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Abstract: In this paper we introduce a generalization of the Neyman-Scott process

Neyman and Scott (1958) that allows for regularity in the parent process. In

particular, we consider the special case where the parent process is a Strauss process

with offspring points dispersed about the parent points. Such a generalization

allows for point realizations that show a mix of regularity and clustering in the

points. We work out a closed form approximation of the K function for this model

and use this to fit the model to data. The approach is illustrated by applications

to the locations of a species of trees in a rainforest dataset.
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point process.

1. Introduction

In this paper we introduce a model for a spatial point process that contains

a mix of regularity and clustering. It is a generalization of the model introduced

in Neyman and Scott (1958) to fit to galaxy data. In the Neyman-Scott model,

the unobserved parent points follow a Poisson process with some intensity λp.

Each parent point produces a possibly random number of offspring points, ran-

domly dispersed about the parent point. A realization of a Neyman-Scott process

consists of the set of all the offspring points.

Our generalization involves replacing the Poisson parent process with a regu-

lar process. This allows for point patterns consisting of regularly spaced clusters

of points. Gibbs processes define point models via interactions between pairs,

triplets, and so on, of points. They are often studied in statistical physics and

are a convenient way to specify spatial point models with regular as opposed

to clustered patterns. In our generalization we use a Strauss process (Strauss

(1975); Ripley and Kelly (1977)), the simplest of the Gibbs processes, as the

parent point process.

The Strauss process includes the Poisson process within its parameter set.

Thus our generalized model has the Neyman-Scott model as a special case. The

advantage of the new Generalized Neyman-Scott (GNS) process is that it in-

corporates additional flexibility, allowing for regularly spaced clusters of points.

For example, the Neyman-Scott process was used to model the positions of trees
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in a rainforest in Waagepetersen (2007). However, it is conceivable that while

offspring are clustered around the parents, the parent trees that have survived

are regularly spaced due to competition for nutrients and sunlight. Our model

can capture this phenomenon.

There are many comprehensive overviews of spatial point processes, e.g.,

Ripley (1988); Stoyan and Stoyan (1994); Diggle (2003). All these works contain

discussions of Gibbs (also called Markov) point processes. Taylor, Dryden and

Farnoosh (2001) defined a point model, called a nearly regular point process,

where the parent points lie on a fixed regular grid. Each parent point has exactly

one offspring dispersed about the parent point according to a bivariate Gaussian

density. They derived an expression for the K function of this process. Our

model differs from the nearly regular point process in that the parent points,

although also regular, are random. Also, each parent point has a random number

of offspring points. Thus our model exhibits clustering at small distances that is

not present in the nearly regular point process.

Møller and Torrisi (2005) introduced Generalized Shot Noise Cox Processes

(GSNCP) that can be considered as Cox cluster processes with a general parent

process, dispersion density, and offspring intensity that they denote by Φcent, kbj ,

and γj , respectively. The GSNCP contains a very wide class of point process

models since Φcent can be any point process and (bj , γj) can be fixed or random

with some distribution. Our GNS model is contained in this class (see Example

4 of Section 2.3 of their paper). While they derive very general results for sum-

mary statistics of GSNCPs, these formulas involve high-dimensional integrals.

Møller and Torrisi (2005) provide simplifications for a few specific cases (e.g.,

the Neyman-Scott models). The case of Markov point processes as the parent

process appears to be the most difficult for which to obtain any specific results.

We take a slightly different approach. Specifically, rather than deriving gen-

eral results, we consider only the simplest of the Markov point processes. This

allows us to derive an approximation to the K function of the resulting model,

and to explore its use in fitting to data.

In Section 2 we describe the GNS model in more detail and work out an

approximation to the K function for the model in terms of its parameters. This

approximation is based on an approximation given in Isham (1984) for the second-

order intensity of the Strauss process in terms of its first-order intensity. The

final form of the K function depends on the dispersion function of the offspring

points. We consider the cases of a uniform and a bivariate Gaussian density

for the dispersion function. These models correspond to the Matérn cluster and

modified Thomas processes if the parent process was Poisson. We can fit a spe-

cific Generalized Neyman-Scott model to data using least squares minimization

between the theoretical and empirical K function.



A GENERALIZATION OF THE NEYMAN-SCOTT PROCESS 1719

For the rest of the paper, we focus on the case of a uniform dispersion

function, that we call the Matérn GNS. In Section 3, we discuss and compare

the form of the Matérn GNS K function with that of the Matérn cluster process.

We fit the model to a rainforest dataset in Section 4, and obtain standard errors

for the parameter estimates using the bootstrap. In Section 5 we present results

of a simulation study in which the Matérn GNS is fit to point data simulated

from Neyman-Scott and Generalized Neyman-Scott processes with a variety of

parameter values. These results help us to understand better its use for modeling

spatial point data. In this section we also describe results of our study into the

accuracy of the Isham (1984) second-order intensity approximation. Section 6

contains a brief summary as well as a description of on-going work.

2. The Generalized Neyman-Scott Model and its K Function

We first specify the Generalized Neyman-Scott (GNS) model, and then in

Section 2.1 derive an approximation to the Ripley’s K-function (Ripley (1988)).

The Neyman-Scott process consists of the set of clusters of offspring points,

centered on an unobserved set of parent points. In the Neyman-Scott process,

the parent points follow a Poisson process. In this paper, we use a Strauss process

for the parent points.

The Strauss process is a special case of pairwise interaction processes. On

R2, the Strauss process is specified by a non-negative parameter βp and two other

parameters γp, rp through an interaction function ϕ where ϕ(r) = γp for r ≤ rp
and 0 otherwise. The parameter βp controls the intensity of the process, with

intensity increasing with βp. The quantity rp specifies the distance within which

the parent points experience repulsion from other parent points. The strength

of repulsion and hence the regularity of the process is determined by γp. Smaller

values of γp corresponds to stronger repulsion and with γp = 1 (or equivalently

rp = 0), there is no interaction and the process is Poisson with intensity βp. For

such a process, the Papangelou conditional intensity λ∗(X, ξ) of ξ given a point

configuration X that does not contain ξ is defined to be
∏

x∈X βpϕ(|ξ − x|). We

denote the intensity of this infinite Strauss process by λp = E[λ∗(X, 0)]. See van

Lieshout and Baddeley (1996) and Møller and Torrisi (2005) in this connection.

Each parent point produces an expected number µo of offspring points that

are dispersed around the parent location according to a dispersion density func-

tion k(·) with a parameter σo that controls the dispersion of the offspring points.

These parameters have an o subscript to signify that they are offspring parame-

ters. Thus, if a parent point is located at s ∈ R2, its offspring points are scattered

around s with intensity Zs(ξ) = µok(ξ−s). Dispersion functions include the uni-

form density on a disc and the bivariate Gaussian density. If the parent process
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were Poisson, these dispersion functions would correspond to the Matérn cluster

and modified Thomas processes, respectively.

We note that Gibbs processes are stationary only when defined on an un-

bounded region, such as R2. Strauss processes can be defined on a bounded

region D ⊂ R2, but the resulting process is not stationary. In applications, how-

ever, the observation region will necessarily be bounded. We take such data as

being the observed portion of the infinite process. Alternatively, if D is rectangu-

lar, we can consider the region as a torus and define a stationary Strauss process

on it. In our derivation, we take the parent process to be stationary,

The set of parameters for the GNS model is θ = (λp, γp, rp, µo, σo).

2.1. The GNS K function

For a stationary, istropic process, the reduced second moment functionK(h),

for a distance h, is defined as the expected number of additional points, N(x, h),

within distance h of an arbitrarily chosen point x, divided by the intensity of the

process, i.e.,

K(h) =
E[N(x, h)]

λ
.

This K function is useful as a description of the clumpiness of a point process at

various scales h, see e.g., Stoyan and Stoyan (1994) or Møller and Waagepetersen

(2003).

In this section, we derive a closed form approximation to the K function for

the GNS process. For ξ ∈ R2, let Z(ξ) denote the random intensity at location

ξ. Then

Z(ξ) =
∑
s∈S

µok(ξ − s),

where S is the set of parent points, k(·) a probability density function representing

the dispersion of the offspring points about the parent points, and µo the expected

number of offspring points per parent. In the Matérn GNS, k1(s) = 1{|s| ≤
σo}/πσ2

o .

Given Z, the GNS process is an inhomogeneous Poisson process. FromMøller

and Waagepetersen (2003) we have the pair correlation function between ξ and

η as

g(ξ, η) = E[Z(ξ)Z(η)]/λ(ξ)λ(η),

where λ(ξ) = E[Z(ξ)]. In our case of stationarity and isotropy, λ does not depend

on ξ and g(ξ, η) depends only on |ξ− η|. Without loss of generality, fix ξ and let

η ∈ B(ξ, u), be the ball of radius u centered at ξ. Write gξ as the pair correlation

function at ξ. Note that with stationarity, gξ ≡ g. Then K(h) =
∫ h
0 2πugξ(u) du,

where
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λ22πugξ(u)

= E

[∫
η∈B(ξ,u)

(∑
s∈S

µok(ξ − s)×
∑
s′∈S

µok(η − s′)

)
dη

]

= λpµ
2
o

∫
R2

∫
B(ξ,u)

k(ξ − s)k(η − s) dη ds

+ µ2
o

∫
R2

∫
R2

∫
B(ξ,u)

k(ξ − s)k(η − s′)λp,2(|s− s′|) dη ds ds′,

≈ λpµ
2
o

∫
R2

∫
B(ξ,u)

k(ξ − s)k(η − s) dη ds

+ λ2
pµ

2
o

∫
R2

∫
R2

∫
B(ξ,u)

k(ξ − s)k(η − s′) dη ds ds′

− λ2
pµ

2
o(1− γp)

∫
R2

∫
R2

∫
B(ξ,u)

k(ξ − s)k(η − s′)1{|s− s′| ≤ rp} dη ds ds′

≡ I1(u) + I2(u) + I3(u),

where we have used the approximation in Isham (1984) for the stationary second-

order intensity of the parent process

λp,2(|s− s′|) ≈ λ2
p − λ2

p(1− γp)I(|s− s′| < rp) . (2.1)

Simplifying further, we have I1(u) = λ2fk(u)/λp, where λ = λpµo is the intensity

of the GNS process, and fk(u) is the density function of the distance between

two offspring points from the same parent when the dispersion function is given

by k(·). Also,

I2(u) = λ2

∫
B(ξ,u)

∫
R2

k(η − s′) ds′ dη

∫
R2

k(ξ − s) ds

= 2πuλ2 ,

I3(u) = −λ2(1− γp)

∫
R2

(∫
R2

k(η − s′)1{η ∈ B(ξ, u)} dη
)

×
(∫

R2

k(ξ − s)1{|s− s′| ≤ rp} ds
)

ds′

= −λ2(1− γp)

∫
R2

d

du

[∫
R2

k(η − s′)1{|η − ξ| ≤ u} dη
]

×
(∫

R2

k(ξ − s)1{|s− s′| ≤ rp} ds
)

ds′

= −λ2(1− γp)
d

du

∫
R2

Vk[s
′,D(ξ, u)]Vk[ξ,D(s′, rp)] ds

′,
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Figure 1. Diagram showing Vk[s
′,D(ξ, u)] in the one-dimensional case. The

Gaussian kernel is centered at s′ and Vk[s
′,D(ξ, u)] is the area under the

kernel within the interval (ξ − u, ξ + u).

where Vk(s
′,D(ξ, u)) is the volume under the kernel k, centered at s′ within the

disc D(ξ, u) of radius u, centered at ξ. A diagram in the one-dimensional case is

shown in Figure 1.

So we have

K(h) ≈ Fk(h)/λp + πh2 − (1− γp)

∫
R2

Vk[s
′,D(ξ, h)]Vk[ξ,D(s′, rp)] ds

′,

where Fk(h) is the distribution function corresponding to the density function

fk(h).

Getting an expression for K(h) depends on obtaining expressions for Fk(h)

and Vk. For example, for the Matérn GNS with the uniform dispersion function

k1(s) = 1{|s| ≤ σo}/πσ2
o , Stoyan, Kendall and Mecke (1995) has

Fk1(h) =


2 + [(8z2 − 4) cos−1 z − 2 sin−1 z

+ 4z
√

(1− z2)3 − 6z
√
1− z2] 1π h ≤ 2σo

1 h > 2σo,

where z = h/2σo.

The quantity Vk1 depends on the area of two overlapping discs. Specifically,

Vk1 [s
′,D(ξ, h)] is related to the area common to the disc of radius h centered

at ξ and the disc of radius σo centered at s′. In particular, using elementary
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geometry,

Vk1 [s
′,D(ξ, h)]=


1 if |s′| ≤ h− σo ,
2π−ω+sin(ω)

2π + h2

2πσ2
o
(ϕ−sin(ϕ)) if h−σo< |s′|≤

√
h2−σ2

o ,

θ−sin(θ)
2π + h2

2πσ2
o
(ϕ− sin(ϕ)) if

√
h2−σ2

o< |s′|≤h+σo ,

0 if |s′| > h+ σo ,

where

ϕ = 2 cos−1

(
h2 + |s′|2 − σ2

o

2h|s′|

)
,

θ = 2 cos−1

(
σ2
o + |s′|2 − h2

2σo|s′|

)
,

ω = 2 sin−1

(
h

σo
sin

(
ϕ

2

))
.

Using polar coordinates, a further simplification is

K(h) ≈ Fk(h)

λp
+πh2−2π(1−γp)

∫ σo+min(h,rp)

0
sVk[s,D(ξ, h)]Vk[ξ,D(s, rp)]ds.

(2.2)

This formula involves a one-dimensional integral and hence is easy to compute.

For the bivariate Gaussian density, k2(s) = exp(−|s|2/2σ2
o)/

√
2πσo, we have,

again from Stoyan, Kendall and Mecke (1995),

Fk2(h) = − exp
(
− h2

4σ2
o

)
.

The quantity Vk2 [s
′,D(ξ, h)] is somewhat more complicated: with R = |s′ − ξ|,

Vk2 [s
′,D(ξ, h)] =

∫ R+h

R−h

2r√
2πσo

cos−1

(
r2 +R2 − u2

2rR

)
exp

(
− r2

2σ2
o

)
dr.

3. Features of the GNS K Function

In this section we look at how the K function of the Matérn GNS depends

on its parameters and compare its form with that of the Matérn cluster Neyman-

Scott model.

First we look at the relationship between the K function in (2.2) and the

parameters of the new point process, λp, γp, rp, µo, and σo. To highlight the

dependence of the K function on the parameters, we denote the K function by

K(h, θ) in this section. Figure 2(A) shows a typical plot of a K(h, θ) against h for
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the new point process. In this example the parameters for the process are taken to

be (λp, γp, rp, µo, σo) = (3, 0.25, 0.3, 2, 0.05). Note that K(h, θ) is non-decreasing

by definition. The function increases rapidly from 0 to 2σo = 0.1, corresponding

to the offspring points in the cluster from the same parent. The curve becomes

flat in the interval (2σo, rp) = (0.1, 0.3), accounting for the fact that there are

relatively few observations between clusters. Then it rises again for h > rp = 0.3,

as the observations in other clusters are now taken into account. From (2.2),

K(h, θ) depends on λp only through the term Fk(h)/λp. Thus K(h, θ) is inversely

proportion to λp, in line with Figures 2(C) and 2(D). From Figures 2(E) and 2(F),

we observe that the degree of “flatness” in the interval (2σo, rp) is governed by

γp, the inhibition parameter of the Strauss process. Figure 2(E) is a K function

for a hard core process (γp = 0), where the interval (2σo, rp) is completely flat.

Finally, Figures 2(G) to 2(J) indicate the relationship between the locations

of the two increasing intervals and the parameters rp, σo. As each parameter

controls a unique feature of the K function, the parameters are identifiable from

the K function. Note that in the above discussions it is assumed that rp > 2σo,

so that the interaction range of the parent points is larger than the dispersion

radius of the offspring points. With this assumption, the K function has a

fairly flat portion in the middle. In general, if rp < 2σo, the dispersion of the

offspring points can mask the interaction between the parent points, so that

the K function cannot be differentiated from that of a regular Neyman-Scott

process, and the parameters of the Generalized Neyman-Scott process become

unidentifiable. This assumption is reasonable, since the model would be used

only when the data exhibit a cluster pattern with regularity.

Next we compare the K function of the Neyman-Scott process and the new

process. The K function of a Neyman-Scott process is

K(h, θ) = πh2 +
Fk(h)

λp
, (3.1)

where λp is the intensity of the Poisson random process for the parent and Fk(h)

is the distribution function of the distance between two events in the same cluster

(e.g., Cressie (1993)). The K function of the GNS model has an additional term

corresponding to the third term on the right-hand side of (2.2) accounting for the

regularity among clusters. Figure 2(B) shows the K function for a Neyman-Scott

process. Comparing with Figure 2(A), the K function of Neyman-Scott process

starts to behave like the parabola πh2 for h > 2σo, without the relatively flat

interval observed in the K function of the new process that reflects the regularity

of the cluster. Therefore, by adjusting the inhibition radius rp and degree γp,

the new process gives more flexibility in modeling a cluster point pattern that

exhibits regularity behavior.
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Figure 2. K functions for different models. (A): A typical K function for the
new process. (B): A typical K function for a Neyman-Scott process. (C): K
function for the new process with a smaller λp. (D): K function for the new
process with a larger λp. (E): K function for the new process with a smaller
γp. (F): K function for the new process with a larger γp. (G): K function
for the new process with a smaller rp. (H): K function for the new process
with a larger rp. (I): K function for the new process with a smaller σo. (J):
K function for the new process with a larger σo.

4. Fitting to Rainforest Data

In this section we fit the new point process model to a rainforest data set

consisting of the locations of Acacia Melanoceras trees. According to Seigler and

Ebinger (1995), the Acacia Melanoceras has the most restricted range of all Ant-

Acacias trees. Its short range could be due to the softness of its seeds that allow

it to be digested instead of being dispersed by birds. The Acacia Melanoceras

is sensitive to disturbances in its habitat that are “any more catastrophic than

infrequent logging”, and rarely are more than two individuals found per acre in

forest communities (Janzen (1974)).

The combination of restricted range of offspring and the sensitivity of the

trees to disturbances suggest the possibility of the locations of these trees dis-

playing a mix of regularity and clustering. This is borne out in Figure 3(A) which

shows the locations of Acacia Melanoceras trees in a region in Barro Colarado
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Island in the Panama. Note the presence of clusters of trees, regularly spaced

over the region. This data set is part of a larger data set consisting of the loca-

tions of many tree species, collected when the forest there was surveyed. Several

of the tree species in this data set were analyzed in Waagepetersen (2007) and

Waagepetersen and Guan (2009).

We fit the Matérn Generalized Neyman-Scott process to the Acacia Melanoceras

data set. To carry out model fitting, we adopted the least squares or minimum

contrast method (Diggle (2003)) that matches the theoretical and empirical K

functions. First, the empirical K function is estimated by

K̂(h) =
1

λ̂n

n∑
i=1

n∑
j ̸=i

w−1
xi,xj

1(hxi,xj
< h) ,

where λ̂ = n/|A|, |A| is the area of the study region, hxi,xj
is the distance

between the i-th and j-th points, and wxi,xj
is the corresponding weight for the

correction of edge effect. Various weight functions wxi,xj
have been proposed

in the literature (e.g., Diggle (2003)). In this work we choose the translation

correction introduced by Ohser (1983). Then the least square estimator θ̂ is

obtained by minimizing

D(θ) =

∫ ho

o
w(h)

(
{K̂(h)}c − {K(h, θ)}c

)2
dh , (4.1)

where c and ho are tuning constants and w(h) a weighting function Diggle (2003).

Although K(h, θ) is independent of the offspring intensity µo, we can compute

the estimate

µ̂o =
n

|A|λ̂p

using the relation λ = λpµo and λ̂ = n/|A|. Diggle (2003) suggests that w(h) = 1

together with c = 0.25 or 0.5, and used w(h) = 1, c = 0.5, and ho = 80m.

Figure 3(B) shows the empirical K function (solid line), together with the

estimated K functions obtained by minimizing (4.1) using the theoretical K

functions of the Matérn cluster process (dotted line), and of the Matérn GNS

(dashed line). Notice that the empirical K function is relatively flat at around

h = 20, indicating the possibility of regularity among clusters. As discussed in

the last section, the K function of Neyman-Scott process starts to behave like

the parabola πh2 for h > 2σo, thus the best fitting theoretical K function is

not able to capture the flat interval of the empirical K function. On the other

hand, it can be seen that the Matérn Generalized Neyman-Scott model provides

a better fit, with the fitted K function following more closely the flat portion of

the empirical K function.
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Figure 3. (A): Point pattern for the Acacia Melanoceras data set. (B): The
empirical (solid line) and estimated K functions, using the Neyman-Scott
model (dotted line) and the Generalized Neyman-Scott model (dashed line).

To assess the variability of the parameter estimates, we used a bootstrap ap-

proach. There are various bootstrap methods available for spatial data, includ-

ing subsampling, the block bootstrap and the marked point bootstrap (Künsch

(1989); Politis, Romano, and Wolf (1999); Loh and Stein (2004)). We chose to

use the marked bootstrap method and expect the other bootstrap methods to

yield similar results. The method works as follows. First the study region is di-

vided into N subregions, with each subregion containing ni points, i = 1, . . . , N .

Let x be the j-th (j = 1, . . . , ni) point of the subregion i, we assign to it the

mark

mi,j(h) =
∑
y ̸=x

1(|x− y| < h)w(x,y) .

Note that

K̂(h) =
|A|

(
∑N

i=1 ni)2

N∑
i=1

ni∑
j=1

mi,j(h) .

Now the subregion i (i = 1, . . . , N) is associated with the sum of the marks

Mi(h) =
∑ni

j=1mi,j(h). We can sample the quantities (Mi, ni), i = 1, . . . , N ,

with replacement to obtain a bootstrap sample with marks given by (M̃j , ñj), j =
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Table 1. Fit to rainforest data. Least square estimates θ̂ of θ , together with
the mean and standard deviations of the bootstrap estimates, and the lower
and upper confidence limits of the 95% bootstrap confidence interval of θ.

λp γp rp µo σo

θ̂ 6.685e-05 0.7576 75.64 8.379 6.764

Mean 6.927e-05 0.7544 78.44 8.730 6.679

Std 2.147e-05 0.05405 13.35 2.238 0.4339

Lower limit 1.767e-05 0.6606 56.10 2.766 6.046

Upper limit 1.033e-04 0.8751 101.00 12.030 7.742

1, . . . , N . The bootstrap estimates of the K function is given by

K̃(h) =
|A|

(
∑N

j=1 ñj)2

N∑
j=1

M̃j(h) .

The above procedure can be repeated B times so that we have B bootstrap

estimates of K, K̃b(h), b = 1, . . . , B.

In the Acacia Melanoceras example, we take N = 6 and B = 500, i.e. we

divde the observation region into two rows of three blocks for the resampling.

We chose this so as to provide a balance between the size of the blocks, to retain

the underlying dependence, and the number of blocks, so as not to underestimate

the variability.

For each K̃b(h), a bootstrap estimate θ̃b is obtained by least squares estima-

tion. The bootstrap estimates of the parameters of the model, (θ̃1, θ̃2, . . . , θ̃B)

can then be used to obtain a confidence interval for θ. A 100(1−α)% confidence

interval for K(r), called the basic bootstrap interval by Davison and Hinkley

(1997), is [
2θ̂ − θ̃(B+1)(1−α/2), 2θ̂ − θ̃(B+1)(α/2)

]
,

where θ̃(B+1)(1−α/2) and θ̃(B+1)(α/2) are the (B + 1)(1 − α/2)th and the (B +

1)(α/2)th ordered values of (θ̃1, . . . , θ̃B). Figure 4 shows histograms of the re-

sulting bootstrap parameter estimates.

Table 1 shows the least square estimates, means, and standard deviations of

the bootstrap estimates, and the lower and upper confidence limits of the 95%

bootstrap confidence interval of θ. The values may be used to test for regularity

in the parent process. Recall that the smaller the value of γp, the higher the

regularity of the parent process, and the parent process reduces to the Poisson

process when γp = 1. Thus a test for regularity can be performed by testing
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Figure 4. Histograms of the bootstrap parameter estimates from fitting the
Matérn GNS to the Acacia Melanoceras data set.

whether γ̂p lies significantly below one. In this example, the 95% confidence

interval for γp does not cover 1, indicating a significant regularity in the parent

process.

5. Simulation Study

We present the results of a simulation study to examine the performance of

our procedure for fitting the Generalized Neyman-Scott model of Section 2 to

data. We also present some results on our study into the accuracy of the Isham

second-order intensity approximation used in our derivation of the closed form
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expression for the K function of the Generalized Neyman-Scott model.

5.1. Fitting the generalized Neyman-Scott model

Specifically, we used the Matérn cluster model and the Matérn Generalized

Neyman-Scott model to produce simulated data, and fit a Generalized Neyman-

Scott model to each set of data. For each model, we used several sets of parameter

values and for each set we simulated 500 realizations on a 10× 10 square. Thus

for each specific model and set of parameter values, we have 500 estimates of

(λp, γp, rp, µo, σo).

We used the rStrauss function in the spatstat R package, Baddeley and Turner

(2005), to generate realizations on a much larger region (specifically 50 x 50)

and extract the points in the middle 10 × 10 region. Besides the observation

window, the rStrauss function requires user-specified values for βp, rp, and γp,

and produces realizations using perfect simulation (Baddeley and Turner (2005)).

The quantity βp is not the intensity, unless γp = 1. However, we can empirically

obtain λp by simulating 10,000 realizations and noting the number of points

produced in the central 10× 10 region. The true values of λp indicated in Tables

2 to 4 refer to values obtained in this manner.

Table 2 shows the mean and standard deviations of the estimates obtained

by fitting the Generalized Neyman-Scott model to data simulated from a Gener-

alized Neyman-Scott model (left column) and from a Matérn cluster model (right

column). Note that the Matérn cluster model is a special case of our Generalized

Neyman-Scott model with γp ≡ 1 and rp undefined. From Table 2, we find that

the estimates are close to the true values in all six cases considered. In particular,

the expected number of offspring µo and the disc radius of the offspring process

σo have small bias and standard errors. For the case of Matérn cluster process we

find that the standard errors of rp are very large. This is not surprising since rp
is not well-defined here. More importantly, we find that the estimates of γp are

close to 1, suggesting that the minimum contrast method with the Generalized

Neyman-Scott model was able to correctly identify the Matérn cluster model.

We also fit the Matérn cluster model to the data simulated from the two

models. The results are shown in Table 3. Comparing the right columns of

Tables 2 and 3, we see that when the data were simulated from a Matérn cluster

model, the biases of the estimates of λp, µo, and σo obtained from a Matérn cluster

fit are slightly smaller than the ones obtained by fitting the Generalized Neyman-

Scott model. It may seem surprising that the standard errors of the estimates

of λp, µo, and σo are larger than the ones obtained by fitting the Generalized

Neyman-Scott model. However, note that the Generalized Neyman-Scott model

contains the Matérn cluster model and is thus not a wrong model. Fitting the

Matérn cluster model to the data is like fitting the Generalized Neyman-Scott
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Table 2. Mean and standard deviations of the estimates obtained from 500
replications of the Generalized Neyman-Scott model fit. For the left column,
the data were generated from the Generalized Neyman-Scott model. For
the right column, the data were generated from Matérn cluster model that
corresponds to the Generalized Neyman-Scott model with γp = 1 and rp
undefined.

GNS fit to GNS GNS fit to Matérn
λp γp rp µo σo λp γp rp µo σo

True 1.982 0.60 0.40 5 0.100 3.00 1.00 - 5 0.100
Mean 1.958 0.5546 0.4271 5.083 0.1003 2.894 0.9471 0.8915 5.216 0.1032
Std 0.1861 0.2775 0.1876 0.4234 0.003898 0.2871 0.1093 2.929 0.432 0.006235
True 2.360 0.80 0.40 4 0.050 2.50 1.00 - 4 0.100
Mean 2.341 0.7894 0.4468 4.038 0.05038 2.389 0.9483 0.7422 4.215 0.1040
Std 0.1727 0.1430 0.2308 0.2246 0.001595 0.2635 0.08071 2.024 0.4052 0.007020
True 1.731 0.40 0.40 5 0.050 2.50 1.00 - 6 0.050
Mean 1.706 0.4526 0.3788 5.032 0.05038 2.423 0.9445 0.7169 6.193 0.05153
Std 0.1215 0.1260 0.08234 0.2591 0.001330 0.2308 0.09058 1.634 0.4436 0.003027

model with γp constrained to 1. Having the additional parameters γp and rp in

the Generalized Neyman-Scott model allows the variability in the K function to

be spread over these additional parameters as well.

On the other hand, we find that the biases and errors are significantly in-

creased for the estimates of λp, µo, and σo when the (incorrect) Matérn cluster

model is fit to data simulated from a Generalized Neyman-Scott model.

We also did a limited study on the behavior of the estimates from fitting

the Generalized Neyman-Scott model under model misspecification. Specifically,

the data were simulated from a different Generalized Neyman-Scott process, the

Thomas GNS in which the parent process is the Strauss process but the offspring

points are distributed around the parent points via a symmetrical Gaussian dis-

tribution with standard deviation σ. Table 4 shows the mean and the standard

errors of the estimates from fitting the Matérn GNS. We observe that although

the parameters γp and rp tend to be overestimated, they are fairly close to their

true values. The estimates of λp and the expected number of offspring µo have

relatively small bias. Also, the estimate of the offspring radius σo is approx-

imately two times σ, roughly in line with the rule-of-thumb that most of the

observations fall within two standard deviations of the mean.

5.2. Isham’s second-order intensity approximation

In the derivation of theK-function, the second-order intensity approximation

of Strauss process (2.1) was used. To evaluate the accuracy of this approxima-

tion, we considered six sets of parameter values for the Strauss process and,
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Table 3. Mean and standard deviations of the estimates obtained from 500
replications of the Matérn cluster fit. For the left column, the data were
generated from the Generalized Neyman-Scott model. For the right column,
the data were generated from the Matérn cluster model.

Matérn fit to GNS Matérn fit to Matérn
λp γp rp µo σo λp µo σo

True 1.982 0.60 0.40 5 0.10 3.00 5 0.10
Mean 2.615 - - 3.853 0.08383 3.065 4.960 0.09963
Std 0.3123 - - 0.4012 0.005467 0.3679 0.5669 0.008279
True 2.360 0.80 0.40 4 0.05 2.50 4 0.10
Mean 2.734 - - 3.489 0.04503 2.543 4.000 0.1005
Std 0.2808 - - 0.3021 0.002859 0.3378 0.4818 0.009042
True 1.731 0.40 0.40 5 0.05 2.50 6 0.05
Mean 2.329 - - 3.736 0.04038 2.541 5.960 0.04995
Std 0.2499 - - 0.2981 0.002168 0.2719 0 .5571 0.003772

Table 4. Mean and standard deviations of the estimates obtained from
500 replications of the Generalized Neyman-Scott model fit. The data were
generated from the Thomas model, a Neyman-Scott model with the offspring
distribution symmetric Gaussian with standard deviation σ. The number of
offspring per cluster was Poisson with mean µ.

Generalized Neyman-Scott (Thomas)

λp γp rp µ σ

True 1.982 0.60 0.40 5.00 0.05

λ̂p γ̂p r̂p µ̂ σ̂o

Mean 2.063 0.6934 0.4424 4.801 0.09226
Std 0.1721 0.1755 0.2064 0.3228 0.003353

λp γp rp µ σ

True 2.360 0.80 0.40 4.00 0.025

λ̂p γ̂p r̂p µ̂ σ̂o

Mean 2.365 0.8273 0.4667 3.975 0.04754
Std 0.1871 0.1007 0.2666 0.2323 0.001915

λp γp rp µ σ

True 1.731 0.40 0.40 5.00 0.025

λ̂p γ̂p r̂p µ̂ σ̂o

Mean 1.733 0.4991 0.3952 4.959 0.04737
Std 0.1202 0.1253 0.09671 0.2529 0.001454

for each model, we compared the approximation (2.1) to the second-order in-

tensity obtained empirically from 1,000 simulated realizations. The parameter

values are given in Table 5. We used a 10× 10 window for Models 1 to 5 and a

2, 000×2, 000 window for Model 6. The parameter values for Model 6 correspond
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Table 5. Empirical and Isham’s approximate theoretical first-order inten-
sity for various models of Strauss process: λp is the empirical first order
intensity obtained from 10,000 realizations of Strauss process specified by
the parameter (βp, γp, rp), λ̃p is the approximate intensity given in (5.1).

Model 1 2 3 4 5 6
βp 3 3 3 3 3 9e-5
γp 0.1 0.5 0.9 0.5 0.5 0.7576
rp 0.5 0.5 0.5 0.2 0.8 75.64
λp 1.12 1.56 2.47 2.55 0.993 6.69e-5

λ̃p -3.36 -0.534 2.29 2.43 -6.05 5.47e-5

to the estimated values in Section 4. For each such model, we also compared the

corresponding K function approximated by (2.2) and its empirical counterpart.

In evaluating the approximation (2.1), the true first-order intensity was obtained

from simulation as described in Section 5.1. The empirical second-order intensity

function and the empirical K function were obtained by the commands pcf and

Kest, respectively, in the spatstat R package (Baddeley and Turner (2005)).

Figure 5 illustrates the comparisons for the models we considered. For the

second-order intensity function, the accuracy of the approximation is higher for

higher γp and smaller rp. It is encouraging to see that the empirical K function

and the approximate K function are reasonably close to each other in most cases,

except for a slight discrepancy for large h when γp is small and rp is large. We

note that there is a complex relationship among the three parameters λp, γp,

and rp of the Strauss process. For example, for fixed λp and γp, the value of rp
cannot be too large. Also, for some combinations of rp and γp, the intensity λp

needs to be small. Thus it is difficult to separate out the effects of the individual

parameters on the accuracy of the approximation.

Besides Models 1 to 6, we also looked at several other additional sets of pa-

rameter values, and we found that Model 5 in Figure 5 has about the worst accu-

racy among these. For instance, with parameters (λp, γp, rp) equal to (2e
−4, 0.2, 40)

and (1.7e−5, 0.1, 120), the accuracy of approximation of the K function and the

second order intensity is similar to that of Model 1 in Figure 5.

For completeness we also looked at Isham’s first-order intensity approxima-

tion (Isham (1984)), that relates the first-order intensity λp to the parameter βp:

λp ≈ βp(1− (1− γp)πr
2
pβp) . (5.1)

Table 5 presents the approximation for λp from (5.1) for the models studied in

Figure 5. It can be seen that the approximation can be very poor, especially

when γp is small and rp is large. Note that our approximation to the K function

is expressed in terms of λp but not βp. Thus it only involves the more reliable
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Figure 5. Empirical and Isham’s approximate theoretical second-order in-
tensity for various models of the Strauss process, and empirical and approx-
imate theoretical K function for various models of the GNS process with
the corresponding Strauss parent process. For the second-order intensity,
the parameter vector (λp, γp, rp) is shown in the title. For the K function,
the parameter vector (λp, γp, rp, µo, σo) is shown in the title. In each graph,
the solid line is the theoretical approximation and the dashed line is the
empirical function.

second-order approximation (2.1), but not (5.1). Therefore (2.2) provides a good

approximation to the K function of a Generalized Neyman-Scott process.

6. Summary

This paper introduced a new point process model, the Generalized Neyman-

Scott model that is an extension of the Neyman-Scott process from Poisson par-

ents to Strauss parents. This point process model allows for regular behavior
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among clusters of points. We found that this model to be more appropriate for

the Acacia Melanoceras tree data than the usual Neyman-Scott model. Our sim-

ulation studies showed that fitting the Generalized Neyman-Scott model using

a minimum contrast method based on the K function allows us to distinguish

between the Matérn cluster model and the Matérn Generalized Neyman-Scott

model.

The model introduced here can be easily generalized by specifying other

models for the parent process. However, the resulting K function may involve

higher dimensional integrals, and thus may be inexpressible in closed form. This

is a focus of on-going research.
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