
AU7022 Stochastic Methods in Systems & Control Xiang Yin

9 Bayes Estimation of Random Parameters
Bayes’ Estimation for Random Parameters

▶ In the parameter estimation problem, we have a parameterized statistic model {Pθ}θ∈Θ,
which gives us a conditional probability mass/density function f(x | θ) for each θ ∈ Θ.

▶ In some applications, we not only just know the parameter space Θ, but also the a prior
information about the distribution of θ specified by PDF/PMF f(θ). Then by making
use of this information, we can compute the posterior distribution of θ when observing
x ∈ X by the Bayes’ rule

f(θ | x) = f(x, θ)

f(x)
=

f(x | θ)f(θ)
f(x)

,

where f(x) is the marginal PDF determined by marginalization over θ, i.e.,

f(x) =

∫
Θ

f(x, θ)dθ =

∫
Θ

f(x | θ)f(θ)dθ

▶ Then for an estimator θ̂ : X → Θ, the estimate is θ̂(x) when x is observed. Suppose that
the true value of the parameter is θ, then an estimation cost cost(θ̂(x), θ) occurs, where
cost is a function

cost : Θ×Θ → [0,∞)

Note that both θ and x are random and therefore, cost is actually a random variable,
which is a function of Θ and X. By knowing f(θ) and f(x), we can computed the expected
cost, called the Bayes’ average cost/risk, associated with an estimator θ̂, which is

E(cost(θ̂, θ)) =
∫
Θ

∫
X

cost(θ̂(x), θ)f(x, θ)dxdθ =

∫
Θ

∫
X

cost(θ̂(x), θ)f(x | θ)f(θ)dxdθ

Then the optimal Bayes estimator is defined by

θ̂ = argmin
θ̂∈Θ

E(cost(θ̂, θ))

▶ Clearly, the optimal Bayes estimator depends on the specific form of the cost function.
Here, we will investigate three most widely used cost functions

– squared error: cost(θ̂, θ) = |θ̂ − θ|2

– absolute error: cost(θ̂, θ) = |θ̂ − θ|
– uniform error: cost(θ̂, θ) = I(|θ̂ − θ| > ϵ)

For each of the above cost functions, its expectation is called

– mean squared error (MSE): MSE(θ̂) = E(|θ̂ − θ|2)

– mean absolute error (MAE): MAE(θ̂) = E(|θ̂ − θ|)

– ϵ-error probability: Pe(θ̂) = P (|θ̂ − θ| > ϵ)
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Bayes’ Estimator for Squared Error

▶ The MSE is the most widespread estimation criterion and arguably the one with the
longest history. The optimal minimum mean squared error estimator (MMSEE) is the
conditional mean estimator (CME) defined as

θ̂CME = E(θ | X) =

∫
Θ

θf(θ | X)dθ

▶ The CME has an intuitive mechanical interpretation as the center of mass (1st moment
of inertia) of the mass density f(θ | x). The CME corresponds to the posterior average
value of the parameter after you have observed the data sample. As we have already seen
in the part of conditional expectation, the CME satisfies an orthogonality condition: the
Bayes estimator error is orthogonal to any (linear or non-linear) function of the data, i.e.,

E((θ̂CME − θ)g(X)) = 0

Therefore, we have

E((θ̂ − θ)2) =E(((θ̂ − θ̂CME)− (θ − θ̂CME))
2)

=E((θ̂ − θ̂CME)
2) + E((θ − θ̂CME)

2)− 2E((θ̂ − θ̂CME)(θ − θ̂CME))

=E((θ̂ − θ̂CME)
2) + E((θ − θ̂CME)

2)

Therefore, θ̂CME = E(θ | X) attains the minimum.

Bayes’ Estimator for Absolution Error

▶ We assume that the CDF F (θ | x) is always continuous. Then the minimal mean absolute
error estimator (MMAEE) is the conditional median estimator (CmE) defined as

θ̂CmE = median
θ∈Θ

f(θ | X) such that
∫ θ̂CmE(x)

−∞
f(θ | x)dx =

∫ ∞

θ̂CmE(x)

f(θ | x)dx =
1

2

▶ The median of a density separates the density into two halves of equal mass. The cor-
rectness follows from the fact that the CmE also satisfies an orthogonality condition:

E(sgn(θ̂CmE − θ)g(X)) =

∫
X

∫
Θ

sgn(θ̂CmE(x)− θ)g(x)f(θ, x)dθdx

=

∫
X

∫
Θ

sgn(θ̂CmE(x)− θ)g(x)f(θ | x)f(x)dθdx

=

∫
X
E(sgn(θ̂CmE(x)− θ)g(x)f(x) | X = x)︸ ︷︷ ︸

=0

dx = 0

Then we have
MAE(θ̂) =E(|θ̂ − θ|) = E(| (θ − θ̂CmE)︸ ︷︷ ︸

a

+(θ̂CmE − θ̂)︸ ︷︷ ︸
∆

|)

=E(|θ̂ − θ̂CmE|) + E(sgn(θ − θ̂CmE)∆)︸ ︷︷ ︸
=0

+E(sgn(a+∆)− sgn(a))(a+∆)

Therefore, the minimum is attained when ∆ = 0, i.e., θ = θ̂CmE.
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Bayes’ Estimator for Uniform Error

▶ Unlike the MSE or MAE, the MUE penalizes only those errors that exceed a tolerance
level ϵ > 0 and this penalty is uniform. For small ϵ the optimal estimator is the maximum
a posterior (MAP) estimator, which is also called the posterior mode estimator defined
as

θ̂MAP = argmax
θ∈Θ

{f(θ | X)} = argmax
θ∈Θ

{
f(X | θ)f(θ)

f(X)

}
= argmax

θ∈Θ
{f(X | θ)f(θ)}

▶ The proof is very simple. Assume that ϵ is a small and positive number. The probability
that the magnitude estimator error exceeds ϵ is simply expressed as

Pe(θ̂) = 1− P (|θ − θ̂| ≤ ϵ)

= 1−
∫
X

∫
Θ

1{(x,θ):|θ−θ̂(x)|≤ϵ}f(θ, x)dθdx

= 1−
∫
X

∫
{θ:|θ−θ̂(x)|≤ϵ}

f(θ | x)dθf(x)dx

Consider the inner integral (over θ) in the above expression. This is an integral over θ

within a window, which we call the length 2ϵ window, centered at θ̂. It should be evident
that, if ϵ is sufficiently small, this integral will be maximized by centering the length 2ϵ
window at the value of θ that maximizes the integrated f(θ | x). This value is of course
the definition of the MAP estimate θ̂.

Comments for Different Bayes’ Estimators

▶ The CmE may not exist for discrete Θ since the median may not be well defined.

▶ Only the CME requires (often difficult) computation of the normalization factor f(x) in
the posterior f(θ | x) = f(x | θ)f(θ)/f(x).

▶ When the posterior is continuous, unimodal, and symmetric then each of the above esti-
mators are identical.

▶ Each of these estimators depends on X only through posterior f(θ | X).

▶ If T = T (X) is a sufficient statistic, then the posterior depends on x only through T .
Suppose f(X | θ) = g(T (X), θ)h(X). We have

f(θ | X) =
f(X | θ)f(θ)∫

Θ
f(X | θ)f(θ)dθ

=
g(T, θ)f(θ)∫

Θ
g(T, θ)f(θ)dθ

= f(θ | T )

▶ The CME has the following linearity property. For any random parameter variables θ1
and θ2, we have

θ̂1+2 = E(θ1 + θ2 | X) = E(θ1 | X) + E(θ2 | X) = θ̂1 + θ̂2

This property is not shared by the CmE or the MAP estimator. (find counter example
for each as a homework)
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Example: Web Link Latency Estimation

▶ A networked computer terminal takes a random amount of time to connect to another
terminal after sending a connection request at time t = 0. You, the user, wish to schedule a
transaction with a potential client as soon as possible after sending the request. However,
if your machine does not connect within the scheduled time then your client will go
elsewhere. If one assumes that the connection delay is a random variable X that is
uniformly distributed over the time interval [0, θ] you can assure your client that the delay
will not exceed θ. The problem is that you do not know θ so it must be estimated from
past experience, e.g., the sequence of previously observed connection delays X1, . . . , Xn.
By assuming a prior distribution on θ an optimal estimate can be obtained using the
theory developed above.

▶ Now let’s formulate this in our language of estimation theory. We assume that, given θ,
observations X1, . . . , Xn are i.i.d. uniform samples each with conditional density

f(xi | θ) =
1

θ
1[0,θ](xi)

Let’s say that based on your experience with lots of different clients you determine that
a reasonable prior on θ is

f(θ) = θe−θ, θ > 0

We will derive the CME, CmE, and MAP estimators of θ as follows.

▶ First, we find the posterior
f(θ | x) = f(x | θ)f(θ)

f(x)

Specifically, we have

f(x | θ)f(θ) =

(
n∏

i=1

1

θ
1[xi,∞)(θ)

)(
θe−θ

)
=

e−θ

θn−1
1[x(1),∞)(θ)

where x(1) = max{xi} and function e−θ

θn−1 is monotone decreasing. Also, we have

f(x) =

∫ ∞

0

f(x | θ)f(θ)dθ =

∫ ∞

0

e−θθ−n+11[x(1),∞)(θ)dθ =

∫ ∞

x(1)

e−θθ−n+1dθ = q−n+1(x(1))

where qn(x) :=
∫∞
x

θne−θdθ is the incomplete Euler function, which is monotone decreas-
ing and has a recursive formula q−n−1(x) =

1
n
( 1
xn e

−x − q−n(x)), n = 0,−1,−2, . . . .

▶ Then we find the optimal estimator functions

θ̂MAP = X(1)

θ̂CME =
q−n+2(X(1))

q−n+1(X(1))

θ̂CmE = q−1
−n+1(0.5q−n+1(X(1)))

Note that only the MAP estimator is a simple function of X while the two others require
more difficult computation of integrals qn and/or an inverse function q−1

n .
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Example: Estimation of Gaussian Amplitude

▶ A very common assumption arising in many signal extraction problems is the assumption
of a Gaussian distributed signal observed in additive Gaussian noise. For example, a
radar target acquisition system might transmit a pulse to probe for possible targets in a
cell located at a particular point in space. If a strong reflecting target is present at that
point then it reflects some of the energy in the radar pulse back to the radar, resulting in
a high energy signal, called a radar return, at the radar receiver. The amplitude of this
signal might contain useful information about the identity of the target. Estimation of
the radar return is complicated by the presence of ambient noise generated in the radar
receiver (thermal noise) or by interference from other sources (clutter) in the cell.

▶ Formally, we consider two jointly Gaussian variables S and X with

f(s, x) =
1

2πσSσX

√
1− ρ2

e
− 1

2(1−ρ2)

[(
s−µS
σS

)2
−2ρ

(
s−µS
σS

)(
x−µX
σX

)
+
(

x−µX
σX

)2
]

i.e., E(S) = µS, E(X) = µX , var(S) = σ2
S, var(X) = σ2

X and cov(S,X) = ρσSσX . Specif-
ically, S will play the role of the signal and X will be the measurement. The objective is
to find an optimal estimator of S given measured X.

▶ First, we need to find the posterior density. A fundamental fact about jointly Gaussian
random variables is that if you condition on one of the variables then the other variable
is also Gaussian, but with different mean and variance equal to its conditional mean and
variance. In particular, the conditional density of S given X = x is Gaussian with mean
parameter

µS|X(x) = E(S | X = x) = µS + ρ
σS

σX

(x− µX)

and variance parameter

σ2
S|X = E((S − E(S | X))2 | X = x) = (1− ρ2)σ2

S

Therefore, the conditional desity takes the form

fS|X(s | x) =
fX|S(x | s)fS(s)

fX(x)
=

1√
2πσS|X

exp

(
−
(s− µS|X(x))

2

2σ2
S|X

)

▶ We immediately note that, as the posterior is continuous, symmetric and unimodal, the
MAP, CME, and CmE estimators are of identical form. Bringing out the explicit depen-
dency of the estimator Ŝ on the observed realization x we have:

Ŝ(x) = µS|X(x)

▶ An interesting special case, relevant to the radar example discussed above, is the inde-
pendent additive noise model where X = S + V , where V is an independent Gaussian.
For this case, we have σ2

X = σ2
S + σ2

V , ρ
2 =

σ2
S

σ2
S+σ2

V
and therefore

Ŝ(x) = µS +
σ2
S

σ2
S + σ2

V

(x− µX)
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Supplementary Materials for Jointly Gaussian

▶ A random vector X = (X1, X2, . . . , Xn)
T is said to be Gaussian if any linear combination

of itself components of the form
∑n

i=1 ciXi is a Gaussian random variable, where ci are
real numbers. Or equivalently, we call X1, X2 . . . , Xn jointly Gaussian.

▶ One can show (by using characteristic functions) that when X1, X2, . . . , Xn are jointly
Gaussian, their joint PDF is

fX1,...,Xn(x1, . . . , xn) =
1

(2π)
n
2

√
det(ΣX)

exp

(
−1

2
(X − E(X))TC−1

X (X − E(X))

)
where ΣX is the covariance matrix of X = (X1, X2, . . . , Xn), i.e.,

ΣX(i, j) = E((Xi − E(Xi))(Xj − E(Xj)))

▶ One important property of jointly Gaussian is that uncorrelated implies independent,
which is not true is general. Specifically, suppose that X1, X2, . . . , Xn are jointly Gaussian
and are uncorrelated, i.e.,

ΣX =


σ2
X1

0 · · · 0
0 σ2

X2
0

... . . . ...
0 0 · · · σ2

Xn

 and Σ−1
X =


(σ2

X1
)−1 0 · · · 0

0 (σ2
X2
)−1 0

... . . . ...
0 0 · · · (σ2

Xn
)−1


Therefore, we have

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

1√
2πσXi

exp

[
−1

2

(
xi − E(Xi)

σXi

)2
]
=

n∏
i=1

fXi
(xi)

which means that X1, X2, . . . , Xn are actually independent!

▶ Another important property of jointly Gaussian is that the conditional distribution is still
Gaussian. Specifically, if X1, X2, . . . , Xn are jointly Gaussian, then

fXn|X1,...,Xn−1(Xn | X1, . . . , Xn−1) =
fX1,...,Xn(x1, . . . , xn)

fX1,...,Xn−1(x1, . . . , xn−1)
∼ N(X̂, Σ̂)

where we have

X̂ =E(Xn | X1, . . . , Xn−1) = E(Xn) + ΣXn,Xn−1Σ
−1
Xn−1

(Xn−1 − E(Xn−1))

Σ̂ =σ2
Xn

− ΣXn,Xn−1Σ
−1
Xn−1

ΣXn−1,Xn

Note that Xn−1 is the data you observed and Xn is the value you want to estimate. The
above actually tells us the following important properties for jointly Gaussian

– E(X | X1, . . . , Xn) is a linear function of the data; and
– Σ is actually data independent.

Note that both are not correct for the general case. (try to find counter-examples as a
homework)
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