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Several temperate marine taxa of the northern hemisphere follow a trans-Pacific biogeographic track 
with representatives on either side of the intervening boreal waters. Shelter-dwelling blenniiform fishes of 
the genus Neoclinus exhibit this trans-Pacific distribution pattern with three species in the eastern North 
Pacific and eight species in the western North Pacific. We reconstructed the phylogeny of the Neocliniini 
(Neoclinus and the monotypic Mccoskerichthys) using six genetic markers: four mitochondrial genes (COI, 
cytochrome b, 12S and 16S), and two nuclear genes (RAG-1, TMO-4C4). Ancestral state reconstruction 
and molecular clock dating were used to explore hypothetical ancestral distributions and area 
relationships, and to estimate divergent times within this group. The monophyly of the genus Neoclinus, 
and the reciprocal monophyly of the eastern Pacific and western Pacific lineages were supported. 
Available evidence, including the eastern Pacific and western Atlantic occurrence of a New World clade of 
blennioid fishes that includes this lineage, supports the origin of the Neocliniini in the eastern Pacific with a 
single divergence event to the west across the North Pacific by the ancestor of the western Pacific clade. 
Estimated divergence time of the eastern and western Pacific clades of Neoclinus was 24.14 million year 
ago, which falls during the Oligocene epoch. Estimated times of divergence in other trans-Pacific lineages 
of marine fishes vary widely, from recent Pleistocene events to as early as 34 mya.
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BACKGROUND

Several temperate marine taxa of the northern 
hemisphere follow a long-recognized trans-Pacific 
biogeographic track, and most lack any representative in 
the intervening boreal waters (Andriashev 1939; Ekman 
1953; Briggs 1974); this is seen in several groups of 

marine animals, including invertebrates and fishes 
(briefly reviewed in Ilves and Taylor 2007; Ellingson et 
al. 2014). However, the hypothesized divergence times 
of these groups vary widely (Ilves and Taylor 2007), 
ranging from relatively recent dispersal events during 
Pleistocene interglacial periods (e.g., Grant and Bowen 
1998; Cox et al. 2014) to much older events, dating back 
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as far as 35 mya to the late Eocene/early Oligocene 
(Ellingson et al. 2014; Thacker 2015). 

Fringeheads of the blenniiform genus Neoclinus 
(Fig. 1) are one of the groups that exhibit this 
distributional track. This lineage of coastal fishes 
includes species found in warm temperate waters on 
either side of the otherwise inhospitable cold-water 
barrier of the North Pacific and, as far as researchers 
can tell, does not occur in intervening areas, including 
islands of the western Pacific (Hubbs 1953; Hastings 
and Springer 2009). As adults, species of Neoclinus 
inhabit shelters, including the vacant tests of gastropods 
and barnacles (Fukao and Okazaki 1987) and empty 
worm tubes (Stephens and Springer 1971), as well as 
artificial shelters such as discarded cans and bottles 
(McCleneghan and Ames 1976). These shelters provide 
protection from predators and serve as egg-deposition 
sites that are guarded by resident males (Lindquist 
1981; Murase and Sunobe 2011) and are often the focus 
of intense territorial disputes (Hongjamrassilp et al. 
2018). This cryptobenthic behavior dictates that adults 
have limited dispersal ability. However, like most other 
blennies, species of Neoclinus have a pelagic larval 
phase (Watson 2009).

The eleven currently recognized species of 
Neoclinus are included in the Neocliniini (sensu Lin 
and Hastings 2013), along with the monotypic genus 
Mccoskerichthys, which has a restricted distribution 
along the tropical eastern Pacific coasts of Costa Rica 
and Panama (Rosenblatt and Stephens 1978). Three 
species of Neoclinus (N. blanchardi, N. stephensae, 
and N. uninotatus) are found in coastal waters of the 
northeastern Pacific from northern California, USA to 
Baja California, Mexico (Hubbs 1953; Love 2011). 
The remaining eight species (N. bryope, N. chihiroe, N. 
lacunicola, N. monogrammus, N. nudiceps, N. nudus, 
N. okazakii, and N. toshimaensis) inhabit the northwest 
Pacific, including the coastal waters of Japan, the 
northern part of Taiwan, and Korea (Fukao 1987 1990; 
Murase et al. 2015). Hubbs (1953) described two of the 
eastern Pacific species and proposed that the ancestor 
of the northwestern Pacific species Neoclinus bryope 
migrated from the northeastern Pacific coast to the 
western Pacific through the Aleutian Islands during a 
relatively recent interglacial period. However, at that 
time only the three eastern Pacific species and a single 
western Pacific species (N. bryope) were known. Seven 
more western Pacific species have since been described 
(Stephens and Springer 1971; Fukao 1980; Murase 
et al. 2010). Fukao and Okazaki (1987) hypothesized 
an older emigration from the northeastern Pacific 
during the late Pliocene to early Pleistocene, based 
on Nishimura’s (1980) hypothesis of faunal exchange 
between these regions. We studied the species-level 

relationships within Neoclinus using DNA sequence 
data and 1) confirmed the monophyly of the genus 
Neoclinus and the reciprocal monophyly of the eastern 
and western Pacific clades; 2) determined the ancestral 
distribution to be in the eastern Pacific; and 3) estimated 
the divergence time of the eastern and western Pacific 
clades to be around 24.14 mya. 

MATERIALS AND METHODS

Taxon sampling

Muscle tissues from the three eastern Pacific 
species of Neoclinus, M. sandae, and the outgroup 
species Alloclinus holderi (Lin and Hastings 2013) were 
obtained from the Marine Vertebrate Collection at the 
Scripps Institution of Oceanography. Muscle tissues of 
three of the western Pacific species of Neoclinus (N. 
nudus, N. bryope, and N. okazakii) were obtained from 
A. Murase’s personal collection (UMNB-I) (Table S1).

Molecular data, sequence assembly and tests 
of codon saturation

Novel sequence data from four mitochondrial 
markers (12S, 16S, cytochrome c oxidase subunit I 
(COI), and cytochrome b) and two nuclear markers 
(TMO-4C4 and RAG1) were generated for eight species 
(Table S1), while comparable data for three species 
were obtained from GenBank. Total genomic DNA was 
extracted from muscle tissue with a ZR Genomic DNA-
Tissue MiniPrep (Zymo Research, USA) following the 
manufacturer’s instructions. Primers used to amplify 
the six markers are listed in table S2. The PCR was 
performed with the conditions listed in table S3. 
Resulting amplicons were cleaned using ExoSAP-IT 
(exonuclease I and shrimp alkaline phosphatase) in a 
specially formulated buffer from the USB Corporation 
(Cleveland, OH) to remove excess primers and dNTP. 
All PCR products were sequenced in both directions 
using standard Sanger sequencing methods via 
Retrogen, Inc (San Diego, CA). All genetic marker 
sequences were uploaded to the NCBI database (access 
numbers are provided in Table S1).

Sequences were assembled and edited in Geneious 
7.1.9. The completed sequences were aligned using 
MAFFT v. 7 (Katoh and Standley 2013) in Mesquite 
3.51 (Maddison and Maddison 2018). All protein-coding 
genes (COI, cytochrome b, RAG-1, and TMO-4C4) 
were assigned codon positions under the minimizing 
stop codon algorithm and translated to amino acids in 
Mesquite 3.51 to ensure the absence of stop codons 
associated with pseudogenes.
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Fig. 1.  Representatives of fringehead blennies included in this study. (a) Neoclinus okazakii, (b) N. stephensae, (c) N. bryope, (d) N. uninotatus, (e) N. 
nudus, (f) N. blanchardi. A, C, E are western Pacific species, while B, D, F are eastern Pacific species. Photos by W. Hongjamrassilp.

page 3 of 12Zoological Studies 59: 09 (2020)



© 2020 Academia Sinica, Taiwan

Fishes in the order Blenniiformes have been 
reported to have a high rate of molecular evolution, 
especially in protein-coding genes (Lin and Hastings 
2011; Eytan et al. 2012). To address the problem 
regarding 3rd codon saturation, four protein-coding 
gene loci were tested for saturation using Xia’s test 
in DAMBE7 (Xia and Kumar 2018). The protein-
coding genes were partitioned by 1st, 2nd and 3rd 
codon positions in MEGA 7 (Kumar et al. 2016) before 
implementation of Xia’s test in DAMBE7. Saturation 
plots of transitions and transversions were generated 
against corrected genetic distance with the General Time 
Reversible (GTR) model of evolution, and Xia’s test 
was used to interpret codon saturation. Codon saturation 
is indicated when the transition versus transversion plot 
shows a plateau; however, Xia’s test of saturation is 
more conservative, requiring “substantial saturation” 
as indicative of a level unsuitable for phylogenetic 
analysis.

Phylogenetic analyses, molecular dating and 
ancestral state reconstruction

Maximum Parsimony (MP), Maximum likelihood 
(ML), and Bayesian inference (BI) analyses were used 
to reconstruct the phylogenetic relationships. Each 
gene dataset was used to reconstruct gene trees under 
ML (Felsenstein 1981) in RAxML v.7.4.2 (Stamatakis 
2006) via RaxMLGUI v1.3 (Silvestro and Michalak 
2012) with the rapid bootstrapping algorithm. The 
General Time Reversible model with gamma rate 
of heterogeneity model (GTR + G) was applied and 
replicate bootstrap was set at 1,000 replicates. For the 
species tree analysis, each gene dataset was analyzed 
with jModelTest (Posada 2008) to find the best-fit 
evolutionary model, after which all genetic marker 
datasets were concatenated in Mesquite 3.51 (Maddison 
and Maddison 2018). Based on results from Xia’s test of 
saturation (see the RESULTS section for interpretation), 
only the 3rd codon of cytochrome b was found to 
be saturated; consequently, it was excluded from the 
concatenated dataset. The concatenated dataset was 
analyzed under MP in PAUP4.0 (Swofford 1998) with 
the heuristic search tree bisection reconnection (TBR) 
and branch-swapping from 1,000 random-addition-
sequence replicates. Gaps between nucleotides were 
set as missing characters. Bootstrap node support was 
estimated with 10,000 heuristic searches with maxTree 
= 1,000. For the ML analysis, the concatenated dataset 
was analyzed in RAxML. Each gene was partitioned 
before analyzing with the rapid bootstrap algorithm 
using 1,000 bootstrap replicates with the GTR + G 
model. Finally, for the BI analysis, the concatenated 
dataset was analyzed using Bayesian Metropolis-

coupled Markov chain Monte Carlo (MCMC) in 
MrBayes v. 3.2.2 (Ronquist and Huelsenbeck 2003). 
Each gene partition was applied with different models 
according to the jModelTest results. The model 
parameter values were “unlinked” between each 
partition. Before the BI analysis, the algorithm was set 
to run with three hot and one cold chains for 10 million 
generations and was sampled every 1,000 generations. 
The first 10% of the BI results from the MCMC analysis 
was discarded as burn-in.

The divergence times were estimated using 
BEAST v.1.7 and the BEAUti package (Drummond 
et al. 2012). The concatenated dataset of all genes 
was imported into BEAST and the substitution model 
parameter was set as unlinked. Clock model and trees 
were set as linked. Relaxed molecular clock analysis, 
uncorrelated lognormal model (UCLN), and calibrated 
Yule-process-speciation priors were set (Drummond 
et al. 2006). No reliably dated fossil blenniiforms are 
known; thus, we used the secondary calibration from 
Lin and Hastings (2013), which provided the divergent 
time of A. holderi from the ancestor of M. sandae and 
Neoclinus (38 mya with 95% HPD interval ranging from 
23.25 to 54.37) based on 21 molecular markers from 
1,410 fish taxa (Betancur-R et al. 2013). Then, three 
independent MCMC analyses were run for 40 million 
generations and sampled every 1,000 generations. 10% 
of the sample was discarded from the analysis. Log files 
were summarized on a maximum clade credibility tree 
with TreeAnnotator (Drummond et al. 2012).

The historical biogeography within the Neocliniini 
was studied using data on the current distribution of 
species (either in the eastern or western North Pacific). 
Three species of Neoclinus are restricted to warm 
temperate waters of the eastern Pacific from the central 
Baja peninsula northward to Bodega Bay, California 
(Love et al. 2005), while Mccoskerichthys sandae is 
restricted to the tropical eastern Pacific coasts of Costa 
Rica and Panama (Rosenblatt and Stephens 1978). The 
remaining species of Neoclinus are found in the western 
Pacific in both warm temperate and subtropical waters 
from northern Japan southward to Okinawa, Korea 
and Taiwan (Stephens 1961; Fukao 1980; Fukao and 
Okazaki 1987). No members of the Neocliniini have 
been found in boreal waters or waters above 38 degrees 
north latitude. Ancestral distributions were reconstructed 
in Mesquite 3.51 (Maddison and Maddison 2018) under 
MP. 
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RESULTS

We obtained a total of 3,717 base pairs (bp) from 
six genetic markers (Table S4). This included: 1) 651 
bp in COI (73.51% parsimony informative sites (PI): 
2) 462 bp in cytochrome b (58.44% PI); 3) 316 bp in 
12S (24.37% PI); 4) 490 bp in 16S (26.73% PI); 5) 
364 bp in TMO-4C4 (13.13% PI); and 6) 1,434 bp in 
RAG-1 (3.35% PI). Results from the transition versus 
transversion plots (Fig. S1) indicated that the 3rd codon 
position of cytochrome b and COI might be saturated. 
However, Xia’s test for saturation only showed that the 
3rd codon of cytochrome b is significantly saturated 
(Table S5). Thus, only the 3rd codon position of 
cytochrome b was excluded from the phylogenetic 
analysis. This resulted in 3,563 bp total in the final 
dataset. Among the amplified sequences, only the 
cytochrome b gene from M. sandae was not amplified, 
and was consequently treated as missing data in all 
phylogenetic analyses.

Although the gene tree obtained from cytochrome 
b was not well supported with bootstrap values and the 
tree topology was poorly resolved, the gene tree from 
12S + 16S provided strong bootstrap support for most 
nodes (Fig. 2). While the tree from 12S + 16S is well-

resolved, the topology differs somewhat from the gene 
trees of COI, TMO-4C4, and RAG-1 (Fig. 2). The tree 
topologies based on COI, TMO-4C4, and RAG-1 were 
similar to the tree topology obtained using all combined 
sequence data reconstructed using MP, ML, and BI 
methods (Fig. 3). This well-resolved tree topology 
supports the monophyly of the genus Neoclinus. 
Within Neoclinus, two well-resolved clades were 
obtained, reflecting a monophyletic western Pacific 
clade and a monophyletic eastern Pacific clade (Fig. 
4). Reconstruction of the ancestral distributions (Fig. 
5) indicated an eastern Pacific origin of the Neocliniini 
with a single vicariant or dispersal event across the 
North Pacific by the ancestor of the western Pacific 
clade of Neoclinus and subsequent diversification of this 
clade within the western Pacific (Fig. 6).

The molecular dating results from secondary 
calibration indicated that the ancestor of Neoclinus 
and M. sandae diverged around 35.50 million years 
ago (95% HPD interval: 22.41 to 48.89), which falls 
in the late-Eocene to early-Oligocene period (Fig. 7). 
Moreover, the western and eastern Pacific clades of 
Neoclinus diverged around 24.14 million years ago (95% 
HPD interval: 13.03 to 35.06), which falls during the 
late Oligocene period. 

Fig. 2.  Individual gene trees of the Neocliniini and its outgroup, Alloclinus holderi, implemented under Maximum likelihood analysis in RAxML: (a) 
COI, (b) cytochrome b, (c) 12S + 16S, (d) TMO-4C4, (e) RAG-1.
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DISCUSSION

Our phylogenetic analysis of the Neocliniini 
supports the monophyly of the trans-Pacific genus 
Neoclinus, consistent with the finding of Lin and 
Hastings (2013). Although not all western Pacific 
species were included in our study, the consensus 
topology  s t rongly  suppor t s  two rec iproca l ly 
monophyletic clades within Neoclinus corresponding to 
the three eastern Pacific species and the three western 
Pacific species included in this study. Within the eastern 
Pacific clade, the two largest species in the genus, N. 
uninotatus and N. blanchardi, which reach 250 mm and 
305 mm maximum standard length (SL), respectively, 
are sister species. All other species in the genus, 
including the eastern Pacific species N. stephensae, 
grow no larger than 100 mm SL (Stephens and Springer 
1971; Fukao 1980; Love 2011). Relationships within 
the western Pacific species included in this study are 
congruent with the two groups identified based on 
morphological characters in that N. bryope and N. 
okazakii, both members of the bryope group (Fukao 

Fig. 3.  Species tree for the Neocliniini from concatenated six 
genetic markers dataset analyzed using Maximum Parsimony (MP), 
Maximum Likelihood (ML), and Bayesian Inference (BI). Numbers 
on each node of the tree from left to right are: posterior probability 
from BI, bootstrap value from ML, and bootstrap value from MP. 
Asterisk means no support value was shown in the result.

Fig. 4.  General distributions of western Pacific Neoclinus species (yellow), eastern Pacific Neoclinus species and Alloclinus holderi (blue), and 
Mccoskerichthys sandae (red) mapped on the phylogeny from Bayesian inference analysis. Numbers on each node represent posterior probability 
values.
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1987), are sister species (Fig. 3). 
We were unable to obtain tissue samples for DNA 

extraction for five of the 11 species of Neoclinus. The 
five unsampled species are restricted to the western 
Pacific, and three are similar to other western Pacific 
species included in this study. Neoclinus chihiroe 
is morphologically and genetically similar to N. 
bryope and N. okazakii, while N. lacunicola and N. 
toshimaenensis are morphologically and genetically 
similar to N. nudus (Fukao 1987, 1990; Fukao and 
Okazaki 1987). The genetics of two recently described 

species, N. monogrammus and N. nudiceps (Murase 
et al. 2010), have not been studied. Morphologically, 
they are similar to one another in having a single pore 
in the lateral line (double pores in all others) and two 
supraorbital cirri (more than two in others). While it 
would be ideal to have sampled all species, available 
evidence supports the monophyly of the western Pacific 
lineage of Neoclinus.

The trans-Pacific distribution characteristic of 
Neoclinus (Fig. 4) is seen in a variety of other marine 
organisms from several groups (Andriashev 1939), 

Fig. 5.  Reconstructed ancestral distributions of the Neocliniini. Blue = eastern Pacific; yellow = western Pacific.

Fig. 6.  Reconstruction of hypothetical diversification within the Neocliniini inferred from maximum parsimony. The distribution of the ancestor of 
Mccoskerichthys and Neoclinus, whether temperate or tropical eastern Pacific, is unresolved. WP (yellow) = western Pacific; WTEP (blue) = warm 
temperate eastern Pacific; TEP (red) = tropical eastern Pacific.
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including mollusks (Amano and Vermeij 1998 2003; 
Cox et al. 2014), polychaetes (Uschakov 1971), 
crustaceans (Schweitzer 2001), pinniped mammals 
(Deméré et al. 2003), and a variety of fishes. These 
include most notably the surfperches (Embiotocidae; 
Be rna rd i  and  Bucc i a r e l l i  1999 ) ,  g r een l i ngs 
(Hexagrammidae; Crow et al. 2004), rockfishes 
(Sebastidae; Barsukov 1981; Hyde and Vetter 2007; 
Ingram and Kai 2014) and gobies (Gobiidae; Ellingson 
et al. 2014; Thacker 2015). This pattern is also apparent 
in a variety of other fishes for which similar species 
are found on opposite sides of the North Pacific. This 
includes the smelts (Osmeridae; McAllister 1963; Ilves 
and Taylor 2007), sardines (Clupeidae; Bowen and 
Grant 1997; Grant and Bowen1998), sculpins (Cottidae; 
Knope 2013), thronyhead rockfishes (Sebastidae; 
Stepien et al. 2000), pholids (Pholidae; Radchenko et 
al. 2012) and pricklebacks (Stichaeidae; Hastings and 
Walker 2003; Markevich and Kharin 2011). 

The Neocliniini may, however, be unique in that 
the sister group of the North Pacific clade is found in 
shallow coastal waters of the tropical eastern Pacific 
(Fig. 4). Mccoskerichthys sandae has a restricted range 
along the Pacific coast of Costa Rica and Panama, 
where it occurs in holes within corals (Rosenblatt and 
Stephens 1978). To our knowledge, this sister-group 
relationship between a temperate North Pacific clade 
and a neotropical lineage is unique among trans-Pacific 
lineages of temperate marine organisms.

The outgroup relationships of the Neocliniini 
were incompletely resolved in a recent study of the 
phylogeny of the Blenniiformes (Lin and Hastings 
2013). The Neocliniini was included in a clade with 
temperate eastern Pacific cryptotremine labrisomids 
(Alloclinus and Auchenionchus; Stephens and Springer 
1974) and a large Neotropical clade that includes 
over 240 species of labrisomid blennies, chaenopsid 
blennies and sand stargazers (Dactyloscopidae). With 
the exception of the western Pacific clade of Neoclinus 
and three species of labrisomids that occur in the 
eastern Atlantic (Labrisomus nuchipinnis, Malacoctenus 
africanus and M. carrowi), this entire lineage is 
restricted to the eastern Pacific and western Atlantic 
(Hastings 2009). Consequently, all evidence, including 
our phylogenetic analysis, supports an eastern (Pacific) 
origin for the Neocliniini (Fig. 5). This result supports 
a scenario in which Mccoskerichthys and Neoclinus 
diverged, the former in the tropical eastern Pacific and 
the latter in the warm-temperate waters of the eastern 
Pacific. The province of the ancestor of this lineage, 
either the tropical or warm temperate portion of the 
eastern Pacific, is unresolved (Fig. 6; Lin and Hastings 
2013, Fig. 5). This was followed by the divergence of 
the eastern and western Pacific lineages of Neoclinus, 
probably via a dispersal event across the North Pacific, 
and subsequent speciation within each of these clades 
(Fig. 6).

The hypothesized ancestral distribution of other 

Fig. 7.  Time-calibrated phylogenetic tree of the Neocliniini inferred from Bayesian relaxed molecular clock analysis. The bar at the bottom of the 
figure is the geological time scale in million-year units. Grey bars on the tree show range of divergent times with the means (in mya) shown as the 
number above each node.

page 8 of 12Zoological Studies 59: 09 (2020)



© 2020 Academia Sinica, Taiwan

temperate trans-Pacific groups and thus the region of 
origin, eastern or western North Pacific, varies across 
taxa. Hypotheses of an east to west track among fishes 
include greenlings of the Hexagrammidae (Crow et al. 
2004), surfperches of the Embiotocidae (Bernardi and 
Bucciarelli 1999), sardines of the Clupeidae (Bowen and 
Grant 1997) and “bay gobies” of the Gobiidae (Ellingson 
et al. 2014), although Thacker (2015) implied a west 
to east track for the latter clade. A west to east track 
was hypothesized for rockfishes of the genus Sebastes 
(Baruskov 1981; Hyde and Vetter 2007) and possibly 
for osmerid fishes (Ilves and Taylor 2007).

The estimated time of divergence of the trans-
Pacific clades of Neoclinus (24.14 mya, HPD: 13.03 
to 35.06; Fig. 7) should be considered tentative given 
both the wide confidence intervals and the fact that 
five of the western Pacific species were not included 
in this study. However, it implies a much older origin 
of the trans-Pacific divergence event than assumed by 
earlier authors. Hubbs (1953) understandably assumed 
a Pleistocene interglacial dispersal by the ancestor of 
N. bryope, at that time the only known western Pacific 
species. This assumption was followed by subsequent 
authors (Fukao 1980), and has been hypothesized for 
other groups of trans-Pacific fishes (e.g., Sardinops, 
Grant and Bowen 1997). Our hypothesis of an older 
divergence corresponds with that reported for some 
other groups of fishes, but estimates of the timing of 
these events vary widely. Trans-Pacific divergence 
times were estimated to be 5 mya for embiotocids 
(Bernardi and Bucciarelli 1999) and rockfishes of the 
genus Sebastolobus (Stepien et al. 2000). Estimates for 
a trans-Pacific divergence event within rockfishes of the 
genus Sebastes range from 8.35 mya (Ingram and Kai 
2014) to 15–17 mya (Baruskov 1981; Hyde and Vetter 
2007). Trans-Pacific divergence of osmerid fishes was 
estimated to be 15–25 mya (Ilves and Taylor 2007). 
More recent studies on the lineage of bay gobies of the 
Gobionellinae (Ellingson et al. 2014) found reciprocally 
monophyletic clades in the eastern and western Pacific, 
with an even older estimated divergence time of about 
34 mya (late-Eocene to early-Oligocene) that was 
corroborated as 34.2 mya by Thacker (2015). This 
range of estimated trans-Pacific divergence times is 
not surprising given the variety of study organisms; the 
various techniques used in these studies, some of which 
are outdated, based on single genes; the incomplete 
taxon sampling; and the wide confidence intervals 
ascribed to recent methods (Rutschmann 2006). 

The North Pacific experienced a relatively long 
interval of warm global oceans from 15 to 25 mya 
that may have provided suitable habitat for members 
of these temperate lineages in the intervening areas 
and/or may have facilitated dispersal of pelagic larvae 

across intervening gaps for a relatively long time (Ilves 
and Taylor 2007). This appears to have been cut off 
by cooling in the mid-Miocene (Zachos et al. 2001; 
Ilves and Taylor 2007) interrupting distributions and/
or limiting opportunities for trans-Pacific dispersal 
events until more recent interglacial periods in the 
Pleistocene for pelagic lineages (e.g., Bowen and Grant 
1997) and more boreal lineages (e.g., Cox et al. 2014). 
The trans-Pacific lineages of fishes that have been 
studied exhibit an array of dispersal potentials that may 
have affected their ability to cross the North Pacific in 
the past. A relatively recent estimated divergence of 
pelagic sardines may be expected given their relatively 
high dispersal potential as pelagic schooling adults 
(Bowen and Grant 1997). Lineages with older estimated 
divergence times such as rockfishes (Sebastes) and 
surfperches (Embiotocidae) retain developing embryos 
in females reducing their potential for dispersal during 
early life history (Hyde and Vetter 2007; Bernardi and 
Bucciarelli 1999). Similarly, gobies and blennies lay 
demersal eggs, reducing their dispersal potential as 
larvae, and adults of both groups are small, benthic 
species that move little as adults reducing their dispersal 
potential even further. Application of modern methods 
and greater taxon sampling are needed to clarify the 
evolutionary history of these and other temperate 
marine clades transitioning the North Pacific.

CONCLUSIONS

Fringeheads of the blenniiform genus Neoclinus 
are one of several groups of coastal fishes with 
representatives on opposite sides of the North Pacific 
Ocean, but not in intervening waters. Available evidence 
indicates a single dispersal or vicariant event across 
the North Pacific from this group’s origin in the eastern 
Pacific, followed by speciation in both the western 
Pacific and eastern Pacific clades. Published accounts 
of other lineages of fishes exhibiting this trans-Pacific 
biogeographic track indicate an array of divergence 
times. However, these studies lack a consistent 
methodology and level of taxonomic coverage, limiting 
any generalization of the underlying drivers of this 
biogeographic pattern. 
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Supplementary materials

Fig. S1.  Plots of transitions (blue) vs. transversions 
(green) for four protein coding DNA markers against 
corrected genetic distance (GTR), created in DAMBE5. 
Plots of protein coding genes show the 1st + 2nd and 
3rd codon positions. (download)

Table S1.  List of specimens, localities, and Genbank 
accession numbers for 8 terminal taxa used in this 
phylogenetic analysis.  SIO: Marine Vertebrate 
Collection at Scripps Institution of Oceanography 
and UMNB: A. Murase’s personal collection. Bold 
accession numbers are the novel sequences generated in 
this study. (download)

Table S2.  List of primers used in this study. (download)

Table S3.  List of PCR conditions for each genetic 
marker used in this study. (download)

Table S4.  Number of characters contributed by each 
genetic marker. Protein coding genes were partitioned 
by 1st + 2nd and 3rd codon positions. P-U = Parsimony 
uninformative, P-I = Parsimony informative. (download)

Table S5.  Results and interpretation of Xia’s test 
of saturation, given either a symmetrical (Sym) or 
asymmetrical (Asym) tree (Xia, X., Z. Xie, M. Salemi, 
L. Chen, and Y. Wang. 2003. An index of substitution 
saturation and its application. Molecular Phylogenetics 
and Evolution 26: 1–7). Results suggesting saturation 
from the transitions vs. transversions plots (see Fig. 
S1) are in bold. Iss refers to the index of substitution 
saturation and Iss.c refers to the critical index of 
substitution saturation. (download)
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