The Set of All Natural Numbers in Ernst Zermelo's System of Axioms

Adam C. Kopczyński

Abstract

Ernst Zermelo's axioms published in 1908 are so far the base of many contemporary set theories. We dare to claim that the set \mathbb{N} - the set of all natural numbers - cannot be properly established on these ideas. Either the Axiom of Infinity or the Axiom of Extensionality must be broken, so the set \mathbb{N} is impossible. Points below.

1 Preliminaries

The original form of Ernst Zermelo's axioms published in German in 1908 we can find in [1]. German version and its verbatim English translation are presented in [2]. The base for our discussion is the version available in [3].

2 The set \mathbb{N} as the least inductive set

Let \mathbb{N} be the set of all natural numbers - identified as the least inductive set described in the Axiom of Infinity (this widely known construction can be found e.g. in [3], chapter 5). $\mathbb{P}(\mathbb{N})$ is the powerset of \mathbb{N} - the set of all subsets of \mathbb{N}.

We can define by recursion function $f: \mathbb{N} \longmapsto \mathbb{P}(\mathbb{N})$ as follows:

$$
f(n)= \begin{cases}\mathbb{N} \backslash\{n\} & \text { for } n=0 \\ f(n-1) \backslash\{n\} & \text { for } n \neq 0\end{cases}
$$

Let us sign the domain of f as D_{f}. Obviously $D_{f}=\mathbb{N}$.
Another form of f is:

$$
f(n)=\left(\mathbb{N} \backslash \bigcup_{i=0}^{n}\{i\}\right) \quad \text { for } n \in \mathbb{N}
$$

The key issue for our discussion is that the image of D_{f} under the function f must exist. It is an unambiguously determined set that must contain values of f calculated for all(!) elements of D_{f} as its own elements. Nothing can change these facts. We should not ignore them, but rather make use of them.

No one element of D_{f} is missing as an argument of f, whose image exists and is an element of $f\left(D_{f}\right)$. This way no one element of D_{f} is missing as a subtrahend (lege artis - as a one-element set) described in the definition of f.

$$
\left\{n \in D_{f} \mid f(n) \notin f\left(D_{f}\right)\right\}=\emptyset
$$

Each one element of $f\left(D_{f}\right)$ is a subset of \mathbb{N} (the minuend) without elements that are subtracted according to the definition of f. Since the set $f\left(D_{f}\right)$ contains images of all elements of D_{f}, all elements of D_{f} are effectively subtracted, i.e. the result of subtraction always exists and is an element of $f\left(D_{f}\right)$.

Thus $f\left(D_{f}\right)$ must contain a subset of \mathbb{N} (the minuend) with no any element of D_{f} :

$$
\begin{equation*}
\left\{n \in \mathbb{N} \mid n \notin D_{f}\right\} \in f\left(D_{f}\right) \tag{1}
\end{equation*}
$$

Now we can ask whether $\emptyset \in f\left(D_{f}\right)$ or not. (Tertium non datur.)

- If $\emptyset \in f\left(D_{f}\right)$, then there exists $n \in D_{f}$ such that $f(n)=\emptyset$. It means that $f(n)=\mathbb{N} \backslash \bigcup_{i=0}^{n}\{i\}=\emptyset$, so $\mathbb{N} \subset \bigcup_{i=0}^{n}\{i\}$ and \mathbb{N} has the last element. In this case the Axiom of Infinity is violated.
- If $\emptyset \notin f\left(D_{f}\right)$, then $\left\{n \in \mathbb{N} \mid n \notin D_{f}\right\} \neq \emptyset$ - because of (1). It means that $\exists_{n \in \mathbb{N}}\left(n \notin D_{f}\right)$. As $D_{f}=\mathbb{N}$, we have:

$$
\exists_{n}(n \in \mathbb{N} \wedge n \notin \mathbb{N})
$$

so we exactly get that $\mathbb{N} \neq \mathbb{N}$ in the sens of the Axiom of Extensionality.

3 The set \mathbb{N} as ω

The set of all natural numbers \mathbb{N} can be identified with the ordinal number ω - the first non-zero limit ordinal number. (Axiom of Replacement is required.) Just $\mathbb{N}=\omega$. (It can be found e.g. in [3], chapter 12.)
We can repeat our discussion. Either ω is not limit ordinal or $\omega \neq \omega$.

4 Conclusions

In set theories based on Zermelo's ideas the set of all natural numbers \mathbb{N} cannot exist. That is all.

Adamus C.
e-mail: Adamus C.sumadack@gmail.com

References

[1] Zermelo Ernst. Untersuchungen über die Grundlagen der Mengenlehre. I. Mathematische Annalen 65, 1908. (261-281)
[2] Ebbinghaus Heinz-Dieter, Peckhaus Volker. Ernst Zermelo - An Approach to His Life and Work. Springer, 2007.
[3] Moschovakis Yiannis. Notes on Set Theory. Springer, 2006.

