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Multiple introns in a deep-
sea Annelid (Decemunciger: 
Ampharetidae) mitochondrial 
genome
Angelo F. Bernardino  1, Yuanning Li2, Craig R. Smith3 & Kenneth M. Halanych  2

Wood falls provide episodic fluxes of energy to the sea floor that are degraded by a species-rich benthic 
fauna. Part of this rich diversity includes annelid polychaetes but unfortunately, our understanding 
of such fauna is limited and their genetic variability and evolutionary origins remain poorly known. 
In this study, we sequenced complete mitochondrial genomes from three congeneric Decemunciger 
(Ampharetidae) individuals that had colonized multiple wood falls in the deep (~1600 m) NE Pacific 
Ocean. Mitochondrial gene order within Decemunciger was similar to the three other available 
Terebellomorpha genomes, consistent with the relatively conserved nature of mitochondrial genomes 
within annelids. Unexpectedly, we found introns within the cox1, nad1 and nad4 genes of all three 
genomes assembled. This is the greatest number of introns observed in annelid mtDNA genomes, and 
possibly in bilaterians. Interestingly, the introns were of variable sizes suggesting possible evolutionary 
differences in the age and origins of introns. The sequence of the introns within cox1 is similar to Group 
II introns previously identified, suggesting that introns in the mitochondrial genome of annelids may 
be more widespread then realized. Phylogenetically, Decemunciger appears to be a sister clade among 
current vent and seep deep-sea Ampharetinae.

Ampharetid polychaetes are tube-dewelling annelids that are abundant on shallow-marine and deep-sea con-
tinental margins, with some species showing adaptations to sulfide-rich sediments near cold seeps and organic 
falls, including wood-falls and whale carcasses1–7. In organic-fall and cold-seep habitats, these polychaetes can 
show remarkable abundances and diversity and may be important for organic-matter degradation8, 9. However, 
as with many other deep-sea taxa, there is limited understanding of their diversity and evolution, requiring addi-
tional study including use of informative molecular markers10, 11. Despite their high diversity and abundance in 
the deep-sea, a limited number of polychaete taxa have been molecularly characterized from deep-sea ecosystems 
and from chemosynthetic habitats12–14.

Advances in phylogenetic and evolutionary understanding of Annelida has been made using comparative 
mitogenomics15–17. Annelids, like other bilaterians, typically have 37 mitochondrial genes18–20. Recent descrip-
tions of mitochondrial genomes from several annelid linneages revealed marked differences in gene order that are 
helping to resolve phylogenetic relationships, even though some inconsistencies between sequence data and phy-
logenies remain14, 20, 21. There are currently about 90 complete annelid mitochondrial DNA sequences (mtDNA) 
published14, 22, with many underrepresented linneages, making broad scale mitogenomic comparisons limited 
given the extremely high number of species in the deep-sea13. For instance, in the family Ampharetidae, there are 
only two incomplete mitochondrial genomes reported (Eclysippe vanelli and Auchenoplax crinita)18.

Descriptions of new mtDNA genomes can help to clarify phylogenetic relationships among closely related 
lineages and also to discover less frequent genome features such as the presence of group II introns23. The phy-
logeny of Terebelliformia includes two clades, one with Ampharetidae, Alvinellidae and Pectinariidae and the 
other with Terebellidae and Trichobranchidae24. Ampharetidae is a sister group to Alvinellidae based on current 
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molecular analysis from mitochondrial and nuclear genes6, 7, 11, 25, but the taxonomy within the family is complex 
due to morphological variability. There is only limited phylogenetic work within Ampharetidae, but the subfamily 
Ampharetinae host several species adapted to chemosynthetic deep-sea ecosystems7, 25.

Group II introns are self-splicing mobile genetic elements typically found in mitochondrial and other orga-
nelle genomes in lower eukaryotes, microbes, algae and higher plants, and are reported to contain genes with 
mobile capability26–28. Within Bilateria metazoans, group II introns were first described in the mitochondrial 
genome of the polychaete Nephtys sp.23, even though bilaterian mtDNA genomes were thought to be conserved 
in terms of gene content and lack introns17, 29. However, recent mitogenomic investigations have revealed a more 
common presence of Group II introns in the cox1 mitochondrial gene in some Annelid worms, including two 
Glycera species and one myzostomid Endomyzostoma30, 31. Based on previous phylogenetic analysis, Richter et 
al.30 demonstrated a close phylogenetic relationship between Nephtys sp. and Glycera introns, but less similarity 
with one of the two cox1 introns from Glycera fallax. The presence of introns in a few distantly-related annelid 
taxa makes mechanisms of intron acquisition and substitution rates of the relevant mtDNA regions unclear23. 
Although mitochondrial gene order is relatively conserved among annelids19, the presence or absence of such 
introns, their number and their association with unique or multiple genes with variable function suggests that 
annelid mitochondrial genomes may exhibit more varibility than anticipated19, 20.

We sequenced mitochondrial genomes of an abundant ampharetid (Decemunciger sp.) sampled from 
wood-fall blocks experimentally implanted for 12 months at ~1600 m depth on the East Pacific US margin. We 
detected differences in mitochondrial gene order relative to previously reported Terebellomorpha mt genomes18. 
Unexpectedly, we detected three intragenetic regions within cox1 (Group II intron), nad1 and nad4 genes. 
Furthermore, we conducted a phylogenetic analysis of Ampharetidae based on available mt genomes and tran-
scriptomic data to further explore ampharetid evolutionary history.

Results and Discussion
Genome assemblies and description. Using Illumina sequence data from three individuals of a deep-
sea ampharetid annelid abundant on wood-falls in the deep NE Pacific, we assembled complete mitochondrial 
genomes. The three individuals were morphologically identified to potentialy new species of Decemunciger, and 
all three assembled genomes had a 100% identical cox1 gene. There is no previous molecular data to confirm the 
identity of Decemunciger sampled in wood blocks separated by over 400 km on the Oregon-Washington margin, 
with the paratype described from the Atlantic32. Using a BLAST-based approach33, we identified mtDNA contigs 
that were roughly 15,000–16,000 bp in size from the genome assembly. The integrity of these contigs was con-
firmed by mapping sequence reads to the assembly 34. Decemunciger sp. mt genome has 16,703–16,974 bp without 
the introns, which is similar to the ampharetids Eclysippe vanelli (16,547; EU23968718) and is slightly longer 
than the other ampharetid Auchenoplax crinita (13,759 bp; FJ976041 incomplete) and the Terebellomorpha Pista 
cristata (15,894 bp; EU239688). The complete mtDNA of Decemunciger sp. is approximately 19 kb long (19,003 
to 19,274 bp; Table 1), with 2,300 bp of introns (Fig. 1; Table 1). Other previously studied annelids have mtDNA 
sizes between 14,414 and 22,058 bp14, 19, 20, 22, 30. Although the mitochondrial genome size varied slightly among 
our three specimens, the intergenic region between nad2 and cox1 showed the greatest variation.

For each mitochondrial genome sequenced herein, the genome was composed of 37 genes, with all 13 
protein-coding, 2 ribosomal rRNAs and 22 tRNAs29 (Fig. 1). All genes encoded on the same strand, typical of other 
annelids20. As observed in other Terebellomorpha, Decemunciger sp. mtDNA is AT rich (65.1% AT) in the coding 
regions (CDS) (Table 1). Mitochondrial gene orders of Decemunciger sp. mtDNA differ from E. vanelli in relation 
to positions of nad4, nad4L and nad5 genes, and differs from Terebellides stroemi (Trichobranchidae) and Pista 

Decemunciger sp. A3359 
AC KY742027

Decemunciger sp. A3372-1 
AC KY774370

Decemunciger sp. A3372-2 
AC KY774371

mtDNA size (bp) 19,274 19,096 19,003

Coverage depth 258x 1514x 1394x

Base composition

Whole genome

  A 32.7% 32.7% 32.7%

 T 34.4% 34.4% 34.5%

 G 13.8% 13.8% 13.8%

 C 19.1% 19.1% 19.1%

 GC 32.9% 32.9% 32.9%

CDS

 A 29.0% 29.0% 28.9%

 T 36.2% 36.3% 36.3%

 G 14.5% 14.4% 14.6%

 C 20.3% 20.4% 20.3%

 GC 34.8% 34.8% 34.9%

Table 1. Genome size, coverage, coverage depth and base composition of assembled Decemunciger sp. 
Mitochondrial genomes. AC - GenBank accession numbers.
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cristata (Terebellidae) in the positions of tRNAs (Fig. 118, 20). The difference in protein coding gene order between 
the ampharetids Decemunciger sp. and E. vanelli support a higher varibility in gene order within Ampharetidae19, 

20. A recent analysis of Syllidae also showed marked variability on the order of protein enconding genes, with four 
distinct gene orders14. With only 89 complete mtDNAs sequenced from annelids14, 15, 19, 20, 22, more variation in gene 
orders will certainly be uncovered. Slight differences in the number of tRNAs were also revealed in Decemunciger 
sp., if compared to previous Terebelliformia mtDNA. Terebellides stroemi and P. cristata have two copies of the 
methionine tRNA gene in their mtDNA, whereas only one copy was present in Decemunciger sp. mtDNA, as previ-
ously observed on the ampharetid E. vanelli18. Changes in the postion of tRNAs between Decemunciger sp. and the 
other Terebellomorpha were also observed (Fig. 1), and are common in bilaterian mtDNAs29.

Introns in Decemunciger mtDNA. Mitochondrial genomes of the three Decemunciger sp. individuals 
revealed the presence of introns within the cox1, nad1 and nad4 genes, which is the first report to date of multiple 
introns in distinct mitochondrial genes from Bilaterians. Introns within the cox1, nad1 and nad4 genes were 1648, 
390 and 262 bp long, respectively. All introns were the same size across the three assembled genomes and none of 
these introns coded a protein, but presented palindromic sequences at both ends (based on a blast search results). 
The cox1 intron contained a 390 bp ORF for an intron maturase 2 type II transcriptase (blastp e-value 7.68e-08), 
which was similar to other Group II introns reported in annelids23, 30. Although ORFs were not found in introns 
from nad1 and nad4 genes, these regions could possibly be derived form ancient transposible elements which 
have since lost any function. However, the intron maturase enzyme in the cox1 intron may assist transposition of 
these elements35. Another possibility is that the nad1 and nad4 introns are discontinuous parts of one transposible 
element split among those genes and can be trans-spliced to form a functional intron27, 36. These mechanisms have 
been observed in higher plants; if true here, would be the first known case of trans-complementation of introns 
in annelid mitochondrial genes.

The insertion position into the cox1 gene and size of the introns were identical within the three Decemunciger 
mitochondrial genomes sequenced. Multiple introns were first identified on mitochondrial genes (cox1 and 
nad5) of sea anemones (Group I intron37, and recently Group II introns have been reported on a cox1 gene of a 
Nephtydae (Nephtys sp.) and glycerid polychaetes23, 30. Intron sizes, their position within the cox1 gene and their 
coding protein sequences, differ between Nephtys sp., Decemunciger sp. and Glycera spp., consistent with distinct 
episodes of intron gain in these annelid lineages23, 38. Phylogenetic differences in the ORF region between introns 
are evident (Fig. 2). Different insertion positions of introns within cox1 genes of Decemunciger sp., Nephtys sp. 
and Glycera spp. may be a result of variable intronic target sites (IEP) within the mitochondrial genome (Fig. 2)27, 

30. The cox1 intron in Nephtys sp. has 1819 bp, whereas it is slightly shorter (1647 bp) in Decemunciger sp. The 
Nephtys sp. intron has an ORF region of 525 bp coding a reverse transcriptase enzime, whereas the 390 bp region 
within the Decemunciger sp. cox1 gene translates into a type II intron maturase enzyme. Amino acid sequences of 
both Nephtys sp. and Decemunciger sp. introns are also only 16% similar, further supporting independent events 
of insertion in a scenario of “late intron-gain” for annelids23, 38.

Nephtys sp. and Decemunciger sp. represent distinct linneages among Annelida, which likely inherited introns 
from separate viral vectors. The limited presence of introns may also suggest a high rate of intron loss among 
lineages. The loss of introns in genomes is generally related to fast replication rates observed, for example, in 
microbes in a process known as “genome streamlining”27. Since mitochondrial DNA is considered to possess a 
fast evolutionary rate39, introns may be rapidly removed from mitochondrial genes. Further complete mtDNA 
sequencing will very likely reveal new patterns of introns as usual mitochondrial barcoding (e.g. cox1) in marine 
invertebrates are based on short (about 600 bp) sequences that would not detect these introns.

Ampharetid phylogeny based on mtDNA. Amino acid (AA) sequences of protein coding genes from 
the three mitochondrial genomes from this study, from published genomes in GenBank and from transcriptomic 

Figure 1. Mitochondrial gene order of Decemunciger sp. sequenced in this study. Conserved gene clusters are 
represented in different colors as in Jennings and Halanych (2005) and Zhong et al.18. Lines between genomes 
highlight regions with different gene order. Red box indicates the introns detected within Decemunciger sp. mtDNA.
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data (see Table 2) were used to reconstruct a phylogenetic relationship of Decemunciger sp. within Ampharetidae. 
Phylogenetic relationships of ampharetids were infered using maximum likelihood (ML) analysis from a dataset 
with the 10 protein-coding and 2 rRNA mitochondrial genes (see methods). The dataset contained 3,024 amino 
acid residues after trimming using Gblocks and the resulting ML analysis yielded a tree topology with relatively 
high bootstrap support values for the division of Ampharetidae subfamilies Melinninae and Ampharetinae11, 18 
(Fig. 3). Ampharetidae was recovered as a monophyletic group, but our analysis did not include Alvinellidae7, 25.  
Melinninae and Ampharetinae were recovered as sister taxa, which supports current phylogenetic analysis25. 
Ampharetinae was also recovered as a monophyletic clade with strong support in the amino acid dataset, con-
sistent with previous molecular and morphological analyses7, 11, 18, 25. Whithin Ampharetinae, the Decemunciger 
lineage was sister to a strongly supported clade (bs = 100) comprised of Eclysippe, Auchenoplax, Samytha and 
Amphisamytha species (Fig. 3, Supplemental Fig. S1). Decemunciger has also marked morphological similarities 
(e.g. branchiae position and number) with the vent ampharetid genus Paramytha gen nov., which is a sister group 
to other vent/seep Ampharetinae clades based on cox1, 16S and 18S genes25, 32. In summary, our phylogenetic 
analysis support Decemunciger as within the Ampharetinae, within a clade comprised of several described species 
from chemosynthetic ecosystems in the North Atlantic and Arctic basins.

Methods
Genome assembly, annotation and mapping. Three Ampharetid specimens (A3359, A3372–1 and 
A3372–2) were collected from 1.5 kg blocks of douglas fir (Pseudotsuga menziesi) experimentally deployed on the 
seafloor for 15 months and recovered via accoustic release using the R/V Oceanus. Ampharetid A3359 was sam-
pled from one wood block recovered from 1605 m depth on Jun 22nd 2014 (43°54.22 N; 125°10.238 W), whereas 
ampharetids A3372–1 and A3372–2 were sampled from wood blocks recovered about 400 km north from the 
previous site at 1596 m depth on Jun 27th 2014 (47°57.462 N; 126o02.118 W). Morphological observations indi-
cate that all the three specimens belonged to the ampharetid genus Decemunciger sp. Specimens were immediately 
preserved onboard in 95–100% ethanol and later transferred to Auburn University.

DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen) following manufacture’s protocols. 
Sequencing of genomic DNA was performed by The Genomic Services Lab at the Hudson Alpha Institute in 
Huntsville, Alabama on an Illumina HiSeq 2500 platform (San Diego, California) using 2 × 150 paired-end v4 
chemistry. Paired-end reads were assembled de novo using Ray 2.2.0 with k-mer = 3134. Contigs of interest where 

Figure 2. Phylogenetic position of Annelid group II introns (black colour) including Decemunciger sp. cox1 
intron ORF and previous tree by Richter et al.30, Valles et al.23 and Zimmerly et al.27. Outlined are host species. 
Color-codes as in Richter et al.30: Green – chloroplast group II intron-encoded ORFs; Blue – Mitochondrial 
group II intron-encoded ORFs and RED – Bacterial group II intron-encoded ORFs. Genbank numbers are 
given in Richter et al.30.
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identified by using blast with previously published terebellomorph mtDNA genomes18 against the assembled 
genomic data. Annotation of the 13 protein-coding genes, 2 ribosomal RNAs and tRNAs was conducted initially 
with MITOS web server40, followed by manual genome annotation in Artemis41. Start and stop positions of genes 
were confirmed by BLASTn and BLASTp33 searches against the partial mitochondrial genome from Eclysippe 
vanelli (GenBank Accession EU239687) as well as manual inspection.

The presence of introns within coding mitochondrial genes was confirmed by mapping the paired Illumina 
reads against the assembled mitochondrial genome to check for coverage in each coding region and near the 
intronic reads34 (Supplementary Fig. S2). Reads were mapped with Bowtie242, indexed and sorted with Samtools 
and visually checked with Tablet software43. Identity on introns was aided by Blast searches when possible.

Transcriptomic data generation and assembly for phylogenetic analysis. Upon collection, all 
specimens were either stored at −80 °C, in ethanol or preserved in RNAlater (Life Technologies Inc.). Due to 
a limiting amount of tissue, only RNA was extracted since mitochondrial protein-coding and ribosomal RNA 
genes, which were used in mitogenomic analysis, can be recovered from transcriptome sequencing34, 44. RNA 
extraction and cDNA preparation for high-throughput sequencing followed45. Briefly, total RNA was extracted 
using TRIzol (Invitrogen) and purified using the RNeasy kit (Qiagen) with on-column DNase digestion. Next, 
single strand cDNA libraries were reverse transcribed using the SMART cDNA Library Construction kit 
(Clontech) followed by double-stranded cDNA synthesis using the Advantage 2 PCR system (Clontech). Illumina 
sequencing library preparation and sequencing of Lysippe labiata, Samytha sexcirrata, Samytha californiensis, 
Amphisamytha bioculata, Amphicteis gunneri, Auchenoplax crinita and Melinna maculata were performed by The 
Genomic Services Lab at the Hudson Alpha Institute in Huntsville, Alabama using 2 × 100 paired-end sequenc-
ing on an Illumina HiSeq 2000 platform (San Diego, California).

Prior to assembly, Illumina paired-end transcriptome sequence data were digitally normalized to a k-mer 
coverage of 30 using normalize-by-median.py46. Remaining reads were then assembled using Trinity r2013-02-25 
with default settings47. Mitochondrial protein-coding genes and ribosomal RNAs were identified by TBLSTX and 
BLASTN33, respectively (using the recovered E. vanelli mt genome as query).

Phylogenetic analysis. Fourteen taxa were included in the phylogenetic analysis. Pista cristata 
(Terebellidae) and Terebellides stroemi (Trichobranchidae) were acquired from GenBank (Table 2) and selected 
as outgroups based on data availability as well as current understanding of annelid evolutionary history15, 20. To 
assist in phylogenetic analysis and check the previous incomplete assembly of the ampharetid mtDNA Eclysippe 
vanelli18, we assembled a new complete mitochondrial genome from the ampharetid E. vanelli. The assembled E. 
vanelli genome has an identical gene order with the previous incomplete genome and a cox1 amino acid identity 
of 99.8% with the cox1 gene from the incomplete E. vanelli genome18. We used the complete E. vanelli genes for 
phylogenetic analysis (indicated below), and included genes from transcriptomic assembly from seven other 
species of interest.

Our data set was based on amino acid sequences from 10 mitochondrial protein-coding genes (cox1, cox2, 
cox3, cob, atp6, nad1, nad2, nad4, nad5, nad6) and two ribosomal RNA genes (rrnS and rrnL). nad4l, atp8 and 
nad3 sequences were excluded due to limited number of recovered sequences from transcriptome data. Each 
of the 12 genes was individually aligned using MAFFT48 followed by manual correction. The selected genes 
were then trimmed using the defalut setting in Gblocks49 to remove ambiguously aligned regions. Genes were 
then concatenated into final supermatrix datasets using FASconCAT50 for downstream phylogenetic analysis. 
Phylogenetic relationships of ampharetids were infered using maximum likelihood (ML) in RAxML51. Prior to 

Figure 3. Maximum likelihood tree obtained when analyzing amino acid sequences from mtDNA protein 
coding genes. All nodes were supported with 100% bootstrap value (bs = 100) unless otherwise noted. Dashed 
lines indicate subfamilies represented within Ampharetidae.
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ML analyses, PartitionFinderV1.1.152 was used to evaluate best-fit partition schemes and associated best-fit sub-
stitution models for both datasets. Topological robustness for the ML analysis was evaluated with 100 replicates 
of fast-bootstrapping.

Intron phylogeny. Phylogenetic position of group II introns was compared with the alignment of which 
built upon an analysis by Richter et al.30, 53, 54. The mitochondrial group II introns from cox1 genes of the Annelids 
Glycera fallax, Glycera unicornis and Nephtys sp. were analyzed and compared to the cox1 intron ORF from 
Decemunciger sp. and other chroloplast and bacterial intronic ORFs. The Maximum likelihood analysis was 
conducted with RAxML v.8.0.5 under the substitution model LG + I + G + F. Bootstrap support values (>50%) 
from 1,000 pseudoreplicates are given at the nodes. Colorcodes were defined accordingly to Richter et al.30, 
where group II intron-encoded ORFs known from chloroplast genomes are highlighted in green, mitochondrial 
genomes in blue, and bacterial genomes in red. GenBank numbers from intron sequences used in this analysis 
are given in Richter et al.30.
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Species Family Subfamily mtDNA genome Transcriptome data Ref

Pista cristata Terebellidae NC_011011.1 Zhong et al.18

Terebellides stroemi Trichobranchidae NC_011014 Zhong et al.18

Decemunciger sp A3359 Ampharetidae Ampharetinae this study KY742027

Decemunciger sp A3372-1 Ampharetidae Ampharetinae this study KY774370

Decemunciger sp A3372- Ampharetidae Ampharetinae this study KY774371

Amphisamytha bioculata Ampharetidae Ampharetinae this study KY972369-KY972532

Samytha californiensis Ampharetidae Ampharetinae this study KY972369-KY972532

Samytha sexcirrata Ampharetidae Ampharetinae this study KY972369-KY972532

Melinna maculata Ampharetidae Melinninae this study KY972369-KY972532

Auchenoplax crinita Ampharetidae Ampharetinae FJ976041.1 this study KY972369-KY972532 Zhong et al.18

Eclysippe vanelli Ampharetidae Ampharetinae this study

Eclysippe vanelli Ampharetidae Ampharetinae EU239687 Zhong et al.18

Amphicteis gunneri Ampharetidae Ampharetinae this study KY972369-KY972532

Lysippe labiata Ampharetidae Ampharetinae this study KY972369-KY972532

Table 2. List of taxa included in the Ampharetidae phylogenetic analysis, with genbank assession numbers and 
references to published sequences.
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