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1. Space-charge-limited flow

• One-carrier space-charge-limited flow without traps.  (electrons)
• One-carrier space-charge-limited flow with traps.
• Two-carrier space-charge-limited flow without traps or recombination centers.  (cathode electrons, anode holes) 
• Two-carrier space-charge-limited flow with recombination centers

2. One-carrier space-charge-limited 

Definition: if an electron injecting contact is applied to an insulator, electrons will travel from the metal into the 
conduction band of the insulator and form a space-charge similar to that of a vacuum diode.

Accumulation of charges in a particular region is 
referred to as space charge. 



3. Theory 
• At low voltages where the injected carrier density is less than 𝑛0, which is the 

thermally generated free carrier density, Ohm’s law will be obeyed:
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• At transition voltage, 𝑉𝑡𝑟, the transition from Ohm’s law  to Mott and Gurney law 
takes place:
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• The presence of traps will reduce the space-charge-limited current since any 
empty traps will remove most of the injected carriers. The occupancy of a trap 
level at 𝜖𝑡 in thermal equilibrium is given by

𝑛𝑡 𝑥 =
𝑁𝑡

1+
𝑁

𝑔𝑛 𝑥

(4)

where 𝑁 = 𝑁𝑐exp[
𝜖𝑡−𝜖𝑐
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]

s: film thickness
𝜇: mobility
V: voltage
k: dielectric constant
n: free electron density
D: diffusion coefficient
𝑁𝑡: trap density
g: degeneracy factor for 
traps
𝑁𝑐: effective density of 
states in the conduction 
band
𝜖𝑡: trap level
𝜖𝑐: bottom of conduction 
band

The theory is based on purely field driven currents and diffusion current: 
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Situation 1: shallow trapping
• ‘shallow’ traps are defined as being at least KT above the electron-steady-state Fermi level (ESSFL). Only shallow traps 

can be effective in capturing injected electrons.
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Thus from Eqn. (4), the ratio of free to trapped charge is
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Assuming all trapped charges in the states between initial Fermi level and the final Fermi level, so the shift in 
the Fermi level will be proportional to the space charge,
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Situation 2: deep trapping
• ‘deep’ traps are defined as being at least KT below the ESSFL
The traps are full and have little influence on the free carrier density.

In this case, 1 +
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3. Comparison of experiment and theory 

𝐼 = 2.2 × 10−11𝑉𝑒𝑉/31.1

𝐼 = 1.3 × 10−11𝑉𝑒𝑉/57.0

For film 2, the dependence of current on voltage was between V and V2 at 
lower voltages.

For voltages less than 10 v the current was probably a mixture of ohmic and 

SCLC. This suggests that the thermal equilibrium Fermi level was less than 

kT above a uniform distribution of hole capture levels

Amorphous selenium (20 u)/ tin oxide / glass substrate




