

What's in a name?

Proposed update to MTBC Nomenclature

Al Bateman, PhD MPH D(ABMM) Assistant Director, Communicable Diseases Wisconsin State Laboratory of Hygiene <u>Allen.Bateman@slh.wisc.edu</u>

Acknowledgement: Webinar by ATCC

Reclassification of the Mycobacterium tuberculosis Complex (MTBC) Species as Mycobacterium tuberculosis

Reclassification of the Mycobacterium tuberculosis Complex (MTBC) Species as Mycobacterium tuberculosis 4/26/2018

American Type Culture Collection (ATCC)

- Non-profit organization
- Manassas, VA and Gaithersburg, MN
- Premier biological materials resource and standards development organization
 - 5,000 cell lines
 - 80,000 microorganisms
 - Genomic and synthetic nucleic acids
 - Media/reagents
- Sales and distribution in 150 countries

What defines a species?

Each species:

- A "type strain" and description of that strain
- Type strain is basically the 'definition' of the species
- Type strain is reference point for identifying new strains
- New strain: compare to characteristics of existing species type strains
- If the new strain shares enough characteristics with an existing species, it's said to be 'within the circumscription' of that species/type strain

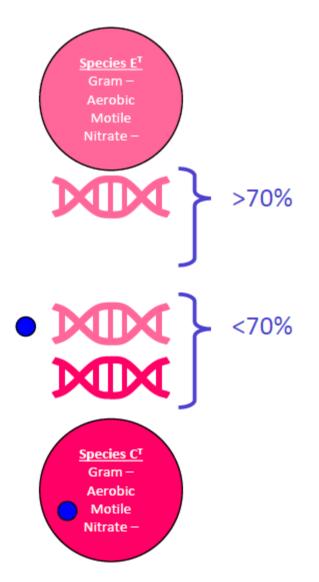
Riojas ATCC webinar, April 2018

What Characteristics?

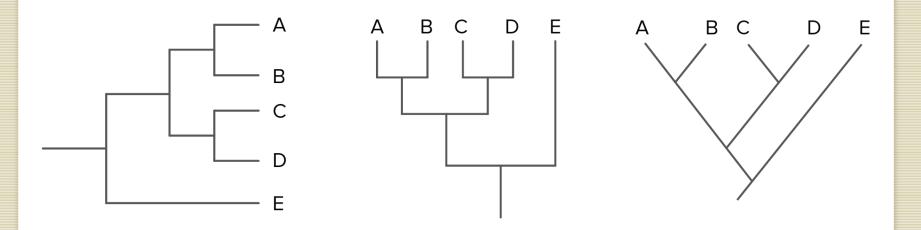
- Historically phenotypic
- Now, more genotypic comparisons
- Single genes vulnerable to bias
 - 16S rRNA
 - rpoB
 - hsp65
- Best comparison: whole genomes

DNA-DNA hybridization (DDH) (historical genomic comparison)

- Denature DNA for organisms A and B
- Mix the DNA together, allow to anneal
 - Results in hybrids
- Reassociation of genomic DNA ~ sequence similarity
- Gold standard species definition
- DDH similarity >70% = same species
- DDH similarity <70% = different species
- Digital DDH (dDDH) uses whole-genome sequences to compare in silico (bioinformatics)


dDDH Range	Interpretation				
≥ 80%	Same species	Same subspecies			
70 – 80%	Same species	Different subspecies			
< 70%	Different species				

Genomic information can lead to updated taxonomy


"Ay, there's the rub"

Riojas ATCC webinar, April 2018

Thanks for the taxonomy lesson, but this is a TB conference!

Mycobacterium tuberculosis complex (MTBC)

- Mycobacterium tuberculosis
- Mycobacterium africanum
- Mycobacterium bovis
- Mycobacterium caprae
- Mycobacterium microti
- Mycobacterium pinnipedii
- Not validly published
 - "Mycobacterium canettii"
 - "Mycobacterium mungi"
 - "Mycobacterium orygis"

Maybe MTBC aren't separate species?

Infect Genet Evol. 2012 Jun;12(4):819-26. doi: 10.1016/j.meegid.2011.09.024. Epub 2011 Oct 8.

Alignment of multiple complete genomes suggests that gene rearrangements may contribute towards the speciation of Mycobacteria.

Garcia-Betancur JC¹, Menendez MC, Del Portillo P, Garcia MJ.

- DNA-DNA hybridization
 - "...individual components of the Mycobacterium tuberculosis complex (MTBC) did not show sufficient diversity to classify them as a separate species."
 - "...the absence of rearrangements amongst MTBC supports their consideration as a single genospecies."

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY RESEARCH ARTICLE

Riojas et al., Int J Syst Evol Microbiol 2018;68:324–332 DOI 10.1099/ijsem.0.002507

Phylogenomic analysis of the species of the *Mycobacterium* tuberculosis complex demonstrates that *Mycobacterium* africanum, *Mycobacterium bovis*, *Mycobacterium caprae*, *Mycobacterium microti* and *Mycobacterium pinnipedii* are later heterotypic synonyms of *Mycobacterium tuberculosis*

Marco A. Riojas,^{1,*} Katya J. McGough,^{1,2} Cristin J. Rider-Riojas,³ Nalin Rastogi⁴ and Manzour Hernando Hazbón¹

IJSEM paper by ATCC

- Performed whole-genome sequencing on the <u>type strains</u> of all species without sequence yet
- Compared WGS of the strains
 - dDDH
 - Average nucleotide identity (ANI)

Table 1. Genomes of type (or treated as type) strains of the MTBC

Current organism name	Strain			
M. tuberculosis	H37Rv ^T			
M. africanum	ATCC 25420 ^T			
M. bovis	ATCC 19210 ^T			
M. caprae	ATCC BAA-824 ^T			
M. microti	ATCC 19422 ^T			
M. pinnipedii	ATCC BAA-688 ^T			
'M. canettii'	CIPT 140010059			
'M. mungi'	BM22813			
'M. orygis'	112400015			
M. pseudoshottsii	$L15^{T}$			
Nocardia asteroides	NBRC 15531 ^T			

	Species/ Strain	dDDH ANI	MTBC1	MTBC2	MTBC3	MTBC4	MTBC5	MTBC6	MTBC7	MTBC8	MTBC9	OUT1	OUT2
MTBC1	M. tuberculosis	H37Rv ^T	100	97.7	97.5	97.9	98.7	97.3	91.2	97.9	97.6	22.1	18.8
MTBC2	M. africanum ATCC® 25420 ^T		99.88	100	98	98.5	98.9	98.2	92.2	98.9	98.4	22.2	18.8
МТВСЗ	C3 M. bovis ATCC* 19210 ^T		99.78	99.82	100	98.2	98.2	97.8	91.6	98.1	97.8	22.3	19
МТВС4	M. caprae ATCC [®] BAA-824 ^T		99.86	99.87	99.83	180	98.8	97.7	91.7	98.6	98.2	22.1	18.8
MTBC5	MTBC5 M. microti ATCC® 19422 ^T		99.89	99.89	99.79	99.91	100	99.2	93.3	99	98.9	22.3	18.9
MTBC6	TBC6 M. pinnipedii ATCC* BAA-688 ^T		99.84	99.86	99.78	99.84	99.92	100	91.6	98.3	97.6	22.1	18.8
МТВС7	C7 "M. canettii" CIPT 140010059		99.25	99.28	99.21	99.26	99.36	99.26	100	92.5	91.8	22.2	19
МТВС8	TBC8 "M. mungi" BM22813		99.88	99.91	99.81	99.88	99.92	99.89	99.31	100	98.6	22.2	18.8
МТВС9	"M. orygis" 1124	400015	99.85	99.87	99.80	99.87	99.91	99.86	99.28	99.88	100	22.1	18.8
OUT1	M. pseudoshott	sii L15 ^T	79.33	79.27	79.21	79.34	79.34	79.25	79.29	79.25	79.37	100	19.2
OUT2	Nocardia astero	ides NBRC 15531 ^T	70.92	70.76	70.96	70.94	70.88	71.02	70.99	71.00	70.84	70.75	100

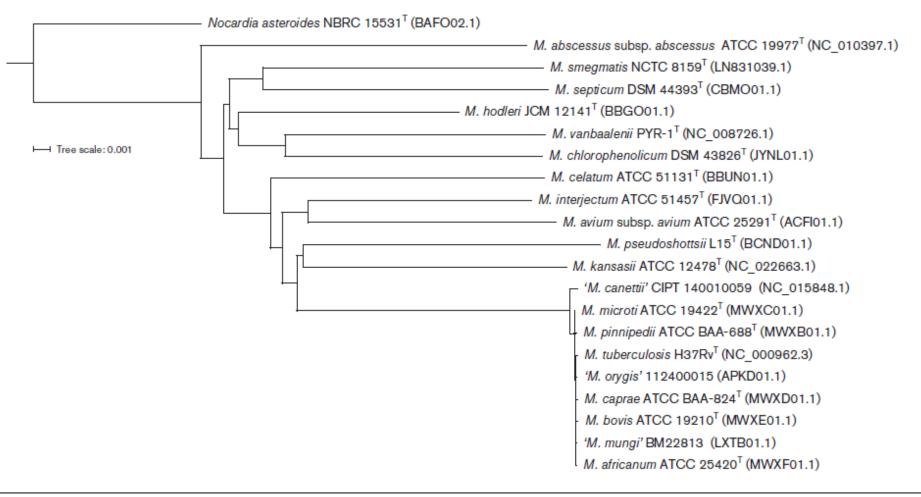


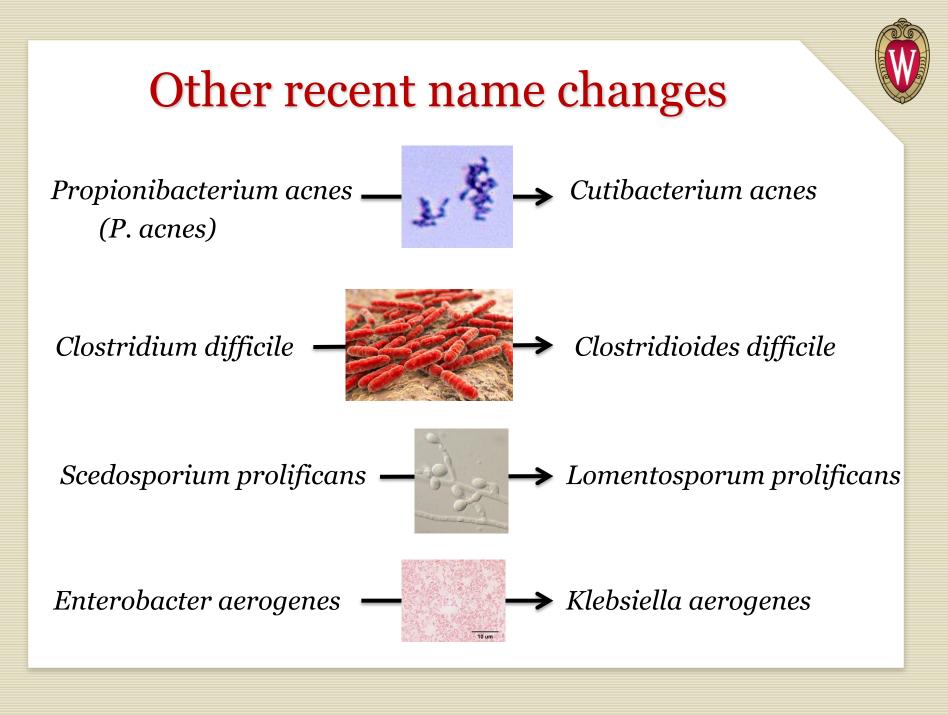
Fig. 1. Phylogenomic tree showing the relationship between the whole genomes of type strains of species of MTBC and the type strains of various other species of the genus *Mycobacterium* with *Nocardia asteroides* as an outgroup. Bar, 0.001 substitutions per site.

What about other (non-type strains) of each MTBC member?

Table 3. dDDH Analysis of type strains of members of the MTBC

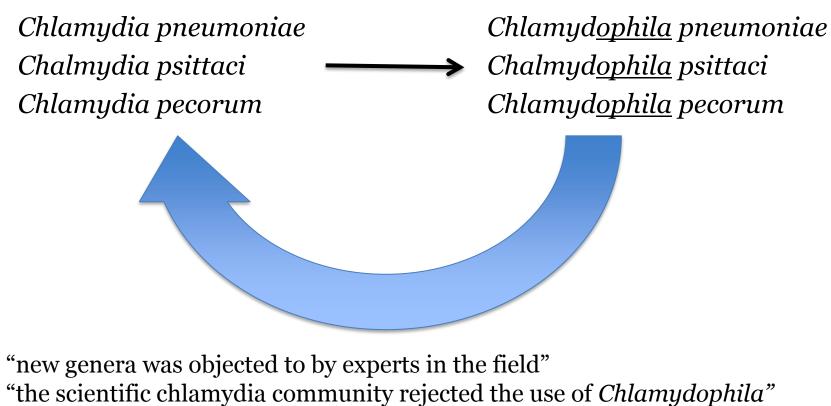
dDDH GGD values are between the GenBank genomes identified as respective species and the type strain of *M. tuberculosis* (H37Rv^T).

		dDDH GGD to <i>M. tuberculosis</i> H37Rv ^T (%)			
GenBank organism identifier	n	Minimum	Mean	Maximum	
M. africanum	30	96.7	97.5	98.3	
M. bovis	69	95.7	97.8	99.1	
'M. canettii'	9	80.1	89.8	94.1	
M. caprae	2	97.4	97.7	97.9	
M. microti	1	97.1	97.1	97.1	
M. tuberculosis	3631*	83.5	98.6	100.0	


Proposed name changes

Current Name	Recommended Name
M. tuberculosis	M. tuberculosis var. tuberculosis
M. africanum	M. tuberculosis var. africanum
M. bovis	M. tuberculosis var. bovis
M. bovis BCG	M. tuberculosis var. BCG
M. caprae	M. tuberculosis var. caprae
M. microti	M. tuberculosis var. microti
M. pinnipedii	M. tuberculosis var. pinnipedii
'M. canettii'	M. tuberculosis var. canettii
'M. mungi'	M. tuberculosis var. mungi
'M. orygis'	M. tuberculosis var. orygis

Table 4. Recommended i	infrasubspecific	designations a	and reference strains
------------------------	------------------	----------------	-----------------------


Reminiscent of Salmonella:

S. Enterica subsp. enterica serovar Typhi

Other recent name changes

"its use has been abondoned"

Manual of Clinical Microbiology, 11th Edition

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY VALIDATION LIST NO. 181

Oren and Garrity, Int J Syst Evol Microbiol 2018;68:1411–1417 DOI 10.1099/ijsem.0.002711

List of new names and new combinations previously effectively, but not validly, published

Aharon $\operatorname{Oren}^{1,\ast}$ and George $\operatorname{Garrity}^{2,\ast}$

Front Microbiol. 2018 Feb 13;9:67. doi: 10.3389/fmicb.2018.00067. eCollection 2018.

Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera.

Gupta RS¹, Lo B¹, Son J¹.

five distinct groups within the genus *Mycobacterium*:

<u>Group</u>

- Tuberculosis-Simiae
- Terrae
- Triviale
- Fortuitum-Vaccae
- Abscessus-Chelonae

New Genus name (Mycobacterium) (Mycolicibacter) (Mycolicibacillus) (Mycolicibacterium) (Mycobacteroides)

Old Name	New name
Mycobacterium tuberculosis	No change
Mycobacterium avium complex	No change
Mycobacterium kansasii	No change
Mycobacterium abscessus	<u>Mycobacteriodes</u> abscessus
Mycobacterium arupense	<u>Mycolicibacter</u> arupensis
Mycobacterium agri	<u>Mycolicibacterium</u> agri
Mycobacterium fortuitum	<u>Mycolicibacterium</u> fortuitum
Mycobacterium mucogenicum	<u>Mycolicibacterium</u> mucogenicum
Mycobacterium senegalense	<u>Mycolicibacterium</u> senegalense