
Compilation Principle
编译原理

第7讲：语法分析(4)
张献伟

xianweiz.github.io
DCS290, 3/23/2021

https://xianweiz.github.io/

Bottom-up Parsing[自底向上]

• Begins at leaves and works to the top
− Bottom-up: reduces[归约] input string to start symbol
− In the opposite direction from top-down

p Top-down: expands start symbol to input string
− In reverse order of rightmost derivation (In effect, builds tree

from left to right, just like top-down)

• More powerful than top down
− Don’t need left factored grammars
− Can handle left recursion
− Can express a larger set of languages
− And just as efficient

2

Example
• Grammar

E → T+E|T
T → int*T | int | (E)

• String: int * int + int

• The rightmost derivation of the parse tree
− E ⇒ T + E ⇒ T + T ⇒ T + int ⇒ int * T + int ⇒ int * int + int

• To recognize the string via bottom-up parsing
− int * int + int ⇒ int * T + int ⇒ T + int ⇒ T + T ⇒ T + E ⇒ E

3

int * int + int

T
T

T

E

E

Bottom-up: Overview
• An important fact:

− Let ⍺βω be a step of a bottom-up parse
− Assume the next reduction is by X → β
− Then ω is a string of terminals [i.e., 句子]

• Why?
• Idea: split string into two substrings

− Right substring is as yet unexamined by parsing (a string of
terminals)

− Left substring has terminals and non-terminals

• The dividing point is marked by a #
− The # is not part of the string
− Initially, all input is unexamined #x1x2 . . . xn

4

⍺Xω → ⍺βω is a step in a rightmost derivation

Bottom-up: Shift-Reduce[移入-归约]

• Bottom-up parsing is also known as Shift-Reduce parsing
− Involves two types of operations: shift and reduce

• Shift: move # one place to the right
− Shifts a terminal to the left string

ABC#xyz ⇒ ABCx#yz

• Reduce: apply an inverse production at the right end of
the left string

− If E → Cx is a production, then
ABCx#yz ⇒ ABE#yz

5

The Example
• Grammar

E → T+E|T
T → int*T | int | (E)

• String
int * int + int

6

Sentential form Operation
#int * int + int Shift
int# * int + int Shift
int * #int + int Shift
int * int # + int Reduce T → int
int * T # + int Reduce T → int*T
T # + int Shift
T + # int Shift
T + int # Shift
T + T # Reduce T → int
T + E # Reduce E → T
E # Reduce E → T+Eint * int + int

T
T

T

E

E

Stack[栈]

• Left string can be implemented by a stack
− Top of the stack is the #

• Shift pushes a terminal on the stack

• Reduce does the following:
− pops zero or more symbols off of the stack

p production rhs
− pushes a non-terminal on the stack

p production lhs

7

Key Issue[一个关键问题]

• How to decide when to shift or reduce?
− Example grammar:

E → T+E|T
T → int*T | int | (E)

− Consider the step int # * int + int
− We could reduce by T → int giving T#*int + int

p A fatal mistake: no way to reduce to the start symbol E

• Intuition: want to reduce only if the result can still be
reduced to the start symbol

8

Sentential
form

Operation

#int * int + int Shift

int# * int + int Reduce T → int

T # * int + int Shift

… … …

Handle[句柄]

• Informally:
− RHS of a production rule that, when reduced to LHS, will lead to

the start symbol

• Definition: let αβω be a sentential form where:
− α, β is a string of terminals and non-terminals (yet to be

derived)
− ω is a string of terminals (already derived)
− Then β is a handle of αβw if:

S ⇒* αXω ⇒ αβω by a rightmost derivation (apply rule X→β)

• We only want to reduce at handles, and there is exactly
one handle per sentential form

− But where to find it?

9

Handle: Example
• Grammar

E → T+E|T
T → int*T | int | (E)

• String
int * int + int

10

Step Operation
#int * int + int Shift
int# * int + int Shift
int * #int + int Shift
int * int # + int Reduce T → int
int * T # + int Reduce T → int*T
T # + int Shift
T + # int Shift
T + int # Shift
T + T # Reduce T → int
T + E # Reduce E → T
E # Reduce E → T+E

Handle Always Occurs at Stack Top
• Why can’t a handle occur on right side of #?

− It can
− But handle will eventually be shifted in, placing it at top of stack
− In int * #int + int ⇒ int * int # + int, int is eventually shifted to

the top
• Why can’t a handle occur on left side of #, i.e., in middle

of the stack?
− Can int * int + # int occur? No.
− Means parser shifted when it could have reduced when the

handle was on top
− If parser eagerly reduces when handle is at top of stack, never

occurs
• Makes life easier for parser (need only access top of

stack)

11

Viable Prefix[活前缀]

• In shift-reduce parsing, the stack contents are always a
viable prefix

− A prefix of some right-sentential form that ends no further
right than the end of the handle of that right-sentential form.

− The handle is the substring that was introduced in the last step
of rightmost derivation of that sentential form.

•定义：一个可行前缀是一个最右句型的前缀，并且它
没有越过该最右句型的最右句柄的右端

−举例：S => bBa => bbAa，这里句柄是 bA，因此可行前缀包
括 bA的所有前缀（包括 b, bb, bbA），但不能是 bbAa（因
为越过了句柄）。

12

Ambiguous Grammars[二义文法]

• Conflicts arise with ambiguous grammars
− Bottom up parsing predicts action w/ lookahead (just like LL)
− If there are multiple correct actions, parse table will have

conflicts

• Example:
− Consider the ambiguous grammar E → E * E | E + E | (E) | int

13

Ambiguous Grammars (cont.)
• In the red step shown, can either shift or reduce by E → E

* E
− Both okay since precedence of + and * not specified in grammar
− Same problem with associativity of + and *

• As usual, remove conflicts due to ambiguity ...
− 1. Rewrite grammar/parser to encode precedence and

associativity
p Rewriting grammar results in more convoluted grammars
p Parser tools have other means to encode precedence and association

− 2. Get rid of remaining ambiguity (e.g. if-then-else)
p No choice but to modify grammar

• Is ambiguity the only source of conflicts?
− Limitations in lookahead-based prediction can cause conflicts
− But these cases are very rare

14

Properties of Bottom-up Parsing
• Handles always appear at the top of the stack

− Never in middle of stack
− Justifies use of stack in shift – reduce parsing

• Results in an easily generalized shift – reduce strategy
− If there is no handle at the top of the stack, shift
− If there is a handle, reduce to the non-terminal
− Easy to automate the synthesis of the parser using a table

• Can have conflicts
− If it is legal to either shift or reduce then there is a shift-reduce

conflict
− If there are two legal reductions, then there is a reduce-reduce

conflict
− Most often occur because of ambiguous grammars

p In rare cases, because of non-ambiguous grammars not amenable to
parser

15

