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Abstract—Directed acyclic graph (DAG) becomes a popular
model for modern real-time embedded software. It is really
a challenge to bound the worst-case response time (WCRT)
of DAG task. Parallelism, dependencies and mutual exclusion
become three of the most critical properties of real-time parallel
tasks. Recent work applied prioritizing techniques to reduce
DAG task’s WCRT bound, which has well studied the first
two properties, i.e., parallelism and dependencies, but leaves the
mutually exclusive property as an open problem. This paper
focuses on all the three properties of real-time parallel software,
and investigates how to estimate the WCRT of the DAG task
model with mutually exclusive vertices and under prioritized list
scheduling algorithms. We derive a reasonable WCRT bound for
such a complicated DAG task, and prove that the corresponding
WCRT bound computation problem is strongly NP-hard. It
means that there are no pseudo-polynomial time algorithms
to compute the WCRT bound. For the prioritized DAG with
a constant number of mutual exclusive vertices, we develop a
dynamic programming algorithm that is able to estimate the
WCRT bound within pseudo-polynomial time. Experiments are
conducted to evaluate the performance of our analysis method
implemented with different priority assignment policies against
the state-of-the-art.

I. INTRODUCTION

Directed acyclic graph (DAG) can fully explore fine-grained

parallelism of emerging complex applications, which has risen

in popularity over the last decade [1]–[8]. Nowadays, modeling

a system as an event- or time-triggered DAG task is a common

setup in many modern domains, such as automotive, robotics,

and industrial automation. For example, in self-driving area,

a complete automotive task chain from perception to control

is converted to a DAG task [2]. Moreover, researchers use

DAG task to model the execution sequences of multiple deep

neural networks (DNNs) across computation nodes during the

perception process [1]. These domains often require to execute

a DAG task upon an embedded multi-core platform and under

real-time scenarios. DAG parallelism techniques in existing

parallel programming frameworks (e.g., OpenMP [9], Thread-

ing Building Blocks (TBB) [10] and Cilk family [11]) are

commonly developed for general purpose high-performance

computing (HPC) domain, and it is really challenging to adopt

them to real-time embedded applications.

∗The corresponding author: Dr. Jinghao Sun, jhsun@dlut.edu.cn
†This work is partially supported by the National Key Research and

Development Program of China (No. 2021ZD0112400), the National Nat-
ural Science Foundation of China (No. 61972076, U1808206), Hong Kong
Research Grant Council (GRF 11208522 and GRF 15206221).

One of the most concerned problems is how to derive

a safe upper bound for the response time of a DAG task.

Graham [12] developed the first response time analysis for the

DAG task based on the notion of critical path. An important

property of the critical path is that maximizing its execution

length leads to the worst-case response time (WCRT) of the

corresponding DAG task. This implies a concise WCRT bound

(called Graham’s bound) which is composed of two parts: One

is the length of the longest path in the DAG task, and the

other one records the workload that may interfere with the

execution of vertices in the longest path. However, the main

drawback is that all vertices (except the ones in the longest

path) are considered to disrupt the execution of the longest

path, making Graham’s bound overly pessimistic.

Recent work [13]–[15] attempted to utilize real-time mech-

anisms (e.g., prioritizing and preemptive techniques) to sched-

ule the DAG and to guarantee a much smaller WCRT bound.

He et al. [13] proposed the prioritized DAG task model by

assigning different priorities to vertices of the DAG task. When

scheduling the prioritized DAG task, the execution order of

vertices is determined by vertex priorities. A vertex of the

critical path can only incur delay from the concurrent vertices

with higher priorities, and the interference vertices of the

critical path are significantly reduced. It eventually derives a

more reasonable WCRT bound (called He’s bound in the rest

of this paper), which dominates Graham’s bound [12].

Unfortunately, these existing theoretical results cannot pro-

vide a safe WCRT bound when applied on some practical

embedded systems. The reason is that the DAG task model

which is originally proposed in HPC domains cannot fully

capture embedded system’s behaviors. Embedded systems

usually have limited resources due to the requirement of

low power consumption. Under limited resource constraints,

more parallel vertices in a DAG task have to share the

same resource (e.g., PCI bus, network on-chip, and related

hardware interfaces), and are enforced to execute in a mutually

exclusive way. Blocking time caused by mutual exclusion,

which is not mainly concerned in HPC domain, becomes an

important factor that may dramatically worsen DAG task’s

WCRT and cannot be ignored in real-time embedded systems.

DAG task models can only express the common features

(e.g., parallelism and dependencies) of general purpose HPC

applications, but fail to reveal the feature of mutually exclusive

(ME) vertices. It is still an open problem how to guarantee the
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WCRT bound for the prioritized DAG task with ME vertices.

In this paper, we focus on the DAG task model with ME

vertices (abbreviated as the ME-DAG task model for the sake

of convenience). We use a DAG as the basic graph, and extend

it into a mixed graph (i.e., ME-DAG) by adding undirected

edges to express the ME relations between vertices. We derive

a WCRT bound for the prioritized ME-DAG task, which can

be calculated by finding the longest simple path in the mixed

graph where the weight of each vertex v is determined by not

only v’s execution time but also the interference vertices that

may block v’s execution. We prove that this WCRT bound

computation problem is strongly NP-hard even if there is only

a single type of priority assigned to vertices.

We propose a dynamic programming algorithm to efficiently

estimate our proposed WCRT bound. The main idea of our

algorithm is to solve the longest path (that corresponds to

the WCRT bound) by merging promising sub-paths. Instead

of enumerating paths, we abstract paths into concise data

structures (called tuples), and the path merging process is

equivalently implemented by recursively computing tuples,

i.e., new tuples are computed by using the tuples that have

been computed beforehand. The major challenge we face is

that a vertex may be repeatedly traveled in a path since a mixed

graph contains cycles, and moreover, interference vertices of a

path may be overly estimated. By bringing more information

about ME vertices in the tuple and by carefully designing the

way two paths are merged, the repeatedly traveled vertices

are totally forbidden and the overestimation of interference

vertices is drastically relieved. Our algorithm has a pseudo-

polynomial time complexity if there are a constant number

of ME vertices in the DAG task model. In the evaluation

work, we conduct comprehensive experiments under different

settings to compare the performance of our analysis method

with the state-of-the-art DAG analysis technique which can

also deal with ME vertices but simply assigns all vertices to

the same priority. We implement several priority assignment

strategies that are commonly used in the existing research

work, and show how significantly these priority assignment

strategies can reduce the WCRT bound of ME-DAG tasks.

II. RELATED WORK

There is plentiful literature on scheduling algorithms and

analysis techniques for multiple recurrent DAG tasks up-

on multi-core processors [16]–[30], which can be classi-

fied into three different paradigms: global scheduling [16]–

[22], decomposition-based scheduling [23]–[25], and federated

scheduling [26]–[30]. All these work concerns how to reduce

the worst-case response time (WCRT) for multi-DAG task,

which is mainly determined by two critical issues: inter-task

interference [19], [22] and intra-task interference [13]–[15],

[20], [31]. The WCRT of a single DAG is used to bound the

intra-task interference, which is the focus of this paper.

Graham [12] proposed the first WCRT bound for the single

DAG task. Many researchers apply Graham bound to more

practical applications [32]–[43]. Recent work found that the

WCRT bound becomes much smaller than Graham bound if

assigning each vertex to a different priority and determining

the execution order of vertices based on vertices priorities. [13]

proposed the first WCRT bound for prioritized DAG tasks,

and they developed a polynomial-time algorithm to compute

the WCRT bound. However, their method is restricted to the

special case that the vertex priority must comply with the

topological order of DAG. [15] relaxed the constraint in [13],

and proposed a polynomial-time WCRT bound computation

method to handle any arbitrary priority assignment. [14]

explored parallelism and dependencies in DAG structure, and

gave a priority assignment policy and response time bounds

based on concurrent provider and consumer model. All these

existing works do not consider mutually exclusive vertices.

Recently there has been some work considering mutually

exclusive (ME) vertices in DAG tasks. All the studies applied

the real-time locking protocol to deal with ME issues. There

are two major lock types: spin locks and suspension-based

semaphores. [44] firstly analyzed the blocking time of non-

preemptive spin-lock under federated scheduling, which was

later improved by [45]. [46] extended spin locking protocol

to the DAG task with OpenMP semantics. [47] and [48]

implemented spin-based analysis for DAG tasks under a finer-

grained resource model. In [49], a suspension-based protocol

called Limited Pending Protocol (LPP) and associated block-

ing analysis were proposed for DAG tasks. Suspension-based

locking protocols OMLP [50] and OMIP [51] for clustered

scheduling were extended to DAG tasks by [52] and [53].

The blocking analysis in each existing work is designed for a

specified locking protocol, and may be inefficient or even fail

to bound the blocking time when some details of the protocol

are changed. Moreover, all the existing analysis work is based

on the classic Graham bound, which is quite pessimistic

and needs to be improved by using prioritizing techniques.

The present paper is not oriented toward a detailed locking

protocol, but aims to study a general problem and reveal the

inherent complexity brought by mutually exclusive vertices.

To the best of our knowledge, this paper is the first work that

considers both vertex-level priorities and mutually exclusive

vertices in a DAG, which can provide a new possibility for

improving the performance of real-time locking protocols in

DAG tasks by using prioritizing techniques.

III. SYSTEM MODEL

In Section III-A, we propose a formal model for the

DAG task with prioritized and mutually exclusive vertices. In

Section III-B, we introduce how to schedule such a task upon

multi-core platform by prioritized list scheduling algorithms.

A. Task Model
We formulate a parallel real-time task τ as a prioritized

graph-based task model τ = (D,E), where D represents

the prioritized DAG structure of τ , and E defines mutually

exclusive relations between vertices.

§ Prioritized DAG structure
The DAG D is further defined as D = (V,A), where V is

the set of n vertices, and A is the set of m arcs. Each vertex

461

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:30:08 UTC from IEEE Xplore.  Restrictions apply. 



vi of V represents a continuous piece of executing code. We

use c(vi) to denote the worst-case execution time (WCET)

of vi, and use an integer p(vi) to denote the priority of vi.
The larger p(vi) is, the lower priority it represents. The arc

a = (vi, vj) of A represents the precedence relation between

vertices vi and vj , indicating that vj cannot start its execution

before vi is completed. In this case, vi is the predecessor
of vj , and vj is the successor of vi. We use pred(vi) and

succ(vi) to denote the set of predecessors and successors of

vi, respectively. Moreover, we call vertex vi as the ancestor
of vertex vj if vi is (a predecessor of) vj’s predecessor, and

in this case, vj is the descendant of vi. We use anc(vi) and

des(vi) to denote the set of ancestors and descendants of vi,
respectively. A vertex is called the source vertex (the sink

vertex) of G if it does not have predecessors (successors).

Without loss of generality, we assume that there is a single

source vertex vsrc and a single sink vertex vsnk in G. If G
has multiple source/sink vertices, we add a dummy source/sink

vertex with zero WCET to comply with our assumption.

Example 1. An example of DAG D that contains 10 vertices
and 12 arcs is given in Fig. 1. The source vertex and sink
vertex of D are v1 and v10, respectively. The WCET is labeled
inside the vertex. Vertex v6 has two predecessors v3 and v5,
and two successors v7 and v8. Moreover, the set of ancestors
of v6 is anc(v6) = {v1, v2, v3, v5}. The set of descendants of
v6 is des(v6) = {v7, v8, v10}. We define 3 types {0, 1, 2} of
priorities, which are labeled in red beside vertices. Moreover,
the blue edges represent mutually exclusive (ME) edges, which
will be introduced later in this section.

Fig. 1: An example prioritized DAG with ME vertices.

§ Mutually Exclusive Vertices
We use an undirected edge [vi, vj ] to connect two vertices

vi and vj , indicating that vi and vj are enforced to execute in a

mutually exclusive (ME) way. We call [vi, vj ] as the ME edge,

and we use E to denote the set of all ME edges. Vertices vi
and vj are neighbors if there is an edge [vi, vj ] ∈ E. We use

neb(vi) to denote the set of neighbors of vi. We call a vertex

vi as the ME vertex if vi is associated with ME edges, and

we use VME to store all ME vertices, i.e., VME ⊂ V . As shown

in Fig. 1, there are four ME edges [v2, v3], [v3, v4], [v4, v6],
and [v4, v8]. ME vertices include v2, v3, v4, v6, and v8. For

the sake of convenience, we use G = (D,E) to denote the

mixed graph that contains the DAG D and the ME edges of

E. We call D as the basic graph of G, and call G as the DAG
with ME vertices, abbreviated as ME-DAG for short.

B. Scheduling Model

We execute the prioritized ME-DAG G on a multi-core

platform C = {c1, · · · , cm} that consists of m identical cores.

At any time t, a vertex of G can only execute on one core, and

meanwhile, a core cannot execute two vertices simultaneously.

A vertex vi is eligible to execute if all its predecessors are

finished and there are no unfinished neighbors of vi. Here we

say a vertex is unfinished if it has already started the execution

but has not finished yet. Once a core becomes idle, it always

selects an eligible vertex to execute. The execution order of

vertices is determined according to the vertex’s priority. The

execution of a vertex is preemptive. More specifically, the

execution of a vertex vi may be interrupted by an eligible

vertex vj if vj has a higher priority. Given two vertices with

the same priority, the vertex that becomes eligible earlier

should execute first. When two vertices with the same priority

become eligible at the same time, we arbitrarily choose one

of them to execute first. At any time t, we always choose

at most m eligible vertices with the highest priorities for

execution. Moreover, vertex migration is allowed, i.e., if vertex

vi starts its execution on a core ck and is interrupted before

its completion, vi can resume its execution on another core cl.

Fig. 2: An example schedule of the ME-DAG G in Fig. 1.

Example 2. Fig. 2 gives a possible schedule of the ME-DAG
G in Fig. 1 upon a dual-core platform. Here we assume that
all the vertices execute at their worst-case execution time. The
ME-DAG G starts and finishes its execution at time 0 and 12,
respectively. Vertex v2 cannot execute when v3 is executing,
though the predecessor v1 of v2 has finished. This is because
v3 is v2’s neighbor that starts before v2, and v2 cannot be
eligible to execute unless v1 and v3 both finish, making core
c2 idle during the execution of v3. Vertex preemption occurs at
time 8, i.e., v9 is interrupted by vertex v7 which has a higher
priority and becomes eligible at that time.

IV. RESPONSE TIME ANALYSIS

The response time R(τ) of a parallel real-time task τ (as

defined in the above section) is the length of the time interval

that starts with the execution of the source vertex vsrc and ends

at the completion of the sink vertex vsnk. In the following, we

derive upper bounds of the response time R(τ) for prioritized

ME-DAG task. Before going into details, we first introduce

some useful notations below.

A. Preliminaries
We call a vertex sequence π = (v1, · · · , vk) as a path of

the mixed graph G if vi is either the predecessor of vi+1

or the neighbor of vi+1 for each i = 1, · · · , k − 1. A path

π is simple if it does not travel a vertex twice. Moreover,

a path π is feasible if it is simple and it does not travel

a vertex vi before traveling vi’s ancestors. A path π is a

complete path if it is feasible and it starts with the source

vertex and ends at the sink vertex of G. For example, as

shown in Fig.1, path π1 = (v3, v6, v4, v3) is not simple as

it travels v3 twice. Path π2 = (v2, v5, v6, v4, v3) is simple

but not feasible, as it first travels v6 , and then travels v6’s

ancestor v3. Path π3 = (v2, v5, v6, v4, v9) is a feasible path.

Path π4 = (v1, v2, v5, v6, v4, v9, v10) is a complete path. We
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only focus on feasible paths without special mention in the

rest of this paper.

For any path π and for any ME vertex vi ∈ VME, we define

a function απ(vi) to indicate whether vi or the ancestor of vi
is traveled in π, i.e.,

απ(vi) =

{
1 (anc(vi) ∪ {vi}) ∩ π �= ∅
0 else

(1)

Similarly, we define a function βπ(vi) to indicate whether vi
or the descendant of vi is traveled in π, i.e.,

βπ(vi) =

{
1 (des(vi) ∪ {vi}) ∩ π �= ∅
0 else

(2)

For any path π and for any vertex vi ∈ π, we say that

a vertex vj is the pioneer of vi if π travels vj before vi.
Otherwise, vj is the follower of vi. We let pinπ(vi) and

flwπ(vi) be the sets of vi’s pioneers and vi’s followers,

respectively. For any vertex vi ∈ π, we separately denote the

set of (ancestors of) vi’s pioneers and the set of (descendants

of) vi’s followers as follows.

acpπ(vi) =
⋃

vj∈pinπ(vi)

(anc(vj) ∪ {vj}) (3)

dsfπ(vi) =
⋃

vj∈flwπ(vi)

(des(vj) ∪ {vj}) (4)

For two ending vertices u and v of a path π = (u, · · · , v),
we provide the lower bound of dsfπ(u) and acpπ(v) by using

indicator functions as follows and as shown by Lem. 1.

dsfπ(u) =
⋃

vi∈VME∧απ(vi)=1

des(vi) (5)

acpπ(v) =
⋃

vi∈VME∧βπ(vi)=1

anc(vi) (6)

Lemma 1. dsfπ(u) ⊆ dsfπ(u) and acpπ(v) ⊆ acpπ(v) for
any path π = (u, · · · , v).
Proof. For any ME vertex vi ∈ VME, βπ(vi) = 1 indicates that

a vertex vx ∈ {vi} ∪ des(vi) is traveled in π according to (2).

We know that anc(vi) ⊆ anc(vx), and by (3) and (6), we have

acpπ(v) ⊆ acpπ(v). With the similar reason, and from (1), (4)

and (5), we can prove dsfπ(u) ⊆ dsfπ(u).

Example 3. We consider the path π = (v5, v6, v4, v9) in
Fig. 1,and we only take the ending points v5 and v9 of π
as examples. The follower set of v5 is flwπ(v5) = {v6, v4, v9},
and the pioneer set of v9 is pinπ(v9) = {v5, v6, v4}. According
to (4) and (3), we have dsfπ(v5) = {v4, v6, v7, v8, v9, v10} and
acpπ(v9) = {v1, v2, v3, v4, v5, v6}. The indicator functions of
π are given as follows.

v2 v3 v4 v6 v8
απ(vi) 0 0 1 1 1
βπ(vi) 1 1 1 1 0

According to (5) and (6), we get dsfπ(v5) = {v7, v8, v9, v10}
and acpπ(v9) = {v1, v2, v3, v5}. We have dsfπ(v5) ⊆ dsfπ(v5)
and acpπ(v9) ⊆ acpπ(v9), which are consistent with Lem. 1.

For any vertex vi, we say that another vertex vj is parallel
with vi if vj is neither an ancestor nor a descendant nor a

neighbor of vi. The set of parallel vertices of vi is denoted as

par(vi) = {vj |vj �∈ {vi} ∪ anc(vi) ∪ des(vi) ∪ neb(vi)} (7)

The interference set of vi is defined as

ins(vi) = {vj |vj ∈ par(vi) ∧ p(vj) ≤ p(vi)} (8)

Taking v3 in Fig.1 for example, the parallel vertices of v3 is

included in par(v3) = {v5, v9}, and the interference set of v3
is ins(v3) = {v5}. Compared with par(v3), the interference

set ins(v3) excludes vertex v9 since p(v9) > p(v3).
For any path π = (u, · · · , v), we let π be the set of

the intermediate vertices in π, i.e., π = π − {u, v}. For any

intermediate vertex vi ∈ π, we define the quasi-interference
set of vi as follows.

insπ(vi) = ins(vi)− (acpπ(vi) ∪ dsfπ(vi)) (9)

and the quasi interference set of π is defined as

I(π) =
⋃

vi∈π
insπ(vi)− (ins(u) ∪ ins(v)) (10)

Based on the above notations, the interference set of π is
defined as follows.

I(π) = I(π) ∪ ins(u) ∪ ins(v) (11)

For any symbol X , we let XME(·) be the subset of X(·) that

only contains ME vertices, and let XNM(·) be the subset of

X(·) that only contains non-ME vertices, i.e.,

XME(·) = X(·) ∩ VME and XNM(·) = X(·)− VME (12)

Obviously, X(·) = XME(·)∪XNM(·) and XME(·)∩XNM(·) = ∅.

With these notations, and according to (11), the interference

set of π = (u, · · · , v) can be written as follows.

I(π) = ins(u) ∪ ins(v) ∪ IME(π) ∪ INM(π) (13)

The last item is disjoint with the first three items of (13).

For any path π, we let len(π) =
∑k

i=1 c(vi) be the length of

path π, and we let vol(I(π)) =
∑

vi∈I(π)) c(vi) be the volume
of the interference set of π. The weight of π is defined as

�(π) = len(π) +
vol(I(π))

m
(14)

Example 4. We consider the path π = (v3, v4, v6, v8) in
Fig. 1. The set of π’s intermediate vertices is π = {v4, v6}.
In the following, we solve insπ(v6) and insπ(v4), respectively.
On the one hand, insπ(v6) = ∅ since ins(v6) = ∅. On the
other hand, the pioneers and followers of v4 are included
in pinπ(v4) = {v3} and flwπ(v4) = {v6, v8}, respectively.
According to (3) and (4), we have acpπ(v4) = {v1, v3} and
dsfπ(v4) = {v6, v7, v8, v10}. Since ins(v4) = {v2, v5, v7}, we
get insπ(v4) = ins(v4) − (acpπ(v4) ∪ dsfπ(v4)) = {v2, v5}.
Moreover, since ins(v3)∪ ins(v8) = {v5, v7}, we have I(π) =
insπ(v4)−(ins(v3)∪ins(v8)) = {v2}, and I(π) = {v2, v5, v7}.

Given a schedule, and for each vertex vi, we use s(vi) and

f(vi) to denote the starting time and finishing time of vi,
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respectively. Denote by pren(vi) the set of vi’s neighbors vj
that have started the execution beforehand, i.e., s(vj) < s(vi).
We define pre(vi) = pren(vi)∪pred(vi), recalling that pred(vi)
is the set of vi’s predecessors. Based on the notations above,

we define the critical path as follows.

Definition 1 (Critical Path). A complete path π = (v1, · · · , vk)
is critical if it satisfies the following conditions.

vi = arg max
vj∈pre(vi+1)

f(vj), ∀i = 1, · · · , k − 1 (15)

Formula (15) indicates that for any two adjacent vertices vi
and vi+1 of a critical path π (i = 1, · · · , k − 1), vi has the

maximum finishing time among all vertices in pre(vi+1). For

example, path π = (v1, v3, v4, v9, v10) is the critical path of

G in Fig. 1 for a given schedule as shown in Fig. 2. For the

sake of convenience, we summarize the main notations used

in this paper as listed in Table I.

TABLE I: Notations adopted in this paper

Notation Description

τ a parallel real-time task
G the graph structure of τ
VME The set of ME vertices in G
R(τ) The response time of the task τ

vi a vertex of G
p(vi) The priority of vi
s(vi) The starting time of vi
f(vi) The finishing time of vi
pred(vi) The set of predecessors of vi
pren(vi) The set of vi’s neighbors starting executions before vi
pre(vi) pre(vi) = pren(vi) ∪ pred(vi)
anc(vi) The set of ancestors of vi
des(vi) The set of descendants of vi
par(vi) The set of parallel vertices of vi, defined in (7)
ins(vi) The interference set of vi, defined in (8)

π a path of G, i.e., π = (u, · · · , v)
π The set of π’s intermediate vertices, i.e., π = π − {u, v}
len(π) the length of π
�(π) The weight of π, defined in (14)
I(π) The interference set of π, defined in (11)
I(π) The quasi interference set of π as defined in (10)
απ(vi) Indicator function of an ME vertex vi as defined in (1)
βπ(vi) Indicator function of an ME vertex vi as defined in (2)
pinπ(vi) The set of vi’s pioneers
flwπ(vi) The set of vi’s followers
acpπ(vi) The set of (ancestors of) vi’s pioneers, defined in (3)
dsfπ(vi) The set of (descendants of) vi’s followers, defined in (4)
acpπ(v) The subset of acpπ(v) as defined in (6)

dsfπ(u) The subset of dsfπ(u) as defined in (5)

insπ(vi) The quasi interference set of vi ∈ π, defined in (9)

B. WCRT Bound
The response time R(τ) of τ equals the finishing time of

vsnk minus the starting time of vsrc, i.e.,

R(τ) = f(vsnk)− s(vsrc) (16)

The time interval T = [s(vsrc), f(vsnk)] can be divided into

two disjoint parts: T = TC ∪ TNC, where TC contains the time

points at which the critical path π is executed, and TNC =
T − TC. We have

R(τ) = |TC|+ |TNC| (17)

On the one hand, |TC| is bounded by the length of the critical

path π. On the other hand, the bound of |TNC| can be derived

by the following lemmas.

Lemma 2. All cores are busy when no vertex of the critical
path executes.

Proof. Suppose not. We assume that there is a time point t,
at which no vertex of the critical path π executes, and there

is an idle core ck. We let

t1 = max{t′|t′ ∈ TC ∧ t′ < t} (18)

t2 = min{t′|t′ ∈ TC ∧ t′ > t} (19)

and we let vi and vj be the vertices of π that execute at

time points t1 and t2, respectively. We show that no vertex

of pre(vj) executes during the interval (t1, t2). Otherwise, we

assume that there is a time point t3 such that t3 > t1 and

t3 < t2, and meanwhile, a vertex vl of pre(vj) executes at

time t3. According to (15), vl should be in the critical path.

There are two cases.

• t3 < t, and in this case, we have t1 ≥ t3 according to (18).

It contradicts the assumption that t3 > t1.

• t3 > t, and in this case, we have t2 ≤ t3 according to (19).

It contradicts the assumption that t3 < t2.

By now, we have proved that no vertex of pre(vj) executes

at time t. It indicates that vertex vj can execute on core ck
at time t, which leads to a contradiction with the assumption

that core ck is idle at time t.

Lemma 3. The critical path π can only be blocked by the
vertices in the interference set I(π) of π.

Proof. As we know that only intermediate vertices of the

critical path π can be blocked, and we prove this theorem

by showing that each intermediate vertex vi of π can only

be blocked by the vertices of insπ(vi). Suppose not. There

is a vertex vj �∈ insπ(vi), and we assume that vj blocks the

execution of vi. According to (9), there are two possible cases:

• If vj �∈ ins(vi), according to (8), vj and vi must sequentially

execute, or vj and vi can execute in parallel, but vj has a

lower priority than vi. In each of these sub-cases, vj does

not block the execution of vi.
• Otherwise, vj ∈ ins(vi) ∩ ( acpπ(vi) ∪ dsfπ(vi)). Without

loss of generality, we assume that vj ∈ acpπ(vi), and

according to (3), vj must be completed before vi becomes

eligible to execute. Therefore, vj cannot block the execution

of vi. With the similar reason, we can prove that vj cannot

block the execution of vi if vj ∈ dsfπ(vi).

This completes the proof.

According to Lem. 2, all cores are busy at any time t ∈ TNC.

According to Lem. 3, only the vertices in I(π) can execute dur-

ing the time interval TNC. Therefore, we have |TNC| ≤ vol(I(π))
m .

Moreover, since we have proved that |TC| ≤ len(π), and

according to (17), the response time R(τ) is bounded by

R(τ) ≤ �(π) (20)

464

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:30:08 UTC from IEEE Xplore.  Restrictions apply. 



From Def. 1, the critical path π is one of the complete paths,

and according to (20), we derive the upper bound of R(τ) as

shown in the following theorem.

Theorem 1. The response time of a prioritized ME-DAG G
is bounded by

R(τ) ≤ max
π∈ΠG

{�(π)} (21)

where ΠG is the set of complete paths of G.

The adopted worst-case-response-time analysis is tight only

when all ME vertices are sequentially executed and there is no

overlap between the executions of ME and normal vertices.

V. COMPLEXITY OF WCRT BOUND COMPUTATION

We show that computing the WCRT bound in (21) is

strongly NP-hard by building a Turing reduction from the

Hamiltonian path (HAM-PATH) problem as described below.

Definition 2 (HAM-PATH.). Given an undirected graph G′ =
(V ′, E′), the HAM-PATH problem is to determine whether
there is a path that visits each vertex of G′ exactly once.

Proposition 1 ( [54]). HAM-PATH is strongly NP-hard.

Given any instance of HAM-PATH G′ with n vertices,

we construct the corresponding parallel real-time task τ =
(D,E, P ) as follows. The basic DAG graph D has a source

vertex vsrc, a sink vertex vsnk and n normal vertices. For each

normal vertex vi, there are two arcs (vsrc, vi) and (vi, vsnk).
No arc is between two normal vertices. Each vertex ui and

edge (ui, uj) of G′ correspond to a normal vertex vi of D and

an edge (vi, vj) of E, respectively. Each vertex vi ∈ V has a

unit WCET, i.e., c(vi) = 1. Moreover, each vertex of V has

the same priority. We schedule τ on m cores, where m ≥ 2.

The reduction runs in O(n), which is linear in the length of

the input. We illustrate the construction with Example 5.

Example 5. The instance of HAM-PATH G′ is given in
Fig. 3(a). There is a Hamiltonian path πh = (u1, u2, u3, u4).
The parallel real-time task τ = (D,E, P ) built from G′ is
shown in Fig. 3(b). We construct a complete path π = (vsrc,
v1, v2, v3, v4, vsnk), which corresponds to πh in G′. The
WCRT bound in (21) equals to len(π) = 4 + 2 = 6.

Fig. 3: An example for the construction of τ from a given graph G′.

The following two lemmas close the Turing reduction.

Lemma 4. If there is a Hamiltonian path in G′, the WCRT
bound of τ in (21) is n+ 2.

Proof. Suppose there is a Hamiltonian path π′ in G′, i.e., π′ =
(u[1], · · · , u[n]), where u[i] is the i-th vertex traveled in π′. We

construct a complete path π = (vsrc, v[1], · · · , v[n], vsnk). The

WCRT bound of τ in (21) equals to len(π) = n+ 2.

Lemma 5. If the WCRT bound of τ in (21) is n+ 2, there is
a Hamiltonian path in G′.

Proof. The proof is by contradiction. We suppose that there

is no Hamiltonian path in G′. It indicates that every complete

path π of ΠG has a length less than n+ 2, i.e.,

len(π) < n+ 2 (22)

Since each vertex has the same priority, the interfering set

I(π) is V − {vi|vi ∈ π}. Moreover, since each vertex has a

unit WCET, we have vol(I(π)) = |V |− len(π). Therefore, the

WCRT bound of τ in (21) is calculated as

R(τ) ≤ max
π∈ΠG

{len(π) +
|V | − len(π)

m
}

= max
π∈ΠG

{n+ 2 + (m− 1)len(π)

m
} (∵ |V | = n+ 2)

< n+ 2 (∵ (22) and m ≥ 2)

which leads to a contradiction.

Theorem 2. It is strongly NP-hard to compute the WCRT
bound in (21) even if there is only one priority in P .

Proof. The WCRT bound computation problem belongs to NP

class since the bound in (21) is computed in polynomial time

for a given critical path π. The theorem can be proved by the

combination of Lem. 4 and Lem. 5.

From the proof of Thm. 2, the inherent complexity of the

WCRT bound computation problems highly depends on the

number of ME vertices. In the following, we develop an

efficient method for WCRT bound computation by using the

dynamic programming technique, which is pseudo-polynomial

time when there are a constant number of ME vertices.

VI. ALGORITHM FOR COMPUTING WCRT BOUND

Computing the WCRT bound in (21) is equivalent to

find a complete path π∗ with the maximum weight, i.e.,

�(π∗) ≥ �(π), ∀π ∈ ΠG. In the following, we develop

a dynamic programming (DP) algorithm to solve such an

optimal complete path π∗. Before going into details, we first

sketch the main idea of our method, and introduce two main

challenges our method faces, as shown in Sec. VI-A. Then we

give some key theoretical results for solving the challenges,

as shown in Sec. VI-B and VI-C.

A. Main Idea and Challenges

We iteratively merge sub-paths into a longer path, until the

target complete path is constructed. The main difficulty is that

there are exponential number of paths in ΠG, and we have to

construct all of them to determine the one with the maximum

weight in the worst case. Instead of directly enumerating paths,

we abstract the path into a concise data structure, called tuple,

and merging paths is mimicked by tuple computation process,

i.e., new tuples (corresponding to longer paths) are computed

by using the tuples (corresponding to sub-paths) that have been

computed beforehand. When using tuples to store very limited

information of paths, there are two major challenges:
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• Challenge 1: How to guarantee path’s feasibility? A path

may be infeasible even if it is merged by two feasible

paths. As shown in Fig. 1, the path π = (v5, v6, v4, v3, v2)
is merged by two feasible paths π1 = (v5, v6, v4) and

π2 = (v4, v3, v2), but it is infeasible. As our method only

considers feasible paths, the information stored in tuples

must be sufficient to forbid merging infeasible paths.

• Challenge 2: How to reduce overly estimated interfer-
ence vertices when calculating path’s weight? Once two

paths π1 and π2 are merged into a path π, we aim to

estimate the volume of I(π) by using the interference sets

I(π1) and I(π2). Intuitively, we can bound vol(I(π)) by

vol(I(π1)) + vol(I(π2), but this bound is too pessimistic.

The reason is twofold: (1) The interference vertex sets I(π1)
and I(π2) may share the same vertices. (2) The interference

vertex of I(π1) and I(π2) may not be the interference vertex

of I(π). For example, in Fig. 1, v4 and v2 are interference

vertices of π1 = (v1, v2, v3) and π2 = (v3, v4, v6, v8),
respectively. However, these two vertices should be removed

from the interference set of path π that is merged by π1

and π2. It is really difficult to relieve the overestimation of

interference vertices if a tuple does not know what vertices

its corresponding path travels.

B. Solving Challenge 1: Key Clues

To solve Challenge 1, we derive the necessary and suffi-

cient condition for constructing feasible paths during the path

combination process, as shown in Thm. 3.

Theorem 3. For any two feasible paths π1 = (u, · · · , w) and
π2 = (w, · · · , v), the path π merged by π1 and π2 is feasible
if and only if βπ1(vi) = 0 ∨ απ2(vi) = 0, ∀vi ∈ VME − {w}.

Proof. Necessity. We assume that the predefined condition is

violated, i.e., there is an ME vertex vi ∈ VME −{w} such that

βπ1
(vi) = 1 ∧ απ2

(vi) = 1. In this case, we show that the

merged path π is infeasible, and there are two possible cases.

• vi is traveled in π, and without loss of generality, we assume

that vi is traveled in π1. In this case, vi or the ancestor of

vi is traveled in π2 as απ2
(vi) = 1. It indicates that π is

infeasible.

• vi is not traveled in π. In this case, from the assumption,

the descendant vy of vi is traveled in π1, and the ancestor

vx of vi is traveled in π2. We can conclude that vx is the

ancestor of vy . As π travels vy before traveling the ancestor

vx of vy , the merged path π is infeasible.

In sum, we prove that the predefined condition must hold if

the merged path π is feasible.

Sufficiency. When the predefined condition holds, we aim

to prove that the merged path π is feasible. We suppose that the

merged path π is infeasible, i.e., there is a vertex vj such that π
first travels vj , and then π travels a vertex vi ∈ {vj}∪anc(vj).
As π1 and π2 both are feasible paths, each of them cannot

travel both of vj and vi. It indicates two facts: 1) Neither vj
nor vi equals to w. 2) The vertex vj is traveled in π1 and vi
is traveled in π2. We consider the following two cases.

• If at least one of the vertices vi and vj is an ME vertex, i.e.,

{vi, vj} ∩ VME �= ∅. Without loss of generality, we assume

that vi is an ME vertex. Since the ME vertex vi is traveled

in π2, and according to (1), we have απ2
(vi) = 1. Moreover,

since the descendant vj of vi is traveled in π1, and according

to (2), we have βπ1(vi) = 1. It indicates that the predefined

condition is violated, which contradicts the assumption.

• Otherwise, neither of the vertices vi and vj belongs to the

ME vertex set, i.e., {vi, vj} ∩ VME = ∅. We let π′ be the

sub-path of π that starts with vj and ends at vi. The path

π′ must travel at least one ME edge (as well as at least

one ME vertex). Suppose not, i.e., π′ only contains directed

arcs. It indicates that vj is the ancestor of vi, which leads

to a contradiction. There are two sub-cases.

– There are ME vertices in π2 ∩ π′. We let vx be the last

ME vertex traveled in π′, i.e., for any ME vertex vy ∈ π′,
π′ travels vy before traveling vx. It indicates that vi is

the descendant of the ME vertex vx, and obviously, vj
is the descendant of vx, i.e., βπ1

(vx) = 1 according to

(2). Moreover, since vx is the last ME vertex of π′ and

π2 ∩ π′ ∩ VME �= ∅, vx must be in π2, and according to

(1), απ2(vx) = 1.

– There are ME vertices in π1 ∩ π′. We let vx be the

first ME vertex traveled in π′, and obviously, vx ∈ π1,

i.e., βπ1
(vx) = 1 according to (2). Moreover, vj is the

ancestor of vx, and thus, vi is the ancestor of vx, i.e.,

απ2
(vx) = 1 according to (1).

Both of the above sub-cases lead to a violation of the

predefined condition.

In sum, we prove that the predefined condition sufficiently

indicates the feasibility of the merged path π.

Thm. 3 indicates that it is not necessary to know all vertices

of a path for preventing infeasible paths, and instead, it is

necessary and sufficient to forbid infeasible path constructions

by only storing the information of two indicator functions απ :
VME → {0, 1} and βπ : VME → {0, 1} for a path π.

C. Solving Challenge 2: Key Clues

To solve Challenge 2, we derive a reasonable estimation of

the interference set I(π) of a path π, and show how to calculate

the estimation’s volume by only using limited information of

π’s sub-paths π1 = (u, · · · , w) and π2 = (w, · · · , v). A trivial

bound of I(π) is I(π1) ∪ I(π2), and this bound may contain

some overly estimated interference vertices as shown by the

example in the description of Challenge 2. In the following,

we propose a much finer bound of I(π). According to (13),

the union of interference sets I(π1) ∪ I(π2) can be divided

into the following three subsets.

I(π1)∪I(π2)=I0 ∪ INM(π1) ∪ INM(π2) (23)

where I0 = IME(π1) ∪ IME(π2) ∪ ins(u) ∪ ins(w) ∪ ins(v). As

shown in (24) to (26), we use Ĩ1, Ĩ2 and ĩnsπ(w) to denote
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the subsets of IME(π1), IME(π2) and ins(w), respectively.

Ĩ1 = IME(π1)− dsfπ2
(w) (24)

Ĩ2 = IME(π2)− acpπ1
(w) (25)

ĩnsπ(w) = ins(w)− (acpπ1
(w) ∪ dsfπ2

(w)) (26)

With these notations, we derive the subset Ĩ0 of I0 as follows.

Ĩ0 = Ĩ1 ∪ Ĩ2 ∪ ins(u) ∪ ĩnsπ(w) ∪ ins(v) (27)

According to (23) and (27), we eventually derive a subset of

I(π1) ∪ I(π2) as follows.

Ĩ0 ∪ INM(π1) ∪ INM(π2) ⊆ I(π1) ∪ I(π2) (28)

The following lemma shows that the LHS of (28) derives a

safe estimation of I(π).

Lemma 6. For any path π = (u, · · · , v) and for any paths
π1 = (u, · · · , w) and π2 = (w, · · · , v) such that the path π
merged by π1 and π2, the interference set of π is bounded by

I(π) ⊆ Ĩ0 ∪ INM(π1) ∪ INM(π2) (29)

The proof of Lem. 6 is mainly based on (13), and is given

in Appendix A. In the following, we use the RHS of (29) to

estimate the volume of I(π). Before going into details, we

first introduce the notation of regular paths below.

Definition 3 (Regular path). A path π = (u, · · · , v) is left (and
right) regular if p(vi) ≤ p(u) (and p(vi) ≤ p(v)), ∀vi ∈ π.
We let a path be regular if it only contains two vertices.

As shown in Fig. 1, path π1 = (v2, v5, v6) is left regular;

and path π2 = (v5, v6, v7) is right regular. The regular path

defined in Def. 3 is used for path merging, which has some

elegant properties as described below.

Lemma 7. For any left regular path π = (w, v) and for any
vertex vi ∈ par(w), vi ∈ ins(w) if there is an intermediate
vertex vj ∈ π such that vi ∈ insπ(vj).

Proof. Since vi ∈ insπ(vj), and by (9), we have vi ∈ ins(vj).
According to (8), p(vi) ≤ p(vj). Moreover, since π is left

regular, we have p(vj) ≤ p(w). Therefore, p(vi) ≤ p(w), and

since vi ∈ par(w), we have vi ∈ ins(w) according to (8).

Symmetrically, we can conclude the following proposition.

Proposition 2. For any right regular path π = (u,w) and for
any vertex vi ∈ par(w), vi ∈ ins(w) if there is an intermediate
vertex vj ∈ π such that vi ∈ insπ(vj).

Based on Lem. 7 and Pro. 2, we derive the following

lemma to show that the vertices that interfere with intermediate

vertices of two regular paths can be safely isolated.

Lemma 8. For any paths π1 = (u, · · · , w) and π2 =
(w, · · · , v), INM(π1) ∩ INM(π2) = ∅ if π1 and π2 are right
and left regular, respectively.

Proof. Suppose not. There is a non-ME vertex vi ∈ INM(π1)∩
I(π2). Since vi ∈ INM(π2) and by (10), there is a vertex

vj ∈ π2 such that vi ∈ insπ2
(vj). We know that vi ∈ par(w).

Otherwise, we consider the following two cases.

• vi is an ancestor of w. For any vertex vj ∈ π2, since w ∈
pinπ2

(vj) and by (3), we have vi ∈ acpπ2
(vj). By (9), we

have vi �∈ insπ2
(vj), and by (10), vi �∈ INM(π2).

• vi is a descendant of w. For any vertex vj ∈ π1, since

w ∈ flwπ1(vj) and by (4), we have vi ∈ dsfπ1(vj). By (9),

we have vi �∈ insπ1(vj), and by (10), vi �∈ INM(π1).

Both cases contradict the assumption. By now we have proved

that vi ∈ insπ2
(vj) ∩ par(w). Since π2 is left regular, we

have vi ∈ ins(w) by Lem. 7. By (10), we know that I(πx) ∩
ins(w) = ∅ (x = 1, 2), and thus, vi �∈ INM(π1) ∩ INM(π2),
which contradicts the assumption.

Based on Lem. 6 and 8, we derive the following theorem

to safely estimate the volume of I(π) by using limited

information of its (regular) sub-paths.

Theorem 4. For any path π = (u, · · · , v) merged by paths
π1 = (u, · · · , w) and π2 = (w, · · · , v), the volume of I(π) is
bounded by

vol(I(π)) ≤ vol(Ĩ0)+vol(INM(π1))+vol(INM(π2)) (30)

if π1 and π2 are right regular and left regular, respectively.

Proof. Based on (10) and (12), INM(π1)∪ INM(π2) is disjoint

with Ĩ0. Since π1 is right regular and π2 is left regular, and

based on Lem. 8, INM(π1) and INM(π2) are disjoint with each

other. Therefore, we can derive (30) by using (29).

We can compute the first item of (30) by knowing the

interference ME vertices of paths π1 and π2 and the ending

points u, w and v of π1 and π2. The left problem is how

to compute the second item and third item of (30), which is

solved in the following lemma.

Lemma 9. For any path π = (u, · · · , v), vol(INM(π)) =
vol(I(π))− vol(res), where res = ins(u) ∪ ins(v) ∪ IME(π).

Proof. This can be derived from (13) and since the last item

of (13) is disjoint with the other three items of (13).

According to Thm. 4 and Lem. 9, the volume of path’s

interference set can be bounded by the following theorem.

Theorem 5. Given a path π = (u, · · · , v) merged by the
right regular path π1 = (u, · · · , w) and the left regular path
π2 = (w, · · · , v), the volume of I(π) can be bounded by

vol(Ĩ0)+vol(I(π1))+vol(I(π2))−vol(res1)−vol(res2) (31)

where res1 = ins(u) ∪ ins(w) ∪ IME(π1) (32)

res2 = ins(w) ∪ ins(v) ∪ IME(π2) (33)

Proof. According to Lem. 9, we have

vol(INM(π1)) = vol(I(π1))− vol(res1) (34)

vol(INM(π2)) = vol(I(π2))− vol(res2) (35)

By substituting (34) and (35) into (30), we derive (31).
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To compute (31), it is necessary to know the ending points

of π1 and π2, the interference ME vertices of π1 and π2, as

well as the indicator functions απ1 and βπ2 . Thm. 5 provides

an iterative method to compute the volume of a path π’s

interference set by using the information of π’s sub-paths

π1 and π2 that have already been computed beforehand. The

following theorem implies that such an iterative method can

be applied on any paths.

Theorem 6. Any path with at least three vertices is merged
by a right regular path and a left regular path.

Proof. We consider a path π = (u, · · · , v) that contains at

least three vertices, and let w be the vertex with the lowest

priority among all vertices in π. The path π is divided into

two sub-paths π1 = (u, · · · , w) and π2 = (w, · · · , v), i.e.,

the path π is merged by π1 and π2. According to Def. 3,

it is trivial to show that a path is regular if it contains only

two vertices. Without loss of generality, we assume that paths

π1 and π2 both contain at least three vertices. For each vertex

vi ∈ π1, since p(vi) ≤ p(w), we know that π1 is right regular.

Moreover, for each vertex vi ∈ π2, since p(vi) ≤ p(w), we

know that π2 is left regular. This completes the proof.

D. Dynamic Programming Algorithm

In this section, we design a dynamic program (DP) to

estimate the WCRT bound of an ME-DAG G based on the

idea of path merging as described in Sec. VI-A. A potential

alternative approach is to enumerate exponential number of

paths and select the one with the maximum weight to estimate

the WCRT bound. Comparatively, our method is in pseudo-

polynomial time if the number of ME vertices is constant.

We do not explicitly merge concrete paths, but use tuples to

abstract paths. As shown in Sec. VI-B and Sec. VI-C, the

tuple not only needs to be simple, but also is required to store

sufficient information to guarantee the path’s feasibility and to

relieve the overestimation of interference vertices. The formal

definition of path’s tuple is given as follows.

Definition 4 (Tuple). For any path π = (u, · · · , v), its tuple
is defined as κ = (u, v, χ, α, β, ψ,�), where u and v are
ending points of π; χ ⊆ {L, R} indicates whether π is left
(and right) regular, i.e., if π is right regular, R ∈ χ; if π is left
regular, L ∈ χ; α = απ and β = βπ are indicator functions;
ψ = IME(π) contains ME vertices of I(π); � is the bound of
weight �(π) = len(π) + vol(I(π))

m .

Lemma 10. There are at most W |V |223|VME|+2 tuples for an
ME-DAG G, where W is the total WCET of all vertices in G.

Proof. There are at most |V |2 vertex pairs in G. There are four

possible χ sets as χ is the subset of {L, R}. The functions α
(and β) map each ME vertex to a Boolean value, and thus,

there are at most 2|VME| possible indicator functions. There are

at most 2|VME| ψ sets as ψ ⊆ VME. The value of � is bounded

by W . In sum, there are at most W |V |223|VME|+2 tuples.

We define tuple operations to mimic the path merging

process. As any arc (and edge) can be seen as a path with

length 1, we initially construct the tuple for each arc (and

edge) as shown in Def. 5. Moreover, merging two paths can

be mimicked by tuple computation as defined in Def. 6.

Definition 5 (Tuple Construction). For any arc (or edge) with
ending points u and v, we let π = (u, v) and construct the
tuple κ = �(u, v) by the function � as follows.

�(u, v)=(u, v, {L, R}, απ, βπ, ∅, �) (36)

where � = c(u) + c(v) + vol(ins(u)∪ins(v))
m .

The computation of � above is based on the fact that the

length of path π = (u, v) is len(π) = c(u) + c(v), and the

interference set of π is ins(u) ∪ ins(v) since π = ∅ and

according to (11).

Definition 6 (Tuple Computation). Given tuples κ1 = (u,w,
χ1, α1, β1, ψ1, �1) and κ2 = (w, v, χ2, α2, β2, ψ2, �2), we
compute the tuple κ = κ1 ∗ κ2 by the operation ∗ below.

κ1 ∗ κ2 = (u, v, χ, α, β, ψ, ζ, μ) (37)

where

χ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ p(u) < p(w) ∧ p(v) < p(w)

{L} p(u) ≥ p(w) ∧ p(v) < p(w)

{R} p(u) < p(w) ∧ p(v) ≥ p(w)

{L, R} p(u) ≥ p(w) ∧ p(v) ≥ p(w)

(38)

α(vi) = α1(vi) ∨ α2(vi), ∀vi ∈VME (39)

β(vi) = β1(vi) ∨ β2(vi), ∀vi ∈VME (40)

ψ = ψ̃1 ∪ ψ̃1 ∪ ĩnsME(w) (41)

�=�1+�2−c(w)+
vol(Ĩ0)−vol(res1)−vol(res2)

m
(42)

The parameters used above are computed as follows.

ψ̃1 = ψ1 − dsf2(w) (43)

ψ̃2 = ψ2 − acp1(w) (44)

ĩns(w) = ins(w)− (dsf2(w) ∪ acp1(w)) (45)

Ĩ0 = ψ̃1 ∪ ψ̃2 ∪ ins(u) ∪ ĩns(w) ∪ ins(v) (46)

res1 = ins(u) ∪ ins(w) ∪ ψ1 (47)

res2 = ins(w) ∪ ins(v) ∪ ψ2 (48)

As shown in (38), we construct χ according to Def. 3 and

by assuming that κ1 and κ2 correspond to a right regular path

and a left regular path, respectively. According to (1) and (2),

we derive the indicator functions α and β in (39) and (40). The

computation of ψ in (41) is based on the fact that w becomes

an intermediate vertex after the path merging, and moreover,

some vertices should be removed from the original sets ψ1

and ψ2 according to (53) and Lem. 11. As shown in (43) to

(45), the parameters ψ̃1, ψ̃2 and ĩns(w) coincide with (24),

(25) and (26), respectively. We compute � in (42) according

to Thm. 5 and based on the fact that w is duplicated when

two paths are merged at w (and thus, c(w) must be removed

from the path’s length). Parameters Ĩ0, res1 and res2 as shown

in (46) to (48) coincide with (27), (32) and (33), respectively.
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From Thm. 3 and Thm. 6, we know that not all paths need

to be merged, and accordingly, the computation of Def. 6

can only be applied for some tuples that satisfy the condition

defined as follows.

Definition 7. For any tuples κ1 = (u,w1, χ1, α1, β1, ψ1, �1)
and κ2 = (w2, v, χ2, α2, β2, ψ2, �2), we let con(κ1, κ2) = 1
if the following condition holds.

w1 = w2 ∧ R ∈ χ1 ∧ L ∈ χ2∧
β1(vi) = 0 ∨ α2(vi) = 0, ∀vi ∈ VME − {w} (49)

The condition in (49) indicates that the paths corresponding

to κ1 and κ2 are right regular and left regular, respectively,

and moreover, these two paths can be merged into a feasible

path according to Thm. 3. Based on the above notations, the

pseudo-code of our DP algorithm is given as follows.

Algorithm 1: The WCRT bound computing algorithm.

1 let κ = ∅ and κnew = ∅;
2 for each arc (u, v) of A do
3 add κ = �(u, v) into κ and κnew;

4 for each edge (u, v) of E do
5 add κ = �(u, v) and κ′ = �(v, u) into κ and κnew;

6 while κnew �= ∅ do
7 for any κ1 ∈ κnew do
8 for any κ2 ∈ κ do
9 if con(κ1, κ2) = 1 then

10 add κ = κ1 ∗ κ2 into κ and κnew;

11 if con(κ2, κ1) = 1 then
12 add κ = κ2 ∗ κ1 into κ and κnew;

13 remove κ1 from κnew;

14 return R = max{�|κ = (vsrc, vsnk, χ, α, β, ψ,�) ∈ κ}

As shown in Line 1, we use κ to store the tuples enumerated

during the computing process, and use κnew to store the tuples

newly derived at each iteration. Initially, we construct the tuple

for each arc (as well as each edge) according to Def. 5 (see

in Lines 2 to 5). Once some tuple κ1 is added into κnew at the

last iteration, we find an existing tuple κ2 in κ and compute

the new tuple κ by using κ1 and κ2 if κ1 and κ2 (or κ2

and κ1) satisfy the condition (49) as shown in Lines 7 to 12.

When we obtain all possible tuples that can be derived from

κ1, we delete κ1 from κnew as shown in Line 13. This process

repeats until no tuple is newly added, and then we calculate the

WCRT bound for each tuple that corresponds to a complete

path according to (21), and return the maximum WCRT bound

as shown in Line 14.

Theorem 7. Alg. 1 is pseudo-polynomial time when given a
constant number of ME vertices in an ME-DAG.

Proof. This theorem can be derived by Lem. 10 and according

to Def. 5 and 6 such that the tuple construction and tuple

computation applied in Alg. 1 are O(1), respectively.

The correctness of Alg. 1 is shown in Thm. 8.

Theorem 8. Alg. 1 derives a safe estimation of the WCRT
bound in (21).

Proof. For each tuple κ with the weight �, we let π be the

path corresponding to κ, and we have � ≥ �(π) according

to Def. 4 and Thm. 5. According to Thm. 1, Alg. 1 can return

a safe estimation of the WCRT bound of the ME-DAG G if

κ contains the tuples of all complete paths in ΠG. Therefore,

this theorem is proved by showing that each complete path of

ΠG corresponds to a tuple generated by Alg. 1. Suppose not,

i.e., there is a complete path π such that the tuple of π is not

generated until Alg. 1 terminates. We assume that π has K
vertices, and we prove that Alg. 1 generates a corresponding

tuple for each feasible path with K vertices (which certainly

include π). we prove this by induction as follows.

According to Lines 2 to 5, we generate tuples for each arc

(and each edge). It indicates that Alg. 1 generates the tuples

of all paths with 2 vertices, as we know that each feasible path

with 2 vertices is an arc (or an edge) of G.

We assume that the tuples of all feasible paths with no more

than k vertices are generated by Alg. 1. In the following, we

aim to prove that the tuple of each feasible path π′ with k+1
vertices is also generated by Alg. 1.

According to Thm. 6, π′ can be divided into a right regular

path π1 and a left regular path π2, i.e., the path π is merged

by π1 and π2. From the hypothesis, Alg. 1 has generated the

tuples κ1 and κ2 which separately correspond to π1 and π2.

Without loss of generality, we assume that κ2 is removed from

κnew earlier than κ1. We consider the iteration at which we

select κ1 from κnew and use κ1 to generate new tuples. In this

case, κ2 must be removed at the previous iteration, and only is

contained in κ. According to Line 8, we can select κ2 from κ.

Since π1 and π2 are right regular and left regular, respectively,

and moreover, since π1 and π2 are feasible as π is feasible,

we know that the condition (49) holds, i.e., con(κ1, κ2) = 1.

According to Lines 9 and 10, κ = κ1 ∗ κ2 is generated, and

we know that κ corresponds to the path π′ merged by π1 and

π2. Therefore, the tuple of π′ is generated by Alg. 1.

By now, we prove that the tuple of each feasible path with

K vertices is generated by Alg. 1, which contradicts the

assumption that the tuple corresponding to the complete path

π with K vertices cannot be generated by Alg. 1.

VII. EVALUATIONS

In this section, we evaluate our method with task graph

models derived from randomly generated task graphs and

realistic OpenMP benchmark applications. We implement the

dynamic programming algorithm proposed in Sec. VI-D by

Python 3.7. The code runs on a PC with Intel Core i5-9400F

CPU at 2.9GHz with 16G RAM.
We demonstrate our method improves the WCRT bound

by conducting the comparison with the state-of-the-art: the
WCRT bound R0 for the DAG task with spin locks as
established in Thm. 1 of [45], i.e.,

R0 =
vol(D) + (m− 1)(len(D) +

∑
lq∈Θ NqLq)

m
(50)

where Θ is the set of resources. For any resource lq , Nq
represents the times that vertices of D access to lq , and Lq
is the worst-case execution time of the vertex that accesses
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the resource lq . An ME edge indicates that two vertices of the
ME edge access a shared resource in sequence. Thus,

∑
NqLq

equals the total degrees of all ME vertices (by counting the
ME edges). To fit the work in [45], we adapt our ME-DAG
task by letting each pair of ME vertices connected by an ME
edge share a resource. We evaluate the performance of our
method in terms of the gap defined as follows.

gap =
R0 −Rdp

R0
(51)

where Rdp is the WCRT bound computed by our DP method.

We implement several priority assignment policies that are

commonly used in the existing work, and evaluate which pol-

icy performs better. The priority assignment policies exhibited

in our experiments include: NVP (No Vertex Priority is defined

for the ME-DAG), SCF (Smallest Co-levels First) [55], HLF

(Highest Level First) [55], MISF (Most Immediate Successors

First) [56], CPF (Critical Path First) [14] and LVLF (Longest

Vertex Length First) [15]. We present our task experiments and

results in terms of the gap defined in (51) and computation

time with synthetic tasks in Sec. VII-A and realistic tasks

derived from OpenMP programs in Sec. VII-B.

A. Randomly Generated Tasks
We randomly generate a DAG by the TGFF tool [57], a

DAG generator developed to facilitate standardized random

benchmarks for scheduling research. The graph generation

algorithm of TGFF tool enables us to generate the DAG with

n vertices, where the “in” and “out” degrees of each vertex

are bounded by δ− and δ+, respectively. The WCET of each

vertex is randomly set in the range of [1, 100]. We randomly

select nME ME vertices from the DAG, and for any two ME

vertices, we randomly add an undirected edge to connect them

with probability pME.

We conduct experiments with different combinations of

parameters as shown in Fig. 4. The values of configurations

are written in the figure caption. For each data point, 1000

random experiments have been run. We observe that our

method significantly reduces the WCRT bound, i.e., the gap

achieves more than 40% on average with different priority

assignments. Our algorithm can analyze the ME-DAG with

60 vertices and with no more than 12 ME vertices within 20

seconds on average.

Fig. 4(a) shows that the gap increases when the number m of

cores increases. According to (14) and (20), a larger m means

a smaller proportion of the interference volume in the WCRT

bound. From Fig. 4(a), we know that our method performs

better when the longest path in the ME-DAG plays a major

role in the WCRT bound computation. Fig. 4(b) shows that the

gap decreases when the scale of the DAG grows. The reason

may be as follows. As the number of ME vertices is fixed,

the ratio (denoted as γME) of ME vertices to total vertices

becomes smaller when the number n of vertices increases.

In this case, the impact of ME vertices on WCRT bounds is

weaker, and thus, the room left for our method to improve is

limited. Fig. 4(c) shows that the gap increases significantly,

when the ratio γME of ME vertices grows. As we know that

both of the WCRT bounds R0 and Rdp increase when γME

Fig. 4: Evaluation results for different configurations.

increases. The experimental result indicates that our method

is more tolerant of the increase of ME vertices. Fig. 4(d)

shows that the gap increases sharply, when the probability pME

increases. There are more ME edges when pME becomes large.

The experimental result indicates that R0 is more sensitive to

the number of ME edges. Fig. 4(e) and (f) show that the gap

increases when the out-degree δ+ increases and when the in-

degree δ− decreases. A larger δ+ and a larger δ− separately

indicate a higher parallelism and a longer longest path of the

ME-DAG. The experimental results imply that the path length

usually dominates the volume of the interference set when

computing the WCRT bound.

The computation time tdp of our DP method linearly grows

with the linear increase of the number n of vertices or the

probability pME of generating ME as shown in Fig. 4(b) and

(d). Fig. 4(c) shows that tdp grows exponentially when the

number of ME vertices increases. Besides, tdp changes slightly

when the number m of cores, in-degree δ− and out-degree δ+

increase as shown in Fig. 4(a), (e) and (f). All of these cases

coincide with the complexity analysis of our algorithm.

B. Realistic OpenMP Programs

In this section, we evaluate our method with task graphs

generated according to realistic OpenMP programs. OpenMP

supports task parallelization since version 3.0 [58], which can

be modeled as DAGs [59]. We collect 3 OpenMP programs

(see Table II) that use C language and contain “#pragma
omp critical” clauses from the BOTS benchmark suite

[60], and transform them into directed graphs by ompTG tool

[61]. The first five columns of Table II show the detailed

information of the benchmark programs, where LoC is the

number of lines in program; Nfu is the number of functions;

Nlp is the number of loop structures; Nif is the number

of if-else structures; Ncr is the number of critical
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clauses. The last two columns of Table II give the information

of each program’s directed graph model1, where Nv is the

number of vertices and Nc is the number of critical vertices.

TABLE II: Summary of BOTS programs

#name
program task graph

LoC Nfu Nlp Nif Ncr Nv Nc

concom 35 9 2 3 1 24 1
knapsack 166 9 0 17 1 17 1
floorplan 269 13 8 22 1 24 1

We note that the selected programs have loop and

if-else structures, and thus, their corresponding directed

graphs contain cycles and branches, which cannot be directly

handled by our method. We transform the directed (cyclic)

graphs into DAGs by unrolling loops. We use Nlb to denote

the loop bound, indicating that each loop structure cannot be

traveled more than Nlb times. Moreover, when encountering an

if-else structure, we randomly travel one of its branches.

For any two ME vertices (that correspond to critical
clauses), we add an ME edge between them if they are parallel

with each other, i.e., there is no path traveling both of them.

Evaluation results of OpenMP programs are shown in Fig. 5.

Fig. 5: Evaluation results of OpenMP programs.

Fig. 5 shows that our method significantly reduces the

WCRT bound, i.e., the gap achieves more than 40% on average

in different scales of task graphs. Moreover, the gap becomes

larger when the loop bound Nlb increases. The gap achieves

more than 70% on average among three programs, when the

loop bound Nlb is 50. Our method can analyze all these three

programs within a reasonable time (e.g., no more than 110

minutes). The analysis time for “concom” program is much

less than that of “knapsack” and “floorplan” programs. The

reason may be that the scale of “concom” program is far less

than the scales of both “knapsack” and “floorplan” programs

as shown in Table II. The computation time is proportional to

the increment of loop bound Nlb. Especially, the computation

time sharply increases when loop bound Nlb is larger than 40.

When Nlb is 50, the computation time for analyzing “concom”

program is less than 20 minutes, and the computation time for

analyzing “knapsack” program (where the task graph has 68

vertices and 19 ME vertices) and floorplan program (where

the task graph has 202 vertices and 25 ME vertices) are more

1For the sake of simplicity, we shrink the vertices connected by a dedicated
path (without any branches) into one vertex.

than 60 minutes and 100 minutes, respectively. The analysis

time for both “knapsack” and “floorplan” programs are within

30 minutes, when Nlb is 40. When Nlb is 10, the analysis time

of “knapsack” (where the task graph has 49 vertices and 4 ME

vertices) and “floorplan” (where the task graph has 42 vertices

and 3 ME vertices) is bounded by a few seconds.

VIII. CONCLUSION

In this paper, we propose the first WCRT bound for the

prioritized ME-DAG task. We prove that computing the WCRT

bound is strongly NP-hard, and we propose an efficient DP

method for computing the WCRT bound. Experimental work

shows that our method significantly reduces the WCRT bound

compared with the state-of-the-art method, indicating that the

prioritizing technique is a promising approach to guarantee

the real-time property of the ME-DAG task. In the future,

we will investigate whether there are more efficient priority

assignment policies that can further improve the WCRT bound

of ME-DAG task.

APPENDIX A: PROOF OF LEM. 6

In order to prove Lem. 6, we first define a subset of Ĩ0 as Î0, i.e,.

Î0 ⊆ Ĩ0. It is efficient to show the correctness of (29) if the following
formula holds.

I(π) ⊆ Î0 ∪ INM(π1) ∪ INM(π2) (52)

More specifically, the subset Î0 of Ĩ0 is denoted as follows.

Î0 = I1 ∪ I2 ∪ ins(u) ∪ insπ(w) ∪ ins(v) (53)

where I1 = IME(π1)−dsfπ2(w) and I2 = IME(π2)−acpπ1
(w). Based

on Lem. 1, we have dsfπ2(w) ⊆ dsfπ2(w) for the starting point w of
π2. According to the definitions of Ĩ1 in (24) and I1 above, we have
I1 ⊆ Ĩ1. Symmetrically, from (25) and the definition of I2, we have
I2 ⊆ Ĩ2. With the similar reasons, and from (9) and (26), we have

insπ(w) ⊆ ĩnsπ(w). According to (27) and (53), we have Î0 ⊆ Ĩ0.
In the following, we prove the correctness of (52) by providing

the safe estimations of IME(π) and INM(π) as shown in Lem. 11 and
Lem. 12, respectively.

Lemma 11. IME(π) ⊆ I1 ∪ I2.

Proof. By (11) and (12), we have

IME(π) =
⋃

vi∈π
insπ,ME(vi) (54)

For each vi ∈ π1, by (3) and (4), we know that acpπ1
(vi) = acpπ(vi)

and dsfπ1(vi) ∪ dsfπ2(w) ⊆ dsfπ(vi), and by (9),

insπ(vi) ⊆ ins(vi)− (acpπ1
(vi) ∪ dsfπ1(vi))− dsfπ2(w) (55)

and according to (9) and (12), we have

insπ,ME(vi) ⊆ insπ1,ME(vi)− dsfπ2(w) (56)

With the similar reason above, we symmetrically derive the following
result for each vertex vi ∈ π2.

insπ,ME(vi) ⊆ insπ2,ME(vi)− acpπ1
(w) (57)

By combining (56) and (57) into (54), this lemma holds.

Lemma 12. INM(π) ⊆ INM(π1) ∪ INM(π2) ∪ insπ(w).

Proof. This lemma trivially holds since insπ(vi) ⊆ insπ1(vi), ∀vi ∈
π1 and insπ(vj) ⊆ insπ2(vj), ∀vj ∈ π2.

By substituting formulas of Lem. 11 and Lem. 12 into (13), we
eventually derive (52).
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