
Bit and Frame Synchronization
Techniques

Martin Probst , Lars Trieloff
Hasso-Plattner-Institute for Software System Engineering

martin@probst.com, lars@trieloff.net

All graphics in this paper are created by the authors unless otherwise
stated.

Bit and Frame Synchronization techniques are used in order to ensure that signals
transmitted from one participant of the communication can be correctly decoded by the
receiver. To achieve this goal, certain timing information must be passed to the receiver
such as where communication units begin and end.In this article various bit and frame
synchronization techniques are presented as well as underlying encoding schemes and
applications using the described techniques.

1-1Communication Networks Seminar

Table of Contents

1. Introduction .. 3

2. Fundamentals of Binary Data Transmission ... 4
2.1. Binary Data Transfer .. 4
2.2. The Need for Synchronization .. 6
2.3. Modes of Transfer .. 8
2.4. Characteristics of Transmission Media .. 8

2.4.1. Conductor Cable .. 8
2.4.2. Optical transmission ... 9
2.4.3. Electromagnetic Wave Transmission ... 10

2.5. Modulation Techniques .. 11
2.5.1. Amplitude Shift Keying ... 11
2.5.2. Frequency Shift Keying .. 12
2.5.3. Phase Shift Keying ... 13
2.5.4. Quantization ... 14

2.6. Conclusion ... 17

3. Asynchronous Data Transmission ... 17
3.1. Return to Zero Signaling .. 18
3.2. Non-Return to Zero Signaling .. 19
3.3. Character or Byte Synchronization .. 20
3.4. Start- and Stop Bits .. 21
3.5. Conclusion ... 22

4. Synchronous Data Transmission ... 22
4.1. Manchester-Encoding .. 22
4.2. Bit Synchronization .. 24

4.2.1. Clock encoding .. 24
4.2.2. Digital Phase-Locked Loop .. 25
4.2.3. Advanced DPLL use .. 29

4.3. Conclusion ... 29

5. Frame Synchronization .. 29
5.1. Motivation ... 29
5.2. Requirements ... 29
5.3. Methods ... 30

5.3.1. Time gap synchronization .. 30
5.3.2. Start & End Flags ... 30
5.3.3. Packet Length Indication .. 38
5.3.4. Coding Violations ... 38

5.4. Conclusion ... 39

6. Real World Applications .. 39
6.1. CSMA/CD (Ethernet) .. 39

Communication Networks Seminar1-2

Bit and Frame Synchronization

6.1.1. Bit synchronization ... 39
6.1.2. Frame synchronization ... 40
6.1.3. Error Detection ... 41

6.2. FDDI - Fiber Distributed Data Interface .. 41
6.2.1. Bit synchronization ... 42
6.2.2. Frame synchronization ... 43

6.3. Conclusion ... 44

7. Conclusion .. 44
Glossary ... 44
Bibliography .. 46

1 Introduction
If one wants to transfer binary information over a physical medium in oder to establish

communication between two computer systems there are several problems to be solved.
Among the most basic tasks are choosing the best available transmission media,
agreeing on a unambiguous encoding scheme and verifying the integrity of the received
data.

Bit and frame synchronization techniques are among the most basic problems to be
handled at the physical layer. In this paper we are going to describe fundamental
problems and their solution in the context of binary data transmission at a very low level.
In the next sections we will first dicsuss the basic prerequisites of binary data transmis-
sion and later on specific problems of encoding schemes, synchronization issues and
their solutions.

Digital data will always differentiate between two distinct values 0 or 1, but every
physical transmission medium will provide an analogous signal, thus a conversion
scheme between digital data and their physical representation must be defined. We
will take a look at the most common transmission media and signaling scheme in the
introductory section of this article.

The next section will feature several basic encoding principles that are used to ensure
that the transmitter can identify the borders between two adjacent bits on the transmis-
sion medium. This section will also include a description of two simple encoding schemes
used for translating bits into physical signals and vice versa.

In the fourth section we are going to cover the basics of ensuring synchronization at
the level of single bits, which is needed when the system clocks of sender and receiver
must be in synchronism. As different systems use different quartz clocks, which tend
to run ahead or late it must be possible to set the receiver's clock to match the transmit-
ter's signal.

Using atomic clocks is no solution, because these devices are very expensive and
difficult to maintain for a non-scientist. If you try to use the broadcasted clock signal of
an atomic clock, you will note that this signal will propagate through space with a limited
speed and will most possibly not arrive at the transmitter and at the receiver in the same
instant. Additionally the clocks signal must be encoded somehow, and this was exactly
the starting point of this problem.

1 INTRODUCTION

1-3Communication Networks Seminar

We will show how the clock signal can be encoded in the data stream or transmitted
on top of it and by which circuits the receiver system can extract the clock signal from
the data signal.

The fifth section discusses the problems encountered when data is transmitted in
bigger blocks (typically about one thousand bytes) called frames or packets. As a re-
ceiver needs to distinguish between the single frames a method of frame synchronization
is needed. We will explain the common techniques of start & end flags (which brings
up the problem of bit or byte stuffing explained thereafter), packet length indication and
coding violations.

Bit and byte stuffing are techniques of in-band-signalling. With them it is possible to
use reserved words or characters on the transmission medium.

In the final section, we are going to compare different real-world applications of the
principles and techniques described in the sections before.

2 Fundamentals of Binary Data Trans-
mission

In this section we will discuss the main facts one needs to know in order to understand
the idea and principles of synchronization techniques at the physical layer.

The physical layer in the ISO/OSI-Model (International Organization for Standardiz-
ation/ Open Systems Interconnection) of networks communication is the level that deals
with network hardware to hardware communication at the electrical interface. Efficient
algorithms and structures at the physical level enable protocols and applications at a
higher level to be reliable and performant.

Because of the strong orientation towards physical signals, most structures and
procedures described in the following sections are implemented in hardware, for exmaple
in network cards or serial interface controllers.

2.1 Binary Data Transfer
Todays computer systems work on binary data and for establishing a connection

between two or more computer systems binary data transfer is needed. To transfer
data bits between two computers they must be converted into physical signals. These
signals may be signals on an electrical conductor, optical signals or signals in form of
magnetic waves.

All those physical signals are vulnerable to errors due to attenuation and distortion
of the transmitted signal with the effect that the received signal does not have to match
the transmitted signal. The transmitted signal is a function of time, that means the
strength and quality of the signal changes over time. This behavior is also known as
serial data transfer because the physical representation of one bit is transferred after
another.

In order to convert the received signal electrical into a logical unit of information that
can be dealt with it is necessary to provide a sampling signal that will be true for a
certain time span and a defined time interval.

Communication Networks Seminar1-4

Bit and Frame Synchronization

Figure 1. Transfer of binary information over an imperfect medium

from [halsall95], page 32, figure 2.6

The figure above shows the limitations of every transmission medium: the signal is
attenuated, causing a loss of information, a time shift is added due to the limited trans-
mission speed and possible noise in the transmission line can cause additional errors.

The misinterpretation of a signal is called bit error.
What will be transferred? The sender of digital data will encode the information

in a certain way. This means it creates code words consisting mostly of eight code
characters. Each code character is either one or zero. Code words may be arranged
in message blocks which are also known as frames.

As data transmission media contain in most cases only one “connection line”, but
almost all networked devices operate in parallel mode (they do not operate on single
bits but on bytes and words), a conversion between parallel mode and serial mode is
necessary. This is usually done through shift registers with parallel load, which are also

DATA TRANSMISSION

1-5Communication Networks Seminar

known as SIPO registers (Serial In, Parallel Out) or PISO (Parallel In, Serial Out).
Nonetheless they will work in both directions.

2.2 The Need for Synchronization
There are several points which make it clear why synchronization is essential for

serial transfer of digital data. The first problem is that sender and receiver clocks may
not run synchronous so that the sampling instant will shift from the beginning of the
signal to the end and may overflow.

This is especially likely when there is no hint, where a data entity, may it be a bit or
byte or a complete packet starts and ends and when a long line of similar signals are
transferred, for example a row of logical 1 which would be encoded as a constant voltage
of a certain value.

Communication Networks Seminar1-6

Bit and Frame Synchronization

Example 1. Clocks running out of synchronization

Imagine a communication system with two Data Terminal Equipments (DTEs) that
have a major difference in the speed of their system clocks. The receiver's clock is
running 12,5% ahead of time than the sender's one. If the sender transmits a 8-bit word,
the receiver will interpret it as a 9-bit word.

Figure 2. Synchronization problems

But as you have seen in the graphic above, the receiver will not only sample to much
bits, it will also sample wrong bits. The conclusion should be that there can be no un-
ambiguous interpretation of a common signal, if there is not a certain degree of syn-
chronization of clocks.

Another well-known problem of time dispersion is called intersymbol interference.
Signals belonging to different symbols can be observed on the medium at the same
time, leading to interpretation errors at the receiver's end.

Synchronization techniques will guide the receiving system in determining where
data entities start and end and at which time interval the sampling result is least error-
prone.

You can see bit and frame synchronization as a very basic mechanism of error
control which will reduce the need for error control at higher levels.

What is needed to decode the received signal? The receiver will have to de-
termine where a signal cell (representing a bit) starts and ends in order to sample the
signal as near at the middle of the signal as possible. It will have to know where a
character or a byte starts or ends and, for packet based transmission, where each
message block starts or ends.

DATA TRANSMISSION

1-7Communication Networks Seminar

Finding out where a signal cell starts and ends is known as bit or clock synchroniza-
tion, determining the character boundaries is known as character or byte synchronization
and the last task is called block or frame synchronization.

2.3 Modes of Transfer
Synchronous and Asynchronous Data Transmission

There is one common way to differentiate data transmission modes concerning the
synchronization techniques utilized. The criteria of distinction is here whether the
transmitter clocks are independent or synchronized.

Asynchronous communication. When there is no synchronization of transmitter
and receiver clocks, it is called asynchronous transmission. This mode is used when
each element of the transmission (character or byte) should be treated independently.

Synchronous communication. On the other hand, if the complete block of
transferred characters is considered one entity of communication, we will speak of
synchronous transmission.

For asynchronous transmission the receiver will have to find out, where each byte
or character starts and where it ends. This does not imply the need for clock synchron-
ization.

In synchronous transmission mode the clocks of sender and receiver have to run in
sync for the time of the transfer of one block. For the next block a new synchronization
may be possible.

2.4 Characteristics of Transmission Media
To get a basic understanding of physical network communication it is essential to

know the different transmission media that are being used for communication networks
as well as their strengths and weaknesses for different applications.

For an introductory explanation it should be enough to present the most important
groups of transmission media.

2.4.1 Conductor Cable
Electric conductor cables are the most simple transmission media. In their simplest

form they consist of two isolated wires, one for the actual signal and another for a relative
grounding connection. The resulting signal is computed from the difference of voltage
on the two cables.

It is not unusual to use one grounding line which is shared by multiple signal lines,
thus allowing to send more signals at once. The simple variant with two lines is called
two-wire open line, the multiple line variant is either a multi-core cable or a flat ribbon
cable.

Common problems with two-wire open line and variants. There are two frequent
problems with open-wire lines: The first is that they are vulnerable to noise signals from
other electrical sources or from electromagnetic radiation. The lines act as antennas.
The problem is that it is possible that the noise signal is received by only one of the two
lines, causing an aberration in the computed difference. The second problem is called
crosstalk. It describes the “cross-coupling of electrical signal between adjacent wires

Communication Networks Seminar1-8

Bit and Frame Synchronization

in the same cable” [halsall95 p. 25]. The deeper cause of this problem is capacitive
coupling between the two lines.

The combination of these problems sums up to a limitation of length and bit rate of
the transmission media. With a maximum length of 50 meters and a bitrate of at most
19200 bit per second this technology is mostly used for connecting a computer with
peripherals like modems.

Twisted-pair lines. This problems can be partially solved by twisting a pair of lines
together. The resulting product is called twisted pair cable and it can reduce crosstalk
and, as it is more likely that a noise signal is picked up by both lines, the caused signal
difference between grounding and signal line will be reduced.

Twisted pair cables can achieve bit rates of 10 megabit per second (Mbps) when
used for distances no longer than 100 meters and lower bit rates for longer distances.
This makes twisted pair lines ideal for Local Area Networks (LANs).

A third important variant of electrical conductor based connection are coaxial cables.
Twisted pair lines suffer from the so called skin effect, which increases the electrical
resistance of the cable for high frequencies, caused by high bit rates. The effect of an
increase in electrical resistance is higher attenuation. This limits the overall bit rate that
can be reached with twisted pair lines.

Coaxial cables. Another common type of conductor cables are coaxial cables,
which consist of an inner conductor which is in line-form, an isolating coating and an
outer conductor which will coat the coating of the inner conductor. The outer conductor
shields the inner conductor from interfering radiation and also nearly eliminates the skin
effect.

This leads to bit rates as high as 10 Mbps over several hundred meters of line. But
on the other hand, coaxial cables are - due to their construction - relatively stiff and
thus hard to lay. This is good for permanent connections but limits the usefulness when
literally more flexibility is needed.

2.4.2 Optical transmission
Most optical transmission is done through optical fiber cables. There are several

advantages of optical fibers as transmission medium over electric conductor based
media:

• light waves have a higher bandwidth and frequency than electrical waves, allowing
higher bit rates

• light waves are not vulnerable to electric phenomena resulting of electromagnetical
fields like crosstalk or interference

An optical fiber cable consists of lots of single fibers, one for each signal. The coating
of the fiber protects it from outside light sources and reflects the light inside the fiber.
A better reflection results in less attenuation and by that in a sharper received signal.
This is because every reflection extends the distance a light beam has to cover which
in turn reduces the intensity of the light.

DATA TRANSMISSION

1-9Communication Networks Seminar

“The light signal is generated by an optical transmitter, which performs the conversion
from normal electrical signals as used in a DTE. An optical receiver is used to perform
the reverse function at the receiving end. Typically the transmitter uses a light-emitting
diode (LED) or laser diode (LD) to perform the conversion operation while the receiver
uses as light-sensitive photo diode or photo transistor.” [halsall95 p. 27]

The level of dispersion of the resulting signal is determined by the construction of a
fiber. If the inner part of the fiber has another dispersive index than the outer part, light
beams that reach the boundary between the two part are reflected (unless their angle
is too large) and propagated through the fiber.

This behavior creates many reflexions at a high angle and thus a large spreading of
times for the light beams to cross the distance which results in a dispersed received
signal. The dispersion can be minimized by not using a single hard boundary between
the inner and outer part of the fiber but rather a variable, rising optical reflection index.
With this methodology, light beams with a smaller angle will be reflected earlier, resulting
in a overall shorter time to cross the cable.

The third option is to reduce the width of the fiber to the wavelength of a single beam.
This is called mono mode. It allows exactly one beam to go through the fiber without
being reflected a single time. Mono mode fibers are used with laser diodes and can
transmit data at bit rates of more than 100 Mbps.

Important
Unlike electrical transmission lines, optical fibers do not allow bipolar encoding.

An electrical voltage can be positive or negative, but light can only be either on
or off.

2.4.3 Electromagnetic Wave Transmission
The third important group of transmission media does not rely on a physical connec-

tion between the two communication participants. Instead it will create electromagnetic
waves that will propagate though the air or — in case of satellites — through free space.

Satellites. For satellites a collimated microwave beam is used as transmission
medium. The satellite will receive the microwave beam and retransmit it to another
location at the ground. The circuit that will receive and transmit signals is called
transponder.

Satellites are a very powerful means of communication as a satellite channel has a
high bandwidth of 500 MHz and more and is able to “provide many hundreds of high
bit rate data links” [halsall95 p. 29] by dividing the enormous bandwidth of the beam
into various sub channels of one frequency band each.

There are two options for retransmitting the received signal: Either the new beam is
focused at a certain location, which is appropriate for two-way communication or it is
unfocused, so that the signal can be received over a wide geographic area. This is
mostly done for transmitting television.

Satellites are vunerable to certain weather conditions such as thunderstorms, but
not as much as terrestrial microwave connections.

Terrestrial microwave. The same principle applies for terrestrial microwave. It is
important that there is a line of sight between sender and receiver. Terrestrial microwave

Communication Networks Seminar1-10

Bit and Frame Synchronization

is used in cases where it is too expensive or impossible to run a line. Those connections
are vulnerable to weather conditions, but they can cross distances of over 50 kilometers.

Radio. For a lower frequency band radio transmission is common. It does not have
the bandwidth of microwave beams, but radio waves do not require a line of sight
between sender and receiver. It is common to use one base station to cover a certain
radio cell. If there should be adjacent radio cells, the corresponding base station must
use a different frequency.

The usable data rate for DTEs in a radio based network is around 100 kilo bit per
second (Kbps) but it may reach higher values, if the frequency is higher and thus the
cells are smaller.

All electromagnetic wave-based media have no possibility to use bipolar encoding
as it is used for direct electrical connection based communication.

2.5 Modulation Techniques
A conversion scheme between digital data and analog waveforms is called modulation.

There are many different ways to modulate a logical signal into a waveform at the
electrical or optical interface, based on the available transmission media and its char-
acteristics as well as on the characteristics of the data to transfer.

Why is modulation important? In reality there are no binary media. Every bit of
digital data has to be passed over an analogous medium in oder to transfer data. Every
representation of digital data in the physical world is analogous. There needs to be one
single scheme of encoding and decoding binary data into physical signals that sender
and receiver have to know of in oder to establish data communication. This essential
scheme of encoding and decoding is a modulation scheme. Without modulation there
would be no possibility to represent digital data by physical signals.

In the previous section we described the most common transmission media and the
fundamental thing they have in common, that waves (electrical, optical or electromag-
netic) are used for data transmission. This means that there are common methods of
keying information in waves, because every physical wave form has three important
properties: amplitude, frequency and phase shift.

Most common are amplitude shift keying, frequency shift keying and phase shift
keying. A method used on non-binary transmission media is quantization of signals
which allows to transfer two or more bits at once.

For the following subjections it is nessecary to understand that we use herein the
model of sinusodial carrier, meaning that the base signal on the medium has the shapes
of a sinus wave and is thus characterized through fundamental properties amplitude
(what are the maxium values measured on the carrier), frequency (how often does the
polarization of the value change) and phase (what delay time can be measured between
the basic sinus curve and the signal on the carrier). By variing these properties it is
possible to encode data in a physical signal.

2.5.1 Amplitude Shift Keying
The term amplitude shift keying describes the idea that the you assign every possible

bit value a corresponding amplitude of the waveform. The simplest approach would be

DATA TRANSMISSION

1-11Communication Networks Seminar

to use a high amplitude for a bit denoting 1 and no amplitude at all for a bit with the
value 0. But there can be cases in which it is useful to use a certain amplitude for 1 and
the half amplitude value for 0, because it will make it possible to distinguish between 0
and no signal at all due to a physical error in the connection.

The transmitter device will have to multiply a base amplitude with the bit value in
some way to get an amplitude-shift-keyed signal. The receiver must introduce threshold
value to determine which is high and which is low amplitude.

Using a fixed frequency, the transmitter device may count the reached peak values
in the signal stream to count the number of bits received. If an encoding scheme is
chosen which assigns no signal to zero, this procedure is impossible, because there
will be no peak values for a 0-bit.

Figure 3. Amplitude Shift Keying

from [halsall95], page 59, figure 2.18

Figure Figure 3, “Amplitude Shift Keying” shows the basic operating principle. The
carrier signal will be transmitted whenever the input is 1 and muted when the input is
0. Another name for this specific encoding scheme is On-Off-Keying, or OOK.

According to Fred Halsall [halsall95 pp. 58 ff.] amplitude shift keying is vulnerable to
attenuation and strain which characterized the analogous telephone networks at the
time when first generation modems where used. Because of this behavior the first mo-
dems used frequency shift keying instead which we will describe in the next section.

2.5.2 Frequency Shift Keying
In this keying method there are two base frequencies used to key the bit values. A

high frequency is usually used to encode 1-bits and a lower frequency for 0-bits. For
every base frequency there is one carrier. The switch between the two carriers is called
frequency shift.

Communication Networks Seminar1-12

Bit and Frame Synchronization

Figure 4. Frequency Shift Keying

from [halsall95], page 62, figure 2.19

The example above shows how the transmitter switches between the two carrier
signals to emit the frequency-encoded signal.

To allow frequency shift keying, the bandwidth1 of the carrier must be at least as
high as the difference between the high and the low frequency. If the bandwidth is too
low, it might happen that the difference of high to low frequency is too small and a high
frequency cannot be distinguished from a low frequency, rendering this encoding scheme
useless.

2.5.3 Phase Shift Keying
As the third fundamental variable of waves is the period shift, there is a corresponding

keying practice. The basic operation principle is very similar to the frequency shift keying.
The transmitter has a carrier signal which will create a reference signal with fixed fre-
quency and amplitude.

There are two variants of phase shift keying. The most obvious is phase-coherent
PSK (Phase Shift Keying). In this variant a 0-bit is encoded by sending the carrier signal
and a 1-bit is encoded by sending the carrier signal with a 180° phase shift (which is
simply the inverse signal). But how does the receiver know whether the received signal
is the transmitters carrier signal or its inverse?

There is no trivial answer to this problem which means that the carrier signal has to
be transmitted additionally to offer the receiver a reference value. This behavior costs
additional transmission facilities and additional demodulation circuits.

Please note the figure below, that will give an example of phase coherent phase shift
keying.

1The bandwidth is the range of possible frequencies on the carrier medium

DATA TRANSMISSION

1-13Communication Networks Seminar

Differential Phase Shift Keying. The problems described above can be solved
by the differential phase shift keying. For this practice there will be a phase shift at every
bit transition, but the direction of the phase shift will contain information about the en-
coded bit. If the phase shift is positive (usually +90°), the next bit will be 1, if it is negative
(-90° or +270°), the next bit is a 0.

With phase shift keying the transmitter will have to compare the phase shift of two
consecutive signal entities to determine the value of one bit.

Figure 5. Phase Shift Keying schemes compared

from [halsall95], page 65, figure 2.21

In the figure above the two phase shift keying schemes are compared. The third row
is an example of phase coherent phase shift keying, but it's signal would not be inter-
pretable without knowing the carrier signal in the second row. The fourth row shows an
equivalent differential phase shift encoded signal. This signal can only be interpreted
by using the decoding rules described above.

There are methods to achieve even higher data rates using phase shift keying, but
this requires quantization techniques which we will focus on in the next section.

2.5.4 Quantization
The attempt to overload the data transfer capabilities of a medium is called quantiz-

ation. With quanization a stream of analog signals is discretized in oder to create digital
data. The simplest quantization is intruducing a threshold value and interpreting every
value above as 1 and every value below as 0. As more threshold values are introduced
the data input stream is scanned at a finer level and more bit values can be tranferred
in one time slot.

Communication Networks Seminar1-14

Bit and Frame Synchronization

It can be explained easily with an example. Imagine a carrier medium that allows to
send signals with a voltage between 0 and 3 volts. But both transmitter and receiver
are only able to create and measure voltages in 1-volt steps.

Quantization means the utilization of the facilities described above. The sender would
create 4 distinct signals, one signal for two bits. 00 would be encoded with zero voltage,
01 with on 1 volt, 10 with two volts and 11 with the maximum signal of three volts. By
using this technique it is theoretically possible to double the data rate for a given
bandwidth.

Theoretically, because a signal with smaller steps between two signaling units is
more vulnerable to attenuation and noise.

Figure 6. Quantization of signals

from [halsall95], page 70, figure 2.24

The example above uses four distinct voltage steps as well as positive and negative
polarity to encode three bits at one signal time.

Baud-rate and bit-rate
The baud rate specifies the number of signal variations on a medium in a certain

span of time. If each bit is represented by one signal level, the baud rate is identical to
the bit rate (the number of bits received in a certain time span), but using more sophist-
icated modulation techniques can lead to higher or lower bit rates at constant baud
rate.

For amplitude shift keying and frequency shift keying it is clear how to quantize a bit
stream to a given signal. For phase shift keying there is a more sophisticated solution
available. The solution is called multilevel modulation and extends the differential phase
shift keying approach.

Remember that differential shift keying used two phase shift vales (90° and 270°) to
encode 0 and 1. For 4-phase shift keying the encoding scheme is following:

DATA TRANSMISSION

1-15Communication Networks Seminar

Table 1. 4-Phase Shift Encoding Scheme

relative phase shiftBit value

0°00

90°01

180°10

270°11

As you can seen in Table 1, “4-Phase Shift Encoding Scheme” there are four different
phase shift values, each a 90° step which adds up to a full 360° phase rotation. There
is a very simple assignment from binary value to pahse shift: multiply the binary value
with 90° and you will know the resulting phase shift. Because, unlike to the phase-co-
herent phase shifting, relative, not absolute phase shift values count it is possible to
use 0° and 180° as values without running into ambiguities.

A resulting signal with all four possible encoded values will look as follows:

Figure 7. 4-Phase Shift Encoding

from [halsall95], page 67, figure 2.22

Quadrature amplitude modulation. This is a very powerful modulation scheme
as it uses 4-PSK (Phase Shift Encoding) together with amplitude modulation and value
quantization. For a given frequency amplitude and phase shift are varied, causing 16
different combinations and allowing the transmitter to transmit 4 bits at a signal time.

In the example below there are eight distinct phase shift values, and only every
second possible phase-shift/amplitude-shift combination has a value assigned to avoid
possible errors due to attenuation and noise.

Communication Networks Seminar1-16

Bit and Frame Synchronization

Table 2. 16-Quadrature Amplitude Modulation

4321P h a s e
Shift/Amplitude
Shift

0011-0001-0

-0010-000045

0111-0101-90

-0110-0100135

1011-1001-180

-1010-1000225

1111-1101-270

-1110-1100315

There are extensions of Quadrature amplitude modulation (QAM) that go up to 256-
QAM and are often used in high-data-rate cable-modems because there is one trans-
mission medium reserved to one pair of transmitter and receiver, causing very little in-
terference from other communication participants.

2.6 Conclusion
The concepts introduced in this section mark the very basic of computer communic-

ations. They are essential for every communication regardless whether it is a wide or
low range and whether the transmission medium is based on electrical, optical or
electromanetical signals.

The fundament is to manipluate a base signal in a destinct way, that allows the re-
ceiver the identificate the received data easily and allow a high certainity when decoding
the signal.

3 Asynchronous Data Transmission
Asynchronous data transmission is used whenever character or byte based data has

to be transferred in irregular intervals. A common example for this are the signals from
a computer keyboard. The user types at irregular intervals and the keyboard encodes
each hit into a sequence of bits of a defined length.

This character is transferred to the main unit where the pulse of incoming signals is
interpreted as a sequence of bytes which are afterwards interpreted as a certain typed
key code or key-combination.

The Problem. How does the receiver of the signal know when a byte starts and
when it ends? This can be done by certain bit patterns indicating the start and end of
a byte or character.

ASYNCHRONOUS COMMUNICATION

1-17Communication Networks Seminar

Before we come to this kind of character-length-synchronization we will cover the
different bit encoding schemes. Afterwards we will explain the nature and use of start
and stop bits.

Example 2. Application of Asynchronous Data Transmission:
UART

The most common application of asynchroonous data transmission are Universal
Asynchronmous Receivers/Transmitters (UARTs). It is an computer component that is
used in the serial communication subsystem, for example in serial ports or internal
modems.

The Universal Asynchronous Transmitter will transmit bytes in a serialized way by
sending bit by bit to the receiver. At the receiver side, a Universal Asybnchronous Re-
ceiver will receive the single bits and return full bytes.

3.1 Return to Zero Signaling
The most obvious variant of bit signaling is called return to zero signaling or pulse

signaling. As said before, some media on the physical layer do not only support high
and low values but also positive and negative values. A signal may be represented by
a positive high, negative high or low value of voltage, amplitude or phase shift. Return
to zero signaling essentially means that a logic 1 is represented by a positive high value,
a logical 0 is represented by a negative value. After the transmission, a low or no signal
is sent, in other words the signal returns to zero.

Communication Networks Seminar1-18

Bit and Frame Synchronization

Example 3. Return to Zero Signaling with different modulations

Let there be a byte with the bit sequence of 10110001. For frequency modulation
this means that there will be a frequency of 500 Hz for a high value (logical true) and
a frequency of 250 Hz for a low value (logical false). Please note Figure 8, “Return to
Zero Encoding (Voltage)” for an illustration of the example.

Figure 8. Return to Zero Encoding (Voltage)

For amplitude shift keying there will be a high voltage of 3 Volts for true and no
voltage for false. The figure below will illustrate this example.

Figure 9. Return to Zero Encoding (Abstract)

As return to zero signaling relies on the availability of three signal states it may not
be available for every medium and keying scheme.

3.2 Non-Return to Zero Signaling
Non-return to zero (NRZ) code means that the signal will not be zero when data

transmission is completed.
This requirement is dealt with by defining the following simple encoding scheme: a

logical one is encoded as a low value, a logical zero is encoded as a high value.

ASYNCHRONOUS COMMUNICATION

1-19Communication Networks Seminar

Example 4. Non-Return to Zero Encoding for Amplitude Shift
Modulation

Figure 10. Encoding with NRZ

As you can see in Section 3.2, “Non-Return to Zero Signaling” [20], the signal will
not return to line idle, even when only 0-bits are transmitted. A long series of logical
ones will result in a long time span without any transition of amplitude or frequency.

The example above shows the main problem that Return to Zero and Non-Return
to Zero encodings share. For certain protocols, where long sequences of zeros or ones
are transmitted, there will be long sequences without any change in signal. As the re-
ceiver's clocks has no way to synchronize, they will run out of sync and sampling of the
incoming signal will lead to wrong results because the receiver will fail to identify the
bit boundaries.

Non-Return to Zero encoding and its derivatives should be used only when it can be
guaranteed that the higher level protocols will not result in long sequences of identical
bits. This behavior can be guaranteed for asynchronous transmission with start and
stop bits, but not for synchronous transmission.

This limitations can be overcome by using the Manchester encoding, which we will
cover in the next section.

3.3 Character or Byte Synchronization
The basic principle of byte or character synchronization is very simple. The receiver

waits for the transmission of a start bit. After that bit has been received, it will wait for
a specified number of bits (seven or eight in most cases). Every single received bit will
be stored in a shift register until the specified number of bits has been received. In the
next step the receiving unit will give a signal to the microprocessor that the register is
filled.

The microprocessor will read the shift register in parallel mode and start computation.
The emptied shift register can be filled with data from the next character, as soon as a
new start bit is detected.

The register used in this process is called Serial-In-Parallel-Out register or SIPO. Its
opposite is the Parallel-In-Serial-Out register (PISO) used by the sender.

Communication Networks Seminar1-20

Bit and Frame Synchronization

This basic mode of byte synchronization is only useful if both sender and receiver
know how long a character or byte is. If this is not the case, you will need start and stop
bits in oder to indicate the beginning and the end of each character.

3.4 Start- and Stop Bits
To solve the problem of finding byte beginnings and endings the concept of start-

and stop bits. A start bit indicates the beginning of a byte or character. There will be
only one start bit for each byte. A stop bit indicates the end of a byte and there may be
more than one stop bits for each character.

It is clear that the stop bit must have the opposite value of the start bit, as it will be
impossible to identify a start bit after a sequence of stop bits if the start bit has the same
value as the stop bit.

For NRZ encoding where line idle is encoded with 1, the start bit has the value 0 and
the stop bits thus have the value 1. This variant of encoding adds at least 25% overhead
to every byte transmitted, but that does not matter because asynchronous transmission
is used mostly for peripheral devices such as keyboards or devices connected to the
serial port of the computer.

Figure 11. Schema of start and stop bits usage

From [halsall95], page 102, figure 3.3

The figure above shows a complex start- and stop-bit example. If no data is sent, a
positive signal is received. As soon as the signal value drops, a start bit is detected and
the recoding of the next bits starts. Every bit is evaluated at the middle of each signal
time, whose length can be approximated by measuring the length of the first start bit.

After successful transmission of seven or eight bits a sequence of stop bits will be
received. If this sequence is detected, the recorded byte is complete and the SIPO re-

ASYNCHRONOUS COMMUNICATION

1-21Communication Networks Seminar

gister can shift the contained values and start processing the received character or
byte.

The different values of start and stop bits introduce at least one transition in the bit
stream which is important to avoid the problems that result of non-return to zero encoding
combined with long sequences of bits of the same value that have been mentioned
before.

3.5 Conclusion
Asynchronous Data transmission with start and stop bits is a very simple way to

transmit data. “Because asynchronous data is ‘self synchronizing’, if there is no data
to transmit, the transmission line can be idle.” [Frank Durda, Serial and UART Tutorial].

The limitation of asynchronous communication is that errors cannot be detected, e.g.
when a stop bit is missed. Because of this fact, asynchronous commictaion schemata
can be found mostly in a single computer or between a computer and its peripheral
modem or in direct terminal connections.

4 Synchronous Data Transmission
According to [halsall95 p. 102] synchronous data transmission is characterized by

the fact that the senders and the receivers clock have to be put into synchronism in
order to successfully transfer and decode data.

This requirement is fulfilled by using special encoding schemes that are a bit more
complex than the NRZ-encoding variants described in the previous section.

There are also ways to keep the clocks of two systems in synchronism, with- or
without directly sending the clock signal.

4.1 Manchester-Encoding
The limiting factor at the physical layer is the fact that the clocks used for determining

bit boundaries are never equally fast. This will lead for every encoding scheme which
may create long sequences of equal signal values to an aberration of the two clock and
thus to bit errors when interpreting the signal.

Principle of operation. Manchester Signaling means that every bit is represented
by a change of value from high to low or low to high. The change of value happens
exactly at the middle of the time span persevered for that bit. This makes determining
the start and end of every bit very easy.

The following encoding convention has been accepted for the Manchester Encoding:
Physical SignalLogic Data
transition from low to hightrue
transition from high to lowfalse

Communication Networks Seminar1-22

Bit and Frame Synchronization

Example 5. Encoding with Manchester Signaling

In this example the bit sequence 00110001 should be encoded. Figure 12, “Signal
Values for Manchester Encoding” will show the signal-value-curve for this example.

Figure 12. Signal Values for Manchester Encoding

If you compare Manchester Code with Non-Return to Zero encoding or variants, you
will notice that for a given signaling rate only half of the bit rate can be achieved, as
one bit requires two signal elements, one high and one low.

The Manchester Encoding is used in Ethernet networks.
Differential Manchester Encoding. This variant of the Manchester Signaling

scheme also uses a transition in the middle of the bit for synchronization, but the rep-
resentation of each bit depends on the signaling of the previous bit. If a 0-bit should be
encoded, there will be a transition at the start of the bit and in the middle of the bit. If a
1-bit is encoded there will be only a transition in the middle of the bit.

Figure 13. Differentiald Manchester Encoding Scheme

Figure 13, “Differentiald Manchester Encoding Scheme” shows the encoding of the
same bits as in Example 5, “Encoding with Manchester Signaling”. The Differential
Manchester Encoding variant is used for Token Ring networks.

4 SYNCHRONOUS DATA TRANSMISSION

1-23Communication Networks Seminar

Table 3. Differential Manchester Encoding Scheme

logical 1logical 0previous signal

low-highhigh-lowhigh-low

high-lowlow-highlow-high

4.2 Bit Synchronization
For synchronous transmission, data is not transferred byte-wise so there are no start-

or stop bits indicating the beginning or end of a character. Instead, there is a continuous
stream of bits which have to be split up into bytes. Therefore the receiver has to sample
the received data in the right instant and the sender's and receiver's clocks have to be
kept in a synchronized state.

As the main task lies in synchronizing sender's and receiver's clocks, bit synchroniz-
ation is also called clock synchronization.

4.2.1 Clock encoding
The most self-evident way to accomplish clock synchronization is to send the clock

signal to the receiver. This can be done by adding the signal of the local clock to the
encoded signal of the bit stream resulting in a bipolar encoded signal which the receiver
will have to interpret. By using this bipolar encoding, it is not necessary to create an
additional transmission line just for the clock signal.

Each bit span of the bipolar2 signal is dived in the middle by the signal shift of the
clock. There are two possible values for each bit span: high-zero and low-zero, denoting
logical one and logical zero. The received signal will contain enough information for the
encoder as it can determine the length of a bit by the guaranteed signal change at the
end of each bit and it can determine the literal value by distinguishing between a positive
or negative signal in the first half of the bit time.

In [halsall95 p. 104] there is a good example, describing bipolar clock encoding:

2A bipolar signal is a signal that can have positive and negative polarity. For example a signal on a
coaxial cable can be bipolar (positive or negative polarity of the measured voltage), but an optical signal
cannot be bipolar as light can only be either on or off.

Communication Networks Seminar1-24

Bit and Frame Synchronization

Figure 14. Bipolar Clock Encoding

From [halsall95], page 104, figure 3.8

As can be seen in Figure 14, “Bipolar Clock Encoding” signal of the transmitter clock
is added to the bit stream that should be transmitted, the resulting signal is bipolar and
contains a clock signal that can be extracted in order to encoding the bit stream.

This way of clock encoding is also a return to zero encoding, as it requires a medium
of capable of carrying bipolar encoded signals. This limitation can be overcome by using
a Digital Phase Locked Loop (DPLL).

4.2.2 Digital Phase-Locked Loop
The main idea of a digital phase locked loop is that the receiver's clock is reasonably

accurate, but should be resynchronized with the sender's clock whenever possible.
Unlike the direct clock encoding, there is no direct transmission of the clock signal, but
it is possible to extract clock information from the received data signal.

It is important that there are enough bit transitions in the received data stream which
indicate bit boundaries and make it possible to deduct the duration of a bit time as well
as enabling the clock controller to reset the clock to a less diverged signal. This can be
ensured by using a bit scrambler which removes long sequences of zeros or one's, but
a more convenient way is to use an encoding scheme which ensures a sufficient number
of bit transitions like the Manchester encoding.

Assume a system structure like described in Figure 15, “Digital Phase-Locked Loop
Structure (FMC)” where you have a digital clock which will have a sampling frequency
that is at least 32 times as high as the bit rate of the incoming signal. This clock feeds
its signal to the DPLL which also gets the received bit stream. The bit encoder encodes
the bit stream and feeds it to the receiver's shift register where the serial to parallel
transformation happens. The clock signal for this shift register comes from the DPLL.

4 SYNCHRONOUS DATA TRANSMISSION

1-25Communication Networks Seminar

Figure 15. Digital Phase-Locked Loop Structure (FMC)

The digital phase locked loop has two inputs. The first input is the system clock which
provides a signal to the DPLL in a well defined frequency. The other input is the received
bit stream, where every bit has at least one bit transition from 0 to 1 or from 1 to 0. This
bit transition is either after around 16 clock signals, at the end of a bit time, in which
case it will be ignored or after around 32 clock signals, in which it marks the middle of
a bit time (for Manchester encoding) and will always occur.

If the clocks are in synchronism, there will be 32 clock signals between two bit middles.
The DPLL will feed its next signal after exactly 32 clock signals to the shift register.

Figure 16. Manchester Encoding for encoding a Clock signal

From [halsall95], page 104, figure 3.8

The figure above uses Manchester encoding to encode the transmitter's clock signal
in the bit stream without adding additional polarity to the transferred signal. The clock
signal can be extracted nonetheless by using a digital phase-locked loop.

Communication Networks Seminar1-26

Bit and Frame Synchronization

But if there are more than 32 clock signals, say 34, it means that the clock is two
clock cycles ahead. In this case the digital phase-locked loop will shorten the span until
sending the next signal to the shift register by two clock signals and will feed the next
signal after just 30 clock signals to the shift register.

The same procedure applies if there are less than 32 clock signals time span between
to bits. The signaling span will be adjusted by waiting two clock cycles longer for giving
the next impulse to the shift register, adding the delay to a total of 34 clock signals.

4 SYNCHRONOUS DATA TRANSMISSION

1-27Communication Networks Seminar

Example 6. Digital Phase-Locked Loop with 8 clock cycles

In this example, there are only eight clock ticks for one bit time. The shaded area in
the next diagram marks the time span in which a signal transition from high to low or
vice versa is expected. This is the time where the DPLL adjusts the clock signal.

Figure 17. Manchester-encoded signal

In the next diagram we will focus on two bits of the above bit stream. For the first bit
the clocks are in synchronism and no adjustment will take place, but for the second bit,
the receiver's clock is one tick late, causing it to measure only seven ticks, while eight
should have been there.

For the next bit the clock will count only seven ticks (the missing tick will be omitted),
which will make the clock going ahead. But going ahead for one time unit and being
late for another will sum up to nothing. The clocks are in synchronism again.

Figure 18. Manchester-encoded signal detailed view

A digital phase-locked loop will work with Non-return to zero encodings as well as
with Non-return to zero inverted (NRZI) encodings like Manchester code or the differential

Communication Networks Seminar1-28

Bit and Frame Synchronization

Manchester code, but NRZI-encodings require a higher signaling rate for the same bit
rate and are therefore used especially in LANs.

4.2.3 Advanced DPLL use
In the prevoius section we have shown the use of the DPLL with a fixed encoding

scheme that guarantees a transition for every one or two bits. But the Digital Phase
Locked Loop algorithm does not need a transition every one or two bits, because in
most cases the time-disperson is much lower. In this case it is enough, if every four or
five bits a transition occurs, to resynchronize the clock. This can be achived by adding
an encoding scheme that will not create in-bit transitions but will gurantee transitions
for a fixed count of bits. One example of a encoding algorithm that will fulfil this require-
ment is shown in 4B5B encoder, in the final section of this article.

Another possibility is to a some scrambling sequences in oder to get enough trans-
itions. In either case, a short learing sequence between transmitter and receiver is ad-
visable, because otherwise no initial synchronized state could be reached.

The clock would be resynchronized by the DPLL whenever a transition occurs.

4.3 Conclusion
In this section we have shown some more sophisticated encoding schemes that have

one major feature: they allow self-synchronizing communication through the use of Di-
gital Phase Locked Loops which will detect time dispersion and correct it.

There are different other possibilities to ensure synchronization by sending a clock
signal or by ensuring enough transitions between high and low value in each bit se-
quence.

5 Frame Synchronization

5.1 Motivation
In modern computer networks data is not transferred as a simple stream of bits or

bytes but in terms of frames or packets. This enables amongst other things packet
based routing, error correction and the sharing of one physical medium between multiple
clients. As the medium usually is a serial link and does not have a concept of frames
or separated data units the sender and receiver have to recognize frame borders in the
data stream on the medium. This process is called Frame Synchronization.

5.2 Requirements
The correct detection of frames is crucial to the stability of the network. If frame

borders are not recognized or the receiver erroneously detects a frame where none
was sent, border data corruption is very likely to occur. Therefore frame borders must
be detected unambiguously.

5 FRAME SYNCHRONIZATION

1-29Communication Networks Seminar

Because in general the transfer medium has to be considered unreliable the frame
synchronization must be able to recover from error conditions, e.g. after one corrupted
frame the algorithm should be able to recover and synchronize to any following frames.

Finally, frame synchronization methods can have a big impact on performance. A
badly designed algorithm can significantly increase the amount of overhead per frame
transmission. On the other hand complex algorithms might increase processing time
of the data and by that require faster processing units or result in a slow down too.

5.3 Methods

5.3.1 Time gap synchronization
The most obvious method for frame synchronization is leaving a time gap between

frames. This is of course only possible if an idle state of the transfer medium is recog-
nizable and distinguishable from for example a long row of zeros. If the bits are encoded
using return to zero signaling (see Section 3.1, “Return to Zero Signaling”) time gaps
cannot be used.

While this is simple and easy to implement it has disadvantages too. To make sure
each of the communication partners recognizes the time gap as such it has to be long
enough compared to the length of one information cell in asynchronous data transfers.
This brings a performance penalty.

Time gap synchronization is usually used in combination with another method of
frame synchronization like packet length indication because it might fail if line noise is
encountered and by that needs a backup technique (see Section 6.1, “CSMA/CD
(Ethernet)” for an example).

5.3.2 Start & End Flags
Frame Synchronization via start and end flags is very widely used. The general idea

is to separate the single frames by special data sequences, the flags. These flags are
commonly referred to as "STX" which stands for "start-of-text" and "ETX" for "end-of-
text". Whenever the receiver encounters a STX flag it knows it has detected the begin-
ning of a new frame whilst ETX signals the end of the current frame. In many cases
there is no need to distinguish between the start and the end of a frame. If the receiver
is currently receiving a frame only an ETX character can be valid and if it is not receiving
a frame only the STX character can be valid. Because of that to avoid any overhead
STX and ETX are usually chosen to be the same character. Please see Figure 19,
“Frame Synchronization via start & end flags” for a graphical representation of a frame
embedded in STX and ETX flags.

Figure 19. Frame Synchronization via start & end flags

If the data transmitted is simple printable text, frame synchronization via Start & End
flags is easy. STX and ETX are then chosen to be two unprintable characters and can

Communication Networks Seminar1-30

Bit and Frame Synchronization

be used to unambiguously mark the beginning or the end of a frame respectively. In
the ASCII code STX is the character number 0x02 and ETX is 0x03. But because links
on which only printable data may be transferred are rather ineffective as they only use
a fraction of the available characters they are seldomly used.

A much more effective style of transmitting data can be achieved by not restricting
the usable characters to printable ones. This makes frame synchronization a hard task
as for example in a compiled binary program file every character might occur, including
those chosen for STX and ETX. If one of the flags occurs within a frame the receiver
will believe it had detected a frame border and expect the next data to be a new frame.
This erroneous border detection will usually corrupt the data sent in both the frames
and result in data loss. To avoid this ambiguity the special flag values have to be re-
moved from the user data before it is sent on the medium. This process is called encod-
ing or stuffing. It is a very common problem in computer science as in nearly all data
encoding formats special control codes have to be removed from the user data.

Stuffing algorithms for network transmission describe a method of encoding the user
data so that all occurrences of the flag are removed. This encoding has to be 0 so that
the receiver can extract the user data after separating the frames. Stuffing algorithms
can be classified as bit or as byte oriented algorithms. In the first case the receiver and
sender examine the received data in terms of bits. The flag is a special sequence of bit
values. This method is usually chosen if the algorithm has to be implemented in hard-
ware. In the latter case both the sender and the receiver talk in terms of bytes. This is
useful if the algorithm is implemented in software, because processors usually operate
on byte values rather than on bits. Using bits would result in a slow down of the algorithm
because the processing capabilities of the computer would not be exploited. Modern
processors can process at least complete byte values at one step. Processing one bit
at a time would in that case approximately increase the number of steps necessary for
processing an amount of data by the factor eight.

Synchronous or Asynchronous? Frame synchronization must be implemented in
synchronous and in asynchronous transfer protocols. The transfer mode only has an
impact on which algorithm to choose. In asynchronous transmissions the frame syn-
chronization is done after bit and character synchronization. As after character synchron-
ization the data is already represented in bytes only byte oriented algorithms are used
on these links.

In the following sections we will exemplarily introduce a bit stuffing algorithm and a
byte stuffing algorithm. While there are slightly different algorithms the ones we show
are representative and widely used. Additionally, we will introduce the Consistent
Overhead Byte Stuffing (COBS) algorithm. COBS is operating on bytes like PPP (Point-
to-Point Protocol) but is of special interest because it has a completely different approach
to byte stuffing.

5.3.2.1 Byte stuffing
Byte stuffing is done by introducing a new signal, the Data Link Escape character

DLE. To distinguish occurrences of the STX or ETX character in the user data from
their special meaning as frame separators the STX and ETX characters are prepended
with this character. To denote the frame start the sender inserts the sequence DLE

5 FRAME SYNCHRONIZATION

1-31Communication Networks Seminar

STX while the end is marked by DLE ETX. Within the user data no transformation is
done on the STX and ETX characters, but after each DLE character another DLE is
inserted.

By that the receiver can unambiguously detect frame borders. If and only if it encoun-
ters a DLE STX sequence it recognizes a frame start. Single STX occurrences are not
considered frame borders. This is done equally for ETX characters. If a DLE DLE se-
quence is received, the second DLE is dropped from the data and the next character
is not interpreted as a STX or ETX flag.

Figure 20. Byte stuffing

In Figure 20, “Byte stuffing” you see a typical sequence of frames encoded using
byte stuffing. As you can see the frame start is denoted by DLE STX characters while
DLE ETX denotes the end. The first frame contains a DLE DLE sequence (with the
extra DLE marked gray) which represents an encoded single DLE character. By that
the receiver knows that it may not interpret a character after this DLE byte as a special
character like STX or ETX. If there were any STX or ETX characters somewhere within
the frame it would be ignored because there would not be a DLE character preceding
it.

A very common application of this algorithm can be found in the PPP protocol. PPP
stands for Point to Point Protocol and is the Internet Standard for transmission of Internet
Protocol (IP) packets over serial lines. PPP byte stuffing works a little bit different from
the standard algorithm explained before.

As in bit stuffing (see below) PPP byte stuffing uses the bit sequence 01111110 for
frame separation for both STX and ETX characters. Contiguously sent frames are
separated by only one STX signal. When talking in terms of bytes this is usually written
in hexadecimal format as 0x7E. The value 0x7D is used as the DLE character. To re-
move special characters as the STX character from the user data within the frame the

DLE character (0x7D) is inserted before the character and the character itself is XOR'ed3

with the value 0x20. For example, STX or 0x7E is transformed to 0x7D 0x5E and the
DLE character 0x7D is transformed to 0x7D 0x5D.

3refers to the binary operation of bitwise exclusive or.

Communication Networks Seminar1-32

Bit and Frame Synchronization

The receiver can detect frame borders simply by listening for the 0x7E STX character.
On the data within frames it performs the reverse process. Each detected 0x7D DLE
character is dropped and the following character is again XOR'ed with 0x20.

Figure 21. Byte stuffing in PPP

Figure 21, “Byte stuffing in PPP” shows the output of a PPP encoding procedure. As
opposed to the common byte stuffing algorithm there is only one flag character used
for the separation of frames. The first frame contains two encoded characters, a DLE
character (0x7D) and a STX/ETX character (0x7E). The text below shows how the re-
ceiver decodes encoded characters using XOR. The character immediately following
the DLE character 0x7D is XOR'ed bitwise with the value 0x20. If one writes the single
bits of the characters in two rows above each other, the resulting bit value in that row
is zero if both values are equal, e.g. bit-0 and bit-0 or bit-1 and bit-1, or one otherwise.

This method has the advantage of a reduced overhead if there are few special
characters within the frame though the design goal was to enable the escaping of addi-
tional characters. In the PPP scheme adding additional characters is as easy as just
prepending them with the DLE character and XOR'ing them with 0x20. This encoding
is completely transparent and does not have to be known in advance by the receiver,
as it simply XOR's all data after the DLE character with 0x20.

While the XOR'ing encomplicates the process of encoding its benefit is that the en-
coded characters are completely removed from the user data. By that the receiver can
simply listen for special signals like STX/ETX (or other encoded signals) without having
to remember the preceding signal as in common byte stuffing.

5.3.2.2 Bit stuffing
In bit stuffing the bit sequence 01111110 is being used as the single character for

frame separation. As mentioned before, the STX signal does not have to differ from the
ETX signal. The encoding algorithms used to remove the STX code from the user data
is rather simple.

5 FRAME SYNCHRONIZATION

1-33Communication Networks Seminar

To remove the frame separation value the sender checks for five bit-1 values in a
row and inserts a bit-0 value immediately afterwards if it encounters one as illustrated
in Figure 22, “Bit stuffing”. This is done even if the next value is a bit-0 which would not
result in an error as five bit-1's in a row are completely legal. This is done to simplify
the process. If the value 0111110 (followed by either a bit-0 or a bit-1) would be left
untouched, it would get indistinguishable from an encoded 01111110 and also had to
be encoded in some way. This is because 01111110 is encoded as 011111010 which
might occur in the user data if not masked. Inserting a zero after every five bit-1's pre-
vents this as the row 011111010 is encoded as 0111110010.

Figure 22. Bit stuffing

To decode the user data the receiver checks the data stream for five bit-1 values in
a row. If the following bit is a zero, it has detected an encoded row of five bits. It then
simply drops the bit-0 from the bit stream and carries on. If the following bit value is a
one (0111111_), it has detected a special code and further processing is needed. If
the next bit is a zero it's the frame separator (01111110).

This algorithm has the effect that not only the STX signal is transparently encoded
but all signals consisting of more than or exactly six bit-1's in a row. This characteristic
is used by giving all these characters which are 01111110, 01111111 and 11111111
a special meaning.

The value 01111111 is used as the idle signal which is sent between frames to enable
the receiver to keep its clock synchronized to the senders via a DPLL as described
above. This is possible because this SYN (for “synchronize”) character contains a
transition from bit-0 to bit-1. The value 11111111 is used as the frame abort signal in-
structing the receiver to drop the current frame.

A very common application for a bit stuffing algorithm is the High Level Data Link
Control (HDLC) protocol. It is generally used for binary transfers and has such different
areas of application as satellite links and ISDN (Integrated Services Digital Network)
digital phone communications. Please note that again HDLC is a little different from the
algorithm above - it uses the value 11111111 as the idle signal rather than 01111111.
While this means that a receiver can't synchronize it's clock while the idle signal is sent

Communication Networks Seminar1-34

Bit and Frame Synchronization

it doesn't have any impact on HDLC. This is because in HDLC there is no idle signal
sent between frames but a row of empty frames (e.g. only 01111110's without any
content in between).

5.3.2.3 COBS - Consistent Overhead Byte Stuffing
COBS addresses a problem that occurs when data is not directly sent via a physical

medium but on top of another protocol. If the lower protocol uses a concept of frames
too, the frames used by the higher protocol must fit into those of the lower one. Otherwise
the frames or packets would have to be fragmented and a receiver had to put them to-
gether again. This is a difficult task if the packets have to be routed to different hosts
and might not be received in the correct order or at least not directly after each other.
Also, if parts of packets would get corrupted their other parts would have to be dropped
too.

“As well as the global overheads such as endpoint delay, fragmentation generates
overheads for other components of the system - notably the intermediate gateways.”ben-
net p. 21-36

In order to make the frames fit into their lower level containers the size of the frames
has to be limited. This gets critical as the resulting size of the packet might vary depend-
ing on its contents. Because reserved characters have to be escaped by stuffing al-
gorithms they increase the resulting size of the packet. To exclude the possibility of a
non fitting packet its size must be limited so it cannot burst the lower level packet.

The bit stuffing and byte stuffing algorithms described above have been designed
to achieve a very small average overhead. It should be below 1% on typical data. But
when it comes to worst case overhead they both have large overheads. The byte
stuffing algorithm might increase the packets to 200% of their original size if all bytes
have to be escaped using two bytes, bit stuffing results in a maximum overhead of 20%
if the data exclusively consists of bit-1 values because for every five bit-1's a bit-0 has
to be added (both without counting additional packet headers). This is very unlikely to
happen, for example in a 1500 Byte packet the statistical probability of all bytes being

one special character provided that the character values are distributed equally4 is
(1/256)^1500 which is pretty close to zero.

While the probability of getting packets with for example more than 50% overhead
generating special characters is higher it is still very unlikely. But even if these cases
are very rare they have to be addressed. If a packet supersedes the maximum size it
will usually be dropped from the network. If the sender does not know that, it will try to
send the packet again. This will probably result in a deadlock situation or at least a
breakdown of network communication. But even if this unlikely case is considered an
acceptable risk, a possible attacker could exploit this weakness and use it for a denial
of service attack on the network.

4While real world data is not distributed equally the difference does not really matter because the protocol
designers of course wanted to keep real world average overhead low and chose frame seperation characters
which occur even more seldom than the rest of the data. Additionaly a lot of newer applications use compres-
sion algorithms to minimize the amount of data to be transferred which create a nearly equally distributed
byte stream.

5 FRAME SYNCHRONIZATION

1-35Communication Networks Seminar

The common solution of these problems is to limit the packet size of the higher level
protocol to a certain value which makes it impossible to burst the lower level packet
size. In the case of byte stuffing this would mean setting it to 50% of the available size.
While this is a solution, it brings a serious reduction of performance. In nearly all known
protocols a frame does not only consist of the frame separators and the user data
within but also has a header with meta information like address fields or checksums.
These headers have a fixed size regardless of the size of the packet so if the packets
sent are smaller than they could it results in more overhead. Additionally common pro-
tocols like the Transmission Control Protocol (TCP) expect a confirmation to be sent
on reception of a certain number of frames. These and other influences sum up and
result in reduced performance as shown in [cheshire96]. The measurements show a
33% performance loss after a reduction of the packet size by 50%.

To avoid this COBS does not escape illegal characters but in a certain way escapes
the absence of illegal characters. Within COBS a special frame separation character
is chosen like in the other protocols, for example the null byte 0x00. The data to be
transmitted is then broken up into smaller blocks by cutting the data at each occurrence
of the special character so that the zero byte is at the end of the block. The data block
without the trailing zero is then prepended by a byte containing the size of the block
minus one. If the block is longer than or exactly 254 characters long it is prepended by
the code 0xFF and broken up after the 254th character creating a new block. This leads
to the following meanings for the prepending bytes if found in the data after encoding:

Table 4. Meanings of code values in COBS5

MeaningFollowed byCode

(not allowed)(not applicable)0x00

A single zero byteno data bytes0x01

The (n-1) data bytes, fol-
lowed by a single zero

(n-1) data bytesn

The 254 data bytes, not fol-
lowed by a zero

254 data bytes0xFF

The receiver can then check the first byte of each block, read the next number of
bytes indicated by the first byte (it's value minus 1) and append a zero after them if the
byte value is less then 0xFF. If it is 0xFF no zero is appended.

Note that the actual implementation of a COBS algorithm would look different from
the method described because first transforming the data to another representation by
cutting it into blocks and afterwards putting them together again would not be very effi-
cient. An algorithm would rather scan through the data and write the output directly.
Figure 23, “COBS encoding” shouldd further illustrate this encoding scheme.

5from [cheshire99 p. 3]

Communication Networks Seminar1-36

Bit and Frame Synchronization

Figure 23. COBS encoding

COBS byte stuffing incurs no overhead at all if the special character is encountered
after at least every 253 Bytes. This is because every code block of less than 253 Bytes
and a following byte 0x00 is encoded by a block of the number of bytes without the
zero byte. This block is prepended by the length indication byte which. This way the
block data stays untouched and the zero byte at the end is replaced by the length byte
at the start which does not bring any overhead. If a block longer than or exactly 254
Bytes long does not contain a zero byte it has to be encoded using the 0xFF length
byte which means that the length byte is followed by 254 data bytes after which no zero
follows. In this case the length byte is added to the data without removing a zero byte
which leads to exactly one byte overhead for the 254 byte user data which is about 0,4
percent overhead. This is why COBS performs better if the special character is more
frequent within the data.

The worst case size of a COBS encoded frame is by that exactly 100.4 percent of
its original size which is hardly worse than the average efficiency of the byte or bit
stuffing algorithms shown above. Using COBS in the example mentioned above would

5 FRAME SYNCHRONIZATION

1-37Communication Networks Seminar

enable us to set the frame size of the upper protocol to about 99.6 % which would not
bring a measurable performance penalty.

As COBS is a very new technology it is currently not used in any network system. It
has a big potential to be used in mobile technologies as networks like the Global System
for Mobile communication (GSM) or the Universal Mobile Telecommunications System
(UMTS) mobile phone systems have a basic transport system which is aware of frames
and on top of which applications using other protocols, especially TCP/IP, are expected
to be used.

5.3.3 Packet Length Indication
The method of packet length indication is used in Local Area Networks, for example

in Ethernet. When one stations wants to send a frame, it starts with a preamble to allow
the other stations within the LAN to synchronize onto its clock. Afterwards it sends a
start-of-frame signal as with the start & end flag algorithms. Within the frame the first
data sent is additional information. The frame starts with a header of a known fixed size
containing information like the receivers address etc.; after that a fixed size field con-
taining the length of the packet is sent before the frame data is transmitted. After the
receiver has detected a start-of-frame and read the packet header it just counts the
bytes from there on.

With this algorithm no stuffing is needed as the receiver knows when the packet ends
and cannot be disturbed by additional start-of-frame flags within the frame. This makes
the method more efficient compared to the start & end flag methods explained above
as only a number of bytes relative to the maximum length of one packet needs to be
used. This means because of the binary encoding of numbers that the technique scales
logarithmic to the length of the frame. If the packet may be up to n elements (read:
bytes) long only log2(n) data units (read: bits) are needed for the length field. This

means for example for Ethernet with a maximum frame length of 1500 bytes log2(1500)

[bit] = 10,550746785 [bit] which is be rounded up to 11 bits which is rounded up to 2
bytes.

5.3.4 Coding Violations
In certain encoding schemes some signals that could technically be sent are disal-

lowed by the algorithm, e.g. with amnchester encoding (see below). Sending such an
illegal signal is called a coding violation as it violates the rules of the encoding scheme.
While this is usually an error condition it may be used as a frame delimiter signal. This
is because the special signal will not occur in the user data and by that the delimiter
can be detected unambiguosly.

For example in Manchester encoding the sender encodes all bit values in two bits
sent on the medium. This is done to enable bit-synchronization as described above.
Valid bit-encodings always contain a bit-transition, either from bit-0 to bit-1 (which makes
an encoded bit-1) or from bit-1 to bit-0 (which makes a 0). In that case the sender can
denote a frame border by sending a special character containing coding violations like
bit-0 bit-0 or bit-1 bit-1. The special codes are usually called "J" for a signal staying at
the previous level or "K" for a signal changing to the opposite level. The characters

Communication Networks Seminar1-38

Bit and Frame Synchronization

usually used with Manchester encoding (see Section 4.1, “Manchester-Encoding”) are
"JK0JK000" for frame start and "JK1JK111" for the frame end.

The use of coding violations does not imply any overhead. While the manchester
encoding uses half of the theoretically available bandwidth to keep the clocks of the
sender and the receiver in synchronism this method of frame synchronization takes a
small part of this somehow wasted bandwidth to indicate frame borders. This does not
reduce the reliability of the data link because the clocks of the receiver and the sender
should be accurate enough to stay synchronized for the very short period of time in
which the frame delimiter is sent.

5.4 Conclusion
While frame synchronization is a rather trivial task it holds some difficulties as shown

in this chapter. The algorithms described in this chapter represent all commonly used
techniques for frame synchronization. While the real implementation might be slightly
different most if not all networking technologies make use of one or multiple methods
of the four techniques presented above. As you will see in Section 6, “Real World Ap-
plications” it is very common to use more than one method to seperate frames.

6 Real World Applications
While we have shown several techniques in the precedent sections they are all

somewhat theoretical approaches to bit and frame synchronization. As always the real
world implementations of these techniques are a little different. Also, as synchronization
is crucial to any network most if not all of the real world applications do not only rely on
one technique but rather use a combination of several approaches.

To give an example of these combinations we will explain the different approaches
taken in the Institute of Electrical and Electronics Engineers (IEEE) standard 802.3 (see
IEEE Std 802.3), better known as Ethernet or Carrier Sense Multiple Access/Collision
Detection (CSMA/CD), and FDDI.

FDDI stands for Fiber Distributed Data Interface and is a set of standards describing
high-speed computer network infrastructure based on optical transmission.

6.1 CSMA/CD (Ethernet)
The Carrier Sense Multiple Access/Collision Detection protocol also known as Eth-

ernet was developed at the Xerox PARC in the first half of the 1970s. It has become
the by far most wide spread technology for local area networking in the 1990s and has
nearly completely replaced all other networking techniques, especially in personal
computers. While the actual networking protocol is out of the scope of this document
we want to show how bit and frame synchronization are implemented in Ethernet.

6.1.1 Bit synchronization
Ethernet uses synchronous transfer with Manchester encoding (see Section 4.1,

“Manchester-Encoding”). Every frame sent has to start with a sequence called the
preamble. It consists of 7 octets with the value 10101010 which allows the receiver to

6 REAL WORLD APPLICATIONS

1-39Communication Networks Seminar

initially synchronize its clock with the one of the sender. Because this initial synchroniz-
ation might get lost as the frame is transmitted a DPLL (see Section 4.2.2, “Digital
Phase-Locked Loop”) is used to keep the receiver and the transmitter synchronized.

6.1.2 Frame synchronization
Ethernet uses a mixture of time gap and length indication for frame synchronization.

Figure 24, “Ethernet frame” shows the structure of an Ethernet frame. Each frame starts
with the already mentioned preamble which is followed by the start-of-frame delimiter
SFD which is binary 10101011. It is followed by a destionation address and a source
address both of which are 6 bytes long and a length field of 2 bytes indicating how many
bytes will be within the following data field. After this the actual frame data is sent which
may not be longer than 1500 bytes. Finally a four byte frame check sequence containing
a Cycling Redundancy Check (CRC) value of the data is sent.

Figure 24. Ethernet frame

After the sender starts with the preamble all receivers6 synchronize to its clock while
scanning the data for the SFD signal. When a receiver encounters the signal it starts
recording the data sent on the medium. After it has received the next 14 bytes which
make the header of te frame it reads the last 2 bytes to determine the amount of data
that will be sent in the data field. By that it knows that it has to expect the end of the
frame after the specified number of bytes plus four for the CRC field.

6Ethernet is a bus networking system where usually all Data Terminal Equipments (DTEs) receive all
packets sent. The exception to this is Ethernet switching.

Communication Networks Seminar1-40

Bit and Frame Synchronization

Apart from that, Ethernet also uses a time gap to separate frames as the CSMA/CD
protocol involves waiting between frames for medium access control anyway. A common
value for this time gap is 9.6 [µs] in a 10 [Mbps] Ethernet. So if a DTE does not know
when the next frame border is about to happen, for example because it is new to the
network and did not read the last length field or somehow lost synchronization, it can
just listen for data on the medium and if it encounters a pause of at least 9.6 [µs] it can
be sure to have detected a frame border.

Because of this an erroneous detection of a frame border is literally impossible.

6.1.3 Error Detection
Ethernet uses a mechanism for Collision Detection which ensures that the sender

recognises packets that have collided and by that can retransfer them. But even if it is
ensured that collided packets are retransfered the problem that single packets might
be corrupted is still present. If line noise is added to the signal transferred on the medium
single bits might get corrupted and a receiver might erroneously recognize a bit-1 instead
of a bit-0 or vice versa.

User data. Within the user data errors should usually be detected by the CRC
checksum contained in the last four bytes of each frame. The probability that this
checksum failes is only approximately 1 of 4.3 billion cases for a 32 bit checksum. If
this happens the corrupted data will be given to the upper layers in the ISO/OSI model.
If there is no upper layer which incorporates an error correction itself like for example
TCP/IP the corrupted data will be forwarded to the application layer and might result in
a major data loss or system crash. However as this is very unlikely it is considered an
acceptable risk. Implementing a higher level of data security would cause a higher
amount of overhead and slow down the overall performance of the network.

Address fields. However this checksum is only calculated over the user data
within the frame. If one of the header fields is corrupted the receiver does not have a
possibility to detect that. In case of a corrupted receiver address the packet will either
not be received by anyone - which is the likely case as erroneously picking the address
of an existing DTE within 6 bytes of address data is very unlikely - or be erroneously
received by a DTE and probably ignored on a higher level.

Length field. If data within the length field is corrupted there are two possibilities.
Either the receiver erroneously cuts off a part of the frame or it expects more data to
come after the end of the frame. In each case only the user data and the checksum
field will be affected which should be detected the way described above.

6.2 FDDI - Fiber Distributed Data Interface
The Fiber Distributed Data Interface is a set of standards that were originally de-

veloped by the American National Standards Institute (ANSI) and which describe an
optical fiber based network architecture that operates at bit rates of 100 Mbps.

Just like Token ring architectures it uses two rings and each ring has a token. Both
tokens are handed over in opposite directions. This will enhance reliability. FDDI is
used to create backbone networks as up to 500 DTEs can take part in communication
and the total length of the ring can be up to 100 kilometers.

6 REAL WORLD APPLICATIONS

1-41Communication Networks Seminar

Between two DTEs there is a multimode optical fiber cable, but there have been
different enhancements and adaptions to FDDI, making it work with simple copper
cables too. We will concetrate in this section on the original specification and intents of
FDDI.

6.2.1 Bit synchronization
Unlike primitive token ring networks there is no single ring monitor in FDDI networks

that provides a common encoded clock signal for all participants. Instead each ring in-
terface has its own clock. The signal of the system clock is included in the transmitted
signal, to ensure bit synchronization over the network and to guarantee that the received
data has enough value transitions to ensure bit synchronization.

There cannot be a transition in the middle of each bit, because in that case a very
high signaling rate would be needed. Instead, a 4 of 5 group code is used to ensure
that a transition occurs at least every two bit cell periods. In fact there is a two-step
transition of the bit stream. First 4 bit groups are converted into 5 bit groups, and later
on the five bit groups are encoded to ensure enough signal transitions.

4B5B encoder. The 4 of 5 group code will be created by a 4B5B (4 bit to 5 bit)
encoder. This encoder will take a 4 bit sequence, say 0111 and create a corresponding
5 bit sequence. There are many possible encoding schemes cogitable, but the most
important fact is that all sequences of zeros longer than three should be elliminated.
The following example will ilustrate such an encoding scheme.

Example 7. 4B5B encoder

4 bit to 5 bit translation rules I

5 bit data group4 bit data group
111100000
010010001
101000010
101010011
010100100
010110101
011100110
011110111
100101000
100111001
101101010
101111011
110101100
110111101
111001110
111011111

Further encoding. In the next step every 1-bit is encoded as a signal transition
and every 0-bit as a signal without transition. The 4B5B encoder created no sequence

Communication Networks Seminar1-42

Bit and Frame Synchronization

of more than two consecutive zeros, so there cannot be more than three identical signals
in a row. The following list shows a possible encoding scheme, if you assume that the
first signal of every sequence is a 0 or a 1.

4 bit to 5 bit translation rules II

alternative signalsignal5 bit data group
(1)01011(0)1010011110
(1)10001(0)0111001001
(1)00100(0)1101110100
(1)00110(0)1100110101
(1)10011(0)0110001010
(1)10010(0)0110101011
(1)10100(0)0101101110
(1)10101(0)0101001111
(1)00011(0)1110010010
(1)00010(0)1110110011
(1)00100(0)1101110110
(1)00101(0)1101010111
(1)01100(0)1001111010
(1)01101(0)1001011011
(1)01000(0)1011111100
(1)01001(0)1011011101

Please remember that the leading zero does not belong to the encoded signal, and
if it would be a 1 instead of the 0, a completely different signal would be the result.

6.2.2 Frame synchronization
As you may have noted, a five-bit encoding scheme offers 32 different encodings,

but only 16 have been used so far. That means there are some 5-bit words left for en-
coding status information and sending control symbols. These control symbols are:

IDLE 11111

J 11000

K 10001

T 01101

R 00111

S 11001

QUIET 00000

HALT 00100

6 REAL WORLD APPLICATIONS

1-43Communication Networks Seminar

There are two types of frames that are transferred in FDDI networks: Information
frames and tokens. A token consists of a preamble, a two symbol long start delimiter
the frame control block (2 symbols) and the end delimiter (1 or two symbols).

An information frame starts with a preamble, a start delimiter, frame control block,
the destination address, the source address, the actual information and a frame check
squence (8 symbols) as well as an end delimiter and three symbols of frame status.

“The preamble field is comprised of 16 or more IDLE symbols [...]. The start delimiter
field consists of two control symbols (J and K) which enable the receiver to interpret
the following frame contents on the correct symbol boundaries. [...] The end delimiter
field contains one or two clock symbols.” [halsal95 p. 380]

6.3 Conclusion
This section has shown that the concepts introduced before find their application in

real-world computer networks. Partly they can be used as described, partly - like in the
FDDI standard - they have to be adapted to the real application needs.

The current technologies for bit and frame synchronization are rather exploited - they
provide a reliable data transmission at a very small overhead. Used together with addi-
tional techniques as in Ethernet they almost completely exclude an undetected error.

7 Conclusion
Bit and frame synchronization have been one of the first problems that had to be

solved when computer networks were first developed. The techniques we presented
in this paper are all at least ten years old or are derivatives of older techniques. They
are theoretically well fundamented and have been in use for decades. There are refer-
ence implementations available for each process either as circuit designs or C programs.

While one would expect that there is hardly anything unexplored in this area of
communication technology as new applications are being developed new questions
arise bringing the need for new answers like the one COBS gives.

Glossary
4B5B four bit to five bit encoder.
ANSI American National Standards Institute.
ASCII American Standard Code for Information Interchange.

The de-facto standard to encode digits, letters and other
characters in an alphabet of 128 or 256 elements with
seven or eight bits.

COBS Consistent Overhead Byte Stuffing. A byte stuffing
technique resulting in a defined and relatively small
overhead.

CRC Cyclic Redundancy Check
CSMA/CD The Carrier Sense Multiple Access / Collision Detection

protocol better known as Ethernet. Standardized by the
IEEE in IEEE Standard 802.

Communication Networks Seminar1-44

Bit and Frame Synchronization

DLE The data link escape character. A character that is
used as a meta character within a transmission. It is used
to mark the following character as having a special
meaning. If two DLEs follow each other one of them is
ignored (dropped from the data) and the next character
is not considered special.

DPLL Digital Phase-Locked Loop.
DTE Data Terminal Equipment.
ETX The end-of-text flag used in frame synchronization as

the symbol denoting the end of a frame. Originally ETX
was only a non printable symbol within the ASCII code
but today it is also used as a general term for a start of
frame character.

FDDI Fiber Distributed Data Interface.
GSM The Global System for Mobile communication. A digital

system for mobile phone communication.
HDLC The High Level Data Link Control protocol. A data link

control protocol residing on layer 2 of the ISO-OSI model,
standardized in ISO 3309 and ISO 4335 as an enhanced
and generalized version of IBM�s SDLC protocol.

IEEE Institute of Electrics and Electronical Engineers.
IP The Internet Protocol. IP is a shorthandle for TCP/IP

which is part of the TCP protocol suite. The standard
protocol of the internet.

ISDN The Integrated Services Digital Network. A digital
telephone communication network designed to replace
analog telephony.

ISO International Organization for Standardization.
Kbps Kilo (thousand) bit per second.
LAN Local Area Network.
Mbps Mega (million) bits per seconds.
NRZ Non-return to zero.
NRZI Non-return to zero inverted.
OOK On-Off-Keying.

See Also RZE.
OSI Open Systems Interconnection (network model).
packet There are communication protocols which transfer

data in form of packets to increase reliability, error control
and flow control. This packet based communication is
synchronous. Packet-based protocols enable multiple
participants to transfer data over one single medium.

PISO Parallel Out, Serial In shift register.
PPP Point to Point Protocol. The internet standard for

transmission of IP packets over a serial line.

7 CONCLUSION

1-45Communication Networks Seminar

PSK Phase Shift Keying.
QAM Quadrature Amplitude Modulation.
RZE Return to Zero encoding. An encoding scheme in which

a zero value stands for 0 and any higher value for 1.
SIPO Serial In, Parallel Out shift register.
SFD Sort of frame delimiter.
STX The start-of-text flag used in frame synchronization as

the symbol denoting the start of a frame. Originally STX
was only a non printable symbol within the ASCII code
but today it is also used as a general term for a start of
frame character.

SYN A character sent in digital transmissions to enable re-
ceiving DTEs to synchronize their clocks to the senders
clock. The bit sequence usually contains a change of
value as this is needed for synchronization with a DPLL.

TCP The Transmission Control Protocol. A suite of protocols
used for data transmission in the Internet.

UART Universal Asynchronous Receiver/Transmitter
UMTS The Universal Mobile Telecommunications System. A

digital telecommunication system for mobile phones and
smart devices.

WAN Wide Area Network
XOR The binary boolean operation eXclusive OR. XOR re-

turns logical true or bit-1 if and only if exactly one of the
operands is logical true respectively bit-1.

Bibliography
[halsall95] Fred Halsall. Data Communications, Computer Networks and Open Systems. Addison-

Wesley Publishing Company Inc.. 1995. ISBN: 0-20-42293-X.
[mano] M. Mano and Charles R. Kime. Logic And Computer Design Fundamentals. Prentice

Hall Inc.. 1997. ISBN: 0-13-031486-2.
[bennet] Chris J. Bennet. The overheads of transnetwork fragmentation. Computer Networks

[and ISDN Systems]. vol. 6February 1982.
[cheshire99] Stuart Cheshire and Mary Baker. Consistent Overhead Byte Stuffing. IEEE/ACM

Transactions on Networking. vol. 7 pp. 159-172 April 1999.
[cheshire96] Stuart Cheshire and Mary Baker. Experiences with a wireless network in Mos-

quitoNet. IEEE Micro. vol. 16 pp. 44-52February 1996.
[fairhurst] Gorry Fairhurst. Data Communications Engineering Course Syllabus

[http://www.erg.abdn.ac.uk/users/gorry/course/syllabus.html].
[pppfaq] Ignatios Souvatzis. PPP FAQ [http://theory.cs.uni-bonn.de/ppp/faq.html].
[swiathomski] Guy Swiatlowski and Shai Homski. Quadrature Amplitude Modulation

[http://www.hait.ac.il/staff/commEng/Michael_Bank/qam/qam.html].
[rfc1662] W. Simpson. PPP in HDLC-like Framing (RFC 1662)

[ftp://ftp.rfc-editor.org/in-notes/rfc1662.txt]. July 1994.

Communication Networks Seminar1-46

Bit and Frame Synchronization

http://www.erg.abdn.ac.uk/users/gorry/course/syllabus.html
http://theory.cs.uni-bonn.de/ppp/faq.html
http://www.hait.ac.il/staff/commEng/Michael_Bank/qam/qam.html
ftp://ftp.rfc-editor.org/in-notes/rfc1662.txt

[ieee802.3] IEEE Standard for Information technology - Telecommunications and information
exchange between systems - Local and metropolitan area networks - Specific requirements.
Carrier sense multiple access with collision detection (CSMA/CD) access method and
physical layer specifications. 06-23-1986.

[gtc96] Federal Standard 1037C [http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm]. Glossary
of Telecommunication Terms.. 08-07-1996.

[fddi1] ISO 9314-1:1989. Fibre Distributed Data Interface (FDDI) -- Part 1: Token Ring Physical
Layer Protocol (PHY). International Organization for Standardization. 1989.

[fddi2] ISO 9314-2:1989. Fibre Distributed Data Interface (FDDI) -- Part 2: Token Ring Media
Access Control. International Organization for Standardization. 1989.

[fddi3] ISO/IEC 9314-3:1990. Fibre distributed Data Interface (FDDI) -- Part 3: Physical Layer
Medium Dependent (PMD). International Organization for Standardization. 1990.

[fddi4] ISO/IEC 9314-4:1999. Fibre Distributed Data Interface (FDDI) -- Part 4: Single Mode
Fibre Physical Layer Medium Dependent (SMF-PMD). International Organization for
Standardization. 1999.

[fddi5] ISO/IEC 9314-5:1995. Fibre Distributed Data Interface (FDDI) -- Part 5: Hybrid Ring
Control (HRC). International Organization for Standardization. 1995.

[fddi6] ISO/IEC 9314-6:1998. Fibre Distributed Data Interface (FDDI) -- Part 6: Station Manage-
ment (SMT). International Organization for Standardization. 1998.

[fddi7] ISO/IEC 9314-7:1998. Fibre Distributed Data Interface (FDDI) -- Part 7: Physical layer
Protocol (PHY-2). International Organization for Standardization. 1998.

[ffdi8] ISO/IEC 9314-8:1998. Fibre Distributed Data Interface (FDDI) -- Part 8: Media Access
Control-2 (MAC-2). International Organization for Standardization. 1998.

[fddi9] ISO/IEC 9314-9:2000. Fibre Distributed Data Interface (FDDI) -- Part 9: Low-cost fibre
physical layer medium dependent (LCF-PMD). International Organization for Standardization.
2000.

[fddi13] ISO/IEC 9314-13:1998. Fibre Distributed Data Interface (FDDI) -- Part 13: Conformance
Test Protocol Implementation Conformance Statement (CT-PICS) Proforma. International
Organization for Standardization. 1998.

[uart96] Frank Durda IV. Serial and UART Tutorial
[http://www.freebsd.org/doc/en_US.ISO8859-1/articles/serial-uart/]. The FreeBSD Project.
01-13-1996.

7 CONCLUSION

1-47Communication Networks Seminar

http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/serial-uart/

	Bit and Frame Synchronization Techniques
	Table of Contents
	1 Introduction
	2 Fundamentals of Binary Data Transmission
	2.1 Binary Data Transfer
	2.2 The Need for Synchronization
	2.3 Modes of Transfer
	2.4 Characteristics of Transmission Media
	2.4.1 Conductor Cable
	2.4.2 Optical transmission
	2.4.3 Electromagnetic Wave Transmission

	2.5 Modulation Techniques
	2.5.1 Amplitude Shift Keying
	2.5.2 Frequency Shift Keying
	2.5.3 Phase Shift Keying
	2.5.4 Quantization

	2.6 Conclusion

	3 Asynchronous Data Transmission
	3.1 Return to Zero Signaling
	3.2 Non-Return to Zero Signaling
	3.3 Character or Byte Synchronization
	3.4 Start- and Stop Bits
	3.5 Conclusion

	4 Synchronous Data Transmission
	4.1 Manchester-Encoding
	4.2 Bit Synchronization
	4.2.1 Clock encoding
	4.2.2 Digital Phase-Locked Loop
	4.2.3 Advanced DPLL use

	4.3 Conclusion

	5 Frame Synchronization
	5.1 Motivation
	5.2 Requirements
	5.3 Methods
	5.3.1 Time gap synchronization
	5.3.2 Start & End Flags
	5.3.2.1 Byte stuffing
	5.3.2.2 Bit stuffing
	5.3.2.3 COBS - Consistent Overhead Byte Stuffing

	5.3.3 Packet Length Indication
	5.3.4 Coding Violations

	5.4 Conclusion

	6 Real World Applications
	6.1 CSMA/CD (Ethernet)
	6.1.1 Bit synchronization
	6.1.2 Frame synchronization
	6.1.3 Error Detection

	6.2 FDDI - Fiber Distributed Data Interface
	6.2.1 Bit synchronization
	6.2.2 Frame synchronization

	6.3 Conclusion

	7 Conclusion
	Glossary
	Bibliography

