
A Rank Minimization Algorithm to Enhance Semidefinite Relaxations of
Optimal Power Flow

Raphael Louca1, Peter Seiler2, and Eilyan Bitar1

Abstract— The Optimal Power Flow (OPF) problem is non-
convex and, for generic network structures, is NP-hard. A
recent flurry of work has explored the use of semidefinite
relaxations to solve the OPF problem. For general network
structures, however, this approach may fail to yield solutions
that are physically meaningful, in the sense that they are
high rank – precluding their efficient mapping back to the
original feasible set. In certain cases, however, there may exist
a hidden rank-one optimal solution. In this paper an iterative
linearization-minimization algorithm is proposed to uncover
rank-one solutions for the relaxation. The iterates are shown
to converge to a stationary point. A simple bisection method is
also proposed to address problems for which the linearization-
minimization procedure fails to yield a rank-one optimal
solution. The algorithms are tested on representative power
system examples. In many cases, the linearization-minimization
procedure obtains a rank-one optimal solution where the naive
semidefinite relaxation fails. Furthermore, a 14-bus example
is provided for which the linearization-minimization algorithm
achieves a rank-one solution with a cost strictly lower than that
obtained by a conventional solver. We close by discussing some
rank monotonicity properties of the proposed methodology.

Index Terms— Optimization, Optimal Power Flow, Semidefinite
Programming, Rank Minimization.

I. INTRODUCTION

The Optimal Power Flow (OPF) problem is a classic problem
in power systems engineering that has been studied exten-
sively beginning with the seminal work of Carpentier [1] in
1962. OPF is generally formulated as a static optimization
problem where the objective is to minimize a convex cost
function subject to possibly non-convex physical and oper-
ational constraints. The cost function is typically chosen to
represent either the total cost of generation, line power losses,
or the sum of voltage magnitudes across transmission buses.
The cost is assumed to be affine or convex quadratic. The
physical constraints represent the power balance equations
described by Kirchhoff’s current and voltage laws, while the
operational constraints reflect bounds on real and reactive
power generation, branch flows, and voltage magnitudes.
Commonly, the set of decision variables are comprised of a
combination of bus complex power injections and voltages.
Naturally, the solution to OPF is given by a set of decision
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variables that yield a minimal cost operating point of the
power system. Although OPF is straightforward to formulate,
it is in general difficult to solve.

In its most general formulation, OPF is a high dimensional,
non-convex optimization problem that is NP-hard. The non-
convexity arises because the feasible set has a non-convex
quadratic dependency on the set of complex bus voltages.
Because of this non-convexity, the OPF problem may admit
several locally optimal solutions – some of which may be
suboptimal. Since its origin, a variety of techniques from
mathematical programming, including linear (e.g DCOPF)
and quadratic programming, have been proposed to solve
the OPF problem. For a comprehensive literature survey,
the interested reader is referred to [2] and to the references
therein. In practice, the predominant approach to solving
OPF involves the implementation of nonlinear optimization
routines, capable of addressing the inherent non-convexity in
OPF (e.g. MATPOWER [3], PSSE). These solvers, however,
do not offer any guarantees regarding the global optimality
of the solution they produce.

More recently, there has been a flurry of work exploring the
use of semidefinite relaxations to solve the OPF problem –
a novel approach first proposed by Bai et al. [4] and further
refined by Lavaei et al. [5]. Essentially, this convex relaxation
involves first recasting OPF as non-convex quadratically con-
strained quadratic program (NQCQP) and then applying the
standard Shor relaxation to obtain a semidefinite relaxation
(SDR) [6]. Qualitatively, this relaxation entails the exact
reformulation of the NQCQP as a semidefinite program
with a rank-one equality constraint on the set of feasible
matrices. The SDR is obtained by removing the rank-one
equality constraint. The relaxation is said to be exact if its
optimal solution set contains a rank-one matrix – a condition
which is difficult to verify in practice. Certain realizations of
OPF yield semidefinite relaxations with optimal solutions of
rank no greater than one. It has, however, been observed
in practice that many instances of OPF yield semidefinite
relaxations with optimal solutions of high rank – even though
rank-one optimal solutions may exist. This raises several
interesting questions. For instance, when is the minimal
rank of the optimal solution set of the SDR strictly greater
than one? Alternatively, in situations where the optimal
solution set contains matrices of multiple rank, how might
one uncover the hidden rank-one optimal solutions when
they exist? These questions naturally point in the direction
of solution methodologies involving rank minimization, or
approximations therein – the approach taken in this paper.
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A. Related Work

In a similar vein, Lavaei and Low [5] propose solving
the dual relaxation of the NQCQP and provide a sufficient
condition under which the solution to the relaxed problem
will be globally optimal for the original non-convex problem.
Their main theoretical result states that the duality gap is
zero for the NQCQP if the dual multiplier corresponding
to the positive semidefinitness constraint (in the SDR) has
a zero eigenvalue of multiplicity two. The authors empir-
ically observed that this condition is satisfied for many
IEEE benchmark networks and claimed that many “practical
systems operating under normal conditions” will also satisfy
this condition. However, several examples were given in
[7] that demonstrate the failure of SDRs to yield rank-one
optimal solutions in the case of networks with binding line
flow constraints realizing negative locational marginal prices.

Building on this work, Zhang and Tse [8] explore as to
whether the relaxation is exact for certain families of net-
works. The authors show that for tree topologies satisfying
certain constraints on the nodal power injections, the set of
feasible active power injections and its convex hull have
the same Pareto frontier. Therefore, the minimization of
an increasing function over the convex hull of the feasible
set will yield solutions on the Pareto frontier of the non-
convex problem. Moreover for linear objectives, they claim
that the SDR will yield a unique rank-one optimal solution.
Bose et al., build on these results by showing that NQCQPs
having an underlying tree structure and satisfying certain
technical conditions will yield SDRs obtaining rank-one
optimal solutions [9, Thm.1].

For general problem structures, however, the naive SDR
may fail to yield optimal solutions that can be efficiently
mapped back to the original feasible set. In fact, interior
point methods for SDPs will converge to a solution of
maximal rank among all optimal solutions [10], [11]. This
may lead to hidden rank-one optimal solutions when there
exist optimal matrices with rank strictly greater than one.
This gives rise to an important question. Is it possible to
efficiently uncover rank-one matrices in the optimal solution
set when the standard SDR fails? One approach is to solve a
rank minimization problem over the optimal solution face of
the SDR. Explicit rank minimization, however, is intractable
as rank is neither continuous nor convex.

The remainder of the paper is organized as follows. Sec-
tion II formulates the OPF problem and the corresponding
semidefinite relaxation. This section also provides geomet-
ric insight as to why a naive semidefinite relaxation may
fail to yield a rank-one optimal solution – even when it
exists. Section III provides the main results including a
description of the linearization-minimization and alternating
bisection-minimization methods for computing low rank so-
lutions to the semidefinite relaxation. Convergence and rank
monotonicity properties of the linearization-minimization
algorithm are also provided. Section IV demonstrates the
proposed algorithms on several numerical examples. Con-

clusions and ideas for future work are given in Section V.
Most proofs are given in the Appendix.

II. PROBLEM FORMULATION
A. Notation

Let F be a field of real (R) or complex numbers (C) and de-
note by ei the ith standard basis vector in Rn. LetMm,n(F)
be the set of all m×n matrices over F, andMn(F) the subset
of n×n square matrices. Sn is the vector space of all n×n
real symmetric matrices. Sn+ (Sn++) is the set of all n × n
real symmetric, positive semidefinite (definite) matrices. The
Hermitian analogues are denoted by Hn,Hn

+,Hn
++. To ease

notation, let � (�) denote the Loewner partial order induced
by Sn+ (Sn++) on Sn. In other words, A � B (A � B) if
and only if A−B ∈ Sn+ (A−B ∈ Sn++). We use the same
notation for the Loewner partial order induced byHn

+ (Hn
++)

on Hn. For A ∈Mm,n(F), let col(A) be the column space
of A. Moreover, let A> and A∗ denote the transpose and the
complex conjugate transpose of A, respectively. For A ∈ Hn,
let λi(A) and σi(A) be the ith largest eigenvalue and singular
value of A respectively. For any matrix A ∈ Mm,n(F), let
rank(A) denote the number of nonzero singular values of
A. Let Tr : Mn(F) → R denote the trace operator. For
A ∈ Mm,n(F), let ‖A‖∗ :=

∑n
i=1 σi(A) be the nuclear

norm of A, ‖A‖2 := supx 6=0
‖Ax‖2
‖x‖2 = σ1(X) the spectral

norm of A, and ‖A‖F :=
√

Tr(A>A) the Frobenius norm of
A. If A ∈ Hn

+, σi(A) = λi(A) ≥ 0 for all i = 1, . . . , n and
‖A‖∗ = Tr(A). Finally, let L : Mm,n(C) → M2m,2n(R)
denote the mapping from complex to real matrices.

L(A) =

[
Re(A) −Im(A)

Im(A) Re(A)

]
(1)

In addition, A � 0 if and only if L(A) � 0. In other words,
L maps the complex positive semidefinite cone Hn

+ to the
real positive semidefinite cone S2n+ .

B. Classical OPF Formulation

Consider a simple graph G = (V, E) where V = {1, . . . , n}
is the set of nodes representing the network buses, and E ⊆
V ×V is the set of branches (transmission lines) connecting
ordered pairs of buses (i, j). We denote by VG ⊆ V the
set of buses connected to generators. Let Ybus ∈ Sn be
the network admittance matrix and denote by Y ij

bus the (i, j)

entry of Ybus. Denote by V =
[
V1, . . . , Vn

]> ∈ Cn the
vector of complex bus voltages. In addition, the vectors
of real and reactive power generation across the network
buses are denoted by PG =

[
PG1, . . . , PGn

]> ∈ Rn

and QG =
[
QG1, . . . , QGn

]> ∈ Rn, respectively, where
PGi = QGi = 0 for all i /∈ VG. Similarly, denote the
vectors of real and reactive power demand as PD, QD ∈ Rn,
respectively. Denote the complex power injection at bus i
as Si = Pi + jQi, where Pi and Qi denote the real and
reactive power respectively. It follows that the power balance
equations at each bus i ∈ V satisfy

Pi = PGi − PDi and Qi = QGi −QDi. (2)
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Ai(ti, X) :=

[
ci1(Tr[ΦiX] + PDi) + ci0 − ti

√
ci2(Tr[ΦiX] + PDi)√

ci2(Tr[ΦiX] + PDi) −1

]
Bij(X) :=

−(Smax
ij )2 Tr[ΦijX] Tr[ΨijX]

Tr[ΦijX] −1 0
Tr[ΨijX] 0 −1

 (6)

Let P, Q ∈ Rn denote the vectors of real and reactive
power injections, respectively. Finally, define the apparent
power flow from bus i to j as Sij = Pij + jQij . The
operation of a power system must respect operational limits
on bus voltages, generator injection capacities, and line
flow capacities. We denote said upper and lower limits by
superscripts max and min respectively.

The aim of OPF is to identify a feasible operating point
which minimizes the total cost of generation. We consider
quadratic objective functions, fi : R→ R, of the form

fi(PGi) = ci2P
2
Gi + ci1PGi + ci0 (3)

where i ∈ VG and cik ∈ R for all k = 0, 1, 2. Specifically,
the classical OPF problem is formulated as follows.

minimize
PG,QG,V

∑
i∈VG

fi(PGi)

subject to Pmin
Gi ≤ PGi ≤ Pmax

Gi ∀i ∈ VG (4a)

Qmin
Gi ≤ QGi ≤ Qmax

Gi ∀i ∈ VG (4b)

V min
i ≤ |Vi| ≤ V max

i ∀i ∈ V (4c)
|Pij | ≤ Pmax

ij ∀(i, j) ∈ E (4d)

P 2
ij +Q2

ij ≤ (Smax
ij )2 ∀(i, j) ∈ E (4e)

Pi − jQi = V ∗i

n∑
j=1

Y ij
busVj ∀i ∈ VG (4f)

C. Semidefinite Relaxation

This section reviews the SDR of the OPF problem (4).
The relaxation entails the reformulation of problem (4) as a
quadratic program in V ∈ Cn which admits a rank relaxation
to a semidefinite program. The reader is refered to [4], [5],
[9] for more details. First, define the following matrices:

Yi := eie
>
i Ybus ∀i ∈ V

Yij :=

(
j
bij
2
− Y ij

bus

)
eie
>
i + Y ij

buseie
>
j ∀(i, j) ∈ E

where bij is the total shunt charging susceptance of branch
(i, j). For all i ∈ V , (i, j) ∈ E define weighting matrices as

Φi :=
Y ∗i + Yi

2
Φij :=

Y ∗ij + Yij

2
Mi:= eie

>
i

Ψi :=
Y ∗i − Yi

2j
Ψij :=

Y ∗ij − Yij
2j

(5)

where, Φi,Ψi,Φij ,Ψij ∈ Hn, and Mi ∈ Sn such that

Pi = Tr[ΦiV V
∗] Qi = Tr[ΨiV V

∗] V 2
i = Tr[MiV V

∗]

Pij = Tr[ΦijV V
∗] Qij = Tr[ΨijV V

∗].

Semidefinite programs require both linear objective and
constraints. While the objective function in problem (4) is

quadratic, it can be reformulated in its epigraph form by
letting, fi(PGi) ≤ ti, where ti ∈ R+. Using a change of
variables defined by equation (2) and the Schur complement
formula, one can readily verify that

fi(PGi) ≤ ti ⇐⇒ Ai(ti, V V
∗) � 0,

where Ai(·, ·) is defined in (6). Similarly, the quadratic
constraint in (4e) is equivalent to Bij(V V

∗) � 0, where
Bij(·) is defined in (6). Lastly, for all i ∈ V , use equation
(2) to define,

Pmin
i := Pmin

Gi − PDi Pmax
i := Pmax

Gi − PDi

Qmin
i := Qmin

Gi −QDi Qmax
i := Qmax

Gi −QDi

The preceding transformations lead to an equivalent
quadratic formulation of the classical OPF problem (4). It can
be equivalently reformulated as a rank-one constrained SDP
through a change of variables X := V V ∗ with an additional
constraint on the positive semidefiniteness of X . Finally, the
standard semidefinite relaxation entails the removal of the
rank-one constraint – the only source of non-convexity. We
now present the semidefinite relaxation in both its polar and
rectangular forms.

Leveraging on the preceding development, it’s straightfor-
ward to cast the semidefinite relaxation of OPF in its native
polar coordinates X ∈ Hn

+ as problem (7).

minimize
t∈Rd

+, X�0
1>t (7)

subject to Pmin
i ≤ Tr(ΦiX) ≤ Pmax

i ∀i ∈ V
Qmin

i ≤ Tr(ΨiX) ≤ Qmax
i ∀i ∈ V

(V min
i )2 ≤ Tr(MiX) ≤ (V max

i )2 ∀i ∈ V
Tr[ΦijX] ≤ Pmax

ij ∀(i, j) ∈ E
Ai(ti, X) � 0 ∀i ∈ VG
Bij(X) � 0 ∀(i, j) ∈ E

where d := |VG| denotes the number of buses connected to
generators.

Rectangular Coordinates: An equivalent relaxation in rect-
angular coordinates follows from the application of the
transformation L : Mm,n(C) → M2m,2n(R), defined in
(1), to the complex weighting matrices in (5) to obtain
the corresponding real weighting matrices. For clarity in
exposition, we employ the shorthand notation W r := L(W )
to denote the real transformation for any W ∈ Mm,n(C).
The semidefinite relaxation in rectangular coordinates (8)
is obtained with a change of variables X := V r(V r)> ∈
S2n+ . We note that the matrices Ai(·, ·) and Bij(·) are now
implicitly defined in terms of the real weighting matrices
(Φr

i ,Φ
r
ij ,Ψ

r
ij).
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minimize
t∈Rd

+, X�0
1>t (8)

subject to Pmin
i ≤ Tr (Φr

iX) ≤ Pmax
i ∀i ∈ V

Qmin
i ≤ Tr (Ψr

iX) ≤ Qmax
i ∀i ∈ V

(V min
i )2 ≤ Tr(Mr

i X) ≤ (V max
i )2 ∀i ∈ V

Tr (Φr
iX) ≤ Pmax

ij ∀(i, j) ∈ E
Ai(ti, X) � 0 ∀i ∈ VG
Bij(X) � 0 ∀(i, j) ∈ E

For the remainder of the paper, we will restrict our attention
to the semidefinite relaxation in rectangular form (8). Moving
forward, we let the set D ⊆ Rd

+ × Sn+ denote the set of
feasible solutions to problem (8) and J(t,X) denote the cost
incurred for any pair (t,X) ∈ D. Clearly, any pair (t◦, X◦) ∈
D achieving the minimum of (8) yields a lower bound,

J◦ := J(t◦, X◦) = minimize
(t,X)∈D

J(t,X), (9)

on the minimum value of the original non-convex OPF
problem (4). This evokes a pair of interesting questions.
For what family of OPF problems is the lower bound J◦

achieved? And, in such cases, how might one efficiently
construct a point in the original non-convex feasible set
achieving the lower bound J◦?

In the following section, we reinterpret these questions in
terms of the optimal facial structure of the semidefinite
relaxation of OPF. In particular, we leverage existing results
from the semidefinite programming literature to provide
geometric insight as to why the naive semidefinite relaxation
may fail to yield a rank-one optimal solution – even when
it exists. Moreover, we discuss how one might numerically
verify the nonexistence of rank-one optimal solutions to the
semidefinite relaxation of OPF using sum of squares (SOS)
programming.

D. Insight

Most commercial solvers implementing semidefinite pro-
grams (SDP) rely on primal-dual interior point methods.
Of relevance to the discussion at hand, are the convergence
properties of such numerical methods. Namely, interior point
methods are guaranteed to converge to a primal-dual optimal
solution pair of maximal rank for nondegenerate SDPs [10],
[11]. More precisely, let D denote the feasible spectrahedron
for a given SDP. And, denote by F ⊆ D and ri(F) the
primal optimal face and its relative interior, respectively. The
following result from [11] establishes that points belonging
to the relative interior of the optimal face have maximum
rank among all optimal solutions of the semidefinite program
and that interior point methods are guaranteed to converge to
optimal solutions in the relative interior of the optimal face.

Theorem 2.1: [11, Lemma 3.1, 4.2] For any X ∈ F and
Y ∈ ri(F), col(X) ⊆ col(Y ). In other words,

rank(Y ) = max{rank(X) : X ∈ F} ∀ Y ∈ ri(F).

Moreover, interior point methods for semidefinite programs

converge to an optimal solution Y ∈ ri(F).

The implication of Theorem 2.1 is that a naive semidefinite
relaxation of the OPF problem will fail to yield an optimal
solution that can be efficiently mapped back to the original
feasible solution set (i.e. rank-one solutions) if the optimal
face of the semidefinite relaxation contains points with rank
strictly greater than one. With the aim of quantifying the role
of optimal facial structure in either realizing or obfuscating
efficiency of the semidefinite relaxation, we delineate the
following three categories of optimal facial geometries.

C1. The maximal rank of the optimal face is one.
C2. The minimal rank of the optimal face is strictly greater

than one.
C3. The minimal rank of the optimal face is one, while the

maximal rank is strictly greater than one.

Category C1 will have only rank-one optimal solutions,

max{rank(X) : X ∈ F} = 1.

In this case, the naive semidefinite relaxation will yield a
rank-one optimal point that can be easily mapped (through
a dyadic decomposition) to a globally optimal solution
of the original non-convex OPF problem. Recent results
have shown that OPF problems, satisfying certain technical
conditions and defined on networks with radial topologies,
yield semidefinite relaxations with at most rank-one optimal
solutions [9], [8].

Category C2 corresponds to semidefinite relaxations that do
not admit rank-one optimal points. Namely, the minimal rank
of the optimal face is strictly greater than one

min{rank(X) : X ∈ F} > 1,

which implies that the optimal value of such a semidefinite
relaxation would yield a strict lower bound on the global
minimum of the original OPF problem (4). This amounts to a
non-zero optimality gap between the relaxation and the orig-
inal problem. Clearly then, verifying strictness of the global
lower bound given by the semidefinite relaxation amounts to
verifying emptiness of the intersection between the optimal
face and the set of all rank-one positive semidefinite matrices.

This condition has a natural geometric interpretation for
matrices belonging to the positive semidefinite cone Sn+.
Namely, a matrix X ∈ Sn+ is rank-one if and only if it spans
an extreme ray of the cone [12]. Hence, the semidefinite
relaxation will possess a rank-one optimal solution if and
only if its optimal face F has a nonempty intersection with
and extreme ray of Sn+.

Remark 1: (Positivstellensatz). The nonexistence of rank-
one optimal solutions to the semidefinite relaxation can be
verified numerically by means of a Positivstellensatz-based
infeasibility certificate. Stengle’s Positivstellensatz states that
if a system of polynomial equations and inequalities defining
a semialgebraic set is infeasible, it is always possible to find
an algebraic certificate that confirms that the said semial-
gebraic set is empty [13]. The construction of polynomials
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that satisfy said identity can be accomplished through sum of
squares programming (SOS) with bounded degree polynomi-
als on the semialgebraic set defined by the intersection of the
optimal face of the semidefinite relaxation with the rank-one
algebraic variety. One drawback of this approach, however,
is that the computational complexity required to implement
such SOS methods grows rapidly as a function of the number
of constraints, variables, and degree of polynomials. 2

Remark 2: (A 3-bus system with no rank-one solutions).
There exist exceedingly simple power systems whose OPF
semidefinite relaxation does not admit a rank-one optimal
solution. Consider, for example, the three bus system exam-
ined in [7]. One can readily verify, through exhaustive search
of the non-convex feasible set, that the optimal value of the
semidefinite relaxation is a strict lower bound on the global
optimum of the OPF problem. This implies the nonexistence
of a rank-one optimal solution to the relaxation. Moreover,
this example gives pause, as it reveals the potential fragility
of such relaxations. Further theoretical work is required
to provide general sufficient conditions under which the
semidefinite relaxation of OPF is guaranteed to fail. 2

Category C3 refers to the family of semidefinite relaxations
possessing both high rank and hidden rank-one optimal
solutions. More precisely,

min{rank(X) : X ∈ F} = 1 and
max{rank(X) : X ∈ F} > 1.

We refer to the rank-one solutions as hidden, given the
propensity of interior point methods to converge to optimal
points of maximal rank (c.f. Theorem 2.1). A solution to a
semidefinite relaxation belonging to this family will fail to
yield useful information regarding the potential optimality
gap induced by the relaxation. In certain cases, (e.g. when the
dual multiplier corresponding to the constraint on positive-
semidefinitness in the relaxed problem has a zero eigenvalue
of multiplicity two [5]), the solution to the semidefinite
relaxation can be efficiently mapped back to feasible set
of the OPF problem without loss of optimality. In general,
however, mapping a high-rank solution to the semidefinite
relaxation back to the original feasible set is NP-hard.

This inspires the exploration of methodologies capable of
uncovering hidden rank-one optimal solutions to the semidef-
inite relaxation, when they exist. Qualitatively, this amounts
to identifying matrices of minimal rank among all matrices
belonging to the optimal face of the semidefinite program
(8). The optimal face is defined as

F = {(t,X) ∈ D : J(t,X) ≤ J◦}, (10)

where J(t,X) denotes the cost incurred by any feasible
pair (t,X) ∈ D and J◦ denotes the optimal value of (8).
Essentially, computing an optimal point of minimal rank
entails the solution of a rank minimization problem restricted
to the optimal face of the semidefinite relaxation.

minimize
t, X

rank(X)

subject to (t,X) ∈ F
(11)

Remark 3: (OPF as Rank Minimization). In the event that
the optimal face of the semidefinite relaxation possesses a
rank-one matrix, problem (11) reveals that OPF can be equiv-
alently reformulated as a problem of rank minimization over
a spectrahedral set. Explicit rank minimization, however, is
known to be computationally NP-hard in general. 2

As a tractable alternative, one might naturally solve an
approximation to the rank minimization problem through
suitable choice of a convex surrogate for rank, which is
neither continuous nor convex.

In [14], Fazel et al. prove that the nuclear norm is the convex
envelope of rank on spectral norm balls. This property
fails to hold, however, for general convex sets. While the
nuclear norm has been shown to be an effective surrogate for
rank over certain affine equality constrained sets satisfying
a restricted isometry property [15], it can behave quite
poorly over more general spectrahedral sets. In fact, when
optimizing over the feasible spectrahedron derived from the
semidefinite relaxation of the OPF problem, one can show
that naive nuclear norm minimization will frequently fail to
find low-rank feasible solutions – even when they exist. This
behavior derives from the near invariance of nuclear norm
over the feasible spectrahedron – an observation also made
by the authors in [16]. More precisely, for any feasible pair
(t,X) ∈ D, one can readily derive the following lower and
upper bounds on the nuclear norm of X .

n∑
i=1

(V min
i )2 ≤ ‖X‖∗ ≤

n∑
i=1

(V max
i )2 (12)

In practice, the lower and upper bounds on bus voltage
magnitude – V min

i and V max
i , respectively – are chosen

to be close to 1 per unit (p.u) for all buses i, because of
strict requirements on power quality. This suggests that all
feasible solutions to (8) have nearly equal nuclear norm,
which reveals why naive nuclear norm regularization may
fail to distinguish between low and high-rank solutions.

As an alternative to nuclear norm minimization, we analyze
in Section III the behavior of an algorithm that involves
solving a sequence of weighted trace minimization problems,
where the weighting matrices are recursively chosen to drive
small (but non-zero) eigenvalues of the successive solution
iterates to zero – an approach which derives largely from the
work in [17].

III. MAIN RESULTS

Faced with an intractable rank minimization problem (11),
we take the approach of approximating rank with a contin-
uously differentiable, strictly concave function g : Sn+ → R.
With g acting as a surrogate for rank, we instead propose to
solve the alternative problem

minimize g(X)

subject to X ∈ C
(13)
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where C ⊂ Sn+ is a convex, compact subset of the positive
semidefinite cone. To address the non-convexity of prob-
lem (13), in Section III-A we describe a standard iterative
linearization-minimization algorithm to obtain a sequence of
convex differentiable problems, whose optimal solutions are
guaranteed to converge to a local minimum of g on C.

In Section III-B, we focus our attention on specific instances
of g belonging to the log-det family. Namely, we consider

g(X) = log det(f(X) + δI),

where the underlying parameterization (in the regularization
constant δ > 0 and mapping f : Sn+ → Sn+) controls
the quality of g’s approximation to rank. Notice, that for
f(X) = X , we recover the classical log-det heuristic [17],
[18]. Working with rank surrogates of this form, we employ
a gradient descent method to compute a local minimum of
g – with the aim of recovering a rank-one matrix belonging
to the optimal face F of the semidefinite relaxation for OPF
(c.f. Equation (10)). In the event that we fail to recover a
rank-one point in the optimal face, we suggest in Section
III-C a simple bisection algorithm to iteratively relax the
set of feasible points until a rank-one feasible point is
obtained. Finally, in Section III-D we explore how one might
iteratively choose a sequence of regularization parameters
{δk}, so that the resulting solution iterates satisfy certain
rank monotonicity properties.

A. Iterative Linearization-Minimization

In this section, we introduce the iterative linearization–
minimization algorithm and we discuss its convergence prop-
erties. We work in a general framework where we consider
arbitrary strictly concave functions and arbitrary convex
compact subsets of the positive semidefinite cone.

Let {gk}k∈N be a sequence of smooth, strictly concave func-
tions, converging pointwise to g over a convex, compact set
C ⊂ Sn+. Moreover, assume that the sequence is monotonic
nonincreasing. Namely,

gk+1(X) ≤ gk(X) ∀ X ∈ C and k ∈ N.

For each k ∈ N, we define the linearization of gk(X) around
Y ∈ C as

Λk(X,Y ) = gk(Y ) + Tr[∇gk(Y )>(X − Y )],

from which we readily derive the iterative linearization-
minimization algorithm as follows.

Xk+1 ∈ argmin
X∈C

Λk+1(X,Xk)

= argmin
X∈C

Tr
[
∇gk+1(Xk)>X

]
,

(14)

where ∇g : Sn+ → Sn is the gradient of g. The algorithm can
be initialized at any point X0 ∈ Sn+. Before presenting the
result on convergence, we have the following useful Lemma.

Lemma 3.1: Consider a sequence of iterates {Xk} gener-

ated by the recurrence relation (14). We have that

gk+1(Xk+1) < gk(Xk) (15)

for all k ∈ N such that Xk 6= Xk+1. And

lim
k→∞

Tr
[
∇gk+1(Xk)>(Xk+1 −Xk)

]
= 0. (16)

Proof: First consider the proof of (15). By strict concavity,
we have that gk(X) is strictly less than it’s linearization
around Y ∈ C for all X 6= Y . In particular, for Xk 6= Xk+1,
we have that

gk+1(Xk+1) < gk+1(Xk) + Tr[∇gk+1(Xk)>(Xk+1 −Xk)].

And by optimality of Xk+1 according to (14), we arrive
at gk+1(Xk+1) < gk+1(Xk). The desired result follows
immediately from monotonicity of the sequence {gk}.
Consider now the proof of (16). The sequence {gk(Xk)}
of real numbers is bounded from below by continuity of
the limit function g over a compact set C. Hence, it fol-
lows from (15) and the monotone convergence theorem
that the sequence {gk(Xk)} has a finite limit. The desired
result follows from the fact that the quantity gk+1(Xk) +
Tr[∇gk+1(Xk)>(Xk+1 − Xk)] is sandwiched from above
and below by gk(Xk) and gk+1(Xk+1), respectively. �

We now discuss the convergence properties of the proposed
algorithm. First, we provide the definition of a stationary
point.

Definition 3.2: Let h : Mn(R) → R be a continuously
differentiable function defined on the set K ⊆ Mn(R). A
matrix X ∈ K satisfying

Tr
[
∇h(X)>(Y −X)

]
≥ 0 ∀ Y ∈ K

is a said to be a stationary point of h over K.

Theorem 3.3: Consider a sequence of iterates {Xk} gener-
ated by the recurrence relation (14). We have the following
convergence properties.
(a) The sequence {Xk} satisfies ‖Xk+1 −Xk‖F → 0.

(b) Every limit point of {Xk} is a stationary point.

While the proof of Theorem 3.3 (which can be found in
Appendix I) follows largely from arguments in [19], it is
included for completeness, as it ameliorates a minor gap in
the proof of a similar result (Theorem II.2) appearing in [18].

B. A Rank Minimization Heuristic

In a similar spirit with previous work [17], [18], we now
consider a surrogate family for rank of the log-det type. More
precisely, we define the sequence of surrogates {gk} as

gk(X) = log det(f(X) + δkI), k = 1, 2, . . . (17)

where the sequence of regularization parameters {δk} is
assumed to be monotonic nonincreasing with a finite limit
δ > 0. Moreover, we restrict f : Sn+ → Sn+ to a family
of mappings that preserve strict concavity and continuous
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differentiability of gk on a convex, compact subset C of the
positive semidefinite cone for all k. It follows readily, by the
monotonic convergence of {δk} → δ > 0, that {gk} is a
monotonic sequence of functions satisfying

lim
k→∞

gk(X) = g(X) := log det(f(X) + δI)

for every in X ∈ C. The gradient is easily computed as

∇gk(X) = (f(X) + δkI)−1∇f(X).

An iterative linearization-minimization of the functions {gk}
in (17) will converge, by Theorem 3.3, to a stationary point of
g on some compact set. Section III-D discusses the selection
of regularization coefficients {δk} to ensure certain rank
monotonicty properties of the iterates {Xk}.
Remark 4: For the identity mapping f(X) = X , we
recover the classical log-det heuristic [17]. Other natural
candidates for f include the quadratic, f(X) = X>X , or
exponential mappings, f(X) = I−exp(−τX), where τ > 0
is a regularization constant controlling the concavity of f . We
remark that there exists a broad literature quantifying, both
analytically and empirically, the behavior of a much larger
family of rank surrogates that go beyond the log-det family.
However, such a discussion is beyond the scope of this paper
and we refer the reader to [15], [20], [21] for a partial cross
section of relevant literature. A careful analysis exploring the
appropriate choice of surrogates for rank under semidefinite
relaxations for OPF is left for future work. 2

Recall from Section II-D, our objective of efficiently extract-
ing hidden rank-one matrices belonging to the optimal face
F of the OPF semidefinite relaxation. Leveraging on the pre-
ceding development, we now offer a simple iterative heuristic
in Table I with the aim of doing precisely that. Given a
high rank (>1) solution (t◦, X◦) ∈ F to the semidefi-
nite relaxation (9), we initialize the iterative linearization-
minimization algorithm with a feasible set restricted to the
optimal face F , and initial condition (t◦, X◦). For notational
brevity, we denote the iterative linearization-minimization
algorithm in Table I as the mapping

(t,X) = Γ(F , t◦, X◦),

where (t,X) ∈ F denotes the converged value (within a
prescribed tolerance) of the gradient descent method.

C. An Alternating Bisection-Minimization Method

In the event that the rank minimization heuristic fails to
yield a rank-one solution in F (i.e. rank(X) > 1), one of
two motives could be at play. Firstly, there may not exist a
rank-one point belonging to the optimal face F (c.f. category
C2). Secondly, while there may exist a rank-one point in F ,
the heuristic may fail to recover it, as we have provided no
guarantee on the algorithm’s ability to recover a minimum
rank solution. In either case, we offer in Table II a simple
bisection method to iteratively relax the set of feasible points
until a rank-one feasible point is obtained. And naturally,
there is no guarantee as to whether the resulting rank-one

TABLE I: Iterative Linearization-Minimization Algorithm

Algorithm 1: (t,X) = Γ(C, t0, X0)

Given a convex, compact set C ⊂ D, an initial condition
(t0, X0), a stopping tolerance ε > 0, and maximum
number of iterations k
Initialize k = 0

Repeat
1. Compute. (tk+1, Xk+1) ∈ argmin

(t,X)∈C
Tr[∇gk+1(Xk)>X]

2. Update. k = k + 1

Until ‖Xk −Xk−1‖F < ε or k = k

Output (t,X) = (tk, Xk)

point is globally optimal for the original OPF problem (11),
unless the global lower bound J◦ is achieved.

The iterative relaxation of the feasible set obeys a simple
bisection rule described as follows. First, let J denote a
global upper bound on the optimal cost of the OPF problem –
a quantity that most commercial solvers can readily provide.
If the rank minimization heuristic (c.f. Table I) fails to
recover a rank-one point on the optimal face F , i.e.

rank(X0) > 1, where (t0, X0) = Γ(F , t◦, X◦),

we enlarge the feasible set to include points incurring a cost
no greater than than the bisection point, J1 := J◦+ 0.5(J −
J◦) in the interval [J◦, J ]. The expanded feasible set is

F1 = {(t,X) ∈ D : J(t,X) ≤ J1},

and apply the rank minimization heuristic over the new
initial condition (t0, X0) and feasible set F1 to obtain an
updated solution (t1, X1) = Γ(F1, t0, X0). The subsequent
decision to bisect from above or below J1, at the following
time step, depends on the rank of the current solution X1.
This alternation between bisection and optimization repeats
ad nauseum until the bisection points converge to within a
prescribed tolerance of one another. We refer the reader to
Table II for a precise description of said method.

Remark 5: We mention two caveats. First, for certain re-
alizations of the OPF problem, one may not be able to
efficiently obtain a global upper bound, J , through which
to parameterize the bisection algorithm, as finding a point
belonging to the non-convex feasible set of OPF is, in
general, NP-hard. Second, the bisection algorithm’s ability to
recover a rank-one solution may be sensitive to the recursive
choice of initial condition for the rank minimization algo-
rithm at each bisection step. We have suggested one possible
recursion, where the solution at the previous bisection step,
initializes the rank minimization algorithm at the current
step. One can imagine many variations in said scheme. 2

D. Rank Monotonicity

Success of the iterative rank minimization algorithm (I)
hinges on its convergence to a rank-one point belonging to
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TABLE II: Alternating Bisection-Minimization Algorithm

Algorithm 2: Alternating Bisection-Minimization

Given bounds (`0, u0), an initial condition (t0, X0), and
stopping tolerance ε > 0

1. Bisect. J1 = `0 + 1
2 (u0 − `0)

2. Set. k = 1

Repeat
7. Update set. Fk = {(t,X) ∈ D : J(t,X) ≤ Jk}
8. Call Algorithm 1. (tk, Xk) = Γ(Fk, tk−1, Xk−1)
9. if rank(Xk) > 1

1. Bisect from above. Jk+1 = Jk + 1
2 (uk − Jk)

2. Update bounds. `k+1 = Jk, uk+1 = uk,
10. else if rank(Xk) = 1

1. Bisect from below. Jk+1 = `k + 1
2 (Jk − `k)

2. Update bounds. `k+1 = `k, uk+1 = Jk,
11. Update time. k = k + 1

Until |Jk − Jk−1| < ε

Output Jk, tk−1, Xk−1

the optimal face F . As such, it’s natural to ask as to whether
the iterates {Xk} are monotonic in rank? Namely, can one
guarantee that the rank(Xk+1) ≤ rank(Xk) for all k? This
is a nuanced question, as the practical evaluation of rank
requires approximation.

The rank of a matrix is equal to the number of non-
zero singular values of the matrix. This fact is useful for
theoretical analyses but it raises subtle issues when perform-
ing numerical computations with floating point numbers. In
particular, the finite precision of floating point arithmetic
implies that nonzero singular values cannot be distinguished
from zero if their magnitude is sufficiently small. Conversely,
numerical errors that arise in floating point computations can
cause a matrix to have spurious non-zero singular values.
As a consequence a threshold tolerance is typically used
to determine the number of non-zero singular values and
hence the rank of a matrix. To be precise, the numerical
results generated in this paper calculate the rank of a matrix
as the number of singular values that exceed a certain
threshold ε. These numerical issues related to the matrix rank
raise interesting questions that should be addressed by any
practical semidefinite programming algorithm.

In light of the preceding discussion, we introduce a notion
of near low rank, which is meant to capture matrices that
are well approximated by low rank matrices. More precisely,
we have the following definition.

Definition 3.4: A matrix X ∈ Mn(R) is defined to be ε-
near rank-p if X satisfies

X = M +N, M,N ∈Mn(R)

where rank(M) = p and ‖N‖F ≤ ε.
Equivalently, a matrix is said to be ε-near rank-p if it lives
within a ε-radius ball centered around a rank-p matrix.

We now explore certain rank monotonicity properties of the
matrix iterates {Xk} generated by the the rank minimization
heuristic (14) under the sequence of surrogates gk(X) =
log det(X + δkI).

Theorem 3.5 (Near rank monotonicity): Let rank(Xk) =
p ≥ 1. Then Xk+1 is ε-near rank-r (where r ≤ p), if

δk+1 ≤
ε

p
.

Proof: The proof of the Theorem is omitted due to the lack
of space. �

Remark 6: (Approximate constraint satisfaction). Using
this notion of near low rank, one can pose interesting
questions regarding approximate constraint satisfaction. For
example, consider an ε-near rank-one matrix X = M + N
(where rank(M) = 1 and ‖N‖F ≤ ε) belonging to the
optimal face F of the OPF semidefinite relaxation. While
the naive rank-one approximation X ≈ M may result in a
violation of constraints (i.e. M /∈ F), the violation will be
mild. And for practical engineering problems such as OPF,
minor constraint violations may be tolerable. It’s therefore
natural to ask as to when the optimal face F possesses
nearly rank-one matrices that can be efficiently computed?
Conversely, for semidefinite relaxations which do not pos-
sess rank-one optimal solutions, can one systematically and
efficiently construct a mild relaxation of the optimal face
F ′ ⊃ F such that F ′ admits a rank-one matrix? 2

IV. NUMERICAL STUDIES

The primary objective of this section is to present a
cross section of numerical results on the performance
of the linearization-minimization and alternating bisection-
minimization algorithms. A number of representative power
system examples are presented for which the naive semidefi-
nite relaxation fails. In Section IV-A, examples are provided
for which the linearization-minimization algorithm succeeds
in finding hidden rank-one optimal solutions that are also
globally optimal for the original OPF problem. In the event
that said algorithm fails to find a rank-one matrix on the
optimal face, the alternating bisection-minimization method
can be applied. In Section IV-B, this alternating bisection-
minimization method is used to find a rank-one feasible
solution that yields a cost no larger than that obtained via
a conventional non-convex solver. Throughout this section
X0, X0 and Xk denote, respectively, the optimal solution
to the naive semidefinite relaxation, the rank minimization
heuristic over F , and the kth step of the alternating bisection-
minimization method. In Appendix II, we list the values of
the parameters used in our studies.

A. Linearization-Minimization Iteration

Table III summarizes the power system networks used to test
the linearization-minimization algorithm. For each example,
the naive semidefinite relaxation fails to return a rank-
one solution (Column 2). In each case, the linearization-
minimization algorithm successfully converges to a rank-one
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Fig. 1: J(Xk) vs # of Iterations (Bisection Method) (a) 3-Bus Example (b) 5-Bus Example, (c) Modified IEEE 14 Bus Example (14B)

optimal point (Column 3) typically in a small number of iter-
ations (Column 4). Thus the optimal cost for the semidefinite
relaxation, J◦, is in fact equal to the optimal cost of the OPF
problem. Moreover, the rank-one solution returned from the
linearization-minimization algorithm can be used to construct
an optimal solution for the non-convex OPF problem. These
results verify that primal/dual solvers will fail to return rank-
one optimal solutions for the naive semidefinite relaxation
even when such solutions exist (c.f. Theorem 2.1). The values
of J in the last column denote the upper bound on the
optimal cost of the OPF problem given by the non-convex
solver MATPOWER [3]. The last result in Table III is of
particular interest. This example is a modified IEEE 14
Bus system (14A) for which the linearization-minimization
algorithm yields a rank-one globally optimal solution with
a cost 12.4% lower than the sub-optimal solution obtained
with MATPOWER. This example was constructed from the
standard IEEE 14 Bus test case [22] by tightening a subset
of the line capacity constraints. A precise description can be
found in [23].

TABLE III: Power system examples with hidden rank-one opti-
mal solutions. Precise systems descriptions can be
obtained from (9 bus [24]), (30 bus [25]) (118 bus
[22]), (14A bus [23]).

Syst. rank(X0) rank(X0) Iter. J◦ J

9 8 1 3 5296.7 5296.7
30 9 1 3 576.9 576.9
118 236 1 100 129661 129661

14A 26 1 3 8092.8 9093.8

B. Alternating-Bisection Method

For certain problems, the linearization-minimization al-
gorithm fails to uncover a rank-one point in F – i.e.
rank(X0) > 1. In such cases, one of two scenarios could
be at play. Either the optimal face F of the semidefinite
relaxation does not possess a rank-one matrix or the rank
minimization heuristic may simply fail in recovering a rank-
one points in F when they do in fact exist. Table IV
provides three representative examples of such cases. For
each example, the rank minimization heuristic is able to
find a lower rank matrix (on F) than that achieved by the

naive semidefinite relaxation. However, the iteration does
not converge to a rank-one solution. In each case there is a
non-zero gap between the cost achieved for the semidefinite
relaxation, J◦, and the MATPOWER upper bound obtained
for the original OPF problem, J .

The alternating bisection-minimization method is applied to
the cases in Table IV. Figure 1 depicts the cost of a feasible
point produced at every step of the bisection for the examples
considered in Table IV. The red diamonds denote the iterates
achieving rank-one feasible points, while the black circles
denote iterates corresponding to high rank feasible points.
We observe in Figure 1, that in the case of the three and
five bus examples, the minimum cost obtained by a rank-
one feasible point through bisection coincides with the cost
produced by MATPOWER. This may lead one to believe
that the optimal face F of the semidefinite relaxation may
not admit a rank-one feasible point. On the other hand, for
the modified IEEE 14 Bus example (14B), the proposed
bisection-minimization heuristic obtains a rank-one feasible
point that yields a substantially lower cost than the upper
bound J obtained from MATPOWER. More precisely, the
minimum cost rank-one point derived from the alternating
bisection-minimization method is within 0.1266% of the
relaxed lower bound J◦, as compared to 4.8326% for the
MATPOWER solution. We refer the reader to Remark 6 for
a discussion on the role of mild constraint relaxations in
deriving nearly optimal rank-one solutions.

To summarize, we observe that in many cases the iterative
linearization-minimization algorithm successfully uncovers a
hidden rank-one point that is also globally optimal for the
original OPF problem. If the rank minimization algorithm
fails to uncover a rank-one optimal point, then the alternating
bisection-minimization method can be applied. In this case,
a rank-one feasible solution is obtained that yields a cost
that is no greater than that achieved by MATPOWER – and
for certain systems, achieves a substantially lower cost than
MATPOWER.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper considered the non-convex Optimal Power Flow
(OPF) problem and the corresponding semidefinite relax-
ation. For certain power systems and cost structures, the
naive semidefinite relaxation may fail to yield low rank
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TABLE IV: Failing to uncover rank-one solutions in F . Descrip-
tions of the test cases considered can be found in (3
bus [7]), (5 bus [26]), and (14B bus [23]).

Syst. rank(X0) rank(X0) Iter. J◦ J

3 4 2 3 5789.9 5812.6
5 6 6 40 2184.0 2609.3

14B 6 5 30 8674.5 9093.8

solutions that can be efficiently mapped to the original non-
convex feasible set for OPF. In part, this derives from the
propensity of interior point methods for semidefinte pro-
grams to converge to points of maximal rank on the optimal
solution face. This inspires the exploration of methodologies
capable of uncovering hidden rank-one optimal solutions to
the semidefinite relaxation, when they exist. Essentially, this
amounts to solving a rank minimization problem over the
optimal face of the semidefinite relaxation.

In the paper, two rank minimization heuristics were proposed
to compute rank-one solutions for the relaxation. The algo-
rithms were tested on multiple representative power system
examples. In many cases, the rank minimization heuristic
obtains a hidden rank-one solution, where the naive semidefi-
nite relaxation fails. Moreover, a simple 14-bus example was
provided for which the rank minimization heuristic obtains a
rank-one solution with a strictly lower cost than that obtained
by a conventional solver.

Future work will will explore refined convergence properties
for the proposed rank minimization heuristics. Of interest, is
the specification of conditions under which the heuristics are
guaranteed to converge to near rank-one optimal solutions
belonging to F . In addition, the paper discusses a simple
3-bus system for which the optimal face of the semidefinite
relaxation appears to have minimal rank strictly greater than
one. This raises the interesting research question of deriving
general sufficient conditions for the non-existence of rank-
one points in F , as this would provide a characterization of
systems for which the semidefinite relaxation is guaranteed
to fail.
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APPENDIX I
PROOF OF THEOREM 3.3

While the proof of Theorem 3.3 (a) follows largely from
the proof of Theorem 14.1.3 in [19], we include a concise
version here for completeness. First, we define a hemivariate
functional and a strongly downward sequence. We then use
these definitions to show that a strictly concave function is
hemivariate and that the sequence of iterates {Xk} generated
as in (14) is strongly downward in the function gk for each
k.

Definition 1.1: [19, ] A functional g :Mn(R)→ R is said
to be hemivariate on a set V0 ⊂Mn(R) if it is not constant
on any line segment of V0 – that is, if there does not exist
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distinct points X,Y ∈ V0 such that θX+(1−θ)Y ∈ V0 and
g(θX + (1− θ)Y ) = g(X) for all θ ∈ [0, 1].

Definition 1.2: [19, ] Let g :Mn(R)→ R and {Xk} be a
sequence of iterates in some subset V0 ⊂ Mn(R). We say
that {Xk} is strongly downwards in g if:
(a) θXk + (1− θ)Xk+1 ∈ V0
(b) g(Xk) ≥ g(θXk + (1− θ)Xk+1) ≥ g(Xk+1)
for all θ ∈ [0, 1]

We are now ready to show that the sequence of iterates
{Xk} generated by the iterative linearization-minimization
(14) is strongly downward in gk (for each k) and that the
limit function g of the sequence of the {gk} is hemivariate.

Lemma 1.3: Let {gk} be a sequence of smooth, strictly
concave functions converging pointwise to a smooth, strictly
concave function g over a convex, compact set C ⊂ Sn+. The
following statements hold.

1) The limit function g is hemivariate.

2) A sequence of iterates {Xk} generated by the iterative
linearization-minimization (14) is strongly downward in
the function gk for each k.

Proof:
1) Suppose, for the sake of contradiction, that ∃ distinct
X,Y ∈ C such that

g(θX + (1− θ)Y ) = g(X) ∀ θ ∈ [0, 1]

Since g is strictly concave,

g(X) = g(θX + (1− θ)Y ) > θg(X) + (1− θ)g(Y )

for all θ ∈ [0, 1]. By taking θ = 1 we have g(X) > g(X), a
contradiction.

2) Let Xk, Xk+1 be two successive iterates belonging to
C. Because C is convex, it follows that Xa = θXk + (1 −
θ)Xk+1 ∈ C for all θ ∈ [0, 1]. By strict concavity, we have

gk+1(Xa) > θgk+1(Xk) + (1− θ)gk+1(Xk+1)

(a)
> θgk+1(Xk+1) + (1− θ)gk+1(Xk+1)

= gk+1(Xk+1) (18)

where (a) follows from the proof of Lemma 3.1. Moreover,

gk+1(Xa) < gk+1(Xk) + Tr
[
∇gk+1(Xk)>(Xa −Xk)

]
(a)
= gk+1(Xk)+

(1− θ)Tr(∇gk+1(Xk)>(Xk+1 −Xk))

(b)

≤ gk+1(Xk) (19)

where (a) follows from linearity of the trace operator and
(b) from optimality of Xk+1 according to (14). Inequalities
(18) and (19), imply that

gk+1(Xk) > gk+1(θXk + (1− θ)Xk+1) > gk+1(Xk+1)

for all θ ∈ [0, 1] – from which it follows that the sequence
{Xk} is strongly downward in the function gk+1 for each k.
�

We now prove Theorem 3.3 (a). The interested reader is
refered to Theorem 1.4.3 in [19] for more details. Suppose,
for the sake of contradiction, that limk→∞ ‖Xk−Xk+1‖F ≥
ε > 0. Without loss of generality, consider two subsequences,
such that {Xkn

}n → X and {Xkn+1}n → X̂ . By assump-
tion, for every ε > 0,

‖Xkn+1 −Xkn
‖F ≥ ε > 0 ∀ n ≥ 1.

Because C is closed it contains all its limit points. Therefore,

‖X − X̂‖F ≥ ε > 0.

The sequence {gk(Xk)} is monotonic non-increasing
(Lemma 3.1 ) and since gk is continuous on a compact set,
gk is bounded from below for all k. It follows from the
monotone convergence theorem that the sequence {gk(Xk)}
converges, i.e.

lim
k→∞

(gk+1(Xk+1)− gk(Xk)) = 0.

It follows that g(X̂) = g(X). And by convexity of C, we
have that θX+(1−θ)X̂ ∈ C for all θ ∈ [0, 1]. Moreover, the
sequence {Xk} is strongly downward in gk+1. Therefore,

gk+1(Xk+1) ≤ gk+1(θXk + (1− θ)Xk+1) ≤ gk+1(Xk+1)

(a)
< gk(Xk)

where (a) follows from Lemma 3.1. Taking limits gives,

g(X) = g(θX + (1− θ)X̂) = g(X̂)

which contradicts the fact that g is hemivariate (Lemma 1.3).
Therefore, limk→∞(Xk − Xk+1) = 0. This completes the
proof of (a).

We now prove part (b) of Theorem 3.3. Let X =
limk→∞Xk. Since Xk+1 was chosen to minimize 14, it must
be true that

Tr
[
∇gk+1(Xk)>(Xk+1 −Xk)

]
≤ Tr

[
∇gk+1(Xk)>(X −Xk)

]
for all X ∈ C. Taking limits and applying Lemma 3.1 yields

0 ≤ Tr
[
∇g(X)>(X −X)

]
.

Since the limit point was chosen arbitrarily, it follows from
definition (3.2) that every limit point of {Xk} is a stationary
point. This complete the proof of part (b).

APPENDIX II
The following table lists the parameter values used in the
numerical studies.

TABLE V: Inputs to Algorithm 1 & 2

Input Algorithm 1 Algorithm 2

ε 10−5 10−6

k 100 –
ϕ 10−9 10−9

where rank(X) = 1 if σ2(X) < ϕ.
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