
University of Magdeburg

School of Computer Science

Master’s Thesis

Design and Implementation of an
Efficient Approach for

Custom-fields and Formulas with
SAP HANA

Author:

Molham Kindakli

July 20, 2015

Advisors:

Dr. Steffen Goebel

SAP SE

Prof. Dr. rer. nat. habil. Gunter Saake

M.Sc. David Broneske

Department of Data and Knowledge Engineering

Kindakli, Molham:
Design and Implementation of an Efficient Approach for Custom-fields and Formulas
with SAP HANA
Master’s Thesis, University of Magdeburg, 2015.

Acknowledgement

This thesis would never have been completed successfully without the help of following
people.

First and foremost, I would like to thank my adviser Dr. Steffen Göbel, for his patient
guidance during selecting of research topic as well as generous contribution of knowledge
and valuable comments during the writing of the thesis.

I would also like to thank a second adviser Prof. Gunter Saake, who always promptly
answered on all questions and helped with administration issues during the work.

I would like to give a special thank to M.Sc. David Broneske for his valuable remarks
and suggestions during the work.

Furthermore, I must also express gratitude to my family, who continuously supported
me and were very patient for my limited time during this work.

Contents

List of Figures vii

List of Tables ix

List of Code Listings xi

Glossary 1

1 Introduction 3
1.1 Motivation . 3
1.2 Goals and tasks . 3
1.3 Product Life-cycle Costing (PLC) . 4
1.4 Example scenario . 4
1.5 Related work . 5
1.6 Structure . 6

2 Background 7
2.1 Fundamental basics . 7

2.1.1 Model-driven engineering . 7
2.1.2 Template engines . 9

2.2 Technical background . 12
2.2.1 SAP HANA database . 12
2.2.2 Extended application services (XS) 14
2.2.3 Application Function Library 16

3 Custom-fields code generation 17
3.1 Overview . 17
3.2 Selecting the implementation target . 17
3.3 Requirement analysis . 18

3.3.1 Functional requirements . 18
3.3.2 Non-functional requirements . 18
3.3.3 Requirements summary . 19

3.4 Template engines classifications . 21
3.4.1 Template logic . 21
3.4.2 Template syntax . 22

vi Contents

3.5 Template engine selection . 22
3.5.1 Listing the potential template engines 23
3.5.2 Criteria matrix . 23

3.6 Contribution . 26

4 Designing and implementing a calculation interpreter of custom-defined
formulas 31
4.1 Overview . 31
4.2 Requirement analysis . 32

4.2.1 Functional requirements . 32
4.2.2 Non-functional requirements . 32

4.3 Formula language . 33
4.4 Using AFL for evaluation . 34
4.5 Selection of the development approach 35
4.6 Contribution . 36

4.6.1 Lexical analysis . 36
4.6.2 Syntax analysis . 38

4.6.2.1 Types of parsing . 39
4.6.2.2 Grammar . 40
4.6.2.3 Abstract Syntax Tree 41

4.6.3 Error handling . 43
4.6.4 Optimization and features . 45
4.6.5 Execution . 45

5 Evaluation 47
5.1 Overview . 47
5.2 Test cases validation . 47

5.2.1 Implicit casting . 47
5.2.2 Constant branches . 48
5.2.3 Arithmetic exceptions . 49

5.3 Performance evaluation . 49
5.3.1 Setup . 49
5.3.2 Parsing evaluation . 50
5.3.3 Execution evaluation . 50

6 Future Work 51

A Appendix 53

Bibliography 59

List of Figures

2.1 The relation between MDE, MDD, and MDA 9

2.2 Processing flow of a template engine. 10

2.3 Server-side template system . 11

2.4 Edge-side template systems . 12

2.5 Client-side systems . 13

2.6 Static page generators . 13

2.7 SAP HANA simplified architecture . 15

2.8 SAP HANA technologies[Sil15] . 15

3.1 The evaluation criteria . 25

3.2 Sequence diagram of custom-field code generation 27

4.1 The workflow scheme . 37

4.2 Different types of parsing algorithm . 39

4.3 Parse tree example . 42

4.4 Class diagram of the abstract syntax tree nodes 44

4.5 Abstract syntax tree example . 44

5.1 AST update, constant branch . 49

viii List of Figures

List of Tables

1.1 Calculation example . 5

1.2 Material properties . 5

3.1 Non-functional requirements of the tempating system 20

3.2 the evaluation criteria . 24

4.1 Preconditions of the formulas . 32

4.2 Non-functional Requirement of the formula interpreter 33

4.3 PLCUDF token types . 36

4.4 Sample of tokens . 38

4.5 Precedence order . 40

5.1 Execution time . 50

List of Code Listings

3.1 The input context variable . 28

3.2 Template code for generating dynamic database view 28

3.3 Tempalte engine execution . 29

3.4 The generated SQLScript code . 29

4.1 Lexical definition for integer literal . 38

4.2 Context-free languages . 41

4.3 AFL function signature . 46

A.1 lexiacal grammar . 53

A.2 PLCUDF grammar for ANTLRv4 [Kü14] 57

xii List of Code Listings

Glossary

AFL Application Function Library
ANTLR ANother Tool for Language Recognition
AST Abstract Syntax tree

BNF Backus–Naur Form

DOM Document Object Model

ERB Embedded Ruby

HTML HyperText Markup Language

JSON JavaScript Object Notation

MDA Model Driven Architecture
MDD Model Driven Development
MDE Model Driven Engineering
MDX Multidimensional Expressions

NFR Non-functional Requirement

PLC Product Life-cycle Costing
PLCUDF Product Life-cycle Costing User-defined Formula

SQL Structured Query Language

2 Glossary

1. Introduction

1.1 Motivation
Product costing is an important field for any company, especially in the area of manu-
facturing. It helps the company estimate its product cost and manage the costing split
among different production phases and various plants.

SAP is currently developing a new product for creating and managing product cost
calculations based on SAP HANA database. The costs shall be calculated from the
early stages of the product lifecycle. These calculations provide the customer with
indicators about pricing to compete with similar products in the market.

This product should provide a general-purpose calculation to serve the diversity of
customers. Therefore, the database schema cannot cover all the varieties of customers’
needs. Whereas, each customer has custom costing calculations for a particular product.
Moreover, the customers need and request to expand the calculation functionalities and
define their own price calculations based on the provided fields or additional required
fields.

The mentioned problem description implies the need for an efficient way to store the
additional fields and an implementation of an effective method to perform the customer’s
calculations. The implementation strategy is based on the dynamic creation of database
artefacts during the application runtime.

1.2 Goals and tasks
Goal of this Thesis

The goal of this thesis is to design an approach for the custom-fields and custom-
formulas and then integrate an implementation with SAP HANA.
Furthermore, it is aimed to parse the user formulas and evaluate them on an optimized
way within SAP HANA. Eventually a proof the concept is shown by implementing
prototypes for both sections.

4 1. Introduction

The tasks

With this thesis, we aim to provide the following:

• An investigation of the related work for generating database artefacts including
stored procedures using model-driven approaches.

• A requirement analysis for code generation with JavaScript based on the custom-
fields generation use case.

• A prototypical design for dynamic SQLScript generation and related database
artefacts creation.

• A requirement analysis for custom formulas calculation based on an existing gram-
mar for the formula language and the potential extensions.

• A prototypical design of an application function as interpreter for custom formulas
in C++.

1.3 Product Life-cycle Costing (PLC)

Product development evolves and is subject to change, meanwhile the cost estimation
over time is influenced by various factors such as the material prices and currency
exchange rates.

Product life-cycle costing (PLC) is a new product powered by SAP HANA which aims
to determine costs at an early stage of the product life-cycle to drive profit margins
and reduce risks. These costs can be calculated manually; however it is challenging to
keep the calculation history and often the time effort for the calculation is prohibitive.
Additionally, the resulting data has a high potential for inconsistency.

PLC provides many features to calculate costs precisely and increase the success factor.
It is designed to keep track of all the calculations and help the management to make
decisions and develop future strategies. For instance, PLC supports pricing strategies
in a way the customers can compare material prices with alternatives and provide
competitive cost.

1.4 Example scenario

For better illustration, we use a running example throughout the thesis. In Table 1.1,
we show a simple cost calculation for an item similar to PLC calculation. The cost of
the item is calculated by summing up all the sub-item costs.

The aim of the thesis is to add additional columns dynamically based on customer
specifications. For example, adding energy consumption or carbon dioxide emissions
columns. Another task is to provide formulas as column values in addition to the literal

1.5. Related work 5

values. Those formulas are based on both existing fields and custom defined fields.
The formula is defined for one column and applies on each row according to custom
conditions set by the customer.

For instance, if we have an additional column that represents the energy consumption,
the energy equation depends on the Manufacturing hours.

Energy = Manufacturing hours ∗ 3.5

Item ID Price Quantity
Manufacturing

hours
Total Cost

Mobile 8437 1 257.5

Screen 7501 20 1 25 30

Speaker 7128 3 2 3 6

Board 9734 1 23 212.5

CPU 9045 100 1 62.5 100

RAM 7934 25 1 4 50

GPU 9200 15 1 4 15

Camera 5233 2 1 7 2.5

Screw 8794 0.5 15 1 6.5

Table 1.1: Calculation example

The materials in the calculation table have some meta-data other than price and quan-
tity. There are also some header fields that are defined for all calculations related to a
customer. These additional properties can be included in the formulas as well as in the
conditions. In Table 1.2, we present a sample of these properties related to previous
calculation.

1.5 Related work

There were two previous works before this thesis discussing the custom-defined formulas.

Item ID Material type Plant ID Cost element ID ...

7501 A1 1000 652

7934 A2 1000 634

5233 B7 2000 541

...

Table 1.2: Material properties

6 1. Introduction

In the thesis of [Kü14], the custom-formulas were expressed by a grammar using the
ANTLR v4 parser generator. The prototype was developed independently of PLC using
C#. To calculate the custom-formulas, a grammar corresponding to the input has been
converted to a database query. The database query is generated on the client side,
transmitted to and executed on the server. This work faces several basic problems.
First, it is working independently of PLC. Second, the queries are generated on the
client side and have to be considered as threats to database security.

In the same context, the thesis of [Rus15] used a JavaScript client-side parser PEG.js
and a special kind of views as a generation target. These views are called Calculation
Views. In [Rus15], the calculation views were generated in XML format. Those views
are converted to SQLScript internally and executed by SAP HANA. This work was
expected to have performance problems but due to SAP HANA optimization on the
SQLScript execution, it has sufficient performance. However, there were some limita-
tions at this approach:

• It cannot provide a sufficient, flexible solution because it is limited to SQLScipt
functionalities. For example, it is only possible to define additional built-in func-
tions or user-defined functions in case there is a corresponding SQLScript function.

• Another restriction is that the execution is done row by row and there is no
possibility to store or access values on a different row.

• The error reporting during the execution is also limited to SAP HANA errors.
There is no way to define custom error messages.

• Finally, in case an error occurs the execution for all view fails and the trace does
not report in which row the error occurs.

1.6 Structure

Structure of the Thesis

Apart from this chapter, our thesis comprises five further chapters as follows:

In Chapter 2, we give fundamental basics about Model-driven engineering and templat-
ing systems, and provide technical overview of the used technologies.
In Chapter 3, we consider different choices of templating systems and propose our ap-
proach to dynamically generate custom-fields and the related database artefacts.
In Chapter 4, we propose our approach to implement an interpreter to evaluate custom-
formulas and conduct an example through the chapter to explain the different stages.
In Chapter 5, we provide test cases related to custom-formula evaluation beside, per-
formance evaluation for the interpreter to compute parsing time and execution time.
In Chapter 6, we summarize the outcome of the thesis and our contributions, and we
present future work.

2. Background

In this chapter, we introduce background knowledge and the main foundations on which
our approach relies. We describe the software engineering concepts related to model-
driven engineering and template engines at the first part of the chapter in Section 2.1.

In the second part in Section 2.2, we present the related technical details of SAP HANA
database. We start by briefly describing the database architecture and give more de-
tailed description of the database parts related directly to our thesis.

2.1 Fundamental basics

Model-driven Engineering (MDE) is a software development approach which focuses
on creating models, or abstractions. Model-Driven Architecture (MDA) is a standard
implementation of the MDE by Object Management Group (OMG) which defines three
levels of modeling abstraction. In this context, the Model-Driven Development (MDD)
is a new software development pattern for creating software using the concepts of models
and model transformations. The application of the Model-Driven Development could
improve the quality of software development and increase the flexibility in adaptation
to different technologies. It also shortens the ramp-up time of products. [Lon10]

2.1.1 Model-driven engineering

MDE is a software development approach that is used to raise the abstraction level
of system modeling and increase the development automation to alleviate complexity.
This kind of abstraction raises the productivity by increasing the compatibility between
systems and simplifying the design process. This abstraction leverages simpler models
with problem based focusing.

MDE supports automated transformation to convert the system model into another
representation such as source code. Model transformation allows moving from an ab-
stract meta-model to a model representing the implementation of the system. To ensure

8 2. Background

the quality of the model, MDE uses model validation, model checking, and model-based
testing. [CH06]

Model-driven development

MDD is a standardized methodology for development approaches. MDD focuses on
modeling rather than developing programs which leads to concepts closer to the problem
domain and not bounded to an implementation technology [Sel03].
In MDD, code is generated automatically from abstract models. MDD also supports
model-to-model transformations [BIJ06].

Model-driven architecture

MDA was proposed by Object Management Group (OMG) applying MDE as a standard
and working efficiently for tools and models. MDA uses UML standard in development
model driven software. MDA increases development productivity by maximizing com-
patibility while transforming between the models. In Figure 2.1 1, we illustrate the
relation between the different concepts.

MDA defines the guideline specifications in terms of models and their transformations.
OMG has defined Query View Transformation (QVT) which is a standard language for
model transformation.

MDA separates between the system functionality and its implementation. It has three
levels of abstraction based on the model that is considered the main structure unit.
This provides flexibility and reusability during the implementation targeting different
platforms.

Model transformations

Model transformations allow converting models from one representation into another
[SK03], so that one model conforms to a meta-model. The model is an abstract rep-
resentation of the structure, functionality and behavior of a system. Whereas the
meta-model is a model characterizing the structure, semantics and constraints of other
models [SV05]. It is written in a well-defined language that defines the abstract syn-
tax of modeling languages. M2T (model-to-text) transformation is one type of model
transformation that converts abstract models into textual representations of particular
programming languages [CH03]. M2T transformations are template-based approaches
using predefined textual templates, which contain slots that point to particular model
entities and are substituted by an appropriate generator engine with corresponding
content of input models [Loc10].

M2T examples:

1This figure is based on http://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/

http://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/

2.1. Fundamental basics 9

Figure 2.1: The relation between MDE, MDD, and MDA

• Acceleo is an open source code generator for Eclipse used to generate textual
languages.

• Velocity is a Java-based template engine, introduces a powerful template lan-
guage with reference to objects in Java code. It includes placeholders filled with
content during the rendering process.

• FreeMarker is a Java-based template engine, supports the construction of web
pages with dynamic content.

• RISE is a software suite for MDD, generates the code and then integrates the
generated solution with a development environment.

• QVT, MOFScript, openArchitectureWare, JET, EMF ...

2.1.2 Template engines

The template-based approach is an M2T transformation that uses a transformation
engine for one single domain that can produce complex structures of the model corre-
sponding to this specific domain [Loc10]. The template engines are used to combine
structured templates with input data to get the result document. The templates are
usually text documents written by templating language holding placeholders that are
replaced by actual input arguments using the template processing system or simply the
template engine [ABvdB07]. The templating system consists of three elements:

• The template

• The data model

• The processor

10 2. Background

Figure 2.2: Processing flow of a template engine.

Usage

Different types of output can be produced for different purposes such as: source code
generation, automatic emails, and web applications. The most common template en-
gines are web template systems that generate web pages. Another type is code gen-
eration tools which use standard modeling languages such as UML to generate the
source code of a specific language. In general, the template engines use an evaluator
to generate a text document from a data model. In Figure 2.2 we show the evaluation
process.

A template-based approach is used wherein a template specifies a text tem-
plate with placeholders for data to be extracted from models. [OMG08]

Template engines are used mainly to generate dynamic documents [Par04], which in
turn simplify development and improve system flexibility. They can also help with
reusing components during the development and reduce maintenance costs. With the
goals of efficiency, implementation transparency, security, and standards compliance in
mind. The main goal of using template engines is to organize the code and make it more
readable, extensible and to separate the presentation from the business logic [TS09].

Comparison

There are many template engine solutions sharing common properties. However, we
can differentiate between them using several criteria. Each template engine is based
on a model, either textual or graphical. The structure of the template and what will
be produced are the main criteria for choosing a template engine. Addressing system
security is very important to prevent security holes. Especially when using web template
systems which have been vulnerabele to SQL injection in the past [LX14]. Eventually,
different solutions can be distinguished by their ability to support template testing and
validation in order to prevent and track errors [Ber07].

2.1. Fundamental basics 11

Figure 2.3: Server-side template system

Kinds of web template systems

On client-server architecture we can identify different kinds of template systems by
where the template is combined with the data model.

1. Server-side systems
The template substitution occurs on the server side. The template system gener-
ates the result documents on the server and sends them to the clients Figure 2.3.
The same procedure is used in script languages such as: Active Server Pages
(ASP), JavaServer Pages (JSP), and PHP. Many other t§emplate systems are
generally used as server-side template systems: Mustache, XSLT, FreeMarker,
and Smarty.

2. Edge-side systems
The template substitution occurs on an intermediary between the server and the
client Figure 2.4. The main purpose of this separation is to reduce the network
traffic and the server processing by having many Edge-side servers and caching
the result content in them. Edge Side Includes (ESI) is a special markup language
for edge level dynamic web content assembly that is used on the Edge-side server
[Tec15].

3. Client-side systems
The template substitution occurs on the client side Figure 2.5. The server trans-
fers the template and the data model to the client then using client-side scripting

12 2. Background

Figure 2.4: Edge-side template systems

language such as Javascript. The result documents can be generated and dis-
played directly. Closure Templates, EJS, and Pure. are examples of client-side
templating systems.

4. Static page generators
This kind of templating system creates static pages. The template language is
used only once while creating the pages. Then they are published on the server
as static content Figure 2.6. This can be used on content management systems
(CMS) such as Wordpress as a feature to speed up the system.

2.2 Technical background

The following sections describe the technical environment used within the thesis. First
of all, this includes the SAP HANA database. The subsequent sections provide a closer
look at basic parts, the Extended Application Services and the Application Function
Library.

2.2.1 SAP HANA database

SAP HANA is an in-memory data platform for relational database management systems
that supports multiple cores as well as multiple CPUs and large main memories to
provide parallel processing capabilities and thereby improves the performance [Wal12].
SAP HANA database supports two data storage layouts, the column-based store for
OLAP support and the row-based store for OLTP operations.

SAP HANA includes various engine types. The main SAP HANA database manage-
ment component is the index server, which contains the actual data storage and many

2.2. Technical background 13

Figure 2.5: Client-side systems

Figure 2.6: Static page generators

14 2. Background

engines for processing the data such as the processing engine, the calculation engine,
and the execution engine [FM12].

• The processing engine is responsible for managing and converting the data storage
between column-based and row-based layout.

• The calculation engine transforms the query from different interfaces such as stan-
dard SQL, SQLScript and MDX into execution plan to be optimized and executed.

• The execution engine uses the processing engine to execute the queries represented
by execution plans and send the result back.

In Figure 2.7 we show a simplified architecture of SAP HANA database divided into
different layers. Further details about SAP HANA are beyond the scope this work,
for detailed information, it is advised to check [MV13, PL15] and [Wal12]. The used
scripting language for SAP HANA is SQLScript as well as the standard SQL. SAP
HANA also supports a framework for the installation of specialized functional libraries
which can be called directly from within SQLScript. These application function libraries
(AFL) are integrated with index server’s engines.

SQLScript

SQLScript is SAP specialized scripting language used in SAP HANA database which
is based on a collection of extensions to SQL. The extensions are [sql11]:

• Data extension allows the definition of table types without corresponding tables.

• Functional extension allows the definition of functions which can be used to ex-
press and encapsulate complex data flows.

• Procedural extension provides imperative constructs executed in the context of
the database process.

SQLScript is designed to move the logic from the application layer into the database to
provide optimization possibilities and avoid copying the data to the application server
and for leveraging complex parallel execution strategies of the database.

2.2.2 Extended application services (XS)

Extended application services (XS) engine is both a lightweight web server and the
application server of SAP HANA platform. It handles the control flow logic and provides
a set of services that support web-based applications. This includes OData support,
server-side JavaScript execution, and full access to SQL and SQLScript. In Figure 2.8
we show various services supported by the XS engine and the communication between
the client and SAP HANA via the XS engine.
Accordingly the XS engine is an application development platform for building and
deploying applications. It manages the HTTP requests from the client to transmit the
data.

2.2. Technical background 15

Figure 2.7: SAP HANA simplified architecture

Figure 2.8: SAP HANA technologies[Sil15]

16 2. Background

2.2.3 Application Function Library

Application function library (AFL) is creating extension libraries for the kernel of SAP
HANA database using C++. These libraries can be installed into a SAP HANA in-
stance. Subsequently, the functions provided in the library are available to the database
users, similar to the SAP HANA SQLScript procedure.

These libraries can be integrated directly in the project development, speeding up
projects by avoiding writing custom complex algorithms from scratch. AFL also of-
fers very fast performance, as AFL functions are running in the core of SAP HANA
database.

3. Custom-fields code generation

In the previous chapter we introduced the necessary background knowledge to under-
stand this thesis. In this chapter we present an overview of the issue that we want to
solve in Section 3.1. In Section 3.2 we analyze the implementation target of our ap-
proach. Then, we propose our approach to generate SQLScript code using a template
processor. In Section 3.3 we list the system requirements and categorize the templating
system solutions in Section 3.4. In Section 3.5 we enumerate the applicable templating
solutions and give a comprehensive compression. Finally we present in Section 3.6 a
proof of concept representing the integration of a template processor within the SAP
HANA environment.

3.1 Overview

The PLC has a database schema containing a limited number of tables and columns.
Since it is targeting different varieties of customers, it is not possible to include every-
thing required. Our proposed approach is to generate custom-fields code dynamically
which may leads to create or update other database artefacts such as tables, columns,
views, or procedures. Thus, an efficient way to store the model for additional columns
and tables as well as building a variable data scheme is required.

3.2 Selecting the implementation target

There are many possibilities to achieve extensibility and generate the custom-field
columns in relational databases. However, we are looking for an approach that is appli-
cable during the application run-time. Moreover the custom-fields code generation has
an impact on other database artefacts that should be generated or updated accordingly.

SAP HANA provides a database access and SQLScript commands execution through
XS Engine. XS Engine uses server-side JavaScript and allows the native development

18 3. Custom-fields code generation

capabilities. It gives the possibility to build and execute SAP HANA XS applications
on the server side using JavaScript. Those applications are tightly integrated with the
database and run directly on SAP HANA to perform the generated statements.

As a result, we consider using the XS engine as our implementation target and focus our
investigations on the web templating systems that can be used within the XS engine.

3.3 Requirement analysis

The following sections aim at analyzing the requirements of choosing the templating
system and building a solution based on it. We divide the obtained requirements
into functional and non-functional requirements. A functional requirement describes a
desired function of the templating system that considers a specific input into the system,
performs one or more operations in response to the input and creates an output from
the system. In contrast, a non-functional requirement describes the characteristics of
these functions. The last subsection summarizes the requirement analysis by providing
a list of the obtained requirements.

3.3.1 Functional requirements

As initially stated, generating database artefacts such as columns, tables, views and
procedures dynamically in SAP HANA during the application run-time is the main
requirement (FR-1).

Another requirement is to store the template at the database (FR-2). The templating
system requires a model that can be stored in the database as meta-data. In furtherance
of forming the SQLScript commands, the relevant template information should be stored
as well.

The third requirement is to integrate the approach with SAP HANA system and the
PLC. In order to provide a flexible solution with dynamically generated artefacts and
compatible with variant customers (FR-3).

3.3.2 Non-functional requirements

Non-functional requirements define the system attributes and place restrictions and
constraints on the system and the development process. Based on IEEE-Std 29148:2011
[Sta12] non-functional requirements might be split into quality requirements and human
factor requirements.

Quality requirements should be tailored to the system being developed. Measuring
the quality requirements should be included as well. Such as: flexibility, portability,
reusability, reliability, maintainability, and security.

Human Factors Requirements Define the required properties for the interaction with
the system users. Such as: safety, performance, effectiveness, efficiency, reliability and
maintainability.

3.3. Requirement analysis 19

To compare and evaluate different web templating systems, the definition of evaluation
criteria, as well as an evaluation measurement are necessary. In the following, we will
illustrate the NFRs that are elicited and documented based on SAP product qualities
and interviews with the PLC product manager [AACF12]. Each constraint leads to
one or more adequate requirements, the Table 3.1 contains NFRs definitions along with
their priorities.

It is very important to have a secure solution (NFR-1) to eliminate any unauthorized
access and protect the system from accidental damage. Therefore the templating sys-
tem should prevent SQL injections and other malicious damage. Moreover the access
permission is granted from the XS engine while generating the adequate artefacts.

The templating system should be able to reuse parts of the template to generate other
artefacts (NFR-2) and this is for two reasons: reducing the repetition, and improving
the system maintainability by making it less risky to update the code.

Each template contains placeholders in addition to the logical statements such as loops
and conditions, hence well-organized templating language makes it easy to figure out
the template and to update it later, which infers to (NFR-3).

Another constraint is using the templating system and integrate it with SAP HANA
without spending a lot of time in learning the templating language, taking this con-
straint into account by choosing a solution with short ramp-up time and productivity
(NFR-4).

Furthermore, the rendering process to generate the dynamic artefacts code should be
done fast so the produced code is executed in HANA (NFR-5).

Basic validations and error tracking are required to increase the efficiency of the system
(NFR-6,7,8).

Meanwhile, SAP is providing a commercial product that must be supported continu-
ously, any external system integrated with SAP HANA must have well-organized doc-
umentation and supportive community to communicate with the system developers in
case there is any bug and to keep the system up to date for the prospective develop-
ment.(NFR-9,10,11).

The execution in SAP HANA server demands an additional restriction that the tem-
plating system must work as standalone solution and does not require any external
dependencies while running (NFR-12).

It is very important for SAP to use public-licensed solution that allows commercial
usage (NFR-13). One example of those open source public licenses is the MIT license
which includes the following section: ”the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software” [MIT]

3.3.3 Requirements summary

Based on the requirements, we are looking for a web templating system that works
on the server-side and renders JavaScript template to generate SQLScript code. The

20 3. Custom-fields code generation

ID Name Description Priority

NFR-1 Security ”Specify the requirements to protect the
software from accidental or malicious ac-
cess, use modification, destruction, or
disclosure”[Sta12]

High

NFR-2 Reusability/DRY The support for reusing code and reducing
repetition

Low

NFR-3 Readability How easily can the structure of a template
be distinguished and understood what it
will produce.

Medium

NFR-4 Ramp-up time The shape of the learning curve using the
templating system language and how fast
building things can be done later on.

Medium

NFR-5 Performance The execution time while rendering a tem-
plate

Low

NFR-6 Ease of Debugging The possibility to track down errors while
the templating system is running

Medium

NFR-7 Validation The validations that can be done at
compile-time to prevent errors at runtime

Medium

NFR-8 Testable The ability to write unit and integration
tests

Medium

NFR-9 Documentation The available description about the tem-
plating system

High

NFR-10 Community The active community using the templat-
ing system

Medium

NFR-11 Maturity The time period since the last stable ver-
sion of the templating system is produced

Medium

NFR-12 Library agnostic The dependencies on other libraries Medium

NFR-13 License The copyright obligation on using the tem-
plating system or parts of it

High

Table 3.1: Non-functional requirements of the tempating system

3.4. Template engines classifications 21

generated statements will be executed to produce the custom-fields and the related
database artefacts.

Additionally, the templating systems must be integrated with the PLC but work inde-
pendently. Furthermore, we should ensure simplicity and avoid security vulnerabilities.

3.4 Template engines classifications

From now on, we will refer to templating system as template engines. Template engines
classifications can be divided into two main categories: syntax and logic. Throughout
this section, we explain in detail how the classification is performed.
As stated in Section 2.1.2, template engines use templating languages to express the
syntax which in turn defines the structure of the template.

Our approach works in application server layer of SAP HANA; this layer uses JavaScript
to build the applications. We can confine our classification of the different web template
engines with those using JavaScript as templating language.

3.4.1 Template logic

The degree of the permitted logic supported by the templating language varies among
the template engines. Some templating languages do not support logic while other
templating engines allow logic to control the structure of the generated document. In
contrast to pure JavaScript templating engines that use JavaScript to generate the
documents, these kinds of templaing engines are compared below 1:

• Logic-less template engines do not allow inline JavaScript code in the tem-
plate. In this type the template engine is responsible for the view and it is sep-
arated from control. However, the template engine can control the logic within
the template by using special directives to express loops and conditions.

– Mustache.js

– Hogan.js

– Handlebars

– Dust.js

• Embedded JavaScript template engines allow to embed JavaScript code
directly within the template.

– Underscore.js

– Jade

– doT

– EJS
1based on http://psteeleidem.com/the-JavaScript-templating-landscape

http://psteeleidem.com/the-JavaScript-templating-landscape

22 3. Custom-fields code generation

3.4.2 Template syntax

From another perspective, the syntax defines the structure of the template. The tem-
plate engines can be broken down into three types based on how the syntax is formed,
including the following categories 2:

• Text-based A text-based templating language has a custom parser to recognize
template directives to generate text documents. Examples of text-based templat-
ing languages are:

– Dust

– Mustache

– Handlebars

• Markup-based which recognizes templating directives inside the templates. The
directive types can vary individually. HTML-based templating language uses the
HTML elements as directives. Those directives are translated into HTML code
and generating proper web pages. Whitespace-based template engines organize
the generated documents on the whitespace, for example:

– Marko

– Haml

– Jade

• DOM-based A DOM-based templating language depends on DOM tree which
represents the logical document structure to recognize templating directives. It
produces the DOM tree that is rendered in the browser so it is basically working
on the client-side or on virtual DOM on the server-side. Examples of DOM-based
templating languages are:

– AngularJS

– Knockout

– Weld

3.5 Template engine selection

After we listed our requirements and explained the template engine classifications, we
will enumerate the most common server-side JavaScript template engines, analyze their
features, and pick the best template engine that meets our requirements. Then, we will
expose our approach using the picked template engine.

2based on http://psteeleidem.com/the-JavaScript-templating-landscape

http://psteeleidem.com/the-JavaScript-templating-landscape

3.5. Template engine selection 23

3.5.1 Listing the potential template engines

There are many web template engines using JavaScript as templating language and
sharing common features. The template engine selection is based mainly on Linkedin
research where they picked a JavaScript templating solution and moved from Java
Servlet to JavaScript template engine [Lin].

We came up with a list of 10 web template engines. In the following, we mention and
cite an overview of the template engines to be examined:

Mustache.js is a logicless, text-based template engine which defines a standard tem-
plating language used in many other template engines. It does not support any logic
statement and can be used to generate any text file. [Leh15]

Jade.js is a whitespace-based template engine that is used for writing HTML. It allows
JavaScript code to be embedded in the template. But, it is not suitable for non-HTML
output. [Lin15]

Handlebars.js is a logicless and text-based template engine, it is based on mustache
syntax but it is extended to offer other directives supporting conditional statements.[Kat15]

Hogan.js is a logicless and text-based template engine that is also based on mustache
syntax. It supports compiling method to save a compiled template in order to fast
rendering and having fast performance.[Inc15]

Underscore.js is a utility library for JavaScript that provides many built-in func-
tions. It also provides simple text-based template engine with ERB syntax to embed
JavaScript code. [Ash15]

EJS is a file-based template engine that also uses ERB syntax. The JavaScript code is
embedded within special directives and evaluated in-place. [Con15]

Marko.js is an HTML-based template engine. Its syntax and its logic are embedded
within HTML directives. It is not suitable for non-HTML templates. [PSI15]

Dust.js is a logicless and text-based template engine, which has the basic conditional
operators. It supports composable templates from partial includes and dynamic tem-
plate blocks.[Cor15]

Markup.js is a logicless and text-based template engine. It is based on mustache
syntax. It supports conditional statements with many flexible options to manage the
control over the template.[Mar15]

doT.js is a text-based template engine that supports including partial templates. It
also supports delimiters customization and conditional operators. [Dok15]

3.5.2 Criteria matrix

After taking the requirements to generate the SQLScript code in consideration, we have
the following main criteria summarized in Table 3.2 to choose a template engine from

24 3. Custom-fields code generation

the previous candidates. This table is based on [Lin] research and has been updated to
fit our requirements. In Chapter A, we have more detail about how Linkedin filled the
criteria table.

Mustache Handlebars Dust Underscore EJS doT Markup Hogan

DRY 4 4,5 4,5 3 3 3 3 4

Performance 2 4 5 5 3 4 3 3

Ramp-up time 4 4 4 4 3 3 3 3

Ramp-up pro-
ductivity

4 4 4 4 3 3 4 3

Community 4 4 3,5 5 2 2 1 3

Library agnos-
tic

4,5 4,5 4,5 4 4 2 2 4,5

Testable 3 3 3 4 3 3 3 3

Ease of debug-
ging

3 3 3 3 3 3 2 3

Maturity 4,5 3,5 3 4 2 1 3 3

Documentation 4 4,5 4 3 2 1 3 4

Code documen-
tation

3,5 3,5 3,5 3 3 3 3 3,5

License MIT MIT MIT MIT MIT MIT MIT
Apache

v2.0

Total 41 43 41 42 31 28 30 38

Table 3.2: the evaluation criteria

For reasons of clarity, Figure 3.1 is established based on Table 3.2. We focus on the
most important requirements.

After going through the evaluation process, we had four candidates with the highest
ratings: Mustache.js, Handlebars.js, Underscore.js, and Dust.js. We prioritize the re-
quirements and list the detailed specifications for these candidates:

Mustache.js

+ Popular choice with a large, active community.
+ Clean syntax leads to templates that are easy to build, read, and maintain.
- A little too logicless. Just for doing the basic tasks. It is difficult to apply our work
with the current logic.

Handlebars.js

+ The same syntax as Mustache, so the templates are easy to build, read, and main-
tain.

3.5. Template engine selection 25

Figure 3.1: The evaluation criteria

+ The templates are compiled rather than interpreted templates which make it faster.
+ Better support for going deep through the data model.
+ Allow to define custom directives called helpers.
+ Allow template partials for code reusing.

Underscore.js

+ Very popular choice with a large, active community.
+ Provides a lot of built-in functions.
- The syntax is more complex than other templating languages.
- Required a source code modification to work with SAP HANA.

Dust.js

+ The same syntax as Mustache, so the templates are easy to build, read, and main-
tain.
+ The templates are compiled rather than interpreted templates which make it faster.
+ Better support for going deep through the data model.
+ Allow to define custom directives called helpers.
+ Inline parameters support.
- Maintainer of Github repository is not responsive.
- Required HTML root object otherwise the engine code should be updated to work
properly with SAP HANA.

We choose Handlebar.js as our template engine from the previous list because of the
following:

26 3. Custom-fields code generation

• It does not require any change to work with SAP HANA XS engine.

• There is no dependencies on DOM or HTML directives while parsing the template.

• It is able to generate the SQLScript code as a plain text.

• The software license allows commercial use.

• It has good maturity and high community support.

3.6 Contribution

Custom-field generation is the main purpose of our approach. In this section, we show
how to use the web template engine to generate the custom-fields generation code or
any other related database artefacts. In particular, we show an implementation of a
use case, using the chosen template engine, integrated with SAP HANA.

To create those artefacts, we have the following components shown below:

• The library manger imports the JavaScript library into the XS and provides
a handler to use its functionalities. The library manger is also responsible for
logging states while executing a template. Moreover using the library manger, we
can define a new helper that provides additional functionalities.

• The database manger stores the different templates and data models and man-
ages the dependencies between the templates in addition to the execution of the
SQLScript commands and the creation of the artefacts.

• The process manager is responsible for rendering and compiling the templates.
It verifies and reports the errors as well.

In Figure 3.2 we illustrate our approach in a sequence diagram. We show the system
components and the processes order. The process manager initializes the custom-fields
code generation and proceeds with the different stages till the SQLScript code is gen-
erated. The database manager executes the code statements, creates or updates the
associated artefacts and stores them at the database.

We will give a code example to illustrate our approach on how the template engine can
be integrated with SAP HANA and fulfill the functional requirement by generating a
dynamic SQLScript code. The following sample creates a dynamic database view based
on a custom data that is stored in a meta-data table.

The database manager stores the data model in the database. During the execution the
process manager requests the data model. The data model should be converted into
JSON by the process manager in order to use it from the template engine.
In Listing 3.1, we have a JSON object that holds the data for creating the view such
as:

3.6. Contribution 27

Figure 3.2: Sequence diagram of custom-field code generation

28 3. Custom-fields code generation

• The generated view name at line 3.

• The data tables and the columns that will be included in the result which are
represented as array of objects at line 4.

• And the SQL conditions for creating the view at line 12 and 13.

Listing 3.1: The input context variable

1 var context = {

2 "view" : {

3 "id" : "v_temp",

4 "tables" : [{

5 "name" : "\"t_item\" i",

6 "columns" : ["name", "parent_id"]

7 }, {

8 "name" : "\"t_item_extra\" e",

9 "columns" : ["extra_col1" , "extra_col2"]

10 }],

11

12 "join_condition" : ["i.\"id\" = e.\"id\""]

13 ,"additional_condition" : ["i.\"parent_id\" = 39465 " , "extra_col1 < 231"

"]

14 }

15 };

The template is stored in the database and defined as text template containing place
holders. The process manager requests it from the database manager. In Listing 3.2,
we show the template code of creating a view. The syntax is based on the SQLScript
syntax rules to create view. The lines 4-12 will produce the select part of the create
statement. The line 13 will produce the from for table selection. And finally the line
14-17 will produce the conditions.

Listing 3.2: Template code for generating dynamic database view

1 var template =

2 " CREATE view

3 {{view.id}} AS select

4 {{#view.tables}}

5 {{#if @last}}

6 {{#columns}} {{#if @last}} \"{{.}}\"

7 {{else}} \"{{.}}\" , {{/if}}

8 {{/columns}}

9 {{else}}

10 {{#columns}} \"{{.}}\", {{/columns}}

11 {{/if}}

12 {{/view.tables}}

3.6. Contribution 29

13 from {{#view.tables}} {{#if @index}}, {{/if}} {{name}} {{/view.tables}}

14 where {{#view.join_condition}}

15 {{#if @index}} AND {{/if}} {{.}}

16 {{/view.join_condition}}

17 {{#view.additional_condition}} AND {{.}} {{/view.additional_condition}}";

In Listing 3.3 we show the JavaScript code after importing the handlebars as external
library into SAP HANA XS engine. First, the process manager compiles the template
which means to parse and translate it. And then the process manager renders the
template by applying the actual data and generating the result. The rendering is done
by replacing each placeholder with the actual provided data from the data model and
executing the templating logic if there is any. Eventually, the process manager sends the
generated statements to the database manager, which in turn executes those statements
and generate the artefacts.

Listing 3.3: Tempalte engine execution

1 var compiled_template = handlebars.Handlebars.compile(template);

2 var sql = compiled_template(context);

3 var conn = $.db.getConnection();

4 var ps = conn.prepareStatement(sql);

5 ps.execute();

6 ps.close();

In the Listing 3.4 we display the result after the template engine rendered the template.
The result is a SQLScript command which can be executed in SAP HANA to generate
the desired view that will be stored permanently in the database. The first line is
containing the name of the generated view and the name of the columns at this view.
The second line is containing the table names. And the third line has the conditions.

Listing 3.4: The generated SQLScript code

CREATE view v_temp AS select "name", "parent_id", "extra_col", "extra_col2"

from "t_item" i , "t_item_ext" e

where i."id" = e."id" AND i."parent_id" = 39465 AND extra_col1 < 231

This view is created dynamically by the template engine based on various column
names. The used columns might be custom-fields that are generated at the same way.
The database manager stores those the dependencies and the process manager execute
the template on a provided order to keep the database consistency.

30 3. Custom-fields code generation

4. Designing and implementing a
calculation interpreter of
custom-defined formulas

In this chapter, we propose an approach to evaluate the custom-defined formulas using
a special Application Function Library (AFL). We present the system requirements in
Section 4.2. The formulas are written using the specification of PLCUDF language
which is described in Section 4.3. In Section 4.4, we discuss selecting the AFL as our
generation target. In Section 4.5, we present different approaches for the evaluation
and in Section 4.6, we present our contribution.

4.1 Overview

The PLC allows the user to calculate the product costing from different costs of prod-
uct’s materials. Those costs are either literal values that can be computed directly or
custom defined formulas that need to be evaluated to obtain the result values. For hav-
ing a standard language that looks familiar for PLC customers, the formula language
is defined as Excel-like formula.

For illustration, we will use the introduction example described in secSection 1.4. We
assume that a customer has the following equations for computing the energy consump-
tion and carbon dioxide emissions.

Energy :

{
E1 = Manufacturing hours ∗ 3.5

E2 = Manufacturing hours ∗ 3.5 + plant distance/2.7

CO2 : C =
√
Energy ∗ 0.05

32 4. Designing and implementing a calculation interpreter of custom-defined formulas

ID
Pre-conditions

Plant ID Material ID Cost element ID Working center ID

E1 1000 2342 652

E2 2000 634 22

C 1290 541

Table 4.1: Preconditions of the formulas

Many equations can be defined for the same field. However, those equations are com-
puted only when the values from Table 4.1 equal the corresponding values of the eval-
uated row. We check the matches between Table 4.1 from one side and Table 1.1,
Table 1.2 on the other side. Those values form the calculation preconditions.

The preconditions are conjunctions of item’s properties where the empty value means
no precondition is applied.

Our contribution is to implement an interpreter evaluator, that takes the formulas as
input strings, compiles them on the fly, and computes the results. For this, we have
to build an interpreter in the AFL that checks the correctness of grammar, and then
generates the appropriate results.

4.2 Requirement analysis

The following sections aim at analyzing and specifying the requirements of the formula
interpreter. A functional requirement describes a desired function of the interpreter. In
contrast, a non-functional requirement describes the characteristics of these functions.

4.2.1 Functional requirements

The main requirement is to evaluate user-defined formulas in SAP HANA and return the
results to the user (FR-1). The formula must match the PLCUDF language which uses
Excel-style formulas. Furthermore, the execution order of different formulas should be
determined based on the relations between those formulas and the dependencies among
them (FR-2). Moreover, the existence of any circular reference should be checked,
where the formula depends upon the result of the same formula. In the same vein,
we should validate the preconditions for each formula (FR-3), to identify the proper
formula before starting the evaluation since the formula is not valid for all items.

4.2.2 Non-functional requirements

The execution speed is a measure for the time duration of a query on data sets. The
aim is that the execution speed is as fast as possible (NFR-1). To achieve good
performance, the formula should be parsed and evaluated in the core of SAP HANA.

4.3. Formula language 33

ID Name Priority
NFR-1 Performance High
NFR-2 Flexibility Medium
NFR-3 Validation High
NFR-4 Extensibility Medium
NFR-5 Integrity High
NFR-6 Library agnostic High
NFR-7 License High

Table 4.2: Non-functional Requirement of the formula interpreter

Furthermore, the PLC calculation has a hierarchical structure. To calculate any item
cost, we sum up all the cost of sub-items. Therefore, the formula language should
support a flexible navigation through different hierarchical levels (NFR-2).

The parsing algorithm indicates how quickly the formula can be processed. Further-
more, the algorithm determines the structure of the grammar and may enforce restric-
tions. For instance, not all algorithms can process a left-recursion (NFR-1,2).

Implementing the solution in the core on SAP HANA imposes a high demand on the
validation process as it may affect the SPA HANA database (NFR-3). The approach
should be flawless and detect the different errors such as lexical, syntactical and seman-
tics errors. Moreover, it should provide clear messages describing the errors.

A certain level of grammar extensibility is required (NFR-4). One important extension,
for example, is adding custom-defined functions.

The integration (NFR-5) refers to how easy it is to integrate the approach with PLC,
how the call is done and how the returned data is displayed.

Moreover, the library should be agnostic (NFR-6) meaning that the dependency on
external libraries or tools for the parser generation is minimized. A distinction is made
when an external library is needed before runtime and while implementing the solution,
or at the runtime to evaluate the formulas.

To integrate the solution with PLC, it is necessary that any external library has a
suitable license for commercial uses (NFR-7). The license describes the rights granted
to the user using the library. The most common and applicable licenses are MIT, Apache
and BSD. In Table 4.2, we list the non-functional requirements with the priority for
each.

4.3 Formula language

The formula language in PLC shall resemble the Excel-style formula syntax, since Excel
is wide-spread and also used by many PLC customers for their current calculation.
However, in PLC the formula is applied to a column and is not defined per cell as in
Excel. Therefore, the number of the evaluations may be the same as the row counts.

34 4. Designing and implementing a calculation interpreter of custom-defined formulas

The prototype of the formula language, Product Life-cycle Costing User-defined For-
mula (PLCUDF), was discussed in more details in a previous thesis [Kü14]. The gram-
mars in Listing A.2 were expressed in ANTLR using Extended BNF.
The formulas might contain standard or custom fields besides literal values. To distin-
guish between the item fields and the header fields, two different symbols were used.
The dollar symbol ($) refers to item fields, while the hash symbol (#) refers to header
fields. The difference between item fields and header fields was explained in Section 1.4.

The formula language supports the arithmetic operators and the most common func-
tions. We can divide the functions into the following categories:

• Mathematical functions such as SQRT, LOG, & ROUND.

• Logical functions such as AND, OR, & IF .

• Aggregate functions such as MAX, COUNT, & SUM.

Those are the basic built-in functions and have similar behavior as in Excel. Addition-
ally, the formula language shall be extended by adding other custom functions.

Using the PLCUDF, the equations in the Section 4.1 are represented as follows:

E1 = $Manufacturing hours ∗ 3.5

E2 = $Manufacturing hours ∗ 3.5 + $Plant distance/2.7

C = SQRT ($Energy) ∗ 0.05

4.4 Using AFL for evaluation

The formula can be evaluated in SAP HANA using different implementation options.
The thesis [Rus15] discusses parsing the formula and generating a special SAP HANA
database artefact called Calculation View to make the evaluation and return the result.
Our approach is to implement an interpreter for custom formulas using AFL as our
target platform for evaluation. AFL was developed specifically so that HANA can
execute complex algorithms by maximizing database processing rather than bringing
all the data to the application server. The execution is done inside the core of HANA
database which brings crucial performance improvements. We list the main benefits for
implementing an AFL:

• By pushing the logic down to the data level, the performance is improved. We
can take advantage of the powerful CPU features to parallelize the execution.

• Additionally, there are no limitations on writing the language grammars to provide
an extensible features such as adding additional data types or defining custom
functions.

4.5. Selection of the development approach 35

4.5 Selection of the development approach

There are numerous ways to parse mathematical expression and evaluate it. We will
discuss the different solutions, list the advantages and disadvantages of each, in order
to build our approach.

1. ANTLR is a parser generator that uses LL(*) parsing algorithm. It takes an
Extended Backus–Naur Form (BNF) grammar as an input to generate the AST
for a given input stream like expressions.
ANTLR generates the lexer, parser and the syntax tree. It translates the grammar
into executable code.
The tool is very useful in such cases, however the current version of ANTLR 4.5
does not support C++ yet. The previous versions support parsing the expression
but do not support generating the AST.

2. Flex/Bison are commonly known and mature tools that are used to write parsers
for any arbitrary file format from BNF grammar. The parsing algorithm used by
Bison is LALR(1).
These tools are distributed under GPL license. Flex converts the input stream
into sequences of tokens, while Bison replaces the sequence that conforms to the
syntax with the corresponding grammar in order to build the AST.

3. Another way of implementation is to utilize an open source math expression
parser and evaluator written in C++, like the following expression parsers:

• Speqmath expression parser: is an expression parser written in C++. It
supports using the operators and the basic functions with the possibility to
define own variables.
It is distributed under Apache 2.0 License.

• Partow: is mathematical expression library that supports using operators
and many built-in functions with custom variable support. It is distributed
under the Common Public License which has restriction against commercial
distribution.

• MuParser: is an extensible math expression parser library written in C++.
It supports user-defined operators and functions in addition to the predefined
features.
It includes built-in error handling and allows distribution under MIT license.

• MTParser: is an extensible math expression parser written in C++ with
many predefined operators and functions and supports user-defined functions
and operators.
It is distributed under The Code Project Open License (CPOL), free to use
for non-commercial purpose.

36 4. Designing and implementing a calculation interpreter of custom-defined formulas

There are many other similar solutions that share common features. Nevertheless,
the main disadvantage of these solutions is the effort to modify the source code
to meet our language specifications and adapt the calculation process to work
column-wise.

Based on the foregoing, the first solution lacks the required support for our target
platform. And using an existing solution requires many modifications. So, our imple-
mentation will be using Flex/Bison tools. Writing our own grammar gives the solution
flexibility and extensibility to achieve high performance.

4.6 Contribution

Our presented contribution in this thesis consists of various phases, each phase takes
the input from the previous stage. We explain the processing steps for each phase, the
inputs and the outputs. In Figure 4.11, we present a workflow of these different steps to
build the interpreter. After building the interpreter, the solution integrates with SAP
HANA using AFL as our evaluation target.

4.6.1 Lexical analysis

After the initialization, we start with the actual execution for each formula. The lexical
analyzer takes the formula as an input stream and converts it into a list of tokens. The
tokenizer checks for valid tokens and passes them on demand to the syntax analyzer
[Pys88].
The PLCUDF language includes many tokens such as: identifiers, literals, operators and
functions. In Table 4.3, we show the different token types that can be distinguished.

Token type Token value
Literals string, real, float, boolean, time, date
Arithmetic symbols +,-,*,/,%
Comparison symbols ==, !=, <, <=, >, >=
Keywords functions such as: ceiling, count, lookup and so forth.
Special symbols), (, !, ˆ

Table 4.3: PLCUDF token types

Token specifications

There are two steps in order to characterize the tokens. First, present the token patterns
as regular expressions. Second, define those tokens with their values.

In Listing 4.1, we illustrate a sample of the lexical grammar. This sample consists of
two parts. The first part is the regular expression to define an integer value while the

1This figure is based on http://www.tutorialspoint.com/compiler design/compiler design syntax
analysis.htm

http://www.tutorialspoint.com/compiler_design/compiler_design_syntax_analysis.htm
http://www.tutorialspoint.com/compiler_design/compiler_design_syntax_analysis.htm

4.6. Contribution 37

Figure 4.1: The workflow scheme

38 4. Designing and implementing a calculation interpreter of custom-defined formulas

Token type Token name Token value

literals real literal 3.5 2.7 0.05

Arithmetic operators MATH + * /

Functions FUNC SQRT

Identifiers ID

$Manufacturing hours

$Plant distance

$Energy

Table 4.4: Sample of tokens

second part (at line 8) stores the token value and passes both the token name and its
value to the parser.

Listing 4.1: Lexical definition for integer literal

1 sign [+\-]

2 dec_digit [0-9]

3 dec_literal {dec_digit}+

4 integer_literal {sign}?{dec_literal}

5

6 %%

7

8 {integer_literal} {

9 yylval.int_value = atoi(yytext);

10 return INT_LITERAL;

11 }

The full lexical grammar is described extensively in the appendix.

The lexical analyzer detects the token, then builds the lexeme as key-value pair <token

name, token value> and passes it to the parser.

If we apply this on the energy consumption and carbon dioxide emissions formulas
described previously, the tokens in Table 4.4 can be extracted.

4.6.2 Syntax analysis

The syntax analysis is the parsing phase. It takes a list of tokens generated by the lexical
analyzer and checks the syntax. The syntax is based on BNF grammar to generate the
abstract syntax tree(AST).
At this phase, we are generating a grammar that conforms to the PLCUDF language.
BNF is a popular notation for context-free languages [AU72, Gru12]. We will describe
the parsing algorithms and show our grammar that is used to validate the formula
syntax.

4.6. Contribution 39

Types of Parsing

Top-Down

Recursive descent

LL

Bottom-up

shift-reduce LR parsing

LR

LALR

Figure 4.2: Different types of parsing algorithm

4.6.2.1 Types of parsing

The parsing is the first step at the syntactic analysis that analyses a string of symbols
conforming to the rules of a formal grammar. The parsing algorithms are divided into
two types: top-down parsing and bottom-up parsing [AU72].

Bottom-up

Bottom-up parsers 2 start with the input and try to construct the parse tree up to the
start symbol to reach the root node. They start from the basic rule and try to expand
it [AU72].
This type of parser performs two actions: shift and reduce. At the shift action, the
parser is pushing the next input symbol onto the top of the stack. The shifted symbol
is treated as a single node of the parse tree. In contrast, with the reduce action, the
parser pops the top of the stack when a complete grammar rule is found and replaces
it with the right-hand side of the grammar.

2Also known as shift-reduce parsers

40 4. Designing and implementing a calculation interpreter of custom-defined formulas

Operator Description Associative

! Logical negation non-associative

ˆ Power operator right-associative

*, /, % Multiplicative operators left-associative

+, - Additive operators left-associative

==, !=, <>,

<, >, <=, >=
Relational operators left-associative

Table 4.5: Precedence order

Here we list some of the parser types that use bottom-up parsing include:
LR parser is a non-recursive, shift-reduce parser. It is a left-to-right, rightmost deriva-
tion parser. An LR parser is essentially a shift-reduce parsing algorithm driven by
parsing a stack.
LALR is look-ahead LR parser. A LALR parser is less powerful than the LR parser,
However, this parser generators cannot handle all LR grammars easily.

Top-down Top-down parsers are constructing the parse tree from the root node and
gradually moving down to the leaf nodes. They try to find left-most derivations of an
input stream. Top-down parsers cannot recognize all context-free languages, there is
some grammars producing conflicts. Those conflicts should be solved in order to make
the parser works correctly [ALSU13].
Some of the parsers that use top-down parsing include:
Recursive descent parser uses recursive procedures to process the input. It is using
backtracking to detect the valid grammar for the input. The backtrack calling is not
certain, so it is expensive and time consuming. LL parser is a left-to-right, leftmost
derivation parser that does not suffer from backtracking. By using look-ahead pointers,
the parser knows the right grammar and avoids conflicts.

We summarize in Figure 4.2, the distribution of the most common parsers.

Bison is a parser generator that converts an annotated context-free languages into an
LALR parser for that grammar. The parsing algorithm uses one token look-ahead which
can be expressed as LALR(1). The generated parser is implemented as a C++ program
with a parsing function that can be called from application programs.

4.6.2.2 Grammar

A Bison grammar’s file has many sections, the declaration section contains declarations
for the terminal and non-terminal symbols, and specify precedence to solve the conflicts
between the grammars and set the priorities. In Table 4.5, we show the precedence order
for the different operators used in the grammar.

We use BNF notation to write the Bison grammar. The initial point to start parsing
from the rule grammar. Our grammar has Excel-style, implying each statement starts

4.6. Contribution 41

with the symbol (=) followed by the actual formula. The formula is allowed for an
arbitrary number of operators between different types of operands. It may contain literal
values, function results or references to database fields. The grammar specification
section is shown in Listing 4.2.

Listing 4.2: Context-free languages

1 formula:

2 | formula ’=’ exp END

3

4 exp:

5 exp CMP exp

6 | exp ’+’ exp

7 | exp ’-’ exp

8 | exp ’*’ exp

9 | exp ’/’ exp

10 | exp ’^’ exp

11 | ’!’ exp

12 | ’(’ exp ’)’

13 | ’-’ exp %prec UMINUS

14 | literal

15 | FUNCTION ’(’ param_list ’)’

16 | at_identifier

17

18 literal:

19 INT_LITERAL

20 | REAL_LITERAL

21 | STRING_LITERAL

22 | BOOL_LITERAL

23 | DATE_LITERAL

24 | TIME_LITERAL

25

26 param_list:

27 exp

28 | exp ’,’ param_list

Each grammar rule is accompanied with an action. The action is executed each time
an instance of that rule is recognized. Through these rules, the AST is built and the
semantic checks are done. For simplicity we do not present the actions in Listing 4.2.

After applying these grammars on the formula for the energy consumption (E2), we get
the parse tree represented in Figure 4.3.

4.6.2.3 Abstract Syntax Tree

The abstract syntax tree (AST) is the representation of the syntax structure of the
source formula that is built recursively during parsing the grammar. It is used in pro-

42 4. Designing and implementing a calculation interpreter of custom-defined formulas

Figure 4.3: Parse tree example

4.6. Contribution 43

gram analysis and also for the semantic checking. ASTs are generally created bottom-up
[Jon03].

The AST has different node types. Those nodes represent grammar rules. In Figure 4.4,
we show the class diagram for the AST class and the Nodes.
The AST class has a pointer for the root node of the parse tree. The tree is built while
parsing the grammar for an input formula by adding the suitable node to the tree. The
AST class has also access to the symbol table which in turn contains copies of all the
database columns that are used as references in the formulas. The symbol table is filled
at the initialization phase.

The AST is a binary tree. All the nodes forming the tree are derived from the base
class Node. Each node has two child nodes: the left node and the right node.
The sub-node classes have an enumeration data member, which refers to its function or
the actual holding type. For example, the MathNode can be a subtraction node, adding
node, multiplication node, division node, or power node.
The formula evaluation is done by invoking the method evaluate. This method is defined
as a virtual method at the class Node and overloaded at the sub-classes. The evaluate
method does a post order tree traversal. The method is called recursively on both left
node and right node.
The evaluation results are combined through the tree traversal up to the root node.
During the evaluation the semantic check is done too, for instance, checking the number
of parameters passed to a built-in function or for type checking. The type casting among
different literal values is another task during the evaluation.

We get the syntax tree represented in Figure 4.5 for the energy consumption formula
(E2). This tree is constructed from the previous parse tree and has three different node
types. The first type is the math node for adding, multiplying and dividing. The
second type is the literal node, that holds the numeric values. And the last type is
the access node that refers to other fields.

4.6.3 Error handling

The interpreter should be able to handle different types of errors and report them. The
errors may be encountered at various stages [Lou97].

The lexical errors occur at the first stage when the lexer fails to recognize a token,
That can be in the case of either a misspelled token or an undefined one. The syntactic
errors occur during the parsing when a list of tokens does not conform to any rule and
the parser fails to reduce a grammar. Typical errors might be unbalanced parentheses,
or a missing operator. The semantic errors occur during the building of the AST and
evaluating the formula. Typical errors might be a reference to an undefined variable,
an incorrect number of function arguments, an incompatible type, or dividing by zero.

The error-recovery represents the action that should be done when an error arises. The
error-recovery strategies that can be implemented are to ignore the error if it does not

44 4. Designing and implementing a calculation interpreter of custom-defined formulas

Figure 4.4: Class diagram of the abstract syntax tree nodes

Figure 4.5: Abstract syntax tree example

4.6. Contribution 45

affect the formula. If the error cannot be ignored, the formula will not be processed
and the interpreter reports the error to the user.

4.6.4 Optimization and features

The parsing process consumes more time than the formula evaluation. However, in our
case the evaluation is more time consuming while formulas are specified on a column
not on individual item level. So, we focus on optimizing the formula evaluation process.

The optimization goal is to make the evaluation as fast as we can and reduce the access
to the database as much as possible. The following optimization techniques are feasible
with our approach:

• Parallelize the execution
By taking advantage of the architecture of the SAP HANA server CPU, multiple
computations may happen in parallel.There are two possible types of paralleliza-
tion: The AST parallelization by dividing the execution of branches on many
threads. And the other type is column-wise parallelization by dividing the col-
umn into ranges and distribute them on threads.

• Expression optimization
Replace the parts of the expression that represent constant values with a literal
node expressing the result.

• Avoid redundancy
Reuse branches that are already computed and cache them for later use instead
of re-computing them every time.

• Dead part elimination
Remove the instructions that will not execute like multiplying by zero.

4.6.5 Execution

HANA has many possibilities to evaluate the generated AST of the custom-defined
formulas. Each of these possibilities uses different technologies and various potential
generation targets. There are mainly three approaches distinguished in SAP HANA.
The first approach is to generate SQL queries to do the calculation, this generation
target was used by [Kü14]. The second approach is to use generated views mapped to
the formula to be calculated, this approach was used by [Rus15]. The third approach
is to write a function using a programming language supported by SAP HANA. As
described in Section 4.4, We choose AFL as our generation target. AFL allows creating
extension libraries for the SAP HANA using the C++ language.

To implement AFL extension library, we define the member functions and specify the
input and output table assigned to those functions. The definition must conform to AFL
standards to be valid. We refer to defined member function as the Process Manager.

46 4. Designing and implementing a calculation interpreter of custom-defined formulas

The data type definition of the input table is SharedTableViewer, while the data type
definition of the output table is SharedTable, which are special AFL classes to copy the
inputs from the database and the copy back the results to data tables. In Listing 4.3, we
show the EVALUATE EXPRESSION function signature, containing both input and
output tables.

Listing 4.3: AFL function signature

AFLMETHODIMP CParserAFL::EVALUATE_EXPRESSION(

const hana::SharedTableViewer expression,

const hana::SharedTableViewer preconditionTable,

const hana::SharedTableViewer itemTable,

const hana::SharedTableViewer customItemTable,

const hana::SharedTableViewer metaTable,

hana::SharedTableViewer result,

hana::SharedTableViewer errorList) const;

The execution follows these steps:

• The defined formulas are extracted and passed to the interpreter to generate the
AST. In the same context, the symbol table is filled based on the content of the
formulas. Furthermore, we define the sequential order of the formula execution.
The order is defined according to a topological sort of the dependencies between
the formulas.

• Then, we optimize the generated ASTs and evaluate them. Since all the required
fields for the evaluation are available, we do not evaluate the formula row by
row, but rather we calculate the results for all the rows at once regardless of the
preconditions. This way of evaluation can benefit of the CPU caching among
the recursive calling of the different tree nodes and is executed as SIMD (Single
instruction, multiple data) as we have the same formula evaluated on all the rows.

• The final step is to check the conditions while writing the results back in the
output tables.

5. Evaluation

5.1 Overview

In this chapter, we show different test cases to illustrate the the interpreter features
and provide a discussion about evaluation of the implementations.

5.2 Test cases validation

This section is providing many test cases for selected parts of the implementation. In
this regard, each test case specifies the execution conditions, the input data and the
expected results. The aim of this section is to verify the provided implementation and
its underlying concepts but also to carve out their current limitations. Thereby, some
of the following test cases also map to particular items of the requirement specification
of Section 4.2.

5.2.1 Implicit casting

The aim of this test case is to check the conversions between the compatible types.
The type casting provides more flexibility to the formula syntax. During building the
AST phase, we support an implicit type casting. Therefore, this is part of the semantic
checks. We do the casting whenever it is possible and in case of error a semantic error
is thrown.

Input I
The following formula, concatenating two values, is passed to the interpreter. The
code center has a string type.

Company code = Concat($code center, 100)

48 5. Evaluation

Expected Results
The function tree node has two sub-nodes. It should concatenate these sub-nodes and
return a literal results of the type string.

Actual Results
The function tree node calls the evaluate method for left sub-node and for the right
sub-node. To do the concatenation, it finds out that the sub-nodes have different data
types. However, the type casting can be applied. So the numeric data type is converted
to a string data type and node returns the concatenation between two strings. The
actual result and the expected result do match.

Input II
The following formula is passed to the interpreter. It returns the square root of the
center name field. This field has a string type.

Company code = Sqrt($center name)

Expected Results
The formula should return the square root results of a numeric type or an error in case
the interpreter could not apply the type casting.

Actual Results
The interpreter finds out that the mathematical function requires a numeric type argu-
ment. However, the center name field does not have a compatible type. The interpreter
tries to convert the string into a numeric value. In this case, the conversion will fail
and an error will be thrown. So, the actual result and the expected result do match.

5.2.2 Constant branches

The constant branch is a part of the AST generated from a formula or part of a formula.
It is equivalent to a literal value so there is no need to compute the value each time
we evaluate the formula. During the phase of building the AST, the constant branch is
marked and replaced by a literal value.

Input
The following formula is passed to the interpreter, it calculates the distance based on
the given equation.

Distance = $plant loc + (4 ∗ 2)

Expected Results
The interpreter finds out that the formula has a constant branch. The AST is updated
and the branch is replaced by a literal node.

Actual Results
The right branch of the AST is marked as constant. The AST is updated and a new
literal node is created instead of the branch. In Figure 5.1, we show how the AST is
updated. Therefore, the result of this test case meets the stated expectation.

5.3. Performance evaluation 49

Figure 5.1: AST update, constant branch

5.2.3 Arithmetic exceptions

The interpreter faces unknown input that can cause arithmetic exceptions such as di-
viding by zero or taking the square root of a negative number. Those cases are affecting
the execution and may have impact on the database system.

Input
The following formula is passed to the interpreter. It calculates the profit bases on the
fixed cost field.

Profit = 1.75/$fixed cost

Expected Results
Some of the materials do not have fixed cost, so the fields value is zero. The interpreter
should detect division by zero and report an error.

Actual Results
The interpreter catches the exception and adds a division by zero error to the output
including the formula identifier and the material number. The interpreter does not stop
the execution for the other materials and the other formulas. The actual result and the
expected result match.

5.3 Performance evaluation

In the previous section, we presented different test cases showing the features of our
approach. In this section we discuss the performance and evaluate the parsing time and
the execution time using different formula. First, we present the evaluation setup, then
the parsing and execution evaluation.

5.3.1 Setup

The testing supposed to work in HANA server to get the real performance numbers,
however it was not easy at the remaining time to test it in HANA due to additional

50 5. Evaluation

Formula
Row counts

100 rows 1000 rows 100000 rows

Formula1 7 30 1600

Formula2 20 110 7600

Table 5.1: Execution time

required steps from AFL SDK. Instead, we test the evaluation at normal PC. this can
give good indicator about the performance .

We used two type of formulas to check the impact on the parsing time. The first one
is a simple while the second is complex formula using complicated functions and many
references to item fields.

Formula1 = $price ∗ 1.05

Formula2 = if($plantID = 1000,max($fixed price, $variable price),

sum($fixed price,#gross cost,#work price))

The data set size is 100 rows, 1000 rows, and then 100000.

5.3.2 Parsing evaluation

As mention in the previous chapter, at the parsing phase the interpreter reads the
formula and generate the AST. the parsing time is not so critical for our solution. Each
formula is parsed once while evaluated many times. The first formula takes around 40
microseconds, while the second formula takes around 150 microseconds.

5.3.3 Execution evaluation

The execution time is significant. unlike the parsing that occur once, the execution will
be occur for all the columns for each formula. It differs according to the AST size and
the column numbers. In Table 5.1, We show the execution time in milliseconds for the
previous formulas using sample data sets.

6. Future Work

The contribution of our thesis is aimed at adding flexibility to PLC on custom-fields
and custom formula domains. We focus on giving a prototypical implementations. Both
domains show promising results, in that our approach misses additional optimization
studies.

Moreover, the current SDK version of AFL does not support arbitrary SQL command
execution. This has an impact on some functions such as the Lookup function, which
requires the Lookup table. The only case that it can work in our approach, when the
table is included as an input.

Several security topics remain open for the future work, especially at the custom formula
evaluation. AFL execution presents a critical security issue.

During the limit of time for the thesis, we put the design for some features which was
not implemented. We suggest to extend the implementation of the hierarchy navigation
through the levels of the items and providing different aggregation capabilities.

52 6. Future Work

A. Appendix

This appendix shows the lexical grammar that is used in Flex.

Listing A.1: lexiacal grammar

white_space [\r]+

identifier [A-Za-z_][A-Za-z_0-9]*

at_identifier [#|$]{identifier}

eol [\n\0]

dec_digit [0-9]

dec_literal {dec_digit}+

integer_literal {dec_literal}

identifier_error {dec_digit}+{identifier}

sign [+\-]

exponent_part [eE]{sign}?{dec_digit}+

whole_real1 {dec_digit}+{exponent_part}

whole_real2 {dec_digit}+

part_real {dec_digit}*\.{dec_digit}+{exponent_part}?

real_literal {whole_real1}|{whole_real2}|{part_real}

simple_esc_seq \\[\’\"\\0abfnrtv]

error_esc_seq \\[^\’\"\\0abfnrtv]

54 A. Appendix

single_string_char [^\\\"\n]

reg_string_char {single_string_char}|{simple_esc_seq}

regular_string \"{reg_string_char}*\"

err_string_not_closed \"{reg_string_char}*

error_string \"({reg_string_char}*{error_esc_seq})+{reg_string_char}*\"

string_literal {regular_string}

date (0[1-9]|[12][0-9]|3[01])[- /.](0[1-9]|1[012])[-

/.](19|20)[0-9][0-9]

time24format ([01]?[0-9]|2[0-3]):[0-5][0-9]

time12format (1[012]|[1-9]):[0-5][0-9](am|pm)

time {time24format}|{time12format}

%%

/***** White Space *****/

{white_space} { colCount += yyleng; /* ignore */ }

/***** identifier *****/

{at_identifier} { colCount += yyleng; yylval.sv = _strdup(yytext);

return at_identifier;}

/***** Literals *****/

{time} { colCount += yyleng; yylval.sv = yytext; return TIME;}

{date} { colCount += yyleng; yylval.sv = yytext; return DATE;}

{integer_literal} { colCount += yyleng; yylval.fv = atoi(yytext); return

real_literal; }

{real_literal} { colCount += yyleng; yylval.fv = atof(yytext); return

real_literal; }

{string_literal} { colCount += yyleng; yylval.sv = _strdup(yytext); return

string_literal; }

"false" { colCount += yyleng; yylval.bv = false; return BOOL; }

"true" { colCount += yyleng; yylval.bv = true; return BOOL; }

{error_string} { ast->AddLexError(yytext,rowCount,colCount,"String

Error");

colCount += yyleng; yylval.sv = _strdup(yytext);

return string_literal;}

{err_string_not_closed} { ast->AddLexError(yytext,rowCount,colCount,"String

Error");

colCount += yyleng;yylval.sv = _strdup(yytext);

55

return string_literal; }

\t { colCount = (ceil((colCount+1)/8.0f))*8 ; /* ignore */}

{eol} { colCount=0; return EOL;}

/***** Multi Chars Oprs *****/

">" {colCount += yyleng; yylval.iv = 1; return CMP; }

"<" {colCount += yyleng; yylval.iv = 2; return CMP; }

"<>" {colCount += yyleng; yylval.iv = 3; return CMP; }

"!=" {colCount += yyleng; yylval.iv = 3; return CMP; }

"==" {colCount += yyleng; yylval.iv = 4; return CMP; }

">=" {colCount += yyleng; yylval.iv = 5; return CMP; }

"<=" {colCount += yyleng; yylval.iv = 6; return CMP; }

/**** Single Allowed Chars ****/

"(" { colCount += yyleng; return yytext[0]; }

")" { colCount += yyleng; return yytext[0]; }

"+" { colCount += yyleng; return yytext[0]; }

"-" { colCount += yyleng; return yytext[0]; }

"*" { colCount += yyleng; return yytext[0]; }

"/" { colCount += yyleng; return yytext[0]; }

"%" { colCount += yyleng; return yytext[0]; }

"!" { colCount += yyleng; return yytext[0]; }

"^" { colCount += yyleng; return yytext[0]; }

"=" { colCount += yyleng; return yytext[0]; }

/***** Keywords *****/

"sqrt" { colCount += yyleng; yylval.iv = B_sqrt; return FUNC; }

"round" { colCount += yyleng; yylval.iv = B_round; return FUNC; }

"roundup" { colCount += yyleng; yylval.iv = B_roundup; return FUNC; }

"rounddown" { colCount += yyleng; yylval.iv = B_rounddown; return FUNC; }

"ceiling" { colCount += yyleng; yylval.iv = B_ceiling; return FUNC; }

"floor" { colCount += yyleng; yylval.iv = B_floor; return FUNC; }

"sign" { colCount += yyleng; yylval.iv = B_sign; return FUNC; }

"abs" { colCount += yyleng; yylval.iv = B_abs; return FUNC; }

"exp" { colCount += yyleng; yylval.iv = B_exp; return FUNC; }

"string" { colCount += yyleng; yylval.iv = B_string; return FUNC; }

"ln" { colCount += yyleng; yylval.iv = B_ln; return FUNC; }

"log" { colCount += yyleng; yylval.iv = B_log; return FUNC; }

"mod" { colCount += yyleng; yylval.iv = B_mod; return FUNC; }

"concat" { colCount += yyleng; yylval.iv = B_concat; return FUNC; }

56 A. Appendix

"count" { colCount += yyleng; yylval.iv = B_count; return FUNC; }

"min" { colCount += yyleng; yylval.iv = B_min; return FUNC; }

"max" { colCount += yyleng; yylval.iv = B_max; return FUNC; }

"if" { colCount += yyleng; yylval.iv = B_if; return FUNC; }

"and" { colCount += yyleng; yylval.iv = B_and; return FUNC; }

"or" { colCount += yyleng; yylval.iv = B_or; return FUNC; }

"not" { colCount += yyleng; yylval.iv = B_not; return FUNC; }

/***** COMMA *****/

"," { colCount += yyleng; return yytext[0];}

/***** Error handle *****/

{identifier_error} {ast->AddLexError(yytext,rowCount,colCount,"invalid

identifier name"); colCount += yyleng;

//yylval.sv = TrimStart(yytext); return at_identifier;

}

{identifier} { ast->AddLexError(yytext,rowCount,colCount,"invalid keyword");

colCount += yyleng;}

. { ast->AddLexError(yytext,rowCount,colCount,"invalid character");

colCount += yyleng;}

%%

The Linkedin criteria list [Lin]

This appendix shows the criteria used by Linkedin to choose the tempalte engine. The
following list of features was given to different teams to look for in the assigned tem-
plating solution, and fill out a score, from one (poor) to five (excellent), for each item:

1. DRY: how DRY is the templating technology? is there support for code-reuse and
partials?

2. i18n: is there support for translations and multiple languages?

3. Hot reload: are changes visible immediately or is there a compile/deploy cycle?

4. Performance: how long does it take to render in the browser and server?

5. Ramp-up time: how is the learning curve?

57

6. Ramped-up productivity: once you’ve ramped-up, how fast can you build things?

7. Server/client support: can the same template be rendered both client-side and
server-side?

8. Community: is there an active community using this project? Can you google
issues?

9. Library agnostic: are there dependencies on other JS libraries, such as jQuery or
Mootools?

10. Testable: how hard is it to write unit and integration tests?

11. Debuggable: is it possible to step through the code while it’s running to track
down errors?

12. Editor support: is there an editor with auto-complete, syntax highlighting, error
checking, etc?

13. Maturity: is this a relatively stable project or still experimenting and churning?

14. Documentation: how is the documentation?

15. Code documentation: do the templates encourage/require documentation/com-
ments?

This appendix shows the PLCUDF ANTLR grammar used by [Kü14].

Listing A.2: PLCUDF grammar for ANTLRv4 [Kü14]

//Grammar definition for ANTLRv4, PLC User-defined-Formulas

//Version 30.06.2014

grammar PLCUDF;

//Parser Rules

start : ’=’ expr ; // Excel-Style

expr : ’ (’ expr ’) ’ #ExprParentheses

| (’+’|’-’) expr #ExprPrefix

| <assoc=right> expr ’^’ expr #ExprMyPower

| expr (’*’ | ’/’) expr #ExprMulDiv

| expr ’%’ #ExprPercent

| expr (’+’|’-’) expr #ExprPlusMinus

| expr (’=’|’<>’|’<’|’<=’|’>’|’>=’) expr #ExprLogic

| fkt #ExprFunction

| HEADER #ExprHeader

| COLUMN #ExprID

| NUMBER #ExprNum

| BOOL #ExprBool

58 A. Appendix

;

fkt : IDENTIFIER ’(’ list? ’)’; //for all functions

list : elem (’ ; ’ elem)* ;

elem : expr #ElemSingle

| COLUMN ’:’ COLUMN #ElemRange

| TABLE #ElemTable

;

//Lexer Rules

BOOL : TRUE | FALSE ;

TRUE : [Tt] [Rr] [Uu] [Ee]; //case-sensitive-free

FALSE : [Ff] [Aa] [Ll] [Ss] [Ee];

HEADER : ’#’ IDENTIFIER ;

TABLE : ’!’ IDENTIFIER ;

COLUMN : ’$’ IDENTIFIER ;

IDENTIFIER: LETTERS(DIGITS|LETTERS|SPECIALS)*;

NUMBER : DIGITS+ //e.g. 1234

| DIGITS+ (’,’|’.’) DIGITS* //e.g. 1, or 1,234 or 1. or 1.234

| ’ , ’ DIGITS+ //e.g. ,1

| ’ . ’ DIGITS+ //e.g. .1

| ((DIGITS)? DIGITS)? DIGITS (’.’ DIGITS DIGITS DIGITS)+ (’,’ DIGITS*)*

//e.g. 1.234.567,345345 or 1.234.1233, or 1.234.123

| ((DIGITS)? DIGITS)? DIGITS (’,’ DIGITS DIGITS DIGITS)+ (’.’ DIGITS*)*

//e.g. 1,345,345.245034 or 1,234,1233. or 1,123,123

;

fragment LETTERS : [a-zA-Z] ;

fragment DIGITS : [0-9] ;

fragment SPECIALS: ’#’|’_’ ;

WS : [\t\r\n]+ -> skip ;

Bibliography

[AACF12] David Ameller, Claudia Ayala, Jordi Cabot, and Xavier Franch. How do
software architects consider non-functional requirements: An exploratory
study. In 2012 20th IEEE International Requirements Engineering Confer-
ence, RE 2012 - Proceedings, pages 41–50, 2012. (cited on Page 19)

[ABvdB07] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo. In
Proceedings of the 6th international conference on Generative programming
and component engineering - GPCE ’07, page 25, New York, New York,
USA, October 2007. ACM Press. (cited on Page 9)

[ALSU13] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles,
Techniques, and Tools. Always learning. Pearson, 2013. (cited on Page 40)

[Ash15] Jeremy Ashkenas. Underscore.js - Template Engine, 2013 (Accessed June
15, 2015). http://documentcloud.github.io/underscore/. (cited on Page 23)

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.
(cited on Page 38 and 39)

[Ber07] Antonia Bertolino. Software Testing Research: Achievements, Challenges,
Dreams. In Future of Software Engineering (FOSE ’07), pages 85–103.
IEEE, May 2007. (cited on Page 10)

[BIJ06] Alan W Brown, Sridhar Iyengar, and Simon Johnston. A rational approach
to model-driven development. IBM Systems Journal, 45(3):463–480, 2006.
(cited on Page 8)

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transforma-
tion approaches. In Proceedings of the 2nd OOPSLA Workshop on Genera-
tive Techniques in the Context of the Model Driven Architecture, volume 45,
pages 1–17. USA, 2003. (cited on Page 8)

[CH06] K Czarnecki and S Helsen. Feature-based Survey of Model Transformation
Approaches. IBM Syst. J., 45(3):621–645, 2006. (cited on Page 8)

http://documentcloud.github.io/underscore/

60 Bibliography

[Con15] Jupiter Consulting. EJS - Template Engine, 2010 (Accessed June 15, 2015).
http://www.embeddedjs.com/. (cited on Page 23)

[Cor15] LinkedIn Corporation. Dust.js - Template Engine, 2015 (Accessed June 15,
2015). http://www.dustjs.com/. (cited on Page 23)

[Dok15] Laura Doktorova. doT.js - Template Engine, 2014 (Accessed June 15, 2015).
http://olado.github.io/doT/. (cited on Page 23)

[FM12] F Färber and Norman May. The SAP HANA Database–An Architecture
Overview. IEEE Data . . . , pages 1–6, 2012. (cited on Page 14)

[Gru12] van Reeuwijk K.-Bal H.E. Jacobs C.J.H. Langendoen K Grune, D. Modern
compiler design. Springer Science & Business Media. Springer-Verlag New
York, 2012. (cited on Page 38)

[Inc15] Twitter Inc. Hogan.js - Template Engine, 2011 (Accessed June 15, 2015).
http://twitter.github.io/hogan.js/. (cited on Page 23)

[Jon03] Joel Jones. Abstract syntax tree implementation idioms. In Proceedings
of the 10th conference on pattern languages of programs (plop2003), 2003.
(cited on Page 43)

[Kat15] Yehuda Katz. Handlebars - Template Engine, (Accessed June 15, 2015).
http://handlebarsjs.com/. (cited on Page 23)

[Kü14] Alrik Künne. Entwicklung und Erprobung einer DSL für kundenspezifische
Kalkulationen in SAP HANA. Diploma thesis, HTW Dresden, 2014. (cited

on Page xi, 6, 34, 45, and 57)

[Leh15] Jan Lehnardt. Logic-less mustache templates with JavaScript, (Accessed
June 15, 2015). https://github.com/janl/mustache.js/. (cited on Page 23)

[Lin] Lindedin, The client-side templating throwdown. (cited on Page 23, 24,

and 56)

[Lin15] Forbes Lindesay. Jade - Template Engine, 2015 (Accessed June 15, 2015).
http://jade-lang.com/. (cited on Page 23)

[Loc10] Henrik Lochmann. HybridMDSD: Multi-Domain Engineering with Model-
Driven Software Development using Ontological Foundations. PhD thesis,
Technischen Universität Dresden, 2010. (cited on Page 8 and 9)

[Lon10] Grzegorz Loniewski. OpenUP/MDRE: A Model-Driven Requirements En-
gineering Approach for Health-Care Systems. Master’s thesis, Universitat
Politècnica de València, 2010. (cited on Page 7)

[Lou97] K. Loudon. Compiler Construction. Boston, MA, 1997. (cited on Page 43)

http://www.embeddedjs.com/
http://www.dustjs.com/
http://olado.github.io/doT/
http://twitter.github.io/hogan.js/
http://handlebarsjs.com/
https://github.com/janl/mustache.js/
http://jade-lang.com/

Bibliography 61

[LX14] Xiaowei Li and Yuan Xue. A survey on server-side approaches to securing
web applications. ACM Computing Surveys, 46(4):1–29, March 2014. (cited

on Page 10)

[Mar15] Adam Mark. Markup.js - Template Engine, 2013 (Accessed June 15, 2015).
https://github.com/adammark/Markup.js/. (cited on Page 23)

[MIT] The MIT License. http://opensource.org/licenses/MIT. Accessed: 2015-
05-01. (cited on Page 19)

[MV13] C. Mankala and G.M. V. SAP HANA Cookbook. **. Packt Publishing,
2013. (cited on Page 14)

[OMG08] OMG. MOF Model to Text Transformation Language, v1.0, 2008. (cited

on Page 10)

[Par04] Terence John Parr. Enforcing strict model-view separation in template
engines. In Proceedings of the 13th conference on World Wide Web - WWW
’04, page 224, New York, New York, USA, May 2004. ACM Press. (cited

on Page 10)

[PL15] H. Plattner and B. Leukert. The In-Memory Revolution: How SAP HANA
Enables Business of the Future. Springer International Publishing, 2015.
(cited on Page 14)

[PSI15] Phillip Gates-Idem Patrick Steele-Idem. Marko - Template Engine, (Ac-
cessed June 15, 2015). https://github.com/raptorjs/marko. (cited on

Page 23)

[Pys88] Arthur B. Pyster. Compiler Design and Construction. Van Nostrand Rein-
hold, 1988. (cited on Page 36)

[Rus15] Rico Ruszewski. Analyse, Entwurf und prototypische Implementierung
eines Übertragungsund Speicherungsformats für kundenspezifische Formeln
in HANA XS. Master’s thesis, HTW Dresden, 2015. (cited on Page 6, 34,

and 45)

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE Software,
20(5):19–25, 2003. (cited on Page 8)

[Sil15] Ronald Silberstein. Introducing. . . SAP HANA Extended Application
Services (XS), 2013 (Accessed June 1, 2015). https://blogs.saphana.
com/2013/04/25/introducing-sap-hana-extended-application-services-xs/.
(cited on Page vii and 15)

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart
and soul of model-driven software development. IEEE Softw., 20(5):42–45,
September 2003. (cited on Page 8)

https://github.com/adammark/Markup.js/
http://opensource.org/licenses/MIT
https://github.com/raptorjs/marko
https://blogs.saphana.com/2013/04/25/introducing-sap-hana-extended-application-services-xs/
https://blogs.saphana.com/2013/04/25/introducing-sap-hana-extended-application-services-xs/

62 Bibliography

[sql11] SAP In-Memory Database – SQLScript Guide, volume 1.0. SAP SE, 2011.
(cited on Page 14)

[Sta12] International Standard. INTERNATIONAL STANDARD ISO / IEC /
IEEE Systems and software engineering — agile environment. 2012, 2012.
(cited on Page 18 and 20)

[SV05] T. Stahl and M. Völter. Modellgetriebene Softwareentwicklung: Techniken,
Engineering, Management. dpunkt-Verlag, 2005. (cited on Page 8)

[Tec15] Akamai Technologies. ESI Language Specification 1.0, 2011 (Accessed June
1, 2015). http://http://www.w3.org/TR/esi-lang. (cited on Page 11)

[TS09] Michiaki Tatsubori and Toyotaro Suzumura. HTML templates that fly.
In Proceedings of the 18th international conference on World wide web -
WWW ’09, page 951, New York, New York, USA, April 2009. ACM Press.
(cited on Page 10)

[Wal12] M. Walker. SAP HANA Starter. Packt Publishing, 2012. (cited on Page 12

and 14)

http://http://www.w3.org/TR/esi-lang

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den [. . .]

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Goals and tasks
	1.3 Product Life-cycle Costing (PLC)
	1.4 Example scenario
	1.5 Related work
	1.6 Structure

	2 Background
	2.1 Fundamental basics
	2.1.1 Model-driven engineering
	2.1.2 Template engines

	2.2 Technical background
	2.2.1 SAP HANA database
	2.2.2 Extended application services (XS)
	2.2.3 Application Function Library

	3 Custom-fields code generation
	3.1 Overview
	3.2 Selecting the implementation target
	3.3 Requirement analysis
	3.3.1 Functional requirements
	3.3.2 Non-functional requirements
	3.3.3 Requirements summary

	3.4 Template engines classifications
	3.4.1 Template logic
	3.4.2 Template syntax

	3.5 Template engine selection
	3.5.1 Listing the potential template engines
	3.5.2 Criteria matrix

	3.6 Contribution

	4 Designing and implementing a calculation interpreter of custom-defined formulas
	4.1 Overview
	4.2 Requirement analysis
	4.2.1 Functional requirements
	4.2.2 Non-functional requirements

	4.3 Formula language
	4.4 Using AFL for evaluation
	4.5 Selection of the development approach
	4.6 Contribution
	4.6.1 Lexical analysis
	4.6.2 Syntax analysis
	4.6.2.1 Types of parsing
	4.6.2.2 Grammar
	4.6.2.3 Abstract Syntax Tree

	4.6.3 Error handling
	4.6.4 Optimization and features
	4.6.5 Execution

	5 Evaluation
	5.1 Overview
	5.2 Test cases validation
	5.2.1 Implicit casting
	5.2.2 Constant branches
	5.2.3 Arithmetic exceptions

	5.3 Performance evaluation
	5.3.1 Setup
	5.3.2 Parsing evaluation
	5.3.3 Execution evaluation

	6 Future Work
	A Appendix
	Bibliography

