |               |                                |                 |                  |
| Surrogate: Pentachloroethane |                             | 90 %       |                       | 30-150 |                  |               |                                |                 |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality

Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-010 Date Sampled: 01/02/15 16:38

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-04

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Dissolved Metals**

| <u>Analyte</u> | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | DF | Analyst | <b>Analyzed</b> | I/V | F/V | Batch   |
|----------------|----------------------|------------|--------|--------------|----|---------|-----------------|-----|-----|---------|
| Arsenic        | <b>390</b> (10.0)    | · <u> </u> | 6010C  |              | 1  | KJK     | 01/06/15 18:59  | 100 | 20  | CA50618 |
| Iron           | <b>162000</b> (20.0) |            | 6010C  |              | 1  | JP      | 01/06/15 18:59  | 100 | 20  | CA50618 |
| Lead           | <b>7.3</b> (4.0)     |            | 6010C  |              | 1  | KJK     | 01/06/15 18:59  | 100 | 20  | CA50618 |
| Nickel         | <b>14.1</b> (10.0)   |            | 6010C  |              | 1  | KJK     | 01/06/15 18:59  | 100 | 20  | CA50618 |
| Zinc           | <b>422</b> (10.0)    |            | 6010C  |              | 1  | KJK     | 01/06/15 18:59  | 100 | 20  | CA50618 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-010 Date Sampled: 01/02/15 16:38

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-04

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Total Metals**

| <b>Analyte</b> | Results (MRL)        | MDL Method | <u>Limit</u> <u>DF</u> |     |                | <u>I/V</u> | <u>F/V</u> | <b>Batch</b> |
|----------------|----------------------|------------|------------------------|-----|----------------|------------|------------|--------------|
| Antimony       | ND (1.0)             | 7010       | 1                      | KJK | 01/07/15 0:51  | 100        | 20         | CA50618      |
| Arsenic        | <b>352</b> (100)     | 7010       | 100                    | KJK | 01/08/15 16:15 | 100        | 20         | CA50618      |
| Cadmium        | ND (1.0)             | 7010       | 10                     | KJK | 01/09/15 17:30 | 100        | 20         | CA50618      |
| Chromium       | <b>16.1</b> (2.0)    | 6010C      | 1                      | KJK | 01/06/15 18:22 | 100        | 20         | CA50618      |
| Chromium III   | <b>16</b> (10)       | 6010C      | 1                      | EEM | 01/06/15 18:22 | 1          | 1          | [CALC]       |
| Copper         | ND (4.0)             | 6010C      | 1                      | KJK | 01/06/15 18:22 | 100        | 20         | CA50618      |
| Iron           | <b>164000</b> (20.0) | 6010C      | 1                      | KJK | 01/23/15 21:18 | 100        | 20         | CA50618      |
| Lead           | <b>6.4</b> (4.0)     | 6010C      | 1                      | KJK | 01/06/15 18:22 | 100        | 20         | CA50618      |
| Mercury        | ND (0.20)            | 7470A      | 1                      | BJV | 01/06/15 14:16 | 20         | 40         | CA50505      |
| Nickel         | <b>11.6</b> (4.0)    | 6010C      | 1                      | KJK | 01/06/15 18:22 | 100        | 20         | CA50618      |
| Selenium       | ND (40.0)            | 7010       | 20                     | KJK | 01/10/15 2:34  | 100        | 20         | CA50618      |
| Silver         | ND (0.2)             | 7010       | 1                      | KJK | 01/06/15 18:31 | 100        | 20         | CA50618      |
| Zinc           | <b>301</b> (10.0)    | 6010C      | 1                      | KJK | 01/06/15 18:22 | 100        | 20         | CA50618      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-010 Date Sampled: 01/02/15 16:38

Percent Solids: N/A

ESS Laboratory Work Order: 1501022 ESS Laboratory Sample ID: 1501022-04

Sample Matrix: Ground Water

## **Classical Chemistry**

| Analyte                | Results (MRL)           | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst |                | <u>Units</u> | <b>Batch</b> |
|------------------------|-------------------------|------------|--------|--------------|-----------|---------|----------------|--------------|--------------|
| Dissolved Ferric Iron  | ND (12500)              |            | 6010C  |              | 250       | JP      | 01/06/15 18:59 | ug/L         | [CALC]       |
| Dissolved Ferrous Iron | <b>H 170000</b> (12500) |            | HACH   |              | 250       | EEM     | 01/05/15 17:35 | ug/L         | CA50537      |
| Ferric Iron            | ND (12500)              |            | HACH   |              | 250       | KJK     | 01/23/15 21:18 | ug/L         | [CALC]       |
| Ferrous Iron           | <b>H 170000</b> (12500) |            | HACH   |              | 250       | EEM     | 01/05/15 17:35 | ug/L         | CA50537      |
| Hexavalent Chromium    | <b>H</b> ND (10)        |            | 7196A  |              | 1         | EEM     | 01/05/15 17:05 | ug/L         | CA50510      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

|                             |             | Qualit      | ty Cont      | rol Da         | ıta              |               |                  |        |              |           |
|-----------------------------|-------------|-------------|--------------|----------------|------------------|---------------|------------------|--------|--------------|-----------|
| Analyte                     | Result      | MRL         | Units        | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits   | RPD    | RPD<br>Limit | Qualifier |
|                             |             | I           | Dissolved M  | etals          |                  |               |                  |        |              |           |
|                             |             |             |              |                |                  |               |                  |        |              |           |
| Batch CA50618 - 3005A/200.7 |             |             |              |                |                  |               |                  |        |              |           |
| Blank                       |             |             |              |                |                  |               |                  |        |              |           |
| Arsenic                     | ND          | 50.0        | ug/L         |                |                  |               |                  |        |              |           |
| Blank                       |             |             |              |                |                  |               |                  |        |              |           |
| Arsenic                     | ND          | 10.0        | ug/L         |                |                  |               |                  |        |              |           |
| Arsenic                     | ND          | 1.0         | ug/L         |                |                  |               |                  |        |              |           |
| Iron                        | ND          | 20.0        | ug/L         |                |                  |               |                  |        |              |           |
| Lead                        | ND          | 4.0         | ug/L         |                |                  |               |                  |        |              |           |
| Nickel                      | ND<br>ND    | 10.0        | ug/L         |                |                  |               |                  |        |              |           |
| Zinc                        | ND          | 10.0        | ug/L         |                |                  |               |                  |        |              |           |
| LCS                         |             |             |              |                |                  |               |                  |        |              |           |
| Arsenic                     | 449         | 100         | ug/L         | 500.0          |                  | 90            | 80-120           |        |              |           |
| Arsenic<br>-                | 460         | 50.0        | ug/L         | 500.0          |                  | 92            | 80-120           |        |              |           |
| Iron<br>                    | 2220        | 100         | ug/L         | 2500           |                  | 89            | 80-120           |        |              |           |
| Lead                        | 468         | 20.0        | ug/L         | 500.0          |                  | 94            | 80-120           |        |              |           |
| Nickel                      | 467         | 50.0        | ug/L         | 500.0          |                  | 93<br>94      | 80-120           |        |              |           |
| Zinc                        | 472         | 50.0        | ug/L         | 500.0          |                  | <del>74</del> | 80-120           |        |              |           |
| LCS Dup                     |             |             |              |                |                  |               |                  |        |              |           |
| Arsenic                     | 478         | 50.0        | ug/L         | 500.0          |                  | 96            | 80-120           | 4      | 20           |           |
| Arsenic                     | 464         | 100         | ug/L         | 500.0          |                  | 93            | 80-120           | 3<br>5 | 20           |           |
| Iron<br>Lead                | 2350<br>490 | 100<br>20.0 | ug/L<br>ug/L | 2500<br>500.0  |                  | 94<br>98      | 80-120<br>80-120 | 5      | 20<br>20     |           |
| Nickel                      | 486         | 50.0        | ug/L<br>ug/L | 500.0          |                  | 97            | 80-120           | 4      | 20           |           |
| Zinc                        | 493         | 50.0        | ug/L         | 500.0          |                  | 99            | 80-120           | 4      | 20           |           |
| ZIIIC                       | 155         | 30.0        |              |                |                  | 33            | 00 120           | •      | 20           |           |
|                             |             |             | Total Met    | ais            |                  |               |                  |        |              |           |
| Batch CA50505 - 245.1/7470A |             |             |              |                |                  |               |                  |        |              |           |
| Blank                       |             |             |              |                |                  |               |                  |        |              |           |
| Mercury                     | ND          | 0.20        | ug/L         |                |                  |               |                  |        |              |           |
| LCS                         |             |             |              |                |                  |               |                  |        |              |           |
| Mercury                     | 6.09        | 0.20        | ug/L         | 6.000          |                  | 102           | 80-120           |        |              |           |
| LCS Dup                     |             |             |              |                |                  |               |                  |        |              |           |
| Mercury                     | 6.05        | 0.20        | ug/L         | 6.000          |                  | 101           | 80-120           | 0.6    | 20           |           |
| Reference                   |             |             |              |                |                  |               |                  |        |              |           |
| Mercury                     | 5.32        | 0.20        | ug/L         | 6.000          |                  | 89            | 0-200            |        |              |           |
| Reference                   |             |             | -            |                |                  |               |                  |        |              |           |
| Mercury                     | 5.35        | 0.20        | ug/L         | 6.000          |                  | 89            | 0-200            |        |              |           |
| ·                           |             |             |              |                |                  | -             |                  |        |              |           |
| Reference<br>Mercury        | 5.48        | 0.20        | ug/L         | 6.000          |                  | 91            | 0-200            |        |              |           |
|                             | 5.10        | 0.20        | ug/ L        | 0.000          |                  | ,, <u>,</u>   | 0 200            |        |              |           |
| Reference                   |             |             |              |                |                  |               |                  |        |              |           |

5.41

Mercury

Blank

Batch CA50618 - 3005A/200.7

ug/L

0-200

0.20

6.000



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

| Marinary   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |        |      |            | Spike | Source | 0/5  | %REC   |     | RPD   |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|------|------------|-------|--------|------|--------|-----|-------|-----------|
| Mark Ack Ack Ack Ack Ack Ack Ack Ack Ack Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyte                     | Result | MRL  |            |       | Result | %REC | Limits | KPD | Limit | Qualifier |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |        |      | Total Meta | als   |        |      |        |     |       |           |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Batch CA50618 - 3005A/200.7 |        |      |            |       |        |      |        |     |       |           |
| Ameniny         ND         1.0         ugl.           Affaired         ND         1.0         ugl.           Affaired         ND         0.1         ugl.           Calcium         ND         0.0         ugl.           Calcium         ND         2.0         ugl.           Copper         ND         4.0         ugl.           Grown         ND         2.0         ugl.           Iron         ND         2.0         ugl.           Iron         ND         2.0         ugl.           Iron         ND         4.0         ugl.           Iron         ND         4.0         ugl.           Morena         ND         4.0         ugl.           Morena         ND         4.0         ugl.           Morena         ND         4.0         ugl.           Selenium         ND         2.0         ugl.           Selenium         ND         4.0         ugl.           Selenium         ND         4.0         ugl.         8.0         1.1         8.0         1.2         1.1         1.1         8.0         1.1         1.1         1.1         1.1         1.1 </th <th>Iron</th> <th>ND</th> <th>100</th> <th>ug/L</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iron                        | ND     | 100  | ug/L       |       |        |      |        |     |       |           |
| Aseenice         NO         1.0         ugl           Cadmian         NO         0.1         ugl           Cadmian         NO         0.0         ugl           Chomian         NO         2.0         ugl           Copper         NO         0.0         ugl           Iron         NO         2.0         ugl           Load         NO         2.0         ugl           Load         NO         4.0         ugl           Load         NO         4.0         ugl           More         NO         4.0         ugl           More         NO         4.0         ugl           More         NO         4.0         ugl           More         NO         4.0         ugl           Sere         NO         2.0         ugl         ugl           Anter         4.0         ugl         ugl         ugl           Sere <td>Blank</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blank                       |        |      |            |       |        |      |        |     |       |           |
| Cadinamin         NB         0.1         ugl.           Calcidum         NB         40.0         ugl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Antimony                    | ND     | 1.0  | ug/L       |       |        |      |        |     |       |           |
| Cacionamin         NO         40.0         ug/l           Chromitum         NO         2.0         ug/l           Componente         NO         4.0         ug/l           Iron         NO         20.0         ug/l           Iron         NO         20.0         ug/l           Lead         NO         4.0         ug/l           Lead         NO         4.0         ug/l           Used         NO         4.0         ug/l           Michael         NO         4.0         ug/l           Michael         NO         4.0         ug/l           Silve         NO         4.0         ug/l         service         service         service           Silve         NO         4.0         ug/l         50.0         114         91.20         service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                     | ND     | 1.0  | ug/L       |       |        |      |        |     |       |           |
| Commitment         ND         2.0         ug/l           Corpor         ND         4.0         ug/l           Unifor         ND         20.0         ug/l           Icon         ND         20.0         ug/l           Lead         ND         4.0         ug/l           Lead         ND         4.0         ug/l           Machage         ND         4.0         ug/l           Wicklad         ND         2.0         ug/l           Seenium         ND         2.0         ug/l           Selenium         ND         2.0         ug/l           Scherium         ND         2.0         ug/l           Sterium         ND         2.0         ug/l           Scherium         ND         2.0         ug/l         50.0         114         89-120           Total         MD         2.0         ug/l         50.0         114         89-120         12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cadmium                     | ND     | 0.1  | ug/L       |       |        |      |        |     |       |           |
| Copper         NO         4.0         ugl           Iron         NO         20.0         ugl           Lead         NO         4.0         ugl           Lead         NO         4.0         ugl           Magnesium         NO         4.0         ugl           Micked         NO         4.0         ugl           Stemum         NO         2.0         ugl           Stemum         NO         0.2         ugl           Stemum         NO         0.0         ugl         NO         1.1         NO         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calcium                     | ND     | 40.0 | ug/L       |       |        |      |        |     |       |           |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chromium                    | ND     | 2.0  | ug/L       |       |        |      |        |     |       |           |
| Iron ( ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Copper                      | ND     | 4.0  | ug/L       |       |        |      |        |     |       |           |
| Lead         ND         4.0         ug/L           Lead         ND         0.4         ug/L           Lead         ND         0.4         ug/L           Modes         ND         0.4         ug/L           NCed         ND         2.0         ug/L           Silver         ND         0.2         ug/L           Silver         ND         0.2         ug/L           Time         ND         0.2         ug/L         SUS         US           Time         ND         2.0         ug/L         50.0         114         80.12         US         US           Amenic         480         100         ug/L         50.0         98         80.12         US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Iron                        | ND     | 20.0 | ug/L       |       |        |      |        |     |       |           |
| lead         ND         0.4         ug/L           Magnesium         ND         4.0         ug/L           Skerlum         ND         4.0         ug/L           Skerlum         ND         2.0         ug/L           Sker         ND         0.2         ug/L           Zirc         ND         0.2         ug/L           External         ND         0.2         ug/L         Sternal         User to the sternal of the st                                                                                                                                                                                                                                                                                                                                                                                                   | Iron                        | ND     | 20.0 | ug/L       |       |        |      |        |     |       |           |
| Mongrasium         ND         40.0         ug/L         III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead                        | ND     | 4.0  | ug/L       |       |        |      |        |     |       |           |
| Nichele Niche Nich | Lead                        | ND     | 0.4  | ug/L       |       |        |      |        |     |       |           |
| Selenium         ND         2.0         ug/L           Silver         ND         0.2         ug/L           Zhr         ND         10.0         0.9         U           Certain           Name         Name           Artimony         572         100         ug/L         500.0         114         80-120         Selection           Artimony         572         100         ug/L         500.0         114         80-120         Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Magnesium                   | ND     | 40.0 | ug/L       |       |        |      |        |     |       |           |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nickel                      | ND     | 4.0  | ug/L       |       |        |      |        |     |       |           |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Selenium                    | ND     | 2.0  | ug/L       |       |        |      |        |     |       |           |
| Nationary   100   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114   114    | Silver                      | ND     | 0.2  | ug/L       |       |        |      |        |     |       |           |
| Antimony 572 100 ug/L 500.0 114 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zinc                        | ND     | 10.0 | ug/L       |       |        |      |        |     |       |           |
| Arsenic 489 100 ug/L 500 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-120 101 80-1 | LCS                         |        |      |            |       |        |      |        |     |       |           |
| Cadinium         253         250         ug/L         250.0         101         80-120         11         26-120         12         12         200         196         80-120         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antimony                    | 572    | 100  | ug/L       | 500.0 |        | 114  | 80-120 |     |       |           |
| Calcium         4780         200         ug/L         5000         96         80-120         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arsenic                     | 489    | 100  | ug/L       | 500.0 |        | 98   | 80-120 |     |       |           |
| Chromium         463         1.0.         ug/L         50.0.         93         80-120           Copper         469         20.0         ug/L         500.0         494         80-120           Iron         2220         100         ug/L         2500         89         80-120           Iron         2220         100         ug/L         2500         89         80-120           Lead         468         20.0         ug/L         500.0         49         80-120           Lead         508         40.0         ug/L         500.0         49         80-120           Lead         468         20.0         ug/L         500.0         49         80-120           Magnesium         4710         200         ug/L         500.0         49         80-120           Nickel         467         20.0         ug/L         500.0         49         80-120           Silver         227         100         ug/L         500.0         49         80-120           Silver         227         100         ug/L         500.0         49         80-120           Extensive         227         100         ug/L         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cadmium                     | 253    | 250  | ug/L       | 250.0 |        | 101  | 80-120 |     |       |           |
| Copper         469         2.0.0         ug/L         500.0         94         80-120           Iron         2220         100         ug/L         2500         89         80-120           Iron         2220         100         ug/L         2500         89         80-120           Lead         468         20.0         ug/L         500.0         94         80-120           Lead         508         40.0         ug/L         500.0         94         80-120           Magnesium         4710         200         ug/L         500.0         94         80-120           Nickel         467         20.0         ug/L         500.0         93         80-120           Selenium         960         200         ug/L         500.0         93         80-120           Silver         227         100         ug/L         500.0         91         80-120           Eksterium         227         100         ug/L         500.0         91         80-120           Arsenic         581         100         ug/L         500.0         116         80-120         2         2         18-14           Calcium         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calcium                     | 4780   | 200  | ug/L       | 5000  |        | 96   | 80-120 |     |       |           |
| Tron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chromium                    | 463    | 10.0 | ug/L       | 500.0 |        | 93   | 80-120 |     |       |           |
| Iron         2220         100         ug/L         2500         89         80-120         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         49 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-20         48 8 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Copper                      | 469    | 20.0 | ug/L       | 500.0 |        | 94   | 80-120 |     |       |           |
| Lead         468         2.0.0         ug/L         500.0         94         80-120           Lead         508         40.0         ug/L         500.0         102         80-120           Magnesium         4710         200         ug/L         500.0         94         80-120           Nickel         467         20.0         ug/L         500.0         93         80-120           Selenium         960         200         ug/L         200.0         91         80-120           Silver         227         100         ug/L         500.0         91         80-120           Zinc         472         50.0         ug/L         500.0         91         80-120           Zinc         472         50.0         ug/L         500.0         94         80-120           Arsenic         581         100         ug/L         500.0         117         80-120         2         20           Cadmium         321         250         ug/L         250.0         128         80-120         24         20         8++           Calcium         4960         200         ug/L         500.0         99         80-120         4 <t< td=""><td>Iron</td><td>2220</td><td>100</td><td>ug/L</td><td>2500</td><td></td><td>89</td><td>80-120</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iron                        | 2220   | 100  | ug/L       | 2500  |        | 89   | 80-120 |     |       |           |
| Lead       508       40.0       ug/L       500.0       102       80-120         Magnesium       4710       200       ug/L       500.0       94       80-120         Nickel       467       20.0       ug/L       500.0       93       80-120         Selenium       960       200       ug/L       1000       96       80-120         Silver       227       100       ug/L       250.0       91       80-120         Zinc       472       50.0       ug/L       500.0       94       80-120         Extraction of the properties o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iron                        | 2220   | 100  | ug/L       | 2500  |        | 89   | 80-120 |     |       |           |
| Magnesium         4710         200         ug/L         5000         94         80-120           Nickel         467         20.0         ug/L         500.0         93         80-120           Selenium         960         200         ug/L         1000         96         80-120           Silver         227         100         ug/L         250.0         91         80-120           Zinc         472         50.0         ug/L         500.0         94         80-120           EXES Dup           Antimony         586         100         ug/L         500.0         117         80-120         2         20           Arsenic         581         100         ug/L         500.0         116         80-120         17         20           Cadmium         321         250         ug/L         250.0         128         80-120         24         20         8++           Calcium         4960         200         ug/L         500.0         99         80-120         4         20           Copper         494         20.0         ug/L         500.0         99         80-120         5         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead                        | 468    | 20.0 | ug/L       | 500.0 |        | 94   | 80-120 |     |       |           |
| Nickel 467 20.0 ug/L 500.0 93 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lead                        | 508    | 40.0 | ug/L       | 500.0 |        | 102  | 80-120 |     |       |           |
| Selenium         960         200         ug/L         1000         96         80-120           Silver         227         100         ug/L         250.0         91         80-120           Zinc         472         50.0         ug/L         500.0         94         80-120           ECS Dup           Antimony         586         100         ug/L         500.0         117         80-120         2         20           Arsenic         581         100         ug/L         500.0         116         80-120         17         20           Caldium         321         250         ug/L         500.0         128         80-120         24         20         8++           Calcium         4960         200         ug/L         500.0         99         80-120         4         20           Chromium         484         10.0         ug/L         500.0         99         80-120         5         20           Copper         494         20.0         ug/L         2500         94         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Magnesium                   | 4710   | 200  | ug/L       | 5000  |        | 94   | 80-120 |     |       |           |
| Silver         227         100         ug/L         250.0         91         80-120         4         4         4         4         4         5         5         50.0         94         80-120         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nickel                      | 467    | 20.0 | ug/L       | 500.0 |        | 93   | 80-120 |     |       |           |
| Direct   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1   | Selenium                    | 960    | 200  | ug/L       | 1000  |        | 96   | 80-120 |     |       |           |
| LCS Dup           Antimony         586         100         ug/L         500.0         117         80-120         2         20           Arsenic         581         100         ug/L         500.0         116         80-120         17         20           Cadmium         321         250         ug/L         250.0         128         80-120         24         20         B++           Calcium         4960         200         ug/L         500.0         99         80-120         4         20           Chromium         484         10.0         ug/L         500.0         97         80-120         4         20           Copper         494         20.0         ug/L         500.0         99         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-120         5         20           Lead         490         20.0         ug/L         500.0         98         80-120         5         20           Lead         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silver                      | 227    | 100  | ug/L       | 250.0 |        | 91   | 80-120 |     |       |           |
| Antimony 586 100 ug/L 500.0 117 80-120 2 20  Arsenic 581 100 ug/L 500.0 116 80-120 17 20  Cadmium 321 250 ug/L 250.0 128 80-120 24 20 B++  Calcium 4960 200 ug/L 500.0 99 80-120 4 20  Chromium 484 10.0 ug/L 500.0 97 80-120 4 20  Copper 494 20.0 ug/L 500.0 99 80-120 5 20  Iron 2350 100 ug/L 2500 94 80-120 5 20  Iron 2350 100 ug/L 2500 94 80-120 5 20  Iron 490 20.0 ug/L 500.0 98 80-120 5 20  Lead 490 20.0 ug/L 500.0 98 80-120 5 20  Lead 506 40.0 ug/L 500.0 101 80-120 5 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc                        | 472    | 50.0 | ug/L       | 500.0 |        | 94   | 80-120 |     |       |           |
| Arsenic 581 100 ug/L 500.0 116 80-120 17 20 B++ Cadmium 321 250 ug/L 500.0 128 80-120 24 20 B++ Calcium 4960 200 ug/L 500.0 99 80-120 4 20 Copper 494 20.0 ug/L 500.0 99 80-120 5 20 Copper 100 ug/L 500.0 99 80-120 5 20 Copper 100 ug/L 500.0 99 80-120 5 20 Copper 100 ug/L 500.0 94 80-120 5 20 Copper 100 ug/L 500.0 95 80-120 5 20 Copper 100 ug/L 500.0 95 80-120 5 20 Copper 100 ug/L 500.0 95 80-120 5 20 Copper 100 ug/L 500.0 98 80-120 5 20 Copper 100 Ug/L | LCS Dup                     |        |      |            |       |        |      |        |     |       |           |
| Cadmium       321       250       ug/L       250.0       128       80-120       24       20       B++         Calcium       4960       200       ug/L       5000       99       80-120       4       20         Chromium       484       10.0       ug/L       500.0       97       80-120       4       20         Copper       494       20.0       ug/L       500.0       99       80-120       5       20         Iron       2350       100       ug/L       2500       94       80-120       5       20         Lead       490       20.0       ug/L       500.0       98       80-120       5       20         Lead       506       40.0       ug/L       500.0       98       80-120       5       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Antimony                    | 586    | 100  | ug/L       | 500.0 |        | 117  | 80-120 | 2   | 20    |           |
| Calcium       4960       200       ug/L       5000       99       80-120       4       20         Chromium       484       10.0       ug/L       500.0       97       80-120       4       20         Copper       494       20.0       ug/L       500.0       99       80-120       5       20         Iron       2350       100       ug/L       2500       94       80-120       5       20         Lead       490       20.0       ug/L       500.0       98       80-120       5       20         Lead       506       40.0       ug/L       500.0       101       80-120       5       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic                     | 581    | 100  | ug/L       | 500.0 |        | 116  | 80-120 | 17  | 20    |           |
| Chromium         484         10.0         ug/L         500.0         97         80-120         4         20           Copper         494         20.0         ug/L         500.0         99         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-120         5         20           Lead         490         20.0         ug/L         500.0         98         80-120         5         20           Lead         506         40.0         ug/L         500.0         101         80-120         0.3         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cadmium                     | 321    | 250  | ug/L       | 250.0 |        | 128  | 80-120 | 24  | 20    | B++       |
| Copper         494         20.0         ug/L         500.0         99         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-120         5         20           Lead         490         20.0         ug/L         500.0         98         80-120         5         20           Lead         506         40.0         ug/L         500.0         101         80-120         0.3         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calcium                     | 4960   | 200  | ug/L       | 5000  |        | 99   | 80-120 | 4   | 20    |           |
| Iron         2350         100         ug/L         2500         94         80-120         5         20           Iron         2350         100         ug/L         2500         94         80-120         5         20           Lead         490         20.0         ug/L         500.0         98         80-120         5         20           Lead         506         40.0         ug/L         500.0         101         80-120         0.3         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chromium                    | 484    | 10.0 | ug/L       | 500.0 |        | 97   | 80-120 | 4   | 20    |           |
| Iron         2350         100         ug/L         2500         94         80-120         5         20           Lead         490         20.0         ug/L         500.0         98         80-120         5         20           Lead         506         40.0         ug/L         500.0         101         80-120         0.3         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Copper                      | 494    | 20.0 | ug/L       | 500.0 |        | 99   | 80-120 |     | 20    |           |
| Lead     490     20.0     ug/L     500.0     98     80-120     5     20       Lead     506     40.0     ug/L     500.0     101     80-120     0.3     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Iron                        | 2350   | 100  | ug/L       | 2500  |        | 94   | 80-120 | 5   | 20    |           |
| Lead 506 40.0 ug/L 500.0 101 80-120 0.3 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iron                        | 2350   | 100  | ug/L       | 2500  |        | 94   | 80-120 |     | 20    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lead                        | 490    | 20.0 | ug/L       | 500.0 |        | 98   | 80-120 | 5   | 20    |           |
| Magnesium 5020 200 ug/L 5000 100 80-120 6 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead                        |        |      | ug/L       |       |        |      |        |     |       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Magnesium                   | 5020   | 200  | ug/L       | 5000  |        | 100  | 80-120 | 6   | 20    |           |

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

|                                      |        |             |             | Spike     | Source |           | %REC   |     | RPD   |           |
|--------------------------------------|--------|-------------|-------------|-----------|--------|-----------|--------|-----|-------|-----------|
| Analyte                              | Result | MRL         | Units       | Level     | Result | %REC      | Limits | RPD | Limit | Qualifier |
|                                      |        |             | Total Met   | als       |        |           |        |     |       |           |
| Satch CA50618 - 3005A/200.7          |        |             |             |           |        |           |        |     |       |           |
| Nickel                               | 486    | 20.0        | ug/L        | 500.0     |        | 97        | 80-120 | 4   | 20    |           |
| Selenium                             | 980    | 200         | ug/L        | 1000      |        | 98        | 80-120 | 2   | 20    |           |
| Silver                               | 233    | 100         | ug/L        | 250.0     |        | 93        | 80-120 | 2   | 20    |           |
| Zinc                                 | 493    | 50.0        | ug/L        | 500.0     |        | 99        | 80-120 | 4   | 20    |           |
|                                      |        | 8082A Polyc | chlorinated | Biphenyls | (PCB)  |           |        |     |       |           |
| Batch CA50525 - 3510C                |        |             |             |           |        |           |        |     |       |           |
| Blank                                |        |             |             |           |        |           |        |     |       |           |
| Aroclor 1016                         | ND     | 0.10        | ug/L        |           |        |           |        | -   |       | -         |
| Aroclor 1221                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| Aroclor 1232                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| Aroclor 1242                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| Aroclor 1248                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| Aroclor 1254                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| Aroclor 1260                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| aroclor 1262                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| Aroclor 1268                         | ND     | 0.10        | ug/L        |           |        |           |        |     |       |           |
| 1200                                 | ND     | 0.10        | ug/ L       |           |        |           |        |     |       |           |
| Surrogate: Decachlorobiphenyl        | 0.0480 |             | ug/L        | 0.05000   |        | 96        | 30-150 |     |       |           |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0540 |             | ug/L        | 0.05000   |        | 108       | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene      | 0.0277 |             | ug/L        | 0.05000   |        | 55        | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0308 |             | ug/L        | 0.05000   |        | 62        | 30-150 |     |       |           |
| .cs                                  |        |             |             |           |        |           |        |     |       |           |
| Aroclor 1016                         | 0.80   | 0.10        | ug/L        | 1.000     |        | 80        | 40-140 |     |       |           |
| Aroclor 1260                         | 0.94   | 0.10        | ug/L        | 1.000     |        | 94        | 40-140 |     |       |           |
| Surrogate: Decachlorobiphenyl        | 0.0520 |             | ug/L        | 0.05000   |        | 104       | 30-150 |     |       |           |
|                                      | 0.0534 |             | ug/L        | 0.05000   |        | 107       | 30-150 |     |       |           |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0294 |             | ug/L        | 0.05000   |        | <i>59</i> | 30-150 |     |       |           |
| Surrogate: Tetrachluro m. vylene     | 0.0304 |             | ug/L        | 0.05000   |        | 61        | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene [2C] |        |             |             |           |        |           |        |     |       |           |
| .CS Dup                              | 2.27   | 0.10        |             | 1.000     |        | 07        | 40.110 |     |       |           |
| Aroclor 1016                         | 0.87   | 0.10        | ug/L        | 1.000     |        | 87        | 40-140 | 8   | 20    |           |
| Aroclor 1260                         | 0.97   | 0.10        | ug/L        | 1.000     |        | 97        | 40-140 | 2   | 20    |           |
| Surrogate: Decachlorobiphenyl        | 0.0510 |             | ug/L        | 0.05000   |        | 102       | 30-150 |     |       |           |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0541 |             | ug/L        | 0.05000   |        | 108       | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene      | 0.0315 |             | ug/L        | 0.05000   |        | 63        | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0314 |             | ug/L        | 0.05000   |        | 63        | 30-150 |     |       |           |
|                                      |        | 8260B Vol   | atile Organ | ic Compou | unds   |           |        |     |       |           |
| Batch CA50539 - 5030B                |        |             |             |           |        |           |        |     |       |           |
| Blank                                |        |             |             |           |        |           |        |     |       |           |
| 1,1,1-Trichloroethane                | ND     | 1.0         | ug/L        |           |        |           |        |     |       |           |
| 1,1,2-Trichloroethane                | ND     | 1.0         | ug/L        |           |        |           |        |     |       |           |
|                                      |        |             |             |           |        |           |        |     |       |           |

Dependability

Quality

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Batch CA50539 - 5030B

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| 8260B Volatile Organic Compounds |
|----------------------------------|
|                                  |
|                                  |

| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Acetone                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                        | 10.0 | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Benzene                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Methyl tert-Butyl Ether                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                        | 2.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Naphthalene                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Tertiary-amyl methyl ether                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Tertiary-butyl Alcohol                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                        | 25.0 | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Toluene                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Xylene O                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                        | 1.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Xylene P,M                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                        | 2.0  | ug/L                                         |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                   | 24.0                                                                                                                      |      | ug/L                                         | 25.00                                                                                                                                        | 96                                                                                                             | 70-130                                                                                                                                                                                         |  |
| Surrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                    | 20.4                                                                                                                      |      | ug/L                                         | 25.00                                                                                                                                        | 82                                                                                                             | 70-130                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                           |      |                                              |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Surrogate: Dibromofluoromethane                                                                                                                                                                                                                                                                                                                    | 22.9                                                                                                                      |      | ug/L                                         | 25.00                                                                                                                                        | 92                                                                                                             | 70-130                                                                                                                                                                                         |  |
| Surrogate: Dibromofluoromethane<br>Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                           | 22.9<br>25.0                                                                                                              |      | ug/L<br>ug/L                                 | 25.00<br>25.00                                                                                                                               | 92<br>100                                                                                                      | 70-130<br>70-130                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                           |      |                                              |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |      |                                              |                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                |  |
| Surrogate: Toluene-d8 LCS                                                                                                                                                                                                                                                                                                                          | 25.0                                                                                                                      |      | ug/L                                         | 25.00                                                                                                                                        | 100                                                                                                            | 70-130                                                                                                                                                                                         |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                  | 10.2                                                                                                                      |      | ug/L<br>ug/L                                 | 10.00                                                                                                                                        | 100                                                                                                            | 70-130<br>70-130                                                                                                                                                                               |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                            | 10.2<br>9.7                                                                                                               |      | ug/L<br>ug/L<br>ug/L                         | 25.00<br>10.00<br>10.00                                                                                                                      | 100<br>102<br>97                                                                                               | 70-130<br>70-130<br>70-130                                                                                                                                                                     |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane  1,1,2-Trichloroethane  1,1-Dichloroethane                                                                                                                                                                                                                                                       | 10.2<br>9.7<br>9.3                                                                                                        |      | ug/L<br>ug/L<br>ug/L<br>ug/L                 | 25.00<br>10.00<br>10.00<br>10.00                                                                                                             | 100<br>102<br>97<br>93                                                                                         | 70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                           |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane  1,1,2-Trichloroethane  1,1-Dichloroethane  1,1-Dichloroethene                                                                                                                                                                                                                                   | 10.2<br>9.7<br>9.3<br>8.9                                                                                                 |      | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 10.00<br>10.00<br>10.00<br>10.00<br>10.00                                                                                                    | 100<br>102<br>97<br>93<br>89                                                                                   | 70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                 |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichlorobenzene                                                                                                                                                                                               | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5                                                                                  |      | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 10.00<br>10.00<br>10.00<br>10.00<br>10.00                                                                                                    | 100<br>102<br>97<br>93<br>89<br>95                                                                             | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                       |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane                                                                                                                                                                                               | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0                                                                          |      | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00                                                                                           | 100<br>97<br>93<br>89<br>95<br>100                                                                             | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                             |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene                                                                                                                                     | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5                                                                   |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00                                                                                  | 100<br>102<br>97<br>93<br>89<br>95<br>100                                                                      | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                   |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,4-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                     | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8                                                            |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00                                                                         | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98                                                          | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                                                                                                                 |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone                                                                                                                                              | 10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4                                                            |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>50.00                                                                | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98                                                          | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                                                                                                         |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene                                                                                                                                      | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4<br>9.6                                             |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>50.00                                                                | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119                                                   | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                                                                                                         |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,4-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride                                                                                                | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4<br>9.6<br>10.7                                     |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>50.00<br>10.00                                                       | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119<br>96                                             | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                                                                                                 |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene                                                                         | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4<br>9.6<br>10.7<br>9.5                              |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>50.00<br>10.00<br>10.00                                              | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119<br>96<br>107<br>95                                | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                                                                                         |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene                                                            | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4<br>9.6<br>10.7<br>9.5<br>9.8                       |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>50.00<br>10.00<br>10.00<br>10.00                                     | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119<br>96<br>107<br>95<br>98                          | 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether                                    | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4<br>9.6<br>10.7<br>9.5<br>9.8<br>9.4                |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>50.00<br>10.00<br>10.00<br>10.00<br>10.00                            | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119<br>96<br>107<br>95<br>98<br>98                    | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                                                         |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride                 | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4<br>9.6<br>10.7<br>9.5<br>9.8<br>9.4<br>10.0        |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>50.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00                   | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119<br>96<br>107<br>95<br>98<br>94                    | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                                 |  |
| Surrogate: Toluene-d8  LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene     | 25.0<br>10.2<br>9.7<br>9.3<br>8.9<br>9.5<br>10.0<br>9.5<br>9.8<br>59.4<br>9.6<br>10.7<br>9.5<br>9.8<br>9.4<br>10.0<br>8.1 |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00          | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119<br>96<br>107<br>95<br>98<br>94<br>100<br>81       | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130                 |  |
| LCS  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene Tertiary-amyl methyl ether | 25.0  10.2  9.7  9.3  8.9  9.5  10.0  9.5  9.8  59.4  9.6  10.7  9.5  9.8  9.4  10.0  8.1  9.1                            |      | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00 | 100<br>102<br>97<br>93<br>89<br>95<br>100<br>95<br>98<br>119<br>96<br>107<br>95<br>98<br>94<br>100<br>81<br>91 | 70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130  70-130 |  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

401-461-/181 F

◆ Quality

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

| Analyte                              | Result | MRL       | Units        | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits   | RPD | RPD<br>Limit | Qualifier |
|--------------------------------------|--------|-----------|--------------|----------------|------------------|-------|------------------|-----|--------------|-----------|
|                                      | Result |           |              |                |                  | 70REC | LIIIIIG          | RPD | LIIIII       | Qualifier |
|                                      |        | 8200D VOI | atile Organi | ic Compo       | unas             |       |                  |     |              |           |
| atch CA50539 - 5030B                 |        |           |              |                |                  |       |                  |     |              |           |
| oluene                               | 10.2   |           | ug/L         | 10.00          |                  | 102   | 70-130           |     |              |           |
| richloroethene                       | 9.7    |           | ug/L         | 10.00          |                  | 97    | 70-130           |     |              |           |
| inyl Chloride                        | 10.3   |           | ug/L         | 10.00          |                  | 103   | 70-130           |     |              |           |
| (ylene O                             | 10.0   |           | ug/L         | 10.00          |                  | 100   | 70-130           |     |              |           |
| ýlene P,M                            | 19.5   |           | ug/L         | 20.00          |                  | 97    | 70-130           |     |              |           |
| Surrogate: 1,2-Dichloroethane-d4     | 26.0   |           | ug/L         | 25.00          |                  | 104   | 70-130           |     |              |           |
| Surrogate: 4-Bromofluorobenzene      | 24.5   |           | ug/L         | 25.00          |                  | 98    | 70-130           |     |              |           |
| -<br>Surrogate: Dibromofluoromethane | 25.1   |           | ug/L         | 25.00          |                  | 101   | 70-130           |     |              |           |
| -<br>Surrogate: Toluene-d8           | 25.0   |           | ug/L         | 25.00          |                  | 100   | 70-130           |     |              |           |
| .CS Dup                              |        |           |              |                |                  |       |                  |     |              |           |
| ,1,1-Trichloroethane                 | 10.3   |           | ug/L         | 10.00          |                  | 103   | 70-130           | 2   | 25           |           |
| ,1,2-Trichloroethane                 | 9.9    |           | ug/L         | 10.00          |                  | 99    | 70-130           | 2   | 25           |           |
| .,1-Dichloroethane                   | 9.7    |           | ug/L         | 10.00          |                  | 97    | 70-130           | 4   | 25           |           |
| ,1-Dichloroethene                    | 9.4    |           | ug/L         | 10.00          |                  | 94    | 70-130           | 5   | 25           |           |
| ,2-Dichlorobenzene                   | 10.3   |           | ug/L         | 10.00          |                  | 103   | 70-130           | 8   | 25           |           |
| ,2-Dichloroethane                    | 9.9    |           | ug/L         | 10.00          |                  | 99    | 70-130           | 0.3 | 25           |           |
| ,3-Dichlorobenzene                   | 10.6   |           | ug/L         | 10.00          |                  | 106   | 70-130           | 11  | 25           |           |
| .,4-Dichlorobenzene                  | 10.8   |           | ug/L         | 10.00          |                  | 108   | 70-130           | 10  | 25           |           |
| cetone                               | 51.4   |           | ug/L         | 50.00          |                  | 103   | 70-130           | 14  | 25           |           |
| Benzene                              | 10.2   |           | ug/L         | 10.00          |                  | 102   | 70-130           | 5   | 25           |           |
| Carbon Tetrachloride                 | 11.1   |           | ug/L         | 10.00          |                  | 111   | 70-130           | 3   | 25           |           |
| is-1,2-Dichloroethene                | 10.0   |           | ug/L         | 10.00          |                  | 100   | 70-130           | 5   | 25           |           |
| thylbenzene                          | 10.0   |           | ug/L         | 10.00          |                  | 100   | 70-130           | 2   | 25           |           |
| 1ethyl tert-Butyl Ether              | 9.8    |           | ug/L         | 10.00          |                  | 98    | 70-130           | 4   | 25           |           |
| 1ethylene Chloride                   | 10.1   |           | ug/L         | 10.00          |                  | 101   | 70-130           | 0.8 | 25           |           |
| ,<br>Iaphthalene                     | 8.6    |           | ug/L         | 10.00          |                  | 86    | 70-130           | 6   | 25           |           |
| ertiary-amyl methyl ether            | 9.4    |           | ug/L         | 10.00          |                  | 94    | 70-130           | 3   | 25           |           |
| ertiary-butyl Alcohol                | 56.4   |           | ug/L         | 50.00          |                  | 113   | 70-130           | 10  | 25           |           |
| etrachloroethene                     | 8.2    |           | ug/L         | 10.00          |                  | 82    | 70-130           | 5   | 25           |           |
| oluene                               | 10.4   |           | ug/L         | 10.00          |                  | 104   | 70-130           | 3   | 25           |           |
| richloroethene                       | 10.0   |           | ug/L         | 10.00          |                  | 100   | 70-130           | 3   | 25           |           |
| /inyl Chloride                       | 10.4   |           | ug/L         | 10.00          |                  | 104   | 70-130           | 2   | 25           |           |
| (ylene O                             | 10.2   |           | ug/L         | 10.00          |                  | 102   | 70-130           | 2   | 25           |           |
| (ylene P,M                           | 20.2   |           | ug/L<br>ug/L | 20.00          |                  | 102   | 70-130           | 4   | 25           |           |
|                                      | 25.0   |           | ug/L         | <i>25.00</i>   |                  | 100   | 70-130           |     |              |           |
| Surrogate: 1,2-Dichloroethane-d4     | 24.3   |           | ug/L         | 25.00<br>25.00 |                  | 97    | 70-130<br>70-130 |     |              |           |
| Surrogate: 4-Bromofluorobenzene      | 24.6   |           | ug/L         | 25.00          |                  | 98    | 70-130<br>70-130 |     |              |           |
| Surrogate: Dibromofluoromethane      | 24.9   |           | ug/L<br>ug/L | 25.00<br>25.00 |                  | 99    | 70-130<br>70-130 |     |              |           |
| Surrogate: Toluene-d8                | 27.3   |           | ug/L         | 23.00          |                  | 22    | 70 130           |     |              |           |

ND

4.11

Blank 1,4-Dioxane

LCS

Surrogate: 1,4-Dioxane-d8

ug/L

ug/L

5.000

0.2



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

|                                   |              |               | <u>-</u>    |                |                  |            |                |     |              |           |
|-----------------------------------|--------------|---------------|-------------|----------------|------------------|------------|----------------|-----|--------------|-----------|
| Analyte                           | Result       | MRL           | Units       | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|                                   | 8270D(SIM) S | Semi-Volatile | Organic Co  | ompounds       | w/ Isoto         | pe Dilutio | on             |     |              |           |
| atch CA50710 - 3520C              |              |               |             |                |                  |            |                |     |              |           |
| ,4-Dioxane                        | 7.2          | 0.2           | ug/L        | 10.00          |                  | 72         | 40-140         |     |              |           |
| Surrogate: 1,4-Dioxane-d8         | 4.02         |               | ug/L        | 5.000          |                  | 80         | <i>15-115</i>  |     |              |           |
| CS Dup                            |              |               |             |                |                  |            |                |     |              |           |
| ,4-Dioxane                        | 7.1          | 0.2           | ug/L        | 10.00          |                  | 71         | 40-140         | 2   | 20           |           |
| urrogate: 1,4-Dioxane-d8          | 4.52         |               | ug/L        | 5.000          |                  | 90         | 15-115         |     |              |           |
|                                   | 8270         | OC(SIM) Poly  | nuclear Arc | omatic Hy      | drocarbor        | ns         |                |     |              |           |
| atch CA50616 - 3510C              |              |               |             |                |                  |            |                |     |              |           |
| lank                              |              |               |             |                |                  |            |                |     |              |           |
| cenaphthene                       | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| cenaphthylene                     | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| nthracene                         | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| enzo(a)anthracene                 | ND           | 0.05          | ug/L        |                |                  |            |                |     |              |           |
| enzo(a)pyrene                     | ND           | 0.05          | ug/L        |                |                  |            |                |     |              |           |
| enzo(b)fluoranthene               | ND           | 0.05          | ug/L        |                |                  |            |                |     |              |           |
| enzo(g,h,i)perylene               | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| enzo(k)fluoranthene               | ND           | 0.05          | ug/L        |                |                  |            |                |     |              |           |
| is(2-Ethylhexyl)phthalate         | ND           | 2.50          | ug/L        |                |                  |            |                |     |              |           |
| utylbenzylphthalate               | ND           | 2.50          | ug/L        |                |                  |            |                |     |              |           |
| hrysene                           | ND           | 0.05          | ug/L        |                |                  |            |                |     |              |           |
| ibenzo(a,h)Anthracene             | ND           | 0.05          | ug/L        |                |                  |            |                |     |              |           |
| iethylphthalate                   | ND           | 2.50          | ug/L        |                |                  |            |                |     |              |           |
| imethylphthalate                  | ND           | 2.50          | ug/L        |                |                  |            |                |     |              |           |
| i-n-butylphthalate                | ND           | 2.50          | ug/L        |                |                  |            |                |     |              |           |
| i-n-octylphthalate                | ND           | 2.50          | ug/L        |                |                  |            |                |     |              |           |
| luoranthene                       | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| luorene                           | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| ndeno(1,2,3-cd)Pyrene             | ND           | 0.05          | ug/L        |                |                  |            |                |     |              |           |
| aphthalene                        | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| entachlorophenol                  | ND           | 0.90          | ug/L        |                |                  |            |                |     |              |           |
| henanthrene                       | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| yrene                             | ND           | 0.20          | ug/L        |                |                  |            |                |     |              |           |
| Eurrogate: 1,2-Dichlorobenzene-d4 | 1.38         |               | ug/L        | 2.500          |                  | 55         | 30-130         |     |              |           |
| Surrogate: 2,4,6-Tribromophenol   | 5.69         |               | ug/L        | 3.750          |                  | 152        | 15-110         |     |              | <i>S+</i> |
| Surrogate: 2-Fluorobiphenyl       | 2.18         |               | ug/L        | 2.500          |                  | 87         | 30-130         |     |              |           |
| urrogate: Nitrobenzene-d5         | 1.93         |               | ug/L        | 2.500          |                  | <i>77</i>  | 30-130         |     |              |           |
| urrogate: p-Terphenyl-d14         | 2.23         |               | ug/L        | 2.500          |                  | 89         | 30-130         |     |              |           |
| cs                                |              |               |             |                |                  |            |                |     |              |           |
| cenaphthene                       | 3.04         | 0.20          | ug/L        | 4.000          |                  | 76         | 40-140         |     |              |           |
| cenaphthylene                     | 2.86         | 0.20          | ug/L        | 4.000          |                  | 71         | 40-140         |     |              |           |
| nthracene                         | 2.99         | 0.20          | ug/L        | 4.000          |                  | 75         | 40-140         |     |              |           |
| enzo(a)anthracene                 | 3.06         | 0.05          | ug/L        | 4.000          |                  | 77         | 40-140         |     |              |           |
| enzo(a)pyrene                     | 3.15         | 0.05          | ug/L        | 4.000          |                  | 79         | 40-140         |     |              |           |
| Benzo(b)fluoranthene              | 3.12         | 0.05          | ug/L        | 4.000          |                  | 78         | 40-140         |     |              |           |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

|                                              |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|----------------------------------------------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte                                      | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |
| 8270C(SIM) Polynuclear Aromatic Hydrocarbons |        |     |       |       |        |      |        |     |       |           |

|                                   | 027  | UC(SIM) POIY | Tiucieai Aic | illauc Hyuroca | IIDONS |               |   |    |    |
|-----------------------------------|------|--------------|--------------|----------------|--------|---------------|---|----|----|
| Batch CA50616 - 3510C             |      |              |              |                |        |               |   |    |    |
| Benzo(g,h,i)perylene              | 3.34 | 0.20         | ug/L         | 4.000          | 83     | 40-140        |   |    |    |
| enzo(k)fluoranthene               | 3.13 | 0.05         | ug/L         | 4.000          | 78     | 40-140        |   |    |    |
| is(2-Ethylhexyl)phthalate         | 3.49 | 2.50         | ug/L         | 4.000          | 87     | 40-140        |   |    |    |
| Butylbenzylphthalate              | 3.35 | 2.50         | ug/L         | 4.000          | 84     | 40-140        |   |    |    |
| Chrysene                          | 3.20 | 0.05         | ug/L         | 4.000          | 80     | 40-140        |   |    |    |
| Dibenzo(a,h)Anthracene            | 3.35 | 0.05         | ug/L         | 4.000          | 84     | 40-140        |   |    |    |
| Diethylphthalate                  | 3.49 | 2.50         | ug/L         | 4.000          | 87     | 40-140        |   |    |    |
| Dimethylphthalate                 | 3.46 | 2.50         | ug/L         | 4.000          | 87     | 40-140        |   |    |    |
| oi-n-butylphthalate               | 2.94 | 2.50         | ug/L         | 4.000          | 74     | 40-140        |   |    |    |
| pi-n-octylphthalate               | 3.01 | 2.50         | ug/L         | 4.000          | 75     | 40-140        |   |    |    |
| luoranthene                       | 3.09 | 0.20         | ug/L         | 4.000          | 77     | 40-140        |   |    |    |
| luorene                           | 3.27 | 0.20         | ug/L         | 4.000          | 82     | 40-140        |   |    |    |
| ndeno(1,2,3-cd)Pyrene             | 3.38 | 0.05         | ug/L         | 4.000          | 85     | 40-140        |   |    |    |
| laphthalene                       | 1.98 | 0.20         | ug/L         | 4.000          | 50     | 40-140        |   |    |    |
| rentachlorophenol                 | 3.91 | 0.90         | ug/L         | 4.000          | 98     | 30-130        |   |    |    |
| henanthrene                       | 2.96 | 0.20         | ug/L         | 4.000          | 74     | 40-140        |   |    |    |
| yrene                             | 3.25 | 0.20         | ug/L         | 4.000          | 81     | 40-140        |   |    |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.31 |              | ug/L         | 2.500          | 52     | 30-130        |   |    |    |
| Surrogate: 2,4,6-Tribromophenol   | 6.05 |              | ug/L         | 3.750          | 161    | <i>15-110</i> |   |    | 5+ |
| iurrogate: 2-Fluorobiphenyl       | 2.18 |              | ug/L         | 2.500          | 87     | 30-130        |   |    |    |
| Gurrogate: Nitrobenzene-d5        | 2.03 |              | ug/L         | 2.500          | 81     | 30-130        |   |    |    |
| Surrogate: p-Terphenyl-d14        | 2.57 |              | ug/L         | 2.500          | 103    | 30-130        |   |    |    |
| .CS Dup                           |      |              |              |                |        |               |   |    |    |
| cenaphthene                       | 2.90 | 0.20         | ug/L         | 4.000          | 72     | 40-140        | 5 | 20 |    |
| cenaphthylene                     | 2.78 | 0.20         | ug/L         | 4.000          | 69     | 40-140        | 3 | 20 |    |
| nthracene                         | 2.93 | 0.20         | ug/L         | 4.000          | 73     | 40-140        | 2 | 20 |    |
| enzo(a)anthracene                 | 2.88 | 0.05         | ug/L         | 4.000          | 72     | 40-140        | 6 | 20 |    |
| enzo(a)pyrene                     | 3.12 | 0.05         | ug/L         | 4.000          | 78     | 40-140        | 1 | 20 |    |
| enzo(b)fluoranthene               | 3.16 | 0.05         | ug/L         | 4.000          | 79     | 40-140        | 1 | 20 |    |
| Benzo(g,h,i)perylene              | 3.25 | 0.20         | ug/L         | 4.000          | 81     | 40-140        | 3 | 20 |    |
| Benzo(k)fluoranthene              | 2.98 | 0.05         | ug/L         | 4.000          | 74     | 40-140        | 5 | 20 |    |
| is(2-Ethylhexyl)phthalate         | 3.45 | 2.50         | ug/L         | 4.000          | 86     | 40-140        | 1 | 20 |    |
| utylbenzylphthalate               | 3.18 | 2.50         | ug/L         | 4.000          | 80     | 40-140        | 5 | 20 |    |
| Chrysene                          | 3.15 | 0.05         | ug/L         | 4.000          | 79     | 40-140        | 2 | 20 |    |
| bibenzo(a,h)Anthracene            | 3.29 | 0.05         | ug/L         | 4.000          | 82     | 40-140        | 2 | 20 |    |
| Diethylphthalate                  | 3.37 | 2.50         | ug/L         | 4.000          | 84     | 40-140        | 3 | 20 |    |
| imethylphthalate                  | 3.36 | 2.50         | ug/L         | 4.000          | 84     | 40-140        | 3 | 20 |    |
| i-n-butylphthalate                | 2.87 | 2.50         | ug/L         | 4.000          | 72     | 40-140        | 3 | 20 |    |
| i-n-octylphthalate                | 2.91 | 2.50         | ug/L         | 4.000          | 73     | 40-140        | 3 | 20 |    |
| luoranthene                       | 3.02 | 0.20         | ug/L         | 4.000          | 76     | 40-140        | 2 | 20 |    |
| luorene                           | 3.16 | 0.20         | ug/L         | 4.000          | 79     | 40-140        | 3 | 20 |    |
| ndeno(1,2,3-cd)Pyrene             | 3.27 | 0.05         | ug/L         | 4.000          | 82     | 40-140        | 3 | 20 |    |
| aphthalene                        | 1.90 | 0.20         | ug/L         | 4.000          | 47     | 40-140        | 4 | 20 |    |
| entachlorophenol                  | 3.64 | 0.90         | ug/L         | 4.000          | 91     | 30-130        | 7 | 20 |    |
| henanthrene                       | 2.88 | 0.20         | ug/L         | 4.000          | 72     | 40-140        | 3 | 20 |    |
|                                   |      |              |              |                |        |               |   |    |    |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

|                                     |        |              |             | Spike    | Source    |      | %REC   |     | RPD   |           |
|-------------------------------------|--------|--------------|-------------|----------|-----------|------|--------|-----|-------|-----------|
| Analyte                             | Result | MRL          | Units       | Level    | Result    | %REC | Limits | RPD | Limit | Qualifier |
|                                     | 827    | OC(SIM) Poly | nuclear Arc | matic Hy | drocarbor | าร   |        |     |       |           |
| Batch CA50616 - 3510C               |        |              |             |          |           |      |        |     |       |           |
| Pyrene                              | 3.07   | 0.20         | ug/L        | 4.000    |           | 77   | 40-140 | 6   | 20    |           |
| Surrogate: 1,2-Dichlorobenzene-d4   | 1.36   |              | ug/L        | 2.500    |           | 54   | 30-130 |     |       |           |
| Surrogate: 2,4,6-Tribromophenol     | 4.65   |              | ug/L        | 3.750    |           | 124  | 15-110 |     |       | S+        |
| Surrogate: 2-Fluorobiphenyl         | 2.15   |              | ug/L        | 2.500    |           | 86   | 30-130 |     |       |           |
| Surrogate: Nitrobenzene-d5          | 1.77   |              | ug/L        | 2.500    |           | 71   | 30-130 |     |       |           |
| Surrogate: p-Terphenyl-d14          | 2.30   |              | ug/L        | 2.500    |           | 92   | 30-130 |     |       |           |
|                                     |        | Cl           | assical Che | mistry   |           |      |        |     |       |           |
| Batch CA50510 - General Preparation |        |              |             |          |           |      |        |     |       |           |
| Blank                               |        |              |             |          |           |      |        |     |       |           |
| Hexavalent Chromium                 | ND     | 10           | ug/L        |          |           |      |        |     |       |           |
| LCS                                 |        |              |             |          |           |      |        |     |       |           |
| Hexavalent Chromium                 | 0.5    |              | mg/L        | 0.4998   |           | 99   | 90-110 |     |       |           |
| LCS Dup                             |        |              |             |          |           |      |        |     |       |           |
| Hexavalent Chromium                 | 0.5    |              | mg/L        | 0.4998   |           | 99   | 90-110 | 0.2 | 20    |           |
| Batch CA50537 - General Preparation |        |              |             |          |           |      |        |     |       |           |
| Blank                               |        |              |             |          |           |      |        |     |       |           |
| Dissolved Ferrous Iron              | ND     | 50           | ug/L        |          |           |      |        |     |       |           |
| Ferrous Iron                        | ND     | 50           | ug/L        |          |           |      |        |     |       |           |
| LCS                                 |        |              |             |          |           |      |        |     |       |           |
| Dissolved Ferrous Iron              | 0.1    |              | mg/L        | 0.1000   |           | 95   | 80-120 |     |       |           |
| Ferrous Iron                        | 0.1    |              | mg/L        | 0.1000   |           | 95   | 80-120 |     |       |           |
| Batch CA50538 - General Preparation |        |              |             |          |           |      |        |     |       |           |
| Blank                               |        |              |             |          |           |      |        |     |       |           |
| Total Residual Chlorine             | ND     | 10           | ug/L        |          |           |      |        |     |       |           |
| LCS                                 |        |              |             |          |           |      |        |     |       |           |
| Total Residual Chlorine             | 1      |              | mg/L        | 0.9960   |           | 100  | 85-115 |     |       |           |
| Batch CA50601 - General Preparation |        |              |             |          |           |      |        |     |       |           |
| Blank                               |        |              |             |          |           |      |        |     |       |           |
| Nitrite as N                        | ND     | 0.010        | mg/L        |          |           |      |        |     |       |           |
| LCS                                 |        |              |             |          |           |      |        |     |       |           |
| Nitrite as N                        | 0.261  |              | mg/L        | 0.2497   |           | 104  | 90-110 |     |       |           |
| Batch CA50602 - General Preparation |        |              |             |          |           |      |        |     |       |           |
| Blank                               |        |              |             |          |           |      |        |     |       |           |
| Nitrate/Nitrite as N                | ND     | 0.020        | mg/L        |          |           |      |        |     |       |           |
| LCS                                 |        |              |             |          |           |      |        |     |       |           |
| Nitrate/Nitrite as N                | 0.520  |              | mg/L        | 0.5000   |           | 104  | 90-110 |     |       |           |
| Batch CA50605 - General Preparation |        |              |             |          |           |      |        |     |       |           |
| Blank                               |        |              |             |          |           |      |        |     |       |           |
| Total Suspended Solids              | ND     | 5            | mg/L        |          |           |      |        |     |       |           |
|                                     |        |              |             |          |           |      |        |     |       |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

|                                     |        |     |                                       | Spike  | Source |       | %REC   |     | RPD   |           |
|-------------------------------------|--------|-----|---------------------------------------|--------|--------|-------|--------|-----|-------|-----------|
| Analyte                             | Result | MRL | Units                                 | Level  | Result | %REC  | Limits | RPD | Limit | Qualifier |
|                                     |        | Cla | assical Cher                          | mistry |        |       |        |     |       |           |
| Batch CA50605 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |
| Total Suspended Solids              | 64     |     | mg/L                                  | 68.80  |        | 93    | 80-120 |     |       |           |
| Batch CA50606 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |
| Blank                               |        |     |                                       |        |        |       |        |     |       |           |
| Total Dissolved Solids              | ND     | 10  | mg/L                                  |        |        |       |        |     |       |           |
| LCS                                 |        |     |                                       |        |        |       |        |     |       |           |
| Total Dissolved Solids              | 230    |     | mg/L                                  | 221.0  |        | 104   | 80-120 |     |       |           |
| Batch CA50626 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |
| Blank                               |        |     |                                       |        |        |       |        |     |       |           |
| Total Petroleum Hydrocarbon         | ND     | 5   | mg/L                                  |        |        |       |        |     |       |           |
| LCS                                 |        |     |                                       |        |        |       |        |     |       |           |
| Total Petroleum Hydrocarbon         | 14     | 5   | mg/L                                  | 19.38  |        | 74    | 66-114 |     |       |           |
| Batch CA50630 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |
| Blank                               |        |     |                                       |        |        |       |        |     |       |           |
| Alkalinity as CaCO3                 | ND     | 2   | mg/L                                  |        |        |       |        |     |       |           |
| LCS                                 |        |     |                                       |        |        |       |        |     |       |           |
| Alkalinity as CaCO3                 | 57     |     | mg/L                                  | 55.20  |        | 103   | 85-115 |     |       |           |
| Batch CA50725 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |
| Blank                               |        |     |                                       |        |        |       |        |     |       |           |
| Chemical Oxygen Demand              | ND     | 100 | mg/L                                  |        |        |       |        |     |       |           |
| LCS                                 |        |     |                                       |        |        |       |        |     |       |           |
| Chemical Oxygen Demand              | 408    | 100 | mg/L                                  | 401.2  |        | 102   | 95-105 |     |       |           |
| Batch CA50726 - General Preparation |        |     | ·                                     | ·      | ·      | ·     |        | ·   | ·     |           |
| Blank                               |        |     |                                       |        |        |       |        |     |       |           |
| Chemical Oxygen Demand              | ND     | 10  | mg/L                                  |        |        |       |        |     |       |           |
| LCS                                 |        |     |                                       |        |        |       |        |     |       |           |
| Chemical Oxygen Demand              | 49.4   | 10  | mg/L                                  | 50.15  |        | 99    | 95-105 |     |       |           |
| Batch CA50729 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |
| Blank                               |        |     |                                       |        |        |       |        |     |       |           |
| Phenols                             | ND     | 100 | ug/L                                  |        |        |       |        |     |       |           |
| LCS                                 |        |     | · · · · · · · · · · · · · · · · · · · | · · ·  | ·      | · · · |        | ·   | · · · |           |
| Phenols                             | 98     | 100 | ug/L                                  | 100.0  |        | 98    | 80-120 |     |       |           |
| LCS                                 |        |     |                                       |        |        |       |        |     |       |           |
| Phenols                             | 1030   | 100 | ug/L                                  | 1000   |        | 103   | 80-120 |     |       |           |
| Batch CA50730 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |
| Blank                               |        |     |                                       |        |        |       |        |     |       |           |
| Chloride                            | ND     | 0.5 | mg/L                                  |        |        |       |        |     |       |           |
| LCS                                 |        |     |                                       |        |        |       |        |     |       |           |
| Chloride                            | 2.4    |     | mg/L                                  | 2.500  |        | 96    | 90-110 |     |       |           |
| Batch CA50830 - General Preparation |        |     |                                       |        |        |       |        |     |       |           |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

| Analyte                             | Result   | MRL         | Units       | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-------------------------------------|----------|-------------|-------------|----------------|------------------|-------|----------------|-----|--------------|-----------|
| ·                                   |          |             | assical Che |                |                  |       |                | •   |              | <b>.</b>  |
| Batch CA50830 - General Preparation |          |             |             |                |                  |       |                |     |              |           |
| Blank                               |          |             |             |                |                  |       |                |     |              |           |
| Sulfide                             | ND       | 0.05        | mg/L        |                |                  |       |                |     |              |           |
| LCS                                 |          |             |             |                |                  |       |                |     |              |           |
| Sulfide                             | 0.51     | 0.05        | mg/L        | 0.5000         |                  | 102   | 80-120         |     |              |           |
| Batch CA50920 - TCN Prep            |          |             |             |                |                  |       |                |     |              |           |
| Blank                               |          |             |             |                |                  |       |                |     |              |           |
| Total Cyanide (LL)                  | ND       | 5.0         | ug/L        |                |                  |       |                |     |              |           |
| LCS                                 |          |             |             |                |                  |       |                |     |              |           |
| Total Cyanide (LL)                  | 20.0     | 5.0         | ug/L        | 20.06          |                  | 100   | 90-110         |     |              |           |
| LCS                                 |          |             |             |                |                  |       |                |     |              |           |
| Total Cyanide (LL)                  | 149      | 5.0         | ug/L        | 150.4          |                  | 99    | 90-110         |     |              |           |
| LCS Dup                             |          |             |             |                |                  |       |                |     |              |           |
| Total Cyanide (LL)                  | 150      | 5.0         | ug/L        | 150.4          |                  | 100   | 90-110         | 0.5 | 20           |           |
| Batch CA50923 - General Preparation |          |             |             |                |                  |       |                |     |              |           |
| Blank                               |          |             |             |                |                  |       |                |     |              |           |
| Sulfate                             | ND       | 5.0         | mg/L        |                |                  |       |                |     |              |           |
| LCS                                 |          |             |             |                |                  |       |                |     |              |           |
| Sulfate                             | 9.5      |             | mg/L        | 9.988          |                  | 95    | 85-115         |     |              |           |
| Batch CA50926 - TCN Prep            |          |             |             |                |                  |       |                |     |              |           |
| Blank                               |          |             |             |                |                  |       |                |     |              |           |
| Free Cyanide                        | ND       | 5           | ug/L        |                |                  |       |                |     |              |           |
| LCS                                 |          |             |             |                |                  |       |                |     |              |           |
| Free Cyanide                        | 0.0200   |             | mg/L        | 0.02006        |                  | 100   | 90-110         |     |              |           |
| LCS                                 |          |             |             |                |                  |       |                |     |              |           |
| Free Cyanide                        | 0.151    |             | mg/L        | 0.1504         |                  | 100   | 90-110         |     |              |           |
| LCS Dup                             |          |             |             |                |                  |       |                |     |              |           |
| Free Cyanide                        | 0.151    |             | mg/L        | 0.1504         |                  | 101   | 90-110         | 0.5 | 20           |           |
| Batch CA51006 - General Preparation |          |             |             |                |                  |       |                |     |              |           |
| Blank                               |          |             |             |                |                  |       |                |     |              |           |
| Chloride                            | ND       | 0.5         | mg/L        |                |                  |       |                |     |              |           |
| LCS                                 |          | <u> </u>    |             |                |                  |       |                |     |              |           |
| Chloride                            | 2.6      |             | mg/L        | 2.500          |                  | 103   | 90-110         |     |              |           |
|                                     | 8011 1,2 | -Dibromoeth | ane / 1,2-[ | Dibromo-3      | -chloropr        | opane |                |     |              |           |
| Batch CA50632 - 504/8011            |          |             |             |                |                  |       |                |     |              |           |
| Blank                               |          |             |             |                |                  |       |                |     |              |           |
| 1,2-Dibromoethane                   | ND       | 0.015       | ug/L        |                |                  |       |                |     |              |           |
| Surrogate: Pentachloroethane        | 0.148    |             | ug/L        | 0.2000         |                  | 74    | 30-150         |     |              |           |
| LCS                                 |          |             |             |                |                  |       |                |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

## **Quality Control Data**

| Analyte                      | Result   | MRL           | Units       | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|------------------------------|----------|---------------|-------------|----------------|------------------|-------|----------------|-----|--------------|-----------|
| ·                            | 8011 1.2 | -Dibromoeth   | ane / 1.2-I | Dibromo-3      | R-chloropr       | onane |                |     |              |           |
|                              | 0011 1/2 | . Dibi omocci |             | 313131110      | , cilioropi      | opune |                |     |              |           |
| Batch CA50632 - 504/8011     |          |               |             |                |                  |       |                |     |              |           |
| 1,2-Dibromoethane            | 0.248    | 0.015         | ug/L        | 0.2000         |                  | 124   | 60-140         |     |              |           |
| Surrogate: Pentachloroethane | 0.171    |               | ug/L        | 0.2000         |                  | 85    | 30-150         |     |              |           |
| LCS                          |          |               |             |                |                  |       |                |     |              |           |
| 1,2-Dibromoethane            | 0.104    | 0.015         | ug/L        | 0.08000        |                  | 130   | 60-140         |     |              |           |
| Surrogate: Pentachloroethane | 0.0688   |               | ug/L        | 0.08000        |                  | 86    | 30-150         |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1501022

|     | Notes and Definitions                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------|
| U   | Analyte included in the analysis, but not detected                                                         |
| S+  | Surrogate recovery(ies) above upper control limit (S+).                                                    |
| HT  | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual |
|     | Chlorine is fifteen minutes.                                                                               |
| Н   | Estimated value. Sample hold times were exceeded (H).                                                      |
| D+  | Relative percent difference for duplicate is outside of criteria (D+).                                     |
| D   | Diluted.                                                                                                   |
| C+  | Continuing Calibration recovery is above upper control limit (C+).                                         |
| B+  | Blank Spike recovery is above upper control limit (B+).                                                    |
| ND  | Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes            |
| dry | Sample results reported on a dry weight basis                                                              |
| RPD | Relative Percent Difference                                                                                |
| MDL | Method Detection Limit                                                                                     |

RPD Relative Percent Different MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation DL Detection Limit I/V Initial Volume

F/V Final Volume § Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1501022



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

<a href="http://www.a2la.org/scopepdf/2864-01.pdf">http://www.a2la.org/scopepdf/2864-01.pdf</a>

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls">http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP">http://datamine2.state.nj.us/DEP</a> OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory\_accreditation\_program/590095

#### **CHEMISTRY**

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
<a href="http://www.A2LA.org/dirsearchnew/newsearch.cfm">http://www.A2LA.org/dirsearchnew/newsearch.cfm</a>

CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

Yes

Yes

No

### Sample and Cooler Receipt Checklist

Client: GZA GeoEnvironmental, Inc.

Client Project ID:

Air No.:

**ESS Courier** Shipped/Delivered Via:

ESS Project ID: <u>15010022</u> Date Project Due: 1/12/15 Days For Project: 5 Day

### Items to be checked upon receipt:

1. Air Bill Manifest Present?

2. Were Custody Seals Present?

3. Were Custody Seals Intact?

4. Is Radiation count < 100 CPM?

5. Is a cooler present?

Cooler Temp: 4.1 Iced With: Ice

6. Was COC included with samples?

7. Was COC signed and dated by client?

8. Does the COC match the sample

9. Is COC complete and correct?

\* No

Nο

N/A

Yes

Yes

Yes

Yes

Yes

Yes

10. Are the samples properly preserved?

11. Proper sample containers used?

12. Any air bubbles in the VOA vials?

13. Holding times exceeded?

14. Sufficient sample volumes?

15. Any Subcontracting needed?

16. Are ESS labels on correct containers? Yes|No

17. Were samples received intact?

ESS Sample IDs: \_

Sub Lab: \_\_\_\_

Analysis: \_\_\_\_

TAT: \_\_\_\_\_

18. Was there need to call project manager to discuss status? If yes, please explain.

250 np Container - remainder

By whom?

Who was called?

| Sample Number | Properly Preserved | Container Type | # of Containers | Preservative                 |
|---------------|--------------------|----------------|-----------------|------------------------------|
| 1             | Yes                | 1 L Glass      | 2               | H2SO4                        |
| . 1           | Yes                | 1 L Glass      | 8               | NP                           |
| 1             | Yes                | 1 L Plastic    | 2               | NP                           |
| 1             | Yes                | 250 ml Plastic | 1               | H2SO4                        |
| 1             | Yes                | 250 ml Plastic | 2               | HNO3                         |
| 1             | Yes                | 250 ml Plastic | 2               | NP                           |
| 1             | Yes                | 250 ml Plastic | 1               | Zn Ace*, NaOH                |
| 1             | Yes                | 40 ml - VOA    | 6               | LIOI                         |
| 1             | Yes                | 500 ml Plastic | 1               | HNO3                         |
| 1             | Yes                | 500 ml Plastic | 1               | HNO3<br>NaOH PH 712 W/5/15 1 |
| 2             | Yes                | 1 L Glass      | 2               | H2SO4                        |
| 2             | Yes                | 1 L Glass      | 8               | NP                           |
| 2             | Yes                | 1 L Plastic    | 2               | NP                           |
| 2             | Yes                | 250 ml Plastic | 1               | H2SO4                        |
| 2<br>2<br>2   | Yes                | 250 ml Plastic | 2               | HNO3                         |
|               | Yes                | 250 ml Plastic | 2               | NP                           |
| 2             | Yes                | 250 ml Plastic | 1               | Zn Ace*, NaOH                |
| 2<br>2        | Yes                | 40 ml - VOA    | 6               |                              |
| 2             | Yes                | 500 ml Plastic | 1               | HNO3                         |
| 2<br>3        | Yes                | 500 ml Plastic | 1               | NaOH PH=11 WISIS             |
| 3             | Yes                | 1 L Glass      | 2               | H2SO4                        |
| 3             | Yes                | 1 L Glass      | 8               | NP                           |
|               | Yes                | 1 L Plastic    | 2               | NP                           |
| 3<br>3<br>3   | Yes                | 250 ml Plastic | 1               | H2SO4                        |
| 3             | Yes                | 250 ml Plastic | 2               | HNO3                         |

### **Sample and Cooler Receipt Checklist**

| Client: | GZA Geo | Environmental, | , Inc. | ESS Project ID: | <u>15010022</u> |                                    |
|---------|---------|----------------|--------|-----------------|-----------------|------------------------------------|
|         | 3       |                | Yes    | 250 ml Plastic  | 2               | NP                                 |
|         | 3       |                | Yes    | 250 ml Plastic  | 1               | Zn Ace*, NaOH                      |
|         | 3       |                | Yes    | 40 ml - VOA     | 6               | HCL                                |
|         | 3       |                | Yes    | 500 ml Plastic  | 1               | HNO3 11 MC/ 5/15 15/15             |
|         | 3       |                | Yes    | 500 ml Plastic  | 1               | HNO3<br>NaOH PH = 11 W 1/5/15 1515 |
|         | 4       |                | Yes    | 250 ml Plastic  | 2               | HNO3 '                             |
|         | 4       | Λ              | Yes    | 250 ml Plastic  | 1               | NP                                 |
|         | 4       |                | Yes    | 500 ml Plastic  | 1               | HNO3                               |

Completed By: 1500 Date/Time: 1/5/15 1527
Reviewed By: Date/Time: 1/5/15 1537

Page of.

15010ZZ

#### **James Brown**

From:

Kathleen Kerigan

Sent:

Tuesday, December 23, 2014 2:17 PM

To:

David E. Leone

Cc:

Michelle Mirenda; Christine Taylor, Elizabeth Ouk; Matthew Dion; James Brown

Subject:

RE: Everett items - RGP sampling next week

Follow Up Flag:

Follow up Flagged

Flag Status:

Hi ESS.

So that will mean instead of 2, it will be 3 samples for these analytes:

- Hardness
- Alkalinity
- Sulfates/sulfides
- Nitrates/nitrites
- Total/Free cyanide
- ~ Chemical oxygen demand
- Total dissolved solids and total suspended solids <- TSS is also covered below
- Total and dissolved metals (iron, arsenic, zinc, lead, and nickel) <- Total metals is covered below Figure Figure 1
- Total and dissolved Speciated metals (Fe2+, Fe3+) FIGUR FIGURES
- Total Suspended Soils (TSS) by Method 2540D;
- ¬ Total Residual Chlorine (TRC) by EPA Method 4500-Cl D;
- → TPH by EPA Method 1664A;
- Cyanide by EPA Method 335.4;
- VOCs by EPA Method 8260;
- → Ethylene Dibromide (EDB) by EPA Method 504.1;
- Total Phenols by EPA Method 420.1;
- SVOCs by EPA Method 8270;
- → PAHs, Total Phthalate, Pentachlorophenol (PCP) and Bis (2-Ethylhexyl) Phthalate (BEHP) by EPA Method 8270-SIM;
- PCBs by EPA Method 8082;
- Chloride by EPA Method 300; and
- Metals (Antimony, Arsenic, Cadmium, Chromium III and VI, Copper, Lead, Mercury, Nickel, Selenium, Silver, Zinc and Iron) by EPA Method 6020, 7470 or 7196A.

\* 1,4 Dioxane per client e-mail confirmation 1/15/15

Kathleen Kerigan Assistant Project Manager

GZA GeoEnvironmental, Inc.

249 Vanderbilt Avenue | Norwood, MA 02062

o: 781.278.5830 | c: 202.689.5142

Kathleen.Kerigan@gza.com | www.gza.com

Follow us on: 🚺 🗓

a a

You

Page of.

15010ZZ

#### **James Brown**

From:

Kathleen Kerigan

Sent:

Tuesday, December 23, 2014 2:17 PM

To:

David E. Leone

Cc:

Michelle Mirenda; Christine Taylor, Elizabeth Ouk; Matthew Dion; James Brown

Subject:

RE: Everett items - RGP sampling next week

Follow Up Flag:

Follow up

Flag Status:

Flagged

Hi ESS,

So that will mean instead of 2, it will be 3 samples for these analytes:

- Hardness
- Alkalinity
- Sulfates/sulfides
- Nitrates/nitrites
- Total/Free cyanide
- ~ Chemical oxygen demand
- Total dissolved solids and total suspended solids <- TSS is also covered below
- Total and dissolved metals (iron, arsenic, zinc, lead, and nickel) <- Total metals is covered below Figure Figure 1
- Total and dissolved Speciated metals (Fe2+, Fe3+) FIGURE FUTERS
- Total Suspended Soils (TSS) by Method 2540D;
- ¬ Total Residual Chlorine (TRC) by EPA Method 4500-Cl D;
- → TPH by EPA Method 1664A;
- Cyanide by EPA Method 335.4;
- VOCs by EPA Method 8260;
- → Ethylene Dibromide (EDB) by EPA Method 504.1;
- Total Phenols by EPA Method 420.1;
- SVOCs by EPA Method 8270;
- → PAHs, Total Phthalate, Pentachlorophenol (PCP) and Bis (2-Ethylhexyl) Phthalate (BEHP) by EPA Method 8270-SIM;
- PCBs by EPA Method 8082;
- Chloride by EPA Method 300; and
- Metals (Antimony, Arsenic, Cadmium, Chromium III and VI, Copper, Lead, Mercury, Nickel, Selenium, Silver, Zinc and Iron) by EPA Method 6020, 7470 or 7196A.

Kathleen Kerigan

**Assistant Project Manager** 

GZA GeoEnvironmental, Inc.

249 Vanderbilt Avenue | Norwood, MA 02062

o: 781.278.5830 | c: 202.689.5142

Kathleen.Kerigan@gza.com | www.gza.com

Follow us on: 🚺 🗓







The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

David E Leone GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

RE: Wynn Everett - RGP (01.0171521.20 T13) ESS Laboratory Work Order Number: 1504726

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

## REVIEWED

By ESS Laboratory at 3:09 pm, May 07, 2015

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1504726



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

## SAMPLE RECEIPT

The following samples were received on April 30, 2015 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES).

| Lab Number | Sample Name | Matrix       | Analysis           |
|------------|-------------|--------------|--------------------|
| 1504726-01 | GZ-019      | Ground Water | 5220D, 6010C, 7010 |
| 1504726-02 | GZ-024      | Ground Water | 5220D, 6010C, 7010 |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1504726

## **PROJECT NARRATIVE**

**Dissolved Metals** 

CD53003-BSD1 Blank Spike recovery is below lower control limit (B-).

Arsenic (75% @ 80-120%)

**Total Metals** 

CD53003-BSD1 Blank Spike recovery is below lower control limit (B-).

Arsenic (75% @ 80-120%)

No other observations noted.

End of Project Narrative.

#### **DATA USABILITY LINKS**

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

**EPH and VPH Alkane Lists** 

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

#### ·

ESS Laboratory Work Order: 1504726

## **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

## **Prep Methods**

**CURRENT SW-846 METHODOLOGY VERSIONS** 

3005A - Aqueous ICP and Graphite Furnace Digestion

3020A - Aqueous ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-019 Date Sampled: 04/29/15 09:55

Percent Solids: N/A

ESS Laboratory Work Order: 1504726 ESS Laboratory Sample ID: 1504726-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

## **Dissolved Metals**

| Analyte<br>Arsenic | Results (MRL)<br>ND (3.0) | MDL | <b>Method</b> 7010 | <u>Limit</u> | $\frac{\mathbf{DF}}{3}$ | Analyst<br>JP | <b>Analyzed</b> 05/02/15 9:07 | <u>I/V</u> 50 | <u><b>F/V</b></u> 10 | Batch<br>CD53003 |
|--------------------|---------------------------|-----|--------------------|--------------|-------------------------|---------------|-------------------------------|---------------|----------------------|------------------|
| Iron               | <b>15000</b> (200)        |     | 6010C              |              | 10                      | KJK           | 05/01/15 18:12                | 50            | 10                   | CD53003          |
| Zinc               | ND (50.0)                 |     | 6010C              |              | 5                       | KJK           | 05/06/15 16:27                | 50            | 10                   | CD53003          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-019 Date Sampled: 04/29/15 09:55

Percent Solids: N/A

ESS Laboratory Work Order: 1504726 ESS Laboratory Sample ID: 1504726-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

## **Total Metals**

| Analyte<br>Arsenic | Results (MRL)<br>ND (3.0) | <b>MDL</b> | <b>Method</b> 7010 | <u>Limit</u> | $\frac{\mathbf{DF}}{3}$ | Analyst<br>JP | <b>Analyzed</b> 05/02/15 9:19 | <u>I/V</u> 50 | $\frac{\mathbf{F/V}}{10}$ | Batch<br>CD53003 |
|--------------------|---------------------------|------------|--------------------|--------------|-------------------------|---------------|-------------------------------|---------------|---------------------------|------------------|
| Iron               | <b>15400</b> (200)        |            | 6010C              |              | 10                      | KJK           | 05/01/15 18:18                | 50            | 10                        | CD53003          |
| Zinc               | ND (50.0)                 |            | 6010C              |              | 5                       | KJK           | 05/06/15 16:37                | 50            | 10                        | CD53003          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-019 Date Sampled: 04/29/15 09:55

Percent Solids: N/A

ESS Laboratory Work Order: 1504726 ESS Laboratory Sample ID: 1504726-01

Sample Matrix: Ground Water

## **Classical Chemistry**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-024 Date Sampled: 04/29/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1504726 ESS Laboratory Sample ID: 1504726-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

## **Dissolved Metals**

| <b>Analyte</b> | Results (MRL)     | <b>MDL</b> | Method | <u>Limit</u> | DF | <b>Analyst</b> | <b>Analyzed</b> | I/V | F/V | <b>Batch</b> |
|----------------|-------------------|------------|--------|--------------|----|----------------|-----------------|-----|-----|--------------|
| Arsenic        | ND (1.0)          |            | 7010   |              | 1  | JP             | 05/02/15 9:53   | 50  | 10  | CD53003      |
| Iron           | <b>491</b> (60.0) |            | 6010C  |              | 3  | KJK            | 05/01/15 17:51  | 50  | 10  | CD53003      |
| Zinc           | ND (30.0)         |            | 6010C  |              | 3  | KJK            | 05/01/15 17:51  | 50  | 10  | CD53003      |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-024 Date Sampled: 04/29/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1504726 ESS Laboratory Sample ID: 1504726-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

## **Total Metals**

| Analyte<br>Arsenic | Results (MRL)<br>ND (3.0) | MDL | <b>Method</b> 7010 | <u>Limit</u> | $\frac{\mathbf{DF}}{3}$ | Analyst<br>JP | Analyzed 05/02/15 9:25 | <u>I/V</u> 50 | $\frac{\mathbf{F/V}}{10}$ | Batch<br>CD53003 |
|--------------------|---------------------------|-----|--------------------|--------------|-------------------------|---------------|------------------------|---------------|---------------------------|------------------|
| Iron               | <b>2600</b> (60.0)        |     | 6010C              |              | 3                       | KJK           | 05/01/15 18:03         | 50            | 10                        | CD53003          |
| Zinc               | <b>57.7</b> (30.0)        |     | 6010C              |              | 3                       | KJK           | 05/01/15 18:03         | 50            | 10                        | CD53003          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Client Sample ID: GZ-024 Date Sampled: 04/29/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1504726 ESS Laboratory Sample ID: 1504726-02

Sample Matrix: Ground Water

## **Classical Chemistry**

**Analyte** Results (MRL) **MDL** Method **Units Limit** Analyst Analyzed Batch **Chemical Oxygen Demand 433** (100) 5220D EEM 05/04/15 12:45 mg/L CE50418

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1504726

## **Quality Control Data**

|                                     |        |      |              | C "            | -                |      | 0/550          |     | 0.00         |           |
|-------------------------------------|--------|------|--------------|----------------|------------------|------|----------------|-----|--------------|-----------|
| Analyte                             | Result | MRL  | Units        | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
| .,                                  |        |      | Dissolved M  |                |                  |      |                |     |              |           |
|                                     |        | _    | DISSOIVEU 11 | ctais          |                  |      |                |     |              |           |
| Batch CD53003 - 3005A/200.7         |        |      |              |                |                  |      |                |     |              |           |
| Blank                               |        |      |              |                |                  |      |                |     |              |           |
| Arsenic                             | ND     | 2.5  | ug/L         |                |                  |      |                |     |              |           |
| Blank                               |        |      |              |                |                  |      |                |     |              |           |
| Arsenic                             | ND     | 1.0  | ug/L         |                |                  |      |                |     |              |           |
| Iron                                | ND     | 20.0 | ug/L         |                |                  |      |                |     |              |           |
| Zinc                                | ND     | 10.0 | ug/L         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |              |                |                  |      |                |     |              |           |
| Arsenic                             | 208    | 50.0 | ug/L         | 250.0          |                  | 83   | 80-120         |     |              |           |
| Iron                                | 1070   | 50.0 | ug/L         | 1250           |                  | 85   | 80-120         |     |              |           |
| Zinc                                | 221    | 25.0 | ug/L         | 250.0          |                  | 88   | 80-120         |     |              |           |
| LCS Dup                             |        |      |              |                |                  |      |                |     |              |           |
| Arsenic                             | 187    | 50.0 | ug/L         | 250.0          |                  | 75   | 80-120         | 10  | 20           | B-        |
| Iron                                | 1120   | 50.0 | ug/L         | 1250           |                  | 90   | 80-120         | 5   | 20           |           |
| Zinc                                | 223    | 25.0 | ug/L         | 250.0          |                  | 89   | 80-120         | 0.9 | 20           |           |
|                                     |        |      | Total Met    | als            |                  |      |                |     |              |           |
|                                     |        |      |              |                |                  |      |                |     |              |           |
| Batch CD53003 - 3005A/200.7         |        |      |              |                |                  |      |                |     |              |           |
| Blank                               |        |      |              |                |                  |      |                |     |              |           |
| Arsenic                             | ND     | 1.0  | ug/L         |                |                  |      |                |     |              |           |
| Iron                                | ND     | 20.0 | ug/L         |                |                  |      |                |     |              |           |
| Zinc                                | ND     | 10.0 | ug/L         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |              |                |                  |      |                |     |              |           |
| Arsenic                             | 208    | 50.0 | ug/L         | 250.0          |                  | 83   | 80-120         |     |              |           |
| Iron                                | 1070   | 50.0 | ug/L         | 1250           |                  | 85   | 80-120         |     |              |           |
| Zinc                                | 221    | 25.0 | ug/L         | 250.0          |                  | 88   | 80-120         |     |              |           |
| LCS Dup                             |        |      |              |                |                  |      |                |     |              |           |
| Arsenic                             | 187    | 50.0 | ug/L         | 250.0          |                  | 75   | 80-120         | 10  | 20           | B-        |
| Iron                                | 1120   | 50.0 | ug/L         | 1250           |                  | 90   | 80-120         | 5   | 20           |           |
| Zinc                                | 223    | 25.0 | ug/L         | 250.0          |                  | 89   | 80-120         | 0.9 | 20           |           |
|                                     |        | Cl   | assical Che  | mistry         |                  |      |                |     |              |           |
|                                     |        |      |              |                |                  |      |                |     |              |           |
| Batch CE50418 - General Preparation |        |      |              |                |                  |      |                |     |              |           |
| Blank                               |        |      |              |                |                  |      |                |     |              |           |
| Chemical Oxygen Demand              | ND     | 100  | mg/L         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |              |                |                  |      |                |     |              |           |
| Chemical Oxygen Demand              | 397    | 100  | mg/L         | 401.2          |                  | 99   | 95-105         |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1504726

#### **Notes and Definitions**

| U | Analyte included in the analysis, but not detected |
|---|----------------------------------------------------|
| _ |                                                    |

D Diluted.

B- Blank Spike recovery is below lower control limit (B-).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

F/V

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

[2C] Result was taken from the second column. Dual column analysis.

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1504726



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

<a href="http://www.a2la.org/scopepdf/2864-01.pdf">http://www.a2la.org/scopepdf/2864-01.pdf</a>

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls">http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP">http://datamine2.state.nj.us/DEP</a> OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory\_accreditation\_program/590095

#### **CHEMISTRY**

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
<a href="http://www.A2LA.org/dirsearchnew/newsearch.cfm">http://www.A2LA.org/dirsearchnew/newsearch.cfm</a>

CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

Yes

## Sample and Cooler Receipt Checklist

Client: GZA GeoEnvironmental, Inc. Client Project ID: \_

ESS Courier Shipped/Delivered Via:

ESS Project ID: <u>15040726</u> Date Project Due: 5/7/15 Days For Project: 5 Day

## Items to be checked upon receipt:

| 1. Air Bill Manifest Present?  | * No | 10. Are the samples properly preserved? |
|--------------------------------|------|-----------------------------------------|
| Air No.:                       |      | 11. Proper sample containers used?      |
| 2. Were Custody Seals Present? | Yes  | 12. Any air bubbles in the VOA vials?   |
| 3. Were Custody Seals Intact?  | Yes  | 13. Holding times exceeded?             |

\* No

Yes

Yes

Yes

Yes

Yes 4. Is Radiation count < 100 CPM? Yes

Cooler Temp: 5.3 Iced With: Ice

5. Is a cooler present?

6. Was COC included with samples?

7. Was COC signed and dated by client?

8. Does the COC match the sample

9. Is COC complete and correct?

| 11. Proper sample containers used?    | Yes |
|---------------------------------------|-----|
| 12. Any air bubbles in the VOA vials? | N/A |
| 13. Holding times exceeded?           | No  |
| 14. Sufficient sample volumes?        | Yes |
| 15. Any Subcontracting needed?        | No  |

16. Are ESS labels on correct containers? Yes|No 17. Were samples received intact?

ESS Sample IDs: \_\_\_\_ Sub Lab: \_\_\_\_\_

Analysis: \_\_\_\_\_

| 18. | Was there need to cal | I project manager to discuss sta | tus? If yes, please explain. |  |
|-----|-----------------------|----------------------------------|------------------------------|--|
|     |                       |                                  |                              |  |
|     |                       |                                  |                              |  |

| Ву | whom? |  |
|----|-------|--|
|    |       |  |

|   | Sample Number    | Properly Preserved | Container Type  | # of Containers   | Preservative |  |
|---|------------------|--------------------|-----------------|-------------------|--------------|--|
|   | 1                | Yes                | 250 ml Plastic  | 1                 | H2SO4        |  |
|   | 1                | Yes                | 250 ml Plastic  | 2                 | HNO3         |  |
|   | 2                | Yes                | 250 ml Plastic  | 1                 | H2SO4        |  |
|   | 2 /              | Yes                | 250 ml Plastic  | , 2               | HNO3         |  |
| ( | Completed By:    | D                  | ate/Time: 4/30  | 15 1735           |              |  |
| F | Reviewed By: MMC | u a Kes St. D      | ate/Time: タ/ ろの | (1) <i>[74</i> () |              |  |

USTODY SEAL



Signature

# CHAIN OF CUSTODY

Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 ESS Laboratory www.esslaboratory.com

Yes 🔏 PDFX Format: Excel X Access Electronic Deliverable Reporting Limits Turn Time Xstandard Other
If faster than 5 days, prior approval by laboratory is required # Other Other Is this project for any of the following:
MA-MCP Navy USACE ME State where samples were collected from:

Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Circle and/or Write Required Analysis Preservation Code 1- NP, 2- HC1, 3- H,SO4, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9-8H/m MCF-MĒĹVTS (13) Z)&N 0728 HAq PCB 608 Pesticides PCB\_ 1808 809 7808 EbH НИЯ EbH 9100 H4T 801**≥** MTBE/BTEX СКО  $Hd\Lambda$ \$108 1708 **У**ОЛ 0978 524.2 <del>5</del>79 rype of Containers 4 A Number of Containers W 3,4 bres Mager, howard @ 9 Za.com 3rd Floor Project Name (20 Char. or less) Sample Identification (20 Char. or less) Wynn Everett **Email Address** BS Federal St 01.0171521.20 T13 120-25 62-019 Address Internal Use Only ફ્ર 3 XIATAN SKAB dWO: GZA GEO Environmenta Fax# State MA 0955 Collection Time 1340 p21b-Acger Howard 5/16Z/h 4/28/K Cooler Present Contact Persor Telephone # のかちく ESS LAB Sample # Co. Name

\*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

(White) Lab Copy 2 (Yellow) Client Receipt

08211\_1/08/1 Date/Time

Date/Time

Received by: (Signature)

4/30/15/16 15 Date/Time

Date/Time

Relipquished by: (Signature)

Date/Time

Reserved by: (Signature)

client updated project name and # by e-mail cmt 5/1/15

Sampled by: A TR

Comments:

[ ] Technicians\_

[ ] Pickup

No NA:

11) Total and Dissolved Metals (As, Fe, 2n,

Relinquished by: (Signature)

Date/Time

Received Ly (Signature

5/180 | 5/1/6/h

Relinquished by: (Signature)

Date/Time

Relinquished by: (Signature)

Receised by: (Signature)

Cooler Temp: 6.3°C/41 Page 15 of 16

Seals Intact

# CHAIN OF CUSTODY

Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 ESS Laboratory www.esslaboratory.com

Yes 🔏 PDFX Format: Excel X Access Electronic Deliverable Reporting Limits Turn Time Xstandard Other
If faster than 5 days, prior approval by laboratory is required # Other Other Space where samples were collected from:

MA RI CT NH NJ NY ME

Is this project for any of the following:

MA-MCP

Navy

Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Circle and/or Write Required Analysis Preservation Code 1- NP, 2- HC1, 3- H3SO4, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9mCP-METALS (13) Z)&N 0728 HAq PCB 608 Pesticides PCB\_ 1808 809 7808 EbH НИЯ НІЭ 9100 H4T 801**≥** MTBE/BTEX СКО  $Hd\Lambda$ \$108 1708 **УОЛ** 0978 524.2 <del>5</del>79 rype of Containers 4 A Number of Containers W 3,4 bres Mager, howard @ 9 Za.com 3rd Place Project Name (20 Char. or less) Sample Identification (20 Char. or less) Sampled by: A TR Email Address BS Federal St 120-25 01120 62-019 Project # Internal Use Only Address [ ] Pickup ફ્ર 3 XIATAN SKAB COMP GZA GEO Environmenta Fax# No NA: State MA 0955 Collection Time 1340 p21b-Acger Howard 5/16Z/h 4/29/K Cooler Present Contact Persor Telephone # のかちく ESS LAB Sample # Co. Name

\*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A

Please fax all changes to Chain of Custody in writing.

(White) Lab Copy 2 (Yellow) Client Receipt

1/30/11/130 Date/Time

Date/Time

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

430/5-1315

Date/Time

Received Ly (Signature

5/180 | 5/1/6/h

Relinquished by: (Signature)

Date/Time

Relinquished by: (Signature)

Date/Time

Reserved by: (Signature)

まずが必

intotal and Dissolve metals (

Comments:

[ ] Technicians\_

Receised by: (Signature)

Date/Time

Relipquished by: (Signature)

Seals Intact

Cooler Temp: 6.3°C/46



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

**RE:** Wynn Everett - RGP (01.0171521.52)

ESS Laboratory Work Order Number: 1701008

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 5:01 pm, Jan 06, 2017

Laurel Stoddard

Laboratory Director

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state tandards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1701008



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

## SAMPLE RECEIPT

The following samples were received on January 03, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

| Lab Number | Sample Name       | Matrix      | Analysis                                  |
|------------|-------------------|-------------|-------------------------------------------|
| 1701008-01 | Influent_01.03.17 | Waste Water | §, 2540D, 4500 CN CE, 6010B, 6010C, 7010, |
|            |                   |             | 8260B, 8270D SIM                          |
| 1701008-02 | Effluent_01.03.17 | Waste Water | §, 2540D, 4500 CN CE, 6010B, 6010C, 7010, |
|            |                   |             | 8260B, 8270D SIM                          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701008

## **PROJECT NARRATIVE**

**Total Metals** 

1701008-01 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Nickel

1701008-02 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Arsenic, Cadmium

CA70304-BS2 Blank Spike recovery is above upper control limit (B+).

Lead (122% @ 80-120%)

No other observations noted.

End of Project Narrative.

## **DATA USABILITY LINKS**

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1701008



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

## **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.03.17 Date Sampled: 01/03/17 08:25

Percent Solids: N/A

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-01

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

## **Total Metals**

| <b>Analyte</b> | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst |                | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|----------------------|------------|--------|--------------|-----------|---------|----------------|------------|-----|--------------|
| Arsenic        | <b>246</b> (30.0)    |            | 6010C  |              | 3         | KJK     | 01/05/17 13:04 | 50         | 10  | CA70304      |
| Cadmium        | <b>EL</b> ND (0.5)   |            | 7010   |              | 5         | KJK     | 01/04/17 23:50 | 50         | 10  | CA70304      |
| Chromium III   | ND (12)              |            | 6010C  |              | 3         | JLK     | 01/05/17 13:04 | 1          | 1   | [CALC]       |
| Copper         | ND (4.0)             |            | 6010C  |              | 1         | KJK     | 01/04/17 21:44 | 50         | 10  | CA70304      |
| Hardness       | <b>3350</b> (2.6)    |            | 6010B  |              | 10        | KJK     | 01/05/17 12:59 | 1          | 1   | [CALC]       |
| Iron           | <b>195000</b> (60.0) |            | 6010C  |              | 3         | KJK     | 01/05/17 13:04 | 50         | 10  | CA70304      |
| Lead           | ND (2.0)             |            | 7010   |              | 5         | KJK     | 01/05/17 7:30  | 50         | 10  | CA70304      |
| Nickel         | <b>EL</b> ND (12.0)  |            | 6010C  |              | 3         | KJK     | 01/05/17 13:04 | 50         | 10  | CA70304      |
| Zinc           | <b>164</b> (30.0)    |            | 6010C  |              | 3         | KJK     | 01/05/17 13:04 | 50         | 10  | CA70304      |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.03.17 Date Sampled: 01/03/17 08:25

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-01

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

## 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane       | Results (MRL)<br>ND (1.0) | <b>MDL</b> | Method<br>8260B | <u>Limit</u> | <u><b>DF</b></u> | Analyzed 01/04/17 13:09 | Sequence<br>C7A0032 | Batch<br>CA70429 |
|----------------------------------|---------------------------|------------|-----------------|--------------|------------------|-------------------------|---------------------|------------------|
| Trichloroethene                  | ND (1.0)                  |            | 8260B           |              | 1                | 01/04/17 13:09          | C7A0032             | CA70429          |
|                                  |                           | %Recovery  | Qualifier       | Limits       |                  |                         |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                           | 94 %       |                 | 70-130       |                  |                         |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                           | 84 %       |                 | 70-130       |                  |                         |                     |                  |
| Surrogate: Dibromofluoromethane  |                           | 94 %       |                 | 70-130       |                  |                         |                     |                  |
| Surrogate: Toluene-d8            |                           | 96 %       |                 | 70-130       |                  |                         |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent 01.03.17 Date Sampled: 01/03/17 08:25

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 1/3/17 16:30

## 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>0.432 (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> 1 | <b>Analyzed</b> 01/04/17 9:32 | Sequence<br>C7A0022 | Batch<br>CA70335 |
|---------------------------|--------------------------------|------------|---------------------|--------------|--------------------|-------------------------------|---------------------|------------------|
|                           | %                              | Recovery   | Qualifier           | Limits       |                    |                               |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                | 53 %       |                     | 15-115       |                    |                               |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

♦ Quality

Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.03.17 Date Sampled: 01/03/17 08:25

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 1/3/17 15:00

## 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Analyte<br>Fluorene               | Results (MRL)<br>ND (0.19) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <b>Analyzed</b> 01/04/17 3:24 | Sequence<br>C7A0019 | Batch<br>CA70319 |
|-----------------------------------|----------------------------|------------|---------------------|--------------|------------------|-------------------------------|---------------------|------------------|
|                                   | 9/                         | 6Recovery  | Qualifier           | Limits       |                  |                               |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                            | 52 %       |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                            | 72 %       |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: Nitrobenzene-d5        |                            | 65 %       |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: p-Terphenyl-d14        |                            | 84 %       |                     | 30-130       |                  |                               |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.03.17 Date Sampled: 01/03/17 08:25

Percent Solids: N/A

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-01

Sample Matrix: Waste Water

## **Classical Chemistry**

| Analyte<br>Chloride    | Results (MRL)<br>4700 (200) | MDL Method § | <u>Limit</u> | <u><b>DF</b></u> | Analys<br>SUB | Analyzed 01/05/17 14:56 | Units<br>mg/L | Batch<br>CA70427 |
|------------------------|-----------------------------|--------------|--------------|------------------|---------------|-------------------------|---------------|------------------|
| Total Cyanide (LL)     | <b>58.3</b> (5.00)          | 4500 CN CE   |              | 1                | EEM           | 01/04/17 11:00          | ug/L          | CA70424          |
| Total Suspended Solids | <b>8</b> (5)                | 2540D        |              | 1                | EEM           | 01/03/17 16:35          | mg/L          | CA70314          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.03.17

Date Sampled: 01/03/17 08:00

Percent Solids: N/A

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-02

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

## **Total Metals**

| <u>Analyte</u> | Results (MRL)      | <b>MDL</b> | Method | <u>Limit</u> | <b>DF</b> | Analyst | <b>Analyzed</b> | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|--------------------|------------|--------|--------------|-----------|---------|-----------------|------------|-----|--------------|
| Arsenic        | EL ND (30.0)       |            | 6010C  |              | 3         | KJK     | 01/05/17 13:14  | 50         | 10  | CA70304      |
| Cadmium        | <b>EL</b> ND (0.5) |            | 7010   |              | 5         | KJK     | 01/04/17 23:25  | 50         | 10  | CA70304      |
| Chromium III   | ND (10)            |            | 6010C  |              | 1         | JLK     | 01/04/17 21:49  | 1          | 1   | [CALC]       |
| Copper         | ND (4.0)           |            | 6010C  |              | 1         | KJK     | 01/04/17 21:49  | 50         | 10  | CA70304      |
| Hardness       | <b>1560</b> (2.6)  |            | 6010B  |              | 10        | KJK     | 01/05/17 13:10  | 1          | 1   | [CALC]       |
| Iron           | <b>69.3</b> (60.0) |            | 6010C  |              | 3         | KJK     | 01/05/17 13:14  | 50         | 10  | CA70304      |
| Lead           | ND (2.0)           |            | 7010   |              | 5         | KJK     | 01/05/17 7:36   | 50         | 10  | CA70304      |
| Nickel         | ND (4.0)           |            | 6010C  |              | 1         | KJK     | 01/04/17 21:49  | 50         | 10  | CA70304      |
| Zinc           | ND (30.0)          |            | 6010C  |              | 3         | KJK     | 01/05/17 13:14  | 50         | 10  | CA70304      |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.03.17 Date Sampled: 01/03/17 08:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-02

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

## 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane       | Results (MRL)<br>ND (1.0) | <u>MDL</u> | Method<br>8260B | <u>Limit</u> | <b><u>DF</u></b> 1 | <u>Analyzed</u> 01/04/17 12:44 | Sequence<br>C7A0032 | Batch<br>CA70429 |
|----------------------------------|---------------------------|------------|-----------------|--------------|--------------------|--------------------------------|---------------------|------------------|
| Trichloroethene                  | ND (1.0)                  |            | 8260B           |              | 1                  | 01/04/17 12:44                 | C7A0032             | CA70429          |
|                                  |                           | %Recovery  | Qualifier       | Limits       |                    |                                |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                           | 94 %       |                 | 70-130       |                    |                                |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                           | 80 %       |                 | 70-130       |                    |                                |                     |                  |
| Surrogate: Dibromofluoromethane  |                           | 97 %       |                 | 70-130       |                    |                                |                     |                  |
| Surrogate: Toluene-d8            |                           | 98 %       |                 | 70-130       |                    |                                |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent 01.03.17 Date Sampled: 01/03/17 08:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-02

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 1/3/17 16:30

## 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>ND (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> 1 | <b>Analyzed</b> 01/04/17 10:07 | Sequence<br>C7A0022 | Batch<br>CA70335 |
|---------------------------|-----------------------------|------------|---------------------|--------------|--------------------|--------------------------------|---------------------|------------------|
|                           | %/                          | Recovery   | Qualifier           | Limits       |                    |                                |                     |                  |
| Surrogate: 1.4-Dioxane-d8 |                             | 11 0%      |                     | 15-115       |                    |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

Service



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.03.17 Date Sampled: 01/03/17 08:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-02

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 1/3/17 15:00

## 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Analyte<br>Fluorene               | Results (MRL)<br>ND (0.19) | MDL       | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <b><u>Analyzed</u></b> 01/04/17 4:13 | Sequence<br>C7A0019 | Batch<br>CA70319 |
|-----------------------------------|----------------------------|-----------|---------------------|--------------|------------------|--------------------------------------|---------------------|------------------|
|                                   | 9                          | 6Recovery | Qualifier           | Limits       |                  |                                      |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                            | 60 %      |                     | 30-130       |                  |                                      |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                            | 78 %      |                     | 30-130       |                  |                                      |                     |                  |
| Surrogate: Nitrobenzene-d5        |                            | 74 %      |                     | 30-130       |                  |                                      |                     |                  |
| Surrogate: p-Terphenyl-d14        |                            | 83 %      |                     | 30-130       |                  |                                      |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.03.17 Date Sampled: 01/03/17 08:00

Percent Solids: N/A

ESS Laboratory Work Order: 1701008 ESS Laboratory Sample ID: 1701008-02

Sample Matrix: Waste Water

## **Classical Chemistry**

| Analyte<br>Chloride           | Results (MRL)<br>3900 (200) | MDL Met | hod <u>Limit</u> | <u><b>DF</b></u> | Analyst<br>SUB | Analyzed 01/05/17 14:56 | Units<br>mg/L | Batch<br>CA70427 |
|-------------------------------|-----------------------------|---------|------------------|------------------|----------------|-------------------------|---------------|------------------|
| Total Cyanide (LL)            | ND (5.00)                   | 4500 C  | N CE             | 1                | EEM            | 01/04/17 11:00          | ug/L          | CA70424          |
| <b>Total Suspended Solids</b> | <b>5</b> (5)                | 254     | )D               | 1                | EEM            | 01/03/17 16:35          | mg/L          | CA70314          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701008

## **Quality Control Data**

|                                  |        | Quali       | ty Cont       |                | ıca              |          |                  |     |              |           |
|----------------------------------|--------|-------------|---------------|----------------|------------------|----------|------------------|-----|--------------|-----------|
| Analyte                          | Result | MRL         | Units         | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits   | RPD | RPD<br>Limit | Qualifier |
|                                  |        |             | Total Meta    | als            |                  |          |                  |     |              |           |
| Batch CA70304 - 3005A            |        |             |               |                |                  |          |                  |     |              |           |
| Blank                            |        |             |               |                |                  |          |                  |     |              |           |
| Cadmium                          | ND     | 0.1         | ug/L          |                |                  |          |                  |     |              |           |
| Calcium                          | ND     | 40.0        | ug/L          |                |                  |          |                  |     |              |           |
| Chromium III                     | ND     | 4           | ug/L          |                |                  |          |                  |     |              |           |
| Copper                           | ND     | 4.0         | ug/L          |                |                  |          |                  |     |              |           |
| Hardness                         | ND     | 0.3         | mg/L          |                |                  |          |                  |     |              |           |
| iron                             | ND     | 20.0        | ug/L          |                |                  |          |                  |     |              |           |
| Lead                             | ND     | 0.4         | ug/L          |                |                  |          |                  |     |              |           |
| Magnesium                        | ND     | 40.0        | ug/L          |                |                  |          |                  |     |              |           |
| Nickel                           | ND     | 4.0         | ug/L          |                |                  |          |                  |     |              |           |
| Zinc                             | ND     | 10.0        | ug/L          |                |                  |          |                  |     |              |           |
| LCS                              |        |             |               |                |                  |          |                  |     |              |           |
| Cadmium                          | 50.5   | 50.0        | ug/L          | 50.00          |                  | 101      | 80-120           |     |              |           |
| Calcium                          | 923    | 40.0        | ug/L<br>ug/L  | 1000           |                  | 92       | 80-120           |     |              |           |
| Chromium III                     | 89.0   | 4           | ug/L          | 1000           |                  | 72       | 00 120           |     |              |           |
| Copper                           | 86.7   | 4.0         | ug/L<br>ug/L  | 100.0          |                  | 87       | 80-120           |     |              |           |
| Hardness                         | 6.00   | 0.3         | mg/L          | 100.0          |                  | 07       | 00 120           |     |              |           |
| Iron                             | 433    | 20.0        |               | 500.0          |                  | 87       | 80-120           |     |              |           |
| Lead                             | 122    | 10.0        | ug/L<br>ug/L  | 100.0          |                  | 122      | 80-120           |     |              | B+        |
|                                  | 898    | 40.0        |               |                |                  | 90       |                  |     |              | DŦ        |
| Magnesium<br>Nickel              | 89.7   |             | ug/L          | 1000           |                  |          | 80-120           |     |              |           |
| Zinc                             |        | 4.0<br>10.0 | ug/L          | 100.0<br>100.0 |                  | 90<br>92 | 80-120           |     |              |           |
|                                  | 92.3   | 10.0        | ug/L          | 100.0          |                  | 92       | 80-120           |     |              |           |
| Batch CA70328 - [CALC]           |        |             |               |                |                  |          |                  |     |              |           |
| Blank                            |        |             |               |                |                  |          |                  |     |              |           |
| Chromium III                     | ND     | 10          | ug/L          |                |                  |          |                  |     |              |           |
| LCS                              |        |             |               |                |                  |          |                  |     |              |           |
| Chromium III                     | ND     |             | ug/L          |                |                  |          |                  |     |              |           |
| LCS Dup                          |        |             |               |                |                  |          |                  |     |              |           |
| Chromium III                     | ND     |             | ug/L          |                |                  |          |                  |     |              |           |
|                                  |        | 8260B Vo    | latile Organi | ic Compo       | unds             |          |                  |     |              |           |
| Batch CA70429 - 5030B            |        |             |               |                |                  |          |                  |     |              |           |
| Blank                            |        |             |               |                |                  |          |                  |     |              |           |
| 1,2-Dichloroethane               | ND     | 1.0         | ug/L          |                |                  |          |                  |     |              |           |
| Trichloroethene                  | ND     | 1.0         | ug/L          |                |                  |          |                  |     |              |           |
| Surrogate: 1,2-Dichloroethane-d4 | 23.7   |             | ug/L          | 25.00          |                  | 95       | 70-130           |     |              |           |
| Surrogate: 4-Bromofluorobenzene  | 20.0   |             | ug/L          | 25.00          |                  | 80       | 70-130           |     |              |           |
| Surrogate: Dibromofluoromethane  | 24.2   |             | ug/L          | 25.00          |                  | 97       | 70-130           |     |              |           |
| Surrogate: Toluene-d8            | 24.3   |             | ug/L          | 25.00          |                  | 97       | 70-130           |     |              |           |
| LCS                              |        |             |               |                |                  |          |                  |     |              |           |
| 1,2-Dichloroethane               | 9.4    |             | ug/L          | 10.00          |                  | 94       | 70-130           |     |              |           |
| Trichloroethene                  | 10.0   |             | ug/L          | 10.00          |                  | 100      | 70-130           |     |              |           |
|                                  | 24.7   |             | ug/L<br>ug/L  | 25.00          |                  | 99       | 70-130<br>70-130 |     |              |           |
| Surrogate: 1,2-Dichloroethane-d4 | 27.7   |             | ug/ L         | 23.00          |                  | ))       | , 0 150          |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701008

| Quality Control Data             |            |               |              |                |                  |            |                |     |              |           |
|----------------------------------|------------|---------------|--------------|----------------|------------------|------------|----------------|-----|--------------|-----------|
| Analyte                          | Result     | MRL           | Units        | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|                                  |            | 8260B Vol     | latile Organ | ic Compo       | unds             |            |                |     |              |           |
| Batch CA70429 - 5030B            |            |               |              |                |                  |            |                |     |              |           |
| Surrogate: 4-Bromofluorobenzene  | 20.2       |               | ug/L         | 25.00          |                  | 81         | 70-130         |     |              |           |
| Surrogate: Dibromofluoromethane  | 25.3       |               | ug/L         | 25.00          |                  | 101        | 70-130         |     |              |           |
| Surrogate: Toluene-d8            | 23.9       |               | ug/L         | 25.00          |                  | 95         | 70-130         |     |              |           |
| LCS Dup                          |            |               |              |                |                  |            |                |     |              |           |
| 1,2-Dichloroethane               | 9.8        |               | ug/L         | 10.00          |                  | 98         | 70-130         | 4   | 25           |           |
| Trichloroethene                  | 10.1       |               | ug/L         | 10.00          |                  | 101        | 70-130         | 0.8 | 25           |           |
| Surrogate: 1,2-Dichloroethane-d4 | 24.3       |               | ug/L         | 25.00          |                  | 97         | 70-130         |     |              |           |
| Surrogate: 4-Bromofluorobenzene  | 19.8       |               | ug/L         | 25.00          |                  | <i>79</i>  | 70-130         |     |              |           |
| Surrogate: Dibromofluoromethane  | 25.2       |               | ug/L         | 25.00          |                  | 101        | 70-130         |     |              |           |
| Surrogate: Toluene-d8            | 23.3       |               | ug/L         | 25.00          |                  | 93         | 70-130         |     |              |           |
|                                  | 8270D(SIM) | Semi-Volatile | Organic Co   | ompounds       | s w/ Isoto       | pe Dilutio | on             |     |              |           |
| Batch CA70335 - 3535A            |            |               |              |                |                  |            |                |     |              |           |
| Blank                            |            |               |              |                |                  |            |                |     |              |           |
| 1,4-Dioxane                      | ND         | 0.250         | ug/L         |                |                  |            |                |     |              |           |
| Surrogate: 1,4-Dioxane-d8        | 2.69       |               | ug/L         | 5.000          |                  | 54         | 15-115         |     |              |           |
| LCS                              |            |               |              |                |                  |            |                |     |              |           |
| 1,4-Dioxane                      | 9.69       | 0.250         | ug/L         | 10.00          |                  | 97         | 40-140         |     |              |           |
| Surrogate: 1,4-Dioxane-d8        | 2.75       |               | ug/L         | 5.000          |                  | 55         | 15-115         |     |              |           |
| LCS Dup                          |            |               |              |                |                  |            |                |     |              |           |
| 1,4-Dioxane                      | 9.23       | 0.250         | ug/L         | 10.00          |                  | 92         | 40-140         | 5   | 20           |           |
| Surrogate: 1,4-Dioxane-d8        | 2.55       |               | ug/L         | 5.000          |                  | 51         | 15-115         |     |              |           |
|                                  | 027        | 70D/SIM) Dol  | unudaar Ar   | omatic U       | (drocarbo        | n          |                |     |              |           |

## 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Batch CA70319 - 3510C             |       |      |      |       |           |        |   |    |  |
|-----------------------------------|-------|------|------|-------|-----------|--------|---|----|--|
| Blank                             |       |      |      |       |           |        |   |    |  |
| Fluorene                          | ND    | 0.20 | ug/L |       |           |        |   |    |  |
| Surrogate: 1,2-Dichlorobenzene-d4 | 0.954 |      | ug/L | 2.500 | 38        | 30-130 |   |    |  |
| Surrogate: 2-Fluorobiphenyl       | 1.58  |      | ug/L | 2.500 | 63        | 30-130 |   |    |  |
| Surrogate: Nitrobenzene-d5        | 1.72  |      | ug/L | 2.500 | 69        | 30-130 |   |    |  |
| Surrogate: p-Terphenyl-d14        | 1.92  |      | ug/L | 2.500 | <i>77</i> | 30-130 |   |    |  |
| LCS                               |       |      |      |       |           |        |   |    |  |
| Fluorene                          | 2.81  | 0.20 | ug/L | 4.000 | 70        | 40-140 |   |    |  |
| Surrogate: 1,2-Dichlorobenzene-d4 | 0.915 |      | ug/L | 2.500 | <i>37</i> | 30-130 |   |    |  |
| Surrogate: 2-Fluorobiphenyl       | 1.59  |      | ug/L | 2.500 | 63        | 30-130 |   |    |  |
| Surrogate: Nitrobenzene-d5        | 1.66  |      | ug/L | 2.500 | 66        | 30-130 |   |    |  |
| Surrogate: p-Terphenyl-d14        | 2.21  |      | ug/L | 2.500 | 88        | 30-130 |   |    |  |
| LCS Dup                           |       |      |      |       |           |        |   |    |  |
| Fluorene                          | 2.92  | 0.20 | ug/L | 4.000 | 73        | 40-140 | 4 | 20 |  |
| Surrogate: 1,2-Dichlorobenzene-d4 | 0.910 |      | ug/L | 2.500 | 36        | 30-130 |   |    |  |
| Surrogate: 2-Fluorobiphenyl       | 1.55  |      | ug/L | 2.500 | 62        | 30-130 |   |    |  |
| Surrogate: Nitrobenzene-d5        | 1.68  |      | ug/L | 2.500 | 67        | 30-130 |   |    |  |
| Surrogate: p-Terphenyl-d14        | 2.22  |      | ug/L | 2.500 | 89        | 30-130 |   |    |  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701008

## **Quality Control Data**

|                                     |        |      |              | Spike  | Source |      | %REC   |     | RPD   |           |
|-------------------------------------|--------|------|--------------|--------|--------|------|--------|-----|-------|-----------|
| Analyte                             | Result | MRL  | Units        | Level  | Result | %REC | Limits | RPD | Limit | Qualifier |
|                                     |        | C    | lassical Che | mistry |        |      |        |     |       |           |
| Batch CA70314 - General Preparation |        |      |              |        |        |      |        |     |       |           |
| Blank                               |        |      |              |        |        |      |        |     |       |           |
| Total Suspended Solids              | ND     | 5    | mg/L         |        |        |      |        |     |       |           |
| LCS                                 |        |      |              |        |        |      |        |     |       |           |
| Total Suspended Solids              | 66     |      | mg/L         | 68.70  |        | 96   | 80-120 |     |       |           |
| Batch CA70424 - TCN Prep            |        |      |              |        |        |      |        |     |       |           |
| Blank                               |        |      |              |        |        |      |        |     |       |           |
| Total Cyanide (LL)                  | ND     | 5.00 | ug/L         |        |        |      |        |     |       |           |
| LCS                                 |        |      |              |        |        |      |        |     |       |           |
| Total Cyanide (LL)                  | 20.4   | 5.00 | ug/L         | 20.06  |        | 102  | 90-110 |     |       |           |
| LCS                                 |        |      |              |        |        |      |        |     |       |           |
| Total Cyanide (LL)                  | 149    | 5.00 | ug/L         | 150.4  |        | 99   | 90-110 |     |       |           |
| LCS Dup                             |        |      |              |        |        |      |        |     |       |           |
| Total Cvanide (LL)                  | 149    | 5.00 | ua/L         | 150.4  |        | 99   | 90-110 | 0.2 | 20    |           |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701008

#### **Notes and Definitions**

| U  | Analyte included in the analysis, but not detected          |
|----|-------------------------------------------------------------|
| EL | Elevated Method Reporting Limits due to sample matrix (EL). |
| D  | Diluted.                                                    |

Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry

**RPD** Relative Percent Difference Method Detection Limit **MDL** MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DL Initial Volume I/V F/V Final Volume

B+

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 1

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery [CALC] Calculated Analyte

**SUB** Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1701008



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental">http://www.ct.gov/dph/lib/dph/environmental</a> health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls">http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory\_accreditation\_program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



## LABORATORY REPORT

**ESS Laboratory** Attn: Mr. Shawn Morrell 185 Frances Avenue Cranston, RI 02910-2211 Date Received: **Date Reported:** P.O. Number

1/3/2017 1/5/2017 B02406

Work Order #: 1701-00082

Project Name: PROJECT# 1701008

Enclosed are the analytical results and Chain of Custody for your project referenced above. The sample(s) were analyzed by our Warwick, RI laboratory unless noted otherwise. When applicable, indication of sample analysis at our Hudson, MA laboratory and/or subcontracted results are noted and subcontracted reports are enclosed in their entirety.

All samples were analyzed within the established guidelines of US EPA approved methods with all requirements met, unless otherwise noted at the end of a given sample's analytical results or in a case narrative.

The Detection Limit is defined as the lowest level that can be reliably achieved during routine laboratory conditions.

These results only pertain to the samples submitted for this Work Order # and this report shall not be reproduced except in its entirety.

We certify that the following results are true and accurate to the best of our knowledge. If you have questions or need further assistance, please contact our Customer Service Department.

Approved by:

Yihai Ding

**Technical Director** 

Laboratory Certification Numbers (as applicable to sample's origin state): Warwick RI \* RI LAI00033, MA M-RI015, CT PH-0508, ME RI00015, NH 2070, NY 11726

Hudson MA \* M-MA1117, RI LAO00319

## R.I. Analytical Laboratories, Inc.

## **Laboratory Report**

**ESS Laboratory** 

Work Order #: 1701-00082

Project Name: PROJECT# 1701008

Sample Number:

001

Sample Description:

1701008-01

Sample Type:

**GRAB** 

Sample Date / Time:

1/03/2017 @ 08:25

**PARAMETER** 

**SAMPLE** 

DET.

DATE/TIME

**RESULTS** 

**LIMIT** UNITS **METHOD** 

**ANALYZED** 

**ANALYST** 

Chloride

4700

200

mg/l

EPA 300.0

1/4/2017

17:10

AEG

Sample Number:

002

Sample Description: Sample Type:

**PARAMETER** 

1701008-02 **GRAB** 

Sample Date / Time:

1/03/2017 @ 08:00

**SAMPLE** DET.

RESULTS

LIMIT UNITS

mg/l

**METHOD** 

DATE/TIME

**ANALYZED** 

**ANALYST** 

Chloride

3900

200

EPA 300.0

1/4/2017

17:24

AEG



ESS Laboratory 1701-00082 1/5/17

#### -Method Blanks Results-

| Parameter | Units | Results | Date Analyzed |
|-----------|-------|---------|---------------|
| Chloride  | mg/l  | <1.0    | 1/4/2017      |

#### -LCS/LCS Duplicate Data Results-

| Parameter | Spike<br>Conc | LCS<br>Conc | LCS<br>% Rec | LCS Dup<br>Conc | LCS DUP<br>% Rec | % RPD | Date Analyzed |
|-----------|---------------|-------------|--------------|-----------------|------------------|-------|---------------|
| Chloride  | 10.0          | 9.74        | 97           |                 |                  |       | 1/4/2017      |

| ESS Laboratory                                                | atory             |                 | RIAL                   |                                       | <del>ပ</del> ်    | CHAIN OF CUSTODY                                                                                                        | cus          | TODY                                      |                      | ESS Lab #                 |                                          | 1701008                 |                 |                     |     |          |
|---------------------------------------------------------------|-------------------|-----------------|------------------------|---------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------|----------------------|---------------------------|------------------------------------------|-------------------------|-----------------|---------------------|-----|----------|
| Division of Thielsch Engineering, Inc.                        | ch Engineer.      | ing, Inc.       |                        | Turn Time                             | DUE               | DUE 1/5/17                                                                                                              |              |                                           |                      |                           |                                          |                         |                 |                     |     |          |
| 185 Frances Avenue, Cranston RI 02910-2211                    | nue,Cransto       | ın RI 029       | 10-2211                | Regulatory State:                     | MA                | RI CT NH NJ N                                                                                                           | NY ME        | Other                                     | ı                    | Reporting                 | Reporting Limits -                       | RGP LIMIT - Appendix VI | MII - A         | \ppen               | gix | <b>=</b> |
| Tel. (401)461-7181 Fax (401)461-4486                          | 31 Fax (40        | 1)461-44        | 98                     | Is this project for any               | or any of the fol | of the following:(please circle)                                                                                        | (ejo         |                                           |                      |                           |                                          | -                       |                 |                     |     |          |
| www.esslaboratory.com                                         | ry.com            |                 | ٠                      | ٦.                                    | Navy USAC         | ο.                                                                                                                      | RGP          |                                           |                      | Ele                       | Electonic Deliverables Excel* Access PDF | erables Ex              | cel* Acc        | ess PD              | Ľ.  |          |
| Co. Name                                                      | ESS               | ESS Laboratory  |                        | Project #                             |                   | Project Name                                                                                                            |              |                                           |                      |                           | 7                                        |                         |                 |                     |     |          |
| Contact Person                                                | Sha               | Shawn Morrell   |                        | Proj. Location                        |                   |                                                                                                                         |              |                                           |                      | sisy                      | :                                        |                         |                 | ninon-485akasann go |     |          |
| Address                                                       |                   |                 | City, State            |                                       |                   | Zip                                                                                                                     |              | PO#<br>B 2406                             | 90                   | lsnA                      | 0.00                                     |                         |                 |                     |     |          |
| <sup>Tel.</sup> ext 3083                                      | 3083              |                 | email:                 | smorrell@thielsc                      | ielsch.com        |                                                                                                                         |              |                                           |                      |                           | g əp                                     |                         |                 |                     |     |          |
| ESS Lab ID D                                                  | Date Colle        | Collection Time | Grab -G<br>Composite-C | Matrix                                | Sam               | Sample ID                                                                                                               | Pres<br>Code | # of<br>Containers                        | Type of<br>Container | Vol of<br>Container       | holdC                                    |                         |                 | ·                   |     |          |
| 11,                                                           | 1/3/17 (          | 0825            | ე                      | ww                                    | 1701(             | 1701008-01                                                                                                              | -            | -                                         | ۵                    |                           | ×                                        | 1                       | -               |                     |     |          |
| *                                                             | 1/3/17 (          | 0800            | <sub>ග</sub>           | ww                                    | 1701(             | 1701008-02                                                                                                              | -            | -                                         | ۵                    |                           | ×                                        |                         |                 |                     |     | :        |
|                                                               |                   |                 |                        |                                       |                   |                                                                                                                         |              |                                           |                      |                           |                                          |                         |                 |                     |     |          |
|                                                               |                   |                 |                        |                                       |                   |                                                                                                                         |              |                                           |                      |                           |                                          |                         |                 |                     |     |          |
|                                                               |                   |                 |                        |                                       |                   |                                                                                                                         |              |                                           |                      |                           |                                          |                         |                 |                     |     |          |
|                                                               |                   |                 |                        |                                       |                   |                                                                                                                         |              |                                           |                      |                           |                                          |                         |                 |                     |     |          |
|                                                               |                   |                 |                        |                                       |                   |                                                                                                                         |              |                                           |                      |                           |                                          |                         |                 |                     |     |          |
| Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA | ass AG-Amber Gla  | iss S-Sterile V | -VOA                   |                                       | Matrix: S-Soil S  | Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | V-Wastewate  | r GW-Groundwai                            | ter SW-Surfac        | e Water DW-D              | ninking Water                            | 0-0il W-Wig             | bes F-Filter    |                     | 1   |          |
| Cooler Present                                                | Yes               | Si              | oN_                    | Internal Use Only                     | Only              | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9Na2S2O3                      | 1-NP, 2-H    | ICI, 3-H2SO4, 4                           | -HNO3, 5-N           | 3OH, 6-MeOF               | 1, 7-Asorbic                             | Acid, 8-ZnA             | ot, 9Na28       | S203                |     |          |
| Seals Intact                                                  | Yes               | No NA:          | -                      | [ ] Pickup                            |                   | Sampled by :                                                                                                            |              |                                           |                      |                           |                                          |                         |                 |                     |     |          |
| Cooler Temperature:                                           | ire:              |                 |                        | [ ] Technician                        | ın                | Comments:                                                                                                               |              |                                           | Ţ.                   | *Provide ESS Deliverables | S Delive                                 | rables                  |                 |                     |     |          |
| Reingdished by: (Signature, Date & Time)                      | Date & Time)      | 13              | Received by: (Sign     | Received by: (Signature, Date & Time) | 1722              |                                                                                                                         | Relinquished | Relinquished by: (Signature, Date & Time) | Date & Time)         |                           | Received by: (Signature, Date & Time)    | ignature, Dat           | e & Time)       |                     |     |          |
| Refinquished by: (Signature, Date & Time)                     | Date & Time)      |                 | Received by: (Sign     | Received by: (Signature, Date & Time) |                   |                                                                                                                         | Relinquished | Relinquished by: (Signature, Date & Time) | ate & Time)          |                           | Received by: (Signature, Date & Time)    | ignature, Date          | s & Time)       |                     |     |          |
| * By circling MA-MCP, client acknowledges sampels were        | acknowledges samp | oels were       | March                  | Please Mothod Dians                   | lease fax to the  | Please fax to the laboratory all changes to Chain of Custody                                                            | anges to (   | Chain of Cust                             | ybc                  |                           |                                          | 3                       | W.O# 1701-60082 | 175                 | 10  | 78       |

collected in accordance with MADEP CAM VIIA

Report Method Blank & Laboratory Control Sample Results

## **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client: GZA - Norwood, MA - GZA/CMT  Shipped/Delivered Via: ESS Courier                                                              | ESS Project ID: 1701008  Date Received: 1/3/2017  Project Due Date: 1/5/2017 | <u>_</u>             |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|
| Shipped Delivered Via                                                                                                                | Days for Project: 2 Day                                                      | <b>_</b>             |
| 1. Air bill manifest present? No NA NA                                                                                               | 6. Does COC match bottles?                                                   | Yes                  |
| Were custody seals present?     No                                                                                                   | 7. Is COC complete and correct?                                              | Yes                  |
| 3. Is radiation count <100 CPM? Yes                                                                                                  | 8. Were samples received intact?                                             | Yes                  |
| 4. Is a Cooler Present? Yes                                                                                                          | 9. Were labs informed about short holds & rushes?                            | Yes / No / NA        |
| Temp: 0.1 Iced with: Ice  5. Was COC signed and dated by client? Yes                                                                 | 10. Were any analyses received outside of hold time?                         | Yes (No              |
| 11. Any Subcontracting needed? ESS Sample IDs: -1 2                                                                                  | 12. Were VOAs received? a. Air bubbles in aqueous VOAs?                      | Yes / No<br>Yes / No |
| Analysis: Chloride 300 TAT: 2 day                                                                                                    | b. Does methanol cover soil completely?                                      | Yes / No / (NA)      |
| 13. Are the samples properly preserved?  a. If metals preserved upon receipt:  b. Low Level VOA vials frozen:  Yes / No Date:  Date: | Time: By:<br>Time: By:                                                       | _                    |
| Sample Receiving Notes:                                                                                                              |                                                                              |                      |
| Collection date 15 wrong year                                                                                                        | <u>el</u> 13/17                                                              |                      |
| 14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted?  Date:                | Time: By:                                                                    | _                    |

| Sample<br>Number | Container<br>ID | Proper<br>Container | Air<br>Bubbles<br>Present | Sufficient<br>Volume | Container Type       | Preservative | Re      |        | Cyanide and 608 ticides) |
|------------------|-----------------|---------------------|---------------------------|----------------------|----------------------|--------------|---------|--------|--------------------------|
| 01               | 96359           | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |        |                          |
| 01               | 96360           | Yes                 | No                        | Yes                  | VOA Vial - HCl       | HCI          |         |        |                          |
| 01               | 96361           | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |        |                          |
| 01               | 96366           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 01               | 96367           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 01               | 96368           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 01               | 96369           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 01               | 96371           | Yes                 | NA                        | Yes                  | 1L Poly - Unpres     | NP           |         |        |                          |
| 01               | 96373           | Yes                 | NA                        | Yes                  | 250 mL Poly - HNO3   | HNO3         |         |        |                          |
| 01               | 96375           | Yes                 | NA                        | Yes                  | 250 mL Poly - NaOH   | NaOH         | pH = 16 | EL     | 1/3/17 1424              |
| 01               | 96378           | Yes                 | NA                        | Yes                  | 250 mL Poly - Unpres | NP           |         |        | • •                      |
| 01               | 96379           | Yes                 | NA                        | Yes                  | 250 mL Poly - Unpres | NP           |         |        |                          |
| 02               | 96356           | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |        |                          |
| 02               | 96357           | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |        |                          |
| 02               | 96358           | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |        |                          |
| 02               | 96362           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 02               | 96363           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 02               | 96364           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 02               | 96365           | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |        |                          |
| 02               | 96370           | Yes                 | NA                        | Yes                  | 1L Poly - Unpres     | NP           |         |        |                          |
| 02               | 96372           | Yes                 | NA                        | Yes                  | 250 mL Poly - HNO3   | HNO3         |         |        |                          |
| 02               | 96374           | Yes                 | NA                        | Yes                  | 250 mL Poly - NaOH   | NaOH         | FH 712  | 1/3/17 | 1426                     |
| 02               | 96376           | Yes                 | NA                        | Yes                  | 250 mL Poly - Unpres | NP           | •       | • •    |                          |
| 02               | 96377           | Yes                 | NA                        | Yes                  | 250 mL Poly - Unpres | NP           |         |        |                          |

### **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client: GZA - Norwood, MA - GZA/CMT                     | <del></del>                | ESS Project ID: _<br>Date Received: | 1701008<br>1/3/2017 |         |
|---------------------------------------------------------|----------------------------|-------------------------------------|---------------------|---------|
| 2nd Review Are barcode labels on correct containers?    | Aeg I No                   |                                     |                     | <u></u> |
| Completed ( )                                           |                            | 1/2/10                              | 1427                |         |
| By: Reviewed By:  Out  Out  Out  Out  Out  Out  Out  Ou | Date & Time:  Date & Time: | 1/5/17                              | 1432                |         |
| Delivered By:                                           |                            | 1/3/17                              | 1437                |         |

Marian?

| ESS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ESS Laboratory                                                  |                          |                     | O                 | CHAIN OF CUSTODY                                                                                                     | ٨(                                        | ESS Lab#                                                               | #       | ۱ کر         | 801901   | ιχ<br>Λ          |        |          |                   |                                       |        |       |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|---------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|---------|--------------|----------|------------------|--------|----------|-------------------|---------------------------------------|--------|-------|----------|
| Division o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Division of Thielsch Engineering, Inc.                          | ineering, Inc.           |                     | Tum Time          | 5-Day Rush                                                                                                           | 2-Day                                     | Reporting                                                              | 6       |              |          | 1                | 1 000  | <u> </u> | 100               | DCD Limit Appendix VI                 |        |       |          |
| 185 Frant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 185 Frances Avenue, Cranston RI 02910                           | anston RI 029            | 10                  | Regulatory State  |                                                                                                                      |                                           | Limits                                                                 |         |              |          |                  | בפר    |          | addy.             | ומוץ או                               |        |       |          |
| Tel. (401)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tel. (401) 461-7181 Fax (401) 461-4486<br>www.esslaboratory.com | × (401) 461–44           | 98                  | Is this           | Is this project for any of the following?: TRCP                                                                      | lowing?:<br>●RGP                          | Electonic<br>Deliverables                                              |         | Umit Checker | recker   | Specify →)       | ٽ      | <u></u>  | Standard Excel    | d Excel                               |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Con<br>G7A Gaol                                                 | Company Name             | 30                  | Project #         | Project Name                                                                                                         | me                                        |                                                                        | _       | <u></u>      |          |                  |        |          |                   |                                       |        |       | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Col                                                             | Contact Person           |                     | 20.1301100.10     | Address                                                                                                              | aroo                                      | si                                                                     | sse     | דר           |          | J n              | •      |          |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matt Sn                                                         | Matt Smith / Neal Carey  |                     |                   | 249 Vanderbilt Ave                                                                                                   |                                           | skl                                                                    | up.     | 00           |          | נ גח             | əL     |          |                   |                                       |        | _     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | City                                                            |                          | Si                  | State sachusetts  | Zip Code<br>02062                                                                                                    | #Od                                       | IsnA                                                                   |         |              |          |                  |        | -        | 1/79              |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Telephone Number 781-278-3700                                   | mber<br>30               | FAX                 | FAX Number        | Email Address Matthew Smith@qza.com Neal Carey@qza.com                                                               | ess<br>eal Carey@gza.com                  |                                                                        |         |              |          |                  | chloro |          |                   |                                       |        |       |          |
| ESS Lab<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Collection<br>Date                                              | Collection<br>Time       | Sample Type         | Sample Matrix     | Sam                                                                                                                  | Sample ID                                 |                                                                        | RGP A   | ) IstoT      | s sst    | Tri Cr.<br>Hex C |        | Trichlo  | 1,4 Did<br>Fluore |                                       |        |       |          |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/03/16                                                         | 0825                     | Grab                | Waste Water       | Influent                                                                                                             | Influent_01.03.17                         |                                                                        | ×       | ×            | ×        | ×                | ×      | ×        | ×                 |                                       |        |       |          |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/03/16                                                         | 0800                     | Grab                | Waste Water       | Effluent                                                                                                             | Effluent_01.03.17                         |                                                                        | ×       | ×            | ×        | ×                | ×      | ×        | ×                 |                                       |        |       | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          |                  |        | H        |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              | _        |                  |        |          |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          |                  |        |          |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          |                  |        |          |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          | _                |        | -        |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      | -                                         |                                                                        |         |              |          |                  |        |          |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          |                  |        |          |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          |                  |        |          |                   |                                       |        |       |          |
| ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Container Type:                                                 | Ü                        | AG-A                | B-BOD Bottle      | C-Cubitainer G - Glass O-Other                                                                                       | ther P-Poly S-Sterile                     | ile V-Vial                                                             | РР      | Ь            | <u>а</u> | - P              | ^      | <b>∨</b> | AG AG             |                                       |        |       |          |
| Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Container Volume: 1-100 mL<br>Preservation Code: 1-Non Press    | 1-100 mL<br>1-Non Preser | .5 gal 3-250 m      | 4-300 mL 5-500 mL | mL 6-1L 7-VOA 8-2 oz                                                                                                 | 9-4 oz 10-8 oz                            | 11-Other                                                               | - -     | 4            | +        | -                | ,      | ,        | 7                 |                                       | _      |       | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      | of Contain                                | ample:                                                                 |         | ╁            | +        |                  | 1      | +        | +                 | $\perp$                               | -      |       | +        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | Laborator                | Laboratory Use Only |                   | Sampled by:                                                                                                          |                                           |                                                                        | -       |              |          | -                |        | 1        | -                 | 1                                     |        |       | 1        |
| Coole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cooler Present:                                                 | 728                      |                     | •                 | Comments:                                                                                                            | Please spe                                | Please specify "Other" preservative and containers types in this space | prese   | rvatí        | e and    | conta            | iners  | types    | in this           | space                                 |        |       |          |
| Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seals Intact:                                                   | NA                       | ,                   |                   | 1.)RGP Metals include As, Cd, Cu, Pb, Ni, Zn, and Fe by 6020. 2.)Parameters in BOLD have short hold-time. 3.)Use RGP | , Cu, Pb, Ni, Zn, and F                   | ²e by 6020.                                                            | 2.)Par  | amete        | rs in E  | OLD              | nave s | hort ho  | old-time          | s. 3.)Us                              | se RGF | 0     |          |
| Cooler T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cooler Temperature:                                             | ictor                    | 0°C O.1             |                   | approved methods for all analysis. 3.) Please analyze for but do not report Hex Chrom                                | ysis 3.)Please analyz                     | e for but do                                                           | not rep | ort He       | X Chr    | Ĕ                |        |          |                   |                                       |        |       |          |
| æ Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Relinquished by: (Signature, Date & Time)                       | (Signature, Da           | ate & Time)         | Received By: (    | Received By: (Signature, Date & Time)                                                                                | Relinquished By: (Signature, Date & Time) | (Signature,                                                            | Date &  | Time         |          | 1                | Recei  | ved B)   | r. (Sign          | Received By: (Signature, Date & Time) | Jate & | Time) |          |
| ige 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun X                                                           | ر.<br>م                  | 15:11               | 2 (Simus)         | 1/3/17 11:5-1                                                                                                        | Zoas                                      | 1/2/1                                                                  |         | 13:56        | 72       | $\mathcal{I}$    | -      | 7        |                   | 1/2/1                                 | 1,     | 11/11 |          |
| 25.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00 | Belinquished by: (Signature, Date & Time)                       | (Signature, Da           | ate & Time)         | Received By: (    | Received By: (Signature, Date & Time)                                                                                | Relinquished By: (Signature, Date & Time) | (Signature,                                                            | Date &  | Time         |          |                  | Recei  | (ed B)   | r. (Sign          | Received By: (Signature, Date & Time) | Sate & | Time) |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                          |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          |                  | _      |          |                   |                                       |        |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | i                        |                     |                   |                                                                                                                      |                                           |                                                                        |         |              |          |                  |        |          |                   |                                       |        |       |          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

RE: Wynn Everett - RGP (01.0171521.52)

ESS Laboratory Work Order Number: 1701591

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

REVIEWED

By ESS Laboratory at 6:05 pm, Feb 01, 2017

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state tandards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1701591



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### SAMPLE RECEIPT

The following samples were received on January 30, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

| <b>Lab Number</b> | Sample Name       | <u>Matrix</u> | <u>Analysis</u>                                |
|-------------------|-------------------|---------------|------------------------------------------------|
| 1701591-01        | Influent_01.30.17 | Waste Water   | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 8260B, |
|                   |                   |               | 8270D SIM                                      |
| 1701591-02        | Effluent_01.30.17 | Waste Water   | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 8260B, |
|                   |                   |               | 8270D SIM                                      |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1701591



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### **PROJECT NARRATIVE**

**Total Metals** 

1701591-01 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Lead, Nickel

1701591-02 Elevated Method Reporting Limits due to sample matrix (EL).

Arsenic, Cadmium, Copper, Lead, Nickel

No other observations noted.

End of Project Narrative.

#### **DATA USABILITY LINKS**

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1701591



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability

Page 4 of 20



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.30.17 Date Sampled: 01/30/17 12:10

Extraction Method: 3005A

Percent Solids: N/A

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-01

Sample Matrix: Waste Water

Units: ug/L

#### **Total Metals**

| Analyte<br>Arsenic | <b>Results (MRL) 212</b> (100) | <b>MDL</b> | Method<br>6010C | <u>Limit</u> | <u><b>DF</b></u> 10 | Analyst<br>BJV | Analyzed 01/31/17 14:05 | <u>I/V</u> 50 | $\frac{\mathbf{F/V}}{10}$ | Batch<br>CA73034 |
|--------------------|--------------------------------|------------|-----------------|--------------|---------------------|----------------|-------------------------|---------------|---------------------------|------------------|
| Cadmium            | <b>EL</b> ND (5.0)             |            | 6010C           |              | 5                   | BJV            | 01/31/17 13:39          | 50            | 10                        | CA73034          |
| Chromium III       | ND (20)                        |            | 6010C           |              | 5                   | JLK            | 01/31/17 13:39          | 1             | 1                         | [CALC]           |
| Copper             | <b>49.6</b> (40.0)             |            | 6010C           |              | 10                  | BJV            | 01/31/17 14:05          | 50            | 10                        | CA73034          |
| Hardness           | 3170 (2.6)                     |            | 6010B           |              | 10                  | BJV            | 01/31/17 14:05          | 1             | 1                         | [CALC]           |
| Iron               | <b>226000</b> (200)            |            | 6010C           |              | 10                  | BJV            | 01/31/17 14:05          | 50            | 10                        | CA73034          |
| Lead               | EL ND (40.0)                   |            | 6010C           |              | 10                  | BJV            | 01/31/17 14:05          | 50            | 10                        | CA73034          |
| Nickel             | EL ND (20.0)                   |            | 6010C           |              | 5                   | BJV            | 01/31/17 13:39          | 50            | 10                        | CA73034          |
| Zinc               | <b>407</b> (100)               |            | 6010C           |              | 10                  | BJV            | 01/31/17 14:05          | 50            | 10                        | CA73034          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.30.17 Date Sampled: 01/30/17 12:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-01

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

### 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane Trichloroethene | Results (MRL) ND (1.0) ND (1.0) | <u>MDL</u> | Method<br>8260B<br>8260B | <u>Limit</u> | <b><u>DF</u></b><br>1 | Analyzed<br>01/31/17 16:02<br>01/31/17 16:02 | Sequence<br>C7A0411<br>C7A0411 | Batch<br>CA73133<br>CA73133 |
|--------------------------------------------|---------------------------------|------------|--------------------------|--------------|-----------------------|----------------------------------------------|--------------------------------|-----------------------------|
|                                            |                                 | %Recovery  | Qualifier                | Limits       |                       |                                              |                                |                             |
| Surrogate: 1,2-Dichloroethane-d4           |                                 | 111 %      |                          | 70-130       |                       |                                              |                                |                             |
| Surrogate: 4-Bromofluorobenzene            |                                 | 114 %      |                          | 70-130       |                       |                                              |                                |                             |
| Surrogate: Dibromofluoromethane            |                                 | 116 %      |                          | 70-130       |                       |                                              |                                |                             |
| Surrogate: Toluene-d8                      |                                 | 107 %      |                          | 70-130       |                       |                                              |                                |                             |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.30.17 Date Sampled: 01/30/17 12:10

Percent Solids: N/A Initial Volume: 100 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 1/30/17 18:00

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte 1,4-Dioxane       | Results (MRL)<br>ND (1.25) | <b>MDL</b> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <b>Analyzed</b> 01/31/17 12:58 | Sequence<br>C7A0395 | Batch<br>CA73048 |
|---------------------------|----------------------------|------------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
|                           | %                          | Recovery   | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                            | 55 %       |                     | 15-115       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.30.17 Date Sampled: 01/30/17 12:10

Percent Solids: N/A Initial Volume: 950 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-01

Sample Matrix: Waste Water

Units: ug/L Analyst: JXS

Prepared: 1/31/17 14:00

### 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| <u>Analyte</u><br>Fluorene        | Results (MRL)<br>0.26 (0.21) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 01/31/17 23:28 | Sequence<br>C7A0410 | Batch<br>CA73105 |
|-----------------------------------|------------------------------|------------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
|                                   | 9/0                          | Recovery   | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                              | 68 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                              | 80 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: Nitrobenzene-d5        |                              | 81 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: p-Terphenyl-d14        |                              | 85 %       |                     | 30-130       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Dependability

Tel: 401-461-7181 Quality Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_01.30.17 Date Sampled: 01/30/17 12:10

Percent Solids: N/A

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-01

Sample Matrix: Waste Water

### **Classical Chemistry**

| Analyte<br>Chloride    | Results (MRL)<br>4660 (1000) | MDL Method 300.0 | <u>Limit</u> | <u>DF</u> 2000 | Analys<br>EEM | <u>Analyzed</u> 01/30/17 18:54 | Units<br>mg/L | Batch<br>CA73023 |
|------------------------|------------------------------|------------------|--------------|----------------|---------------|--------------------------------|---------------|------------------|
| Total Cyanide (LL)     | <b>57.7</b> (5.00)           | 4500 CN CE       |              | 1              | JLK           | 01/30/17 18:36                 | ug/L          | CA73037          |
| Total Suspended Solids | <b>39</b> (5)                | 2540D            |              | 1              | MJV           | 01/30/17 22:06                 | mg/L          | CA73052          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.30.17

Date Sampled: 01/30/17 11:20

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-02

Sample Matrix: Waste Water

Units: ug/L

#### **Total Metals**

| Analyte<br>Arsenic | Results (MRL)<br>EL ND (50.0) | <u>MDL</u> | Method<br>6010C | <u>Limit</u> | <u><b>DF</b></u> 5 | Analyst<br>BJV | Analyzed<br>01/31/17 13:45 | <u>I/V</u> 50 | $\frac{\mathbf{F/V}}{10}$ | Batch<br>CA73034 |
|--------------------|-------------------------------|------------|-----------------|--------------|--------------------|----------------|----------------------------|---------------|---------------------------|------------------|
| Cadmium            | <b>EL</b> ND (5.0)            |            | 6010C           |              | 5                  | BJV            | 01/31/17 13:45             | 50            | 10                        | CA73034          |
| Chromium III       | ND (20)                       |            | 6010C           |              | 5                  | JLK            | 01/31/17 13:45             | 1             | 1                         | [CALC]           |
| Copper             | EL ND (20.0)                  |            | 6010C           |              | 5                  | BJV            | 01/31/17 13:45             | 50            | 10                        | CA73034          |
| Hardness           | <b>2370</b> (2.1)             |            | 6010B           |              | 10                 | KJK            | 01/31/17 15:58             | 1             | 1                         | [CALC]           |
| Iron               | ND (200)                      |            | 6010C           |              | 10                 | BJV            | 01/31/17 13:58             | 50            | 10                        | CA73034          |
| Lead               | EL ND (20.0)                  |            | 6010C           |              | 5                  | BJV            | 01/31/17 13:45             | 50            | 10                        | CA73034          |
| Nickel             | EL ND (20.0)                  |            | 6010C           |              | 5                  | BJV            | 01/31/17 13:45             | 50            | 10                        | CA73034          |
| Zinc               | ND (50.0)                     |            | 6010C           |              | 5                  | BJV            | 01/31/17 13:45             | 50            | 10                        | CA73034          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.30.17 Date Sampled: 01/30/17 11:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-02

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

### 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane Trichloroethene | Results (MRL)<br>2.8 (1.0)<br>ND (1.0) | <u>MDL</u> | Method<br>8260B<br>8260B | <u>Limit</u> | <b><u>DF</u></b> 1 | Analyzed<br>01/31/17 13:28<br>01/31/17 13:28 | Sequence<br>C7A0411<br>C7A0411 | <b>Batch</b> CA73133 CA73133 |
|--------------------------------------------|----------------------------------------|------------|--------------------------|--------------|--------------------|----------------------------------------------|--------------------------------|------------------------------|
|                                            |                                        | %Recovery  | Qualifier                | Limits       |                    |                                              |                                |                              |
| Surrogate: 1,2-Dichloroethane-d4           |                                        | 109 %      |                          | 70-130       |                    |                                              |                                |                              |
| Surrogate: 4-Bromofluorobenzene            |                                        | 113 %      |                          | 70-130       |                    |                                              |                                |                              |
| Surrogate: Dibromofluoromethane            |                                        | 115 %      |                          | 70-130       |                    |                                              |                                |                              |
| Surrogate: Toluene-d8                      |                                        | 104 %      |                          | 70-130       |                    |                                              |                                |                              |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.30.17 Date Sampled: 01/30/17 11:20

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-02

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 1/30/17 18:00

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>0.436 (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> 1 | <b>Analyzed</b> 01/31/17 13:34 | Sequence<br>C7A0395 | Batch<br>CA73048 |
|---------------------------|--------------------------------|------------|---------------------|--------------|--------------------|--------------------------------|---------------------|------------------|
|                           | %                              | Recovery   | Qualifier           | Limits       |                    |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                | 71 %       |                     | 15-115       |                    |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

http://www.ESSLaboratory.com

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.30.17 Date Sampled: 01/30/17 11:20

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-02

Sample Matrix: Waste Water

Units: ug/L Analyst: JXS

Prepared: 1/31/17 14:00

### 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Analyte<br>Fluorene               | Results (MRL)<br>ND (0.19) | MDL      | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 02/01/17 0:18 | Sequence<br>C7A0410 | Batch<br>CA73105 |
|-----------------------------------|----------------------------|----------|---------------------|--------------|------------------|-------------------------------|---------------------|------------------|
|                                   | %                          | Recovery | Qualifier           | Limits       |                  |                               |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                            | 54 %     |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                            | 77 %     |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: Nitrobenzene-d5        |                            | 85 %     |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: p-Terphenyl-d14        |                            | 95 %     |                     | 30-130       |                  |                               |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_01.30.17 Date Sampled: 01/30/17 11:20

Percent Solids: N/A

ESS Laboratory Work Order: 1701591 ESS Laboratory Sample ID: 1701591-02

Sample Matrix: Waste Water

### **Classical Chemistry**

| Analyte<br>Chloride           | Results (MRL)<br>4980 (1000) | <b>MDL</b> | <b>Method</b> 300.0 | <u>Limit</u> | <u><b>DF</b></u> 2000 | Analyst<br>EEM | Analyzed 01/30/17 19:10 | Units<br>mg/L | Batch<br>CA73023 |
|-------------------------------|------------------------------|------------|---------------------|--------------|-----------------------|----------------|-------------------------|---------------|------------------|
| Total Cyanide (LL)            | ND (5.00)                    |            | 4500 CN CE          |              | 1                     | JLK            | 01/30/17 18:36          | ug/L          | CA73037          |
| <b>Total Suspended Solids</b> | 14 (5)                       |            | 2540D               |              | 1                     | MJV            | 01/30/17 22:06          | mg/L          | CA73052          |



185 Frances Avenue, Cranston, RI 02910-2211

## **BAL Laboratory**

The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701591

### **Quality Control Data**

|                                  |              |            |               | Spike     | Source |      | %REC           |     | RPD   |           |
|----------------------------------|--------------|------------|---------------|-----------|--------|------|----------------|-----|-------|-----------|
| Analyte                          | Result       | MRL        | Units         | Level     | Result | %REC | %REC<br>Limits | RPD | Limit | Qualifier |
| <u> </u>                         |              |            | Total Meta    |           |        |      |                |     |       | -         |
|                                  |              |            | i otai i iEtt |           |        |      |                |     |       |           |
| Batch CA73034 - 3005A            |              |            |               |           |        |      |                |     |       |           |
| Blank                            |              |            |               |           |        |      |                |     |       |           |
| Calcium                          | ND           | 40.0       | ug/L          |           |        |      |                |     |       |           |
| Chromium III                     | ND           | 4          | ug/L          |           |        |      |                |     |       |           |
| Copper                           | ND           | 4.0        | ug/L          |           |        |      |                |     |       |           |
| Hardness                         | ND           | 0.3        | mg/L          |           |        |      |                |     |       |           |
| Iron                             | ND           | 20.0       | ug/L          |           |        |      |                |     |       |           |
| Magnesium                        | ND           | 40.0       | ug/L          |           |        |      |                |     |       |           |
| Nickel                           | ND           | 4.0        | ug/L          |           |        |      |                |     |       |           |
| Zinc                             | ND           | 10.0       | ug/L          |           |        |      |                |     |       |           |
| LCS                              |              |            |               |           |        |      |                |     |       |           |
| Calcium                          | 983          | 40.0       | ug/L          | 1000      |        | 98   | 80-120         |     |       |           |
| Chromium III                     | 91.0         | 4          | ug/L          |           |        |      |                |     |       |           |
| Copper                           | 99.1         | 4.0        | ug/L          | 100.0     |        | 99   | 80-120         |     |       |           |
| Hardness                         | 6.40         | 0.3        | mg/L          |           |        |      |                |     |       |           |
| Iron                             | 433          | 20.0       | ug/L          | 500.0     |        | 87   | 80-120         |     |       |           |
| Magnesium                        | 958          | 40.0       | ug/L          | 1000      |        | 96   | 80-120         |     |       |           |
| Nickel                           | 97.9         | 4.0        | ug/L          | 100.0     |        | 98   | 80-120         |     |       |           |
| Zinc                             | 101          | 10.0       | ug/L          | 100.0     |        | 101  | 80-120         |     |       |           |
| LCS Dup                          |              |            |               |           |        |      |                |     |       |           |
| Calcium                          | 995          | 40.0       | ug/L          | 1000      |        | 100  | 80-120         | 1   | 20    |           |
| Chromium III                     | 94.0         | 4          | ug/L          |           |        |      |                |     |       |           |
| Copper                           | 100          | 4.0        | ug/L          | 100.0     |        | 100  | 80-120         | 1   | 20    |           |
| Hardness                         | 6.60         | 0.3        | mg/L          |           |        |      |                |     |       |           |
| Iron                             | 441          | 20.0       | ug/L          | 500.0     |        | 88   | 80-120         | 2   | 20    |           |
| Magnesium                        | 989          | 40.0       | ug/L          | 1000      |        | 99   | 80-120         | 3   | 20    |           |
| Nickel                           | 103          | 4.0        | ug/L          | 100.0     |        | 103  | 80-120         | 5   | 20    |           |
| Zinc                             | 105          | 10.0       | ug/L          | 100.0     |        | 105  | 80-120         | 4   | 20    |           |
| Batch CA73038 - [CALC]           |              |            |               |           |        |      |                |     |       |           |
| Blank                            | <del>_</del> |            |               |           |        |      |                |     |       |           |
| Chromium III                     | ND           | 10         | ug/L          |           |        | _    |                |     |       |           |
| LCS                              |              |            |               |           |        |      |                |     |       |           |
| Chromium III                     | ND           |            | ug/L          |           |        |      |                |     |       |           |
| LCS Dup                          |              |            |               |           |        |      |                |     |       |           |
| Chromium III                     | ND           |            | ug/L          |           |        |      |                |     |       |           |
|                                  |              | 8260R Vol. | atile Organi  | c Compoi  | ınds   |      |                |     |       |           |
|                                  |              | 2200 VOI   | Organi        | . J Compo |        |      |                |     |       |           |
| Batch CA73133 - 5030B            |              |            |               |           |        |      |                |     |       |           |
| Blank                            |              |            |               |           |        |      |                |     |       |           |
| 1,2-Dichloroethane               | ND           | 1.0        | ug/L          |           |        |      |                |     |       |           |
| Trichloroethene                  | ND           | 1.0        | ug/L          |           |        |      |                |     |       |           |
| Surrogate: 1,2-Dichloroethane-d4 | 27.6         |            | ug/L          | 25.00     |        | 110  | 70-130         |     |       |           |
| Surrogate: 4-Bromofluorobenzene  | 26.8         |            | ug/L          | 25.00     |        | 107  | 70-130         |     |       |           |
| Surrogate: Dibromofluoromethane  | 28.8         |            | ug/L          | 25.00     |        | 115  | 70-130         |     |       |           |
|                                  |              |            |               |           |        |      |                |     |       |           |

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701591

### **Quality Control Data**

| Analyte                          | Result | MRL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|----------------------------------|--------|-----|-------|----------------|------------------|------|----------------|-----|--------------|-----------|
| 8260B Volatile Organic Compounds |        |     |       |                |                  |      |                |     |              |           |
| Batch CA73133 - 5030B            |        |     |       |                |                  |      |                |     |              |           |

| Surrogate: Toluene-d8            | 25.7 | ug/L | 25.00 | 103 | 70-130 |   |    |  |
|----------------------------------|------|------|-------|-----|--------|---|----|--|
| ıcs                              |      |      |       |     |        |   |    |  |
| 1,2-Dichloroethane               | 10.1 | ug/L | 10.00 | 101 | 70-130 |   |    |  |
| Trichloroethene                  | 10.0 | ug/L | 10.00 | 100 | 70-130 |   |    |  |
| Surrogate: 1,2-Dichloroethane-d4 | 26.6 | ug/L | 25.00 | 107 | 70-130 |   |    |  |
| Surrogate: 4-Bromofluorobenzene  | 26.9 | ug/L | 25.00 | 108 | 70-130 |   |    |  |
| Surrogate: Dibromofluoromethane  | 26.2 | ug/L | 25.00 | 105 | 70-130 |   |    |  |
| Surrogate: Toluene-d8            | 25.6 | ug/L | 25.00 | 102 | 70-130 |   |    |  |
| LCS Dup                          |      |      |       |     |        |   |    |  |
| 1,2-Dichloroethane               | 9.8  | ug/L | 10.00 | 98  | 70-130 | 3 | 25 |  |
| Trichloroethene                  | 10.3 | ug/L | 10.00 | 103 | 70-130 | 3 | 25 |  |
| Surrogate: 1,2-Dichloroethane-d4 | 25.5 | ug/L | 25.00 | 102 | 70-130 |   |    |  |
| Surrogate: 4-Bromofluorobenzene  | 26.0 | ug/L | 25.00 | 104 | 70-130 |   |    |  |
| Surrogate: Dibromofluoromethane  | 26.6 | ug/L | 25.00 | 106 | 70-130 |   |    |  |
| Surrogate: Toluene-d8            | 27.6 | ug/L | 25.00 | 110 | 70-130 |   |    |  |

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Batch CA73048 - 3535A     |      |       |      |       |     |        |     |    |  |
|---------------------------|------|-------|------|-------|-----|--------|-----|----|--|
| Blank                     |      |       |      |       |     |        |     |    |  |
| 1,4-Dioxane               | ND   | 0.250 | ug/L |       |     |        |     |    |  |
| Surrogate: 1,4-Dioxane-d8 | 2.22 |       | ug/L | 5.000 | 44  | 15-115 |     |    |  |
| LCS                       |      |       |      |       |     |        |     |    |  |
| 1,4-Dioxane               | 10.9 | 0.250 | ug/L | 10.00 | 109 | 40-140 |     |    |  |
| Surrogate: 1,4-Dioxane-d8 | 3.04 |       | ug/L | 5.000 | 61  | 15-115 |     |    |  |
| LCS Dup                   |      |       |      |       |     |        |     |    |  |
| 1,4-Dioxane               | 11.0 | 0.250 | ug/L | 10.00 | 110 | 40-140 | 0.9 | 20 |  |
| Surrogate: 1,4-Dioxane-d8 | 2.85 |       | ug/L | 5.000 | 57  | 15-115 |     |    |  |

#### 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Batch CA73105 - 3510C             |      |      |      |       |           |        |  |
|-----------------------------------|------|------|------|-------|-----------|--------|--|
| Blank                             |      |      |      |       |           |        |  |
| Fluorene                          | ND   | 0.20 | ug/L |       |           |        |  |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.01 |      | ug/L | 2.500 | 40        | 30-130 |  |
| Surrogate: 2-Fluorobiphenyl       | 1.47 |      | ug/L | 2.500 | 59        | 30-130 |  |
| Surrogate: Nitrobenzene-d5        | 1.91 |      | ug/L | 2.500 | <i>77</i> | 30-130 |  |
| Surrogate: p-Terphenyl-d14        | 2.33 |      | ug/L | 2.500 | 93        | 30-130 |  |
| ıcs                               |      |      |      |       |           |        |  |
| Fluorene                          | 2.94 | 0.20 | ug/L | 4.000 | 73        | 40-140 |  |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.23 |      | ug/L | 2.500 | 49        | 30-130 |  |
| Surrogate: 2-Fluorobiphenyl       | 1.75 |      | ug/L | 2.500 | 70        | 30-130 |  |
| Surrogate: Nitrobenzene-d5        | 1.84 |      | ug/L | 2.500 | 74        | 30-130 |  |
| Surrogate: p-Terphenyl-d14        | 2.41 |      | ug/L | 2.500 | 96        | 30-130 |  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701591

### **Quality Control Data**

|                                     |        |             |              | Spike     | Source    |      | %REC   |     | RPD   |           |
|-------------------------------------|--------|-------------|--------------|-----------|-----------|------|--------|-----|-------|-----------|
| Analyte                             | Result | MRL         | Units        | Level     | Result    | %REC | Limits | RPD | Limit | Qualifier |
|                                     | 827    | 0D(SIM) Pol | ynuclear Ard | omatic Hy | /drocarbo | n    |        |     |       |           |
| Batch CA73105 - 3510C               |        |             |              |           |           |      |        |     |       |           |
| Fluorene                            | 3.44   | 0.20        | ug/L         | 4.000     |           | 86   | 40-140 | 16  | 20    |           |
| Surrogate: 1,2-Dichlorobenzene-d4   | 1.40   |             | ug/L         | 2.500     |           | 56   | 30-130 |     |       |           |
| Surrogate: 2-Fluorobiphenyl         | 2.00   |             | ug/L         | 2.500     |           | 80   | 30-130 |     |       |           |
| Surrogate: Nitrobenzene-d5          | 2.20   |             | ug/L         | 2.500     |           | 88   | 30-130 |     |       |           |
| Surrogate: p-Terphenyl-d14          | 2.70   |             | ug/L         | 2.500     |           | 108  | 30-130 |     |       |           |
|                                     |        | Cl          | assical Cher | mistry    |           |      |        |     |       |           |
| Batch CA73023 - General Preparation |        |             |              |           |           |      |        |     |       |           |
| Blank                               |        |             |              |           |           |      |        |     |       |           |
| Chloride                            | ND     | 0.5         | mg/L         |           |           |      |        |     |       |           |
| LCS                                 |        |             |              |           |           |      |        |     |       |           |
| Chloride                            | 2.3    |             | mg/L         | 2.500     |           | 93   | 90-110 |     |       |           |
| Batch CA73037 - TCN Prep            |        |             |              |           |           |      |        |     |       |           |
| Blank                               |        |             |              |           |           |      |        |     |       |           |
| Total Cyanide (LL)                  | ND     | 5.00        | ug/L         |           |           |      |        |     |       |           |
| LCS                                 |        |             |              |           |           |      |        |     |       |           |
| Total Cyanide (LL)                  | 19.7   | 5.00        | ug/L         | 20.06     |           | 98   | 90-110 |     |       |           |
| LCS                                 |        |             |              |           |           |      |        |     |       |           |
| Total Cyanide (LL)                  | 150    | 5.00        | ug/L         | 150.4     |           | 100  | 90-110 |     |       |           |
| LCS Dup                             |        |             |              |           |           |      |        |     |       |           |
| Total Cyanide (LL)                  | 148    | 5.00        | ug/L         | 150.4     |           | 98   | 90-110 | 1   | 20    |           |
| Batch CA73052 - General Preparation |        |             |              |           |           |      |        |     |       |           |
| Blank                               |        |             |              |           |           |      |        |     |       |           |
| Total Suspended Solids              | ND     | 5           | mg/L         |           |           |      |        |     |       |           |
| ıcs                                 |        |             |              |           |           |      |        |     |       |           |
| Total Suspended Solids              | 64     |             | mg/L         | 68.70     |           | 93   | 80-120 |     |       |           |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1701591

|     | Notes and Definitions                                                                           |
|-----|-------------------------------------------------------------------------------------------------|
| U   | Analyte included in the analysis, but not detected                                              |
| EL  | Elevated Method Reporting Limits due to sample matrix (EL).                                     |
| D   | Diluted.                                                                                        |
| ND  | Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes |
| dry | Sample results reported on a dry weight basis                                                   |
| RPD | Relative Percent Difference                                                                     |
| MDL | Method Detection Limit                                                                          |
| MRL | Method Reporting Limit                                                                          |
| LOD |                                                                                                 |
| LOQ | Limit of Quantitation                                                                           |
| DL  | Detection Limit                                                                                 |
| I/V | Initial Volume                                                                                  |

Subcontracted analysis; see attached report §

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery

F/V

Calculated Analyte [CALC]

Final Volume

**SUB** Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1701591



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 <a href="http://public.dep.state.ma.us/Labcert/Labcert.aspx">http://public.dep.state.ma.us/Labcert/Labcert.aspx</a>

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP">http://datamine2.state.nj.us/DEP</a> OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

| 1 SS                  | ESS Laboratory                                               |                                            |                      | ပ                          | CHAIN OF CUSTODY                                                                                                     |                                                                        | ESS Lab#                  |                | 1              | אצוסנו             |                |                   |            |                        | }                                     |        |          |
|-----------------------|--------------------------------------------------------------|--------------------------------------------|----------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|----------------|----------------|--------------------|----------------|-------------------|------------|------------------------|---------------------------------------|--------|----------|
| ivision o             | Division of Thielsch Engineering, Inc.                       | neering, Inc.                              |                      | Turn Time                  | 5-Day (Rush                                                                                                          | 2-Day                                                                  | Reporting<br>Limits       |                |                |                    | RG             | P Limi            | it; App    | RGP Limit; Appendix VI | _                                     |        |          |
| et. (401)<br>ww.essla | Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com | (401) 461-448                              | 98                   | Is thi                     | Is this project for any of the following?:  TRCP                                                                     |                                                                        | Electonic<br>Deliverables |                | Ulimit Checker | ker<br>ase Specify | <b>1</b>       |                   | Stan       | ✓ Standard Excel       |                                       |        |          |
|                       | Con<br>GZA GeoF                                              | Company Name<br>GZA GeoEnvironmental, Inc. | lnc.                 | Project #<br>01.0171521.52 | Project Name<br>Wynn Boston Harbor                                                                                   | bor                                                                    |                           |                | -              | (1) (1)            |                |                   |            |                        | ·                                     |        |          |
|                       | Con                                                          | Contact Person<br>Matt Smith / Neal Carev  | 2                    |                            | Address<br>249 Vanderbilt Ave                                                                                        |                                                                        | sisy                      | esaun          | 00 דר          | um ;               |                |                   | 0          |                        |                                       |        |          |
|                       | City                                                         |                                            |                      | State<br>Massachusetts     | Zip Code<br>02062                                                                                                    | # 1                                                                    |                           |                |                |                    |                | -                 | -<br>Σ28 θ |                        |                                       |        |          |
|                       | Telephone Number<br>781-278-3700                             | nber<br>0                                  | FAX                  | FAX Number                 | Email Address Matthew Smith@gza.com                                                                                  | s<br>Carey@gza.com                                                     |                           | Metal<br>oc 30 | Cyan           | 2540 I             | 217 1C         | ichlor<br>loroet  | nsxoi      | əuə                    |                                       | •      | -        |
| ESS Lab               | <u> </u>                                                     | Collection<br>Time                         | Sample Type          | Sample Matrix              | Sample ID                                                                                                            | Ol e                                                                   |                           |                |                |                    |                |                   |            | Fluor                  |                                       |        |          |
| ٩                     | 1/30/2016                                                    | 12:10                                      | Grab                 | Waste Water                | Influent_01.30.17                                                                                                    | 1.30.17                                                                |                           | ×              | ×              | ×                  | ×              | ×                 | ×          | ×                      |                                       |        |          |
| 05                    | 1/30/2016                                                    | 11:20                                      | Grab                 | Waste Water                | Effluent_01.30.17                                                                                                    | 1.30.17                                                                |                           | ×              | ×              | ×                  | ×              | ×                 | ×          | ×                      |                                       |        |          |
|                       |                                                              |                                            |                      | Ž.                         |                                                                                                                      |                                                                        |                           |                |                |                    |                |                   |            |                        |                                       |        | $\dashv$ |
|                       |                                                              |                                            | . المسابق في المسابق |                            |                                                                                                                      | -                                                                      | <br>                      |                |                |                    |                |                   | -          |                        |                                       |        |          |
|                       |                                                              |                                            |                      |                            |                                                                                                                      |                                                                        |                           | <u> </u>       |                | <u> </u>           |                | _                 |            |                        |                                       |        |          |
|                       |                                                              |                                            |                      |                            |                                                                                                                      |                                                                        |                           | <u> </u>       |                | -                  |                | -                 |            |                        |                                       |        |          |
|                       |                                                              |                                            |                      |                            |                                                                                                                      | ;<br>;<br>;                                                            | -                         |                |                |                    |                |                   |            | ļ                      |                                       |        |          |
|                       |                                                              |                                            |                      |                            |                                                                                                                      |                                                                        |                           |                |                | _                  |                |                   |            |                        |                                       |        |          |
|                       |                                                              |                                            |                      |                            |                                                                                                                      |                                                                        |                           |                |                |                    |                |                   |            |                        |                                       |        |          |
|                       |                                                              |                                            | i.                   |                            |                                                                                                                      |                                                                        |                           |                |                |                    |                |                   |            | $\dashv$               |                                       |        |          |
| ŭ                     | Container Type: AC-Air Cassette                              | S                                          | AG-A                 | B-BOD Bottle               | bitainer G - Glass O-Othe                                                                                            | P-Poly S-Steri                                                         | e V-Vial                  | <u>م</u>       | a.             | ٠                  | <u>a</u>       | <u>&gt; </u><br>> | ÅG.        | AG.                    | _                                     |        | 1        |
| Cont                  | Container Volume: 1-100 mL                                   | 1-100 mL                                   | 2.5 gal 3-250 m      | 4-300 mL 5-                | 6-1L 7-VOA 8-2 oz                                                                                                    | 10-8 oz                                                                | 11-Other                  | -              |                | +,                 | <u> </u>       | -   c             | 1          | -                      | $\pm$                                 | 1      | -        |
| Pres                  | Preservation Code:                                           | 1-Non Preserved                            | 2-HC  3-HZSO4        | 4-HNO3 5-NaOH 5-M          | b-memanor /-nazozoos o-znazo, nach                                                                                   |                                                                        | ample:                    | -              | ,              | '  <br>-           | -              |                   | -          | +                      |                                       | ļ      |          |
|                       |                                                              | Laborator                                  | Laboratory Use Only  |                            | Sampled by :                                                                                                         |                                                                        |                           | -              |                |                    |                |                   |            |                        |                                       |        |          |
| Coole                 | Cooler Present:                                              | >                                          |                      |                            | Comments:                                                                                                            | Please specify "Other" preservative and containers types in this space | ify "Other                | prese          | rvative        | and c              | ontain         | ers typ           | es in t    | this spa               | <b>8</b> 2                            |        |          |
| Sea                   | Seals Intact:                                                |                                            |                      |                            | 1.)RGP Metals include As, Cd, Cu, Pb, Ni, Zn, and Fe by 6020. 2.)Parameters in BOLD have short hold-time. 3.)Use RGP | ču, Pb, Ni, Zn, and F                                                  | e by 6020.                | 2.)Para        | meter          | s in BC            | LO ha          | e shor            | t hold-1   | time. 3.               | )Use R(                               | G<br>G |          |
| Cooler 1              | Cooler Temperature:                                          | 2.0                                        | و ادو (راه           |                            | approved methods for all analysis 4.) Please analyze for but do not report Hex Chrom                                 | is 4.)Please analyze                                                   | for but do                | not rep        | ort He         | Chron              | l              |                   |            |                        |                                       |        |          |
| (                     | Relinquished by: (Signature, Date & Time)                    | (Signature, Da                             | ate & Time)          | Received By: (Signature, D | (Signature, Date & Time)                                                                                             | Relinquished By: (Signature, Date & Time)                              | Signature,                | Date &         | Time)          | -                  |                | ceived            | By: (S     | Signatur               | Received By: (Signature, Date & Time) | & Time | <u>_</u> |
| Page                  |                                                              | 1/2/1                                      | US:21 0 21/02        | Odn'y-                     | 1/30/17 13:30                                                                                                        | The la                                                                 | 1/26/11                   | 15.            | 15,150         | <u></u>            | $\overline{A}$ | tj                |            | <u> </u>               | 155                                   | _      |          |
|                       | Relinquished by: (Signature, Date & Time)                    | (Signature, Da                             | ate & Time)          | Received By:               | Received By: (Signature, Date & Time)                                                                                | ished By: (                                                            | Signature,                | Date &         | Time)          | $\dashv$           | ٢              | ceived            | 1 By: (S   | Signatur               | Received By: (Signature, Date & Time) | & Time |          |
| 20                    |                                                              |                                            |                      |                            |                                                                                                                      |                                                                        |                           |                |                |                    |                |                   |            |                        |                                       |        |          |
|                       |                                                              |                                            |                      |                            |                                                                                                                      |                                                                        |                           |                |                | $\frac{1}{2}$      |                |                   |            |                        |                                       |        |          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

**RE:** Wynn Everett - RGP (01.0171521.52)

ESS Laboratory Work Order Number: 1703039

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 6:11 pm, Mar 06, 2017

Laurel Stoddard Laboratory Director

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Lah Number

ESS Laboratory Work Order: 1703039

#### **SAMPLE RECEIPT**

The following samples were received on March 02, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

| Lab Mulliber | Dampic Mame       | MACHIA      |                                                |
|--------------|-------------------|-------------|------------------------------------------------|
| 1703039-01   | Influent_03.02.17 | Waste Water | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 8260B, |
|              |                   |             | 8270D SIM                                      |
| 1703039-02   | Effluent_03.02.17 | Waste Water | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 8260B, |
|              |                   |             | 8270D SIM                                      |

Matrix

Analysis

Sample Name



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703039

#### **PROJECT NARRATIVE**

8270D(SIM) Polynuclear Aromatic Hydrocarbon

CC70307-BLK1 Blank Spike recovery is below lower control limit (B-).

1,2-Dichlorobenzene-d4 (28% @ 30-130%)

**Total Metals** 

1703039-01 Elevated Method Reporting Limits due to sample matrix (EL).

Cadmium, Copper

1703039-02 Elevated Method Reporting Limits due to sample matrix (EL).

Arsenic, Cadmium, Copper, Lead, Nickel, Zinc

No other observations noted.

End of Project Narrative.

#### DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1703039



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB 8100M - TPH

Q151A Harbiaid

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.02.17 Date Sampled: 03/02/17 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-01

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

#### **Total Metals**

| Analyte<br>Arsenic | <b>Results (MRL) 232</b> (50.0) | <u>MDL</u> | Method<br>6010C | <u>Limit</u> | <u><b>DF</b></u> 5 | Analyst<br>KJK | Analyzed 03/03/17 17:38 | <u>I/V</u> 50 | <u>F/V</u> | Batch<br>CC70213 |
|--------------------|---------------------------------|------------|-----------------|--------------|--------------------|----------------|-------------------------|---------------|------------|------------------|
| Cadmium            | EL ND (5.0)                     |            | 6010C           |              | 5                  | KJK            | 03/03/17 17:38          | 50            | 10         | CC70213          |
| Chromium III       | ND (20)                         |            | 6010C           |              | 5                  | JLK            | 03/03/17 17:38          | 1             | 1          | [CALC]           |
| Copper             | EL ND (20.0)                    |            | 6010C           |              | 5                  | KJK            | 03/03/17 17:38          | 50            | 10         | CC70213          |
| Hardness           | <b>2990</b> (1.8)               |            | 6010B           |              | 10                 | KJK            | 03/03/17 17:49          | 1             | 1          | [CALC]           |
| Iron               | <b>333000</b> (100)             |            | 6010C           |              | 5                  | KJK            | 03/03/17 17:38          | 50            | 10         | CC70213          |
| Lead               | <b>22.3</b> (20.0)              |            | 6010C           |              | 5                  | KJK            | 03/03/17 17:38          | 50            | 10         | CC70213          |
| Nickel             | <b>58.1</b> (20.0)              |            | 6010C           |              | 5                  | KJK            | 03/03/17 17:38          | 50            | 10         | CC70213          |
| Zinc               | <b>694</b> (50.0)               |            | 6010C           |              | 5                  | KJK            | 03/03/17 17:38          | 50            | 10         | CC70213          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.02.17 Date Sampled: 03/02/17 10:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-01

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

### 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane       | Results (MRL) | <u>MDL</u> | <u>Method</u><br>8260B | <u>Limit</u> | $\frac{\mathbf{DF}}{1}$ | <u>Analyzed</u><br>03/06/17 14:19 | Sequence<br>C7C0091 | Batch<br>CC70636 |
|----------------------------------|---------------|------------|------------------------|--------------|-------------------------|-----------------------------------|---------------------|------------------|
| 1,2-Dichioroethane               | ND (1.0)      |            | 6200B                  |              | 1                       | 05/00/1/ 14:19                    | C/C0091             | CC/0030          |
| Trichloroethene                  | ND (1.0)      |            | 8260B                  |              | 1                       | 03/06/17 14:19                    | C7C0091             | CC70636          |
|                                  |               |            |                        |              |                         |                                   |                     |                  |
|                                  |               | %Recovery  | Qualifier              | Limits       |                         |                                   |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |               | 113 %      |                        | 70-130       |                         |                                   |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |               | 102 %      |                        | 70-130       |                         |                                   |                     |                  |
| Surrogate: Dibromofluoromethane  |               | 102 %      |                        | 70-130       |                         |                                   |                     |                  |
| Surrogate: Toluene-d8            |               | 89 %       |                        | 70-130       |                         |                                   |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.02.17 Date Sampled: 03/02/17 10:00

Percent Solids: N/A Initial Volume: 100 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 3/2/17 21:00

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>0.677 (0.400) | MDL      | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | Analyzed 03/03/17 16:39 | Sequence<br>C7C0061 | Batch<br>CC70245 |
|---------------------------|--------------------------------|----------|---------------------|--------------|------------------|-------------------------|---------------------|------------------|
|                           | %                              | Recovery | Qualifier           | Limits       |                  |                         |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                | 49 %     |                     | 15-115       |                  |                         |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.02.17 Date Sampled: 03/02/17 10:00

Percent Solids: N/A Initial Volume: 1050 Final Volume: 0.25 Extraction Method: 3510C ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-01

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 3/3/17 14:00

### 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| <u>Analyte</u><br>Fluorene        | <b>Results (MRL) 0.26</b> (0.19) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | Analyzed 03/03/17 20:21 | Sequence<br>C7C0061 | Batch<br>CC70307 |
|-----------------------------------|----------------------------------|------------|---------------------|--------------|------------------|-------------------------|---------------------|------------------|
|                                   | 9/                               | 6Recovery  | Qualifier           | Limits       |                  |                         |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                                  | 71 %       |                     | 30-130       |                  |                         |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                                  | 85 %       |                     | 30-130       |                  |                         |                     |                  |
| Surrogate: Nitrobenzene-d5        |                                  | 88 %       |                     | 30-130       |                  |                         |                     |                  |
| Surrogate: p-Terphenyl-d14        |                                  | 71 %       |                     | 30-130       |                  |                         |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.02.17 Date Sampled: 03/02/17 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-01

Sample Matrix: Waste Water

### **Classical Chemistry**

| Analyte<br>Chloride           | Results (MRL)<br>4650 (500) | MDL Meth 300.0 |      | <b>DF</b><br>1000 | Analyst<br>EEM | Analyzed 03/03/17 13:54 | Units<br>mg/L | Batch<br>CC70314 |
|-------------------------------|-----------------------------|----------------|------|-------------------|----------------|-------------------------|---------------|------------------|
| Total Cyanide (LL)            | <b>50.0</b> (5.00)          | 4500 CN        | I CE | 1                 | EEM            | 03/03/17 11:50          | ug/L          | CC70315          |
| <b>Total Suspended Solids</b> | <b>15</b> (5)               | 2540           | D    | 1                 | JLK            | 03/02/17 20:31          | mg/L          | CC70254          |

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.02.17 Date Sampled: 03/02/17 09:45

Percent Solids: N/A

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-02

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

#### **Total Metals**

| <b>Analyte</b> | Results (MRL)       | <u>MDL</u> | Method | <u>Limit</u> | <u>DF</u> | <b>Analyst</b> | <b>Analyzed</b> | I/V | F/V | <b>Batch</b> |
|----------------|---------------------|------------|--------|--------------|-----------|----------------|-----------------|-----|-----|--------------|
| Arsenic        | EL ND (50.0)        |            | 6010C  |              | 5         | KJK            | 03/03/17 17:43  | 50  | 10  | CC70213      |
| Cadmium        | <b>EL</b> ND (5.0)  |            | 6010C  |              | 5         | KJK            | 03/03/17 17:43  | 50  | 10  | CC70213      |
| Chromium III   | ND (20)             |            | 6010C  |              | 5         | JLK            | 03/03/17 17:43  | 1   | 1   | [CALC]       |
| Copper         | EL ND (20.0)        |            | 6010C  |              | 5         | KJK            | 03/03/17 17:43  | 50  | 10  | CC70213      |
| Hardness       | <b>1740</b> (1.3)   |            | 6010B  |              | 5         | KJK            | 03/03/17 17:43  | 1   | 1   | [CALC]       |
| Iron           | <b>240</b> (100)    |            | 6010C  |              | 5         | KJK            | 03/03/17 17:43  | 50  | 10  | CC70213      |
| Lead           | <b>EL</b> ND (20.0) |            | 6010C  |              | 5         | KJK            | 03/03/17 17:43  | 50  | 10  | CC70213      |
| Nickel         | <b>EL</b> ND (20.0) |            | 6010C  |              | 5         | KJK            | 03/03/17 17:43  | 50  | 10  | CC70213      |
| Zinc           | EL ND (50.0)        |            | 6010C  |              | 5         | KJK            | 03/03/17 17:43  | 50  | 10  | CC70213      |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.02.17 Date Sampled: 03/02/17 09:45

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-02

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

### 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane       | Results (MRL)<br>9.0 (1.0) | <u>MDL</u> | <b>Method</b><br>8260B | <u>Limit</u> | <u><b>DF</b></u> | Analyzed 03/06/17 14:45 | Sequence<br>C7C0091 | Batch<br>CC70636 |
|----------------------------------|----------------------------|------------|------------------------|--------------|------------------|-------------------------|---------------------|------------------|
| Trichloroethene                  | ND (1.0)                   |            | 8260B                  |              | 1                | 03/06/17 14:45          | C7C0091             | CC70636          |
|                                  |                            | %Recovery  | Qualifier              | Limits       |                  |                         |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                            | 110 %      |                        | 70-130       |                  |                         |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                            | 101 %      |                        | 70-130       |                  |                         |                     |                  |
| Surrogate: Dibromofluoromethane  |                            | 101 %      |                        | 70-130       |                  |                         |                     |                  |
| Surrogate: Toluene-d8            |                            | 82 %       |                        | 70-130       |                  |                         |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.02.17 Date Sampled: 03/02/17 09:45

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-02

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 3/2/17 21:00

## 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>0.523 (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> 1 | <u>Analyzed</u> 03/03/17 17:15 | Sequence<br>C7C0061 | Batch<br>CC70245 |
|---------------------------|--------------------------------|------------|---------------------|--------------|--------------------|--------------------------------|---------------------|------------------|
|                           | %                              | Recovery   | Qualifier           | Limits       |                    |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                | 56 %       |                     | 15-115       |                    |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent 03.02.17 Date Sampled: 03/02/17 09:45

Percent Solids: N/A Initial Volume: 1070

Final Volume: 0.25 Extraction Method: 3510C ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-02

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 3/3/17 14:00

## 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Analyte<br>Fluorene               | Results (MRL) ND (0.19) | <b>MDL</b>  | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u><br>03/03/17 21:11 | Sequence<br>C7C0061 | Batch<br>CC70307 |
|-----------------------------------|-------------------------|-------------|---------------------|--------------|------------------|-----------------------------------|---------------------|------------------|
| Tuorene                           | ND (0.19)               |             | 0270D 511VI         |              | •                | 03/03/17 21:11                    | C/C0001             | CC70307          |
|                                   | 9                       | %Recovery   | Qualifier           | Limits       |                  |                                   |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                         | 58 %        |                     | 30-130       |                  |                                   |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                         | <i>75</i> % |                     | 30-130       |                  |                                   |                     |                  |
| Surrogate: Nitrobenzene-d5        |                         | 88 %        |                     | 30-130       |                  |                                   |                     |                  |
| Surrogate: p-Terphenyl-d14        |                         | 97 %        |                     | 30-130       |                  |                                   |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.02.17 Date Sampled: 03/02/17 09:45

Percent Solids: N/A

ESS Laboratory Work Order: 1703039 ESS Laboratory Sample ID: 1703039-02

Sample Matrix: Waste Water

## **Classical Chemistry**

| Analyte<br>Chloride           | Results (MRL)<br>3850 (500) | <u>MDL</u> | <b>Method</b> 300.0 | <u>Limit</u> | <u><b>DF</b></u> 1000 | Analyst<br>EEM | Analyzed<br>03/03/17 14:10 | Units<br>mg/L | Batch<br>CC70314 |
|-------------------------------|-----------------------------|------------|---------------------|--------------|-----------------------|----------------|----------------------------|---------------|------------------|
| Total Cyanide (LL)            | ND (5.00)                   |            | 4500 CN CE          |              | 1                     | EEM            | 03/03/17 11:50             | ug/L          | CC70315          |
| <b>Total Suspended Solids</b> | <b>5</b> (5)                |            | 2540D               |              | 1                     | JLK            | 03/02/17 20:31             | mg/L          | CC70254          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703039

## **Quality Control Data**

| Analyte                          | Result | MRL                                   | Units                                 | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|----------------------------------|--------|---------------------------------------|---------------------------------------|----------------|------------------|-------|----------------|-----|--------------|-----------|
| Airaiyle                         | Result | IMIKL                                 |                                       |                | RESUIL           | 70KEC | LIIIIIS        | KPU | LIIIIL       | Qualifie  |
|                                  |        |                                       | Total Meta                            | IIS            |                  |       |                |     |              |           |
| Batch CC70213 - 3005A            |        |                                       |                                       |                |                  |       |                |     |              |           |
| Blank                            |        |                                       |                                       |                |                  |       |                |     |              |           |
| Calcium                          | ND     | 40.0                                  | ug/L                                  |                |                  |       |                |     |              |           |
| Chromium III                     | ND     | 4                                     | ug/L                                  |                |                  |       |                |     |              |           |
| Copper                           | ND     | 4.0                                   | ug/L                                  |                |                  |       |                |     |              |           |
| Hardness                         | ND     | 0.3                                   | mg/L                                  |                |                  |       |                |     |              |           |
| Iron                             | ND     | 20.0                                  | ug/L                                  |                |                  |       |                |     |              |           |
| Magnesium                        | ND     | 40.0                                  | ug/L                                  |                |                  |       |                |     |              |           |
| Nickel                           | ND     | 4.0                                   | ug/L                                  |                |                  |       |                |     |              |           |
| Zinc                             | ND     | 10.0                                  | ug/L                                  |                |                  |       |                |     |              |           |
| LCS                              |        |                                       |                                       |                |                  |       |                |     |              |           |
| Calcium                          | 983    | 40.0                                  | ug/L                                  | 1000           |                  | 98    | 80-120         |     |              |           |
| Chromium III                     | 100    | 4                                     | ug/L                                  |                |                  |       |                |     |              |           |
| Copper                           | 97.4   | 4.0                                   | ug/L                                  | 100.0          |                  | 97    | 80-120         |     |              |           |
| Hardness                         | 6.50   | 0.3                                   | mg/L                                  |                |                  |       |                |     |              |           |
| Iron                             | 496    | 20.0                                  | ug/L                                  | 500.0          |                  | 99    | 80-120         |     |              |           |
| Magnesium                        | 987    | 40.0                                  | ug/L                                  | 1000           |                  | 99    | 80-120         |     |              |           |
| Nickel                           | 90.6   | 4.0                                   | ug/L                                  | 100.0          |                  | 91    | 80-120         |     |              |           |
| Zinc                             | 95.6   | 10.0                                  | ug/L                                  | 100.0          |                  | 96    | 80-120         |     |              |           |
| LCS Dup                          |        |                                       |                                       |                |                  |       |                |     |              |           |
| Calcium                          | 953    | 40.0                                  | ug/L                                  | 1000           |                  | 95    | 80-120         | 3   | 20           |           |
| Chromium III                     | 100    | 4                                     | ug/L                                  |                |                  |       |                |     |              |           |
| Copper                           | 97.8   | 4.0                                   | ug/L                                  | 100.0          |                  | 98    | 80-120         | 0.4 | 20           |           |
| Hardness                         | 6.40   | 0.3                                   | mg/L                                  |                |                  |       |                |     |              |           |
| Iron                             | 490    | 20.0                                  | ug/L                                  | 500.0          |                  | 98    | 80-120         | 1   | 20           |           |
| Magnesium                        | 965    | 40.0                                  | ug/L                                  | 1000           |                  | 97    | 80-120         | 2   | 20           |           |
| Nickel                           | 91.8   | 4.0                                   | ug/L                                  | 100.0          |                  | 92    | 80-120         | 1   | 20           |           |
| Zinc                             | 96.0   | 10.0                                  | ug/L                                  | 100.0          |                  | 96    | 80-120         | 0.4 | 20           |           |
| Batch CC70243 - [CALC]           |        |                                       |                                       |                |                  |       |                |     |              |           |
| Blank                            |        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | ·              |                  |       |                | ·   | ·            | ·         |
| Chromium III                     | ND     | 10                                    | ug/L                                  |                |                  |       |                |     |              |           |
| LCS                              |        |                                       |                                       |                |                  |       |                |     |              |           |
| Chromium III                     | ND     |                                       | ug/L                                  |                |                  |       |                |     |              |           |
| LCS Dup                          |        |                                       |                                       |                |                  |       |                |     |              |           |
| Chromium III                     | ND     |                                       | ug/L                                  |                |                  |       |                |     |              |           |
|                                  |        | 8260B Vo                              | latile Organi                         | c Compo        | unds             |       |                |     |              |           |
| Batch CC70636 - 5030B            |        |                                       |                                       |                |                  |       |                |     |              |           |
| Blank                            |        |                                       |                                       |                |                  |       |                |     |              |           |
| 1,2-Dichloroethane               | ND     | 1.0                                   | ug/L                                  |                |                  |       |                |     |              |           |
| Trichloroethene                  | ND     | 1.0                                   | ug/L                                  |                |                  |       |                |     |              |           |
| Surrogate: 1,2-Dichloroethane-d4 | 27.0   |                                       | ug/L                                  | 25.00          |                  | 108   | 70-130         |     |              |           |
| Surrogate: 4-Bromofluorobenzene  | 25.0   |                                       | ug/L                                  | 25.00          |                  | 100   | 70-130         |     |              |           |
| Surrogate: Dibromofluoromethane  | 25.5   |                                       | ug/L                                  | 25.00          |                  | 102   | 70-130         |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703039

## **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

### 8260B Volatile Organic Compounds

| Batch CC70636 - 5030B            |      |      |       |     |        |    |    |  |
|----------------------------------|------|------|-------|-----|--------|----|----|--|
| Surrogate: Toluene-d8            | 22.0 | ug/L | 25.00 | 88  | 70-130 |    |    |  |
| LCS                              |      |      |       |     |        |    |    |  |
| 1,2-Dichloroethane               | 12.5 | ug/L | 10.00 | 125 | 70-130 |    |    |  |
| Trichloroethene                  | 11.8 | ug/L | 10.00 | 118 | 70-130 |    |    |  |
| Surrogate: 1,2-Dichloroethane-d4 | 29.9 | ug/L | 25.00 | 120 | 70-130 |    |    |  |
| Surrogate: 4-Bromofluorobenzene  | 26.2 | ug/L | 25.00 | 105 | 70-130 |    |    |  |
| Surrogate: Dibromofluoromethane  | 27.8 | ug/L | 25.00 | 111 | 70-130 |    |    |  |
| Surrogate: Toluene-d8            | 24.9 | ug/L | 25.00 | 100 | 70-130 |    |    |  |
| LCS Dup                          |      |      |       |     |        |    |    |  |
| 1,2-Dichloroethane               | 11.0 | ug/L | 10.00 | 110 | 70-130 | 13 | 25 |  |
| Trichloroethene                  | 10.8 | ug/L | 10.00 | 108 | 70-130 | 9  | 25 |  |
| Surrogate: 1,2-Dichloroethane-d4 | 28.4 | ug/L | 25.00 | 114 | 70-130 |    |    |  |
| Surrogate: 4-Bromofluorobenzene  | 27.8 | ug/L | 25.00 | 111 | 70-130 |    |    |  |
| Surrogate: Dibromofluoromethane  | 26.2 | ug/L | 25.00 | 105 | 70-130 |    |    |  |
| Surrogate: Toluene-d8            | 26.2 | ug/L | 25.00 | 105 | 70-130 |    |    |  |

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Batch CC70245 - 3535A     |      |       |      |       |     |               |   |    |  |
|---------------------------|------|-------|------|-------|-----|---------------|---|----|--|
| Blank                     |      |       |      |       |     |               |   |    |  |
| 1,4-Dioxane               | ND   | 0.250 | ug/L |       |     |               |   |    |  |
| Surrogate: 1,4-Dioxane-d8 | 2.63 |       | ug/L | 5.000 | 53  | 15-115        |   |    |  |
| LCS                       |      |       |      |       |     |               |   |    |  |
| 1,4-Dioxane               | 11.0 | 0.250 | ug/L | 10.00 | 110 | 40-140        |   |    |  |
| Surrogate: 1,4-Dioxane-d8 | 3.34 |       | ug/L | 5.000 | 67  | 15-115        |   |    |  |
| LCS Dup                   |      |       |      |       |     |               |   |    |  |
| 1,4-Dioxane               | 10.8 | 0.250 | ug/L | 10.00 | 108 | 40-140        | 3 | 20 |  |
| Surrogate: 1,4-Dioxane-d8 | 3.41 |       | ug/L | 5.000 | 68  | <i>15-115</i> |   |    |  |

### 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Batch CC70307 - 3510C             |       |      |      |       |           |        |    |
|-----------------------------------|-------|------|------|-------|-----------|--------|----|
| Blank                             |       |      |      |       |           |        |    |
| Fluorene                          | ND    | 0.20 | ug/L |       |           |        |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 0.702 |      | ug/L | 2.500 | 28        | 30-130 | В- |
| Surrogate: 2-Fluorobiphenyl       | 1.12  |      | ug/L | 2.500 | 45        | 30-130 |    |
| Surrogate: Nitrobenzene-d5        | 1.52  |      | ug/L | 2.500 | 61        | 30-130 |    |
| Surrogate: p-Terphenyl-d14        | 1.77  |      | ug/L | 2.500 | 71        | 30-130 |    |
| ıcs                               |       |      |      |       |           |        |    |
| Fluorene                          | 3.15  | 0.20 | ug/L | 4.000 | 79        | 40-140 |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 0.935 |      | ug/L | 2.500 | <i>37</i> | 30-130 |    |
| Surrogate: 2-Fluorobiphenyl       | 1.46  |      | ug/L | 2.500 | 58        | 30-130 |    |
| Surrogate: Nitrobenzene-d5        | 1.88  |      | ug/L | 2.500 | <i>75</i> | 30-130 |    |
| Surrogate: p-Terphenyl-d14        | 2.12  |      | ug/L | 2.500 | 85        | 30-130 |    |
| LCS Dup                           |       |      |      |       |           |        |    |

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703039

## **Quality Control Data**

| A                                   | Darrille | MDI         | Unite       | Spike     | Source    | 0/ DEC | %REC   | DDD | RPD   | 0150      |
|-------------------------------------|----------|-------------|-------------|-----------|-----------|--------|--------|-----|-------|-----------|
| Analyte                             | Result   | MRL         | Units       | Level     | Result    | %REC   | Limits | RPD | Limit | Qualifier |
|                                     | 827      | 0D(SIM) Pol | nuclear Ar  | omatic Hy | /drocarbo | n      |        |     |       |           |
| Batch CC70307 - 3510C               |          |             |             |           |           |        |        |     |       |           |
| Fluorene                            | 3.39     | 0.20        | ug/L        | 4.000     |           | 85     | 40-140 | 7   | 20    |           |
| Surrogate: 1,2-Dichlorobenzene-d4   | 1.47     |             | ug/L        | 2.500     |           | 59     | 30-130 |     |       |           |
| Surrogate: 2-Fluorobiphenyl         | 2.01     |             | ug/L        | 2.500     |           | 80     | 30-130 |     |       |           |
| Surrogate: Nitrobenzene-d5          | 2.04     |             | ug/L        | 2.500     |           | 81     | 30-130 |     |       |           |
| Surrogate: p-Terphenyl-d14          | 2.37     |             | ug/L        | 2.500     |           | 95     | 30-130 |     |       |           |
|                                     |          | Cl          | assical Che | mistry    |           |        |        |     |       |           |
| Batch CC70254 - General Preparation |          |             |             |           |           |        |        |     |       |           |
| Blank                               |          |             |             |           |           |        |        |     |       |           |
| Total Suspended Solids              | ND       | 5           | mg/L        |           |           |        |        |     |       |           |
| LCS                                 |          |             |             |           |           |        |        |     |       |           |
| Total Suspended Solids              | 66       |             | mg/L        | 68.70     |           | 96     | 80-120 |     |       |           |
| Batch CC70314 - General Preparation |          |             |             |           |           |        |        |     |       |           |
| Blank                               |          |             |             |           |           |        |        |     |       |           |
| Chloride                            | ND       | 0.5         | mg/L        |           |           |        |        |     |       |           |
| cs                                  |          |             |             |           |           |        |        |     |       |           |
| Chloride                            | 2.6      |             | mg/L        | 2.500     |           | 105    | 90-110 |     |       |           |
| Batch CC70315 - TCN Prep            |          |             |             |           |           |        |        |     |       |           |
| Blank                               |          |             |             |           |           |        |        |     |       |           |
| Fotal Cyanide (LL)                  | ND       | 5.00        | ug/L        |           |           |        |        |     |       |           |
| LCS                                 |          |             |             |           |           |        |        |     |       |           |
| Fotal Cyanide (LL)                  | 20.3     | 5.00        | ug/L        | 20.06     |           | 101    | 90-110 |     |       |           |
| .cs                                 |          |             |             |           |           |        |        |     |       |           |
| Fotal Cyanide (LL)                  | 149      | 5.00        | ug/L        | 150.4     |           | 99     | 90-110 |     |       |           |
| .CS Dup                             |          |             |             |           |           |        |        |     |       |           |
| otal Cyanide (LL)                   | 149      | 5.00        | ug/L        | 150.4     |           | 99     | 90-110 | 0.5 | 20    |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703039

#### **Notes and Definitions**

| U  | Analyte included in the analysis, but not detected          |
|----|-------------------------------------------------------------|
| EL | Elevated Method Reporting Limits due to sample matrix (EL). |
| -  | T-11 - 1                                                    |

D Diluted.

B-Blank Spike recovery is below lower control limit (B-).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

**RPD** Relative Percent Difference **MDL** Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DLInitial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 1

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery [CALC] Calculated Analyte

**SUB** Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1703039



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 <a href="http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx">http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx</a>

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

## **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client:GZA - Norwood, MA - GZA/MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESS Project ID: 1703039                                                                         | ·                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| Shipped/Delivered Via:ESS Courier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date Received:         3/2/2017           Project Due Date:         3/6/2017                    |                                   |
| Shipped/Delivered viaE00_Counci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Days for Project: 2 Day                                                                         |                                   |
| Air bill manifest present?     No     NA     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Does COC match bottles?                                                                      | Yes                               |
| Were custody seals present?     No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7. Is COC complete and correct?                                                                 | Yes                               |
| 3. Is radiation count <100 CPM? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8. Were samples received intact?                                                                | Yes                               |
| 4. Is a Cooler Present? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9. Were labs informed about short holds & rushes?                                               | Yes / No / NA                     |
| Temp: 2.8   Iced with:   Ice    5. Was COC signed and dated by client?   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10. Were any analyses received outside of hold time?                                            | Yes (No)                          |
| 11. Any Subcontracting needed? Yes / Pos / | 12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely? | Yes And<br>Yes And<br>Yes / No MA |
| 13. Are the samples properly preserved?  a. If metals preserved upon receipt: b. Low Level VOA vials frozen:  Sample Receiving Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time: By:<br>Time: By:                                                                          | <u>=</u>                          |
| 14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted?  Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                   |

| Sample<br>Number | Container<br>ID | Proper<br>Container | Air<br>Bubbles<br>Present | Sufficient<br>Volume | Container Type       | Preservative | e       | Record pH (Cyanide and Pesticides) |        |        |  |
|------------------|-----------------|---------------------|---------------------------|----------------------|----------------------|--------------|---------|------------------------------------|--------|--------|--|
| 01               | 107723          | Yes                 | No                        | Yes                  | VOA Vial - HCl       | HCI          |         |                                    |        |        |  |
| 01               | 107724          | Yes                 | No                        | Yes                  | VOA Viai - HCI       | HCI          |         |                                    |        |        |  |
| 01               | 107725          | Yes                 | No                        | Yes                  | VOA Vial - HCl       | HCI          |         |                                    |        |        |  |
| 01               | 107729          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |
| 01               | 107730          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |
| 01               | 107731          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |
| 01               | 107733          | Yes                 | NA                        | Yes                  | 1L Poly - Unpres     | NP           |         |                                    |        |        |  |
| 01               | 107735          | Yes                 | NA                        | Yes                  | 250 mL Poly - HNO3   | HNO3         |         |                                    |        |        |  |
| 01               | 107737          | Yes                 | NA                        | Yes                  | 250 mL Poly - NaOH   | NaOH         | 14 = 10 | o RL                               | 3/2/17 | 1812   |  |
| 01               | 107739          | Yes                 | NA                        | Yes                  | 250 mL Poly - Unpres | NP           |         |                                    | -1-11  | 10,7   |  |
| 01               | 107935          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |
| 02               | 107717          | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |                                    |        |        |  |
| 02               | 107718          | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |                                    |        |        |  |
| 02               | 107719          | Yes                 | No                        | Yes                  | VOA Vial - HCI       | HCI          |         |                                    |        |        |  |
| 02               | 107726          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |
| 02               | 107727          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |
| 02               | 107728          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |
| 02               | 107732          | Yes                 | NA                        | Yes                  | 1L Poly - Unpres     | NP           |         |                                    |        |        |  |
| 02               | 107734          | Yes                 | NA                        | Yes                  | 250 mL Poly - HNO3   | HNO3         |         |                                    | _ •    |        |  |
| 02               | 107736          | Yes                 | NA                        | Yes                  | 250 mL Poly - NaOH   | NaOH         | PH >17  | 2 pc                               | 3/2/1  | 7 1817 |  |
| 02               | 107738          | Yes                 | NA                        | Yes                  | 250 mL Poly - Unpres | NP           | •       |                                    | • •    |        |  |
| 02               | 107934          | Yes                 | NA                        | Yes                  | 1L Amber - Unpres    | NP           |         |                                    |        |        |  |

## **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client:          | GZA - Norwood, MA - GZA/MM |              | ESS Project ID: |      | 1703039  |
|------------------|----------------------------|--------------|-----------------|------|----------|
|                  |                            |              | Date Received:  |      | 3/2/2017 |
| 2nd Review       |                            |              |                 |      |          |
| Are barcode labe | els on correct containers? | Yes No       |                 |      |          |
|                  | $\frown$ , /               |              |                 |      |          |
| Completed (      |                            |              | 1 1             |      |          |
| By:              | f-n h /                    | Date & Time: | 3/2/17          | 1813 |          |
| Reviewed         |                            |              | 7-1             |      |          |
| By:              | er jiv                     | Date & Time: | 3/2/17          | 1845 |          |
| Delivered (//    | 4/2-                       |              | 7/1/1           | 1245 |          |
| By:              |                            |              | 312/17          | 18.7 |          |
|                  |                            |              |                 |      |          |

| ESS               | ESS Laboratory                                                                 | >                                          |                      | O                                | CHAIN OF CUSTODY                                                                                                                                                                                              | ESS                                                                    | ESS Lab#                              |        | ΙĔ              | 95050C                | م        |                 |              |                                       |        |            |              |      |
|-------------------|--------------------------------------------------------------------------------|--------------------------------------------|----------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|--------|-----------------|-----------------------|----------|-----------------|--------------|---------------------------------------|--------|------------|--------------|------|
| Division 185 Fran | Division of Thielsch Engineering, Inc.<br>185 Frances Avenue Cranston RI 02910 | ineering, Inc.                             | <b>-</b>             | Turn Time                        | 5-Day Rush                                                                                                                                                                                                    | 2-Day Rep                                                              | Reporting                             |        |                 |                       | 8        | P Lin           | it; Apr      | RGP Limit; Appendix VI                | 5      |            |              |      |
| Tel. (401         | Tel. (401) 461-7181 Fax (401) 461-4486                                         | IX (401) 461-44                            | 981                  | Is thi                           | s project for any of the fol                                                                                                                                                                                  |                                                                        | Electonic                             |        | Junit Checker   | je je                 |          |                 | Sar          | Standard Excel                        | _      |            |              |      |
| www.ess           | www.esslaboratory.com                                                          |                                            |                      |                                  | CMA MG                                                                                                                                                                                                        | Deliv                                                                  | Deliverables                          |        | er (Plea        | Other (Please Specify | (î       | ŀ               |              |                                       | Į      | -          |              | abla |
|                   | GZA Geo                                                                        | Company Name<br>GZA GeoEnvironmental, Inc. | , Inc.               | Project #<br>01.0171521.52       | Project Name<br>Wynn Boston Harbor                                                                                                                                                                            |                                                                        |                                       |        |                 | (10 .T                |          |                 |              |                                       |        |            |              |      |
|                   | Col<br>Matt Sn                                                                 | Contact Person<br>Matt Smith / Neal Carey  | λe                   |                                  | Address<br>249 Vanderbilt Ave                                                                                                                                                                                 | sisy                                                                   | ssaup                                 |        | 77.00           | լսո                   |          | a               | į            |                                       |        |            | _            |      |
|                   | City                                                                           |                                            |                      | State<br>Massachusetts           |                                                                                                                                                                                                               | ## 1                                                                   | Har                                   |        |                 |                       |          | -               | 0728         |                                       |        |            |              |      |
|                   | Telephone Number<br>781-278-3700                                               | mber<br>30                                 | FAX                  | FAX Number                       | Email Address Matthew.Smith@gza.com                                                                                                                                                                           | y@qza.com                                                              |                                       |        | oineyC<br>G 040 | .olsO)                |          | ohloro<br>hteor |              | əu                                    |        |            |              |      |
| ESS Lab           | b Collection<br>Date                                                           | Collection<br>Time                         | Sample Type          | Sample Matrix                    | Sample ID                                                                                                                                                                                                     |                                                                        | и чэя                                 | Chlori | Total C         |                       | Hex C    | oldonT          | i(d þ, l     | Fluore                                |        |            |              |      |
| 10                | 3/2/2017                                                                       | 1000                                       | Grab                 | Waste Water                      | Influent_03.02.17                                                                                                                                                                                             | 17                                                                     | ×                                     | ×      | ×               | ×                     | ×        | ×               | ×            | ×                                     |        |            |              |      |
| 05                | 3/2/2017                                                                       | 0945                                       | Grab                 | Waste Water                      | Effluent_03.02.17                                                                                                                                                                                             | 17                                                                     | ×                                     | ×      | ×               | ×                     | ×        | ×               | ×            | ×                                     |        |            |              |      |
|                   |                                                                                |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 |                       |          |                 |              |                                       |        |            |              |      |
|                   |                                                                                |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 |                       |          |                 |              |                                       |        |            |              |      |
|                   |                                                                                |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 |                       |          |                 | <del> </del> |                                       |        |            | ļ            |      |
| _                 |                                                                                | ·                                          |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 |                       |          |                 |              |                                       |        |            |              |      |
|                   |                                                                                |                                            |                      |                                  | A CANADA AND AND AND AND AND AND AND AND AN                                                                                                                                                                   |                                                                        |                                       |        |                 |                       | -        |                 |              |                                       |        | -          |              |      |
|                   |                                                                                |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 |                       |          |                 |              |                                       |        |            |              |      |
|                   |                                                                                |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        | <u> </u>        |                       |          |                 |              |                                       |        |            |              |      |
|                   |                                                                                |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 |                       | -        |                 |              |                                       | _      |            |              |      |
| o<br>L            | Container Type:                                                                | %                                          | AG-A                 | B-BOD Bottle                     | bitainer G - Glass O-Other                                                                                                                                                                                    | oly S-Steri                                                            | /ial                                  | ۵      | <u>а</u>        | ·                     | ۵        | >               | Ş            | PG<br>PG                              |        |            |              |      |
| ខ្ល               | Container Volume: 1-100 mL                                                     |                                            |                      | . 4-300 mL 5-500 mL              | 6-1L 7-VOA 8-2 oz                                                                                                                                                                                             | 10-8 oz                                                                | _                                     | 1      | +               | 4                     | +        | -               |              |                                       |        | -          | #            |      |
| Sal L             | Preservation Code:                                                             | 1-Non Preserved Z-HCI                      | - 1                  | 3-H2SO4 4-HNO3 5-NaOH 6-Methanol | 7-Na2S203 B-Zr                                                                                                                                                                                                | Number of Confessions and Sample:                                      | • • • • • • • • • • • • • • • • • • • | +      | 5               | •                     | -        | 7               | +            | <b>-</b>                              |        | +          | $\downarrow$ |      |
|                   |                                                                                | 1 aborator                                 | 1 aboratory Hea Onty |                                  | oclosed P. Consol                                                                                                                                                                                             |                                                                        |                                       |        | +               | ]                     | $\dashv$ | 4               |              | -                                     |        | -          |              |      |
| Cool<br>Cool      | Cooler Present:                                                                | \                                          | ,                    |                                  | is:                                                                                                                                                                                                           | Please specify "Other" preservative and containers types in this space | ther" pr                              | eserv  | ative a         | and co                | ntaine   | rs typ          | es in t      | his spac                              | 8      |            |              |      |
| Ses               | Seals Intact:                                                                  |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        | 000                                   |        |                 | 3                     |          | 1               | 7            | í                                     |        | ç          |              |      |
| Cooler            | Cooler Temperature:                                                            | 2.5                                        | 87 35. J.            |                                  | L.)KGP metals include As, Cg, Cu, PD, Nt, Zn, and Fe by 60.20. Z.)Parameters in BOLD have short hold-time. 3.)Use KGP<br>approved methods for all applysis. A Molasse apply a for but do not rayort Hay Chrom | o, Ni, Zn, and re by o<br>Diasea analyza for bi                        | 020. Z.)                              | renord | erers<br>Hev (  |                       | J.       | nous e          | 1-Diou 1     | iπe. σ.)                              | Ose R  | <u>}</u>   |              |      |
|                   | Relinquished by: (Signature, Date & Time)                                      | (Signature, Da                             | ate & Time)          | Received By: (                   | Received By: (Signature, Date & Time) Relin                                                                                                                                                                   | Relinquished By. (Signature, Date & Time)                              | ure, Dat                              | e & T  | <b>e</b>        | L                     | & /      | ceived          | By: (S       | Received By: (Signature, Date & Time) | , Date | & Tim      | e            | Ţ    |
| Page              | Mind I                                                                         | 6-3/2/17                                   | 7 @ 11:57            | ding                             | - 3/2/ 11157 1/2/E                                                                                                                                                                                            | Sta12, 3/2/17                                                          |                                       | 06:40  |                 |                       |          | 75              | 1            | 147                                   |        | rog<br>For |              | _    |
| 22/               | Relinduished by: (Signature, Date & Time)                                      | (Signature, Da                             | ate & Time)          | Received By: (                   |                                                                                                                                                                                                               | Relinquished By: (Signature, Date & Time)                              | ure, Dat                              | e & T  | (ag             |                       | 12       | pe)lec          | By: (S       | Received By: (Signature, Date & Time) | , Date | & Tim      | <u>@</u>     |      |
| of 22             |                                                                                |                                            | -                    |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 |                       | •        |                 |              |                                       |        |            |              |      |
|                   |                                                                                |                                            |                      |                                  |                                                                                                                                                                                                               |                                                                        |                                       |        |                 | -                     |          |                 |              |                                       |        |            |              | 7    |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

**RE:** Wynn Everett - RGP (01.0171521.52)

ESS Laboratory Work Order Number: 1703683

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 1:11 pm, Apr 06, 2017

Laurel Stoddard Laboratory Director

### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703683

## **SAMPLE RECEIPT**

The following samples were received on March 28, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

| Lab Number | Sample Name         | <b>Matrix</b> | <u>Analysis</u>                               |
|------------|---------------------|---------------|-----------------------------------------------|
| 1703683-01 | Influent_03.28.2017 | Waste Water   | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 7010, |
|            |                     |               | 8260B, 8270D SIM                              |
| 1703683-02 | Effluent_03.28.2017 | Waste Water   | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 7010, |
|            |                     |               | 8260B, 8270D SIM                              |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703683

### **PROJECT NARRATIVE**

8270D(SIM) Polynuclear Aromatic Hydrocarbon

CC72918-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

No other observations noted.

**End of Project Narrative.** 

### DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1703683



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

## **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury 7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB 8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.28.2017

Date Sampled: 03/28/17 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-01

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Total Metals**

| Analyte<br>Arsenic | Results (MRL)        | <u>MDL</u> | <u>Method</u><br>7010 | <u>Limit</u> | <u>DF</u> 50 | Analys<br>KJK | <u>Analyzed</u> 04/01/17 19:54 | <u>I/V</u> 50 | $\frac{\mathbf{F/V}}{10}$ | Batch<br>CC73001 |
|--------------------|----------------------|------------|-----------------------|--------------|--------------|---------------|--------------------------------|---------------|---------------------------|------------------|
|                    | <b>323</b> (50.0)    |            |                       |              |              |               |                                |               |                           |                  |
| Cadmium            | <b>1.8</b> (1.2)     |            | 7010                  |              | 12           | KJK           | 03/31/17 14:51                 | 50            | 10                        | CC73001          |
| Chromium III       | ND (10)              |            | 6010C                 |              | 2            | JLK           | 03/31/17 13:11                 | 1             | 1                         | [CALC]           |
| Copper             | ND (8.0)             |            | 6010C                 |              | 2            | KJK           | 03/31/17 13:11                 | 50            | 10                        | CC73001          |
| Hardness           | <b>1150</b> (1.3)    |            | 6010B                 |              | 1            | KJK           | 03/30/17 1:40                  | 1             | 1                         | [CALC]           |
| Iron               | <b>180000</b> (40.0) |            | 6010C                 |              | 2            | KJK           | 03/31/17 13:11                 | 50            | 10                        | CC73001          |
| Lead               | ND (2.0)             |            | 7010                  |              | 5            | KJK           | 03/31/17 20:36                 | 50            | 10                        | CC73001          |
| Nickel             | ND (8.0)             |            | 6010C                 |              | 2            | KJK           | 03/31/17 13:11                 | 50            | 10                        | CC73001          |
| Zinc               | <b>258</b> (20.0)    |            | 6010C                 |              | 2            | KJK           | 03/31/17 13:11                 | 50            | 10                        | CC73001          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.28.2017

Date Sampled: 03/28/17 08:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-01

Sample Matrix: Waste Water

Units: ug/L Analyst: MD

## 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane       | Results (MRL) ND (1.0) | <b>MDL</b> | <u>Method</u><br>8260B | <u>Limit</u> | <u><b>DF</b></u> 1 | <u>Analyzed</u> 03/29/17 19:39 | Sequence<br>C7C0462 | Batch<br>CC72941 |
|----------------------------------|------------------------|------------|------------------------|--------------|--------------------|--------------------------------|---------------------|------------------|
| Trichloroethene                  | ND (1.0)               |            | 8260B                  |              | 1                  | 03/29/17 19:39                 | C7C0462             | CC72941          |
|                                  |                        | %Recovery  | Qualifier              | Limits       |                    |                                |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                        | 92 %       |                        | 70-130       |                    |                                |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                        | 105 %      |                        | 70-130       |                    |                                |                     |                  |
| Surrogate: Dibromofluoromethane  |                        | 103 %      |                        | 70-130       |                    |                                |                     |                  |
| Surrogate: Toluene-d8            |                        | 98 %       |                        | 70-130       |                    |                                |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.28.2017

Date Sampled: 03/28/17 08:30

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 3/29/17 19:00

## 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>ND (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> 1 | <u>Analyzed</u> 03/30/17 16:42 | Sequence<br>C7C0482 | Batch<br>CC72972 |
|---------------------------|-----------------------------|------------|---------------------|--------------|--------------------|--------------------------------|---------------------|------------------|
|                           | %                           | Recovery   | Qualifier           | Limits       |                    |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                             | 57 %       |                     | 15-115       |                    |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.28.2017

Date Sampled: 03/28/17 08:30

Percent Solids: N/A Initial Volume: 960 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 3/30/17 14:00

## 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Analyte<br>Fluorene               | Results (MRL) ND (0.21) | <b>MDL</b> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 03/30/17 15:13 | Sequence<br>C7C0482 | Batch<br>CC72918 |
|-----------------------------------|-------------------------|------------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
| Tuorene                           | ND (0.21)               |            | 8270D SIW           |              | 1                | 03/30/17 13.13                 | C/C0462             | CC/2916          |
|                                   |                         | %Recovery  | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                         | 73 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                         | 87 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: Nitrobenzene-d5        |                         | 82 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: p-Terphenyl-d14        |                         | 88 %       |                     | 30-130       |                  |                                |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_03.28.2017

Date Sampled: 03/28/17 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-01

Sample Matrix: Waste Water

## **Classical Chemistry**

| Analyte<br>Chloride           | Results (MRL)<br>1600 (500) |      | ethod Limit | <u><b>DF</b></u> 1000 | Analyst<br>EEM | <b>Analyzed</b> 03/29/17 15:39 | Units<br>mg/L | Batch<br>CC72928 |
|-------------------------------|-----------------------------|------|-------------|-----------------------|----------------|--------------------------------|---------------|------------------|
| Total Cyanide (LL)            | <b>113</b> (5.00)           | 4500 | CN CE       | 1                     | EEM            | 03/29/17 11:15                 | ug/L          | CC72929          |
| <b>Total Suspended Solids</b> | 22 (5)                      | 25   | 40D         | 1                     | EEM            | 03/29/17 17:10                 | mg/L          | CC72931          |

Service



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.28.2017

Date Sampled: 03/28/17 09:00

Percent Solids: N/A

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-02

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Total Metals**

| <b>Analyte</b> | Results (MRL)     | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | <b>Analyzed</b> | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|-------------------|------------|--------|--------------|-----------|---------|-----------------|------------|-----|--------------|
| Arsenic        | ND (4.0)          |            | 7010   |              | 4         | KJK     | 04/01/17 20:00  | 50         | 10  | CC73001      |
| Cadmium        | <b>0.6</b> (0.4)  |            | 7010   |              | 4         | KJK     | 03/31/17 14:57  | 50         | 10  | CC73001      |
| Chromium III   | ND (10)           |            | 6010C  |              | 2         | JLK     | 03/31/17 13:17  | 1          | 1   | [CALC]       |
| Copper         | <b>11.8</b> (8.0) |            | 6010C  |              | 2         | KJK     | 03/31/17 13:17  | 50         | 10  | CC73001      |
| Hardness       | <b>1740</b> (1.3) |            | 6010B  |              | 1         | KJK     | 03/30/17 1:44   | 1          | 1   | [CALC]       |
| Iron           | <b>116</b> (100)  |            | 6010C  |              | 5         | KJK     | 04/05/17 14:25  | 50         | 10  | CC73001      |
| Lead           | ND (2.0)          |            | 7010   |              | 5         | KJK     | 03/31/17 20:49  | 50         | 10  | CC73001      |
| Nickel         | ND (8.0)          |            | 6010C  |              | 2         | KJK     | 03/31/17 13:17  | 50         | 10  | CC73001      |
| Zinc           | ND (20.0)         |            | 6010C  |              | 2         | KJK     | 03/31/17 13:17  | 50         | 10  | CC73001      |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.28.2017

Date Sampled: 03/28/17 09:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-02

Sample Matrix: Waste Water

Units: ug/L Analyst: MD

## 8260B Volatile Organic Compounds

| Analyte 1,2-Dichloroethane       | Results (MRL) ND (1.0) | <b>MDL</b> | Method<br>8260B | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u><br>03/29/17 19:12 | Sequence<br>C7C0462 | Batch<br>CC72941 |
|----------------------------------|------------------------|------------|-----------------|--------------|------------------|-----------------------------------|---------------------|------------------|
| Trichloroethene                  | ND (1.0)               |            | 8260B           |              | 1                | 03/29/17 19:12                    | C7C0462             | CC72941          |
|                                  |                        | %Recovery  | Qualifier       | Limits       |                  |                                   |                     |                  |
| Surrogate: 1,2-Dichloroethane-d4 |                        | 95 %       |                 | 70-130       |                  |                                   |                     |                  |
| Surrogate: 4-Bromofluorobenzene  |                        | 100 %      |                 | 70-130       |                  |                                   |                     |                  |
| Surrogate: Dibromofluoromethane  |                        | 102 %      |                 | 70-130       |                  |                                   |                     |                  |
| Surrogate: Toluene-d8            |                        | 99 %       |                 | 70-130       |                  |                                   |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.28.2017

Date Sampled: 03/28/17 09:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-02

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 3/29/17 19:00

## 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | <b>Results (MRL) 0.361</b> (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> 1 | <u>Analyzed</u> 03/30/17 17:21 | Sequence<br>C7C0482 | Batch<br>CC72972 |
|---------------------------|------------------------------------|------------|---------------------|--------------|--------------------|--------------------------------|---------------------|------------------|
|                           | %                                  | Recovery   | Qualifier           | Limits       |                    |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                    | 58 %       |                     | 15-115       |                    |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.28.2017

Date Sampled: 03/28/17 09:00

Percent Solids: N/A Initial Volume: 1060 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-02

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 3/29/17 12:05

## 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| <b>Analyte</b>                    | Results (MRL) | <b>MDL</b>  | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|-----------------------------------|---------------|-------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| Fluorene                          | ND (0.19)     |             | 8270D SIM |              | 1         | 03/29/17 19:45  | C7C0464         | CC72918      |
|                                   |               | %Recovery   | Qualifier | Limits       |           |                 |                 |              |
| Surrogate: 1,2-Dichlorobenzene-d4 |               | 39 %        |           | 30-130       |           |                 |                 |              |
| Surrogate: 2-Fluorobiphenyl       |               | <i>55</i> % |           | 30-130       |           |                 |                 |              |
| Surrogate: Nitrobenzene-d5        |               | 68 %        |           | 30-130       |           |                 |                 |              |
| Surrogate: p-Terphenyl-d14        |               | 82 %        |           | 30-130       |           |                 |                 |              |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_03.28.2017

Date Sampled: 03/28/17 09:00

Percent Solids: N/A

ESS Laboratory Work Order: 1703683 ESS Laboratory Sample ID: 1703683-02

Sample Matrix: Waste Water

## **Classical Chemistry**

| Analyte<br>Chloride           | Results (MRL)<br>4460 (500) | MDL <u>Method</u> 300.0 | Limit | <u><b>DF</b></u> 1000 | Analyst<br>EEM | Analyzed 03/29/17 15:56 | Units<br>mg/L | Batch<br>CC72928 |
|-------------------------------|-----------------------------|-------------------------|-------|-----------------------|----------------|-------------------------|---------------|------------------|
| Total Cyanide (LL)            | <b>14.8</b> (5.00)          | 4500 CN CE              |       | 1                     | EEM            | 03/29/17 11:15          | ug/L          | CC72929          |
| <b>Total Suspended Solids</b> | 11 (5)                      | 2540D                   |       | 1                     | EEM            | 03/29/17 17:10          | mg/L          | CC72931          |

Service



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703683

## **Quality Control Data**

| Analyte                     | Result   | MRL  | Units      | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifie |
|-----------------------------|----------|------|------------|----------------|------------------|------|----------------|-----|--------------|----------|
|                             |          |      | Total Meta | als            |                  |      |                |     |              |          |
| Batch CC72861 - [CALC]      |          |      |            |                |                  |      |                |     |              |          |
| Blank                       |          |      |            |                |                  |      |                |     |              |          |
| Chromium III                | ND       | 10   | ug/L       |                |                  |      |                |     |              |          |
| .cs                         |          |      |            |                |                  |      |                |     |              |          |
| Chromium III                | ND       |      | ug/L       |                |                  |      |                |     |              |          |
| .CS Dup                     |          |      |            |                |                  |      |                |     |              |          |
| Chromium III                | ND       |      | ug/L       |                |                  |      |                |     |              |          |
|                             |          |      |            |                |                  |      |                |     |              |          |
| Batch CC72902 - 3005A       |          |      |            |                |                  |      |                |     |              |          |
| llank                       |          |      |            |                |                  |      |                |     |              |          |
| Calcium                     | ND<br>ND | 200  | ug/L       |                |                  |      |                |     |              |          |
| Hardness<br>Hardnesium      | ND<br>ND | 1.3  | mg/L       |                |                  |      |                |     |              |          |
| Magnesium                   | ND       | 200  | ug/L       |                |                  |      |                |     |              |          |
| .cs                         | .===     | 200  | **         | F666           |                  |      | 00 / 22        |     |              |          |
| alcium                      | 4720     | 200  | ug/L       | 5000           |                  | 94   | 80-120         |     |              |          |
| lardness                    | 31.6     | 1.3  | mg/L       | F000           |                  | 06   | 00.120         |     |              |          |
| lagnesium                   | 4810     | 200  | ug/L       | 5000           |                  | 96   | 80-120         |     |              |          |
| CS Dup                      |          |      |            |                |                  |      |                |     |              |          |
| alcium                      | 4230     | 200  | ug/L       | 5000           |                  | 85   | 80-120         | 11  | 20           |          |
| Hardness                    | 28.4     | 1.3  | mg/L       |                |                  |      |                |     |              |          |
| 1agnesium                   | 4330     | 200  | ug/L       | 5000           |                  | 87   | 80-120         | 10  | 20           |          |
| Batch CC73001 - 3005A/200.7 |          |      |            |                |                  |      |                |     |              |          |
| Blank                       |          |      |            |                |                  |      |                |     |              |          |
| rsenic                      | ND       | 1.0  | ug/L       |                |                  |      |                |     |              |          |
| Cadmium                     | ND       | 0.1  | ug/L       |                |                  |      |                |     |              |          |
| Chromium III                | ND       | 4    | ug/L       |                |                  |      |                |     |              |          |
| opper                       | ND       | 4.0  | ug/L       |                |                  |      |                |     |              |          |
| ron                         | ND       | 20.0 | ug/L       |                |                  |      |                |     |              |          |
| ead                         | ND       | 0.4  | ug/L       |                |                  |      |                |     |              |          |
| lickel                      | ND       | 4.0  | ug/L       |                |                  |      |                |     |              |          |
| linc                        | ND       | 10.0 | ug/L       |                |                  |      |                |     |              |          |
| cs                          |          |      |            |                |                  |      |                |     |              |          |
| Arsenic                     | 111      | 25.0 | ug/L       | 100.0          |                  | 111  | 80-120         |     |              |          |
| Cadmium                     | 50.8     | 50.0 | ug/L       | 50.00          |                  | 102  | 80-120         |     |              |          |
| Chromium III                | 101      | 4    | ug/L       |                |                  |      |                |     |              |          |
| Copper                      | 99.6     | 4.0  | ug/L       | 100.0          |                  | 100  | 80-120         |     |              |          |
| ron                         | 492      | 20.0 | ug/L       | 500.0          |                  | 98   | 80-120         |     |              |          |
| ead                         | 119      | 10.0 | ug/L       | 100.0          |                  | 119  | 80-120         |     |              |          |
| ickel                       | 101      | 4.0  | ug/L       | 100.0          |                  | 101  | 80-120         |     |              |          |
| inc                         | 99.0     | 10.0 | ug/L       | 100.0          |                  | 99   | 80-120         |     |              |          |
| .CS Dup                     |          |      |            |                |                  |      |                |     |              |          |
| Arsenic                     | 108      | 25.0 | ug/L       | 100.0          |                  | 108  | 80-120         | 3   | 20           |          |
| Cadmium                     | 50.1     | 50.0 | ug/L       | 50.00          |                  | 100  | 80-120         | 1   | 20           |          |
| Chromium III                | 100      | 4    | ug/L       |                |                  |      |                |     |              |          |
| Copper                      | 99.1     | 4.0  | ug/L       | 100.0          |                  | 99   | 80-120         | 0.5 | 20           |          |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703683

## **Quality Control Data**

| Analyte                                 | Result     | MRL           | Units       | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Qualifie |
|-----------------------------------------|------------|---------------|-------------|----------------|------------------|------------|----------------|-----|--------------|----------|
|                                         |            |               | Total Meta  | als            |                  |            |                |     |              |          |
| Batch CC73001 - 3005A/200.7             |            |               |             |                |                  |            |                |     |              |          |
| Iron                                    | 493        | 20.0          | ug/L        | 500.0          |                  | 99         | 80-120         | 0.1 | 20           |          |
| Lead                                    | 108        | 10.0          | ug/L        | 100.0          |                  | 108        | 80-120         | 9   | 20           |          |
| Nickel                                  | 101        | 4.0           | ug/L        | 100.0          |                  | 101        | 80-120         | 0.2 | 20           |          |
| linc                                    | 98.7       | 10.0          | ug/L        | 100.0          |                  | 99         | 80-120         | 0.3 | 20           |          |
|                                         |            | 8260B Vol     | atile Organ | ic Compo       | unds             |            |                |     |              |          |
| Batch CC72941 - 5030B                   |            |               |             |                |                  |            |                |     |              |          |
| Blank                                   |            |               |             |                |                  |            |                |     |              |          |
| ,2-Dichloroethane                       | ND         | 1.0           | ug/L        |                |                  |            |                |     |              |          |
| Trichloroethene                         | ND         | 1.0           | ug/L        |                |                  |            |                |     |              |          |
| Surrogate: 1,2-Dichloroethane-d4        | 23.4       |               | ug/L        | 25.00          |                  | 94         | 70-130         |     |              |          |
| Surrogate: 4-Bromofluorobenzene         | 25.2       |               | ug/L        | 25.00          |                  | 101        | 70-130         |     |              |          |
| Surrogate: Dibromofluoromethane         | 25.6       |               | ug/L        | 25.00          |                  | 102        | 70-130         |     |              |          |
| Surrogate: Toluene-d8                   | 24.4       |               | ug/L        | 25.00          |                  | 98         | 70-130         |     |              |          |
| .cs                                     |            |               |             |                |                  |            |                |     |              |          |
| ,2-Dichloroethane                       | 9.9        |               | ug/L        | 10.00          |                  | 99         | 70-130         |     |              |          |
| richloroethene                          | 10.0       |               | ug/L        | 10.00          |                  | 100        | 70-130         |     |              |          |
| Surrogate: 1,2-Dichloroethane-d4        | 25.0       |               | ug/L        | 25.00          |                  | 100        | 70-130         |     |              |          |
| Surrogate: 4-Bromofluorobenzene         | 26.2       |               | ug/L        | 25.00          |                  | 105        | 70-130         |     |              |          |
| Surrogate: Dibromofluoromethane         | 27.2       |               | ug/L        | 25.00          |                  | 109        | 70-130         |     |              |          |
| Surrogate: Toluene-d8                   | 26.0       |               | ug/L        | 25.00          |                  | 104        | 70-130         |     |              |          |
| CS Dup                                  |            |               |             |                |                  |            |                |     |              |          |
| ,2-Dichloroethane                       | 10.3       |               | ug/L        | 10.00          |                  | 103        | 70-130         | 4   | 25           |          |
| richloroethene                          | 9.8        |               | ug/L        | 10.00          |                  | 98         | 70-130         | 2   | 25           |          |
| Surrogate: 1,2-Dichloroethane-d4        | 26.3       |               | ug/L        | 25.00          |                  | 105        | 70-130         |     |              |          |
| Surrogate: 4-Bromofluorobenzene         | 26.9       |               | ug/L        | 25.00          |                  | 108        | 70-130         |     |              |          |
| Gurrogate: Dibromofluoromethane         | 27.5       |               | ug/L        | 25.00          |                  | 110        | 70-130         |     |              |          |
| Surrogate: Toluene-d8                   | 26.4       |               | ug/L        | 25.00          |                  | 105        | 70-130         |     |              |          |
|                                         | 8270D(SIM) | Semi-Volatile | Organic Co  | mpounds        | s w/ Isoto       | pe Dilutio | n              |     |              |          |
| Batch CC72972 - 3535A                   |            |               |             |                |                  |            |                |     |              |          |
| Blank                                   |            |               |             |                |                  |            |                |     |              |          |
| ,4-Dioxane                              | ND         | 0.250         | ug/L        |                |                  |            |                |     |              |          |
| Surrogate: 1,4-Dioxane-d8               | 2.46       |               | ug/L        | 5.000          |                  | 49         | 15-115         |     |              |          |
| .cs                                     |            |               |             |                |                  |            |                |     |              |          |
| .,4-Dioxane                             | 11.1       | 0.250         | ug/L        | 10.00          |                  | 111        | 40-140         |     |              |          |
| Surrogate: 1,4-Dioxane-d8               | 2.86       |               | ug/L        | 5.000          |                  | 57         | 15-115         |     |              |          |
| LCS Dup                                 |            |               |             |                |                  |            |                |     |              |          |
| 1,4-Dioxane                             | 11.4       | 0.250         | ug/L        | 10.00          |                  | 114        | 40-140         | 2   | 20           |          |
| Surrogate: 1,4-Dioxane-d8               | 3.04       |               | ug/L        | 5.000          |                  | 61         | 15-115         |     |              |          |
| 2 · / · · · · · · · · · · · · · · · · · |            | OD(SIM) Poly  |             |                |                  |            |                |     |              |          |

1055

Batch CC72918 - 3510C

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703683

## **Quality Control Data**

| Analyte                             | Result | MRL          | Units       | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-------------------------------------|--------|--------------|-------------|----------------|------------------|-----------|----------------|-----|--------------|-----------|
|                                     | 827    | 0D(SIM) Poly | ynuclear Ar | omatic Hy      | /drocarbo        | n         |                |     |              |           |
| Batch CC72918 - 3510C               |        |              |             |                |                  |           |                |     |              |           |
| Blank                               |        |              |             |                |                  |           |                |     |              |           |
| Fluorene                            | ND     | 0.20         | ug/L        |                |                  |           |                |     |              |           |
| Surrogate: 1,2-Dichlorobenzene-d4   | 1.05   |              | ug/L        | 2.500          |                  | 42        | 30-130         |     |              |           |
| Surrogate: 2-Fluorobiphenyl         | 1.50   |              | ug/L        | 2.500          |                  | 60        | 30-130         |     |              |           |
| Surrogate: Nitrobenzene-d5          | 1.64   |              | ug/L        | 2.500          |                  | 65        | 30-130         |     |              |           |
| Surrogate: p-Terphenyl-d14          | 1.98   |              | ug/L        | 2.500          |                  | 79        | 30-130         |     |              |           |
| LCS                                 |        |              |             |                |                  |           |                |     |              |           |
| Fluorene                            | 2.64   | 0.20         | ug/L        | 4.000          |                  | 66        | 40-140         |     |              |           |
| Surrogate: 1,2-Dichlorobenzene-d4   | 1.25   |              | ug/L        | 2.500          |                  | 50        | 30-130         |     |              |           |
| Surrogate: 2-Fluorobiphenyl         | 1.78   |              | ug/L        | 2.500          |                  | 71        | 30-130         |     |              |           |
| Surrogate: Nitrobenzene-d5          | 1.93   |              | ug/L        | 2.500          |                  | <i>77</i> | 30-130         |     |              |           |
| Surrogate: p-Terphenyl-d14          | 1.96   |              | ug/L        | 2.500          |                  | <i>78</i> | 30-130         |     |              |           |
| LCS Dup                             |        |              |             |                |                  |           |                |     |              |           |
| Fluorene                            | 3.34   | 0.20         | ug/L        | 4.000          |                  | 84        | 40-140         | 24  | 20           |           |
| Surrogate: 1,2-Dichlorobenzene-d4   | 1.37   |              | ug/L        | 2.500          |                  | 55        | 30-130         |     |              |           |
| Surrogate: 2-Fluorobiphenyl         | 2.04   |              | ug/L        | 2.500          |                  | 82        | 30-130         |     |              |           |
| Surrogate: Nitrobenzene-d5          | 1.93   |              | ug/L        | 2.500          |                  | 77        | 30-130         |     |              |           |
| Surrogate: p-Terphenyl-d14          | 2.28   |              | ug/L        | 2.500          |                  | 91        | 30-130         |     |              |           |
|                                     |        | Cla          | assical Che | mistry         |                  |           |                |     |              |           |
| Batch CC72928 - General Preparation |        |              |             |                |                  |           |                |     |              |           |
| Blank                               |        |              |             |                |                  |           |                |     |              |           |
| Chloride                            | ND     | 0.5          | mg/L        |                |                  |           |                |     |              |           |
| LCS                                 |        |              |             |                |                  |           |                |     |              |           |
| Chloride                            | 2.3    |              | mg/L        | 2.500          |                  | 91        | 90-110         |     |              |           |
|                                     | -      |              |             |                |                  |           |                |     |              |           |
| Batch CC72929 - TCN Prep            |        |              |             |                |                  |           |                |     |              |           |
| Blank                               |        |              |             |                |                  |           |                |     |              |           |
| Total Cyanide (LL)                  | ND     | 5.00         | ug/L        |                |                  |           |                |     |              |           |
| LCS                                 |        |              |             |                |                  |           |                |     |              |           |
| Total Cyanide (LL)                  | 20.8   | 5.00         | ug/L        | 20.06          |                  | 104       | 90-110         |     |              |           |
| LCS                                 |        |              |             |                |                  |           |                |     |              |           |
| Total Cyanide (LL)                  | 150    | 5.00         | ug/L        | 150.4          |                  | 100       | 90-110         |     |              |           |
| LCS Dup                             |        |              |             |                |                  |           |                |     |              |           |
| Total Cyanide (LL)                  | 149    | 5.00         | ug/L        | 150.4          |                  | 99        | 90-110         | 0.7 | 20           |           |
| Batch CC72931 - General Preparation |        |              |             |                |                  |           |                |     |              |           |
| Blank                               |        |              |             |                |                  |           |                |     |              |           |
| Total Suspended Solids              | ND     | 5            | mg/L        |                |                  |           |                |     |              |           |
| LCS                                 |        |              |             |                |                  |           |                |     |              |           |
| Total Suspended Solids              | 66     |              | mg/L        | 68.70          |                  | 96        | 80-120         |     |              |           |

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1703683

#### **Notes and Definitions**

| U Analyte included in the analysis, but not detected |  |
|------------------------------------------------------|--|
|------------------------------------------------------|--|

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1703683



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 <a href="http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx">http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx</a>

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

## **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client: GZA - Norwood, MA - GZA/MM                                                                                                  | ESS Project ID: 1703683  Date Received: 3/28/2017                                                                                 |                           |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Shipped/Delivered Via: ESS Courier                                                                                                  | Project Due Date: 3/30/2017  Days for Project: 2 Day                                                                              | <del></del>               |
| 1. Air bill manifest present? No No NA                                                                                              | 6. Does COC match bottles?                                                                                                        | Yes                       |
| Were custody seals present?                                                                                                         | 7. Is COC complete and correct?                                                                                                   | Yes                       |
| 3. Is radiation count <100 CPM? Yes                                                                                                 | 8. Were samples received intact?                                                                                                  | Yes                       |
| 4. Is a Cooler Present? Yes                                                                                                         | 9. Were labs informed about short holds & rushes?                                                                                 | (Yes) No / NA             |
| Temp: 3.0   Iced with:   Ice    5. Was COC signed and dated by client?   Yes                                                        | 10. Were any analyses received outside of hold time?                                                                              | Yes No                    |
|                                                                                                                                     |                                                                                                                                   |                           |
| 11. Any Subcontracting needed?  ESS Sample IDs:  Analysis:  TAT:                                                                    | <ul><li>12. Were VOAs received?</li><li>a. Air bubbles in aqueous VOAs?</li><li>b. Does methanol cover soil completely?</li></ul> | Yes / No<br>Yes / No / NA |
| 13. Are the samples properly preserved?  a. If metals preserved upon receipt:  b. Low Level VOA vials frozen:  Yes / No Date: Date: | Time: By:                                                                                                                         | <u>.</u>                  |
| Sample Receiving Notes:                                                                                                             |                                                                                                                                   |                           |
|                                                                                                                                     |                                                                                                                                   |                           |
|                                                                                                                                     | s / No<br>3 / No<br>Time: By:                                                                                                     | <del></del>               |
|                                                                                                                                     |                                                                                                                                   |                           |

|        | Record pH (Cyanide<br>Pesticides) | e<br>  | Preservativ | Container Type       | Sufficient<br>Volume | Air<br>Bubbles<br>Present | Proper<br>Container | Container<br>ID | Sample<br>Number |
|--------|-----------------------------------|--------|-------------|----------------------|----------------------|---------------------------|---------------------|-----------------|------------------|
| 18     |                                   |        | HNO3        | 250 mL Poly - HNO3   | Yes                  | NA                        | Yes                 | 113586          | 01               |
| 7 '0   | 2 W 3/28/17                       | PH 712 | NaOH        | 250 mL Poly - NaOH   | Yes                  | NA                        | Yes                 | 113587          | 01               |
|        |                                   | •      | NP          | 250 mL Poly - Unpres | Yes                  | NA                        | Yes                 | 113589          | 01               |
|        |                                   |        | NP          | 500 mL Poly - Unpres | Yes                  | NA                        | Yes                 | 113591          | 01               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113593          | 01               |
|        |                                   |        | HC1         | VOA Vial - HCI       | Yes                  | No                        | Yes                 | 113599          | 01               |
|        |                                   |        | HCI         | VOA Vial - HCI       | Yes                  | No                        | Yes                 | 113600          | 01               |
|        |                                   |        | HCI         | VOA Vial - HCI       | Yes                  | No                        | Yes                 | 113601          | 01               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113606          | 01               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113607          | 01               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113608          | 01               |
|        |                                   |        | HNO3        | 250 mL Poly - HNO3   | Yes                  | NA                        | Yes                 | 113585          | 02               |
|        |                                   |        | NP          | 250 mL Poly - Unpres | Yes                  | NA                        | Yes                 | 113588          | 02               |
|        |                                   |        | NP          | 500 mL Poly - Unpres | Yes                  | NA                        | Yes                 | 113590          | 02               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113592          | 02               |
|        |                                   |        | HCI         | VOA Vial - HCI       | Yes                  | No                        | Yes                 | 113594          | 02               |
|        |                                   |        | HCI         | VOA Vial - HCI       | Yes                  | No                        | Yes                 | 113595          | 02               |
| 1859   | na alzela                         | 22     | HCI         | VOA Vial - HCI       | Yes                  | No                        | Yes                 | 113596          | 02               |
| - 00 / | M 3/28/17                         | PH 114 | NaOH        | 250 mL Poly - NaOH   | Yes                  | NA                        | Yes                 | 113602          | 02               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113603          | 02               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113604          | 02               |
|        |                                   |        | NP          | 1L Amber - Unpres    | Yes                  | NA                        | Yes                 | 113605          | 02               |

## **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client:          | GZA - Norwood, MA - GZA/MM  |              | ESS Project ID: | 1703683     |  |
|------------------|-----------------------------|--------------|-----------------|-------------|--|
|                  |                             |              | Date Received:  | 3/28/2017   |  |
| 2nd Review       |                             | $\sim$       |                 | · <u>-</u>  |  |
| Are barcode la   | bels on correct containers? | (Yes) No     |                 |             |  |
|                  | . //                        | _            | 1/20/2          | _           |  |
| Completed<br>By: |                             | Date & Time: | 3/28/17         | 1900        |  |
| Reviewed         | 1881                        | _            | 71-10           | 10          |  |
| Ву:              | - Andrian A                 | Date & Time: | J28[1]          | 1910        |  |
| Delivered<br>By: |                             |              | abelia          | 1910        |  |
| ·                | 777                         |              |                 | <del></del> |  |
|                  | ( )                         |              |                 |             |  |

| ESS I aboratory                                                               |                                           |                              | Ö                      | CHAIN OF CUSTODY                                                                                                     | ESS Lab #                                                              |           |                                |                  | 2        | 36        | 1703683                | $\sim$       |                                       |       |               |
|-------------------------------------------------------------------------------|-------------------------------------------|------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|--------------------------------|------------------|----------|-----------|------------------------|--------------|---------------------------------------|-------|---------------|
| Division of Thielsch Engineering, Inc.                                        | neering, Inc.                             |                              | Turn Time              | 5-Day (Rush 2-Day)                                                                                                   | Reporting                                                              |           |                                | :                | RGP      | Limit;    | RGP Limit; Appendix VI | dix VI       |                                       |       |               |
| 85 Frances Avenue, Cranston KI 02310<br>el. (401) 461-7181 Fax (401) 461-4486 | Fax (401) 461-4486                        | 98                           | Is this                | Is this project for any of the following?:                                                                           | Electonic<br>Deliverables                                              |           | Limit Checker<br>Other (Please | er<br>Se Specify | <br>     | ١         | Standard Excel         | d Excel      | :                                     |       |               |
| www.esslaboratory.com                                                         | Om Name                                   |                              | Project #              | Project                                                                                                              |                                                                        | L         | ├                              | (40              |          |           | _                      |              |                                       |       |               |
| GZA GeoE                                                                      | GZA GeoEnvironmental, Inc.                | Inc.                         | 01.0171521.52          | Wynn Boston Harbor                                                                                                   | -<br>-                                                                 |           |                                | ).Т.             |          |           |                        |              | _                                     |       |               |
| Con<br>Matt Sm                                                                | Contact Person<br>Matt Smith / Neal Carey | <b>X</b> 6                   |                        | t Ave                                                                                                                | lysis                                                                  |           | 009                            | nun ja           | ane      |           | nλ                     |              |                                       |       |               |
| City                                                                          |                                           |                              | State<br>Massachusetts | Zip Code PO #<br>02062                                                                                               | enA                                                                    | 0.00      |                                | enM .c           | oeth:    | eueų:     | .Z8 əı                 |              |                                       |       |               |
| Telephone Number                                                              | nber                                      | FAX                          | FAX Number             | Matthew Smith@aza.com Neal Carev@gza.com                                                                             | mos                                                                    | 96 9b     |                                | (Cal             |          |           |                        |              |                                       |       |               |
| ESS Lab Collection                                                            | Collection                                | Sample Type                  | Sample Matrix          | Sample ID                                                                                                            | ·                                                                      | RGP I     | IstoT<br>S SST                 | .10 hT           | 1,2 D    |           | Ω 4, r<br>noul∃        |              | -                                     |       |               |
| 4                                                                             | 0830                                      | CPAR                         | WISTE WASSI            | Influent_3.28.2017                                                                                                   |                                                                        | ××        | ×                              | ×                | ×        | <u>X</u>  | ×                      |              |                                       |       |               |
| 7 3-28-201                                                                    | 090)                                      | CPAB                         |                        | Efthert -3                                                                                                           | :                                                                      | X         | X                              | Х                | X        | ×         | X                      |              |                                       |       | $\neg \gamma$ |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                |                  |          |           |                        |              |                                       |       |               |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                |                  |          |           |                        |              |                                       |       | ·             |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           | <u> </u>                       |                  |          |           |                        |              |                                       |       |               |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           | -                              |                  | <u> </u> |           |                        |              |                                       | :     |               |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                | ļ                | -        |           | -                      |              |                                       |       |               |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                |                  | $\vdash$ |           |                        |              |                                       |       | _             |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                |                  | <u> </u> |           |                        |              |                                       |       |               |
|                                                                               |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                |                  |          |           |                        |              |                                       |       |               |
| Container Type:                                                               | AC-Air Cassette                           | tte AG-Amber Glass           | B-BOD Bottle           | C-Cubitainer G - Glass O-Other P-Poly S                                                                              | S-Sterile V-Vial                                                       | <u>а</u>  | <u>а</u>                       |                  | <u>ь</u> | >         | AG AG                  |              |                                       | ŀ     |               |
| Container Volume:                                                             | 1-100 mL                                  | 5 gal 3-250 m                | 4-300 mL 5             | 6-1L 7-VOA 8-2 oz 9-4 oz                                                                                             | oz 11-Other*                                                           |           | -                              | 7                | $\dashv$ | 1         | +                      | $\downarrow$ | 1                                     |       |               |
| Preservation Code:                                                            | 1-Non Preserved                           | 2-HCI 3-H2SO4                | 4-HNO3 5-NaOH 6-M      | 6-Methanol 7-Na2S2O3 8-ZnAce, NaOH 9-NH4CI 10-I                                                                      | 10-DI H2O 11-Other*                                                    | 4         | 5                              | '                | 1 2      | 7         | - <br>-                |              | 1                                     |       |               |
|                                                                               |                                           |                              |                        | Number of Containers per Sample:                                                                                     | per Sample:                                                            |           | $\dashv$                       |                  | -        |           | $\dashv$               |              | 1                                     |       | T             |
|                                                                               | Laborator                                 | Laboratory Use Only          |                        | Sampled by: MATHEW DITOM                                                                                             | M                                                                      |           | j                              |                  |          |           |                        |              |                                       | -     |               |
| Cooler Present:                                                               | \                                         |                              |                        | Comments: Please                                                                                                     | Please specify "Other" preservative and containers types in this space | " presen  | ative                          | and co           | tainer   | s type    | s in thi               | s spac       | ds.                                   |       |               |
| Seals Intact:                                                                 | 14                                        | ,                            |                        | 1.)RGP Metals include As, Cd, Cu, Pb, Ni, Zn, and Fe by 6020. 2.)Parameters in BOLD have short hold-time. 3.)Use RGP | , and Fe by 6020                                                       | . 2.)Para | meters                         | in BOI           | .D have  | short     | hold-tii               | me. 3.)      | Use RG                                | ۵     |               |
| Cooler Temperature: 7                                                         | To ten? 30                                | 1, tent 3 p °C 18:37 3120117 | 4114                   | approved methods for all analysis 4.)Please analyze for but do not report Hex Chrom                                  | analyze for but de                                                     | not repo  | rt Hex                         | Chrom            |          | 1         |                        |              |                                       |       |               |
| Relinquished by: (Signature, Date & Time)                                     | (Signature, D                             | 1                            |                        | Reseived By: (Signature, Date & Time) Refinquishe                                                                    | Refinquished By: (Signature, Date & Time)                              | Date & 1  | ime)                           | _                | 8<br>8/  | <b>20</b> | y: (Sig                | nature,      | Received By: (Signature, Date & 11me) | (a)   | 1             |
| '                                                                             | 3.28-201                                  | C105-                        | the state of           | My HATTLE                                                                                                            | 41/186/12                                                              |           | 18/34                          | <u>2</u>         |          | C.        | 3/28                   | 112          | 63                                    | 1837  |               |
| Relinquished by: (Signature, Date & Time)                                     | Signature D                               | (548<br>ate & Time)          | Received By:           | , Time)                                                                                                              | Relinquished By: (Signature, Date & Time)                              | Date & 1  | ime)                           |                  |          | sived E   | y: (Sig                | nature,      | Réceived By: (Signature, Date & Time) | Time) |               |
| 2 of 2.                                                                       |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                | 7                |          |           |                        |              |                                       |       |               |
| 2                                                                             |                                           |                              |                        |                                                                                                                      |                                                                        |           |                                |                  |          | -         |                        |              |                                       |       | Ì             |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

**RE:** Wynn Everett - RGP (01.0171521.52)

ESS Laboratory Work Order Number: 1704303

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

**REVIEWED** 

By ESS Laboratory at 2:33 pm, Apr 14, 2017

Laurel Stoddard Laboratory Director

### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1704303

## **SAMPLE RECEIPT**

The following samples were received on April 12, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

**<u>Lab Number</u>** 1704303-01 1704303-02

Sample Name Effluent\_04.12.17 Influent 04.12.17

Matrix Waste Water Waste Water Analysis 4500 CN CE, 6010C 4500 CN CE, 6010C

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1704303

### **PROJECT NARRATIVE**

No unusual observations noted.

End of Project Narrative.

### DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1704303



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_04.12.17 Date Sampled: 04/12/17 10:00

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1704303 ESS Laboratory Sample ID: 1704303-01

Sample Matrix: Waste Water

Units: ug/L

### **Total Metals**

 Analyte Copper
 Results (MRL)
 MDL 6010C
 Limit 6010C
 DF Limit 1
 Analyst MIL (MIL) 04/13/17 23:32
 I/V 50 ED71243
 E/V D71243



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_04.12.17 Date Sampled: 04/12/17 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1704303 ESS Laboratory Sample ID: 1704303-01

Sample Matrix: Waste Water

### **Classical Chemistry**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_04.12.17 Date Sampled: 04/12/17 10:15

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1704303 ESS Laboratory Sample ID: 1704303-02

Sample Matrix: Waste Water

Units: ug/L

### **Total Metals**

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_04.12.17 Date Sampled: 04/12/17 10:15

Percent Solids: N/A

ESS Laboratory Work Order: 1704303 ESS Laboratory Sample ID: 1704303-02

Sample Matrix: Waste Water

### **Classical Chemistry**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

Total Cyanide (LL)

ESS Laboratory Work Order: 1704303

### **Quality Control Data**

|                          |        |      |             | Spike  | Source |      | %REC   |     | RPD   |           |
|--------------------------|--------|------|-------------|--------|--------|------|--------|-----|-------|-----------|
| Analyte                  | Result | MRL  | Units       | Level  | Result | %REC | Limits | RPD | Limit | Qualifier |
|                          |        |      | Total Meta  | als    |        |      |        |     |       |           |
| Batch CD71243 - 3005A    |        |      |             |        |        |      |        |     |       |           |
| Blank                    |        |      |             |        |        |      |        |     |       |           |
| Copper                   | ND     | 20.0 | ug/L        |        |        |      |        |     |       |           |
| Blank                    |        |      |             |        |        |      |        |     |       |           |
| Copper                   | ND     | 10.0 | ug/L        |        |        |      |        |     |       |           |
| LCS                      |        |      |             |        |        |      |        |     |       |           |
| Copper                   | 514    | 20.0 | ug/L        | 500.0  |        | 103  | 80-120 |     |       |           |
| LCS                      |        |      |             |        |        |      |        |     |       |           |
| Copper                   | 238    | 10.0 | ug/L        | 250.0  |        | 95   | 80-120 |     |       |           |
| LCS Dup                  |        |      |             |        |        |      |        |     |       |           |
| Copper                   | 485    | 20.0 | ug/L        | 500.0  |        | 97   | 80-120 | 6   | 20    |           |
| LCS Dup                  |        |      |             |        |        |      |        |     |       |           |
| Copper                   | 238    | 10.0 | ug/L        | 250.0  |        | 95   | 80-120 | 0.1 | 20    |           |
|                          |        | Cl   | assical Che | mistry |        |      |        |     |       |           |
| Batch CD71314 - TCN Prep |        |      |             |        |        |      |        |     |       |           |
| Blank                    |        |      |             |        |        |      |        |     |       |           |
| Total Cyanide (LL)       | ND     | 5.00 | ug/L        |        |        |      |        |     |       |           |
| LCS                      |        |      |             |        |        |      |        |     |       |           |
| Total Cyanide (LL)       | 20.1   | 5.00 | ug/L        | 20.06  |        | 100  | 90-110 |     |       |           |
| LCS                      |        |      |             |        |        |      |        |     |       |           |
| Total Cyanide (LL)       | 149    | 5.00 | ug/L        | 150.4  |        | 99   | 90-110 |     |       |           |
| LCS Dup                  |        |      |             |        |        |      |        |     |       |           |

ug/L

150.4

148

5.00

Service

90-110

0.7

20



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1704303

#### **Notes and Definitions**

| U   | Analyte included in the analysis, but not detected                                              |
|-----|-------------------------------------------------------------------------------------------------|
| ND  | Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes |
| dry | Sample results reported on a dry weight basis                                                   |

**RPD** Relative Percent Difference Method Detection Limit **MDL** MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1704303



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

24Z Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) 7/2/2 Please specify "Other" preservative and containers types in this space RGP Limit; Appendix VI √Standard Excel Deliverables ☐Other (Please Specify →) CHAIN OF CUSTODY 2 day (hdres&Lab #/17) Ulmit Checker Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Cyanide × ۵ 2 2 Copper × ۵. × Electonic Reporting Limits G - Glass O-Other P-Poly S-Sterile V-Vial Container Volume: 1-100 mL 2-2.5 gal 3-250 mL 4-300 mL 5-500 mL 6-1L 7-VOA 8-2 oz 9-4 oz 10-8 oz 11-Other\* Preservation Code: 1-Non Preserved 2-HCl 3-H2SO4 4-HNO3 5-NaOH 6-Methanol 7-Na2S2O3 8-ZnAce, NaOH 9-NH4Cl 10-DI H2O 11-Other Number of Containers per Sample: Analysis Matthew.Smith@gza.com Neal.Carey@gza.com # Od Effluent\_04.12.17 nfluent\_04.12.17 Rush ASAP Daniel Scanlon Sample ID Is this project for any of the following?: Wynn Boston Harbor **Email Address** Project Name 249 Vanderbilt Ave Received By: (Signature, Date & Time) 147 Received By: (Signature, Date & Time) Address Zip Code 02062 Sampled by: OMA MCP Comments: 5-Day Container Type: AC-Air Cassette AG-Amber Glass B-BOD Bottle C-Cubitainer OCT RCP Regulatory State Sample Matrix 01.0171521.52 Waste Water Waste Water Project # Massachusetts FAX Number Sample Type Grab Grab Laboratory Use Only Relinquished by: (Signature, Date & Time) Relinquished by: (Signature, Date & Time) 4/12/17@ ပွ GZA GeoEnvironmental, Inc. 85 Frances Avenue, Cranston RI 02910 Tel. (401) 461-7181 Fax (401) 461-4486 Matt Smith / Neal Carey Company Name Contact Person Collection Division of Thielsch Engineering, Inc. 1000 1015 Time W Telephone Number 781-278-3700 ESS Laboratory Collection Norwood www.esslaboratory.com Cooler Temperature: 4/12/2017 4/12/2017 Cooler Present: Date Seals Intact: appen ESS Lab 0 02  $\Box$ 

| Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ESS Laboratory             | ory                                   |               | S                          | F CUSTOD                                                    | ESS Lab #                 | 1704303            | 8                                     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|---------------|----------------------------|-------------------------------------------------------------|---------------------------|--------------------|---------------------------------------|---|
| Fire (401) 461-468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thielsch .                 | Engineering, Inc.                     | 2             | Turn Time                  | 5-Day Rush ASAP                                             | Reporting                 | •                  | RGP Limit; Appendix VI                |   |
| Project # 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 461-7181<br>boratory.c     | Fax (401) 461-44                      | .86           | Is thi                     | s project for any of the following?:  OMA MCP  ORGP         | Electonic<br>Deliverables |                    | î                                     |   |
| Matthew State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GZA                        | Company Name<br>SeoEnvironmental      | , Inc.        | Project #<br>01.0171521.52 | Project Name<br>Wynn Boston Harbor                          |                           |                    |                                       |   |
| Nonvoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mai                        | Contact Person<br>t Smith / Neal Care | ey            |                            | Address<br>249 Vanderbilt Ave                               | ysis                      |                    |                                       |   |
| Fig. 276 3700   Collection   FAX Number   FAX Number   Famil Address   Sample Matrix   Sampl   | Norw                       | poc                                   |               | tate<br>chusetts           |                                                             |                           |                    |                                       |   |
| Collection   Col   | Telephone<br>781-278       | Number<br>-3700                       | FAX           | Number                     | Email Address Matthew.Smith@gza.com Neal.Carey@gz           |                           | әр                 |                                       |   |
| 1015   Grab   Waste Water   Effluent_04.12.17   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESS Lab Collection ID Date |                                       | Sample Type   | Sample Matrix              | Sample ID                                                   |                           | Cyanic             |                                       |   |
| 1015   Grab   Waste Water   Influent 04.12.17   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/12/20                    |                                       | Grab          | Waste Water                | Effluent_04.12.17                                           | ×                         | ×                  |                                       |   |
| Type: ACA/Tcasette AGAnter Glass BEOD Botte Coubtainer G-Glass O-Other P-Poty S/Sterle VV/ai P P   P   P   P   P   P   P   P   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4/12/20                    |                                       | Grab          | Waste Water                | Influent_04.12.17                                           | ×                         | ×                  |                                       |   |
| AC-Air Cassette AC-Amber Glass B-BOD Bottle C-Cubitainer G - Glass O-Other P-Poly S-Sterile V-Vial P P   P   P   P   P   P   P   P   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |               |                            |                                                             |                           |                    |                                       |   |
| : 1-100 mL 2-2 5gal 3-250 mL 4-300 mL 5-10 mL 5-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 oz 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 94 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-8 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-0 0z 11-Other 2-2 5gal 3-250 mL 6-11 7-VOA 8-2 oz 10-0 0z 11-Other 2-2 5gal 3-250 mL 6-2 0z 11-Other 2-2 5gal 3-250 mL 6-2 0z 11-Other 2-2 0z  |                            |                                       |               |                            |                                                             |                           |                    |                                       |   |
| ACAir Cassette AG-Amber Glass B-BOD Bottle C-Cubitainer G - Glass O-Other P-Poly S-Sterile V-Vial P P   P   P   P   P   P   P   P   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                       |               |                            |                                                             |                           |                    |                                       |   |
| AC-Air Casselle AG-Amber Glass B-BOD Bottle C-Cubitainer G-Glass O-Other P-Poly S-Sterile V-Vial P P P P P P P P P P P P P P P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |               |                            |                                                             |                           |                    |                                       |   |
| Comments   Received By: (Signature, Date & Time)   Relinquished    |                            |                                       |               |                            |                                                             |                           |                    |                                       |   |
| AC-Air Cassette AG-Amber Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                       |               |                            |                                                             |                           |                    |                                       |   |
| 1-100 mL   2-2.5 gal 3-250 mL   4-300 mL   6-1L   7-VOA 8-2 oz 9-4 oz 11-Other   4 5   6   6   6   6   6   6   6   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ontainer T                 | 1 55                                  | 1 1           | B-BOD Bottle               | bitainer G - Glass O-Other P-Pol                            | S-Sterile V-Vial          | а.                 |                                       |   |
| Laboratory Use Only  Comments: Please specify "Other" preservative and containers types in this space  Sampled by: Daniel Scanlon  Comments: Please specify "Other" preservative and containers types in this space  Signature, Date & Time)  Received By: (Signature, Date & Time)  Relinquished By: (Signature, Date & Time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tainer Volu                | 1-100 mL<br>1-Non Preser              | 2-HCI 3-H2SO4 | 4-30-HNO3                  | 6-1L 7-VOA 8-2 oz 9-4 oz ol 7-Na2S2O3 8-ZnAce, NaOH 9-NH4CI | 11-Other*                 | 2                  |                                       |   |
| Laboratory Use Only  Comments: Please specify "Other" preservative and containers types in this space  Sampled by: Daniel Scanlon  Comments: Please specify "Other" preservative and containers types in this space  Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature |                            |                                       |               |                            | Number of Containe                                          |                           | 2                  |                                       |   |
| Comments:   Please specify "Other" preservative and containers types in this space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Laborator                             | ry Use Only   |                            | by:                                                         |                           |                    |                                       |   |
| Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Present                 | >                                     | 1             |                            |                                                             | ease specify "Other" pr   | eservative and con | tainers types in this space           |   |
| Received By: (Signature, Date & Time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | als Intact:<br>Temperatu   | Г                                     | A             | a                          |                                                             |                           |                    |                                       |   |
| Received By: (Signature, Date & Time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Relinquisher               | l by: (Signature, Da                  | ate & Time)   | Received By: (             |                                                             | shed By: (Signature, Date | e & Time)          | Received By: (Signature, Date & Time) |   |
| Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mile                       | /21/H - 1/13/                         | 0) £1/        |                            | 10                                                          | 2 N                       | 1986               | 1/2/h J-1/2/h                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selinquishe                | by: (Signature, Da                    | ate & Time)   | Received By:               |                                                             | shed By: (Signature, Dat  | e & Time)          | Received By: (Signature; Date & Time) |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       |               |                            |                                                             |                           |                    |                                       | _ |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

RE: Wynn Everett - RGP (01.0171521.52)

ESS Laboratory Work Order Number: 1704793

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

**REVIEWED** 

By ESS Laboratory at 5:50 pm, May 08, 2017

Laurel Stoddard Laboratory Director

### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1704793



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### **SAMPLE RECEIPT**

The following samples were received on April 28, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

| Lab Number | Sample Name       | <b>Matrix</b> | <u>Analysis</u>                               |
|------------|-------------------|---------------|-----------------------------------------------|
| 1704793-01 | Influent_04/28/17 | Waste Water   | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 7010, |
|            |                   |               | 8260B, 8270D SIM                              |
| 1704793-02 | Effluent_04/28/17 | Waste Water   | 2540D, 300.0, 4500 CN CE, 6010B, 6010C, 7010, |
|            |                   |               | 8260B, 8270D SIM                              |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1704793

### **PROJECT NARRATIVE**

**Total Metals** 

CD72844-BSD2 Blank Spike recovery is below lower control limit (B-).

Arsenic (78% @ 80-120%)

No other observations noted.

**End of Project Narrative.** 

### **DATA USABILITY LINKS**

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1704793



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace 7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury 8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB 8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction 3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_04/28/17 Date Sampled: 04/28/17 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-01

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

### **Total Metals**

| <b>Analyte</b> | Results (MRL)       | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | <u>Analyzed</u> | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|---------------------|------------|--------|--------------|-----------|---------|-----------------|------------|-----|--------------|
| Arsenic        | <b>78.2</b> (10.0)  |            | 6010C  |              | 1         | KJK     | 04/29/17 21:42  | 50         | 10  | CD72844      |
| Cadmium        | ND (0.5)            |            | 7010   |              | 5         | KJK     | 05/04/17 19:41  | 50         | 10  | CD72844      |
| Chromium III   | ND (10)             |            | 6010C  |              | 1         | JLK     | 04/29/17 21:42  | 1          | 1   | [CALC]       |
| Copper         | ND (4.0)            |            | 6010C  |              | 1         | KJK     | 04/29/17 21:42  | 50         | 10  | CD72844      |
| Hardness       | <b>2890</b> (13.2)  |            | 6010B  |              | 50        | BJV     | 05/02/17 11:50  | 1          | 1   | [CALC]       |
| Iron           | <b>66700</b> (20.0) |            | 6010C  |              | 1         | KJK     | 04/29/17 21:42  | 50         | 10  | CD72844      |
| Lead           | ND (4.0)            |            | 6010C  |              | 1         | KJK     | 04/29/17 21:42  | 50         | 10  | CD72844      |
| Nickel         | ND (4.0)            |            | 6010C  |              | 1         | KJK     | 04/29/17 21:42  | 50         | 10  | CD72844      |
| Zinc           | <b>32.8</b> (10.0)  |            | 6010C  |              | 1         | KJK     | 04/29/17 21:42  | 50         | 10  | CD72844      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_04/28/17 Date Sampled: 04/28/17 10:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-01

Sample Matrix: Waste Water

Units: ug/L Analyst: MD

### 8260B Volatile Organic Compounds

| <b>Analyte</b>                   | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|----------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| 1,2-Dichloroethane               | ND (1.0)      |            | 8260B     |              | 1         | 05/02/17 13:04  | C7E0036         | CE70228      |
| Trichloroethene                  | ND (1.0)      |            | 8260B     |              | 1         | 05/02/17 13:04  | C7E0036         | CE70228      |
|                                  |               | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
| Surrogate: 1,2-Dichloroethane-d4 |               | 101 %      |           | 70-130       |           |                 |                 |              |
| Surrogate: 4-Bromofluorobenzene  |               | 95 %       |           | 70-130       |           |                 |                 |              |
| Surrogate: Dibromofluoromethane  |               | 96 %       |           | 70-130       |           |                 |                 |              |
| Surrogate: Toluene-d8            |               | 104 %      |           | 70-130       |           |                 |                 |              |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_04/28/17 Date Sampled: 04/28/17 10:00

Percent Solids: N/A Initial Volume: 100 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 5/1/17 10:45

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | <b>Results (MRL) 0.828</b> (0.625) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 05/02/17 14:30 | Sequence<br>C7E0025 | Batch<br>CE70133 |
|---------------------------|------------------------------------|------------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
|                           | %                                  | Recovery   | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                    | 73 %       |                     | 15-115       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_04/28/17 Date Sampled: 04/28/17 10:00

Percent Solids: N/A Initial Volume: 990 Final Volume: 0.25 Extraction Method: 3510C ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-01

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 5/1/17 16:00

### 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Analyte<br>Fluorene               | Results (MRL)<br>ND (0.20) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 05/02/17 19:52 | Sequence<br>C7E0026 | Batch<br>CE70125 |
|-----------------------------------|----------------------------|------------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
|                                   |                            | %Recovery  | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                            | 65 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                            | 71 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: Nitrobenzene-d5        |                            | 74 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: p-Terphenyl-d14        |                            | 76 %       |                     | 30-130       |                  |                                |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Influent\_04/28/17 Date Sampled: 04/28/17 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-01

Sample Matrix: Waste Water

### **Classical Chemistry**

| Analyte<br>Chloride           | Results (MRL)<br>5000 (2500) | <u>MDL</u> | <b>Method</b> 300.0 | <u>Limit</u> | <u>DF</u> 5000 | Analyst<br>EEM | Analyzed<br>05/01/17 18:09 | Units<br>mg/L | Batch<br>CE70137 |
|-------------------------------|------------------------------|------------|---------------------|--------------|----------------|----------------|----------------------------|---------------|------------------|
| Total Cyanide (LL)            | <b>28.4</b> (5.00)           |            | 4500 CN CE          |              | 1              | EEM            | 05/01/17 14:10             | ug/L          | CE70139          |
| <b>Total Suspended Solids</b> | 31 (5)                       |            | 2540D               |              | 1              | EEM            | 05/01/17 17:30             | mg/L          | CE70138          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_04/28/17 Date Sampled: 04/28/17 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-02

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

### **Total Metals**

| <b>Analyte</b> | Results (MRL)      | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | <b>Analyzed</b> | I/V | F/V | <b>Batch</b> |
|----------------|--------------------|------------|--------|--------------|-----------|---------|-----------------|-----|-----|--------------|
| Arsenic        | <b>14.4</b> (10.0) |            | 6010C  |              | 1         | KJK     | 04/29/17 21:48  | 50  | 10  | CD72844      |
| Cadmium        | ND (0.5)           |            | 7010   |              | 5         | KJK     | 05/04/17 19:35  | 50  | 10  | CD72844      |
| Chromium III   | ND (10)            |            | 6010C  |              | 1         | JLK     | 04/29/17 21:48  | 1   | 1   | [CALC]       |
| Copper         | <b>24.8</b> (20.0) |            | 6010C  |              | 10        | KJK     | 05/01/17 15:53  | 50  | 10  | CD72844      |
| Hardness       | <b>2610</b> (2.6)  |            | 6010B  |              | 10        | KJK     | 05/01/17 15:53  | 1   | 1   | [CALC]       |
| Iron           | <b>292</b> (200)   |            | 6010C  |              | 10        | KJK     | 05/01/17 15:53  | 50  | 10  | CD72844      |
| Lead           | 9.7 (4.0)          |            | 6010C  |              | 1         | KJK     | 04/29/17 21:48  | 50  | 10  | CD72844      |
| Nickel         | ND (4.0)           |            | 6010C  |              | 1         | KJK     | 04/29/17 21:48  | 50  | 10  | CD72844      |
| Zinc           | ND (10.0)          |            | 6010C  |              | 1         | KJK     | 04/29/17 21:48  | 50  | 10  | CD72844      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_04/28/17 Date Sampled: 04/28/17 11:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-02

Sample Matrix: Waste Water

Units: ug/L Analyst: MD

### 8260B Volatile Organic Compounds

| <b>Analyte</b>                   | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|----------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| 1,2-Dichloroethane               | ND (1.0)      |            | 8260B     |              | 1         | 05/02/17 12:38  | C7E0036         | CE70228      |
| Trichloroethene                  | ND (1.0)      |            | 8260B     |              | 1         | 05/02/17 12:38  | C7E0036         | CE70228      |
|                                  |               | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
|                                  |               | inccovery  | Quamer    | Limits       |           |                 |                 |              |
| Surrogate: 1,2-Dichloroethane-d4 |               | 103 %      |           | 70-130       |           |                 |                 |              |
| Surrogate: 4-Bromofluorobenzene  |               | 99 %       |           | 70-130       |           |                 |                 |              |
| Surrogate: Dibromofluoromethane  |               | 100 %      |           | 70-130       |           |                 |                 |              |
| Surrogate: Toluene-d8            |               | 110 %      |           | 70-130       |           |                 |                 |              |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_04/28/17 Date Sampled: 04/28/17 11:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-02

Sample Matrix: Waste Water

Units: ug/L Analyst: VSC

Prepared: 5/1/17 10:45

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>0.582 (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <b>Analyzed</b> 05/03/17 5:35 | Sequence<br>C7E0043 | Batch<br>CE70133 |
|---------------------------|--------------------------------|------------|---------------------|--------------|------------------|-------------------------------|---------------------|------------------|
|                           | %                              | Recovery   | Qualifier           | Limits       |                  |                               |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                                | 66 %       |                     | 15-115       |                  |                               |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1704793

ESS Laboratory Sample ID: 1704793-02



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_04/28/17 Date Sampled: 04/28/17 11:00

Percent Solids: N/A Initial Volume: 1060 Final Volume: 0.25 Extraction Method: 3510C

N/A 60 Sample Matrix: Waste Water Units: ug/L Analyst: VSC

Prepared: 5/1/17 16:00

### 8270D(SIM) Polynuclear Aromatic Hydrocarbon

| Analyte Fluorene                  | Results (MRL) ND (0.19) | <b>MDL</b> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u><br>05/02/17 20:42 | Sequence<br>C7E0026 | Batch<br>CE70125 |
|-----------------------------------|-------------------------|------------|---------------------|--------------|------------------|-----------------------------------|---------------------|------------------|
|                                   | 110 (0.17)              |            | 02,02 5111          |              |                  |                                   |                     |                  |
|                                   | 9                       | 6Recovery  | Qualifier           | Limits       |                  |                                   |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4 |                         | 66 %       |                     | 30-130       |                  |                                   |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                         | 80 %       |                     | 30-130       |                  |                                   |                     |                  |
| Surrogate: Nitrobenzene-d5        |                         | 82 %       |                     | 30-130       |                  |                                   |                     |                  |
| Surrogate: p-Terphenyl-d14        |                         | 78 %       |                     | 30-130       |                  |                                   |                     |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP Client Sample ID: Effluent\_04/28/17 Date Sampled: 04/28/17 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1704793 ESS Laboratory Sample ID: 1704793-02

Sample Matrix: Waste Water

### **Classical Chemistry**

| Analyte<br>Chloride           | <b>Results (MRL) 4940</b> (500) | <u>MDL</u> | <b>Method</b> 300.0 | <u>Limit</u> | <u><b>DF</b></u> 1000 | Analyst<br>EEM | Analyzed 05/01/17 15:43 | Units<br>mg/L | Batch<br>CE70137 |
|-------------------------------|---------------------------------|------------|---------------------|--------------|-----------------------|----------------|-------------------------|---------------|------------------|
| Total Cyanide (LL)            | ND (5.00)                       |            | 4500 CN CE          |              | 1                     | EEM            | 05/01/17 14:10          | ug/L          | CE70139          |
| <b>Total Suspended Solids</b> | 16 (5)                          |            | 2540D               |              | 1                     | EEM            | 05/01/17 17:30          | mg/L          | CE70138          |



The Microbiology Division of Thielsch Engineering, Inc.



RPD

### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1704793

%REC

### **Quality Control Data**

Spike

Source

| Analyte                | Result | MRL  | Units        | Level | Result | %REC | Limits | RPD | Limit | Qualifi |
|------------------------|--------|------|--------------|-------|--------|------|--------|-----|-------|---------|
| , -                    |        |      | Total Meta   |       |        |      |        |     |       | Ç==     |
|                        |        |      |              |       |        |      |        |     |       |         |
| atch CD72844 - 3005A   |        |      |              |       |        |      |        |     |       |         |
| Blank                  | ND     | 200  |              |       |        |      |        |     |       |         |
| Calcium                | ND     | 200  | ug/L         |       |        |      |        |     |       |         |
| Chromium III           | ND     | 20   | ug/L         |       |        |      |        |     |       |         |
| Hardness               | ND     | 1.3  | mg/L         |       |        |      |        |     |       |         |
| Magnesium              | ND     | 200  | ug/L         |       |        |      |        |     |       |         |
| Blank                  |        |      |              |       |        |      |        |     |       |         |
| Arsenic                | ND     | 1.0  | ug/L         |       |        |      |        |     |       |         |
| Cadmium                | ND     | 0.1  | ug/L         |       |        |      |        |     |       |         |
| Chromium III           | ND     | 4    | ug/L         |       |        |      |        |     |       |         |
| Copper                 | ND     | 4.0  | ug/L         |       |        |      |        |     |       |         |
| Iron                   | ND     | 20.0 | ug/L         |       |        |      |        |     |       |         |
| Nickel                 | ND     | 4.0  | ug/L         |       |        |      |        |     |       |         |
| Zinc                   | ND     | 10.0 | ug/L         |       |        |      |        |     |       |         |
| .cs                    |        |      |              |       |        |      |        |     |       |         |
| Calcium                | 5060   | 200  | ug/L         | 5000  |        | 101  | 80-120 |     |       |         |
| Chromium III           | 511    | 20   | ug/L         |       |        |      |        |     |       |         |
| Hardness               | 33.3   | 1.3  | mg/L         |       |        |      |        |     |       |         |
| Magnesium              | 5030   | 200  | ug/L         | 5000  |        | 101  | 80-120 |     |       |         |
| LCS                    |        |      |              |       |        |      |        |     |       |         |
| Arsenic                | 81.2   | 25.0 | ug/L         | 100.0 |        | 81   | 80-120 |     |       |         |
| Cadmium                | 46.7   | 50.0 | ug/L         | 50.00 |        | 93   | 80-120 |     |       |         |
| Chromium III           | 98.0   | 4    | ug/L         |       |        |      |        |     |       |         |
| Copper                 | 111    | 4.0  | ug/L         | 100.0 |        | 111  | 80-120 |     |       |         |
| iron                   | 474    | 20.0 | ug/L         | 500.0 |        | 95   | 80-120 |     |       |         |
| Nickel                 | 102    | 4.0  | ug/L         | 100.0 |        | 102  | 80-120 |     |       |         |
| Zinc                   | 94.9   | 10.0 | ug/L         | 100.0 |        | 95   | 80-120 |     |       |         |
|                        |        |      | - 3,         |       |        |      |        |     |       |         |
| .CS Dup<br>Calcium     | 5150   | 200  | ug/L         | 5000  |        | 103  | 80-120 | 2   | 20    |         |
| Chromium III           | 519    | 200  |              | 3000  |        | 105  | 00-120 | 2   | 20    |         |
| Hardness               | 34.5   | 1.3  | ug/L         |       |        |      |        |     |       |         |
| Magnesium              | 5240   | 200  | mg/L<br>ug/L | 5000  |        | 105  | 80-120 | 4   | 20    |         |
|                        | 3240   | 200  | ug/L         | 3000  |        | 105  | 00-120 | 4   | 20    |         |
| _CS Dup                |        |      |              |       |        |      |        |     |       |         |
| Arsenic                | 78.4   | 25.0 | ug/L         | 100.0 |        | 78   | 80-120 | 3   | 20    | B-      |
| Cadmium                | 48.6   | 50.0 | ug/L         | 50.00 |        | 97   | 80-120 | 4   | 20    |         |
| Chromium III           | 100    | 4    | ug/L         |       |        |      |        |     |       |         |
| Copper                 | 115    | 4.0  | ug/L         | 100.0 |        | 115  | 80-120 | 4   | 20    |         |
| iron                   | 492    | 20.0 | ug/L         | 500.0 |        | 98   | 80-120 | 4   | 20    |         |
| Nickel                 | 104    | 4.0  | ug/L         | 100.0 |        | 104  | 80-120 | 2   | 20    |         |
| Zinc                   | 97.5   | 10.0 | ug/L         | 100.0 |        | 97   | 80-120 | 3   | 20    |         |
| Batch CD72861 - [CALC] |        |      |              |       |        |      |        |     |       |         |
| Blank                  |        |      |              |       |        |      |        |     |       |         |
| Chromium III           | ND     | 10   | ug/L         |       |        |      |        |     |       |         |
| LCS                    |        |      |              |       |        |      |        |     |       |         |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1704793

### **Quality Control Data**

|                                  |            |               |              | Spike    | Source   |            | %REC          |     | RPD   |           |
|----------------------------------|------------|---------------|--------------|----------|----------|------------|---------------|-----|-------|-----------|
| Analyte                          | Result     | MRL           | Units        | Level    | Result   | %REC       | Limits        | RPD | Limit | Qualifier |
|                                  |            |               | Total Meta   | als      |          |            |               |     |       |           |
| Batch CD72861 - [CALC]           |            |               |              |          |          |            |               |     |       |           |
| Chromium III                     | ND         |               | ug/L         |          |          |            |               |     |       |           |
| LCS Dup                          |            |               |              |          |          |            |               |     |       |           |
| Chromium III                     | ND         |               | ug/L         |          |          |            |               |     |       |           |
|                                  |            | 8260B Vol     | atile Organi | ic Compo | unds     |            |               |     |       |           |
| Batch CE70228 - 5030B            |            |               |              |          |          |            |               |     |       |           |
| Blank                            |            |               |              |          |          |            |               |     |       |           |
| 1,2-Dichloroethane               | ND         | 1.0           | ug/L         |          |          |            |               |     |       |           |
| Trichloroethene                  | ND         | 1.0           | ug/L         |          |          |            |               |     |       |           |
| Surrogate: 1,2-Dichloroethane-d4 | 24.5       |               | ug/L         | 25.00    |          | 98         | 70-130        |     |       |           |
| Surrogate: 4-Bromofluorobenzene  | 23.8       |               | ug/L         | 25.00    |          | 95         | 70-130        |     |       |           |
| Surrogate: Dibromofluoromethane  | 24.0       |               | ug/L         | 25.00    |          | 96         | 70-130        |     |       |           |
| Surrogate: Toluene-d8            | 26.4       |               | ug/L         | 25.00    |          | 105        | 70-130        |     |       |           |
| LCS                              |            |               |              |          |          |            |               |     |       |           |
| 1,2-Dichloroethane               | 10.6       |               | ug/L         | 10.00    |          | 106        | 70-130        |     |       |           |
| Trichloroethene                  | 10.1       |               | ug/L         | 10.00    |          | 101        | 70-130        |     |       |           |
| Surrogate: 1,2-Dichloroethane-d4 | 24.5       |               | ug/L         | 25.00    |          | 98         | 70-130        |     |       |           |
| Surrogate: 4-Bromofluorobenzene  | 26.5       |               | ug/L         | 25.00    |          | 106        | 70-130        |     |       |           |
| Surrogate: Dibromofluoromethane  | 24.0       |               | ug/L         | 25.00    |          | 96         | 70-130        |     |       |           |
| Surrogate: Toluene-d8            | 25.7       |               | ug/L         | 25.00    |          | 103        | 70-130        |     |       |           |
| LCS Dup                          |            |               |              |          |          |            |               |     |       |           |
| 1,2-Dichloroethane               | 10.2       |               | ug/L         | 10.00    |          | 102        | 70-130        | 4   | 25    |           |
| Trichloroethene                  | 10.1       |               | ug/L         | 10.00    |          | 101        | 70-130        | 0.2 | 25    |           |
| Surrogate: 1,2-Dichloroethane-d4 | 24.4       |               | ug/L         | 25.00    |          | 98         | 70-130        |     |       |           |
| Surrogate: 4-Bromofluorobenzene  | 24.9       |               | ug/L         | 25.00    |          | 99         | 70-130        |     |       |           |
| Surrogate: Dibromofluoromethane  | 22.6       |               | ug/L         | 25.00    |          | 91         | 70-130        |     |       |           |
| Surrogate: Toluene-d8            | 25.4       |               | ug/L         | 25.00    |          | 102        | 70-130        |     |       |           |
|                                  | 8270D(SIM) | Semi-Volatile | Organic Co   | mpounds  | w/ Isoto | pe Dilutio | on            |     |       |           |
| Batch CE70133 - 3535A            |            |               |              |          |          |            |               |     |       |           |
| Blank                            |            |               |              |          |          |            |               |     |       |           |
| 1,4-Dioxane                      | ND         | 0.250         | ug/L         |          |          |            |               |     |       |           |
| Surrogate: 1,4-Dioxane-d8        | 3.49       |               | ug/L         | 5.000    |          | 70         | <i>15-115</i> |     |       |           |
| LCS                              |            |               |              |          |          |            |               |     |       |           |
| 1,4-Dioxane                      | 10.2       | 0.250         | ug/L         | 10.00    |          | 102        | 40-140        |     |       |           |
| Surrogate: 1,4-Dioxane-d8        | 3.87       |               | ug/L         | 5.000    |          | <i>77</i>  | 15-115        |     |       |           |
| LCS Dup                          |            |               | -            |          |          |            |               |     |       |           |
| 1,4-Dioxane                      | 10.2       | 0.250         | ug/L         | 10.00    |          | 102        | 40-140        | 0.4 | 20    |           |
|                                  | 3.54       |               | ug/L         | 5.000    |          | 71         | 15-115        |     | _0    |           |
| Surrogate: 1,4-Dioxane-d8        |            | OD(SIM) Poly  |              |          |          |            | 15 115        |     |       |           |

Batch CE70125 - 3510C

Blank



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

ESS Laboratory Work Order: 1704793

### **Quality Control Data**

| Analyte                                                  | Result | MRL          | Units       | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|----------------------------------------------------------|--------|--------------|-------------|----------------|------------------|------|----------------|-----|--------------|-----------|
|                                                          | 827    | 0D(SIM) Poly | ynuclear Ar | omatic Hy      | /drocarbo        | n    |                |     |              |           |
| Batch CE70125 - 3510C                                    |        |              |             |                |                  |      |                |     |              |           |
| Fluorene                                                 | ND     | 0.20         | ug/L        |                |                  |      |                |     |              |           |
| Surrogate: 1,2-Dichlorobenzene-d4                        | 0.935  |              | ug/L        | 2.500          |                  | 37   | 30-130         |     |              |           |
| Surrogate: 2-Fluorobiphenyl                              | 1.26   |              | ug/L        | 2.500          |                  | 50   | 30-130         |     |              |           |
| Surrogate: Nitrobenzene-d5                               | 1.55   |              | ug/L        | 2.500          |                  | 62   | 30-130         |     |              |           |
| Surrogate: p-Terphenyl-d14                               | 1.83   |              | ug/L        | 2.500          |                  | 73   | 30-130         |     |              |           |
| LCS                                                      |        |              |             |                |                  |      |                |     |              |           |
| Fluorene                                                 | 2.88   | 0.20         | ug/L        | 4.000          |                  | 72   | 40-140         |     |              |           |
| Surrogate: 1,2-Dichlorobenzene-d4                        | 1.14   |              | ug/L        | 2.500          |                  | 46   | 30-130         |     |              |           |
| Surrogate: 2-Fluorobiphenyl                              | 1.58   |              | ug/L        | 2.500          |                  | 63   | 30-130         |     |              |           |
| Surrogate: Nitrobenzene-d5                               | 1.78   |              | ug/L        | 2.500          |                  | 71   | 30-130         |     |              |           |
| Surrogate: p-Terphenyl-d14                               | 1.78   |              | ug/L        | 2.500          |                  | 71   | 30-130         |     |              |           |
| LCS Dup                                                  |        |              |             |                |                  |      |                |     |              |           |
| Fluorene                                                 | 3.38   | 0.20         | ug/L        | 4.000          |                  | 84   | 40-140         | 16  | 20           |           |
|                                                          | 1.36   | 0.20         | ug/L        | 2.500          |                  | 54   | 30-130         | 10  | 20           |           |
| Surrogate: 1,2-Dichlorobenzene-d4                        | 1.82   |              | ug/L        | 2.500          |                  | 73   | 30-130         |     |              |           |
| Surrogate: 2-Fluorobiphenyl                              | 2.06   |              | ug/L        | 2.500          |                  | 82   | 30-130         |     |              |           |
| Surrogate: Nitrobenzene-d5<br>Surrogate: p-Terphenyl-d14 | 1.74   |              | ug/L        | 2.500          |                  | 70   | 30-130         |     |              |           |
| Patch CE70127 Canaval Provincian                         |        |              | assical Che |                |                  |      |                |     |              |           |
| Batch CE70137 - General Preparation  Blank               |        |              |             |                |                  |      |                |     |              |           |
| Chloride                                                 | ND     | 0.5          | mg/L        |                |                  |      |                |     |              |           |
| LCS                                                      |        |              |             |                |                  |      |                |     |              |           |
| Chloride                                                 | 2.6    |              | mg/L        | 2.500          |                  | 105  | 90-110         |     |              |           |
| Batch CE70138 - General Preparation                      |        |              |             |                |                  |      |                |     |              |           |
| Blank                                                    |        |              |             |                |                  |      |                |     |              |           |
| Total Suspended Solids                                   | ND     | 5            | mg/L        |                |                  |      |                |     |              |           |
| LCS                                                      |        |              |             |                |                  |      |                |     |              |           |
| Total Suspended Solids                                   | 44     |              | mg/L        | 43.50          |                  | 101  | 80-120         |     |              |           |
| Batch CE70139 - TCN Prep                                 |        |              |             |                |                  |      |                |     |              |           |
| Blank                                                    |        |              |             |                |                  |      |                |     |              |           |
| Total Cyanide (LL)                                       | ND     | 5.00         | ug/L        |                |                  |      |                |     |              |           |
| LCS                                                      |        |              |             |                |                  |      |                |     |              |           |
| Total Cyanide (LL)                                       | 20.2   | 5.00         | ug/L        | 20.06          |                  | 101  | 90-110         |     |              |           |
| LCS                                                      |        |              |             |                |                  |      |                |     |              |           |
| Total Cyanide (LL)                                       | 150    | 5.00         | ug/L        | 150.4          |                  | 99   | 90-110         |     |              |           |
| CS Dup                                                   |        |              |             |                |                  |      |                |     |              |           |
| Total Cyanide (LL)                                       | 148    | 5.00         | ug/L        | 150.4          |                  | 99   | 90-110         | 0.7 | 20           |           |

Fax: 401-461-4486



Analyte included in the analysis, but not detected

## **BAL** Laboratory

The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

U

ESS Laboratory Work Order: 1704793

#### **Notes and Definitions**

| D  | Diluted.                                                                                        |
|----|-------------------------------------------------------------------------------------------------|
| B- | Blank Spike recovery is below lower control limit (B-).                                         |
| ND | Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes |

dry Sample results reported on a dry weight basis

**RPD** Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD LOQ Limit of Quantitation **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1704793



### CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - RGP

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

### **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client: GZA - Norwood, MA - GZA/MM                                                                                           | ESS Project ID:                                                                                  |                         |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|
| Shipped/Delivered Via: ESS Courier                                                                                           | Project Due Date: 5/2/2017  Days for Project: 2 Day                                              | <u></u><br>             |
| Air bill manifest present?     No     NA     NA                                                                              | 6. Does COC match bottles?                                                                       | Yes                     |
| Were custody seals present?     No                                                                                           | 7. Is COC complete and correct?                                                                  | Yes                     |
| 3. Is radiation count <100 CPM? Yes                                                                                          | 8. Were samples received intact?                                                                 | Yes                     |
| 4. Is a Cooler Present? Yes                                                                                                  | 9. Were labs informed about short holds & rushes?                                                | Yes No / NA             |
| Temp: 4.9 Iced with: Ice  5. Was COC signed and dated by client? Yes                                                         | 10. Were any analyses received outside of hold time?                                             | Yes No                  |
| c. Was een signed and saled by shalk?                                                                                        |                                                                                                  |                         |
| 11. Any Subcontracting needed?  ESS Sample IDs: Dar Plas 1-2 No  Analysis: 1.4 0 0 4 0 4 522  TAT: 2064                      | Were VOAs received?     A. Air bubbles in aqueous VOAs?     Does methanol cover soil completely? | Yes No<br>Yes / No / NA |
| 13. Are the samples properly preserved?  a. If metals preserved upon receipt:  b. Low Level VOA vials frozen:  Output  Date: | Time: By:                                                                                        | <u> </u>                |
| Sample Receiving Notes:                                                                                                      |                                                                                                  |                         |
|                                                                                                                              |                                                                                                  |                         |
| 14. Was there a need to contact Project Manager? a. Was there a need to contact the client?  Who was contacted?  Date:       | では、                                                                                              |                         |
|                                                                                                                              |                                                                                                  |                         |

| Sample<br>Number | per ID Container Present |     | Sufficient<br>Volume | Container Type | Preservative         | Record pH (Cyanide and 608<br>Pesticides) |               |
|------------------|--------------------------|-----|----------------------|----------------|----------------------|-------------------------------------------|---------------|
| 01               | 125802                   | Yes | No                   | Yes            | VOA Vial - HCI       | HCI                                       |               |
| 01               | 125803                   | Yes | No                   | Yes            | VOA Vial - HCI       | HCI                                       |               |
| 01               | 125804                   | Yes | No                   | Yes            | VOA Vial - HCl       | HCI                                       |               |
| 01               | 125809                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 01               | 125810                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 01               | 125811                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 01               | 125812                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 01               | 125814                   | Yes | NA                   | Yes            | 1L Poly - Unpres     | NP                                        |               |
| 01               | 125816                   | Yes | NA                   | Yes            | 250 mL Poly - Unpres | NP                                        |               |
| 01               | 125818                   | Yes | NA                   | Yes            | 250 mL Poly - HNO3   | HNO3                                      | 1. / 2        |
| 01               | 125820                   | Yes | NA                   | Yes            | 250 mL Poly - NaOH   | NaOH <b>Dh = 11 4</b>                     | 108 ON        |
| 02               | 125799                   | Yes | No                   | Yes            | VOA Vial - HCI       | HCI F                                     | 1-1           |
| 02               | 125800                   | Yes | No                   | Yes            | VOA Vial - HCI       | HCI                                       |               |
| 02               | 125801                   | Yes | No                   | Yes            | VOA Vial - HCI       | HCI                                       |               |
| 02               | 125805                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 02               | 125806                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 02               | 125807                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 02               | 125808                   | Yes | NA                   | Yes            | 1L Amber - Unpres    | NP                                        |               |
| 02               | 125813                   | Yes | NA                   | Yes            | 1L Poly - Unpres     | NP                                        |               |
| 02               | 125815                   | Yes | NA                   | Yes            | 250 mL Poly - Unpres | NP                                        |               |
| 02               | 125817                   | Yes | NA                   | Yes            | 250 mL Poly - HNO3   | HNO3                                      |               |
| 02               | 125819                   | Yes | NA                   | Yes            | 250 mL Poly - NaOH   | NaOH Dhìh                                 | 1/28/1 2108 A |

### **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client:         | GZA - Norwood, MA - GZA/MM |              | ESS Project (D: | 1704793                                          |  |
|-----------------|----------------------------|--------------|-----------------|--------------------------------------------------|--|
|                 | 1                          |              | Date Received:  | 4/28/2017                                        |  |
| 2nd Review      | 201                        |              | <del></del>     |                                                  |  |
| Are barcode lab | es on correct containers?  | Yes / No     | / 1             |                                                  |  |
|                 | (                          |              | . / / /         |                                                  |  |
| Completed       | NIAMM                      |              | (1/24/2)        |                                                  |  |
| By:             | 10,100                     | Date & Time: | 7/08/11/ 5/     | ") 5~ )                                          |  |
| Reviewed        |                            |              | TOY!            | <del>-                                    </del> |  |
| Ву:             | * K L T                    | Date & Time: | _ 4/28/n =      | 2109                                             |  |
| Delivered       |                            |              | - 11 - 1:       | ,                                                |  |
| Ву:             | VA Lit                     |              | 4/28/17 2       | 109                                              |  |
| · -             | 1-1                        | -            |                 |                                                  |  |
|                 | <b>\</b>                   |              |                 |                                                  |  |

| ESS L                                     | aborator           | у                           |                   | C                                                        | CHAIN C       | F CUSTO                   | DY                     | ESS La        | b#                   |          | $\mathcal{D}_{\ell}$ | 20     | 17      | 93                      | Š                  |                 |             |          |        |                |         |    |   |  |
|-------------------------------------------|--------------------|-----------------------------|-------------------|----------------------------------------------------------|---------------|---------------------------|------------------------|---------------|----------------------|----------|----------------------|--------|---------|-------------------------|--------------------|-----------------|-------------|----------|--------|----------------|---------|----|---|--|
|                                           | f Thielsch Eng     | -                           |                   | Turn Time                                                | 5-Day         | y Rush                    | 2-Day                  | Report        |                      |          |                      |        |         |                         |                    | Limi            | it Ar       | nen      | dix VI |                |         |    |   |  |
|                                           |                    | ranston RI 029              |                   | Regulatory State                                         |               |                           |                        | Limit         |                      |          |                      |        |         |                         | 101                |                 | 20 37       |          |        |                |         |    |   |  |
|                                           |                    | ax (401) 461-44             | 86                |                                                          |               | or any of the follo       |                        | Elector       |                      |          |                      | hecker |         |                         |                    |                 | ✓ Sta       | andard   | Excel  |                |         |    |   |  |
| www.essia                                 | boratory.com       |                             |                   | OCT RCP                                                  | OM.           |                           | RGP                    | Delivera      | bles                 | 0        | ther (               | Please |         | ify →                   | )                  |                 |             |          |        |                |         |    |   |  |
|                                           |                    | mpany Name<br>Environmental | Inc               | Project #<br>01.0171521.52                               |               | Project Na<br>Wynn Boston |                        |               |                      |          |                      |        | S.      |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    | ntact Person                | , 1110.           | 01.0111021.02                                            | 1             | Address                   | Tidibol                | <u>.s</u>     | ess                  |          | ᆸ                    |        | I.      |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    | mith / Neal Care            | ,                 |                                                          |               | /anderbilt Ave            |                        | lysi          | d d                  | 1        | 4500                 |        | st ru   | Tri Cr. (Calc. Must run |                    | ne              |             |          |        |                |         |    |   |  |
|                                           | City<br>Norwood    |                             |                   | tate<br>achusetts                                        | Zip Code PO # |                           |                        | Analysis      | Ha                   | 0        | 9 45                 |        | Mus     | 4                       | tha                | ne              | 522         |          |        | ace  .)Use RGP |         |    |   |  |
| i                                         | elephone Nu        |                             |                   | Number                                                   |               | 02062<br>Email Add        | ress                   | ⊢ `           | als,                 | 300.0    | nid                  | 0      | C.      | 196                     | oroe               | the             | ne          |          |        |                |         |    |   |  |
|                                           | 781-278-37         |                             |                   |                                                          | Matthew.S     |                           | Neal.Carey@gza.com     |               | Met                  | de       | Sya                  | 2540 D | Ö       | Cr 7196A                | 당                  | oroe            | oxa         | eu e     |        |                |         |    |   |  |
| ESS Lab                                   | Collection<br>Date | Collection<br>Time          | Sample Type       | Sample Matrix                                            |               | Sar                       | mple ID                |               | RGP Metals, Hardness | Chloride | Total Cyanide        | TSS 2  | Tri Cr. | Нех С                   | 1,2 Dichloroethane | Trichloroethene | 1,4 Dioxane | Fluorene |        |                |         |    |   |  |
| 01                                        | 4/28/17            | 1000                        | Grab              | Waste Water                                              |               | Influer                   | nt_4/28/17             |               | х                    | х        | х                    | х      | х       | х                       | х                  | х               | х           | х        |        |                |         |    |   |  |
| 02                                        | 4/28/17            | 1100                        | Grab              | Waste Water                                              |               | Effluer                   | nt_4/28/17             |               | х                    | х        | х                    | x      | х       | х                       | х                  | x               | х           | х        |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             | tte AG-Amber Glas |                                                          | C-Cubitainer  | G - Glass O-C             | Other P-Poly S-St      | erile V-Vial  | P                    | P        | Р                    | Р      | -       | Р                       | V                  | ٧               | AG          | AG       |        |                |         |    | _ |  |
|                                           |                    |                             | -2.5 gal 3-250 mL |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                | $\perp$ | _  |   |  |
| Presei                                    | vation Code:       | 1-Non Preserved             | d 2-HCl 3-H2SO4   | 4-HNO3 5-NaOH 6-M                                        | ethanol 7-Na2 |                           |                        | O 11-Other*   | 4                    | 1        | 5                    | 1      | -       | 1                       | 2                  | 2               | 1           | 1        |        | $\perp$        |         |    |   |  |
|                                           |                    |                             |                   | N                                                        |               | Numbe                     | er of Containers per   | Sample:       |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           |                    |                             | y Use Only        |                                                          | Sampled       | by: Daniel S              | canlon                 |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |
|                                           | Present:           | yes I                       | -ce               |                                                          | Commer        | nts:                      | Please sp              | ecify "Othe   | er" p                | resei    | rvati                | ve ar  | nd co   | ontai                   | ners               | type            | es in       | this     | space  | Э              |         |    |   |  |
| Seals                                     | s Intact:          |                             |                   |                                                          | 1.)RGP Met    | als include As, Co        | d, Cu, Pb, Ni, Zn, and | Fe by 6020    | ). 2.)               | Para     | mete                 | ers in | BOI     | LD h                    | ave s              | short           | hold        | -time    | . 3.)U | Jse RC         | 3P      |    |   |  |
| Cooler To                                 | emperature:        | 4.9                         | °C                |                                                          | approved m    | ethods for all ana        | alysis 4.)Please analy | ze for but d  | o not                | repo     | ort He               | ex Ch  | nrom    |                         |                    |                 |             |          |        |                |         |    |   |  |
| Re                                        | linquished by      | : (Signature, Da            |                   | me) Received By: (Signature, Date & Time) Relinquished B |               |                           |                        | r: (Signature | , Da                 | te &     | Time                 | )      |         | F                       | Rece               | ived            | Ву: (       | Signa    | iture, | Date {         | & Tim   | e) |   |  |
| July Candlo 4-29-17 @ Muin Candlo 4-29-17 |                    |                             |                   | 7 1509                                                   | Keen Carneto  | 4-28-17                   | 7                      | 18            | 30                   |          | ( 4                  | 5      | نرا (   | 1                       | +                  | 4               | 28          | In       | 16     | 35             | ١       |    |   |  |
|                                           |                    | (Signature, Da              | ate & Time)       | Received By:                                             |               | 2 400                     | Relinquished By        | : (Signature  |                      | -        |                      |        |         | )                       | Rece               | ived            | Ву: (       |          |        | Date 8         |         |    |   |  |
|                                           |                    |                             |                   |                                                          |               |                           |                        |               |                      |          |                      |        |         |                         |                    |                 |             |          |        |                |         |    |   |  |



### ANALYTICAL REPORT

Lab Number: L1716287

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

WYNN EVERETT

ATTN: Matthew Smith Phone: (781) 278-5830

Project Number: 171521.52

Report Date: 05/19/17

Project Name:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:05191716:38

Project Name: WYNN EVERETT

Project Number: 171521.52

Lab Number:

L1716287

Report Date:

05/19/17

| Alpha<br>Sample ID | Client ID                     | Matrix | Sample<br>Location         | Collection<br>Date/Time | Receive Date |
|--------------------|-------------------------------|--------|----------------------------|-------------------------|--------------|
| L1716287-01        | RECEIVING WATER- MYSTIC RIVER | WATER  | 1 HORIZON WAY, EVERETT, MA | 05/18/17 06:30          | 05/18/17     |



Project Number: 471521 52 Each Number: L1716287

Project Number: 171521.52 Report Date: 05/19/17

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Serial\_No:05191716:38

Project Name: WYNN EVERETT Lab Number: L1716287

**Project Number:** 171521.52 **Report Date:** 05/19/17

### **Case Narrative (continued)**

#### Metals

The WG1005059-3 MS recovery for zinc (141%), performed on L1716287-01, recovered outside the 70-130% acceptance criteria. The result for this analyte is considered suspect due to either the heterogeneous nature of the sample or matrix interference.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/19/17

Michelle M. Morris

### **METALS**



05/18/17 06:30

Date Collected:

Project Name:WYNN EVERETTLab Number:L1716287

**Project Number:** 171521.52 **Report Date:** 05/19/17

SAMPLE RESULTS

Lab ID: L1716287-01

Client ID: RECEIVING WATER- MYSTIC RIVER Date Received: 05/18/17
Sample Location: 1 HORIZON WAY, EVERETT, MA Field Prep: Not Specified

Matrix: Water

| _                   |            |           |       |         |     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method |         |
|---------------------|------------|-----------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
| Parameter           | Result     | Qualifier | Units | RL      | MDL | racioi             | гтератец         | Allalyzeu        | Wethou         | Wictifod             | Analyst |
| Total Metals - Mans | sfield Lab |           |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total     | ND         |           | mg/l  | 0.00400 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Arsenic, Total      | 0.00189    |           | mg/l  | 0.00100 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Cadmium, Total      | ND         |           | mg/l  | 0.00100 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Chromium, Total     | ND         |           | mg/l  | 0.00100 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Copper, Total       | 0.00466    |           | mg/l  | 0.00100 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Iron, Total         | 0.362      |           | mg/l  | 0.050   |     | 1                  | 05/19/17 06:20   | 05/19/17 12:41   | EPA 3005A      | 19,200.7             | PS      |
| Lead, Total         | 0.00733    |           | mg/l  | 0.00100 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Mercury, Total      | ND         |           | mg/l  | 0.00020 |     | 1                  | 05/19/17 09:45   | 05/19/17 14:45   | EPA 245.1      | 3,245.1              | BV      |
| Nickel, Total       | ND         |           | mg/l  | 0.00200 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Selenium, Total     | ND         |           | mg/l  | 0.00500 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Silver, Total       | ND         |           | mg/l  | 0.00100 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| Zinc, Total         | ND         |           | mg/l  | 0.01000 |     | 1                  | 05/19/17 06:20   | 05/19/17 09:59   | EPA 3005A      | 3,200.8              | AM      |
| General Chemistry   | - Mansfiel | d Lab     |       |         |     |                    |                  |                  |                |                      |         |
| Chromium, Trivalent | ND         |           | mg/l  | 0.010   |     | 1                  |                  | 05/19/17 09:59   | NA             | 107,-                |         |



Serial\_No:05191716:38

Project Name: WYNN EVERETT

Project Number: 171521.52

Lab Number:

L1716287

Report Date:

05/19/17

# Method Blank Analysis Batch Quality Control

| Parameter              | Result Qualifier      | Units   | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|-----------------------|---------|---------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | ld Lab for sample(s): | 01 Batc | h: WG10 | 05059- | ·1                 |                  |                  |                      |         |
| Antimony, Total        | ND                    | mg/l    | 0.00400 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Arsenic, Total         | ND                    | mg/l    | 0.00100 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Cadmium, Total         | ND                    | mg/l    | 0.00100 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Chromium, Total        | ND                    | mg/l    | 0.00100 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Copper, Total          | ND                    | mg/l    | 0.00100 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Lead, Total            | ND                    | mg/l    | 0.00100 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Nickel, Total          | ND                    | mg/l    | 0.00200 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Selenium, Total        | ND                    | mg/l    | 0.00500 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Silver, Total          | ND                    | mg/l    | 0.00100 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |
| Zinc, Total            | ND                    | mg/l    | 0.01000 |        | 1                  | 05/19/17 06:20   | 05/19/17 09:47   | 3,200.8              | AM      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter           | Result Qualifie         | r Units     | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method |    |
|---------------------|-------------------------|-------------|---------|---------|--------------------|------------------|------------------|----------------------|----|
| Total Metals - Mans | sfield Lab for sample(s | ): 01 Batch | n: WG10 | 005061- | 1                  |                  |                  |                      |    |
| Iron, Total         | ND                      | mg/l        | 0.050   |         | 1                  | 05/19/17 06:20   | 05/19/17 12:24   | 19,200.7             | PS |

#### **Prep Information**

Digestion Method: EPA 3005A

| Parameter          | Result Qualifier          | Units   | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method |    |
|--------------------|---------------------------|---------|---------|--------|--------------------|------------------|------------------|---------------------|----|
| Total Metals - Man | sfield Lab for sample(s): | 01 Batc | h: WG10 | 05138- | -1                 |                  |                  |                     |    |
| Mercury, Total     | ND                        | mg/l    | 0.00020 |        | 1                  | 05/19/17 09:45   | 05/19/17 14:41   | 3,245.1             | BV |

**Prep Information** 

Digestion Method: EPA 245.1



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** WYNN EVERETT

Project Number: 171521.52

Lab Number: L1716287

| Parameter                                      | LCS<br>%Recovery | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|------------------------|--------------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | (s): 01 Batch:   | WG1005059-2            |                          |     |      |            |
| Antimony, Total                                | 103              | -                      | 85-115                   | -   |      |            |
| Arsenic, Total                                 | 108              | -                      | 85-115                   | -   |      |            |
| Cadmium, Total                                 | 113              | -                      | 85-115                   | -   |      |            |
| Chromium, Total                                | 104              | -                      | 85-115                   | -   |      |            |
| Copper, Total                                  | 102              | -                      | 85-115                   | -   |      |            |
| Lead, Total                                    | 106              | -                      | 85-115                   | -   |      |            |
| Nickel, Total                                  | 104              | -                      | 85-115                   | -   |      |            |
| Selenium, Total                                | 108              | -                      | 85-115                   | -   |      |            |
| Silver, Total                                  | 102              | -                      | 85-115                   | -   |      |            |
| Zinc, Total                                    | 108              | -                      | 85-115                   | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | (s): 01 Batch:   | WG1005061-2            |                          |     |      |            |
| Iron, Total                                    | 108              | -                      | 85-115                   | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | (s): 01 Batch:   | WG1005138-2            |                          |     |      |            |
| Mercury, Total                                 | 110              | -                      | 85-115                   | -   |      |            |



### Matrix Spike Analysis Batch Quality Control

Project Name: WYNN EVERETT

**Project Number:** 171521.52

Lab Number: L1716287

| arameter                                                                                   | Native<br>Sample                                       | MS<br>Added                                        | MS<br>Found                                                         | MS<br>%Recovery                            | Qual  | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits                                  | RPD    | RPD<br>Qual Limits                     |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------|--------------|------------------|----------------------------------------------------------|--------|----------------------------------------|
| otal Metals - Mansfield L<br>IVER                                                          | _ab Associated san                                     | nple(s): 01                                        | QC Batch                                                            | ID: WG100505                               | 9-3 ( | QC Sample    | : L1716287-01    | Client ID: RECE                                          | EIVING | WATER- MYSTIC                          |
| Antimony, Total                                                                            | ND                                                     | 0.5                                                | 0.5157                                                              | 103                                        |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Arsenic, Total                                                                             | 0.00189                                                | 0.12                                               | 0.1278                                                              | 105                                        |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Cadmium, Total                                                                             | ND                                                     | 0.051                                              | 0.04849                                                             | 95                                         |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Chromium, Total                                                                            | ND                                                     | 0.2                                                | 0.1905                                                              | 95                                         |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Copper, Total                                                                              | 0.00466                                                | 0.25                                               | 0.2425                                                              | 95                                         |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Lead, Total                                                                                | 0.00733                                                | 0.51                                               | 0.5556                                                              | 108                                        |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Nickel, Total                                                                              | ND                                                     | 0.5                                                | 0.4474                                                              | 89                                         |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Selenium, Total                                                                            | ND                                                     | 0.12                                               | 0.1124                                                              | 94                                         |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Silver, Total                                                                              | ND                                                     | 0.05                                               | 0.04600                                                             | 92                                         |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Zinc, Total                                                                                | ND                                                     | 0.5                                                | 0.7069                                                              | 141                                        | Q     | -            | -                | 70-130                                                   | -      | 20                                     |
| otal Metals - Mansfield L                                                                  | Lab Associated sar                                     | nole(s): 01                                        | QC Batch                                                            | ID: WG100505                               | 9-5 ( | QC Sample    | : L1716399-01    | Client ID: MS S                                          | ample  |                                        |
|                                                                                            |                                                        | p.o(o). o.                                         | QU Dato                                                             |                                            | •     | •            |                  |                                                          | ۰      |                                        |
| Antimony, Total                                                                            | ND                                                     | 0.5                                                | 0.5448                                                              | 109                                        |       | -            | -                | 70-130                                                   | -      | 20                                     |
| Antimony, Total  Arsenic, Total                                                            |                                                        |                                                    |                                                                     |                                            |       | -            | -                |                                                          | •      | 20                                     |
|                                                                                            | ND                                                     | 0.5                                                | 0.5448                                                              | 109                                        |       | -            | -                | 70-130                                                   | -      |                                        |
| Arsenic, Total                                                                             | ND<br>ND                                               | 0.5                                                | 0.5448<br>0.1218                                                    | 109<br>102                                 |       | -            |                  | 70-130<br>70-130                                         | -      | 20                                     |
| Arsenic, Total  Cadmium, Total                                                             | ND<br>ND<br>ND                                         | 0.5<br>0.12<br>0.051                               | 0.5448<br>0.1218<br>0.05523                                         | 109<br>102<br>108                          |       | -            | -<br>-           | 70-130<br>70-130<br>70-130                               | -      | 20<br>20                               |
| Arsenic, Total  Cadmium, Total  Chromium, Total                                            | ND<br>ND<br>ND<br>0.0010                               | 0.5<br>0.12<br>0.051<br>0.2                        | 0.5448<br>0.1218<br>0.05523<br>0.1963                               | 109<br>102<br>108<br>98                    |       | -            | -<br>-<br>-<br>- | 70-130<br>70-130<br>70-130<br>70-130                     | -      | 20<br>20<br>20                         |
| Arsenic, Total  Cadmium, Total  Chromium, Total  Copper, Total                             | ND<br>ND<br>ND<br>0.0010<br>0.4659                     | 0.5<br>0.12<br>0.051<br>0.2<br>0.25                | 0.5448<br>0.1218<br>0.05523<br>0.1963<br>0.6745                     | 109<br>102<br>108<br>98<br>83              |       |              | -<br>-<br>-<br>- | 70-130<br>70-130<br>70-130<br>70-130<br>70-130           | -      | 20<br>20<br>20<br>20                   |
| Arsenic, Total  Cadmium, Total  Chromium, Total  Copper, Total  Lead, Total                | ND<br>ND<br>ND<br>0.0010<br>0.4659<br>0.0012           | 0.5<br>0.12<br>0.051<br>0.2<br>0.25<br>0.51        | 0.5448<br>0.1218<br>0.05523<br>0.1963<br>0.6745<br>0.5310           | 109<br>102<br>108<br>98<br>83<br>104       |       |              | -<br>-<br>-<br>- | 70-130<br>70-130<br>70-130<br>70-130<br>70-130           | -      | 20<br>20<br>20<br>20<br>20<br>20       |
| Arsenic, Total  Cadmium, Total  Chromium, Total  Copper, Total  Lead, Total  Nickel, Total | ND<br>ND<br>ND<br>0.0010<br>0.4659<br>0.0012<br>0.0168 | 0.5<br>0.12<br>0.051<br>0.2<br>0.25<br>0.51<br>0.5 | 0.5448<br>0.1218<br>0.05523<br>0.1963<br>0.6745<br>0.5310<br>0.5020 | 109<br>102<br>108<br>98<br>83<br>104<br>97 |       |              | -<br>-<br>-<br>- | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130 | -      | 20<br>20<br>20<br>20<br>20<br>20<br>20 |

### Matrix Spike Analysis Batch Quality Control

Project Name: WYNN EVERETT

**Project Number:** 171521.52

Lab Number: L1716287

| Parameter                    | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Limits | RPD Limits      | 5    |
|------------------------------|------------------|-------------|-------------|-----------------|--------------|------------------|--------------------|-----------------|------|
| Total Metals - Mansfield Lab | Associated sam   | nple(s): 01 | QC Batch    | ID: WG1005061-3 | QC Sample    | : L1716287-01    | Client ID: RECEIV  | VING WATER- MYS | STIC |
| Iron, Total                  | 0.362            | 1           | 1.15        | 79              | -            | -                | 75-125             | - 20            |      |
| Total Metals - Mansfield Lab | Associated sam   | nple(s): 01 | QC Batch    | ID: WG1005138-3 | QC Sample    | : L1716287-01    | Client ID: RECEIV  | VING WATER- MYS | STIC |
| Mercury, Total               | ND               | 0.005       | 0.00443     | 89              | -            | -                | 70-130             | - 20            |      |

## Lab Duplicate Analysis Batch Quality Control

Project Name: WYNN EVERETT

**Project Number:** 171521.52

Lab Number: L1716287

| Parameter                                                   | Native Sample D        | uplicate Sample | Units       | RPD        | Qual RPD Limits         |
|-------------------------------------------------------------|------------------------|-----------------|-------------|------------|-------------------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 RIVER | QC Batch ID: WG1005059 | -4 QC Sample:   | L1716287-01 | Client ID: | RECEIVING WATER- MYSTIC |
| Antimony, Total                                             | ND                     | ND              | mg/l        | NC         | 20                      |
| Arsenic, Total                                              | 0.00189                | 0.00176         | mg/l        | 7          | 20                      |
| Cadmium, Total                                              | ND                     | ND              | mg/l        | NC         | 20                      |
| Chromium, Total                                             | ND                     | ND              | mg/l        | NC         | 20                      |
| Copper, Total                                               | 0.00466                | 0.00470         | mg/l        | 1          | 20                      |
| Lead, Total                                                 | 0.00733                | 0.00751         | mg/l        | 2          | 20                      |
| Nickel, Total                                               | ND                     | ND              | mg/l        | NC         | 20                      |
| Selenium, Total                                             | ND                     | ND              | mg/l        | NC         | 20                      |
| Silver, Total                                               | ND                     | ND              | mg/l        | NC         | 20                      |
| Zinc, Total                                                 | ND                     | ND              | mg/l        | NC         | 20                      |
| Total Metals - Mansfield Lab Associated sample(s): 01       | QC Batch ID: WG1005059 | -6 QC Sample:   | L1716399-01 | Client ID: | DUP Sample              |
| Lead, Total                                                 | 0.0012                 | 0.00121         | mg/l        | 3          | 20                      |
| Total Metals - Mansfield Lab Associated sample(s): 01       | QC Batch ID: WG1005061 | -4 QC Sample:   | L1716287-01 | Client ID: | RECEIVING WATER- MYSTIC |
| Iron, Total                                                 | 0.362                  | 0.394           | mg/l        | 8          | 20                      |
| Total Metals - Mansfield Lab Associated sample(s): 01       | QC Batch ID: WG1005138 | -4 QC Sample:   | L1716287-01 | Client ID: | RECEIVING WATER- MYSTIC |
| Mercury, Total                                              | ND                     | ND              | mg/l        | NC         | 20                      |



## INORGANICS & MISCELLANEOUS



Serial\_No:05191716:38

Project Name: WYNN EVERETT

Project Number: 171521.52

Lab Number:

L1716287

Report Date:

05/19/17

#### **SAMPLE RESULTS**

Lab ID: L1716287-01

Client ID: RECEIVING WATER- MYSTIC RIVER Sample Location: 1 HORIZON WAY, EVERETT, MA

Matrix: Water

Date Collected: 05/18/17 06:30

Date Received: 05/18/17

Field Prep: Not Specified

| Parameter              | Result Qu      | ualifier Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|----------------|----------------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We | estborough Lab |                |       |     |                    |                  |                  |                      |         |
| SALINITY               | 7.7            | SU             | 2.0   |     | 1                  | -                | 05/18/17 22:15   | 121,2520B            | AS      |
| pH (H)                 | 7.7            | SU             | -     | NA  | 1                  | -                | 05/18/17 23:14   | 1,9040C              | AS      |
| Nitrogen, Ammonia      | 0.135          | mg/l           | 0.075 |     | 1                  | 05/18/17 21:00   | 05/18/17 23:22   | 121,4500NH3-BH       | I AT    |
| Chromium, Hexavalent   | ND             | mg/l           | 0.010 |     | 1                  | 05/19/17 02:10   | 05/19/17 02:29   | 1,7196A              | KA      |



Serial\_No:05191716:38

**Project Name:** WYNN EVERETT

L1716287 **Project Number:** 171521.52 **Report Date:** 05/19/17

Lab Number:

Method Blank Analysis Batch Quality Control

| Parameter             | Result Quali        | fier Units    | RL     | MDL  | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|---------------------|---------------|--------|------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - V | Vestborough Lab for | sample(s): 01 | Batch: | WG10 | 004953-1           |                  |                  |                      |         |
| Nitrogen, Ammonia     | ND                  | mg/l          | 0.075  |      | 1                  | 05/18/17 21:00   | 05/18/17 23:19   | 121,4500NH3-B        | BH AT   |
| General Chemistry - W | Vestborough Lab for | sample(s): 01 | Batch: | WG10 | 005021-1           |                  |                  |                      |         |
| Chromium, Hexavalent  | ND                  | mg/l          | 0.010  |      | 1                  | 05/19/17 02:10   | 05/19/17 02:27   | 1,7196A              | KA      |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** WYNN EVERETT

**Project Number:** 171521.52

Lab Number: L1716287

| Parameter                           | LCS<br>%Recovery Qu      | LCSD<br>al %Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-------------------------------------|--------------------------|----------------------|------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1004953-    | 2    |                     |     |      |            |
| Nitrogen, Ammonia                   | 100                      | -                    |      | 80-120              | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1004970-    | 1    |                     |     |      |            |
| SALINITY                            | 92                       | -                    |      |                     | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1004983-    | 1    |                     |     |      |            |
| рН                                  | 100                      | -                    |      | 99-101              | -   |      | 5          |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1005021-    | 2    |                     |     |      |            |
| Chromium, Hexavalent                | 98                       | -                    |      | 85-115              | -   |      | 20         |

### Matrix Spike Analysis Batch Quality Control

Project Name: WYNN EVERETT

**Project Number:** 

171521.52

Lab Number: L1716287

| Parameter                                 | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery | _        | MSD<br>Found | MSD<br>%Recovery |        | Recovery<br>Limits | RPD    | Qual   | RPD<br>Limits |
|-------------------------------------------|------------------|-------------|-------------|-----------------|----------|--------------|------------------|--------|--------------------|--------|--------|---------------|
| General Chemistry - Westboro MYSTIC RIVER | ugh Lab Asso     | ciated samp | e(s): 01    | QC Batch ID: V  | NG100495 | 53-4         | QC Sample: L171  | 6287-0 | 1 Client           | ID: RE | CEIVIN | IG WATER-     |
| Nitrogen, Ammonia                         | 0.135            | 4           | 4.02        | 97              |          | -            | -                |        | 80-120             | -      |        | 20            |
| General Chemistry - Westboro MYSTIC RIVER | ugh Lab Asso     | ciated samp | e(s): 01    | QC Batch ID: V  | NG100502 | 21-4         | QC Sample: L171  | 6287-0 | 1 Client           | ID: RE | CEIVIN | IG WATER-     |
| Chromium, Hexavalent                      | ND               | 0.1         | 0.101       | 101             |          | -            | -                |        | 85-115             | -      |        | 20            |

## Lab Duplicate Analysis Batch Quality Control

Project Name: WYNN EVERETT

**Project Number:** 171521.52

Lab Number:

L1716287

| Parameter                                        | Nati                  | ve S | ample        | Duplicate Sam | ple Unit   | s RPD       | ) Qua      | RPD Limits       |
|--------------------------------------------------|-----------------------|------|--------------|---------------|------------|-------------|------------|------------------|
| General Chemistry - Westborough Lab MYSTIC RIVER | Associated sample(s): | 01   | QC Batch ID: | WG1004953-3   | QC Sample: | L1716287-01 | Client ID: | RECEIVING WATER- |
| Nitrogen, Ammonia                                |                       | 0.13 | 5            | 0.131         | mg/        | 3           |            | 20               |
| General Chemistry - Westborough Lab MYSTIC RIVER | Associated sample(s): | 01   | QC Batch ID: | WG1004970-2   | QC Sample: | L1716287-01 | Client ID: | RECEIVING WATER- |
| SALINITY                                         |                       | 7.7  |              | 7.8           | SU         | 1           |            |                  |
| General Chemistry - Westborough Lab MYSTIC RIVER | Associated sample(s): | 01   | QC Batch ID: | WG1004983-2   | QC Sample: | L1716287-01 | Client ID: | RECEIVING WATER- |
| pH (H)                                           |                       | 7.7  |              | 7.6           | SU         | 1           |            | 5                |
| General Chemistry - Westborough Lab MYSTIC RIVER | Associated sample(s): | 01   | QC Batch ID: | WG1005021-3   | QC Sample: | L1716287-01 | Client ID: | RECEIVING WATER- |
| Chromium, Hexavalent                             |                       | ND   |              | ND            | mg/        | I NC        |            | 20               |

Serial\_No:05191716:38

Project Name: Lab Number: L1716287 WYNN EVERETT

**Report Date:** 05/19/17 Project Number: 171521.52

### **Sample Receipt and Container Information**

YES Were project specific reporting limits specified?

**Cooler Information Custody Seal** 

Cooler

Α Absent

| Container Info | ormation                      |        |    | Temp  |      |        |                                                                                                                                                                 |
|----------------|-------------------------------|--------|----|-------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                | Cooler | рН | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                     |
| L1716287-01A   | Plastic 250ml HNO3 preserved  | Α      | <2 | 2.5   | Y    | Absent | CD-2008T(180),NI-<br>2008T(180),ZN-2008T(180),CU-<br>2008T(180),AG-2008T(180),AS-<br>2008T(180),SE-2008T(180),CR-<br>2008T(180),PB-2008T(180),SB-<br>2008T(180) |
| L1716287-01B   | Plastic 250ml unpreserved     | Α      | 7  | 2.5   | Υ    | Absent | HEXCR-7196(1),PH-9040(1)                                                                                                                                        |
| L1716287-01C   | Amber 120ml unpreserved       | Α      | 7  | 2.5   | Υ    | Absent | SALINITY(28)                                                                                                                                                    |
| L1716287-01D   | Plastic 500ml H2SO4 preserved | Α      | <2 | 2.5   | Υ    | Absent | NH3-4500(28)                                                                                                                                                    |



Project Name: WYNN EVERETT Lab Number: L1716287

**Project Number:** 171521.52 **Report Date:** 05/19/17

#### **GLOSSARY**

#### Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

#### **Data Qualifiers**

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report



Project Name: WYNN EVERETT Lab Number: L1716287

Project Number: 171521.52 Report Date: 05/19/17

#### Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name: WYNN EVERETT Lab Number: L1716287

**Project Number:** 171521.52 **Report Date:** 05/19/17

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Serial\_No:05191716:38

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

### Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

#### **Mansfield Facility:**

#### **Drinking Water**

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

Page 22 of 26

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

|                                        |                                        |                          |               | _                   |              |                                                  |             |              |           |                  |             |           |         |            |              |            |         |                                                                                    |                  |
|----------------------------------------|----------------------------------------|--------------------------|---------------|---------------------|--------------|--------------------------------------------------|-------------|--------------|-----------|------------------|-------------|-----------|---------|------------|--------------|------------|---------|------------------------------------------------------------------------------------|------------------|
|                                        | CHAIN OF                               | CUSTO                    | DY            | PAGE 1 OF           | 2            | Da                                               | ate Rec'    | d in La      | b:        | 11               | 18          | 10-       | 7       | AL         | PHA          | Job #      | : /     | 171 6287                                                                           | 7.               |
| ALPH                                   |                                        | Project Info             | rmation       |                     |              | R                                                | eport       | Infor        | matio     | n Data           | a Del       | livera    | bles    |            |              |            | ation   |                                                                                    |                  |
| World Class Chem                       |                                        |                          |               |                     |              |                                                  | FAX         |              |           | $\boxtimes$      | EMAIL       |           |         | 200        |              | as Clie    |         | PO #:                                                                              |                  |
| Westborough, MA                        | Mansfield, MA                          | Droject Name             | Marin Deets   |                     |              |                                                  | ADEx        |              |           |                  | Add'I E     | Delivera  | bles    |            |              |            |         |                                                                                    |                  |
| TEL: 508-898-9220<br>FAX: 508-898-9193 | TEL: 508-822-9300<br>FAX: 508-822-3288 | Project Name:<br>WYNN EV |               | <del>n Harbor</del> |              |                                                  |             |              |           | emen             | ts/Re       | port      | Limit   | _          |              |            |         |                                                                                    |                  |
| Client Informat                        | ion                                    | Project Location         | n: 1 Horizon  | Way, Everet         | MA .         |                                                  | ate/Fed     | RG           |           |                  |             |           |         | Crite      | eria         |            |         |                                                                                    |                  |
| Client: GZA                            |                                        | Project #: 01.0          | 171521.52     |                     |              | M                                                | CP PR       | RESU         |           |                  |             |           |         |            |              |            |         | DENCE PROTOC                                                                       | OLS              |
| Address: 249 Van                       | derbilt Ave                            | Project Manage           | er: Neal Care | <b>ә</b> у          |              |                                                  | Yes<br>Yes  | -            | ☐ No      |                  |             |           |         |            |              | equired    |         | ols) Required?                                                                     |                  |
| Norwood, MA                            |                                        | ALPHA Quote              | #:            |                     |              | -                                                | VALYS       | SIS          | _ 140     | H                | Ale         | CIRC      | r (Rea  | isonabi    | ie Coni      | dence      | Protoco | is) Required?                                                                      | T                |
| Phone: (781) 278-                      | 3700                                   | Turn-Around              | l Time        |                     |              |                                                  |             |              | Τ,        | _                |             |           | T       | Τ.         | 7-           |            | -       | SAMPLE HANDLING                                                                    | O<br>T<br>A<br>L |
| Fax: (781) 278-57                      | 52                                     | ☐ Standard               | ⊠ Ru          | JSh (ONLY IF PR     | E-APPROVED)  | plucump                                          | Anthony it  | 3            | Color     | Chanjun III ?    |             |           | ١,      |            | יינין כיינין | מומרכן     | 3       | Filtration  Done                                                                   | Ĺ                |
| Email: Neal Carey                      | @gza.com                               |                          | AS            | AP                  |              | \$                                               | 4           |              |           | 3                |             |           | 3       | 5          | אויירים      | 3          | 5       | ☐ Not Needed                                                                       | #                |
| These samples have                     | e been Previously analyzed by Alpha    | Due Date:                | Time:         |                     |              |                                                  | - 3         | 2            | 9         | S E              | 200         | E H       | -       |            |              |            |         | ☐ Lab to do  Preservation                                                          | BOTTLES          |
| Other Project Sp                       | ecific Requirements/Comments/          | Detection Limi           | ts:           |                     |              | 1 3                                              | و           | 1            | _         | , र्             | Connec      | ر ا       | o Po    | 5 -5       | 3            |            | 3 0     | ☐ Lab to do                                                                        | İ                |
|                                        |                                        |                          |               |                     |              | 1 7                                              | 2           | 7            | 2 2       | ने ने            | و           | 15        |         | 5 2        | 2 3          | 2          | 48      | (Please specify<br>below)                                                          | E                |
|                                        |                                        |                          |               |                     |              | 2000                                             |             | Defendant of | 3         | 2                | 7           | Linke ash | Recolle | Section 25 | Royal March  | Service de | 3       |                                                                                    |                  |
|                                        |                                        |                          |               |                     |              | Tons                                             | 2           | 0            | Crown and | otal Recoverable | Recoverable | 2         | 2       | 2          | Roy          | d          | RECOVE  |                                                                                    |                  |
| ALPHA Lab ID                           | Sample ID                              | Coll                     | ection        | Sample              | Sampler's    |                                                  | 7           | 7            |           | i R              | A           |           | 14      | Y          | 1            | 4          |         | Sample Specific                                                                    |                  |
| (Lab Use Only)                         |                                        | Date                     | Time          | Matrix              | Initials     | Ha                                               | 1/3         | 1/3          | of of     | 尚                | Jo491       | 10        | 1/2     | J. J.      | 13           | 10/6       | 10      | Comments                                                                           |                  |
| 287 -01                                | Receiving Water-Mysticl                | eiver 5/18/17            | 0630          | SW                  | MOD          | X                                                | $\boxtimes$ | $\times$     | X         |                  | X           | X         | X       | X          | X            | X          |         |                                                                                    | 1                |
|                                        |                                        |                          |               |                     |              |                                                  |             |              |           |                  |             |           |         |            |              |            |         |                                                                                    | 1                |
|                                        |                                        |                          |               |                     |              |                                                  |             |              |           |                  |             |           |         |            |              |            |         |                                                                                    |                  |
|                                        |                                        | -                        |               |                     | -            |                                                  |             |              | Ш         |                  |             |           |         |            |              |            |         |                                                                                    |                  |
|                                        |                                        |                          |               |                     | -            | H                                                | 닏           |              | 닏         | 닏                | 븨           | Ц         |         |            |              |            |         |                                                                                    |                  |
|                                        |                                        |                          |               | <u> </u>            | -            | ┼╬╌                                              | 님           | Ц            | 닏         |                  | 븨           |           | ᆜ       | Ц          | Ш            |            |         | ,                                                                                  |                  |
|                                        |                                        |                          |               |                     |              | 뷰                                                |             |              |           |                  | 닏           | $\perp$   |         |            | Ш            | Ц          |         |                                                                                    |                  |
|                                        |                                        | _                        |               |                     |              | <del>                                     </del> | H           | 부            | H         |                  | 뮈           | 뷔         |         |            | Ц            |            |         |                                                                                    |                  |
|                                        |                                        |                          |               |                     |              | <u> </u>                                         | H           |              | 片         | 뷤                | 님           | 뷤         |         |            |              |            |         |                                                                                    | <u> </u>         |
| PLEASE ANSWER (                        | QUESTIONS ABOVE!                       |                          |               | Cox                 | stainer Tune | -                                                |             |              |           |                  | 니           |           | Ш       | Ш          | Ш            | Ш          |         |                                                                                    |                  |
|                                        |                                        |                          |               |                     | reservative  | -                                                | -           | -            | -         | -                | -           | -         | -       | -          | -            | -          | -       | Please print clearly, legible                                                      |                  |
| IS YOUR                                | PROJECT                                |                          | Relino        | uished By:          |              | Da                                               | ate/Time    | 9            |           | /R               | eceive      | ed By:    |         |            | D            | ate/Tim    |         | and completely. Samples not be logged in and                                       | s can            |
|                                        | or CT RCP?                             | more                     | tillew        |                     |              | 5/18                                             | 170         |              |           | L                | _           | 1AC       |         | -          | (Ith)        |            | 340     | turnaround time clock will<br>start until any ambiguities<br>resolved. All samples |                  |
| FORM NO: 01-01(I)<br>(rev. 5-JAN-12)   | · · · · · · ·                          | -                        | 1             | AL                  | 5/1          | 8/17                                             | 175         | 8            |           | 10               | 2           | 7         |         | _5         | TIR          | 1/1        | 730     | submitted are subject to<br>Alpha's Payment Terms.                                 |                  |
|                                        |                                        |                          | -             |                     |              |                                                  |             |              |           |                  |             |           |         |            | 11 01        |            | 1 -     |                                                                                    |                  |
|                                        |                                        |                          |               |                     |              |                                                  |             |              |           |                  |             |           |         |            |              |            |         |                                                                                    |                  |

|                                      | CHAIN OF C                            | USTC                   | DY                                               | PAGE 2 O        | F 2          | Da        | ite Rec'o  | l in Lal     | D:    | 51      | 18     | 11-      | 7       | AL     | PHA     | Job #   | #: [ ]   | 1716287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|---------------------------------------|------------------------|--------------------------------------------------|-----------------|--------------|-----------|------------|--------------|-------|---------|--------|----------|---------|--------|---------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANALYTICAL                           | P                                     | roject Info            | rmation                                          |                 |              |           | eport I    | nfor         | natio | -       | a De   |          | bles    | Bil    |         | nforn   | nation   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| World Class Chemistry                |                                       |                        |                                                  |                 |              |           | ADEx       |              |       |         |        | Delivera | bles    |        | Same    |         | ent inio | FO#.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      | eld, MA<br>08-822-9300<br>08-822-3288 | oject Name:<br>WYNN EV | : <del>Wynn Bost</del> o<br>'ERETT               | on Harbor       |              | Re        | egulat     |              |       |         |        |          |         |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client Information                   |                                       | oject Locatio          | on: 1 Horizon                                    | Way, Everet     | t MA         | Sta       | te/Fed F   | Rograi<br>26 |       |         |        |          |         | Crite  | eria    |         | 33 37 37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client: GZA                          |                                       | oject #: 01.0          |                                                  |                 |              | 100000    |            | ESU          |       |         |        |          |         |        |         |         |          | DENCE PROTOCOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address: 249 Vanderbilt              | Ave Pr                                | oject Manag            | er: Neal Car                                     | еу              |              | - Table 1 | Yes<br>Yes | -            | □ No  |         |        |          |         |        | nods Re |         |          | ols) Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Norwood, MA                          | AL                                    | PHA Quote              | #:                                               |                 |              |           | IALYS      |              |       | <b></b> | Aic    | OTINO    | i (ixee | SUITAD | e Conn  | derice  | PTOLOCC  | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Phone: (781) 278-3700                | Tu                                    | ırn-Around             | d Time                                           |                 |              |           |            |              |       |         | Г      |          |         | T      |         |         |          | SAMPLE HANDLING T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fax: (781) 278-5752                  |                                       | Standard               | ⊠R                                               | ush (ONLY IF PI | RE-APPROVED) | Π,        |            |              |       |         |        |          |         |        |         |         |          | Filtration A L Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Email: Neal.Carey@gza.               | com                                   |                        | ASA                                              | P               |              | ,         | CIVI       |              |       | ľ       |        |          |         |        |         |         |          | ☐ Not Needed #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| These samples have been P            | reviously analyzed by Alpha Du        | e Date:                | Time                                             | :               |              |           |            |              |       |         |        |          |         |        |         |         |          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| Other Project Specific               | Requirements/Comments/De              | tection Lim            | its:                                             |                 |              | See Frank | 3          |              |       |         |        |          |         |        |         |         |          | Preservation  Lab to do  (Please specify below)  E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                       |                        |                                                  |                 |              |           | 20         |              |       |         |        |          |         |        |         |         |          | below) E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                      |                                       |                        |                                                  |                 |              | 0         | 2          |              |       |         |        |          |         |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        |                                                  |                 |              | 1         | 5          |              |       |         |        |          |         |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALPHA Lab ID                         | Sample ID                             | Col                    | lection                                          | Sample          | Sampler's    | TAFE      | 5          |              |       |         |        |          |         |        |         |         |          | Sample Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Lab Use Only)                       |                                       | Date                   | Time                                             | Matrix          | Initials     | ,         | 1          |              | d .   |         |        | 1        |         |        | 1       | 1       | ŀ        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 508 + -01 Reci                       | ving Water - Mystic River             | 5/18/17                | 0630                                             | SW              | MODE         | X         |            |              |       |         |        |          |         |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        |                                                  |                 |              | 14        |            |              |       |         |        |          |         |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       | -                      |                                                  |                 |              | 1         | 님          | 닏            | 片     | H       | 片      | 님        |         | Ц      |         | Ц       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        |                                                  |                 |              | 片         | 片          |              | 片     |         |        | 片        | 닏       | 닏      | 닏       |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        |                                                  |                 |              |           | 뷰          |              | H     |         | H      | 片        | H       | 片      |         |         | 片        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       | <del> </del>           |                                                  |                 |              | ∺         | H          | $\dashv$     | H     | H       | 믐      | 片        | 片       |        |         | 片       | 뷰        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        | <del>                                     </del> |                 |              | ╁┼        |            | H            | 片     | H       | H      | H        |         | H      | H       | 片       | 片        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        |                                                  |                 | +            | H         | H          | H            | 뮴     | H       | 干      | H        | H       | H      | H       | 片       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        |                                                  |                 |              | 10        |            |              | H     |         | Ħ      | H        | H       | H      | H       | H       | H        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PLEASE ANSWER QUEST                  | TIONS ABOVE!                          |                        |                                                  | Co              | ntainer Type | -         | -          | -            |       | -       | -      | -        | -       | _      | -       |         | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                       |                        |                                                  |                 | Preservative | -         |            | 1.00         | -     | -       | -      | -        | -       | -      | -       | -       | -        | Please print clearly, legibly and completely. Samples can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IS YOUR PR                           | ROJECT                                |                        | Relin                                            | quished By:     |              | D         | ate/Time   | 9            |       | 1       | Receiv | ed By:   |         |        | D       | ate/Tin | ne       | not be logged in and<br>turnaround time clock will not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MA MCP or                            | CT RCP?                               | mo                     | Alberry                                          | - Divi          | _            | 5/18/     | 100        | 1340         |       | 1       | _/     | 49L      |         | 57/18  | 1/1)    | 13      | 40       | start until any ambiguities are resolved. All samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FORM NO: 01-01(I)<br>(rev. 5-JAN-12) |                                       |                        | 1 44                                             |                 | 5/10         | 115       |            | 30           | 2     | en      |        | _        |         | 511    | 8/1     | 173     |          | submitted are subject to<br>Alpha's Payment Terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                       |                        |                                                  |                 | -            |           |            |              |       |         |        |          |         | "      |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| CHAIN OF (                                                                             | CUSTODY                    | PAGE 1 OF 🔔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Da                | te Rec'd     | in Lat          | o:     | 11            | 18      | 10-        | 7      | AL     | PHA          | Job #   | t: /           | 1716287                                                                                                                                  | 7.          |
|----------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------|-----------------|--------|---------------|---------|------------|--------|--------|--------------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ALPHA                                                                                  | Project Information        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Re                | eport Ir     | ıforı           | natio  | n Dat         | a De    | livera     | bles   |        |              |         | nation         |                                                                                                                                          |             |
| World Class Chamistry                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1000              | FAX          |                 |        | $\boxtimes$   | EMAIL   | -          |        |        | Same         | as Clie | nt info        | PO #:                                                                                                                                    |             |
| Westborough, MA Mansfield, MA                                                          | Project Name: Wynn Bos     | etan Harbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                   | ADEx         |                 |        |               | Add'l I | Delivera   | bles   |        |              |         |                |                                                                                                                                          |             |
| TEL: 508-898-9220 TEL: 508-822-9300  _FAX: 508-898-9193 FAX: 508-822-3288              | rojectivame. wymi Bos      | Stoll Harbor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                   | gulato       |                 |        | emen          | ts/R    | eport      | Limit  | _      |              |         |                |                                                                                                                                          |             |
| Client Information                                                                     | Project Location: 1 Horizo | on Way, Everett MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | Sta               | te/Fed Pi    | rograi<br>RL    |        |               |         |            |        | Crit   | eria         |         |                |                                                                                                                                          | - 200.00    |
| Client: GZA                                                                            | Project #: 01.0171521.52   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |              | SU              |        |               | RTA     | INTY-      | CT R   | EASC   | DNAB         | LE C    | ONFI           | DENCE PROTOC                                                                                                                             | OLS         |
| Address: 249 Vanderbilt Ave                                                            | Project Manager: Neal C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 100000            | Yes<br>Yes   | $\dashv$        | ☐ No   |               |         | MCP A      |        |        |              |         |                |                                                                                                                                          |             |
| Norwood, MA                                                                            | ALPHA Quote #:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   | IALYSI       | s               |        | H             |         | CIRC       | r (Rea | isonad | ie Coni      | dence   | Protoco        | ols) Required?                                                                                                                           | T           |
| Phone: (781) 278-3700                                                                  | Turn-Around Time           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |              |                 |        | _             |         |            |        | Π      | 7-           |         |                | SAMPLE HANDLING                                                                                                                          | T<br>A<br>L |
| Fax: (781) 278-5752                                                                    |                            | Rush (ONLY IF PRE-APF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'ROVED)              | Emmonia           | antimony     | >               | (0)    | Chemina III & |         |            |        |        | יינין ליינין |         | יועפר פייון יו | Filtration  □ Done                                                                                                                       | Ĺ           |
| Email: Neal.Carey@gza.com                                                              | P                          | <del>I</del> SAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | Man               | 二十           |                 | Calabi |               |         | (          | 3      | 3      | אוייריב      | 3       | 5              | ☐ Not Needed☐ Lab to do                                                                                                                  | #           |
| These samples have been Previously analyzed by Alpha                                   | Due Date: Tim              | ne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 3                 | an           | 7               | 2 0    | 3             | į       | H H        |        |        | 7            |         |                | Preservation  Lab to do                                                                                                                  | B<br>O<br>T |
| Other Project Specific Requirements/Comments/I  ALPHA Lab ID Sample ID  (Lab Use Only) | Collection  Date Time      | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | ampler's<br>Initials | PH. Temo Salivitu | H Rec        | Otal Popuration |        | Recoverable   |         | Leconord 1 |        | 2000 P | ×            | 0000    |                | 1                                                                                                                                        | TLES        |
| 287 -01 Receiving Water-Mystick                                                        | vec 5/18/17 0630           | SW M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COD                  |                   |              | ×               |        |               | X       |            | ×      |        | ×            |         |                |                                                                                                                                          |             |
|                                                                                        | 5,5,1,1,00,2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |              |                 |        |               |         |            |        | 6      |              |         |                |                                                                                                                                          | -           |
|                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |              |                 |        |               |         |            |        |        |              |         |                |                                                                                                                                          |             |
|                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |              |                 |        |               |         |            |        |        |              |         |                |                                                                                                                                          |             |
|                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |              |                 |        |               | 빌       |            |        |        |              |         |                |                                                                                                                                          |             |
|                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 믐                 |              | 片               | 片      | 님             | ᆜ       |            | ᆜ      | 4      |              | Щ       |                | ,                                                                                                                                        |             |
|                                                                                        |                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                   |              | 片.              | H      |               | 님       | H          | 井      | 片      | H            | 닏       |                |                                                                                                                                          |             |
|                                                                                        |                            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | $\exists$         | H            | ᆜ               | H      | 님             | 붐       | 붜          | 님      |        |              | 님       | 님              |                                                                                                                                          | _           |
|                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |              | H               | H      | 긤             | 님       | 뷤          |        | 븜      |              | H       |                |                                                                                                                                          |             |
| PLEASE ANSWER QUESTIONS ABOVE!                                                         |                            | Containe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er Type              | -                 |              | -               | -      | -             |         |            |        |        |              | Ш       |                |                                                                                                                                          |             |
|                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ervative             |                   |              | -               | -      | - 1           | -       | -          | -      | -      | _            | -       |                | Please print clearly, legib                                                                                                              |             |
| IS YOUR PROJECT                                                                        | Rel                        | inquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | Da                | te/Time      |                 |        | /             | Receiv  | ed By:     |        |        | D            | ate/Tim | 6              | and completely. Samples<br>not be logged in and                                                                                          |             |
| MA MCP or CT RCP? FORM NO. 01-01(I) (rev. 5-JAN-12)                                    | Matthew                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/16                 | 5/18/             | 1701<br>1758 | 340             |        | K)            |         | 946        |        | -5     | 116          | 1/1/    | 340<br>730     | turnaround time clock will<br>start until any ambiguities<br>resolved. All samples<br>submitted are subject to<br>Alpha's Payment Terms. |             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAIN OF C                     | USTC          | DY           | PAGE 2 0         | F 2           | Da       | te Rec'd | l in Lat | D:        | 5     | 18                | 11-      | 7    | AL    | PHA .   | Job #   | 1:61    | 1716287                                                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|--------------|------------------|---------------|----------|----------|----------|-----------|-------|-------------------|----------|------|-------|---------|---------|---------|-----------------------------------------------------------|---|
| ANALYTICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P                              | roject Info   | rmation      |                  |               |          | eport I  | nfor     | natio     | -     | a De              |          | bles | Bil   | ling lı | nform   | nation  |                                                           |   |
| World Class Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |               |              |                  |               | _        | ADEx     |          |           |       |                   | Delivera | blos | Ш     | Same    | as Clie | nt info | PO #:                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsfield, MA<br>L: 508-822-9300 | oject Name:   | Wynn Bosto   | on Harbor        |               |          | gulat    | ory R    | Requi     |       |                   |          |      | s     |         |         |         |                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X: 508-822-3288                |               |              |                  |               |          | te/Fed F | Prograi  | m         |       |                   |          |      | Crite | eria    |         |         |                                                           |   |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |               |              | Way, Evere       | tt MA         | M        | 100      | RGIII    |           | VE CE | DTA               | INITY    | СТ В | EASC  | MAD     | IEC     | ONE     | DENCE PROTOCOLS                                           |   |
| Client: GZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | oject #: 01.0 |              |                  |               | 100      | Yes      | 500      | □ No      |       |                   |          |      |       | ods Re  |         |         | DENCE PROTOCOLS                                           | ) |
| Address: 249 Vander                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |               | er: Neal Car | еу               |               |          | Yes      |          | ☐ No      | )     |                   |          |      |       |         |         |         | ols) Required?                                            |   |
| Norwood, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | PHA Quote     |              |                  |               | _AN      | IALYS    | SIS      | _         |       | _                 | 1        |      |       |         | _       |         | 0                                                         |   |
| Phone: (781) 278-370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | ırn-Around    |              |                  |               |          |          |          |           |       |                   |          |      |       |         |         |         | SAMPLE HANDLING T Filtration A                            |   |
| Fax: (781) 278-5752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | Standard      |              |                  | RE-APPROVED)  |          |          |          |           |       |                   |          |      |       |         |         | ı       | ☐ Done ☐ Not Needed #                                     |   |
| Email: Neal.Carey@g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 100                          |               | ASA          |                  |               | 1        | Ö        |          |           | 1     |                   |          |      |       |         |         |         | ☐ Lab to do B                                             |   |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | ,,,,,,,, .                     | e Date:       | Time         | :                |               |          | 3        |          |           |       |                   |          |      |       |         |         |         | Preservation O  ☐ Lab to do  (Please specify below) E  S  |   |
| Other Project Speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ific Requirements/Comments/De  | ection Lim    | its:         |                  |               | Reminant | 7<br>J   |          |           |       |                   |          |      |       |         |         |         | (Please specify L below) E                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  |               | 1        | 200      |          |           |       |                   |          |      |       |         |         |         | S                                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  |               | 1        |          |          |           |       |                   |          |      |       |         |         |         |                                                           |   |
| Davis and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |               |              | 1                |               | Tate     | 5        |          |           |       |                   |          |      |       |         |         |         |                                                           |   |
| ALPHA Lab ID<br>(Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample ID                      |               | lection      | Sample<br>Matrix | Sampler's     | 1 6      |          |          |           |       |                   |          |      |       |         |         |         | Sample Specific<br>Comments                               |   |
| (2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Date          | Time         |                  | Initials      |          | 1        | <br>     | 1 🗀       | <br>  |                   |          | 1    | <br>  |         | <br>    | <br>    |                                                           |   |
| 50/8/ -01 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eeiving Water - Mystic River   | 5/18/17       | 0630         | SW               | MOD           | X        | 뷰        | 닏        | 닏         | 님     | 브                 |          | 片    |       | 닏       | Ц       |         |                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  | -             | 片        |          |          | 님         |       | H                 | H        |      |       |         | Щ       | 片       |                                                           | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               | -            |                  |               | ┼┼       | 片        | 븜        | 믐         | H     | 븜                 | H        | 片    | 片     | 片       | 님       |         |                                                           | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  |               | H        | +=       | H        | 片         |       |                   | H        | H    | H     | H       | H       | 片       |                                                           | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  |               | H        | H        |          | H         |       | H                 | H        | H    | H     | H       | H       |         |                                                           | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  |               | Ħ        | Ħ        |          | Ħ         | H     | Ħ                 | H        | H    | H     | H       | 뉴       | H       |                                                           | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  | 1             | Ħ        |          |          | 盲         |       | $\overline{\Box}$ | ī        | H    | H     |         | H       | H       |                                                           | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  |               |          |          |          |           |       | 亍                 |          |      |       |         | Ħ       | H       |                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  |               |          |          |          |           |       |                   |          |      |       |         |         |         |                                                           | - |
| PLEASE ANSWER QUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESTIONS ABOVE!                 |               |              | Co               | ontainer Type | -        | -        | -        | -         | -     | •                 | -        | -    | -     | -       | -       | -       |                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |              |                  | Preservative  | 4.53     |          | -        | -         | -     | -                 | -        | -    | -     | -       | -       | -       | Please print clearly, legibly and completely. Samples can |   |
| IS YOUR P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |               |              | quished By:      |               | D        | ate/Time |          |           | 1     | Receiv            | ed By:   |      |       | D       | ate/Tin | ne      | not be logged in and<br>turnaround time clock will not    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r CT RCP?                      | ma            |              | - Devi           |               | 5/18/    | 100      | 1340     |           | 1     | -/-               | 49L      |      | 5/18  | 1/2     | 13      | 40      | start until any ambiguities are resolved. All samples     |   |
| FORM NO: 01-01(I)<br>(rev. 5-JAN-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |               | L AA         | 2                | 5/10          | 11)      | 17       | 30       | $\subset$ | en    |                   | ~        |      | 5/    | 8/17    | 173     | 0       | submitted are subject to<br>Alpha's Payment Terms.        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | /             |              |                  |               |          |          |          |           |       |                   |          |      | ,     |         |         |         |                                                           |   |



#### ANALYTICAL REPORT

Lab Number: L1718229

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Matthew Smith Phone: (781) 278-5830

Project Name: WYNN EVERETT

Project Number: 171521.52

Report Date: 06/07/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name: WYNN EVERETT

Project Number: 171521.52

Lab Number:

L1718229

**Report Date:** 06/07/17

| Alpha<br>Sample ID | Client ID          | Matrix | Sample<br>Location         | Collection<br>Date/Time | Receive Date |
|--------------------|--------------------|--------|----------------------------|-------------------------|--------------|
| L1718229-01        | INFLUENT_ (6.2.17) | WATER  | 1 HORIZON WAY, EVERETT, MA | 06/02/17 05:30          | 06/02/17     |
| L1718229-02        | EFFLUENT (6.2.17)  | WATER  | 1 HORIZON WAY, EVERETT, MA | 06/02/17 06:00          | 06/02/17     |



Project Name: WYNN EVERETT Lab Number: L1718229

Project Number: 171521.52 Report Date: 06/07/17

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Project Name:WYNN EVERETTLab Number:L1718229Project Number:171521.52Report Date:06/07/17

#### **Case Narrative (continued)**

#### Report Submission

This report replaces the report issued June 6, 2017. At the client's request, all non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

#### Sample Receipt

L1718229-01: The sample was received without the container for the Ammonia analysis. An aliquot was taken from an unpreserved container and preserved appropriately.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/07/17

Custen Walker Cristin Walker

## **ORGANICS**



### **SEMIVOLATILES**



**Project Name:** Lab Number: WYNN EVERETT L1718229

**Project Number:** Report Date: 171521.52 06/07/17

**SAMPLE RESULTS** 

06/04/17 20:14

Lab ID: L1718229-01 Date Collected: 06/02/17 05:30

INFLUENT\_ (6.2.17) Client ID: Date Received: 06/02/17

Sample Location: 1 HORIZON WAY, EVERETT, MA Field Prep: Not Specified Extraction Method: EPA 3510C

Matrix: Water Extraction Date: 06/03/17 01:45 Analytical Method: 1,8270D Analytical Date:

Analyst: RC

| Parameter                                 | Result   | Qualifier | Units | RL  | MDL  | Dilution Factor |
|-------------------------------------------|----------|-----------|-------|-----|------|-----------------|
| Semivolatile Organics by GC/MS - Westbord | ough Lab |           |       |     |      |                 |
| Bis(2-ethylhexyl)phthalate                | ND       |           | ug/l  | 3.0 | 0.91 | 1               |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |  |
|----------------------|------------|----------------------------------|--|
| 2-Fluorophenol       | 40         | 21-120                           |  |
| Phenol-d6            | 27         | 10-120                           |  |
| Nitrobenzene-d5      | 80         | 23-120                           |  |
| 2-Fluorobiphenyl     | 62         | 15-120                           |  |
| 2,4,6-Tribromophenol | 66         | 10-120                           |  |
| 4-Terphenyl-d14      | 66         | 41-149                           |  |



41-149

06/02/17 06:00

Date Collected:

Project Name: WYNN EVERETT Lab Number: L1718229

**Project Number:** 171521.52 **Report Date:** 06/07/17

SAMPLE RESULTS

5/till 22 1(2502)

L1718229-02

Client ID: EFFLUENT\_ (6.2.17) Date Received: 06/02/17

Sample Location: 1 HORIZON WAY, EVERETT, MA Field Prep: Not Specified

Extraction Method:EPA 3510C

Matrix: Water Extraction Date: 06/03/17 01:45

Matrix: Water Extraction Date:
Analytical Method: 1,8270D
Analytical Date: 06/04/17 20:39

Analyst: RC

4-Terphenyl-d14

Lab ID:

| Parameter                          | Result         | Qualifier | Units      | RL      | MDL  | Dilution Factor    |  |
|------------------------------------|----------------|-----------|------------|---------|------|--------------------|--|
| Semivolatile Organics by GC/MS - W | estborough Lab |           |            |         |      |                    |  |
| Bis(2-ethylhexyl)phthalate         | ND             |           | ug/l       | 3.0     | 0.91 | 1                  |  |
| Surrogate                          |                |           | % Recovery | Qualifi |      | eptance<br>riteria |  |
| 2-Fluorophenol                     |                |           | 41         |         |      | 21-120             |  |
| Phenol-d6                          |                |           | 28         |         |      | 10-120             |  |
| Nitrobenzene-d5                    |                |           | 83         |         |      | 23-120             |  |
| 2-Fluorobiphenyl                   |                |           | 63         |         |      | 15-120             |  |
| 2,4,6-Tribromophenol               |                |           | 67         |         |      | 10-120             |  |

66



**Project Name:** WYNN EVERETT

**Project Number:** 171521.52 Lab Number:

L1718229

Report Date: 06/07/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D 06/02/17 21:26

Extraction Method: EPA 3510C

**Extraction Date:** 

06/02/17 03:33

Analyst: СВ

| Parameter                        | Result      | Qualifier | Units      | RL    |        | MDL         |  |
|----------------------------------|-------------|-----------|------------|-------|--------|-------------|--|
| Semivolatile Organics by GC/MS - | Westborough | Lab for s | sample(s): | 01-02 | Batch: | WG1009101-1 |  |
| Bis(2-ethylhexyl)phthalate       | ND          |           | ug/l       | 3.0   |        | 0.91        |  |

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

|                      | Acceptance          |          |  |  |  |  |
|----------------------|---------------------|----------|--|--|--|--|
| Surrogate            | %Recovery Qualifier | Criteria |  |  |  |  |
| 2-Fluorophenol       | 36                  | 21-120   |  |  |  |  |
| Phenol-d6            | 25                  | 10-120   |  |  |  |  |
| Nitrobenzene-d5      | 62                  | 23-120   |  |  |  |  |
| 2-Fluorobiphenyl     | 60                  | 15-120   |  |  |  |  |
| 2,4,6-Tribromophenol | 62                  | 10-120   |  |  |  |  |
| 4-Terphenyl-d14      | 68                  | 41-149   |  |  |  |  |
|                      |                     |          |  |  |  |  |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** WYNN EVERETT

Lab Number: L1718229

Project Number: 171521.52

Report Date: 06/07/17

| Parameter                                                                                                   | LCS<br>%Recovery Qual % |  | LCSD<br>%Recovery | %<br>Qual | Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-------------------------------------------------------------------------------------------------------------|-------------------------|--|-------------------|-----------|--------------------|-----|------|---------------|
| Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1009101-2 WG1009101-3 |                         |  |                   |           |                    |     |      |               |
| Bis(2-ethylhexyl)phthalate                                                                                  | 83                      |  | 76                |           | 40-140             | 9   |      | 30            |

| Surrogate            | LCS<br>%Recovery Qua | LCSD<br>al %Recovery Qual | Acceptance<br>Criteria |
|----------------------|----------------------|---------------------------|------------------------|
| 2-Fluorophenol       | 43                   | 42                        | 21-120                 |
| Phenol-d6            | 31                   | 30                        | 10-120                 |
| Nitrobenzene-d5      | 67                   | 65                        | 23-120                 |
| 2-Fluorobiphenyl     | 63                   | 58                        | 15-120                 |
| 2,4,6-Tribromophenol | 73                   | 66                        | 10-120                 |
| 4-Terphenyl-d14      | 70                   | 64                        | 41-149                 |

### **METALS**



Project Name:WYNN EVERETTLab Number:L1718229Project Number:171521.52Report Date:06/07/17

SAMPLE RESULTS

Lab ID: L1718229-01 Date Collected: 06/02/17 05:30

Client ID: INFLUENT\_ (6.2.17) Date Received: 06/02/17
Sample Location: 1 HORIZON WAY, EVERETT, MA Field Prep: Not Specified

Matrix: Water

Analytical Method Dilution Date Date Prep **Factor Prepared Analyzed** Method Parameter Result Qualifier Units RL MDL Analyst Total Metals - Mansfield Lab Silver, Total ND 0.00100 0.00026 1 06/03/17 10:00 06/05/17 13:04 EPA 3005A 3,200.8 mg/l TT



Project Name:WYNN EVERETTLab Number:L1718229Project Number:171521.52Report Date:06/07/17

SAMPLE RESULTS

Lab ID: L1718229-02 Date Collected: 06/02/17 06:00

Client ID: EFFLUENT\_ (6.2.17) Date Received: 06/02/17
Sample Location: 1 HORIZON WAY, EVERETT, MA Field Prep: Not Specified

Matrix: Water

Analytical Method Dilution Date Date Prep **Factor Prepared Analyzed** Method Parameter Result Qualifier Units RL MDL Analyst Total Metals - Mansfield Lab Silver, Total ND 0.00100 0.00026 1 3,200.8 mg/l 06/05/17 06:35 06/05/17 15:32 EPA 3005A TT



Project Name: WYNN EVERETT

**Project Number:** 171521.52

Lab Number:

L1718229

Report Date:

06/07/17

# Method Blank Analysis Batch Quality Control

| Parameter                                                         | Result Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method |    |
|-------------------------------------------------------------------|------------------|-------|---------|---------|--------------------|------------------|------------------|---------------------|----|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1009569-1 |                  |       |         |         |                    |                  |                  |                     |    |
| Silver, Total                                                     | ND               | mg/l  | 0.00100 | 0.00026 | i 1                | 06/03/17 10:00   | 06/05/17 12:47   | 3,200.8             | TT |

**Prep Information** 

Digestion Method: EPA 3005A

**Dilution** Date Analytical Date Method Analyst **Factor Prepared Parameter Result Qualifier** Units RLMDL Analyzed Total Metals - Mansfield Lab for sample(s): 02 Batch: WG1009764-1 Silver, Total ND 0.00100 0.00026 mg/l 1 06/05/17 06:35 06/05/17 15:26 3,200.8 TT

**Prep Information** 

Digestion Method: EPA 3005A



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** WYNN EVERETT

Lab Number: L1718229

**Project Number:** 171521.52

**Report Date:** 06/07/17

| Parameter                                    | LCS<br>%Recovery   | Qual     | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|----------------------------------------------|--------------------|----------|-------------------|------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated samp | le(s): 01 Batch: \ | NG100956 | 69-2              |      |                     |     |      |            |
| Silver, Total                                | 100                |          | -                 |      | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated samp | le(s): 02 Batch: \ | WG100976 | 64-2              |      |                     |     |      |            |
| Silver, Total                                | 103                |          | -                 |      | 85-115              | -   |      |            |



L1718229

## Matrix Spike Analysis Batch Quality Control

Project Name: WYNN EVERETT

**Project Number:** 171521.52

Lab Number:

**Report Date:** 06/07/17

| Parameter        | Native<br>Sample           | MS<br>Added   | MS<br>Found | MS<br>%Recovery | Qual | MSD<br>Found | MSD<br>%Recovery | Qual  | Recovery<br>Limits | RPD   | Qual | RPD<br>Limits |
|------------------|----------------------------|---------------|-------------|-----------------|------|--------------|------------------|-------|--------------------|-------|------|---------------|
| Total Metals - M | Mansfield Lab Associated s | sample(s): 01 | QC Batch IE | D: WG1009569    | )-3  | QC Sample:   | L1718235-01      | Clier | t ID: MS S         | ample |      |               |
| Silver, Total    | ND                         | 0.05          | 0.0495      | 99              |      | -            | -                |       | 70-130             | -     |      | 20            |
| Total Metals - N | Mansfield Lab Associated s | sample(s): 02 | QC Batch ID | D: WG1009764    | l-3  | QC Sample:   | L1717777-01      | Clier | t ID: MS S         | ample |      |               |
| Silver, Total    | ND                         | 0.05          | 0.04908     | 98              |      | -            | -                |       | 70-130             | -     |      | 20            |
| Total Metals - N | Mansfield Lab Associated s | sample(s): 02 | QC Batch ID | D: WG1009764    | l-5  | QC Sample:   | L1718226-02      | Clier | t ID: MS S         | ample |      |               |
| Silver, Total    | ND                         | 0.05          | 0.04718     | 94              |      | -            | -                |       | 70-130             | -     |      | 20            |

# Lab Duplicate Analysis Batch Quality Control

Project Name: WYNN EVERETT

**Project Number:** 171521.52

Lab Number:

L1718229

Report Date:

06/07/17

| Parameter                                             | Native Sample D        | Ouplicate Sample | Units       | RPD          | Qual      | RPD Limits |
|-------------------------------------------------------|------------------------|------------------|-------------|--------------|-----------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 02 | QC Batch ID: WG1009764 | I-4 QC Sample: I | L1717777-01 | Client ID: D | UP Sample |            |
| Silver, Total                                         | ND                     | ND               | mg/l        | NC           |           | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 02 | QC Batch ID: WG1009764 | I-6 QC Sample: I | L1718226-02 | Client ID: D | UP Sample |            |
| Silver, Total                                         | ND                     | ND               | mg/l        | NC           |           | 20         |



# INORGANICS & MISCELLANEOUS



**Project Name:** WYNN EVERETT Lab Number:

L1718229

Project Number: 171521.52

**Report Date:** 

06/07/17

**SAMPLE RESULTS** 

Lab ID:

L1718229-01

Client ID:

INFLUENT\_ (6.2.17)

Sample Location: 1 HORIZON WAY, EVERETT, MA

Matrix:

Water

Date Collected:

06/02/17 05:30

Date Received:

06/02/17

Field Prep:

Not Specified

| Parameter           | Result          | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab | )         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia   | 9.88            |           | mg/l  | 0.375 | 0.112 | 5                  | 06/05/17 07:38   | 06/05/17 20:22   | 121,4500NH3-BH       | H AT    |



L1718229

Lab Number:

**Project Name:** WYNN EVERETT

**Project Number:** 171521.52 **Report Date:** 06/07/17

Method Blank Analysis Batch Quality Control

| Parameter           | Result Qualifier        | Units      | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-------------------------|------------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab for sam | ple(s): 01 | Batch: | WG10  | 009783-1           |                  |                  |                      |         |
| Nitrogen, Ammonia   | ND                      | mg/l       | 0.075  | 0.022 | 1                  | 06/05/17 07:38   | 06/05/17 20:14   | 121,4500NH3-l        | BH AT   |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** WYNN EVERETT

Lab Number: L1718229

**Project Number:** 171521.52

**Report Date:** 06/07/17

| Parameter                             | LCS<br>%Recovery     | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |  |
|---------------------------------------|----------------------|------|-------------------|------|---------------------|-----|------|------------|--|
| General Chemistry - Westborough Lab A | ssociated sample(s): | 01 E | Batch: WG1009783- | 2    |                     |     |      |            |  |
| Nitrogen, Ammonia                     | 96                   |      | -                 |      | 80-120              | -   |      | 20         |  |



## Matrix Spike Analysis Batch Quality Control

Project Name: WYNN EVERETT

Lab Number:

L1718229

**Project Number:** 171521.52

Report Date:

06/07/17

| Parameter                     | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery | MS<br>Qual Fou |     | MSD<br>%Recovery Qua | Recovery<br>Limits | RPD Q    | RPD<br>ual Limits |
|-------------------------------|------------------|-------------|-------------|-----------------|----------------|-----|----------------------|--------------------|----------|-------------------|
| General Chemistry - Westborou | ugh Lab Asso     | ciated samp | le(s): 01   | QC Batch ID: V  | NG1009783-     | 4 ( | QC Sample: L171766   | 9-01 Client        | ID: MS S | ample             |
| Nitrogen, Ammonia             | 0.045J           | 4           | 0.119       | 3               | Q              | -   | -                    | 80-120             | -        | 20                |



Lab Duplicate Analysis
Batch Quality Control

Batch Quality Control Lab Number: L1718229

**Project Number:** 171521.52 **Report Date:** 06/07/17

| Parameter                              | Native Sample                        | Duplicate Samp | ple Units         | RPD     | Qual        | RPD Limits |
|----------------------------------------|--------------------------------------|----------------|-------------------|---------|-------------|------------|
| General Chemistry - Westborough Lab As | ssociated sample(s): 01 QC Batch ID: | WG1009783-3    | QC Sample: L17176 | 69-01 C | lient ID: D | UP Sample  |
| Nitrogen, Ammonia                      | 0.045J                               | 0.034J         | mg/l              | NC      |             | 20         |



**Project Name:** 

WYNN EVERETT

**Lab Number:** L1718229

Report Date: 06/07/17

## Project Number: 171521.52

Were project specific reporting limits specified?

WYNN EVERETT

**Cooler Information** 

Project Name:

Cooler Custody Seal

A Absent

| Container Info | ormation                            |        |         |                 | Temp  |      |        | Frozen    |                 |
|----------------|-------------------------------------|--------|---------|-----------------|-------|------|--------|-----------|-----------------|
| Container ID   | Container Type                      | Cooler | Initial | Final           | deg C | Pres | Seal   | Date/Time | Analysis(*)     |
| L1718229-01A   | Plastic 500ml H2SO4 preserved split | Α      | pH<br>7 | <b>pH</b><br><2 | 5.4   | Υ    | Absent |           | NH3-4500(28)    |
| L1718229-01B   | Amber 1000ml unpreserved            | Α      | 7       | 7               | 5.4   | Υ    | Absent |           | 8270TCL(7)      |
| L1718229-01C   | Amber 1000ml unpreserved            | Α      | 7       | 7               | 5.4   | Υ    | Absent |           | 8270TCL(7)      |
| L1718229-02A   | Plastic 500ml H2SO4 preserved split | Α      | 7       | <2              | 5.4   | Υ    | Absent |           | HOLD-WETCHEM(0) |
| L1718229-02B   | Amber 1000ml unpreserved            | Α      | 7       | 7               | 5.4   | Υ    | Absent |           | 8270TCL(7)      |
| L1718229-02C   | Amber 1000ml unpreserved            | Α      | 7       | 7               | 5.4   | Υ    | Absent |           | 8270TCL(7)      |
| L1718229-02X   | Plastic 500ml HNO3 preserved        | Α      | <2      | <2              | 5.4   | Υ    | Absent |           | AG-2008T(180)   |

Sample Receipt and Container Information



Project Name: WYNN EVERETT Lab Number: L1718229

Project Number: 171521.52 Report Date: 06/07/17

### **GLOSSARY**

### **Acronyms**

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

### Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

## Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers



Project Name: WYNN EVERETT Lab Number: L1718229
Project Number: 171521.52 Report Date: 06/07/17

#### **Data Qualifiers**

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
  of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



Project Name: WYNN EVERETT Lab Number: L1718229
Project Number: 171521.52 Report Date: 06/07/17

## REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

## **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10 Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

## **Certification Information**

### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene

**EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

## Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

## Westborough Facility:

### **Drinking Water**

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

## Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

**EPA 608**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

## **Mansfield Facility:**

## Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

### Non-Potable Water

**EPA 200.7**: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

|                                                                 | CHAIN OF                                                |                       |                                  |                     |                       | Da                      | ate Rec                                            | d in La  | ab:   | 7/6  | 2              | 11-    |          | AL             | PHA    | Job                                | #: \           | _171822                                                                                                                                  | G           |
|-----------------------------------------------------------------|---------------------------------------------------------|-----------------------|----------------------------------|---------------------|-----------------------|-------------------------|----------------------------------------------------|----------|-------|------|----------------|--------|----------|----------------|--------|------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ANALYFIC                                                        | AL                                                      | Project Info          | rmation                          |                     |                       | 100                     | eport<br>FAX                                       | Infor    | matic | n Da | THE RESERVE OF | _      | ables    | Bil            | lling  | Infor                              | nation         |                                                                                                                                          |             |
| TEL: 508-898-9220                                               | Mansfield, MA<br>TEL: 508-822-9300<br>FAX: 508-822-3288 | Project Name:<br>WYNN | <del>Wynn Bosto</del><br>EVERETT | <del>n Harbor</del> |                       | -                       | ADEX                                               |          | Requi |      | Add'l          |        |          |                |        |                                    |                |                                                                                                                                          |             |
| Client Informati                                                |                                                         | Project Location      |                                  |                     | : MA                  |                         | ete/Fed<br>SP Limit                                |          |       |      |                |        | -        | Crit           |        |                                    |                |                                                                                                                                          |             |
| Client: GZA                                                     |                                                         | Project #: 01.0       | 171521.52                        |                     |                       | M                       | CP PF                                              | RESU     | MPTI  | VE C | ERTA           | INTY   | -CT R    | EAS            | DNAE   | BLE C                              | ONFI           | DENCE PROTOC                                                                                                                             | OLS         |
| Address: 249 Vand                                               | lerbilt Ave                                             | Project Manag         | er: Neal Care                    | У                   |                       |                         | Yes                                                |          |       | 0    | Are            | MCP.   | Analytic | cal Meti       | hods R | equired                            | 1?             |                                                                                                                                          |             |
| Norwood, MA                                                     |                                                         | ALPHA Quote           |                                  |                     |                       |                         | Yes No Are CT RCP (Reasonable Confidence Protocols |          |       |      |                |        |          | ols) Required? | 7      |                                    |                |                                                                                                                                          |             |
| Phone: (781) 278-3                                              | 3700                                                    | Turn-Around           | Time                             |                     |                       | An                      | VALT                                               | 13       | T     | T    | T              | T      | T        | T              | T      | T                                  | T              | SAMPLE HANDLING                                                                                                                          | O           |
| Fax: (781) 278-575                                              | 2                                                       | ☐ Standard            | ⊠ Rus                            | sh (ONLY IF PR      | E-APPROVED)           |                         |                                                    |          |       |      |                |        |          |                |        |                                    |                | Filtration  □ Done                                                                                                                       | A           |
| Email: Neal.Carey@                                              | Dgza.com                                                |                       |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        |                                    |                | ■ Not Needed                                                                                                                             | #           |
| These samples have                                              |                                                         | Time:                 |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        | ☐ Lab to do  Preservation          | ВО             |                                                                                                                                          |             |
| <ol> <li>RGP Metals inclu</li> <li>Hex Cr. has short</li> </ol> | ed methods for all analysis                             |                       |                                  |                     |                       | diethylhexylphalate     |                                                    |          |       |      |                |        |          |                |        | ☐ Lab to do (Please specify below) | BOTTLES        |                                                                                                                                          |             |
| report Hex Cr.                                                  | DI BUL GO HOL                                           |                       |                                  |                     |                       |                         | onia                                               | lhex     |       |      |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
| ALPHA Lab ID<br>(Lab Use Only)                                  | Sample ID                                               | Coll<br>Date          | ection<br>Time                   | Sample<br>Matrix    | Sampler's<br>Initials | Silver                  | Ammonia                                            | diethy   |       |      |                |        |          |                |        |                                    |                | Sample Specific<br>Comments                                                                                                              |             |
| 18229-01                                                        | Influent_(6.2.17)                                       | 6.2.2017              | 0530                             | ww                  | MDD                   |                         |                                                    |          | П     | П    |                | П      | ĪП       | ·              | ,<br>T | ,<br>T                             | ,<br>          |                                                                                                                                          |             |
| 02                                                              | Effluent_(6.2.17)                                       | 6.2.17                | 0600                             | ww                  | MDD                   |                         |                                                    |          |       | 占    | 一              | H      | Ħ        | H              | 片      | H                                  | H              |                                                                                                                                          | -           |
|                                                                 |                                                         |                       |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        |                                    | H              |                                                                                                                                          | -           |
|                                                                 |                                                         |                       |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
|                                                                 |                                                         |                       |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
|                                                                 |                                                         |                       |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
|                                                                 |                                                         |                       |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
|                                                                 |                                                         |                       |                                  |                     |                       |                         |                                                    |          |       |      |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
|                                                                 |                                                         |                       |                                  |                     |                       |                         |                                                    | ᆜ        |       |      |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
| PLEASE ANSWER Q                                                 | HESTIONS ADOVE                                          |                       |                                  |                     |                       | Ш                       |                                                    | Ш        |       | Ш    |                |        |          |                |        |                                    |                |                                                                                                                                          |             |
| . TENDE ANOTHER Q                                               | OLOTIONS ABOVE!                                         |                       |                                  |                     | tainer Type           | Р                       | Р                                                  | P        | Р     | -    | Р              | ٧      | ٧        | Α              | Α      | -                                  | -              |                                                                                                                                          |             |
| IS YOUR PROJECT Relinquis                                       |                                                         |                       |                                  |                     | reservative           |                         |                                                    |          | -     | -    | -              | -      | -        | -              | -      | -                                  | -              | Please print clearly, legible and completely. Samples not be logged in and                                                               | ly<br>s can |
| MA MCP or CT RCP?  FORM NO. 01-D1() (rev. 5-JAN-12)             |                                                         |                       |                                  | -                   | 6-                    | Da<br>2-7-76<br>4-12-17 | ite/Time                                           | 30<br>30 | ai    | tal  | Receiv         | ed By: | ~        |                | 9/2    | ate/Tim                            | e<br>3の2<br>7秒 | turnaround time clock will<br>start until any ambiguities<br>resolved. All samples<br>submitted are subject to<br>Alpha's Payment Terms. | not<br>are  |

|                                                              | CHAIN OF                                           | CUSTODY PAGE 1 OF 1         |              |              |                |                  | e Rec'd     | in Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o: 6              | 2/0         | 2            | 1-       |          | AL       | PHA                                                | Job#    | * \   | 1718229                                                                               |           |  |
|--------------------------------------------------------------|----------------------------------------------------|-----------------------------|--------------|--------------|----------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--------------|----------|----------|----------|----------------------------------------------------|---------|-------|---------------------------------------------------------------------------------------|-----------|--|
| ALPH                                                         | A                                                  | Project Infor               | mation       |              |                | Re               | port l      | nforr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | natio             | n Dat       | ALC: UNKNOWN | livera   | bles     | Bil      | ling l                                             | nform   | ation |                                                                                       |           |  |
| ANALYTIC                                                     |                                                    |                             |              |              |                |                  | FAX         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | $\boxtimes$ | EMAIL        |          |          |          | Same                                               |         |       | PO#;                                                                                  |           |  |
| Westbarough, MA                                              | Mansfield, MA                                      |                             |              |              |                |                  | ADEx        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             | Add'l [      | Delivera | ables    |          |                                                    |         |       |                                                                                       |           |  |
| TEL: 508-898-9220                                            | TEL: 508-822-9300                                  | Project Name:               | Wynn Bosto   | on Harbor    |                | Re               | gulate      | ory R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equir             | emen        | ts/Re        | port     | Limit    | s        |                                                    |         |       | <b>和张克克·</b>                                                                          |           |  |
| FAX: 508-898-9193                                            | FAX: 508-822-3288                                  |                             | Account to   |              |                |                  | te/Fed F    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              |          |          | Criteria |                                                    |         |       |                                                                                       |           |  |
| Client Informati                                             | on                                                 | Project Location            | n: 1 Horizor | Way, Everett | MA             | Section 2010     | P Limit;    | THE OWNER OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, | COLUMN TO SERVICE | /E CE       | DTA          | NTV      | CT D     | RGF      |                                                    | 150     |       | SENSE PROFESSION                                                                      |           |  |
| Client: GZA                                                  | · · · · · · · · · · · · · · · · · · ·              | Project #: 01.01            |              |              | <del></del>    |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □ No              |             |              |          | Analytic |          |                                                    |         |       | DENCE PROTOCOL                                                                        | S         |  |
| Address: 249 Vand                                            | lerbilt Ave                                        | Project Manage              | er: Neal Car | еу           |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ No              |             |              |          |          |          |                                                    |         |       | ls) Required?                                                                         |           |  |
| Norwood, MA                                                  |                                                    | ALPHA Quote #               | <b>‡</b> :   |              |                | AN               | ALYS        | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | _           |              |          |          |          |                                                    |         |       |                                                                                       | T<br>O    |  |
| Phone: (781) 278-3                                           | 3700                                               | Turn-Around                 | Time         |              |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              |          |          |          |                                                    |         |       | SAMPLE HANDLING<br>Filtration                                                         | T<br>A    |  |
| Fax: (781) 278-575                                           | ush (ONLY IF PRI                                   | E-APPROVED)                 |              |              |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              |          |          |          | ☐ Done                                             | L<br>#  |       |                                                                                       |           |  |
| Email: Neal.Carey                                            | @gza.com                                           |                             |              |              |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              |          |          |          |                                                    |         |       | ☑ Not Needed<br>☐ Lab to do                                                           | #<br>B    |  |
|                                                              | been Previously analyzed by Alpha                  | Due Date: 2-Day RUSH Time:  |              |              |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              |          |          |          |                                                    |         |       | Preservation                                                                          | O<br>T    |  |
|                                                              | ecific Requirements/Comment                        |                             |              |              |                |                  |             | Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |             |              |          |          |          |                                                    |         |       | (Please specify                                                                       | T<br>L    |  |
| RGP Metals incl     Hex Cr. has shore                        | ude As, Cd, Cu, Pb, Ni, Zn, and Fe<br>t hold-time. | by 6020.                    |              |              |                |                  |             | nalat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |             |              |          |          |          |                                                    |         |       | below)                                                                                | E<br>S    |  |
| <ol> <li>Use RGP approv</li> <li>Please analyze f</li> </ol> | ved methods for all analysis                       |                             |              |              |                |                  |             | kylpł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |             |              |          |          |          |                                                    |         |       |                                                                                       |           |  |
| report Hex Cr.                                               | or but do not                                      |                             |              |              |                |                  | onia        | ylhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |             |              |          |          |          |                                                    |         |       |                                                                                       |           |  |
| ALPHA Lab ID                                                 | Sample ID                                          | Collection Sample Sampler's |              |              |                | Silver           | Ammonia     | diethylhexylphalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |             |              |          |          |          |                                                    |         |       | Sample Specific                                                                       |           |  |
| (Lab Use Only)                                               |                                                    | Date                        | Time         | Matrix       | Initials       |                  | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1           |              |          | İ        | 1        | 1                                                  | 1       | 1     | Comments                                                                              |           |  |
| 18229-01                                                     | Influent_(6.2.17)                                  | 6.2.2017                    | 0530         | ww           | MDD            |                  | $\boxtimes$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              |          |          |          |                                                    |         |       |                                                                                       |           |  |
| 02                                                           | Effluent_(6.2.17)                                  | 6.2.17                      | 0600         | ww           | MDD            |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              |          |          |          |                                                    |         |       |                                                                                       |           |  |
|                                                              |                                                    |                             |              |              |                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Щ           |              |          |          |          |                                                    |         |       |                                                                                       |           |  |
|                                                              |                                                    |                             |              |              | -              | 14               | 닏           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 닏                 | 닏           |              |          |          | 닏        |                                                    |         |       |                                                                                       |           |  |
|                                                              |                                                    |                             |              |              | -              | <del>    -</del> | H           | 무                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 片                 | 님           | 무            |          |          | 片        |                                                    |         |       |                                                                                       | $\exists$ |  |
|                                                              |                                                    |                             |              | <b></b>      | -              | 片                | 님           | $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H                 | 님           | 屵            | 片        | H        | H        |                                                    | 님       |       |                                                                                       |           |  |
|                                                              |                                                    |                             |              |              |                | H-               | 님           | $\frac{\sqcup}{\sqcap}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H                 | 님           | 븜            | H        | H        | 片        | H                                                  | H       |       |                                                                                       | $\dashv$  |  |
|                                                              |                                                    |                             |              |              |                | H                | H           | $\frac{\sqcup}{\sqcap}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 믐                 | H           | 믐            | H        | H        | H        | H                                                  | H       |       |                                                                                       | -         |  |
|                                                              |                                                    |                             |              |              | <del>   </del> | H                | $\exists$   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 님           | H            | H        | H        | H        |                                                    | H       |       | -                                                                                     |           |  |
| PLEASE ANSWER                                                |                                                    |                             | Cor          | ntainer Type | P              | Р                | P           | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                 | P           | V            | V        | A        | A        |                                                    |         |       |                                                                                       |           |  |
| LEASE AROVER GOES HORS ABOVE.                                |                                                    |                             |              |              | Preservative   | 3.70             | -           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                 | -           | -            | -        | -        | -        | -                                                  | -       | -     | Please print clearly, legibly                                                         |           |  |
| IS YOUR PROJECT Reling                                       |                                                    |                             |              |              |                | Da               | te/Time     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 5           | Receiv       | ed By:   | L        |          | n                                                  | ate/Tim | e -   | and completely. Samples can<br>not be logged in and<br>turnaround time clock will not |           |  |
| MA MCP or CT RCP? Matthews                                   |                                                    |                             |              |              | 6-             |                  |             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.               | 4-1         |              | YM.      |          |          | حراب                                               | 1       |       | start until any ambiguities are resolved. All samples                                 | ,         |  |
| FORM NO: 01-01(I)<br>(rev. 5-JAN-12)                         |                                                    | Thuddle Liz                 |              | 42/17        | -17            | 30               | ain I       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             | (alalana s   |          |          |          | submitted are subject to<br>Alpha's Payment Terms. |         |       |                                                                                       |           |  |
| ***                                                          |                                                    | 11 Museum 1912              |              |              |                | -1-1-1           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |              | -        |          |          |                                                    |         |       |                                                                                       |           |  |