

腎臟內科

PGY	UGY
FGI 知識 1.酸鹼異常相關的影像檢查 2. 賢切片檢查的照護 3.酸鹼異常病人的處理程序 4.透析病人的照護 5.透析相關併發症的防治	UCI 知識 1. 酸鹼異常的定義 2. 酸鹼異常的臨床表現 3. 酸鹼異常的病理生理機制 4. 酸鹼異常的診斷流程 5. 尿毒症的病理生理機制 6. 透析的基本原理 7. 酸鹼異常相關的實驗室檢查判讀,包括BUN/Cr、Ca、 P、電解質、動脈血氣體分析、尿液分析、尿鈉、血 清及尿之滲透壓、計算鈉離子之fraction excretion 8. 照會做腎超音波之適應症及判讀
	1.酸鹼異常相關的病史詢問 2.酸鹼異常相關的身體檢查

Normal acid-base balance

□ Arterial PH between: 7.35-7.45, mean 7.40 □ PCO_2 : 40 ± 5 mmHg □ HCO_3^- :24 ± 2 mEq/L □ Anion gap (12 ± 2)

Vein gas: pH:7.35, PCO2: 46, HCO3:24-26

Acid Base Balance

Assessment of status via bicarbonatecarbon dioxide buffer system

• $CO_2 + H_2O < --> H_2CO_3 < --> HCO_3^- + H^+$

$$PH=Pka+log \frac{(HCO_3^{-})}{0.03PaCO_2}$$
$$=6.1+log \frac{20}{1}$$

Classification of Acid-basic Disorder

PH, PaCO₂, HCO₃⁻ are three important parameters in acidbasic disorder evaluation.

- Complementary: PH is normal
 Dis-complementary: PH is
 - abnormal.

Classification of Acid-basic Disorder

Respiratory Acidosis

↓PH, ↑PCO₂, ↓Ventilation
 □ Causes
 ■ CNS depression
 ■ Pleural disease
 ■ COPD/ARDS

Musculoskeletal disorders

Respiratory Acidosis

Acute vs Chronic

- Acute little kidney involvement.
 Buffering via titration via Hb for example
 □ pH ↓by 0.08 for 10mmHg ↑ in CO₂
- Chronic Renal compensation via synthesis and retention of HCO₃ (↓Cl to balance charges ⇒ hypochloremia)
 □ pH ↓by 0.03 for 10mmHg ↑in CO₂

Respiratory Acid-Base Disorders

Respiratory Acidosis

- Central drugs (anesthetics, morphine, sedatives), stroke, infection
- Airway obstruction, asthma
- Parenchyma emphysema, pneumoconiosis, bronchitis, adult respiratory distress syndrome
- Neuromuscular poliomyelitis, kyphoscoliosis, myasthenia, muscular dystrophies
- Miscellaneous obesity, hypoventilation

Compensation:

Respiratory acidosis:

Acute respiratory acidosis HCO3 ↑ 1 mEq/L per 10 mmHg ↑ PCO2 Chronic respiratory acidosis HCO3 ↑ 4 mEq/L per 10 mmHg ↑ PCO2

Respiratory Alkalosis

- $\square \uparrow PH, \downarrow PCO_2, \uparrow Ventilation$
- □ \downarrow CO₂ \bigcirc \downarrow HCO_3 (\uparrow Cl to balance charges \bigcirc hyperchloremia)
- Causes
 - Intracerebral hemorrhage
 - Salicylate and Progesterone drug usage
 - Anxiety \Im \downarrow lung compliance
 - Cirrhosis of the liver
 - Sepsis

Respiratory Alkalosis

Acute vs. Chronic
 Acute - ↓HCO₃ by 2 mEq/L for every 10mmHg ↓ in PCO₂
 Chronic - Ratio increases to 4 mEq/L of HCO₃ for every 10mmHg ↓ in PCO₂

Respiratory Acid-Base Disorders

Alkalosis

Central nervous system lesions, pregnancy, endotoxemia, salicylates, hepatic failure, hypoxemia, anxiety, pain

Compensation: Respiratory alkalosis:

Acute resp alkalosis HCO₃ \downarrow 2 mEq/L per 10 mmHg \downarrow PCO₂ Chronic resp acidosis HCO₃ \downarrow 5 mEq/L per 10 mmHg \downarrow PCO₂

Metabolic Alkalosis

- ↑PH, ↑HCO₃
 ↑PCO₂ by 0.7 for every 1mEq/L ↑ in HCO₃
 Causes
 Vomiting
 Diuretics
 Chronic diarrhea
 - Hypokalemia

Metabolic Acidosis

$\Box \downarrow PH, \downarrow HCO_3$

12-24 hours for complete activation of respiratory compensation

□ \downarrow PCO₂ by 1.2mmHg for every 1 mEq/L \downarrow HCO₃

 The degree of compensation is assessed via the Winter's Formula
 PCO₂ = 1.5(HCO₃) +8 ± 2

Classification of Metabolic Acidosis

High AG Acidosis

- Lactic acidosis
- Diabetic ketoacidosis
- Starvation ketoacidosis
- Alcoholic ketoacidosis
- Uremic acidosis
- Poisoning
 - Methanol
 - Ehylene Glycol
 - Salicylate

- Normal AG Acidosis
 - Hyperalimentation
 - Acetazolamide
 - RTA (Calculate urine anion gap)
 - Diarrhea
 - Pancreatic Fistula

Hyperchloremic Acidosis (Normal Anion Gap)

Gastrointestinal Bicarbonate Loss

Diarrhea

- Renal Acidification Defects Renal tubular acidosis (RTA)
 - Proximal, classical distal RTA, and hyperkalemic distal RTA
 - Early chronic renal failure

Understanding Normal Acid-Base Handling

The Kidney

- Reabsorbs 4500 mEq of HCO₃ per day
- Generates new HCO₃ to replenish buffer stores
- The Proximal tubule does most of the work
 - Luminal membrane carbonic anhydrase

Understanding Normal Acid-Base Handling

The Kidney

- The Distal tubule reclaims the remainder of the HCO3
 - Uses cytoplasmic carbonic anhydrase
 - \rightarrow Also eliminates H⁺ = to the nonvolatile acid production

Evaluating a Low Serum HCO3

- Renal Tubular Acidosis
 - Impaired ammonium excretion can be demonstrated by the urine net negative charge (anion gap):

urine Na + + urine K+ + urine NH₄+ = urine Cl-UNa + + UK+ - UCl- = $-U_{NH_4}$ +

■ Normally: $U_{Na} + U_{K^+} - U_{Cl^-} = -U_{NH_4^+} = < -20$ in the face of acidemia

■ In RTA's ammonium excretion is impaired, therefore In RTA's: $U_{Na} + U_{K^+} - U_{CI^-} = -U_{NH_4^+} = 0$ (range +20 to -80)

Urine anion gap (UAG)

Urine anion gap (UAG) in evaluation of metabolic acidosis

Positive UAG

Decreased renal ammonia production Proximal renal tubular acidosis (type II) Hypokalemic distal renal tubular acidosis (type I) Hyperkalemic distal renal tubular acidosis (type IV) Renal tubular acidosis of renal insufficiency

Increased renal ammonia production and increased urinary excretion of sodium salts of acid

Sodium ketoacid salts (diabetic and alcoholic ketoacidosis) Sodium hippurate and sodium benzoate (toluene poisoning)

Negative UAG

Increased ammonia production Extrarenal acidosis

Proximal Renal Tubular Acidosis

Distal Renal Tubular Acidosis

Distal RTA's

Impaired (diminished) H⁺ secretion by the distal nephron (CCT) will result in either:

- Classic Distal RTA:
 Direct impairment of H⁺ ion secretion or from H⁺ backleak
- Hyporeninemic Hypoaldosteronemic RTA (Type IV RTA): Inadequate aldosterone effect

Mixed Acid-Base Disorders

- Patients may have two or more acidbase disorders at one time
- Delta AG vs Delta HCO3
- Simple high AG meta acidosis
 Delta HCO3 = Delta AG
- Delta HCO3 > Delta AG
 - Combine non AG acidosis
- Delta HCO3 < Delta AG</p>
 - Combine meta. alkalosis

Acid - Base Status

Important

Single acid-base disturbances do not compensate to normal pH.

A normal pH wth abnormal PaCO2 and/or HCO3- indicates two or more primary disorders.

Arterial Blood Gas (ABG) Analysis

ABG interpretation Follow rules and you will always be right !! 1) determine PH acidemia or alkalemia 2) calculate the anion gap 3) determine CO2 compensation (winters formula) 4) calculate the delta gap (delta HCO₃)

- □ Arterial Blood Gas (ABG) –interpretation
 - Always evaluate PH first
 - Alkalosis PH > 7.45
 - \Box Acidosis PH < 7.35
 - Determine anion gap (AG) AG = NA (HCO3+ CL)
 - □ AG metabolic acidosis
 - Non AG acidosis determined by delta gap
 - Winters formula
 - Calculates expected PaCO2 for metabolic acidosis
 - PaCO2 = 1.5 x HCO3 + 8
 - Delta gap
 - Combine meta. Acidosis or alkalosis or not

🗖 Delta gap

- Delta HCO3 > Delta AG : combine non AG acidosis
- Delta HCO3 < Delta AG : combine metabolic alkalosis
- Note: The key to ABG interpretation is following the above steps in order.

- 33 y/o with DKA presents with the following:
 - Na = 128, Cl = 90, HCO3 = 4, Glucose = 800
 - PH 7.0/PCO₂ 14/PO₂ 90/HCO₃ 4/Sat 95%
 - PH = acidemia
 - AG = 128 (90 + 4) = 34
 - Winters formula 1.5(4) + 8 = 14
 - Delta AG = 34 12 = 22
 - Delta HCO3 = 24 4 = 20
 - Delta HCO3 = Delta AG

Answer

AG acidosis with appropriate respiratory compensation

History c/w ketoacidosis secondary to DKA with appropriate respiratory compensation 35-year-old man admitted to the hospital with pneumonia and the following lab values:

ARTERIAL BLOOD GASES	SERUM ELECTROLYTES
pH 7.52	Na + 145 mEq/L
PaCO2 30 mm Hg	K+ 2.9 mEq/L
PaO2 62 mm Hg	Cl- 98 mEq/L
	HCO3- 22 mEq/L

Does the patient have an Alkalosis or Acidosis? Alkal

Alkalemia, pH is \uparrow

Is it respiratory or metabolic?

Respiratory: the PaCO₂ is low as is the HCO₃

Is the disorder compensated or not?

35-year-old man admitted to the hospital with pneumonia and the following lab values:

ARTERIAL BLOOD GASES	SERUM ELECTROLYTES
pH 7.52	Na + 145 mEq/L
PaCO2 30 mm Hg	K+ 2.9 mEq/L
PaO2 62 mm Hg	Cl- 98 mEq/L
	HCO3- 22 mEq/L

Does the patient have an Alkalosis or Acidosis? Alkalemia, pH is ↑

Is it respiratory or metabolic?

Is the disorder compensated or not?

How do we know what the HCO₃ should be? Remember, the HCO₃ will \downarrow 2 mEq/L for every 10 mmHg the PaCO₂ \downarrow as acute compensation. Respiratory: the PaCO₂ is low as is the HCO₃

Yes, the predicted HCO₃ is 22 mEq/L

The answer: Compensated Respiratory Alkalosis

68-year-old man with emphysema		
Arterial blood gas	Serum	Electrolytes
pH 7.34	Na+	138
PaCO ₂ 70 mm Hg	K+	4.7
	CI-	91
	HCO3-	36

Does the patient have an acidosis or alkalosis?	Acidemia
Is it metabolic or respiratory?	Respiratory

Is the respiratory acidosis compensated for? Yes, the HCO₃ should be 36 mEq/L

Remember the HCO₃ will \uparrow 4 mEq/L for every 10 mm Hg \uparrow the PaCO₂ in chronic respiratory acidosis. In this case the PaCO₂ \uparrow by 30 mmHg thus the HCO₃ \uparrow by 12 mEq/L In acute respiratory acidosis the HCO₃ will \uparrow 1 mEq/L.

The answer:

Compensated Respiratory Acidosis

What is (are) the acid- with acute renal failure	base disorder(s) evident in the following value?	ues, from a 27-year-old woman
<u>Arterial Blood Gas</u> pH 7.32 PaCO2 23 mm Hg	<u>Serum Electroly</u> Na+ 144 mEq/I K+ 4 mEq/L Cl - 108 mEq/L HCO3- 10 mEq	<u>ytes</u>
Does the patient	have an acidosis or alkalosis?	Acidemia
ls it metabol	ic or respiratory?	Metabolic
Now that we have acidosis, is the ar	e determined a metabolic nion gap normal or elevated?	High Anion Gap at 26
Now that we have a gap what made the	determined a high anion anion gap go up?	The drop in HCO ₃
So does the drop the increase in th	o in HCO₃ equal Yes, the ∆ ne anion gap?	$A HCO_3 (14) = the \Delta Anion gap (14)$
Is the respiratory Use Winter's Formula	compensation adequate? to predict the PaCO ₂ with a metabolic acidosis	Yes, the PaCO ₂ should be 23 mmHg :: 1.5 (HCO ₃) + 8 (\pm 2)
The answer:	Compensated High Anion Gap	o Metabolic Acidosis

	55-year-old-man seen for newly diagnosed renal failure			
	<u>Arterial blood gas</u> pH 7.38 PaCO ₂ 30	Serum chemistries Na+ 140 Cr 1.9 K+ 3.2 HGB 8.0 Cl- 115		
		HCO ₃ - 14		
Does the patient have an acidosis or alkalosis?AcidemiaIs it metabolic or respiratory?Metabolic				
Now that we determined a metabolic acidosisThe anion gapwhat do we check next?The anion gap = 11				
Remember the anion gap = Na - (HCO $_3$ + CI) and normal is 12				
Thus this is a normal anion gap acidosis or a hyperchloremic acidosis, notice the Chloride is 115 mEq/L.				
Is the metabolic acidosis compensated? Yes, the PaCO ₂ should be 29				

Remember Winter's Formula, 1.5 (HCO₃) +8 (±2)

The answer: Compensated Hyperchloremic Metabolic Acidosis⁵

	Q1. 27-year-old woman with acute renal failure		
	<u>Arterial blood gas</u> pH 7.12 PaCO2 13 mm Hg	Serum electrolytes Na+ 140 K+ 4.0 CI- 115 HCO3- 5	
Does the pat	ient have an acidosis or alkalosis	? Acidemia	
ls it metabo	olic or respiratory?	Metabolic	
So, what is	the anion gap?	Anion gap = 20	
Is the Δ anio	n gap = to the \triangle HCO ₃ ?	NO, \triangle anion gap = 8 \triangle HCO ₃ = 19	

Thus the Δ HCO₃ > the Δ anion gap, this means the HCO₃ went down more than the anion gap went up.

Something made the HCO₃ drop further, the two disorders that decrease the HCO₃ even further are:

Hyperchloremic metabolic acidosis or compensation for a respiratory alkalosis.

Is the respiratory compensation adequate? Yes, the predicted $PaCO_2 = 15 \text{ mmHg}$

Compensated High Anion Gap Metabolic Acidosis with a The Answer: Hyperchloremic Metabolic Acidosis

	Q2: 19yo college student was found by roommate on floor. Diaphoretic and comatose			
	Arterial blood gas pH 7.42	Serum electrolytes Na+ 152 BUN 30		
	PaCO2 24 mm Hg PaO2 115 mmHg	K+ 3.6 Cr 1.0 CI- 104 HCO3- 15		
Does the patient have an acidosis or alkalosis? Don't know the pH is normal				
So, where do we start? A good place to start is the anion gap The anion gap = 33				
	Thus there is at least a	a high anion gap metabolic acidosis		
So, now what?		Check the Δ HCO ₃ and Δ anion gap		
		The \triangle HCO ₃ = 24 - 15 = 9 The \triangle anion gap = 33 - 12 = 21 Thus they are not equal		
So, v	what does this mean? Th	e anion gap went up more than the HCO ₃ went down. us there is something keeping the HCO ₃ up. ³⁷		

	Q2: 19yo college student was found by roommate on floor. Diaphoretic and comatose				
	<u>Arterial blood gas</u> pH 7.42	Serum e Na+	electrol 152	United BUN 30	
	PaCO2 24 mm Hg PaO2 115 mmHg	K+ CI- HCO3-	3.6 104 15	Cr 1.0	
So, we determined the Δ anion gap > Δ HCO ₃		This s Metab Respir compe the HC	uggest there is either a olic alkalosis or a ratory acidosis with ensation, both will cause CO ₃ to be high		
So, check Winter's formula to determine the respiratory compensation. [1.5 (HCO ₃) + 8]		The pre This is thus the	edicted higher t e patien	PaCO2 is 30 than the measured PaCC It has a respiratory alkalo) _{2,} osis

The answer: High anion gap met acidosis with met alkalosis with resp alkalosis³⁸